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ABSTRACT .

A onefdiéénsionél; siﬁgle phase Stefaé Probleﬁ is
considefed.;'ThiswéfABléh‘is.shbwn to have a unique solution
'whicﬁ depeﬁdS‘CSngihuo;siy on éhé boun&ary data. In addition

two algorithm; aré:formulated for its approximate numerical
solution.:

The firé£a1gorithm:(the Similarity Algorithm); which -
ié BasedVOANSimﬁléfiff; is shown’fo cénverge with order of
'convefgencetbéfweep qné ﬁélf and one. Moreover,.ﬁumerical
%examples il}ﬁstrating;Qaribug aépegts of éhis algorithm afe
presented.  in:péfticular,’médifidationstd the algoritﬁm which
are suggested by thé.pfOQf of.conQQrgence are shown to.imprové
the nuﬁeticél ;esults‘éignificantly.> Furthermore, a brief
¢omparison is ﬁade bét&gen'the algorifhm.and a well-known
' difference scheme.

The'seCQnd algorithm (a Coilocation Schehe) results
- from an attempt to reduce ﬁhe problem to a set of ordinary
:differential‘gquatidﬁé; 'ItAis'observed that-thié.set of
ordinary differential eqﬁatioﬁé is stiff. ‘MoreoVér, numerical
examples indicate thét\thig is ;»highlorder scheme capable of

achieving véry acéufate_approximatiohs. "It is observed that the .



(i)

apparent stiffness of the system of ordinary differential equations

renders this second algorithm relatively inefficient,
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INTRODUCTION

-?:”ThiS‘Thesis is gépcerned with the diffusion of heat
through a me&ium which is experiencing‘é change of phase,

Characteristically such pfdblems involve a ﬁmoving"
Sﬁrface made up of points ét which.one phase changes to another.
If-the positionréf tbe;surface is given as a function of gime,
thé probiem;"knoﬁn as the Inﬁerse Stefan Problém; reduces
éssentially to one of solving a,pafabolic differential equation
with éséoéiéted bOundaryAéonditionS'on anlirregular domaiﬁ?
Evideptl&:{f the differential syétem is linear then so is the
~Inverse Stefan Problem.

‘However, when the position of this surface is not given
a-priqfi, ﬁhe_probiem, referred to as a Direct Stefan or Free:
uBoun&arf Prbblem, beches one of'finéing s&mhltaneously the
temperature distribution of the mgdium and the position-of thgn
""moving" surface. As can be seén readily the Direct Stefan
Problem'is‘ﬁbn-lineér;

Althougﬁ FréelBoﬁndary-Probléms date back. to a work of

. G. Lamé and B.P. Clapeyron published in 1831 and to several



- papers ofJ. Stef;n which appeére:d' in 1889, not until the
An_i:’neteen‘ -thi_rties..did work on suéh problems ‘begin in earnest.
.].)u.rin.g‘ t‘hé pas; twenty years a ctonsiderable amount -has been
. 'pvub.li.‘s‘he,d‘ décuméh.ting_.the analytic properties‘of‘one-dimensional

Stefan Pro'blem’é. In acidi't:ion, .a number of schemes h'ave been

developed for their numerical solution.

The Problem -

‘We consider a particular -one_-dimens‘io_nal_ singlé pﬁase
Stefan P:db.lem, ,ﬁor-e prec‘isely, we wish to describe the
melting of a homogeneous slab, which initially occupies the space
betv.v‘eenv é:p. ‘a:nd <‘3= .S‘g  , ‘a‘nd whose initial temperature
disvtr:ib’ution is 3,(5) . We assume that the temperature
distr'i‘x:mtiqn, J(y,z) ,.obevy‘s the heat equation interior to the‘ '
-slab for Tro . Furthermore, we assume the slab to be insulated
a’f é: ; ,A vvﬂh‘i'le at 6: .S'('z). R thé position of the "moving" boundary
at tifné r , @ heat flux M (r) causes an isothermal phase
'ci:xange. ’léy'ha‘ving the melt removed imme&iately upon fbrmation,
we restrici: .our.attention‘ th t-he solia phése only.

The following equations govern the temperature

‘distribution in such a slab,



1y

. cp :rf':(’%'_t) 2K Ty (7T © ¢ 3y ¢ SUT) <o), _
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: I(.s‘u;),r)s T T € (o, Tg), (0.1b)
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‘Jlv,0)= 3°(>¢)- ' _ ve (o, ‘3], (0.14d)
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LIV R D : (0.1e)
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. - Here Jr(y,rv)Jj’,(y‘:‘)‘g-”(,.-;) denote partial
derivatives of J(v,r) and Stn:d (s - .
S 4t



4‘ﬂ4'He:e, :r“ﬂ'ﬂ'-.the melting temperature, ¢ = the
specific”heét, @ - the density, -~ W% =~ the conductivity, and

AN - the latent heat of fusion are characteristic of the material

-and are taken .to be constant. Moreover, we restrict our attention

. to the case Tty ¢ T , W (D) 30,

Although ‘the general problem (0.1,a,b,c,d,e) can be
dealt with nﬁmeriéally, throughout the analysis we will assume

that the heat flux, W, (r) , is sufficient to maintain melting,

i.e. :r(5Nzh:) -, the temperatﬁre of the slab at the melting

boundary is never allowed to fall below '3;« - the melting

 temperature. Whether for arbitrary ’32(3) and M, () this

can be guaranteed ‘a priori-will'bE'discussed briefly at a later

" time,

Under the above assumption, condition (0.le) becomes
the Stefan or Free Boundary condition and determines the allocation
of available energy to the diffusion and the melting processes.

" The comblete solution of (0.1,a,b,c,d,e) is then the

pair of functions . ( J(v, 2), Stm)),

Existence and Uniqueness of the Solution

‘The existence and'uniqueness of solutions to Stefan

Probiems afe'established By‘bne of several methods. Usually the

solution is expressed in terms of a set of coupled Volterra



_Inté;fal_ﬁqua;ions, then.the.proof proceeds by either using the
Maximﬁm friﬁéiple‘or é fixed point argument,

Caﬁnon and Denson Hill [ 7 ] use the Strong Maximum
Prinéiplé togéthgf wiéh é retarded a;gument‘approach to establish
"tﬁebexistence andluhiqueﬁess.of the solution of the problem they
. consider. Friedman [ 17 7, refining -fhe work of Rubinstein
[ 29 ];‘treats the same problem.using a fixed point argﬁment.

) "Using mefhods as outliﬁed in Frigdmén [ 17 ] we establish
the existence, uniquéﬁess.(chapter I) and continuous dependence
(Chaéter V) on'the.bbundary data. {gﬁ)_kh(rh J;oo}-of_the
,»solﬁtion to.the systéﬁ of eéuations (0.1,a,b,c,d,e). The Convérgence
' of,éhe.Similarity Algorithm (sée Chapter 1IV) then f§1iows from

the continuous dependence of (0.l,a,b,c,d,e) on W,(7).

The Numerical Stefan Problem

Usually numerical schemes dealing with Free Boundary

© ot

: Prqbléﬁs afe §ér£iduiéf to the boundary conditions being considered.
. For instance, the finite différence.scheme developed by Douglas

, and Gallie.[ 11 ] uses two boundary'conditions tb esfablishfan'
'iteratidn which at eaéh step - in time locates.the position of the
"moving"_boundary.. Similarly thé continuous methods ovaason and
Farka;;{ 24‘]vré1y on’fﬁe apbearance of ﬁkrs. " twice in ihe system

of equations so that again an iteration to the solution can be



established;.‘
. sévefal authors, following the lead of Landau [ 22 7],

" make the £ransf¢rmatioﬁ ;x=‘X/§Wr) , then construct approximating
“scheﬁeé for tﬂé:r¢5u1ting system on»tﬁe fixed space interval
*[0 1] - For example Lotkln [ 23 ] uses thls transformation
to obtaln a finite difference approximation for (0.l,a,b,c,d,e).

-One aiternaﬁi?e to differen;e schemes on the fixed
space interﬁal [0,1] hés béen to.reduce the Stefan Problem to
a countéble'get‘of ordinary differential equations. Th;s>was
first ;chieved.byIMelamed-[.ZS ] by expréssing the temperature
distriBution; \I(Y{Z) és'an appropriate Fourier Series with
gﬁme depengené éoefficients. The system (0.l,a,b,c,d,e) ;hen’
yields a set of ordinary differential equations for the Fourier -
Coefficients and the position of the boundary.

Wg éropose several schemes. The first scheme,
,referredvto-as the Similarity Algorithm (Chapter 1V) ié based
oﬁ anlexact solution of the Inverse Stefan Problem obtained
_ thfough the Simiiarity Method (Chépter II). That is, solutions
ofvthe Inverse Stgfan Problem afe pieced together in such a way
as to given an'gﬁpréximate‘. solution of the Direct Stefan Problem.

in_Chapter VI we give pumerical examples,illﬁstrating

the Similarity Algorithm. . -



Tﬂ; ée¢ondiand thira'schemes (Chapter VII) are closély
related, and‘;fise from attemp#s'to reducelthé Difect‘Stefan
Problem (Ofi;é,b;é;d,gj to a countable system bf_ordinary
‘diffefentialééuatiops.  Hence.£hey‘can be 1§oked uporn as
extenéionS‘df the mgfhod of Melamed. - However, instead of
taking agravbasis, fgnétiqns which are global on'[O,l] (such
as tﬁeTfigonoﬁetric fuﬁc£ions) we adopt a finite glement
approach. Thét.is, we app:oximaﬁe :r(yff) by a finite linéar
cﬁmbinatidn (ﬁith'tiéé'&ééeQAent{coefficients) of functioné
whiCh~havg suppoftbin‘a.subintérval tfinite‘element) of [O,i].
A systemvof diffe?eﬁtial eéuations fqr ﬁhe coefficients and

S ‘éan ﬁe obt;ined in several ways.by ﬁsing equationé
_(Ofl;e). | |

We will derive two systems of equations. Tbe first

is known as é.continﬁoué‘Galerkin syétem while the second is

‘referred to as a Collocation system. Some numerical results are

-~ given,

Non-dimensionalizing

Befdre'proceeding‘further we non-dimensionalize the

system.of-equations (0.1,a,b,c,d,e) by introducing the following



variables:.

(2)

x*ﬁ Y/a ’ where"af' is a characteristic length,

Wene (T - Tn) /T |

. o
h(thﬁ-, We (71,

v

Stz S/ aq
| Uz (L) - Jv»\)/:r.,,\‘ (0.2)

T: X T,

ecqi )

bv=‘ So/ﬁ.)
bq = 75.0/0.,
Tty e Tm/

Subétituting-the_variables‘(0.2) into (0.1,a,b,c,d,e) we

9btain

(2) The characteristic length "a" can be taken
- to be the initial length of the slab g,.



UM () T HLLGE) 0 ol xeset) <tz h v
: _ . v ‘ (0.3)
telo,m, S(T): b,>o
Scvrse o tetoTy, - (0.3a)
Cmtst,H)ze te (o,T), (0.3b)
w,leo,%)30 o re (O,T),' (0.3c)
M, e)T U, ) x ¢ Lo, bl ‘ (0.3d)
RETTIN «*iu.uu\,t)- h(t\} "telo,T), (0.3e)
We note that (0.3e) with §Ce)= b . can be written equivalently
as
n S b
Sz b ~=x? S\'\(T\d? - °628‘\40()1) oy
.. . © . .
° (0.3£)
K{CN)
+ o\ wiy,trdy,
o
We now seek the solution  (wtx, %), 5(1)) to the system
of equations (0.3,a,b,c,d,e). More preciéely, we take
U tx) € C'fo,b] with v, (x) ¢ © on [O,b], -Qg(a): U, hlso

and W(Xx) continuous but for a finite number of jump

‘.discontinuities on [O,T]. Then we look for a solution (wtx, %), J(.t)),

of (0.'3',a,vb_,c',d,e)'~ satisfying the .conditioné s
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" ‘(a)' u“ (‘,%), .qt'( x,t)‘ e C (o,s(i!‘)) t e (0,"!');
(v) u(x,;) 3 | ¢ Eo,#(ﬂ'& , te E°a";.)3
(?) "_*:':.""'t’. ¢ C (o,s], e Lo, ™)

(d)  saye clo,T).

We begin in Chapter I by showing that the system of

equations (0.3,a,b,c,d,e) has a unique solution.



CHAPTER I

~ "EXISTENCE AND UNIQUENESS

In this chapter we show that the system of equations

(0.3,a,b,c,d,e) has a-unidue'solution (u,s) for all (xh)e D ’
@:i(x,tw PCx< S, 0% t<'r§-

- To acdomplish tﬁis we follow the lead of Friedmaﬁ_[17 ], by
constructingvan‘equivalent gystem of‘Coupled Volterra Integral
Equations and showing that there exists a ¢2o0 such tha£ forvall

: jt<.r .y these ihtegral eéuations have a uniéue éolution° Wé
then show that.this proéedure can be repeated to yield existence

"and uniqueness of the salution of the system (0.3,a,b,c,d,e) for

the interval of time (o,T).

Thé Integ?al Equations .

Before constructing the integrai equations, we state
several useful lemmas. Thé»first, due to Friedman {17 ], ié é
working.lemma used extensiveiy throughout the construction of the
integral equatiépé; whilevthe other two establish properties of

_ 3(1}.(the position of the free boundary) and U, (SR, ) (the

1 -
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- amqﬁgﬁ;oﬁ ﬁéétallocatﬁd to the diffusion process) regéectively.
’Péfining 'l{imtgg'z) " to be the usual sour@e solution
,df thegheét eéuggidn, that is, |
R : L -(xégf
Kex,t, 8 )= - . e «x-m)

n'e (1-n2

we have the fblloWing lemma.

Lemma 1.1,
Let @+, scx) . be continuous functions on the interval

fo,s3" . In éd&itigh, let scty satisfy the Lipschitz condition
oo san-sal s My -ty t,,t, € Co,0]

for some constant ™ . Then for all % € (e,0] we have

p. ‘ t '
Lo o g/amk_(x,t;uz),z) 4T

Stay-0 Ox o
e =vk1_ P(ﬂ e _%-'(J_'(f;"'_g [K(x,t;.sm,-z{)l 4z ..
. . R Toex x50k

Proof.
The prdof, given. in Appendix A, consists of showing

that .
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} S(A(t»(“‘“ SN (s, k580, 7) dr
~>S(‘L) -0 2k -T)

. At
- S(am(f__“_‘_-’_) K(x,t steyz) drf= kL_(:(t) .
P .

2R-T)

In order to establish the next two lemmas we use the
following auxiliary propositions whose proofs are given in

Appendix B.

PrbpoSitiqn 1.1 (The (weak) Maximum Principl.e)..
Suppose MU ix,t) satisfies
ux‘(x,ﬂ-u* (e, 2= © .-ob:i(x,t): o<x<s(t), o<t<‘r} R
‘with $(t) a positive continuous function and wix,%) € C(;é') R

U 01), Wy Lo %) € C(dUV @T) where 5 is the closure of © and
@T_.-. i(x,-r): 04 X (S(T)} s

Fig. 1.0 The (weak) Maximum Principle on
: .a Non-rectangular Domain

| o “/‘\__—/
AU
a@_ @T : x=s(-k) | / BT




i

" then Watx,t) assumes its maximum and minimum values on the data

boundéfy . OD-84.

Proposition 1.2 v('I"he necessary condition for melting).

COIE (ue) is a solution of the system (0.3,a,b,c,d,e)

" then - 'u,(kcta_,t\;é’ for all +* e(o,7].

- We are now ready to establish the following properties.

vLemma 1.2,

"If sc¢x) is a solution of the system of equations

:(Oiﬁ,é,b,'c,d,e) then s¢t) satisfies the Lipschitz condition

(1)
LSy -S| ¢ &P ihilp k-1, ]

. for all t,,t, ¢ Ce,7].

.ﬁ Proof.

Cons idé]_:i condvition (0.3£)
' : Se) -
SCty b - «2[%\\(ﬂd'z + %u (5\43 Suta“‘\ e\a]
at t+, and %, 'IOs\.st,sT.A _Then
. tg:t.#}
08 SCEY-SCh,) = u‘gmz)dr + «tA(3)
¥,

S Notation: lliu = aup ¥ |
: : ’ d osxsd
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w’hefe )
L e P 3tk a2)
ALY = g Wigt )V dy - % Uy, Bir )y,
. e - 3 ° é' l 6 '3 '
Since .A'(;53=-u,<stt.+3),t:*,3) and  Ae)=o , Proposition 1.2

' implies that 'A-(é)S'e‘S » 320¢ Thus
. - X,
O & Sk~ s(E,) ¢ «=§ hW(x)dY
. t'
and hence
TS - s et ibily T E- 1,0
Lemma 1.3.
1f .(ih;).,-is“a“solution of ‘the system of équations

(0.3,a,b,c,d,e) then 14x(g,t\ satisfies
UL 1)) e inhu,, \\ﬁo\\\,} '

"~ for all (x, %) ¢ o) ; provided'-ui(nt) satisfies tﬁé hypotheses of -
“Proposition 1.1° ' |
. Proof: . trivial.

Having established these pfeliminary results we can
construct the integral eéuations which Qill ultimately aIiow_us to
‘establisﬁAexistence and uniqueness bf‘the solution tp the system
of equations‘(0.,.3,a,b,c,d,e)°

'Toﬂthis end. we introduce the Green's functions for the
hglfnpiane. .

‘G*(k,‘t;gt‘r):. K (-t,t',g,':)”-t K(x,t)-gz-), ‘

G OGR T  Kixty 5 20 = K s,k -8, 1),
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and note that any solution U{g,r) of the heat equation
" satisfies Green's Identity

-9_:.'6*&»(- ae*]_é.{’]:“ |
oF oy u;? B I I (1.0)

in the domain

| 086 :ni(s-,',z): o<<'§;,<is(z.)~)‘o_< 13 S 4 <+.-£z

. where € >o0.
Integrating (1.0) over °8£ and using conditions

(0.3b,c) and G; (¢, %;0,7)=0 _we obtain

0
o= S w(g,0) GT L Z ) dE
3(€)
' s¢t-¢) :
+ )W E-6) G5 -6V dE S (1.1
2 .
-+ % G.’(x,t;sct),zj U, (52, 2) ol ,
k-€.

" In Appendix C we show that as &-~»0 (l.1) becomes

. b . ‘
Wx,k) = gu.(g) G"‘(x,‘l‘.;%_o) c\é
. ° (1.2)

24 ,
+ g_u,(sctn,n G+(n,‘h;s(z'),‘r)d‘2‘.
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- Differehtiating (1.2) with respect to. x and applying
Lemma 1.1 as x=>3ck)-o ~ we find that - (£)E w, ¢ stt1,t)
satisfies

; R S ]
Coovite= 2 Su,(;)Gi(s’m,t;g,wdg . (1.3)
- e . - ’ .

, t . , .
+2 S"“” (;: (S, k500, 2) e T
[

Since  Gg(x,4;§,02- Gllr,kx0), Gl kj0,0050 and U (w)zo,
after making the appropriate substitution, we integrate by parts
the first integral expression of (1.3) to obtain

N S :
VLI 2 Si;, (§) G sty 135,01 dE
LT Q ’ .

o (1.4)
.
+ 2%\)(2) G:(su),t;sw),r)dr .

-0 .
- Moreover, as doesaFriedmaﬁ‘[ 17’]'wé‘intégragé'thé.céﬁéiiion
" (0.3e) and find that -

t
st b o+ N“(\a(t)-h(r))d’t. : ©(1.5)

°

RISV~ SV

We have that w(%) satisfies (1.4) where s(t) is given
by (1.5), hence we refer to vi(x) as the solution of (1.4), (1l.5).
Furthermore, we have the following equivalence between v(t) (the

solution of (1.4),v(1.5)) and (wm,s) (fhelsqlution of (0.3,a,b,c,d,e)).
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' Lemma‘i;4: (The;équivaléncé.of.the differential and integral
\sygteaé);

‘va v(t? is' a solution of (1.4), where stt) is givén by
<.(1.$), gﬁén (u,;)(-;a(x,t) Aefined by (1.2) and sc¢t¢) defined by
(i.S))‘fbrms a squtioﬁ_df (0.3,a,b,c,d,e). Conversely if (u,s)
lis a solution of (0.3:a;$,c,d,e’, then :p(tss-u;(sztht) is a
.solution_of (1.4).'

The probf is standard and is given in Appendix D.

Existence and Uniqueness of the Solution for Smail Time

From the équivalence of the system of differential
" equations (O.3,a,b,c,d;e) and thesy;tem §f coupled integral
équatibns ((if4)’ (i.S)), we ;ee that showing that the formef'has
uniéue solqtion reducés.to demonstrating that the latter has a
Runiéue solution.

To establish.that ((1,4), (1.5)) has a uniéue solution

we make the folloWing»definitions,

Definition 1.1:

cwairm.ecto,r]: oo, ntn,sw‘} >

the set of bounded continuous functions on [O,GJ,

Definition 1.2:
Com: {Fbrecos n¥I, ¢,

the closed M-sphere in Cg .
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Definition 1.3.
EDefiﬁe"T" -to- be the transformation given.by (1.4),

(1.5), that is,

"T'(v) = 2 g o L) G CshLE B 00 dE
©

+ 2 %uws Gr(st),t;8¢2),2)dT
) °

where

(XY= b o+ a.’g(vtt-)-k(-r)) dr |
' .o

It is.easy to see that
‘Moreover, we have the following theorem.

Theorem 1.1,

There exists a o >0 such that
T:Com 2 Coim

where

M= 21\'&,1\_5 + 1

~ Proof.
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' ~‘:_Sﬁ.[.>pose’ S ae C_.gn'M. . then Mwli_s™ and hence
\.S.(.t\'-.sc'z)l-‘s -&’(Mf-“\\ll.‘.)\t-tl | t,z80,

v.-r QLet iO,'%:"ysatf.is.fy 'th; folioving inequality :

h

o tmim S0 e (1.6)
. : qu(M'FN)

where- .VN=\\»\-|:T . Then for all % ¢ [Co,o]
.\.6.?*\,-»\ < *’(M*’*’)." ! .'%
whicﬁ in turn impiiés'that
b oSy ;.3_ b for all Kt . C(1.7)
2 2 : o .
ijnCe-.

. ' ‘
gl G (st &, 0] dE & |
° .

from (1.4)‘we conclude that

WTll, < 20U, + 2MS\ Gy (st s dT . | (1.8)
. 6 .

Writing

2 3 : _ - _
o g\Gl(scts,t;sct\,t)ld‘r= G + G,
' ‘e o

" where .
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LGy \ \K,('J(t),t-, ste), T df’.

. . tv
G,= g VK (s, &y -5z, 1)) dr,
° ’ . .
we estimate G, and G, in turn. Noting that S¢t) is Lipschitz
continuous we find that
G0 & (maw 12,

-?'n"a | » ‘ (1.9)

.To estimate G, we use (l1.7) to obtain

: (2) S

1G,! ¢ evgc(u,,‘) . ' | (1.10)

Now applying the inequality @*gc(é)( -.._L © to (1.10) we
: T'a %
have
)
16,1 ¢ 3 (JE."). | (1.11) -
', b .

CAT R

Combining‘ (1.9) and (1.11) we see that (1.8) becomes’

ST € 20000, + M (xUMew) + 3) 1"
‘W'a

Conens

Hence the conclusion of the theorem foil_bws if we insist that o

also:satisfy the inequality

¢ L

Mm* (-t‘(M+N)+ 3)"z

. ; (1.12)

OO
. o v -2
(2) We use the notation ev%c (é\-. 2 %'e zdt .
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- The following theorem shows that we can further
restrict. the size of &« so ‘that T 'is a contraction mapping
on Cg,q and hence allows us to conclude that (1.4), (1.5)

has a unique solution in QQ—,M for a small time.

Theorem 1.2..
There exists .a  ¢-»o  such that "' is a contraction

mapping on Cg n for all t e Uo,el.

Proof.

‘Initially let &  be such that es v,, where ¢

satisziesA (1.6) and (1.12).  1If v‘(t\,'u(t)c- Cor,m let '4'(&),5('&)

satisfy (1.5) with - 0'(%) and ~<¢E) respectively and define

nv- -u‘llc_ =&,

Since v, vt ¢ CV;M ‘'we have
€2 for all %% .

From (1.5) we have the following inequalities:

\S(t)-;"(t\\'g st t, - : (1.13)
) Sery-Seny] ¢ M) Lk =T . (1.14)

) s') ,3"4:)) & u“M+N)lt~T], - (1.15)
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and as befére‘
l;_ $ s, ' ¢ 3k, for all Tk € Le,0], (1.16)

‘Now consider

Tw-Tv' = V-V,

where
. Ab o
Vo= 2 g o, (g)[c'(sm,t;g,o) -G (s'th),%; 8, o;l dg ,
2 ,
V, = -2S[v_mG}(sct),t;sm,z) - V') GLes' et s, 7] dT
° . '
" 'We can write .V'g'v" VAL ' vhere

b o
V,": 2 S\:\,(g)[\i(s(t\,tgs,O)_-H(S'(t),t; g',oﬂdE, .
-0
: b .
Vv, =2 Suo(g)[u (set) 3-8 0) - R (S'h) 155 0)] dE ,
°

:Applying the Mean Value Theorem and the inequality (1.16) to v, o

we obtain

A BEI 3 (VR :‘__’_‘E"". . (1.17)
. -u"/‘ o '

To- estimate ‘V,‘ ‘-we assume that S'(2Y > S(t) and consider

the possible cases:


http://nv.il
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Case I:n 'o(b su)<s(t) %b,
. Case II: o(%ssci)s_\ass‘(t)s%b,

Case III: oX swces'tey s b,

nNIg

Considering

N
v,z ZS ,(g)[u(sct\t,g,o)-Kcsctst,g,o)]dg in Case 1,
o o S

b Sty b -
| S = S * S in Case II,
° ° s
St RPTT) s'iy S : -
= \ + +
S S _ S S in Case 1171,
e ° Y ey ‘ '

and applying the Mean Value Theorem an appropriate number of

times, we arrive at the estimates:

Case I: Iv'is £ II\'«.\\_SN"L’/‘ \
o T ‘
Case II: Ivii ¢ ?1-‘ " LR 2 (1.18)
. ”
Case III: tv.\ ._', B0, «tt
t
Combining‘ (1.18) with (1.17) we see that:
BAR “._.;_,.2 fuolly 7%, (1.19)
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To estimate V, we write

: '
V1= W, + W, +W3-\/1

where

s

S(t)- 5(3T) .
, 5 2 %[v(ﬂ u(z)][z(t ™ ]K(S(t),‘t,:tz),t)dz‘ ,

WL = 28 u(:)[(s‘*‘ SEE) - (S-SAD) R (st Sex),2) AT
2 G- & -0

5

ng(z\(S(ﬂ S(t))[lustt),-k;st‘t),z) '
2k

-K(s'(t\,t;s'('z),'t) 47,

h<

g vir) (S S) K (s, t;-5(),2) O T
LTS

v:?-z[
.

- Sg‘(z) (S04 SO ey by - ', T) 2
EARE YT

Since S¢(t) 1is Lipschitz continuous we see that

Yw,] ¢ Exltmen st
W'

-Applying the Mean Value Theorem to

. t ,
(swr-s) (s'm-s'm)}:‘ «* S(vc-n--u'm) a¥
G- (L- t-2) 1 :

- we obtain

(1.20)
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S Awgl g EMa R | . | (1.21)
L T
Writing W/, as
k x - (st-son®
o wge e e (Slr-siem) @ “-m (Y
3 e ) (t-n¥2

. . ' . i .
; e-[(sm-s(en CSERI-SeeN T/ (4o dr

we see that the last term can be estimated as follows:

{ (s'exy~ s'(rn"- ¢stay- 3 (el
- #Ck-T)

¢ M\ (R)-5'2) 4 tsery - seen) {l 1s'thr-st)) 21 s' - sm\\}
“(k-17) - ’

¢ (M) i\s‘us - s(o) als'tr) - sm\}
2
¢ 2D (M+w) &,

Hence taking o to further satisfy

2M) (mia) o ¢ | | (1.22)

and"using' the inequalities |1~ 9]¢ 31yt (rgi¢) and (1.15)

" we find that

_ 2 ' '
Wyl ¢ 38 (X (M w)) 12, ' : (1.23)
: ) v _.n.uz . .
v

. v
2 » We write WV, as

To'complete the estimate of W 2



- 27 -

where | '
(su)tsgmf o
zgt-u(t) -u'cz))(sctwsczne L) go
4w (k- z)"z ’
‘ (S(t)+stzn
2 -o(z) [(S(tnsu))e “(+-7)
I,a (t 2)3/2 .

‘ ‘» o (s‘(-kws‘tt))z
~ (st sitn) o “«(t-7T) ]e\'z .

The estimation of L, involves a straightforward application of
(1.7), (1.10) and yields

. ', )
W) ¢ 3 k2, (1.24)
w2 b :

" . To obtain an estimate for L,, the Mean Value Theorem for a function
. . ~(x+5V?

of two variables must be applied to the function (x+§)e <

.(a-any non-zero constant). A simple calculation then leads to the

estimate

, A
L) ¢ lEe M vz - (1.25)
T

‘Using (1'.25) and (1.24) we see that

A &, ’ .
V) ¢ _8.” _(mmuﬁ%) r (1.26) .
nr ,

Hence (1.20), (1.21), (1.23) and (1.26) imply that V, satisfies
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1Vl ¢ 2 T19M? + 3 » 3am(xi(Mam? o < (Mam)] 32,0 (1.27)
2 T2 b 2

Now combining thé-éstimates (1.19) and (1.27) we see that

' HTv-T9Misnv-vmk#\t% (1.28)

- where A is a constant dependent only on the data

A O S .

Taking ©- to further satisfy

AR ¢y, . - - . (1.30)

the comclusion of the Theorem follows.
Iheorems-l.l’and‘l.z imply that for e)o(given in
Theorem 1.2) (1.4), (1.5) has a uniéue solution for all %<« in
Co,vn Qhere ™M= 2“§gnb+4.. Note that 6= depends only on
the data (1.29).
| Ta'compiete the proof of uniqueness df the solution of
(1.4), (1.5) we must show that any solution of (1.4), (1.5),

irrespective of whether it belongsvtO-anpq (where ¢ is the

o of Theorem 1.2); must coincide with the fixed point of T A

in Cg,m say vty , in their common interval of existence.



" If 3&\ isb,’;a‘n'othel.:' solutioﬁ of (1.4), (L.5) on the
: in:t'e'rva'l - Ce,#1 then we must sbow that v(t)i\:&\_ on Ve,
where = "lf"“‘.'“i"):z, the common interval of existence. Note that
whén in:Th.edr;m.sv"‘]‘.".lwand 1.2: ™M is replaced by ™'z Mw'al\\?\\s,m}'
-we ha;re_tvhét-v,vq': ‘are both fixed pvoints of ™ in Cg¢\m' where in
genéfal ol¢ g"-,'r.Hen‘ce we conclude that -(#)Tvi(4) on the interval
Lo.of.

Now if o, (7, <¢3F) 1s such thé.t Sns Q(t) on e, o)
ithen‘it is” cleéfvfrom tﬁe integral»éc'lua’tions (1.4), (1.5) th«at
V(o) wee,) .  | Hgnce' if 3“(51"7”5(7“?' Sz'ﬁ(g,a'.') R g(f.).é »are
the temperéture distfibution(&ndv pésitions of the boundary at = o
bc0rresp~o-nding fo y(’;\,s('t) respectively then w (g o= 3(5,0',\,
S(a-.;:?ua.‘). A - Shifting the origin of time in T.heorems 1.1

'and 1.2 to %0, we can again conclude that there exists an €50

such that Styyzvlyy . on fo, 0 +2), Since the only restriction
on ¢ was that it satisfy &, ¢ & we conclude that
oy T wik) : on [e,7] ‘their common interval of

eXistence.-

Existence and Uniqueness of the Solution for all 4 € (e,7]
Let o satisfy (1.6), (1.12), (1.22) and (1.30);

then there exists a uhique solution of (l.4), (1.5) for t« o, Moving

2y

' o Y ‘ '
‘the origin of time to. += °‘( we can find-a & such that the
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.sélution of (1.-'4), (1.5) exists and is unique for all +s oar¢

Continuing inductively we see that we can generate a sequence
ic““g. -~ ‘such that (l.4), (1.5) has a unique solution

L=

for all ts X o . If we can show that there exists a ©&°
“'. . .

such for each Ceti)

oty oo | ' ' (1.31)

then we can conclude that for some W

~ L
o7,

Y

"and hence (1.4), (1.5) has a unique solution for all & ¢ (e,7),
—However,' this is immediate if we can find global upper

bounds for M‘(Ix_c,t). For then o¢° 'determined by the

[

inequalities (1.6), (1.12), (1.22) and (1.30) with ™ replaced

by
R Aup IV tx,E)) + 4
3]

and ‘L" replaced by <+ satisfies (1.31).

by

vl="

Since w,.tlxt) is continuous on & we see that Lemma

1.3 is applicable and hence

YU (0t & vey i Uhily, \"‘0“5}

Therefore we have that (1.4), (1.5) and hence (0.3,a,b,c,d,e)
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has a unique solution for all k€ (0,¥)--provided-h () is

bounded.on [O,I] and C%(x) is uniformly bounded on [O,b]Q

In Chapter II we will outline the Similarity Method
which will be used to derive the Similarity Solution (Chapter

III) upon which is based the Similarity Algorithm (Chapter 1IV).



CHAPTER II

THE SIMILARITY METHOD

The algorithm to be introduced in Chapter IV is based
on particular solutions of the diffusion equation found by the
Simila;ity Method. The following provides the theoretical
basis as well as the procedure for constructing such solutions
of differential equatioms.

A common method of éolving differential equations is-
to change variables in order to transfofmvthe equation to one
whose solution is more easily obtainable. The transformations
‘which give results are often those which exploit a symmetry of
the briginal system, The Similarity Method provides a systematic
recipé for finding such transformations using Lie (continuous)
'Gfoups.

Sophus Lie showed that invariance of an ordiﬁary
différenfial equation under a ohe parameter continuous group of
_transformations leads directly to a reduction by one in the order
of an ordinary differential equation. He showed how to.find the

"Lie" Group of transformations leaving invariant an ordinary

- 32 -



:dif%éfential equa;ionfl).and found a subgroup of tﬁe full group of 
theheatrequationgz). However, it remained for authors of more

recent years to sﬁow Hoﬁ to use continuous groups of transformagions
to_réduge the numbef-of vafiables, and hence find particular
solutlons, éf partial differential equatlonsg ) The major
contributions in this regard have come from Ovsjanﬁikov [ 28 ],
Matscﬁat and Miller [26], and Bluman [ 2 ']. More recently,

Bluman [3],[4]-has applied the Similarity Method to boundary

value problems.,

(4)

Lie Group of Transformations

Central to the theory is the concept of a Lie Group of
Transformations.
Definition 2.1: (a Lie Group of Transformations).

A one parameter family of transformations

= F(x;¢€)

S For a treatment of the Similarity Method applied to
ordinary differential equations see Bluman and Cole [6J Part I.

(2)

particular solutions to partial differential equations.

(3 For a thorough treatment of the Similarity Method
.as applicable to partial differential equations see Bluman and
Cole |6 ] Part II°

4

(4) -Since we are interested only in a partial
dlfferentlal equation involving one dependent and two independent
~yvariables we restrict our attention to this case.

Lie did not see how to use invariance to construct
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where

x*,x €eSC/R! ecQCAR,

-and B : . , 7
¥ RWR—RT  Fe CURYR)

forms a Lie Gropp ofuTranéf;}mationé with parameter & if:

(a)"(Associétive Proéeffys there exists a function

DAY > Q4 WY e C¥(@,Q)

with |
% (a, Peb,0) = $2( PCa, b),c)

ﬁof all a,h,ccQ _such‘tha-t_; for x“,x“‘,xe s satisf-yin.g
x%*s ‘#;x‘;;;) ‘ |

L= x* = Fix; 2ee,8)) g

x® = F(x;8) : ‘

(b)b (Identity Elemenththere exists an ¢,€Q such that

.‘Jcé Foe;e,)

for all xe€S3 |
(c) (];nverse Element) for _ei/ery €eQ there exists an &,€Q

such that

Cb({,s_,) z cé(e.,,e) =&

~ We note that conditions (a), (b), (c¢) make the family
a group of transformations, while the continuity conditions on

I(g;g)) gg(g,é) make it a Lie Group of transformations. We
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remark that by é_sﬁitéble'reparameterization, the identity
element &¢ .can be assumed to be zero.

To apply the Similarity Method to a second order
partial differential.equation we consider ﬁhe'following Lie

Group of traﬁsformations:

W =Uu,x, k;¢)
X (u,x, k;¢) - (2.0)
T (w,%x,%; ¢)

1

x*

t&

n

where = 1is the dependent variable and x,t ~are the independent

variables.

Invariance .

A partial differential equation
G(uxx,“xu“th‘*nqt,.“,xxf)t° : - (2.1) |
together with the'bounda?y conditions
,Bx(ux,ut;-u,x,t):o Y, -0 p | . (2.1a)

on the boundary cuxrves

(2.1b)

"
<

vvx(x.tsz o Y

is invariant under (2.0) provided
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'-G(u:-‘.; u;. t':‘ Wyeys, u".'-,_wk., w,x, t )= o (2.2)
- and

B?.(“X',.“ﬁ';u',x-', £) =0 ¥, TR
oﬁ the bouﬁdary curves

Wy (x™ 8= 0 a'z‘,.‘..,P -~ (2.2b)

hold whenevé% (2.1,a,b) h&ld. That is, the governing differential
' equation,.tﬁe boundary curves énd the boundary c¢onditions an
these curves take thé samefform in both transformed and original
"variables.,

Since a.partial differential équation'seldém has a group
.rich enough to leave invariant bpundary data such as.(2.1,a,b),
we seek a‘group leaving invariant only the goverﬁing differential
equatidn (2.1);. Wﬁat boundary conditions cannot be left invariant’
»éan freéuently be satisfied.by supefposition'(cf. Bluman and Cole
[' 6 ].Part II Chapter 11). In.éddition we can construct
: numeficél solutioné by."almost"satiéfying certain boundary

(5)

conditions. Furthér, useful particular solutions of (2.1) may

be obtained by formulating boundatry conditions in terms of the

(5) The dpproximate solution of (0.3,a,b,c,d,e)
generated by the Similarity Algorithm is obtained by leaving
~invariant (0.3,a,b,e), by satisfying (0.3d) by superposition
and by "almost" satisfying (0. 3e)



invariants of the group leaving‘ihvafiant (2.1).

. The Most General m-Parameter Lle Group of Transformatlons
' Leav1ng Invarlant (2.1)

First we note'that-the transformations (2.0) on the
§ariab;es induce transformations on the deriQatives, which
together with (2.0) constitute-what are.refer;ed to as the
Extended Transforﬁations. These also form a Lie Group of
‘traﬁsformationsr

“Before pfdceeding further it is necessarynto refo;mglafe
Vinvarignce in @ more useful way.. To this end, we introduce the
~infinitesimal transformations.

Noting that T, t,e), X(u,mt;e), T (M,x,.f;f) ¢ C¥(RIR)
we eipand about ¢§=o (the idenﬁity) to obtain (2.0) in

infinitesimal form,

MY s w0y, 1) + oeh)

(2.3)

1"

X* = x 465w, k) + OCed)

1"

2 b e Tlu,e, ) 4+ OCeY)

where
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(\“*)g aU('\Axt {)
7 —-—-‘-'-———j .

g (‘4)‘.*\: X (“‘X,i;i)
. . &

L I

‘I(u,x.i)=3T(_‘*_4__:._)"“"\ _
o oF sy

The transformations (2.3) induce transformations on the

derivatives, i.e.,

Mx“ [M-i» E?](uxt)i»O(E‘)] 2 [

- EE (Wt 1Y) 4 otey)

- é‘a@{(‘*)x»f)u,ut - & é_?(“,”,t\ug O (EY)

-Lux-;g{ 7\« dn +Q(§’]Ll iDEu +§g'{+ocw}

-F oF ‘
Eé‘“u‘ut —-63—5“* + 0(52)

and

M;. = u; > e:ﬂ(u,x,t,u,,)ut) + é(az)
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"~ where

R ALTERAR ML AL

o
227, 5 %) Y3
= &1 4 297 9% , - %8 u, -9r
L] (dw . axzu" o R T Flut
_ox,
5% “t .
"Similarly we obtain
_u1.= ‘“-t +-£ %,(M,x,t)u-,,ut) + O ey
‘where
’7!(‘*)":*)‘(:,!42)
c 2 &+ 297 oY o
o - ¢ - - O
ot w33 3 “(t S 24 ~§ U, ut
- a; N
st ¢

To obtain the second extensions

\Atst- = Y *“Zet(“""*»“x.”t»“xt.u;t) + oCeY)
U oz Upy + 4 t
’('x" xR "'6’7*‘(“'*‘ )uK,ut, ukt ’u"x) + O(El)

Wiage = My + .e77x,‘(u{x,t,u,,u,,u,t,u“,u“) + OCeY)

we write
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'.-2-1;(“'&') : ‘.2._;‘[»\{_ ey, oten],

x,lu, LED, + o(a*)],

'c/
-
LTS

<
,‘t

-
s
'mlv

L () Fefwerem o),

i.e.,

~

Zeer 3+ (2 22 - T3) %, +(a_z“,.2& "

B - : - Tl o T 4 2
a2 Mx = 2 ﬂ%u““ut Qu? hat Ow? Mt M
N LT - 2 ' r .
+(a—~ 2&)“& Z%‘Eg“ -3%‘\4“\4,_-')5.1(“\4,_, -2:59_5 Ung Uy,

2 L]
. 2? 49’1 N Q_g) _dr (
Wk ar t Q’anu axt)¥x T Mt

' 2 2 v
"23—-—5:‘.‘1th —?}__{.u:utd(iﬂ‘lig)uxx -2 Q—Zu,t
L3 ) _

-3 - 27 :
35‘5&“"“‘ a—\&uxx“* - 2}:“‘*“‘)

. 2 2 2
O N VU = T
xy st Y e uw T atax M1+ 3tau ok ox M x

g B’E 'z 325 ] a‘z" 1 325 2
${ = - - MU My = WMy, =~ MM, - M, M,
(?M‘ ST é\u)t) x7t . x
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. .
G (‘u“‘,? H:‘. R u't.t, . \4;., u't‘»"*'. x-‘,t‘)= .

=6 (uf‘*luxti Htt)ux)ut)usx)*)

. .+_ fx G(Vxx;l‘\xt)ut{)‘u_,'ut)ul)(,-t) »

+ oey)

where we have introduced the first order differential operator

. x: ’7%4+§¢% +T§_ +¢'a_ +)7t9_

L Wy D | <x &+ o .
) ’Ztt al(xg -+ 7)0( au”" " ?tt Q‘Qt |

It can bé_ seen that invariance of (2.1) under (2.0)A is
equ iva’len;: to
XG:OI - . , (2.4)

whenever G0, |

With this formulation of invariance we are pref:ared
to fimﬁ the most general m-parameter group lea\.ring ¢2.1) invariant.

Sl;bstituti;\g 7, §, 7, 7, Vt')’&* y g s e e into: (2.4)
and using the. relation G=0, we E)btain the dete;mining
equations for %, §,7 by.setting eqﬁal to zero the coefficiénts
of the independé_nt derivative. terms (u,, u:,.u. Ygyooo ) We are.

left with a set of linear partial differential equations for

’?)E, 2'.'. ? |
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Reducing the Number'of Variables

To every Lie Group of transformations therelcorresponds
a sef. of Canonical Coordinates, in which ‘the group is a translation
~of one of the Qafiables. Using these Canonicavaoordinates it
can be shown that if the ﬁranslated‘variable is an independent
variable then invariance of a partial differential equation under
a one parémetef Lie Group of transformations léads to a reduction
by one in the number of independent Variables_provided the
solution is'qnique (cf. Bluman and Cole [6} Part II Chapter 3).
It should be nbted that in this instancé reducing.tﬁe
number of independenﬁ variablgs By one leaves us with an ordinary
differential equation.
'Suppose (2.1,a,b) is dinvariant under (2.0), whose
infinitesimal transformations are given by (2.3).
If_ wr @ k)  is a solution of (2.1) then both
vE Gx,t') and-.;«'clf(e;X;*si) are solutipns of (2.2).
Now assumiﬁg (2.2) has a unique solution then vEWY Expanding
v, WY | about &zo¢ and gathering terms in powers of & we

find that

77(@,x,t)= gcc—:,x,ﬂe, + ’Z'(e,x,t)@t - (2.5)

(The Invariant Surface Condition) must be satisfied if w&w® and
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conQéféely;
The general solution of (2.5) can be found by solving

‘the characteristic equations

G e oato . 20 | « (2.6)
E(exx) - Texry  7(e.xt)

(6)

1f /7 is indépendenf of ® , ~. then the general solution of
 (2.6) takes.the form Q:=cf(‘<;t3§.3-’(ﬂ) where §=9xt)
(the Similgrity Variable) and ¥t3§) are the two constants
generated by~301ving (2.6). Shbsfituting ® into (2.1) and
using the relatiOp. §;§(nt) we obtain an ordinary differential
_equation for ¥(§)€7)Hencé the number of variables.has been
redﬁced by one; :

The complete solution of (2.1) can be found by solving
‘the ordinary differential eéuation for ¥Q). However; if a two
parameter Lie Group of transformations .leaves (2.1,a,b)
invariant and the.invariants (the similarity variables)

(8)

associated with the two parameters are functionally independent

(6) If E/r depends on © then the general solution
of (2.6) is of the form 0:.8(o.xt;3,¥W8) and $=3(0.x1).
(7) |

The boundary conditions (2.1 a,b) become boundary
conditions to be satisfied by Fy.
. 8 : ‘
( ) Two invariants are functionally independent provided
their respective infinitesimal operators are linearly independent
over the field of complex functions (cf. Bluman and Cole [6] Part I1

Lt

o Chapter 8).



- 44 -

thé;ﬁlhe‘soiution of (2.1) can be found directly using the
invériaﬁts-without recourse to‘(2.1) (cf. Bluman and Cole“[‘6 »]
Part II Chapter 8).

'In‘general, if an m-parameter Lie Group of
transfdrmatidns leaves invariant a partial differential equation
with accompanying béundarylcdnditions, it is necessary that the
associated invariants (similarity vériables) be functionélly
independent before we are assured that the'number of varijiables

can be reduced by m.

(9)

The Classical Group of the Heat Equation.

Considering

MU (2, %) = U ¥ = 0

" the invariance condition (2.4) implies
Vun = Fp =0

whose solution yields the six parameter group:

TCo,x, 1) TCEVE ot + 2wt + Y1
SO, Flqtir K+ 8L 4 v rxt

S A Tt TRR RET N NORs

(9).See‘Bluman and Cole [5]-
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Here N,v;Y,S?K,% | "are. the parameters of»;hg.group thleFFSQQ,t\
is an arbitréry solution of thé heat equation.

) The group (2}7) inithe (x,¥) plane is a subgroup of
the eight paraméter projective groupslo) The parameters d,&<
represent tfanslations in the % and * directions respectively;
vV represents a stretching of similitudinuous transformation;
while S is associated with‘the Galilean transformation. To
find the form of the global ffansformation associated with Y

we solve. the set of characteristic equations

FCA.K‘:‘E:C\_X
xt . ]

The resulting transformations are given by

In the next chapter a subgroup of (2.7) will be used to
construct the similarity solution central to the Similarity

Algorithm,

(lo)vSee Blumaﬁ and Cole [6] Part I Chapter 7.



CHAPTER IIX

A USEFUL SIMILARITY SOLUTION OF THE
"HEAT EQUATION FOR THE STEFAN PROBLEM

In this chapter we will use the Similarity
Method, as does Bluman [ 4 ],to derive the solﬁtion to
_ aﬁ Inverse Stefan Problem-corresponding to.the boundary
meltiﬁg at a constant velocity. We proceed as follow#.
| Given <Sci) , thé system (0.3,a,b,c,d) reduces

to the Inverse Stefan Problem:

Uxx X902 U, (x,1), o< X ¢S(kt) CsCer ¢ . (.300)

te(o,T), stTr=b, >0

S¢xr g0 . { o, - (3.0a)
'H(S(thf);o , #G(O;T), : - (3.0Db)
. TR ITEY teCo,m, | (3.0¢)
Ulx,0)= Myt x & to,}é], | (3.04)

(1)'The methods of this chapter may be used to
‘deal with the boundary conditions w(o,t): P(1)
Or MU, (o,k)=R(%) . '

- 46 -
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" 'We will show using the Similarity -Method that for s(4)
a member of.a two'parameter family of curves, the system
(3}0,é,b,c,d) has a closed form analytic solution.
“For convenience the.groupv(Z.S) together with a 'first

.extension is‘given beléw,
Terr: % 4 2vt 4+ ¥i'
E(e,t): K+ 81 +ux + ¥xt

7, x, %)= LRI T g e, t)

3.1)
where
| Flot)z-w £ 3]~ §% + 2
’Zt“‘""‘»‘«ﬂ'— w %ES:..U + (F(n,ﬂ - %_f)m
4 g_xau,t)

We COnsider~(3.l) with é(gt)so and note that if
the boundaries x=o, x= $tt) are invariant under (3.1) and
%f(mt)‘ o, 'ﬁhén (3.O,a,b,c) is left invariant by (3.1).
The condition | gg(“*‘=° is satisfied provided 8=5 _;

'*=5v is invariant under (3.1) if and only if x¥:2o0  -whenever
X:o0 , i.e., §x K=o ‘f %he invariance 6fx=s(t\ -under (3.1)

~implies that . 5(g)>'satisfy the differential equation
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(s = St ree)., _ - (3.2)

When combined with  S(e)=z¢ (3.2) implies -that

PR . ) )
St = (c'.z + 2+t + ¥ /z. '

Hence the three parameter subgroup of (3.1) leaving

invariant (3.0,a,b,c) whenever

) .
Stk (c’+avt~+vt‘)lz : ' (3.3) .

is ‘given by:
Yerrs ¢4 vt +rt?

itz x(v+ ¥E) ‘ (3.4)

: ’7(“”‘#’:‘*[’"?554'%3 + 3\]

Using (3.4) the Similarity Solution Qf the system (3.0,a,b,c,d)
corresponding to the most general fmoving" boundary (3.3) can.

be constructed (cf. Bluman [.4 ] ). Hoﬁever, for our purposes

. we only consider a subgroup of (3.3) to obtain the Similarity
Solution of the.sysfem‘(3.0,a;b;c,d) corresponding to the."mOVing“

boundary
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Stxyze- a3k,

':.Letting vr=ARe¢ , ¥ = ﬁ (3.4) reduces to
vrope |

Tewrs (c-pt)?

Ed>: x/3 (coymt)

: RN |
R4ASYATE u[-gx’ + e_zg_t +_/..e] (3.5)

where

" The infinitesimals (3.5) yield the set of characteristic equations

U | S — , |
R O N e 69

From the first equality of (3.6) we obtain the Similarity

Variable

$= x/fc-f.&) ,

where
o ® §=°) .
X=S(HHe> $=l.
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Int':éi‘éf,ating the second ‘equality of (3.6) along the similarity

/ " v ) . .
curves §=-constant we obtain the solution surface

: 1
- ' A3c-me) - A
u(X,‘t;/u)"- 2 (35.0) ee 7 e ﬁ'(cﬁt) (3.7

C-/St

of ’(3.6), Here 7{6;,&) must satisfy a certain ordinary -

differential equation together with the boundary conditions

)((g-.‘)-,,)-.)(i(géojﬂ) o for all _s - (3.8)

if - \'l(x)ij/‘) is to be a solution of (3.0,a,b,c) with std1=c-q2,
,.To derive the differential equation satisfied by 'W(f)-,“) we
write  wxt) (the solution of (3.0,a,b,c,d) with Stt)zc- At )
as évsuperposition of functions,.bﬁ(x’ij#), and substitute the
resulting expreséion ~into (3.0).
Introducing the variables
+ . T=0 ¢ t=o
T e - =y : ‘ .
c(c-pt) Te o &> &
. R
. -2
P= M

into (3.7) we obtain

LN

_ pr
W,k ) ulgtsm): I3 ;7",}‘2 e "THRNF(,p) €

(3.9)

-

‘The form of (3.9) suggests we take



_ . .3:_ ' YHeow .
' S Sy ‘ Pz
uu,u;:/-: e+l e ¥ (2"'/4&)' A gg(ﬂ‘,s’) e =|P] . (3.10)
AMé ‘

f e

Y -0

Substituting (3.10) into (3.0) and taking into account the
boundary conditions (3.8), we see that J(ﬁ',?) - must

satisfy

1

' ' ‘ -3¢ .
Jéxg({'p) - pFQ, P =-Ie T Fu (e4), 0cs

(3.11)
S Q=,p)= 3;(<‘°;P):°
The solution of (3.11) is
JG'P):J‘#:RX} ico“\"(:\;ﬂgsc"‘kw(\'é\y §(§\ :\é
oo A L $ ‘

| S (3.12)
B .sbw\«(ré(l-ﬁ))% cosh (35 4) §(é)cls ) :
. ©

where we have introduced

: L8
- (388 -

Substituting (3.12) into (3.10)' and evaluatihg the Laplace
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Tranéform by closing the contour in_the_left half plane we obtain

Axl oo . Wit (2)
u(r’.ths_i_--%e'“'/’“g.ev m/m ces(w“_s—)/éf (ﬁ) (3.13)

where
L, z(n-%)}r,

' Mo
é“([ﬂ s Se-ﬁ? é\«g“é‘ Cog (wéb\ cla .
° . .

If we evaluate the Laplace Transform by expanding

for large p we obtain the small time representation of (3.13)

¢
Wix, t)s % UJAEIGUL,EE) d B
. °

-5]

G(x.'t-,‘g)--.m‘.;, | v\Z (-1)

(3.14)

where

X te-/3t)
{ -(Znﬁf-}c/’* _é_.

e- (2tneny - f -K/-“) ‘-‘_l..'i:,dﬁ -(an - c_.:‘_/,“) C(e-/_st)
- + @ .

- (atn+ o E - X ) cle-nt)
-Q 13 c/qt “3

(2)'The expression I lx, ¥;ad)

of (3.7) can be substituted
‘directly into (3.0)

. - The result when combined with the boundary
conditions (3.8) is a Regular Sturm-Liouville System for the

eigenfunctions {X(% w.\)} y Wazbw=dyr 0 . The solution (3.13) .
is then obtalned as a linear combination of the eigenfunctions

.3?{(# w“)} .
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-"W‘e>n'ot'::ibce tﬁat when /3=°:, (3.0,a,b,c;d) reduces to the
, us.u'al' :Afi}.c’ed- bbﬁndary ‘problem and. (3.13)> reduces to the well-known
Eouriers Series Solution.

Cl;éarly 'thevsex_'ies (3‘13') togretheri with all its
: | dgrivéfivés gonvéfges uﬁiformly on Eé,c-/st] for any fixéd +>o0.
If : “"\Jt.ok(‘x) G. C"EO,CI » | and W, ,(-c.\ =A'1'A-°__( o) = o then wé wil»l show
that (-3.13).'is_uniformly convergent on feiel at 30 | and
t>h’at U, (c,;k;o) converges to W, (gj‘,

Since the functions .icos(w“x){o - .satisfy a

. . EA

jreguiar Sturm-Liouville Problem on (e,1} , for any function
#(x\ G b.C‘v‘['°..\] o we can write

Ne\

. oe v o ' '
¥z ZZcosé»,\x)Q FlO coslwapdy . . , (3.15)
°

If the sum in (3-.15) is uniformly convergent we also have -

oo 'V :
?‘(X\"“Zzw“ St (wax) % }'.'SJ\ cos(way) As . (3.16)
) ‘ :

NEy '
- We claim the following.

Lemma 3.1.
Let Fooye etfen] . with ¥ (Y= ¥ed)=0o then
the sums in (3.15) and (3.16) corlxve‘rge uniformly on Ce,1] to

¥ (x} and ¥'Ux) respectively.
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Prédf. 

-~ . :
Let $(x) be the following extension to [2,2] of

F oo

(1) 5(*.\‘ ¥ 0o »x ¢ [o, ‘]" -
(2) 5(’0 : é('x,\ - x e[-2,2],
(3) g(x-n):-%(x-n 3 e E,)‘j‘ '

Clearly g(xy is piecewise ¢* on U©22], We claim

A

3y ¢ C‘[-Z,z] . Only the points x%0,1 need be checked
to ensure this result.

| . .
2 l & (o) - §(-£)]

L e
xEer §(p)cé'3? €

A A
T Jwv\ §(°,)" & (¢)
é-> 0o o-¢&

~ §(°+) = - ;"(0+)_=O 5

"

xel: TO-) = don | W - §(|-n]
€ -vo &
: o [§<€-'+z)f§<t)]
€->0 (ce)- o
A
= $(1+).
Since §‘X) is piecewise - C?% as well as _Clt-2,2]

have that
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o4y

= o (W) F'lO som (wuy) d
(x) E:.z..sm w g)i 9 s Lony)d dy

=)

oL . l |
e 22w sonm L, x) S’Ug\ cos{wns) ¢=(c.s

o

where the sum is uniformly convergent on [o,1]1 (cf.

and Hilbert [8] Chapter 2).

1

That the sum in (3.15) converges uniformly on {e,1]

A
follows trivially since ®() € ¢' -2,2] (cf. Courant and

Hilbert [8] Chapter 2), and hence the lemma is proven.

Applying Lemma 3.1 to wm (ex) we see that

‘ l
..5

1
Y (x) = 2e E‘o cos(u.\z)g " ) (50:) °°’(“"\3“('§

and

- 4}_;5 u, ()

]

= -2 eac 2w 9w\(u,‘5) e '
wne) S 'M. (':-;) <ces(w,‘3) dé

4

where both sums converge uniformly on €eitl,

Courant

(3.17)A

(3.18)

It should be noted that the results (3.17) and (3.18)

are essential since the Fourier Series Expansions for

Wix, t)
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and W, (xss(0),%) are used ﬁear'_i=o in.tﬁe Similari;y .
Algorithm. Further note that thg hypotheses of Lemma 3,1 are
satisfied ét each gtep of'thé'Similarity Algorithm after the.
' initiaiustep-(seé Chépter Iiv). -

The initial.cénditidn U, (x) need not . satisfy the
hypotheses of Lemma 3;1, that.ié,.uo(q may not satisfy
(0;3b,c). If ﬁ,gx=o)¢o thé Similarity Algorithm is not
affected, that is, thé sum-in (3.175‘still converges.uniformly‘

on [O,C ], while the sum in (3.18) only converges uniformly on

'[S,C ] for ény 80 . However if u, tey#o (the slab is_notA
prepared to melt) then we must modify the algorithm and use

the usual Fourier Series solution of (3.0,a,c,d) and

W, (e, 1)z W),

.(we refer.tolthis as the fixed boundary solution) with $(t):o
until (¢ ,k)zo0 (the stgndard derivation of thissolution is
given in Appendix E);

' We see that there is some difficulty with this algoriﬁhml
if at any time fhe heat flux is insufficient_to maintain melting.
Since we provide no méchanism for freezing, we must,’at each time

step, determine if the heat flux is sufficient to maintain melting,
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i.e., determine the sigh of

o A A ' ' ,
Az (mL0s@) L) - Wit)), 4;,°€ 7, (cf. Chapter IV)
.If .A\>?“;_we_uti1ize the fixed boundary solution until‘tﬁe

_ﬁeat flux is égain_sufficient to maintain melting.

In what follows we will assume the heat flux to alwaysv
be sufficient to maintain melting.

Retﬁrning to the group (3.1) we ﬁote that setting Y=o
and proceeding as above_wé generate the particular‘solutions gf
(3;0,a,b,c,d)‘gi§en by Sanders [31] . Because of their relative
simplicity,‘theTrigén§metric functions lend themselvés much more
easily to numerical calculation than do the Confluent Hypergeometric
functions which are the basis of Sanders' solutions. Apart
from the inherent difficuities_in calculating with the Confluent
Hypergeometric functions, there are élso convergence éuestions which
would place in doubt the utility of such a scheme. For much the
same reasons, an algorithm, similar to that given in Chapter IV,

based on the most general "moving boundary"
Scay: (eraavt & weY)?

’ B

would encounter difficulties from the onset, as here too the
solution of (3.0,a,b,c,d) is expressed as a sum of Confluent

Hypergeometric functions..
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We‘remark.that in.193§ Huber [20](3) propoéed
essentially the algorithm of Cﬁaptér IV to-approximate
solutions of certain one-dimensional two-phase Stefan Problems.
Huber;s'solution; however,. is not baéed on a similarity solution.,
. He eliminateé the intial condition-byiintroducing the ﬁsual
source soiution of the heat,equation.(j{(nt;g,z),QfAChapter.I),
then uses a set of Appell Transformations to transform
x: Stz e-g8t  to the fixed boundary y=J1 , while leavingA
invériant‘thg heat equation. The solution is then given as a
sum of.a éource term plus a complicated convolution integral.

- Huber's solution is. too unwieldy>for numerical purposes.
Recently gubinstein [30] has suggested that Huber's mefhod caﬁ
be significantly'simplified by using a Green's function‘onv-
fhe d?ovmvail;l 3(x,-t):. xe(o,c./u)’t‘e(#,/%)ffirst ‘derived by Soloviev
[33]. By so doing the need for the complicated Appell

(4)

transformations is eliminated and the solution can be given d1rect1y

(3) Recently A, Fasano and M, Primcerio [14] have’
demonstrated convergence of Huber's Method for a one-dimensional
single phase Stefan Problem.

() The representation suggested by Rubinstein is
et 2 §u () K0 t5E, 00+ S, t,2)] dE where '(x,%,5)-
is the Creen's function of Soloviev, and wu ,(8) 1is the initial
condition. We remark that this is ba31ca11y the representation
given by (3.14). However, the Green's function Gtx,t,£)
in (3.14) is given in a more compact form than is the Green's
function, K(xY;5,0)+ s'(%,€).


http://Ch.ap.ter
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."Thé éalculatioﬁs involved in using Huber's Methéd, with
_Rubinstein's_simplification are vefy sihilar tb those involved
in the Similarity Aléorithmﬁif we were to use the small time
“"representétion (3.14) af the Similarity solution. We will
#féue,in Chéptér VI that the large time representation (3.13)
is more practical thap its smali time coﬁnterparf, (3.14),

aqd hence that the Similarity Algorithm is more useful than

Huber's Algorithm.



CHAPTER 1V
THE SIMILARITY ALGORITHM

Having derived the Similarity Solution (3.13) we are now

ready to outline the Similarity Algorithm.
Suppose that we are given the pair of functions (wm,s)
satisfying the system (0.3,a,b,c,d,e) and we wish to find an
. . A A B
approximation (%,$) to (w,s) on [O,T]°

We proceed by partitioning the time interval

o s JostuChichon <tz T] | atetiet,

(not necessarily a uniform partition) and estimate S$¢x) on [ t¢,%,]

by

3wz G- 3, (R-1,) Lo tek,

where

Coth,

Lo 2 {hik z0) - Vg (e,mm).

As we have seen (cE., Chapter III), for 'g(t) so defined Similarity

Methods yield a closed form solution of (0.3,a,b,c,d). ‘We denote.

- 60 -
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" this solution by  M%(x, -%;) . and remark that it is valid on

the domain
3’("“: e o, f)]  te ['-to,t{]} .
To extend our estimate to (1t,,1%,] we define

Stse =4 1), ot ety

- where -

e,z S(t,)

and /A3, is calculated by substituting 142(¢U41Jinto (0.3e)

to obtain
: ﬁ.: (k) - \A:A(Q,)At,)) v

Now considering t=t, as the origin of time in (0.3,a,b,c,d) and
W ex, ot))  as the initial condition w,(x) we can, as before
generate a solution »U(x,i-t,) of (0.3,a,b,c,d) valid on the
domain

}(x,-\:): x ¢ [o,3(x)] |, t'e <t,t{!i .

Continuing inductively we obtain the approximate
solution on the interval (%;,%;,] by defining
A .- . . .

where

¢ 3 3(1;3

iz (k) - _“i;’(“...s at)).
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We obtain u;(x’{.té)'by taking’ t:ﬂ:i to be the origin of time in
(0.3,a,b,c,d) and the initial condition U, (x) ‘to be u.w(x, at;) .

~Again ‘the Similarity Method yields u'(x,t-'t") on

'{(mth xelo, 8ct)] | te(tgiaj}-

‘Fig. 4.0 ‘The Similarity Algorithm

Position of the Moving Bouhdar‘&'- .

-
1
v

e
o
”»
F
»~
[ ot
w
P
L3

Th e approximate solution ;Q,g)_ is then taken to be
Sz g -athet) The (4, b,
D1z wiee b)) sce oy ST, 16 (), 150.] .
We pro'vc; in Chapter V that as we refine the partition
in such a manner that
A oy At".~—>o

¢ :
the approximation ({;,3) converges in the supremum norm to {(w,s) .
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That is, given €3¢ there exists a &%e¢ such that

wmox at; ¢§ . implies
Y N N
l\s-?vu.rfg
'énd _
’ (1)
Dw P 3!\\4( %) - w1 K L€,
t€le,T] aiaa (S0EY, 3CRY

Iq passing we remark that here we have considered the
case where the flux conditién (0.3e) is satisfiea-at the endpointé
e bf.the subiﬁfervals Ei&,thJ, In fact, we could have satisfied
(0.3e) anywhere in the subinﬁerval. However we see no particular

‘advantége'in doing so, while, as will become apparent, the choice
of a point inside the subinterval complicates the actual numerical
procedure. -

Note ;hat a ﬁeat flux a(td is induced by the

. approximation (ﬁsg) i.é., one can calculate the heat flux ﬁhich

produces the melting described by (G,?)° This heat flux satisfies

Ut r0)s ht;)

for all %;¢7 , and as will be shown in Chapter VI, can be

used as a indicator of the errors

“S-S“t

(1 Notation: given  ¥(x, t\)gu ) and (%) % © then

'll¥(°.t.\-=j(~..‘t.)ﬂd(“ =:1’Qfam iHTLx,-h\ - § MI:{
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and

I SR SRR RO .
- , wiema ((SeE), S (1))

i.e., the quantity

Shinew-Randr | | (4.0)
©

can be computed and used to ‘determine whether 777 should be
refined further. Although in principle (4.0) can be computed,

it requires a good deal of labour, and instead we define

| r
ECt) = o2 | (hiz)- w(z)de
[

and calculate

1 . b ey
ECx): o(’»%h(ﬂdt-ib-f(t)-«’%u,(& da-; «_'\\:(a,t\ds_}
< ° : °

(a relatively inexpensive cal.culation.).. We seé that E (&) gives
an indication of h;w_closely (0.3£) is:*';s‘atis‘fied by (a»?): ,i
Moreover, if R(X) is small for all te Lo,T] we expect (w,$)
to be a good appréxim_ation to (w,$) .

We remark that (Q,?) pro_vides an analytic approximation
to the solution (w,s) of (0.3,a;b,c,d,e). That is, (W,5)satisfies
_(0.3,a,b,c,d) exactly wh.il.e it "almost" satisfie-s‘ (0.3e). We
~will use this pro.perty in Chapter ‘V to demoﬁstrate the conw}ergence

.of the Similarity Algorithm.



' CHAPTER V

. THE CONVERGENCE OF THE

STMILARITY ALGORITHM

Since the pair of functions ({l,?) - generated by
the Similarity _Algo.rithm is an e#act solution of ('O.3,a,b,cb,d,e).
.with Wwit) 'repiaced by the‘ interpolate, C\(-'t) s, it follo‘wsv.
that the convergence of the'SimilaArity'Algorithm is equiAvale'nt-
to thevcontinuous dependence of the solution of (0.3,a,b,c,d,e)

on the boundary data \t\,(i),(l)

a
if we can show that WQ) tends
uniformly to h(t) on [O,T] as we refine the partition 77

(cf. Chapter IV) such that ~wex \at|—o.
¢

Continuous Dependence for Small Time -

We proceed by demonstrating that the system of equations
- (0.3,a,b,c,d,e) is continuously dependent on the boundary data
ib, W, L), \'\(‘H} for a small time o>0. More precisely, given (w,s)

and (w,¥) satisfying (O'.3,a,b,c,d,e) with

W)z H(t) ‘ .
. ' (5.0)
v, tx)s $2¢xY on [o,b,] '

0 In fact we will show that (v,s) depends contlnuously
on the boundary data ib Mt h(i\l

- 65 -
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an&¥?.

hedys RCL)
' (5.1
Uetx): WO on Do)kl '

(2).

respectively,”’ where b,>b, and s(TI=b, ¢ v(T), we

have the following Theorem.

Theorem 5.1,

If (w,5), {w,+) satisfy (0.3,a,b,c,d,e) with (5.0),
(5.1) respectively, then there exists a ¢>o0 such that the

following inequalities hold:

n._suq_s g\l\u.—ba\w A, 07 l\v-wh‘ + Ay e lH- Rllf» (5.2)

) ' " Reo-i
Ra(e, &) = wr( 'm“d(r)s _E_",t “’l bz' + Bz lb‘ . 3)
+ Byo R

where d(t\=vnk~i~r(i),s(t§ " and the constants
EA.,A“ALB”{;“BSz

depend only on data
g'r) MO0, RO, WO, W), @60, @), by, by, by, dfo) q:—{ C(5.4)

That is, the system of‘equations (0.3,a,b,c,d,e) is continuously

(2) The functions H(t), R(%) are taken large enough to
sustain melting. '
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dependent on the boundary data 'A {'b,u,,(x), \'\(ﬂ} . In other
words, the.system (0.3‘,a,'bb,c,'d,e) is stable.with respect to

-yariations in the bouh-dary data,

Proof,

With the definitions
VIEIE U, (Sth) Y)Y,

A LE Wy (’f‘;t)?'t) s

we note that the following equations hold (cf. equations

<i,,4)v, (1.5)) | e

: ‘. ‘
MG SRy g '<;‘O'(g) G(sSW),1;5,0) dE
. .

t
+ 2 g V) G;(.sm,t;s(r),z)dr) : : (5.5)
t .
Stt)s b, + «? %(v(z-)-n (r)d, (5.5a)
. ° ° ‘ :

and

by
etk 2 g"{.’(&;)G'(\"(t),t;g‘o)dg
o .
(5.6)

T :
+ 2 SA(?)G:(*(t),t)*(vt)“t) dz,
©

oY b, v a? S ()= Rz dr . ' (5.6a)
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In addition, subtracting (5.6a) from (5.5a) we find that
I\sffl[ts,lb,-ba} + ec‘nv-/ili{t + atwH-RICY (5.7)

To obtain the inequality (5.2) we first subtract (5.6)

from (5.5) and write the resulting expression as

-uc-n'.,uog)_: 1+7

whe:e
by . ‘ :
1z 2 z % PE) GT(Stt), %;8,00dE
)2 v
- by
‘ ‘S VEI Gt x5 ;00dE {5
2 . .
and t
J=2 8{"’“” Gy (5K, &; ST, 2) = e (D) G (F (R X m,,yg dr
R .

Since G-s(x,t;,g,r):- G:(x,t.;.é,-‘, ) and ¥ (h,)= G x,t;0,002 O
the expression for 1 can be rewritfen in the form

cw

1=V + v, +V,

where

v, = 2§ (o) i) Gl stk 0 az,
© ' .
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b

V2® 2 ) $() (GGt g0 - GTCren, K E,0) dg

0w

b,
V= 2 § P(5) GL (Stk), t;§,0 dE.
. _

It is easy to see that Y4 satisfies

vl ¢ Weowly, (5.8)
LEE S

To estimate V, we write

V < \/| + v"

where

' b’=
Vp = 2§ "P(:E)[K(S(t),'t;g,o) - R(+ME £,0] dE,
: o _ :

bl .
(VAR -2% V@ Ksetrt;-E o)~ K+, &;-£,0] dE .
S

Proceeding as in Theorem 1.2 withV%' we obtain

Ivilg 3 !\\i’«llb‘ ns- iy, 1 (5.9)
-“(/‘ 'h"z
while applying the Mean Value Theorem to v&“ and evaluating

the resulting integral we can show that

lV:‘ 3 #’:‘ "-;ﬂh; ﬂs—?"t - . (5.10)

2
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From (5.9) and (5.10)'we conclude'thaﬁ v, satisfies

¢ £ oudny el L
IV, ¢ T %t\,‘ Ws- il . (5.11)
Finally we estimate \Q by writing
Vi s vy o+
where
' b. - L
(VAR -zg qo(g;\ﬁi%i:g.) \((sm,‘t;g,oﬂ 48,
(VAR zg $o(§'>{(““'”") t((sct),t;-g,o)] dE.
2t R
‘!’g
Substituting vz (Sth1-E)/21% into vg and using the
-wt '
inequality Iuie ¢l we obtain
WVal ¢ WP gLy (5.12)
v,
T2 ¢ .
Similarly we find that \g' satisfies
vyl ¢ el 18- 4,0 (5.13)

R 3

The estimates (5.12) and (5.13) imply that Vy

satisfies
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vl 2 !-1-:“3"5, b6, (5.14)

¥

Combining (5.8), (5.11) and (5.14) we find that

V1 ¢ L i-t"*w-w,; | | (5.15)
g Bt ! -
+ANVH Usovd, t7

+ el I%,- L‘Iz .

We now estimate J by writing

where
W, = 2§ [mr) (St-30) RUsi), by 500,2)
o 2(t-7)

- 2) () - v () K(ﬂi),t;ﬂt),z)] d
2¢(t-7)

1 |
Wt 2 g VI (S SEY K (sk), k5= 5(2),2)
k-1

- try (TR vre K(+(t),t?+(r),1-9 dr] .
247



The term W, . can be expressed as the sum .

w,z w,'+ wh

"l
( + Vﬁ

where

2 g (viz)—peen) (SCRIZSLT) Kesery S, 7] d 2,

o 2(t-7)

2 S At (S -se) | (ﬂu-w'ﬂ)} Kesay,k; ser)r)dy,
° k-7 . ke

S i) (+(t)-\'~(t)) WK (sek), k5 502, )
. 2 (t. ) .

- »<('f(t),£;~r¢r:,z-)-§ dz .

Since -$(t) is Lipschitz continuous we see that

\wl< °<2 LI RV -l " ' (5.16)

Then noting that

[stvr-sco]= [u‘ S.(vg\ - H(3) “3]
B »

and -

| [*(t\-+(‘£)] :[e&‘ %t(/u (‘_5\- Rg\\ dS]
o T . o



. we find that

(s 43!1'1).. (e ety - Hr.» qli [\\v i :
- ¢ pally & WH-RH .17
\ G- (t-7) v b .*] (517D
and hence that } w,"' satisfies
Iw i ¢ x sty [us-;«ut + I\H-nll_r] £z, ‘ - (5.18)
T . v . :
Finally to .estimate w,"'  we first apply the Mean Value

Theorem for a function of two variables (x,§) to IM(x%;& z)
and use the fact that +(+)  is Lipschitz continuous. To the

resulting expression

. - -+ ' -
'Y ¢ aet ot R (SK-5n) | (F ) =)
v el B (t-7) t
}-n-!'a ° . t't)
. Ay -(;E's)l/“(bt)
Ix-4! e : dr
«(k-n1'"2
(where % is between <(k) and s¢t%), and 5 _is between
. : 3 < . 1
+(¥) and s¢r) ) we apply the inequalities lvle Mg )
and (5.17) to obtain
n‘ ' LY |
bw/™ s 2t it naig i“""‘“t N uH-RuT} t. (5.19)
“I,{ .
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-Together (5.16), (5.18) -and (5.19) imply that

——

: 14 | '
Wils % "t;t 5 (\\H\lT.-b \\/.d‘t) \\v-/..ult
i . : :

+ “’*“t( 1+ RN &™) uu-au,{ .

,Now -we write -.vwl as

’ ) [} "wi
.Wa- wz -+ \A/z -+ w.!

where

A t
_ W;. < 2%('\)(‘()-}4(1’)) (S(-‘t»H' 3(T)) WSt by -5(D), v) d?,
° ‘ 2 (x=7) ’ :

-7 G-

. « : '
= SCEVESATY) (9 (breiTy),
wy's a% "“;” (( L N _ (I.‘.E_‘.:ﬂl“) Kesery k;-Sen, %) d T,
o

' t
VYA 2§ 2ter) [T (RY$ (D))
a * —— ———rtae— [} SR 8-
) 3 ((‘t-'l‘) ) <( 3-8, T)

- \<(i‘(t\,t;~\*(z),z\.§ a7 .

Since b, >ty St > b, we obtain’

L b\t/
Iwgis 2b, INEVPYN g e (t-7)

———

cd?
L RO o 2t-T)M2

~and

(5.20)

(5.21)



o LA
ywil ¢ 2l Ws-+ily g e %o dr (5.22)
Th 2(L-nN ,
To estimate wl“' we apply the Mean Value Theorem for a function

two variables (xX,&) to K(xt;-§ ¢) and obtain

% - (xxy)
‘Wam‘ ¢ A0l b gl(s(t) ek & (s - 1‘(1’))\ (_’_‘_13_ Q ‘“'?«’-{2‘

LR o 2067y
(where * is between Sttty and ¥(&) and % is between
sty and ¥(Z)). Since ab,g Q+S\<zb| we have
t . klh‘ . .
VWt Ealy b "“"“’”'tg e £y dr . (5.23)
T ISR S

Combining (5.21), (5.22) and (5.23) we see that W, satisfies

W, | ¢ {\:.\\vwﬂi + h,u.ﬂtl\s-*ﬂt( 14 «L,‘g .

2, (e V‘“"(n-‘—-)a;}

qn.lll 2 (t *T)%

Making the substituting vz-B (k) it is easy to see

that

A I iL.\\v.ﬂqt + l,d\i(\#'lb})ll s-ﬂlt}o

‘a.
[% t wer (1, s”f"‘”%‘(m\ +2 boe /tZ]

T -L‘/t
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and hence using the inequalities et¥e(Ps L 1 and
. v : ‘ 3

-3‘

- 3 .(3”) we obtain

(LA 1-;-% { b, Nvomil, + iy (14 44) n.s-v-ut}.

\

| ‘ t":_ .
% —L:WM ("E)( 1-: )]o

Thus I satisfies

','l
\iﬂ & ’}T—Vg itl,.uk(; -yn,‘t)g_ -.Mo.,,,(|, .’\:“) I\S-fﬂi.

_+ s«z (qu\T hmn) 4 % _tJ‘ MM(‘,_}%‘\W/‘"*

+ o('n,u!t V+ 0RUy I XNLE Ru;'.’g .

Combined with (5.15), (5.25) implies .

Mo -l g C'E N LY
Y "

4 Ws-ev, L
)

. " ,
+ \\v-,“\\t‘l" + WH-REE A z .

(5.24) -

(5.25)

(5.26)



- 77 -

where ¢, is a constant dependent only on the data (5.4).

Now using (5.26) and (5.7) we obtain

-lh.a-/—d!.l < ('15 i. l!;,..l," + -‘t-"n ] V-‘Pllbz

(5.27)

' - Y, .
AR RV S X anTZ\

whére ¢, is a constant dependent only on the data (5.4).
Now take )(s(o,:) and let. 'c~>o satisfy

Y,

C, rrs 1-7 . For +te(,¢r) we see from (5.27) that

“”,
o - aatly S_; { -g: tb=b1 + W—‘P";z»;i—.,‘ +t ‘"H'RHT§ (5.28) ..

and hence using (5.7) we have

hs-wdo & A lb b | + Ay 'h NSo-wily & Ay NH~ QUL

That is, (5.2) holds.
To obtain (5.3) we note that e (x%)= WMi%) = wWixt)

satisfies the heat equation in the region

{(‘x,t\'z x € (o,dlty) | 0<‘t<'r.§ .

Hence by the Maximum Principle (Proposition 1.1) we see that the
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maximum and minimum values of e t). occur at tz o0 ,
X =0 or x = e (t),

P

There are three possible cases.

Case I: e (xt)) attains its maximum value at tz0, here

e, o) ' . ‘ .

| biey € NI, | (5.29)
Case II: lec¢x 1)) takes on it maximum value at =)

(say for fixed cd(t)= +(t) ), here

UCGE) T WL E) 4 (D) (x =)
' dx

where 36 (x,+¢t%Y) - and hence
w8 w (s p)) ¢ Awp lu, )] 1scr-va) o
X € (o,5(bY)
te(e,T)
Using Lemma 1.3 we obtain .
New, o, 5*“%“{“”"7."”'\;.{ Hs~+il, (5.30)
Case IITI: |e(x,&)) takes on its maximum Vdlue at X=0o ,

" here we use the integral equation (1.2) to obtain

teto,als 2, + 2, + 2, + %

“where



- 79 -

b, .
2,2 | S (e -vien Ge,;5,0008 |
- o .

b, |
223' X “o(g) G*(o,f;g.o) C‘S l y
- .

Z

t
'\ -.l S (VD)= pn i) G"(o,t)-sm,ﬂc\z-”

ot
2, = ‘S‘M(?) ( G*(c,t; sexy,>) ~ G Yo, t; + () 7)) cl‘fl .
. Q ’ )

It is easy to see that
\2) ¢ Wo-wiy
2 )

B F- A L 18-85,
‘ - T 1

2 Nv-—wit, 1%
\23!$ ™ <N ?

‘zq’ & "/“'.t (}g_) hs- N\t ‘t‘".
'ﬁ',l bg

and hence that

t\e(',v\l\dw\.‘ “'p‘*“b‘ + "_ﬁcp"bz ‘Ll'L;, .
T4 o4 . | (5.31)
| v.

+ 2 v !lv-%"v. + “_f"‘_“o' ( Lv)nsw‘nv o,

Lk T N e
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Using (5.29), (5.30), (5.31), (5.28) and (5.2) it is easy to

see that

TV, W, o))
) S 'd(v)
¢ &

q.yzl_.b.-h_,l + Ba““’“”’.'ba + By NH-RIl,,

Continuous Dependence for All Time £ e [o,7]

If in Theorem 5.1 we replace

Ny by  eup N, bl
) y te o] » 3t

LA by awe  lwe, R,
) teCor T

v | o v .
\ \b\ by o ‘\;.,,-n W, ( ’h“sm,

K :V.“L by oup w0

2 . k)
te o)

then we can find a new . C, say C, and hence a new &

say O, such that (5.2) and (5.3) hold at any time t,

3
+,¢ [o, T- 0] with
.B‘ s 3 ('}-n\ s

b,: *I‘(i,\‘

S

@Y= U r),
Y(g): w (;,'L.) .
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That “is,

aup | sce)- v
A U SsEraN s Aot WUl =w 80
T, :
v Ey o, WH-RIL
Moty b o) = WLy b0 ml\d“‘* o)
< E ISeey-v k) + B, Bue, ey =il (5.33)

‘),
C"a 2

¥, e R,

for new constants i A,%,,A,8,,8,, YS,E .
Now (5.32) and (5.33) imply that (0.3,a,b,c,d,e) is continuously

dependent on the .boundary data’ {‘)’Mo(x{\‘\\(t)l for all time <t¢€ Co;T:l,

since we can take A such that = Tsy < ¢, < _,/—(N-/) and apply

(5.32) and (5.33) successively at the times ﬂt:u, LY T 'm(hhl)}

to obtain

. -— -_— v, — N
hs=+iy A oA, Aye | Fh,-8,)
. » c.b )
NG Wil | B, [N R, % he-wil, )
» N T4 .
[}
o o | WH-Rily

CRH- R



- 82 -

Hence (0.;3,av,b,c,d,,'e) is continudusly dependent on the initial
data .1‘b,ﬂ;;x))\1(t\lfdf all +te¢le, 7] .

. .We\ret.nér'k that for numerical considerations the size
of the cor;stahts S‘K“E‘ s '0.-’-|,2',3.§ is of considerable
impor.tanc‘e. That Athey' appear to be 1arge,. we feel is a failing

of the method of proof and not characteristic.of the actual system.

Convergence of the Similarity Algorithm

CIf (G,S) ‘(cf. Chapter 1IV) is the solution of
(O;B,é.,li),c,d,e) generated by the Similarity Algorithm with p\(ﬂ
(the induced heat flux) and (w,s) is the exact solution of
(0.3,a,b,c,d,e) we ‘se'e.that \\s—?ll.—r— ’-A\.&P E\i.ut-,t\-'ﬂ,(',t\l_\ ‘z

-%-¢ [o¥] A (5,8
(where '?a_.'m'm'{'r,’r'g and "'\'(' satisfies S(TH: Be ) depend
only on \\"\*‘:“?. . Hence we -must show that W (%) _tends to h(s)
as wx:-qc aX, o (.cf. Chapter IV) in order to prove that the
Similarity Algorithm converges.

Suppose 'ka' is a point of the partition 7  then we

will show
W) - R (he )z o)  as ko,

To accomplish this we return to the expression (3.14) for the
Similarity Solution. .Since we want Mtx(g(‘aﬁ‘a),‘k) for small %

we differentiate (3.14) and evaluate  w§ (SCE;+4)%)
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aéymptoticaily for small T (the detailed calculation is given

in Abpendix F), To first order we obtain

vui,, ('3$t;_+t>,-g)= g“;‘(c‘-,a‘t;) -;I_T%,’z(ui;(c,-,«.\téx-ﬁ,- K‘I:(C‘-lat"))t”l +Q(t).
If ‘}\CH is'éontinuous ffom the right at‘all pointsb- k; of
the partition w we have

h(t§;£)=Ah(f¢\.ﬁ o(l) as t->o0
and heqce fof _ t_e (o, at,))

o (hlhi+h) = b CEjex))

v

o ( hgi;}— W, (k41 1)) AR o)

et

xP(hthy) - W, (G, et;) -~ A 4 o)

(14

o(d).

e

Thus ﬁ(t) tends to W(%) on [o)?]'as mngaii-ao
: e
and hence we have shown that the Similarity Algorithm coverges

in the sense of Chapter IV.

Order of Convergence

Having shown that the Similarity Algorithm converges we
turn our attention to the rate at which it converges, i.e. its

- order of convergence.
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v If (Q,g),'(\«,s) are as above, then we say that
Q(x,t\-‘)u(x,t) and . §(1) -» $(%) with order of ‘convergence. e

and (% respectively provided

' ~’:\(x,t)~u(x,t) & O((\M_w(f;t;))P‘*) on RS
R . i 4 ’
and
Ser) -k s o((wé“#(ﬁ;))p‘) , te Co,T)
respectively as oaxlat;) > 0.
<

To establish the order of convergence of the Similarity

Algorithm we assume that (1) satisfies
MR+ 8 (R )+ OCL) (5‘34).

for all points <t of the partition 77 then we have that
b 3

¢

v«\wya\ui:(chctg)'ﬁ‘- \At'( ¢, ot) ‘(“‘tiw)vz +'° (°£2¢| } '

Pa-wil, ¢ 2
LT

Since \:(x‘,'t) satisfies the heat equation at xz S(t)

" the expression d\..['ﬁ(?(t\,t\]:o implies that
) clt _

=1 N e=1 '
“\(R (CQ‘.At‘--) = /3'-_‘ My (C‘-,At.')

- and hence that

=t ' ’ )t
L < <, 4*‘3‘ "ﬂ,‘ Wy (C“At“'\

= o0 w5 (e o)



Thus we have

Mh-wllo ¢

L %qzw?,,ﬁmi"(c;,ot;n\pi-.:p¢_|<«sts+.)’4 N o<ot;+,s}~

.Hepce if  .V\(t)satisfiesv(5.34), we have that the
oraer of_convergence.of the’Similarity Algorithm‘is one half.
Since in practise ./3&-'/32 is émall we assert'that the effective
order of conﬁefgence of the Similarity Algorithm is between

ohe half and one.



CHAPTER VI

THE SIMILARITY -ALGORITHM

NUMERICAL RESULTS

In this chapter thelresults of our numerical experiments
with the Similarity Algorithm are given. We present several
examples illustraﬁing the properties of the algorithm,.
including its order of convgrgence, and suggest two ways of
increasing its accurac&.- In addition; we attempt to justify
thé use of thé large time representation (3.13) rather than the
smali time representation (3.14) in the Similarity Algofithm.'

We conclude the chapter by comparing-the Siﬁilafity .

Algorithm with Lotkin's Difference Scheme,

Numerical Examples

By presenting the following numerical examples, we
.attempt to bring to light the advantages as ﬁell'as the dis-
advantages of using the Similarity Algorithm,

We first consider (0.3,a,b,c,d,e) with
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U, N2 x2-1

heaye 2 C-28)2 4 g -
_ » 3 (-2%)" . (6.0)

For thé data (6.0) Sanders [ 31 ] has given the exact solution

» [
wix,kd)z x¥<(1-2%) on o< X < 6(-&\-‘(\-2‘!),‘,

Comparisons of the exact solution with the
approximating soluﬁionS'gre~summariZed by Table 6.0 and
Figures 6.0, 6.1, 6.2, Here six terms'(l) of the Similarity
Solution (3.13) and.equél time increments (.at£=at. for all ¢ )
are usedf In each case the approximation is used to. 807% of'the,

total melting time, i.e., | =.4.

In what follows we use the notation

EL(TIE Sw IR OETT O 3L

St ) oa\i'ri ’ T i (st Sy )
s (T) I \\s-.?l\.r)
(T = E (L)
Wt athlt L

(1)

‘ If more than two or three terms of the series.
(3.13) are used, we have found Filon's Rule for integrating
2;‘wug;(nxsag ( ¥ a real number).(cf. Filon [15 ], Davis
and Rabinowitz [ 9 ]‘page 62) to be the most efficient method
of generating the coefficients Aéﬂ(/@) (cf. Chapter III).
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wher“éf"' . iukx,t\, Q(x,-}.)) 3, j—‘({)' E(t)§ are defined as in

Chapter 1V,

Table 6.0 Errors Versus Time Increment
(Boundary Data (6.0))

at e,(.4) - Er;c_)r es(.4) E]_::for en(.4)
.200 .87(-1§2) ‘ii | <89(-1) '20‘ .§6(=1)
.05 .25(;1) -3 .27(-1) 6 f30(_1)
.01 .8 (;2) 1 .8 (-2) 2 .9 (-2)
.001 ' -6 (-2) .75 .3 (-2) .6 4 (-2)

From Table 6.0 and our -numerical examples'it-segms
that an acgﬁracy of one tb'fiverpercentvis‘easily obtained.
However, higher accuracy is difficult to achieve. For instance,
we see that with ot =.01 the algorithm requires 40 time steps
and ieéds to errﬁrs "e,(.4), €g(.4) which are.smaller than
1% and 2% respectively. However, fot accuracy better than -

@ (+4) = .006 (.75%) and eg(.4) = .003 (.6%) more than 400
time steps are necessary. | |

The reliability of the last column of Table 6.0,

e, (T) , as an iﬁdicator of the errors @, \T) and €,(T)  is

difficult to assess. However, the solution generated by the

2 . .
(2) Here we introduce the mnotation a(niz a x 107
ae¢ (0,1), n an integer.
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Similafity Algorithﬁ sati§%ies (O;B,a,b,c,d) exactly. Hence,
“for the Siﬁil#rity A1gorithm IQV\LT¥‘>° is a neceséary and
sufficient condition for the ponvergence of the algorithm. In
Aaddition, alrough-célculation shoﬁs that if

WOGEYE w bt + 0((*"*\;“‘ “i)ﬁ“‘), Starsaar v 0 ((?\«?«ﬂi)p’) |

then

s

%, ;
S(\»\(T\ Rt dr = O((-'v\:.,y /.x't;)P“‘) + 0(('»\'_-« o’t‘-\n")) Mé.-)( 41" -> 9
(-]

where hewd is the given héat flux and Q(t)- is the heat
flux generated by the algorithm.. ﬁence we consider @, (T)

- to be a "rough" indicator of the errors eY&(T) and es(T) e
-Moreover, we take the order of cbnvergence of e, (T = o

to be an'estimate of the orders of'conﬁergence of e (T ->o0
aﬁd IGJ(T\->0 .

We remark that for any scheme leading to an approximate
solution of (O.3,a,$,é,d,e), the éuantity e, «T) " can be.
calculated. However, in these cases e (TYy=>o would
not in general be eéﬁivalent to convergence of the
corresponding scheme, .For instance, in the cases of finite
difference schemes and the Colloca;ion scheme (cf. Chapter VITI)

e, (1) is only an indicétor of the truncation errors of the

schemes.
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‘Fig>. ‘6.0 - Approximate Temperature Distributions
at T =.40 for the Boundary Data (6.0)
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Fig. 6.1 Appfoximations to the Position of the
T Boundary $¢) up to T=,4 for the
Boundary Data (6.0)
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. > .'--.- . . . A :
Fig. 6.2 Comparing W (%) and W(t) for the
Boundary Data (6.0)

. HEAT FLUX VS TIME -
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Figures 6.0 , .6.1 and 6.2 show that the
accufacy of the Similarity.Algorithm depends on how closely
the generated héat flux, a(i) , approximates the given heat
flu#,_hﬁi) . This illustrates the pfopf of convergence.

For the>Similafity Algoriﬁhm to be practical we
should Have to use at most six_to.eight“termsqu~the‘éegies
(3.13) dﬁring most of the calculatiohg3) Experimentally, fgr
smooth initial temperature distributioﬁs, such. as the one
given'in (6.0), we fi?d that six.to eight terms is more than
adequgte for results similar to thosé given in Table 6.0.
However, more terms- of the series in (3.13)'arevnecessary when
the initial temperaturé distribufion is rich in the higher
frequencies. The number of required terms is governed by how
closely (3.13) evaluatedbat.i=9 reproduceé the initial condition.

Aithough initially a relatively large number of terms
may beﬁrequiréd,»the following example. (see Fig. 6.3) shqws
that during a relatively short initial period of ti@e (short
compared to the total melting time) fhe higher freéuencies are

largely attenuated. This is d consequence of the dissipative

character of the, heat equation. Hence only the first few terms

A(s)'A bound on the error made in trunéating the series
in (3.13) will be given later in this chapter.
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of (3.13) need be retained for most of the calculation.

As an example, we consider (0.3,a,b,c,d,e) with

~30(e25-~x)%
M,y 2 (xe) e

hittyz /0/3 | 6.1)

x'z .13

b=l

and use the Similarity Algorithm with equal time increments
qi. =,001 and fifteen terms of the series in (3.13) to obtain
an approximate solution.

Fig. 6.3 ~ The Approximate Temperature

'DistribqtiQnAfor“t ‘Between Ofand .1
for the Boundary Data (6.1)

’ QISTANCE RLONG THE SLRB-X
ﬂ‘. 0‘. L} lll. s DI. ]
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Figure 6.3 sths the approximate temperature distribution
at t =0, .OQi, eees +01 for the boundary data (6.1). It cén'be
seen thét at.i.=ﬂ01 (about five percent of the total melting
ﬁime) the high frequency components oflthe initial temperature
distfibution have been significantly damped. Hence by this time
fewer than fifteen‘terms of (3.i3) are needed in the calculation.

Furthermorg,‘our-numerical experiments indicate that
the initial temperature distribution is of importance only
initially during the calculation. To a large extent the
long term behaviour of the sqlution of (0.3,a,b,c,d,e) seems
to be independent of the shape of the initial temperature

distribution.

Optimization of the Similarity Algorithm
. So far we have made no attempt to optimize the
accuracy of the algorithm. This can be accomplished by

choosing an optimal partition 77 and, or an optimal value

/% at each tiﬁe t; of W .

It is clear that any strategy aimed at optimizing
these choices should be guided by a desire to have &(17
approximate W) closely (the proof of convergence) or at

S N X
least that % W) dr approximate Y wi dr well for
. ° °

all k¥ . Below we introduce two modifications to the Similarity
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Algorithm as a step towards optimization.

We first noﬁe that the Similarity Algorithm ﬁrovides
an exact solution when the boundary moves at a con;tant speed.‘
Hence when the boundary moves at a slowly va?ying ;peed, i.e.
{ 3w small; the stfaight-line approximation to the
boundary should 1ead pé betterAresults than when VS cx)
is large. Thus we concentrate points of the partition 77
during periods of time when \gtiﬂ- is large, which, for
the most part, corresponds to periods of time when W (%) is
changing most'rapidly. As an example, for the data (6.0), the

points 4; of W can be taken to satisfy
iy

I: S WizYdr= C

g
for an appropriate constant € »0 .

The next modificaﬁion is motivated by the proof of
:convergence and is aimed at optimizing the choice éf /3{ on.
the time interval t'tg\ti+\) for a given partitibn )
The strategy is to add in the time intérval Cti,tes)) a
portion of the heat which was missing in ihe previous time

interval [t;ﬂ) t;) . More precisely, we choose /G(

on [‘t:)t;’ﬁ to satisfy

IT: = s ) o 23 (h =R (k) = c,-,A‘m}
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for sBme 1}2,0 (see Fig. 6.4).

"Fig. 6.4 Comparing the Given Heat Flux with

that Generated by the Similarity

Algorithm Using Modification II

5
[d

Heat Flux

]
i
i

i
1]
M Ria

Time - t

At—— = -

v

We remark that both modifications I and II can be

implemented at very little computatioinal “eXpeise.

To illustrate the utility'of5the above modifications,

we consider (0.3,a,b,c,d,e) with the data (6.0).

_ ot -
cs S“(”’df and Y;=3
(<]

following results.

With

for all ¢ we obtain the

Table 6.1 Error Versus Time Increment &%

Using Modifications I and IT

(a) €, (.4) - Error in $(t5

" Dnaltered : Modifications
—_— Algorithm 1 II I and IY
.05 Ca2r¢-1 en a2¢-1) s A3(¢-1) 3% .99¢-2) 27
Ol L75(-2)  1.7% 65(-2) L% .40(-2) 9% .36(-2) .87
~.005 58(-2)  1.3% 44(-2)  1.0% .,. 31¢-2) 7% 29(-2) 7%
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(b) €.(.4) - Error in _ w (x1)

Modificaﬁions

Unaltered - —
©.05 B .25(-1) 2 .22¢-1) 3% J3(-1) 2% J11¢-1) 1%
'.30'1, | <84(-1) 1% .80(-2) | 1% .68(-2) .9% .66(-2) . .8%
.005 72¢-1) .97 .70(-2)  .9% .64(=2)  .B% .64(-2)  .8%
(e) Gg(.4) - Error in RWC1) | S : ' '
: Unaltered - — Mgdif;;aﬁions
at Algorithm 1 S 5 4 _ ~ Iand IT
.05 .30¢-1) BT YS (I .15(-1) J14(-1)
.o1 .86(~2) T L76(-2) i C.e8(-2) . L44(-2)
1005 -.58(-2) | k s3(2y .39(-2) S .36(-2)

As is to be expected the modifications are most
effective for the larger time increments. However, eveﬁ for the
shorter time steps the -improvement in accuracy is significant.

Modification I1 proves to be very useful, reduéing
@ (.45,1 e_s(.4) and e»K.4) from ten tb.fiffy percéht.

We remark that Modification I increa;es the accuracy of the
approximations although w(k) of (6.0).is éctually siowly

varying for te[o.,.4] ( h(0)=5.33, Wh(.4)=7.36).

Order of Convergence of the Similarity Algorithm

In Chapter V we showed that.the'ordér of convergence
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of the Similarity Algorithm is one half. That is, we showed

that for all T less than the total melting time

Gu_(‘r\ : O (bvray 4‘t“)/"") _ .
) ! . ) as ey ot‘- -> 0
¢
@ (T)  O(lwapy Até)Ps)
where /%=/%¢=:ﬁ ~+» 'This is important in that it explains

our observatiéa'that fhe Similarity Algorithm should be used
only fo obtain coarse accuracy..

InvChapter V we observed that the coefficient
multiplying‘the order one half term of the error expansions
- of 9\*Cﬁ5 ‘and  e4.(T) is ushally.small, hence the effective
values of. p;_ and /ﬂ are larger than one half. Hence the
Similarity Algorithm should be sigﬁificahtly better than an.
order one half scheme. Here we give some numerical exémples
which support that -claim.

For exact solutions we use those given by

Sanders [ 31 ]. In particular, for the data

u, )= = f‘.'\(‘)\o" '-‘i:)Ax’z)

ral-

A (L~ wat)

N-

A | (6.2)
)/2

Rty 2%, M=% 4

+ 20
3 (1- ¥4a1%)
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"'Séﬁdérs gives the solutions

Ulx, k)= = (- wat) M (-2, L AN )
" 32,7 «at)

on v.°<x<-stis=\\-¢;«at)'/" B Here.l"\(a;h;;)- are the
Confluent.Hypergeémetric Functions, and 2o and A are
related by the condition that J, is the smallest positive
root of the equafidn‘ Pﬂ(-k°3a§;4): o .

The data (6.0) corresponds to A =.5, A, =1.

We also consider the data

wmtt): 2.8

8 (6.3)

| L2

wz

with various initial temperature data
U, 1T X0 | | (6.3a)
-:o(x-.zs)2 '

U, )z x-1Ye , - (6.3b)
BRI AL Sl ' (6.3c)

To the data (6.2) and (6.3) we apply the Similafity
Algorithm with equal time steps, ot , vafying'from‘fiveito
thirty percent of the total melting time.

For ‘the data (6.2) we are able to estimate the order

of convergence of
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?u('\’) - o,
e, (TY o,

However, for the data (6;35 we must settle for the order of

convergence of

e (T) =30

since the corresponding exact solutions are not available.
In each case the algorithm is used to approximately
fifty percent of the total melting time. Table 6.2 provides

a summary of the results.

Table 6.2 . Observed Order of Convergence,

Data e (T1->0 CulT)-20 o € (Tl >0
(6.2) A=.5 .8 s .8
(6.2) /\:-.85403j | .S .7 W7
(6.2) A=1. 7 T e
(6.3,3) - | - .8
(6.3,b)_ o - .8

(6.3,¢) L - .9
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TaBie‘G.Z Supporﬁs our claim that the order of

' convergence‘of'fhe.Similarity Algorithm is between one half and
_ oﬁe. Moreover,;it provides some evidence that the order of
convergence of é; (T)=>o is closely related to the

ofders of convergence of @y (TI=>0 _'-and e (T) >0 .

The Small Time Versus. the Large Time Representation of the
Similarity Solution

In this section we give operation counts for one
jteration (one time step, i.e. k; to Lt;,, ) of the
similarity Algorithm Qsiné-the representééions (3.13) (large
time) apd (3.14) (small time) respectively. Multiplications,
divisioné and additions are classified as eéuivalent operations,
while exponentiations and square rodts are taken to be
equivalent to twenty and five operations respectively.

One jiteration of thé Similarity Algorithm using the
llarge_time representation (3.13) involves approximately
40 + 50m + 3 n+ 4 mn operations, where n terms of the
series in (3.13) are retained and the necessary quadratures are
;performed by means of a 5 m?¥po1n£wFi1on Integration Rule.

On the other hénd, one iteration of the Similarity
- Algorithm using the small time representation (3.14) reéuires

. ‘ 2. '
30+ 70 J + 90 JK + 40 J + 80 J K operations, where 2 + K

terms of the series for Gx,%;§)(see (6.5)) are retained and
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the integral in (6.5) is evaluated using a J node quadrature
rule. .
To initiate the comparison we write (3.13) ( “a‘f__.?

(3.13)) and. (3.'14) ¢ u‘; «> (3.14)) as

.{}" 44'32 g :'TTQ(Q’A 1)5
(C‘ué,ét”,)-. 2 c“,e v\; e _ <°‘(“’“é)’évx(/3
| ’ (6.4)
: : . ’-ﬂ;c“' LI
/é‘(/sgh Ye % éu' '(c;é,a’t;)cos(wmg)cla
o
and
¢ RO '
WGy etin) s ¢ u (o) G (G, otin gy
) .
Bie 3 - -( Y+ . -
G (cd+|§)’-\ ¢") ‘gs e y ' ‘3 3 é 5( g"c’ 8
.[Vﬂ"a‘t,,, ' [
os . ) (6.5)
AN a
. Z-H)Kig (2""&*‘5’ 5, e.(z K= ys 3) é-‘
K
. 2,
-(ak#y-1) & 2
se 473 S: . e.(ax~5-é) ﬁ_}
where gs~ !/c“,, '%;: ‘+,/§gc“ and the nqﬁation of

Chapters III -and IV has been used.
Our aim is to compare the number of operations

necessary to calculate w (C;*,%‘Atj+ﬂ to a given accuracy
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using (6.4) and (6.5) respectively. However, the -term

NP §
eﬂic“' b

in both (6.4) and (6.5) motivates us to consider

instead, the number of operations necessary to calculate

) -ﬁc ¢+|3

H‘%,.ci‘,, to a prescribed accuracy, say /Ofd
In each case the error enters from two sources - the

error made by truncating the series and quadrature error made

in evaluating the integrals.

We first consider the large time representation (6.4)
by writing

oo 2 ] )
e —Tr (2%-1) &
s ¢ (we) .

(é\ :-M.rz costw X} /é'* (P‘)
"Pt o
= é ¢+\3, aYi)

X omigiae-n’

-ZJ;i > e t‘.os(w.,,é\/&,p(ﬁ;).

Integrating the expression for .A&*(/%\ twice by parts we obtain

A (e s

I ’*.i 2 i .
% :3\-5 (e /:c_éu (t‘-g,ut"))cos(‘v\g) <'£3 .

Hence it is easy to see that

-T:(Zx-u\s
le:‘(b\ls 1&55_‘ S . dx |
: LA (2x- l)1

where

-/, R .
L\ T Awp \ :'T:‘ (G’ /«E éw‘_‘(ws\'&‘\i”
08y ¢ S
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Evaluating the above integral by parts we have

— 3 -n‘(aw-n‘Sg

" \
\el(ple B v & g
T3 S (Rw 1)
. (6.6)
° ’/ - . )
e St-zeﬂ-?c (w %il‘(zw-»))z .
Moreover, if. ﬂ&(gm;I)S;* is. large. enough we, obtain the_
asymptotic estimate
-'n"&. (RV\ I)
(éxl ¢ X (__ ) (6.6a)
'TT C S (Rw- 3

The expressions (6.6,a) give us a "rough" estimate of the
number of ﬁerms, n ., of the series (6.4) necessary to achiewve
‘a prescribed~accﬁracy for a given ’Si .
We now focus our attention on the QUadrature error
arising.from the calculation Of,,Asf([%\>'f=“'“)*l by a i m -
point Filon Integration Rule.
Suppose Sq-(p;), is the Filon approximation to /4§¢([%L

then we can write

Y 9 3 ¢ s
A, ((s) Se (s ;m( wm( A.sm( M ( ey ﬂ)
R R

where <N.5<l (cf. Davis and Rabinowitz [ 9 ] p. 64). If we

take s~ large enough so that wWw /%w ¢, , then the total
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S | . - ,
error due to the quadratures, call it %L » can be seen to

satisfy ‘
\gd, 2L, 3jc‘ T st ((2F0T/gm) |
\2(2%«) c(+| T
where

L T Awp S.‘i. (Q-@;C‘.éz é"(c- .At'))
1 °<a“ C\é“ W (A) ¢

Evaluating the above trigonometric sum we arrive at the estimate

bgi) ¢ __‘:3.3. Sci AL (WT/ Ewm) S (T )

6 (QM) 'Y

-Sdnce - swmix)sx for x%0 we can write

AR ="I’[Ml<‘f/*“’ e

e SM(W/QM\

Hence we have

- a -7 dav-0)8,
\e é¢ é u (cc-sl}\"‘t(-n)- 2 &C, E e Coslwy3) S"(ﬂ()‘

l-n A

" "
< lgul s ety
Now turning our attention to the small time

representation (6.5), we write
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. . z ' . B
- ;C‘-ﬂ N .
Q:(é)sie/"} 314;((““3,41:_“.)

‘ v e clueandl o eanytd
- =t Su“'(cq.at;\e /;3‘_‘"3 i(e (8735, . & 18°9 %)
'G;éhq : o

' . ., ?
LY . -(2 4 (i)
R R

. 2 ) 1 '
R ERE 1 I e'“a‘é'é‘j“if “:s&

' . PO | N' ‘ ey '(-L
= & gu"'(qamt;)e‘/«‘s'c‘é i z (-x)éie ('5‘3*_*3‘ §

é: K+

' 2 . 1y
P RS R CISE SR ¥

. (a4 “Q_L_. .
]y

Since we have a series of positive monotonically decreasing

terms we obtain

' - @Y. :
'\eﬁtéuls J_f‘;:_f 5;_ —g,} e _3‘ (6.8)
where
. Celu?
K, = A“P" e i w My, o).

c<at\

To investigate the quadrature error involved in
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~“eVa1uating.the integral in (6.5), we note that the dominant
. - . . T, -( - )2/ .

tern of G (c5+|5)¢t£*|3¢(.‘;.) is always e 978 | That

is to 'say, since all other terms of G(Cu,é,dig,;g;g)

- are well-behaved f'orb =3 3, ye& , the source term largely

- determines the required number of quadrature nodes, J - .

Hence we choose J large enough to evaluate

<

- 2
S e—.(é~é\ '/5‘. olé

to a prescribed accuracy and assume this J to be

representative of the number of nodes necessary to evaluate
Y . B g 2) - 2y
. - N -(8-2) - (4+3Vt.
S.u‘ -‘(.Q‘-\é,ctﬂ,‘eﬂ‘ﬂ 3 z(e 5 v (9+3 5 )
e} .

R 4§ -(ageyaal . -(aieg-nyt
Bep e ety
d:l

_'_.e—(‘zé"é*;’)\z J{‘. . e-(zé-é—gvz%}gg °‘€S

to the same accuracy.

To compare the operation counts we note that

%‘ =1 . Hence we set & =1 and find n, m and K
FY] - Y
so that |el(y)) - of (6.6), lit of (6.7) and" \e:‘(é)l

- for given values of . d

of (6.8) are each less than 10 ,

8‘.)L’” L2 and KX, .
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For values of §; we take .001, .01, .1, 1. (a
vtypical range over which 5& varies during the course of a
calcqlation). Since K, has very little influénce on the
magnitude of K ( K =0,1,2) we set ¥;=1. Furthermore, to
assess the effect of the magnitudés of--L, and Lz_ on the
qperation count,ﬁor{fhﬁ%large»timenreprggpntgtiona we: vary
‘both L, and Lz between 1 and 100. .Table 6.3 provides a

summary of the results.,

Table 6.3 Approximate Operation Count
(a) ‘d=4
. _ # of Operatioms : # of Operations
{# of Operations ) Large Time : Large .Time
(4) Small Time - . Solu_tion ‘ .Solution
8 K J Solution R oo Lizby=4 n @ L.sVv.=100
0 25+ 27,000 - _ »
.001 1 25+ ©75,000 9 9 _ 1,000 . 14 38 7,000
0 15 11,000 . _ :
.01 1 15 28,000 4. 6 700 "5 :719 1,700
.1 1 5 4,000 2 3 300 2 10 700
1. 2 s 6,000 1 3 200 110 700
(4)

Here we have used a Gaussian quadrature scheme (cf.
Isaacson and Keller [21] p. 327) to evaluate the integral in
(64.5)0‘ .



- 110 -

(b) ol =6
# of Operations # of Operations
# of Operations Large Time o ‘Large Time ;
. Small Time Solution RN Solution
%K J Solution n m LizL,= 4 : n m LyzL,=100
.001 1 25+ . 75,000 . 14 36 5,000 17 114 21,000
.01 1 15 28,000 ' 5 18 - 2,000 . 6 52 5,000
.1 1 .10 13,000 3 18 .1,500 - 3 52 . 4,000
1. 2 5 6,000 19 700 2 29 2,000

We remark that_the number of nodes-given.iﬁ'Table 6.3
for Filon's Integration Rule is larger than was used for any of
bur numerica1 experiments (usually m wds taken betwéen 10 and
20). Moreover, wé.note that-i()'b6 is normally the limit of
accuracy which one would want, since we are wasting computing
time if we try to make the ﬁruncation and éuadratUre‘errors
significantly smaller than the inherent error in the actual_
approximation to (0.3,a,b,c,d,e) generatéd by the Similarity
Algorithm.

Although_(3.14jw{sﬂzhé small time representation of
the Similarity.Solution, Table 6.3 shows that it is numerically

impractical to use if the integral is calculated by a
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conventional quadrature rule. That is, because ‘the dominant
term'qf | G(fgws,atg.QQJ) for émgli §; behave§ like-a
”deltﬁwfugction inks labout.é ’ é conventional quadrature .scheme
requires a relaﬁively large number of nodes, covering the
wholé of the intérvél [O,l],_to achieve the necessary accuracy.
Moreover,rwe remarkithat in estimating J werassumedﬂ
M&-|(C;é,ét;)e—§;czaz to be a constant. Hence the number of
operationé given in Table 6.3 for the small time representation
could be an underestimate.

Furthermore, since 3/8“ (ﬁ")g

o
are independent of
ny

dié “and é‘ R the'cosine terms which.enter Filon's Rule need
be calculated only once during the entire calculation. At each
step these constitute the weights of the Filon Quadrature Rule.

This is in sharp contrast with the calculation of the integral

appearing in the small time representation (3.14) where at each

time step %ﬁ , G <¢u.3,°tb“5cig\ must be calculated -at all
' J
quadrature p01nts:1n.éi and in 3 - That is,. if ié&£=n are
the nodes of the quadrature scheme then at each time fg
G(Ca4.5¢,4*g;3°e%é) '%é‘h~~;3v must be calculated.

These results indicate that the large time repfesent-
ation (3.13) is better than the small time repfeséhfétiéﬁ:f3.l4)

for the numerical solution of (0.3,a,b,c,d,e) using the
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Similarity Algofithm.

| Table 7.3 also provideé us with an estimate for the
number of required terms for»therla;ge time representation
(3.13). We can see that'unless 1«;”(C55,-41;) is
_exceptionally misbehaved (reflected in the values of L, and L, )
at most twenty .terms of the series in (3.L3) need be used.
For reasonably behavgd functions three to ten terms are
adequate., Our numerical experiments support these statements.

Comparison of the Similarity Algorithm with Lotkin's
Difference theme

. We conclude this chapter by comparing the Similarity
Algorithg with Lotkin's Difference Scheme.

Lotkin [ 23 ] transforms to a fixed boundary by making
the transformation %::x/stt) in (0.3,a,b,c,d,e). Then he
employs centered difference approximations (cf. Isaacspn and
Kellér [ 21 ] P. 445) for the spatial derivatives appearing in
‘the resulting diffusion eéuation, together with backward )
difference approximations (cf; igaacson and Keller [ 21 ] p. 445)
for both -146(\,1) and $§¢t) in the trénsformed version of
- (0.3e). The resultingnanjnear system of difference equations

is solved iteratively. If a uniform mesh is taken in 3 then

the above scheme is second order accurate in space and first order
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accura;é in time.

In compéring the schemes, we use the data (6.2)
with A =.5, .85403; #nd 1. 1In egch case the approximations
are employed to épbroximately ninety percent of the total
ﬁelting time. In the Similarity Algorithm three terms of the
se?ies in (3.13) are used and the erroré given are @;(T) and
€. (T) . For Lotkin's Scheme niné interior mesh poinﬁs are
ﬁsed and the errors given are the maximum absolute errors at

.these mesh points. The results are summarized by Table 6.4.

Table 6.4 ' A‘Similaritv Algorithm Versus
. - Lotkin's Difference Scheme

Similarity Algorithm ; lotkin's Difference Scheme

Computer(S)Error in Error in Computer
ot €ulT) _©(T)  Time(See) _wlxt) SC(+) o Time(Sec)
T=.45 . .
A=.5 . W01 .62(-2) 769(-2) .14 .70(-2) .97(-2) .08
<005  .57(-2)  .45(-2) .24 .37(-2) .55(=2) .12
T=,26
A=,85403 .01 .24(-1) .10(-1) .07 .45(-1) .16(-1) .06
2005 . .24(-1) .79(-2) .16 .24(-1) .96(-2) .09
T=,22 : : ’
A=1. .01 .32(-1) .12(~1) .06 .89(-1) .22(-1) .05
.005 .32(~1) .91(-2) w12 .58(-1) .13(~1) .09

() All calculations were done on the IBM 370/168.
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It can be seen for these examples, that Lotkin's
Scheméiand the Similérity Algorithm giveicomparable accuracy
" for approximately the same amount of computing time. We remark

that if greater acéuracy is required, then Lotkin's Scheme is

"the more efficient algorithm.



CHAPTER VII
A COLLOCATION SCHEME

In this. chapter we consider. (0.3,a,b,c,d,e) from a
variational point of view in order to develop algorithms for
approximating its solution. . Our ultimate aim is to achieve a

finite element formulation of (0.3,a,b,c,d,e).

The Lagrangian Equationé for Heat .Conduction

.':To initiate a variational “formulation of (0.3,a;b,c,
d,e) we follow the lead of Biot [ 1 J by .defining §1xntx
feferréd to as the.heat displacement field, to be the time.in?
tegrai of the rate of heat flow across a unit cross sectional.
érea.of a given slab, With this Aefinition the equation of

heat conduction_cag be written as
gty g_t[.i(x,t\]."g - &, (x, 1), - (7.0)

'In addition, the law of conservation of energy is expressed by

the relation -
S PR S T DU O SR S (7.1)

115 -
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To obtain the Lég;angian-eqqations for heat
.éonduction ashderifed by Bidf [ 1 ] we first let wix,xV\ and
,-§(ﬁ¥)".be the ?gmperature distribution and heat displacement
fieié'respectively 5ssociatéd'with.(0;3,a,b,c,d,e). Then we
consider arbitrary vafiations Si(ﬂt) of the heat displacement
‘field which are consistent with.the consérvation of energy

relation (7.1) and the boundary conditions (0.3,c,e), i.e.

o Sulx, 1) 8 &, (x,%)

and.- : : o ‘ ‘ : - (7.2)
S (statrzo '

$3(o0 )0

" For -any ‘interval (a,b) along the slab, (7.0) implies that

b ’a - i W |
o=\ [x* Ut f1+ T, 0] § Etx ) olx, (7.3)
a . '

Upon integrating by parts the first term of (7.3) and using the

constraining relations (7.2) we obtain

‘ xc b
h, - .
x* V(a,b;t)+ S FO,E) §F e, Brdx = = 22U, 2) §BY)]  (7.4)
a : x:a
where S N
CEys 2 2 '
V(‘\.vb,ﬂ- Eg [uu,t\] c\f.

a

1) Since (7.3) must be satisfied for all time, the
limits of integration a and b can be taken to be functions of
time. 1In fact, we will take azo,b=s) ((u,s) satisfying
(0.3,a,b,c,d,6))., '
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The variational prinéipl-e' (7.4) leads. to a set of
equations referred to-by Biot [ 1 ] as the Lagrangian equations
for heat conduction, if we assume that @(x,%) can be expressed

as a given function of x and % and at most a countable set of

o
independent parameters (generalized coordinates) { Zg(i\z.
. - [ XR]
i.e., .
’Q(l,t)i §(3”.“)2“‘“‘.x’*)"
. . v )
Then for arbitrary variations ngitﬂz in the parameters
itz‘-(t\hn ' consisf_ent with (7.2), S & (x,1), the
variation of the heat displac'ement field is given by
(3 JER AN %_ 89 - . (7.5)
. ¢=y (3 .
In addition we have the relation
; s 3% ¢ 2%
XCRARI - + 98
= ' ¢Sy 6 ¢ 2‘ B
and hence
29 . 2% ., (7.6)
°f 3

Moreover, since V(t\,\av)'l:\' is also a given function of the
. ) “ i
parameters i t" Lt)}l , we have

L . ¢ .



- 118 -
JI\

- - ._ |
sch‘s;t)-z 3-\—’ az (7.7)

Introducing (7.5), (7.6) and (7.7) into the variatiomnal

principle (7.4) we obtain

= . . . b
5 qlai\!-\x 30 L ety 2F Z%
‘.g' Zi a \ —ut az' \Q z‘ (7'8)

where we have introduéed the dissipation function
e . N é- .
DCa,bjtyz + Q [ :..(_".'P] cx.
2 al .2

COND

Since the parameters i z;(*%, can be varied independently, (7.8)
(1Y) .

implies that

EAACH ST I W ¥ YCYLY ) BN g__g(xt)l fx g

ALx, 1) (7.9)
67, ag x2 - Bz,
- the Lagrangian Equations for heat conduction.
In order to use (7.9) we take {(w,s) to be the
solution of the system of equations (0.3,a,b,c,d,e) and let
o : 1.
S\)(K\z . be a set of basis functions for L Lo,1] (the
!3 .

set of square integrable functions on [o,t1]. ) with the property
‘U;(o\="v;(l\= o - for all ¢=xN2,..., Furthermore we

assume that $¥(x,t) = can be written .as the sum
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§(x,t):q1}§ 3¢ (B v; (:ict\) (7.10)

The equations (7.9) then become the determining equations for

o E
iz;(-\\}, . That is, we take a=zo, b=5(t\) substitute \/(c,&_(t\;t\)

ey

D (o, sct);t) into (7.9) and note that & (s, t)=o0,
S‘Q(.D,tho to obtain | |
$3Ck) c,'%m + (A= Sarsen B)) '?‘(t): ° (7.11)
where

: SN | _
[C.]ié_: S Vg (x) vy (x) elx i,J:\,':h..,
_ o

et .
[A']“‘S: S \);(‘X\‘vé' =) é\x, )‘;’é 1,2,

©

| :
[B.‘L z ng:(x\%(x\dx’ ‘I)S”)z»"'
3 %

gz (g, g, ),

Moreover, if (w,s) is to satisfy (0.3d) then "zf(t) must satisfy
an appropriate initial condition. If ®(x,0)z et §6(x) then we take

-z.(o\ to satisfy

[+ .

b oo | L
S | §,00 ~§‘ ‘zg(o)v‘-(f)] vé(w"g\)dx o' for all ysh?%. }

that is
ol -l

SEICEEE T o - | (7.12)

where
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. (2)
S
and -

|
= g §'°(a<\:) V; (x) dx ,
° o .

Roughly speaking, gé(°) is the projection of $,(x) onto

vi($£) . Finally the Stéfan‘Condition;_(O.3e), becomes
’ (3)

~

- 0O .
é(tsz-qzlz g"-(t)ué(ﬂ + h(ﬂ]

where (7.13)

OS]

Even if the initial value problem (7.11), (7.12);v
(7.13) hés a solution it would be difficult to obtain because
. o -
of the coupling of the derivative terms 3(t), { g;(t)?.‘ in
2

(7.11) and (7.13). Hence we séek ways of reformulating (7.11)

and (7.13) in order to avoid this difficulty.

9 :
(2) For a given temperature distribution, w(x,t)
the heat displacement field, &(x,%) » 1s not uniquely

determined. Since we are interested in < (x, %) and W, (x,t)
only we take & (x%)= - S Uty Bely '
(3)

As noted by Biot [ I ] the determination of (%)
is not part of the variational procedure but merely another
ordinary differential equation added to the Lagrangian equations.
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I1f. in the Stefan Condition (0.3e) we use -~ §&‘(sumi\
for ﬁ‘uu(stﬂ,t) instead of - §(:¢in1§ then

(7.13) becomes
S = -t A 755 SRVAM I RS
dtxy = - o {s,m‘_z;' g: (0, hm}

SCoryz=b

and the initial value problem to be solved becomes

L3¢ C[é‘(-n (A - StswB) '2‘(1;): °

Stz a2l L RN C)) +h(t>'§
i.s*m ?‘. v

(7 .14)
whete

C‘-i(o\ X - -io

SColx h

Another way by which we can eliminate the difficulties
of (7°11) and (7.13) istsuggeétéalby the work of Biot [ 1 ].
Instead of expressing ¥(x,£) as the linear combination (7.10),

we write

. . Ot
s 4 "o RYv (1= X
wix, ) e E ?‘( v‘(\‘ /i),

define

b
/b(e‘(’(\: %V"(\'é\ t\‘\s,
-]

and use (7.1) to obtain
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[ZERILE qlg eitt g (3 .

. Proceeding as before we obtain the initial value problem
SHH Pt & (A -dtscnd,)Fleyzo

o
Sty -2 L 3 eaivicey 4+ bt
is'm ity ‘

(7.15)
CQF(0\= E;‘

s(o):.b
where
\
[C,_]is-. S Ay tx)ﬁ"‘-(x)'dx)
_ 1
[Az];é= g j":("”‘fgj'(’.“ clx,

‘\

[B‘]U =- S,x/“:'(x)/-{d (w\c\x)

LP;L' : %§o(x))—(<'(n)dx> Ex1,2,.000
°
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uIﬁ'is‘iﬁtefesting to note ﬁhat by taking
v“(xi=F;(w5§yw-:9~[h»isnx],' (7.15) becomes the system of
 equé£iqns obtained by V.G. Melamed (cf. Rubinstein [30] Chépter 8).
| Melgmgd;feducgs (0,3,a;b,c,d,é) to a denumerable |
systemfgf differential.equations by aésuming that

o SA yeosT x 1Y
Ttk 20 Aw k) cos - .
Wb 2 " os [tm-4Ix :m}

Moreover, he has>shqwn¢th§t
if an approximate solution is obtainéd by considering the first
& co.efficien.ts {An Lt\}:l_‘ tﬁén as A =)> 00 the
approxiﬁation converges;

In other words, he takes for an approximate basis the
}firs# N ,fuﬁctions icos[{n-%)wx]zﬂtl and obtains an
dgpproximation solution (w,s) to (0.3,a,b;c?d,e) by solving
.the appropriately truncéted version of (7.155.

Instead of proceeding as above, i.e. using, for an
approximate basis functions which are global on [0,1],‘we propose
a finite élement'formulation of (7.14) and (7.15). We will start
with an approximate.basis consisting of finite elements. For
convenience these bésis funcfions will be labelled so that the
systems we obtain will be appropriately truncated versijons of

(7.14) and (7.15).

In particular we wish to express wu(x,%) as a linear

(&) This motivated us‘to write & (x¢%) in the
form given by (7.10).. '
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combination of piecewise cubic Hermite polynomials. To this end

we define a partition 7% of the interval [0,1]:
774\/: io: x‘<x,‘-<...< X, < Xare) :ql

and let

where ¥ tx) - is the cubic Hermite polynomial defined by
Xy X
) 3
X< X
) )
with

i 3Kz+ 2103 Ix\ ¢y
VIx) =

\x\ >}

X (1~ 1x1)? Ixis )
S(x\z-

{ h .S'( ) X% xg
LY e

IX\v>i

-and we have introduced .the notation



hgzd

4

_\jsz 3*\')(6‘ é:'-l)...,/\/,
-. kN.“‘:.i)

h: vaex h
|353N

)
g (cf,scﬁulfz [32 ] ‘Chapter 3.).

It. is. well known, that for fixed 1 a: f,u,ngt.ion,: ﬁg(g;,t;) on
[0,1]; which haé sufficiently well bebaved derivatives, can
'be.appréximated arbitrarily well in mean(s) by a -liﬁear

combination of functioms in _&3(»*, i.e. for a set of

functions i 8;‘- (t\k ;

Ma- 2
GMix, t\-éz.| ‘Z‘ Jie > 8 (xy —>. é(x £)

in mean for fixed t as h - c’.

‘ 4_Again, for au,t) sufficiently smooth it is known that, for
fixed ¥ , the derivatives G:(x,t\, ,,(x t), 6N (x,t) tend to
the derivafives th(x,t\ , é,“~ (x, 1) ,é*(x,-t) respectively in ‘mean.

Hence taking

§ 2109, v 00,0 vy 0] {2, 8,00,50,0,.., @@,

the systems (7.14) and (7.15) become

s _

( ) The sequence of functions ¥, (o ¢ L'(e,1] "1,
is said to converge in mean to a function ¥(x) ¢ \?{o,i]
provided \ B..(w\ ?(x\] dx “> o " 8S A =p >,
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sl Q) + (o - desen B) Q= o,

- Stars - %2 i-;'—;(ﬂ&lgoz,'(ngu,n(t)

P2 Qua (&) + 9,00 Qe (1))

| (7.16)
&, \',\A_(jh,,)-}l).
-t -
r: Qry:=-Q,,
Sto)= b,
and
ST PEY 4 (- Seosenf3) Bubdso,
Stz o] P + H.-)},
s*t)
(7.17)
Ty Plods Py,
Sto)zh
Tespectively.
Here . 3 YH@)O(‘-)/};} , 22 1,2 are the apprépriately B

vtn}mcated versions of i C; y A, \3‘- i ,e3 4, 2 respectively and
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QL) (@, (), Quthy,.., Quy,,, (1)),

-
s (qutt) oy gan ),

é@ ='((Qo)i)2 ) <Q0)2.| y )(Q°\~*"" ):r

. “%’)H s ;(29)2.\’ ):r
B (P )., P, )]

2 (@), ) O (1)),

po = ( (Pe)n,z yee e )l ‘(p°)~""' ):r

2@, (@) )T

are nonsingular since they

We see that r: and Y“z

are Gram Matrices of linearly independent functions. Thus both
(7.16) and (7.17) can be solved as initial value problems. The
question of convergence of the schemes outlined by (7.16) and

(7.17) is unresolved.,

A Galerkin Scheme

We mote that, because the basis functions icp“.s(’“l L
» 431

each have support’ UXy.;, w4l ( Xo=0, xN,,zi)) Kl NAI S iﬁ”""ﬁ»z
are block tridiagonal matrices, while {Fz, 0(2 , 1} are full

matrices. However, the estimate for a4, (stx),t) used in
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(7.17) is better than the estimate used in (7.16), since in the

former we use the approximation

' N2 ’ : : :
. ~ - STy 4 : l
Wy (é(n,t) ¥ ﬁ(t){%{z g_‘ Pé(t) Ceé (o) + p.,(t)}‘”.a(o) + O ,ti)%‘[‘,to)}

while in the latter we use the estimate

v ‘ 2
u,(.s,m,.f\.\g».,..;l(.ﬂii:‘ 3‘»: Q; ‘Smcpjm +. Q\g('f\‘.qp'-_‘i(,i),+,Q~*,‘,(vt)~§0‘““, (_z§,

We would like to achieve a formulation which combines
the better approxima‘tion of  w, sty %) in (7.17) with the
computational advantage of the‘sparse matrices of (7.16).

How to proceed becomes -apparent if we consider the first

equations of the systems (7.14) -and (7.15), respectively, i.e.

Stt) : )
. [
o= “Z. S[’l(tm (:tt\) (.ru\) ?f w +(u‘ (}(\x) V'(sm\ "'““‘“u(&“) Y Gﬁ(k)) %(&t))) 2" (t;] cbx
Jh3.. |
and
EYTSY '
6= ‘ZQLS'W Gl () + (MU B (2 )—sms(t)(,_ )& (t)] dx
Pl ) /".3 @ {P(*‘ Sen /“d (fenr V"‘ m)’“ :m)
é: |,.2’ cise

Integrating by parts the middle term, then substituting the
L
appropriate expressionsfor Q0%), 3,,(x%), we obtain

S(t\

%[§(nt)- §xx(><.ﬂ] (:,’i dx = 0 é:l,z,...



=129 -

and
Sk

) \ : :
§t§(".t\-§“Lx,t)],u3(-’5-\dx=o A:l,l,...

Set)

respectively. That is, the Lagrangian equations do no more

than force the -heat displacement field @ (x,%) to satisfy
the heat equation in a weak sense. This suggests that we forego
the introduction of 3 (=, %) and instead work dir‘ectly with
W {x, ¥) . That :i..s we write

. |
w X0 = ;Z v (),
N

o0 : .
where now .i(v‘-(xsz is a basis for LW*[e,1] with.
) 4T .
Viter= vt T o dmy 2, and the parameters, { d;(t\}

.
€3

are to be determined by the Galerkin conditions

S

p Cuyg 0y - e e, 0] vy (35 ) dx = 0 RRATLIE

\

. \
E ( g V; () \)é(x) C‘X)c\" (o)= g'ﬂ,(bx\"u (xYelx J° ViR,
e3) ° ° N

In other words, we force w(x,&) -to satisfy the heat equation

in a weak sense.

The system (0.3,a,b,c,d,e) then becomes
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SUKH C det) 4 (A-3Hst)B)d )z o

o~
S ey gx*LZ d; v/ (1 -~ 's(t)h(t)}
sy )

¢ Jeor= 4, o
Stoiz b
where
%v GOV i 6 dx« 4‘)5:\,1,...,
[A Xve(xng(x)c\x, S LIS T

§

|
[g'h : %X\J&(K\\é(x\c‘x) LA
S .
_Ld@]é: S'Mo(bxmmq&x)dx) IV,2,.0
-Q .

Now to express this in terms of the finite elemernt

approximation we take

}v,m,...,vwm} : 390,, (), ) 00, 9, 001 Doy 00, Puav 2 01
Hence (7.18) becomes

SUDY' D + (-3hseoB) Bz o

SIStz ot ( Dy, 2(t) = S (1)) -~ (7.19)
TB(O}:‘ -60 :
Stod= b

where
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| Wog(qo“,’cp")v; N.: ((V”)q’l'), (w":waﬂ)3
[%?J]fs( mﬁ*»%s\, VisEh2 ) g3, N g
[‘)?J]ﬂ: (CPA,,., qog'ﬂ»‘); 1-)5-“2; éx 2,...,N-I 3

WNH = ( Pures, 2y wtvu,a) 5

T
WN = (( P, 99»/40,2), (va, 9’~u.2)) 3

R, &

4 R/, 8,

= A
o .

R,:(wn,2) ;A= (B, 01, ,(P., @)

’ ! v
_[ﬁé]“- (%4‘,%5)) *,sﬂ,z;é: 2,0 ,N ;
['éé]%-s: (cpal*s%:l.s)a T,5:),2 3-§= Ryere, M015
&Ni-l = (w';"ozj qol:/-fl,l)j

/éN s ((Splvll, wl‘;il,l)) (vl\'fl) ¢~’4/,1))T).



I -(Z+n) o

\

§

. ‘ ] "

= X '( . -
‘g' § ¥, tx) ¥, (N dx ; z'.( \
1

X

S’gs(x‘» clx 5 \Y‘,'S='.2.;é'- 2,000, M 5

{"Sﬂﬁé |
) Y 2:;«-; :

! '
BNH = S’(quu,z () 0,20 dx
° -

L]
%‘, {x)
% Si\',,(ﬂ 93“,,00 r.\xs ¥+, 524,23 3" 2, .., N1

)
)

, v ) . ) | T ! T
z~‘: ( g»x- DPury (x) quu;z,("’\ dr; S“K ;.4.’:“"‘*)(") 9‘5’,',"‘ ,w(x),eh(), ;
. o o 1

- . T
D= (L0:1,, [0.1,,,..., [PIns, [0 puns)
|
[DJJK'- Q'H,(Bx\w
(-]

d

D)= (Duty, O, )., D, (D), DN,,',‘(t))T

;.(d.,m,.v.., daw m)T

and we have introduced the notation

(X‘.‘sa): %T(‘x\é(x\dx.
° . .

K(x\d_& 3 Kll,k; é:l,z,...)N

L) . ' )
X P, () @ () dx N S X P, tx) ©,, dx) 5
°

P
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The "éﬁpr‘oximation Ulx,%) to witx,t) can be written as

Uty = DLt o, (X))

N2
+ Z’ Z B;: () ‘%e(s’%n
‘-r: <

+ DN*/,& (t) géNil,R (3((.“) *

Hence the variational principle (7.5) has led us to a
semi-discrete or continuous Galerkin formu.lation for the Stefan
Problem (0.3,a,b,c,d,e). That is, the spatial variable of the
systeﬁi of equations-(0.3,a,b,c,d,e) has been discretized while the.
time va;:,iable remains continuous,

We r:ema-rk -that the system (7.19) combines vt,h:e sparse
matrices of (7.16) with the better approximation to v (scty,t)
of (7.17). Moreover, unlike (7.16) and (7.17), the solutioq of
-(7.,19) yield; directly and hence .most accurately approximations
to the ciuantities of interest \u(x,-\:\, WUy (x,t)l,

It should be noted that if W, tx)e C'Te L], then
an initial value of 'L’Sct).. can. be obtained by interpolating the
initial condition W, (x) at the poidts \xé{:: of the partition

o) = \Ao(\)l(s) s D'a(‘”: b '\:&o(b):j) é=|¥' 2,000 N

T, ieed, D y

o
instead of projecting wu,tx) into 2;/3(77"*’) « The order of

accuracy of the approximation Yi{x,x) to wix;x) is not affected.

- Since W' is a Gram Matrix of 2w~ linearly
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independent functions over [0,1] it is invertible and hence
fhe system (7.19) is solvable locélly in time. In fact (7.19)
has a unique solution for all ¥ such that 3Stty>o, To

show this, we define

\N(a,t\": Ulx,t) , é" X/ Sek)

and note that
\ ‘
-\T ——h
D (t)ﬁ D (k) : S:S \’\/3(3&) W(a,t)da
0

whichiupon integration by parts becomes

D)3 D& = - YWy, +9) el -\ A WG ) W s 1y

PR Yty Py et g

‘that is,

B"(txﬁﬁ(‘k)-'--lz DTV B ).

Hence mﬁltiplying the first equation of (7.19) by DTx) we

obtain

d [Bnw D] s+ dsw, [Bwy Bew]=- 2 BT Stt)
‘dt ct ' St

or

s\_[stt)-’ﬁ“'(tn".‘b'(t)] 2 -2 DTy D),
dt ' St)

Since S(®)>e and is positive definite, we have
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.

T . -t
S DMWY O ¢ b DY D,

"We.see that if S(R)=>@ ._ as ¥ increases then
D) => 0 ' . This leads to a contradiction since the second
equation of (7.19) then implies that S(kyso ast increases since
W) o, Hence :(t)‘remaiﬁs'boundedu
If D (x) ~» oo then we must have that S(¢t)=> © .
Hence we are able to conclude that (7.19) has a uniéue solution

for all ‘1 such that Stt)>0.

A Collocation Scheme

Because*of>the prpperties‘of 71?&,4&)]3}, (7.19)
is a convenient system to analyze, However there is another .
(Collocation) formulation closely associated with the continuous
Galerkin system (7.19) which is more convenient for numerical

computation.

To introduce the Collocation scheme we write the

Galerkin Conditions (7.19) as

. Al )
o= \'qyw , /. -3 "
SEWD s+ M Sinsmg Wy s ] dy
é'—'\,c‘ﬂ; Jr e, w, eﬂ:\,z:‘ 3:1\/4—/‘ i 2

and integrate the middle term by parts to obtain
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' _ _
o‘-g[s’(t)wt(a,t\ T Wy (1) -5 ) S YA L, t\-_l ‘C%,-(y) dy

-]
N Ythl .
= 2 . .
ke S[s (WL IB- Wi, () - St st y w, (y,-t)] ;3'.(,.) ely

X\

=‘», izl 3 (32, .,M, éx0,2 5 1= N1, d2 2,
K| 5t BRI |

Using a two point Gaussian scheme to evaluate the integral

over U, 6 %w,, 1 we obtain

AN R

o;ﬂ};, E{ {s%(‘h)wtm:,t) = \AY, (13, t)- 70 Seh) st w, (7,3,1)} q%i (’73,)bn"'
: 2
4 O(W)

.é;\,ir-\;é-&_,m,'v, ¢t h 2 ;d=N+/,¢'-23

where
¥ -
7?:(‘ ='2|'3(Y“n+xn\ * L} (xnn"‘“{l .
, 3T

Now if

SHRO W, (1) = W (7)) - S@siplwg (77,12 0

NIy )M 5 K ,2



- 137 -

thenh£he.firstkeéuation of (7.19) . is satisfied to (3(‘\“) .
It has been shown that a continuous Galerkin scheme,
using cubic'Hérmite‘pplynomials, produces at best O h*)
approximations to'golutions of fixed boundary paraboiic systems
(cf. Douglas and Dupont [ 11 ] ) hence greater accuracy in
evaluating the abpve-intggrqﬁ'iSvimra:sense;fwasted". Thus-we
have‘the following Collocation scheme for (0.3,a,b,c,d,e)

S0 WL (10, 1) = W, (1) = SE0SCOINR W, (97, 1) zo )

N L M REL2

SRS )= o Oyt —at (1Y) ' , (7.20)
w(xé,o\=u°t\wg) éﬂ,...)/\/
Wy L%y, 012 b\ko(hxé) KEEIST AL

SCod: b

It is clear that (7.20) can be written as the system
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(6)

st Bty = (F+ smser ®) Berrzo

Serstry s wt (D, (k) - SthYh (£

' .2
051(95‘ U, (b x) g (7.2D)

Dsz(o)- buo(h.\a) ' c5= 2., M¥/

Steyz b

‘where

Y (1)) ¥ (n)

@, (%) @ (n))
Dy (7%) Brasr, 1 (75)

’ ‘(‘2»"';”" 3
X
P (772) %w,o(’?:)

D

(6) For a collocation formulatlon of (0.3,a,b,c,d,e)
. based on Cubic Spllnes see Doedel [10 ]
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To show that the system of equations (7.21) can be
solved locally in time we must show that /{j is invertible.

The following argument, due to Douglas and Dupont [ 12 ](7)

(7) [ 12 ] it was demonstrated that collocation
schemes such as (7.21) provide ©Of{\w¥)} approximations to
solutions of a large class of second order nomn-linear parabollc
dlfferentlal equatmons.



- 141 -

demonstrates this.
The proof'prbdeeds by contradictioh. Suppose there

_eXists a nontrivial vector
S _
b= (buh,,, B, oo, Bus, bua, baws,a)
such that
- . .
HAb=0. , , . (7.22)
Upon constructing the piecewise cubic polynomial

™2
M

B GO bII P, Ly +

e lbd.‘ Bty Buvis, 2 Puar, 2 00)

¢

”

~

we .see .that (7.22) implies that

e gnaimram, .29

Since ZE(\:0 we see that Z(x) vanishes at three

points on EXA,}XN,,] . Hence either

I: ZOOEO " on fxﬂ)i] s OT
I1: 20 B Co .
Since the piecewise cubic 2(x)€C'le,t}, it is clear that T

together with (7.23) implies that Z(x)EO on [0,1’]. Since

E#o- - this is impossible and hence II holds.
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From  Z(X«~) 2'(:@)(0 . and B (%)= 2(")z0
we have that the piecewise quadratic ¥’x) must vanish in
()7‘,") ;?2’") - and (7?:’") X, ) , hence it follows that
2(X~;,)~:‘;"(XN-,)<¢> .

| Continuing inductively we bbtain that ®(e)Z'Co)<o
which is;aycontraditibﬁ.since 2”(9)20 . Hence the original
assumption is false and a{j is nonsingular,

We remark thét‘there is iiftle difficulty in
generalizing (7.21) to include more general one dimensional
single phase Stefan problems. However even for the simplest
case of (7:21) ‘the convergence question is a difficult -one.
The difficulty arises from the extreme stiffness of the system
of eqﬁations (7.21). Moreover, the non-linearity is such that
'the ﬁethods of'Déuglas and Dupont’[ 12 ] are not easily
applicable.

We conclude this section with the remark that the
pieceﬁise Cubic Hermite functions were chosen for convenience.
| No doubt a wealth of systems similar to (7.21) can be obtained
by choosing bases constructed from other finite element

functions.

Numerical Results

Here we give numerical results for the Collocation
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séh;;é'(7.21) only. We.dovthis éince for pérabolic equgtions-
on fixed.spatial‘domainé, Collo;ation and Galerkin'schemes,,
based on PiecewiSeICubic Hermite Polynomials, have the same
order of convergence,-providéd we collocate at the Gaussian
points {77?1 . 'éince we have.no reason to believe th#t the
Galerkin scheme provides a&ngtgr;eﬁﬁim@pleqr WU, (S.GE; B ,
and.hence $¢(t) , than does the Collocation $cheme; we adopt
the latter on the basis of computational ease.

Computationally the Collocation scheme (7.21) is much
easier to implemént than the Galerkin scheme (7.19), since thé
former vequires -function evaluations where the Latterwreéwires
quadratures, ‘Moreover,fthe‘bandwidpﬁ“df the Collocation Matr.ices

i/‘g, 3)3} is four while that of the Galerkin.Matrices
iz”;CX)/SZ is six.. Hence the system (7.21) is computationally
more efficient than phe system (%,19).

To solve the initiai value problem (7.21), we must
contend with its stiffness. That is, the condition numbér of
‘the matrix ¥'~'« , arising in the Galerkin system (7.19),

_ increases as as% , hence we sge thét the time constants present
in the solution of (7.19) have radically different magnitudes
for large A . The intimate relationship between the Galerkin

system {7.19) and the Collocation éystem (7.21) leads us to
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suspéét_that the éystém (7.21) ié‘also stiff.

This is substantiated by thé following numerical
experiment. We employ two numerical procedures to solve (7.21).
The first is an,Adaﬁs-Basford-M;ulton Multistep Predictor-
'Corrector Method (cf. Isaacson énd Keiler'[ 21 ] p. 388) while
the second is a Mﬁltisfep Prediétor—Corrector Method dué to
Gear [ 18 ] constructed épecifically for stiff systems.  In all
cases fested, we have found that the time step required to .
maintain a given accuracy in the solution of (7.21) was much
1afger_for Gear's Algorithm. Consequently Gear's Algoritﬁm was
“founid to 'execute five to ten times faster than the‘ﬁﬁamsﬁﬂhsTOrd-
’Moulton-Algérithﬁ. We conclude from this that‘the-system (7.21)
is indeed stiff.

In what follows we adopt the notation:

e (T) E au imwlwsm £)- U ¥ t)}'
° cstee'r xemr~ o 0,

e E' \ s -
2, (T) oe;:&_i m«;’xﬂl W, (Stax, k) Ux(?“i“‘a“'ka

T A et - =
e “\-:s_ri xszr*/l“’“(?m“'ﬂ Uﬂ(smx,t)l;)
€M T wawp {\uts-&'(t)\z

sk YT

where .(M,s) is the solution of (0.3,a,b,c,d,e), (U,T) is the
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éoluﬁion of (7.21) and it is understéod that
utx,t)=u,(r,t)'-.vu,, xt)te . for >.‘\s(t) .

To illustrate that the.Collocation Scheme érovides
accurate approxihations to the solution of. (0.3,a,b,c,d,e), we

solve the inhomogeneous heat equation
.H{(g.ts'- Uy 02) + T OGK) oetxesti) , oo (T .24)

together with the boundary conditioné (Q;B,a,b,c,d,e).

We obtéin our first example by setting_ b=, q?:IA
and picking ¥(x;i); (i), and w,(x) so that the solution
'beCOmes.

- Ax?

‘ 2
% _ 1
wAx,%)= @ (x2-(1-121),

(7.25) .
SeE (L=-1Y),

We do this for A =10, 20 and 50. 1In each case we take Unifofm

spacing and use the approximation to | = .4&. Table 7.0 provides

a summary of the results.

8) . ' .
(8) To deal with the inhomogeneity, ?Yx,i) , the
obvious changes are made to (7.21).



‘Table 7.0

- A=10

Observed Order
of Convergence

A=20

Observed Order
of Convergence

A=50

Observed Order

of Convergence
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CErrors im W(x,h) 5 Ux G 4), Uxx oty and S0

(Exact Solution (7.25))

el

.4)

.30(-1)

| .20(-2)

-55(-3).

.13(-3)

4.9

.25(0)

L11(-1)

.24(-2)

.86(f3)

.90(0)
.25(0)
16(-1)

L94(-2)

6.9

e (.4)

.30(-1)
.95(-2)
.44 (-2)

.14(-2)

2.7

.30(0)
.22(~1)
L14(-1)

.73(-2)

i.lO(O)

.38(0)
.30(—1)

.32(-1)

e.(.4) 93(;4)
5.2(0)  .58(-3)
3.500)  .80(-5)
2.3(0)  .60(-5)
1.4(0)  .12(-4)
1.2
6.5(0)  .40(-1)
9.5(0)  .19(-4)
'7.1(0)  .20(-5)
4.8(0)  .25(-4)
1.2
18.3(0) ‘;15(0)
18.2(0) .41(-1)
24.2(0) .62(-3)
22.6(0)  .36(-3)

From Table 7.0 one can see that good accuracy is

obtained inspite the large valués-bf~the'spatia1 derivatives

of the temperature distribution near x%xzo , .
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- Next we consider (7.24) with Rzt , %21 and

¥, %), Wlk), W, tx) - chosen so that the solution becomes

WX, t): Cos X L
S ( U*“*-"’_»)’ (7.26)

\

Approximations to fhe,abové solution are obtained. for: 3@:100,
500 and ;0,000.

. We are interested in the accufacy of the Collocation
approximation when RIS I lafgest, hence we employ the. .
approximation until approximately 20% of the slab ;emains. In
each casé the partition ¥ is ‘taken to ‘be~uniform. ‘The
Tesults are summariZeﬂ‘by.Table 7.1,

Table 7.1 Errors in Wx,t),W. (%, %), Unx %) and S (4)
(Exact Solution (7.26))

N e - &(D e.(T) es(T)
B=100 3 .13(-3) .80(=3)~  .11(0)  .96(-4)
5 .19(-4)  .11(-3) 43(-1) .16(-4)

9 .40(-5) 024 (-4) 14(-1) .60(-5)

Observed Order

of Convergence 3.2 3.2 1.9
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' B=500 3 4(53) L14(-2)  .12(0)  .97(-4)
4 .39(-4) .4B(-3)  .67(-1) .23(-4)

5 13(-4)  .16(-3) J43(-1) .80(-5)

6  .18(-4)  .90(-4)  .30(-1) .80(-5)
Observed Order 4.6 4.1 2.0
of Convergence
B=10,000 ’ 3 S17(=3) - .84(-2) .17(0) .80(-4)

4 46 (-4) .25(-2) 67(-1) .22(-4)

5 '.25(-4) 11(-2) J47(-1) .10(-4)

6 .16(-4) L45(-3) .31(~-1) .60(-5)
Observed Order 3.4 4.2 2.4

of Convergence

‘Table 7.1 shows that good apprqximations for both (&)
and'jA(qt)_'are obtained al;hough \f(t)l is relatively large
'during the periods of time under consideration,

Tables 7.0 and 7.1 indi;ate that the Collocation
Scheme is of high order, howe&er, the results concerning ;he
order of canergence are scattered and do not give a gooé‘
estimate for the actual order of convergence. This is not
surprising sincg the order of convergence is a characterization
of the aéymptotic'behaviour of the efrbr. Hence accurate
estimates for the order of convergence can usually only be

obtained when fine partitions 77'J of'[0,1] are taken.
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" The above results indicate that the‘Collocati6n .
Scheme (7021) can bé used to obtain accuréte approximations ;o
the solution o€;§0,3,a,b,c,d,e); However, it should bé
emphasized that the stiffnéés of (7.21) makes it a numerically.
inefficient scheme. Hencé unti1 a méthod is devised to Solve

(7.21) efficiently, the utility of this scheme, is in doubt.



CHAPTER VIII
CONCLUSIONS

This- thésis- has: presented two- algorithms- for the
numerical solution of the Stefan‘Probiem (0.3,a,b,c,d,e).

We have seen that the Similarity Algorithm provides
us with a reasonably efficient method of obtaining "rough"
approximations to the solution of (0.3,a,b,c,d,e). Moreover,
for "the ﬁ%actic#l situation of both a smooth initial temperature
distribution and a constanﬁ heat flux, the.Similarity Algorithm
promises to be an efficient algorithm.

Furthermore, the heat flux generated by the algorithm
can be used both to improve the acquracy and to‘estimate the
error of the approximation. We observe that if a very accurate
'approximation is required the Similarity Algorithm is not an
efficient algorithm. The 1arge numberjof terms and the small
time increment required to achieve‘fhis accuracy results in long
computation times.

The Similarity Algorithm is the direct resu1t of-

applying the Simiiarity Method to a system of differential

-'150 -
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bequafibné. The above procedure illustrates how the Similafity
Method can be used éffectively to obtain approximate numerical
solutions of non-linear problems. | |

While the Similarity Algoritﬁm gives "rough" accuracy,
. the Colloéation scheme is capable of»achieving high accuracy.
Although both‘the,SimilaritytAlgpniphm%and[Lgt@i¢1Smdiff§penqe
scheme execute faster than the Collocation scheme,‘we have
f0undnphg§u§g: relatively coarse partitions, r , the Collocation
scheﬁe-achieves accuracies which the éther schemes cannot ~attain.

We have seeﬁ that the apparent stiffness of the system
of ordinary differential equations (7.21) Is the cause ' of 'the
inefficient performance of fhe Collocation scbeme. We conjecture
that the simple form of the noﬁ-linearity appearing in (7.21)
‘will allow us to construct a scheme which deals with the stiff-
ness of the equations in an effective way.

We also conjécture that this Collocation Method can
be used to deal with Stefan Problems involving both more general
boundary conditions and more general governing parabolic

differential equations.
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APPENDIX A

Lemma 1.1 (Friédman [17]).
- Let ect) be continuous on the interval TUe,&l . 1In

addition, let s¢t) satisfy the following Lipschitz condition

| scey - scen] ¢ M Lt-t, |

for all %, , %, ¢ (o, 1l and some constant ™M . Then defiﬁing

3' g (:('n EK(x t; s, 'z\]f dzr

x:=5¢k)

t
- o g P(‘z) K(x,k, s¢r),7) d2
ox )

we have

L J’--.l. P(t)

x—&sen o

Proof.

Before proceeding we make the following definition:

t
I(H) = | ¥y X)) Kix,t; ser),7) d2
2(2-7)
s :
- S F(o) S -s) K (s, ;5 5en), 7)) d T
), 2k-7) '
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where ¥ is any continuous function ‘and $ e ¢o,t). Now if we can

show that

Ofvm . \ T+ .(*-)A‘ c
x=>s@-o ZF
' (A-1)

Ry stky-0

N \I(r\ + L +-:|(-{>(‘k)l$°(1) as 8§ -0,

where,' -
k-8 -
L= gp(:) (x~350%)) K(x,t;stt),z).dt' :
o AG~T)
-5
- % £ L) (M) K ('.S'('c.)"'kj‘scr),rz)d"t

°. 2(+:-7)

then the statement of the lemma follows by allowing § to tend

to zero. Further note that since

d\:-»v\. L.:O

X > St-0 (4-2)
(A-1) follows if we can show that

NEY | Teo e L] ¢ o(s™)

x =>stk)-o 2 . S0 (A-3)

1 I} ¢ O(.U.

To see this we form the expression /"Tszii"(f(**P(to"
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‘and ‘substitute it into (A-1), to obtain

N O \I(P.s +L o+l

X~? $(x) -0

5fﬁ?§t)_°l[)(ﬂ(l(n+é)— I({»(-Lh/’(z))]sou) as ¥->o,

To estabiish (A-3) we write
I =1,+13,

where

t

.= % L.-.S.(__"-\Mxtscz;t)dz
v sy 2% -%)

- (senr-sen) | ) ' )
11 S 3-(—{--%—)—— lH(X,t,S(t)'t) - K(S(_'E\,t,.flt),‘t)3 dt,
t-5

and consider Iz . Since S$¢) is Lipschitz continuous and

==t - ¢

le " - . for all a,% real, we obtain

1T ¢ ™M §7

A-4)
Prar ( ).

To estimate I, define

* )
I - (-3 & (x, ks, dy
! £-5 2Ct-1)
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vand consider

t
3-1,°: S (x- SN \‘((K,t;sct),t)[\
2¢t-72) ' '
Le-3 (A-5)

P

- {(x-sm)z -{x~ “‘“‘} /4 k1)
, A2

- e

If we take

x-Sk ¢ LM

and

s ¢ R
S ™?

we see that the expression in the exponential can be bounded by

one since -

l{(x st - (x-S tt\)zj /4 (4~ 'z)l

< _.__L__l S(i)-s‘(t)li\x-s(t)\ + \x~.S(tH{

TS
2
& Mix-sedl + Mg ¢ |
2 (/A

Then using the inequalities

lv-e 8 ¢ 3y  for gl

and



- 160 -~

£(1-7)

: ) k3
¢ Max-swil & M & .o

2 o 4

(A-5) becomes:

B8

\T,‘I.\S LE
‘ 8

TREN

- .-

To evaluate J, as x->S)-0, vwe: let

3= 2T/ (x- seen? .

Then
- t

N 1 e “34
:I' 4n'2 gfﬁ. S

"where
\ - =
= 5’/(x-sctn" .
From (A-7) we conclude that

Jw.,\ ]":‘- -!2-’0’
x=> S(x1-0

sy -san] 3 bx -serr ] + |><-stz\l}

(A-6)

(A-7)

(A-8)

To complete the proof of'(AABSTWe note that (A-6, 7, 8)

‘imply



Hence writing

|I(nl=l_I,+ I,l

we obtain

[IMls M g%

»
3
»

-Thus

ofw-v\ooup lI(l)-!—-L ' = JWV\JV\P

x => S(t)-

N ;MSH?'Iz' + t;msuplI Tl

X ~->S(t)~

¢ M g%
N2

and the proof is complete.
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II’ v+ I+ 1 T+ T

(A-9)

(A-10)



APPENDIX B

(1)

"Proposition 1.1 The (weak) niaximum.vp‘rinciple.

If wix,x) satisfies

WU, (2, 1) - vlt(x,tﬁb o&zz(x,i): o¢(x <S(t), o<k gT}

with' $s¢t) a positive continuous function and

MG € C(D) | Ut u gt € (DL E)

where &0 is the closure of. D and.

67,: {(x,'r): o <X < 6('\')%

A then: w{x,t) attains its maximum and minimum value on the data
boundary 9@-67. '« (See Fig. 1,0 Chapter I)

(2)

Proof.
For any €>0 define VOt =z wixti-cet where
WG k) satisfies the hypotheses of proposition 1l.1. If

vix,t) assumes its maximum value at a point '(x,,i,\ I3 °8U8-y

1 See Hellwig [ 19 ] p. 47.

(2)

For more general >re_su1ts see L. Nirenberg [ 27 ]
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therit'w"""\_"xxv(x,t) 'is defined and continuous on - § < DU @T
where

S:= z(x,'ﬂ:, X,oh ¢x<¢x,+h t\-H<tst,}

for some positive It and K. ~ Furthermore, w,, (¥, t,%&0
and hencg Ny U, k) &~ €6, By the, continuity of w, ) .
and hence  V, {x,%) we establish the existence of a & € Co,K)

such that V,(x,t)s$-&z for all % e <(4-%,%]  Hence

» . 1,
Vi, t)-vix, t-8)= g Vt(x.,‘t)dz— < o .
t|'s
.and ‘vtx,t) cannot attain its maximum value on HL @’T that
is h (x|\i|) ‘e ab‘é-‘—
Now suppose L x, 1) attains its maximum value on

98\)057 "‘at e kd) such that

vuon,to) -4 '\A(’ht\ (x't) € a,a - 87
2 nlgt) (b ¢ D LGBy

i.e. The maximum value is not attained on the data boundary
' a"a'é-y « - Then
V(xo,'k.) s u(xo,)'tg) - & tg

D ubet s Vegt), (D e DBy, hrt.
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[

Thus the maximum‘value of vix,t)y - 1is attained at Ax,ty, ki<t o
However,

M) e vix,t,) + ek,

l

2 wmlet) - €Ck-t)) ' (x,t) € D

rd

in particular

u(xnt_|) 2 u(XD).tg\ - € ('Lo'.t-l)
and hence

M(xo.‘L.‘) > u(x.,'\..) 2 M(xo,to\ ~ f(to'.tu)
for e€»o but otherwise arbitrary. Noting that % ,<%, for

€0 " and “allowing ¢ to tend to zero Wwe ‘have

L (xo,'ta) Y (X.,Jf-.\

which is a contradiction.
Applying the foregoing argument to -w(x,t) we obtain

the conclusion of the proposition.

(3)

Proposition 1.2,

If (w,s) isva'solution of the system of equations
(0.3,a, b, ¢, d, e) then U, (S, 8) 2 0
Proof.

(3

' For more general results see Friedman [16] .
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1f for some 1, U, sty <o then by °~ (0.3b) there
exists X, € Lo, seuy) such that wmix,,tY2 & >0 for
. some & . Now define

'z P { T oaw,t)2 8
t€o,7] |

and note that if x,>0 then the Maximum Principle
(Proposdition 1.1), togethef with conditions (0.3b, d) implies

that there exists a R(8) & 1 such that

1(8) = b 3 £ Ulox) 2 SZ
EERS

that is wio,til)= $>0 .

To show that this is -impossible, define for any ¢€e[o,8]

Y (ey= wnp £ owte®V E{ :
‘tEE'*.T] )

and noté that w e, Ry = & is the maximum value of ~w(x%)

on

seé. §(x,t): csxeSk), st ':'k(t\Ag

Then since U, L0+, )= u, (o,t)=0 we conclude that

‘LA,(*KO*'\.‘\’-(E\\";ui(oﬁ-,t\n) <0 for allj ce o871 . . Thus



- =166 -

: 1 4§Y)
W (0, 8(8)) =y (o, L (e)) = S Ht(o,t)c\'i L0
: kto)

that is

U e, kBN E ©

which is a contradiction. Hence the original assumption is false
and thus wm,(suyty2e (Note that by extending the above

arguments we can show w(e,%)s¢e for all k< [e7] ).



APPENDIX C

To show that as d-»0 (1.1) becomes (1.2), we

write (1.1) as

O=V, +Vp +\,

where
(]
V=) g, e)e*(x +;E,6) dE
S8
SCx <€)
Vi, = gu(!‘;,t €). Y ex, kg L-€)- d&; . (c-1)
©
3
\, = g ug(ut),t) GHx,t; s,V dT
t-¢€ '

Then considering V5V, 5V separately we take the limit as

£—>° -
Since  G¥(x,k;s(z),7) has an integrable singularity
at T=t, we see immediately that
ofm V3 %u (s¢1),T) G"(x t; s(n,x)dr (c-2)
E3o .
To find Lo V, we write

- &EDo
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b _ ‘
-V, - S u, (&) GHx,t;5 0) A

'\/". + V," + v;ql

where
C{ta

% [G*(X.t',i,t‘) - GMqg g0l w (g, a)dg

-0

V,

MY
VAR % [uE,6) - U, (8)] &* (=45, 0) dE
o |

b .
\/,m: - %uo(g) GY(x,k:5,0) dE
S

' Fme Which”Ve have

IV 1¢ sup v ) sup ‘G"(x,t;s;,e)-
- &elo] Eeleb)

G"(x,i; E.o)‘ S .

Since for fixed tro, GYx, %, E,7) is continuous at =0

we see that

Oevm V| S0 .
E>0

It is easy to see that

(C-3)
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vl ¢ aup | vz o) -, &)
E € Lo, s01]

/
hence
. t. t . .
f e v, "o , (c-4)
€50
Finally for fixed % >o, V," can be written as
Vv, = (b -5 GO R, 0 M (XY
where SteY¢xXg¢h from which it can be easily seen that
o |I|.‘ }
S Ve o (C-5)
,,€~~>.° .
Combining (C-3, 4, 5) we have
J b :
o V- WGLE) GX L 5,00 dE .
€ 5o \ ), o(§ . ' )go 5 (C-6)

Now for V, we fix S €(o0,)N (o, SCE-6Y- =) _ and_

write.

° Co%-$ EETY

+

as & . tends to zero the first and last integral, ‘as well -as the
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Kex,t3~§ -&)

part of the second integral do not

contribute since

'—S'
< L,
Ar3 :

as &-»o . Hence we are left with

x+$
A CE R E) 1K Ux, e k-&)e\§ . : (c-7)
X-$ '

After making the change of variable v= &_Jinn (C-7), we

o ]
consider
Sheth
V)
v/% e wulx-2g%v t- a)r.\v] - MOty . (C-8)
(3 ‘)o
Since w(x,t) is continuous in éa and hence 435 , we can
write (A-8) as
%ét"tz
vaw ETLT" S [u(x &gV.v k-€) - i tx k- t\l Av‘g
3
€0 %ayh
R VI 3 AR TN T 3}
for some X&(x-%,x+8)s Letting & tend to zero, we conclude
o?::« Vy B wled) (c-9)

Combining (C-2, 6, 9) we see that as ¢-%o0 (l.1) becomes

b
W G gu,(e;\ Gt ix,t,8,0) dg
3

4 S W (ste), 1) GF et s ce)x) dy
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Lemma 1.4 (The eQuivélence.of the differential and integral
systems) .

If k) is a solution of (1.4), where - SCh) is given
by (1.5).,, then (w»,s) ( wtx, &) defined by (1.2) and sc¢x) defined
by (1.5)) formé a solution of (0.3,a,b,c,d,e). Convgrsely if
(w;s) is a solutibn of (043,a,b,c,d;e) then w(tv=z Y, (sct,t)

is‘a solution of (1.4).

Proof.

ﬁBy construction_any solution (w,s) of (0.3,a,b,c,d,e)
defines a solution Vvt y,(swyt)  of (1.4),

Converéely if u;{)‘ is a solution of (1.4), (1.5)
then in the region ‘43 the integrals of (1.2) are regular. Hence
they can be-differentiatéd directly to show that w,t) (defined
by (1.2)) satisfies (0.3) in o® .. Furthermore, since
G*Ohi;gjz} ' is an even function of X we see that condition
(0.3c) islsatisfied and differentiating'(l.Sj we have that condition
(0.3e) holds.

Evaluating :
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svhov&s that conditi_on (0.3d')‘ is satisfied. To demonstrate that
condition (0°3b).‘h01.d_s, we n'o‘te _that we have shown that wx,%)
(defined by (1.2)) satisfies (0.3,c,d,e) on &L . Hence we can
integrate éreen'é .Identity. with Wix,x) (defined by (1.2)) §ver
Aagé" and use conditions '(O.3,c,d;e). "After taking the limit as
.£—>o .and su_btracting (1.2) f'rom the fesulting e-}‘(_pr_’ess-ion we
are left with

t . L
o= % wsen,r) Yot sery,z) S dy
©

t
- %u(su),z) G;. (e, k330, T)d T

©

using the relatiom . G* (x,%;.8, 7= - G; (x4 E,2)  we have

g

t
o= ;’-2;‘ %M(s&t),t) G (x,%L; seanriddy
X
(-]

D-1
| + | (' )
+ w(stT),z) SCx) G"’(x,t;ut;,'z:) det .
(-3
Letting x -> SCtr-o and using Lemma 1.1 (D-1) becomes
t
O WMLSL),E) + 2 % u(su\.t)[G;(sct\,t-,sm,‘r)

° (D-2)

+ Scry Gresv,t; Jtt),‘t‘ﬂ dr ,

Since s¢) is Lipschitz continuous, from (D-2) we deduce that

Intstey,v)} satisfies the inequality
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t .
1wl g % tul ¥ de
. o
" where ¥ has aﬁ most an integrable singularity. Using an
. . » » .
inequality of the Gronwa-ll( ) type we conclude that
n(scee),%¥)Y=0 and thus the lemma is proven.

(1) ¢

' 3
gre € + gg(zsﬁusdr
o ° :

where 3‘3’,5;0 - then

t.
: ¥y day
C Sti) ¢ &e e . . o



'APPENDIX E
THE FIXED BOUNDARY SOLUTION

- We wish to solve the following system of equations.:

M, G xy = \Ai(-r,t\ x€¢ to,)) t>o0
M AX,0)2 M, L) x ¢ Coy1) s ' (E-1)
U, o,k)2 0 iso

UGy WK L

To obtain a solution of (E-1) we let Wx, k)= Wl E) + Vixt),

where w(x,x) satisfies

W, U8 307, (kY x ¢ 0,1y k>0

(E-2)

W {x,0) = M, Lx) xe Lo}
W, (o,%)z 0 kro
wy (1 ¥)z 00 ko
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and vix, k) satisfies

] View (2, 2)= V* (e, t) x ¢ (o,1) tso
| (E-3)

N

Vx (o, ¥Vz 0
% € (o,1]

v (¢,0) T 0O

Vetu Y Wik) ko

The solution of (E-2) can be written as
\ . \
Wl kY %V‘,g YGUx, k;uVd
. Q. é g é

-(2v\+x+;3\l/qt | (E-4)

>
G(x,fi\é):—!—» > le
¢nt nzo |- (2 = x- "t/ .
+e ¢t

where

e- (2w~ *‘é“/ﬂlt

+
e- (2tn) 4 "'é)t/ilt} |

To construct the solution of (E-3) we take the Laplace

transform of the equations (E-3) and obtain
4'\),u (K,-p) - P'D(x)p)'-‘ 1) X ¢ (fu)

E-5

Uy (op)=o ( ‘

TV, (\'P\ = H(P\
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where
: o

-pt -
- . '\)(X'P): ge"’ v(x,‘k)dt,

4

N )
Hp) = g e P wmb) dt .

o

The ‘solﬁtion of (E~5) can be wrxitten: as

'\)(,,‘P)._ H(p) cosWIg x
: J? sy WP

)

and hence the solution of (E-3) is given b‘y

A Y aéeo
AT A HA(p) -evz;Pit“c:_ofs;\‘.~ ) p (E-6)
2né .)?; $ vkl ¢ '
¥-ioo '

Finding the inverse Laplace Transform of E c_______f‘__.“\"‘(r"’
' J¢ S W ip

by expanding the same for large p we see that WVix,t)

/

can be expressed as the convolution integral

% w . .
. bt =(1+an=-x) - waat
vu.t\=S—%~ h (D i% (e --/”“'M.er (1+2 ")/«(t-i\))}dk. |
Sry R ST
(-}

(E-7)
It is easy to see that (E-7) satisfies the heat equation on

the domain i(x.t*gﬁ xe(o,.\,tsoi as well as the conditions

Vix,0 %0 | and v, (6,%)=0 +» " To see that w,(1,t): Wk
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we'nofe that -

t - (I—x)z/ '
Q’mau‘s[v (x t)] JM an{,\[_z_ g W (A) e #(t~3) da
x->1 |57 ]

[~ =3

: | .
= J\;vwcu g( \”(t (L x)) d 2
% =33 e 1-x). M ‘
2t
For fixed gy Cox) we can take {i-x| small enough so
‘ 2t '
that (= X’(S for any prescribed $>o0, Hence
der ’
o N N
- -~T .
S _& S W k- (‘ "“) - \«(i\} ran
| e [B hotn R 42
.(t_’I ’ .
o
d &Q TR A
\ vv:;z\-\‘) T e[‘ ( ‘ll'l) \'\(t):\ (4 di‘y
‘ & .
+ g Wt 0y Cnhle Yoy
-’1 [“”l (‘:E) 2" ]
2‘”!
¢ J’v'wwwoi Ao l\\(iv-hm\z
%= 4 Telt-5,4)
+ 2; éwwdb»t ‘ € - (LZ:.‘) ‘ M
Th x-24 R
where €30, £30 and Mz aue  Lh(2- Wity , If +

Te (&l

a continuity point of W (%) . we see that

(

is


file:///l-xl
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S oup M 0] = W4
x=> ) '

Hence the solution wtx, %)

as

\
W (¢,x)2 g"*o(;\ Gix, bt y)d
) P93

t
e L S W (3) 3;
‘Frr ° t-N no

(the small time solution).

of (E-1) can be written

- (Va 2m ) . il
e /41: +e-(|’2“"d4t)z

c\.l'.



APPENDIX F

THE ASYMPTOT-IC EVALUATION OF
¢, '
UL (S ke k), K a%)

FOR SMALL %

_ To obtain an asymptotic approximation of
ui(g‘u;*ﬂ't‘,#t) we differentiate (3.14) with respect to

x and -evaluate

| . |
(x4 = S WUE, At G (o, 158 dE
[

where X 2
' 2. .E'7 = S can s E 4. X Yag -t
e.et [(c‘-,g‘-t) ) ] E(")“ Ee..(‘ n ‘rc‘. *Ca'ﬂ;t’ ey

Glx,k;8) =

no
(F-1)

-(R(ﬂn)-g-.‘.‘. )’.(‘,'(h-é't\ )zt“(et-c‘;f)
& Gt IR Ty

c(2n=f + X
-e | & S %Y

+ @ % /5,"

2
“(2nen+ 5 - X ) GLG-AT)
-0 . ¢ it 1

asymptotically for small % - at xx C -k
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'.W,ebhave, up to exponenti'al terms,

G, (c /s,t,t E) ~ce v

]

. Hence we must obtain an asymptotic expression for .

c-

. o § (e . -ﬁ- 52 /_‘s.t)
~u,:(t~-/l~t,t)~ ¢ ee . /’ Su (E“A't,-\"(-_%-l) AT ( ) : ..ﬁ.“,t d§ (F-2)
“ Jmw % | «

2
Upon making the substitution =3=1(i-&), (F-2) becomes
. . . é 4% <

. ) . f (‘ 2 ‘) (‘ (t -(it’
“x(c /\'t.;t:).'...cz /\(;ﬁt% N OF zcs .\t) ﬂ 3 %1 ds.(F'3)
37
Substituting the expreséion
/}4_0(‘-23])

w (c (1~ 33"&) at;) e

= ~2¢ e

-/5___( 2=t , Y ¢- : .
P Catag® g Ol g, bl et

+ o(;"*)z'

into (F-3) and using Watson's Lemma we have
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L | Y S ‘ K
M (et E) = 28 9_ 5’*‘: “u"t“ (2 )(<f /3*‘)2
| 7 = U o
‘ i~ ' t '2
- C (uxn(cu At) -/3 u* “,Atz)) <C¢.'(c¢-—ﬂ¢.i)) P(Z)
+ O ( ts’*)}

and hence

gt ) = wy (G, At - (i (‘““t e W G et 2

2
IV

4+ O(X),



