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ABSTRACT / RESUME

Abstract

The theoretical properties of the Maximum Likeliﬁ%bd?i‘
estimator, for both single input-single output and.multivafiable
systems, are considered. New results relative to convergence
properties of soﬁe identification methods of single input-single
output systems are obtainéd. A ﬁnified‘appfoach to the Maximum :
Likelihood identification method of multivariaﬁlevsystemé is

proposed. Numerical tests on a computer are performed..:

Résumé

Nous considérons les propriétés théoriques de 1'esti-~
mateu;hdu.ﬁaximum de Vraisemblénce dans le cas de systémes mono-
variables et de systémes multivariables. Nous étudions des
méthodes-d'identification de syst2mes monovariables, et de
n0uveau# résultats relatifs 5 la édnvergence de ces méthodes sont
obtenus. Nous proposons une approche globale de 1'identification
deé systemes multivariables au sens du Maximum de Vraisemblance.

Cette procédure est illustrée par des exemples numériques.
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INTRODUCTION

Preliminaries

During the pasf decade, increasing attention has been
devoted to the different aspects of system idéntification. However,
although these topics have been diSqussed in a multitude of papers
and a rather large number of survey papers [3,8,9,25] have been
publishéd, the field of identification does not appear as a unified
subject. It is then of importance to'have in mind the basic con-

cepts characterizing an identification problem.

One of the basic ingredients in the formulation of the
identification problem is the choice of the class of models [21]
(parametric, non parametric) and of the model sfructure (linear-
non‘linear, continuous—-discrete fime;...). Such choices cannot Be
done systematically and‘depend on the a priori knowledge of the

case treated and on the purpose of the identification.

Due to the fact that, in most realistic situations, the
measurements made on the system considered are corrupted by random
disturbances, one may investigate the identification problem through
s§atistica1 methods, leading to an estimation problem. The estima-
tion problem éan be formulated as the choice of an estimator
(Least-Squares, Markov, Bayes, Maximum Likelihood). Such a for-

mulation makes it possible to derive mathematical properties of the



estimates and provides a rigorous framework to the field of identi-
fication. It must be noticed that the probabilistic interpretation
can be eluded by taking into account the effects of the disturbances

from an empirical point of view.

In any sitpation (probabilistip or deterministic), the
identification problem can conceptually be sfated as the finding of
.the model--subjected to the same input signals as the system—-that
is optimal in some sense. The optimality has to be defined using a
criterion with reépect.to the output signals, which are related to
the parameters values through a functional relationship. The

criterion is generally defined by means of a loss function, leading

to an optimization problem. The choice of an optimization method
(derivative-type methods, search methods) is, once again, strongly

related to the problem under study. .
All these aspects are equally important steps of the iden-—
tification problem which then cannot be considered as a simple

estimation of a set of parameters or as a simple optimization problem.

Aim of Thesis

The present work is concerned with identification of
linear discrete-time systems.

As outlined above, the éhoice of an estimator is a crucial
step of»the identification problem.. A very pépular.choice is that of

the Least-Squares (LS) estimaﬁor. However, it is well known that the



LS estimator is generally biased. 1In order to overcome the problem
of correlated noise, one may postulate a systém with correlated
noise, by introducing a noise model. Depending on the a priori
knowledge of the system and of the noise, tﬁe‘followihg estimators
may be chosen:

- the Markov estimator for which the knowledge of the

covariance matrix of the noise is needed

- the Bayes' estimator for which the knowledge of the

probability density function of the noise -and of the
parameters valﬁes is needed

- the Maximum Likelihood estimator for which the proba-

bility densit§ function of the noise is needed.
. The assumption of known covariance matrix of the noise or of
knownAprobability density function of the parameters values severely
limits the practical applicability of the two first estimators. The
aim of Chapter 1 is to analyze, for.single input-single output
"systems, the mathematical properties of the Maximum Likelibood
.estimétor. Two new results will be obtained:

- in case 6f a Moving Average noise model (ﬁstrém 2,
it will be shown that the Maximum Likelihood estimates may con-
verge to wrong values. Counterexamples to general con&ergence
will be given (Section 3).

- in case of an Autoregressive noise model, it will

bé established that - under suitable assumptions -

the Maximum Likelihood estimates converge to the



true values of the parameters (Section 4). This
result orovides a convergence proof of the well-
know Generalized-Least-Squares (GLS) method, pro-

posed by Clarke[:6 ].

In Chapter 2, multivariable systeums wiil be consi-
dered. The identification of multivariable systems cannot be
viewéd as a simple generalization of the sinéle input-single
output case and, before formulating the identification problen,
the following considerations must be taken into account : the
choice generally made for the class of the models (state-space'
representation) implies the determination of a suitable canoni-
cal form and the derivation of a canonical set of input-output.

relations.

The'problem of findiné'state—s?ace canonical forus -
 ‘have been investigated by Luenberger[15 ], Govinath{ 12 ] and
Mayne[lG]. It can be shown that the use of a selecfor natrix
or of a set of indexes éllows one to describe the structure
‘0of a canonical model. In Section 2, the results relative to

this problem will be reported.

‘Although the problem of deriving a set of canonical
input-output relations has been studied by many authors, no
general approach is yet available in literaturc. The methods

pronosead by Gopinath[ls], Ackernan [ 2 ], Zuercher [ 28] or



Guidorzi[l} ] are subject to strong restrictions. In Section 3,
the solution to this problem in the nost general case is propo-
sed and comparison with the previous methods is established.
The basic differences between the approach presenfed in this
Section and the previous ones lie in the. fact that it allows
a discrimination of the input-output data and that it 1is ex-

tended to the noisy case.

In Section 4, using the results of Chapter 1, a Ma-
ximum Likelihood estimator 1is defined and the consistency of

the estimates, in case of correlated noise, is nroved.

In Section 5, the optimizaticn problem is discussed.
The various types of minimization algorithms are described and

compared,

Finally, in Chapter 3, experimental results are pre-
sented. The theoretical results of Chapter 1 and Chapter 2 are

tested on numerical examples.



Chapter 1: SINGLE INPUT — SINGLZ OUTPUT SYSTEMS

1 - INTRODUCTIOK

As pointed out in tﬁe introductory Chapter, a type
of identification problem may be obtained by embedding it in
a probabilistic framework, leadiné to an estimation rroblem.
Such a point ofview ai1ows a‘rigorous approach to the {ield of

jdentification and constitutes one of its main aspects.

The aim of this Chapter is to investigate the mathe-
natical properties of the Maximum Likelihood estimation method

for various types of noise model structures.

(i) In Section 3, the lioving Average noise model will

be considered.

(ii) In Section 4, the Autoregressive noise mo“el will

be studied.

In both cases,.two classes of HMaximum Likelihood esti-
mators will be investigated and new results relative to the
convergence properties of some eiisting methods will be esta-

blished.



2. PRELIMINARTLES

The class of linear discrete-time single input -
single output systems considered is represented by the dif-

ference equation

Az"Y) y(k) = B(z™1) u(k) + n(k) (1.1)

where

,y(k), k:l,,..,N} is the system output
{u(k), k:l,..-,N} is the system input.

{n(k), k:l,...,N} is an additive zero-mean noise

~and

n
. a o
Az =1+ > aiz-i (1.2)
i=1 ' _ _
. nb -
Bzl = D bzt | (1.3)

It is assumed that the noise process can be expressed as a

process driven by a white noise e(k)

D (k) = H(z™Y) e(k) o (1.4)

where

g2ty = Sz (1.5)



[
c(z'l) = 1 +a§£j c.iz.-1 (1.6)
i=1
, B4
D(‘z"l) =1 *Z diz.-:L , {(1.7)
i=1 '

The Likelihood. function L can then be defined as the rrobabi-
lity density function of €(k), where the numbers €(k) are the

‘'so-called residuals defined by

B(z™Y) €(k) = A(z™Y) y(k) -~ B(z™1) u(k) (1.8)

Assuming that e is (0, Gi) gaussian, the residual €(k) 1is
a sequence of independent and gaussian (O, Vi) variables and

the log-Likelihood function A takes the form
’ i

A= - ;l_é E €%(x) - N log & - N log 2T (1.9)
e
2 . k=1

The Maximum Likelihood estimation procedure can then be in-

. terpreted as the finding of a model
2. =1 s, =1 P B L
AC(z"7) y(k) = B(z 7) u(k) + H(z 7) &(k) (1.10)
in such a way that the log-Likelihood function A is maximized.

From (1.9), it is clear that maximizingj\,‘is equivalent'to



mihimizing'the loss function
N
1 E 2
V.(a,b,c,d) = 5% €% (k) (1.11)

where €(k) is obtained through the equation of error

€x) = 11z A=Y yao) - RGBT wx) (1.12)

In the following, there is an advantage in putting

[_a.T pt Tt ]‘T (1.13)

B:
LT T T
where a~ = [al aa,.-ana],.21-~ [bo bl"’ban y € = [Cl CZ"’cnc}

T L
and d° = [dl da...dnd].

The Maximum Likelihood estimator can thus be defined as follows :
the Maximum Likelihood estimate(s) of p, say p, is(are) the ab-
solute minimum point(s) of VN(E) |

.~ AM ‘ ,AM _ . ~
Ey = B €5y ={my : Vyly) = min Vy(p) (1.14)

P
However, from equation (1.12), it is clear that € is non 1linear
.iﬁ-§ and é.'Consequently, the finding of pg has to be done
iteratively using a search routine. It is then of importance
to know if VN(E) has local extremum points ﬁ@- This leads-us to

N

redefine the Maximum Likelihood estimator in the following way
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- Cen dV(p)
op m
P=P.
e\ |

The estimator Eq (resp. E,) will be consistent if and only if
sl(resp. S5) = {R) (1.16)
Clearly 54 € S, and E, consistent implies E consistent.

From a practical point of view, it is highly desirable that

E, is'consistent, E, inconsistent means that, even if the global
mininun poinflof the loss function coincides with the true value
of.the'parameter vectof P (El consistent), the Maxinum Likeli;
hood estimation procedure nay not converge into S1 and may then

give a wrong estimate.

The ecquation (l.4) can be rewritten as

p(z=Y) nx) = c(z™h) e(k) (1.17)

which implies that the noise process is modeled as an autore-
gressive moving average (ARIMA) process. In the next Sections,

the following cases will be investigated



11

a) MA noise model (D=1). This case has been treated-
vy Astrom [2 ], Astrdm and Séderstr&m_[4 ]and

Séderstrom Loy 1.

b) AR noise model (C=1l). This choice of noise struc-
ture is the basic ingredient in the formulation of
the Generalized Least-Squares algorithm proposed

by Clarke [ 6 ].

In both cases, the statistical properties of thc estimates will
be considered. It will be shown that

- for a MA model (Section 3), the estimztor £y is

consistent while E2 is inconsistent.
‘'« for a AR noise model (Section 4), the estimators
E si . .
] and E2 are consistent
The éoncept of persistently exciting signals will be
used in the following. A signal u(k) is said to be persistently

exciting of order n [ 2 ] if

N
lim %: jz: u(k) u(k+j3) =E¥u(j)- ©(1.18a)
N—» o0 k=1 : ’
exists and
An ='[Ru(i-j)] i=l,..e,n (1.18b)
J=l,ee.yn .

is positive definite. If u(k) is persistently exciting of
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order n n |
ZEZ hy u(k-1) = 0 , (1.192)
i=0
impliés.
h, =0 'i=O,....,n | (1.19b)

3. MOVING AVERAGE NOISE MODEL

3+1l. Introduction

If a Moving Average (}A) noise model is used, the

“output data are governed'by the difference equation

Az™Yy yo) = B(z™h) u(k) + c(zL) e(k) (1.20)

The model structure is then given_by
’ -~ -1 \ -~ -1 ’ ~ -l . )
A(z 7)) y(k) = B(z 7) u(k) + ¢(z ) €(k) (1.21)

‘To apply Maximum Likelihood (ML) method, it is assumed that

- Al, A11 the processes are ergodic

- A2. The polynonials A(z-l) and C(z‘l) have all
their zeros inside the unit circle [this condi-

“tion implies that the system (1.20) is stabld'

'~ A3.The polynomials A(zwl), B(z-l) and C(z—l) are

'relativély prinme [this condition implies that the
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system (1.20) is controllable either from u or

from e] .

With these assumptions, the ML estimate of p = [g? 2? g?]T,

53y p =[5T e _C_T]T, is obtained by minimization of the loss
function
o N | . |
V(D) = 55 Z}Vl €°(k) (1.22)

where the residual €(k) depends on P via (1.21)

R Sr.=-1 '
e(r) = M2 gy o Bl )y (1.23)
Gz 8(z"1)

As a first result, the global minimum points of the loss func-
tion will be considered and conditions will be given for the
estimator E1 to be consistent. This will be the object of -

Section 3.2.

As mentioned abote? it is 6f importance to know if
there is a unique local minimum point of VN(E)’ In practice,
there are cases for which the loss function can have more than
one local minimum. The reasons for such di fficulties are the
following

- the model structure may not bé appropriate

—-the number of data, N, may be too small

.A the model structurec may have the inherent pro-

perty that VN(R) has several local minima,



In order to avoid the first two pitfalls, the following addi-

tional assumptiohs will be made

- A4, It is assumed that (1.20) really holds
- A5.The asymptotic loss function

V(p) = lim ngi) =_E[ﬁ2]

H—soco

will be considered instead of VN(E).

(1.24)

The case covered by'the third explanation will be the main

object of Section %,%,, where it will De shown that the model

structure considered impliies thaty in general, a unique local

minimum cannot be obtained and consequently that E2 is inconsis-

"tent.

‘3.2, Global minimum points

Let us define

- Eﬁ the global minimum point(s) of VN(E) :

V(R = min Vy(p)
P
“M

- p the global minimum point{s) of V{(p)

Vel = m%n V(p)

ﬁstr?)m has shown [ 2 ] that

(1.25)

(1.26)

(1.27)

14



lir py = p@ with probability 1 (1.28)
- N-soo .

1

provided u is pérsisteﬂtly exciting of order né + ny. These two
relations establish.that the global minimum point(s) Of.the loss
function.VN(i) converge(s) as. N—oco to the unique global minimum
. point of the asymptotic loss function V(i), vhich coincides with

the true value of the parameters, Dp.

This means that, under the assumptions Al - A5,

s, = {p} @and that

Theorem 1.1

The ML estimator E, is asymptotically consistent.

1
The results of this Section do not give any informa-
. tion about local extremum points and thus do not prove that p
converges to p. The convergence properties of the ML method.
crucially depends on the existence of multiple local extrema of

the loss function.

It rmust be noticed that, although‘the ML method has
been extensively applied to systems whose model is given. bty
(1.20),'no general result relative to local extremum points.is
available iﬁ literature - except in the case of a pure ARMA pro-
cess (BssO)[ 4 } . In the next Section a class of counter exam-

ples to a unique local minimunm 1is given : this implies the in-

15
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consistency of E2 and the non-convergence of the method descri-
bed above, which is one the most commonly used in system iden-

tification.

3.3, Local extremum points

Combining (1.20) and (1.21) and dropping the argu-

‘ments z~Y and k, for convenience, yieldé
¢ _ AB- AB , AC.
AC AC

e ' (1.29)

~Since u and e are assumed to be uncorrelated, the asymptotic

loss function takes then the form
- - 2 - 2
2v = E[Ga] =g |AB-AB 1, g |AC (1.30)
_AC AC '

' ]
which can be rewritten, using Parseval s theorem, as

2 ~ ~
(9 :
AC AC
1 AB -~ AB AB - AB, -1 dz
¥ 57T ——(2) —(z"7) ¢,(z) 7~ (1.321)

AC AC

where the integration path is the unit circle and %u(z) ié the

discrete power spectrum of. u.

We can now consider the stationary points of V, 1.e,



the points which are solutions of

=0
op

Let us first consider the solutions of

OV/dE . =
/ J

(1.32)

0,

j=1,..,n . After sinple calculations,'it can be written
c

tic) , the equation dV/3¢ =

2 -~ ~
. [ N .
af = - =2 'Agh(z) A—g—(z-'l) zJ-l dz
ch 21 ACC AC
- L L ABABy ABAB(, -1y p (5) 237z e1,...0m
21i ACC AC ' '
(1.33a)
or
v £(2) 5 5-1 L
- d =1,...
aa A*a* (z) z z J ’nc (1.33b)
J
"where
£(z) = i Ac_ A'ct - AB-A3 (A B -a"B" ) & (1.34a)
ACC ACC
n -1 ,
A(z) =2 © A(z7) (1.34%0)
n )
8"(z) = z ° B(z™1) (1.342)
n
c"(z) =z ¢ c(z"1) (1.344)
Since the integrand of aV/DGj has R *n, voles (f(z) is analy-

0 has several solutions in g.

17
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one

oV
2% .
23

oV’

op

oV

é\l'.
° J

ov

Py

A

The

can

Let us now consider dV/94 and oV/db. Using (1.30),

nay vwrite

= E Er»z-au AB:Q§ u + E Q% z e —g e j=l,...,n
AC AC AC AC
= - E % 2"y AB:AB u . 3=0,c00ymy
_ 1C AC .
(1.35)
n
=/, a, E g; 27| | 2 27M + E|S 270 97 2"t
i=1 AC AC AC AC
n |
- b, E 27 z"Ju % 27 u | o+ CY (0) (1.362)
i=0 AC C aaj
n
a
= - :E: a, B % z7Ju BA z Tu
i=1 ~ C AC
ny _ ' ‘ ’ :
+ § b, E [% z" % 27 | o+ 2¥~(O) (1.3%60v)
i=0 o c abj
eqﬁation
-
RIS RN (1.372)
da b
then be rewritien as
M ¥l [a 9
= , (1.37%)
-7 P||5% -

18
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where M;IN; P, g and r are defined by

r s -3 5 _5 _ 5
Mi' = E E: 2" u rgr 2" + B QT 2 te 97 27 e (1.39a)
J | AC ] lac AC AC
=B |2 27h]2 27 (1.390)
oA Iic
P..=E (%'z—iu L3y (1.39¢c)
1J C C ‘
g = - ’QY“(O) (lol"roa)
%
r=-0) (1.40%)

. For any C, the matrices M and P are positive dejinite. The.equa-

-~ -~

tion (1.38) has then, at least, one solution in a and b, for any
. ¢. Since (1.33) has several solutions in ¢, thae gradients of V

~

' may vanish for several values of p.

The points p satisfying (1.33) and (1.38) belong to

S,. This means that E, is inconsistent..

2
Remark

The above analysis is valid for any (A,B,C). The
non-uniqueness of the estimates is thus an inherent property

of the model considered.



We have thus shown the existence of counter-exan-

ples to a unique local minimun and consequently to general con-

vergence of the ML method in the case of a MA noise model. This

drawback is an inherent property of the model structure consi-

dered,

In the next section, a similar analysis for the

Autoregressive noise model case is proposed.

L. AUTOREGRESSTIVE NOISE MODET

4.1, Introduction

In the case of a Autoregressive (AR) noise model,

the equations (1.8) and (1.10) take the form

1

Az7Y) y(k) = B(z™1) u(k) + —E——e(k)

' ‘ oz hy

AL vy = Blz7Y) ux) + 2 €(k)
C(z ™)

Similarly with the previous case, the ML estimate of p =

am1T ‘
cT] ,.1s obtained by minimizing the loss function

(1,41)

(1.42)

T ST

b

20 -
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i
: iy 1 2
Ve(2) = 5% Z €“(k) (1.43)
k=1 ’
where the residual €(k) is given by

~ ~

€(k) = C(z™1) A_(z"l) y(k) = c(z~1) B(z™1) u(x) (L b4

Assuming the conditions Al-A5 of Section 3 still
hold, - we shall analyze first, thz global minimum points
(Section Q,Z)Iand second, the local extremum points'(Section
4.3) of the asymptotic loss function V(é). The asynptotic con-

sistency of the estimators ElAand EZ will be proved.

L.2. - Global minimum points

The-purpose of this section is to prove the asymptotic
consistency of the ML estimator Ei, To do so, we shall proceed
"as follows ¢

- First, we shall prove that the global minimum point
iM of the asymptotic.loss function V(é) coincides with fhe true
value of the pafameters vector, p

-~ Second, we shall show that the global minimum point(s)

of Vﬁ(p), Rﬁ converge(s) to EH as N—s o0 .

- Conbining (1.41) and (1.42) allows us to rewrite the

equation (1.44) and to obtain the equation of error

T A

% AB =~ AB . AC .
€=cC =g ouo+ AC e (1.45)



It then follows

. - 2 e 2
2] LB — AB ) [ AC
= Ii€ = S ; Bi== ¢
2V b[ E[C 3 uJ + i o} (1.46)
and
ac |? 1 [ Ac,.\ AC, -1, dz
' LA - — 2Ny Brr,myRe ¥ :
V> Blpg el =3wif oac®) act? )3z =V (1.47)
where the integration path is the unit circle lzl| = 1.

We can nOW‘pOStuiate the

Lemma 1.1

2V > ¢§ | (1.48)

The equality holds if and only if p = p (A=A, B=B and C=C).

Proof :
Let us consider the integral
"o 7£ % R P
I=537g [E(z.) - 1J L—fé z ") - 1] -~ =0 (1.49)
Then
| | o2 [ = o2 |
I=V-255 ¢ B0 Loy &2 S aso)

Clearly, since A(z"l) and C(z—l) have all their zeros inside the

unit circle, (assumption A2) and A(0) = C(0) = 1, it follows that
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1 %AC(Z) dz _ A(0) €(0)

swi T Aac?) T TRy ey -t (1.51)
1 dz
2'H5.j£ z 1
and
- 2 ’ .
I=V-0o_>0 (1.52)
Hence s
av > o (1.5%)
The equality holds if and only if
(i) I = 0 which implies

AC = AC (1.54)

(7i) E’[C EELi4£§ u] = 0, which is equivalent,
provided u is persistently exciting of order

-+
n +n,, Fo

AB = AB - (1.55)

Combining (1.54) and (1.55) and using Assumption A3 yields

;;. = A, % = B, 6 =C v : (:1'56),

Q&Ew'Do-

For all N, VN(E) and V(p) are polynomials. Then, the

assertion of convergence of Vg to V as N->co implies that Vy(p)



converges uniformly to V(p) on every compact set. Hence, consi-

dering the estimates in a compact set G allows us to establish

the

Lemma 1,2

lin py = o with provability 1 (1.57)

N-»wo

Proof :

Let « be an arbitrary small positive real number and

G be the set

: S M n
Gy = { b 7~IIR -2 ” < } (1.538)
Since V is continuous, there exists /Z:>-O such thet

min V(p)> v e (1.59)
GG,

Since V., converges to V uniformly, there exists an integer H

N
such that if ¥ >HM then

.V'N(;Z) - v(:q)'l < p | (1.60)
for all pe G.
Thus . |
min V(2)> min V() - B> v + 2 (1.61)

G-G,,

This means that py is in G,  Q.E.D.

Finally, the lemmas i.l and 1.2 yields the

24



25

Theorem 1.2 :

The ML estimator El is asymptotically consistent.

k.3 ~ Local extremum vpoints

The goal of this Section is to show that the estipa-~
tor E2 is asymptotically consistent, i.e. that 52 = {3} -~ To do
so0, we shall prove that the gradients of V(p) with respect to

~

g_vanish only at p = Dp.

In a recent paper[23]; Soderstrom has shown the
"existence of counter-examples to a unique local winimum of V,
for "small" signal-to-noise ratios : this is a major drawback
.to the impleﬁgntation of this methcd. However, it will be shown
that the introduction of one additional assumption allows us

to overcome this problenm-

We shall thus investigate the conditions for the

gradients of V to vanish i.e.

v

<=0 | (1.62)
dp .

Defining the-pblynomials

n .
F=a0=1+/,1 2 (1.63)
=1
m .
>~ ~ A A - . ]
H = BC = E h, 2 k (1.64)



" where

confers to V the form

2V = E [

F FB - HA
ERN L

and.allows us to rewrite (1.62) as

n ' :
aY = §_ ck—j -a—\—,{-—- =0 j:l,...,n
3aj k=1 bfk- ’
m _ '
aY = Z ck—J -b—y—- =0 j:O,....,nb
ob. k=0 oh
J k
n m
Wl ay %%— DY b ;Y =0  j=l,...,n
Bca k=1 fk k=0 hk

In the following, it will be assumed that

A6 The polynomials A and C, and B and C are

relatively prime.

With this assumption, (1.67) implies

=0 551, en.,m
of .

J
DY =0 S J=0,...,n
doh

(1.652)

(1.65b)

(1.66)

(1.673)

(1.67b)

(1.67c¢)

(1.68a)

(L.68b)

26



Using (1.66), (1.68) can be rewritten as

[ A -~ 'S
T 1 -] | FB-na B =i ] o
E | i e] [AC Zz e} o+ & [ I uJ [A z u} =0 (1.69a)
g | EBIA, [a] 0 (1.690)
A

or .
n . n

" -1 "J Z a .

~z - iz Y B -1 3 -3

zz: 1 L[AC C [AC b} ' i=y 1 E[A ¢ uJ [A ’ u]

m
- zz: ﬁi E[%-iuJ [% zfju} + aY (0) =0 (1.70a) -

r\/jz
L 4
H
=
2]
N
H
P
| S
ro——
N
t
[
o
| S|
B |
}_h
11[\/15
O
ol
e
: t=3
a
ol
o
—
——
i
[
o
—_
+
lm
> <3
”~™
O
p—
!
O

i=1 Ok,
(1.700)
Let us define the mztrices
( . | 53
My = | Bi=gce Ac®|li=1,...,n (1.71)
| j:’l,ooo’n
[ 'B i B j
| pl2 71 8 ,-J '
_HZ = E{A.Z u] [A z u] $21,...,n (1.72)
L J=1l,...,n
N = FE 27 | (2 23y : (1.73)
A i=1l,...,n
-4 j=1’000’m '
IR e
b= E[Z “] [Z u} iz1,e..,n S (L7
| _ J=lyeee,m .




and the vectors

AT ) N A
£ = [fl far.. fn ]
AT ~ A (\
b= [ 1 Moe-- “m]
3" = 20

of

oh

The equation (1.70) takes

(hl + MZ)

5>
]
o)

rp
.N—-

or equivalently

Defining

yields

Clearly, the matzrix M, -~

H

1

2

is positive definite,

7>
+

I~
0
o

-

Ru(i-j) ]

-1

N P NT is positive definite.

the natrix M

1

+

M2

(1.75)
(1.76)
(1.77)

(1.78)

(1.79a)

(1.79v)

(1.80a)

(1.80b)

(1.81)

(1.82a)

(1.82b)

(1.82¢)

(1.824)

Since

as
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a sum of two symmetric positive definite matrices, is positive

definite and .then non-singular.

The equation (1.80) has thus a unique solution, given by

-1 T,-1

(M) +M,=NP""H") (np~t

r-q) : (1.832)

>
1}

-1 T - - - .
P TN (M +M,~-NP W=l lpog) + rlp (1.83b)

It >
i

This provés that the gradients of V vanish for omne
and only one value of p. From Theorem 1.2, this value coincides
with p. We have thus established that under assunmption Al-A6,

S2 = {E} and that

Theorem 1,3

The M,L., estimator E2 is asymptotically consistent.
A direct consequence of the above study is that -
provided the assumptions Al-A6 are verified -~ the iiL method,

in case of an AR noise model, is convergent,

It must be noticed that tﬁe Generalized Leést;Squares
(GLS) identification algorithm, progposed by Clarke [ § ]is no-
thing eIse than a ML method for which the loss function is
minimized via a gradient algorithm., The theorems 1.2 and 1.3

thus establish the convergence proof of the GLS metnod.

Before concluding we shall proceed to make some
comments about the various assumptions which have been

made.



L.,h. Comments

The reason why a finite N can cause difficulties is
that the values of VN(B),-for fixed p, are stochastic variables

-~

while V(p), for fixed p, is.a deterministic function.

The assumption A6 is a réstrictive assumption since
no minimization'algorithm can guarantee that this condition is
fulfilled at each stage of the procedure; It is however easy,
~when a st#tionary point:is reached, to test if-it is so or

not.

In the whole section, it was assumed that the noise

process may be modelled as an AR process

c(z™h) n(k) = e(x) | (1.84)
This means that there exists a noise whitening filter which can

be represented by its truncated impulse response {ci,izo,...,nc}

This assumption has the drawback that there are no systeratic
rules for choosing the order n. of the autoregression such

A _ ¢
that the C; S» for i >-nc, can be neglected. However, we can

reasonably -argue the following points:

30



- an analysis of the noise can facilitate the choice of
the order of the autoregression

- n_  can be determined iteratively by increasing it
until the reduction of the lpss function is no longer

significant.

5 ~ CONCLUSION

In this Chapter, the.ML'estimator, for linear single
inpﬁt—singlé output systems, has been investiéated. The statistical
properties of the ML estimator have béen established: it has been
shown to depend on the noise model structure.considered. For
‘this purpose, two new results have been obtained

—.for a MA noise model, the ML method may not converge.

Countgrexamples to general convergence can be found.

~ for an AR noise model, the ML method is convergent.

In the next Chapter, the above study will be extended to
“the multivariable case where it will be shown that, once a

canonical structure is defined, the extension is straightforward.
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Chapter 2: MULTIVARIABLE SYSTEMS

4 - INTRODJCTION

. As outlined in the previous chapter, the general
definition of systems identification allows many degrees of
freedom in the formulation of the identification problem,
.leading to take into account the following points :

- The Qhoice of a class of models : iﬁpulse
response - transfer function - state-space
répresenﬁation,

— The deternmination of a class of inbut signals

- The choice of the estimatof

- The choice of the optimization algorithu,

_When formu1ating and solﬁing'such probleuwms, it
is inportant to have the particﬁlar type of the systen
treated and the final goal of the identification rrocedure
~in mind. This cannot then be done from a purely mathematical
point of view, It is, however, highly desirable to achieve
a unified approach of these problems and, by embedding them

in an abstract framework, obtain general results.

(i) The choicé made for the class of the models of
muitivariable systems is generally that of state-spzce
représentation- Such a choice implies

--tﬁe determination of the system order and of

a suitable canonical formn
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- the derivation of a set of input-output relations.

The use of a selector matrix S, as suggested by
Gopinath [12], or of a set N of indexes, as shown by Mayne [16]
allows one to describe tﬁe structure of a canonical model. These
approachéé'have the drawback that thefe is né method for the
choice of S or N. However, since such a method should be applied
to input-output sequences, this problem cannot be performgd in
realistic cases - i.e. when no precise a priori knowledge of the
noise characteristics is available.- The various aspects of the
determination of a canonical structure will be treated in

Section 2.

Although. the problem of deriving a set of input-output
relafions from the canonical state-space representation has been
investigated by many authors,_né unified approach can be found
in literature. Tﬁe methods proposed by Gopinath [12], Ackerman [1],
. Zuercher [28]) or Guidorzi [13] are subject to strong restrictiomns.
In Section 3, it is shown how to work out this problem in the
most general case, permitting the decomposition of the system
into subsystems. Moreover this approach is extended to the noisy
case in which a suitable noise modei is introduced in such a
fashi?n as Fo preserve the advantages of the decomposition -

even in the case of correlated noise.



(ii) In Section 4, a Maximun Likelihood estimator is
described and the statistical proverties of the Maximum Like-

lihood estimates are investigated..
(iii) Finally, in Section 5, the computational aspects
are discussed. Two classes of optimization algorithms are des-

cribed and conmpared,

2 — CANONICAL STRUCTURRS

2.1. Introduction

The class of linear discrete~time multivariable systens
considered is represented by the state equations
'2(k+1) = Fz(k) + Gu(k) (2.1a)

xR = Hz(K) | | (2.1b)

34

where g(k)fRn (state vector), 3(k)€Rm (input vector), l(k)ERr (out=-

put vector), Fer™ x R® (state matrix),(iERn x r® (control matrix)

and HERT x r© (observation matrix)..

It is well known (see e,g-[ls]) that_(Fl, Gl, Hl) and
(FZ” GZ” HZ) are similar - i.e. they lead to the sane transfer
function K(z) = H(zI - H)-lG — if there exists a non-singular

matrizx TE Rn X Rn such that

-1
F, = TF.T
2 T (2.2a)
G, = TG ’
2 1 . (2.2b)
H. = g.p~1 '

2 - l (2.2¢)
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The non-uniqueness of. (F, G, H) results in a degree of
arbitrariness in the realization algorithm K—=(F, G, H),

which cannot be removed by simple normalization.

The next sections show that each representation
- (F, G, H) is characterized by a set of integers (nl, ﬁa,,.-,ns)
and that, if (nl,na,.,.,ns) is known, the representation

(F, G, H) of (2.1) is unique.,

2.2. Preliminaries

Let .

r = [QT'(HF)T,,- (H?n‘l)T]T' sz[G G... Fn“le]' (2.3)
be, respectively, the observability and controllability matrices.
v (F, G) and (F, H) are assumed to be, respectively, controllable
and observablg; which is equivalent to.

rank([) = rank (A) = n (2.4);

Let EiT denote the 1-thlrpw>of H and let I and J
denote the sets | |

I = {1,2,... ,r} : - (2.5)

I = {31030 053] o @e
.where 1<jk<r. fbr all k = 1,2,...8, s<r. J is a permutation

of any subspace of I.

Let T be the non-singular (n x n) matrix defined
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by
- ' r o
31 ~iT
T. ' h. F
T = '32 Tl = —:f ied (2.7)
T n Tpd
| s | L

Since the pair (F;H) is observéble,,T‘ﬁon—singular implies
: : (nl+l) = 8 (298)
ied -

where P is a permutation matrix.

From:(2.7) and (2.9) it is.clear that the transformation

matrix T is completely defined by either the set ;n. ,n . ,...,n.')
' SRR Ig
"or the matrix P. This matrix is nothing else than the selector

matrix, which is the basic concept of the approach suzgested by

- Gopinath [12] . Although these two definitions of T are equivalent,

seeeally

thé set,df indexes { nj , .
s

i },fafher than P, will be
1 2 :

used in the following,.

2.3. Canonical forms
Defining the new state vector x(k) = Tz(k) yields the
state~-space equations .

x(k+1) Ag(k) + Bu (k) ~ (2.102)

y(k) = Cx(k) ’ (2.10Db)

where (A, B, C) is obtained from (F, G, H) through (2.2).
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#e can now establish the

Lemma 2.1

X

Let
T e 4t X
-3y be the i-th row of A.
- QiT be the i-th row of B
- giT be the i-th row of C
- Eir be the i-th unit vector
- °i, i= 1,2,..fs, the indexes
i~1
°1 =1 N, =435 n, + i
L k=1 Jyx
Then
. ’ T T - . ’ ) N) .
(1) g" =€,  1€{L2, .m0, ] (2.11a)
__iT ='31T i€ {ol,»a,...,vs} | | (2.11b)
(i1) ¢;" = g 7 i=1,2,...,s (2.12a)
ST i
T T . . : . )
et =T 16{1,2,...,r}—{JI,...JS} (2.12b)

Before investigating theée results further, it is
necessary to prove the |
- Lemma 2.2
‘The triplet (A, B, C), defined by (2.11) - (2.12)
is uniéue. -
Proof
. *Let us assume there exist two representations (Al’ By, Cl)

and (AZ’ B CZ) of (2.10)

2’
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Let Fl and fé be the corresvonding observability matrices. -
Since the representations are sinmilar,
r = T ‘
1 fél, (2.}3)

“and there exists a non singular permutation matrix P such

that
In In
_ Pri U R . | P[é = e (2,14)
Mlv Ma

vwhere In is the n x n unit matrix.

Combining (2.13) and (2.14) yields

Pfi = PféT = :-- (2.15)

and T = In‘, QED

The lemma 271 and 2.2 establish that the knowledge
of a set of indexes ;nl,na,...ns} implies the uniqueness of
the triplet (A, B, C) characterizing the state rerresentation

of‘a multivariable systemn..
In the following, we can assume, without loss of
generality, that

j.o= i i=1,...,8 f (2.16)

J ={.1;2,...s} 1<s <1 | (2.17)
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Hence, thé canonical form of the triplet (A, 3, C) , given in

© (2.11) and (2.12) can be rewritten. The matrices A4,

bit the follbwing structur

(1) A matrix

€

3 1T 4
Al n¥+l
AZ 'n2+l
A = ———— v
.
————— ‘i'
-AS_ ns+1
i 1l ¢ :
a7 —>

s
; (ni+1) = n

&2 n
e ¥ —»
[~ -y Y
0 0..::00 1 0....0
0 0w4...0 O 1 ....0 :
ﬁﬁ:: ' n.+1
T
L —t R
(ii) B matrix
- 4
Bl nl+l
‘Bzz ~n2+l
_ ————— ¢
B = - b
BS ns+l
L ¢ ¢

B and C exhi-

(2.18)

(2.19)

(2.20)



where Bi, i= 1;2,...,s,~is the (ni+l) ¥ m matrix

(iil) C matrix

X

9}

r

& -

+1

The state equations take then the forn

(2.21)

(2f22)

40



X -(k+l)
¥y
X (k+1)
vl+n
b4 (k+1)
V2
x (k+1) =
v2+n
X (k+1)
xv +n (k+1)
¥y (k)
¥, (k)

"where

- o - - ——

—— e > s e e W

- — = . —— - —

—— - - — — — .~ —— —— ——

X (k)

41

+1 b 1 u(k)

(2.232)

(2.235)
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3 ) = Iy () v,y (0] (2.242)

200 = [y )y ).y (1° (2.24b)

Having obtained a canonical structure for the matrices
A, B and C, a set of input—output equations can now be deduced
from (A, B, C). Remarkable features of this formulation are
that it exhibits the structure of the system and that it shows
the link between the interﬁal (state-space) representation and
the external (input-output) equations. This extends the results

of Gopinath [12], Zuercher [28] and Guidorzi[13].

3 - CANONICAL INPUT-OUTPUT EQUATIONS

3.1 Introduction

A direct consequence of the structure of the matrices
A and C, derived in the above Section, is that the oriéiﬁal
system has been decomposed into s interconnected subéystems.
The main goal of this Section is to derive an input-output re-
presentation of the system such that the subsystems can be

separately identified.

Section 3.2 will be concerned with the noise-free



case while the noisy case will be treated in Section 3.3.

%,2. Noise-free version .

According to (2.23) the output vector y(k) can
be divided intoltwd components zl(k) and za(k), ll(k) [resp.
la(k)]being related to x(k) through a felation wvhose para-
meters are known resp. unknown] . The aim of tais section
is the dgfivation of an input-outrut eguation P AT
involving the paraﬁeters‘of the matrices A and B and then
an input-output equation 3{——»zécpntainiﬁg the uniknown |

parameters of C.

3.2.1. Pparaueters of A and 3
From (2.19) and (2.21), it follows that the i-th

subsystem, 1 = 1,2,...,s, is described by the set of~eqdati0ns

\ ' T
th(K) = Xv»+1(k) +'9v, u(k).
1 L 1
Xy (k) = Xy ,o(k) + by u(k)
v, +1 = Py 42\%) T 2y 41 =
1 L i
Xv.+n.—1(k) = xv,+n$k) * 2v.+n.—l ulk)
L L L A 1 L
v, () =alxt) +bL um) (2,29
vV _4n. o - - =N.+n., -— *
i"i i i

Combining (2.22) and (2.25) leads to

43



xﬁ.(k) =-yi(k)
i

X (k) =12y.(k) -Db T u(k)
V. +1 ‘ i -V, -
i i

X, (k) = zay (k) - b T ulk) - b . zu(k)
V42 - i =Y. 4] = -V, =
1 1 1

nj

Xy 4n (k) = = yi(k) - E$ + 1 uw(k) -...-

i i .
Remark

It nust be emphasized that z_l is the time delay

operator, defined by z™Y f(k) = f(k-j).

" Then, since

PR ! !
x(k) =|:x.}, (k) ... x, (k) : .o ; x, (k)

1 y s

the whole state vector can be expressed as

x(k) = M(z) y,(k) - N(z) u(k)

=3

cer X +n.(k)] T
s

(2.27)

(2.28)
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where

(2.29)

(n x 8)

— e —— - w— —

—— e — — —— —a—

M(z) =

and



e
T
bv,
1
T ni-1 o
b + zb + eee +
vlfnl-l -—\31+nl-—2 Vl
0
E T
Yo
P np=1l g
b + zDb + ... + 2 b
\)2+n2—l —-V2+_n2—2 . 92
N(z) = e e e e e e e {(n x m)
0
vt
s.
. . n -1
, ) - s T
2y 4n -1 * ;EV +n -2 T oree t 2 Ev
s s s

(2.30)

The substitution of (2.28) into (2.10a) leads to the input-~

output relaticn
[(ZI - Aj M{]z&(k7_= RZI -A)Y W + B ] u(k) (2f31)

In (2;31), howev:r, only the (02 - 1)th, (03 - 1)th, ...,

(Qs ~ 1)th, n-th equations are significant, the remaining ones

46



being'idéntities. By removing these identities, (2.31) takes
‘the form

P(z) yp(8) = Q(z) u(k) (2.32)

where P and Q are polynomial matrices in 2z

P(z) = [Pf.(z)] i ; i,,,,s (2.3%3a)
+J J=1,..,8 g
Qz) = [Q;j(Z)] i=1,..,s

1,..,m (2.330)"

The polynomials P;j(z) and Q;j(z) are obtained by siuple ins-

pection of (2.31). It follows

: 41 .
P;j(z) = J;jzn3+ - ai’vj*ﬁjzpa — eee = ai’vj+lz - ai,vj
i:ll,...‘.,s j= 1y...,s O (2.342)
. o ony
Qij(z) :/Zvi+ni,jz T +/%i+1,jz +/39i,j'
L2105 _ Tyeeo,m . (2.34b)

where the /9's are related to the a's and b's through the

equation
[ 7 - -
/le ﬂlzv"‘.°'./3.1m bll bl?_ cevese blm
/,321 ﬂZm b5y b,
. . =L . - . | (2.}5)
ﬁ%i secerrrrcse. /ﬁm ] . bhl EEEEET TR bnm
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with.
L = [L . ] =1,..,5 (2.36)
1J j=1,..,s ;
- a - a. e o . a. 1-
: i,vi+1 1,vi+2 1,vi+n.
a, 1
1,vi+2 ‘
L.. = - ) (2.37a)
ii - . . .
- ai;v.+n. ) o
i i
1
-_ a a - a 6
i,v.+1 i,v.42 ° - 1,9 40y
T 85,942 0
Sd
= i ’ ¢ D2y
'Lij . _ A (2.370) .
- a 0
i,v.+tn.
4 J .
o
L .

" the @atrlces Lij being [(ni + 1) x (nj + 1)] .
Remark
‘The matrix L is always non singular : det (L) = 1,

since det (Lij) = J;j°'



We then bbtain s subsystems whose input-output description is
* 1 * ]
Pil(z) yi(k) + oo+ Py (2) y (K) =

Q;l(z) ul(k) + ... 4+ Q;m(z) um(k) i=1,..,s
| (2.38)

Defining the integers

;i = max (nl, Doy eee » Dy 95 ni+l, Niyr o ns)
‘i=1,...,8  (2.39)
,and the paraumeters
i —
pjk = - ai,9j+nj-k+l Jj=1,..,s k=l,..,n_.+1
i ' ' .
95k “/gvi+ni-k+1,j' J=l,..,8  k=l,..,n;+1
i-=l,o¢ ,S . .I (Z'L}'O)

. allows us to define the reciprocal polynomials

IS I R
Pij(& ) = 2 Pij(z)

c{ S n.-n.+1 i nJ-Hl i ——ﬁl

= ijZ + ple + ... + pj,n.+lz
n.+1
- J . -

{ n.-n.+1 ) zgj 5 n.-n.-k+l

= A + A
1] i

i=l,..,5 J=l,..,s (2.41)
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i=1,...,s8 Jj=1,...,n ' | (2.42)
and to rewrite (2.38) in the form
P (z”l) y- (k) + -+ P (z-l) y (k) =
o Til 1 e is. s -
Q. (z75) u (k) + s q (N u (k) is1,..,s  (2.43)
. il 1 . o 0. im m huad ,'.’ L 3
In sumnary, a set ‘of s input-outrut equacions

of the form

5 _ m

o - —1 . . —l - . .
._zij P..(z 7)) y.(k) = EE: (27 7)) u (k) ' (2.44a)
=1 M J =1 s 3 - -
n.+1
J .
| ny —n +1 zii n —n —k+1
Pi.](z ) = JIJZ + pi i:l,..’s (Zol*q_b)
- _ k=1 ‘ : ,
n,+1
-1 ZE: 5 ny-ng-kd _ ’ '
i=1,...,s

has been obtained..
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Recalling (2.40), (2.44) can be used in order to estimate the

paraneters of A and B.

3.2.2, Farameters of C

In equations-(2.44), which allow us to identify the

system dynamics, only the inrormation contained in u and hAY

-1s used. In order. to identify the matrix C, we shall now

~derive a set of equations making use of the information pro-

vided by y

where

Then, combining (2.46) and (2.28) yields

'20~

According to (2.23%), it follows

lz(k) = E-}i(k)

Y(k) = CM(z) ¥y (k) = CN(z) u(k)

or, equivalently

P1(z) 3y (k) - y,(k) = Q' (2) u(k)

- (2.45)

(2.46)

(2.47)

(2.48)
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where P'(z) ancd Q'(z) are the matrices

P'(z) = Ci(z) = [PQT(Z)J i=l,...,r=s (2.45a)
R B 5 B |

Q'(VZ) = EN(Z) = [Q::*(Z)] i=l,...,r=-s ’ (2.49b)
J j=1, ..l _

tx

. . ! x
whose constitutive element Pij and Qij are obtained from sin-

ple calculations

1% nj : nj"l ,
P..(z} = c. z Y 4+ c, z + ... + C, Z + C.
i L+ i,v.+n.~1 VvL+1T i, v,
+J V3¢5 A A S Vi
i=1,...,p-s j=1,...,s (2.50a)
1x -1,y n-2 ¥
9 2) = Tig gw T By g2 T e e T DA, L% T (5-1)8+1,1
i=13,...,r=s J=1,...,m (2.500)
“in which
5
n = max(ni) (2.51)
~k+l
| S EZ: zz: b . .
(j=L)n+k,i ~ 1 v, +V+A 1 vu+v-l,3. (2-52)

We then obtain r-s subsystems whose input-outrut description is



15 o . 1e
Pip(2) yyle) + v + P

is ys(k) - ys+i(k) =

,-Qi';(z) u]';oc) o+ Q:;;(z) u_ (%) i=1,...,r-s  (2.53)

Recalling (2.51) and introducing the paranmeters

i

pjk = ci,0.+n.~k+1 j=1,..,8 k=l,..,n.+1
. J d i . J
i . o~
Ujx = “jn-k+1,i J=1l,...,m k=l,..,n
i:l,...,I‘-S ' ) (2'5[_})

allows us to define tne reciprocal polyhomials

1 -‘1 -Nn ~"-ii-
Pij(z- ) z Hij(z)
i nJ-K i n.-n+l X
= pjlz4 + pjzz + ... pj,n.+lz
n.+1
N nJ—H-k+1
= 1 kaZ i=1,. yT~8 J=Ll,..,8 (2-55)
k=
1 \_1 IR
Q. .(=z = 2z . .(z
MACH 4; (=)
i -1 i -2 -
= Q-2 + g..% + ...+ 7
951 152% 95,0
‘Y\; -
i ;k
=.22: Qs i=1,..,r-s j=1,..,m (2.56)
k=1l

aﬁd to rewri-e (2.53) in the form
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S | roo-1
Qil(z ) ul(k) + ‘e + Qim(z ) um(k) 1:1,..,,r-s‘ (2.57)
Remark
Using (2.54) and (2.52), the qgh 's can be expressed
Fe
A _ i ' '
in term of the pjk 's
n _-n+k
u

quk = Z Z o b . C(2.58)
) u=1 v=1

u,nu-v-n+k+1 9u+v-1,3

so that the number of unknown parameters in (2.53) is n.

In summary, a set of r-s input-output equations of

the form
. 8 .

;Z: P;&(z+l)-yj(k) - Yoy (K) = EZ: ng(z 1y u, (k) (2.59a)

njfl \
. - ' . -n-k+1 '
LR i Byt .
Pij(z y = = P2 J—l,...,s (2.591v)
n
L P i -k o
-Qij(z' ) =.§z: 93 J=1,yeeo,m (2.59¢c)

"has lLeen obtained.

Recalling (2.54), (2,59) allows us to estimate the parameters

- of the matrix C.
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" Equations (2.44) and (2.59) constitute the canonical

input-output description of (2.10). The equivalence between the

¢lass of canonical state-space representations (2.10) and the

“input-output description (2-44)-(2,595 21as thus been obtained.

In the next Section, the results obtained above are

extended‘to the case of data corrupted by noise..

3.3.. Hoisy version

If we assume that the input and output sequences are

corrupted by an additive noise

y; (k) §i(k) + v, (k) i=1l,...,r

~N ’ .
ui(k) ui(k) + wi(k) i=1l,...,D

the equations (2.44) and. (2.59) take the form
P'iﬁ = g u+?b v, * QW

\ ' v

1 A (3 .
Py, ~¥,=Qu+Py -V, +*Quw

wheére
¥y (k) = :v1<k) v,(k) ... vs(k)]T
v, (k) = :v.s+1(k) v8+2(g) Vr(k)] T
1) = [xT0 ¥Io]”
w(k) = :wl(k) w0 <o ()]

(2.60)
(2.61)

(2.62)

(2.63)

(2.64)
(2.65)
(2.66)

(2.67)
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The i-th congponent ni(k),of the noise vector

n(k) =Py, +Qu (2.63)
. d-ef?i.ned .by s ~ : L . | | :
n, (k) = ;E: P..(z"h) v (x) + EE: 0. .(z71) v (k) (2.69)

has a power-density spectrum given by

(%) ZP 9 Py (@'1%}»

o+ Z 13(8) ;57 YHd (9 (2.70)
=1 1

. where év and éw are the power-density spectra of vy and W, .
A .

‘Since éﬁ (%) can be expressed as the product

i
.=1
<1>ni(‘€-) = Yni(‘ﬁ) Yo (877 (2.71)
.1 then . - o
H (87 = —i— (2.73)
n, (&
1

0& constant

is the transfer function of a realizable filter.

Since, in addition, (2;73) is equivalent to

-

¢ (9 (0 6™ =6f (2.74) -
= i

1
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Hi(é_l) is the transfer function of a whitening filter.

It follows immediately that

. _ 1
n.(k) = ———— e.(k)
it . Hi(z—l) 1

57

(2.75)

where ei(k) is a sequence of indevendant random varizbles

| E)E;] =0

Efe; (3) e;(0)] = ¢i2 I

(2.76a)

(2.76b)

If the whitening filter is represented by its imvulse reéponse,

the process (2.75) takes the form of a«n auto-regressive pro- -

cess
n (k) = —2—— e (x) (2.77)
- D.(z ™)
i
. ' nt .
where d :
. -1 i -j
D;(277) = 1 + d-z (2.78)
a3 ,
J=1
The equation (2.62) can, then, be rewritten in the
fqrm |
Py,=Qu+De (2.79)
‘where
I - T
e(k) = _gl(k) e, (k) ... es(k)] (2.80)
-1 ! 1 &
D(Z. ) = dlag ——;‘i"— e v e ——-——-——:—I— (2,81)
Dy(z"7) D ( )




The equation (2.63), in the same manner, becomes

Py -¥,=Qu+De (2.82)
"where .
e () = [ei(k) er(k) ... el ()7 (2.83)
D'(z—l) = diag.[——,——l:-_—i— oo ——"'—-l—:—i—:, (2.384)
T e

We then obtain the noisy version of the equztions

(2.44) and (2.59)

5 - . m
-1 -1 5 1
ég;: Pij(z' ) Yj(k) = %;; Qij(z ) uj(m) 4 — ei(k)

Di(z-l)
i=l,...,8 ¢ | : B | (2.85a)
s | ooom
. 1 T ) v -1 . 1 !
ZE: P, (z77) y.(k) —y_,.(k) = Zij Q. . (z ") ui(k) + ——— e, (k)
3=1 ij J s+i =1 ij | J 4Di(znl) i

i=l,...,r=s o ’ (2.85b)

These results generalize those obtained in Section 3.2. The
equivalence between the state-space representation and the
input-output desdription of a multivariable system has thus

been established in the case of data corrupted by noise.

It must be pointed out that, as revealed by (2.85), the
advantages of the decomposiiion of the system into subsystens

has been preserved - In the sense that these subsystems can be



separately identified - although no restrictive assumption on

noise characteristics has been made..

It is now a simple matter to formulate the identifi-
cdtion problem. However, before stating and solving this pro-

blem, we shall proceed to some comments.

3.4, Conments

.The structure of the matrices A, B and C, given in
Section 2, and, ccnsequently, the structure_of the input-outrut
equations, derived in Section 3, result from an arbitrary choice
of the indexes ny . It would be of importance to prOpose an ef-
ficient method for the Ilndlng of the set { 7 n2, e ns} ,
optimal with respect to a given criterion.

However, whatever criterion we choose, such a method
should be based on the measured ihput-output sequences and
would lead to the'following problem : how can one take into
account éhe noise whose statistics afe unknown é For exanrle,
the minimal representation case leads us to consider input-
output data matrices : how can we assert that these matrices
are singular or not ? (Is & matrix whose determinant is lO_lO

singular ?). It then seems that this problem cannot be solved

in realistic cases.

Nevertheless, the choice for the ni's can be guided
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by some physical considerations : .

| w~ The strﬁcture ﬁéy be assigned By the physical
meaning of the state variables.

- Ié.the j=-th output of the system is markedly more
free from noise than the rernaining ones, a maximi-
zation of the corresponding n, dould be advanta-
geous. |

- The number of unknown paraneters is
in (2,85a) : n+m(ni+1)+n§ i=1l,...,s

in (2.85b) n+n§ iz1l,...,r-5

e

If n is a multiple of s, it can be judicious, in
order to minimize the computing requirenents, to
choose n, = n/s, since the subsystems are separately

jdentified.

Another problem arises with regard to the noise
.‘model : introducing a noise filter increases the number of
unknown parameters which affects the identification proce-
dufe, sinceAthe efficiency of any optimization algorithn de-—
creases when the number of parameters increases, However, the
»noise-model allows us
-'to'redqce the gffect of the chqice of the hits on
tﬁe identification results since this effect is
directiy related to the amount of noise corrup-’
ting the differént outputs.
-~ to improve the efficiency of some simplerminimiza-

" tion algorithms, which are sensitive to noise.
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Moreover- such an approéch'provides a probabilistic framework
‘which permits us to establish the mathematical properties of

the estimates.

4 - MAXIMUM LIKELIHOOD ESTIMATOR

4,1, Introduction

The object of this Section is to present a Maximum
Likelihood estimator. The equation of error and the 1ikélihood
function will be derived (Section 4.2) and the consistency of

the Maximum Likelihood estimates will be proved (Section 4.3).

4.2, Equation of error

Recalling (2.85) leads us to choose the model
5 » - m : .
Z P (2 v (1) = Qu (271 uy(H) + =2 € (1)
» ' j=I. ' ' v Di(Z )

i=1l,...,8 (2.86a)

0

S =, | | (2.860)



where
n.+1
- J -
- -1 g n —ni+1' § - nj—ni-k+l
Pij(z ) = ijz' - + — pjkz
nl+1
l —
- 1. - ni-ni-k+l
(2 7) = qQs, z
Qlj ~1° k7.
n.+l
5' ( -1) L3N | n -—K"k"'l
. .(=z = " P .
UL k=1 jk
| pit |
LI | ' ~if Lk
Q; 4 ) = QZ
) Qi'] k=1 dk
hi
d
D, ( -1y o1 Z gz
ni |
d
Do (z7Y) =1+ at'zmd
j=1 9

. - ' .
The residuals €i(t) [€i(t)] are independant and Gaussian

(0, 7 [0, 7]

Rewrit ing (2.86) in the form

(2.87)

(2.88)

(2.89)

(2.90)

(2.91)

(2.92)
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_ s m
€.(t) = D. Z P, . y.(t) - Z Q. u.(t)
»1 T i i=1 ij 73 jo1 1 ]
.j-:l’o.-o-’s ) (2093a)
. S _ ' R : )
€5 (t) = DBy 6y = 2. Q. ui(t)
(t) = D, s Vo - ¥ . -~ M BN
i B ) 13 Y3 s+i. j=1 J 3
izl,...,r-5 : v (2.93b)
yields the so-called equations of error
S | |
_ n, 5 n_+1
€.(t) = it éi Z i :E)l y.(t+n_ -n.-k-h+1)
i | h=0 h j=1 k=1 Jk. J j i |
n.+1 .
m i
_ — ~5 -
+ y.(t+n,-n.~-h+1l) - Z qs, u.(t+n,-n,-k~h+l)
i i it j=1 k=1 ik ] i i
1=l eeese (2.942)
nci1 s n.+1 |
oo D T 5 s
€.(t) = dh‘“ Pay yj(t+n ~n-k<h+1)
L n=0 " =1 x=1 gL J
B n N : '
(t-h) - D)
= Ygag bR -4 Ay vy {t-k—h)

i=1,...,res . (2.95b)
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. . ] : .
" The Gaussianess of €i and Gi allows us to define
the log-Likelihood functions

N .

64

L, = - —= ZE: €2(t) + Nlogoy + Nlog2 i=1,..,s (2.95a)

- N
: 2 t=1
o ;

e i

¢ 1

i ) t=1
o
2 1 .

where N is the number of available data.

~ 1

~t
P.. and Q.. are
1]

The Maximum Likelihood estimates of P, Qij’ i3

ij»
’ - . - . '
obtalned by maximization of Li'and Li or equivalently by mi-

nimization of the loss functions

Ly = = —— 2. €2(t) + Nloge, + Nlog2W i=l,..,r-s (2.95b)

_ N ) . _
W= g sz<:§<t> i=1,...,8 | (2.962)
_ t=1 :
N
w; = E%“ €:2(t) i=1,...,r-s A (2.96b)

o
11
o

Having defined the Maximun Likelihood estimation
problem as the finding of the global minima.of Wi and wi,
we can determine the statistical prcperties of the estinmates

.by examining these minima. ’
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4.3, tatlstlcal Iro \ertlea 0of the estinmates

In the whole Section, the [following assumptions ar~»
‘made . - . ' -

- Al . To ensure that the model otrlcture is approprlate,

—

it is assumed ‘that (2. 85) really holds.

—

. - V 1 -
- A2 ¢ For all (i,3), the polynomials P. J( 1))P13(Z 1

— ]
Di(z_l) and Di(z ) are assunmed to have all their

)y

zeros inside the unit circle, This implies that the

- equations (2.35) are stable.

‘ .
-A3 . For all i=1,...,s and j=1,...,min(m,s) [ =ly...,r-5

and j=1,...,min(m, r-s)] the polynomials Pij(zf ) and
Q.

ij

(z'l) [ ;J( ) and Q1 (z~ J are relatively prinme.

These condltlons are fulfll]ed provided the system 1s

controllable from u.

- AL .- A1l stochastic processes are ergodic..

 Moreover

~ Since, for a finite number of data, N, the properties
. t

of Wi and Wi may change drastically from one experinment

to another, the asymptotic loss_funqtions

Vo= lim W, i=1,...,s (2.97a)
Hs-0o
. ' N . .
V= lin W, 1=1,...,r-5 (2.97b)
H—s-oo

- ‘will be considered in the following.



- For convenience, E‘[f(t)] will denote
: N

lim % zii £0t) | (2.98)

N—c-oo t=1

provided the limit exists. If f(t) is an ergodic

stochastic process, E [f(t)] is the expected value

of f(t).

The output data are governed by

Py =Qu+De - (2.99a)

Py,-¥,=Qu+De (2.99b)

u+DE (2.100Db)

Let: us, -first, consider (2.99a) and (2.100a). Combining these
two equations yields

€= [D’l p Pt D] e + [D—l pptq-opt Q]_g (2.101)
Then, assﬁming that u and e are uncorrelated and setting

F=0D

v
av)
O

(2.102)

-1

g
v}
O

!
O

(2.103)

" allows us to write

Py, =Qu+DE (2.100a) .
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B [_e_ _e_T] = E [F,g el F'T] + E [G uut GTJ | (2.104)

which clearly implies that

E [_e_ gT] > = [v‘ 3 et FT] =V (2.105)

where A>3B means that A-B is positive definite.

. Applying Péréevalfsvtheorem, V becomes (Assumption A4)

= 1 T, -1 d%
Vo= sy » F(¢) R F (¢ ) 3 (2.106)
el =1
where.
R = E[_e_ gT]- | (2.107)
Let us consider the integral -
oL gy - Teg-1 148 >
T = 5= [F(¢) = 1] R[F(¢H) - 1] g >0
=
4= (2.108)
Then
J =V +J —2d, - (2.109)

where
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(N
1]

- R -gg = R | . (2.110)
l%,:l i

(2.111)

wel\,q
]
os]

" 7’1%1 :

The latter equality is due to the fact that the elements of

F(%) have their zeros outside the unit circle (ASSumption.AZ) and that
F (0) = D~ (0) P(0) P71(0) D(0) = I since D,(0) = D,(0) = 1

and P (O) ij(O) = Jij’

Hence
J=V-R>0 (2.112)

and, recalling (2.105) and (2.107)

E [_e_ _€__T] - E[g gT] >0 C (2.113)

-Applying'Syivester's theorem impliés that the diagonal elements

must be positive
A E[a%]z E[e.z] = o2 i=1,...,s (2.114)

The equality, in (2.114) occurs if and only if -
(1) Jd=V-R=0 i.e.

F =D PP D=1 ~ (2.115)
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(ii) the second term of the right-hand side of
(2.104) vanishes i.e. - provided u is persis-—
tently exciting of order 2n + Hd + 1 (see chap-

ter 1) - if
G=D" PP~ Q-D"Q =0 (2.116)
‘Combining (2.115) and (2.116) yields

DP=DP (2.117)

(2.118)

ek

Q=D

O ?

which implies (Assumption A3)

P=P (2.119)
Q =4Q (2.120)
D=0D (2.121)
We have then established the
Lermna 2.3.
2 i=1 5 (2.122)
Vizaoi 1=l,..., .

The equalities are obtained if and only if P = P, Q = Q and

D =D.

The lemma 2.3 states that the estimates of the para-
meters of the matrices A and B converge to the true values as

N v,
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Let us now consider (2.99b) and (2.100b).Remarking,

Yy is defined by

from (Z.IOOa))that

Yy =P T Qu+P " De - (2.123)

o= pPlog-qhu+p' Flpe-1"e  (2.114a)
L G S N U e

fram which we can deduce
- Ar.] At R & - -~ - r o
€ :[D L -P)PIQ-D.I(Q -Q)]z
Lo P L 1 4 - ~ . 1} -t
-u-[D l(P.--_P-)-PlD]_e_Jr[D 11_)_]3 (2.115)
- Proceeding as above lead us to the

Lemma 2.4.

12 : 12 : .
Vi >0 i=1,...,r-s (2.116)
. . L3 | . F ~t 3
The equalities are obtained if and only if P = P s @ = Q

R '
and .= D .
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- The lemha‘a.u-proves that the estimates of the
parameters of the matrix C converge to the true values

as N—b oo _

We then obtain the

Theorem 2.1

The Maximum Likelihood estimate of the trivlet

(A, B, C) is asymptotically consistent.

The remaining problem is the minimization of the loss
functions, Inspecting (2.96) and (2.94) shows that mininizing
. 1
] W
wi and Ji

the next section is to present the various classes of non-linear

is a non~linesr optimization problem, The bbject of

optimization algorithms.

5 - MINIMIZING THL IL0OSS TUNCTIONS

5.1, Introduction

The nonlinear minimization problem can be formally -
éﬁated és

n

Minimize V(p) PEE (2.127)
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--A large number of methods‘have been proposed to

solve the general nonlinear minimization problen [20,14].
These methods cén be divided in two.claSSes :
| ~ The methods that use derivatives

~ The methods that do not use derivatives

In the folloWing, the most commpnly used methods are

briefly described

- 5.2, Minimization procedures usinrs derivatives

We first consider how tb solve problem (2.127) by
algorithms that make use of first and, possibly, second deri-
vatives of V(p).

5.2.1. Gradient methods [14 ]

At the k-th stage, the transition from a point

(k) (k+1)

to another point p is given by

(k+1) (k) v (oK)
2 =p = V(e ) (2.128)

‘The negative of the gradient gives the direction for optimiza—
tion but not the magnitude of the step, so that various steone%t
descent.algorlthms are poss 1blc, depending on the choice of A

‘Many me:lrods of selecting A are available. It can be shown’
thét, under suitable conditions, the method converges as

kK —+ oo .,However'this,theoretical.result is of little in~
terest in practice because the rate of convergence can be

intolerably slow.
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. t
5.2.2. Newton s methods [19 ]

. . '
The second-derivate methods, among which Newton s
method is the best known, originate from the quadratic appro-

ximation of V(p). The transition from p) to p(¥*1) i

| P y 7-1
pUs ) L pU0 gy [VP_P_(P(k))] VR(R(k)-) (2.129)

The convergence is guaranteed if the inverse of the Hessian
matrix of V is positive definite. This is a major drawback to
this method since for functionswhich are not strictly convex,

t
Newton s method can diverge..

5.2.3. Quasi-Wewton methods [lh ]
— 8

Quasi-Newton methods approxinmate the Hessian matrix
or its inverse but use information from only first-order deri-
o (k+1) (k)

vatives. Atstage (k+1), is computed from p

through
k+1) . (k k 1
2 =0 A et v (2.130)
where A is an approximation of the inverse of the Hessian. The

problem of approximating the Hessian has been invéétigated by

Peapsog{l?],ﬁbavidon - Fletéher - Powell[iq ]énd Fletcher[ 10]'-

5.3. Binimization procedures without using derivatives

This Section is concerned with derivative-free type

of methpds'(search method). As a general rule, first-derivative



and second—deri&ativevmethods converge faster-than.searCh
methods. However, in practice, the derivative-tyve methoas
have two main drawbacks to their implementation. First, it can
‘be labofiouélor impossible to provide analytical functions for
the derivatives. Second, the derivative—type nethods require

a large amount of problem preparation as compared with search

methods,
Two of the many existing search algorithms are
briefly described. A complete description of these two methods

is given in [14].

. ' t
5.3%.1. Rosenbrock s method [22]

(k+1)

' '
- Rosenbrock s method locates p by successive

(k)

unidimensional searches from an initial point p along a set

" of orthonormal directions vl(k) (k)

Schmidt procedure.

5.3.2. Powell's method [l?]

Powell's method locates the minimum of V by suéces~
sive unidimensional searches from an initial point along a set
: df conjugate directions. |

Chqosing an algorithm is nol a simple matter since
no one méthod appeérs to be far superior to all the others.
’The choice & a narticular algorithm rests on the formulation

of the problem and the experience of the practitioners.

,..,,..,vn generated'by Gram -
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For the identification of multivariable systems, search
methods seem more appropriate than derivative-type me;hods because
of the generally large number.of parameters. However, if the com-
putational (storage) requirements are considered, a quasi-Newton
method can be chosen. In Chapter 3, the various aspects of these

problems will be treated on some examples.

6 - CONCLUSION‘

In this chapter a unified approach to the identification

of multivariable systems has been presented.

Although the problem of deriving the input-output de-
scription of a multivariable system from its state-space represen-—
tation has been deeply»investigated by many authors, no general
result is available in literature. The results of Section 3 bridge
this gap. Compared with the prévious methdds, the present one has
the following advantages.

- This is the most general approach, 'since all the pre-
_ vious methods are speéigl cases of the above method.
| a) If the number of subsystems is equal to the number of
outputs (s = r), one 6btains the input-output representation de-
rived by Gopinath [12].and Zuercher [28].

b) If the ni;s are chosen as 1érge as possible, one
obtains the so-called minimization realization derived by Acker-
man [1].

¢) If the two above conditions can be satisfied
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simultaneoqsly, the input-output representation, suggested by
Guidorzi [13], is obtained.

- The identification of the system dynamics (matrices A
and B) is based on the information provided by u and z{,-This
allows a discrimination of the input—output data which is of
interest if some outputs of the system are markedly more free from.
noise than the other ones.

- Equations (2.28) and (2.25) provide a very simple state
estimator. Héving estimated the parameters of ? and Q (i.e. A and B),

Y

equation (2.99a) gives an estimate of .the output vector Xl’ say ¥,

from which the noise has been removed

~

Py, = Qu . (2.131)

Then, provided u is noise-free, the state estimator
x(K) = My, (k) - Nu(k) (2.132)

gives an unbiased estimate of x(k). This formulation leads to an
alternative approach to the identification of the parameters of
the observation matrix: the parameters of C can be estimated

through equation (2.45).
The Maximum Likelihood estimator, introduced in Section 4,
allows us to establish the consistency of the estimates in case of

correlated noise.

All these results constitute a global approach to the
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identification of linear multivariable systems.

The whole procedure described in the previous Sections
can be extended, in an entirely obvious way, to systems whose
input-output structure is known a priori (transfer functions,

impulse response).

Due to the recursive structure of the computation scheme,
the procedure can be extended, with only minor modifications,

to an on-line identification procedure.
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Chapter 3 : EXPERIMENTS

T - INTRODUCTION

The aim of this Chavpter is to present some examples

of Maximum Likelihood indentification of multivariable systems.

For this purpose, tests will be made on simulated data
- for different minimizations algorithns

-~ for difrferent noise powsers

2 - DXPERIMENT 1

We consider the followinz tuird-ordel sysien

| 0 1 0 b1y by
x(k+1) = a17 815 293 x(k) + 059 o, u(k) (3.1)
a1 % 33 b3y by,
1 0 0
y(k) = x(k) (3.2)
0 0 1

with 2 inputs and 2 outputs.

This system has been simulated on an IBM 370 computer. The inputs and the

outputs were sequences of length N = 250.

The loss function was minimized via the Fletcher al-

gorithm [10] .. Tables 3.1. and 3.2. give the results for



different values of the signal-to-noise ratio,

2
Z[v ()-7,]
W
N~ s i=1 2
zz:[ni(k)-nil
k=1
3. BXPERIHENT 2
The following system has been simulatad on an IBM 370
computer: -
E 3 " [~
0 1 0 0 by, o,
x(k+1) = | 211 %12 213 214 x(k) +]P21 P22 | u(x) (3.3)
0o 0 0o .1 byy g
| 221 222 %23 Py [ Py1 Pz ]
1 0 0 0
y(k) = 0 0 1 0 | x(k)- (Z.4)
| ‘11 %12 %13 Cyy

The identification of this system has been achieved by using the

Rosenbrock minimization algorithm for a set ¥ = 250 input-output

data. The results are reported in Tables 3.3 and 3%.4.
b

The results, given in Tables 3.1 - 3.4 show the use-
fulness,, in.case of small signal-to;noise—ratios, of the noise model
which allows one to eliminate the bias on the pérameters. This

confirms the theoretical results of the previous charters.
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parameters

true values

estimated values

411
212
a15
421

Y

a

23

®17

12

o' o’

21
)

b31

bsp

- 0’5_-

- 0.25
0.25
1.375
1.5

- 0.75
0.2
0.3
0.1

-.0,275
0.85
0.95

- 0.5000
- 0.2499
0.2500
1.3749
1. 5000
- 0.7500

Table 3,1 :
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parameﬁers tfue values estinated valﬁes
n, = 0] ny = 3
a)q 0.5 0.083 - 0.489
a5 Q.25 - 0,236 - 0.252
a3 0.25 0.018 0.249
8,y 1.375 1.005 1.328
2,5 1.5 1,435 1.506
8,z 0.75 - 0.595 - 0.751
'bll 0.2 0.181 0.219
by, 0.3 0.329 0.296
b,y 0.1 0.084 0.097
b, 0.275 - 0.237 - 0.239
b31 0.65 0.426 0.279
by, 0.95 0. 874 0.89¢8

Table 3.2 : % = 10

(n, : noise model order)
da



estimated values

paraneters true values nd =0 ny =
aq -1 - 1,274 - 1.061
ag, 0.5 0.067 0. 506
a3 2 2.186 2;003
a1, 1.5 1.324 1.491
Ay, 1 0.645 0.979
a5, 2.5 2.484 2.485
a s 0.25 - 0.016 0.261
2, 1 0.715 1.083
by, 0.5 0.674 0.501
by, 0.5 0.323 0.518
by 2 2.711 2.215
b, -1 - 1.617 - 1.184

| by b 3.077 3.899
bsy 3.2 1. 006 2.994

| %Y 2.7 - 0.199 2.645
;‘bq2 4 - 0.2 - 1.157 - 0.247
Cqiq 1 - 1 0.87 1.012
15 -1 - 1.015 - 1.024

| °13. -1 - 1.637 - 1.127
Sy 1 0.421 0.919

Table 3.3 ¢ % = 10

(n, : noise model order)

d
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, , estinated values
parameters true values _ -
nd =0 ny 3

ay, -1 : 1.429 -~ 1,084
a,, | 0.5 - 0.126 | 0,512
a3 2 2.114 ’ 2.004
ay, 1.5 L.677 1. 49k
a5y ' 1 0.429 0.875
ass N 2,73k - 2.515
a : - 0.25 - 0.126 - 0.299

23
o 1 : 0.83L 1.077

24 _
o ‘ : 0.5 0.722 ' 0.494

11 o ‘ _
by, 0.5 0.299 0.577
by | > 2,612 2.125
by, -1 | ~1.739 - 1.227
b31 o L. 2.984 3.725
by - B2 1,008 2.999
b, a 2.7 - 0.237 2.825
bha - 0.2 - 0.975 - 0.251
¢y | 1 1 o.827 1.108
Cys -1 - 1.115 -~ 1,009
c15 S D - 1.725 - 1.118

g Cyy, 1 0.622 0.905

Table 3.4, ¢ % =3

(nd :+ noise model order)




CONCLUSIONS

The purpose of this thesis is to investigate the

Maximum Likelihood identification of linear discrete-time systems.

Ihe statistical properties of the Maximum Likelihood
estimator, for single input—single output systems; are analyzed.
Two different types of noise model structure are considered and
two_new results relative to the convergence properties of iden-

tification methods are obtained.

A general method for deriving the input—output description
of a multivariable system from its state—-space representation is
proposed. It is shown that this approach is superior, from dif-

ferent points of view, to those proposed in literature.

Based on the results obtained in the single input-single

output case, a Maximum Likelihood estimation procedure for multi-

variable systems is described and convergence properties are derived.

It is shown that the results can be‘generalized in various

directions.

Finally, numerical results of Maximum Likelihood iden-

tification are obtained.
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