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Abstract 

Nonparametric linear programming tests for consistency with the hypotheses of technical effi

ciency and allocative efficiency for the general case of multiple output-multiple input technolo

gies are developed in Part I. The tests are formulated relative to three kinds of technologies — 

convex, constant returns to scale and quasiconcave technologies. Violation indices as summary 

indicators of the distance of an inefficient observation from an efficient allocation are proposed. 

The consistent development of the violation indices across the technical efficiency and allocative 

efficiency tests allows us to obtain comparative measures of the degrees of technical inefficiency 

and pure allocative inefficiency. Constrained optimization tests applicable to cases where the 

producer is restricted to optimizing with respect to a subset of goods are also proposed. The 

latter tests yield the revealed preference-type inequalities commonly used as tests for consis

tency of observed data with profit maximizing or cost minimizing behavior as limiting cases. 

Computer programs for implementing the different tests and sample results are listed in the 

appendix. 

In part II, an empirical comparison of nonparametric and parametric measures of technical 

progress for constant returns to scale technologies is performed using the Canadian input-output 

data for the period 1961-1980. The original data base was aggregated into four sectors and 

ten goods and the comparison was done for each sector. If we assume optimizing behavior 

on the part of the producers, we can reinterpret the violation indices yielded by the efficiency 

tests in part I as indicators of the shift in the production frontier. More precisely, the violation 

indices can be considered nonparametric chained indices of technical progress. The parametric 

measures of technical progress were obtained through econometric profit function estimation 

using the generalized McFadden flexible functional form with a quadratic spline model for 

technical progress proposed by Diewert and Wales (1989). Under the assumption of constant 
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returns, the index of technical change is defined in terms of the unit scale profit function 

which gives the per unit return to the normalizing good. The empirical results show that 

the parametric estimates of technical change display a much smoother behavior which can be 

attributed to the incorporation of stochastic disturbance terms in the estimation procedure and, 

more interestingly, track the long term trend in the nonparametric estimates. 

Part III builds on the theory of minimum wages in international trade and is a theoreti

cal essay in the tradition of analyzing the effects of factor market imperfections on resource 

allocation. The comparative static responses of the endogenous variables — output levels, 

employment levels of fixed-price factors with elastic supply and flexible prices of domestic re

sources — to marginal changes in the economy's exogenous variables — output prices, fixed 

factor prices and endowments of flexibly-priced domestic resources -— are examined. The effect 

of a change in a fixed factor price on other flexible factor prices can be decomposed Slutsky-

like into substitution and scale effects. A symmetry condition between fixed factor prices and 

flexible factor prices is obtained which clarifies the concepts of "substitutability" and "com

plementarity" between these two kinds of factors. As an illustration, the model is applied to 

the case of a devaluation in a two-sector small open economy with rigid wages and capital as 

specific factors. The empirical implementation of the general model for the Canadian economy 

is left to more able econometricians but a starting point can be the sectoral analysis performed 

in Part II. 
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Overview 

This dissertation is a collection of three essays in production theory. The major focus of this 

research is the development of measurement methods in production analysis rather than the 

evaluation of a specific economic policy issue. The first essay (part I) proposes nonparametric 

linear programming tests for consistency of observed data with the hypothesis of productive 

efficiency at the firm level. The empirical performance of a nonparametric measure of technical 

progress vis-a-vis a parametric measure of technical progress is examined in the second essay 

(part II) in an application to the Canadian input-output data. An efficiency test developed 

in part I is used to obtain the nonparametric measures of technical progress and in addition, 

econometric profit function estimation assuming an explicit functional form is carried out to 

yield the parametric measures of technical progress for four aggregated sectors covering the 

Canadian economy. Whereas the first two essays analyze the economic behavior of price-taking 

producers facing technological constraints, the third essay (part III) takes a more general view 

of the economy by linking the different sectors through a trade-theoretic approach to produc

tion theory. In this framework, the assumptions of price-taking behavior and technological 

constraints are still maintained for individual producers and the constraints on factor endow

ments for the domestic economy are explicitly taken into account. Specifically, part III looks 

at the effects of factor price rigidities on resource allocation. 

The assumption of productive efficiency or optimizing behavior plays a central role in eco

nomics. For example, in duality theory, Hotelling's lemma and Shephard's lemma giving the 

derivative properties of profit functions and cost functions, respectively, derive from the as

sumption of optimizing behavior of producers. Given the technological constraints determining 

the feasible output-input combinations and the market constraints as reflected in the prices of 
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Overview 2 

goods, the producer is assumed to maximize some objective function. The production plan cho

sen by the producer is then technically efficient; that is, the plan is some point at the boundary 

of the firm's production possibilities set. Loosely speaking, technical efficiency implies that the 

firm is producing maximal output given input levels and minimizing input use given output 

levels. Moreover, if at the prevailing market prices, the producer is maximizing the value of 

the objective function describing its behavioral goal (profit maximization, cost minimization or 

some variant of restricted profit maximization), then the production plan is ahocatively efficient. 

Since technical inefficiency entails some waste of resources and, consequently, an economic cost, 

then an ahocatively efficient production plan must necessarily be technically efficient in some 

sense. Given the observed production plans and prices faced by firms, it would be of interest 

to test whether these data are consistent with the hypothesis of optimizing behavior. 

The efficiency tests proposed in part I can be used to empirically test whether the regularity 

conditions often imposed in production theory hold. This study also defines violation indices 

as indicators of the degree of departure of an observed production plan from the maintained 

efficiency hypotheses. Since the art of economic theorizing requires some level of abstraction to 

get meaningful results, the pattern of violation indices may be explained by some unaccounted 

factors like technical change, differences in firm sizes and regulation costs and hence, may 

suggest to the researcher depending on prior beliefs and subjective interpretation modifications 

regarding model and variable specification. In this function, the efficiency tests can then serve 

as a tool for exploratory data analysis. In their straightforward use in efficiency studies of a 

cross-section of firms in an industry, the violation indices measure the economic loss due to 

inefficiency and as such can be of practical importance. Since the proposed efficiency tests also 

recover efficient allocations relative to a production plan rated inefficient, the efficiency tests 

can also be useful for prescriptive purposes in efficiency studies. 

• The major contributions of part I to the field of nonparametric efficiency measurement are: 

(1) the generalization of technical efficiency and allocative efficiency tests to handle multiple 

output-multiple input technologies; (2) the definition and consistent development across the 
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efficiency tests of violation indices or efficiency loss measures which are invariant to units of scale 

in the measurement of goods; and (3) the formulation of constrained optimization or partial 

profit maximization tests applicable to cases where the producer is restricted to optimizing 

with respect to a subset of goods. There are three general sets of tests proposed: technical 

efficiency tests using quantity data only, constrained optimization or partial profit maximization 

tests using quantity data and a subset of price information, and unconstrained optimization or 

complete profit maximization tests using both quantity and price data. Each of the above sets 

of tests is developed relative to three kinds of technologies — convex, constant returns to scale 

and quasiconcave technologies. 

A basic problem in empirical production analysis is that the underlying technology is gen

erally unknown. In the nonparametric approach taken in this study, a deterministic production 

frontier is assumed. Based on observed quantity data, the approximation technique uses the 

mathematical tools of convex analysis. The regularity conditions imposed on the unknown 

technologies facilitate the description of the technologies using closed, convex sets exhibiting 

free disposal. The true production possibilities sets in the convex and convex cone case, and 

the true upper level sets in the quasiconcave case are approximated by the convex hulls of ob

served data. Thus, our approach is essentially an elaboration of the original pioneering works 

of Farrell (1957) and Farrell and Fieldhouse (1962). 

In the context of multiple output technologies and due to the complications brought by 

the assumption of free disposability which plays an important role in the theory of efficiency 

measurement, it is necessary to give a precise definition of technical efficiency and introduce the 

use of an efficiency direction vector specifying the goods with respect to which we would like to 

measure the inefficiency. The definition of technical efficiency used in this study is conditional 

on the efficiency director vector chosen. The violation index for a given technical efficiency test 

gives the equiproportionate increase in outputs and decrease in inputs indexed in the efficiency 

direction vector needed for an observation to satisfy the technical efficiency hypothesis. Input 

based and output based measures can be obtained by specifying the efficiency direction vector 
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appropriately. The violation indices for the technical efficiency tests are equiproportionate loss 

measures; the required adjustment indicated by the violation index may move an inefficient 

production plan in the interior of the production possibilities set to a free disposal region at 

the boundary of the production possibilities set. 

For the allocative efficiency tests, a profit function or a restricted profit function is posited 

to describe the economic objective of the firm. The formulation of the constrained optimization 

tests encompass a wide range of behavioral descriptions among which are full profit maxi

mization, revenue maximization, cost minimization and variable profit maximization. A set of 

reference goods is specified to obtain the violation index which measures the value of goods 

in this set lost due to allocative inefficiency. With a consistent specification of the efficiency 

direction vector in the technical efficiency test, the violation index in the allocative efficiency 

test can be decomposed into components due to technical inefficiency and due to pure allocative 

inefficiency. A LeChatelier principle proposition for measures of allocative inefficiency is ob

tained which says that given a fixed reference set of goods, the violation index cannot decrease 

as the number of goods (or prices) with respect to which the producer can optimize increases. 

This proposition is consistent with the notion that the more goods a producer can freely vary, 

the higher profits can be. In the limiting cases of full profit maximization, the constrained 

optimization tests involving the solution of linear programming problems yield violation indices 

which can alternatively be calculated using revealed preference-type inequalities. 

Appendix A lists the modified efficiency tests incorporating the no technological regress 

assumption. Computer programs for implementing the different efficiency tests and sample 

results using the Canadian input-output data (described in appendix B) are given in appendix C. 

The interpretation of the empirical results in appendix C is meant to illustrate the concepts 

discussed in part I and hence, the violation indices are interpreted as measures of inefficiencies. 

This interpretation may be considered more applicable to cross-section data on firms.rather than 

the kind of time series data used. Like those of statistical tests, the results of the efficiency 

tests can be used for several purposes depending on the economic problem under study, and 
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their interpretation can be subject to some element of arbitrariness depending on extraneous 

information possessed by the researcher. It must be noted that the efficiency tests are developed 

under joint assumptions on the technology and the optimizing behavior of the producers. 

If we assume optimizing behavior on the part of the producers, the violation indices obtained 

from the proposed efficiency tests in part I can be reinterpreted as indicators of the shift in the 

production frontier. In cross section data on firms' production plans, the violation indices can 

be used as multifactor productivity measures with smaller violation indices indicating better 

productivity performance. With time series data, the violation indices as shown in part II can be 

interpreted as chained indices of technical progress or productivity growth. Since productivity 

improvements mean greater effectiveness in utilizing resources to produce output goods, the 

efficiency gain can have an impact on economic agents, both producers or owners of factors of 

production and consumers, in terms of higher real incomes and standards of living. Interest in 

productivity measurement therefore has practical significance. 

In part II, an empirical comparison of nonparametric and parametric measures of technical 

progress for constant returns to scale technologies is performed. The Canadian input-output 

data for the period 1961-1980 are used. The data are aggregated into four sectors: resources, 

export market-oriented manufacturing, domestic market-oriented manufacturing, and services 

sectors. Each sector is assumed to have a single output technology with output from the other 

sectors entering the production process as intermediate inputs. A ten-good model is used for 

the resources sector and a nine-good model for each of the three other sectors. The data is 

described in appendix B. Measures of technical progress are obtained for each sector. 

With the assumption of constant returns, the index of technical change is defined in terms of 

the unit scale profit function which gives the per unit return to the scaling or normalizing good. 

The nonparametric measures of technical change are based on the violation indices calculated 

using the unconstrained optimization test for a convex conical technology developed in part I. 

For each sector, the pattern of shift in the production frontier indicated by the nonparametric 

index of technical progress is consistent with that yielded by the Divisia and Fisher productivity 
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change indices. The parametric measures of technical change are obtained through economet

ric profit function estimation using the generalized McFadden flexible functional form with a 

quadratic spline model for technical progress proposed by Diewert and Wales (1989b). The 

sectoral profit function estimation procedure and results, together with some interpretation of 

the price elasticities of output supply and input demand, are discussed in Appendix D. 

The empirical results show that the parametric estimates of technical change display a much 

smoother behavior which can be attributed to the incorporation of stochastic disturbance terms 

in the estimation procedure. However, the parametric estimates of technical change do track 

the long term trend in the nonparametric estimates. Both nonparametric and parametric 

methods use the same information: price and quantity data. The nonparametric method has 

the advantage of not imposing any functional form in characterizing the production technology 

and is computationally much simpler. The nonparametric estimates in this study, obtained 

without introducing stochastic disturbance terms, do not possess statistical properties needed 

for hypothesis testing in the context of statistical inference. 

In part III, we move to a more general view of the production sector of the domestic economy 

by linking the different sectors and explicitly modeling the constraints on factor endowments in 

a small open economy model. The constrained GNP maximization approach of Neary (1985) 

and the fundamental matrix equation of production theory as developed by Diewert and Wood

land (1977) and Diewert (1982) are adapted to analyze the effects of factor price rigidities on 

resource allocation. We investigate in what sense the Tobin-Houthakker conjecture in consumer 

theory that says a reduction in the ration of one good will increase the consumption of unra-

tioned substitutes and decrease the demand for unrationed complements hold in production. In 

a trade-theoretic approach to production theory, the analogous question is how do rigid factor 

prices affect other flexible factor prices. The comparative static responses of the endogenous 

variables — output levels, employment levels of fixed-price factors with elastic supply and flex

ible prices of domestic resources — to marginal changes in the economy's exogeneous variables 

— output prices, fixed factor prices and endowments of flexibly-priced domestic resources — 
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are examined. The effect of a change in a fixed factor price on flexible factor prices can be 

decomposed into a pure substitution term and a scale effect term. Hence, factor intensities 

which determine the scale effect term, in addition to substitution possibilities among factors, 

play a role in determining this response of the flexible factor prices. However a similar Tobin-

Houthakker conjecture occurs when we look at the symmetry condition between fixed factor 

prices and flexible factor prices and their respective employment levels and endowments. In 

this interpretation, the essense of "substitutability" and "complementarity" differs from that as 

reflected in the price elasticities of output supply and input demand obtained in the parametric 

sectoral analysis in part II. 

As an illustration, the model is used to analyze the effects of a devaluation in a two-

sector small open economy with rigid wages and capital goods as specific factors. This exercise 

highlights the mechanism by which currency devaluation works as an employment stimulation 

policy tool. In the presence of wage rigidity, the devaluation leads to a more than proportional 

increase in returns to the sector-specific capital that makes possible the output and national 

income effects. The effectiveness of the devaluation as an employment policy tool depends on 

the wage elasticity of labor demand in the economy which is a function of both substitution 

terms and factor intensities at the sectoral level. 

To conclude this overview, we note some major assumptions and limitations of the ap

proaches taken in this research. The competitive market framework have been utilized in all 

three essays. The prices we use are assumed to be outside the control of the individual pro

ducers. In the empirical comparison of nonparametric and parametric measures of technical 

progress in part II and the trade-theoretic model used to derive the comparative static results 

in part III, the sectoral technologies are assumed to exhibit constant returns to scale. These 

simplifying assumptions enable us to ignore the complications due to the possibility of mar

ket power of firms and the necessity of modeling market structure, entry and exit of firms 

and demand conditions arising from the consumption side of the economy. Also, the models 

used are static, and dynamic considerations such as adjustment costs, price expectations and 



Overview 8 

uncertainty, etc. are not taken into account. The thrust of this research is efficiency which 

is concerned with the allocation of resources among alternative uses. Economic policies and 

undertakings must ultimately address the satisfaction of human needs and wants and this can 

involve equity and distributional concerns. The efficiency measurement methods can be useful, 

however, in evaluating possible efficiency-equity tradeoffs. 



I. 

Part I 

Nonparametric Measures of Technical and Allocative Efficiency 



Chapter 1 

Introduction 

Nonparametric linear programming tests for consistency with the hypothesis of productive 

efficiency at the firm level for the general case of multiple output-multiple input technologies 

are developed in this study. Given the technology, prices and a behavioral description of the 

firm as embodied in its economic objective function, productive efficiency1 at the firm level is 

defined as utilizing the optimal combination of outputs and inputs given the constraints faced 

by the firm. We consider three general technologies — convex, constant returns to scale and 

quasiconcave technologies. Productive efficiency subsumes technical efficiency which we define 

as producing at some point at the boundary of the production possibilies set for the convex and 

convex conical technologies and of the upper level set for a quasiconcave technology. Violation 

indices as summary indicators of the distance of an inefficient observation from an efficient 

allocation are proposed. Alternatively, the violation indices can be interpreted as measures 

of economic loss due to inefficiency. As is the case with most nonparametric programming 

approaches to efficiency analysis, productive efficiency is measured in the following tests relative 

to the best-practice technology. Hence, in addition to the violation indices, we can recover 

efficient allocations corresponding to an inefficient one. This feature of the tests can be useful 

for prescriptive purposes. 

This study draws on the earlier works in nonparametric production analysis in economics 

and data envelopment analysis (DEA) in operations research. The pioneering works in non

parametric production analysis were done by Farrell (1957) and Farrell and Fieldhouse (1962) 

and latter important contributions were made by Afriat (1972), Hanoch and Rothschild (1972), 

1 P r o d u c t i v e efficiency is a l t e r n a t i v e l y referred to as economic efficiency or a l l o c a t i v e efficiency. 

10 



Chapter 1. Introduction 11 

Diewert and Parkan (1983), Varian (1984a) and Fare, Grosskopf and Lovell (1985).2 An intro

ductory survey to data envelopment analysis can be found in Charnes and Cooper (1985) and 

Charnes, Cooper, Golony and Seiford (1985). 

The major contributions of this study to the field of nonparametric efficiency measurement 

are the generalization of technical efficiency and allocative efficiency tests to handle the multiple 

output-multiple input technologies; the definition and consistent development, across technical 

efficiency and allocative efficiency tests, of violation indices as measures of inefficiency; and 

the formulation of constrained optimization tests applicable to cases where the producer is 

restricted to optimizing with respect to a subset of goods. The symmetric treatment of output 

goods and input goods facilitates the handling of multiple output-multiple input technologies. 

The resulting violation indices, being equiproportionate loss measures, are invariant to the units 

of measurement of goods. As such, the violation indices are in the spirit of Debreu's (1951) 

concept of coefficient of resource utilization whose inverse measures the economic loss due to 

inefficient utilization of resources. The consistent development of the violation indices allows 

us to obtain comparative measures of the degrees of technical inefficiency and pure allocative 

inefficiency. The constrained optimization tests, using price and quantity data, turn out to 

be the more general formulations for testing for overall productive efficiency; they yield the 

revealed preference-type inequalities commonly used as tests for consistency of observed data 

with profit maximizing or cost minimizing behavior as limiting cases. 

Empirically, the efficiency tests developed can be used for several purposes depending on the 

economic problem at hand, and the prior beliefs of and subjective interpretation of the results 

by the researcher. Since the tests are developed under joint assumptions on the technology 

and the optimizing behavior of the producer, the tests can be used in efficiency studies of firms 

(as is the focus in DEA) or in testing for the regularity conditions of production theory (as is 

2 A closely related approach i s the e s t i m a t i o n of f r o n t i e r p r o d u c t i o n f u n c t i o n s a n d f r o n t i e r cost functions. A 
survey of this approach can be fou n d i n Forsund, L o v e l l a n d S c h m i d t (1980) a n d an example of e s t i m a t i n g a 
fr o n t i e r cost f u n c t i o n is given by K o p p an d D i e w e r t (1982). T h e p r o g r a m m i n g approach involves an o p t i m i z a t i o n 
per observation while the regression approach uses a single o p t i m i z a t i o n over a l l observations. T h e s t a t i s t i c a l 
approach has the advantage of being capable of m o d e l l i n g stochastic disturbances outside the c o n t r o l of the firm. 
We do not pursue the s t o c h a s t i c approach i n t h i s thesis. 
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the focus in nonparametric production analysis). In the latter, the tests can be used as a data 

exploratory tool prior to parametric estimation, and hence serve as a complementary tool to 

statistical or econometric analysis. It is possible that the pattern of the calculated violation 

indices can be explained by some "left-out" variable or factor not taken into consideration. 

Examples are technical progress in time series data, firm sizes in cross-section data or simply 

an unaccounted factor like cost incurred to satisfy environmental regulations. 

In chapter 2, we describe the three general technologies relative to which the various effi

ciency tests are developed; we also lay out how convex sets are nonparametrically constructed 

from observed data to approximate the unknown technologies. In the next three chapters (3, 4 

and 5), technical efficiency is given a precise definition and the technical efficiency hypothesis, 

test and violation index for each of the three technologies are described. Chapter 6 introduces 

the concept of allocative efficiency and illustrates the decomposition of the violation index into 

its technical inefficiency and pure allocative inefficiency components. Chapters 7 to 10 de

scribe the allocative efficiency tests assuming constrained optimizing behavior, that is, when 

the producer can optimize only with respect to a subset of goods. Chapter 11 shows that 

for unconstrained optimization or complete profit maximization, the linear programming tests 

reduce to a comparison of inqualities. Chapter 12 illustrates how the previous tests can be 

modifed to account for technical progress. We conclude in chapter 13 with a summary and a 

mention of some limitations of the study. 



Chapter 2 

Three Alternative Nonparametric Specifications of Technology 

2.1 Description of technologies 

In this study, measures of firm productive inefficiencies are developed relative to the technology 

of the firm under consideration. We posit three kinds of general technologies: convex, con

stant returns to scale and quasiconcave technologies. We consider a technology with N goods 

described by its production possibilities set, say T, containing all the feasible z G RN vectors 

attainable by the given technology. We treat output goods and input goods symmetrically; 

outputs axe measured positively and inputs are measured negatively. With respect to inputs 

and outputs, we require the following (innocuous) assumptions for feasibility and boundedness: 

1. z = (zi, Z2,.. •, zjv) G T and z,- > 0 implies there exists at least one j such that Zj < 0, 

that is, the net production of a positive amount of an output always requires the net use 

of another good as an input, and * 

2. outputs are finite for all finite inputs. 

The following regularity conditions are imposed on the different technologies. 

• Conditions I (for a convex technology): T is a subset of RN (the iV-dimensional Euclidean 

space) and is 

(i) closed; 

(ii) exhibits free disposal: z G T, z' < z =>• z' G T; and 

(iii) convex. 

13 
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• Conditions II (for a convex constant returns to scale technology): T is a subset of RN 

and is 

(i) closed, 

(ii) exhibits free disposal, 

(iii) convex, and is 

(iv) a cone: z £ T, X > 0 => Xz € T. 

We generally describe the technology by means of a production possibilities set. In some 

instances, it is helpful to describe the technology in terms of a production function. We first 

single out a particular good, say good n. We then describe the technology by a function / " 

such that 

*n = f"(zi, Z2, . . . , Z„_l, Z n + i , . . . , ZN) = f"(z") 

where z" is the z vector with the nth component dropped and /n(z") denotes the maximum 

amount of net output of good n that can be produced given zn. The interpretation of / " 

depends on whether zn is an output or input: 

1. If good n is an output, then / " is a production function; that is, /"(z") gives the maximal 

amount of output n that the technology can produce given amounts z,- of other outputs 

to produce and amounts — Zj of inputs available where i denotes an output subscript and 

j denotes an input subscript.1 

2. If good n is an input, then / " is a factor requirements function; that is, fn(zn) gives the 

negative of the minimum amount of input n required to produce outputs z,- given that 

other inputs — Zj are available. 

The regularity conditions for a quasiconcave technology will be defined over the individual good 

technology functions / " , n = 1,2,..., TV. 
l I f the vector z" is not consistent w i t h any net o u t p u t for good n, define fn(zn) = —oo. 
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• Conditions III (for a quasiconcave technology): The function fn is a real-valued function 
of TY — 1 variables defined over a nonempty, closed, convex subset of RN~* and is 

(i) continuous from above, 

(ii) nonincreasing, and 

(iii) quasiconcave. 

In conditions III, part (i) means that the upper level sets L(zn) = {zn : f"(zn) > zn} are 
closed; part (ii) means that higher production of other outputs and/or decrease in availability of 
other inputs cannot increase the output of good n if zn > 0, or decrease the input requirements 
for good n\izn < 0; and part (iii) implies that the upper level set L(zn) is convex. Note that the 
given regularity conditions describe the technologies by means of convex sets that are closed 
and exhibit free disposal. We exploit these convexity properties of the technologies through 
the use of the mathematical tools of convex analysis to derive various efficiency tests. Since 
efficient points must he on the boundary of the relevant convex set, the continuity property 
or equivalently the closure property of the convex sets ensure the recovered efficient points 
do belong to the pertinent technology set. The free disposal property offers a theoretical 
justification for the technical feasibility of inefficient observations. 

Among the three general technologies, the quasiconcave technology is least restrictive; in
dividual technology functions / n can have nonconvexities exhibiting flats or increasing returns 
to scale. A convex technology must have diminishing or constant returns to scale; individual 
technology functions fn corresponding to a convex technology must be concave. A constant 
returns to scale technology is the most restrictive; individual technology functions /" must be 
positively linearly homogeneous and concave. Also, a convex constant returns to scale technol
ogy implies convexity of its production possibilities set, and the latter implies quasiconcavity 
of the individual technology functions /", ~n = 1,2,.. .,N. The differences among the three 
general technologies are illustrated in figure 2.1 for a single output (z2)-single input (zi) case 
where z-i = f2(z\) and f2 is a production function (describing the technology with respect to 
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output z2), z2 > 0, z\ < 0. 

The production possibilities set T, a subset of RN, is convex if and only if z' £ T, z" £ T 

and 0 < A < 1 implies Az' + (1 — X)z" £ T. If, in addition, T is closed under nonnegative scalar 

multiplication, that is, z £ T, A > 0 implies Xz £ T, then T is a convex cone and exhibits 

constant returns to scale. The individual technology function / " is quasiconcave if and only if 

its upper level sets L(zn) = {zn : f"(z") > zn} are convex. Corresponding regularity conditions 

on the individual technology functions /" , n = 1,2,.. ,,N can be derived when the production 

possibilities set is either a convex set or a convex cone. Thus the following conditions on / " are 

equivalent to our old conditions I and II on the production possibilities set T. 

• Conditions I' (for a convex technology): The function / " is a real-valued function of N — 1 

variables which is defined over a nonempty, closed convex subset of . K ^ - 1 and is 

(i) continuous, 

(ii) nonincreasing, and 

(iii) concave. 

• Conditions II' (for a convex constant returns to scale technology): The function / " is a 

real-valued function of N — 1 variables which is defined over a nonempty, closed convex 

subset of RN~l (which is a cone) and is 

(i) continuous, 

(ii) nonincreasing, 

(iii) concave, and 

(iv) positively linearly homogeneous. 

Concavity of fn is a more restrictive condition than quasiconcavity. Concavity rules out 

interior flats and increasing returns in the technology function. The function / " defined over a 

convex subset of RN_1, say C, is concave if and only if znl G C, zn2 £ C, 0 < A < 1 implies 

fn(Xznl + (1 - X)zn2) > Xfn(znl) + (1 - X)fn(zn2). 



Figure 2.1: Illustration of the three classes of technologies in the single output-single input case: 
(a) quasiconcave technology, (b) convex technology, and (c) convex cone technology 
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Equivalently, the function / " is concave if and only if its hypograph Hn defined by 

Hn = {z: ze RN, fn(zn) > zn} 

is convex. If, in addition, / " is positively linearly homogeneous, that is, for every zn 6 C, A > 0, 

we have f"(\zn) = Xf"(Xz"), then the hypograph of / " is a convex cone. We have the following 

proposition relating conditions I' and II" to conditions J and II, respectively. 

• Proposition: The production possibilities set T satisfies conditions 1(11) if and only if for 

all goods n, n = 1,2,..., N, the individual technology functions / " satisfy conditions I' 

(II"). Moreover, the hypographs H" of /" , n = 1,2,..., N are identical and are given 

by T, that is, Hn = T for all n, n = 1,2,..., N. 

The regularity conditions on / " given by conditions I' imply that the hypograph H" of the 

function / " is closed, exhibits free disposal and is convex. It is trivial to show that if z 6 T, 

then z € Hn; and if z € Hn, then z 6 T. Since this must hold for all goods n, then it follows 

that the hypographs Hn, n = 1,2,...,N are all identical to the production possibilities set T 

described by conditions I. The first part of the proposition naturally follows. The equivalence 

of conditions II and II' for a constant returns to scale technology can be analogously shown. 

In our subsequent discussion, we shall work mainly maintaining the assumptions of condi

tions I and II where the concept of a production possibilities set is used to describe the convex 

and constant returns to scale technologies; and with conditions III where the concept of a 

technology function is used to describe a quasiconcave technology. The preceding discussion 

will be helpful in showing that the asymmetric choice of a good in the multiple output case is 

equivalent to focusing on the particular production function that corresponds to that good. 

2.2 Construction of approximating convex sets 

The true technology is generally unknown and the information at hand is data on the amounts 

of the outputs produced and the inputs used in the production process. Suppose we have 

J observations; we denote by zl, z2,..., zJ the observed iV-dimensional quantity vectors. The 
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J observations may pertain to a cross-section of production units whose underlying technology 

may be assumed relatively homogeneous or to a particular production unit at various time 

periods. A particular observation denoted by the vector z3 = (z\, z3

2,..., z3

N) has components 

z3

n > 0 if good n is a net output, z3

n < 0 if good n is a net input, and z3

n = 0 if good n is neither 

produced nor used by the production unit j. 

Given the quantity data {z3 : j = 1,2,..., J} we approximate the relevant convex sets by 

constructing the free disposal convex hull of the observed data in a manner satisfying the 

given regularity conditions on the unknown technologies. For a convex technology satisfying 

conditions J , the production possibilities set T is approximated by the set T\ defined by 

f1(z\z2,...,zJ) = {z: £ / = i A ' V >z, £ / = i V = 1 , Xj > 0, j = 1,2,..., J) . (2.1) 

For a constant returns to scale technology, we construct the free disposal conic convex hull 

of the observed data to approximate the unknown production possibilities set T satisfying 

conditions II. In this case, the approximating convex set T-j will be 

f2(z\z2,...,zJ) = {z: £ / = 1 A > V > z, Xj > 0, j = 1,2,...,J}. (2.2) 

Since a convex cone is closed under addition and nonnegative scalar multiplication, the re

striction 2~2j=i ^J = 1 is dropped in (2.2). Figure 2.2 illustrates the construction of the N-

dimensional free disposal convex hulls for the two-good case (N = 2) under the assumptions of 

conditions I and conditions II. Let the first good be an output and the second be an input. 

For a quasiconcave technology, it is necessary to single out one good to play an asymmetric 

role. The N—1 dimensional convex set approximation to the upper level set corresponding to a 

particular level of good n, say z„, is constructed in the following manner. Define the index set 

I(zn) = {j: zl > zn, j = 1,2,...,J} (2.3) 

containing the observation indices whose values of good n is at least as large as zn. If I(zn) is 

not empty, then the free disposal convex set approximation to L(zn) = {zn : fn(zn) > zn] is 



Figure 2.2: Construction of free disposal convex hulls under the assumptions of a convex tech
nology and a constant returns to scale technology: (a) observed production plans, (b) free 
disposal convex hull, and (c) free disposal conic convex hull 
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given by L(zn) defined as follows: 

L(zn; z\ z2,..., zJ) = {zn : £j€7r. Xzn> > zn, Zjeip X3 = 1, A' > 0 j ' £ I(zn)} (2.4) 

where znj is the vector z3 without its nth component, and zn is a z vector without its nth 

component; that is, z" is an N — 1 dimensional vector. If the index set given in (2.3) has only 

one element, say j*, then the corresponding convex set L(zn) defined in (2.4) reduces to 

L(zn) = {zn : znj* > zn} 

which is an N — 1 dimensional orthant with the origin translated to z"3*; the set L(zn) is closed, 

convex and exhibits free disposal. If the index set I(zn) in (2.3) is empty, then the set L(zn) is 

empty; trivially, the empty set is closed and convex. 

Figure 2.3 illustrates the construction of the sets L(zn) for a three good (N = 3) technology. 

Let the first good be an output (z\ > 0) and the second and third goods be inputs (z2 < 0, z$ < 

0). We construct upper level sets for the output good whose levels are denoted beside the 

observed points. For output level z\ = 9, the constructed level set L(9) is the set of all input 

combinations (z2,z3) northeast of the only observed production plan with output z\ = 9. By 

definition, the approximating level set for output level Z\ = 8 is also X(9) though no production 

plan is observed to produce an output level z\ = 8. Since the quasiconcave technology function 

is assumed to be nonincreasing, then any input combination which can yield an output level of 

z\ =9 can also produce a lower output level of Z\ = 8. In this case, the production function f1 

would display a flat region. The constructed level set corresponding to an output level of z\ = 5 

is denoted by L(5). Note that the level sets corresponding to output levels z\ > 5 are contained 

in X(5), that is, L(z\) C L(5) for Z\ > 5. 

The sets f^z1, z2,..., zJ) and f2(zl,z2,...,zJ) defined in (2.1) and (2.2), and L(zn; z1, z2, 

..., zJ) defined by (2.3) and (2.4) are, by construction, closed, convex and exhibit free dis

posal. Hence, these constructed sets also satisfy the regularity conditions we imposed on the 

unknown technologies. The sets have the additional properties of being polyhedral since they 

are generated by a finite number of points and of being the smallest convex sets containing the 
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11(9) = 1(8) 

£ " I I I I ' I I I I 

96 
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L(5)-L(4) *4 

I ' H I " 

I I I I I I I I I I 

L(2) = i(l) 
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Figure 2.3: Construction of approximating level sets for a quasiconcave technology 
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observed data and satisfying their respective regularity conditions. Therefore, the boundaries of 

the constructed production possiblities set in the convex case, and of the upper level set in the 

quasiconcave case are piecewise linear. This implies that our approximation assumes a constant 

marginal rate of substitution or transformation of goods between observed (data) points on the 

boundary of the sets. The degree of substitution or transformation between goods may then 

be underestimated; a greater number of data points or observations on the frontier will yield a 

closer approximation to the actual degree of substitution. Since inefficiencies will be measured 

in terms of the distance of an observed point relative to a point on the boundary of the set, 

our methodology will err more on the side of underestimating the true value of inefficiency and 

towards acceptance of the efficiency hypothesis. 



Chapter 3 

The Measurement of Technical Inefficiency for a Convex Technology 

3.1 Definition of technical efficiency 

The concept of technical efficiency is based on maximizing the production of output goods 

given a vector of input goods or minimizing the levels of input use given target output levels. 

For a convex technology, the technically efficient allocations must lie on the boundary of its 

production possibilities set. The free disposal assumption lends a complication on how an 

observed allocation z-7 lying on the boundary of the constructed convex hull T\ will be deemed 

technically efficient. This problem is addressed in the following discussion. 

Consider figure 3.4 showing the constructed convex hull of some observed points generated 

by a single output (z2)-single input (z\) technology. An interior point, like c, has an open 

neighborhood around it contained in T\ and there are an infinite number of directions and 

paths to adjust the allocation c to the boundary of the constructed production possibilities 

set T\. Clearly, the point c is technically inefficient since more output z2 could have been 

produced given the amount of input — z 1 ? or a lower level of input (—z\) could have been used 

to produce the given level of output Z2. There are numerous ways of measuring the degree of 

inefficiency of the allocation c. What is desired is an indicator of the relative distance of an 

inefficient allocation to a point on the boundary of the production possibilities set. 

For the point c, we can measure the inefficiency by the relative amount of input wasted and 

hence, we can compare c with the point c1. The ratio cc 1/c/ gives the proportional decrease 

in input use needed for the efficient production of the given level of output eg. Alternatively, 

we can compare c with the point c2 which gives the maximal amount of output that could be 

produced given the input level og. The corresponding inefficiency measure is c2c/c2g which gives 

24 
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Figure 3.4: Convex hull of observations from a single output-single input technology, an example 



Chapter 3. The Measurement of Technical Inefficiency for a Convex Technology 26 

the proportional increase in output needed for the efficient use of the given amount of input 

og. It is also possible to move the point c to the boundary through a simultaneous adjustment 

in output and input levels; the point c can be compared with c3. In this case, an aggregate 

measure of the degree of adjustment in both output and input needed to make the allocation c 

technically efficient is obtained as follows. 

We ask what proportional reduction in input utilization along with a proportional increase 

of the same magnitude in output is required to move the point c onto the efficient frontier. 

In order to obtain this measure of the inefficiency of observation c graphically, let hg equal 

the distance og along the input axis. Now draw a straight line joining h to c and extend this 

line until it hits the frontier at c3. The inefficiency measure in this case is ig/hg = kf/fo. 

Note that this composite inefficiency measure is smaller than our earlier input based measure of 

inefficiency c 1c/c/ = c1c/hg ( since ig is less than c1c ), and it is also smaller than our earlier 

output based measure of inefficiency c2c/cg = c2c/fo (since kf is less than c2c). However, 

all three measures of inefficiency have the very important property of being invariant to scale 

changes in the units of measurement. 

In the one output-one input case, the above three measures are the only ones we consider. 

Unfortunately, the three alternative measures can yield conflicting results. Consider the ob

served points a and b which lie on the free disposal sections of the boundary of the constructed 

production possibilities set. The production plan a uses minimal input for its given level of 

output but is output-inefficient; more output could have been produced using the given input 

level. If we set the direction for efficiency adjustment along the input axis, the inefficiency 

measure would be zero. If we set the adjustment direction in terms of the output good, we 

obtain a positive inefficiency loss measure a1a/al > 0 . There is no allocation strictly northeast 

of the point a, and so, if we measure inefficiency by specifying simultaneous positive adjust

ments in the input-output levels we obtain zero inefficiency. The production plan b which is 

output-efficient but input-inefficient can be analogously analyzed. 

The foregoing discussion suggests that technical efficiency can only be defined conditional 
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on the direction of efficiency adjustment desired. Let E be the subset of goods with respect to 

which we want to measure inefficiency. Define an iV-dimensional vector 7 such that its nonzero 

entries correspond to the goods in E. Corresponding to each good rc, n = 1,2,..., 7Y, we set 

7 „ equal to 0, —1 or +1 in the following manner: if good n is an output, choose 7 „ = 0 or +1; 

if good n is an input, choose 7 „ = 0 or —1; if good n is sometimes a net output and sometimes 

a net input, choose 7 n = 0. Hereafter, we call the vector 7 as an efficiency direction vector. 

Following are some examples which illustrate how this vector may be specified. 

• case (i): to measure inefficiency by the amount of output n lost due to inefficiency or 

which could have been produced if the firm were efficient: set jn = 1, ~/k = 0 for k ^ n. 

• case (ii): to measure inefficiency by the amount of input n wasted due to inefficiency or 

which could have been saved if the firm were efficient: set 7 „ = — 1,7^ = 0 for k ^ n. 

• case (iii): to measure inefficiency with respect to all outputs: set 7 „ = 1 if good n is 

an output, and 7 n = 0 otherwise. This case may be applicable when we want to test 

whether a firm is producing maximal output, or when we test later for overall productive 

efficiency using price information as well and the firm's behavior can be characterized as 

revenue- maximizing. 

• case (iv): to measure inefficiency with respect to all inputs: set 7 „ = —1 if good n is an 

input, and 7 „ = 0 otherwise. This case may be applicable when we want to test whether 

a firm, given its output levels, is using minimal inputs or when the firm's behavior can be 

characterized as cost-minimizing. The waste measure obtained in this case corresponds 

to Debreu's (1951) concept of coefficient of resource utilization. 

• case (v): to measure inefficiency with respect to variable goods; firms may have some 

fixed output levels or fixed factors: set 7 „ = 1 if good n is a variable output, 7 „ = — 1 if 

good n is a variable input, and 7 „ = 0 if good n is a fixed output or input. 

Let us now formally define technical efficiency for a production plan z. Suppose the produc

tion plan 2 is generated by a convex technology described by a production possibilities set T 



Chapter 3. The Measurement of Technical Inefficiency for a Convex Technology 28 

satisfying conditions J . We define the production plan z to be weakly technically efficient for 

the technology set T if and only if z is a boundary point of T, that is, z belongs to the frontier 

of T and is not an interior point. 

We also require a definition of technical efficiency with respect to the goods in the set E; 

we term this technical ^-efficiency. The production plan z is technically ^-efficient for T if and 

only if 

1. z £ T, and 

2. there is no z' € T such that z' = (z'1,zf

2,..., z'N) > z = (zi, z2,..., z/v) and z'n > zn for 

all n £ E. 

Hence, by definition, the production plan z is technically J5-efficient (or technically efficient 

conditional on the efficiency direction vector 7 ) if and only if there exists no alternative pro

duction plan z € T that is a strict Pareto improvement1 to z with respect to the goods in 

set E. Note that if z is technically E-efficient for T, then z cannot be an interior point of T, 

and hence, the production plan'2 is, by necessity, weakly technically efficient. 

3.2 Test for technical efficiency (test 1) 

An objective of this study is to develop empirical measures of inefficiency. An indicator of the 

distance of an observed production plan relative to an efficient allocation on the boundary of the 

unknown production possibilities set is desired. Given the quantity data {z3 : j — 1,2,..., J) 

we construct the convex hull of the data points to approximate the true technology set under 

the assumption that they were generated by an underlying technology satisfying conditions I. If 

an observation z3 is technically ^-efficient, then by our definition, no strictly Pareto improving 

adjustments in the goods contained in the set E is feasible. If we let 6j denote the violation 

index or loss measure for observation j, then we would like 6j to equal zero in this case. 

l T h e str o n g P a r e t o c r i t e r i o n is used for t e c h n i c a l efficiency for a convex technology because the boundary of 
the c o n s t r u c t e d p r o d u c t i o n p o s s i b i l i t i e s set has free d i s p o s a l regions; s t r i c t m o n o t o n i c i t y does not h o l d g l o b a l l y 
at i t s boundary. 
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A technical efficiency test must be devised such that an observation z*, given the data 
{z-7 : j = 1,2,..., J} and an efficiency direction vector 7 , is uniquely determined to be either 
efficient or inefficient, but not both. We lay out our technical efficiency hypothesis for a convex 
technology and the proposed test for consistency of the data {z-7 : j = 1,2,..., J) with the 
hypothesis. In addition, a measure of inefficiency for observation i , denoted by 6*, is proposed. 
As a violation index, 6* is zero if observation i is consistent with the hypothesis, and positive, 
otherwise. As a measure of the degree of deviation of observation i from the maintained 
hypothesis, 6* gives the magnitude of the proportional adjustment in the goods in the set E 

needed to make the observation i efficient; the necessary adjustment to the vector z' is given by 
the 6*1 z', where 7 is the chosen efficiency direction vector diagonalized into an NxN matrix 
with the elements of 7 running down the main diagonal and having zeroes elsewhere. We now 
formally state our first efficiency hypothesis as follows. 

• Technical Efficiency Hypothesis I (for a convex technology): The data {z-7 : j = 1,2,..., J} 
are generated by an underlying technology satisfying conditions I and are technically in
efficient. 

In order to determine whether a given set of data {z-7 : j = 1,2,..., J) is consistent with the 
technical efficiency hypothesis 7, it turns out to be necessary to choose the efficiency direction 
vector 7 so that the following condition is satisfied: 

7 nz£ > 0 f o r n e £,.7 = 1,2,...,J. (3.1) 

This condition implies that the choice of goods n belonging to the set E is restricted to goods 
consistently either a net output or a net input across all observations. If the data {z-7 : j = 

1,2, ...,J} and the efficiency direction vector 7 satisfy condition (3.1), then the technical 
efficiency hypothesis I can be tested by solving J linear programming problems contained in 
Test 1 below. 

• Test 1 
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1. For each observation i, i = 1,2, . . . , J , solve the following linear programming sub-

problem i: 

where 7 is the efficiency direction vector 7 diagonalized into a matrix. The informa

tional requirements to solve the linear programming problem (3.2) are the quantity 

data {z3 : j = 1,2,..., J] and the efficiency direction vector 7 . 

2. Consider the following consistency condition: Suppose 6* is the optimized objective 

function for the ith. subproblem (3.2), i = 1 , . . . , J . If condition (3.1) holds and 

6* — 0 for all i, i = 1,..., J , then the data {z3 : j = 1,2,..., J} are consistent with 

technical efficiency hypothesis I for a convex technology. If the condition (3.1) holds 

and 6* > 0 for some i , then observation z' violates technical efficiency hypothesis I 

and the data {z3 : j = 1,2,..., J) are not consistent with this hypothesis. 

Caution is warranted in interpreting a violation of the hypothesis. Note that the linear 

programming test is a joint test for the regularity conditions on the unknown technology and 

technical efficiency. There are two major areas of possible use of the efficiency tests: efficiency 

studies of production units and testing for regularity conditions on production functions.2 Re

searchers in the first area can interpret a violation as being due to technical inefficiency, i.e., 

a failure to produce maximal output and/or to use minimal inputs. On the other hand, re

searchers in the second area often assume that a convex technology exists, and so a violation 

may be interpreted as a failure of curvature conditions on the technology. 

In the formulation of the linear programming problem (3.2), the search for a point on 

the boundary of T\ is restricted to Pareto improvements on z* through the terms 7„zJ, > 0, 
n = 1,2,..., iV and S{ > 0. The set of feasible Pareto improving allocations, including those in 

the weak and strong Pareto sense, is restricted to points z* such that z* is on the boundary 
2Allocative efficiency tests, later discussed, are more pertinent to testing for regularity conditions on profit 

and cost functions which assume optimizing behavior on the part of the producers. 

maXff.>o1Ai>o,...,A-'>o{*«- : E/=i X 3 z i > z' + 6 n z ' , E . :/=i ^ = 1} = v (3.2) 
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of Ti and 

z* = z«' + fjzi > z{ (3.3) 

for some r > Ojv and f is the r vector diagonalized into a matrix. For each (z*; z', 7 ) , we define 

a distance indicator function as 

6i(z*; z\ 7 ) = min„{r„ : n e ^ z ' z z ^ f7z'', r > OAT} > 0. (3.4) 

There remains the problem of choosing a particular z* among the set of feasible (strong and 

weak) Pareto improving production plans with respect to the goods in E. For example, in 

figure 3.4 we can see that if 7 has no zero components, there are an infinite number of allocations 

on the boundary of Ti , including c1 and c2, that are northeast of c. With our definition of 

technical ^-efficiency, we would like to be positive, or equivalently, rn > 0 for all n € E, if 

ever there exists a feasible production plan z* which is a strict Pareto improvement with respect 

to the goods in E. A search over all feasible z* can be done such that we obtain 6* defined by 

6* = max.z*{6i(z*; z', 7 ) : z* is on the boundary of T\ and z* = zl + rjz' for some r > OAT). 

(3.5) 
Hence, 6* > 0 if the production plan z', conditional on 7 , is technically inefficient, and 6* = 0 

otherwise. 

Since z* belongs to T\, we can express z* as z* = Fj/=i f ° r some A 1 > 0,..., XJ > 0 

such that yj/=i AJ = 1, and from (3.3) and (3.4), we have z* > z* + S^z*. Therefore, the 

feasibility region in terms of A = (A1, A 2 , . . . , XJ)T can be expressed as 

{A : £ / = 1 \iz> > zi + 6az\ £ / = 1 \J = 1, A > 0j}. (3.6) 

To ensure z* is on the boundary of T\, the linear programming formulation (3.2) jointly de

termines z* and 6*, or equivalently, A* and 6*. If z* — ^2j=i Xi*zi is not on the boundary 

of Ti , then 6* is not maximal since z* would be in the interior of T\ and there would always 

exist for any 7 a strictly Pareto-improving allocation. Hence, at the optimal solution to the 

subproblem (3.2), the allocation z* = Sj=i Xi*zi has to be at the boundary of T\. 
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To recapitulate, the optimized value 6* serves both as an indicator of the consistency of 

a particular observation with the technical efficiency hypothesis and of the distance of the 

observed z' from the boundary of its hypothesized production possibilities set given an efficiency 

direction. As a violation index, the magnitude of 6* is a measure of the degree of departure 

of z' from the maintained hypothesis. If 6* is positive, the violation can be due either to 

inappropriate assumptions on the underlying technology or to pure inefficiency in the sense of 

failure to produce maximal outputs and utilize minimal inputs. In production efficiency studies 

where more weight is placed on the second factor, 6* can be interpreted as a loss measure 

giving the equiproportionate amount of a specified bundle of goods wasted due to technical 

inefficiency. Since 6* measures proportional changes, it is invariant to scale in the measurement 

of goods. 

3.3 Some notes on the technical efficiency test 

3.3.1 Specifying the efficiency direction vector 7 

Two extreme examples of specifying the efficiency direction vector 7 for the iV-good model are 

discussed. First, let the vector 7 have zero components except for a good n. Then the efficiency 

test reduces to the question: Under the regularity conditions for a convex technology, is zn maxi

mal for zn1 If good n is an output, technical inefficiency requires that output zn be the maximal 

amount of good n that the firm can produce given it must produce at least as much other out

puts and has available inputs at levels (z\, z2,..., 2„_i, 2 „ + i , . . . , ZN). If good n is an input, then 

technical ^-efficiency requires the — zn to be the minimal amount of input n required to produce 

at output levels and other input availability indicated by (21, z2,..., zn-\,zn+\,..., ZN). In the 

one output (y)-one input (x) case, let (21,22) = (y, —x). If 7 = (1,0)T, then technical efficiency 

requires that output level y be maximal for x; if more output can be produced given x, then 

(zi,z2) = (y,—x) is technically jB-inefficient (or technically inefficient conditional on 7 ) . If 

7 = (0, — 1)T, then technical efficiency requires x to be the minimal (22 be maximal) amount of 

input required to produce y; if y could have been produced with a lesser amount of input, then 
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(̂ 1)̂ 2) = (y, — x) is technically ^-inefficient. 

At the other extreme, we can let 7 have no zero components. In this case, the linear 

programming subproblem (3.2) reduces to testing whether z* is on the boundary of T\. If 

6* > 0, then z* is in the interior of Ti . Otherwise, if 6* = 0, then the production plan z' is 

weakly technically efficient. 

Whether an observation i is deemed technically efficient or not generally depends on the 

efficiency direction vector 7 . If 2' is an interior point of Ti , then z' will always be judged 

to be technically inefficient independently of 7 . If 2* is on the boundary of T\ and does not 

lie on any free disposal region of the boundary, then z' will always be technically efficient 

independently of 7 . If z' is on the boundary of Ti but lies on a free disposal region at the 

boundary, then detecting a violation at observation i will be sensitive to the specification of the 

efficiency direction vector 7 . The magnitude of 6* will generally differ with 7 since the latter 

determines the efficient point on the boundary of T\ with which z' is compared. The ranking 

of observations i, i = 1,2,..., J by 6* will generally vary from one 7 specification to another. 

3.3.2 Complications due to the free disposability assumption 

Solution of the linear programming problem (3.2) yields two possibly different technically i n 

efficient production plans relative to z*; let us denote by 2* and 2** the allocations 2* = 

2' + Sfjz* and 2** = J2j=i X**zi. If observation i is technically inefficient (or technically effi

cient given the corresponding efficiency direction vector 7 ) , then 8* = 0 and 2* = z' + S*jz' = 

2'. With the inequality constraint in the linear programming problem (3.2), the vector 2** = 

J2j=i ^*zi may be different from 2* = 2'. Since at the optimal solution, at least one of the 

constraints corresponding to the goods n € E must be binding (otherwise, <5* is not maximal), 

then 2** = 2* = z\ for at least a good n £ E. Hence, 2** does not offer z' a strictly Pareto 

improving adjustment in the direction of 7 and the minimum proportional adjustment needed 

for 2' to attain 2** is still given by 6* = 0. The divergence between 2 " and 2* is a sufficient 

indicator that 2* = 2' is in the free disposal region of some good n not necessarily in E. It is 
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only sufficient because the solution of the linear programming problem (3.2) does not guarantee 
that z** = E/=i X3*Z3 be on the relative interior of and away from any free disposal region at 
the boundary of T\, and z** may equal z*. The free disposability occurs in the good n where 
J2j=1 AJ*z£ > z'n. The production plan z**, in itself, is technically inefficient. 

Suppose observation i is technically ̂ -inefficient, that is, 6* > 0. If we look at the subspace 
of Tj generated by conditioning on the values of z'n, n g E, then z' will be an interior point in 
this subspace.3 Hence, there will always exist an equiproportionate adjustment vector, given 
by *̂ I z ' n I where 6* > 0 and n G E, that will bring the observed point z' to the boundary of 
this subspace. The point on the boundary of this subspace attained by the equiproportionate 
adjustment in the goods n G E is z* = z' + 6*1 z'. The vector z* is technically inefficient and 
the relative distance of z' is indicated by 6*. The procedure of obtaining 6* by maximizing 
the minimum of ratios r„ = (z* — z'n)/ \ z'n |, n G E yields 6* = rn for all n G E and the 
technically efficient point generated is z*. The optimized value 6* can then be interpreted as 
an equiproportionate waste measure; it gives the equiproportionate increase in outputs and 
decrease in inputs belonging to E which could have been achieved if the firm were technically 
inefficient. 

Again, the point z** = ^/=i X3*z3 may differ from z* = z* + 6*-yz' if z* is in a free disposal 
region at the boundary of T\ for some good n not necessarily in E. The production plan 
z** yields a strict Pareto improvement on z' for the goods in E and is itself technically in

efficient. In contrast to z*, the allocation z** can be attained from z' by adjustment in the 
goods n G E that is not necessarily equiproportionate. We can recover the adjustment ratios 
r** = (z** — zl

n)/ | z*n |, n = 1,2,..., N. The lower bound for the adjustment ratios of the goods 
in E is given by 6*; hence, 6* gives the minimum proportional increase in outputs and decrease 
in inputs belonging to E required for z* to be technically inefficient. If there is variation in r**, 
the ratios can be indicative of sources and varying degrees of inefficiencies in the output-input 
mix in the production plan z*. It must be cautioned though that the test procedure we have 

3 If the set E contains all ./V goods, then z' lying on the free disposal region with respect to all JV dimensions 
of Ti is equivalent to z' being an interior point of 7\. 
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does not guarantee that 2**, as well as 2*, not be in any of the free disposal regions of the 

boundary of T\, and 2** = 2* is possible. 

3.3.3 An area of further research 

An avenue of further research is suggested by our analysis. The definition of technical efficiency 

can be weakened such that a production plan z' is defined to be technically efficient conditional 

on the efficiency direction vector 7 if and only if there exist no production plan z' € T that is 

a weak Pareto improvement on z' with respect to the goods in E.4 The linear programming 

problem (3.2) has to be reformulated such that the point on the boundary 2** = yj/=i A J*z J 

does not lie on any free disposal region with respect to the goods in E. Thus, if 2' lies on 

a free disposal region at the boundary of T\ with respect to at least one good in E, then z* 

given 7 will be deemed technically inefficient. If all N goods are in E, such a reformulation of 

the test will pick any allocation in a free disposal region, whether in the interior of Ti or at the 

boundary, to be technically inefficient. 

The suggested modifications may require redefinition of the violation index 6* and the 

reformulation of the linear programming problem (3.2) may have to explicitly incorporate some 

form of maximizing the slack variables. If the search for a boundary point can ensure that with 

respect to the goods in E it does not lie on a free disposal region, then the divergence between 

2** = X)/=i Xi*zi and the observed z' may be useful in identifying and measuring varying 

degrees of input and output inefficiencies. In the field of operations research, a related approach 

termed data envelopment analysis or DEA (see, for example, Charnes and Cooper (1985) and 

Charnes, Cooper, Golany and Seiford (1985)) attempts to address the problem of correcting 

for free disposability at the boundary by the maximization of slack variables. Though the 

economic theory underlying their approach, for example in describing the technology they are 

analyzing, does not seem to be as rigorous as that found in the nonparametric analysis literature 

in economics, some insights may be gained from this body of work. 

4 We may still want to retain the concept of conditionality on the vector 7 to handle fixed goods. 
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3.4 Dual interpretation 

The dual to the linear programming problem (3.2) is 

minq>oN^i{-ziTq + Ui : ziTjq > 1, -z&q + pi >0,j = 1,2,...,J}. (3.7) 

If we interpret the dual variables q > ON as a vector of nonnegative prices, then zlTq is the profit 

obtained for the production plan z* at prices q. Suppose q* > ON and P* solve problem (3.7). 

By the duality theorem in linear programming 8* — —z*Tq* + p.*. If observation i satisfies our 

technical efficiency hypothesis, then 8* = —z,Tq* + u* = 0. Together with the constraints in 

problem (3.7), this implies 

^ = z«V>^'V,;' = i , 2 , . . . , J (3.8) 

and 

ziTjq* > 1. (3.9) 

Hence, the observed quantity vector z' solves the profit maximization problem n(q*) defined as 

ir(q*) = maxz{q*Tz : z E Ti} = p* (3.10) 

where p* (unrestricted in sign) is the optimal profit at at prices q* given the technological 

constraints. This condition is equivalent to z' being a boundary point of T\. The price normal

ization (3.9) and assumption (3.1) imply that there exists at least one n € E such that q* > 0, 

that is, at least one good n in E is not at free disposal. The above analysis derives from the 

supporting hyperplane theorem for convex sets. 

A dual definition of technical efficiency for a convex technology is obtained. 

• Definition. Given a convex technology set T satifying conditions J , a production plan 

z g T is technically efficient relative to an efficiency direction vector 7 or technically 

^-efficient where E is the set of coordinate axis indices corresponding to the nonzero 

components of 7 , if and only if, there exists a semipositive price vector q* > 0jv such that 

q* > 0 for at least One good n belonging to set E , and at prices §*, the production plan z 

is a profit maximal choice. 
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The optimal price vector q* > ON can be related to Koopmans' efficiency prices. If 7 has 

no zero component then a production plan z is technically efficient if and only if z is at the 

boundary of the production possiblities set. As Koopmans (1951, p.462) has noted, "the price 

concept established does not in any way presuppose the existence of a market or of exchanges 

of commodities between different owners". The technical efficiency prices q* may differ greatly 

from actual market prices of the goods. 

Suppose a violation of the technical efficiency hypothesis is detected at observation i, that 

is, 8* = —z,Tq* + p* > 0. Then at the optimal solution q* > ON, p.* unrestricted in sign, we 

have 

Pi > ziTq*; (3.11) 

Mi > ziTQ*, J = 1,2,. . . ,J; and (3.12) 

ziTiq* = 1. (3.13) 

Equation (3.13) follows from the complementary slackness condition in linear programming; 

since 8* > 0, then the constraint ztTjq > 1 must be binding at q*. Since one of the J inequalities 

in (3.12) must hold with strict equality, inequalities (3.11) and (3.12) imply 

p*{ = maxj{ziTq* : j = 1,2,..., J} > ziTq*. (3.14) 

Then, the violation index 8* can be expressed as 

8\ = (max^'V : j = 1,2,..., 7} - ziTq*)/ziTjq* 

= max, j ( Z J ~T^9* : j = 1,2,..., j | (3.15) 

> 0. 

Hence, the violation index 8* in its dual interpretation measures the distance of the observation i 

from some profit maximal choice, say zi*, j* € {1,2,..., J} in terms of the shortfall from the 

optimal profit p* with the goods in E as the reference goods. The profit maximal choice zJ* is 

a function of prices q* and p* (dual to z* and 8*) jointly determined by the linear programming 

problem (3.7). 
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Also, by the complementary slackness condition in linear programming, it follows that 

\i*(-ziTq* + u*) = 0ior j = 1,2,...,J. (3.16) 

If u* > zjTq* for an observation j at the optimal solution for subproblem i, then the corre
sponding dual variable must be zero, that is, AJ* = 0. In this case, the particular observation j 
carries zero weight in the optimal convex combination X)/=i X3*z3 which is a point on the 
boundary of Ti relative to which the current observation zl is being compared. By the same 
reasoning, if 8* > 0 and X3* > 0 for an observation j at the optimal solution for subproblem i, 
then zjTq* = u* and observation j is relatively efficient to z' and, if assumption (3.1) holds, is 
itself technically ̂ -efficient. In the DEA literature, the observations j with corresponding X3*s 

positive are termed "evaluators" of observation i. It is possible to obtain 8* = 0 and XJ* > 0 for 
some j ^ i and z3 ^ z'; in this instance, observation i is likely to be in a free disposal region at 
the boundary of the production possibilities set and *̂ = 0 for at least a good n. Nevertheless, 
the observations z' and z3 s with positive X3*s must he on the same supporting hyperplane with 
efficiency prices given by q*, or equivalently, in DEA terminology, along the same facet of the 
convex hull. 

By looking at the dual formulation, we can also infer why the efficiency test yields measures 
only of relative efficiency. At the optimal solution of the dual formulation (3.7), at least one 
of the constraints —zjTq* -f u* > 0, j = 1,2,..., J must be binding for the objective function 
to be at a minimum. If the constraint is binding for some observation fc, then u* = zkTq* and 
there exist prices q* > ON with q* > 0 for at least one good n belonging to E such that zk is a 
profit maximal production plan. By the dual definition of technical efficiency, observation k is 
technically E-efficient. With the assumption 7„z£ > 0 for all n € E, then the optimized value 
8£ will be zero when the subproblem (3.2) is solved for observation fc.5 The result of the test 
at observation i establishes the possible existence of a price vector q* which can support zk as 

*Note that 61 = —zkTq* + nl is homogeneous of degree one in q* and n'k. Hence, if at observation « the 
optimal price vector is q* > ON and zkTyq* > 1, then with the assumption that 7 n z£ > 0 for all n € E, a price 
vector ql > ON (and fil), which is a scalar multiple of q* (and /i*), exist such that zkTyql > 1 and remains 
zero. 
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an efficient allocation. Hence, given the data set {zJ : j — 1,2,..., J}, at least one observation 

will be rated technically efficient, that is, 6* = 0 for at least one j, j = 1,2,..., J. Intuitively, 

the above result follows from the fact that the convex hull of the observed data points is being 

used to approximate the production possibilites set. As such, inferences about efficiency are 

relative to the "best-practice" technology. 

The primal formulation (3.2) of the efficiency test utilizes the concept of an "internal repre

sentation" of a convex set (see, for example, Rockafeller (1970)). Using Caratheodory's theorem, 

the points of a convex set can be expressed as a convex combination of a subset of points in the 

set. On the other hand, the dual formulation (3.7) uses the concept of an "external representa

tion" of a convex set as the intersection of some collection of half-spaces. For the (polyhedral) 

convex hull of a set of points, only a finite number of points and a finite number of half-spaces 

is required. Whereas the primal formulation works on quantity space (through A), the dual 

formulation works on the price space. If the linear programming subproblems are solved for 

the whole data set {zl : i = 1,2,..., J) , then the primal formulation implicitly constructs 

an "inner approximation" or "inner bound" (Bazaraa and Shetty (1979, p.60), Diewert and 

Parkan (1983, p.139), Varian (1984b, p.60)) to the true convex production possibilities set. In 

the dual formulation, the observations which pass the test and their corresponding hyperplanes 

trace an "outer approximation" or "outer bound" to the unknown convex production possibil

ities set. The "inner approximation" and "outer approximation" generally differ but coincide 

at the observed points lying on the boundary of either constructed sets. 

3.5 Special case: assuming concavity of an individual technology function 

In some instances, the focus of interest is the technology with respect to a particular good. As 

mentioned earlier in the description of various technologies, the technology function / " for a 

singled-out good n can be interpreted either as'a production function if good n is an output, or 

as a factor requirement function if good n is an input. Assuming fn is continuous, nonincreasing 

and concave, then technical efficiency requires zn to be the maximal amount of net output of 
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good n which can be produced given z", that is z„ = / " (z n ) . If good n is an input, then technical 

efficiency requires — zn to be the minimal amount of input n required to produce outputs given 

availability of other inputs at levels indicated by zn = (z\, z2,..., z n _ i , z n + i , . . . , ZN). 

The technical efficiency hypothesis for a concave technology function / " and the correspond

ing efficiency test follow. 

• Technical Efficiency Hypothesis I' ( for a concave technology function /"): The data 

{z J : j = 1,2,..., J} are generated by an underlying technology satisfying conditions I 

and are technically ^-efficient where E = {n} contains only the nth coordinate axis index. 

The first part of the hypothesis implies that the technology function / " satisfies conditions / '; 

the second part implies z3

n = / n ( z n j ) , j = 1,2,..., J . Note that the hypothesis assumes that the 

underlying production possibilites set is convex. To test the technical efficiency hypothesis / ' , 

perform test 1 using the linear programming formulation (3.2) with the efficiency direction 

vector specification: jn = 1 or — 1, accordingly, if good n is an output or input; 7^ = 0 for 

k ^ n. If 8* = 0 for i = 1,2,..., J , then the data are consistent with the technical efficiency 

hypothesis / ' . 

As illustrated in figure 3.4, detecting a violation at a particular observation can be sensitive 

to the choice of the good n. If E = {1}, then the production plan a is technically efficient 

and b technically inefficient. If E = {2), then we obtain opposite results. In some sense, both 

production plans are inefficient because more output could have been produced at a and less 

inputs could have been used at b. Both production plans a and b are at the boundary of the 

constructed production possibilites set but in the free disposal regions. Therefore, to test for 

simultaneous maximality of outputs and minimality of inputs, test 1 has to be performed for 

n = 1,2,.. .,N with E = {n} at a time. Observations which pass the N test then satisfy the 

DEA definition of efficiency (Charnes and Cooper, 1985, p.72): 

"100 % efficiency is attained for any DMU (decision-making unit) only when 

(a) none of its outputs can be increased without either 
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(i) increasing one or more of its inputs or 

(ii) decreasing some of its outputs. 

(b) none of its inputs can be decreased without either 

(i) decreasing some of its outputs or 

(ii) increasing some of its other inputs." 

Next it is shown that the formulation of test 1 is a generalized version of the Diewert-

Parkan (1983, p.141) efficiency test for a concave technology function / " in a multiple output-

multiple input context. The Diewert-Parkan test where a good n is asymmetrically chosen and 

using our notation is : 

(i) For i — 1,2,..., J , solve the linear programming subproblem i: 

maxAi> 0,„.,^>o{E/=i *j4 • E/=i Xzni > E/=i * = ^} = /"(«•')• (3-17) 

(ii) If z'n = f"(z') for i = 1,2,..., J , then the data {z1 : j = 1,2,..., J) are consistent with 

the technical efficiency hypothesis I' for some / " satisfying conditions If z'n < f"(z') 

for some i, then the data is not consistent with the technical efficiency hypothesis I' for 

any / " satisfying conditions 

(iii) The violation index can be defined as A' = (/"(z') — z'n)/ | z'n | > 0 which gives the 

proportional increase in z'n needed to put z' on the efficient frontier. 

Note that the Diewert-Parkan formulation (3.17) implicitly assumes that the underlying produc

tion possibilities set is convex. The linear programming subproblem (3.2) for the case E = {n} 

can be rewritten as 

maxff|.>oiAi>o,...̂ >o{*.- = E/=i > E/=i »4 > A + ^7n4, 

E / = 1 A > = 1} = ^ . (3.18) 

At the optimal solution for (3.18), the constraint E/=i ^J*zt% ^ zn + ^ilnZx

n has to be binding; 

otherwise, a higher value for 6* can still be obtained. In the case of a single good being 
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asymmetrically chosen, let us redefine <5; as 

6, = U = X ; " (3.19) 

and rewrite (3.18) as 

{ y^J \j — z* T 
f — - : E/=i > E/=i A J ; = 1 • (3- 2 °) 

lnzn ) 

Since d>i is a monotonic function of J2j=i ^zii f ° r a hxed zj,, problem (3.18) reduces to 

maxA 1>O i... i A,> 0{£/=i Xj4 : E;=i > *"*', E;=i ^ j = 1} (3-21) 

which is the Diewert-Parkan linear programming subproblem (3.17). From definition (3.19), it 

is easy to see that at the optimal solution for the problems (3.17) and (3.18), our consistency 

conditions (6* = 0 implies efficiency, 6* > 0 implies inefficiency) are equivalent to parts (ii) 

and (iii) of the Diewert-Parkan test with A' = 6*. 

If the data {z3' : j = 1,2,..., J) pass the technical efficiency test for a concave technology 

function /" , then a nonparametric (piecewise linear) concave function /"*. satisfying condi

tions I' and defined by 

f *(z") = maxAl>0 i... )AJ>0{E/=i A>'*£ : E/=i > A E/=i = 1} (3-22) 

can be recovered. The function fn* defined by (3.22) gives the boundary of the convex produc

tion possibilities set T\ along the nth dimension. 



Chapter 4 

The Measurement of Technical Inefficiency for a Convex Conical Technology 

4.1 Definition of and test for technical efficiency (test 2) 

A comparison of the regularity conditions I and II on the production possibilities sets shows 

that a constant returns to scale (CRS) technology is a special case of a convex technology. As 

such, the definition of technical efficiency for a convex technology must necessarily hold in the 

CRS case. A production plan z is technically ^-efficient if and only if there exists no alternative 

plan z' € T, where T is the production possibilities set, that is a strict Pareto improvement 

to z with respect to the goods in set E. Again, it is necessary to choose the goods in set E such 

that they all have nonzero quantity values, or equivalently, to specify the efficiency direction 

vector such that 

7„4 > 0 for n£ E,j = 1,2,..., J. (4.1) 

If the data {z3 : j = 1,2,..., J} and the efficiency direction vector 7 satisfy condition (4.1), then 

the following technical efficiency hypothesis for a convex constant returns to scale technology 

can be tested using test 2 given below. 

• Technical Efficiency Hypothesis II (for a convex conical technology): The data {z3 : j = 

1,2,..., J) are generated by an underlying technology satisfying conditions II and are 

technically i n e f f i c i e n t . 

To test the above hypothesis, given the data {z3' : j = 1,2,..., J} and the efficiency direction 

vector 7 corresponding to set E, test 2 which involves solving J linear programming subproblems 

is performed. 

• Test 2 

43 
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1. For each observation i, i = 1,2, . . . , J , solve the following linear programming sub-

problem i: 

max5i.>0iAl>0 xj>0{8i : E;=i W > **' + Silt* 4} = (4-2) 

where 7 is the efficiency direction vector 7 diagonalized into a matrix. 

2. Consider the following consistency condition: If condition (4.1) holds and 6* = 0 

for all i, i = 1,..., J, then the data {z3 : j = 1,2,..., J} are consistent with the 

technical efficiency hypothesis II for a convex constant returns to scale technology. 

If condition (4.1) holds and <5* > 0 for some i, then observation z' violates technical 

efficiency hypothesis II and the data {z3 : j = 1,2,..., J} are not consistent with 

this hypothesis. 

Test 2 is more restrictive than test 1; the regularity conditions II require the production 

possibilities set to be a cone in addition to being convex. Geometrically, the technically efficient 

points for a CRS technology must lie along rays at the boundary of the production possibilities 

set and furthermore, these rays must pass through the origin. Given the same 7 , an observation 

may pass the convexity test but fail the CRS test. An observation which passes test 2 must 

necessarily pass test 1. The constructed production possibilities set for a convex technology Ti 

is contained in the set T2 constructed under the assumption of a convex CRS technology. Since 

Ti C T2, as can be seen in figure 2.2, then it is possible that points on the boundary of Ti he in 

the interior of T-j. Hence, the violation index 6* for observation i obtained with test 2 cannot be 

less than the value of 6* obtained with test 1, given the same efficiency direction vector 7 . We 

can expect at least as many observations violating the technical efficiency hypothesis of test 2 

as against that of test 1. 

The foregoing discussion suggests an indirect way to test for returns to scale, at least, the 

possible existence of decreasing returns as opposed to constant returns. Given a 7 configuration, 

tests 1 and 2 for a convex technology and a CRS technology, respectively, can be performed. 

If the violation indices 6*' significantly increase going from test 1 to test 2, then the data can 

be interpreted as being more consistent with the convex technology assumption. How large an 
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observation 8* when 8* when 6* when 
no. 7 = (- l ,0 ,0) r 7 = ( - l , - l , 0 ) T 

7 = ( - l , - l , l ) T 

(1) (2) (3) (4) (5) 
1 (-1,-4,1) 0.000000 0.000000 0.000000 
2 (-2,-2,1) 0.000000 0.000000 0.000000 
3 (-4,-1,1) 0.000000 0.000000 0.000000 
4 (-5,-1,1) 0.200000 0.000000 0.000000 
5 (-3,-2,1) 0.333333 0.142857 0.076923 
6 (-2,-3,1) 0.250000 0.142857 0.076923 
7 (-9,-2,1) 0.777778 0.500000 0.333333 

Table 4.1: Two input-constant output example for test 2 

increase in 6* is indicative of a departure from the CRS assumption is left, at this stage, to the 

subjective judgment of the researcher. 

In cases where the number of goods N > 3, it is possible that at the optimal solution 

for subproblem (4.2), the points E/=i X3*Z3 and (z' + 8*-yz') are different. This result can 

be similarly interpreted in terms of the complications brought about by the free disposability 

assumption as in the convex case. In this instance, the point (z' + 8*jz*) lies on a free disposal 

region at the boundary of the conical convex hull of the observed data {z3 : j = 1,2,...,/}. To 

illustrate this possibility, we perform test 2 for a two-input (21,22), constant output (23) example 

taken from Chang and Guh (1988). The data and results of test 2 for different 7 configurations 

are listed in table 4.1. Figure 4.5 illustrates the data; in three-dimensional space, the boundary 

of the conical convex hull of the observed data would consist of the points along the rays drawn 

from the origin and passing through the points at the boundary of the level set for z3 = 1. 

From column 5 of table 4.1, the results show that the observations which are at the boundary 

of the conic convex hull of the observed data are 1, 2, 3 and 4. The same observations are at 

the boundary of the level set corresponding to 23 = 1 as verified by the results in column 4 and 

shown in figure 4.5. However, the test at 7 = (-1,-1,0) r indicates that observation 4 is at best 

weakly efficient; this is shown by the linear programming results for this particular observation. 

At 7 = (-1, - l , 0 ) r and i = 4, the optimal solution of subproblem (4.2) yields = 0.000000 
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Figure 4.5: The conic convex hull for a two input-constant output example 
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and A3* > 0 with A-*'* = 0 for j ^ 3; hence, z* = z' + Sf-yz' = z4 but z** = J^j=i ^'z3 - z3. 

Note that observation 3, not 4, enters the optimal basis for observation 4, as indicated by a 

positive A3*; the difference between z* = zx + S^jz' and z** = J2j=i X3*z3 indicates that free 

disposability occurs with respect to good 1. If test 2 is performed with 7 = (—1,0,0)r, then we 

ask the question whether, assuming a CRS technology, input 1 is minimal given output level 

is at least at Z3 and — z2 of input 2 is available. The earlier results on the weak efficiency of 

observation 4 are supported by the results of test 2 with 7 = ( — 1,0,0)T. If observation 4 is an 

interior point of the conic convex hull of the observed data, detecting a violation at observation 4 

will be invariant to the specification of the efficiency direction vector 7 . 

4.2 Dual interpretation 

The dual formulation to the linear programming subproblem (4.2) is given by 

m i n g > 0 „ { - z * T g : ziTjq > 1, -z3'Tq > 0, j = 1,2,..., J} (4.3) 

and consists of a price normalization constraint and J homogeneous linear inequalities. Hence, 

the "outer approximation" to the production possibilities set is also a polyhedral convex cone. 

The dual variables in (4.3) can be similarly interpreted as in the convex case given by (3.7). 

Under the regularity conditions for a constant returns to scale technology, maximal profit u* is 

restricted to zero. A dual definition of technical efficiency for a CRS technology is obtained. 

• Definition. Given a convex conical technology set T satifying conditions II, a production 

plan z G T is technically efficient relative to an efficiency direction vector 7 or technically 

Inefficient where E is the set of coordinate axis indices corresponding to the nonzero 

components of 7 , if and only if, there exists a semipositive price vector q* > 0;v such that 

q* > 0. for at least one good n belonging to set E , and at prices q*, the production plan z 

yields zero profit. 

Observations which pass the CRS efficiency test can be interpreted as operating at a tech

nically optimal scale in the sense that they have exploited possible increasing returns and 
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decreasing returns in the technology. Even if the underlying technology is everywhere convex, 

we can interpret the observations passing test 2 as consistent with scale efficiency in the con

text of "most productive scale size" of Banker (1984); that is, observations that fail test 2, 

and hence are "scale-inefficient", can move to an efficient point by either a more than propor

tionate increase in output when inputs are increased, or a more than proportionate decrease 

in inputs when outputs are decreased. Alternatively, scale efficiency can be viewed as consis

tent with the zero-profit long-run competitive equilibrium and hence, is socially desirable (Fare, 

Grosskopf and Lovell, 1985) if some price mechanism can be implemented such that the optimal 

"efficiency" prices can prevail. 

If an observation i fails test 2, that is, 6* = —z,Tq* > 0, then the production plan z' yields 

a loss at prices q*. The following relationships hold as well: 

0 > ziTq*; (4.4) 

0 > ziTq*, j = 1,2,..., J; and (4.5) 

ziTjq* = 1. (4.6) 

Since at least one of the J inequalities in (4.5) must hold with strict equality, equations (4.4) 

and (4.6) imply 

0 = maxj{ziTq* : j = 1,2,..., J} > ziTq* = -6?. (4.7) 

Then the violation index 6* can be expressed as 

0 — ziTa* 
Sf = .* q > 0. (4.8) 

In its dual interpretation, the violation index 6* measures the distance of the observed z' from 

the zero-profit allocation at prices q* in terms of the loss incurred at z' with the goods in E as 

reference goods. The relationship of the value of the current production plan z,Tq*, the value 

of the basket of reference goods zxTxjq*, and the violation index 6* is more apparent in the 

following rearrangement of equation (4.8): 

ziTq* + 6?(ziTjq*) = 0. (4.9) 
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If 7 is specified such that 6* is an output based measure, then z*T,yq* — 1 is the implicit 

revenue obtained with the production plan z' if prices were q*. Equation (4.8) in this case 

would reduce to 
"cost" 

«: = T T - ^ ; - 1 > 0 (4.10) revenue 

where the cost and revenue concepts are only implicit in the sense that q* are efficiency prices 

and not necessarily prevailing market prices. Equation (4.10) says 8* is the excess of cost over 

revenue measured as a proportion of revenue. Alternatively, from (4.9), we can say that 8* gives 

the equiproportionate increase in outputs needed to attain zero profit. For an input based 8*, 

we can interpret z'T/yq* = 1 as the cost incurred with production plan z' if prices were q*. In 

this case, equation (4.8) reduces to 

"cost"-"revenue" „ 
* = > 0 <4-n) 

which gives the excess of cost over revenue as a proportion of cost. Equivalently, an input 

based 6* gives the equiproportionate reduction in inputs needed to attain zero profit. The 

question arises whether the equiproportionate adjustment 6*jz* is technically feasible. The 

answer is yes; the adjustment moves the observation z* to a boundary point which necessar

ily belongs to the approximating convex cone. As discussed earlier, the obtained allocation 

(zl + 8*xfzt) may he on a free disposal region at the boundary of the constructed production 

possibilities set. 

At the optimal solution of subproblem i and if assumption (4.1) holds, the evaluators of 

observation i, which themselves are technically ^-efficient, can be identified by positive A3*s. 

When an output variable is zero at z', it is possible to obtain optimal \3*s to be all zero for 

observation i implying the shutdown point is the relatively efficient allocation given the efficiency 

direction vector 7 . Since the free disposal conic convex hull of the observed data is being used 

to approximate the unknown technology, then given the data set {z3 : j = 1,2,.. .,</}, at least 

one observation j will be rated technically ^-efficient with 8* = 0. 
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4.3 Special case: assuming linear homogeneity of an individual technology func

tion 

As in the convex technology case, corresponding conditions on the individual technology func
tions /", n = 1,2,..., N when the production possibilities set is described by a convex cone 
satisfying conditions II can be obtained. The regularity conditions imposed on /" are given by 
conditions 77'; that is, the individual technology function /" is continuous, nonincreasing, con
cave and positively linearly homogeneous. Since the convex conical technology is a special case 
of a convex technology, the definition and test for technical /̂ -efficiency are analogous. Tech
nical efficiency for a linearly homogeneous technology function /" requires zn be the maximal 
net output given the subvector of other goods z". Formally, the technical efficiency hypothesis 
and test for a linearly homogeneous function /" are as follow. 

• Technical Efficiency Hypothesis //' ( for a linearly homogeneous concave technology func
tion /"): The data {z3 : j = 1,2,..., /} are generated by an underlying technology sat
isfying conditions // and are technically /̂ -efficient where E = {n} contains only the 
nth coordinate axis index. 

The first part of the hypothesis implies that the technology function /" satisfies conditions //'; 
the second part implies z^ = fn(zn3), j = 1,2,...,/. To test the efficiency hypothesis //' for 
the data set {z3 : j = 1,2,...,/}, perform test 2 using the linear programming formulation (4.2) 
with the efficiency direction vector specification: 7„ = 1 or — 1, accordingly, if good n is an 
output or input; 7& = 0 for fc ̂  n. If 6* = 0 for i = 1,2,...,/, then the data are consistent with 
the technical efficiency hypothesis //'. If 6* > 0 for some i, then a violation of the technical 
efficiency hypothesis //' occurs at observation i. If the data set {z3 : j = 1,2,..., /} passes the 
test, the recoverable nonparametric function /"* satisfying conditions //' can be defined by 

fn*(z") = maXAl>oi„.,A,>0{£/==i X'4 : £/=i Xz* > zn}. (4.12) 

This test forces the technically efficient observations with 6* — 0 not to be on the free 
disposal section of the boundary of the conic convex hull at least with respect to the nth good. 
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If the above test is performed with respect to all goods, that is, E = {n}, n = 1,2,.. . , TV, then 

observations which pass all N tests are boundary points not lying on any free disposal region 

of the conic convex hull of the observed data and hence, are DEA-efficient. 



Chapter 5 

The Measurement of Technical Inefficiency for a Quasiconcave Technology 

5.1 Definition of and test for technical efficiency (test 3) 

The efficiency tests for a quasiconcave technology require choosing a particular good n and 

focusing on its individual technology as described by the function fn assumed to satisfy con

ditions III. The function / " is assumed to be continuous from above, nonincreasing and 

quasiconcave. Geometrically, the definition of technical efficiency is analogous to that in the 

convex case. Whereas in the convex case technical efficiency is defined relative to the boundary 

of the production possibilities set in iV-dimensional space, in the quasiconcave case technical 

efficiency is defined relative to the boundary of the upper level set in N — 1 dimensional space 

corresponding to a particular level of the singled-out good n. Hence, technical efficiency in the 

latter is conditional on a truncated efficiency direction vector, denoted by 7 " , which is the full 

vector 7 with the nth component deleted. Let us denote the corresponding set containing the 

indices of the coordinate axes of the goods with respect to which we want to measure inefficiency 

as En. 

A formal definition of technical efficiency for a quasiconcave technology follows. If the 

technology function is / " , define the upper level set L(z„) = {zn : / n(z") > zn}. A production 

plan z, which has the nth component equal to z„ and the remaining components written as 

the vector z n , is technically £n-emcient if and only if there exists no alternative vector z" 

belonging to the upper level set L(zn) which is a strict Pareto improvement on z" with respect 

to the directions in E". If the production plan z is not technically ̂ "-efficient, then there exist 

z" 6 L(zn) such that zjt > zk for all fc e En and f(z") > z„. 

In the case of a concave technology function, the definition of technical efficiency requires 

52 
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z„ = /"(z n) and zn to be maximal for z"; passing the corresponding efficiency test does not 

preclude the possibility that z" is not ^"-maximal for z„. In figure 3.4, if we perform the 

convexity test (test 1) with the efficiency direction vector 7 = (0,1)T or equivalently with 

E = {2}, then the observed point b passes the test implying output z 2 is maximal given input 

— zi at point b. For technical efficiency relative to a quasiconcave technology, we require z" 

to be maximal for z n at least with respect to the goods n £ En. In the one output (z2)-one 

input (zi) case and focusing on the production function f2 where z 2 = / 2 (zi) , this definition 

requires the input level —z\ to be minimal for the output level z 2. Given the observed points b 

and d at the same output level in figure 3.4, clearly the point b does not use minimal input for 

the given output level and hence, is technically £2-inefficient where E2 — {1}. The definition 

of technical efficiency for a quasiconcave technology in this study, after taking into account the 

sign convention for inputs, is consistent with the usual cost minimization concepts and tests 

which often assume a quasiconcave technology. This study offers a generalized version of the 

efficiency tests to handle multiple outputs and multiple inputs. 

We now state our technical efficiency hypothesis and test for a quasiconcave technology 

function / " . 

• Technical Efficiency Hypothesis III (for a quasiconcave technology): The data {(z£, z"J) : 

j = 1,2,..., J} are generated by an underlying technology function / " satisfying condi

tions III and are technically JE7n-efficient. 

To test the above hypothesis, given the data {z3 : j — 1,2,..., J} and the truncated efficiency 

direction vector 7 " , test 3 below is performed. It involves solving J linear programming sub-

problems where each problem corresponds to an observation. Since upper level sets are used to 

describe the quasiconcave technology, it is necessary to construct an index set containing the 

observations with values for z„ greater than or equal to its current value z'n. In constrast to 

tests 1 and 2 where the full range of observations 1,2,..., J is used in each linear programming 

subproblem, only a subset of observations is used in each subproblem in test 3. Again, we shall 

choose the goods k indexed in the set En and the efficiency direction coefficients 7fc so that the 
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following condition holds: 

7k4 > 0 for k e En, j = 1,2,..., J. (5.1) 

The technical efficiency test for a quasiconcave technology follows. 

• Test 3 

1. For each observation i, i = 1,2,..., J, 

(a) define an index set 

I" = {j: z3

n>z'n,j = 1,2,...,J}, and (5.2) 

(b) solve the following linear programming subproblem i: 

m^,>o,Ai>o,i € I^6i : X 3 z n j > *"*' + tiT*™, Zjeip » = i} = sr 
(5.3) 

where 7n,zn',z"-7 are the original vectors with their nth row (corresponding to 
good n) deleted, and 7 " is the vector 7 " diagonalized into an (JV — l)x(N -1) 
matrix with zero off-diagonal elements. 

2. Consider the following consistency condition: If condition (5.1) holds and 6* = 0 for 
all i, i = 1,..., J, then the data {z3 : j = 1,2,..., J} are consistent with the techni
cal efficiency hypothesis III for a quasiconcave technology. If condition (5.1) holds 
and 6* > 0 for some i, then observation zl violates the technical efficiency hypothe
sis III and the data {z3 : j — 1,2,..., J} are not consistent with this hypothesis. 

Next, we show that the consistency condition above necessarily follows from the technical 
efficiency hypothesis III. Suppose the technical efficiency hypothesis III holds. Then, for 
each zl

n, i = 1,2,..., J, there exists a closed convex upper level set L(zl

n) = {zn : fn(zn) > z'n} 

which we approximate by the convex hull L(z'n; z1, z2,..., zJ) as defined in (2.3) and (2.4). If 
j G 7", then z3

n > zl

n and fn(zn3) > / n(z m) using (5.2) and the technical efficiency hypothe
sis 777. By the quasi con cavity of /", we obtain 

fn{zni) < /"(Eie/r. A**"') (5.4) 
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where A-7*, j* £ J" are optimal for subproblem (5.3). At the optimal solution to (5.3), we also 
have from the linear programming constraint 

zni + g ^ n z n i < £ \J*Z»3. (5.5) 

It follows from the nonincreasingness property of /" that 

/"(EjgJ* X*znj) < f"(zni + 6tfnzni). (5.6) 

Equations (5.4) and (5.6) yield 

/"(*"*') < /n(E;G/rA i**B J ') ^ /"(*"*' + « r 7 n O - (5-7) 

Suppose 6* > 0. Then, from the positivity of 7fczJ. for k £ the following inequalities 
hold: 

4 < '(l + ̂ 7 J b)4 forkeE", (5.8) 

which impUes by the nonincreasingness property of /" that 

fn(zni) > fn(zni + S^nzni). (5.9) 

There are two possible cases for equation (5.7): 

case (i): fn(zm) < fn(zm + 6*j"z"'). Clearly, equation (5.9) leads to a contradiction and 
hence, we have a violation of the technical efficiency hypothesis 17/ at observation i. 

case (ii): fn(zni) = fn(zni + 6fjnzni). By assumption (5.1), jnzni ^ 0>-i. Hence, if 
S* > 0 and case (ii) holds, then znt is not technically Inefficient. The point ( z m+£*7 "z m ) 

belongs to -L(zJ,; z1, z2,..., zJ) C L(zl

n) such that (5.8) holds; output(input) levels for 
goods indexed in E" can be increased(decreased) and still yield the same level of z'n. 

Hence, a violation of the technical efficiency hypothesis 777 occurs at observation i. 

Therefore, if technical efficiency hypothesis 777/ holds, then 6* = 0 for i = 1,2,..., J. 
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Suppose 6* — 0 for all observations i = 1,2,..., J. Then the data {z-7 : j = 1,2,...,/} can 

be rationalized by the function /n*(z") defined by 

/"*(z") = max,-{4 : i = 1,2,..., J and i such that £ , e / n \ j z n i > zn, 

Eje/r. V = 1, A J > 0, j <E / n ) (5.10) 

which satisfies condition III. Geometrically, if 6* = 0 then observation zx must lie on the 

boundary of the level set L(z*n) and there is no alternative z" € L(z'n) that is a strict Pareto 

improvement to znt with respect to the goods indexed in E". Hence, 6* = 0 implies that 

observation i satisfies the definition of technical ^"-efficiency for a quasiconcave technology 

function / " . 

The function /n*(z") defined in (5.10) is illustrated for the single output (z2)-single in

put (zi) case in figure 5.6. Suppose the true production function satisfying conditions III is 

given by f2 where z2 = / 2 ( z i ) ; the heavy dots denote the observed production plans. Based on 

these observed points, the production function that can be recovered as defined in (5.10) is given 

by f2*, a step function.1 Note that the function f2* is continuous from above, nonincreasing 

and quasiconcave. Not all the points on the graph of f2* are technically efficient; the definition 

of technical efficiency for a quasiconcave technology function reduces to —z\ being minimal for 

output z2. The point b is technically J?2-inefficient since L(z2) = L(z2) = {z\ : —oo < Z\ < c} 

and z\ = d is in the interior of this ray. Observations which pass test 3 though must necessar

ily lie on the boundary of the production possibilities set approximation to the quasiconcave 

technology. 

If it is desired to redefine technical efficiency such that "frontier points" on the graph of 

/"* are deemed technically efficient, then test 3 can be modified appropriately. This alternative 

definition, which Hanoch and Rothschild (1972) use, poses the question whether z n is maximal 

for z" that is, whether z n = /"(z") given the quantity subvector z" and / " is a quasiconcave 
'The p r o d u c t i o n p o s s i b i l i t i e s set corresponding to this step f u n c t i o n is s i m i l a r to the p o l y h e d r a l p r o d u c t i o n 

set used by Deprins, S i m a r and T u l k e n s (1984) i n t h e i r t h i r d m ethod of measuring t e c h n i c a l efficiency based 
on the sole a s s u m p t i o n of i n p u t a n d o u t p u t d i s p o s a b i l i t y . T h i s method corresponds to our case of measuring 
t e c h n i c a l inefficiency assuming a quasiconcave technology. T h e y describe the p r o d u c t i o n p o s s i b i l i t i e s set as "also 
p o l y h e d r a l , b u t not necessarily a convex one (p.251)". 



Figure 5.6: Technical efficiency for a quasiconcave technology function, single output-single 
input case 
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technology function satisfying conditions III. Let us rephrase the technical efficiency hypothesis 
for a quasiconcave technology as follows. 

• Technical Efficiency Hypothesis 177' (for a quasiconcave technology): The data {(z£, znj) : 

j = 1,2,..., J) are generated by an underlying technology function /" satisfying condi
tions III and z3

n = fn(zni) for all j = 1,2,..., J. 

The corresponding efficiency test is test 3 with the following modifications. 

1. For each observation i, i = 1,2,..., J, 

(a) redefine the index set I" in (5.2) as 

I" = {j j = 1,2,..., J}, and (5.11) 

(b) solve the following linear programming subproblem i which is (5.3) now defined over 
an unrestricted variable: 

max*.-,;u>oj € : Ejg/j. XJZ"J * *ni + Silnzni, E ; e / r » = 1) = Sf. (5.12) 

2. The consistency condition is changed to: If condition (5.1) holds and 8* < 0 for all i, 
i = 1,..., J, then the data {z3 : j = 1,2,..., J) are consistent with the technical efficiency 
hypothesis III' for a quasiconcave technology. If condition (5.1) holds and 8* > 0 for 
some i, then observation z' violates the technical efficiency hypothesis III' and the data 
{z3 :j = l,2,...,J} are not consistent with this hypothesis. 

The level set implicitly used in (5.12) will include subdata only on observations with values 
for z n strictly greater than the current value z*n. With this revised definition of technical 
efficiency, an observation z* passes the test if and only if the observed subvector z m is external 
to the level set constructed using the index set ip defined in (5.11); in this case, 8* < 0. If 
observation i fails the test, then 8* > 0 gives the equiproportionate increase in output goods 
and decrease in input good contained in En needed to bring z' to the efficient frontier. In 
figure 5.6, the point b passes the test since z\ is maximal for z\ = d; geometrically, the point d 
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is external to the ray {zi : — oo < Z\ < /}. The point g is technically 752-inemcient since z\ — h 

is in the interior of the ray {z\ : — oo < z\ < c}; the violation index will be 6* = ch/oh. 

Alternatively, the technical efficiency hypothesis III' or Hanoch-Rothschild hypothesis can 

be tested without the aforementioned modifications by performing the original test 3 repeatedly 

(JV—1 times). Single out a good fc, fc / n, at a time and specify the efficiency direction vector 7fc 

such that Ek = {n}, that is, fk has only one nonzero element which corresponds to good n. If 

the violation indices for all JV —1 tests at observation z, i = 1,2,..., J, are zero, then the data 

are consistent with the technical efficiency hypothesis III' for a quasiconcave technology. If the 

violation index is positive for some observation i in one of the JV —1 tests, then observation z1 

violates the technical efficiency hypothesis III'. 

For the rest of this study, we revert to our original definition of technical .^-efficiency for 

a quasiconcave technology function / " . Whether an observation is technically efficient or not 

is not invariant to the choice of the good n to play an asymmetric role. The sensitivity of the 

results arises if the observed vector z' happens to lie on either vertical or horizontal flats at 

the boundary of the approximating production possibilities set. Note that under our regularity 

conditions / ' , II' and III, a quasiconcave function can have fiats in the relative interior of its 

graph, while a concave function can only have flats at the global maximum of its graph. In 

figure 5.6, if we focus on the factor requirement function f1 where zx = f1^), then point b will 

be technically /^-efficient (but J3 ̂ inefficient) since z\ = I is at the boundary of the level set 

{z2 : 0 < zi < I}. Given the input level —z\, the output level z\ = I is maximal. In test 3, the 

magnitude of the violation index 6* will depend on the choice of the good n and the efficiency 

direction vector j". 

At the optimal solution to subproblem (5.3), there can also be a divergence between the 

points £ j e / n \i*zni and (z m + 6*7nzm). Such a divergence can be interpreted analogously as in 

the convex and convex cone cases as due to (z m + 6*jnz"') lying on the free disposal region at 

the boundary of the relevant convex hull. The underlying production set approximation for a 

quasiconcave technology, say T 3 , is smaller than those of the convex (T\) and convex cone (T2) 
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technologies. In particular, f3 C f i C TV Across the three technical efficiency tests and given 

identical efficiency direction vectors such that E" = E, the violation index 6* cannot decrease as 

we go from test 3 (quasiconcavity test) to test 1 (convexity test) to test 2 (CRS test). Hence, if 

the value of 8* significantly increases going from test 3 to test 1, for En = E, then the result can 

be indicative of possible increasing returns or fiats in the true underlying technology; in short, 

a departure from the convexity assumption. Since conditions III for a quasiconcave technology 

are quite weak, violations of test 3 can be indicative more of a failure to maximize production 

of outputs or minimize input use. 

Test 3 can be repeatedly performed with respect to each good n, n = 1,2,..., N. If an 

observation i passes all the N test, then observation i does not lie on any flat portion at the 

boundary of the production possibilities set approximation. In the empirical implementation 

of the test, the choice of the good n to play the asymmetric role can depend on the economic 

problem at hand. This arbitrariness holds true as well in the specification of the efficiency 

direction vector 7 or 7 " . The researcher may want to focus on the production of a particular 

output. The objective of the analysis may be on the efficiency of some input, for example, labor. 

In some cases, output based measures or input based measures are desired. Nevertheless, the 

multiple output-multiple input framework offered in this study is amenable to a wide range of 

applications. 

5.2 Dual interpretation 

Another perspective on the technical efficiency concept and test for a quasiconcave technology 

function / " can be gleaned from the dual to the primal linear programming subproblem (5.3): 

min gn>o J V_ 1,w{-z"*T9n + : * - T

7 V > 1, -znjTqn + IH > 0, j € I?} (5.13) 

If we interpret the dual variables qn > Ojv-i as a vector of nonnegative prices, then — zn,Tqn is 

the net cost of producing zl

n at prices qn. Therefore, if there exist prices qn* such that g£ > 0 
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for at least one k g E" and znx solves the following net cost minimization problem: 

C(<T,4) = min2n{-<rTz" : /"*(*») > z« } = -tf (5.14) 

where /"* is defined by (5.10),. then z' is technically i5n-efncient for some / " satisfying condi

tions III. The optimal net cost at prices qn* is given by —p*. A dual definition of technical 

efficiency for a quasiconcave technology function / " is obtained. 

• Definition. Given a quasiconcave technology function / " satisfying conditions III, a 

production plan z is technically efficient relative to an efficiency direction vector 7 " , or 

technically -Coefficient where E" is the set of coordinate axis indices corresponding to 

the nonzero components of 7 " , if and only if, there exists a semipositive price vector 

qn* > 0/v_i such that q£ > 0 for at least one good k belonging tothe set En, and at prices 

q"* and net output level zn, the subvector zn is a cost minimal choice. 

This definition uses the concept of Koopmans' efficiency prices and requires the possible exis

tence of such prices, not necessarily prevailing market prices, to support a production plan. 

Alternatively, as in the convex case, the violation index 6* can be expressed as 

With our sign convention for inputs and outputs, the violation index 6* measures the distance 

of the subvector zm from the cost minimizing allocation, say z"J*, in terms of the excess "cost" 

of <5* gives the number of units of the basket of goods in En, evaluated at the shadow prices q"*, 

lost due to inefficiency. 

(5.15) 

incurred at znt relative to that at znj* with the goods in En as reference goods. The magnitude 



Chapter 6 

The Nonparametric Measurement of Allocative Inefficiency 

Allocative efficiency is sometimes referred to as economic efficiency. Given data on quantities 

and relevant prices, the behavioral goal of the firm as modeled by an objective function, and the 

firm's technological constraints, we would like to test whether the firm is using the optimal mix 

of outputs and/or inputs at the given prices. As will be shown, allocative efficiency subsumes 

technical efficiency. Two general cases are discussed: the first, when plant managers are not 

able to optimize with respect to some inputs or outputs; and the second, when complete and 

accurate price information is available and plant managers can freely vary all goods. The 

former can be interpreted as a case of constrained optimization; the latter, as unconstrained 

optimization. The former is also pertinent to short-run considerations when some factors are 

fixed; the latter can be associated with longer-run optimization when all inputs and outputs 

are variable. 

The concept of allocative efficiency is illustrated for a two-good (N = 2) convex technology 

in figure 6.7. The observed production plans are denoted by heavy dots and T\ is the convex 

hull of the observed points. Let us focus on the point a which is in the interior of T\ and hence, 

is technically inefficient independently of 7, the efficiency direction vector. Suppose an output 

based violation index is desired and we set 7 = (0,1)T or E = {2}. The proportional increase in 

output Zi needed to bring a to the point b at the boundary of Ti is given by 6* = ba/ae = gh/hf. 

The slashed isoprofit line through the points a and b have slope —ql/q^ where qf and q% solve 

the dual linear programming subproblem (3.7). 

Suppose producer a faces prices p = (pi,P2)T- Then, the profit-maximizing production 

plan, given prices p, is the point c where the isoprofit line P with slope —p\jp2 is tangent to T\. 
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Figure 6.7: Allocative efficiency for a two-good convex technology 
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The point b is technically efficient but does not yield maximal profits at the given prices; the 

isoprofit line with slope —p\/p2 passing through 6 is lower than the line P. A gauge of the 

distance between the point a and the relatively (given the prices producer a faces) allocatively 

efficient production plan c is desired. Since the concept of allocative efficiency is price dependent, 

the violation index should also reflect the shortfall in profits at a relative to that in c. Another 

criterion we desire for the allocative efficiency violation index is consistency or comparability 

with the technical efficiency violation index 6* defined earlier by (3.2) in chapter 3. To satisfy 

this criterion, we use the same goods indexed in the set E as the reference goods. 

In figure 6.7, a measure of allocative inefficiency at a in terms of output loss is given by the 

vertical distance between the points a and d. The point d, though not technically feasible given 

Ti , lies on the same isoprofit line as c. The resulting proportional loss measure, say £*, would 

be da/ae. The following relationship holds between the two violation indices: 

The allocative efficiency violation index e* can be decomposed into its components in the 

following manner: 

with 6* due solely to technical inefficiency and (e* — S*) due solely to failure to respond effi

ciently to prices. The latter source of inefficiency we term as "pure" allbcative inefficiency. A 

proportional increase in output at a by S* brings us to the boundary of Ti and hence, the out

put loss due to pure allocative inefficiency given by (e* — S*)z2 can be considered hypothetical. 

Therefore, for prescriptive purposes, an efficiency test has to be devised that will also yield the 

allocatively efficient point c. 

In terms of the reference good z2, the violation index £* is also equal to kl/li (= da/ae). In 

this form, the index can be expressed as 

> 0. 
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which has as numerator the distance between the two parallel isoprofit lines with slope —p\/p2 

passing through c and a, and as denominator the distance between the two parallel isoprofit line 

through a and e. Hence, the violation index £* gives the proportion of the value of the reference 

goods, pTja = P2CL2, lost due to allocative inefficiency (both pure allocative inefficiency and 

technical inefficiency). At prices p = (p\,p2)T, actual profits at a must be increased by £*(p2«2) 

to attain allocative efficiency (or economic efficiency ), that is, 

pTc - pTa + el(pTja). 

Graphically, it is apparent that 

pTc — pTa kl ^ _ q*Tc — q*Ta _ gh 
a pT,ja li a q*T/ja hf 

where q*T = (q^q^) corresponds to the slope of the "efficiency price" line Q. 

In the next chapters, the more general formulations of the allocative efficiency tests in the 

context of partial profit maximization are developed. Suppose plant managers are not able to 

optimize with respect to some inputs or outputs, or we simply do not have accurate price data 

for some goods. The constrained optimization tests are applicable in the short run when the 

firm has some fixed factors, such as capital equipment and structures. The behavior of the firm 

can be described as maximizing a restricted or variable profit function. The following tests are 

also helpful in evaluating the economic performance of nonprofit entities, regulated firms and 

government enterprises. Market prices may not exist for their output (which can be undesirable 

like pollution) or output levels may be mandated by law; even if output prices exist, they may be 

set beyond market forces. However, they are most likely competitive in the inputs market. An 

appropriate description of the behavior of such producers is cost minimization. Alternatively, 

some researchers have defined efficiency in the context of producing maximal output (which can 

be multi-valued) given a vector of inputs; the corresponding behavioral description for allocative 

efficiency testing might be revenue maximization. As well, the constrained optimization tests 

that follow offer a general framework wherein the unconstrained, optimization or complete profit 

maximization tests can be derived as special cases. As in the analysis of technical efficiency, 
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the allocative efficiency tests are developed relative to a postulated general technology assumed 

to satisfy the appropriate regularity conditions. 

Suppose the firm can optimize with respect to K goods where 1 < K < N. Let us denote this 

set of goods by S. Hence, the relevant prices for a particular firm, say firm i, are p'n > 0, n G S. 

We also specify a set E C S containing the desired reference goods with respect to which we 

want to measure the efficiency loss. We retain the assumption | z^ |> 0 for all n G E and 

j = 1,2,..., J. Let us denote by ef the violation index for the allocative efficiency hypothesis 

at observation i and given the prices of the goods in 5. Hence, if ef = 0, then observation i is 

allocatively efficient with respect to the goods in set 5; otherwise, ef > 0 implies observation i 

is allocatively inefficient with respect to the goods in S. The value of the reference goods is 

the price-weighted sum of outputs and inputs (indexed positively) in the set E. The violation 

index ef gives the proportion of this basket of goods or, more accurately, the value of this 

basket of goods given up due to economic inefficiency. In this sense, the violation index is also 

termed a loss measure. 



Chapter 7 

The Measurement of Allocative Inefficiency for a Convex Technology Assuming 

Partial Profit Maximization 

7.1 Allocative efficiency test (test 4) 

Suppose the true technology has a convex production possibilities set satisfying conditions I. 

Given quantity and price data, {z-7 : j = 1,2,..., J} where z-7 = (z\, z%,..., zJ

N) and {p^ : 

n € 5, j = 1,2,..., J}, we want to test whether the production plan z' is constrained alloca

tively efficient at prices p'n > 0, n € S. The efficiency test involves solving a linear programming 

problem given below for each observation i. 

• Test 4 

1. For each observation i, i = 1,2,..., J , solve the following linear programming sub-

problem i and define the violation index ef by 

maxAx>0 A^>0{En65P,n(E/=l *4) • £/=! ^ £ > 4, » 2 5, £j=l A-7 = 1} 

(7.1) 

= En€S^4 + ef 4 I- (7-2) 

Note that rewriting the optimized objective function in (7.1) as (7.2) defines the 

violation index for the z'th observation. 

2. Consider the following consistency condition: If ef = 0 for all i, i = 1,2,..., J , then 

all J observations are allocatively efficient with respect to the goods in set S. If 

ef > 0, then observation i is not allocatively efficient with respect to the goods in 

set S. 
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Under the assumption of conditions I for the technology and given quantity data, a pro

duction possibilities set approximation is given by 

f1(z\z\...,zJ) = {z: £ / = 1 A ' V >z,E/=i^' = l , A ' > 0 , j = l,2,...,J}. (7.3) 

For any nonnegative price vector p > ON and z £ Ti, there exist A-7 > 0, j = 1,..., J such that 

£ / = 1 AJ = 1 and 

PT(E/=i XJz3) * VTz. (7.4) 

The unconstrained profit maximization problem for producer i facing a complete set of prices 

p' > ON can be formulated as 

maxA1>0,...,A,>o{p,T(E/=i : E/=i *j = 1} (7-5) 

= piTz* 

>p,Tz3,j = 1,2 , . . . ,J 

where z* = Ej=i AJ'*zJ' is the unconstrained allocatively efficient point and A-7*, j = 1,2,..., J , 

solve the linear programming problem (7.5). 

If producer i cannot optimize with respect to good n, n g" 5, then we add the constraint 

J2j=i ^3zn ^ z\n n & S- This constraint implies that output must be at least as large as z'n 

if z'n > 0, or input must be at most equal to — z'n if z'n < 0. This is just the free disposal 

assumption applied to good n, n # S. As will be seen more clearly in the saddlevalue problem 

approach to this constrained optimization problem, the prices for good n, n £ S are irrelevant 

to the firm. Hence, the constrained optimization problem for a convex technology can be 

formulated as given in (7.1). A violation index ef > 0 can also be obtained. 

The optimal production plan at prices {pl

n : n £ 5} is zs* with components E/=i ̂ *zn 

for n £ S and z'n for n £ S where X3*, j = 1,2,..., J solve (7.1). In contrast to the point 

(z* + 6*jzf), the vector zs* is not necessarily a Pareto improvement on z' except possibly for 

the goods not in 5. The optimal partial profit given S is J2nesPnzn* while partial profit at the 

current production plan is £nesPn z n- Their difference is given by efEnecPnl zx

n |. Whereas 
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the adjustment Sf-yz' is always technically feasible, the adjustment ef \ z'n | for all n G E is not 
necessarily feasible. 

Note too that the problem formulation (7.1) uses firm-specific producer prices. In a cross-
section of firms, actual prices faced by producers may vary from market prices due to, for 
example, transportation costs or tax distortions in the economy. In time series data, relative 
prices of goods may change. 

The Lagrangian function corresponding to the left-hand side problem in (7.1) is 

<KK ?,A0 = E»esPJ.(E/=i XJ4) + £„<zs<7n(£/=1 A>*j - 4) + p(l - £/=i V) (7.6) 

where A > Oj, q > ON-K and p is unrestricted. The Kuhn-Tucker necessary optimality condi
tions corresponding to (7.6) are: 

for; = l,2,...,j: 

AJ* > 0, (7.7) 

X*(T,nesPn4 + EngS9n4 ~ P*) = 0; 

for n g- S: 

and 

Ej=iXJ*4-4 > o, 

q'n > 0, (7.8) 

<£(£/=! A ' *4 -4) = 0; 

1 - E i i AJ'* = 0 (7.9) 

where A* > 0j solves (7.1), and q* > 0N-K a n d P* unrestricted are Lagrange multipliers such 
that 

<f>(\, q", p*) < <f>(\*, q*, p*) < <£(A*, q, p) 
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for all A > 0j, q > 0/v-A' a n ( i n unrestricted. The vector q* can be interpreted as the shadow 

prices for the goods not in 5 and u* as the optimal shadow profit. At the optimal production 

plan zs* the value of the shortfall in output and excess supply of inputs not in 5 at shadow 

prices q* is zero. For convenience, let us term a production plan z that is allocatively effi

cient with respect to the goods in set 5 as allocatively 5-efficient. Hence, the plan zs* with 

components J2j=i AJ*z£ for n £ S and z'n for n ^ 5 is allocatively 5-efficient. 

7.2 Some results 

7.2.1 Technical efficiency proposition 

The allocatively 5-efficient production plan zs* is technically 5-efficient and does not lie on 

any free disposal region with respect to the goods in 5. This proposition implies that zs* is on 

the boundary of the production possibilities set; the second part follows from the positivity of 

prices for goods in 5. There exist prices q* > Ojv with q* = p'n > 0 for n G 5 and q* > 0 for 

n g" 5 such that zs* is a profit maximal choice. By the dual definition of technical efficiency for 

a convex technology, the vector zs* is technically 5-efficient. 

The proof of the proposition uses the saddlevalue problem approach discussed earlier. From 

the complementary slackness condition in (7.7) and summing across all j's, we obtain 

E„€sK(E/ = i A***) + E„^5^(E/=i A>4) - /i*E/=i A>' = o 

which implies 

£ „ € s r t , ( £ i = x A>*z£) + £ „ e s « = u* (7.10) 

using (7.9) and the complementary slackness condition in (7.8). It then follows that zs* is 

technically E-efficient for E = S and E — {n} for any n G 5. Therefore, we obtain the proposition 

above. 



Chapter 7. The Measurement of Allocative Inefficiency for a Convex Technology . 71 

7.2.2 Relative efficiency proposition 

There exists at least one observation j (j £ {1,2,..., J} and j = i is possible) which is relatively 
efficient to observation i at given prices p'n, n £ 5 yielding the same shadow profit level p*; this 
observation has the corresponding A-7* positive, that is, AJ* > 0. From (7.9), at least one of the 
\i*s must be positive and from (7.10) and the complementary slackness condition in (7.7), the 
corresponding observation zi yields the same shadow profit level as zs* at prices p*n, n £ S and 
q*,nfS. 

This proposition implies that observations with positive A-7* lie on the same facet of the 
convex hull as zs*. The facet is identified by p* and the prices p'n, n £ S and q*, n g" S. In the 
DEA-terminology, these observations are evaluators of observation i. 

7.2.3 Nonnegativity of ef 

The violation index for allocative 5-efficiency, ef, is nonnegative; that is, ef > 0. Note that 
A' = 1 and A-7 = 0 for j ^ i is feasible for problem (7.1). Hence, z' is feasible but not necessarily 
optimal for problem (7.1). It follows that 

E»€SJ>*n(E/=l »*4) > EneSPn4 (7.11) 

and 

£?ZneEPn\Zn l>0. 

By assumption, pn > 0 and | z'n \ > 0 for n £ E; thus, ef > 0. 
If ef = 0, then (7.11) must hold with equality and z' is allocatively 5-efficient. If ef > 0, 

then z' does not yield maximal partial profit with respect to the goods indexed in 5. 

7.2.4 Comparability of ef and 8* 

If the technical and allocative efficiency tests for a convex technology (tests 1 and 4, respectively) 
are performed for observation i with identical specifications of the reference set E such that 
75 C S, then the resulting violation indices are comparable and moreover, ef > 8*. Suppose 
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test 1 is performed; the resulting point (z' + S*jzl), with components (z'n + S*\z*n\) if n 6 E 

and z'n if n g" E, is feasible for the partial profit maximization problem (7.1). The optimal \3s 

for problem (3.2) obtained in test 1 are feasible but not necessarily optimal for problem (7.1) 

since ECS implies S C E.1 Hence, 

£ „ e s K ( £ / = i A ' ' * z £ ) > E„ esP*„(4 + %7«4) 

where XJ*, j = 1,2,..., J , solve (7.1). By definition from (7.1), the inequality can be rewritten 

as 

Since YlneEPnl zn I > 0, it follows that 

ef > St. (7.12) 

With a consistent specification of the efficiency direction vector 7 in test 1 and the set E in 

test 4 , the allocative efficiency violation index can be decomposed into its components: 

ef = S: + (ef-6t). (7.13) 

The term S* measures the waste due purely to technical inefficiency, or loosely defined, the 

failure to produce at some point on the boundary of the production possibilities set. The 

second term (ef — S") can be attributed to pure allocative inefficiency, or the failure to respond 

efficiently to the prevailing prices of the goods in S. 

The relative magnitude of the two terms may depend on the choice of goods in the set E. In 

empirical applications, the researcher must be guided by the economic problem under consider

ation. Extraneous information, other than price and quantity data, can be helpful in modeling 

the behavior of the firm. 

7.2.5 S p e c i a l cases: K = 0,1,N-1,N 

(1) K — 0. In the absence of market prices for goods, as the case may be in controlled economies, 

the objective function in the linear programming subproblem (7.1) becomes vacuous. Hence, 

'The sets 5 a n d E are the complements of S and E, respectively. 
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the allocative efficiency test is not applicable in this instance. The producer would not face a 

price-dependent objective function to guide its behavior. As Koopmans (1951) has noted, the 

notion of efficiency in the context of such an economy reduces to that of technical efficiency, 

that is, producing at the boundary of the production possibilities set. The choice of production 

plan must still be subject to technological feasibility considerations. The appropriate test for 

efficiency in the case K = 0 is the technical efficiency test which uses quantity data only. 

(2) K = 1. If there is only one good, say good n, with a relevant market price, then the 

allocative efficiency test 4 is equivalent to the technical efficiency test 1 with the reference 

set E = {n}. The revenue maximization or cost minimization problem, as the case may be 

depending on whether good n is an output or input, in (7.1) would entail merely the search for 

the maximal quantity of good n given the quantities of the other goods. Mathematically, the 

solution of the linear programming subproblem (7.1) is equivalent to the solution of the Diewert-

Parkan technical efficiency formulation (3.17) which we have shown to test for the special case 

of technical /̂ -efficiency where E = {n}. Both test 4 (with K = l) and test 1 with E = {n} will 

yield identical values for their violation indices, that is, 6* = ef. Intuitively, this result follows 

because the existence of a market price for a good ensures that with respect to this good, an 

optimizing producer will not be at a free disposal region of the production possibilities set. 

(3) K = TV —1. If there is only one good not in 5, then the partial profit maximization 

problem reduces to a net cost minimization problem if the excluded good is an output, or to 

a net revenue maximization problem if the excluded good is an input. The special case with 

K — JV—1 may be applicable to instances wherein the firm has actually several fixed goods which 

can be aggregated to form a Leontief or Hicksian composite good. For a convex technology, the 

appropriate test for consistency with the net cost minimization (or net revenue maximization) 

hypothesis is still test 4. 

The usual cost minimization tests found in the literature and which involve the simpler 

"revealed preference"-type inequalities (see, for example, Diewert and Parkan (1983) and Var-

ian (1984a)) assume a quasiconcave technology. A similar test will be derived later for testing 
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for unconstrained optimization under the assumption of a quasiconcave technology. If the true 

technology is convex, then a test using these inequalities may underestimate the degree of in

efficiency. Intuitively, the production possibilities set approximation asssuming a quasiconcave 

technology is contained by that for a convex technology. Given the same efficiency direction, 

the distance of an observed point to the quasiconcave frontier cannot be larger than the distance 

to the boundary of the convex technology set. 

More rigorously, in the linear programming formulation for a convex technology given 

in (7.1), the constraint for a good n, n g- S is J2J=i ^zn ^ z%n where £ / = i AJ = 1 does not 

restrict the positive X3*s to observations where z^ > z'n. In contrast, for a quasiconcave technol

ogy, an upper level set for z'n is constructed and the corresponding constraint is J2jeir> X3 z3

n > z'n 

where J^jeir AJ = 1. 

(4) K = TV. When K = TV, plant managers can freely vary all goods and complete and 

accurate price data are available. In this case, the producer has an unconstrained optimization 

problem. (Implicitly, the producer still remains bounded by technological feasibility consider

ations.) The test for full profit maximization, assuming a convex technology, is test 4 with 

S = {1,2,..., TV}. As will be shown in a later chapter, the test in this case reduces to a 

comparison of inequalities; the resulting test we number as test 7. Both tests, either solving 

the linear programming problem (7.1) or comparing inequalities, yield identical values for the 

violation index ef where S contains all the TV goods. 

7.2.6 Restricting u* to be nonnegative 

As can be seen from the Lagrangian function (7.6), the shadow profit u* can be negative, zero or 

positive for a convex technology. Hence, negative profits or losses can be consistent with profit 

maximization for a convex technology. If the shadow profit p* is restricted to be nonnegative, 

then this is equivalent to having Y^j=i ^ < 1 or to assuming that Ojv 6 T. The production 

possibilities set approximation is given by T defined by 

f(z\ z\ ...,zJ) = {z: £/=1 \3z3 > z, £/=1 \i < 1, X3 > 0, j = 1,2,..., J}. (7.14) 
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Figure 7.8: Production possibilities set T with p.* > 0 

As illustrated in figure 7.8 for a two-good technology, the technology described by T in (7.14) is 

assumed to be conical near the origin and display decreasing returns elsewhere. Fare, Grosskopf 

and Lovell (1985, p.181) describe T in (7.14) as the smallest closed star-like set containing the 

observed z3s; only radial contraction to the origin is allowed. 

The test for allocative 5-efflciency assuming a convex technology and restricting shadow 

profits to be nonnegative can be done in two ways. Perform test 4 with the linear programming 

problem (7.1) modified to either 

maxA 1> 0 A J > 0 {E„65PJ , (E /= i »4) • E/=i » 4 >z'n,n?S, £ / = 1 A> < 1} (7.15) 

or 

maxA 1>0 A,>o{E„654(E/=oA J4): E/=oAJ'4 > 4, « t S, ZJ

j=0» = 1} (7.16) 

where z° = 0;v. Problem (7.15) exphcitly includes the restriction E/=i A-7 < 1 while prob

lem (7.16) includes the origin in the convex hull. The violation index ef will have the same 

value using either formulation. 



Chapter 8 

A LeChatelier Principle for Measures of Allocative Inefficiency 

As the number of goods K with respect to which the producer can optimize increases, the 

difference between the firm's optimized objective function value and its actual realized value 

cannot decrease. Given a fixed reference set E, the violation index ef defined in (7.1) cannot 

decrease as the number of goods in S increases. This result is consistent with the conventional 

wisdom that the unrestricted or long-run profit is always at least as large as the restricted or 

short-run profit. 

We prove the proposition by induction. Suppose we increase by one the number of elements 

in set S containing the goods with respect to which producer i can optimize; denote the new 

set by S1. Corresponding to the set S', the number of constraints in (7.1) is reduced by one. 

Let us rewrite problem (7.1) for these two cases: 

:/=i A j 4) : £ / = i X'zi >z'n,n? S, £ / = i \* = 1); 

(8.1) 

(8.2) 

maxA 1>0 AJ>0{E„es'P'n(E/=i A '4) : E;=i *4 > 4 , » £ S', E/=i » = 1}-

It can be shown that 

5 A' + 1(A") - E „ e s ' t f , 4 > 5 A ' ( A * ) - E n € s K 4 - (8.3) 

The proof is as follows: 

gK+1(\n - E„G5<K4 = E „ € s ' K ( E / = i A'**4) - E„ 6 5'PJ ,4 

> E„ 6 S'PJ,(E/=1 AJ'*^) - E„€5'PJ,4 
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since A-7* is feasible but not necessarily optimal 

for problem (8.2), 

= EnesPi,(E/=i »*4) + rir+i(£/=i v**ic+i) 

— Y,n£SPnzn - P'K+1 ZK+1 

where p%x+\» Z'K+I a r e * n e P r i c e a n ( l quantity of the 

(A' + l)th good added to the set S to obtain S' 

= g K(n - E „ e s K 4 + Pk + i (E/=i -

> PA'(A*) - £ „ e s K 4 

since > 0 by assumption and 

(E/=i XJ*zJ

K+1 - zK+1) > 0 from (8.1) and n = (K +1)#S. 

Thus, we obtain inequality (8.3). If we divide both sides of (8.3) by the value of the refer

ence goods £ „ e £ P j j | z'n |, then we have ef > ef where ef and ef are the violation indices 

corresponding to sets S' and S, respectively. 



Chapter 9 

The Measurement of Allocative Inefficiency for a Convex Conical Technology 

Assuming Partial Profit Maximization 

9.1 Allocative efficiency test (test 5) 

Suppose the true technology has a production possibilities set that is a convex cone and satisfies 

conditions II. Let 1 < K < N — 1, that is, the set 5 is nonempty and contains at most N — 1 

goods. The test for allocative S-efnciency of the production plans z' for prices p'n > 0, n € S 

and i = 1,2,..., J is given below. 

• Test 5 

1. For each observation i, i = 1,2,..., J , solve the following linear programming sub-

problem i and define the violation index ef by 

m a x A 1 > 0 ) . . . ) A J > 0 { £ „ e S K ( £ / = 1 A ^ ) : £ / = i A'z£ > z'n, n £ 5} (9.1) 

Note that rewriting the optimized objective function in (9.1) as (9.2) defines the 

violation index for the ith. observation. 

2. Consider the following consistency condition: If ef = 0 for all i, i = 1,2,..., J , then 

all J observations are allocatively efficient with respect to the goods in set S. If 

ef > 0, then observation i is not allocatively efficient with respect to the goods in 

set S. 
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The production possibilities set approximation for a constant returns to scale technology 
satisfying conditions II is T2 defined as 

f2{z\z\...,zJ) = {z: £/ = 1A'V >z, A'>0,j = l,2,...,J}. (9.3) 

Since any z € T2 can be scaled up or down along a ray through the origin and still be in T2, 

output levels are unbounded in T2. In contrast, output levels are bounded from above in the 
set 7j defined by (7.3) for a convex technology satisfying the regularity conditions I. This 
difference can be seen in figure 2.2. 

With constant returns, if a producer can make positive profits, he can theoretically scale 
up the production plan and obtain infinite profits. On the other hand, profits are bounded 
from below since z = (bv is in its production possibilities set. Since we observe only finite 
quantity vectors, the meaningful profit-maximizing choice for a firm having a constant returns 
to scale technology is a zero profit allocation. However, if the firm has found such a zero profit 
production plan, the producer can scale his operations up or down by a nonnegative factor and 
be indifferent to the scale of operations. We therefore further assume that the firm arbitrarily 
fixes the level of at least one good to determine the scale of its operations. Hence, the restriction 
Ii < N - 1. 

The corresponding Lagrangian function is 

q) = £„€sK(£/=i Xizi) + £„^9n(£/ = 1 Xjzn - zn) (9.4) 

and the necessary Kuhn-Tucker optimality conditions are 

for j = l,2,...,j: 

A> > 0, (9.5) 

A''*(£„ esM + E « « s « ) = 0; and 

for n g S: 
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> 0, (9.6) 

-zn) = 0. 

Again, the Lagrange multiplier q* > 0, n € 5 can be interpreted as the shadow price of good n. 

If good n is an input and is in excess supply, then q* = 0. If good n is an output more of which 

could have been produced, then q* = 0. If q* > 0, the converse holds. With a convex cone 

technology, the optimal shadow profit u* which appears in (7.7) is restricted to zero. Note that 

The solution to the linear programming problem (9.1) can be similarly interpreted as in 

the convex case. Where the convex cone results differ will be discussed next. There are three 

possible solution configurations for (9.1). They are: (i) A* > 0j and finite, that is, A* has a 

finite positive value for at least one j; (ii) A* = 0j; or (iii) A* is unbounded. If ef > 0, then the 

allocatively 5-efficient production plan at the given prices is zs* with components E/=i X3*z3

n 

for n € 5 and zl

n for n g" 5. After correcting for free disposability in the goods not in 5, an 

allocation z** where z** = Ylj=i X3*z} can be obtained. As elaborated in the discussion of 

the technical efficiency tests, the linear programming formulation we have does not guaranteee 

detection of free disposability along all N dimensions. The first two cases yield a finite zs*. 

The first case results in nontrivial allocations for zs*and z**. The second case yields z** = Ô r 

or the shutdown point. The third case implies that at prices p'n, n € 5, the shadow profit is 

infinite. Having an input not in 5 ensures a finite solution. If all the goods not in 5 are output 

goods, it is possible, though it does not necessarily follow, that A* would be unbounded. 

9.2 Some results 

The relative efficiency proposition for testing for allocative 5-efficiency assuming the technology 

is described by a convex cone satisfying conditions II is as follows. Assuming a finite optimal 

solution to the linear programming problem (9.1), either (i) there exist at least one observation j 
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(j G {1,2,..., J} and j = i is possible) which is relatively efficient to observation i at given 

prices p'n > 0, n G S yielding a zero shadow profit;1 or (ii) the optimal choice for the producer, 

given the prices p'n > 0, n G 5, is the shutdown point. Case (i) obtains when A* is finite and 

nonzero, that is A* > fj/v. The proof uses the complementary slackness condition in (9.5); the 

geometric interpretation is analogous to that in the convex case. Case (ii) obtains when the 

optimal solution A* is the zero vector, that is, A* = 0j. 

Assuming a finite optimal solution to the linear programming solution (9.1), the technical 

efficiency and LeChatelier principle propositions and the results on the nonnegativity of ef and 

the comparability of ef and 6* hold as well in the constant returns to scale case as in the convex 

case. 

When a firm having a constant returns to scale technology can optimize with respect to 

all goods but one, that is, K = N — 1, we consider the producer as having an unconstrained 

allocative efficiency problem. As discussed earlier, at least one good is held fixed to determine 

the scale of operations. Test 5 can be performed to test for allocative efficiency. An alternative 

test (test 8), involving a comparison of inequalities, is given in a later chapter. At K = N — 1, 

both tests yield identical values for ef. 

Let (ef)convex and (ef)cRS be the violation indices obtained froms tests 4 and 5, respectively, 

for a given set S of size K where 1 < K < N — 1; prices p*n > 0, n G S; and a fixed reference 

set E. It can be shown that the violation index obtained under the convex conical technology 

assumption cannot be smaller than that obtained under the convex technology assumption, 

that is, 

(ef)cRS > (ef)convex- (9.7) 

The proof is simple. Suppose A-7, j = 1,2,..., J solve (7.1) and A-7*, j = 1,2,..., J solve (9.1). 

Then, the X3s are feasible but not necessarily optimal for problem (9.1). Hence, 

EnesPUEU XJ*4) > E„ €5PJ,(E/=i A ^ ) , (9-8) 
lThis observation has the corresponding AJ* positive (AJ* > 0 ) . 
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that is, the optimal partial profit assuming a constant returns technology cannot be smaller 

than the optimal partial profit assuming a convex technology. Since the right-hand side terms 

of (7.1) and (9.1) are identical except for the violation indices, the result follows. Intuitively, 

this result arises because the convex production possibilities set approximation T\ is contained 

in the convex conical production possibilities set approximation TV 



Chapter 10 

The Measurement of Allocative Inefficiency for a Quasiconcave Technology 

Assuming Partial Profit Maximization 

10.1 Allocative efficiency test (test 6) 

Suppose the true technology has nonconvexities in its production possibilities set. We assume 

that the individual technologies can be described by quasiconcave functions satisfying condi

tions III. Single out a good n with respect to whose technology we would like to test for 

allocative efficiency. Let the set 5" contain the K goods (where 1 < K < N — 1) with respect 

to which the producer can optimize. We assume Sn does not contain good n. Given prices 

p'm > 0, m € S" and quantity data {z3 : j = 1,2,..., J) , we would like to test whether the 

production plans z3, j = 1,2,..., J are allocatively S"-efficient, that is, the z3s are allocatively 

efficient with respect to the goods in the set 5". Specify a set E C 5" containing the desired 

reference goods. The efficiency test follows. 

• Test 6 

1. For each observation i, i = 1,2,..., J , 

(a) define an index set 

I? = {j •• 4>4,j = 1,2,..., /}, and (10.1) 

(b) solve the following linear programming subproblem i and define the violation 

index ef by 

max A J > 0 ) i € / i r .{E m € S np| n (i: j e / r Xjz3

m) : £ j € / r X3z3

m >zm,m^Sn, 

£ i € j r V = l } (10-2) 
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= Emes»pinzL + ef EmefiPml
 ZL I- (10.3) 

Note that rewriting the optimized objective function in (10.2) as (10.3) defines 

the violation index for the ith observation. 

2. Consider the following consistency condition: If ef = 0 for all i, i = 1,2,..., J , then 

all J observations are allocatively efficient with respect to the goods in set S". If 

ef > 0, then observation i is not allocatively efficient with respect to the goods in 

set Sn. 

The regularity conditions III for a technology function / " imply the existence of closed 

convex upper level sets. The level set approximation for z'n is given by 

L(zn; z\z2,...,zJ) = {zn : £ i € / r X3z»3 > zn, Zjei? A' = 1, A' > 0, j € J ? ) } (10.4) 

where I" is defined in (10.1). For any nonnegative price vector p" > 0JV-I and zn £ L(zn), 

there exist X3 > 0, j £ I" such that X3 = 1 and 

PnT(T,jeir>X3zn3) > pnTzn. (10.5) 

The unconstrained optimization problem for producer i facing prices pn* > 0jv-i can be formu

lated as 

maxAJ>o,i€/in{p",T(Ei€/r XJZ"J) •• Eieif ^ = 1, j £ /?} (10.6) 

— pTliT gTl* 

> pniTzn3\ j £ If, 

where zn* = Ej-gTj* AJ'*^nj' and A*", j * £ J / 1 solve (10.6). 

If zn > 0, or good n is an output, then subproblem (10.6) can be interpreted as a net cost 

minimization problem, that is, finding zn £ L(zn) such that the net cost of producing z'n is 

minimal given prices pm. If z'n < 0, or good n is an input, then subproblem (10.6) can be seen 

as one of maximizing the net return to this input. With either interpretation, the objective 

function is a partial or restricted profit function. 
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If the firm is unable to optimize with respect to some goods, then additional constraints 

are introduced to subproblem (10.6). The objective function, which remains a partial profit 

function, is appropriately modifed as well. Formulation (10.2) then obtains for the constrained 

optimization problem. Since T\ in (7.3) and L in (10.4) have the same property of being closed 

convex sets, the results of test 6 can be interpreted analogously as those of test 4 for a convex 

technology. 

10.2 Some results 

Keeping in mind that the analysis uses level sets in TV—1 dimensional space, we obtain technical 

efficiency, relative efficiency and LeChatelier principle propositions similar to those in test 4 for 

a convex technology. The results on the nonnegativity of ef and the comparability of ef 

and hold where the violation indices are obtained under the quasiconcavity assumption. An 

alternative test (test 9) for the limiting case K = N — 1 or unconstrained optimization for a 

quasiconcave technology is presented in the next chapter. 

If, for notational simplicity, we define Sn = S, then it follows that, for given prices p'm > 0, 

m G S and a fixed reference set E, 

(ef)cRS > (sf) convex ^ (£,' ^quasiconcave 

(10.7) 

where the ef are obtained from tests 5, 4 and 6, respectively. Suppose X3, j G I" are optimal 

for problem (10.2). Then, X3, j G I" and X3 = 0, j g" I? are feasible but not necessarily optimal 

for problem (7.1). The second inequality in (10.7) follows. The first inequality in (10.7) is given 

in (9.7). The values of the partial profit functions will be related in the following manner: 

where the X3*s and X3s are optimal for the constant returns to scale problem (9.1) and the 

convex problem (7.1), respectively. 

The allocative efficiency tests 4, 5 and 6, as well as tests 7, 8 and 9 to be presented in the next 

chapter, are developed under the joint hypotheses of the regularity conditions on the technology 
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and of efficiency. A positive violation index can be attributed to either of two sources. If the 

researcher gives lesser weight to inefficiency, then significant differences in the values of the 

violation indices in (10.7) can be interpreted in the context of the curvature conditions on the 

technology. 



Chapter 11 

The Measurement of Allocative Inefficiency Assuming Complete Profit 

Maximization 

11.1 The convex technology case (test 7) 

Suppose complete and accurate price data are available and firms can freely vary all goods. 

The following tests for unconstrained allocative efficiency are limiting cases of the correspond

ing tests for constrained optimization. The saddlevalue problem approach is used to derive the 

complete profit maximization tests; they can alternatively be shown using revealed preference 

type arguments (see Diewert and Parkan (1983, pp.150-152), Hanoch and Rothschild (1972), 

Varian (1984a, pp.57-64; 1984b)). The unconstrained optimization tests and their correspond

ing constrained optimization versions yield identical values for the violation indices for a fixed 

set of reference goods. The following tests are simpler to implement since they do not require 

solving linear programming problems and involve only a comparison of inequalities. 

The informational requirements are identical for the constrained and unconstrained opti

mization tests. Price and quantity data and the specification of a set E of reference goods are 

required. Using the notation in the technical efficiency tests, the set E corresponds to an JV-

dimensional vector 7 with nonzero components corresponding to the goods in E. Let us denote 

by e* the violation index at observation i given the price vector p* = (p\,p*2, • • • ,PN)T ^ OAT. 

If e* = 0, then observation i is (unconstrained) allocatively efficient relative to the technology 

posited; e* > 0 implies otherwise. In this chapter, we give the formulas for the violation index e* 

which is ef when the size of the set S is at its limiting value. 

To test for allocative efficiency assuming the underlying technology satisfies conditions I, 

the violation index e* is defined in test 7 given below. 
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• Test 7. Suppose K = N, the number of elements in set S. Calculate the violation index e* 

defined as 
^ E m a x ^ ^ . ^ : j = 1,2,...,J ̂  . (11.1) 

The proof of the equivalence of test 7 and test 4 where K = N is given below. 
Suppose K — N. Then the linear programming subproblem i in (7.1) reduces to 

maxA1>0,...iV>0{p'T(E/=1 \izi) : £/=1 M = 1} (11.2) 

= P,T^' + efE„eBP ,„l4l 

where the set E is a subset of the TV goods chosen as the reference goods. The Kuhn-Tucker 
necessary optimality conditions are 

for j = 1,2,..., j: 

piTzj - p* < 0, 

\'m > 0, (11.3) 

and 

l-£j=iAJ'* = 0. (11.4) 

From (11.3) and (11.4), we obtain 

maxi{p'JV :j = l,2,...,J} = p*. (11.5) 

Equation (11.4) ensures equality for at least one j. Using the complementary slackness condition 
in (11.3) and summing across all j's, we have 

P i T(EJ

j=i^zJ) = PiTzi + £?Zn€EPn\4 I using (11.2) 

= p* using (11.3) 

= maxj{p*'IV : j = 1,2,..., J) using (11.5). (11.6) 
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An expression for ef, using (11.6), is then 

er = 
s _ maxjjp^z3 : j = 1,2,..., J} - piTzi 

fp ' T (2J-z i ) 
: j = 1,2,...,J). (11.7) 

If we denote by e* the value of ef when K — N, then (11.1) follows. 

Suppose j * solves (11.1). Then, at prices p', a profit maximal production plan is z3'. The 

vector z3* is not necessarily a Pareto improvement on z', that is, it does not follow that z3* > z'. 

By moving from z' to z3*, (full) profits can be increased by e*(p'T,yz'), which is the value lost 

due to inefficiency. The possibility of free disposability lends a complication in the analysis 

of technical efficiency and constrained optimization. If a full range of (nonzero) market prices 

exist and the firm can optimize with respect to all goods, then the allocatively efficient points 

will not lie on any free disposal section of the production possibilities set. Note the similarity 

between e* in (11.1) and 8* in (3.15). For a convex technology and given a fixed set E of 

reference goods, the following relationship among the different violation indices holds: 

<5* < ef < et (11.8) 

where E is contained in S. The first inequality is given in (7.12) and the second follows from 

the LeChatelier principle proposition. Inequality (11.8) implies that profits can be higher the 

greater the number of goods the producer can vary and the lesser the restrictions on the direction 

of adjustment. A decomposition of the violation index e* is possible: 

e? = + (ef-S;) + (e!-ef). (11.9) 

Equation (11.9) can be interpreted accordingly; the last term (e*-ef) measures the waste due 

to failure to optimize with respect to the goods not in S. 

Suppose E = S contains all the input goods. Then, the violation index 6* gives the pro

portional reduction in inputs needed to bring z' to a point on the boundary of the production 

possibilities set. The magnitude of ef gives the proportional reduction in cost needed for z* to 
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be consistent with cost minimizing behavior given input prices and current output production 

levels. Minimal cost can be obtained by being more technically efficient and by altering the 

input mix; this may entail increasing the use of some inputs and decreasing other inputs. Even 

if the firm is cost minimizing, its output mix may not yield maximal profits at prevailing prices. 

By being able to vary all goods, inputs and outputs, the possible increase in profits is equivalent 

to savings of e* of the initial cost incurred by the firm. 

The proposed tests can then be applicable to efficiency studies for an industry with regulated 

firms, and private firms subject to less regulations and whose output prices may be more 

reflective of market conditions. The behavior of regulated firms can often be described as cost 

minimizing while that of private firms as profit maximizing. Though the existence of public 

or regulated enterprises can be justified by other economic and social objectives, it is still 

enlightening to have a measure of productive efficiency losses in weighing the tradeoffs among 

possibly conflicting objectives of the firm. The analysis also indicates a reason why government-

controlled or state-run firms or any firm, for that matter, insulated from some market price 

mechanism, may be at a disadvantage when forced to compete in a world market economy. 

If the ratio of profits to cost or revenue is small, as is the usual case in empirical applications, 

the magnitude of the violation index e* in (11.1) obtained with the set E containing all the input 

goods will not differ much from that obtained with the set E containing all the output goods. 

As profit approaches zero, the ratio of the input based e* to the output based e* approaches 1.0. 

Generally, the magnitude of the violation indices proposed in this study, as well as the ranking 

of observations by the violation index, will depend on the goods chosen to be in the reference 

set E. 

11.2 The convex conical technology case (test 8) 

For the unconstrained optimization test assuming a constant returns to scale technology sat

isfying conditions II, a good n is chosen to determine the scale of operations of the firm. We 

pick the normalizing good n such that either zn > 0 for all j, j = 1,2,. . . , J, that is, good n 



Chapter 11. The Measurement of Allocative Inefficiency Assuming Complete 91 

is consistently an output, or zn < 0 for all j, j = 1,2,..., J , that is, good n is consistently an 

input. The violation index £* is calculated as described in test 8. 

• Test 8 

1. Choose a normalizing good, say good n. 

2. Define the normalized truncated vectors znj, j = 1,2,..., J where 

z"3 - T ? ( u - 1 0 ) 

I zn I 
where | z3

n | is the absolute value of the normalizing good at observation j, and the 

zero vector 

z"° = Ojv_a. (11.11) 

3. Calculate the violation index £* as 

e;=maxAP™T{zn3-*"'} : j = 0,1,..., j) (11.12) 

I 2ZmeEPm\zm\ J 

if either (i) good n is an input, or (ii) good n is an output and max.j{pniTzni : j = 

0,1,..., J} < 0. Otherwise, set e* to be unbounded. 

The proof of the equivalence of test 8 and test 5 when K = N — 1 is given below. 

Suppose K = N — 1. Then the linear programming subproblem (9.1) reduces to 

max A 1 > 0 ) . . . | V > 0 {p"« T (E/ = iA J 2"i) : £ / = i X3z3

n > z'n} (11.13) 

= pniTZni + efEmeEPrn\zim\ 

where the set E is a subset of the N — 1 goods in S and good n is held fixed. The Kuhn-Tucker 

necessary optimality conditions are 

for j = 1,2,..., j: 

pniTznj + ^ < o, 

A> > 0, (11-14) 

\i*(p"iTznj + = 0; 
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and 

£ / = 1 A ^ - z « > 0, 

q* > 0, (11.15) 

£ ( £ / = ! * j * z n - z'n) = 0. 

From equation (11.14), we obtain 

0 > m a x j { p n i T z n i + q n z n : j = 1,2,..., J}. (11.16) 

Let us assume a finite optimal solution to (11.13) exists. If a AJ* > 0, then there exists at least 

one j , j € {1,2,..., J}, such that equality holds. There is no £ j = 1 A-7 = 1 restriction so the 

optimal A* can be the zero vector. Hence, (11.16) can be rewritten as 

0 = m a x J { p n i T z " i + q n z n : j = 0,1,2,..., J } . (11.17) 

where z n 0 = 0N-\. 

Using (11.14) and (11.15), we obtain the relation 

PniT(ZUXJ*zni) + « = 0. (11.18) 

By construction in (11.13), the above equation can be reexpressed as 

p n i T z m + e?ZmeEPm\zm I + q * z n = 0. (11.19) 

It is harmless to divide each term in (11.19) by \z'n \ > 0 and each of the elements inside the 

brackets in (11.17) by their respective | z n \ > 0. 

If good n is an input, then equating (11.17) and (11.19) after the normalization of variables 

yields 

= m a x j { p n i T z n i - q* : j = 0,1,..., J] (11.20) 
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where maxj{pn,T z"J : j = 0,1,..., J} > 0 since the zero vector is a feasible choice and where 

normalized values are denoted by zm = zm/zn. Hence, there will always exist a q* > 0 such 

that (11.20) holds. Hence, the violation index ef can be calculated as 

g f 5 m " ' { L U i 4 i ; j = M - - i ( 1 1 - 2 1 ) 

If good n is an output and a finite solution to (11.13) exists, then equating (11.17) and 

(11.19) yields 

0 = Pn'TZni + efT.meEP\n\Z,m\ + Q'n 

= maxj{pniTzni + q* : j = 0,1,..., J} (11.22) 

where 

maxj{pniTznJ : j = 0,1,..., J} < 0. (11.23) 

If (11.23) does not hold, then infinite profits can be made by firm i by scaling up production. 

In this case, the optimal solution to (11.13) is unbounded and there exists no q* > 0 such that 

(11.22) holds. Hence, if (11.23) does not hold, set ef to be unbounded since the maximal profit 

is unbounded. Otherwise, the violation index ef, after algebraic manipulation of (11.22), is also 

given by (11.21). If we let = ef when K = N-l, then (11.12) obtains. 

The violation index e* above is similar in form to the violation index for the unconstrained 

optimization test in the convex case given by (11.1). In contrast, the calculation of the violation 

index e* in test 8 uses normalized variables, includes the zero vector, and can possibly have an 

unbounded solution. The results of test 8 can be similarly interpreted. 

Instead of full profit maximization, the analysis for the constant returns case is done in 

terms of normalized profit maximization. Assuming a finite solution to the corresponding 

linear programming problem, let j* solve (11.12). From equations (11.20) and (11.22), the 

following equations are obtained: 

q*zn* = maxj{pniTznJ : j = 0,1,..., J) = pniTznj* (11.24) 
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for good n an input, and 

- q*z3

n* = maxj{pniTzni : j = 0 ,1 , . . . , J} = pniTznj* (11.25) 

for good n an output. Therefore, the normalized profit maximization problem is equivalent to 

finding a production plan such that, consistent with the zero profit condition, there exists a 

shadow price for good n such that good n receives the maximal return if it is an input, or the 

cost of producing good n is minimal if it is an output. 

Any scalar multiple of z3* belongs to the production possibilities set and yields the same 

zero shadow profit. Assuming z3* is not a zero vector, one such allocation is z3 = z3*(z'n/zn*) 

which is the efficient vector yielded by the linear program in test 5. Identical values for the 

violation indices are obtained from tests 5 and 8 , and j* enters the optimal basis with X3* > 0 

in test 5. The partial profit values in test 5 differ from the normalized profit values in test 8 by 

a factor of | z'n |. 

With full price data on p = (pi,... ,PN)T >• 0jv, the usual profit maximization test for a 

constant returns to scale technology is a joint test of the profit maximization conditions for a 

convex technology and the zero profit condition (see Diewert and Parkan (1984, pp.151-152), 

Varian (1984a, p.586)). That is, z' is consistent with profit maximization if and only if 

piTzi > piTz3, j = 1,2,..., J; (11.26) 

and 

piTzi = 0. (11.27) 

Real world data usually fails the zero profit condition (11.27) unless the data were manipulated 

to impose it. Even if accounting methods ensure this condition, there is a problem of the 

meaningfulness of the constructed prices. Zero profit does not imply that the allocation is 

profit maximal at the given prices. Also, it is difficult to obtain a violation index that captures 

simultaneously departures from the profit maximization and zero profit conditions, as we have 

done in this study. However, the cost of constructing.our efficiency measure is that we ignore 
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price information on one good. This may be innocuous if we can accept the idea that in most 

production processes, there is at least one factor or good, which can be intangible, for which 

a market price does not exist. The returns to this good is imputed to the good chosen to 

determine the scale of operations, or what we term here as the normalizing good. 

Some theoretical models assume constant returns to scale. Empirical implementation of 

these models then requires that relations (11.26) and (11.27) hold, or are not significantly 

violated inorder to estimate a profit function using the N prices. If the violation indices 

obtained in test 8 are small, then at most two additional goods, one an input and the other an 

output can be introduced into the model. Let p = (p\,... , P A T ) T , Z = (z\,..., ZN)T and assume 

good N + l is an input or z/v+i < 0, and good N + 2 an output or ZN+2 > 0. Let the price and 

quantity of these goods at observation j be defined in the following manner: 

If piTzJ > 0, then let z3

N+1 — -1 , = p,Tz3, and z3

N+2

 = 0-

If p3Tz3 < 0, then let z3

N+2 = 1, p/v + 1 = -p3Tz3, and z}

N+1 = 0. 

UpiTz3' = 0, then let zJ

N+1 = z3

N+2 = 0. 

Instead of the normalizing good in test 8 absorbing the losses or profits, we let good n enter 

the profit function estimation at its market price and let a hypothetical output good absorb 

the losses and a hypothetical input good absorb the profits. Alternatively, the profit function 

estimation can be done without introducing hypothetical goods by redefining the price of the 

omitted nth good (the normalizing good) such that the zero profit condition (11.27) holds. 

11.3 The quasiconcave technology case (test 9) 

Assuming the technology function / " satisfies conditions III, the violation index £* measuring 

unconstrained allocative inefficiency is defined in test 9. 

• Test 9 
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1. Single out a good n with respect to whose technology we would like to perform the 
test. 

2. Define the index set I? as 

I? = {j: 4 > zn,j = l,2,...,J}. (11.28) 

3. Calculate the violation index e* as 

{ nniT( z"J — 2N , N) 1 
— : j € If* \ . (11.29) 

The proof of the equivalence of test 9 and test 6 when K = N — 1 is analogous to that of the 
corresponding tests under convexity (tests 7 and 4) and hence, is omitted. The detection of 
allocative inefficiency at a particular observation can depend on the good singled out. This 
sensitivity of the result arises because a quasiconcave function can have "flats". An example is 
the case z3

n> zn, z"3 = znt for some j € J", z"' is cost minimal for z'n, and p' =p3. The linear 
programming problem (10.2) for unconstrained optimization with a quasiconcave technology 
reduces to a net cost minimization problem if good n is an output, and to a net revenue 
maximization problem if good n is an input. 

The magnitude of e* in (11.29) for a quasiconcave technology is not comparable with the £* 
in (11.1) for a convex technology. If we single out a good n and let 5" be the set of all goods 
except good n (implying K = N — l), then comparable indices and their ranking are given by 
the following inequality relation (assuming a fixed reference set E C 5): 

{e*)cRS > {ef)convex > (e*)quaaiconcave (11.30) 

where (S*)CRS, (£f)convex and {e*)qua8iconcave are obtained using tests 8, 4 and 9, respectively. 
Inequality (11.30) follows from (10.7). 

The unconstrained optimization test for a quasiconcave technology function /" can be per
formed with respect to each good n, n = 1,2,...,N. If an observation i passes all TY tests, 
then producer i with production plan z' is responding efficiently to the full set of prices 
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p' = Q » i , p 2 , • • • ,PN)T ^ Unlike in the convex case, recourse is made to singling out a 

good at a time and performing N separate tests because of possible nonconvexities in the pro

duction possibilities set. The general technology can exhibit increasing returns and hence, the 

usual tangency condition between the price hyperplane and the production possibilities set for 

profit maximization does not hold, as does in the convex case. 

In the allocative efficiency tests, both for constrained and unconstrained optimization, pro

ducers are assumed to be price takers with respect to the K goods belonging to the set S. 

A quasiconcave technology can have increasing returns which may be inconsistent with pure 

competition. If a firm exerts some degree of market power over prices of two or more of the 

TV goods, the appropriate allocative efficiency test is test 6 which involves solving linear pro

gramming problems. More stringent tests on whether the price and quantity data are consistent 

with some form of market structure other than pure competition can be devised. Varian (1984a) 

offers a test for consistency with the hypothesis of profit maximization under monopolistic be

havior. Since there is no general theory of imperfect competition, specific price setting rules 

have to be posited. Factors like strategic variables (price or quantity), behavior (cooperative 

or noncooperative), firm entry and exit conditions, demand conditions, etc. can be taken into 

account. 

A decomposition of e* in (11.29) into its components due to technical inefficiency (6*) and 

pure allocative inefficiency due to failure to optimize, given the relevant prices, with respect 

to goods in Sn (ef — 6*) and with respect to goods not in Sn (e* — ef) can be made. The 

comparability of e* in (11.29) as a measure of allocative efficiency with 6* in (5.3) for technical 

efficiency for a quasiconcave technology is apparent in the dual expression for 6* in (7.12). 



Chapter 12 

The Efficiency Tests with the No Technological Regress Assumption 

With time series data such that the observation index j corresponds to time, violations of the 

preceding efficiency hypotheses can be due to technological progress. Over time, the produc

tion possibilities set of the firm can be growing due to increasing effectiveness in the use of 

production inputs as a result of research and development, innovation, etc. or due to increasing 

availability of resources such as capital, labor or raw materials. Hence, if an observation j is 

deemed relatively efficient to observation i, j > i, it is possible that the production vector z3 

is not feasible at period i. It may then be desired to incorporate the no technological regress 

assumption with the efficiency tests. 

To deal with technical change, we follow the Diewert-Parkan (1983, pp.153-157) method 

of comparing the current observation only with the earlier observations. Suppose there is no 

technological regress, that is, T3 C T* if j < i. To illustrate how the efficiency tests can be 

modified to take into account the added assumption of no technological regress, we show the 

revised technical efficiency test for a convex technology. 

First, we formally state the technical efficiency and no technological regress hypothesis. 

• Technical Efficiency and No Technological Regress Hypothesis I (for a convex technol

ogy): The data {z3 : j = 1,2,...,/} are generated by an underlying technology satisfying 

conditions i" and are technically /̂ -efficient. Furthermore, the production possibilities sets 

at periods i and j, j < i, are such that T3 C T 1 . 

Again, we choose the goods in E such that the efficiency direction vector 7 satisfies condi

tion (3.1). To test the above hypothesis, given quantity data and the efficiency direction vector, 

we perform the following test. 
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• Test 1' 

1. For each observation i , i = 1,2,..., J, solve the following linear programming sub-

problem i: 

max5,.>o,Ai>0>...,A.>o{<5. : £J=iA J V * + ^z\ Y.)=^3 = 1} = (12-1) 

where 7 is the efficiency direction vector 7 diagonalized into a matrix. 

2. Consider the following consistency condition: Suppose 8* is the optimized objective 

function for the ith subproblem (12.1), i = 1,..., J. If condition (3.1) holds and 

8* = 0 for all i , i = 1,..., J , then the data {zJ : j = 1,2,..., J} are consistent 

with the technical efficiency and no technological regress hypothesis I for a convex 

technology. If the condition (3.1) holds and 8* > 0 for some i, then observation z' 

violates the technical efficiency and no technological regress hypothesis I and the 

data {z3 : j = 1,2,..., J} are not consistent with this hypothesis. 

In contrast to test 1, the linear programming subproblem (12.1) constructs the convex hull 

of only the first i data points {z1, z2,..., z'} instead of the whole set of J observations. The 

modified test is then less restrictive. 

Since modifying the rest of the efficiency tests to account for technical change is a straight

forward exercise, the list of changes in the various efficiency tests are relegated to appendix A. 

The same trick can be adapted for cross-section data when it is desired to divide the set of 

firms into subgroups for purposes of comparison. Productivity may be a function of the size of 

the firm as measured by output or installed capital. Depending on the purpose of the study, 

the researcher may want to take into account, if present, the disparity in firm sizes. 



Chapter 13 

Conclusion 

In summary, nonparametric linear programming tests for consistency with the hypotheses of 

technical efficiency and allocative efficiency are proposed. The tests are formulated relative 

to three kinds of general technologies — convex, constant returns to scale and quasiconcave 

technologies. For the technical efficiency tests (tests 1, 2 and 3), the informational requirements 

are quantity data on production plans and an efficiency direction vector which corresponds to 

the subset of goods with respect to which inefficiency is to be measured. Relative to the general 

technology posited, technical efficiency is given a precise definition wherein being a boundary 

point of the production possibilities set is a necessary but not sufficient condition. The efficiency 

tests yield violation indices 6*, invariant to scale in the measurement of goods, which give the 

equiproportionate adjustment in goods, as specified in the efficiency direction vector, needed 

for a particular observation to satisfy the hypotheses. Alternatively, the violation indices can 

be interpreted as measures of the loss or waste due to failure to maximize production of outputs 

or minimize the use of inputs. Dual interpretations of the technical efficiency definitions and 

tests are also presented to link the analysis to Koopmans' notion of efficiency prices and the 

concepts of profit maximization and cost minimization. 

With price and quantity data, tests for allocative efficiency are proposed. Given a behavioral 

description of the firm as embodied by an objective function and the technological constraints 

under which the firm is operating, allocative efficiency entails the use of the optimal mix of out

puts and inputs. For unconstrained optimization, the tests (7, 8 and 9) reduce to a comparison 

of inequalities. For a convex technology, a production plan z' is allocatively efficient if 

piTzi > p i T z J J = 1,2,. . . ,J; 
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that is, if at prices p' > OAT, the production plan z* yields the largest profit when compared 
to z }, j = 1,2,..., J. For a constant returns technology, z' is allocatively efficient, given z'n, if 
there exists a shadow price q* > 0 for good n such that 

0 = p n i Tz n i + q*zn > p" i Tz"3 + q*nzin, j = 0,1, 2,..., J 

where z° is the shutdown point; that is, (z n',z'n) yields the maximal profit of zero at prices 
(p"'T,qn). For a quasiconcave technology, z' is allocatively efficient, given z'n, if 

pniTzni > pniTznj^ j <z Jp; 

that is, z"' yields maximal net revenue for z'n among the alternative allocations in the upper 
level set of z'n. In the unconstrained optimization tests, the objective functions of the linear 
programming problems take the form of an unrestricted profit function in the convex case, a 
normalized profit function (whose value is the shadow price of the normalizing good) in the 
constant returns case, and a net revenue (or negative net cost function) in the quasiconcave 
case. 

The unconstrained optimization tests are special cases of the more general linear program
ming tests for constrained optimization. If some goods are fixed or their competitive prices do 
not exist, then the constrained optimization tests are given by tests 4, 5 and 6. The objective 
functions of these linear programming problems are partial profit functions, restricted versions 
of the unconstrained forms. The allocatively efficient allocations are technically efficient in the 
sense that they he on the boundary of the relevant convex set, production possibilities set or 
upper level set as the case may be, and with respect to the goods with positive market prices, 
do not he on the free disposal region. The violation indices e* for unconstrained optimization 
and ef for constrained optimization give the proportion of the value of goods in the reference 
set lost due to allocative inefficiency. The waste is measured relative to the optimal value of 
the objective function. 

A number of future areas of research are indicated by the limitations of the foregoing 
analysis. The violation indices proposed in this study have been interpreted so far to be 
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measures of the degree of violation of the maintained efficiency hypotheses. A deterministic 

approach has been taken and the possibility of measurement errors ignored. The researcher 

may have prior reasons to suspect data errors and the efficiency test can be alternatively used 

to explore how "good" or "bad" the data is before parametric estimation of production, cost or 

profit functions. To address the problem of measurement error, Hanoch and Rothschild (1972) 

suggest some ad hoc ways to modify the tests and Varian (1985) offers a procedure in the 

context of statistical hypothesis testing. 

The assumption of nonincreasingness or free disposal in our regularity conditions for the 

various technologies rules out the possibility of congestion. Firms may produce multiple outputs, 

some of which like pollution may be undesirable. In the framework of this study, undesirable 

output goods, if measurable, can be treated as negative outputs and hence would enter the tests 

as inputs. If indeed congestion is present, our technical efficiency and constrained efficiency tests 

would tend to overestimate the true violation index since the constructed convex set would be 

larger than the true production possibilities set. A revision of the technical efficiency tests to 

satisfy the DEA definition of efficiency would also yield an "unbiased" violation index since 

the chosen efficient points would not be in any free disposal region of the boundary of the 

constructed convex set. If market prices do not exist for the "undesirable outputs", then the 

constrained optimization tests can be performed. If (positive) market prices do exist, then 

these prices ensure that the allocative efficiency tests would yield the optimal amounts of the 

undesirable outputs. For further studies on nonparametric efficiency analysis with congestion, 

the reader is referred to Fare, Grosskopf and Lovell (1985) and Fare, Grosskopf, Lovell and 

Pasurka (1989).1 

In the real world too we may observe negative profits or firms producing at a loss. This 

can sometimes be explained by dynamic considerations such as expectations, strategic behavior 

and adjustment processes (such as entry and exit of firms). The basically static approach 

adopted in this study abstracts from these complications. In the tradition of nonparametric 

'The above authors also use h y p e r b o l i c efficiency measures i n contrast to the e q u i p r o p o r t i o n a t e adjustment 
measures defined by the v i o l a t i o n indices i n t h i s study. 
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production analysis in economics, the framework in this study can be extended to testing for 

other regularity conditions on the technology, such as homotheticity and separability, and to 

forecasting behavior. These extensions may require solving quadratic or nonlinear programming 

problems instead of linear programming problems. 



Part II 

Nonparametric and Parametric Measures of Technical Progress: An Application 
to the Canadian Input-Output Data 
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Introduction 

Nonparametric and parametric measures of technical progress are compared in this study. The 

nonparametric measures of technical progress are obtained by a reinterpretation of the viola

tion indices yielded by the efficiency tests of part I. In this context, we assume optimizing 

behavior on the part of the producers and the violation indices as indicators of the shift in 

the production frontier. The parametric measures of technical progress are obtained through 

econometric profit function estimation explicitly incorporating technical change variables. The 

time variable is used as a proxy for the technical change variables and is introduced additively 

through a quadratic spline subfunction developed by Diewert and Wales (1989b). The sym

metric generalized McFadden functional form, also introduced by Diewert and Wales (1987), is 

used in the profit function estimation. For convenience (though unnecessary), constant returns 

to scale is assumed. 

Annual Canadian input-output data for the period 1961-1980 are used. Measures of tech

nical progress are estimated for four aggregated sectors: 

I. resources sector; 

II. manufacturing sector, export market-oriented; 

III. manufacturing sector, domestic market-oriented; and the 

IV. services sector. 

We assume the sectors have single output technologies. The resources sector (I) has ten output 

and input goods; they are 
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(I! 

(2; 

(3; 

(4; 

(5; 

(e: 

(7; 

(s: 

(9; 

(10: 

resource goods (from sector I), 

manufactured goods (from sector II), 

manufactured goods (from sector III), 

service goods (from sector IV), 

imports, 

labor 

inventories, 

land. 

machinery and equipment 

structures, and 

For the resources sector (I), the output good is good 1 and the other nine goods are all input 

goods. The other three sectors (II, III and IV) each has nine output and input goods; since 

the quantity data on structures and land for these sectors are proportional in the original 

database, these two goods have been aggregated as a Leontief composite good which we have 

termed as "structures" (good 9) in the current data set. The capital rental prices for the capital 

inputs (goods 7-10) are calculated using internal rates of return. A detailed description of the 

construction of the data set for the empirical estimation performed in this study can be found 

in appendix B. 

To calculate the nonparametric measures of technical progress, the allocative efficiency test 

for a convex conical technology assuming complete profit maximization (test 8 in part I) was 

performed for each of the four sectors with structures as the normalizing good. For each 

sector, a unit scale profit function was also estimated with structures as the scale variable. The 

measure of technical progress is then defined as the marginal change in the return to this factor 

(structures) due to the passage of a time period divided by the value of some basket of reference 

goods. 

For a particular sector, let there be N + 1 goods (JV -f 1 = 10 for sector I, and JV + 1 = 9 for 

sectors II, III and IV). Let the (TV + l)th good be the normalizing good or the good chosen to be 
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the scale variable. In the allocative efficiency test and the profit function estimation performed 

in this study, the price of this good is not used. However, we use quantity data on this good; 

denote the quantity of this good by z^+\. For the quantity data, outputs are indexed positively 

and inputs are indexed negatively. Denote the price vector of the first TY goods at period t as 

p* = (p\,P2, • • • ,PN)T ^ ®N and the quantity vector at period t as zl = (z[, z\,..., zN)T. Let 

n(pl, t) be the period t unit scale profit function. If we denote the period t unit scale production 

possibilities set containing the feasible z vectors when | z;v+i |= l 1 by Sl

r then the unit scale 

profit function ^(jf-^i) is defined as 

Under the assumption of constant returns to scale and finite production plans, the optimal 

profit defined over the whole set of TV +1 goods is zero. Hence, if an input is chosen as the 

scale variable, then the unit scale profit function defined by (14.1) gives the per unit return to 

the normalizing or scaling input. If a capital good which can be considered a fixed factor is 

chosen as the scale variable, then the unit scale profit function in (14.1) can be interpreted as a 

short-run or restricted or variable (unit scale) profit function defined over the first TV variable 

goods. 

Mathematically, we define an index of technical progress at period t, say A' , as 

where E is the set containing the indices of the chosen reference goods and m ^ TV + 1, and 

zl

m = zl
ml | zl

N+1 | where | zl

N+1 | is the absolute value of the quantity of good TV + 1, the 

normalizing good, at period t. Note that the numerator in (14.2) can be positive, zero or 

negative while the denominator is always positive. Hence, A* > 0 implies technical progress at 

period t and A 4 < 0 implies technical regress at period t. 

1 Since a convex cone is closed under a d d i t i o n a n d nonnegative scalar m u l t i p l i c a t i o n , then the p r o j e c t i o n of 
the p r o d u c t i o n p o s s i b i l i t i e s set i n (N + l ) - d i m e n s i o n a l space i n t o the u n i t scale p r o d u c t i o n p o s s i b i l i t i e s set i n 
A f-dimensional space is harmless. 

Tv(p\t) = maxz{pTz : z 6 S1}. (14.1) 

dn(p',t)  
dt (14.2) 

Y,meEPm I Zm I 
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The numerator in equation (14.2) is the marginal change in the per unit return to the 

normalizing (or scaling) good N + 1. If we multiply the numerator and denominator by | zN+l |, 

we obtain 

A1 = V m - (14-3) 
SEPm I *m I 

The numerator in (14.3) gives the marginal change in the return to the normalizing good N + 1 

at period t due to the passage of a time period. Alternatively, the numerator in (14.3) can be 

interpreted as the change in the value of outputs minus the change in the value of inputs other 

than the normalizing good due to the passage of a time period. The denominator in (14.3) has 

unsealed quantity variables. 

For the empirical exercise, we focus on the private domestic production sector and the 

economy's output goods 1̂ 1 are chosen as the reference goods. At the sectoral level, some of 

these goods enter as intermediate inputs. If A' > 0, then the index of technical progress gives 

the proportional increase in the sector's contribution to the economy's value of output goods 

available for final demand (including exports) due to technical change occuring in that sector. 

The index of technical change defined by equation (14.2) uses price information. If we define 

a multifactor productivity measure as the ratio of a quantity index of output goods to a quantity 

index of input goods, then to measure technical change it is imperative to net out relative price 

effects as reflected in the substitution of goods. Both the nonparametric approach using the 

allocative efficiency tests developed in part I and the parametric approach using either profit 

or cost function econometric estimation are able to isolate these relative price effects. In the 

efficiency tests, a deterministic approach is taken and the residual unexplained component of 

the multifactor productivity measure is all attributed to technical change. Hence, we can expect 

the estimates of the index of technical progress obtained using the nonparametric approach to 

be quite erratic or to display a greater degree of variability. 

On the other hand, the stochastic approach requires the specification of the distribution of 

the disturbance terms. In the profit function estimation performed in this study, the usual error 

structure — errors are distributed normally with zero mean and covariance structure £ — for 
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simultaneous equations is assumed. The quadratic spline subfunction used in modeling technical 

change attempts to be less restrictive and have greater capability than the simple quadratic 

subfunction in capturing the ups and downs of the rates of technical change. However, compared 

to the nonparametric efficiency tests, we can expect the profit function estimates of the index of 

technical progress to display a smoother behavior. The empirical exercise that follows aims to 

investigate the comparative behavior of the estimates of the index of technical progress obtained 

under the nonparametric and parametric approaches. 



Chapter 15 

A Nonparametric Approach to Measuring Technical Progress 

The dual representations of production technologies — either through profit or cost functions 

— assume optimizing behavior on the part of the producers. As was noted in part I, the 

efficiency tests developed are based on the joint hypotheses on the technology and the behavior 

of the producer. Hence, a positive violation index can be due to either of two sources. For the 

sectoral aggregated data we are using, the attribution of positive violation indices to failure of 

the producers to respond optimally may be suspect. We can interpret the positive violation 

indices as due to violations of the technology assumptions; in particular, that no technical 

change is occuring and the true underlying technology remains constant from time period to 

another. If indeed technological change is occuring, then the production possibilities set may 

be expanding or shrinking over time. 

Since we assume constant returns to scale, the allocative efficiency test assuming complete 

profit maximization for a convex cone technology (test 8 in part I) was performed for each 

of the four sectors.1 Neither the shutdown point nor an unbounded solution (since an input, 

structures, was used as the normalizing good) was obtained as the optimal allocation for any 

observation; hence, the allocative efficiency unconstrained optimization violation index £ j f (see 

equation (11.12), part I) can be expressed as 

£t = m a x > f ^ .gt | . i = 1,2,• • • , T (15.1) 
I. L,m£EPm \Zm\ ) 

where z3' = (z{, z3,,..., zN)T = z-'/ | z3

N+1 |, and T = maximum time index. The violation 

indices using test 8 in part I for the four sectors are listed in table 15.2 and are plotted in 
'Test 8 was also performed for the d a t a set using c a p i t a l r e n t a l prices based on an exogenous bond rate. 

T h e results even i n magnitudes of the v i o l a t i o n indices i n a l l four sectors do not differ s i g n i f i c a n t l y f r o m those 
reporte d here for the d a t a set using c a p i t a l r e n t a l prices based on i n t e r n a l rates of r e t u r n . 
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violation index ej" using test 8 
year ,2 sector I sector II sector III sector IV 
1961 0.10542 0.15834 0.14341 0.13116 
1962 0.05616 0.12018 0.10799 0.10106 
1963 0.02377 0.10041 0.10086 0.08981 
1964 0.02448 0.08306 0.08327 0.06938 
1965 0.02328 0.07228 0.07604 0.05787 
1966 0.00000 0.08498 0.07670 0.04788 
1967 0.06135 0.08632 0.08497 0.04601 
1968 0.03270 0.06943 0.07018 0.03466 
1969 0.01889 0.04745 0.06054 0.03407 
1970 0.03312 0.07279 0.06436 0.02983 
1971 0.03515 0.06656 0.05363 0.02982 
1972 0.03247 0.05035 0.03759 0.02076 
1973 0.00000 0.03097 0.01830 0.01434 
1974 0.04741 0.02919 0.02238 0.01648 
1975 0.10403 0.04823 0.04690 0.01560 
1976 0.10567 0.02656 0.02105 0.00425 
1977 0.12384 0.00984 0.00738 0.01277 
1978 0.15356 0.00000 0.00318 0.01393 
1979 0.16163 0.01241 0.00000 0.00596 
1980 0.18950 0.02804 0.00096 0.00000 

Table 15.2: Test 8 violation indices £j for the four sectors 

figures 15.9-15.12. 

The violation indices £j" can be interpreted as chained indices of technical change. Let 

us denote the nonparametric estimate of the period t index of technical progress defined in 

equation (14.2) (or equation (14.3)) by A' . The nonparametric index of technical progress A* 

can then be defined as 

At = l i_±L _ i 

(15.2) 
f * — F * 

(! + £?)" 
The values of A* for the four sectors for the period 1962-1980 are listed in table 15.3 and are 

plotted in figures 15.13-15.16. 
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0.20 

Figure 15.10: Test 8 violation indices ej, sector II 
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Figure 15.12: Test 8 violation indices ej, sector IV 
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nonparametric index A' 
year ,2 sector I sector II sector III sector IV 
1962 0.04664 0.03406 0.03196 0.02733 
1963 0.03164 0.01797 0.00648 0.01033 
1964 -0.00069 0.01602 0.01624 0.01910 
1965 0.00118 0.01006 0.00672 0.01088 
1966 0.02328 -0.01171 -0.00061 0.00953 
1967 -0.05780 -0.00123 -0.00762 0.00178 
1968 0.02774 0.01579 0.01383 0.01097 
1969 0.01355 0.02099 0.00909 0.00057 
1970 -0.01377 -0.02362 -0.00359 0.00412 
1971 -0.00196 0.00584 0.01019 0.00002 
1972 0.00259 0.01543 0.01545 0.00888 
1973 0.03247 0.01880 0.01894 0.00633 
1974 -0.04526 0.00172 -0.00399 -0.00211 
1975 -0.05128 -0.01817 -0.02341 0.00087 
1976 -0.00149 0.02111 0.02532 0.01130 
1977 -0.01617 0.01656 0.01357 -0.00841 
1978 -0.02576 0.00984 0.00418 -0.00115 
1979 -0.00695 -0.01225 0.00318 0.00793 
1980 -0.02343 -0.01521 -0.00096 0.00596 

Table 15.3: Nonparametric indices of technical progress A' for the four sectors 
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Figure 15.13: Nonparametric indices A' , sector I 
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Figure 15.14: Nonparametric indices A' , sector II 
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Figure 15.15: Nonparametric indices A' , sector III 
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Figure 15.16: Nonparametric indices A' , sector IV 



Chapter 15. A Nonparametric Approach to Measuring Technical Progress 117 

The results obtained using the nonparametric index A* indicate that technological regress 

occured during the following years in the given sectors: 

for sector I: 1964, 1967, 1970, 1971, 1974-1980; 

for sector II: 1966, 1967, 1970, 1975, 1979, 1980; 

for sector III: 1966, 1967, 1970, 1974, 1975, 1980; and 

for sector IV: 1974, 1977, 1978. 

These findings are given support by the corresponding efficiency test incorporating the no 

technological regress assumption, test 8' in appendix A, which was also performed for each of 

the four sectors. The results are given in table 15.4; the values of are given only for the 

years violating the efficiency and no technological regress assumption of test 8'. Almost the 

same set of years is discerned by the nonparametric index A* (obtained by unchaining the 

violation indices z*t from test 8) and the efficiency and no technological regress test 8' to be 

periods where technological regress occured. For most years where the results conflict either 

the nonparametric index A' is small or the violation index t\ for test 8' is small. 

Next we compare the nonparametric index of technical progress A f with total factor produc

tivity measures based on the index number approach. Divisia and Fisher indices of productivity 

change were calculated for each of the four sectors of the Canadian economy. In the economic 

approach to index numbers based on the assumption of optimizing behavior on the part of the 

producers, Caves, Christensen and Diewert (1982) and Diewert (1989b) have shown that the 

Divisia (or Tornqvist or translog) and the Fisher productivity change indices, being exact for 

some flexible functional form, are superlative. The Fisher ideal quantity index has the added 

property of being the only function that satisfies some twenty tests considered desirable in 

the axiomatic approach to index number theory (Diewert, 1989b). The econometric computer 

package SHAZAM by K.J. White (1987) was used to compute the productivity indices. 

For each sector, chained output and input Divisia and Fisher ideal quantity indices are 

obtained for each year t. The output quantity indices are defined over the four output goods 

(goods 1̂ 1) with quantities of intermediate inputs indexed negatively. The input quantity 
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observation relatively 
year,t violation index efficient to t 
sector I: 
1964 0.001795 1963 
1967 0.061346 1966 
1968 0.032703 1966 
1969 0.015616 1966 
1970 0.031200 1966 
1971 0.016859 1966 
1972 0.009744 1966 
1974 0.047410 1973 
1975 0.104030 1966 
1976 0.105673 1966 
1977 0.123843 1966 
1978 0.153557 1966 
1979 0.161633 1966 
1980 0.189503 1966 

sector II: 
1966 0.007065 1965 
1967 0.003043 1965 
1970 0.021252 1969 
1971 0.009695 1969 
1975 0.012834 1974 
1979 0.012405 1978 
1980 0.028041 1978 

sector III: 
1967 0.000555 1966 
1974 0.003566 1973 
1975 0.025523 1973 
1980 0.000963 1979 
sector IV: 
1977 0.009799 1976 
1978 0.011078 1976 
1979 0.001898 1976 

Table 15.4: Test 8' violation indices for the four sectors 
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indices (with input quantities now indexed positively) are defined over the primary inputs: 

goods 5-10 for the resources sector and goods 5-9 for the other sectors. Output growth and 

input growth indices for year t are calculated by dividing the current year fs quantity index by 

its lagged value. A productivity change index is then defined as the ratio of the output growth 

index to the input growth index minus one; that is, 

, output growth index . ' . 
T = • — ~ — ~ r^—; 1 (!5-3) 

input growth index 

where T1 is the productivity change index for year t. If r* > 0, then there occurs a productivity 

improvement at period t or an outward shift of the production frontier from year t — 1 to year t. 

If r* < 0, then no productivity improvement occurs at period t. 

Let us denote by T1

D the Divisia productivity change index for year t and by TF the Fisher 

productivity change index for year t. The values of T1

D and TF for the different sectors are listed 

in tables 15.5-15.6. As reflected too in figures 15.17-15.20 where their curves coincide, the 

Divisia and Fisher productivity indices are almost identical. The magnitude of the nonpara

metric index A* is not expected to be directly comparable to the magnitudes of the productivity 

indices and TF since the technical progress index A' (equation (14.2)) and productivity in

dex r* (equation (15.3)) are defined differently. The interpretation of A' , rl

D and TF as measures 

of the shift in the production frontier (or its dual representations) rests on the assumption of 

optimizing behavior on the part of the producers. The consistency of the patterns of behavior 

of the three indices, as illustrated in figures 15.17-15.20, lends support to the reinterpretation 

of the violation indices e% in (15.1) as chained indices of technical progress in the context of the 

time series data used. 
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Divisia productivity change index rl

D 

year,t sector I sector II sector III sector IV 
1962 0.11498 0.04388 0.06869 0.03527 
1963 0.06345 0.03174 0.01168 0.01737 
1964 -0.00307 0.02517 0.03573 0.02765 
1965 0.00475 0.02290 0.02055 0.01813 
1966 0.04396 -0.01614 0.00786 0.02019 
1967 -0.09872 0.00678 -0.00185 0.00997 
1968 0.04993 0.03716 0.04377 0.02325 
1969 0.02422 0.04411 0.02634 0.00492 
1970 -0.02681 -0.04532 0.00216 0.00878 
1971 0.00658 0.02272 0.03059 0.00635 
1972 0.00992 0.02952 0.03502 0.01614 
1973 0.06629 0.04119 0.04242 0.01274 
1974 -0.07655 0.01089 -0.00846 -0.00055 
1975 -0.06721 -0.02821 -0.04545 0.00428 
1976 -0.00233 0.04215 0.06297 0.01766 
1977 -0.01805 0.03516 0.03131 -0.01253 
1978 -0.04178 0.01991 0.00926 -0.00095 
1979 0.01316 -0.02534 0.00726 0.01171 
1980 -0.01039 -0.03163 -0.00282 0.00875 

Table 15.5: Divisia productivity change indices rj-, for the four sectors 
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Fisher productivity change index rF 

year,i sector I sector II sector III sector IV 
1962 0.11499 0.04388 0.06871 0.03575 
1963 0.06345 0.03173 0.01168 0.01737 
1964 -0.00307 0.02517 0.03573 0.02765 
1965 0.00475 0.02290 0.02055 0.01813 
1966 0.04397 -0.01614 0.00787 0.02018 
1967 -0.09868 0.00677 -0.00186 0.00996 
1968 0.04994 0.03715 0.04377 0.02324 
1969 0.02423 0.04411 0.02634 0.00492 
1970 -0.02682 -0.04533 0.00214 0.00878 
1971 0.00639 0.02268 0.03057 0.00569 
1972 0.00991 0.02951 0.03503 0.01614 
1973 0.06692 0.04119 0.04263 0.01274 
1974 -0.07661 0.01095 . -0.00842 -0.00053 
1975 -0.06723 -0.02828 -0.04553 0.00427 
1976 -0.00232 0.04214 0.06297 0.01765 
1977 -0.01805 0.03516 0.03130 -0.01252 
1978 -0.04178 0.01991 0.00926 -0.00093 
1979 0.01317 -0.02534 0.00727 0.01173 
1980 -0.01035 -0.03164 -0.00283 0.00874 

Table 15.6: Fisher productivity change indices rF for the four sectors 
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Chapter 16 

A Parametric Approach to Measuring Technical Progress 

In the parametric approach to estimating the index of technical progress defined by equa

tion (14.2), a functional form is posited for the unit scale profit function. The symmetric gener

alized McFadden flexible functional form with a quadratic spline model for technical progress, 

proposed by Diewert and Wales (1989b), is used. This model for the unit scale profit function 

has the property of being TP (technical progress) flexible. The unit scale profit function takes 

the following form: 

v ( p , t ) = h(p) + d ( p , t ) (16.1) 

where 

and 

h(p) = p T b 1 + 
1 ( P T B P \ 

2\a Tp ) 

d ( p , t ) = < 

p T b 2 t + l p T b 3 t 2 

p T b 2 t + l p T b 3 t 2 i + p T b 3 ( t _ t i ) h 

+ ip?V( t - i 1 ) 2 

for t < t i ; 

for t\ < t < t2; 

(16.2) 

(16.3) 

p T p t + l p T p t l + p T p i t i - t ^ h 

+ 1

2 P T b 4 ( t 2 - t 1 ) 2 + p T P ( t - t 2 ) t 1 

+ pTb\t-42)(t2 - h ) + \ p T b 5 ( t - t 2 f i o i t 2 < t < T. 

The exogenous parameters of the model are a = (ai, a 2 , . . . , CXN)T > ON in (16.2) and the break 

points in the quadratic spline model fx and t2 in (16.3). The endogenous parameters are the 

TV-dimensional vectors b1, b2, b3, b4 and b5, and the TVxTV matrix B. Convexity of the profit 

126 



Chapter 16. A Parametric Approach to Measuring Technical Progress 127 

function in prices is imposed by restricting the B matrix in (16.2) to satisfy the restrictions: 

B = BT and B is positive semidefinite. For identification, a reference vector p* is chosen such 

that Bp* = 0N. 

The Diewert-Wales (1989b) method of specifying the a vector was followed. The price vec

tor for 1971 was arbitrarily chosen as p*. A system of N equations corresponding to output 

supply and input demand equations for each sector was estimated by maximum likelihood esti

mation using nonlinear optimization routines. To aid convergence, the semiflexible estimation 

technique (Diewert and Wales, 1988) wherein the rank of the B matrix is restricted was used. 

For each sector, several runs of the model using different break points t\ and t2 were performed 

to search for those which yield higher values of the likelihood function. Table 16.7 presents the 

R2 and log likelihood values, the number of parameters estimated, the rank of the B matrix 

and the values of t\ and t2 for the final models selected for the four sectors.1 

Denote the parametric estimator of the index of technical progress (given in (14.2)) obtained 

using the functional form defined by equations (16.1)-(16.3) as A*. The numerator in this 

estimator is then 

drc(p,t) _ dd(p,t) 
dt dt 

(16.4) 

pTb2 + pTb3t for t < tj; 

pTb2 + pTbH1 + pTb\t -tx) for ti < t < t2; 

pTb2 + pTbHx + pTb4(t2 -t1) + pTb5(t-t2) for t2 < t < T. 

The economy's output goods 1-4 are used as the reference goods in the denominator of (14.2). 

The values of A f for the four sectors are listed in table 16.8 and are plotted in figures 16.21-

16.24. 

: A more d e t a i l e d d e s c r i p t i o n of the e s t i m a t i o n procedure a n d li s t s of the parameter estimates and price 
el a s t i c i t i e s of o u t p u t s u p p l y and i n p u t demand, together w i t h some i n t e r p r e t a t i o n , can be fou n d i n appendix D. 
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R2 values* 
equation sector 

1 2 3 4 
1 resource goods (I) 0.956 0.910 0.984 0.977 
2 manufactured goods (II) 0.966 0.979 0.959 0.968 
3 manufactured goods (III) 0.990 0.993 0.980 0.987 
4 service goods (IV) 0.995 0.985 0.993 0.998 
5 imports 0.928 0.988 0.962 0.988 
6 labor 0.888 0.911 0.889 0.993 
7 inventories 0.957 0.970 0.982 0.875 
8 machinery and equipment 0.997 0.999 0.998 1.000 
9 land 0.999 

log likelihood 512.133 381.420 357.068 277.785 
number of parameters 66 65 65 65 
rank of B 3 5 5 5 
t\,t? 1967,1975 1965,1975 1967,1975 1970,1976 

"The R2 values are calculated as one minus the 
residuals to the variance of the output supply 

ratio of the variance of the 
or input demand variable. 

Table 16.7: Model specification, R2 and log likelihood values for the four sectors 
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Figure 16.21: Parametric indices A' , sector I 
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parametric index A* 
year ,2 sector I sector II sector III sector IV 
1961 0.01782 0.02746 0.01516 0.01793 
1962 0.01838 0.01842 0.01229 0..01631 
1963 0.01576 0.01202 0.01102 0.01498 
1964 0.01208 0.00656 0.00958 0.01333 
1965 0.00919 0.00233 0.00896 0.01197 
1966 0.00712 0.00370 0.00883 0.01086 
1967 0.00159 0.00469 0.00926 0.01010 
1968 0.00054 0.00539 0.00930 0.00923 
1969 -0.00057 0.00576 0.00901 0.00830 
1970 -0.00366 0.00705 0.00902 0.00733 
1971 -0.00483 0.00853 0.00899 0.00633 
1972 -0.00797 0.00890 0.00820 0.00537 
1973 -0.00939 0.00928 0.00714 0.00442 
1974 -0.01337 0.00982 0.00625 0.00319 
1975 -0.01720 0.01074 0.00629 0.00201 
1976 -0.01490 0.00677 0.00605 0.00074 
1977 -0.01241 0.00294 0.00548 0.00181 
1978 -0.00973 -0.00051 0.00516 0.00291 
1979 -0.00671 -0.00427 0.00480 0.00418 
1980 -0.00087 -0.00797 0.00367 0.00557 

Table 16.8: Parametric indices of technical progress A* for the four sectors 
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Chapter 17 

A Comparison of Nonparametric and Parametric Estimates of Technical Progress 

The comparative behavior of the nonparametric measure of technical progress A* and the 

parametric measure of technical progress A* for the four aggregated private domestic sectors 

of the Canadian economy for the period 1961-1980 is illustrated in figures 17.25-17.28. Since 

the parametric approach incorporates a stochastic disturbance term in modeling the unit scale 

profit function, the estimates of the parametric index A' display a much smoother behavior. 

The interesting feature of figures 17.25-17.28 though is that the parametric index A' seems to 

track the long term trend in the nonparametric index A*. Both approaches then seem to isolate 

relative price effects similarly. While the nonparametric approach attributes the residual all to 

technical change, the parametric approach takes into account the possibility of random noise 

in the empirical relationship. 

To illustrate how the parametric approach smoothens the behavior of the index of technical 

progress, the residuals1 for the nine equations of the parametric model for sector I are plotted 

against the graphs of the technical progress indices A* and A1 in figures 17.29-17.37. We choose 

sector I, the resources sector, because it displays the most volatility in the nonparametric 

measure A1, and in the profit function estimation had the most computational difficulties.2 

The magnitude of A f (or e*) may be due partly to allocative inefficiency; there has been a 

much rapid rise in prices in this sector relative to the rest of the economy and the violation 

indices £* may reflect problems in adjusting to price changes. The equations correspond to 

'The residuals are the differences between actual and predicted values of output supply or input demand, 
not unit scale output supply or input demand. See Appendix D, equation ( D . l l ) for the specification of the 
stochastic disturbance term. 

2Convergence of the nonlinear optimization routines was not obtained with models using one break point for 
the quadratic spline representation of technical progress; even with two break points, the sector I model required 
the most trials of different values for ti and <2 since false convergence was often encountered. 

132 
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Figure 17.29: Residual plot for equation 1, sector I 

output supply and input demand equations for the nine goods listed in table 16.7. Note that 

for each equation, the magnitude of the residuals from the parametric estimation is likely to be 

higher at time periods where the peaks and troughs of the nonparametric index A* occur or 

where the difference between the values of the indices A* and A* is higher. 

An advantage of the nonparametric approach is that no functional form is imposed on 

the data. Another is its low computational cost. The nonparametric index A' is based on 

the efficiency test violation indices £* which require merely a comparison of inequalities; even 

if linear programming problems have to be solved, these are computationally much easier to 

solve compared to the nonlinear optimization needed in profit or cost function estimation. A 

disadvantage of the nonparametric approach is its possible sensitivity to extreme observations 

and measurement error. Also, since no specification about stochastic disturbance terms is made, 

the nonparametric estimates have no statistical properties and hence cannot be subjected to 

the usual statistical hypothesis testing.3 

*See Varian (1985) though on how a pseudo-statistical test can be performed to take into account measurement 



Chapter 17. A Comparison of Nonparametric and Parametric Estimates . 136 

0 . 0 6 

- 0 . 0 4 -

- 0 . 0 6 

n o n p o r o r n « t r l c 
p o > o m » t r t c 

1960 1965 

Figure 17.30: Residual plot for equation 2, sector I 

Figure 17.31: Residual plot for equation 3, sector I 
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Figure 17.32: Residual plot for equation 4, sector I 
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Figure 17.37: Residual plot for equation 9, sector I 
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A two-stage procedure is suggested as a possible computational alternative to getting a 

parametric estimate of the index of technical progress A' . First, obtain the nonparametric 

indices A' and then fit a functional form such as (16.4) on the obtained A1 (after adjusting for 

the denominator in A'). The parametric estimation part would then involve a fewer number of 

parameters and hence would be less computationally burdensome. 

The foregoing discussion has focused on the techniques of measuring technical progress. As 

an aside, it may be worthwhile to comment on the technical regress findings for the resources 

sector. The Divisia indices of output growth and input growth for the resources sector are 

graphed in figure 17.38. To obtain these Divisia growth indices, a Divisia quantity index of the 

first four goods, the output goods of the production sector of the economy (with the quantities 

of intermediate inputs indexed negatively) and a Divisia quantity index of the primary inputs 

(goods 5-10) were first constructed per year. The Divisia growth index is then the ratio of 

the current year quantity index to the previous year quantity index. Note that, as seen in 

figure 17.38, the rate of input growth in the resources sector has been quite steady over the years 

while the output growth index displays much greater fluctuations. This is in marked contrast 

to the manufacturing sectors (II and III) and the services sector (IV) where the patterns of 

the Divisia indices of output and input growth follow each other quite closely. As mentioned 

earlier, the resources sector experienced a considerable output price increase in the 1970s. The 

low price elasticities for this sector, discussed in appendix D, may be indicative of a low degree 

of flexibility in this sector. However, this is at most a partial explanation since the divergence 

of the patterns of output and input growth is also observed in the 1960s. 

Other explanations have been offered in the literature. One is that to model producer 

behavior for the resources sector which is subject to output price volatility it may be necessary 

to incorporate intertemporal dynamics such as price expectations and uncertainty. Another is 

that the observed technological regress is due to resource depletion and an appropriate model 

for measuring multifactor productivity should correct for the quality of the resource stock (see 

errors. 
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Figure 17.38: Divisia indices of output and input growth in the resources sector (I) 

for example, Lasserre and Ouellette (1988)). Related to the resource depletion hypothesis, more 

of the other inputs may then be required to maintain production levels in this sector as the 

quality of the resource stock deteriorates. Also, exploration and development of new resources 

have to be undertaken which entails employment of nonproduction workers. There can also 

be a considerable lag between exploration and development, which may require large outlays 

of capital investment, and actual production. Because of the nature of the capital goods in 

this sector, it may be difficult to adjust factor inputs in the short run. Adjusting the capital 

data for capacity utilization may address this latter problem. Whether taking into account 

the phenomenon of resource depletion in measuring technical change in the resources sector 

requires shifting into a dynamic model of producer behavior and more than data adjustment 

necessitates further investigation. 
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Chapter 18 

The Model 

18.1 Introduction 

In the theory of consumer behavior under conditions of quantity constraints, it has been shown 

by Latham (1980) and Neary and Roberts (1980) that the Tobin-Houthakker conjecture that a 

reduction in the ration of one good will increase the consumption of unrationed substitutes and 

decrease the demand for unrationed complements may not hold. The derivatives of the rationed 

demand functions can be decomposed Slutsky-like into income and substitution effects. The 

income effect arises from the divergence between the individual's shadow or demand price for 

the rationed good (termed "virtual price" by Neary and Roberts) and its actual price. 

In the context of a trade-theoretic approach to production theory, an analogous question 

can be posed. In a small open economy, how do factor price rigidities affect resource allocation? 

In particular, how do changes in these fixed or rigid factor prices affect other flexible factor 

prices? The role of factor substitution in the response of flexible factor prices to exogenous 

changes in fixed factor prices has to be examined. 

It can be shown that since a fix-price factor acts as a negative output in a constrained gross 

national product (GNP) maximization problem, a Stolper-Samuelson type generalization can 

be obtained. If the domestic resources are used as inputs to production, as in the usual case 

treated in international trade theory, an increase in a fixed factor price leads to at least one 

flexible factor price decreasing. The response of flexible factor prices can be decomposed into 

a pure substitution term and a scale effect term. Furthermore, if we have local factor price 

equalization in the sense that factor prices are independent of changes in their endowments, 

then substitution possibilities among fix-price factors and flexible-price factors, even if they 

143 
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exist, will not affect the response of the flexible factor prices to changes in the fixed factor 

prices. In this case, there is solely a scale effect. 

In this study, the constrained GNP function is used to derive the comparative statics for 

the production sector of a small open economy with both fixed and flexible factor prices. An 

illustration of the model through a simple analysis of the effect of a devaluation with rigid wages 

in a two-sector specific-factors model is presented. We conclude with a discussion of how the 

model can be empirically estimated, the associated problems in its econometric implementation, 

and the possible policy implications that can be derived. 

18.2 Model formulation, a constrained GNP problem 

In contrast to flex-price domestic resources with given endowments and inelastic supply, fix-

price domestic resources will have a variable or elastic supply. In the standard full-employment 

general equilibrium models, factors with excess supply have a zero price. In the real world, these 

zero prices are rarely, if ever, observed. Hence, the framework to be used in the following model 

hopes to get around this theoretical deficiency and implicitly assumes that unemployment of 

domestic resources is due to factor price rigidities. Specifically, the fixed prices of these domestic 

resources are set above their market clearing levels.1 

The constrained GNP maximization approach adopted here follows that of Neary (1985). 

In his comparative statics exercises, Neary compared a small open economy with some fix-price 

productive factors having perfectly elastic supply to a hypothetical unconstrained economy 

(with all factor prices flexible) with the endowments of factors set at their utilization levels in 

the constrained economy. Some important results are: the change in the employment levels 

'For a domestic resource for which the economy has a given endowment, it is important to make this assump
tion so that its supply remains elastic. In contrast, imports used as intermediate inputs to production in a small 
open economy can be considered a fix-price factor but need not be constrained in this manner; its supply will 
always be elastic. 

The model to be used is in the genre of the "fixprice method" proposed by Hicks (1965). This formulation does 
not imply that "fixed prices" remain the same from period to period. In the sense that prices do not necessarily 
adjust in response to demand and supply disequilibrium in the short run, price determination becomes exogenous 
to the model. Signalling of excess demand or excess supply for price adjustment over the longer run is not 
precluded. As Hicks has pointed out, though the fixprice method tends to be macroeconomics-oriented, it is 
important to decipher the workings of individual markets. 
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of- the fix-price factors due to a marginal increase in their prices is the inverse of the change 

in those factor prices induced by a marginal change in their endowments in the corresponding 

flex-price economy; factor price rigidities lead to an increase in the economy's price-output 

responsiveness and a reduction in the responsiveness of the remaining flexible factor prices to 

changes in their endowments; and an equiproportionate decrease in the fixed factor prices will 

raise the value of gross national product (assuming factor immobility across countries). 

A more direct approach to the comparative statics exercises for this constrained GNP max

imization problem is the use of the fundamental matrix equation of production theory as devel

oped by Diewert and Woodland (1977) and Diewert (1982). This approach is more amenable 

to empirical implementation and does not require direct comparison between constrained and 

unconstrained economies. The model also allows joint production and intermediate inputs. The 

development of the model relates the behavior of individual firms or industries to the aggregate 

economy's maximization problem. 

Let there be M constant returns to scale sectors with industry scales z = (z\, z2,.. •, ZM)T > 

OM producing K net outputs of internationally traded goods y = (j/i, y2, • • •, VK)T w i th given 

world prices p = (p\,p2,.. -,PK)T "> ®K- There are Q + N domestic resources of which the first 

Q factors / = (Zi, l2,..., IQ)T have fixed prices r = (r 1 ; r 2 , . . . , TQ)T > OQ and the last N factors 

have initial endowments v = (vi, v2,..., VN)T with associated prices w = (w\,w2,..., wjsj)'r ~> 

ON- The exogenous variables are the world prices of internationally traded goods p, the fixed 

prices of the variable-supply factors r, and the endowments of the flex-price factors v. The 

endogenous variables are the industry scale variables z, the employment levels of the fix-price 

factors /, the prices of inelastically supplied factors w, and the net outputs of internationally 

traded goods y. 

Let the feasible set of net outputs for the mth sector be described by Tm = {zmCm : zm > 0} 

where Cm is a nonempty, closed, convex set of feasible net outputs when industry m operates 

at unit scale. At the industry level, the output and input prices are parametric. Let inputs 

be indexed with a negative sign and outputs with a positive sign. Thus, the unit scale profit 
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function for sector m can be defined as 

irm(p,r,w) = maXafi,c{p • c — r • b - w • a : (c, —b, —a) € Cm}, (18.1) 

where, for convenience, we have defined the vectors a, b and c to be nonnegative. The unit 

scale production possbilities set Cm can be recovered as 

Cm = {(c, -b, -a) : p-c-r-b-w-a < 7rm(p, r,u>) for every p > 0K, r > OQ, W > 0̂ }. (18.2) 

If 7rm is differentiable, we obtain, by Hotellings's lemma, the optimal unit scale input-output 

coefficients: 

cm(p,r,w) = V p 7 r m (p,r, W ) , (18.3) 

-bm(p,r,w) = Vrirm(p,r,w), (18.4) 

-am(p,r,w) = VwTtm(p,r,w). (18.5) 

The industry profit function 7 r m is nondecreasing in p, nonincreasing in r and w, homogeneous 

of degre one, convex and continuous in (p, r, w) for p >̂ 0A', r 0Q, W >> Ojv-

Given world prices p, fixed factor prices r and resource endowments v, the economy's ag

gregate profit maximization problem is 

max(cm _bm,-arn)ec^,m=i,2,..,Mmax^>oM{2Zm=i(P- ~ r • bm)zm • 

£ 2 f = 1 a m * m < v} (18.6) 

= m a x( cm i_ km i_ am) e Cm i m = l i 2 , . . . , w [ m a x , { E m=i ( p -cm -r- bm)zm : 

» - E!=i«^m > ON, Z > 0M}] (18.7) 

= max (cm _ 6 m -a-)ec-,m=i,2,...,M[maxi>oAfminto>oJV{Em=i(P • cm - r • bm)zm 

+ w(v-Z™=1a™zm)}} (18.8) 

= max2>oMminu;>oJV{Em=i7rm(P5r,w)zm + w • v} (18.9) 

= 7r(p,r,t>), (18.10) 



Chapter 18. The Model 147 

where we have used the saddlepoint theorem for linear programs to transform the constrained 

maximization problem in (18.7) to the saddlepoint problem in (18.8), and definition (18.1) to 

go from (18.8) to (18.9). The pure dual form of the economy's profit maximization problem is 

7r(p, r, v) = minw>oN{w • v : nm(p, r, v) < 0, m = 1,2, M). (18.11) 

The economy's profit maximization problem ir(p, r, v) can be considered the constrained (or 

restricted) GNP function. It yields the value of aggregate output minus the cost of fix-price 

factors.2 The value of w(p, r, v) would also be the sum of payments to flex-price domestic 

resources. In contrast, the usual unconstrained GNP function gives the value of output which 

equals the sum of all factor payments in the economy. 

The model, so far, has been discussed in the context of the Q fix-price factors as domestic 

resources. However, the elements of the variable factor supply vector I = (/i,/2,..., IQ)T can 

be imports used as inputs in the production of internationally traded goods. With the small 

country assumption, the prices of imports are exogenous. As well, price controls on nontraded 

output (produced goods) can be modeled by lumping these goods with internationally traded 

goods. Note that the small country assumption plays an important role in the dichotomy 

of goods and factors. For ease of interpretation in subsequent discussion, the vector / will be 

treated as fix-price domestic resources used as inputs in the production of internationally traded 

goods y. 

18.3 First-order conditions 

Equation (18.9) is a concave programming problem. Suppose z* ]> 0M, W* > 0./v solve (18.9) 

when the exogenous variables are set at p*,r*,v*. The first-order conditions for an interior 

solution yield the zero-profit conditions and flex-price resource exhaustion conditions: 

xm(p*,r*,w*) == 0, m = 1 ,2 , . . . ,M; (18.12) 

Em=i^w^m(p*,r*,w*)zm + v* = 0N. (18.13) 
2The constrained G N P function ir(p, r, v) corresponds to Neary's factor-price constrained revenue function 

where fix-price factor employment levels are interpreted as "negative outputs" sold at their fixed prices. 
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Define the matrices of optimal input-output coefficients using (18.3)-(18.5) as 

A = [au,a2*,...,aM*] 

= [ - V ^ p V , W% - V W T T 2 ( P * , r*, w"),..., - V„,7r M ( p * , r*, to*)]; (18.14) 

B EE [61*, 6 2 * , . . . , bM*] 

EE [ - V r 7 r V , r*, to'), - V r 7 r 2 ( p * , r% to*),..., - V r 7 r M ( p ' , r*, «;•)]; (18.15) 

C EE [ C 1 * , ^ , . . . , ^ ] 

— [ V p7r 1 ( p * , r * , « ; * ) , V p7r 2 ( p * , r * , 1 i ; * ) , . . . , V p7r M ( p * , r * , U ; * ) ] (18.16) 

where A, B and C are of dimensions NxM, QxM and KxM, respectively. The first-order 

conditions (18.12) and (18.13) can be rewritten in matrix form, with the use of equations (18.1) 

and (18.14)-(18.16), as 

p*TC-r*TB-w*TA = Ojf, (18.17) 

Az* = v*. (18.18) 

The economy's net output vector y and employment levels for fix-price factors / are given 

by 

y(p*,r*,v*) EE E ^ = A V p7r m ( p * , r * , « ; ( p * , r * , U * ) ) 2 m ( p * , r * , t ; * ) , (18.19) 

/ ( p W ) EE - E ^ = 1 V r7r m ( p * , r * , u ; ( p * , r « , V * ) ) 2 m ( p * , r * , i ; * ) , (18.20) 

or in matrix notation, 

y* = Cz*, (18.21) 

/* = Bz*. (18.22) 

18.4 Fundamental matrix equations 

If we assume that the unit profit functions wm are twice continuously differentiable, total differ

entiation of (18.12), (18.13) and (18.20) yields the following equations relating the endogenous 
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variables w, z and / to the exogenous variables v,p and r 

-SWW A ONXQ 

AT OMXM OMXQ 

-SRW B —IQ 

dw 

dz -
dl 

IN S 

OMXN CT —BT 

OQxN -rp 

dv 

dp 

dr 

(18.23) 

(18.24) 

where 

are the aggregate substitution matrices. Since the industry unit scale profit functions are 

convex in (p, r, w), the symmetric matrices Spp, Srr and Sww are positive semidefinite. The 

linear homogeneity of nm implies the following: 

SppP* + Sprr* + Spww* = 0K; (18.25) 

Srpp* + Srrr* + Srww* = OQ; (18.26) 

SwpP* + Swrr* + Swww* = 0N. (18.27) 

To obtain the comparative static responses of w, z and / to changes in v, p and r, we apply 

the implicit function theorem. The inverse of the (TV + M + (J)-dimension square matrix in the 

left hand side of (18.23) is required. Define the submatrix G as 

G = (18.28) 
AT OMXM 

Assume that the NxM matrix A has rank M < N, that is, the number of flex-price resources N 

is at least as great as the number of industries M . 3 Furthermore, assume that the matrix 

SWw + AAT is positive definite.4 The positive semidefiniteness of Sww, the rank condition 

on A, and the positive definiteness of SWw + AAT are necessary and sufficient conditions for the 

existence of the inverse of G. Define this matrix to be 

^ WW A 
-1 

D E 

AT 

OMXM E T F 

(18.29) 

3 Since the rank of a matrix is the number of linearly independent rows or columns in that matrix, the rank 
condition on A, rank(A) = Af, requires distinct industry or sectoral classification. 

4 The positive definiteness of Sww + AAT implies that Sww + AAT has a positive determinant and hence is of 
rank N. Since AAT is of rank M, the flex-price factor substiution matrix Sww has rank at least equal to N — M. 
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The properties of G~x are developed in the appendix of the work by Diewert and Wood

land (1977). 

If we denote the Qx(N + M) matrix H as H = [SRW, —B], then the inverse of the left hand 

side matrix in (18.23) can be expressed as 

G 0(TV+M)IQ 

-H -IQ 

-1 
t-1 o (N+M)xQ 

-HG-1 -IQ 

(18.30) 

Hence, we obtain the comparative static response matrix 

Vvw VpU; V r u) 

V „ z V p z V r z 

vv/ vp/ vrz 

G 1 °(7V+M)xQ 

-HG-1 -IQ 

D 

ET 

Stup S ujr IN 

®MXN CT —BT 

OQXN SRP SR 

E 

F 

ONxQ 

QMxQ 

-(SRWD — BET) -(SRWE - BF) -IQ 

D DSWP + ECT 

ET 

Jwp ^wr 

(18.31) 

-(SRWD - BET) 

ETSWP + FCT 

-[{SRWD - BET)SWP 

+(SRWE - BF)CT 

+SRP] 

To interpret the above equations, it is helpful to list down the conditions satisfied by the 

matrices D, E and F that appear in (18.29). As given in the appendix of Diewert and Wood

land (1977), these are: 

IN 

OMXN CT —BT 

0QXN $rp $rr 

DSWR - EBT 

ETSWR - FBT 

-{SRWD - BET)SWT 

+(SRWE - BF)BT 

-SWWD + AET = IN 

ATD = OMXN 

(18.32) 

(18.33) 
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ATE = IM (18.34) 

-SWWE + AF = 0NxM (18-35) 

D = DT (18.36) 

F = FT (18.37) 

F = ETSWWE (18.38) 

where D is a negative semidefinite matrix and F is a positive semidefinite matrix. 
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Comparative Static Results 

1. The matrices V„tu = D and V„z = ET have the usual interpretation as given in Diewert 

and Woodland (1977) with N as the number of flex-price domestic resources. Local factor price 

equalization obtains when the number of industries is equal to the number of flex-price domestic 

resources, that is, M = N. In this case, the matrix A is square of dimension N and rank N, its 

inverse A - 1 exists and from (18.33), D becomes a zero matrix. This yields X?vw = [ ^ J = O^xN 

which means flexible factor prices are independent of small changes in endowments.1 

Also, if M = N, the domestic resources exhaustion equation (18.18) can be rewritten as 

z* = A_1v*, meaning the industry scales are completely determined by the input coefficient 

matrix A and the initial endowment vector v*. In this case, the fix-price factors, having an elastic 

supply, do not seem to impose constraints on the scale of production. Hence, V„z = = A - 1 . 

2. Flexible factor prices w are now homogeneous of degree one in (p, r). The homogeneity 

property of w(p, r, v) can be seen as follows: 

[Vpw]p* + [Vrw] r* = (DSwp + ECT)p* + {DSwr - EBT)r* from (18.31) 

= D{Swpp* + Swrr*) + E(CTp* - BTr*) 

= -DSwww* + EATw* using (18.27) and (18.17) 

= (—DSWW + EAT)w* 

= INw* using (18.32) 

= w*. 
'Generally, even if M ^ N, it has been shown by Neary (1985) that the response of flexible factor prices 

to changes in endowments is less negative relative to the unconstrained case where all domestic resources have 
flexible prices. In this sense, the economy has a greater tendency towards "local" factor price equalization. 
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We then have 

[Vpw]p* + [Vrw]r* = w*. (19.1) 

For A > 0, w(Xp, Ar, v) = Xw(p,r,v). A proportional increase in internationally traded goods 

prices (such as through currency depreciation) does not necessarily lead to a proportional 

increase in flexible factor prices if there are fix-price factors. With respect to the endowment 

vector v, the flexible factor prices still retain the property of homogeneity of degree zero, that 

is, for A > 0, w(p, r,Xv) = w(p, r, v). 

3. Industry scale functions z(p, r, v) are no longer homogeneous of degree zero in world 

prices p. We have 

[VPz]p* dp 
p* = - [V r z]r* (19.2) 

Equivalently, industry scales are homogeneous of degree zero in (p, r). For A > 0, z(Ap, Ar, v) = 

z(p, r, v). Intuitively, since a proportional change in prices p and r lead to a proportional change 

in w (as given in result 2), relative prices in the economy do not change. Hence, there is no 

real effect and industry scales remain unchanged. 

Industry scales remain homogeneous of degree one in v, that is, z(p, r, Xv) = \z(p, r, v) 

for A > 0. Equivalently, [V„z]u* = v* = z*. Since the fix-price factors are in elastic 

supply, the industry scales or production levels are determined or limited by the exhaustion of 

inelastically supplied (flex-price and fully employed) factors. 

4. Rybczynski-type and Stolper-Samuelson type generalizations still obtain in the analysis 

of V„z and Vpw. 

5. a) The response of flexible factor prices to marginal changes in the fixed factor prices 

is given by 

'dw' 
8T 

= DSwr - EB1 

dw' 
\dZ] 
dv. BT using (18.31). (19.3) 

A Slutsky-type decomposition of the total effect can be made: the first term measures the 

pure substitution effect between fix-price factors and flex-price factors, and the second term 
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measures the scale effect. The scale effect can be explained as follows: changing, say, a fixed 

factor price leads to a change in the employment level of that elastically supplied factor such 

that its value of marginal product equals its new fixed price; therefore, the vector of domestic 

resources available for productive activities changes. 

The first term in the right hand side of (19.3) will be zero if either SWR — ONXQ or D = ONXN-

In the first case, there is no substitution between fix-price factors and flex-price factors or 

equivalently, there is no change induced in the input coefficient matrix A by a change in fixed 

factor prices. In the second case, the number of industries is equal to the number of flex-price 

factors (M — TV), the flexible factor prices w are completely determined by world output prices 

p and local factor price equalization holds; changes in the matrix A will have no effect on 

prices w. In either of these cases, the total effect will be due purely to changes in scale. 

b) Stolper-Samuelson type generalizations obtain with the fixed factor prices rq acting like a 

world output price pk and the fix-price factor behaving like a "negative" internationally traded 

good. If we premultiply equation (19.3) by AT, we obtain 

'dw' = ATDSwr - ATEBT 

- -BT using (18.33) and (18.34) (19.4) 

Transposing, we have 
dw 
Or 

-B. (19.5) 

If the matrix A is nonnegative and B contains at least one positive element in the gth row, that 

is, all flex-price domestic resources are inputs or nonproduced and at least one industry uses 
T 

the gth fix-price factor as an input, then the qth row of 
dw 
dr 

dw\ dw2 dWN 

drq ' drq ' ' drq 

(19.6) 

has at least one negative element. If rq increases, at least one flexible factor price will decrease. 

A weakness of the fundamental matrix approach, probably due to its generality, is that it 

does not yield more specific results on which flex-price factor will gain or lose. Let us try the 



Chapter 19. Comparative Static Results 155 

special case of K = M = 2 internationally traded goods (assuming a single output for each 

industry), N — 2 flex-price domestic resources and Q = 1 fix-price domestic resource. Since 

we have M = N, the matrix D is a zero matrix and the response of flexible factor prices to 

marginal changes in fixed factor prices would be solely a scale effect. Substitution possibilities 

among domestic resources will not affect w\ hence, we would suspect relative factor intensities 

to determine the price responses. For this special case, equation (19.3) reduces to 

Ir1 

dtV2 
= -EBT since D = 0 2 x 2 

= —(A~1)TBT using (18.34) 

= -(BA~l)T where B = [b\,b\} and A = ai at 

at, 

A where A =|A|= a\a?, — a\a\. (19.7) 
a\b\ — a^] 

a\b\ - a\b\ 

Let us assume that the matrices A and B are positive, that is, all domestic resources are 

used as inputs. From the previous analysis, at least one flexible factor price will decrease. In 

(19.7), we can sign the following quantities: 

, U 2 

A^O if 
a\>a\ 
a f < a 2 

jb\>0 if a}2>b\ 
al<b\ 

(19.8) 

\bj>0 if 
b\ya\ 
6 2 < a 2 ' 

The six possible factor intensity configurations and the resulting effects on the flexible factor 

prices are given in table 19.9. An examination of the table indicates that the factor that varies 

the most in its input coefficient ratio from that of the fix-price factor tends to gain with an 

increase in the fixed factor price. Vice-versa, the more similar the flex-price factor in the manner 

it is allocated to the different productive activities (as measured by relative factor intensities), 

the greater the tendency for this factor to decrease in price with an increase in the fixed factor 

price. 
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factor intensities A E E | A | ^ (= - f t ) 

+ + -

nL > b± > s i 
«? b? «S + - -

«! °? b? 
- - + 

a l b? a l - - -

+ - + 

^ ^ al - + -

Table 19.9: Factor intensity configurations and resulting effects on the flexible factor prices 

c) From equations (19.3) and (18.31), we obtain the following symmetry condition: 

V r w = DSwr - EBT 

= [SrwD - BET)T where Srw = ST

r 

= - [V„Z] T . (19.9) 

This implies — — or the change in the nth flexible factor price due to a marginal increase 

in the qth. fixed factor price is equal in magnitude but opposite in direction to the change in 

the employment level of the gth fix-price factor due to a marginal increase in the endowment 

of the nth flex-price resource. Suppose we redefine factor complementarity and substitutability 

in terms of V„Z: the nth flex-price factor and qth fix-price factor are complements if J^2- > 0, 

that is, an increase in the endowment of the nth flex-price factor induces a higher employment 

level for the fix-price factor; otherwise, if ^ < 0, then they are substitutes. In this context, we 

can get a result that is analogous to the Tobin-Houthakker conjecture: an exogenous increase 

in the fixed price of a factor will reduce the price of its complements and increase the price of 

its substitutes.2 

2This interpretation is merely another description of factor price behavior and begs the question of explaining 
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Note that the symmetry condition in equation (19.9) holds in general whereas the cor

responding symmetry between flex-price factor and output variables as described in equa

tion (19.10) below holds only under more restrictive conditions. The possibility of intermediate 

inputs and joint production complicates the relationship. The presence of intermediate inputs 

is innocuous if the local factor price equalization condition holds, that is, if factor prices are 

independent of changes in endowments; this nullifies any effect of input substitution on factor 

prices. Specifically, we obtain the symmetry condition 

Vpw = [Vvz]T = [Vvy]T (19.10) 

only if C — IK and K = M (single output technologies)3 and either SWP = 0/VxA' (no interme

diate inputs) or M = N (local factor price equalization) hold. 

6. The analysis of the matrix V„Z = —(SRWD — BET) yields a Rybczynski-type result: 

if A is nonnegative and B contains at least one positive element in the gth row, that is, all 

flex-price resources are inputs or nonproduced and at least one industry uses the gth fix-price 

factor, then the gth row of V„Z: 

r d l " 0 l " --- ^ 1 (19.11) 
.dvi' dv2' ' dvfj. 

has at least one positive element. In this case, there exists at least one flex-price factor whose 

increase in endowment leads to greater utilization of the variable supply factor q.4 This result 

is obtained by substituting (19.9) into (19.5) to yield 

dv A = B. (19.12) 

Again, the total effect can be decomposed Slutsky-like into two sources: a pure substitution 

effect and a scale effect. In the context of marginal changes in the endowment vector v, the 

condition SRW = 0QXJV implies that the B matrix does not change with respect to changes in 

the mechanism behind price changes. What is of interest are the underlying determinants of factor price behavior, 
as we have attempted to identify in isolating substitution and scale effects. 

3With single output technologies, that is C = IK and K = M, we have the equality of the scale and output 
variables: zm = ym-

4If each fix-price factor is used by at least one industry, then in the modified sense of substitution as defined 
in result 5c, each fix-price factor has at least one complement among the flex-price factors. 



Chapter 19. Comparative Static Results 158 

flexible prices w; the scale effect is due to a change in the vector of domestic resources available 

for productive activities. For the special case discussed in result 5b where K = M = N = 2 and 

Q — 1, the signs of the elements of V„Z: 

v / = [—1 — \£h. 2h] = Lf^i ci9 

" ~ [dv\ [dvi''dv2i I 9ri ' dr2 J 

can be obtained from the previous table by using the symmetry condition (19.9). The total 

effect is solely a scale effect. Note that will be negative (substitutes in the modified sense 

of result 5c) if their associated factor intensity ratios are not adjacent to each other (in the 

inequalities); otherwise, it is positive. 

7. The response of industry scales z to changes in the fixed factor prices r is given by 
dz 

= E Swr — FB . (19.14) 

This equation can again be interpreted as a Slutsky-type decomposition. The first term accounts 

for the effect of substitution between fix-price factors and flex-price factors. The second term 

corresponds to the scale effect arising from a change in the utilization of the fix-price factors. 

If there is no substitution between fix-price factors and flex-price factors (SWR — ONXQ), as 

in the case when fix-price factors enter production in fixed coefficients, then 

where F is an MxM positive semi definite matrix. Premultiplying by B, we obtain 

'dz 
B dr 

= -BFBT, 

a negative semidefinite matrix which implies 

.dZm EM Ln 
m=l°q 

EM in 
m = l 0 i 

drq  

dz„ 
dr; 

< 0, q = 1,2,...,Q and 

= -FBT 

(19.15) 

(19.16) 

(19.17) 

8. The change in the employment levels of fix-price factors due to a change in world 

prices p is given by 

VPZ 
di 
dp. 

-(SrwD - BET)Swp - (SrwE - BF)C2 

III 11 ,W ^ ^ 

— - Srp -f-

'rp 

\dl] \dz] 
dv. dr. CT using (18.31) (19.18) 



] 
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The first two terms on the right hand side measure the pure substitution effects: -Srp, the 

direct effect due to substitution between internationally traded goods and fix-price factors 

and [ĵ j Swp, the indirect effect due to substitution between internationally traded goods and 

flex-price factors. The third term can be interpreted as a scale effect. There is no clear-cut 

result on the definiteness property of the matrix VPZ. Equation (19.18) can be rewritten as 

VPZ — - S r p — [Srw, ~B] 
D E Q 

uwp 
E T F CT 

(19,19) 

Let us consider the usual case of no joint production and no intermediate inputs: M = K, 

C - IK, S w p = OiVxA', Srp = OQXK- Equation (19.18) reduces to 

VPZ = -(SrwE-BF) 

= -[V rz]T using (19.14) 

— ~[^ry]T since y = z when M - K and C = IK- (19.20) 

drn 

(19.21) 

In this case, we obtain the symmetry condition 

dig _ dzk 

dpk drq 

If we further assume S r w = ®QxN as discussed in result 7, postmultiplication of (19.20) by BT 

yields 

dyk 

di 
.dp. 

BT = BFBT = - B 
dy 

dr 
(19.22) 

a positive semidefinite matrix. 

9. The response of fix-price factor employment to changes in their price is given by 

dr 
VJ = dr 

= -(SrwD - BET)Swr + (SrwE - BF)BT - Sr 

= S r r + 

= —Srr ~\~ 

\dn 
.dv. 

C 
^>wr + 

dz] 
dr. 

'dw 
Swr + 

\d z' 
. dr Swr + dr_ 

Srw 
'dw' 
. dr. 

id 
.d 

BT using (18.31) 

BT using (19.9) 

(19.23) 
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The total effect can be decomposed into a direct substitution effect among fix-price factors, 

an indirect substitution effect between flex-price factor and fix-price factors and a scale effect. 

Equation (19.23) can be rewritten as 

V rZ = -[SrwD - BET, IQ] WW *~>WT (19.24) 
DSwr - EBT 

IQ 

where the symmetric matrix of aggregate substitution terms in the right hand side is positive 

semidefinite. Hence, the matrix V„/ is negative semidefinite. This implies that -gf- < 0; an 

increase in the fixed price of a factor reduces or at most does not change the employment level 

of that factor. If SWR — ONXQ as discussed in result 7, then equation (19.23) reduces to 

Vr7 = -SRR- BFB (19.25) 

where both matrices, SRR and BFBT, are positive semidefinite. 

It can also be shown that / is homogeneous of degree zero in (p, r), that is, /(Ap, Ar, v) = 

l(p,r,v) for A > 0. Hence, V p/p* + V r / r * = OQ. 

10. The usual comparative static results apply to V pt/ and Vvy. In the response of output 

to changes in fixed factor prices, we get 

V r j / = 
dy dw dz 

dr 
(19.26) 

obtained by differentiating equation (18.19). Equation (19.26) can be rewritten as 

yry = Spr + Spw(DSwr - EBT) + C(ETSwr - FBT). (19.27) 

A definiteness property for V r y cannot be established. The terms on the right hand side of 

equation (19.27) can be interpreted accordingly. 

11. The homogeneity properties of w,z,l and y and the definiteness properties of V p y 

and V r / can also be established from the definition and convexity properties of the constrained 

GNP function w(p, r, v) as given in equations (18.6) and (18.11). 



Chapter 20 

An Illustration: Devaluation with Rigid Wages in a Specific-Factors Model 

In recent years, there has been a resurgence in interest on the type of labor unemployment 

generated by real wage rigidity rather than by Keynesian aggregate demand deficiency. Cur

rency devaluation is an alternative employment stimulation policy. The effects of a devaluation 

are examined in the context of a two-sector specific factors model.1 It has been argued by 

Neary (1978) that capital sectoral specificity need not necessarily have only a short run in

terpretation. In the medium run or long run, capital equipment is generally not physically 

transferred from one sector to another and capital stock adjustments take the form of varying 

investments relative to depreciation. 

Suppose we have two single-output sectors (M = K = 2) with output y\ and y2 and associated 

world prices p\ and p2. Each sector uses a sector-specific input, say capital; imports and labor 

as fix-price factors; and output from the other sector as an intermediate input. Let l\ and l2 be 

the total quantity of imports and labor, respectively, utilized by the economy; let r\ and r2 be 

their exogenous prices. The endowments of sector-specific capital are v\ for sector 1 and v2 for 

sector 2; their endogenous prices are w\ and w2, respectively. The configurations of the unit 

input-output coefficient matrices A, B and C and of the substitution matrix Sww are as follow: 

A = 
a\ 0 %' 1 -c\ 

; B = 
%' 

; c = 
. 0 a 2 b\ b2 - c 1 1 

'Early analysis of the specific-factors model were done by Samuelson (1971), Jones (1971), Mayer (1974), 
Mussa (1974) and Neary (1978). Samuelson (1971) shows that free trade will tend to partial, though not 
complete, factor price equalization between countries. With factor specificity, anti-Rybczynski and anti-Stolper-
Samuelson outcomes explain factor owners' responses to trade policies (such as workers supporting protection 
for capital-intensive industries and opposing liberal immigration policies) as short-run reactions. 
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c = 
J Wl Wl 

0 5, 
(20.1) 

— = A > 0; — 0; dv-i = dv2 — 0. (20.2) 

where a] > 0, bj > 0, c3 > 0, = 1,2) are scalars. A devaluation can be modelled as a 

proportional increase in output prices (pi,P2) a n d import price (ri) such that 

dpi _ dp2 

Pi P2 

We assume that wages do not change and the capital stocks remain constant. The effects of a 

devaluation on capital returns, output, employment, imports and national income are discussed 

next. 

1. Returns to sector specific capital. The changes in capital returns Wi and w2 due to the 

devaluation are given by 

d w i = (P^-P2c\-Tlb\\x 

d w 2 = (p2-Pic\-nbl\x = 

r2b\ -f- w\a\ 

r2b\ + w2a\ 

'r2b\ 
+ ti>i J A > Xwi > 0; 

(20.3) 

T-^- + w2) A > Xw2 > 0. 
\ 2 / \ • 2 / \ 2 / 

In full employment models, a devaluation has a neutral effect since domestic factor prices 

increase proportionally. In contrast, we now obtain a more than proportional increase in capital 

returns in both sectors since the specific factors absorb the gain that could have accrued to 

labor under full employment. Hence, the higher the value-added content in a sector, the greater 

the gains to capital owners in that sector arising from the devaluation. Export promotion by 

currency devaluation will not be as beneficial to capital owners in sectors with low value added, 

such as those in assembly of completely-knocked-down parts. 

2. Output. The nonproportional increase in capital returns (w\ and w2) makes possible 

the output effects given by 

dyi 'SWlr7r2 + S, WlWl 
'P\ ~ P2c\ - rxb\ - wia\ 

r2b\ 
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(20.4) 

dyi r2 + S 102 «J2 

Su>2 T2 r 2 "t" 

' p2 ~P\c\- rxb\ - w2a\ 

W2W2 

By the positive semidefiniteness of the substitution matrix Sww, its elements SWlWl and SW2W2 

are nonnegative. The output of a particular sector will increase if labor and capital in that sector 

are substitutes; that is, Smr2 < 0 for sector 1 and SW2r2 < 0 for sector 2. Labor and capital are 

not necessarily substitutes in the presence of intermediate inputs and imports. However, it is 

still possible to obtain a positive output effect if the degree of complementarity between labor 

and capital is sufficiently small. 

Note that the output effects in equations (20.4) can be rewritten as 

d 
dyi = 

dy2 = 

b\ 
dwi \a\ 

d 
dwo 

b\ 

(Ar 2 ) ; 

(Ar 2 ) . 

(20.5) 

Hence, as long as the labor-capital ratio in a sector increases, the devaluation leads to an 

expansion of that sector. The reason why the change in output can be expressed as a function 

of wages r2 can be seen in the following discussion. 

3. Employment. From the comparative statics exercise (result 9), we know that the 

employment levels of fix-price factors / are homogeneous of degree zero in the exogenous 

prices (p, r); that is, [Vp/]p* + [VrZ] r* — OQ. For our example here, we then have 

(20.6) 

Together with the negative semidefiniteness of the matrix V rZ, the homogeneity property can 

be used to derive the change in employment dl2: 

dpi ap2 Pl + dr\ 0 

dh 
. 5pi 9p2 . .  P 2 . 

+ 
OTl OT2 r2 0 

dU dh, . dl2 , dl2, 
•5—dpi + -^—dp2 + -K—drx 

dpi dp2 dri 
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= A dl2 dl2 , 
dpi dp2 

dr2 

(Ar 2) 

> 0. (20.7) 

Hence, labor employment increases or at the least does not change with a devaluation. The 

proportional change in employment depends on the wage elasticity of labor demand, as can be 

seen in the expression 

f - " (g£) <»•« 
The above derivation also shows that a devaluation of A > 0 is equivalent to a proportional 

decrease in the wage rate of A: 
dv2 

dpi = dp2 = drx = 0; = — A; dv\ = dv2 = 0. 
T2 

(20.9) 

This suggests how devaluation is a policy instrument for reducing real wages and increasing 

employment. Empirical estimation of the wage elasticity of labor demand will indicate whether 

exchange rate adjustments are an effective employment policy tool. 

4. Imports. Similarly, the change in quantity of imports due to the devaluation is given 

by 

where 

dU (20.10) 

dh 
dr2 ai 

+ $wi r i Swi wi i 
b\\ b\ 

l + I Sw2ri 
bl\ b\ 

JU>2W2 2 
(20.11) 

A priori, we cannot sign the direction of change in imports dh- It will be opposite in sign 

to the wage elasticity of imports. Let us analyze the change in imports due to a wage rate 

change (f̂ ) • The import response can be decomposed into three components of which the 

latter two can be attributed to changes in capital returns (K>I,U>2) induced by the wage rate 

change. 
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The first component as measured by the term — Srir2 is the direct effect due to the substi-
b1 b2 

tution between labor and imports. The second component Sw,r2-\; + SW2r2-^ is the indirect 

effect due to substitution between labor and capital in the two sectors which leads to a change 

^j-, . The third component is the scale effect due to a change 

in labor employment. This last component can be reexpressed as 

c _ c 1±\1± + ( Q _ c M l M 
•JwiTi

 Ju)iu)i 1 I 1 i \ Jw2ri Ju>2W2 2 I „2 
\ " 2 / "2 

)a\ 

( b\\ bl + 'bt 
d\V2 [a2. bz

2. (20.12) 

Let us assume that labor and imports are substitutes (5 r i r 2 < 0) and labor and capital 

are substitutes (SWir2 < 0 and SW2r2 < 0, which imply both sectors expand). Then the first 

component in equation (20.11) is positive while the other two components are negative. Hence 

the direct substitution effect has to predominate the combined indirect substitution and scale 

effects for imports to increase with an increase in wages (or decrease with a devaluation). 

The preceding discussion on the mechanism behind the import response to wage changes 

is an illustration of the LeChatelier principle (see, for example, Samuelson (I960)). The wage 

elasticity of imports in the case of rigid wages (unemployment) will be different from that in 

a flexible-wage (full employment) scenario. The change induced in capital returns in the rigid 

wage case underlies the difference. 

5. National income. Ignoring international factor payments and abstracting from the 

absence of indirect taxes, we can express the gross national (or domestic) product GNP net of 

capital depreciation as the sum of domestic factor payments or national income, NI: 

NI = r2l2 + wivi + w2v2. (20.13) 

The change in national income due to the devaluation is given by 

d(NI) - r2dl2 + Vidwi + v2dw2 > 0 (20.14) 

which is positive. Hence, national income increases because employment increases or at the 
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least does not fall (dl2 > 0, equation (20.7)) and capital returns increase (dw\ > 0, dw2 > 0, 

equation (20.3)). 

The devaluation resulting in an increase in national income is not surprising. Initially, 

we have a rigid wage above the market clearing level. The devaluation reduces the degree of 

distortion in the factor markets caused by wage rigidity. It is equivalent to a reduction in 

the real wage. Even if the wage elasticity of labor demand is low (and hence, the devaluation 

does not lead to a significant increase in employment), gains still accrue to capital owners, 

particularly in sectors with high value added. Empirical estimation will yield information on 

the magnitude of the income distribution repercussions of devaluation. 

We can exploit the symmetry condition between prices and quantities of fix-price and flex-

price factors {js^ = equation (19.9)) to predict the employment effects of investment 

in our specific-factors model. We have shown that a devaluation is equivalent to a decrease in 

wages and that it leads to increases in returns to capital in both sectors. Hence, we have for 

any sector m, Q^JJL < 0; that is, a wage increase will decrease capital returns. By the symmetry 

condition, we have ^j 2 - > 0; that is, capital investment will increase labor employment. In 

terms of magnitudes, the greater the gains of a devaluation to capital owners (or equivalently, 

the greater the loss to them due to a wage increase and which is likely to occur in higher 

value-added sectors), the greater the employment effects of investment. 

The specific-factors model in this section can be generalized to any M = K > 2 sectors and 

the comparative statics results of a devaluation obtained will remain robust. A two-sector model 

was used to highlight sectoral impacts of a devaluation. Note that the substitutability between 

intermediate inputs (other than imports) have not been so far mentioned in the discussion of 

our specific-factors model. The model has been rigged, by having an equal number of sectors 

and flex-price factors (capital), to yield "local" factor price equalization; that is, competitive 

prices of domestic primary factors are independent of changes in their endowments. Technically, 

we would have M = N, the number of sectors equal to the number of flex-price factors. As 

noted in our comparative statics result 1, we have the matrix Vvw = D = ONXN- Hence, the 
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substitutability between intermediate goods and flex-price factors would not affect the factor 

prices w. In equation (18.31), the first term in the expression.Vpw; = DSwp + ECT is a zero 

matrix. 

The mechanism described in this section can be considered the impact effect of a devaluation 

on resource allocation. There would be a general tendency towards these effects as long as there 

is a less than proportionate increase in wages. In reality, a devaluation can trigger domestic 

inflationary pressures and the final outcome with respect to employment of a devaluation will 

depend on the sensitivity and speed of real wage adjustments to exchange rate changes. 



Chapter 21 

Towards Econometric Implementation 

21.1 Policy implications 

Aside from making explicit the mechanism by which exogenous shocks, such as changes in output 

and import prices or increases in capital stock, generate general equilibrium effects on resource 

allocation, econometric implementation of the model yields empirical information useful to 

policy makers. With wage rigidity, one important estimate that can be derived is the wage 

elasticity of labor demand; if this turns out to be small, then wage flexibility policies may not be 

very effective in promoting employment. A substantial decrease in real wages would be needed 

to induce greater employment. In this case, devaluation as an employment-stimulating policy 

tool would not make much difference though it can still have income distribution repercussions. 

Also, a low elasticity of employment with respect to real wages is favorable to labor unions 

which can extract wage premiums at little cost in terms of employment. 

If unemployment is due to real wage rigidity, then labor employment will not be a function 

solely of wages. The relative importance of the determinants of employment such as wages, out-

i put and import prices and capital stock changes can be evaluated. With the decline of the dollar 

in the United States from 1985 to 1987, there has been a revival of and increased employment 

in the manufacturing industries, particularly the export sectors. Some have conjectured that 

it was not as much the weak dollar but the capital stock readjustments (accelerated scrapping, 

modernization and retooling of the factories, etc.) that took place which contributed more to 

the competitive turnaround of the U.S. economy. 

Since imports are inputs to production as well, changes in their prices will affect the compet

itive returns to domestic primary factors. With the small open economy assumption, imports 
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have exogenous prices; hence, the behavior of (endogenous) prices of domestic primary factors 

in response to changes in import prices is also described by our "revised" Tobin-Houthakker 

conjecture (the decomposition of the response to substitution and scale effects and the clarifi

cation of the "substitutability" and "complementarity" definitions). The relationship between 

imports and returns to durables or capital, and imports and labor employment can be examined. 

In the period 1961-1980, the relative share in value terms of imports in production increased 

while that of labor decreased in Canada. 

Information on the price elasticities of output can be useful in studying the effects of free 

trade on Canada. A problem is estimating the magnitude of the expected decrease in prices 

of traded goods arising from a tariff reduction; hence, empirical estimation of resultant output 

changes is not a straighforward exercise. Actual prices reflect not only explicit tariffs and do

mestic taxes but also the price effect of other market distortions, trade (quotas, standards and 

content requirements, etc.) as well as nontrade (marketing boards, interprovincial trade restric

tions, etc.). For example, Canadian food processors say that free trade will not significantly 

decrease the prices of eggs, poultry, milk and the like which are subject to marketing boards. 

Some of them argue that currency devaluation will be more beneficial to them than a reduction 

of tariffs, since under the latter, their competitivenesss vis-a-vis the U.S. market is hampered 

by the relatively higher prices of their input commodities or raw materials. Therefore, the price 

effect of a tariff reduction cannot be assessed independently of other nontariff distortions in the 

economy. Another complicating factor is the nonuniformity in application of tariffs. In Canada, 

tariff rates are governed by several multilateral trade agreements; hence, for the same class of 

goods different rates may apply depending on the country of origin of the imports.1 

A weakness of the modeling approach taken in this study is the naive way of introducing 

factor price rigidity. Though there can be varying causes, models endogenizing price rigidity 

for a domestic resource is a possible area of future research. Also, social welfare considerations, 

other than factor income distribution, are ignored. Nevertheless, this study can generate partial 

1 Rates may differ according to most-favored nation tariff, general preferential tariff, British preferential tariff, 
U.K. (United Kingdom) and Iceland tariff, etc. 
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information useful in assessing equity-efficiency tradeoffs of government policies impinging on 

the production sector of the economy. 

21.2 The shadow price of a fix-price factor 

The theoretical framework discussed assumes that the fix-price production factors have elastic 

supplies. Generally, in disequilibrium, there can be excess demand for these factors. Labor 

shortages can occur. Quotas or foreign exchange controls can limit the inflow of imported raw 

materials. In this case, the production side of the economy is rationed and gives rise to the 

divergence of the shadow prices of these factors from their market prices (or fixed prices). The 

model can be reformulated to account for this possibility. Given an endowment I of the fix-price 

factors,2 the economy's aggregate profit maximization problem becomes 

max ( c m _bm _ am ) e Cm i m = 1 > 2 i . . . t M m a x 2 > o M{Em=i ( P -cm - r- bm)zm : 

L i L i ^ m < v, Y;%=ibmzm < 1} 

= max ( c m _bm,_a".)eC".,m=i,2,...,M[max2{^=1(p • cm - r • bm)zm : 

V ~ £ n f = l « m Z m > 0N, I- Em=l&m-*m > 0Q, Z > 0M}} 

= max( cm i_ 6m i_ am) e Cm i m = 1 ) 2 i... )M [ m a x 2>o M niin^>o^, < T>o Q{Z)m=i(P • c m - r • bm)zm 

+ w-(v- ^ = 1 a m z m ) + a-(l- Y%=ibmzm)}} 

using the saddlepoint theorem for 

linear programs, 

= max 2>oMmin t u> 0 w , ( T>o Q{Em=i 7 r m(P 5
r. w) 2m + w • v + a • 1} using definition (18.1), 

= f(p,r,v,l) 

= min„,>oN,<T>oQ {w-v + a -l : irm(p,r + o,w) < 0, m = 1,2,..., M}. 
2For labor, the assumption of fixed endowment is a simplification. This assumes that each worker offers a 

fixed number of hours of work. It may be argued that the economy is not endowed with a certain amount of labor 
but has an endogenous supply of this factor. That is, the workers have given time endowments and preferences 
defined over leisure and consumption goods. Hence, a more complete treatment of labor would simultaneously 
consider the production side and consumption side of the economy. 
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This maximization problem TT(p, r, u, /) explicitly incorporates the constraint on the fix-price 

factors. Corresponding to these constraints, a new vector of Lagrange multipliers o > OQ is 

introduced. These Lagrange multipliers cr can be thought of as the wedge between the shadow 

price or virtual price of the fix-price factors and their market (or fixed) prices. This inter

pretation becomes clearer upon examination of the first-order conditions and complementary 

slackness conditions. Suppose z* >• O M , W* 3> OAT, O* > OQ solve the above problem when the 

exogenous variables are set at p*, r*, v*, P. Then the following conditions hold: 

7r m (p* ,r* + o*,w*) = 0, m = 1,2, . . . , M ; 

Em=i V r-7r m (p*, r* + a*, w*)z*m + P > OQ where r' = r + a; 

^•EliV r-x r a(j>',^ + ̂ »*)4 + n = o. 
Note that the nonnegativity of the Lagrange multipliers cr, the feasibility constraint and comple

mentary condition on the fix-price factors imply that for each of these factors q, q — 1,2,..., Q, 

M d 7 r " ( p * , 7 - * + < T * , 0 
2^m=l £ r / Zm 'q 

9 

= 0. 

By Hotelling's lemma, 

a - d r , q 

is the optimal unit scale input requirement of fix-price factor q in sector m when faced with the 

price r* + o*. The above condition can be rewritten as 

< ft - £m=l&r*m) = 0, q = 1, 2, • • •, Q. 

For each fix-price factor, there are three possible cases. 

Case 1. <r* = 0 and I* — Em=i^g"*zm = 0. In this case, the price of factor q is set at 

its market-clearing level and r'* = r*. There is no divergence between its shadow price and 

its market price. The fix-price equilibrium is a Walrasian equilibrium. Walrasian demand and 

supply of this factor are equal. 
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Case 2. a* — 0 and lq — £ „ 1 = 1 i ™ * z J 1 > 0. In this case, there is excess supply of the 

fix-price factor and for the producer, the market price it faces is the fixed price r*. The 

resource constraint on this factor is ineffective and can be ignored as was done in the theoretical 

framework discussed in the text. This is the case for involuntary unemployment in the labor 

market. The producers or demanders of labor are not rationed but the consumers or suppliers of 

labor are compelled to consume more leisure than they desire. From the viewpoint of the whole 

economy, the divergence of the shadow price of labor from the prevailing wage arises from the 

consumption side of the economy. If the wage is rigid at too high a level, the quantity constraint 

on the amount of leisure consumed/labor supplied imposed on the suppliers of labor (given 

constant time endowments) comes from the production side of the economy. The comparative 

statics for the production side of an economy in this regime was carried out in the text. 

Case 3. a* > 0 and Fq — Em=i&™*-Jm = 0- I n this case, there is excess demand for the 

fix-price factor at the fixed price r* and its shadow price is above this fixed price by the amount 

a* > 0 implicitly defined by the equation 

_ M dnm(p*,r' + <r*,w*) _ r 

2^m=l Qr, m V 

This expression for the virtual price r* = r* + a* is a standard result in the microeconomic 

literature on quantity rationing.3 The virtual price or shadow price is the price that would 

induce the unconstrained producers to employ of factor q. This virtual price is not necessarily 

what will prevail in a Walrasian equilibrium because the flexible factor prices w* can have 

different configurations in these two regimes. 

Empirical implementation of the comparative statics for a production economy in this regime 

is more involved because of the unobserved Lagrange multipliers a*. Whereas in case 2, the sec

toral profit functions depend only on observables z*, p*, r* and w*, in this case the shadow price 

3See Latham (1980, pp.310-311), Neary and Roberts (1980, p.30), Deaton (1981, p.59), Lee and Pitt (1986, 
p.1238), and Lee (1986, p.301), among others. 
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wedge cr* is a latent variable.4 Virtual price functions and rationed demand functions corre

sponding to some functional forms have been analytically derived by Neary and Roberts (1980) 

for the linear expenditure system and by Deaton (1981) for an extended version of the linear 

expenditure system and a rationed almost ideal demand system. The empirical findings of 

the latter study indicate that treating housing as a ration explains much of the inhomogeneity 

observed with unrationed demand functions obtained in earlier studies. 

Theoretically, a comparison between the observed market price and the virtual price deter

mines the classification of sample observations into periods of excess supply or excess demand. 

This procedure is equivalent to determining whether a* is zero or positive. A theoretical work 

on the use of virtual prices in the specification of inverse demand and supply functions as an 

alternative to the conventional econometric disequilibirium models with supply and demand 

functions and min conditions can be found in Lee (1986). This new approach has the advan

tage of more computationally tractable likelihood functions without necessarily the multiple 

integrals of the usual multimarket disequilibrium models. However, other problems in likeli

hood maximization endemic to disequilibrium models remain. Among them are: coherency 

conditions for nonlinear systems, multiple local maxima, and unboundedness of the likelihood 

function when some variances of the disturbances approach zero.5 

From the above discussion, it can be inferred that the comparative statics discussed in the 

text should be performed only for periods where there is excess supply of the fix-price factors. 

However, information from sectoral profit functions estimated from time series data are inputs 

to the comparative static response matrix. Hence, ideally, for the periods when there is excess 

demand for the fix-price factor, its shadow price should be used instead of the observed market 

price. Otherwise, an error in variables is made which may bias the parameter estimates for the 

sectoral profit functions. 

4This shadow price wedge corresponds to the virtual tax in exchange economies considered by Cornielje and 
van der Laan (1986). 

sSurvey articles on econometric disequilibrium models can be found in Quandt (1982) and Maddala (1983, 
1986). 
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21.3 Econometric estimation 

The major interest in this study is the development of a trade-theoretic approach in the analysis 

of resource allocation in the presence of unemployment due to real wage rigidity. Factor mar

ket imperfections, in general, have aroused interest among trade theorists. The study of real 

wage rigidity, in particular, has been couched in terms of the theory of minimum wage rates 

in international trade. In contrast to the large country 2x2 model used by Brecher (1974a, 

1974b) in his pioneering works, this study uses the small country assumption; otherwise, the 

complications due to terms of trade effects have to.be addressed. Additionally, the restriction 

that the number of flexibly priced factors be at least as great as the number of industries is im

posed to avoid specialization in production. Later works in this area were done by Dixit (1978), 

Schweinberger (1978), Muellbauer and Winter (1980), Neary (1985) and Flug and Galor (1986). 

The essence of "minimum wages" in trade theory is quite different from that in labor economics; 

it has to do more with the degree of flexibility, especially downwards, of labor prices relative to 

other factor prices. 

Recent developments in fix-price models can help enrich the "theory of minimum wage rates" 

in trade literature. However, fix-price theory, as well as the theory of minimum wage rates, is 

subject to the major criticism of being unable to explain price rigidities and hence, its policy 

prescriptions are suspect. Without a theory of price determination (for the fix-price good), it 

has weak predictive power. The implicit contract theory and efficiency wage theory in labor 

economics are attempts to explain the dual phenomenon of rigid wages and unemployment. 

Appeal is sometimes made to the existence of socioeconomic and institutional factors, such 

as labor unions, minimum wages and unemployment insurance, to explain wage rigidity. It 

seems there can be a multitude of causes of inertia in wage adjustment, some of which are 

sector-specific. 

In his 1979 presidential address to the American Economic Association, Solow (1980) argues 

that the absence of an acceptable theory to explain the failure of the labor market to clear does 

http://to.be
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hot necessarily negate the premise that wages do not move flexibly to clear the market. Re

jecting studies that explain the then existing unemployment as voluntary leisure resulting from 

intertemporal substitution of future work with perceived higher discounted value of earnings, 

he counters: 

It is thus legitimate to wonder why the unemployed do not feel themselves to be 

engaged in voluntary intertemporal substitution, and why they queue up in such 

numbers when legitimate jobs of their usual kind are offered during a recession. 

(Solow, 1980, p.7) 

His hunch is the real wage elasticity of labor demand is low6 and with a low elasticity of labor 

demand, together with other institutional factors, sellers of labor services are likely to resist 

downward wage adjustments. Moreover, the labor market cannot be modeled just like any goods 

market, say the buying and selling of cloth. The labor market responds to both pecuniary and 

nonpecuniary elements. 

Unemployment and real wage rigidity is a contentious issue which this thesis does not aim 

to resolve. Empirical analysis is left to more able econometricians. At most, some suggestions 

and possible problems are outlined here. 

A review of published empirical works on testing for excess supply of labor using disequi

librium models and on estimation of natural rates of unemployment indicates that there could 

have been excess demand for labor in Canada and the United States during the years 1965-1969 

and 1972-1974. In the years of excess demand for labor, the production sector is rationed and 

the producer shadow price of labor diverges from the market wage. Hence, in the sectoral profit 

estimation the shadow price of labor should be used instead of the market wage for these years. 

Furthermore, the comparative statics exercise outlined in this study should not be performed 

6 A survey of empirical studies on aggregate employment-wage elasticity can be found in Hamermesh (1986). 
Estimates of the magnitude of the aggregate long-run constant-output labor demand elasticity for developed 
countries for the period 1950 onwards lie in the range 0.15-0.50. The estimates are based on the Hicksian 
formula for the own-wage elasticity of labor demand at constant output, r]u, which for the two-factor case is 
given by T / H = —(1 — s)a < 0 where s is the labor share in total revenue and a is the elasticity of substitution 
between capital and labor. 
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for these years. 

The theoretical framework discussed can be applied to annual input-output data. The first 

step is the estimation of sectoral unit scale profit functions Trm(p, r, w), m = 1,2,..., M as de

fined in equation (18.1). Flexible functional forms providing a second-order approximation with 

constant returns to scale and technical change variables can be used in specifying the sectoral 

profit functions ir™. The dimension of the estimation model will be limited by the number 

of observations at hand. Hence, sectoral aggregation may be necessary. With semifiexible 

estimation (Diewert and Wales, 1988), the number of goods in the model can be increased. 

The theoretical model has assumed constant returns to scale and competitive behavior. Im

posing constant returns when otherwise may bias the parameter estimation of sectoral profit 

functions. In the absence of a general theory of imperfect competition, one has to posit par

ticular market structures and pricing behaviors to handle increasing returns and imperfect 

competition (see, for example, Helpman and Krugman (1985)). It is recognized that scale 

economies are a potential source of gains from trade liberalizaiton. For Canada, cost of pro

tection estimates range from 0.5 to 2 percent of GNP under the competitive constant returns 

assumption; incorporating possible scale economies yields estimates of 8 to 12 percent (Harris, 

1984). 

Price distortions are another source of economic waste. By using actual prices of inputs and 

outputs faced by the producer, the inefficiency due to non-Pareto optimality of prices can be 

captured. Let us redefine the price vector as 

h = (pi,P2,---,PK,r1,r2,...,rQ,w1,w2,...,wN)T 

and the quantity vector as 

* = (yi,y2,---,yK,-h,-h,---,-lQ,-vi,-v2,...,-vN)
T. 

Let r m be a K + Q + N vector of price wedges faced by sector m. Then the actual price faced 

by sector m is 

hm = h + Tm. '" 
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For estimation, the sectoral profit function nm should take the more general definition 

wm(hm) = maxxm{hm • xm : xm = (ym, -lm,-vmf € Sm} 

where the elements of xm are indexed positively(negatively) for outputs(inputs) and Sm is the 

constant returns to scale production possibilities set of sector m. 

Other than labor, imports can be considered a fix-price factor. Our small country assump

tion implies that import prices are exogenous. Appelbaum and Kohli (1979) have tested the 

small open economy hypothesis with respect to Canada-United States trade. Their study indi

cates that Canada does not exert significant power in its imports market but does in its export 

markets. 

The results of the sectoral profit function estimation can then be used to calculate the 

comparative static response matrix as given in equation (18.31). For purposes of interpretation, 

this matrix has to be reexpressed in elasticity form taking into account the price differentials 

among sectors for the same goods. 
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Appendix A 

Incorporating the No Technological Regress Assumption with the Efficiency Tests 

Listed below are the modifications in the various efficiency tests needed to incorporate the no 

technological regress assumption. The changes involve merely a change in the range of the 

observation indices used in constructing the relevant convex sets. 

• Test 1'. Technical Efficiency and No Technological Regress Test for a Convex Technology: 

Modify the linear programming subproblem (3.2) to 

maxs.>o,Ai>o,...1A.->o{fc = Ej=i*j*j > **' + <W, £J=1A> = 1} = Sf. 

• Test 2'. Technical Efficiency and No Technological Regress Test for a Convex Conical 

Technology: 

Modify the linear programming subproblem (4.2) to 

max5i>0iAi>o,...,A<>o{^' : £ j = i ^ V > zl + Sijz'} = 6*. 

• Test 3'. Technical Efficiency and No Technological Regress Test for a Quasiconcave 

Technology: 

Modify the index set defined by (5.2) to 

lT = {j: zn> zn,j = 1,2,...,i}. 

• Test 4'. Allocative Efficiency and No Technological Regress Test for a Convex Technology 

Assuming Partial Profit Maximization: 
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Modify the linear programming subproblem (7.1) to 

maxA 1>0 A .> 0 {E„ e sPi ,(Ei = iA J4) : E J - i ^ > 4 , » ? 5, EJ=i>J' = 1} 

= £n € SPn4 + ef J2neEPn\4 I-

• Test 5'. Allocative Efficiency and No Technological Regress Test for a Convex Conical 

Technology Assuming Partial Profit Maximization: 

Modify the linear programming subproblem (9.1) to 

maxAi>0 i... i A.>0{E„e 5K(E;= 1A>zJ) : Y.%j=i^4 > 4> n £ S} 

= £n€SPJ,4 + ̂ En€EPn\4 I-

• Test 6'. Allocative Efficiency and No Technological Regress Test for a Quasiconcave 

Technology Assuming Partial Profit Maximization: 

Modify the index set defined by (10.1) to 

= *£> 4 , J' = 1 . 2 , - . . , « } • 

• Test 7'. Allocative Efficiency and No Technological Regress Test for a Convex Technology 

Assuming Complete Profit Maximization: 

Redefine the violation index defined in (11.1) to 

(piTfzj_zi\ ] 
e? = max,-| piT^zi : j = l , 2 , . . . , i j . 

• Test 8'. Allocative Efficiency and No Technological Regress Test for a Convex Conical 

Technology Assuming Complete Profit Maximization: 

Redefine the violation index defined in (11.12) to 
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• Test 9'. Allocative Efficiency and No Technological Regress Test for a Quasiconcave 

Technology Assuming Complete Profit Maximization: 

Modify the index set defined by (11.28) to 

I? = {3-- 4><,j = l,2,...1i}. 

In each test, if the violation index (6*, ef or £*) is zero for all observations i, i = 1,2,..., J , then 

the data are consistent with the efficiency hypothesis being tested. Otherwise, if the violation 

index is positive for some observation i, then a violation of the efficiency hypothesis occurs at 

this observation. 



Appendix B 

The Canadian Input-Output Data, 1961-1980 

B.l The data base 

The original data base used in this study is the 1961-1980 annual Canadian input-output 

accounts compiled by Cas (1984) for use in preliminary studies on multifactor productivity 

measures for the Input-Output Division of Statistics Canada. This data base draws from both 

published and unpublished data sources at Statistics Canada. It is generally comparable to 

published Canadian input-output tables at the "M" level of aggregation. Whereas the latter 

gives commodity by industry transaction accounts, the present data base has been modified into 

an industry by industry classification. It covers the domestic private industrial sectors for which 

the profit-maximizing model is applicable though some industries, for example, broadcasting 

and rail transportation, are heavily subsidized by the government. Dummy industries, used for 

routing goods whose precise commodity content are unknown, and which appear in published 

accounts are not included in the present data base. Due to problems obtaining data on its 

capital stock, the "post office" industry was also removed from this data set. 

Input-output data for 37 sectors of the Canadian economy are given. For each sector, there 

are 57 data items: 5 output variables, 37 intermediate input variables, 9 primary input variables 

and 6 financial variables. These data items are listed in table B.10. Each variable is given in 

values of current and constant (1961 or 1971) dollars from which implicit price deflators can be 

derived; constant dollar values can then be used as quantities. 

The output variables are classified according to end use. Intermediate inputs pertain only to 

purchases of current output of domestic industries by domestic industries. Primary inputs are 

termed "primary" in the sense that the origin of these goods are external in time or boundaries 
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outputs: 
1. gross output 
2. intermediate output 
5. final demand 

4. exports 
5. re-exports 

intermediate inputs from sectors: 
1. agriculture and fishing 
2. forestry 
3. mines, quarries and oil wells 
4. food and beverages 
5. tobacco products 
6. rubber and plastic products 
7. leather 
8. textiles 
9. knitting mills 
10. clothing ' 
11. woods 
12. furniture and fixtures 
13. paper and allied industry 
14. printing, publishing and allied industries 
15. primary metals 
16. metal fabricating 
17. machinery 
18. transportation equipment 
19. electrical products 

20. nonmetallic mineral products 
21. petroleum and coal products 
22. chemical and chemical products 
23. miscellaneous manufacturing 
24. construction 
25. air transporation, other utilities 

and transportation 
26. railway transportation and telegraph 
27. water transportation 

motor transportation 
urban and suburban transportation 
storage 

31. broadcasting 
32. telephone 
33. electric power 
34. gas distribution 
35. trade 
36. finance, insurance and real estate 
37. commercial services 

28 
29 
30 

primary inputs: 
1. imports, competitive 
2. imports, noncompetitive 
3. government goods 
4. labor 
5. raw inventories 

6. finished inventories 
7. machinery and equipment (M&E) 
8. structures (S) 
9. land 

financial variables: 
1. commodity indirect taxes 
2. subsidies 
3. other indirect taxes 

4. royalties 
5. capital consumption allowance, M&E 
6. capital consumption allowance, S 

Table B.10: Data items for each of the 37 sectors 
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relative to current production of the 37 domestic business sectors; hence, the inclusion of imports 

and government goods in this group of inputs. In contrast to published Canadian input-output 

accounts where imports are included in the use and final demand matrices, the present data 

base has netted out this component of the intermediate input matrices. The land data series was 

constructed by Cas, Diewert and Ostensoe (1986). The "financial" variables are used to adjust 

prices of outputs and factors so as to reflect actual prices received or paid by the producers. 

B.2 Data manipulations at the sectoral level 

All prices and quantities obtained are normalized such that 1961 prices equal 1.0 and expendi

tures or nominal values (current dollar values in $1000 Canadian) are preserved. 

B.2.1 Output and intermediate input prices and quantities 

Each of the 37 sectors is assumed to produce a single output with market prices pi, i = 

1,2,...,37. These prices pi are obtained as implicit price deflators calculated as the ratio 

of current dollar value to constant dollar value of gross output: 

current dollar value of gross output of sector z p- = 2 £ t = l 2 . . . 37. 
' constant dollar value of gross output of sector i' >'•••> 

For price consistency, the prices of intermediate inputs are also set equal to their corresponding 

output prices. That is, if we let pij be the price of a unit of good i used in the production of 

good j, then p tj = pi, i,j = 1,2,..., 37. The corresponding quantities of intermediate inputs 

are adjusted accordingly. Let g,j be the quantity of good i used to produce good j; then 

current dollar value of input i used in sector j 
q i j = £ J-. 

Pi 

For the estimation of profit functions, the concept of net output is used. Hence, gross output 

quantities have to be adjusted by subtracting the quantity of intermediate inputs coming from 

the same sector. Denote the net output by sector i as g t ; then 

qi = (constant dollar value of gross output of sector i) — qn. 

Own input prices and quantities are set to zero: pn = qn = 0. 
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B.2.2 Missing observations for 1980 intermediate inputs 

Prior to doing data manipulations on the data base, a check for missing observations was done. 

There are 23 missing observations for current dollar (as well as constant dollar) values for 

intermediate inputs in 1980. Due to differences in commodity by industry configurations and 

the netting out of imports in the use matrix for the present data base, cross-checking with 

published input-output accounts is precluded. Hence, an ad hoc procedure was used to fill in 

the missing observations. 

For five sectors (3, 15, 16, 22, 23) in 1980, there are significant differences between the value 

of the intermediate output variable and the sum of the values of the good used as intermediate 

inputs (as given by £ | I i Pijqij, i — 3,15,16,22,23). These differences are listed in table B . l l . 

Except for miscellaneous manufacturing, the figures indicate that a substantial proportion, 8% 

to 23%, of intermediate output may have been unallocated to various users. For miscellaneous 

manufacturing, the 1980 value of intermediate output was revised so that the ratio of inter

mediate output to gross output is identical to that of 1979. To impute values for the missing 

observations, the share of the using sector j of the value of intermediate output of sector i 

(pijqijlvalue of intermediate output of sector i) in 1979 is assumed to carry over to 1980. The 

1979 values and the 1980 imputed values for the missing ovservations are listed in table B.12. 

Once the imputed current dollar values for the missing observations for the intermediate inputs 

are obtained, the relevant price and quantity variables, pij and can easily be calculated as 

outlined in the previous section. 

B.2.3 Imports and inventories 

The attribution of imports and inventories to different categories can be considered questionable. 

Whereas all sectors have positive competitive import values for all years 1961-1980, only eight 

sectors (4,6,8,20,22,23,35,37) have positive noncompeting import values for all years. Eleven 

other sectors (3, 7,9,10,13-16, 18,19,21) have positive noncompeting values for one to nineteen 

years. The other 18 sectors have zero noncompeting imports for all years. Of the total value 
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sector i 

value of 
intermediate 
. output* 

(1) 

value of the 
good used as 

intermediate inputs* 
(2) 

difference 
(l)-(2) 

(3) 

percentage 
discrepancy 

(3)/(l) 
(4) 

3 mines, etc. 
15 primary metals 
16 metal fabricating 
22 chemical, etc. 
23 misc. manufacturing 

17554720 
9798036 
8150517 
6995275 
1066220 

16121327 
8392645 
6282122 
6149460 
1074116 

1433393 
1405391 
1868395 
845815 

-7896 

8.17% 
14.34% 
22.92% 
12.09% 
-0.74% 

* Figures are in current do lars. 

Table B . l l : Inconsistencies in the value of intermediate output and the sum of values of the 
good used as intermediate inputs, 1980 

of imports, both competitive and noncompetitive used by the whole economy (the 37 sectors), 

noncompeting imports account only for 2.3% to 6.1%. 

Except for three sectors (2, 3, 37), all sectors have positive values for raw inventories input. 

The absence of raw inventories in forestry and in the mines, quarries and oil wells sectors is 

disturbing. The resource and manufacturing sectors (1-23) have positive finished inventories. 

The rest — construction, transportation, communication, utilities and services sectors (24-

37) — have zero finished inventories. Of the group with both positive values for raw and 

finished inventories (sectors 1, 4-23), all have identical data series for the years 1961-1970; for 

agriculture and fishing the implicit price deflators for the two data items are the same for all 

years. For the whole economy, raw inventories as a proportion of the value of total inventories 

has decreased from 68% in 1961 to 55% in 1980; the share of finished inventories has increased 

from 32% in 1961 to 45% in 1980. 

In the light of the above data deficiencies, it has been decided to merge imports and inven-

• tories into single categories. The price and quantity variables for imports, PM and qM, were 

calculated as follows: 

P M = NCM + NXM 
RCM + RXM ' 

qM = RCM + RXM 



Appendix B. The Canadian Input-Output Data, 1961-1980 191 

1979 value for 1980 imputed value for 
originating intermediate input intermediate input 

sector i using sector j PijQij PijQij 

mines, 3 mines,etc. 880393 1008678 
quarries, 18 transportation 29951 34315 

equipment 
and oil wells 22 chemical,etc. 340748 390400 

total 1251092 1433393 

primary 3 mines,etc. 185221 157207 
metals 18 transportation 1342057 1139073 

equipment 
22 chemical,etc. 128555 109111 

total 1655833 1405391 

metal 3 mines,etc. 119078 128917 
fabricating 15 primary metals 176037 190582 

16 metal fabricating 811038 878050 
19 electrical products 160451 173708 
22 chemical,etc. 125582 135958 
23 misc. manufacturing 50303 54459 
35 trade 158132 171198 
37 commercial services 125179 135522 

total 1725800 1868395 

chemical and 15 primary metals 122519 133806 
chemical 18 transportation 108047 118000 

equipment 
products 19 electrical products 143078 156258 

23 misc. manufacturing 112959 123365 
35 trade 71816 78432 
37 commercial services 216051 235954 

total 774470 845815 

miscellaneous 3 mines,etc. 20440 22102 
manufacturing 18 transportation 44715 48351 

equipment 
22 chemical,etc. 28486 30803 

total 93641 101256* 

* This figure has been revised as described in the text and hence differs from the 
entry in column 3 of table B . l l . 

Table B.12: Imputed values for missing observations for 1980 intermediate inputs 
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where 

NCM = current dollar or nominal value of competitive imports, 

NXM = current dollar or nominal value of noncompetitive imports, 

RCM = constant dollar or real value of competitive imports, and 

RXM = constant dollar or real value of noncompetitive imports. 

The price and quantity variables for inventories, pi and g j , were calculated analogously: 

p i = NRI + NFi 
RRI + RFI ' 

qi = RRI + RFI 

where 

Nm = current dollar or nominal value of raw inventories, 

Npi = current dollar or nominal value of finished inventories, 

RRI = constant dollar or real value of raw inventories, and 

RFI = constant dollar or real value of finished inventories. 

B.2.4 Tax adjustment of output and input prices 

The relevant output and factor prices for profit function estimation are "the output prices that 

reflect the revenue actually received by the firm and the input prices that reflect the actual cost 

paid by the firm for the use of the inputs in the production process" (Diewert, 1980a, p.479). 

Output prices should reflect payments, after subsidies and royalties, to the producer, that is, 

Pi = Pi + si ~ rVi 
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where 

p* = tax adjusted output price, 

Pi = market output price (initially obtained as implicit price deflator), 

5,- = per unit subsidy receipts, 

ryi = per unit royalty payments, 

N{ = current dollar value of gross output, 

N* = current dollar value of gross output plus subsidy minus royalty, and 
JV* 

—r = proportion of the market price actually received by the producer. 
iv,1 

All sectors received some form of subsidy for at least some years. The data reflect royalty 

payments from only five sectors: forestry; mines, quarries and oil wells; woods; electric power; 

and trade (the latter for only 1976-1980). Note that we might have expected an industry like 

petroleum and coal products to have positive royalty payments. The data on royalty payments 

can be considered questionable. The way the national accounts are constructed, royalties on 

natural resources are classified as an industry under the finance, insurance and real estate sector. 

Ideally, these royalty payments should be considered as taxes levied on the use of government-

owned natural resources or as rental prices for a separate capital aggregate for land or a natural 

resource factor of production. 

Given the data, we list in table B.13 the sectors whose producer prices p* deviate, on the 

average, by more than 1% from their market price p,-. Hence, for broadcasting, an additional 

48 cents was given by the government as subsidy for every dollar received in the marketplace. 

It must be noted though that the subsidy rate has been consistently decreasing over the years 

but still remained relatively high compared to other sectors. On the other hand, seven to eight 

cents of every dollar received by the producer in forestry and the mining sectors went back to 

the government as royalties. Prior to 1974, there was hardly any price distortion as measured by 
jy* 

jjr in the petroleum and coal products sector; thereafter, the subsidy ranged from a minimum 

of 5 cents for every dollar in 1978 to 26 cents for every dollar in 1975 and in 1980. A similar 
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sectors average minimum 
(year) 

maximum 
(year) 

1 agriculture and fishing 1.036 1.008 (1963) 1.064 (1975) 
2 forestry 0.931 0.896 (1979) 0.957 (1976) 
3 mines, etc. 0.925 0.831 (1978) 0.976 (1961) 

21 petroleum, etc. 1.054 * * 
26 rail transportation, etc. 1.082 1.035 (1971) 1.163 (1975). 
27 water transportation 1.019 1.006 (1974) 1.039 (1977) 
31 broadcasting 1.478 1.355 (1980) 1.564 (1961) 
34 gas distribution 1.042 * * 
* See text for interpretation for the petroleum and coal products sector 
and the gas distribution sector. 

Table B.13: Average proportion of market price received by the producers in sectors with the 
most output price distortions 

increase in subsidy rates occured in the gas distribution sector. Pre-1974, the subsidies were 

negligible; the subsidy rate was 5 cents for every dollar in 1974 and increased to a maximum 

of 14 cents for every dollar thereafter. The increase in subsidy rates to the petroleum and coal 

products and gas distribution sectors can be interpreted as policy responses to the oil price 

shock that occured in 1974-1975. 

The tax-adjusted output prices p* we obtained are the relevant prices we seek for profit 
TV* 

function estimation. However, we must be cautious in interpreting the value of as an 

indicator of relative sectoral price distortions. Keeping in mind the data imperfections, we 

interpret these numbers as measuring the effect of explicit royalties and subsidies per se on 

actual producer revenue. There are other price and nonprice distortions or policy instruments 

which may have more significant effects on producer prices, that is, directly on our "unadjusted" 

output prices p,-. 

Margins arise between the value received by the producer to cover his cost of production 

and the value paid by the purchaser. At the producer side, we have to adjust for subsidies and 

royalties. Trade, transportation and delivery margins have already been recorded as output of 

the relevant sectors in the original data base; hence, the initial unadjusted output prices p,- are 

those levied at the final stage of production. As well, these trade, transportation and delivery 
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margins appear separately as intermediate inputs in the accounts of the purchasing sector. 

Another margin that has to be accounted for is the value of commodity indirect taxes paid by 

the using sectors for their intermediate inputs.1 

Since the data base gives only the total value of commodity indirect taxes paid by each 

sector, an ad hoc assumption has to be made on how to distribute them over the relevant 

inputs. We assume an equal commodity tax rate for all intermediate inputs and imports in a 

particular sector. Let tj denote the commodity tax rate in sector j. We define tj as the ratio 

of the value of commodity indirect taxes in sector j to the sum of the values of intermediate 

inputs from other sectors and the value of imports: 

_ value of commodity indirect taxes paid by sector j 
3 Hi^jPijQij + PMQM 

Then, the tax-adjusted input prices p*-, j = 1,2,..., 37 and p*M are 

Pij = Pij(l + *j) = Pi(l + tj), 

PM = PM(1 + tj). 

With this tax imputation, the total cost to the purchasing sector, say sector j, for its intermedi

ate inputs from other domestic sectors and imports is equal to the value of the inputs assessed 

at the initial prices pij, PM plus the value of commodity indirect taxes paid by the purchasing 

sector: 

T,lLiP*jQij + PM QM = (YJiliPijQij + PMQM) 

+ (value of commodity indirect taxes paid by sector j). 

The commodity tax rates tj were lowest in the manufacturing sectors (4-23, except 20) 

and electric power industry; it was usually less than 1% to about 1.5% in these sectors. The 

rates, ranging from 4% to 18%, were generally higher in the construction and air, motor and 
1 Commodity indirect taxes include federal taxes (excise duties, excise taxes and federal sales taxes, oil export 

charge, petroleum levy, Canadian ownership charge, natural gas and gas liquids tax, and air transport tax), 
provincial taxes (amusement tax, fuel tax, profits of liquor commissions, liquor gallonage tax, Quebec Hydro 
levy, and sales tax on gas, electricity, telephone and telegraph), local amusement tax, other provincial and local 
sales taxes, and import duties. 
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urban transportation sectors. The rest of the industries, usually resource and service sectors, 

have rates averaging 3% to 6%. In reality, commodity taxes are commodity-specific; hence, 

the sectoral differences in our calculated effective commodity tax rates tj can be explained by 

differences in sectoral input requirements. 

B.2.5 Capital rental prices 

Definition of capital service and capital rental price 

The capital input variables are taken to be the durable goods: inventories, machinery and 

equipment, structures and land (k = 1,2,3 and 4, respectively). The data base gives values 

of capital stock in current and constant dollars. For a particular capital good, say k, asset 

price p£ and quantity qff were obtained as 

For profit function estimation, the relevant price for a durable input is the capital rental price 

or user cost of a flow of capital services used in the production process. As noted by Jorgenson 

and Griliches (1967), though asset prices may be considered the discounted value of all future 

capital services across capital goods, they are not proportional to their service prices (what 

we terms here as rental price or user cost) because different capital goods can have different 

economic and physical depreciation rates and asset price appreciation rates (capital gains or 

losses). 

Denote the rental price for capital good k as pjf*. Following Diewert (1980a), we define the 

rental price p£ * before corporate income tax as 

current dollar value of capital stock k 
constant dollar value of capital stock k' 

qk = constant dollar value of capital stock k. 

_ rkPk + (1 + rk)rkp^ + 6kpk - (pk - pf) 
1 + rjb 

where 

pk = rental price for capital good k, 
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p£ = asset price (or purchase price) for capital good k, 

Pk = next period's expected asset price for capital good k, 

rk = rate of return for capital good k, 

Tk = property tax rate for capital good k, and 

6k EE combined depreciation and obsolescence rate for capital good k. 

Reiterating Jorgenson and Griliches' point, we can see from the above formula that asset prices 

and rental prices are proportional to each other (and can be econometrically safe to be sub

stituted for each other) only under some restrictive conditions. One case is when there are 

static expectations (pk = Pk) a n ^ the discount, property tax and depreciation rates (rk,rk,6k) 

are identical across all capital goods and across all sectors. Ideally, the rental prices must 

be adjusted to reflect the actual cost to the producers after corporate income taxes. Due to 

problems in matching financial data on corporate income taxes collected on a company basis 

and input-output data collected on an establishment basis, this adjustment cannot be carried 

out in this study.2 This implies that the rental prices we obtain may not be capturing the 

distortionary effect of policies such as investment tax credits and accelerated depreciation tax 

rules. 

Previous attempts at incorporating nonstatic expectations of future asset prices by Osten-

soe (1986) and Fortin (1988) yielded negative and erratic capital rental prices. Drawing from 

these studies but still acknowledging that the problem of modelling capital gains still remain, 

we henceforth assume static expectations for future asset prices: pk = p £ . We also assume 

that in a sector with more than one type of capital, the rate of return r& is equal across asset 

types. The reason for this assumption was expressed by Jorgenson, Gollop and Fraumeni (1987, 

p.145): 

It is with respect to each asset's nominal rate of return that economic agents choose 

the optimal mix of capital stocks, altering the composition of capital input until all 
2 An example of the incorporation of corporate tax liabilities in the calculation of capital rental prices using 

United States data can be found in Jorgenson, Gollop and Fraumeni (1987, p.128). 
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nominal rates of return are equalized across asset classes. Consequently, measured 

property compensation should be allocated among assets on the basis of equality of 

the nominal rate of return for all assets. 

With these two assumptions, the capital rental formula reduces to 

PP = 
r + (14- r)rfc + 6k 

1 + r 

where r is the rate of return or discount rate identical across asset types in a particular sector. 

Implicitly, we assume that capital service flows are proportional to capital stocks, that is, 

the rate of capital utilization is constant over time. Hence, we take the variable qjf as the 

relevant quantity measure for our profit function estimation. The problem of estimating capital 

stocks and rental prices with consistent patterns of relative efficiency is discussed by Jorgenson, 

Gollop and Fraumeni (1987). 

Calculation of capital rental prices 

For the empirical implementation of the capital rental price formula, we further assume that 

inventories of raw materials and finished goods and machinery and equipment capital stocks 

are not levied property taxes and that inventories and land have zero depreciation rates. In 

short, we assume T\ = r 2 = 0 and Si = 64 = 0. 

A detailed description of the data on the capital series on machinery and equipment, and 

structures can be found in the Statistics Canada Catalogue 13-568: Fixed Capital Flows and 

Stocks (Historical), 1936-1983 compiled by the Construction Division. Our data on machinery 

and equipment include capital items charged to operating expenses; structures include both 

building and engineering construction. The current and constant dollar value of capital stocks 

are mid-year net stock values based on the difference between the cumulative value of past gross 

investment and cumulative depreciation. The depreciation or capital consumption allowance 

data are also mid-year values and are based on the straight-line depreciation rule. 

Since the quantity variable qjf has already netted out depreciation for the same year, we 

would like a quantity variable, say qjf*, gross of depreciation. We define the adjusted variable 
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as 

qfc + (capital consumption allowance in constant dollars 

Qk = \ for capital good k), k = 2,3 

q£\ k = i,4. 

This correction leads to lower depreciation and property tax rates especially for sectors having 

assets whose specified service lives are shorter. For example, machinery and equipment in 

forestry, construction, and air and motor transportation sectors have service lives of 10 years 

or less whereas in other sectors the service lives range from 15 to 35 years. 

Our data on other indirect taxes, which are not commodity-specific, are assumed to comprise 

mainly of property taxes levied on fixed capital: structures and land. The property tax rates 

are defined as the ratio of the value of other indirect taxes paid to the value of structures and 

land in a given sector: 

other indirect taxes in current dollar paid by sector £ ' — 3 4 

E l „„K„K» ' — ' 
k=3Pk 

0, k = 1,2 

where pj^Qk* = current dollar value of structures and land in given sector, respectively. 

The twenty-year average of the property tax rates for most sectors ranges from 1% to 5%. It 

was slightly higher (7-10%) in knitting mills, clothing, furniture and fixtures, and miscellaneous 

manufacturing. It was less than 1% for the petroleum and coal products, electric power and 

transportation sectors except for motor transportation. The property tax rates rk obtained 

for the construction (24) and motor transportation (28) industries are substantially higher, 

averaging 25% and 34%, respectively. These values may indicate some data anomalies pertaining 

to these sectors. As noted by Fortin (1988), the taxes for these two industries may include 

payments for permits and licenses. If this is the case, then the asset prices of fixed capital in 

these sectors have to be adjusted to reflect these payments; in an efficient market we would 

expect these payments to be capitalized in the purchase price. 

The ratio of the capital consumption allowance to the value of capital stock yields the 
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effective depreciation rates. We define the rates 6k as 

^ k — 2} 3 

The capital stock and consumption allowance data for machinery and equipment, and structures 

are based on the straight-line depreciation rule. We would then expect the depreciation rates Sk 

to be inversely related to the service life specified for that asset located in a particular sector. 

The estimates for the depreciation rates are quite stable over the years. The depreciation 

rates for machinery and equipment are lowest (about 4%) in the electric power and gas distribu

tion sectors where these assets, excluding capital items charged to operating expenses, have the 

longest specified service life of 35 years. Most sectors have depreciation rates from 5% to 10%. 

Some sectors (1, 2, 6, 7, 23-25, 28, 29, 37) where most machinery and equipment have service 

lives of 15 years or less have average depreciation rates between 12% and 16%. 

Having longer service lives of at least 20 years to at most 75 years, structures have lower 

depreciation rates. The sectoral averages for the depreciation rates of structures range from 2% 

to 7%, with most clustering in the 3-5% range. 

It is theoretically unclear which discount rate r is to be used. In practice, either an internal 

rate of return or an exogenous bond rate is used. Diewert (1980a) argues that the relevant 

interest rate should reflect the firm's actual borrowing and lending rates. The choice of an 

exogenous bond rate can be justified on the grounds that firms make their decisions based on 

ex ante rates of return and the exogenous bond rates would be more reflective of the opportunity 

cost of capital. In the same manner that equality of rates of return determine the optimal mix 

of capital goods in a particular sector, then the discount rate should also be identical across 

sectors if there is relatively smooth capital adjustment in the economy. Additionally, calculated 

internal rates of return may be negative and tend to be more erratic compared to an exogenous 

bond rate. 

The use of sector-specific internal rates of return is consistent with the assumption of con

stant returns to scale technologies; it enables us to impose the equality of value of output and 
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factor payments. It seems, too, with static expectations, the sectoral reallocation of capital 

may respond to ex post user costs. As in the labor market where sectoral wage dispersion does 

not seem to be an unreasonable phenomenon, the rates of return for capital assets can vary 

across sectors. The choice of the relevant discount rate may be related to the problem that 

the industries operate in a world subject to risks and uncertainty and are in a constant flux of 

adjustment. 

To see how both rates perform empirically, we calculate sector-specific internal rates of 

return and compare them to an exogenous bond rate. First, for each sector i, i = 1,2,.. .,37, 

we calcualate the surplus value 5; which is the net value added by capital assets after variable 

costs: 

Si = surplus value for sector i 

= P*Qi ~ T,%iP*jiQji ~ PMQM - PGQG - PLQL 

where 

po = unit price of government goods used in sector i 

current dollar value of government goods used in sector z 
constant dollar value of government goods used in sector i' 

qc = quantity of government goods used in sector i 

= constant dollar value of government goods used in sector i, 

PL = unit price of labor input in sector i 

current dollar value of labor input in sector i 
constant dollar value of labor input in sector i 

qi = quantity of labor input in sector i 

-, and 

= constant dollar value of labor input in sector i. 

We then equate capital income to the surplus value: 

Si = ZUiPk'tf*-

Given our rental price formula for pj£*, we can solve for the internal rate of return for sector i, 
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say r,-, as 
Si -Pi- Di 

Ai + Pi - Si 

where 

Pi property taxes on capital assets paid by sector i 

k=\TkPk Ik 

other indirect taxes paid by sector i, 

Di value of depreciation of capital assets in sector i 

Y - 4 c A ' A ' * 

22k=ibkPk qk 

capital consumption allowances in sector i, and 

Ai value of capital assets in sector i 

2^k=iPk Qk • 

The sectoral averages and standard deviations of internal rates of return over the period 

1961-1980 are listed in table B.14. Beforehand, let us examine some inconsistencies in the 

calculated internal rates of return. The rail, water and urban transportation sectors (26, 27, 

29) have either near zero or negative internal rates of return. In these sectors, the surplus 

value which we equate to capital income is too small and in the years with negative returns 

cannot cover property taxes and depreciation costs.3 For the urban transportation sector, the 

surplus was negative for 1972 to 1980. For selected years, negative internal rates of return 

were also obtained for forestry (1975, 1976), primary metals (1976) and petroleum and coal 

products (1969, 1976, 1978). In these years, there was a considerable drop in their surplus 

values. Since the negative internal rates of return were generally small in magnitude4 except 

for the urban transportation sector, for subsequent empirical estimation we set these rates to 

zero. The negative internal rates of return may, after all, reflect inefficiencies in these sectors 

or slow adjustment to external shocks. 
3From our earlier discussion, the property tax rates and depreciation rates for these sectors seem reasonable. 
4Magnitudes were usually less than 0.009. 
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sector 

internal rates of return proportion of 
economy's capital 

stock, average* sector average* 
standard 
deviation 

proportion of 
economy's capital 

stock, average* 
1 Agr k Fish 0.105517 0.032098 0.070233 
2 Forest 0.052536 0.028257 0.005529 
3 Mines,etc 0.141935 0.034892 0.062376 
4 Food k Bev 0.192317 0.013683 0.022483 
5 Tobacco 0.189888 0.045612 0.002066 
6 Rub k Plas 0.184638 0.078319 0.003381 
7 Leather 0.083946 0.039032 0.000903 
8 Textile 0.087968 0.026585 0.006552 
9 Knitting 0.145049 0.060775 0.001012 

10 Clothing 0.308656 0.096094 0.001858 
11 Woods 0.110226 0.080586 0.007315 
12 Furn k Fix 0.239743 0.051399 0.001424 
13 Paper,etc 0.084048 0.048859 0.023639 
14 Printing 0.235046 0.050968 0.004458 
15 Pri Metals 0.057638 0.028322 0.022070 
16 Metal Fab 0.208812 0.045787 0.009212 
17 Machinery 0.244392 0.081077 0.005495 
18 Transport 0.163221 0.062689 0.013601 
19 Elec Prod 0.208085 0.051838 0.007770 
20 Non Metal 0.130039 0.033322 0.007547 
21 Pet k Coal 0.023998 0.029733 0.012484 
22 Chemical 0.095060 0.040507 0.017164 
23 Misc Manuf 0.210496 0.053974 0.002618 
24 Construct 1.658639 2.451802 0.009476 
25 Air Tran 0.032037 0.007964 0.034234 
26 Rail Tran -0.002551 0.006324 0.038919 
27 Water Tran 0.004475 0.012749 0.010452 
28 Motor Tran 1.348575 0.397836 0.002959 
29 Urban Tran -0.057397 0.045573 0.004450 
30 Storage 0.062577 0.027002 0.003574 
31 Broadcast 0.174301 0.050592 0.001809 
32 Telephone 0.069288 0.009257 0.036151 
33 Elec power 0.026961 0.006564 0.099529 
34 Gas distr 0.090609 0.017178 0.007848 
35 Trade 0.180829 0.038916 0.057177 
36 F.I.R.E. 0.051077 0.008432 0.358857 
37 Comm serv 0.358631 0.081720 0.023375 
* Averages are over 20 years. 

Table B.14: Sectoral 20-year average internal rates of return 
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A more serious cause for concern are the high internal rates of return obtained for construc

tion (24) and motor transportation (28). They were generally greater than 0.50, and greater 

than 1.0 for 1973-1980 in the construction sector. For the motor transportation sector, they 

range from 0.74 to 2.01. These results may be indicative of data problems for these sectors; 

recall from our earlier discussion that the property tax rates for these sectors are suspiciously 

high, averaging 25% and 34%, respectively. It is possible that there is undervaluation of capital 

assets in these sectors. 

A possible source of error is in the accounting of leased or rented components of a sector's 

capital stock which are recorded as a primary input in the finance, insurance and real estate 

sector. This would not pose a problem in our gross output profit function estimation if these 

leased capital is properly recorded as intermediate inputs in the using sectors. Table B.14 also 

gives the 20-year average proportion of the economy's value of capital stock for the different 

sectors. The entries in the last column are the means of annual proportions of the total capital 

stock as given by A i / Y ^ L i Ai. The bulk of the economy's capital stock is in the finance, insurance 

and real estate sector which accounts for 33% to 40% of the total.5 The construction sector 

is relatively large compared to other domestic sectors; the value of its output is about 10% of 

the sum of the value of output of all sectors (P24?24/Z)?=iP*9«')-6 But, as seen in table B.14, it 

has only about 1% of the economy's total capital stock.7 A significant proportion of its capital 

input must be recorded as primary input in the finance, insurance and real estate sector. 

The same data error must be underlying the high internal rates of return in the motor 

transportation sector, though this is not as immediately clear. This sector is smaller with its 

output accounting for about 2% of the sum of the value of output of all sectors (P289W£3IiP*<Zi) 

5It must also be noted that the finance, insurance and real estate sector includes "owner occupied dwellings" 
as a sub-industry. Since the purpose of this study is the modelling of production technologies of profit-maximizing 
business sectors of the economy, the inclusion of owner occupied dwellings which can be considered a consumer 
durable can be questionable. 

6The denominator £;IiP<9' *s a 8 r o s s output concept and hence does not give the private gross domestic 
product which nets out intermediate inputs, imports and government goods. 

7The output of the construction industry in the data base includes the output of construction labor in other 
industries; all inputs, except for the capital stock, have been properly adjusted. Hence, the capital stock of sectors 
engaged in own-account construction activities will tend to be overestimated. The extent to which this possible 
source of error contributes to the low capital stock data recorded in the construction industry is unknown. 
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but its recorded total capital stock is only about 0.3% of the economy's total stock. Nevertheless, 

a closer examination of the capital stock data in the construction and motor transportation 

sectors is warranted. For subsequent empirical estimation, the internal rates of return for these 

two sectors are set at the economy-wide averages, as discussed below. 

Ignoring the aforementioned anomalies in the calculated internal rates of return, we note 

that within sectors the estimated rates are erratic in the sense that there generally are no 

consistent increasing or declining trends except for a few sectors. Internal rates of return were 

10% or more in the 1960's, and less than 10% in the 1970's in the chemical and gas distribution 

sectors (22, 34). In the petroleum and coal products and commercial services sectors (21, 37), 

there is a declining trend in internal rates of return which is more marked in the latter sector. 

From table B.14, we can infer that the higher the mean sectoral internal rate of return, the 

variability of rates in that sector tends to be greater. The food and beverages sector (4) and 

finance, insurance and real estate sector (36), probably due to its huge capital stock, have 

quite stable internal rates of return. Probably due to government regulation, the internal 

rates of return has very low variability in the air transportation, telephone and electric power 

industries (25, 32, 33). 

To facilitate a more direct comparison with an external bond rate, the annual average and 

variance of sector-specific internal rates of return, weighted by the sector's proportion of the 

economy's total capital stock value, were calculated. We define the annual weighted average 

and variance of internal rates of return across sectors, say f,- and V(rt-), respectively, as 

Note that as discussed earlier, negative internal rates of return have been set to zero, and for 

the construction and motor transportation sectors, we have set r2\ = 7*28 = r,-. The results 

are given in table B.15. For an external bond rate, following Fortin (1988), we use the annual 

average of McLeod, Young and Weir's monthly 10 industrial bond yield average (also listed in 
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internal rates of return 
weighted McLeod, Young and 

weighted standard Weir's 10 industrial 
year average deviation bond yield, average 
1961 0.083871 0.069202 0.0550 
1962 0.091580 0.071394 0.0544 
1963 0.094619 0.071858 0.0537 
1964 0.097758 0.077412 0.0549 
1965 0.096656 0.079609 0.0563 
1966 0.094136 0.074457 0.0643 
1967 0.083479 0.071633 0.0703 
1968 0.089054 0.074986 0.0787 
1969 0.087531 0.075099 0.0866 
1970 0.079076 0.065497 0.0922 
1971 0.080637 0.073217 0.0840 
1972 0.083002 0.079482 0.0831 
1973 0.093489 0.090409 0.0842 
1974 0.087360 0.084356 0.1001 
1975 0.074704 0.071649 0.1073 
1976 0.071822 0.068574 0.1058 
1977 0.066134 0.057062 0.0972 
1978 0.068757 0.061839 0.0996 
1979 0.075095 0.072375 0.1074 
1980 0.074180 0.068493 0.1311 

Table B.15: A comparison of calculated internal rates of return and the McLeod, Young and 
Weir's 10 industrial bond yield average 

table B.15). The behavior of the two discount rates is illustrated in figure B.39. 

The two series exhibit different time trends; while internal rates of return show a general 

decline, the exogenous bond rate has a strong upward trend. The external bond rate, being a 

nominal interest rate, follows closely the behavior of inflation rates. Theoretically, anticipated 

inflation should be accounted for by the capital gains term in our general rental price formula. 

With our static expectations assumption, the rental prices we would obtain using the external 

bond rates will be biased upwards particularly in the 1970's decade of high inflation rates. This 

fact highlights the importance of modelling and incorporating asset price expectations in our 

capital rental price formula. On the other hand, the use of static expectations when capital 

markets are relatively efficient may be justifiable in calculating internal rates of return that 
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Figure B.39: The behavior of the weighted average of the internal rates of return and the 
McLeod, Young and Weir's 10 industrial bond yield average 
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yield reasonable indicators of returns to equities. Figure B.39 also shows that the volatility of 

internal rates of return, in the aggregate, is not unreasonable. The range of its mean is even 

narrower than the range of the external bond rate. 

As discussed above, the choice of an internal rate of return or an exogenous bond rate can 

have different implications on the rental price behavior. Profit function estimation, particualrly 

using full information maximum likelihood methods, can be sensitive to misspecification. For 

these reasons, two capital rental price series were constructed using the two discount rates. 

B.2.6 List of retained variables 

After doing the data manipulations on the original data base, we retain only a subset of variables 

prior to goods and sector aggregation. The list of retained price and quantity variables for each 

of the 37 sectors is as follows: For i = 1,2,..., 37: 

1. net output: p*, 

2. intermediate inputs: p*-, qji, j = 1,2,..., 37 

3. primary inputs: 

i) imports: pM, qM 

ii) labor: p*L, qL 

iii) capital services: 

a) inventories: p^*, q^* 

b) machinery and equipment: p2*, q2* 

c) structures: p$*, qlf* 

d) land: pf*, q?* 

In subsequent econometric estimation of profit functions, intermediate inputs and primary 

inputs are treated symmetrically as goods having prices exogenous to the sector. In this manner, 

we do not impose separability restrictions between intermediate inputs and primary inputs 
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which are implicitly assumed with value-added production or profit functions. A graphical plot 

of prices of output, imports and labor for each sector shows that the price of labor services has 

increased the most over the twenty-year period. For each sector, we have two sets of capital 

rental price series using different discount rates: an internal rate of return and an exogenous 

bond rate. 

A discussion of some of the output variables in the original data base and government goods 

dropped in our condensed list is inorder. For each sector, the sum of intermediate output and 

final demand equals gross output. Intermediate output is purchased by domestic producers as 

input to production. Final demand is output that ultimately goes for consumption, investment, 

government purchases and exports. To obtain the gross private domestic product, we add the 

final demand outputs and subtract the imports of the 37 domestic business sectors. It is the 

sum of sectoral value added, in our case, returns to labor and capital sevices, that is termed 

"domestic product" in the usual national accounting framework. 

Government produced goods and services8 used as inputs in production comprise less than 

1% of the value of primary inputs for the whole economy. As such, its omission can be deemed 

harmless. 

B .3 Aggregation 

Under the assumption of single-output industries, four sectors or output goods are specified. To 

aggregate the original 37 sectors into four general industries, a heuristic approach was taken. 

Theoretically, aggregation of goods is justified on the basis of either Hicksian separability where 

restrictions are on the domain of producer prices or functional separability where restrictions 

are imposed on the production technologies. Testing for functional separability is a separate 

study in itself and hence is precluded in our empirical analysis. Though the groupings of the 

37 sectors were guided as well by traditional industry classifications, an examination of the 

plots of their output prices (see figures B.40-B.46) indicates that within group price variation 
8These government goods include postal services and the like but exclude output of other crown corporations 

(e.g. Air Canada, Via Rail, CN Rail, CBC) which are recorded as output of the relevant business sectors. 
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is less than that between groups. Hence, our sector aggregation can be justified by appealing to 

Hicks aggregation theorem that says goods whose prices move proportionally act as a composite 

good. 

The aggregate industries and their subsectors are: 

I. resources sector 

(1) agriculture and fishing 
(2) forestry 
(3) mines, quarries and oil wells 

(21) petroleum and coal products 

II. manufacturing, export-oriented sector9 

(11) woods 
(13) paper and allied industry 
(15) primary metals 
(17) machinery 
(18) transportation equipment 

III. manufacturing, domestic market-oriented sector 

(4) food and beverages 
(5) tobacco products 
(6) rubber and plastic products 
(7) leather 
(8) textiles 
(9) knitting mills 

(10) clothing 
(12) furniture and fixtures 
(14) printing, publishing and allied industries 
(16) metal fabricating 
(19) electrical products 
(20) nonmetallic mineral products 
(22) chemical and chemical products 
(23) miscellaneous manufacturing 

IV. services sector 

(24) construction 
(25) air transportation, other utilities and transportation 
(26) railway transportation and telegraph 

information from the output variables classified according to end use in the original data set was used to 
select these subsectors. 
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Figure B.40: Output prices for the resources sectors (I) 
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Figure B.42: Output prices for the domestic market-oriented manufacturing sectors (III), sub
group 1 
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Figure B.44: Output prices for the services sectors (rV), transportation subgroup 
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Figure B.45: Output prices for the services sectors (rV), communications and utilities subgroup 
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Figure B.46: Output prices for the services sectors (rV), construction, trade, f.i.r.e., and com
mercial services subgroup 



Appendix B. The Canadian Input-Output Data, 1961-1980 218 

(27) water transportation 
(28) motor transportation 
(29) urban transportation 
(30) storage 
(31) broadcasting 
(32) telephones 
(33) electric power 
(34) gas distribution 
(35) trade 
(36) finance, insurance and real estate 
(37) commercial services 

Aggregation was carried out in two stages: first, at the sectoral level across goods (interme

diate inputs) and second, across sectors to yield our aggregate industries. Prices were obtained 

as chained Divisia (Tornqvist or translog) indices; quantities were obtained residually such that 

expenditures are preserved.10 The Tornqvist discrete approximation to the continuous Divisia 

index is superlative; it is exact for the flexible translog aggregator function. Being a superla

tive index, it has also been shown to possess approximate consistency-in-aggregation property 

(Diewert, 1980a). 

For each aggregated sector, we have two sets of capital data based on different discount 

rates. Rental prices based on internal rates of return are more erratic and generally lower than 

those based on the external bond rates. This difference is more marked for inventories and land 

which have either zero property tax or depreciation rates. There was considerable variation in 

internal rates of return among the original 37 sectors; on the other hand the same external bond 

rate was applied to all the sectors. Thus, it is not unexpected that rental prices obtained using 

the external bond rates have a smoother behavior over time and even for a particular capital 

good, the trends of rental prices among the different aggregated sectors are almost identical. 

Due to the manner by which prices and quantities were obtained in our aggregation pro

cedure, the quantities of capital input also differ according to the discount rate used. At the 

level of 37-sector disaggregation, the quantities are identical across the two capital data sets 

1 0 The econometrics computer program SHAZAM by K.J . White (1987) was used to compute the Divisia 
indices. 
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I. resources sector 
II. manufacturing sector, export market-oriented 

III. manufacturing sector, domestic market-oriented 
IV. services sector 

Table B.16: List of aggregated sectors 

which differ only in the rental prices. The implied capital service bill (rental price x quantity 

of capital input) is therefore conditional on the discount rate as well. Since in the aggregation 

procedure the capital service bill or expenditure is preserved, different rental prices would then 

yield different values for the quantity. The above discussion underscores the possibility that 

our profit function estimation can be sensitive to the specification of the capital variables. 

Due to the manner by which the land data was constructed by Cas, Diewert and Osten-

soe (1986), the land quantity data except for the agriculture and fishing sector at the 37-sector 

level of disaggregation are in fixed proportions to the quantity of structures (approximately 

0.22 to 0.26). Hence, after the sectoral aggregation to four general industries was performed, 

structures and land were aggregated into a Leontief composite good for the manufacturing and 

services sectors (II, III and IV) in the following manner: 

(new)g3*'* = q** + q? *, 

where the right hand side variables are as described in the list of retained variables at the 

sectoral level, and the new price variable is obtained such that the value of expenditure is 

preserved. Hereon, for convenience, we shall refer to the Leontief aggregate of structures and 

land in the aggregated sectors II, III and IV as simply structures. For the resources sector (I), 

we retain separate variables for structures and land. 

In summary, we have four aggregated industries (table B.16) and ten goods (table B.17). 

For each sector, the first four goods are either a net output or an intermediate input. The last 
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(1) resource goods (from sector I) 
(2) manufactured goods (from sector II) 
(3) manufactured goods (from sector III) 
(4) service goods (from sector IV) 
(5) imports 
(6) labor 

• (7) inventories 
(8) machinery and equipment 
(9) structures 

(10) land 

Table B.17: List of goods 

six goods are primary inputs. The land price and quantity data are effectively set to zero for the 

manufacturing and services sectors (II, III and IV). For subsequent empirical analysis, quantities 

of net outputs are indexed positively and quantities of net inputs are indexed negatively. For 

scaling purposes, the quantities are further divided by a factor of 106; hence, the value of 

expenditure which can be obtained by multiplying the relevant price and quantity variables are 

in units of billion Canadian (current) dollars. Prices are normalized such that 1961 prices are 

equal to 1.0. 

B.4 The constructed data sets 

The constructed sectoral accounts with the capital rental prices based on internal rates of return 

are listed below. The constructed capital data series based on an exogenous bond rate are also 

listed separately for each of the four sectors. 
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Table B.18: The data for sector I, the resources sector 

Sector I: Resources 
net output resources exp-manuf 

year quantity price quantity price quantity price 
1961 
1962 
1963 
1964 
1965 
1966 
1967 
1968 
1969 
1970 
1971 
1972 
1973 
1974 
1975 
1976 
1977 
1978 
1979 
1980 

6.388490 
7.052499 
7.549368 
7.826248 
8.172144 
8.801898 
8.426695 
8.951132 
9.282653 
9.401631 
9.970642 

10.329735 
11.729394 
11.345067 
10.910657 
11.313760 
11.483928 
11.481984 
12.255849 
12.640729 

1.000000 
1.037613 
1.036749 
1.038113 
1.061550 
1.114239 
1.139288 
1.148554 
1.167532 
1.206057 
1.201196 
1.287679 
1.586959 
2.163120 
2.492335 
2.580402 
2.795015 
3.121217 
3.699945 
4.411511 

0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

0.108087 
0.111440 
0.121395 
0.137002 
0.151658 
0.174431 
0.179564 
0.190346 
0.180709 
0.196889 
0.195240 
0.189899 
0.223233 
0.235692 
0.221426 
0.233222 
0.255290 
0.252023 
0.282798 
0.271277 

1.000000 
1.014777 
1.029922 
1.045107 
1.067568 
1.094045 
1.118140 
1.146075 
1.181067 
1.225520 
1.252829 
1.288753 
1.378919 
1.608616 
1.811454 
1.937699 
2.085647 
2.273325 
2.600041 
2.923751 

dom-manuf services imports 
year quantity price quantity price quantity price 
1961 
1962 
1963 
1964 
1965 
1966 
1967 
1968 
1969 
1970 
1971 
1972 
1973 
1974 
1975 
1976 
1977 
1978 
1979 
1980 

0.629793 
0.668620 
0.695051 
0.743054 
0.777908 
0.872301 
0.898229 
0.897794 
0.886964 
0.908480 
0.912856 
0.940359 
1.165134 
1.182529 
1.162251 
1.210588 
1.221552 
1.237485 
1.305133 
1.360189 

1.000000 
1.009155 
1.026388 
1.038356 
1.050673 
1.083464 
1.099892 
1.114265 
1.153143 
1.175219 
1.208091 
1.267690 
1.411643 
1.692004 
1.901332 
1.959881 
2.066206 
2.260185 
2.562756 
2.873773 

1.025314 
1.126051 
1.172576 
1.248063 
1.335080 
1.405787 
1.443741 
1.494201 
1.525226 
1.551686 
1.603493 
1.703694 
2.012527 
2.103291 
2.122066 
2.295185 
2.432256 
2.545984 
2.784181 
2.973667 

1.000000 
1.009202 
1.022710 
1.038945 
1.062627 
1.095994 
1.140893 
1.183047 
1.236926 
1.297293 
1.350673 
1.408225 
1.492519 
1.673627 
1.872227 
2.079581 
2.244244 
2.407110 
2.551099 
2.872205 

0.651119 
0.577858 
0.589565 
0.591657 
0.604773 
0.645203 
0.641647 
0.705593 
0.771333 
0.797622 
1.133501 
1.269822 
1.438189 
1.378212 
1.372453 
1.342869 
1.257737 
1.261508 
1.299690 
1.233598 

1.000000 
1.233829 
1.268691 
1.309422 
1.320841 
1.370586 
1.370002 
1.379412 
1.356426 
1.385346 
1.144341 
1.189303 
1.357069 
2.893564 
3.429959 
3.556358 
3.964575 
4.336803 
5.532236 
8.194973 
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Table B.18 (continued) 
Sector I: Resources 

labor inventories cap-M&E 
year quantity price quantity price quantity price 
1961 
1962 
1963 
1964 
1965 
1966 
1967 
1968 
1969 
1970 
1971 
1972 
1973 
1974 
1975 
1976 
1977 
1978 
1979 
1980 

1961 
1962 
1963 
1964 
1965 
1966 
1967 
1968 
1969 
1970 
1971 
1972 
1973 
1974 
1975 
1976 
1977 
1978 
1979 
1980 

1.526986 
1.537920 
1.488821 
1.478606 
1.504062 
1.474743 
1.464122 
1.400979 
1.349746 
1.371695 
1.353306 
1.293386 
1.360092 
1.414700 
1.382598 
1.384431 
1.399334 
1.408160 
1.472186 
1.513216 

000000 
155035 
216110 
204332 
295214 
493066 
496646 
630398 
808434 
906155 
095066 
.299937 
907178 
291578 
631992 
020559 
408647 
879079 
181565 
845244 

0.257658 
0.236531 
0.250657 
0.270415 
0.259018 
0.249352 
0.256565 
0.252045 
0.260671 
0.294792 
0.301009 
0.276501 
0.196503 
0.169916 
0.150509 
0.153134 
0.166939, 
0.145943 
0.120251 
0.105367 

1.000000 
1.673956 
1.857383 
1.611608 
1.690091 
2.217558 
1.430552 
1.541310 
1.573871 
1.308617 
1.253800 
1.483027 
3.510525 
5.003183 
5.085024 
4.018019 
3.427975 
4.297119 
5.529375 
6.126964 

0.974477 
0.967728 
0.979927 
1.008983 
1.045854 
1.096940 
1.166594 
1.229138 
1.271160 
1.295795 
1.320508 
1.371592 
1.457358 
1.563316 
1.690316 
1.841283 
2.004779 
2.126939 
2.238255 
2.303775 

cap-S land 
year quantity price quantity price 

1.051897 
1.130091 
1.200532 
1.274241 
1.356734 
1.451109 
1.553798 
1.651811 
1.747637 
1.847144 
1.954259 
2.049686 
2.131857 
2.221274 
2.319290 
2.427455 
2.532432 
2.664501 
2.812549 
3.075338 

000000 
062735 
120759 
127154 
116906 
175998 
080166 
117851 
125036 
116097 
079182 
207907 
843159 
269770 
309336 
314483 
485781 
597678 
439241 
859592 

0.157218 
0.169682 
0.182722 
0.198536 
0.217224 
0.238384 
0.261559 
0.281879 
0.296819 
0.306257 
0.325562 
0.353363 
0.371761 
0.398255 
0.446428 
0.497528 
0.545635 
0.615000 
0.705863 
0.818887 

1.000000 
1.055788 
1.123692 
1.180153 
1.180537 
1.249582 
1.125995 
1.200644 
1.146463 
1.098177 
0.948264 
1.127055 
2.022788 
2.624213 
2.804449 
2.728358 
2.763854 
2.875689 
3.891534 
•4.578141 

1.000000 
1.158633 
1.231795 
1.230761 
1.252861 
1.344356 
1.154664 
1.184329 
1.195877 
1.164084 
1.155752 
1.224451 
1.620626 
1.942379 
2.068841 
1.998528 
2.001755 
2.279105 
2.777311 
3.146931 
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Table B.19: The data for sector II, the manufacturing sector (export market-oriented) 

Sector II: Manufacturing, Export Market-Oriented 

net output resources exp-manuf 
year quantity price quantity price quantity price 
1961 
1962 
1963 
1964 
1965 
1966 
1967 
1968 
1969 
1970 
1971 
1972 
1973 
1974 
1975 
1976 
1977 
1978 
1979 
1980 

7.089804 
7.756834 
8.462628 
9.485412 

10.567053 
11.235968 
11.725869 
12.831917 
13.987605 
13.567631 
14.234698 
15.544878 
17.314678 
18.041398 
16.492716 
17.809943 
18.486470 
19.701988 
20.284628 
19.557889 

1.000000 
1.015587 
1.027039 
1.041505 
1.062243 
1.089246 
1.112759 
1.141234 
1.176512 
1.214419 
1.236027 
1.284886 
1.399653 
1.632355 
1.835973 
1.956790 
2.128178 
2.346463 
2.700821 
3.002165 

1.341709 
1.383495 
1.428701 
1.553258 
1.648344 
1.665766 
1.743833 
1.838889 
1.950108 
2.099769 
1.979726 
2.112818 
2.337245 
2.185011 
1.692250 
1.850811 
1.765179 
1.779699 
1.934461 
2.001963 

1.000000 
1.022700 
1.038229 
1.056743 
1.086871 
1.128543 
1.171423 
1.211578 
1.249376 
1.271914 
1.291096 
1.353306 
1.586489 
2.031106 
2.414300 
2.710048 
3.038581 
3.392082 
3.966979 
4.513225 

0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

dom-manuf imports 
year quantity price quantity price quantity price 
1961 
1962 
1963 
1964 
1965 
1966 
1967 
1968 
1969 
1970 
1971 
1972 
1973 
1974 
1975 
1976 
1977 
1978 
1979 
1980 

0.568828 
0.671022 
0.770343 
0.882642 
0.999005 
1.085627 
1.115533 
1.207253 
1.335115 
1.275334 
1.388669 
1.427852 
1.559194 
1.590350 
1.498918 
1.579308 
1.592931 
1.704987 
1.712680 
1.725187 

1.000000 
1.000327 
1.005779 
1.017522 
1.035669 
1.055387 
1.075190 
1.083365 
1.110239 
1.142737 
1.168522 
1.199486 
1.276929 
1.533877 
1.735936 
1.837759 
1.945536 
2.099040 
2.384405 
2.714167 

0.906523 
0.982276 
1.068108 
1.197216 
1.345723 
1.483687 
1.577666 
1.683154 
1.798719 
1.799884 
1.840433 
1.991768 
2.147521 
2.340701 
2.259968 
2.389705 
2.477600 
2.688620 
2.940197 
3.015241 

1.000000 
0.997330 
0.997897 
1.007568 
1.023561 
1.046020 
1.084100 
1.123447 
1.173175 
1.231258 
1.276767 
1.328342 
1.402412 
1.566645 
1.755429 
1.942656 
2.095455 
2.256407 
2.413208 
2.700301 

0.977387 
1.081217 
1.228443 
1.468789 
1.708937 
1.919632 
2.007965 
2.459309 
2.691873 
2.595263 
3.044751 
3.485332 
3.963157 
4.313688 
4.081083 
4.369601 
4.568010 
4.882679 
5.078234 
4.482947 

1.000000 
1.081267 
1.094631 
1.113372 
1.125834 
1.156208 
1.200146 
1.219124 
1.254088 
1.294618 
1.240952 
1.269917 
1.341706 
1.558066 
1.865408 
1.947160 
2.194062 
2.507265 
2.807190 
3.141109 
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Table B.19 (continued) 
Sector II: Manufacturing, Export Market-Oriented 

labor inventories cap-M&E 
year quantity price quantity price quantity price 
1961 2.119785 1.000000 0.139830 1.000000 0.617652 1.000000 
1962 2.241733 1.020438 0.140142 1.285324 0.635518 1.109476 
1963 2.347976 1.058602 0.154408 1.443560 0.660243 1.207313 
1964 2.516343 1.097354 0.167456 1.510000 0.702184 1.307317 
1965 2.686661 1.154747 0.190346 1.619491 0.763447 1.380739 
1966 2.815390 1.241190 0.219303 1.338196 0.839970 1.232211 
1967 2.828762 1.340864 0.232885 1.328888 0.913000 1.071073 
1968 2.809657 1.456240 0.242194 1.570020 0.954506 1.127606 
1969 2.890357 1.557259 0.258157 1.817067 0.991791 1.289792 
1970 2.799147 1.686883 0.267666 1.008121 1.056741 1.044481 
1971 2.764914 1.814393 0.219643 1.245930 1.121957 1.111256 
1972 2.906985 1.953254 0.218953 1.575181 1.164555 1.238862 
1973 3.072781 2.140171 0.240360 2.229533 1.214828 1.588370 
1974 3.126569 2.484959 0.269613 2.151007 1.280471 1.866524 
1975 2.927767 2.840254 0.280483 1.621759 1.340268 1.569852 
1976 3.007986 3.310478 0.252980 1.712065 1.382314 1.602402 
1977 3.027801 3.643374 0.268715 1.921505 1.416345 1.894035 
1978 3.172290 3.878281 0.289846 2.705790 1.446666 2.368748 
1979 3.266791 4.213563 0.321056 3.601053 1.480658 2.986773 
1980 3.259662 4.738964 0.356681 2.351243 1.547863 2.812982 

cap-S 
year quantity price 
1961 0.414444 1.000000 
1962 0.420784 1.107176 
1963 0.430535 1.190106 
1964 0.448799 1.248288 
1965 0.478177 1.308641 
1966 0.517172 1.181744 
1967 0.553215 1.079364 
1968 0.574461 1.152858 
1969 0.594162 1.334347 
1970 0.622544 1.071653 
1971 0.645474 1.147545 
1972 0.658373 1.296258 
1973 0.675827 1.706880 
1974 0.701327 2.043999 
1975 0.727206 1.550815 
1976 0.744526 1.611738 
1977 0.761717 1.864861 
1978 0.779613 2.275004 
1979 0.800990 2.884777 
1980 0.834024 2.530481 



Appendix B. The Canadian Input-Output Data, 1961-1980 225 

Table B.20: The data for sector III, the manufacturing sector (domestic market-oriented) 

Sector III: Manufacturing, Domestic Market-Oriented 

net output resources exp-manuf 
year quantity price quantity price quantity price 
1961 
1962 
1963 
1964 
1965 
1966 
1967 
1968 
1969 
1970 
1971 
1972 
1973 
1974 
1975 
1976 
1977 
1978 
1979 
1980 

1961 
1962 
1963 
1964 
1965 
1966 
1967 
1968 
1969 
1970 
1971 
1972 
1973 
1974 
1975 
1976 
1977 
1978 
1979 
1980 

12.037386 
12.987668 
13.605353 
14.735647 
15.823795 
16.931363 
17.241228 
18.071040 
19.055620 
19.055881 
20.057231 
21.429801 
22.864381 
23.424968 
22.408561 
23.881598 
24.314540 
25.561322 
26.803966 
26.585478 

1.000000 
1.013297 
1.030103 
1.040056 
1.053652 
1.085651 
1.107805 
1.121121 
1.159219 
1.187352 
1.216044 
1.271673 
1.402400 
1.658326 
1.862847 
1.935665 
2.048225 
2.236829 
2.528423 
2.823797 

1.828422 
1.863090 
1.946189 
2.098514 
2.166830 
2.257699 
2.354801 
2.395088 
2.439193 
2.512004 
2.691736 
2.766351 
2.621073 
2.449706 
2.654289 
2.796468 
2.987332 
3.123728 
3.172526 
3.133351 

1.000000 
1.062329 
1.057284 
1.052316 
1.080163 
1.144946 
1.158415 
1.163200 
1.197145 
1.218478 
1.191584 
1.325867 
1.758798 
2.228840 
2.335712 
2.317120 
2.410752 
2.795465 
3.299165 
3.620208 

1.169241 
1.259862 
1.351255 
1.447883 
1.584562 
1.737049 
1.728370 
1.781939 
1.832271 
1.865613 
1.934796 
2.094266 
2.232044 
2.285692 
2.098421 
2.177060 
2.128802 
2.219740 
2.236875 
2.132916 

1.000000 
1.018057 
1.022763 
1.041157 
1.069105 
1.101336 
1.122732 
1.141395 
1.180501 
1.243472 
1.244704 
1.274907 
1.418403 
1.766253 
2.002042 
2.132037 
2.299330 
2.477568 
2.966844 
3.394111 

dom-manuf services imports 
year quantity price quantity price quantity price 

0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

1.751402 
1.881884 
1.993663 
2.130058 
2.283580 
2.436646 
2.480078 
2.539887 
2.674857 
2.682302 
2.754310 
2.916878 
3.086557 
3.245139 
3.245954 
3.307732 
3.361782 
3.578964 
3.861903 
3.952335 

1.000000 
1.004487 
1.009156 
1.020611 
1.041980 
1.070147 
1.110855 
1.151481 
1.201688 
1.258386 
1.305960 
1.359511 
1.436884 
1.598958 
1.788455 
1.977327 
2.123620 
2.280534 
2.428958 
2.717233 

1.612199 
1.600771 
1.663543 
1.822574 
1.976544 
2.180249 
2.205295 
2.313007 
2.560571 
2.459276 
2.814057 
3.130511 
3.467886 
3.841500 
3.381120 
3.637338 
3.547960 
3.843679 
4.244077 
4.146493 

1.000000 
1.079881 
1.141548 
1.140279 
1.114379 
1.126500 
1.125105 
1.124609 
1.165566 
1.203446 
1.120774 
1.159296 
1.314222 
1.666344 
1.800503 
1.818480 
2.030523 
2.238825 
2.634669 
3.210584 
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Table B.20 (continued) 
Sector III: Manufacturing, Domestic Market-Oriented 

labc inventories cap-M&E 
year quantity price quantity price quantity price 
1961 3.866455 1.000000 0.390087 1.000000 0.790091 1.000000 
1962 4.007279 1.028578 0.402435 1.215633 0.816207 1.159242 
1963 4.094212 1.062301 0.424859 1.252342 0.842033 1.208093 
1964 4.265746 1.099703 0.437419 1.384666 0.875287 1.375407 
1965 4.471031 1.148536 0.466149 1.384827 0.928024 1.442232 
1966 4.658253 1.235270 0.505314 1.318669 1.001514 1.400918 
1967 4.656392 1.323675 0.528980 1.190127 1.075553 1.274247 
1968 4.634462 1.409570 0.542721 1.342566 1.133056 1.336079 
1969 4.683603 1.514101 0.565547 1.410297 1.184919 1.401385 
1970 4.556537 1.626044 0.586728 1.196164 1.238159 1.281890 
1971 4.532065 1.743428 0.500339 1.503670 1.287277 1.469134 
1972 4.611433 1.882876 0.520267 1.685027 1.332858 1.570679 
1973 4.764969 2.058962 0.565381 1.946266 1.395390 1.737622 
1974 4.833621 2.380140 0.628511 2.131463 1.475864 1.856973 
1975 4.752283 2.722542 0.644599 2.040733 1.555075 1.920806 
1976 4.723326 3.150614 0.623038 2.102718 1.626614 2.005039 
1977 4.565358 3.472681 0.619148 2.108469 1.688481 2.118139 
1978 4.685567 3.684217 0.645320 2.455621 1.734585 2.483261 
1979 4.815412 4.019026 0.687416 2.948763 1.782644 2.890741 
1980 4.775804 4.572550 0.707758 2.674895 1.813132 2.874828 

cap-S 
year quantity price 
1961 0.606574 1.000000 
1962 0.623151 1.119752 
1963 0.642046 1.152039 
1964 0.665170 1.245956 
1965 0.699341 1.294947 
1966 0.746907 1.287254 
1967 0.791364 1.253040 
1968 0.828119 1.322063 
1969 0.866487 1.395417 
1970 0.906805 1.283205 
1971 0.940722 1.517903 
1972 0.963127 1.670885 
1973 0.988821 1.921457 
1974 1.025331 2.057440 
1975 1.062938 2.019534 
1976 1.092270 2.220401 
1977 1.124662 2.255490 
1978 1.161963 2.505986 
1979 1.199084 2.862710 
1980 1.228090 2.727067 
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Table B.21: The data for sector IV, the services sector 

Sector IV: Services 

net output resources exp-manuf 
year quantity price quantity price quantity price 
1961 
1962 
1963 
1964 
1965 
1966 
1967 
1968 
1969 
1970 
1971 
1972 
1973 
1974 
1975 
1976 
1977 
1978 
1979 
1980 

25.447810 
26.676252 
27.940061 
30.025948 
32.214360 
34.453836 
35.558786 
36.930822 
38.535515 
39.557438 
42.250994 
44.775514 
47.911077 
50.275018 
51.862215 
54.699236 
56.292097 
58.398141 
61.554562 
63.767157 

1.000000 
1.004829 
1.020665 
1.038074 
1.067979 
1.114736 
1.161715 
1.201863 
1.261842 
1.325342 
1.381803 
1.445799 
1.550809 
1.749947 
1.968710 
2.165522 
2.326202 
2.498532 
2.653385 
2.967861 

0.875907 
0.852661 
0.894182 
0.955285 
1.007009 
1.156012 
1.104906 
1.086179 
1.136589 
1.163318 
1.196356 
1.329988 
1.423878 
1.364078 
1.365785 
1.432804 
1.600500 
1.746025 
1.879707 
1.937400 

1.000000 
1.034028 
1.033111 
1.039502 
1.047827 
1.072106 
1.092991 
1.104841 
1.115011 
1.139757 
1.174812 
1.234390 
1.476695 
2.142910 
2.468426 
2.757956 
3.123400 
3.571692 
4.067483 
4.809709 

1.280840 
1.264061 
1.352863 
1.470477 
1.492395 
1.569492 
1.635840 
1.653321 
1.671295 
1.707698 
1.870303 
1.898392 
1.815247 
1.838916 
1.794571 
1.974918 
1.985405 
1.953228 
1.997412 
1.980460 

1.000000 
1.032044 
1.053248 
1.088668 
1.122017 
1.156154 
1.189471 
1.249679 
1.306078 
1.314224 
1.348444 
1.466019 
1.670257 
1.890350 
2.053709 
2.221193 
2.423828 
2.693428 
3.118340 
3.317524 

dom-manuf services imports 
year quantity price quantity price quantity price 
1961 
1962 
1963 
1964 
1965 
1966 
1967 
1968 
1969 
1970 
1971 
1972 
1973 
1974 
1975 
1976 
1977 
1978 
1979 
1980 

2.850217 
3.080031 
3.233912 
3.475665 
3.763027 
3.986007 
4.027994 
4.169141 
4.249828 
4.355433 
4.839141 
4.978960 
5.249498 
5.233725 
5.225492 
5.499952 
5.665069 
5.783386 
5.950791 
5.940092 

1.000000 
1.014433 
1.027262 
1.055144 
1.080331 
1.111411 
1.140687 
1.156044 
1.195202 
1.235274 
1.267082 
1.317792 
1.425952 
1.687207 
1.882823 
1.989473 
2.107197 
2.275023 
2.557222 
2.861909 

0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

1.032118 
0.717764 
0.705851 
0.793994 
0.863286 
0.978423 
1.031074 
1.082051 
1.219990 
1.214786 
1.970859 
2.170307 
2.380077 
2.505475 
2.399229 
2.511302 
2.689136 
2.819863 
3.057310 
3.139288 

1.000000 
1.517208 
1.577892 
1.688200 
1.723218 
1.743120 
1.761693 
1.723657 
1.752065 
1.851175 
1.306229 
1.355255 
1.458526 
1.710694 
1.913355 
2.011226 
2.232756 
2.482589 
2.776580 
3.070752 
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Table B.21 (continued) 
Sector IV: Services 

labor inventories cap-M&E 
year quantity price quantity price quantity price 
1961 11.234121 1.000000 0.499994 1.000000 1.460116 1.000000 
1962 11.619290 1.023880 0.520299 0.956480 1.518303 1.040389 
1963 11.895067 1.063034 0.548213 1.006311 1.574607 1.073694 
1964 12.366934 1.102978 0.561931 1.110753 1.647954 1.127365 
1965 13.090155 1.160666 0.572043 1.094808 1.751854 1.145944 
1966 13.535069 1.253518 0.597625 1.199915 1.895576 1.154594 
1967 13.665839 1.351107 0.581371 1.217706 2.070180 1.137151 
1968 13.666817 1.451743 0.533125 1.311124 2.246863 1.162876 
1969 14.123674 1.569194 0.505476 1.391735 2.436544 1.166433 
1970 14.110210 1.688741 0.539809 1.495045 2.631226 1.205674 
1971 14.462436 1.837723 0.442178 1.630938 2.814189 1.244395 
1972 15.067784 1.968243 0.361624 1.937491 3.046717 1.294961 
1973 15.971162 2.166338 0.372176 2.175214 3.373524 1.347917 
1974 16.929037 2.450203 0.348171 2.383500 3.764153 1.428437 
1975 17.256626 2.816291 0.447577 2.540867 4.158640 1.503969 
1976 17.533465 3.171177 0.488874 2.730098 4.533461 1.561888 
1977 17.944677 3.394450 0.486190 2.087035 4.868069 1.644222 
1978 18.519227 3.573324 0.401134 2.866397 5.194545 1.879136 
1979 19.221697 3.748176 0.345426 3.959155 5.583736 2.077162 
1980 19.717578 4.296999 0.359586 4.338340 6.015682 2.224588 

cap-S 
year quantity price 
1961 5.825608 1.000000 
1962 6.049437 1.007619 
1963 6.285030 1.026021 
1964 6.558808 1.064720 
1965 6.882067 1.112967 
1966 7.235363 1.180646 
1967 7.569433 1.226004 
1968 7.890240 1.304001 
1969 8.234933 1.348724 
1970 8.581558 1.422943 
1971 8.969297 1.513358 
1972 9.443831 1.585623 
1973 9.988914 1.652258 
1974 10.582015 1.747954 
1975 11.195258 1.933909 
1976 11.826278 2.243971 
1977 12.535674 2.385420 
1978 13.231093 2.540867 
1979 13.870268 2.628307 
1980 14.377347 2.957135 
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Sector I: Resources 
inventories cap-M&E cap-S 

year quantity price quantity price quantity price 
1961 0.227087 1.000000 0.848760 1.000000 0.734308 1.000000 
1962 0.203089 1.047303 0.839489 1.036271 0.781798 1.009704 
1963 0.215036 1.030674 0.848161 1.061460 0.826633 1.042815 
1964 0.232245 1.048629 0.872371 1.094989 0.872262 1.056381 
1965 0.222952 1.100948 0.904941 1.125648 0.922479 1.108032 
1966 0.215263 1.320082 0.949056 1.182138 0.982136 1.235355 
1967 0.221975 1.455095 1.008377 1.208545 1.047189 1.348057 
1968 0.217291 1.626530 1.061347 1.266151 1.108862 1.454962 
1969 0.227130 1.826663 1.096548 1.348249 1.170762 1.624284 
1970 0.252924 1.972613 1.115754 1.425845 1.236791 1.736279 
1971 0.251413 1.777211 1.135326 1.420743 1.309196 1.833680 
1972 0.231957 1.941780 1.179486 1.464467 1.375157 1.951953 
1973 0.169166 2.569619 1.254671 1.518346 1.432420 2.161825 
1974 0.151474 3.849088 1.350557 1.819539 1.495302 2.694249 
1975 0.142889 4.440838 1.462862 2.133749 1.565270 3.124458 
1976 0.149687 4.590336 1.591711 2.271819 1.635938 3.494099 
1977 0.156511 4.553407 1.729738 2.358169 1.702191 3.698859 
1978 0.142418 5.391131 1.834384 2.665340 1.785242 4.015207 
1979 0.120502 6.779880 1.931452 3.125832 1.874581 4.624146 
1980 0.113386 9.064909 1.997021 3.862775 2.026919 5.466408 

land 
year quantity price 
1961 0.086268 1.000000 
1962 0.091847 1.030529 
1963 0.098377 1.075770 
1964 0.106453 1.122775 
1965 0.115995 1.229504 
1966 0.126522 1.443417 
1967 0.137918 1.654847 
1968 0.148022 1.882855 
1969 0.155267 2.087160 
1970 0.159798 2.211249 
1971 0.170117 2.246751 
1972 0.184393 2.462951 
1973 0.194197 2.783838 
1974 0.207830 3.715461 
1975 0.231935 4.717755 
1976 0.252724 5.459365 
1977 0.276813 5.479471 
1978 0.310122 5.968442 
1979 0.354174 6.871396 
1980 0.413645 9.166418 

Table B.22: Capital data series based on an exogenous bond rate, sector I 
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Sector II: Manufacturing, Export Market-Oriented 

inventories cap-M&E cap-S 
year quantity price quantity price quantity price 
1961 
1962 
1963 
1964 
1965 
1966 
1967 
1968 
1969 
1970 
1971 
1972 
1973 
1974 
1975 
1976 
1977 
1978 
1979 
1980 

0.076313 
0.076596 
0.083965 
0.091586 
0.102387 
0.115252 
0.123113 
0.128381 
0.134569 
0.138769 
0.121653 
0.122501 
0.129907 
0.145378 
0.152757 
0.149906 
0.149504 
0.157234 
0.172016 
0.182643 

1.000000 
1.004770 
1.005430 
1.041521 
1.088788 
1.265452 
1.406697 
1.612187 
1.818726 
1.973151 
1.852294 
1.914694 
2.111803 
2.909187 
3.511676 
3.781411 
3.792476 
4.239261 
5.207380 
6.869955 

0.472856 
0.486746 
0.505983 
0.537510 
0.583267 
0.641311 
0.697485 
0.727795 
0.752919 
0.800110 
0.852064 
0.888178 
0.920078 
0.965346 
1.013320 
1.046277 
1.070925 
1.088803 
1.107604 
1.153381 

1.000000 
1.026605 
1.064638 
1.139774 
1.217316 
1.313045 
1.329949 
1.388745 
1.513458 
1.616918 
1.603145 
1.656954 
1.775663 
2.209229 
2.636296 
2.814122 
3.003033 
3.415912 
3.978079 
4.950691 

0.310777 
0.315613 
0.322750 
0.335343 
0.356255 
0.384495 
0.410196 
0.425820 
0.440558 
0.461652 
0.480921 
0.493828 
0.505614 
0.522270 
0.541596 
0.554417 
0.567320 
0.579464 
0.591812 
0.614269 

000000 
021858 
047083 
083789 
140548 
248588 
339978 
426479 
571085 
698275 
703257 
789545 
927482 
381916 
741109 
019335 
,114732 
376527 
.828683 
,641175 

Table B.23: Capital data series based on an exogenous bond rate, sector II 
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Sector III: Manufacturing, Domestic Market-Oriented 

inventories cap-M&E cap-S 
year quantity price quantity price quantity price 
1961 
1962 
1963 
1964 
1965 
1966 
1967 
1968 
1969 
1970 
1971 
1972 
1973 
1974 
1975 
1976 
1977 
1978 
1979 
1980 

0.164678 
0.169764 
0.178758 
0.184200 
0.195846 
0.211290 
0.222683 
0.228521 
0.238340 
0.248481 
0.207857 
0.215227 
0.232139 
0.256425 
0.263251 
0.254863 
0.253324 
0.264671 
0.280701 
0.288731 

1.000000 
0.995672 
0.995883 
1.024868 
1.065092 
1.243829 
1.380210 
1.546356 
1.738964 
1.886586 
1.770582 
1.811295 
2.001246 
2.846886 
3.321801 
3.429188 
3.368375 
3.731241 
4.586677 
6.133201 

0.516827 
0.532623 
0.548827 
0.570569 
0.605757 
0.654497 
0.703041 
0.740182 
0.772203 
0.804503 
0.833562 
0.860768 
0.899922 
0.953438 
1.009977 
1.065924 
1.116926 
1.156359 
1.194850 
1.219294 

1.000000 
1.042179 
1.074446 
1.164916 
1.249673 
1.355496 
1.364515 
1.424216 
1.543129 
1.647465 
1.620201 
1.644342 
1.731891 
2.132474 
2.533978 
2.652419 
2.829180 
3.237520 
3.750944 
4.650824 

0.383919 
0.393531 
0.404951 
0.419491 
0.441394 
0.471838 
0.500381 
0.524520 
0.549957 
0.576534 
0.598815 
0.613483 
0.629924 
0.653947 
0.681459 
0.707355 
0.736231 
0.768397 
0.796496 
0.815957 

000000 
021812 
037866 
069006 
139481 
248308 
343386 
421186 
553902 
679964 
701685 
786588 
917496 
353066 
705036 
987202 
091905 
359088 
801051 
618980 

Table B.24: Capital data series based on an exogenous bond rate, sector III 
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Sector IV: Services 
inventories cap-M&E cap-S 

year quantity price quantity price quantity price 
1961 0.233352 1.000000 1.315189 1.000000 5.552619 1.000000 
1962 0.241952 0.991364 1.352735 1.041860 5.762240 1.009823 
1963 0.253990 0.986217 1.386427 1.064014 5.975821 1.024876 
1964 0.260214 1.019418 1.433827 1.099282 6.225290 1.071754 
1965 0.264663 1.063537 1.510808 1.129523 6.515181 1.142834 
1966 0.276367 1.240609 1.622925 1.201201 6.818234 1.304128 
1967 0.270340 1.392451 1.760261 1.245401 7.112892 1.450180 
1968 0.249144 1.592179 1.900871 1.307811 7.413251 1.594196 
1969 0.237284 1.804711 2.047023 1.395441 7.737688 1.786155 
1970 0.251856 1.989671 2.192816 1.492537 8.064885 1.923506 
1971 0.211834 1.888489 2.328460 1.478687 8.427107 1.921061 
1972 0.176606 1.948844 2.487258 1.509143 8.866944 2.043214 
1973 0.179386 2.108799 2.706953 1.568481 9.371714 2.286863 
1974 0.168302 2.795965 2.975054 1.885795 9.907648 2.955057 
1975 0.209924 3.354079 3.245710 2.193212 10.440952 3.495112 
1976 0.230993 3.610360 3.506838 2.273766 10.999748 3.866969 
1977 0.226609 3.540756 3.741300 2.405548 11.656002 3.980235 
1978 0.190276 3.957381 3.969147 2.757107 12.316026 4.319935 
1979 0.163974 4.672649 4.234024 3.122160 12.922131 4.878309 
1980 0.172828 6.299277 4.522550 3.705302 13.400917 5.987700 

Table B.25: Capital data series based on an exogenous bond rate, sector IV 
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Computer Programs for Implementing the Nonparametric Efficiency Tests 

C.l Introduction to the computer programs 

Implementation of the nonparametric efficiency tests given in part I is illustrated by the follow

ing sample FORTRAN programs. The technical efficiency tests (tests 1-3) and the allocative 

efficiency tests (tests 4-6) require the solution of linear programming problems. The user-

callable subprogram LIPSUB originally written by Dennis O'Reilly of the University Computing 

Services of the University of British Columbia is used. There are three subroutines: 

1. TESTQ — performs the technical efficiency tests 1, 2 and 3 which require quantity data; 

2. TESTPQC — performs the allocative efficiency tests 4, 5 and 6 assuming partial profit 

maximization and which require price and quantity data; and 

3. TESTPQ — performs the allocative efficiency tests 7, 8 and 9 assuming complete profit 

maximization and which require price and quantity data. 

The variant of the efficiency test incorporating the no technological regress assumption (listed 

in appendix A) can be performed by specifying the integer variable JTECH appropriately in 

the main calling program; set JTECH=1 if the no technological regress assumption is desired to 

be incorporated in the efficiency test, or set JTECH=0, otherwise. For the allocative efficiency 

tests 4 and 7 which assume a convex technology, if it is desired to restrict the optimal profits 

to be nonnegative (as described in subsection 7.2.6), then either set JP0SP=1 or JPMU=1 in 

the main calling program. Altogether, the above three subroutines are capable of performing 

twenty-two kinds of efficiency tests. The subroutines need not be modified by the user and all 

data inputting can be made in the main calling programs. 

233 
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Sample main programs calling the subroutines are also given. Since the main calling pro

grams will be specific to the data being processed and the efficiency tests desired, for illustrative 

purposes, we use the data on sector I, the resources sector.1 Note that for the resources sec

tor (I), there are 20 observations (1961-1980) and 10 goods (see table B.17). The sample main 

programs are in the files: 

1. MAINQl — calls the subroutine TESTQ, 

2. MAINPQC1 — calls the subroutine TESTPQC, and 

3. MAINPQ1 — calls the subroutine TESTPQ. 

Variables whose values have to be specified by the user are noted in the listings. 

For allocating space, the dimensioning is done through the PARAMETER option; the user 

has to specify the value of the following variables: 

JOBS = number of observations (J), 

JGDS = number of goods (iV), 

JGOB = number of observations + number of goods (J + N), 

JOBS2 = number of observations + 2 (J + 2), 

JGDS2 = number of goods + 2 (N + 2), and 

JGOB2 = number of observations + number of goods + 2 (J + N + 2). 

For the tests requiring the solution of linear programming problems, a detailed version of the 

results which includes the linear programming tableaus and solutions can be printed out by 

specifying JDET=1. 2 

The quantity variable is stored in the variable Z(n,j) where the first dimension refers to 

the goods index and the second dimension refers to the observation index. The price variable 

is stored in the variable P(n, j) and follows the same dimensioning convention as the quantity 

variable. If only the technical efficiency tests (1-3) are to be performed, the user need not enter 

'See appendix B for a detailed description and listing of the data. 
2This can be helpful in debugging when a problem is encountered in the solution of the linear programming 

problem. For most purposes, JDET=0 will suffice. 
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the price data. The efficiency direction vector 7 is stored in the variables JDIR(-) of dimension 

JGDS. The user has to specify the values of the individual components JDIR(n) as +1, -1 or 

0. For tests 4-6 which assume partial profit maximization, the set S containing the indices of 

goods with respect to which the producer can optimize and the set E containing the indices 

of the reference goods are specified through the variables JSET(-) and JNUM(-) 3, respectively, 

both of dimension JGDS. Let JSET(n)=l if good n is in S; set JNUM(rc)=l if good n is in E. 

For tests 3, 6 and 9 which assume a quasiconcave technology, a good with respect to whose 

technology the test is to be performed has to be singled out; this good is specified by JFNC=n 

where n is the index of the good chosen to play an asymmetric role. For test 8 which assumes a 

convex cone technology and complete profit maximization, the normalizing good is specified by 

JNORM=n where n is the index of the good chosen. The desired efficiency test is performed 

by specifying JTEST=£ where t is the number (listed in table C.26) corresponding to the 

efficiency test and calling the appropriate subroutine. A summary of the different efficiency 

tests, their informational requirements and options are listed in table C.26. Listings of the 

sample main calling programs and subroutines follow. Sample results using the data on the 

resources sector (I) are also given. 

C.2 Listings of computer programs 

C.2.1 Subroutines TESTQ, TESTPQC and TESTPQ 

Listing of subroutine TESTQ 
SUBROUTINE TESTQ(Z,JGDS,JGDS2,JOBS,J0BS2,JG0B2,JDIR, 

1 TABL0,JVIN,JV0UT,0PTIM,T0L, 
2 X, JPLAM, ZP, ZDIF, ZPDIF, JVIO, VVIO, JPASS, JGEZ, ZW, 
3 JFRD.JPASSW.JPASSS) 

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * c 
C TEST 1. TECHNICAL EFFICIENCY TEST 
C QUANTITY DATA 
C CONVEX TECHNOLOGY 
C 
C TEST 2. TECHNICAL EFFICIENCY TEST 
C QUANTITY DATA 
C CONSTANT RETURNS TO SCALE TECHNOLOGY 
C 

3In the sample computer,programs below, the reference goods are called "numeraire" goods. 
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test and 
subroutine called 

informational 
requirements options 

1. Test 1: 
TESTQ, JTEST=1 

JOBS, J0BS2, 
JGDS, JGDS2, JG0B2, 
Z(n,j), 
JDIR(n) 

JDET=0/1 
JTECH=0/1 

2. Test 2: 
TESTQ, JTEST=2 

JOBS, JOBS2, 
JGDS, JGDS2, JGOB2, 
Z(n,j), 
JDIR(n) 

JDET=0/1 
JTECH=0/1 

3. Test 3: 
TESTQ, JTEST=3 

JOBS, J0BS2, 
JGDS, JGDS2, JG0B2, 
Z(n,i), 
JDIR(n), 
JFNC=n 

JDET=0/1 
JTECH=0/1 

4. Test 4: 
TESTPQC, JTEST=4 

JOBS, J0BS2, 
JGDS, JGDS2, JGOB2, 
Z(n,j), P(n,j), 
JSET(n), JNUM(n) 

JDET=0/1 
JTECH=0/1 
JPOSP=0/1 or JPMU=0/1 

5. Test 5: 
TESTPQC, JTEST=5 

JOBS, JOBS2, 
JGDS, JGDS2, JGOB2, 
Z(n, j), P(n,j), 
JSET(n), JNUM(n) 

JDET=0/1 
JTECH=0/1 

6. Test 6: 
TESTPQC, JTEST=6 

JOBS, JOBS2, 
JGDS, JGDS2, JG0B2, 
Z(n,j), P(n,j), 
JSET(n), JNUM(n), 
JFNC=n 

JDET=0/1 
JTECH=0/1 

7. Test 7: 
TESTPQ, JTEST=7 

JOBS, JOBS2, 
JGDS, JGDS2, JGOB, 
Z(n, j), P(n,j), 
JDIR(n) 

JTECH=0/1 
JPOSP=0/1 or JPMU=0/1 

8. Test 8: 
TESTPQ, JTEST=8 

JOBS, JOBS2, 
JGDS, JGDS2, JGOB, 
Z(n, j), P(n,j), 
JDIR(n), 
JNORM=n 

JTECH=0/1 

9. Test 9: 
TESTPQ, JTEST=9 

JOBS, JOBS2, 
JGDS, JGDS2, JGOB, 
Z(n, j), P(n,j), 
JDIR(n), 
JFNC=n 

JTECH=0/1 

Table C.26: Summary of the different efficiency tests, informational requirements and options 
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C TEST 3. TECHNICAL EFFICIENCY TEST 
C QUANTITY DATA 
C qUASICONCAVE TECHNOLOGY 
C C JTECH = 0 ASSUMES NO TECHNICAL CHANGE C =1 ASSUMES NO TECHNOLOGICAL REGRESS C IMPLICIT REAL*8(B-I,K-Z),CHARACTER*12(A) 

DIMENSION Z(JGDS,JOBS),JDIR(JGDS),TABLO(JGDS2,J0BS2), 
1 JVIN(JGDS2),JV0UT(J0BS2).OPTIM(JOBS), 
2 X(JG0B2),JPLAM(JOBS),ZP(JGDS),ZDIF(JGDS).ZPDIF(JGDS), 
3 JVIO(JOBS).VVIO(JOBS),JPASS(JOBS),JGEZ(JOBS), 
4 ZW(JGDS),JFRD(JOBS),JPASSW(JOBS),JPASSS(JOBS) CHARACTER A0FL0W*8 DATA AOFLOW/'******•*'/ 
COMMON /CONST/ CZERO,JDET,JTEST,JFNC,JNORM,JTECH C C SWITCH JTEST INDICES C IF (JTEST .EQ. 3) THEN JTEST = 1 C (QUASICONCAVE CASE) GO TO 700 END IF IF (JTEST .EQ. 1) THEN JTEST = 2 C (CONVEX CASE) GO TO 700 END IF IF (JTEST .EQ. 2) THEN JTEST = 3 C (CONSTANT RETURNS TO SCALE CASE) GO TO 700 END IF 700 CONTINUE C C PRINT TEST HEADING C IF (JTEST .EQ. 1) THEN 

WRITE(6,420) JFNC 
ELSE IF (JTEST .EQ. 2) THEN 

WRITE(6,400) ELSE WRITE(6,410) END IF 
IF (JTECH .EQ. 0) THEN 

WRITE(6,422) 
ELSE 

WRITE(6,424) END IF 
400 FORMAT('1','TEST 1. TECHNICAL EFFICIENCY TEST'/ 

1 ' ',' QUANTITY DATA'/ 
2 ' ',' CONVEX TECHNOLOGY'//) 

410 FORMAT('1','TEST 2. TECHNICAL EFFICIENCY TEST'/ 
1 ' ',' QUANTITY DATA'/ 
2 ' ',' CONVEX CONE TECHNOLOGY'/ 
3 ' ',' (CONSTANT RETURNS TO SCALE)'//) 

420 FORMAT('1','TEST 3. TECHNICAL EFFICIENCY TEST'/ 
1 ' ',' QUANTITY DATA'/ 
2 ' ',' QUASICONCAVE TECHNOLOGY'/ 
3 '0',' NOTE: TEST PERFORMED WITH RESPECT TO'/ 
4 ' ',' TECHNOLOGY OF GOOD N=',14//) 

422 FORMAT(' ',9X,'( TEST ASSUMES NO TECHNICAL CHANGE )'//) 
424 FORMAT(' ',9X,'( TEST ASSUMES NO TECHNOLOGICAL REGRESS )'//) 
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C 
C SOLVE LP FOR JI=l,JOBS 
C 

DO 5 JI = l.JOBS 
C 
C INITIALIZE VALUES FOR LP SUBROUTINE 
C 

JCONST = JGDS + 1 
JEQUAL = 1 
JMAXIM = 1 
JFOBJ = 0 
JFRHS = 0 
IF (JTEST . E q . 3) THEN 

JCONST = JGDS 
JEQUAL = 0 

END IF 
C 
C ZERO TABLEAU 
C 

DO 10 J1=1,JGDS2 
DO 15 J2=1,J0BS2 

TABL0(J1,J2) = O.DO 
15 CONTINUE 
10 CONTINUE 

C 
C SET UP TABLEAU 
C , 

JU = JOBS ^ 
IF (JTECH . E q . 1) JU=JI 

C 
C SET UP CONSTRAINTS AND RHS (TEST 1) 
C 

IF (JTEST . E q . 1) THEN 
JCONST = JGDS 
J = 0 
DO 90 J J = l . J U 

IF (Z(JFNC.JJ) .GE. Z(JFNC.JI)) THEN 
J = J+l 
JGEZ(J) = J J 

END IF 
90 CONTINUE 

JCGEZ = J 
DO 91 JJ = 1,JCGEZ 

JR = 1 
DO 92 JI = l.JGDS 

IF (JI .EQ. JFNC) GO TO 92 
JR = JR+1 
TABLO(JR.JJ) = -Z(J1,JGEZ(JJ)> 

92 CONTINUE 
TABL0(JGDS+1,JJ) = l.DO 

91 CONTINUE 
JNVARS = JCGEZ+1 
JV1 = JNVARS+1 
JR = 1 
DO 93 JI = l.JGDS 

IF (JI .EQ. JFNC) GO TO 93 
JR = JR+1 
TABLO(JR,JNVARS) = JDIR(J1)*Z(J1,JI) 
TABLO(JR.JVl) = - Z ( J l . J I ) 

93 CONTINUE 
TABL0(JGDS+1,JV1) = l.DO 
ELSE 

C SET UP CONSTRAINTS AND RHS (TESTS 2,3) 
C 

DO 20 J2=1,JU 
DO 22 J1=1,JGDS 

TABL0(J1+1,J2) = -Z(J1,J2) 
22 CONTINUE 
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TABL0(JGDS2,J2) = l.DO 
20 CONTINUE 

JNVARS = JOBS+1 
IF (JTECH .EQ. 1) JNVARS=JI+1 
JV1 = JNVARS+1 
DO 30 J1=1,JGDS 

JR = Jl+1 • , v , 
TABLO(JR,JNVARS) = JDIR(J1)*Z(J1,JI) 
TABL0(JR,JV1) = - Z ( J l . J I ) 

30 CONTINUE 
TABLO(JGDS2.JV1) = l.DO 
END IF 

C 
C SET UP OBJECTIVE FUNCTION 
C 

TABLO(1,JNVARS) = l.DO 
C 
C SUM OF LP VARIABLES 
C 

JLPV = JNVARS + JCONST 
C 
C PRINT OUT INPUT TO LP SUBROUTINE 
C 

IF (JDET . E q . 0) GO TO 1234 
WRITE(6,100)JI,JCONST,JNVARS,JEqUAL,TOL 

100 FORMAT('1','OBSERVATION 1=',14/ 
1 ' ',5X,'NUMBER OF CONSTRAINTS 3',14/ 
2 ' ',5X,'NUMBER OF VARIABLES 3 ' ,14/ 
3 ' ',5X,'NUMBER OF EqUALITY CONSTRAINTS 3',14/ 
4 ' ' , 5 X , ' T O L E R A N C E 3 ' , F 1 0 . 6 / / ) 

WRITE(6,105) 
105 FORMAT(' ' , 'TABLEAU IS: ' ) 

IF (JTEST . E q . 1) THEN 
CALL DPRMAT(TABLO,JGDS2,J0BS2,JGDS+1,JV1,1,1, 

1 JGDS2,1) 
ELSE IF (JTEST . E q . 2) THEN 

CALL DPRMAT(TABLO,JGDS2,J0BS2,JGDS2,JV1,1,1,JGDS2,1) 
ELSE 

CALL DPRMAT(TABLO,JGDS2,J0BS2,JGDS+1,JV1,1,1, 
1 JGDS2.1) 

END IF 
1234 CONTINUE 

C 
C CALL LIPSUB SUBROUTINE 
C 

CALL LIPSUB(TABLO,JGDS2,JCONST,JNVARS,JEQUAL,JMAXIM, 
1 JFOBJ,JFRHS,TOL,JVIN,JVOUT,BBOBJ,UBOBJ, 
2 BBRHS,UBRHS,*999) 

JNP1 3 JNVARS+1 
OPTIM(JI) = TABLO(l.JNPl) 
IF (JMAXIM .NE. 1) OPTIM(JI) = -OPTIM(JI) 

C 
IF (JDET . E q . 0) GO TO 2345 

WRITE(6,200)OPTIM(JI) 
WRITE(6,300) (JVIN(J),TABLO(J.JNPl),J=2,JCONST+1) 

2345 CONTINUE 
C 
C CHECK FOR NEGATIVE VALUES IN THE OPTIMAL BASIS 
C 

JWARN = 0 
DO 60 J 3 2,JCONST+1 

IF (TABLO(J.JNPl) . L T . -CZERO) JWARN=1 
60 CONTINUE 

IF (JWARN . E q . 1) WRITE(6,888)JI C 
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C PRINT SUMMARY FOR OBSERVATION I 
C 

C CALCULATE WEAKLY EFFICIENT VECTOR ZW 
C ( SOME GOODS, BUT NOT ALL, MAY HAVE 
C ZERO SHADOW PRICES ) 
C 

DO 65 JN = l.JGDS 
ZW(JN) = (l.DO + (OPTIM(JI)*JDIR(JN))) * Z(JN.JI) 

65 CONTINUE 
DO 70 J = l .JLPV 

X(J) = O.DO 
70 CONTINUE 

DO 72 J = 2.JC0NST+1 
X(JVIN(J)) = TABLO(J.JNPl) 

72 CONTINUE 
C 
C COUNT POSITIVE LAMBDA'S 
C 

JPL - 0 
IF (JTEST . E q . 1) JU = JCGEZ 
DO 74 J = l . J U 

IF (X(J) .GT. CZERO) THEN 
JPL = JPL+1 
JPLAM(JPL) = J 

END IF 
74 CONTINUE 

C 
C CALCULATE EFFICIENT VECTOR ZP 
C ( ZP IS (IDEALLY) PARETO EFFICIENT, ALL GOODS 
C HAVE POSITIVE SHADOW PRICES BUT PROCEDURE DOES 
C NOT GUARANTEE THAT ZP CALCULATED IS SUCH ) 
C AND DETERMINE IF EFFICIENT VECTOR ZW 
C IS IN FREE DISPOSAL SECTION OF THE 
C TECHNOLOGY SET 

JFRD(JI) = 0 

IF ( JTEST . E q . 1) THEN 
DO 94 JG = l.JGDS 

IF (JG . E q . JFNC) THEN 
ZP(JG) = Z(JG.JI) 

ELSE 
ZP(JG) = O.DO 
DO 95 J J = 1,JCGEZ 

ZP(JG) = ZP(JG) + (X(JJ)*Z(JG,JGEZ(JJ))) 
95 CONTINUE 

END IF 
ZDIF(JG) = ZP(JG) - Z(JG,JI) 
IF (ABS(Z(JG,JI)) .GT. CZERO) THEN 

ZPDIF(JG) = ZDIF(JG)/Z(JG,JI) 
ELSE 

ZPDIF(JG) = 9999.999D0 
END IF 
IF ((ABS(ZPDIF(JG)) .GT. CZERO) .AND. (JG .NE. JFNC)) 

1 JFRD(JI) = 1 
94 CONTINUE 

ELSE 
DO 76 JG = l.JGDS 

ZP(JG) = O.DO 
DO 78 J J = l . J U 

ZP(JG) = ZP(JG) + (X(JJ)*Z(JG.JJ)) 
78 CONTINUE 

ZDIF(JG) = ZP(JG) - Z(JG.JI) 
IF (ABS(Z(JG,JI)) .GT. CZERO) THEN 

ZPDIF(JG) = ZDIF(JG)/Z(JG,JI) 
ELSE 

ZPDIF(JG) = 9999.999D0 
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END IF 
IF (ABS(ZPDIF(JG)) .GT. CZERO) JFRD(JI) = 1 

76 CONTINUE 
END IF 
IF (JTEST .EQ. 1) THEN 

WRITE(6,500) JI,0PTIM(JI),(JGEZ(JPLAM(J)),J=1,JPL) 
ELSE 

IF (JPL .GT. 0) THEN 
WRITE(6,500) JI .OPTIM(JI) , (JPLAM(J),J=l ,JPL) 

ELSE 
WRITE(6,501) JI.OPTIM(JI) 

END IF 
END IF 
WRITE(6,510) 
IF (JTEST .EQ. 1) THEN 

DO 96 J = l.JGDS 
IF (J .EQ. JFNC) GO TO 96 

IF (ZPDIF(J) .GT. 9000.DO) THEN 
WRITE(6,521) J , J D I R ( J ) , Z W ( J ) , Z P ( J ) , Z ( J , J I ) . 

1 ZDIF(J).AOFLOW 
ELSE 

WRITE(6,520) J , J D I R ( J ) , Z W ( J ) , Z P ( J ) , Z ( J , J I ) , 
1 ZDIF(J),ZPDIF(J) 

END IF 
96 CONTINUE 

WRITE(6,525) JFNC,Z(JFNC,JI) 
ELSE 

DO 97 J = l.JGDS 
IF (ZPDIF(J) .GT. 9000.DO) THEN 

WRITE(6,521) J , J D I R ( J ) , Z W ( J ) , Z P ( J ) . Z ( J , J I ) , 
1 ZDIF(J),AOFLOW 

ELSE 
WRITE(6.520) J . J D I R ( J ) , Z W ( J ) , Z P ( J ) , Z ( J , J I ) , 

1 ZDIF(J),ZPDIF(J) 
END IF 

97 CONTINUE 
END IF 
IF (OPTIM(JI) .GT. CZERO) THEN 

WRITE(6,550) JI 
ELSE IF (JFRD(JI) .EQ. 1) THEN 

WRITE(6,555) JI 
ELSE 

WRITE(6,560) JI 
END IF 

550 FORMAT('-' . 'HENCE, OBSERVATION I=',I4, 
1 ' IS TECHNICALLY E-INEFFICIENT.') 

555 F0RMATO-' , 'HENCE, OBSERVATION 1=',14, 
1 ' IS WEAKLY TECHNICALLY E-EFFICIENT.') 

560 FORMATC-' , 'HENCE, OBSERVATION I=',I4, 
1 ' IS TECHNICALLY E-EFFICIENT.') 

GO TO 5 
999 WRITE(6,900) JI 

5 CONTINUE 
C 
C PRINT SUMMARY FOR DATAFILE 
C 

WRITE(6,600) 
JNF = 0 
JNP = 0 
JMAX = 0 
VMAX = O.DO 
JNPW = 0 
JNPS = 0 
DO 80 JJ = l.JOBS 

IF (OPTIMQJ) .GT. CZERO) THEN 
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JNF = JNF+1 
JVIO(JNF) = J J 
VVIO(JNF) = OPTIM(JJ) 
IF (OPTIMOJ) .GT. VMAX) THEN 

JMAX = JJ 
VMAX = OPTIM(JJ) 

END IF 
ELSE 

JNP = JNP+1 
JPASS(JNP) = JJ 

IF (JFRD(JJ) . E q . 1) THEN 
JNPW = JNPW+1 
JPASSW(JNPW) = J J 

ELSE 
JNPS = JNPS+1 
JPASSS(JNPS) = J J 

END IF 
END IF 

80 CONTINUE 
IF (JNF .GT. 0) THEN 

WRITE(6,610) (JVIO(J),VVIO(J),J=l ,JNF) 
WRITE(6,615) JNF,VMAX,JMAX 

END IF 
WRITE(6,620) JOBS,JNP,JNF 
IF (JNP .GT. 0) THEN 

IF (JNPS .EQ. JOBS) THEN 
WRITE(6,625) 

ELSE 
WRITE(6,630) 
IF (JNPW .GT. 0) 

1 WRITE(6,632) JNPW,(JPASSW(J),J=1,JNPW) 
IF (JNPS .GT. 0) 

1 WRITE(6,634) JNPS,(JPASSS(J),J=1,JNPS) 
END IF 

END IF 
IF (JNF .GT. 0) THEN 

WRITE(6,640) 
ELSE 

WRITE(6,650) 
END IF 

600 FORMAT('1','SUMMARY FOR DATAFILE: ' / / ) 
610 FORMAT(' ',5X,'VIOLATIONS ARE AT OBSERVATIONS:'/ 

1 (' ' 15X ' 1 = ' 1 4 ' DELTA*=' F10.6)) 
615 FORMAT('0',10X,'TOTAL NUMBER OF VIOLATIONS FOR TEST IS ' , 1 4 / 

1 ' ',10X,'MAXIMUM DELTA*=',F10.6, ' AT OBSERVATION 1 = ' , 
2 1 4 , ' . ' / / ) 

620 FORMAT(' \ 5 X , ' 0 U T OF ' , 1 4 , ' OBSERVATIONS, ' , 1 4 , 
1 ' PASS AND ' , 1 4 , ' FAIL THE TEST. ' ) 

625 FORMAT(' ' , 1 0 X , ' A L L OBSERVATIONS ARE ' , 
1 'TECHNICALLY E-EFFICIENT.') 

630 FORMAT(' ' . l O X . ' T H E OBSERVATIONS CONSISTENT WITH T H E ' , 
1 ' HYPOTHESIS ARE:') 

632 FORMAT(' ' , 1 5 X , ' ( ' , 1 4 , ' ) WEAKLY TECHNICALLY E-EFFICIENT', 
1 ' OBSERVATIONS:'/(' ' , 2 0 X , ' 1 = ' , 1 4 ) ) 

634 FORMAT(' ' , 1 5 X , ' ( ' , 1 4 , ' ) TECHNICALLY E-EFFICIENT', 
1 ' OBSERVATIONS:'/(' ' , 2 0 X , ' 1 = ' , 1 4 ) ) 

640 FORMATCO',5X,'CONCLUSION: OVERALL, THE DATA IS NOT CONSISTENT'/ 
1 ' ' , 5 X , ' WITH THE HYPOTHESIS.') 

650 FORMATCO' ,5X, 'CONCLUSION: OVERALL, THE DATA IS CONSISTENT'/ 
1 ' ' , 5 X , ' WITH THE HYPOTHESIS.') 

RETURN 
200 FORMAT(/,' ',5X,'OPTIMUM=',G20.12/) 
300 FORMATCO' ,5X, 'PRIMAL SOLUTION:'/ 



Appendix C. Computer Programs for Implementing the Nonparametric 

1 ' ',71,'VARIABLE',8X,'VALUE'/ 
2 (' ' ,8X,I5,7X,G20.12)) 

500 FORMAT (' 2' SUMMARY FOR OBSERVATION I = ' , I 4 , ' : ' / / 
1 ' ' ,5X, 'DELTA*=' ,F10 .6 / 
2 ' ' ,5X,'POSITIVE LAMBDA''S: ' , I4 ,9 (1X, I4 ) / 
3 (' ' 5X ' ' 1 4 9(1X 14))) 

501 FORMAT{'2','SUMMARY FOR OBSERVATION f='',14,' : ' / / 
1 ' ' ,5X, 'DELTA*=' ,F10.6 / 
2 ' ' ,5X,'POSITIVE LAMBDA''S: 0') 

510 FORMATC'0','GOODS',2X,'EFFICIENCY\4X,'WEAKLY E F F . ' , 5 X , 
. 1 'STRONGLY E F F . ' , 5 X , 

2 'VECTOR Z(I) ' ,7X, 'DIFFERENCE',4X, 
3 'PROPORTIONAL'/ 
4 ' ' , I X , ' N O . \ 2 X , ' D I R . VECTOR',5X,'VECTOR Z * ' , 
5 7X,'VECTOR Z * * ' , 
6 26X, 'Z**-Z(I ) ' , 6X, 'DIFFERENCE' / 
7 ' ' , 8 6 X , ' ( Z * * - Z ( I ) ) / Z ( I ) ' / / ) 

520 FORMATC ' ,I4 ,7X,I2,4X,4G17.5,4X,F8.5) 
521 FORMATC ' ,I4,7X,I2,4X,4G17.5,4X,A8) 
525 FORMATCO',14,49X.G15.5) 
888 FORMATCO',5X,'WARNING: THERE IS AT LEAST ONE NEGATIVE'/ 

1 ' \ 5 X , ' VALUE IN THE OPTIMAL BASIS FOR T H E ' / 
2 ' \ 5 X , ' LP PROBLEM AT OBSERVATION 1=',14, ' . ' / 
3 ' \ 5 X , ' DATA SCALING PROBLEMS MAY E X I S T . ' / ) 

900 FORMATCO',5X,'PROBLEM ENCOUNTERED IN LP SUBROUTINE'/ 
1 ' ' , 5 X , ' A T OBSERVATION 1=' ,14 , ' . ' / ) 

END 

Listing of subroutine TESTPQC 
SUBROUTINE TSTPqC(Z,P,PI,JGDS,JGDS2,JOBS,J0BS2,JG0B2, 

1 TABLO,JVIN.JVOUT.OPTIM,TOL, 
2 EPS.ZP.ZDIF.ZPDIF.X.JPLAM, 
3 JVIO,VVIO,JPASS,JGEZ,JSET,JNUM,JINS,JNOTS) * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

C 
C TEST 4. CONSTRAINED ALLOCATIVE EFFICIENCY TEST 
C PRICE AND QUANTITY DATA 
C CONVEX TECHNOLOGY 
C 
C TEST 5. CONSTRAINED ALLOCATIVE EFFICIENCY TEST 
C PRICE AND QUANTITY DATA 
C CONSTANT RETURNS TO SCALE TECHNOLOGY 
C 
C TEST 6. CONSTRAINED ALLOCATIVE EFFICIENCY TEST 
C PRICE AND QUANTITY DATA 
C QUASICONCAVE TECHNOLOGY 
C 
C JTECH = 0 ASSUMES NO TECHNICAL CHANGE 
C = 1 ASSUMES NO TECHNOLOGICAL REGRESS 
C 
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

IMPLICIT REAL*8(B-I,K-Z),CHARACTER*12(A) 
DIMENSION Z(JGDS,0:JOBS),P(JGDS,0:JOBS),PI(0:JOBS,0:JOBS), 

1 TABLO(JGDS2,J0BS2),JVIN(JGDS2),JV0UT(J0BS2), 
2 OPTIM(JOBS).EPS(JOBS).ZP(JGDS).ZDIF(JGDS).ZPDIF(JGDS), 
3 X(0:JGOB2).JPLAM(JOBS), 
4 JVIO(JOBS).VVIO(JOBS),JPASS(JOBS),JGEZ(JOBS), 
5 JSET(JGDS).JNUM(JGDS),JINS(JGDS),JNOTS(JGDS) 

COMMON /CONST/ CZERO,JDET,JTEST,JFNC,JNORM,JTECH,JPOSP.JPMU 
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C 
C 
C 

DATA AVMAX/' UNBOUNDED'/ 

PRINT TEST HEADING 

DO 1 JN = l.JGDS 
Z(JN,0) = O.DO 
P(JN,0) = O.DO 

CONTINUE 
IF (JTEST .EQ. 6) THEN 

WRITE(6,420) JFNC 
ELSE IF (JTEST . E q . 4) THEN 

WRITE(6,400) 
ELSE 

WRITE(6,410) 
END IF 
IF (JTEST .EQ. 4) THEN 

IF ((JPOSP . E q . 0) .AND. (JPMU . E q . 0)) THEN 
WRITE(6,430) 

ELSE 
WRITE(6,435) 

END IF 
END IF 
IF (JTECH . E q . 0) THEN 

WRITE(6,422) 
ELSE 

WRITE(6,424) 
END IF 

400 FORMAT('1 
1 
2 

410 FORMAT('1 
1 ' 
2 
3 ' 

420 FORMAT('1 
1 
2 
3 '0 
4 

422 FORMAT(' 
424 FORMAT(' 
430 FORMAT(' 
435 FORMAT(' 

1 
C 
C 
C 
C** 

c** 
c 
c 
c 

c 
c 
c 

TEST 4. CONSTRAINED ALLOCATIVE EFFICIENCY TEST' / 
PRICE AND qUANTITY DATA'/ 
CONVEX TECHNOLOGY'//) 

TEST 5. CONSTRAINED ALLOCATIVE EFFICIENCY T E S T ' / 
PRICE AND qUANTITY DATA'/ 
CONVEX CONE TECHNOLOGY'/ 
(CONSTANT RETURNS TO S C A L E ) ' / / ) 

TEST 6. CONSTRAINED ALLOCATIVE EFFICIENCY TEST' / 
PRICE AND QUANTITY DATA'/ 
qUASICONCAVE TECHNOLOGY'/ 

NOTE: TEST PERFORMED WITH RESPECT T O ' / 
TECHNOLOGY OF GOOD N=',14//) 

, 9 X , ' ( TEST ASSUMES NO TECHNICAL CHANGE ) ' / / ) 
, 9 X , ' ( TEST ASSUMES NO TECHNOLOGICAL REGRESS ) ' / / ) 
, 9 X , ' ( OPTIMAL PROFITS UNRESTRICTED IN SIGN ) ' / / ) 
, 9 X , ' ( OPTIMAL PROFITS RESTRICTED ' , 

'TO BE NONNEGATIVE ) ' / / ) 

SOLVE LP FOR JI=1,J0BS 

DO 5 JI = l.JOBS 

INITIALIZE VALUES FOR LP SUBROUTINE 

JMAXIM = 1 
JFOBJ = 0 
JFRHS = 0 

ZERO TABLEAU 

DO 

15 
10 

10 J1=1,JGDS2 
DO 15 J2=1,J0BS2 

TABL0(J1,J2) = 
CONTINUE 

CONTINUE 

O.DO 
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C 
C SET UP TABLEAU 
C 

JU = JOBS 
IF (JTECH . E q . 1) JU=JI 
JL = 1 
JADJ = 0 

C 
C COUNT GOODS IN S AND GOODS NOT IN S 
C 

DO 18 J = 1,JGDS 
IF ((JTEST . E q . 6) .AND. (J . E q . JFNC)) GO TO 18 
IF (JSET(J) . E q . 1) THEN 

JI = Jl+1 
JINS(Jl) = J 

ELSE 
J2 = J2+1 
JN0TSQ2) = J 

END IF 
18 CONTINUE 

JCINS = JI 
JCNOTS = J2 

IF (JCINS . E q . 0) THEN 
WRITE(6,810) 
RETURN 

END IF 
810 FORMAT(' ','CONSTRAINED OPTIMIZATION TEST CANNOT'/ 

1 ' ' , ' B E PERFORMED; THE SET S CONTAINING'/ 
2 ' ' , ' T H E GOODS WITH RESPECT TO WHICH T H E ' / 
3 ' ','PRODUCER CAN OPTIMIZE HAS NO ELEMENTS.') 

C 
C TO CHECK IF THERE IS AT LEAST ONE GOOD 
C NOT IN S (TEST 5 (CRS) ONLY) 

IF ((JTEST . E q . 5) .AND. (JCNOTS . E q . 0)) THEN 
WRITE(6,800) 
RETURN 

END IF 
800 FORMATCl'.'CONSTRAINED OPTIMIZATION TEST FOR A CRS'/ 

1 ' ','TECHNOLOGY CANNOT BE PERFORMED; THERE ' / 
2 ' ' , ' A R E NO CONSTRAINTS IN THE LP PROBLEM.') 

C 
C SET UP CONSTRAINTS AND RHS (TEST 6) 

IF (JTEST .EQ. 6) THEN 
JEqUAL = 1 
J = 0 
DO 30 JJ = 1,JU 

IF (Z(JFNC.JJ) .GE. Z(JFNC.JI)) THEN 
J = J+l 
JGEZ(J) = JJ 

END IF 
30 CONTINUE 

JCGEZ = J 
JNVARS = JCGEZ 
JV1 = JNVARS+1 
JR = 1 
DO 32 JI = 1,JCNOTS 

JR = JR+1 
DO 34 J2 = 1,JCGEZ 

TABL0(JR,J2) = -Z(JN0TS(J1),JGEZ(J2)) 
34 CONTINUE 

TABLO(JR,JV1) = -Z(JN0TS(J1),JI) 
32 CONTINUE 
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JR = JR+1 
DO 36 J2 = l . J V l 

TABLO(JR.J2) = l.DO 
36 CONTINUE 

JCONST = JR-1 
C 
C SET UP OBJECTIVE FUNCTION (TEST 6) 
C 

DO 38 J2 = 1,JCGEZ 
DO 39 JI = l .JCINS 

TABLO(1.J2) = TABLO(1.J2) + 
1 (P(JINS(J1),JI)*Z(JINS(J1),JGEZ(J2))) 

39 CONTINUE 
38 CONTINUE 

ELSE 
C 
C SET UP CONSTRAINTS AND RHS (TEST 4,5) 
C 

CC* 

CC* 

JNVARS = JU 
JV1 = JNVARS+1 
JCONST = JCNOTS +1 
JEQUAL = 1 

IF ((JTEST . E q . 4) .AND. (JPMU . E q . 1)) JEQUAL = 0 

IF (JTEST . E q . 5) THEN 
JCONST = JCNOTS 
JEQUAL = 0 

END IF 
C 

IF ((JTEST . E q . 4) .AND. (JPOSP . E q . 1)) THEN 
JNVARS = JU+1 
JV1 = JNVARS+1 
JL = 0 
JADJ = 1 

END IF 
C 

JR = 1 
DO 20 JI = 1,JCNOTS 

JR = JR+1 
DO 22 J2 = J L . J U 

J2P = J2 
IF (JADJ . E q . 1) J2P = J2+1 
TABL0(JR,J2P) = -Z(JN0TS(J1),J2) 

22 CONTINUE 
TABLO(JR.JVl) = -Z(JN0TS(J1),JI) 

20 CONTINUE 
IF (JTEST .EQ. 4) THEN 

JR = JR+1 
DO 24 J2 = l . J V l 

TABLO(JR.J2) = l.DO 
24 CONTINUE 

END IF 
C 
C SET UP OBJECTIVE FUNCTION (TESTS 4,5) 
C 

DO 26 J2 = J L . J U 
J2P = J2 
IF (JADJ . E q . 1) J2P = J2+1 
DO 29 JI = l .JCINS 

TABL0(1,J2P) = TABL0(1,J2P) + (P(JINS(J1),JI)*Z(JINS(J1),J2)) 
29 CONTINUE 
26 CONTINUE 

END IF 
C 
C SUM OF LP VARIABLES 
C 

JLPV = JNVARS + JCONST 
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C 
C PRINT OUT INPUT TO LP SUBROUTINE 
C 

IF (JDET .EQ. 0) GO TO 1234 
WRITE(6,100)JI,JCONST,JNVARS,JEQUAL.TOL 

100 FORMAT('1','OBSERVATION 1=',14/ 
1 ' ',5X,'NUMBER OF CONSTRAINTS=',14/ 
2 ' ',5X,'NUMBER OF VARIABLES 3 ' ,14/ 
3 ' ',5X,'NUMBER OF EQUALITY CONSTRAINTS 3',14/ 
4 ' ' , 5 X , ' T O L E R A N C E 3 ' , F 1 0 . 6 / / ) 

WRITE(6,105) 
105 FORMAT(' ' , 'TABLEAU IS: ' ) 

CALL DPRMAT(TABLO,JGDS2,J0BS2,JR,JV1,1,1,JGDS2,1) 
1234 CONTINUE 

C 
C CHECK IF JEQUAL < JNVARS 
C 

JNOLP = 0 
IF (JNVARS .EQ. JEQUAL) THEN 

JNOLP = 1 
X( l ) = l.DO 
GO TO 82 

END IF 
C 
C CALL LIPSUB SUBROUTINE 
C 

CALL LIPSUB(TABLO,JGDS2,JCONST,JNVARS,JEQUAL,JMAXIM, 
1 JFOBJ,JFRHS,TOL,JVIN,JVOUT,BBOBJ,UBOBJ, 
2 BBRHS,UBRHS,*999) 

JNP1 = JNVARS+1 
OPTIM(JI) = TABL0(1,JNP1) 
IF (JMAXIM .NE. 1) OPTIM(JI) = -OPTIM(JI) 

C 
IF (JDET . E q . 0) GO TO 2345 

WRITE(6,200)OPTIM(JI) 
WRITE(6,300) (JVIN(J),TABLO(J,JNP1),J=2,JCONST+1) 

2345 CONTINUE 
C 
C CHECK FOR NEGATIVE VALUES IN THE OPTIMAL BASIS 
C 

JWARN = 0 
DO 60 J = 2,JCONST+1 

IF (TABLO(J,JNP1) . L T . -CZERO) JWARN=1 
60 CONTINUE 

IF (JWARN . E q . 1) WRITE(6,888)JI 
C 
C CALCULATE ACTUAL PARTIAL PROFIT, VALUE OF NUMERAIRE 
C GOODS, LOSS MEASURE 
C 

82 PI(JI.JI) = O.DO 
VNUM = O.DO 
DO 40 Jl=l ,JCINS 

P I ( J I . J I ) = PI (JI .J I ) + (P(JINS(J1),JI)*Z(JINS(J1),JI)) 
40 CONTINUE 

DO 42 JI = l.JGDS 
IF (JNUM(Jl) . E q . 1) 

1 VNUM = VNUM + (P(J1,JI)*ABS(Z(J1,JI))) 
42 CONTINUE 

C 
C CHECK FOR ZERO VALUES OF VNUM 
C 

IF (ABS(VNUM) . L E . CZERO) THEN 
EPS(JI) = 999.999999D0 
WRITE(6,700) JI 
GO TO 5 
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END IF 
700 FORMAT('2'WARNING: FOR OBSERVATION I = ' , I 4 , \ THE VALUE'/ 

1 ' ' , ' OF NUMERAIRE GOODS IS ZERO; HENCE, ' / 
2 ' ' , ' EPSILON(S) IS UNDEFINED.') 

C CALCULATE LOSS MEASURE EPS(JI) 
C 

IF (JNOLP . E q . 1) THEN 
OPTIM(JI) = PI (JI .J I ) 
EPS(JI) = O.DO 
GO TO 84 

END IF 
EPS(JI) = (OPTIM(JI) - P I ( J I . J I ) ) / VNUM 

C 
C PRINT SUMMARY FOR OBSERVATION I 
C 
C COUNT POSITIVE LAMBDA'S 
C 

DO 70 J = l . JLPV 
X(J) = O.DO 

70 CONTINUE 
DO 72 J = 2,JCONST+1 

X(JVIN(J)) = TABLO(J.JNPl) 
72 CONTINUE 

C 
IF (JADJ . E q . 1) THEN 

DO 71 J = l .JLPV 
X ( J - l ) = X(J) 

71 CONTINUE 
END IF 

C 
84 JPL = 0 

JPLAM(l) = 0 
IF (JTEST . E q . 6) JU = JCGEZ 
DO 74 J = J L . J U 

IF (X(J) .GT. CZERO) THEN 
JPL = JPL+1 
JPLAM(JPL) = J 

END IF 
74 CONTINUE 

C 
C CALCULATE EFFICIENT VECTOR ZP 
C 

IF ( JTEST . E q . 6) THEN 
DO 94 JG = l.JGDS 

IF (JG .EQ. JFNC) THEN 
ZP(JG) = Z(JG.JI) 

ELSE 
ZP(JG) = O.DO 
DO 95 JJ = 1,JCGEZ 

ZP(JG) = ZP(JG) + (X(JJ)*Z(JG,JGEZ(JJ))) 
95 CONTINUE 

END IF 
ZDIF(JG) = ZP(JG) - Z(JG.JI) 
ZPDIF(JG) = ZDIF(JG)/Z(JG.JI) 

94 CONTINUE 
ELSE 
DO 76 JG = l.JGDS 

ZP(JG) = O.DO 
DO 78 JJ = J L . J U 

ZP(JG) = ZP(JG) + (X(JJ)*Z(JG,JJ)) 
78 CONTINUE 

ZDIF(JG) = ZP(JG) - Z(JG.JI) 
ZPDIF(JG) = ZDIF(JG)/Z(JG,JI) 

76 CONTINUE 
END IF 
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C 
C PRINT RESULTS FOR OBSERVATION I 
C 

I F (JTEST .Eq . 6) THEN 
WRITE(6,500) J I , E P S ( J I ) , ( J G E Z ( J P L A M ( J ) ) , J = 1 , J P L ) 

ELSE 
WRITE(6,500) J I . E P S ( J I ) , ( J P L A M ( J ) , J = 1 , J P L ) 

END I F 
WRITE(6,510) 
WRITE(6,505) JCINS 
W R I T E ( 6 , 5 2 0 ) ( J I N S ( J ) , J N U M ( J I N S ( J ) ) , P ( J I N S ( J ) , J I ) , Z P ( J I N S ( J ) ) , 

1 Z ( J I N S ( J ) , J I ) , Z D I F ( J I N S ( J ) ) , 
2 Z P D I F ( J I N S ( J ) ) , J = 1 , J C I N S ) 

I F (JCNOTS .GT. 0) THEN 
WRITE(6,515) JCNOTS 
WRITE(6,525) ( J N O T S ( J ) , Z P ( J N O T S ( J ) ) , Z ( J N O T S ( J ) , J I ) , 

1 ZDIF(JNOTS(J)) ,ZPDIF(JNOTS(J)) ,J=1,JCNOTS) 
END I F 
I F (JTEST .Eq . 6) WRITE(6,517) JFNC,Z(JFNC,JI ) 
WRITE(6,530) V N U M , P I ( J I , J I ) , O P T I M ( J I ) 
I F (EPS(J I ) .GT. CZERO) THEN 

WRITE(6,550) J I 
ELSE 

WRITE(6,555) J I 
END I F 
GO TO 5 

999 WRITE(6,900) J I 
EPS(J I ) = 999.999999D0 

5 CONTINUE 
C 
C PRINT SUMMARY FOR DATAFILE 
C 

WRITE(6,600) 
JNF = 0 
JNP = 0 
JMAX = 0 
VMAX = O.DO 
DO 80 JJ = l.JOBS 

I F (EPS(JJ) .GT. CZERO) THEN 
JNF = JNF+1 
JVIO(JNF) = JJ 
VVIO(JNF) = EPS(JJ) 
I F (EPS(JJ) .GT. VMAX) THEN 

JMAX = JJ 
VMAX = EPS(JJ) 

END I F 
ELSE 

JNP = JNP+1 
JPASS(JNP) = JJ 

END I F 
80 CONTINUE 

I F (JNF .GT. 0) THEN 
WRITE(6,610) 
JBOU = 0 
DO 88 J=1,JNF 

I F (VVIO(J) .GT. 999.DO) THEN 
JBOU = 1 
WRITE(6,612) JVIO(J).AVMAX 

ELSE 
WRITE(6,614) J V I O ( J ) , V V I O ( J ) 

END I F 
88 CONTINUE 

I F (JBOU .Eq . 1) THEN 
WRITE(6,617) JNF,JMAX 

ELSE 
WRITE(6,615) JNF,VMAX,JMAX 
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END IF END IF WRITE(6,620) JOBS,JNP,JNF 
IF ((JNP .GT. 0) .AND. (JNP .LT. JOBS)) 
1 WRITE(6,630) (JPASS(J),J=l,JNP) 
IF (JNF .GT. 0) THEN 

WRITE(6,640) 
ELSE WRITE(6,650) END IF RETURN 

200 FORMAT(/, 
300 FORMATCO 

1 
2 0 

500 FORMAT('2 
1 
2 
3 (' 

505 FORMAT(' 
515 FORMATCO 
517 FORMATCO 
510 FORMATCO 

1 
2 
3 
4 
5 
6 
7 ' 
8 

520 FORMAT(' 
525 FORMAT(' 

' ',5X,'0PTIMUM='.G20.12/) 
',5X,'PRIMAL SOLUTION:'/ 
',7X,'VARIABLE',8X,'VALUE'/ 
',8X,I5,7X,G20.12)) 
','SUMMARY FOR OBSERVATION I=',I4,':'// 
',5X,'EPSIL0N(S)=',F10.6/ 
',5X,'POSITIVE LAMBDA''S: ',I4,9(1X,I4)/ 
',5X,' ',I4,9(1X,I4))) 
','(',14,') GOODS IN S:') 
','(',14,') GOODS NOT IN S:') 
',I4,47X,G17.5) 
','GOODS',3X,'NUMERAIRE',4X,'PRICE VECTOR',5X, 
'ALLOC. EFF.',6X, 
'VECTOR Z(I)',7X,'DIFFERENCE',4X, 
'PROPORTIONAL'/ 

',1X,'N0.',1X,'(=>EFFICIENCY',7X,'P(I)', 
10X,'VECTOR Z*', 
27X,'Z*-Z(I)',6X,'DIFFERENCE'/ 
',5X,' DIR. VECTOR)',68X, 

'(Z*-Z(I))/Z(I)>//) 
',I4,7X,I2,4X,4G17.5,4X,F8.5) 
',I4,30X,3G17.5,4X,F8.5) 

530 FORMATCO' ,5X, 'VALUE OF NUMERAIRE G00DS='.G17.7/ 
1 ' ',5X,'PARTIAL PROFIT AT CURRENT PRODUCTION PLAN=',G17.7/ 
2 ' ',5X,'PARTIAL PROFIT AT ALLOCATIVELY EFFICIENT ', 
3 'PRODUCTION PLAN=',G17.7) 

550 FORMATC-','HENCE, OBSERVATION I=',I4, 
1 ' IS ALLOCATIVELY INEFFICIENT.') 

555 FORMATC-','HENCE, OBSERVATION I=',I4, 
1 ' IS (CONSTRAINED) ALLOCATIVELY EFFICIENT.') 

600 FORMATCl' , 'SUMMARY FOR DATAFILE:'//) 
610 FORMAT(' ',5X, 
612 FORMAT(' ',15X 
614 FORMAT(' ',15X 
615 FORMATCO',10X 

1 ' ',10X 
2 

617 FORMATCO' ,10X 
1 ' ',10X 
2 

620 FORMAT(' ',5X, 
1 

630 FORMAT (' \10X 
1 
2 (' ' 15X '1=' 14)) 

640 FORMAT('0',5X,'CONCLUSION: 
1 ' ' 5X 

650 FORMATCO' *5x) 'CONCLUSION: 
1 ' ',5X, 

VIOLATIONS ARE AT OBSERVATIONS:') 
'I=',I4,\ EPSILON(S)=',A10) 
'1=' 14 ' EPSILON(S)=' F10.6) 
'TOTAL NUMBER OF VIOLATIONS FOR TEST IS ',14/ 
'MAXIMUM EPSILON(S)=',F10.6,' AT OBSERVATION 1=' 
14,'.'//) 
'TOTAL NUMBER OF VIOLATIONS FOR TEST IS ',14/ 
'MAXIMUM EPSILON(S)= UNBOUNDED AT OBSERVATION 1= 
14,'.'//) 
OUT OF ',14,' OBSERVATIONS, ',14, 
PASS AND ',14,' FAIL THE TEST.') 
'THE OBSERVATIONS CONSISTENT WITH THE', 
' HYPOTHESIS ARE:'/ 

OVERALL, THE DATA IS NOT CONSISTENT'/ 
WITH THE HYPOTHESIS.') 
OVERALL, THE DATA IS CONSISTENT'/ 
WITH THE HYPOTHESIS.') 
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888 FORMAT( 
1 
2 
3 

900 FORMAT( 
1 
2 
3 
4 

END 

0',5X,'WARNING: THERE IS AT LEAST ONE NEGATIVE'/ 
\ 5 X , ' VALUE IN THE OPTIMAL BASIS FOR T H E ' / 
\ 5 X , ' LP PROBLEM AT OBSERVATION 1=',14, ' . ' / 
' , 5 X , ' DATA SCALING PROBLEMS MAY E X I S T . ' / ) 

2','SUMMARY FOR OBSERVATION I = ' , I 4 , ' : ' / / 
',5X,'PROBLEM ENCOUNTERED IN LP SUBROUTINE.'/ 
' ,5X, 'THERE IS NO FINITE SOLUTION TO THE L P ' / 
',5X,'PROBLEM; HENCE, THE OBJECTIVE FUNCTION I S ' / 
',5X,'UNBOUNDED. EPSILON(S) IS UNBOUNDED.') 

Listing of subroutine TESTPQ 
SUBROUTINE TESTPQ(Z,P,PI,JDIR,JGDS,JOBS,EPS,ZDIF,ZPDIF, 

1 JVIO.VVIO.JPASS,ZN,JEFF,JBEST) *********************************************** 
C 
C TEST 7. UNCONSTRAINED ALLOCATIVE EFFICIENCY TEST 
C PRICE AND QUANTITY DATA 
C CONVEX TECHNOLOGY 
C 
C TEST 8. UNCONSTRAINED ALLOCATIVE EFFICIENCY TEST 
C PRICE AND QUANTITY DATA 
C CONSTANT RETURNS TO SCALE TECHNOLOGY 
C 
C TEST 9. UNCONSTRAINED ALLOCATIVE EFFICIENCY TEST 
C PRICE AND QUANTITY DATA 
C QUASICONCAVE TECHNOLOGY 
C 
C JTECH = 0 ASSUMES NO TECHNICAL CHANGE 
C = 1 ASSUMES NO TECHNOLOGICAL REGRESS 
C 
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

IMPLICIT REAL*8(B-I,K-Z),CHARACTER*12(A) 
DIMENSION Z(JGDS,0:JOBS),P(JGDS,0:JOBS).JDIR(JGDS), 

1 PI(0:JOBS,0:JOBS), 
2 EPS(JOBS).ZDIF(JGDS).ZPDIF(JGDS), 
3 JVIO(JOBS).VVIO(JOBS),JPASS(JOBS),ZN(JGDS,JOBS), 
4 JEFF(JOBS).JBEST(JOBS) 

COMMON /CONST/ CZERO,JTEST,JFNC,JTECH,JNORM,JPOSP,JPMU 
DATA AVMAX/' UNBOUNDED'/ 

C 
C PRINT TEST HEADING 
C 

DO 1 JN = l.JGDS 
Z(JN,0) = O.DO 
P(JN.O) = O.DO 

1 CONTINUE 
IF (JTEST . E q . 9) THEN 

WRITE(6,420) JFNC 
ELSE IF (JTEST . E q . 7) THEN 

WRITE(6,400) 
ELSE 

WRITE(6,410) JNORM 
END IF 
IF (JTEST .EQ. 7) THEN 

IF (JPOSP . E q . 0) THEN 
WRITE(6,430) 

ELSE 
WRITE(6,435) 

END IF 
END IF 



Appendix C. Computer Programs for Implementing the Nonparametric 252 

IF (JTECH 
WRITE(6 

ELSE 
WRITE(6 

END IF 
400 FORMAT('1 

1 
2 

410 FORMAT('1 
1 
2 
3 
4 '0 
5 

420 FORMAT('1 
1 '• 
2 
3 '0 
4 

422 FORMAT(' 
424 FORMAT(' 
430 FORMAT(' 
435 FORMAT(' 

1 

Eq. 0) THEN 
422) 

424) 

TEST 7. UNCONSTRAINED ALLOCATIVE EFFICIENCY T E S T ' / 
PRICE AND QUANTITY DATA'/ 
CONVEX TECHNOLOGY'//) 

TEST 8. UNCONSTRAINED ALLOCATIVE EFFICIENCY T E S T ' / 
PRICE AND QUANTITY DATA'/ 
CONVEX CONE TECHNOLOGY'/ 
(CONSTANT RETURNS TO SCALE)' / 

NOTE: TEST PERFORMED WITH NORMALIZING'/ 
GOOD N=',14//) 

TEST 9. UNCONSTRAINED ALLOCATIVE EFFICIENCY T E S T ' / 
PRICE AND QUANTITY DATA'/ 
QUASICONCAVE TECHNOLOGY'/ 

NOTE: TEST PERFORMED WITH RESPECT T O ' / 
TECHNOLOGY OF GOOD N=',14//) 

9 X , ' ( TEST ASSUMES NO TECHNICAL CHANGE ) ' / / ) 
9 X , ' ( TEST ASSUMES NO TECHNOLOGICAL REGRESS ) ' / / ) 
9 X , ' ( OPTIMAL PROFITS UNRESTRICTED IN SIGN ) ' / / ) 
9 X , ' ( OPTIMAL PROFITS RESTRICTED ' , 

'TO BE NONNEGATIVE ) ' / / ) 
l.JGDS 

32 

DO 30 JN 
ZN(JN.O) = O.DO 
DO 32 J J = l.JOBS 

IF (JTEST . E q . 
ZN(JN.JJ) • 

ELSE 
ZN(JN.JJ) = Z(JN,JJ) 

END IF 
CONTINUE 

8) THEN 
Z(JN,JJ)/(ABS(Z(JNORM,JJ))) 

C 
C 
C 
CC* 

30 CONTINUE 

CALCULATE PI ( I ,J ) 

) ') 

PROFIT AT PRICES I , qUANTITIES J 

W R I T E ( 6 , ' ( " 1 " ' 
DO 10 JI=1,J0BS 

DO 12 JJ=0,JOBS 
P I ( J I . J J ) = O.DO 
DO 14 JN=1,JGDS 

IF ((JTEST . E q . 8) .AND. (JN . E q . JNORM)) GO TO 14 
IF ((JTEST . E q . 9) .AND. (JN . E q . JFNC)) GO TO 14 
P I ( J I . J J ) = P I ( J I . J J ) + (P(JN,JI)*ZN(JN,JJ)) 

14 CONTINUE 
CC* PRINT * , ' I ( P R I C E S ) = ' , J I , ' J ( q U A N T ) = ' , J J , ' P I ( I , J ) = ' , P I ( J I , J J ) 

12 CONTINUE ' 
10 CONTINUE 

C 
C CHECK INEqUALITY FOR JI=1,J0BS 
C 
C 
C 
C 

C 
C 
C 

DO 5 JI=1,J0BS 

INITIALIZE VALUES FOR OBSERVATION JI 

EPS(JI) = O.DO 
JMAX = JI 
PIMAX = PI (JI ,J I ) 

CHECK INEQUALITIES 

JL = 1 
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IF ((JTEST . E q . 7) .AND. (JPOSP . E q . D ) JL=0 
IF ((JTEST . E q . 8) .AND. (Z(JNORM.JI) . L T . O.DO)) JL=0 
JU = JOBS' 
IF (JTECH . E q . 1) JU = JI 
DO 20 JJ= J L . J U 

IF (JTEST . E q . 9) THEN 
IF (Z(JFNC.JJ) . L T . Z(JFNC.JI)) GO TO 20 

END IF 
IF (PI (JI .JJ) .GT. PIMAX) THEN 

JMAX = JJ 
PIMAX = P I ( J I . J J ) 

END IF 
20 CONTINUE 

C 
C CALCULATE VALUE OF NUMERAIRE GOODS 
C 

VNUM = O.DO 
DO 22 JN= l.JGDS 

VNUM = VNUM + (P(JN,JI)*JDIR(JN)*ZN(JN,JI)) 
22 CONTINUE 

C 
C CHECK FOR ZERO VALUES OF VNUM 
C 

IF (ABS(VNUM) . L E . CZERO) THEN 
EPS(JI) = 999.999999 
JEFF(JI) = 9999 
WRITE(6,700) JI 
GO TO 5 

END IF 
700 FORMAT('2'WARNING: FOR OBSERVATION I= ' , I4 , ' , THE VALUE'/ 

1 ' ' , ' OF NUMERAIRE GOODS IS ZERO; HENCE, ' / 
2 ' ' , ' EPSILON* IS UNDEFINED.') 

C 
C CALCULATE LOSS MEASURE EPS(JI) 

JEFF(JI) = JMAX 
EPS(JI) = (PI(JI,JMAX)-PI(JI > JI))/VNUM 
DO 24 JN=1,JGDS 

ZDIF(JN) = Z(JN.JMAX) - Z(JN.JI) 
ZPDIF(JN) = ZDIF(JN)/Z(JN,JI) 

24 CONTINUE 
JUNB = 0 
IF ((JTEST . E q . 8) .AND. (Z(JNORM,JI) .GT. O.DO) 

1 .AND. (PI(JI,JMAX) .GT. CZERO)) THEN 
JUNB = 1 
EPS(JI) = 999.999999D0 

END IF 
C 
C PRINT SUMMARY FOR OBSERVATION I 
C 

50 IF ((JTEST . E q . 8) .AND. (JUNB . E q . 1)) THEN 
WRITE(6,501) JI.AVMAX.JMAX 

ELSE 
WRITE(6,500) JI,EPS(JI),JMAX 

END IF 
WRITE(6,510) JMAX 
IF (JTEST . E q . 8) THEN 

DO 60 J = l.JGDS 
IF (J . E q . JNORM) GO TO 60 
WRITE(6,520) J , J D I R ( J ) , P ( J , J I ) , Z ( J , J M A X ) , Z ( J , J I ) , 

1 ZDIF(J),ZPDIF(J) 
60 CONTINUE 

WRITE(6,522) JNORM,Z(JNORM,JMAX),Z(JNORM,JI), 
1 ZDIF(JNORM).ZPDIF(JNORM) 
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WRITE(6,532) VNUM,PI(JI,JI),PI(JI,JMAX) 
ELSE IF (JTEST . E q . 9) THEN 

DO 65 J = l.JGDS 
IF (J . E q . JFNC) GO TO 65 
WRITE(6,520) J , J D I R ( J ) , P ( J , J I ) . Z ( J . J M A X ) , Z ( J , J I ) , 

1 ZDIF(J),ZPDIF(J) 
65 CONTINUE v , . . . 

WRITE(6,522) JFNC,Z(JFNC,JMAX),Z(JFNC,JI), 
1 ZDIF(JFNC).ZPDIF(JFNC) 

WRITE(6,534) VNUM,PI(JI,JI),PI(JI,JMAX) 
ELSE 

WRITE(6,520) ( J , J D I R ( J ) , P ( J , J I ) , Z ( J , J M A X ) , Z ( J , J I ) , 
1 ZDIF(J),ZPDIF(J),J=1,JGDS) 

WRITE(6,530) VNUM,PI(JI,JI),PI(JI,JMAX) 
END IF , 
IF (EPS(JI) .GT. CZERO) THEN 

WRITE(6,550) JI 
IF ((JTEST . E q . 8) .AND. (JUNB . E q . 1)) WRITE(6,551) 

ELSE 
WRITE(6,555) JI 

END IF 
5 CONTINUE 

C 
C PRINT SUMMARY FOR DATAFILE C 

WRITE(6,600) 
JNF = 0 
JNP = 0 
JMAX = 0 
VMAX = O.DO 
DO 80 J J = l.JOBS 

IF (EPS(JJ) .GT. CZERO) THEN 
JNF = JNF+1 
JVIO(JNF) = JJ 
VVIO(JNF) = EPS(JJ) 
JBEST(JNF) = JEFF(JJ) 
IF (EPS(JJ) .GT. VMAX) THEN 

JMAX = JJ 
VMAX = EPS(JJ) 

END IF 
ELSE 

JNP = JNP+1 
JPASS(JNP) = JJ 

END IF 
80 CONTINUE 

IF (JNF .GT. 0) THEN 
WRITE(6,609) 
JBOU = 0 
DO 81 J = l .JNF 

IF ((JTEST . E q . 8) .AND. (VVIO(J) .GT. 999.DO)) THEN 
JBOU = 1 
WRITE(6,611) JVIO(J).AVMAX 

ELSE 
WRITE(6,610) JVIO(J),VVIO(J),JBEST(J) 

END IF 
81 CONTINUE 

IF (JBOU . E q . 1) THEN 
WRITE(6,616) JNF,AVMAX,JMAX 

ELSE 
WRITE(6,615) JNF,VMAX,JMAX 

END IF 
END IF 
WRITE(6,620) JOBS,JNP,JNF 
IF ((JNP .GT. 0) .AND. (JNP . L T . JOBS)) 

1 WRITE(6,630) (JPASS(J),J=l,JNP) 
IF (JNF .GT. 0) THEN 
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WRITE(6,640) 
ELSE 

WRITE(6,650) 
END IF 
RETURN 

500 FORMAT('2'SUMMARY FOR OBSERVATION I = ' , I 4 , ' : ' / / 
1 ' ' ,5X,'EPSIL0N*=',F10.6/ 
2 ' ',5X,'OBSERVATION RELATIVELY EFFICIENT TO I: J = ' , 1 4 ) 

501 FORMAT('2','SUMMARY FOR OBSERVATION I = ' , I 4 , ' : ' / / 
1 ' ' ,5X,'EPSIL0N*=',A10/ 
2 ' ',5X,'OBSERVATION RELATIVELY EFFICIENT TO I: J=',I4) 

510 FORMATCO','GOODS',2X,'EFFICIENCY',4X,'PRICE VECTOR',5X, 
1 'ALLOC. E F F . ' , 6 X , 
2 'VECTOR Z(I) ' ,7X, 'DIFFERENCE',4X, 
3 'PROPORTIONAL'/ 
4 ' ' , 1 X , ' N O . ' , 2 X , ' D I R . V E C T O R ' , 8 X , ' P ( I ) ' , 
5 10X,'VECTOR Z * ' , 
6 27X, 'Z*-Z(I ) ' , 6X, 'DIFFERENCE' / 
7 ' ' ,5X, ' (=>NUMERAIRE)' ,19X, ' (Z(J) ,J=' , I4 , ' ) ' , 
8 3 6 X , ' ( Z * - Z ( I ) ) / Z ( I ) ' / / ) 

520 FORMAT(' ' , I4 ,7X,I2,4X,4G17.5,4X,F8.5) 
522 FORMATCO',I4,30X,3G17.5,4X,F8.5) 
530 FORMATCO',5X,'VALUE OF NUMERAIRE GOODS=',G17.7/ 

1 ' ' ,5X,'PROFIT AT CURRENT PRODUCTION PLAN=',G17.7/ 
2 ' ' ,5X,'PROFIT AT ALLOCATIVELY EFFICIENT ' , 
3 'PRODUCTION PLAN=',G17.7) 

532 FORMATCO',5X,'VALUE OF (NORMALIZED) NUMERAIRE GOODS=',G17.7/ 
1 ' ',5X,'NORMALIZED PROFIT AT ' , 
2 'CURRENT PRODUCTION PLAN=',G17.7/ 
3 ' ',5X,'NORMALIZED PROFIT AT ALLOCATIVELY EFFICIENT ' , 
4 'PRODUCTION PLAN=',G17.7) 

534 FORMATCO' ,5X, 'VALUE OF NUMERAIRE GOODS='.G17.7/ 
1 ' ',5X,'RESTRICTED PROFIT AT ' , 
2 'CURRENT PRODUCTION PLAN=',G17.7/ 
3 ' ',5X,'RESTRICTED PROFIT AT ALLOCATIVELY EFFICIENT ' , 
4 'PRODUCTION PLAN=',G17.7) 

550 FORMATC-' , 'HENCE, OBSERVATION I=',I4, 
1 ' I S ALLOCATIVELY INEFFICIENT.') 

551 FORMAT(' ' , ' MAXIMAL PROFITS IS UNBOUNDED.') 
555 FORMATC-' , 'HENCE, OBSERVATION 1 = ' , 1 4 , 

1 ' IS ALLOCATIVELY EFFICIENT.') 
600 FORMATCl' , 'SUMMARY FOR DATAFILE: ' / / ) 
609 FORMAT(' ',5X,'VIOLATIONS ARE AT OBSERVATIONS:') 
610 FORMATC ' , 1 5 X , ' 1 = ' , 1 4 , ' , EPSILON*='.F10.6, 

1 ' , J= ' , I4 , ' (ALLOCATION RELATIVELY EFFICIENT TO I ) ' ) 
611 FORMATC ' , 1 5 X , ' I = ' , I 4 , ' , EPSILON*=',A10) 
615 FORMATCO',10X,'TOTAL NUMBER OF VIOLATIONS FOR TEST IS ' , 1 4 / 

1 ' ',10X,'MAXIMUM EPSILON*=',F10.6,' AT OBSERVATION 1 = ' , 
2 1 4 , ' . ' / / ) 

616 FORMATCO',10X,'TOTAL NUMBER OF VIOLATIONS FOR TEST IS ' , 1 4 / 
1 ' ',10X,'MAXIMUM EPSIL0N*=',A10,' AT OBSERVATION 1 = ' , 
2 1 4 , ' . ' / / ) 

620 FORMATC \ 5 X , ' 0 U T 0 F ' , 1 4 , ' OBSERVATIONS, ' , 1 4 , 
1 ' PASS AND ' 1 4 ' FAIL THE TEST. ' ) 

630 FORMATC ' ,10X, 'THE OBSERVATIONS CONSISTENT WITH T H E ' , 
1 ' HYPOTHESIS A R E : ' / 
2 (' ' 15X ' 1 = ' 1 4 ) ) 

640 FORMATCO',5X,'CONCLUSION: OVERALL, THE DATA IS NOT CONSISTENT'/ 
1 ' ' , 5 X , ' WITH THE HYPOTHESIS.') 

650 FORMATCO',5X,'CONCLUSION: OVERALL, THE DATA IS CONSISTENT'/ 
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1 ' ' , 5 X , ' WITH THE HYPOTHESIS.') 
END 

C.2.2 Sample main calling programs 

Listing of MAINQ1 
C++******************************************* 
C 
C MAIN PROGRAM SCARDS=MAINQ1 
C 
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

IMPLICIT REAL*8(B-I,K-Z),CHARACTER*12(A) 
C 
C NEXT LINE IS USER-SPECIFIED 
C PARAMETER (JOBS=20,JGDS=10,J0BS2=22,JGDS2=12,JG0B2=32) 

DIMENSION Z(JGDS,JOBS),P(JGDS,JOBS),JDIR(JGDS), 
1 TABLO(JGDS2,J0BS2),JVIN(JGDS2),JVOUT(J0BS2).OPTIM(JOBS), 
2 X(JG0B2),JPLAM(J0BS),ZP(JGDS),ZDIF(JGDS),ZPDIF(JGDS), 
3 JVIO(JOBS).VVIO(JOBS),JPASS(JOBS),JGEZ(JOBS), 
4 ZW(JGDS),JFRD(JOBS),JPASSW(JOBS),JPASSS(JOBS) 

DIMENSION AFLIN(6) 
COMMON /CONST/ CZERO,JDET,JTEST,JFNC,JNORM,JTECH 

C 
C SET VIOLATION INDICES . L T . CZERO TO ZERO 
C 

CZERO = 1.0D-8 
C 
C PRINT SHORT/DETAILED VERSION OF RESULTS 
C (USER-SPECIFIED) 
C JDET = 0 SHORT 
C = 1 LONG (INCLUDES LP TABLEAUS) 

JDET = 0 
C 
C READ IN DATA (USER-SPECIFIED) 

READ(11,5) AFLIN . 
5 F0RMAT(6A12) 

PRINT *,AFLIN 
DO 10 JY = l.JOBS 

READ(11) (Z(JN,JY),JN=1,JGDS),(P(JN,JY),JN=1,JGDS) 
10 CONTINUE 

C 
C ZERO EFFICIENCY DIRECTION VECTOR JDIR(JN), JN=1,JGDS 
C 

DO 20 JN=1,JGDS 
JDIR(JN)=0 

20 CONTINUE 
C 
C SPECIFY NONZERO COMPONENTS OF EFFICIENCY DIRECTION JDIR 
C (USER-SPECIFIED) 
C 
CC JDIR(l) = 
CC JDIR(2) = -
CC JDIR(3) = -
CC JDIR(4) = -

JDIR(5) = -JDIR(6) = -
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JDIR(7) = -1 
JDIRC8) = -1 
JDIR(9) = -1 
JDIR(10)= -1 

C 
C SPECIFY WRT WHICH GOOD N TECHNOLOGY 
C USER WOULD LIKE TO PERFORM TEST 
C ( JFNC IS USER-SPECIFIED) 
C 

JFNC = 1 
C 
C TOL = TOLERANCE LEVEL, NUMBERS SMALLER THAN TOL IN 
C ABSOLUTE VALUE ARE CONSIDERED ZERO IN LP 
C OPTIMIZATION 
C 

TOL = O.DO 
C 
C 
C 
C TEST 1. TECHNICAL EFFICIENCY TEST 
C QUANTITY DATA 
C CONVEX TECHNOLOGY 
C ( TEST ASSUMES NO TECHNICAL CHANGE, 
C JTECH = 0 ) 
C 

JTECH = 0 
JTEST = 1 
CALL TESTQ(Z,JGDS,JGDS2,JOBS,J0BS2,JG0B2,JDIR, 

1 TABLO,JVIN.JVOUT.OPTIM,TOL, 
2 . X,JPLAM,ZP.ZDIF,ZPDIF,JVIO.VVIO,JPASS,JGEZ,ZW, 
3 JFRD.JPASSW.JPASSS) 

C 
C 
C 
C TEST 1. TECHNICAL EFFICIENCY TEST 
C QUANTITY DATA 
C CONVEX TECHNOLOGY 
C ( TEST ASSUMES NO TECHNOLOGICAL REGRESS, 
C JTECH = 1 ) 
C 

JTECH = 1 
JTEST = 1 
CALL TESTQ(Z,JGDS,JGDS2,JOBS,J0BS2,JG0B2,JDIR, 

1 TABLO,JVIN.JVOUT.OPTIM,TOL, 
2 X,JPLAM,ZP.ZDIF,ZPDIF.JVIO,VVIO,JPASS,JGEZ,ZW, 
3 JFRD.JPASSW.JPASSS) 

C 
C 
C 
C TEST 2. TECHNICAL EFFICIENCY TEST 
C QUANTITY DATA 
C CONSTANT RETURNS TO SCALE TECHNOLOGY 
C ( TEST ASSUMES NO TECHNICAL CHANGE, 
C JTECH = 0 ) 
C 

JTECH = 0 
JTEST = 2 
CALL TESTQ(Z,JGDS,JGDS2,JOBS.J0BS2,JGOB2,JDIR, 

1 TABLO,JVIN.JVOUT.OPTIM,TOL, 
2 X,JPLAM,ZP,ZDIF,ZPDIF,JVIO,VVI0,JPASS,JGEZ,ZW, 
3 JFRD.JPASSW.JPASSS) 

C 
C 
C 
C TEST 2. TECHNICAL EFFICIENCY TEST 
C QUANTITY DATA 
C CONSTANT RETURNS TO SCALE TECHNOLOGY 
C ( TEST ASSUMES NO TECHNOLOGICAL REGRESS, 
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C JTECH = 1 ) 
C 

JTECH = 1 
JTEST = 2 
CALL TESTQ(Z,JGDS,JGDS2,JOBS,J0BS2,JG0B2,JDIR, 

1 TABLO,JVIN.JVOUT.OPTIM,TOL, 
2 X,JPLAM.ZP.ZDIF,ZPDIF,JVIO.VVIO.JPASS,JGEZ,ZW, 
3 JFRD.JPASSW.JPASSS) 

C 
C 
C 
C TEST 3. TECHNICAL EFFICIENCY TEST 
C QUANTITY DATA 
C QUASICONCAVE TECHNOLOGY 
C ( TEST ASSUMES NO TECHNICAL CHANGE, 
C JTECH = 0 ) 
C 
C SPECIFY WRT WHICH GOOD N TECHNOLOGY 
C USER WOULD LIKE TO PERFORM TEST 
C ( JFNC IS USER-SPECIFIED) 
C 

JTECH = 0 
JTEST = 3 
CALL TESTQ(Z,JGDS,JGDS2,JOBS,J0BS2,JG0B2,JDIR. 

1 TABLO,JVIN.JVOUT.OPTIM,TOL, 
2 X,JPLAM.ZP.ZDIF,ZPDIF,JVI0,VVIO,JPASS,JGEZ,ZW. 
3 JFRD.JPASSW.JPASSS) 

C 
C 
C 
C TEST 3. TECHNICAL EFFICIENCY TEST 
C QUANTITY DATA 
C QUASICONCAVE TECHNOLOGY 
C ( TEST ASSUMES NO TECHNOLOGICAL REGRESS, 
C JTECH = 1 ) 
C 
C SPECIFY WRT WHICH GOOD N TECHNOLOGY 
C USER WOULD LIKE TO PERFORM TEST 
C ( JFNC IS USER-SPECIFIED) 
C 

C 
C 
C 

JTECH = 1 
JTEST = 3 
CALL TESTQ(Z,JGDS,JGDS2,JOBS,J0BS2,JG0B2,JDIR, 

1 TABLO.JVIN.JVOUT.OPTIM,TOL, 
2 X,JPLAM,ZP.ZDIF,ZPDIF,JVIO,VVIO,JPASS,JGEZ.ZW. 
3 JFRD.JPASSW.JPASSS) 

STOP 
END 

Listing of M A I N P Q C 1 
C++****************************************** 
c 
C MAIN PROGRAM SCARDS=MAINPQC1 
C 
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

IMPLICIT REAL*8(B-I,K-Z),CHARACTER*12(A) 
C 
C NEXT LINE IS USER-SPECIFIED 
C PARAMETER (JOBS=20,JGDS=10,JOBS2=22,JGDS2=12.JG0B2=32) 
C 
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C 
C 

DIMENSION Z(JGDS,0:JOBS),P(JGDS,0:JOBS).JDIR(JGDS), 
1 PI(0:JOBS,0:JOBS), 
2 TABLO(JGDS2,J0BS2),JVIN(JGDS2),JV0UT(J0BS2),OPTIM(JOBS), 
3 X(0:JG0B2).JPLAM(JOBS).ZP(JGDS).ZDIF(JGDS).ZPDIF(JGDS), 
4 JVIO(JOBS).VVIO(JOBS),JPASS(JOBS),JGEZ(JOBS), 
5 ZW(JGDS),JFRD(JOBS),JPASSW(JOBS),JPASSS(JOBS), 
6 EPS(JOBS),ZN(JGDS,JOBS),JEFF(JOBS),JBEST(JOBS), 
7 JSET(JGDS),JNUM(JGDS),JINS(JGDS),JNOTS(JGDS) 

DIMENSION AFLIN(6) 
COMMON /CONST/ CZERO,JDET,JTEST,JFNC,JNORM,JTECH,JPOSP.JPMU 

C 
C SET VIOLATION INDICES . L T . CZERO TO ZERO 
C 

CZERO = 1.0D-8 
C 
C PRINT SHORT/DETAILED VERSION OF RESULTS 
C (USER-SPECIFIED) 
C JDET = 0 SHORT 
C = 1 LONG (INCLUDES LP TABLEAUS) 
C 

JDET = 0 
C 
C READ IN DATA (USER-SPECIFIED) 
C 

READ(11,5) AFLIN 
5 F0RMAT(6A12) 

PRINT *,AFLIN 
DO 10 JY = l.JOBS 

READ(11) (Z(JN,JY),JN=1,JGDS),(P(JN,JY),JN=1,JGDS) 
10 CONTINUE 

C 
C ZERO EFFICIENCY DIRECTION VECTOR JDIR(JN), JN=l.JGDS 
C ELEMENTS OF SET S JSET(JN), JN=1,JGDS 
C INDICES OF NUMERAIRE GOODS JNUM(JN). JN=1,JGDS 
C 

DO 20 JN=1,JGDS 
JDIR(JN)=0 
JSET(JN)=0 
JNUM(JN)=0 

20 CONTINUE 
C 
C SPECIFY ELEMENTS OF SET S (CONTAINS GOODS WRT TO 
C WHICH PRODUCER CAN OPTIMIZE) 
C (USER-SPECIFIED) 
C 
CC JSET(l) = 1 
CC JSET(2) = 1 
CC JSET(3) = 1 
CC JSET(4) = 1 

JSET(5) = 1 
JSET(6) = 1 
JSET(7) = 1 
JSET(8) = 1 
JSET(9) = 1 
JSET(10)= 1 

C 
C SPECIFY NUMERAIRE GOODS 
C (USER-SPECIFIED) 
C 
CC JNUM(l) = 1 
CC JNUM(2)' = 1 
CC JNUM(3) = 1 
CC JNUM(4) = 1. 
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C 

C 

C 

C 

JNUM(5) = 
JNUM(6) = 
JNUM(7) = 
JNUM(8) = 
JNUM(9) = 
JNUM(10)= 

JFNC = 1 

JPOSP = 0 
JPMU = 0 

Q 
C OPTION FOR TESTS 4&7 (CONVEX TECHNOLOGY): 
C IF OPTIMAL PROFITS ARE RESTRICTED TO BE 
C NONNEGATIVE, EITHER 
C 1) SET JPOSP = 1 (INCLUDE THE Z(0)=0 VECTOR) 
C OR 2) SET JPMU = 1 (SUM OF LAMBDA'S . L E . 1) 
C (USER-SPECIFIED, CHOOSE ONLY ONE OPTION) 
C 
CCC JPOSP = 1 
C STRICTLY OR 
CCC JPMU = 1 

IF (JPMU .EQ. 1) JPOSP = 0 
C IF TESTS FOR qUASICONCAVITY ARE TO BE PERFORMED, 
C SPECIFY A GOOD N, JFNC=N 
C (USER-SPECIFIED) 
C 
CCC JFNC = OUTPUT 
C TOL = TOLERANCE LEVEL, NUMBERS SMALLER THAN TOL IN 
C ABSOLUTE VALUE ARE CONSIDERED ZERO IN LP 
C OPTIMIZATION 

TOL = O.DO 
C 
C 
C 
C TEST 4. CONSTRAINED ALLOCATIVE EFFICIENCY TEST 
C PRICE AND QUANTITY DATA 
C CONVEX TECHNOLOGY 
C ( TEST ASSUMES NO TECHNICAL CHANGE, 
C JTECH = 0 ) 
C 

JTECH = 0 
JTEST = 4 
CALL TSTPQC(Z,P,PI,JGDS,JGDS2,JOBS,J0BS2,JG0B2, 

1 TABLO,JVIN.JVOUT.OPTIM,TOL, 
2 EPS,ZP,ZDIF,ZPDIF,X,JPLAM, 
3 JVIO,VVIO,JPASS,JGEZ,JSET,JNUM,JINS,JNOTS) 

C 
C 
C 
C TEST 4. CONSTRAINED ALLOCATIVE EFFICIENCY TEST 
C PRICE AND QUANTITY DATA 
C CONVEX TECHNOLOGY 
C ( TEST ASSUMES NO TECHNOLOGICAL REGRESS, 
C JTECH = 1 ) 

JTECH = 1 
JTEST = 4 
CALL TSTPQC(Z,P,PI,JGDS,JGDS2,JOBS,JOBS2,JG0B2, 

1 TABLO,JVIN.JVOUT.OPTIM,TOL, 
2 EPS,ZP,ZDIF,ZPDIF,X,JPLAM, 
3 JVIO,VVIO,JPASS,JGEZ,JSET,JNUM,JINS,JNOTS) 

C 
C 
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C 
C TEST 5. CONSTRAINED ALLOCATIVE EFFICIENCY TEST C • PRICE AND QUANTITY DATA 
C CONSTANT RETURNS TO SCALE TECHNOLOGY C ( TEST ASSUMES NO TECHNICAL CHANGE, 
C JTECH = 0 ) C JTECH = 0 JTEST = 5 

CALL TSTPQC(Z,P,PI,JGDS,JGDS2,JOBS,J0BS2,JG0B2, 
1 . TABLO,JVIN,JVOUT,OPTIM,TOL, 
2 EPS,ZP,ZDIF,ZPDIF,X,JPLAM, 
3 JVIO,VVIO,JPASS,JGEZ,JSET,JNUM,JINS,JNOTS) C C C C TEST 5. CONSTRAINED ALLOCATIVE EFFICIENCY TEST C PRICE AND QUANTITY DATA 

C CONSTANT RETURNS TO SCALE TECHNOLOGY 
C ( TEST ASSUMES NO TECHNOLOGICAL REGRESS, 
C JTECH = 1 ) C JTECH = 1 JTEST = 5 CALL TSTPqC(Z,P,PI,JGDS,JGDS2,JOBS,JOBS2,JG0B2, 

1 TABLO,JVIN,JVOUT,OPTIM,TOL, 
2 EPS,ZP,ZDIF,ZPDIF,X,JPLAM, 
3 JVIO,VVIO,JPASS,JGEZ,JSET,JNUM,JINS,JNOTS) C C C C TEST 6. CONSTRAINED ALLOCATIVE EFFICIENCY TEST C PRICE AND QUANTITY DATA 

C qUASICONCAVE TECHNOLOGY 
C ( TEST ASSUMES NO TECHNICAL CHANGE, 
C JTECH = 0 ) C C SPECIFY WRT WHICH GOOD N TECHNOLOGY C USER WOULD LIKE TO PERFORM TEST C ( JFNC IS USER-SPECIFIED) CCC JFNC = OUTPUT JTECH = 0 JTEST = 6 

CALL TSTPqC(Z,P,PI,JGDS,JGDS2,JOBS,J0BS2,JGOB2, 
1 TABLO,JVIN,JVOUT,OPTIM,TOL, 
2 EPS,ZP,ZDIF,ZPDIF,X,JPLAM, 
3 JVIO,VVIO,JPASS,JGEZ,JSET,JNUM,JINS,JNOTS) C C C 

C TEST 6. CONSTRAINED ALLOCATIVE EFFICIENCY TEST 
C PRICE AND qUANTITY DATA 
C qUASICONCAVE TECHNOLOGY 
C ( TEST ASSUMES NO TECHNOLOGICAL REGRESS, 
C JTECH = 1 ) 
C 
C SPECIFY WRT WHICH GOOD N TECHNOLOGY C USER WOULD LIKE TO PERFORM TEST C ( JFNC IS USER-SPECIFIED) CCC JFNC = OUTPUT JTECH = 1 JTEST = 6 

CALL TSTPqC(Z,P,PI,JGDS,JGDS2,JOBS,JOBS2,JGOB2, 
1 TABLO,JVIN,JVOUT,OPTIM,TOL, 
2 EPS,ZP,ZDIF,ZPDIF,X,JPLAM, 
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3 JVIO,VVIO,JPASS,JGEZ,JSET,JNUM,JINS,JNOTS) 
C C C 999 STOP END 

Listing of M A I N P Q 1 
C************************************* 
C 
C MAIN PROGRAM SCARDS=MAINPqi 
C 
C******************************************************************** 

IMPLICIT REAL*8(B-I,K-Z).CHARACTER*12(A) 
C 
C NEXT LINE IS USER-SPECIFIED 
C 

PARAMETER (JOBS=20,JGDS=10,J0BS2=22,JGDS2=12,JGOB=30) C C C DIMENSION ZCJGDS.O:JOBS),P(JGDS,0:JOBS).JDIR(JGDS), 
1 PI(0:JOBS,0:JOBS), 
2 TABLO(JGDS2,J0BS2),JVIN(JGDS2),JVOUT(J0BS2).OPTIM(JOBS) , 
3 X(JGOB),JPLAM(JOBS).ZP(JGDS).ZDIF(JGDS).ZPDIF(JGDS), 
4 JVIO(JOBS),VVIO(JOBS),JPASS(JOBS),JGEZ(JOBS), 
5 ZW(JGDS),JFRD(JOBS),JPASSW(JOBS),JPASSS(JOBS), 
6 EPS(JOBS),ZN(JGDS,JOBS).JEFF(JOBS).JBEST(JOBS) 
DIMENSION AFLIN(6) 
COMMON /CONST/ CZERO,JTEST,JFNC,JTECH,JNORM,JPOSP.JPMU 

C C SET VIOLATION INDICES .LT. CZERO TO ZERO C CZERO = 1.0D-8 C 
C READ IN DATA (USER-SPECIFIED) C 

READ(11,5) AFLIN 
5 F0RMAT(6A12) 
PRINT *,AFLIN 
DO 10 JY = l.JOBS 

READ(11) (Z(JN,JY),JN=1,JGDS),(P(JN,JY),JN=1,JGDS) 
10 CONTINUE 

C 
C ZERO EFFICIENCY DIRECTION VECTOR JDIR(JN), JN=1,JGDS 
C 

DO 20 JN=1,JGDS 
JDIR(JN)=0 

20 CONTINUE 
C 
C SPECIFY NONZERO COMPONENTS OF EFFICIENCY DIRECTION JDIR 
C (USER-SPECIFIED) 
C 
CC JDIR(l) = 1 
CC JDIR(2) = -1 
CC JDIR(3) = -1 
CC JDIR(4) = -1 

JDIR(5) = -1 
JDIR(6) = -1 
JDIR(7) = -1 
JDIR(8) = -1 
JDIR(9) = -1 
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C C C C 

C C C C C 
CCC C 
C C C 
C C C C C C C C C 

C C 
c 
c 
c 
c 
c 
c 
c 

c 
c 
c 
c 
c 
c 
c CCC 
c 
c 
c 

JDIR(IO)- -1 
JNORM = OUTPUT FOR TEST 8 JFNC = OUTPUT FOR TEST 9 

JNORM - 1 JFNC = 1 
JPOSP = 0 

OPTION FOR TESTS 4ft7 (CONVEX TECHNOLOGY): IF OPTIMAL PROFITS ARE RESTRICTED TO BE NONNEGATIVE (INCLUDE THE Z(0)=0 VECTOR), SET JPOSP = 1 (USER-SPECIFIED) JPOSP = 1 
TOL = TOLERANCE LEVEL, NUMBERS SMALLER THAN TOL IN ABSOLUTE VALUE ARE CONSIDERED ZERO IN LP OPTIMIZATION 

TOL = O.DO 

TEST 7. UNCONSTRAINED ALLOCATIVE EFFICIENCY TEST PRICE AND QUANTITY DATA CONVEX TECHNOLOGY 
( TEST ASSUMES NO TECHNICAL CHANGE, 
JTECH = 0 ) 

JTECH = 0 JTEST = 7 
CALL TESTPQ(Z,P,PI,JDIR,JGDS,JOBS,EPS,ZDIF,ZPDIF, 
1 JVIO,VVIO,JPASS,ZN,JEFF,JBEST) 

TEST 7. UNCONSTRAINED ALLOCATIVE EFFICIENCY TEST 
PRICE AND QUANTITY DATA 
CONVEX TECHNOLOGY 
( TEST ASSUMES NO TECHNOLOGICAL REGRESS, 
JTECH = 1 ) 

JTECH = 1 JTEST = 7 
CALL TESTPQ(Z,P,PI,JDIR,JGDS,JOBS,EPS,ZDIF,ZPDIF, 
1 JVIO,VVIO,JPASS,ZN,JEFF,JBEST) 

PRIOR TO ACTUAL TEST 8. 
NORMALIZING GOOD N=JNORM (USER SPECIFIED) 

JNORM = OUTPUT 
TO TEST IF |Z(JNORM,.)| > 0 

JWARN = 0 
DO 30 J = l.JOBS 

IF (ABS(Z(JNORM,J)) .LT. 
30 CONTINUE 

IF (JWARN .Eq. 1) THEN 
WRITE(6,300) 

CZERO) JWARN=1 

300 FORMATC 1 
1 
2 
3 
4 

TEST 8. UNCONSTRAINED ALLOCATIVE EFFICIENCY TEST'/ 
USING PRICE AND qUANTITY DATA'/ 
FOR A CONSTANT RETURNS TO SCALE'/ 
TECHNOLOGY CANNOT BE PERFORMED DUE TO'/ 
ZERO VALUES FOR THE NORMALIZING VARIABLE.' ) 
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GO TO 999 END IF C TEST 8. UNCONSTRAINED ALLOCATIVE EFFICIENCY TEST C PRICE AND QUANTITY DATA 
C CONSTANT RETURNS TO SCALE TECHNOLOGY 
C ( TEST ASSUMES NO TECHNICAL CHANGE, 
C JTECH = 0 ) C JTECH = 0 JTEST = 8 

CALL TESTPQ(Z.P.PI.JDIR,JGDS,JOBS,EPS,ZDIF,ZPDIF, 
1 JVIO,VVIO,JPASS,ZN,JEFF,JBEST) C C C 

C TEST 8. UNCONSTRAINED ALLOCATIVE EFFICIENCY TEST 
C PRICE AND QUANTITY DATA 
C CONSTANT RETURNS TO SCALE TECHNOLOGY 
C ( TEST ASSUMES NO TECHNOLOGICAL REGRESS, 
C JTECH = 1 ) C JTECH = 1 JTEST = 8 

CALL TESTPQ(Z,P,PI,JDIR,JGDS,JOBS,EPS,ZDIF,ZPDIF, 
1 JVIO,VVIO,JPASS,ZN,JEFF,JBEST) C C C 

C TEST 9. UNCONSTRAINED ALLOCATIVE EFFICIENCY TEST 
C PRICE AND QUANTITY DATA 
C qUASICONCAVE TECHNOLOGY 
C ( TEST ASSUMES NO TECHNICAL CHANGE, C JTECH = 0 ) C C SPECIFY WRT WHICH GOOD N TECHNOLOGY C USER WOULD LIKE TO PERFORM TEST C ( JFNC IS USER-SPECIFIED) C CCC JFNC = OUTPUT JTECH = 0 JTEST = 9 

CALL TESTPQ(Z,P,PI,JDIR,JGDS,JOBS,EPS,ZDIF,ZPDIF, 
1 JVIO,VVIO,JPASS,ZN,JEFF,JBEST) 

C 
C 
C 
C TEST 9. UNCONSTRAINED ALLOCATIVE EFFICIENCY TEST 
C PRICE AND QUANTITY DATA 
C QUASICONCAVE TECHNOLOGY 
C ( TEST ASSUMES NO TECHNOLOGICAL REGRESS, 
C JTECH = 1 ) 
C 
C SPECIFY WRT WHICH GOOD N TECHNOLOGY C USER WOULD LIKE TO PERFORM TEST C ( JFNC IS USER-SPECIFIED) C CCC JFNC = OUTPUT JTECH = 1 JTEST = 9 

CALL TESTPq(Z,P,PI,JDIR,JGDS,JOBS,EPS,ZDIF,ZPDIF, 
1 JVIO,VVIO,JPASS,ZN,JEFF,JBEST) 

C C C 
999 STOP 

END 
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C.3 Sample results using sector I (resources) data 

In this section, sample results for the efficiency tests 1-9 discussed in part I and their no tech

nological regress variants listed in appendix A are given. For expository purposes, the results 

for a given test are interpreted on the assumption that the conditions on the technology hold 

and violations of the hypothesis are due to inefficiency.4 Data on the resources sector (sector I) 

using capital rental prices based on internal rates of return are used. The data have 20 obser

vations (J = 20) with each observation having price and quantity data on 10 goods (N = 10). 

For illustration, only the results on the individual observation for 1967 and summary results for 

the datafile are given for each test. In the following computer printouts, the observation num

bers I = 1,2,..., 20 refer to the years 1961,1962,..., 1980, respectively. The goods numbers 

1,2,..., 10 pertain to the corresponding goods as listed in table B.17. Quantity data enter the 

subroutines with outputs indexed positively and inputs indexed negatively. 

The violation indices are input-based measures of inefficiencies. For the technical efficiency 

tests (1-3 and l'-3') and the unconstrained optimization tests (7-9 and 7'-9'), the nonzero 

components of the efficiency direction vector, 7 or 7 " , correspond to the primary input goods. 

In the constrained optimization tests (4-6 and 4'-6'), the reference goods indexed in the set E 

are the same primary input goods. Hence, for the technical efficiency tests, the violation indices 

give the proportion of the primary goods wasted due to failure to produce at some point on the 

boundary of the production possibilities set. In other words, the same level of output goods 

in the economy could have been produced with 6* less of the primary inputs utilized. For the 

allocative efficiency tests, the violation indices ef or e* give the proportion of the value of the 

primary inputs wasted due to productive inefficiency. 

For tests 3 (3'), 6 (6') and 9 (9') which assume a quasiconcave technology, the efficiency 

tests are performed with respect to the production function f1 of good 1, the output good for 

the resources sector. 
4This interpretation may be more appropriate for cross-section firm data rather than for sectoral aggregated 

data. As shown in part II of this dissertation, the violation indices obtained for our sectoral input-output data 
can be interpreted as measures of technical progress. 
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C.3.1 Technical efficiency test results 

The value of the violation index 6* for observation i is given by 'DELTA*'. The following line 

lists the observation numbers j with the corresponding optimal primal variable X3* positive, 

that is, X3* > 0. For the convex and the convex cone technology cases, the technically E-

efficient allocations relative to z' are z" = z* + S^jz* and z** = YJ • X3*z3. The vector z* can be 

attained from z' through an equiproportionate adjustment in the goods indexed in the set E 

(corresponding to the goods with nonzero components in the efficiency direction vector 7 ) . On 

the other hand, the vector z** may require different proportional adjustments in the goods not 

necessarily in the set E. For example, in test 1 (assuming no technical change) below, the vectors 

z** and z* differ for the 1967 observation. This divergence indicates that with respect to some 

goods, the production plan z* is at a free disposal region at the boundary of the constructed 

convex production possibilities set. For this observation, there is free disposability with respect 

to goods 2-4 and 8-10 at z*. Note that good 1 is the output good and the last column indicates 

that 6* is the minimum proportional decrease in all inputs (intermediate and primary) required 

to attain z**; in this case, it makes sense to talk of varying degrees of inefficiencies in input use. 

The computer results for the quasiconcave technology case (tests 3 and 3') can be analogously 

interpreted in the context of level sets. 

The results show that test 2 (the convex cone case) is most restrictive with more observations 

violating the hypothesis and larger values for the violation indices. Test 3 (the quasiconcave 

case) is the weakest. Incorporating the no technological regress assumption into an efficiency 

test weakens the test. As can be seen in a comparison of the results of tests 2 and 2', the 

range of observations with positive X3* for 1967 is restricted to j = 1,2, . . . ,7 when the no 

technological regress assumption is incorporated into the efficiency test. Hence, the violation 

index obtained in test 2' cannot be larger than that of test 2. 



TEST 1. TECHNICAL EFFICIENCY TEST 
QUANTITY DATA 
CONVEX TECHNOLOGY 

( TEST ASSUMES NO TECHNICAL CHANGE ) 

SUMMARY FOR OBSERVATION 1= 7: 

D E L T A S 0.003502 
POSITIVE L A M B D A ' S : . 3 4 6 8 

GOODS EFFICIENCY WEAKLY E F F . STRONGLY E F F . VECTOR Z U ) 
NO. DIR. VECTOR VECTOR Z* VECTOR Z " 

1 0 8.4267 8.4267 8.4267 
2 0 -0.17956 -0.16196 -0.17956 
3 0 -0 .89823 -0.82260 -0.89823 
4 0 - 1.4437 -1.3574 -1.4437 
5 -1 -0 .63940 -0.63940 -0.84165 
6 -1 - 1 .4590 -1.4590 -1.4641 
7 -1 -0.25567 -0.25567 -0.25656 
a -1 -1 .1625 -1.0924 -1.1666 
9 -1 - 1.5484 -1.4238 -1.5538 

10 -1 -0.26064 -0.23189 -0.26156 

HENCE. OBSERVATION 1= 7 IS TECHNICALLY E- INEFFICIENT. 

DIFFERENCE PROPORTIONAL 
Z " - Z ( I ) DIFFERENCE 

( Z " - Z ( I ) ) / Z ( I ) 

-0.55511E-14 
0. 17600E-01 
0.75633E-01 
0.86357E-01 
0.22473E-02 
0.51279E-02 
0.89859E-03 
0.74150E-01 
0.13005 
0.29671E-01 

0.00000 
0.09801 
0.08420 
0.05981 
0.00350 
0.00350 
0.00350 
0.06356 
0.08370 
0.11344 



SUMMARY FOR DATAFILE: 

VIOLATIONS ARE AT OBSERVATIONS: 
1= 7. D E L T A ' S 0.003502 

TOTAL NUMBER OF VIOLATIONS FOR TEST IS 1 
MAXIMUM DELTA*= 0.003502 AT OBSERVATION 1= 7. 

OUT OF 20 OBSERVATIONS, 19 PASS AND 1 FAIL THE TEST. 
THE OBSERV 

( 19 
TIONS CONSISTENT WITH THE HYPOTHESIS ARE: 

TECHNICALLY E-EFFICIENT OBSERVATIONS: 
= 1 

2 
3 
4 
5 
6 
8 
9 

= 10 
= 11 
= 12 
= 13 
= 14 
= 15 
= 16 
= 17 
= 18 
= 19 
= 20 

CONCLUSION: OVERALL. THE DATA IS NOT CONSISTENT 
WITH THE HYPOTHESIS. 



TEST 2. TECHNICAL EFFICIENCY TEST 
QUANTITY DATA 
CONVEX CONE TECHNOLOGY 
(CONSTANT RETURNS TO SCALE) 

( TEST ASSUMES NO TECHNICAL CHANGE ) 

SUMMARY FOR OBSERVATION 1= 7: 

DELTA*= 0.036498 
POSITIVE LAMBDA'S: 6 9 

GOODS EFFICIENCY WEAKLY E F F . STRONGLY E F F . VECTOR Z(I ) 
NO. DIR. VECTOR VECTOR Z* VECTOR Z * * 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

0 
0 
0 
0 

8.4267 
-0.17956 
-0 .89823 

- 1 .4437 
-0.61823 

-1 .4107 
-0.24720 

-1 .1240 
- 1.4971 

-0.25201 

8.4267 
-0.16698 
-0.83493 

-1.3461 
-0.61823 

- 1 .4107 
-0.23871 

-1.0508 
- 1 . 3905 

-0.22849 

8.4267 
-0.17956 
-0.89823 

- 1.4437 
-0.64185 

-1.4641 
-0.25656 

- 1 . 1666 
- 1.5538 

-0.26158 

HENCE. OBSERVATION 1= 7 IS TECHNICALLY E-INEFFICIENT. 

DIFFERENCE PROPORTIONAL 
Z * * -Z ( I ) DIFFERENCE 

( Z * * - Z ( I ) ) / Z ( I ) 

-0.11102E-14 
0.12588E-01 
0.63303E-01 
0.97832E-01 
0.23419E-01 
0.53438E-01 
0.17855E-01 
0.11575 
0.16328 
0.33074E-01 

0.00000 
0.07010 
0.07048 
0.06762 
0.03650 
0.03650 
0.06959 
0.09922 
0.10509 
0.12645 



SUMMARY FOR DATAFILE: 

VIOLATIONS ARE AT OBSERVATIONS: 
1= 1. DELTA'= 0.022340 
1= 7. DELTA ' S 0.036498 
1= 8, DELTA ' S 0.004188 
1= 10, DELTA ' S 0.008617 
1= 16, DELTA ' S 0.012313 
Is 17, DELTA ' S 0.014452 
1= 18. DELTA ' S 0.030742 

TOTAL NUMBER OF VIOLATIONS FOR TEST IS 7 
MAXIMUM DELTA ' S 0.036498 AT OBSERVATION Is 7. 

OUT OF 20 OBSERVATIONS, 13 PASS AND 7 FAIL THE TEST. 
THE OBSERVATIONS CONSISTENT WITH THE HYPOTHESIS ARE: 

( 13) TECHNICALLY E-EFFICIENT OBSERVATIONS: 
1= 2 
1= 3 
1 = 4 
Is 5 
1= 6 
1= 9 
1= 11 
1= 12 
1= 13 
1= 14 
1= 15 
1= 19 
1= 20 

CONCLUSION: OVERALL. THE DATA IS NOT CONSISTENT 
WITH THE HYPOTHESIS. 



TEST 3 . TECHNICAL EFFICIENCY TEST 
QUANTITY DATA 
OUASICONCAVE TECHNOLOGY 

NOTE: TEST PERFORMED WITH RESPECT TO 
TECHNOLOGY OF GOOD N= 1 

( TEST ASSUMES NO TECHNICAL CHANGE ) 

SUMMARY FOR OBSERVATION 1= 7 : 

D E L T A * * 0 . 0 0 0 0 0 0 
POSIT IVE LAMBDA'S: 7 

GOODS EFFICIENCY WEAKLY EFF . STRONGLY EFF. VECTOR Z ( I 
NO. D I R . VECTOR VECTOR 2* VECTOR I" 

2 
3 
4 
5 
6 
7 
8 
9 

10 

- 0 . 1 7 9 5 6 
- 0 . 8 9 8 2 3 

- 1 .4437 
- 0 . 6 4 1 6 5 

- 1 . 4 6 4 1 
- 0 . 2 5 6 5 6 

- 1 . 1 6 6 6 
- 1 . 5 5 3 8 

- 0 . 2 6 1 5 6 

- 0 . 1 7 9 5 6 
- 0 . 8 9 8 2 3 

- 1 . 4 4 3 7 
- 0 . 6 4 1 6 5 

- 1 . 4 6 4 1 
- 0 . 2 5 6 5 6 

- 1 . 1 6 6 6 
- 1 . 5 5 3 8 

- 0 . 2 6 1 5 6 

- 0 . 1 7 9 5 6 
- 0 . 8 9 8 2 3 

- 1 . 4 4 3 7 
- 0 . 6 4 1 6 5 

- 1 . 4 6 4 1 
- 0 . 2 5 6 5 6 

- 1 . 1666 
- 1 . 5 5 3 8 

• 0 . 2 6 1 5 6 

8 . 4 2 6 7 

HENCE. OBSERVATION I s 7 I S TECHNICALLY E - E F F I C I E N T . 

SUMMARY FOR D A T A F I L E : 

OUT OF 20 OBSERVATIONS. 20 PASS AND 0 F A I L THE TEST. 
ALL OBSERVATIONS ARE TECHNICALLY E - E F F I C I E N T . 

CONCLUSION: OVERALL, THE DATA I S CONSISTENT 
WITH THE HYPOTHESIS. 

DIFFERENCE PROPORTIONAL 
Z * * - Z ( I ) DIFFERENCE 

< Z ' * - Z ( I ) ) / Z < I ) 

0 . 13878E-16 
0 . 2 7 7 5 6 E - 1 6 
0 . 4 4 4 0 9 E - 1 5 
0 . 2 7 7 5 6 E - 1 6 
0 . 4 4 4 0 9 E - 1 5 
0 . 2 7 7 5 6 E - 1 6 
0 . 4 4 4 0 9 E - 1 5 
0 . 4 4 4 0 9 E - 15 
0 . 2 7 7 5 6 E - 1 6 

0 . 0 0 0 0 0 
0 . 0 0 0 0 0 
0 . 0 0 0 0 0 
0 . 0 0 0 0 0 
0 . 0 0 0 0 0 
0 . 0 0 0 0 0 
0 . 0 0 0 0 0 
0 . 0 0 0 0 0 
0 . 0 0 0 0 0 



TEST 1. TECHNICAL EFFICIENCY TEST 
QUANTITY DATA 
CONVEX TECHNOLOGY 

( TEST ASSUMES NO TECHNOLOGICAL REGRESS ) 

SUMMARY FOR OBSERVATION 1= 7: 

DELTA•= 0.000000 
POSITIVE LAMBDA'S: 7 

GOODS EFFICIENCY WEAKLY E F F . STRONGLY EFF . VECTOR Z(I ) 
NO. DIR. VECTOR VECTOR Z* VECTOR Z " 

1 0 8.4267 8.4267 8.4267 
2 0 -0.17956 -0.17956 -0.17956 
3 0 -0 .89823 -0.89823 -0.69823 
4 0 -1 .4437 -1.4437 -1.4437 
5 - 1 -0 .64165 -0.64165 -0.84165 
6 -1 - 1.4641 -1.4641 -1.4641 
7 - 1 -0.25656 -0.25656 -0.25656 
8 -1 -1 .1666 -1.1666 -1.1668 
9 -1 - 1.5538 - 1.5538 - 1.5538 

10 -1 -0.26156 -0.26156 -0.26156 

HENCE. OBSERVATION 1= 7 IS TECHNICALLY E-EFFICIENT. 

SUMMARY FOR DATAFILE: 

OUT OF 20 OBSERVATIONS. 20 PASS AND 0 FAIL THE TEST. 
ALL OBSERVATIONS ARE TECHNICALLY E-EFFICIENT. 

CONCLUSION: OVERALL. THE DATA IS CONSISTENT 
WITH THE HYPOTHESIS. 

DIFFERENCE PROPORTIONAL 
Z " - Z ( I > DIFFERENCE 

( Z " - Z ( I ) ) /Z( I ) 

0.26645E-14 
-0.27756E-16 
-0.24980E-15 
-0.22204E-15 
-0.22204E-15 
-0.22204E-15 
-0.97145E-16 
O.OOOOOE+OO 

-0.22204E-15 
-0.5551 IE-16 

0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 



TEST 2 . TECHNICAL EFFICIENCY TEST 
QUANTITY DATA 
CONVEX CONE TECHNOLOGY 
(CONSTANT RETURNS TO SCALE) 

( TEST ASSUMES NO TECHNOLOGICAL REGRESS ) 

SUMMARY FOR OBSERVATION 1= 7: 

DELTA*= 0.0356B3 
POSITIVE LAMBDA'S: B 

GOODS EFFICIENCY WEAKLY EFF. STRONGLY EFF. VECTOR Z ( I 
NO. DIR. VECTOR VECTOR Z' VECTOR 2" 

1 0 8.4267 8.4267 8.4267 
2 0 -0.17956 -0.16700 -0.17956 
3 0 -0.89823 -0.83512 -0.89823 
4 0 - 1.4437 -1.3459 -1.4437 
5 - 1 -0.61875 -0.61770 -0.64165 
6 - 1 -1 .4119 -1.4119 -1.4641 
7 - 1 -0 .24741 -0.23872 -0.25656 
a - 1 -1 .1250 -1 .0502 -1.1666 
9 - 1 • 1.4984 -1.3893 -1.5538 

10 - 1 -0.25223 -0.22822 -0.26156 

HENCE, OBSERVATION 1= 7 IS TECHNICALLY E-INEFFICIENT. 

DIFFERENCE PROPORTIONAL 
Z " - Z ( I ) DIFFERENCE 

( Z * * - Z ( I ) ) / Z ( I ) 

-0.88818E-15 
0.12569E-01 
0.63111E-01 
0.97880E-01 
0.23947E-01 
0.52244E-01 
0.17842E-01 
0. 11641 
0.16455 
0.33337E-01 

0.00000 
0.07000 
0.07026 
0.06780 
0.03732 
0.03568 
0.06954 
0.09979 
0.10590 
0.12746 



SUMMARY FOR DATAFILE: 

VIOLATIONS ARE AT OBSERVATIONS: 
1= 7. DELTA*= 0.035683 
1= 10, DELTA*= 0.003389 

TOTAL NUMBER OF VIOLATIONS FOR TEST IS 2 
MAXIMUM DELTA*= 0.035683 AT OBSERVATION 1= 7. 

OUT OF 20 OBSERVATIONS. 18 PASS AND 2 FAIL THE TEST. 
THE OBSERV 

( 18 
TIONS CONSISTENT WITH THE HYPOTHESIS ARE: 

TECHNICALLY E-EFFICIENT OBSERVATIONS: 
1 
2 
3 
4 
5 
6 
8 
9 

11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

CONCLUSION: OVERALL. THE DATA IS NOT CONSISTENT 
WITH THE HYPOTHESIS. 



TEST 3. TECHNICAL EFFICIENCY TEST 
QUANTITY DATA 
QUASICONCAVE TECHNOLOGY 

NOTE: TEST PERFORMED WITH RESPECT TO 
TECHNOLOGY OF GOOD N= 1 

( TEST ASSUMES NO TECHNOLOGICAL REGRESS > 

SUMMARY FOR OBSERVATION 1= 7: 

DELTA'= 0.000000 
POSITIVE LAMBDA'S: 7 

GOODS EFFICIENCY 
NO. DIR. VECTOR 

WEAKLY EFF. 
VECTOR Z* 

STRONGLY EFF. 
VECTOR Z " 

VECTOR Z ( I ) 

2 
3 
4 
5 
6 
7 
B 
9 

10 

-0.17956 
-0 .69823 

- 1.4437 
-0 .64165 

- 1.4641 
-0 .25656 

-1 .1666 
- 1.5538 

-0.26156 

-0.17956 
-0.89823 

-1.4437 
-0.64165 

- 1.4641 
-0.25656 

- 1 . 1666 
-1.5538 

-0.26156 

-0.17956 
-0.89823 

-1.4437 
-0.64165 

-1.4641 
-0.25656 

-1.1666 
- 1.5538 

-0.26156 

HENCE, OBSERVATION 1= 7 IS TECHNICALLY E-EFFICIENT. 

SUMMARY FOR DATAFILE: 

8.4267 

OUT OF 20 OBSERVATIONS. 20 PASS AND 0 FAIL THE TEST. 
ALL OBSERVATIONS ARE TECHNICALLY E-EFFICIENT. 

CONCLUSION: OVERALL. THE DATA IS CONSISTENT 
WITH THE HYPOTHESIS. 

DIFFERENCE PROPORTIONAL 
Z " - Z ( I ) DIFFERENCE 

< Z " - Z ( I ) ) / Z ( I ) 

0.13878E-16 
0.27756E-16 
0.22204E-15 
0.13878E-1B 
0.22204E-15 
0.13878E-16 
0.22204E-15 
0.22204E-15 
0.13878E-16 

0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
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C.3.2 Allocative efficiency test results (assuming partial profit maximization) 

The goods indexed in the set 5 , containing the goods with respect to which the producer can 

optimize, are all the primary inputs. Therefore, the objective functions in the linear program

ming problems in the constrained optimization tests are negative cost functions. That is, the 

efficiency tests reduce to testing whether the resources sector, given the same output levels in 

the economy (or the same output level of good 1 and the same levels of intermediate input use of 

goods 2-4 by sector I), is minimizing cost with respect to the primary inputs. To minimize cost, 

the resources sector should use the optimal mix of the primary inputs (pure allocative efficiency) 

and produce at the boundary of the production possibilities set (technical efficiency). 

The value of the violation index ef for observation i is given by 'EPSILON(S)'. In the convex 

technology case, the vector z* = J2j ̂ J*z3 differs from zs* (defined in chapter 7, section 7.1) 

with respect only to the goods not in S. The other values given at the bottom of the results 

for the 1967 observation are: 

VALUE OF NUMERAIRE GOODS = E n e s K l 41, 

PARTIAL PROFIT AT CURRENT PRODUCTION PLAN = E r , e s K 4 > and 

PARTIAL PROFIT AT ALLOCATIVELY EFFICIENT PRODUCTION PLAN 

Hence, the economic loss due to failure to cost minimize with respect to the primary inputs for 

the resources sector in 1967, assuming the technology assumptions of test 4 hold, is 

£f(EneEPn\z'n\) = 0.053762(6.757257) = 0.363284 

or approximately $363 million (1967 Canadian dollars). The computer printouts for tests 5 (5') 

and 6 (6') can be similarly interpreted. 

Note too that the sets 5 and E are identical in the following examples of the constrained 

optimization tests. The obtained violation indices can be decomposed, as suggested in part I 

and using the results of the earlier technical efficiency tests, into their components due to 
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technical inefficiency and due to "pure" allocative inefficiency with respect to the goods in S 
(in this case, failure to use the optimal relative quantities of primary inputs). As a consequence 
also of the LeChatelier principle proposition shown in chapter 8, we can expect as least as many 
violations in the constrained optimization tests as in the corresponding technical efficiency test; 
we can also expect the magnitude of the violation index ef to be at least as large as the 
corresponding 8* at a given observation. 

t 



TEST 4. CONSTRAINED ALLOCATIVE EFFICIENCY TEST 
PRICE AND QUANTITY DATA 
CONVEX TECHNOLOGY 

( OPTIMAL PROFITS UNRESTRICTED IN SIGN ) 

( TEST ASSUMES NO TECHNICAL CHANGE ) 

SUMMARY FOR OBSERVATION 1= 

EPSILON(S)= 0 .053762 
POSITIVE LAMBDA'S: 3 

GOODS NUMERAIRE 
NO. (=>EFFICIENCY 

DIR. VECTOR) 

PRICE VECTOR ALLOC. EFF. VECTOR Z U ) DIFFERENCE PROPORTIONAL 
P ( I ) VECTOR Z* Z ' - Z I I ) DIFFERENCE 

( Z ' - Z U ) ) / Z U ) 

( 6) GOODS IN S: 
5 1 1 3700 -0.62854 -0.64165 0 13110E-01 -0 02043 
6 1 1 4966 -1.4790 - 1 .4641 -0 14838E-01 0 01013 
7 1 1 4 306 -0.24974 -0.25656 0 68217E-02 -0 02659 
a i 1 1547 -1.0619 -1.1666 0 10471 -0 08975 
9 1 1 0602 -1.3760 -1.5538 0 17775 -0 11440 

10 1 1 1260 -0.22171 -0.26156 0 39849E-01 -0 15235 

4) GOODS NOT IN S: 
1 8.4267 8.4267 0 66613E-15 0 00000 
2 -0.15854 -0.17956 0 21021E-01 -0 11706 
3 -0.81921 -0.89823 0 79024E-01 -0 .08798 
4 - 1.3359 -1.4437 0 10781 -0 .07468 

VALUE OF NUMERAIRE G00DS= 6.757257 
PARTIAL PROFIT AT CURRENT PRODUCTION PLAN= -6.757257 
PARTIAL PROFIT AT ALLOCATIVELY EFFICIENT PRODUCTION PLAN= -6.393974 

HENCE. OBSERVATION 1= 7 IS ALLOCATIVELY INEFFICIENT. 



SUMMARY FOR OATAFILE: 

VIOLATIONS ARE AT OBSERVATIONS: 
[ = 4. EPSILON(S)= 0 006623 
[ = 5. EPSILON(S)= 0. 006601 
[ = 7, EPSILON(S)= 0 053762 
[ = B, EPSILON(S)= 0. 039736 
[ = • 10, EPSILON(S)= 0 030358 
[ = 14. EPSILON(S)= 0 04B832 
[ = 15. EPSILON(S)= 0 100414 
;= 16. EPSILON(S)= 0 095388 
;= 17, EPSILON(S)= 0 100564 
:= 18, EPSILON(S)= 0 125844 
:= 19, EPSILON(S)= 0 042557 

TOTAL NUMBER OF VIOLATIONS FOR TEST IS 11 
MAXIMUM EPSILON(S)= 0.125844 AT OBSERVATION 1= 18. 

OUT OF 20 OBSERVATIONS. 9 PASS AND 11 FAIL THE TEST 
THE OBSERVATIONS CONSISTENT WITH THE HYPOTHESIS ARE: 

1= 1 
1 = 2 
1= 3 
1= 6 
1= 9 
1= 11 
1= 12 
1= 13 
1= 20 

CONCLUSION: OVERALL, THE DATA IS NOT CONSISTENT 
WITH THE HYPOTHESIS. 

to 
to 



TEST 5. CONSTRAINED ALLOCATIVE EFFICIENCY TEST 
PRICE AND QUANTITY DATA 
CONVEX CONE TECHNOLOGY 
(CONSTANT RETURNS TO SCALE) 

( TEST ASSUMES NO TECHNICAL CHANGE ) 

SUMMARY FOR OBSERVATION 1= 7: 

EPSILON(S)= 0.075883 
POSITIVE LAMBDA'S: 6 13 

GOODS NUMERAIRE PRICE VECTOR ALLOC. EFF. VECTOR Z U ) DIFFERENCE PROPORTIONAL 
NO. (^EFFICIENCY P ( I ) VECTOR Z* Z ' - Z I I I DIFFERENCE 

DIR. VECTOR) ( Z ' - Z ( I ) ) / Z U ) 

( 6) GOODS IN S: 
5 1 1 3700 - 1 .0245 -0.64165 -0 38282 0 59662 
6 1 1 4966 -0.98630 - 1 .4641 0 47783 -0 32636 
7 1 1 4306 -0.14323 -0.25656 0 11333 -0 44174 
8 1 1 1547 -1 .0471 -1.1666 0 11952 -0 10246 
9 1 1 0802 - 1.5286 - 1.5538 0 25220E-01 -0 01623 

10 1 1 1260 -0.26626 -0.26156 -0 47038E-02 0 01798 

4) GOODS NOT IN S: 
1 8.4267 8.4267 -0 66613E-15 -0 00000 
2 -0.16052 -0.17956 0 19048E-01 -0 10608 
3 -0.83702 -0.89823 0 61208E-01 -0 06814 
4 -1.4437 - 1.4437 0 OOOOOE+00 0 00000 

VALUE OF NUMERAIRE G00DS= 6.757257 
PARTIAL PROFIT AT CURRENT PRODUCTION PLAN= -6.757257 
PARTIAL PROFIT AT ALLOCATIVELY EFFICIENT PRODUCTION PLAN= -6.244499 

HENCE. OBSERVATION 1= 7 IS ALLOCATIVELY INEFFICIENT. 



SUMMARY FOR DATAFILE: 

VIOLATIONS ARE AT OBSERVATIONS: 
= 1, EPSILON(S)= 0 151631 
= 4, EPSILON(S)= 0 015050 
= 5. EPSILON(S)= 0 006943 
= 7. EPSILON(S)= 0 075883 
= 8. EPSILON(S)= 0 046363 
= 9. EPSILON(S)= 0 004676 
= t o . EPSILON(S)= 0 034297 
= 14, EPSILON(S)= 0 051025 
= 15. EPSILON(S)= 0 103515 
= 16. EPSILON(S)= 0 096987 
= 17. EPSILON(S)= 0 101117 
= 18. EPSILON(S)= 0 126724 
= 19, EPSILON(S)= 0 120364 
= 20. EPSILON(S)= 0 134988 

TOTAL NUMBER OF VIOLATIONS FOR TEST IS 14 
MAXIMUM EPSILON(S)= 0 .151631 AT OBSERVATION 1 = 1. 

OUT OF 20 OBSERVATIONS. 6 PASS AND 14 FAIL THE TEST. 
THE OBSERVATIONS CONSISTENT WITH THE HYPOTHESIS ARE: 

1 = 2 
1 = 3 
1 = 6 
1 = 11 
1 = 12 
1 = 13 

CONCLUSION: OVERALL, THE DATA IS NOT CONSISTENT 
WITH THE HYPOTHESIS. 



TEST 6. CONSTRAINED ALLOCATIVE EFFICIENCY TEST 
PRICE AND QUANTITY DATA 
QUASICONCAVE TECHNOLOGY 

NOTE: TEST PERFORMED WITH RESPECT TO 
TECHNOLOGY OF GOOD N= 1 

( TEST ASSUMES NO TECHNICAL CHANGE ) 

SUMMARY FOR OBSERVATION 1= 7: 

EPSILON(S)= 0.030633 
POSITIVE LAMBDA'S: 6 

GOODS NUMERAIRE PRICE VECTOR ALLOC. EFF. VECTOR Z ( I ) DIFFERENCE PROPORTIONAL 
NO. (=>EFFICIENCY P ( I ) VECTOR Z* Z * - Z ( I ) DIFFERENCE 

DIR. VECTOR) ( Z * - Z ( I ) ) / Z ( I ) 

6) GOODS IN S: 
5 1 1 3700 •0.64520 -0.64165 -0 35565E-02 0 00554 
6 1 1 4966 • 1 .4747 -1.4641 -0 10B21E-01 0 00725 
7 1 1 4306 -0.24935 -0.25656 0 72123E-02 -0 02811 
8 1 1 1547 -1.0969 -1.1666 0 69654E-01 -0 05971 
9 1 1 0802 -1.4511 -1.5538 0 10269 -0 06609 

10 1 1 1260 -0.23838 -0.28156 0 23176E-01 -0 08861 

3) GOODS NOT IN S: 
2 -0.17443 -0.17956 0 51333E-02 -0 02859 
3 -0.87230 -0.89823 0 25927E-01 -0 02887 
4 - 1.4058 -1.4437 0 379S5E-01 -0 .02629 

8.4267 

VALUE OF NUMERAIRE GOODS= 6.757257 
PARTIAL PROFIT AT CURRENT PRODUCTION PLAN= -6.757257 
PARTIAL PROFIT AT ALLOCATIVELY EFFICIENT PRODUCTION PLAN= -6.550264 

HENCE. OBSERVATION 1= 7 IS ALLOCATIVELY INEFFICIENT. 



SUMMARY FOR DATAFILE: 

VIOLATIONS ARE AT OBSERVATIONS: 
1= 7, EPSILON(S)= 0.030633 
1= 14. EPSILON(S)= 0.018878 
1= 16. EPSILON(S)= 0.063813 
1= 17. EPSILON(S)= 0.081904 
1= 18, EPSILON(S)= 0.107907 

TOTAL NUMBER OF VIOLATIONS FOR TEST IS 5 
MAXIMUM EPSILON(S)= 0.107907 AT OBSERVATION 1= 18. 

OUT OF 20 OBSERVATIONS. 15 PASS AND 5 FAIL THE TEST. 
THE OBSERVATIONS CONSISTENT WITH THE HYPOTHESIS ARE: 

1= 1 
1= 2 
1= 3 
1= 4 
1= 5 
1= 6 
1= 8 
1= 9 
1= 10 
1= 11 
1= 12 
1= 13 
1= 15 
1= 19 
1= 20 

CONCLUSION: OVERALL. THE DATA IS NOT CONSISTENT 
WITH THE HYPOTHESIS. 



TEST 4. CONSTRAINED ALLOCATIVE EFFICIENCY TEST 
PRICE AND QUANTITY DATA 
CONVEX TECHNOLOGY 

( OPTIMAL PROFITS UNRESTRICTED IN SIGN ) 

( TEST ASSUMES NO TECHNOLOGICAL REGRESS ) 

SUMMARY FOR OBSERVATION 1= 7: 

EPSILON(S)= 0.053762 
POSITIVE LAMBDA'S: 3 6 

GOODS NUMERAIRE PRICE VECTOR ALLOC. EFF. VECTOR Z ( I ) DIFFERENCE PROPORTIONAL 
NO. (=>EFFICIENCY P ( I ) VECTOR Z* Z * - Z ( I ) DIFFERENCE 

DIR. VECTOR) ( Z * - Z ( I ) ) / Z ( I ) 

( 6) GOODS IN S: 
5 1 1 3700 -0.62854 -0.84165 0 13110E-01 -0 02043 
6 1 1 4966 - 1 .4790 - 1.4641 -0 14838E-01 0 01013 
7 1 1 4306 -0.24974 -0.25656 0 68217E-02 -0 02659 
a 1 1 1547 - 1.0619 -1.1666 0 10471 -0 08975 
9 1 1 0802 -1 . 3760 -1.5538 0 17775 -0 11440 

10 1 1 1260 -0.22171 -0.26156 0 39849E-01 -0 15235 

4) GOODS NOT IN S: 
1 8.4267 8.4267 0 66613E-15 0 00000 
2 -0.15854 -0.17956 0 21021E-01 -0 11706 
3 -0.81921 -0.89823 0 79024E-01 -0 08798 
4 -1.3359 -1.4437 0 10781 -0 07468 

VALUE OF NUMERAIRE G00DS= 6.757257 
PARTIAL PROFIT AT CURRENT PRODUCTION PLAN= -6.757257 
PARTIAL PROFIT AT ALLOCATIVELY EFFICIENT PRODUCTION PLAN= -6.393974 

HENCE, OBSERVATION 1= 7 IS ALLOCATIVELY INEFFICIENT. 
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TEST 5. CONSTRAINED ALLOCATIVE EFFICIENCY TEST 
PRICE AND QUANTITY DATA 
CONVEX CONE TECHNOLOGY 
(CONSTANT RETURNS TO SCALE) 

( TEST ASSUMES NO TECHNOLOGICAL REGRESS ) 

SUMMARY FOR OBSERVATION 1= 7: 

EPSILON(S)= 0.071954 
POSITIVE LAMBDA'S: 6 

GOODS NUMERAIRE 
NO. (=>EFFICIENCY 

DIR. VECTOR) 

PRICE VECTOR ALLOC. EFF. VECTOR Z ( I ) DIFFERENCE PROPORTIONAL 
P ( I ) VECTOR Z* Z ' - Z ( I ) DIFFERENCE 

( Z * - Z ( I ) ) / Z ( I ) 

6) GOODS IN S: 
5 
6 
7 
8 
9 

10 

1 .3700 
1.4966 
1.4306 
1 .1547 
1.0802 
1 . 1260 

•0.61770 
-1.4119 

-0.23872 
-1 .0502 
-1 .3893 

-0.22822 

-0.64165 
-1.4641 

-0.25656 
- 1 . 1666 
-1.5538 

-0.26156 

0.23947E-01 
0.52244E-01 
0.17842E-01 
0.11641 
0.16455 
0.33337E-01 

-0.03732 
-0.03568 
•0.06954 
-0.09979 
-0.10590 
-0.12746 

( 4) GOODS NOT IN S: 
1 
2 
3 
4 

8.4267 
-0.16700 
-0.83512 

- 1.3459 

8.4267 
-0.17956 
-0.89823 

- 1.4437 

-0.66613E-15 
0.12569E-01 
0.63111E-01 
0.97880E-01 

-0.00000 
-0.07000 
-0.07026 
-0.06780 

VALUE OF NUMERAIRE G00DS= 6.757257 
PARTIAL PROFIT AT CURRENT PRODUCTION PLAN= -6.757257 
PARTIAL PROFIT AT ALLOCATIVELY EFFICIENT PRODUCTION PLAN= -6.271043 

HENCE. OBSERVATION 1= 7 IS ALLOCATIVELY INEFFICIENT. 



SUMMARY FOR DATAFILE: 

VIOLATIONS ARE AT OBSERVATIONS: 
[ = 7, EPSILON(S)= 0 071954 
; = 8, EPSILON(S)= 0 038918 
[ = 10. EPSILON(S)= 0 027706 
; = 14. EPSILONlS)= 0 051025 
;= 15, EPSILON(S)= 0 103515 
;= 16. EPSILON(S)= 0 096987 
;= W , EPSILON(S)= 0 101117 
;= 18, EPSILON(S)= 0 126724 
;= 19. EPSILON(S)= 0 120364 
; = 20. EPSILON(S)= 0 134988 

TOTAL NUMBER OF VIOLATIONS FOR TEST IS 10 
MAXIMUM EPSILON(S)= 0.134988 AT OBSERVATION 1= 20. 

OUT OF 20 OBSERVATIONS. 10 PASS AND 10 FAIL THE TEST. 
THE OBSERVATIONS CONSISTENT WITH THE HYPOTHESIS ARE: 

1= 1 
1= 2 
1= 3 
1= 4 
1= 5 
1= 6 
1= 9 
1= 11 
1= 12 
1= 13 

CONCLUSION: OVERALL. THE DATA IS NOT CONSISTENT 
WITH THE HYPOTHESIS. 



TEST 6. CONSTRAINED ALLOCATIVE EFFICIENCY TEST 
PRICE AND QUANTITY DATA 
QUASICONCAVE TECHNOLOGY 

NOTE: TEST PERFORMED WITH RESPECT TO 
TECHNOLOGY OF GOOD N= 1 

( TEST ASSUMES NO TECHNOLOGICAL REGRESS ) 

SUMMARY FOR OBSERVATION 1= 7: 

EPSILON(S)= 0.030633 
POSITIVE LAMBDA'S: 6 

GOODS NUMERAIRE PRICE VECTOR ALLOC. EFF. VECTOR Z ( I ) DIFFERENCE PROPORTIONAL 
NO. (=>EFFICIENCY P ( I ) VECTOR Z' Z ' - Z ( I ) DIFFERENCE 

DIR. VECTOR) ( Z * - Z ( I ) ) / Z ( I ) 

( 6) GOODS IN S: 
5 1 1 3700 -0.64520 -0.64165 -0 35565E-02 0 00554 
6 1 1 4966 -1.4747 -1.4641 -0 10621E-01 0 00725 
7 1 1 4306 -0.24935 -0.25656 0 72123E-02 -0 02811 
8 1 1 1547 -1.0969 -1.1666 0 69654E-01 -0 05971 
9 1 1 0802 -1 .4511 -1.5538 0 10269 -0 06609 

10 1 1 1260 -0.23838 -0.26156 0 23176E-01 -0 08861 

3) GOOOS NOT IN S: 
2 -0.17443 -0.17958 0 51333E-02 -0 02859 
3 -0.87230 -0.89823 0 25927E-01 -0 .02887 
4 -1.4058 -1.4437 0 37955E-01 -0 02629 

1 8.4267 

VALUE OF NUMERAIRE GOODS= 8.757257 
PARTIAL PROFIT AT CURRENT PRODUCTION PLAN= -6.757257 
PARTIAL PROFIT AT ALLOCATIVELY EFFICIENT PRODUCTION PLAN= -8.550264 

HENCE. OBSERVATION 1= 7 IS ALLOCATIVELY INEFFICIENT. 



SUMMARY FOR DATAFILE: 

VIOLATIONS ARE AT OBSERVATIONS: 
1= 7. EPSILON(S)= 0.030633 
1= 14, EPSILON(S)= 0.018876 
1= 16. EPSILON(S)= 0.063813 
1= 17, EPSILON(S)= 0.081904 
1= 18, EPSILON(S)= 0.107907 

TOTAL NUMBER OF VIOLATIONS FOR TEST IS 5 

MAXIMUM EPSILON(S)= 0.107907 AT OBSERVATION 1= 18. 

OUT OF 20 OBSERVATIONS, 15 PASS AND 5 FAIL THE TEST. 
THE OBSERVATIONS CONSISTENT WITH THE HYPOTHESIS ARE: 

1 
2 
3 
4 
5 
6 
8 
9 

10 
11 
12 
13 
15 
19 
20 

CONCLUSION: OVERALL, THE DATA IS NOT CONSISTENT 
WITH THE HYPOTHESIS. 
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C . 3 . 3 Allocative efficiency test results (assuming complete profit maximization) 

The value of the violation index e* for observation i is given by 'EPSILON*'. For test 7 (the 

convex technology case), the observation relatively efficient to observation i listed following 

the violation index is the observation j which solves the maximization problem (11.1) used in 

calculating the violation index. The values at the bottom of the results for the 1967 observation 

are: 

VALUE OF NUMERAIRE GOODS = piTiz\ 

PROFIT AT CURRENT PRODUCTION PLAN = p , 3 V , and 

PROFIT AT ALLOCATIVELY EFFICIENT PRODUCTION PLAN = p , 7 V * 

where j* is the observation j described above. Thus, if the technology assumptions of test 7 

hold, then in 1967 the resources sector could have increased profits by 

£*{piTlzi) = 0.123946(6.757257) = 0.837535 

or by $837 million (1967 Canadian dollars). Note that the previous results of test 4 indicate 

that $363 million is the loss due to failure to cost minimize with respect to the primary inputs; 

in test 4, the economy's output goods were restricted to levels at least as large as those observed 

in 1967. Since profit maximization entails both revenue maximization and cost minimization, 

the levels of goods (1-4) produced and used by the resources sector may not be profit maximal. 

Thus, we obtain in our example a higher economic loss (e* > ef) in test 7. 

For test 8 which assumes a convex cone technology, we have at the bottom of the results 

for the 1967 observation the following: 

VALUE OF (NORMALIZED) NUMERAIRE GOODS EE EmeEPJnl4K 

NORMALIZED PROFIT AT CURRENT PRODUCTION PLAN EE pntTzn>, and 

NORMALIZED PROFIT AT ALLOCATIVELY EFFICIENT PRODUCTION PLAN 
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where j* solves the majcimization problem (11.12) and is listed in the line following the violation 

index. Since the above numbers are values of normalized variables, they can be interpreted as 

values per unit of the normalizing good. In the following example, the normalizing good is 

good 1, the output of the resources sector. Hence, the value of pntTzni is the negative of the 

cost of per unit output (good 1) using the 1967 production plan. The optimal per unit output 

cost, at 1967 prices, is given by pn,Tzn3*. If the normalizing good chosen is an input, then the 

allocative efficiency test 8 reduces to testing whether this input is receiving the maximal per 

unit return. 

In test 8 (and 8'), if the corresponding linear programming problem has an unbounded 

solution, then the computer program duly notes this by setting 'EPSILON*=UNBOUNDED' 

and stating maximal profits are unbounded. The observation j printed in the line following the 

violation index is the observation which solves the problem (11.12). 

In test 9 which assumes a quasiconcave technology, the restricted profit at the current 

production plan is pn,Jzni and the restricted profit at the allocatively efficient production 

plan is pntTzn3*, j* G / " where j* solves the maximization problem (11.29). Since the test is 

performed with respect to the production function of good 1 (the output good for the resources 

sector), the restricted profit is the (negative) cost of producing good 1 at levels at least as large 

as that in 1967 and at prices prevailing in 1967. If the singled-out good n with respect to which 

the test is performed is an input, then the restricted profit is the revenue or factor payment to 

good n. 

The results of tests 7', 8' and 9' incorporating the no technological regress assumption can 

be similarly interpreted. 



TEST 7. UNCONSTRAINED ALLOCATIVE EFFICIENCY TEST 
PRICE AND QUANTITY DATA 
CONVEX TECHNOLOGY 

( OPTIMAL PROFITS UNRESTRICTED IN SIGN ) 

( TEST ASSUMES NO TECHNICAL CHANGE ) 

SUMMARY FOR OBSERVATION 1= 7: 

EPSILON*= 0.123946 
OBSERVATION RELATIVELY EFFICIENT TO I : J= 13 

GOODS EFFICIENCY PRICE VECTOR ALLOC. EFF. VECTOR Z ( I ) 
NO. DIR. VECTOR P ( I ) VECTOR Z" 

(=>NUMERAIRE) ( Z ( J ) . J = 13) 

1 0 1.1393 11.729 8.4267 
2 0 1.1181 -0.22323 -0.17956 
3 0 1.0999 -1 .1651 -0.89823 
4 0 1.1409 -2.0125 -1.4437 
5 -1 1.3700 -1 .4382 -0.64165 
6 -1 1.4966 -1 .3601 -1.4641 
7 -1 1.4306 -0.19650 -0.25658 
8 -1 1.1547 -1.4574 -1.1666 
9 -1 1.0802 -2.1319 -1.5538 

10 -1 1.1260 -0.37176 -0.26156 

VALUE OF NUMERAIRE G00DS= 6.757257 
PROFIT AT CURRENT PRODUCTION PLAN= 0.7290000E-02 
PROFIT AT ALLOCATIVELY EFFICIENT PRODUCTION PLAN= 0.8448278 

HENCE, OBSERVATION 1= 7 IS ALLOCATIVELY INEFFICIENT. 

DIFFERENCE PROPORTIONAL 
Z ' - Z ( I ) DIFFERENCE 

( Z ' - Z ( I ) ) / Z ( I ) 

3.3027 
-0.43669E-01 
-0.26691 
•0.56879 
-0.79654 
0.10403 
0.60062E-01 

-0.29076 
•0.57BOB 
•0.11020 

0.39193 
0.24319 
0.29715 
0.39397 
1.24140 

-0.07105 
-0.23410 
0.24924 
0.37203 
0.42133 



SUMMARY FOR OATAFILE: 

VIOLATIONS ARE AT OBSERVATIONS: 
= 1. EPSILON* = 0 295885. J= 13 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
= 2, EPSILON* = 0 131678. J= 13 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
= 3. EPSILON* = 0 049280. J= 6 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
= 4, EPSILON* = 0 049036, J= 6 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
= 5. EPSILON' = 0 044107, J= 6 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
= 7. EPSILON* 0 123946. J= 13 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
= 8. EPSILON* 0 064378. J= 13 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
= 9. EPSILON* = 0 041402. J= 13 (ALLOCATION RELATIVELY EFFICIENT TO I ) 

10, EPSILON* = 0 070049. J= 13 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
= 1 1 . EPSILON* = 0 070360, J= 13 (ALLOCATION RELATIVELY EFFICIENT TO I ) 

12. EPSILON* s 0 061329, J= 13 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
= 14. EPSILON* = 0 074347, J= 13 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
= 15. EPSILON* 0 144833. J= 13 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
= 16. EPSILON* = 0 145652, J= 13 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
= 17, EPSILON* = 0 158844. J= 13 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
= 18, EPSILON* 0 194124, J= 13 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
= 19. EPSILON* = 0 168155. J= 13 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
= 20. EPSILON* = 0 151956, J= 13 (ALLOCATION RELATIVELY EFFICIENT TO I ) 

TOTAL NUMBER OF VIOLATIONS FOR TEST IS 18 
MAXIMUM EPSILON*= 0.295885 AT OBSERVATION 1= 1. 

OUT OF 20 OBSERVATIONS, 2 PASS AND 18 FAIL THE TEST. 
THE OBSERVATIONS CONSISTENT WITH THE HYPOTHESIS ARE: 

1= 6 
1= 13 

CONCLUSION: OVERALL. THE DATA IS NOT CONSISTENT 
WITH THE HYPOTHESIS. 



TEST 8. UNCONSTRAINED ALLOCATIVE EFFICIENCY TEST 
PRICE AND QUANTITY DATA 
CONVEX CONE TECHNOLOGY 
(CONSTANT RETURNS TO SCALE) 

NOTE: TEST PERFORMED WITH NORMALIZING 
GOOD N= 1 

( TEST ASSUMES NO TECHNICAL CHANGE ) 

SUMMARY FOR OBSERVATION 1= 7: 

EPSILON'= 0.100833 
OBSERVATION RELATIVELY EFFICIENT TO I : J= 6 

GOODS EFFICIENCY PRICE VECTOR ALLOC. EFF. VECTOR Z ( I ) 
NO. DIR. VECTOR P ( I ) VECTOR Z* 

(=>NUMERAIRE) ( Z ( J ) . J = 6) 

2 
3 
4 
5 
6 
7 
8 
9 

10 

1. 1181 
1.0999 
1.1409 
1.3700 
1.4966 
1.4306 
1.1547 
1.0802 
1.1260 

-0.17443 
-0.87230 

- 1.4058 
-0.64520 

-1.4747 
-0.24935 

- 1.0969 
-1 .4511 

-0.23838 

-0.17956 
-0.89823 

- 1.4437 
-0.64165 

-1.4641 
-0.25656 

-1.1666 
-1.5538 

-0.26156 

8.8019 8.4267 

VALUE OF (NORMALIZED) NUMERAIRE GOODS= 0.8018870 
NORMALIZED PROFIT AT CURRENT PRODUCTION PLAN= -1.138423 
NORMALIZED PROFIT AT ALLOCATIVELY EFFICIENT PRODUCTION PLAN= 

HENCE. OBSERVATION 1= 7 IS ALLOCATIVELY INEFFICIENT. 

DIFFERENCE PROPORTIONAL 
Z * - Z ( I ) DIFFERENCE 

( Z * - Z ( I ) ) / Z ( I ) 

0.51333E-02 
0.25927E-01 
0.37955E-01 

-0.35565E-02 
-0.10621E-01 
0.72123E-02 
0.69654E-01 
0.10269 
0.23176E-01 

0.37520 

0.02859 
0.02887 
0.02629 
0.00554 
0.00725 
0.02811 
0.05971 
0.06609 
0.08861 

0.04453 

- 1 .057566 



SUMMARY FOR DATAFILE: 

VIOLATIONS ARE AT OBSERVATIONS: 
1= 1, EPSILON'= 0 186264, J= 6 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
1 = 2, EPSILON'= 0 099175. J= 6 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
1 = 3. EPSILON'= 0 042091, J= 6 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
1 = 4 . EPSILON'= 0 043423. J= 6 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
1 = 5. EPSILON'= 0 040832, J= 6 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
1 = 7, EPSILON*= 0 100833, J= 6 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
1= 8, EPSILON'= 0 053078. J= 6 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
1 = 9, EPSILON*= 0 033010, J= 13 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
1 = 10. EPSILON'= 0 056018, J= 13 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
1 = 11 . EPSILON'= 0 059636. J= 13 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
1 = 12. EPSILON*= 0 053798. J= 13 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
1= 14. EPSILON*= 0 071871, J= 13 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
1 = 15. EPSILON"= 0 134691. J= 13 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
1 = 16, EPSILON'= 0 140517, J= 13 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
1 = 17, EPSILON*= 0 159294. J= 6 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
1 = 1B, EPSILON'= 0 190162, J= 13 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
1 = 19. EPSILON'= 0 192021, J= 6 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
I = 20. EPSILON'= 0 208261. J= 6 (ALLOCATION RELATIVELY EFFICIENT TO I ) 

TOTAL NUMBER OF VIOLATIONS FOR TEST IS 18 
MAXIMUM EPSILON'= 0.208261 AT OBSERVATION 1= 20. 

OUT OF 20 OBSERVATIONS. 2 PASS AND 18 FAIL THE TEST. 
THE OBSERVATIONS CONSISTENT WITH THE HYPOTHESIS ARE: 

1= 6 
1= 13 

CONCLUSION: OVERALL, THE DATA IS NOT CONSISTENT 
WITH THE HYPOTHESIS. 



TEST 9. UNCONSTRAINED ALLOCATIVE EFFICIENCY TEST 
PRICE AND QUANTITY DATA 
QUASICONCAVE TECHNOLOGY 

NOTE: TEST PERFORMED WITH RESPECT TO 
TECHNOLOGY OF GOOD N= 1 

( TEST ASSUMES NO TECHNICAL CHANGE ) 

SUMMARY FOR OBSERVATION 1= 7: 

EPSILON'= 0.042111 
OBSERVATION RELATIVELY EFFICIENT TO I : J= 6 

GOODS EFFICIENCY PRICE VECTOR ALLOC. EFF. VECTOR Z ( I ) 
NO. DIR. VECTOR P ( I ) VECTOR Z* 

(=>NUMERAIRE) ( Z ( J ) . J = 6) 

2 
3 
4 
5 
6 
7 
8 
9 

10 

0 
0 
0 

1 . 1181 
1 .0999 
1.1409 
1.3700 
1.4966 
1.4306 
1.1547 
1.0802 
1.1260 

-0.17443 
-0.87230 

- 1.4058 
-0.64520 

-1.4747 
-0.24935 

- 1 .0969 
-1 .4511 

-0.23838 

-0.17956 
-0.89823 

-1.4437 
-0.64165 

-1.4641 
-0.25656 

-1.1666 
-1.5538 

-0.26156 

8.8019 8.4267 

VALUE OF NUMERAIRE GOODS= 6.757257 
RESTRICTED PROFIT AT CURRENT PRODUCTION PLAN= -9.593144 
RESTRICTED PROFIT AT ALLOCATIVELY EFFICIENT PRODUCTION PLAN= 

HENCE, OBSERVATION 1= 7 IS ALLOCATIVELY INEFFICIENT. 

DIFFERENCE PROPORTIONAL 
Z * - Z ( I ) DIFFERENCE 

( Z ' - Z ( I ) ) / Z ( I ) 

0.51333E-02 
0.25927E-01 
0.37955E-01 

-0.3556SE-02 
-0.10821E-01 
0.72123E-02 
0.69654E-01 
0.10269 
0.23176E-01 

0.37520 

0.02859 
0.02887 
0.02629 
0.00554 
0.00725 
0.02811 
0.05971 
0.06609 
0.08861 

0.04453 

-9.308592 



SUMMARY FOR DATAFILE: 

VIOLATIONS ARE AT OBSERVATIONS: 
1= 7. EPSILON*= 0 042111. J= 6 (ALLOCATION RELATIVELY EFFICIENT TO 
1= 14. EPSILON*= 0 029694. J= 13 (ALLOCATION RELATIVELY EFFICIENT TO 
1= 15, EPSILON*= 0 045774. J= 13 (ALLOCATION RELATIVELY EFFICIENT TO 
1= 16. EPSILON*= 0 096028, J= 13 (ALLOCATION RELATIVELY EFFICIENT TO 
1= 17. EPSILON*= 0 129704. J= 13 (ALLOCATION RELATIVELY EFFICIENT TO 
1= 18. EPSILON*= 0 164990. J= 13 (ALLOCATION RELATIVELY EFFICIENT TO 

TOTAL NUMBER OF VIOLATIONS FOR TEST IS 6 
MAXIMUM EPSILON*= 0.164990 AT OBSERVATION 1 = 18. 

OUT OF 20 OBSERVATIONS, 14 PASS AND 6 FAIL THE TEST. 
THE OBSERVATIONS CONSISTENT WITH THE HYPOTHESIS ARE: 

1= 1 
1= 2 
1= 3 
1= 4 
1= 5 
1= 6 
1= 8 
1= 9 
1= 10 
1= 11 
1= 12 
1= 13 
1= 19 
1= 20 

CONCLUSION: OVERALL, THE DATA IS NOT CONSISTENT 
WITH THE HYPOTHESIS. 



TEST 7. UNCONSTRAINED ALLOCATIVE EFFICIENCY TEST 
PRICE AND QUANTITY DATA 
CONVEX TECHNOLOGY 

( OPTIMAL PROFITS UNRESTRICTED IN SIGN ) 

( TEST ASSUMES NO TECHNOLOGICAL REGRESS ) 

SUMMARY FOR OBSERVATION 1= 7: 

EPSILON'= 0.105371 
OBSERVATION RELATIVELY EFFICIENT TO I : J= 6 

GOODS EFFICIENCY PRICE VECTOR ALLOC. EFF. VECTOR Z ( I ) DIFFERENCE PROPORTIONAL 
NO. DIR. VECTOR P ( I ) VECTOR Z* Z ' - Z U ) DIFFERENCE 

(=>NUMERAIRE) ( Z ( J ) , J = 6) ( Z * - Z ( I ) ) / Z ( I ) 

1 0 i 1393 B.8019 8.4267 0.37520 0.04453 
2 0 i 1181 -0.17443 -0.17956 0.51333E-02 -0.02859 
3 0 i 0999 -0.87230 -0.89823 0.25927E-01 -0.02887 
4 0 1 1409 - 1.4058 -1.4437 0.37955E-01 -0.02629 
5 -1 i 3700 -0.64520 -0.64165 -0.35565E-02 0.00554 
6 -1 i 4966 - 1 .4747 -1.4641 -0.10621E-01 0.00725 
7 -1 i 4306 -0.24935 -0.25656 0.72123E-02 -0.02811 
a -1 1 1547 -1.0969 - 1 . 1666 0.69654E-01 -0.05971 
g -1 1 0602 -1 .4511 - 1.5538 0.10269 -0.06609 

10 -1 1 1260 -0.23838 -0.26156 0.23176E-01 -0.08861 

VALUE OF NUMERAIRE GOODS= 6.757257 
PROFIT AT CURRENT PRODUCTION PLAN= 0.7290000E-02 
PROFIT AT ALLOCATIVELY EFFICIENT PRODUCTION PLAN= 0.7193063 

HENCE. OBSERVATION 1= 7 IS ALLOCATIVELY INEFFICIENT. 



SUMMARY FOR DATAFILE: 

VIOLATIONS ARE AT OBSERVATIONS: 
1= 4, EPSILON*= 0 002869. J= 3 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
1 = 7, EPSILON'= 0 105371. J= 6 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
1 = 8. EPSILON'= 0 052174. J= 6 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
1 = 9, EPSILON"= 0 023635. J= 6 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
1 = 10, EPSILON'= 0 044713, J= 6 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
1 = 11 . EPSILON*= 0 022639. J= 6 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
1 = 12. EPSILON*= 0 011990. J= 6 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
1 = 14. EPSILON'= 0 074347. J= 13 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
1= 15. EPSILON*= 0 144833. J= 13 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
1 = 16. EPSILON'= 0 145652. J= 13 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
1 = 17. EPSILON'= 0 158844. J= 13 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
1 = 18. EPSILON*= 0 194124. J= 13 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
1 = 19. EPSILON'= 0 168155. J= 13 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
I = 20. EPSILON'= 0 151956. J= 13 (ALLOCATION RELATIVELY EFFICIENT TO I ) 

TOTAL NUMBER OF VIOLATIONS FOR TEST IS 14 
MAXIMUM EPSILON'= 0.194124 AT OBSERVATION 1= 18. 

OUT OF 20 OBSERVATIONS, 6 PASS AND 14 FAIL THE TEST. 
THE OBSERVATIONS CONSISTENT WITH THE HYPOTHESIS ARE: 

1= 1 
1= 2 
1= 3 
1= 5 
1= 6 
1= 13 

CONCLUSION: OVERALL, THE DATA IS NOT CONSISTENT 
WITH THE HYPOTHESIS. 



TEST 8. UNCONSTRAINED ALLOCATIVE EFFICIENCY TEST 
PRICE AND QUANTITY DATA 
CONVEX CONE TECHNOLOGY 
(CONSTANT RETURNS TO SCALE) 

NOTE: TEST PERFORMED WITH NORMALIZING 
GOOD N= 1 

( TEST ASSUMES NO TECHNOLOGICAL REGRESS ) 

SUMMARY FOR OBSERVATION 1= 7: 

EPSILON*= 0.100833 
OBSERVATION RELATIVELY EFFICIENT TO I : J= 6 

GOODS EFFICIENCY PRICE VECTOR ALLOC. EFF. VECTOR Z U ) 
NO. DIR. VECTOR P ( I ) VECTOR Z" 

(=>NUMERAIRE) ( Z ( J ) , J = 8) 

2 0 1.1181 -0.17443 -0.17956 
3 0 1.0999 -0.67230 -0.89823 
4 0 1.1409 -1.4058 -1.4437 
5 -1 1.3700 -0.64520 -0.64165 
6 -1 1.4966 -1.4747 -1.4641 
7 -1 1.4306 -0.24935 -0.25656 
8 -1 1.1547 -1.0969 -1.1868 
9 -1 1.0802 -1 .4511 -1.5538 

10 -1 1.1260 -0.23838 -0.26156 

1 8.8019 8.4267 

VALUE OF (NORMALIZED) NUMERAIRE G00DS= 0.8018870 
NORMALIZED PROFIT AT CURRENT PRODUCTION PLAN= -1.138423 
NORMALIZEO PROFIT AT ALLOCATIVELY EFFICIENT PRODUCTION PLAN= 

HENCE, OBSERVATION 1= 7 IS ALLOCATIVELY INEFFICIENT. 

DIFFERENCE PROPORTIONAL 
Z ' - Z ( I ) DIFFERENCE 

( Z * - Z ( I ) ) / Z ( I ) 

0.51333E-02 
0.2S927E-01 
0.37955E-01 

-0.35565E-02 
-0.10621E-01 
0.72123E-02 
0.69654E-01 
0. 10269 
0.23176E-01 

0.37520 

0.02859 
0.02887 
0.02629 
0.00554 
0.00725 
0.02811 
0.05971 
0.06609 
0.08861 

0.04453 

- 1.057566 



SUMMARY FOR D A T A F I L E : 

VIOLATIONS ARE AT OBSERVATIONS: 

1= 4 , EPSILON*= 0 0 0 3 0 3 3 . J= 3 (ALLOCATION RELATIVELY EFFICIENT TO I ) 

1 = 7 , E P S I L O N ' = 0 1 0 0 8 3 3 . J= 8 (ALLOCATION RELATIVELY EFFICIENT TO I ) 

1= 8 . E P S I L O N ' = 0 0 5 3 0 7 8 . J= 6 (ALLOCATION RELATIVELY EFFICIENT TO I ) 

1 = 9 . EPSILON*= 0 0 2 4 8 6 2 . J= 6 (ALLOCATION RELATIVELY EFFICIENT TO I ) 

1 = 1 0 . EPSILON*= 0 0 4 7 8 0 4 . J= 6 (ALLOCATION RELATIVELY EFFICIENT TO I ) 

1 = 11 . E P S I L O N * * 0 0 2 5 7 9 9 . J= 6 (ALLOCATION RELATIVELY EFFICIENT TO I ) 

1 = 1 2 . E P S I L O N ' = 0 0 1 4 3 8 2 . J= 6 (ALLOCATION RELATIVELY EFFICIENT TO I ) 

1 = 1 4 , EPSILON*= 0 0 7 1 8 7 1 . J= 13 (ALLOCATION RELATIVELY EFFICIENT TO I ) 

1 = 1 5 . EPSILON*= 0 1 3 4 6 9 1 , J= 13 (ALLOCATION RELATIVELY EFFICIENT TO I ) 

1 = 1 6 , EPSILON*= 0 1 4 0 5 1 7 . J= 13 (ALLOCATION RELATIVELY EFFICIENT TO I ) 

1 = 1 7 . EPSILON*= 0 1 5 9 2 9 4 , J= 6 (ALLOCATION RELATIVELY EFFICIENT TO I ) 

1 = 1 8 , EPSILON*= 0 1 9 0 1 6 2 , J= 13 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
I s 1 9 . EPSILON*= 0 1 9 2 0 2 1 . J= 6 (ALLOCATION RELATIVELY EFFICIENT TO I ) 
I = 2 0 , E P S I L O N ' = 0 2 0 8 2 8 1 , J= 6 (ALLOCATION RELATIVELY EFFICIENT TO I ) 

TOTAL NUMBER OF VIOLATIONS FOR TEST I S 14 

MAXIMUM EPSILON*= 0 . 2 0 8 2 6 1 AT OBSERVATION 1= 2 0 . 

OUT OF 20 OBSERVATIONS. 6 PASS AND 14 F A I L THE TEST. 
THE OBSERVATIONS CONSISTENT WITH THE HYPOTHESIS ARE: 

1= 1 

1= 2 

1= 3 

1= 5 

1= 6 

1= 13 

CONCLUSION: OVERALL, THE DATA I S NOT CONSISTENT 
WITH THE HYPOTHESIS. 



TEST 9. UNCONSTRAINED ALLOCATIVE EFFICIENCY TEST 
PRICE AND QUANTITY DATA 
QUASICONCAVE TECHNOLOGY 

NOTE: TEST PERFORMED WITH RESPECT TO 
TECHNOLOGY OF GOOD N= 1 

( TEST ASSUMES NO TECHNOLOGICAL REGRESS ) 

SUMMARY FOR OBSERVATION 1=; 7: 

EPSILON'= 0.042111 
OBSERVATION RELATIVELY EFFICIENT TO I : J= 6 

GOODS EFFICIENCY PRICE VECTOR ALLOC. EFF. VECTOR Z ( I ) 
NO. DIR. VECTOR P ( I ) VECTOR Z* 

(=>NUMERAIRE) ( Z ( J ) , J = 6) 

2 0 1. 1181 -0.17443 -0.17956 
3 0 1.0999 -0.87230 -0.89823 
4 0 1 . 1409 -1.4058 -1.4437 
5 - 1 1.3700 -0.64520 -0.64165 
6 - 1 1 .4966 -1.4747 -1.4641 
7 - 1 1.4306 -0.24935 -0.25656 
8 - 1 1.1547 -1.0969 - 1 . 1666 
9 - 1 1.0802 -1 .4511 -1.5538 

10 1.1260 -0.23838 -0.26156 

1 8.8019 8.4267 

VALUE OF NUMERAIRE G00DS= 6.757257 
RESTRICTED PROFIT AT CURRENT PRODUCTION PLAN= -9.593144 
RESTRICTED PROFIT AT ALLOCATIVELY EFFICIENT PRODUCTION PLAN= 

HENCE. OBSERVATION 1= 7 IS ALLOCATIVELY INEFFICIENT. 

DIFFERENCE PROPORTIONAL 
Z * - Z ( I ) DIFFERENCE 

( Z * - Z ( I ) ) / Z ( I ) 

0.51333E-02 
0.25927E-01 
0.37955E-01 

-0.35565E-02 
-0.10621E-01 
0.72123E-02 
0.696S4E-01 
0.10269 
0.23176E-01 

0.37520 

0.02859 
0.02887 
0.02629 
0.00554 
0.00725 
0.02811 
0.05971 
0.06609 
0.08861 

0.04453 

-9.308592 



SUMMARY FOR DATAFILE: 

VIOLATIONS ARE AT OBSERVATIONS: 
1= 7. EPSILON*= 0 042111. 
1= 14. EPSILON*= 0 029694, 
1= 15. EPSILON'= 0 045774. 
1= 16. EPSILON*= 0 096028, 
1= 17. EPSILON*= 0 129704, 
1= 18. EPSILON'= 0 164990. 

J= 6 (ALLOCATION RELATIVELY EFFICIENT TO I 
J= 13 (ALLOCATION RELATIVELY EFFICIENT TO I 
J= 13 (ALLOCATION RELATIVELY EFFICIENT TO I 
J= 13 (ALLOCATION RELATIVELY EFFICIENT TO I 
J= 13 (ALLOCATION RELATIVELY EFFICIENT TO I 
J= 13 (ALLOCATION RELATIVELY EFFICIENT TO I 

TOTAL NUMBER OF VIOLATIONS FOR TEST IS 6 
MAXIMUM EPSILON*= 0.164990 AT OBSERVATION 1= 18. 

OUT OF 20 OBSERVATIONS. 14 PASS AND 6 FAIL THE TEST. 
THE OBSERVATIONS CONSISTENT WITH THE HYPOTHESIS ARE: 

1= 1 
1= 2 
1= 3 
1= 4 
1= 5 
1= 6 
1= 8 
1= 9 
1= 10 
1= 11 
1= 12 
1= 13 
1= 19 
1= 20 

CONCLUSION: OVERALL. THE DATA IS NOT CONSISTENT 
WITH THE HYPOTHESIS. 



Appendix D 

Results of the Sectoral Profit Function Estimation 

The symmetric generalized McFadden flexible functional form with a quadratic spline model 

for technical progress, proposed by Diewert and Wales (1989b), was used to estimate the unit 

scale profit function. The model then has the following functional form: 

where 

and 

7T(p,t) = h(P) + d(P,t) 

2 \ aTp 

d(p,t) = < 

pTb2t + IpT b3t2 

pTb2t + ±pTb3t2i+pTb3(t_h)tl  

+ lpTb4{t_h)2 

for t < ti; 

for ri < t < r2; 

(D.l) 

(D.2) 

(D.3) 

pTb2t+l_pTb3t2+pTb3{t2_tl)tl 

+ \pTb\t2-tlf + pTb\t-t2)t1 

+ pTb\t - t2){t2 - ti) + \pTb5(t - t2f for t2<t<T. 

The values of the exogenous parameters of the model: a = (ai, a2,..., ajv)T > Ô v in (D.2) 

and the break points t\ and t2 in (D.3) for the estimated models are listed in table D.27. 

The exogenous parameters a„, n = 1,2,..., N were calculated as follows: 

1. Let r* be the time index of the reference price vector p* chosen to satisfy the restriction 

304 
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Bp* = ON- Then, define transformed price and quantity variables 

pn = 4r ̂ d (D.4) 
Pn 

= z*n(p*?) (D.5) 

for all goods n, n — 1,2,..., N and time periods t, t = 1,2,... ,T. 

2. For each good n, n = 1,2,..., N define the mean value of the quantity variables in (D.5) 
over the T time periods as 

l „ s % ^ . (D.6) 

3. For each good n, n = 1,2,..., N set a„ as 

Q = _ y y _ (= i p f o n i ^ , D 7 ) 

" — v^iV I - I l v^N i t* ~ I I ^ ' 
£fc=i l** l V E * = i l P f c ^ l / 

where 2^ is the mean of the unadjusted quantity variable. Hence, a„ is a relative measure 
of the value share of good n in production. If the relative value share of a good n is small, 
its corresponding a n will also be small. Note too that ctTp* = 1 when p* is set equal to 
the transformed price vector defined by (D.4). 

For the empirical work undertaken in this study, the reference year chosen for each sector is 
t* = 1971; therefore, by equation (D.4), the transformed prices pn

971 = 1.0 for all n or p* = ljv-
For each sector, several runs of the model using different values for the break points t\ 

and t2 were performed to search for those which yield higher values of the likelihood function. 
The size of the model and time and computer budget constraints precluded a full search over 
all possible ti and r 2 combinations. Initially, one-break models obtained by setting t2 = T 

and with the rank of the B matrix restricted to 5 were estimated. There were convergence 
difficulties encountered for the resources sector (sector I). For the other three sectoral profit 
functions, this form of the model involves 57 parameters. The one-break models with the 
t\ specification yielding the higher values for the likelihood function were reestimated with 
a maximal rank specification for B (rank(J3)=Ar — 1) which has an additional 3 parameters. 
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parameter sector I sector II sector III sector IV 
n good n a 
1 sector I goods «i 0.533 0.069 0.064 0.014 
2 sector II goods « 2 0.011 0.514 0.049 0.022 
3 sector III goods « 3 0.054 0.044 0.514 0.056 
4 sector IV goods a 4 0.110 0.071 0.078 0.573 
5 imports 0.051 0.110 0.067 0.022 
6 labor « 6 0.136 0.150 0.169 0.268 
7 inventories a 7 0.012 0.009 0.018 0.007 
8 machinery and equip. «s 0.076 0.035 0.040 0.038 
9 land <*9 0.016 

break points *1)<2 1967,1975 1965,1975 1967,1975 1970,1976 

Table D.27: Values of the exogenous parameters of the estimated models 

The log likelihood values for the maximal-rank one-break models, given the same ti from the 

earlier estimated models, did not change (up to the units decimal place). Hence, the results 

indicate that semiflexible estimation, which requires fewer parameters, will not greatly alter 

the results as opposed to the maximal rank models. Reverting to a rank of 5 specification for 

the B matrix, the two-break models were at first estimated using the t\ values selected for the 

one-break models as one of the break points. The log likelihood values increased in the order 

of 10 to 40 which can be considered significant, using the likelihood ratio test and considering 

that we added 8 more parameters. Therefore, the two-break models seem to be superior to the 

one-break models. Other combinations of t\ and t2 values were tried to obtain higher values 

of the likelihood function. For the resources sector which has JV + 1 = 10 goods, convergence 

was attained with the two-break model but there seems to be difficulty in estimation when the 

number of parameters is over 70; hence, the rank of the B matrix was restricted to 3. 

The maximum likelihood estimation was performed using the transformed prices p\ and 

quantities zn defined in equations (D.4) and (D.5) for n = 1,2,..., N and t = 1, 2,..., T. The 

observations for the years 1961,1962,1980 are indexed consecutively by t = 1,2,..., 20. 

For the normalizing good (structures), good N + 1, the quantity variable was set to unity at 
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the period t* by using the transformed variable 

for r = 1,2,.. . , T . Output quantities are indexed positively and input quantities are indexed 

negatively. 

For each sector, a system of N unit scale output supply and factor demand equations can 

be obtained using Hotelling's lemma. The system of equations is given by 

_ i ! _ = Vpjr(p*,*). (D.9) 
I ZN+1 I 

The functional form assumed for the unit scale profit function r is defined by equations (D.l)-

(D.3); the scalar z*N+1 and the components of the iV-dimensional vectors z* = (z\, z\,..., zN)T 

and p* = (p\,p2, • • • ,Pn)T a r e defined by equations (D.8), (D.5) and (D.4), respectively. Since 

the unit scale profit function is convex in prices, then the matrix B in (D.2) is restricted to be 

a symmetric positive semidefinite matrix by setting 

B = AAT (D.10) 

where A = [a,j] is a lower triangular matrix. Since restriction (D.10) is imposed, the system of 

equations given in (D.9) becomes nonlinear in the parameters. For identification, the restriction 

Bp* = On was imposed. To aid convergence of the nonlinear optimization routines, the semi-

flexible estimation technique where the rank of the matrix B is restricted to less than N — l was 

used. With semiflexible estimation, fewer parameters need to be estimated but second-order 

derivatives can still attain arbitrary values. The actual estimation model used in this study 

took the form 

~zl= [Vp7r(p«,t)] \zN+1\ +e (D.ll) 

where we denote the stochastic disturbance term appended to the model in (D.ll) by e = 

(ei, e 2,..., eu)T. We assume the e's are serially independent iV-variate normal with mean zero 

and covariance S which is constant over time. Full information maximum likelihood estimation 

for nonlinear simultaneous equations using quasi-Newton algorithms was performed. 
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The parameter estimates and their asymptotic standard errors and t-values for each of 

the four sectors are listed in tables D.28-D.31. The reported estimates (and their standard 

errors) of the technical progress parameters — b2,b3,b4 and b5 — are scaled up by a factor 

of 100.1 The standard errors are the square roots of the diagonal elements in the estimated 

covariance matrix, the inverse of the Hessian matrix of (minus) the log likelihood function. The 

t-values are computed by dividing the parameter estimates by their corresponding standard 

errors. Tables D.32-D.35 list the own price elasticities over the 20-year period and the cross-

price elasticities for 1971. Five-year interval cross-price elasticities for the different sectors are 

presented in tables D.36-D.39. The price elasticities e,-j, i, j = 1,2,..., iV, are defined as 

_ D \ Z J \ Pj _ dr(p,t)pj _ dh(p) P j 

' 3 dpj | ̂  | dpidpj zi dpidpj zi 

where | | is the predicted value of z,- and where h(p) is given in (D.2). By the homogeneity 

property of the profit function, [Vpp7r]p = Ojv; therefore, the row sums of the cross-price elastici

ties equal 1.0. Row and column labels (1), (2),..., (9) refer to the following goods, respectively: 

(1) resource goods (from sector I), 

(2) manufactured goods (from sector II), 

(3) manufactured goods (from sector III), 

(4) service goods (from sector IV), 

(5) imports, 

(6) labor, 

(7) inventories, 

(8) machinery and equipment, and 

(9) land. 

From tables D.32-D.35, an examination of the own price elasticities e„ across the four 

sectors suggests that elasticities are generally higher in the manufacturing sectors relative to 

the resources and services sectors. In particular, for the export market-oriented manufacturing 

'The actual value of the estimate can then be obtained by dividing the reported values by 100. 
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sector, the own price elasticities for the intermediate inputs are generally higher. Since the 

corresponding crOss-price elasticities would tend to be higher in magnitude with a greater value 

of the own price elasticity, the results can be indicative of greater flexibility in the manufacturing 

sectors. The manufacturing sectors, especially the export market-oriented sector, are in a better 

position to adjust in terms of additional output to changes in relative input prices. 

In terms of growth theory, it would be of interest to explore the relationship between the 

elasticities which measure the degree of substitutability and complementarity among goods and 

the rates of technical progress in the four sectors. For example, the resources sector has been 

subjected to a dramatic increase in its output price in the 1970s (see Appendix B) and displays 

greater fluctuations in the obtained nonparametric rates of technical progress and a decline 

towards technological regress in the parametric measure of technical progress (see Part II). A 

closer examination of the Divisia indices for input growth and output growth for this sector 

indicates that the rate of input growth has been quite steady while the rate of output growth 

shows wilder fluctuations. The low degree of substitutability among the inputs, as seen in 

table D.32, can be a partial explanation of the obtained measures of technological progress. 

It is also often hypothesized in the literature that the services sector has an inherently low 

productivity growth; this can be related to the low degree of substitutability among the goods 

in this sector. 

The own price elasticities of output supply are higher in the manufacturing sectors; they 

are in the range 1.6-2.3 but declining over the years in the export market-oriented sector and 

in the range 1.7-1.9 and increasing over the years in the domestic market-oriented sector. For 

the resources and services sector, output supply is generally inelastic with respect to its own 

price. However, the own price elasticity of output supply for the resources sector was increasing 

towards 1.0, from a value of 0.7 in 1961, over the years. For the services sector, it has been 

relatively stable in the range 0.21-0.27. 

Demand for imports is generally more elastic with respect to its own price compared to 

the demand for labor with respect to its own price in all the sectors. However, except for 
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the resources sector, the own price elasticity of import demand shows a declining trend. In 

contrast, the own price elasticity of labor demand, though less that 1.0 in all the sectors, 

shows an increasing trend. The own price elasticity of labor demand is relatively higher in the 

manufacturing sectors (0.4-0.9) and quite low in the resources sector (0.1-0.5) and the services 

sector (0.1-0.2). Hence, as can be seen too in the tables of cross-price elasticities (see rows 

corresponding to good (6)), employment effects of relative price changes will tend to be small 

in the services sector compared to the employment effects in the other sectors of the economy. 

As expected, the capital goods which verge on being fixed factors display smaller own 

price elasticites relative to other inputs. Inventories, which can be more easily adjusted than 

machinery and equipment or land, has generally higher own price elasticities, particularly for 

the resources sector in the 1970s. Land in the resources sector, being in almost fixed supply, 

has very low own price elasticities. The own price elasticity of the demand for machinery and 

equipment is slightly higher in the resources sector compared to the other sectors. 

The tables of cross-price elasticities e,j (tables D.32-D.39) show the degrees of substitutabil-

ity and complementarity among the goods. We define two goods to be substitutes if the cross 

partial derivatives of the profit function with respect to the prices of the two goods is negative. 

In the resources sector (I), all the input goods are substitutes with respect to the output good. 

Looking at row (2) for sector II and row (3) for sector III in the tables of cross-price elasticites, 

we see the same relationship between inputs and the output good, that is, an increase in the 

input prices leads to a decline in the output level. In contrast to the other sectors, the ser

vices sector has positive cross price elasticities, as seen in row (4) of the tables of cross price 

elasticities for sector IV, for its output and the intermediate inputs from the resources sector 

and the capital good inventories. The magnitude of these positive cross-price elasticities are 

small though. The low and positive cross price elasticity of output supply with respect to the 

price of intermediate inputs from the resources sector may explain why the services sector has 

been relatively immune, in terms of output levels, to the price increases of resource goods in 

the 1970s. 
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We next note the pairs of substitute inputs in the different sectors. If two inputs are 
substitutes, then an increase in the price of one of the inputs, keeping all other prices constant, 
increases the demand for the other input. In the resources sector (see tables of cross-price 
elasticities for sector I), the pairs of substitute inputs are: 

(3) and (7) — intermediate inputs from sector III and inventories, 
(3) and (9) — intermediate input from sector III and land, 
(4) and (9) — intermediate input from sector IV and land, 
(6) and (8) — labor and machinery and equipment, and 
(8) and (9) — machinery and equipment and land. 

The obtained elasticities are however small. Note that land seems to be substitutable with 
several other inputs. As land which really proxies for resource stock becomes scarce or depleted, 
we would expect the producer to use other inputs more intensively to extract output from the 
resource stock. The elasticities indicate a small degree of substitutability between machinery 
and equipment and labor; hence, even if capital subsidies may have a positive employment 
effect, the increase in labor employment due to a lower capital rental price for machinery and 
equipment may be small unless the capital subsidies lower the rental price substantially. In 1980, 
a decrease of 1% in the rental price of machinery and equipment would lead to only a 0.08% 
increase in labor employment in the resources sector. 

For sector II, the export market-oriented manufacturing sector, the following input pairs 
turn out as substitutes: 

(1) and (3) — intermediate inputs from sectors I and III, 
(1) and (6) — intermediate inputs from sector I and labor, 
(1) and (7) — intermediate inputs from sector I and inventories, 
(3) and (4) — intermediate inputs from sectors III and IV, 
(3) and (8) — intermediate inputs from sector III and machinery and equipment, 
(5) and (7) — imports and inventories, and 
(7) and (8) — inventories and machinery and equipment. 
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The positive cross-price elasticities, particularly for the intermediate inputs, are generally higher 

in this sector compared to the resources and services sectors. Therefore, it can be inferred that 

there is greater potential for input substitution in this sector. The cross-price elasticities for the 

pairs (5) and (7), and (7) and (8) are small; in particular, for imports (5) and inventories (7), 

their cross price elasticities are negative in the early years and can generally be considered near 

zero. 

The domestic market-oriented manufacturing sector, sector III, displays to a lesser extent 

compared to the export market-oriented sector some degree of substitutability between the 

following inputs: 

(1) and (2) — intermediate inputs from sectors I and II, 

(1) and (5) — intermediate inputs from sector I and imports, 

(1) and (6) — intermediate inputs from sector I and labor, 

(1) and (7) — intermediate inputs from sector I and inventories, and 

(4) and (7) — intermediate inputs from sector IV and inventories. 

Note that intermediate inputs of resource goods tend to be substitutable with a number of 

other inputs. This may have moderated the effects of the rapid rise of resource prices in the 

1970s on this sector. 

Though the cross-price elasticities are small, many pairs of inputs are turning up as substi

tutes in the services sector. These input pairs are: 

(1) and (2) — intermediate inputs from sectors I and II, 

(1) and (6) — intermediate inputs from sector I and labor, 

(1) and (7) — intermediate inputs from sector I and inventories, 

(1) and (8) — intermediate inputs from sector I and machinery and equipment, 

(2) and (7) — intermediate inputs from sector II and inventories, 

(2) and (8) — intermediate inputs from sector II and machinery and equipment, 

(3) and (6) — intermediate inputs from sector III and labor, 

(3) and (7) — intermediate inputs from sector III and inventories, 
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(3) and (8) — intermediate inputs from sector III and machinery and equipment, 

(5) and (6) — imports and labor, 

(5) and (7) — imports and inventories, 

(5) and (8) — imports and machinery and equipment, and 

(6) and (7) — labor and inventories. 

The substitutability of labor and the intermediate inputs of resource goods from sector I could 

have also contributed to buffering the services sector from the negative employment (and out

put) consequences of the rapid rise in resource prices in the 1970s. 

The above interpretation of the price elasticities are partial equilibrium in nature in the sense 

that it has been carried out only at the sectoral level where under the assumption of competitive 

markets, prices are assumed to be exogenous to the producer and the effects of a change in the 

price of a good on the prices of other goods are ignored. In a traditional trade-theoretic 

small open economy model of the economy linking the different sectors, the prices of domestic 

resources are treated as endogenous to the economy and the corresponding endowments of 

these domestic resources as exogenous variables. Part III of this dissertation offers a theoretical 

framework, the empirical implementation of which is left undone, to measure the comparative 

static response of the economy's endogenous variables — output levels, employment levels 

of fixed-price factors and flexible prices of domestic resources — to marginal changes in the 

economy's exogenous variables — output prices, fixed factor prices and endowments of flexibly-

priced domestic resources. Such a general equilibrium approach can capture the effects of 

sectoral reallocation of resources and of sectoral variation in producer prices due to taxes and 

subsidies. 

For example, for the sectoral analysis of the price elasticities, wages or the price of labor is 

assumed exogenous. In a general equilibrium framework if wages are considered flexible, then 

the employment effect due to changes in the exogenous variables such as output price changes or 

capital growth would entail merely a reallocation of the labor force among the different sectors; 

the effect on the overall employment level for the economy's production sector is zero because 



Appendix D. Results of the Sectoral Profit Function Estimation 314 

wages will adjust to ensure full employment. On the other hand, if wages are rigid and the 

supply of labor remains elastic, there can be a change in the overall employment level for the 

economy in addition to the sectoral reallocation that can occur. Generally, the comparative 

static response of the endogenous variables to marginal changes in the exogenous variables 

can be decomposed Slutsky-like into substitution and scale effects. Hence, the obtained price 

elasticities from the sectoral profit function estimation are just a partial description of the 

production sector of the economy. In growth accounting or measuring aggregate productivity, 

it may then be necessary to move to a general equilibrium approach for a more complete model 

of the production side of the economy. However, sectoral analysis remains an integral part of 

or at least a starting point for this approach. 
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Table D.28: Parameter estimates, standard errors and t-values, sector I 

Sector I: Resources 
standard 

error t- value 
parameter estimate (asymptotic) (asymptotic) 

b1 

H 13.799006 0.827440 16.676750 
H -0.094647 0.044012 -2.150480 
H -1.258935 0.101966 -12.346630 
bl -2.218970 0.125610 -17.665570 
H -1.505089 0.176363 -8.534035 
% -5.787323 0.142188 -40.701840 

-0.624200 0.022746 -27.441970 
bk -2.109089 0.072935 -28.917240 
bh -0.206752 0.005341 -38.708710 
A 

an 3.286856 0.321766 10.215050 
a2i -0.244728 0.046339 -5.281282 
a 3 i -0.506251 0.118429 -4.274710 
a 4 i -0.778740 0.108409 -7.183325 
<*51 -0.595962 0.056171 -10.609720 
061 -0.666742 0.155798 -4.279539 
a 7 i -0.074340 0.042467 -1.750519 
a s i -0.418550 0.159305 -2.627350 
a 22 -0.073879 0.072734 -1.015744 
a32 0.463805 0.179051 2.590355 
a 4 2 0.114735 0.135048 0.849589 
052 -0.061035 0.030047 -2.031323 
062 -0.612971 0.320180 -1.914458 
072 -0.165158 0.127568 -1.294669 
082 0.439017 0.321775 1.364361 
033 -0.020895 0.346730 -0.060262 
« 4 3 0.099870 0.099222 1.006536 
053 -0.000269 0.112486 -0.002392 
«63 0.529142 0.398849 1.326674 
a73 -0.218552 0.096419 -2.266688 
083 -0.438923 0.270604 -1.622013 
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Table D.28 (continued) 
Sector I: Resources 

standard 
error t-value 

parameter estimate (asymptotic) (asymptotic) 

b'i 20.340799 33.431060 0.608440 
-5.898559 1.177927 -5.007578 

H -9.149633 2.621344 -3.490435 
b\ -14.567232 4.591132 -3.172906 
% 26.149877 6.848966 3.818077 
H 35.263812 4.169841 8.456872 
H 2.100519 0.845487 2.484389 
% -1.910438 2.849728 -0.670393 
bl -1.965330 0.062321 -31.535750 
o3 

bi -7.134038 6.118050 -1.166064 
b% 0.929281 0.228558 4.065836 
b% 2.207236 0.518083 4.260395 
b\ 3.234346 0.840145 3.849746 
b% -5.341682 1.242165 -4.300298 
H -1.359469 0.713450 -1.905484 
.6? 0.032681 0.160953 0.203048 
H 1.733370 0.520742 3.328652 
b3

9 
0.238763 0.012965 18.415550 

64 

bt -1.883992 2.637624 -0.714276 
b\ 0.090897 0.107499 0.845559 
bi -0.190608 0.218444 -0.872570 
K -1.225994 0.379086 -3.234080 
bi 2.274203 0.539119 4.218366 
bi -2.345498 0.379104 -6.186952 
6| 0.121752 0.103464 1.176748 
bi -1.530660 0.281130 -5.444660 
bt -0.217965 0.031984 -6.814838 
b5 

b\ 3.039584 5.614411 0.541390 
b\ -0.233545 0.236010 -0.989554 
hi -0.446838 0.621889 -0.718518 
b\ 0.231474 0.794469 0.291357 
H 0.791551 1.206412 0.656119 
bl 0.645616 0.630591 1.023826 
b5r -0.466562 0.199491 -2.338764 
bl 0.791816 0.540652 1.464556 
b5

9 
-0.314715 0.079027 -3.982366 
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Table D.29: Parameter estimates, standard errors and t-values, sector II 

Sector II: Manufacturing, Export Market-Oriented 
standard 

error t-value 
parameter estimate (asymptotic) (asymptotic) 

bl 

H -2.582182 0.287752 -8.973637 
H 7.629525 0.814035 9.372475 
H -0.567492 0.162557 -3.491039 
bl -0.781366 0.194586 -4.015528 
bl -0.001625 0.251405 -0.006462 
bh -3.834844 0.319021 -12.020680 
b\ -0.175671 0.037645 -4.666511 
b\ -0.923145 0.019620 -47.050700 
A 

an 1.655250 0.196655 8.417023 
a 2i -1.750806 0.661433 -2.646988 
031 -0.556929 0.142866 -3.898251 
a 4i 0.262824 . 0.189390 1.387743 

0.849280 0.197018 4.310669 
-0.330582 0.295279 -1.119559 

a 7i -0.195123 0.036128 -5.400851 
a 2 2 5.506777 0.262682 20.963670 
032 -0.598850 0.142967 -4.188734 
a 4 2 -0.753136 0.130206 -5.784184 
«52 -2.005486 0.166316 -12.058270 
062 -1.958408 0.203998 -9.600114 
a 7 2 -0.093459 0.042068 -2.221615 
<*33 -1.262175 0.124537 -10.134900 
<J43 1.063532 0.178741 5.950114 
053 -0.225747 0.102218 -2.208487 
0-63 0.165269 0.137032 1.206063 
073 0.027141 0.019320 1.404779 
a 4 4 -0.473024 0.248447 -1.903926 

0.335029 0.269936 1.241139 
0.038151 0.286182 0.133311 

a 7 4 -0.075376 0.060743 -1.240903 
055 0.003132 1.144062 0.002737 
a65 -0.002796 1.013147 -0.002759 
075 -0.000894 0.323141 -0.002767 
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Table D.29 (continued) 
Sector II: Manufacturing, Export Market-Oriented 

standard 
error t-value 

parameter estimate (asymptotic) (asymptotic) 
9 
b\ -11.604543 12.655320 -0.916970 
bl 275.324850 11.588510 23.758430 
bl -27.664699 5.494059 -5.035384 
H -37.610446 4.670205 -8.053276 
H -64.603093 9.020864 -7.161519 
bl -91.974909 7.328957 -12.549520 
bl -2.309978 1.150459 -2.007876 
bl -5.070982 0.508327 -9.975835 
b3 

H 2.718063 2.969757 0.915248 
bl -47.139093 3.542087 -13.308280 
bl 4.237387 1.228671 3.448755 
bl 5.812041 1.009672 5.756365 
% 8.187019 2.167449 3.777260 
bl 20.984322 1.875887 11.186340 
6? 0.108092 0.267714 0.403758 
*>§ 0.570583 0.126702 4.503349 
b4 

bt -0.290378 0.683839 -0.424629 
bt 3.074872 2.286611 1.344729 
bi 1.087119 0.288349 3.770146 
bi -0.093692 0.355381 -0.263639 

-1.593152 0.623517 -2.555107 
bi -1.116796 0.660685 -1.690360 
b$ 0.442621 0.061552 7.190951 
bt -0.061131 0.048046 -1.272350 
b5 

b\ -3.008172 1.601283 -1.878601 
b\ -26.776933 7.123452 -3.758983 
bl 0.185781 0.649921 0.285852 
b\ 1.002010 1.122139 0.892946 
bl 16.242363 1.838392 8.835091 
bl 3.468409 1.878409 1.846461 
b5

7 
-0.825516 0.190162 -4.341108 

bl 0.959071 0.125465 7.644138 
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Table D.30: Parameter estimates, standard errors and t-values, sector III 

Sector III: Manufacturing, Domestic Market-Oriented 
standard 

error t-value 
parameter estimate (asymptotic) (asymptotic) 

&1 

-3.322721 0.239550 -13.870670 
H -1.500219 0.176741 -8.488239 

16.919832 1.273659 13.284430 
K -2.635995 0.298254 -8.838074 
H -1.367133 0.319178 -4.283297 
bh -8.245282 0.522735 -15.773360 
H -0.594410 0.147615 -4.026752 
% -1.468335 0.133692 -10.983000 
A 

a n 1.096568 0.134312 8.164330 
a 2 i -0.134455 0.207034 -0.649431 
031 -0.824493 1.410008 -0.584743 
a 4 i 0.198039 0.377527 0.524570 
a s i -0.011911 0.332377 -0.035835 
0.61 -0.117676 0.550047 -0.213938 
a 7 i -0.345585 0.193487 -1.786086 
a 2 2 

0.904617 0.148623 6.086655 
032 -6.078417 1.154577 -5.264625 
a 4 2 0.633608 0.339589 1.865808 
152 2.170306 0.287607 7.546085 
a62 2.130666 0.544107 3.915897 
a 7 2 -0.008462 0.217924 -0.038828 
033 -2.568172 1.885418 -1.362123 
a43 0.921985 0.306376 3.009329 
a53 0.220493 1.222544 0.180356 
a63 0.972877 0.890977 1.091923 
a 7 3 0.354448 0.302668 1.171078 
a 4 4 

0.814931 0.314691 2.589624 
as4 -0.074592 0.574468 -0.129846 
a64 -0.318221 0.181506 -1.753223 
a 7 4 -0.336136 0.228753 -1.469432 
a 5 5 0.507081 0.435560 1.164203 
065 0.088481 0.175135 0.505217 
Q75 -0.061200 0.360530 -0.169750 
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Table D.30 (continued) 
Sector III: Manufacturing, Domestic Market-Oriented 

standard 
error t-value 

parameter estimate (asymptotic) (asymptotic) 
b2 

% -11.070679 5.165415 -2.143231 
-27.898475 3.143094 -8.876119 

H 201.439450 18.928080 10.642360 
-29.767489 2.833704 -10.504800 

H -23.083506 7.436062 -3.104265 
b% -64.116532 7.420050 -8.640984 
b>7 -8.533584 1.739235 -4.906517 
bl -8.487185 1.734876 -4.892100 
63 

bl 2.747288 0.949014 2.894887 
bl 3.997967 0.582058 6.868678 
b% -27.635982 4.189496 -6.596494 
b\ 4.383823 0.694869 6.308847 
H 1.205501 1.425000 0.845966 
bl 14.363389 1.318002 10.897850 
6? 1.439613 0.354211 4.064281 
b% 1.036993 0.213732 4.851843 
ft4 

bt -1.230061 0.367373 -3.348261 
bt -0.331166 0.403924 -0.819872 
bi 5.875659 3.250754 1.807476 
bi -0.984166 0.369839 -2.661068 
bi -0.537429 0.875302 -0.613992 
bi -4.449707 0.747030 -5.956532 
64 -0.085350 0.143799 -0.593541 
bi -0.521291 0.106588 -4.890705 
b5 

b\ 0.017332 0.987729 0.017548 
bl 0.156246 1.159823 0.134716 
bl 4.737317 10.085370 0.469721 
b\ -1.590329 1.216161 -1.307663 
b\ -2.827169 2.526988 -1.118790 
bl -1.924429 2.297103 -0.837764 
65

7 -0.002854 0.470645 -0.006065 
bl 1.457042 0.354564 4.109392 
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Table D.31: Parameter estimates, standard errors and t-values, sector IV 

Sector IV: Services 
standard 

error t- value 
parameter estimate (asymptotic) (asymptotic) 

61 

b[ -2.046595 0.174851 -11.704820 
b\ -2.162369 0.322279 -6.709610 
H -6.097963 0.379425 -16.071570 
b\ 53.229182 1.492589 35.662310 
H -2.404431 0.197531 -12.172430 
bk -30.945265 1.320193 -23.439960 
b\ -1.182908 0.144762 -8.171427 
bl -2.726253 0.103621 -26.309930 
A 

a n -0.736051 0.108259 -6.799003 
a 2 i 0.285793 0.227262 1.257550 
« 3 1 -0.736665 0.373461 -1.972536 
a 4 l -0.964165 1.161019 -0.830447 
a 5 i -0.064099 0.165806 -0.386590 
^61 1.675580 0.854913 1.959942 
a 7i 0.127689 0.121532 1.050664 
a 2 2 

-1.253453 0.199214 -6.291977 
032 -0.794715 0.544978 -1.458251 
a 4 2 3.064562 1.001811 3.059023 
052 -0.374866 0.132440 -2.830461 
062 -1.041441 0.960164 -1.084650 
a 7 2 0.047832 0.095831 0.499127 
033 0.574061 0.287264 1.998374 
a 4 3 -1.284578 0.672928 -1.908938 
053 0.107470 0.597442 0.179883 
a63 -0.181678 0.781197 -0.232563 
073 0.032806 0.346793 0.094598 
a 4 4 -0.895283 0.857428 -1.044150 
054 1.097282 0.601043 1.825629 
064 -0.033783 1.429727 -0.023629 
a 7 4 -0.246516 0.532554 -0.462894 
as s -0.397483 1.591915 -0.249689 
065 0.735647 0.979069 0.751375 
075 -0.372666 0.460289 -0.809634 
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Table D.31 (continued) 
Sector IV: Services 

standard 
error t-value 

parameter estimate (asymptotic) (asymptotic) 

H 2.498398 3.713159 0.672850 
b\ -17.168179 4.080740 -4.207124 
bl -17.930061 7.443717 -2.408751 
b\ 140.092390 26.159090 5.355401 
b\ -1.748013 6.251669 -0.279607 
bl 26.506863 17.949280 1.476765 
bl -0.227954 3.475307 -0.065592 
bl 0.558538 1.752088 0.318784 
b3 

b3 0.494163 0.554107 0.891818 
b3

2 
2.512109 0.721581 3.481396 

bl 3.205970 1.093766 2.931131 
bl -14.920833 3.995621 -3.734297 
% -0.093894 0.983450 -0.095475 
b3e 1.293060 2.490229 0.519253 
bl 0.854487 0.558848 1.529014 
bl -1.398014 0.253352 -5.518068 
b4 

bl -2.398159 0.687961 -3.485895 
b\ -0.255665 0.971271 -0.263227 
bi -0.893248 1.554534 -0.574608 
bi -12.396742 6.840618 -1.812225 

0.858210 1.289008 0.665792 
bi 5.873732 4.566607 1.286235 
«4 -1.017362 0.737588 -1.379310 
bt 1.470164 0.377277 3.896776 
b5 

b\ -0.173813 1.227695 -0.141577 
bl -1.012060 1.415244 -0.715114 
b\ -1.551109 2.802733 -0.553427 
b\ 24.873926 14.402620 1.727042 
bl -3.733729 2.378537 -1.569758 
bl -8.905718 7.735176 -1.151327 
67 1.341349 1.283622 1.044972 
bl -1.593550 0.593514 -2.684939 
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Table D.32: Own price elasticities and 1971 cross-price elasticities, sector I 

Sector I: Resources 
own price elasticities, f 
year (1) (2) (3) (4) (5) (6) (7) (8) (9) 
1961 0.679 -0.268 -0.361 -0.249 -0.284 -0.127 -0.133 -0.297 -0.074 
1962 0.744 -0.272 -0.337 -0.228 -0.402 -0.144 -0.239 -0.330 -0.070 
1963 0.778 -0.261 -0.336 -0.222 -0.479 -0.158 -0.281 -0.353 -0.070 
1964 0.787 -0.240 -0.340 -0.223 -0.538 -0.166 -0.248 -0.360 -0.070 
1965 0.794 -0.228 -0.336 -0.222 -0.545 -0.185 -0.268 -0.368 -0.067 
1966 0.819 -0.228 -0.329 -0.218 -0.529 -0.215 -0.372 -0.388 -0.065 
1967 0.782 -0.206 -0.340 -0.234 -0.452 -0.231 -0.222 -0.341 -0.059 
1968 0.824 -0.227 -0.356 -0.245 -0.419 -0.264 -0.252 -0.362 -0.061 
1969 0.863 -0.247 -0.380 -0.257 -0.382 -0.306 -0.267 -0.373 -0.056 
1970 0.874 -0.250 -0.392 -0.268 -0.358 -0.335 -0.220 -0.362 -0.051 
1971 0.890 -0.263 -0.421 -0.283 -0.287 -0.392 -0.220 -0.366 -0.042 
1972 0.897 -0.258 -0.419 -0.278 -0.273 -0.425 -0.268 -0.364 -0.045 
1973 0.874 -0.226 -0.355 -0.236 -0.248 -0.452 -0.755 -0.385 -0.064 
1974 0.901 -0.200 -0.324 -0.199 -0.404 -0.401 -1.069 -0.348 -0.059 
1975 0.901 -0.192 -0.328 -0.195 -0.430 -0.400 -1.018 -0.319 -0.053 
1976 0.946 -0.212 -0.344 -0.208 -0.459 -0.448 -0.748 -0.290 -0.047 
1977 0.968 -0.213 -0.347 -0.208 -0.504 -0.475 -0.595 -0.264 -0.041 
1978 0.980 -0.207 -0.346 -0.199 -0.528 -0.487 -0.824 -0.271 -0.036 
1979 0.984 -0.195 -0.337 -0.179 -0.613 -0.451 -1.167 -0.284 -0.039 
1980 1.100 -0.211 -0.339 -0.169 -0.901 -0.458 -1.357 -0.275 -0.036 
1971 cross-price elasticities, e,j 
A i (1) (2) (3) (4) (5) (6) 00 (8) (9) 
(i) 0.890 -0.066 -0.137 -0.211 -0.161 -0.181 -0.020 -0.113 -0.000 
(2) 3.239 -0.263 -0.361 -0.733 -0.605 -0.839 -0.122 -0.282 -0.033 
(3) 1.483 -0.080 -0.421 -0.397 -0.244 -0.038 0.031 -0.379 0.043 
(4) 1.152 -0.082 -0.200 -6.283 -0.206 -0.226 -0.008 -0.150 0.003 
(5) 1.566 -0.120 -0.219 -0.365 -0.287 -0.347 -0.044 -0.178 -0.006 
(6) 0.780 -0.074 -0.015 -0.179 -0.155 -0.392 -0.013 0.079 -0.033 
(7) 0.667 -0.083 0.094 -0.047 -0.149 -0.096 -0.220 -0.149 -0.018 
(8) 0.898 -0.046 -0.277 -0.217 -0.145 0.145 -0.036 -0.366 0.044 
(9) 0.016 -0.026 0.155 0.019 -0.023 -0.290 -0.021 0.213 -0.042 

Note: Column labels (1),..., (9) refer to the following goods, respectively: 
(1) resource goods (from sector I), 
(2) manufactured goods (from sector II), 
(3) manufactured goods (from sector III), 
(4) service goods (from sector IV), 
(5) imports, 
(6) labor, 
(7) inventories, 
(8) machinery and equipment, and 
(9) land. 
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Table D.33: Own price elasticities and 1971 cross-price elasticities, sector II 

Sector II: Manufacturing, Export Market-Oriented 
own price elasticities, en 
year (1) (2) (3) (4) (5) (6) (7) (8) 
1961 -1.020 2.310 -2.433 -1.186 -2.885 -0.524 -0.213 -0.115 
1962 -1.002 2.165 -2.058 -1.053 -2.748 -0.485 -0.254 -0.120 
1963 -0.973 1.988 -1.791 -0.946 -2.322 -0.470 -0.268 -0.125 
1964 -0.964 1.893 -1.622 -0.883 -2.080 -0.468 -0.261 -0.129 
1965 -0.963 1.844 -1.528 -0.846 -1.891 -0.485 -0.262 -0.130 
1966 -1.015 1.842 -1.496 -0.812 -1.801 -0.521 -0.197 -0.111 
1967 -1.049 1.896 -1.515 -0.815 -1.793 -0.569 -0.188 -0.093 
1968 -1.035 1.902 -1.442 -0.823 -1.675 -0.620 -0.221 -0.093 
1969 -1.012 1.902 -1.393 -0.830 -1.572 -0.660 -0.254 -0.100 
1970 -1.059 1.893 -1.403 -0.811 -1.485 -0.707 -0.132 -0.077 
1971 -0.994 1.811 -1.401 -0.808 -1.253 -0.759 -0.175 -0.079 
1972 -0.974 1.777 -1.375 -0.796 -1.141 -0.801 -0.230 -0.082 
1973 -1.062 1.691 -1.260 -0.746 -1.004 -0.799 -0.302 -0.094 
1974 -1.295 1.639 -1.290 -0.668 -0.935 -0.781 -0.229 -0.092 
1975 -1.565 1.699 -1.377 -0.644 -0.976 -0.805 -0.149 -0.068 
1976 -1.672 1.762 -1.373 -0.676 -0.931 -0.904 -0.159 -0.063 
1977 -1.783 1.810 -1.320 -0.665 -0.962 -0.935 -0.164 -0.067 
1978 -1.769 1.813 -1.288 -0.635 -1.001 -0.920 -0.208 -0.075 
1979 -1.719. 1.696 -1.262 -0.554 -0.959 -0.856 -0.226 -0.084 
1980 -1.815 1.779 -1.349 -0.542 -1.060 -0.891 -0.119 -0.072 
1971 cross-price elasticities, e;j 
i\j (1) (2) (3) (4) (5) (6) (7) (8) 
(1) -0.994 1.052 0.335 -0.158 -0.510 0.199 0.117 -0.040 
(2) -0.157 1.811 -0.126 -0.250 -0.680 -0.554 -0.009 -0.035 
(3) 0.571 1.439 -1.401 0.643 -0.628 -0.711 -0.081 0.168 
(4) -0.176 1.869 0.421 -0.808 -0.542 -0.627 -0.034 -0.103 
(5) -0.359 3.200 -0.259 -0.341 -1.253 -0.925 0.002 -0.066 
(6) 0.105 1.950 -0.219 -0.295 -0.692 -0.759 -0.048 -0.041 
(7) 1.062 0.569 -0.429 -0.275 0.032 -0.819 -0.175 0.035 
(8) -0.088 0.522 0.217 -0.204 -0.206 -0.171 0.009 -0.079 

Note: Column labels (l),..., (8) refer to the following goods, respectively: 
(1) resource goods (from sector I), 
(2) manufactured goods (from sector II), 
(3) manufactured goods (from sector III), 
(4) service goods (from sector IV), 
(5) imports, 
(6) labor, 
(7) inventories, and 
(8) machinery and equipment. 
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Table D.34: Own price elasticities and 1971 cross-price elasticities, sector III 

Sector III: Manufacturing, Domestic Market-Oriented 
own price elasticities, e;; 
year (1) (2) (3) (4) (5) (6) (7) (8) 
1961 -0.388 -0.398 1.799 -0.566 -2.029 -0.435 -0.349 -0.196 
1962 -0.393 -0.383 1.834 -0.536 -2.326 -0.427 -0.409 -0.220 
1963 -0.377 -0.362 1.814 -0.509 -2.460 -0.425 -0.401 -0.220 
1964 -0.364 -0.347 1.774 -0.491 -2.323 -0.430 -0.444 -0.244 
1965 -0.370 -0.335 1.709 -0.482 -2.060 -0.441 -0.427 -0.248 
1966 -0.389 -0.327 1.680 -0.474 -1.925 -0.466 -0.380 -0.229 
1967 -0.395 -0.326 1.677 -0.486 -1.826 -0.505 -0.331 -0.200 
1968 -0.393 -0.331 1.733 -0.503 -1.812 -0.552 -0.394 -0.207 
1969 -0.395 -0.336 1.782 -0.512 -1.822 -0.596 -0.414 -0.208 
1970 -0.400 -0.355 1.852 -0.534 -1.909 -0.651 -0.332 -0.182 
1971 -0.376 -0.335 1.766 -0.530 -1.514 -0.691 -0.461 -0.202 
1972 -0.404 -0.325 1.764 -0.522 -1.436 -0.727 -0.507 -0.203 
1973 -0.507 -0.321 1.744 -0.488 -1.404 -0.724 -0.493 -0.198 
1974 -0.558 -0.342 1.761 -0.451 -1.517 -0.721 -0.427 -0.174 
1975 -0.516 -0.341 1.685 -0.442 -1.358 -0.735 -0.365 -0.156 
1976 -0.472 -0.362 1.803 -0.476 -1.399 -0.843 -0.388 -0.153 
1977 -0.454 -0.387 1.923 -0.483 -1.576 -0.905 -0.374 -0.150 
1978 -0.487 -0.370 1.830 -0.456 -1.416 -0.863 -0.394 -0.160 
1979 -0.509 -0.392 1.793 -0.411 -1.387 -0.827 -0.416 -0.165 
1980 -0.496 -0.428 1.910 -0.407 -1.600 -0.866 -0.324 -0.147 
1971 cross-price elasticities, e,j 

(1) (2) (3) (4) (5) (6) (7) (8) 
(i) -0.376 0.046 0.283 -0.068 0.004 0.040 0.119 -0.048 
(2) 0.059 -0.335 2.158 -0.219 -0.787 -0.778 -0.016 -0.082 
(3) -0.036 -0.215 1.766 -0.255 -0.549 -0.613 -0.023 -0.075 
(4) -0.059 -0.148 1.731 -0.530 -0.411 -0.533 0.006 -0.056 
(5) 0.004 -0.592 4.146 -0.457 -1.514 -1.480 -0.017 -0.088 
(6) 0.016 -0.240 1.892 -0.242 -0.605 -0.691 -0.058 -0.072 
(7) 0.483 -0.049 0.732 0.027 -0.074 -0.598 -0.461 -0.059 

(8) -0.081 -0.108 0.986 -0.108 -0.154 -0.309 -0.024 -0.202 

Note: Column labels (1) 
(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 
(8) 

., (8) refer to the following goods, respectively: 
resource goods (from sector I), 
manufactured goods (from sector II), 
manufactured goods (from sector III), 
service goods (from sector IV), 
imports, 
labor, 
inventories, and 
machinery and equipment. 
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Table D.35: Own price elasticities and 1971 cross-price elasticities, sector IV 

Sector IV: Services 
own price elasticities, e,-,-
year (1) (2) (3) (4) (5) (6) (7) (8) 
1961 -0.419 -0.665 -0.287 0.231 -0.755 -0.130 -0.161 -0.367 
1962 -0.433 -0.711 -0.285 0.264 -1.750 -0.131 -0.142 -0.371 
1963 -0.422 -0.694 -0.277 0.263 -1.814 -0.133 -0.148 -0.373 
1964 -0.414 -0.700 -0.275 0.266 -2.032 -0.135 -0.164 -0.380 
1965 -0.409 -0.692 -0.270 0.263 -1.944 -0.138 -0.160 -0.366 
1966 -0.402 -0.675 -0.263 0.255 -1.716 -0.142 -0.176 -0.343 
1967 -0.399 -0.668 -0.258 0.250 -1.543 -0.146 -0.179 -0.312 
1968 -0.386 -0.689 -0.252 0.245 -1.312 -0.150 -0.201 -0.297 
1969 -0.375 -0.703 -0.250 0.242 -1.192 -0.153 -0.219 -0.273 
1970 -0.372 -0.681 -0.248 0.239 -1.165 -0.158 -0.246 -0.258 
1971 -0.364 -0.649 -0.244 0.214 -0.573 -0.164 -0.313 -0.248 
1972 -0.361 -0.716 -0.246 0.218 -0.558 -0.168 -0.408 -0.237 
1973 -0.409 -0.825 -0.253 0.225 -0.559 -0.173 -0.461 -0.219 
1974 -0.601 -0.856 -0.277 0.226 -0.599 -0.182 -0.443 -0.194 
1975 -0.605 -0.845 -0.278 0.225 -0.592 -0.191 -0.433 -0.177 
1976 -0.578 -0.847 -0.269 0.223 -0.552 -0.200 -0.444 -0.164 
1977 -0.609 -0.898 -0.273 0.230 -0.593 -0.206 -0.290 -0.158 
1978 -0.632 -0.952 -0.280 0.232 -0.616 -0.210 -0.429 -0.165 
1979 -0.660 -1.147 -0.305 0.244 -0.653 -0.212 -0.683 -0.167 
1980 -0.677 -1.064 -0.306 0.237 -0.607 -0.222 -0.769 -0.154 
1971 cross-price elasticities, e,j 
i\j (1) (2) (3) (4) (5) (6) (7) (8) 
(1) -0.364 0.141 -0.365 -0.477 -0.032 0.829 0.063 0.204 
(2) 0.083 -0.649 -0.309 1.618 -0.177 -0.701 0.009 0.127 
(3) -0.088 -0.128 -0.244 0.400 -0.066 0.083 0.018 0.025 
(4) 0.012 -0.069 -0.041 0.214 -0.037 -0.076 0.003 -0.006 
(5) -0.018 -0.170 -0.154 0.833 -0.573 0.025 0.055 0.002 
(6). 0.045 -0.066 0.019 0.167 0.002 -0.164 0.004 -0.008 
(7) 0.134 0.033 0.162 -0.288 0.207 0.154 -0.313 -0.088 
(8) 0.087 0.093 0.043 0.101 0.002 -0.060 -0.018 -0.248 

Note: Column labels (1),..., (8) refer to the following goods, respectively: 
(1) resource goods (from sector I), 
(2) manufactured goods (from sector II), 
(3) manufactured goods (from sector III), 
(4) service goods (from sector IV), 
(5) imports, 
(6) labor, 
(7) inventories, and 
(8) machinery and equipment. 
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Table D.36: Five-year interval cross-price elasticities, sector I 

Sector I: Resources 
cross-price elasticities, dj 

i\j (1) (2) (3) (4) (5) (6) (7) (8) (9) 
year 1961: 
(1) 0.679 -0.051 -0.119 -0.159 -0.140 -0.083 -0.017 -0.110 -0.000 
(2) 3.131 -0.268 -0.395 -0.724 -0.687 -0.543 -0.126 -0.333 -0.054 
(3) 1.282 -0.070 -0.361 -0.316 -0.231 -0.035 0.024 -0.336 0.044 
(4) 1.020 -0.076 -0.188 -0.249 -0.211 -0.139 -0.009 -0.146 -0.002 
(5) 1.334 -0.107 -0.203 -0.313 -0.284 -0.200 -0.039 -0.175 -0.012 
(6) 0.365 -0.039 -0.014 -0.095 -0.092 -0.127 -0.008 0.035 -0.024 
(7) 0.428 -0.053 0.056 -0.035 -0.105 -0.044 -0.133 -0.098 -0.016 
(8) 0.773 -0.039 -0.219 -0.160 -0.129 0.056 -0.027 -0.297 0.042 
(9) 0.002 -0.039 0.180 -0.012 -0.055 -0.242 -0.028 0.269 -0.074 
year 1965: 
(1) 0.794 -0.056 -0.122 -0.165 -0.186 -0.104 -0.031 -0.133 0.001 
(2) 2.887 -0.228 -0.317 -0.588 -0;710 -0.536 -0.164 -0.301 -0.043 
(3) 1.243 -0.063 -0.336 -0.287 -0.259 -0.024 0.043 -0.367 0.050 
(4) 0.999 -0.069 -0.170 -0.222 -0.236 -0.147 -0.006 -0.150 0.001 
(5) 2.270 -0.169 -0.309 -0.474 -0.545 -0.365 -0.091 -0.302 -0.015 
(6) 0.460 -0.046 -0.011 -0.107 -0.132 -0.185 -0.010 0.064 -0.032 
(7) 0.611 -0.064 0.084 -0.021 -0.149 -0.047 -0.268 -0.129 -0.019 
(8) 0.843 -0.037 -0.228 -0.157 -0.157 0.092 -0.041 -0.368 0.054 
(») -0.044 -0.027 0.155 0.006 -0.038 -0.230 -0.030 0.274 -0.067 
year 1970: 
(1) 0.874 -0.063 -0.130 -0.197 -0.191 -0.159 -0.021 -0.112 -0.000 
(2) 3.164 -0.250 -0.341 -0.684 -0.712 -0.743 -0.124 -0.274 -0.037 
(3) 1.433 -0.075 -0.392 -0.366 -0.283 -0.033 0.031 -0.364 0.048 
(4) 1.139 -0.079 -0.192 -0.268 -0.245 -0.204 -0.007 -0.147 0.003 
(5) 1.625 -0.121 -0.219 -0.362 -0.358 -0.327 -0.046 -0.184 -0.007 
(6) 0.725 -0.068 -0.014 -0.161 -0.175 -0.335 -0.012 0.075 -0.036 
(7) 0.659 -0.078 0.090 -0.040 -0.171 -0.081 -0.220 -0.141 -0.019 
(8) 0.902 -0.044 -0.266 -0.204 -0.173 0.132 -0.036 -0.362 0.050 
(9) 0.009 -0.026 0.154 0.017 -0.029 -0.273 -0.022 0.220 -0.051 
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Table D.36 (continued) 

Sector I: Resources 

cross-price elasticities, dj 
i\j (1) (2) (3) (4) (5) («)• (7) (8) (9) 

year 1975: 

(1) 0.901 -0.050 -0.108 -0.153 -0.254 -0.171 -0.054 -0.107 -0.004 

(2) 3.267 -0.192 -0.301 -0.529 -0.927 -0.752 -0.244 -0.271 -0.051 

(3) 1.327 -0.057 -0.328 -0.284 -0.369 -0.066 0.059 -0.338 0.055 

(4) 1.043 -0.056 -0.157 -0.195 -0.297 -0.196 -0.009 -0.135 0.002 

(5) 1.521 -0.086 -0.179 -0.260 -0.430 -0.308 -0.081 -0.167 -0.010 

(6) 0.940 -0.064 -0.029 -0.157 -0.282 -0.400 -0.021 0.068 -0.055 

(7) 2.005 -0.139 0.178 -0.051 -0.500 -0.140 -1.018 -0.287 -0.047 

(8) 0.855 -0.033 -0.219 -0.158 -0.222 0.099 -0.062 -0.319 0.059 

(9) 0.087 -0.018 0.099 0.006 -0.037 -0.221 -0.028 0.165 -0.053 

year 1980: 

(1) 1.100 -0.056 -0.113 -0.162 -0.419 -0.193 -0.042 -0.110 -0.005 

(2) 3.941 -0.211 -0.310 -0.552 -1.507 -0.820 -0.202 -0.282 -0.056 

(3) 1.613 -0.063 -0.339 -0.297 -0.601 -0.068 0.046 -0.353 0.062 

(4) 1.057 -0.051 -0.135 -0.169 -0.402 -0.176 -0.008 -0.118 0.002 

(5) 2.365 -0.121 -0.237 -0.349 -0.901 -0.430 -0.088 -0.225 -0.014 

(6) 1.225 -0.074 -0.030 -0.171 -0.483 -0.458 -0.021 0.075 -0.063 

CO 3.663 -0.249 0.280 -0.110 -1.348 -0.281 -1.357 -0.508 -0.091 

(8) 0.829 -0.030 -0.186 -0.137 -0.300 0.089 -0.044 -0.275 0.054 

( » ) 0.071 -0.012 0.063 0.005 -0.036 -0.146 -0.015 0.105 -0.036 

Note: Column labels (1 ) , . . . , (9) refer to the following goods, respectively: 
(1) resource goods (from sector I), 
(2) manufactured goods (from sector II), 
(3) manufactured goods (from sector III), 
(4) service goods (from sector IV), 
(5) imports, 
(6) labor, 
(7) inventories, 
(8) machinery and equipment, and 
(9) land. 
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Table D.37: Five-year interval cross-price elasticities, sector II 

Sector II: Manufacturing, Export Market-Oriented 
cross-price elasticities, e,j 

i\j (1) (2) (3) (4) (5) (6) (7) (8) 
year 1961: 
(1) -1.020 1.215 0.373 -0.181 -0.579 0.121 0.123 -0.050 
(2) -0.231 2.310 -0.193 -0.338 -0.944 -0.529 -0.013 -0.062 
(3) 0.875 2.381 -2.433 0.970 -1.097 -0.851 -0.135 0.291 
(4) -0.271 2.651 0.617 -1.186 -0.876 -0.695 -0.055 -0.186 
(5) -0.799 6.846 -0.646 -0.810 -2.885 -1.506 -0.005 -0.195 
(6) 0.077 1.769 -0.231 -0.296 -0.694 -0.524 -0.047 -0.054 
(7) 1.204 0.664 -0.565 -0.360 -0.034 -0.728 -0.213 0.033 
(8) -0.110 0.708 0.269 -0.270 -0.306 -0.184 0.007 -0.115 
year 1965: 
(1) -0.963 1.083 0.337 -0.154 -0.550 0.132 0.174 -0.058 
(2) -0.173 1.844 -0.141 -0.249 -0.767 -0.440 -0.015 -0.059 
(3) 0.582 1.519 -1.528 0.615 -0.727 -0.579 -0.131 0.249 
(4) -0.200 2.024 0.464 -0.846 -0.666 -0.542 -0.060 -0.173 
(5) -0.505 4.396 -0.387 -0.470 -1.891 -0.997 -0.000 -0.146 
(6) 0.076 1.588 -0.194 -0.241 -0.628 -0.485 -0.062 -0.055 
(7) 1.009 0.544 -0.442 -0.268 -0.001 -0.621 -0.262 0.042 
(8) -0.098 0.626 0.244 -0.225 -0.269 -0.161 0.012 -0.130 
year 1970: 
(1) -1.059 1.159 0.359 -0.163 -0.570 0.209 0.103 -0.038 
(2) -0.169 1.893 -0.130 -0.254 -0.754 -0.543 -0.007 -0.035 
(3) 0.581 1.444 -1.403 0.633 -0.669 -0.680 -0.068 0.162 
(4) -0.177 1.890 0.426 -0.811 -0.587 -0.610 -0.029 -0.102 
(5) -0.396 3.590 -0.287 -0.375 -1.485 -0.979 0.002 -0.070 
(6) 0.106 1.897 -0.214 -0.286 -0.718 -0.707 -0.039 -0.039 
(7) 0.966 0.474 -0.391 -0.252 0.024 -0.717 -0.132 0.028 
(8) -0.085 0.532 0.221 -0.207 -0.223 -0.169 0.007 -0.077 
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Table D.37 (continued)  
Sector II: Manufacturing, Export Market-Oriented 

cross-price elasticities, e,j 
(1) (2) (3) (4) (5) (6) (7) (8) 

year 1975: 

(1) -1.565 1.490 0.444 -0.167 -0.617 0.319 0.133 -0.038 
(2) -0.197 1.699 -0.110 -0.207 -0.631 -0.520 -0.005 -0.029 
(3) 0.722 1.351 -1.377 0.580 -0.615 -0.744 -0.072 0.155 
(4) -0.169 1.592 0.361 -0.644 -0.459 -0.570 -0.027 -0.084 
(5) -0.328 2.544 -0.201 -0.241 -0.976 -0.753 0.001 -0.046 
(6) 0.156 1.917 -0.223 -0.274 -0.688 -0.805 -0.044 -0.039 
87) 1.267 0.379 -0.420 -0.257 0.015 -0.859 -0.149 0.024 

(8) -0.078 0.456 0.197 -0.171 -0.177 -0.165 0.005 -0.068 
year 1980: 

(1) -1.815 1.662 0.448 -0.145 -0.621 0.380 0.123 -0.032 
(2) -0.245 1.779 -0.101 -0.198 -0.668 -0.532 -0.003 -0.032 
(3) 0.849 1.290 -1.349 0.549 -0.648 -0.794 -0.067 0.169 
(4) -0.154 1.427 0.308 -0.542 -0.415 -0.521 -0.023 -0.081 
(5) -0.377 2.744 -0.207 -0.237 -1.060 -0.813 0.000 -0.050 
(6) 0.215 2.035 -0.236 -0.277 -0.756 -0.891 -0.044 -0.045 
(7) 1.272 0.217 -0.365 -0.222 0.001 -0.802 -0.119 0.017 

(8) -0.066 0.442 0.183 -0.156 -0.169 -0.165 0.003 -0.072 

Note: Column labels (1),..., (8) refer to the following goods, respectively: 
(1) resource goods (from sector I), 
(2) manufactured goods (from sector II), 
(3) manufactured goods (from sector III), 
(4) service goods (from sector IV), 
(5) imports, 
(6) labor, 
(7) inventories, and 
(8) machinery and equipment. 
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Table D.38: Five-year interval cross-price elasticities, sector III 

Sector I I I : Manufacturing, Domestic Market-Oriented 
cross-price elasticities, Uj 

i\j (1) (2) (3) (4) (5) (6) (7) (8) 
year 1961: 
(1) -0.388 0.036 0.396 -0.076 -0.024 0.006 0.094 -0.044 
(2) 0.054 -0.398 2.430 -0.266 -1.026 -0.678 -0.022 -0.091 
(3) -0.058 -0.237 1.799 -0.270 -0.660 -0.483 -0.020 -0.072 
(4) -0.077 -0.180 1.878 -0.566 -0.534 -0.457 -0.002 -0.062 
(5) -0.025 -0.727 4.797 -0.559 -2.029 -1.319 -0.029 -0.109 
(6) 0.003 -0.208 1.523 -0.208 -0.572 -0.435 -0.044 -0.059 
(7) 0.434 -0.069 0.619 -0.011 -0.124 -0.440 -0.349 -0.058 
(8) -0.100 -0.138 1.122 -0.139 -0.233 -0.288 -0.029 -0.196 
year 1965: 
(1) -0.370 0.040 0.314 -0.065 -0.006 0.021 0.118 -0.052 
(2) 0.057 -0.335 2.119 -0.211 -0.908 -0.604 -0.020 -0.097 
(3) -0.045 -0.215 1.709 -0.236 -0.631 -0.470 -0.024 -0.088 
(4) -0.064 -0.150 1.644 -0.482 -0.472 -0.412 0.002 -0.066 
(5) -0.007 -0.701 4.788 -0.514 -2.060 -1.352 -0.028 -0.127 
(«) 0.010 -0.198 1.517 -0.190 -0.574 -0.441 -0.052 -0.070 
(7) 0.430 -0.051 0.614 0.007 -0.093 -0.416 -0.427 -0.063 
(8) -0.091 -0.121 1.084 -0.117 -0.207 -0.269 -0.031 -0.248 
year 1970: 
(1) -0.400 0.052 0.299 -0.065 0.013 0.047 0.098 -0.043 
(2) • 0.069 -0.355 2.263 -0.222 -0.896 -0.769 -0.014 -0.076 
(3) -0.040 -0.229 1.852 -0.260 -0.631 -0.606 -0.017 -0.068 
(4) -0.060 -0.153 1.767 -0.534 -0.455 -0.517 0.003 -0.051 
(5) 0.014 -0.693 4.822 -0.513 -1.909 -1.615 -0.017 -0.089 
(6) 0.020 -0.241 1.873 -0.235 -0.653 -0.651 -0.048 -0.064 
(7) 0.437 -0.049 0.570 0.015 -0.074 -0.517 -0.332 -0.051 
(8) -0.083 -0.110 0.967 -0.107 -0.165 -0.297 -0.022 -0.182 
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Table D.38 (continued) 
Sector III: Manufacturing, Domestic Market-Oriented 

cross-price elasticities, e,j 
(1) (2) (3) (4) (5) (6) (7) (8) 

year 1975: 

(1) -0.516 0.060 0.359 -0.061 0.018 0.066 0.116 -0.042 
(2) 0.083 -0.341 2.101 -0.190 -0.799 -0.770 -0.016 -0.068 
(3) -0.050 -0.213 1.685 -0.213 -0.546 -0.587 -0.016 -0.059 
(4) -0.063 -0.144 1.593 -0.442 -0.397 -0.505 0.002 -0.045 
(5) 0.016 -0.532 3.587 -0.348 -1.358 -1.288 -0.015 -0.063 
(6) 0.031 -0.262 1.972 -0.227 -0.658 -0.735 -0.056 -0.065 
(7) 0.540 -0.053 0.556 0.010 -0.075 -0.563 -0.365 -0.050 

(8) -0.086 -0.102 0.880 -0.088 -0.142 -0.284 -0.022 -0.156 

year 1980: 
(1) -0.496 0.079 0.240 -0.047 0.061 0.106 0.094 -0.037 
(2) 0.127 -0.428 2.583 -0.199 -1.067 -0.935 -0.012 -0.069 
(3) -0.037 -0.247 1.910 -0.214 -0.680 -0.664 -0.012 -0.056 
(4) -0.051 -0.134 1.503 -0.407 -0.400 -0.479 0.004 -0.036 
(5) 0.054 -0.584 3.890 -0.326 -1.600 -1.378 -0.007 -0.049 
(6) 0.057 -0.311 2.316 -0.238 -0.839 -0.866 -0,054 -0.064 
(7) 0.569 -0.045 0.480 0.020 -0.049 -0.602 -0.324 -0.048 
(8) -0.081 -0.095 0.802 -0.074 -0.122 -0.265 -0.018 -0.147 

Note: Column labels (1),..., (8) refer to the following goods, respectively: 
(1) resource goods (from sector I), 
(2) manufactured goods (from sector II), 
(3) manufactured goods (from sector III), 
(4) service goods (from sector IV), 
(5) imports, 
(6) labor, 
(7) inventories, and 
(8) machinery and equipment. 
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Table D.39: Five-year interval cross-price elasticities, sector IV 

Sector IV: Services 
cross-price elasticities, eij 

Ai (1) (2) (3) (4) (5) (6) (7) (8) 
year 1961: 
(1) -0.419 0.148 -0.375 -0.298 -0.025 0.675 0.055 0.239 
(2) 0.098 -0.665 -0.338 1.515 -0.187 -0.562 0.006 0.133 
(3) -0.109 -0.148 -0.287 0.494 -0.074 0.074 0.017 0.033 
(4) 0.010 -0.077 -0.057 0.231 -0.047 -0.056 0.004 -0.007 
(5) -0.019 -0.221 -0.200 1.101 -0.755 0.030 0.058 0.006 
(6) 0.052 -0.065 0.019 0.128 0.003 -0.130 0.002 -0.010 
(7) 0.099 0.017 0.108 -0.190 0.133 0.056 -0.161 -0.061 

0.143 0.120 0.068 0.132 0.005 -0.079 -0.021 -0.367 
year 1965: 
(1) -0.409 0.157 -0.378 -0.362 -0.026 0.712 0.055 0.251 
(2) 0.099 -0.692 -0.330 1.613 -0.282 -0.568 0.007 0.152 
(3) -0.101 -0.141 -0.270 0.468 -0.095 0.087 0.016 0.036 
(4) 0.011 -0.080 -0.054 0.263 -0.087 -0.051 0.005 -0.006 
(5) -0.020 -0.354 -0.279 2.219 -1.944 0.230 0.102 0.047 
(6) 0.050 -0.064 0.023 0.116 0.021 -0.138 0.002 -0.010 
(7) 0.091 0.019 0.102 -0.243 0.215 0.043 -0.160 -0.066 
(8) 0.129 0.125 0.069 0.105 0.031 -0.072 -0.021 -0.366 
year 1970: 
(1) -0.372 0.149 -0.370 -0.462 -0.035 0.818 0.061 0.211 
(2) 0.089 -0.681 -0.319 1.708 -0.260 -0.681 0.009 0.136 
(3) -0.089 -0.130 -0.248 0.421 -0.088 0.089 0.018 0.027 
(4) 0.012 -0.072 -0.044 0.239 -0.066 -0.067 0.004 -0.005 
(5) -0.019 -0.233 -0.194 1.385 -1.165 0.132 0.075 0.018 
(6) 0.045 -0.063 0.021 0.147 0.014 -0.158 0.003 -0.008 
(7) 0.110 0.027 0.131 -0.297 0.256 0.095 -0.246 -0.077 
(8) 0.091 0.099 0.048 0.088 0.014 -0.064 -0.018 -0.258 
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Table D.39 (continued) 
Sector IV: Services 

cross-price elasticities, e; 

i\j ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) ( 6 ) ( 7 ) ( 8 ) 

year 1975: 

(1) -0.605 0.179 -0.420 -0.458 -0.032 1.058 0.079 0.199 
( 2 ) 0.155 -0.845 -0.384 2.042 -0.220 -0.894 0.013 0.133 
( 3 ) -0.141 -0.149 -0.278 0.481 -0.074 0.116 0.023 0.023 
( 4 ) 0.015 -0.077 -0.047 0.225 -0.039 -0.079 0.004 -0.003 
(5) -0.023 -0.181 -0.156 0.856 -0.592 0.035 0.060 0.001 
(6) 0.073 -0.071 0.024 0.167 0.003 -0.191 0.004 -0.010 
( 7 ) 0.252 0.046 0.212 -0.422 0.267 0.179 -0.433 -0.101 

( » ) 
0.107 0.082 0.037 0.042 0.001 -0.074 -0.017 -0.177 

year 1980: 

(1) -0.677 0.172 -0.360 -0.332 -0.026 0.970 0.080 0.174 
( 2 ) 0.242 -1.064 -0.449 2.431 -0.273 -1.057 0.017 0.154 
( 3 ) -0.198 -0.175 -0.306 0.565 -0.084 0.143 0.029 0.026 
( 4 ) 0.016 -0.086 -0.051 0.237 -0.044 -0.076 0.005 -0.001 
(5) -0.025 -0.185 -0.147 0.852 -0.607 0.045 0.066 0.001 
(6) 0.108 -0.084 0.029 0.171 0.005 -0.222 0.004 -0.012 
( 7 ) 0.515 0.078 0.337 -0.704 0.447 0.255 -0.769 -0.159 
( 8 ) 0.123 0.077 0.033 0.017 0.001 -0.078 -0.017 -0.154 

Note: Column labels (1),..., (8) refer to the following goods, respectively: 
(1) resource goods (from sector I), 
(2) manufactured goods (from sector II), 
(3) manufactured goods (from sector III), 
(4) service goods (from sector IV), 
(5) imports, 
(6) labor, 
(7) inventories, and 
(8) machinery and equipment. 


