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Abstract

This thesis, which consists of four separate essays, employs decentralized newsvendor models to

address some critical problems in the context of decentralized retail supply chains.

Essay 1 examines the effectiveness of returns policies in a decentralized newsvendor model,
in which a manufacturer sells a product to an independent retailer facing uncertain demand and
the retail price is endogenously determined by the retailer. This model will be referred to as the

PD-newsvendor model.

Essay 2 investigates the effect of sequential commitment in the decentralized PD-newsvendor
model with buybacks. Sequential commitment allows the self-profit maximizing parties to commit
to the contract parameters (e.g., wholesale price, retail price, buyback price and order quantity)
sequentially and alternately, and we investigate its effect on the equilibrium profits of the channel

and its members.

Essay 3 analyzes the effect of price and order postponement in the PD-newsvendor me_del,
possibly with a buyback option. Such postponement strategies can be used by a retailer by delaying

his operational decisions (order quantity and retail price) until after demand uncertainty is observed.

Essay 4 considers a suppl.y.chain wherein an assembler buys complementary components (or
products) from n suppliers, assembles the n components into a final product, and sells it at a fixed
retail price over a single selling season. We analyze two contracting systems between the assembler
and the suppliers: push and pull. In the push system, the suppliers initiate the process by offering
their wholesale prices to the assembler, and the assembler then orders from the suppliers well in
advance of the selling season. In the pull system, the assembler first sets the wholesale prices for the
different suppliers, and then the suppliers decide how much to produce and bear all of the inventory

risk. In both systems, suppliers can form alliances among themselves or act independently.
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- Chapter 1

Introduction

1.1 Motivation

A supply chain consists of all entities which combine together to produce and deliver goods to
its customers. Thus, it may consist of the raw material suppliers, through factories, warehouses,
distribufion centres; retail stores to the end customers. Supply chain management is concerned
with the flow of material, information and money among members in the channel. Since very
few firms can manage the entire channel, most supply chains have a decentralized organizational
structure. They consist of independently managed entities who pursue and implement strategies
which rﬁaximize their own welfare. Thus, the decentralized structure of the channel may cause a ’
misalignment among its members’ objectives, which may reduce the effectiveness and performance
of the channel.

In this thesis, we address various critical issues related to coordination, competition and cooper-
ation in the context of a single-period decentralized retail supply chain (i.e., newsvendor problem),
in which chénnel members make their own inventory and pricing decisions. For example, returns
policies are commonly applied in many industries, such as the publishing industry and fashion Weaf,
and they are known to coordinate the newsvendor problem when the retail price is exogenously
given. In.this thesis we analyze the effect and role of returns policies when the retail price is
* endogenously determined. We demonstrate that these policies result with a minimal improvement
in channel efficiency, but, generally, shift expected profits from the retailer to the supplier. Addi-
tionally, fqr example, we introduce a sequential commitment approach, which allows members to
commit to contract parameters sequentially ahd alternately, and our results can provide insight to
channel members th engage in a negotiation process to decide upon the values of contract pa-

rameters. We also investigate the effect of price or order postponement in the newsvendor model.

. Postponement was extensively studied in the context of a centralized system, and we demonstrate
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that, in a decentralized éystem, though, in general, postponement increases the expected profits of
the channel members, it could also decrease, for a low manufacturing cost, the expected profits of
both members. Finally, we study issues of alliance formation among suppliers, and the effect of two
models of contracting between them and a single assembler on the expected profits of the channel

members and their incentives to increase their efficiency.

1.2 Basic Model Formulation and Some Notation

In this section we introduce the decentralized single-period newsvendor model, which is the basic
model setup considered in this thesis. In this model, a manufacturer (M) sells a single product,
possibly together with a buyback option, to an independent retailer (R) who sets an order quantity
and a retail price that affects uncertain demand. Both M and R maximize their own profits. The
decision sequence is as follows: M, who has unlimited production capacity and can produce the
items at a fixed marginal cost ¢, is a Stackelberg leader. M initiates the process by offering a per
unit constant (or linear)‘ wholesale price w, at which items will be sold to R prior to the selling
season, and a'per unit constant {or linear) buyback rate b; at which she will buy back unsold items
at the end of the selling season. In response to the proposed w and b, R commits to an order
quantity @ prior to the selling season, and a per unit selling price p, at which to sell the items
during the season. Thereafter, stochastic demand ibs realized. At the end of the season, R returns
all unsold inventory to M, receiving a refund of b for each unit returned.!- .

Demand, X, that R faces is stochastic, and randomness in demand is price-independent and can
be modeled either in an additive or multiplicative manner. More specifically, demand is modeled
as X = D(p) + £ in the additive case (Mills (1959)), and as X = D(p) - £ in the multiplicative
case (Karlin and Carr (1962)), WhereAD(p) is the deterministic part of X which decreases in the
retail price p, énd & captures the random factor of the demand model, which could have either a
continuous or discrete distribution and is defined on the interval [L,U] with mean pe. To assure
that positive demand is possible for some range of p, we require in this thesis that D(p) + L > 0,
for some p, in the additive demand model, and L > 0 for the multiplicative demand model. If £
follows a continuous distribution, let F'(e) and f(e)' be the distribution and density functions of

&, respectively, where € is a possible realization of {&. F(e) = 0 for € € [0,L] and F(¢) = 1 for

1-1The constant (or linear) buyback contracts are prevalent in many industries, e.g., books, newspapers, recordings,
dairy products, etc., and indeed, they are considered to be one of the most popular contracts after wholesale price-
only contracts, and typify manufacturer-distributor relations in many markets, see, e.g., Marvel and Peck (1995). In
Chapters 2, 3 and 4 in this thesis, we investigate various issues in supply chain management based on the newsvendor
problems under linear buyback contracts, and in Chapter 5, we study an assembly system under a wholesale price-only
contract.
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€ € [U,00). See Petruzzi and Dada (1999) for a review of these two demand models.

We make the following assumptions in this thesis.

(I) Information on the demand distribution and production cost function is symmetric among

all players!2, and all players are risk-neutral.

(II) Unmet demand is lost and there is no penalty cost for unsatisfied demand, and there is no -
salvage value of the unsold inventory, except for Chapter 2, wherein a discussion of the effect of
a positive salvage value of the unsold inventory on the implementation of the returns policies

is provided.

(IIT) For feasibility, the following relationships hold: (i) ¢ < w < p and (ii) 0 < b < w. The order
quantity will never be higher than the largest possible demand, i.e., @ < UD(p), for the
multiplicative demand model, and @ < D(p) + U, for the additive demand model.

(IV) For tractability, the lower bound L of the support of { is assumed to be zero, i.e., L =0, in

all chapters except in Chapter 4, wherein L > 0.

In this thesis, we will refer to the model described above, wherein the retail price p is determined
~ endogenously by R, as the price-dependent (PD) newsvendor.model. By vcontrast, when thé retail
price is exogenously fixed, the corresponding newsvendor model is called the price-independent (PI)
newsvendor model. If M offers only a per unit constant wholesale price, then we refer to the contract
between M and R as a wholesale price-only contract, and when a per unit conétant buyback option
is offered together with a wholesale price, we refer to the contract as a buyback contract (or returns
policy). We will refer to the PD-newsvendor model with a multiplicative (respéptively, additive) -
demand function as the multiplicativé (respectively, additive) PD-newsvendor model.

In the multiplicative PD-newsvendor model with buybacks, in which all contract parameters

(or decision variables) are chosen before demand uncertainty is resolved, we can express M’s and

R’s expected profit functions as follows:

ETly = (w — ¢)Q — bE[Q — D(p)¢]* and Ellg = (p—w)Q — (p— b)E[Q — D(p)¢]*,  (L.1)

L-2Note that in the price-dependent newsvendor model, analyzed in Chapters 2, 3 and 4, the retailer can affect the
value of expected demand by setting different values of the retail price, and in the price-independent assembly system
covered in Chapter 5, the assembler assembles all complementary components and sells the finished product to the
end customers. Thus, the assumption that the demand distribution and cost functions are known information to all
players does not necessarily imply that the manufacturer can control the entire channel, or that s/he does not need
the services of the retailer.
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where E[Q — D(p)¢]* = QF( 5%7 foﬁm pef( |p)de is the expected unsold inventory. The
most commonly used types of the deterministic demand funct1on in the Economics and Operations
Management literature are: linear, D(p) = 1—p, exponential, D(p) = e~ P, and negative polynomial,
D(p) = p79, where ¢ > 1. The restriction ¢ > 1 is used to ensure that R’s optimal retail price will
be upper bounded. For D(p) =1 — p, we assume in this thesis that ¢ <1, since fore=1, both M
and R get a zero profit due to. the fact that demand is zero. Note that the analysis in this thesis
can be easily extended to more general deterministic demand functions: linear D(p) = a(k — p),
exponential D(p) = ae™°P and negative polynomial D(p) = ap~9, where ¢ > 1, for any positive
values of a, k and s. For instance, if D(p) = a(k —p), let p =k -p, w =k -w', b =k b’,.
Q =ak-Q and c = k- ¢'. Then, it is not difficult to verify that the expected profit functions of
M and R, given by (1.1), can be transformed to: Ellp(w, b,p,Q,c) = ak? - EIlY, (v, V,p,Q’,¢)
and Ellg(w,b,p,Q,c) = ak? - EIlx(w',b',p',Q’,c'), where ElI}; and EII; are the expected profit
functions of M and R, respectively, with respect to the expected demand function D(p') =1 —p/
and the marginal manufacturing cost ¢’. Thus, the analysis in a model with decisions (w,b,p, Q),
cost ¢ and D(p) = a(k —p) coincides with that in'a model with decisions (w', ¥, p',Q"), cost ¢ and
D(p') =1 - p'. Note that due to this normalization, the pefformance of the multiplicative models
with and without buybacks (Chapter 2), with- and without sequential commitment (Chapter 3),
with and without decision postponement wiﬁh respect to demand (Chapter 4), and the integrated
system is independent of individual values of c and k, but is dependent on £, which can be referred
fo as the normalized marginal manufacturing cost. Similarly, for D(p) = ae™®P, the performance of
this model is independent of in_dividual values of ¢ and s, and depends only on s - c. Note further
that due to this normalization, the mean of £ can be normalized to p; = 1 in the multiplicative
model, which will be assumed to be the case in the multiplicative models in this thesis. For p¢ = 1,
the expected demand function coincides with the deterministic part in demand, i.é., E(X) = D{(p).

In the additive PD-newsvendor model, ’che. corresponding M’s and R’s expected profit functions

can be expressed as follows: ‘
Elly = (w — ¢)Q — bE[Q — D(p) — €]* and Ellg = (p—w)Q — (p — b)E[Q — D(p) — &]*. (1.2)

In this thesis, we are almost exclusively concerned with the multiplicative model. The additive
model is only studied in Chapter 4, wherein the objective is to analyze the effect of various post-
ponement strategies in the PD-newsvendor model. In general, the analysis of the additive model is

much more complex than that of the multiplicative model, and, therefore we only analyze in Chap-

ter 4 the additive model without buybacks and with X = £ — p where D(p) = —p is linear in p.
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Similar to the multiplicative demand case, the analysis can be extended to a genefal deterministic
linear demand function D(p) = a(k — p) for any positive values of a and k. Note that the expected
demand function in the additive model.is equal to the sum of the deterministic demand and the
mean of £, i.e., E(X) = D(p) + pe.

The following notation will be used in this thesis.
Notation 1.2.1 We will denote by (-)!, (-)* and (?)*, respectively, the equilibrium values in the

integrated system, the system under a buyback contract and the system under a wholesale price-only

contract.

Finally, let us clarify the difference between the notions of “optimal” and “equilibrium” used
in this thesis. Nofe that we consider in the four essays various multi-stage Stackelberg games and
backward induction is used to solve these problems. We will use the term “optimal” to represent,
e.g., a member’s best response functions in the intermediate stages, and use the term “equilibrium”
to stand for the final solutions after solving, completely, the Stackelberg game. For example,
when we solve a four-stage Stackelberg game by using backward induction, the solutions in the
intermediate stages, i.e., Stages 4, 3 and 2, are referred to as a member’s “optimal” or “best”
response functions, and the solution derived in Stage 1 is the “equilibrium” value of the game.
In general, the solution derived, e.g., in Stage 1, is termed “equilibrium” since it is a product of
vertical competition between the upstream manufacturer (or suppliers) and the downstream retailer

(or assembler).

1.3 Summary of Major Findings and Contributions

This thesis consists of four separate essays which are concerned With various issues in a decentralized
supply chain. The first essay, in Chapter 2, is concerned with linear returns policies between channel
members. The second one, in Chapter 3, introduces a new decision-making approach, i.e., sequential
commitment, which allows channel members to commit to their decision variables sequentially and
alternately. The third essay, in Chapter 4, investigates the effect of postponing the downstream
retailer’s pricing and ordering decisions with respect to demand uncertainty, i.e., price and order
postponement strategies, .in a decentralized channel. The last essay,.in Chapter 5, considers a
decentralized assembly system wherein component suppliers can form alliances before they interact
with the assembler.

The first essay studies the desirability of introducing buybacks and their effectiveness in the mul-

tiplicative price-dependent newsvendor model for three commonly used expected demand functions:
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linear, negative polynomial and exponential, wherein the retail price is determined endogenously by
thg retailer. It provides a new insight as to why, returns policies are not more prevalent in practice.
For a zero salvage value of unsold inventory, we demonstrate that in equilibrium, buybacks will be
introduced. for linear and exponential expected demand functions, but they are not introduced for
a negative polynomial expected demand function. In those cases where buybacks are introduced,
we show that their introduction has an insignificant effect on channel efficiency improvement. By
contrast, their introduction may significantly increase the manufacturer’s expected profit, and sig-
nificantly decrease the retailer’s expected profit. Thus, we suggest that in the absence of a positive
salvage value, the introduction of buybacks to the price-dependent newsvendor model is probably
not moﬁivated by a desire to increase channel efficiency. Rather, it is more likely motivated by the
significantly favorable, for the manufacturer, effect it has on the distribution of the channel profit.

It is found that with a zero salvage value, whenever buybacks are implemented in equilibrium,
the wholesale price, channel profit allocation between the manufacturer and the retailer and channel
efficiency. coincide with those values in the corresponding deterministic model, wherein the deter-
ministic demand functio_n coincides with the expected demand function in the price-dependent
newsvendor model. This finding implies that the introduction of buybacks improves the chan-
nel efficiency in the price-dependent newsvendor model up to the efficiency of the corresponding
deterministic model.

The second essay introduces a sequential commitment approach for determining the values of
contract _parameters‘, and analyzes its effect on the PD-newsvendor model with buybacks. Our
analysis reveals that the sequential commitment approach endogenizes the first mover decision.
Indeed, while in the traditional approach (i.e., take-it-or-leave-it paradigm) it is arbitrarily assumed
that one of the parties, usually, M, is the leader, in the sequen’ciai commitment approach, under
certain conditions (e.g., uniform random component of demand and linear, exponential and negative
polynomial expected demand functions), both M and R prefer that M will move first. Additionally,
we show that the sequence M:b; R:p; M:w; R:@Q) (which is referred to as Sequence 2 in Chapter 3),

according to which M first offers a buyback rate b, R then commits to a retail price p, M then
sets the value of w and R then orders @, is the unique equilibrium sequence in the sense that both
barties prefer that M will move ﬁrst, and neither party can benefit by resequencing the ordef at
which it commits to the contract parameters under its control.

We show that the introduction of sequential commitment to the PD-newsvendor model with

buybacks can significantly improve M’s and the channel expected profits, but it can also decrease
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R’s expected profit. For example, Sequence 2 under a uniform distribution of the random com-
ponent of demand and a linear expected demand function always increases M’s and the channel’s
expected profits, e.g., for ¢ = 0.9, 'M’s and the channel’s expected profits are improved by 79.25%
and 21.25%, respectively, and it always decreases R’s expected profit, e.g., for ¢ = 0.9, R’s expected
profit is deteriorated by 73.51%. ' ‘

Th.e third essay analyzes the impact of postponing the retailer’s price and order decisions in the
multiplicative and additive price-dependent newsvendor model until after demand uncertainty is
resolved. We show that, in general, despite vertical competition and aside for some cases;, the effect
of eithef price or ordéer postponement are quite beneficial for the channel and its members. As such,
postponement could beé viewed as a viable strategy to increase channel efficiency. Notwithstanding
the usual benefits of postponement, it is clearly demonstrated in this essay that for some parameter
values, e.g., when the manufacturing cost is relatively low in the multiplicative model, the effect; of
postponement in a décentralized system are qualitatively different than their effect in a centralized
system. Indeed, both in the multiplicative and additive models under a wholesale price-only con-
tract, price and order postponement can make the channel worse off, and in some instances, they
could even make both the manufacturer @nd the retailer strictly worse off. In this regard, as far as
we know, we afe the first to provide examples wherein the expected value of perfect information in
a competitive environment, modeled as a Stackelberg game, is negative.

We also demonstrate that in a decertralized setting, the party, i.e., the retailer, who initiates
postponement, does not necessarily end up gaining the lion share of the increase in the expected
profit. Finally, the results in the multiplicative model also quite clearly demonstrate that the effect
of postponement depends on'the type of contract. Specifically, with buyback options, neither price
postponement nor order_postponement affects the equilibrium wholesale price, profit allocation ratio
and channel efficiency. However, without buybacks, such postponement strategies can sigﬁiﬁcan‘cly
change the equilibrium values. In particular, as explained above, such strategies can make both the
manufacturer and the retailer strictly worse off, which does not happen when a buyback option is
offered.

The last essay studies a price-independent newsvendor model consisting of a single assembler
who buys complementary components or products frpm n suppliers under two contracting systems:
push and pull. In both systems, we investigate the stability of coalition structures in the suppliers’

coalition formation game, and analyze the Stackelberg game between the assembler and the suppli-

ers. We demonstrate that push and pull contracts, which allocate differently inventory risk among
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players, induce, in equilibrium, qualitatively different outcomes.

We show that in the push model, the expected profit of the assembler and the total expected
profit of all suppliers are maximized when all suppliers join to form a single alliance in their
negotiation with the assembler. Nevertheless, an equilibrium analysis which employs the Nash
equilibrium concept reveals that, in equilibrium, all suppliers will deal independently with the
assembler. However, when farsighted concepts are used to analyze alliance formation, it is shown '
that, under certain conditions, the alliance consisting of all suppliers will be formed. As mentioned
earlier, such an alliance will maximize the assembler’s expected profit and the total expected profit
of all suppliers. It will also'maximize consumer surplus. '

Finally, we sho§v that the assembler always prefers the pull system to the push system. However,
the suppliers’ preferences between these two systems depend on their own manufacturing costs.
More specifically, suppliers with relatively lower manufacturing costs prefer push to pull since
under pull, they are apparently not compensated enough for the risk they bear due to uncertain
demand. On the other hand, suppliers with relatively higher manufacturing costs prefer pull to
push since they are compensated proportionally to their cost. It is interesting to note that if all
suppliers have the same mahufacturing_ cost, then all suppliers prefer push to pull.

To summarize, the_ remainder of the thesis is as follows. Chapters 2, 3 and 4 study various
issués in the PD-newsvendor model (with an endogenous retail price) with a single manufacturer
and a single retailer. More -speciﬁcally, in Chapter 2 we considef the effect of linear returns policies

between M and R on the expected profits of the channel and its members, and their effect on the

~ equilibrium values of decision variables. Chapter 3 introduces a sequential commitment approach,

which allows channel members to commit to the dec'ision' variables under their control sequen-
tially and alternately, investigates its effect on the equilibrium expected profits, and provides some
insight to channel members who follow a bargaining process to determine the values of contract
parameters. In Chapter 4 we examine various decision postponement strategies (i.e.-, price and or-
der postponement) and investigate the benefits of managing information flow regarding stochastic
demand. Chapter 5 studies two supply chain systems (push and pull) in the Pl-newsvendor model
(i.e., exogenous retail price) under a wholesale-price only contract, wherein there ére n suppliers
selling Complementafy components to an independent assembler. In thisr chapter, we investigate

and compare the push and pull systems and examine the issue of alliance formation among suppliers

in both systems.



Chapter 2

On the Effectiveness of Returns
Policies in the Price-Dependent
Newsvendor Model

2.1 Introduction

Manufacturers, whose products are subject to random demand, often accept returns of unsold goods
for full or partial credit. For example, books, newspapers, recordings, CDs, dairy products, costume
jewélry, fashion wear, computer pfoducts and peripherals, and perishable services, such as airline
tickets and hotel rooms, are usually allowed to return to their source in North America for full or
partial credit. In general, a supply chain composed of independent agents trying to maximize their
own profits does not achieve channel coordination, see, e.g., Spengler (1950). Pasternack (1985)
was the first to show that buybacks can coordinate the basic price-independent newsvendor model,
wherein a manufacturer (M) offers a good to a retailer (R) for a constant wholesale price and a
constant buyback rate (linear pricing)‘, and ‘R, who faces a fixed retail price and stochastic de-
mand, needs to decide upon the optimal order quantity. Subsequently, other contracts, such as,
e.g., quantity-flexibility (Tsay (1999)), sales-rebate (Taylor (2002a)), and revenue-sharing (Paster-
nack (2002), Cachon and Lariviere (2005)) have also been shown to be able to coordinate the basic
newsvendor model. See also Lariviere (1999), Tsay et al. (1999) and Cachon (2004b) for some
excellent reviews of coordination mechanismé for the basic newsvendor model and related models.

As noted by Kandel (1996), the price-dependent (PD) newsvendor model, wherein the retail
price is determined endogenously by R, is considerably more cdmplicated. However, Emmons and
Gilbert (E&G) (1998) have shown that if the wholesale price is large enough, both M and R

would benefit from the introduction of buybacks when the expected demand function is linear. It

has been conjectured by Lariviere (1999), and.it has been proved by Bernstein and Federgruen
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. (2005), that constant wholesale and buyback prices (i.e., independent of other decision variables)

cannot, in general, lead to goordination in the PD-newsvendor model. By contrast, contracts
which do not employ constant wholesale and buyback prices can induce coordination. Indeed,
e.g., révenue—sharing contracts and the “linear price discount sharing” scheme, have been shown
by Cachon and Lariviere (C&L) (2005) and by Bernstein and Federgruen (2005), respectively,
that they could induce coordination in the PD-newsvendor model. We note, however, that as
discussed by C&L, revenue-sharing contracts require the ability for M to verify ex post R’s revenue,
which may Be costly, and as noted by Bernstein and Fedérgruen (2005), the “linear price discount
sharing” scheme bears close .resemblance to the traditional “bill back” or “count-recount” schemes,
which, unfortunately, are reported to be disliked by retailers (see, e.g., Blattberg and Neslin (1990},
Chapter 11).

Marvel and Peck’s (M&P) (1995) model, which assumes constant wholesale and buyback prices
and is somewhat different than the traditional supply chain model in the Operations Manage-
ment {OM) literatﬁre, incorporates two types of uncertaiﬁty: One with respect to product valu-
ation and the other concerning the number of customers arriving to the retail store. They show
that uncertainty only about product valuation leads to manufacturers’ preference for a wholesale
price-only contract, whereas uncertainty only about the number of arrivals induces manufacturers
to offer buybacks in their contracts. Thus, valuation uncertainty leads to theoretically opposite re-
sults than those derived for arrival uncertainty, which, as M&P suggest, explains why return good
systems are not more wide spread than observed. Note .that if there is only arrival uncertainty,
then M&P’s model essentially reduces to the basic price-independent newsvehdor model wherein
the selling price coincides with a.r.epresentative customer’s product valuation. If there is only prod- -
uct valuation uncertainty, then the equilibrium order quantity is either zero or equal to the known
and fixed number of arriving customers.

In this chapter we study the PD-newsvendor model with constant wholesale and buyback prices,
described in §1.2, which, as stated by M&P, typifies manufacturer-distributor relations in many
markets. Our objective is not to investigate channel coordination. Rathér, our aim is to investigate
possible factors that affect the introduction of returns. Thus, we address queries, such as that by
Lariviere (1999, Section 8.6, second paragraph), as.to why constant wholesale price and buyback
rate contracts are not more prevalent: “Given the apparent power of returns policies, it is not
surprising that they are common in industries such as publishing. Indeed, one may v;ronder why

they are not even more common. Relatively little work has examined this issue...”.



Chapter 2: Effectiveness of Returns Policies - _ : 11

We investigate the effect of buybacks for three different expected demand functions: linear,
negative polynomial and expdnential. For a linear expected demand function and a uniformly
distributed random component of the demand model, our PD-newsvendor model coincides with

E&G’s model. Our main results, for a zero salvage value, are:

(i) The manufacturer may elect not to offer buybacks. Indeed, buybacks are not introduced
in equilibrium when the expected demand function is a negative polynomial function of the

retail price.

(i) If buybacks are introduced in equilibrium, they have a relatively insignificant effect on channel

efficiency improvement.

(iii) By conmtrast, if buybacks are introduced in equilibrium, they could have a rather dramatic
effect on profit distribution. They coﬁld significantly increase M'’s expe.cted profit and signif—v
icantly decrease R’s expected profit. For example, for a linear expected demand function and
a uniformly distributed random component of demand, the introduction of buybacks is shown
to increase M’s expected profit by 12.5% to 23.94% and to decrease R’s expected profit by
15.62% to 20.63%.

(iv) Our analysis demonstrates that the introduction of buybacks in equilibrium induces higher
wholesale price, retail price and retail inventories than those obtained under wholesale price-

only contracts.

(v) In the PD-newsvendor model with buyback options, for a uniformly distributed random
component of demand, the wholesale price, channel efficiency and profit distribution between

M and R coincide with those in the corresponding model with deterministic demand.

It can also be shown that the introduction of a positive salvage value in .the PD-newsvendor
model may have a significant effect on the possible implementation of a returns pbhcy. For example,
for a positive and equal salvage value at M’s and R’s locations, buybacks are introduced for all
three expected demand functions..

Our findings provide several answers to Lariviere’s query as to why return good systems are not
more common. Indeed, as it is the case for a negative polynomial expected demand function and
a zero salvage value, a manufacturer may prefer not to offer buybacks in equilibrium. Further, if
buybacks are introduced, their insignificant effect on channel efficiency would be further diminished

by the additional costs that would arise in a return system, which are not accounted for by the
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model and .which will not be incurred by a wholesale price-only contract (see related discussions
in, e.g., Lariviere (1999) and Lariviere and Porteus_(2001)). Thus, the introduction of buybacks
by manufacturers in the PD-newsvendor model cﬁuld be viewed by retailers, perhaps correctly, as
an attempt to grab additional channel pfoﬁt af their expense. To the extent possible, therefore,
retailers would object to the introduction of return good systems.

The remainder of this chapter is organized as follows: §2.2 recalls the price—dependent (PD)
newsvendor model, as introduced in §1.2 in Chapter 1. In §2.3 we analyze the PD-newsvendor
model, as studied by E&G, wherein the expected demand function is linear in the retail price aﬁd
the random component of demand is uniformly distributed. §2.4 extends the analysis to negative
polynomial and exponential expected demand functions. In §2.5 we discuss an extension to more
general demand distributions and the effect of a positive salvage value on the implementation of the
returns policies, and we reveal a surprising relationship between the PD-newsvendor model with
buybacks and the corresponding deterministic model. Conclusions and future research are provided

in §2.6. All proofs in this chapter are presented in the appendix in §2.7.

2.2 Model Formulation

Consider the single-period PD-newsvendor model with buyback policies described in §1.2. It is
assumed in this chapter that unsatisfied demand is lost, there is no penalty cost for lost sales®?,
and that the salvage value of unsold inventory is zero for>2 both M and R. Recall that for feasibility,
we assume: (i) c<w <pand (i) 0 < b < w.

The stochastic demand, X, that R faces is assumed to be of a multiplicative form X = D(p)é,
which is a commonly used model in the Economics and OM literature. D(p) is the deterministic
part of X, which decreases in the retail price p, and £ (¢ > 0) is the random part of X. Recall
from §1.2 that F(-) and f(-) are the distribution and density functions of £, respectively. The
multiplicative demand model was initially proposed by Karlin and Carr (1962).

It would be interesting and challenging to extend our analysis to the additive demand model

21The zero penalty cost assumption is made mainly for tractability reasons. A positive penalty cost (or goodwill
cost) of unmet demand (or lost sales) accounts for consumers’ dissatisfaction and for potential business losses, espe-
cially in a multi-périod setting. Generally speaking, incorporating a penalty cost for unsold inventory complicates
the analysis significantly. When a goodwill cost is present in the PD-newsvendor model, closed-form expressions for
equilibrium decisions and profits are not available for any of the expected demand functions considered in this chap-
ter. Nevertheless, we have conducted a numerical investigation of the PD-newsvendor model for linear and negative
polynomial expected demand functions. According to our findings, for a low goodwill cost, the results hold. That is,
buybacks are introduced for the linear case but not for the negative polynomial expected demand case. However, for
a high enough goodwill cost, buybacks are introduced in both cases.

22The implications of relaxing this assumption are considered in §2.5.2.
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-wherein X = D(p) + ¢. The additive model, which is also commonly used in the literature, would

be an appropriate model wherein the.variance of demand is unaffected by the expected demand

level. By contrast, the multiplicative model is appropriate where the variance of demand increases

with expected demand in a manner which leaves the coefficient of variation unaffected.

We note, however, that the additive model may lead to qualitatively different results than the
multip.licative.model (see, e.g., Mills (1959), Emmons and Gilbert (1998), Song et al. (2004), and,

in particular, the excellent survey ‘by Petruzzi and Dada (1999)). Moreover, it appears that it is less

_tractable than the multiplicative model (see, e.g., Padmanabhan and Png (1997), Wang et al. (2004)

and §4.7 in Chapter 4 in this thesis). Indeed, even when ¢ has a binary distribution and D(p) is
linear in p, it is difficult to derive a closed-form expression for, e.g., the equilibrium value of w, in
‘the PD-newsvendor problem with an additive demand model.

Finally, let us note the main differences between the mﬁltiplicative and additive demand models
and M&P’s demand model. In the multiplicative and additive models, the stochastic demand is
precisely the number of arrivals, which is a function of the retail price p. It can be assumed that
all arriving customers in these _models are familiar with the product, well informed about the retail
price, and are interesting in buying.it. If n customers were to arrive, then it would be optimal to
order n items. However, in M&P’s model, the number of arrivals is independent of the retail price.
That is, the number of arriving customers is stochastically the same regardless whether the retail
price is very high or very low. This could be interpreted as if the arriving customers are uninformed
about the retail price. Once in the store, either all or none will buy the product, depending on
whether a representative customer’s product valuation exceeds the retail price. Thus, in M&P’s
model, if n customers were to arrive, by contrast with the multiplicative and additive demand
models, it may be optimal to stock nothing.

In this chapter, we adopt E&G’s assumption that the random part of demand, ¢, follows a

~uniform distribution®3 on the interval [0,2], i.e., f(¢) = 0.5 on [0, 2]. Thus, E(¢) = 1, and we can

simplify M’s and R’s expected profit functions, éiven by (1.1), to:

QZ - Q2

EIM(w,b) = (w—c)Q — b (2.1)

We analyze in the next section the effect of buybacks in the PD-newsvendor model with a

linear expected demand function. In §2.4, we extend our study to two other expected demand

23The analysis can be easily extended to a uniform distribution of £ on [0,U] for any U > 0. Due to the normalization
of the deterministic demand function of X described in §1.2, it is known that the upper bound U will have no impact
on the equilibrium values of w, b and p, and for the equilibrium values of Q, Ellxr and Ellg, we have the following
relationship: Q*(U) = ¥Q*(U = 2), EN},(U) = LEN},(U = 2) and EMR(U) = ZEMR(U = 2). See §2.5 where we
briefly report on computational results with power and triangle distributions of &. .
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functions. Recall that, unless otherwise noted, we denote by (-)f, (-)* and (T)* the equilibrium
values in the integrated system, the system under a buyback contract and the system under a

wholesale price-only contract, respectively.

2.3 Effect of Buybacks with Linear Expected Demand |

We analyze in this section the effect of buybacks in the PD-newsvendor model wherein the expected
| demand function, D(p), is linear of the form D(p) = 1 — p. Note that when p = 1, market demand
is zero and both M and R gain zero expected profits. Thus, we assume that p < 1 in the séquel,
except as otherwise noted, and ¢ < w < p < 1. We further note that, for any retail price p, the
highest demand from the end-customer market is 2D(p) since § < 2. '

From (2.1) and for D(p) =1 —p, M’s and R’s expected profit functions can be simplified to:

QZ Q2

| ‘EH% :( (@ —0)Q - b4(1—_p5 and EHf =(p-wQ—-(p— b)ma (2.2)

where the subscript “L” stands for “linear expected demand”. The total expected channel profit,
EH{"W, is the sum of the expected profits of M and R.
According to R’s expected profit function, given by (2.2), and for any given pair (w,b), E&G

have shown that R’s optimal retail price and order quantity are:

3b+1++/(1+8w—9b)(1—b)

2(1 -~ p1)(pp —w)

and Q7 =

x 2.
pL: 1 P —b (2.3)
Taking R’s.teaction functions into account, M’s expected profit function becomes:
*\2
ETY — (w - )@} — b0 2.4

Substituting w = ¢ and b = 0 into (2.3), we obtain the unique equilibrium values of p and @ in

the corresponding integrated system?*:

14++1+8¢ (3 —+/1+8¢c)?
4 4 '

pL = and Qf = (2.5)

Substituting 'pi and Q.i into the expected integrated channel profit function: ENIL = (p—c)Q —
Py 1_2p , and simplifying gives: ’

(38— v1+8c)*(1+V1+38c)
64 '

El =

(2.6)

E&G have shown that for all wholesale prices w € (wr,1), where wr is a threshold value

less than 1, both M and R are better off when M offers a positive buyback rate (i.e., b > 0).

" 24Note that 3 — v/T + 8c > 0 since ¢ < 1. Similarly for other expressions containing 3 — /1 + 8¢ in the sequel.
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However, by contrast with E&G, we are able to find closed-form expressions for wr, the equilibrium
wholesale price, w}, and equilibrium buyback rate, b7. We further show that When the expected
demand function is linear, as assumed by E&G, the efficiency®® of the PD-newsvendor model with
buybacks is precisely 75%, and that the increased efficiency due to the introductioﬁ of buybacks
is insignificant, and bounded by 3.16%. By contrast, we demonstrate that the introduction of
buybacks has a significant effect on the distribution of thé channel profit between M and R.
“Explicitly, we prove that the introduction of buybacks increases M’s expected profit by 12.5% to
23.94%, whereas, R’s expected profit decreases by 15.62% to 20.63%.

We start by providing a closed-form expression for wr.

Proposition 2.3.1 For any wholesale price in the interval (wr = %06(1@, 1), there exists

a buyback rate b > 0, at which both M and R earn higher ezpected profits than when b = 0.

Observe that neither Prop&)sition 2.3.1 nor Proposition 2 in E&G implies that buybacks are
used in equilibrium. Rather, they merely assert that when the wholesale price is large enough,
both M and R benefit from the introduction of buybacks. To prove that buybacks are used in
equilibrium, we need Proposition 2.3.2 and Lemma 2.3.3 below. In Proposition 2.3.2, we derive an
explicit expression for the equilibrium wholesale price, w7, in the PD-newsvendor model under a
wholesale price-only contract, wherein M first commits to a wholesale price w, and then R commits
to a retail price p and an order quantity Q.

_ Now, substituting & = 0 into the expected profit functioné of M and R under a contract
with buybacks, given by (2.2), we obtain M’s and R’s expected profit functions, Eﬂﬁ’f and Eflf,
respectively, in a wholesale price-only contract:

Q2

BNl = (w=c)Q and EIf = (p-wQ-pzg—py. |

(2.7)

Proposition 2.3.2 In the PD-newsvendor model under a wholesale price-only contract, M’s equi-
librium wholesale price is: W} = ﬁ%@.

The following relationship holds between wr and W} .
Lemma 2.3.3 wr < W}.

In view of Proposition 2.3.1 and Lemma 2.3.3, we have: '

25The efficiency of a supply chain is defined as the ratio of the equilibrium channel profit to the corresponding
integrated channel profit. )




Chapter 2: Effectiveness of Returns Policies . 16

Corollary 2.3.4 Buybacks are introduced in equilibrium in the PD-newsvendor model with a linear

expected demand function.

For b = 0 and knowing w3}, we are able to calculate p}, and Q}: in a wholesale price-only contract
by substituting b = 0 and @} into p} and Q7 given in (2.3):

T+ /IT+6dc ., (9— /17T 64c)?
pr= — 16 and Q7 = 64 .

(2.8)

Substituting the resulting p7 and QZ further into Eflﬁ’[ and Eﬂf, given by (2.7), and simplifying
provides us with M’s and R’s equilibrium expected profits in the PD-newsvendor model under a

wholesale price-only contract:
- ‘ - 7 1 ‘
ETIM* = T(3 + /17 + 64c) and EIIF* = T(§ + 5\/17 + 64c), (2.9)

and the equilibrium total expected channel profit under a wholesale price-only contract is:

EFotalx ':_T(12§ + g\/u + 64c), (2.10)

9—+/17+64c)3
where?6 T = J.

8192

Lemma 2.3.5 In the PD-newsvendor model under a wholesale price-only contract, in equiltbrium,

the ratio of M’s and 'R’s expected profits is bounded between 1.28 and 1.5.
We are now able to calculate the channel efficiency with wholesale price-only contracts.

Proposition 2.3.6 The channel efficiency with a wholesale price-only contract is strictly increas-

ing in ¢ and is bounded between 71.84% and 74.07%.

A possible explanation for the increased efficiency as a function of ¢ is that as ¢ iﬁcreases, the
range for w decreases since ¢ < w < p < 1. Thus, an increase in ¢ decreases the possibility for
double marginalization. See also Chapter 4 in this thesis for a similar behavior of channel efficiency
in decentralized systems under decision postponement.

In the PD-newsvendor model with buybacks, E&G had to resort to a numerical and graphical
investigation to. analyze the equilibrium expected prbﬁt_s of M, R and the overall charinel as a
function of w, for parameter values®” (c,a,k) = (1,—3,5). Fortunately, we are able to derive
closed-form expressions for the équilibrium values of w} and b7, and therefrom to derive explicit

expressions for M’s and R’s equilibrium expected profits.

26Note that 9 — +/17 + 64¢c > 0 since ¢ < 1. Similarly for other expressions which contain 9 — /17 + 64c.in the
sequel. . :
2TE&G have considered a “general” linear expected demand function of the form D(p) = a(k — p), see also §1.2.
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Proposition 2.3.7 In the PD-newsvendor model with buybacks, the equilibrium values of M’s

decision variables are: (w} = %i, 7= %), and in equilibrium,

— 3 1
EII* = 2BTIR = (3 Vv1+ 861)2(81 +v1+ 86). | (2.11)

Having the equilibrium wholesale and buyback prices, we are able to calculate R’s equilibrium

retail price and order quantity:

541+ 8¢

—J1 2
P = —s and Q} = @8—4-80) (2.12)

Further, having the equilibrium expected profits of M and R in contracts with buybacks, given
by (2.11), and the integrated channel profit, given by (2.6), we derive the following conclusion.

Proposition 2.3.8 The channel efficiency of the PD-newsvendor model with buybacks is 75%.

Propositions 2.3.6 and 2.3.8 impblyz8 that as compared to the Wholesalé price-only contract, the
' improvement in channel efficiency due to the introduction of buybacks is decreasing in ¢, and it is
quite insignificant, at most 3.16% for ¢ = 0. This result should be contrasted with the significant
effect of buybacks on channel efficiency improvement in the basic newsvendor model, whérein the
retail price is exogenously determined. Indeed, Lariviere and Porteus (2001) have studied the
basic newsvendor model under a wholesale pvri(.:e—only contract, and they have shown, e.g., that the
channel efficiency under such a contract is only 75% when demand' follows a uniform distribution.
But, as shown by Pasternack (1985), the channel can be perfectly coordinated when buybacks
are introduced in the basic newsvendor model, which implies that buybacks can increase channel
efficiency by 26% for uniformly distributed demand. ‘ ‘

From the above discussion we conclude that channel efficiency improvement is unlikely to be
the motivation behind the introduction of buybacks to the PD-newsvendor model. The following

" two propositions suggest another motivation for their introduction in this model.

Proposition 2.3.9 In the PD-newsvendor model, the percentage improvement in M’s equilibrium
ezpected profit due to the introduction of buybacks is strictly decreasing in c and is bounded between

28.94%, forc =0, and 12.5%, for c — 1.

Proposition 2.3.10 In the PD-newsvendor model, the percentage deterioration of R’s equilibrium
ezpected profit due to the introduction of buybacks is strictly decreasing in ¢ and is bounded between ‘

20.68%, for c =0, and 15.62%, for c — 1.

28Recall that the channel efficiency in the wholesale price-only contract is increasing in c.




Chapter 2: Effectiveness of Returns Policies 18

A possible explanation for the decreased improvement in M’s equilibrium expected profit
(Propoéition 2.3.9) and the decreased deterioration in R’s equilibrium expected profit (Proposi-
tion 2.3.10), as a function of ¢, is similar to that given for Proposition 2.3.6. That is, as c increases,
there is less room for M to manipulate w to improve her welfare.

In view of .Propositions 2.3.9 and 2.3.10, we may conclude that a possible motivation for the in-
troduction {(by M) of buyback policies to the PD-newsvendor model is the significant and favorable,
for M, effect it has on the distribution of the channel profit. _

Propositions 2.3.9 and 2.3.10 are consistent with E&G’s findings for the specific instance of the
- PD-newsvendor model they have studied, wherein (c,a,k) = (1,—3,5). Indeed, in their specific
example, ¢ = ¢/k = 1/5 = 0.2, and there is an 18.92% increase in M’s expected profit and a
19.26% decrease in R’s expected profit, due to the introduction of buybacks.

Proposition 2.3.11 below reveals the relationships among the equilibrium wholesale and retail
prices and the order (or production) quantities in supply contracts with and without buybacks and

in the vertically integrated channel.

Proposition 2.3.11 In the PD-newsvendor model:
(1) @ < wi,
(i) pL <t < p} and

(iii) Q5 < Q3 < QL.

It follows from Proposition 2.3.11 that, as expected, the integrated channel would be preferred
by the end customers to a decentralized supply channel with or without buybacks, in the sense that
it offers a lower retail price and makes a larger amount of the product available to customers. But,
while the retail price with buybacks is strictly higher than that without buybacks, the quantity
available for the end customers in a supply chain with buybacks is strictly larger than that without

buybacks. We note that the results derived in Proposition 2.3.11 are consistent with those derived

by M&P for their demand model.

2.4 Effect of Buybacks with Other Expected Demand Functions

In this section, we maintain the assumption that £ follows a uniform distribution, and we investigate
the robustness of our results, presented in §2.3, for other expected demand functions. Specifically,

in §2.4.1 the expected demand function is a negative polynomial function of the retail price, and

in §2.4.2, the expected demand function is exponential.
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2.4.1 Negative polyndmial expected demand

In this subsection, §ve study the PD-newsvendor model with a negative polynomial expected demand
function of the retail price p, D(p) = p~9, where g > 1 and w < p < oo. ‘The restriction ¢ > 1 is
used to ensure that R’s dptimal retaﬂ price will be finite. The analysis can be easily extended to a
general D(p) = ap™9, where a > 0.

According to (2.1), M’s and R’s expected profit functions, denoted as ETI¥ and ETIX, in the
PD-newsvendor model with D(p) = p~? and buyback optiogs are:

Q2 R Q2
= and Elly =(p~w)Q - (p— b)4p—_q, (2.13)

ENN = (w-¢c)Q-b

where the subscript “N” stands for “negative polynomial demand”. Let .

. qw+gb+w—2b+J . 20pN) YN —w)
PN = and Q) = = — , 2.14

where J = /(g + 1)2w? — 2(¢% — ¢ + 2)wb + (g — 2)%v°.

Proposition 2.4.1 In the PD-newsvendor model with buybacks and D(p) = p™9, for any given

(w,b), R’s optimal reaction functions are given by (2.14).

Substituting w = ¢ and b = 0 into p}; and @}, we obtain the unique equilibrium pJIV and QIIV

in the corresponding integrated system:

1
p{v=q+1c, and Q{VZ

4(q - 1)11 c—q
(g+1)ett”

Substituting pfv and QJI\, into the integrated channel profit function: ETIL, = (p—¢)@ — ng_iq, and

simplifying gives: ( Jo-1 _ .
g —1)7" 4, '

S i 2.
(q+ DT ' (219)

I
EHN =
Having R’s reaction functions, p}, and Q}, given by (2.14), M’s expected profit function be-

comes:
ENY = (w - c)Q% —b—(—-ﬁ—-. . 2.16

N ( ) N 4(}7?\,)—(] ( )

Similar to the case when the expected demand function is linear (Proposition 2.3.1), we find a

range of wholesale prices in which exercising buybacks can benefit both M and R.

Proposition 2.4.2 In the PD-newsvendor model with D(p) = p~9, for any wholesale price w,

where w > w:,IY = Eq_c—l, exercising- a buyback option benefits both M and R.
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"M’s equilibrium values of decision variables, (w};, b} ), and the equilibrium expected profits of

M and R are as follows:

Proposition 2.4.3 In the PD-newsvendor model with buybacks and D{p) = p~9, the equilibrium

values of M’s decision variables are: (wy = aﬂ_c—l,bj‘v =0), and, in equilibrium,

EHM* — 4(q - 1)211—‘1 Rx — 4(q B 1)2(1_2 and EH%* — q— 1 )
Mo et lge(g+ 1)t TN T aamlgam(g 4 1)+t EIY ¢

(2.17)

Proposition.2.4.3 implies that when .the expected demand function is a negative polynomial of
the retail price, M elects not to offer a buyback option in equilibrium. Thus, as éuggested earlier,
Proposition 2.4.2, which proves the existence of a range of wholesale prices at which both M and
R would benefit from the implementation of buybacks, is not sufficient for the introduction of
buybacks in equilibrium. Rather, a sufficient condition for the introduction of buybacks is that the
equilibrium wholesale price, for a wholesale price-only contract, falls in the interval of wholesale
_prices at ‘which both M and R would benefit from buybacks. Indeed, in the linear case, this
wholesale price falls in that interval (Lemma 2.3.3), and thus, in equilibrium, buybacks are used.
However, for the negative polynomial demand case, this wholesale price is not in that interval
‘(Propositions 2.4.2 and 2.4.3), and, indeed, in equilibrium, buybacks are not used. V

Proposition 2.4.3 should be compared with the result derived by M&P, accordingv to which M
would always prefer to offer buybacks in equilibrium in the presence of uncertainty only with re-
“spect to the number of arrivals. However, this specific result appears to be implied by their model.
Indeed, when the uncertainty is only with respect to the number of arrivals, M and R know with
certainty the customers’ valuation of the product. By requesting a wholesale price equal to the cus-
tomers’ valuation, M, in M&P’s model, is able to secure the entire channel profit by implementing
a complete consignment contract (full return for full credit). In fact, as noted in §1.2, M&P’s model
with only arrival uncertainty essentially coincides with the price-independent newsvendor model
wherein the retail price is exogenously fixed. Thus, M&P’s result that full-credit buybacks are of-
fered when there is only arrival uncertainty is éonsistent with the literature on channel coordination
through buybacks in the price-independent newsvendor mode! (Pasternack (1985), Kandel (1996)),
wherein M is able to secure the entire chann‘el‘ pfdﬁt by setting w = b = p. Observe that in the
presence of uncertaintyy both with respect to valuation and arrivals, but when there is not very
much arrival uncertainty, M may not offer buybacks in M&P’s model (M&P (1995)).

Having the equilibrium expected profits of M and R, given by (2.17), and the integrated channel

profit, given by (2.15), we can derive the channel efficiency with (or without) buybacks.
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Proposition 2.4.4 The channel efficiency of the PD-newsvendor model with (or without) buybacks

and with D(p) =p™9, is %, where ¢ > 1, and it is strictly decreasing ing.

Note that price elasticity of a negative polynomial expected demand D(p) = p~?is —%% =gq
(> 1). Thus, the larger ¢ is, the more sensitive customers are to changes in the retail price, and
the more severe are the effects of double marginalization. This may explain the decrease of channel
efficiency as a function of q. , . ‘

Similar to the linear expected demand case, one can show that the following relationships hold
among the equilibrium values of decision variables for an integrated firm and a decentralized channel
with a negative polynomial expected demand function: (i) pk, < pl, and (i) Q3 < Q% That is,
the integrated firm charges a lower retail price and produces a larger quantity than the decentralized

system.

- 2.4.2 Exponential expected demand

We consider in this subsection the PD-newsvendor model with an exponential expected demand
function, i.e., D(p) = e”P, where w < p < 0. ‘

For D(p) = e™P, M’s and R’s expected profit functions with buybacks, given by (2.1), reduce
to:
Q2
4e~P’

b 2
ENY = (w—¢)Q — b4§_p

and EIE = (p—w)Q — (p — b) (2.18)

where the subscript “E” stands for “exponential expected demand”. Similar to the negative poly-
nomial expected demand case (Propdsition 2.4.1), according to R’s expected profit function, given

n (2.18), it can be shown that R’s reaction functions for any given w and b are:

. wHb+14+/(w—10)2+6w—"b)+1 2ePE (ph, — w)

(2.19)'

= and Qf = —
Substituting w = ¢ and b = 0 into p} and Q%, we obtain the unique equilibrium pg and
QL in the corresponding integrated system: ph = <L and QL = ZE—%I)(IPE—_C), where H =
E

Ve +6¢ + 1. Substituting pL and QL into the corresponding mtegrated channel proﬁt function:
ENL =(p—-¢c)Q -~ pr= 48 =, and simplifying gives:

(C+3_H)(_C+1+H)6_ﬁ%ﬂ

I _
Ell; = 4

(2.20)

Let us first consider the model under a wholesale price-only contract. Substituting b = 0 into

R’s reaction functions py and Q7% for contracts with buybacks, given‘by (2.19), and simplifying
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provides us with R’s reaction functions in the wholesale price-only contract:

) ]. Z ol w .
Pr="o02 and Qp = HFE w43 2), (2.21)
where Z = vw? + 6w + 1. By substituting the resulting. QE further into M’s expected proﬁfc

function under a wholesale price-only contract, Ef[%f = (w — ¢)Q, we obtain:

_wtliZ

. Eﬁg:(w—c)(w—{-s——Z)e T, : (2.22)

Proposition 2.4.5 In the PD-newsvendor model under a wholesale price-only contract with D(p) =

e”P, the equilibrium wholesale price, WE(> c), is the unique solution to the nonlinear equation:
(w+B)w—c)+w-—c—2)Vuw2+6w+1=0. ‘ - (2.23)
Using Proposition 2.4.5, we are able to show:

Lemma 2.4.6 In the PD-newsvendor model under a wholesale price-only contract with D(p) =

e~?, in equilibrium, M’s expected profit is strictly smaller than R’s expected profit.

We are also able to obtain explicit expressions for the equilibrium wholesale price, w*E, and

buyback rate, b}, in the PD-newsvendor model with buybacks and exponential expected demand.

Proposition 2.4.7 In the PD-newsvendor model with buybacks and D(p) = e™P, M’s expected

profit is globally mazimized at (w} =1+ ¢,by, = 1), and in equilibrium,

B — prifs = €53 _H)(4_C+ LHH) —sgen (2.24)

where H = v/c2 +6¢c+ 1.

Having derived the equilibrium expected profits of M and R, gii/en by (2.24), and the integrated .
channel profit, given by (2.20), we are able to calculate the channel efficiency of the PD-newsvendor

model with buybacks.

P.roposition 2.4.8 The channel efficiency of the PD-néwsvendor model with buybacks and D(p) =
‘ e s 2 ~ 73.58%. - A

By Proposition 2.4.5, the equilibrium wholesale price under a price-only contract, Wy, is im- v

plicitly given by (2.23), and it seems unlikely that a closed-form expression for @3, as a function

of ¢, can be found. Fortunately though using Maple 6 we are able to solve for @}, for any given
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Percentage (%) Equilibrium decision variables
improvement
M’s R’s Channel Integrated Buybacks No buybacks

c | profit | profit | efficiency | p% Q% wg be PE Qr oy | PE (o))
0.0 | 11.14 | -4.33 2.02 1.00 | 0.7358 | 1.00 { 1.00 { 2.00 | 0.2707 | 0.56 | 1.86 | 0.2175
0.1 9.22 -4.16 1.51 1.18 | 0.5602 | 1.10 | 1.00 | 2.18 | 0.2061 | 0.69 | 2.03 | 0.1741
0.5 5.54 -3.23 0.70 [ 1.78 | 0.2424 | 1.50 | 1.00 { 2.78 | 0.0892 | 1.16 | 2.61 | 0.0816
1.0 | 3.65 -2.43 0.38 2.41 | 0.1048 | 2.00 | 1.00 | 3.41 | 0.0385 | 1.72 | 3.25 | 0.0365
2.0 2.06 -1.54 0.17 3.56 | 0.0249 | 3.00 | 1.00 | 4.56 | 0.0092 | 2.79 | 4.42 | 0.0089
5.0 0.74 -0.63 0.04 6.74 | 0.0006 | 6.00 | 1.00 | 7.74 | 0.0002 | 5.87 | 7.64 | 0.0002

Table 2.1: Supply chain performance due to buybacks with D(p) = e™P

value of ¢. Indeed, in Table 2.1 above we present the equilibrium values of the decision variables

for the integrated channel, and of the channel with and without buybacks, as well as the effect of

buybacks on the equilibrium expected profits of M and R and the channel efficiency. Recall that
| by Proposition 2.4.8, the channel efficiency under a buyback contract is % =~ 73.58%.

Based on Table 2.1, we can make the following observations.

Observation 2.4.9 The percentage increase in channel efficiency due to buybacks is decreasing

in ¢, and is mazimized at ¢ = 0 for which it is 2.02%.

Observation 2.4.10 In equilibrium, due to the introduction of buybacks, M’s expected profit in-

. creases at a decreasing rate in c_and R’s expected profit decreases at a decreasing rate in c.

Table Z.i and Observations 2.4.9 and 2.4.10 imbly that for an exponential expected demand
function, the introduction of buybacks in equilibrium has an insignificant effect on channel efficiency.
However, by contrast, it may have a relatively large and favorable, for M, effect on the distribution
of the channel profit. For example, when ¢ = 0, M’s expected profit increases by 11.14%, while R’s

expected profit decreases by 4.33%. These results are consistent with those obtained in the linear

" expected demand case.

. Further based on Table 2.1 we can make the following observation.
Observation 2.4.11 From Table 2.1:
(1) Wg < wg,

(i1) pr <pp < p’,’;; and

(i) Q% < QL < QL.
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1

Observation 2.4.11 is consistent with the corresponding results derived in §2.3 and §2.4.1 for

the linear and negative polynomial expected demand functions.

2.5 Discussion and Extensions

In this section we reveal a close relationship between the PD-newsvendor model with buybacks and
_ the corresponding deterministic model, discuss extensions for other distributions of £ and examine

the effect of introducing a positive salvage value for unsold inventory.

2.5.1 The PD-newsvendor model and the corresponding deterministic model

In the deterministic model, M, in Stage 1, offers a wholesale price w to R, who then determines
the selling price p in Stage 2, which induces demand D(p) that coincides with the expected demand
function in the newsvendor model. Obviously in the deterministic case, R would order a quantity
that is exactly equal to the deterministic demand. Thus, no buybacks are necessary in the deter-
ministic model. Let us take the linear demand as an example and analyze the deterministic model

with D(p) =1 — p.
Example 2.5.1 Deterministic model with D(p) =1 — p.

In Stage 2, for any given w, R determines p to maximize ﬁR(D) = (p—w)D(p), where D(p) = 1—p.

Clearly, Iy is concave in p, which gives p*(D) = H‘Tw Taking R’s reaction function p*(D) into
cdrisiderafion, M’s profit in Stage 1 becomes: Iy = (w—c)D(p) = +(w—c)(1—w), which is, again,
concave in w.  Thus, &*(D) = 4, and accordingly, p*(D) = &< and I, (D) = 211%(D) = gl—_s—c—ﬁ.
For the integrated channel in the deterministic model, we substitute w = ¢ into [Tz = (p—w)(1—p).
Then, p/(D) = 1*2;0 and the corresponding integrated channel profit is 1/ (D) = (iiiz.

A similar analysis can be carried out fbr the other two expected demand functions. The results
are summarized?? ip Table 2.2 in the following page. These results will be further recalled in

Table 4.1 in Chapter 4 and we will further refer to them in §4.5 and §4.6 in that chapter.

29Recall that c in Table 2.2 is the normalized marginal manufacturing cost due to the normalization of the deter-
ministic part in the demand function described in §1.2. More specially, for the linear D(p) = a(k — p), c represents
%, and for the exponential D(p) = ae™", ¢ represents s - c.
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Table 2.2: Equilibrium values in the deterministic model
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The results derived for the PD-newsvendor model With’a uniform &, presented in §2.3 and
§2.4, and those given in Table 2.2 reveal a remarkable connection between the multiplicative PD-
newsvendor model with buybacks and the corresponding deterministic model, which are summa-

rized in Theorem 2.5.2 i)elow.

Theorem 2.5.2 In the PD-newsvendor model with a uniform & and buyback options, when the
expected demand function is either linear, negative polynomial or exponential, the wholesale price,
the channel efficiency and the profit distribution between M and R coincide with those in the cor-

.responding deterministic model.

In fact, to ascertain the robustness of the results derived for a uniform £, we have (iarried out

a humerical investigation for two families of demand distributions of £: power distributions with a

non-negative exponent (f(e) = v(e)t, t € [0,00)) and triangle distributions on the interval [r,2 —r]

for any r € [0,1). The numerical results are presented in Tables 2A.2, 2A.3, 2A.4 and 2A.5 in the

‘appendix in §2.7. Moreover, for a power demand distribution, for any t € [0,00), Chapter 4 in this
thesis further derives implicit solutions for the equilibrium values of the contract parameters and

expected profits in the PD-newsvendor model with linear expected demand. The numerical study,

" whose results are presented in Tables 2A.2; 2A.3, 2A.4 and 2A.5 in the appendix, reveals that the
results derived analytically for a uniform £ are quite robust. More explicitly, for the power and

triangle families of distributions of &:

(1) In equilibrium, buybacks are introduced for linear and exponential expected demand func-

tions, while they are not used for a negative polynomial expected demand function.
(ii) The increase in channel efficiency due to buybacks is relatively insignificant, if at all.
(iii) Buybacks essentially shift the channel profit from R to M.

(iv) Buybacks increase the equiiibrium retail price and inventory level.

..Thus, based on the results obtained for the PD-newsvendor model for power and triangle dis-

tributions of £, we can make the following observation:

Observation 2.5.3 In the PD-newsvendor model with buyback options, for power and triangle

distributions of & and linear, negative polynomial and exponential expected demand functions:

(i) The equilibrium wholesale and buyback prices are independent of the distribution of €.
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(i1) The channel profit distribution between M and R and the channel efficiency are independent of
the distribution of €. Further, for linear and exponential expected demand functions, the profit
distribution and channel efficiency are independent of the model parameters, (i.e., (c,va, k) for

‘the model with D(p) = a(k — p) and (¢,qa,s) for D(p) = ae™*?.

Observation 2.5.3 suggests that for an arbitrary distribution of £ (> 0) and D(p) = a(k—p), w}
and b7 can be derived from Proposition 2.3.7, EHILVI .= 2EH§* and the channel efficiency is 75% for
any (¢, a, k); for D(p) = p~9, w), and b}, can be derived from Proposition 2.4.3, EM* = gg—lEl'I%{*
and the channel efficiency is ﬁﬂﬁ;_;_@l_:_ll, and for D(p) = ae™*P, w}, and b} can be derived from
Proposition 2.4.7, EH%I * = EHg* and the channel efficiency is % = 73.68% for any (¢, a, s).

Thus, in view of the above results we make the following conjecture:

Conjecture 2.5.4 In the PD-newsvendor model with buyback options:

(i) For a general distribution of £(> 0), the wholesale price, the channel efficiency and the profit

distribution between M and R coincide with those in the corresponding deterministic model.
(ii) The buyback rate is independent of the distribution of €.

Conjecture 2.5.4 implies?10 that the addition of buybacks to a wholesale price-only contract
model increases the channel efficiency up to the efficiency of the corresponding deterministic model.
This explains why buybacks are. not implemented in the negative polynomial expected demand case,
wherein the channel efficiency under a wholesale price-only contract coincides with the efficiency
of the corrésponding deterministic model.

Naturally, Conjécture 2.5.4, which was verified by Song et al. (2004) for our three expécted
demand functions, implies a significant reduction iﬁ the computational burden associated with
solving the PD-newsvendor model with a buyback option. Indeed, the equilibrium wholesale price,
efficiency and profit allocation are derived from the corresponding deterministic model. The increase
in efficiency due to buybacks is available once the efficiency of the wholesale price-only contract is
found, and the equilibrium buyback rate for an arbitrary { can be found by solving the model for

a simple form of &, such as, e.g., a uniform &.

210 A fter the completion of essentially the current version of this chapter, and motivated by essentially the current
and previous versions of this chapter, Song, Ray and Li (2004) have managed to verify Conjecture 2.5.4 for a £ which
has the IFR (increasing failure rate) property and for linear, negative polynomial and exponential expected demand
functions.
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2.5.2 Positive salvage value of unsold inventory

A zero salvage value for both M and R was assumed for unsold inventory. There are cases,
however, where some salvage value can be generated from unsold inventory. In this subsection, we
will briefly consider the effect of a positive salvage value on the possible implementation of buybacks
in equilibrium for a uniformly distributed €.

We denote by Sy (respectively, Sg) the salvage value at M’s (respectively, R’s) location, and
we will consider the following cases: (1) Sy =8r=3S5, (2) Sy > Srgand (3) Sy < Sg. It is
reasonable to assume that max(Sa, Sr) < ¢ to avoid a situation of producing for salvaging. We
briefly discuss the three cases below.?11

(1) Sp = Sk = S. In this case, without loss of generality, we can assume®'? that b > S. Then,

M’s and R’s expected profit functions can be written as:
Q2 2 QZ
+S5 and Ellg = (p—w)Q — (p — b)——,
4D(p) = 4D(p) R=(p-w)@ - 4D(p)

where R’s expected profit function coincides with his expected profit function in the case of no

Elly = (w—c)Q — b (2.25)

salvage value.
Following the same steps as in the model with a zero salvage value, one can show that M’s

equilibrium values of decision variables are:

o (wy =1b; = 52“—5) for a linear expected demand functiqn D(p)=1—p;

o (wy = L5, by = 45 5) for a negative polynomial expected demand function D(p) = p~9, .

e (wy =1+4¢,b}; =1+ 5) for an exponential expected demand function D(p) = eP.

Thus, the introduction of a positive salvage value at M’s and R’s locations in the PD-newsvendor ,
model with buybacks does not affect the equilibrium wholesale price, and it caﬁ be further shown
that it has no impact on channel efficiency and the profit distribution between M and R. Thus,
Theorem 2.5.2 holds for a positive salvage value, where Sy = Skg. However; by contrast with the "
-case of a zero salvage value, buybacks are implemented for a negative polynomial expected demand
function when Sps = Sg > 0. Apparently, the introduction of a positive salvage value is enough to

make a buyback option attractive for M.

211 The detailed analysis is available upon request.

212For b < 8, there are clearly no returns. For b = S, there is no difference between returns and no returns, and
considering the extra costs that are possibly associated with returns, we can assume no returns. For b > S, actual
returns may take place. :
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(2) Spr > Sgr. As compared to Case (1), a higher salvage value for M would provide her with
an additional incentive to buy back unsold inventory. Indeed, returns are introduced in all three
expected demand cases. _ ‘ '

(3) Sp < Sg. If R has an advantage salvaging unsold inventory, no returns may occur for
all three expected demand functions. Indeed, if Sg — Sps is large enough, M will prefer b = 0 to
b> Sk.

The results above imply that the existence of a positive salvage value (and perhaps other costs
associated with a returns policy) may have a significant effect on the possible implementation
of a returns policy. We note, however, that our results are consistent with those presented in
Kéndel (1996) for the basic price-independent newsvendor model. Specifically, as noted in Kan-
del (1996), milk and flowers seem to have different returns policies. Unsold milk is usually returned
to the milk processing plants, while unsold flowers are often disposed at the fetail store by price
discounting. The allowance for returns of unsold milk is due t,? the fact that milk processing planté
(i.e., M) can use it to produce ofher dairy items, while a grocery store (i.e., R) does not have such
a capability. On the other hand, it is more economic for a flower retailer to sell unsold flowers at
a discount price than to return them to the flower suppliers. See further Kandel (1996) for other
industrial examples, e.g., apparels and produce, where different returns policies are implemented
for unsold items due to differences in salvage values. ,

Finally, in addition to the form of expected dem'and function and the salvage value of unsold
inventory, factors, such as transportation cost or new product introduction consideration could also
affect returns policies. For example, in the textbook publishing industry, publishers are willing,
sometime even trying hard, to buy back used or unsold textbooks in order to promote and increase

revenues from a new edition of the textbook.

2.6 Conclusions and Further Research

We have studied in this chapter the PD-newsvendor problem with a multiplicative probabilistic
demand model. We have investigated the desirability of introducing buybacks and their effect
on the equilibriurﬁ values of decision variables, channel éfﬁciency and profit distribution for three
' commonly used expec’ced demand functions: linear, negative polynomial and exponential. Initially,
we have assumed a zero salvage value. For this case, we have demonstrated that in equilibrium,
buybacks will be introduced for linear and exponential expected demand functions, but they are not

introduced for a negative polynomial expected demand function. In those cases where buybacks are
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introduced, we have shown that their introduction has an insignificant effect on channel efficiency
improvement. By contrast, their introduction in those cases may significantly increase M’s expected
profit, and significantly decrease R’s expected profit. Thus, we suggest that in the absence of the
salvage value, the introduction of buybacks to the PD-newsvendor model is probably hot motivated
by a desire to increase channel efficiency. Rathér, it is more likely motivated by the significantly
favorable, for M, effect it has on the distribution of the channel pro\ﬁt. These results partially
explain why returns policies are not more common.

It is interesting to note that whenever buybacks are implemented, in equilibrium, in the PD-
newsvendor model, the wholesale price, profit distribution between M and R and channel efficiency
coincide with those values in the corresponding deterministic model. Since a return sy;tem involves
costs not incorporated in this model (see, e.g., Lariviere (1999) and Lariviere and Porteus (2001)),
buybacks will not be introduced when a wholesale price-only contract is relatively efficient. Indeed,
as we have shown, buybacks are not introduced in the negative polynomial expected demand
function case with a zero salvége value, wherein the channel efficiency upder_a wholesale price-only
contract coincides with that in the deterministic model.

However, we have also shown that the existence of a positive salvage value may have a significant
effect on the introduction of buybacks. For example, for a positive and equal salvage value at M’s
and R’s locations, buybacks will be introduced for all three expected demand functions. Thus, if
the éalvage value at M is positive and larger than that at R, M has an additional incentive to
introduce buybacks. These results may explain why some industries implement a return system,
and are consistent with the related discussion in Kandel (1996).

Several natural extensions of our results could be pursued. For example, it would be useful
to study other expected demand functions, and it would be interesting to extend thé analysis to
the PD-newsvendor model with an additive demand model. As suggested earlier, however, (see~
also Emmons and Gilbert (19985, Mills (1959), and Petruzzi and Dada (1999)), the additive model
could produce results which are different from those derived in the multiplicative demand model.

Indeed, as the following example demonstratés, Conjecture 2.5.4 is not valid for the additive model.

Example 2.6.1 The PD-newsvendor model with buybacks and X = £ 4+ 1 — p, where ¢

follows a uniform distribution with f(e) = 0.5 on [0, 2].

In this additive model, M’s and R’s expected profit functions, given by (1.2) can be simplified to:

4

Elly=(w—c)(z+1—-p)— ibz2 and Ellg =(p—w)(z+1-p) - l(p —b)2? (2.26)
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where z = @Q — D(p), which is the “stocking factor”, which was introduced in Petruzzi and

Dada (1999).

Proposition 2.6.2 In the additive model with buybacks, . for a uniformly distributed € € [0,2] and

for D(p) =1 — p, the equilibrium value of z* € [0,2] is the unique solution to:
52+ 6 — 92?2 — 6c — 4cz +22° = 0.

Accordingly, the values of the other equilibrium values of the decision variables are:

*\2 * *\2 * * * ok *\2
) 3 —4z* —4+4 2
P*Z—(Z) +Z +—+E, w*=2p*—z*—1+(z) and b* = —— ot zp+(z).

8 8 4 4 4 2z*

Substituting the equilibrium values of decision variables, given in Proposition 2.6.2, into M’s
and R’s expected profit functions, given by (2.26), we can calculate the equilibrium expected profits
of M and R. These values, as well as the equilibrium values of the decision variables in this model
as a function of ¢, are presented in Table 2A.6 in the appendix in §2.7.

In order to calculate channel efficiency in the additive model with buybacks, we need to consider-
the integrated channel. Proposition 2.6.3 below presents the equilibrium values of decision variables

and expected profit in the integrated channel.

Proposition 2.6.3 In the integrated channel with an additive demand model, X = £€+1—p, where
€ €[0,2] follows a uniform distribution, the equilibrium value of z' € [0,2] is the unique solution
to:

22— 622 4+4(1 —c)z+8(1 -c) =0,

and, accordingly, p! = M. and ETIY = (p! — ¢)(2f '+ 1 —pl) — Ip! (1)

The right most column in Table 2A.6 in the appendix displays the channel efliciency of the
additive model under buybacks as a function of c.

Proposition 2.6.2 and Table 2A.6 immediately imply that Conjecture 2.5.4 in the multiplicative
model is not valid for the additive model. Indeed, it is not difficult to show that the equilibrium
wholesale price in the additive model, given by Proposition 2.6.2, is not equal to the equilibrium

~wholesale price, w* = 2t in the deterministic model with demand E(X) = 1+ D(p) = 2 — p,
which can be easily derived from Table 2.2 by using, reversely, the normalization of the expected
demand function described in §1.2, i.e.,, from D(p) = 1 — p to D(p) = a(k — p). Secondly, from

* Table 2A.6, it is clear that channel efficiency and profit distribution between M and R depend on

the value of ¢. Thus, they do not coincide with those values in the deterministic model, wherein
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channel efficiency is 75% and profit distribution between M and R is 2 : 1, irrespective of the value

of c.

2.7 Appendix

Proof of Proposition 2.3.1. As pointed out by E&G, for a given w, EHR is non-decreasing in
b. Thus, the proof will follow if we are able to show that a—EQEL—(b = 0) > 0 for any w € (wr,1).
For convenience, we present derivatives of p}, and @} with respect to w and b in Table 2A.1 below.
‘Recall that p} and Q7 are given by (2.3). The derivation of the partial derivative expressions is

straightforward.

Expressions corresponding to p7, . Expressions corresponding to Q7.

Py =2(1+3b+ /(T +8w—9)(1-b) | Q; =4+ 2w - 6p}

D

P - 1-b ‘ 2QL _ 6(1—b

w T (1+8w-9)(1-b) - Bw 2~«/(1+8w—9b)(1——b)
Qg;‘ _ 5+4w—9b-3/(14Bw—0b)(1-b) | %Q_bz 63p 3(5-+4w—9b—3+/(1+8w—9b)(1—b))

44/ (1+8w—9b)(1-b) 24/(1+8w—9b)(1-b)

Il

Table 2A.1: Summary of some partial derivatives

It follows from (2.4) that

OETIY oQ*:

GQ*L‘
b - >W

- 1@2(1 ~p) - P@L+ B YL @A)

. By evaluating p}, Q7 L, 7% and 29k 6b , given in Table 2A. 1, at b = 0, substituting them and b = 0

into (2A.1) and smlphfymg, we obtain that: Q—%%L—(b =0) = _‘:’;\/—-_-—Vf;;&”) (20w+1—12¢—3+/1 + 8w).

Let A;(w) = 20w +1 — 12¢ — 3v/1 + 8w. M—HM(b =0) > 0 if and only if A;(w) > 0. Note that
Ay (w) is convex in w and it has two stationary points, w; and ws, where wy = M <

50
24+30c+34/6(1+5 L o .
< M = wy < 1. The last two strict inequalities follow since ¢ < 1. Let wr = ws.

BEH

Since A;(w) > 0 when w > wyp, we have verified that for any w € (wr, 1), ~5:&-(b=0) > 0. O

Proof of Proposition 2.3.2. By substituting b = 0 into (2.3}, we derive R’s reaction functions in
a wholesale price-only contract: pj lﬁ@ and Q* @ﬁ Upon their substitution in
M’s expected profit function, given by (2.7), and simplifying, we obtain: EHM KML
The first derivative of EITY with respect to w is: dBM _ (3—yT7Bu) ( 16w +3v1+8w—1+ 8c).

dw 4/1+8w
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Let As(w) = —16w + 3+/1 + 8w — 1 + 8c. Then, since ¢ £ w < 1, %ﬂl = -16 + \/1%%'< 0.
Thus, Az(w) is strictly decreasing in w. Let w = %@. It follows from the definition

of Az(w) that Ag(w) > 0 for ¢ < w < W, Az(w) < 0 for @ < w < 1 and Ax(w) = 0 for w = w.

) fiM /I 8w _ /18w dETIM _
Since d}figL = (34\/11&?;”)142(11)) and (34 11+ng > 0, we conclude that ——& > 0 for ¢ < w < w,
dETIM _ , dETIM _ Y .

—= < 0forw <w < 1and — & = 0 for w =w. Therefore, EII}" is pseduo-concave in w € e, 1)

and is uniquely maximized at ¥} =w = 5+326+g4 17+6de

. ’ . 2430c+3+/6(1+5 . J/TTT64z
Proof of Lemma 2.3.3. Simply compare wr = M and W} = 5+32°+g4 1746dc

Proof of Lemma 2.3.5. From (2.9) the ratio, F', of M’s and R’s equilibrium expected profits can

. . EIM* 6+2+/17+64c . . . . . . . B
= L — 2reviiTbac
be 81mp11ﬁed to F= Ag* - Trr6dc Wthh 1S StI‘lCtly 1ncrea.smg mc. 'ThUS7 the ratio Of M S

and R’s equilibrium expected profits, F, is bounded between F(c = 0) ~ 1.28 and F(c — 1) =1.5. 0

Proof of Proposition 2.3.6. By (2.6) and (2.10), the efficiency of a wholesale price-only contract
is: :

(9 — VI7+64¢)3(13 + 317 + 64c) _ 2(13 + 3v/17 + 64¢)(3 + V1 + 8¢)®

Eﬁf[l:otal*
% 100% = L = * 100%,
EIL " T To56(3— VIt 8c)3(1+ VIt se) (1 + v/1+8¢)(9 + /17 + 64c) °

which increases in ¢, and thus it is bounded between 71.84% for ¢ = 0 and 74.07% for ¢ — 1. O

Proof of Proposition 2.3.7. It follows from (2.4) that

oEI} 0Q; 1, ., o\—2 N 0Q1 L0,
=QL+ (w—c¢) w ZbQL(l —Pg). [2(1 —pL)“a‘J + Q7 B - (2A.2)

Ow

Substituting p7, @7, %uz; and %, given in Table 2A.1, into (2A.2), and simplifying gives us:
oemy! _ (A=3B)((A_3B)(AB+3b)+8(w—c)B], where A = /1 + 8w — 96 and B = /I~ b. Since
b<w <1, A—3B < 0. Thus, the first-order condition of ETI} with respect to w implies:

(A—3B)(AB+3b)+8B(w —c¢) =0. (2A.3)

Similarly, by substituting p}, @7, % and %Qb—z, given in Table 2A.1, into (2A.1), and simplify-
ing, the first-order condition of EH%’I with respect to b yields:

(A — 3B)[2B(AB + 6b) + b(A — 3B)] + 24B%(w —¢) =0. - (2A.4)
Solving (2A.3) and (2A.4) reveals that (w} = l—;—c,bz = 1) is the unique stationary point of M’s

expected profit function, and the Hessian matrix at this stationary point is:

82EIl 92EIl ' ’
_EM_2 = _Mgw 58 _ 4 Muww Mwb
%%}M. Qg)gu 2(—=3+2)%| Mbw Mbb |’

where z = /1 + 8¢, Mww = 8c%z — 72¢% + 648‘02 — 242¢% — 462z¢ + 1350c + 261 — 251z, Mbb =

8(8¢? + 56¢ — 12z¢ + 17 — 15z) and Mwb = Mbw = 6(—60c? + 42c2 — 150c + 46zc — 33 + 312).
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Since ¢ € {0, 1), it is not difficult to verify that z <-3, Mww > 0, Mbb > 0 and Mwb = Mbw < 0.
Furthermore, we have Mww - Mbb — Mwb - Mbw > 0, which implies that the Hessian matrix at

(w* = %—c,b* = %) is negative definite. Thus, this point is the global maximizer of M’s problem.

Accordingly, we have: EH%’I * = 2EH"E* = (=Vit8e Egh 1+ o

Proof of Proposition 2.3.9. From (2.9) and (2.11), after some simplifications, the percentage
improvement of M’s equilibrium expected profit due to the introduction of buybacks reduces to:

ETIM* _ EITM~ £ 100% = ( (1 +v1+8c)(9 + 17 + 64¢c)®

ETI)* * T 8B+ V17 +640)(3 + VI T 8c)®

which decreases in ¢, and thus it is bounded between 12.5% for ¢ — 1 and 23.94% for ¢ = 0. O

— 1) * 100%, (2A.5)

Proof of Proposition 2.3.10. From (2.9) and (2.11), after some simplifications, the percentage

deterioration of R’s equilibrium expected profit due to the introduction of buybacks reduces to:

ETIE* — EITi £ 100% — ( (1+VT+8c)(9 + V17 + 64c)?
Enf* 8(7 + 17+ 64c)(3 + /1 + 8¢)3

which increases in ¢, and thus it is bounded between -20.63% for ¢ = 0 and -15.62% for ¢ — 1. O

— 1) * 100%, - (2A.6)

Proof of Proposition 2.3.11. (i) W} < wj. By Propositions 2.3.2 and 2.3.7, we know that
Cc

Wy = wﬁa@ and w} = 1€, Thus, we have w} — 0} = 2(9— V17 +64c) > 0 since ¢ < 1.

- T2
ii) pL < p} < pt. By (2.5) and (2.8), we have p} — p} = TvITrose _ IavAt8e We simplify it

(i
to 5% (3 + V17 + 64c — 44/1 + 8¢c), which can be shown to be positive for any ¢ < 1. Thus, pL < pr-
Similarly, by (2.8) and (2.12), we have p} — p} = Stvl8e . Thvllable — L(34 9/T+8c— /17 + 640).

It can be shown that p% < p% for any ¢ < 1. Thus, p} < p% < p}. Similarly for the proof of (iii). O
L L L <PpL <PL v

Proof of Proposition 2.4.1. For any given w, b and p, EHJIE,? given in (2.13), is concave in Q.
: - 2
Thus, at optimality, Q} = Mw By substituting Q} into EII%, we obtain EII§ = pqz()”f_bw).
. oL M
By employing the same proof method as that used in Proposition 2.3.2 to prove that EII}

pseudo-concave in w, we can prove that EH,’f, is pseudo-concave in p. Thus, El'lf, is uniquely

maximized at pjy = w—qz%%{%lﬂ, where J = /(g + 1)2w? — 2(¢? — ¢ + 2)wb + (¢ — 2)262. O

Proof of Proposition 2.4.2. As in the proof of Proposition 2.3.1, for any w, R’s expected
profit is non-decreasing in b. Thus, the proof will follow if we can show that WT = aEn (b=
0) > 0 for any w > w¥, where EII¥ is given by (2.16). By using Maple 6, we get that WT =
—ﬁ%&n(—w(é — 1) + ge), where —ﬁ%ﬁg < 0 since ¢ > 1. Thus, WT > 0 for any

e
w> 250

Proof of Proposition 2.4.3. Using Maple 6 to solve, simultaneously, the first-order conditions

of EH%I with respect to w and b, i.e., B—Eaﬂ”— = 0 and a—E;“L = 0, gives a unique solution (wy =
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Eq_c—l, % = 0). (For brevity, we don’t present the intermediate results here.) The Hessian matrix at

this stationary point-is:

62E‘HM 8%El
?wgb
82EHM © G°Elly

bow b2

cq(g+1)

8(g—1)29+2 ’
Mbw Mbb = __hq ‘;q(gﬂ)q_

where Mwb = Mbw, = %ﬁg Since ¢ > 1, we have Muww - Mbb — Mwb - Mbw > 0,

’ Muww = —4] (g-1)° Ja+l Muwb

which implies that the Hessian matrix at the unique stationary point is negatlve definite. Thus,
the unique stationary point (w* = 61—1, b* = 0) is the global maximizer of M’s problem in Stage 1.
Upon substitution of this point, and the corresponding p}, and @}, given by (2.14), into M’s and

R’s expected profit functions, given by (2.13), we obtain that in the PD-newsvendor model with a
My _ _ 4(g-1%1 Rx _ 4(g—=1)%972
negative polynomial expected demand function, ETIy E;_-&qq—(q%)m, Elly = —11—1———1-6,,_ =T (gF 1)L

ENM
EUN* _ - 9_. O
and BT 7

Proof of Proposition 2.4.5. By (2.22), we have azggfg = E—W(wﬁ_Z)B(w), where B(w) =
~wZ +cZ +2Z —w? + we — 5w+ 5¢ and Z = v/w? + 6w + 1. Note that B(w) can be transformed
to: B(w) = (—w + ¢+ 2)vw? + 6w + 1 — (w + 5)(w — ¢), which is concave in w since —aB(Ww)- < 0.
Since B(w = ¢) > 0 and B(w) < 0 for w large enough, there exists a uﬁique @ such that B(w) >0
for e < w < w, B{w) < 0 for w < w and B(w) = 0 for w = w. Since aggg - e_u?_z(wH—Z)B(w)
andiﬁl—”ig’—ﬁ>0 weconcludethat6—%55->0forc<w<w aETnE—<0forw<wand

B—ES{IU—E = 0 for w = w. Therefore, EH%[ is pseduo-concave in w € [e,00) and uniquely rnaxnnlzed.

at W}, where @}, is the unique solution to B(w) = 0 such that @} > c. O

Proof of Lemma 2.4.6. Substituting' b =0 into M’s and R’s expected profit functions under a
wholesale price-only contract, given by (2.18), gives EIIY = (w—c)Q and EIIR (p—w)Q— 48 2

To prove ETIM* < EIIE*, we need to show that in equilibrium, (w —¢)Q < (p — w)Q — feQ_—z,;,'i.e.,

de P(p+c—2w)
p

0 < Q < 2Pete-w)  By'substituting Pl given by (2.21), into Q = , and simplifying,

P
_wtlitZ .
£ w(;ff; 1+2+29) where Z = vw? + 6w + 1. Thus, we need to compare, at

we obtain: Q =
w = W, the equilibrium order quantity in the wholeséle price-only contract, Q}‘;, given by (2.21),
and @), where ¥} is the equilibrium wholesale price, which satisfies (2.23) in Proposition 2.4.5. Now,

at w = Wy, Q}‘; <Qif (wW+3-2)w+142Z) <4(—3w+ 1+ Z + 2¢), which holds if and onlyif

1+3w?+18w—(w+5)Z
2(6+w)

cinto 5w —4c—1 < Z and simplifying, we obtain that Q*E < Qif (44+w)Vuw?2 + 6w+ 1< w2+7w+8,

5w—4c—1 < Z. By Proposition 2.4.5, in equilibrium, ¢ = , and upon substituting

which holds for any w(> ¢). Thus, we conclude that in equilibrium, Q*E < @, which completes the

proof of Lemma 2.4.6. O
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Proof of Proposition 2.4.7. Having derived R’s reaction functions, p}, and Q%, given by (2.19),
) * V2
M’s expected profit function becomes: EH%I =(w—-0)Qf — %(Q_%);—.
{4 N
Using Maple 6 to solve, simultaneously, the first-order conditions of 'EH%I with respect to w
oEIM oEnY

and b, i.e., —5,;2 = 0 and —5% = 0, gives a unique stationary point (wy =14¢bp =1). The

Hessian matrix (for brevity, again, we don’t preseht the intermediate results) at this point is:

92ET S2EMy
M FE || Mye aam |
el LHas Mbw Mbb
where . 4. 3 3 2 2
166(2¢* + 18¢° + 2¢°H + 12¢*H + 42¢® + 14cH + 23c¢ + 3 + 3H)
Muww = — )
H(l+c+ H)*
8¢ +11c? — ?H + 8cH + 17c + 3+ 3H)f
Mbb=— )
H(l+c+ H)?
» - 3 2 2
Muwb = Mbw — 16(2¢° + 2¢°H 4+ 15¢* + TcH + 13c¢ + 2 + 2H)ﬂ’
Hl+c+H)?
_34ctH

where 8 = e , and, as we recall, H = +/c2+6c+1. One can verify that since § > 0
and Mww < 0, Mbb < 0 and Mww - Mbb — Mwb - Mbw > 0, which implies that the Hessian
matrix at the unique stationary point is negative definite, and M’s expected function is globally

maximized at (w* = 1+ ¢,b* = 1). Thus, the equilibrium expected profits of M and R are:
EH%* = Eng* :»(_c_we—:} CQ H, where H = N +6c+ 1.0 :

Proof of Proposition 2.6.2. Recall that backward induction is used to solve the two stage
Stackelberg game. |

Stage 2: Given (w,b), R chooses (p,z) to maximize Ellg = (p —w)(z +1 —p) — @;f)i%, as
displayed in (2.26), which is concave in z for any given p. Thus, E‘HR is maximized at z* = %1%2,
and accordingly, Fllr(p) = (p — w)(1 — p) + ﬁpp;_ugﬁ, which is unimodal in p. Therefore, we
can conclude that there exists a unique interior solution (p*,z*), which satisfies the first-order

conditions: 'Q%—zrlﬁ =0 and BETER = 0, which gives:

2 —4z — 4+ 4p + 22p + 22

z
w—2p—z—1+z and b= o (2A.7)

Stage 1: In Stage 1, we work with (p,z) for M’s problem instead of with (w,b). Substituting
(w, b), given by (2A.7), into M’s expected .profit function, ETlpy = (w —c¢)(z +1 — p) — %, and

simplifying gives Ell; = —2p? +p(%z +3-— % +¢)— 543 - %’5 -1+ % —cz—c, which is clearly concave
in p and uniquely maximized at p*(2) = ——% + %Z +'% + § for any given z. Thus, M’s expected

profit function reduces to Ellp(z) = 35(z* — 62° + 52% — 4cz® + 12z — 12cz + 4 — 8¢ + 4¢?), which
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can be easily shown to be unimodal in 2. Thus, the first-order condition gives us the equilibrium

value of z*, Which satisfies: 5z + 6 — 922 — 6¢c — dez + 222 = 0. O

Proof of Proposition 2.6.3. Similar to the analysis in Stage 1 in the proof of Proposition 2.6.2,
the expected profit in the integrated channel, Ell; = (p —c)(z+1 —p) — %pzz, is unimodal
in (p,z). Thus, Substituting w = ¢ and b = 0 into the first-order conditions, given by (2A.7),

we can derive the equilibrium value of the stocking factor, z/ € [0,2], is the unique solution to

G(z) = 23— 622 + 4(1 — )z + 8(1 — ¢) = 0, and the equilibrium value of the retail price is
4(z' +1+c)—(21)? O
.

pl=



Percentage (%) improvement in equilibrium values due to buybacks

t=0 t=1 t=2 t=14
) Channel . Channel _ Channel Channel
¢ | B}, | Ell; | efficiency | ETI}, | ETIL | efficiency | EII}, | ETII}, | efficiency | EII}, | EIl; | efficiency |
0.00 | 23.94 | -20.78 3.10 15.49 | -14.51 2.46 11.42 | -10.84 209 | 7.48 | -745 1.47 ’
0.10 | 20.91 | -19:90 2.44 13.76 | -13.82 2.04 10.20 | -10.71 1.63 . 6.71 | -7.25 1.19
0.20 | 18.93 | -19.27 1.99 12.46 | -13.30 1.71 9.25 | -10.32 1.36 6.10 | -7.03 0.98
0.40 | 16.34 | -18.11 1.49 10.63 | -12.71 1.16 7.84 -9.63 0.97 5.15 | -6.35 0.75
0.80 | 13.47 | -16.74 0.91 8.35 | -11.03 0.75 6.06 | -8.23 0.61 391 | -5.46 0.44
0.90 | 12.83 | -15.91 0.95 7.96 | -10.72 0.69 5.74 | -8.12 0.50 3.69 | -5.33 0.37

Table 2A.2: Improvement in the equilibrium values of M’s and R’s expected profits and channel efficiency for f(€) = v - (¢)* and

D(p)=1-p
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Percentage (%) improvement in equilibrium values due to buybacks
t=20 t=1 t=2 t=14

Channel Channel : Channel Channel

¢ | EIL}, | EIl}, | efficiency | ETI}, | ETly | efficiency | EII}, | EIL}, | efficiency | EII;, | Elly | efficiency
0.00 | 11.14 | -4.32 2.03 7.08 | -2.58 1.46 5.19 | -1.83 1.13 3.38 | -1.10 0.79
0.10 | 9.22 | -4.10 1.53 6.05 | -246 | - 1.17 4.48 | -1.78 0.91 2.94 | -1.11 0.64
0.50 | 554 | -3.33 0.66 3.76 | -2.04 0.57 2.82 | -1.42 0.48 1.87 | -0.91 0.34
1.00 | 3.65 | -2.40 0.39 2.46 | -1.57 0.30 1.84 | -1.13 0.25 1.22 | -0.66 0.20
2.00 } 2.06 | -1.50 0.18 1.35 | -0.92 0.15 0.99 | -0.70 0.10 0.65 | -0.44 0:08
5.00 1 0.74 | -0.66 0.03 0.45 | -0.32 0.05 0.32 | -0.30 0.01 0.20 | -0.18 0.01

Table 2A.3: Improvement in the equilibrium values of M’s and R’s expected profits and channel efficiency for f (e) = v- (e)t and

D(p) =e?
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Percentage (%) improvement in equilibrium values due to buybacks

r=20 r=0.25 7 =05 r=0.75 r=09

Channel Channel Channel Channel Channel

c |EIly, | EITy |efficiency | E1I}, | EIT; |efficiency | EIT}, | EIT}, | efficiency | EILY, | EIT}, | efficiency | EIL;, | ETI, | efficiency
0.00]22.49 | -9.40 6.59 18.21| -8.00 5.53 12.921-5.66 | 4.22 6.73 [-2.69| 2.46 2.73 |-0.97 1.08
0.10(15.77 |-12.42| 3.26 12.97-10.31| 2.87 9.26 |-7.12 2.32 4.82 |-3.42 1.41 1.95 |-1.29 0.63
0.20]12.90 |-13.05 1.96 10.62 [-10.64| 1.83 7.51 |-7.14 1.57 3.85 [-3.43| 0.97 1.54 {-1.29 0:43
0.40(10.61 |-12.35 1.28 8.44 | -9.90 1.16 | 5.67 |-6.12 1.05 2.75 [-2.73| 0.64 1.07 {-1.18| 0.23
0.80| 8.35 |-11.03| 0.75 5.36 | -6.82 | 0.72 2.29 |-3.70| 0.46 1.18 |-1.60| 0.17 | 0.38 |-0.54| 0.05
0.90| 7.93 |-10.72| 0.69 4.29 | -5.59 | 0.58 2.13 |-2.88| 030 | 0.84 |-1.18] 0.12 | 0.30 |-049| 0.03

Table 2A.4: Improvement in the equilibrium values of M’s and R’s expected profits and channel efficiency for a triangle distribution of

& and D(p) =1 -p
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Pércentage (%) improvement in equilibrium values due to buybacks

Improvement in the equilibrium values of M’s and R’s expected profits and channel efficiency for a triangle distribution of

¢ and D(p) = e~

r=0 r=0.25 r=05 r=0.75 r=0.9
Channel Channel .| Channel Channel Channel
c | ETl}, | E1Ig |efficiency | E1I}, | E1IE | efficiency | ETI}, | ETIE | efficiency | EIT}, | ETIR | efficiency | E1I}, { EIT} | efficiency
0.00|12.55 [-0.58 3.89 |10.39(-041| 3.31 7.52 | 0.06 2.59 4.00 | 0.67 1.66 1.64 10.37| 0.73
0.10]| 9.14 |-1.47 2.53 7.60 |-0.79 2.31 5.52 |-0.12 1.88 2.94 | 0.15 1.10 1.21 | 0.08 0.47
10.50) 4.26 |-1.46| -0.96 3.54 |-1.33| 0.76 2.56 |-0.901 0.58- | 1.36 [-0.40| 0.35 0.56 |-0.13| 0.16
1.00| 2.47 |-1.31| 0.40 2.08 (-0.98| 0.39- | 1.50 (-0.82| 0.24 0.78 {-0.35| 0.16 0.32 |-0.18| 0.05
2.00| 1.35 [-0.95 0.14 1.09 |-0.75 0.12 0.74 |-0.62 0.04 0.37 {-0.21 0.05 0.14 [-0.08 0.02
5.00| 0.45 |-0.23| 0.08 0.33 |-0.25| 0.03 0.20 |-0.15{ 0.02 0.09 |-0.04| 0.02 0.03 |-0.08| 0.00
" Table 2A.5:
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c w* b* p* z* | Q* | EII;, | Ell} | Ratio p! L | @' | EII! | Efficiency
0.00 | 0.88 | 0.70 | 1.41 }1.50 { 1.09 | 0.56 | 0.18 | 3.09 | 1.00 | 2.00 | 2.00 | 1.00 | 74.71%
0.10 | 0.89 | 0.66 | 1.40 | 1.36 | 0.97 | 0.46 | 0.14 | 3.19 [1.05|1.81|1.76 | 0.81 | 74.64%

020|091 |0.62 | 1.38|1.24 |0.86| 0.37 | 0.11 | 3.31 [ 1.08|1.63|1.55| 0.65 | 74.56%
0.30 | 0.93 | 0.58 | 1.37 |.1.12 | 0.75 | 0.29 | 0.08 | 3.46 {1.11|1.46 | 1.35| 0.50 | 74.46%
0.40 | 0.95 | 0.55 [ 1.35|1.00 | 0.65{ 0.22 | 0.06 | 3.67 [1.14}1.30{1.16 | 0.38 | 74.32%
0.50 | 0.97 | 0.52 | 1.33 | 0.88 | 0.55| 0.16 | 0.04 | 3.97 |1.16 | 1.14 | 0.98 ; 0.27 | T74.12%
0.60 099|049 (1.31|0.77|0.46| 011 | 0.02 | 447 [1.17|0.97 | 0.80| 0.18 | 73.82%
0.70 [ 1.01 | 0.46 | 1.28 | 0.65 | 0.37 | 0.07 | 0.01 | 5.48 | 1.17|0.80{0.63 | 0.11 | 73.30%
0.80 | 1.03 043 [1.24|0.52{0.28 | 0.04 |0.004 | 8.88 [1.16 | 0.63 |0.46 | 0.05 | 72.21%

Table 2A.6: Equilibrium values in the additive model with buybacks and D(p) =1 —1p
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Chapter 3

On Sequential Commitment in the
Price-Dependent Newsvendor Model

3.1 Introduction

It is essentially exclusively assumed in the vast literature on the decentralized newsvendor model
that the decision makers commit to the values of the decision variables under their control si-
multaneously. For example, in the price-dependent (PD) I-leWSVGHVdOI‘ model with buybacks (e.g.,
‘Kandel (1996), Emmons and Gilbert (1998)), the manufacturer (M), assumed to be the Stackel-
berg leader, initiates the process by offering a take-it-or-leave-it contract, in which M decides (after
taking the retailer’s reaction into account), simultaneously, upon the values of a per unit wholesale
i)rice w and a per unit buyback rate b, at which she will buy excess items back at the end of the
selling season. The retailer (R) then decides upon a per unit retail price p and an order quantity
Q. Similariy, when one uses a sales-rebate scheme (Taylor (2002a)) to coordinate the channel in a
PD-newsvendor model, M simultaneously decides upon w, a per unit rebate r (r > 0), which will
be given above a fixed threshold T, and then R decides upon p and Q. _

Our objective in this chapter is to introduce a sequential commitment approach for determining
the contract parameters and to analyze its effect on the efficiency of the supply chain and the
fortunes of its members. By sequential commitment approach we mean that the parties can decide
upon the values of the decision variables sequentially and alternately, and they can also decide
upon the order at which they commit to the values of the decision variables under their control.
For ex‘ample, consider the PD-newsvendor model with buybacks, in which M controls w and b and
R controls p and Q. Then, we would like to study the effect of an approach wherein, for example,
M, after setting up the value of ﬁ), expects R to either commit to a retail price p, or to an order

Quantity @, or both, before she commits to a buyback rate b. After R sets the value of either p or

43
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@, or both, M commits to a buyback rate b, and then, R sets the value of the remaining decision
variable under his control. We assume that all commltments by M and R to values of contract
parameters under their control are credlble and verifiable.

' As compa_red to the traditional approach, in which contracting follows the take—it—or—leave;it
paradigm, the sequential commitment approach introduces more flexibility to contracting. Indeed,

while the traditional approach does not incorporate any element of bargaining or negotiation be-

‘tween M and R, the sequential approach captures some aspects of a bargaining process by which

the values of contract parameters (e.g.,. wholesale price, buyback rate or order quantity) are de-

termined. As such, our sequential commitment approach is in the spirit of contributions by, e.g.,

'Nagarajan and Bassok (2_002)-, and Iyer and Vilas-Boas (2003), wherein the interaction between M

and R, for the purbose of determining the values of contract parameters, is modeled as the Nash

bargaining problem (1950). Such an approach to model contracting between the parties should

. be viewed more realistic than the traditional approach. Indeed, to quote from Nagarajan and
',‘Baséok (2002): “Anecdotal evidence and articles in the academic literature have overwhelmihgly

' 1nd1cated that relationships between agents in a supply chain are characterized by bargaining over

terms of the trade. Sellers and buyers often negotiate price, quantity, dehvery schedules, etc.”

‘To gain an 1n51ght into the effect of such a sequential commitment approach, we study in this
cha.pter its effect on the PD-newsvendor model under linear buyback contracts when M controls
w and b and R controls p and . Linear buyback contracts, wherein the wholesale and buyback

prices are constant and independent of the values of other decision Variables,~ e.g., retail price, are

very popular. Indeed, they are prevalent in several industries, and are considered to be one of the

most popular contracts after wholesale price-only contracts, see, e.g., Marvel and Peck (1995).

We investigate two dlfferent power structures regarding the first mover in the channel. More

- spec1ﬁcally, we study not only the case where M is the Stackelberg leader but also the case in which

R plays the Stackelberg leader role.. We note, however, that being the Stackelberg leader does not
necessarily imply being more powerful. Indeed, a more powerful firm could, in pripciple, force the
other firm to move first if it is advantageous for it to do sé.

The literature on supply chains with'buybacks and coordination is quite extensive. In general, a

supply chain composed of independent agents trying to maximize their own profits does not achieve

- channel coordination, see, e.g., Spengler (1950). Pasternack‘_(-19~85) was the first to show that

‘buybacks can coordinate the basic price—indeperident'newsvendor model, wherein the retail price p

is fixed exogenously, and Padmanabhan and Png (1995) have discussed and analyzed the benefits
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and costs of accepting returns from retailers. Subsequently, other contracts, such as, e.g., quantity-
flexibility (Tsay (1999)), sales-rebate (Taylor (2002)), and revenue-sharing (Pasternack (1999),
Cachon and Lariviere (2005)), have also been shown to be able to coordinate the basic newsvendor
model. See also Lariviere (1999), Tsay et al. (1999) and Cachon (2004b) for some excellent reviews
of coordination mechanisms for the basic newsvendor model and related models.

As noted by Kandel (1996), the price-dependent (PD) newsvendor model, wherein the re-
tail price is determined endogenousiy by R, is considerably more complicated. Emmons and
Gilbert (1998) have studied the PD-newsvendor model in which the expected demand function is
linear and the random component of demand follows a u.niforrn distribution, and they have shown
that if the wholesale price is large enough, both M and R would benefit from the introduction of
buybacks. Chapter 2 in this thesis have shown that in the PD-newsvendor model studied by Em-
mons and Gilbert (1998), Wherein, e.g., expected demand is a linear function of the retail price, the
efficiency of the supply chain with buybacks is precisely 75%, and channel efficiency improvement
due to the introduction of buybacks is quite insignificant and is upper bounded by 3.16%. It has
been conjectured by Kandel ("1996) and Lariviere (1999), and it has been proven by Bernstein and
Federgruen (2005) that constant wholesale aﬁd buyback prices (i.e., independent of other decision

» variables) alone cannot, in general, lead to coordination in the PD-newsvendor model. By contrast,
contracts which do not employ constant wholesale and buyback prices can induce coordination.
For example, revenue-sharing contracts and the “linear price discount sharing” scheme, have been
shown by Cachon and Lariviere (2005) and By Bernstein and Federgruen (2005), respectively, that

" they could induée coordination in the PD-newsvendor model.

Our objective in this chapter is not to investigate channel coordination. Rather, our aim is to
investigate the effect of sequential commitment in the PD-newsvendor model, bearing in mind that
such an approach introduces more flexibility to the possible interaction between M and R, and
that it can provide useful information to the parties who use bargaining to determine the values of
contract parameters.

Our main results are:
(I) For a uniformly distributed random component of demand, and linear, exponentiél and neg-

ative polynomial expected demand functions:

(i) The decision as to who will be the first mover has been endogenized. That is, R would

rather have M move first, and M would be pleased to do so.

(ii) Sequence 2: M:b; R:p; M:w; R:Q), wherein M first offers a buyback rate b, R then
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determines the retail price p, M subsequently decides upon the wholesale price w, and
“finally, R sets Q; is the unique equilibrium sequence. That is, R does not want to be
the first mover, and neither party would like to resequence the order at which it has

committed to the contract parameters under its control.

(II) Sequential commitment in the PD-newsvendor model c:_m signiﬁcantly increase (respectively,
decrease) M'’s (fespectively,. -R’s) expected profit. For example, when thé random compo-
nent of demand follows a uniform distribution and for a linear expectedv demand function,
Sequence 2 can increase (respectively, decrease) M’s (respectively, R’s) equilibrium expected

profit by 79.25% (respectively, 73.51%) when the marginal manufacturing cost is 0.9.

(III) By contrast with the negligible effect. of buybacks in the traditional PD-newsvendor model,.
buybacks, coupled with sequential commitment, can have a s_igniﬁcént impact on channel
efficiency. For example, for a uniformly distributed random part in the demand model and
for a linear expected demand function, Sequence 2 can increase channel efficiency from 10.90%,

for a zero manufacturing cost, to 21.25% when the manufacturing cost is 0.9.

Finally, we note that our sequential‘com_mitment approach can be viewed as decision pbstpone—
ment. That is, M and R delay their decisions about the values of decision variables undér their con- -
trol until the counterpart commits to a decision variable under their control. However, in the various
. postponement strategies, which were extensively studied in the Operations Research/Ope.rations
Management literature (e.g., Lee and Tang (1997); Aviv and Federgruen (2001), van Mieghem and
Dada (1999), and Chapter 4 in this thesis), the decision makers delay some operational decisions-
(e.g., prodﬁction or pricing) until additional information, usually about demand, is obtained. In
our sequential commitment approach, all decisions are made before demand uncertainty is resolved. ,

‘The remainder. of the chapter is organized as -,,'folllows. In §3.2 we recall the traditional PD-
newsvendor model with buybacks, as introduced in §1.2 in Chapter 1. In §3.3 we study the-effect
of sequential commitment in this mbdel, aésuming that the expected demand’ function is linear
in the retail price. For some of the results derived in §3.3, the random portion of demand can
have a general distribufion, while for other results, as will bé noted, we have to assume that the
rahdbm part of demand is uniformly distributed. We extend the analys_ié to other expected.démand
functiéns, namely, exponential and negative polyﬁomial, Aa'rrld to a-power distribution of the random
component of demand in §3.4. Conclusions and further research are discussed in §3.5. All proofs

in this chapter are presented in the appendix in §3.6. '
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3.2 The PD-newsvendor Model with- Buybacks

Consider the single-period price-dependent (PD) newsvendor model with buyback options described

in Section 1.2, wherein-a fnanufacturer (M) sells a single product to an independent retailer (R)

facing stochastic demand from theb-end—customer market. R must commit to a per unit retail price

for the entire selling season and an order quantity in advance of the selling season. The decision

sequence is as follows. M, who has unlimited production capacity and can produce the items at

a fixed marginal cost ¢, is a Stackelberg leader. M initiates the process by offering a per unit

constant (or linear) wholesale price w, at which items will be sdld to R prior to the selling season,

and a per unit constént (or linear) buyback rate b, at which she will buy back the unsold items

at the end of the selling season. In response to the ‘propos'ed w and b, R commits to an order
quantity @ prior to the selling seasoh, and é per unit selling price p, at which to sell the items
during the season. Thereafter, demand uncertainty is resolved. At the end of the season, R returns

all unsold inventory to M, receiving a refund of b for each unit returned. It is assumed in this

chapter that unsatisfied demand is lost, there is no penalty cost. for lost sales, and that the salvage

value of unsold inventory is zero for both M and R. Recall that, for feasibility, we always assume:

(i) e<w<pand (ii) 0 < b < w.

In this chapter, we consider a multiplicative demand model, X = D(p)¢, where D(p) is the
deterministic part of X, which decreasés in the retail price p, and ¢ € [0, U] captures the raridom ’
factor of the demand model, and is retail Iprice independent. Let F(:) and f(-) be the distribution
and density functions of &, respectively.>! For the multiplicative demand model, recall from (1.1)

that M’s and R’s expected profit functions can be expressed as follows:
BTy (w,b) = (w — )@ — bE[Q — X|* and Ellr(p,Q) = (p —w)Q — (p - H)E[Q - X]*, (3.1)

where X = D(p)¢ and E[Q—X]T = QF (= (55 foﬁ%
Since {£ < U, we always assume that @ < UD(p).

f(€)de is the expected unsold inventory.

" If the random component, ¢, follows a power distribution on the interval®2 [0,2], then the
density function of £ is f(€) = y(e)* for t € [0, 00). To ensure F(6=2)=1,v=(t+1)2-¢D,
Under a power distribution of £, we can simplify M’s and R’s expected profit functions, given
by (3.1), t.o | _

v (p—b)Q™?

D)ttt +1)(t+2)
(3.2)

v- th+2
D(p)tFL(t + 1)(t + 2)

EH;V}(w,b) =(w—-¢c)@Q - and EﬁR =(p—w)Q —

3-1Please refer to Section 2.2 in Chapter 2 for a discussion related to the additive demand model.
3-2Recall from Footnote 2.3 in Chapter 2 that the analysis can be easily extended to an interval [0, U] for any U > 0.
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In the next section we study the effect of sequential commitment in the PD-newsvendor model
with buybacks, assuming that the expected demand function is linear in the retail price3?, i.e.,
D(p) =1 —p. For D(p) =1 — p, we recall from §1.2 in Chapter 1 that ¢ < 1, since for ¢ =1, both

M and R get a zero profit due to the fact that demand is zero in this case.

3.3 Sequential Commitment in the PD-newsvendor Model

In this section, we introduce the sequential commitment approach and study its effect in the PD-
newsvendor model with buybacks, wherein M controls (w, b) and R controls (p, Q). By.contr'ast with
the traditional approach, wherein M simultaneously offers w and b, and R, subsequently, commits
to p and Q, in our sequentiél commitment approach, M and R can “sequence” their decision
variables. Thus, M and R can commit to the decision variables under their control sequentially
and alternately, as specified in the sequel.

First, we introduce some new definitions. We will refer to the PD-newsvendor model with buy-
backs, wherein M controls (w,b) and R controls (p, @), as the traditional PD-newsvendor model,
and to the usual ordering of decisions in the traditional PD-newsvendor model, wherein M first
determines w and b, and R, subsequently, decides upon p and @, as the traditional sequence,
to be denoted as M:w,b; R:p,Q. We will refer further to each possible ordering of decisions in
thé traditional PD-newsvendor model, resulting from sequential commitment, as a sequence, or,
a sequencing instance. In genéral, the notation of a 'sequence corresponds to the order at which

decisions are being made. Thus, for example, the sequence denoted as M:b; R:p; M:w; R:Q cor-

responds to a sequential commitment where M, in Stage 1, offers b, then R, in Stage 2, decides
on p, M then, in Stage 3, requests w, and finally, in Stage 4, R determines the order quantity Q.
Similarly, the sequence M:w; R:p, @; M:b corresponds to the case where M, in Stage 1, decides on

w, R then, in Stage 2, decides simultaneously on p and @, and finally, in Stage 3; M determines b.

Backward induction is used to solve these multi-stage Stackelberg games. In §3.3.1 we consider
the case when M is the Stackelberg leader, and the effect of sequential commitment when M ié the
leader is discussed in §3.3.2. The case when R is the leader is_'analyzed in §3.3.3, and in §3.3.4 we

investigate the equilibrium sequence(s).

3-%Recall from §1.2 in Chapter 1 that the analysis can be easily extended to a general linear expected demand
function D(p) = a(k — p) for any a > 0 and k > 0.
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3.3.1 The manufacturer is the leader

Recall that in the PD-newsvendor model, M controls the wholesale price w and the buyback rate b.
There are, in total, 7 sequencing instances resulting from the sequential commitment approach

when M is the leader. We next consider each one of them separately.

The traditional sequence: M:w,b; R:p,Q. Emmons and Gilbert (1998) have studied the

traditional sequence with a linear expected demand function and a uniform distribution of . For a
uniform &, Chapter 2 in this thesis have derived closed-form expressions for the equilibrium values of
the decision variables and expected profits, for linear, exponential and negative polynomial expected
demand functions. Song et al. (2004) have extended these results to a £ whose distribution has the
increaéing failuré rate (IFR) property (i.e., 1—5;%3 is non-decreasing in €). Let us recall their results

for D(p) =1—p:

2* — A(zt)
2 = A(z*) + [Z ef(e)de”

wetaa, b=k p=ln @ =(1-p)7", ad (33)

*

1-
BIly, = 2BTT = —5[2" ~ Ae") = e2'), (3.4)

where z* is the unique solution to (1 — F(z)) —c¢(1+ %?) =0, and, A(z) = 2F(2) — [; ef(€)de.
For example, when £ has a uniform distribution on [0, 2] (i.e., t = 0 in the power distribution),
which has been analyzed in Chapter 2 in this thesis, the equilibrium values of decision variables

and expectéd profits of M and R can be simplified to:

1 VI ' -/ 2.
’U)* = i c, b* = '1“7 P* = > + ks 80, Q* = (3 Lt 80) ’ and (35)
2 2 8 8
— 3 1 :
EII}, = 2ETT, (38— vVIT8)3(1+VI+ 8_c), 36)

128
where, as we recall, ¢ < 1. The equilibrium values of decision variables and expected profits, as a
function of ¢, under a uniformly distributed ¢ are presented in the top block in Table 3A.1 in the
appendix in §3.6. Note that in all tables in the appendix, including Tables 3A.2, 3A.3 and 3A .4,

numbers are presented in scientific format.

Sequence 1: M:w; Rip; M:b; R:Q). According to the notation previously introduced, in Se-

quence 1, M initiates the process by proposing a wholesale price w in Stage 1. R then commits to

a retail price p in Stage 2, M offers a buyback rate b in Stagé 3, and, finally, R commits to ordering

@ from M in Stage 4. Figure 3.1 in the following page represents the timeline in this seciuence.
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R determines p R chooses @
(Stage 2) (Stage 4)
T | [ T Timeline
M offers w M determines b  Demand uncertainty
(Stage 1) (Stage 3) € is realized

Figure 3.1: The timeline in Sequence 1: M:w; R:p; M:b; R:Q

Assumption 3.3.1 Agents in the supply chain are willing to select an action which improves the
performance of the supply chain (i.e., benefit their partners) as long as they are not adversely

affected by such an action.

Note that in Sequence 1, the decision on @ is made after the retail price p is set. Thus, choosing
Qis equiva}ent to choosing z, where z = _D%?) is the “stocking factor” introduced by Petruzzi and
Dada (1999). See their paper for more details about the advantages of this transformation. For
a uniformly distributed £, we are able to derive implicit expressions of the equilibrium values in

Sequence 1.

Proposition 3.3.2 In Seqdeﬁc?l: M :w; Rp; M:b; R:Q, with a uniformly distributed € € [0,2]
1+\/41+8c 1)

and D(p) = 1—p, the equilibrium value of the retail price p* € | 1s the unique solution to:

1-pp- 9T 4 (4o -2 ) =0, 6

where Hi(p) = (v2p?=p ;C+ VP —C)z. Accordingly, the equilibrium values of the other decision variables

are:

b*zp(Bw —-p —2c), atid Q*:(w +p* —2¢)(1 - p*)

*=C+ 2*2_ * *_, 3
w V(2(p*)? - p* = o) (p* —¢) T . p= :

and the equilibrium expected profits are:

(1 —p*)(w* +p* —2¢)?

EIy, =

4p* 2p*

The equilibrium values of the decision variables and expected profits in Sequence 1 for a uni-

formly distributed £, as a function of ¢, are presented in the top block in Table 3A.2 in the appendix.

Sequence 2: M:b; R:p; M:w; R:Q. For a uniformly distributed &, we have derived implicit

expressions of the equilibrium values of decision variables and expected profits in this sequence.
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Proposition 3.3.3 In Sequence 2: M:b; R:p; M:w; R:Q, with a uniformly distributed £ € [0,2]

and D(p) = 1—p, the equilibrium value of the retail price p* € [1+——-— V41+8°, 1) is the unique solution to:

o-0Z2 4 mp) =0, BNET)

P
ingly, the equilz’bm'um values of the other decision variables are:

=3(2(p*)® — p* — ¢) + Ba(p*) 2(p* —c)(1 —p")
2(2+c¢— 3p*) (2p* — b*)
and the equilibrium values of the expected profits are:

(p* = )Ha(p")
8

where Ha(p) = =6p%+5p+dpe=detBap) g By (p) = v/ (2p? — p — c)(—6p? + Tp + 8pc — 9¢). Accord-

(" = )" — o)
2p* — b ’

b* = , and w* =p* —

, @ =

(1 -p")(@* - b*)(p* —¢)?
(2p* . b*)2 .

Elly = and Ellf =

The equilibrium values of the decision variables and expected profits in Sequence 2 for a uni-
formly distributed &, as a function of ¢, are displayéd in the top block in Table 3A.3 in the appendix.
Note that contracting which follows the sequence M:w; R:p, @ would result with the traditional
wholesale price-only contract. Thus, We will refer to this sequence as the wholesale price-only con-
tract sequence. Further, we will say that two sequences coincide if their corresponding equilibrium

values of decision variables and expected profits are equal.

Next, we consider the following two sequences: Sequence 3: M:w; R:p, Q; M:b and Sequence 4:

M:w; R:Q; M:b; R:p.

Sequence 3: M:w; R:p, Q; M:b. This sequence is a three-stage problem. In Stage 3, given

(w,p,Q), M chooses b to maximize her expected profit in (3.1). Clearly, for any :distribution of &
and any form of D(p), M would offer a zero buyback rate, i.e., b* = 0. Thus, Sequence 3 reduces

to the wholesale price-only contract sequence: M:w; R:p, Q. We immediately have:

Proposition 3.3.4 For an arbitrary distribution of £ and for an drbitmry expected demand func-

tion D(p), Sequence 8: M.w; R:p,Q; M:b coincides with the wholesale price-only contract sequence.

Sequence 4: M:w; R:Q; M:b; R:p. As shown by Proposi’cioh 3.3.5 below, Sequences 4 coin-

cides, under some conditions, with Sequence 3 and the wholesale price—dnly contract sequence.

Proposition 3.3.5 For a power distribution of € € [0,2] with f(e) = ~(e)t (where t > 0 and

v = (t +1)2=¢+)) and when D(p) is a decreasing function of p and satisfies D(p)dzT[;g&) - (t+

2)(%@)2 < 0, Sequence 4: M:w; R:Q; M:b; R:p coincides both with Sequence 3 and with the

wholesale price-only contract sequence.




Chapter 3: Sequential Commitment _ 52

Note that the condition D(p)dzﬁDp22 - (t+ 2)(%22)2 < 0 in Proposition 3.3.5 is satisfied by
three commonly used expected demand functions in the Operations Management and Economics
literature: linear, D(p) = 1 — p, exponential, D(p) = eP, and negative polynomial, D(p) = p~9.

Let us next study the remaining two sequences when M is the leader, which are shown in

Propositions 3.3.6 and 3.3.7 below to result with R getting a zero profit.

Sequence 5: M:b; R:p, Q; M:w. In this three-stage sequence, in Stage 3, for any given (b, p, @),

M would choose w as large as possible, since her expected profit function, given by (3.1), is strictly
increasing in w as long as @ > 0. Thus, w* = p, which implies that R’s expected profit function,
given by (3.1), is not positive. R, therefore, should select p* =bifb>cor Q* =0, as in both cases
his expected profit is zero. By Assumption 3.3.1, R would select p* = b if b > ¢, which results with
a consignment contract, in which M attains the total expected ﬁroﬁt of the integrated channel and
R gets a zero profit. M, in Stage 1, will definitely set b > c¢ to realize the expected profit of the

integrated channel since, otherwise, she will get a zero profit. Thus, we have the following result.

Proposition 3.3.6 For an arbitrary distribution of £ and for an arbitrary expected demand func-

tion D(p), in Sequence 5: M:b; R:p,Q; M:w, M gets the expected profit of the integrated channel

and R gets a zero proﬁt.'
A similar result is derived for Sequence 6 in the following proposition.

Proposition 3.3.7 For an arbitrary distribution of € and for an arbitrary expected demand func-

tion D(p), in Sequence 6: M:b; R:Q; M:w; R:p, M gets the entire expected channel profit, which
A
is strictly less than the expected profit of the integrated channel, and R gets a zero profit.

3.3.2 The effect of sequential commitment when M is the leader

Having analyzed all possible sequencing instances when M is the Stackelberg leader, we are able to
compare the equilibrium profits of M, R and the channel for the different sequencing instances re-
sulting from the sequential commitment approach, and to investigate the effect of such an approach

on the equilibrium values of the decision variables and expected profits.
Proposition 3.3.8 For a uniformly distributed £ and D(p) =1 — p,
ETL;4(52) > ETI},(S1) > EII;,(T'S),

where “S17, “S2” and “TS” stand for “Sequence 1”7, “Sequence 2”7 and “the traditional sequence”,

respectively.
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Tables 3A.1, 3A.2 and 3A.3 in the appendix, respectively, present the equilibrium values of
the decision variables and expected profits of M, R and the channel in the traditional sequence:

M:w,b; R:p, @, Sequence 1: M:w; R:p; M:b; R:Q and Sequence 2: M:b; R:p; M:w; R:Q under a

uniform distribution of £ and D(p) = 1 — p. By comparing these values, we can immediately make

the following observations:

Observation 3.3.9 For a uniformly distributed £ and for D(p) =1 — p:
(i) EIL3;(S2) > EIT%,(S1) > EILL,(TS).
(it) BT} p(52) > Bl q(S1) > BTl p(T'S).
(iii) EII5(TS) > EIl(S1) > EIIL(S2).
(iv) p*(T'S) > p*(S1) > p*(52).
(v) w*(S2) > w*(S1).
(vi) b*(S2) > b*(S1) and
(vii) Q*(52) > Q*(S1),

where EIl},, p stands for the equilibrium value of the expected channel profit.

Note that Observation 3.3.9 (i) is consistent with Proposition 3.3.8, and implies that in these
three sequences, in equilibrium, M will attain the highest expected profit in Sequence 2 and the
lowest expected profit in the traditional sequence. Observation 3.3.9 (i) suggests that both Se-
quence 1 and Sequence 2 increase channel efficiency, which, as we recall from Chapter 2 in this
thesis, is 75% for the traditional sequence. However, it appears that they also adversely affect
R’s expected profit, as is evident from R’s equilibrium expected profits in these three sequences
presented in Tables 3A.1, 3A.2 and 3A.3 in the appendix. Indeed, from Tables 3A.1 and 3A.2,
under a uniform £ and for ¢ = 0.9, as compared to the traditional sequence, Sequence 2 improves
M’s equilibrium expected profit and channel efficiency by 79.25% and 21.25%, respectively, and
decreases R’s equilibrium expected profit by 73.51%.

In general, in Sequences 1 and 2, M is delaying one of her two decisions in order to affect
R’s choice of retail price and order quantity in a manner beneficial to her.” Apparently, it is more
effective for M to delay her decision on the wholesale price w and offer a more generous buyback
rate b, rather than delay her decision on b and offer a relatively low w.

By Propositions 3.3.4 and 3.3.5, Sequence 3: M:w; R:p, Q, M:b (for any distribution of £ and

for any form of D(p)) and Sequence 4: M:w; R:Q; M:.b; R:p (for a power distribution of £ and for

either a linear, exponential or negative polynomial D(p)) lead to a wholesale price-only contract.
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By Propositions 2.3.6, 2.3.8, 2.3.9 and 2.3.10 in Chapter 2 in this thesis, we immediately have the

following conclusion:

Corollary 3.3.10 For a uniformly distributed £ and for D(p) = 1—p, as compared to the traditional
sequence, Sequence 8: M:w; R:p,Q, M and Sequence 4: M:w; R:Q; M:b; R:p lead to a lower

ezpected profit for M, a lower expected channel profit and a higher expected proﬁt for R:

Recall that in Sequence 5: M:b; R:p,Q; M:w, M attains the expected profit of the integrated

channel while R gets nothing. Thus, from M’s point of view, Sequence 5 dominates all other
sequences when she is the leader. However, we note that this sequence may not be reasonable
because it forces R to commit, e.g., to an order quantity before the wholesale price is set. Similarly,

in Sequence 6: M:b; R:Q; M:w; R:p, M gets the entire expected channel profit and R gets nothing.

But, again, it may be difficult for M to enforce Sequence 6 for the same reason that Sequence 5

may not be enforceable.
3.3.3 The retailer is the leader

The findings in the previous subsections raise a natural question: what can R achieve using the
sequential commitment approach if he is the Stackelberg leader? Thus, we consider in this sub-
section a “power structure” in which R is the leader (see, e.g., Choi (1991), Trivedi. (1998), Wang
and Gerchak (2003), Gerchak and Wang (2004), Chapter 5 in this thesis, and Cachon (2004a) for
other models in which R can act as the Stackelberg leader). Now, similar to the case when M is
the leader, when R moves first, seqﬁential commitment induces a total of seven sequences in the
PD-newsvendor model wherein R controls p and @ and M controls. w and b.

Let us first consider the sequence R:p; M:w; R:Q; M:b, which will be referred to as Sequence 7.

Following our general notatioq, in this four-stage sequence, R initiates the process by committing
to a retail price p in Stage 1. In Stage 2, M sets her wholesale price w, R then commits to a
quantity @ in Stage 3, and ﬁnally, M offers a buyback rate b. For a uniformly distributed £ and
for D(p) = 1 — p, we have the following result.

Proposition 3.3.11 In Sequencé 7 Rp; M:w; R:Q; M:b, for a uniformly distributed & and for

D(p) =1 —p, the equilibrium values of the decision variables are:

14+ /1 1++/ 2 -V 2
p* _ + + 80, W= ( +v1+ 80) , b* = 0, and Q* — (3 1+ SC) , (39)
4 16 8 A
and the equilibrium expected profits of M and R are:
—+/1 31 -1 v
BT, = 2B, = 8= V1 +89°% +89) (3.10)

128
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By comparingr the equilibrium values in Sequence 7: R:p; M:w; R:Q; M:b with those displayed

.in (3.5) and (3.6) for the traditional sequence: M :w,.b; R:p,Q, we immediately have the following

conclusion.

Corollary 3.3.12 For a uniformly distributed £ and for D(p) =1 — p:
(i) ETI},(S7) = 2EIIR(S7) = EIL},(TS) = 2ETIL(TS).
(1) @(S7) = Q*(TS).
(43) p*(S7) < p*(T'S).
(iv) w*(S7) < w*(TS) and
(v) b*(S7)(= 0) < b*(T'S),

where “TS” and “S7” stand for “the traditional sequence” and “Sequence 7”7, respectively.

Thus, as compared to the traditional sequence, wherein M is the leader and buybacks are
implemented, Sequence 7, wherein R moves first, achieves the same equilibrium expected profits
for channel members with the same equilibrium quantity, but lower wholesale and retail prices and
without an implementation of a buyback policy.

The eqﬁilibrium values in the sequence R:Q; M:w,b; R:p, which will be referred to as Se-

quence 8, are presented in Proposition 3.3.13 below.

Proposition 3.3.13 For a power distribution of £ € [0,2] with f(e) = (€)' (where t > 0 and

vy = (t +1)2=¢)) and when D(p) is a decreasing function of p and satisfies D(p)%%gp—) —(t+

2)(%;”))2 <0, Sequence 8: R:Q; M:w,b; R:p, in equilibrium, results with both M and R realizing

a zero profit.

Similar to Proposition 3.3.5, the condition on D(p) in Proposition 3.3.13: D(p)fiid%g—’Zl - (t+

2)(%}?’))2 < 0, is satisfied by linear, exponential and negative polynomial expected demand func-
tions.

Let us consider another sequence: R:p; M:w,b; R:Q. In this sequence, in Stage 3, for any

distribution of & € [0,U] and any form of D(p), R’s expected profit function, given by (3.1},
is concave in @} and the optimal order quantity Q* satisfies dETgE = 0, which leads to p —w =
(p—b)F(Q). In Stage 2, we work with (b, Q) instead of (w,b) for M’s problem. Thus, M’s expected
profit function in Stage 2 becomes: Ellys = (p—c—(p—b)F(Q))Q—bE[Q—X]*, which can be easily
shown to be increasing in b for any given (p,@). Thus, b* = p, which results with w* = p = b*,

Ellg =0 for any p, and Ellp = (p — ¢)Q — pE[Q — X]™T, which coincides with the expected profit

function in the integrated channel. Since R’s profit is always zero in Stage 1 regardless of the value
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of p, by Assumption 3.3.1, (p, @) is set to maximize M’s expected profit function, and we conclude
that in equilibrium, M realizes the expected profit of the integrated channel and R gets & zero
profit. )

Consider another sequence: R:Q; M:w; R:p; M:b under general £ € [0,U] and D(p). In this

sequence, M’s choice of b is always zero, and thus, M’s expected profit function becomes ETlys =
(w—c¢)Q. Whatever R’s decision on p in Stage 3, M prefers a wholesale price w as large as possible
in Stage 2, which, in turn, results with w* = D_l(%), due to the assumption that Q < UD(p) <
- UD(w). Such a choice for w* will lead to p* = D_l(g‘), and R has to choose @* = 0 in Stage 1,
since otherwise, his expected profit is strictly negative. Therefore, in this sequence, both M and R

get a zero profit.

In general, except for Sequence 7: R:p; M:w; R:Q; M:b, when R initiates the process by offering
either a retail price p, or an order quantity @, or both, his equilibrium expected profit is always

zero. Proposition 3.3.14 below summarizes this result.

Proposition 3.3.14 With exception of Sequence 7 and for a general distribution of £ and a general
form of D(p), except for Sequence 8, wherein £ is restricted to a power distribution and D(p) is
linear, ezponential and negative polynomial, when R initiates the process by offering either a retail
" price p, or an order quantity Q, or both, his equilibrium ezpected profit is always zero. Among these
SiT sequences, three induce a complete consignment contract in which M attains the total expected

profit of the integrated channel, and in the other three sequences, M gets a zero profit.

Corollary 3.3.12, Propositions 3.3.13 and 3.3.14 imply that for a uniform £ and for D(p) = 1-p,

R can never do strictly better than in the traditional sequence when he moves first.

3.3.4 The equilibrium sequence

Having considered all possible sequences, resulting from sequential commitment in the PD-newsvendor
model, it is natural to investigate which, if any, of these sequences will emerge in equilibrium. For
that purpose, let us assume that the first mover (either M or R) has been determined and M and
R are free to decide, sequentially, upon the order in which they specify the values of the decision
variables under their control. We consider the following two-étage Stackelberg game in order to
find an equilibrium sequence. '

Set of players: {M, R}.

Action: Each player chooses which decision variable(s) to decide upon in their first step.

Set of strategies available for M: {(w), (b}, (w,b)}.
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Set of strategies available for R: {(p), (@), (p,Q)}.
Outcome: A sequencing instance. ‘
Payoff: Equilibrium expected profits for M and R.

For example, if M is the leader, who initiates the process, then M could choose either w only,
b only or both w and b in her first step (Stage 1), and then, R follows by deciding upon either p
only, @ only or both p aﬁd Q in his first step (Stage 2). After the first two steps, the decision
sequence is determined. We would then say that a sequential ordering of decision variables is an
equilibrium séquence if neither M nor R can improve their expected profits by resequencing their
decision variablés. Naturally, if any party elects not to conclude a deal, both pafties would realize
a zero profit.

In the discussion below, it is assumed that if one of the two parties decides to specify, in any
stage, only one of the two decision variables under his/her control, the other party is expected to
commit to one or both of the decision variables under its control. Thus, e.g., R cannot insist that
M should determiné, sirnultaneouély, the values of w and b before R determines the values of p
and @, and M cannot insist that R should specify both decision variables under his control after
M has specified the value of one of the two decision variables under her control. Recall that being
the Sfackelberg leader does not necessarily imply being more powerful.

Now, assume that M is the first mover th offers R, initially, only a wholesale price w. Then,
R can either choose a retail price p, or an order quantity @, or both. To find what is best for
R, we need to compare R’s expected profit (i.e., payoff) in the following sequences: Sequence 1:

M:w; R:p; M:b; R:Q, Sequenée 3: M:w; R:p,@; M:b and Sequence 4: M:w; R:Q; M:b; R:p. Ac-

cording to Propositions 3.3.4 and 3.3.5, when ¢ has a power distribution and D(p) is either a linear,
or exponential or negative polynomial function of p, Sequences 3 and 4 result with a wholesale
price-only contract, and it follows from Proposition 3.3.15 below that R prefers Sequence 1 to

Sequences 3 and 4.

Proposition 3.3.15 For a power distribution of £ and for any form of D(p), for ahy given w, R’s
equilibrium expected profit derived from Sequence 1: M:w; R:p; M:b; R:Q is strictly larger than his

equilibrium expected profit in a wholesale price-only contract.

By Propositions 3.3.4, 3.3.5 and 3.3.15, we can conclude that for a power distribution of £ and

when D(p) is either a linear, exponential or negative polynomial function of p, when M offers, at

the outset, a wholesale price w, R would then specify only the retail price p. -
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On t_he other hand, suppose M offers, initially, a buyback rate b, and consider Sequence 2:
M:b; R:p; M:w; R:Q, Sequence 5: M:b; R:p,Q; M:w and Sequence 6 M:b; R:Q; M:w; R:p. By

Propositions 3.3.6 and 3.3.7, R’s expected profit is always zero in Sequences 5 and 6, and according
to the proof of Proposition 3.3.3, R realizes a strictly positive expected profit in Sequence 2 under
a power distribution of ¢ and D(p) = 1 — p. Thus, one can conclude that for a power distribution
of £ and for D(p) = 1 — p, the best response fo_r R is, again, to commit in this stage only to a retail
price p.

Thus, whatever M offers first, the best response for R is only to set his selling price p. Knowing
this, M would only have to compare her performance in the traditional sequence: M:w,b; R:p,Q,

Sequence 1: M:w; R:p; M:b; R:Q and Sequence 2: M:b; R:p; M:w; R:Q, to conclude that her

preference, in case she moves first, is to set, in Stage 1, only the buyback rate, and we have:

Proposition 3.3.16 When M is the Stackelberg leader in the PD-newsvendor model with buybacks,
wherein £ follows a uniform distribution and D(p) = 1 — p, Sequence 2: M:b; R:p; M:w; R:Q is

the unique equilibrium sequence.

Let us next consider the sequencing instances wherein R is the first mover. If R initiates the
process by offering only a retail price p, then M would get the expected profit of the integrated
channel by following, e.g., the sequence R:p; M:w,b; R:Q. If R initiates the process by offering

only Q, then, again, M would get the expected profit of the integrated channel by following the
sequence R:Q; M:b; R:p; M:w. When R initiates the process by offering both p and @, M and

R will both get a zero profit. Therefore, whatever R offers first when he is the first mover, his
expected profit is always zero, and thus, he is indifferent between being the Stackelberg leader and
not having any deal whatsoever with M. According to the proof of Proposition 3.3.3, R realizes a
strictly positive expected profit in Sequence 2 under a power distribution of £ and D(p) =1 — p.

Thus, our conclusion is therefore:

Proposition 3.3.17 In the PD-newsvendor model under a power distribution of £ and D(p) =.
1 —p, R prefers not to be the leader and would rather have M move first.

It follows from Propositions 3.3.16 and 3.3.17 that Sequence 2: M:b; R:p; M:w; R:Q is the

only equilibriufn sequential commitment instance in the PD-newsvendor model, and thus, in this
case, the first mover is determined endogenously. We observe that this equilibrium sequence is

neither the traditional sequence studied, e.g., by Emmons and Gilbert, nor a sequence in which w

is prbposed before b. In this sequence, M fares better and R fares worse than in the traditional
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sequence. However, in equilibrium, R is able to prevent M from grabbing the entire expected
channel profit, which M would have achieved if she had the power to force R to adopt, e.g.,
Sequence 5: M:b; R:p,Q; M:w. '

Finally, it follows from Propositions 3.3.4, 3.3.5, and Corollary 3.3.10, that, for a uniform £ and
for D{p) = 1 — p, there are two sequences, i.e., Sequence 3: M:w; R:p,@Q; M:b and Sequence 4:

M:w; R:Q; M:b; R:p, which coincide with the wholesale price-only contract, wherein R would be

strictly better off than in the traditional sequence. However, in both sequences, M is the leader
and she and the channel are strictly worse off. Thus, unless R can force M to move first, it may
be impossible for him to implement these two sequences. Finally, it follows from Propositions 3.3.6
and 3.3.7, Observation 3.3.9 (iii), and Propositions 3.3.13 and 3.3.14, that in all other sequences,
for a uniformly distributed £, R cannot improve his performance beyond that he can achieve in the

traditional sequence, and he can even end up being worse off than in the traditional sequence.

3.4 Extensions and Discussions

We have studied in the previous section the effect of sequential commitment in the PD-newsvendor
model with buybacks, in which, in some cases, it is assumed that the random component of demand,
€, follows a uniform distribution and D(p) = 1 — p. In this section, we extend our analysis to
more general demand distributions and other expected demand functions. More specifically, in

83.4.1 we extend the results to two other expected demand functions: exponential and negative |
polynomial, and in §3.4.2 we extend the results which have been obtained under the assumption
that £ is uniformly distributed to a power distribution. By Propositions 3.3.4, 3.3.6 and 3.3.7,
Sequences 3, 5 and 6, respectively, were analyzed for a general £ and a general D(p), and by
Proposition 3.3.5, Sequence 4 was studied for a powér distribution of £ and linear, exponential and
negative polynomial expected demand functions. Similarly, by Proposition 3.3.14, all sequences in
which R is the leader, except for Sequence 7 and Sequence 8, were analyzed for a general £ and
a general D(p), and by Proposition 3.3.13, Sequence 8 was analyzed for a power distribution of §

and linear, exponential and negative polynomial expected demand functions. Thus, to complete the

analysis in this section, we only need to consider three sequences: Sequence 1: M:w; R:p; M:b; R:Q,

Sequence 2: M:b; R:p; M:w; R:Q and Sequence 7: R:p; M:w; R:Q; M:b.
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3.4.1 Extension to other expected demand functions

In this subsection, we extend the results derived in Section 3.3 for D(p) = 1 — p to exponential,
D(p) = e P, and negative polynomial, D(p) = p~9, expected demand functions, where ¢ > 1.

Similar to the linear expected demand function case, the analysis can be easily extended to more

. general exponential, D(p) = ae™®P, and negative polynomial, D(p) = ap~9, functions, where a > 0,

s >0 and ¢ > 1. The restriction that ¢ > 1 is used to ensure that R’s optimal retail price will be
bounded. In this section, we focus on two major issues in this subsection: (i) M’s (respectively,
R’s) equilibrium expected profit when M (respectively, R) moves first, and (ii) equilibrium seqﬁence
analysis. Note that in the traditional sequence, the equilibrium values of the decision variables and
expected profits under a uniform ¢ and an exponential or negative polynomial demand function are

available in Chapter 2 in this thesis and Song et al. (2004).

Exponential expected demand function

We assume in this subsection that D(p) = e?, and ¢ is uniformly distributed on [0,2]. Let us first

“consider the case when M is the leader. Recall from Chapter 2 in this thesis and Song et al. (2004)

that in the traditional sequence with an exponential expected demand function, the equilibrium

values of the decision variables are:

34+c+H ._§j~_cj-_i_l_

w*=1+c¢c, b*=1, p*= 5 , and @ =3 +c—H)e™ 2z (3.11)

where H = v/c2 + 6¢ + 1, and the equilibrium values of the expected profits are:

En;*w:En;;z(3+C‘H§1‘C+H)e"ﬁ—3‘5”.  (3.12)

Similar to Proposition 3.3.8 in the linear expected demand function case, we have the following

result for M’s equilibrium expected profit with D(p) = e™?:
Proposition 3.4.1 For a uniformly distributed £ and for D(p) = e P,
ETI(S2) > EII3,(S1) > EIL;,(TS),

where “S17, “52” and “TS” stand for “Sequence 1”7, “Sequence 2” and “the traditional sequence”,

respectively.

Let us next compare Sequence 3: M:w; R:p,Q; M:b, Sequence 4: M:w; R:Q; M:b; R:p and the

traditional sequence: M:w,b; R:p,Q, for a power distribution of € and D(p) = e™P. Recall from
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Propositions 3.3.4 and 3.3.5 that Sequences 3 and 4 coincide with the wholesale price-only contract

sequence, and that it follows from Song et al. (2004) that the equilibrium buyback rate in the

traditional sequence satisfies b* = 1 > 0, which implies that M is strictly better off by offering

a positive buyback price and her expected profit under buybacks is strictly larger than under a

wholesale price-only contract. Thus, we have:

Corollary 3.4.2 When £ has a power distribution and D(p) = e™P, in equilibrium, Sequence 3:

M:w; Rp,Q; M:®b and Sequence 4: M:w; R:Q; M:b; R:p yield a lower expected profit for M than

the traditional sequence.

We are ready to discuss the equilibrium sequence when M moves first for a uniform distribution
of £ and D(p) = e™P. Recall from the analysis in §3.3.4 that when M is the leader and initially
offers a wholesale price w, R would specify only the retail price p. If M offers, initially, only a
buyback rate b, then R can either choose a retail price p, or an order quantity @, or boph. Thus,

we compare: Sequence 2: M:b; R:p; M:w; R:Q, Sequence 5: M:b; R:p,Q; M:w and Sequence 6:

M:b; R:Q; M:w; R:p. Recall from Propositions 3.3.6 and 3.3.7 that R’s expected profit is always

zero in Sequences 5 and 6, and according to the proof of Proposition 3.4.1, R realizes a strictly
positive expected pfoﬁt in Sequence 2. Thus, the best response for R is, again, to set his retail

price p. - Thus, by Proposition 3.4.1:

Corollary 3.4.3 When M is the Stackelberg leader in the PD-newsvendor model with buybacks,

wherein & follows a uniform distribution and D(p) = e~P, Sequence 2: M:b; R:p; M w; R:Q is the

unique equilibrium sequence.

Next, we consider the case when R is the leader. Since the analysis for all sequences when R

_is the leader, except for Sequence 7: R:p; M:w; R:Q; M:b, has been done for a general ¢ and®4 a

general D(p), we only need to study Sequence 7 under a uniform £ and D(p) = e~ P.

Proposition 3.4.4 For a uniformly distributed & and for D(p) = e™P,
(i) EI},(S7) = 2EIIL(S7) = £ETL;,(TS) = SETIL(TS).
(ii) Q*(S7) = £Q*(T'S) > Q*(T'S).
(ii3) p*(S7) = p*(T'S) — 1 < p*(T'S).
(iv) w*(ST) = w*(TS) — Be=V@H6etL « *(TS) and

34Except for Sequence 8, for which, though, the result is valid for both exponential and negative polynomial
expected demand functions. :
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() B (ST(=0) < B(TS),

where “TS” and “S7” stand for “the traditional sequence” and “Sequence 7”, respectively.

Proposition 3.4.4 implies that the preference of M and R between the traditional sequence and
Sequence 7 is not expected demand function invariant. Indeed, for example, by Proposition 3.4.4 (i),
for a uniform € and D(p) =e P, M (respeétively, R) realizes a strictly higher (respectively, lower)
expected profit in Sequence 7 than in the traditional sequence. By contrast, for a uniform £ and
Cfor D(p) =1—p, M’s and R’s expected profits in Sequence 7 coincide with their profits.in the
“traditional sequence. Note, however, that in Sequence 7, for a uniform &, the ratio of M’s and R’s

eqﬁilibrium expected prdﬁts coincides for both linear and exponential expected demand functions,
and is equal to 2 : 1.

Finally, we note that for both linear and exponential expected demand functions, whatever R
offers initially when he is the leader, his expécted profit is always zero. Thus, he is indifferent be-
tween being the Stackelberg leader or not having any deal whatsoever with M. However, according
to the proof of Proposition 3.4.1, R realizes a strictly positive expected profit in Seduence 2. Thus,
R prefers not to be the leader and would rather have M move first, and the unique equilibrium

outcome is Sequence 2: M:b; R:p; M:w; R:Q.

Negative polynomial expected demand function

We assume in this subsection that D(p) = p~9 with ¢ > 1, and ¢ follows a uniform distribution on
[0,2]. Recall from Chapter 2 in this thesis and Song et al. (2004) that in the traditional sequence

with D(p) = p~9, the equilibrium values of the decision variables are:

P 4c . _alg+1)e 4(g —1)*
= -, b = 0’ = —, d * =V 1
R P - ™ 9 (ge)(q + 1)7+! (313)
and the equilibrium values of the expected profits are:
A(g -1 29—1 _1\29-2
pir, = a1 and BIT; = —@— 1) (3.14)

o7 lgi(g + 1)9t! (cq)a=Y(q + 1)att’

As revealed by Proposition 3.4.5 below, M’s preference among the traditional sequence and

Sequences 1 and 2 is invariant to the type of expected demand function considered in this chapter.
Proposition 3.4.5 For a uniformly distributed £ and for D(p) = p™9,
ETI(52) > ETI}(S1) > EI,(TS),

where “S17, “S2” and “TS” stand for “Sequence 1”7, “Sequence 2”7 and “the traditional sequence”,

respectively.
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Recall from Propositions 3.3.4 and 3.3.5 that for a power distribution of ¢ and D(p) = p79,
Sequence 3: M:w; R:p,@; M:b and Sequence 4: M:w; R:Q; M:b; R:p coincide with the wholesale

price-only contract sequence, and that it follows from Song et al. (2004) that the traditional se- -
quence: M:w,b; R:p,Q also coincides with the wholesale price-only contract sequénce. Thus,ﬂ M’s
expected profit in Sequences 3 and 4 and the traditional sequence is identical.

Let us nexf seek the equilibrium sequence, assuming a uniform distribution of £ and D(p) = ﬁ_q .
Consider the case when M is the leader. If M offers, initially, only a wholesale price w, then, recall
from the analysis in §3.3.4 that R would specify only the retail price p. On the other hand, if M
offers, initially, only a buyback rate b, then we need to compare: Sequence 2: M:b;-R:p; M:w; R:Q),

" Sequence 5: M:b; R:p,Q; M:w, and Sequence 6: M:b; R:Q; M:w; R:p. Recall from Proposi-

tions 3.3.6 and 3.3.7 that R’s expected profit is always zero in Sequences 5 and 6, and according
“ to the proof of Proposition 3.4.5, R realizes a strictly positive expected profit in Sequence 2. Thus, -

R, again, would set only his retail price p when M initially offers b. Thus, by Proposition 3.4.5:

Corollary 3.4.6 When M is the Stackelberg leader in the PD-newsvendor model with buybacks,

wherein & follows a uniform distribution and D(p) = p™4, Sequence 2: M:b; R:p; M:w; R:Q is the

unique equilibrium sequence.
Let us next compare Sequence 7 and the traditional sequence under a uniform £ and D(p) = p™9.

V Proposition 3.4.7 For a uniformly distributed & and for D(p)=p79,

(i) EII%(S7) < EIIR(TS).

(1) EI;(S7) < EIT;,(TS) for q G-(1,2), EH};,,(S?) = EII;,(TS) for ¢ =2 and EII},(S7) >
EII;,(TS) for q € (2,00).

(iii) EII%,(S7) = 2BTL%(S7).

(iv) Q*(S7) = $(7%)°Q"(TS) > Q*(TS).

(v) p*(ST) = L2p*(TS) < p*(T'S).

(vi) w*(S7) = w*(TS) and

(viz) b*(S7) = b*(T'S) = 0.

Proposition 3.4.7 (ii) confirms that the preference of M and R between the traditional sequence
and Sequence 7 depends on the form of the expected demand function. Indeed, for a uniform ¢
and D(p) = p~9, M would be strictly worse off in Sequence 7 (1 < g < 2), as compared to the )

traditional sequence. However, we note again that for D(p) = p~9, as was the case for linear and

exponential expected demand functions, when M is the Stackelberg leader, Sequence 2 is the unique
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equilibrium sequence, and R is indifferent between being the Stackelberg leader and not having any
deal whatsoever with M. According to the proof of Proposition 3.4.5, R realizes a strictly positive
expected profit in Sequence 2. Thus, R prefers not to be the leader and would rather have M move

first, and the unique equilibrium sequence is Sequence 2: M:b; R:p; M:w; R:Q.

3.4.2 Extension to a power demand distribution

In this subsection we maintain the assumption that D(p) = 1 — p, whenever necessary, and extend
the results derived for a uniformly distributed £ to a more general power distribution. Note that
by Song et al. (2004), the equilibrium values of the decision variables and expected profits are
available for the traditional sequence with a power distribution of £. For comparison purposes,
these values, as a function of ¢, are presented in Table 3A.1 in the appendix when the exponent
t in the power distribution is equal to 1, 2 and 4. Let us next consider the following three se-
quences: Sequence 1: M:w; R:p; M:b; R:Q, Sequence 2: M:b; R:p; M:w; R:Q and Sequence T:
R:p; M:w; R:Q; M:b. For the proofs of Propositions 3.4.8, 3.4.9 and 3.4.10 below, please refer to

the proofs of Propositions 3.3.2, 3.3.3 and 3.3.11, respectively, in the appendix.

Proposition 3.4.8 In Sequence 1: M w; Rp; M:b; R:Q, for a power distribution of € € [0, 2] with
f(€) = y(e)t (wheret >0 and v = (t+1)2=¢+D ) and for D(p) = 1—p, the equilibrium value of the

retail price p* satisfies %ﬁl =0, where ETlp(p) = ﬁ}:&);’ﬂ, z= [<t+1)[(t+}’)($i(2gz;c)“’_ﬂ]n%l}

w(p) = 2(t—4:41)%;£71+_1’ A = —pt? + 2p%t% + pt?c + tc + 2pte + 2¢ — pt + 2p°t, and B =
V(t + 2)(=ptc — ¢ — p — pt + 2p? + 2p%t)(—pt2c — 2ptc — tc — 2c + 2p + pt — pt? + 2p?t + 2p%t2).

It appears unlikely that closed-form expressions for the equilibrium values in Sequence 1 can

be derived for any value of t. Thus, let us first consider the case of £t = 1.

_ —2p+4p?+3pc+3c++/3(—pe—c—2p+4p2)(—3pc—3c+2p+4p?)
For t = 1, w(p) = i 07)

must have p > 2”5C—+—‘/682;2—T+4), z =, /%, / &“ff—fﬂ and M’s expected profit function becomes:

(and since w € [c,p), we

2 [2 2w(p) +p — 3c
Ellpyy = =4/ —(1 - _— =
M=g 37( p)p( D

).

We use Matlab to search over p € [M@, 1), to find the unique equilibrium retail price p*
which maximizes M’s expected profit function, and accordingly, we can compute the equilibrium
values of the other decision variables and expected profits of M and R. We have conducted a

similar analysis for ¢ = 2 and ¢ = 4, but do not report the detailed analysis here. The equilibrium

values in Sequence 1, as a function of ¢, for t = 0, 1, 2 and 4, are presented in Table 3A.2 in the

appendix.
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Let us next consider Sequence 2 under a power distribution of .

Proposition 3.4.9 In Sequence 2: M:b; R:p; M:w; R:Q, for a power distribution of £ € [0, 2] with
f(&) = y(e)t (wheret >0 and y = (t+1)2=¢+Y ) and for D(p) = 1 —p, the equilibrium value of the

retail price p* satisfies %ﬁ‘f@) =0, where Ellyr(p) = H1(1-p)(p—c)z, z = (5 t+;;;)1)((€;;;b(p)))t+l

b(p) = ﬂ@, u=—(t+1)(pt —tc—c—2+3p), v=—pt* + t?c+ 9Pt + 3p*t> — 3ptc -

5ptc + 6p® — 3p — 3¢ — 4dpt, and g = —p(t + 2)(=2ptc + tc — pt + 2p*t — p+ 2p? —¢).

Similar to Sequence 1, it is difficult to derive closed-form expressions for the equilibrium values
in Sequence 2 for any value of ¢. Thus, we consider below some specific values of ¢. '

4ptc—9p2+4 —15p% +24p5 —34p2c+24p3c+8pc? —8p2 +8pct+c2—8pic? .
For t =1, b(p) = pe—9p*Hpety/ p+p4(1+z;c;;)pc+pc pABpete =3¢ (and since b(p) €

[0, ), we must have p > & (6= VB)(1+¢)+1/3(7 — 26) (262 + ¢+ 2v/Be + 2))), z = |/ =2z

and M’s expected profit function becomes:

By = 51/ 20 -p)o - 9y [T 2

Again, we use Matlab to search over p € [£((6—v6)(1+c)+ \/3(7 — 2v6)(2¢% + ¢ + 2v6c + 2)),1),

to find the equilibrium retail price p* which maximizes M’s expected profit function, and accord-

ingly, we can calculate the equilibrium values of the other decision variables and expected profits of
M and R. Similarly, we have analyzed the cases for t = 2 and ¢ = 4, but do not report the detailed
analysis here. The equilibrium values in Sequence 2, as a function of ¢, for t =0, 1, 2 and 4, are
presented in Table 3A.3 in the appendix.

Finally, we examine Sequence 7 under a power distribution of .

Proposition 3.4.10 In Sequence 7: R:p; M:w; R:Q; M:b, for a power distribution of £ € [0,2]
with f(€) = v(e)t (where t > 0 and v = (t + 1)27¢HD ), and for D(p) = 1 — p: for ¢ = 0, the

1
equilibrium values of the decision variables are: 2* = ( v(tt‘:_IZ))t 1, pt =1 w T(ti_z) and b* = 0;

and for ¢ > 0, p*(z) = _v(r+_C23,_+ and the equilibrium value of the stocking factor z* satisfies

Ellgr(2 P 1] ,042
SE8E) o, where BTy = AU e

Similar to Sequences 1 and 2, it is difficult to derive closed-form expressions for the eqﬁilibrium
values in Sequence 7 for any value of . So let ¢ > 0, and consider the case where ¢t = 1.

Fort =1, p(z) = Dgt_z? (and since p € [¢,1), we must have z < \/%}_—C)), and R’s expected
2

profit function reduces to: Ellg = %3¢ 2(1(;)3;;”; 2 which is unimodal in z € [0, 1 -9 We

have used Matlab to search over z € [0, \/ ] to find the equilibrium stocking factor z* which
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maximizes R’s expected profit function in Stage 1, and accordingly, we can calculate the equilibrium
values of the other decision variables and expected profits of M and R. Similarly, we have analyzed
the cases for t = 2 and t = 4, but do not report the detailed analysis in these two cases. The
equilibrium values in Sequence 7, as a function of ¢, for t = 0, 1, 2 and 4, are presented in
Table 3A.4 in the appendix.

Based on the numerical results derived for the traditional sequence and Sequences 1 and 2,

which are displayed in Tables 3A.1, 3A.2 and 3A.3, respectively, in the appendix, we observe that:

Observation 3.4.11 For a power distribution of & with f(e) = v(€)t and t =1, 2 and 4, and for
(i) EIT,(S2) > EIT3,(S1) > EIT, (TS).
(i) BTl n(S2) > EIly;, 4(S1) > Elly;,4(TS).
(i) EXIL(T'S) > EIIR(S2) and ETIR(S1) > EIIR(S2).
(iv) p*(TS) > p*(S1) > p*(52).
(v) w*(S2) > w*(S1), and
(vi) @*(52) > Q*(S1) and Q*(52) > Q*(T'S),

where, as we recall, EIl},, p stands for the equilibrium eafpected channel profit.

Note that Observation 3.4.11 (i) is consistent with Proposition 3.3.8 and Observation 3.3.9 (i),
~ according to which,vin equilibrium, M attains the highest expected profit in Sequence 2 and the low-
est expected profit in the traditional sequence. Note further that Observation 3.4.11 (ii) implies that
both. Sequences 1 and 2 improve channel efficiency, which is consistent with Observation 3.3.9 (ii).
Observation 3.4.11 (iii) implies that R attains the lowest expected profit in Sequence 2, which is
consistent with Observation 3.3.9 (iii). Based on R’s equilibrium expected profit in the traditional
sequence and Sequence 1, as displayed in Tables 3A.1 and 3A.2, respectively, for ¢ =1, 2 and 4, we
observe that R’s expected profit in Sequence 1 is larger (respectively, smaller) than in the traditional
sequence when the manufacturing cost ¢ is small (respecﬁvely, large). For example, when ¢ = 2,
as compared to the traditional sequence, there is an increase (respectively, decrease) of 1.65% (re-
spectively, 14.15%) in R’s expected profit for ¢ =0 (respectively, ¢ = 0.9). This observation implies
that R’s preference between the traditional sequence and Sequence 1 is not demand distribution
invariant. Indeed, for example, by Observation 3.3.9 (iii), for a uniform £ and for D(p) =1—p, R
always realizes a lower equilibrium expected profit in Sequence 1 than in the traditional sequence.

Let us now seek the equilibrium sequences when M moves first, assuming a power distribution

and D(p) = 1—p. If M is the leader who initially offers a wholesale price w in the first step, then,
i
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as we recall from the analysis in §3.3.4, R’s best response is to commit only to a retail price p in his
first step. On the other hand, if M initially offers a buyback rate b, then, we recall from the analysis
in §3.3.4 that R, again, would prefer to set only his retail price p. Therefore, Observation 3.4.11 (i)
immediately implies that for a power distribution with ¢ = 1, 2 and 4 and for D(p) = 1 — p,
Sequence 2: M:b; R:p; M:w; R:Q is the unique eqhilibrium sequence.

By examining the equilibrium values in the traditional sequence and Sequence 7 in Tables 3A:1

and 3A.4, respectively, in the appendix, we can make the following observations:

Observation 3.4.12 For a power distribution of £ with f(e) = y(e)! and t =1, 2 and 4, and for
D(p) =1-p:

(i) ETI},(S7) > EII;,(TS).

(i) B}, g(ST) > Bl (T'S).

(tii) EIIR(TS) > EIIR(ST).

(iv) w*(T'S) > w*(S7).

(v) p*(T'S) > p*(S7), and

(vi) @*(S7) > Q*(TS).

Observation 3.4.12 (i}, (ii) and (iii) imply that for a power distribution and t = 1, 2 and 4,
in equilibrium, M and the channel (respectively, R) realize a higher (respectively, lower) expected
profit in Sequence 7, with a larger order quantity, than in the traditional sequence. This result
is different from that derived for the uniform distribution case, wherein M’s and R’s equilibrium
expected profits and order quantity. in the traditional sequence and Sequence 7 coincide. Observa-
tion 3.4.12 (iv) and (v) are consistent with Corollary 3.3.12 (iii) and (iv), respectively, according
to which, Sequence 7 results with lower wholesale and retail prices than in the traditional sequence.

Finally, recall from §3.3.4 that when R is the first mover, he gets a zero profit, and that he
realizes a strictly positive expected profit in Sequence 2. Thus, R would rather not be the first

mover', and, as was the case for a uniform &, Sequence 2: M:b; R:p; M:w; R:Q) is the unique

equilibrium sequence for a power distributed £ with ¢ = 1, 2 and 4, and the first ‘mover in these

" cases is determined endogenously. .

3.5 Conclusions and Further Research

We have introduced in this chapter the sequential commitment approach for determining the values

of contract parameters, and have analyzed its effect on the PD-newsvendor model with buybacks.
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As argued earlier, compared to the traditional approach, the sequential commitment approach
introduces additional flexibility to contracting between members in the supply chain. Indeed,
: whﬂe contracting according to the fraditional approach follows the take-it-or-leave-it paradigm, the
sequential commitment approach allows members, if they so desire, not to commit simultaneously
to values of all contract parameters under their control. It also allows them to strategically éequence
the order by which they commit to these values. As such, the sequential commitment approach is
more in line with other approaches to model contracting in the supply chain (see, e.g., Nagarajan
and Bassok (2002), and Iyer and Valis-Boas (2003)), and it can provide some insight, such as
who should move first, or which contract parameter should be discussed first, or which pair of
parameters should be discussed as a package (e.g., b and p), or which orders of the issues to be
negotiated should be avoided since they may lead to an impasse, when the supply chain members
engage in-a negotiation process for determining the values of contract parameters.

Our analysis has revealed that the sequential commitment approach endogenizes the first mover
decision. Indeed, while in the traditional approach it is arbitrarily assumed that one of the parties,
usually M, is the leader, in the sequential commitment approach, under certain conditions (e.g., uni-
form ¢ and linear, exponential and negative polynomial expected demand functions), both parties

prefer that M will move first. Additionéﬂly, it was revealed that Sequence 2: M:b; R:p; M:w; R:Q

_is the unique equilibrium sequence in the sense that both parties prefer that M will move first, and
neither party can benefit by resequencing the order at which it commits to contract parameters
under its control.

We have further demonstrated that sequential commitment can have a significant effect on
the-supply chain performance and on the fortunes of its members. Indeed, sequential commit-
ment can significantly increase M’s expected profit, as compared to the traditional sequence. For
example, Based on Tables 3A.1, 3A.2 and 3A.3, for a uniform &, D{(p) = 1 —p and ¢ = 0.9, Se-
quence 1: M:w; R:p; M:b; R:Q and Sequence 2: M:b; Rip; M:w; R:Q improve M’s equilibrium

éxpected profit by 25.19% and 79.25%, respectively, as compared to the traditional sequence. In
that respect we note that for an arbitrary distribution of £ and an arbitrary form of D(p), Se-

quence 5: M:b; R:p,Q; M:w and Sequence 6: M:b; R:Q; M:w; R:p result with M attaining the

entire expected channel profit and R getting nothing. However, Sequences 5 and 6 require, e.g.,
that R commits to an order quantity before the wholesale price is set, and thus are not very realistic.

By contrast, sequential commitment could adversely affect signiﬁcantly R’s performance. For

example, for a power distribution of £ with ¢ = 0 (uniform), and ¢ = 1, 2 and 4, and for D(p) = 1—p,




Chapter 3: Sequential Commitment _ 69

R can never do better than in the traditional sequence when he moves first, and when M is the
first mover, sequential commitment can sighificantly decrease R’s equilibrium expected prbﬁt. For
example, based on Tables 3A.1 and 3A.3, for a uniform ¢ and for D(p) =1 — p, R is always worse
off in Sequence 2 than in the traditional sequence, and, e.g., Sequence 2 decreases R’s equilibrium
expected profit by 73.51% for ¢ = 0.9. . ‘

We can further conclude from Tables 3A.1, 3A.2 and 3A.3 in the appendix bthat buybacks,
coupled with sequential commitment, can increase significantly channel efficiency. For example,
Sequence 2, for a uniform & and for D(p) =1 — p, increases channel efficiency from 10.90%,‘ for
¢ =0, to 21.25%, for ¢ = 0.9. This result should be compared to the relatively insignificant effect
of introducing buybacks in the PD-newsvendor model. Indeed, as it was shown in Chapter 2 in
this thesis, for a uniform ¢ and for D(p) =1-p, buybacks increase channel efficiency by at most
3.16%. '

Finally, our results demonstrate that the sequential commitment approach could have a signif-
icant effect in the PD-newsvendor model, and it would be interesting to investigate the robustness
of our results for different distributions of £, other than the power distribution, as well as for other
expected demand functions. It would also be interesting to extend the sequential commitment
approach to other Operations Management models as well as to the additive demand model (i.e.,
X = D(p) + &) of the PD-newsvendor problem. However, as suggested in §2.2 in Chapter 2, (see
also Emmons and Gilbert (1998), Mills (1959), and Petruzzi and Dada (1999)), the additive model
could produce results which are qualitatively different from those derived 'for the multiplicative

demand model.
3.6 Appéndix

Proof of Proposition 3.3.2. We use backward induction to solve Sequence 1: M:w; R:p; M:b; R:Q,

which is a four-stage Stackelberg game, assuming, initially, that & € [0, 2] follows a general power
distribution f(e) = y(e)t, where v = (¢ + 1)2=¢+*1), and D(p) = 1 — p. Recall that the expected
profit functions of M and R are given in (3.2).

Stage 4: Given (w,p,b), R chooses an order quantity @ to maximize his expected profit, given

by (3.2). Note that choosing @ is equivalent to choosing z, where z = 30('])—). One can easily verify

that ETIg(z) is concave in z. Thus, dEg—f(z) = 0 gives us the unique optimal z*, which satisfies
bzt = pz+! — tl(p—w), and R’s expected profit function reduces to: ETlg = &5 (p—w)D(p)z*.

Stage 3: Given (w,p), M chooses her optimal b to maximize her expected profit, given by (3.2).
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We work with z instead of b for M’s problem (see Lariviere (1999)). Taking into account z* from

Stage 4, M’s expected profit function becomes: Elly = D(p)[(w—c)z+ (p;fg)z - (tzqiz:;)]’ which

. 1 —
is concave in z. Thus, % = 0 gives us the unique optimal z* = [7€a12)} (s .[(t“)("’p

Qtp=cimT,

and M’s expected profit function reduces to: Elly = 75 D(p)p - (2*)'+2.

Stage 2: Given w and knowing z*, R chooses p to maximize his expected profit function, which
reduces to Ellg = iiéD( )(p—w)z*, where D(p) = 1—p. The first-order condition (F.O.C.) yields
dEH+p(’”’m =A- WWZ*_)“ where A=(t+1)1-2p+w)p[t+1)(w—c)+p—c+(1—-p)p—
w)[e = (t + 1)(w — ¢)]. Since A(p = w) > 0 and A(p = 1) < 0, we have —E}I’#ﬂ(p w) > 0 and
%(p = 1) < 0, and the optimal retail price is an inner solution (i.e., w < p*(w) < 1) which
satisfies %g(p) =0, ie., A(p) =0. , -

Stage 1: _We work with p instead of w for M’s problem in Stage 1. Note that A can be written
as a function of w as follows: A(w) = (¢t + 1)(1 — 2p + w)p|(¢t + 1)(w ~c)+p—c+1Q-p)p-—

w)[c — (t + 1)(w — ¢)], which is quadratic in w, and there is a unique w*(p) € [c,p), w*(p) =
—pt2 +2p2¢2 +pt2e+te+2ptet2e—pt+2pt++/ (t4+2)(—pte—c—p—pt+2p?+2p?t)(—pt?c—2ptc—tc—2c+2p+pt— pt2+2p2t+2p2t2)
2(t+1)(pt+1) ?

which satisfies A(w*(p)) = 0. M’s problem in Stage 1 is to choose p to maximize Elly =

w* (p)—c —cy L
2 CHIAIEE S

To complete the proof of Prop051t10n 3.3.2, we need to consider the case where & is uniformly

1 — p)pz'*?, where z = | (+1 ]t+1 a

distributed, i.e., t = 0. For t = 0, w*(p) = ¢+ 1/(p — ¢)(2p? — p — ¢) (and since w € [¢,p), we must

have p > @), z*(w,p) = “’—';% and M’s expected profit function in Stage 1 becomes:

11-p , 1
Ell = — —Z(w*(p) — —e)l=—(1- —o)H 3A.1
M= (w*(p) —c+p—c) 87( p)(p — c)Hi, (3A.1)

where H; = (V2p2—p_pc+°p_c)2. One can verify that for p € [FE% 1)) d[(l——;;);p—cn < 0,

dz[(l_d’;)(p_c) < 0, %l > 0 and %Igl < 0. Thus, FIIps in (3A.1) is concave in p, and the

F.0.C. yields the unique equilibrium retail price p* in Sequence 1. Accordingly, it is easy to

derive the equilibrium values of the other decision variables: w* = ¢ + /(2(p*)? — p* — ¢)(p* — ¢),
b = PGwopo2) ok (w“;#z and @* = (1 — p*)z*, and the expected profits: FEII}, =

w*+p*—2¢
—p* * *__20)2 —p* * __an* * *_
W and Elly = (1=p")(p uépz(w +2"=%) ' where we recall that v= —é— fort =0. 0

Proof of Propésition 3.3.3. We analyze Sequence 2: M:b; R:p; M:w; R:Q), assuming, initially,
that & € [0,2] has a power distribution f(e) = y(¢)t, where v = (t +1)2=¢*1  and D(p) =1 — p.

Stage 4: R’s problems in Stage 4 in Sequences 2 and 1 coincide. Thus, the unique 2* satisfies

w=p-— Mﬁ’fu, and R's expected profit function becomes: Ellg = g5 D(p)(p — b)(2*)**2.

Stage 3: Knowing (b, p) and z*(b,p,w), we solve M’s problem in Stage 3 by working with
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z instead of w. M’s expected profit function as a function of w becomes: Elly = D(p)[(p -
t+2

c)z — (Tgf)(t—ﬂ)[(t + 2)p — (t + 1)b]], which is concave in z. Thus, ﬂim = 0 yields z*(b,p) =

(Wé%%i_)ﬂ_w)t+l and M’s expected profit function becomes: Ellpy = 45 D(p)(p — c)2*
Stage 2: Given b and taking into account 2* (b, p) in Stage 3, R chooses p to maximize ETlgr(p) =

ﬁiD( Y(p — b)(2*(b,p))?, where D(p) = 1 — p. The F.O.C. yields: dEHS(p) o (S (t+1)b]2zt T,
where A= (t+ 1)(p —c)(1 +b—2p)[(¢t + 2)p — (t + 1)b] + 2(1 — p)(p — b)[(t + 2)c — (t +1)b]. Since

A(p = max(b,c)) > 0 and A(p = 1) < 0, d—En—d’;(—b’—B)— > 0 and M < 0, we conclude that the

optimal retail price is an inner solution (i.e., max(b,¢) < p*(b) < 1) satisfying ﬂﬂ—(pl =0, ie,

A(p) = 0. Note that EIlg = H1(1 — p)(p*(b) — b)(2* (b, p*(b)))"*?, which is strictly pos1tive since

p*(b) > max (b, ¢) and 2*(b,p*(b)) > 0.

Stage 1: Again, we work with p instead of b for M’s problem in Stage 1. Note that A can be
written as a function of b as follows: A(b) = (t+ 1)(p — ¢)(1 + b — 2p)[(t + 2)p — (¢t + 1)b] +2(1 —
p)(p.— b)[(t+2>c—— (t+1)b) =u-b>+v-b+g =0, where u = —(t + 1)(pt — tc — ¢ — 2 + 3p),

= —pt?+t2c+9p?t+3p*t2 —3ptPc—Spte+6p® —3p—3c—4pt and g = —p(t+2)(— —2ptc+te—pt+2p%t—
p + 2p? — ¢), which is quadratic in b, and there is a unique b*(p) = :i\éz—_iu—g € [0, p), satisfying

A(b*(p)) = 0. M’s problem in Stage 1 is to choose p to maximize Elly = (1 p)(p—¢)z, where

t+1 c
2= (et

To complete the proof of Proposition 3.3.3, we need to consider the case where £ is uniformly
—3(2p2 —p— o (= -
distributed, i.e., t = 0. For ¢t = 0, b*(p) = 3002 =pc)ty/@p? = (6% +Tp+8pe—9c) € [0,p) (thus,

: 2(2+c—3p)
P> b@g), z*(b,p) = m‘% and M’s expected profit function in Stage 1 becomes:

' p—c 8(1-p)p—c) p-c '
Ell = . = H 3A.2
M~ 16y  2p—b*(p) 16y 2 (34.2)
where Hy = 8(21p pgf?p)c) ~6p2+5p+4pc_3c+\/(2pi,_p_c)(_6p P+ 7p+8pe—te) Using some algebra, one can

show that for p € [i@, 1), FIps in (3A.2) is concave in p. Thus, the F.O.C. results with a

unique equilibrium retail price p* in Sequence 2. Accordingly, we can easily derive the equilibrium
~3(2(p*)?—p* —c)++/(2(p*)2—p* —c)(—6(p*)*+Tp* +8p* 6-96)

values of the other decision variables: b* =

T e—3p") =
7((27; __Cb*), Q*=(1—-p*)z* and w* = p* — L;_ZZMP:_Z and the equilibrium values of the expected

profits are: EIl, = ﬁﬂfﬂﬂ and ETI}; = (=p )((2’; —_bl:,))(p —<)’ , where we recall that v = 3 for
t=0.0

Proof of Proposition 3.3.5. We study the four-stage problem in Sequence 4: M:w; R:Q; M:b; R:p,

assuming a power distribution of £ € [0,2] with f(e) = v(€)* and that D(p) is decreasing in p and
satisfying D(p)f——é—)- (t+ 2)(4—2) <0.
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Stage 4: Given (w,Q,b), R chooses p to maximize his expected profit, given by (3.1), ETIg(p) =
t+2 — .
(0-)@—(p—b) EQ— X[, where EIQ-X]* = QF(135)~ [P D(p)ef(e)de = 2%z D(p) =+,

2
which is the expected unsold inventory. Since D(p) is decreasing in p and satisfying D(;o)%gg2 -
(t + 2)(-@%)2 < 0, it is not difficult to show that @l%;ﬂi > 0 and -dz—E[de+X]i > 0 (ie.,
the expected lost sales increase in the retail price p at an increasing rate), and that did;—lﬁ =

Q- E[Q—X]*— (p—b) dE[Qd;X]+ and dzigﬁ _ _2dE[%;X]+ B (p_b)d?_Ed@p;ﬁi < 0, which implies

that Ellg is concave in p. Thus, the F.O.C. results with a unique stationary point, p°(Q, b), which
satisfies: de[%;X]Jr = pdE[%;X]+ +E[Q—X]+ —@. Note that p°(Q, b) is independent of w. Taking

derivative of the F.O.C. equation under p = p°(Q, b)(> b) with respect to b and simplifying yields:

dE[Q-X]" %;X A (2—[——]—dE Qd;x . (P%(Q,b) — b) dzE[iZXﬁ')apoébQ’b). Since E[Q — X]* is increasing and
convex in p and p°(Q, b) > b, we conclude that Mé@ >0, and p°(Q, b) increases in b. Therefore,

the optimal p* for R in Stage 4 is either p? or it is attained at one of the extreme points®A1, w or

D~(9), which are independent of b.

Stage 3: Given (w, Q) and knowing p* from Stage 4, which is either increasing or independent

of b, we conclude that M’s expected profit function, given by (3.1), is decreasing in b. Thus, b* =0,

which implies that Sequence 4 coincides with the wholesale price-only contract sequence. O

Proof of Proposition 3.3.7. Consider Sequence 6: M:b; R:Q; M:w; R:p, assuming a general

distribution of £ € [0, U] and a general form of D(p).

Stage 4: Given (b,.Q,w), R sets p to maximize Ellg = (p—w)Q — (p — b)E[Q — X]*, given
by (3.1). Assume that p°(b, Q) satisfies the F.0.C.: Q — E[Q — X|* — (p— b)ﬁ[%]i = 0, which
is independent of w. Since EIlg is continuous in p, the optimal retail price p* is either equal to
p°(b, Q) or it is one of the two extreme points?A2, w and D~1(¥), i..,

o [ max(w,p°(6,Q) if p°(6,Q) < D7X(p),
P { D7\(g) it 1°5,Q) > D1(3).

Stage 3: Given (b, Q) and knowing p*, M chooses w to maximize ETly = (w — ¢)Q — bE[Q —
D(p*)¢]™*, given by (3.1). Consider two scenarios: (A) When p°(b, Q) > D‘l(%), p* is independent
of w, and thus, EIly is increasing in w. Therefore, w* = p* = D_l(%). (B) When p°(b,Q) <
D“l(—g), M has two options regarding w: (Bl) If w > p°(b,Q), then M sets w(> p°(b,Q)))
to maximize Ellp; = (w — ¢)Q — bE[Q — D(w)¢]* and w* = p*. (B2) If w < p%(b,Q), then

w* = p* = p°b,Q). Since the optimal w* in Option (B2) is on the edge of the feasible region,

we conclude that M would choose option (B1), i.e,, w € [po(b,Q),D_l(in)] is chosen to maximize

" 3A-1Note that Q < 2D(p) since £ < 2. Thus, p < D7*(2).
A-2Note that Q < UD(p) since £ < U. Thus, p < D7}(&).

s
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Elly = (w—¢)Q — bE[Q — D(w){]T, and at optimality, w* > max (b,¢). Thus, for any (b;Q),
p*=w"

Stage 2: Given b, R determines Q to maximize Ellg = —(w* — b)E[Q — D(w*)¢]*. Let us
consider two scenarios: (A) When b < ¢, we immediately have w* = p* > b and ETlg < 0 except
for @ = 0. Thus, R would choose @Q* = 0 to avoid a negative expected profit. (B) When b > ¢,
" R has three choices: (B1) If Q = UD(b) and p°(b,Q) > D“l(gﬂ)(: b), then w* = p* = b and
Ellg = 0. (B2) If Q # UD(b) and p°(b,Q) < D_l(%)(> b), then ETlg < 0 except for Q@ = 0.
Thus, @* = 0. (B3) If p°(b,Q) < D"l(g), then w* > b and ETlgr < 0 except for @ = 0. Thus,
Q* = 0. R gets a zero profit in all three options in Scenario (B). Thus, for Scenario (B), the choice
~of either Q* = UD(b) or @* = 0 depends, by Assumption 3.3.1, on M’s expected profit, which is
ETlp = D(0){2(b—c) — E[2 — &)1} (strictly less than the expected profit of the integrated channel
for any value of b since @Q* = 2D(b) # Q') and EIlp = 0, respectively.

Stage 1: M’s decision on b in Stage 1 has two options: (A) If b < ¢, then @Q* = 0 and EII}, = 0.

(B) If b > ¢, then b is determined to maximize Elly; = max (D(b){U(b —c) — E[U —£]*},0) and
 Ellp=0.0 '
Proof of Propositionv 3.3.8. Assume a uniformly distributed ¢ and D(p) = 1 — p.

EII%,(S2) > EII%,(S1). From the analysis in the proof of Proposition 3.3.3, in Stage 4, in
Sequence 2: M:b' R:p; M:w; R:Q, M decides upon p € [b@,l) to maximize: Ellj(52) =

16'71)( 6p% + 5p + dpc — 3¢ + /(2p%2 — p — ¢)(—6p? + Tp + 8pc — 9c)). Similarly, from the analysis
in the proof of Proposition 3.3.2, in Stage 4, in Sequence 1: M:w; R-p; M'b; R:QQ, M chooses
pE [5@, 1) to maximize: ETIj(S1) = &= p)(p ) (\/2p% = p — c++/p — ©)%. Next, we show that
ETIn(S2) > ETIp(S1) for any p €. [lﬁ@, 1), which is a sufficient condition for ETI},(52) >
ETI;,(S1). Note that ETI(S2) > ETIp(S1) is equivalent to 521 = —6p? + 5p + 4pc — 3¢ +
v/(2p%? —p —¢)(—6p? + Tp + 8pc — 9¢) —2(1—p)(v/2p% — p — c++/P — ¢)2 > 0, and it is not difficult
to show that, indeed, for any p € [@, 1) and any c € [0,1), S21 > 0.

ETI3,(S1) > EII;,(TS). Recall that the equilibrium value of the retail price and M’s ex-
pected profit in the traditional sequence: M:w,b; R:p,Q are: p* = @ and EII}(TS) =

S 1+801)Z§1+V 148¢) where vy = 1. Evaluating ETI4(S1), given by (3A.1), at p* = 2tVI*5 and sim-

plifying yields: ETLy(S1)(p*) = (—3+\/1+80')(—5—\/1+80+81%)2(4\’{(35+f\/\/11:-:cc)—12c+\/10+2\/1+85 16¢)2

one can easily verify that ETI(S1)(p*) > EII}(T'S) for any c € [0, 1), implying that ETI},(S1) >
EIT,(TS). O '

. Now,

Proof of Proposition 3.3.11. We analyze Sequence 7: R:p; M:w; R:Q; M:b, assuming that £
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has a power distribution and D(p)=1-0p.
Stage 4: M ’s problem in this stage is pretty straightforward, i.e., M would always choose b* = 0.
Stage 3: Given (p,w) and b* = 0, R determines z = me—) (since @ is chosen after p) to maximize
his expected profit function, given by (3.2), which can be rewritten as: EIlg = D(p){(p — w)z — |
(TES(LL;SQS]’ and is concave in z. Thus, z* satisfies the F.O.C. p —w — 1‘5—:—1 =0, and R’s expected

A D(p)pat*2.

profit function becomes: Ellg = 5

Stage 2: Given p and knowing 2* and b* = 0, M determines w to maximize vEHM = (w—
c)D(p)z*. Again, we work with z instead of w for M’s problem to maximize ETly = D(p){(p —
¢)z — giypz 2], which is, again, concave in 2. Thus, the F.0.C. p—c— ﬂtﬁ;"—lz)pzt‘H = 0 yields z*(p).

Sta_gei: We work with z instead of p for R’s problem in Stage 1. Consider two cases as follows.

(A) For ¢ = 0, from Stage 2, we have z* = (Wt%)t%l, which is independent of p. Thus, R’s
expected profit function becomes: Ellg = %(%)%D(p)p, where D(p) = 1—p. It is clear that

p* = %, and the equilibrium values of w* and the expected profits can be computed accordingly.

(B) For ¢ > 0, R_cho.oses z to maximize Ellp = 7°(t+(12££;;r[(12§_11;f{y_(t7£t21;:2iT]L; 2 Similar to the

analysis of Sequences 1 and 2, it is difficult to solve R’s problem in Stage 1 for any value of ¢. Thus,l

to complete the proof of Proposition 3.3.11, we next consider a uniformly distributed &, i.e., t = 0.

l—c

When t = 0, p(z) = ﬁ (and since p € [c,1), we must have z < W)’ and R’s expected

e 2
profit function reduces to: Ellg = 15(21(12—“3—5)1’ which can be easily shown to be unimodal in 2.

Thus, the F.O.C. gives us the unique equilibrium z* = (B=vi+8o) V21+86). (Recall that £ is distributed

on [0,2] and v = 1.) Accordingly, we can compute the equilibrium values of the other decision
2

variébles and expected profits: p* = b@, QF = (V148 V§+8°)2, w* = (LEVIE8)” “116)“&2, b* = 0, and
EIl, = 2EII}, = (3—\/1+8c1)3g1+\/1+8c'): O

Proof of Proposition 3.3.13. R’s problem of determining p* in Stage 3 coincides with R’s
problem in Stage 4 in Sequence 4: M:w; R:Q; M:b; R:p, which has been analyz-ed in the proof of

Proposition 3.3.5. Therefrom, we conclude that p* is either increasing in b or independent of b
and E[Q — D(p*)¢]™ increases in p, which implies that M’s expected profit function in Stége 2,
Elly = (w — ¢)Q — bE[Q — D(p*)£]™" is decreasing in b. Thus, b* = 0, and M’s expected profit is
increasing in w. Thus, in Stage 2, w* = D‘l(%) and b* = 0, which leads to p* = w* and Ellg < 0
except when Q = 0. To avoid a strictly negative expected profit, R would choose Q* = 0 and, in

equilibrium, FII}, = EIl} = 0. O

Proof of Proposition 3.3.14. Recall that the sequences R:p; M:w; R:Q; M:b, R:Q; M:w,b; R:p,

R:p; M:w,b; R:Q and R:Q; M:w; R:p; M:b have been previously analyzed. Thus, below we cover
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the other three sequencing instances when R is the Stackelberg leader.

Sequence: R:p; M:b; R:Q; M:w. The analysis in this four-stage sequence under a general

distribution of £ and a general form of D(p) is pretty straightforward. In Stage 4, after p, b and @
have been determined, M would set her wholesale price as high as possible. Thus, w* = p. Knowing
w* = p, R’s expected profit would be strictly negative if he chooses a strictly positive order quantity
and b # p. When b = p, R is actually indifferent regarding the value of @, since his expected profit
will always be zero. Thus, when b # p, R would choose Q = 0, and otherwise, consistent with
Assumption 3.3.1, @ will be chosen to maximize M’s expected profit, i.e., F(—DQ(;#)) = p—;—c. Now,
it leaves the choice on whether b = p to M in Stage 2. If b # p, then @* = 0 and both M and R
earn a ‘zero profit. If b = p, then M would realize a positive profit. Sibnce R gets a zero expected
profit for any p, p is chosen to maximize M’s expected profit function, which coincides with the

integrated channel problem. Therefore, in this sequence, M would secure the entire expected profit

of the integrated channel, while R gets nothing.

Sequence: R:p,Q; M:w,b. The analysis in this sequence under a general £ and a general D(p)
is, again, quite simplé. After R’s decisions on p and @ have been set, M will definitely set-a high
enough w and a low enough b. Thus, w* = p and b = 0. Taking M’s response in Stage 2 into
account, R would not order anything in order to avoid a negative profit. Therefore, there will be

no contract between M and R and both of them will realize a zero profit.

Sequence: R:Q; M:b: R:p; M:w, and a general £ and a general D(p). In Stage 4, knowing

(@,b,p), M will set w as high as possible. Thus, w* = p. Given (Q,b)~and knowing w* = p,
R’s expected profit function in Stage 3 becomes: Ellg = —(p — b)E|Q — X]+? where X is the
random demand and E[Q — X}* is the lost sales. Clearly, the lost sales increase in the retail
price p. Thus, EIlg decreases in p. Therefore, in Stage 3, R will choose a retail price as small
as possible, i.e., p* = max (b,c). In Stage 2, given @ and knowing w* = p* = max‘(b,c), M has
two oétions: (Ayb<cor (B)b>c (A)Ifb<c, then w* = p* = c and Ellyy = —bE[Q — X]T,
which decreases in b. Thus, b* = 0, and accordingly, EIly; = 0, and Ellg = —cE[Q — D(c)¢]T <0
except for @ = 0. (B) If b > ¢, then w* = p* = b, which is a complete consfgnrnent contract, and
accordingly, Ellp = (b—¢)Q — bE[Q — D(b)€]T and Ellg = 0. M chooses b(> ¢) to maximize

ETlp = (b—¢)@Q —bE[Q — D(b)€]*. Thus, R in Stage 1 is indifferent between @ = 0 in Option (A)

and a complete consignment contract in Option (B). Therefore, by Assumption 3.3.1, @, together

with b, is used to maximize M’s expected profit function Ellp = (b—c)Q —bE[Q — D(b)£]™, which
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coincides with the expected profit of the integrated channel. Thus, in equilibrium, M attains the

entire expected profit of the _integrated channel and R gets a zero profit. O

Proof of Proposition 3.3.15. Let us first consider Sequence 1: M:w; R:p; M:b; R:Q, with a

power distribution of £ and a general form of D(p). By the proof of Proposition 3.3.2 in the
appendix, for any given w, in Stage 2; R’s problem is to choose p(> w) to maximize Ellg =
ii—éD(p)(p — w)z*, where z* = [7(tt.+:1-12') : (t+1)(w;°)+p_c]ﬁ’1'_ Note that p(z*)i+t1 — %(p —w) =
Wt:;—lﬁ[(t +1)(w—c)+p—c—(t+2)(p—w)] = b(z*)t*! > 0. The last inequality is due to the fact

that b > 0, which can be verified from the analysis in Stage 2 in the proof of Proposition 3.3.2, and
2*>0.
In the wholesale price-only sequence: M:w; R:p,Q with a power distribution of £ and any

D(p), for any given w, in Stage 2, R chooses p and @ to maximize R’s expected profit function,

2 L . . —w)
Ellgp = (p—w)Q—m%? which is concave in @ for any p. Thus, @* = D(p)(gﬂ)v(—;’—w))t+1

(1))

and R’s expected profit function reduces to ETlg = 1 D(p)(p — w)z},, where 2z}, = | =

2
R is to choose p(> w) to maximize his expected profit function in Stage 2.
For a given w, it is easy to show that z* > z¥ for any value of p. Thus, for any values of w
and p, R’s expected profit in Sequence 1 is strictly larger than his expected profit in the wholesale

price-only contract sequence. O

Proof of Proposition 3.4.1. Let us first consider Sequence 1: M:w; R:p; M:b; R:Q. Since the

analysis of Stages 4 and 3 in Sequence 1, as carried out in the proof of Proposition 3.3.2, is valid for
any form of D(p), we continue with the analysis in Stage 2, assuming D(p) = e™? and a uniform §
on [0,2] (i.e., t =0).

Stage 2: From the analysis in Stages 4 and 3, we have: b*(w,p) = p(w—p-2) .4 z*(w,p) =

w+p—2c
@i’;——zcz, and M’s and R’s expected profit functions can be simplified to: EIlj = %ﬂ%ﬂcﬁ

and Ellg = —%e—p(ﬂ%"—“’—_@, respectively. In Stage 2, R chooses p to maximize ETlg for any given
w. The F.O.C. yields % = A% = 0, where A = (—p® + 2p%c + pw? — 2pwc + p? + w? — 2we),
which is a cubic function of p. Since A(p =w) > 0 if w # c and A(p — o0) < 0, the optimal retail
price p*(w) > w is an inner solution and satisfies %g(p) =0, ie, A(p) =0.

Stage 1: We work with p instead of w for M’s problem‘in this stage. Note that A can be

written as a quadratic function of w as follows: A(w) = (14 p)w? — 2¢(1 +p)w + p?(1 +2c —p), and

_ ctpety/(1+p)(—c—pct+p*—p)(p—c)
- 1+p

we must have p > Ltetvedbetl = Qubstituting w*(p) into M’s expected profit function we have:
Elly = (p—c)(p®—pet+/(L+p)(—c—pc+p?—p)(p—c)—c)e P

there is a unique w*(p) , satisfying A(w*(p)) = 0. Since w* € [¢, p),

2p(1+p)
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Next, we consider Sequence 2: M:b; R:p; M:w; R:Q. Similar to Sequence 1, the analysis of

Stages 4 and 3 in Sequénce 2 in the proof of Proposition 3.3.3 is valid for any form of D(p), and we
can continue our analysis in Stage 2, assuming D(p) = e~ and a uniform & on [0,2] (ie., t = 0). '

Stage 2: From the analysis in Stages 4 and 3, we have: w*(b,p) = Lzsz'_;lfc and z*(b,p) = %ﬁl,
and M’s and R’s expected profit functions can be simplified to: Ellp = ngp_c_) and Ellgp =
ﬂ(’;—;b—%)%——cﬁ. R’s problem in Stage 2 is to choose p to maximize Ellg for any given b. The F.O.C.
yields dEHR(p) Ae(;;(_”;)g), where A = —2p3+3p2b+2p?c—3pch—b2p+b2e+2p? —3bp+-2pc—3be+2b2.

Since A(p = max (b,¢)) > 0 and A(p — o) < 0, the optimal retail price p*(b) is an inner solution,
p*(b) > max (b, ¢}, satisfying %}’}(7’2 =0, i.e., A(p) = 0. Note that Fllg = %Xi > 0 since
p(b) > max (b, ).

Stage 1: We work with p instead of b for M’s problem in this stage. Note that A can be written
as a quadratic function of b as follows: ‘A(b) = (2+c—p)b? +3(p? —pc—p—c)b—2p(p? —pc—p—c),
and there is a unique b*(p) = —3(p2—pc—p—c)+\/(zz)i—c;_wp—p—c)(pz—pc+7p—9c), satisfying A(b*(p)) = 0.

Since b* € [0,p), we must have p > M, and M’s expected profit function becomes:

e~ ?(p—c)(—p*+pct+5p—3ct+/(p2—pe—p—c)(p?~ pc+7p—90))
Elly = v

For any value of p(> M@), let us compare M’s expected profit in Sequences 1 and 2.
Let S$21(p) = Ellp(S2) — ETIp(S1), where ETlp(S1) and ETIp(S1) are M’s expected profits in
Sequences 1 and 2, respectively, for any value of p. Thus, S21(p) = 68171211—){-—])) {\/;B———pc—————c 1+
P)VP? —pc+Tp — 9c — 4/(1 +p)(p — ¢)] — p* + 2pc + p*c + 5p + ¢}. One can verify that for any
p > M@ and any ¢ > 0, S21(p) > 0, implying that EII;;(S2)(p) > Ellx(S1)(p) and
EII%,(S2) > ETI;,(S1).

Now, by (3.11) and (3.12), for D(p) = e7P, p* = 3¢t and FIT},(TS) = Ml——c—i@

3tct+H
2

in the traditional sequence. Evaluating M’s expected profit function in Stage 1 in Sequence 1 at
the equilibrium retail price p* of the traditional sequence, and simplifying yields: EIIg(S1)(p*) =
(3_C+H)(5+C+23(?L\J{S)'€;Ifﬁs)—C+H))(1+H)), where H = +/c% + 6¢ + 1. By using some simple algebra,
it is not difficult to verify that ETIp(S1)(p*) > EII},(T'S) for any value of ¢, which implies that

EIT,(S1) > EII%,(TS).0

Proof.of Proposition 3.4.4. Consider Sequence 7: R:p; M:w; R:Q; M:b, assuming that £ has

a uniform distribution (i.e., ¢ = 0 in the power disfribution) and D(p) = e~P. Since the analysis
of Stages 4, 3 and 2 in Sequence 7 in the proof of Proposition 3.3.11 was done for an arbitrary

D(p), we only need to analyze R’s problem in Stage 1 for D(p) = e™P. Note that w* = p — ypz

and Ellp; = (w — ¢)e™Pz. In Stage 1, R sets p to maximize Ellg = %e‘ppZQ,/where z satisfies:
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p—c—2ypz = 0. R’s expected profit function can be simplified to: Ellgp = ﬂ%—_cﬁ’ which
_can be easily verified to be unimodal in p, and the unique. equilibrium retail brice’ is p* = 1—"*'—°2LH,
where H = v/c® + 6¢ + 1. Accordingly, we can compute the equilibrium values of the other decision
variables: z* = (3—4"62:—‘”—), w* = lﬂf’—H and b* = 0, and the equilibrium values of the expected
profits are: EHX,I = 2FTlg = M%M%_Bzi. By comparing these equilibrium values in
Sequence 7 and those in the traditional sequence, as displayed by (3.11) and (3.12), we can derive:
EIT},(S7) = 2E3(S7) = $E113,(TS) = §ETR(TS), Q*(S7) = $Q*(TS), p*(TS) = p*(ST) + 1,
w*(TS) = w*(87) + 2 and b*(TS) > b*(S7) =0. O

Proof of Proposition 3.4.5. Consider Sequence 1: M:w; R:p; M:b; R:Q. The analysis of Stages 4

and 3 in Sequence 1 was carried out in the proof of Proposition 3.3.2 for a power distribution of &

and an arbitrary D(p). We continue the analysis in Stage 2, assuming D(p) = p~? and a uniform

£€(0,2]. .
Stage 2: From the analysis in Stages 4 and 3, we have: b*(w,p) = % and z*(w,p) =
g%—zcl, and M’s and R’s expected profit functions can be simplified to: EIly = P—ﬂ%ﬁ_—?—cﬁ

and Ellgp = W. In Stage 2, R sets p to maximize EIlg, which is clearly unimodal in
p and has a unique optimal p* satisfying the F.O.C. % =0, Which is equivalent to requiring
‘that A = —qp? + 2qpc + quw? — 2qwe + p? + w? — 2we = 0.

Stage 1: We work with p instead of w for M’s problem in Stage 1. Note that A can be written
as a quadratic function of w as follows: A(w) = (¢ + 1)w? — 2(q + 1)cw — gp® + 2gpc + p?, and there
is a unique w*(p) = ¢+ (p—_cm—_—’fﬁ, satisfyirig A(w*(p)) = 0. Since w* € [¢,p), we must have

q+
~(a+1) (p—¢)(,/ dR=P9C=C 4 | /502
p> (‘Lt—ll)c. M’s expected profit function becomes: Ellp; = P @ )(\/ ) ot ) .

Next, consider Sequence 2: M:b; R:p; M:w; R:Q. The analysis of Stages 4 and 3 in Sequence 2

was carried out in the proof of Proposition 3.3.3 for a power distribution of £ and an arbitrary
D(p). We continue the analysis in Stage 2, assuming D(p) = p~? and a uniform £ € [0, 2].
Stage 2: From the analysis in Stages 4 and 3, we have: w*(b,p) = ptpebe ,ng z*(b,p) =

2p—b
%2, and M’s and R’s expected profit functions can be simplified to: Elly; = %ﬁ and
Ellg = P“”g;;f,ff'CV. In Stage 2, R determines p to maximize EIlg for any given b. The F.O.C.

is 22080 — A”'ZZZI_’IE?; 9 where A = —2p’q + 3p%qb + 2p%qc — 3pqch — pgb? + gb%c + 2p° — 3p%b +

2p%c — 3pch + 2pb?. Since A(p = max (b,c)) > 0 and A(p — o0) < 0, the optimal retail price
p*(b) is an inner solution, p*(b) > max (b, c), satisfying %ﬁ(})) = 0, i.e.,, A = 0. Note that
Fllg = ’L(’;;ﬁb&)”;_cﬁ > 0 since p*(b) > max (b, c).

Stage 1: We work with p instead of b for M’s problem in this stage. Note that A can be written
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as a quadratic function of b as follows: A(b) = (2p — qp+ qc)b? +3p(gp—ge—p—c)b—2p*(gp —qc —

p({(—3(gp—ge—c—p)++/(pa—p—gc—c)(pg+7p—gc—9c)))
2(2p+qc—qp)

A(b*(p)) = 0. Since b* € [0,p), we must have p > (qqt—ll)c. M’s expected profit function becomes:

p —c) = 0, and there is a unique b*(p) = , satisfying

By = p““’“)(p—C)(\/(qp~p—qc—C)(§q+7p—qc—90)—pq+QC+5p-3C).

Similar to the linear and exponential expected demand function cases, one can show, using sim-
ple algebra, that for any p > %E, ETIp(S2) > ETIp(S1), implying that EII%,(S2) > EII;,(S1).

Finally, by (3.13) and (3.14), in the traditional sequence under D(p) = p79, p* = g%i% and
. EIT;(T'S) = %ﬁ%_. Evaluating M’s expected profit function in Stage 1 in Sequence 1 at
the equilibrium retail price p* in the traditional sequence, and simplifying yields: FIIg(S1)(p*) =
(q_l)q;lc,(,i?;();iz)l)ﬁjl/ﬁ Y 1t is not difficult to show that ETIR(S1)(p*) > EIR(TS) for any value
of ¢ and ¢, implying that EII;(S1) > EIIL(TS). O '

Proof of Proposition 3.4.7. Assume that £ has a uniform distribution and D(p) = p~9. The
analysis of Stages 4, 3 and 2 in Sequence 7 in the proof of Proposition 3.3.11 is valid for an arbitrary
D(p), and we only need to analyze R’s problem in Stage 1 for D(p) = p~9. Note that w* = p—ypz

and ETlp = (w* —c¢)D(p)z. In Stage 1, R sets p to maximize EIlg = {p~7"122, where z = 5 It

is easy to verify that ETlg is unimodal in p and uniquely maximized at p* = %L_llk. Accordingly, we

can compute the equilibrium values of the other decision variables: z* = E:ZLT’ w* = Eq—c_1 and b* = 0,
’ _1)e-1 .
and the equilibrium values of the expected profits are: EII}, = 2EII; = Cq—fql(ql—fl)—qq. By comparing

these equilibrium values in Sequence 7 and those in the traditional sequence, as displayed by (3.13)
and (3.14), we can easily derive: EII},(S7) > EIIL}(T'S) for ¢ > 2, EII},(S7) = EII},(TS) for ¢ =
2, EII}4(S7) < EII}(TS) for q < 2, EIIR(T'S) > EITR(S7), Q*(S7) = %(q%l)qQ*(TS) > QNTS),
p*(87) = gg—lp*(TS) < p*(TS), w*(S7) = w*(TS) and b*(S7) =b*(TS) = 0. O.




Power distribution f(e) = ()t with t = 0 (uniform)

0.000E+4-00

8.000E-01

c 1.000E-01 | 2.000E-01 | 3.000E-01 { 4.000E-01 | 5.000E-01 | 6.000E-01 | 7.000E-01 9.000E-01

w* 5.000E-01 | 5.500E-01 | 6.000E-01 | 6.500E-01 | 7.000E-01 | 7.500E-01 | 8.000E-01 | 8.500E-01 | 9.000E-01 | 9.500E-01

b* 5.000E-01 | 5.000E-01 | 5.000E-01 | 5.000E-01 | 5.000E-01 | 5.000E-01 | 5.000E-01 | 5.000E-01 | 5.000E-01 | 5.000E-01

p* 7.500E-01 | 7.927E-01 | 8.266E-01 | 8.555E-01 | 8.812E-01 | 9.045E-01 | 9.260E-01 | 9.461E-01 | 9.650E-01 | 9.829E-01

Q* 2.500E-01 | 1.719E-01 | 1.203E-01 | 8.353E-02 | 5.648E-02 | 3.647E-02 | 2.188E-02 | 1.161E-02 | 4.890E-03 | 1.163E-03

EIT}, 6.250E-02 | 4.172E-02 | 2.726E-02 | 1.717E-02 | 1.023E-02 | 5.636E-03 | 2.758E-03 | 1.116E-03 | 3.180E-04 | 3.833E-05

ETly 3.125E-02 | 2.086E-02 | 1.363E-02 | 8.583E-03 | 5.116E-03 | 2.818E-03 | 1.379E-03 | 5.579E-04 | 1.590E-04 | 1.916E-05

Channel | 9.375E-02 | 6.258E-02 | 4.089E-02 | 2.575E-02 | 1.535E-02 | 8.453E-03 | 4.137E-03 | 1.674E-03 | 4.770E-04 | 5.749E-05
Power distribution f(e) = y(e)t with t = 1

c 0.000E+00 | 1.000E-01 | 2.000E-01 | 3.000E-01 | 4.000E-01 | 5.000E-01 | 6.000E-01 | 7.000E-01 { 8.000E-01 | 9.000E-01

w* 5.000E-01 | 5.500E-01 | 6.000E-01 | 6.500E-01 | 7.000E-01 | 7.500E-01 | 8.000E-01 | 8.500E-01 | 9.000E-01 | 9.500E-01

b* 5.000E-01 | 5.000E-01 | 5.000E-01 | 5.000E-01 | 5.000E-01 | 5.000E-01 | 5.000E-01 | 5.000E-01 | 5.000E-01 | 5.000E-01

p* 7.500E-01 | 7.845E-01 | 8.147E-01 | 8.423E-01 | 8.679E-01 | 8.922E-01 | 9.153E-01 | 9.375E-01 | 9.589E-01 | 9.797E-01

Q* 2.500E-01 | 1.957E-01 | 1.530E-01 | 1.182E-01 | 8.922E-02 | 6.492E-02 | 4.463E-02 | 2.795E-02 { 1.471E-02 | 5.043E-03

ETl}, 8.333E-02 | 6.117E-02 | 4.381E-02 | 3.031E-02 | 1.998E-02 | 1.231E-02 | 6.861E-03 | 3.261E-03 | 1.156E-03 | 2.000E-04

ETl; 4.167E-02 | 3.059E-02 | 2.191E-02 | 1.515E-02 | 9.989E-03 | 6.154E-03 | 3.430E-03 | 1.630E-03 | 5.782E-04 | 1.000E-04

Channel | 1.250E-01 | 9.176E-02 | 6.572E-02 | 4.546E-02 | 2.997E-02 | 1.846E-02 | 1.029E-02 | 4.891E-03 | 1.735E-03 | 3.000E-04
Power distribution f(e) = v(¢)* with t = 2

c 0.000E+4-00 | 1.000E-01 | 2.000E-01 | 3.000E-01 | 4.000E-01 | 5.000E-01 | 6.000E-01 | 7.000E-01 | 8.000E-01 | 9.000E-01

w* 5.000E-01 | 5.500E-01 | 6.000E-01 | 6.500E-01 | 7.000E-01 | 7.500E-01 | 8.000E-01 | 8.500E-01 | 9.000E-01 | 9.500E-01

b* 5.000E-01 | 5.000E-01 | 5.000E-01 | 5.000E-01 | 5.000E-01 | 5.000E-01 | 5.000E-01 | 5.000E-01 | 5.000E-01 | 5.000E-01

p* 7.500E-01 | 7.815E-01 | 8.102E-01 | 8.371E-01 | 8.626E-01 | 8.871E-01 | 9.108E-01 | 9.339E-01 | 9.564E-01 | 9.784E-01

Q. 2.500E-01 | 2.047E-01 | 1.667E-01 | 1.339E-01 | 1.052E-01 | 7.985E-02 | 5.761E-02 | 3.823E-02 | 2.173E-02 | 8.430E-03

ETI;, 9.375E-02 | 7.109E-02 | 5.256E-02 | 3.757E-02 | 2.565E-02 | 1.643E-02 | 9.579E-03 | 4.810E-03 | 1.837E-03 | 3.590E-04

Elly 4.688E-02 | 3.554E-02 | 2.628E-02 | 1.879E-02 | 1.283E-02 | 8.214E-03 | 4.789E-03 | 2.405E-03 | 9.186E-04 | 1.795E-04

Channel | 1.406E-01 | 1.066E-01 | 7.885E-02 | 5.636E-02 | 3.848E-02 | 2.464E-02 | 1.437E-02 | 7.216E-03 | 2.756E-03 | 5.384E-04
_ Power distribution f(e) = y(e)* with t = 4

c 0.000E+00 | 1.000E-01 | 2.000E-01 | 3.000E-01 | 4.000E-01 | 5.000E-01 | 6.000E-01 | 7.000E-01 | 8.000E-01 | 9.000E-01

w* 5.000E-01 | 5.500E-01 | 6.000E-01 | 6.500E-01 | 7.000E-01 | 7.500E-01 | 8.000E-01 | 8.500E-01 | 9.000E-01 | 9.500E-01

b* 5.000E-01 | 5.000E-01 | 5.000E-01 | 5.000E-01 | 5.000E-01 | 5.000E-01 | 5.000E-01 | 5.000E-01 | 5.000E-01 | 5.000E-01

p* 7.500E-01 | 7.790E-01 | 8.063E-01 | 8.326E-01 | 8.579E-01 | 8.827E-01 | 9.069E-01 | 9.306E-01 | 9.540E-01 | 9.772E-01

Q* 2.500E-01 | 2.125E-01 | 1.790E-01 | 1.485E-01 | 1.206E-01 | 9.493E-02 | 7.128E-02 | 4.961E-02 | 3.002E-02 | 1.288E-02

ETI;, 1.042E-01 | 8.108E-02 | 6.154E-02 | 4.519E-02 | 3.175E-02 | 2.099E-02 | 1.270E-02 | 6.668E-03 | 2.704E-03 | 5.828E-04

Ell 5.208E-02 | 4.054E-02 | 3.077E-02 | 2.259E-02 | 1.588E-02 | 1.050E-02 | 6.348E-03 | 3.334E-03 | 1.352E-03 | 2.914E-04

Channel | 1.563E-01 | 1.216E-01 | 9.231E-02 | 6.778E-02 | 4.763E-02 | 3.149E-02 | 1.904E-02 | 1.000E-02 | 4.057E-03 | 8.742E-04

Table 3A..1: Equilibrium vaiues in the traditional sequence: M:w,b; R:ip,Q for D(p)=1—p

JusuIjIIIMIO)) reruanbag (g reyder)
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Power distribution f(e) = y{(€)* with ¢ = 0 (uniform)

c 0.000E+-00 | 1.000E-01 | 2.000E-01 | 3.000E-01 | 4.000E-01 | 5.000E-01 | 6.000E-01 | 7.000E-01 | 8.000E-01 | 9.000E-01

w* 4.456E-01 | 5.230E-01 | 5.911E-01 { 6.531E-01 | 7.105E-01 | 7.644E-01 | 8.156E-01 | 8.644E-01 | 9.112E-01 | 9.564E-01

b* 3.884E-01 | 4.326E-01 | 4.694E-01 | 5.016E-01 | 5.302E-01 | 5.563E-01 | 5.804E-01 | 6.028E-01 | 6.239E-01 | 6.438E-01

p* 7.016E-01 | 7.501E-01 | 7.904E-01 | 8.255E-01 | 8.567E-01 | 8.851E-01 | 9.112E-01 | 9.355E-01 | 9.582E-01 | 9.797E-01

Q* 2.439E-01 | 1.787E-01 | 1.301E-01 | 9.289E-02 | 6.418E-02 | 4.217E-02 | 2.567E-02 | 1.379E-02 | 5.873E-03 | 1.411E-03

EIT;, 6.996E-02 | 4.795E-02 | 3.193E-02 | 2.040E-02 | 1.231E-02 | 6.848E-03 | 3.381E-03 | 1.379E-03 | 3.956E-04 | 4.798E-05

ETly 3.123E-02 | 2.030E-02 | 1.297E-02 | 8.004E-03 | 4.691E-03 | 2.544E-03 | 1.227E-03 | 4.902E-04 | 1.380E-04 | 1.645E-05

Channel | 1.012E-01 | 6.825E-02 | 4.490E-02 | 2.841E-02 | 1.700E-02 | 9.392E-03 | 4.608E-03 | 1.869E-03 | 5.336E-04 | 6.444E-05

Power distribution f(e) = v(e)t with t =1

c 0.000E+00 | 1.000E-01 | 2.000E-01 | 3.000E-01 | 4.000E-01 | 5.000E-01 | 6.000E-01 | 7.000E-01 | 8.000E-01 | 9.000E-01

w* 4.604E-01 | 5.251E-01 | 5.858E-01 | 6.435E-01 | 6.989E-01 | 7.524E-01 | 8.043E-01 | 8.548E-01 | 9.042E-01 | 9.526E-01

b* 3.806E-01 | 4.103E-01 | 4.372E-01 | 4.619E-01 | 4.851E-01 | 5.069E-01 | 5.276E-01 | 5.474E-01 | 5.663E-01 | 5.852E-01

p* 7.159E-01 | 7.532E-01 | 7.872E-01 | 8.186E-01 | 8.482E-01 | 8.762E-01 | 9.029E-01 | 9.284E-01 | 9.531E-01 | 9.769E-01

Q* 2.480E-01 | 2.013E-01 | 1.614E-01 { 1.271E-01 | 9.733E-02 | 7.168E-02 | 4.978E-02 | 3.145E-02 | 1.668E-02 | 5.753E-03

El, 9.019E-02 | 6.725E-02 | 4.875E-02 | 3.405E-02 |-2.262E-02 | 1.403E-02 | 7.871E-03 | 3.761E-03 | 1.340E-03 | 2.328E-04

ETly 4.224E-02 | 3.062E-02 | 2.167E-02 | 1.484E-02 | 9.686E-03 | 5.915E-03 | 3.271E-03 | 1.544E-03 | 5.438E-04 | 9.334E-05

Channel | 1.324E-01 | 9.787E-02 | 7.042E-02 | 4.888E-02 | 3.231E-02 | 1.995E-02 | 1.114E-02 | 5.304E-03 | 1.884E-03 | 3.261E-04

~ Power distribution f(e) = y(e)* with ¢t = 2 '

c 0.000E+00 | 1.000E-01 | 2.000E-01 | 3.000E-01 | 4.000E-01 | 5.000E-01 | 6.000E-01 | 7.000E-01 | 8.000E-01 | 9.000E-01

w* 4.690E-01 | 5.290E-01 | 5.866E-01 | 6.424E-01 | 6.965E-01 | 7.494E-01 | 8.012E-01 | 8.520E-01 | 9.021E-01 | 9.514E-01

b* 3.777E-01 | 4.019E-01 | 4.245E-01 | 4.459E-01 | 4.663E-01 | 4.858E-01 | 5.046E-01 | 5.228E-01 | 5.404E-01 | 5.577E-01

p* 7.238E-01 | 7.571E-01 | 7.884E-01 | 8.181E-01 | 8.466E-01 | 8.740E-01 | 9.006E-01 | 9.264E-01 | 9.515E-01 | 9.760E-01

Q* 2.494E-01 | 2.096E-01 | 1.739E-01 | 1.416E-01 | 1.125E-01 | 8.624E-02 | 6.271E-02 | 4.189E-02 | 2.395E-02 | 9.338E-03

ETI;, 9.963E-02 | 7.639E-02 | 5.699E-02 | 4.103E-02 | 2.819E-02 | 1.815E-02 | 1.063E-02 | 5.361E-03 | 2.055E-03 | 4.028E-04

EIly 4.765E-02 | 3.584E-02 | 2.630E-02 | 1.867E-02 | 1.266E-02 | 8.062E-03 | 4.675E-03 | 2.335E-03 | 8.877E-04 | 1.726E-04

Channel | 1.473E-01 | 1.122E-01 | 8.329E-02 | 5.970E-02 | 4.085E-02 | 2.621E-02 | 1.531E-02 | 7.696E-03 | 2.943E-03 | 5.754E-04

Power distribution f(e) = y(e)® with ¢t = 4

c 0.000E+00 | 1.000E-01 | 2.000E-01 | 3.000E-01 | 4.000E-01 | 5.000E-01 | 6.000E-01 | 7.000E-01 | 8.000E-01 | 9.000E-01

w* 4.785E-01 | 5.346E-01 | 5.894E-01 | 6.432E-01 | 6.960E-01 | 7.481E-01 | 7.995E-01 | 8.503E-01 | 9.007E-01 | 9.505E-01

b* 3.756E-01 | 3.952E-01 | 4.140E-01 | 4.322E-01 | 4.499E-01 | 4.670E-01 | 4.837E-01 | 5.001E-01 | 5.162E-01 | 5.320E-01

p* 7.322E-01 | 7.621E-01 | 7.911E-01 | 8.191E-01 | 8.465E-01 | 8.732E-01 | 8.994E-01 | 9.251E-01 | 9.504E-01 | 9.754E-01

Q* 2.502E-01 | 2.162E-01 | 1.844E-01 | 1.545E-01 | 1.265E-01 | 1.002E-01 | 7.563E-02 | 5.289E-02 | 3.213E-02 | 1.383E-02

ETlY, 1.086E-01 | 8.513E-02 | 6.499E-02 | 4.796E-02 | 3.384E-02 | 2.245E-02 | 1.362E-02 | 7.175E-03 | 2.917E-03 | 6.302E-04
ETly 5.280E-02 | 4.099E-02 | 3.098E-02 | 2.265E-02 | 1.586E-02 | 1.044E-02 | 6.296E-03 | 3.296E-03 | 1.333E-03 | 2.865E-04 .
Channel | 1.615E-01 | 1.261E-01 | 9.597E-02 | 7.061E-02 | 4.970E-02 | 3.290E-02 | 1.992E-02 | 1.047E-02 | 4.250E-03 | 9.166E-04

Table 3A.2: Equilibrium values in Sequence 1: M:w; R:p; M:b; R:Q for D(p)=1—-1p

uauIIWIo;,) rerusnbag ¢ Ivideyn)
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Power distribution f{e) = y(e)? with t =0 (uniform)

7.000E-01

c 0.000E+-00 | 1.000E-01 | 2.000E-01 | 3.000E-01 | 4.000E-01 | 5.000E-01 | 6.000E-01 8.000E-01 | 9.000E-01

w* 4.566E-01 | 5.419E-01 | 6.151E-01 | 6.803E-01 | 7.394E-01 | 7.935E-01 | 8.431E-01 | 8.886E-01 | 9.301E-01 | 9.673E-01

b* 3.894E-01 | 4.552E-01 | 5.131E-01 | 5.668E-01 | 6.183E-01 | 6.690E-01 | 7.202E-01 | 7.731E-01 | 8.300E-01 | 8.951E-01

p* 6.318E-01 | 6.940E-01 | 7.439E-01 | 7.866E-01 | 8.242E-01 | 8.582E-01 | 8.894E-01 | 9.185E-01 | 9.461E-01 | 9.727E-01

Q* 2.661E-01 | 1.949E-01 | 1.429E-01 | 1.032E-01 | 7.239E-02 | 4.850E-02 | 3.024E-02 | 1.674E-02 | 7.417E-03 | 1.891E-03

ETI;, 8.407E-02 | 5.788E-02 | 3.886E-02 | 2.510E-02 | 1.535E-02 | 8.686E-03 | 4.375E-03 | 1.829E-03 | 5.417E-04 | 6.871E-05

ETlg 2.331E-02 | 1.481E-02 | 9.202E-03 | 5.483E-03 | 3.069E-03 | 1.569E-03 | 6.994E-04 | 2.499E-04 | 5.921E-05 | 5.077E-06

Channel | 1.074E-01 | 7.269E-02 | 4.806E-02 | 3.059E-02 | 1.842E-02 | 1.025E-02 | 5.074E-03 | 2.079E-03 | 6.009E-04 | 7.378E-05
Power distribution f(e) = y(e)? with t =1

c 0.000E+4-00 | 1.000E-01 | 2.000E-01 | 3.000E-01 | 4.000E-01 | 5.000E-01 | 6.000E-01 | 7.000E-01 | 8.000E-01 | 9.000E-01

w* 4.813E-01 | 5.457E-01 | 6.066E-01 | 6.645E-01 | 7.197E-01 | 7.724E-01 | 8.229E-01 | 8.710E-01 | 9.167E-01 | 9.597E-01

b* 3.532E-01 | 4.079E-01 | 4.621E-01 | 5.165E-01 | 5.718E-01 | 6.285E-01 | 6.876E-01 | 7.500E-01 | 8.177E-01 | 8.948E-01

p* 6.277E-01 | 6.714E-01 | 7.123E-01 | 7.512E-01 | 7.886E-01 | 8.248E-01 | 8.601E-01 | 8.948E-01 | 9.291E-01 | 9.637E-01

Q* 2.719E-01 | 2.269E-01 | 1.870E-01 | 1.513E-01 | 1.192E-01 | 9.048E-02 | 6.498E-02 | 4.266E-02 | 2.372E-02 | 8.737TE-03

ElI;, 1.138E-01 | 8.644E-02 | 6.387E-02 | 4.550E-02 | 3.088E-02 | 1.959E-02 | 1.127E-02 | 5.541E-03 | 2.043E-03 | 3.708E-04

Elly 2.654E-02 | 1.900E-02 | 1.318E-02 | 8.749E-03 | 5.478E-03 | 3.159E-03 | 1.613E-03 | 6.773E-04 | 1.975E-04 | 2.317E-05

Channel | 1.403E-01 | 1.054E-01 | 7.704E-02 | 5.425E-02 | 3.636E-02 | 2.275E-02 | 1.288E-02 | 6.218E-03 | 2.240E-03 | 3.940E-04
Power distribution f(e) = v(€)* with t = 2

c 0.000E+4-00 | 1.000E-01 | 2.000E-01 | 3.000E-01 | 4.000E-01 | 5.000E-01 | 6.000E-01 | 7.000E-01 | 8.000E-01 | 9.000E-01

w* 4.938E-01 | 5.506E-01 | 6.060E-01 | 6.600E-01 | 7.129E-01 | 7.645E-01 | 8.147E-01 | 8.636E-01 | 9.109E-01 | 9.565E-01

b* 3.107E-01 | 3.670E-01 | 4.245E-01 | 4.833E-01 | 5.438E-01 | 6.064E-01 | 6.717E-01 | 7.406E-01 | 8.147E-01 | 8.972E-01

p* 6.169E-01 | 6.561E-01 | 6.948E-01 | 7.330E-01 | .7.709E-01 | 8.085E-01 | 8.461E-01 | 8.836E-01 | 9.214E-01 | 9.597E-01

Q* 2.827E-01 | 2.458E-01 | 2.106E-01 | 1.772E-01 | 1.454E-01 | 1.152E-01 | 8.687E-02 | 6.042E-02 | 3.622E-02 | 1.504E-02

ET13, 1.308E-01 | 1.025E-01 | 7.816E-02 | 5.754E-02 | 4.044E-02 | 2.667E-02 | 1.603E-02 | 8.320E-03 | 3.297E-03 | 6.736E-04

Ellg 2.608E-02 | 1.945E-02 | 1.403E-02 | 9.693E-03 | 6.323E-03 | 3.810E-03 | 2.042E-03 | 9.064E-04 | 2.834E-04 | 3.672E-05

Channel | 1.569E-01 | 1.220E-01 | 9.219E-02 | 6.723E-02 | 4.676E-02 | 3.048E-02 | 1.807E-02 | 9.226E-03 | 3.581E-03 | 7.103E-04
Power distribution f(e) = y(e)* with t =4

c 0.000E+00 | 1.000E-01 | 2.000E-01 | 3.000E-01 | 4.000E-01 | 5.000E-01 | 6.000E-01 | 7.000E-01 | 8.000E-01 | 9.000E-01

w* 5.023E-01 | 5.540E-01 | 6.054E-01 | 6.566E-01 | 7.074E-01 | 7.579E-01 | 8.079E-01 | 8.573E-01 | 9.060E-01 | 9.537E-01

b* 2.306E-01 | 2.978E-01 | 3.661E-01 | 4.356E-01 | 5.065E-01 | 5.791E-01 | 6.538E-01 | 7.312E-01 | 8.125E-01 | 8.998E-01

p* 5.913E-01 | 6.310E-01 | 6.708E-01 | 7.108E-01 | 7.509E-01 | 7.912E-01 | 8.318E-01 | 8.728E-01 | 9.142E-01 | 9.563E-01

Q* 3.090E-01 | 2.753E-01 | 2.420E-01 | 2.090E-01 | 1.764E-01 | 1.442E-01 | 1.126E-01 | 8.171E-02 | 5.182E-02 | 2.356E-02

ETT;, 1.522E-01 | 1.218E-01 | 9.493E-02 | 7.153E-02 | 5.157E-02 | 3.500E-02 | 2.175E-02 | 1.177E-02 | 4.931E-03 | 1.105E-03

ETly 2.293E-02 | 1.767E-02 | 1.318E-02 | 9.433E-03 | 6.389E-03 | 4.009E-03 | 2.249E-03 | 1.054E-03 | 3.524E-04 | 5.038E-05

Channel | 1.752E-01 | 1.395E-01 | 1.081E-01 | 8.096E-02 | 5.796E-02 | 3.901E-02 | 2.400E-02 | 1.282E-02 | 5.283E-03 | 1.155E-03

Table 3A.3: Equilibrium values in Sequence 2: M:b; R:p; M:w; R:Q for D(p) =1—p
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Power distribution f(e€) = v(e)* with ¢t = 0 (uniform)

juemq_rwwoo [eruenbag :g 1ogdey))

c 0.000E+00 | 1.000E-01 | 2.000E-01 | 3.000E-01 | 4.000E-01 | 5.000E-01 | 6.000E-01 | 7.000E-01 | 8.000E-01 | 9.000E-01
w* 2.500E-01 | 3.427E-01 | 4.265E-01 | 5.055E-01 | 5.812E-01 | 6.545E-01 | 7.260E-01 | 7.961E-01 | 8.651E-01 | 9.329E-01
b* 0.000E+-00 | 0.000E+00 [ 0.000E+00 | 0.000E+400 | 0.000E-+00 | 0.000E+00 { 0.000E-+00 | 0.000E+00 | 0.000E4-00 | 0.000E+-00
p* 5.000E-01 | 5.854E-01 | 6.531E-01 | 7.110E-01 | 7.624E-01 | 8.090E-01 | 8.521E-01 | 8.922E-01 | 9.301E-01 | 9.659E-01
Q* 2.500E-01 | 1.719E-01 | 1.203E-01 | 8.353E-02 | 5.647E-02 | 3.647E-02 | 2.188E-02 | 1.161E-02 | 4.888E-03 | 1.164E-03

ElI;, 6.250E-02 | 4.172E-02 | 2.726E-02 | 1.717E-02 | 1.023E-02 | 5.636E-03 | 2.758E-03 | 1.116E-03 | 3.180E-04 | 3.833E-05

Elly 3.125E-02 | 2.086E-02 | 1.363E-02 | 8.583E-03 | 5.116E-03 | 2.818E-03 | 1.379E-03 | 5.579E-04 | 1.590E-04 | 1.916E-05

Channel | 9.375E-02 | 6.258E-02 | 4.089E-02 | 2.575E-02 | 1.535E-02 | 8.453E-03 | 4.137E-03 | 1.674E-03 | 4.770E-04 | 5.749E-05
Power distribution f(e) = v(e)® with t =1

c 0.000E+00 | 1.000E-01 | 2.000E-01 | 3.000E-01 | 4.000E-01 | 5.000E-01 | 6.000E-01 | 7.000E-01 | 8.000E-01 | 9.000E-01
w* 3.333E-01 | 4.126E-01 | 4.863E-01 | 5.564E-01 | 6.239E-01 | 6.896E-01 | 7.537E-01 | 8.166E-01 | 8.786E-01 | 9.397E-01
b* 0.000E+-00 | 0.000E+00 [ 0.000E+400 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00
p* 5.000E-01 | 5.690E-01 | 6.295E-01 | 6.846E-01 | 7.359E-01 | 7.844E-01 | 8.306E-01 | 8.750E-01 | 9.179E-01 | 9.595E-01
Q* 2.887E-01 | 2.259E-01 | 1.767E-01 | 1.365E-01 | 1.030E-01 | 7.496E-02 | 5.1563E-02 | 3.228E-02 | 1.699E-02 | 5.824E-03

ETI;, 9.623E-02 | 7.064E-02 | 5.059E-02 | 3.499E-02 | 2.307E-02 | 1.421E-02 | 7.922E-03 | 3.765E-03 | 1.335E-03 | 2.310E-04

E’H}“2 3.208E-02 | 2.355E-02 | 1.686E-02 | 1.166E-02 | 7.690E-03 | 4.737E-03 | 2.641E-03 | 1.255E-03 | 4.451E-04 | 7.699E-05

Channel | 1.283E-01 | 9.418E-02 | 6.746E-02 | 4.666E-02 | 3.076E-02 | 1.895E-02 | 1.056E-02 | 5.021E-03 | 1.780E-03 | 3.080E-04
Power distribution f(e) = y(¢)* with t =2"

c 0.000E+00 | 1.000E-01 | 2.000E-01 | 3.000E-01 | 4.000E-01 | 5.000E-01 | 6.000E-01 | 7.000E-01 | 8.000E-01 | 9.000E-01
w* 3.750E-01 | 4.473E-01 | 5.154E-01 | 5.807E-01 | 6.440E-01 | 7.057E-01 | 7.663E-01 | 8.258E-01 | 8.846E-01 | 9.426E-01
b* 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00
p* 5.000E-01 | 5.630E-01 | 6.205E-01 | 6.742E-01 | 7.253E-01 | 7.743E-01 | 8217E-01 | 8.677E-01 | 9.127E-01 | 9.568E-01
Q* 3.150E-01 | 2.579E-01 | 2.100E-01 | 1.687E-01 | 1.325E-01 | 1.006E-01 | 7.257E-02 | 4.817E-02 | 2.738E-02 | 1.062E-02

EiI;, 1.181E-01 | 8.956E-02 | 6.623E-02 | 4.734E-02 | 3.232E-02 | 2.070E-02 | 1.207E-02 | 6.061E-03 | 2.315E-03 | 4.523E-04

Ell; 2.953E-02 | 2.239E-02 | 1.656E-02 | 1.183E-02 | 8.079E-03 | 5.174E-03 | 3.017E-03 | 1.515E-03 | 5.787E-04 | 1.131E-04

Channel | 1.476E-01 | 1.120E-01 | 8.278E-02 | 5.917E-02 | 4.040E-02 | 2.587E-02 | 1.509E-02 | 7.576E-03 | 2.893E-03 | 5.653E-04
Power distribution f(e) = y(e)! with t =4

c 0.000E+4-00 | 1.000E-01 | 2.000E-01 { 3.000E-01 | 4.000E-01 | 5.000E-01 | 6.000E-01 | 7.000E-01 | 8.000E-01 | 9.000E-01
w* 4.167E-01 | 4.817E-01 | 5.440E-01 | 6.043E-01 | 6.632E-01 | 7.211E-01 | 7.781E-01 | 8.344E-01 | 8.901E-01 | 9.453E-01
b* 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+00 | 0.000E+4-00 | 0.000E+00 { 0.000E-+00 | 0.000E+00 | 0.000E+00
p* 5.000E-01 | .5.581E-01 | 6.127E-01 | 6.652E-01 | 7.158E-01 | 7.653E-01 | 8.138E-01 | 8.613E-01 | 9.081E-01 | 9.543E-01
Q* 3.494E-01 | 2.969E-01 | 2.501E-01 | 2.075E-01 | 1.686E-01 | 1.327E-01 | 9.962E-02 | 6.934E-02 | 4.195E-02 | 1.800E-02

EIL;, 1.456E-01 | 1.133E-01 | 8.601E-02 | 6.316E-02 | 4.438E-02 | 2.934E-02 | 1.774E-02 | 9.320E-03 | 3.780E-03 | 8.146E-04

ETI; 2.426E-02 | 1.889E-02 | 1.433E-02 | 1.053E-02 | 7.396E-03 | 4.890E-03 | 2.957E-03 | 1.553E-03 | 6.300E-04 | 1.358E-04

Channel | 1.699E-01 | 1.322E-01 | 1.003E-01 | 7.368E-02 ['5.177E-02 | 3.423E-02 { 2.070E-02 | 1.087E-02 | 4.410E-03 | 9.503E-04
Table 3A.4: Equilibrium values in Sequence 7: R:p; M:w; R:Q; M:b for D(p)=1-1p
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Chapter 4

PriCe and Order Postponement in a
Decentralized Newsvendor Model
with Price-Dependent Demand

4.1 Introduction

Over the past two decades, with global competition, faster product development, and increasingly
flexible manufacturing systems, an unprecedented number and variety of products are competing
in markets ranging from appare! and toys to power tools and computers. Despite the benefits to
consumers, this phenomenon is making it more difficult for manufacturers and retailers‘ to predict
which of their goods will sell and to plan production, ordering and pricing decisions accordingly. To
be able to make supply meet demand in an uncertain world, supply chain members have invested
considerable resources to control demand variability and reduce risk due to its uncertainty. Post-
poning operational decisions has emerged as a strategic mechanism to manage some of the risks
associated with uncertain demand. _ ‘

Basically, postponement entails the delay of activities, such as pricing, production and order-
ing, until after some or all of the uncertain attributes of demand have been observed. Production
postponement was inspired by its successful implementation in Benetton (e.g., Signorelli and Hes-
kett (1984), Lee and Tang (1998)) and in Hewlett-Packard (HP) (e.g., Lee et al. (1993), Lee and
Billington (1994), and Feitzinger and Lee (1997)). Indeed, postponement of one form or another
has become a marketing, manufacturing and logistics business concept which is applied throughout
the entire supply chain. Companies such as HP, Dell, and Honda are often cited in the operations
literature as leading practitioners of postponement.

In this chapter, we study two kinds of postponement in a decentralized supply chain: order

postponement and price postponement. In what follows, we motivate the postponement problem

84
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we are interested in by using instances from the Operations Management literature and practices.

Rapid advances in information techn'ology.allow‘ supply chain members in many industries to
routinely use effective postponement strategies in their decision process. For example, Amazon.com,
which is the largest Internet retail company in the world, allows customers to place advance purchase
orders for “future release” itvems. These pre-orders, in turn, help Amazon decide upon appropriate
order quantities from its suppliers'. Many other online stores, e.g., Cdnow.com, Ch}apters.indigo.ca,
follow Amazon’s practice regarding their future release items, which can be viewed as examples of
order postponement. Indeed, Moe and Fader (2002). have provided the practices of Cdnow as an
example wherein advance purchase orders are used to estimate demand for future release items.

Order postponement is apparently also used in the large appliances industries. Indeed, market
research conducted by the washing machine company Whirlpool has revealed that in many cases
customers do not expect, or need, immediate delivery of their orders. Rather, such orders are
often required by customers only upon their occupancy of a new residence (Waller (2000)). This
observation allows washing machine retailers to advantageously postpone their ordering decisions.
Finally, we note that order postponement canalso be employed by conference organizers (Xie and
Shugan (2001)) by using information about abstract sﬁbmissions, done online, to better estimate
demand for conference space.

Van Miegham and Dada (1999) have suggested that the bargaining practices in a car dealership
can be viewed as an example for price postponement. Specifically, price postponement is imple-
mented if a car dealership allows fof some bargaining and haggling about the final price, whereas
price postponement is not implemented whenever the dealership does not allow bargaining and
follow the “no negotiation pricing policy” (e.g., Saturn). In that respect, price postponement is .
implemented by any retailer, who does not insist that the posted price is the final price, and allows
for some bargaining to determine the selling price.

Price postponement is used by GreatModels.com, which is an online retail store which pro-
vides buyers with scale models (e.g., scale helicopter models, scale car models, and scale ar-
tillery /cannons/missiles/guns), accessories, and decals, etc. Indeed, it is clearly stated on their
website that “the price might not show if the item is a future release”, which suggests that the
price of such products would be determined after demand information from the pre-launch orders
has been assessed.

The effect of various postponement strategies in a centralized setting was extensively ana-

lyzed in the operations literature, see, e.g., Lee (1996), and Lee and Tang (1997). Aviv and
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Federgruen (2001) have investigated the benefits of postponement in more general settings, where
‘ parameters of the demand distributions are unknown or where demand in consecutive periods is
correlated. Recently, Iyer et al. (2003) have analyzed tlie benefits of demand postponement as
a strategy to handle potential demand surges. Anand and Mendelson (1998) have studied the
relationship between a firm’s information system and the value of delayed production, and have
analyzed the benefits of production postponement, i.e., delayed product differentiation, in a multi-
product supply chain setting. Yang and Burns (2001) have provided a conceptual framework of
postponed manufacfuring and its implementation as part of a global strategy. Van Mieghem and
Dada (1999) have conducted a thorough. analysis of postponementv strategies in a two-stage de-
cision model where a centralized firm makes the following three decisions: capacity investment,
production (inventory) quantity, and retail pricing. They have shown, among other results, that
postponement of either retail price or pro‘duction would always (weakly) benefit the centralized
firm. Or, equivalently, the expected value of perfect information (EVPI) of demand, either for
pricing decision or ordering decision, is non-negative. ‘

Now, while benefits of postponement for a single decision maker have been demonstrated, de-
centra\,lized supply chains are comprised of individually rational players who may behave in a selfish
way. Thus, a natural question that may arise is whether, for example, Amazon’s postponement
strategies as reﬂectéd via their practice regarding future release products, could hurt the supply
chain? In general, we are interested in analyzing the following issues related to postponement in a

decentralized system.

(I} Is the EVPI of demand information, either for pricing or ordering decision, non-negative; as

is the case in a centralized system?

(II) What are the effects of price or order postponement on the equilibrium profits of the channel
players? Would the party introducing these postponement strategies be able to keep most of

the benefits, if any, of postponement?

(IIT) What would be the effect of these postponement strategies on the equilibrium values of the

contract parameters?

1

(IV) Which pdstponement strategies are preferred by different players?

In order to answer the above questions, we consider the PD-newsvendor model described in

the introduction chapter in §1.2, wherein a manufacturer (M) sells a product, possibly with a
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buyback rate, to an independent retailer (R) who sets an order quantity and a retail price that
affects uncertain demand. Both M and R maximize their own profits. In the PD-newsvendor -
model without any postponement, all contract parameters (e.g., M’s wholesale price and R’s retail
price and order quantity) are determined before the random component in demand is realized. In
general, in ﬁhis_ chapter, we attempt to investigate the effect of postponing R’s decisions of order
quantity and retail price on the equilibrium values of the contract parameters and expected profits.

We show that the PD-newsvendor model with either an additive or multiplicative demand func-
tion under order postponement coincides with the corresponding deterministic model wherein the
demand function coincides with the expected demand function in the PD-newsvendor model. We
further show a remarkable relationship between fhe multiplicative PD-newsvendor model with buy-
backs, with and without price postponement, and the corresponding deterministic model. Specif-
ically, under some conditions, in the multiplicative PD-newsvendor model with buyback options,
under price postponement, in equilibrium, the wholesale and buyback prices, profit allocation
ratio between M and R and channel efficiency coincide with those values in the corresponding
PD-newsvendor model with buyback options and no postpbnement. These equilibrium values, ex- V
cluding the buyback rate but including the expected retail price, in turn, further coincide with their
counterparts in the corresponding deterministic model.

We also show that in most cases,. despite vertical competition, the effect of postponement in
the multiplicative model is quite beneficial for M and R. In particular, when the channel profit is
relatively small, the percentage improVément in the profits of M and R could be very substantial.
However, we also demonstrate in this chapter that in some cases, e.g., when the manufacturing
cost is relatively low, the effect of postponement in a decentralized system is qualitatively different
from its effect in a centralized firm. Specifically, in the multiplicétive PD-newsvendor model,
postponement could make R, who presumably initiates such-a postponement strategy, worse off.
Moreover, it could make the channel worse off, and in fact, it could even make béth M and R
strictly worse off. Similar to the multiplicative model, in general, pricé or order postponement in
the additive PD-newsvendor model is beneficial for both players, but there are cases when both of
them can be worse off. These results are in stark contrast with those in a centralized firm. Our
results also demonstrate that, in many cases, R is unable to retain the lion share of the benefits
stemming from postponement, and that in the multiplicative model, the effect of postponement

depends very significantly on the type of contract (wholesale price-only or buyback contract).

To our knowledge, Taylor (2002b) is the only paper that has analyzed the effect of postponement
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in a decentralized setting. Specifically, he has considered a decentralized model wherein M decides
when to sell to R. It is assumed in his paper that the retail price is always set after demand
uncertainty is resolved, and the objective is to investigate the effect of postponing the upstream
pricing decision, i.e., M’s wholesale price, on the channel and its members. The case Wherein M sells
early coincides with the PD-newsvendor model without buybacks and retail price postponement.
There are other papers in the supply chain literature that also consider the issue of M’s sales

| timing (e.g., Erhun et al. (2001), Anand et al. (2002), and Cachon (2004a)). Padmanabhan and
Png (1997) have studied a PD-newsvendor problem with an additive demand model. The retail
price is always assumed to be determined after observing demand, and the objective is to evaluate
the implications of using wholesale price-only contracts versus full-credit returns contracts. This
chapter, as explained above, focuses on the effect of postponing the downstream decisions. Namely,
whether R should sell early or late to the end-customers, and whether he should order early or late
from M.

The remainder of this chapter is organized as follows. Section 4.2 recaﬂs the basic price-
dependent newsvendor model and related notation, as introduced in §1.2 in Chapter 1. Sec-
’tions 4.3, 4.4, 4.5 and 4.6 consider various postponement strategies in the PD-newsvendor model
with a multiplicative demand function (i.e., the multiplicative PD-newsvendor model). More specif-
ically, Section 4.3 introduces and analyzes order postponement. In Section 4.4 we study price
postponement. The no postponement model is considered in Section 4.5, and the effects of price -
postponement and order postponement are discussed in Section 4.6. We extend the analysis to the
PD-newsvendor model with an additive demand function (i.e., the additive PD-newsvendor model)
in 'Section 4.7. Managerial insights and conclusions are presented in Section 4.8, and all proofs in

this chapter are given in the appendix in Section 4.9.

4.2 Preliminaries and Notation

Consider the decentralized price-dependent newsvendor model described in Section 1.2, wherein
a manufacturer sells a single product to an independent retailer who is facing stochastic demand
from the end-customer market. Randomness in demand is price independent. Specifically, recall
that demand is defined as X = D(p) +¢ in the ‘additive case and X = D(p) - £ in the multiplicative
case, where D(p) is the deterministic part of X which decreases in the retail price p, and £ captures

the random factor of the demand function, which could have either a continuous or discrete dis-

tribution. For continuous &, F(-) and f(-) are the distribution and density functions, respectively.
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See Section 1.2 for more detailed description of the demand models. In this chapter, in §4.3, §4.4,
§4.5 and §4.6, we focus our attention on a multiplicative demand model, and in §4.7 we extend our
analysis to an additive demand model.

Recall that the decision sequence in the PD-newsvendor model without postponement is as
follows. M, who has unlimited production capacity and can produce the items at a fixed marginal
cost ¢, is a Stackelberg leader. M ihitiates the process by offering a wholesale price w, possibly
together with a buyback rate b. R then commits to an order quantity @ and a selling price p, and the

retail price affects the expected demand function. Demand is realized thereafter. For simplicity, it
is assumed that the salvage value of unsold inventory is zero for both M and R, unsatisfied demand
is lost and there is no penalty cost for unmet demand. For feasibility, we assume: (i) ¢ < w < p
and (i) 0 < b < w.

The objective of this chapter is to study the effects of various postponement strategies in the
PD-newsvendor model. We will refer to the multiplicative (respectively, additive) PD-newsvendor
model, wherein all decisions are made before demand uncertainty is resolved, as the multiplica-
tive (respectively, additive) PD-newsvendor model under no postponement, or the multiplicative
(respectively, additive) N-postponement model. The postponement strategies we study differ in
the timing of the retailer’s operational decisions (e.g., order quantity and retail price) relative to
the realization of demand uncertainty. We will refer to the multiplicative (respectively, additive)
PD-newsvendor model, wherein R only postpones his decision on the order quantity @ (respec-
tively, retail price p) until after demand uncertainty is observed, as the multiplicative (respectively,
additive) PD-newsvendor model under order postponement (respectively, price postponement), or
the multiplicative (respectively, additive) @-postponement (respectively, p-postponement) model.

Recall that, unless otherwise noted, we denote by (-)f, (-)* and (T)* the equilibrium values in
the integrated system, the system under a buyback contract and the system under a wholesale

price-only contract, respectively, and € the observed value of demand uncertainty &.

4.3 Order Postponement in the Multiplicative Model

Under a multiplicative Q-postponement model, R postpones his ordering decision until after ob-
serving demand uncertainty. The decision sequence is as follows. M initiates the process by setting

a wholesale price w (Stage 1). R then commits to a retail price p (Stage 2). Demand uncertainty,

&, is resolved afterwards. Finally, after observing demand uncertainty, R sets his order quantity ’

Q (Stage 3), and M then fulfills the order without delay. Since R, in Stage 3, places his order after
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observing demand uncertainty, he will order only as much as he can sell, i.e., the realized demand,
if his marginal profit is nonnegative, i.e., p > w. Thus, @ = X, and the expected profit functions

for M and R in Stage 2 are:
Elly = Ex[(w—0)Q] = (w—¢)E(X) and Ellg = Ex[pmin(Q, X) —wQ)] = (p —w)E(X). (4.1)

Note that under Q-postponement, it is unn‘ecessary to introduce buybacks since there is no unsold
inventory.

Recall that X = D(p)¢, D(p) decreases in p, £ € [L,U], and L > 0. Thus, E(X) = u¢ - D(p),
where pe = E(€). M’s and R’s expected profit functions, given by (4.1), become Elly = pe(w —
¢)D(p) and Ellp = pe(p — w)D(p), which are independent of the distribution of £, and only
dependent on pe. Recall that pe is normalized to be one (see §1.2 for ‘de’cails). However, for
explanation purposes, we keep p¢ in all expressions in this section.

In Stage 2, before observing demand uncertainty, R must commit to a retail price p to maximize
Ellg = pe(p — w)D(p), which is equivalent to choosing p to maximize (p — w)D(p). Assume R’s
best p in Stage 2, denoted by p(w), is unique, and observe that p(w) is independent of €. '

The manufacturer’s expected profit function in Stage 1 becomes: Ellp = pe(w — ¢)D(p(w)).
It is evident that M’s best w in Stage 1, which is assumed to be unique, is independent of §'.since
p(w) is independent of €. Thus, we can conclude that in the )-postponement model, in equilibrium
(assuming uniqueness, which will be discussed later), '

(1) @* and p* are both independent of £,

(2) & = D(")2, and

(3) Bl = pe(* — c)D(p*) and BTl = p(p* — 0*) D(5"),
where € is the observed value of &. Based on the above analysis, we conclude that postponing

R’s ordering decision allows the retailer to match his order to realized demand, which reduces the

model to a price setting problem with deterministic demand.

Observation 4.3.1 The equilibrium values of the wholesale price, retail price, expected order quan-
tity and the equilibrium values of the expected profits of the manufacturer and the retailer in the
multiplicative QQ-postponement model coincide with those values in the corresponding deterministic
model, wherein the demand function coincides with the expected demand function in the multiplica-

tive Q-postponement model.

Note that Observation 4.3.1 holds as well for the corresponding centralized firm. That is, in

a centralized firm under @-postponement, demand uncertainty has no effect on the optimal retail
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price. This is in contrast to the effect of demand uncertainty in a centralized model without Q-
postponement, wherein, e.g., the equilibrium value of the retail price in a model with multiplicative
uncertain demand is higher than that in the cdrresponding model with deterministic demand, see
also Petruzzi and Dada (1999). |

Since the equilibrium values of decision variables and expected profits of channel members in the
multiplicative PD-newsvendor model coincide with those in the deterministic model, for comparison
purpose, we recall these equilibrium values‘in the deterministic model in Table 4.1 below, which
are originally presented in Table 2.2 in Chapter 2. "We will further refer to them in §4.5 and §4.6
in this Chapter.

I DE)| 1Y 1y Profit | @* | p* o ’ p’ Q' Channel
dist. efficiency
I S EETE R B e e 75%
e’ ? e ¢ ? e ¢7? 1:1 [14¢c}f2+4+c¢ e"2¢ e ! |14+c| e '7° % =~ 73.58%
—q¢ | (a=1)?9=! | (g—1)29~2 . 2 ~2q—q | (a=1)97} —q | (2a=1)(g-1)*"*
P e | e e e 5 | e |GR) T | e | 3 | ) a7

Table 4.1: Equilibrium values in the deterministic model

By comparing the above results we immediately conclude:
Corollary 4.3.2 In the multiplicative Q-postponement model with D(p) =1 — p, in equilibrium,
(i) p! = p* — 155, where c < 1,
(i) EQ = 2EQ*, and
| (#3) channel ejﬁcienéy of the decentralized system is 75%.
Corollafy 4.3.3 In Ethe multz’plicaﬁ've Q-postponement model with D(p) = e™P, in equilibrium,
(i) p' =p* -1,
(ii) EQ' =e- EQ*, and

(iii) channel efficiency of the decentralized system is % ~ 73.58%.

Corollary 4.3.4 In the multiplicative Q-postponement model with D(p) = p™9, in equilibrium,
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(Z) p1=g%l"ﬁ*7
i) EQ! = (4:)9. EQ*, and
g—1

_ _ -1
(ii3) channel efficiency of the decentralized system is quqq——l)f——.

The double marginalization in the Q-postponement model for the three expected demand func-
tions we have considered is reflected by the fact that the integrated channel offers the lowest retail

price and highest production quantity.

4.4 Price Postponement in the Multiplicative Model

We analyze in this section the multiplicative p-postponement model. Under price postponement,
the retailer postpones his pricing decision until after demand uncertainty is resolved. The sequence
of events is as follows. The manufacturer initiates the process by offering a wholesale price w with

or without a buyback rate b (Stage 1). The retailer then commits to buying an order quantity
Q (Stage 2). Demand uncertainty, &, is realized afterwards, and finally, after observing demand
uncertainty, the retailer sets the retail price p (Stage 3). Ifb =10 iri Stage 1, the model coincides with |

“a wholesale price-only contract. We use backward induction to solve this three-stage Stackelberg
game.

In Stage 3, given (w, b, @) and observing demand uncertainty, €, the retailer chooses p to max-

© - imize:

g = (p — ) min(Q; D(p) - €) — (w — b)Q = (p — b)D(p) min(z, €) — (w — H)Q, (4.2)

where z = DJéES is the stocking factor defined in Petruzzi and Dada (1999), and € is the realized
random-component of demand.

In the next three subsections, we analyze the multiplicative p‘—p.ostponement model for linear

(D(p) = 1—p), exponential (D(p) = e~P) and negative polynomial (D(p) = p~7) expected demand

- functions. As explained in §1.2 in Chapter 1, the analysis can be easily extended to general linear,

exponential or negative polynomial expected demand functions. Recall, again, that pe = 1.

4.4.1 Multiplicative p-postponement model with linear expected demand

Assume that D(p) =1 — p. The retailer’s optimal retail price is given by in the following lemma.

Lemma 4.4.1 Given (w,b,Q) and observing demand uncertainty, ¢, the retailer will never set a

retail price which will induce excess demand. Thus, € < z(= %), and the optimal retail pﬁce for




.Chapter 4: Price and Order Postponement 93

the retailer is:

1+b if é < 2Q

. : if €< %,
p‘{l—Q ife> 29 (43)

? ifex B

Accordingly, we are able to compute the expected value of the retail price:

Ep*=1- TF(I — b -Q /_Q f(€e)de. (4.4)

In Stage 2, given (w,b) -and knowing p*, given by (4.3), the retailer determines his best order
quantity, Q, before demand uncertainty is observed. By Lemma 4.4.1, é < z. Thus, the retailer

chooses @ to maximize:

Ellg = E(p"—b)(1-p)¢ ]—(w—b)Q

_a b)/ ef (e )de+Q(1—b)(1— (12?3)))

—Q2 /_q €)de — (w — b)Q. | (4.5) -

Lemma 4.4.2 The retatiler’s expected proﬁt function, given by (4.5), is strictly concave in Q. Thus,

there exists a unique Q* which is strictly decreasing in w and satisfies:

U
7o 0 [y (e 6

w=1-(1-b)F(—%

Next, let us direct our attention to the manufacturer’s problem in Stage 1. We consider,
separately, the manufacturer’s problemv when ‘she offers a wholesale price-only contract wherein
b = 0, and a buyback contract wherein 0 < b < w. Let us first examine the integrated system
under price postponement, wherein w = ¢ and b = 0.

The integrated system. Substituting w = ¢ and b = 0 into (4.6) and simplifying, implies

that the optimal production quantity, @/, in the integrated channel satisfies:
U1 '
- F(2Q) — ZQ/ =f(e)de. , (4.7)
2Q €

Thus, substituting b = 0 and the implicit expression for Q into the expected retail price Epx,
given by (4.4), and 51mphfy1ng gives us: Ep! = — £, and substituting w = ¢, b = 0 and the implicit
expression for Q7 into (4.5) results with the equilibrium profit of the integrated channel:
1 r2Q’ I
EIl = Z/L ef(e)de + —2—[1 —c— F(2QN). (4.8)

The system under buyback contracts. In Stage 1, the manufacturer determines w and

b simultaneously to maximize her expected profit function. To simplify the analysis, we use an
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alternative expression for the manufacturer’s problem in Stage 1. That is, instead of working with
Q*(w,b), we work with w*(b, Q). ‘According to Lemma 4.4.2, there is a one-to-one relationship
between the equilibrium values of Q*(w,b) and w*(b,Q), which guarantees that the alternative
approach is valid. Thus, the alternative approach for the manufacturer’s problem is to choose b

and @ that maximize:
Elly = (w* (b, Q) — )@ — b(Q — E¢[(1 —p*)é]), (4.9)

where w*(b, Q) is given by (4.6), and the second term in ETIjs represents the expected value of

payment from the manufacturer to the retailer due to the unsold inventory.

Proposition 4.4.3 In the multiplicative p-postponement model with a linear expected demand func-

tion and buybacks, the manufacturer’s expected profit is globally maximized at (w* = %(1 +e),b* =

1), and in eguilibrium, Q* € (0, %) and satisfies

U 1 )
1- F(4Q) — 4Q/ —f(e)de = ¢, ' (4.10)
Q € : ‘
Ep* = %, and
1 4Q* Q*
EIT}, = 2ETT, = -/ ef()de+ [l —c— F(4Q"). (4.11)
8 /L 2 .

The system under wholesale price-only contracts. In this subsection, we analyze the
wholesale price-only contract under price postponement, i.e., b = 0. Substituting b = 0 into (4.6),
we conclude that the retailer’s optimal order quantity Q*'under a wholesale price-only contract
satisfies:

U 1 ’
w=1-F(2Q) - 2Q ~f(e)de. (4.12)
2Q € .
It is not difficult to verify that the retailer’s profit function in Stage 1 and his expected profit
function in Stage 2 under a wholesale price-only contract are well behaved. Thus, it is sufficient
to substitute b = 0 into the optimal order quantity under buybacks, given by (4.6), to derive the
optimal order quantity under no buybacks.
Again, we work with %*(Q) instead of Q*(w) to solve the manufacturer’s problem in Stage 1,

which is now reduced to:

. U
Blly = (0*(Q) - Q = [1 - F(2Q) — 2Q /2 _of9de—de. (4.13)

The equilibrium values of the decision variables and profits of channel members in the p-postponement

model under wholesale price-only contracts are presented below.




Chapter 4: Price and Order Postponement 95

Proposition 4.4.4 In the multiplicative p-postponement model with a linear expected demand
function and under a wholesale price-only contract, if the density function of &, f(e), is contin-
uous and differentiable, and ef(€) is increasing in €, the equilibrium order quantity Q* € (o, %)
is the unique solution which satisfies: 1 — ¢ — F(2Q) — 4Q f2(£2 %f(e)de = 0, and in equilib-

rium, ¥* = L(1 +c— F(2Q*), Ep* = 13 +c— F(2Q*), Ell}; = (1 — ¢ — F(2Q")) and

Efty = 1 [29 cf(e)de + L (1 - c — F2Q")).

The requirement that ef(e) is increasing in e is satisfled by the Beta distribution fle) =
%f‘%(%(l — €)f~1e*"1 where I'(a) = fooo y*le~¥dy, for values of the shape parameters (o, 3)
satisfying 3 < 1 and a > 1 — 3. When (8 = 1,a > 1), the Beta distribution is lreduced to the
power distribution with a positive exponent. The requirement that ef(e) is increasing in € is also
satisfied by many other common distributions, such as, Gamma and Weibull families, on a domain
for which e is relatively small. Note that this requirement is more restrictive than the increasing
generalized failure rate (IGFR) property.

By comparing the integrated model and the decentralized p-postponement models with and

without buybacks, we have:

Proposition 4.4.5 In the multiplicative p-postponemer;t model with D(p) = 1 — p, in equilibrium:
(i) Q" =2Q".
(ii) Channel efficiency under buybacks is always 75%.

(iii) Ep' = Ep* — 15¢ < Ep*.

(iv) The wholesale price, expected retail price, profit allocation ratio between M and R and chan-
nel efficiency coincide with those values in the corresponding deterministic model, wherein
the demand function coincides with the expected demand function in the multiplicative p-

postponement model.
If ef(e€) is increasing in €, then we have:
(v) QT =2Q* > Q.

(vi) Ep! < Ep* < Ep*.

Example 4.4.6 Power demand distribution with linear expected demand.
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From thé analysis above, it follows that in the multiplicative p-postponement model with buy-
backs, in equil:lbrium, the wholesale and buyback prices, expected retail price, profit allocation
ratio between M and R and channel efficiency are independent of the distribution of ¢, while the
equilibrium values of the expected profits of M and R and the order quantity depend on the dis-
tribution of £. In the multiplicative p-postponement model under a wholesale price-only contract,
all equilibrium values depend on the distribution of {&. Thus, in order to evaluate the effect of
price postponement in the multiplicative model, we will consider in this example.a specific family
of distribution functions of £. Specifically, we will consider the power distribution with a density
function f(e) = y(e)? for any t € [0, 0o). For simplicity, we assume L = 0, i.e., £ € [0, U]. To satisfy

g =1and F(U)=1, we let v = (%i—;;;i and U = ii—? Note that the power distribution satisfies
the condition that ef(e) is increasing in ¢, and for ¢ = 0, f(e) reduces to a uniform distribution.
Under the power distribution, the equilibrium retail price, order quantity and profits of M and R
are implicit functions of the exponent of the power distribution ¢ (except for ¢ = 0, where there
are explicit expressions.for the equilibrium values under a uniform distribution). For any given ¢,
the computation of the equilibrium values in the integrated and decentralized channels are pretty
straightforward. The corresponding results for ¢ = 0, 1 and 4 are presented in Table 4A.1 in the
appendix in §4.9. These results will be further discussed in §4.6.

4.4.2 Multiplicative p-postponement model with exponential expected demand

Assume that D(p) = e™P. Again, we use backward induction to solve the three-stage Stackelberg
game. In Stage 3, given (w,b, Q) and observing demand uncertainty, €, the retailer chooses p to
maximize his profit function giveh by (4.2). The retailer’s optimal retail price is given by in the

following lemma.

Lemma 4.4.7 Given (w,b,Q) and observing demand uncertainty, €, the retailer will never set a
retail price which will induce excess demand. Thus, é < z, and the optimal retail price for the
retailer is:

(4.14)

. [ 1+b if é < elftQ,
In(é) —In(Q) if é > eltQ.

Accordingly, we are able to derive the expected value of the retail price:

Ep* = (zn(Q)41)F(el+bQ)+bF(e1+bQ)-m(Q)+ / g In(e)f(e)de. (4.15)
el'*'bQ
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In Stage 2, given (w,b) and knowing p*, given by (4.14), the retailer determines his best order

quantity @, before demand uncertainty is observed, to maximize his expected profit:

Ellg = E(p"—b)e™] - (w-b)Q
e—1-b /e Q ef(e)de _ wQ + bQF(eH'bQ) _
L
U
+Q / 1ag MO (e = QIn(Q)(1 - F(e'™**Q). (4.16)

Lemma 4.4.8 The retailer’s expected profit functz'dn, given by (4.16), is strictly concave in Q.
Thus, there erists a unique Q* which is strictly decreasing in w and satisfies:
w = bF(e'**Q) + / LQ In(e) f(e)de — (I(Q) + 1) + (In(Q) + 1)F(**°Q). (4.17)
e
Again, let us consider the manufacturer’s problem in Stage 1. We consider, separately, the
integrated system and the systems under buyback and wholesale price-only contracts.
The integrated system. Substituting w = ¢ and b = 0 into (4.17) and simplifying implies
that the optimal productidn quantity, @/, in the integrated channel, sa-tisﬁes:
U .
e= [ In(@F()de — (@) + 11 = F(eq))
Thus, substituting b = 0 and the implicit expression for Q' into the expected retail price Ep*, given
by (4.15), and simplifying gives us: Ep! =1 +¢, and substituting w = ¢, b = 0 and the implicit

expression for Q7 into (4.16) results with the equﬂibrium profit of the integrated channel:

ENl' =¢! /te ef(e)de+Q'(1 - F(eQ))
: :

The system under buyback contracts. In Stage 1, the manufacturer determines w and b
simultaneously to maximize her expected profit function. Similar to the linear case, we work with
w*(b, Q) instead of Q*(w, b). According to Lemma 4.4.8, there is a one-to-one relationship between
the equilibrium values of Q*(w, b) and w*(b, @), which guarantees that the alternative approach is
valid. Thus, the alternative apbroach for the ménufacturer’s problem is to choose b and @ that
maximize: |

Elly = (w*(b,Q) — ¢)Q - b(Q — Ee(e™"€)), (4.18)

where w*(b, Q) is given by (4.17). The manufacturer’s optimal decisions are given in the following

proposition.
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Proposition 4.4.9 In the multiplicative p-postponement model with D(p) = e™P and buybacks, the
- manufacturer’s expected profit is globally mazimized at (w* = 1+ ¢,b* = 1), and in equilibrium,

Q* € (0, gg), which satisfies

U
c= /2Q In(e) fe)de — (In(Q) +2)(1 — F(eQQ)),

Ep*=2+4c¢, and

2

eQ*
Ell = BNl = Q"(1 - F(e?Q")) + €7 / ef(€)de.
L

" The system under wholesale price-only contracts. Let us consider the multiplicative
p-postponement model under a wholesale price-only contract. Substituting b =0 into (4.17), we

obtain that the retailer’s optimal order quantity * under a wholesale price-only contract satisfies:

| , |
w = / | In( (e~ (1n(@) + 1)1 = Fle)). (4.19)

As in the linear case under no buybacks, we are able to verify that the retailer’s profit function in
Stage 1 and his expected profit function under a wholesale price-only contract in Stage 2 are well
behaved. Thus, it is sufficient to substitute b = 0 into the optimal order quanfity under buybacks,
given by (4.17), to derive the optimal order quantity in the model without buybacks.
Again, we work with ¥*(Q) instead of Q*(w) to solve the manufacturer’s problem in Stage 1,
which now becomes: |
) : U
Elly = (0" (Q) - A)Q = -QUn(Q) +1)(1 - F(eQ)) — cQ + /eQ In(e) f(€)de. (4.20)

The equilibrium values of the decision variables and the profits of channel members in the p-

. postponement model under a wholesale price-only contract are presented below.
S

Proposition 4.4.10 In the multiplicative p-postponement model with D(p) = e P and under whole-

sale price-only contracts, if the density function of &, -f(€), is continuous and differentiable, and
u

—(In{eQ) + 1)(1 — F(eQ)) — c + fe% In(e)f(e)de = 0, and in equilibrium, ¥* = 1+ ¢ — F(eQ*),
Ep* =24 c— F(eQ*), EIlY, = (1 — F(eQ*))Q* and EIl% = ™! ;Q' ef(€)de + (1 — F(eQ*))Q".

ef(€) is increasing in €, the equilibrium order quantit Q* € (0 is the unique solution satisfyin
Y ying

From the analysis in the integrated channel and Propositions 4.4.9 and 4.4.10, we have:

Proposition 4.4.11 In the multiplicative p-postponement model with D(p) = P, in equilibrium:
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(i) QI = eQ".
(i) Channel efficiency is always 2 = 73.58%.
(iti) Ep' = Ep* — 1 < Ep*.

(iv) The wholesale price, expected retail price, profit allocation ratio between M and R and the
channel efficiency coincide with those in the corresponding deterministic model, wherein
the demand function coincides with the ezpected demand function in the multiplicative p-

postponement model.
If ef(€) is increasing in €, then we have:
(v) Q' =eQ* > Q.
(vi) Ep! < Ep* < Ep*.
Example 4.4.12 Power demand distribution with exponential expectéd demand.

Similar to Example 4.4.6, we have derived the equilibrium values in the decentralized multiplicative
models with and without buybacks for a power distribution of £ witht =0,¢t=1and ¢t =4 and an
exponential expected demand function. These results are presented in Table 4A.2 in the appendix

and will be further discussed in §4.6.
4.4.3 Multiplicative p-postponement model with negative polynomial expected
demand
In this subsection, we let D(p) = p~9, where ¢ > 1. Again, we use backward induction to solve the
three—stage Stackelberg game.
In Stage 3, given (w, b, Q) and observing demand uncertainty, €, the retailer chooses p to max-
imize his profit function given by (4.2). The retailer’s optimal selling price can be described as

follows.

Lemma 4.4.13 Given (w,b,Q) and observing demand uncertainty, é, the retailer will never set

a retail price which will induce excess demand. Thus, é < z, and the optimal retail price for the

gb

. | if
= R

7 if

retailer is:

o>

m>
IV A

1

0 (4.21)
s, '

where § = Q(;%5)7.
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Accordingly, we are able to calculate the expected value of the retail price: -

* qb -1 v 1
By = 2P0+ @7 [ (0Ffoe, (422)
q— 5

where, as we recall, § = Q(a‘l_l—’f)q.
In Stage 2, given (w,b) and knowing p*, given by (4.21), the retailer determines his best order

quantity @, before demand uncertainty is observed, to maximize his expected profit:

Elln = El@ - b)) - @ - b)Q
8 L U s
b (P )~ / ef(e)de+ Q1% [ ()% Fe)de
L ' )

= =1lg-1
—bQ(1 — F(8)) — (w - b)Q. (4.23)

Lemma 4.4.14 The retailer’s ezpected profit function, given by (4.23), is strictly concave in Q.

Thus, there exists a unique Q* which is strictly decreasing in w and satisfies:

U

w=(1- %I-)Q-% (€)% f(e)de + bF(5). | (4.24)

)

To analyze the manufacturer’s problem we consider again the integrated system and the systems
under a buyback contract and under a wholesale price-only contract.

The integrated system. Substituting w = ¢ and b = 0 into (4.24) and simplifying results
with the optimal production quantity in the integrated channel:

(1=1) [P ()1 f(e)de

c

Q' =

%

Thus, substituting b = 0 and the implicit expression for Q! into the expected retail price Ep*,
given by (4.22), and simplifying results with Ep! = &, and substituting w = ¢, b =0 and Q!

into (4.23) and simplifying results with the equilibrium profit of the integrated channel:

c
qg—1

EIl = QL.

The system under buyback contracts. In Stage 1, the manufacturer determines w and
b simultaneousiy to maximize her expected profit functioﬁ. Similar to the linear case, we work
with w*(b, Q) instead of working with @*(w,b). According to Lemma 4.4.14, there is a one-to-one
relationship bétween the equilibrium values of @Q*(w,b) and w*(b, Q), which guarantees that the
alternative approach is valid. Thus, the alternative approach for the manufacturer’s problem is to

choose b and @ that maximize:

Elly = (w*(b,Q) — ¢)Q — b(Q — E¢((p")™" - £)), (4.25)
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where w*(b, Q) is given by (4.24). The manufacturer’s optimal decisions are gi\/en in the following

proposition.

Proposition 4.4.15 In the multiplicative p-postponement model with a negative polynomial ez-
pected demand function and buybacks, the manufacturer’s expected profit is globally mazximized at

(=12 [V ()% f(e)d .
(2 fLC ), Ep = i, and

(w* = E‘Z_C—l,b* =0), and in equilibrium, Q* =

* q_l * . c *
H = — = .
BTy, = LBl = ~=5Q

Proposition 4.4.15 implies that under a negative polynomial expected demand function, buy-
backs are not implemented in equilibrium. Thus, the system under a buyback contract coincides
with the system under a wholesale price-only contract.

From the analysis of the integrated channel and Proposition 4.4.15, we immediately have:

Proposition 4.4.16 In the multiplicative p-postponement model with D(p) = p~9, in equilibrium,

(1) Q" = L@

(it) Channel efficiency is 2a-1(g-)7"

q’l
(iii) Ep' = A Ep*.

(iv) The wholesale price, expected retail price, profit allocation ratio between M and R and chan-
nel efficiency coincide with those values in the corresponding deterministic model, wherein
the demand function coincides with the exrpected demand functioh in the multiplicative p-

postponement model.

Example 4.4.17 Power demand distribution with negative polynomial expected de-

mand.

Similar to Examples 4.4.6 and 4.4.12, we have derived the equilibrium values in the decentralized
multiplicative models for a power distribution of £ with t = 0, ¢ = 1 and ¢ = 4 and a negative
polynomial expected demand function with ¢ = 2, i.e., D(p) = p~2. The results are presented in

Table 4A.3 in the appendix and will be further discussed in §4.6.

4.4.4 Summary on the multiplicative p-postponement model

Having derived the equilibrium values of the decision variables and profits in the multiplicative

p-postponement model for three different expected demand functions, we are able to summarize

the results'in the multiplicative p-postponement model with and without buybacks.
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By comparing the results in the multiplicative p-postponement model with buybacks and the
results in the corresponding deterministic model for three different expected demand functions,

which are displayed in Table 4.1, we have:

Theorem 4.4.18 In the multiplicative PD-newsvendor model with buyback options, for a gen-
eral distribution of € and linear, exponential or negative polynomial expected demand, under p-

postponement, in equilibrium:

(i) The wholesale pm’ce,- ezpected retail price, profit allocation ratio between M and R and channel

efficiency coincide with those values in the corresponding deterministic model.
(i) The buyback rate is independent of the distribution of €.

In general, the results in the mﬁltiplicative p-postponement model under a Wholeseﬂe price-only
contract depend on the distribution of £&. Based on the numerical results in the multiplicative
PD-newsvendor model with linear and exponential expected demand functions and a power dis-
tribution of &, présented in Tables 4A.1 and 4A.2 in the appendix, we observe that under price
postponement, in equilibrium, buyback contracts induce a higher order quantity than wholesale
price-only contracts, i.e., Q* > Q*.

As was the case in the multiplicative @Q-postponement model, the double marginalization in
the multiplicative p-postponement model for the expected demand functions we have considered is
reflected by the fact that the integrated channel offers the lowest retail price and highest production

quantity.
4.5 No Postponement in the Multiplicative Model

To be able to evaluate the effect of the various postponement strategieé, we need to analyze the
multiplicative PD-newsvendor model without any postponement, i.e., all decisions are made before
demand is realized. Thus, in this case, the manufacturer initiates the process by offering a wholesale
, price w possibly with a buyback rate b (Stage 1), and then the retailer chooses a retail price p and
an order quantity @ (Stage 2). Thereafter, demand is realized. Again, backward induction is used
to sol‘ve this two-stage Stackelberg game. To make the manufacturer’s expected profit function in
Stage 1 well behaved, we assume that the distribution of £ has the increasing failure rate (IFR)
property, i.e., 141;(% is increasing in €. The expected profit functions of the manufacturer ‘and the

retailer are:

Elly = D(p){(w — ¢)2 — bA(z)] and ETlg = D@p){(p - b)lz = A(2)] = (w—b)z},  (4.26)
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where A(z) = [} (z — €)f(€)de, which represents the unsold inventory due to demand uncertainty.
Recall that z = D—?p;. Following Petruzzi and Dada (1999) and Wang et al. (2004), z is called the
“stocking factor”, and further, when @ is chosen after p is set, the problem of choosing a retail
price p and an-order quantity Q is equivalent to choosing a retail price p and a stocking factor 2.
Again, the deterministic demand function, D(p), is assumed to take three different forms: linedr,
exponential and negative polynomial. Note that the multiplicative N-postponement model with
and without buybacks under a uniform & has been analyzed in Chapter 2 in this thesis to study

the effect of buybacks in the PD-newsvendor model.

- 4.5.1 Multipliéative N-postponement model with linear expected demand

In this subsection, we consider the multiplicative PD-newsvendor model under no postponement
with a linear expected demand function, i.e., D(p) = 1—p. We discuss the models with and without
buybacks separately. '

The system under buyback contracts. In Chapter 2 we have derived explicit expressions
for the equilibrium decisions and profits assuming the random component of demand, &, follows a
uniform distribution, and Song et al. (2004) have extended our results to a distribution of £ with

the increasing failure rate (IFR) property. Let us recall their results:

1 1 1 z* — A(z¥)
w'==-(1+¢c),b"==, p==[1+ . , *=(1-p")z", 4.27
QU =g P =gl ) @
* * 1_p* * * * .
Elly; = 2ETI; = 2" = A(2") — c2"], (4.28)

where 2* is the unique solution to (1 — F(2)) — ¢(1 + i‘:'%\(%) = 0, and, as we recall, A(z) =
zF(z) — [} ef(€)de.

To evaluate the effect of order postponement and price postponement, based on (4.27) and (4.28),
we need to assume a specific distribu.tion for €. Accordingly, we assume that £ has a power distri-
bution, f(e) = y(e)?, and we present in Table 4A.1 in the appendix the effect of p—poétponement on
equilibrium values in the multiplicative model under buybacks, for t = 0, ¢ = 1 and ¢t = 4. These
values will be further discussed in the next section.

The system under wholesale price-only contracts. In the model without buybacks, we
use backward induction to solve the two-stage Stackelberg game. In Stage 2, substituting b = 0

into the retailer’s expected profit function, given by (4.26), and simplifying results with:

Ellgr = (1 — p)(plz — A(2)] — wz).
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[

Following the analysis in Song et al. (2004), for any given w, the retailer’s'expected profit function

is well-behaved in (p, z), and the first order conditions result with a unique solution, (p*,z*), to

the retailer’s problem of maximizing his expected profit for any distribution of £, which satisfies:
z—A(z)

z—A(2)+ [[ef(e)de

However, in general, the manufacturer’s expected profit function in Stage 1, taking into account

w=p(l-F(z)) and p=

the retailer’s reaction function of (p*, z*), may not be well behaved, see Song et al. (2004).
Chapter 2 has derived implicit expressions for the equilibrium values of the wholesale price,
buyback rate, expected retail price, order quantity and the expected profits of M and R in the
multiplicative N-postponement model under a wholesale price-only contract for a uniformly dis-
tributed £ (i.e., t = 0). Fortunately, under a power distribution of ¢, for any given value of the
exponent ¢, by using Maple, we can show that the manufacturer’s expected profit function in Stage 1
is unimodal in z € [0,U] if we work with w*(z) instead of z*(w), i.e., the manufacturer chooses
the stocking level to maximize her expected profit. Thus, implicit expressions for the equilibrium
values as a function of t are available. In Table 4A.1 in the appendix, we present the percentage
changes in the equilibrium values in the model under a wholesale price-only contract for a power

distribution of £ and for t =0,¢t =1 and ¢t = 4.
4.5.2 Multiplicative N-postponement model with exponential expected demand

In this subsection, we study the multiplicative N-postponement model for D(p) = ™.

The system under buyback contracts. In Chapter 2 we have derived explicit expressions for

* the equilibrium decisions and profits under buybacks assuming that £ follows a uniform distribution,

and we have numerically extended the study to two families of distributions: power and triangular.

We next extend the analysis to a more general distribution of £ € [L, U].

Proposition 4.5.1 In the .multiplicative N -postponement model with buybacks and D(p) = e™P, if
the density function of €, f(e), is continuous and differentiable, and ef(€) is increasing in €, then
the manufacturer’s expected profit function is globally mazimized at (w* =1+ ¢,b* = 1), and in

equilibrium, EII}, = ETI%,.

Song et al. (2004) have independently proven Proposition 4.5.1 for a distribution of £ with the
IFR property for an exponential expected demand function.

As explained in the paragraph following Proposition 4.4.4 in §4.4.1, the requirement that ¢f(¢)

is increasing in e is satisfied by the Beta distribution for values of the shape parameters (o, B)
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satisfying 8 < 1 and @ > 1 — 3, and when (8 = 1, > 1), the beta distribution is reduced to the
power distribution with a positive exponent.

Finally, in Table 4A.2 in the appendix, we present the percentage changes in equilibrium values,
due to price postponement, in the multiplicative PD-newsvendor model with buybacks for a power
distribution of £ and ¢t =0, ¢t =1 and t = 4. ‘

The system under wholesale price-only contracts. As it was in the linear eXpected
demand function case, the manufacturer’s profit function in Stage 1, taking the retailer’s réaction
into account, is not generally well-behaved. Thus, we need to assume some' specific distributions of
&. Implicit expressions for the equilibrium values for a uniformly distributed £ have been derived
in' Chapter 2. Again, under a.power distribution, for any given value of the exponent ¢, we are
able to show that the rnanufacturer"s expected profit function is indeed concave in z € [0, U], and
implicit expressions of the equilibrium values in the model are available. In Table 4A.2 in the
appendix, we present the percehtage changes in equilibrium values, due to price postponement,
in the multiplicative PD-newsvendor model under a wholesale price-only contract for a power
distribution of £ and t =0,¢t =1 and t = 4.

4.5.3 Multiplicative N-postponement model with negative polynomial expected
demand

Similar to the linear case, for the negative polynomial expected demand function, D(p) = p~9, we

have derived in Chapter 2 explicit expressions for the equilibrium decisions and profits assuming

" that the random component of demand, £, follows a uniform distribution, and Song et al. (2004)

have extended the results to a £ which has the IFR (increasing failure rate) property. We, again,

recall their results:

ETT* =uEH;{=£,
q g—1

where z* is the unique positive solution to z[1 — F(2)] = (g — 1) [} ef(€)de.
Note that b* = 0 for the negative polynomial expected demand function. Thus, a buyback
contract reduces to a wholesale price-only contract. Similar to the linear and exponential expected

demand cases, we present in Table 4A.3 in the appendix the percentage changes in equilibrium val-

ues, due to price postponement, in the multiplicative PD-newsvendor model for a power distribution

of ¢ witht=0,t=1andt=4and D(p) =p~2.,
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4.6 Effect of Postponement in the Multiplicative Model

Having derived the equilibrium values in the models with and without price and order p‘)ostponement
in the multiplicative PD-newsvendér model, we are now ready to evaluate the effects of these
postponement strategies in the multiplicative model with and without buybacks.

Evidently, in view of the results derived, the effect of postponement in the multiplicative PD-
newsvendor model depends crucially on whether a buyback option is offered. Specifically, our
results reveal a remarkable relationship between the multiplicative (-, p- and N-postponement
. PD-newsvendor models with buybacks and the corresponding deterministic model. Indeed, it was
shown that for linear, exponential and negative polynomial expected demand functions: (1) for
any distribution of £, in eq‘uilibrium, the wholesale price, expected retail price, profit allocation
ratio between M and R, and channel efficiency coincide in the multiplicative p-postponement, Q-
postponement and deterministic models, (2) under some conditions on the distribution of £, and
with exception of the expected retail price, these equilibrium values cbincide with their counterparts
in the multiplicative N-postponement model, and (3) under some conditions on the distribution of
£, the buyback rates in the multiplicative p-postponement and N-postponement models coincide.

We suggest that it is quite remarkable that the multiplicative @-, p- and N-postponement
models, as well as the corresponding deterministic model, have the same profit-allocation ratio
between M and R. By contrast, neither this invariant result, nor any of the others which hold
for the multiplicative PD-newsvendor model with Dbuybacks prevails under a wholesale price-only
contract. In fact, as it is observed below, under a wholesale price-only contract, for example, M
could strictly benefit from the introduction of p-postponement while R could be strictly worse off
from such a postponement strategy. ,

Note that with the exception of the buyback rate, the effect of order postponement is qualita-
tively similar to the effect of price postponement in the multiplicative PD-newsvendor model with
or without buybacks. Thus, in this section, we only present the effects of price postponement. In
the following three subsections, based on the analysis in §4.4 and §4.5 and computational results
presented in the three tables in the appendix, we discuss the effect of price postponement in the

multiplicative PD-newsvendor model with a power distribution of £ and linear, exponential and -

negative polynomial expected demand functions.
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4.6.1 Linear expected demand

Table 4A.1 in the appendix presents the comparison between the multiplicative modeis with and
without price postponement for a linear expected demand function. From Table 4A.1 we conclude
that if ¢ (or £ for a general expected demand function D(p) = a(k — p)) is not too small, price
postponement is quite beneficial. Indeed, when the channel profit is relatively small, due to,
e.g., a high manufacturing cost, price postponement can increase the manufacturer’s (respectively,
retailer’s) expected profit by as much as 270% (reépectively, 210%), as is the case for ¢ = 0.8 under
a wholesale price-only contract. |

The resulté displayed in Table 4A.1 confirm that the effect of p-postponement in the multi-
plicative model depends strongly on the contract. Indeed, when returns are permitted, as ex-
pected, the equilibrium wholesale price, buyback rate and profit allocation ratio are unaffected by
p-postponement. By contrast, when returns are not permitted, the equilibrium wholesale price can
change quite significantly due to p-postponement, and for example, for ¢ =0, it increases by 32%.
Moreover, while the retailer is always better off with p-postponement, if returns are permitted, for
a very low manufacturing cost, R could end up being worse off due to p-postponement if returns
are not permitted. For example, for ¢ = 0, his profit would decrease by about 10%. In fact, for
very low values of ¢, the entire channel could be worse off due to p-postponement, and for ¢ = 0,
it would decrease by about 4%. Thus, the expected value of perfect information about demand
for the retail pricing decision could be negative in a decentralized firm. This is in stark contrast
to p-postponement in a centralized firm, wherein the firm is always (weakly) better off due to
p-postponement (Van Mieghem and Dada (1999)).

For ¢ = 0, the multiplicative model with buybacks turns out to be a full-price buyback contract,
i.e., b = w, and the introduction of p-postponement in this case has no effect on the equilibrium
values. For ¢ > 0, in both médels with and without buybacks, due to p-postponement, production
(i.e., @*) is decreasing when c is small and increasing when ¢ ié large, and in the model with
buybacks, the expected retail price under p-postponement is somewhat smaller than the retail
price without postponement. _

Finally, we observe that R, who presumably initiates p-postponement, gains relatively less than
M from such a strategy. Indeed, when returns are possible, for every dollar increase in R’s expected
profit, M’s expected profit increases by two dollars, and from Table 4A.1 we conclude that when

" returns are not possible, the percentage increase in M’s expected profit is always larger than that

of R. This suggests that M may have an incentive to financially support a possible desire by R to
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implement p-postponement in the multiplicative model.

4.6.2 Exponential expected demand

Table 4A.2 in the appendix displays the comparison between the multiplicative models with and
without price postponement under an exponential expected demand function.

Perhaps the most striking observation which follows from Table 4A.2 is that the introduction of
p-postponement in the multiplicative PD-newsvendor model with a wholesale price-only contract
and exponential expected demand will make both the manufacturer and the retailer worse off when
the marginal manufacturing cost ¢ is small. We also can conclude from Table 4A.2 that both
for buyback contracts and wholesale price-only contracts, the effect of price postponement on the
equilibrium values of the wholesale and retail prices, order quantity and expected profits is similar
to that in the linear expected demand case, with the exception that the profit allocation ratio in

the exponential case is one to one.

4.6.3 Negative polynomial expected-demand

Note that with a negative polynomial expected demand function, buybacks are not implemented in
both the multiplicative p- and N-postponement models, i.e., ¥* = 0. Following Proposition 4.4.15
and the analysis of the multiplicative N-postponement model with a negative polynomial expected
demand function in §4.5, we conclude that the percentage changes, due to price postponement, in
the equilibrium values of the order quantity, expected retail. price, and profits of M and R are inde-
pendent of the manufacturing cost ¢. Additionally, from the analysis in §4.5 and Proposition 4.4.15, -
it follows that the equilibrium wholesale price is invariant to the introduction of p-postponement.
All these results are confirmed in Table 4A.3.
Finally, based on the numerical results for a power distribution of £, we conclude from Table 4A.3
_in the appendix that due to price postponement, both M and R are better off, and the retail price

" (respectively, order quantity) decreases (respectively, increases) in the multiplicative model.

4.7 Postponement in the Additive Model

In this section, we extend our analysis of postponement strategies to the PD-newsvendor model
with an additivé demand function, i.e., X = D(p) + &, where, as noted in Chapter 1, £ € [L, U] and
D(p) + L > 0 for some p. As it becomes apparent in this section, the analysis of the additive PD-
newsvendor model could turn out to be significantly more difficult than that of the multiplicative

model. For instance, the analysis of the additive model with a linear expectéd demand function
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without postponement is quite complex (see, e.g., Wang et al. (2004) and Song et. al. (2004)), as
is the analysis of this model with p-postponement. In fact, even for the case when ¢ is uniformly
distributed on [0, 2], it is difficult to derive a closed-form expression for, e.g., the equilibrium value
of the wholesale pric'e in the additive p-postponement model. Thus, for tractability reasons, we
only consider in this section postponement under wholesale price-only contracts. For convenience,

‘~

~we will denote by ()* instead of ()* the equilibrium values of decisions and profits in this section.

4.7.1 Additive Q-postponement model

In an additive demand model, X = D(p) +e. Thus, E(X) = D(p) + E(¢) = D(p) + p¢, and
M’s and R’s expected profit functions, given by (1.2), become Elly = (w — ¢)(D(p) + pe) and
FEllg = (p—w)(D(p) + pe), which are independent of the distribution of &, and only depend on pe.
| In Stage 2, before observing demand uncertainty, R commits to a retail price p to maximize
ETlgr = (p — w)(D(p) + pe). Assume that the optimal p, p(w, ue), for R in Stage 2 is unique and
D(p(w, pe)) + L > 0. Then, M’s expected profit function becomes:

ElLy = (w — ¢)(D(p(w, pe)) + pe)- (4.29)

Let w*, p*, Q* denote the equilibrium values of w,p, @, respectively. Then, we can conclude that
in equilibrium,

(1) w* and p* are only functions of c.and e

(2) Q* = D(p*) +¢, and

(3) ET}y = (w* — c)(D(p*) + pe) and EIIR = (p* — w*)(D(p*) + pe),
where € is the observed value of £&. As was the case in §4.3 for the multiplicative model, we can

immediately make the following observation.

Observation 4.7.1 The equilibrium values in the additive Q-postponement model coincide with
those corresponding to the model with deterministic demand, wherein the demand function coincides

with the expected demand function in the additive Q-postponement model.

The effect of Q-postponement in the additive model is consistent with that in the multiplicative

model described in Observation 4.3.1. The following example will be used subsequently.
Example 4.7.2 Additive PD-newsvendor model under Q-postponement.

Consider the additive PD-newsvendor model where X = D(p) + ¢, D(p) = —p, £ € [L,U], and

D(p) + L > 0 for some p(> w). R’s expected profit in Stage 2 of the additive Q-postponement
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model becomes Ellg = (p — W)(_p-i- pre), which is concave in p. Thus, p(w, ue) = %(2 w), and
) > j— + .

M'’s expected profit in Stage 1 becomes ETlys = (w — ¢)(—p(w, pe) + pe) = (w — c)(—5+%), which,

again, is concave in w. Thus, w* = 5%’3 Accordingly, for the additive Q-postponement model, in

e — _ 2
equilibrium, p* = #{) EQ* = E| c 3Z£+4E] — cjus and EIT%, = 2EIT} = ( c-;u;) '

4.7.2 Additive p-postponement model

As previously mentioned, the analysis of the additive model is more complex. As a result we
only analyze in this subsecfion the additive price postponement PD-newsvendor model under price
postponement assuming that & is binary. More specifically, we adopt the demand model in Pad-
manabhan and Png (1997), wherein®! X = ¢ — p, and the random intercept, &, follows a binary
distribution with two market states: Low () with a probability A and High (ap) with a probability
(1 — A). To avoid trivialities, 0 < A < 1. Let p¢ = Aoy 4 (1 — A)ay, denote the expected value of £.
"As mentioned in Padmanabhan and Png (1997), demand uncertainty is captured by two aspects
of the demand model. Namely, the range of possiblle demand outcomes, denoted as 6 = %}IL, and
the probabilities, A and (1 — A), of the two events. In the former case, uncertainty is increasing
in ap or 6, holding ¢ constant. In the latter case, uncértainty is maximized when A = 0.5. Note
that § > 1. For further simplification and bfor tractability reasons, we assume that M’s marginal
manufacturing cost ¢ = 0.

Backward induction is used to analyze the problem. In Stage 3, given (w, @) and observing the

random part of demand, €, R chooses his best retail price p to maximize:
Mg = p min (Q, [¢ — ) — wQ. 43)
Clearly, either é = a; or é = a. The best retail price for R is characterized as follows.

Proposition 4.7.3 Given (w, Q) and the resolved demand uncertainty, as, R’s optimal retail price
18:

’ | | (4.31)

s =19 a
2

" a;—Q ifQ
if Q

IV IA
NISNIS

where s € {l, h}.

Proposition 4.7.3 implies that a market clearing price is not always optimal for R. Indeed, when
the quantity, ordered in Stage 2, is found to be relatively larger than the realized market state, i.e.,
Q2> %, itis 'optimal‘for R to charge a higher retail price than the market clearing price, which

will induce some leftover inventories at the end of the selling period.

41The same demand model is used elsewhere in the literature, see, e.g., Anand and Mendelson (1997). )




Chapter 4: Price and Order Postponement ' 111

In Stage 2, before demand uncertainty is realized, for any given w and knowing p; and p},, given

by (4.31), R chooses @ to maximize his expected profit:
Ellg = Ap} (ou —p}) + (1 = N)pj, (an — Ph) — w@Q. , (4.32)

Note that the expected sales are A(ay —p;)+(1—A)(an—p}). R’s best order quantity is characterized

in the following proposition.

Proposition 4.7.4 Given w and knowing p; and pj,, given by (4.31), R’s optimal order quantity

and his corresponding optimal retail prices are:

(& 233”;;“’, g, Gopandwy if g < (1 A)(an — o),
(Q,pf,ph) = (M, Zoubed 20nhedy it (1 — M)(ap — ) S w < pe, (4.33)
(Oa_ _) iwa.U'Ea

where pe = Aoy + (1 — N,

It follows from Proposition 4.7.4 that if the wholesale price is too high, ie., w > p¢, then R
would not accept the contract, i.e., @* = 0. On the other hand, whenever R accepts the contract,
he would order, in Stage 2, a stock, @, for which the market clearing price in Stage 3 is optimal
for him when the market state is high. The market clearing price _is still optimal for R when the
market state is low if the wholesale price is high enough, i.e., w > (1 — A)(en — a;). However, if the
wholesale price is. relatively low, i.e., w < (1 — A)(ap — al), then the market clearing price is not
optimal for him. Rather, in this case, his best price would induce some leftover inventories at the
end of the period. _

We are now ready to solve M’s problem in Stage 1. In Stage 1, taking into account of R’s reaction
functions p} and Q*, given by (4.33), M chooses w to maximize her own expected profit function:
Ellp = w@*. (Recall that ¢ =0.) M ’é best clioice of w and the corresponding equilibrium values
of the other decision variables and the profits of the channel and its members are presented in the

following proposition.

Proposition 4.7.5 In the additive p-postponement model under a wholesale price-only contract,

for ¢ =0, the equilibrium values are presented in Table 4.2 in the following pagé:
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W | g | op |@| B, | B Ellyy 5
0>1+ 1 (1-Nay, a 3ay | op | (A=Ned | def T (1-A)o? | Aaf 4 3(1-M)of
= (1-X) 2 : 2 4 4 8 4 16 4 16
9<14 e | dou—pe | don—pe | pe | B EE 3ug

2 4 4 4 8 16 . 16

Table 4.2: Equilibrium values in the additive p-postponement model

Note that the model analyzed in this subsection has been explicitly studied by Padmanabhan
and Png (1997). However, their analysis is somewhat incomplete. Specifically, they have only

considered the case where § > 1 4 \/—%, and they did not evaluate EII}, (and EIl},, ).

4.7.3 Additive IN-postponement model

In this subsection, we study the additive PD-newsvendor model under a wholesale price-only con-
tract without any postponement. Again, for simplicity, we assume ¢ = 0 and X = & — p, where, as
we recall, £ follows a binary distribution with two market states: o with a probability A aﬁd ap
with a probability (1 — A), and a; < . The timeline is as follows. M, as the Stackelberg leader,
initiates the process by offering a wholesale price w (Stage 1), and then, R commits to both a retail
'price p and an order quantity @ (Stage 2). Demand is realized thereafter.

We first consider R’s problem. Given w, R chooses p and @) to:

Maximize ETIg(p,Q) = p Sale—wQ
= p(Amin(Q, [y — p]*) + (1 = M) min(Q, [y, — p] 7)) — wQ, (4.34)

st. 0<Q<ap,—p and w<p< .

Note that the highest market state is ap. Thus, the highest demand for any given p is ap — p.
Therefore, we assume that @ < ap —p. We divide the feasible region, {(p, @)|0 < Q < ap —p}, into
three subregions in the (p, Q) plane (Figure 4.1 in the following page), and analyze R’s problem in

each subregion in order to find the optimal point (p*, Q*) for R.
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Q
O — Wy
o] — Wg

Figure 4.1: Three feasible subregions for R in Stage 2
Proposition 4.7.6 For any given w, R’s optimal p* and Q* lie either on Segment AB or on

Segment CD. Thus, either Q* = ap — p* or Q* = a; — p*.

Following Proposition 4.7.6 an'd its proof in the appendix, R’s optimal profit, obtained from

(4.34), is equivalent to:
EIT; = max(EII4Z, ETISE | ETIED),

where the superscripts AB, CE, and ED stand for the corresponding segments in Figure ‘4.1, and

ETI48 = max{ETlg(p) = (p — w)(u — p), st. w<p< oy}, | (4.35)
ENZP = max{EMgr(p) = p(ue ~p) —wlon —p), st. w<p<al, (4.36)
EIEP = max{ENg(p) = (p(1 =) ~w)en=p), st w<p<on}.  (437)

Since in all three problems, (4.35), (4.36) and (4.37), R’s expected profit function is strictly concave
in p, one can easily verify that R’s opfirnal decisions in these problems are as displayed below.
For (4.35), p* = &f% Q* = 2% and EIIAP = g_a,zw)2_
For (4.36), p* = min(oy, ﬁq—“’), or

o [ 5 Hw < 2-Nar— (1= Ny, (4.38)
oy ifw>(2-XMNa—(1-=Nay,

and Q* = ap, — p*. EII$E can be calculated accordingly. (Recall that pe = Aoy + (1 — A)ag.)
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For (4.37),
o ifw<(1-M(20 —ay),
Pt = Ll;a)‘j_;;fw if (1= A) (2 — ) Sw < (1= Ny, (4.39)
ay, ifw>(1-MNap,

'and Q* = ap — p*. Similarly, EH%D can be calculated accordingly.

Note that when w > o, p > o. Thus, (p*,@Q*) must lie on Segment ED, and Ell; =
EHED. When w < ¢, we need to compare EIIQB, EH%E and EHED in order to find (p*, @*).
Unfortunately, it is quite tedious to derive closed form éxpressions for p* and Q* for any given w €
[0,y] and any rélationship between the parameters 6 and A (see also Footnote 9 in Padmanabhan
and Png (1997)). Thus, for simplicity, we next consider just two special scenarios regarding the

~ relationships between # and A: ScenarioI: § > 1+ ﬁ, and Scenario II: ﬁ <8<2.

Scenario I: 8 > 1 4+ ﬁ Under Scenario I, R’s optimal reaction function (p*,@*) can be

characterized as follows:

Proposition 4.7.7 When 8 > 1 +ﬁ, e, (2—Na;—(1—XNap <0, for any given w, the optimal
solution (p*,Q*) for R is on Segment ED (i.e., Q* = oy, — p*) and

p*_{ A-Nantw 5 <4 < (1 - Aan,

20-2)
(073 if (1-MNap <w <oy,

Knowing p* and Q*, M’s problem in Stage 1 is to choose w to maximize Ellps = w@Q*. We
next consider two choices for w. (1) w < (1 — A)ay. Then p* = lg’\l)f’)‘\w, Q* = (lj_z’\%#, and
Elly = %ﬂ, which is strictly concave in w. Thus, w* = 1_;‘ %b and EII}, = %. »
(2) w > (1 — A)o. Then p* = ap, Q* =0, and EII}, = 0. Evidently, M prefers (1), and Table 4.3

below provides the equilibrium solution and profits under Scenario I.

w p* |Q*| EIl}, | EIly |EI},, R

— - 2 - 2 1— 2
92 14+ 1 e glah §ah %{L @ /S\)ah (1 1/;3)ah 3( lé\)o‘h

Table 4.3: Equilibrium values in the additive N-postponement model for ¢ = 0 under Scenario I

Scenario II: l—lx < 6 < 2. Under Scenario II, R’s optimal (p*, @*) can be characterized as

follows:
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Proposition 4.7.8 When ;7 )\ <0<2 de, (1-X2xy —ap) >0 and (1 — Nap > oy, for any

gien w, the optimal solutzon (p*,Q*) for R satisfies Q* = ay, — p*, where
Hetw F0<w< (1= Y205 — (1 = Moy, — ),
pr=q G5 if (1 A) V20 = (1 - M)(an — o) S w < (1= Ao,
o, if (1=XNap<w<Lap,. :

Observe that according to Proposition 4.7.8 and its proof in the appendix, in Scenario II, the |
optimal (p*,Q*) is attained either on Segment CE (when w < (1 — M)2q; — (1 — M)(an — o)),
or on Segment ED (when w > (1 — A)Y2qq — (1 — M\)(ap — ay)). Now, knowing p* and Q*,
given by Proposition 4.7.8, M chooses_ w in Stage 1 to maximize Ellyy = wQ*. According to

Proposition 4.7.8, it is easy to verify that
Elly(w € [(1 = A2 — (1 — N)(an — o), (1 — Neo]) = 0= Ellp(w € [(1 — Mo, an)).

Thus, a choice of w for which (1 — A)ap < w < oy, is never optimal for M. Therefore, we only need
to compare M’s profit in Subproblem (1): w < (1—A)Y20;— (1 —\)(a, — ), wherein Segment CE
s optimal for R, and Subproblem (2): w > (1 — \)2q; — (1 — M)(an — o), wherein Segment ED
is optimal for R. Unfortunately, it is still too tedious to derive a closed-form expression for w* due
to the many possible relationships between the parameters A and 8. Therefore, for simplicity, we
need to further restrict the values of A and 8. Now, note that in Scenario II, A < 0.5. Then, we set
A = 1/8, and we scale demand by normalizing the low demand state value, ¢y, to 1, and thus, since
0= %1:», we have that ap = 6. Under these simplifications, the equilibrium values of the contract

parameters and profits for M and R are characterized in Proposition 4.7.9 below.

- Proposition 4.7.9 In the additive N -postponement model under a wholesale price-only contract
withc=0, A =3 and x < 8 <2, the equilibrium wholesale price and the corresponding expected

profit for M are:

(99— (99—1)2) if 8 <9< L5+4V/14

VTVt (2v14-76 7)(89 4—V14) : _\/— s

* * ) = 2v/14 79 7 + ¢ 154414 ]

(w*, ETly) = ¢ ( z + ) 1f_+23 <9<,
(16, 76) - iff<6<2,

and the corresponding equilibrium retail price, order quantity and expected profit for R are:

A (235;1, 99321, —4792+1109+1) if g <9< 15+243114’
(p*, Q" EllR) = { (4518 80-4-yd QUO-WH-T2) 3¢ 1544VT < g <
092”3 ifG<6<2,

4742128

where 9— = 23 14+81i-2+66ﬁ+7\/_2—.
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4.7.4 Effect of postponement in the additive model

Table 4.4 below summarizes the effects of p-postponement and @-postponement in the additive
model, i.e., X = D(p) + £, under a wholesale price-only contract with a linear expected demand,
where £ has two market states: high (a) and low (o). Recall that § = %}f’ and that for simplicity,

it is assumed that ¢ = 0.

Scenario I 6(= &) > 1 + = Scenario II: A= and {2 <6 <2
Column 1 Column 2 Column 3
Effect of Effect of Effect of p-postponement

p-postponement | Q-postponement

w* Unaffected Increases Decreases for a small 8, and then increases
when 6 becomes larger

p*(Ep*) Decreases Increases Decreases for a small 6, and then increases for an intermediate
: 0, and again decreases when 6 is large enough

Q*(EQ*) Unaffected Decreases ‘ Decreases

Profit dist. Affected Unaffected (2 : 1) Affected

1.14<0<139(1.39<0<152{152<0<155[1565<0<2

Elly, Unaffected Decreases Decreases Decreases Increases Increases

Elly Increases Decreases Increases Decreases Decreases Increases

Increases for
Elliir Increases Decreases # < 1.33, and Decreases Decreases Increases
then decreases

Table 4.4: Sﬁmmary of the effect of postponement in the additive model with a binary distribution

Columns 1 & 3: p-postponement. Under Scenario I, since (1) < (1—))!/2, we have § >

1+ 1—1—,\— > 14 (1—X)~/2. Thus, following Tables 4.2 (p-postponement) and 4.3 (N-postponement )

we derive Column 1 in Table 4.4. Acéordingly, when the high market state is at least twice as large

as the low market state (i.e., § > 1+ ﬁ), R is able to extract the entire increase in channel profit,’
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due to p-postponement, which solely stems from a reduction in the expected retail price. That is,
the equilibrium order quantity and wholesale price, and thus, M’s expected profit, are not affected
by p-postponement. '

Under Scenario II, we have § <2 <1+ ﬁ Thus, from Table 4.2 (p-postponement) and the
analysis of Scenario II in §4.7.3 under N-postponement, we can derive the following proposition,

which is summarized in Column 3 in Table 4.4.

Proposition 4.7.10 In the additive PD-newsvendor model under a wholesale price-only contract

withc =0, A=}, and 125 < 0 < 2, in equilibrium,
(i) Elh, < ENIY; and ETIS, > ETIN if 8 <9 < 8L 4 18014 , [

(it) ET®, < ETIY, and ETI%, < EIIY, if &L 4+ 18414 < g <

(iii) EI%, > ENY; and EH” < EIIY, iff <9< BVl +84+6\/— +7v2

(iv) BT, > ENY; and EITG, > BILY, if BYIRSEVTIYE < g < o,
(v) wP is smaller (respectively, larger) than w" when 0 is small (respectively, becomes larger),

(vi) EpP is smaller than p" when 0 is small, it is larger for intermediate values of 8, and when 6

is large enough, Ep® is again smaller than p~, and
(vii) QP < QY,

where § = 92‘/—+3291’§7V BO+IAVIA . 52, and the supscripts “p” and “N” stand for p-postponement

and N -postponement, respectively.

Columns 1 and 3 in Table 4.4 and Proposition 4.7.10 clearly reveal that the effect of p-
- postponement depends strongly on the demand distribution. Indeed, when the value of the high
market state is sufficiently larger than the value of the low market stafe, as is the case in Column 1
in Table 4.4, the channel’s profit strictly increases, neither party is worse off, R is strictly better
off, and among the equilibrium values of the decision.variables, only the expected retail price is
affected. However, when the value of the high market state is not sufficiently larger than the value
of theb low market state, p-postponement affects the equilibrium values of all decision variables. '

Moreover, under Scenario II (Column 3 in Table 4.4}, p-postponement can decrease the channel

profit. In fact, when 6 € (35 + 16‘81?, 92\/ﬁ+329:§7' 56+14‘/ﬁ) ~ (1.39,1.52), both M and R are

strictly worse off due to p-postponement. These results, again, are in stark contrast to the effect

of p-postponement in a monopolistic setting.
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Column 2: Q-postponement. The equilibrium values under @Q-postponement can be easily

derived from Example 4.7.2 after substituting therein ¢ = 0, and are as follows:

. 2
w =5, p= %‘-’é BQ = and B, = 25T} = % (4.40)

where pe = Aaj + (1 — A)ap. The effect of Q-postponement under Scenario I can be easily de-
rived by comparing Table 4.3 for N-postponement with display (4.40) for @Q-postponement, and is
summarized in Column 2 in Table 4.4.

It follows from Column 2 in Table 4.4 tilat both M and R could be strictly worse off due to
Q-postponement. This is, again, in stark contrast to @-postponement in a monopolistic setting,
wherein the centralized system is always (weakly) better off due to Q—postponement (Van Mieghem

and Dada (1999)).

4.8 Managerial Insights and Conclusions

In general, in the multiplicative PD-newsvendor model, despite vertical competition and aside for
some cases that are further discussed below, the effect of either p-postponement or @J-postponement
are quite beneficial for the channel and its members. As such, postponement could be viewed as
a viable strategy to increase channel efficiency. In particular, we note that the effect of either
p-postponement or Q-postponement is quite substantial, percentage-wise, when the total channel
profit of the supply chain is relatively small. For example, when this profit is relatively small, due,
e.g., to a high manufacturing cost, p-postponement in the multiplicative model with a uniform &
(i.e., t = 0 for a power distribution) can increase M’s and R’s expected profits by as much as 270%
for M and 210% for R, as is the case for ¢ = 0.8 and linear expected demand in the wholesale
price-only contract in Table 4A.1. This suggests that when the total channel profit is relatively
small, there is a significant advantage in obtaining more reliable information about market demand.
Similarly, in general, postponement is beneficial for both players in the additive model.
Notwithstanding the benefits of postponement, it is clearly demonstrated in this chapter that
for some parameter values, e.g., when the manufacturing cost is relatively low in the multiplica-
tive model, the effects of postponement in a decentraljzed system are qualitatively different than
their effect in a centralized system. Indeed, both in the multiplicative and additive models, p-
postpo'nerne;nt and @Q-postponement can make the channel worse off, and in some instances, they
could even make both M and R strictly worse off. In that regard, as far as we know, we are

the first to provide examples wherein the expected value of perfect information in a competitive

environment, modeled as a Stackelberg game, is negative.
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Our results also demonstrate that in a decentralized setting, the party, i.e., R, who initiates
postponement, does not necessarily end up gaining the lion share of the increase in the expected
profit. For example, in the multiplicative case, when returns’are possible and the expected demand
function is linear, for every dollar increase in R’s expected profit, M’s expecﬁed profit increasés
by two dollars. Moreover, R’s expected profit due to postponement could decrease, even though
M’s expected profit in this case increases. Thus, a strategic retailer should not implement p- or
Q-postponement before, e.g., reaching a favorable agreement with M as to how any additional
benefit due to postponement should be shared between them.

Our results in the multiplicative model also quite clearly demonstrate that the effect of post-
ponement depends on the type of contract. Specifically, with buyback options, either p or Q-
postponement does not affect the equilibrium wholesale price, profit allocation ratio and channel
efficiency. However, without buybacks, such postponement strategies can significantly change the
equilibrium values. In particular, as explained above, such strategies can make both M and R

strictly worse off, which does not happen when a buyback option is offered.

4.9 Appendix

Proof of Lemma 4.4.1. Substituting D(p) = 1 — p into the retailer’s profit function, given

by (4.2), results with Il = (p — b)(1 — p) min(z, €) — (w — b)Q. Consider two options for p: (Option

DNIfz<éie,p<1l-— %, then the retailer’s profit function reduces to Iz = (p — w)@, which

is increasing in p. Thus, p =1 — % (Option II). If 2 > €, ie, p > 1 — % then the retailer’s

profit function becomes IIg = (p — b)(1 — p)é — (w — b)@, which is strictly concave in p Thus,
146

p* = max(-32,1 — %) By comparing these two options we conclude that Option II gives us the

optimal retail price. O

Proof of Lemma 4.4.2. Taking derivatives of EIlg, given by (4.5), with respect to @ gives us
U 2 U Ca

3‘3—33 =1-—(1- b)F(%) —2Q f% 1f(e)de —w and 8—3%1}3 = -2 fli_o,g 1 f(e)de < 0, which implies

that the retailer’s expected profit function in Stage 2 is strictly concave. Thus, the first order

condition (F.0.C.) gives us the unique maximizer of the retailer’s expected profit function, i.e., the

optimal order quantity, Q*, satisfies 1 — (1 —-'»b)F(f—%) —-20Q f% %f(e)de —w=20.0

Proof of Proposition 4.4.3. Substituting w*(b,Q), given by (4.6), into the manufacturer’s
expected profit function, given by (4.9), and simplifying gives us:

2Q

1-b

U
Elly = (1—¢)Q — QF(12—E2b) — 92 /ﬁ %f(e)de + -;—b(l _ b)/L ef(€)de. (4A.1)
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Taking the first order derivative of ETI} with respect to b results with 2552 = 1(1-2b) [~° €f(e)de.
Thus, there is a unique value of b for stationary point(s) of Ellys, if there are any, which is b* =
Taking first order derivative of EIlps with respect to @ and evaluating it at b* = % results with
aEH 2EBM (b* = 1) = G(Q), where G(Q) =1 — F(4Q) — 4Q f4UQ 1f(e)de — c. It is not difficult to show
that ﬂ@ —4f4(£2 1f(e)de<0,G(Q=0)=1-c>0and GQ = %) = —c < 0. Thus, there is
a unique Q* € (0, ) such that 6E—nM(b* = 1) = 0. Therefore, we conclude that.there is a unique
stationary point (b* = 5, Q*). Taking second order derivatives of EIlps with respect to b and @
and evaluating them at the unique stationary point gives us the Hessian matrix:

92EM 92EMN
ot Toeagt —4 f4Q, 1 f )de 0

82FEI O2EN
06" ot 0 —fL “ef(e)d

which is negative definite. Thus, the unique stationary point (b* = %, Q*) is the global maximizer
of the manufacturer’s problem.

Substituting (b*, @*) into w*(b,Q), given by (4.6), and simplifying results with w* = %
Similarly, substituting (b*,@*) into the expected retail price Ep*, given by (4.4), and simplifying
gives us: Ep* = w, and substltutmg (b*,Q*) into the expected profit functions of the retailer
and the manufacturer, given by (4.5) and (4A.1), respectively, and simplifying results with ETI%, =

2EMY, = L [29" cf(e)de + L [1 — c— F(4Q*%)]. O

Proof of Proposition 4.4.4. By (413), 2Blu = 1 ¢ - F(2Q) - 4Q [, Lf(e)de, LElu =
2f(2Q) — 4f2Q < f(e)de and dT%ngM = 4[f'(2Q) + I%@] Since €f(e€) is increasing in €, we have
ef'(e) + f( ) > 0. Therefore, F2Q) + @ > f(2Q) + %%?-Z > 0, which implies that %ﬂ
strictly increases in Q. Since @M(Q O) =1-¢>0, ‘-i%—gM(Q =Y%)=-c<0and %M(Q =
Yy=2f(U) = 0, we have %}M( = 0) < 0. Thus, we conclude that %M first decreases in @
and then increases, and crosses the horizontal line only once at the unique solution Q* € (0, %)
satisfying:

1—c— F(2Q) - 4Q /2: %f(e)de =0.  (4A2)

Substituting the implicit expression for Q* into (4.12) and simplifying results with «@* = %(1 +c—
F(2Q*)). Substituting the resulting ©%*, b = 0 and Q* into (4.4), the equilibrium expected value
of the retail price is Ep* = (3 + ¢ — F(20Q*)). Similarly, substituting (%*,b = 0,Q* ) into the

retailer’s expected profit function, given by (4.5), and (d* ,Q*) into the manufacturer’s expected

profit function, given by (4.13), and simplifying results with: EII*, = %:(1 —¢— F(20%) and
Efl’k =1 LZQ* ef(e)de + %:(1 — ¢ — F(2@Q*)), which completes the proof. O
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Proof of Proposition 4.4.5. (i) is implied by (4.7) and (4.10), and (ii) is implied by (i), (4.8)
and (4.11). ‘

For (iii), following the analysis of the integrated channel, p’ = <. By Proposition 4.4.3,
Ep* = 3%:—9 Thus, (iii) follows. By comparing the results in Proposition 4.4.3 and those in Table 4.1,
(iv) follows. '

For (v), following (4.7) and (4A.2), 1 — F(2Q) — 2Q' [0 1f(e)de = ¢ = 1 - F(2Q") -
20* fz%* 1f(e)de— 20* f;é}, 1f(e)de. 1t is easy to verify that 1 — F(2Q) —2Q f;é? 1 f(e)de is strictly
decreasing in Q(> 0). Thus, (v) follows. Finally, (vi) is implied by the analysis of the integrated
channel and Propositions 4.4.3 and 4.4.4. O

Proof of Lemma 4.4.7. Substituting D(p) = e~ into the retailer’s profit function, given by (4.2),
results with IIg = (p —b)e™P min(z, €) — (w — b)Q. Following the same analysis process as in the
~linear case, we need to consider two options for p, and it is not difficult to verify that the optimal

retail price, p*, is given by (4.14). We do not repeat the analysis here. O

Proof of Lemma 4.4.8. Taking derivatives of EIlg, given by (4.5), with respect to @ and
simplifying gives us 3%3%11 = bF(eHbQ)—i—ng,Q In(e) f(e)de— (In(Q)+1)+(In(Q) +1)F (! Q) —w
and %}R = —212-(1 — F(e'*Q)) < 0, which implies that the retailer’s expected profit function
in Stage 2.is strictly concave. Thus, the F.O.C. gives us the unique maximizer of the retailer’s
problem, and the o.ptimal order quantity, Q*, satisfies bF (el tQ) + fg+¢,Q In(e) fe)de — (In(Q) +
D)+ (In(Q) + 1)F(e' Q) ~w =0. O

‘Proof of Proposition 4.4.9. Substituting w*(b, @), given by (4.17), into the manufacturer’s
expected profit function, given by (4.18), and simplifying gives us:
U e'*hQ
ETly = —Q(ln(Q)—H)+Q(ln(Q)+1)F(el+bQ)—cQ+Q/ . ln(e)f(e)de+be_1‘b/ ef(€)de.
e " 4As)
Using the same approach we have used in the linear case, we are able to verify that there is a
unique stationary point (b* = 1,Q*), where Q* satisfies —(In(Q) + 2) + (In(Q) + 2)F(e?Q) +

ng In(e) f(e)de — ¢ = 0, and the Hessian matrix at this stationary point is:

e

~g(1-FE@Q) 0
0.

92ETl 52 EIl
07 o \ -

82ET 82En ~9 re2Q* )
3Q0b . —e? L 7 ef(e)fe

" which is negative definite. Thus, the unique stationary point (b* = 1,Q*) is the global maximizer

of the manufacturer’s problem in Stage 1.
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Substituting (b*, @Q*) into w*(b,Q), given by (4.17), and simplifying results with w* = 1+c.
Similarly, substituting (b*,Q*) into (4.15) and simplifying gives us the equilibrium expected retail
price: Ep* = 2 + ¢, and substituting (b*, Q*) into the expected profit functions of the retailer and
the manufacturer, given by (4.16) and (4A.3), respectively, and simplifying results with EII}, =
EIl; = Q*(1 — F(e2Q*)) + €72 zzQ* ef(e)de. O

Proof of Proposition 4.4.10. By (4.20), the derivatives of EIlys with respect to Q are: d%g =

—(In(Q)+2)(1—F(eQ)) —c+ [ In(e) f (e)de, LEMM = e(f(e@)~=2¢L) and LEMu = €2(f'(eQ)+
Efg) + 1(7522()82@—)) Since €f(€) is increasing in €, we have e¢f’(€) + f(¢) > 0. Therefore, f'(eQ) +
ﬁe@l >0, %—M > 0, which implies that ~%M increases in Q. _Since ‘—ii‘%IQ-M(Q =0)<0
and %%}M(Q = Q) > 0, evidently, 4By firot decreases and then increases in Q. Note that

dQ
%%M(Q =0) > 0 and @M(Q Y) < 0. Thus, there is a unique solution Q* < (0, Yy, which
satisfies:

c= / ln €)de — (In(Q) + 2)(1 — F(eQ)).

Substituting Q* into (4.19) and simplifying results with @* = 1 +c¢ — F (eQ*). Substituting the
resulting @*, b = 0 and O* into (4.15), reveals that Ep* =2+ c¢ — F(eQ’f). Similarly, substituting
(@*,b = 0,Q*) into the retailer’s expected profit function, given by (4.16), and («*, Q*) into the
manufacturer’s expected profit function, given by (4.20), and simplifying results with: EIl%, =

1-F eQ* Q* and EIT% = =1 eQ* efleyde+ (1 - F eQ* Q*, which completes the proof. O
L .

Proof of Pi'oposition 4.4.11. The proof is analog to the proof of Proposition 4.4.5 in the linear

_4 expected demand function case. We do not repeat it here. O

Proof of Lemma 4.4.13. Substituting D(p) = p™? into the retailer’s profit function, given
by (4.2), results with IIg = (p — b)p~?min(z, €) — (w — b)Q. Following the same analysis approach
as in the linear case, we need to consider two options for p. Again, it is easy to verify that the

optimal retail price is given by (4.21). We do not repeat the analysis here. O.

Proof of Lemma 4.4.14. Taking derivatives of Ellg, given by (4. 23) Wlth respect to @Q: aEH =

1-1 Q__ f(s (€)de + bF(8) — w, and % =—1(1-2 f5 €)de < 0, which xmphes
that the retailer’s expected profit function in Stage 2 is strlctly concave. Thus, F.O.C. gives
us the unique maximizer of the retailer’s problem, and the optimal order quantity, Q*, satisfies

(1—-Q“f6 (€)de + bF(6) —w = 0. O

Proof of Proposition 4.4.15. Substituting w*(b, @), given by (4.24), into the manufacturer’s
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expected profit function, given by (4.25), and simplifying gives us:
U

' 1, -1 1
Bt = (- 5@ [M @b e -+ L [er0 aw

Taking first order derivative of Ellps with respect to b and simplifying results with aEH =

(1- q)(q_1 )4 fL ef(e)de < 0. Thus, for any @, the manufacturer 8 expected profit is strictly

decreasing in b. Thus, b* = 0 and @M(b* 0)=(1- Q__ fL €)de — c and %H‘QM(b* =
0) = _5( 1)2 -5 fL (e)a f(e)de < 0. We conclude that EHM(b* = O) is strictly concave in @

1\2
a-g) ILC(G)qf(E)dE]q. Therefore, (b* = 1,Q*)

and the F.O.C. gives us the unique maximizer Q* = |
is the global maximizer of the manufacturer’s problem in Stage 1..

~ Substituting (b*,Q*) into w*(b,Q), given by (4.24), and simplifying results with w* = Eq_r:_l.
Similarly, substituting (b*, @*) into (4.22) and simplifying gives us the equilibrium expected retail
price: Ep* = %{, and substituting (b*, @*) into the expected profit functions of the retailer and
the manufacturer, given by (4.23) and (4A. 4) respectively, and simplifying, results with EIl}, =

g—1 * *
B, = 5@ 0

Proof of Proposition 4.4.16. The proof is similar to the proof of Proposition 4.4.5 in the linear

expected demand function case, and will not be repeated here. O

Proof of Proposition 4.5.1. Backward induction is used .to solve the two-stage Stackelberg game.
In Stage 2, taking the partial derivative of Ellp, given by (4.26), with respect to p and simplifying
results with: M% =e Pz —A(z))(1+b —p)+ (w - b)z]. Evidently, since z > A(z) and w > b,
there exists a unique p*(z) such that MTI;R > 0for p < p*(2), 58 BEH =0 for p = p*(z) and -‘ETSA <0
forp > p*(z), which implies that ETIg is unimodal in p for any given z, and the unique optimal p
for the retailer is:

—b

We can now express the retailer’s expected profit function as a function of z only:
ETg(p*(2),2) = € 7 O{(p*(2) — b)[z — A(2)] = (w - b)2}.
.By using the chain rule, dEn“g;*(z)’z) = aEHRg’:(‘Z)’Z) . ap(;iz) + BEHRE,’;‘(Z)’Z) = aEHjo(Z)’Z). The
S OF *(2),z dENR(p*(2),2 —p* *
last equality is due to the fact that —H’d%—u = 0. Thus, %LZ =e P (@) {(p (2) = b)[1 -
F(z)] —(w-1b)} = Z‘T;\((:; (z), where

G(2) = [z — A(z) + (w = B)z][1 = F(2)] - (w — b)[z — A(2))-
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Taking the derivative of G(z) with respect to z and simplifying gives us:

dG(z)
dz

z—A(z)
1—- F(z2)

= 1= PP - [ = A2) + (w — )2 ()] = [1 - F(2)}{1 - F(2) - — (- b)zh(2)},

where h(z) = 1415{(% is the failure rate. Note that F(z) and %8 increase in z, and so does
zh(z), since zf(z) increases in z. Thus, digz) is decreasing in z, and G(z) is concave in z. Since
we have that G(z=L) =L > 0 and G(z = U) = —(w — b)ug < 0, there is a unique 2* € (L,U)
such that G(z*) = 0 and ii%(zf:) < 0. Therefore, z* is the unique solution to QELRE{;M =0 and

2 * - .
one can easily verify that ‘—iﬂ%ﬁifm < 0. Thus, z* is the unique maximizer of the retailer’s

expected profit function, which is now proved to be well-behaved in (p,z). Therefore, the first
order conditions of EIlg, given by (4.26), give us the expressions of the unique maximizer of the

retailer’s problem in Stage 2:
14+b—-p)z—AR)]+(w—-b)z=0 and (p—Db)[l— F(2)] — (w—1>b)=0. (4A.5)

Note that z = L does not satisfy the above two equations. Thus, in equilibrium, z > L.

Now, let us look at the manufacturer’s problem in Stage 1: Choose (w,b) to maximize her
expected profit. Following Song et al. (2004), we work with (p, Q) instead of (w, b) to solve for the
“equilibrium values in the model. From the two equations in (4A.5), we are able to derive:

w(p,z) =p— _M w
(P2) =P = 1= 5 TR 2F(z2) — A(z)’

where, we recall A(z) = [[(z — €) f(e)de and 2F(z) — A(2) = [} ef (¢)de. Thus, the manufacturer’s

and b(p, z2)=p—1-— (4A.6)

expected profit function in Stage 1 becomes:
EXlp(p, z) = e P{[w(p, 2) — ]z — b(p, 2)A(2)}.

Taking the partial derivatives of ElI;s with respect to p and z, we obtain:

3%1;M = —ePlw—c- 3“’;2’ i (‘%g; 2 _BA(z)], end
OFUy . _, Jw(p, 2) Ob(p, 2)
Ep = e [w—c+Tz—bF(z)—A(z) 5 ]
Now, using (4A.6), we can derive that awéz’z) =1, abE,’;Z’ =1, awéi’z) = —F(zz)[:f_(:;é:)]+A((zf)£(:;([:;ig(;)]
L L
Bbps) _ _ 1-F() | zf(2)=AG)]

and gz . Thus, substituting these partial derivatives into %I—;M and

T TreRade T (E eftede?
aE—HM, given above, and simplifying results with:
9z

OET
Op
OFEIl,
0z

= e P{w—(1+¢) +(1—bBF()]z+ (1 —b) /L “ef(e)de} and  (4A7)

= ePw- (14 +(1-DFE). | (448)
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Evidently, there exists a unique solution, i.e., (w* = 1 +¢,b* = 1), to the first order conditions,
given by (4A.7) and (4A.8), since z > L > 0. Further, substituting this stationary point into (4A.6)
reveals that the value of (p, z) at this stationary point satisfies:

cz
z—A(z)’

Next, we show that under a certain sufficient condition on the distribution of &, i.e., ef(e) increases

c/: ef(e)de =1 = F(2){{z —A(z)] and p=2+ (4A.9)

in €, the unique stationary point is indeed the global maximizer of the manufacturer’s problem in
Stage 1, by proving that the Hessian matrix of ETlas at this unique stationary point is negative
definite. Following {4A.7) and (4A.8), we can derive the second order partial derivatives of ETlys
with respect to p and z at the unique stationary point: 32—51{;&1 = —eP[z — A(2)](< 0), T54 azEHM =
-e‘p%(< 0) and @gg—gzﬂ = Q%%M- = e P[1 — F(z)]. Thus, the determinant of the Hessian
matrix equals: 2 BEPTQIM 323EZI;IM (&El goit)’ = fze;?:)de (z), where K(z) = f(2)[z — A(2)]2 -1 —
FP J7 ef(€)de = (1~ F(2)P (22 F(2)— [} ef (€)de] +22f(2)[1— F(2)] [} ef ()de+F(2)J} ef (e)del?.

Denote K(z) = 22f — [} ef(e)de. Since €f(e) is increasing in €, evidently, K (z) is increasing in

z. Note that at the unique stationary point, z > L. Therefore, K(2) > K(L) = L?2f(L) > 0, which

implies that at the unique stationary point, K(z) > 0 and the Hessian matrix is negative definite.
Thus, (w* = 1+¢,b* = 1) is indeed the global maximizer of the manufacturer’s problem in Stage 1.
Accordingly, the equilibrium values of z and p are given by (4A.9), and the equilibrium values of

the expected profits of the manufacturer and the retailer are: ETT}, = EII} = e7P" [2* — A(2*)]. O

Proof of Proposition 4.7.3. Given (w, Q) and knowing «;, R chooses p to maximize his profit
function, given by (4.30). When o, = oy, [Ig = p; min(Q, [y — pi]T) — wQ, where p; represents
the retail price if a; = ag. It is obvious that R will never choose a retail price which is too high so
as to induce negative demand or too low so as to generate excess demand. Thus, 0 < oy —p; < Q,
and R’s profit function reduces to: IIg = pj(oqy — p1) — w@, which is strictly concave in p;. Thus,
p; = max(oq — Q, %), which is evidently less than ;. Similarly, when oy, = oy, we have py; =

max (o — @, ). This completes the proof of Proposition 4.7.3. O

Proof of Proposition 4.7.4. Given w.and knowing p; and p;, R chooses () to maximize his

expected profit function, given by (4.32). Let us consider three possible choices of @ for R.

(1) O‘S Q < F. Then p} = a; — Q and p}, = o, — Q, which implies that R chooses a quantity

Q@ for which the market clearing retail price is optimal regardless whether the actual market

state is high or low. Thus, Ellg = (u¢ — Q)Q — wQ, which is strictly concave in Q, and
Q1 = [min(%, Z52)]*. (Recall that pe = Aoy + (1 — Nay,.)
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(2) 3 < Q < %. Then p; = & and p; = ap — Q. In this case, R chooses a @ for which he
will stock out when the actual market state is high and he will hold some inventories when

2 .
the actual market state is low. Thus, Fllg = (1 — A)(ap — Q)Q —w@ + '\—ZL, which is, again,
concave in @, and Q% = max(%, 1_2)‘13’)‘\_“’) < 4. The last inequality follows since a; <

and w > 0.

(3) @ > 2. Then p; = % and p; = 3. In this case, R chooses a very high @ which would

result with some leftover inventories regardless' of the actual market state. Thus, EIlg =

/\_az (1-N)a? . . % ap
1=+ —1 2 —wQ, which decreases in @, and Q3 = <.

Compare R’s optimal expected profit in the three cases. Since ETIlg is continuous in QI and Q3
is on the edge of the feasible interval for (2), (2) dominates (3), and we only need to consider (1)

and (2). We need to consider three different ranges for w.

(a) w > pe. Then, Q} =0 and since w > (1 — A)(ap — o), Q3 = 5. Accordingly, one can easily
verify that EH}i =0 and EH% = _—a‘w < 0, where the last inequality follows since
w > g, and ETI%, designates R’s expected profit function in Choice (1). Thus, Choice (1) is

optimal for R, Q* =0 pf = oy and p}, = o,

(b) (1 —A)(en — o) < w < pe. Then, Q7 = = and Q3 = &. Note that Ellg is continuous in
Q and Q3 is on the edge of the feasible interval for Choice (1). Thus, Choice (1) is optimal
for R, and Q* = 2= pf = oy — Q* and p}, = ap, — Q™.

(¢) w < (1= A)(an — ). Then, Qi =  and Q3 = 54 Now, Q7 is on the edge of

the feasible interval for Choice (2). Thus, Choice (2) is optimal for R, and @* = (1_2(’\1)—3'\)_“’,

p; = % and pj = ap — Q™.
Combining the results in the three cases yields the display of @Q* in Proposition 4.7.4.0

Proof of Proposition 4.7.5. Taking Q* and p; into account, we next consider three possible

choices for M to find her obtimal wholesale price.
(1) w > pe. Then, according to Proposition 4.7.4, @* = 0. Therefore, ETI}, = 0.

(2) pe — oy £ w < pe. Then, according to Proposition 4.7.4, Q* = %2;13, and Elly = wQ* =

%w(ug — w), which is strictly concave in w. Thus, w5 = max(ue — o, %5) < pe.

(3) w < pe — or. Then, Q* = U5 and By = wQ* = 5rkgyw((1 — Moy, — w), which is

strictly concave in w. Thus, w3 = min(u — ay, ﬁ%&)
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Next, we evaluate M’s expected profit in the above three choices. Note that ETIps > 0 in both (2)
and (3). Thus, (1) is dominated by the other two choices, and we -only need to compare M’s

expected profit in (2) and (3). We consider three different cases as follows.

(&) (1—X)ap—2(1 Ny <0,ie., 0 <2. Then, p¢ — 20y < 0. Thus, wj = 55 and w} = pe — oy
Since ETlys is continuous on w € [0,ap] and w} is on the edge of the feasible interval for

: 2
Choice (2), Choice (2) dominates Choice (3). Thus, w* = &, and ETI}, = “—81.

(b) pe—20; <0<(1 —vA)ah—Q(l—)\)al, ie,2<0< 1+ﬁ Thus, w; = %{ and wj = (1—_2)1&!‘-
Accordingly, EII2, = %i and ETI3, = %, and ETI3, — ETI3, = (g 1_)‘0"‘)8(“5+' L
Thus, ETI3, > ETI3; when pe > 1 —Jdap, ie, § <1+ ﬁ, El3, = EII3, when 6§ =

and ETI%, < ETI3, when 6§ > 1+ \/—1—1—:—7

1
I+ 7=
(c) pe — 2y >0, ie., § > 1+ 25 Then, (1 — Moy —2(1 — Aoy > 0. Thus, wj = pe — o and
w3 = M Since EIlps is continuous on w € [0, ] and w} is on the edge of the feasible

interval for Choice (3), Choice (3) dominates Choice (2) and is optimal for M. Therefore,

* (1-2)a?
Ell}, = —sah'

‘Combining the results in the above three Cases (a), (b) and (c), we conclude as follows.
2.
(1] When 6§ <1+ \/——ll_———, Choice (2) is optimal for M. Thus, w* = £, EII}, = #—gi. Substituting
w* into Q* and pj, given by (4.33), and simplifying results with Q* = ﬁf, p] = ‘ml—;“i and

P} = %:ﬁi. Substituting in R’s profit function, given by (4.32), and simplifying results with

[2] When 8 > 1 + \/—1——, Choice (3) is optimal for M. Then, it can be easily verified that

1-) 1-Na 1-X 3(1=X 1-A
wh= 0o prps — O2Nek ge o UoNan e ar e = MNan gpg prry = 2004 U244 o

Proof of Proposition 4.7.6. We analyze R’s problem in Regions 1 — 3.

Region 1: {(p,Q)|lw < p < ,0 £ Q < oq —p}. FEllR, given by (4.34), reduces to: Ellg =
(p —w)Q, Wh_ich increases in both p and Q. Thus, Q* = a; — p*. Therefore, R attains the optimal
profit on Segment AB in Region 1.

Region 2: {(p,Q)lw <p < aj,04—p < Q < ap—p}. EllR, given by (4.34), can be simplified to:
ETlg = pA(a; —p) + (p(1 — A\) —w)Q, which is linear in Q and concave in p. Evidently, Q* = a; —p*
- or @ = ap — p, depending on the sign of (p(1 — \) — w). Therefore, R attains his optimal profit

on either Segment AB or Segment CE.
Region 3: {(p,Q)|oy < p < ap,0 < Q < ap —p}. Ellg reduces to IIg = (p(1 — A) — w)Q, which
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is linearly increasing in p and linear in ). Thus, p* = oy, — Q*, i.e., @* = o, — p*. Therefore, R’s
optimal (p*,@Q*) lies on Segment ED.

Note that R’s profit function is well behaved in all three subregions. O
Proof of Proposition 4.7.7. Since § > 1+ T2y, it can be easily shown that (1 — A)(20; — o) <
(2—=XNog—(1—Nap <0< a; < (1 —XNay. Consider w € [O o). According to (4.38), p* = oy and

ETIGE = (an — a)((1 - Moy —w). According to (4.39), p* = {50240 and prIEP = (= Rencwl

We have EIIA = =% Thys EIEP > ETIAB since (1— Aoy, > oy > w, and EIIEP — ENIGE =

[ ’\)O‘"Ia'_ 2)(1 Ne)? > ¢, Thus, Segment ED is optimal for R when w € [0, oy It is further
known from Proposition 4.7.6 that Segment ED is optimal when w € [oy,ap]. Therefore, from
© (4.39) and since (1 — A\)(20y — @) < 0 when 6 > 1+ 15,

201-A)

b — ANantw 3£ g < 4y < (1 — Ao,
ap (1= Nap S w < ap,

which completes the proof of Proposition 4.7.7. O

Proof of Proposition 4.7.8. Since t1; < 8 < 2, it can be easily verified that 0 < (1 — A)(2cq —
an) € (2=Nag—(1=Nap <o < (1~ Moy Recall that ETISE = M and that Segment ED

is optimal for R when oy < w < ay. For 0 < w < oy, we need to consider the following three cases.

(1) w € [0,(1 — A)(2a — a)]. According to (4.38), p* = %1% and EIP = -(f‘i)—zj—”i -
w(ap — E§ﬂ) According to (4.39), p* = oy and EIEP = (o, — a;)((1 — A)oy — w). Thus,
BTGP — EMEP = Wetw=2e? 5 o Therefore, EIGE > FIEP. Similarly, EIGE — EIIAP =
U1 — Aoy + (1 — M) — 2(1 + Nw] > 0, where the last inequality follows since
112y +(1-2)2ap—2(14+A)w] > 0 for any w € [0, (1-A)(2cy —ap)]. Thus, ENEE > ENI48
for any w < (1 — A)(2a; — ). Therefore, Segment CE is optimal for R.

(2) we (1 —A)20q —oan), (2 — X))oy — (1 — A)ay). According to (4.38), p ﬂ and EIISE =
Qi)i_‘“’i — wlayp — ﬁﬁ;—w) According to (4.39), p* = 5172’\1%%# and EIIEP = %.
Thus, EHED > EHQB since (1 — A)ay > o > w. Now, we need to compare EH%E and
EHED . Equating EH%E and EHED and solving it, one can verify that EH%E > EHED when
w < (1-2)Y20q;—(1-X)(ap~qy), and EIISE < EIEP when w > (1-2)Y20;—(1-X) (an—av).

(3) we [(2~)\)al——(1—)\)ah;al] According to (4.38), p* = oy and ETIS® = (ap — ) ((1 =Ny, —

w). According to (4.39), p* = % and ETIEP = ﬁl—_ﬂ’\)f_"/\%. Following the same argu-

ment as in Case (2), EIEP > ENAB. Similarly, ETIEP — ETIEE = ((1_’\)0."‘2?'{’__3)(1_')‘)“‘)2 >0.

Thus, Segment ED is optimal for R.
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Combining the analysis in Cases (1), (2), (3), and the case when oy < w < ay, for which Seg-
ment ED is optimal, we have verified the display for p* in Proposition 4.7.8. Note that since Seg-

ment AB was found never to be optimal, we have also shown that Q* = ap —p* for 0 < w < . O

Proof of Proposition 4.7.9. Since A'=1/8, oy =1 and ay = 6, the feasible regions in M’s two
Subproblems (1): w < (1 — A)Y2a; — (1 — M{ap — o) and (2): (1 — N2, — (1 = M) (e — ) < |
w gi(l — Aoy, can be simplified to: (1): 0 < w < %, and (2): % <w< 18‘2. We
analyze separately these two subproblems. Note that in Subproblem (1), Segment CE is optimal
for R, and in Subproblem (2), Segment ED is optimal for R.

/ Subproblem (1): 0 < w £ %. Then since Segment CE is optimal for R, p* = M,

Q* =0~ % and Elly = w(f — 3pe — Jw), which is concave in w. Thus, since pe = &L, we
have

96—1 (96-1)2 ] 15+4v14
(%% “3m2) if 7 <0 < 2550,

* CEy\ _
(w , Elly; )= { (2\/ﬁ—79+7 (2\/1_4—70+7)(89—4—\/ﬁ)) if 15+4\/ﬁ <9<2 (4A.10)

Subproblem (2): 2VUT0+T < 4y < 70, Then, since Segment ED is optimal for R, p* = 108w,

7
Q* = 79148“’ and Ellp = M , which is, again, concave in w. Thus, we obtain:

- _— (2\f13—70+7, (2\/ﬁ—7o+7)(149—2\/ﬁ—7)) if8<o< £(1+£)
(w ’EHM )_ 76 7982 112 ’_Y_C AZC (4A11)
(%6, 75) (+ 4)<6?§2.

Now, let us evaluate M’s equilibrium profit as a function of 6.

(1) Consider & < 6 < %@. Comparing ETISF = M, given in (4A.10), and ETIFP =

7 512
(2\/ﬁ—70+7i(11240—2\/ﬁ—7)’ given in (4A.11), we have EHCE > NIEP. Thus, w* = 9% and
EIl;, = (9%121) Correspondingly, p* = 29t Q* = %=1 and EITj = %.
I

| (2) Consider %@ <6< %1@(1 + @). Comparing EII{F = (2@—70+’g{1(80—4—ﬁ3), given in
(4A.10), and EIED = @YH=T04DU0-2VII=T) oy iy (4A.11), results with ETISE > TIED.
Thus, w* = ___2¢1_4§70+7 and EII}, = (2‘/1—4"7“21(89_4_@). Correspondingly, p* = ————4+g/ﬁ,

* _ 80—4—14 * §149"2\/ﬁ_722
Q* = =5 and Ell = i .

(3) Consider %1@(1 + —ﬁﬂ) < 6 < 2. Since M’s profit function on Segments CE and ED is
quadratic in the parameter 8, one can easily verify that EH%',IE > EHE,ID if § < 8, EH%}E =
ETNIZP if 9 = § and ETISF < ENEP if > 0, where § = 23\/1_4+8gé5\/7+7\/§_ In order to

compute the optimal values of p, @ and Fllg, let us consider separately these three cases.

When 4 < 8, Subproblem (1) is optimal for M, and thus, Segment CE is optimal for R.
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Therefore, w* = 25T and BIL, = SATHYSR ANV pccordingly, p* = £/

8 bl
Q* = 89‘448_@ and EIT} = %41_4—_—72. When § < 6 < 2, Subproblem (2) is optimal

for M, and thus, Segment ED is optimal for R. Therefore, w* = % and EII;, = Zg;.
Accordingly, p* = 3:1—9, Q* = % and EIly = %g—:. When 0 = 8, M is indifferent between
Subproblem (1) and Subproblem (2), while R strictly prefers Segment CE. Thus, for the
benefit of R, M would choose Subproblem (1) when § = 8.

By summarizing Cases (1), (2) and (3)., we have verified the displays of w*, EII},, p*, Q* and ElI},
in Proposition 4.7.9. O

Proof of Proposition 4.7.10. Note that A = 1/8, ﬁ < # < 2, and the low demand state,

oy, is set to 1 and the high demand state becomes «) = 6. According to Table 4.2, under a

- : 7641 31-70 250—1 76+1
wholesale price-only contract with p-postponement, w? = 5L, pf' = 3210 b — 2821 Qp = T2,

B, = CD° ang BIR, = T2 Thys, Epp = Apy + (1 — \)pj, = 2852, The optimal values

of the decision variables and profits under a wholesale price-only contract without postponement
is given by Proposition 4.7.9. Next, let us evaluate the effect of p-postponement on optimal profits
and equilibrium values of decision variables. We consider the following three cases with respect to

the value of 6.

8 154414
(1) 720257

EIY, — BIE, = G4-0° _ (6412 _ 60-1) () gince § > 1.

N _ p _ —4762+411060+1  (76+1)2 _ 36(6-1)
EHR EHR_ 1024 T 1024 T T T 32 <0.

Therefore, in this case, EIIY; > EIT%, and EIIY < EII.
wV —wP =91 >0, pN —Epp =1 > 0,and Q¥ — QP = &L > 0.

Thus, in this case, w™ > w?, p¥ > Ep? and QY > @QP.

2) 15+4y14 6 < 2314484467 +7/2
( 23 =Y = 126 :

, which is a strictly concave function of 6.

2v/14—70+7)(80—4—/14 70+1)2
EH;\V/I - EHZ}J\/I = 6)4( 1 { 512)

Thus, one can easily show that EII}; > EII} for § < 6, EII}; = EII;, for § = 6, and

ETLY, < EIE, for 6 > fy, where fp = 2/ 10+329+8y/56+14v1d

o —7)2 2
ETIY — ETI}, = (149 22‘221_4 D" _ (941" which is a strictly convex function of . Thus, it can

1024
be easily shown that EIIN < ETI% when 8 < 6, EIIN = EIT% when 6 = §, and ETIY > EIT,,

when 8 > 0, where § = &L + 164v14

847
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wV —wP = 4 14’*1%53_219, which is first positive when 8 is small, and then becomes negative

when # becomes large, similarly for p" — EpP = W. QN ~Qr = %@ >0.
Thus, QY > QP.

(3) 23\/ﬁ+sggﬁ+7\/§ <h<2

ETIY; — ETIh, = 2(EIIY — EIR) = 7—6043 - (795121)2 = 792_5130_1, which is strictly convex in §.
Thus, it is easy to verify that EHAN,[ < EH?W and EH% < EH"‘;{.

wV —wP = —L <0, pV — Bpp = 30 5 0 and Q¥ — Q¢ = &1 > 0. Thus, w" < w?,
pN > EpP and QN > QP.

Combining the results in the above three cases completes the proof of Proposition 4.7.10. O




t=20 t=1 t=4
c 0.00 | 0.05 | 0.20 | 0.20 | 0.50 | 0.80 [ 0.00 | 0.05 | 0.10 | 0.20 | 0.50 | 0.80 | 0.00 | 0.05 { 0.10 [ 0.20 | 0.50 | 0.80
w* | 0.50 | 053 [ 0.55 [0.60 | 0.75 | 0.90 | 0.50 | 0.53 | 0.55 | 0.60 [ 0.75 | 0.90 [ 0.50 | 0.53 | 0.55 | 0.60 | 0.75 | 0.90
) b* 0.50 | 0.50 | 0.50 [ 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 { 0.50 [ 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50
Buybacks Ep* | 075 | 0.76 | 0.78 | 0.80°| 0.88 | 0.95 | 0.75 | 0.76 | 0.78 | 0.80 | 0.88 | 0.95 | 0.75 [ 0.76 | 0.78 | 0.80 | 0.88 | 0.95
’ Q" | 050 | 035 | 0.29 | 022 0.09 | 003 | 038 | 029 | 0.26 | 0.21 | 0.11 | 0.04 | 0.30 | 0.25 | 0.23 | 0.20 | 0.12 | 0.05
EM},| 013 | 0.11 | 0.09 | 0.06 | 0.02 | 2E-03 | 0.13 | 0.11 | 0.10 | 0.07 | 0.03 | 4E-03 | 0.13 | 0.11 | 0.10 | 0.08 | 0.03 | 5E-03
EM% | 0.06 | 0.05 | 0.04 [ 0.03 |9E-03| 1E-03 | 0.06 | 0.05 | 0.05 | 0.04 | 0.01 | 2E-03 | 0.06 | 0.06 | 0.05 | 0.04 | 0.02 | 2E-03
Percentage w" | 0.00 | 0.00 | 0.00 [ 0.00 | 0.00 [ 0.00 | 0.00 | 0.00 | 0.00 [ 0.00 | 0.00 | 0.00 { 0.00 | 0.00 | 0.00 | 0.00 [ 0.00 | 0.00
improvement b 0.00 { 0.00 { 0.00 [ 0.00 [ 0.00 [ 0.00 | 0.00 | 0.00 [ 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
relative to Ep* | 0.00 | -1.35 | -2.23 [-3.21| -3.26 | -1.56 | 0.00 | -0.71 | -1.21 (-1.81 |-1.93 | -0.93 | 0.00 |-0.29 | -0.51 | -0.78 | -0.87 | -0.42
N-postponement | Q* | 0.00 |-15.06|-14.54 [-8.90 | 27.95 [ 156.00 [ 0.00 |-12.17|-12.64 -9.70 [12.791 79.38 | 0.00 | -8.16 | -8.64 | -6.93 | 5.89 | 33.25
ETI}, | 000 | 2.71 | 6.73 |16.77 | 68.38 | 244.35| 0.00 | 1.57 | 3.97 |10.10)40.24{124.00| 0.00 | 0.82 | 2.10 | 5.31 [19.31| 47.91
ETgR|{ 000 | 271 | 6.73 |16.77| 68.38 | 244.35| 0.00 | 1.57 | 3.97 |10.10(40.24{124.00| 0.00 | 0.82 | 2.10 | 5.31 | 19.31} 47.91
w" | 0.36 | 0.40 | 0.44 (051 [ 0.71 | 0.89 | 0.44 | 048 | 0.51 [ 0.57 | 0.74 | 0.90 | 0.49 | 0.52 | 0.55 | 0.60 | 0.75 | 0.90
Ep* | 068 | 070 | 0.72 | 0.75 | 0.85 | 0.94 | 0.72 | 0.74 { 0.75 | 0.78 | 0.87 | 0.95 [ 0.75 | 0.76 | 0.77 | 0.80 { 0.87 | 0.95
Wholesale Q" | 028|025 | 023 018|008 002|025 | 023|021 [018]|010| 004 [0.24]023]022|019]0.12]|0.05
Efl;;| 010 | 0.09 | 0.08 | 0.06 | 0.02 | 2E-03 | 0.11 | 0.10 | 0.09 | 0.07 | 0.03 | 4E-03 | 0.12 | 0.11 | 0.10 | 0.08 | 0.03 |5E-03
. EMly | 007 | 0.06 | 0.05 | 0.04 | 0.01 | 1E-03 | 0.06 | 0.06 | 0.05 | 0.04 | 0.01 | 2E-03 | 0.06 | 0.06 | 0.05 | 0.04 | 0.02 | 2E-03
Percentage w* | 31.79 | 26.85 | 23.01 [17.38( 7.89 | 2.66 |25.41 | 22.21 | 19.51 |15.19| 7.02 | 2.25 |14.71{12.90|11.33 8.73 | 3.75 | 1.09.
improvement Ep* | -2.35 | -2.70 | -2.91 |-3.08 | -2.40 | -1.00 | 1.31 | 1.02 | 0.77 | 0.39 |-0.14 | -0.15 | 2.17 [ 1.89 | 1.63 | 1.19 | 0.34 | 0.02
relative to Q" |-23.40{-19.95|-16.19 | -7.56 | 34.35 | 173.80 |-18.14 | -15.76 | -13.17 | -7.29 | 19.52 | 92.18 |-9.56 | -8.00 | -6.35 | -2.76 | 11.29 | 38.74
N-postponement | ETI;, | 0.95 | 5.61 | 10.66 |22.23| 78.86 |270.33| 2.66 | 5.70 | 8.97 |16.35|49.80|140.46 | 3.74 | 5.32 | 6.98 {10.58 | 24.83 | 53.70
Ell; | -9.63 | -6.02 | -2.03 | 7.27 | 53.54 [209.69 [-11.20| -8.95 | -6.46 |-0.70 [ 26.34 | 101.22|-8.99 | -7.47 | -5.85 | -2.29 { 11.91 | 39.75

Table 4A.1: Multiplicative p-postponement with power demand distributions and linear expected demand
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t=20 t=1 t=4

c 0.01 0.10 | 0.50 | 1.00 | 2.00 | 5.00 | 0.01 0.10 | 0.50 | 1.00 | 2.00 { 5.00 | 0.01 {0.10 | 0.50 | 1.00 | 2.00 | 5.00
w* 0.02 0.20 | 1.00 | 2.00 | 400 | 10.00 | 0.02 | 0.20 | 1.00 | 2.00 | 4.00 | 10.00 [ 0.02 | 0.20 | 1.00 | 2.00 | 4.00 | 10.00

b* 0.00 | 0.00 { 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 [ 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
Buybacks Ep* | 004 | 0.40 | 2.00 | 4.00 | 8.00 | 20.00 | 0.04 | 0.40 | 2.00 | 4.00 | 8.00 |20.00 | 0.04 | 0.40 | 2.00 | 4.00 | 8.00 | 20.00
(Wholesale) Q* |[555.56| 5.56 | 0.22 | 0.06 | 0.01 |2E-03(600.00] 6.00 | 0.24 | 0.06 | 0.02 |2E-03 [619.83| 6.20 | 0.25 | 0.06 | 0.02 | 2E-03
ETI3,| 5.56 0.56 | 0.11 | 0.06 | 0.03 | 0.01 6.00 1 0.60 | 0.12 | 0.06 { 0.03 | 0.01 6.20 | 0.62 | 0.12 | 0.06 | 0.03 | 0.01

ETlR | 1111 | 111 022 | 0.11 | 0.06 | 0.02 | 12.00 | 1.20 | 0.24 | 0.12 | 0.06 | 0.02 | 1240 | 1.24 | 0.25 § 0.12 | 0.06 | 0.02

Percentage w* 0.00 | 0.00 | 0.00-( 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 { 0.00 { 0.00 | 0.00 | 0.00 [ 0.00 } 0.00 | 0.00 | 0.00 | 0.00

improvement b* — — — — — — — — — — — — — — — — — —
relative to Ep* |-33.33|-33.33{-33.33|-33.33 | -33.33 | -33.33 | -20.00 | -20:00 {-20.00 | -20.00 | -20.00 {-20.00 | -9.09 [-9.09 | -9.09 | -9.09 -9.09 1 -9.09
N-postponement | Q 50.00 | 50.00 | 50.00 | 50.00 | 50.00 | 50.00 | 29.10 | 29.10 | 29.10 | 29.10 | 29.10 | 29.10 | 12.89 [12.89|12.89|12.89 |12.89| 12.89
ETl}, | 50.00 | 50.00 | 50.00 | 50.00 | 50.00 | 50.00 | 29.10 | 29.10.| 29.10 | 29.10 | 29.10 | 29.10 | 12.89 |12.89|12.89|12.89|12.89| 12.89
Ell% | 50.00 | 50.00 { 50.00 | 50.00 | 50.00 | 50.00 | 29.10 | 29.10 | 29.10 | 29.10 | 29.10 | 29.10 | 12.89 [12.89|12.89|12.89|12.89| 12.89

Table 4A.3: Multiplicative p-postponement with power demand distributions and negative polynomial expected demand
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Chapter 5

Competition and Cooperation in a
Multi-Supplier and Single-Assembler
Supply Chain

5.1 Introduction

We consider a supply chain wherein a assembler buys n completely complementary components (or’
products) from n suppliers. The assembler assembles the n components into a final product, and
sells it over a single selling season to consumers at a given (fixed exogénously) retail price. In this
chapter, we consider two contracting systems between the assembler and the suppliers: push and
pull. In the push system, the suppliers initiate the. process by offering their wholesale prices to the
assembler, and the assembler then orders from the suppliers well in advance of the selling season.
Stochastic demand is realized thereafter. In this case, the assembler bears all of the supply chain’s
inventory risk due to demand uncertainty. In contrast to push, in the pull system, the assembler
first sets the wholesale prices for the different suppliers, and then the suppliers decide how much
to produce. Their products are shipped to the assembler on consignment, i.e., the assembler only
pays for the quantity sold. Thus, the suppliers bear all of the supply chain inventory risk.5! In
both systems, suppliers can for_m coalitions among themselves or act indepeﬁdently. '
Examples which are similar to our push and pull systems are numerous. Indeed, in the last
fifty years, many industries have been moving from producing internally all of their final pr‘oducts"

components and services to buying (outsourcing) them from external suppliers. Such businesses

51The pull system studied in this chapter was first introduced by Cachon (2004a), and it is different from the pull
promotion strategy in the Marketing literature. In the pull system described above, all decisions, e.g., pricing and
production, are made before observing customer orders. It is called a “pull system” because it is the downstream
assembler who initiates the process by offering a wholesale price to the upstream suppliers and pulls inventory from
suppliers when real orders occur. By contrast, in the pull promotion strategy analyzed in the Marketing literature,
customers’ orders trigger the production process.
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include the personal computer industry, e.g., Hewlett—Packard (HP) subcontracts their personal
computer components to suppliers in Taiwan, the automobile industry (e.g., Toyota and Ford), the
software industry (e.g., the rise of contract software designers in the “three I's” — India, Ireland
and Israel), the shoe industry (e.g., Nike), and even the management consulting industry, wherein
a consulting company may divide a large project into small parts and subcontract some parts to
other smaller consulting companies. See Wang (2004) for other examples.

" In both the push and pull systems, we consider two levels of problems: The first level is
concerned with the interaction among the suppliers who are considering whether to form alliances
or act independently when they deal with the assembler. The second level is concerned with the
interaction between the assembler and the suppliers, which is modeled as a two-stage Stackelberg
game. The objective of this chapter is to understand how the players in our decentralized supply
chain would behave competitively and cooperatively in equilibrium, and how the channel profit
would be allocated among players. More specifically, we are interested in the following research

questions.

(1) Which coalitions of suppliers would be formed in the process of their interaction with the

assembler?

(2) What would be the equilibrium outcomes in the Stackelberg game between the suppliers and

the assembler?

(3) What are the preferences of the suppliers and the assembler between the push and pull

systems?

We use two different approaches to analyze the first level problem, i.e., alliance formation
among the suppliers. The first approach is based on Nash equilibrium, wherein a player can
defect from its current coalition, in a given coalition structure, either to be independent or to
join another coalition if such a coalition becomes strictly better off. Clearly, in such an approach
players are myopic in the sense that they fail to anticipate future deviations by other players
brought about by their own deviations. The second approach that we use to identify stable coalition
structures is based on farsighted étability concepts, introduced by Chwe (1994) and Mauleon and
Vannetelbosch (2004), and embodied by their notions of the largest consistent set (LCS) and the

largest cautious consistent set (LCCS), respectively. The LCS concept has been previously applied

in the supply chain literature, e.g., Granot and So§i¢ (2005), Nagarajan and Bassok (2002), and
Nagarajan and Sosié (2004).
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Our main results are described as follows.
(I) For a given coalition structure among the suppliers,v in equilibrium:

(i) In the push system, coalitions share the total profit of all suppliers equally.

(i) In the pull system, each coalition’s share of the total profit of all suppliers is proportional

to its manufacturing cost.

(IT) In the push system with two suppliers, the grand coalition is the unique element in the

Nash-stable set, the LCS and the LCCS.
(II1) In the push system with n > 3 and a general power distribution of demand:

(i) The independent structure is the unique element in the Nash-stable set.
(ii) The grand coalition is the unique element in the LCCS.

(iii) The grand coalition is the unique element in the LCS for n < 4, and it is also the unique

element in the LCS for n > 5 when the coefficient of variation of demand is small énough. ;

(IV) The assembler always prefers the pull system, and suppliers with relatively lower (respectively,

higher) manufacturing cost prefer push (respectively, pull) to pull (respectively, push).

There are relatively few papers that are closely related to this chapter. In the context of a single-
supplier single-retailer newsvendor model, Cachon (2004a) has investigated three different types of
wholesale price contracts: push, pull and advanced-purchase discounts. He has provided motivating
examples for the pull system, and has studied the impact of inventory risk allocation on supply chain
efﬁéiency and its members’ performance. Nagarajan and Bassok (2002) have considered a supply
chain with a single assembler who buys complementary products from n suppliers. They have
designed a bargaining framework, based on the Nash bargaining problem (Nash, 1950), through
which prices that the suppliers charge the assembler and the quanﬁity of components that the
assembler purchases from each .supplier are determined. Wang (2004) has independently analyzed a

model which is reiated to our push model. In his model, suppliers producing a set of complementary

" products need to choose, independently, a selling price together with a production quantity for their

individual products before the selling season, wherein stochastic demand depends on the sum of all n
selling prices. He has assumed that all suppliers act independently, and has explored and compared
two settings with respect to the sequence of decisions taken by the independent suppliers. When

suppliers act simultaneously in his model, Wang (2004) has independently obtained a result which is
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" similar to Result I(i) described above. A similar result to Result I(ii) has been independently derived
in Wang and Gerchak (2003) and Gerchak and Wang (2004). Wang and Gerchak (2003) have
considered capacity games in assembly systems wherein firms need to construct their production
capacity before demand uncertainty is resolved. They have examined two game settings with
reépect to how contract terms are determined, and they have shown that when the assembler
sets a unit price to each supplier and orders after demand uncertainty is resolved, in equilibrium,
each supplier share of the total expected profit of all suppliers is proportional to its capacity cost.
Gerchak and Wang (2004) have analyzed and compared revenue-sharing contracts and wholesale
price-only contracts in assembly systems. In their revenue-sharing contracts, the assembler pays
each supplier a share of the retail price for each unit sold. They have shown that if the sha.r(;, to each
supplier is set so as to maximize the assembler’s expected profit, then the share of each supplier of
the total suppliers’ share of the profit is proportional to its manufacturing cost.

The second level problem in our model, when there is only a single supplier, i.e., n = 1, has
been studied extensively in the operations literature. See, e.g., Lariviere and Porteus (2001), who
have examined the channel performance and profit allocation between channel members under a
wholesale price contract, and Larviere (1999) and Cachon (2004b) for excellent reviews.

The remainder of this chapter is organized as follows. §E;.2 introduces the model setup and
some notation, and in §5.3 we analyze the iﬁtegrated channel. §5.4 examines the push system and
§5.5 investigates the pull system. A comparison between the push and pull systems is presented in
§5.6, and conclusions are discussed in §5.7. Again, all proofs in this chapter are presented in the

appendix in §5.8.

5.2 Model Setup and Notation

Consider a system in which a risk-neutral assembler buys n different products {components) from
n risk-neutral suppliers. The aésembler assembles the n components into a final product and sells
it over a single selling season to end consumers at a given retail price, i.e., the price-independent
newsvendor model. The suppliers can act independently or form coalitions among themselves.
Demand, X, for the final product during the selling season is stochastic. Let F(z) and f(x) be the
distribution and density functions of demand, and let F(z) = 1 — F(z). Assume that F is strictly
increasing, differentiable and F(0) = 0.

We investigate two types of contracts between the suppliers and the assembler: push and pull.

Figure 5.1 in the following page presents the two systems corresponding to the two contracts.
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Supplier 1 %\ : wy Supplier 1 — O
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Figure 5.1: Push and pull systems

With a push contract each coalition of suppliers chooses its wholesale price, and then the:
assembler orders from each coalition well in advance of the selling season, and all suppliers produce
what the assembler orders. The assembler bears all of the supply chain’s inventory risk and the
suppliers bear none. In contrast to push, with a pull contract the assembler sets the wholesale price
for each coalition of suppliers, and then all coalitions choose how much to produce and their products
are shipped to the assembler on consignment (i.e., the assembler only pays for the quantity sold), or
the suppliers hold the inventory and replenish the assembler frequently and in small batches during
the season. In a pull contract the suppliers bear all of the supply chain’s risk. See Cachon (2004a).
In both cases, it is assumed that there is no salvage value for unsold inventory, unmet demand is.
lost without any penalty cost and the assembly cost for the assembler is negligible. Note that all
qualitative results in this chapter hold if the assembler incurs an assembly cost. Finally, we assume
that the information is symmetric among players.

Under both push and pull contracts, we consider two levels of problems: The first level is
concerned with the interaction among the suppliers who are considering whether to form alliances
or act independently when they deal with the assembler. The second level is concerned with the
interaction between the assembler and the suppliers, which is modeled as a two-stage Stackelberg
game.

- For convenience, we summarize some of the notation used in the sequel as follows.

N ={1,...,n}: Set of suppliers. .

M;: Supplier i € N.

wy;: Wholesale price of M;.

cp;: Marginal manufacturing cost of M;.
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p: Fixed retail price for the ﬁﬁal product.

B = {Bjy,..., By }: Coalition structure. Thus, U;n=1 Bj=N,and By(1Bry =0, h # k.
m(< n): Number of coalitions in a specific coalition structure B.

Bj: Any coalition in a coalition structure B, j € {1, ..., m}.

|B;|: The cardinality of Coalition B;. '

B ={By,...,Bn} is symmetric if and only if |By| = |Bg| for h,k € {1,...,m}.

T8 =< |B1|, ..., | Bm| > is the profile of coalition structure B = {Bs, ..., Bm}.

Wp,: Total wholesale price of Coalition B; € B. Thus, Wp, = S(wan, - M; € By).

W =X (wn,) = ETL (W, ): Total wholesale price of all suppliers or all coalitions.
Cp,: Total manufacturing cost of Coalition B;. Thus Cp; = E(cp;, : M; € By).

C =¥ (enm;) = JL1(CBy): Total manufacturing cost of all suppliers or all coalitions.
= %: Average manufacturing cost.

@B;: Production quantity of Coalition B;.

Q= (@B, @B, ): Vector of production quantities.
.Q-p;: Vector of production quantities of all coalitions but Bj;.

Ellg,: Expected profit of Coalition B;.

ETietal; Expeéted profit of all suppliers.

ETlg: Expected prdﬁt of the assembler.

- Ellchanner: Expected profit of the channel.

Note that m = n implies the independent coalition structure, and m = 1 implies the grand

coalition structure.

5.3 Integrated Channel

~

. As a benchmark, we first consider the integrated supply chain which maximizes the sum of the

assembler and suppliers profits. The expected channel profit is:
Q
PN =pS(Q) -~ CQ=p(@~ | Fla)de) - CQ,

where the expected sales S(Q) = fOQ zf(z)dx + fso Qf(z)dz. The channel has to determine a
production level ) to maximize its expected profit. This problem is the traditional newsvendor

model with a fixed retail price, which has been studied extensively in the literature. For ease of

future comparison, we recall the results in the integrated system as follows. The optimal production
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(iuantiﬁy, Q!, satisfies the critical fractile:
FQ) =—, (5.1)

where, as we recall, the superscript “I” stands for “integrated”. Denote the optimal expected value
of the integrated channel profit as ETI/. The efficiency of the channel is defined to be: %Cf)—),

where ETI(Q) is the channel profit in any decentralized supply chain with production quantity Q.

5.4 Push System

In a push system, under a coalition structure B = {Bi, ..., Bn }, each coalition Bj;, in Stage 1, sets
its wholesale price, Wg;, j € {1,...,m}. Then, being provided with {Wg,,..., Wg,, }, the assembler
orders inventory from each coalition in Stage 2, resulting with a vector of order quantities that is
denoted as Q ={@p,,-, @B, }- Thereafter, each member in the coalition produces exactly what
the assembler orders. In this system, the suppliers sell to a newsvendor who bears all of the supply
_chain’s inventory risk. |

In §5.4.1, we analyze the push model under a given coalition structure of the suppliers, and in

§5.4.2 we evaluate the cost efficiency of the suppliers. In §5.4.3, we analyze the stability of coalition

structures by using cooperative and non-cooperative game theory methodologies.

5.4.1 The push model under a given coalition structure

For a given coalition structure, B = {Bj, ..., B;, }, backward induction is used to solve the two-stage
-Stackelberg game between the suppliers and the assembler. For any given vector of the wholesale
prices, {Wg,, ..., Wn,,}, the assembler’s problem in Stage 2 is to choose g = {@B,,-Q@B,,} to

maximize his expected profit function:
ETlg = pS(Q) — £JL1(Ws,Qp;) = pEx (min(min(Q), X)) — j2,(Wg,Qs,),  (5.2)°

. where Qp; is the order quantity for Coalition Bj;, and min(Q) = min{@p, : j = 1,...,m}. The

assembler’s optimal inventory vector is characterized by the following lemma.

Lemma 5.4.1 For a coalition structure B = {Bj,..., Bn} and a corresponding wholesale price

vector {Wp,,...,Wg,.}, the assembler’s optimal inventory vector with a push contract satisfies:

(i) @p, =..=Qp, =Q, and

(i) F(Q) =Y, where W = X7, (Wp,).
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The conclusion that the assembler always orders the same inventory from each coalition is quite
intuitive. Indeed, if he orders unequal quantities from different coalitions, then by reducing a bit the
higher orders the assembler would achieve the same sales level of the final product while reducing
his cost, which strictly benefits him. Thus, the assembler will never order unequal inventories of
different components. See also Wang (2004). Knowing that the assembler’s order quantities are
equal, his problem to choose the optimal @ does not depend on the individual wholesale price
set by each coalition. Rather, it depends on the total wholesale price for all components. Thus,
the assembler’s problem is similar to the case when all suppliers form the grand coalition, which
coincides with the single-supplier single—‘assembler newsvendor model, that is well studied in the
literature. Note that substituting W = p(1 — F(Q)), given in Lemma 5.4.1, into Ellg, given
by (5.2), and simplifying results with

Q
Ellp =p/0 zf(z)dz, (5.3)

which is strictly increasing in @ for @ > 0. See also Cachon (2004a).

Under a coalition structure B = {Bj, ..., B, }, knowing the aésemblelj’s reaction function of @,
the suppliers choose their corresponding optimal wholesale prices. The following‘theorem charac-
terizes the equilibrium values of the wholesale prices and the corresponding production quantity in
a push contract. We assume that the demand distribution function has an increasing general failure
rate (IGFR), i.e, ¢g{Q) = QH(Q) = %?_QL) is weakly increasing in @}, where H(Q) = % is the
failure rate function. See Lariviere and Porteus (2001) for a detailed discussion of this property in

the context of the classical newsvendor model.

Theorem 5.4.2 In the push contract, under a coalition structure B, the equilibrium values of the

wholesale price for each coalition and production quantity satisfy:

(i) Wg, —Cp, =Wp§, —Cp, =...=Wp —Cg, = W2=C — »Q*f(Q*), and

m

(it) p(F(Q) —mQ*f(Q*)) = C.

Theorem 5.4.2 (i) implies that given any coalition structure, in equilibrium, each coalition will
have the same marginal profit, and thus the same profit. Upon reflection, this lresult is quite
intuitive. Indeed, any possible fixed cost invested by any coalition to produce its items is not
incorporated in the model. Additionally, the products of all coalitions are needed in order to

assemble the final product. Thus, in a sense, all products are equally important. Finally, none

of the coalitions bears any inventory risk due to demand uncertainty. So differences in the values
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of coalitions’ manufacturing costs are irrelevant. Therefore, it is intuitive that in equilibrium, all
coalitions should have the same profit margin.

Wang {2004) has independently obtained a similar result in a related push model, wherein n
suppliers producing a set of complementary products need to choose, independently, a selling price

together with a production quantity for their individual products. He has shown that if all suppliers

simultaneously make their pricing and production decisions, then suppliers have the same profit.

When m = 1, all suppliers form the grand coalition, and our problem coincides with the
single-supplier single-assembler push systeﬁl studied, e.g., by Lariviere p,nd Porteus (2001) and
Cachon (2004a). Indeed, Theorem 5.4.2 is consistent with the corresponding results derived in their
papers. Theorem 5.4.2 also implies that the equilibrium values of the total wholesale price and the
production quantity depend on m, the number of coalitions, but are independent of how these ‘
coalitions are formed. Note further that Theorem 5.4.2 (ii) implies that the equilibrium production
quantity @* in the push system depends on the ratio % only, instead of on an individual supplier’s
marginal cost and the selling price p.

Using Theorem 5.4.2, we are able to compute the eguilibrium pfoﬁts for each coalition, the
assembler and the channel: EITy = (W}, — Cp,)Q" = ERQI=CIQ" _ p(Q*)2f(Q*) for any j,
EIly =p- S(Q") - W*Q" = p(S(Q") — F(Q")Q*) = p i 2f(2)dz and Ellyy,nmy = mEM, +
EIl; = pS(@Q*) — CQ*, where Q* satisfies p(F(Q*) — mQ*f(Q*)) = C. Thus, we can conclude
that the equilibrium profits of each coalition in the coalition structure, and the assembler and the
channel equilibrium expected profits dépend only on m, rather than the actual composition of the
coalition structure. For example, the equilibrium profits of each coalition, the assembler and the
channel in the two structures By = {B; = (1,2), By = (3,4)} and Bz = {By = (1), B> = (2,3,4)}

coincide.

Corollary 5.4.3 In a push contract, in equilibrium:

JEIY,
(i) WWBL <0 for any j € {1,...,m} and equality holds iff m = 1.

.., OEIMTotal . . N
(ii) —4— <0 and equality holds iff m =1. °

(iii) 2% < o,

om

(iv) % <0, and

(v) 2 > 0,

am
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Corollary 5.4.3 implies that the equilibrium quantity and the equilibriurr_i profits of each supplier,
and of the assembler and thus, of the entire channel, decrease in the number of coalitions, m. Thus,
consumers surplus and all these equilibrium profits are maximized when the suppliers form the grand

coalition.

5.4.2 Cost efficiency of the suppliers

According to Theorem 5.4.2 (i), un’der a push contract, all coalitions have the same profit margin in
equilibrium. Thus, more cost efficient coalitions have no profit advantage in equilibrium. However,
we wonder whether coalitions have an incentive to improve their cost efficiency. We next investigate
the effect of changes in the marginal manufacturing cost on the channel profit and its members’

profits, and on the equilibrium values of decision variables.

Proposition 5.4.4 In the push contract, under a coalition structure B, in equilibrium, for any

je{1,..,m}:
. (Q*
(i) wQBj <0.

L (W 9W5,)
(zz)#cv.v—%>0and( " > 0.

..., O(EIR) S(EM}) L,

(ii3) —OKC_B-'S_ <0 and W <0 fori+#j, and
. S(EI%,)

(Z’U) -aj-c—gﬁj‘ < 0.

We conclude from Proposition 5.4.4 that each supplier has an incentive to improve her cost
efficiency, i.e., reducing her marginal manufacturing cost, and that such a reduction in cost has a
beneficial effect for the other suppliers, for the assembler, and for the end-consumers. We note,
though, that the effect of changes in one coalition’s marginai manufacturing cost on other coalitions’
optimal wholesale prices depends on the demand distribution function. Specifically, the sign of

W*
8((0 )) depends on whether @ f(Q) decreases or increases in Q. If Q f(Q) decreases (or increases) in

wp
@, then B(TQ > 0 (respectively, 'a((TBZT) < 0), and IGFR does not guarantee that Qf(Q) increases
in @.

5.4.3 Stability of coalition structures

The equilibriurﬁ analysis of the Stackelberg game between the suppliers and the assembler in §5.4.1

is conducted for a given coalition structure. In this subsection, we investigate the stability of

coalition structures.
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We use two different approaches to investigate stability. The first approach is based on Nash
eQﬁilibrium, wherein a player can defect from its current coalition in a given coalition structure if
s/he is strictly better off from such a deviation. Clearly, in such an approach players are myopic
in the sense that they fail to anticipate future deviations by other i)layers brought about by their
own deviations. The second appfoach to identify stabie coalition structures is based on faréighted
* stability concepts introduced by Chwe (1994) and Mauleon and Vannetelbosch (M&V) (2004).

We will assume in this subsection that members of a coalition in any coalition structure share
the éoaﬁtion’s profit equally. This is a reasonable asSump’cion, since, by Theorem 5.4.2 (i), in

equilibrium, all coalitions in any coalition structure gain equal profits.

Nash-stable coalition structures

We assume that a feasible deviation by a supplier, M;, in any given coalition structure is either
from her coalition to become independent, or to join another coalition, provided that the receiving

coalition becomes strictly more profitable from having M; joining it.

Definition 5.4.5 The Nash-stable set of coalition structures consists of all coalition structures in

which no supplier has a strictly profitable feasible deviation.
Recall that |B;| is the cardinality of coalition Bj;.

Proposition 5.4.6 Let B = {By,..., Bp} be a given coalition structure, and assume, without loss -

of genemlity, that |B1| < ... < |By,|. B is Nash-stable if and only if the following conditions hold:

*

(i) If1 <m < nand|By| =1, then: ﬁ—————ml——)——mpF(Q*m_C Un > max(leKPF(Q:”“)_C)Q:"+1 (PF(Qr,—1)=C) m=1y,

_ _ m+1 * (|B2[+1)(m—1)
(i) If 1 <m < n and | By} > 2, then: (pF(Q:"TZL_C)Q:" > IBprF(Q:;’;Il)_C)mel_.

(ZZZ) If m=n, then: (pF(Q;i_C)Q; 2 (pF(Q:IQ_(;L?__lf)Q;_l)

where Q%, the equilibrium production quantity under a coalition structure with s coalitions, satisfies

P(F(Q) ~ sQf(@) =C.

To illustrate the conditions identified in Proposition 5.4.6 on stability, let us consider the fol-

lowing two examples.
Example 5.4.7 2-supplier system.

In this example, n = 2, and there are only two possible scenarios. Either m = 1 (grand coalition

structure) or m = 2 (independent structure). When m = 1, |B;| = 2, and according to Corol-

lary 5.4.3, the total equilibrium profit of all suppliers decreases in m. Thus, (pF(Q%) — C)Q} >
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(pF(Q3) — C)@3, which satisfies Condition (ii) in Proposition 5.4.6. Therefore, the grand coalition
structure is Nash-stable. When m = 2(= n), since (pF(Q}) — C)Q} > (pF(Q3) — C)Q3, we have
e F(QI%—C)Q; > ( F(Q%_C)Q;’, which does not satisfy Condition (iii) in Proposition 5.4.6. Thus, the

independent structure is not Nash-stable.

We immediately have the following conclusion.

Corollary 5.4.8 In a supply chain with two suppliers, i.e., n = 2, in equilibrium, the grand

coalition is the unique Nash-stable coalition structure.
Example 5.4.9 Power distribution function of demand.

In this example we assume that demand X follows a power function distribution on [0, U]. There-

fore, f(z) = z? and F(z) = z—q—t—l-, where ¢ > 0, and U = (¢ + 1 T to guarantee F(U) = 1.
g+1

(Note that for ¢ = 0, f(z) is uniformly distributed.) For a given coalition structure, B =

{Bi,...,Bn}, assume, without loss of generality, that |Bi| < ... < |By|. By Theorem 5.4.2 (ii),

p(F(Qr) — mQL,f(Qr)) = C. Substituting F(z) and f(z) into this equation and simplifying,
1-¢€

. 1
results with Q5, = (——2=)e+.
itm :
If m < nand |B;| = 1, then m > 2 and n > 3. By Condition (i) in Proposition 5.4.6, the
necessary and sufficient conditions for B to be Nash-stable are:

1 1 1 .
|Bm| < (14 —1—)”‘111 and |Bg| > (1+ 1—)1+‘“1“1-’ (5.4)
g1 T ™ 1 tm—1

Note that |B,,| > 2, since m < n, and |By| > 1. Thus, to satisfy (5.4), m < —z+— — q%. The
right hand side of the last inequality is strictly decreasing in ¢(> 0), and is bo2uqnd;(; between V2
(when ¢ = 0) and 1 (when ¢ — 00). Therefore, m = 1 is the unique value which satisfies (5.4). We
conclﬁde that a coalition structure with m < n and |Bq| =1 is never Nash-stable.

If m < n and |By| > 2, then by Condition (ii) in Proposition 5.4.6, the necessary and sufficient
condition for Nash-stability is |B,| < (1 +

— 1 m)1+q_41r7, which is identical to the first inequality
in (5.4). Thus, by following the same analysi?zis in the case with m < n and |B;| = 1, we have that
m =1 is the unique value which satisfies the first part in (5.4). When m =1, |Bp| < (1+ ;T_’—é)gi—f
The right hand side of the last inequality is strictly decreasing in ¢, and is bounded between 2.25
(when ¢ = 0) and 2 (when ¢ — 00). Thus, |By,| = 2. Therefore, if m < n and |B1] > 2, then the

unique Nash-stable coalition structure is the grand coalition consisting of the two suppliers, i.e.,

m=1andn=2.
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If m = n, then by Condition (iii) in Proposition 5.4.6, the necessary and sufficient condition for
the independent structure to be Nash-stable is:

1

1
1—)1+‘7+_‘ <2,
q+—1_+n— 1

(1+

which can be simplified to n > ;y%—_: + q—i—l. The right hand side of the last inequality is strictly
decreasing in ¢(> 0), and is bounded between v/2 4+ 1 (when ¢ = 0) and 2 (when ¢ — c0). Thus, if
m = n > 3, the independent structure is always Nash-stable.

We note that the analysis in Example 5.4.9 can be easily extended to a more general power

distribution function f(z) = vz9 for any v > 0. We immediately have the following result.

Theorem 5.4.10 In equilibrium.
(i) If n =2, then the grand coalition is the unique Nash-stable coalition structure.

(it) If n > 3, and the demand distribution is a power function, i.e., f(x) = vyxz? for ¢ > 0, then

the independent structure is the unique Nash-stable coalition structure.

The result above that for n > 3, the independent structure is the unique Nash-stable coalition
structure for a power demand distribution is somewhat disappointing. Indeed, by Corollary 5.4.3,
the assembler, the suppliers and the end-consumers would all be better off if the grand coalition of all
suppliers is formed, which suggests that a legal objection to a };oésible collusion among the suppliers
for the purpose of alliance formation is unlikely. Moreover, in reality, we often observe alliances of
suppliers rather than the independent structure, see, e.g., alliances among the outsourcing vendors
in the IT industry {Gallivan and Oh 1999). This result, of the unique stability of the independent -
: 'Structure, is likely due to the fact that stability based on Nash equilibrium is “myopic” and does not

incorporate farsightedness, i.e., only one-step deviations are considered. In the next subsection we
attribute “farsightedness” to coalitions of suppliers, as modeled by Chwe (1994) and M&V (2004)
and embodied by their notions of the largest consistent set (ILCS) and the largest cautious consistent
set (LCCS), respectively, to overcome the shortcoming of the Nash equilibrium approach to identify
'st_abl:a coalition structures. |
Finally, note that if a feasible deviation, by a supplier, in Definition 5.4.5 of the Nash-stable
concept, is restricted to be only to become independent, then feasible deviations can only be
made by the Type I suppliers, i.e., suppliers in a non-singleton coalition. Thus, the indepen-

dent structure (i.e., m = n) is always Nash-stable, since there are no feasible deviations from

it, and by Proposition 5.4.6, any coalition structure B = {B1, ..., Bm} is Nash-stable if and only
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if eF (Q;DTZL_C)Q;" > [Bml (P F(Q;"Lrl)_c)Q:"“ for m < n. Thus, we conclude that in Example 5.4.7

with two suppliers, both the grand coalition and the independent structure are Nash-stable, and
in Example 5.4.9 with a power distribution of demand,‘ the independent structure is the unique

Nash-stable coalition structure for n > 3.

Farsighted stable coalition structures

Farsightedﬁess, according to Chwe, allows a coalition to consider the possibility that, once it acts,
another coalition might react, a third coalition might in turn react, and so on without limit.
Before presenting the LCS co'ncept, we need to introduce some more definitions and notation.
Let P be the finite set of coalition structures. Denote by {—s}scn sz the effectiveness relation
on P, where By —g Bj if coalition structure By is derived when S deviates from the coalition

structure B;. A coalition formation game in effectiveness form G is (N, P, EII, {—s}scn,s5#0)-

Definition 5.4.11 A coalition structure By is indirectly strictly dominated' by By, or By < By, if
there ezist sequences {B1, Ba, ..., Bm} and {51, S2, ..., Sm—1}, such that Bj —s, Bj+1 and ETlp, (Br) >
Elly,(B;) for all M; € S;, for all j =1,...,m — 1.

Direct strict dominance is obtained by setting m = 2 in Definition 5.4.11. A coalition structure
B is directly stﬁctly dominated by Ba, or By < By, if these exists a coalition S such that B; —g Bs
and Ellpg, (Ba) > Ellpy, (By) for all M; € S. Clearly, if By < Bz, then By < Bs.

Definition 5.4.12 A coalition structure B; is indirectly weakly dominated by By, or Bi<Bn, if
there exist sequences {By, Ba, ..., B} and {S1, Sz, ..., Sm—1}, such that B; —s; Bj41 and Ellp,(Br) >
Ellp, (Bj) for all M; € S; and ETlpg, (Br) > Ellag,(Bj) for some M; € Sj, for j =1,...,m— 1.

Direct weak dominance is obtained by setting m = 2 in Definition 5.4.12. A coalition structure
By is directly weakly dominated by Bg, or By < B, if these exists a coalition S such that B; —g
By and Ellpy,(Bz) > Ellp,(By) for all M; € S and Ellyy, (Bz) > Ellp,(By) for some M; € S.
Obviously, if B; < Bs, then B1<Bs. '

Definition 5.4.13 (The largest consistent set based on indirect strict dominance: LCS(G; <),
Chwe (1994).) A setY is called consistent if B € Y if and only if for allV and S, such that B—-sV,
there is an B' € Y, where V = B' or ¥V < B/, such that we do not have Elly, (B) < Ellp, (B') for

all M; € S. The largest consistent set is the union of all consistent sets.
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Definition 5.4.14 (The largest consistent set based on indirect weak dominance: LCS(G, <),
M&V (2004).) A setY is called consistent if B € Y if and only if for allV and S, such that B —g v, .
there is an B' € Y, where V.= B’ or VKB, such that -we do not have ETlp, (B) < Ellp, (B') for
all M; € S and Ellpy, (B) < Ellp, (B') for some M; € S. The largest consistent set is the union of

all consistent sets.

Since every coalition considers the possibility thaﬁ, once it acts, another coalition might react,
a third coalition might in turn react, and so on, a consistent set incorporates farsighted coalitional
stability. If Y is consistent and B €y, it‘ does not imply that B is necessary stable, but that it
is poésible for B to be stable. However, if B ¢ Y, B cannot be stable. The largest consistent set
(LCS) is unique, and has the merit of “ruling out with confidence”. For a more detailed discussion
and analysis of farsighted coalitional stability, see Chwe (1994).

To illustrate the notion of the largest consistent set, let us consider the following example, pre-
sented in Figure 5.2, which is a modification of an example in Chwe (1994). Figure 5.2 presents a
three-player coalition formation game where the feasible coalition structures are: {1,2,3},{12,3}, { 1,23}

‘and {13,2}. The payoff vectors associated with these partitions and the possible moves from each
partition are given in Figure 5.2. rfhe effectiveness relations are represented by labeled directed
arcs. Here Players {1,3} will sureiy move from {1,2,3} to{13,2} because they are both better
- off in the coalition structure {13,2}. Similarly, none of the other coalition structure is Nash-
stable, and it follows that the Nash-stable set is empty. The largest consistent set, however, is
LCS(G,«) = LCS(G, <) = {{1,23},{12,3},{13,2}}. Thus, both sets exclude ﬁhe independent

structure.

(7,8,9)  {1,23}

‘MB 2} {1,2,3}

{1,2} .

/ 3 00

(8,9,7) * 12,3}

Figure 5.2: The Nash-stable set cannbt make a “clear” prediction

The largest consistent set does not tell what will happen but what can possibly happen. In the
example above, any coalition structure in {{1,23},{12,3}, {13,2}} can possibly be stable, but the

structure {1,2,3} cannot possibly be stable. The concept of the largest consistent set has been

previously applied in the supply chain literature, e.g., Granot and So§i¢ (2005), Nagarajan and
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Bassok (2002), and Nagarajan and So3ié¢ (2004).

The largest cautious consistent set (LCCS), introduced by M&V (2004), is a refinement of the
LCS. As pointed out by M&V, the largest consistent set may inclpde coalition structures wherein
coalitions could deviate without ending up being worse off in subsequent deviation, and possibly
ending up being better off. Namely, a coalition structure may be in the LCS because a deviation
from it is deterred by a likely sequence of subsequent deviations leading to an outcome where the
initial deviators are equal off, in spite of the fact that any other likely subsequent deviations would
not make the initial deviators worse off, and at least one of them would make the initial deviators
betfer off. Then, according to M&V’s LCCS concept, a coalition of cautious players, who assigns a
positive weight to all likely subsequent deviations, will deviate for sure from the original coalition
structure. ) ’

Similar to Chwe’s LCS, M&V’s LCCS is a farsighted concept. Once a coalition S deviates from
a. coalition structure B to another B, this coalition S should consider the possibility to end up
with a positive probability at any coalition structure B” not ruled out and such that B’ = B” or
B <« B".

Formally, we have:

Definition 5.4.15 (The largest cautious consistent set based on indirect strict domi-
nance: LCCS(G, <<), M&V (2004).) A set Z is called cautious consistent if B € Z if and
only for all V and S, such that B —g V, there is a vector & = (a(B!),...,a(B™)) satisfying
E}”zla(Bj) =1, a(B) € (0,1), that gives only positive weight to each B € Z, where ¥ = B or
V « BJ, such that we do not have
ETly,(B) < > o(B7)-Elly, (B7)  for all M, € S.
BieZ, V=8I or VKBI

The largest cautious consistent set is the union of all cautious consistent sets.

Intuitively, a coalition structure B is not a member of the LCCS if a coalition S can make a
deviation from B to V and by doing so there is no risk that some coalition members will end up

being worse off.

Definition 5.4.16 (The largest cautious consistent set based on indirect weak domi-
nance: LCCS(G,<K), M&V (2004).) A set Z is called cautious consistent if B € Z if and
only for all V and S, such that B —g V, there is a vector & = (a(B'),...,a(B™)) satisfying
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Sia(BY) = 1, o(B?) € (0,1), that gives only positive weight to each Bi ¢ Z, where V = BJ or
VB, such that we do not have

Elly,(B) < S a(B)-Elly,(B)  for all M; € S and
BieZ, V=BJ or VKBI

ETlp, (B) < > o(B?)-ETlp, (B7)  for some M; € S.
BieZ, V=8I or V&KBI

The largest cautious consistent set is the union of all cautious consistent sets.

The following example, depicted in Figure 5.3 below and taken from M&V (2004), illustrates the
difference between the LCS and the LCCS. Figure 5.3 presents a three-player coalition formation
game where the feasible coalition structures are: {123}, {1,23}, {13,2} and {1,2,3}. The payoff
vectors associated with those partitions and the possible moves from each partition are given in
Figure 5.3. The effectiveness relations are represented by labeled directed arcs. We have {123} <
(1,23}, {1,23) < {1,2,3}, {1,23) < {13,2} and {123} < {13,2}. It follows that LCS(G,<
) = LCS(G, <) = {{123}, {1,2,3}, {13,2}}. The independent structure belongs to both the
LCS and the LCCS since no deviation from it is possible. The coalition structure {123} belongs
to LCS(G,«) and LCS(G, <) because the deviation to {1,23} is deterred by the subsequent
deviation by player 2 to {1, 2,3}, wherein the original deviator, player 1, is equal off. But player 1
cannot end up being worse off by deviating from {123}, compared to what he gets in {123}. So, if
player 1 thinks that hé could end up with certain positive probability in any of the two coalition
structures, {1,2,3} or {13,2}, that indirectly dominate {123}, then he will for sure deviate from
{123} to {1,23}. Thus, by contrast with the LCS, {123} is not contained in the LCCS.

{123} {1,23} {1,2,3}

° . .
(1,0,0) {1} (2,0,0) {2} (1,2,1)

{1,3}

(3,0,1) ® {13,2}

Figure 5.3: The largest consistent set is too conservative
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We next characterize the LCS and the LCCS in the suppliers coalition-formation game when
demand has a power distribution. By suppliers coalition formation game we mean the game wherein
the suppliers have the option of freely forming coalitions among themselves in advance of deter-

mining their decision variables.

Theorem 5.4.17 In the suppliers coalition formation game, under a power demand distribution

with f(z) = 29, where x € [0,(q + 1)#1), LCCS(G, <) = LCCS(G, <) = {P*}.

Theorem 5.4.18 In the suppliers coalition formation game, under a power demand distribution,

f(z) =z9, where z € [0, (g + 1),,%1]'.
(i) P* € LCS(G,<) and P* € LCS(G,X).
(ii) Forn <4, LCS(G,<) = LOS(G, <) = {P*}.

(i1i) Forn > 5, there exists some threshold value gn such that LCS(G, <) = LCS(G, <) = {P*}

for any q € (gn, 00).

From Theorems 5.4.17 and 5.4.18 we conclude that, by contrast with Nash—stabilify, which
is based on myopic considerations, when coalitions are farsighted and able to account for future
deviations, the grand coalition of all suppliers emerges as the most likely outcome in the suppliers
game. Indeed, it is the unique elgment in the LCCS, and the unique element in the LCS for n < 4
and for n > 5 when the coefficient of variation is small enough, or, equivalently, when the exponent
is large enough, for a general power demand distribution. This result is somewhat pleasing since, in
view of Coroliary 5.4.3, the channel, the assembler, all suppliers and the end-consumers are better

off when the grand coalition is formed.

5.5 Pull System

Ina puﬂ system, R initiates the process by offering Wp, to Coalition B; (Stage 1), and then the
coalitions choose the production quantities simultaneously, and bear the inventory risk (Stage 2).
Cachon (2004a) has provided some examples for the pull system, which include the cases when
suppliers’ products are shipped to the assembler on coﬁsignment, or suppliers hold the inventory
and replenish the assembler frequently and in small batches during the selling season (e.g., Vendor

Managed Inventory with consignment). Saturn is a good example of the pull model. Indeed, the

different metal sheet suppliers supply Saturn with complementary metal sheets and manage the
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" inventories of their own products. Saturn pays, upon withdrawal, only for the quantities taken to
their production line.
In §5.5.1 and §5.5.2, we analyze the pull mode! for a given coalition structure, and in §5.5.3, we

evaluate the stability of coalition structures.

5.5.1 The pull model under a given coalition structure

Backward induction is again used to solve the two-stage Stackelberg game in the pull system
between the suppliers and the assembler. We first consider the coalitions’ production quantity
problems in Stage 2 for any given set of wholesale prices {Wg,, ..., Wg,, }. We assume that every
coalition has a positive marginal manufacturing cost, i.e., Cp, > 0 for all j € {1,...,m}.

Let us consider Coalition B;’s problem. Given Wp, and vector Q-p;, B; chooses @p; to
maximize:

: Ells, = W, Ex (min(min(J), X)) — Cp,Qs,. (5.5)

where demand X is random. Consider the following two choices for @B;:
Choice I: @p;, > min(Q-p,;). Thus, B;’s profit function, given by (5.5), becomes: Ellg, =
Wg, Ex (min(min(Q-p,), X))—Cp;QBp,, which is strictly decreasing in @p;. Thus, Q}}j =.min(Q_p;)-
Choice II: Qp, < min(Q-p;). Thus, B;’s profit function, given by (5.5), reduces to: Ellg, =
Wg, Ex(min(Qp;, X)) — Cp,@B,, which coincides with the supplier’s problem in a sin.gle-supplier'
single-assembler system. The unconstrained optimal production quantity in this case satisfies
F(@p;) =1~ %. Therefore, the constrained optimal production quantity is:
— CBJ‘
W,

@B, = min(min(Q_Bj),F_l(l ). (5.6)

By comparing these two choices, we conclude that Choice 11 is optimal for B; since the optimal
@ for Choice I is on edge of the feasible region of Choice II. Thus, B;’s optimal production quantity
is given by (5.6). .

Define v?,—ii = maxje{ly_n,m}(%?). The equilibrium production quantities in the pull system
are presented in the following lemmJa.
Lemma 5.5.1 In the pull system, for any given coalition structure B = {Bjy, ..., Bp}, the equilib-

rium production quantities are:

(i) Q=FY1-%) ifm=1, and

(ii) @y, = . = Qp, SF'(1— =), if m>2.
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Lemma 5.5.1 implies that for any given wholesale price set, {Wg,, ..., Wg,, }, each coalition will
produce the same amount of each component. However, note also that the suppliers’ production
quantities have multiple Nash equilibria. We next use a refinement of Nash equilibrium, the strong

Nash equilibrium, to reduce the number of the equilibrium production quantities.

Definition 5.5.2 (The Strong Nash Equilibrium, Aumann (1959).) A strategy profile is a
strong Nash equilibrium if there is no coalition of players (including the grand coalition) that can

profitably deviate from the prescribed profile.

By definition, a strong Nash equilibrium is Pareto efficient, but in many cases, the strong Nash
equilibrium set is empty. Fortunately, in our game for the suppliers’ production quantities, there

is a unique strong Nash equilibrium.

Lemma 5.5.3 In the pull system, under coalition structure B = {Bji, ..., Bm}, for any given whole-
sale price set, {Wg,,...Wg,,}, 0 < Qp = .. =Qp, = P71~ %) is the unique strong Nash

equilibrium.

In view of Lemma 5.5.3, we assume in the sequel that the coalitions in B provide the assembler
with the strong Nash eqpilibrium production quantities, i.e., Q5 = .. =Qp, = F(1- —‘%;ie)
Knowing the equilibrium production quantities, the assembler chooses the wholesale price set

to maximize his expected profit. His problem is the following constrained optimization prbblem:

Maximize EIlg = (p— W)Ex(min(Q, X)) (5.7)
st. Q = F‘l(l—g/—ie) | . (5.8)
s (SB), 59)

max
Wg je{1,2,..,m} W,

where () is the production quantity of every coalition.

The equilibrium wholesale price for each coalition is presented in the following result.

‘Theorem 5.5.4 In the pull system, for a given coalition structure B = {By, Bg, ..., Bn}, the equi-

librium values of the wholesale prices and production gquantities satisfy:

() Br =SB = Com — 1 _ F(Q*), and
By By B

i Ot = =0 = O 1-FQ) _ _C oy = 5@ o _ i@
(ii) @, = = Q, = Q", where 328 = €, 7(Q) = 2 and H(Q) = (L35
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Theorem 5.5.4 (ii) implies that the equilibrium production quantity, Q*, in the pull system
depends on the ratio % only, instead of on the individual suppliers’ marginal costs and the selling

price p.
By Lemma 1 in Cachon (2004a), J(Q)H (Q) is increasing in @ for @ > 0. Accordingly, we have:

Corollary 5.5.5 In equilibrium,
. % Cs, * * * |
(1) Wg, = 2, (Wa,), T, (Wg,) =W* = %’ and
.. * Cs, al*
(i) Elly = <L ETGet (m = 1),

where EHIA}’tal* (m = 1) is the total equilibrium expected profit of all suppliers when the grand

coalition was formed.

Theorem 5.5.4 and Corollary 5.5.5 imply that in the pull system with multiple supvpliers, if
all_suppliers provide the assembler with the strong Nash equilibrium production quantity, Q* =
F~Y1- 5,—‘1’;2), then in equilibrium, the total wholesale price and the production quantity coincide
with those in the casé when all suppliers form the grand coalition. Thus, the total profit for
all suppliers, EH{,}"’“[, and the assembler’s profit are independent of the coalition structure. A
coalition’s expected'proﬁt depends on the total manufactur}ng cost, which is also independent of
the coalition structure. Therefqre, the equilibrium values 6f the contract parameters and expected
profits of each suppliér and the assembler are all independent of the coalition structure under a pull
system. By contrast, recall that in the push model, the total profit for all suppliers, the assembler’s
profit and any coalition’s profit depend on the number of coalitions in the coalition structure.

- Corollary 5.5.5 (ii) reveals that the share of each coalition of suppliers in the total suppliers
profit is proportional to their coalitional cost, and thus, by contrast with the push model, coalitions
do not realize equal profits in equilibrium. The intuition for this qualitative difference is as follows.
Under pull, coalitiqn‘Bj’s expe;:ted profit is Ellp, = (Wpg, — Cp,;)S(Q) — Cp,(Q — S(Q)), and
accordingly, B; bears a demand uncertainty risk which is proportional to its manufacturing cost
Cp,. Since the production quantities are identical for all coalitions, coalitions share the total
expected profit proportionally to their manufacturing costs. | _

As previously mentioned in Section 5.5.1, Corollary 5.5.5 has been independently derived in
Wang and Gerchak (2003) and Gerchak and Wang (2004).

By Corollary 5.5.5, ng = l—_cFi?Q—,,j. Substituting Wﬁj into Bj’s profit function, giveh by (5.5),

and simplifying results with

Ely, = CBJ.(% ~ QM. (5.10)
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5.5.2 Cost efficiency of the suppliers

We consider in this subsection the effect of the suppliers’ marginal costs on the equilibrium profits

of channel members and the equilibrium values of the decision variables.

Proposition 5.5.6 In the pull system, for any coalition structure B = {B1, ..., By}, in equilibrium,

coalitions with higher manufacturing costs earn higher profits.

Proposition 5.5.7 In the pull system, for any coalition structure B = {B, ..., By}, in equilibrium,

for any j € {1,...,m}:

(i) ggz;j <o0.

(ii) SC—M;;>O’ Z—V£f>0 and%i?<0foranyi7éj.
(i) %%—rg:f- < 0 for any i # j, and

(iv) %—f%f <0.

While some of the results in Proposition 5.5.7 and Proposition 5.4.4 in the push model are
similar, the main difference between them, however, is that it is not clear how EH:'A:;’W or EH*Bj
would change with respect to Cp;. Thus, it is difficult to predict whether any supplier has an
incentive to reduce its manufacturing cost.

Let us next consider an extreme case about cost efficiency. Suppose there is some coalition, By,
which is extremely cost efficient, i.e., Cp, = 0. What would happen to the channel? Evidently,
for any given partition, the suppliers’ (i.e., the coalitions’) problems are not affected.” Thus, the
results in Lemma 5.5.1 are still valid, similarly for Lemma 5.5.3. However, the analysis in the
assembler’s problem has to be modified. Indeed, the equilibrium condition that all coalitions have
the same ratio of cost to wholesale price cannot be satisfied since Cg, = 0. However, according
to Constraints (5.8) and (5.9) in the assembler’s problem, it is evident that since Cp, = 0, Q in
the objective function, given by (5.7), is independent of Wg,. Thus, the assembler would definitely
choose W= 0 to maximize his profit. For those coalitions which have a positive manufacturing
cost, tﬁe assembler will) follow the same analysis process as in Subsection §5.5.1. We conclude that
for coalitions with positive manufacturing cost the results presented in Theorem 5.5.4 hold, and

that zero-manufacturing cost coalitions would attain a zero profit.
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5.5.3 Stability of coalition structures

Note that by Corollary 5.5.5, under any coalition structure, in equilibrium, coalitions share the total
expected profit of all suppliers proportionally to their coalition manufacturing cost. We suggest in
this subsection that members in the same coalition should split the coalition profit proportionally
to their own ihdividual manufacturing costs. For example, the profit of M; in Coalition Bj should
be EH}‘Mi = é—A;;EH*Bj, given that Cp; > 0, which is equivalent to having members in the same
coalition sharing the total wholesale price of their coalition proportionally to their manufacturing
cost, i.e., Wy, = é_A;j_'WEj- This suggestion is consistent with the fact that coalitions share the total
profit proportionally to their manufacturing cost, and zero-manufacturing cost coalitions realize

zero profit in equilibrium. In fact, we have the following result.

Proposition 5.5.8 In the pull system under the coalitional proportional splitting rule for all coali-
tions, if the same proportional allocation rule is used to allocate the profit among members of the
same coalition, i.e.,‘ Elly,, = é—ABlijI'I’]‘Bj, or equivalently, wy, = %?ng, for any M; € B; and any

Bj, then any coalition structure is stable.

Finally, observe that for any coalition structure B, if the coalitional proportional splitting rule
is not used for members in the same coalition, then B is never Nash-stable, neither is it contained

in the LCS or the LCCS.

5.6 Push and Pull Systems

Having analyzed the push and pull systems, we would like to find the preferences of the assembler
and the suppliers between the two systems. Now, we recall that the results in the pull system
are independent of the coalition structure. Further, in the push system and a power distribution
of demand, z4, the grand coalition is the unique structure in the LCCS, and for ¢ large enough,
it is also the unique structure in the LCS. Thus, for simplicity, we will compare the two systems
under the assumption phat the grand coalition was formed. We note that under this assumption,
and when all suppliers are viewed as a singlé supplier, our model coincides with that studied in
Cachon (2004a), and the reader is referred to his paper for an excellent analysis and comparison of
the two models in this case.

Denote the equilibrium values in the push system with a subscript “push” ahd those in the pull

system with “pull”. Recall that in the push system, under the grand coalition assumption, the

expected profit of the assembler, in terms of Q, given by (5.3), is: Ellgpush =P fOQ zf(x)dz, which
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- is strictly increasing in @ for @ > 0, and the ;cotal expected profit of all suppliers, in terms of @), is:
EH}‘F/I";‘“Z o = (P(1-F(Q))—C)Q, which is unimodal in @ and has a unique maximizer. Similarly, in
the pull system, the expected proﬁt of the assémbler, in terms of Q, is: ETlg pun = (p—%(@)S (@),
which is strictly concave in @, and the expected profit of all suppliers, in terms of @, given by (5.10),
is: EH:,C;”%“ = C(lTS(FQ(-)Qj — @), which is strictly increasing in Q.

Let us first recall two important results from Cachon (2004a).
Theorem 5.6.1 (Cachon (2004a), Theorem 3) In equilibrium,
: (i) BT} (@) > BT Pl (Q,or), and
() Q> U
Lemma 5.6.2 (Cachon (2004a), Lemma 4) The following hold:

(i) There exists a unique Q' such that ETIg pyon(Q') = ENlR puu(Q').
'(ii) There exists a unique Q" such that Eﬂﬁgﬁfsh(Q”) = Bl ftal (Q").
(iti) QF is the unique mazimizer of ENR pun(Q) — E ;‘\F,I",gﬁsh(Q).

(i) QF = Q' = Q", and

(v) QF > Q-

Theorem 5.6.1 and Lemma 5.6.2 (v) imply that Q},,, < Qp.u < QF. Based on these results,

we are able to derive the following Proposition, which is used for subsequent results.

Proposition 5.6.3 In equilibrium,
(1) ENrpu(Qpuu) > ETlRpush(Qpysp), and
(iz) EHTMO;%S}L( push) > Enﬂoﬁu( pull)-

It follows from Proposition 5.6.3 that the assembler prefers the pull system to the push system
and that the total profit of all suppliers with push is greater than their total profit with pull. The

preference of any individual supplier between the two systems is revealed in the next proposition. .

Proposition 5.6.4 An individual supplier M; with marginal cost cp,, fori € {1,...,n},

(i) prefers push to pull if cpr, < - E,
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(i) is indifferent between push and pull if cpr, = - €, and

(iii) prefers pull to push if cpr, > o €,

— ‘E‘Hﬂm)’:}sh( ‘;ush) = C
where o = —E—HTﬁﬁr—(—Q{—)(> 1) andc= .

M,pull pull

Baéically, Proposition 5.6.4 asserts that suppliers with low manufacturing cost prefer push to
pull since under pull, they are apparently not compensated enough for the risk they need to cover,
which stems from the uncertain demand. On the other hand, suppliers w-ith high manufacturing
cost prefer pull to push since they are compensated proportionally to their cost.

Let us consider an extreme case when all suppliers have the same marginal cost, i.e., cypr, = ¢
for all 1 € N. Thus, é = ¢, and by Proposition 5.6.4, since & > 1, cp;; = ¢ < o - & Therefore, in
this case ‘_all suppliers prefer push to pull.

Let us next consider an example wherein demand, again, follows a power distribution.

Example 5.6.5 Power demand distribution.

zq+1

Recall that under a power demand distribution, f(z) = 2 and F(z) = L7 for ¢ > 0. By

_c
Theorem 5.4.2 (ii), we have that Q7 ., = (—ll—L)fﬂlr_l, and
pu m'*'l
. E ’Il\},?ﬁlsh(Q;ush) :p(Q;ush)Zf(Q;ush) = p(Q;ush)q+2'

From Theorem 5.5.4, Q7 satisfies 1+J(1(5ffz);;(l‘l»?)* o = %, where J(Q) = ITSI([,Q—(—()Q—) and H(Q) =
pu pu

I f FQQ . Furthermore,

S( ;ull)

1 —'F( ;ull)

ET7 i (@) = C(

— Qpuit)-
Note that the value of Q;u” depends on the ratio of C to p, instead of the individual suppliers’
marginal costs and the selling price. Since it is difficult to derive an explicit expression of Q;ull as

*

a function of % and a general ¢, we present in Table 5.1 in the following page the values of qu“

and « as a function of % for g =0,1,2,4.
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g=0 g=1 q=2 qg=4

P push | @pun | @ push | @puit | @ push | Qpunt | @ push | Qpun | @

0.01{0.4950|0.8273112.36{0.8124 {1.2419119.220.90551.3013{24.89{0.9623 |1.2791 | 34.29
0.05]0.4750[0.6690| 5.56 [0.7958|1.1105| 8.46 |0.8932(1.1924{10.95{0.9544|1.2000 [15.25
0.1010.4500(0.6142 | 4.14 {0.7746|1.0219| 6.24 |0.8772(1.1184] 8.08 10.9441|1.1460(11.34
0.200.4000 [ 0.5000| 3.20 {0.7303|0.8997 | 4.78 |10.8434 (1.0154| 6.20 {0.9221|1.0705| 8.81
0.5010.2500{0.2747 | 2.40 {0.5774|0.6367 | 3.57 |0.7211 [ 0.7888 | 4.67 {0.8394]0.9030 [ 6.81
0.9010.0500 | 0.0507 | 2.05 {0.2582(0.2622 | 3.07 |0.4217(0.4279| 4.08 {0.6084 | 0.6157 | 6.09
0.9910.0050|0.0050 | 2.01 {0.08160.0818 | 3.01 |0.1957(0.1960 | 4.01 {0.3839]0.3843( 6.01

c

Table 5.1: Q;ush, Q;u” and the preference factor, a, under a power demand distribution

Based on Table 5.1, we conclude with the following observation.

Observation 5.6.6 (i) The equilibrium values of the production quantity under push and pull are
decreasing in C, which is consistent with Propositions 5.4.4 and 5.5.7, and they are increasing in
the exponent q of the distribution function.

(i) Qpysh < Qpyys which is consistent with Theorem 5.6.1 (i.e., Theorem 3 in Cachon (2004a)).

(#ii) The value of a is decreasing in % and increasing in q.

Recall that some suppliers prefer the pull system, since they are well compensated for the risk
they bear in this system due to demand uncertainty. Now, an increase in ¢ can be easily shown to
result with a decrease in the coefficient of variation in a power distribution. Apparently, as reflected
by Observation 5.6.6 (iii), a decrease in the coefficient of variation results with a decrease in the
level of compensation to suppliers in the pull system to an extent that more of them prefer the
push to the pull system. .

Similarly, recall that the share of the profit of suppliers in the pull system is larger if their
manufacturing cost is higher. As suggested by Observation 5.6.6 (iii), it appears that a decreaée
in the total manufacturing cost decreases the profit of suppliers in the pull system so that more of

them prefer the push system wherein their profit is independent of the manufacturing costs.

5.7 Conclusions and Further Research

We have studied in this chapter a supply chain model consisting of a single assembler who buys
complementary components or products from n suppliers under two contracting systems: push and

pull. In both systems, we have investigated the stability of coalition structures in the suppliers

coalition formation game, and the Stackelberg game between the assembler and the suppliers. We
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have demonstrated that push and pull contracts, which allocate differently inventory risk among
players, induce, in equilibrium, qualitatively different outcomes.

For example, for a given coalition structure, push and pull induce different profit allocation
among coalitions. In a push system, coalitions realize equal profits in equilibrium. By contrast, in
a pull system, coalitions share the total suppliers profit proportionally to their own manufacturing
costs. Ir; a push system, t‘he assembler, the suppliers and the end-consumers would all be better
off if the grand coalition of all suppliers is formed, while in a pull system, the coalition structure
has no impact on the equilibrium profits of players. Finally, in a push contract, each supplier has
an incentive to improve her cost efficiency, while in a pull contract, suppliers may not benefit from
a reduction in their cost.

We have also derived in this chapter some sharp. predictions about alliance formation among
suppliers in a push system. For example, it is shown that in a system with two suppliers, the
grand coalition is the unique element in the Nash-stable set, the largest consistent set (LCS) and‘
the largest cautious consistent set (LCCS). Further, in é system with more than two suppliers,
wherein demand follows a power distribution, the grénd coalition is the unique element in the
LCCS. It is also the unique element in the LCS for n < 4, and for n > 5 when the exponent is
large enough, i.e., the coeflicient of variation of demand is small enough. By contrast, for a power
demand distribution, the Nash-stable sét, in which, of course, players are known to be myopic, is

" shown to consist of the independent structure. In reality, we often observe alliances of suppliefs,
e.g., alliances among the outsourcing vendors in the IT industry (Ga.llivaﬁ and Oh 1999), and it is
pleasing that farsighted concepts, such as the LCS and LCCS, predict alliance formation.

We have found out that the assembler always prefers the pull system to the push system.
However, the suppliers’ preferences between these two systems depend on their own manufécturing
costs. More specifically, suppliers with relatively lower manufacturing costs prefer push to pull since
under pull, they are apparently not compensated enough for the risk they bear due to uncertain
demand. On the other hand, suppliers with relatively higher manufacturing costs prefer pull to
push since they are compensated proportionally to their cost. It is interesting to note that if all
suppliers have the same manufacturing cost, then all suppliers prefer push to puli.

Finally, regarding possible extensions, we recall that it was assumed in this chapter that all
products are completely complementary. However, as pointed. out by Wang (2004), the degree of

complementarity in some business models may not be 100%. Additionally, components may have

their own individual demand, in addition to demand for the final product. Thus, it would be
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important to extend our analysis to these more general situations.

5.8 Appendix

Proof of Lemma 5:4.1. Suppose the assembler chooses an inventory .vector Q Let Qp, =
min(@). Then, the assembler’s profit function becomes: EIlg = pEx (min(@s,, X))—E7%;(Ws,@5,),
which is strictly decreasing in each element of Q_p, , which is 'the vector whose components are the
production quantities of all coalitions in B but Bk. Thus, at optimality, the assembler will order
the same inventory from all coalitions. Therefore, @p, = ... = Qg,, = @, and the assembler’s profit
function reduces to: Ellg = pEx (min(Q, X)) — QT (Wa;) = p(QF(Q) + fOQ zf(z)dz) — QW,
which has derivatives %‘3 = pF(Q) — W and %%123 = —pf(Q)(< 0). Thus, Ellg is strictly

concave in @ and the global maximizer satisfies: %ﬂ =0, ie, pF(Q)=W.0O

Proof of Theorem 5.4.2. (i) Let us consider the problem facing coalition B;. The profit function
for B; is: Ellg, = (Wp, — Cp;)Q", where by Lemma 5 4 1 (ii) pF(Q*) = W, and Q* is the
assembler’s optimal reaction function of Q. Accordingly, =m—* aW =Q*+ (W CB]) . Taking

derivative with respect to Wp; on both sides of pF(Q*) =W results with Zre— W Thus,
OFETlg, " Wpg.—Cg, . . . . .

TW_B;L =Q* - W. First order condition for optimality results with: WBj —Cp; = pQ* f(Q" )
for any j € {1,2,...,m}. Now, similar to Lariviere and Porteus (2001) analysis in the context
of the single-supplier single-assembler newsvendor model, in our model, the profit function for
Coalition By,

Ellg, = (pF(Q) — (Cs, + W-5,))Q, (5A.1)

is unimodal in @ and has a unique maximizer, and, in view of the one-to-one relationship between )
and Wpg;, it is also unimodal in Wp,. Thus, in the maximization problem of EIlg, = (WBj —CBJ.)Q*,
where p(1 — F(Q*)) = W = Wg, + ZkziWa,, with respect to Wp;, the first order condition,
%ETIZL = 0, is both necessary and sufficient to find the unique maximizer W;‘}j. Therefore, we
have ng ~ CB; =pQ*f(Q*),7 € {1,...,m} and (i) follows. Thus, at optimality, pF(Q*) = W* =

mpQ*f(Q*) + C, and (ii) follows. O

Proof of Corollary 5.4.3. Let us first prove (iv). By Theorem 5.4.2, p(F(Q*) —m@Q*f(Q*)) = C

Thus, 1 — m? 1{“((?2 )) (F(Q*))“l, and the equilibrium value of Q*, where Q* > 0 (since p > C),

is an implicit function of the number of coalitions m. Taking the derivative of Q* with respect

to m on both sides of 1 — m%@g(%—:% = %(F‘(Q*))‘l, and simplifying results with J—ll 1]«:(%‘ =

(LI _ .
[mM + %(F(Q*))‘Zf(Q*)] %. Since the demand function is assumed to have an increasing

o0Q*
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, Q*£(9*) . .
general failure rate, _(_%?—_)) > 0. Thus, since @* > 0, it follows that aaﬁn? <0.

(v) Since W* = pF‘(Q"‘), and Q* strictly decreases in m, it is easy to verify that W* strictly
increases in m. |

(ii) By Theorem 5.4.2, ETI%etl = (pF(Q*) C)Q*. Taking derivatives on both sidés with respect
to m and simplifying results with aigMil Q*) —C—pf(Q*)Q*)an—: = (m—l)pQ*f(Q*)%%',
where the last equality holds since pF(Q*) —C = mpQ*f(Q*). Since m > 1 and %—?n: < 0,
Egm < 0, and equality holds iff m = 1. | ,

(i) Since ETIZftal decreases in m, we immediately have that, for any j € {1,..,m}, Elly =

EHToml .
decreases in m.

(iii) Note that ETI}, = pfOQ* zf(z)dz. Then, 3—?3 Q*f(@Q%) % Since @Q*f(Q*) > 0 and
%m—* < 0, we have that 61;‘_2}1 < 0, which completes the proof of Corollary 5.4.3. O

Proof of Proposition 5.4.4. (i) By Theorem 5.4.2 (ii), p(F(Q*) — mQ*f(Q*)) = C. Thus,
F(@"H( —m. g(@*)) = %, where, as we recall g(Q) = EJ;QQ . Due to the IGFR assumption, and

since F(z) is increasing in z, F(Q*)(1 — mg(Q*)) decreases in Q*. Thus, since C increases in Cp,,

0(Q*)
3Cs);) <0.

(if) From Lemma 5.4.1 (ii), W* = pF(Q*). Thus, since Q* decreases in Cp; and F(Q*) is a

decreasing function of Q*, W* increases in Cp,. By Theorem 5.4.2 (i), W§j = Cp; + 2&%.
Wy )

~ Thus, WJT = mT_l - #pf(Q*)—a(—a% > 0, where the last inequality follows since m > 1 and
_oQr
< 0.

aCs,)

(111) BTy = (Wg, — Cp,)Q" = BXZI=CQ*. Taking derivatives with respect to Cg; on both |
H(ETTY, ~
sides of EIIj : results with T;(C_B'S‘) T}T%CQT[Z)F(Q*) — C — pQ*f(@%)] < 0, where the last
inequality follows since 3((Q )) < 0 and pF(Q*) — C — pQ* f(Q*) > pF(Q*) — C — mpQ* f(Q*) = 0.
; x . . _ PFQ")=C e a(EMy)  A(EN

Since EHB], = (WB], - Cp,)Q* = M%LQ ,j €{1,...,m}, 305, = 55 ) < 0 for any 7 #£ j.

(iv) EIl; = p(S(Q*) — F(Q*)Q*). Since S(Q) — F(Q)Q increases in Q and @Q* decreases in

Cp;, EIl} decreases in Cp,, which proves (iv) and completes the proof of Proposition 5.4.4. O

Proof of Proposition 5.4.6. (i) When m < n and |B;| = 1, we consider two types of suppli-
ers: suppliers in a coalition which has more than one member (Type I) and independent suppli-
ers (Type II). '

Now, recall our assumption that members of a coalition share the coalition’s profit’ equally.

Then, by Theorem 5.4.2 (i), a deviation by a Type I supplier to join another coalition, By, is

‘not feasible, since members of By will be strictly worse off from such a deviation. Thus, the only
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feasible deviation for a Type I supplier is to be independent. Consider any member, M;, in By,
which, by Theorem 5.4.2 (i) and the above assumption of equal profits for coalition members,
earns the least profit. Before a deviation by M; to be independent, M,’s equilibrium profit is:
ETI}, (before) = @ﬁ%é,%'—?cﬁin’ where Q?,, by Theorem 5.4.2 (ii), satisfies: p(F(Q) — me(Q)) =
C. After M; deviates to be independent, there are m + 1 coalitions instead of m. The equilibrium

profit for M; now becomes: EII}, (after) = @ F(Q:“mll_lC)Q:"“, where Q,,, satisfies: p(F(Q) —

(m+1)QF(Q)) = C. Thus, M; cannot be strictly better off by deviating to be independent if and

Only lf EH*MI (befo’re) Z EHRll (afte'r), Wthh reSultS Wlth (pF‘(Q:rfrzl—C)Q:n 2 lel(PF(Q:Tzill)—C)Q*m+1 .

For Type II suppliers, since |B;| = 1, it is sufficient to find conditions such that either the
only member in B, Mir, has no incentive to join Bs, or By will not‘accept M;. Before de-

viation, EII}, (before) = EIIg (before) = @%7%. After deviation, EII}, (after) =
(PR Q1) =C)Qm_s '
(Bz[+1){(m=1) - .
ETlg, (after) = IBZl(zzng;)l(:fl))Q m=1_ Accordingly, M;(€ B;) has no incentive to deviate or Bs
PF(Q},_1)—-C)Q5
([B2[+1)(m~-1) .

, and the equilibrium profit of Coalition Bs in the new coalition structure is:

L. Combining the conditions for

will not accept M; if and only if F(Q;&_C)Q;n > (
the Type I and Type II suppliers yields (i).

(ii) When m < n and |B1| > 2, there are only Type I suppliers, and the same proof approach
as that used in (i) can be employed to verify (ii).

(iil) When m = n, i.e., the independent coalition structure was formed, we only have Type II

suppliers and |By| = ... = |Bp| = 1. Using the same analysis as in (i) would verify (iii). O

Proof of Theorem 5.4.17. For n = 2, by Theorem 5.4.10 (i), neither of the two suppliers has
an incentive to deviate from the grand coalition. Thus, LCCS(G, <) = LCCS(G, LK) = {P"}.
For n > 3, Proposition 5 in M&V (2004) asserts that under four conditions, the largest cautious
" consistent set, based on both indirect strict and weak dominance, bsingles out the grand coalition.
We next demonstrate that these conditions hold in our case. _ |

~ (P.1) Positive spz:llovers. Positive spillovers require that the formation of a coalition by other
players increases the payoff (i.e., the expected profit) of a player. Now, from Corollary 5.4.3 (i),'
@gﬁ < 0forall j € {1,...,m} for m > 2. Thus, clearly, the suppliers coalition formation game _
has positive spillovers.

(P.2) Negative association. Negative association requires that small coalitions have higher per-

member expected profit than big coalitions. Theorem 5.4.2 (i) reveals that each coalition would

have the same profit margin, thus the same expected profit. Since we assume that members in the

" same coalition share their profit equally, it is obvious that smaller coalitions have higher per-member
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payoff than larger coalitions. Therefore, Condition (P.2) is satisfied.
| (P.3) Individual free—m"ding. Individual free-riding requirés that if a player leaves any coalition = -
to be alone, then s/he is better off. Theorem 5.4.10 (ii) implies Condition (P.3).
(P.4) Efficiency. Efficiency implies that the grand coalition is the only efficient coalition struc-
‘ture with respect to the expected profit. Corollary 5.4.3 implies Condition (P.4).
Thus, we have verified that all f(;ur requifed conditions of M&V are satisfied, and' the proof of

Theorem 5.4.17 follows. O

'Proof of Theorem 5.4.18. Recall that a coalition structure B is symmetric if and only if |By| =
|Bi| for all By, By € B. We denote by P* = {N } the grand coalition and by P the stand-alone
(i.e., independent) coalition structure: P = {Bj, ..., B,} with |Bj| = 1 for all B; € P (P* and P .
are syminetric coalition structures). ‘

(i) By Lemma 3 in M&V (2004), under Conditions (P.1) - (P.4), P* € LCS(G,<) and P* €

LCS(G, <). Since (P.1) — (P.4) were shown to be satisfied in the proof of Theorem 5.4.17 under a

| power demand distribution, (i) follows. '

(ii) By Proposition 4 in M&V (2004), a sufficient condition for the LCS to cbnsist only of the

grand coalition is that Conditions (P.1)-(P.4), as well as Condition (A) hold, where Condition (A)

requires: Fach non-symmetric coalition structure contains at least one coalition whose members

" receive less than in the stand-alone coalition structure. Since Conditions (P.1)-(P.4) are satisfied

for a- power demand distribution, we only need to verify that Condition (A) is valid.

Let us first consider the suppliers’ expected profits in the stand-alone structure where m =n. -

p=C _
By Theorem 5.4.2 (i), QF = (Iﬁ)q%, and each supplier’s expected profit is: EII},(P) =
3T
p=C g42
p(QR)2F(Qr) = p(@Qr)TH2 = P(—Tr:;—n)q“-
q

For n = 2, Theorem 5.4.10 (i) implies that neither of the two suppliers would have an incentive
to deviate from the grand coalition. Thus, in this case, LCS(G, <) = LCS(G, <) = {P*}.
“Forn = 3, there is a unique coalition profile, < 2,1 >, corresponding to non-symmetric coalition
structures. Such a profile represents coalition structures consisting of one coalition of two members ‘

and another coalition of a single member. Consider any supplier, M;, in the coalition of two players.

p=C +2 * (D 1 490 g+2°
Then, by Theorem 5.4.2, EII}, = %(1”3)33 Thus, E—gﬁ‘% = 2(—qi1—:3)%ﬁ, which is strictly
q+1 i q+1

increasing in g, and is bounded between %, for g =0, and %, for ¢ — oo. Therefore, such M; receives .
in the coalition profile < 2,1 > less than in the stand-alone coalition structure, and Condition (A)

is satisfied.

For n = 4, we. use the same approach as above to verify Condition (A). There are two coalition
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profiles, A; =< 3,1 > and A3 =< 2,1,1 >, corresponding to non-symmetric coalition structures.

Let us first analyze A;. Con51der any supplier, M;, which is in the coahtlon of three players. Then,

2=C g42 (P) +2, g+2
by Theorem 5.4.2, ETl}, = g(ﬁ)ﬁl, Therefore, T%M— = 3(_ql__+_4)q+1, which is strictly
g+1 i q+1

increasing in ¢, and is bounded between 2 %, for ¢ = 0, and —g—, for ¢ — o0o. Let us now study

Ajy. Consider any supplier M; which is in the coalition of two players. Then, by Theorem 5.4.2,

L gi2 +3, a2

Ell}, = g(lp—ﬁ)qﬂ. Therefore, Er"f.(.P ) = 2(%)%, which is strictly increasing in ¢, and
g+1 q+1

is bounded between 32 53, for ¢ = 0, and , for ¢ — o0o0. Thus, we conclude that for n = 4, each

non-symmetric coalition structure contains at least one coalition whose members receive less than
in the stand-alone coalition structure.

(iii) For n > 5, denote by Xy, the distinct collection of coalition structure profiles corresponding
to non-symmetric coalition structures having m coalitions. For 7, =< 71,...,7m >€ Ay, let
Y(tm) = max{y; : i = 1,..,m}, and let ¥{(&y,) = min{y(Tm) : T, € Xm}. The following two
observations can be easily verified:
Observation A.l: For any values of n and m, in order to verify whether each non-symmetric
coalition structure with m coalitions contains at least one coalition whose members receive less
than in the stand-alone coalition structure, it is sufficient to consider an arbitrary coalition B such
that |B| = v(Xn). |
Observation A.2:' Given any values of n and m €.[2,n — 1], (&) = [ 2] + 1, where 2] is the
integer component of z.

Based on Observations A.1 and A.2, we merely need to consider a coalition whose cardinality

is ] +1. By Theorem 5.4.2, each member in this coalition earns an expected profit EIl}, =

p=C
_1+1(—_1—1’+—m)gﬁ Thus, E—gﬁép— (L% J+1)(3—h)gﬁ whxch is strictly increasing in ¢q € [0, 00)
m g+1 1

for any given n and m, and is bounded from above by ([ 2]+ 1)(;), which is strictly greater than 1.
Thus, there exists a g™ € [0, 00) such that —Eﬁfi(q >g¢g™)>1forany2<m<n-landn>35.
Let ¢, = max(q?, ¢, ...,q™). Therefore, for ¢ > gy, each non-symmetric coalition structure contains
at least one coalition whose members receive less than in the stand-alone coalition structure, which

completes the proof of Theorem 5.4.18. U

Proof of Lemma 5.5.1. When m = 1, the grand coalition was formed. Thus, according to
(5.6), Q* = F~1(1 — %) When the grand coalition is formed, our model is equivalent to the
single-supplier single-assembler system, which has been studied by Cachon (2004a). Our result is

consistent with that derived in Cachon’s paper.

. Cnr, _- Cp; .. . -1 Cp _
When m > 2, since g2 = maxje{l,m,m}(mi;) and F(z) is increasing, F~'(1 — WBZ') =
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min; (F~1(1- oL )Y, By (5 6), in equilibrium, min(Q*) < F~1(1 - @ﬂ) Assume that ghere exists
an equilibrium sui:h that QBk # Qp, and min(@p,,¥B,) < F~ (1~ CB ) where k,h € {1,...,m},
and k # h. Without loss of generality, assume Qg, > B, . Thus, accordlng to (5.6), By, has an in-
centive to reduce its quantity from Qp, to @p,. Contradiction. Thus, Qp, = ... = Qp,, . By (5.6),

it is easy to verify that none of the suppliers has an incentive to deviate when (ii) holds. O

Proof of Lemma 5.5.3. According to Lemma‘5.5.1, 0<Q@p =..=Qp, = Q*<F(1- g,—‘f;—)
is a Nash equilibrium. No proper collection of coalitions B’ in B, B’ C B, taking the actions of
all other coalitions in B as given, can profitably deviate from Qp = .. = Qp, = Q*. Indeed,

the expected profit of any coalition in B’ is increasing in @, for @ € [0,Q*], and it is decreasing

in Q, for @ > Q*. However, a profitable deviation from Qf = .. = Qp < Fi1 - v%%—)
exists, if the entire collection of coalitions in B deviates to @, = ... = Qp = FY(1 - C—iﬂ-)
From Q3 = .. =Q%, =F (1 - vcl‘,B ), there is no profitable deviation by any collection, B', of

coalitions, including the case when B’ = B. O

Proof of Theorem 5.5.4. We first show that the assembler chooses a wholesale price set which

induces an identical ratio of manufacturing cost to wholesale price for each coalition, i.e., WEL =

— Com
Wa,, '
. s C C
Suppose there exist at least two coalitions, By and By, such that —B& #+ Wih" where k # h
By h

C
and k,h € {1,2,...,m}. Recall that —f- = maXje(1,2,..,m} (s ) and observe that Ex(min(@Q, X))
in the assembler’s profit function, given by (5.7), and the constramt, given by (5.8), depend on
% only. Thus, the assembler’s profit function, given by (5.7), is strictly decreasing in Wp, for

Cg,
any j # e, as long as VV—ZL < %Zi. Therefore, by Constraint (5.9), at optimality, we have that
. J e .

Cs; C ) C c C
—L = =B —B‘L = B p— = ~Bm = 4
Wa, Wo. for any 5 # e. Thus, Wor —1W32 et = a and the assembler’s profit

function, given by (5.7), results with: Ellg = (p— —C)EX (min(Q, X)), which is strictly decreasing
in 1 and strictly increasing in Q. Constraint (5.8) becomes: 1 = T—ﬁ@ Thus, the assembler’s
problem coincides with his problem when all suppliers form the grand coalition, i.e., m = 1. By
Lemma 5.5.1, whenm =1, Q* = F~1(1— —) ie., W W’ and the assembler’s profit function

becomes:

_C
1-F(Q)
It is shown by Cachon (2004a) that ETIg is strictly concave in @, and that the unique optimal

Ellp=(p-W)S(Q) = (p- )S(Q)- (5A.2)

production quantity satisfies:

, (5A.3)
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where J(Q) = 175},9—1— and H(Q) = l_fFQ . Thus, a* = VC;,E;L‘ =1- F(@*) for any j. O i
@ @ B;

Cp,
Proof of Corollary 5.5.5. (i) follows from Theorem 5.5.4 (i). Further, by (i), Wg, = ﬁb’*}"

Substituting ng into Bj’s profit function, given by (5.5), and simplifying results with Eﬂgj =
Cp,

TG, - 0@ = FWS(@) - CQ) = GBI (m = 1). O

Proof of Proposition 5.5.6. Suppose coalitions B;j and By are in B. Without loss of generality,

et Csp,; C Cs; ..
assume that Cp;, > Cp,. In equilibrium, WJ]— = W‘%& Thus, W}‘;j = C_Bfwgk. Coalition Bj’s

Cg.;
equilibrium profit is: Ellp. = WéjS(Q*) -Cp,Q* = CB o Wp, S(Q") ~ Cp,Q* = C,%k—(ng'S(Q*) -
Cp, Q") > (W, S(Q*) — Cp, Q") = EIl, , where the last inequality follows since Cp; > Cp,. O

Proof of Proposition 5.5.7. (i) According to (5A.3), in equilibrium, C - G(Q") = p(1 = F(Q%)),
where G(Q) = 1 + J(Q)H(Q). Recall that J(Q)H(Q) increases in Q. Thus, G(Q) increases in Q.
Taklng derivatives with respect to Cp, on both sides of the equation C-G(Q*) = p(1—F(Q")) results
with G(Q") + c G(@)3c5) = ~PF @555 Thus, zes5(C - G'(Q) +pf(@") = ~G(@").
Therefore, m < 0 since C' - G'(Q*) +pf(Q*) > 0 and G(Q*) > 0. ‘

= W?WQ_*) decreases in Q* since J(Q)H(Q) increases in Q. Since Q* decreases
in Cp;, W" increases in Cpg,, i.e., ééc%;)i > 0. Similarly, Wg, = T‘—%&ﬁ_ increases in Q*,*which
decreases in Cp, for i # j. Thus, Wg, decreases in Cg;, ie., '{%%_) < 0. Therefore, Z—vggf >0
since W* = E72,(Wpg,).

a(EMy) W3 )

. . * * * ( *
(iii) For any 1 # j, ETlg = Wp S(Q* ) Cp,Q*, and taking derivatives, 2Cs ) = Cs, » (@) —

I}
(Wg,(1 - F(Q ) — CB )78(9—)5 = m(év—gﬁ)S(Q ) <0, where the last equality follows since Wp (1

F(Q*)) — Cpg, = 0 and the last inequality follows since a(( )) < 0.
(iv) EIlj, = (p—W*)S(Q"). Since W* increases in Cs, and Q" decreases in C,, Elly, decreases

in CBj- O

Proof of Proposition 5.5.8. Under the proportional splitting rule, both for coalitions and
individual suppliers of the same coalition, the equilibrium profit of each supplier is independent
of the coalition structure, and is proportional to its own marginal cost. Thus, all suppliers are

indifferent among all coalition structures. O

Proof of Proposition 5.6.3. (i) Since EIlg ,,;(Q) is unimodal in @ and uniquely maximized at

Q;ulb and Q;u” < QPa EHR,pull(Q;u[[) > EHR,pull(QP) . Further, EHR,push(Q;ush) < EHR,push(QP) '
since EIlg pusn(Q) is strictly increasing in @ for @ > 0 and Qpush, < QF. By Lemma 5.6.2,

ENR pui(QF) = ETlR pusn(QF). Thus, ETIR puit(Q) > ETLR push(Q@jys,) and (i) is proved.
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(ii) Similar to the proof of (i), ETIS2tl (@2 ) > EI#t  (QF), since ETITPll, (Q) is uni-

pull
EHTA}’,%”(QP) since EH{,}’)%”(Q) is strictly increasing in @ and Qp,; < QF. By Lemma 5.6.2,

EHJIl:I(J,t;aﬁfsh(QP) = EH?]\:IO,;%H(QP)' ThUS, EH]]\—Zgﬁsh( ;ush) > EH’I]\}?;;IJH( ;ull)' o

modal in @ and uniquely maximized at Q.. and Q. < QF. Further, Eﬂﬁ;ﬁf”( )<

Proof of Proposition 5.6.4. Given any supplier M; with marginal cost cps,, under push, her
’ EHTotal - . .
equilibrium expected profit is EH}(\/Ii,push = —M”’“;ﬂ‘w, and her corresponding equilibrium
expected profit under E‘)ulll is EH*Mi,p‘u,ll = C—giEHTA:gtp‘ﬁ“(Q;u”). Thus, EH*Mi,pusﬁ > EH}‘wi,pu” is
EN ota -
equivalent to cpy, < ﬁ"%{%“’,hg—g‘f‘i) . %, which completes the proof of (i). Accordingly, (ii) and (iif)
M,pul!

pull)

follow immediately. O
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