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ABSTRACT

The visioplasticity approach is developed to enable the
complete stress history of any steady or non-steady, quasi-
static or impacq-plane strain plastic deformation process to
be determined from a record of the deformation pattern. The
velocity fiéld is determined experimentally and for dynamic
conditions high speed photographs are_taken of a grid pattern
marked on the end surface of the specimén.' Digitization of
the instantaneous gridﬁﬁ@de positions allows the velocity
fields to be obfained-at predetermined time intervals through-
out the transient deformation period. Hence, the strain~rate,
equivalent strain rate, equivalent strain and finally stress
fields can all be obtained.

A three dimensional surface fitting procedure, using
fourth order polynomials, is used to smooth the scalar com-
ponent of the experimentally determined velocity field. The

condition of continuity ( ;i} for plane strain) is

€x=-sy :
imposed on both surfaces thereby reducing the number of in-
dependent parameters from 30 to 10.  Besides smoothing the
experimental points this procedure has the distinct advantage
that the polynomials can be readily differentiated for de-
termining strain-rates and that deformation can be referred
to a master reference grid that is fixed with respect to
time.

Plane-strain upsetting tests, conducted at a speed of

0.02 ft/min give results that agree closely with the well docu-



iii
mented 'friction hill' type of normal stress distribution for
quasi-static rates of strain. However,with the specimen deformed
at a speed of 15:7 ft/sec the normal stress distribution is
radically different exhibiting a saddle type distribution.

The effect of strain rate on the interface and body stresses

will have significant bearing on a number of metal forming

operations.
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NOMENCLATURE ‘ . g

the component of velocity in x-direction
the component of velocity in y-direction
the coﬁponent of velocity in z~direction
strain rate along x-direction

strain rate along y-direction

shear strain-rate

effective strain-rate

total effective strain

effective stress

normal stress along x-direction

normal stress along y;direction

normal stress along z-direction

shear stress

the density of the material

the volume of the plastically deforming body
volumetric strain-rate

the traction on thé part'of surface SF
the velocity presented on the remainder surface SU
Lagrange multiplier

the penalty function

the angle made Sithe driving arm with vertical
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CHAPTER ONE

INTRODUCTION

The mechanism of plastic deformation plays a vital role in
many industrial metal—wofking processes. However, it has not
proved possible to analyse completely: many of these processes
using the general basic equationsﬁaéfivédAfﬁom’Fhe;theory;df
plasticity. This is primarily due to unclearly defined boun-
dary conditions; for example, the actual frictional conditions
"present at the metal-die interface are frequently unknown.

Many simplified alternative methods have been developed
and used to study certain of the metal forming process. In
these analyses certain assumptions and simplifications are
made regarding the processes and the behaviour of the materials
during deformation. However, in spite of these idealizations
the solutions often lack uniqueness and completeness.

One approach called visioplasticity has been used with
some success to determine the complete stress picture through-
out the deformation zone in certain steady-state extrusion
and forging operations. It requires that the velocity field
be determined experimentally and hence the strainpratesg Feo
#:.v and finally stress fields can all be obtained. This
method has been shown to give realistic solutions and its
applicatibn has been extended during the last decade.

In this work the visioplasticity approach has-been used

to study material deformation in dynamic and non-steady condi-



tions. The relevant equations and procedure have been embodied
into a specially developed computer program,. so that the com-
plete stress history of any steady or non-steady, quasi-static
or impact plane strain, deformation can be determined from a
record of the deformation pattern. Special attention has béen
given in this work to smoothing the experimentally determined
velocity fields, a point which has caused some difficulty in
the past. Results from this work have been suitably compared
with previous Steady-state results for verification purposes.
1.1. PLASTICITY IN METAL-WORKING

While the analyses of metal-working processes has been re-
stricted by the complexities.involved, some approaches have
been made. A number of these in common use are the slab (or
equilibrium) méthod, uniform deformation energy method, slip
line solutions, upper and lower bound solutions, finite
~difference and. finite element methods. For completeness a
brief description of these common approaches is given below.

1.1.1. Slab or Equilibrium Method.

The method ihtroduced by Sachs (1) in 1931, consists of
isolating a small elemental volume of the material under going
deformation and 6bserving the behaviour of this élement as it
moves throﬁgh the working zone. Since this‘element is an in-
tegral part of the material, it should always be in a state
of equilibrium. The assumption is made that stresses on a
plane surface perpendicular to the direction of the flow ére

principal stresses and that these do not vary on this plane.



Analysis of the equilibrium condition reéults in one or
more differential equétions which together with the necessary
boundary conditions, give the deformation stresses.

Since the effect of redundancy, friction and pattern of
flow are not considered, this method gives an underestimate
of the deformation stresses. However, the analysis'ié straight-
forward and it has been widely used in wire and tube drawing
problems as well as hot and cold rolling of strip and sheet (1).

1.1.2. Uniform Deformation Energy Method:

Siebel (2) proposed. this approach in 1932 in which the
amount of deformation is determined by considering the shape
of an element of material before and after deformation. It
hence gives only the average forming pressure as a function of
specific internal energy and is generally used for steady-
state metal-working processes.

1.1.3. Slip Line Method:

Hencky (3) introduced the slip line theory in 1923. It
can be used for determining the local stress and velocity
distribution during deformation, although it is restricted to
plane strain conditions and requires a predetermined pattern
of flow.

'The slip line solution consists of families of curvilinear
or straight lines, which are perpendicular to each other and
correspond to the directions of maximum and minimum constant
shear stress. - These lines satisfy the static equilibrium con-
dition, yield condition and the pattern of flow everywhere in

the plastic zone of the material. These shear or slip lines



are known .as characteristics of the differential equations of
equilibrium. In the slip line method the forming tool and the
material outside the slip line are considered as rigid (i.e.
the metal ahead and behind the plastic zones and the tool
material have. an infinite modulus of elasticity). The ‘slip
line solution is not optimal or unique and also:gives values
higher than the true solution.

This method has been Qidely-used for the study of many
metal deformation processes (4-14), some of the latest work
has involved slip line solutions for anisotropic materials
(15, 16) and has taken account of friction on the die-workpiece
interface (17, 18). Also Ewing (19) and later Collins (20)
have produced slip line solution using numerical computation
by power series and by matrix operational methods.

1.1.4. Limit Analysis:

The mathematical model of limit analysis places upper and
lower estimates on the load required for deformation. This
limit analysis is based on two extremum theorems put forward by
Prager and Hodge (8), and Drucher and Prager (21). Hill (7)
gave the mathematical proof of these theorems, which are based
on the assumption that the material is rigid and perfectly
plastic. They can be stated as:

a) Upper Bound Theorem. If a kinematically admissible velocity

field exists, the loads required to be applied to cause the
velocity field to operate constitute an upper bound solution.

b) Lower Bound Theorem. If a statically admissible stress

"field exists such that the stresses are everywhere just below



those necessary to cause yielding, then the loads associated
with that field constitute a lower bound solution.

These techniques have been used extensively (22-39) to
study metal—Working processes, such as forging, extrusion,
wire drawing and tube drawing.

1.1.5. Finite Element- Method:

‘The finite element method is one of the most powerful tech-
niques for solving two dimensional problems in metal-working
but at present has a limited potential for complex problems due
‘to economic constraints. This method was introduced by Argyris
(40) in 1954. 1In this approach, the deforming area or continuum
is subdivided into an equivalent system of elements, known as
finite elements. The finite elements may be triangles, group
of triangles, quadrilateral etc. for two dimensional studies
and tetrahedra, rectangular prisms or hexahedra etc. for three
dimensional studies. Once a displacément model is selected,
an element stiffness matrix is derived using variational prin-
ciples. The algebraic equations for the whole continuum are
then assembled and solutions for gnknown displacements at the
nodal points can be obtained. By use of the computed displace-
ments and the stress and strain relations, the stresses at the
nodal points may be determined. The solution is based on ex-
tremum principle according to which the actual solution mini-
mizes the functional ¢ , where
=0 5 Fdv~ 7P, 4ds
Sp

with the constraint that



= the traction of the part of surface SF

where V = volume of the plastically deforming body
»%i*= effective stress
¢ = effective strain rate
%ﬁ= volumetric strain rate
F

and 5} the velocity prescribed on the remainder surface Su
A modified functional has been given by Lee & Kobayashi
(41) using the Lagrange multiplier so that
$=focdV+ S AEav- [, F.uds
v v PR
where ) = the Lagrange multiplier. While Godbole and Zienkie-
wicz (42) have suggested that the functional be modified using

a penalty function, & , as follows:

p=scav+s T )P av-sF - uads
v
where d = very large number.

By use of above functionals, many metal-working processes such
as upsetting drawing, piercing etc. (40-57) have been studied.

1.1.6. Finite Difference Method:

This method is one of the most recent techniques to be
used for the study of metal-working processes. It requires
that the continuum be divided into a number of grids and that
'‘difference' (i.e. finite) quantities are substituted for
differential quantities across the grids. Thus for a given
differential equation with boundary conditions a set of simul-
taneous equations can be substituted, which can be solved
numerically using a computer. The size of the grid spacing

determines the accuracy of the solution. The finer the grid,



the better is the accuracy obtained, but this at the expense
of computer cost.

Studies which describe the application of this technique
to forging, extrusion and sheet-metal processes are given in
references (58-64).

1.2. VISIOPLASTICITY

The visioplasticity was introduced by Thomsen (56, 66, 67)
and later developed and extended by Shabéik, Kobayashi et al.
(68, 69, 70, 71, 72). 1In this method, the grid line patterns
are photographed for each incremental step of deformation and
thus the movement of grid points can be determined. From en-
larged photographs of consecutive grid‘patterns the instantan-
eous velocities of all grid node across the surfaces can be
found. The strains, strain rates, total effective strain can
thus be determined for all points in the deformation region
and finally the stress field and forming loads may be found.

Ih this method the instantaneous flow field is an actual
one and gives information of all strains and stresses over the
entire deformation region. It may be used for both work-
hardening and_non—workhardening materials.

Details of the basic equations used in visioplasticity are
given in the next chapter.

The visioplasticity method has been applied to forging
and axisymmetric and plane strain extrusion and rolling pro-
cesses. (Reference 68 to 76). Recently it has been used for
investigating the relationship between strain and microhardness

(77) , crack propagation and for the derivation of criteria for

ductile rupture of fully plastic notched bars (78).



CHAPTER T WO

NON-STEADY PLANE-STRAIN
DYNAMIC AND QUASI-STATIC

VISIOPLASTICITY



10

CHAPTER TWO

NON-STEADY PLANE?STRAIN
DYNAMIC AND QUASI-STATIC
VISIOPLASTICITY

2.1. EQUATIONS FOR QUASI-STATIC VISIOPLASTICITY

2.1.1 Equations for Three Dimensional Non Steady State Quasi-
static Visioplasticity

The following equations in three dimensions are used to
describe the mechanism of plastic deformation of an isotropic

solid.

The strain rate €_, ey ,ny‘_ can be given terms of

velocity components as follows:

. du . v . ow

€ = —— € = —_—— € = s

X IX, Y 3y, z 3z;

Y _8u L 8v Y _ _w dv and
Xy oy X, vz By L4

Y. - _du ., _3w

ZX 9z dx

* ' (2.1)
where u, v, w are the components of velocity in the x, y and z
directions respectively. The equations of static equilibrium,

neglecting all body forces are:

90 3T: 3T -

X L XY . Xz _
X oy °Z

Brxy_._F Bo:! . B1yz -

Ix 5Y 3z
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a{ T 20
Xz 4 Yz 4 Z =0
3 X Y 3 2

The Levy-Von Mises stress and strain rate relationships (or

flow rﬁle) is given. by

X vy z Yxy _ Yyz _ Yzx 3
= = = as = = . =
o tp cy+p o tp Tx_y 2T 2T o
1 (2.3)
where p = - 3 ( 0 _+ oy +  0_),
© 3 je
A= 2 ‘l.g'_.] ’
e = effective strain rate, and
o= effective stress.
The Von Mises yield condition is
. 2 : 2 2 2 2 2 -2
o - - - : =
( « cy) +( Gy oz) +( o, ox) +6 ( Ty +Izy T ) 20
(2.4)

The above equation (2.4) can be expressed in terms of principal

stresses O]} 02 and oy as
2 2 2 -
o = - - =
(997 90+ 9y= 0)H( 0= 0y = 20
where ° = effective stress, which is constant for perfectly

plastic materials

o = 0(8), for non-workhardening plastic material

" al
|

o(e) , for workhardening plastic material

c = (¢, €, T), for material which is affected by strain
rate,'strain and temperature.

From equation (2.3), we may write
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e _ % (o _+p) = (o +p)
X 20

. 3 +p) = \ +
:o- e (OY p) A(Gy | p)
y 20

. 3 = 3

e =& (0, *p) = Ao, +p)
z 29

v 3 2 - 27

Y - e T = AT

xy ~ 25 i

. sE .

Yyzo 35 Tyz T Dy,

y = 3% = 2j

Yz»x Y fzx KTZ?{ (2.5)

Now subtracting the second equation (2.5) from first equation

(2.5) gives

c-: 23 (o =0
Y z - Y z
20 '
o~ = 3¢ (6 =0 )
EZ € X ey Z X
i 20
37 3¢ X 2T T
27 Xy T - Xy >
20
35 38 x 2. 3
7T Yz — yz T
20
- Z L 4'3
33 1> k
/Y .. = .

Squaring the left hand side and right hand side of all the
equations (2.6) and adding, we get

. . 2 . . . . .
(e = e) +(e - ¢ )2+( e — ¢ ) +x0(y 2,y 2y 2
X Yy y z z X Xy ¥Z



3 € ' 2 2 2
= '/i < (0 = o )2+(0.—0 ) +(o =0 ) +6T_ +67 2461 2
\ CLox vy vy oz z X Xy vz Zx

2 C
Combining . equation (2.4) and (2.7) gives
2 3 « 2 .2 .02

o‘- . . . T e o 2
(e -e~)2 + (e_—€_)T 4 (ez—ex) +5( v "+ v T+ v 7)
: ~ Xy V2 zZX

= A
= i = - - 3
€ '%e e ) +( e e )+ ( 2 ;)4ﬂ7(%qf2 +
S e - e )4 e - ¢ )2+( e - 8)2
g z . 2
= A 3 (y
B Yy Xy
2
=
! (e ,— e)+(e e)2+( e _- e)2 ,
. - A z '
= w2 Y + K
3 - 2 4N XY '
L (2.8)
2.1.2. Eguations for Plane Strain Non-Steady State Quasi-Static
Visioplasticity
For the plane strain condition, éz, éz, Yyz' Yox'
. _ 1 S
5 , vt and 1 =©O’ also4Al = 2(%or a rigid perfectly |
yz ZX vZ ZX ((}9)

plastic material), Hence the basic equations for plane strain are

given as follows:

The equation for static equilibrium from equation (2.2) is

90 9T
X Xy
ax T Yy 0
oT o0
Xy Yy _
* =0 (2.10)

IX 3y
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The flow rule from equation (2.3) now becomes

®x _ \Ey _ ny - 3 (2.11)
= = — =
OX+p 0y+p Txy
where 2\ = 3(E'>
2R
o
Von Mises yield criteria from equation (2.4) becomes
: 2 1 2,1 - 2
(o —MOy) + [GY—QK ot cy)] +[§‘ 0,7t Oy)_ 0yl
+6( ¢ 2t 0+ 0) = 252
- = 2 2.%.
[ ,H«(Ox O'y) +3 Txy ] ’ (2.12)

or o=

The effective strain rate can be written from equation

(2.8) as
) . 21
e 2, 2y 17

tw Xy oS ‘ (2.13)

il 2 -
€ = 3‘[3 %® )

Determination of the stress field from the strain field

2.1.3.
Once all the normal and shear strains are known throughout

the deforming region from equation (2.1) the stresses may be
calculated. To determine the stress field from the strain field,

the following steps are required.

From equation (2.3)

T

Q
b

1

a
(9

I
1|
™}s

or
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= _20 (¢ - &) = g . ex-c
oy Oy= — ( % y) 0, - EXTEy (2.14)
3¢ A
Differentiate equation (2.14) with respect to x gives
, Te —¢
aoy . 30 B X-y (2.15)
. 9X - 9X X X
From the equilibrium equation (2.10)
30 o QTXY‘
dx .3y
Substituting in equation (2.15) we get
0y Py 8 Ex'.":y] (2.16)
L 3X 3y X A
From equation (2.10)
2% - _ xy (2.17)
3y X

Using equation (2.16) and (2.17) with the known value of e (x,y)

at x = 0 andy = & i.e. ¢ (0,a) we get,

, e —¢ |
o (x,y) = o _(0,a) -;ygaﬁxy dy ;.jg aTxy+ 3 X yi] dx
y Y a X % 3y X A y=a
(2.18)

From equation (2.14)
xe (2.19)

o_ = ¢
X y t ——

and from equation (2.11)

T il ny
) 3 (2.20)

where
(2.21)



2.2 EQUATIONS FOR DYNAMIC VISIOPLASTICITY

2.2.1 Equations for .Three Dimensional Non-Steady State
Dynamic Visioplasticity

For the case of dynamic deformation the Levy—Von Mises
stress and strain rate relationship and Voﬁ Mises yield criteria
are-similar tovthe three dimensional non-steady quasi-static
case. However, the static equilibrium equation is feplaced
by the equation of motion. | |

The eguation of motion is obtained by considering a generic
elemental cube subject to three normal and three independent
shear stresses as shown in Fig. (2.1). If x,y are the current

coordinates of a particle then

’ yor t)

where x_, Y, are the initial coordinates at time t=0. ' The
- components of velocity along the x, .y, z axes are given by u,
v, W respectively.

Writing the equation of motion aldng’x axis gives

90 ' - ' T, |
(o X dx) dy dz - ¢ dy dz + CTyxﬂi é}><dy)dz dx
9x Y
‘ aszdz '
STty dzodx (t,  + =, ) dxdy -1, dx dy
: 9. : .
= (dx ady dzi’.v‘a—t,{_,pVU} ) , (2.22)

Dividing throughout by dx dy dz

dc - 3t 5t - _ | | s o
XX 4 . ¥YX _ZX 23 (pu) {2.23)
ax - -9y . %z ot : : :

similarly equation of motion along y and z directions we get
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FIG. 2.1

ELEMENTAL CUBE FOR DERIVATION OF THE
EQUATION GF MOTION
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> ] . ",r ‘ - . . |
yx o %y, PTyz o8y (2.24)
Ix dy dz o-t '
and
BTgx . 2Tzy %92z 5 (4w (2.25)
e i M. R
9xX 2% 9z dit

Considering p as constant, we get

1} 37 9T .
XX yX ZX _ I
ox . 3y Lz _pat
T 3G . 3T - 5
—_— 2 - yj + y = p_y.
Ix 3y 3z 3t . o (2.26)
R 37 00 ” 3 v
ZX zy . 2z .,
oR £ Y% 2z 3.t
2;2.2 Eguations for Plane Strain Non-Steady State Dynamlc
Visioplasticity
. . dw
For +ro 7 ¥ by LT T = . = ——— =
Por the plane strailn condition zx sz T 0,

;80 that the eguation of motion (2.26) can be written as

Q
°7 wx + a.Txy ©_3u
ax 5y Pt (2.27)
9T Ao
yx z yy: pa_ll_.
90X 3y ot

" 2.2.3. Determination of the Stress Field-from the Strain Field

Proceeding in the same way as in the case of quasi-static

visioplasticity method, the. eguation (2.15) can be written as

.--aOY' _ BO'VX ' A . Ex—t oy _ . (2.15)

Ix 0 ax  hx ¢ )




19

Now from the equation of motion (2.27) we get

90y _ _ 9Tgxy + -au : (2.28)

S ¥3% PTst

Substituting in equation (2.15) gives

—30y — _ :a,TXY N 3 u _ 3 € X_E Y:[ (2.29)
IX T Ay Pt X 5 »

Similarly from the equation of motion (2.27)

—_—Y L. X, v (2.30)

Using equation (2.29) and (2.30) with the known values of

o(x,y) at x=o and y=a, i.e. c(o,a) we get
a - O ' v AT 3
yix,y) = “y(o,a) - _f "y ;. dwv) dy
a ( X + prt?

- Xf maTxy _ 3 . EX"{'EY‘ + p_a_u dX ,
°© 4 9 x Y ‘ot y = a (2.31)

From equation (2.14)

5 = o + —=X=fY (2.32)
X I d
and from equation (2.1&)

S | (2.33)
Ty 3
where A= %% (2.34)
g

2.3. GENERAL PROCEDURE FOR .THE STUDY OF DEFORMATION USING
VISIOPLASTICITY

The instantaneous grid velocities are determined from ex-
“perimental data and thus the strain rates, /equivalent strain

rates and finally stresses can be determined.
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Grid lines are marked on an end face of the specimen,

which is deformed at a predetermined speed. The deforming grid
pattern is photographed using a high speed camera. The grid
points at all stages of deformation are digitized from enlarged
photographs and the digital positional data used .as input to
determine the instantaneous grid nodes velocities. The procedure
is illustrated in Fig. (2.2), where a grid point formed by I

row and J column has coordinates X yn;at a particular instant

of time tn and grid-coordinates of x at the instant

n+l’ Yn+1

t . The instantaneous horizontal velocity u and the vertical

n+l

velocity v is then given by

X -x
u,. = n+l "n: aAX

1] -
tn+l tn_ nt

Vij = "o+l Vn cupy
te1 t Ot (2.35)

Since the above components of velocity are obtained from
the digitized coordinates of experimental grid points an effici-
ent smoothing procedure is required. The smoothing procedure
méntioned by Shabaik (71) is based on a simple averaging of
the points. This procedure has caused difficulties in the
past in treating data which is ill-defined and also tendsA: to
be time consuming in operation. Further for non-steady state
conditions a reference grid is needed, which can be fixed with
respect to time (called a master grid). The simple averaging
technique gives grid node positions that continually change
with time. In order to surmount these difficulties a number

of alternate methods were considered and finally a three dimen-
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sional surface smoothing,procédure was adopted, which treats
x, v and u and also x, y and v as separate surfaces and fits

a complete fourth order polynomial through the experimental
~points i.e. smoothing is done in three dimensions to a surface
formed from the scaler components of the vector field. The

condition of continuity (i.e. éx = = ey or gu o g v for
x Y
plane strain) can also be imposed within the surface fitting

procedure, thereby reducing the number of independent para-
meters from 15 for each‘sﬁrface (a total of 30) to 10 for both
surfaces. The smoofhing procedure mentioned by Shabaik (71)
does not take account of continuity and merely checks to see
if the error is less than 15%.

Besides fitting a smooth surface, the polynomials have
the distinct advantage that they can be readily differentiated
for determining strains rates, and that the deformation can be
automatically referred to a master.réference grid. This means
that strains and stresses can be determined for fixed points
within the non-steady deformation zone. Also stresses can be
evaluated directly at any position of x and y purely by sub-
stituting the coordinates of a point (not necessarily a grid
point) required, whereas the simple averaging technique requires
an incremental evaluation of stresses over contiguous grid
points until the required grid point is reached.

After calculating 'éx and éy using equatioﬁ (2.1), the
effective strain rates at all grid points for all instances of

deformation can calculated from the equation (2.13).
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In order to calculate Txy (equation 2.33), Oy (equation
2.31) and o (equation 2.32) the value of_igis required. For

non-workhardening materials the value of_ilis purely a function

of effective strain rate ( ¢ ) as effective stress ( o ) is

constant. For a workhardening material. the value of ¢ must

be obtained from experimental o vs ¢ material data taken at
the relevant strain rate conditions. It is normal to fit a

—1
curve such as o0 = ©€° yhere ¢ and n are material constants.

Thus if ¢ is known at all instances of time, the value of
equivalent strain £ at any deformation time t and hence o
may be determined incrementally (assuming small intervalstdf
time) from the expression

Tys =

i3 vz at (2.36)

where Evij is the. effective 'strain rate of a particular grid

point as it moves along its deformation path.

2.4. GENERALIZED EQUATIONS FOR PLANE~STRAIN VISIOPLASTICITY
FOR COMPUTATIONAL PURPOSES

The equations in a form suitable for the development of
the compﬁter program are given below.

The calculation of u and v is done using equation (2.35).

U4 = xn+l—xn____= AX
tn-i-l—tn At

Vi o= Yne1TY | ay
% t At

n+l n
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Curve fitting of the velocities is done by a library sub-
routine called DLSQHS. This fits a complete fourth order
polynomial in x and y and determines the 15 parameters (con-
stants) for u and v for the equations given below. The equa-

tions used for computational purposes can be given as

x3+a x4

2
u(x,y) = al+a2x+a X" +a as

3 4
2 3 4
tacyta y +agy +agy +a; Xy

2 3 2 2.2
+allxy ta) Xy +ag X yta Xy

3
+a, X7y (2.37)

Similarly:

2 3 4
v(x,v) = b +b2x+b X b4x +b5x

1 3

2 3 4
+b6y+b7y +b8y +b9y

2 _ 3

+bloxy+bllxy +b12xy
2 _ 2 2 3 »
+b13x y+bl4x y +b15x y (2.38)

Thus the velocity component u anv v can be expressed

separately and the calculation for strain rates ¢ X, ¢ Yo ﬁny

and can be done as follows:

e _ du - _ _ 2 3
€y = 3y ’_ a2f2a3x+3a4x +4a5x +aloy

2 3 2
'+a ly.+a 2y +2al3xy+2al4xy

1 1

2
+3a, X"y (2.39)
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«  _ 3V _ 2. 3
R b+2b,y+3boy +4byy +b, X
+2b. .xy+3b. . x 2+b x2
11%Y7T2010%Y TRy
+2b.  x°y+b, X0 (2.40
14° ¥ P15 -40)
. _ 3u  3v  _ 2 3
and ny,_ Sy + = a6+2a7y+3a8y +4a9y
+a, ,Xt2a, ,xy+3a xy2
10 11 12
2 2 3
+al3x +2al4x y+a15x
+b,+2b_ x+3b x2+4b x3
2-773 4 5
2 3
+b10y+blly +b12y
+2b. ,xy+2b. X 2+3b x2 (2.41)
13%YT4P4%Y 15% ¥ :
: . . . e _ e Bu __dv . .
The condition of continuity ( = - r— =-—" . ) is
X y ox 9y

imposed on the curve fitting by requiring the coefficientsito

be related as follows.

a,= - b6

2a3= = by

3a4= - b13

4a5= - b15

all= - 3b8 (2.42)
3a,. ==2b |

15 14
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12 9
a0~ ~ 2b7
2a; 3= = 2b;;
2a14= = 3by,

The partial derivative of %xy with respect to x and y is given by

dy _ 2
:ézz = a10+2ally+3a12y +2a13x+4al4xy

2 2
f3a15x +2b3+6b4x+12b5x

2 ,
+2bl3y+2bl4y +6bl5xy (2.43)

and hence

f—iiﬁl dy = (a,,+t2b))y + (a,,+b )y2 + (3a,,+2b )Y3
ax Y 10773 117°13 °21275P14
3
- 2
- +(2al3+6b4)xy + (4al4+6b15)xy
2
+(3a,.+12b )x2 (2.44)
215 5/ % Y )

Similarly

Y _ 2
§z = 2a7+6a8y+12a9y +2allx+6a12xy

2 2
+2al X +b10+2blly+3b12y

4

2

+2b, . x+4b le

13 14xy.+3b

(2.45)
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and 5;xy _
f—_3§_ ax = (2a7+blo) X + (6a8+2bll)xy

. (2a14+,3bl5) <3
(all+b13) x + 3
+ (1l2a,+3b,,) 2

89720100 ¥ X
2 .

+ (3a,,42b) )x°y (2.46)

Further equation (2.36) can be expressed as
S e (i Eoi+l) bt 4 F.
e i+l = 3 ¢ (2.47)

‘The normal stress 9;, can be calculated using equation (2.31),

Y
l.€.
6, _ © Y., ot T X Tor.. .. e T
7y = “ylo,a)- " XY+ o0 Vg S opilxy v o .Tx" y,,. du
a o AT P e ; T
. ;< a
(2.31)

The .terms for this‘equation may be calculated separately. The
first term0 y (o0,a) is determined experimentally at each inter-

val of time. The second term can be calculated from the equa-

tion.
T - = :
Xy 95 . (2.33)
so that
aTxy _ 3 (‘;xyj _ 9 ;xy
IX 3 X 237 x| 3¢
G
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_ <
-3
- ¢
-3
= ¢ (2.48)
-3
Similarly
ot Y _n-1 + _n Ay on Y ,
xv-._ < XY e 3 € xy “(g) xy 5 (e
= n
5y 3 - oy 3y 2 oy
£ ' 3
(2.49)

Using equation (2.1), the third term of equation (2.31l) can be

computed as

€ : e .~ €., OA 3 :
pu— l . L] g
5 (—x ¥) = iy' T ox (BT Ey)
X A L3 e X8 X x fy’
. . EERA ) .
__(CxTfy) 5 (PEy 1 fal - g (2.50)
. 2 o 37 I
A 39X Jcr " A {
But d ( 3¢ ); 3 3 [TC 0 ™
ax —n 2c X
2ce . 1 .
3 mn ()T e, (2) s (8]
2c 3 X 3 X
3 F 1 % 3 & 3 (7
c n(g)sg 5x T 2¢ (g)n é ox
- _D ) _3e 4 _A_ _de
— P4 — X
€ € .
o 5\[_' n_ 5e + X BE. I ’ (2.51)
— X = ax T
€ €

de  ~
a X

@ |
1
w
X
o
»
<
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So that the third term of equation (2.31), using equations

(2.50-2.52) can be computed as

S | . o = ) . .
9 %X & V! L 1 " - . -n J€e 1 3 ( € — € )
% ¢ ) = E (ey‘— ex){':r e +_§ } o+ x 0y

(2.53)

Thus the normal stresses Gy and o, can be computed using
equations (2.31, 2.32, 2.48, 2.49, 2.50, 2.51, 2.52 and 2.53)

with the known values of o(o,a).
2.5 COMPUTER PROGRAM

The flow chart of the computer program developed for plane-
strain dynamic and quasi-static visioplasticity is given in Fig.
(2.4) and a listing of the program is given in Appendix I.

The running instructions and the main steps in the program
are described below:

(1) Input all data required for the calculations

(a) Read
IX = No. of experimental grid lines parallel to y axis
IY = No. of experimental grid lines parallel to x axix

The above are given in FORMAT (3I2)



(2)

(3)

IT

DT

NIX

NIY

ca
cc
CN

SIGOA

(b)

30

No. of the time steps

Time interval between two consecutive photographs
(this need not be constant time interval)

FORMAT (8F10.0)

No. of grid lines parallel to y axis in master grid
No. of grid lines parallel to x axis in master grid
Both in FORMAT (3I2)

anstant a used for o (o,a)

Constant used in true stress and true strain relation
Constant (or index) for workhardening

¢ (o, a), known value of vy at x = o and y = a

All above in FORMAT (8F10.0)

Read, the instantaneous coordinates of the grid points
of consecutive photograph. The format is given as
FORMAT (5X, 2F6.3, 1X, 2F6.3, 1X, 2F6.3, 1X, 2F6.3,

1X, 2F6.3)

Calculate the values of horizontal velocity u and vertical

velocity v at each grid point using equation (2.35)

Fit a 4th degree polynomial through the three dimensional

curves for u and v as a function of x and y using the

computer library routine called 'DLSQHS'.

This program provides a least square fit to a linear func-

tion of M parameters (i.e. M independent variables) and

N data points by the Householder transformation techniques.
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‘FLOW CHART OF COMPUTER PROGRAM

A B

Read IX, IY,

IT, DT, NIX,
NIY, CA, CC, CN and (o0,a)
Y

Read (x,y), the grid points at
each time interval. ©Plot them

(i) Set Master Grid for final
plot and further
calculations

Fill zero for the points,
outside the boundary of
the deforming zone by .
use of subroutine FILL

(i1)

Y ¥
Calculate component velocities Plots
u and v for each time increment u = f(x,y),
using the equations voo= f(x,y¥),
X -X ‘ .ex = £(x,¥),
uij = 'tn+1—'tn gy = f(X,y).
n+l n : . E = f(x,y),
yn+1'yn (equ. 2.35) (2) in two dimensional form
vij = 3 . using subroutine PLOT,
' ntl n PLCTAND & SYMBOL
; A (v) in three dimensional
7 form using subroutine
- PERS
Fit the curves to the u and v '3
values with complete fourth
degree polynomial in x and y c ;
- alculate normal & shear
(Subrogtlne DLSQHS) stress using equation 2.1,
v 2.13, 2.38, 2.39, 2.40
Calculate and store strain- *
rates for all points, using A | Prot:. ,
subroutlne.DERIY (1) G; as a function of x and
= _3u 2 y '
€x"ax (gqlllé f;éé (i1) 03 as a function of x and
. . 9L ’
é, v 2.39,2.40)_ . )
v oy ‘ (111)1:Xg as a function of x
. an .
ny=9§ + % (a) in two dimensional form
. using subroutine PLOT,
- . 34 2.1 PLOTAND & SYMBOL
& '—(38x+ -nyy )2 (b) in three dimensional form
- _using subroutine PERS
' i
Calculate and store the total STOP
effective strain at all
specified node points ’
|
FIG. 2.4



(4)

(5)

(6)

(7)
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That is it minimises

DLSQHS transforms the matrix X to an upper triangular form
via Householder transformations, and then solves the system
by backward substitution. If the command REFINE is defined
by 'TRUE': a correction vector is computed from the residual
errors between the dependent variables and the fitted values.
Correction vectors are then applied to the soiution and re-
computed iteratively until convergence is obtained. DLSQHS
is most effective for problems, where the correction of the
matrices is unknown and the scale of different variables

varies widely.

I
1
(iq L]

Impose the condition of continuity i.e. € . or
. S X v
Sdu_ C gv - C e L T R R -
g—g y - ‘ ~ . [ - . - ¢
Calculaté the strain-rates ég;'e& ', Shear stfain—rateﬂYXy and

effective strain-rate 1sing equations (2.39),(2.40),(2.41)
and (2.75) ,are combined inté a‘;DERIV' ( details are given
intAppendix) .

Calculate the total effective strain by integrating along
the path of particular particle or grid node (refer equa-
tions 2.36 and 2.47).

Calculate shear stress '?xy using equations (2.33, 2.34 and -

2.41).
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(8) Calculate independently the. terms from equations (2.31),
(2.48), (2.49), (2.50), (2.51), (2.52), and (2.53) and
thereby calculate ij dsing the computer library éub-
routine 'DQUANK'. This subroutine integrates a function
f(x) when the limits a and b are given. i.e. I =-§b f(x)
dx. It is basically based on Simpon's three points in-
tegration & im?roved by. using an adjustment term of
fifth degree in place of the three degree term.

The absolute error can be limited to any arbitrarily

specified value.

Calculate stresses 9 x using equa;ibns (2.31) and (2.31).
(9) Plot the different quantities, u, v, ¢x, %y, Yxy, & ,

E,O y,U X, Txy, etc. for different x, y values. The
plotting vectors are taken at defined master grid node
points. Any point within the master grid but outside the
deformation zone are given .zero values by the subroutine
'FILL'.

(a) These values can be plotted inltwo.dimensions either
as a function of x or a function of.y. For this purpose
the subprogram 'PLOT' can be used. . Thus subprogram is
the basic plot subroutine. It generates the pen movement
required to move the pen in a straight line from its pre-
sent position to the position indicated in the call. It
is also used to relocate the origin of the plotter coor-

dinate 'system in the X direction. To ensure that plotting

is complete, a second subprogram 'PLOTND' is used. For



(10)
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clear distinction of different lines in a plot, a third
subprogram 'SYMBOL' can be used. This plots alphanumeric
characters and special symbols.

Three dimensional orthographic displays can be made using
the subroutine 'PERS'. The above values are taken as 'Z'
values and are plotted in three dimensional form as a

function of x, and vy.
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CHAPTER THREE

VARIABLE SPEED, CONTROLLED VELOCITY
PROFILE, SINGLE CYCLE IMPACTING PRESS

3.1 DESCRIPTION OF EQUIPMENT

3.1.1. Background Information

For experimental investigation of forging operations such
as heading and upsetting, where strain-rate, forming-speed and
forming 1oadkare important, a device with special regquirements
is needed.

Obviously as wide a range of impact speed as possible is
required together with a velocity profile which is sensibly in-
dependent of forming load and which may be adjusted to suit
circumstances.

The commercial alternatives that are available have been
developed for specific applications and of necessity heve a
limited flexibility. For example, the crank press, used in
many forging operations has a variable stroke and maximum
velocity and has a well controlled velocity profile, which is
sensibly independent of forming load. However, the maximum .
velocity is limited to approximately 15 to 20 ft./sec.. With
the drop hammer and high velocity forming machines (such as the
petroforge) a higher velocity can be reached (15-30 ft./sec.
for the drophammer, 90-100 ft./sec. for the petroforge) but the
stroke and velocity profile during deformation are determined

purely by the resistance of the workpiece. That is the high
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velocity results in high energy and with low strength targets
very little of the energy is absorbed in plastic work. Further
the high wvelocity devices cannot be used for low velocity work.

With these design criteria in mind a variable speed, con-
trolled velocity profile, single cycle, impacting press was
designed and built within the department.

3.1.2 Description of the Press:

A diagram of the impacting press is shown in Fig. 3.1.
The drive comprises a modified Whitworth quick-return mechanism
consisting of a crénk and a driye arm together with a variable
speed D.C. motor, a flywheel, bearings etc. The end of the
drive arm is attached by a connecting rod to a cycloidal cam.
In single cycle operation, the cam is made to engage with an
upper platen (or ram) which impacts the workpiece. The upper
platen and cam are both mounted on multirod supports with
linear ball bushings. A brake is provided on the flywheel
for emergency purposes. |

3.1.3 Operation of the Press:

The drive wheel is rofated at a particular speed by ad-
justment of the D.C. motor controller causing the drive arm
to oscillate about its lower pivot. The single cycle tripp ing;
mechanism connects the drive arm with the cam and the cam en-
gages with the cam followers on the upper-platen. The upper-
platen is thus forced down towards the workpiece. The platen
achieves a maximum velocity when the drive arm is in a central
position after which time the platen is brought to rest. On

the return stroke of the cam the platen is returned to its



40

‘initial position. The tripping mechanism then disengages the

connecting rod from the cam and the drive arm continues to

oscillate freely about its lower pivot.

The stroke, velocity and acceleration profile of the upper-

Platen are determined solely by the cam contour and the speed

setting of the D.C. motor. A cycloidal cam is used for high

vélocity work to minimise éxcessive wear;‘through shock and

vibration.

_ The lower-platen height can be adjusted relative to the
upper platen thereby determining the working‘portion of the

stroke.
3.2 KINEMATIC ANALYSIS OF THE MECHANISM

3.2.1. Derivation of Expressions for Velocity and Acceleration:

The drive mechanism is shown schematically in Fig. (3.2.).
The centre line of the drive arm is indicated by line AB, where
point A denotes the fixed lower pivot. The path of B is in-
aicated by the dotted line with B' and B", showing the extreme
points. The point C is the centre of rotation of the drivewheel,
a distance P above the fixed pivot of the drive arm. The eccen-
tricity of point E, the cam follower, about C is given by a
distance Q. The line CD is a reference for angle e. The length
of AB is L. The path of point F denoting the cam position, is
shown by dotted line. The length of conhecting rod, BF = R and
the distance of cam position F from line AC (or AH) be X. The

angle made by AB with line AC is ¢



41

A
x.

LEXDILOD

FiG, 3.2 DleVE MECHANISM OF IMPACTING PRESS




42

Then from geometry

. = arctan QCosé .
P+QSin® ' (3.1)

Differentiate ¢ with respect to t, weé get

ﬂ )= - PQ_Sin9+Q2 d@

dt p212p0Sine+q’  OF (2.3)

Differentiating again, we get’

2 (qe) ) ) 2.2 7
dt {(PT+2PQSine+Q") (3.3)
Now from Fig. (3.2) HF = HG + GF = L Sin ¢ + GF = X
1. : 1L
but GF = [(BF2 - BG2);].2 = [R2_—£ L(1-Cos ¢ )y } 2]2

Hence, X = L Sin ¢ + [R2 - { n(1-cos ¢) ! 2 ]%

Differentiating with respect to t, we get

—_—
'

dx: L A4 Cogp. - L{1-Cos ¢ ) Sin- ¢ |
dt dt [R%4L (1-Cos ¢)}%% Ch
=L d¢ [Cos ¢ - W Sin ¢ ] o (3.4)
dt ' A%
where W = L (1-Cos ¢ )
and v =[(RZ - w2)%,

Differentiating again and rearranging the terms, we get

@*x = 1 a’ ¢ (Cos ¢+ W) - L dy?[(Sin¢ + L Sing
dtz dt2 v dt v

(ﬂi‘+ 1) + W Cos ¢ )]

V2 v

(3.5)
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3.2.2. Maximum Velocity and Acceleration of the Mechanism:

The press has following dimensions:-

P = 14 inch.
Q = 6 inch.
L = 24 inch.

R = 26 inch.
Ratio of driver to driven pulley dia. = 0.573
For a flywheel speed of 250 RPM, (i.e. a motor speed of 434.4

2% 250

rpm) the angular velocity of the flywheel = 0. . = 15 rad/sec.

(3.6)
The position of the maximum velocity of the ram (hence
the upper-platen) occurs when ¢ = o or 8 = - 90°,

Hence from equation (3.2) we get

de¢ .~ 'd8’ PQ Sin e + Q2
dt dt P2+2PQSine+Q2

(- w) (1l4x6) (-1)+(6x6)
(14%14)+(2x14x6(~-1) )+ (6x6)

I

0.75w (omega)

From equation (3.4)

dx ==L§—¢ (Cos ¢ - W Sing¢ ); here ¢= o0
dt dt , \%

_pde (1-Wxo) o de
dt v dt

=24 d¢ -9y 754 =1.5u (ft./sec.)" "
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Now the displacement of platen, y, in relation to the

cycloidal cam (refer. Fig. 3.3) is given by

--h mg -1 8in 2qg ! (3.8)
Y = T ( L' 2. L' )
i
where % = distance travelled along x axis at a particular time
I,' = length of cycloidal cam .in x direction

h = maximum distance travelled by upper-platen or
follower in the y direction

Velocity of follower i.e. platen is given as

(92,
. onla® o cos2ms ), (3.9)
v = L' L' :

dsg

_ 2hag (3.10)

L'
Similarly.the equation for acceleration of the upper-platen, a,

max

is given by

() ... . 2
= 2h o 'dt” .. 278 L h j_Cos2 72 d &
=y = 2 Sin — X ) T2 (3.11)
L L
L' dt
For the present cam, h = 4.0 inch. and L'= 8", so that
(gﬁ) (QE)
v = 2x4.0x'dt’ _ 2x4.0x'dt
max 5 )
_ 2x4.0x1.5 w
- 8
= 1l.5 w
Using the value of w = 15 rad./sec. from equation (3.6)

Vmax = 22.5 ft./sec.
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3.3 CONTROL

With single cycle operation it is essential that engagement
of the drive arm with the cam occur at the correct point in the
cycle and have sufficient time to engage properly. This is
achieved by requiring that a sensing device placed at the extfeme
point of the drive arm motion be actuated in conjunction with a
push-button start switch before ehgagement occurs. A solenoid
then retracts and allows the maximum time for the two parts to
engage.

Synchronization of the high speed camera with the specimen
deformation is also accomplished ' .« . using. the signal from
the remote sensing switch. A time delay device is used to vary
the start of filming so that differeht impact speeds can be
accommodated. A further sensing device placed at the opposite
extreme of the drive arm movement indicates when the event is
completed and triggers the magnetic camera brake.

Details of the electronic circuitry for engagement and
disengagement of the drive arm and for sychronization of the

high speed camera are given in the following sections.

3.3.1. Control for Single Cycle Operation:

Thé electrical circuit used for controlling the engagement
of the driving arm of the cam is given in Fig. (3.4) and the
flow diagram of the relay sequence is given in Fig. (3.5). The
sequence of events is as follows:

(i) Single cycle start switch (push button) is pressed which

sets the latch relay (RL2) through reset relay (RL3), hormally
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closed contact position).

(iii) The ratchet relay steps to 'ON' as the drive arm contacts
the micro switch (A) at the bottom of the stroke. This puts

a signal on the solenoid relay (RL4) through the latch relay
(RL2), and energizes the solenoid and hence the trippling mechan-
ism.

(iv) When the drive arm contacts the micro switch (B) for the
second time the ratchet relay steps to the 'OFF' position. The
reset relay (RL) momentarily energiies and‘the latch relay (RL2)
deenérgizes via RL3.

3.3.2 Control for Synchronizing the High Speed Camera:

The block diagram of the sychronization control of high
speed camera is given in Fig. (3.6). It consists of an optical
sensor microswitch (A) to initiate a filming signal and an
integrated circuit timers type 556 to give a variable time
delay to the actuation of the camera relay and hence the camera.

Reference pulses of 1 m.sec duration are compared with
the pulses received from the optical sensor no. 2. (in Fig.
(3.6)) and when these correspond, a lamp indicator is triggered

showing correct synchronization.
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CHAPTER FOUR

EXPERIMENTAL PROCEDURE AND DISCUSSIONS

4.1. EXPERIMENTAL PROCEDURE

A plane strain upset compression.test was made at an im-
pact speed 15.7 ft./sec. The plane-strain specihen was made
from plasticine using a metal mould. The specimen measuring
1"x1-1/2"x2" was cut with a fine wire and a lubricant of sili-
cone grease was used to prevent the specimen from sticking in
the mould.

The end surface of the specimen was sprayed with black
paint and a square grid pattern was made by spraying white
paint on'".the black surface through a wire mesh grid (14 mesh,
inch.). The use of’black‘and white paint gave good contrast
for high speed photography.

Plane-strain conditions were obtained by placing the
specimen on the lowest platen of the high speed impacting press
between two parallel lubricated pexiglas plates (called a Kudo
apparatus). The upper platen of the ram was adjusted to impact
the specimen at the maximum velocity in the cycle and all con-
trols and filming synchronization (as discussed in Chapter 3)
appropriately set. The height of the camera was kept, such
that the objective lens of the camera was on the same height as

that of -the specimen and the plane of specimen was parallel to

the plane of the lens.(see Fig. A )
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4.2. DISCUSSION

The grid points, for the dynamic plane strain upset com-
pression test, were digitized at 0.00133 second time intervals
(every 4th frame of the high speed film). Also results from
a quasi-static plane-strain compression test done by Shabaik
(71) (see Fig. 15) at a speed of 0.02 ft./min. were digitized.
The digitized grid points are plotted for the four steps of
quasi-static deformation in Fig. 4.1 and 4.2 and in Figs.

4.3 to 4.9 for the seven steps of dynamic deformation. The
movement of °- . certain grid-node points during deformation
is plotted in Figs. 4.10 and 4.11.

The smoothed horizontal velocity (u) and vertical velocity
(v) are given as a function of x and y in Figs.'4.l2 to 4.15°
for last time interval in both static and dynamic tests.

Plots of effective strain rate ( é ) are given in Figs.
4.16 and 4.17, while total effective strain accumulated incre-
mentally for all time intervals for the 0.02 ft./min. and for
15.7 ft./sec. deformation speeds are shown in Figs. 4.18 and
4.19.

The normal and shear stresses (% vy, 9 x, f'xy) are plotted
as functions of x and y for the 0.02 ft./min. deformation speed
in Figs. 4.20, 4.21 and 4.22 ;and for the 15.7 ft./sec. deforma-
tion speed in Figs. 4.23, 4.24 and 4.25. The values of ¢ (o0,a)
for 0.02 ft./min. deformation speed was taken from reference
(71) as 31000 ps; at the origin with the relationship between
effective stress and strain as T = 31000'g'o.25. The values of

0 (0A.) for the plasticine specimen was taken as 20 psi at the-
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origin from reference (79). The stresses (Tz andg&Xy are also
plotted as a function of x for the 0..02 ft./min. deformation
speed in Figs. 4.26 and 4.27 and for 15.7 ft./sec. deformation
speed in Figs. 4.28 and 4.29.

The resulfé from the épecimen deformed at 0.02 ft./min.
agree closely with well documented results for quasi-static
deformation showing a'friction hill' type of normal (/Oy) inter-
face stress distribution with maximum stress occurring at the
central portion of the specimen.’ The normal stress distribution
for the specimen deformed at 15.7 ft/sec is radically different,
showing a saddle type distribution of normal stress, with the
maximum stress occurring near the periphery of the contact zone.
The interface shear stress distributions also change form with
strain rate.

The dramatic change of normal stress distribution with
strain rate is totally at variance with currently held views
and furthermore it occurs af quite moderate velocities which
are certainly well within the range of those encountered in

many metal forming operations.



55

Q
>
W NENIL N N
. 4‘@ 7Y
4 SN/ A
- YOEHXO] -
\k\.L NN \
‘/‘\ff 7N 7N <
AVAN A N O
IPIT N s /;T
AVAVAY WAV EVRNAN
\‘/ \\/\/ﬂ;\/ 4
o \\ AT /ﬂ/\/'\ N 74
h N\
. FOR0SRORIR
b AWAVAVAIVAAN
FOEOR0E0I0T0I0:
\4\1 AN AV AN
/FAJT TN IR
hY
I' \ 7
N e¥ A\
e -
Q
o
Q
0.0
[=]
>
3
—-

O RIEOEIEOENEIRITN S
‘ N

A\

> 4 .
mm N \Lr
| mmmmmm OSOROE
OIEGIES N
50 Ay \‘/J/_ HOEOX
O MEOEOEOROEOXOZOROEOZC
‘) VSL L < AY j\S,
7] O 7 Q
QLT BL 2‘*“ OXG)
»x«mmmxv ROEO

FOROTAEIT Va

‘1

*ﬁ
: MDXE
I RN R T A AN A

- -f,

[ =] /\/\/\ /\]/\/\ /\/\ PA PAAS

0.0

0.5

1.

0

1.5

SN

F16.6.1

DISTORTION OF GRID LINES DURING DEFORMATION FOr 0.02 FT./MIN.

DEFORMATION SPEED.




56

1.0

0.5

ARV AR/
= «gmmmmmmxv

T "“VA"A'A" """A"“‘;":

>N

0.5

D 4 / ‘ )
a N . Y. LAY, SNBSSV ARV ACVAIW AN

FIG,4.2  DISTORTION OF GRID LINES DURING DEFORMATION FOR 0,02 FT./MIN

- DEFORMATION SPEED.




- 57

0.0

-
-

T T T T 1 1
0.0 0.5 1.0 1.5 2X.D 2.5 . 3.0

F1G.4.3 DISTORTION OF GRID LINES DURING DEFOMATION FoR 15.7 FT./SEC.
" DEFORMATION SPEED, |




© FIG.4.4 DISTORTION OF GRID LINES DURING DEFOMATION FOR 15.7 FT./SEC.
~ DEFORMATION SPEED,




59

4.0
—J

3.5

i

0

s

S Ll

; T T T 1 T

“0.0 0.5 1.0 1.5 2.0 2.5 3.0

- F16.4.5 DISTORTION OF GRID LINES DURING DEFOMATION FOR 15.7 FT./SEC,

- DEFORMATION SPEED,




60

FIG. 4.6 DISTORTION OF GRID LINES DURING DEFOMATION For 15.7 FT./SEC.
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 FIGA14 THREE DIMENSIONAL PLOT OF HORIZONTAL VELOCITY (W) AS A
| FUNCTION OF X AND Y FoR 15.7 FT./SEC. DEFORMATION SPEED.
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4.3. SOURCES OF ERROR 84

The quality of the grid node positional data.used as input
to the program is the most important single item affecting the
results. Sparse or poorly digitized data is likély to cause
inconsistencies in the output stress distributions. The
surface fitting routines will smooth certain irregularities
but there is a 1limit to their capabilities.

The velocity of the upper plater varies during the cycle,
and during specimen deformation, according to the equations
3.4 and 3.9. A further fluctuation of plate@_velocity may
occur as the drivewheel'speed changes during the cycle. Initial
energy balance calculations show this change is likely to be
very small particularly with low strength projectiles. A
prior knowledge of the actual upper-platen velocity profile
duringideformation is not required as this is obtained auto-
matically from the digitiSEd aisplacement data and a knowledge
of the time increment between frames of the high speed photo-
graphs.

Plane-strain deformation was achieved using a Kudo
apparatus. While this assurea plane-strain condition it did
introduce a frictional drag on the énd faces of the specimen.
The effect was minimized using silicon grease as a lubricant
and from examination of deformed specimen it was. concluded
the effect was not important.

In the analysis the material was assuhed to be strain-rate

insensitive which is a common assumption and not unreasonable
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for many metal-forming materials. It is possible to relate
effective stress, 0, to both effective strain € and effective
strain rate €. With modifications to the analysis strain-rate

sensitive materials could be accommodated.
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5. CONCLUSIONS

The visioplasticity approach have been developed for
dynamic and quasi-static, steady or non-steady deformation
processes.

The effect of impact velocity on the mechanism of deforma-
tion during different metal-working processes can be studied
using this work. It is clear from thé initial study of

upsetting, that strain and stress distribution vary significantly

with strain-rate.
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6. - SUGGESTIONS FOR FURTHER WORK

The method deﬁeloped enables the stress distributions to
be determined in many dynamic metal-forming operations. A
starting point for this is to determine the change of stress
distribution with strain raﬁe (or impact velocity), material
density and surface geometry for plane-strain upsetting
operations.

Modifications can be made to the surface fitting routines
to accommodate the constraints that the velocity gradient is
zero along the y axis, and that the vertical component of
velocity, v, is equal to the platen velocity for points on the
platen-workpiece interface. It is likely that a 5th order

polynomial would then be needed for surface fitting.
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FWN -

24
25
26

27

28
29
30
31
32

33
34
35
36
37
38
39
40
41
42
43
46
47
48
49
50
51
52
53
54

56

55

anoaaoxkOoagoaoann

10
20

C
C

IMPLICIT REAL*¥8 (A-H,0-7) 96

COMNMOCN XX(15),XI,YI,CC,CN,CA,Y{UOO,Z),EBR(HOO,ZO)
COMMON/C1/RHO,YOLD {15,2),DT
DIMENSION XYT{2,20,20,2),0(20,20),V (20,20),XY(2,80,80

DIMENSION X{15,400), ERROR{2) ,ISUB({80,80)
REAL*4 Z1(90,90),22{90,90) ,TAGXY (80,80)
LOGICAL REFINE

DIMENSICN EBRDT (80,80) ,EXDT(80,80), EYDT{80,80)

1,GAMDT (80,80) ,LANDA (80,80)

REAL*8 DEBR (80,80)

REAL*8 ZXLS(10,800)

REAL*8 LANDA

REAL*8 X1(20,20,2),Y1420,20,2)
DIMENSION AINT2{80)

IX=N0 PTS IN X

I¥=NO PTS IN Y

IT=NO CF TIME STEPS

DT=TIME INTERVAL BETWEEN TIME STEPS

CC,CN ARE CONSTANTS WHERE SIGB=CC*EB**CN

CA IS LOWER -INTERVAL OF INTEGRATION FOR SIG

SIGYOA IS CONSTANT ADDED TO SIGY
XYT{L,I,3,K) CONTAINS: L=1 X-COORD; L=2 ¥Y-C

FOR 1I=1,1IY J=1,IX L=1,2

READ(5,10) IX,IY,IT
FORMAT{3I2)
READ(5,20) DT
FORMAT (8F10.0)

. READ(5,20) CC,CN,CA,SIGYOA

NIX CONTAINS # GRID PTS IN X DIRECTION, NIY IN Y

DIRECTICN FOR PLOTS

C

NeNe Ny

25
30

READ (5,10) NIX,NIY
READ{5,20) RHO

X & Y COORD READ FOR TIME=0

READ(%,30) ({{XYT(X,I,J,1) ,K=1,2),I=1,IY),3=1,IX)

DO 25 II=1,IX

DO 25 IJ=1,IY

IF (II.EQ.1) XYT(1,IJ,II,1)=0.D0
XYT{2,1J,II,1)=XYT{2,13,II,1)-1.0D0

CONTINUE

FORMAT{5X,2F6.3, 1X, 2F6.3,1X,2F6.3,1X,2¥F6.3,1X,2F6.3)

LTM=2 :

NTM=1

IDIM=20

IDINP=80

IXY=IX*TY

CALL AXIS{0.,0.,%X?,-1,10.,0.,0.,.2)

CALL AXIS(0.,0.,'Y',%,10.,90.,0.,.2)

CALL PLOT{XYT (1,I¥,1,1)*5.,XYT(2,IY,1,1)%5.,3)

CALLPLOT {XYT{(1,IY,IX,1) *5.,X¥YT(2,IY,IX,1)*5.,2)
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57 CALL PLCOT(XYT(1,1,1X,1)%5., YT (2,1,1IX,1)*5.,2) o7
58 D¢ 35 I=2,IX,2

59 Do 35 J=2,1Y,3

60 X1(1,3,1)=Xyr(1,3,1,1)

61 35 Y1(1,d,1)=X¥T¢{2,3,I,1)

62 C

63 C INITIALIZE EBR TO ZERD

64 DO 40 I=1,20

65 DO 40 J=1,400

66 EBR (J,I)=0.D0

67 40 CONTINUE

68 FACT=1. DO

69 c

70 C FOR EACH TIME STEP EBR IS ACCUMULATED
71 IT1=IT-1

72 DO 80 K=1,IT?

73 C -

74 C X&Y COORD ARE READ FOR NEXT TIME STEP
75 C

76 NTM=3-NTHM

77 LTM=3-LTH

78 READ(4,30) {{((XYT(KK,I,J,NTM),KK=1,2),I=1,1IY),J=1,1IX)
79 DO 45 I=1,IX '

80 DO 45 J=1,IY

81 IF (I.EQ.1) X¥YT(1,J,I,NTM)=0.D0

81.6 XYT(2,J,I,NTH)=XYT{2,J,1,NTM)-1.0D0
85 45 CONTINUE

86 c

87 C U,V CALCULATED FOR THIS TIME STEP

88 C U MUST BE >0, V MUST BE <0

89 C

90 48 DO 50 J=1,IX

91 DC 50 I=1,IY

92 v(L,J)y=-(Xyr¢1,1,J3,NTM)-X¥YT(1,I,J3,LTH)) /DT

93 V(I,J)=-{XYT(2,I,Jd,NTH¥)-XYT(2,I,J,LTHM))/DT

94 IF (U(I,J).GT.0.D0) U{I,J)=0.D0

95 IF (V(I,Jd).LT.0.D0) V(I,J)=0.D0

96 50 CONTINUE

97 c

98 C CURVE FITTING FOR U AND V USING DLSQHS
99 C SET UP INDEPENDENT VARIABLES IN X
100 C DEPENDENT VARIABLES IN Y

101 C

102 DO 60 J=1,IX

103 IL=IY* (J-1)

104 DO 60 I=1,1Y¥

105 : L=T+IL

106 CALL AUX (XYT(1,1,J,NTM),X¥YT(2,1I,J3,NTHN) ,X(1,L))
107 : XLs{1,L)=-X{(2,L)

108 XLS (2,L)=-2.D0*X (10,L)

109 XLS (3,L)=-3.D0%*X(11,1L)

110 XLS (4,L)=-4.D0%*X{12,L)

111 XLS {5,L) =-.5D0*X (3,1)

112 XLS (6,L)==-X(13,1)

113 XLS({7,L)=-1.5D0*X (14,L)

114 XLS (8,L) ==1.D0/3.D0%X (4,1)
115 XLS (9,L)=-2.D0/3.D0%*X (15,1L)

116 XLS(10,L)=-.25D0*X{5,1L)
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117
118
119
120

121

122
123
124
125

126 .

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

147

148

149
150
151
152
153
154
155
156
157
158
159

160
161
162
163
164
165

166
167
168
169
170

98
DO 55 IK=1,10
55 XLS{IK,IXY+L)=X (IK+5,1)
Y(L,1)=0(1,J)
60 Y(IXY+L, )=V {I,d)

CALL DLSQHS{Y,XLS,2%IXY,10,1,800,10,ERROR,.FALSE.,IER
,5200)
DO 62 IK=1,5
62 Y (IK,2)=0.D0
DO 63 IK=6,15
63 Y (IK,2)=Y{IK-5,1)
Y (1,1)=0.D0
Y(2,1)=-Y(6,2)
Y(3,1)=-.5D0%*Y{10,2)
Y(4,1)=-1.D0/3.D0*Y (13,2)
Y (5,1)=-.25D0*Y {15, 2)
DO 64 IK=6,9
64 Y {IK,1)=0.D0
Y(10,1) ==-2.DO*Y (7, 2)
Y (11, 1) =-3. DO*Y {8, 2)
Y (12, 1) =-4. DO*Y {9, 2)
Y(13,1)=-Y(11,2)
Y (14,1 =-1.5D0%Y (12, 2)
Y(15,1) ==2.D0/3.D0*Y (14,2)

U&vV COLFF SAVED FOR DU/DT,DV/DT

eNgXKe!

IF (K.NE. (IT1-1)) GO TO 410
DO 400 I=1,15
DO 400 J=1,2
400  YOLD{I,J)=Y{I,J)
410 CONTINUE
C .
C THE VALUES OF EDTX,EDTY,GAMXY,EBRDT,AND EBR
ARE CALCULATED :
c AT EACH TIME STEP
C
DO 52 I=2,IX,2
DO 52 J=2,1IY,3
X1(1,J, NTM) =X¥YT {1,J,I,LTH) -DT*AUX2 (XYT(1,J,I,NTH),
1 Xyr{2,J,I,NTH),Y{1,1),.TRUE.)
Y1(I,J,NTH)=XYT{2,J,I,LTH) - DT#*AUX2{(XYT{1,J,I,NTH),
1 XYT(2,3,I,NTM),Y(1,2),-FALSE.) - :
CALL PLOT(X1(I,J,LTH) *5.,Y1(I,J,LTN)*5.,3)
CALL PLOT{X1(I,J,NTH) *%5.,Y1{I,J, NTH) %5.,2)
CALL SYMBOL (X1(I,J,NTM)#*5.,Y1(I,J,NTM) *5.,.14,5,0.,-1

52 CONTINUE
IF (K.NE.IT1)G0 TO 53
CALL PLOT{0.,XYT(2,IY,1,NTH) *5.,3)
CALL PLOT{XYT(1,IY,IX,NTM)*5.,XYT(2,IY,IX,NTHM) *5.,2)
DO 49 I=2,IY
CALL PLCT(XYT(1,IY-I+1,IX,NTHM)*5.,XYT(2,IY-I+1,IX,NTH
) ¥5.,2)
49 CONTINUE
CALL PLOT(12.,0.,-3)
53 CONTINUE '
po 70 J=1,IX
IL=IY*{J-1)
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171
172
173
174

175

176
177
178
179
180
181
182
183
184
185
186

187
188
189
190

191

192
193
194
195
196
197
198
199
200

201 .

202
203
204
205
206
207
208
209
210
211
212
213
214

215

216
217

218

219
220
221
222

DO 70 I=1,IY 99

TJ=I+IL

CALL AUX (XYT(1,I,J,NTM),XYT(2,I,J,NTH) ,XX)

CALL DERIV(Y(1,1),XYT(1,1,J,NTH),X¥YT(2,I,J,NTH),DUDX,
DUDY, 3)

CALL DERIV(Y{1,2),XYT(1,I,J,NTM),XYT{2,I,J,NTH),DVDX,
DVDY, 1)

GAMXY=DU DY+ DVDX

DFACT= (DUDX*%2) /3. DO+ (GAMXY) ¥%*2/12. DO
65 EBRDT (I,J)=2.D0*DSQRT {(DFACT)

IF {K.EQ.IT1) FACT=.5D0

EBR (1J, 1) =EBR (IJ, 1) +FACT*DT*EBRDT (I ,J)

70 CONTINUE
80 CONTINUE
c
C ' 4TH DEGREE POLY FIT TO EBR
C
CALL DLSQHS{EBR,X,IX*IY,15,2,400,15,ERROR,.FALSE., IER
,£200) :
C
c MASTER GRID IS SET FOR FINAL PLOTS
C . .
C XY (2,I,J) CONTAINS THE MASTER GRID ST XY (1,
1,J) IS
C THE X-COORD, XY{2,I,3) IS THE Y-COORD FOR
1=1,IX J=1,1Y '

XMAX=0. DO

DO 90 I=1,IY

IF (XYT{1,I,IX,NTM).LT.XMAX) GO TO 90

XMAX=XYT (1,I,IX,NTH)

IMY=I
50 CONTINUE

YMAX=XYT {2, IY,IX,NTH)
100 CONTINUE

DY=YMAX/ (NIY-1)

DO 110 I=1,NIX

XY{2,I,1)=0.D0

DO 110 J=2,NIY

XY (2,I,d)=XY(2,I,J-1) +DY
110  CONTINUE

DX=XMAX/ (NIX-1)

DO 120 I=1,NIY

XY (1,1,1)=0.D0

DO 120 J=2,NIX"

XY {(1,J,I)=XY(1,J-1,I)+DX
120 CONTINUE

C
C TO FIND ZERO FILLS ON PLOTS
C ,
CALL FILL{XYT7,IX,IY,ISUB,XY,NIX,NIY,INY,NTH,IDIN,IDIN
?) :
Cc
C TO PLOT UO,V,EBRDT, AND TAUXY
C

DO 125 J=1,NI1Y
DO 125 I=1,NIX
EBRDT {I,J)=0.D0
DEBR (I,J)=0.D0
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223
224
225
226
227
228

229

230
231
232
233
234
235

236

237
238
239
240
241
242
243
244
245
246
247
248
245

250
251
252
253
254
255
256
257
258

259
260

261
262
263
264
265
260
267
268
269

270
271

272
273

125  TAUXY(I,J)=0.D0
NIY10=NIY+10 100
NIX10=NIX+10
DO 126 J=1,NIY10
DO 126 ‘I=1,NIX10
%1(I,J) =0.D0
126  22{I,J)=0.D0
DO 130 J=1,NIY
Bo 135 I=1,NIX
IF (ISUB(I,J).EQ.0) GO TO 130
21(I+5,3+5) =-AUX2 (LY (1,1,J),XY(2,I,3),Y(1,1),-TRUE.)
22 (1+5,J+5) =AUX2 (XY (1,I,d) ,X¥(2,1,3),Y{1,2),.FALSE.)
CALL DERIV(Y,XY(1,1,3),XY(2,I,J),EXDT(I,J),GAMDT (I,J)
¢ 3)
CALL DERIV(Y(1,2),%Y(1,I,J),XY(2,I,J),EBRDT(I,J),EYDT
(1,3),3)
GAMDT (I,J)=GAHUDT (I,J) +EBRDT (I, J)
DFACT= {3. DO¥EXDT (I,J) *%2+. 75D0*GAMDT (I ,J) **2)
131  EBRDT({I,J)=2.D0,/3.D0*DSQRT (DFACT)
DEBR (I,J) =AUX2 {XY {1,1,J) ,XY(2,I,J), EBR,.FALSE.)
LANDA (I, J)=1.5DO*EBRDT (I,J)/{CC*DEBR (I,J) **CN)
TAUXY (I ,J)=GAMDT (I,J) /{2- DOXLANDA{I,J))
135 CONTINUE
130  CONTINUE
c .
c PLOT U,V,EBRDT,TAUXY
<
 DXY=XY(2,NIX,NIY)/XY (1,NIX,NIY)
CALL PERS{Z1,IDINP+10,NIX+10,NIY+10,DXY,.333,45.,45.,
10.,10.)
CALL PLOT (12.,0.,-3)
CALL PERS(Z2,IDIMP+10,NIX+10,NIY+10,DXY,.333, 45.,45.,
10.,10.) A
CALL PLOT {12.,0.,~3)
DO 137 J=1,NIY10
DO 137 I=1,NIX10
21{I,J)=0.
137  22(I,J)=0.
DO 138 J=1,NIY
DO 138 I=1,NIX
138 21(I+5,3+5)=DEBR{I,J)
CALL PERS(Z1,IDIMP+10,NIX+10,NIY+10,DXY,.333,45.,45.,
10.,10.)
CALL PLGT(12.,0.,-3)
DO 139 J=1,NIY10
DO 139 I=1,NIX10
139 21(1,J)=0.
DO 140 J=1,NIY
DO 140 I=1,NIX
21{I+5,3+5) =EBRDT (I, J)
140  Z2(I+5,J+5) =—-TAUXY{I,J)
CALL PERS(%1,IDINP+10,NIX+10,NIY+10,DXY,.333,45.,45.,
10.,10.)
CALL PLOT (12.,0.,-3)
CALL PERS{Z2,IDIMP+10,NIX+10,NIY+10,DXY,.333,45.,45.,
10.,10.)
CALL PLOT{12.,0.,-3)
c
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274 C CALC SIGY

275 c 101

276 EXTERNAL DF1,DF2

277 DO 141 J=1,NIY10

278 | DO 141 I=1,NTIX10

279 Z21(1,3)=0.

280 141 z2{(I,J) =0.

281 DGRID={X¥{2,1,2)-XY(2,1,1)) /2

282 JGRID=1 ‘ _

283 1000 IF(CANGT.XY(2,1,JGRID)+DGRID)—GO‘TO 1010

284 GO TO 1020

285 1010 JGRID=JGRID#+1

286 IF (JGRID.EQ.NIY) GO TO 1020

287 GO TO 1000

288 1020 AINT2{1)=0.D0

289 DO 1030 I=2,NIX

290 AINT2 (I) =AINT2 (I-1)

291 IF (ISUB(I,JGRID).EQ.0) GO TO 1030

292 AINTZ(I)=AIHT2{I)*DQUANK(DFZ,XY(!,I-T,JGRID),

293 1XY{1,1,JGRID) ,.001D0,TOL,FIFTH)

294 1030 CONTINUE

295 DO 150 J=1,NIY

296 DO 150 I=1,NIX

297 IF¥ {(ISsUB(1I,J).EQ.0) GO TO 150

298 XI=XY(1,1,J)

299 Yi=XY(2,31,3)

300 AINT1=0.DO

301 IF {JGRID .EQ. J) GO TO 1060

302. : JADD=0

303 IF (ISUB{I,JGRID).EQ.1) GO TO 1050

304 © JINC=1

305 IF {JGRID.GT.J) JINC=-1

306 1040 JADD=JADD+JINC

307 IF {(JGRID+JADD.EQ.J) GO TO 1060

308 iF (ISUB(I,JGRID*JADD).EQ.1) GO TO 1050

309 GO TO 1040

310 1050 AINT1=DQUANK (DF1,XY(2,I,JGRID+JADD) ,XY{2,1I,J),.001D0,
' TOL,FIFTH) "

311 1060 Z1({I+#5,3%5)=SIGYCA-AINTI-AINT2{I)

312 Z2{I+5,J+5) =21 (1+5,J+5)+ (EXDT (I,J)- EYDT (I,J)) /LANDA (T

,3)
313 150 CONTINUE
314 CALL PERS(Z1,IDIMP+]0,NIX*10,NIY*1G,DXY,.333,QS.,US.,
10.,10.)

315 CALL PLOT{12.,0.,-3)

3186 CALL PERS5(22,IDIMP+10,NIX+10,NIY+10,DXY,.333,45.,45.,
- 10.,10.)

317  CALL PLOTND

318 STOP

319 200 STOP 1

320 END

321 SUBROUTINE AUX{X,Y,XX)

322 IMPLICIT REAL*8(A-H,0-2)

323 DIMENSION XX (15)

324 XX{1)=1.D0

325 XX (2)=X

326 XX {3) =X*X

327 XX {4)=X*XX{(3)
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328
- 329
330
.33
332
333
334
335
336
337
338
339
340
34
342
343
344
345
346

347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
385
366
367
368
369
370
3N
372
373
374
375
376
377
378
379
380
380.5
382
383
384

naooao

XX (5) =K *XX {4)

XX (6)=Y

XX{7)=Y*Y

XX{8)=Y*XX (7)

XX {9) =Y *XX (8)

XX{10)=X*Y

XX (11)=XX (10) *Y
XX{12)=X¥X{11) *¥
XX{13)=XX (10) *X

XX(18) =XX{13) *Y

XX (15)=XX {13) *X

RETURN

END

FUNCTION AUX2 (XX,YY,P,LL)
IMPLICIT REAL*8{A-H,0~-Z)

EVALUATE THE FITTED FUNCTION AT XX,YY
P CONTAINS THE FITTED PARAMETERS

LL IS TRUE IF THE INDEPENDENT VARIABLE MUST

BE EVALUATED BY AOX

C

10

LOGICAL LL

COMMON X

DIMENSION X (15),P(1)

IF {L1) CALL AUX (XX,YY,X{1))
AUX2=0.D0

po 10 1=1,15
AUX2=AUX2+P {I) *X {I)
CONTINUE

RETURN

END

FUNCTION DF1{YC)

IMPLICIT REAL*8(A-H,0-2)
COMMON XX(15),XI,¥I,C1,C2,CA,Y (400,2),PEBR(20,20)
COMMON/C1/RHO, YOLD (15,2),DT

THE INTEGRAND DTAU/DX IS EVALUATED

EBR=AUX2 (XI,YC,PEBR,.TRUE.)
CALL DERIV(Y{1,1),XI,YC,EXDT,DUDY,3)
CALL DERIV{Y(1,2),XI,¥C,DVDX,DVDY,3)
GAMDT=DU DY +DVDX
EBRDT=2.D0/3.DO%*DSQRT (3. D0 *EXDT%%2+.75D0*GANDT *%2)
CALL DERIV (PEBR,XI,YC,DEBRDX,DUM,1)
CALL DERIV2{Y{1,1),%XI,YC,DUDXY,3)
CALL DERIV2(Y(1,2),XI,¥YC,DVDXX,1)
DGAMDX=DUDXY+DVDXX
CALL DERIV2{(Y(1,1),XI,YC,DEXDX,1)
DEBRDT={4.DO*EXDT*DEXDX+GAMDT*DGAMDX) /{3.DO*EBRDT)
DF1=C1*EBR**C2/ (3.DO*EBRDT) * {C2*DEBRDX*GAMDT /EBR
1 +DGAMDX - DEBRDT*GAMDT/EBRDT)
U=AUX2(XI,¥C,Y{1,1),.FALSE.)
V=AUX2{XI,¥C,Y{1,2),.FALSE.)
VOLD=AU¥2{XI,YC,YOLD (1,2),-FALSE.)

FACT=RHO* ({V-VOLD) /DT)
DF1=DF1+FACT
RETURN
END

102
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385
3go
387
388
389
390
391
392
393
394
385
396
397
398
399
400
401
402
403
Loy
405
406
407
408
409
410
411
412
413

414
415
416
416.5
418
419
420
421
422
423
424

425
426
427
428
429
430

431

432
433
434

435
436
437

FUNCTION DF2{X)

IMPLICIT REAL*8 (A-H,0-2)

coMMON XX(15) ,X1x,v1,c1,C2,CA,Y{400,2),PEBR(20,20) -
COMMON/C1/RHO,YOLD (15,2) ,DT

REAL*8 LAMBDA

THE INTEGRAND DTAU/DY IS EVALUATED

anon

EBR=AUX2{X,CA,PEBR,.TRUE.)

CALL DERIV(Y(1,1),X%,CA,EXDT,DUDY,3)

CALL DERIV{Y{1,2),X,CA,DVDX,EYDT,3)

GAMDT=DUDY+DVDX

EBRDT=2. D0/3.DO%DSQORT (3.DO*EXDT* %2+ . 75D0*GAMDT*%2)

CALL DERIV(PEBR,X,CA,DUM,DEBRDY,2)

CALL DERIV2(Y(1,1),X,CA,DUDYY,2) -

CALL DERIV2{Y(1,2),X,CA,DVDXY,3)

DGAMDY=DUDY Y+DVDXY

CALL DERIV2(Y{1,1),X,CA,DEXDY,3)

YEBRDT= {4.DO*EXDT*DEXDY+GAMDT*DGAMDY) / {3. DO*EBRDT)

CALL DERIV2{Y{1,1),X,CA,DEXDX,1)

CALL DERIV2{Y{1,2),X,CA,DEYDX,3) -

LAMBDA= (2.D0%C1%*EBR¥*C2) /(3. DO*EBRDT)

CALL DERIV(PEBR,X,CA,DEBRDX,DUM, 1)

CALL DERIV2{Y(1,2),X,CA,DVDXX,1)

DGAMDX=DEXDY +DVDXX

DEBRDT= {4. DO*EXDT*DEXDX+GAMDT*DGAMDX)/(3.DO*EBRDT)

DF2=LANBDA* ( ( (FYDT-EXDT) * {~-C2*DEBRD X/EBR

1 #DEBRDT/EBRDT) +DEXDX-DEYDX)

1 +.5D0% (C2*DEBRDY*GANDT/EBR + DGANDY - YEBRDT*GAMDT/E

BRDT) )

U=AUX2{X,CA,¥Y{(1,1),-FALSE.)

V=AUX2{X,CA,Y{1,2) ,- FALSE.)

UOLD=AUX2 (X,CA,YOLD(1,1).,. FALSE.)
FACT=RHO* ( (U-UOLD) /DT)

DF2=DF2 + FACT

RETURN
END
SUBROUTINE DERIV(A,X,Y,DUDX,DUDY,N)
c
c EVALUATE DERIV WRT X AND Y
c IF N=1 DUDX, IF N=2 DUDY, OTHERWISE DUDX AN
D DUDY
c
IMPLICIT REAL*8 (A-H,0-Z)
COHMON XX {15)
DIMENSION A{1)
IF (N .EQ. 2) GO TO 10
DUDX=A (2) +2.D0%A {3)*X + 3.DO%A(4)*XX{3) *+ 4.DO*A(5)*X
X {4) - .
1 #A (10) %Y+A (11) #XX(7) + A(12)*XX (8) * 2.DO*A{13)*XX{1
0)

1 +2.DO0%A {14) *XX (11) + 3.DO*A (15) *XX {13)
IF {N.EQ.1) RETURN
10 DUDY=A (6) + 2.DO%A (7)*Y +3.DO*A{8)%*XX(7) + U4.DO¥A(9)*
XX {8) : _
1 +A{10) %X + 2.DO*A (11)*XX{10) +3.DO%A (12) *XX{11)
1 + A(13)%XX (3) +2.DO%A (14)*XX (13) + A(15)*XX (4)
RET URN
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438
439
440
441
442
443
44y
445
446
¥
448
449
450
451
452
453
454
455
456
457

458
459

460
461
462
463
4e4
465
L6o6
467
468
469
470
471
472
473
474
475

476

477
478
479
- 480
481
482
483
L8y
485
486
487

488
489
430
491
492

104
END

SUBROUTINE DERIV2(A,X,Y,DUDD,N)
IMPLICIT REAL*8 (A-H,0-Z)

C
C EVALUATE 2ND ORDER DERIV WRT X AND Y
C N=1 DXDX; N=2 DYDY; N=3 DXDY
c

DIMENSION A{1)

GO TO (10,20,30),K
10 DUDD=2.D0%A (3) + 6.DO%A (4) %X + 12.DO0%A (5) *¥X*X

1 +2.D0%A {13) *Y +2.DO*A(184) *Y*Y + 6. DO%A {15) *X*Y

RETURN
20 DUDD=2.D0%A(7) + 5.DO%A (8) %Y + 12.DO%®A{9) *Y*Y +

1 2.D0%A(11) %X + 6.D0%A (12) *X*Y + 2.DO*A {14) *X*X

RETURN .
30 DUDD=A{10) + 2.DO*A(11)*Y # 3.DO*A{12)*Y%Y

1 + 2.DO%*A{13) ¥X + 4.DO%A {14) *X*Y + 3.DO%A (15) *X*X

RET U RN '

END

SUBROUTINE FILL{XYT,IX,IY,ISUB,XY,NIX,NIY,IMY,NTM,IDI
M,IDIMP)
IMPLICIT REAL*8{A-H,0-2)
DIMENSION XYT{(2,IDIM,IDIM,2),ISUB(IDIMP,1),XY{2,IDINP
1) .

ISUB CONTAINS 1 WHERE A FUNCTION VALUE IS
PLOTTED, 0 IF OUTSIDE BOUNDARY

sNoNeRel I

DO 10 I=1,NIX
DO 10 J=1,NIY
10 ISUB(I,J)=1
XMIN=XYT{1,IMY,IX,NTHM)
DO 15 I=1,IY
IF {XYT(1,I,IX,NTH).GT.XMIN) GO TO 15
XMIN=XYT{1,I,IX,NTH)
IMYMIN=I
15 CONTINUE
DO 110 J=1,NIY
DO 100 I=1,NIX
IF (XY(1,I,J)-LT.X¥T(1,IMYMIN,IX,NTM)) GO TO 100
IF (XY(1,1,J).GT-XYT{1,IMY,IX,NTH)) GO TO 80
LB=1
NB=2
20 IF{XY(2,1,J).LT.XYT{(2,NB,IX,NTH)) GO TO 30
LB=LB+1
NB=NB+1
IF (NB.LT.IY) GO TO 20
30 IF({XY(1,I,J).LT.XYT(1,LB,IX,NTN).AND.
1 XY(1,I,J)<LT.XYT(1,NB,IX,NTHM)) GO TO 100
IF (XY(1,I,J).GT.XYT (1,LB,IX,NTH).AND.
1. XY(1,I,J).GT.XYT{1,NB,IX,NTM)) GO TO 80
YN=XYT(2,LB,IX,NTH)+ (XYT {2,NB,IX,NTH)-XYT{(2,LB, IX,NTH
))
1 /{XYT(1,NB,IX,NTM)-XYT(1,LB,IX,NTM))*
1 (XY(1,I,J)-XYT(1,1B,IX,NTH))
IF {YN.GT.XY(2,I,J).AND.XYT(1,LB,IX,NTHM).GE.
1 XYT{1,§B,IX,NTM)) GO TO 100 :
IF {(YN.L7T.XY(2,I,J).AND. XYT(1,LB,IX,NTH).LE.
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493
494
495
496
497
498
499
500

80
90

100
110

1 YT ({1,NB,IX,NTM)) GO TO 100
DO 90 IXI=I,NIX

ISUB(IX,d)=0

GO TO 110

CONTINOUE

CONTINUE

RETURN

END
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INPLICIT REAL*8(A-H,D0-2)

comMonN xx(15),xr,y1,cc,CnN,Ca,Y (400, 2) , EBR(400,20)
COMMON/C1/RHO,YOLD(15,2) ,DT
DIMENSION XXT {2,20,20,2),0(20,20),V(20,20),XY{2,80,80

DIMENSIGN X (15,400), ERROR(2),ISUB{80,80)
REAL*4 21(90,90),22(¢(90,90) ,TAUXY (80,80)
LOGICAL REFINE

DI¥ENSION EBRDT(80,80),EXDT(80,80),EYDT(80,80)

1,GAMDT({80,80) ,LANDA(80,80)

REAL*8 DEBR (80,80)

REAL*8 XLS(10,800)

REAL%*8 LANDA
DIMENSION AINT2(80)

IX=NO PTS IN X

IY=NO PTS IN Y

IT=NO OF TIME STEPS

DT=TIME INTERVAL BETWEEN TIME STEPS

CC,CN ARE CONSTANTS WHERE SIGB=CC*EB**CN

CA IS LOWER INTERVAL OF INTEGRATION FOR SIG

SIGYOA IS CONSTANT ADDED TO SIGY
XYT{L,I,J,K) CONTAINS: L=1 X-COORD: L=2 Y¥Y-C

FOR TI=1,IY J=1,IX L=1,2

READ(5,10) IX,IY,IT

FORMAT (312)

READ (5, 20) DT

FORMAT(8F10.0)

READ({5,20) CC,CN,CA,SIGYOA,CB

NIX CONTAINS # GRID PTS IN X DIRECTION, NIY IN Y

DIRECTION FOR PLOTS

C

ey O

25
30

READ (5,10) NIX,NIY
READ(5,20) RHO

X & Y COORD READ FPOR TIME=0

READ(4,30) ({({(XYT(X,I,J,1),K=1,2),I=1,1IY),J=1,IX)
DO 25 II=1,IX

DO 25 1J=1,1IY

IF (II.EQ.1) X¥r(1,1J,11,1)=0.D0

IF(I3.EQ. 1) XYT(2,1J,1I1,1=0.D0

Do 25 IK=1,2

IF (XYT{IK,IJ,II,1).LT.0.D0) XYT{IK,IJ,II,1)=0.D0
CONTINUE '

FORMAT (5X,2F6.3, 1X,2F6.3,1X,2F6.3,1X,276.3,1X,2F6.3)
CALL PLOTIT (XYT(1,1,1,1),IX,IY)

LTM=2

NTM=1

IDIM=20

IDINP=80

IXY=TX*1IY

INITIALIZE EBR TO ZERO
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107
41 DO 40 I=1,20
42 DO 40 J=1,400
43 EBR{J,I) =0.D0
4y 40 CONTINUE
45 FACT=1.DO0
46 C
47 C FOR EACH TIME STEP EBR IS ACCUMULATED
48 IT1=1T7-1
49 DO 80 K=1,IT1
50 c -
51 C X&Y COORD ARE READ FOR NEXT TIME STEP
52 C
53 NTM=3-NTHM
54 LTM=3-LTH -
55 READ(4,30) ({(XYT{XKK,I,J,NTHM),KK=1,2),I=1,1IY),J=1,IX)
56 DO 45 I=1,IX
57 DO 45 J=1,IY
57.2 IF (I.EQ.1) XYT(1,J,I,NTM)=0.DO
57.4 IF (J.EQ.1 XYT(2,J,I,NTHM)=0.D0
58 DO 45 IK=1,2
59 - IP (XYT(IXK,J3,I,NTH).LT.0.)XYT(IK,J,I,NTM)=0.DO
60 45 CONTINUE
602 CALL PLOTIT (XYT(1,1,1,NTH),IX,IY)
61 C
62 C U,V CALCULATED FOR THIS TIME STEP
63 o U MUST BE >0, V MUST BE <0
64 c ‘
65 DO 50 J=1,IX
66 DO 50 I=1,IY
67 ' u(r,Jd)=- (xyw(a 1,d, NTM)—XYT(1 1,J,LTM)) /DT
68 V{(I,J)=-(XYT7(2,1,3,NTM)-XYT{2,I,J,LTH))/DT
69 IF {U(I,J}.GT-O.DO) U{I,J)=0.D0
70 IF {V{(I,J).1T.0.D0) V(I,J)=0.DO
71 50 CONTINUE
72 C
73 . C CURVE FITTING FOR U AND V USING DLSQHS
74 c SET UP INDEPENDENT VARIABLES IN X
75 C ' DEPENDENT VARIABLES IN Y
76 C
77 " DO 60 J=1,IX
78 IL=IY*(J-1) -
79 DO 60 I=1,IY
80 L=I+IL
81 CALL AUX(X¥T(1,I,J,NTM),XYT(2,I,J,NTH ,X(1,L))
84.61 XLS {1,L)=-X(2,1)
84.62 X1S(2,L) =-2.D0*X (10, L)
84.63 XLS {3,L)=—3.D0%X (11,1L)
84.64 XLS {(4,L)=-4.D0%*X(12,L)
84.65 XLS {5,L)=-.5D0*X {3,L)
84.66 XLS (6,L) ==X ({13,L)
84.67 XLS (7,L)=-1.5D0%*X {14 ,L)
B4.68 XLS (8,L) =-1.D0/3.D0%*X (4,L) -
84.69 LL5(9,L)=-2.D0/3.D0*X (15,L)
84.7 XLS({10,1)=-.25D0%*X(5,L)
84.71 DO 55 IK=1,10
84.72 S5 XLS (IK,IXY+L)=X (IK+5,1L)
84.73 Y({L,1)=U({I,d)

g4.74 60 Y (IXY+L, 1)=V(I,J)
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84.75

84.76
84.77
84.78
84.79
84.8

84.81
84.82
84.83
84.84
84.85
84.86
84.87
84.88
84.89
84.9

84.91

84.92

85

85.1
85.2
85.3
85.4
85.5
B85.6
85.7
85.8
86

87
88
839
90
91
92
92.2
93

94

95
896
96. 16
96.2
97
98
101
102
103
104
105

106
107
108
109

CALL DLSQHS(Y,XLS,Z*IXY,10,1,800,10,ERROR,.FALSE;}g§R
,£200) -
DO 62 IK=1,5
62 Y (IK,2)=0.D0
DO 63 IK=6,15
63 Y (IK,2) =Y (IK-5, 1)
Y (1,1)=0.D0
Y (2, N =-Y(6,2)
Y{3,1)=-.5D0%*Y {10,2)
Y (4, 1) == 1.D0,/3.D0%Y (13,2)
Y{5,1)=—.25D0*Y (15,2)
DO 64 IK=6,9
64 Y (IK,1)=0.D0
Y (10, 1) =-2.D0%*Y (7, 2)
¥(11,1)=-3.D0*Y (8,2)
Y (12,1)=-4.D0*Y (9, 2)
Y(13,1)==-Y(11,2)
Y{14,1)==1.5D0%Y (12,2)
Y {15, 1) ==2.D0/3.D0%Y { 14,2)

U&V COEFF SAVED FOR DU/DT,DV/DT

aon

IF (K.NE.{IT1-1)) GO TO 410
DO 400 1I=1,15
DO 400 3=1,2

400 YOLD (I,d)=Y{1,J)

410 CONTINUE

C : :

C THE VALUES OF EDTX,EDTY,GAMXY,EBRDT,AND EBR
ARE CALCULATED

Cc AT EACH TIME STEP

Cc

DO 70 J=1,IX

IL=1Y* (J-1)

DO 70 I=1,IY

IJ=T+IL :

CALL AUX (XYT(1,I,J,NTM),XYT(2,I,J,NTH),XX)

CALL DERIV{Y(1,1),XYT(%,I,J,NTM),XYT{2,I,3,NTH),DUDX,
DUDY, 3)

CALL DERIV(Y(1,2),X¥YT(1,I,J,NTHM),XYT(2,I,d,NTHM),DVDX,
DYDY, 1) .

GAMXY=DUDY+DVDX

DFACT= {DUDX*%2) /3. D0+ (GAMXY) ¥*2/12. DO
65 ' EBRDT{I,J)=2.DO%DSQRT (DFACT) -

IF (K.EQ.IT1) FACT=.5D0

EBR (IJ,1)=EBR(IJ, 1) +FACT*DT*EBRDT (I,J)

70 CONTINUE

80 CONTINUE

C :

C 4TH DEGREE POLY FIT TO EBR
C

CALL DLSQHS {EBR,X,IX#*1Y,15,2,400,15,ERROR,.FALSE.,IER

Cc

C MASTER GRID IS SET FOR FINAL PLOTS
c .

C

Y (2,1,J) CONTAINS THE MASTER GRID ST XY({(1,
I,J) IS
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110

1M
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126 .
127
128
129
130
131
132
133
134

135
136
137
138
138.4
138.8
139
139.2
139.6
140
140.4
140.8
141.2
141.6
144
145
146
147
- 348
149

150

151
152
152.8
153
154
155
155.2
156

C

THE X-COORD, XY (2,1,J) IS THE Y-COORD FOR

I=1,1X J=1,1Y

S0

100

110

125

126

e 3)

XMAX=0.DO

PO 90 1I=1,1Y )

IF (XYT(1,I,IX,NTM).LT.XMAX) GO TO 90
XMAX=XYT {1,I,IX,NTH)
IMNY=I

CONTINUE

YMAX=XYT (2,IY,IX,NTHN)
CONTINUE

DY=YMAX/(NIY-1)

DO 110 I=1,NIX

XY (2,I,1)=0.D0

DO 110 J=2,NIY
X¥{2,1,3)=XY(2,I,3-1)+DY
CONTINUE

DX=XMAX/ (NIX-1)

DO 120 I=1,NIY
X¥(1,1,I)=0.D0

DO 120 J=2,NIX
XY(1,J,I)=XY(1,J-1,I)+DX
CONTINUE :

T0 FIND ZERO FILLS ON PLOTS

CALL FILL{XYT,IX,IY,ISUB,XY,NIX,NIY,INY,NTH,IDIN,IDIH

TO PLOT U,V,EBRDT, AND TAUXY

DO 125 J=1,NIY

DO 125 I=1,NIX

EBRDT{I,J}=0.D0

DEBR (I,J)=0.D0

TAUXY (I,J)=0.DO

NIY10=NIY+10

NIX 10=NIX+10

DO 126 J=1,NIY10

DO 126 I=1,NIX10

21(I,J)=0.D0

722(I,J3)=0.D0

DO 130 J=1,NIY

DO 135 I=1,NIX

IF (ISUB(I,J).EQ.0) GO TO 130
21(I+5,3+5)=-AUX2{XY(1,I,J),X¥(2,1,3J),Y{1,1 ,.TRUE.)
22(I+5,J+5) =AUX2(X¥(1,I,J),X¥{2,1,3),7¥{1,2),.FALSE.)
CALL DERIV(Y,XY(1,I,J),XY{2,I,J),EXDT(I,J),GAMDT(I,J)

CALL DERIV(Y{1,2),XY{1,1,d),XY(2,1,3),EBRDT(I,J),EYDT

(I,3),3)

131

135
130

GAMDT (1,J)=GAMDT (I,J) +EBRDT (I, J)
DFACT={3.DO*EXDT (I,J) **2+_,75D0*GAMDT {I,J) *%*2)
EBRDT(I,J)=2.D0/3.DO*DSQRT (DFACT)
DEBR{I,J)=AUX2(XYy{1,1,J),XY{2,1,J).,.EBR,.FALSE.)
LANDA(I,3)=1.5D0O*EBRDT(I,J) /{CC*DEBR (I,J)**%CN)

- PAUXY{I,Jd)=GAMDT (I,J)/{2.DO*LANDA(I,Jd)) -

CONTINUE
CONTINOE



PROGRAM FOR TWO DIMENSIONAL PLOT

157 c 110

158 C 2L0T U,V,EBRDT,TAUXY

159 c

159.4 : CALL PLOT2 {(TAUXY,XY,IX,I1IY,ISUB,NIX,NIY)

159.6 CALL PLOT(12.,0u -3

160 DXY=XY {2, ,NIX,NIY)/XY(1,NIX,NIY)

161 C CALL PERS(Z1,IDIMP*]0,NIX*10,NIY*10,DXY,.333,“5¢,Q5.,
10.,10.)

161.2 C CALL PLOT("Z.,O.,‘-’;?)

162 c CALYL PERS{Z2,IDIMP+10,NIX+10,NIY+10,DXY,.333,45.,45.,
10.,10.)

- 162.5 C CALL PLOT {12. ,0.,-3)

162.55 be 137 J=1,NIY10

162.6 DO 137 I=1,NIX10

162.65 21(1,3)=0.

162.7 137 22(1.3)=0.

162.73 DO 138 d=1,NTY

162.76 DO 138 I=1,NIK

162.79 138 Z21{1i+5,3+5)=DEBR(I,J)

162.82 C CALL PERS{Zz1,IDIMNP+10,NIX+10,NIY+10,DXY,.333,45.,45.,
10.,10.)

162.85 C CALL PLOT{(12.,0.,-3)

162.68 DO 139 J=1,NIY10

162.91 DO 139 TI=1.NIX10

162.94 139 z21(1,3)=0.

163 DO 140 J=1,NLY

164 DO 140 I=1.NIX

165 Z1{(I+5,3+5)=EBRDT (I,d)

165. 2 140 Z22(I1+#5,3+5) ==TAUXY(I,Jd)

166 C CALL PERS({Z1,IDIHP+10,NIX+10,NIY+10,DXY,.333,45.,45.,
10.,10.)

166.5 C CALL PLOT{12.,0.,-3)

167 C CALL PERS{Z22,IDIMP+10,NIX+10,NIY+10,DXY,.333,45.,45.,
10.,10.)

167.5 C CALL PLOT(12.,0.,-3)

168 c

169 C CALC SIGY

170 c

171 - EXTERNAL DF1,DF2

171.2 DO 141 J=1,NIY10

171. 4 DO 141 I=1.NIX10

171.6  21(1,3)=0.

171.8 141 Z22(I,0)=0.

172 DGRID= (XY (2,1,2)-XY (2,1, 1)) /2

172.1 JGRID=1

172.2 1000 IP(CA.GT.XY(2,1,JGRID) #+DGRID) GO TO 1010

1723 GO TO 1018 ‘ ’

172.35 1010 JGRID=JGRID+1

172. 4 IF (JGRID.EQ.NIY) GO TO 1018

172.45 GO TO 1000

172.5 1018 IGRID=1
172.55 1015 IF ({(ISUB(IGRID+1,JGRID).EQ.0) GO TC 1020

172.6 IGRID=IGRID+

172.65 IF (IGRID.EQ.NIX) GO TO 1020
172.7 GO TO 1015

172.75 1020 DO 1030 I=1,NIX

172.8 XI=X¥(1,1I, 1

172.85 IF (XI.LE.CB) GO TO 1025
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172.9

172.85

173 1025
173.05

173.1

173.15 1027

173.2 1030 .

DIMENSIONAL PLOT

111

IF {¥XI .GT. CB .AND. ISUB(I,JGRID) .NE. 0) GO TO 1025

XI=X¥{1,IGRID,JGRID)
IF (XI -EQ. CB) GO TO 1027

ATINT2 (I)=DQUANK (DF2,CB,X1,.0601D0,T0L,FIFTH) -

G0 TO 1030
ATINT2 {I)=0.D0
CONTINUE

173.4 DO 150 J=1,NIY

173.5 DG 150 I=1,NIX

173.6 IF (ISUB(I,J)<EQ.0) GO TO 150

173.7 XI=XY(1,I,J) .

173.8 YI=XY{2,1I,J)

173.9 AINT1=0.DO

174 IF (JGRID .EQ. J) GO TO 1060

174.1 . JADD=0

174.2 IF (ISUB{I,JGRID).EQ.1) GO TO 1050

174. 3 JINC=1

174.4 IF (JGRID.GT.J) JINC=-1

174.5 1040 JADD=JADD+JINC

174.6 IF (JGRID+JADD.EQ.J) GO TO 1060

174.7 IF (ISUB(I,JGRID+JADD).EQ.1) GO TO 1050

174.8 GO TO 1040

174.9 1050 AINT1=DQUANK (DF1,XY{(2,I,JGRID+JADD) ,XY {2,I,J),.001D0,
TOL,PIFTH)

175 1060 Z1{I+5,3+5)=SIGYCA~AINTI1-AINT2{(I)

176.4 TAUXY(I,J)=21(I+5,J+5)

177 22 (I+#5,J+#5)=21(I+5,J+5) # (EXDT (I,J)-EYDT{I,J)) /LANDA (I
+J)

178 150 CONTINUE 4

178.2 CALL PLOT2(TAUXY,XY,IX,IY,ISUB,NIX,NIY)

178.4 CALL PLOTND

178.6 STOP

179 CALL PERS{Z1,IDIMP+10,NIX+10,NIY+10,DXY¥,.333,45.,45.,
10, 10.) - ’

179.5 CALL PLOT {12.,0.,-3)

180 CALL PERS{Z2,IDIMNP+10,NIX+10,NIY+10,DXY,.333,45.,45.,
10.,10.)

180.2 CALL PLOTND

181 STOP

182 200 STOP 1

183 END

184 SUBROUTINE AUX(X,Y,XX)

185 IMPLICIT REAL*8 (A-H,0-Z) -

186 DIMENSION XX (15)

187 XX{1)=1.D0

188 XX{2) =X

185 XX{3)=X*X

190 XX {4)=X*XX(3)

191 XX (5)=X*XX (4)

192 1X(6)=Y

193 XX{7)=Y*Y

194 XX (8) =Y*XX{7)

195 XX (9)y=Y*KX (8)

196 XX{10) =X *Y

197 XX(11)=XX{10)*Y

198 CXX(12)=XX(11) *Y

199 XX (13)=XX {10) *X

200 XX{14)=XX{13) *Y
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201
202
203
204
205
206
207
208
208

e NoNeNy

210 C
21
211.2
212
213
214
215
216
217 10
218
219
220
221
222
222.5
223 C
224 c
225 C
226
227
228
229
230
231
232
233
234
235
236
237
238
238.1
238.2
238.3
238.4
238.5
239
240
241
242
243
243.1
243.2
244
245

- 246
247
248

Gan

XX{15)=XX{13)*X

RETURN

END

FUNCTION AUX2(XX,YY,P,LL)
IMPLICIT REAL*8 (A-H,0-Z) .

EVALUATE THE FITTED FUNCTION AT XX,YY
P CONTAINS THE FITTED PARAMETERS

- 112

LL IS TBUE IF THE INDEPENDENT VARIABLE MUST
BE EVALUATED BY AUX

LOGICAL 1LL

COMMON X

DIMENSION X (15),P{(1)
IF (LL) CALL AUX(XX,YY,X{1))
AUX2=0.DO

po 10 1=1,15

AUX 2=AUX2+P (I)*X (I)
CONTINUE

RETURN

END

FUNCTION DF1(YC)

~ INPLICIT REAL*8 (A—~H,0~2)

COMMON XX (15),XI,¥I1,C1,C2,CA,Y (400,2),PEBR(20,20)
COMMON/C1/RHO,YOLD(15,2) ,DT

THE INTEGRAND DTAU/DX IS EVALUATED

EBR=AUX2{XI,YC,PEBR, .TRUE.)

CALL DERIV{Y{1,1),XI,YC,EXDT,DUDY,3)

CALL DERIV{Y(1,2),XI,¥YC,DVDX,DVDY,3)
GAMDT=DUDY+DVDX

EBRDT=2.D0/3.DO%*DSQRT {3.DO*EXDT**2+.75D0%GANDT**2)
CALL DERIV(PEBR,XI,YC,DEBRDX,DUM,1)

CALL aEalvz(Y(1,1),x1,yc,nuoxy,3)-

CALL DERIV2{Y(1,2),XI,YC,DVDXX,1)
DGAMDX=DUDXY+DVDXX

CALL DERIV2(Y(1, 1 ,XI,YC,DEXDX,1)

DEBRDT= (4. DO*EXDT*DEXDX+GAMDT*DGANDX) /{3. DO*EBRDT)
DF1=C 1*EBR**C2/ (3.DO0*EBRDT) * (C2*DEBRDX*GA MDT /EBR

1 +DGAMDX - DEBRDT*GAMDT/EBRDT)

U=AUX2 (XI,YC,¥(1,1),.FALSE.)
V=AUX2({XI,¥YC,Y{1,2),.FALSE.)

VOLD=AUX2 (XI,YC,YOLD (1, 2),.FALSE )

FACT= RHO*'(V—VOLD)/DT":J;“éfT e

N

DF1=DF1+FACT - ~~f*\3

_ RETURN

END

FUNCTION DF2({X)

IMPLICIT REAL*8 (A-H,0-2) -

COMMON XX{15),X1,Y1,C1,C2,CA,Y{400,2) ,PEBR (20, 20)
COMMON/C1/RHO,YOLD(15,2) ,DT

REAL*8 LANMBDA

THE INTEGRAND DTAU/DY IS EVALUATED

EBR=AUX2 {X,CA,PEBR,.TRUE.)
CALL DERIV(Y(1,1).,X,CA,EXDT,DUDY,3)
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249
250
251
252
253
254
255
256
257
258
259
260
261
263
264
265
266
267
268

268.1
268.2
268.3
268.4
268.5
269
270
27
272
273
274

275
276
277
278
279
280

281

282
283
284 .

285
286
287
288
289
290
291
292
293
294
295
296
297

CALL DERIV{Y{(1,2),X,CA,DVDX,EYDT,3)

GAMDT=DUDY#*DVDX

EBRDT=2. D0/3.D0*DSQRT (3. DO¥EXDT*%2+ ., 75D0%GAMDT**2)

CALL DERIV(PEBR,X,CA,DUM,DEBRDY,2)

CALL DERIV2(Y(1,1),X,CA,DUDYY,2)

CALL DERIV2 (Y {1,2),X,CA,DVDXY,3)

DGAMDY=DUDYY+DVDXY

CALL DERIV2(Y({(1,1),X,CA,DEXDY,3)

YEBRDT={4.D O*EXDT*DVXDY#GAMDT*DGAMDY)/(3.DO*EB&DT)

CALL DERIV2(Y({(1,1),%X,CA,DEXDX,1)

CALL DERIV2(Y{1,2),X,CA,DEYDX,3)

LAMBDA=(2.DO*C1*EBB**C2)/(3.DO*EBBOT)

CALL DERIV (PEBR,X,CA, DEBRDX,DUM, 1)

CALL DERIV2(Y({(1,2),X,CA,DVDXX,1)

DGAMDX=DEXDY +DVDXX

DEBRDT= (4. DO*EXDT*DEXDX+GAMDT*DGAMDX) / {3. DO*EBRDT)

DF2=LAMBDA* ({ (EYDT-EXDT) *¥{~C2*DEBRDX/EBR

1 +DEBRDT/EBRDT) +DEXDX~-DEYDX)

1 +.5D0% (C2*DEBRDY*GAMDT/EBR + DGAMDY - YEBRDT*GAMDT/E
BRDT))

U=AUX2(X,CA,Y{1,1) ,.FALSE.)

V=AUX2 (X,CA,Y(1,2) ,« FALSE.)

UOLD=AUX2(X,CA&,YOLD (1, 1),.FALSEQ):H

FACT=RHO*{{U=UOLD) /DT w\v*i%; g Ul TR
DF2=DF2 + FACT R
RETURN
END
SUBROUTINE DERIV(A,X,Y,DUDX,DUDY,N)
C
C EVALUATE DERIV WRT X AND Y
C IF N=1 DUDX, IF N=2 DUDY, OTHERWISE DUDX AN
D DUDY
C
IMPLICIT REAL*8 (A-H,0-2)
COMMON XX {15)
DIMENSION A(1) :
IF (N .EQ. 2) GO TO 10
DUDX=A(2) +2.D0*A{3) *X + 3.DO%*A (4)*XX(3) + U.DO*A(5)*X
X {l)
1 #A{10) *Y+A (11) *XX(7) + A{12)*XX (8) + 2.DO*A (13)*XX (1
0)
1 +2.DO*A (14) *XX(11) + 3.DO0#*A (15) *XX {13)
IF (N.EQ.1) RETURN
10 DUDY=A{(6) #+ 2.DO%A(7)*Y +3.DO*A{8)*XX(7) + 4.DO*A(9)*
XX (8)
1 A (10) %X + 2.DO0*A {11)*XX (10} +3.DO*A{12)*XX[11)
1 4+ A(13) *XX {3) +2.D0*A(1#)*XX(13) + A(15) *XX(4)
RETURN
END
SUBROUTINE DERIV2(A,X,Y,DUDD,N) -
IMPLICIT REAL*8(A-H,0-2) -
C .
C EVALUATE 2ND ORDER -DERIV WRT X AND Y
C N=1 DXDX; N=2 DYDY; N=3 DXDY
C

DIMENSION A {1)
GO TO (10,20,30),N
10 DUDD=2.DO0*A {3) + 6.DO*A(4) *X + 12.DO0*A({5) *X*X
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298 1 +2.D0%A {13)%Y +2.D0%A (14) ¥Y*Y + 6.DO0%A {15) *X*Y

299 RETURN :

300 20 DUDD=2.DO0*A(7) + 6.DO%A (8)*Y + 12.DO%A (9)*Y*Y +

301 1 2.DO%A(11) ¥X + 6.DO%A(12) *X*Y + 2. DO%A (14)*%X*X

302 RETURN

303 30 DUDD=A(10) + 2.DO*A{11) %Y + 3.DO*A(12) *Y*Y

304 1 + 2.D0%A (13)%X # U4.DO%*A (14)*X*Y + 3.DO%A (15) *X*X

305 RETURN

306 END :

307 SUBROUTINE FILL{XYT,IX,IY,ISUB,XY,NIX,NIY,IMY,NTM,IDI

: M, IDIMP) :

308 IMPLICIT REAL*8 (A—H,0-2)

309 DIMENSION X¥T(2,IDIM,IDIM,2),ISUB(IDIMP,1) ,XY{2,IDIMP

o1

310 c

311 C ‘ ISUB CONTAINS 1 WHERE A FUNCTION VALUE IS

312 C PLOTTED, 0 IF OUTSIDE BOUNDARY

313 C

314 DO 10 I=1,NIX

315 DO 10 J=1,NIY

316 10 ISUB(I,J)=1

317 XMIN=XYT(1,IMY,IX,NTH)

318 DO 15 I=1,IY

319 IF (XYT(1,I,IX,NTH).GT.XHIN) GO TO 15

320 XMIN=XYT (1,I,IX,NTH)

321 THYMIN=I

322 15 CONTINUE

323 DO 110 J=1,NIY

324 ' DO 100 I=1,NIX '

325 IF {X¥{1,I,J).LT.XYT(1,IMYMIN,IX,NTH)) GO TO 100

326 IF (XY(1,I,3).GT.XYT{1,IMY,IX,NTHM)) GO TO 80

327 LB=1 :

328 NB=2

329 20 IF(XY(2,I,J).LT.XYT(2,NB,IX,NTH)) GO TO 30

330 LB=LB#+1

331 NB=NB+1

332 IF (NB.LT.IY) GO TO 20

333 30  IF{XY¥(1,I,J)y.LT.XYT(1,LB,IX,NTHM).AND.

334 1 XY{1,I,J).LT.XYT(1,NB,IX,NTH)) GO TO 100

335 IF (XY(1,1,J)-6T.XYT(1,LB,IX,NTH).AND.

336 1 XY{1,I,J).GT.XYT(1,NB,IX,NTM)) GO TO 80

337 ‘ YN=XYT(2,LB,IX,NTH) + (XYT(2,NB,IX,NTH)-XYT(2,L8,IX,NTHN
: )) '

338 1 /(XYT(1,NB,IX,NTM)=-XYT(1,LB,IX,NTH))*

339 - 1 {XY(1,I,J)-X¥T(1,LB,IX,NTM))

340 IF (YN.GT.XY¥(2,I,J).AND.XYT{1,LB,IX,NTM).GE.

341 1 XYT{1,NB,IX,NTM)) GO TO 100

342 IF {(YN.LT.XY(2,I,J).AND. XYT(1,LB,IX,NTH).LE.

343 1 XYT{1,NB,IX,NTM)) GO TO 100

351 80 DO 90 II=I,NIX

352 90 ISUB(II,J)=0

353 GO TO 110

354 100 CONTINUE

355 110  CONTINUE

356 RETURN

357 "~ END

358 SUBROUTINE PLOTIT (XYT,IX,IY)

359 : IMPLICIT REAL#8(A-H,0-2)



PROGRAM FOR TWO DIMENSIONAL PLOT

360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
. 377
378
379
380
381
382
383
384
385
386
387
388
389
390
390.2
39
392
393
394
395
396
397
398
395
400
401
403
404
405
407

10

15

20
30

40
50

DIMENSION XYT (2,20,20)

CALL AXIS(0.,0.,'X',-1,10e,0.,0.,.2)
CALL AXiS(0.,0., ',1,10.,90.,0.,.2)
po 10 J=1,1Y

CALL PLOT(XYT(1 J, V) *5.,XYT(2,3,1)%5.,3) -

CALL SYMBOL (X¥YT(1,3,1)%5.,XYT (2,J,1) *5.,. 14, 4,0.,-

DG 10 I=2,1IX

CALL PLOT(XYT{1,J,I)*5.,X¥7(2,3,I)%5.,2)

CALL SYMBOL (XYT(1,J,I)#*5.,X¥YT{2,J,1)*5.,.14,4,0a. ,~

CONTINUE
DO 20 J=1,IX

CALL PLOT(XYT(1,1 J)*S.,XYT(Z 1,J)%5.,3)

bo 20 1=1,1Y

CALL PLOT(XYT(],I,J)*5.,XYT(2,I,J)*5.,2)

CONTINUE
CALL PLOT(12.,0.,-3)
RETURN

END

SUBROUTINE PLOT2 (TXY,XY,IX,IY,ISUB,NIX,NIY)

REAL*8 XY{(2,80,80)

DIMENSION TXY (80,80),1SUB(80,80),TAUXY {80,80), X(SO)

Do 5 I=1,80

DO 5 J=1,80

TAUXY (I,J)=0.D0

DO 10 I=1,NIX

DO 10 J=1,NIY

TAUXY (I,J)=TXY{I,J)

CALL SCALE(TAUXY,6400,10.,YMIN,DY,1)
CALL AXIS (0.,10.,7X',1,10.,0.,0.,.2)
CALL AXIS (0.,0.,?
NY=NIY/IY*3

KK=0 _

DO 50 J=1,NIY,NY
L=NIX
IF(ISUB(L,J)-EQ.1) GO TO 20
L=L-1

GO TC 15

DO 30 I=1,L
X(I)=XY(1,I,J)*5.

CALL LINE(X,TAUXY(1,J),L,1) "
NX=NIX/IX

KK=KK#+1

DO 40 K=1,L,NX

CALL SYMBOL (X(K) ,TAUXY({K,J3),. 14,KK,O.,~

CONTINUE
CONTINUE
END

1,5,10.,90.,YMIN,DY)

1)

115

n

1)



