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Abstract 
Brain computer interface (BCI) systems aim at helping individuals with motor disabilities by 

providing them the ability to control devices such as wheelchairs and computers, using their 

brain activity only. 

The majority of B C I research to-date has focused on developing technology for 

"synchronous" BCIs . These systems allow the user to affect control during specified time 

periods only. Self-paced (asynchronous) BCIs on the other hand, are designed to respond 

whenever the user intends to control the system, otherwise they remain in the so called 

"inactive output state". 

This dissertation pursues two main objectives: 1) improving the performance of the existing 

2-state self-paced B C I system developed at the Ne i l Squire Society, Vancouver, Canada 

(initial evaluations of this system on eight subjects showed mean true positive (TP) rates of 

51.3% and 27.5% at false positive (FP) rates of 2% and 1%, respectively.) and 2) designing 

the first 3-state self-paced B C I . 

A t first, a comprehensive survey of signal processing algorithms in B C I systems is 

conducted. This survey is the first comprehensive review that covers more than 300 B C I 

published papers and introduces a taxonomy for signal processing in B C I systems. 

, To achieve the first objective, four separate studies related to the feature extraction and 

feature classification blocks of the 2-state self-paced B C I are conducted. These studies 

increase the mean TP rate of the existing system to 73.5% and 47.3% at the FP rates of 2% 

and 1%, respectively. In these studies, the users were not allowed to control the B C I in 15-

34% of the time due to the presence of eye blinks. Thus, another study is also conducted to 

evaluate the system when the users were allowed to control the output even during eye 

blinks. Results show slight decrease in TP rates (mean TP rates of 68.0% and 40.6% at the 

FP rates of 2% and 1%, respectively) with the advantage of providing full control of the 

system. 

To achieve the second objective, two new set of movements (right and left hand extension 

movements) which have not been previously used in the context of B C I systems are used to 

control the new 3-state self-paced B C I . Results on four able-bodied subjects show significant 

improvements in detecting the presence of a movement when the system is used in the 

context of a 2-state self-paced B C I . The mean TP rate is 73.4% at the FP rate of 1%. Initial 

evaluations of the proposed 3-state self-paced B C I show promise with mean right and left 

true positive rates of 42.2% and 51.9% at a false positive rate of 1%. 
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Chapter 1 Introduction 

Many different disorders and injuries can disrupt the neuromuscular channels through which 

the brain communicates and controls the body. These disorders can impair the neural 

pathways that control muscles or impair the muscles themselves. Those who are severely 

affected may lose all voluntary muscle control, including eye movement and respiration, and 

may be completely 'locked i n ' to their brain. 

In the absence of methods for repairing the damage done by these disorders, various assistive 

devices have been developed to liberate these individuals, but the effectiveness of devices in 

assisting severe disabilities is often limited. A n option for restoring the function to those with 

motor impairment is to provide the brain with a new, non-muscular communication and 

control channel; a direct brain computer interface (BCI 1 ) for conveying messages and 

commands to the external world. The ultimate purpose of direct brain computer interface 

(BCI) research is to allow an individual with severe motor disabilities to have effective 

control over devices such as computers, speech synthesizers, assistive appliances, and neural 

prostheses. Such an interface would thus increase an individual's independence, leading to an 

improved quality of life and reduced social costs. 

Over the past two decades, a variety o f studies have evaluated the possibility that brain 

signals recorded from the scalp or from within the brain could provide new augmentative 

technology that does not require muscle control. Using various signal processing algorithms, 

brain computer interface (BCI) systems detect the presence of specific patterns in a person's 

ongoing brain activity that relates to the person's intention to initiate control. The B C I system 

translates these patterns into meaningful control commands. These control signals are then 

used as input to intelligent devices to assist these individuals. Fig. 1.1 shows a simple block 

diagram of a B C I system, in which the B C I transducer translates the person's brain activity 

into useful control signals that w i l l drive the assistive device. 

Studies show that non-muscular communication and control are possible (for example see 

(Mason et al 2007, Vaughan et al 2003, Wolpaw et al 2002)) and might serve useful 

purposes for those who cannot use conventional technologies. To people who are ' locked-in' 

1 Brain computer interfaces may be referred to as brain machine interfaces (BMI), brain interfaces (BI), or 
direct brain interfaces (DBI) in some studies. 
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(e.g. by end-stage amyotrophic lateral sclerosis ( A L S ) , brainstem stroke, or severe 

polyneuropathy) or lack any useful muscle control (e.g. due to severe cerebral palsy), a B C I 

system could give the ability to answer simple questions quickly, control the environment, 

perform slow word-processing, or even operate a neuro-prosthesis. A t the same time, the 

performance of this new technology, measured in communication speed and accuracy is 

modest. Communication speed refers to the speed at which a person can send commands to 

the system or answer yes/no questions. Thus, they have limited practical value and are only 

for those with most severe disabilities. A s a result, the ultimate value of this new technology 

w i l l depend largely on the degree to which its accuracy and communication rate can be 

increased and the extent to which B C I systems can be applied to the communication and 

control needs of many people with motor disabilities of different origins and varying 

severity. 

1.1. Functional Model of a BCI system 
Fig. 1.2 shows detailed functional model of a B C I system (Mason and Birch 2003, Mason et 

al 2003, Mason et al 2007). The figure depicts a generic B C I system in which a person 

controls a device in an operating environment (e.g., a powered wheelchair in a house) 

through a series of functional components. In this context, the user's brain activity is used to 

generate the control signals that operate the B C I system. The user monitors the state of the 

device to determine the result of his/her control efforts. In some systems, the user may also 

be presented with a control display, which displays the control signals generated by the B C I 

system from his/her brain activity. 

The electrodes placed on the head of the user record the brain signal from the scalp (or the 

surface of the brain, or the neural activity within the brain) and convert this brain activity to 

electrical signals. The 'artifact processor' block shown in Fig. 1.2, removes the artefacts from 

Figure 1.1. Simple block diagram of a BCI system. 
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the electrical signal after it has been amplified. Note that many transducer designs do not 

include artifact processing. The 'feature generator' block transforms the resultant signals into 

feature values that correspond to the underlying neurological mechanism (neuromechanism2) 

employed by the user for control. For example, i f the user is to control the power of his/her 

M u (8-12Hz) and Beta (18-25Hz) rhythms, the feature generator would continually generate 

features relating to the power-spectral estimates of the user's M u and Beta rhythms. The 

feature generator generally can be a concatenation of three components, the 'signal-

enhancement', the 'feature extraction', and the 'feature selection' components, as shown in 

Fig. 1.2. 

In some B C I designs, pre-processing (signal enhancement) is performed on the brain signal 

prior to the extraction of features so as to increase the signal-to-noise ratio of the signal. A 

feature selection component is sometimes added to the B C I system after the feature 

extraction stage. The aim of feature selection is to reduce the number of features and/or 

channels used so that very high dimensional and noisy data are excluded. Ideally, the features 

that are meaningful or useful in the classification stage are identified and chosen, while 

others (including outliers and artefacts) are omitted. 

The 'feature translator' translates the features into logical (device-independent) control 

signals, such as a two-state discrete output. The translation algorithm uses linear 

classification methods (e.g., classical statistical analyses) or nonlinear ones (e.g., neural 

networks). According to the definition in (Mason and Birch 2003), the resultant logical 

output states are independent of any semantic knowledge about the device or how it is 

controlled. A s shown in Fig . 1.2, a feature translator may consist of two components: 'feature 

classification' and 'post-processing'. The main aim of the feature classification component is 

to classify the features into logical control signals. Post-processing methods such as a moving 

average block may be used after feature classification to reduce the number of error 

activations of the system. 

The control interface translates the logical control signals from the feature translator into 

semantic control signals that are appropriate for the particular type of device used. Finally, 

the device controller translates the semantic control signals into physical control signals that 

2 According to the Merriam-Webster Medical dictionary, a bodily regulatory mechanism based in the 
structure and functioning of the nervous system is called a neuromechanism. 
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are used by the device. The device controller also controls the overall behavior of the device. 

For more detail refer to (Mason and Birch 2003). Table 1.1 provides a simplified description 

of the B C I transducer components. 

electrodes 

Signal Feature Feature 
Enhancement Extraction Selection 

Feature Post
Classification processing 

Figure 1.2 Functional model of a BCI system depicting the principle functional components, where 
amp = amplifier. Note the 'Control Display' is optional. 

T A B L E 1.1 DESCRIPTION OF THE BCI T R A N S D U C E R COMPONENTS 

Item Terms Definition 

BCI Artifact Processor 

Transducer Feature Generator Signal Enhancement 

Feature Extraction 

Feature Selection 

Removes artifact from the input signal 

(1) Enhance signal-to-noise ratio of brain 

signals 

(2) The output of this block is a signal with 

the same nature as the input (i.e. the output 

like the input is in the temporal domain). 

Generates the feature vectors 

Selects a subset of features 

Feature Translator Feature Classification Classifies the features into logical control 

signals 

Post-Processing Increases the performance after feature 

classification e.g., by blocking the 

activations with low certainty 
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1.2. Background 3 

Present-day BCIs use a variety of electrophysiological mechanisms such as visual evoked 

potentials (VEP) , slow cortical potentials (SCP), P300 evoked potentials, M u and Beta 

rhythms associated with movement execution or imagination, movement related potentials 

(MRP) , cortical neuronal action potentials, and BCIs that are based on the response to mental 

tasks. In B C I systems, electrophysiological sources refer to the neurological mechanisms or 

processes employed by a B C I user to generate control signals. 

In the 1970s, Vida l developed a B C I system based on V E P recorded from the scalp over the 

visual cortex to determine the direction of gaze, and thus to determine the direction in which 

the user wished to move a cursor (Vidal 1977). Sutter (Sutter 1992) described a similar B C I 

system called the brain response interface (BRI). This system uses the V E P s produced by 

brief visual stimuli and recorded from the scalp over the visual cortex. The user faces a video 

screen displaying 64 symbols (e.g. letters) in an 8*8 grid and looks at the symbol he or she 

wants to select. Subgroups of these 64 symbols undergo an equiluminant red/green 

alterations 40-70 times/s. each symbol is included in several subgroups, and the entire set of 

subgroups is presented several times. Each subgroup's V E P amplitude about 100 ms after the 

stimulus is computed and compared to a V E P template already established for the user. From 

these comparisons the system determines with high accuracy the symbol that the user is 

looking at (Sutter 1984, Sutter 1992). Middendorf et al. reported another method for using 

V E P s to determine gaze direction. Several virtual buttons appear on a screen and flash at 

different rates. The user looks at a button and the system determines the frequency of the 

response over the visual cortex. When this frequency matches that of a button, the system 

concludes that the user wants to select it (Middendorf et al 2000). 

Among the lowest frequency features of the scalp-recorded E E G are the slow voltage 

changes generated in the cortex. These potential shifts occur over 0.5-10.0 seconds and are 

called slow cortical potentials (SCP). Negative SCPs are typically associated with movement 

and other functions involving cortical activation, while positive SCPs are usually associated 

with reduced cortical activation (Rockstroh et al 1984). Birbaumer and his colleagues have 

3 A comprehensive survey of brain computer interface designs has been included in Chapter 2 of this 
dissertation, therefore, this part only provides a high-level literature review of the field. 
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shown that people can learn to control their SCPs (using SCP-based biofeedback) and 

thereby control the movement of an object on a computer screen (Birbaumer et al 1999, 

Birbaumer et al 2000). This is done with the help of visual, auditory or tactile feedbacks 

(Birbaumer et al 2000). This demonstration is the basis for a B C I referred to as 'thought 

translation device' (TTD). They used a language support program (Perelmouter and 

Birbaumer 2000) that enables the user to choose a letter or a letter combination by a series o f 

two-choice selections. This system has been tested extensively on people with late-stage A L S 

and has proved to be able to supply basic communication capability (Birbaumer et al 2000). 

Whi le the idea of the language support program has proved useful, an additional predictive 

algorithm that uses the first two letters of a word to select the most l ikely word from a 

lexicon that encompasses the user's vocabulary can markedly increase the communication 

speed. 

Infrequent or particularly significant auditory, visual, or somatosensory stimuli, when 

interspersed with frequent or routine stimuli, typically evoke in the E E G over parietal cortex 

a positive peak at about 300 ms (after the presentation of the stimuli) named the P300 evoked 

potential (Donchin and Smith 1970). Donchin and his colleagues have used this 'P300' , or 

'oddball ' response to build a brain computer interface (Donchin et al 2000, Farwell and 

Donchin 1988). In this system, the user faces a 6*6 matrix of letters, numbers, and/or other 

symbols or commands. Every 125 ms, a single row or column flashes; and, in a complete trial 

of 12 flashes, each row or column flashes twice. The user makes a selection by counting how 

many times the row or column containing the desired choice flashes. P300 is prominent only 

in the responses elicited by the desired choice, and the B C I uses this effect to determine the 

user's intent. In people with visual impairments, auditory or tactile stimuli might be used 

(Glover et al 1986, Roder et al 1996). In two recent studies Sellers et al. and Piccione et al. 

have shown that a P300-based brain computer interface could function as an alternative 

method of communication for paralyzed patients including spinal cord injured and A L S 

patients (Piccione et al 2006, Sellers and Donchin 2006). In related work, Bayliss and Ballard 

(Bayliss and Ballard 2000) recorded P300s in a virtual environment. Offline analyses 

suggested that single-trial P300 amplitudes could be used for environmental control. 

Unlike a SCP-based brain computer interface, a P300-based B C I has an apparent advantage 

in that it requires no initial user training: P300 is a typical, or naive, response to a desired 
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choice. A P300 used in a brain computer interface is also likely to change over time. Studies 

to date have only reported short-term evaluations of the P300-based B C I systems. Thus, 

appropriate adaptation by the translation algorithm is likely to be important for this B C I in 

long-term application, as it is for other types of B C I systems. 

In awake people, primary sensory or motor cortical areas often display 8-12 H z ( M u rhythm) 

E E G activity when they are not engaged in processing sensory input or producing motor 

output (Niedermeyer and Lopes da Silya 1998). Analyses also show that the Mu-rhythm 

activity comprises a variety of different 8-12 H z rhythms, distinguished from each other by 

location, frequency, and/or relationship to concurrent sensory input or motor output. These 

M u rhythms are usually associated with 18-25 H z Beta rhythms. While some Beta rhythms 

are harmonics of the M u rhythms, some are separable from them by topography and/or 

timing, and thus are independent E E G features (McFarland et al 2000, Pfurtscheller and 

Berghold 1989, Pfurtscheller and Lopes da Silva 1999). Several factors suggest that the M u 

and/or Beta rhythms could be good signal features for EEG-based communication. They are 

associated with those cortical areas most directly connected to the brain's normal motor 

output channels. Movement execution, preparation or even imagination (McFarland et al 

2000, Pfurtscheller et al 1997) is typically accompanied by a decrease in the M u and Beta 

rhythms, particularly contralateral to the movement. This decrease has been labeled 'event-

related desynchronization' or E R D (Pfurtscheller and Lopes da Silva 1999). Its opposite, 

rhythm increase, or 'event-related synchronization' (ERS) occurs after movement and with 

relaxation (Pfurtscheller and Lopes da Silva 1999). Since the mid-1980s, several Mu/Beta 

rhythm based brain computer interfaces have been developed. 

With the B C I system in (McFarland et al 1997, Wolpaw et al 1991, Wolpaw et al 2000), 

people with or without motor disabilities learn to control their M u or Beta rhythm amplitude 

and use that control to move a cursor in one or two dimensions to targets on a computer 

screen. They participate in 2-3 40-minute sessions per week, and most (i.e. about 80%) 

acquire significant control within 2-3 weeks. With this control, users can move the cursor to 

answer spoken yes/no questions with accuracies of about 95% (Miner et al 1998, Wolpaw et 

al 1998). Research with this system has focused on defining the topographical, spectral, and 

temporal features of the M u and Beta rhythm control, optimizing the mutually adaptive 

interactions between the user and the B C I system, and incorporating other E E G features into 
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this B C I (McFarland et al 1997, Ramoser et al 1997, Schalk et al 2000). Recent studies of 

this research group on A L S patients show usefulness of this brain computer interface for 

these patients (Kubler et al 2005). 

The Graz B C I group has also developed a brain computer interface system based on the E R D 

and E R S of the M u and Beta rhythms in the E E G over the sensorimotor cortex. Research to 

date has focused on distinguishing between the E E G associated with imagination of different 

simple motor actions, such as right or left hand or foot movement, and thereby enabling the 

user to control a cursor or an orthotic device that opens and closes a paralyzed hand (Neuper 

et al 1999, Pfurtscheller et al 1993, Pfurtscheller et al 2000). Over a period of 6-7 sessions 

and with two-choice trials (i.e. left hand vs. right hand imagery), users can reach accuracies 

over 90%. About 90% of people can use this system successfully. Current studies are seeking 

modifications that improve classification. Recently, this group has also started developing the 

so called self-paced brain computer interfaces (Scherer et al 2004, Townsend et al 2004). 

Unlike synchronized brain computer interfaces, self-paced brain computer interfaces enable 

users to control the system at any time they wish. Self-paced and synchronized brain 

computer interfaces wi l l be discussed later in this section. 

Penny et al. describe a B C I that also uses the E E G over sensorimotor cortex to control cursor 

movement (Penny et al 2000). They concentrate on detecting the E E G associated with 

imagery of actions like right or left hand movements, and/or tasks like simple calculations. 

Their translation algorithm uses Autoregressive parameters and a logistic regression model 

trained with a Bayesian evidence framework. They report user success in controlling one-

dimensional cursor movement (Roberts and Penny 2003). Babiloni et al. (Babiloni et al 

2000) are developing a Laplacian E E G analysis and a signal-space projection algorithm to 

detect imagined movements in the E E G over the sensorimotor cortex. Anderson et al. have 

also designed a multi-class brain computer interface that detects mental tasks such as solving 

a multiplication problem, imagining a 3D object, and mental counting using Autoregressive 

parameters of the E E G (Anderson et al 1998, Garrett et al 2003). 

Levine et al. (Levine et al 2000) recorded electrocorticogram (EcoG) activity from 17 

patients temporarily implanted with 16-126 subdural electrodes prior to epilepsy surgery. 

They found topographically focused potentials associated with specific movements and 
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vocalizations. Results of their analyses show that these potentials can provide the basis for a 

B C I with multiple control channels (Graimann et al 2004, Levine et al 2000). Two other 

studies have also reported the use of EcoG activity in a brain computer interface system for 

epileptic patients (Lai et al 2005, Leuthardt et al 2004). Wi th these patients, it was possible in 

just one session to differentiate without any training imagination of hand-, tongue-, and 

mouth movement. 

Several laboratories have used multielectrode arrays to record signals from single neurons in 

the motor cortex of monkeys or rats during learned movements (Chapin et al 1999, 

Donoghue 2002, Isaacs et al 2000, L i u et al 1999, Nicolelis 2001, Nicolelis 2003). These 

studies are aimed at reconstructing a movement from multielectrode recorded spike trains or 

synaptic field potentials. After extensive training and implementation of learning algorithms 

(for an exception, where animals learned rapidly, see (Serruya et al 2002)), monkeys move 

cursors on screens toward targets or move an artificial hand in four directions, clearly 

demonstrating the possibility of translating cellular activity into simple movements online. 

After extensive training, even complex movement patterns can be reconstructed from an 

astonishingly small number of cells located in the motor or parietal areas (Nicolelis 2001). 

Plasticity of cortical circuits allows learned control of movements directly from the cellular 

activity even outside the primary and secondary homuncular representations of the motor 

cortex (Schwartz et al 2001, Taylor et al 2002). The first multielectrode array was implanted 

in a quadriplegic patient's motor hand area in 2004 by Donoghue's group (Hochberg et al 

2006). Within a few training sessions, the patient learnt to use his neuronal activity to move a 

computer cursor in several directions. While training has been limited due to recurring illness 

and medication effects, the results have been encouraging and suggest that more rapid and 

accurate control are possible in the future. 

1.2.1. Self-Paced and Synchronized BCI Systems 

A s previously mentioned, many brain computer interface transducer designs have been 

proposed in the literature (for a review of the field, see (Mason et al 2007, Nicolelis 2003, 

Vaughan et al 2003, Wolpaw et al 2002). Few of them, however, have been designed 

specifically for self-paced control. The concept of self-paced control of brain computer 

interface systems was introduced in (Birch 1988, Mason and Birch 2000) and denoted as 
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"asynchronous control". In a self-paced brain computer interface the users affect the B C I 

transducer output whenever they want by intentionally changing their brain states (see Fig. 

1.3(a)). Between periods of intentional control (IC), users are said to be in a no-control (NC) 

state - they may be idle, daydreaming, thinking about a problem or lunch, or performing any 

other action other than trying to control the B C I transducer. These B C I transducers are thus 

designed to respond only when there is an intentional user control. The appropriate B C I 

response to no-control (NC) would be a neutral or inactive output. We refer to this ability as 

NC support. N C support is necessary for most types of machine or device interactions where 

frequent intentional controls (IC) are spaced by periods of inaction. N C support must handle 

the diversity of activity and thoughts that make up the N C state and must operate effectively 

during such periods that range from a few seconds to a few hours depending on the type of 

application. It is unlikely that one can model all possible NC states related to a target 

application. In general, this problem can be constrained by including some mechanisms to 

turn the interface off when it is not in use and turn it on when a control action is desired. 

While this mechanism is a useful mode for avoiding false responses during long periods of 

N C states, it is not practical during periods of intended interaction which contain frequent 

short pauses containing other thoughts, composition, or response monitoring. Therefore, 

having a mechanism that turns off the system is not sufficient for NC support. The BCI system 

should still be able to handle NC state while the system in on. 

In comparison to the self-paced BCIs , in most brain computer interface system evaluations 

reported in the literature, the allowable time periods for intentional user control are restricted 

to periods defined by a computer (as shown in Fig. 1.3(b)). In other words, these systems 

operate only during specific periods determined by the system (not the user). Thus, these 

systems have not been tested for general intermittent or self-paced operating paradigms. 

Since the user's input is synchronized with the external computer, this type of control has 

been termed "synchronized control" (Mason and Birch 2000). In these experimental systems, 

the B C I technology is tested only during those periods with intentional user control and the 

response of the BCI transducer during the NC state is not tested. 

10 



1 1 1 1 I I I I > 
time 

Figure 1.3 (a) Self-paced brain computer interface operating paradigm, (b) synchronized brain 
computer interface paradigm 

The performance o f a self-paced brain computer interface system that differentiates between 

N C and IC classes is evaluated by 1) the percentage of correct activations during IC states 

(true positives, TPs) and 2) the percentage of false output activations during N C states (false 

positives, FPs). A state is identified as true positive i f the brain computer interface system is 

activated at least once in a time window around the actual intentional control state (Birch et 

al 1993, Graimann et al 2004, Scherer et al 2004, Townsend et al 2004, Yom-Tov and Inbar 

2003). A n y activation outside this window is considered a false positive. Ideally, one needs 

to design a system that has 100% true positive rate and 0% false positive rate. 

Although self-paced control is the most natural mode of interaction, it has received less 

attention. Only a few B C I systems (Birch et al 1993, Graimann et al 2004, Mason and Birch 

2000, Mi l l an et al 2004, Scherer et al 2004, Townsend et al 2004, Yom-Tov and Inbar 2003) 

have been specifically designed and tested for self-paced control. A s recognized by many 

researchers in brain computer interface field (e.g. Wolpaw et al 2002), self-paced B C I 

systems address a problem that is important for practical applications, i.e. detection of user 

commands without the timing cues provided by structured trials. 

The self-paced B C I systems introduced in (Birch et al 1993, Graimann et al 2004, Mason and 

Birch 2000, Townsend et al 2004, Yom-Tov and Inbar 2003) attempt to detect a specific 
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intentional control state, e.g. imagined right hand movement, from the ongoing brain signal. 

A s the output of these B C I systems can have two possible states, i.e. N C and IC states, these 

self-paced B C I systems are considered a 2-state self-paced BCIs . 

Among all the self-paced B C I systems introduced in the literature, only two have attempted 

to increase the number of output states (Mil lan et al 2004, Scherer et al 2004). 

The 3-state self-paced B C I implemented in (Scherer et al 2004) attempts to differentiate 

between right hand, left hand and foot movements in order to operate a virtual keyboard. 

Although this system is operated in a self-paced paradigm, its response during N C periods 

has not yet been studied and reported. Therefore, the ability of this system to support NC 

state is not known. In the experimental paradigm for which this system is tested, the user 

should continuously engage in operating the virtual keyboard without having the option to 

stay in a no-control state. 

In the study of (Mil lan et al 2004) the subjects were asked to perform one of the following 

three actions: (1) imagine right hand movement, (2) imagine left hand movement, and (3) 

relax. A 3-state self-paced B C I was designed to navigate a mobile robot in an 80cm*60cm 

house-like environment by differentiating amongst these three states. The system generates 

'unknown state output' when there is not enough confidence in choosing one of the three 

above mentioned mental tasks. The classifier of this system was not explicitly trained to 

recognize idle (NC) state (Mil lan et al 2004). According to the authors, it could process them 

adequately by responding 'unknown'. It was also reported that the task of steering the robot 

between rooms was so engaging that the two tested subjects preferred to emit continuously 

mental commands rather than to go through NC (idle) state. Therefore, the response of this 

system on N C (idle) state was evaluated on a dataset with limited amount of N C (idle) state. 

Moreover, having the choice of 'unknown state output' may represent some neutral output 

but it is not clear whether the unknown state output was caused by the actual idle (NC) state 

or by lack of confidence in detecting one of the three commands. Additionally, there is no 

evidence that the N C state w i l l fall into the unknown state in these designs. 

Although, the two 3-state self-paced B C I systems mentioned above (Mil lan et al 2004, 

Scherer et al 2004) can be used in some practical applications, ideally a self-paced B C I 

system should have three important capabilities as following: 
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(1) The system should be continuously available for control, 

(2) The system should not require the user to constantly engage in control, and 

(3) The system should support N C state as defined above. 

The 3 r d criterion actually implies the 2 n d criterion, however, to emphasize its importance we 

have considered them as two separate criteria. 

1.2.2. BCI Research at the Neil Squire Society (NSS) and the University of British 

Columbia (UBC) 

B C I research at the N S S and U B C began 15 years ago with the development of the Outlier 

Processing Method (OPM) (Birch 1988, Mason et al 1991). Results from this work on the 

O P M were promising as hit rates (true positive rates) of greater than 90% were achieved on a 

thumb movement task. However, its relatively poor performance on spontaneous, idle E E G 

(yielding false positive rates ranging from 10% to 30%) restricted its use as a self-paced B C I 

system. During the past years, the L o w Frequency-Asynchronous Switch Design ( L F - A S D ) 

was introduced as a brain computer interface for self-paced control applications (Mason and 

Birch, 2000). Figure 1.4 shows the high-level design of the L F - A S D . The original design of 

this brain computer interface (Mason and Birch 2000) was modified to reduce the processing 

delays (Lisogurski and Birch 1998) and improve the classification accuracies (Mason et al 

2000). The most recent version of this brain computer interface seeks to recognize the 

movement related potentials (MRPs) in the E E G signal. The inputs to the L F - A S D are six 

bipolar E E G signals recorded over the supplementary motor area ( S M A ) and sensory-motor 

cortex (defined with reference to the International 10-20 System at F1 -FC1 , F z - F C z , F2-FC2, 

F C 1 - C 1 , F C z - C z , and FC2-C2) sampled at 128Hz. The switch (i.e. the B C I system) 

produces a single output every 1716th o f a second; this output is equivalent to a 2-position 

switch. Internally, features are extracted from the amplified, bipolar E E G signals and then 

classified as a class ' 1 ' (IC state) or class ' 0 ' (NC state). The feature extraction algorithm 

low-pass filters the signal to below 4Hz and then calculates a 6-dimensional feature vector 

using a feature extraction scheme designed to recognize the temporal patterns in a single-trial 

bipolar E E G related to voluntary movement. The feature vector is classified as either an IC 

or an N C state class using a one-nearest neighbor (1-NN) classifier. Reference vectors for 
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both N C and IC classes in the feature classifier are selected from the training data using 

learning vector quantization ( L V Q ) algorithm (Kohonen 1990). 

EEG data Feature space 2-state output 

Figure 1.4 High-level design of LF-ASD brain computer interface. The 'Feature Classifier' 
continually monitors the 6-dimensional feature vectors and when a feature vector enters a pre-defined 
sub-space "IC", the output of the classifier is activated (IC state). Otherwise, the output state remains 

inactive (NC state). 

In the latest study, before the start of this project on both able-bodied and disabled subjects, 

the subjects activated the brain computer interface with an imagined finger flexion to control 

a simple pong style video game at their own pace. Users would themselves report the system 

classification errors with a pneumatic sip and puff switch whenever an error occurred. During 

the game, i f ocular artifact (OA) was detected (by using a customized threshold on the E O G 

signal), the input to the brain switch was ignored during the persistence of O A til l for 0.5 

seconds afterward. Evaluation results showed an average hit (true positive (TP)) rate of 

51.3% and false positive (FP) rate of 2% (Borisoff et al 2002). Among the proposed self-

paced B C I transducers whose offline performances have been reported in terms of true 

positives and false positives (Graimann et al 2004, Levine et al 2000, Townsend et al 2004, 

Yom-Tov and Inbar 2003), the L F - A S D has the advantage of being capable o f generating 

low false positive rates. A l l these offline studies have reported average false positive rates in 

the range of 6% to 28% while the average true positive rates were between 73% and 94% 

(Graimann et al 2004, Levine et al 2000, Townsend et al 2004, Yom-Tov and Inbar 2003). It 

is difficult, however, to directly compare the results of different studies, as the recording 

equipment, recording and classification protocols, decision rate and time intervals during 
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which false positives could occur and mental tasks considered are different. In addition, the 

amount of data involved and the degree of training the subjects received before participating 

in the B C I experiments also vary between studies. 

Although the evaluation of the L F - A S D had shown the potential capability of the system, the 

error rates of the system was still not suitable for real-world applications, therefore further 

improvements in the performance of the system was needed. On the other hand, the L F - A S D 

provided a 2-state (binary) output, i.e., N C and IC states. This output can be used as a single 

push button for example to select an object on the monitor or turn something on and off. 

Although this single function switch is very helpful for people with extreme disabilities, 

providing more options in controlling the output of the system is still desirable. 

1.3. Objectives and Contributions 
The goals of this thesis are to: 

(a) Improve the performance of the Ne i l Squire Society's existing 2-state self-paced brain 

computer interface (BCI) system (the L F - A S D ) , and 

(b) Design and investigate the feasibility of a 3-state self-paced B C I . 

To our best knowledge, this is the first 3-state self-paced B C I system 4 that best satisfies the 

criteria mentioned in Section 1.2.1, i.e., the system is continuously available for control, and 

the system is specifically designed to support the NC state. This system continuously 

differentiates the predefined intended control states (i.e. right and the left hand extensions) 

from the N C state. A s defined in Section 1.2.1, the N C state includes any brain activity other 

than the IC states. The two 3-state self-paced B C I systems introduced previously by Mi l l an et 

al and Scherer et al (Mil lan et al 2004, Scherer et al 2004) differ from our proposed system in 

that they only partially satisfy the three criteria mentioned in Section 1.2.1. 

A s stated earlier, although the evaluation of the L F - A S D had shown the potential capability 

of the system, the error rates were still not suitable for real-world applications. For a real-

world application, one needs to have a system with a very low false positive rate. A false 

4 A 4-state self-paced BCI has been introduced very recently (Scherer et al Aug 2007) just before the deadline 
for submitting this thesis to the library. This system generates mean true positive rate of 28.4% at the false 
positive rate of 16.9%. Results of the system introduced in this dissertation are compared with other BCI 
systems in Chapter 10. 
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positive rate of 2%, in the existing 2-state self-paced B C I , corresponded to two false 

activations every six seconds, which is not suitable for most practical applications. Therefore 

further improvements in the performance of the system were needed. Another reason for 

carrying out research towards improving the existing 2-state self-paced B C I was to build 

more knowledge to be able to design a 3-state self-paced B C I . In fact, the latest design of the 

2-state system which we developed during the course of this project was directly used in the 

design of the 3-state self-paced B C I system. 

Figure 1.5 shows samples of the outputs of 2-state and 3-state self-paced BCIs . A 2-state self-

paced brain computer interface generates an output which corresponds to two different brain 

states. In the L F - A S D design, when the user intends control by imagining a finger flexion, 

the output switches from the N C state to the IC state. In fact, the user activates the output by 

imagining a finger flexion. On the other hand, a 3-state self-paced B C I would have a 3-state 

output corresponding to three different brain states. Generally, in such a system, the output of 

the B C I is in an inactive state, i.e. the N C state. The corresponding intended control states 

IC1 and IC2, w i l l be activated when specific predefined brain states such as a right finger 

flexion and a left finger flexion is detected from the recorded brain signals. 

While a 2-state self-paced B C I system that is based on movement related potentials can be 

used to determine whether or not a movement, e.g. right index finger flexion, is intended, a 3-

state B C I aims at not only detecting the person's intention to move but also distinguishes 

between two movements, e.g. right/left finger movements. A s a result, the 3-state B C I 

provides faster communication abilities and more flexibility in operating one or more 

devices. A s a very simple example, for a wheelchair control application, while a 2-state B C I 

can provide the command for e.g. turning right, a 3-state B C I would provide both turn right 

and turn left options. In a more complicated control paradigm, 2-state and 3-state self-paced 

BCIs can for example be used to navigate through different menu items on a user display and 

select the desired tasks (refer to Section 10 for a more detailed application example of 2-state 

and 3-state self-paced BCIs). 
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N C N C N C 

3-state self-paced B C I 2-state self-paced B C I 

Figure 1.5 Sample outputs of the 2-state BCI (the LF-ASD) and proposed 3-state BCI 

The main contributions of this thesis, achieved through the course of pursuing the above 

goals are the following: 

1) A comprehensive survey of the brain computer interfaces conducted from the signal 

processing point of view, 

2) Introduction of the design of a 3-state self-paced B C I , 

3) Introduction of two new movements (neuromechanisms) to control a 3-state B C I , 

4) Improvement in the performance of the 3-state B C I using different feature extraction and 

classification algorithms. 

5) Introduction of alternative adaptive classification schemes for the existing 2-state B C I , 

6) Introduction of training-data generation methods for self-paced brain computer interfaces, 

7) Improvement in the design of the feature extraction block of the 2-state B C I by 

customizing the parameter values of this block for each user, 

8) Introduction of a feature extraction algorithm that improves the 2-state B C I , 

9) Evaluation of the performance of the 2-state B C I system on ocular artifact contaminated 

E E G data, 

Although the contributions listed as 5 to 9 are directly attributed to improving the 2-state B C I 

system, the findings of these studies were directly incorporated in the design of the 3-state 

B C I system. 
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1.4. Thesis Scope and Organization 
This dissertation focuses on improving the existing 2-state self-paced brain computer 

interface and an introducing the design of a 3-state self-paced brain computer interface. Both 

systems intend to detect movement(s) intentions from the E E G signal. 

A t first, a comprehensive survey of more than 300 refereed papers in the B C I field was 

carried out. The focus was on signal processing aspects of the different brain computer 

interfaces. The aims of this study were to perform a historical analysis of signal processing in 

this field, to identify the trends in signal processing of BCIs and the methods that have been 

used for different BCIs and to introduce a possible taxonomy of signal processing in B C I 

designs. Chapter 2 of this dissertation presents this comprehensive survey. 

To improve the performance of the 2-state B C I , several studies focusing on improving the 

different building blocks of the current B C I system (as shown in Fig . 1.2) were conducted as 

follows: 

To improve the performance of the existing 2-state B C I design, methods for the classification 

stage and for the dimensionality reduction of the feature space were implemented. Chapter 3 

presents the details and findings of this study (Borisoff et al 2004). 

Generating training-data for brain computer interfaces that aim at detecting intended tasks 

such as imagined finger flexions is challenging. In these systems, no external knowledge of 

the time of the actual performed task is known. Therefore, designing a B C I system without 

knowing the exact time that the user has performed the intended task is difficult. Chapter 4 

presents and compares several methods of generating training-data for self-paced BCIs 

(Bashashati et al 2007a). These methods are specifically based on probability density 

estimation and clustering algorithms. 

A s the E E G characteristics during intended movements may vary from one subject to 

another, design parameters of a brain computer interface need to be customized for each 

subject. For the L F - A S D design, without such tuning, the system may detect non-MRP 

patterns in the ongoing E E G or its performance may not be optimal. Therefore, a method that 

customizes the parameter values of the feature extraction block of the current B C I system for 

each subject is proposed in Chapter 5 (Bashashati et al 2006a). The aim of this study is to 
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improve the performance of the B C I design and more importantly to ensure that the output is 

activated by movement attempts and not by other unwanted brain activity. Previously, these 

parameter values were determined based on the data of one subject and were then used for all 

subjects in the study. 

In another study, we focused on the feature extraction of the current B C I . A novel pattern 

recognition approach that models the trajectory of feature vectors to detect intentional control 

commands (attempted finger movements) was proposed and implemented. This novel 

approach resulted in significant improvements in the 2-state B C I system (Bashashati et al 

2006b). The details of this study are presented in Chapter 6 o f this dissertation. 

In the original design o f the L F - A S D , the output of the system was blocked during the 

presence of ocular artifacts and the user could not control the output during these times. 

Analysis of the E E G data recorded in our B C I experiments show that an average of 22% of 

the data had contained ocular artifacts and the users were not able to control the output 

during these times. Therefore, a B C I system that does not block out ocular artifacts is 

desirable. What led us to believe that such a design is possible were the successful results 

obtained in Chapter 6 where the proposed design uses all past values of the features to 

determine whether or not a movement is performed. Therefore, in Chapter 7 the performance 

of the proposed system on ocular artifact contaminated data is evaluated (Bashashati et al 

2007b). In addition, an evaluation method that can truly reflect and compare the performance 

of the B C I system with and without including ocular artifacts is introduced and discussed. 

Several studies were also conducted to design a 3-state self-paced B C I : 

A s previously mentioned, there are several neurological mechanisms that can be used to 

build a B C I system. Movement related potentials (MRP) were used as the mechanism to 

activate the output of the existing 2-state B C I (the L F - A S D ) . In this specific design, 

attempted right index finger flexions were used. Evaluation results of the L F - A S D showed 

the potential ability o f M R P s to activate the B C I . To operate a 3-state self-paced B C I system, 

two different neurological command sources for activating the output of the system are 

needed. We decided to use neuromechanisms related to movements as the source of 

controlling the new 3-state B C I . This is because of our previous experience in detecting 

movement patterns, the many scientific studies on movement related potentials, and the ease 
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of mapping and using this command source in real world applications. The first and the most 

important question was 'What are the optimal two movements that can be used to build a 

B C I ? ' . Based on the results of a survey conducted, the right hand and left hand extensions 

were likely to generate more differentiable patterns compared to other movements such as 

finger movements. A study involving human subjects was conducted to collect E E G data 

while the subjects were performing these two movements. A design of a 3-state B C I system 

which contains two major blocks is implemented. The first block (DET1) determines whether 

a movement is present or not. Once a movement is detected, the second block in the system 

(DET2) determines whether it is a right hand or a left hand extension. Two designs including 

the latest design of the L F - A S D were implemented and tested for DET1 which detects 

presence of movements. For D E T 2 , a design that is based on selecting the most informative 

frequency components of the E E G and a linear classifier was implemented and tested. 

Chapter 8 of this dissertation presents the details of this study (Bashashati et al 2007c). 

Chapter 9 explores possible improvements of the 3-state B C I system by employing different 

designs of DET1 and the use of other feature extraction methods. These designs utilize the 

history of the feature values and nonlinear classifiers to improve the performance of the 3-

state self-paced B C I . Due to the modular design of the 3-state B C I , these algorithms are also 

directly useable in the designs of 2-state self-paced BCIs which detect the presence of an IC 

state in the ongoing E E G . 

The thesis is concluded in Chapter 10 where a summary of the main contributions of this 

thesis is presented. Potential research topics that can immediately follow this research and an 

application example of 2-state and 3-state self-paced BCIs are also presented in this chapter. 

Appendix A includes a copy of the approval from the University of British Columbia's 

behavioural research ethics board ( B R E B ) to conduct this study. Appendix B presents 

expanded tables of Chapter 2 of this thesis and Appendix C includes details of the methods 

that have been used in different parts of this thesis. 

Figure 1.6 provides a summary of the organization of this dissertation. 
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Chapter 2 A Survey of Signal Processing Algorithms in Brain-

Computer Interfaces Based on Electrical Brain Signals5 

2.1. Introduction 
The ultimate purpose of a direct brain computer interface (BCI) is to allow an individual with 

severe motor disabilities to have effective control over devices such as computers, speech 

synthesizers, assistive appliances, and neural prostheses. Such an interface would increase an 

individual's independence, leading to an improved quality of life and reduced social costs. 

A B C I system detects the presence of specific patterns in a person's ongoing brain activity 

that relates to the person's intention to initiate control. The B C I system translates these 

patterns into meaningful control commands. To detect these patterns, various signal 

processing algorithms are employed. Signal processing forms an important part of a B C I 

design, since it is needed in extracting the meaningful information from the brain signal. 

This paper summarizes the results of a comprehensive survey o f different signal processing 

schemes that have been used in B C I systems. It specifically focuses on the following signal 

processing components of a B C I : the pre-processing stage (which we refer to as the signal-

enhancement stage), the feature extraction stage and the feature translation stage. To address 

all related B C I research, we include all the approaches that use standard scalp-recorded E E G 

as well as those that use epidural, subdural, or intracortical recordings. The aims of this study 

are (a) to make it easy to identify the signal processing methods employed in different B C I 

systems, and consequently to identify the methods that have not yet been explored, (b) to 

form a historical reference for new researchers in this field, and (c) to introduce a possible 

taxonomy of signal processing methods in brain computer interfaces. 

The organization of the paper is as follows: in Section 2.2, the general structure of a B C I 

system and the current neuromechanisms6 in B C I systems are presented. Section 2.3 details 

5 A version of this chapter has been published: Bashashati A., Fatourechi M. , Ward R.K., and Birch G.E. 
(2007) A Survey of Signal Processing Algorithms in Brain Computer Interfaces Based on Electrical Brain 
Signals Journal of Neural engineering 4(2), R35-57. 

This work has also been resulted in two other publications as follows: 
Mason S.G., Bashashati A., Fatourechi M. , Navarro K.F., and Birch G.E. (2007) A Comprehensive Survey of 

Brain Interface Technology Designs Annals of Biomedical Engineering 35 137-69. 
Fatourechi M. , Bashashati A., Ward R.K., and Birch G.E. (2007) EMG and EOG Artifacts in Brain Interface 

Systems: A Survey Clinical Neurophysiology 118 480-94. 
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the procedure we followed to conduct this study. Results, discussions, and conclusions are in 

Sections 2.4-6, respectively. 

2.2. General Structure of a B C I System 
Fig. 2.1 shows the functional model of a B C I system (Mason and Birch 2003). The figure 

depicts a generic B C I system in which a person controls a device in an operating 

environment (e.g., a powered wheelchair in a house) through a series of functional 

components. In this context, the user's brain activity is used to generate the control signals 

that operate the B C I system. The user monitors the state of the device to determine the result 

of his/her control efforts. In some systems, the user may also be presented with a control 

display, which displays the control signals generated by the B C I system from his/her brain 

activity. 

The electrodes placed on the head of the user record the brain signal from the scalp, or the 

surface of the brain, or from the neural activity within the brain, and convert this brain 

activity to electrical signals. The 'artifact processor' block shown in Fig. 2.1, removes the 

artifacts from the electrical signal after it has been amplified. Note that many transducer 

designs do not include artifact processing. The 'feature generator' block transforms the 

resultant signals into feature values that correspond to the underlying neurological 

mechanism employed by the user for control. For example, i f the user is to control the power 

of his/her M u (8-12Hz) and Beta (18-25Hz) rhythms, the feature generator would continually 

generate features relating to the power-spectral estimates of the user's M u and Beta rhythms. 

The feature generator generally can be a concatenation of three components, the 'signal-

enhancement', the 'feature extraction', and the 'feature selection' components, as shown in 

Fig. 2.1. 

In some B C I designs, pre-processing is performed on the brain signal prior to the extraction 

of features so as to increase the signal-to-noise ratio of the signal. In this paper, we use the 

more general term 'signal- enhancement' to refer to the pre-processing stage. A feature 

selection component is sometimes added to the B C I system after the feature extraction stage. 

The aim of feature selection is to reduce the number of features and/or channels used so that 

6 According to the Merriam-Webster Medical dictionary, a bodily regulatory mechanism based in the 
structure and functioning of the nervous system is called a neuromechanism. 
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very high dimensional and noisy data are excluded. Ideally, the features that are meaningful 

or useful in the classification stage are identified and chosen, while others (including outliers 

and artifacts) are omitted. 

The 'feature translator' translates the features into logical (device-independent) control 

signals, such as a two-state discrete output. The translation algorithm uses linear 

classification methods (e.g., classical statistical analyses) or nonlinear ones (e.g., neural 

networks). According to the definition in (Mason and Birch 2003), the resultant logical 

output states are independent of any semantic knowledge about the device or how it is 

controlled. A s shown in Fig. 2.1, a feature translator may consist of two components: 'feature 

classification' and 'post-processing'. The main aim of the feature classification component is 

to classify the features into logical control signals. Post-processing methods such as a moving 

average block may be used after feature classification to reduce the number of error 

activations of the system. 

The control interface translates the logical control signals (from the feature translator) into 

semantic control signals that are appropriate for the particular type of device used. Finally, 

the device controller translates the semantic control signals into physical control signals that 

are used by the device. The device controller also controls the overall behavior of the device. 

For more detail refer to (Mason and Birch 2003). 

Table 2.1 provides a simplified description of the B C I transducer components. 

electrodes 

Sijiikil Feature Feature 
1 nluneemciii -* Extraction -* Selection 

Control 
Display 

Control Device -
Interface •* Controller 

Feature 
Classification 

Post
processing 

Figure 2.1 Functional model of a BCI system (Mason and Birch 2003). Note the control display is 
optional. This review focuses on the shaded components of BCI systems. 
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T A B L E 2.1 T A X O N O M Y FOR BCI T R A N S D U C E R DESIGNS 

Item Terms Definition 
BCI Artifact Processor 
Transducer Feature Signal 

Generator Enhancement 

Feature 
Extraction 
Feature Selection 

Feature Feature 
Translator Classification 

Post-Processing 

Removes artifact from the input signal 
(1) Enhances signal-to-noise ratio of the brain signal 
(2) The output of this block is a signal with the same 
nature of the input (i.e. the output like the input is in 
the temporal domain). 
Generates the feature vectors 

Selects a subset of features 
Classifies the features into logical control signals 

Increases the performance after feature classification 
e.g., by blocking activations with low certainty 

2.2.1. Electrophysiological Sources of Control in Current BCIs 

In B C I systems, electrophysiological sources refer to the neurological mechanisms or 

processes employed by a B C I user to generate control signals. Current BCIs fall into seven 

main categories, based on the neuromechanisms and recording technology they use. In 

(Wolpaw et al 2002) B C I systems are categorized as five major groups. These categories are 

sensorimotor activity, P300, V E P , SCP and activity of neural cell ( A N C ) . In this paper, two 

other categories were added: "Response to Mental Tasks" and "Multiple Neuromechanisms". 

B C I systems that use non-movement mental tasks to control a B C I (e.g. (Anderson et al 

1995b, Mi l l an et al 1998)) assume that different mental tasks (e.g. solving a multiplication 

problem, imagining a 3D object, or mental counting) lead to distinct, task specific E E G 

patterns and aim to detect the patterns associated with these mental tasks from the E E G . B C I 

systems based on multiple neuromechanisms (e.g. (Gysels et al 2005)) use a combination of 

two or more of the above-mentioned neuromechanisms in a single design of a B C I system. 

Table 2.2 shows these categories with a short description of each. Note that although the 

designs that use direct cortical recordings are included as a separate group, direct cortical 

recording is a recording technology and not a neuromechanism. A s shown in Table 2.2, B C I 

designs that use sensorimotor activity as the neural source of control can be further divided 

into three sub-categories: those based on changes in brain rhythms (e.g. the M u and Beta 

rhythms), those based on movement related potentials (MRP) , and those based on other 

sensorimotor activity. 
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T A B L E 2.2 ELECTROPHYSIOLOGICAL ACTIVITIES USED IN BCI DESIGNS A N D THEIR 

DEFINITIONS 

Neuromechanism Short Description 

Sensorimotor 
activity rhythms 

Beta, 
Gamma)7 

(Mu, 
and 

Changes in brain Mu rhythms in the range of 8-12 Hz and Beta rhythms in the range of 
13-30 Hz both originate in the sensorimotor cortex and displayed when 
a person is not engaged in processing sensorimotor inputs or in 
producing motor outputs (Jasper and Penfield 1949). They are mostly 
prominent in frontal and parietal locations (Kozelka and Pedley 1990, 
Kubler et al 2001a, Niedermeyer and Lopes da Silva 1998). A voluntary 
movement results in a circumscribed desynchronization in the Mu and 
lower Beta bands (Pfurtscheller and Aranibar 1977). This 
desynchronization is called Event Related Desynchronization (ERD) 
and begins in the contralateral rolandic region about two seconds prior 
to the onset of a movement and becomes bilaterally symmetrical 
immediately before execution of movement (Pfurtscheller and Lopes da 
Silva 1999). After a voluntary movement, the power in the brain 
rhythms increases. This phenomenon, called Event Related 
Synchronization (ERS), is dominant over the contralateral sensorimotor 
area and reaches a maximum around 600 ms after movement offset 
(Pfurtscheller and Lopes da Silva 1999). Gamma rhythm is a high 
frequency rhythm in the EEG. Upon the occurrence of a movement, the 
amplitude of gamma rhythm increases. Gamma rhythms are usually 
more prominent in the primary sensory area. 
MRPs are low-frequency potentials that start about 1-1.5 seconds before 
a movement. They have bilateral distribution and present maximum 
amplitude at the vertex. Close to the movement, they become 
contralaterally preponderant (Babiloni et al 2004, Deecke and 
Kornhuber 1976, Hallett 1994). 
The sensorimotor activities that do not belong to any of the preceding 
categories are categorized as other sensorimotor activities. These 
activities are usually not restricted to a particular frequency band or 
scalp location and usually cover different frequency ranges. An example 
would be features extracted from an EEG signal fdtered to frequencies 
below 30 Hz. Such a range covers different event-related potentials 
(ERPs) but no specific neuromechanism is used. 

Movement-related 
potentials (MRPs) 

Other 
sensorimotor 
activities 

7 In (Ramachandran and Histein 1998), references regarding the similarity between attempted movements and 

real movements in the ERD of Mu patterns are provided. An attempted movement occurs when a subject 

attempts to move some part of his/her body, but because of either a disability or the experiment control, the 

actual movement does not happen. Hence, all of the studies employing a specific brain rhythm as a source of 

control are associated with this category. Similarly, (Gevins et al 1989) has shown that imaginary (attempted) 

movements generate movement-related potentials (MRPs) similar to those generated by actual movements. 

Thus, neuromechanisms corresponding to attempted movements are grouped in the same category of real 

movement. 
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Neuromechanism Short Description 
Slow cortical potentials (SCPs) SCPs are slow, non-movement potential changes generated by the 

subject. They reflect changes in cortical polarization of the EEG lasting 
from 300 ms up to several seconds. Functionally, a SCP reflects a 
threshold regularization mechanism for local excitory mobilization 
(Neumann et al 2003, Wolpaw et al 2002). 

P300 Infrequent or particularly significant auditory, visual, or somatosensory 
stimuli, when interspersed with frequent or routine stimuli, typically 
evoke in the EEG over the parietal cortex a positive peak at about 300 
ms after the stimulus is received. This peak is called P300 (Allison and 
Pineda 2003, Kubler et al 2001a). 

Visual evoked potentials (VEP) VEPs are small changes in the ongoing brain signal. They are generated 
in response to a visual stimulus such as flashing lights and their 
properties depend on the type of the visual stimulus (Kubler et al 
2001a). These potentials are more prominent in the occipital area. 
If a visual stimulus is presented repetitively at a rate of 5-6 Hz or 
greater, a continuous oscillatory electrical response is elicited in the 
visual pathways. Such a response is termed steady-state visual evoked 
potentials (SSVEP). The distinction between VEP and SSVEP depends 
on the repetition rate of the stimulation (Gao et al 2003b). 

Response to mental tasks BCI systems based on non-movement mental tasks assume that different 
mental tasks (e.g., solving a multiplication problem, imagining a 3D 
object, and mental counting) lead to distinct, task-specific distributions 
of EEG frequency patterns over the scalp (Kubler et al 2001a). 

Activity of neural cells (ANC) It has been shown that the firing rates of neurons in the motor cortex are 
increased when movements are executed in the preferred direction of 
neurons. Once the movements are away from the preferred direction of 
neurons, the firing rate is decreased (Donoghue 2002, Olson et al 2005). 

Multiple neuromechanisms (MNs) BCI systems based on multiple neuromechanisms use a combination of 
two or more of the above-mentioned neuromechanisms. 

2.3. Methods 
The B C I designs selected for this review include every journal and conference paper that met 

the following criteria: 

(1) One or more of the keywords B C I , B M I , D B I appeared in its title, abstract or keyword 

list; 

(2) The work described one or more B C I designs (the minimum design content that met the 

criteria was a BCI Transducer as described in Section 2.2). There were a few papers that only 

reported pre-processing techniques specifically designed for brain computer interfaces that 

use neural cortical recordings. These papers were reported in the pre-processing techniques. 

Papers that presented tutorials, descriptions of electrode technology, neuroanatomy, and 

neurophysiology discussions that might serve as the basis for a B C I were not included; 
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(3) Only papers published in English and in refereed international journals and conference 

proceedings were included; 

(4) Designs that use functional magnetic resonance imaging (fMRI) (Weiskopf et al 2003, 

Weiskopf et al 2004, Y o o et al 2004), magneto-encephalography ( M E G ) signals 

(Georgopoulos et al 2005), near infra red spectrum (NIRS), auditory evoked potentials (Hi l l 

et al 2004, Su Ryu et al 1999) and somatosensory evoked potentials (Yan Wang et al 2004) 

were not included in this paper; and 

(5) Papers were published prior to January 2006. 

Although no paper meeting the five criteria explained above was omitted from the analysis, 

some papers may have been missed unintentionally. The current work should thus be 

regarded as an initial step to build a public database that can be updated and evolved with 

time. 

In Tables 2.3-8, we categorized the papers according to the signal processing methods used. 

For each of the design blocks of a B C I system shown in Fig. 2.1 (signal-enhancement, 

feature extraction, feature selection, feature classification, and post-processing), we created a 

table that reports the signal processing techniques used in that block. Since most of the B C I 

designs that use neural cortical recordings do not contain a feature extraction component, we 

generated a separate table (Table 2.7) to report the translation schemes used in these designs. 

Feature extraction methods used in B C I systems are closely related to the specific 

neuromechanism(s) used by a B C I . For example, the feature extraction algorithms employed 

in VEP-based BCIs are used to detect the visual evoked potentials in the ongoing E E G . In 

B C I systems that operate on slow cortical potentials (SCP), the extracted features are mostly 

used for the purpose of identifying this specific phenomenon in the brain signal. Thus in 

Table 2.5, we categorize the feature extraction algorithms based on the seven neurological 

sources described in Table 2.2. For example, the methods used in VEP-based BCIs are 

assembled under a different category from those used in SCP-based BCIs . A more detailed 

version of Table 2.5 can be found in Table B . 1 of Appendix B . 

The different feature classification algorithms used in B C I systems are shown in Table 2.6. 

A s feature classification algorithms are also closely related to the type of the features that 

they classify, the feature classification algorithms are also categorized based on the feature 
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extraction methods. This can be found in Table B.2 of Appendix B . Appendix B also 

contains a detailed version of Table 2.7 where the classification algorithms for BCIs that use 

cortical neural recordings are shown. 

Categorizing the feature classification methods based on the feature extraction methods used 

does not necessarily limit the use of a specific feature classification to a specific feature 

extraction method. The same applies to the categorization of the feature extraction methods 

based on neuromechanisms used in B C I systems. The aim here is to provide as specific 

information as possible about signal processing in current B C I designs and the researchers 

can combine any feature extraction method and/or feature classification method from 

different categories i f necessary. 

Each table includes major classes corresponding to each design block. These classes were 

initially determined by our team and then refined after an initial pass through the selected 

papers. In some cases, each major class was further divided into more specific categories. 

The full classification template with all the major classes and sub-classes of each design 

component is listed in the left column of Tables 2.3, 2.4, 2.5 and 2.8, and in the left two 

major columns of Tables 2.6 and 2.7. Note that in this paper, major classes are written in bold 

type and sub-classes are represented in bold-italic type. For example, in Table 2.5 or Table 

B . l , SCP-based B C I designs that use some type of power spectral parameters of the E E G are 

categorized under the SCP-spectral parameters class, while a B C I design that is based on the 

movement-related potentials (MRP) and that uses the same method is categorized under the 

Sensorimtor Activi ty -PSD and Sensorimtor Act ivi ty-MftP-PSD classes in Table 2.5 and 

Appendix B , respectively. A s an example from Table 2.6, B C I designs that use linear 

discriminant analysis ( L D A ) classifiers are categorized under L D A . Table B.2 which has a 

more detailed version of Table 2.6, categorizes B C I designs that use P S D features and L D A 

classifier under P S D - L D A class. 

The category for each B C I design was determined by selecting the closest sub-class in the 

classification template. For the papers that reported multiple designs multiple classifications 

were recorded. The designs were categorized based only on what was reported in each paper. 

N o personal knowledge of an authors' related work was used in the classification. 
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In some cases, it was difficult to differentiate between the signal-enhancement, feature 

selection, and feature extraction design components of a brain computer interface. Based on 

the definitions in Table 2.1, the methods that satisfied the following four criteria were 

considered to be signal-enhancement methods: 

(1) The method was implemented to improve the signal-to-noise ratio of the brain signal. 

(2) The output of the block had the same nature as the input brain signal (i.e. the output 

stayed in the temporal domain). 

(3) The algorithm was directly performed on the brain signal and not on the features 

extracted from the brain signal. 

(4) The method did not handle artifacts. 

The common spatial patterns (CSP) method is an example of a method that satisfies the four 

above mentioned criteria and was thus categorized as a signal-enhancement method. Only 

designs that incorporated signal-enhancement algorithms other than the general band-pass 

filtering of the E E G , the power-line-effect rejection, and the traditional normalization of the 

signal were reported in the signal-enhancement section of this paper. 

2.4. Results 
The detailed classification results of the survey are summarized in Tables 2.3-8 (refer to 

tables B . l - 3 in Appendix B for more detailed versions of tables 2.5-7). A s mentioned in 

Section 2.3, these six tables address the signal-enhancement, feature selection, feature 

extraction, feature classification and post-processing methods used. The references listed for 

each sub-class entry represent all the papers that reported on designs related to that sub-class. 

A s such, one can find all the designs that have specific attributes of interest. For example, i f 

one is interested in all B C I technology designs that have used parametric modeling (and 

specifically extracted A R parameters of the signal) to detect the sensorimotor activity, then 

all the references to the relevant papers can be found in Table 2.5 under Sensorimotor 

Activity-Parametric modeling (AR, AAR and ARX parameters). Alternatively, i f one is 

looking for designs that do not have a feature extraction block but directly apply the support-

vector-machine ( S V M ) classification method on the brain signal, then these papers can be 

easily located in the N o n e - S V M class in Appendix C. Similarly, the designs that use the 
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S V M classification method, regardless of the feature extraction technique used, are 

categorized under the S V M class in Table 2.6. 

To enhance the clarity o f Tables 2.3-8, the following notations are used: 

(a) B C I designs based on multiple neuromechanisms (as defined in Table 2.2) are presented 

in separate categories such as M N : Sensorimotor Activi ty + Response to Mental tasks, which 

show that the design is based on the sensorimotor activity and the response to mental tasks 

neuromechanisms. 

(b) Two or more methods that are consecutively used in a design block are separated by 

A s an example, CSP-log transformation denotes a design that first applies common spatial 

patterns (CSP) on the signal and then applies a logarithmic function on the resulting time-

series. 

(c) Two methods that are applied simultaneously in a design component are separated by "+". 

For example, AR parameters + PSD parameters corresponds to a design that uses both 

autoregressive (AR) and power-spectral-density (PSD) features in the feature-extraction 

block. 

(d) LRP + (CSP - log-transformation} denotes designs that use the two kinds of feature-

extraction methods separated by "+". The first method is based on the extraction of 

lateralized readiness potentials (LRP) , and the second feature extraction method is based on 

consecutively applying C S P followed by a logarithm function on the signals that are grouped 

i n " { } " . 

(e) To facilitate readability, we have provided an index of terms in Appendix A . 
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Table 2.3 Pre-processing (signal enhancement) methods in BCI designs 

Pre-Processing method Reference ID 
Common average referencing 
(CAR) 

Surface Laplacian (SL) 

Independent component analysis 
(ICA) 

Common spatial patterns (CSP) 

Principal component analysis 
(PCA) 

Combined CSP and PCA 
Singular value decomposition 
(SVD) 
Common spatio-spatial patterns 
(CSSP) 
Frequency normalization (Freq-
Norm) 
Local averaging technique (LAT) 
Robust Kalman filtering 
Common spatial subspace 
decomposition (CSSD) 
Wiener filtering 
Sparse component analysis 
Maximum noise fraction (MNF) 
Spike detection methods 
Neuron ranking methods 

(Cheng et al 2004, Fabiani et al 2004, Kubler et al 2005, Li et al 2004b, 
McFarland and Wolpaw 1998, McFarland et al 1997, McFarland et al 
2003, Peters et al 2001, Ramoser et al 2000, Schalk et al 2000, Wolpaw 
et al 1997) 
(Babiloni et al 2000, Babiloni et al 2001b, Cincotti et al 2001, Cincotti et 
al 2003a, Dornhege et al 2004, Fabiani et al 2004, Gysels and Celka 
2004, McFarland and Wolpaw 1998, McFarland et al 1997, McFarland et 
al 2003, McFarland et al 2005, Millan et al 2004a, Millan et al 2002a, 
Millan et al 2002b, Millan et al 1998, Millan et al 2000a, Millan 2004, 
Millan and Mourino 2003b, Millan et al 2004b, Muller et al 2003b, 
Peters et al 2001, Qin et al 2004b, Qin et al 2004a, Qin and He 2005, Qin 
et al 2005, Ramoser et al 2000, Schalk et al 2000, Wang et al 2004b, 
Wang et al 2004a, Wolpaw and McFarland 2004, Millan et al 2003a) 
(Bayliss and Ballard 1999, Bayliss and Ballard 2000a, Bayliss and 
Ballard 2000b, Erfanian and Erfani 2004, Gao Xiaorong et al 2004, 
Peterson et al 2005, Wu et al 2004, Serby et al 2005, Xu et al 2004a, 
Wang et al 2004c, Li et al 2004a) 
(Blanchard and Blankertz 2004, Dornhege et al 2003, Dornhege et al 
2004, Guger et al 2000b, Krauledat et al 2004, Krauledat et al 2004, 
Muller et al 2003b, Pfurtscheller et al 2000, Pfurtscheller and Neuper 
2001, Pfurtscheller and Neuper 2001, Ramoser et al 2000, Townsend et 
al 2004, Xu et al 2004b) 
(Chapin et al 1999, Guan et al 2004, Hu et al 2004, Isaacs et al 2000, Lee 
and Choi 2002, Lee and Choi 2003, Thulasidas et al 2004, Xu et al 
2004a, Yoon et al 2005, Li et al 2004a) 
(Xu et al 2004b) 
(Trejo et al 2003) 

(Lemm et al 2005) 

(Bashashati et al 2005, Borisoff et al 2004, Fatourechi et al 2004, 
Fatourechi et al 2005, Yu et al 2002) 
(Peters etal2001) 
(Bayliss and Ballard 1999, Bayliss and Ballard 2000a) 
(Cheng et al 2004, Li et al 2004b, Liu et al 2003, Wang et al 2004d) 

(Vidal 1977) 
(Li et al 2004a) 
(Peterson et al 2005) 
(Obeidand Wolf 2004) 
(Sanchez et al 2004) 
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Table 2.4 Feature selection/dimensionality reduction methods in BCI designs 

Feature selection/dimensionality 
reduction method 

Reference ID 

Genetic algorithm (GA) 

Principal component analysis 
(PCA) 
Distinctive sensitive learning 
vector quantization (DSLVQ) 

Sequential forward feature 
selection (SFFS) 
Grid search method 
Relief method (Kira and Rendell 
1992) 
Recursive feature/channel 
elimination (RFE) 
Support vector machine (SVM)-
based recursive feature 
elimination 
Stepwise discriminant procedure 
Linear discriminant analysis 
(LDA) 
Fisher discriminant analysis 
(dimensionality reduction) 
Fisher discriminant-based 
criterion (feature selection) 
Zero-Norm Optimization (/0-opt) 
Orthogonal Least Square (OLS1) 
based on radial basis function 
(RBF) 

(Flotzinger et al 1994, Garrett et al 2003, Graimann et al 2003a, 
Graimann et al 2004, Peterson et al 2005, Scherer et al 2004, Schroder et 
al 2003, Tavakolian et al 2004, Yom-Tov and Inbar 2001, Yom-Tov and 
Inbar 2002) 
(Anderson et al 1995a, Bashashati et al 2005, Borisoff et al 2004, 
Fatourechi et al 2004, Fatourechi et al 2005) 
(Flotzinger et al 1994, Neuper et al 2005, Pfurtscheller et al 1996, 
Pfurtscheller et al 1997, Pfurtscheller et al 1998, Pfurtscheller et al 2000, 
Pfurtscheller and Neuper 2001, Pregenzer and Pfurtscheller 1995, 
Pregenzer and Pfurtscheller 1999) 
(Fabiani et al 2004, Keira and Aunon 1990) 

(Glassman 2005) 
(Millan et al 2002a) 

(Lai et al 2004, Schroder et al 2005) 

(Gysels et al 2005) 

(Vidal 1977) 
(Graimann et al 2003b) 

(Wang et al 2004d) 

(Cheng et al 2004, Lai et al 2004) 

(Lai et al 2004) 
(Xu et al 2004b) 
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T A B L E 2.5 F E A T U R E E X T R A C T I O N METHODS IN BCI DESIGNS. REFER TO APPENDIX 2 FOR A MORE DETAILED VERSION 

OF THIS T A B L E 

Neurological 
phenomenon 

Feature 
method 

Extraction Reference ID 

Spectral parameters 
Sensorimotor 
Activity 

Parametric modeling 
(AR, AAR & ARX 
parameters) 

TFR method 

C C T M 

Signal envelope - Cross-
correlation 
Hjorth parameters 

Signal complexity 
Combination of different 
feature extraction 
methods 
LRP features 

(Babiloni et al 2000, Babiloni et al 2001a, Babiloni et al 2001b, Blanchard and Blankertz 2004, Boostani and Moradi 
2004, Cho et al 2004, Cincotti et al 2001, Cincotti et al 2003a, Cincotti et al 2003b, Coyle et al 2005, Fabiani et al 
2004, Flotzinger et al 1994, Garcia et al 2003b, Garrett et al 2003, Guger et al 2000b, Guger et al 2003a, Ivanova et 
al 1995, Kalcher et al 1992, Kalcher et al 1993, Kelly et al 2002b, Krauledat et al 2004, Krausz et al 2003, Kubler et 
al 2005, Lai et al 2004, Leeb and Pfurtscheller 2004, Lemm et al 2005, Mahmoudi and Erfanian 2002, Mason and 
Birch 2000, McFarland and Wolpaw 1998, McFarland et al 1997, McFarland et al 2003, McFarland et al 2005, 
Millan et al 2002a, Millan et al 2002b, Muller et al 2003c, Muller-Putz et al 2005b, Neuper et al 2003, Neuper et al 
2005, Pfurtscheller et al 2005, Pfurtscheller et al 1993, Pfurtscheller et al 1994, Pfurtscheller et al 1996, 
Pfurtscheller et al 1997, Pfurtscheller et al 1998, Pfurtscheller et al 2000, Pfurtscheller and Neuper 2001, 
Pfurtscheller and Neuper 2001, Pfurtscheller and Neuper 2001, Pfurtscheller and Neuper 2001, Pfurtscheller et al 
2003a, Pfurtscheller et al 2003b, Pineda et al 2003, Pregenzer and Pfurtscheller 1995, Pregenzer and Pfurtscheller 
1999, Ramoser et al 2000, Schalk et al 2000, Scherer et al 2004, Sheikh et al 2003, Townsend et al 2004, Trejo et al 
2003, Jia et al 2004, Wolpaw et al 1991, Wolpaw and McFarland 1994, Wolpaw et al 1997, Wolpaw et al 2000, 
Wolpaw et al 2003, Wolpaw and McFarland 2004, L i et al 2004a) 
(Burke et al 2002, Burke et al 2005, Graimann etal 2003b, Guger et al 1999, Guger et al 2000a, Guger et al 2003a, 
Guger et al 2003b, Haselsteiner and Pfurtscheller 2000, Huggins et al 2003, Kelly et al 2002b, Kelly et al 2002a, Lai 
et al 2004, Neuper et al 1999, Obermaier et al 2001b, Obermaier et al 2001a, Peters et al 2001, Pfurtscheller et al 
1998, Pfurtscheller and Guger 1999, Pfurtscheller et al 2000, Pfurtscheller and Neuper 2001, Schloegl et al 1997a, 
Schloegl et al 1997b, Schlogl et al 2003, Schroder et al 2005, Sykacek et al 2003, Yoon et al 2005) 
(Bashashati et al 2005, Birch et al 2002, Birch et al 2003, Borisoff et al 2004, Bozorgzadeh et al 2000, Costa and 
Cabral 2000, Fatourechi et al 2004, Fatourechi et al 2005, Garcia et al 2003a, Garcia et al 2003b, Glassman 2005, 
Graimann et al 2003a, Graimann et al 2004, Huggins et al 2003, Lemm et al 2004, Lisogurski and Birch 1998, 
Mason and Birch 2000, Mason et al 2004, Pineda et al 2000, Qin et al 2004b, Qin and He 2005, Qin et al 2005, 
Yom-Tov and Inbar 2003) 
(Balbale et al 1999, Graimann et al 2003b, Graimann et al 2004, Huggins et al 1999, Huggins et al 2003, Levine et 
al 1999, Levine et al 2000) 
(Wang et al 2004b, Wang et al 2004a) 

(Boostani and Moradi 2004, Lee and Choi 2002, Obermaier et al 2001a, Obermaier et al 2001c, Pfurtscheller and 
Neuper2001) 
(Boostani and Moradi 2004, Roberts et al 1999, Trejo et al 2003) 
(Cheng et al 2004, Dornhege et al 2003, Dornhege et al 2004, Krauledat et al 2004, Mahmoudi and Erfanian 2002, 
Muller et al 2003b, Yom-Tov and Inbar 2001, Yom-Tov and Inbar 2002) 

(Blankertz et al 2002a, Blankertz et al 2003, Krauledat et al 2004) 



Neurological Feature Extraction 
phenomenon method 

Other 

None 

SCP Calculation of SCP 
amplitude 

TFR method 
Mixed filter 
None 

P300 Cross-correlation 
Stepwise discriminant 
analysis 
Matched filtering 
PPM 
TFR method 
Peak picking 
Area calculation 
Area and peak picking 
Not mentioned 
(calculated P300 but 
details not mentioned) 
None 

VEP Spectral parameters 

Lock-in amplifier 
Asymmetry ratio of 
different band powers 
Cross-correlation 
Amplitude between N2 
and P2 peaks 

Reference ID 

(Coyle et al 2004, Huggins et al 2003, Hung et al 2005, LaCourse and Wilson 2003, L i et al 2004b, Liu et al 2003, 
Mason and Birch 2000, Pineda et al 2000, Qin et al 2004a, Qin et al 2005, Wang et al 2004d, Xu et al 2004b, Yom-
Tov and Inbar 2003) 
(Barreto et al 1996a, Barreto et al 1996b, Blankertz et al 2002a, Lee and Choi 2002, Lee and Choi 2003, Mahmoudi 
and Erfanian 2002, Parra et al 2002, Parra et al 2003a, Schroder et al 2003, Trejo et al 2003) 
(Birbaumer et al 1999, Birbaumer et al 2000, Hinterberger et al 2003, Hinterberger et al 2004a, Hinterberger et al 
2004b, Hinterberger et al 2005b, Hinterberger et al 2005a, Kaiser et al 2001, Kaiser et al 2002, Kubler et al 1999, 
Kubler et al 2001b, Kubler et al 1998, Neumann et al 2003, Neumann et al 2004) 
(Bostanov 2004, Hinterberger et al 2003) 
(Hinterberger et al 2003) 
(Hinterberger et al 2003, Schroder et al 2003) 
(Bayliss and Ballard 1999, Bayliss and Ballard 2000a, Bayliss and Ballard 2000b, Farwell and Donchin 1988) 
(Donchin et al 2000, Farwell and Donchin 1988) 

(Serby et al 2005) 
(Jansen et al 2004) 
(Bostanov 2004, Donchin et al 2000, Fukada S et al 1998, Glassman 2005, Jansen et al 2004, Kawakami et al 1996) 
(Allison and Pineda 2003, Allison and Pineda 2005, Bayliss et al 2004, Farwell and Donchin 1988) 
(Farwell and Donchin 1988) 
(Kaper and Ritter 2004b, Xu et al 2004a) 
(Bayliss 2003, Polikoff et al 1995) 

(Guan et al 2004, Jansen et al 2004, Kaper and Ritter 2004a, Kaper and Ritter 2004b, Kaper et al 2004, Thulasidas et 
al 2004) 
(Cheng Ming et al 2005, Cheng and Gao 1999, Cheng et al 2001, Cheng et al 2002, Gao et al 2003b, Kelly et al 
2004, Kelly et al 2005c, Kelly et al 2005a, Kelly et al 2005b, Lalor et al 2005, Middendorf et al 2000, Muller-Putz 
et al 2005a, Wang et al 2005a, Wang et al 2004c) 
(Calhoun and McMillan 1996, McMillan and Calhoun 1995, Muller-Putz et al 2005a) 
(SuRyuefa/ 1999) 

(Sutter 1992) 
(Lee et al 2005) 



Neurological 
phenomenon 

Feature 
method 

Extraction Reference DD 

Response 
Mental 
tasks8 

to 

ANC 

MN: 
Sensorimotor 
Activity + 
Response to 
Mental 
Tasks 

None 
Spectral parameters 

Parametric modeling 
(AR & AAR parameters) 

Signal Complexity 
Eigen values of 
correlation matrix 
LPC using Burg's 
method 
None 
Cross-covariance - PCA 
L B G vector quantization 
(VQ) 
Filtering - Rectification -
Thresholding 
Averaging 
TFR methods 
None (Most of these 
designs model the 
relationship between 
neural firing rates and 
'position and/or velocity 
and/or acceleration' of 
hand) 
Spectral parameters 

Parametric modeling 
TFR method 

(Guan et al 2005, Vidal 1977) 
(Bashashati et al 2003, Keirn and Aunon 1990, Rostov and Polak 1997, Liu et al 2005, Millan et al 1998, 
Palaniappan et al 2002, Palaniappan 2005, Peterson et al 2005, Polak and Rostov 1997, Polak and Rostov 1998, 
Wang et al 2005a) 
(Anderson et al 1995b, Anderson et al 1998, Garrett et al 2003, Huan and Palaniappan 2004, Keirn and Aunon 1990, 
Rostov and Polak 2000, Huan and Palaniappan 2005, Polak and Rostov 1998, Polak and Rostov 1999, Sykacek et al 
2003) 
(Bashashati et al 2003, Tavakolian et al 2004) 
(Anderson etal 1998) 

(Rostov and Polak 1997) 

(Anderson et al 1995a, Panuccio et al 2002) 
(Isaacs et al 2000) 
(Darmanjian et al 2003) 

(Karniel et al 2002, Rositsky et al 2003, Reger et al 2000a, Reger et al 2000b) 

(Laubach et al 2000, Otto et al 2003, Vetter et al 2003) 
(Laubach et al 2000, Musallam et al 2004) 
(Black et al 2003, Byron et al 2005, Carmena et al 2003, Carmena et al 2005, Chapin et al 1999, Gao et al 2002, 
Gao et al 2003a, Hatsopoulos et al 2004, Hu et al 2004, Rarniel et al 2002, Remere et al 2004, Rennedy et al 2000, 
Rim et al 2005a, Rim et al 2005b, Lebedev et al 2005, Olson et al 2005, Patil et al 2004, Rao et al 2005, Roushe et 
al 2003, Sanchez et al 2002a, Sanchez et al 2002b, Sanchez et al 2003, Serruya et al 2003, Serruya et al 2002, 
Taylor et al 2002, Taylor et al 2003, Wessberg et al 2000, Wu et al 2002a, Wu et al 2002b) 

(Gysels and Celka 2004, Gysels et al 2005, Millan et al 2004a, Millan et al 2002b, Millan et al 2000a, Millan et al 
2000b, Millan 2004, Millan and Mourino 2003b, Millan et al 2004b, Obermaier et al 200Id, Varsta et al 2000, 
Millan et al 2003a) 

(Curran et al 2004, Penny et al 2000, Roberts and Penny 2003, Sykacek et al 2004, Varsta et al 2000) 
(Garcia and Ebrahimi 2002, Garcia et al 2002, Garcia et al 2003c, Molina et al 2003, Varsta et al 2000) 

Designs that differentiate between relaxed state and movement tasks are considered in "Sensorimotor activity + Response to Mental Tasks" category. 



Neurological Feature 
phenomenon method 

Extraction Reference DD 

MN: SCP + 
other brain 
rhythms 

Combination of different 
features 
PLV 
Mean spectral coherence 
None 
SCP calculation + Power 
spectral parameters 

(Erfanian and Erfani 2004) 

(Gysels and Celka 2004, Gysels et al 2005) 
(Gysels and Celka 2004) 
(Mourino et al 2002, Rezek et al 2003) 
(Hinterberger and Baier 2005Mensh et al 2004) 



T A B L E 2.6 F E A T U R E CLASSIFICATION METHODS IN BCI DESIGNS THAT USE E E G A N D ECOG RECORDING T E C H N O L O G Y 

Feature translation method Reference ID 
Neural 
Networks 
(NN) 

MLP 

Committee ofMLPNN 
FIR-MLP NN 
Committee of Plat's RAN 
algorithm (Piatt 1991) 
Committee of NNs 
trained with Adaboost 
Committee of single 
Perceptrons with no 
hidden layers 
TBNN 
TDNN 
LVQ 

kMeans-LVQ 

fART-LVQ 
DSLVQ 
Growing Hierachical 
SOM 
ALN 
ANN 
Custom designed local 
NN 
Fuzzy AR TMAP 
Single layer NN 
RBF-NN 
Static neural classifier 
(Adaline) 
Gamma NN 

(Anderson et al 1995b, Anderson et al 1995a, Anderson et al 1998, Costa and Cabral 2000, Erfanian and Erfani 
2004, Fukada S et al 1998, Garrett et al 2003, Haselsteiner and Pfurtscheller 2000, Huan and Palaniappan 2004, 
Hung et al 2005, Ivanova et al 1995, Mahmoudi and Erfanian 2002, Huan and Palaniappan 2005, Palaniappan 2005, 
Su Ryu et al 1999, Tavakolian et al 2004) 
(Millan et al 2002b, Millan et al 2000b, Varsta et al 2000) 
(Haselsteiner and Pfurtscheller 2000) 
(Millan et al 1998) 

(Boostani and Moradi 2004) 

(Peters e< a/ 2001) 

(Ivanova al 1995) 
(Barreto et al 1996a, Barreto et al 1996b) 
(Flotzinger et al 1994, Ivanova et al 1995, Kalcher et al 1992, Kalcher et al 1993, Pfurtscheller et al 1993, 
Pfurtscheller et al 1994, Pfurtscheller et al 1996, Pfurtscheller et al 1997, Pfurtscheller et al 1998, Pfurtscheller et al 
2000, Pfurtscheller and Neuper 2001, Pregenzer and Pfurtscheller 1999) 
(Bashashati et al 2005, Birch et al 2002, Birch et al 2003, Borisoff et al 2004, Bozorgzadeh et al 2000, Fatourechi et 
al 2004, Fatourechi et al 2005, Lisogurski and Birch 1998, Mason and.Birch 2000, Mason et al 2004, Yom-Tov and 
Inbar 2003) 
(Borisoffera/2004) 
(Muller-Putz et al 2005a, Neuper et al 2005, Pregenzer and Pfurtscheller 1995, Pregenzer and Pfurtscheller 1999) 
(Liu et al 2005) 

(Rostov and Polak 1997, Polak and Kostov 1998, Polak and Rostov 1999, Kostov and Polak 2000) 
(Cincotti et al 2003b) 
(Mourino et al 2002, Millan et al 2002b, Millan et al 2000a, Millan and Mourino 2003b) 

(Palaniappan et al 2002) 
(Garcia et al 2002) 
(Hung et al 2005) 

(Barreto etal 1996a, Barreto et al 1996b) 

(Barreto et al 1996a, Barreto et al 1996b) 



Feature translation method Reference ID 
(R)LDA9 (Boostani and Moradi 2004, Bostanov 2004, Burke et al 2002, Burke et al 2005, Coyle et al 2005, Coyle et al 2004, (R)LDA9 

Dornhege et al 2003, Dornhege et al 2004, Fabiani et al 2004, Fukada S et al 1998, Garcia et al 2003b, Garrett et al 
2003, Guger et al 2000b, Guger et al 2003a, Guger et al 2003b, Hinterberger et al 2003, Huan and Palaniappan 
2004, Huggins et al 2003, Kelly et al 2002b, Kelly et al 2002a, Kelly et al 2004, Kelly et al 2005c, Kelly et al 
2005a, Krauledat et al 2004, Krausz et al 2003, Lalor et al 2005, Leeb and Pfurtscheller 2004, Lemm et al 2005, 
Mensh et al 2004, Muller et al 2003c, Muller-Putz et al 2005a, Muller-Putz et al 2005b, Muller et al 2003b, Neuper 
et al 1999, Neuper et al 2003, Obermaier et al 2001b, Pfurtscheller et al 1998, Pfurtscheller and Guger 1999, 
Pfurtscheller et al 2000, Pfurtscheller and Neuper 2001, Pfurtscheller et al 2003b, Schloegl et al 1997a, Schloegl et 
al 1997b, Townsend et al 2004, Jia et al 2004) 

(R)FLD (Babiloni et al 2001b, Blanchard and Blankertz 2004, Blankertz et al 2002a, Blankertz et al 2003, Cincotti et al (R)FLD 
2001, Cincotti et al 2003a, Guger et al 1999, Guger et al 2000a, Hung et al 2005, Obermaier et al 2001a, 
Pfurtscheller et al 2003a, Scherer et al 2004, Li et al 2004a) 

Sparse FLD (Blankertz et al 2002a) 
MD-based classifier (Babiloni et al 2001a, Cincotti et al 2003a, Cincotti et al 2003b, Garcia and Ebrahimi 2002, Molina et al 2003) 
Nonlinear discriminant function (Fabiani et al 2004) 
Bayes quadratic classifier (Keirn and Aunon 1990) 
Bayesian classifier (linear classifier) (Curran et al 2004, Lemm et al 2004, Penny et al 2000, Roberts and Penny 2003) 
Linear Bayesian decision rule (Vidal 1977) 
Linear classifier based on time-warping (Mason and Birch 2000) 
Logistic regression (Parra et al 2002, Parra et al 2003a) 
Linear classifier (no details) (Ramoser et al 2000) 
Single layer Perceptron model (a linear (Li et al 2004b, Wang et al 2004d) 
classifier) 
2-dimensional linear classifier trained (Cheng et al 2004) 
by a non-enumerative search procedure 
ZDA (Hinterberger et al 2003) 
LDS (Lee and Choi 2002) 
Gaussian classifier (Millan et al 2004a, Millan 2004, Millan et al 2004b , Millan et al 2003a) 
SSP (Babiloni et al 2000, Babiloni et al 2001a, Babiloni et al 2001b, Cincotti et al 2001, Cincotti et al 2003a, Millan et al 

2002b, Millan et al 2000b) 
SOM-based SSP (Millan et al 2002b, Millan et al 2000b) 
11 M M CHMM (Rezek et al 2003) 
Based 
techniques 

ARHMM (Panuccio et al 2002) 
HMM + SVM (Lee and Choi 2002, Lee and Choi 2003) 

9 Regularization may be applied before LDA classification scheme. 



Feature translation method 
HMM 

SVM 

MI)3 
CN2 
C4.5 
k-NN 
Threshold detector 

Linear combination - Threshold 
detector 
Continuous feedback + Threshold 
detector 

Linear combination - Continuous 
feedback 

Continuous feedback 

Continuous feedback using MD 
Continuous audio feedback 
Variatioanal Kalman filter 
Static classifier that is inferred with 
sequential variational inference 
Random forest algorithm 

Reference II) 
(Cincotti et al 2003b, Lee and Choi 2003, Liu et al 2003, Obermaier et al 2001a, Obermaier et al 2001c, Obermaier 
et al 200Id, Pfurtscheller and Neuper 2001, Sykacek et al 2003) 
(Blankertz et al 2002a, Guan et al 2004, Garcia et al 2003a, Garcia et al 2003b, Garcia et al 2003c, Garrett et al 
2003, Glassman 2005, Gysels and Celka 2004, Gysels et al 2005, Hung et al 2005, Guan et al 2005, Kaper and Ritter 
2004a, Kaper and Ritter 2004b, Kaper et al 2004, Lai et al 2004, Peterson et al 2005, Schroder et al 2003, Schroder 
et al 2005, Thulasidas et al 2004, Trejo et al 2003, Xu et al 2004b, Yom-Tov and Inbar 2001, Yom-Tov and Inbar 
2002, Yom-Tov and Inbar 2003, Yoon et al 2005) 
(Ivanovae* al 1995) 
(Ivanovae/ al 1995) 
(Ivanova et al 1995, Millan et al 2002a) 
(Blankertz et al 2002a, Pineda et al 2000, Pregenzer and Pfurtscheller 1999) 
(Allison and Pineda 2003, Balbale et al 1999, Bayliss and Ballard 1999, Bayliss and Ballard 2000a, Bayliss and 
Ballard 2000b, Bayliss 2003, Bayliss et al 2004, Calhoun and McMillan 1996, Cheng Ming et al 2005, Cheng and 
Gao 1999, Cheng et al 2001, Cheng et al 2002, Donchin et al 2000, Farwell and Donchin 1988, Gao et al 2003b, 
Graimann et al 2003a, Graimann et al 2003b, Graimann et al 2004, Hinterberger et al 2003, Huggins et al 1999, 
Huggins et al 2003, Jansen et al 2004, Kawakami et al 1996, Kelly et al 2005b, Kostov and Polak 1997, Lee et al 
2005, Levine et al 1999, Levine et al 2000, McMillan and Calhoun 1995, Middendorf et al 2000, Pfurtscheller et al 
2005, Pineda et al 2003, Polak and Kostov 1997, Polikoff et al 1995, Qin et al 2004a, Qin et al 2004b, Qin and He 
2005, Roberts et al 1999, Serby et al 2005, Sutter 1992, Wang et al 2004b, Wang et al 2004a, Xu et al 2004a, Yom-
Tov and Inbar 2003) 
(Townsend et al 2004) 

(Birbaumer et al 1999, Birbaumer et al 2000, Hinterberger et al 2003, Hinterberger et al 2004a, Hinterberger et al 
2004b, Hinterberger et al 2005b, Hinterberger et al 2005a, Kaiser et al 2001, Kaiser et al 2002, Kubler et al 1999, 
Kubler et al 2001b, Kubler et al 1998, Neumann et al 2003, Neumann et al 2004) 
(Fabiani et al 2004, Krausz et al 2003, Kubler et al 2005, McFarland and Wolpaw 1998, McFarland et al 1997, 
McFarland et al 2003, McFarland et al 2005, Schalk et al 2000, Sheikh et al 2003, Wolpaw and McFarland 1994, 
Wolpaw et al 1997, Wolpaw et al 2000, Wolpaw et al 2003, Wolpaw and McFarland 2004) 
(Bashashati et al 2003, Cho et al 2004, LaCourse and Wilson 2003, Middendorf et al 2000, Trejo et al 2003, 
Wolpaw et al 1991) 
(Schlogl et al 2003) 
(Hinterberger and Baier 2005) 
(Sykacek et al 2004) 
(Curran et al 2004, Sykacek et al 2004) 

(Neuper al 1999) 



T A B L E 2.7 F E A T U R E CLASSIFICATION METHODS IN BCI DESIGNS THAT A R E B A S E D O N N E U R A L CORTICAL RECORDINGS 

Feature Classification Reference D3 
Neural Recurrent MLP 
Networks Neural network 

(RNN) 
MLP 
Feed-forward ANN 
ANN recurrent 
dynamic back-
propagation 
ANN model 
LVQ 
Other 

Support vector machine regression 
(SVR) model 
Cosine tuning model (a linear model) 
Linear Gaussian models (LGM) 
implemented by Kalman filter 
Generalized linear models (GLA) 
Generalized additive models (GAM) 
Weighted linear combination of 
neuronal activity (Wiener filter: a linear 
model) 
Gamma filter (a linear model) 
Mixture of multiple models based on 
NMF (non-negative matrix 
factorization) 
Echo State Networks (ESN) - Optimal 
sparse linear mapping 
Linear model (no details mentioned) 
Threshold detector 
SVM 
Bayesian classifier 
Maximum likelihood-based model 
LPF (continuous signal) 
Direct translation of firing rate to cursor 
movement (continuous signal) 
k-NN 
H M M 

(Sanchez et al 2002a, Sanchez et al 2002b, Sanchez et al 2003) 

(Kim et al 2005b) 
(Patil etal 2004) 
(Chapin et al 1999) 

(Hatsopoulos et al 2004, Wessberg et al 2000) 
(Laubach et al 2000) 
(Karniel et al 2002) 
(Kim etal 2005b) 

(Black et al 2003, Kemere et al 2004, Taylor et al 2002, Taylor et al 2003) 
(Black et al 2003, Gao et al 2003a, Patil et al 2004, Sanchez et al2002a, Wu et al 2002a, Wu et al 2002b) 

(Black et al 2003, Gao et al 2003a) 
(Black et al 2003, Gao et al 2003a) 
(Carmena et al 2005, Hatsopoulos et al 2004, Kim et al 2005a, Kim et al 2005b, Lebedev et al 2005, Patil et al 2004, 
Sanchez et al 2002b, Serruya et al 2003, Serruya et al 2002) 

(Sanchez et al 2002b) 
(Kim et al 2005a) 

(Rao et al 2005) 

(Carmena et al 2003, Wessberg et al 2000) 
(Otto et al 2003, Roushe et al 2003, Vetter et al 2003) 
(Byron et al 2005, Hu et al 2004, Olson et al 2005) 
(Gao et al 2002, Hu et al 2004, Musallam et al 2004) 
(Hatsopoulos et al 2004, Kemere et al 2004, Serruya et al 2003) 
(Karniel et al 2002, Kositsky et al 2003, Reger et al 2000a, Reger et al 2000b) 
(Kennedy et al 2000) 

(Isaacs et al 2000) 
(Darmanjian et al 2003) 



T A B L E 2.8 POST PROCESSING METHODS IN BCI DESIGNS 

Post processing Reference ID 
ERN (event-related negativity)-based 
error correction 
Successive averaging and/or rejection 
option for 'moderated' posterior 
probabilities (choice of "unknown" 
output state) (SA-UK) 

Debounce (considering refractory period) 

(Bayliss et al 2004, Blankertz et al 2002b, Blankertz et al 2003, 
Parra et al 2003b, Schalk et al 2000) 
(Anderson et al 1995a, Bashashati et al 2005, Birch eUal 2002, 
Borisoff et al 2004, Fatourechi et al 2004, Fatourechi et al 2005, 
Gysels and Celka 2004, Millan et al 1998, Millan 2004, Millan 
and Mourino 2003b, Millan et al 2004b, Muller-Putz et al 
2005b, Penny et al 2000, Roberts and Penny 2003, Townsend et 
al 2004, Vidal 1977, Millan et al 2003a) 
(Bashashati et al 2005, Borisoff et al 2004, Fatourechi et al 
2004, Fatourechi et al 2005, Muller-Putz et al 2005b, Obeid and 
Wolf 2004, Pfurtscheller et al 2005, Townsend et al 2004) 

2.5. Discussion 
Several points raised in the previous section deserve further comment. F ig . 2.2 summarizes 

the information in Tables 2.3, 2.4, and 2.8, which respectively address signal-enhancement, 

feature selection and post-processing algorithms in B C I designs. Specifically, this figure 

shows the number of B C I designs that use specific signal-enhancement, feature selection, and 

post-processing techniques. 

In the remainder of this section we highlight the top 3 or 4 methods that have been used in 

the signal processing blocks of B C I systems (as introduced in Section 2.2). 

O f the 96 B C I designs that employ signal-enhancement techniques before extracting the 

features from the signal, 32% use surface Laplacian (SL), 22% use either principal 

component analysis (PCA) or independent component analysis ( ICA), 14% use common 

spatial patterns (CSP) and 11% use common average referencing ( C A R ) techniques. 38 o f 

the reported B C I designs employ feature-selection algorithms; 26% of these 38 designs use 

genetic algorithms (GA) , 24% use distinctive sensitive learning vector quantization 

( D S L V Q ) , and 13% use P C A . 

O f the 30 B C I designs that use post-processing algorithms to reduce the amount of error in 

the output of the B C I system, 57% use averaging techniques and consider rejecting 

activations that have low certainty, 27% consider using the debounce block (or refractory 

period) to deactivate the output for a short period of time when a false activation is detected, 

and 16%o use event-related negativity (ERN) signals to detect error activations. 
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Figure 2.2 Signal-enhancement, feature selection and post-processing methods in BCI designs 

Fig. 2.3 summarizes the results presented in Table 2.5, and shows the number of B C I designs 

that are based on sensorimotor activity, SCP, V E P , P300, activity of neural cells, and 

'response to mental tasks' and use different feature extraction techniques. 

Based on the results of Fig . 2.3, 41% of the BCIs that are based on the sensorimotor activity 

use power-spectral-density features, 16% rely on parametric modeling of the data, 13% use 

time-frequency representation (TFR) methods, and 6% do not employ any feature extraction 

methods. 74% of the SCP-based B C I designs calculate SCP signals using low-pass filtering 

methods, and 64% of the VEP-based BCIs use power-spectral features at specific 

frequencies. 26% of the BCIs based on P300 calculate the peaks of the signal in a specific 

time window to detect the P300 component of the E E G ; 22% use TFR-based methods, 22% 

use no feature extraction method, and 15% use cross-correlation with a specific template. 

41%o of the B C I designs that use mental tasks to control a B C I use power-spectral features 
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Figure 2.3 Feature extraction methods in BCI designs based on Sensorimotor Activity, VEP, P300, 
SCP, Response to Mental Tasks, Activity of Neural Cells, and Multiple Neuromechanisms 

and 37% use parametric modeling of the input signal. A s most of the B C I designs that are 

based on neural cortical recordings mainly try to model the direct relationship between the 

neural cortical recordings and movements, they do not use a feature-extraction algorithm. 

45% of the B C I designs that are based on multiple neuromechanisms rely on power spectral 

features, 17% use parametric modeling, and 17% use time-frequency representation (TFR) 

methods. 

Summarizing Tables 2.6 and 2.7, the number of B C I designs that use different feature 

classification algorithms are shown in Fig. 2.4. About 75% of the B C I designs use 

classification schemes that are not based on neural networks (NN). These are composed of 
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those methods that use threshold detectors as the feature classifier or as part of the feature 

classification scheme (27%), linear discriminant (either L D A or F L D ) classifiers (26%), 

those that show continuous feedback of the extracted features (16%), and those that use 

support-vector-machines ( S V M ) (11%). 27%) of the neural-network-based classifiers are 

based on the multi-layer perceptrons ( M L P ) neural network and 39% are based on learning-

vector-quantization ( L V Q ) classification scheme. 

Figure 2.4 Feature classification methods in BCI designs. 'In/Out Modeling' refers to those A N C -
based BCIs that directly map the input neural recordings to the output without using a feature 

extraction technique. 
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During our analysis of the literature, a number o f salient points about the signal processing 

methods emerged. We think that some of these points are worth sharing with the B C I 

research community. In the following sections we summarize some of them. Note that these 

observations are based on comments made by the researchers in their published papers and 

are also based on the trends in the literature; they do not cover all the methods reported in the 

literature. 

2.5.1 . S i g n a l E n h a n c e m e n t 

Signal-enhancement (pre-processing) algorithms have been used for brain computer 

interfaces that are based on the E E G and the activity of the neural cells ( A N C ) , but no signal-

enhancement algorithms have been applied on electrocorticogram (ECoG)-based brain 

computer interfaces. Given the huge difference in the characteristics of E E G and A N C , the 

signal-enhancement algorithms used in EEG-based and ANC-based BCIs have very little 

overlap; only P C A has been used in both groups. While ANC-based BCIs mostly aim at 

spike detection, ranking, and sorting neuron activities, EEG-based ones mostly transform or 

select E E G channels that yield better performance. Overall, the use of a pre-processing stage 

before feature extraction ( if applied) has been proven to be useful. The choice of a suitable 

pre-processing technique however is dependent on several factors such as the recording 

technology, number of electrodes, and neuromechanism of the B C I . Next, we discuss some 

of the techniques used in signal-enhancement in EEG-based B C I systems. Specifically, a 

discussion of spatial filtering including referencing methods and common spatial patterns 

(CSP) is presented. Since these methods are among the most used techniques that have 

become increasingly popular in B C I studies. 

2.5.1.1. R e f e r e n c i n g me thods 

Referencing methods are considered as spatial filters. The proper selection of a spatial filter 

for any B C I is determined by the location and extent of the control signal (e.g., the M u 

rhythm) and of the various sources of E E G or non-EEG noise. The latter two are not 

completely defined and presumably vary considerably between different studies and both 

across and within individuals (McFarland et al 1997). 

For BCIs that use the M u and Beta rhythms, the common average referencing ( C A R ) and 

Laplacian methods are superior to the ear reference method. This may be because these 
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methods use high-pass spatial filters and enhance the focal activity from the local sources 

(e.g., the M u and the Beta rhythms) and reduce the widely distributed activity, including that 

resulting from distant sources (e.g. E M G , eye movements and blinks, visual alpha rhythm). 

Comparing the two variations of the Laplacian filtering methods (the large Laplacian and the 

small Laplacian), it is shown that the large Laplacian method is superior to the small 

Laplacian method in B C I systems that use the M u rhythm (McFarland et al 1997). 

Although an accurate Laplacian estimate from raw potentials requires many electrodes, one 

study showed that the recognition rates were increased by using a small number of electrodes 

only (Cincotti et al 2003a). In this case, the linear combination of channels implementing the 

Laplacian estimation was likely to have caused a favorable transformation of the signals to 

recognize different patterns in the ongoing E E G . 

2.5.1.2. Common spatial patterns (CSP) 

C S P is a signal-enhancement method that detects patterns in the E E G by incorporating the 

spatial information of the E E G signal. Some of its features and limitations include the 

following: 

C S P is a signal-enhancement method that detects patterns in the E E G by incorporating the 

spatial information of the E E G signal. A n advantage of the C S P method is that it does not 

require the a-priori selection of subject-specific frequency bands. Knowledge of these bands, 

however, is necessary for the band-power and frequency-estimation methods (Guger et al 

2000b). One disadvantage of the, CSP method is that it requires the use of many electrodes. 

However, the inconvenience of applying more electrodes can be rationalized by improved 

performance (Guger et al 2000b, Pfurtscheller et al 2000). The major problem in the 

application of C S P is its sensitivity to artifacts in the E E G . Since the covariance matrices are 

used as the basis for calculating the spatial filters, and are estimated with a comparatively 

small number of examples, a single trial contaminated with artifacts can unfortunately cause 

extreme changes to the filters (Guger et al 2000b, Ramoser et al 2000). Since, the CSP 

method detects spatial patterns in the E E G , any change in the electrode positions may render 

the improvements in the classification accuracy gained by this method useless. Therefore, 

this method requires almost identical electrode positions for all trials and sessions which may 

be difficult to accomplish (Ramoser et al 2000). 
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2.5.2. Feature Extraction 

In this section we discuss some of the feature extraction techniques that have received more 

attention in B C I systems. Specifically, time and/or frequency representation methods, 

parametric modeling, and specific techniques of modeling neural cortical recordings are 

discussed. 

2.5.2.1. Time and/or Frequency Methods 

A signal, as a function of time, may be considered as a representation with perfect temporal 

resolution. The magnitude of the Fourier transform (FT) of the signal may be considered as a 

representation with perfect spectral resolution but with no temporal information. Frequency-

based features have been widely used in signal processing because of their ease of 

application, computational speed, and direct interpretation of the results. Specifically, about 

l / 3 r d o f B C I designs have used power-spectral features. Due to the non-stationary nature of 

the E E G signals, these features do not provide any time domain information. Thus, mixed 

time-frequency representations (TFRs) that map a one-dimensional signal into a two-

dimensional function of time and frequency are used to analyze the time-varying spectral 

content of the signals. It has been shown that T F R methods may yield performance 

improvements comparing to the traditional FT-based methods (e.g. (Qin et al 2005, Lemm at 

al 2003, Bostanov 2004)). Most of the designs that employ T F R methods use wavelet-based 

feature-extraction algorithms. The choice of the particular wavelet used is a crucial factor in 

gaining useful information from wavelet analysis. Prior knowledge of the physiological 

activity in the brain can be useful in determining the appropriate wavelet function. 

Correlative T F R (CTFR) is another time-frequency representation method that, besides the 

spectral information, provides information about the time-frequency interactions between the 

components of the input signal. Thus, with the C T F R the E E G data samples are not 

independently analyzed (as in the Fourier transform case) but their relationship is also taken 

into account. One drawback of the C T F R resides in its relative high sensitivity to noise. 

Consequently, the most important values of the C T F R , in terms of classification must be 

selected (Garcia et al 2003a, b). 
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2.5.2.2. Parametric Modeling 

Parametric approaches assume the time series under analysis to be the output of a given 

linear mathematical model. They require an a-priori choice of the structure and order of the 

signal generation mechanism model (Weitkunat 1991). The optimum model order is best 

estimated not only by maximizing the fitness but also by limiting the model's complexity. 

For noisy signals, i f the model's order is too high, spurious peaks in the spectra w i l l result. 

On the other hand, i f the order is too low, smooth spectra are obtained (Kel ly et al 2002a, 

Polak and Kostov 1998, Weitkunat 1991). 

For short E E G segments, parametric modeling results in better frequency resolution and a 

good spectral estimate. Note that parametric modeling may yield poor estimates i f the length 

of the E E G segments processed is too short (Birch 1988). For such modeling, there is no 

need for a-priori information about potential frequency bands, and there is no need to 

window the data in order to decrease the spectral leakage. Also , the frequency resolution 

does not depend on the number of data points (Guger et al 2003a, Polak and Kostov 1998, 

Weitkunat 1991). Estimating these parameters, however, is very sensitive to artifacts (Birch 

1988, Guger etal 2003a). 

Special attention should be paid to the choice of the sampling rate in parametric modeling 

(Weitkunat 1991), since severely oversampled signals tend to show only very small 

amplitude differences between successive samples. Hence, low-order models produce small 

prediction errors, giving the false illusion that an adequate model has been obtained. The 

sampling rates dictated by the Nyquist criterion are recommended. 

2.5.2.3. Modeling the Neural Firing Rates 

Extraction algorithms for motor control operate on spike trains, recorded from a population 

of cortical units, mostly with the purpose of predicting arm trajectories. Several extraction 

methods such as linear filtering methods and neural networks have been used to determine 

arm movement trajectories from neural firing rates. We summarize below a few important 

issues in modeling the neural firing rates. A more detailed critical discussion of extraction 

algorithms for cortical control of arm prosthetics can be found in (Schwartz et al 2001). 
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One limitation of linear filter methods is that they rely on an a-priori model of movement-

related neuronal responses. Artificial neural network ( A N N ) solutions can optimize each 

cell's contribution to the population prediction (Schwartz et al 2001). 

Several of the algorithms used are based on the position of the moving limb. In the primary 

motor cortex at least, this parameter is more poorly represented than the velocity during 

movement. With most algorithms, the different sources of variability need to be specified 

explicitly because some sort of optimal function is being modeled to the cell response 

(Schwartz ef a/2001). 

The performance of the modeling techniques is constrained by their training sets and may be 

limited, both in terms of extrapolation beyond and interpolation within the training set when 

new data are applied. The success of the linear filters is due to the underlying linearity of the 

relationship between firing rate and movement direction. These filters are limited by the 

conditions used to fit their coefficients and may suffer from the same training constraints as 

A N N s (Schwartz et al 2001). 

2.5.3. F e a t u r e Se lec t ion 

Feature selection algorithms are used in B C I designs to find the most informative features for 

classification. This is especially useful for B C I designs with high dimensional input data, as 

it reduces the dimension of the feature space. Since the feature selection block reduces the 

complexity of the classification problem, higher classification accuracies might be achieved. 

The experiments carried out in (Flotzinger et al 1994, Pregenzer and Pfurtscheller 1999) 

show that when feature selection is used, the classification accuracy is better than when all 

the features are used. 

Principal component analysis ( P C A ) and genetic algorithms (GA) are among the mostly used 

feature selection and/or dimensionality reduction methods in BCIs. P C A has also been 

widely used in pre-processing stage of B C I designs. P C A is a linear transformation that can 

be used for dimensionality reduction in a dataset while retaining those characteristics of the 

dataset that contribute most to its variance, by keeping lower-order principal components and 

ignoring higher-order ones. Such low-order components often contain the "most important" 

aspects of the data. P C A has the distinction of being the optimal linear transformation for 

keeping the subspace that has largest variance. P C A only finds linear subspaces, works best 
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i f the individual components have Gaussian distributtions, and is not optimized for class 

separability. One other possible application area of P C A is in classification stage, in which, 

P C A is applied for weighting input features. While a standard neural network, like the multi

layer pereceptrons ( M L P ) can do the necessary classification itself, in some cases doing a 

P C A in parallel and weighting input features can give better results as it simplifies the 

training of the rest of the system. 

Unlike P C A , G A s are heuristic search techniques in the problem space. G A s typically 

maintain a constant-sized population of individuals which represent samples of the space to 

be searched. Each individual is evaluated on the basis of its overall fitness with respect to the 

given application domain. New individuals (samples of the search space) are produced by 

selecting high performing individuals to produce "offspring" which retain many of the 

features of their "parents". This eventually leads to a population that has improved fitness 

with respect to the given goal. Genetic algorithms have demonstrated substantial 

improvement over a variety of random and local search methods (De Jong 1975). This is 

accomplished by their ability to exploit accumulating information about an initially unknown 

search space in order to bias subsequent search into promising subspaces. Since G A s are 

basically a domain independent search technique, they are ideal for applications where 

domain knowledge and theory is difficult or impossible to provide (De Jong 1975). A n 

important step in developing a GA-based search is defining a suitable fitness function. A n 

ideal fitness function correlates closely with the algorithm's goal, and yet may be computed 

quickly. Speed of execution is very important, as a typical genetic algorithm must be iterated 

many, many times in order to produce a usable result for a non-trivial problem. Definition of 

the fitness function is not strightforward in many cases and often is performed iteratively i f 

the fittest solutions produced by a G A are not what is desired. 

2.5.4. F e a t u r e C l a s s i f i c a t i o n 

Linear classifiers are generally more robust than nonlinear ones. This is because linear 

classifiers have fewer free parameters to tune, and are thus less prone to over-fitting (Muller 

et al 2003a). In the presence of strong noise and outliers, even linear systems can fail. One 

way of overcoming this problem is to use regularization. Regularization helps limit (a) the 
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influence of outliers and strong noise, (b) the complexity of the classifier, and (c) the 

raggedness of the decision surface (Muller et al 2003a). 

It is always desirable to avoid reliance on nonlinear classification methods, i f possible, 

because these methods often involve a number of parameters whose values must be chosen 

appropriately. However, when there are large amounts of data and limited knowledge of the 

data, nonlinear methods are better suited in finding the potentially more complex structure in 

the data. In particular, when the source of the data to be classified is not well understood, 

using methods that are good at finding nonlinear transformation of the data is suggested. In 

these cases, kernel-based and neural-networks-based methods can be used to determine the 

transformations. Kernel-based classifiers are classification methods that apply a linear 

classification in some appropriate (kernel) feature space. Thus, all the beneficial properties of 

linear classification are maintained, but at the same time, the overall classification is 

nonlinear. Examples of such kernel-based classification methods are support-vector-

machines (SVMs) and kernel Fisher discriminant ( K F D ) (Muller et al 2003a). For a more 

detailed critical discussion regarding linear and nonlinear classifiers in brain computer 

interfaces, refer to (Muller et al 2003a). 

Some B C I designs have used classification algorithms such as F I R - M L P and T B N N that 

utilize temporal information of the input data (Haselsteiner and Pfurtscheller 2000, Ivanova 

et al 1995). The motivation for using such classifiers is that the patterns to be recognized are 

not static data but time series. Thus, the temporal information of the input data can be used to 

improve the classification results (Haselsteiner and Pfurtscheller 2000). Uti l iz ing the 

temporal information of features is not necessarily performed directly in the classification 

stage, and can be done with a static classifier like M L P and a mapping of the temporal input 

data to static data. However, using classifiers such as F I R - M L P and T B N N that directly 

utilize temporal information may yield better performances as they are much better suited for 

exploiting temporal information contained in the time series to be classified. Regardless of 

the method that is used for exploiting temporal information, these approaches are preferred 

over static classification as they may increase the performance of B C I systems. 

Using a group (committee) of classifiers rather than using a single classifier might also yield 

to better performances of B C I systems. Only a few B C I designs have employed such an 

59 



approach in classifying features and achieved performance improvements (Mil lan et al 

2002b, Mi l l an et al 2000b, Peters et al 2001, Varsta et al 2000). The classification accuracy 

of the committee depends on how much unique information each committee member 

contributes to classification. A committee of classifiers usually yields better classification 

accuracy than any individual classifier could provide, and can be used to combine 

information from several channels, i.e., from different spatial regions (Peters et al 2001). 

A s the number o f epochs available for evaluating a B C I system is small, using a technique 

that reduces the bias of the estimated performance on a specific data set is highly 

recommended. This is especially important when different architectures of a certain design 

are being compared. K-fo ld cross-validation and statistical significance tests are especially 

useful for these cases (e.g. refer to (Anderson et al 1998, Ke l ly et al 2002b, Lalor et al 2005, 

Obermaier et al 2001 d, Peterson et al 2005)). K-fold cross-validation can be used simply to 

estimate the generalization error of a given model, or it can be used for model selection by 

choosing one of several models that has the smallest estimated generalization error but it is 

not suitable for online evaluations. A value of 5 to 10 for K is recommended for estimating 

the generalization error. For an insightful discussion of the limitations of cross-validatory 

choice among several learning methods, see (Stone 1977). 

2.5.5. Post-Processing 

Post-processing techniques can be utilized in most of the B C I designs to decrease the error 

rates. Some post-processing techniques can be designed specifically for a target application. 

For example, when a B C I system is used to activate a spelling device, some letters can be 

omitted without losing information. The system can also take into consideration the 

conditional probabilities of letters provided by one or two preceding letters and make 

corresponding suggestions to the patient (Kubler et al 1999). Such techniques may also be 

feasible for other applications and consequently increase the performance of the B C I 

systems. 

There is a possibility that just after the end of a trial, some features of the brain signal reveal 

whether or not the trial was successful (that is, whether the outcome was or was not what the 

subject desired). These features are referred to as error potentials and can be used to detect 

errors in a B C I system and void the outcome. This error detection approach was encouraged 
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by evidence that errors in conventional motor performances have detectable effects on the 

E E G recorded just after the error occurs (Falkenstein et al 1995, Falkenstein et al 2001, 

Gehring et al 1995). Whatever the nature of the error potential, the central decision for a B C I 

is how useful the error potential can be in detecting errors in single trials, and thereby 

improving accuracy. While its signal-to-noise ratio (SNR) is low, the error potential can 

improve the performance of a B C I system. In the meantime, better methods for recognizing 

and measuring the error potential could substantially improve its SNR, and thereby increase 

its impact on accuracy of a B C I system. Such error potentials have been used in a few B C I 

systems to increase the performance (Bayliss et al 2004, Blankertz et al 2002b, Blankertz et 

al 2003, Parra et al 2003b, Schalk et al 2000). 

Another useful technique in decreasing false activations of B C I systems is to consider a 

measure of confidence in classification. In such case, the output of the system can only be 

activated when the probability of the output being in an active state is greater than a given 

probability threshold or some criterion. Otherwise, the response of the B C I is considered 

"unknown" and rejected to avoid making risky decisions. This is a useful way of reducing 

false decisions of the system (e.g., (Cincotti et al 2003b, Mi l l an et al 1998, Penny et al 2000)) 

and might be used in any B C I design. 

Considering mechanisms like debouncing the output of B C I designs also can reduce the 

number of false activations (Bashashati et al 2005, Borisoff et al 2004, Fatourechi et al 2004, 

Fatourechi et al 2005, Muller-Putz et al 2005b, Obeid and W o l f 2004, Pfurtscheller et al 

2005, Townsend et al 2004). These methods are specifically useful for so called 

asynchronous (self-paced) BCIs. Since false positives could happen in periods longer than 

just a few samples, using debouncing technique in a manner similar to the debouncing of 

physical switches is expected to improve false activation rates (but with a cost in decreased 

re-activation time). The debounce component continuously monitors the output of the 

classifier. After an activation is detected (e.g., a change in logical state from '0 ' to T in a 

binary classifier), the output is activated for one time sample, then the output is forced to an 

inactive state for Td-1 time samples, where Td is the debounce time period in samples. In 

some studies this time period is referred to as refractory period. A s the debounce period is 

increased, the false activation rate is decreased for a given true positive rate. However, with 
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increasing this time period, the re-activation time of the B C I system is impacted. The trade

off is clear and one needs to consider this for a given application. 

2.6. Conclusions 
We have completed the first comprehensive survey of signal processing methods used in B C I 

studies and published prior to January 2006. The results of this survey form a valuable and 

historical cross-reference for methods used in the following signal processing components of 

a B C I design: (1) pre-processing (signal-enhancement), (2) feature selection, (3) feature 

extraction, (4) feature classification, and (5) post-processing methods. This survey shows 

which signal-processing techniques have received more attention and which have not. This 

information is also valuable for newcomers to the field, as they can now find out which 

signal-processing methods have been used for a certain type of a B C I system. 

Many signal processing methods have been proposed and implemented in various brain 

computer interfaces and comparison of these methods for different B C I applications would 

be a useful task. However, at this point we cannot perform this task given the diversity of 

brain computer interface systems from different aspects such as target application, 

neurological phenomena used, amount of data tested, number of subjects and the amount of 

training they have received, recording systems, and experimental paradigms. Also 

acknowledged in (McFarland et al 2006), we think that comparison of methods would be 

possible in well-designed systematic studies (Jackson et al 2006) and on established datasets 

like the B C I Competition datasets (Blankertz et al 2004, Blankertz et al 2006). We believe 

that, for a fair comparison of methods, more data would be needed as comparing methods 

with the data of one or two subjects does not necessarily guarantee the same findings on a 

larger subject pool. (Jackson et al 2006) has provided a step towards this goal by proposing 

some ways to establish a systematic study both in design and reporting the results and we 

think that this task would only be possible with the collective help of all the researchers in 

this field. 

We hope that this study w i l l spawn further discussion of signal processing schemes for B C I 

designs. The proposed taxonomy and classes defined in Tables 2.3-8, represent a proposed 

set of subcategories, not a final one, and we encourage others to revise or expand upon this 

initial set. Our direction in the future is to establish an online public-accessible database 
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where research groups wi l l be able to submit their signal processing designs as well as 

propose revisions/expansions of the proposed definitions and categories presented in this 

paper. 
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2.8. Appendix A. Index of Terms 
T A B L E 2.9 INDEX OF TERMS 

Index term Description 
AAR Adaptive auto-regressive 
AEP Auditory evoked potential 
AGR Adaptive Gaussian representation 
ALN Adaptive logic network 
ANC Activity of neural cells 
ANN Artificial neural networks 
AR Auto-regressive 
ARTMAP Adaptive resonance theory MAP 
ARX Autoregressive with exogenous input 
BPF Band-pass filter 
C4.5 -
CAR Common average referencing 
CBR Changes in brain rhythms 
C C T M Cross-Correlation based template matching 
CER Coarse-grained entropy rate 
C H M M Coupled hidden markov model 
CN2 -
CSP Common Spatial Patterns 
CSSD Common spatial subspace decomposition 
CSSP Common spatio-spectral patterns 
CTFR Correlative time-frequency representation 
CTFSR Correlative time-frequency-space representation 
DFT Discrete Fourier transform 
DSLVQ Distinctive sensitive learning vector quantization 
ERD Event related desynchronization 
ERN Event related negativity 
ERS Event related synchronization 
FLD Fisher's linear discriminat 
FFT Fast Fourier transform 
Freq-Norm Frequency normalization 
GA Genetic algorithm 
G A M Generalized additive models 
GLA Generalized linear models 
GPER Gaussian process entropy rates 
H M M Hidden Markov Model 
ICA Independent component analysis 
IFFT Inverse fast Fourier transform 
k-NN k-nearest neighbour 
LDA Linear Discriminant Analysis 
LDS Linear dynamical system 
L G M Linear Gaussian models implemented by Kalman 

filter 
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Index term Description 
LMS Least mean square 
LPC Linear predictive coding 
LPF Low pass filter 
LRP Lateralized readiness potential 
L V Q Learning vector quantization 
MD Mahalanobis distance 
MLP Multi-Layer perceptron neural networks 
MN Multiple neuro-mechanisms 
MNF Maximum noise fraction 
MRA Movement related activity 
NID3 -
NMF Non-negative matrix factorization 
NN Neural networks 
OLS1 Orthogonal least square 
OPM Outlier processing method 
PCA Principal Component Analysis (a.k.a. Karhounen 

Loeve Transform) 
PLV Phase locking values 
PPM Piecewise Prony method 
PSD Power spectral density 
RBF Radial basis function 
RFE Recursive feature/channel elimination 
RNN Recurrent neural network 
SA-UK Successive averaging and/or considering choice of 

unknown 
SCP Slow cortical potentials 
SE spectral entropy 
SFFS Sequential forward feature selection 
SL Surface Laplacian 
SOFNN Self organizing feature neural network 
SOM Self organizing map 
SSEP Somatosensory evoked potential 
SSP Signal space projection 
SSVEP Steady state visual evoked potential 
STD Standard Deviation 
SVD Singular value decomposition 
SVM Support vector machine 
SVR Support vector machine regression 
SWDA Stepwise discriminant analysis 
TBNN Tree-based neural network 
TFR Time-frequency representation 
VEFD Variable epoch frequency decomposition 
VEP Visual evoked potential 
WE Wavelet entropy 
WK Wiener-Khinchine 
ZDA Z-scale based discriminant analysis 
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Chapter 3 Brain Computer Interface (BCI) Design for 

Asynchronous Control Applications: Improvements to the LF-

ASD Asynchronous Brain Switch 1 0 

3.1. Introduction 
Over the past 15 years, several research groups throughout the world have developed direct 

brain-computer interface (BCI 1 1 ) devices as possible alternative communication and control 

solutions for individuals with severe disabilities. For a review of the field, see (Mason and 

Birch 2003, Nicolelis 2003, Wolpaw et al 2000, Wolpaw et al 2002). B C I technology 

functions by mapping a user's cortical activity associated with an intentional B C I control 

paradigm (such as attempted finger movements) directly to application-specific control 

signals. Thus, control of various devices such as neural prostheses is possible by thinking 

alone, bypassing traditional interface pathways unusable by individuals with severe 

disabilities. 

Several different approaches to the design of B C I technology based on signals from scalp 

electrodes (i.e. electroencephalograms, E E G ) or implanted electrodes have been reported for 

various communications and control applications. A l l these systems can be represented by 

the common functional model presented in Fig . 3.1 (Mason and Birch 2003) (or a variant of 

this model (Mason et al 2003)). In this model, the User desires to control a Device (via the 

Device's control hardware, termed the Device Controller) through a series of components. 

These components can collectively be called a B C I Interface Device (conceptually similar to 

a keyboard, mouse or joystick). To aid the discussion below, the B C I Interface Device can 

be divided into two parts. The components between User and Control Interface can be 

treated as a single component, a B C I Transducer 1 2, which functions in a manner similar to a 

physical transducer like a dial or switch. The role of the B C I Transducer is to translate the 

1 0 A version of this chapter has been published. © 2004 IEEE. Reprinted, with permission, from (Borrisof J., 
Mason S., Bashashati A., and Birch G. (2004) Brain Computer Interface (BCI) Design for Asynchronous 
Control Applications: Improvements to the LF-ASD Asynchronous Brain Switch IEEE Trans. Biomed. Eng. 51 
985-92) 

1 1 Also known as Brain-Machine Interface (BMI), Direct Brain Interface (DBI) or Adaptive Brain Interface 
(ABI) technology. The term BCI will be used in this paper. 

1 2 The term BCI Transducer introduced in (Mason et al 2003) is synonymous to the term BCI Control 
originally proposed by Mason and Birch (Mason and Birch 2003). The former is chosen because of the 
functional similarity to physical transducers. 
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User's brain activity into logical (or device-independent) control signals. The role of the 

Control Interface is to translate the logical control signals into semantically meaningful 

information or commands. It may do this over time providing feedback through a Control 

Display. 

' x ' '—-jr—1 1 i 1 ' 1 

user-reported error Operating Environment 

I BCI Transducer 1 

I BCI Interface Device ' 

Figure 3.1 Functional model of a BCI System depicting the principle functional components (Mason 
and Birch 2003, Mason et al 2003). Note the Control Display is optional. 

There are many B C I Transducer designs presented in the literature. However few have been 

designed specifically for asynchronous control. The concept of asynchronous control for B C I 

Systems was introduced in (Mason and Birch 2000). A s a brief review, B C I Systems are 

designed to operate in the following general control paradigm. From an O F F state, a B C I 

System is turned O N using some mechanism. (At this point in the development of B C I 

systems, an attendant is needed to turn all existing B C I Systems O N ) 1 3 . With the system 

turned O N , the User controls the system for a period of time, and then the system is turned 

O F F using a command or some other mechanism. This sequence is shown in Fig. 3.2. For an 

asynchronous B C I system, once the system is O N , the User affects the B C I Transducer 

output when they want by intentionally changing their brain state. In between periods of this 

1 3 Developing an automated switch to turn the system on is recognized as a difficult problem similar to the 
open microphone problem with speech recognition. Such a switch has to differentiate between all possible 
innate brain states and the system ON state. In practical terms, the mechanism will probably be implemented in 
the future as a sequence of commands, where each step in the sequence confirms the User's intent to turn the 
system ON. 
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Intentional Control (IC) the User is in a N o Control (NC) state 1 4 - they may be idle, 

daydreaming, thinking about a problem or lunch, or performing some other action, but they 

are not trying to control the B C I Transducer. This form of intermittent control has been 

termed asynchronous control (Mason and Birch 2000). To operate in this paradigm, B C I 

Transducers are designed to respond only when there is intentional User control and maintain 

an inactive state output during times when the User is in a N C state. The performance of a 

User operating a two-state asynchronous B C I Transducer can be measured in percentage 

successful switch activations during the IC state (i.e., True Positive error rate) and percentage 

false switch activation during the N C state (False Positive error rate). (Note, in most B C I 

System evaluations reported in the literature, the allowable times for intentional User control 

are restricted to periods defined by a computer. Thus these evaluations have not tested their 

B C I technology for general intermittent or asynchronous operating paradigms. Since the 

User's input is synchronized with the external computer, this type of control has been termed 

synchronous control (Mason and Birch 2000). In these experimental systems the B C I 

technology is tested only during intentional User control. The response of the B C I 

Transducer during the N C state is not tested.) 

system system ON system 
OFF OFF 

_ L • J L L 
OFF 

signal 

intentional User control 

Figure 3.2 General asynchronous system control sequence. 

Even though asynchronous (or intermittent) control is the most natural mode of interaction, it 

has received relatively little attention in the field. A s recognized in (Wolpaw et al 2002), this 

is an important problem that requires more attention. Only a few B C I Transducers (Birch et 

a\ 1993, Levine et al 2000, Mason and Birch 2000, Mi l l an and Mourino 2003 Yom-Tov and 

Inbar 2003) have been specifically designed (and tested) for asynchronous control. Each of 

1 4 The IC and NC states have also been referred to as "active" and "idle" states [6]. 
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the proposed transducers produces a two-state discrete output and as such wi l l be referred to 

as an Asynchronous Brain Switch (ABS) in the remainder of this paper. 

Recent on-line studies with the Low-Frequency Asynchronous Switch Design ( L F - A S D ) 

have demonstrated total mean classification accuracies over 96% with spinal cord-injured 

and able-bodied subjects (Birch et al 2002a,b). Despite these encouraging results, our 

experience to date indicates that these error rates are too high for individuals with spinal cord 

injuries (our target population) in most practical asynchronous control applications. For 

practical applications, one needs to focus on low false positive rates. From our experience, 

false positive rates above 2% cause excess frustration and distraction in subjects (Birch et al 

2002a). 

This paper presents the results of an off-line study to evaluate four new design 

implementations of the L F - A S D transducer. The new designs incorporated combinations of 

E E G energy normalization, feature space dimensionality reduction, and an alternative 

classification scheme. E E G recordings of attempted finger movements were collected from 

our target population of individuals with spinal cord injuries (SCI subjects) as well as able-

bodied ( A B ) subjects. 

3.2. New Asynchronous Brain Switch Designs 
The four new A B S designs tested in this study were variations of the original L F - A S D 

transducer design (Mason and Birch 2000). The new designs were named n L F - A S D - ( A , B , C 

and D) as they were based on a set of normalized-energy, low-frequency features. Fig. 3.3 

presents a block diagram with original components shown in white and the new components 

shown in gray. The four designs use various configurations of the new components and 

codebook generation methods as summarized in Table 2.1. 

electrode 
array 

Feature Extractor 

ENT U 
LF-ASD 
Feature 

Generator 
KLT 

Feature Translator 

1-NN moving debounce 
Classifier average 

debounce 

k 

Codebook generation scheme 

Figure 3.3 Components of nLF-ASD transducers with new components shown in gray, where E N T : 

Energy Normalization Transform, K L T = Karhunen-Loeve Transform, and 1 - N N = 1 -Nearest 
Neighbor. 
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T A B L E 3.1 CONFIGURATIONS OF THE N E W A S Y N C H R O N O U S B R A I N SWITCH DESIGNS, 

W H E R E N L F - A S D = N O R M A L I Z E D - L O W - F R E Q U E N C Y A S Y N C H R O N O U S SWITCH 

DESIGN, ENT = E N E R G Y N O R M A L I Z A T I O N T R A N S F O R M , K L T = K A R H U N E N - L O E V E 

T R A N S F O R M , F U Z Z Y A R T = F U Z Z Y A D A P T I V E R E S O N A N C E THEORY, LVQ3 = 

L E A R N I N G V E C T O R QUANTIZATION. 

Design Name ENT KLT Debounce Codebook Generation 
NLF-ASD-A X X K-MEANS + LVQ3 
NLF-ASD-B X X FUZZY ART+ LVQ3 
NLF-ASD-C X X X K-MEANS+ LVQ3 
NLF-ASD-D X X X FUZZY ART+LVQ3 

3.3. Description of New Components and Methods 
The Energy Normalization Transform (ENT) component, introduced in ( Y u et al 2002), 

demonstrated that normalizing input energy results in greater class separation between IC and 

N C periods of movement and reduces system sensitivity to variations in E E G energy. The 

output of the transform, y(n), is calculated from the input, x(n), using 

x{n) 
y(n) = 

W N 
£ xin-s)1 

where WN is the size of the input data window. For this work, the optimal was 51 as 

determined by previous work (Yu et al 2002). 

The Karhunen-Loeve Transform ( K L T ) component was used to reduce the 6-dimensional 

feature space produced by the L F - A S D Feature Generator to a 2-dimensional space using the 

K L T algorithm (Jayant 1984). This component was added to test i f a reduction in feature 

space could be accomplished without performance degradation. A reduced feature space 

potentially offers greater insight and hence improved customization of a particular 

individual's system parameters. 

The Debounce component was introduced to reduce the number of false switch activations. 

Observations from previous studies (Birch et al 2002a, Lisogurski and Birch 1998) indicated 

that switch activations were multiple samples long and false positives occurred in clusters. 

Statistical analysis of the activation lengths and inter-activation periods, shown as Lj and Pj in 

Fig. 3.4A, confirmed these initial informal observations. Debouncing the switch output in a 
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manner similar to the debouncing of physical switches was expected to improve false 

activation rates (but with a cost in decreased re-activation time). The debounce component 

continuously monitors the output of the moving average block. After an activation is 

detected (i.e., a change in state from 0 to 1), the output is set to the logical state 1 for one 

sample then the output is forced to an inactive state 0 for Tdb - 1 samples, where T a D is the 

debounce time period in samples. In this study various Tdb values were evaluated. 

Switch output 
4 - » 

Time (samples) 

10 15 20 25 30 39 

Length of Activation Block (samples - 16 Hz) 

700 

600 

600 

400 

300 

200 

100 

0 
16 32 48 84 80 96 112 128 144 

Inter-Activation Period (samples - 16 Hz) 

Figure 3.4 Distribution of false switch activations. A . Schematic diagram showing the metrics used to 
characterize false switch activations: Lj = length of the ith switch activation block (i.e. the number of 

activations that occur in consecutive sample times); and P; = the rth inter-activation period (i.e. the 
distance from start of the rth activation block to the end of the ith+l block). B. Histogram of switch 
activation block length (Lj values). C. Histogram of inter-activation period (Pi values). The arrows 

indicate the primary debounce values used in evaluation of the new A B S designs. 

Two Codebook Generation Methods were used to generate a codebook for the 1-NN 

classifier from training data. The first method was that employed by Mason and Birch 

(Mason and Birch 2000). In this method, the k-means algorithm (Kohonen 1990) with 3 

vectors per class was used to generate initial clustering of the two data sets. This was 

followed by Learning Vector Quantization (LVQ3) (Kohonen 1990) to generate the final 

codebook. The second method used a self-organizing neural model called fuzzy adaptive 

resonance theory (fuzzyART) (Carpenter et al 1991) to perform independent data clustering 
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of the two data sets. The fuzzy A R T algorithm provides a data-driven selection of the number 

of code vectors in the codebook which is an advantage over the original k-means (which uses 

a static number of code vectors). This neural network accepts analog inputs one at a time and 

develops an adaptive categorization of the input data based on the user defined degree of 

similarity of patterns in clusters. Familiar inputs activate their category, whereas unfamiliar 

inputs trigger either adaptive learning by an existing category, or commitment of a new 

category. The algorithm has one parameter, the vigilance parameter, which was set to 

between 0.45 and 0.6 in order to constrain the total number of codebook vectors for both IC 

states and N C states to be less than nine. The means of the resulting clusters were fed to 

L V Q 3 to generate the final codebook. 

3.4. Evaluation Methods 
For this study the new designs were evaluated off-line and the performance of the new A B S 

designs were summarized in receiver operating characteristic (ROC) curves. These results 

were compared to the performance of the original L F - A S D design. 

The data used in this evaluation was collected from subjects positioned 150 cm in front o f a 

computer monitor. E E G was recorded from six bi-polar electrode pairs positioned over the 

supplementary motor area and the primary motor cortex (defined with reference to the 

International 10-20 System at F i - F C i , F 2 - F C 2 , F 2 - F C 2 , F C i - C i , F C 2 - C Z , and F C 2 - C 2 ) . Electro-

oculographic (EOG) activity was measured as the potential difference between two 

electrodes, placed to the corner and below the right eye. Ocular artifact was considered 

present when the difference between the E O G electrodes exceeded ±25 uV. A l l signals were 

sampled at 128 H z (see (Birch et al 2002a) for details). 

The subjects used in this study were four subjects with a high-level SCI and four able-bodied 

subjects. SCI subjects (all males and right handed) were between 33 and 56 years old. A l l 

SCI subjects had no residual sensation or motor function in the hands (spinal cord injuries 

between C3-C4 and C5-C6) and no other compounding physical or emotional conditions that 

may have interfered with the study (e.g. none were ventilator dependent). A B subjects (3 

males and 1 female) were all right handed and between 31 and 57 years old. 

Data was collected from the subjects performing a guided task. A t random intervals (mean 7 

seconds), a 2cm white circle was displayed on the subject's monitor for % second, cuing 
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them to attempt a movement. In response to the cue, subjects tried to activate the brain 

switch by attempting to move their right index finger 1 second after the cue appeared1 5. (The 

1 second delay was used to avoid visual evoked potential effects from the cue.) To train the 

subjects for appropriate response timing, a yellow dot was flashed 1 second after the white 

circle in order to provide a timing cue. After 5 to 15 minutes of practice, this cue was only 

provided once every 4-8 attempts as a reference for the subject to self check their timing. 

Data collected when a yellow dot was displayed was not used for the codebook training 

phase or performance evaluation of this study. The period between trials was varied; 

however, subjects attempted an average of 15 switch activations in approximately 2 minutes 

of recording. For each subject, an average of 10 such recordings was collected every day for 

6 days. The first days' recordings were used to compute the codebooks for the subsequent 5 

days of evaluation. 

The ability of subjects to control the A B S designs was evaluated with percentage of correct 

activations during IC states (true positives, TPs) and percentage of false switch activations 

during N C states (false positives, FPs). A TP was identified i f the A B S was activated at least 

once in the window 0.5 seconds before and 1 second after the time of expected movement, a 

method similar to that employed by others (Levine et al 2000, Yom-Tov and Inbar 2003). 

Multiple activations in this window were considered as a single activation. FPs were assessed 

in the periods before the appearance of a white circle and after the end of the activation 

window. Periods during which ocular artifact occurred were not evaluated. 

3.5. Results and Discussion 
3.5.1. Debounce Analysis 

The previous observations and the results of the distribution analysis of switch activations 

necessitated an investigation into the impact of debounce on the various switch designs. A s 

an example, the R O C curve for subject SC2 is shown in Fig. 3.5A. Also shown is an 

expanded view of the R O C curve (Fig. 3.5B) to emphasize the performance characteristics of 

the switch at FP rates below 8%. (To improve the presentation of the results, only FP rates 

below 8% wi l l be displayed in further R O C curves.) Table 3.2 shows mean TP rate for all 

15Both subject groups used the same neurological mechanism to drive the brain switch: an attempted finger 
flexion. This resulted in no movement in SCI subjects, and an actual finger flexion in AB subjects. 
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eight subjects processed with the n L F - A S D - A and interpolated for the given FP rate of 2% 

for eight different values of debounce. 

Figure 3.5 ROC curves for Subject SC2 using system design nLF-ASD-A. A . Analysis of the 8 
different values of debounce (Tab) used in this study with corresponding Areas under the ROC curve 

to indicate overall system performance. B. An expanded view of A . Only those values of false 
positives below 8% are shown for clarity. 
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T A B L E 3.2 M E A N TRUE POSITIVE RATES FOR A L L SUBJECTS WITH DIFFERENT 

D E B O U N C E V A L U E S , WHERE N L F - A S D = N O R M A L I Z E D - L O W - F R E Q U E N C Y 

A S Y N C H R O N O U S SWITCH DESIGN, STD = S T A N D A R D DEVIATION OF T R U E POSITIVE 

RATES, S = SECONDS, TDB.= D E B O U N C E PERIOD. NOTE: A L L F A L S E POSITIVE RATES = 

2%. 

Debounce (TDB) in Samples (and Time) 
none (0 sec) 6 (0.38 s) 8 (0.5 s) 16 (1.0 s) 32 (2.0 s) 

Design Name mean STD mean STD mean STD mean STD mean STD 
L F - A S D 0.13 0.09 0.36 0.14 0.44 0.15 0.51 0.15 0.70 0.11 
N L F - A S D - A 0.21 0.05 0.54 0.10 0.61 0.10 0.68 0.10 0.83 0.06 
N L F - A S D - B 0.21 0.05 0.55 0.09 0.62 0.09 0.68 0.09 0.83 0.05 
N L F - A S D - C 0.19 0.05 0.53 0.09 0.61 0.09 0.66 0.09 0.82 0.06 
N L F - A S D - D 0.20 0.05 0.53 0.09 0.60 0.09 0.66 0.09 0.81 0.06 

A s the debounce period increased, the FP rate decreased for a given TP rate. These results are 

in line with the application of debounce in other physical transducer designs. A s the length of 

the debounce period increased the re-activation time of a B C I transducer is impacted. The 

tradeoff is clear and one needs to consider this for a given application. For the remainder of 

the results reported here, the debounce period of 16 samples (1 second) was chosen for data 

presentation because it provides a practical minimum re-activation time while rejecting the 

majority of the clustered FP activations (see arrow in Fig. 3.4C). 

3.5.2. New vs. Old Transducer Designs 

The performance of the new switch design methods with the previous design ( L F - A S D ) at 

fixed debounce periods was compared. The results of all five processing methods for subject 

SC2 are shown in Fig. 3.6. The TP rates at 2% FP for all eight subjects are shown in Table 

3.3. The results show that all four new n L F - A S D - X variants performed similarly with no 

statistically significant differences. N o differences were detected between codebooks 

generated using k-means or fuzzyART. A s well , no differences were detected with data 

transformed to 2-dimensional feature vectors. Because performance is not worsened with 

lower dimensional data, the Feature Extractors with K L T wi l l probably be preferred in future 

studies because of the benefits of a lower feature space dimensionality, i.e., easier 

interpretation of feature space characteristics which can facilitate and guide classifier design 

choices. The fact that no differences were shown with the different schemes suggests 

alternate approaches need to be explored to achieve performance improvements. Such 
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approaches may include 1) more complex classifiers such as support vector machines ( S V M ) 

(Burges 1998) or fuzzy A R T M A P (Carpenter 1992); 2) customization of the L F - A S D 

Feature Generator parameters to individual subjects (which to date has not been done in this 

or any previous study); and/or 3) the exploration of different E E G features. 

Figure 3.6 ROC curves for Subject SC2 with debounce set to 16 samples. Analysis of the five 
different processing methods used in this study. Only those values of false positives below 8% are 

shown for clarity. 

A l l four new transducer designs performed better than the previous L F - A S D transducer. This 

is most likely due to the presence of the E N T block in the processing path which increases 

the separation between IC and N C feature vectors and stabilizes the scale of input signals to 

the L F - A S D processor ( Y u et al 2002). The mean R O C curves for all eight subjects are 

shown in Fig . 3.7. The n L F - A S D - A system was used to compare the new methods with the 

previous L F - A S D because of its relative computational simplicity and the fact that the 

previous ( L F - A S D ) codebooks were generated with this method. The n L F - A S D - A system 

performed significantly better than the previous design, as seen with a mean TP rate increase 

of 33% for a FP rate of 2% (from 51% to 68%; p < 0.05, 2-way analysis of variance). 

Performance improvements can also be seen in individual subjects (Table 3.3) when E N T 

processing was used (for instance with subject S C I , TP rate improved from 45% to 71%), 

although for three able-bodied subjects (AB2-4) the improvements were minimal. It should 
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also be noted that the TP performance results presented in Table 3.3 represent total system 

classification accuracies greater than 97%. This is due to the fact that the L F - A S D is 

continually classifying inputs every 16 t h o f a second and the fact that the majority o f User's 

time is spent in an N C state which for a 2% FP rate represents an accuracy of 98% during this 

state alone. 

False Positives 

Figure 3.7 ROC curve of the true positive rate means for all 8 subjects (depicted with standard error 
of the mean error bars) with debounce set to 16 samples. Solid line = LF-ASD. Dashed line = nLF-

ASD-A. The difference is significant (p < 0.05, 2-way A N O V A ) . Only those values of false positives 
below 8% are shown for clarity. 

T A B L E 3.3 T R U E POSITIVE RATES FOR INDIVIDUAL SUBJECTS. NOTE: A L L F A L S E 

POSITIVE RATES = 2%. D E B O U N C E V A L U E S OF 16 A R E SHOWN. 

Subject 
Design Name SCI SC2 SC3 SC4 AB1 AB2 AB3 AB4 
LF -ASD 0.45 0.47 0.46 0.35 0.32 0.73 0.65 0.67 

NLF -ASD-A 0.71 0.76 0.47 0.63 0.72 0.81 0.67 0.66 

N L F - A S D - B 0.72 0.75 0.50 0.63 0.67 0.79 0.69 0.66 

NLF-ASD-C 0.67 0.74 0.49 0.59 0.68 0.78 0.68 0.65 

N L F - A S D - D 0.67 0.74 0.50 0.56 0.69 0.79 0.68 0.66 
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3.5.3. Spinal Cord-Injured Subjects vs. Abie-Bodied Subjects 

The performances of spinal cord-injured subjects versus able-bodied subjects were compared 

with the original L F - A S D and the new n L F - A S D - A system design (Fig. 3.8). For the new 

system designs, little or no differences between SCI subjects and A B subjects were detected 

(Fig. 3.8A, Table 3.3). Interestingly, A B subjects performed better than SCI subjects on the 

L F - A S D system (Fig. 3.8B), although these results were not statistically significant (p > 0.05, 

2-way A N O V A ) . Differences between SCI subjects and A B subjects are readily evident from 

Table 3.3. For example, three SCI subjects showed major improvements with E N T 

processing compared to only one A B subject. The differences in performance between SCI 

subjects and A B subjects using the older L F - A S D may reflect differences in E E G energy 

levels during attempted motor movements by the SCI subjects compared to A B subjects, 

although the ensemble average movement related potentials ( M R P ) for these groups of 

subjects are similar (Birch et al 2002a,b). Because SCI subjects are able to operate the L F -

A S D , which is presumed to be activated by M R P s (Mason and Birch 2000), (Birch et al 

2002a,b), it seems likely that SCI subjects produce similar M R P s to those of A B subjects. 

Others have suggested the same (Decety and Biosson 1990, Green et al 1998, Green et al 

1999), although there is some disagreement in the field (Levy et al 1990, Levt et al 1991, 

Streletz et al 1995). The results presented here suggest it is possible that SCI subjects have 

only differences in relative E E G signal energy levels, an issue mitigated with the use of an 

energy normalization transform. Thus, the similarity of SCI subjects and A B subjects suggest 

that the L F - A S D with energy normalization may be a viable B C I for individuals with a 

disability. 
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Figure 3.8 ROC curve of the mean true positive rates for A B subjects vs. SCI subjects (depicted with 
standard error of the mean error bars) with debounce set to 16 samples. Solid line = able-bodied 

subjects. Dashed line = spinal cord-injured subjects. A . System design nLF-ASD-A. B. System design 
LF-ASD. 

3.6. Conclusion 
In conclusion, the error characteristics of the new asynchronous brain switch designs were 

significantly better than the L F - A S D design with true positive rate increases of 

approximately 33% for false positive rates in the range o f 1-2%. The improvement was 

attributed to the addition of an energy normalization transform (ENT). The most significant 

improvements with E N T were found in spinal cord-injured subjects, indicating possible 

energy differences in E E G recorded from SCI and A B subjects. One of the next steps is to 

evaluate these new designs in an on-line study. 
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The four new n L F - A S D designs had no significant performance differences between them. 

The main conclusion from this finding is that we can use a two-dimensional feature space 

without performance degradation. This may improve our ability to understand the feature 

space and thus select better classifier designs. This finding also suggests that the 1-NN 

classification algorithm was not sensitive to the codebook generation method. 

This work has succeeded in decreasing the error rates of our A B S designs. Although this 

decrease in error rate is encouraging, practical experience indicates that further 

improvements are needed. Thus, our future work w i l l explore the use of self-learning 

classification schemes like S V M or fuzzy A R T M A P instead of the 1 - N N classifier. We wi l l 

also explore customization of the L F - A S D Feature Generator parameters (which have never 

been adjusted for individual subjects) or develop different feature extraction methods. 

A n exciting finding of this study, which confirms the findings of (Birch et al 2002a), was that 

spinal cord-injured subjects can operate these new A B S designs to the same ability as able-

bodied subjects. Both populations are achieving promising control accuracies with current 

technology. Thus, A B subjects using a finger movement are good predictors of the 

controllability of the n L F - A S D technologies by SCI subjects using an attempted finger 

movement. This evidence supports our use of able-bodied subjects as proxies for our target 

population in future development efforts. The results of this study support our belief that 

A B S technology wi l l dramatically increase the level of independence for individuals with 

high level spinal cord injuries in the foreseeable future. 
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Chapter 4 A Comparative Study on Generating Training-Data 

for Self-Paced Brain Interfaces 1 6 

4.1. Introduction 
Direct Brain Interface (BI) systems provide an alternative communication and control 

solution for individuals with severe motor disabilities, bypassing impaired interface 

pathways. In a B I system, the cortical activity associated with an intentional control 

command is mapped directly to application-specific control signals. Various devices, such as 

neural prostheses, can then be controlled by cognitive processes alone. For a review of the 

field, see (Mason and Birch 2003, Mason et al 2006, Nicolelis 2003, Vaughan et al 2003, 

Woplaw et al 2002). 

Many B I transducer designs have been presented in the literature. Few of them, however, 

have been designed specifically for asynchronous or self-paced control. The concept of self-

paced control of B I systems was introduced in (Mason and Birch 2000) as "asynchronous 

control". In a self-paced BI , the users affect the BI transducer output whenever they want by 

intentionally changing their brain state. Between periods of intentional control (IC), users are 

said to be in a no-control (NC) state - they may be idle, daydreaming, thinking about a 

problem or lunch, or performing any other action, but they are not trying to control the B I 

transducer. To operate in this paradigm, BI transducers are designed to respond only when 

there is intentional user control and to remain inactive when the user is in an N C state. In 

contrast, most B i s operate only during specific periods determined by the system (not the 

user). The latter operating paradigm is referred to as synchronous or synchronized control 

(Mason and Birch 2000, Mason and Birch 2005). Although self-paced control is the most 

natural mode of interaction, it has received relatively little attention. Only a few BI 

transducers (Birch et al 1993, Borisoff et al 2004, Levine et al 2000, Graimann et al 2004, 

Mason and Birch 2000, Mi l l an and Mourino 2003, Yom-Tov and Inbar 2003, Scherer et al 

2004, Townsend et al 2004) have been specifically designed and tested for self-paced 

A version of this chapter has been published. © 2007 IEEE. Reprinted, with permission, from (Bashashati 
A., Mason S.G., Borisoff J., Ward R.K., and Birch G. (2007) A Comparative Study on Generating Training-
Data for Self-Paced Brain Interfaces IEEE Trans. Neural Systems and Rehabilitation 15 59-66) 
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control. A s recognized in (Wolpaw et al 2002), it is an important issue that deserves more 

attention from the research community. 

Like any control system dependent on pattern recognition or machine learning, before a user 

can operate the system, the system needs to be trained. System training typically refers to 

training the classifier component of the system, a process that requires well-defined training-

data that includes representative samples of each class of data. For self-paced BI systems, 

generation of the training-data is especially challenging. A s an example, consider designing a 

BI system that is activated by the user attempting or imagining a specific movement. 

Furthermore, consider that most BI systems are designed for use by individuals with severe 

motor disabilities. Wi th these individuals, there is no observable indicator of their intent. 

Wi th no indication of intent, the exact time that the person actually imagined or intended to 

perform the movements is not known. Thus, little or no knowledge is available to label the 

training-data for the intentional control data class. In contrast, an able-bodied subject can 

perform the desired movements and one can observe his/her movement as the indicator of 

intent. Even for able-bodied individuals, when the BI system aims at detecting imagined 

mental tasks (e.g. imagined movement), no indication of intent is available. In such cases, 

generating training-data for such a system is also problematic. Wi th the lack of an observable 

indication of intent, one possibility is to use the time that the intentional control (IC) task 

such as an imagined movement is expected to be performed. However, since the actual time 

of IC is not precisely known, the use of the expected time of IC can result in poor training-

data and consequently worse system performance. 

This problem is also observed in other research fields such as the cases when satellite images 

need to be classified but no knowledge of the ground-truth is available. In such cases, the 

expert's interpretation of satellite images is used to generate training-data (Chia-Tang et al 

2003) or unsupervised signal processing methods are employed to detect specific objects in 

the image (Kersten et al 2005). Because the signal-to-noise ratio of the brain signal is very 

low and the E E G patterns associated with different brain states are not visually differentiable 

in a single trial basis, these approaches are not useful in generating training-data for BI 

systems. 
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This paper introduces and then evaluates three methods to generate system training-data for 

self-paced BI systems. These methods rely on the external knowledge of the 'approximate' 

time of the intended control (IC), i.e. the time of expected attempted movement. In such 

cases, the exact time of the IC state is not known. Thus the extracted features around the 

approximate time of IC could belong to the N C or IC class. Comparing the statistical 

likelihood of mixed N C and IC class features to N C class features, the proposed methods 

estimate which class each feature belongs to and labels them accordingly in order to tune the 

various system components such as the classifier. 

In Section 4.4, the performance of the proposed methods is compared to four other methods 

of generating training-data. These four methods are simply based on the expected time of the 

IC. To compare the performance of the proposed methods, the methods are applied to the 

E E G data of four able-bodied and four spinal-cord-injured (SCI) subjects which were 

previously recorded in self-paced BI experiments at the N e i l Squire Brain Interface Lab, 

Vancouver, Canada. We compare the performance of these methods on the classifier of a 

specific self-paced brain interface, named the L F - A S D , as a representative example of self-

paced B i s in the literature (Mason and Birch 2000). 

4.2. Data Generation Methods 
In the following subsections, we introduce the proposed methods for generating training-data 

for self-paced brain interfaces. These methods are based on an experimental protocol where 

several attempts at intentional control (IC) are measured assuming the trial structure shown in 

Fig. 4.1. For each trial, the experimental system provides a timing cue. The subjects are 

instructed to attempt intentional control in response to this cue 1 7 . The cue determines the 

"time of the expected IC or T E I C which is when the subjects are instructed to attempt 

intentional control. A time window that spans T seconds before to T seconds after this time is 

called the 'expected response window' or E R W . The purpose of the proposed methods is to 

extract the most l ikely feature (or features) that corresponds to IC, of all those mixed IC and 

N C features that occurred during the E R W . These extracted IC features are then used as 

training-data for the B I system. 

1 7 Cues can be offset by T C u e from actual TEIC to avoid stimulus-related artifacts. 
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The proposed methods require approximately four minutes of E E G data related to the no 

control (NC) class. These data can be extracted from the interval times between IC trials (as 

shown in Fig. 4.1) or separately during any time interval when the subject does not intend 

issuing control. 

ERW 

t=TEIC-Ts t=TEIC+Ts 

TEIC-Tc 

Time (s) 

NC class features Mixed IC and NC| 
class features 

NC class features 

Figure 4.1 Structure of an IC trial, where TEIC: time of the expected IC, ERW: expected response 
window, IC: intended control, NC: no control, T C u e : time of the cue appearance. 

4.2.1. Parzen-Based Training-Data Generation (TR_Genl) 

The first method, named T R _ G e n l generates the probability density function (PDF) of the 

known samples which lie outside the E R W . Since these samples are known to be of the N C 

type, the resulting P D F is denoted by fNc(x).fNc(x) is then used to rank the samples within the 

E R W such that the feature vectors that have higher probability of belonging to the N C class 

are ranked lower than those feature vectors that have a low probability of belonging to the 

N C class. In fact, the higher ranked features would most l ikely belong to the IC class rather 

than the N C class. 

Details of the procedure for generating the training-data with T R _ G e n l method is shown in 

Fig. 4.2. This procedure has two main stages: 

In the first stage, the P D F of the N C features (/NC(X)) is estimated using the Parzen's 

probability density estimation method (Cacoullos 1966, Parzen 1962). The Parzen method 

yields accurate results when a large population of data is available. For the problem at hand, 

because o f the availability of a large population of N C state features (Cacoullos 1966, Parzen 

116 



1962) and because of the findings in (Glavinovic 1996) that shows Parzen density estimation 

outperforms frequency histogram estimation, the estimation of the probability density 

distribution using the Parzen method should yield more accurate results than those given by 

other probability density estimation methods. The kernel function and the kernel size are the 

two important parameters of the Parzen's probability density estimation method. A Gaussian 

kernel with kernel size of N~k,n as recommended in (Cacoullos 1966) was used, where TV is 

the number of available data, n is the dimension of the data, and k is chosen as a number 

between 0 and 1. To obtain k, we used simulated Gaussian distributed data and obtained the 

best estimated P D F results with k=0.15 and used this value in our method. 

NC state 
features 

Probability density 
estimation of NC features 

Mixed class 
features from 

each trial 

Estimating the 
probability of FV 

being NC using fNC(x) 

Best IC 
feature 

selection 

Data base of IC 
training-data 

Figure 4.2 IC state training-data generation using T R G e n l method, IC: intended control, NC: no 
control, FV: feature vector,/NC(X)'- probability density function of NC features. 

In the second stage, we consider the features extracted from the E R W time duration. The 

class to which each of these features belongs is not known. These features are processed with 

the goal of selecting amongst them the best representative features of the IC class. The 

probability density distribution of the N C feature vectors computed in the previous step is 

used to estimate the probability of each of these features belonging to the N C class. For each 

E R W , the top ranked feature (the feature that is least l ikely to belong to the N C class) is 

selected as an IC class feature. This procedure is repeated for each E R W . The resulting set of 

IC class features are selected as IC training-data. To select the features of the N C training-

data, the features from outside the E R W are considered and the probabilities of these features 

belonging to N C class are calculated separately for each feature. Then, the top H-75% of N C 

class features that has the highest probability of being N C are selected as N C class training-

data. 
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4.2.2. kMeans-Based Training-Data Generation (TR_Gen2) 

The second method, called TR_Gen2, separates IC from N C features in the E R W based on 

their initial clustering. A s this clustering method only separates the features into two classes 

and does not provide the label of the resulting clusters, the probability density function of the 

N C class features (/NC(X)) is used to label the resulting clusters as N C or IC class. The same 

procedure as described in Section 4.2.1 is used to estimate the probability density function 

(/NC(X)) o f the N C class. 

A s Fig. 4.3 shows, the E R W features are fed into the k-Means clustering algorithm (Kohonen 

1990) using k=2, i.e. two feature clusters. Using /NC(X), each of the two resulting clusters is 

labeled as an N C or IC class. The method that labels the clusters is as follows: the average of 

each o f the features o f the two resulting clusters is calculated. \Jsm%fNc(x), the features of the 

cluster whose average has less probability of being an N C class is considered as the IC class 

cluster and the other cluster is considered as the N C class cluster. This procedure is repeated 

for each E R W and all features belonging to all the IC clusters form the set of IC class 

features to be used as the IC training-data. To generate the N C class training-data, the same 

procedure as described for the T R G e n l method is used. 

N C state Probability density estimation of 
features N C features (fNC(x)) 

Mixed class 
features from 

each trial 

k-Means 
clustering 

Estimating the 
probability of the 

average of each cluster 
being N C usm%fNC(x) 

Mixed class 
features from 

each trial 

k-Means 
clustering 

Estimating the 
probability of the 

average of each cluster 
being N C usm%fNC(x) 

Estimating the 
probability of the 

average of each cluster 
being N C usm%fNC(x) 

Selecting the Data base of IC 
cluster that — • training-data 

belongs to IC 

Figure 4.3 IC state training-data generation using TR_Gen2 method, IC: intended control, NC: no 
control, /NC(X)'- probability density function of N C features. 

4.2.3. Averaged kMeans-Based Training-Data Generation (TR_Gen3) 

The third method, named TR_Gen3, is also based on the initial kMeans clustering of the 

E R W features, as explained in Section 4.2.2. After clustering the E R W features and labeling 

them, the average feature of all IC features in the cluster is calculated and used as the 

representative IC class feature for that E R W . This procedure is repeated for each E R W 

118 



resulting in a set of IC class features for the training set. The rationale behind using the 

average (and not all the features) of the IC cluster is as follows: when all the features in the 

IC cluster are used, there might be some features that are very close to the N C class but they 

were considered as IC class features. B y averaging the features of the IC cluster, the effect of 

such features is hopefully reduced. 

4.3. Evaluation 
The proposed training-data generation schemes were evaluated on data previously recorded 

for self-paced BI experiments at the Ne i l Squire Society, Vancouver, Canada. The proposed 

methods were used to train the feature classifier of the L F - A S D brain switch (Mason and 

Birch 2000). The results are evaluated with standard performance metrics and are presented 

in Section 4.4. 

Fig. 4.4 shows the block diagram of the latest L F - A S D design. Using a custom-designed 

template matching algorithm, the features from each of the six incoming bipolar channels are 

calculated. Overall, six feature values corresponding to each of the six bipolar channels are 

generated. Then, the Karhunen-Loeve transform (i.e. Principal Component Analysis) is used 

to reduce the dimensions of the resultant features from six two. Every 1/16 th o f a second, a 1-

nearest neighbor (1-NN) feature classifier classifies each feature to either the IC or N C class. 

A moving average and a debounce block are then used to further improve the classification 

accuracy of the system by reducing the number of false switch activations. Specific details on 

the latest design and implementation of the L F - A S D can be found in (Borisoff et al 2004). To 

generate the codebooks for the 1 - N N classifier, the k-means algorithm (Kohonen 1990) with 

three vectors per class state is followed by Learning Vector Quantization ( L V Q 3 ) (Kohonen 

1990) to find the final codebook in the feature space. In the L V Q algorithm, the learning 

rate, a , is set to 15/(length of training data) and s to 0.25. The algorithm is stopped after it 

runs 2000 times or i f the template does not change significantly according to a predefined 

threshold. 
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Figure 4.4 Components of the Low Frequency Asynchronous Switch Design (the LF-ASD) (from 
(Borisoff et al 2004)). ENT: energy normalization transform, K L T : Karhounen-Loeve transform, 1-

N N : one nearest neighbour 

4.3.1. Experimental Data 

The subjects consisted of four subjects with a high-level spinal cord injury (SCI) (level of 

injury between C3-4 and C5-6) and four able-bodied subjects. A l l subjects were male except 

for one female subject. They were all right handed and between 31 and 57 years old. A l l SCI 

subjects had no residual sensation or motor function in the hands. A l l the subjects had signed 

the consent form required by the Behavioral Research Ethics Board ( B R E B ) of the 

University of British Columbia. 

The E E G data were collected from subjects positioned 150 cm in front of a computer 

monitor. The E E G signal was recorded from six bipolar electrode pairs positioned over the 

supplementary motor area and the primary motor cortex (defined with reference to the 

International 10-20 System at F1-FC1, Fz -FCz , F2-FC2, F C 1 - C 1 , F C z - C z , and FC2-C2) . 

Electro-oculographic (EOG) activity was measured as the potential difference between two 

electrodes, placed at the corner and below the right eye. A n eye-blink artifact was considered 

present when the difference between the E O G electrodes exceeded ±25 p V . A l l signals were 

amplified, then filtered by a 0.1 to 30Hz band-pass filter and then sampled at 128Hz by a P C 

equipped with a 12-bit analog to digital converter. 

The data were collected from the subjects while performing a guided task, in 2-minute sub-

sessions, over a session period of 1.5 hours. The sub-sessions contained both the N C and IC 

state periods as shown in Fig . 4.1 where T c u e - l s , T=0.5s and T E I C corresponds to time of 

attempted movement. A t random intervals of 5.6 to 7.0 seconds (mean of 6.7 seconds), a 2cm 

white circle cue was displayed on the subject's monitor for lA second, prompting them to 

attempt a movement. In response to this cue, the subject tried to activate the brain switch by 
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attempting to move the right index finger one second (Tc u e ) after the cue appeared. The one-

second delay (Tc u e ) was used to avoid the visual evoked potential effects from the activity. 

The time, one second after the cue, is called "time of expected (attempted) intended control 

(TEIC)". A s the time to perform the movement attempt depended on a user's response, the 

movement attempt was not necessarily performed at T E I C and would be different from 

subject to subject and attempt to attempt. Both subject groups used the same neurological 

mechanism to drive the brain switch: an attempted right index finger flexion. This resulted in 

no movement in subjects with high level SCI, and an actual finger flexion in able-bodied 

subjects. For each subject, an average of 80 trials was collected every day for 6 days. 

Besides recording the E E G data during movement attempts, in each session, the E E G data 

were also recorded for several 2-minutes periods while the person was in a specific no 

control (NC) state. The sub-sessions that only contained N C state E E G data were gathered 

while subject was in different N C states such as attentive eyes opened while looking at a 

picture on the monitor, doing a search task, attentive eyes closed etc. The reason this type of 

data was recorded was to evaluate the performance of the BI design in different N C state 

periods. 

4.3.2 Method of Evaluation 

The proposed training-data generation schemes were evaluated on all available data, i.e., the 

sub-sessions that contained mixed N C and IC state data and the sub-sessions that included 

only N C state periods. Specifically, the sub-sessions that contained only N C state E E G data 

were used to generate the probability density distribution of N C class features (fNc) as 

explained in Section 4.2. In this experiment we chose H=75% and T=0.5s (for more details 

refer to Section 4.2). 

The ability of the subjects to control the L F - A S D B I switch was evaluated by 1) the 

percentage of correct activations during E R W s (referred to as true positives, TPs) and 2) the 

percentage of false switch activations during N C states (false positives, FPs). A TP was 

identified i f the BI system was activated at least once in a window spanning 0.5 seconds 

before to 1 second after the time of the expected IC (TEIC). This method is similar to that 

employed previously (Borisoff et al 2004, Graimann et al 2004, Levine et al 2000, Mason 

and Birch 2000, Yom-Tov and Inbar 2003). FPs were assessed in the periods before the 
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appearance of a white circle and after the end of the activation window. Periods during which 

ocular artifacts occurred were blocked by the system and not included in the evaluation. 

To assess the performance of the L F - A S D system, a method based on 5-fold stratified cross-

validation is used. In this approach, the trials are randomly divided into five groups of equal 

trial numbers. Then the classifier is trained using the data of one of the five groups and the 

system's performance is evaluated using the data of the remaining groups. A s shown in 

(Bashashati et al 2006), for this specific BI system, evaluating the performance of the system 

on one cross-validation set provides an accurate measure of performance without having to 

repeat this procedure for each of the five cross-validation sets. Details of the evaluation 

method and the procedure detailing how the trials are randomly picked from continuous E E G 

are found in (Bashashati et al 2006). 

The above three proposed methods for generating the training-data were compared to the 

following four other schemes used to generate the training-data for the IC class: (1) the single 

feature specifically at T E I C are picked from each E R W (referred to as T R _ T E I C ) , (2) three 

features around T E I C are picked from each E R W (TR_3TEIC), (3) all the features in E R W 

are picked from each trial (TR_A11), and (4) one feature is randomly picked in the E R W s 

( T R R a n ) . To generate the N C class training-data, the same procedure as described for 

T R _ G e n l method which selects the top H=75% of features that belong to the N C state is 

used. 

The 1-NN classifier of the L F - A S D design was trained seven separate times using training-

data generated by each of the seven methods. Receiver operating characteristic (ROC) curves 

were generated for the B I system associated with each of the training-data generation 

methods. Then, for each subject, the area under the specific region of interest of the R O C 

curves ( A R O I - R O C C ) was used to compare the performance of each method. For practical 

applications, one needs to focus on low FP rates. From our experience, FP rates above 2% 

cause subjects excess frustration and distraction in subjects (Birch et al 2002). Thus, 

A R O I R O C C for FPs less than 2% are calculated and used for comparison. Note that we 

have not measured frustration in a systematic way; our knowledge is based on informal 

subject interviews conducted at the end of the study. 
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To assess the statistical significance of the results, for each subject, the algorithms were 

repeated 10 times, each time with a random set of trials as training and test data. 

4.4. Results 
Table 4.1 shows the area under R O C curves ( A R O I _ R O C C ) for FP<2% for the BI system 

associated with the seven above mentioned training-data generation methods averaged across 

the 10 runs of the algorithms for each subjects. 

T A B L E 4.1 A R E A U N D E R ROC C U R V E (FOR FP<2%) A V E R A G E D O V E R 10 RUNS OF THE 

ALGORITHMS FOR E A C H SUBJECT FOR DIFFERENT TRAINING-DATA GENERATION 

METHODS 

Subject Area under specific region of ROC curve (for FP<2%) *104 

TR Genl TR Gen2 TR Gen3 TR TEIC TR 3TEIC TR All TR Ran 
AB1 80.89 72.67 79.08 67.04 62.70 69.63 55.58 
AB2 90.64 77.09 91.13 53.13 45.49 61.65 54.12 
AB3 70.45 52.12 71.78 59.89 60.75 70.76 71.01 
AB4 82.57 66.32 83.58 45.96 60.19 81.39 59.20 
sen 52.22 44.36 49.27 48.52 51.14 50.61 49.53 
SCI2 76.37 69.16 76.85 56.90 59.76 78.12 53.62 
SCI3 34.22 32.47 35.56 39.63 35.74 36.57 43.41 
SCI4 79.34 75.85 82.82 53.21 70.66 72.88 56.64 

Average 70.84 61.25 71.26 53.04 55.80 65.20 55.39 

Table 4.2 shows the results of the paired T-test to examine the hypotheses whether each of 

T R _ G e n l , TR_Gen2 and TR_Gen3 generate significantly better results than the other 

alternative methods stated in Section 4.3.2. A s shown in Tables 4.1 and 4.2, the performances 

of two of the three proposed methods (TR_Genl and TR_Gen3) are better than the four other 

methods. These two methods generate almost the same performance results. Results o f the 

significance tests also show that these two methods generated significantly higher A R O I -

R O C C than other methods ( p « 0 . 0 0 3 ) . Table 4.3 shows the averaged true positive (TP) rates 

(across the eight subjects) at fixed false positive (FP) rates of 1% and 2%. Fig. 4.5 also shows 

the average R O C curves of the eight subjects for each of the seven methods of training-data 

generation. A s this figure shows, the T R _ G e n l and TR_Gen3 methods generate higher true 

positives (TP) for each level of false positives (FP). For example, at the FP rate of 1% as 

shown in Table 4.3, two of the proposed methods increase the TP rates from 27.3-34.2% to 

37.1-37.6% which correspond to 2.9-10.3% improvement. A t FP rate of 2%, the proposed 
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methods increase the T P rate from 50.8-58.4% to 61.9-62.2%) which corresponds to 3.5-

11.4% improvement. Comparing TR_Gen3 with the best performing alternative method, 

TR_A11, the TP rates increase 3.4% and 3.5% at FP rates of 1% and 2%, respectively. 

T A B L E 4.2 O V E R A L L SIGNIFICANCE L E V E L (P-VALUE) OF IMPROVEMENTS A N D 

P E R C E N T A G E OF IMPROVEMENTS (IN PARENTHESES) OF THE A R E A U N D E R ROC 

C U R V E (FOR FP<2%) W H E N USING THE PROPOSED TRAINING-DATA GENERATION 

M E T H O D . ITEMS THAT HAS '- ' INDICATE P E R F O R M A N C E D E C R E A S E A N D THUS NO 

V A L U E S IS REPORTED. 

Significance level (p-value) using "paired T-test" and percentage of improvements (in 
parentheses) 

TR Genl TR Gen2 TR Gen3 TR TEIC TR 3TEIC TR All TR Ran 

T R G e n l 

TR_Gen2 

TR Gen3 
p>0.08 
(0.6%) 

p«0.003 
(15.7%) 

p«0.003 
(16.3%) 

p«0.003 
(33.6%) 
p<0.003 
(15.5%) 

p«0.003 
(34.4%) 

p«0.003 
(27.0%) 
p<0.08 
(9.8%) 

p«0.003 
(27.7%) 

p<0.003 
(8.7%) 

p<0.003 
(9.3%) 

p«0.003 
(27.9%) 
p<0.08 
(10.6%) 

p«0.003 
(28.7%) 

T A B L E 4.3 A V E R A G E T R U E POSITIVE RATES (ACROSS EIGHT SUBJECTS) A T FIXED 

F A L S E POSITIVE RATES OF 1% A N D 2% FOR THE TRAINING-DATA GENERATION 

METHODS 

Training-data 
generation T R G e n l TR_Gen2 TR_Gen3 T R T E I C TR_3TEIC TR_A11 T R R a n 

method 
Average TP rate 

(%) at fixed 37.1 31.9 37.6 27.3 28.0 34.2 28.2 
FP=1% 

Average TP rate 
(%) at fixed 62.2 53.6 61.9 50.8 53.7 58.4 52.3 

FP=2% 
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False Positive Rate (%) 

Figure 4.5 Average ROC curves (for false positives less than 2%, as we are interested in false 
positives less than 2%) across eight subjects for the seven training-data generation methods 

( T R G e n l (dashed line with rectangles), TR_Gen2 (dashed line with plus signs), TR_Gen3 (solid line 
with circles), TR_TEIC (solid line with stars), TR_3TEIC (solid line with lozenges), TR_A11 (solid 

line with crosses), TR_Ran (dashed line with triangles)) 

4.5. Discussion 
Methods that generate training-data for self-paced brain interfaces are proposed and 

evaluated. Experimental results from this study on eight subjects show that the training-data 

generated by two of the proposed methods yield 9.3-34.4% larger A R O I - R O C C than 

alternative methods which use time of the expected intended control (TEIC) as a time 

reference to generate the training-data. Comparing the TP rates, the proposed methods 

improve the average performance from 50.8%-58.4% to about 62% at FP rate of 2%. 
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A s shown in Table 4.1, the two of three proposed methods resulted in significantly better 

performances than the other alternative methods of training-data generation for all subjects 

except for SCI3. For this specific subject, our three proposed methods yielded slightly less 

performance, although the performance was not significantly different than the four alternate 

methods. 

Based on the results shown in Table 4.1, TR_Gen2 generated better results than the 

T R T E I C , T R _ 3 T E I C , TR_Ran. methods. However, this method did not perform as well as 

T R G e n l and TR_Gen3 methods. A s mentioned before, the TR_Gen3 method uses the 

average of the features in the IC cluster as the representative feature of the IC class. 

However, TR_Gen2 uses all the features in the IC cluster as IC training-data. Thus, one 

reason for TR_Gen2 having lower performance than TR_Gen3 could have resulted from it 

containing more features that are less likely to belong to the IC class and thus this may have 

shifted the decision boundary of the classifier towards the N C class. To test whether the use 

of more IC class features can result in lower system performance, we also applied a method 

similar to the T R _ G e n l method, except that the three features that are more l ikely to belong 

to the IC class are chosen from each trial as IC training-data instead of the single best feature. 

Using this training-data resulted in slightly worse performance than T R G e n l . 

In three of the eight tested subjects, the performance of the system significantly improves by 

using the proposed methods. According to the results of the eight tested subjects, i f such 

methods are used, we believe that the performance of the system w i l l not decrease compared 

to other alternative methods, and in some subjects significant improvements may be 

achieved. 

The proposed training-data generation methods were evaluated on the L F - A S D ' s 1-NN 

classifier which was trained by L V Q . They yielded superior results than the four alternative 

methods of training-data generation. A s the comparison was evaluated on the same systems 

with only training-data being different, this clearly indicated that the quality of the training-

data significantly affects system performance. This leads us to believe that the proposed 

algorithms would also generate superior quality training-data when other classifiers are used, 

although this w i l l have to be properly verified in a future study. 
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A s mentioned in Section 4.2, before applying our algorithms, two requirements must be 

satisfied: (1) the use of an E R W (expected response window) is needed, and (2) a large set of 

features for the N C class (approximately 4 minutes of N C state data) is needed to accurately 

estimate the probability density distribution of N C features. The N C class data can be 

collected in separate sub-sessions or from the periods between the IC trials. A s such, these 

two requirements do not significantly constrain most approaches to system training. 

We used the top H=75% of N C class features as the N C class training-data. It should be 

noted that we tried the H=50% and H=25% and the results did not change significantly in our 

experiments. However, a value of H=75% is more desirable as it would represent the more 

variability in the N C class features (if any) and enable the classifier to handle this variability. 

The reason for introducing a variable H in our algorithm was to eliminate the features that are 

less likely related to the N C class and might be related to artifacts or other brain states. 

A s shown in Table 4.1 and Fig . 4.5, the training-data generation methods that select the most 

probable IC feature in the E R W result in better performance of the BI system than the ones 

that select or use the features around the T E I C such as T R T E I C or T R 3 T E I C . This implies 

that the T E I C is not the exact time of an actual imagined movement which is usually true as 

confirmed in (Bashashati et al 2004). One may suggest using a synchronized paradigm to 

train and set up a self-paced BI system in which T E I C may be known quite accurately. 

Although T E I C might be known more accurately, but there still is variability in T E I C in 

response to cue, and synchronizing cues may introduce different brain states (evoked or 

otherwise) that would not translate well when used in a self-paced setting. 

It should be noted that the system generates almost 100% true positive rates at higher false 

positive rates, e.g. FP>4%. However in our experience, relatively high false positive rates 

cause excessive frustration in subjects. On the other hand, i f we fix the false positive rate at 

1%), true positive rates drop to less than 40%. This true positive rate is slightly better than 1 

successful attempt out of every 3 attempts, a level that may or may not be usable given the 

application. For example, a continuous cursor control application may cause less frustration 

with low true positive rates compared to a menu-driven control application. For cursor 

control, the subject simply needs to attempt three successive commands to move a certain 

direction and error correction is a natural part of the control paradigm. However, with a 
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menu-driven system, a repetitive series of erroneous commands may be unduly frustrating 

while waiting for the correct window of opportunity to re-present. 

The proposed methods basically generate higher quality training-data from a population of 

available fuzzy training-data. In other words, these methods select a subset of training-data 

that has a higher probability of being real events. A s such, the proposed methods are directly 

applicable to other BI designs, including synchronized B i s and other neuroscience 

applications where covert tasks (e.g. imagined movements) are involved. In a recent study 

(Bashashati et al 2004), one of these proposed methods was used to generate higher quality 

ensemble averages of movement-related potentials related to attempted (or imagined) 

movements of people with SCI. 

The methods introduced here were tested on a 2-class brain interface. However, the methods 

can be expanded to more classes of IC. In the meantime, this study was performed offline; 

thus, an online study is needed to confirm the results in a more real-world application 

simulation. 
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Chapter 5 User Customization of the Feature Generator of an 
18 

Asynchronous Brain Interface 
5.1. Introduction 

Direct Brain Interface (BI) systems provide an alternative communication and control 

solution for individuals with severe motor disabilities, bypassing impaired interface 

pathways. Cortical activity associated with an intentional control command is mapped 

directly to application-specific control signals. Various devices, such as neural prostheses, 

can then be controlled by cognitive processes only. For a review of the field, see (Mason and 

Birch 2003, Nicolelis 2003, Vaughan et al 2003, Woplaw et al 2002). 

There are many BI transducer designs presented in the literature. However, few have been 

designed specifically for asynchronous control. The concept of asynchronous control of BI 

systems was introduced in (Mason and Birch 2000). Once the system is on, in an 

asynchronous BI the users affect the BI transducer output when they want by intentionally 

changing their brain state. Between periods of intentional control (IC), the user is in a no-

control (NC) state - they may be idle, daydreaming, thinking about a problem or lunch, or 

performing some other action, but they are not trying to control the B I transducer. This form 

of intermittent control has been termed "asynchronous control" (Mason and Birch 2000). To 

operate in this paradigm, B I transducers are designed to respond only when there is 

intentional user control and to remain inactive when the user is in an N C state. B y contrast, 

synchronous B i s are operational only during specific periods determined by the system (not 

the user). 

Although asynchronous (or intermittent) control is the most natural mode of interaction, it 

has received relatively little attention; recognized in (Woplaw et al 2002), it deserves more. 

Only a few B I transducers (Birch et al 1993, Levine et al 2000, Mason and Birch 2000, 

Mi l l an and Mourino 2003, Scherer et al 2004, Townsend et al 2004, Yom-Tov and Inbar 

A version of this chapter has been published. Bashashati A., Fatourechi M. , Ward R., and Birch G. (2006) 
User Customization of the Feature Generator of an asynchronous Brain Interface Annals of Biomedical 
Engineering 34 1051 -60. 

This work has also been resulted to another publication: Fatourechi M , Bashashati A., Birch G.E., and Ward 
R.K. (2006) The Design of an Automatically User Customized Asynchronous Brain Interface System IEE 
Journal of Medical & Biological Engineering and ComputingAA 1093-104. 
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2003) have been specifically designed and tested for asynchronous control. Each produces a 

multi-state discrete output, and as such wi l l be referred to as "asynchronous brain switches" 

in the remainder of this paper. 

The Low Frequency-Asynchronous Switch Design ( L F - A S D ) was first introduced as a two-

state B I system for asynchronous control applications (Mason and Birch 2000). It recognizes 

scalp potentials related to single-trial Movement Related Potentials (MRPs) in the E E G 

signal. The feature generator of the L F - A S D generates six-dimensional features from six 

bipolar E E G channels to detect M R P s in the ongoing E E G signal (Mason and Birch 2000). 

However, to detect the desired M R P pattern in the E E G , design parameters of the feature 

generator need to be properly adjusted. These parameters were originally chosen based on the 

E E G data of one subject and since then have been used for all subjects (Mason and Birch 

2000). A s the E E G characteristics during intended movements may vary from one subject to 

another, design parameters need to be customized for each subject. Without such tuning, the 

system may detect non-MRP patterns in the ongoing E E G . 

Although there are few user-customized B I systems, customization of BI systems has been 

reported in several recent papers. These studies focused on user customization of common 

spatial patterns (CSPs) of the Mu/Beta rhythms of E E G (Blanchard and Blankertz 2004), 

user-customization of band pass filters to select the proper frequency band (Pregenzer and 

Pfurtscheller 1999, X u et al 2004), channel selection using support vector machines (Lai et al 

2004) , automatic selection of power-band features for each subject using a genetic algorithm 

(GA) (Scherer et al 2004), and adjusting the parameters of the energy normalization block of 

the L F - A S D (Fatourechi et al 2005). These papers established that customization of the 

parameters of a B I system may lead to performance improvements in some subjects. 

In (Fatourechi et al 2005), we showed improvements in the system's performance for the two 

able-bodied subjects studied. This improvement motivated us to further pursue customization 

of the feature generator's parameters for each subject. Eight subjects were studied, four of 

whom were disabled. To customize parameters for each subject, the desired pattern 

associated with a specific movement was first determined through ensemble averaging of the 

E E G data related to the movement. The parameters of the feature generator were then 
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manually estimated. The feature generator's output and the performance of the customized BI 

are compared to those associated with the original design. 

We also show that huge variations in performance result when the classifier was trained on 

trials from different sessions (refer to Section 5.4.2). We use an off-line method of evaluation 

of the L F - A S D based on the stratified cross-validation approach (Witten and Frank 2000) to 

reduce huge variations in system performance across the cross-validation sets. We have 

shown that a robust performance measure of the system can only be obtained by evaluating 

its performance on one cross-validation set instead of evaluating the performance of the 

system on all the cross-validation sets. 

5.2. Background 
Customizing the feature generator of the L F - A S D requires detailed knowledge of the L F -

A S D ' s design (Mason and Birch 2000), which is briefly reviewed in this section. 

Fig. 5.1 shows the block diagram of the most recent version of the L o w Frequency 

Asynchronous Switch Design (the L F - A S D ) (Borisoff et al 2004). This design uses features 

extracted from six bipolar E E G channels (defined with reference to the International 10-20 

System at F1-FC1 , F z - F C z , F2-FC2, F C 1 - C 1 , F C z - C z , and FC2-C2) . After amplification, all 

six E E G channels are normalized with an Energy Normalization Transform (ENT) (Yu et al 

2002). A wavelet-like function is applied as the feature generator. The Karhunen-Loeve 

Transform ( K L T ) maps the six-dimensional feature space produced by the Feature Generator 

to a two-dimensional space. A one-nearest neighbor (1-NN) classifier is used as the feature 

classifier. The system's classification accuracy is further improved by using a moving 

average and a debounce block to reduce the number of false switch activations (for details, 

see (Mason and Birch 2000) (Borisoff et al 2004, Mason and Birch 2000)). Overall, the 

system classifies input patterns as either No Control (NC) or Intentional Control (IC). 
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Figure 5.1 Components of the Low Frequency Asynchronous Switch Design (the LF-ASD) (from 
(Borisoff et al 2004)).ENT: energy normalization transform, K L T : Karhounen-Loeve transform, 1-

N N : one nearest neighbor 

5.2.1. LF-ASD Feature Generator 

The desired bipolar E E G pattern associated with the M R P s is similar to that shown in Fig. 

5.2 (Mason and Birch 2000), where the approximate time of the attempted movement is t=n. 

The feature extractor of the L F - A S D is designed to generate large feature values when such 

patterns exist in the E E G . 

> time 

t=n 

Figure 5.2 Desired pattern of the bipolar EEG during movement. Ej(n): amplitude difference between 
local maximum before the movement and local minimum after the movement, E/n): amplitude 

difference between local maximum before the movement and local minimum before the movement 

A s Fig. 5.2 shows, the elemental features £,•(«) and E -(n) are defined as the difference of a 

filtered signal (e(n)) at two points in time, and are calculated in equations (1) and (2) 

(respectively for more details see (Mason and Birch 2000)). The filtered signal is measured 

from a pair of bipolar electrodes and is filtered at 1-4 H z using a finite impulse response 

(FIR) filter based on a Hamming window. There are six such pairs and six such signals. 
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Ei(n) = e(n-ai)-e{n) (1) 

Ej (n) = e(n - al•) - e(n - at - a j) (2) 

In the rest of this paper, we use the general term "delay parameters" of the feature generator 

when referring to at and aj in equations (1) and (2). The delay terms are initially estimated 

from the ensemble averages based on the minimum peak near the trigger (at time t=n in Fig. 

5.2), the first local maximum, and the local minimum before the trigger as illustrated in Fig. 

5.2. The trigger point is defined as the point around which the movement is performed. 

Compound features are defined in equation (3) by pairing elemental features (E^Ej) to 

emphasize the samples in which two large elemental features appear concurrently. 

For robustness, the compound features are maximized over a window as follows. 

Gijin) = max{gij(n-S),gij(n-7),...,gij(n-l),giJ(n)\ (4) 

This procedure is repeated for each channel. The resulting feature vector is an equally 

weighted six-dimensional vector, with each dimension reflecting the value of the feature 

(Gy (n)) in each channel. 

5.3. Data Recording 
The off-line data used in this study were collected from subjects positioned 150 cm in front 

of a computer monitor. The E E G signal was recorded from six bipolar electrode pairs 

positioned over the supplementary motor area and the primary motor cortex, as stated in 

Section 5.2. Electro-oculographic (EOG) activity was measured as the potential difference 

between two electrodes, placed at the corner of and below the right eye. The ocular artifact 

was considered present when the potential difference between the E O G electrodes exceeded 

±25 p V . A l l signals were sampled at 128 Hz . 

The subjects used in this study consisted of four men with high-level spinal cord injuries 

(SCI) and three able-bodied men and one able-bodied female (subject A B 3 ) . Each of the 

subjects gave written consent prior to participating, according to the guidelines of the 

gijiri) =Ej(n)xEj(n) 

= 0 otherwise 

if £ , ( « ) X £ ( H ) > 0 
(3) 
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Behavioral Research Ethics Board ( B R E B ) of the University of British Columbia. A l l 

subjects were right handed and between 31 and 57 years of age. None of the SCI subjects had 

residual sensation or motor function in their hands. 

Data were collected while the subjects performed a guided task. At random intervals of 5.6 

to 7.0 seconds (mean of 6.7 seconds), a 2 cm white circle was displayed on the subject's 

monitor for % second. The subject was asked to attempt to move his right index finger one 

second after the cue appeared. The one-second delay was used to avoid visually evoked 

potential effects from the cue. The one second time after the cue is denoted by "time of the 

expected attempted movement" ( T E M ) . Note that this is the time when the subject is 

expected to attempt the movement, but this time may vary from subject to subject and from 

trial to trial. Both subject groups used the same neurological mechanism to drive the brain 

switch: an attempted finger flexion. This resulted in attempted (i.e., no physical) finger 

movements in subjects with high-level SCI and actual finger flexion in able-bodied subjects 

(see (Birch et al 2002) for more details). For each subject, an average of 80 trials was 

conducted every day for six days. 

5.4. Methods 
5.4.1. Delay Parameter Customization 

To determine the desired bipolar pattern associated with the movement for each subject, the 

signals (within a window centered at T E M ) for each of the six bipolar E E G channels were 

ensemble averaged. Ensemble averaging enhances the signal-to-noise ratio, and the resulting 

waveform exhibits the desired pattern that the L F - A S D aims to detect. After the ensemble 

averages of each subject were generated, the delay parameters were measured manually from 

the E E G averages. For example, the waveform of the ensemble average of the E E G for 

subject A B 2 in bipolar channel F2-FC2 was generated as shown in Fig. 5.3. A s our goal is to 

detect a pattern similar to the average waveform shown in Fig. 5.2, we choose the delay 

parameters based on the minimum peak "right after T E M " , a maximum peak "before T E M " 

and a minimum peak "before the location of the chosen maximum peak" from the ensemble 

average waveform. Based on the location of the peaks (minimum peak at t=0.43s ( M i n i ) , 

maximum peak at t=1.32s ( M a x l ) , and minimum peak right after T E M at t=1.97s (Min2)), 

the delay parameters are calculated as aj=Min2-Maxl=0.65s and aj=Maxl-Mini-0.89s. 
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Note that the attempted movement is performed around t-1.8s. A s shown in Fig. 5.3, there 

are several local minimum peaks (e.g., at t=0.15s or t=1.13s) just before the maximum peak 

at t=1.32s. We evaluated the system's performance considering these mentioned local 

minimum peaks. The best performance, however, was achieved at a chosen local minimum 

of t=0.43s. 

Time (Seconds) 

Figure 5.3 The ensemble averages of the normalized EEG in bipolar channel F2-FC2 for subject AB2. 
Time of the expected movement (TEM) is at t=l .8 s. 

For simplicity (and given that the ensemble average patterns, time-locked to T E M , are 

relatively the same for all six channels), equal delay parameters were used for all six bipolar 

E E G channels. It should be emphasized that our main goal in this paper is to show that the 

delay parameter customization for each subject is useful. 

Ensemble averages of the E E G for each subject were generated from the training data, 

excluding the E O G contaminated trials. The delay parameters were then calculated manually 

(see Table 5.1 for values). For the subjects whose ensemble average waveforms showed 

137 



several minimum and maximum peaks, the same procedure as explained for subject A B 2 was 

performed. Delays resulting in the best performance are reported in Table 5.1. 

T A B L E 5.1 D E L A Y P A R A M E T E R S (MEASURED IN SECONDS) ESTIMATED F R O M THE 

E N S E M B L E A V E R A G E S OF THE BIPOLAR E E G SIGNALS (F2-FC2) G E N E R A T E D F R O M 

THE TRAINING D A T A SET. NOTE T H A T THE S A M E D E L A Y P A R A M E T E R S A R E USED 

FOR A L L SIX BIPOLAR C H A N N E L S . 

Subject 

AB1 0.74 0.68 

AB2 0.65 0.89 

AB3 0.29 0.16 

AB4 1 0.34 

s e n 0.88 0.77 

SCI2 0.74 0.41 

SCI3 0.30 0.5 

SCI4 0.70 0.54 

5.4.2. Cross-validation and Stratified Cross-validation 

A s mentioned in Section 5.3, the data from each subject were collected over six days, i.e., six 

sessions. In our previous work (Birch et al 2002, Borisoff et al 2004, Mason and Birch 

2000), the first day's E E G recordings were used to train the classifier, and data from the 

subsequent five days were used to evaluate the BI system. However, to determine whether 

the first session's data is representative of future data, we carried out the following tests. 

To assess the sensitivity of the classifier's performance to different training sets, we tested 

the system's performance using different training and test sets. Specifically, the classifier was 

trained based on the data of one of the days (sessions) and the system's performance was 

evaluated based on the data of the remaining sessions. This process was repeated for every 

session and averaged over the six values, in a procedure known as cross-validation (Witten 

138 



and Frank 2000). Table 5.2 shows the results of this analysis for all subjects. In Table 5.2, TSj 

represents the case in which the data of the ith session were used for training and the data of 

the other sessions for testing. 

T A B L E 5.2 T R U E POSITIVE (TP) RATES (%) A T F A L S E POSITIVES (FP) OF 2% FOR 

DIFFERENT TRAINING A N D TEST SETS. TS, REPRESENTS THE C A S E IN WHICH THE 

D A T A OF THE I™ SESSION WERE USED FOR TRAINING A N D THE OTHER SESSIONS FOR 

TESTING. 

Subject Performance (TP(%) when FP=2%) 
TS, TS2 TS3 TS4 TS5 TS6 Average Standard deviation 

ABI 69.7 64.4 46.7 73.9 45.5 82.9 63.9 15.0 
AB2 75.5 68.5 57.1 74.5 62.5 82.9 70.2 9.4 
AB3 68.3 68.9 65.2 72.0 77.8 53.9 67.6 7.3 
AB4 77.0 78.6 73.3 87.2 85.1 75.0 89.5 5.1 
SCI1 67.3 70.9 55.8 66.0 56.8 65.8 63.7 5.5 
SCI2 65.6 47.7 42.6 49.0 46.8 72.7 54.4 11.1 
SCI3 49.9 75.8 75.0 69.1 57.1 65.2 66.0 9.5 
SCI4 59.8 54.8 51.0 41.2 51.2 57.1 53.0 6.1 

A s Table 5.2 shows, the system's performance varies widely depending on which session 

was used for training the classifier. Specifically, the average true positives rates varied with 

standard deviations from 5.1% to 15% across subjects. 

Using the data of the first session to train the classifier and then testing it on data collected 

subsequently is more suitable for real-world applications. However, our analysis showed that 

the system's performance depends highly on the quality of first session's data. We were 

therefore motivated to find a way of reducing the dependency of the system's performance 

on the training set. 

In this paper, an Af-fold stratified cross-validation is used for evaluating the system's 

performance (Witten and Frank 2000). In stratified cross-validation, the trials are randomly 

divided into N groups of equal trial numbers, with approximately the same frequency of 

classes. A s in conventional cross-validation schemes, the classifier is trained based on the 

data of one of the N groups and the system's performance is evaluated based on the data of 

the remaining groups. This process is repeated for each group. The average of these N 

performance measures gives the overall performance of the system. In this study we used a 

five-fold stratified cross-validation. To randomly pick each cross-validation set, we divided 
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the E E G into 7s adjacent windows around each trial. Each 7s window of E E G contained an 

attempted movement trial as well as periods of N o Control (NC) state. Finally, cross-

validation sets were generated by randomly dividing the total available 7s windows into five 

equal groups. The classifier was then trained based on the data of one of the five groups and 

the system's performance evaluated based on the data of the remaining groups. This process 

was repeated for every group, resulting in five performance measures. The average of these 

five measures represents the performance of the system. 

5.5. Results 

In Figs. 4 and 5, the waveforms of the two-dimensional output of the feature generator and 

the waveforms of the ensemble averages centered at T E M are shown for one subject for the 

two cases: (a) our proposed customized delay parameters of the feature generator and (b) the 

original setting of the delay parameters. A s Fig. 5.4 shows, the new delay parameters 

generated stronger feature values at times when we expected them to be high, i.e., the time of 

the attempted movement (TEM) . This time is represented in these figures by the vertical line 

at t=1.8s. The feature values around the T E M were maximum in value compared to feature 

values at other times, when there was no movement, or an attempted one. Notice that the 

original settings of the delay parameters generated features at T E M that were not 

significantly different from the features at other times. For example, in Fig . 5.5 the features 

around t-1.9s and t=0.9s were not very different, while the features around t=1.9s were 

associated with movement. These observations suggest that with the new delay parameter 

settings of the feature generator, the system can generate more robust features and can better 

detect the desired M R P pattern. This is not the case with the original parameter settings. 
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1.2 1.6 1.8 
Time (Samples) 

Figure 5.4 2-dimensional output of the feature generator for normalized bipolar EEG channel F2-FC2 
for subject AB2 for the customized delay parameters (solid line: feature values of the first dimension, 
dashed line: feature values of the second dimension, and solid line with cross: bipolar EEG). Note that 

the vertical line at t=l .8 s corresponds to the time of the attempted movement (TEM). 
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Figure 5.5 2-dimensional output of the feature generator for normalized bipolar EEG channel F2-FC2 
for subject AB2 for the original delay parameters (solid line: feature values of the first dimension, 

dashed line: feature values of the second dimension, and solid line with cross: bipolar EEG). Note that 
the vertical line at t=l .8 s corresponds to the time of the attempted movement (TEM). 

The performance o f a two-state asynchronous B I system can be evaluated using two 

measures: (1) the percentage of correct activations during IC states (true positives, or "TPs") 

and (2) the percentage of false switch activations during N C states (false positives, or "FPs"). 

A TP was identified i f the BI system was activated at any time within a window of 0.5 

seconds before to 1 second after the T E M , called the "TP window". This method is similar to 

those used by others (Levine et al 2000, Townsend et al 2004, Yom-Tov and Inbar 2003). 

False positives were assessed in the periods before the system cued subjects to perform the 

movement and after subjects were expected to perform it (see (Borisoff et al 2004) for more 

details). We did not evaluate the period during which ocular artifacts occurred. 

For all subjects, the five-fold stratified cross-validation algorithm was run ten times for each 

delay parameter set. Adjusting the parameters of the feature generator improved the system's 
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performance in four subjects, from whom three were able-bodied. However, for the rest of 

the subjects, the performance of the system did not improve with the use of customized delay 

parameters. Table 5.3 shows: (1) the average true positive rates (at fixed false positive rates 

of 2%), with standard deviations across the 10 runs for both original and customized delay 

settings for the subjects, and (2) the significance of the improvements using 'two sample T-

test' with significance level of Alpha=0.1. 

T A B L E 5.3 P E R F O R M A N C E OF THE LF-ASD TOGETHER WITH S T A N D A R D DEVIATIONS 

ACROSS 10 RUNS OF STRATIFIED CROSS-VALIDATION WITH ORIGINAL A N D N E W 

D E L A Y P A R A M E T E R S . 

Subject Performance (TP (%) in FP=2%) 

Original Customized Improvement Significance 

parameters parameters level of improvement 

AB1 65.0 ± 1.4 67.8± 1.4 +2.8 p<0.005 

AB2 67.2 ± 1.6 74.0 ± 1.7 +6.8 p<0.005 

AB3 62.0+ 1.9 64.0+ 1.3 +2.0 p<0.03 

AB4 76.5 ± 1.5 73.1 ± 1.8 - -

sen 61.1 ±2.2 63.5± 1.9 +2.4 p<0.08 

SCI2 71.2± 2.2 68.0±2.7 - -

SCD 52.6±2.3 52.8 ±2.4 +0.2 -

SCI4 55.9±3.0 52.9± 3.1 -

Table 5.4 shows the average standard deviations (STDs) across the five cross-validation sets 

to be low compared to values associated with the evaluation procedure (as shown in Table 

5.2). The low S T D (~0.5%) of performance across the five cross-validation sets implies that 

the TP rate for all five cross-validation sets is relatively the same. Consequently, the TP rate 

for one cross-validation set could show the overall TP rate of the system. 
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T A B L E 5.4. A V E R A G E S T A N D A R D DEVIATION (STD) OF TP RATES (AT FIXED FP=2%) 

ACROSS E A C H CROSS-VALIDATION SET. 

Subject ABI AB2 AB3 AB4 SCIl SCI2 SCD SCI4 

Average standard deviation (%) 054 055 042 053 057 066 O50 1.28 

Figs. 6-9 show the R O C (receiver operating characteristic) curves for four of the subjects 

(subjects A B I , A B 2 , A B 3 , S C I l ) for the two designs using (1) the original delay parameter 

values and (2) the new customized delay values for the feature generator. A s Figs. 6-9 show, 

the new method generated a better TP rate at most of the FP rates. 

False positive rate (%) 

Figure 5.6 ROC curve for subject A B I (solid line with circles: ROC curve for the customized BI 
system, solid line: ROC curve for the original BI system). Note that, for clarity, only false positives 

below 4% are shown. 
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Figure 5.7 ROC curve for subject AB2 (solid line with circles: ROC curve for the customized BI 
system, solid line: ROC curve for the original BI system). Note that, for clarity, only false positives 

below 4% are shown. 
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Figure 5.8 ROC curve for subject AB3 (solid line with circles: ROC curve for the customized BI 
system, solid line: ROC curve for the original BI system). Note that, for clarity, only false positives 

below 4% are shown. 
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Figure 5.9 ROC curve for subject SCI1 (solid line with circles: ROC curve for the customized BI 
system, solid line: ROC curve for the original BI system). Note that, for clarity, only false positives 

below 4% are shown. 

5.6. Conclusions 
In this paper, we presented a method for estimating the parameters of the feature generator of 

our current asynchronous BI system, the L F - A S D . The error characteristics of the new design 

were shown to be better than those of the original design for four subjects. For these subjects, 

the true positive rates increased by 2% to 6.8% at false positive rates of 2%. We attribute the 

improvements to the adjusted delay parameters of the feature generator block. It is highly 

important to point out that with the new customized parameters, the system detected the 

desired subject-specific M R P pattern associated with movement. This was achieved by 

choosing a suitable set o f delay parameters to result in more consistent and stronger feature 

values during movement. 

Although the system's performance for four subjects did not increase, the system did detect 

the desired bipolar M R P pattern, which may not be the case with the original setting. In a BI 

system, it is very important to ensure that 'only' specific predefined movement attempts 
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activate the output and not any other mental activity. Although the performance of the system 

with the original delay parameters was slightly higher than that of the customized one, we 

believe that some patterns had been activating our original B I that were not related to the 

subject-specific bipolar M R P pattern we were interested in. In Fig . 5.4, which shows the 

ensemble averages of the E E G of subject A B 2 , the old delay setting generated features 

around movement that were not very different from feature values at other times; this may 

have caused performance decrease of the system in subject A B 2 . The opposite can also 

happen, i.e., some features can be generated in the TP window that activate the output but 

may not be related to movement. In such a case, the system is activated by E E G patterns that 

may not be attributed to the desired bipolar M R P pattern. Since the system aims at detecting 

movements from spontaneous E E G , we cannot determine whether the activations of the 

system are related to movement attempts or to other brain activity. With the new delay 

parameter values, one can expect activations of the BI system that are more likely due to 

movement attempts than other patterns in the E E G . A good original delay parameter value or 

poor manual customization might also account for the system's performance not improving. 

These results are not surprising, as other studies have reported performance degradation after 

customizing their B I system for some subjects. For example, in (Blanchard and Blankertz 

2004) the error rate of one of the three subjects decreased more than 11% after customization 

of the C S P patterns. In (Pregenzer and Pfurtscheller 1999) selection of subject-specific 

frequency components of the E E G for a B I system is reported. Although the results for two 

subjects improved when using the D S L V Q (distinctive sensitive L V Q ) classifier, the 

performance of the third subject degraded after customization. However, it should be 

mentioned that it is difficult to directly compare the results from our study and these studies, 

as the recording equipment, recording and classification protocols, and mental tasks 

considered are different. In addition, the amount of data involved and the degree of training 

the subjects received before participating in the BI experiments varies for different studies. 

Compared to the results of our previous study (Fatourechi et al 2005), which customized the 

normalization block of our BI design, it appears that customization of the feature generator 

yielded less improvements than customization of the normalization block did for two of the 

tested subjects ( A B 2 and A B 3 ) in (Fatourechi et al 2005). However, the results cannot be 
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generalized at this stage as the study reported in (Fatourechi et al 2005) was only performed 

for two of the subjects. 

Despite the need to verify the results on a larger subject pool, current study yielded 

performance improvements in most of the able-bodied subjects rather than in the SCI 

subjects. Since estimating delay parameters from ensemble averages for SCI subjects proved 

to be difficult, we might not have been able to estimate a suitable delay setting for these 

subjects. However, we believe that the new customized system detects the M R P pattern in 

the E E G , which may not be the case for the original design. 

The results of the stratified cross-validation showed that the standard deviation of the 

performances across cross-validation sets was low (as shown in Table 5.4). This implies that 

there is no need to repeat the analysis for each of the five cross-validation sets. Instead, by 

randomly choosing a set of trials for training, and evaluating the system on the rest of trials, a 

robust performance measure of the system can be obtained. Evaluating the performance of 

our system for a set of parameters using five-fold stratified cross-validation takes about 10 

minutes on a Pentium 2.8GHz computer; with the new method, only l / 5 t h o f this time is 

needed. This new analysis procedure mostly benefits an automated parameter customization 

method. Using such method, the system's performance must be evaluated (for different 

parameter settings) hundreds of times. Thus, choosing a robust and time-efficient method for 

evaluating the system is desirable. 

The study successfully detected the desired M R P pattern and decreased the error rates of our 

BI design for 50% of tested subjects. This decreased error rate demonstrates the need for a 

method that automatically adjusts the delay parameters for each subject. A s mentioned in 

Section 5.4.1, manually estimating the delay parameter values may not yield better 

performances when there are several minimum or maximum peaks around T E M in the E E G 

ensemble averages. In such cases, it may be necessary to choose several delay settings and 

select the one that yields better performance. Using an automated method of adjusting the 

delay parameters may result in the best delay setting, further increase the system's 

performance, and remove the subjective bias in delay parameter adjustments. Our future 

work wi l l specifically explore customization of the L F - A S D parameters in an automated 

framework. 
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Chapter 6 An Improved Asynchronous Brain Interface: Making 

Use of the Temporal History of the LF-ASD Feature Vectors 1 9 

6.1. Introduction 
Over the past decade, several research groups have developed direct brain interface (BI) 

systems as possible alternative communication and control solutions for individuals with 

severe disabilities. For a review of the field see (Mason and Birch 2002, Nicolelis 2003, 

Vaughan et al 2003, Wolpaw et al 2002). BI technology aims at mapping the user's cortical 

activity associated with an intentional control (such as imagined finger movements) directly 

to application-specific control signals. Thus, control of various devices such as neural 

prosthetics is made possible by cognitive processes only. In other words, BI systems bypass 

traditional interface pathways which cannot be used by individuals with severe disabilities. 

Several different approaches to the design of BI technology based on signals from scalp 

electrodes, i.e., electroencephalograms (EEG) , or implanted electrodes have been reported for 

various communications and control applications. A l l these systems can be represented by 

the common functional model presented in Fig. 6.1 (Mason and Birch 2003, Mason et al 

2003, mason et al 2005). The components between user and assistive device can be treated as 

a single component, a B I transducer, which functions in a manner similar to a physical 

transducer like a dial or switch. The role of the BI transducer is to translate the user's brain 

activity into reliable control signals. 

There are many BI transducer designs presented in the literature. However, few have been 

designed specifically for asynchronous control as defined in (Mason and Birch 2000). In 

general, BI systems are designed to operate in either asynchronous or synchronous control 

paradigms. For an asynchronous BI system, when the system is O N , the user affects the BI 

transducer output when they want by intentionally changing their brain state. In between 

periods of this intentional control (IC) the user is in a no control (NC) state —they may be 

idle, daydreaming, thinking about a problem or lunch, or performing some other action, but 

they are not trying to control the BI transducer. To operate in the asynchronous paradigm, B I 

1 9 A version of this chapter has been published. Bashashati A., Mason S.G., Ward R.K., and Birch G. (2006) 
An Improved Asynchronous Brain Interface: Making Use of the Temporal History of the LF-ASD Feature 
Vectors Journal of Neural Engineering 3(2) 87-94 (Invited paper). 
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Processor Extractor Translator 4 

Assistive 
Device 

Figure 6.1 Functional model of a BI system depicting the principle functional components. More 
details can be found in (Mason and Birch 2003). 

transducers are designed to respond only when there is intentional user control and maintain 

an inactive state output during times when the user is in a N C state. On the other hand, in a 

synchronous B I system, the allowable times for intentional user control are restricted to 

periods defined by the system. Thus, in synchronous systems, the B I technology is tested 

only during intentional user control and the response of the BI system during N C state is not 

tested. 

Even though asynchronous (or intermittent) control is the most natural mode of interaction, it 

has received relatively little attention in the field. A s recognized in (Wolpaw et al 2002), this 

is an important problem that requires more attention. Only a few BI transducers (Birch et al 

1993, Graimann et al 2004, Levine et al 2000, Mason and Birch 2000, Mi l l an and Mourino 

2003, Scherer et al 2004, Townsend et al 2004, Yom-Tov and Inbar 2003) have been 

specifically designed (and tested) for asynchronous control. Each of the proposed transducers 

produces a multi-state discrete output and as such w i l l be referred to as an asynchronous 

brain switch in the remainder of this paper. 

In developing a non-invasive B I system, the L o w Frequency-Asynchronous Switch Design 

( L F - A S D ) was first introduced as a BI for asynchronous control applications (Mason and 

Birch 2000). The L F - A S D seeks to recognize the movement related potentials (MRPs) in the 

E E G signal. Recent studies with the latest design of the L F - A S D have demonstrated an 

average true positive (TP) rate of 64.7% for false positive (FP) rates of 2% (Borisoff et al 

2004). To aid the presentation, the latest design of the L F - A S D (Borisoff et al 2004) w i l l be 

referred as L F - A S D - V 4 in the remainder of the paper. Among the proposed asynchronous B I 
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transducers whose offline performances have been reported in terms of true positives and 

false positives, (Graimann et al 2004, Levine et al 2000, Townsend et al 2004, Yom-Tov and 

Inbar 2003), the L F - A S D generates less false positives than others. A l l these offline studies 

reported average false positive rates in the range 6% and 28% while the average true positive 

rates were between 73% and 94% (Graimann et al 2004, Levine et al 2000, Townsend et al 

2004, Yom-Tov and Inbar 2003). However, it should be mentioned that it is difficult to 

directly compare the results from our study and these studies, as the recording equipment, 

recording and classification protocols, and mental tasks considered are different. In addition, 

the amount of data involved and the degree of training the subjects received before 

participating in the BI experiments varies for different studies. Our experience to date 

indicates that the error rates of our design are still too high for individuals with high-level 

spinal cord injuries (our target population) in most practical asynchronous control 

applications. For practical applications, one needs to focus on low FP rates. From our 

experience, FP rates above 2% cause excess frustration and distraction in subjects (Birch et al 

2002). 

In the L F - A S D - V 4 design, the output state of the system at time t,, 0{t{), is determined by 

the values of the feature vectors at time tx, FVV4 (/,). In other words, the output of the 

system, at time/! is a function of the feature vector value at t imef l 5 \.Q.,0(tx) = f(FVV4(tl)), 

where /( . ) is a function that maps the feature values to the output of the system. The 

assumption that the output state at timer], depends only on the value of the features at that 

time may not be realistic. This is because a movement, however short in duration, would take 

more than an instant of time. Moreover, this dependency on the exact instant in time makes 

the system more vulnerable to E E G signal artifacts. Thus, artifacts may easily trigger the 

output of the system and cause false activations of the output. Artifacts can also mask the 

features associated with a movement, thus causing the system not to detect such movement 

attempts. This would consequently decrease the true activation rate. 

To study this dependency between the output, 0(t), and feature values, FVV4 (t), we analyzed 

the ensemble averages of the movement related potentials (MRP) . A s these ensemble 

averages contain movement related information, we found that during a movement 

preparation and its execution the vector of the features extracted from the E E G ensemble 
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averages move on a path with a specific, subject-dependent shape. A s an example, Fig. 6.2a 

shows the ensemble averages of the E E G of a subject for a time span of over three seconds. 

Fig. 6.2b shows the path of the 2-dimensional feature vector associated with the ensemble 

averages of the E E G signal centered to the finger switch activations. F ig . 6.2b shows that 

feature vectors move on a specific path during the movement (movement is attempted at 

t=1.875s). This path is different from that of which there was no movement (t<1.2s). 

Figure 6.2 (a) Ensemble averages of the EEG of subject ID and (b) the corresponding feature vectors 
over time. The attempted movement is at t=l ,875s. 

This phenomenon implied that the past values of the features provided more knowledge 

about the actual movement attempt than that provided by the value of the features at one time 

instant. Thus, it was hypothesized that including the past information of the feature vector 

would improve the switch's error rates and robustness to artifacts. 
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In this paper, we present a method that models the path that the feature vector traverses 

during specific movement attempts (IC state) as well as the paths traversed during the N o 

Control (NC) state. The specific path shapes (path templates) are used to identify the specific 

M R P patterns in the ongoing E E G signal and to trigger the output of the BI system. The 

performance of the modified design, named L F - A S D - V 5 , is evaluated using E E G 

recordings of attempted finger movements of individuals with spinal cord injuries (SCI) 

subjects as well as able-bodied subjects. 

In Sections 6.2 of this paper, the proposed design of the modified L F - A S D design is 

presented. Section 6.3 presents the evaluation method used in this study. The results and 

conclusions are followed in Sections 6.4 and 6.5, respectively. 

6.2. Proposed design of the LF-ASD-V5 
In the design of the L F - A S D - V 5 , we aim at incorporating the history of the feature path 

where the features move in the multidimensional space during both IC states (attempted 

movement) and N C states. In other words, we want to find a relation between the output of 

the system and its input as written in equations (1) and (2): 

0(tx) = g(FVV5(tx)) (1) 

FVV5(tx) = [FVV4(tx-L) ... FVVA(tx-\) FVV4(tx)} (2) 

where FVvs(tx) is the feature matrix at time tx, 0{tx) is the output at time tx, 

[FVV4(tx -L) ... FVYA(tx -1) FF K 4 ( / , ) ]are the values of the original features of the L F -

A S D - V 4 in the 'time window' of t - tx -L to t = tx, L is the length of the window, and g(.) 

is the function that maps the feature values to the output of the system. Note that the feature 

matrix FVvs(tx)represents the path that the original feature vectors traverse during time. 

Basically, the new feature space captures the paths of the feature vectors and was referred to 

as "path space" in this study. 

Our goal is to find the representative paths of feature vectors FVy4, that correspond to IC or 

N C states. Conceptually these representative paths of feature vectors represent the paths that 

the features move through during N C and IC states. These representative paths of both state 

classes form the "path templates". 
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Fig. 6.3 shows the design of the L F - A S D - V 5 . L F _ A S D - V 5 has the same overall structure of 

the L F - A S D - V 4 design except that now the feature extraction block contains an 

additional buffer. This block generates the new features, FVV5, as described in equations (1) 

and (2). A s the M R P pattern of each subject may vary in duration, the buffer length (L) is 

defined separately for each subject. 

Like the L F - A S D - V 4 , this design uses features extracted from the 0-4Hz band in six bipolar 

E E G channels. After amplification, all six E E G channels are normalized with an Energy 

Normalization Transform (ENT). Then a low-pass-filter is used to decrease the interference 

with the features in the high-frequency band. A wavelet-like function is applied as the feature 

generator to each of the six bipolar E E G channels (For more details see (Mason and Birch 

2000)). The resulting feature vector is a six-dimensional vector, with each dimension 

reflecting the value of the feature in each channel. The Karhunen-Loeve Transform ( K L T ) 

component is used to reduce the 6-dimensional feature vector to a 2-dimensional feature 

vector (FVV4, as shown in Fig. 6.3). A 1-NN classifier is used as the feature classifier. 

Finally, a moving average and a debounce block are used to further improve the classification 

accuracy of the system by reducing the number of false switch activations (for details, see 

(Mason and Birch 2000, Borisoff et al 2004). The system classifies the input patterns, at 

every 1/16th of a second, to one of the two classes, No Control (NC) or Intentional Control 

(IC) brain states. 

6.2.1. Path Template Generation 

The procedure used to find the specific path templates related to the movement (IC) and no 

movement (NC) states is shown in Fig. 6.4. These path templates are generated using the 

training data. To generate these path templates which form the codebooks in the new feature 

space, the k-means algorithm (Kohonen 1990) with three vectors per class state is used to 

generate initial clustering of each class separately. This is followed by Learning Vector 

Quantization (LVQ3) (Kohonen 1990) to find the final codebook {path template) in the path 

space. In the L V Q algorithm, the learning rate, a, is set to 15/(length of training data) and s 

to 0.25. The algorithm is stopped after it runs 2000 times or i f the template does not change 

significantly according to a predefined threshold. To generate the training data for the IC 

state, a window of feature vectors ( F V V 4 ) is selected around the time of expected (attempted) 
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movement, T E M . (Note, details about T E M are given in Section 6.3). In other words, for 

each attempted movement, one feature vector at t=TEM is picked for the training set. To 

generate the training data for the N C state, we randomly picked features in the path space 

(FVV5(t)) from the first session's data corresponding to a N C state that did not contain any 

eye-blink artifacts. 

B O O 

e l e c t r o d e 
a r r a y 

amp ENT 

Feature Extractor 

FV V 

LF-ASD 
Feature 

Generator 
KLT B u f f e r FV V5 
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moving 
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Path template generation mechanism 

Figure 6.3 Components of the LF-ASD-V5 transducer, where ENT = Energy Normalization 
Transform, K L T = Karhunen-Loeve Transform, and 1 - N N = 1 -Nearest Neighbour. 
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Figure 6.4 Path template generation procedure (also known as classifier training) 

6.3. Evaluation Method 

The data used in this study were collected from subjects positioned 150 cm in front of a 

computer monitor. The E E G signal was recorded from six bipolar electrode pairs positioned 
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over the supplementary motor area and the primary motor cortex (defined with reference to 

the International 10-20 System at F1-FC1 , Fz -FCz , F2-FC2, F C 1 - C 1 , F C z - C z , and F C 2 -

C2). Electro-oculographic (EOG) activity was measured as the potential difference between 

two electrodes, placed at the corner and below the right eye. Eye-blink artifacts were 

considered present when the difference between the E O G electrodes exceeded ±25 p V . A l l 

signals were amplified by a Grass Model 8-18C E E G amplifier, filtered to a pass-band 

between 0.1 to 30Hz and sampled at 128Hz by a P C equipped with a 12-bit analog to digital 

converter embedded on a Data Translation 2801A data acquisition board. 

The subjects participated in this study consisted of four subjects with a high-level spinal cord 

injury (SCI) and four able-bodied subjects. A l l subjects were male (except subject K T ) , right 

handed between 31 and 57 years old. A l l SCI subjects had no residual sensation or motor 

function in the hands. A l l the subjects were given written consent according to the Behavioral 

Research Ethics Board ( B R E B ) of the University of British Columbia. 

The data were collected from the subjects while performing a guided task in 2-minute sub-

sessions. These sub-sessions contain both the N C and IC state periods as shown in Fig. 6.5. 

A t random intervals of 5.6 to 7.0 seconds (mean of 6.7 seconds), a 2cm white circle was 

displayed on the subject's monitor for lA second, prompting them to attempt a 

movement. In response to this cue, the subject tried to activate the brain switch by 

attempting to move his right index finger one second after the cue appeared. The one-second 

delay was used to avoid visual evoked potential effects from the activity. The time, one 

second after the cue, is called "time of expected (attempted) movement ( T E M ) " . A s the time 

to perform the movement attempt depends on a user's response, the movement attempt is not 

necessarily performed at T E M and may change from subject to subject and attempt to 

attempt. Both subject groups used the same neurological mechanism to drive the brain 

switch: an attempted right index finger flexion. This resulted in no movement in subjects 

with high level SCI, and an actual finger flexion in able-bodied subjects. For each subject, an 

average of 80 trials was collected every day for 6 days. 
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Figure 6.5 Structure of each 2-minute sub-session of E E G recording, where TEM=time of the 
expected (attempted) movement 

Besides recording the E E G data during movement attempts, in each session, the E E G data 

were also recorded for several 2-minutes periods while the person was in a specific no 

control (NC) state. The sub-sessions that contain only N C state E E G data are gathered in 

different N C states such as attentive eyes opened while looking at a picture on the monitor or 

doing a search task, and attentive eyes closed. The reason to record this type of data was to 

evaluate the performance of the BI design in different N C state periods. 

The proposed design is evaluated on all the available data, i.e., the sub-sessions that contain 

mixed N C and IC state data and the sub-sessions that include only N C state periods. The 

E E G data of the mixed N C and IC states contain movement attempts approximately every 6.7 

seconds separated by periods of N C state. The reasons behind the addition of the periods of 

pure N C state data were to: 1) more thoroughly evaluate the performance of the system on 

different types of N C state data, and 2) approach the real-world paradigm where a person 

performs control with longer periods of N C state. 

The ability of the subjects to control the BI system was evaluated by 1) percentage of correct 

activations during IC states (true positives, TPs) and 2) percentage of false switch activations 

during N C states (false positives, FPs). A TP was identified i f the BI system was activated at 

least once in a window 0.5 seconds before and 1 second after the time of the expected 

movement (TEM) , a method similar to that employed by others (Graimann et al 2004, Levine 

et al 2000, Townsend et al 2004, Yom-Tov and Inbar 2003). FPs were assessed in the periods 

before the appearance of a white circle and after the end of the activation window. 

The testing system employed was the same as was used by (Mason and Birch 2000, Borisoff 

et al 2004]. This system automatically detected eye-blinks and blocked the output of the 

system during these times. Table 6.1 details the percentage of the recorded data of the 
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evaluation set that were blocked by the system for each subject. From the numbers in Table 

6.1, an average of 22% of the E E G data contained eye-blinks and 7.4% of the trials of the test 

set are blocked by the system due to the presence of eye-blinks. 

The first day's recordings were used to train the classifier and those from the subsequent 5 

days were used for evaluation. 

T A B L E 6.1. DETAILS OF THE EEG D A T A OF THE E V A L U A T I O N SET T H A T W E R E 

B L O C K E D B Y THE TEST S Y S T E M D U E TO E Y E - B L I N K 

Subject ID CB CS KT AJ LB BK RT 
Total duration of recorded EEG (minutes) 66 77 61 87 63 81 64 79 
Percentage of data with eye-blinks (%) 17 19 15 28 34 22 19 23 
Total number of movement attempts 320 411 294 397 324 415 356 322 
Number of movement attempts blocked by the 21 16 12 4 43 25 76 10 
test system due to eye-blink. 
Percentage of movement attempts blocked by 6.6 3.9 4.1 1.0 13.3 6.0 21.4 3.1 
the test system due to eye-blink. 

6.4. Results 
The performance of the L F _ A S D - V 5 design is summarized via the receiver operating 

characteristic (ROC) curves. These results are compared to the performance of the latest L F -

A S D design ( L F - A S D - V 4 ) (Borisoff et al 2004). 

For each subject, different buffer lengths (L's) were used to build the classifier and the buffer 

length that resulted in the best performance is reported here. Specifically, we tried buffer 

lengths of 1, 3, 5, 7, 9 and 11. Buffer length of one corresponds to the design of previous 

system, L F - A S D - V 4 . 

Figs. 6 and 7 show the path templates o f the feature vectors that the classifier generates for 

the two cases 1) Intentional Control (IC) state, and 2) N o Control (NC) state. In these figures, 

the path templates for each class are shown for subjects L B and ID. These templates 

correspond to the buffer lengths that resulted in the best performance for these subjects. A s 

the figures show, the path templates of the IC state (the paths that the FVv4 features move on 

during movement attempts) are quite different from those of the N C state path templates. In 

most cases, the path templates during N C states were templates with small amplitudes. This 

coincides with the rationale of the original feature extractor design. The original feature 
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extractor of the L F - A S D was designed to produce features with large values when specific 

movements were performed and features with small values when the subject was in the N C 

state. A s mentioned in Section 6.2, the algorithm was designed to generate three path 

templates per class. In some cases, like the one shown in Fig. 6.6 for N C state path templates, 

the three templates estimates for the N C class were very similar, thus when they are plotted 

they appear as one template in this figure. The reason is that the data of that class could be 

represented with less (than three) path templates 

e 1 

> 

i 0.5 

E 
b 

-0.1875 -0.125 -0.0625 +0.0625 +0.125 +0.1875 

-0.1875 +0.1875 

Figure 6.6 Path templates for subject L B for the two cases 1) movement (IC) state (lines with circles) 
and 2) no movement (NC) state (lines with crosses). Time=0 corresponds to the time of the expected 

(attempted) movement (TEM). Note that the algorithm estimates three path templates per class. 
However, as can be seen in this figure, the three path templates of the N C state 
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Figure 6.7 Path templates for subject ID for the two cases 1) movement (IC) state (lines with circles) 
and 2) no movement (NC) state (lines with crosses). Time=0 corresponds to the time of the expected 

(attempted) movement (TEM). Note that the algorithm estimates three path templates per class. 
However, as can be seen in this figure, two of the three path templates of the IC state were very 

similar and are seen as one template. This is also can be seen for N C state path templates. 

The performance of the L F - A S D - V 5 was compared to the L F - A S D - V 4 design for a 

debounce period of 16 (as used in previous study (Borisoff et al 2004)). In Tables 6.2 and 

6.3, we show the TP rates at fixed FP rates of 1% and 2% for able-bodied and SCI subjects. 

The results showed that the best performance improvement of 50% was achieved for subject 

B K when the modified BI system ( L F - A S D - V 5 ) was used. For able-bodied subjects, the 

average performance of L F - A S D - V 5 was approximately 6.5% better than L F - A S D - V 4 in the 

false positive ranges of 1% to 2%. On the other hand, L F - A S D - V 5 improved the detection of 

attempted movements of spinal cord injured subjects by an average of 25% in the false 

positive ranges of 1% to 2%.The hypothesis that the performances of L F - A S D - V 4 and L F -

A S D - V 5 , operating at false positive level of 2%, had equal means (against the alternate 
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hypothesis that L F - A S D - V 5 had higher average performance than L F - A S D - V 4 ) was rejected 

at significance level of p<0.01 using paired T-test. 

The results in Tables 6.2 & 6.3 show that the average true positive rates for SCI subjects are 

3.2-6.7% lower than the able-bodied subjects. Using the new design, the average true positive 

rate differences between the two subject groups drop to the 1-3.4% range. 

T A B L E 6.2 TRUE POSITIVE (TP) RATES A T FIXED F A L S E POSITIVE (FP) RATES OF 1% 

A N D 2% FOR ABLE-BODIED SUBJECTS. 

Absolute TP Percentage of TP 
LF-ASD-V4 LF-ASD-V5 

B u f f e r Improvement at Improvement at 
Subject '• '-

length (L) TP (%) at TP (%) at TP (%) at TP (%) at 
FP=1% FP=2% FP=1% FP=2% 

FP=1 % FP=2% FP=1% FP=2% 

ID 7 41.1 64.6 47.6 69.2 i-6.5 +4.6 +16% +7% 

CB 5 44.5 66.0 42.7 68.2 -1.8 +2.2 -4% ,; +3 

CS 1 45.8 67.6 45.8 67.6 0 0 0% 0°.. 

KT 9 23.6 48.5 28.3 54.0 +4.7 , +5,5 +20% + 11% 

Average 38.8 61.7 41.1 64.8 , +2.3 +3.1 +8% . +5% 

T A B L E 6.3 T R U E POSITIVE (TP) RATES A T FIXED F A L S E POSITIVE (FP) RATES OF 1% 

A N D 2% FOR SCI SUBJECTS. 

T T , , „ ^ T T . T T , Absolute TP Percentage of TP 
LF-ASD-V4 LF-ASD-V5 b 

Buffer Improvement at Improvement at 
Subject -

length (L) TP (%) at TP (%) at TP (%) at TP (%) at 
FP=1% FP=2% FP=1% FP=2% 

FP=1% FP=2% FP=1% FP=2% 

AJ 5 31.7 61.0 43.7 71.1 +12.0 + 10.1 •38% • 17% 

LB 7 39.3 64.5 44.7 69.9 -5.5 -5.4 • 14 8% 

BK 9 28.6 53.5 42.9 68.5 •• 14.3 .15 0 +50% +28% 

RT 5 28.7 55.0 36.9 63.1 +8.2 • ' +8.1 +29% + 15% 

Average 32.1 58.5 42.1 68.2 +10.0 +9.7 +33% +17% 
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Truncated R O C curves for two SCI subjects ( B K and RT) are shown in Figs. 8 and 9 for both 

L F - A S D - V 4 and our proposed L F - A S D - V 5 design. A s we are interested in lower FP rate 

levels, only those values of FPs below 5% are shown in the R O C curves. A s the figures 

show, for most of the FP rate levels, L F - A S D - V 5 generated a better TP rate than L F - A S D -

V 4 . 

2 2.5 3 

FP Rate (%) 

3.5 4.5 

Figure 6.8 Truncated ROC curves for SCI subject B K for LF-ASD-V4 system (Dashed line) and our 
proposed LF-ASD-V5 design (Solid line with circles). 
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F P Rate (%) 

Figure 6.9 Truncated ROC curves for SCI subject RT for LF-ASD-V4 system (Dashed line) and our 
proposed LF-ASD-V5 design (Solid line with circles). 

6.5. Conclusions 
We have introduced a new design of an asynchronous BI by utilizing the history of feature 

vectors in time. The error characteristics of the proposed L F - A S D - V 5 design were better than 

the previous design ( L F - A S D - V 4 ) with true positive rates increases of up to 50% for false 

positive rates in the 1-2% range. We have demonstrated that utilizing the knowledge of the 

path of feature vectors improved the performance of the L F - A S D , but this idea may be useful 

for other BI transducer designs and pattern recognition problems. 

Results showed that the performances of the SCI subjects were improved by approximately 

25%) on average, while the average improvements for able-bodied subjects were 6.5%. These 

results demonstrated that the proposed method mostly benefited the SCI subjects rather than 

the able-bodied ones. One reason behind the higher improvements for SCI subjects might be 

that the able-bodied subjects generated M R P patterns with large amplitudes and thus the 
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previous design could detect them without considering the path of features. One of our recent 

studies (Mason et al 2004) showed that SCI subjects generated bipolar M R P patterns whose 

amplitudes were smaller than the ones of able-bodied subjects. A s in the new design, the 

paths of the features are taken into account, we are incorporating more information during the 

movement and thus the trials that were missing before can be detected and the improvements 

are higher for SCI subjects. 

While the performance o f the subjects does differ significantly between L F - A S D - V 4 and L F -

A S D - V 5 , it does not differ between able-bodied and disabled subjects in L F - A S D - V 5 . This 

suggests L F - A S D - V 5 gives Consistent results for both subject groups unlike L F - A S D - V 4 , in 

which able-bodied subjects performed better than SCI subjects. This is an important point 

that needs to be verified statistically with more subjects. 

In summary, this work has succeeded in decreasing the error rates of our current BI design. 

Although this forms a substantial decrease in the error rate, practical experience indicates that 

further system improvements are still desirable. 

Several ideas emerged from the results that may be studied in future investigations. For 

example, as mentioned in Section 6.3, the exact time that a subject attempted the movement 

was not known accurately. A s this time was user dependent, the subject did not necessarily 

attempt the movement at T E M which is one second after the cue. In this study to train the 

classifier, the features in the path space at the T E M were selected even though this time may 

not have been the actual time of the attempted movements. Thus, these features may not have 

been good representatives of the actual movement attempt. We observed that using these 

features resulted in no improvement for subject CS . Thus, we carried out another approach to 

generate the training data to train the classifier. A s mentioned in Section 6.2.1, to generate 

the training data for the IC state, the features at the T E M were picked. In the new procedure, 

we picked more features around T E M for training the classifier. Specifically, we picked the 

features at t=TEM-l, TEM, and TEM+1 and then trained the classifier with the new training 

set for subject CS . The results showed true positive percentage improvement of 

approximately 5%. We also applied the same procedure for subject ID, but the results did not 

improve. Statistical classifiers are dependent for their accuracy on the quality of the training 

data as much as on the algorithm used for classification. For useful results to be obtained, the 
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training data set must be representative of the whole area to be classified. This preliminary 

analysis on the data of two subjects implies the need for a method that selects the most 

suitable training data to train the classifier. We wi l l look into this issue in our future research. 

In this study, the output of the system was blocked when the eye-blinks were present. 

Uti l iz ing the path of the features may nullify our need for an eye-blink detector in our BI 

system. Thus, our future work wi l l explore the system performance and robustness when the 

output of the system is not blocked due to eye-blinks. This study was an offline evaluation of 

the proposed L F - A S D - V 5 design; however, online feedback experiments are also needed to 

confirm the findings of this study. 

The use of different feature extraction methods, self-learning classification schemes and 

customization of the L F - A S D Feature Generator parameters are in the scope of our future 

directions as well . 
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Chapter 7 Effects of Eye Blinks on a Self-paced Brain Interface 

Design20 

7.1. Introduction 
Many Brain Interface (BI) transducer designs have been presented in the literature (for a 

review of the field, see (Wolpaw et al., 2002; Vaughan, 2003; Mason et al., 2006; Nicolelis, 

2003)). Few of them, however, have been designed specifically for self-paced control. The 

concept of self-paced control of brain interface systems was introduced in (Mason and Birch, 

2000) as "asynchronous control". In a self-paced brain interface, the users affect the BI 

transducer output whenever they want by intentionally changing their brain state. Between 

periods of intentional control (IC), users are said to be in a no-control (NC) state - they may 

be idle, daydreaming, thinking about a problem or lunch, or performing any other action, but 

not trying to control the BI transducer. BI transducers are thus designed to respond only 

when there is intentional user control and to remain inactive when the user is in a no-control 

state. 

In contrast, most B i s operate only during specific periods determined by the system (not the 

user). This operating paradigm is referred to as synchronous or synchronized control (Mason 

and Birch, 2000). Although self-paced control is the most natural mode of interaction, it has 

received less attention. Only a few BI transducers (Mason and Birch, 2000; Levine et al., 

2000; Yom-Tov and Inbar, 2003; Birch et al., 1993; Mi l l an and Mourino, 2003; Scherer et 

al., 2004; Graimann et al., 2004; Townsend et al., 2004; Borisoff et a l , 2004) have been 

specifically designed and tested for self-paced control. A s recognized by Wolpaw et al 

(2002), self-paced systems address a problem important for practical applications, i.e. 

detection of user commands without the timing cues provided by structured trials. 

In developing a non-invasive brain interface system, the L o w Frequency-Asynchronous 

Switch Design ( L F - A S D ) was first introduced as a brain interface for self-paced control 

applications (Mason and Birch, 2000). The L F - A S D seeks to recognize the movement related 

potentials (MRPs) in the E E G signal. Recent studies with the latest design of the L F - A S D 

2 0 A version of this chapter has been published. With kind permission of Springer Science and Business 
Media. Bashashati A., Noureddin B., Ward R., Lawrence P., and Birch G. (2007) Effects of Eye Blinks on the 
Performance of a Self-paced Brain Interface, Clinical Neurophysiology 118 1639-47. 
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have demonstrated an average true positive (TP) rate of 66.5% for false positive (FP) rates of 

2% (Bashashati et al., 2006 b). To aid the presentation, the latest two designs of the L F - A S D 

(Bashashati et al., 2006 a; Bashashati et a l , 2006 b) w i l l be referred to as L F - A S D - V 4 and 

L F - A S D - V 5 , respectively, in this paper. Among the proposed asynchronous BI transducers 

whose offline performances have been reported in terms of true positives and false positives 

(Levine et al., 2000; Yom-Tov and Inbar, 2003; Graimann et al., 2004; Townsend et al., 

2004), the L F - A S D generates less false positives. A l l these offline studies have reported 

average false positive rates in the range of 6% to 28% while the average true positive rates 

were between 73% and 94% (Levine et al 2000, Yom-Tov and Inbar 2003, Graimann et al 

2004, Townsend et al 2004). It is difficult however to directly compare the results of the 

different studies, as the recording equipment, recording and classification protocols, decision 

rate and interval of time during which false positives could occur, and mental tasks 

considered are different. In addition, the amount of data involved and the degree of training 

the subjects received before participating in the BI experiments also vary between studies. 

In the L F - A S D - V 4 version, which is similar to the original design of the L F - A S D (Mason 

and Birch 2000), the output state of the system at time th is only determined by the values of 

the feature vectors at that time. In contrast, the later design of the L F - A S D ( L F - A S D - V 5 ) 

was introduced to include the past information of the feature vectors in deciding whether or 

not there is a movement attempt at time f/. Using this information has been shown to improve 

the BI ' s error rate (Bashashati et al 2006b). (Bashashati et al 2006a) showed that in order to 

detect the desired M R P pattern, some design parameters of the feature generator should be 

adjusted for each subject These parameter adjustments were not done for the L F - A S D - V 5 

version. 

Previously, the testing system employed was the same as that used by (Mason and Birch 

2000, Borisoff et al 2004). This system automatically detected eye-blinks and did not 

evaluate the system during these times. In the original version o f the L F - A S D it was believed 

that eye-blinks generate excessive false activations of the system, and hence E E G data 

contaminated with eye-blinks were not evaluated. A s the L F - A S D looks for a specific 

waveform (template) in the E E G signal to detect the presence of movements, eye movements 

can also easily generate such a template in the E E G signal and cause false activation of the 

output 
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Table 7.1 shows the details of eye-blink artifacts in our pre-recorded data that were used in 

this and previous studies (Bashashati et al., 2006 a; Bashashati et al., 2006 b). A s this table 

shows, 15-34% of the N C state E E G data were contaminated with eye-blinks and 1-21.4% of 

the trials were rejected due to the presence of eye-blinks (Borisoff et al., 2004; Bashashati et 

al., 2006 a; Bashashati et al., 2006 b). A s shown in the third row of Table 7.1, a significant 

amount of data (15-34%) was not evaluated due to the presence of eye-blinks. This reduced 

the available time that a user could control the B I system. Ideally, a BI system should be 

operational at any time. This is not the case for this brain interface system, thus reducing its 

usability. A t the same time, according to the testing system employed, further devices are 

needed to record the electro-oculogram (EOG), which is used to detect eye-blinks. From the 

above, it is clear that a strategy that can handle eye-blink artifacts without the need for 

rejecting them or the need for E O G recording is desired. 

T A B L E 7.1 DETAILS OF THE EEG D A T A OF THE E V A L U A T I O N SET T H A T W E R E 

B L O C K E D B Y THE TEST S Y S T E M D U E TO E Y E - B L I N K S . 

Subject ID CB CS KT AJ LB BK RT 
Total duration of recorded EEG (minutes) 66 77 61 87 63 81 64 79 
Percentage of data contaminated with eye- 17 19 15 28 34 22 19 23 
blinks (%) 
Total number of movement attempts 320 411 294 397 324 415 356 322 
Number of movement attempts blocked by the 21 16 12 4 43 25 76 10 
test system due to eye-blinks 
Percentage of movement attempts blocked by 6.6 3.9 4.1 1.0 13.3 6.0 21.4 3.1 
the test system due to eye-blinks (%) 

Since the L F - A S D - V 5 design considers the history of features in decision making and 

improves the performance of the system, we thought it might handle the E E G data 

contaminated with eye-blink artifacts better than the previous versions. In such a case, we no 

longer need to block the decision of the system during eye-blink artifacts. This paper 

evaluates the performance of the L F - A S D - V 4 (Bashashati et al., 2006 a) and the latest self-

paced brain interface design, the L F - A S D - V 5 , (Bashashati et al., 2006 b) when eye-blinks are 

not excluded from data. In the meantime, the design parameters of the feature generator in 

(Bashashati et al., 2006 b) are customized according to (Bashashati et al., 2006 a) for each 

subject. 
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This study measures the performance of L F - A S D - V 5 when eye-blinks are not excluded from 

the analysis and compares the performance of this design with L F - A S D - V 4 . The 

performance of the system is evaluated using E E G recordings of attempted finger movements 

of subjects with spinal cord injuries (SCI) as well as able-bodied subjects who were recorded 

previously in BI experiments. 

In Section 7.2 of this paper, a brief description of the self-paced brain interface designs (LF-

A S D - V 4 and L F - A S D - V 5 ) , the description of the experiments, and the evaluation procedure 

are presented. The results and discussions are followed in Sections 7.3 and 7.4, respectively. 

7.2. Methods 
7.2.1. Brain Interface Designs 

7.2.1.1. LF-ASD-V4 

Fig . 7.1 shows the block diagram of the L F - A S D - V 4 design, which is similar to the original 

design of the self-paced brain interface (Mason and Birch, 2000). This design uses features 

extracted from six bipolar E E G channels (defined with reference to the International 10-20 

System at F1-FC1 , F z - F C z , F2-FC2, F C 1 - C 1 , F C z - C z , and FC2-C2) . After amplification, all 

six E E G channels are normalized with an Energy Normalization Transform (ENT) (Borisoff 

et al., 2004). A wavelet-like function is applied as the feature generator. The important 

design parameters of the feature generator are parameters that determine the shape of the 

subject-specific movement-related potential pattern that needs to be detected and are referred 

to as "delay parameters", as shown in Fig . 7.2 as a i , aj. The Karhunen-Loeve Transform 

maps the six-dimensional feature space produced by the Feature Generator to a two-

dimensional space. A one-nearest neighbour (1-NN) classifier is used as the feature classifier. 

The system's classification accuracy is further improved by using a moving average and a 

debounce block to reduce the number of false switch activations (for details, see (Mason and 

Birch, 2000; Borisoff et al., 2004)). Overall, every 1/16th of a second, the system classifies 

input patterns as either no-control (NC) or intentional control (IC). 
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LF-ASD LF-ASD 

ENT Feature 
G enerator G enerator 

F V v 
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Figure 7.1 Components of the LF-ASD-V4 transducer (Borisoff et al., 2004), where ENT = Energy 
Normalization Transform, K L T = Karhunen-Loeve Transform, 1 - N N = 1 -Nearest Neighbour, amp = 

amplifier, and F V V 4 = extracted feature vector. 

Ej(n) / 
\ 

1 \ 
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Figure 7.2 Desired pattern of the bipolar E E G during movement, where e(n) = amplitude of the 
signal, Et(n) = amplitude difference between local maximum before the movement and local 

minimum after the movement, E/n) = amplitude difference between local maximum before the 
movement and local minimum before the movement, t=n is the time of the expected movement 

attempt, and otj and aj are the delay parameters. 

The delay parameters of the feature generator in (Mason and Birch, 2000) were set to be the 

same for all subjects. In the L F _ A S D - V 4 design, these parameters were customized 

separately for each subject to increase the confidence that the system is triggered by the 

desired M R P pattern and not any other unwanted brain activity. 

7.2.1.2. L F - A S D - V 5 

L F - A S D - V 5 aimed at including the past values of the features in decision making at any 

specific time. 

Fig. 7.3 shows the design of the L F - A S D - V 5 (Bashashati et a l , 2006 b). FVV4(tx) is the value 

of the original features of the L F - A S D - V 4 , L is the length of the buffer, and 
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FVV5(tx)represents the path that the original feature vectors traverse during time. This path 

represents the history of the original L F - A S D features in the multidimensional. A s shown in 

Fig. 7.3, the L F - A S D - V 5 has the same overall structure of the L F - A S D - V 4 design (see 

Section 7.2.1.1) except for the feature extraction block which contains an additional buffer 

that captures the trajectory of the feature vector in the multi-dimensional space. A s the 

movement-related potential pattern of each subject may vary in duration, the buffer length 

(L) is defined separately for each subject. Overall, every 1/16th of a second, the system 

classifies input patterns as either no- control or intentional control. For more details refer to 

(Bashashati et al., 2006 b). 

In (Bashashati et al., 2006 b) the original parameters of the feature extraction block were 

used for all subjects. However, according to the findings of (Bashashati et al., 2006 a), these 

parameters should be adjusted for each subject. A s such, in this paper, the parameters of the 

feature extraction block are customized according to (Bashashati et al., 2006 a). 

electrode 
array 

amp 
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LF-ASD 
Feature 

G enerator 
ENT 

LF-ASD 
Feature 

G enerator 
KLT Buffer ENT 

LF-ASD 
Feature 

G enerator 
KLT Buffer F V v s 

F eature Translator 

1-NN 
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moving U ounce 
average 

Path tempi ate generation mechanism 

Figure 7.3 Components of the LF-ASD-V5 transducer (Bashashati et al., 2006 a), where ENT = 
Energy Normalization Transform, K L T = Karhunen-Loeve Transform, 1-NN = 1-Nearest Neighbour, 
amp = amplifier, F V V 4 = extracted feature vector of LF-ASD-V4, and F V V 5 = extracted feature vector 

ofLF-ASD-V4. 

7.2.2. Experiments 

The data used in this study were collected from subjects seated 150 cm in front of a computer 

monitor. The E E G signal was recorded from six bipolar electrode pairs positioned over the 

supplementary motor area and the primary motor cortex (defined with reference to the 

International 10-20 System at F1-FC1, Fz -FCz , F2-FC2, F C 1 - C 1 , F C z - C z , and FC2-C2) . 

Electro-oculographic (EOG) activity was measured as the potential difference between two 

electrodes, placed at the corner and below the right eye. Eye-blink artifacts were considered 

present when the difference between the E O G electrodes exceeded ±25 p V . A l l signals were 

amplified by an E E G amplifier, filtered to a pass-band between 0.1 to 30Hz and sampled at 

175 



128Hz by a P C equipped with a 12-bit analog to digital converter embedded on a data 

acquisition board. 

The subjects participated in this study consisted of four subjects with a high-level spinal cord 

injury and four able-bodied subjects. A l l subjects were male (except subject K T ) , right 

handed between 31 and 57 years old. A l l SCI subjects had no residual sensation or motor 

function in the hands. A l l the subjects provided written consent according to the Behavioral 

Research Ethics Board ( B R E B ) of the University of British Columbia. 

The data were collected from the subjects while performing a guided task in 2-minute 

sessions. These sessions contained both the no-control and intentional control state periods as 

shown in Fig. 7.4. A t random intervals of 5.6 to 7.0 seconds (mean of 6.7 seconds), a 2cm 

white circle was displayed on the subject's monitor for % second, prompting them to attempt 

a movement. In response to this cue, the subject tried to activate the brain switch by 

attempting to move his right index finger one second after the cue appeared. The one-second 

delay was used to avoid visual evoked potential effects from the activity. The time, one 

second after the cue, is called "time of expected (attempted) movement ( T E M ) " . A s the time 

to perform the movement attempt depends on the user's response, the movement attempt is 

not necessarily performed at T E M and may change from subject to subject and attempt to 

attempt. Both subject groups used the same neurological mechanism to drive the brain 

switch: an attempted right index finger flexion. This resulted in no movement in subjects 

with high level spinal cord injury, and an actual finger flexion in able-bodied subjects. For 

each subject, an average of 80 trials was collected every day for 6 days. 

TEM TEM 
—I — 

Time (s) 

NC state IC state NC state IC state NC state 

Figure 7.4 Structure of each 2-minute sub-session of E E G recording, where T E M = time of the 
expected (attempted) movement, N C = no-control, and IC = intentional control. 

Besides recording the E E G data during movement attempts, the E E G data were also recorded 

for several 2-minute periods while the person was in a specific no-control state. These 

176 



sessions contained only no-control state E E G data and were gathered for different no-control 

states such as attentive eyes opened while looking at a picture on the monitor or doing a 

search task, and attentive eyes closed. The reason for recording this type of data was to 

evaluate the performance of the brain interface system for different no-control state periods. 

7.2.3. Evaluat ion 

The designs are evaluated on all the recorded data, i.e., the 2 minute sessions that contain 

mixed no-control (NC) and intentional control (IC) state data and the 2 minute sessions that 

include only N C state periods. The E E G data of the mixed N C and IC states contain 

movement attempts approximately every 6.7 seconds separated by periods of no-control 

state. The reasons behind the addition of the periods of pure no-control state data were: 1) to 

more thoroughly evaluate the performance of the system on different types of no-control state 

data, and 2) to approach the real-world paradigm where intentional control states are 

separated by longer periods of no-control state. 

The ability of a subject to control the brain interface system was evaluated by 1) the 

percentage of correct activations during IC states (true positives, TPs) and 2) the percentage 

of false switch activations during N C states (false positives, FPs). A state was identified as 

true positive i f the brain interface system was activated at least once in a T E M window 

starting at 0.5 seconds before the time of the expected movement ( T E M ) and ending at 1 

second after it, a method similar to that employed in other studies (Yom-Tov and Inbar, 

2003; Birch et al., 1993; Graimann et al., 2004; Townsend et a l , 2004). A n y activations 

before the appearance of a white circle and 1 second after the T E M were considered as false 

positives. 

Artifact-free E E G data of the first day's recordings were used for training the 1-NN 

classifier. The E E G data of the subsequent 5 days recordings were used for evaluating the 

performance o f the brain interface system in each of the following cases (refer to Fig. 7.5): 

Case 1: Data during ocular artifact presence (OAi, O A 2 and OA3 periods) are not included at 

all in the analysis. The total length of data (T) is effectively reduced. 

Case 2: Data during O A i , OA2 and O A 3 are included in the analysis, but the output is always 

set to inactive, even i f the L F - A S D is activated (e.g., t2 and t 3). A l l the data (T) is 

considered, but valid L F - A S D activations may be incorrectly suppressed (e.g. t3). In this 
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case, in fact, the output is frozen and neither a hit nor a miss is registered during artifact 

presence. 

Case 3: Data during O A i , OA2 and OA3 are included in the analysis, and the output is never 

artificially set to inactive, even during artifacts. A l l the data (T) is considered, and no valid 

L F - A S D activations are suppressed. 

To assess the effect of eye-blinks, the L F - A S D - V 4 and L F - A S D - V 5 were each evaluated by 

data from each of the above three cases resulting in six configurations: (1) L F - A S D - V 4 -

Case l , (2) LF-ASD-V4-Case2 , (3) LF-ASD-V4-Case3 , (4) L F - A S D - V 5 - C a s e l , (5) L F - A S D -

V5-Case2, (6) LF-ASD-V5-Case3 . 

ra) 
ICi IC 2 IC 3 

1 
_ T __ 

1 

a>) 

t2 t 3 

(c) 

OAi O A 2 O A 3 

Figure 7.5 (a) Periods of intended control. Total length of experiment, in seconds, is T. (b) Timing of 
LF-ASD activations, (c) Timing of ocular artifacts detected using EOG electrodes, where IC = 

intentional control, OA|,2,3 = ocular artifact periods. 
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7.3. Results 
The performances of all six configurations are summarized via the receiver operating 

characteristic (ROC) curves (Egan, 1975). 

For the L F - A S D - V 5 design, different buffer lengths (refer to Section 7.2.1.2) were used to 

build the classifier. The buffer length that resulted in the best performance for each subject is 

reported here. Specifically, the buffer lengths tried were 3, 5, 7, 9 and 11. 

In Table 7.2, we show the TP rates at fixed FP rates of 1% and 2% for able-bodied and SCI 

subjects using Case 1 and Case 3 evaluation methods and data (refer to Section 7.2.2). A s 

shown in the last column of this table, the performance of the LF-ASD-V5-Case3 (67.9%) 

was better than the L F - A S D - V 4 - C a s e l (63.0%) on average for a false positive rate of 2%. 

However, it should be noted that direct comparison of both the L F - A S D - V 4 and L F - A S D - V 5 

systems with eye-blinks and without eye-blinks using the Case 1 and Case 3 evaluation 

methods can be misleading. Case 1 only evaluates the system on a portion of the available 

data and discards the eye-blink contaminated E E G data, whereas Case 3 evaluates the 

systems on all the available E E G data. 

Direct comparison of both designs with eye-blinks and without eye-blinks is only possible i f 

Case 2 and Case 3 evaluation methods are used since both evaluation schemes use all the 

E E G data (including E E G data containing eye-blinks). A s such, Table 7.3 shows the TP rates 

at fixed FP rates.of 1% and 2% for able-bodied and SCI subjects for Case 2 and Case 3. 

Table 7.3, thus, provides a more rigorous comparison between Case 2 and Case 3. 

Table 7.4 shows the true positive (TP) rate change of the L F - A S D - V 4 for Case 3 compared 

to Case 2. A s shown in the last column of this table, the TP rate of the L F - A S D - V 4 decreases 

by an average of 8.8% and 9.4%> (for FP rates of 1%> and 2%>, respectively). Table 7.5 shows 

similar TP rate change in the L F - A S D - V 5 . In this case, the TP rate of the system decreases 

by an average of 6.7% and 5.5% (for FP rates of 1% and 2%, respectively), which suggests 

that the L F - A S D - V 5 design performs better than the L F - A S D - V 4 design when the E E G data 

containing eye-blinks are also included in evaluation. 

Table 7.6 compares the LF-ASD-V5-Case3 with the LF-ASD-V4-Case2 . In two spinal cord 

injured subjects ( L B and B K ) , the performance of L F - A S D - V 5 even with the presence of 
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eye-blinks are better than L F - A S D - V 4 when the output is inactivated during eye-blinks. 

Overall, as shown in the last column of Table 7.6, the average true positive rate of L F - A S D -

V5-Case3 was less than LF-ASD-V4-Case2 by 1.9% and 1.5% for false positive values of 

1% and 2%, respectively. Fig. 7.6 summarizes the findings of Tables 7.4 and 7.5 and shows 

that the performance of the L F - A S D - V 5 degrades less than the performance of the L F - A S D -

V 4 when the data containing eye-blinks are included in the evaluation. 

T A B L E 7.2 T R U E POSITIVE (TP) RATES A T FIXED F A L S E POSITIVE (FP) RATES OF 1% 

A N D 2% FOR B O T H ABLE-BODIED A N D SPINAL CORD INJURED SUBJECTS FOR LF-ASD-

V4 A N D LF-ASD-V5 DESIGNS USING C A S E 1 A N D C A S E 3 E V A L U A T I O N METHODS. 

Subject 
Spinal cord injured Able-bodied Overall 

average Subject 
AJ LB BK RT Average I D CB CS KT Average 

Overall 
average 

LF-ASD-V4-
TP (%) at 
FP=1 % -42 1 35 6 2~ 3 36.5 35.4 45.2' • 40.4 46 V 23 4 39.0 37.2 

CASE1 TP (%) at 
FP=2% 64.3 61.1 52.6 65.4 60.8 69.9 68.4 73.3 49.1 65.2 63.0 

LF-ASD-V4-
TP ("..Kit 
l-p=l % 6 36 : 26 ~ 32 3 32.2 42.7 34.3 ;I46.7 16.6' 35.1 33.6 

CASE3 TP (%) at 
FP=2% 60.7 61.9 52.3 61.2 59.1 68.1 62.6 73.3 40.5 61.1 60.1 

LF-ASD-V5-
ll>(%) al 
1 p=l ° u 

46 0 •'40.1 40.9 40.2 42.0 45 3 46 5 4') 1 31 2 43.0 42.5 
CASE1 TP (%) at 

FP=2% 72.1 68.7 67.4 76.3 71.1 67.2 72.0 74.3 53.0 66.6 68.9 

LF-ASD-V5 -
1 P (.'."..) al 
l-P-l % 

MX) 1,45 J 40.3. 33 5 39.9 43 5 40.8". 48.5 32.1 41.2 40.5 
CASE3 TP (%) at 

FP=2% 66.9 71.7 66.5 72.4 69.4 67.3 68.2 74.2 56.4 66.5 67.9 

The truncated R O C curves for all subjects for L F - A S D - V 4 and L F - A S D - V 5 and for Case 2 

and Case 3 are provided in Figures 7.7-14. A s we are interested in lower FP rate levels, only 

those values of FPs below 3% are shown in the R O C curves. For most o f the FP rate levels, 

the L F - A S D - V 5 generated a better TP rate than the L F - A S D - V 4 . For each figure, 

corresponding points for L F - A S D - V 5 - C a s e 2 and L F - A S D - V 5 - C a s e 3 using one set of 

identical classification parameters are indicated. This is included to highlight in each case 

whether the difference is due to an increase in true positives, false positives, or both. 
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T A B L E 7.3 T R U E POSITIVE (TP) RATES A T FIXED F A L S E POSITIVE (FP) RATES OF 1% 

A N D 2% FOR B O T H ABLE-BODIED A N D SPINAL CORD INJURED SUBJECTS FOR LF-ASD-

V4 A N D LF-ASD-V5 DESIGNS USING C A S E 2 A N D C A S E 3 E V A L U A T I O N METHODS. 

Subject 
Spinal cord injured Able-bodied Overall 

AJ LB BK RT Average ID CB CS KT Average a v e r a S e 

TP (%) at • i - t -
LF-ASD-V4- FP=1 % 47.5 42.2 26.2 42.9 39.7 50 3 - 46.3 51.2 52.5 45.2. 42.4; 

CASE2 TP (%) at 
FP=2% 70.8 68.1 49.9 77.9 66.7 70.8 75.2 11.5 65.3 72.2 69.4 
TP (%) at 

LF-ASD-V4- I'P-I "o 33 6 36.2 26." 52.5 52.2 427 54.5 46.7 16.6 35.1 33.6 
CASE3 TP (%) at 

1 \> 2" H 60.7 61.9 52.3 61.2 59.1 68.1 62.6 73.3 40.5 61.1 60.1 
1 P (uu) at 

LF-ASD-V5- FP=1"u 4H I 3X x 48.6 46.X 45.x 50.4 . 54'.7 40 0 ... 47.7 47.5. 
CASE2 TP (%) at 

FP=2% ii. i 73.2 59.5 84.0 ^73.5 70.2 76.9 . 7Z;.8„ 68.8__ 73.4 73.4 
MM0..) JI •ilill ^^^^^^ flips LF-ASD-V5- 1 P 1 ".. 40 0 45." 40.3 33 5 5V 9 45.5 4W.s 4.V 5 52 / 41 2 40.5 

CASE3 TP (%) at 
FP=2% 66.9 71.7 66.5 72.4 69.4 67.3 68.2 74.2 56.4 66.5 67.9 

T A B L E 7.4 T R U E POSITIVE (TP) R A T E (%) C H A N G E OF THE LF-ASD-V4 W H E N E Y E -

B L I N K S A R E PRESENT (LF-ASD-V4-CASE3) VERSUS THE ORIGINAL LF-ASD-V4 W H E N 

THE OUTPUT IS B L O C K E D D U E TO E Y E - B L I N K S (LF-ASD-V4-CASE2) 

, . Spinal cord injured Able-bodied Overall 
" J C C AJ LB BK RT Average ID CB CS KT Average average 

TP FP=1% ,-13.9 -6.0 +0.5 -10.6 ""-7.7 "'""-7.7 -12.0 -4.5 -16.2 -10.1 -8.8 
decrease FP=2% -10.1 -6.2 +2.4 -16.7 -7.6 -2.7 -12.6 -4.2 -24.8 -11.1 -9.4 

T A B L E 7.5 T R U E POSITIVE (TP) R A T E (%) C H A N G E OF THE LF-ASD-V5 W H E N E Y E -

BLINKS A R E PRESENT (LF-ASD-V5-CASE3) VERSUS THE ORIGINAL LF-ASD-V5 W H E N 

THE OUTPUT IS B L O C K E D D U E TO E Y E - B L I N K S (LF-ASD-V5 -CASE2) 

Spinal cord injured Able-bodied Overall 
U j e ° AJ LB BK RT Average ID CB CS KT Average average 

TP FP=1% -11.8 -2 .4+1.5 -15.1 . , . - 6 . 9 -2.3 -9.6 -6.2 -7.9 -6.5 -6.7 ; 
decrease. FP=2% -10.2* -1.5 +7.0 -11.6 -4.1 -2.9 -8.7 -3*6 -12.4 -6.9 -5.5 " 
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T A B L E 7.6 TRUE POSITIVE R A T E (%) C H A N G E OF THE LF-ASD-V5 W H E N E Y E - B L I N K S 

A R E PRESENT (LF-ASD-V5-CASE3) VERSUS THE ORIGINAL L F - A S D W H E N THE OUTPUT 

IS B L O C K E D D U E TO E Y E - B L I N K S (LF-ASD-V4-CASE2) 

Subject Spinal cord injured Able-bodied 
AJ LB BK RT Average ID CB CS KT Average 

Overall 
average 

TP 
decrease 

FP 1% -7.5 
FP=2% -3.9 

-3.5 
+3.6 

-14.1 
+ 16.6 

-9.4 
-5.5 

(0.2 
+2.7 

-6-JL 
-3.5 

-5.5 
-7.0 

-2 7 
"-33 

-0.7 
-8.9 

-3 9 
-5.7 

-1.9 
-1.5 

10.0 

5.0 

0.0 

-5.0 

-10.0 

-15.0 

-20.0 

-25.0 

AJ LB BK RT ID CB CS KT 
Overall-

Averages 

c ra 
£ 
4) > 
in o 
a. 
0) 3 

I 
• LF-ASD-V4 

• LF-ASD-V5 

Subject name 

Figure 7.6 True positive rate change (at false positive rate of 2%) of the LF-ASD-V4 and LF-ASD-
V5 designs between Case 2 and Case 3 evaluation methods. 
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901 

FP rale (%) 

Figure 7.7 Truncated receiver operation characteristic (ROC) curves for subject ID (line with 
lozenges: LF-ASD-V5-Case2, line with circles: LF-ASD-V4-Case2, line with stars: LF-ASD-V5-
Case3, line with triangles: LF-ASD-V4-Case3). As we are interested in lower FP rate levels, only 

those values of FPs below 3% are shown in the ROC curves. The numbers in the parentheses show 
the false positive and true positive percentages, respectively, for identical classification parameters for 

LF-ASD-V5-Case2 and LF-ASD-V5-Case3. 

FP rale (%) 

Figure 7.8 Truncated receiver operation characteristic (ROC) curves for subject CB (line with 
lozenges: LF-ASD-V5-Case2, line with circles: LF-ASD-V4-Case2, line with stars: LF-ASD-V5-
Case3, line with triangles: LF-ASD-V4-Case3). As we are interested in lower FP rate levels, only 

those values of FPs below 3% are shown in the ROC curves. The numbers in the parentheses show 
the false positive and true positive percentages, respectively, for identical classification parameters for 

LF-ASD-V5-Case2 and LF-ASD-V5-Case3. 
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F P rale (%) 

Figure 7.9 Truncated receiver operation characteristic (ROC) curves for subject CS (line with 
lozenges: LF-ASD-V5-Case2, line with circles: LF-ASD-V4-Case2, line with stars: LF-ASD-V5-
Case3, line with triangles: LF-ASD-V4-Case3). As we are interested in lower FP rate levels, only 

those values of FPs below 3% are shown in the ROC curves. The numbers in the parentheses show 
the false positive and true positive percentages, respectively, for identical classification parameters for 

LF-ASD-V5-Case2 and LF-ASD-V5-Case3. 

F P rale (%) 

Figure 7.10 Truncated receiver operation characteristic (ROC) curves for subject K T (line with 
lozenges: LF-ASD-V5-Case2, line with circles: LF-ASD-V4-Case2, line with stars: LF-ASD-V5-
Case3, line with triangles: LF-ASD-V4-Case3). As we are interested in lower FP rate levels, only 

those values of FPs below 3% are shown in the ROC curves. The numbers in the parentheses show 
the false positive and true positive percentages, respectively, for identical classification parameters for 

LF-ASD-V5-Case2 and LF-ASD-V5-Case3. 
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FP rate (%) 

Figure 7.11 Truncated receiver operation characteristic (ROC) curves for subject A J (line with 
lozenges: LF-ASD-V5-Case2, line with circles: LF-ASD-V4-Case2, line with stars: LF-ASD-V5-
Case3, line with triangles: LF-ASD-V4-Case3). As we are interested in lower FP rate levels, only 

those values of FPs below 3% are shown in the ROC curves. The numbers in the parentheses show 
the false positive and true positive percentages, respectively, for identical classification parameters for 

LF-ASD-V5-Case2 and LF-ASD-V5-Case3. 

FP rate (%) 

Figure 7.12 Truncated receiver operation characteristic (ROC) curves for subject L B (line with 
lozenges: LF-ASD-V5-Case2, line with circles: LF-ASD-V4-Case2, line with stars: LF-ASD-V5-
Case3, line with triangles: LF-ASD-V4-Case3). As we are interested in lower FP rate levels, only 

those values of FPs below 3% are shown in the.ROC curves. The numbers in the parentheses show 
the false positive and true positive percentages, respectively, for identical classification parameters for 

LF-ASD-V5-Case2 and LF-ASD-V5-Case3. 
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901 

F P rate (%) 

Figure 7.13 Truncated receiver operation characteristic (ROC) curves for subject B K (line with 
lozenges: LF-ASD-V5-Case2, line with circles: LF-ASD-V4-Case2, line with stars: LF-ASD-V5-
Case3, line with triangles: LF-ASD-V4-Case3). As we are interested in lower FP rate levels, only 

those values of FPs below 3% are shown in the ROC curves. The numbers in the parentheses show 
the false positive and true positive percentages, respectively, for identical classification parameters for 

LF-ASD-V5-Case2 and LF-ASD-V5-Case3. 

1001 1 , , 1 1 1 

FP rate (%) 

Figure 7.14 Truncated receiver operation characteristic (ROC) curves for subject RT ((line with 
lozenges: LF-ASD-V5-Case2, line with circles: LF-ASD-V4-Case2, line with stars: LF-ASD-V5-
Case3, line with triangles: LF-ASD-V4-Case3). As we are interested in lower FP rate levels, only 

those values of FPs below 3% are shown in the ROC curves. The numbers in the parentheses show 
the false positive and true positive percentages, respectively, for identical classification parameters for 

LF-ASD-V5-Case2 and LF-ASD-V5-Case3. 
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7.4. Discussion 
We have studied the performance of two self-paced brain interface designs when data 

containing eye-blinks are not excluded from analysis. The performance of the system for the 

case when data contaminated with eye-blinks are totally excluded from analysis were already 

known. Furthermore, we have evaluated the system's performance in a pseudo-online testing 

paradigms (Case 2 and Case 3 testing paradigms, refer to Section 7.2.3). The average true 

positive rate of L F - A S D - V 5 when eye-blinks are included in the analysis degrades slightly 

(1.9% and 1.5% at false positive rate of 1% and 2%, respectively) compared to when the 

output was inactivated due to the presence of eye-blink artifacts in L F - A S D - V 4 . 

A s shown in Tables 7.2 and 7.3, the systems that inactivate the output during eye-blinks 

(Case 2) seem to perform better than the systems that exclude eye-blink contaminated data 

from analysis (Case 1). However, direct comparison of the systems using Case 1 and Case 2 

evaluation methods is misleading, as the amount of data that are evaluated is different 

between them. Specifically, Case 1 evaluation method excludes eye-blink contaminated data 

from analysis and thus evaluates the system using only a portion o f the data. In fact, 

excluding data (as in Case 1) is not even possible for on-line systems, and thus Case 1 cannot 

be used to analyze them. Such comparison between Case 1 and Case 3 is also misleading for 

the same reason mentioned above. However, inactivating the system's output during artifacts 

(as in Case 2) is possible, and thus it is best to compare Case 2 and Case 3, and not Case 1 

and Case 3. 

The results in Tables 7.4 and 7.5 show that although we have not inactivated the output due 

to eye-blinks, the system (the LF-ASD-V5-Case3) is performing worse than the case in 

which we inactivated the output due to eye-blinks (the LF-ASD-V5-Case2) . This decrease in 

performance was much higher for L F - A S D - V 4 . This suggests that L F - A S D - V 5 performs 

better than L F - A S D - V 4 on the data that contain eye-blinks. A s shown in Table 7.6, 

comparing LF-ASD-V5-Case3 with LF-ASD-V4-Case2 shows that the true positive rate 

decreases slightly with the addition of eye-blink contaminated data. A s shown in the second 

row of Table 7.1, during 15-34% of the total available time, the subject was 'not allowed' to 

control the output of the system due to the presence of eye-blinks. Using the L F - A S D - V 5 -

Case3 not only provides full control of the system at all times but also does not have any 
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significant impact on the performance of the subjects (only about 1.5%-1.9% average 

decrease in true positive rate) compared to the LF-ASD-V4-Case2 . 

A close examination of the R O C curves revealed an interesting point. When evaluating the 

performance of both the L F - A S D - V 4 and L F - A S D - V 5 systems, we expected to see a 

performance decrease or no change when E E G data containing eye-blinks were present (Case 

3) compared to Case 2 when the output is inactivated (blocked) due to the presence of eye-

blinks. In one subject, (BK) , we noticed that the system performed even better when E E G 

data containing eye-blinks were present (Case 3). There are two possible causes for such a 

phenomenon: 

(1) In Case 2, activations during some of the trials are blocked due to the presence of eye-

blinks. Since in Case 3 no activations are blocked, the system may detect the previously 

blocked trials successfully even though they are contaminated with eye-blinks; 

(2) In some cases, eye-blinks may actually trigger the system in the T E M window and be 

considered a true positive, even though the output is not activated by a real movement related 

potential ( M R P ) pattern. 

For this subject, we specifically analyzed and investigated the system's output on a single 

trial basis for Case 2 and Case 3. A s reported in Table 7.1, the output associated with 19% of 

the no-control (NC) data of this subject were inactivated (blocked) due to the presence of 

eye-blinks in Case 2. Note, however, that when these data were included in the analysis 

(Case 3), only a very small number of false positives appeared and this in fact caused a better 

overall performance of LF-ASD-V5-Case3 compared to LF-ASD-V5-Case2 for subject B K . 

In addition, we noted that 12 of the 76 previously rejected artifact-contaminated trials 

(intended control; IC) were correctly detected when data containing eye-blinks were included 

in the analysis. However, we are not sure whether these trials were detected due to eye-blink 

activity or the real intended movements. This is an issue that needs to be investigated in 

future studies. 

In summary, this study evaluates two self-paced B i s in a pseudo-online testing paradigm, 

which was not the case before. Results show a slight decrease in the true positive rate of the 

L F - A S D - V 5 design when the output during eye-blink artifacts is not inactivated compared to 

the L F - A S D - V 4 design when the output is inactivated during eye-blinks. More importantly, 
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the system is available all the time, while in the previous design, it is unavailable for 15-34% 

of the time. Future studies w i l l investigate the performance of such a system in an online 

testing paradigm. 

L F - A S D was chosen for this study because so far it has the ability to generate less false 

positive rates than other BI designs. Our paper evaluates two different designs of the L F -

A S D . The L F - A S D - V 5 design utilizes all knowledge about the past values of feature vectors, 

thus it is more immune to eye-blink artifacts than the L F - A S D - V 4 design. The implication of 

our findings is that in designing brain interfaces in general, incorporating the path of feature 

vectors is an effective way to increase the availability o f the overall system without greatly 

reducing its performance in the presence of eye blink artifacts. In fact, this has implications 

for other B I designs and pattern recognition problems. 
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Chapter 8 Towards Development of a 3-State Self-Paced Brain 

Interface Based on Hand Extension Movements 2 1 

8.1. Introduction 
Brain computer interface (BCI) systems form a possible alternative communication and 

control solution for individuals with severe disabilities. For a review of the field, see (Mason 

et al 2007, Wolpaw 2004). In B C I systems, the user's cortical activity associated with an 

intentional control of a device (such as attempted finger movements) is directly mapped to an 

application-specific control signal. This allows the user to control various devices such as a 

neural prosthetic by cognitive processes only, i.e., by bypassing traditional interface 

pathways (which cannot be used by individuals with severe disabilities). 

In developing non-invasive B C I systems, the majority of research has concentrated on 

developing synchronous systems. These systems are only operational at specific periods. 

Asynchronous (self-paced) systems on the other hand have the advantage of being 

operational at all times. The 2-state Low Frequency-Asynchronous Switch Design ( L F - A S D ) 

was the first B C I introduced for self-paced or asynchronous control applications (Mason and 

Birch 2000). L F - A S D seeks to recognize the movement related potentials (MRPs) of a finger 

flexion movement in the E E G signal. A s a self-paced B C I , it is activated only when a user 

intends control. In such instances, the user is said to be in an intentional control (IC) state. 

The system maintains an inactive state output when a user is not intending to control the 

device (i.e., the user may be idle, relaxed, thinking about a problem, or performing some 

other action). This state is called the N o Control (NC) state. In fact, the N C state includes all 

mental states except for the IC state. 

L ike L F - A S D , the 2-state B C I systems tested in (Levine et al 2000, Townsend et al 2004, 

Yom-Tov and Inbar 2003) attempt to detect an intentional control state from the ongoing 

brain signal in a self-paced manner. The 3-state self-paced B C I implemented in (Scherer et al 

2004) attempts to differentiate between right hand, left hand and foot movements to operate a 

virtual keyboard. However, this B C I requires the subject to constantly engage in control 

2 1 A version of this chapter has accepted for publication. Bashashati A., Ward R., and Birch G. (2007) 
Towards Development of a 3-State Self-Paced Brain Interface Based on Hand Extension Movements J 
Computational Intelligence & Neuroscience, In press. 
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without the option of going to the no control (NC) state. In a recent work, Scherer et al 

(Scherer et al 2007) has proposed a 4-state self-paced B C I that has mean true positive and 

false positive rates of 28.4% and 16.9%, respectively. In the study of (Mil lan et al 2004) the 

subjects were asked to perform one of the following three actions: (1) imagine right hand 

movement, (2) imagine left hand movement, and (3) relax. A 3-state self-paced B C I was 

designed to navigate a mobile robot in an 80cm*60cm house-like environment by 

differentiating amongst these three states. The system generates 'unknown state output' when 

there is not enough confidence in choosing one of the three above mentioned mental tasks. 

The classifier of this system was not explicitly trained to recognize idle (NC) state (Mil lan et 

al 2004). According to the authors, it could process them adequately by responding 

'unknown'. It was also reported that the task of steering the robot between rooms was so 

engaging that the two tested subjects preferred to emit continuously mental commands rather 

than to go through idle state. Therefore, the response of this system on N C (idle) state was 

evaluated on a dataset with limited amount of idle-state. Moreover, having the choice of 

'unknown state output' may represent some neutral output but it is not clear whether the 

unknown state output was caused by the actual idle (NC) state or by lack of confidence in 

detecting one of the three commands. Additionally, there is no evidence that the N C state w i l l 

fall into the unknown state in these designs. 

In this paper, a non-invasive 3-state self-paced B C I system is proposed. This system is the 

first multi-class B C I that is (a) designed specifically to support the N C state E E G signal 

(refer to Chapter 1 for definition of N C support), and (b) has a higher true positive rate at a 

considerably lower false positive rate ( F P ^ P / o ) compared to existing 3-state and 4-state self-

paced BCIs (Scherer et al 2007) that support the N C state. Unlike the 2-state self-paced 

system which detects the presence of a single movement from the ongoing E E G signal, the 3-

state self-paced B C I design aims at detecting two different movements. Fig. 8.1 shows 

examples of outputs of the 2-state and 3-state self-paced BCIs . Overall, a 2-state self-paced 

B C I is in an inactive state (NC state) for most of the time and is in an IC state when a specific 

brain state (e.g. finger flexion movement) is detected in the brain signal. Unlike a 2-state self-

paced B C I which has only one active (IC) state, a 3-state B C I has two active state outputs, 

IC1 and IC2, which are activated by two different brain states (e.g. right and left hand 

extensions). While a 2-state self-paced B C I can provide the user with the option of executing 
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only one command (e.g. turn right), a 3-state system gives the user two command options 

(e.g. turn right or turn left). This has the advantage of giving the user more control options. 

IC IC 

N C N C N C 

(a) 2-state self-paced B C I 
IC2 IC2 

I d IC1 

N C N C N C N C N C 

(b) 3-state self-paced B C I 

Figure 8.1 Samples of outputs of 2-state and 3-state self-paced BCIs, where N C = No Control state, 
IC = Intended Control state 

The 2-state self-paced B C I ( L F - A S D ) in (Mason and Birch 2000) aimed at detecting 

attempted right finger flexions. Recent studies with the 2-state L F - A S D have demonstrated 

that this system correctly detects the presence of a movement (true positive (TP) rate) in 41% 

and 42%) of the cases for able-bodied and spinal cord injured subjects, respectively 

(Bashashati et al 2006b). This is when the parameters were set so that the false positive rate 

is fixed at 1%. The TP rate of the system improves at higher FP rates, e.g. at an FP rate of 

5%>, the TP rate is almost 100%. Despite these encouraging results, our experience indicates 

that even a 1% false positive rate is too high for most practical self-paced control 

applications. 

In the process of designing a three-state self-paced brain computer interface, it is prudent to 

investigate different movements (as neurophysiologic sources of activating a BCI) so as to 

find the movements that generate more differentiable patterns in the E E G . More 

differentiable patterns would make it easier for a B C I system to detect IC states and may 

yield improvements in the performance of the system. Many studies by the neurophysiologic 

research community have explored the effects of different movements on the E E G signal. 

These studies show that movements which involve more parts of the body (e.g. hand 

movement) or movements that need more effort (e.g. finger extension) generate more 
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differentiable patterns in the ongoing E E G signal than for example natural finger flexions 

(Stancak and Pfurtscheller 1996, Slobounov et al 2002, Yue et al 2000). It has also been 

reported that right and left movements (regardless of the type of movement) generate 

movement-specific patterns in different locations of the brain (Pfurtscheller and Lopez da 

Silva 1999). A s our aim is to use movements that generate more differentiable patterns, based 

on the evidence in (Stancak and Pfurtscheller 1996, Slobounov et al 2002, Yue et al 2000, 

Pfurtscheller and Lopez da Silva 1999) we choose, the right hand and the left hand extensions 

in this study since a) hand movements involve more parts of the body than for example finger 

movements, b) extensions movements need more effort to execute compared to flexion 

movements and c) right and left movements generate movement-specific patterns in different 

locations of the brain. We speculate that these two movements generate more discriminative 

patterns than a finger flexion does. If that is the case, then using these movements would 

improve our B C I ' s performance in detecting the presence of a movement. To our best 

knowledge, the right and the left hand extension movements have not yet been studied in the 

context of B C I systems. 

This paper reports on the preliminary results of a pilot study that investigates the feasibility 

of a 3-state 'self-paced' brain computer interface system whose aim is the detection of right 

and left hand extension movements in a self-paced manner. To our best knowledge, this 

system the first 3-state self-paced B C I that is specifically designed to support the no control 

(NC) state as well as two additional control options for the user. 

Two consecutive detectors were designed to detect the presence of the left or the right hand 

extensions from the ongoing E E G . The first detector, D E T 1 , determines whether or not a 

movement is present. If such a movement is detected then the second detector, D E T 2 , 

classifies the movement as a right or a left hand extension. 

Two designs o f a 3-state self-paced B C I are proposed and implemented. Power spectral 

density and a specific template matching method (Mason and Birch 2000) are used in the 

feature extraction stages, and the k-nearest neighbour and linear discriminant analysis ( L D A ) 

classifiers are used in the classification stages. 

The performances o f the designs are evaluated using E E G recordings of right and left hand 

extension movements of four able-bodied individuals. The goals of this paper are two fold: 
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(1) to perform an initial investigation of the performance of the system as a 2-state self-paced 

B C I , i.e., detecting whether a left or a right hand movement (regardless of the type of 

movement) has occurred. If the performance of the system in detecting any such movement is 

better than detecting the previously used movement (i.e., the right finger flexion), then such 

these movements can be used in other 2-state self-paced brain computer interface designs. 

(2) to introduce and carry out an initial evaluation of two possible designs of a 3-state self-

paced B C I and to investigate whether a 3-state self-paced brain computer interface that 

handles the general no control (NC) state has promise. 

In Sections 2 and 3 of this paper, the experimental paradigm, the structure of the proposed 

designs and the evaluation method are presented. The results and conclusions are discussed 

in Sections 4 and 5, respectively. 

8.2. Experimental paradigm 
The E E G data used in this study were recorded from 15 mono-polar electrodes positioned 

over the supplementary motor area and the primary motor cortex (defined with reference to 

the International 10-20 System at F l , F2, F3, F4, Fz , F C 1 , F C 2 , F C 3 , F C 4 , F C z , C I , C2 , C3 , 

C4, and Cz). Electro-oculographic (EOG) activity was measured as the potential difference 

between two electrodes, placed at the corner and below the right eye. The ocular artifact was 

considered present when the difference between the E O G electrodes exceeded +/-25pv, a 

threshold level similar to the one used in previous studies (Borisoff et al 2004, Mason and 

Birch 2000). A l l signals were sampled at 128 Hz . This study has been approved by the 

Behavioral Research Ethics Board ( B R E B ) of the University of British Columbia. 

Four able-bodied subjects participated in this study. A l l subjects were male (except subject 

4), right handed (except subject 4) and 25-30 years old. Subjects were seated 150 cm in front 

of a computer monitor. The data were collected while the subjects were performing a guided 

task. At random intervals of 5.6-7s (mean of 6.7 s), a target window was displayed on the 

subject's monitor. A s shown in Fig. 8.2, a box moved from the right side to the left side of 

the screen. When the box reached the target window, the subject attempted to activate the 

custom-made switch by extending his/her right or left hand. The length of the target window 

was more than the length of the moving box and the subjects were free to activate the switch 

any time they want while the box is inside the target window. A n arrow in the moving box, 
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pointing to the left or the right showed the subject whether to move the right or the left hand. 

In the NC period, i.e. the time between the subject activates the switch and the next 

opportunity to activate the switch, the subject were free to perform any mental task except the 

two predefined movements. For each subject, an average of 150 trials for each movement was 

collected in two sessions carried in the same day. 

Right hand extension 

> 

Left hand extension 

-. 

t>0 

Figure 8.2 Screen contents for each of the right hand (a) and left hand (b) extension movement trials, 
t=0 is the time of movement execution. 

8.3. Proposed 3-state self-paced Brain computer interface 
Fig. 8.3 shows the overall structure of the proposed designs. These designs include two major 

blocks: 

a) "Detector V which determines whether or not a movement is performed, and 

b) "Detector 2" which determines whether the detected movement is a right hand or a left 

hand extension. In this study, two different designs for Detector 1 and one design for 

Detector 2 have been proposed and evaluated. The details o f both detectors are explained 

below. Detectors 1 and 2 are referred to as DET1 and D E T 2 . 

(a) 

t=0 

(b) 

t=0 
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Electrode array 
amp Detector 1 NC state: No movements Detector 1 

IC state 1: Right movement v IC state 
f IC state 1: Right movement 

Detector 2 • 
IC state 2: Left movement 

• 

Figure 8.3 Structure of the 3-state self-paced brain computer interface design 

8.3.1. Detector 1 

Two different designs for DET1 are proposed and compared. These are referred to as D E T 1 -

L F - 1 N N and D E T 1 - P S D - L D A . 

D E T 1 - L F - N N uses one of the latest designs of the L F - A S D (Bashashati et al 2006a) as 

shown in Fig . 8.4.a. It employs features extracted from the 0-4Hz band in six bipolar E E G 

channels (defined with reference to the International 10-20 System at F1-FC1 , F z - F C z , F2-

F C 2 , F C 1 - C 1 , F C z - C z , and FC2-C2) . After amplification, a low-pass FIR filter (0-4Hz) is 

used to decrease the interference with the features in the high-frequency band. 

EEG 

Feature Extractor 
LF-ASD 
Feature 

Generator 
KLT 

(a) DET1-LF-1NN 

Feature Translator 

1-NN 
Classifier 

moving 
average 

debounce 

Codebook generation mechanism 

EEG 

Feature Extractor 
PSD 

estimator 
Stepwise 

LDA 
Stepwise 

LDA 

(b) DET1-PSD-LDA 

Feature Translator 

LDA 
Classifier average 

moving debounce 

Figure 8.4 Structure of the two designs of DET1, where K L T = Karhunen-Loeve Transform, and 1-
N N = 1-Nearest Neighbour, PSD = power spectral density, and L D A : linear discriminant analysis. 
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Previous studies show that when a movement is performed, a bipolar pattern similar to the 

one shown in Fig . 8.5 is generated in the ongoing E E G (Mason and Birch 2000). A specific 

template matching algorithm based on the one employed in (Mason and Birch 2000) is 

implemented. This algorithm generates large feature values when there is such a pattern in 

the spontaneous E E G . The delay parameters aj and aj, shown in Fig. 8.5, determine the 

locations of the peaks of the pattern that need to be detected. Thus, these delay parameters 

need to be properly determined in order to detect the presence of a specific movement. For 

each subject, the ensemble averages of the E E G around the movements of the training data 

are generated and then used to determine the values of <2j and Oj according to the method 

presented in (Bashashati et al 2006a). Table 8.1 shows the estimated values of a; and Oj for 

each subject. This feature extraction procedure is repeated for each of the six bipolar 

channels. The resulting feature vector is a six-dimensional vector, with each dimension 

reflecting the value of the feature in each channel. 

T A B L E 8.1 ESTIMATED a, A N D aj P A R A M E T E R S FOR E A C H SUBJECT. NOTE A L L 

V A L U E S A R E IN MILLISECONDS. 

Subject 1 Subject2 Subject3 Subject4 
125 195 398 195 
578 141 297 313 

e(n) 

X I 7 time 

Figure 8.5 Description of delay terms (at,aj), where e(n) is the amplitude of the bipolar signal 
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The Karhunen-Loeve Transform ( K L T ) component is used to reduce the 6-dimensional 

feature vector to a 2-dimensional feature vector. A 1-NN (1-nearest neighbour) classifier is 

used as the feature classifier. Finally, a moving average (with length of 39ms) and a 

debounce block (with length of 125ms) are employed to further improve the classification 

accuracy of DET1 by reducing the number of false activations (for details, see (Borisoff et al 

2004, Mason and Birch 2000]). DET1 classifies the input patterns, at every 1/16th of a 

second, to one of the two classes, N o Control (NC) or Intentional Control (IC) states. 

The second design of DET1 (referred to as D E T 1 - P S D - L D A ) is shown in Fig. 8.4.b. It 

extracts the power spectral density features of the E E G from a group of bipolar E E G 

channels and then selects the most informative channels for classification. Specifically, thirty 

bipolar combinations of E E G channels that may contribute to the detection of movements 

were generated. These bipolar E E G channels were C z - C l , C z - C 2 , Cz -C3 , Cz-C4 , C1-C2 , 

C1-C4, C1-C3, C2-C3, C2-C4, C3-C4, F C z - C z , F C 1 - C 1 , FC2-C2 , F C 3 - C 3 , FC4-C4 , Fz-

F C z , F1-FC1, F2-FC2, F3-FC3, F4-FC4, F C z - F C l , F C z - F C 2 , F C z - F C 3 , F C z - F C 4 , F C 1 -

FC2 , FC1-FC4 , F C 1 - F C 3 , FC2-FC3 , FC2-FC4 , FC3-FC4 . These bipolar channels were 

chosen to capture possible discriminatory information between left and right and also 

between frontal and central areas of the head. In the feature extraction block, the power 

spectral density (PSD) components of each of the 30 bipolar E E G channels are calculated in 

each frequency bin from 1Hz to 25Hz using Welch's Periodogram method (Welch 1967) 

with window length of one second (equivalent to 128 samples). This results in 25 frequency 

components for each of the 30 bipolar channels and a total of 25*30 features at each time 

instant. We then use stepwise linear discriminant analysis (stepwise L D A ) (Lachenbruch 

1975) to find the most informative features that better discriminate between IC and N C 

classes. Stepwise L D A is a method that results in a linear combination of selected features 

that contribute to the classification and omits the features that have redundant information for 

discrimination. Once the features are extracted and selected, a linear discriminant classifier 

( L D A ) (Lachenbruch 1975) is used for classification. Other details about the other 

components of the feature translator (moving average and debounce blocks) are the same as 

in D E T 1 - L F - 1 N N above. 
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8.3.2. Detector 2 

Existing studies show that the cortical activation related to movement preparation and 

execution desynchronizes the M u (8-12Hz) rhythm and increases the Beta (13-25Hz) rhythm 

of the E E G . These phenomena are known as event related desynchronization (ERD) and 

event related synchronization (ERS), respectively (Pfurtscheller and Aranibar 1979, 

Pfurtscheller and Lopez da Silva 1999). The E R D of a hand movement is more prominent 

over contralateral sensorimotor areas during motor preparation and extends bilaterally after 

movement initiation (Pfurtscheller et al 1997, Pfurtscheller and Lopez da Silva 1999). Some 

studies however show that the frequency bands of the E R D and E R S patterns are variable 

from subject to subject (Pregenzer and pfurtscheller 1999). 

A s shown in Fig. 8.6, D E T 2 which aims at differentiating between right and left hand 

movements is similar to the second design of DET1 ( D E T 1 - P S D - L D A ) , except that it does 

not have the averaging and debounce blocks of D E T 1 . This design intends to extract subject 

specific E R D / E R S frequency bands that lead to more discrimination between the two classes, 

i.e., the left and right hand movements. A s in D E T 1 , the stepwise linear discriminant analysis 

( L D A ) method is employed to select the subject specific E R D / E R S frequency bands and 

bipolar E E G channels. We have evaluated a similar design of D E T 2 when the inputs were 

mono-polar E E G channels. Preliminary analysis of the data shows that using bipolar 

electrodes yield better performances. A s such, we used bipolar electrodes as input to the 

system and did not further evaluate the overall performance of the 3-state brain computer 

interface using mono-polar electrodes. 

Feature Extractor Feature Translator 

PSD 
estimator 

Stepwise 
L D A 

L D A 
EEG 

PSD 
estimator 

Stepwise 
L D A 

L D A 

Figure 8.6 Structure of DET2-PSD-LDA, where PSD = power spectral density, and L D A = linear 
discriminant analysis. 

200 



Two designs of a 3-state self-paced B C I system are evaluated. The first design uses 

combination D E T 1 - L F - 1 N N and D E T 2 - P S D - L D A and the second one uses the combination 

D E T 1 - P S D - L D A followed by D E T 2 - P S D - L D A . 

8.4. Evaluation 
The designed 3-state self-paced B C I first detects whether or not a movement is performed. If 

a movement is detected, then the system classifies it as one of two classes, the right hand 

(IC1) or the left hand (IC2) extension classes. If the system does not detect a movement, the 

output reports an inactive state. 

We use a 5-fold stratified cross-validation method to evaluate the performance of the 

proposed 3-state self-paced B C I . The ability of the subjects to control the 3-state B C I system 

is evaluated using three performance measures. A t a fixed false positive rate, these measures 

report the correct detection rates of the right and the left hand extensions (from the ongoing 

E E G ) , respectively. These three measures are: 

(1) the percentage of correct right hand movement detection during IC states (i.e., the true 

positive rate for right hand movement, T P R ) calculated using equation (1) below: 

T P R = (number of correctly detected right movements)/(total number of right movements) 

(1) 

(2) the percentage of correct left movement detection during IC states (true positives of left 

hand movements, T P L ) calculated using equation (2) below: 

T P L = (number of correctly detected left movements)/(total number of left movements) (2) 

(3) the percentage of false switch activations during N C states (false positives, FPs) 

calculated using equation (3) below: 

FP = (number of false activations)/(total number of the systems' decisions during N C state) 

(3) 

Note that the system makes a decision every 1/16* of a second. 

A TP is identified i f the B C I system is activated at least once in a response window, i.e., a 

time window spanning 0.25 seconds before the time of movement t i l l 0.5 seconds after it, a 

method similar to that employed in (Birch et al 1993, Graimann et al 2004, Mason and Birch 
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2000, Townsend et al 2004, Yom-Tov and Inbar 2003). FPs are assessed in the periods 

outside the response window as explained above. Periods during which ocular artifacts 

occurred are blocked from analysis. 

We also report the overall true positive and false positive rates of DET1 (regardless of the 

type of movement). We refer to these measures as TPic and FPic. The TP]c is the percentage 

of correct detection of a movement whether it is a right hand or a left hand one. Thus it 

reflects the performance of the system i f used as a 2-state self-paced B C I . We report this 

measure to compare the findings of this study with our latest 2-state self-paced B C I as stated 

in goal (1) of this study. 

5. Results 
The. performance of DET1 (TPic) in detecting the presence of hand movements, regardless of 

the type of movement, from the background E E G is shown in Table 8.2. This table shows the 

TP rates at a fixed FP rate of 1% for the two designs of D E T 1 . A s we are interested in low 

false positive rates, we do not report the performance of the system for higher false positive 

rates. For higher false positive rates (e.g. FP>3%) the true positive rate is almost 100%. A s 

shown in the last column of Table 8.2, the average performance of D E T 1 - L F - 1 N N is slightly 

better than D E T 1 - P S D - L D A . Except for subject 2 for which D E T 1 - P S D - L D A significantly 

outperforms D E T 1 - L F - 1 N N , for the rest o f the subjects D E T 1 - L F - 1 N N yields higher true 

positives rates. 

Table 8.3 shows the performance of the whole 3-state self-paced B C I for the two proposed 

designs (i.e., < D E T 1 - L F - 1 N N + D E T 2 - P S D - L D A > and < D E T 1 - L F - 1 N N + D E T 2 - P S D -

L D A > ) at a fixed false positive rate of 1%. 

T A B L E 8.2 P E R C E N T A G E OF T R U E POSITIVES (TP I C) A T FIXED F A L S E POSITIVE R A T E 

OF 1% FOR THE TWO DESIGNS OF DET1 

DET1 Design Subjectl Subject2 Subject3 Subject4 Average 
DET1-LF-1NN 50.1 38.4 56.5 71.0 54.0 

DET1-PSD-LDA 38.2 54.7 60.2 60.3 53.4 
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On average, 36% of the right and left hand extensions of the 4 subjects are correctly 

identified by the 3-state <DET1-PSD-1NN + D E T 2 - P S D - L D A > design ( for a false positive 

rate of 1%). A s shown in Table 8.3, < D E T 1 - L F - 1 N N + D E T 2 - P S D - L D A > outperforms 

< D E T 1 - P S D - L D A + D E T 2 - P S D - L D A > in three of the tested subjects. A close analysis of 

the results shows that for subject2, <DET1 - P S D - L D A + D E T 2 - P S D - L D A > performs 

significantly better than the other design. For this subject, 35.6% and 47% of the right and 

left hand extensions are correctly differentiated from the no control (NC) state. 

T A B L E 8.3 P E R C E N T A G E O F R I G H T A N D L E F T T R U E P O S I T I V E S (TPR A N D T P L ) O F T H E 

T W O P R O P O S E D 3 - S T A T E B R A I N C O M P U T E R I N T E R F A C E S ( W H E N F A L S E P O S I T I V E 

R A T E IS S E T A T 1%) . T H E T P R A N D T P L V A L U E S O F T H E B E S T D E S I G N C O M B I N A T I O N 

F O R E A C H S U B J E C T IS H I G H L I G H T E D . 

, . T»/™*T T~\ . x. Subjectl Subject2 Subject3 Subiect4 Average 
3-state BCI Des.gn structure " TPR TPL TPR TPL TPR TPL TPR TPL 

<DET1-LF-1NN + DET2-PSD-LDA> 2 2 30.6 32.6 16T 33~4 30\5 36/7 533 54/7 
<DET1-PSD-LDA + DET2-PSD-LDA> 19.5 22.2 35.6 47.0 30.1 34.3 37.4 45.2 33.9 

T A B L E 8.4 B E S T D E S I G N C O M B I N A T I O N F O R E A C H S U B J E C T T O G E T H E R W I T H T H E 

P E R F O R M A N C E S O F T H E 2 - S T A T E A N D 3 - S T A T E S Y S T E M S ( A T F A L S E P O S I T I V E O F 1%), 

W H E R E A = <DET1-LF-1NN + D E T 2 - P S D - L D A > A N D B = <DET1 -PSD-LDA + DET2 -PSD-

L D A > . 

Subject Best design 2-state BCI 3-state BCI 

TP.c T P R T P L Average TP (TP 3. s t a t e) 

Subject 1 A 50.1 30.6 32.6 31.6 

Subject 2 B 54.7 35.6 47 41.3 

Subject 3 A 60.2 30.5 36.7 33.6 

Subject 4 A 71.0 53.3 54.7 54 

Average - 58.1 37.5 42.8 40.1 

2 2 Note that <DET1-LF-1NN + DET2-PSD-LDA> indicates a design of a 3-state BCI that uses DET1-LF-
1NN design for DET1 and DET2-PSD-LDA design for DET2. A similar description applies to <DET1-LF-1NN 
+ DET2-PSD-LDA> design as well. 
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Table 8.4 shows the best performing 3-state self-paced B C I design for each individual 

subject. A s the last column of Table 8.4 shows, the average performance of the 3-state 

system achieves an overall true positive rate of 40.1% (at false positive rate of 1%). If used as 

a 2-state B C I its average true positive is 58.1%. 

8.5. Discussion 
This study introduced and evaluated two designs of a 3-state self-paced brain computer 

interface based on movement related potentials. This 3-state self-paced brain computer 

interface is the first of its kind in its capability of handling the no control (NC) state. In fact, 

this B C I intends to differentiate the right and the left hand extensions from the N C state. 

Ideally, in this system, the user can perform any brain activity (other than the predefined IC 

states of right and left hand extensions) when he/she does not intend to control the B C I . 

While the true positive rate of the latest 2-state self-paced B C I is 41% (at FP=1%) 

(Bashashati et al 2006b), the best average true positive rate of the proposed 3-state system is 

40.1% (at FP=1%). These results show that the 3-state system performs almost the same as 

the latest 2-state self-paced B C I (Bashashati et al 2006b) with the advantage of providing 

more control options than a 2-state system. 

The proposed 3-state self-paced B C I was specifically designed to support N C state. This 

system was tested in a specific experimental paradigm and on N C state data that were 

supposed to be the most difficult one as they were surrounded by IC state data. However, a 

more thorough study is needed to investigate the performance of the system under different 

experimental paradigms and on different sets of NC state data, e.g. when the person perform 

different mental tasks except for the IC task. This study would provide a better estimate of 

the performance o f a self-paced B C I system in a real-world application. 

There have been numerous BCIs, e.g. (Blankertz et al 2006, Brunner et al 2006, Mi l l an et al 

2004, Scherer et al 2004, Scherer et al 2007, Wang et al 2004, Wolpaw and Mcfarland 2004), 

that differentiate between two or more classes of movements, e.g. right and left hand 

(imagined) movements, or operate based on subject modulating the M u and Beta brain 

rhythms. It should, however, be mentioned that it is difficult to directly compare the results 

of our study with these studies because: (a) the system implemented in this study performs in 

a self-paced manner, i.e., it is different from most other studies, (b) the recording equipment, 
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recording and classification protocols, and mental tasks considered are different, and (c) the 

amount of data involved and the degree of training the subjects received before and during 

participation in the B C I experiments varies for different studies, (d) there is not a unified 

framework of reporting performance of B C I systems, i.e. the performance metrics are 

different across different studies. 

The performance of D E T 1 - L F - 1 N N and D E T 1 - P S D - L D A in detecting the presence of a 

movement (regardless of its type) yielded average true positive rates of 54% and 53.4% at 

false positive (FP) rate of 1 %, respectively. In the meantime, as shown in the third column of 

Table 8.4, the average T P i C rate for the best performing design across the subjects was 58.1% 

at false positive rate of 1%. In other words, i f the current system was used as a 2-state self-

paced B C I , the true positive rate would be 58.1% at false positive of 1%. In comparison, the 

results of the latest 2-state self-paced B C I (Bashashati et al 2006b) for four able-bodied 

subjects yielded an average true positive rate o f 41% at the same false positive rate of 1%. 

Thus, when used as a 2-state system the proposed B C I performs significantly better than the 

2-state self-paced B C I system in (Bashashati et al 2006b). It should be noted that while this 

2-state self-paced brain computer interface detects finger flexions, DET1 of the 3-state self-

paced B C I detects the presence of a left or a right hand extension movement. This 

improvement should be the result of using hand extension movements instead of a finger 

flexion one. It should be noted however that direct comparison of the current system with 

(Bashashati et al 2006b) is not completely accurate as the data and experimental paradigms 

used in testing the two systems were different; a more thorough study is needed to verify 

these findings. Verifying these results on a very large subject pool would eventually provide 

a better neurophysiological source for controlling current 2-state self-paced BCIs . 

A s shown in Table 8.2, for three of the four tested subjects, D E T 1 - L F - 1 N N performs better 

than D E T 1 - P S D - L D A . However, for subject'2, D E T 1 - P S D - L D A outperforms D E T 1 - L F -

1NN, specifically, the true positive rate increases significantly from 38.4% to 54.7%. The 

overall performance of the 3-state B C I varies across the subjects and depends on the type of 

the design used. Such performance variability across different designs and subjects has also 

been observed in other B C I systems (e.g. (Graimann et al 2004, Muller-Putz et al 2005)). 

Given the variable performance of subjects across the two designs, an approach that can 

select a suitable design and adapt to each subject is expected to achieve better detection rates. 
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Significant gains may also be achieved from the combination of several single designs i f 

these designs provide complementary information for the classification task. Several studies 

have demonstrated some evidence of existing independent features related to movement tasks 

that could be used to achieve better classification accuracies (Babiloni et al 1999, Dornhege 

et al 2003, Dornhege et al 2004). 

Subject 4 yielded the best right and left true positive rates (TPR and T P L ) overall performance 

of 53.3% and 54.7% at false positive rate of 1%, respectively. Although DET1 's true positive 

rate in detecting the presence of a movement (TPic) for subject 3 was the second best, overall 

the system has poor performance in differentiation between right and left movements. The 

following reasons might have caused the poor performance related to this subject: 

(a) this subject did not generate significantly differentiable E R D / E R S patterns for the left and 

right hand movements. Many factors such as task complexity, effort and attention during the 

task can also contribute to the quality of the E R D / E R S patterns (Pfurtscheller and Lopes da 

Silva 1999). Other studies such as (Blankertz et al 2006) have reported some subjects who 

poorly performed (classification rates of close to chance) compared to the rest of the subjects. 

(b) in the experimental paradigm used in this study, no feedback during the performed tasks 

was provided to the subjects. While we adopted this paradigm to simulate a more natural 

mode of control, this may have caused a lower performance in some subjects. A s shown by 

some researchers (e.g. Mi l l an et al 2002), providing feedback during experiments may 

increase the performance of subjects over time. 

(c) no subject pre-screening and prior training was performed before the sessions, 

This preliminary study was performed to examine the feasibility of a 3-state 'self-paced' 

brain computer interface design. Although the results are promising, more improvements are 

needed in both of its components, that for detecting a movement and that for differentiating 

between two movements. The true positive rate of the system is reported at a false positive 

rate of 1%. Even a false positive rate of 1% is still not suitable for real-world applications as 

it corresponds to one false activation every six seconds and may cause excessive user 

frustration. Use of more efficient feature extraction and classification methods, subject 

training, providing online feedback during the performed task and verifying the results on a 

large number of subjects are in the scope of our future directions to improve these results. 
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Chapter 9 Improving the Performance of a 3-State Self-Paced 

Brain Computer Interface 2 3 

9.1. Introduction 
Over the past decade, several research groups have developed direct brain computer interface 

(BCI) systems as a possible alternative communication and control solution for individuals 

with severe disabilities. B y using a B C I , control of various devices such as a neural prosthetic 

is made possible by cognitive processes only, in other words a B C I system bypasses the 

traditional interface pathways which cannot be used by individuals with severe disabilities. 

Many B C I designs have been presented in the literature (for a review of the field see 

(Bashashati et al 2007a, Mason et al 2007, Wolpaw 2004)). Few of these, however, have 

been designed specifically for self-paced (asynchronous) control as defined in (Mason and 

Birch 2000). For a self-paced B C I system, the users can affect the B C I system output 

whenever they want by intentionally changing their brain state. In such instances, the user is 

said to be in an intentional control (IC) state. In between periods of intentional control (IC), 

the user is in a no control (NC) state, i.e., he/she may be idle, daydreaming, thinking about a 

problem or lunch, or performing some other action, but they are not trying to control the B C I 

system. In fact, the N C state includes all mental states except for the IC state. Self-paced B C I 

systems should respond only when the user intends to affect control and should maintain an 

inactive state output during times when the user is in a N C state. In contrast, for a 

synchronous B C I system, the allowable times for intentional user control are restricted to 

periods defined by the system. Thus, these systems are tested and evaluated only during 

intentional user control and the response during N C states is not tested. 

Only a few B C I designs have been specifically designed for self-paced control (Bashashati et 

al 2007b, Levine et al 2000, Mason and Birch 2000, Mi l l an et al 2004, Scherer et al 2004, 

Townsend et al 2004, Yom-Tov and Inbar 2003). The low frequency asynchronous switch 

design ( L F - A S D ) was the first B C I system implemented for asynchronous (self-paced) 

applications (Mason and Birch 2000). Like L F - A S D , the B C I systems introduced in (Levine 

et al 2000, Townsend et al 2004, Yom-Tov and Inbar 2003) attempt to detect a specific 

2 3 A version of this chapter will be submitted for publication. 
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intentional control state, e.g. imagined right hand movement, from the ongoing brain signal. 

The B C I implemented in (Scherer et al 2004) attempts to differentiate between imagined 

right hand, imagined left hand and imagined foot movements. However, this B C I requires the 

subject to constantly engage in control without the option of staying in a no control state. 

Therefore, the response of this B C I to N C state is not studied. In a recent work, Scherer et al 

(Scherer et al 2007) has proposed a 4-state self-paced B C I that has mean true positive and 

false positive rates of 28.4% and 16.9%, respectively. In the study of (Mil lan et al 2004) the 

subjects were asked to perform one of the following three actions: (1) imagine right hand 

movement, (2) imagine left hand movement, and (3) relax. A 3-state self-paced B C I was 

designed to navigate a mobile robot in an 80cm*60cm house-like environment by 

differentiating amongst these three states. The system generates 'unknown state output' when 

there is not enough confidence in choosing one of the three above mentioned mental tasks. 

The classifier of this system was not explicitly trained to recognize idle (NC) state (Mil lan et 

al 2004). According to the authors, it could process them adequately by responding 

'unknown'. It was also reported that the task of steering the robot between rooms was so 

engaging that the two tested subjects preferred to emit continuously mental commands rather 

than to go through idle state. Therefore, the response of this system on N C (idle) state was 

evaluated on a dataset with limited amount of idle-state. Moreover, having the choice of 

'unknown state output' may represent some neutral output but it is not clear whether the 

unknown state output was caused by the actual idle (NC) state or by lack of confidence in 

detecting one of the three commands. Additionally, there is no evidence that the N C state wi l l 

fall into the unknown state in these designs. 

A 3-state self-paced B C I system that extends the 2-state self-paced systems has been 

introduced in (Bashashati et al 2007b). This system is designed to have the ability to support 

the no-control (NC) state as well as detecting right and left hand extension movements. 

Fig . 9.1 shows an output sample of a self-paced 3-state B C I . A 3-state self-paced B C I 

remains in an inactive state (NC state) for most of the time and is activated (IC state) when 

specific brain states associated with IC1 and IC2 outputs are detected in the brain signal. A 2-

state self-paced B C I has only one active state output (IC1), and thus provides the user with 

the option of executing only one command (e.g. turn right). A 3-state system, on the other 
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hand, gives the user two command options (e.g. turn right or turn left) which has the 

advantage of providing more control options. 

IC2 IC2 

IC1 IC1 

N C N C N C N C N C 

Figure 9.1 Sample of output of a 3-state self-paced BCIs, where N C = No Control state, IC = Intended 
Control state 

The 2-state self-paced B C I ( L F - A S D ) in (Mason and Birch 2000) aimed at detecting 

attempted right finger flexions. Recent studies with the 2-state self-paced B C I have 

demonstrated that this system correctly detects the presence of a movement (true positive 

(TP) rate) in 41% of the cases for able-bodied (Bashashati et al 2006b). This is when the 

parameters were set so that the false positive rate is fixed at 1%. The TP rate of the system 

improves at higher FP rates, e.g. at an FP rate of 5%, the TP rate is almost 100%. Results of 

the evaluation of the 3-state self-paced B C I system introduced in (Bashashati et al 2007b) 

show an average true positive rate of 58.1%> when it is used as a 2-state B C I and an average 

of 40.1%o true positive rate in correct detection of right and left hand extension movements 

(Bashashati et al 2007b). These results show a higher mean true positive rate at a lower false 

positive rate compared to the only multi-state self-paced B C I that supports N C state (Scherer 

et al 2007). Despite these encouraging results, however, more improvements are still needed. 

The original design of the 3-state self-paced B C I system is comprised of two major decision 

blocks. The first block (DET1) determines whether or not a movement (regardless of the type 

of the movement) is executed. If a movement is detected, the second block (DET2) 

determines the type of the movement, i.e., whether it is a right or a left hand extension 

movement. 
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The aims of this paper are: (a) to improve the performance of the original 3-state self-paced 

B C I system, and (b) to improve the performance of the 2-state self-paced B C I that detects 

hand extensions (Bashashati et al 2007b). 

Several design variations for both DET1 and D E T 2 are implemented. One of the new designs 

of DET1 uses the past history of features to detect movements. In other words, instead of 

using the features values at t=trto detect the presence of a movement at t=ti, the past history 

of the features values are also used. In the previous design, the output class at t=ti was 

determined based on the values of features at t=ti, only. Using the past trajectory of features 

has proven to increase the performance of a 2-state self-paced B C I system in (Bashashati et 

al 2006b) and we expect that using the same idea should also improve the results of a 3-state 

self-paced B C I . Another improved design of DET1 uses a nonlinear classifier, i.e. 1-nearest 

neighbor classifier, instead of a linear classifier, i.e. linear discriminant analysis, to detect 

movements. This design uses features related to power spectrum of the E E G . A new design 

of D E T 2 is also evaluated. This design uses the logarithm of the extracted power spectral 

features to differentiate between right and left hand extensions. 

The performance of the proposed design is evaluated using E E G recordings of right and left 

hand extension movements of four able-bodied individuals. Results show improvements for 

both the 2-state and the 3-state self-paced B C I systems. 

In Sections 2 and 3, the design of the 3-state self-paced B C I system and the experimental 

paradigm are presented. The results and conclusions are in Sections 4 and 5, respectively. 

9.2. 3-State Self-Paced BCI 
Fig . 9.2 shows the overall block diagram of the 3-state self-paced B C I design (Bashashati et 

al 2007b). This system aims at detecting the right and the left hand extensions from the 

ongoing E E G in a self-paced manner. This design includes two detectors: a) Detector 1 

(DET1) which determines whether or not a movement is performed, and b) Detector 2 

(DET2) which determines whether the detected movement is a right hand or a left hand 

extension. The details of both detectors are explained below. 
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EEG Detector 1 

IC state 

Detector 2 
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• 
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Figure 9.2 Overall structure of the 3-state self-paced BCI design 

9.2.1. Detector 1 (DET1) 

Two new designs of D E T 1 , as explained below, are implemented and compared to the 

designs that were evaluated in (Bashashati et al 2007b). 

9.2.1.1. DETl-LFvs-INN 

The latest 2-state self-paced B C I design, L F - A S D - V 5 , that models the trajectories the 

features move on during movements is used to detect movements (Bashashati et al 2006b). 

One of the original designs of D E T 1 , D E T 1 - L F V 4 - 1 N N , was based on L F - A S D - V 4 design 

(Borisoff et al 2004) in which the output class at t=ti was determined based on only the 

values of features at t i . In the proposed design ( D E T l - L F v s - I N N ) , we use all the past values 

of the features and not only those at t i , i.e., the paths the features traverse in the 

multidimensional space during both the IC states and the N C states. A s in (Bashashati et al 

2006b), the relation between the output class of the system and its input can be expressed by 

equations (1) and (2): 

0(tl) = g(FVP5(tl)) (1) 

FVvs(tx) = [FVr,(tx-L) ... FVy.it,-1) FVVA{t,)} (2) 

where 0(tx) is the output class at t=t1 ; FVV5(tx) is the feature matrix of DET1 - L F V 5 - 1 N N at 

t = t i , [FVv,(t, - L) ... FVy,{t, -1) FVy4 (r,)] are the values of the D E T 1 - L F V 4 - 1 N N design in 

the time window t = t i - L to t=t i and L is the length of the window. g(.) is the function that 

maps the feature values to the output of the system. In D E T l - L F v s - I N N , the feature matrix 

FVy5 ( r , ) represents the path that the original feature vectors (FV V 4 (*,)) traverse during time. 

Basically, the new feature space captures the paths of the feature vectors. 
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Our goal is to find the representative feature vectors (codebooks) that correspond to the IC 

and to the N C states. Conceptually these representative feature vectors show the paths the 

features move on during N C and IC states and are used as the codebooks the classifier uses to 

detect IC and N C states. To find the classifier codebooks, we use the k-Means and learning 

vector quantization ( L V Q ) methods (Kohonen 1990). 

Figs. 9.3.a & 9.3.b show the block diagram of D E T 1 - L F V 4 - 1 N N and D E T 1 - L F V 5 - 1 N N . Both 

designs use features extracted from the 0-4Hz band in six bipolar E E G channels (defined 

with reference to the International 10-20 System at F1-FC1 , F z - F C z , F2-FC2, F C 1 - C 1 , F C z -

Cz , and FC2-C2) . After filtering the input E E G , all six bipolar E E G channels are normalized 

with an energy normalization transform (ENT). The L F - A S D feature generator extracts 

features related to movement related potentials using a template matching algorithm. The 

parameters values of this block are customized for each subject according to the procedure 

explained in (Bashashati et al 2006a). The Karhunen-Loeve Transform ( K L T ) component 

(Jayant 1984) is used to reduce the 6-dimensional feature vector to a 2-dimensional feature 

vector. The resulting 2-dimensional feature vector corresponds to the feature vectors of the 

D E T l - L F v 4 - l N N design, i.e. FVv4- A buffer (with length L ) is used to capture the trajectory 

of features over time and the output of this block represents the feature vectors of the D E T 1 -

LFv5 - lNN design, i.e. F V V 5 . A 1-NN (1-nearest neighbor) classifier is used as the feature 

classifier to detect movements. Finally, a moving average (length of 5 samples) and a 

debounce block (length of 16 samples) are used to further improve the classification accuracy 

of DET1 by reducing the number of false switch activations (for details, see (Borisoff et al 

2004, Mason and Birch 2000)). DET1 classifies the input patterns, every 1/16th of a second, 

to one of two classes, no control (NC) or intentional control (IC) states. 

9.2.1.2. DET1-PSD-1NN 

Figs. 9.3.C & 9.3.d shows another design of D E T 1 , D E T 1 - P S D - L D A , implemented in 

(Bashashati et al 2007b) and the modified design o f this detector, D E T 1 - P S D - 1 N N 

implemented in this study. Both designs extract the power spectral density features of the 

E E G from a group of bipolar E E G channels and then select the most informative channels for 

classification. Specifically, thirty bipolar combinations of E E G channels that may contribute 

to the detection of movements were generated. These bipolar E E G channels were C z - C l , C z -
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C2, C z - C 3 , Cz -C4 , C1-C2, C1-C4, C1-C3, C2-C3, C2-C4, C3-C4, F C z - C z , F C 1 - C 1 , F C 2 -

C2, F C 3 - C 3 , FC4-C4 , Fz -FCz , F1-FC1, F2-FC2, F3-FC3, F4-FC4, F C z - F C l , F C z - F C 2 , F C z -

F C 3 , F C z - F C 4 , F C 1 - F C 2 , FC1-FC4 , F C 1 - F C 3 , F C 2 - F C 3 , FC2-FC4 , FC3-FC4 . These 

bipolar channels were chosen to capture possible discriminatory information between left and 

right and also between frontal and central areas of the head. In the feature extraction block, 

the power spectral density (PSD) components of each of the 30 bipolar E E G channels are 

calculated in each frequency bin from 1Hz to 25Hz using Welch's Periodogram method 

(Welch 1967) with window length of one second (equivalent to 128 samples). This results in 

25 frequency components for each of the 30 bipolar channels and a total of 25*30 features at 

each time instant. We then use stepwise linear discriminant analysis (stepwise L D A ) 

(Lachenbruch 1975) to find the most informative features that better discriminate between IC 

and N C classes. Stepwise L D A is a method that results in a linear combination of selected 

features that contribute to the classification and omits the features that have redundant 

information for discrimination. Once the features are extracted and selected, D E T 1 - P S D -

L D A uses a linear discriminant classifier ( L D A ) (Lachenbruch 1975), and D E T 1 - P S D - 1 N N 

uses a 1-NN classifier for classification. The codebooks for the 1-NN classifier are generated 

using the same approach explained for D E T l - L F v s - I N N . For more details about the other 

components of the feature translator (moving average and debounce blocks) refer to the 

previous description of D E T l - L F v s - I N N . 
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Figure 9.3 Structure of the two designs of DET1, where K L T = Karhunen-Loeve Transform, and 1-
N N = 1-Nearest Neighbour, PSD = power spectral density, and L D A : linear discriminant analysis. 

Note, shaded designs are new designs of DET1 implemented in this study. 

9.2.2. Detector 2 (DET2) 

The same design of D E T 2 as implemented in (Bashashati et al 2007b) and a modified version 

of this design that applies a logarithm function on the extracted features are used. D E T 2 uses 

the power spectral density (PSD) features of the input signal to capture the 8-12Hz M u 

rhythm event related desynchronization (ERD) and the 14-25Hz Beta rhythm event related 

synchronization (ERS) which are generated during movement preparation and execution. 

Fig. 9.4 shows the block diagram of D E T 2 . The input for D E T 2 is comprised of several b i 

polar combinations of E E G electrodes: C z - C l , Cz -C2 , C z - C 3 , Cz-C4 , C1-C2, C1-C4, C1-C3, 

C2-C3 , C2-C4, C3-C4, F C z - C z , F C 1 - C 1 , FC2-C2 , FC3-C3 , FC4-C4 , F z - F C z , F1-FC1, F2-

FC2 , F3-FC3, F4-FC4, F C z - F C l , F C z - F C 2 , F C z - F C 3 , F C z - F C 4 , FC1-FC2 , FC1-FC4 , F C 1 -

F C 3 , F C 2 - F C 3 , FC2-FC4 , FC3-FC4 . A feature selection algorithm (stepwise linear 
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discriminant analysis (LDA)) (Lachenbruch 1975) is used to select the most informative 

electrode combinations for further processing. D E T 2 contains a feature extraction block 

which calculates the power spectral density features of the E E G . Specifically, the Welch's 

Periodogram method (Welch 1967) with a window length of 128 samples and a 90% overlap 

is used to extract the P S D features. Some studies show that the frequency band of E R D 

patterns varies from subject to subject (Pregenzer and Pfurtschller 1999); thus we employ the 

stepwise L D A method to select the subject's specific E R D frequency bands that yield better 

differentiation between right and left hand movements. In the modified version of D E T 2 , 

instead of classifying the P S D feature values, the logarithm of P S D features are classified. 

This design is referred to as D E T 2 - l o g P S D - L D A . The reason behind applying logarithm 

function on P S D features is to generate features with normal distribution. 

We implemented another design of D E T 2 that used a nonlinear classifier, i.e., a 1-NN 

classifier trained with L V Q . However, the results were lower than the linear classifier used 

and thus are not reported in this paper. 

Stepwise LDA Feature 
Selection 

3E 
Feature Extractor Feature Translator 

PSD 
Estimator 

LDA 
Classifier EEG 

PSD 
Estimator 

LDA 
Classifier EEG 

Figure 9.4 Structure of DET2, where L D A = Linear Discriminant Analysis, PSD = Power Spectral 
Density 

Finally, when DET1 detects a movement in the ongoing E E G , then D E T 2 determines 

whether the input pattern belong to one of the two right hand movement (IC1) or left hand 

movement (IC2) classes. If DET1 does not detect any movement, the output w i l l be in 

inactive (NC) state. 

9.3. Experimental Paradigm 
The E E G data used in this study were recorded from 15 mono-polar electrodes positioned 

over the supplementary motor area and the primary motor cortex (defined with reference to 
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the International 10-20 System at F I , F2, F3, F4, Fz, F C 1 , FC2 , F C 3 , FC4 , F C z , C I , C2, C3 , 

C4, and C z referenced to linked ear lobes). Electro-oculographic (EOG) activity was 

measured as the potential difference between two electrodes, placed at the corner and below 

the right eye. The ocular artifact was considered present when the difference between the 

E O G electrodes exceeded ±25uv, a threshold level similar to the one used in previous studies 

(Bashashati et al 2006b, Borisoff et al 2004, Mason and Birch 2000). A l l signals were 

sampled at 128 Hz . This study has been approved by the Behavioral Research Ethics Board 

( B R E B ) of the University of British Columbia. 

Four able-bodied subjects participated in this study. A l l subjects were male (except subject 

4), right handed (except subject 4) and 25-30 years old. Subjects were seated 150 cm in front 

of a computer monitor. The data were collected while the subjects were performing a guided 

task. A t random intervals of 5.6-7s (mean of 6.7 s), a target window was displayed on the 

subject's monitor. A box moved from the left side to the right side of the screen. When the 

box reached the target window, the subject attempted to activate the custom-made switch by 

extending his/her right or left hand. The length of the target window was more than the 

length of the moving box and the subjects were free to activate the switch any time they want 

while the box is inside the target window. A n arrow in the moving box, pointing to the left or 

the right showed the subject whether to move the right or the left hand. In the NC period, i.e. 

the time between the subject activates the switch and the next opportunity to activate the 

switch, the subject was free to perform any mental task except the two predefined movements. 

For each subject, an average of 150 trials for each movement was collected in two sessions 

carried out in the same day. 

9.4. Evaluation 
The designed 3-state self-paced B C I detects whether or not a movement is performed and 

then classifies the input to one of two classes, the right hand (IC1) or the left hand (IC2) 

extension classes. If the system does not detect a movement, the output w i l l report an inactive 

N C state. 

We use a 5-fold stratified cross-validation method (Witten and Frank 2000) to evaluate the 

performance of the proposed 3-state self-paced B C I designs. In a 5-fold stratified cross-

validation, the data files are randomly divided into five groups of equal trial numbers, with 
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approximately the same frequency of classes. A s in conventional cross-validation schemes, 

the classifier is trained based on the data of four o f the five groups and the system's 

performance is evaluated based on the unseen data of the remaining group. This process is 

repeated for each group. The average of these five performance measures gives the overall 

performance of the system. 

For each specific design, the ability of the subjects to control the 3-state B C I system is 

evaluated using three performance measures. A t a fixed false positive rate, these measures 

report the correct detection rates of the right and the left hand extensions (from the ongoing 

E E G ) , respectively: 

(1) the percentage of correct right hand movement detection during IC states (true positives 

for right hand movement, TPR) as in equation (1) below: 

T P R = (number of correctly detected right movements)/(total number of right movements) 

(1) 

(2) the percentage o f correct left movement detection during IC states (true positives of left 

hand movements, T P L ) as in equation (2) below: 

T P L = (number of correctly detected left movements)/(total number of left movements) (2) 

(3) the percentage of false switch activations during N C states (false positives, FPs) as in 

equation (3) below: 

FP = (number of false activations)/(total number of the systems' decisions during N C state) 

(3) 

Note that the decision rate of the system is 1/16 th o f a second. 

A TP is identified i f the B C I system is activated at least once in a time window (response 

window) spanning 0.25 seconds before the time of movement t i l l 0.5 seconds after it, a 

method similar to that employed in [4-6,11,12]. FPs are assessed in the periods outside the 

'response window' as explained above. Periods during which ocular artifacts occurred are 

blocked from analysis. 

We also report on the overall true positive and false positive rates of DET1 regardless of the 

type of movement. We refer to these measures as TPic and FPic. These measures reflect the 
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performance o f the system as i f it was used as a 2-state self-paced B C I . These measures are 

used to compare the performance of the proposed designs with our latest 2-state self-paced 

B C I . 

9.5. Results 
Four new designs of a 3-state self-paced B C I system are evaluated: 

1) D E T l - L F v s - I N N followed by D E T 2 - P S D - L D A ( < D E T 1 - L F V 5 - 1 N N • + D E T 2 - P S D -

LDA>) , 

2) D E T 1 - P S D - 1 N N followed by D E T 2 - P S D - L D A (<DET1-PSD-1NN + D E T 2 - P S D - L D A > ) , 

3) D E T 1 - L F V 4 - 1 N N followed by D E T 2 - l o g P S D - L D A ( < D E T 1 - L F V 4 - 1 N N + DET2- logPSD-

LDA>) , and 

4) D E T l - L F v s - I N N followed by D E T 2 - l o g P S D - L D A ( < D E T 1 - L F V 5 - 1 N N + DET2- logPSD-

LDA>) . 

These designs are compared to the previously implemented designs, i.e., D E T 1 - L F V 4 - 1 N N 

followed by D E T 2 - P S D - L D A ( < D E T 1 - L F V 4 - 1 N N + D E T 2 - P S D - L D A > ) and D E T 1 - P S D -

L D A followed by D E T 2 - P S D - L D A ( < D E T 1 - P S D - L D A + D E T 2 - P S D - L D A > ) as in 

(Bashashati et al 2007b). 

Table 9.1 shows the true positive (TPic) rate of DET1 when the false positive (FPic) rate is 

set at 1%. The results are shown for the designs of DET1 implemented in (Bashashati et al 

2007b), i.e., D E T 1 - L F V 4 - 1 N N and D E T 1 - P S D - L D A , and the present designs of D E T 1 , 

D E T l - L F v s - I N N and D E T 1 - P S D - 1 N N . A s we are only interested in low FP rates, we do not 

report the TP rates at higher FPs. However, it is worth mentioning that the TP rate of the 

system, in the cases when FPs>3%, is about 100%. A s Table 9.1 shows, for all the four tested 

subjects, the new designs of DET1 outperform the previous designs. A s shown in the last 

column of Table 9.1, D E T 1 - P S D - 1 N N design yields the largest average TPic rate of 73.4%. 

This is 19.4%) higher than the TPic rate of 54%> achieved in the previous study (Bashashati et 

al 2007b). The TPic rate of D E T 1 - L F V 5 - 1 N N is significantly higher than the ones for D E T 1 -

P S D - L D A and D E T l - L F v 4 - l N N designs by more than 11%). B y using a paired t-test, both 

new designs of the D E T 1 - L F V 5 - 1 N N and D E T 1 - P S D - 1 N N outperform D E T 1 - L F V 4 - 1 N N 

and D E T 1 - P S D - L D A designs by a significance level greater than 95%>. 
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T A B L E 9.1 P E R C E N T A G E O F T R U E P O S I T I V E S (TP, C ) A T F I X E D F A L S E P O S I T I V E R A T E 

O F 1% F O R T H E T W O D E S I G N S O F D E T 1 

DET1 Design Subjectl Subject2 Subject3 Subject4 Averag 
DET1-LF¥4-1NN 50.1 38.4 56.5 . 71 54.0 
DET1-PSD-LDA 38.2 54.7 60.2 60.3 53.4 
DETl-LFvs-INN 57.7 54 76.4 72.2 65.1 
DET1-PSD-1NN 80.8 71.8 68 73 73.4 

Best Design 80.8 71.8 76.4 73 75.5 

Table 9.2 shows the performance of the whole 3-state self-paced B C I , at a fixed false positive 

rate of 1%, for the six design versions: 1) < D E T 1 - L F V 4 - 1 N N + D E T 2 - P S D - L D A > , 2) 

< D E T 1 - L F V 5 - 1 N N + D E T 2 - P S D - L D A > , 3) < D E T 1 - L F V 5 - 1 N N + D E T 2 - P S D - L D A > , 4) 

< D E T 1 - L F V 5 - 1 N N + D E T 2 - P S D - L D A > , 5) < D E T 1 - L F V 5 - 1 N N + D E T 2 - l o g P S D - L D A > , 6) 

< D E T 1 - L F V 5 - 1 N N + D E T 2 - l o g P S D - L D A > . On average, 47.0% of the right and the left hand 

extensions of the four subjects are correctly identified by the 3-state <DET1-PSD-1NN + 

D E T 2 - P S D - L D A > design (for a false positive rate of 1%). Results of a paired t-test shows 

that < D E T 1 - L F V 5 - 1 N N + D E T 2 - P S D - L D A > outperforms < D E T 1 - L F V 4 - 1 N N + D E T 2 - P S D -

L D A > by significance level greater than 93% and <DET1-PSD-1NN + D E T 2 - P S D - L D A > 

outperforms < D E T 1 - P S D - L D A + D E T 2 - P S D - L D A > by a significance level greater than 

99%. A s shown in the last two columns of Table 9.2, D E T 2 - l o g P S D - L D A performs slightly 

better than D E T 2 - P S D - L D A when used as D E T 2 in a 3-state self-paced B C I . 

T A B L E 9.2 P E R C E N T A G E O F R I G H T A N D L E F T T R U E P O S I T I V E S (TPR A N D T P L ) O F T H E 

T W O P R O P O S E D 3 - S T A T E B R A I N C O M P U T E R I N T E R F A C E S ( W H E N F A L S E P O S I T I V E 

R A T E IS S E T A T 1%). T H E T P R A N D T P L V A L U E S O F T H E B E S T D E S I G N C O M B I N A T I O N 

F O R E A C H S U B J E C T IS H I G H L I G H T E D . 

3 state ROT De^on srrnrfnre Subjectl Subject2 Subject3 Subject4 Average 
3-state BCI Design structure TPR TPL TPR TPL TPR TPL TPR TPL 

<DETl-LFvrlNN + DET2-PSD-LDA>24 30.6 32.6 Ju 33~4 30J 36J 53J ~54J 36.0 
<DET1-PSD-LDA + DET2-PSD-LDA> 19.5 22.2 35.6 47.0 30.1 34.3 37.4 45.2 33.9 
<DET1-PSD-1NN+DET2-PSD-LDA> 33.6 46 41.5 59 39.8 45.5 53.7 57 47.0 
<DET1-LFV 5-1NN + DET2-PSD-LDA> 36.8 39.2 29.8 46.4 39.0 51.0 53.1 55.6 43.9 

<DETl-LFV 4-lNN+DET2-logPSD-LDA> 30.6 40.5 18.1 31.2 31.5 36.0 49.3 59.4 37.1 
<DETl-LFV 5-lNN+DET2-logPSD-LDA> 35.0 44.3 28.5 47.5 41.4 48 50.0 62.2 44.6 

2 4 Note that <DET1-LF-1NN + DET2-PSD-LDA> indicates a design of a 3-state BCI that uses DET1-LF-
1NN design for DET1 and DET2-PSD-LDA design for DET2. A similar description applies to other designs of 
3-state self-paced BCI as well. 
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9.6. Conclusions 
This study introduced and evaluated four new designs of a 3-state self-paced brain computer 

interface based on movement related potentials. Similar to the 3-state self-paced B C I in 

(Bashashati et al 2007b), the proposed systems intend to continuously differentiate the right 

and the left hand extensions from the N C state. While the true positive rate of the latest 2-

state self-paced B C I based on finger flexion movements is 41% (at FP=1%>) (Bashashati et 

al 2006b), the average true positive rate of the improved designs o f the 3-state system reach 

have reached 47.0%> (at FP=1%). These results show that the 3-state self-paced B C I system 

that detects hand extensions movements performs better than the latest 2-state self-paced B C I 

(Bashashati et al 2006b) that detects finger flexion movements with the added advantage of 

providing more control flexibility than a 2-state system. It should be noted, however, that the 

3-state system implemented in this study aims at detecting hand extension movements while 

the 2-state self-paced B C I (Bashashati et al 2006b) detects finger flexion movements. The 

performance superiority of the 3-state self-paced B C I of the present study over the 2-state 

self-paced B C I in (Bashashati et al 2006b) is primarily due to the use of the new set of 

movements. 

There have been numerous BCIs , e.g. (Blankertz et al 2006, Brunner et al 2006, Mi l l an et al 

2004, Scherer et al 2004, Scherer et al 2007, Wang et al 2004, Wolpaw and Mcfarland 2004), 

that differentiate between two or more classes of movements, e.g. right and left hand 

(imagined) movements, or operate based on subject modulating the M u and Beta brain 

rhythms. It should, however, be mentioned that it is difficult to directly compare the results 

of our study with these studies because: (a) the system implemented in this study performs in 

a self-paced manner, i.e., it is different from most other studies, (b) the recording equipment, 

recording and classification protocols, and mental tasks considered are different, and (c) the 

amount of data involved and the degree of training the subjects received before and during 

participation in the B C I experiments varies for different studies, (d) there is not a unified 

framework of reporting performance of B C I systems, i.e. the performance metrics are 

different across different studies. 

The performance of D E T l - L F v s - I N N and of D E T 1 - P S D - 1 N N in detecting the presence of a 

movement (regardless of its type) yielded average true positive rates of 65.1% and 73.4% 
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with the false positive (FP) rate of 1%, respectively. The latest results of the 2-state self-

paced brain computer interface shows an average true positive rate of 41% at the same false 

positive rate of 1%> across four tested able-bodied subjects (Bashashati et al 2006b). 

Comparing the true positive (TPic) results of DET1 with the performance o f able-bodied 

subjects of the latest 2-state self-paced B C I (Bashashati et al 2006b) shows a significant true 

positive rate increase of 32.4% at false positive rate of 1%. In other words, i f the current 

system was used as a 2-state self-paced B C I , the true positive rate would be 73.4% at the 

false positive rate of 1%. It should be noted that while the latest 2-state self-paced brain 

computer interface detects finger flexions, DET1 of the 3-state self-paced B C I detects the 

presence of left or right hand extension movements. Such an improvement should be the 

result of the use of hand extension movements instead of finger flexion movements. 

However, it should be noted that direct comparison of the current system with (Bashashati et 

al 2006b) is not completely accurate as the data and experimental paradigms used in testing 

the two systems were different; a more thorough study is needed to verify these findings. 

Verifying these results on a very large subject pool would potentially provide a 

neurophysiological source that results in significantly better performances in controlling 

current 2-state self-paced brain computer interfaces without the need to change the design 

components of the systems. 

A s shown in Table 9.1, D E T l - L F v s - I N N outperforms D E T l - L F v 4 - l N N in movement 

detection by an average of 11.1% across the four subjects. This finding suggests that the past 

history of features provide better information for movement detection. In this study, this 

approach is performed on the original 2-state self-paced B C I features (Mason and Birch 

2000); it may also yield improvements in other design variations. The results also show that 

D E T 1 - P S D - 1 N N performed 20% better than D E T 1 - P S D - L D A . Since these two designs 

differ in the classification stage, it is concluded that the 1-NN nonlinear classifier performs 

better than the linear discriminant analysis ( L D A ) classifier on power spectral density 

features, in detecting the presence of movements. 

A s shown in Table 9.2, the <DET1-PSD-1NN+DET2-PSD-LDA> design yields the best 

average true positive rate ((TP R+TP L)/2) of 47.0% in detecting the right and the left hand 

movements in the context of a 3-state self-paced B C I . This is higher than the 40.1% best 

average true positive rate achieved in the previous study ((Bashashati et al 2007b)). 
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The design of D E T 2 that uses the logarithm of P S D features yield better performance than 

the design that uses the P S D features, since < D E T l - L F V 5 - l N N + D E T 2 - l o g P S D - L D A > 

performs better than < D E T 1 - L F V 5 - 1 N N + D E T 2 - P S D - L D A > . The results also show that the 

use of D E T l - L F v s - I N N and D E T 1 - P S D - 1 N N in a 3-state self-paced B C I yield 7.9% and 

13.1% better average true positive rates ((TP R+TP L)/2) than the use of D E T l - L F v 4 - l N N and 

D E T 1 - P S D - L D A , respectively. This is when all these designs are followed by the same 

design of D E T 2 , i.e., D E T 2 - P S D - L D A . 

The overall performance of both the 2-state and the 3-state B C I systems vary across the 

subjects depending on the type of the design used. Given the variable performance of 

subjects across the two designs, an approach that can select a suitable design and adapt to 

each subject might achieve better detection rates. Significant gains may also be achieved 

from the combination of several single designs i f these designs provide complementary 

information for the classification task. Several studies have demonstrated some evidence that 

existing independent features related to movement tasks could be used to achieve better 

classification accuracies (Babiloni et al 1999, Dornhege et al 2003, Dornhege et al 2004). 

In this study, we evaluated several design combinations of DET1 and D E T 2 , however, there 

are still other possible combinations (e.g. <DET1-PSD-1NN + DET2- logPSD-LDA>) that 

need to be evaluated in the future and may improve the performance of the system. We have 

shown that logarithm of P S D features yield superior results than P S D features when used in 

D E T 2 design. Applying this function to the P S D features o f DET1 may also improve the 

performance o f this detector and overall performance of the system. 

Both the 2-state and the 3-state self-paced BCIs in this study and in the previous studies 

(Bashashati et al 2006b, Bashashati et al 2007b) were specifically designed to support N C 

state (refer to Chapter 1 for definition of N C support). In our studies, both BCIs were tested 

on a N C state data that would be expected to be the most difficult one as it is surrounded by 

the IC state data. However, a more thorough study is needed to evaluate the performance of 

such systems on different and a larger variety of NC state data. Ideally, the NC state data 

include all the brain states except for the intentional control state and the system should not 

be activated during NC state periods. 
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In the experimental paradigm used in this study, no feedback during the performed tasks was 

provided to the subjects. While we adopted this paradigm to simulate a more natural mode of 

control, this may have caused a lower performance in some subjects. Moreover, no subject 

pre-screening and no prior training were performed before the sessions. Thus, providing 

feedback during sessions and also training subjects like shown by other researchers (e.g. 

Mi l l an et al 2002) may also improve the results of this study. Use of more efficient feature 

extraction and classification methods, subject training, providing online feedback during the 

performed task and verifying the results on more subjects are in the scope of our future 

directions to improve these results. 
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Chapter 10 Summary and Conclusions 

10.1. Summary and Concluding Remarks 
This research was motivated by the need for an assistive device for individuals with severe 

disabilities such as spinal cord injury (SCI) and amyotrophic lateral sclerosis ( A L S ) . These 

individuals need a device that can directly translate brain signals to commands. BCIs can 

replace the neural pathways that are impaired by such disabilities. 

This project had two goals: 

(1) Improving a 2-state self-paced B C I that is capable of generating lower false positive rates. 

Initial evaluations of this system showed an average true positive rate of 51.3% with false 

positive rate of 2% (Borisoff et al 2004). The high false positive rate of the system made it 

unsuitable for practical applications. For example, a false positive rate of 2%, in this system, 

corresponds to an average of two false activations every six seconds. 

(2) Performing a preliminary study to design and test the feasibility of the first 3-state self-

paced B C I 2 5 that continuously monitors the intent of the user and is specifically designed to 

support the N C state. 

To improve the 2-state self-paced B C I , three studies concerning the different building blocks 

(refer to Chapter 1) of the system were conducted. Through our different studies, the feature 

extraction and feature classification blocks of the 2-state system were improved. In these 

studies (Bashashati et al 2006a, 2006b) the response of the system during periods 

contaminated with E O G artifacts was not evaluated as these artifacts were believed to cause 

high false positive rates in the system. Since the improved self-paced B C I was customized 

for each user (Bashashati et al 2006a) and incorporated the past history of feature values in 

detecting user intents (Bashashati et al 2006b), it was thought to be more immune to 

electroculogram (EOG) artifacts. Therefore, another study was conducted to evaluate the 2-

state self-paced B C I when the data contaminated with electroculogram (EOG) artifacts were 

not excluded from analysis. A s a result, the self-paced B C I system is available to control all 

A 4-state self-paced BCI has been introduced very recently after we introduced the 3-state self-paced BCI 
(Scherer et al Aug 2007). Performance of the system introduced in this dissertation is compared to other BCI 
systems later in this section. 
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the time including the 15-34% of the time that the system was unavailable due to the 

presence of E O G artifacts (Bashashati et al 2006b). 

Evaluation of the latest 2-state self-paced B C I , improved during this dissertation, on both 

able-bodied and disabled subjects show true positive (TP) rates of 73.5%) and 47.3% at the 

fixed false positive rates of 2% and 1%, respectively (Bashashati et al 2007c). These are 

when the output of the system was blocked during E O G artifacts. Evaluation of the same 

system, when data including periods contaminated with E O G artifacts are included, show 

true positive rates of 68.0%> and 40.6% at the fixed false positive rates of 2% and 1%, 

respectively. Based on these results, for example at a false positive rate o f 2%, the user can 

activate the output by performing one to two attempts on average. 

To achieve the second goal of this dissertation, several designs of a 3-state self-paced B C I 

were proposed and evaluated on four able-bodied subjects. Ideally, these systems can 

distinguish the intended control (IC) states from the no control (NC) state. The aim of this 

initial investigation was to examine the feasibility of a 3-state self-paced B C I and determine 

whether such a system has promise. While a 2-state self-paced B C I allows the user to execute 

only one command type, a 3-state one provides the user two types of command options, i.e. 

more control options. To our best knowledge, no 3-state B C I that is both continuously 

available for control, and is designed to support the N C state (as defined in Section 1.2.1) has 

been proposed before. The implemented 3-state self-paced B C I expands the latest design of 

the 2-state self-paced system discussed earlier in this thesis. 

The proposed design of the 3-state self-paced B C I is comprised of two detectors: DET1 and 

D E T 2 . DET1 determines whether a movement is present or not, and D E T 2 differentiates 

between the two movements. Since DET1 determines whether or not a movement is 

performed, it can be considered and independently used as a 2-state self-paced B C I . Thus, in 

the initial design of the 3-state self-paced B C I , the latest designs of the 2-state self-paced B C I 

developed in Chapters 5 and 6 are used in the design of D E T 1 . Several design versions of the 

3-state self-paced system were proposed and evaluated by data from able-bodied subjects. If 

used as a 2-state self-paced B C I , i.e. to determine whether or not a movement has occurred, 

the latest results show that the percentage of the true positive rate increases from 41.1% to 

73.4%) at a fixed rate of 1%. This is when hand extension movements are used instead of a 
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finger flexion. When the system is used as a 3-state self-paced B C I , the latest results show 

average right and left true positive rates of 42.2% and 51.9%, respectively. 

Tables 10.1 and 10.2 compare the latest results of the 2-state and 3-state self-paced B C I 

systems developed during this dissertation with other B C I system in the literature. A s shown 

in these two tables, the 2-state and 3-state self-paced B C I systems proposed in this thesis 

generate higher true positive rates at considerably lower false positive rates compared to 

other self-paced B C I systems. Note that the self-paced B C I system introduced in (Scherer et 

al 2007) has an additional output state; i.e. it is a 4-state self-paced B C I , however, the false 

positive rate of this system is too high compared to the false positive rate of the 3-state self-

paced B C I introduced in this thesis. It should be, however, mentioned that it is difficult to 

directly compare the results of our study and other studies, as the recording equipment, 

recording and classification protocols, and mental task considered are different. In addition, 

the amount of data involved, the degree of training the subjects received before participating 

in the B C I experiments and the decision rate of the systems vary for different studies. 

The techniques and ideas introduced in different parts of this dissertation not only have value 

for the 2-state and 3-state self-paced B C I systems introduced in this thesis but also can be 

applied to other self-paced and system-paced B C I systems . 

T A B L E 10.1 COMPARISON B E T W E E N 2-STATE SELF-PACED BCI SYSTEMS 

Reference Self-paced Supporting NC True positive rate False positive rate 

(Graimann et al Yes Yes 73%-94% 6%-28% 

2004, Levine et al 

2000, Townsend et 

al 2004, Yom-Tov 

and Inbar 2003) 

(Bashashati et al Yes Yes 47.3% 1% 

2007c)26 

(Bashashati et al Yes Yes 73.4% 1% 

2007d&e) 

Note that the mean true positive rates of the 2-state self-paced BCI systems introduced in (Bashashati et al 
2007c & 2007d & 2007e) are 100% at false positive rates of more than 6%. 
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T A B L E 10.2 COMPARISON B E T W E E N MULTI-STATE BCI SYSTEMS 

Reference Number of Self-paced Supporting True positive False positive 

output states NC rate rate 

(Millan etal) 3 Yes No Not reported Not reported 

(Scherer et al 2007) 4 Yes Yes 28.4% 16.9% . 

(Bashashati et al 3 Yes Yes 47.0% 1% 

2007d&e)27 

10.2. Summary of Contributions 
1- A n important contribution of this dissertation relates to the comprehensive survey we 

carried out on the signal processing algorithms used in B C I systems (Bashashati et al 2007a). 

This survey is the first survey that covers more than 300 papers in the field of brain computer 

interfaces. It addresses the following key research questions: 1) what are the key signal 

processing components of a B C I , 2) what signal processing algorithms have been used in 

BCIs, and 3) which signal processing techniques have received more attention. This 

information is valuable for present researchers as well as newcomers to the field, as it allows 

them to find out which signal-processing methods have been used for a certain type of a B C I 

system. 

Most of the contributions listed below are not only useful for the self-paced B C I system 

being developed during this dissertation but also have value for other B C I systems. 

2- Like any control system that depends on pattern recognition or machine learning, any B C I 

system needs to be trained before a user can operate it. System training typically refers to 

training the classifier component of the system and requires well-defined training-data that 

include representative samples of each class of data. The proposed methods for generating 

training-data introduced in Chapter 4 (Bashashati et al 2007b) generate higher quality 

training-data from a population comprised of fuzzy training-data. In other words, these 

methods select a subset of the training-data that has a higher probability of being real events. 

A s such, the proposed methods are directly applicable to other B C I designs, including 

2 7 Note that the mean true positive rates of the 3-state self-paced BCI system introduced in (Bashashati et al 
2007d & 2007e) is close to 75% at false positive rates of more than 4%. 
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synchronized BCIs and other neuroscience applications where mental tasks such as imagined 

movements are involved. 

3- In Chapter 5, the feature extraction parameters of the 2-state self-paced B C I were 

customized for each subject. The customization showed improvements in the system 

performance (Bashashati et al 2006a). This study emphasizes the variability of brain signals 

across subjects and the need for such personalization in any B C I design. More importantly, in 

our current 2-state self-paced system, such customization is crucial to ensure that the system 

is triggered only by movement-related potential patterns associated with the attempted finger 

flexion task. 

4- In Chapter 6, a study that proposed the use of the past values of the features to detect the 

presence of an intentional control state at a certain instance showed improvements in the 

performance o f the 2-state self-paced B C I (Bashashati et al 2006b). We expect that the idea 

of using past feature values might also be useful for other B C I systems and pattern 

recognition problems. 

5- The last study related to the 2-state self-paced B C I system evaluated the B C I ' s 

performance when the output during eye-blink artifacts was not inactivated (Bashashati et al 

2007c). In previous evaluation schemes, the data containing eye-blinks were excluded from 

further analysis. This study emphasized that comparing the results of the two types of B C I 

systems (those which include and those which block the data contaminated with artifacts 

from the analysis) is only possible in a pseudo-online testing paradigm, i.e. when the system 

continuously classifies the input signals as when used in a real application. This testing 

paradigm, for the case when the artifact contaminated data is blocked from the analysis, 

forces the output to remain in the N C state during artifact presence. Such a testing paradigm 

is crucial in the sense that it provides a better estimate of the performance of the system for 

real online applications. Another contribution of this study relates to the fact that the 

performance of the system does not significantly degrade when the data containing eye-blink 

artifacts are included in the analysis. In addition, the system provides the user full control of 

the B C I which was not the case before. When the output was blocked during periods of 

artifacts, the system was found to be not usable for 15-34% of the time. 
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6- The 3-state self-paced B C I proposed in this study is the first 3-state B C I system that is 

available for control at all times and supports the no control (NC) state. In other words, the 

currently developed system continuously differentiates the predefined intended control states 

(i.e. right and the left hand extensions) from the N C state. Ideally, the N C state should 

include any brain state other than the predefined IC states. 

7- The study for designing a 3-state self-paced B C I system also led us to a new set of 

movements, i.e. right and left hand extension movements that has more promise in 

controlling a 2-state B C I system. Using a right or a left hand extension movement instead of 

a finger flexion significantly improved the performance in detecting the presence of a 

movement (Bashashati et al 2007d). This finding is important since it is shown that 

improvements were significant when hand extension movements were used instead of a 

finger flexion as the neurophysiological control source. 

8- The designs of D E T 1 , which detects the presence of a movement in the 3-state self-paced 

B C I , are directly usable in the design of a 2-state self-paced system. For example, the design 

of DET1 that is based on the power spectral density features and a 1-nearest neighbor 

classifier outperformed the design of the latest 2-state self-paced B C I . A s such, it can be used 

in the context of a 2-state self-paced B C I . 

10.3. Discussions and Future Directions 
Non-muscular communication and control are no longer a merely speculation. The results 

presented in this dissertation along with many studies in the field of B C I show that direct 

communication from the brain to the external world is possible and can serve useful 

purposes. A t the same time, the reality does not yet match the fantasy: BCIs are not yet able 

to fly airplanes and are not likely to be doing so anytime soon. However, for people with no 

voluntary muscle control or in whom the remaining control (e.g. eye movement) is weak, 

easily fatigued, or unreliable, the current modest capacity of B C I systems may be valuable. 

For people who are totally paralyzed (e.g. by A L S , brainstem stroke, or severe 

polyneuropathy) or lack any useful muscle control (e.g. due to severe cerebral palsy), a B C I 

might give them the ability to answer simple questions, control the environment (e.g. lights, 

temperature, television, etc.), perform slow word processing, or even operate a 

neuroprosthesis. 
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There are a number of related issues that can be investigated as an extension to the research 

presented in this thesis. Some of these topics are presented in this section. 

The algorithms developed in this dissertation were all tested in an offline setting, i.e. the data 

to test the different designs for a B C I system were first recorded and then analyzed. Offline 

analysis of the data is necessary to evaluate the different designs before performing an online 

test of the final design. A study that confirms the findings of this research in an online setting 

is needed in the future. 

The study in (Bashashati et al 2006a) showed that user customization of a B C I is useful. In 

this study, the parameter values of the B C I system were customized based on the training 

data. Since the performance of the subjects over time is an issue that needs to be extensively 

studied, and since the brain signals are variable over time, developing a customization 

scheme that continuously tunes the parameters of the B C I system over time is useful for real-

world applications. 

In this research, we showed that the 2-state self-paced B C I system is better at detecting a 

right or a left hand extension movement than a finger flexion movement (Bashashati et al 

2007d). However, since the data for hand extension movements and finger flexion 

movements were gathered in separate studies, this comparison is not totally accurate. A study 

that records the data related to these movements in the same experimental setting and on a 

large number of subjects is necessary to confirm these findings. 

Although the performance of the B C I system in detecting the presence of any of a right or a 

left hand movement was better than the finger flexion, these movements may not be optimal 

when used in the context of a 3-state self-paced B C I . In other words, there might be 

alternative movements that are more differentiable from each other and also from the N C 

state. Therefore, a study that investigates other movements, such as right and left hand 

flexions, right and left finger flexion and right and left foot movements, is useful in finding 

the optimal movements. If such movements exist, they can potentially yield more 

improvements in the performance of the 3-state self-paced system. 

The aim of the study on the 3-state self-paced B C I was to examine whether or not such a 

self-paced B C I has promise. Results of the evaluation of the system on four able-bodied 

subjects show promising results. However, more studies are needed to improve this system. 
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The use of nonlinear classifiers and exploring other approaches that combine the different 

feature extraction and feature classification methods should also be in the scope of future 

studies. 

Although both the 2-state and 3-state self-paced B C I system in this thesis were tested in a 

specific experimental paradigm and on N C state data that were supposed to be the most 

difficult one as they were surrounded by IC state data, a more thorough study is needed to 

investigate the performance of the systems under different experimental paradigms and on 

different sets of NC state data, e.g. when the person perform different mental tasks except for 

the IC task. This study would provide a better estimate of the performance of a self-paced 

B C I system in a real-world application. 

We implemented a specific design of a 3-state self-paced B C I . This system detects a right or 

a left hand extension via a sequential decision making paradigm. The system, at first, detects 

whether or not a movement is present. If a movement is detected, the system classifies it as a 

right or a left hand one. Another possible design of a 3-state B C I would be a system that 

consists of three decision modules in parallel. Each module differentiates between one of IC1 

and IC2 classes from the N C class. Finally, by using a voting system, the output can be 

classified to any of the three states, i.e. N C , IC1 and IC2. Since this system uses three 

decision modules and majority voting (instead of the two modules used for the current design 

(Bashashati et al 2007d)), it may result in a better performance o f the 3-state self-paced B C I . 

The false positive rate of 1% for both the 2-state and the 3-state self-paced BCIs is still high 

for most practical applications. A false positive rate of 1% corresponds to a false activation 

of the system, on average, every six seconds. Therefore, future studies are still needed to 

decrease the false positive rate. 

The overall performance of both the 2-state and the 3-state B C I systems vary across the 

subjects depending on the type of the design used. Given the variable performance of 

subjects across the two designs, an approach that can select a suitable design and adapt to 

each subject might overcome the subject performance variability across different designs and 

achieve better detection rates. Significant gains may also be achieved when combining 

several single designs i f these designs provide complementary information for the 

classification task. Several studies have demonstrated some evidence that existing 
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independent features related to movement tasks could be used to achieve better classification 

accuracies (Babiloni et al 1999, Dornhege et al 2003, Dornhege et al 2004). 

The study on the 3-state self-paced B C I did not focus on training subjects and did not provide 

any online feedback during the data recording. A future study that investigates the effect of 

subject training and provides biofeedback might be useful in achieving better performances. 

Specifically, this might be useful for subjects that do not perform well in the first few 

sessions. There have been some studies that showed that B C I performance increase after a 

few training sessions (e.g. Mi l l an and Mourino 2002). 

While synchronized control requires a cuing mechanism in its design, the presence of a cuing 

mechanism in an experimental protocol does not imply that the system operates in a 

synchronized control paradigm. Cues are an essential part of the synchronized system design. 

They let the user know when the system is about to start interpreting their data as control. For 

synchronized B C I systems, the cues are generally used to tell the user 'get ready to start 

controlling'. In B C I systems that support the N C state and that evaluate the system in a 

specific time, the cues indicate that a control period wi l l be starting soon i f they want to 

control the system at that time but the user has the option of not controlling the device. Cues 

are also used as experimental constraints (i.e., not part of the B C I system design). A s 

experimental constraints, cues are used to guide the user into some state, such as IC or N C . In 

this way, one could set up an experimental system with a user operating a self-paced B C I 

system (design) and using a separate cuing mechanism to force the user to control the self-

paced system when desired by the experimenters. Such a setup does not imply a 

synchronized transducer, but instead indicate a tightly constrained experimental setup. 

However, true testing of B C I technology for individuals with severe motor disabilities w i l l 

require self-paced actions and timing. Ideally, a self-paced testing protocol is desired to test 

the developed system in this thesis although this type of protocol involves many issues 

related to how to generate the estimated intended output and must rely on user self-report of 

true positives and false negatives. 

10.4. Applications of 2-State and 3-State Self-Paced BCIs 
Assistive Technology (AT) is a generic term that includes assistive, adaptive, and 

rehabilitative devices and the process used in selecting, locating, and using them. A T 
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promotes greater independence for people with disabilities by enabling them to perform tasks 

they were formerly unable to accomplish, or had great difficulty accomplishing, by providing 

enhancements or changed methods for interaction with the technology needed to accomplish 

such tasks. Brain computer interfaces can be used in many assistive devices to help 

individuals with severe disabilities to interact with different devices. In this section, we 

provide a simple example application of 2-state and 3-state self-paced B C I systems that can 

be used to assist individuals with disabilities. 

In this example application, the user interface can display a menu system (for an example see 

Fig.lO.l(a)) with several action items such as 'Turn T V on' , 'Turn lights on' , etc. A 2-state 

self-paced B C I can be used to help the user select the desired item. In such a case, each menu 

item is sequentially highlighted for a specific period (e.g. ls). If the user decides to activate 

an item in the menu, e.g. turn the T V on, he/she should wait until the desired button is 

highlighted (Fig. 10.1(b)). Then the user can click the item by activating the 2-state self-paced 

B C I . The same user interface can be controlled more conveniently by a 3-state self-paced 

B C I . In such a case, the user does not need to wait until the desired menu item is highlighted 

by the system. Instead, he/she can use the first intentional control state (IC1), e.g. right hand 

extension, to navigate through different menu items and highlight the desired item. Then, the 

desired item can be activated by performing the second intentional control state (IC2), e.g. 

left hand extension. 

If the system goes to a standby mode after clicking the 'stand by ' item in the menu, a 3-state 

system (compared to a 2-state one) may also provide an easier way of resuming the function 

of the system. This task can be achieved by, for example, executing a specific sequence of 

IC1 and IC2 tasks. However, by using a 2-state self-paced B C I , a more complicated strategy 

may be needed to resume the function of the system. 

The above example showed a possible application of 2-state and 3-state self-paced BCIs. 

This idea can be simply implmented for other applications like wheelchair control or word 

procesors. For a wheelchair control application, the same menu system with desired control 

options can be implemented in a palm pilot mounted on the wheelchair. A word processing 

application could be implemneted using a scanning keyborad and either a 2-state or a 3-state 

self-paced B C I . 
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1 -Turn light on 

2-Turn light off 

3-Turn T V on 

4-Turn T V off 

5-Channel up 

6-Channel down 

7-Standby 

1 -Turn light on 

2-Turn light off 

3-Turn T V on 

4-Turn T V off 

5-Channel up 

6-Channel down 

7-Standby 

(a) (b) 

Figure 10.1 Example of a BCI user interface 
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Appendix B. Expanded Tables of Chapter 2 28 

T A B L E B.0.1 F E A T U R E EXTRACTION METHODS IN BCI DESIGNS 

Neurological phenomenon Feature Extraction method Reference ID 

Sensorimotor 

Activity 

Changes in 
brain 
rhythms 
(Mu, Beta, 
and Gamma) 

Spectral 
parameters 

Parametric 
modeling 

Using AR parameters 

Using BPF - squaring 

Using BPF 
Using FFT-
based methods 

FFT 

Periodograms 
such as Welch 
algorithm 
FFT- VEFD 
CSP- FFT 

CSP - log-transformation of the 
variance of the resulting time 
series (captures ERD/ERS) 
CSSP - log-transformation of the 
variance of the resulting time 
series 
Details not mentioned 

BPF in the Mu band 
parameters 

AR 

(Fabiani et al 2004, Kubler et al 2005, McFarland and Wolpaw 1998, 
McFarland et al 1997, McFarland et al 2003, McFarland et al 2005, 
Schalk et al 2000, Sheikh et al 2003, Wolpaw et al 1997, Wolpaw et al 
2000, Wolpaw and McFarland 2004) 

(Guger et al 2003a, Ivanova et al 1995, Kalcher et al 1992, Krausz et al 
2003, Neuper et al 2003, Neuper et al 2005, Pfurtscheller et al 2005, 
Pfurtscheller et al 1994, Pfurtscheller et al 1996, Pfurtscheller and 
Neuper 2001, Pfurtscheller et al 2003a, Pregenzer and Pfurtscheller 
1995, Jia etal2004) 
(Trejo et al 2003) 
(Coyle et al 2005, Pfurtscheller et al 2000, Pregenzer and Pfurtscheller 
1999, Wolpaw and McFarland 1994, Wolpaw et al 2000) 
(Babiloni et al 2000, Babiloni et al 2001a, Babiloni et al 2001b, 
Cincotti et al 2001, Cincotti et al 2003a, Cincotti et al 2003b, Kelly et 
al 2002b, Lai et al 2004, Millan et al 2002a, Millan et al 2002b) 
(Pineda et al 2003) 
(Blanchard and Blankertz 2004) 
(Guger et al 2000b, Krauledat et al 2004, Pfurtscheller et al 2000, 
Pfurtscheller and Neuper 2001, Ramoser et al 2000, Townsend et al 
2004) 
(Lemm et al 2005) 

(Boostani and Moradi 2004, Flotzinger et al 1994, Kalcher et al 1993, 
Leeb and Pfurtscheller 2004, Mahmoudi and Erfanian 2002, Mason and 
Birch 2000, Muller et al 2003c, Muller-Putz et al 2005b, Pfurtscheller 
et al 1993, Pfurtscheller et al 1997, Pfurtscheller et al 1998, 
Pfurtscheller and Neuper 2001, Pfurtscheller et al 2003b, Wolpaw et al 
1991, Wolpaw et al 2003, L i et al 2004a) 
(Peters etal 2001) 

The extended tables of Chapter 2 are published online by the Journal of Neural Engineering. 



T A B L E B.0.1 F E A T U R E E X T R A C T I O N METHODS IN BCI DESIGNS (CONTINUED) 

MRP 

t o 

Other 
Sensorimotor 
activity 

BPF-ICA-dipole analysis 
BPF-ICA-dipole analysis-cortical current density 
TFR method Wavelet transform 

Wavelet transform - difference 
between Left/Right hemisphere 
features 
{Wavelet- BPF} - ICA - dipole 
analysis 
{Wavelet- BPF} - ICA - dipole 
analysis - cortical current density 

Signal envelope (calculated by Hilbert transform) -
Cross- correlation 
Analog circuit to extract Mu-band (8-12Hz) power 
Contralateral and ipsilateral rebound maps 
Parametric 
modeling 

TFR method 

AR parameters 

ARX parameters 
A custom made TFR method 

Wavelet transform x 

A custom made TFR method -
construction of the trajectory of 
features 

LRP features (sub-sampling the data - FFT and taking 
the bins in the interested pass band - IFFT) 
Combination of LRP + {CSP - log-transformation 

of the variance of the resulting 
time series } 

different feature 
extraction methods 
Matched filter 
None 
Spectral 
parameters 

Parametric 
modeling 

Using AR parameters 

Using FFT 
Details not mentioned 
AAR parameters using Kalman 
filtering method 

(Qin et al 2004a, Qin et al 2005) 
(Qin et al 2004a) 
(Lemm et al 2004, Qin et al 2005) 
(Qin and He 2005) 

(Qin et al 2004b) 

(Qin et al 2004b) 

(Wang et al 2004b, Wang et al 2004a) 

(LaCourse and Wilson 2003) 
(Hung et al 2005) 
(Burke et al 2005) 

(Burke et al 2005) 
(Birch et al 2002, Birch et al 2003, Borisoff et al 2004, Bozorgzadeh et 
al 2000, Fatourechi et al 2004, Fatourechi et al 2005, Lisogurski and 
Birch 1998, Mason and Birch 2000, Mason et al 2004, Yom-Tov and 
Inbar 2003) 
(Glassman 2005) 
(Bashashati et al 2005) 

(Blankertz et al 2002a, Blankertz et al 2003, Krauledat et al 2004) 

(Dornhege et al 2003) 

(Yom-Tov and Inbar 2003) 
(Barreto et al 1996a, Barreto et al 1996b, Blankertz et al 2002a) 
(Cho et al 2004) 

(Garcia et al 2003b) 
(Mahmoudi and Erfanian 2002, Scherer et al 2004) 
(Graimann et al 2003b, Schlogl et al 2003) 



T A B L E B.0.1 F E A T U R E E X T R A C T I O N METHODS IN BCI DESIGNS (CONTINUED) 

AAR parameters using LMS 
method 

AAR parameters (details not 
mentioned) 

AR parameters 

ARX parameters 
Wavelet transform 
AGR 
CTFR 
Time-frequency expansion (part 
of a commercial software: 
Thoughtform Interpretation 
Studio TIS2.0) 

TFR methods 

C C T M 

Quadratic modeling 
Hjorth parameters 

Signal complexity 

SOFNN one step ahead prediction - mean square error 
(MSE) or mean squared of the predicted signal 
OPM 

Fractal dimension 
Coarse-grained entropy rate 
(CER) 
Gaussian process entropy rates (Trejo et al 2003) 
(GPER) 
spectral entropy (SE) 
wavelet entropy (WE) 
Embedding space decomposition 
AR + PSD + Barlow + mean + 
STD 
Relative power of specific 
frequency band + mean absolute 
value + variance 
Mean absolute value + variance 

(Huggins et al 2003, Neuper et al 1999, Obermaier et al 2001b, 
Pfurtscheller et al 1998, Pfurtscheller et al 2000, Pfurtscheller and 
Neuper 2001, Schloegl et al 1997a, Schloegl et al 1997b) 
(Guger et al 1999, Guger et al 2000a, Guger et al 2003a, Guger et al 
2003b, Haselsteiner and Pfurtscheller 2000, Obermaier et al 2001a, 
Pfurtscheller and Guger 1999) 
(Burke et al 2002, Kelly et al 2002b, Kelly et al 2002a, Lai et al 2004, 
Peters et al 2001, Schroder et al 2005, Sykacek et al 2003, Yoon et al 
2005) 
(Burke et al 2002, Kelly et al 2002b, Kelly et al 2002a) 
(Huggins et al 2003) 
(Costa and Cabral 2000) 
(Garcia et al 2003a, Garcia et al 2003b) 
(Pineda et al 2000) 

(Balbale et al 1999, Graimann et al 2003b, Huggins et al 1999, Huggins 
et al 2003, Levine et al 1999, Levine et al 2000) 
(Huggins et al 2003) 
(Boostani and Moradi 2004, Lee and Choi 2002, Obermaier et al 2001a, 
Obermaier et al 2001c, Pfurtscheller and Neuper 2001) 
(Coyle et al 2004) 

Combination of 
different feature 
extraction methods 

(Mason and Birch 2000) 
(Boostani and Moradi 2004) 
(Trejo et al 2003) 

(Trejo et al 2003) 
(Trejo et al 2003) 
(Roberts etal 1999) 

(Yom-Tov and Inbar 2001, Yom-Tov and Inbar 2002) 

(Mahmoudi and Erfanian 2002) 

(Mahmoudi and Erfanian 2002) 



T A B L E B.0.1 F E A T U R E E X T R A C T I O N METHODS IN BCI DESIGNS (CONTINUED) 

MN: 
Changes in 
brain 
rhythms 
(Mu, Beta, 
and Gamma) 
+ Other 
sensorimotor 
activity 
MN: 
Changes in 
brain 
rhythms 
(Mu, Beta, 
and Gamma) 
+ MRP + 
Other 
sensorimotor 
activity 
MN: 
Changes in 
brain 
rhythms 
(Mu, Beta, 
and Gamma) 
+ MRP 

CSP - log-transformation of the variance of the (Xu et al 2004b) 
resulting time series 
{ Combined PCA + CSP} - log-transformation of the 
variance of the resulting time series 
Feature coherence (part of a commercial software: 
Thoughtform Interpretation Studio TIS 2.0) 
None 

(Xue/a/2004b) 

(Pineda et al 2000) 

Spectral 
parameters 
C C T M 
TFR method 

Details not mentioned 

Wavelet transform 
Shrinking LORETA-FOCUSS 
analysis 
Combination of 
different feature 
extraction methods 
Combination of 
different feature 
extraction methods 

3-D micro-state 

Power spectra in Mu band + time 
features (ratio of two areas under 
the energy accumulation curve) 
LRP features + AR + {CSP - log-
transformation of the variance of 
the resulting time series } + 
variance 

(Lee and Choi 2002, Lee and Choi 2003, Mahmoudi and Erfanian 2002, 
Parra et al 2002, Parra et al 2003a, Schroder et al 2003, Trejo et al 
2003) 

(Garrett et al 2003) 

(Graimann et al 2004) 
(Graimann et al 2003a, Graimann et al 2004) 
(Liu etal 2003) 
(Cheng et al 2004) 

(Muller et al 2003b) 

BPF in 0-4Hz and Mu bands - CSSD (Li et al 2004b, Wang et al 2004d) 
Combination of {CSP - log-transformation of the (Krauledat et al 2004) 
different feature 
extraction methods 

variance of the resulting time 
series } + LRP features 
LRP features +AR + {CSP - log-
transformation of the variance of 
the resulting time series } + 
variance 

(Dornhege et al 2004) 



T A B L E B.0.1 F E A T U R E EXTRACTION METHODS IN BCI DESIGNS (CONTINUED) 

Amplitude between N2 and P2 peaks 
None 

Response to Mental Tasks 29 

ANC 

Spectral 
parameters 

Using FFT-
based methods 

FFT 

Parametric 
modeling 

Periodograms 
such as Welch's 
method 

Using WE method 
Using AR parameters 
Method not mentioned 
AR parameters 

AAR using LMS method 
Multivariate AR coefficients 

Signal Complexity Fractal dimension 
Eigen values of correlation matrix 
LPC using Burg's method 
None 
Cross-covariance of each neuron's activity with one 
another - Principal Component Analysis (PCA) 
L B G vector quantization (VQ) 
Filtering - rectification - thresholding 

Averaging 
TFR methods Wavelet transform 
None - Most of these designs model the relationship 
between neural firing rates and 'position and/or 
velocity and/or acceleration' of hand 

(Lee et al 2005) 
(Guan et al 2005, Vidal 1977) 
(Bashashati et al 2003, Kostov and Polak 1997, Liu et al 2005, Polak 
and Kostov 1997, Polak and Kostov 1998, Wang et al 2005a) 
(Peterson et al 2005) 

(Keirn and Aunon 1990, Palaniappan et al 2002) 
(Keirn and Aunon 1990, Palaniappan et al 2002) 
(Millan et al 1998, Palaniappan 2005) 
(Anderson et al 1995b, Anderson et al 1998, Garrett et al 2003, Huan 
and Palaniappan 2004, Keirn and Aunon 1990, Kostov and Polak 2000, 
Huan and Palaniappan 2005, Polak and Kostov 1998, Polak and Kostov 
1999, Sykacek et al 2003) 
(Huan and Palaniappan 2004, Huan and Palaniappan 2005) 
(Anderson et al 1995b, Anderson et al 1998) 
(Bashashati et al 2003, Tavakolian et al 2004) 
(Anderson etal 1998) 
(Kostov and Polak 1997) 
(Anderson et al 1995a, Panuccio et al 2002) 
(Isaacs et al 2000) 

(Darraanjian et al 2003) 
(Karniel et al 2002, Kositsky et al 2003, Reger et al 2000a, Reger et al 
2000b) 
(Laubach et al 2000, Otto et al 2003, Vetter et al 2003) 
(Laubach et al 2000, Musallam et al 2004) 
(Black et al 2003, Byron et al 2005, Carmena et al 2003, Carmena et al 
2005, Chapin et al 1999, Gao et al 2002, Gao et al 2003a, Hatsopoulos 
et al 2004, Hu et al 2004, Karniel et al 2002, Kemere et al 2004, 
Kennedy et al 2000, Kim et al 2005a, Kim et al 2005b, Lebedev et al 
2005, Olson et al 2005, Patil et al 2004, Rao et al 2005, Roushe et al 
2003, Sanchez et al 2002a, Sanchez et al 2002b, Sanchez et al 2003, 
Serruya et al 2003, Serruya et al 2002, Taylor et al 2002, Taylor et al 
2003, Wessberg et al 2000, Wu et al 2002a, Wu et al 2002b) 

' Designs that differentiate between relaxed state and movement tasks are considered in "Sensorimotor activity + Response to Mental Tasks" category. 



T A B L E B.0.1 F E A T U R E EXTRACTION METHODS IN BCI DESIGNS (CONTINUED) 

MN: Sensorimotor activity 
+ Response to Mental Tasks 

MN: SCP 
rhythms 

+ other brain 

Spectral 
parameters 

Parametric 
modeling 
TFR method 

Using FFT- Periodograms 
based methods such as Welch's 

method 
Using BPF 
Method not mentioned 
AR parameters 

Wavelet transform 
CTFR 

Combination of 
different features 

PSD components + mean absolute 
value + variance + AR parameters 
etc. 

PLV 
Mean spectral coherence 
None 
SCP calculation + Power spectral parameters 

Combination of SCP features (averaging technique) + 
Gamma band features (using Welch Periodogram 
method) 

(Gysels and Celka 2004, Gysels et al 2005, Millan et al 2004a, Millan 
et al 2002b, Millan et al 2000a, Millan et al 2000b, Millan and Mourino 
2003b, Millan et al 2004b, Varsta et al 2000, Millan et al 2003a) 
(Obermaier et al 200Id) 
(Millan et al 2002b, Millan 2004) 
(Curran et al 2004, Penny et al 2000, Roberts and Penny 2003, Sykacek 
et al 2004, Varsta et al 2000) 
(Varsta et al 2000) 
(Garcia and Ebrahimi 2002, Garcia et al 2002, Garcia et al 2003c, 
Molina et al 2003) 
(Erfanian and Erfani 2004) 

(Gysels and Celka 2004, Gysels et al 2005) 
(Gysels and Celka 2004) 
(Mourino et al 2002, Rezek et al 2003) 
(Hinterberger and Baier 2005) 

(Mensh et al 2004) 



T A B L E B.0.2 F E A T U R E CLASSIFICATION METHODS IN BCI DESIGNS THAT USE E E G A N D ECOG RECORDING 

T E C H N O L O G Y 

Feature Extraction method Feature translation method Reference ID 
Spectral parameter Neural networks 

(R)LDA 30 

(R)FLD 

MD-based classifier 

MLP 

Committee of MLP neural 
network 
Committee of Plat's RAN 
algorithm (Piatt 1991) 
Committee of neural networks 
trained with Adaboost 
TBNN 
LVQ 

kMeans-LVQ 
DSLVQ 

Growing Hierachical SOM 
ALN 
ANN 
Custom designed local neural 
network 
Fuzzy ARTMAP 

(Anderson et al 1995a, Ivanova et al 1995, Mahmoudi and 
Erfanian 2002, Palaniappan 2005, Su Ryu et al 1999) 
(Millan et al 2002b, Millan et al 2000b, Varsta et al 2000) 

(Millan et al 1998) 

(Boostani and Moradi 2004) 

(Ivanova etal 1995) 
(Flotzinger et al 1994, Ivanova et al 1995, Kalcher et al 1992, 
Kalcher et al 1993, Pfurtscheller et al 1993, Pfurtscheller et al 
1994, Pfurtscheller et al 1996, Pfurtscheller et al 1997, 
Pfurtscheller et al 1998, Pfurtscheller et al 2000, Pfurtscheller 
and Neuper 2001, Pregenzer and Pfurtscheller 1999) 
(Mason and Birch 2000) 
(Muller-Putz et al 2005a, Neuper et al 2005, Pregenzer and 
Pfurtscheller 1995, Pregenzer and Pfurtscheller 1999) 
(Liu et al 2005) 
(Kostov and Polak 1997, Polak and Kostov 1998) 
(Cincotti et al 2003b) 
(Millan et al 2002b, Millan et al 2000a, Millan and Mourino 
2003b) 
(Palaniappan et al 2002) 
(Boostani and Moradi 2004, Coyle et al 2005, Fabiani et al 
2004, Garcia et al 2003b, Guger et al 2003a, Kelly et al 2002b, 
Kelly et al 2004, Kelly et al 2005c, Kelly et al 2005a, Krausz 
et al 2003, Lalor et al 2005, Leeb and Pfurtscheller 2004, 
Muller et al 2003c, Muller-Putz et al 2005a, Muller-Putz et al 
2005b, Neuper et al 2003, Pfurtscheller et al 2003b, Jia et al 
2004) 
(Babiloni et al 2001b, Cincotti et al 2001, Cincotti et al 2003a, 
Pfurtscheller et al 2003a, Scherer et al 2004, L i et al 2004a) 
(Babiloni et al 2001a, Cincotti et al 2003a, Cincotti et al 
2003b) 

Regularization may be applied before LDA classification scheme. 



T A B L E B.0.2 F E A T U R E CLASSIFICATION METHODS IN BCI DESIGNS THAT USE E E G A N D E C O G RECORDING T E C H N O L O G Y 

(CONTINUED) 

Parametric 
modeling 

AAR parameters 

Nonlinear discriminant function 
Bayes quadratic classifier 
Gaussian classifier 

SSP 

SOM-based SSP 
H M M 
SVM 

MD3 
CN2 
C4.5 
k-NN 
Threshold detector 

Linear combination - Continuous feedback 

Continuous feedback 

LDA 

FLD 

(Fabiani et al 2004) 
(Keirn and Aunon 1990) 
(Millan et al 2004a, Millan 2004, Millan et al 2004b, Milln et 
al 2003a) 
(Babiloni et al 2000, Babiloni et al 2001a, Babiloni et al 
2001b, Cincotti et al 2001, Cincotti et al 2003a, Millan et al 
2002b, Millan et al 2000b) 
(Millan et al 2002b, Millan et al 2000b) 
(Cincotti et al 2003b, Obermaier et al 200Id) 
(Garrett et al 2003, Gysels and Celka 2004, Gysels et al 2005, 
Lai et al 2004, Peterson et al 2005) 
(Ivanova ef a/ 1995) 
(Ivanova et al 1995) 
(Ivanova et al 1995, Millan et al 2002a) 
(Pregenzer and Pfurtscheller 1999) 
(Calhoun and McMillan 1996, Cheng Ming et al 2005, Cheng 
and Gao 1999, Cheng et al 2001, Cheng et al 2002, Gao et al 
2003b, Kelly et al 2005b, Kostov and Polak 1997, McMillan 
and Calhoun 1995, Middendorf et al 2000, Pfurtscheller et al 
2005, Pineda et al 2003, Polak and Kostov 1997) 
(Fabiani et al 2004, Krausz et al 2003, Kubler et al 2005, 
McFarland and Wolpaw 1998, McFarland et al 1997, 
McFarland et al 2003, McFarland et al 2005, Schalk et al 
2000, Sheikh et al 2003, Wolpaw and McFarland 1994, 
Wolpaw et al 1997, Wolpaw et al 2000, Wolpaw et al 2003, 
Wolpaw and McFarland 2004) 
(Bashashati et al 2003, Cho et al 2004, LaCourse and Wilson 
2003, Middendorf et al 2000, Trejo et al 2003, Wolpaw et al 
1991) 
(Guger et al 2003a, Guger et al 2003b, Huggins et al 2003, 
Neuper et al 1999, Obermaier et al 2001b, Pfurtscheller et al 
1998, Pfurtscheller and Guger 1999, Pfurtscheller et al 2000, 
Pfurtscheller and Neuper 2001, Schloegl et al 1997a, Schloegl 
etal 1997b) 
(Guger et al 1999, Guger et al 2000a, Obermaier et al 2001a) 



T A B L E B.0.2 F E A T U R E CLASSIFICATION METHODS IN BCI DESIGNS THAT USE E E G A N D ECOG RECORDING T E C H N O L O G Y 

(CONTINUED) 

Neural networks 

(multivariate) AR 
parameters 

ARX 

X-Correlation 

TFR 
methods 

CTFR 

MLP neural network 

FIR- MLP neural network 
Threshold detector 
Continuous feedback using MD 
LDA 

Bayesian logistic classifier (linear classifier) 
Bayes quadratic classifier 
Neural networks MLP neural network 

Committee of MLP neural 
network 
Committee of single 
Perceptrons with no hidden 
layers 
ALN 

H M M 
SVM 

Variatioanal Kalman filter 
Static classifier that is inferred with sequential 
variational inference (nonlinear generative classifier) 
LDA 

Threshold detector 

LDA 

MD-based classifier 

(Haselsteiner and Pfurtscheller 2000, Huan and Palaniappan 
2005) 
(Haselsteiner and Pfurtscheller 2000) 
(Graimann et al 2003b) 
(Schlogl etal2003) 
(Burke et al 2002, Burke et al 2005, Garrett et al 2003, Huan 
and Palaniappan 2004, Kelly et al 2002b, Kelly et al 2002a) 
(Curran et al 2004, Penny et al 2000, Roberts and Penny 2003) 
(Keirn and Aunon 1990) 
(Anderson et al 1998, Garrett et al 2003, Huan and 
Palaniappan 2004, Huan and Palaniappan 2005, Schalk et al 
2004) 

(Varsta et al 2000) 

(Peters er al 2001) 

(Kostov and Polak 2000, Polak and Kostov 1998, Polak and 
Kostov 1999) 
(Sykacek et al 2003) 
(Garrett et al 2003, Lai et al 2004, Schroder et al 2005, Yoon 
et al 2005) 
(Sykacek et al 2004) 
(Curran et al 2004, Sykacek et al 2004) 

(Burke et al 2002, Burke et al 2005, Kelly et al 2002b, Kelly et 
al 2002a) 
(Balbale et al 1999, Bayliss and Ballard 1999, Bayliss and 
Ballard 2000a, Bayliss and Ballard 2000b, Farwell and 
Donchin 1988, Graimann et al 2003b, Graimann et al 2004, 
Huggins et al 1999, Huggins et al 2003, Levine et al 1999, 
Levine et al 2000, Sutter 1992, Wang et al 2004b, Wang et al 
2004a) 
(Garcia et al 2003b) 

(Garcia and Ebrahimi 2002, Molina et al 2003) 



T A B L E B.0.2 F E A T U R E CLASSIFICATION METHODS IN BCI DESIGNS THAT USE E E G A N D E C O G RECORDING T E C H N O L O G Y 

(CONTINUED) 

AGR 
A custom made TFR 
method 

Wavelet transform 

Matched filtering 
Hjorth parameters 

LRP features: (sub-sampling the 
data - FFT - taking the bins in the 
pass-band - IFFT) 

Neural networks 
SVM 
Neural networks 
Neural networks 

Threshold detector 
SVM 
LDA 
ZDA 
Baysian classifier 
Neural networks 

SVM 
Threshold detector 

Threshold detector 
LDA 
LDS 
H M M 

Neural networks 

(R)LDA 
(R)FLD 
Sparse FLD 
SVM 
k-NN 

Single layer neural network 

MLP neural network 
kMeans-LVQ 

fART-LVQ 

MLP neural network 
Committee of MLP neural 
network 

Committee of neural networks 
trained with Adaboost 

(Garcia et al 2002) 
(Garcia et al 2003a, Garcia et al 2003b, Garcia et al 2003c) 
(Costa and Cabral 2000) 
(Bashashati et al 2005, Birch et al 2002, Birch et al 2003, 
Borisoff et al 2004, Bozorgzadeh et al 2000, Fatourechi et al 
2004, Fatourechi et al 2005, Lisogurski and Birch 1998, Mason 
and Birch 2000, Mason et al 2004, Yom-Tov and Inbar 2003) 
(Borisoffera/2004) 
(Yom-Tov and Inbar 2003) 
(Yom-Tov and Inbar 2003) 
(Bostanov 2004, Fukada S et al 1998, Hinterberger et al 2003) 
(Hinterberger et al 2003) 
(Lemm et al 2004) 
(Fukada Set al 1998) 
(Varsta et al 2000) 

(Glassman 2005) 
(Donchin et al 2000, Graimann et al 2003a, Graimann et al 
2004, Huggins et al 2003, Jansen et al 2004, Kawakami et al 
1996, Qin and He 2005) 
(Serby et al 2005) 
(Boostani and Moradi 2004) 
(Lee and Choi 2002) 
(Obermaier et al 2001a, Obermaier et al 2001c, Pfurtscheller 
and Neuper 2001) 
(Boostani and Moradi 2004) 

(Krauledat et al 2004) 
(Blankertz et al 2002a, Blankertz et al 2003) 
(Blankertz et al 2002a) 
(Blankertz et al 2002a) 
(Blankertz et al 2002a) 



T A B L E B.0.2 F E A T U R E CLASSIFICATION METHODS IN BCI DESIGNS THAT USE E E G A N D ECOG RECORDING T E C H N O L O G Y 

(CONTINUED) 

Calculation of SCP amplitude 

None 

CSP CSP-log-
transformation of the 
variance of the 
resulting time series 

Continuous feedback followed by threshold detector 

LDA 
Logistic regression 
(R)FLD 
Sparse FLD 
ZDA 
Linear Bayian decision rule 
Neural networks MLP neural network 

A custom designed local 
neural network 
Static neural classifier 
(Adaline) 
TDNN 
Gamma neural network 

H M M Based CHMM 
techniques AR HMM 

HMM + SVM 
HMM 

SVM 

k-NN 
LDS 
Threshold detector 
LDA 

Linear combination - Threshold detector 
Linear classifier (no details) 

(Birbaumer et al 1999, Birbaumer et al 2000, Hinterberger et 
al 2003, Hinterberger et al 2004a, Hinterberger et al 2004b, 
Hinterberger et al 2005b, Hinterberger et al 2005a, Kaiser et al 
2001, Kaiser et al 2002, Kubler et al 1999, Kubler et al 2001b, 
Kubler et al 1998, Neumann et al 2003, Neumann et al 2004) 
(Hinterberger et al 2003) 
(Parra et al 2002, Parra et al 2003a) 
(Blankertz et al 2002a) 
(Blankertz et al 2002a) 
(Hinterberger et al 2003) 
(Vidal 1977) 
(Anderson et al 1995a, Mahmoudi and Erfanian 2002, Yan 
Wang et al 2004) 
(Mourino et al 2002) 

(Barreto et al 1996a, Barreto et al 1996b) 

(Barreto et al 1996a, Barreto et al 1996b) 
(Barreto et al 1996a, Barreto et al 1996b) 
(Rezek et al 2003) 
(Panuccio et al 2002) 
(Lee and Choi 2002, Lee and Choi 2003) 
(Lee and Choi 2003) 
(Blankertz et al 2002a, Guan et al 2004, Hill et al 2004, Guan 
et al 2005, Kaper and Ritter 2004a, Kaper and Ritter 2004b, 
Kaper et al 2004, Schroder et al 2003, Thulasidas et al 2004, 
Trejo et al 2003) 
(Blankertz et al 2002a) 
(Lee and Choi 2002) 
(Jansen et al 2004) 
(Guger et al 2000b, Krauledat et al 2004, Pfurtscheller et al 
2000, Pfurtscheller and Neuper 2001, Townsend et al 2004) 

(Townsend et al 2004) 
(Ramoser et al 2000) 



T A B L E B.0.2 F E A T U R E CLASSIFICATION METHODS LN BCI DESIGNS THAT USE EEG A N D E C O G RECORDING T E C H N O L O G Y 

(CONTINUED) 

{Combined PCA-
CSP} - log-
transformation of the 
variance of the 
resulting time series 
CSP - FFT in Mu and 
Beta frequency bands 

CSSP - log-transformation of the 
variance of the resulting time series 
BPF in 0-4Hz and Mu bands - CSSD 
Combination LRP features+AR + 
of different CSP-based features + 
features variance 

LRP + CSP-based 
features 
Relative power of 
specific frequency 
band + mean absolute 
value + variance 
PSD components + 
mean absolute value 
+ variance + AR 
parameters etc. 
Power in Mu+ time 
features (ratio of two 
areas under the 
energy accumulation 
curve) 
AR + PSD + Barlow + 
mean + STD 
Combination of SCP 
features (averaging 
technique) and 
Gamma band features 

SVM 
SVM 

(R)FLD 

LDA 

Single layer Perceptron model (a linear classifier) 
(R)LDA 

(R)LDA 

Neural networks MLP 

Neural networks MLP 

2-dimensional linear classifier trained by a non-
enumerative search procedure 

SVM (using SVM-light software) 

LDA 

(Xuet al 2004b) 
(Xuet a/2004b) 

(Blanchard and Blankertz 2004) 

(Lemm et al 2005) 

(Li et al 2004b, Wang et al 2004d) 
(Dornhege et al 2004, Muller et al 2003b) 

(Dornhege et al 2003, Krauledat et al 2004) 

(Mahmoudi and Erfanian 2002) 

(Erfanian and Erfani 2004) 

(Cheng et al 2004) 

(Yom-Tov and Inbar 2001, Yom-Tov and Inbar 2002) 

(Mensh et al 2004) 



T A B L E B.0.2 F E A T U R E CLASSIFICATION METHODS IN BCI DESIGNS THAT USE EEG A N D ECOG RECORDING T E C H N O L O G Y 

(CONTINUED) 

Other methods Threshold detector (Allison and Pineda 2003, Bayliss 2003, Bayliss et al 2004, 
Donchin et al 2000, Farwell and Donchin 1988, Hinterberger 
et al 2003, Huggins et al 2003, Jansen et al 2004, Lee et al 
2005, Polikoff et al 1995, Xu et al 2004a) 

H M M (Liu etal 2003) 
FLD (Hungef al 2005) 
LDA (Coyle et al 2004) 
Linear classifier based on time-warping (Mason and Birch 2000) 
Neural networks MLP neural network (Anderson et al 1998, Hung et al 2005, Mahmoudi and 

Erfanian 2002) 
ALN (Kostov and Polak 1997) 
RBF-NN (Hung et al 2005) 

SVM (Gysels and Celka 2004, Gysels and Celka 2004, Gysels et al 
2005, Hung et al 2005) 

Random forest algorithm (Neuper ef al 1999) 
k-NN (Pineda et al 2000) 
Continuous audio feedback (Hinterberger and Baier 2005) 

Signal Fractal dimension LDA (Boostani and Moradi 2004) 
complexity Neural networks Committee of neural networks (Boostani and Moradi 2004) 

trained with Adaboost 
MLP neural network (Tavakolian et al 2004) 

Continuous feedback (Bashashati et al 2003) 
Embedding space Threshold detector (Roberts ef al 1999) 
decomposition 
Coarse-grained Continuous feedback (Trejo ef al 2003) 
entropy rate (CER) 
Gaussian process Continuous feedback (Trejo ef al 2003) 
entropy rates (GPER) 
spectral entropy (SE) Continuous feedback (Trejo ef al 2003) 
wavelet entropy (WE) Continuous feedback (Trejo ef al 2003) 

Dipole BPF-ICA-dipole Threshold detector (Qin ef al 2004b, Qin ef al 2004a) 
analysis analysis 
(wavelet BPF-ICA-dipole Threshold detector (Qin ef al 2004b, Qin ef al 2004a) 
transform analysis-cortical 
may be current density 
applied 
before BPF) 



T A B L E B.0.3 F E A T U R E CLASSIFICATION METHODS IN BCI DESIGNS THAT A R E B A S E D O N N E U R A L CORTICAL 

RECORDINGS 

Feature Extraction Feature Classification Reference ID 
None - Most of these designs model the 
relationship between neural firing rates 
and 'position and/or velocity and /or 
acceleration of hand 

Neural Networks 

TFR methods 

Averaging 

Wavelet transform 

multi 
Neural 

layer 
network 

Recurrent 
Perceptron 
(RNN) 
MLP 
Feed-forward ANN 
ANN recurrent dynamic back-
propagation 
ANN model 
Other 

Support vector machine regression (SVR) model 
Cosine tuning model (a linear model) 

Linear Gaussian models (LGM) implemented by 
Kalman filter 
Generalized linear models (GLA) 
Generalized additive models (GAM) 
Weighted linear combination of neuronal activity 
(Wiener filter: a linear model) 

Gamma filter (a linear model) 
Mixture of multiple models based on NMF (non-
negative matrix factorization) 
Echo State Networks (ESN) - Optimal sparse linear 
mapping 
Linear model (no details mentioned) 
Threshold detector 
SVM 
Direct translation of firing rate to cursor movement 
Bayesian classifier 
Maximum likelihood-based model 

Neural Networks LVQ 
Bayesian classifier 
Neural Networks LVQ 
Threshold detector 

(Sanchez et al 2002a, Sanchez et al 2002b, Sanchez et al 
2003) 

(Kim et al 2005b) 
(Patil et al 2004) 
(Chapin etal 1999) 

(Hatsopoulos et al 2004, Wessberg et al 2000) 
(Karniel et al 2002) 
(Kim etal 2005b) 
(Black et al 2003, Kemere et al 2004, Taylor et al 2002, 
Taylor et al 2003) 
(Black et al 2003, Gao et al 2003a, Patil et al 2004, 
Sanchez et al 2002a, Wu et al 2002a, Wu et al 2002b) 
(Black et al 2003, Gao et al 2003a) 
(Black et al 2003, Gao et al 2003a) 
(Carmena et al 2005, Hatsopoulos et al 2004, Kim et al 
2005a, Kim et al 2005b, Lebedev et al 2005, Patil et al 
2004, Sanchez et al 2002b, Serruya et al 2003, Serruya et 
al 2002) 
(Sanchez et al 2002b) 
(Kim et al 2005a) 

(Rao et al 2005) 

(Carmena et al 2003, Wessberg et al 2000) 
(Roushe et al 2003) 
(Byron et al 2005, Hu et al 2004, Olson et al 2005) 
(Kennedy et al 2000) 
(Gao et al 2002, Hu et al 2004) 
(Hatsopoulos et al 2004, Kemere et al 2004, Serruya et al 
2003) 
(Laubach et al 2000) 
(Musallam et al 2004) 
(Laubach et al 2000) 
(Otto et al 2003, Vetter et al 2003) 



T A B L E B.0.3 F E A T U R E CLASSIFICATION METHODS IN BCI DESIGNS THAT A R E B A S E D O N N E U R A L CORTICAL RECORDINGS 

(CONTINUED) 

Filtering - rectification - thresholding LPF (continuous signal) (Karniel et al 2002, Kositsky et al 2003, Reger et al 2000a, 
Reger et al 2000b) 

Cross-covariance of each neuron's activity k-NN (Isaacs et al 2000) 
with one another - Principal Component 
Analysis (PCA) 
L B G vector quantization H M M (Darmanjian et al 2003) 

to 

ON 



Appendix C. Details of Methods 

In this chapter details of the methods that have been used in this thesis are presented. 

C . l . Linear Discriminnat Analysis (Lachenbruch 1975) 
Linear discriminant analysis ( L D A ) is used in classification problems to find the linear projection 

of features which best separate two or more classes of object or event. The resulting 

combinations may be used as a linear classifier, or in dimensionality reduction before later 

classification. 

L D A is also closely related to principal component analysis ( P C A ) in that both look for linear 

combinations of variables which best explain the data. L D A explicitly attempts to model the 

difference between the classes of data. P C A on the other hand does not take into account any 

difference in class. 

More formally, given a number of independent features relative to which the data is described, 

L D A creates a linear combination of these (by applying a projection matrix W ) which yields the 

largest mean differences between the desired classes. Mathematically speaking, for all the 

samples of all classes, two measures are defined: 1) one is called within-class scatter matrix, as 

given by: 

S w = Z i ; ( x i - p j ) ( x ^ - | a J ) T 

j=l i=l 

where xj is the ith sample of class j , \ii is the mean of class j , c is the number of classes, and Nj 

the number of samples in class j ; and 2) the other is called between-class scatter matrix, given by: 

c 

j=l 

where p represents the mean of all classes. 
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The goal is to maximize the between-class measure while minimizing the within-class measure. 

One way to do this is to maximize the ratio ^ 6 t ^ b ^ . It can be proven that this ratio is maximized 
det(S w) 

when the column vectors of the projection matrix, W , are the eigenvectors of S~ 'S b . 

C.2. Principal Components Analysis (Jolliffe 2002) 
Principal components analysis ( P C A ; also known as Karhounen-Loeve transform) is a technique 

for simplifying a dataset, by reducing multidimensional datasets to lower dimensions for analysis. 

P C A is an orthogonal linear transformation that transforms the data to a new coordinate system 

such that the greatest variance by any projection of the data comes to lie on the first coordinate 

(called the first principal component), the second greatest variance on the second coordinate, and 

so on. P C A can be used for dimensionality reduction in a dataset while retaining those 

characteristics of the dataset that contribute most to its variance, by keeping lower-order principal 

components and ignoring higher-order ones. 

Assuming zero empirical mean (the empirical mean of the distribution has been subtracted from 

the data set), the principal component W\ of a dataset X can be defined as: 

Wl = arg max va r{p f r XJ= arg max 

With the first / V - l components, the tfh component can be found by subtracting the first k-\ 

principal components from X: 

A k-\ 

i = l 

and by substituting this as the new dataset to find a principal component in 

The Karhunen-Loeve transform is therefore equivalent to finding the singular value 

decomposition of the data matrix X, X = WlZVT and then obtaining the reduced-space data 

Wk = arg max 
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matrix Yby projecting X down into the reduced space defined by only the first L singular vectors, 

WL: 

Y = WT

LX = YJLVT

L 

The matrix W o f singular vectors of X is equivalently the matrix W o f eigenvectors of the matrix 

of observed covariances C=XXT, 

XXT = WZ2 WT 

The eigenvectors with the largest eigen values correspond to the dimensions that have the 

strongest correlation in the dataset. 

C.3. K-Means Clustering (Hartigan 1979) 
K-means is one of the simplest unsupervised learning algorithms that solve the well known 

clustering problem. The procedure follows a simple and easy way to classify a given data set 

through a certain number of clusters (assume k clusters) fixed a priori. The algorithm is 

composed of the following steps: 

Step 1: Place K points into the space represented by the objects that are being clustered. These 

points represent initial group centroids. 

Step 2: Assign each object to the group that has the closest centroid. 

Step 3: When all objects have been assigned, recalculate the positions of the K centroids. 

Repeat Steps 2 and 3 until the centroids no longer move. Basically, this algorithm aims at 

minimizing an objective function, in this case a squared error function. The objective function is: 

k n r, 

7=1 1=1 

2 
where \x\j) - c • is a chosen distance measure between a data point x\j) and the cluster centre Cj, 

is an indicator of the distance of the n data points from their respective cluster centers. 

Although it can be proved that the procedure w i l l always terminate, the k-means algorithm does 

not necessarily find the most optimal configuration, corresponding to the global objective 
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function minimum. The algorithm is also significantly sensitive to the initial randomly selected 

cluster centers. The k-means algorithm can be run multiple times to reduce this effect. 

There is no general theoretical solution to find the optimal number of clusters (k) for any given 

data set. A simple approach is to compare the results of multiple runs with different k classes and 

choose the best one according to a given criterion, but we need to be careful because increasing k 

results in smaller error function values by definition, but also an increasing risk of over-fitting. 

The way to initialize the means (initial group centroids) is not specified in the algorithm. One 

popular way to start is to randomly choose k of the samples. Moreover, the results produced 

depend on the initial values for the means, and it frequently happens that suboptimal partitions 

are found. The standard solution is to try a number of different starting points. 

C.4. Parzen Probability Density Estimation Method (Parzen 1962) 
Given N samples XX,...,XN drawn from a population with density function f(x). The Parzen 

density estimate at x is given as 

where k(.) is a window or kernel function and h is the window width, smoothing parameter, or 

simply the kernel size. f(x) is the maximum likelihood estimate of f(x). 

Traditionally, it is assumed that ]k(u)d(u) = 1 and k(.) is symmetric, that is, k(u) = k(-u). 

The kernel function and kernel size are the most important characteristics of the Parzen density 

estimate. There are several types of kernel functions such as rectangular, triangular and 

Gaussian. Gaussian kernel is the popular choice for the kernel function. 

The ideal or optimal value of h can be computed as 

h N h h 

h 

) 1/5 

provided that h >0,N •» oo, and Nh 
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C.5. Description of the LF-ASD Feature Generator (Mason and Birch 2000) 
The desired bipolar E E G pattern associated with the M R P s is similar to that shown in Fig. C . l . 

The time of the executed movement is around t=n. The output of the L F - A S D is activated when 

it detects the pattern shown in Fig. C . l . 

e(n) Oj ai 
A \<—M<M>i 

! i 1 

t=n 

Fig. C. 1. Desired pattern of the bipolar EEG during movement 

A s Fig. C . l shows, each of the elemental features £ , ( « ) and is .(w) are defined as the difference 

of a filtered signal (e(n)) at two points in time as calculated in equations (1) and (2). e(n)is the 

filtered signal measured from a pair of bipolar electrodes (filtered to 1 -4 H z using a 121 -point, 

zero-phase FIR filter based on a Hamming window). There are six such pairs and six such 

signals. 

El(n) = e(n-ai+/?i)-e(n) (1) 

Ei(n) = e(n-ai-0i)-e(n-ai-ai) (2) 

In this thesis we used the general term "delay parameters" of the feature generator when referring 

to the above parameters (a-^a^P^P-). 

The delay terms are initially estimated from the ensemble averages based on the minimum peak 

near the trigger (at time t=n in Fig . C . l ) , the first local maximum, and the local minimum before 
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the trigger as shown in Fig. C . l . The trigger point is defined as the point around which the 

movement is performed. 

Compound features are defined in equation (3) by pairing elemental features (E; ,Ej) to 

emphasize the samples in which two large elemental features appear concurrently. 

g9(n) =Ei{n).Ej{n) if ' E,(n)x £ , ( « ) > 0 

= 0 otherwise 

For robustness, the compound features are maximized over a window as follows. 

G y ( n ) = max{ g i j (n - 8),g..(n - 7) , . . . , g j j (n -1) , g i j (n)} (4) 

This procedure is repeated for each channel. The resulting feature vector is an equally weighted 

six-dimensional vector, with each dimension reflecting the value of the feature (Gy(n)) in each 

channel. 

C.6. Fuzzy Adaptive Resonance Theory (Carpenter et al 1991) 
Adaptive resonance theory ( A R T ) describes a family of self-organizing neural networks, capable 

of clustering arbitrary sequences of input patterns into stable recognition codes. Many different 

types of ART-networks have been developed to improve clustering capabilities. 

The common algorithm used for clustering in any kind of A R T network is closely related to the 

well-known k-means algorithm. Both use single prototypes to internally represent and 

dynamically adapt clusters. The k-means algorithm clusters a given set of input patterns into 

groups. The parameter thus specifies the coarseness of the partition. In contrast, A R T uses a 

minimum required similarity between patterns that are grouped within one cluster. The resulting 

number of clusters then depends on the distances (in terms of the applied metric) between all 

input patterns, presented to the network during training cycles. This similarity parameter is called 

vigilance [3]. Specifically, fuzzy A R T like many other iterative clustering algorithms is based on 

(a) 'finding the nearest' cluster seed (also known as prototype, template, or codebook) to the 

input x, and (b) updating that cluster seed to be 'closer' to the input where "nearest" and "closer" 

can be defined in hundreds of different ways. In fuzzy A R T , the framework is modified slightly 

by introducing the concept of "resonance" so that each case is processed by: 
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(1) Finding the "nearest" cluster seed that "resonates" with the input 

(2) Updating that cluster seed to be "closer" to the input 

Given input X as an M-dimensional vector (Xi,...,XM) and a cluster seed W as (Wi,...,WM), 

nearness is assessed by a similarity measure called the "choice function": 

where a is a user-specified parameter usually equal to a very small positive number such as le-6. 

Resonance is based on a slightly different similarity measure called the "match function". A seed 

resonates with the case if: 

where p is a user-specified "vigilance" parameter between 0 and 1. 

If no seed resonates with an input sample, a new cluster is created, usually with a seed equal to 

the input sample. If a resonant seed is found, the seed is updated according to the formula: 

where P is a user-specified learning rate, usually 1 for "fast learning." 

C.l. Learning Vector Quantization (Kohonen 1990) 
The Learning Vector Quantization ( L V Q ) is an algorithm for learning class labels from labeled 

data samples. Instead of modeling the class densities, L V Q models the discrimination function 

defined by the set of labeled codebook vectors (mi) and the nearest neighborhood search between 

the codebook and data. In classification, a data point x, is assigned to a class according to the 

class label of the closest codebook vector (mi). 

To define the optimal placement of m, in an iterative learning process, initial values for them must 

first be set using any classical vector quantization approach, e.g. k-means. In the learning process, 

the codebooks are pulled away from the decision surfaces to demarcate the class borders more 

( M \ ( M \ 
^ m i n ( X , . , ^ ) / >p 

KM J\M J 

Wnew = fi * (mm(X, WM ) + (1 - p) * WM ) 
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accurately. If mc is the closest codebook (winner codebook) to input x in the Euclidean metric, mc 

is updated according to the following equation: 

m c(t+l)= mc(t)+a(t)[x(t)-mc(t)] i f x is classified correctly, 

m c(t+l)= mc(t)-a(t)[x(t)-mc(t)] i f x is classified incorrectly, 

mi(t+l)=mj(t) f o r i ^ c 

where a(f) is a scalar gain (0<cc(r)<l), which should decrease monotonically in time. 

In fact, the direction of the gradient update depends on the correctness of the classification using 

a nearest neighborhood rule in Euclidean space. If a data sample is correctly classified (the labels 

of the winner unit and the data sample are the same), the model vector closest to the data sample 

is attracted towards the sample; i f incorrectly classified, the data sample has a repulsive effect on 

the model vector. 

For different picks o f data samples from the training set, the procedure explained above is 

repeated iteratively until convergence. Finally, the set of mt form the final codebook for 

classification. Several variations of L V Q such as L V Q 2 and L V Q 3 have also been proposed. 

While in L V Q (also known as L V Q 1 ) only one m,is updated, in L V Q 2 and L V Q 3 the two closest 

codebook vectors are changed simultaneously (Kohonen 1990). 

C.8. k-Nearest Neighbor Classification: 
k-nearest neighbor alngorithm (ft-NN) is a methos of classifying objects based on closest training 

samples in the feature space. In k - N N algorithm, the k closest codebooks to the input sample 

X n e w are found based on some distance measure like Euclidean distance. X n e w is assigned to the 

class c i f it is the most frequent class label among the k closest codebooks. 

The codebooks which are representative of the features of each class can be determined by 

different algorithms like learning vector quantization. 

C.9. References 
Cacoullos T 1966 Estimation of a multivariate density Annals of the Institute of Statistical Math. 

18 179-89 

264 



Carpenter G , Grossberg S and Rosen D B 1991 Fuzzy A R T : Fast stable learning and 

categorization of analog patterns by an adaptive resonance system Neural Networks 4 759-71 

Hartigan J A and Wong M A 1979 A K-means clustering algorithm JR Stat. Soc. 2 8 100-8 

Jolliffe IT 2002 Principal Component Analysis (Springer) 

Kohonen T 1990 The Self-Organizing Map Proc IEEE 7 8 1464-80 

Lachenbruch P A 1975 Discriminant Analysis ( N Y : Hafner Press) 

Mason S G and Birch G E 2000 A brain-controlled switch for asynchronous control applications 

IEEE Trans. Biomed. Eng. 4 7 1297-307 

Parzen E 1962 On estimation of a probability density function and mode Annals Math. Statistics 

3 3 1065-76 

265 


