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Abstract 

This study considers the problem of  building a linear prediction model when the number 

of  candidate covariates is large and the dataset contains a fraction  of  outliers and other 

contaminations "that are difficult  to visualize and clean. We aim at predicting the future 

non-outlying cases. Therefore,  we need methods that are robust and scalable at the same 

time. 

We consider two different  strategies for  model selection: (a) one-step model building 

and (b) two-step model building. For one-step model building, we robustify  the step-by-

step algorithms forward  selection (FS) and stepwise (SW), with robust partial F-tests as 

stopping rules. 

Our two-step model building procedure consists of  sequencing  and segmentation.  In 

sequencing,  the input variables are sequenced to form  a list such that the good predictors 

are likely to appear in the beginning, and the first  m variables of  the list form  a reduced 

set for  further  consideration. For this step we robustify  Least Angle Regression (LARS) 

proposed by Efron,  Hastie, Johnstone and Tibshirani (2004). We use bootstrap to sta-

bilize the results obtained by robust LARS, and use "learning curves" to determine the 

size of  the reduced set. 



The second step (of  the two-step model building procedure) - which we call seg-

mentation  - carefully  examines subsets of  the covariates in the reduced set in order to 

select the final  prediction model. For this we propose a computationally suitable robust 

cross-validation procedure. We also propose a robust bootstrap procedure for  segmenta-

tion, which is similar to the method proposed by Salibian-Barrera and Zamar (2002) to 

conduct robust inferences  in linear regression. 

We introduce the idea of  "multivariate-Winsorization" which we use for  robust data 

cleaning (for  the robustification  of  LARS). We also propose a new correlation estimate 

which we call the "adjusted-Winsorized correlation estimate". This estimate is consis-

tent and has bounded influence,  and has some advantages over univariate-Winsorized 

correlation estimate (Huber 1981 and Alqallaf  2003). 
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Chapter 1 

Introduction 

1.1 Motivation 

We consider the problem of  building a linear prediction model when there is a large 

number d  of  candidate covariates. Large datasets usually contain a fraction  of  outliers and 

other contaminations, which are difficult  to visualize and clean. The classical algorithms 

are much affected  by these outliers and, therefore,  these algorithms often  fail  to select the 

'correct' linear prediction model that would have been chosen if  there were no outliers. 

We argue that it is not reasonable to attempt to predict future  outliers without 

knowledge of  the underlying mechanism that produces them. Therefore,  we aim at 

predicting the future  non-outlying cases by fitting  well the majority  of  the data. For 

this, we need a robust method that is capable of  selecting the important variables in the 

presence of  outliers in high-dimensional datasets. 



Robust model selection has not received much attention in the robustness litera-

ture. Seminal papers that address this issue include Ronchetti (1985) and Ronchetti 

and Staudte (1994) which introduced robust versions of  the selection criteria AIC and 

Cp , respectively. Yohai (1997) proposed a robust Final Prediction Error (FPE) crite-

rion (for  Splus documentation). Ronchetti, Field and Blanchard (1997) proposed robust 

model selection by cross-validation. Morgenthaler, Welsch and Zenide (2003) constructed 

a selection technique to simultaneously identify  the correct model structure as well as 

unusual observations. All these robust methods require the fitting  of  all submodels. One 

exception is the model selection based on the Wald test (Sommer and Huggins 1996) 

which requires the computation of  estimates from  the full  model only. 

A major drawback of  the existing robust model selection methods is that they do not 

scale up to large dimensions, because fitting  a robust model is a nonlinear optimization 

problem. As the number d  of  possible predictors increases, the number of  submodels 

(which is 2d — 1) increases dramatically, making the computational burden enormous. 

Also, the methods that require the fitting  of  only the full  model are not suitable, because 
i 

only a few  of  the d  covariates are typically included in the final  model, and the fitting  of 

the full  model increases the numerical complexity of  the methods unnecessarily. 

In this study, we attempt to achieve robustness and computational suitability at the 

same time. That is, we attempt to develop linear prediction model building strategies 

that are simultaneously (i) capable of  selecting the important covariates in the presence 

of  contaminations, and (ii) scalable to high dimensions. The term "scalable" is used to 

indicate that the numerical complexity of  the statistical methods proposed is "reasonable" 

(e.g., not exponential). 



1.2 Model selection strategy 

We consider two different  strategies for  the selection of  a linear prediction model for 

high-dimensional datasets: (a) one-step model building and (b) two-step model building, 

which are described below. 

1.2.1 One-step model building 

Since for  large values of  d  the computational burden of  all possible subsets regression is 

enormous, we turn our focus  on step-by-step algorithms like forward  selection (FS) and 

stepwise (SW) procedures (see, for  example, Weisberg 1985, Chapter 8) that can stop 

when certain goals are achieved. 

Classical FS or SW procedures yield poor results when the data contain outliers 

and other contaminations, since they attempt to select the covariates that will fit  well all 

the cases (including the outliers). Therefore,  our goal is to develop robust step-by-step 

algorithms that will select important variables in the presence of  outliers, and predict 

well the future  non-outlying cases. 

We express the classical FS and SW algorithms in terms of  sample means, variances 

and correlations, and replace these sample quantities by their robust counterparts to 

obtain robust step-by-step algorithms. Similar ideas have been used for  building robust 

estimators of  regression parameters (see, for  example, Croux, Van Aelst and Dehon 2003, 

and the references  therein). We also incorporate robust partial F-tests as stopping rules 

during the implementation of  these robust algorithms. 



1.2.2 Two-step model building 

Our two-step model building procedure is a blend of  all possible subsets regression and 

step-by-step algorithms. All possible subsets regression is expected to select a better 

model (with respect to predictive power) than any step-by-step algorithm, but its com-

putational burden is extremely high for  large values of  d.  We, therefore,  consider ap-

plying this procedure on a "reduced set" of  covariates. Thus, we consider proceeding in 

two steps. The first  step - which we call sequencing  - quickly screens out unimportant 

variables to form  a "reduced set" for  further  consideration. The second step - which we 

call segmentation  - carefully  examines different  subsets of  the variables in the reduced 

set for  possible inclusion in the prediction model. These two steps are described below. 

Sequencing 

The goal of  the first  step is a drastic reduction of  the number of  candidate covariates. 

The input variables are sequenced to form  a list such that the good predictors are likely 

to appear at the beginning of  the list. The first  m covariates of  the list then form  the 

reduced set from  which the final  prediction model will be obtained. 

One strategy for  sequencing the candidate covariates is to use one of  the several 

available step-by-step or stagewise algorithms, e.g., Forward Selection (FS), or Forward 

Stagewise procedure (Stagewise) (see, for  example, Hastie, Tibshirani and Friedman 

2001, Chapter 10). We focus  on the powerful  algorithm recently proposed by Efron, 

Hastie, Johnstone and Tibshirani (2004) called Least Angle Regression (LARS), which is 

a mathematical solution to the Stagewise problem. LARS is computationally efficient  and 



has been shown to have clear statistical advantages over other step-by-step and stagewise 

algorithms. 

Since LARS is very sensitive to contamination, our goal is to robustify  LARS. We 

show that LARS can be expressed in terms of  the mean vector and covariance matrix of 

the data, and we replace these classical ingredients of  LARS by their robust counterparts 

to obtain robust LARS. We combine robust LARS algorithm with bootstrap to obtain a 

more stable and reliable list of  covariates. 

One important issue in the sequencing step is to determine the appropriate value 

of  the number of  covariates, m, for  the reduced set. The probability that the reduced 

set contains all the important variables increases with m. Unfortunately,  also the com-

putational cost of  the second step, segmentation, increases with m. Therefore,  we aim 

to determine a "reasonable" value of  m which is large enough to include most of  the 

important variables but not so large as to make the second step impractical or unfeasi-

ble. For this purpose, we introduce a "learning curve" that plots robust R 2 values versus 

dimension. An appropriate value of  m is the dimension corresponding to the point where 

the curve starts to level off. 

Segmentation 

When we have a reduced set of  m covariates for  further  consideration, one reasonable 

approach to reach the final  model is to perform  all possible subsets regression on this 

reduced set using an appropriate selection criterion. Again, the classical selection criteria, 

e.g., Final Prediction Error (FPE), Akaike Information  Criterion (AIC), Mallows' Cp , 

cross-validation (CV) and bootstrap procedures are not resistant to outliers. The robust 



AIC procedure (Ronchetti 1985) has certain limitations, which are discussed in this 

thesis. The robust CV method (Ronchetti, Field and Blanchard 1997) is computationally 

expensive. 

In this study, we propose computationally suitable robust CV and robust boot-

strap procedures to evaluate the predictive powers of  different  subsets of  the reduced 

set of  covariates. Our robust bootstrap procedure is similar to the methods proposed 

by Salibian-Barrera (2000), and Salibian-Barrera and Zamar (2002) to conduct robust 

statistical inferences  in linear regression. Since the performance  of  robust FPE procedure 

(Yohai 1997) has not been studied so far,  we also evaluate this method in our study. 

1.3 Computation of  robust correlation matrices 

As mentioned earlier, our approach to robustification  of  FS, SW and LARS consists 

of  expressing these algorithms in terms of  the mean vector and the correlation matrix 

of  the data, and then replacing these classical ingredients by their robust counterparts. 

Therefore,  robust estimation of  the correlation matrix is a major component of  the robust 

methods we propose in this study. 

The computation of  robust correlation estimates from  a <i-dimensional data set is 

very time-consuming, particularly for  large values of  d.  Even the fast  MCD algorithm 

by Rousseeuw and Van Driessen (1999) is not fast  enough for  the type of  applications 

we have in mind. Therefore,  we use robust correlations derived from  a pairwise affine 

equivariant covariance estimator. 



Interestingly, the pairwise approach for  robust correlation matrix estimation is not 

only computationally suitable, it is also more relevant than the d-dimensional approach 

for  robust step-by-step algorithms. Pairwise approach allows us to compute only the 

required correlations at each step of  the algorithm. Since we intend to stop as soon as 

certain goals are achieved, a pairwise approach saves the computation of  the correlations 

that are not required. 

We consider robust correlations derived from  a simplified  version of  the bivariate 

M-estimator proposed by Maronna (1976). This estimate is computationally efficient, 

affine  equivariant and has a breakdown point of  1/3 in two dimensions. 

For very large high-dimensional data, however, we need an even faster  robust corre-

lation estimator. Therefore,  as a part of  our robust LARS procedure, we propose a new 

correlation estimate called the "adjusted-Windsorized correlation estimate". Unlike two 

separate univariate Windsorizations for  X  and Y  (see Huber 1981 and Alqallaf  2003), 

we propose a joint Windsorization with a larger tuning constant C\ for  the points falling 

in the two quadrants that contain the majority of  the data, and a smaller constant c2 

for  the points in the two minor quadrants. Our estimate has some advantages over the 

univariate-Windsorized correlation estimate. 

1.4 Organization of  subsequent chapters 

The following  chapters are organized as follows.  In Chapter 2, we present the one-step 

model selection procedure, where we develop robust versions of  FS and SW algorithms 

incorporated with robust partial F-tests used as stopping rules. 



In Chapter 3, we present the first  step (robust sequencing) of  the two-step model 

selection procedure. Here, we robustify  LARS to sequence the covariates, use bootstrap 

to stabilize the results obtained by robust LARS, and use "learning curves" to decide 

about the size of  the reduced set. For the development of  robust LARS, we introduce 

the idea of  "multivariate-windsorization" which we use for  robust data cleaning. We also 

propose a new correlation estimate which we call the "adjusted-Windsorized correlation 

estimate". 

Chapter 4 deals with the second step (robust segmentation) of  the two-step model 

selection procedure. Here, we review the existing classical and robust selection criteria, 

discuss their limitations, and propose computationally suitable robust CV and robust 

bootstrap procedures to evaluate the predictive powers of  different  subsets of  the reduced 

set of  covariates. We also evaluate the performance  of  robust FPE (Yohai 1997). 

Chapter 5 studies the properties of  the adjusted-Windsorized correlation estimate 

(the new correlation estimate proposed in Chapter 3). We show that the proposed 

estimate is consistent and has bounded influence.  We obtain its asymptotic variance 

and intrinsic bias. We show that the tuning constants of  this estimate can be chosen 

such that it is approximately Fisher-consistent. We also show that a smoothed version 

of  this estimate is asymptotically normal. 

In Chapter 6 we conclude by summarizing the main ideas proposed in this thesis, 

and the main results obtained. 

Though the major chapters (Chapters 2-5) are connected conceptually, each of  them 

is independent of  the others. That is, they may be considered as individual research 

papers, to a certain extent. 



Chapter 2 

One-step Model Building: 

Robust Forward Selection and 

Stepwise Procedures 

2.1 Introduction 

When the number d  of  candidate covariates is small, one can choose a linear predic-

tion model by computing a reasonable criterion (e.g., Cp , AIC, cross-validation error 

or bootstrap error) for  all possible subsets of  the predictors. However, as d  increases, 

the computational burden of  this approach (sometimes referred  to as all  possible  subsets 

regression)  increases very quickly. This is one of  the main reasons why step-by-step algo- ' 

rithms like forward  selection (FS) and stepwise (SW) (see, for  example, Weisberg 1985, 

Chapter 8) are popular. 



Unfortunately,  classical FS or SW procedures yield poor results when the data con-

tain outliers and other contaminations. These algorithms attempt to select the covariates 

that will fit  well all the cases (including the outliers), and often  fail  to select the model 

that would have been chosen if  those outliers were not present in the data. Moreover, 

aggressive deletion of  outliers is not desirable, because we may end up deleting a lot of 

observations which are outliers only with respect to the predictors that will not be in the 

model. 

We argued earlier that it is not reasonable to attempt to predict the future  outliers 

without knowledge of  the underlying mechanism that produces them. Therefore,  our 

goal is to develop robust step-by-step algorithms that will select important variables in 

the presence of  outliers, and predict well the future  non-outlying cases. 

We show that the list of  variables selected by classical FS and SW procedures are 

functions  of  sample means, variances and correlations. We express the two classical algo-

rithms in terms of  these sample quantities, and replace them by robust counterparts to 

obtain the corresponding robust versions of  the algorithms. Once the covariates are se-

lected (by using these simple robust selection algorithms), we can use a robust regression 

estimator on the final  model. 

Robust correlation matrix estimators for  <i-dimensional data sets are usually de-

rived from  affine-equivariant,  robust estimators of  scatter. This is very time-consuming, 

particularly for  large values of  d.  Moreover, the computation of  such robust correlation 

matrices becomes unstable when the dimension d  is large compared to the sample size 

n. On the other hand, only a few  of  the d  covariates are typically included in the fi-

• nal model, and the computation of  the whole d-dimensional correlation matrix at once 



will unnecessarily increase the numerical complexity of  the otherwise computationally 

suitable step-by-step algorithms. 

To avoid this complexity, we use an affine-equivariant  bivariate M-estimator of  scat-

ter to obtain robust correlation estimates for  all pairs of  variables, and combine these 

to construct a robust correlation matrix. We call this the pairwise robust correlation 

approach. Interestingly, this pairwise approach for  robust correlation matrix estimation 

is not only computationally suitable, but is also more convenient (compared to the full 

d-dimensional approach) for  robust step-by-step algorithms. The reason is as follows. 

The sample correlation matrix (R, say) has the property that the correlation matrix of 

a subset of  variables can be obtained by simply taking the appropriate submatrix of  R. 

This property allows us to compute only the required correlations at each step of  the 

algorithm. With the pairwise robust correlation approach we keep this property. 

Affine  equivariance and regression equivariance are considered to be important prop-

erties for  robust regression estimators (see, e.g., Rousseeuw and Leroy 1987). However, 

these properties are not required in the context of  variable selection, because we do not 

consider linear combinations of  the existing covariates. The only transformations  that 

should not affect  the selection result are linear transformations  of  individual variables, 

i.e., shifts  and scale changes. Variable selection methods are often  based on correlations 

among the variables. Therefore,  robust variable selection procedures need to be robust 

against correlation outliers, that is, outliers that affect  the classical correlation estimates 

but can not be detected by looking at the individual variables separately. Our approach 

based on pairwise correlations is robust against correlation outliers and thus suitable for 

robust variable selection. It should be emphasized that with our approach we consider 

the problem of  "selecting" a list of  important predictors, but we do not yet "fit"  the 



selected model. The final  model resulting from  the selection procedure usually contains 

only a small number of  predictors compared to the initial dimension d,  when d  is large. 

Therefore,  to robstly fit  the final  model we propose to use a highly robust regression 

estimator such as an MM-estimator (Yohai 1987) that is resistant to all types of  outliers. 

Note that we always use models with intercept. 

Croux, Van Aelst and Dehon (2003) estimated the parameters of  a regression model 

using S-estimators of  multivariate location and scatter. They also obtained the corre-

sponding standard errors. Their estimation method can be adapted for  model-building 

purposes. However, for  the step-by-step algorithms like FS and SW, our pairwise ap-

proach has computational advantages. 

The rest of  this chapter is organized as follows.  In Section 2.2 we review some 

classical step-by-step algorithms. In Section 2.3 we decompose the FS and SW procedures 

in terms of  the correlation matrix of  the data. In Section 2.4, we present robust versions 

of  these algorihms, along with their numerical complexities. Section 2.5 presents a Monte 

Carlo study that compares our robust methods with the classical ones by their predicting 

powers. Section 2.6 contains two real-data applications. Section 2.7 is the conclusion. 

2.2 Review: classical step-by-step algorithms 

In this section, we review the three most important step-by-step algorithms: Forward Se-

lection (FS), stepwise (SW) and Backward Elimination (BE). We show a serious drawback 

of  the BE procedure, which is ,why we did not consider this algorithm for  robustification. 



2.2.1 Forward Selection (FS) 

Let us have d  predictors ..., X d,  and a response Y.  Let each variable be standardized 

using its mean and standard deviation. The FS procedure selects the predictor (Xi, 

say) that has the largest absolute correlation |riy| with Y, and obtains the residual 

vector Y  — riyXi.  All the other covariates are then 'adjusted for  Xi  and entered into 

competition. That is, each Xj is regressed on and the corresponding residual vector 

Zj.i (which is orthogonal to is obtained. The correlations of  these ZjA with the 

residual vector Y  — riyXi,  which are also called "the partial correlations between Xj 

and Y  adjusted for  Xi  \ decide the next variable (X 2, say) to enter the regression model. 

All the other covariates are then 'adjusted for  X\  and X 2 and entered into further 

competition, and so on. We continue adding one covariate at each step, until a stopping 

criterion is met. 

The reason behind the 'orthogonalization', that is, the construction of  Zj,\ from  Xj, 

is that the algorithm measures what 'additional' contribution Xj makes in explaining 

the variability of  Y, when Xj joins X\ in the regression model. The R 2 produced by 

(Xx, Z 2) is the same as the R2 produced by (Xl, X 2), and the orthogonalization ensures 

maximum R2 at each FS step. 

We stop when the partial F-value for  each covariate that has not yet entered the 

model is less than a pre-selected number, say "F-IN" (Weisberg 1985). 



2.2.2 Stepwise (SW) 

The SW algorithm is the same as the FS procedure up to the second step. When there 

are at least two covariates in the model, at each subsequent SW step we either (a) remove 

a covariate, or (b) exchange two covariates, or (c) add a covariate, or (d) stop. Note that, 

the "exchange" of  two covariates is not the same as the addition (removal) of  a covariate 

in one step followed  by the removal (addition) of  another covariate in the next step. 

Sometimes, a new covariate cannot enter the model because of  an existing covariate, and 

the existing covariate cannot be removed according to the criterion used. 

The options at each SW step are considered in the order in which they are mentioned 

above. A selected covariate is removed if  its partial F-value is less than a pre-selected 

number, say "F-OUT" (Weisberg 1985). A selected covariate is exchanged with a new 

one if  the exchange increases R2. A covariate is added if  it has the highest partial F-value 

among the remaining covariates, and the value is more than F-IN (as in FS). And, we 

stop when none of  the above (removal, exchange or addition) occurs in a certain step. 

2.2.3 Backward Elimination (BE) 

The BE procedure (see, for  example, Weisberg 1985, Chapter 8) is the opposite of  FS. 

BE starts with the full  model, and removes one covariate at each step. The covariate to 

remove is the one that has the smallest partial F-value among all the covariates that are 

currently in the model. We stop when the partial F-value for  each covariate currently in 

the model is greater than F-OUT. 



Limitation of  BE 

When the number d  of  candidate covariates is large, only a few  of  these covariates are 

typically included in the final  model. However, to apply the BE algorithm, we have to 

compute the pairwise correlation estimates for  all the d  covariates (since BE starts with 

the full  model). Therefore,  BE has higher numerical complexity than that of  FS (or SW). 

This problem will be more serious with the computation of  robust correlation estimates 

(for  robust BE) . Therefore,  we will not consider the BE procedure for  robustification.  • 

2.3 FS and SW Expressed in Correlations 

In order to robustify  the FS and SW procedures, we will now express these algorithm in 

terms of  the original correlations of  the variables. 

2.3.1 FS expressed in terms of  correlations 

Let the d  covariates X x,..., Xj  and the response Y  be standardized using their mean and 

standard deviation. Let rjy denote the correlation between X j and Y, and Rx be the 

correlation matrix of  the covariates. Suppose w.l.o.g. that X\ has the maximum absolute 

correlation with Y. Then, Xx is the first  variable that enters the regression model. We 

call the predictors that are in the current regression model "active" predictors. The 

remaining candidate predictors are called "inactive" predictors. We now need the partial 

correlations between Xj  (j  1) a n d Y  adjusted for  X\,  denoted by rjy.i, to determine 

the second covariate X 2 (say) that enters the model. 



The partial correlation rjY.1 expressed in terms of  original correlations 

Each inactive covariate Xj  should be regressed on X x to obtain the residual vector Zj, x 

as follows 

Zj_\ = Xj — PjiX\, (2.1) 

where 

We have 

and 

(3j l = ±X[X J=r jl. (2.2) 

-Zl xY  = (Xj  - faXtfY  = rjY  - r j l r 1 Y ,  (2.3) 

= (XJ  - - /3 J XX X)  = 1 - r2
jv (2.4) 

Therefore,  the partial correlation Tjy.i is given by 

Z) A(Y-p yxX x)ln 
rjY. 1 - , (2.5) 

Y Zj.iZj.i/n SD(F — 0Y XX x) 

Note that the factor  SD(F — (3y XX x) in the denominator of  (2.5) is independent of  the 

covariate Xj;  (j  = 2,...,d)  being considered. Hence, when selecting the covariate Xj 

that maximizes the partial correlation rjy. 1, this constant factor  can be ignored. This 

reduces computations and therefore  is more time efficient.  It thus suffices  to calculate 

Zji(Y  - PriXj/n 
rjY. 1 = — — , (2.6) 

'ZUZ^/n 

which is proportional to the actual partial correlation, fj Y ,x can be rewritten as follows 

Z\  iY/n 
Tjyi = — J ' = [since Zj x and X x are orthogonal] (2.7) 

'Z^Z^n 
rjY  r3lr lY  ^ ^ ^ 



Now, suppose w.l.o.g. that X 2 (or, equivalently, Z 2.1) is the new active covariate, because 

it minimizes fjy.  1 (and thus also the partial correlation rjy.i)- All the inactive covariates 

should now be orthogonalized with respect to Z 2,x. 

Orthogonalization of  Zj,i  wrt Z 2\ 

Each inactive variable Zj\  should be regressed on Z 2.\ to obtain the residual vector Zj, i2 

as follows 

Zj.  12 = Zj.\  — (3j2.lZ2.l-

Here, 

ZLZj.i/n 
Pj2.1 = 

^2.1^2.1/"-

[because of  orthogonality] (2.8) 

[Using (2.1) and (2.2)] 

^.1^2.1/n 
XjZ^/n 
Z 2.\Z 2.i/n 
X 2{Xj  — VjiXi)/n 

Z 2AZ 2A/n 
T2j  - T-217-j-i 

1 - r 2 \ 
[using (squared) denominator of  (2.7) for  j = 2], 

Thus, fjy.i  and (3j2.1 are expressed in terms of  original correlations. 

Lemma 2.1. Given that  the numerators  and denominators  of  the following  equations 

i2-(fc-i)  = / ; - for  all  inactive  j, (2.9) 
\J  Z t

jl 2..<k_l )Z j.i2...^-i)/n 

and 

Zfi  12 (h—1)  Zj12--(/i—1)/^ 
Pjh.n-(h-i)  = „t hr for  h = 2 , . . . , k; j inactive,  (2.10) 

are functions  of  original  correlations,  the numerators  and denominators  of  the following 

quantities  can be expressed  as functions  of  original  correlations:  (a)  fj Y.i2-k and (b) 

Pj(k+l).12-k-



Proof.  Here, fj Y.i2-(k-i)  determines the next active covariate X k (or, equivalently, 

Zk.\2-(k-i))-  The given 0jk.i2-(k-i) c a n be used to obtain the residual vector 

(2.11) 

Now, 

r j Y 1 2 . . . k = J ' 1 2 f c = . (2.12) 
Z l

jA2:..kZ jA2...k/n 

Using (2.11), the numerator of  (2.12) can be written as 

-Z tj.l2-(k-l) Y  ~ Pjk.l2-ik-l)-Z t
k.l2...( k_l )Y, 

where the first  part is the numerator of  (2.9), (5jk.\2-{k-\)  comes from  (2.10) for  h = k, 

and the rest is the numerator of  (2.9) for  j = k (because X k was inactive at that point). 

Thus, the numerator of  (2.12) is a function  of  the original correlations. 

Using (2.11), the squared denominator of  (2.12) can be written as 

~Zj.i2-(k-i)Zj.i2-ik-i)  ~ 2f3jk.i2-(k-i)-Z t
k l2...( k_1}Z j.i2...( k-i) 

+ 0jk.l2-{k-l)Z tk.l2-ik-l)Zk.l2-{k-l)i  (2.13) 

where, the first  term is the (squared) denominator of  (2.9), the second term is the nu-

merator of  (2.10) for  h — k, and the last term is the denominator of  (2.10) for  h = k. 

This proves Part (a) of  the lemma. 

The quantities fj Y A 2 . . .k determine the next active covriate Now, 

r'  - Z{k+i).i2-k Zj.i2-k/n 
Pj(k+i).\2-k  - 7 t 7 (2.14) 



Because of  orthogonality, the numerator of  (2.14) can be written as: 

— X( k+ljZj,i2-k  = ~Xlk+l){Xj  — PjiXi  — Pj2.1Z2.1  — • • • Pjk.l2-{k-l)Zk.l2-(k-l)) 

lb Iv  lb 

= rj(fc+l)  - fjiTki  - Pj2.l-Z( k+ly 1Z 2.l .-•••- Pjk.l2-{k-l)-Zl k+l)A2-{k-l) Zk.l2-{k-l), 
I  b lb 

where the fi's  come from  (2.10) for  h = 2 , . . . , k, and the other quantities are the numer-

ators of  (2.10) for  j = k + 1, and h — 2 , . . . , k. 

For the denominator of  (2.14), we can use the relation 

Z{k+l).l2-k  = Z(fc+l).12-(k-l) — P(k+l)k.l2-{k-l)Zk.l2-(k-l), 

which follows  from  (2.11) by replacing j = (k  + 1). So, the denominator can be written 

as 

Zlk+i).i2-(k-i)Z(k+i).i2-(k-i)/n  - 2^k+i)k.i2--ik-i)Zl k+1-) l2...[ k-i)Z k.i2--\k-i)/n 

J rP(k+l)k.l2-(k-l)Zk.l2-(k-l)Zk.l2~ik-l)/n>, 

where the first  part is the (squared) denominator of  (2.9) for  j = k + 1, the second part 

is the numerator of  (2.10) for  j = k + 1 and h = k, and the last part is the denominator 

of  (2.10) for  h = k. Therefore,  Pj(k+i).i2...k  is a function  of  original correlations. This 

completes the proof.  • 



FS steps in correlations 

We can now summarize the FS algorithm in terms of  correlations among the original 

variables as follows: 

1. To select the first  covariate X mi, determine m\ = argmax \rj\. 

2. To select the &th covariate X mk (k  = 2, 3, ...), calculate fjy. mi...m(fc  l ) , which is pro-

portional to the partial correlation between Xj  and Y  adjusted for  X mi, • • • , X m{ k_l ), 

and then determine rrik = argmax|fjy. mi...m(f c_1) | . 

Partial F-tests for  stopping 

At each FS step, once the "best" covariate (among the remaining covariates) is identified, 

we can perform  a partial F-test to decide whether to include this covariate in the model 

(and continue the process) or to stop. The new "best" covariate enters the model only if 

the partial F-value, denoted by impartial, is greater than F(0.95,1, n — k — 1) (say), where 

k is the current size of  the model including the new covariate. Here again, the required 

quantities can be expressed in terms of  correlations among the original variables, as we 

show below. 

Suppose that Xi is already included in the model, and X<i has the largest absolute 

partial correlation with Y  after  adjusting for  To decide whether X 2 should be 

included in the model we perform  a partial F-test using the statistic F p a r t i a i given by 



F = (Y  - pY 1 Xtf{Y  - PyiXx)  - (y - faX!  - i3Y 2.1z2.1)t(Y  - pY lX 1 - f3 Y 2.lZ 2.l)  
part ia l (y - (3 Y lX x - Py2.xZ 2AY(Y  - (3 Y lX x - (S Y2 XZ 2.x)l(n  - 3) 

(n - 3) (2 p Y 2 A Z \ A Y j n - $ 2 A Z 2 . i / n ) 
l-r 2

1Y-  (2p Y2 xZ\ xYjn  - P\2XZ\ AZ 2Aln) 

( n - 3) ( / f o . ^ y / n ) 
1 - - PyzAY/u 

{n  - 3) f\ Y A 
2 ' 

' lY  ' 2Y.1 
(2.15) 

where f 2y.i is expressed in correlations in (2.7). 

Similarly, when (k  — 1) covariates X x,..., are already in the model, and w.l.o.g. 

Xk has the largest absolute partial correlation with Y  after  adjusting for  X i , . . . , Xk-i, 

the partial F-statistic for  Xk can be expressed as: 

7 _ (n - fe  - 1) f 2 

' p a r t i a l ~ -. 2 _ f 2  Z2 
X / 1 \ r I o v 1 I 

(2.16) 
iy '2y.i " ' ' fcy.i2-(fc-i) 

i 

where the partial correlations can be expressed in terms of  the original correlations using 

Lemma 2.1. 

2.3.2 SW expressed in terms of  correlations 

The SW algorithm starts as the FS procedure. When there are at least two covariates in 

the model, at each subsequent SW step we either add a covariate, or drop a covariate, 

or exchange two covariates, or stop. 



To decide whether to add a covariate, the partial correlations of  each inactive co-

variate XJ  with Y can be computed as in the case of  FS (see (2.12)) to perform  a partial 

F-test (see (2.15) and (2.16)). To decide whether to drop an "active" covariate, we can 

pretend that the active covariate under consideration entered the model last, and calcu-

late its partial correlations with Y (see (2.12), subscripts modified)  to perform  a partial 

F-test (see (2.15) and (2.16), subscripts modified). 

Once an "active" covariate is dropped, the "orthogonalizations" of  the other covari-

ates (active or inactive) with this covariate that were used before  to derive the partial 

correlations become irrelevant, and the order of  the other active covariates in the model 

cannot be determined. Fortunately, this does not create a problem to decide, the next 

covariate, because, for  example, fj Y.zm  = ?jY.643-  Therefore,  we can update all relevant 

calculations considering the currently active covariates in any order. 

Stopping criteria for  SW. Unlike the FS algorithm where a stopping criterion 

is "optional" (we may choose to sequence all the covariates), SW has to have a built-in 

stopping rule, because at each step we have to decide whether to add one covariate and/or 

drop another. We may choose two different  theoretical F percentiles as the inclusion and 

deletion criteria, e.g., F(0.95, l,n — k\ — l)  and F(0.90,1,  n—k2 — 1), respectively, where 

k\ and k2 are the model sizes after  inclusion and before  deletion. 

2.4 Robustification  of  FS and SW algorithms 

In the last section we expressed the FS and SW algorithms in terms of  sample means, 

variances and correlations. Because of  these non-robust building blocks, these algorithms 



are sensitive to contamination in the data, as shown by our simulation and real-data ex-

amples later on. A simple robustification  of  these algorithms can be achieved by replacing 

the non-robust ingredients of  the algorithms by their robust counterparts. For the ini-

tial standardization, the choices of  fast  computable robust center and scale measures are 

straightforward:  median (med) and median absolute deviation (mad). As mentioned ear-

lier, most available robust correlation estimators are computed from  the d-dimensional 

data and therefore  are very time consuming (see, for  example, Rousseeuw and Leroy 

1987). Robust pairwise approaches (Huber 1981) are not affine  equivariant and, there-

fore,  are sensitive to two-dimensional outliers. 

One solution is to use robust correlations derived from  a pairwise affine  equivariant 

covariance estimate. We consider an estimate'which is inspired by the computation-

ally suitable multivariate M-estimate proposed by Maronna (1976). We first  present 

Maronna's estimate below. 

Definition  2.1. (Maronna's M-estimate of  multivariate location and scatter) 

Let us have n multivariate  observations  Zi,  i = 1, ..., n. Maronna's  M-estimate  of  the 

location  vector t and scatter  matrix  V  is defined  as the solution  of  the system of  equations: 

- T m i d ^ Z i - t ) = 0, (2.17) 
i n 

i 
± £ > ( < * ? ) ( * - * ) ( * - * ) ' = V, (2.18) 
TX 

I 
where d?  = (Zi  — t)'V~ 1(zi  — t), and u\ and u2 satisfy  a set of  general  assumptions. 

For further  computational ease, we considered the following  simplified  version of 

the bivariate M-estimate. We used the coordinatewise median as the bivariate location 

estimate and only solved (2.18) to estimate the scatter matrix and hence the'correlation. 



We used the function  u2(t)  = u(t)  — mm(c/t,  1) with c = 9.21, the 99% quantile of  a 

X 2 distribution. For the bivariate observations Z{  = (Xi,yi),  i = 1, . . . , n, the steps for 

calculating this correlation estimate are presented below: 

1. Calculate the medians m j and my, and obtain Zi = ( ) , % = 1, . . . , n, where 

i i = X i - m x , and & = yi - my. 

2. Calculate the mads sx and sy, and set V0 

< ^ 
y 0 Sy j 

3. Calculate dj  = z\ V 0
 1 Zi,  i = 1, ..., n. Then obtain Vi  = ^ ^ u(df)  Zi  z\. 

n i=i 

4. Set V0 <-V v 

5. Repeat steps 3 and 4. 

We stop when |r(Vi) — r(Vo)| < where <5 > 0 is a pre-selected small number, and r(.) 

is the correlation coefficient  calculated from  the bivariate scatter matrix. 

Finally, FS and SW algorithms are implemented using these robust pairwise corre-

lations. 

Robust partial F-tests. We replace the classical correlations in the partial F 

statistic by their robust counterparts to form  a robust partial F statistic. We conjecture 

that the robust pairwise correlations appearing in the numerator of  the F statistic are 

jointly normal. Therefore,  under the null hypothesis, the robust F statistic is asymptoti-

cally distributed as xi- To assess our conjecture numerically, we conducted the following 

simulation. We generated Xi, and e2 from  a standard normal distribution. We then 

generated Y  = (3 0 + faXi  + a^i, and X 2 = 70 + 71X1 + a 2e 2 , where @0, Pi,  70 and 71 



are generated from  a uniform  distribution on (—10,10), a\ is chosen so that the signal-

to-noise ratio equals 2, and a2 is chosen so that X\  and X 2 have a particular correlation 

randomly chosen from  a uniform  distribution on (0,1). We generated 2000 datasets 

of  size 100, and calculated the robust partial F statistic for  covariate X 2 in each case. 

Figure 2.1 shows the qqplot of  the robust partial F values against the theoretical xl 

quantiles. Moreover, the average and variance of  the robust F values are 0.99 (~ 1) and 

2.02 (~ 2), respectively. All of  these support our conjecture. Therefore,  we consider it 

to be reasonable to use theretical F quantiles as our stopping criteria for  robust FS and 

SW algorithms. 

Theoretical  chi-square quantiles 

Figure 2.1: QQplot of  the robust partial F values against the theoretical xl quantiles. 

2.4.1 Numerical complexity of  the algorithms 

If  we sequence all d  covariates, the standard FS procedure requires 0(nd 2) time. However, 

when applied with a stopping criterion, the complexity of  FS depends on the number of 



covariates selected in the model. Assuming that the model size will not exceed a certain 

number m < d,  the complexity of  FS is less than or equal to 0(ndm).  Similarly, the 

maximum complexity of  SW is 0(n(dm  + m2)) = 0(ndm). 

Since we used the coordinatewise median as the bivariate location estimate, the 

correlation based on Maronna's M-estimate can be computed in (D(n\ogn  + bn) time, 

where b is the number of  iterations required. Assuming that b does not exceed (^(logn) 

(convergence was achieved after  3 to 5 iterations in our simulations), the complexity 

of  this estimate is O(nlogn). As a result, the maximum complexity of  robust FS is 

O ((n  log  n) dm),  and the maximum complexity of  robust SW is 0((n  logn)(dm  + m2)) = 

0((nlogn)dm). 

i 

Though all  possible  subsets regression  is expected to select a better model (with 

respect to predictive power) than any step-by-step algorithm, its computational burden 

is extremely high for  large values of  d,  since it requires the fitting  of  all 2d — I  submodels. 

The complexity of  the classical algorithms of  this type is 0(2 dnd 2). Since robust model 

selection methods proposed so far  uses all  possible  subsets regression,  the complexity 

of  the existing robust algorithms is 0(2 dnd 2) multiplied by the number of  iterations 

required for  the robust fits. 

2.4.2 Limitation of  the proposed algorithms 

The robust FS and SW procedures based on robust pairwise correlations proposed are 

resistant to bivariate (correlation) outliers. However, they can be sensitive to three-

or higher-dimensional outliers, that is, outliers that are not detected by univariate and 



bivariate analyses. Also, the correlation matrix obtained from  the pairwise correlation 

approach may not be positive definite,  forcing  the use of  correction for  positive definite-

ness in some cases (see, e.g., Alqallaf  et al. 2002). 

It should be emphasized here that these are very small prices to pay to make the 

selection of  covariates possible for  large values of  d.  For example, in our simulations 

(presented later) we used d  = 50. It is impossible to apply all  possible  subsets regression 

on a dataset of  this dimension. If  one robust fit  takes 0.001 cpu second, we would need 

25 0 * 0.001/(3600 * 24 * 365) years to select the final  model. 

2.5 A simulation study 

To compare our robust methods with the classical ones, we carried out a simulation study 

similar to Frank and Friedman (1993). The total number of  variables is d'=  50. A small 

number a — 9 or a = 15 of  them are nonzero covariates. We considered 2 correlation 

structures of  these nonzero covariates: "moderate correlation" case and "no correlation" 

case, which are described below. 

For the moderate-correlation case, we considered 3 independent 'unknown' processes, 

represented by latent variables Li, i = 1, 2, 3, which are responsible for  the systematic 

variation of  both the response and the covariates. The model is 

Y = 7Li + 6L2 + 5L3 + e = Signal + e, (2.19) 

where Li ~ N(0,1),  and e is a normal error not related to the latent variables. The 

variance of  e is chosen such that the signal-to-noise ratio equals 2, that is Var(e) = 110/4. 



The nonzero covariates are divided in 3 equal groups, with each group related to exactly 

one of  the latent variables by the following  relation 

Xj  — Li + Sj, 

where Sj ~ iV(0,1). Thus, we have a true correlation of  0.5 between the covariates 

generated with the same latent variable. 

For the no-correlation case (a true correlation of  0 between the covariates), inde-

pendent predictors Xj  ~ N(0,1)  are considered, and Y  is generated using the a non-zero 

covariates, with coefficients  (7, 6, 5) repeated three times for  a — 9, and five  times for 

a = 15. 

For each case we generated 1000 datasets each of  which was randomly divided into 

a training sample of  size 100 and a test sample of  size 100. 

Contamination of  the training data. Each of  the d  — a noise variables are 

contaminated independently. Each observation of  a noise variables is assigned probability 

0.003 of  being replaced by a large number. If  this observation is contaminated, then the 

corresponding observation of  Y  is also replaced by a large number. Thus, the probability 

that any particular row of  the training sample will be contaminated is 1 — (1 — 0.003)d_ a , 

which is approximately 10% for  a = 15, and 11.6% for  a = 9. 

For each of  the 4 methods (2 classical and 2 robust), we fitted  the obtained model 

on the training data, and then used it to predict the test data outcomes. We used MM-

estimator (Yohai 1987) to fit  the models obtained by either of  the robust methods, because 

of  its high breakdown point and high efficiency  at the normal model. For each simulated 

dataset, we recorded (1) the average squared prediction error on the test sample, (2) the 



number of  noise variables selected in the model, and (3) the total number of  variables 

selected in the model. 

Table 2.1: Performance  of  the classical and robust methods in clean and contaminated 

data for  moderate-correlation case. The average (SD) of  mean squared prediction error 

(MSPE) on the test set and the number of  noise variables (Noise) selected are shown. 

a = 9 a = 15 

Data Method MSPE Noise MSPE Noise 

Clean FS 59.7 (12.0) 4.9 (2.4) 50.2 (9.3) 4.3 (2.2) 

SW 60.3 (12.3) 4.8 (2.3) 51.2 (9.7) 4.2 (2.1) 

Rob FS 60.4 (12.2) 5.1 (2.6) 51.5 (10.3) 4.7 (2.5) 

Rob SW 61.1 (12.8) 5.0 (2.5) 52.8 (10.5) 4.6 (2.4) 

Contam FS 157.6 (40.8) 13.6 (3.1) 134.5 (32.9) 11.7 (2.9) 

SW 158.4 (41.3) 13.4 (3.0) 136.3 (33.3) 11.6 (2.8) 

Rob FS 94.9 (27.9) 2.5 (2.9) 78.9 (23.7) 1.6 (2.9) 

Rob SW 95.1 (27.8) 2.4 (2.8) 79.3 (23.4) 1.5 (2.6) 

Table 2.1 shows the average (sd) of  the first  two quantities mentioned above over 

all generated datasets for  the moderate-correlation case. The average (sd) of  the third 

quantity (total number of  variables) is similar for  all the methods in the clean data. 

However, for  the contaminated data, the average increases (decreases) for  the classical 

(robust) methods. For example, for  a — 15, the average for  the classical methods increases 

from  13 to 17 (approximately), while for  the robust methods it decreases from  13 to 6. 

In general, FS performs  as good as SW, and robust FS performs  as good as robust 



SW. For the clean data, the performance  of  robust FS (SW) is comparable to standard FS 

(SW). For the contaminated data, the test errors produced by robust methods are much 

smaller than the classical ones. Also, the models obtained by robust methods contain 

fewer  noise variables than the classical ones. 

Table 2.2: Performance  of  the classical and robust methods in clean and contaminated 

data for  no-correlation case. The average (SD) of  mean squared prediction error (MSPE) 

on the test set and the average number of  noise variables (Noise) selected are shown. 

a = 9 a = 15 

Data Method MSPE Noise MSPE Noise 

Clean FS 55.6 (11.6) 5.0 (2.4) 107.0 (21.7) 4.6 (2.3) 

SW 55.8 (11.8) . 4.8 (2.3) 108.1 (22.1) 4.3 (2.1) 

Rob FS 56.5 (12.4) 5.1 (2.6) 109.9 (21.6) 4.8 (2.4) 

Rob SW 56.7 (12.8) 4.9 (2.5) 108.4 (22.4) 4.6 (2.3) 

Contam FS 161.8 (38.1) 13.6 (3.0) 296.7 (75.3) 11.9 (2.8) 

SW 162.5 (37.5) 13.4 (2.8) 297.9 (75.9) 11.7 (2.7)' 

Rob FS 72.5 (13.9) 2.1 (2.4) 124.1 (19.9) 1.2 (1.8) 

Rob SW 72.6 (13.8) 2.1 (2.3) 124.2 (20.8) 1.2 (1.7) 

Table 2.2 presents the results for  the no-correlation case. Here, robust FS and SW 

more drastically outperform  the standard FS and SW, as compared to the moderate-

correlation case. Note that the errors presented in this table are not comparable to those 

of  Table 2.1 since Y  is generated using the non-zero covariates (a  = 9 or a = 15), instead 

of  the 3 latent variables. Thus, F has much more variability for  a = 15 than for  a =.9. 



2.5.1 Model selection with Spearman's p and Kendall's r 

In Section 2.3 we expressed the classical FS and SW algorithms in terms of  the corre-

lation matrix of  the data. In Section 2.4 we replaced these correlations by their robust 

counerparts to obtain robust FS and SW. 

We can also consider replacing the classical correlations in FS and SW by Spearman's 

p or Kendall's r, since they are standard estimates of  association that are invariant to 

monotone transformations  of  the data. They may be good options for  variable selection 

when there is skewness in the data and no cluster of  multivariate outliers. A small 

simulation study (not presented here) indicates that the methods based on Spearman's p 

and Kendall's r may perform  better than the classical FS and SW. Further study is 

required to investigate their performance  as model building tools and compare them 

with classical and robust FS and SW. 

It should be mentioned here that Spearman's p can be computed in C>(nlogn) time, 

the same as the adjusted-Winsorized correlation estimate (the new correlation estimate 

proposed later in this thesis). Though Kendall's r separately examines each of  the (™) 

(order of  n2) pairs of  bivariate observations, there is an algorithm that can calculate 

Kendall's r in C(nlogn) time (Knight 1966). 

2.6 Examples 

In this section, we used two real-data examples to show the robustness and scalability of 

our algorithms. 



Executive data. This dataset is obtained from  Mendenhall and Sincich (2003). 

The annual salary of  100 executives is recorded as well as 10 potential predictors (7 

quantitative and 3 qualitative) such as education, experience etc. We label the candidate 

predictors from  1 to 10. Classical FS (with F 0.9 as the inclusion criterion) and SW (with 

F0.9 as both inclusion and deletion criterion) both select the covariates: (1,3,4,2,5). 

Robust FS and SW (also with F0.9 as inclusion and deletion criterion) select the same 

model. 

We then contaminated the data by replacing one small value of  predictor 1 (less 

than 5) by a large value 100. When FS and SW are applied to the contaminated 

data, they both now select a larger set of  variables: (7, 3, 4, 2,1, 5,10). Thus, changing a 

single number in the data set drastically changes the selected model. On the other hand, 

robust FS and SW select the same model, (1, 3, 4, 2, 5), when applied to the contaminated 

dataset. 

Particle data. This quantum physics dataset was used for  the KDD-Cup 2004. 

Each of  n = 50000 data-points (rows) describes one "example" (particle generated in 

a high energy collider experiment). There are 80 variables in the data: Example ID, 

class of  the example (positive examples are denoted by 1, negative examples by 0), and 

78 feature  measurements. We considered only the feature  variables in our analysis. We 

deleted 13 of  the features  (either because they have a large number of  missing values, or 

they are degenerate with all observations equal to 0), and used the first  feature  as the 

response. Thus, there are 64 covariates and one response in the selected data. Though 

this analysis may not be of  particular scientific  interest, it will demonstrate the scalability 

and robustness of  our algorithms. 



We first  applied the four  algorithms to a training sample of  size n = 5000. The 

remaining 45000 cases will be used as a test sample. The classical FS and SW (with F0.g 

criterion) select the same model. It contains the following  25 covariates: 

(2,60, 58,18,8,4, 51,53,1,59,5,20,10,6,62,19,38,46,39,47,21,36, 50,48,37). 

With F 0. 95 criterion, the model has 23 covariates. Interestingly, only one covariate is 

selected by robust FS and SW (with either F0 .9 or F 0 , 9 5 criterion): Covariate 1. The 

reason for  this drastic difference  is as follows.  The robust correlation of  Y  and Covariate 

1 is 0.86, while the classical correlation between these variables is only 0.42. About 86% 

of  the values of  the response variable and 88% of  the values of  Covariate 1 are equal to 

zero. There are many zeroes in other covriates as well. Classical methods fail  to identify 

this unusual pattern in the data and therefore  are unable to select a parsimonious model 

that fits  well the majority the data (as opposed to all the data). The robust methods, 

on the other hand, successfully  detect the unusual pattern and select a model capable of 

predicting well 90% of  the data as explained below. 

We fitted  the selected classical and robust models using the training' data, and 

then used them to predict the test data outcomes. The 5% and 10% trimmed means 

of  squared prediction errors for  the classical and (robust) models are: 0.012 (0.043) and 

0.008 (0.005), respectively. That is, the robust model with only one covariate predicts 

90% of  the data better than the classical model with 25 covariates. 

To illustrate the scalability of  our algorithm we also used a training sample of  size 

n = 25000. This time, classical FS and SW select a model of  30 covariates, and robust 

FS and SW both select one covariate, in this case covariate 2 instead of  covariate 1. 

(Covariates 1 and 2 have robust correlations 0.82 and —0.85 with Y, respectively.) 



2.7 Conclusion 

The main contribution of  this chapter is that we developed robust step-by-step algorithms 

as one-step model-building procedures. Classical step-by-step algorithms FS and SW are 

popular and computationally suitable, but they are sensitive to outliers. We expressed 

these algorithms in terms of  sample means, variances and correlations, and obtained 

simple robust versions of  FS and SW by replacing these sample quantities by their robust 

counterparts. We used robust partial F-tests for  stopping during the implementation of 

the proposed robust algorithms. 

For the construction of  the robust correlation matrix of  the required covariates 

we used a pairwise approach, because it is both computationally suitable, and more 

consistent with the idea of  step-by-step algorithms. We used robust correlations derived 

from  a simplified  version of  Maronna's bivariate M-estimator of  the scatter matrix. 

Our robust methods have much better performance  compared to the standard FS 

and SW algorithms. Also, they are computationally very suitable, and scalable to large 

dimensions. 



Chapter 3 

Two-step Model Building: 

Robust Sequencing with Least Angle 

Regression 

3.1 Introduction 

In this chapter, we will consider the first  step (sequencing) of  the two-step model building 

procedure. The candidate covariates will be sequenced to form  a list such that the good 

predictors are likely to appear at the beginning of  the list . The first  m covariates of  the 

list will form  the reduced set which will be studied further  in the next chapter. 

We need a suitable step-by-step algorithm to sequence the covariates! We focus  on 

the powerful  algorithm recently proposed by Efron,  Hastie, Johnstone and Tibshirani 



(2004), which is called Least Angle Regression (LARS). LARS is computationally effi-

cient and has been shown to have clear statistical advantages over other step-by-step 

algorithms. • 

Since LARS is based on sample means, variances and correlations (as will be shown 

later), it yields poor results when the data are contaminated. This is a potentially 

serious deficiency.  Therefore,  we propose several approaches to strengthen the robustness 

properties of  LARS without affecting  its computational efficiency  too much, and compare 

their behavior. 

The rest of  this chapter is organized as follows.  In Section 3.2, we review LARS in 

details. In Section 3.3, we express the LARS procedure in terms of  the correlation matrix 

of  the data. In Section 3.4, we illustrate LARS' sensitivity to outliers and introduce two 

different  approaches to robustify  LARS. A small simulation study is also presented here 

to compare the performance  and the computing time of  LARS to those of  the two robust 

approaches. In Section 3.5, we investigate the selection of  the size of  the reduced set. 

of  candidate predictors. Section 3.6 proposes to use bootstrap to stabilize the results 

obtained by robust LARS. Section 3.7 introduces "learning curves" as a. graphical tool 

to choose the size of  the reduced set. Section 3.8 contains some real-data applications. 

Section 3.9 concludes and the chapter appendix contains some technical derivations. 

3.2 Review: Least Angle Regression (LARS) 

Least Angle Regression (LARS), proposed by Efron,  Hastie, Johnstone and Tibshirani 

(2004), is closely related to another new algorithm called Forward' Stagewise (Hastie, 



Tibshirani and Friedman 2001, Chapter 10). To better understand LARS, we will review 

the Forward Stagewise procedure in details. 

3.2.1 Forward Stagewise procedure (Stagewise) 

The Forward Stagewise procedure (Stagewise) is related to the classical algorithm For-

ward Selection (FS). In FS, when the first  predictor (A^, say) is selected, all other 

predictors are regressed on X 1 } and the residual vectors compete for  the next entrance 

in the model. This causes a problem. Important predictors that happen to be correlated 

with Xi are eliminated from  the competition in many cases, which the researchers usually 

want to avoid. In this sense, FS is an aggressive model-building algorithm. 

The Forward Stagewise procedure is a less aggressive version of  FS. Unlike FS, the 

Stagewise procedure takes many tiny steps to move towards a final  model. We take the 

zero vector as the initial prediction. If  X\ has the largest absolute correlation with Y, 

we modify  our prediction by moving a 'small' step in the direction of  X\.  We obtain the 

new residual vector and repeat the process, until the required number of  predictors are 

selected. The goal is to obtain the order in which the variables enter the model. 

We can assume, without loss of  generality, that the covariates have mean 0 and 

variance 1, and the response has mean 0. Let e be a positive constant, typically small 

(less than the absolute value of  the regression coefficients).  The Stagewise algorithm can 

be described as follows: 

1. Set the_ prediction vector, ft  = 0. 



2. Calculate Cj  = X'j  (Y  — fi),  j = 1, ... , k, 

where dj is proportional to the correlation between X j and the current residual. 

3. Let m = argmax^ \tj\. Modify  the current prediction vector as follows: 

jj, i- p, + e sign(cm) X m, 

where e is a positive constant. 

4. Repeat steps 2 and 3. 

At each step, the algorithm updates the prediction, and keeps track of  the sequence 

of  covariates as they enter the model. Notice that at each Stagewise step, we maximize 

the correlation of  the current residual vector with a covariate, which is equivalent to 

minimizing the 'local loss' 
n 

Y ^ f r - h - h X ^ ) 2 (3.1) 
i=1 

over all j . (Because of  standardization, j3m is proportional to cm.) 

Stagewise and FS: loss comparison 

Both Stagewise and FS select the same variable in their first  steps, because they minimize 

the same loss function.  Suppose, the selected variable is Xi, i.e., its loss (li — PiXu)2 

is minimum. Let us consider that, after  many e-steps along Xi, Stagewise is about to 

choose a second variable from  the contenders . . . , Xj. On the other hand, for  the 

second step, FS considers . . . , Zj, which are the residuals of  the corresponding co-

variates after  being adjusted for  Xi. To choose the second variable, FS minimizes the 



loss 
n 

&—PiXu—PjZji) 2, 
i-1 

which is same as the loss 
n 

(3.2) 
i=i 

Note that (3{  is usually different  from  /?i. The loss used in Stagewise is 

n 2 

E - - to) • 
(3.3) 

This loss depends on our position on the Xi-vector controlled by e. By choosing a small 

e, we ensure that f3\  < /?*, so that the variables correlated with X\ have more chance 

of  staying in the competition. (It should be noted that we are not 'fitting'  a model. 

We are 'selecting' the covariates.) The minimizer of  the Stagewise loss cannot beat the 

minimizer of  the FS loss (see equation (3.2)), at least at this stage. This means, if  FS 

chooses (Xi, X 2) and Stagewise selects (Xi, X3), then FS will yield a greater value of  R2. 

Because, FS technically considers the residual sum of  squares of  the final  fit  (equation 

(3.2)). However, this is not necessarily true for  the next stage if  FS selects (X^ X 2, X4) 

(for  example), and Stagewise selects (Xi, X3 , X5). (Because, this Stagewise combination 

has not been considered by FS so far  in any order.  In other words, FS has taken a different 

path.) 

Greater R2 does not necessarily imply more prediction accuracy. Moreover, FS 

cannot guarantee greater R2 for  a particular subset size in all cases. Therefore,  orthog-

onalization of  the subsequent covariates with respect to the active ones is not usually 

meaningful.  This is why researchers often  prefer  Stagewise to FS. 



Stagewise and Boosting 

Boosting, originally developed for  classification  problems, is a procedure that combines 

the output of  many "weak" classifiers  to produce a powerful  "committee" (Hastie et al. 

2001, Chapter 10). In the general setup, boosting is a way of  predicting Yi by combining 

a set of  simple "basis" functions  additively: 
K 

f(x)  = ^f3 kb(x,cx k), k = l,...,K,  (3.4) 
k=l 

where (5 k are the expansion coefficients,  and b(x,a k) are real-valued functions  of  multi-

variate x with parameters cx.k. Usually, f(x)  is fitted  by considering a loss function 

J ^ L U ^ M x i , * , ) ] , (3.5) 
i=i \ k=i J 

which is minimized with respect to fa's  and cc^'s. Often,  this is computationally intensive, 

and the solution to (3.5) is approximated by sequentially adding new basis functions 

without adjusting the parameters and expansion coefficients  of  the existing ones. In this 

approach, at each iteration k, one updates 

fk(xi)  = f k-i{xi)  + Pkb(xi,  ak) 

by minimizing the loss 
n 

^ L {Yi, f k- i (xi) + pkb(xi, a k ) ) . (3.6) 
i=i 

In Regularized  boosting,  one uses a parameter e to control the "learning rate" of  the 

boosting procedure: 

fk{xi)  = fk-i(xi)  + t(3 kb(xi,  OLk). (3.7) 

The Stagewise algorithm discussed before  is very similar to this regularized boosting, 

where we use squared error loss for  L in (3.6), K  (see (3.4)) is the number of  e-steps 



in Stagewise, b(xi,a k) = xki (the .ith observation of  covariate X( k) chosen in the kth 

iteration, not necessarily same as Xk), and fa  i n (3-7) is replaced by sign{/?^}. 

Choice of  an appropriate e for  Stagewise 

The choice of  an appropriate e is a problem with the Stagewise procedure, and is the 

motivation for  LARS. If  e is 'small', the number of  Stagewise steps to reach a final  model 

may be very large, increasing the computational burden of  the algorithm. On the other 

hand, if  e is 'large', we have either or both of  the following  two problems: 

'Incorrect' ordering of  predictors: If  e —» |cm | , Stagewise will aggressively throw 

covariates correlated with X m out of  the competition. 

A closed loop: In many cases, after  the selection of  the mth (say) covariate, the 

remaining predictors (that are not yet selected) have very small correlations with the 

current residual vector. Suppose that the correlation of  the currently selected predictor 

X m is positive. If  e is large, when we make an 'e-step' in the direction of  '+X m\ the 

correlation of  X m with the updated residuals becomes negative and larger in absolute 

value than that of  any other competitor. Thus, the next Stagewise step is to make an 

'e-step' in the direction of  l —X m \ These back-and-forth  movements may go on endlessly. 

Even when there is no closed loop, the Stagewise procedure may require hundreds 

of  tiny steps to reach the final  model. Therefore,  this algorithm is not computationally 

suitable. LARS overcomes this problem by taking a mathematical approach. 



3.2.2 The LARS algorithm 

LARS uses a mathematical formula  to accelerate the computations in the Stagewise 

procedure. Suppose, the first  selected predictor in Stagewise is Xi (i.e., X\ has the 

largest absolute correlation with Y).  If  we choose a 'small' e, there will be at least 

several Stagewise steps in the direction of  the vector Xx.  A second predictor X 2 (say) 

will come in the picture as soon as we cross a certain point in the direction of  X x, a point 

at which both X\  and X 2 have equal absolute correlation with the residual. LARS uses a 

mathematical formula  to determine that point, and the prediction is modified  by making 

a move up to that point in a single step. 

In Stagewise, when a second predictor X 2 enters the model for  the first  time, we 

make a few  small steps in the direction of  X 2, but then X\  becomes more correlated with 

the residual, and we move in the direction of  X x. Thus, we alternate between the two 

directions, technically maintaining approximately equal absolute correlations of  X\ and 

X 2 with the residual (until a third predictor comes into the picture). LARS, on the other 

hand, mathematically determines a direction that has equal angle (correlation) with Xi 

and X 2, and makes the second LARS move along that direction upto a point (determined 

mathematically, again) at which a third predictor X 3 has equal absolute correlation with 

the residual vector, and so on. 

For the original LARS algorithm, Efron  et al.  (2004) is referred  to, which is designed 

to get the modified  predictions at each step, in addition to the sequence of  the covariates 

as they enter the model. In Section 3.3 we show that, if  we are interested in the ordering 

of  the covariates only (and not the modified  predictions), the algorithm can be expressed 

in terms of  the correlation matrix of  the data (and not the observations themselves). 



3.2.3 LARS and Shrinkage methods 

LARS and Ridge Regression 

If  there are many correlated variables in a linear model, the estimates may show high 

variance. This can be prevented by imposing a restriction on the size of  the coefficients. 

The ridge regression (Hoerl and Kennard 1970) minimizes a penalized residual sum of 

squares 

i=i j=i 

where A is the parameter that controls the amount of  shrinkage. 

Ridge regression shrinks the coefficients  towards zero, but does not set some coeffi-

cients exactly equal to zero. Therefore,  it is not suitable for  subset selection, and cannot 

be compared to LARS. By imposing a different  penalty, the Lasso algorithm (Tibshirani 

1996) forces  some of  the coefficients  to zero, which is presented below. 

LARS and Lasso 

The Lasso (Tibshirani 1996) estimates are obtained by minimizing 

n d 

Y J(Y i-pxiy + \J2\fri  (3-8) 
i=1 j=l 

Moderate to large A will cause some of  the Lasso coefficients  to be exactly zero, others 

will be smaller in magnitude than the corresponding least squares estimates. 

• i 

Interestingly, the estimates (and the sequance of  the covariates) obtained by LARS 

and Lasso are usually quite close, if  not the same. The reason has not been established 



mathematically, though it is clear that both algorithms can be viewed as less aggressive 

versions of  the FS procedure. Efron  et al.  (2004) suggested a modification  in the LARS 

algorithm that will yield the Lasso solution, which is as follows.  Let j3 be the current 

Lasso estimate, and fi  = X/3.  Then, for  the Lasso estimates, 

sign(^j) = sign (corr(Y - ft,  Xj)), 

which is not necessarily true for  the LARS estimates. This restriction should be enforced 

in the LARS algorithm if  we want the Lasso solution. 

To better understand the LARS-Lasso relationship, let us consider the following 

definition  of  the Lasso estimate, which is equivalent to (3.8). 
n 

^Lasso = a r g m i n ^ ( Y  - f3' X i)2, (3.9) 
i=1 

d 
subject to E \/3j\  <t. 

3=1 

The 'tuning parameter't  is varied over a certain range. If  t > Y? j=1 \Pf\,  where Pf  are 

the least squares estimates, then the Lasso estimates are the least squares estimates. 

For a LARS-Lasso comparison, suppose that LARS has selected the first  covariate SiA^. 

(LARS considers the 'signed covariates' to determine the equiangular vectors later.) To 

select the second covariate, LARS mathematically determines the minimum distance 7 

to move along Si-X"i so that a new covariate s2X 2 (say) is equally correlated with the 

residual vector. We may assume that 7 is determined first  (as in Stagewise, where we 

make many e-steps to obtain Pe (see 3.3)) so that LARS loss can be written as 
n n 

£ - - PjX jz)2 = E ( Yi  - IsXu  - PjXji) 2 ; (3.10) 
i=l i=1 

where j = 2, . . . , d,  and 7 s = s 17 is a restricted regression coeffcient.  Since |7S| is the 

minimum distance (determined mathematically) to move before  a second variable enters 



the model, a comparison of  (3.10) and (3.9) makes it evident that, in the Lasso algorithm, 

t < 17S| =>• only Xi  is in the model (only is nonzero). 

In LARS, when we have two active covariates Si-Xi and s2X2, we modify  our prediction 

by moving along the equiangular vector Ba upto a point 74, so that the LARS loss has 

the form 

n 

(Y i ~ IsXu ~ J A B A i - PjXji)2 

i=1 
n 

= (Yi  - %Xu  - Ja(wiS 1Xu + w2s2X 2i) - PjXjif 
i=i 

n 

= ( Y i ~ + 1aWi)siXu  - -yAW2S 2X2i  - PjXji) 2 , (3.11) 

where j = 3, . . . , d,  and w\ and w2 are given by (3.21) (see Chapter Appendix, Sec-

tion 3.10.2). Again, since 7a is the minimum distance to move along Ba before  a third 

covariate comes in the picture, by comparing (3.11) and (3.9) we can say 

|7s| < t < |7«| + \^a(wi  + w2) \ =>• only Xi  and X 2 will be in the model, 

and so on. Note that 1(7 + 7^^1)51! + |7^W2S2| = |7S| + |7a(^i +^2)!, since 7, 7^, wx and 

w2 are all positive at this stage. (The Wj  may not be all positive for  higher dimensions.) 

Thus, it is not surprising that LARS and Lasso sequences agree in most cases. However, 

Lasso requires a computationally expensive quadratic programming technique to obtain 

the estimates, while, the computational cost of  LARS is comparable to the ordinary least 

squares applied to the full  set of  covariates. 



LARS and Boosting 

For a comparison of  Stagewise and boosting we refer  to Section 3.2.1. Since LARS is a 

mathematical solution of  the Stagewise problem, the LARS algorithm maybe considered 

as a mathematical alternative to a regularized boosting algorithm. 

3.3 LARS expressed in terms of  correlations 

In this section, we show that the sequence of  covariates obtained by LARS can be derived 

from  the correlation matrix of  the data (without using the observations themselves). 

Let Y,Xi,...  ,X d be the variables, standardized using their mean and standard de-

viation. Let vjY denote the correlation between Xj and Y, and Rx be the correlation 

matrix of  the covariates X\,...,  Xa-  Suppose that X m has the maximum absolute corre-

lation r with Y  and denote sm = sign(rmy). Then, X m becomes the first  active  variable 

and the current prediction jx 0 should be modified  by moving along the direction of 

smX m upto a certain distance 7 that can be expressed in terms of  correlations between 

the variables (see Chapter Appendix, Section 3.10.1, for  details). By determining 7, 

LARS simultaneously identifies  the new covariate that will enter the model, that is the 

second active variable. 

V - ' 

As soon as we have more than one active variable, LARS modifies  the current 

prediction along the equiangular  direction,  that is the direction that, has equal angle 

(correlation) with all active covariates. Moving along this direction ensure that the 

current correlation of  each active covariate with the residual decreases equally. Let A 



be the set of  subscripts corresponding to the active variables. In Chapter Appendix 

(Section 3.10.2) the standardized equiangular vector Ba is derived. Note that we do not 

need the direction BA itself  to decide which covariate enters the model next. We only 

need the correlation of  all variables (active and inactive) with Ba- These correlations 

can be expressed in terms of  the correlation matrix of  the variables as shown in Chapter 

Appendix (Section 3.10.2). LARS modifies  the current prediction by moving along Ba 

upto a certain distance 7a which, again, can be determined from  the correlations of  the 

variables (see Chapter Appendix, Section 3.10.3). 

Thus, the sequence of  covariates obtained by the LARS algorithm is a function  of 

the correlation matrix of  the standardized data. We now summarize the LARS algorithm 

in terms of  correlations rjy between Xj  and Y,  and the correlation matrix Rx of  the 

covariates: 

1. Set the active set, A = 0, and the sign vector sa = 0-

2. Determine m = argmax \rjY\,  and s m = sign{rmy}. Let r = smrmy. 

3. Put A <-r  A U {m},  and '<— sA U {sm}. 

4. Calculate a = [1 'a(DaRaDa)~ 1^-a\~1^ , where 1 a is a vector of  l's, Da = diag(s^), 
? 

and Ra is the submatrix of  Rx corresponding to the active variables. Calculate 

wA = a (D aRaDa)~11a, and aj  = (DATjjCl'wA,  for  j  G Ac, where rj A is the 

vector of  correlations between Xj and the active variables. (Note that, when there 

is only one active covariate X m, the above quantities simplify  to a = 1, w = 1, and 
a j = rjm•) 

5. For j G Ac, calculate 7+ = (r — rjY)/(a  — aj), and 7" = (r + rjY)/(a  + aj), 



and let 7j = min(7j",7~). Determine 7 = min{7j, j £ A0}, and m, the index 

corresponding to the minimum 7 = jm. If  7 m = 7+, set sm = +1. Otherwise, set 

sm = —1. Modify  r <— r — 7a, and r^y r^y — 70,-, for  j €  Ac. 

6. Repeat steps 3, 4 and 5. 

3.4 Robustification  of  LARS 

From the results in Section 3.3, it is not surprising to see that LARS is sensitive to 

contamination in the data. To illustrate this, we use a dataset on executives obtained 

from  Mendenhall and Sincich (2003). The annual salary of  100 executives is recorded 

as well as 10 potential predictors. (7 quantitative and 3 qualitative) such as education, 

experience etc. We label the candidate predictors from  1 to 10. LARS sequences the 

covariates in the following  order: (1, 3,4, 2, 5,6, 9, 8,10, 7). We contaminate the data by 

replacing one small value of  predictor 1 (less than 5) by the large value 100. When 

LARS is applied to the contaminated data, we obtain the following  completely different 

sequence of  predictors: (7,3,2,4,5,1,10,6,8,9) . Predictor 7, which was selected last 

(10th) in the clean data, now enters the model first.  The position of  predictor 1 changes 

from  first  to sixth. Predictors 2 and 4 interchange their places. Thus, changing a single 

number in the data set completely changes the predictor sequence, which illustrates the 

sensitivity of  LARS to contamination. 

We now introduce two approaches to robustify  the LARS procedure which we call 

the plug-in  and cleaning  approaches respectively. 



3.4.1 Robust Plug-in 

The plug-in approach consists of  replacing the non-robust building blocks of  LARS (mean, 

variance and correlation) by robust counterparts. The choices of  fast  computable robust 

center and scale measures are straightforward:  median (med) and median absolute devi-

ation (mad). Unfortunately,  good available robust correlation estimators are computed 

from  the (i-dimensional data and therefore  are very time consuming (see Rousseeuw and 

Leroy 1987). Robust pairwise approaches (see Huber 1981) are not affine  equivariant and 

therefore  are sensitive to two-dimensional outliers. One solution is to use robust correla-

tions derived from  a pairwise affine  equivariant covariance estimator. A computationally 

efficient  choice is a bivariate M-estimator as defined  by Maronna (1976). Alternatively, 

a bivariate correlation estimator can be computed from  bivariate Winsorized data. Both 

methods will be explained in detail below. 

M Plug-in 

Maronna's bivariate M-estimator of  the location vector t and scatter matrix V  is defined 

in Chapter 2. It is affine  equivariant and computationally efficient,  and has breakdown 

point 1/3 in two dimensions. As before,  to further  simplify  computations, we used 

the coordinatewise median as the bivariate location estimate and only solved (2.18) to 

estimate the scatter matrix and hence the correlation. In this equation we used the 

function  u2(t)  = min(c/i, 1) with c = 9.21, the 99% quantile of  a x2 distribution. The 

bivariate correlations are then ensembled to form  a d  x d  correlation matrix R. Finally, 

LARS is applied to this robust correlation matrix. We call this the M plug-in method. 
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Figure 3.1: Limitation of  separate univariate-Winsorizations (c = 2). The bivariate 

outliers are left  almost unchanged. 

W Plug-in 

For very large, high-dimensional data we need an even faster  robust correlation es-

timator. Huber (1981) introduced the idea of  one-dimensional Winsorization of  the 

data, and suggested that classical correlation coefficients  be calculated from  the trans-

formed  data. Alqallaf,  Konis, Martin and Zamar (2002) re-examined this approach for 

the estimation of  individual elements of  a large-dimension correlation matrix. For n 

univariate observations X\,  x2 ..., xn, the transformation  is given by Ui  = ~ 

med(xi))/mad(a:i)), i = 1, 2 , . . . , n, where the Huber score function  ipc (z) is defined  as 

ipc i x ) = min{max{—c, x}, c}, with c a tuning constant chosen by the user, e.g., c = 2 or 

c = 2.5. This one-dimensional Winsorization approach is very fast  to compute but un-



fortunately  it does not take into account the orientation of  the bivariate data. It merely 
i 

brings the outlying observations to the boundary of  a 2c x 2c square, as shown in Fig-

ure 3.1. This plot clearly shows that the univariate approach does not resolve the effect 

of  the obvious outliers at the bottom right which are shrunken to the corner (2, —2), and 

thus are left  almost unchanged. 
/ 

To remedy this problem, we propose a bivariate  Winsorization  of  the data based 

on an initial tolerance ellipse for  the majority of  the data. Outliers are shrunken to the 

border of  this ellipse by using the bivariate transformation  u = min(-y/c/D(a;.), 1) x 

with x = (x\,x2) t- Here D(x)  is the Mahalanobis distance based on an initial bivariate 

correlation matrix R0. For the tuning constant c we used c = 5.99, the 95% quantile 

of  the xl  distribution. We call this the W plug-in method. The choice of  R0 will be 

discussed below. 

Figure 3.2 shows bivariate Winsorizations for  both the complete data set of  Fig-

ure 3.1 and the data set excluding the outliers. The ellipse for  the contaminated data is 

only slightly larger than that for  the clean data. By using bivariate Winsorization the 

outliers are shrunken to the boundary.of  the larger ellipsoid. 

The initial correlation estimate. Choosing an appropriate initial correlation 

matrix R0 is an essential part of  bivariate Winsorization. For computational simplicity 

we can choose the estimate based on univariate Winsorization explained above. However, 

we propose an adjusted Winsorization method that is more resistant to bivariate outliers. 

This method uses two tuning constants: a tuning constant C\ for  the two quadrants 

that contain the majority of  the standardized data and a smaller tuning constant c2 

for  the other two quadrants. For example, Ci is taken equal to 2 or 2.5 as before  and 
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Figure 3.2: Bivariate Winsorizations for  clean and contaminated data. The ellipse for 

the contaminated data is only slightly larger than that for  the clean data. 

C2 = hci where h = n 2 / n i with n\ the number of  observations in the major quadrants 

and n 2 = n — n^. We use c\ = 2 in this chapter. 

Figure 3.3 shows how the adjusted Winsorization deals with bivariate outliers, which 

are now shrunken to the boundary of  the smaller square. Thus, adjusted Winsorization 

handles bivariate outliers much better than univariate Winsorization. The initial correla-

tion matrix Rq is obtained by computing the classical correlation matrix of  the adjusted 

Winsorized data. 

It should be mentioned here that, though we used c2 = hc\ in this study, a more 

reasonable choice would have been c2 = \fhc\  (i.e., = hci), because the areas of  the 

two squares should be proportional to the number of  observations they contain. 



variable 1 

Figure 3.3: Adjusted-Winsorization (for  initial estimate R0) with c\ = 2, c2 = 1. The 

bivariate outliers are now shrunken to the corner of  the smaller square. 

Note that the correlations based on both univariate- and adjusted-Winsorized data 

can be computed in 0(nlog?7,) time. The adjusted-Winsorized estimate takes slightly 

more time for  a particular n, but is much more accurate in the presence of  bivariate 

outliers as shown above. Bivariate-Winsorized estimate and Maronna's M-estimate also 

require O(nlogn) time, but Maronna's M-estimate has a larger multiplication factor  de-

pending on the number of  iterations required. Thus for  large n, the. bivariate-Winsorized 

estimate is much faster  to compute than Maronna's M-estimate. Figure 3.4 shows for  each 

of  the four  correlation estimates the mean cpu times in seconds (based on 100 replicates) 

for  5 different  sample sizes: 10000, 20000, 30000, 40000 and 50000. These results confirm 

that the bivariate-Winsorized estimate is faster  to compute than Maronna's M-estimate 

and the difference  increases with sample size. Numerical results (not presented here) 
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Figure 3.4: Numerical complexity of  different  correlation estimates. Each estimate can be 

computed in 0(n\ogn)  time, but Maronna's estimate has a larger multiplication factor. 

showed that the bivariate-Winsorized estimate is almost as accurate as Maronna's M-

estimate also in the presence of  contamination. Note that both the univariate-Winsorized 

and adjusted-Winsorized correlations are very fast  to compute. 

3.4.2 Robust Data Cleaning 

If  the dimension d  is not extremely large, an alternative approach to robustifying  LARS 

is to apply it on cleaned data. For example, each standardized d-dimensional data point 

x — (rri,. . . , xaY  can be replaced by its Winsorized counterpart u = min(y/c/D(x),  1) x 

in the d-dimensional space. Here D(x)  — x^^x, is the Mahalanobis distance of  x based 



on V,  a fast  computable, robust initial correlation matrix. A reasonable choice for  the 

tuning distance c is c = Xd(0-95), the 95% quantile of  the Xd  distribution. 

The initial correlation matrix V.  The choice of  the initial correlation matrix 

V  is an essential part of  the Winsorization procedure. Most available highTbreakdown, 

affine-equivariant  methods are inappropriate for  our purposes because they are too com-

putationally intensive. Therefore,  we resort to pairwise approaches, that is methods in 

which each entry of  the correlation matrix is estimated separately (see Alqallaf  et al. 

2002). As before  we will use a bivariate M-estimator or the bivariate windsorized esti-

mator to calculate the correlations in V. The resulting methods are called M cleaning 

and W cleaning, respectively. 

3.4.3 Simulations 

To investigate the performance  and stability of  the four  proposed methods we Consider 

a simulation study involving a small number of  variables. We used the following  design 

(see Ronchetti et al.  1997). The error distributions considered are (el) standard normal, 

(e2) 93% from  standard normal and 7% from  N(0,  52), (e3) standard normal divided by 

a uniform  on (0,1), and (e4) 90% from  standard normal and 10% from  A^(30,1). 

Two design matrices are considered: the uniform  design for  which the columns are 

generated from  a uniform  distribution on (0,1), and the leverage design which is the same 

as the uniform  design except that it contains a leverage point. Six variables are used 

from  which the first  three are nonzero and in order of  importance. The true regression 

coefficients  for  the nonzero variables are 7, 5 and 3, respectively. The sample size equals 



Table 3.1: Percentages of  correct sequences obtained by classical and robust methods for 

univariate and leverage designs with 4 different  error distributions. 

Method 

Uniform Leverage 

Method el e2 e3 e4 el e2 e3 e4 

LARS E 

LARS G 

97 86 11 8 

100 89 26 24 

0 1 1 2 

0 2 5 7 

M plug-in E 

M plug-in G 

95 97 53 87 

99 99 74 95 

96 ,96 49 87 

99 99 68 95 

W plug-in E 

W plug-in G 

96 97 58 78 

99 99 77 89 

92 85 46 59 

94 86 61 68 

M cleaning E 

M cleaning G 

96 98 55 89 

99 99 77 97 

96 97 50 87 

100 98 73 97 

W cleaning E 

W cleaning G 

96 98 54 82 

99 99 76 92 

96 -94 52 83 

98 96 71 92 

n — 60 and we generated 200 data sets for  each setting. We used two performance 

measures which we call exact (E) and global (G). The exact measure gives the percentage 

of  times a procedure sequences the important variables in front  and in their true order. 

The global measure gives the percentage of  times a procedure sequences the important 

variables in front  in any order. 

Table 3.1 shows the simulation results. For error distribution el (standard normal), 

the performance  of  the robust methods is almost as good as that of  standard LARS. 

For the heavy tailed distributions the robust methods drastically outperform  LARS. 



Overall we see from  Table 3.1 that the plug-in approaches are almost as stable as the 

computationally more expensive data cleaning approaches. Comparing the M and W 

approaches for  both the plug-in and data cleaning procedures, it is reassuring to see that 

the computationally faster  W approach (see Figure 3.5 below) is almost as stable as the 

M approach. 

Numerical complexity of  the algorithms 

We now compare the computational complexity of  the different  methods. The stan-

dard LARS procedure sequences all d  covariates in only 0{nd 2) time. The plug-in and 

cleaning procedures based on M-estimators both require 0((n\ogn)d 2) time. Based on 

Winsorization these procedures also require 0((n  logn)d 2) time, but with a much smaller 

multiplication factor.  Moreover, if  we are only interested in sequencing the top fraction 

of  a large number of  covariates, then the plug-in approach will be much faster  than the 

cleaning approach, because the plug-in approach only calculates the required correlations 

along the way instead of  the 'full'  correlation matrix. In this case, the complexity for 

plug-in methods reduces to O((n  logn)dm),  where m is the number of  variables being 

sequenced. 

.Figure 3.5 shows the mean cpu times based on 10 replicates for  LARS, W plug-in 

and M plug-in for  different  dimensions d with a fixed  sample size n = 2000. The times 

required by the cleaning methods are not shown because they were similar to the plug-in 

times since we sequenced all the covariates. As in Figure 3.4, we see that the approaches 

based on M-estimators are more time consuming than the Winsorization approaches. 

The difference  increases fast  with dimension. 
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Figure 3.5: Numerical complexity of  different  techniques. LARS requires 0(ncP)  time. 

W plug-in and M plug-in both require O((n\ogn)d 2) time, but M plug-in has a larger 

multiplication factor. 

The cleaning approaches perform  slightly better than the plug-in approaches when 

the number of  variables is relatively small, and much smaller than the number of  cases 

(see Table 3.1). However, plug-in approaches are less time-consuming when only a part of 

the predictors are sequenced. Since W plug-in has a reasonable performance  compared to 

the other methods and has favorable  computing times, this method is to be preferred  for 

large, high-dimensional datasets. The performance  of  W plug-in will be studied further 

in the next sections and we will call this method robust LARS from  now on. 



3.5 Size of  the reduced set 

To obtain a good final  model, it is important to choose an appropriate value of  m, the size 

of  the reduced set of  covariates kept from  the sequencing step. The reduced set should 

be large enough to include most of  the important covariates, but not so large as to make 

the segmentation step (where we have to evaluate all possible subsets of  the reduced set) 

impractical. Several factors  can be important when determining the size m such as d,  the 

total number of  variables, the sample size n, the unknown number of  non-zero variables 

in the optimal model, the correlation structure of  the covariates, and of  course also time 

and feasibility  of  the segmentation step. For example, for  high-dimensional datasets, 

including only 1% of  the variables in the reduced set may make the segmentation step 

already infeasible. 

To investigate what values of  m are appropriate, we carry out a simulation study 

similar to Frank and Friedman (1993). The total number of  variables is d  = 100. A small 

number a = 9 or a = 15 of  them are nonzero covariates. We considered 3 correlation 

structures of  these nonzero covariates: "no-correlation" case, "moderate-correlation" case 

and "high-correlation" case, which are described below. 

For the no-correlation case (a true correlation of  0 between the covariates), inde-

pendent covariates Xj  ~ AT(0,1) are considered, and Y  is generated using the a non-zero 

covariates, with coefficients  (7,6, 5) repeated three times for  a = 9, and five  times for 

a = 15. The variance of  the error term is chosen such that the signal-to-noise ratio 

equals 2. 

For the moderate-correlation and high-correlation cases, we consider 3 independent 



'unknown' processes, represented by latent variables L,, i = 1,2, 3, which are responsible 

for  the systematic variation of  both the response and the covariates. The model is 

Y = 5Li + 4L2 + 3L3 + e = Signal + e, (3.12) 

where Lj ~ iV(0,1), and e is a normal error not related to the latent variables. The 

variance of  e is chosen such that the signal-to-noise ratio equals 2, that is Var(e) = 50/4. 

The nonzero covariates are divided in 3 equal groups, with each group related to exactly 

one of  the latent variables by the following  relation 

Xj  = Li + 5j, 

where 5j ~ N(0,  aj). The value of  aj determines the correlation structure of  the nonzero 

covariates. The high-correlation case has a true correlation of  0.9 between the covariates 

generated with the same latent variable, and the moderate-correlation case has a true 

correlation of  0.5. 

For each situation we generated 100 samples of  size n = 150. Outliers were added 

by giving the noise term a large positive mean (asymmetric error). We considered four 

different  levels of  contamination: 0,5,10 and 20%. 

For the high-correlation and moderate-correlation cases, though "a" of  the covari-

ates are linked to the response Y through the latent variables, it is not clear which of 

these covariates should be considered important for  explaining Y. Even when the true 

pairwise correlations of  the covariates are zero (no-correlation case), the "best" model 

not necessarily includes all of  the a non-zero coefficients  because of  the bias-variance 

trade-off.  Therefore,  for  each simulated dataset we first  find  the "best" model among 

all possible subsets of  the non-zero covariates that has the minimum prediction error 

estimated by 5-fold  cross-validation. 
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Figure 3.6: Recall curves for  a — 9; (a) no correlation (b) low correlation (c) high 

correlation. The 4 curves for  (robust) LARS correspond to 4 levels of  contamination. 



For each simulated dataset, we determine the "recall proportion", i.e., the propor-

tion of  important variables (in the sense that they are in the "best" model by cross-

validation) that are captured (recalled) by LARS/robust LARS for  a fixed  size of  the 

reduced sequence. 

For a = 9, Figure 3.6 plots the average recall proportion against the size of  the 

reduced set for  the three correlation structures. In each plot, the 4 curves with the same 

line type correspond to the 4 levels of  contamination, higher curves correspond to lower 

levels of  contamination. These plots show that, for  each correlation structure considered, 

we can capture the important variables if  the percentage of  variables in the reduced set 

is 9 or 10. Robust LARS performs  as good as LARS for  clean data, and much better 

than LARS for  contaminated data. 

Figure 3.7 plots the average recall proportion against the size of  the reduced set for 

the moderate-correlation case with a = 15. This plot can be compared with Figure 3.6(b) 

to see how the increase in the number of  nonzero variables affects  the recall proportions. 

In both cases, we observe that the average recall proportions stop increasing even before 

the size m of  the reduced set exceeds the number a of  non-zero variables. 

3.6 Bootstrapped sequencing 

To obtain more stable and reliable results we can combine robust LARS with bootstrap. 

Therefore,  we generate a number B of  bootstrap samples from  the dataset, arid use robust 

LARS to obtain the corresponding sequence of  covariates for  each of  these bootstrap 

samples. Each sequence ranks the covariates from  1 to d.  For each covariate we can take 
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Figure 3.7: Recall curves for  a = 15 and moderate correlation with 4 different  levels of 

contamination. 

the average over these B ranks, and the m covariates with the smallest average ranks 

then form  the reduced set. 

When resampling from  a high-dimensional dataset (compared to the sample size, 

e.g., n — 150, d  — 100) the probability of  obtaining singular samples becomes very high. 

Note that even the original sample may already be singular or the dimension d  of  the 

data may exceed the sample size. In these cases it will be impossible to sequence all 

covariates. We can easily overcome this problem by sequencing only the first  mo < d 

of  the covariates for  each bootstrap sample, where preferably  mo > m. We then rank 

the covariates according to the number of  times (out of  B) they are actually sequenced. 

When ties occur, the order of  the covariates is determined according to the average rank 



in the sequences. In our simulations, we generated B = 100 bootstrap samples from  each 

of  the 100 simulated datasets. We sequenced the first  25 covariates in each bootstrap 

sample. 

Figure 3.8 shows the recall curves obtained by robust LARS (solid lines) and boot-

strapped robust LARS (dotted lines) for  covariates with moderate correlation. The recall 

curves obtained by bootstrapped robust LARS perform  better than the initial robust 

LARS curves for  all levels of  contamination, the difference  being larger with larger con-

tamination proportions. This confirms  that by applying the bootstrap we obtain more 

stable and reliable results. Even with 20% of  contamination, bootstrapped robust LARS 

with m = 10 (o = 9) or m = 15 (a  — 15) already yields a recall proportion around 90%. 

To investigate what minimum number of  bootstrap samples is required to obtain 

significant  improvement over robust LARS, we also tried B = 10, 20 and 50 in the above 

setups. In each case, B = 10 and B = 20 do not yield much improvement, while with 

B = 50 the results obtained are almost as stable as with B = 100. 

3.7 Learning curves 

Although the simulation results in the previous sections suggested that it suffices  to select 

the size of  the reduced set equal to or slightly larger than the number of  predictors in the 

final  model, we usually have no information  about the number of  predictors that is needed. 

Hence, a graphical tool to select the size of  the reduced set would be useful.  The following 

plot can be constructed to determine a reasonable size for  the reduced set. Starting from 

a model with only 1 variable (the first  one in the sequence), we increase the number of 
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Figure 3.8: Recall curves for  robust LARS and bootstrapped robust LARS for  covariates 

with moderate correlation; (a) a = 9 (b) a = 15. The 4 curves for  each method correspond 

to 4 levels of  contamination. 



variables according to the sequence obtained and each time fit  a robust regression model 

to compute a robust R2 measure such as R2 = 1 — Median(e2)/MAD2(F), where e is the 

vector of  residuals from  the robust fit.  We then plot these robust R2 values against the 

number of  variables in the model to obtain a learning  curve. The size of  the reduced set 

can be selected as the point where the learning curve does not have a considerable slope 

anymore. 

A problem that can occur with a robust R2 measure is that, unlike its classical coun-

terpart, it is not always a nondecreasing function  of  the number of  covariates. This can 

be resolved as follows.  If  the robust R? at any step is smaller than that of  the preceding 

step, then fit  a robust simple linear regression of  the residuals from  the preceding step on 

the newly selected covariate. The residuals obtained from  this fit  can be used to compute 

another robust R2 value. We then use the larger of  the two values. 

To investigate the performance  of  learning curves, we consider a dataset on air 

pollution and mortality in 60 Metropolitan areas in the United States. The response 

variable is the age-adjusted mortality. There are 14 potential predictors, numbered from 

1 to 14. Since row 21 contains 2 missing values, we drop this observation from  the data. 

Based on robust data exploration we identified  4 clear outliers that correspond to.the 

four  metropolitan areas in California.  We applied 5-fold  cross-validation (CV) to this 

dataset without the four  outliers, and obtained the "best model" that has the following 

7 covariates: (2,3,4,6,7,10,13).. (The order of  the covariates is not relevant here.) 

Bootstrapped robust LARS applied to this dataset (including the outliers) produced 

the sequence (7,5,13,4,6,3,2,10,9,1,14,11,8,12). We used this sequence and fitted 

Least Median of  Squares (Rousseeuw 1984) regressions to obtain the robust R2 values. 



Figure 3.9: Learning curve for  Pollution data. A reduced set of  8 covariates is suggested 

by the plot. 

Figure 3.9 shows the corresponding learning curve. This plot suggests a reduced set of 

size 8. It is encouraging to notice that the reduced set (first  8 covariates in the sequence 

above) contains all 7 predictors selected in the "best model" obtained by CV. 

3.8 Examples 

In this section we use two real datasets to evaluate the performance  of  (bootstrapped) 

robust LARS. The demographic data example further  explores the idea of  "learning 

curves" to choose the size of  the reduced set. We then use a large dataset (protein data) 

to demonstrate the scalability as well as stability of  robust LARS. 



Demographic data. This dataset contains demographical information  on the 50 

states of  the United States for  1980. The response variable of  interest is the murder rate 

per 100,000 residents. There are 25 predictors which we number from  1 to 25. Exploration 

of  the data using robust estimation and graphical tools revealed one clear outlier. We 

applied 5-fold  CV to this dataset without the outlier, and obtained the "best of  25" 

model that has the following  15 covariates (1, 2, 3, 5, 6, 8, 9,10,16,17,18,19, 21, 24, 25). 

Figure 3.10 shows the learning curve for  the Demographic data based on boot-

strapped robust LARS. This plot suggests a reduced set of  size 12 which include the 

covariates: (22, 20, 4,15,10, 2,19, 25, 8,18, 6, 24). The boldface  numbers correspond to 

covariates in the sequence that are also in the model obtained by CV. The number of 

"hits" is 8 out of  12. 

a . 
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Number of variables in the model 
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Figure 3.10: Learning curve for  Demographic data. A reduced set of  12 covariates is 

suggested by the plot. 

We applied 5-fold  CV to the clean data using the reduced set of  size 12 obtained by 



bootstrapped robust LARS. The model selected in this case has the following  9 covariates: 

(22, 20,4,15, 2,10, 25,18,24). To compare this "best of  12" model with the "best of  25" 

model above, we estimated the prediction errors of  these two models 1000. times using 

5-fold  CV. The two density curves are shown in Figure 3.11. The "best of  12" model has 

a mean error of  204.8 (median error 201.5) while the "best of  25" model has a mean error 

of  215.9 (median error 202.0). Also, the standard deviations (mads) of  the errors are 25.6 

(22.7) and 74.6 (31.4), respectively. (Some of  the "best of  25" errors are very large and 

not included in the plot.) Thus, bootstrapped robust LARS gives more stable results in 

this high-variability dataset. It should be mentioned here that we needed almost 10 days 

to find  the "best of  25" model, while "best of  12" model requires less than 5 minutes 

including the time needed to sequence the covariates by bootstrapped robust LARS. (CV 

on m covariates is times faster  than CV on d  covariates.) 

Figure 3.11: Error densities for  the two "best" models for  Demographic data. The "best 

of  12" model gives more stable result. 



Protein data. This dataset of  n — 145751 protein sequences was used for  the 

KDD-Cup 2004. Each of  the 153 blocks corresponds to a native protein, and each data-

point of  a particular block is a candidate homologous protein. There are 75 variables in 

the dataset: the block number (categorical) and 74 measurement's of  protein features. 

We replace the categorical variable by block indicator variables, and use the first  feature 

as the response. Though this analysis may not be of  particular scientific  interest, it will 

demonstrate the scalability and stability of  the robust LARS algorithm. 

We used the package R to apply robust LARS to this dataset, and obtained a 

reduced set of  size 25 from  d  = 225 covariates (152 block indicators + 73 features)  in 

only 30 minutes. Given the huge computational burden of  other robust variable selection 

procedures, our algorithm maybe considered extremely suitable for  computations of  this 

magnitude. 

For a thorough investigation of  the performance  of  robust LARS with this dataset, 

we select 5 blocks with a total of  n = 4141 protein sequences. These blocks were chosen 

because they contain the highest proportions of  homologous proteins (and hence the 

•highest proportions of  potential outliers). We split the data of  each block into two 

almost equal parts to get a training sample of  size n = 2072 and a test sample of  size 

n = 2069. The number of  covariates is d'=  77, with 4 block indicators (variables 1 — 4) 

and 73 features.  We apply bootstrapped robust LARS with B = 100 bootstrap samples 

and we sequence the first  25 variables of  each bootstrap sample. The resulting learning 

curve is shown in Figure 3.12. 

This plot suggests that a drastic reduction to a small number of  predictors can be 

performed,  e.g. m=5 or m=10. The first  10 predictors found  by bootstrapped robust 
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Figure 3.12: Learning curve for  Protein data. A reduced set of  5 covariates is suggested 

by the plot. 

LARS are (14,13, 5, 76,73,8,7,40,46, 51). The covariates in this sequence are almost 

the same as those obtained with the whole dataset (not shown). The standard LARS 

produced the sequence (14,13,5,8,7,76,18,65,2,46). Note that the two sequences are 

quite different.  For example, if  we select a model from  the first  five  predictors, then only 

3 predictors are contained in both sequences. Using MM-estimators and robust AIC, 

the best model selected from  the first  five  variables of  the robust sequence contains vari-

ables (14,13, 5, 76) while the best model out of  the first  10 predictors contains variables 

(14,13, 5, 76,40). Hence only 1 variable is added. 

Using classical AIC, the best model selected from  the first  5 variables of  the LARS 

sequence contains variables (14,13, 5,8). Variable 76 of  the corresponding robust model 

is replaced by Variable 8. The best model from  the first  10 predictors contains variables 

(14,13, 5,8, 76, 2). Note that 2 variables are added to the list compared to 1 variable in 



the robust case. 

We fitted  the 4 best models using the training data, and then used them to predict 

the test data outcomes. The 1%, 5% and 10% trimmed means of  prediction errors for  the 

smaller robust (classical) model are : 114.92 (117.49), 92.77 (95.66) and 74.82 (78.19), 

respectively. The corresponding quantities for  the larger robust (classical) model are: 

114.37 (115.46), 92.43 (94.84) and 74.34 (76.50), respectively. Notice that the robust 

models always outperform  the classical models. 

3.9 Conclusion 

The main contribution of  this chapter is that we developed robust versions of  LARS to 

obtain a reduced set of  covariates for  further  investigation. We also introduced the idea 

of  multivariate-Winsorization of  the data (when the dimension is not too large). We 

can perform  computationally suitable classical multivariate analyses on the transformed 

data to obtain reliable results. We also proposed a new robust correlation estimate for 

bivariate data which we called the "adjusted-Winsorized correlation estimate." 

LARS is a very effective,  time-efficient  model building tool, but is not resistant to 

outliers. We introduced two different  approaches to construct robust versions of  the LARS 

technique. The plug-in approach replaces the classical correlations in LARS by easily 

computable robust correlation estimates. The cleaning approach first  transforms  the 

dataset by shrinking the outliers towards the bulk of  the data, and then applies LARS on 

the transformed  data. Both approaches use robust pairwise correlation estimates which 

can be computed efficiently  using bivariate-Winsorization or bivariate M-estimates. 



The data cleaning approach is limited in use because the sample size needs to be 

(much) larger than the number of  candidate predictors to ensure that the resulting cor-

relation matrix is positive definite.  Moreover, the data cleaning approach is more time 

consuming than the plug-in approach, certainly when only part of  the predictors is being 

sequenced. Since the plug-in approach has good performance,  is faster  to compute and 

more widely applicable, we prefer  this method. Comparing bivariate M-estimates with 

bivariate Winsorization we showed that the latter is faster  to compute with important 

time differences  when the number of  candidate predictors becomes high. 

We propose using the robust LARS technique to sequence the candidate predictors 

and as such identify  a reduced set of  most promising predictors from  which a more refined 

model can be selected in a second segmentation step. We recommend combining W plug-

in with bootstrap to obtain more stable and reliable results. The reduced sets obtained 

by bootstrapped robust LARS contain more of  the. important covariates than the reduced 

sets obtained by initial robust LARS. 

It is important to select the number of  predictors to use for  the second step. This 

number is a trade-off  between success-rate, that is the number of  important predictors 

captured in the reduced set, and feasibility  of  the segmentation step. Our simulation 

study indicated that the reduced set can have size comparable to the actual number of 

relevant candidate predictors. However, this number is usually unknown. To still get 

an idea about an appropriate size for  the reduced set we introduced a learning curve 

that plots robust R2 values versus dimension. An appropriate size can be selected as the 

dimension corresponding to the point where the curve starts to level off. 



3.10 Chapter Appendix 

3.10.1 Determination of  7 for  one active covariate 

Assume that the first  selected covariate is +X m. The current prediction /x •<— 0 should 

be modified  as 

. fi  <- 7 X m. 

The distance 7 should be such that the modified  residual (F — ji) will have equal corre-

lation with +X m and another signed covariate Xj.  We have 

corfy  - a X  ) - X™ { Y  ~ l X m ) / n - - ^ (3 13) 
' ~ S D ( Y - 7 X J  ~ SD(F — jX m)' ( 3"13) 

and 

mr(Y  u \X)~ ^ ~ l X m ^ n - Ti Y  ~ ^ m 4) 
- m, - s d ( f  - y x m ) - S D ( y - 7 x m ) - ( 3 - 1 4 ) 

Equating (3.13) to (3.14), we have 

7 (+Xj)  = f ^ .  (3.15) 
J- Tjm 

Similarly, equating (3.13) with the correlation of  modified  residual and — Xj we have 

1 n" '  jm 

We should take the minimum of  (3.15) and (3.16) and minimum over all inactive (not yet 

selected) j . The signed covariate that will enter the model at this point is determined 

alongwith. 



3.10.2 Quantities related to equiangular vector Ba 

/ 

Here, A is the set of  'active' subscripts. Let X A = (•  • • siXi  • • •), I  e A, where s; is the 

sign of  Xi  as it enters the model. The standardized equiangular vector BA is obtained 

using the following  three conditions. BA is a linear combination of  the active signed 

predictors. 

BA = X A wA , where wA is a vector of  weights. (3-17) 

BA has unit variance: 
1 
nB'ABA = l.  (3.18) 

BA has equal correlation (a,  say) with each of  the active predictors. Since the covariates 

and BA are standardized, 

—XABa — a 1A , 1A is a vector of  l's. (3.19) 
7~t 

Using equation (3.17) in equation (3.18), we have 

-W' aX'AXAW A = 1, 
Ti 

so that 

W' aR^W A = 1, (3.20) 

where R^A is the correlation matrix of  the active signed variables. Using (3.17) in (3.19), 

we have 

R{^w a = alA, 

so that the weight vector wa  can be expressed as 

wA = a 



Let Ra be the correlation matrix the unsigned active covariates, i.e., Ra is a submatrix 

of  Rx- Let sA be the vector of  signs of  the active covariates (we get the sign of  each 

covariate as it enters the model). We have 

wA = a (DaRaDa^Ia,  -(3.21) 

where Da is the diagonal matrix whose diagonal elements are the elements of  s^- Finally, 

using equation (3.21) in equation (3.20), we get 

a = [1' a(D aRADa)-11a]- 112. (3.22) 

The correlation of  an inactive covariate Xj with Ba, denoted by aj, can be expressed 

as follows 

A J = -X'Ba = -X'XaWa  = (D Ar jA)'w A, (3.23) 
n J  n J 

where r j A is the vector of  correlation coefficients  between the inactive covariate Xj and 

the (unsigned) selected covariates. Thus, we need only (a part of)  the correlation matrix 

of  the data (not the observations themselves) to determine the above quantities. 

3.10.3 Determination of  7 for  two or more active covariates 

Let us update r (r  — 7), see (3.13), and rjY  4— ( — 7r,-m), see (3.14). 

The correlation of  an active covariate with the 'current' residual Y  — fx  is r /SD(y — 

ft),  and the correlation of  the active covariate with the current equiangular vector BA 

is 'a'. Therefore,  the correlation between an active covariate and the 'modified'  residual 

(Y  - p.- 7 a B A ) is 

T - J a c l 
SD(Y-p,- lABAy 

76 



An inactive covariate +Xj,  j £ Ac, has correlation r jy /SD(F — fi)  with the 'current' 

residual, and it has correlation a,j with Ba• Therefore,  the correlation between +Xj, 

j G Ac, and the 'modified'  residual is 

rjY  - 7a flj 
SD(F — A — IaBA) 

Equating the above two quantities, we get 

"f A(+X j) = (r-r jY)/(a-a j). (3.24) 

Similarly, 
7 A ( - X j ) = (r  + rjY)/{a  + aj). (3.25) 

We have to choose the minimum possible 7a over all inactive covariates. Note'that when 

A has only one covariate, (3.24) and (3.25) reduce to (3.15) and (3.16), respectively. 



Chapter 4 

Two-step Model Building: 

Robust Segmentation 

4.1 Introduction 

In Chapter 3 we developed robust sequencing methods to obtain a reduced set of  covari-

ates from  which the final  prediction model can be selected. According to the notation 

used before,  we have m predictors X\,...,  X m in the reduced set. In this chapter we 

consider methods of  segmentation (evaluation of  all possible subsets of  the reduced set 

of  covariates) in order to select the final  prediction model. 

To compare different  subsets of  covariates, we require an appropriate robust selection 

criterion. For this purpose, we review some classical selection criteria in Section 4.2, and 

their robust counterparts in Section 4.3. We use /3 p to denote the estimate of  f3 p for  the 



p-parameter submodel (p  predictors including the intercept) under consideration. Many 

of  the methods below require and estimate the variance of  the error term under the 

"true" model, a2. In such cases, a2 is estimated using the full  model (with k — m + 1 

parameters). 

4.2 Review: classical selection criteria 

In this section, we review some important classical selection criteria: Final Prediction 

Error (FPE), Akaike Information  Criterion (AIC), Mallows' C p , cross-validation and 

bootstrap. 

4.2.1 Akaike Information  Criterion (AIC) 

A measure of  the similarity between the fitted  distribution f{y\0 p) and the true distri-

bution g(y\(3)  is the Kullback-Leibler information  number (Kullback and Leibler 1951) 

It can be shown that 

(i) I(gJ)>  0, 

(ii) I(g,  / ) = 0 g(y)  = f(y)  almost everywhere (Lebesgue measure). 



Our purpose is to minimize 

I(gJ)  = E{\ogg(Y\(3)}-E{\ogf(Y\P p)}, 

where only the second term is important in evaluating the fitted  model. This term is 

unknown, and it seems reasonable to consider the log-likelihood 

n 

i=1 

as an estimate of  nE j log/ (y | /3 p ) j . However, this estimate has a bias, since the same 

data are used to find  the estimates (3p and to calculate the log-likelihood. Akaike (1973) 

showed that the expected value of  the bias ~ p. Therefore,  the corrected estimate of 

nE {log  f(Y\P p)} is 

L'0p)=L0p)-p. 

Based on this, Akaike (1973) proposed to choose the model that minimizes the Akaike 

Information  Criterion: 

AIC = - 2 L0p) + 2 p, 

Bhansali and Downham (1977) proposed to generalize AIC by choosing a model 

that minimizes, for  a chosen fixed  a, 

AIC(p,a)  = -2L(P p) + ap. 

For normal errors, 
D C C 

AIC(p, a) = K(n,  a) + + ap, (4.1). 

where K(n,  a) is a constant depending on the marginal distribution of  the covariates, 

RSSp  is the residual sum of  squares, and a2 is the estimate of  a2 from  the full  model. 



4.2.2 Mallows' Cp 

Let us consider the following  submodel of  p parameters: 

Yi  = (3' pXi  + a, i = 1, 2, • • • , n, (4.2) 

where e* are independent observations from  the distribution F  with mean zero and vari-

ance a 2 (when the current submodel is the true model). This subset model may produce 

biased fitted  values, i.e., E f t )  ^ E(Yi), where Yi = (5pXi. The bias may be tolerable if  it 

is offset  by a reduced variance. Therefore,  Mallows (1973) considered the mean square 

error for  each fitted  value, and defined  the following  criterion for  model evaluation: 

1 n 

J p = — E r a s e f t ) <7 
i=l 

<7 E f t  - E(F,))2 (4.3) yii - niyii)^2 

,i=l 

The value of  J p has to be estimated from  the data. Mallows (1973) proposed the following 

estimate: 
D c c 

C p = J p = ?jpL + 2p-n, (4.4) 

where a 2 is the estimate of  a 2 from  the full  model. It can be shown that, for  the full 

model with k = m + 1 parameters, C k = k. It is interesting to note that, for  normal 

errors, the C p statistic is equivalent to AIC(p, 2) (see (4.1)). 

4.2.3 Final Prediction Error (FPE) 

Akaike (1969, 1970) proposed a criterion for  the selection of  predictors in the context 

of  autoregressive processes. The author minimized an estimate of  the expected squared 



error in predicting the observations that are independent of  the available data, but have 

the same distribution. 

Consider the subset model (4.2). Suppose that we are trying to predict, using the 

estimates j3p, the values Y*  satisfying 

Y*  = (3' pX l + e*, i = l , 2 , - . - , n , (4.5) 

where e*'s have the same distribution F, but they are independent of  the Cj's. The Final 

Prediction Error (FPE) of  the current model is defined  as 

i=i 
(4.6) 

It is interesting to note that, for  the linear regression setup considered above 
F P E = 

i=1 
n 1 

^ E 
i=i 

J p + n, 

a rE E f t  -
,i=i 

where J p is defined  in (4.3). Therefore,  based on (4.4), an estimate of  FPE is given by 

(4.7) FPE  = ^ + 2 p, 
c-

where a 2 is the estimate of  a 2 from  the full  model. Note that, for  the evaluation of  linear 

prediction models, FPE is equivalent to the C p statistic. 

4.2.4 Cross-validation 

Cross-validation (CV) obtains an estimate of  the error-rate of  a prediction rule by split-

ting the n data points into a training sample of  size nt (used for  fitting  the predic-



tion model, i.e., for  estimating the model parameters) and a validation sample of  size 

nv = n — nt (used for  assessing the model). We calculate the average prediction error 

based on all or some of  the (^ ) different  validation samples, and use it as a criterion to 

select a prediction model. It is often  called leave-ri„-out cross-validation, or CV(nv). 

The vast majority of  papers on this topic deals with leave-one-out cross-validation, 

denoted by CV(1). Lachenbruch and Mickey (1968) proposed the use of  CV(1) in dis-

criminant analysis. The method is furthered  by Allen (1974), Stone (1974), and Geisser 

(1975). The asymptotic equivalence of  CV(1) and AIC is shown by Stone (1977). 

Efron  (1983) used CV(1) to estimate the error rate of  a prediction rule in the situa-

tion where the response Y  is dichotomous. We can easily generalize the author's approach 

to a continuous response. Suppose that we have an n x j ) dataset 

Z = {Zi,i = 1, 2, ••• , n}, 

where each case (row) = (ccj, yi) is an observation of  the random quantity (X,  Y),  with 

X  being a row-vector of  (p — 1) covariates and Y  being a real-valued response variable. 

The dataset Z  is a random sample from  distribution H  on the p-dimensional sample 

space Rp . 

We want to evaluate a prediction rule r)(x,  Z)  constructed based on the given dataset. 

An example of  rj(x,Z)  is j3zx where j3z is the linear regression coefficient  of  Y  on X. 

We want to estimate the error rate of  r](x,  Z)  when rj(x 0, Z)  is used to predict a future 

value yo of  Y  for  a given predictor value Xo. Let Q[y 0,rj(x 0, Z)]  denote the. "error" in 

predicting y0 from  x0. For example, we can consider the squared error 

Q[y 0,V(x 0,Z)]  = {y 0-ri{x 0,Z)) 2. (4.8) 



True error rate 

The true error rate Err(Z,  H)  of  the prediction rule 77(2:0, Z)  can be defined  as 

Exx(Z,H)  = EH(Q[Y 0,r,(X 0,Z)}),  (4.9) 

the expectation being taken over (.Xo, Yo) ~ H  with Z  fixed  at its observed value. 

Apparent error rate 

The most obvious estimate of  the true error rate Err(Z,  H)  is the apparent error rate 

err (Z,H): 

err(Z,H)  = - V]  Q[y h V(x u Z)],  (4.10) 
n 1' i=i 

which usually underestimates Err(Z, H),  because the same data have been used both to 

construct and to evaluate the prediction rule rj(x,  Z). 

CV error rate 

CV attempts to overcome the problem of  underestimation of  Err(Z, H) by dividing the 
1 

given dataset into the training and the validation parts. For CV(1), let Z^) be the 

training set with case Zi removed, and rj(x,Z(,))  be the corresponding prediction rule. 

The CV(1) estimate'of  Err(Z,  H)  is given by 
1 n 

Err = (4.11) 
i=i 

s 

Shao (1993) used CV(n„) for  model selection in regression using a random selection 

of  the (^) possible validation samples. 



4.2.5 Bootstrap 

Efron  (1983) used bootstrap to estimate the true error rate Err(Z,  H)  (see (4.9)). Since 

the apparent error rate err(Z, H)  (see (4.10)) is an underestimate of  Err(Z,  H),  a correc-

tion is required. Let op(Z, H) be defined  as 

op(Z, H)  = Err(Z, H)  — evv(Z,  H).  (4.12) 

The expectation of  op(Z,  H),  denoted by w(H),  is given by 

r(H)=E H{Evv(Z,H)-evv(Z,H)},  (4.13) w 

which could be the ideal correction if  it were known. Note that, though the true error 

rate and the apparent error rate are defined  for  particular dataset Z, the target correction 

is the expectation over all datasets. It is not easy to find  an estimate for  (4.12) which is 

defined  for  a particular Z. 

The unknown w(H)  can be estimated using the bootstrap procedure to get the 

bootstrap estimate of  Err(Z, H) as 

Err ( B° 0 t ) = err + w ( B o o t ) . (4.14) 

To obtain w^ B o o t \ let Z*  be a bootstrap sample, i.e., a random sample of  size n from  H. 

Based on (4.13), w(B o o t) can be written as 

-(Boot) = ^ j E r r ^ t f ) !  jerr(Z*,if)} 

= E * - E * ( ^ P f Q l y i M v u Z * ) ] ^  , (4.15) 

where E* is the expectations over all bootstrap samples, and P*  is the proportion of 

times a particular case Zj occurs in the bootstrap sample Z*,  i.e., 

#{z* = zA 
n 



The expression inside the first  pair of  parentheses of  (4.15) suggests that the prediction 

rule be constructed with the bootstrap sample Z*, and an average error of  this rule be 

calculated on the given dataset Z.  The expression inside the second pair of  parentheses 

of  (4.15) suggests that the prediction rule be constructed with the bootstrap sample Z*, 

and an average error of  this rule be calculated on the same bootstap sample Z*. 

4.3 Review: robust selection criteria 

In this section we present the robust counterparts of  the classical selection criteria AIC, 

C p and FPE (in order of  appearance in the robustness literature), and discuss their 

limitations. We discuss robust counterparts of  cross-validation and bootstrap procedures 

in Section 4.4 and Section 4.5, respectively. 

Ronchetti (1985) proposed a robust counterpart of  the AIC statistic. The extension 

of  AIC to AICR is inspired by the extension of  maximum likelihood estimation to M-

estimation. The author derived AICR for  an error distribution with density 

For a given constant a and a given function  x, we can choose the model that minimizes 

4.3.1 Robust AIC 

/(e) = i fexp(-x( e ) ) . (4.16) 

n 

AICR(p, a, x) = 2 J2  x( r i) + (4.17) 



/ \ / 

where r̂  = (Yi  — p Xi)/a,  a is some robust estimate of  a, and (3  is the M-estimator 

defined  as the implicit solution of 
n 

^ 2 ^ ( r i ) X i = 0, 
i=i 

with ijj = x'• The author also proposed a choice for  the parameter a, which is given by 

a = 2 E [ ^ 2 ( e ) ] / E [ # ) ] . (4.18) 

Limitation. The author considered that the M-estimate was the maximum likelihood 

estimate for  the density in (4.16). Unfortunately,  this only hold for  unbounded x func-

tions, and in such cases the breakdown point of  the M-estimate is 0. 

4.3.2 Robust Cp 

Ronchetti and Staudte (1994) pointed out the sensitivity of  the classical C p to outlying 

points, and proposed a robust C p statistic denoted by RCP. Consider an M-estimator 0 

with weights Wi = V,0"i)/rij where r̂  is the residual for  the ith observation. Using these 

weights, the author defined  a weighted version of  J p (see (4.3)) as follows 

, i = l 

The author proposed the estimate of  Tp, i.e., the robust version of  C p (see (4.4)), as 

W 
RCP = -^-(U p-V p), (4.19) 

where W p — ^ wfrf  is the weighted residual sum of  squares, a2 is a robust and consistent 

estimate of  a2 from  the full  model, and U p and V p are constants depending on the weight 

function  and the number of  parameters p. 

When the weights are identically 1, RCP reduces to Mallows C p. 



4.3.3 Robust FPE 

The robust analogue to the classical FPE criterion is proposed by Yohai (1997). Let s 

be an estimate of  the scale a from  the full  model, and j3 be the M-estimator of  the 

particular model under consideration. 
< 

71 

Pp = argmin^x((2/ i - 0P*i)/s).  (4.20) 
i=i 

When we are trying to predict y* (equation 4.5) using the estimate j3 , the robust FPE 

(RFPE) is defined  as 

RFPE = J 2 E vt - p'vXi 
x ' 

(4.21) 
\ U  I 

i L \ / . 

where the expectations are taken in the y*'s as well as in (3p. Note that when x( u) = u2> 

RFPE reduces to the classical FPE. 

Using second order Taylor expansions with respect to /3 p (assuming that the current 

model is the true model), RFPE is expressed as 

(4.22) 

where A = E(ip 2(e/a)),  B = E(ip'(e/a)),  and ip — x'-  Therefore,  an estimate of  RFPE is 

given by 

(4-23) 

where A = n " 1 Er=i (^ 2 (n /s ) ) , B = n" 1 Y.U^'in/s)),  and r{  = yz - Ppxz. 

The performance  of  RFPE has not been studied so far.  In Section 4.6 we carry out 

a simulation study to evaluate RFPE. 



4.4 Robust cross-validation 

Ronchetti, Field and Blanchard (1997) proposed a robust cross-validation procedure 

which is a robust version of  the cross-validation method proposed by Shao (1993). The 

authors used estimators that have optimal bounded influence  for  prediction. However, 

their method is computationally expensive. Hubert and Engelen (2004) proposed a fast 

cross-validation method in the context of  robust covariance estimation with MCD and 

robust principal component analysis. 

In this section we propose a robust CV procedure which is computationally suitable. 

First, let us consider a simple robustification  of  the CV procedure achieved by (a) con-

structing a robust prediction rule, denoted by r]R(x,Z),  based on the given dataset Z, 
and (b) calculating robust summary statistics of  the prediction errors Q[yi,  V R( xi, ^(i))]-

For the construction of  a robust prediction rule, we consider the regression MM-estimates 

proposed by Yohai (1987) because of  its high breakdown point and high efficiency  at the 

normal model. This estimate is defined  as follows. 

Definition  4.1. (Regression MM-estimate) Let Xo  R ->• R and Xi  '• ® ~5> ® be two 

score functions  such that  Xo( u) < Xi( u)i u £ ^ and each x satisfies  the following  set of 

regularity  conditions: 

1- x(-u)  = x(u),  ueR, 

2. x is non-decreasing  on [0,oo), 

3. x(0) - 0, and X(oo) - 1, 

4- X  i-s continuously  differentiable. 



Let $ be a high-breakdown-point  "initial"  estimate  for  (3,  and a be the estimate  of  scale 

of  the residuals  based  on (3  satisfying 

l Y , X o ( { y i - x \ 0 ) / & ) = b , (4.24) 
i= 1 

where b £ (0,1] is the expectation  of  xo(-) under  the central  model.  Then,  the regression 

MM-estimate  is defined  as the solution  of 

n 

Exi ((y i-xtf)/a)x i = 0. (4.25) 
i=i 

A reasonable choice for  the initial estimate /3 in Definition  4.1 is the regression S-

estimate proposed by Rousseeuw and Yohai (1984) because of  its high breakdown point. 

This estimate is defined  as follows. 

Definition  4.2. (Regression S-estimate) Let xo • —i• K  be the score function  de-

scribed  above. The  regression  S-estimate  (3  is defined  as 

0 = argmina(/3), (4.26) 
/3 

where <j((3)  solves 

^Y,xi((Vi-x t
i0)/*(0))=b-  (4-27) 

i=i 
The  corresponding  S-estimate  of  scale,  a, is given by' 

a = inf  cr(f3)  = d(f3).  (4.28) 

For a robust summary of  the (squared) prediction errors we will use the trimmed 

means with different  amounts of  trimming. The a-trimmed mean of  X, denoted by 

ma(X),  is the sample mean obtained after  dropping the largest 100o;% observations of 



X.  Let U\  < U 2 < • • • < U n be the ordered observations of  X,  and k = [n(l — a)], where 

[n(l — a)] means the integer part of  n(  1 — a). Then, 

n—k 

j=1 

— ( C V ) 
The robust counterpart of  Err is now given by 

E ? r ( R C V ) = ma (Q[y h r,R( X i, Z ( i ))]) . (4.30) 

• — • ( R C V ) ' 

Note that Err does not estimate Err(Z,  H) (see equation 4.9). Instead, it estimates 

ErrK(Z,H)  = EAH (Q[y 0, V R(x 0, Z)}) 

= /  Q[y 0,vR(xo,Z)]dH.  (4.31) 
1 - OL J 0 

The use of  a-trimmed mean will help us identify  the robust model(s) that can be 

expected to predict 100(1 — a)% of  the future  data better than other models. 

4.4.1 Dealing with numerical complexity 

The computation of  the MM estimates of  regression for  each training sample, i.e., the 

computation of  (3^,  i = 1, 2, • • • , n, is very computer intensive. We propose to remedy 

this problem as follows.  We express the MM estimates of  regression based on all the 

observations on the current set of  covariates as a weighted least squares fit,  and obtain 

the weighted least squares fit  for  each training sample by using the selected cases and 

their corresponding weights. We elaborate the proposed method below. 

Let Ti = yi — $ Xi be the residuals obtained from  the fit  (3  (based on all the ob-

servations on the current set of  covariates). Once the robust fit  is complete, (3  can be 



(4.32) 

(4.33) 

For further  computational ease, we will assume that a^) ~ a, where a^) is the S-

scale based on the training sample Z^y Now, a computationally suitable version of  the 

regression MM-estimate can be calculated as 

( n \ ~ ^ n 

E w i x i x tJ ) E w i x i Vy ( 4 - 3 4 ) 
/ j¥=i 

" (0) 

Note that no robust fitting  is needed for  the calculation of  (3^. 

One-step adjustment 

Based on a small simulation study (not presented here), we consider a one-step correction 

to (3^ to make it closer to fi^y  Let r^ = yj — x^fl^,  j = 1, 2, • • • , i — 1, i + 1, • • • , n. 

The updated set of  weights w ^ can be expressed as 
= Xi (rf/a)Irf,  j = 1, 2, • • • , i - 1, i + 1, • • • , n. (4.35) 

Thus, an adjusted estimate of  (3^ is given by 

( n \ ~ 1 n 

expressed as a weighted least squares regression coefficient  as follows: 

( n \ n 

i=l / i=l 
with the weights Wi expressed as 

Wi  = %i (ri/a)/ri,  i = 1, 2, • • • , n. 



4.5 Robust bootstrap 

For the purpose of  making robust statistical inferences  about the linear regression co-

efficient  (3,  Salibian-Barrera (2000), and Salibian-Barrera and Zamar (2002) developed 

the robust bootstrap procedure. The author(s) considered the regression MM-estimate 

and generated a large number of  re-calculated /3*'s to estimate the asymptotic co-

variance matrix and the distribution function  of  the robust estimate 0. This robust 

procedure is computationally suitable, because a linear system of  equations is solved for 

each bootstrap sample. 

We propose to use a similar approach to develop a computationally suitable robust 
— ( B o o t ) 

counterpart of  the bootstrap estimate Err of  the true prediction error Err(Z,H). 

Let be the MM-estimate, /3 be the (initial) S-estimate and a be the S-scale. The 

robust counterpart of  the apparent error rate err(Z) (see equation 4.10) is given by 

errR(Z) - ma {Q[ V l, r,{ X i, Z))),  (4.37) 

where ma(.)  is the cn-trimmed mean defined  before,  and r)K(xi,  Z)  uses the MM-estimate 

/3. Let ri and f;  be the residuals associated with the MM- and S-estimates, respectively. 

Once the robust fit  is complete, f3  and a can be expressed as a weighted least squares 

fit.  Equation (4.32) shows the weighted average representation of  (3  with the weights Wi 

defined  in Equation (4.33). The scale estimate a can be expressed as 

n 

a = ^ v i ( y i - p t x i ) , ' (4.38) 
i=1 

with the weights Vi defined  as 

Vi  = ^Xo  {fi/cr)/fi,  i = 1, 2, • • • , n: (4.39) 



Let Z*  — .{(xj, yi), i = 1, 2, • • • , n} be a bootstrap sample from  Z.  The unadjusted 

bootstrap estimates can be calculated as 

(
n \ — ^ n 

i=1 / i = l 
n 

K  = (4-41) 
i=1 

where w* = Wj  and v* = Vj  when (a:*, y*) = (xj,  yj). The corrected bootstrap estimate 

p can be obtained as 

j3*. = 0 + M0l-0)  + d(K-&),  (4.42) 

where M  and d  are the linear correction factors  (see Salibian-Barrera and Zamar 2002). 

The robust prediction rules r]R(x,  Z*)  can be based on the /3 above. Now the robust 

counterpart of  w^B o o t ' (see equation 4.15) is given by 

- ( R B o o t ) = ^ | m Q ( g [ y i > ^ R ^ } _ E % ( m Q ( Q [ y h v R { x h £ . ) ] ) | . ( 4 . 4 3 ) 

Finally, the robust bootstrap estimate of  ErrR(Z, H)  (see equation 4.31) can be expressed 

as 

E r r ( E B ° 0 t ) = errR(Z) + w( R B o o t ) . (4.44) 

4.6 Simulation study 

At first,  we carry out a small simulation (Section 4.6.1) to show that the classical CV 

and bootstrap estimates of  true error rate (see (4.9)) are sensitive to outliers while the 

robust estimates are resistant to outliers. We then conduct another study (Section 4.6.2) 

where we use these methods along with FPE and RFPE to select the "best" models, and 



compare the predictive powers of  these models. Since AIC and C p are equivalent to FPE 

for  linear regression setup with normal errors, and robust AIC and robust C p have some 

limitations, we do not consider these criteria for  our simulation study. 

4.6.1 Robustness of  the estimates 

• — • ( C V ) - » ( B o o t ) • — • ( R C V ) — ( R B o o t ) 

We evaluate the 4 estimates Err , Err , Err and Err using simulated 

clean and contaminated datasets. Since the true error rates Err(Z,H)  and Errr(Z,H) 

are different  (the latter uses the trimmed mean), we multiply the robust estimates by 
EH o(Q[y,r)*(x,Z)}) 
E«H o(Q[y^(x,Z)}) 

to make the results more comparable with the classical results. 

We considered two standard normal covariates X\  and X 2, and generated Y  = 2 Xi  + 

X 2 + e, where e ~ N(0,  4). We simulated 100 datasets, and for  each dataset we calculated 

the estimates mentioned above. We then contaminated each dataset as follows.  Each 

of  the 3 variables (2 covariates and the response) is contaminated independently. Each 

observation of  a variable is assigned probability 0.03 of  being replaced by a large number. 

Therefore,  the probability that any particular row of  the dataset will be contaminated 

is 1 — (1 — 0.03)3, which means approximately 9% of  the rows will be contaminated. 

For each contaminated dataset we obtained the 4 estimates mentioned above. Table 4.1 

presents the results for  the first  10 trials. 

The average Err(Z,  H0) (the average true error rate for  the clean data) is 4.12, while 

the average ErrR(Z,  H0) (multiplied by A) is 4.13. Table 4.1 shows that, for  the clean data 

both the classical and robust methods estimate the true error rates very well. However, in 



Table 4.1: First 10 trials: classical and robust estimates of  prediction errors. 

Trial CV Boot RCV RBoot 

Clean Contam Clean Contam Clean Contam Clean Contam 

1 4.60 12.01 4.61 11.65 4.18 5.80 4.15 5.47 

2 4.05 10.20 4.02 8.99 3.48 5.18 3.42 5.05 

3 3.86 10.35 3.88 10.64 3.70 5.72 3.67 5.66 

4 4.95 11.56 4.97 11.80 5.45 6.14 5.43 6.47 

5 3.95 14.92 3.94 11.77 4.29 5.57 4.25 5.33 

6 4.54 12.56 4.52 10.91 5.11 6.37 5.07 6.30 

7 5.22 10.28 5.16 10.53 -4.72 6.37 4.74 6.65 

8 4.03 8.54 4.04 8.63 4.04 5.43 4.04 5.45 

9 4.16 10.45 4.20 10.60 4.21 6.59 4.21 6.36 

10 4.57 9.82 4.53 9.72 4.75 5.90 4.70 6.54 

mean 4.14 10.94 4.13 10.28 4.17 5.32 4.16 5.22 

(sd). (0.58) (2.57) (0.58) (2.13) (0.67) (0.94) (0.69) (0.93) 

the contaminated data, robust estimates perform  much better than the classical methods. 

4.6.2 Final model selection 

In this simulation study we use the classical segmentation methods CV, Boot and FPE 

along with their robust counterparts RCV, RBoot and RFPE to select the "best" models, 

and compare the predictive powers of  these models. The study is similar to Frank and 



Friedman (1993). We considered 2 latent variables L,, i = 1, 2, to generate Y  = 6Li + 

51/2 + e, where Li ~ N(0,1),  and e is a normal error not related to the latent variables. 

We considered a total of  m = 8 covariates. Of  them, a = 4 are related to the two latent 

variables, with 2 covariates related to Lx and the other two related to L2. 

We generated 100 datasets each of  which was randomly divided into a training sam-

ple of  size 100 and a test sample of  size 100. Each training dataset was then contaminated 

as follows.  A number of  rows (10%) were chosen randomly, and for  these rows the co-

variates values were replaced by large positive numbers while the response values were 

replaced by large negative numbers. 

We used all 6 methods on the clean and contaminated training data to select and 

fit  the final  models, and then used them to predict the test data outcomes. For each 

simulated dataset, we recorded the number of  noise variables in the model, and the 

average squared prediction error on the test sample. 

Table 4.2 shows the average test, error and the average number of  noise variables 

selected by each method. For the clean data, the robust methods perform  as good as the 

classical methods. For the contaminated data, robust methods produce much smaller 

test errors than the classical methods. Also, robust models contain less noise variables. 

The performance  of  the three robust methods are similar. 



Table 4.2: Performance  of  the classical and robust methods of  segmentation (evaluation 

of  all possible subsets of  the reduced set). 

Method Test error Noise 

Clean Contam Clean Contam 

Classical CV 41.81 56.49 0.00 0.60 

Boot 41.32 54.88 0.00 0.50 

FPE 41.93 55.17 0.02 0.60 

Robust RCV 42.97 43.62 0.06 0.08 

RBoot 41.59 44.80 0.08 0.08 

RFPE 42.73 44.91 0.06 0.06 

4.7 Examples 

In this section we use two real datasets to evaluate the performance  of  the classical and 

robust methods for  the segmentation of  the reduced set. Both of  these datasets were 

used in Chapter 3 for  the evaluation of  robust sequencing. 

4.7.1 Demographic data 

This dataset contains n = 50 obsrvations on d  = 25 covariates and a response. For more 

details Section 3.8 is referred  to. Using the learning curve based on standard LARS, we 

selected the reduced set (22, 20,4,15, 25, 2,14, 5, 3,17, 24, 23).' The robust bootstrapped 

LARS produced the reduced set (22, 20, 4,15,10, 2,19, 25, 8,18, 6, 24). 



We applied the classical segmentation methods CV, Boot and FPE on the first  re-

duced set above. The. covariates selected by these methods are (22,4, 25, 2,14,17, 24, 23), 

(22,4,15, 25, 2,17, 24), and (22, 20,4,15,25, 2,14,17, 24,23), respectively. We then ap-

plied the robust methods RCV, RBoot and RFPE on the second reduced set. The covari-

ates selected are (22,4,15,10,19,25,18,24), (22,20,4,10,19,25,18,24), and (15,6,24), 

respectively. Interestingly, RFPE selects a very small model compared to others. 

To compare the models obtained by the classical and robust methods, we used the 

clean data (dropping one clear outlier) to estimate the prediction errors of  these models 

1000 times using 5-fold  CV. The mean prediction errors for  the models are: CV 199.3, 

Boot 198.2, FPE 207.6, RCV 195.8, RBoot 197.5 and RFPE 246.9. The robust method 

RCV performs  slightly better than RBoot, and both of  them perform  much better than 

the classical methods and RFPE. 

4.7.2 Protein data 

This KDD-Cup 2004 dataset was used in Section 3.8. We considered n = 4141 protein 

sequences from  5 blocks. The number of  covariates is d  = 77, with 4 block indicators 

(variables 1 — 4) and 73 features.  The data were split to get a training sample of  size 

n = 2072 and a test sample of  size n = 2069. 

We considered a reduced set of  size 5 using the learning curve based on standard 

LARS on the training data, which contains the covariates (14,13,5,8,7). Robust boot-

strapped LARS gives the reduced set (14,13, 5,,76, 73). We applied the 3 classical meth-

ods of  segmentation on the first  reduced set. They all select the same model, and it 



includes the covariates (14,13, 5, 8). The robust methods used on the second reduced set 

select the covariates (14,13, 5,76). 

We fitted  the 2 models using the training data, and then used them to predict the test 

data outcomes. The 1%, 5% and 10% trimmed means of  prediction errors for  the robust 

(classical) model are : 114.92 (117.49), 92.77 (95.66) and 74.82 (78.19), respectively. It 

is encouraging to note that the robust methods outperform  the classical methods for  the 

majority of  the data. 

4.8 Conclusion 

The main contribution of  this chapter is that we developed computationally suitable 

robust methods of  segmentation (evaluation of  all possible subsets of  the reduced set 

obtained in Chapter 3) to select the final  model. 

Classical selection criteria FPE, AIC, Cp , CV and bootstrap are sensitive to out-

liers. We also identified  certain limitations of  Robust AIC (Ronchetti 1985) and robust 

CV (Ronchetti, Field and Blanchard 1997) methods. We proposed computationally suit-

able robust versions of  CV and bootstrap procedures. We evaluated our methods using 

both simulated and real datasets, and compared them with the classical methods as 

well as robust FPE proposed by Yohai (1997). According to the simulation study, the 

performance  of  the three robust methods are similar, and better than the classical meth-

ods. In the real datasets, robust CV (RCV) and robust bootstrap (RBoot) have better 

performance  compared to RFPE. 



Chapter 5 

Properties of  Adjusted-Winsorized 

Correlation Estimate 

5.1 Introduction 

In Chapter 3 we proposed a new correlation estimate for  bivariate data, which we called 

the adjusted-Winsorized estimate. Unlike two separate univariate Winsorizations for 

X  and Y  (Huber 1981 and Alqallaf  2003), we proposed a joint Winsorization with a 

larger tuning constant c\ for  the points falling  in the two major quadrants, and a smaller 

constant c2 for  the points in the two minor quadrants. 

In this chapter we will establish the consistency and derive the influence  function  of 

the proposed correlation estimate. We will then discuss the asymptotic normality of  this 

estimate. 



Definition  5.1. (Adjusted-Winsorization) The  adjusted-Winsorization  of  (u,  v) £ 

R2, denoted  by tyc(u,v)  with  c — (c\,  c2), is defined  as 

rt  \ ( ^ ( u U c M . u ^ O , 
= (Mu) , M v ) ) = < (5.1). 

[ VVfcfa))  . U V < 0, 

where ip is a non-decreasing  symmetric  function,  and C\  and c2 are chosen constants. 

Definition  5.2. (Adjusted-Winsorized estimate of  correlation) Let (Xi,  Yi),  % — 

1, 2, • • • , n, be a random  sample from  a bivariate  distribution  with  location  parameters 

Hx  and fiy,  and scale parameters  ax and ay, respectively.  Let 6 = (fix,  fx,  cy), 

and  0 = (jlx,  £I-Y,  &Y) be an estimate  of  6. Denote Ui  = (Xi  — fix)/&x,  and Vi  = 

(Yi  — fly)  j ay. Let (jJi,  V^j  = (^ c(Ui),ip c(vSj  be as defined  in (5.1).  Then,  the 

adjusted-  Winsorized  estimate  rw of  the correlation  between X  and Y  is given by 

11Mm c(Vi)  - (i  t MUi))  (i  t MVi) 
~ 1 V 1=1 / V i=1 /  2) 

itr cm-(itMUi))\ kntr cm-('-tmvS 2 
n •<•—' <•/  in < t<~\ »/  i \ n ' T c \  <•/  i n 

i=1 \ i=1 / V »=1 \ i=1 

For the validity of  the results obtained in the subsequent sections, we need some 

assumptions on the functions  ipCl and ipc2 used for  the adjusted-Winsorization of  the data. 

Let ip : 3R. —y 1R satisfy  the following  set of  regularity conditions: 

Al. Ip(-u)  = —ifi(u),  u G R, 

A2. ip is non-decreasing, 

A3, ip is continuously differentiate, 

A4. ip, i)' a n d ip'(u)u  are bounded. 



For the adjusted-Winsorization of  the data, we will use the S-scales &x and ay-

defined  in Chapter 4. Let us assume that the score function  x : R —> E used in the 

S-scales satisfy  the following  set of  regularity conditions: 

Bl. x{-u)  = x{u),  ueR, x(0) = 0, and X(oo) = 1, 

B2. x is non-decreasing on [0, oo), 

B3. .x is continuously differentiate, 

B4. Xj X' a n d x'( u)u a r e bounded. 

5.2 Consistency of  adjusted-Winsorized estimate 

The following  theorem shows that under certain regularity conditions the adjusted-

Winsorized correlation estimates are consistent, provided that the location and scale 

estimates are consistent. 

Theorem 5.1. (Consistency of  adjusted-Winsorized estimate) Let (Xj, Yi),  i = 

1 ,2 , • • • , n, be a random  sample from  a bivariate  distribution  with  location  parameters 

Hx  and fx Y,  and scale parameters  ox and ay, respectively.  Let Ui  = (Xj — Hx)/&x, 

and  Vi  = (Yi  — /j,y)/cry  be the standardized  variables.  Let 0 = (nx,  Hy,  cry), and 

Q = (fax,  Ay, &X,  <5y) be an estimate  of  0. Then,  if 

0n —>• 0, 
71—> O O 

then 
p 

Tyy  ^ , 
n—>00 



where f w is the adjusted-  Winsorized  estimate  of  correlation  between X  and Y,  and 

To prove this theorem, we need an extension of  "Serfling's  Lemma" (Serfling  1980, 

page 253). 

Lemma 5.1. (Extension of  Serfling's  Lemma) Let Zi  — (Xi,  Yi),  i = 1, 2, • • • , n, 

be a sequence of  independent  random  variables  having an identical  bivariate  distribution 

with  parameter  vector 0. Let g(z,  t) : R2 x R4 —R be continuous in t uniformly  on z G 

Ac(0,  A) for  all  A > 0, and P(z  G A(0,  A)) 0 as A 0, with  P(z  e A(0,  0)) = 0. 

Assume that  |g(z,  t)\ < K  for  all  z € R 2 . Let 0n be a sequence of  random  vectors such 

E [ip c(U)ip c(V)]  - EIMU)}  EIMV)} (5.3) 

that  0n — 0 . Then 

(5.4) 

Proof.  We have to show that, for  any given e > 0 

(5.5) 

Now, 

i n 

1 n 

n 
0n)I(zi  e A(0,A))-E[g(Z,  0)1 (Z  G A(0,  A))] 

+ - V  g( Z i, 0n)I( Z i G Ac(0,  A)) - E[g(Z,  0)I(Z  G Ac(0,  A))] 
n < * 

n 



< 
1 n 

-'Yg(z i, 9n)I(zi  G A(9,  A)) 
n 

i=i 
+ E[g(Z,  9)I(ZeA(9,  A))] 

+ - £ g(zu  9n)I(zi  G Ac(9,  A)) - E[g(Z,  0)1 (Z  G Ac(9,  A))] n (5.6) 

< k~y /I(z ieA(9,A)) 
n 1' 

+ 

i = l 
n 

+ 

i V g(z u 9n)I(zi  G ,4C(0, A ) ) - - V g(zi,  9)I( Zi G .4C(0, A)) n n ' 
1 = 1 2 = 1 

n 

£ g(zi,  0)I(zi  G Ac(0, A)) - 0)1 (Z  G Ac(0, A))] + 
n i=i 

, (5.7) 

Q (say). 

Note that the last expression in (5.6) is bounded by the sum of  the last two expressions 

in (5.7). We will now deal with each of  the four  parts in (5.7). 

As n oo, e p ( z e A{0,  A)), and P(z G A(0, 0)) = 0. 
n i=i 

Therefore,  for  any given e > 0, there exists A > 0 such that 

lim P lk-Yl(zi  € 4(0, A)) < e/4 ) = 1, i->oo I  n -f—'  I 
i = 1 

and 

k E[I(Z  G A(0, A))] = k P{Z  G A(0, A)) < e / 4 . 

(5.8) 

(5.9) 

We now focus  on the third part of  (5.7). Since 0 n > 0, we have, for  any 6 > 0, 
n—>oo 

n—>oo 
lim P (||0„ - 0|| < 5) = 1. (5.10) 

Now, for  any e > 0, we can choose <5 = 6(A)  (where A has been chosen before)  such that 

19n - 0|| < 5 \g(z,  9n) - g(z,  9) | < e / 4 , z G Ac(9,  A). (5.11) 



That is, 5 is chosen in such a way that it will ensure the uniform  continuity of  g(z,  0) in 

0 on z e Ac(0,  A). Using (5.10) and (5.11), we have, for  any e > 0, 

lim P 
n—>oo 

[g{z,  0n)-g(z,  0))l(zeA c(0,  A)) < e / 4 = 1 , 

which gives 

1 
n 

< e / 4 • ) = ' ! . (5.12) 

lim p f - f j ^ ,  0n)I( Z i e Ac(0,  A)) 
n—>oo \ n z — ' 

x i = l 
n 

Y,9(zi,  0)I{zieA c{0,  A)) 
j=i 

For the fourth  part of  (5.7), we can use the Weak Law of  Large Numbers. For any e > 0, 

n 

Y 9 ( ^ 0 ) I ( z i e A c ( 0 , A)) 
i=1 

Using inequalities (5.8), (5.9), (5.12) and (5.13) in (5.7), we have, 

lim P 
n—>oo 

< e / 4 = 1 . (5.13) 

lim P (Q  < e) — 1, 
n—>oo 

which completes the proof. 

To prove Theorem 5.1, we also need the following  lemma, which is similar to 

Lemma 7.7 (Salibian-Barrera 2000, page 217), where the author deals with p-functions 

(^-functions  according to our notation). 

Lemma 5.2. (Uniform  continuity of  -0-functions)  Let ip : M —>• E be a continuous 

function  such that  il>(u)  = —c for  u < —c, and ip(u)  = c for  u > c, where c is a finite 

constant.  Let m €  A4 and s £ S, where M.  and S are bounded  real  intervals,  and 

inf  <S > 0. Then 

r/  \ , ( U ~ m \ _ , . „ 
f{u,m,s)  — ip[  , m e M,  s €  o, 



is conutinuous in m and s uniformly  in u. 

The proof  of  this lemma is presented in Chapter Appendix (Section 5.8.1). 
( 

Proof  of  Theorem 5.1 

With the use of  Lemma 5.1 and Lemma 5.2 the proof  is straightforward.  We have 

Z  = (X,Y),  0 = (fx x, Hy,  ®x, cry), and t = (fi x, fiy,  <Jx,  oy). First, let us deal with 

the second term in the numerator of  Equation 5.2. We have 

\IIUUI) 
i=1 

Consider 

g(z,  0) 

Since the tuning constant of  our score function  ip changes with quadrants, to apply 

Lemma 5.1 we set 

A(0,A)  = {z  = (x,y)  : \x - fi x\ < A or \y - fi Y\  < A} . 

We have to choose 5 in (5.11) such that if  (x — fix,  y — A4y) £ Ac(0,A)  belongs to a 

particular quadrant, then (x  — fix,  y ~ My)  belongs to the same quadrant. If,  for  ex-

ample, (x  — fi x)(y  — A1Y)  > 0, then (x — fix)(y  ~ AY) > 0, and, using Lemma 5.2, 

n t i v 
\ E ^ ( ^ r ^ ) - - m > °) 

i=1 ^ 

i=i v 

X-jjLx 
Ox 

I{(X  - fix)(Y  - fiy)  < 0). 

= "0C 

= v. 

x-fix 
Ox 

+ H( X  ~ Mx)(Y  ~ MY) < 0). 



ipc = 4>Cl ( ^ f ^ ) i s continuous in fi x and ax uniformly  on z G A°(0,  A). There-

fore,  using Lemma 5.1, we have 

n ' \ ox ' n->no 
i=1 v OX 

That is, 

E[MU)}-  (5.14) 
n < * ri-VfYi 
n i= 1 

Similarly, 

- f ^ M V i )  E [ M V ) ] . (5.15) 
n ' * n - i o o 
n 

1=1 

Let us now deal with the first  term in the numerator of  Equation 5.2. We have 

n ^ n ^ \ ax J  \ oy J 
i=i i=i \ /  \ / 

m f )  m ^ ) - MV  - m > o) 

Considering g(Z,  0) = & rpc = wJU)'P c<V) : we have 

i y > c ( & ) <MVi) E [ M U ) M V ) ] - (5.16) 
n n-¥  oo 

i = l 

Using (5.16), (5.14) and (5.15) in the numerator of  (5.2), we have 

^YMUr)  MVi)  -
E [MU)tc{V)]  - E [ip c(U)}  E [MV)}  . (5.17) 

n ' \ n *—' /  \ n 
i=1 \ i=l /  \ i=l 



Let u's now focus  on the denominator of  Equation 5.2. We have 

= k t v & r - ) 
i=i i=i x

 ' 

X—  1 

+ ; XX ( m r ) , ( ( x ~ M ( Y ~ M < 0)' 
Consider g(Z,  0) = = We then have 

n ' n—>oo 
i = l 

Similarly, 

£ [ ^ 0 0 ] - (5.19) 
rl f  * n.—inn ^ J n 

i=1 
Using (5.18), (5.19), (5.14) and (5.15), we can say that the denominator of  (5.2) converges 

in probability to the denominator of  (5.3). • 

5.3 Influence  function  of  adjusted-Winsorized esti-

mate 

The following  theorem gives the influence  function  of  the adjusted-Winsorized correlation 

estimate, when the influence  functions  of  the scale estimates are well-defined. 

Theorem 5.2. (Influence  function  of  the adjusted-Winsorized estimate) Let 

(X,  Y)  follow  a continuous distribution  H.  Consider  the adjusted-Winsorized  correlation 

functional  rw(H)  given by 

r w (H) = (5.20) 



with 

N(H)  = E H 
X-m x(H) 

sx(H) 

— EH 
X-m x(H) 

Sx(H) 
Y  -mY(H) 

SY(H) 
(5.21) 

and 

21 V2 

2 l l / 2 

(5.22) 

where mx(H)  and my (H)  are location  functionals,  and sx(H)  andSy(H)  are dispersion 

Junctionals.  Suppose that 

1. The  central  model  Hq  is symmetric  about (m x(Ho),my(H 0)). We  can assume, 

without  loss of  generality,  that  mx(Ho)  = 0, my(H 0) = 0, sx{H 0) = 1, and 

Sy(H 0) = 1. 

2. The  influence  functions  IF(s x,u, H0) and IF(sy,v,  Hq) are well-defined  for  all 

z = (u, d ) 6 R 2 . 

The  influence  function  of  rW(H)  at Hq and z, denoted  by IF(r w, z, Hq), is given by 

IF{r w, z, H0) 
D0N0 - N0DP 

Dl 

where 

No  = EHo{MX)MY)}, 

Do = yfE H o{iP*(X)}E H o{iPl(Y)} 



No  = -EH o {MX)MY)}  + 

- IF(sy,v,H 0) EHO{MX)4'C(Y)Y} 

- IF(S X,U,H 0)EH o{MY)^' c(X)X}, 

and 

Dn EhM( Y)} 
2EHo{W(X)} 

+ IF(s x,u,H 0) EHO{2iP C(X)€(X)X}  j 

Eh 
2EHO{R C{Y)} 

+ IF(S y, v, H0) EHO{2MY)  I!>'C(Y)  Y} 

Proof.  Let H  be given by 

H tiX  = (l-t)H 0 + tS g. (5.23) 

For a fixed  z = (u,  v), using (5.21) we can express N(H t>z) = N(t,  z) = N(t)  as 

N(t)  = 

'u-mx(t ) \ /  u 
M * ) 

my(t)X 
s y ( t ) ; 

sxW yj 
v — mY(t) 

sY(t) 
(5.24) 



sx(t) Sy{t) 

+t^c[ u'mx}t))^J v-mY{t ) 

sx(t) sY(t) 
- (1 - 2*) < L ^ F 1 ) } EHo

 ( Y ~ m Y [ t ) 

sY{t) 
V  — mY(t) 

sy(t) 

(5.25) sy(t)  J  J r c V 

where o(t)  includes the terms involving t2. Now, since mx(0)  = 0, my(0)  = 0, Sx(0) = 1, 

and sy(0) = 1, we have 

d_ 
dt 

N(t) = - e H o {MX)MY)}  + Mv)Mv) 
t=o 

d  ̂  f,  fX-m x(t)\  . (Y  — my(t) 

The last term in (5.26) can be written as 

d„  J , ( X-m x(t )\ , y r - m v ( t ) 
t=0 

(5.26) 
t = o 

EH 0 < V, 
y - mr(t) C1 1

 S j c ( i ) J  m V M * ) 
/ f ( X - m x ( t ) ) ( F - m y ( t ) ) > 0 

+ 
d_ 
dt Sx(t)  ) ^ 2 V 3y{t)  J 

l((X-m x{t))(Y-my{t))<  0 . (5.27) 
t=0 

Interchanging the operations of  differentiation  and integration (see Chapter Appendix, 

Section 5.8.2, for  the justification),  we can express (5.27) as 



E Ho 
<=oJ 

+ E Ho 
d 

t=o. 
(5.28) 

The first  term of  (5.28) can be expressed as 

ENA dt sx(t) sY(t) t = 0 J 

Sx(t)  ; r c i v sY(t) 
sY(t)f t[m Y(t)]-j{s Y(t)}(Y-m Y(t)) 

4 ( t ) 
l(XY  > 0) 

sY(t)  J  ^ V sx(t) 
sx(t)£[m x(t)}-£ls x(t)]{X-rn x(t)) 

4 W 
I(XY  > 0) 

t=o 

= -EH Q^pCI(X)^' CL(Y)[LF(m Y,v,H 0) + IF{S y,V,.H Q)Y] L{XY  > 0) 

+ ^Cl(Y^' Ci(X)[lF(m x,u,H 0) + IF(s x,u,H 0)X}l(XY>0)  (5.29) 

Similarly, the second term of  (5.28) can be expressed as 

E Ho 
d r f x-mx{t) 
dt  {*«  {-T^tT 1 

Y — MY 

sY(t)  J 
Q-) l(XY  < 0) 

t=o. 

= -EHOL^CL(X)^ CL(Y)[LF(m Y,v,H 0) +.IF(S Y,V,H 0)Y] L{XY  < 0) 

• +i;CL(Y)i; ,CL(X)[LF(m x,u,H0) + IF(s x,u,HO)X]L(XY  <0) |>. (5.30) 

Using (5.29) and (5.30) in (5.28), we have 



= -IF(m Y,v,H 0)EH o{MX)^c(Y)}  ~ IF(m x,u,H 0) EH o{MY)  iP' C(X)} 

. - IF(S y,V,H Q) EHO{MX)4>C(Y)Y}  - IF(s x,u,H0) EHO{MY)  iP' C(X)  X} 

= - IF(S y, v, H0) EH0{MX)  €(Y)  Y} - IF(s x, u, H0) EHO{MY)  ^C(X)  X}. (5.31) 

Using (5.31) in (5.26), we have 

d_ 
dt 

N(t) = - E H 0 {IP C(X)IP C(Y)}  + MV)MV) 
t=o 

- IF(S y, v, H0) EH0 {M*)  VJX)  Y) 

- IF(S X, u,H 0) EHO{MY)  ip' c(X)  X}.  (5.32) 

Using (5.23) in (5.22), we have 

D(t)  = D!(t)  Dl(t), (5.33) 

where 

Di(t) 

(L -1) EHO \ T x - mx(t) 
sx(t) 

+ tip c 
u - mx(t) 

sx(t) 
, (5.34) 

and 

(1  - t)  EHO t 
Y  - mY(t) 

+ ti> c 
v — mY{t )\ 

sr{t)  J  j V sy(J)  J 
Differentiating  both sides of  (5.33) w.r.t. t, and setting t = 0, we have 

(5.35) 

d_ 
dt 

D(t) 
t=o Di(t)  dt D2{t)  dt 

(5.36) 
t=o 



From (5.34), we have 

t=o 
+ 1>l(u). (5.37) 

t= o <tra o i v sx(t)  ) 

Using similar arguments as in the case of  the numerator (see Chapter Appendix, Sec-

tion 5.8.2), 

d 2 f  X  — mx(t) 
E » ° < s * Sjf(t) t=0 

4 = 0 

d a: - mx(t) 
sx(t) 

I(XY  < 0) 
t=o 

(5.38) 

sx(t)  J  ^ V  sx(t) 
-sx(t)  i[mx(t)] - j[s x(t)}(X  - mx(t)) 

+ 2V, 

4 (t) 
X-m x{t)\  fX-m x(t) 

tPc 

I(XY  > 0) 

sX(t)  J Y C 2 \ sx(t) 
sx(t)f t[rn x(t)}-i[s x(t)](X-m x(t)) 

s2
x(t) 

L(XY  < 0) 
t=o 

= -EHO | 2 VC 1 M'CL {X)  [LF(m x, u, HO) + IF(s x, u, H0) X]  l(XY  > 0) 

+ 2 VC2 (X)iP' C2 (X)  [.IF(m x, u, H0) + IF(s x, u, H0) X] l(XY  < 0) 

= -IF(m x,u,Ho)E H o{2MX)^' C(X)}  - IF(S X,U,H 0)EH o{2MXU' c(X)X} 

= -IF(S X,U,H 0)EH o{2MX)^ c(X)X}.  (5.39) 

Using (5.39) in (5.37), we have 

= -EHO{RT(X)}  - IF(s x,u,H0)EHO{2MXMX)X}  +^c(u).  (5.40) 
t=0 



Similarly, 

I*® = -E„a{i,l(Y)}  - IF{sy,v,H 0)EBa{2MY)€(Y)Y}  + i>l{v)-  (5.41) 
t=0 

Using (5.40) and (5.41) in (5.36), we have 

dt 
D(t) 

EHOWX)} 

t=o 
EH O{1>1(X)}  - j&u) 

2EHO{R C(X)} 

+ IF(s x, u, H 0) EHO{2^ c{X)  iP'C{X)  X) 

EhM( X)} 
E h M P ) } -2 EHO{IPI(Y)} 

+ IF(s y,V,H 0)EH o{2My)€(y)y]  )• (5.42) 

We also have 

and 

W(*)L=O  = EHO{MX)MY)}  = No  (say), 

D(t)  | t = 0 = JE H o{r c{X)}E H o{r c{Y)}  = Do (say). 

(5.43) 

(5.44) 

Finally, differentiating  both sides of 

rw(t) 

w.r.t. t, and setting t = 0, we have 

IF{r w,z,H 0) 

m 
D(t) 

DQNQ - NQDQ 

Dl 

(5.45) 

(5.46) 

where N0 = FTN(t)\ t=Q and D0 = f tD(t)| t=Q are obtained from  (5.32) and (5.42), respec-

tively, and N0 and D0 are obtained from  (5.43) and (5.44), respectively. • 



Figure 5.1 shows a 3D-plot of  IF(r w, z, H 0) against z = (u,v),  with u,v E [-10,10], 

H 0 = N(0,  £), and 
/ 

1 P 

P 1 
We used p = 0.5 for  the bivariate normal distribution, and (ci, c2) — (3, 2) for  rw. 

\ 
(5.47) 

Figure 5.1: Influence  curve of  adjusted-Winsorized estimate with (ci,c2) = (3,2). The 

curve is symmetric about (0,0). 

Based on Equation 5.46 and Figure 5.1, we can make the following  comments on 

the influence  function  of  the adjusted-Winsorized estimate: 

• Because of  Regularity Condition A4, the expectations in (5.46) are bounded. Also, 

Do > 0. Therefore,  IF(r w, z, H 0) is bounded when IF(sx,  u, H 0) and IF(sy,  v, H 0) 



are bounded. Figure 5.1 also exhibits the boundedness of  the influence  function. 

• Since the •j/'-functions  are symmetric, the influence  function  IF(r w, z, Ho)  is sym-

metric about (u,v)  — (mx(Ho),  my{H 0)) — (0,0) if  IF(sx,u,  H 0) is symmetric 

about u = 0, and IF(s Y,  v, H 0) is symmetric about v = 0. 

• By setting c\ = c2 = c in IF(r w, z, HQ), the influence  function  of  the univariate-

Winsorized correlation functional  can be obtained. 

5.3.1 Standard error of  adjusted-Winsorized estimate 

Let Zi  = (Xi,Yi),  i = 1, 2, • • • , n, be i.i.d. according to a continuous distribution H, 

and rw(H)  be the adjusted-Winsorized correlation functional.  The influence  function  of 

rw(H)  at the central model H 0 and z e l 2 , denoted by IF(r w, z, H 0), is given by (5.46). 

Using this, the asymptotic variance of  the adjusted-Winsorized correlation estimator 

f w for  the central model H 0 can be obtained as (see, for  example, Hampel, Ronchetti, 

Rousseeuw and Stahel 1986, page 85) 

For a sufficiently  large n, the standard error of  f w, denoted by SE(r w), is given by 

Since it is difficult  to get a closed form  expression for  (5.48), we can use numerical 

integration to obtain approximations to the asymptotic variance and the standard error 

of  r w . 

(5.48) 

SE(f w) = VAV{r w,H 0)/n. (5.49) 

To evaluate the accuracy of  the (approximate) standard error of  the adjusted-

Winsorized correlation estimates, we carried out the following  simulation study. We 



generated 2000 random samples of  size n from  a bivariate normal distribution with mean 

vector 0 and covariance matrix £ = E(p) given by (5.47). We considered 3 different 

sample sizes: n = 25, 100 and 400, and 3 different  correlation coefficient  values: p = 0.1, 

0.5 and 0.9. The values of  (ci, c2) chosen for  these correlation coefficients  are (3,3), (3, 2) 

and (3,1), respectively. The choice of  C\ and c2 is discussed later on in Section 5.4. 

Table 5.1: Evaluation of  the standard errors of  r w . The empirical SD and formula-based 

SE are close. 

p 

n = 25 

SD SE 

n = 100 

SD SE 

n = 400 

SD SE 

0.10 

0.50 

0.90 

0.203 0.199 

0.136 0.146 

0.035 0.039 

0.100 0.099 

0.069 0.073 

0.018 0.019 

0.049 0.050 

0.034 0.037 

0.009 0.010 

Table 5.1 presents the obtained results. For each n, the first  column gives the 

empirical standard deviations of  the adjusted-Winsorized correlation estimates (based 

on 2000 samples), while the second column shows the standard errors calculated using 

(5.49). In general, the differences  between the numbers in the two columns are reasonably 

small, particularly for  large sample sizes. 

An estimate of  the asymptotic variance in (5.48) is given by 

AV(r w,H n) = -'$2lFZ(r w,zi,H n), 
7~h 

i=l 
and the estimated standard error of  rw, denoted by SE(r w) is given by 

SE(f w) = yfAV(r w,H n)/n. 

119 

(5.50) 

(5.51) 



5.4 Choice of  c\ and o2 for  f 

It is important to note that the robustness, efficiency  and intrinsic bias (to be discussed in 

the next section) of  the adjusted-Winsorized correlation estimate depends on the values 

chosen for  c\ and c2. Figure 3.3 in Chapter 3 shows how the bivariate outliers are handled 

by f w . If  we choose large values for  c\ and c2, r w will be less resistant to the outliers. On 

the other hand, this will lead to a decrease in the standard error (increase in efficiency) 

and a decrease in the intrinsic bias, both of  which are desirable as well. Thus, the choice 

of  Ci and c2 may depend on our goal in a particular situation. 

For application purposes, we can first  select an appropriate value for  c\ (the larger 

tuning constant for  the two "major" quadrants, i.e., the quadrants that contain the 

majority of  the standardized data). Then, for  the two "minor" quadrants, we can use 

c2 = hc\, where h is the ratio of  the number of  observations in the minor quadrants to 

the number of  observations in the major quadrants. Note that, as |p| increases from  0 to 

1, the asymptotic value of  h decreases from  1 to 0. 

5.5 Intrinsic bias in adjusted-Winsorized estimate 

Let Z  = (X,  Y)  have a continuous distribution H,  and rw(H)  be the adjusted-Winsorized 

correlation functional.  Let the central model H 0 be given by H 0 = N(0,£),  where 

£ = £(p) is given by (5.47), and p = p(H 0) is the true correlation coefficient  of  X  and Y. 

The intrinsic bias of  rw occurs at the central model HQ because of  the data trans-

formation.  Since the adjusted-Winsorized data have a slightly different  correlation coef-



ficient  than that of  the original data, rw(H 0) ^ p(H 0). Therefore,  the intrinsic bias of 

rw, denoted by IB(r w), is given by 

IB(r w) = rw{H 0)-p(H 0). . (5.52) 

To compare rw(H 0) and p{H 0) empirically, we generated random samples of  size 

n — 100000 from  a bivariate normal distribution with mean 0 and covariance matrix 

£ = E(p). We considered several values of  p from  —1 to 1. To calculate rw = rw(Ho)  we 

used Huber score function  with different  values of  C\  with c2 = hc\, where h is defined  in 

the last section. 

I 

Figure 5.2 displays the plots of  rw against p for  C\ = 0.01, 1, 2 and 3. Based on 

these plots we can make the following  comments: 

• The intrinsic bias of  rw decreases as Ci increases. 

• rw is a non-decreasing function  of  p. 

• Consider 0 < p < 1. The magnitude of  intrinsic bias increases from  zero to reach 

its maximum at p = 0.5, and then decreases to zero. Similar behavior is observed 

for  - 1 < p < 0. 

• For — 1 < p < 0 the intrinsic bias is negative, while for  0 < p < 1 the intrinsic 

bias is positive. This is the exact opposite of  the results obtained for  univariate-

Winsorized estimate (see Alqallaf  2003, Figure 4.5, page 97), for  which the bias is 

positive when — 1 < p < 0, and negative when 0 < p < 1. 

To compare the behavior of  rw (with C\ ~ 0, c2 — 0) with the univariate-Winsorized 

correlation estimate r — r(H 0) (with c ~ 0), we plotted r with c = 0.01 against p in 
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Figure 5.2: Intrinsic bias in adjusted-Winsorized estimates with c2 = hc\. The bias in 

rw decreases as C\  increases. 
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P 

Figure 5.3: Intrinsic bias in univariate-Winsorized estimate (c=0.01). 

Figure 5.3 (which is a reproduction of  the top left  plot of  Figure 4.5, Alqallaf  2003). 

This plot is the exact opposite of  the top left  plot of  Figure 5.2 in terms of  the sign 

of  the intrinsic bias. The reason maybe as follows.  Though C\ = 0 =>• c2 = 0 for  the 

adjusted-Winsorized estimates, but c2 = hc\ approaches zero faster  than ci, making the 

limit of  rw different  from  the limit of  r as c tends to zero (the limit in the latter case 

being the quadrant correlation estimate). 

5.5.1 Achieving (approximate) Fisher-consistency for  rw 

Let H 0 = N(0,  £(p)) and let rw(p,  ci, c2) be the asymptotic value of  rw (H 0) when we use 

tuning constants C\ and c2. A plot of  rw(p,  Ci, c2) against p is exhibited by Figure 5.2 for 

different  values of  C\  and c2 = hci. Recall that h is the ratio of  the number of  observations 



in the minor quadrants to the number of  observations in the major quadrants. To fix 

ideas and without loss of  generality, let us assume that p > 0. We notice that when c2 = C\ 

(univariate-Winsorized estimate, Alqallaf  2003) rw(p,c\,c\)  < p, while rw(p,ci,hci)  > p 

when c2 = hc\. Therefore,  to achieve Fisher-consistency for  a fixed  value of  p, we 

could use an appropriate value of  c2 between c2 = hci and c2 = c\. That is, we could 

use c2 = aci, where a G (h,  1) is such that rw(p,  c\, aci) = p. In practice, we could 

approximate a by numerical means. For a fixed  value of  Ci we could obtain a table 

relating p and a — gi (p).  Since h is a decreasing function  of  p we have that a = g(h). 

Tables relating a and h could be constructed by numerical means for  any desired value 

of  C\.  We will not elaborate this approach further,  since a simple approach that works 

remarkably well is presented below. 

To avoid the construction and use of  numerous tables, we can use a simple alternative 

that does not require any table. Since c2 = hc\ and c2 = c\ give biases of  similar 

(though not same) magnitudes with opposite signs, we can use c2 = Ci(h + l)/2, that is, 

a = (h  + l)/2. Figure 5.4 displays the plots of  rw against p for  Ci = 1 with c2 = hc\ and 

c2 = ci(h  + l)/2. Though the first  plot (c2 = hc\) is the same as the top right plot of 

Figure 5.2, it is presented again here to make its scale more comparable to that of  the. 

second plot. The degree of  Fisher-consistency achieved by using c2 = ci(h  +1)/2 is quite 

satisfactory. 

Note that c2 = Ci(h + l) /2 < ci. Therefore,  with this choice of  c2 the adjusted-

Winsorized estimate is still more resistant to bivariate outliers than the univariate-

Winsorized estimate. At the same time, the extra tuning constant c2 allows us to make 

our estimate approximately Fisher-consistent. 



c1 = 1, c2 = hc1 c1 = 1, c2 = c1 (h+1 )/2 

p p 

Figure 5.4: Approximate Fisher-consistency for  rw. By using c2 = Ci(h  + l)/2  we get less 

intrinsic bias than c2 = hc\. 

We mentioned in Chapter 3 that though we used c2 = hc\ in this study, a more 

reasonable choice would have been c2 = Vhci  (i.e., = hcf),  because the areas of 

the two squares should be proportional to the number of  observations they contain. 

Interestingly, (h  + l ) /2 (the shrinkage factor  that gives approximate Fisher-consistency) 

is the first-order  Taylor expansion of  \fh. 

5.6 Asymptotic normality of  adjusted-Winsorized es-

timate 

Since the indicator functions  involved in the adjusted-Winsorized correlation estimate 

are not differentiate,  proving the asymptotic normality of  this estimate is extremely 



difficult.  One approach we can consider is to replace the sample indicator functions  by 

the true ones, which we can do only if  the amount of  error due to the replacement is 

o(l/y/n).  See Chapter Appendix (Section 5.8.3) for  more details of  this idea, where we 

use this approach to establish the asymptotic normality of  the numerator of  (5.2), i.e., 

the asymptotic normality of  the adjusted-Winsorized "covariance" estimates. 

Unfortunately,  for  the denominator of  (5.2), the amount of  error due to replacing 

the sample indicator functions  by the true ones is 0 ( 1 / \ / n ) (see Chapter Appendix, 

Section 5.8.4), and cannot be ignored. Therefore,  the above approach cannot be used to 

establish the asymptotic normality of  the adjusted-Winsorized "correlation" estimates. 

As a remedy of  this, we can use differentiate  versions of  the indicator functions, 

denoted by 71 ( x Y ) a n d 72(0 = 1 — 7i(-)> respectively. For example, 71 can 

be the distribution function  of  a continous random variable with support (—e, e), for 

any small e > 0. Using the functions  71 and 72, we now define  the smoothed adjusted-
/ 

Winsorization of  the data, and the smoothed adjusted-Winsorized correlation estimates 

as follows. 

Definition  5.3. (Smoothed adjusted-Winsorization) 

The  smoothed  adjusted-Winsorization  of  (u,v)  €  R2, denoted  by \&f(u,  t>), is defined  as 

^s
c(u,v)  = (^ s

c(u)^ s
c(v)),  (5.53) 

where 

$c( u) = ^Cl(uhi(uv)  + ^2(^)72  (uv), 

ipc( v) = ipa(vhi(uv)  + i)C2(v)-y 2(uv), 

ip is a non-decreasing  symmetric  function,  and c\ and c2 are chosen constants. 



Definition  5.4. (Smoothed adjusted-Winsorized estimate of  correlation) Let 

(Xi,  Yi),  i = 1,2, • • • , n, be a random  sample from  a bivariate  distribution  with  loca-

tion parameters  fix  and and scale parameters  ox and  cry, respectively.  Let 0 = 

(fix,  IJ-Y,  &Y), and  6 = (fax,  fay,  by) be an estimate  of  0. Denote Ui  = (Xi  — 

fax)/bx>  and Vi  = (Yi  — fay)jby.  Then,  the smoothed  adjusted-Winsorized  correlation 

estimate,  fg,  is defined  as 

rs = i= 1 
i e € { m s

c m - i E ) UE 
i=1 i = l 

KTHM i=i i=l 
mmvi) 

2 = 1 

(5.54) 

The following  theorem states the asymptotic normality of  the smoothed adjusted-

Winsorized correlation estimates, provided that the ip- and x-functions  satisfy  the above 

conditions, and the location estimates are consistent. 

Theorem 5.3. (Asymptotic normality of  the smoothed adjusted-Winsorized 

estimate) Let (Xi,  Yi),  i = 1, 2, • • • , n, be a random  sample from  an elliptically  sym-

metric  bivariate  distribution  with  location  parameters  p,x and /j,y,  and scale parameters 

ax and ay, respectively.  Let fax  and fay  be consistent  estimates  of  p,x and [ly,  and ax 

and by are S-estimates  of  ax and ay with  score functions  satisfying  conditions  B1 - B4-

Then,  ~ 

\fc(r S-rs) ~^N(Q,AV), 
71—>00 

where f w is defined  in (5.54)  ip-functions  satisfying  conditions  Al - A4, 

E 
rs = 

IE IE S(Y-hy 
c \ ay 



and the variance AV  of  the limiting  distribution  is given by 

AV  = v ; e v 9 , 

where £ = {an},  with  an — Cov (Qi,  OA; i — 1,2, 3; j = 1, 2, 3; 
( 3 x 3 ) 

Q l = M ^ A ^ I ^ A - ^ - X ^ - ^ 

Q2 

q 3 € 

ox  
X-fix 

Ox 
Y-fiy 

ay 

ay D X Ox 

K w (Y  - fly 
X D Y ay 

#17 f  X  - fi X\  #18 (Y  - fly 
D; -x ox D, -x aY 

K W  (Y  - fly 
X D Y 

1 
ay 
u 

#20 / X  - fix 
Dx

X\  Ox 

U 
W g \y/VW'  2VVVW'  2wvvwj ' 

with 

U  = E 

V  = E 

W  = E 

s i X  - fix 
Wc Ox 

Ipc 
Y-fly 

ay 

Ox 
S ~ MX 

ay 
,2 I  Y  - My 
c 

and the constants  used  in the above expressions are specified  below: 

, (X-  fi X\  f  X  — fix 
Dx — E 

Dy = E 

X Ox /  \ Ox 

, fY  - fiy\  (Y  - fly 
X ay ay 

(5.55) 

(5.56) 

ox 
E < 

2 
+ — ox 

x — fix  \ (X  — fi X\  , (  Y  fly  \ 2 fx  ~ fi XY  - fly 
V>ci I J 7l 

E 
ox / V ox 

X-fix 
Oy Ox Oy 

C i 
OX 

. Y  - fly  \ FX  - fix  Y  - fiy 
V>ci I — : — ) 71 

Oy Ox Oy 

7i , f  X  - fix  Y  - fiy\  f  X  - fl XY  - fiy 
Ox 

128 

aY Ox Oy 
(5.57) 



K 2 is obtained  by interchanging  X  and Y  in (5.57),  K 3 is obtained  by replacing  c\ by c2, 

and 71  by 72  in (5.57),  K±  is obtained  by interchanging  X  and Y,  and replacing  C\  by c2, 

and 71  by 72  in (5.57), 

K 5 = — E 
ox € C1 

x - Hx\  (X  - Hx\  , (Y  - hy 
Wc2 Ox /  \ ox 

'  x - \ i x y  - hy 7i Ox OY 
72 

oY 
X  - (1 X  Y  - jJLy 

Ox oy 

H  E 
ox 

Ox 

1 ^ W , ( • 7 ; ( x - Y - " " Ox 
X  - ij, xY  - hy 

c\ 

ox oY  
X  - nx 

ox 

oy  J  \ ox 

X  — Hx  Y  — fly 
oy 

C2 

72 . 
Ox 

Y~  fly 
Oy 

7i 

oy 
X  — PxY  — fly 

Ox oy 
X  - nxY  - fjL Y\  f  X  - nxY  - ny 

72 I — ' — I I — —) , (5.58) 
Ox ^ OY J \ Ox Oy J J 

is obtained  by interchanging  X  and Y,  and c\ and c2 in (5.58),  K-j  is obtained  by 

interchanging  C\  and c2 in (5.58),  K&  is obtained  by interchanging  X  and Y  in (5.58), 

K 9 •= K\  + + + K 7, 

K w = K 2 + K a + K 6 + K 8, 

(5.59) 

(5.60) 

K 11 -E 
ox c 1 

X-llx 
Ox 

Ox 

€ c 1 

X  - Hx  \ f  X  - fjLx 
7i 

X  - fl X  Y  - [ly 
Ox J  \ Ox J  \ Ox 

X  - Hx\  f  X  - Hx  Y  -/ly^ 
7i 

oy 

7i 

Ox J  \ Ox 
X  - fjL XY  - fJ,y 

Ox OY 

oY 
X  - tlx  Y  - JJLy 

Ox oY 

, (5.61) 

K 12 -E 
oy 

X Vx 
Ox 

7i 
X - n x Y - j iY 

ox oY 
X  - /j, xY  - /ly 

ox oY 

X  - nxY  - ny 
Ox Oy 

, (5.62) 



#13 and #14 are obtained  by replacing  c\ by and 71  by 72  in (5.61)  and (5.62)  (re-

spectively), 

K 15 ox 
€ X  - nx\ fX  - fjL X 

c 1 

7i 

Ox 

7i 

H  E 
ox 

2 „ 
+ — E 

ox 

Ox / V ox 
X  - fi xY  - fly 

Ox Oy 
*» 

V ^ 
X  - fi xY  - fiy 

Ox Oy 
X-IM X\ 

C2 

72 

X-fix 
Ox 

X  - fix  Y  - fly 

ox 
MX € 

oy 
X 

C2 
Mx 

72 

/  \ ox 
X  - HxY  - fly 

Ox 

C1 c 2 Ox J 
X  - fix  Y  - fly 

X  — fix 
Vi 

Oy 
X  - fix  Y  - fly 

TP, ci 

a ^ C7y 

X-flx 

Ox J  \ Ox 
X  - fl XY  - fly 

Oy 

OX 
C2 

72 

72 . 
Ox 

X-fix 
Ox 

- MX  Y 

7i 

Mr 
a y 

Oy 
X  - fix  Y  - fly 

Ox Oy 
X  - fix  Y  - fly 

Ox oy 
, (5.63) 

# 1 6 = -E 
oY 

C1 
X-fix 

C2 
X-fix 

Ox J  \ Ox 
X  - fix  Y  - fly 

7i 
X  - fix  Y  - fly 

Oy 

Ox 
'X  -

Oy 
MX 

C1 ox 

72 

Ox Oy 
X  - fj XY  - fly 

ox 
Mx^ C2 

72 

, 7i ff*  / 
X  - fl X  Y  - fly 

OX Oy 

Oy 
X  - fl X  Y  - fly 

Ox Oy 
X  - fl X  Y  - fiy 

Ox Oy 
, (5.64) 

#17 = #11 +#13 + #15, 

#18 = #12 + #14 + #16, 

(5.65) 

(5.66) 

and,  finally,  #i9 and #2o are obtained  by interchanging  X  and Y  in (5.65)  and (5.66), 

respectively. 



Sketch of  the Proof. 

The numerator of  (5.54) can be written as 

Tl  /  -rr  ~ ' -I n /  ST 
Yi  - fiy n s = 1 - j : M ^ k -1- E ( 1 E * 

V J V OY ) n f ^  V ° x J n f r l 
c • ay 

(5.67) 

We can express the first  term of  (5.67) as 

ip^yi^) 
Xi-  fi x\ f  Xi  - fi x Yi  - fi Y\  , , (Xi-  fx x\ (Xi  - jj,xYi-  fi Y 

7 i — = ~ + — r 72 
Ox J  \ Ox OY J \ OX J \ OX OY 

x { ^  7i ( +  ^ (  Yl^Y) l 2 ( X i ~ ft*  * -
OY  / \ Ox OY  J  \ OY  J  \ ox oy 

1 v^ /  (  Xi  ~ MX  \ , (  Yi  - fly  \ 2 ( Xi  - MX  Yi  - fly 
n •<—' \ Ox J  \ oY  ) \ Ox oY 

n \ ox ) \ OY ) \ OX OY 

+ Y - Ax V ( Yi  - fl Y  \ [ Xj-flxYj-  fl y^j ^ fXj  - fix  Yj  - fly  ' 
\ Ox J  \ Oy J  \ Ox Oy ) \ Ox Oy 

- fly  \ (  Xi  - fl X  Yi  - fly\  (  Xi~  fl XYi~  fly* 
7 i : : 72 f 

Oy J  \ Ox Oy J  \ Ox Oy J 

(5.68) 

Let us consider the first  term of  (5.68). Using Taylor expansion about {/J>x,ox, My,oy), 

we can write 

- f > ,  ( f e ^ ^ Y ' : 
n \ Ox ) \ Oy ) \ Ox Oy J 



n \ °x ) \ oY  ) \ ox oY  J 

- - 4 - X X ( ^ v ^ f e  ( ^ k f ^ L ^ ) { 6 x _ 
n a x ^ \ ox J  ox . \ oY  J  \ ox oY  J 

fe,  ( 7 1 ( • x ' : : A y ) 
\ ox J  \ oY  J  \ ox oY  J 

t (Xi  — /ix  Yi  — p,Y  \ Xi  — fix  Yi  — fiy  , - s 
X 7i = = = : V  °x oY  ) ox oY 

- £ > , ( ^ ^ V« C ^ ) ^ ^ f  (Sy -
nCrY  j^f  \ 0X  J 1 \ Oy J  Cry  \ 0X  Oy J 

- 4 - X > , ( V ( x < : ^ Y ' : 
nay ^ \ Ox J  \ Oy J  \ Ox Oy J 

, f  Xi  — fi x Yi  — fi Y\  Xi  — fix  Yi  — fiy  .n \ 
X 7l I = = ~ = (oy-oy), 

\ Ox Oy J  Ox oy 
since the coefficients  of  (fix  — px) and (fiy  — fiy)  converge to zero in probability. Thus, 

- X>. ( ^ ^ W ^ W * : Y ' : i i Y ) 
n \ Ox ) \ Oy ) \ Ox Oy J 

\ Ox J  \ Oy J  \ Ox o y ) 

-K 1(O x-ox)-K 2(OY-O y), (5.69) 

where K x and K 2 are as defined  in the statement of  the theorem. Similarly, the next 

three terms of  (5.68) can be expressed as 

1 X > ( j ^ W m ^ f r W * : ** y ' : ^) 
\ Ox ), \ Oy ) \ Ox Oy J 

= - t ( ^ ^ W ( • ( • * " >* Yi - " r ) 
•n~i \ Ox J  \ Oy J  \ Ox Oy J 

- K 3(o X  - Ox) - K 4(oy  - Oy), (5.70) 



n \ OX J  \ OY . J  \ 0X  OY ) \ Ox OY J 

- l y ^ (^IM^  / Fj  - / Xj  - fix  Yj  ~ My\  (Xi  - fjixYi-  fi Y 
n j C l I n^r ) °2 I / T i / / ^ X / T i r / T x r  / ^ f  \ ox J \ oY  /  \ OX Oy J \ OX OY 2=1 s ' 

- K5(o x - Ox) - K6(cr Y  - oY),  (5.71) 

and 

l y ^ J j  ( x i ~  M x\ .,. / ~ M y  \ ( Xj~  fi x Yj  - fi Y  \ / - Ax Yi  ~ M y  \ 
n ^ V / C 1 v / 7 1 V oY  ) 7 2 V ^ <5y / 

^ l y ^ / - M.v A ^ - My ̂  / X j - /ix - My \ ~ Mx  Yj  - fi Y  A 
n C2 \ crj J 01 \ oY  /  A cry /  \ ox oY  J 

-K7{O X-OX)-K8(OY-OY),  (5.72) 

respectively, where K 3, K 5, K 7 and K 8 are as defined  in the statement of  the 

theorem. Using (5.69), (5.70), (5.71) and (5.72) in (5.68), we have 

i=i x 

Xi-  fj,x\  , ( Yj  - fl y \ 2(Xi-  fix  Yi-  fly 
Wcx  I _ 17i 

Ox J \ oy ) \ Ox Oy 

+ - E f e  ( ^ ^ W ^ ^ ) t i f * ~ " " y 
n ~ t \ °X  J  \ Oy J  \ Ox oy 

+1
 Y ^ (Xi ~ » x J ^ A n  ( Xi V ( Xi" »xYi

 ~ 

\ Ox J  \ Oy J  \ Ox Oy J  \ Ox Oy 
1 1 Yip  f X i~ M y\ Xi  ~ MX  Yj  ~ fl y \ ^ fXj  — fix  Yj  — fly n \ ox J  \ oY  /  \ ox oy J  \ ox oY 

- K 9(o X  - Ox) - K l0(oy  - Oy), (5.73) 

where K 9 = K x + K 3 + K s + K 7 and K w = K 2 + K 4 + K 6 + K s. 



Now, it is straightforward  to show that the second term of  (5.67) is o{l/y/n).  There-

fore,  using (5.73) in (5.67), we have 

= ( I ^ Z )  tf  - K 9(O X  - ax) - K w(a Y  - aY).  (5.74) 
\ OX J \ ° Y J 

Note that the first  4 terms of  the right-hand-side of  (5.73) are combined to get a single 

term in (5.74). 

Since a x and by are S-scales, we have (see Alqallaf  2003, page 156) 

° x ~ o x = w* 1 — — : (5.75) 

t=i x ' x ' 

and 

ay - a y ^ ; 1 — - . (5.76) 

w ) V ) 
Using (5.75) and (5.76) in (5.74), we have 

i=l N 

Xi  — Hx  \ ,s(Yi~  ^Y 
1>\ 

Ox J C v AY 
n / / -it- ' \ \ ts i n 

- £ H ^ T " ) - b ) - w » £ 

where Dx and Dy are defined  in the statement of  the theorem (equations 5.55 and 5.56). 

The first  term of  the denominator of  (5.54) can be written as 

We can express the first  term of  (5.78) as 

i s I  Xi  — fax 
i=i v ^ 



\ /  \ ox oY 
(Xi  — fx x\ (Xi  - fix  Yi  ~ ^ 2 

+ — : 72 — ; — 
V Ox J  \ Ox Oy 

1 , 2 (  Xi  — fix  \ 2 (  Xi  — fix  Yi  — Ay 1 V^ 12 V>X \ 2 
= — T — h i n 7 7 V Ox J  \ Ox Oy 1=1 v ' N 

1 V^ ,2 (Xi  - fix\ 2 {  Xi  - fixYi-  fiy\ 
+ 

n 
i=l , 2 V^  , (Xi-  fix\  , (Xi-  fix\  (Xi-  fixYi-  fiy + A — I ) 7i n ^ \ Ox J  \ Ox /  \ Ox Oy 

^( X i:fixY-fi y\ 
\ Ox O y ) 

As in the case of  the numerator, by using Taylor expansion about (fix,  ox, HY,oy), the 

three terms on the right-hand-side of  (5.79) can be expressed as 

E 2 (  Xi  — fix\  2 (  Xi  — fixYi  — fiy\ 
n i=i 

i=1 N 

Xi  — fix  \ 2 / Xi  — fixYi  — fly !7I 
Ox J  \ Ox Oy 

K n(bx  ~ ox) -K l2(a Y  - av), (5.80) 

i=1 V 

' Xi  — flx\ 2 (  Xi  — fix  Yi  — fly 
72 — : 

Ox J  \ Ox oy 
- K n(a x - ax) ~ K u(a Y  - aY),  (5.81) 

- ( ( X i : i l x \ n (Xi:flxY i:fl YYJXi ~ ~ ̂  n ' \ Ox J  \ Ox J  \ Ox Oy J  \ ax . Oy 

= - Y ^ ^ ( 7 l (  X,-^Y-fly\ 72 / X^flxY-fly^ 
N ^ V OX J V Ox J \ Ox Oy J \ ax Oy J 

-K l5(ax-o x)-K 16(by-ay),  (5.82) 



where Kn, K\ 2 , #13, #14, #15 and K w are as defined  in the statement of  the theorem. 

Using (5.80), (5.81) and (5.82) in (5.79), we have 

Xi  - fix 
Ox 

Xi  - fix 
Ox 

K17(OX  ~ Ox) - K18{O y - O y ) , ' (5.83) 

where Kn = Kn + #13 + #15 and K w = K12 + #14 + KI 6. Now, it can be shown that 

the second term of  (5.78) is o(l/y/n).  Therefore,  using (5.83) in (5.78), and using (5.75) 

and (5.76), we have 

'Xi  - nx' 2 K„1 n 

Dxnj -T, 
n i=1 ox 

n 

-b 

Yi  ~ My 

X 

Dy n ' V  V  °y 

Similarly, for  the second term of  the denominator of  (5.54) we have 

2 

(5.84) 

f Xj  ~ jjLX 

Dx n \ \ <7* 
(5.85) 

Using (5.77), (5.84) and (5.85), and ignoring the terms which are o(l/^/n),  we can 

state that 

n 

L V 

( E 

\ 

E 

E 

Y-tXy 
cry 
2 )] \ 

(5.86) 

where E is as defined  in the statement of  the theorem. Finally, we can use the 5-method 

(Billingsley 1986) on (5.86) to complete the proof.  • 



5.7 Conclusion 

The main contribution of  this chapter is that we established some asymptotic properties 

of  the adjusted-Winsorized correlation estimate (the new robust correlation estimate 

proposed in this thesis). Our estimate is consistent and has bounded influence.  We 

obtained its asymptotic variance and intrinsic bias. The tuning constants of  this estimate 

can be chosen such that we have approximate Fisher-consistency. An smoothed version of 

this estimate is asymptotically normal. The computing time of  this estimate is 0(n  log n), 

the same as that of  the univariate-Winsorized correlation estimate, but our estimate is 

more resistant to bivariate outliers. 

5.8 Chapter Appendix 

5.8.1 Proof  of  Lemma 5.2 

We need to show that, for  any e > 0, there exists 5m > 0 and 5S > 0 such that, for  all 

ueR, 

\m1-m2\<5m, |si-s2|<tf a => \f{u,rni,s- L)-f{u,m 2,s2)\<e. 

Following Salibian-Barrera (2000), we will first  show that there exists a closed and 

bounded interval U  such that, for  any m 1 , m 2 £ Ai, Sx,s2 £ S, 

It is given that m < m < in and s < s < s. Consider u > fh  + sc. For any m < m and 

s < s we have (u — m)/s  > c. Now, consider u < m — sc. For any m > m and s > s we 



have (u  — m)/s  < —c. Thus, for  U  = [m — sc, m + sc], (5.87) holds. 

For u E U,  ip is uniformly  continuous. Therefore,  we only need to show that 

U — MI U — 777.2 

Si S 2 

. . |s2 — Slj |m 2 5 i ' - 777iS2| = \u\ 1 

u 

< Ku-

S\S2 SiS2 
|s2 - Si I , I , - Si I |m2 - mil 1- \m2\ h s2 

SiS2 SiS2 SiS2 
| s 2 - S i | _ | s 2 - S i | \m2 — mi\ + m- + 

where K u = s u p { | u | : u G U).  Thus, 

sufficiently  small. 

mi u—m,2 
s 2 

< 5 if  \m2 — mi| and |s2 — Si| are 

5.8.2 Influence  function:  interchanging differentiation  and in-

tegration 

The first  term of  the right-hand-side of  (5.27) can be expressed as 

a t Jm x{t)  Jm Y(t) sx(t) sy(t) t=0 
d ' [ m x { t ) f mY{t )

 L fx-  mx(i)\  fy -mY(t) 

sy{t) /
mx{t)  r 

-co J - 00 

(5.88) 
t=0 

The first  part of  (5.88) can be written as 

dt r r 
Jm x(t)Jm Y(t)  V SX[t)  ) \ SY{t)  J 

t=0 

lim -
i—>0 t r r 

J  mx(t)  J  ray (t) 

sx{t) sY(t) 
oo roo 

/  tJj Cl(x)ip Cl{y)  f(x,y)dydx 
Jo 



lim -
t-X)  t ir r  k c-

.Jm x(t)  Jm Y{t)  (.  \ 

x - mx(t)\  (y-  mY(t) 
sx(t)  J  ^ V  sY(t) 

V'd  (x)^ Cl (y)  }f{x,y)  dydx 

I  rmx{t)  r oo 
t I  /  il>a{x)il>c 1(y)f{x,y)dydx 
1 Jo  Jo 
2 PCX)  rmY(t) 

/ / Vci (x)  if> Cl (y)  f{x,  y) dy  dx 
Jo  Jo 

•y pmx(t)  rrnY(t) 
/  /  ipCl {x)ip Cl [y)  f{x,y)dydx  (5.89) 

Jo  Jo 

— lim 

lim 
t-> o t 

lim • 
t->o t 

lim - k ( ' ^ M  ( Y ^ I )  - ( x ) A i („) UO  JO t sx(t)  J  ™ V sY(t) 
I\x  - mx{t)  > 0) I(y-  mY{t)  > 0)f(x,y)  dydx , (5.90) 

since the last three terms of  (5.89) are zero. Now, assuming that ip(u),  ip'(u)  and 

ip'(u)u  are bounded for  all u e l (under Regularity Condition A4), we can show that 

(X~sx(*) t ]) \t=o i s bounded. Therefore,  using Lebesgue's Dominated 

Convergence Theorem (see, for  example, Bartle 1995, page 44), we have 

d_ 
dt f  f 

Jm x(t)Jm Y(t)  V W J / V SY[t)  J 
t=0 

U™ 7 (v'd f——77T^)  V'ci (-  ] _ -0C1 (a;) ^ (y) k dydx 
JO  JO  / V SY(t) 

f{x,y)  dy  dx. 
t=o 

(5.91) 

Similarly, 

d r^xit)  rmY(t) 
dt 

sx(t) 

SY(t) 

y - mY(t) 
sY(t) 

t=o 

f(x,y)  dy  dx. 
t=o 

(5.92) 



Combining (5.91) and (5.92), we have 

d_ 
dt Sx(t) 

mx{t))(Y-m Y(t))  > 0 
t=o 

= E H0 

X-m x{t)\ L (Y-m Y{t) 
sY{t) 

I(XY  > 0) 
i=0 

(5.93) 

We can now write (5.28) from  (5.27). 

In a similar way, we can show that 

d_ 
dt EH 0 < t ,2 \ X  ~ mx{t) 

Jci sx(t) 
I^(X-m x(t))(Y-m Y(t))>  0 

- F \ d (,1.2  ( X~ mx(t) 
- Eh° dt  {  sx(t) 

t=0 
I(XY  > 0) 

t=0 
, (5.94) 

which gives (5.38). 

5.8.3 Asymptotic normality of  the adjusted-Winsorized "co-

variance" estimate 

The numerator of  (5.2) can be written as 

* = I ± , c tak) * ( ) _ I ± (X^M)  I £  , c . 
n ^ V <?x J  \ J  V J  n ^ \ aY  J 

(5.95)' 

Now, we can express the first  term of  (5.95) as 

+ W ^ 1 ' ) «(<*)• (5.%) 
i=1 ^ 

Ox J  \ °Y 



where £ ( C i ) = l((X {  - fi X)(Y>  - fiy)  > 0), and £(c2) = l((Xi  - fi x)(Yi  -fiy)  < 0). 

Denote /*( C l ) = l((Xi  - fi x)(Yi  - fiy)  > 0), and I  fa)  = l((Xi  - fi x)(Yi  - fiy)  < 0). 

Let us focus  on the cases when /;(ci) and Ii(c\) take different  values. Assuming (without 

loss of  generality) that fi x < fi x, we can argue that ij(ci) Ii(ci) when 

fi x < Xi  < fi x. 

(Or, fiy  <Yi<  py.) Now, fi x — fi x is 0(l/y/n)',  which means Ii(c\)  — Ii(c\)  is 0(l/y/n). 

Also, for  the Xi s above, xjjCl ( ) is 0(1/y/n)  since ip is linear in the neighborhood of 

zero, while ipCl ( Y ' 7^ y ) is bounded. Therefore, 

(Uci)-I z( Cl))=0(l/n).  (5.97) 

Similarly, 

Using (5.97) and (5.98) in (5.96), we have 

1 V^  /  / Xj-  ft X\  ( Yj~  fl y\ 

+ - £ , v J ^ ^ W ^ W 2 ) ' (5.99) 
n jrf  \ °X  J  \ Oy J 

where "=" means "asymptotically equivalent".. 



Let us now focus  on the second term of  (5.95). We can write 

1 /  f  Xi  — fix 
n < 

i=1 OX 

n ' \ Ox J  n 
i=i \ A / i = 1 

)/i(ci) + - y v 
/ n

 , ' i=i n 1' 
i=i 

Xj-  fi x\ 
ox 

Xj  - Ax 
Ox 

Ii(c 2) + 0(l/Vn)  . (5.100) 

Using Taylor expansion about (/z^, o^) in (5.100), and expressing all the terms that 

involve Ax — /^x or bx — ox as O (1/y/n), we have 

1 , f  X{  — fix 
n < n i=i 

Since E 

- ^Wo + W ) + 0 • (5-101) 
n ~ t \ J n \ Ox J 
Vd /(ci)] = o, we have I | > C l = 0 ( V ^ - Similarly, 

J E V>Cl f  ^i(ci) = o (1/x/n). Using these results in (5.101), we have n
 i = 1 V / 

(5.102) i / v s ) . 
i=l N 

Similarly, 

Therefore,  we have 
n E * . 

i=i 

~ AY 
<Ty = O (1 /v^) • (5.103) 

n ' n V J n 

i=i x ' i=x 
Using (5.99) and (5.104) in (5.95), we have 

Yj  - fiy 
oy 

o(  l/Vn).  (5.104) 

i n ( 
1 = 1 x 

Xi  — fix  \ I  (Yi  — fiy 
V > C 2 

Ox Oy 
Ii{c 2). (5.105) 



Now, using Taylor expansion about (fix,ox),  we have 

( = - ( ^ M  | fc  - , x ) 
Ox \ Ox Ox \ Ox 

(5.106) 
Ox \ Ox \ Ox 

for  fi x < fi x < Mx and ox < ox < oX-

Similarly, 

Oy J  \ Oy J  Oy V Oy 

(5.107) 
oy

 1 V Oy J  \ Oy 

for  fiy  < fiy  < fx Y  and dy  < Oy < Oy. Using (5.106) and (5.107) in the first  part of  the 

right-hand-side of  (5.105), we have 

i=i 
Ox Oy 
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where the other terms are ignored since they are o(l/y/n).  Using Lemma 5.1, we have 
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(5.109) 



and 
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Y  - hy\ (X  - fj, x\ (X  - nx 
o Y ci Ox Ox 
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where 1(a)  = l((X  - fi x)(Y  - fiy)  > 0). Therefore, 

n 
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i = l v 

oY 

X l ^ X ( — — ) /i(ci) ~ AC1 (<Ty - CTy) - BC1 {o X  ~ Ox). Ox oY 

(5.111) 

Since bx and b Y are S-scales, using (5.75) and (5.76) in (5.111), we have 
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where 

and 

Similarly, 
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(5.116) 

(5.117) 

and Dx and Dy are as above. Using (5.112) and (5.115) in (5.105), we have 
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where Ac = + AC2, and Bc — Bc, + DCo. 

b), (5.118) 
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Using (5.118, we can state that 

\fn N -M^M^)}] + AT(0 ,Q), 
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5.8.4 Difficulty  with the denominator of  (5.2) 

Let us focus  on the first  term in the denominator of  (5.2). It can be expressed as 

n ' 
1 V^  , 2 f  Xi  — fix 

i=i Ox n 
i=i 

Xi  - fix 

Ox 
(5.119) 



As in the case of  the numerator, we can write 

(5.120) 

Unfortunately,  this time we cannot replace /;(.) by /j(.). The reason is as follows.  When 

h{c  1) "7~ Ji(ci), we have either (i) jl x < Xi  < /.i x, or (ii) fiy  < Yi < Hy-  In the first 

case, as in the case of  the numerator (see Section 5.8.3), we can show that the amount 

of  error due to replacing /;(.) by /j(.) is 0(l/n).  However, in the second case, though 

jJiy  — fiy  is 

0(1/Vn), the term V. ( X ijf L) (which is also 0(1/^/n)  for  the l^'s above) is 

not there to make the product 0 ( l /n ) . Therefore,  the amount of  error in replacing the 

sample indicator functions  by the true ones is 0(1/ \ /n) , and cannot be ignored. 



Chapter 6 

Conclusion 

In this study, we considered the problem of  selecting linear prediction models for  large 

high-dimensional datasets that possibly contain a fraction  of  contaminations. Our goal 

was to achieve robustness and scalability at the same time. We considered one-step and 

two-step model building procedures, the latter consisting of  sequencing and segmentation 

steps. We will now summarize the main ideas proposed in this thesis, and the main results 

obtained. 

One-step model building 

We proposed robust versions of  step-by-step algorithms FS and SW. We expressed these 

classical algorithms in terms of  sample means, variances and correlations, and replaced 

these sample quantities by their robust counterparts to obtain the robust algorithms. We 

used robust correlations derived from  a simplified  version of  bivariate M-estimates of  the 



scatter matrix. We proposed robust partial F-tests for  stopping during the implementa-

tion of  robust FS and SW procedures. 

Our robust methods have much better performance  compared to the standard FS 

and SW algorithms. Also, they are computationally very suitable, and scalable to large 

dimensions. 

Two-step model building 

Robust sequencing 

We considered time-efficient  algorithm LARS to sequence (some of)  the d  covariates to 

form  a list such that the good predictors are likely to appear in the beginning. Since LARS' 

is not resistant to outliers, we proposed two different  approaches to robustify  LARS. In the 

plug-in approach, we replaced the classical correlations in LARS by easily computable 

robust correlation estimates. In the data-cleaning approach, we first  transformed  the 

dataset by shrinking the outliers towards the bulk of  the data (which we call multivariate-

Winsorization), and then applied standard LARS on the transformed  data. The data-

cleaning approach is more time-consuming than the plug-in approach when only some of 

the predictors are being sequenced. 

For both approaches (plug-in and data-cleaning), we used robust correlations derived 

from  a simplified  version of  the bivariate M-estimates of  the scatter matrix. We also 

proposed correlation estimates using bivariate-Winsorization of  the data. We showed 

that the latter is faster  to compute with important time differences  when the number of 



candidate predictors becomes large. 

We recommend combining robust LARS with bootstrap to obtain more stable and 

reliable results. The reduced sets obtained by bootstrapped robust LARS contain more 

of  the important covariates than the reduced sets obtained by initial robust LARS. 

To obtain a reduced set of  m covariates for  further  investigation, we introduced a 

learning curve that plots robust R2 values versus dimension. An appropriate value of  m 

is the dimension corresponding to the point where the curve starts to level off. 

Robust segmentation 

We perfromed  all possible subsets regression on the reduced set of  covariates obtained 

in the first  step. Since classical selection criteria FPE, AIG, Cp , CV and bootstrap are 

sensitive to outliers, we needed robust selection criteria for  this purpose. We identified 

certain limitations of  Robust AIC (Ronchetti 1985) and robust CV (Ronchetti, Field and 

Blanchard 1997) methods. We proposed computationally suitable robust CV and robust 

bootstrap procedures in this thesis. We evaluated our methods using simulated and real 

datasets, and compared them with the classical methods as well as robust FPE proposed 

by Yohai (1997). Our robust CV and robust bootstrap methods have better performance 

compared to the classical methods and robust FPE. 



Adjusted-Winsorized correlation estimate 

For the development of  robust LARS, we proposed this new correlation estimate for 

bivariate data. The proposed estimate is consistent and has bounded influence.  We 

obtained its asymptotic variance and intrinsic bias. The tuning constants of  this estimate 

can be chosen such that we have approximate Fisher-consistency.' An smoothed version 

of  this estimate is asymptotically normal. The computing time of  this estimate is the 

same (approximately) as that of  the univariate-Winsorized correlation estimate, but our 

estimate is more resistant to bivariate outliers. 



Bibliography 

Akaike, H. (1969). Fitting autoregressive models for  prediction. Annals of  the Institute 

of  Statistical  Mathematics,  21: 243-247. 

Akaike, H. (1970). Statistical predictor identification.  Annals of  the Institute  of  Statistical 

Mathematics,  22: 203-217. 

Akaike, H. (1973). Information  theory and an extension of  the maximum likelihood prin-

ciple. Second  International  Symposium on Information  Theory,  Academiai  Kiado, 

Budapest,  pages 267-281. 

Allen, D. M. (1974). The relationship between variable selection and data augmentation 

and a method for  prediction. Technometrics,  16: 125-127. 

Alqallaf,  F. A. (2003). A new contamination  model  for  robust estimation  with  large  high-

dimensional  datasets.  PhD thesis, Department of  Mathematics (Institute of  Applied 

Mathematics), University of  British Columbia. 

Alqallaf,  F. A., Konis, K. P., Martin, R. D., and Zamar, R. H. (2002). Scalable robust 

covariance and correlation estimates for  data mining. Proceedings  of  the Seventh 

ACM  SIGKDD  International  Conference  on Knowledge  Discovery and Data Mining, 

Edmonton,  Alberta,  pages 14-23. 



Bartle, R. G. (1995). The  Elements  of  Integration  and Lebesgue Measure.  John Wiley & 

Sons. 

Bhansali, R. J. and Downham, D. Y. (1977). Some properties of  the order of  an autore-

gressive model selected by a generalization of  Akaike's FPE criterion. Biometrika, 

67: 546-551. 

Billingsley, P. (1986). Probability  and Measure.  John Wiley & Sons, 2nd edition. 

Croux, C., Van Aelst, S., and Dehon, C. (2003). Bounded influence  regression using high 

breakdown scatter matrices. Ann. Inst.  Statist.  Math.,  55(2): 265-285. 

« 

Efron,  B. (1983). Estimating the error rate of  a prediction rule: improvement on cross-

validation. Journal  of  the American Statistical  Association,  78: 316-331. 

Efron,  B. E., Hastie, T., Johnstone, I., and Tibshirani, R. (2004). Least Angle Regression. 

The  Annals of  Statistics,  32(2): 407-499. 

Frank, I. and Friedman, J. H. (1993). A statistical view of  some chemometrics regression 

tools. Technometrics,  35: 109-148. 

Geisser, S. (1975): The predictive sample reuse method with applications. Journal  of  the 

American Statistical  Association,  70: 320-328. 

Hampel, F. R., Ronchetti, E. M., Rousseeuw, P. J., and Stahel, W. A. (1986). Robust 

Statistics.  John Wiley & Sons. 

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The  Elements  of  Statistical  Learning. 

Springer-Verlag, New York. 

Hoerl, A. E. and Kennard, R. W. (1970). Ridge regression: biased estimation for 

nonorthogonal problems. Technometrics,  12: 55-67. 



Huber, P. J. (1981). Robust Statistics.  Wiley, New York. 

Hubert, M. and Engelen, S. (2004). Fast cross-validation of  high-breakdown resampling 

methods for  PCA. unpublished manuscript. 

Knight, W. R. (1966). A computer method calculating Kendall's tau with ungrouped 

data. Journal  of  the American Statistical  Association,  61: 436-439. 

Kullback, S. and Leibler, R. A. (1951). On information  and sufficiency.  Annals of 

Mathematical  Statistics,  22: 79-86. 

Lachenbruch, P. and Mickey, M. (1968). Estimation of  error rates in discriminant analysis. 

Technometrics,  10: 1-11. 

Mallows, C. L. (1973). Some comments on C p. Technometrics,  15: 661-675. 

Mallows, C. L. (1995). More comments on C v. Technometrics,  37: 362-372. 

Maronna, R. A. (1976). Robust M-estimators of  multivariate location and scatter. The 

Annals of  Statistics,  4: 51-67. 

Mendenhall, W. and Sincich, T. (2003). A Second  Course  in Statistics:  Regression 

Analysis.  Pearson Education, Inc., New Jersey, 6th edition. 

Morgenthaler, S., Welsch, R. E., and Zenide, A. (2003). Algorithms for  robust model se-

lection in linear regression. Theory  and Applications  of  Recent Robust Methods,  eds. 

M. Hubert, G. Pison, A. Struyf,  and S. Van Aelst, Basel (Switzerland): Birkhauser-

Verlag. 

Ronchetti, E. (1985). Robust model selection in regression. Statistics  and Probability 

Letters,  3: 21-23. 



Ronchetti, E., Field, C., and Blanchard, W. (1997). Robust linear model selection by 
/ 

cross-validation. Journal  of  the American Statistical  Association,  92: 1017-1023. 

Ronchetti, E. and Staudte, R. G. (1994). A robust version of  Mallow's C p. Journal  of 

the American Statistical  Association,  89: 550-559. 

Rousseeuw, P. J. (1984). Least Median of  Squares Regression. Journal  of  the American 

Statistical  Association,  79: 871-880. 

Rousseeuw, P. J. and Leroy, A. M. (1987). Robust Regression and Outlier  Detection. 

Wiley-Interscience, New York. 

Rousseeuw, P. J. and VanDriessen, K. (1999). A fast  algorithm for  the minimum covari-

ance determinant estimator. Technometrics,  41: 212-223. 

Rousseeuw, P. J. and Yohai, V. J. (1984). Robust regression by means of  S-estimators. 

Robust and Nonlinear  Time  Series  Analysis  (J. Franke, W. Hardle, and R. D. Martin, 

eds.),  Lecture Notes in Statistics 26, Springer Verlag, New York: 256-272. 

Salibian-Barrera, M. (2000). Contributions  to the theory of  robust inference.  PhD thesis, 

Department of  Statistics, University of  British Columbia. 

Salibian-Barrera, M. and Zamar, R. H. (2002). Bootstrapping robust estimates of  regres-

sion. The  Annals of  Statistics,  30: 556-582. 

Serfling,  R. J. (1980). Approximation  Theorems  of  Mathematical  Statistics.  Wiley, New 

York. 

Shao, J. (1996). Bootstrap Model Selection. Journal  of  the American Statistical  Associ-

ation,  91: 655-665. 



Sommer, S. and Huggins, R. M. (1996). Variable selection using the Wald Test and 

Robust C p. Journal  of  the Royal Statistical  Society,  Ser. B, 45: 15-29. 

Stone, M. (1974). Cross-validation choice and assessment of  statistical predictions. Jour-

nal of  the Royal Statistical  Society,  Ser. B, 36: 111-147. 

Stone, M. (1977). An asymptotic equivalence of  choice of  model by cross-validation and 

Akaike's criterion. Journal  of  the Royal Statistical  Society,  Ser. B, 39: 44-47. 

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal  of  the 

Royal Statistical  Society,  Ser. B, 58: 267-288. 

Weisberg, S. (1985). Applied  Linear Regression.  Wiley-Interscience, New York, 2nd 

edition. 

Yohai, V. J. (1987). High breakdown point and high efficiency  robust estimates for 

regression. The  Annals of  Statistics,  15: 642-656. 

Yohai, V. J. (1997). A new robust model selection criterion for  linear models: RFPE. 

unpublished manuscript. 


