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Abstract

e e o et e e S

The flow around a circular <cylinder exhibiting ~vortex-
induced oscillation is modelled by 2 potential vorticés ' in a 2-
dimensional, 1inviscid and Airrotational flow. The 1ift on the
cylinder is obtained from the general form of the Blasius
equation. Pressure distribution is obtained from the pressure
‘2aquation in a moving frame of reference., The 1lift expression 1is
coupled to the dynamic equation of the cylinder. The phase and
amplitude of oscillation are determined by the nmethod of
equivalent linearization., A relationship between amplitude of
oscillation and strength of the vortices is proposed. Root mean
square pressure distribution at the Strouhal frequency on the

surface of the oscillating cylinder is determined,
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I Introduction
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The phenomenon of wind-induced transverée oscillation of-
single bluff-shaped structures can be divided into two major
categories according to the ways energy is _extrécted fron the‘
flow field., Galloping oscillation is the .typevof vibrationv
caused by forces arising from the shape of the structure in the
separated flow. With a small transverse disturbance velociﬁyv
given to the.strhctura, the two shear layers separating.from the
Surface of the body interact with the body‘itself, gene:ating a
force in >the séme directioni as the disturhance.:’Smdll
disturbances therefore can grow into 1arge amplitudé
oscillations. Ihe other type of oscillation is fhe vortex-
induced oscillation., The shear 1layers coming .off ﬁrom, the
surface of the structure at theAseparation'pqints are unstakble
to small disturbances in the floubfield. They tend to roll up
into 1large discrete vortices., These large discrete vortices are
vc;eated alternately from both shear layers, fo;ming the well?
known Karman vortex street. Theée vortices induce alternating
pressure loading on the surface of the structure. HWhen the
vortex formation frequency is in the neighborhood of any of the
natural frequencies of a lightly-damped stchture,‘the structure

would be excited into resonant oscillation.

The subject of vortex-induced oscillation has been under
investigation since 1878 by different researchers‘in different
pacrts of the world., A tremendous amount  of data has been

accumulated. It has been known that vortex-induced oscillation



is not a simple cause-and-effect phenoménon. There 1is an

" interdependence between the force that causes the structure to
. oscillate and the oscillation. Naudascher (1)'-and Toebes (2)

have recognized this  fact and termed it fluid-elastic

interaction. However, without some kind of analytiq model, the

interplay betweén the diffefént physical guantities'ihvolved in/,
;he,phenomenon cannot be adequately established.; fngineering
 \;ttempts either to make use of or to eliminate the phenomena of
vortex-induced 'oscillation wouid_ benefit from a successful

mathematical description of the phenomena. Furthermore, a deeper

insight could be gained ihto'thé\physics of the flow,
R 1

. \
The search for a proper nathematical model has already
begun. As in experimental work, the most widely studied Dbluff

shape is the circular cylinder. Since all Newtcnian fluid flow

" . phenomena are governed 'by the Navier-Stokes equations, an

- obvious approach to this pfoblem is to solve the full Navier-
Stokes equations for the flow field in the 'presence of the
fjbscillating circular cylinder, Because'of the complexity of'this.
system of equations, no such solufion has beenffound. With some
simplificafion,~aordan and Fromm (6) .have developed computer
programs to solve the VNavier-Stokes equations for thé timét
dependent, ;iscous and incompressible flow past a stationary
.circular cylinder, They'obtainéd résults fof-lift, drag, torque.
and pressure distribution on the cylinder at_3 ﬁeyndlds numbers f’
(Rn)vof 100, 400 and 1000. Results for the first two are in good)
agreement with. experihental résults, while for the third one,

significant discrepancies were found because of - the difficulty



encountered in modelling the thin boundary layer upstream of the

separation point, and the 3-dimensional nature of the flow.

Because of the complexity of the Navier-Stokes equations,
simplef models would seem to be a better approach from an
anhalytic point of view, Potential flow wodels are afppealing iq
. this respect because of the simpler but elegant mathematicai
\fheof that has been developed. If . one looks at a separated
\'fiow, thebimportant entities involved are the thin shear 1layers

and the. discrete vortices.. With these in mind, Gerrard (7),
Abernathy and Kronauer (8)\ and others have studied two-
dimensional potential models of\stationary circular cylinders in
"uniform flow. In their nmodels, the thin shear iayers are
modelled as sheets of discrete point vortices. Théy havé shoun;
by’ use of lengthy computer programs, that the vortex sheets do
.Toll up to form large clustérs‘ of‘ vortices at the <cbserved
positions of ‘actual discrete vortices behind the circular
cylinder. with circulation strengths that agree with experimental

ones. They also obtained values for the forces on the stafionary

cylinder in good agreement with the measured ones

One disappointing drawback of these models is that
important - analytic ‘relationships between the principal

quantities are masked in fine numerical details. They do not

-throw much 1light on the physics 6f the phenomena. Yet simpler

models are required. A single-vortex model (see figure 1) was)/

proposed by Etkin, and McGregor (9) used'it to obtain pressure

' : L : . AN
distributions on the surface of a stationary cylinder. As shown



in figure 1, the "root nmean square (RMS) of the fluctuating .
pressure coefficient at the Strouhal frequency obtained from
this model agrees fairly well with the ones he measured over the

front portion of the cylindér.

A lbgical extension of this model would be té have two such .
potential vortices located on either side of the ﬁake Centérline‘
(see figure 2). Madderom f10) applied*this model tc obtain the
RMS of the fluctuating pressure coefficient at the Strouhal
frequency on a stationary circular cylinder; As can Ee seen frqm
figure 2, the agreement is better than for Etkin's single¥vortex

model.

In the stationary-cylinder models menticned above, Cnly ﬁhe
flow ‘field needs to be modelled. For vortex-induced oscillation
of a bluff cylinder, this is ohly half of the ©prcblem. The
dynamics of the oscillating cylinder must also be dealt with.
Several dynanic hodels for the oscillation of a circular:
cylinder havé been proposed. These models often lump the effect
of the wake into some kind of oscillator which, generates’ tHe
1ift on the cylinder. A proaising and more successfui one was.
proposed by Hartlen and Currie (1. in their model, 1lift is
governed by a non-linear differential eQuation coupled to the
velocity of oscillation linearly. This model was able to predict
most of the charaéteristics of vortex-induced oscillation faitly.

well.,

None of the models mentioned so far take both the dynamics

of the flow field and the oscillating tody intc account, It is



felt that perhaps a better understandin§ of vortek—inducéd
oécillation can be gained 1if we couple Maddefom's flow field
model, because of its ability to predict  the pressure
distribution in the static case and.its'}ealistic simplicity and
analytic tractability, to the dynamnic equatioh.goverﬁing the

motion of the circular cylinder, It is to this end this research

has been aimed.



i) Experimental Observations

A very comprehensive experimental study of vortex-induced
oscillation in both circular and D-section cylinders was carried

out .in this laboratory by C. C. Feng (3) at Reynolds numbers in

the neighborhood of 2 x 104, His findings show that vortex-

“induced oscillation of a circular cylinder is sinusoidal in time
t so that the displacement Y can be expressed by
Fe= eSO Tr F) - ()

whare 9; is the amplitude, w, the natural frequency of the
spring-cylinder system he used, & the phase angle measured
relative to excitation. He found hysteresis loops exist in both
amplitude and phase. As shown in the ¥ vs v curve in figure 3,
where Yz Y. /2a is the non-dimensional amplituf_lg and Vauo/zdu"is

the non-dimensional velocity, U, being the free stream velocity,

starting from A, if we increase the flow velocity v, anplitude

increases Aaccordingly to B. However, further increase in
velocity beyond B would result iﬁ a sudden drop in amplitude, to
C. The amplitude will then diminish slowly to D. If we start
from D and decrease the flow velocity, amplitude will increase
slowly, through.C to’E.‘Further decrease will make the amplitude

jump from E to F. It will then decrease with velocity to A.

|
H

/



Phase measurements show the same kind of jump as shown in figure

3.
It is well known that vortex formation frequency"f;>in the

wake of a bluff body is governed by the Strouhal relationship |

where S is the Strouhal number and a is the radius of ﬁhe
cyliﬁder. If we 1look at thé ratio e»/®» in = figure 3,
where @, -2nf, , as a function of velocity, starting at the

neighborhood of Vv=.8, instead of following - the Strouhai
reiationship, the vortex formation frequency is the Samevaé the
natural fréquencj of thé cylinder-spriﬁg system for . a ~range of
velocities up to V=1.1. It looks as though the vortex formation
freqﬁéncy is locked into the natural frequency . of. the sjsfém.‘
~This range of velocity is known 'as Vthé.lock—in range. The

frequency reverts back to the Strouhal frequency beyond Vv=1.1

ii) Derivation of the Complex Potential

#ith the set-up shown in figure 4, we have.in the conmplex
Z-plane, a circular cylinder of radius a, free to move in the y--
direction in a uniform, 2-dimensional, inviscid and irrotational

flow with free stream velocity U,. Located downstreanm of the



cylinder are two potential vortices at points 2 gictid. The
strengths of these vortices are < .ven by =T, (Men cosewivt D

at g and rm:g(M-Ncoswt) at & . # and N are positive
constants such that M>N ar: M+N=1. T, “s +the effective
circulation. In their laboratorj studies, Feng(3), Koopmann (4)
and Gerrard (5) all observed that when the <cylinder was
stationary or oscillating with low amplitude, the vortex
filament coming off the surface of the cylinder was inclined at
an angle to the axis of the cylinder., When the cylinder was
exhibiting maximum amplitude of oscillation, the vortex filament
was aligned parallel to the axis of the cylinder. This is a 3-
dimensional effect which a 2-dircensional model 1like this is
unable to include. Therefore it is assumed that T,=7,(Y) and the

form of the function remains to be determined.

The complex potential F(2Z) for the cylinder-vortex systen
as shown in figure 4 with Y=o in a flow with arbitrary complex

velocity (U.+iU.) in the complex plane is given by
s ‘ . . 2
Fd= P rif=(drid )z +(h-iu) 2

.nj - -‘.‘E ﬂz -
rigthala-p) - i L Ly (4 -F )
~i b= )+ i Ly (AT 2)
z7% 25 2
where ¢ is the velocity potential and ¥ is the strean
function, Now if we impose a complex velocity - (U,+iU,) on the

whole system, i.e. stoppiny the on-coming flow and setting the



cylinder-vortex system into motion with complex velocity

- (Uy tiU‘), the complex potential becounes

Fc&)- Briif = (Uo"%)-a@-z; a——/o(e i)

i 2 -
_b.}%—h.(}@»-;)_ i /'z(a-;.)

rillba(£-5)

Finally the two vortices are given a motion that would stop

them from moving in the y-direction. This will show up in the
position of the vortices relative to the cylinder. The complex

potential becomes

3= Beif = Ctom it S P2 tu(2-A)

in which A=g-é4. ,B8eF-iy, , 4. is the displacement of the

cylinder with respect to the fixed frame of reference Z=(x+iy).

negleéting some constants, F(Z) can be simplified to;

FZZ;) (l/-u/‘)——-rb [ﬁtla"") /"'(2"—")]

4-
2\:1

[zm(a ——@J L (2 /3)] - ¢3)
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iii) Lift and Drag Egquation

By potential flow theory, the :caglex velocity (U-iv,) can
be obtained by differentiating ~.he complex potential with

respect to the field variable Z. Therefore

U—'V.‘zdF"‘ e _4_2 .[_3['———" o
‘e T A (ometl) 3 = 457 Lz-Ad (e--g-')}

[ / J
“'z'r."{e_g;) ~ i | (4)

from the general form of the Blasius equation, (see 12, page 255)

the lift L and drag D on a moving cylinder are given by

D-iL = &/f(r)o/é * b/’;,;—f/—'(e)e’a

*Lflw*f‘ow

= I, ~ I, + é/>73v 4V/DAL‘§€¥ (5)

where o 1is the fluid density, 7 the total circulation inside
the cylinder, W=-U,-1il,, the complex velocity of the
cylinder, and A the cross-sectional area of the cylinder. The C
at the Dbottom of the integral sign denotes a contour integral

along the surface of the cylinder, We will now consider the two
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integrals I, and I, .

From equation (4), we obtained (%Eﬁ'and

1»_%/_4'5% wer SR (i BT (P Ly

2R (z- A)

f+' E ‘b’ ] [:/;(e ﬁ-’)] { eig)]

-:"7‘ (e ~A)(a- -4—’) T (a-e)(z—,gf)

.; (v -%)a‘[

‘ . . Z T ((9_4) (-2“'——4—) )'f‘l‘( ._——-:- — .__..
SN R /
Sl

By 'using the method of residues, this integral can be easily

evaluated. The f1na1 result is

;—“ufijé (,G};>¢K£--€79!~ il / ,.t‘[u (u’ obé)a’

m(ﬁ_ 4) | "E-8) AT
ﬂ%-&”)d 7:/02';' / R , ,3 e
. Wﬂgt'f.‘ ﬁ : 272 | j?ffzf :qt;?__ >} | (é)

-

Separating this into the real and imagibary parts, we obtain

dz _Z__«<
\ﬁ ) JO[ Zf (ﬁ 14/2) 2n (dz_/g/v

: -/ufdd [c—(f -o/)J-z././ cat (,% aC)]‘-
B [Al* :

-

l‘-# /e [44@‘4'[5?_ (,ZJO(),:)- 2%(4{(%-,9{)]/
IR R RNIC T SAREE /-1 B
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o R e [ctegioo]
YA VI z} W ﬂ‘ /4/"

) BT e )
2N dz- /6/2 7‘-. CCZ+761_42)2*462062

v 2R thCa’lpol) a7 (P (p-A)]

1414 S

72424/0[52..(4/¢+a{)’_]_.,27;’u¢541(7¢+a/)}.
1B/*

(7)
where {At and IBl are the absolute values of A and B.

Now we turn our attention to I, in equation (5). The

integral that we have to evaluate is

s e
%;-(-;—\f F(E)oZ = sz—_g\j{ F2)ofz

y ——e—' . '2 _ . ; ;
»/%é [(U,-u/‘ il (4o (2-4)- Lo (a-~—)]

_
..LIL[%(Z_—”'-) A,(e—&]] oAz (&)

The first term can be evaluated readily by the method of

residues and
A al ) :
j (‘/o"’uc)?a/a = 27¢ (Up=ce)at
c : . ‘

However, the second term involves, instead of a singularity, two
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branch points at Z=A and %= &Y% . Since Z=A 1s outside the
cylinder, it does not have any contribution. The only branch

point we have to consider is 2=4/4 , the inverse point of A.

Taking a branch cut as shown in figure (5A), we deform the
contour of integration as indicated by the arrows. By Cauchy's

theoren,

\ e vra . . - .
]

\\: ,f*f*f"f

v r—s.d A=t € Pu / U= r

r_”; {Jf 4{,-] :.

In the limit ¢ —»o,

n
o

’e»'/_”’grld“ c _4{/[ t_’“ ,‘_{,—]l 9>

Pirst consider the line integral from WS -—=z . Let

———— e e - -

q? _
. Zz ;.-:fe

e ¥
i
1

¥

L A2 g e Ty v et s

a’l ,
An(2-2) 2 tnl+iy
Along the path 44—z , 7Y =constant= 9, and € varies

z .
from <$=(a-2,)at 4 to $=0 at ¢ . olz= e U

o ' L.ru o
oo [ e Bz [ Clageiniye g
J""ﬁ. (d-}%‘

. - al Y .
=e*® [-(a- 2 )l*v(‘? ,)*(“‘,%>"'°7’(a'm/ o]

(a1
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Alang the path 2 -y » S =constant=¢ as we chose it to be so -

when  we chose the path of integration., ¥ varies

from =¥, at ¢t to ¥=-27 +¥, at u . de= z‘ge“”aca*.

2f+3’. . . l

<>« %

As €—=o ,lng - and €—wo . But 85— o | faster  than

Ing —» e , Therefore we can say the integral is zero.

Along the path' x>y , ¥=constant=-2rn+ ¥,  and € varies

2 . .
from zero at u to (a-7%) at »r , 0(2':3”;:/5 .

d'l ) e '
j ,Zn, (2_2_@3)0/9 _—f ’”(/&S«pbb’)e Ya’f .

n>r o

IAI

cfu[(a_ml)%(& ,q/) ( )+o<'2f+ (4"’4,)_;

Putting the results back into.e_quation 9)., we obtain

& Cw ..
\Zé’é’t(i"; )4’2.-- e’ [znfo (a_—;’f—/-)]

For the third term in equation (8), the Lkranch point of

interest is 7z= a‘/é’ . We choose our bhranch cut as shown in

figure (5B). Following the sane procedure, the integral is found
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to be

7
K

\};%(? 3.)0(-2-27To€ (a;u.--'

mw
s

and equataion (8) beconmes

c; 2 . — 2
5/035\55 {Cdﬂo%)—;—‘ -rl/._z_/ﬁ"i [,/;7(2—4)—,&:,(3—,—;-')]

— 2
el [n (- F) - L (z-8) | A2

-'fat{ i (o m et )at s T (4 /ﬂ/)c R ACE /ts’/)e j

This expression can be separated into its real and imaginary

parts,

2/595 ferua T (a-Z Yo, L1 a’, ¢,
7125 +L(a—/—_—/)5m>[}

vip2 {z—u A T (a2 al
~, 1} -—-— — -
2t “ u ( (71020 ¥, =T (4 ,g,)éov‘oij» (70)

The remalning two terms in eguation (5) <can te evaluated

quite readaly.

f’V\/ f( (L/-+ud> 1)

o w 2, o
/4¢dé /ﬂ@ (ng-/‘) (/Z)
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Wit h the results in equations (7), (10} , (1), and (12)

substituted back into equation {5}, =~ obtain

il=p - _ B e R (4O (o) 2e (4 )
f 27 Cd‘ /4/’) 2i (QL/J/Q JA14

Tiar [t (g rdy]-24,c(gad)] B < (e 32— o?) ]
/18 (* TG ) ol

9 - az . — ’aZ
-+§Z' {chuoaz-r /u(a-"l;’,;‘l).g”?% + /,_(d /:é__;)sm X;.j-ruc (7:,_}—‘3)

_ap Tt (Yem) (é/wd) 2 Tque€Q3(Ye~d) + AUT [ -
f T at - A® F a’-/e/’ JA]*

— Tia*y, [~ 9 D) 4 2w ca(gerol) Tl c[et+ &-A?]
/81% 3 Erp o) 4a’c®

cg 2 az QZ
et Y74 - — - -
- 57 [zfcuca.,7 (a /;/)m% /(4 /,/)mzr,_ ]—ru,(r’,_ 7e)

- aaz;;i/_ (13)

We define a 1ift coefficient (. 1in the conventional way
and C,= L /puta . Furthermore, all quantities involved are non-

dimensionalized according to tre following scheme:

(1) Circulation is noca-3iimensionalized with Uy,a
(2) Length 1s non-dim=nsionalized with 2a.
(3) Time 1s non-dimensicnalized with w,, .
(4) Frequency 1s non-dinmensionalized with W, »

(5) Velocity 1s non-dimensionalized with 2aw,, .
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The following expression for €. is obtained:

P )t (Y -H) A (Y+H)
4 3—7—:—'[,-4 {5)/,,,/)"_,/?] T { /-4 [rei)=pif]

} Y, [ 2Y(-HIP~ VIPE cY—H)’J.—z(r_;/)[(//‘)’)"*f’J/z/’f __/j
| “ Av[CY-H) v P22 :
\ A { 2V )P+ VIPE (Y] = 2¢xen) [CH-Y)% p21RpPY /]
Tt AV Cren)ie P2

. 2 2 g /
- X ﬂﬂp[{()’-—,&/)ﬁ/"j%_%]_f o(,_vt.f’,ﬂ[f(f*//)*ﬂ,}—/z]
(FHY 7 p (Yed)*+ p*

- Kyde (P Yi_yDDY __\,é’,;__lf 14)
2 2 2,2 P d Ve (
3T Pyt pBRAPY

where Ysy,/fa. Hag(/m . Psc/za.. V=Uo/24az, Sﬂa%u.is the Strouhal

number and 0(‘.‘,_\7.'.,../«!,«.. Dot represents differentiation with

respect to the dimensionless time 7 atw,.

1Vv) Pressure Equation

In a moving frame of reference, the pressure P at any point

in the field is given by (see 12 page 252)

oF 2¢X 06;;} 2 '
P fo- 052 £5TLZ - ] Lowst

B ‘ ' J

Wwhere R, is the pressure at infinity, @ the velocity potential
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as defined in equation(3), o« the anglé shown in fig‘ure 6. A

pressure coefficient can be defined in the conventional way,

Clo = -/ _ z iﬁ - Zco( z ,
Few W ST “’j
Oon the surface of the cylinder, Z=aces@+:r2s578  apnd @ is

-obtained there from the real part of equation (3)

P = alses- %ww 2 - f)*- <£ “54).
where &,f,, £,, f; and £, are shown in figure 6.

e = AN

G e () G (E R £y B -

; U Sim e [&bZ&+dQﬁZ&
j‘;)—zacjlnéjf 77 J’.‘

gzt (os

L7

Z7T

Z[_d,mza+u<5/bz& 4+ ly CoD28 + LUy S 28 + X

[(ﬂcn&—c)~ Lfasms - (A=)} . -_{C _ c'(é/-yc)j X
(Acovd - )% (Ascn®-A+4)" _ S

[~A%+acovdc + a;,;,g(a/,%) -clcasmy- @l-g.)acoon ]} ]
[-at+ cacoos+a(d-y. )56 83"% fcasins- (A-)acoos)?
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+ T [ le+i(d-2)3 (Zédmﬂ-(ﬂ’*%)dffé&—di}- v [casme +(dr‘%)4aa&])
27 (Ca covp = A Simb (dot)-A%7% [Ca 58 + (A + % )0 008 ] *

ﬁ -c) =L (ase : 2
— Lacood C)z L (a //7&*#*92)]_'”‘ +LU¢]
(@C006-¢ )+ (a6 +Yet &)

Where prime indicates differentiating with respect tc time t.
With some 1lengthy and tedlou§ algebra, this expression can be

simplified to the following:

: \
P G (L) E A Bih 4

\
1
!

P
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However, we ars only interested in the fluctuating Cp at the

Strouhal freguency., After dropping all the terms +that have no

Strouhal frequency components, w2 arrive at
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Following the scheme that was used to non-dimensionalize CL oo

we change (¢, into a dimensionless form. Thus
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v) Dynamic Equation Governing the Spring-Cylander Systen

The transverse motion of a rigid 2-dimensional cylinder,
with viscous-type damping, mounted on linear springs 1is governed

by the differential equation
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777J”+2ﬁ’)h7&0'7y,'+ 4 Q),;__f = Fac( (7

where m 1s the mass per unit length, A2 1s a measure of the
dampang of the systenm expressed in fractions of the critical
damping, the 1level of damping above which no oscillation can
take place when the system is not forced externally., @, is the
natural frequency of the system and Fy is the external
transverse force applied on the system., In the case we are

considering, Fy=L .

A non-dimensional form of this equation 1s obtained by

dividing thru with 2amw,2} . Thus

« - -

Y ZéY'*Y=7ZVch d8)

where -7=£§§. Each dot represants differentiation with respect
to the non-dimensional time z once, ¢, 1s as defined in

equation (14).

Substituting equation (14} into equaticn (18), and after

rearranging some terms we obtain

.o oLl (Y-H)
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This equation governs the dynamics of the spring-cylinier systen

for a given set of parameters.
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With the equations developed in II, 1t is possible to go
ahead and solve for the pressure loading and phase and amplitude
of oscillation for all velocities, However, wmost of the
characteristics of vortex-induced oscillation are oltserved in
the lock-in range when au,aaq,. We will therefcre consider only

\

\ . .
the case in the lock-in range.

1) Pressure Loading on the Cylinder

For the dynamic case belng\con51dered, we are interested in
the component of fluctuating\‘pressure at the fundamental
Strouhal frequency. Theoretically, equaticn (16) can be
decomposed into 1ts Fourier series and the fundamental frequency
can be obtained. However, this seems to be tcc tedious
mathematically. Instead it is done numerically on the computer.
Using equation (16), we can obtain the Fourier coefficients of

the fundamental frequency by integration, i.e.

2n )
A]: %‘r‘ Js‘” adz' (20A>
8 \ 2n
T S s e
SR J “ ,t ‘ (208)

|
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The root mean square value of this fluctuating pressure 1s given

AN

by

| :
Cfrms = ﬁ""[ﬂ.‘f B:zJA (20c)
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i1) The Dynamic Equation

In equation (19), the right hand side is multiplied by the
mass parameter 7 . Thas parameter is proportional to the ratio
of the mass of air and the mass of the cylinder and its
magnitude a1s of the order of o(/?), Therefore this equation can
be solved by the small parameter approximation method ain non-
linear analysis. This method, the method of equivalent

linearization, is explained in Appendix I. The method yields

-

Y= Ysincezerd) |\

and
AV AT
- FEe- g
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2z =" 1F
vhere 2
X ==

'v??, Fe, Y, ¥ ) cov (Cr2) A (e+3)
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»

and'f is as shown in equation (19).

In the case of steady state oscillation,
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111) Proposed Relationship Between Arplitude and Circulation

As mentioned 1in II sectaior _.i, vortices 1n the wake are
organized by the amplitude of oscillation. The phase between the
formation of vortices along the spanwise direction is reduced to
zero as amplitude increases to its maximum. So there is a
relationship between amplituds and circulation which 1S to be
investigated 1in this model. In the course of this research,
various relationships between «circulation and amplitude have
been looked at. Obvious ones are the linear and quadratic
functions, It was found that they only produced good results in
parts of the lock-in range, Th2 question, then, 1s what kind of
relationship between anmplitude and circulation the model would
require for it to work in the lock-in region, By
making o, and @ the wunknowns 1n the system of equations (21)
and (22), the second program in Appendix II was modified to
solve for these tJo gquantities with input
parameters Y ,M, N, P, and v given. Guided by Feng's
amplitude measurements, a fuaction is designed relating «, and

Y. This function 1s given by

?— 2 S; 4
A, =-36e 77 LGmr = he7 ) gm0 81727 = 14d]

Y 2 2
*.068-./037'9/[0(0—'/ =l .5256*2'007[‘7»%/ A
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—35.34&]’

2 Y 2
~-.ofs5¢€ ‘/""’J —r'.a/&e'ﬂ‘”[%—./ - /'34&2

- Y. _ 2 Y _ _.9g1?
#0284 405 /'zsj...a'/‘{e—”‘gz'g?[osm/ <94}

+.224 (23)
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1v) Numerical Solutions

(1) Pressure Equation

The 1integration as indicated by equations (20A) and (20B)
is carried out numerically on the IBM 360-70 computer at the
computing center of UBC. The program, shown in Appendix II, uses
a library routine SQUAKK to perform the integration. This
routine 1s based on Simpson's method of dividing the interval of
integration into a number of divisions., The area under the curve
1n each of those divisions is calculated Ly assuming that the
curve can be agproximated by a quadratic. The accuracy of the
value for the integral depends on the number of divisions. The
routine keeps on dividing +the interval into nmore and more
divisions and comparing the result with the previous one. W®hen
the difference is swmaller +than an amount €, specified Lty the
user, the 1teration will stop and the final result 1s obtained.

In this case, €, was specified to be .0001.

{2) Dynamic Eguations

The dynamics of the cylinder-spring system are governed by
equations(21), (22), and (23). These form a system of three
equations 1n three unknowns Y , ¥ and &, . Again this systen

1s solved by using the facilities at the computing center in
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UBC. A library routine NONLIN 1s used to solve the systenm of
non-linear equations. [his routine is based on the Newton-
Rraphson method of 1teration as found in {14)., The first non-
linear equation 1s expressed an a Taylor series about the
initial guesses supplied by the user. Keeping conly the linear
terms, the resulting series is eguated to zero and is solved for
cna variable, say x,, 1n terms of the cther remaining
variables, In the second non-linear equation, the same procedure
1s applied except ¥, 1s replaced by the value obtained earlier.
This process 1s repeated until i1n the last equation only one
variable X, 1s left, X,1s then solved for and back substituted
into the first equation in place of the guess used. An
improved X, 1s thus obtained. Then X, and X, are used 1in the
secon¢ equation to obtain an improved X, . The process goes on
until the i1mproved solutions are calculated to within the number
of significant figures specified by the user. In this case, it

1S set equal to 4,
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Iv. Analysis of Results,

Although the aguations oktained are ccmplex, the
contributions of each of tre gquantities are clearly 1solated.
The values for P and H defining the position of the vortices are
based on the experimentzl values obtained by Ferquson (13) an
the Reynolds number rargse 1.5 - 4,1x10%., He determined the
position of the first signal 1n the wake 1n phase with the
fluctuating pressure signal on the surface of the cylinder to te
at H=.47 and P=1. for the oscillating cylinder as ccrrpared with
H=.5 and P=1, for the presert model,. Furthermore, he found that

this position did not change significantly with wind speed.

The values for ¥ and & are not based on any experimental
value. They are chosen from physical argunents, In HMadderom's
model, he chose the values to be .5 to give good C&p
distribution. This means that between the formation cf the
vortices 1in either the uppsr or lower row, there exists a tinme
in  which there 1s no vorticity at all. Physically this 1s not
quite correct as vorticity 1is generated all the time at the
separation point and swept downstream in the thin shear layer
before 1t rolls up to form the discrete vortices. Thus thnere
should be some circulation all the time in the wake and this 1s
modelled by M being greater than N. It 1s found that M=.6 and
N=.4 works well for this model. It might be worthwhile to point
out that t-e elementary vortices that Gerrard (5) wused in his
model of the wake havc meah Strengths of abtout .682 and these

oscillate at the Strounal freguency with an amplitude of atout
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.502. However, one nmust remember this is a totally different

model.

The values for 'ﬁ and 57 are .007%%3 and .00257
Lespectively. These are from the cylinder-spring system used by

Feng. o

The strength of circulation o, ranges from .22 to .58 1in
the lock-in region, Although it 1s difficult tc comment cn the
results from a potential flow model in which there is no +total
head loss 1n the wake, it is interesting tc compare thais range
of values with the one calculated from the data obtained ty Fage

anl Johansen (12) at a Reynolds number of 3x10%.

As shown in the diagram below, the rate vorticity 1s shed

1S gaven by

2,
A 2 2
/("f‘égé’qjg' M=V
b 2

L —b

The average K 1s .9 and the average convection speed W,

1s .7570, from x=0 to x=.796 {2a). Now only an amcunt ¢, of the
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total vorticity shed shows up 1n the daiscrete vcrtex.
Therefore;ﬂn:ezx . €& was estimated to be .5. If b 1s the vortex

spacing, 4,=v%/p . This gives

k3
1 u
_li.._._,,_b..z_fﬁ..: ,,b-ézt"/":&sq'x'sxq:Sa?
U, Uy Va a Va/ U, 7587

where the value b/a=8.54 is from the same paper

As shown 1n figure 8, this model 1s capable of generating
the Jump condition in amplitude and phase ofserved in
experiments, One thing should be pointed 1s that the branch of
curve between B and C is unstable, Steady state oscillation in
this region 1s a1impossible according to non-linear analysis,
There 1s no surprise that the nmodel gives amplitudes of
oszillation that follow the experimental ones clcsely 1n the

whole lock-1in region as it is de2signed to do so.

Although the phase angle between excitaticn and
oscillation does not agree vary well numerically with the ones
obtained by Feng, this model shows the correct trend at the
first half of the lock-i1n range. The values in branch e-d are
higher than those i1n a-b, This 1s not the trend cbserved in the
laboratory. The range of values for d is not as great as the
one shown 1n figure 3. In the nmodel, the value for 4 1s about
constant at 100° as compared to the variation from zero to 190° .,

All the 1important jumps are observed at 100®° 1n the model while
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1t 15 at ~100° in the measured case.

It 1s @more interesting to examine the relaticnship
ketween H, and Y . As shcwn in Figure 7, o, ,and Y are essentially
related by two linear equations 7joined together at cne end., This
seems to indicate that the wake vortices are organized, or
disorganized, 1in a linear fashion depending on wheher you go up
or down along the curves. This means that the vortex filaments
arsa aligned from theair tilting position to the axis cf the
cylinder gradually in a 1linear manner. However, Feng and
Koopmann both reported a sudden change 1n alignment which would

mean a 'threshold’ amplitude is required to align the vortices,

With all the parameters thus determined, the Eressure
distribution on the surface of the cylinder 1s oktained for
V=,963. At this velocity, ¥ =.45, $=980, and &,=.455. The result
1s shown 1n figure 9. This model is able to predict the dramatic
Iyse 1n pressure coafficient observed in vortex-induced
oscillation. The magnitude of the RMS value at the Strouhal
fraquency 1s 1n the same order as those measured by Feng.
However, the ‘'valley' at 290" deviates from measured values,
The cause of this valley can easily be identified to be
the 4u.sin2g/y term in egquation (16). Attempts have Lkeen made to
se2 whether this modsl 1s able to predict the right kind of
pressure distribution. The best result as far as the valley is
concerned 1s obtained with arbitrary values for the parameters
as shown i1n figure 10. The front half is in good agreement with

those measursd by Peng. The back half i1s more than twice as high
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4S the measured values in some places. This is to be expected
because 1n a potential model, there is no total head loss across
the shear layers. What happens in the real separated flow ais
part of the flow energy 1is used in the formation of the shear
layers. The shear layers roll up to form the wake vortices
alternately. These vortices account partly for the low base

pressur2 on the cylinder.
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The potential model for voctex-induced oscillation
presented here- is able to give the Jjump condition in both
amplitude and phase of oscillation as observed in the
laboratory. It has demonstrated its ability to 1solate the
effects of different quantities ainvolved in the phenomenon. It
Justifies future research to elucidate the phenomenon by this

approach.

Much improvement of the model is required to make it
satisfactory. This can probably be achieved by i1ncorporating the
fact that circulation depends on amplitude into the
characteristics of the vortices, and relating the ©phase of

oscillation to some physical quantities in the wake.
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We consider non-linear differential =guations of the fornm

?*Twzé:(ﬂt,‘(,"r) )

where " 1s a small parameter, The external forcing
function f(_q,t)\{)i’) can be replaced by an equivalent linear
one € with an accuracy to within the order of 7! (sae reference

15) « Assuming Y—.—?sw\(_n:crg) s W2 put

€=-% Yacos(RtrZ)-RY sin (22+3)

Comparing this with the externai forcing function f, we obtain

A

—T%JL go{r(—’nﬁ, Y)cos(at+E)of (azrz)

o4
i

i

= YAl _
K —__ﬂ-—-g :S(_-ﬂ/t, 1, Y)sin(Lt+3d) OC(JL’C*Q)
(3

Thus equation (1) becomes

Y+5 ¥+ (tR)Y =0 (2)



From the theory of lineair oscillation, we get

&\9\
M=
0
]
oYl
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%&
o 0
p
3
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For the lock-in range, 2=1.
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APPENDIX II

The following program calculates Cprms at Strouhal frequency.

REAL M,N
COMMON/FUN/THETA, X1 ,X2,ALFA,P,M,N,8,V,H:PI
S=,2

PY=3 14159
READ(5,10) X1,X2,ALFA,M,N,P,H,V
10 FORMAT(10F10,5)

D0--12%—11= h“’
THETA=PI/18
THETA:THETA%(FLOAT(II)'1-)

————— EXTFRNAL—CRSIN
CPRMSS=SQUANK (CPSIN, ,0,6,28318,.,0001,TOL,FIFTH)
EXTERNAL CPCOS
CPRMSCESAUANK-LEPENS -0 64283 184500015 10k FLETH)

CPFUN_SGRT((CPRMSR**2+CPRMSC**2)/2 /PIxA2)
ANGI ES(THETA/PI)%180,

HDT"I“I"II\ 13/I\ AMC E ﬁPF

&
P4

-
o0
0
P ¢
X
E
o

124 FORMAT(7G1524)
123 CONTINUC

TLOR
A S

END
IN EFFECT+ ID,EBCDIC,SOURCE,NOLIST,NODECK,LOAD,NOMAP

IN-EFRECTa—NAME = MATN —LINECNT = 57

CSx SOURCE STATEMCNTS = 20,PROGRAM SIZE = 762
CS* NO DIAGNOSTICS GENERATED

MATN

hA



&
%

RMINAL SYSTCM FORTRAN G(41336) CPCOS .
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FUNCTION CPCOS(TAU)
COMMON/FUN/THETA, X1 ,X2,ALFA,P,M,N,8,V,H,PT
REAL M,N

YouX 4 AQSINLTALEX D)
=X AS- LN AL X2

YDOT=X1xCOS(TAU+XR2)
PSI{=ATAN? (H=Y,P)

PSI2ZATAND (mHuY P
STH=SIN(THETA)

CrH=COS(THETA)
QQ!—QTM(DQT!'\

CS1=COS(PST1)
8§82=8IN(PSI2)

————— -5 2= GO0 SRS 1)

DI1=P AP+ (HeY)x (H=Y)
D2=PAP+ (H+Y) A (H+Y)

FAPL=S/RT(B
SQD2=SART(N2)
P3I=ATAN2(X1+H,P)

DUT—-ADQTMI CAQTMfDQY\I 30

T PTY Llr\lu

N
Fti=ATAN2 (STH =381/(2,45QD
IF(Fli.LT 0, ) 60 TO 125

TL‘ I'TLH—'TA f"\‘ 1 S4D2TY ON

2
1),CTH=CS1/(2,28G6D1))

X

H
hin
o

{

VVTIT=TTr i g A gl &7 A4 "

Fi=F11 \
GO TO 128

TELTHMETA LT PMTY
It Ayt T

O
+
lin)
W
o

e

FIzF11+42,4P1
GO TO 128

C(—Ci!

Foos ATAN2(STH+2.*Y~? AH LCTHm2, %P)
IF(F22,LT7.0.) GO TO 140

ED—ED)

GN 7O 141
FP=2,xPI+F22

E22= ATAM?IQTHA) uV;) 4u C-TH-m. D *n&

Wik
L3 )

IF(F33,LT.0.) GO TO 150 )
F3=F33

150
151

6o-—T0-151
F3=2,%PI+F33
Fad= ATANB(STHnSS?/(Z %#SQD2),CTH=CS2/(2,450D2))

r:r:nn |T n ) rn T0 QLE

IF (THETA.GT.1.5%P1) GO TO 176
FuzF4u

165
176

GH -rn 120
1 Ao

CONTINUE
FUSFUU+2, %P1

$

————+80—BF+9¥=%%#&S+*ﬂ-SS+*4H~¥994A@H¥F}*491H~GS+#+31*SQD{%%a%SIHﬂS$+#4?T*S———

10D1))«((CS1A(Y=P)=SSIAP)I*YDOT) )/ (U, aVADI A% 5% ((CTH=CS1/(2,%3GD1))

2AA2+(STH=8S1/(2,450D1))x2))

*———————DFQDFGG@GIH-GSE#%FTwSGDB))*4&82*3*382#%H#¥}4*¥DQI-%SIHJSSEJ427*SQB———

12)) A(CS2*(H+Y)=SS24P)xYDOT)/ (4, *VAD2A%L,Sn((CT

2H= CSP/(Z *SQDZ))**P+(STH =552/(2,%30D2))x%x2))

DF3NT= YOOT*(CTH-B *P)/(V*((CTH-Z.*P)**Z*(STH+2 *Y+2,%H) %%2))
ALFAL=ALFAA(MENASIN(TAU))

AL AR ALE AR (MmNASINLT AL




RMINAL SYSTFM FORTRAN G(41336) CPCOS 43

ALIDOT=ALFAANXCOS (TAU)

Al 2D0T==ALFAXN*COS(TAU)
AKOUZALFALA (1, =l AD1) /(2 APTX (1 44, 4D =l % (CTHAP+STH* (H=Y)))) =ALFA

*441-#T1D?>/ezfoL*(LT*aTxoaaﬂ1xccxﬂxpzsxﬂi4amvw\\s
CP==ALIDOTASA(F1=FR)~ SxAL2DOT*(F3=F4)~ALFAL/PI#(DFIDT=NF2DT)=ALFA2
1/PLA(DF3IDT~DFUDT )=l g AYDOTASINCR *THETA) /V42. *AKOUN (w2 s *STH=4 , *#YDOT

A C-THAV) = AKQUAAKOUmY- £ (VA VIASTH
CPCOS=CPACOS(TAU)

RCTURN
END.
IN CFFECT+ ID,FBCNIC,SOURCE,NOLIST,NODECK,LOAD,NOMAP
IN CFFECTr NAMP = CPCOS r LINECNT = 57 ,
168k SOURCE—STATEMENTS -3 58, PROGRAM _SIZ2E = 27.28 !
ICS* NO DIAGNOSTICS GENERATED
CPCOS \
GINS

ON_4SOURCEX-CAUSES A RETURN TH MTS!

\NEan-a s~ Bt

RMINATED \

~




TRMINAL SYSTEM FORTRAN G(413306) CPSIN 44
ALIDOT=ALFARNACOS(TAL)
AIEDOT--ALFA*N*FOS(TAU)
AKQU= ALFA1*(1 -4 ,aD1)/(2, *PT*Cl A0 1wl g% (CTHRP+STHA(H=Y))))=ALFA

—————————%&L@%ruirxna}A@grxp}*¢¢r+uT*nagaTxLQLH*ansmu4ru;vx\\\
CP= -ALlDOT*S*(FI-FZJ S*ALEDOT*(F3~F4)~ALFA1/PI*(DFIDY—DFEDT)'ALFA2

1/PIk(NF3IDT=DFUNT)md,AYDOTASIN(2, ATHETA)/V4+2 . *AKOUA (w2, *STH=U . xYDOT

2 *CT-HAVI)-=AKOUA AKOU—m YL (VA VIXSTH
CPSIN=CPXSIN(TAU)
RETURN

EL‘ID
3 IN EFFECT+ 10,CBCDIC,SOURCE,NOLIST,.NODECK, LOAD NOMAP
) IN CFFECT* NAMLC = CPSIN ¢+ LINECNT = ,

JESA— SOURCE-STATEMENTS = cSTERQGRAM_S42E_a_,,__343g
'ICSA  NO DIAGNOSTICS GFNERATED
| CPSIN

\

~— -




FRMINAL SYSTCM FORTRAN G(41336) CPSIN .
FUNCTION CPSIN{(TAU)

REAL M, N

COMMON/FUN/THETA, X1 ,X2,ALFA,P,M,N,S,V,H,PT

V=X 1A STH(TALLAXD)

YDOT=X1xCOS(TAU+X2)
PST1=ATAN2(H=Y,P)

PSIPSATAN (mHmyY ,P)
STH=STN(THFTA)
CTH=COS(THETA)

$84=SIN(RSTY)
CS1=CNS(PSI1)
832=SIN(PSI2) j

G5 2=G0S-(RSI-2)
DIZPAP+ (H=Y)A(HnY)
D2=PxP+(H+Y)A(H+Y)

S$AB4+=SARTLA )
SED2=SART(N2)
PSIZATAN2(X1+H,P)

PHI=ARSINL 54 INLRSIIASHNR)
Fil= ATANZ(QTH~S$1/(? ASAD1),CTHeCSL/(2,%50D1))
IF(Fll.IT 0.) GO TO 125

T: ITUFTA f"r 4 ‘:-ADT\ f’n Y0434
\~4 o120

T+ e
Fi=F11 \
GO TO 128

TECTHETA LT PHYIYL £A TA (24
LA JAE LSS o tr e B B Tun aar- T e o s e 4 < L 4

F1=F11+2, %P1
GO TO 128

Fi—:‘!i

[ o
|82 B V]
oy

s DA
128 F22=ATAN2(STH+2.#4Y~2,2H sCTHm2 %P)
IF(F22,LTL.0.) GO TO 140

FazF22
60 TO 141
140 F2=2,%PT+F22

+
tad r11-ATAm3{Q7H¢3 A Yk 2k CTHMD'
LR 3 T A § LY

B3
¥ Ld

IF(F33,LT,0%) GO TO 150
F3=F33

GH_TNH 1514
Ty LIS T

150 F3=2,%xPI+F33
1514 FUd=ATAN2 (oTH $82/(2,48Q0D2), CTH»CSe/CZ A8QD2))

Tcrcnn ]T 9'} nn fn cAt
IF (THETA GT, 1 S5%PI) GO TO 176 ’
Fd=Faqy

L0000 120
(S A" e I C Ay Mo

165 CONTINUF
176 F4=F44+2,+PT

4¢ D’ﬁﬂﬂﬁi\\—fﬁTU-QQ(/lDt‘ﬁ
r 4 oY AP A AF S R W =y 1 T

wr -+

——— 80— DF DT oL LI MRS Sk (Hm I JAYND
10D1))*((CS1A(Y=P)=SS1#P)xYDOT)
2#42+ (3TH=851/(2.45QD1))4%2))

T

wV

Vi ¥ LS\ BT AR S a4

*%{,S*((CTHmCS1/(2,%3GD1))

Tids
LI et =3
» A

[w J ¢
e

I%-LC
3/ (4

-

—~———————DF40¥=G+G¥H~G8?442~*6Q92)}*4GS?#R+SSZ*4H+¥9}*¥99¥-484H18Sr#%ev*SQB———

12)) *(CSE*(H+Y)-SS?*P)*YDOT)/(U *VRD2x% ] Sx((CT
2H=CS2/(2 #AS0D2))IAA24 (STH~ =582/ (2,%x8GD2))14%2)) . /

_________ggep;_vnnTalPTu-DraD\/fU*t[ﬂTu-D *D\*i)LIETULﬁ +V :'*u\*;:\\
DF3DT=YDOTA(CTH=2,%P)/ (VX ((CTHm2, *P)**Z*(STH+2 xY42, *H)**?))

ALFAL= ALFA%CM+N*SIN(TAU)J

________AEFAQQAIFALIM—M&QTMITAH\\




46

The following program calculates phase and amplitude of

oscillation.

REAL M,NN /
DIMENSION IPOINT(4,4), ISUB(4), COEC4,4),TEMP(4),PART(4), X(3)
COMMON/Z/X1,X2yX3,HsP,PISyV,MsNN,BETA,RN,ALFA,HF

N=3
MAXIT=20
~ NUMSIG=4

104 READ(S;lO)H,NN,PrHIALFA X
10 FORMAT (15F8,5) -
8=,2

BETA=,00103
RN=,00257 Y
PI=3%,14159 \
1 READ(S,10)V \
IF (vV,EQR,0,) GO TO 35
RFAD(S,10) X(1),X(2),X(3),CONTRO
CALL NONLIN (4,MAXIT,NUMSIG,ISING,X,IPOINT,ISUB,COE,TEMP,PART)
IF (MAXIT,EQ,20) WRITE(6,30)
IF(ISING,EQ,0) WRITE(6,30)
i WRITE (6,20) X,MAXIT,ISING,V,M/NN,P,H ,ALFA ,
20 FORMAT (!0 X!!'8 ARE ',3G15,8,!# IT=1,I3,18ING',12,6F10,3)
30 FORMAT (1X,'NO CONVERGENCE?!)
MAXIT=20
IF(CONTROL,EQ,1) GO TO 101
GO TO 1
35 STOP
END
S IN EFFECTx 1ID,CBCDIC,SOURCE,NOLIST,NODECK,LOAD,NOMAP
S IN EFFECTx NAME = MAIN  , LINECNT = 57 |
TICSA SOURCE STATEMENTS = 26 ,PROGRAM SIZE = 1078
TICS« NO DIAGNOSTICS GENERATED
N MAIN
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'RMINAL SYSTEM FORTRAN G(41336) FK

10
20

SUBROUTINE FK(N/X,Y,K)
COMMON/Z/X1,X2¢X3,H,PsPIsS,V,M)NN,BETA,RN,ALFA,HF
DITMENSION X(N)

EXTERNAL F1,F2

Az==1089,81

B=,06

C==79,248

D=1,07

X1=X(1)

X2z=xX(2)

X3=X(3)

RLIM=0,

RLIMU=3,14159*2,

GO TO (10,20,30),K
Y=SQUANK(F1,RLIM,RLIMU,,00001,TOL,FIFTH)
RETURN ,
Y=SQUANK(F2,RLIM,RLIMU,,00001,TOL,FIFTH)
RETURN

30 Y==X(3)+,36%EXP(CH(XC1)/(X(3)m,104)=D)**x2)+B*EXP ((X(1)/(X(3)=,104)
I=1a14)x%x2%A) HE X Ad(X(1)/(X(3)~a104)=,1)%*2)+,085S*EXP (=2,8929% (X
201)/(X(3)m o 1040) =1 407)x%2)Y=,085%kEXP (=35,3646%(X(1)/(X(3)m104)=1,0.

37)4%2)+,224+4,018%EXP (=74,8933x(X(1)/(X(3)m,104)m],34)%%2)¢,02%EXP(
r1l] U459%(X(1)/(X(3)=q104)m1,25)%%2)m,075%EXP(e1732,87
ST*(X(1)/7(X(3)=q104)=,98)%x22)

RETURN
END
IN EFFECT* ID,EBCDIC,SOURCE,NOLIST,NODECK,LOAD,NOMAP
IN EFFECT* NAMEC = FK ¢ LINECNT = 57
[CS% SOURCE STATEMENTS = 21,PROGRAM SIZE = 1572
[CS% NO DIAGNOSTICS GENERATED

FK

S ———— qg——
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ERMINAL SYSTEM FORTRAN G(41336) F1

FUNCTION FI(TAQ)
COMMON/Z/X1,X2,X3.H,P,PI,S,V,M.NN,BETA,RN,ALFA,HF
REAL M/NN,N
N=NN
TAUSTAO=X2
ALFAL1=X3Xx(M+NXSIN(TAU))
ALFA=X3* (M=N*SIN(TAU))
Y=X1xSIN(TAU+X2)
YDOT=X1xCOS(TAU+X2)
PS=PxpP
HS=H*H
\YS=Y*Y
AAS(ALFAL)A*2%(Y=H)/(PI* (1 =8 X ((YeH)**2+PS)))
AB=(ALFA2)Ax2%x (Y4H)/(PIx(1,=4,*((Y+H)*%x2+PS)))
® ACSALFAL*(=1,+(2,AYDOT*(Y=H) %P+ (PS=(Y"H)A%x2)*Vw2 A (YuH)*SQART ((H=Y)
1x42+PS)*P*YDOT)/ (VA ((Y=H) x%x24PS)**2%x4,))
ADZALFA2* (] ,,= (24 xYDOTAPA(Y+H)+(PS=(Y+H)x*x2)m2 ;% (H#Y)XSQRT ((H=Y) % %2
1+4PS)IAPXYDOT)/ (UoaxVr((Y+HIRA24P8)*%2))

- e o e —— o e

F1=(AA+AB+AC+AD=AE~AF=AG=2,*BETAXYDOT/ (RNAVxV) I*SIN(TAU+X2)
RETURN
END

S IN EFFECT* ID,EBCDIC,SOURCE,NOLIST,NODECK,L.OAD,NOMAP

S IN EFFECT* NAME = F{ . ¢ LINECNT = 57

TICS* SOURCE STATEMENTS = 22,PROGRAM SIZE = 1400

TICS% NO DIAGNOSTICS GENERATED )

N F1

AESALFALXALFA2*YA(PS+YSmHS)/ (2, %PIx((PS+YS=HS) x%2+4 ,xHS*PS))
AF=X3xN*xLOS(TAU)*PIASAPx (SQRT ((Y-) x*x2+PS8)m ,5)/((Y=H) **2+PS)
AG=X3*N*xCOS(TAUI*PI*S*Px (SART ((Y+H) *x*2+PS)=,5)/((YH+H) **2+P3)

-t e e e e e
- P -
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'ERMINAL SYSTEM FORTRAN 6(41336) F2

FUNCTION F2(TAQ)
REAL M/NN,N
COMMON/Z/%X14X29sX3,H,P,PI+S)V,M)NN,BETA,RN,ALFA,HF
N=NN
TAU=TAO=X2
Y=X1%*SIN(TAU+X2)
YOOT=X1%xCOS(TAU+X2)
PS=PxpP
HS=HxH
ALFAL1=X3*x(M+NXSIN(TAU)) [
ALFA2=X3%x (M=N*SIN(TAU))
\YS=Yxy .
AAZ(ALFAL)AX2H(Y=H)/(PT*x (L =l *((Y=H)*%x2+PS)))
AB= (ALFA2)Ax2% (Y4H)/(PI*x (1 =4 *((Y+H)%%x2+PS)))
T OACSALFALX (=1 ,+(2,2YDOT*(Y=H) AP+ (PS=(Y=H)**2)AVm2 , x (YmH) *SGRT ( (H=Y)
1 *42+PS)AP*YDOT)/ (VK ((YmH)**2+PS) xx2x%d ) ) ,
AD=ALFA2H* (1, = (2, *YDOT*Px(Y+H)+(PS=(Y+H)2x2) =2 , k (H+Y)%SART ((H=Y ) %%x2
1APS)XP*YDOT) /(U axVX((Y+H) x*2+PS)I%%x2)) '
AESALFALXALFA2AY X (PS+YS=HS)/ (2, *%PI*x((PS+YS~HS)x%x2+4,xHS%PS))
AF=X3*NACOS(TAUIAPTASAPx (SART((Y=H) &A% 2+4PS)=,53/((Y=H)**x2+PS)
AGEX3AN*COS(TAUIAPIAS*Px (SART ((Y+H) *%2+PS)=,5)/((Y+H)**2+PS)

F2=(AA+AB+AC+ADAE=AF=AG=2 %xBETA*YDOT/ (RNaV*V) )*COS(TAU+X2)
RETURN
END

S IN EFFECT+* 1ID,FBCDIC,SOURCE,NOLIST,NODECK,LOAD,NOMAP

S IN EFFECTx NAME = F2 ¢+ LINECNT = 57

TICSx SOURCE STATEMENTS = 22,PROGRAM SIZE = 1400

TICS* NO DIAGNOSTICS GENERATED

N F2
TS FLAGGED IN THE ABOVE COMPILATIONS,

"GINS

——
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Figure 1. Single-vortex model and pressure distribution.
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Figure 3. Vortex-inducea Ooscirllation Characteristics of

circular cylinder
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Figure 10, Comparision of CPM”predlcted by the present

model with arbitrary values for the parameters

and measured values,
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