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Abstract 

Serial analysis of gene expression (SAGE) not only is a method for profiling the 

global expression of genes, but also offers the opportunity for the discovery of novel 

transcripts. SAGE tags are mapped to known transcripts to determine the source of tags. 

We hypothesized that tags that map neither to a known transcript nor to the genome span 

a splice junction, for which the exon combination or exon(s) are unknown. Splice 

junctions are typically recognized by the pair of highly conserved dinucleotides at each 

edge of an intron, GT at the 5' end and AG at the 3' end, as well as by other less 

conserved nucleotides flanking the junctions. In the known transcriptome, between 1.6 to 

6.2% of predicted tags span a splice junction. We have developed an algorithm, 

SAGE2Splice, to efficiently map these unmapped SAGE tags to potential splice junctions 

in a genome. An evaluation scheme was designed based on position weight matrices to t 

assess the quality of candidates. Candidates were classified into three types of spliced 

tags, reflecting the previous annotations of the putative splice junctions. A Type I tag 

spans a novel junction where the exons are known; a Type 2 tag spans a previously 

known and an unknown exon; and a Type 3 tag spans two previously unknown exons. 

Analysis of predicted tags extracted from EST sequences demonstrated that candidate 

junctions having the splice junction located closer to the centre of the tags are more 

reliable. Using high sensitivity and high specificity parameters, 7,757 candidates were 

predicted from 1,639 of 20,000 unmapped tags by SAGE2Splice. We selected 12 
r 

candidates splice junctions and tested them using RT-PCR. Nine of these twelve 

candidates were validated by RT-PCR and sequencing, and among these, four revealed 

previously uncharacterized exons. To screen more unmapped SAGE tags, we proposed 
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methods to improve SAGE2Splice in engineering efficiency, program usability, and 

candidate evaluation methods, as well as to include a high throughput laboratory 

procedure for testing the predicted candidates. We expect that many more novel 

transcripts can be discovered using SAGE2Splice. SAGE2Splice is available online at 

http://www.bcgsc.ca/sage2splice/. 
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Chapter 1 Introduction 

1.1 Gene Expression 

The focus of this thesis is on the exploration of the transcriptome. Understanding 

how genes are regulated and how they are expressed is a critical step toward 

comprehending the transcriptome. In a typical gene expression study, one often compares 

different tissues or cell types, either between the same tissues under different 

physiological conditions or time points, or between a diseased tissue and a normal tissue. 

In such studies, statistical and computational methods are used to extract a set of genes 

that are differentially expressed or that form interesting patterns for further biological 

investigations. 

1 . 1 . 1 C u r r e n t T e c h n o l o g i e s o f G e n e E x p r e s s i o n 

Several technologies and their variants have been developed for gene expression 

experiments, including hybridization-based methods, such as microarrays, and 

sequencing-based methods, such as serial analysis of gene expression (SAGE) [1]. 

Technology based on hybridization methods, while often low in cost, requires prior 

knowledge of the genes being studied and the data are presented as relative levels of 

hybridization. In contrast, though often more expensive, sequencing-based methods, 

because they do not require prior knowledge of the genes being studied, offer the 

opportunity for the discovery of unknown transcripts. In addition, the expression levels 

are presented in absolute quantities. Both technologies have been intensively applied to 

the field of molecular biology, genomics, and medical studies, and have produced fruitful 
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results in these fields. However, the advantage of SAGE for transcript discovery has 

made it the focus of this thesis. 

1.1.2 S e r i a l A n a l y s i s o f G e n e E x p r e s s i o n 

SAGE offers high-throughput quantification and analysis of global gene 

expression patterns of a particular tissue. In this technology, a short nucleotide sequence, 

called a tag, is extracted from the 3' end of a transcript adjacent to the poly-A tail [1]. 

Due to modifications in SAGE protocols, a SAGE tag extracted in the original protocol is 

14 bp; in LongSAGE [2], 21 bp; and in SuperSAGE [3], 26 bp. The SAGE technology 

relies on two basic principles. First, a short oligonucleotide sequence extracted from a 

position defined by a specific restriction endonuclease, the anchoring enzyme, typically 

Mal l l , uniquely identifies the specific mRNA transcript of origin. Second, the 

concatenation of each of these oligonucleotide sequences allows the tags to be detected 

during a sequencing process in an efficient manner [4, 5]. The SAGE tags analyzed in 

this project were collected by the Mouse Atlas of Gene Expression Project [6] and were 

extracted using the LongSAGE protocol. 

1.2 The Mouse Atlas of Gene Expression Project 

Because of the high degree of genetic similarity to human, the mouse has emerged 

as a model organism for studying development and disease [7]. The Mouse Atlas of Gene 

Expression Project, funded by Genome Canada, aims to construct a comprehensive atlas 

of gene expression by using the SAGE method to explore the different stages of mouse 

development, from the single cell zygote to the adult. In the project, SAGE libraries are 

constructed for 200 tissues, often those enriched for specific cell types. In addition to 
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these SAGE libraries, the Atlas Project has developed an open source software, 

DiscoverySpace [8], to provide statistical and annotation tools for manipulating gene 

expression datasets, especially SAGE. The Mouse Atlas Project is a public resource for 

basic and clinical researches for the study of genetic pathways controlling development 

and disease. 

1.3 SAGE Tag-to-Gene Mapping 

1 . 3 . 1 M e t h o d s a n d P r o b l e m s 

For a particular tissue under a specific condition, the collection of SAGE tags and 

their frequencies is called.a SAGE library. The frequency of each tag reflects the 

abundance of its respective transcript. To analyze SAGE data, the transcript from which 

each tag is derived is identified, a process termed tag-to-gene mapping [9]. Technical 

details of tag-to-gene mapping are described in Chapter 2. As a sequencing-based method, 

SAGE is prone to sequencing errors and these errors affect the accuracy of tag-to-gene 

mapping. Furthermore, ambiguities also arise when a tag maps to multiple transcripts and 

when multiple tags map to the same transcript. Often assumptions have to be made and 

data cleaning is required to cope with such sequencing errors and ambiguities [10]. Tags 

are mapped to two types of resources, transcriptome databases and the genome. A tag that 

does not map to a known transcript but does map to the genome may indicate a potential 

novel transcript [2, 11]. Chen et al. [12] suggested that, in their study, 67% of tags that 

did not map to a transcript originated from novel transcripts. 
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1 . 3 . 2 T a g s S p a n n i n g a S p l i c e J u n c t i o n 

As a general rule, a tag that maps to a transcript will find a corresponding match 

in the genome of the respective organism. However, as will be described in Chapter 2, 

between 1.6 to 6.2% of tags span a splice junction, hence no match in the genome is 

observed. While the tags that map neither to the transcriptome nor to the genome may be 

artifacts, we hypothesize that these tags span previously uncharacterized splice junctions 

and represent a rich source for the discovery of novel transcripts. 

1.4 Splice Junction Properties 

1 . 4 . 1 I n t r o n s a n d E x o n s 

One of the major differences between eukaryotic and prokaryotic genes is the 

presence of introns and exons. Discovered by Sambrook in 1977 [13], eukaryotic genes 

consist of expressed sequences, the exons, and intervening sequences, the introns. During 

the transcription process, both the exons and the introns are transcribed to RNA. Through 

a processed called RNA splicing, the intron sequences are removed from the recently 

transcribed RNA sequence. The consequence of splicing produces a continuous sequence, 

which is consisted of only the exons and contains information for the translation of 

proteins. At the junction of exons and introns where the splicing reactions occur, a 

conservation of sequence pattern is observed. These patterns surrounding the splice 

junctions, which at the 5' end of the intron is called the donor and at the 3' end is called 

the acceptor, are conserved across genes and across species. The most invariant bases are 

the dinucleotides on each end of an intron flanking the splice junction. At the donor end, 

the bases are GU, and at the acceptor end AG (the GU-AG rule). An additional invariant 
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base is an A nucleotide situated in the central region of an intron. Other bases flanking 

the splice junctions are less conserved, but high frequencies are observed for certain 

nucleotides [14, 15]. 

1 . 4 . 2 T h e S p l i c i n g R e a c t i o n 

Small ribonucleoprotein particles (snRNP), which are formed by complexes of 

protein and small nuclear R N A (snRNA), recognize the regions surrounding these 

invariant nucleotides. A group of snRNPs form the spliceosome, a functional unit that 

binds to the intron and subsequently catalyzes the splicing reaction and removes the 

intron. Through a transesterification reaction, one end of the intron is released from the 

junction and attaches to the invariant adenine nucleotide to form a lariat-like 

configuration. Subsequently, the lariat is released from the R N A and another 

transesterification reaction joins the two exons together. The splicing reactions take place 

in the nucleus and yield mRNA molecules from the precursor R N A [14, 15]. 

To ensure the accuracy of splicing, the sequences of the splice sites and the 

branch point are checked several times before the transesterification reactions are allowed 

to proceed. Nevertheless, splicing is a complex process. Stochastic events in splicing can 

result in unexpected forms of mRNA that serve no biological function. Furthermore, 

splicing errors, such as exon skipping and the use of splice sites that closely resemble true 

splice junctions, are often observed. [15]. These transcripts are produced sufficiently 

often to be detected by sensitive gene expression profiling techniques such as S A G E , and 

cannot be distinguished from functional transcripts based on sequence analysis. 
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1.5 Computational Gene Prediction 

1 . 5 . 1 C u r r e n t A p p r o a c h e s f o r G e n e P r e d i c t i o n 

With the ever increasing availability of genomic sequences, computational 

approaches have been developed for predicting potential genes. Current approaches of in 

silico gene prediction use two methods: ab initio and homology-based [16, 17]. Ab initio 

gene predictions rely on DNA sequence signals and nucleotide composition. This is 

possible because signals such as transcription factor binding sites, promoters, and 

translation start and stop codons typically show a certain degree of sequence conservation. 

Moreover, certain base combinations are usually used more frequently in coding regions. 

A common step in ab initio prediction is the use of Hidden Markov Model (HMM) to 

assesses the probability of the observed nucleotide usage in an exon [16, 18]. Several 

tools have been developed based on ab initio search, including GENSCAN [19], GRAIL 

[20], GenelD [21, 22], and FGENES [23]. Conversely, homology-based methods use 

known sequences as a template and make predictions for sequences that are homologous 

to a known gene in another organism. It is assumed that sequences that are conserved 

have similarly conserved function, thereby similarity to known sequences may be strong 

evidence of functional sequences. Programs that are based on the similarity-based method 

have been developed, including TWINSCAN [24], an extension of GENSCAN; SGP-2 

[25], which extends from GenelD; and SLAM [26]. Predictionsbased solely on signal 

and pattern recognitions have improved over the last decade, although the accuracy varies 

among algorithms and organisms. Conversely, although the use of known transcripts to 

annotate the genomic sequence may provide higher confidence, this technique can be 

limiting because it is possible that genes may not have a homologous sequence known in 
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other organisms. In this thesis, we developed an algorithm that combines the detection of 

sequence signals and the evidence offered by SAGE tags for the prediction of novel 

splice junctions. 

1.5.2 Splice Junction Prediction 

Gene prediction in eukaryotic organism is more complicated than in prokaryotic 

organisms because of the presence of introns and exons. Therefore, the identification of 

signals that indicate candidate splice sites, exons, and introns is, a crucial element in the 

approach. An ab initio approach to predict exons generally attempts to detect four types 

of signals: the translation start site, the donor splice site, the acceptor splice site, and the 

translation stop codon [16]. For internal exons, certain nucleotides that code for specific 

amino acids are also used as a measure of evaluation. One of the earliest method for 

splice site prediction and evaluation was the use of position weight matrices (PWM), 

which evaluates splice site signals by detecting nucleotide usage at specific positions [27]. 

Statistical models that describe the dependencies between base positions have also been 

studied. The gene prediction software, GENSCAN, uses a decision tree method, maximal 

dependence decomposition (MDD), to predict splice junctions [28]. Cai et al. [29] 

applied Baysian networks to model splice sites. A recent study predicts splice sites with 

dependency graphs (DG) and their expanded Baysian networks [30]. The DG model was 

able to achieve >90% for both sensitivity and specificity. Because nucleotides flanking 

the splice junctions are conserved for spliceosome recognition, in this project we adopted 

the PWM method to assess the quality of predicted splice junctions. 
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1 . 5 . 3 P o s i t i o n W e i g h t M a t r i x 

For the detection of regulatory elements, such as transcription factor binding sites 

(TFBS), along a stretch of DNA sequences, a commonly applied method is the use of a 

motif model [31]. A consensus sequence pattern is often observed for a common family 

of TFBS. Each category of binding sites often has a fixed length and specific nucleotides 

are used at every position. In the motif model, by using a list of transcription factor 

binding sites, a matrix is built to indicate the frequency of nucleotide usage at every 

position. The frequency matrix is then converted to a PWM for evaluating the DNA 

sequence of interest. During the evaluation, the weights of nucleotides, according to the 

weight matrix, at each position of the sequence are summed. A pre-determined threshold 

value is used to decide whether or not the sequence under evaluation is a consensus 

binding site. The PWM method for identification of DNA binding sites is generally 

reliable and is able to detect more binding sites than is sequence alignment methods [31]. 

This prediction method, however, does suffer from a high number of false positives. The 

PWM evaluation method has been adopted for the detection of splice site signals [27, 32] 

because, similar to TFBS, the sequences flanking the donor and the acceptor splice 

junctions are specifically recognized and bound by spliceosomes that control the splicing 

reactions. As suggested by Burset et al, [32], the PWM method can be used to predict 

splice junctions and can be incorporated into gene prediction programs. For my project, I 

have chosen to use the PWM method to evaluate tags.that are predicted to span a splice 

junction because of its sensitivity to predict DNA binding sites. Tag sequences are 

additional evidence to support the splice junction predictions. 
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1.6 Overview of the Project 

Motivated by the the potential of transcript discovery, in this thesis project, we 

have mapped SAGE tags that were unassigned to a known transcript or to the genome. 

The frequency of SAGE tags that span a splice junction in a transcriptome database was 

investigated. An algorithm, SAGE2Splice, was developed to identify candidate splice 

junctions covered by SAGE tags. Tags are split into two portions, which we termed the 

edges, and mapped to the genome within a confined distance and satisfying splice 

junction sequence patterns. A web interface was developed to offer this new functionality 

to the online community (http://www.bcgsc.ca/sage2splice). We tested the program with 

spliced tags, tags known to span a splice junction, to assess the sensitivity and the 

specificity, and to choose the parameters and parameter optimums for predicting 

candidate splice junctions. In addition, by using a different set of spliced tags, we 

determined that candidate tags having their predicted splice junction closer to the centre 

of the tag are more likely to be validated in an experiment. Using 20,000 unmapped tags 

taken from the Mouse Atlas of Gene Expression Project, SAGE2Splice predicted that 6% 

span a candidate splice junction. Twelve candidate junctions were selected, based on 

evidence of previously characterized exons (Type l) and computer predicted exons 

(Types 2 and 3), for laboratory testing using RT-PCR and sequencing, of which nine 

revealed novel transcripts. The results demonstrate that SAGE tags that map to neither 

the transcriptome nor to the genome are a rich source for the identification of novel 

transcripts. j 
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Chapter 2 SAGE2Splice: Unmapped SAGE Tags 

Reveal Novel Splice Junctions1 

2.1 Introduction 

The complexity of the transcriptome is significantly greater than that of the 

genome due to alternative splicing. It is estimated that between 35-65% of human genes 

are alternatively spliced [1,2]. The slo gene, for example, is estimated to produce more 

than 500 distinct transcripts, which regulate various responses of the hair cells of the 

inner ear to sound [3]. Identification of the transcripts present within a cell can provide 

insights into the regulatory processes that control the cell-specific interpretation of the 

genome [4]. 

Serial analysis of gene expression (SAGE), in which a representative tag (14 to 26 

bp) is excised from each transcript, is a powerful and efficient technology for high-

throughput qualitative and quantitative profiling of global transcript expression patterns 

[5]. SAGE quantitatively measures transcript levels, providing the absolute number of 

each transcript-specific tag within a library of all tags. That no prior knowledge of the 

transcripts being studied is required makes SAGE advantageous over array-based 

methods for the discovery of novel transcripts [6-11]. 

An essential step in the analysis of SAGE data is the assignment of each tag to the 

transcript from which it was derived [10]. This process, termed tag-to-gene mapping, 

involves comparison of tag sequences to transcript databases. A commonly used 

' A version of this chapter has been submitted for publication. 
Byron Yu-Lin Kuo, Ying Chen, Slavita Bohacec, Ojvind Johansson, Wyeth W. Wasserman, and Elizabeth 
M. Simpson. (2005) SAGE2Splice: Unmapped SAGE Tags Reveal Novel Splice Junctions. Sumitted to 
PLoS Computational Biology. 
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technique is to compare SAGE tags to predicted tags (also known as virtual tags). Based 

on known transcript sequences, predicted tags are those expected to be generated by a 

SAGE protocol [12], Often, the predicted tags closest to the 3' end of transcripts are 

emphasized, as SAGE protocols impart a location bias. However, in a SAGE experiment, 

due to alternative splicing or incomplete enzyme digestion [13, 14], tags can be excised 

from other positions. The choice of sequence databases impacts the quality of tag-to-gene 

mapping [10]. A highly curated and more complete transcriptome database not only 

facilitates mapping of more tags, but also increases confidence in the mappings. Many 

resources have been developed for mapping SAGE tags to genes, including NCBI's 

SAGEmap [15], CGAP's SAGE Genie [16], the Mouse SAGE Site [17], Identitag [12],1 

and DiscoverySpace (personal communication, Steven J. Jones, British Columbia Cancer 

Agency, Vancouver, Canada). Despite these efforts, however, a major problem of tag-to-

gene mapping exists as ~ 1/3 of the tags is unmapped. Inability to map tags limits the 

information obtained in SAGE studies [6, 7, 10]. The identification of unmapped tags 

remains an active research topic in SAGE analysis. 

Recent studies have attempted to map SAGE tags that did not match the known 

transcriptome. Chen et al. [18] studied 1,000 unmapped SAGE tags from publicly 

available libraries by generating longer cDNA fragments from SAGE tags for gene 

identification (GLGI), and concluded that 67% of the unmapped tags originated from 

novel transcripts. In an analysis of unmapped long SAGE tags (21 bp), Saha et al. [19] 

predicted 60% were from transcripts of novel genes and 40% were from unidentified 

internal exons of predicted genes. Gorski et al. [8] identified 225 cases of genes, that 
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previously had been unidentified by gene prediction programs. Each of these studies 

affirmed the capacity of SAGE profiling to facilitate identification of novel transcripts. 

Tags that do not map to the trariscriptome or to the genome may span adjacent 

exons of which one or both were previously unidentified [8]. We analyzed predicted tags 

that had been derived from known transcripts and observed between 2 to 6% of these tags 

span a splice junction. Thus, even tags that do not map to the genome are anticipated to 

be a resource for the discovery of novel transcripts. To test our hypothesis, we developed 

an algorithm, SAGE2Splice, for mapping tags to potential splice junctions in a genome. 

Applying this new method for tag-to-gene mapping, we demonstrated that 6% of 

unmapped tags span candidate splice junctions. By using high sensitivity and high 

specificity parameters, we identified 3,458 candidate junctions for 1,212 tags from a 

collection of 20,000 high quality unmapped SAGE tags. Nine out of the twelve tested tag 

mappings were validated by RT-PCR. 
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2.2 Results 

2.2.1 S o m e P r e d i c t e d S A G E T a g s S p a n a S p l i c e J u n c t i o n 

We defined four distinct types of spliced tags, tags that span a splice junction 

(Figure 2-1). A Type 0 tag matches portions of two exons at a known splice junction. 

Type 0 tags were identified by mapping to known transcripts. A Type J tag also spans 

two known exons, but the junction is not present in the transcriptome databases. A Type 2 

tag spans a previously known exon and a previously unknown exon. Both Type 1 and 

Type 2 tags indicate a novel transcript of a previously characterized gene. A Type 3 tag 

spans two previously unknown exons and indicates either two novel exons of a 

characterized gene, or two exons of a novel gene. 

rx: Gfi i 

Type 0 (Maps to Known Transcript) 
Known Exons, Known Junction 
Type 1 (Novel Transcript) 
Known Exons, Novel Junction 
Type 2 (Novel Transcript) 
One Novel Exon, Novel Junction 

2 3 I 

! 2 4 

~ • 
I 3a F_ 4 I 
.- ~ — - . T y p e 3 (Novel Transcript or Novel Gene) 

1 Two Novel Exons, Novel Junction 

Figure 2-1: Tags that span a splice junction may reveal novel genes or novel transcripts. This 
schematic demonstrates four known exons (1, 2, 3, and 4, boxes in solid lines). The 3'-most 7VMII 
enzyme restriction site (represented as ~) lies near the 3' edge of exon 2 and a known predicted 
SAGK tag ( • • ) spans exons 2 and 3 (Type 0 tag). Predicted exons (boxes in dashed line) 3a and 3b 
are examples of exons predicted by SAGE2Splice. Three other types of tags (Types 1 to 3) have been 
defined as potential candidates in SAGE2Splice predictions. Tag portions arising from known exons 
(BI), whereas tag portions arising from novel exons ( ). Solid lines connecting exons indicate known 
combinations, whereas dashed lines indicate unknown combinations. 

To determine the portion of predicted tags that span splice junctions of known 

transcripts, we studied RefSeq sequences. From 17,848 sequences studied, 198,419 
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predicted tags were extracted based on the identification of all MoIII restriction sites. 

One hundred and Ninety-three RefSeq sequences (approximately 1.08%) did not contain 

a Ma l l l restriction site, and thus, were unable to give rise to a SAGE tag. Among the 

predicted tags, 12,297 (6.2%) overlapped a splice junction (Type 0). In addition, 14 

predicted tags traversed two splice junctions (Table 2-1). These were due to very small 

exons [20], between 1 bp to 4 bp in length. Since the SAGE technique excises tags from 

the Nlalll restriction site closest to the 3' end of transcripts; from the RefSeq sequences, 

17,655 predicted tags were extracted from the 3'-most position and investigated. Among 

these predicted tags, only 292 (1.6%) were Type 0. The different Type 0 frequencies 

between the all-position set and the 3'-most set reflects that exons are generally longer at 

the 3'̂ end of a transcript [20]. In the analyzed RefSeq sequences, the average length of all 

exons was 262 bp, whereas the average for all 3'-most exons was 1,068 bp. Hence, at the 

3'-most position, the probability of finding a splice junction within a tag is lower than that 

from the set of all M a l l l positions. 

Table 2-1: 6.2% of predicted tags from all /VMII restriction sites, and 1.6% from 3'-most sites were 
found to span a known splice junction (Type 0 tags). 

Tag Position 
Number of 
Predicted 

Tags' 

Number of 
Type 0 Tags 

Number of Tags 
Spanning Multiple 

Junctions 
All Mal l l 
3'-most W/alll 

198,419 
17,655 

12,301 (6.2%) 
283 (1.6%) 

14 
1 

' Curated RefSeq cDNA collection was analyzed to detect Malll restriction sites and the downstream 17 bp 
sequences (predicted SAGE tags). Predicted tags were extracted from UCSC Annotation Database (July 16, 
2004). 

17 



2.2.2 I n t r o n P r o p e r t i e s 

In our development of SAGE2Splice, an important search criterion was to 

determine the maximum length the algorithm should allow for candidate introns. 

Previous studies have shown that, although a typical intron is 40-125 bp in length, the 

average length is approximately 1,000 bp because the sizes of introns vary over a very 

wide range [20, 21]. In our studies of the RefGene annotations, we confirmed that within 

the known splice junctions, introns vary from 6 to 1,195,292 bp in length, with a median 

of 1,271 bp (Figure 2-2). Ninety percent of introns were smaller than 10,000 bp and 95% 

were smaller than 20,000 bp. We incorporated 10,000 bp as the default for maximum 

intron size in the search for candidate splice junctions. 

Score (AU) Score (AU) 

Figure 2-2: Length and boundary nucleotides of introns are important properties for detecting a 
splice junction. (A) Less than 10% of introns in RefGene annotation were greater than 10,000 bp in 
length. (B) and (C) a position weight matrix (PWM) for splice junctions was applied to true splice 
junctions defined by RefGene annotations and to randomly selected genome sequences containing the 
canonical dinucleotide pair at the appropriate position. The scores, which were computed based on 
the profile model, for donors and acceptors were plotted and showed that true splice junctions 
acquired high scores. The information content and the relative frequency of nucleotides at each 
position are measured in bits (vertical axis of the sequence logo diagrams) to indicate the strength of 
signals. Two bits of information are required to determine the content of a DNA sequence. AU: 
arbitrary units. 
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To gain a more detailed understanding of the sequence patterns of splice junctions, 

we examined 10 bp flanking each side of the donor junctions and 10 bp flanking each 

side of the acceptor junctions. For each junction type, we constructed a matrix 

representing the frequency of each nucleotide at each position. Position weight matrices 

(PWM) were constructed by converting the frequencies into scores relative to the 

expected frequency of a randomly selected nucleotide (see Materials and Methods). By 

using these scoring matrices, we generated genuine score distributions for true splice 

junctions in RefSeq and empirical score distributions for randomly selected sequences 

from the genome. By superimposing the genuine distribution on the empirical distribution, 

it was shown that genuine splice junctions typically had high scores and were located on 

the far right end of the empirical curve (Figure 2-2). Hence, we incorporated these 

properties into our SAGE2Splice algorithm for ranking and determining the likelihood of 

candidates. 

2 . 2 . 3 T h e S A G E 2 S p l i c e A l g o r i t h m 

2.2.3.1 Pre-processing the Input SAGE Tags 

In a 21-bp SAGE tag, if a splice junction exists within the sequence, one of the 

two portions is no shorter than 11 bp in length. Each 21-bp tag is therefore split into two 

equal portions of 11 bp (overlapping by one bp), which are used as search strings 

simultaneously. We term these equal-sized portions as the halftags. Prior to a search, 

complementary sequences for the halftags were constructed because genes can be located 

on either strand of the genome. The program reads the sequences of each chromosome 

one segment of 100,000 bp at a time. To perform a complete search, the algorithm holds 
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three such segments in memory at any one time: the previous segment, the current 

segment, and the next segment. Searching for a candidate splice junction in S AGE2Splice 

consists of three progressive levels (Figure 2-3). At each level, only if the defined 

matching criteria are fulfilled will the algorithm proceed to the next level. Otherwise, the 

algorithm imports a new segment of the genome into memory, and the search starts over 

from the first level. 
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Genome 

100,000 bp 
Genomic Segment 

S A G E Tag 

U halftags} 

Identify matches for each 
halftag in genomic sequence 

Search Level 1 
CATGAGCMTT 

CAGGTCAGGCCAGCATGAGCAATTCCTGTCAGATTAGGA 

A G -
For a match, extend to putative splice site 

and seek the remaining portion 

More Halftag matches 
Go to next halftag match 

Search Level 2 

CATGAGCAATTCCI 
Donor 
Dinucleotide 

CAGGTCAGGCCAGCATGAGCAATTCCTGfcAGATTAGGA 
I Hi/ 

Search Level 3 
CATGAGCAATTCCT 

Acceptor 
Dinucleotide 

AGCATGAGCAATTCCTGKAG GGCAGGACAATAGC 

•>• Output observed candidates 

All Halftag 
Matches 
Finished 

More tags 
Go to next tag 

More genome sequence 
Go to next segment 

All tags 
Finished 

Legend 

Main recognition site (CATG) 

Genomic Segment 

SAGE Tag 

Halftags 

Complementary 
Halftags 

Figure 2-3: SAGE2Splice algorithm searches the genome for novel splice junctions. By splitting each 
tag into 2 halftags and making complementary copies, the algorithm searches for candidate splice 
junctions against continuous segments of the genome in three progressive steps. After each level, if 
the matching criteria were fulfilled, the algorithm would go on to the next level. If criteria were not 
fulfilled, the algorithm would analyze the next tag. Once all tags have been analyzed, the next 
genomic segment is read and the algorithm returns to the first level. 
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2.2.3.2 Search Level 1: Matching Halftags 

In Search Level 1, SAGE2Splice searches each halftag against the current 

segment by using the pattern-matching function built into the Perl programming language 

(version 5.6). Positions of all matches are stored as a tab-delimited string. A 

complementary halftag match, indicating a position on the complementary strand, is 

stored as a negative position. If at least one halftag match is found, the algorithm 

proceeds to Search Level 2. Otherwise, the next segment of the chromosome is imported 

and the search for candidate splice junctions returns to Search Level 1.' 

2.2.3.3 Search Level 2: Extending Halftags 

SAGE2Splice searches for one boundary of a potential candidate intron before 

searching for the other boundary. During Search Level 2, SAGE2Splice attempts to find, 

for each halftag match, one of the edges of a potential intron. From Search Level 1, a 5' 

halftag match to the genomic segment indicates a search of a potential donor intron-exon 

boundary in Search Level 2. Conversely, a 3' halftag match suggests a search for the 

acceptor boundary. Hence, in the second level, the SAGE2Splice algorithm extends the 

first level halftag match, base-by-base against the original tag. At every base extension, 

depending on whether or not the halftag match is 5' or 3', the respective intron boundary 

dinucleotide is added and matched to the genome segment. As a result, all potential 

candidates for one edge of an intron are discovered for every halftag match. For the 5' 

halftag match, the extension is toward the 3' end and the donor dinucleotide is GT, 

whereas for the 3' halftag match, the extension is toward the 5' end and the acceptor 

dinucleotide is AG. A match of the complementary halftags indicates a potential 
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candidate on the complementary strand of the genome sequence and, thus, the base 

extension direction is opposite that of the sense strand. If a potential intron-exon 

boundary is found, the algorithm continues to Search Level 3. Otherwise, SAGE2Splice 

reads the next genomic segment and returns to Search Level 1. 

2.2.3.4 Search Level 3: Searching Remaining Portions 

In Search Level 3, the remaining tag portion for the corresponding candidate 

splice junction is sought within 10,000 bp, or a maximum distance set by the user. If the 

preceding level found a candidate donor junction, the search looks for candidate acceptor 

junctions with the conserved dinucleotide, AG, toward the 3' direction, in accord with the 

definition of splice junctions [21]. If, on the other hand, the previous search returned a 

candidate acceptor junction, the search for candidate donors is toward the 5' direction and 

the conserved dinucleotide is GT. Searches for the remaining tag portions for the 

complementary halftag are in the opposite direction. When a candidate splice junction is 

returned, the algorithm proceeds to scoring and ranking the candidate. Because a match 

in Search Level 1 could be close to the edges of the current genomic segment, having the 

previous and the next segments in memory allows for potential matches located beyond 

the current segment. If, however, Search Level 3 does not return a candidate splice 

junction, the search returns to Search Level 1 to start on a new segment of the 

chromosome. 

2 . 2 . 4 S c o r i n g C a n d i d a t e S p l i c e J u n c t i o n s 

Once a candidate is discovered and returned by Search Level 3, for both the donor 

and the acceptor, 10 bp flanking each side of the boundary are extracted and evaluated 
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using the respective PWM. Probability values (p-values) are generated by comparing the 

observed scores against empirical score distributions. For a tag that matches multiple 

candidates, SAGE2Splice ranks the candidates according to the composite p-value. After 

this process, SAGE2Splice returns for each candidate the following information to the 

user: the chromosome number; the two tag portions with their positions, scores, and p-

values; the composite p-value; and the predicted intron length. 

2 . 2 . 5 E f f i c i e n c y T u n i n g of S A G E 2 S p l i c e 

Five parameters affect the performance of SAGE2Splice, including the number of 

SAGE tags in the search, the length of SAGE tags, the cutoffs for p-values, the cutoff for 

maximum intron length, and the length of genomic segment in memory. Other than the 

length of genomic segment in memory, all factors depend on either the input SAGE tags 

or user-specified parameters. We investigated the use of genomic segments of different 

lengths to fine-tune SAGE2Splice for best performance (Figure 2-4). The total execution 

time of SAGE2Splice decreased until it reached a segment size of 100,000 bp, and 

linearly increased thereafter. 

100 200300 400 500 600 700 8009001000 
Segment Size (kb) 

Figure 2-4: SAGE2Splice was optimized for processing time by using different genomic segment 
lengths (ranging from 10 kb to 1000 kb). For SAGE2Splice performance, 100 kb was determined as 
the optimal size. 
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2 . 2 . 6 S e n s i t i v i t y a n d S p e c i f i c i t y 

To test the accuracy of SAGE2Splice and determine the optimal parameter 

settings, we investigated the sensitivity and the specificity for various p-value cutoffs, 

ranging from 0.00001 to 1. The receiver operating characteristic (ROC) curve 

demonstrates a tradeoff between sensitivity and specificity (Figure 2-5). As we varied the 

overall p-value cutoffs, it was observed that to achieve a specificity of close to 95%, 

sensitivity dropped to 55%. The ROC curve shows that, although SAGE2Splice can 

achieve high sensitivity, specificity suffers dramatically at such settings. Moreover, the 

positive predictive value, which indicates the proportion of the candidates that are true 

positives, decreases as the p-value cutoffs increase (Figure 2-5). Such results correspond 

to previous studies [22, 23] that showed that true splice junctions acquire high profile 

scores in the evaluation scheme and, thus, candidates with lower p-values are more likely 

to be true. In the ROC curve, the point with the minimum number of misclassified 

candidates (defined by a tangent line for-which the slope equals 1) occurs when the 

composite p-value cutoff is approximately 0.0025, leading to a sensitivity (true positive 

rate) of 0.9 and a specificity of 0.82 (false positive rate = 0.18) (Figure 2-5). Similarly, 

separate analyses of the donor junction and the acceptor junction revealed the optimal 

cutoffs to be 0.06 and 0.15, respectively. 
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Figure 2-5: SAGE2Splice achieves high sensitivity but relatively low specificity. (A) The area under 
the receiver operating characteristics (ROC) curve is 0.9232, indicating a candidate found by 
SAGE2Splice was much better than expected by random chance. Conversely, to achieve high 
specificity, the sensitivity (true positive rate) was significantly compromised. The tangent point of the 
dashed line is the optimal point when the costs of misclassifying positive and negative candidates are 
equal. This point corresponds to a p-value cutoff of 0.0025. (B) Analysis of the ROC curve for the 
donor splice junctions indicates a cutoff p-value of 0.06 as the optimal point. (C) For the acceptor 
splice junctions, the optimal cutoff p-value is determined to be 0.15. (D) The positive predictive value 
indicates that a high probability (greater than 0.9) of correct predictions requires a restrictive p-
value (less than 0.0001). 

2 . 2 . 7 E d g e L e n g t h a n d R a n k A n a l y s i s 

To analyze the relationship between search accuracy and the position of a splice 

junction within a junction-spanning tag, we obtained EST transcript annotations from the 

UCSC Genome Browser and extracted Type 0 predicted tags that had GT and AG for the 

donor and acceptor boundary dinucleotides. respectively, and had introns between 50 bp 

(minimum imposed to avoid gaps in annotation) and 10,000 bp in length. Among the 
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200,000 unmapped SAGE tags in the Mouse Atlas of Gene Expression Project (detailed 

below) [24], 261 such tags, which did not map to RefSeq, Ensembl, MGC, or the mouse 

genome, were found to match these EST predicted tags. These 261 tags are distinct from 

the transcript dataset used in initial parameter selection and junction profile model 

building, thus providing an independent test set. For each splice junction position within 

the tags, the percentage of tags correctly mapped by using the optimal p-value cutoff 

values was determined (Figure 2-6). As illustrated, a minimum length of 5 bp for the 

shorter edge produces reliable predictions. In many cases, a laboratory researcher is 

prepared to test multiple candidate predictions. Therefore, we investigated, for each 

length, the number of top ranking candidates required to detect a true junction (Figure 

2-6). The closer a splice junction is to the centre of the tag, the fewer candidates are 

required to find a validated result. For each tag, by testing the candidate with the lowest 

p-value, investigators can expect 90% of tags to be mapped successfully, if the junction is 

at least 5 bp from the edge of the tag. 

A B 

Shorter Edge Length (bp) Number of Top Candidates 
Figure 2-6: The probability of finding the true splice junction is lower if the splice junction is located 
closer to the edge of a tag. By using the unmapped tags in the Mouse Atlas Project that map to 
spliced tags predicted from EST transcripts, the percentage of true splice junctions found was 
analyzed for each short edge length. (A) By using high specificity parameters (cutoffs of 0.06,0.15, 
and 0.25 for donor, acceptor, and composite p-values, respectively), 93% of the true splice junctions 
were found when the shorter edge is >5 bp in length. (B) With no p-value cutoffs, 90% of the true 
splice junctions were found with the top-ranked p-value when the shorter edge is 5 bp in length. 
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2 . 2 . 8 U n m a p p e d T a g S e a r c h R e s u l t s 

Exhaustive mapping of the SAGE tags in the Mouse Atlas of Gene Expression 

project [24] resulted in 200,000 unmapped tags. From these unmapped tags, 

SAGE2Splice was applied to 20,000 of the highest quality SAGE tags from this set. (see 

Materials and Methods). There were 7,757 splice junction candidates (0.38785 per tag) 

found to fulfill the p-value thresholds of 0.06, 0.15, and 0.0025 for the donor, the 

acceptor, and overall, respectively (maximum intron length was set at 10,000 bp). Among 

the 1, 639 (8.2%) tags that were found to have candidate junctions, we observed that a 

few tags mapped to multiple candidate sites. Among the 20,000 SAGE tags in the search, 

six returned more than 100 candidate junctions, 90 returned between 10 and 100 

candidates, 113 returned between 5 and 10 candidates, 271 returned 2 candidates, 939 

returned 1 candidate, and 18,361 matched no candidate. 

Perl scripts were written to computationally classify the candidates into tag types. 

Based on matching both donor and acceptor positions to the UCSC annotation databases, 

15 candidate junctions corresponded to Type 1 tags. There were 803 junctions, 

corresponding to Type 2 tags, for which either only the donor position or only the 

acceptor position matched a known exon. The remaining 6,939 candidate junctions 

matched no known exons and were associated with Type 3 tags. By mapping candidates 

corresponding to Type 2 and Type 3 tags to exons predicted by GenScan, TwinScan, or 

SGP, five candidates that matched Type 2 tags and three candidates that matched Type 3 

tags were further categorized as prediction supported. Based on RNA sample availability, 

we picked eight candidates from the Type 1 category, two candidates from the Type 2 

category, and two candidates from the Type 3 category for RT-PCR testing (Table 2-2). 
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Table 2-2: Twelve candidates were selected for RT-PCR validation. 

ID' Chr Donor Match Posrtion Acceptor Match 
Acceptor 
Position 

Intron 
Size 

Composite Gene 
p-Value* Name 3 

RT-PCR 
Validation/ 

Accession 
Number4 

1-1 1 C A T G G T G A A G C T C G C A A A G 86244556 GA 86238632 5924 2.2 E -06 Ncl X ND 

1-2 1 C A T G G T G A A G C T C G C A A A G 86244556 GA 86240496 4060 2.2 E -05 Ncl X ND 

1-3 4 C A T G T A G T G T T T G 117657859 A A T G T T C C 117656489 1370 9.2 E -05 Ppih DQ113644 

1-4 5 C A T G T C C C T C A A G 126140225 G T G T T C T C 126134146 6079 1.6 E -05 AK081926 DQ113645 s 

1-5 10 C A T G A G A G C G A A G 128675985 G C T G A A G C 128675467 518 5.3 E -06 Rpl41 DQ113647 

1-6 14 C A T G 20780218 C C A A A G G A G T A G A T C T G 20785233 5015 4.9 E -05 Rps24 X ND 

1-7 19 C A T G C G A G C T G 6710208 G C A T T C G T C C 6711938 1730 9.6 E -06 Tptlh v ' DQ113648 

1-8 X C A T G 124592868 G A A A G C G G C G T T A C G A C 124593658 790 6.5 E -06 Rpl136a DQ113649 

2-1 4 C A T G 132062103 G A G G A C A C T T G T C A G G A 132060011 2092 2.0 E -05 C c s DQ113650 

2-2 11 C A T G C A G G G T G A T G 75371984 A T T C C T A 75375252 3268 3.7 E -04 Ywhae DQ113651 

3-1 4 C A T G C C C A G 135998365 G T C C A C G G C T C C 135998673 308 3.0 E -04 S2SEMS1 < • DQ113652 

3-2 13 C A T G G A C A T 111936186 A T T C C T T T T G C C 111933949 2237 2.5 E -04 S2SEMS2 DQ113653 

1 The first digit of the ID indicates the type of tag. The second digit is a sequential number. 
2 A Composite p-value was computed as the product of the donor p-value and the acceptor p-value. 
3 All selected candidates fulfill cutoffs of 0.06, 0.15, and 0.25 for donor, acceptor, and composite p-values. 
Gene Ontology names were assigned to Types 1 and 2 candidates. Candidate 1-4 did not match to a 
characterized gene. Accession number of the matched mRNA transcript was assigned. Gene names for 
candidates 3-1 and 3-2 were assigned by this project. 
4 " / , as predicted; X, not as predicted; ND, not done. For sequences that corresponded to the predicted 
transcript, a GenBank Accession number is assigned. 
5 Candidate 1-4 generated two strong RT-PCR bands, one an unpredicted novel transcript (DQ113646). 

2 . 2 . 9 C a n d i d a t e V a l i d a t i o n 

For the selected candidates, primers were designed based on the contiguous exons 

predicted by SAGE2Splice (Table 2-3). RT-PCR results showed that nine of the twelve 

tested candidates generated products of the predicted length (Figure 2-7). The other three 

candidates produced bands that were larger than expected. The latter were candidates that 

had their splice junctions located close to the edges of the SAGE tags. However, 2 of the 

9 candidates did have the correct band sizes, even though they had their splice junction 

located only 4 bp away from the tag edge. Sequencing results of the RT-PCR products 

matched the expected sequences. Two strong bands were observed for candidate 1-4, one 
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that matched the size of the expected length (221 bp) and the other one larger (361 bp). 

Sequence of the expected band corresponded to the novel alternative combination 

predicted; sequence of the larger product revealed an unpredicted, previously unidentified 

alternative transcript of the same gene. Unpredicted larger bands were also observed for 

candidates 1-7 and 1-8 (306 bp and 197 bp, respectively) and corresponded to known 

transcripts. 

Table 2-3: RT-PCR primers were designed for the selected candidates based on sequences of the two 
predicted exons. 

ID Tissue 
Forward Primer 
(name) 

Reverse Primer 
(name) 

Product 
Size bp 

B-
actin 

All tissues used 
GCATGGGTCAGAAGGAT 
(OEMS1507) 

CCAATGGTGATGACCTG 
(OEMS1508) 615 

1-1 P84 Days 
Visual Cortex 

TGAGCTCTTCCGAGCTGCT 
(OEMS2184) 

GTGAAACAGATCGTCCATCAA 
(OEMS2185) 

i 165 

1-2 P84 Days 
Visual Cortex 

TGAGCTCTTCCGAGCTGCT 
(OEMS2184) 

T G C C A A A C A C T T T T A A A C C A G 
(OEMS2186) 

153 

1-3 E11.5 Days 
Whole Head 

CAAACAGTGGTCCCAGTACAA 
(OEMS2156) 

GCCTGTGGGAACATTCAAA 
(OEMS2157) 

102 

1-4 P27 Days 
Visual Cortex 

AAGGAAGATGGCGAAGACAGT 
(OEMS2152) 

AGGGGAGGCTCATCTTCTGAA 
(OEMS2153) 

215 

1-5 E11.5 Days 
Whole Head 

CATGAGAGCGAAGGCTGAA 
(OEMS1650) 

TGAGACTCATTACCGATGGCA 
(OEMS2149) 

157 

1-6 P84 Days 
Visual Cortex 

TGCGCGTTGATATGATTGGT 
(OEMS2176) 

GCAGACGTGTAGGAGCTTTTT 
(OEMS2177) 

168 

1-7 

1-8 

P84 Days 
Hypothalamus 

P84 Days 
Visual Cortex 

CCGAAATGTGCAGCTGTCTAA 
(OEMS2160) 

GCTCCTGCGAACATGGAAA 
(OEMS2180) 

TAGGGGTCCATCGATGAACA 
(OEMS2161) 

TTGCGGAAAATAGGCTTAGTC 
(OEHS2181) 

127 

° 79 

2-1 P20 Days 
Visual Cortex 

A T C A C C A A C T G C T G T G C T G T G 
(OEMS2168) ' 

AGATGGCAAAGTCCTGACAA 
(OEMS2169) 

172 

2-2 E17.5 Days 
Skeletal Muscle 

AGCAGCTTTTGATGACGCAA 
(OEMS2164) 

T T A G G A A T C A T C A C C C T G C A 
(OEMS2165) 

136 

3-1 P21 Days 
Uterus 

A T A G A A T C C T C G T C G C C A T C 
(OEMS2174) 

ACAACAATGGAAGCCTCCTT 
(OEMS2175) 

233 

3-2 P42 Days 
Visual Cortex 

CCGTGAGAGTGACTTTGGATT 
(OEMS2172) 

AACCACTGTCCGGGTGTTGTA 
(OEMS2173) 

263 
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Figure 2-7: Nine of twelve selected candidates revealed novel splice junctions by RT-PCR and 
sequencing. (A) Predicted splice junctions of the 12 selected candidates. First digit of the candidate 
ID indicates the tag type; the second digit is arbitrarily assigned. (B) Except for Candidates 1-1,1-2, 
and 1-6, all candidates show the correct product size and were sequence validated. A larger band 
from an unpredicted novel splice junction was also observed for candidate 1-4. Larger bands were 
also observed for candidates 1-7 and 1-8, but were shown to be known splice variants. Candidates 
that were validated by RT-PCR and by sequencing are indicated in V under the respective lane; 
candidates not validated, by X, NT": negative control with no RNA template; -RT: negative control 
with no reverse transcriptase. 

We computationally predicted the longest open reading frames (ORFs) within the 

RT-PCR and sequencing-validated candidates based on the sequence information of the 
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two exons . Candidates 1-3 and 2-2 encoded short alternative C-terminal sequences 

(Table 2-4). Candidates 1-5, 1-7, and 1-8 contain alternative ORFs. ORFs were predicted 

for the novel sequences in candidates 1-4, 2-1, 3-1, and 3-2. Protein-protein BLAST 

(BLASTP) to all NCBI all organism non-redundant database showed no significant 

matches for candidates 1-3, 1-4, 1-5, 1-7, 1-8, and 2-2. However, candidate 2-1 matched 

a dog zinc finger DHHC domain containing protein. Candidates 3-1 and 3-2 showed 

significant similarities to rat proteins. Significant matches to known proteins in a 

different organism are strong evidence that these three predicted transcripts are functional. 

Table 2-4: Open reading frame and BLASTP analyses of the RT-PCR and sequencing validated 
candidates. 

ID O R F ' Impact B L A S T P ' " Results for New Sequence 

1-3 Alternative C-terminus 
Pre-mature stop No significant match 

1-4 O R F predicted with stop codon 
> 95 amino acids No significant match 

1-5 Alternative O R F 
32 amino acids No significant match 

1-7 Alternative O R F without stop codon 
> 22 amino acids No significant match 

1-8 Alternative O R F without stop codon 
> 23 amino acids No significant match 

2-1 O R F predicted with stop codon 
> 46 amino acids 

Match to Canis familiaris zinc finger DHHC domain 
containing protein (XP_854957.1) 

2-2 Alternative C-terminus 
Pre-mature stop 

No significant match 

3-1 O R F predicted with stop codon 
> 79 amino acids 

Match to Rattus norvegicus heparin sulfate 
proteoglycan 2 (XP_233606.3) 

3-2 ORF predicted without stop codon 
> 88 amino acids 

Match to Rattus norvegicus integrin alpha 1 
(NP_112256.1) 

' ORF, open reading frame. 
2 BLASTP, protein-protein BLAST versus NCBI nr (all organisms) database (September 7, 2005) 
3 Similarity on both predicted exons is required for a significant match. 
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2.3 Discussion 

We have developed a tool, SAGE2Splice, for efficient mapping of SAGE tags to 

potential splice junctions in a genome. By using a scoring system that generates a 

probability value for each candidate splice junction, SAGE2Splice allows users to assess 

the quality of the candidates. Furthermore, the in silico validation pipeline automatically 

classifies the candidates into three categories, based on overlaps with annotated and 

predicted exons. We identified candidate junctions for 1,639 unmapped tags, using 

parameters designed for high specificity. This is the first attempt to investigate 

systematically SAGE tags that span splice junctions and to use this characteristic for 

transcript identification. The online version of SAGE2Splice allows users to search the 

genome sequences for human, mouse, rat, and worm, the four most common organisms 

in NCBI's SAGE database. All source code and data are available for download from the 

SAGE2Splice website. 

Scanning a genome for potential splice junctions is computationally challenging. 

The mouse genome, roughly 3 Gb, takes on the order of several minutes to scan. Disk 

access dominates the running time when the number of input tags is low. As the number 

of input tags increases, the search time becomes dominant. Due to the increased 

probability of observing halftag matches that trigger more computationally intensive 

searches, longer maximum intron length settings increase run time. The time efficiency of 

SAGE2Splice is O(nm), where n is the number of input tags and m is the size of the 

genome. Since SAGE2Splice reads and keeps only a fixed length of genomic segment in 

memory at any time, memory usage is minimal. Memory space is dependent on the 

number of input tags, and, thus, is O(n), where n is the number of input tags. 

33 



The portion of tags corresponding to splice junctions in a SAGE library is unclear. 

Incomplete enzyme digestion or alternative splicing at the 3' end of a transcript could 

give rise to multiple tag types from the same gene [13]. Thus, we expect the portion of 

spliced tags in a SAGE experiment to be higher than 1.6%, which was based on 

predictions from the 3'-most tags in RefSeq transcripts, but lower than 6.2%, which was 

based on predicted tags from all positions. Among the high sequence quality and highly 

expressed unmapped tags, the portion of spliced tags is expected to be higher. In our 

analysis of such unmapped SAGE tags, 8.2% matched a candidate splice junction when 

high specificity parameters were used. 

As in other studies [22, 23], we adopted PWM profiles for splice site detection. In 

addition, SAGE2Splice uses tag sequence as support and includes a criterion for the 

presence of the canonical dinucleotide prior to scoring the candidates. This heuristic 

requirement for the canonical dinucleotide pair limited our searches to about 96.27% of 

potential splice junctions (according to known splice junctions in RefSeq annotation). In 

the future, we would like to incorporate methods such as decision trees into our splice 

junction evaluation scheme and, thus, allow SAGE2Splice to detect non-canonical 

candidate junctions. 

Nine of the twelve laboratory tested candidates confirmed predicted novel splice 

junctions. Based on these results, we showed that SAGE2Splice is a potent tool for 

computational prediction of novel splice junctions using unmapped tags. Furthermore, the 

results indicate that unmapped SAGE tags represent a rich resource for the discovery of 

novel transcripts. 
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A minimum edge length from the splice position to the closest edge of a tag is 

required for reliable predictions. Of the tested candidates, the two with a shorter edge of 2 

bp and the one with a shorter edge of 4 bp were not detected by RT-PCR. Conversely, all 

candidates with a splice junction closer to the centre of the tag were confirmed by RT-

PCR. For candidates that have their predicted splice junction closer to the tag boundary, 

less support from the tag sequence was given, and thus less confidence can be assessed 

from the p-value. Based on our data, we recommend eliminating candidates with edges 

less than 5 bp. Applying this recommendation to our data will result in a prediction of 

1,212 (6%) spliced tags (3,458 candidate junctions). Based on the evidence in edge length 

and rank analyses, we think this 6% of tags represents a list of reliable predictions. 

In conclusion, we have developed an algorithm that uses unmapped SAGE tags to 

search for candidate splice junctions. We validated nine of the twelve tested candidates 

by RT-PCR. As the annotation of genomes and the characterization of genes and 

transcripts continue, systematic exploration of candidate novel splice junctions through 

the use of SAGE2Splice will help elucidate the transcriptome. 
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2.4 Materials and Methods 

2 . 4 . 1 S o u r c e o f T r a n s c r i p t s a n d K n o w n S p l i c e J u n c t i o n s 

The genomic sequences of C57BL/6J mouse (mm5, May 2004) and the RefGene 

annotation database of RefSeq transcripts (July 16, 2004) were obtained from the 

University of California Santa Cruz (UCSC) Genome Browser [25]. Sequences in RefSeq 

are considered to be high quality because they have been examined and curated by 

experts [26]. The UCSC genome annotation pipeline maps the transcript sequences to the 

mouse genome and identifies the exon coordinates. 

For each transcript, the RefGene annotations include the chromosome, the 

orientation, the exon coordinates, and the translated region coordinates. Based on this 

information, we developed programming scripts in the Perl language (version 5.6) to re

construct the RefSeq sequences from the mouse genome sequence. These re-constructed 

RefSeq sequences enabled us to examine the boundary patterns of each splice junction, as 

well as to analyze the predicted SAGE tags and the number of Type 0 tags. 

2 . 4 . 2 E x t r a c t i o n o f P r e d i c t e d S A G E T a g s 

We computationally extracted, from the RefSeq transcript sequences, all 

predicted SA GE tags, by obtaining 21 bp (LongS AGE) downstream of each Mal l l 

anchoring enzyme restriction site. Each predicted tag was annotated with its distance 

from the 3' end, which was given the position 0. 
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2 . 4 . 3 S c o r i n g S p l i c e J u n c t i o n s 

For each observed splice junction, we examined the window of 10 bp on either 

side. By counting the occurrences of each nucleotide at every position, frequency 

matrices were constructed for donor and for acceptor patterns. Assuming that in a random 

sequence all four nucleotides have equal probability, we converted these matrices, for 

every nucleotide at every position, to position weight matrices (PWM) [27] by using the 

formula S = log2f freauency\ p o r e a c n d o n o r a n cj acceptor junction, 10 bp from each 
0.25 

side of the boundary were extracted and, by using their respective PWM, a score was 

pos=\0 

computed as score = ^ S . To generate empirical score distributions for p-value 

1 pos=-\0 

assignments, 100,000 sequences, which were 20 bp in length and had G and T at the 11 th 

and 12th positions, were randomly selected from the genome and each were scored by the 

donor PWM. Similarly, 100,000 sequences of 20 bp containing A and G at the 9 t h and 

10th positions, were selected and scored by the acceptor PWM. For each candidate intron, 

the proposed donor and acceptor junctions were scored separately, according to their 

respective matrices. A p-value was assigned based on the relative position of the 

observed score on the junction's empirical distribution. Assuming independence, a 

composite p-value was computed as p(Donor, Acceptor) - p(Donor)p(Acceptor). 

2 . 4 . 4 S A G E 2 S p l i c e I m p l e m e n t a t i o n a n d F e a t u r e s 

The core program of SAGE2Splice was written in the Perl programming language 

(version 5.6), and executed by using a compiled version to increase performance. An 

Internet interface was created by using the PHP scripting language. In addition to 
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providing a list of SAGE tags as inputs, the user has the options of specifying the 

following: the anchoring enzyme recognition sequence (default is Marlll, CATG), the 

maximum intron size (default is 10,000 bp), and the cut-off p-values for the donor 

candidate, the acceptor candidate, and the composite candidate (defaults are 0.06, 0.15, 

and 0.0025, respectively). The implementation of SAGE2Splice allows the user to adapt 

to different organisms simply by modifying the configuration file. The SAGE2Splice 

program and the web interface PHP script, are available for download 

("http://www.bcgsc.ca/sage2splice/). 

2 . 4 . 5 E f f i c i e n c y T u n i n g o f S A G E 2 S p l i c e 

We tested a series of different genomic segment size settings to find an optimal 

size for computational efficiency. Tested sizes include: 10, 20, 30, 40, 50, 60, 70, 80, 90, 

100, 200, 300, 400, 500, 600, 700, 800, 900, and 1,000 kbp. For each size, we performed 

five iterations of the SAGE2Splice algorithm to search for 10 randomly selected SAGE 

tags, and recorded the average execution time in seconds. Efficiency analysis was 

performed on a 14 node cluster, in which each node had two Intel© Xeon processors at 

2.4 GHz with 1.5 GB random access memory running RedHat© Linux version 7.3. Perl 

version 5.6 was used to compile the core SAGE2Splice program. 

2 . 4 . 6 S e n s i t i v i t y a n d S p e c i f i c i t y 

We randomly chose from the list of predicted tags 1,000 tags that were known to 

span a splice junction to have GT and AG as the junction dinucleotide pairs, and to have 

the introns within 10,000 bp of each other, as our positive controls for testing 

SAGE2Splice. By searching against the corresponding genome using SAGE2Splice, true 
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positives (TP) were identified if the original splice junctions were found, and false 

negatives (FN) were identified if no known splice junction was found. For negative 

controls, we chose from the same predicted tag lists, 1,000 tags that were known not to 

traverse a splice junction. A true negative (TN) evaluation is when no candidate was 

output by SAGE2Splice, whereas a false positive (FP) identifies a candidate junction for 

TP 
a negative tag. Sensitivity of SAGE2Splice was computed as — — , whereas 

TN 
specificity was computed as TN + FP 

2 . 4 . 7 S o u r c e o f S A G E T a g s 

In searching for novel transcripts, we utilized the SAGE data generated from the 

Mouse Atlas of Gene Expression Project [24]. The Atlas project aims to examine 

comprehensively and quantitatively the expression of genes of various organ and tissue 

types throughout the development of mouse, from a single cell zygote to the adult. For 

genetic homogeneity, throughout the project only the C57BL/6J strain of mouse was used 

for library construction. At the end of the project, 200 SAGE libraries will have been 

generated. The LongSAGE protocol [19], which is similar to the original SAGE [5] in 

preparation but generates 21 bp tags, is being used in the majority of the SAGE libraries 

constructed. In this study, only the 21 bp tags were used. All SAGE data and analysis 

tools are public and can be downloaded from the web (http://www.mouseatlas.org). 

2 . 4 . 8 S e a r c h i n g U n m a p p e d S A G E T a g s 

SAGE tags from the available libraries in the Mouse Atlas of Gene Expression 

Project [24] were pooled to generate a meta-library. As described by the authors, each tag 
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sequence was assigned a quality factor, which was computed by using PHRED scores 

[28], and a tag sequence probability value (p-value) was assigned based on the quality 

factor and the rate of errors in library construction. For tags observed more than once, 

individual p-values were multiplied to obtain a composite p-value. The more frequent the 

observations, the more confidence in the existence of the tag, thus resulting in a lower p-

value. We exhaustively mapped the tags in this meta-library to all predicted tags 

extracted from RefSeq [26], Ensembl transcripts , Mammalian Gene Collection (MGC) 

[29], mRNA sequences, EST collections and the C57BL/6J mouse genome (NCBI Build 

33), as well as to the full mouse UniGene mapping of SAGEmap (Build 145) [15], and 

then we selected 20,000 SAGE tags with the lowest p-value for further study. These tags 

were searched by using SAGE2Splice on the latest release of the C57BL/6J mouse 

genome sequence (NCBI Build 33). We used the default 10,000 bp maximum intron 

length and p-value cut-offs of 0.06, 0.15, and 0.0025 for the donor, the acceptor, and the 

overall score, respectively. 

2 . 4 . 9 C a t e g o r i z a t i o n o f S p l i c e J u n c t i o n C a n d i d a t e s 

Three pipelines were created to classify the candidates into their respective 

categories. We obtained, from the UCSC Genome Browser, transcript annotations, 

including RefSeq, Ensembl transcripts, MGC, mRNA sequences, and EST collections, 

and gene predictions annotations, including TWINSCAN [30], GENSCAN [31], and 

SGP [32]. Candidates returned by SAGE2Splice were categorized by matching candidate 

junction positions to those in known transcripts. Candidates associated with Type 2 and 

Type 3 tags were further categorized by mapping the candidate junction positions to gene 
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prediction annotations. Candidates that mapped to predicted junctions were classified as 

high priority in the validation list. 

2 . 4 . 1 0 R N A E x t r a c t i o n 

All samples were manually dissected and stored at -80 °C until RNA extraction. 

Frozen tissue was disrupted and homogenized for 30 seconds with a Polytron® PT 

1200CL homogenizer (Kinematica AG, through Brinkmann™ Instruments Inc, 

Mississauga, Canada) at a setting of 3 (-13,000 RPM), equipped with a 7 mm generator 

(PT-DA 1207/2EC). RNA from each sample was extracted by using either RNeasy Mini 

Kit or RNeasy Lipid Tissue Mini Kit (Qiagen Inc., Mississauga, Canada), with an on-

column DNasel treatment. Quality assessment and quantification of each RNA sample 

was done by using RNA 6000 Nano LabChip® Kit on an Agilent 2100 Bioanalyzer 

(Agilent Technologies Canada Inc., Mississauga, Canada). Tissue samples of.embryonic 

(E) 11.5 whole head (rEMS315), post natal day (P) 84 hypothalamus (rEMS340), P21 

uterus (rEMS341.01), and El7.5 skeletal muscle (rEMS344) were processed by using the 

RNeasy Mini Kit protocol. Samples of visual cortex P20 (rEMS300), P27 (rEMS301), 

P42 (rEMS304), and P84 (rEMS305) were processed by using the RNeasy Lipid Tissue 

Mini Kit following manufacturer's directions with the modification of using 1.5 ml Phase 

Lock Gel-Heavy tube (Eppendorf Scientific, through Fisher Scientific, Canada) for more 

robust phase separation. Al l tissues were extracted from male C57BL/6J mice, except for 

the uterine tissue (rEMS341). 
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2 . 4 . 1 1 R T - P C R 

Primers for each candidate (Table 2-3) were designed by using Web Primers 

provided by the Saccharomyces Genome Database (http://www.yeastgenome.org). RT-

PCR amplification was performed with the QIAGEN OneStep RT-PCR Kit (Qiagen Inc. 

Mississauga, Ontario) as per the manufacturer. Reverse transcription was performed at 50 

°C for 30 minutes. Amplification reactions included 0.4 mM of each dNTP, 1 x QIAGEN 

OneStep RT-PCR buffer, 1 x Q-Solution 2.0 pi QIAGEN OneStep RT-PCR Enzyme Mix 

per 50 ul reaction, and 5 U RNase inhibitor (Invitrogen Canada Inc. Burlington, Canada) 

per reaction. Reverse transcriptase inactivation and PCR activation were performed at 95 

°C for 15 minutes, followed by 40 cycles of 94 °C for 30 seconds, 58°C for 30 seconds, 

and 72 °C for 1 minute, and a final extension step at 72 °C for 10 minutes. Candidates 1-3, 

1-5, and 1-8 were performed at 55 °C, 30 seconds for annealing. For the -RT negative 

controls, the RNA was not added until after the reverse transcriptase inactivation step. 
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Chapter 3 Conclusion and Future Directions 

3.1 Expansion of Important Observations 

3 . 1 . 1 U n m a p p e d S A G E T a g s a r e a S o u r c e f o r N o v e l T r a n s c r i p t 

D i s c o v e r y 

Not all tags can be mapped to the known transcriptome or to the genome. One 

explanation for this is that not all transcripts have been discovered and represented in the 

transcriptome databases. Although polymorphism in nucleotides can also result in the 

failure of mapping, for our study care was taken to work within an inbred mouse strain 

both for computational and bench studies, since it has been shown that variation within 

an inbred strain is negligible [1]. The majority of unmapped SAGE tags we used in the 

search had low tag counts in each individual library. Although tags that are low in copy 

are more likely due to sequencing or experimental errors [2], it was also suggested that 

they could be a source for previously uncharacterized transcripts or genes [3]. In this 

project, we considered the presence of a SAGE tag as evidence for the presence of a 

transcript. Our SAGE2 Splice search indicated that with high-sensitivity and high-

specificity parameters for the donor, the acceptor, and the composite junction p-values, 

and a 5 bp shorter edge length cutoff, 6% of the 20,000 unmapped tags were predicted to 

span a candidate splice junction in the genome. RT-PCR and sequencing results 

confirmed nine of the twelve candidate junctions, including novel alternative variants 

(Type 1 tags) and novel exon(s) (Types 2 and 3 tags). Thus, SAGE tags that mapped 

neither to known transcripts nor to the genome represent a rich resource for the discovery 

of novel transcripts. 
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3 . 1 . 2 E d g e L e n g t h i s a n I m p o r t a n t F a c t o r f o r R e l i a b i l i t y 

In the analysis of position of splice junctions within a tag, we observed that the 

length of the shorter edge plays an important role in assessing the reliability of predicted 

splice junctions. Computational analysis showed that more than 90% of the shorter length 

portions that are > 5 bp from the splice junction revealed true junctions. In laboratory 

testing, all selected candidate junctions having their shorter edge greater than 4 bp 

matched true novel transcripts. Therefore, in transcript discovery, candidates that have 

the splice junction closer to the centre of the tag should be given higher priority for 

laboratory testing. In addition, for each input tag that was predicted to have candidate 

junctions, the closer the predicted junction is to the centre of the tag, the fewer candidates 

required for testing in the laboratory. With a length restriction of 5 bp for the shorter edge 

testing the top candidate with the lowest p-value would reveal greater than 90% of true 

splice junctions. 

3 . 1 . 3 Q u a l i t y o f I n p u t T a g s a n d E x h a u s t i v e M a p p i n g a r e 

R e q u i r e d P r i o r t o P e r f o r m i n g S A G E 2 S p l i c e S e a r c h e s 

We assumed the input SAGE tags from the Mouse Atlas of Gene Expression 

Project did not contain base errors because care was taken to ensure sequences were of 

high quality, so searches were based on exact sequence matches. The quality of search 

results is however highly dependent on the quality of tags. It is expected the informed 

user will assess the quality and exhaustively map tags to all known transcriptome 

databases and to the genome before performing SAGE2Splice searches. 
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3 . 1 . 4 F u n c t i o n s o f t h e P r e d i c t e d C a n d i d a t e s a r e U n k n o w n 

Nine of the twelve candidates selected for laboratory testing were confirmed as 

novel transcripts. We do not assume these novel transcripts will necessarily be functional. 

As indicated in section 1.4.2, stochastic events in splicing can result in transcripts which 

serve no specific biological function. It is interesting to note that several of the novel 

mouse transcripts encode proteins with significant similarity to proteins observed in other 

species (e.g. dog). While the evolutionary conservation of the splice junction and ORF 

are suggestive of function, further studies are required to determine the biological 

significance of the transcripts identified by SAGE2Splice. 

3.2 Future Directions 

3 . 2 . 1 I m p r o v e m e n t s i n C o m p u t a t i o n a l E f f i c i e n c y 

Additional optimization of SAGE2Splice can be achieved by improving the 

computational efficiency through the use of better hardware. A considerable portion of 

processing is spent on reading the genome from the hard-disk; therefore, having sufficient 

random access memory to constantly store the genome will minimize the reading time. 

Moreover, if a computer cluster is available, distribution of the unmapped tags across all 

nodes will maximize the computing power because searches can be processed in parallel. 

3 . 2 . 2 I m p r o v e m e n t s i n U s a b i l i t y 

Further optimization and improvements can be made to increase the usefulness of 

SAGE2Splice. Among these is its incorporation into the DiscoverySpace software [4]. 

The incorporation of SAGE2Splice into DiscoverySpace will add an additional tool to the 
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package for the. annotation and discovery of transcripts using the tags that do not map to 

known transcripts. In addition,Vor those who wish to use SAGE2Splice as an 

independent program, the software is also accessible through a web-interface. Continuous 

monitoring of user feedback will aid the improvement of the program. Currently, the 

online version of SAGE2Splice supports genomes of four organisms and uses the PWM 

generated from the mouse annotations for splice junction evaluation. In the future, I 

would like to include more organisms. Although nucleotides flanking splice junctions 

generally follow a common pattern, further experiments could be performed to assess the 

possibility of increasing prediction accuracy by using organism-specific PWM. Should an 

increase in accuracy be observed, the organism-specific PWM would be incorporated into 

SAGE2Splice. Organism-specific PWM can be computed according to the method 

described in Chapter 2. 

3 . 2 . 3 I m p r o v e m e n t s i n C a n d i d a t e E v a l u a t i o n 

The high false positive rates of the PWM in splice junction prediction were 

addressed by matching junctions to experimental evidence supported by SAGE tags, 

using conserved boundary dinucleotides, choosing high specificity p-value cutoffs and 

maximum intron size, and-placing a restriction on the minimum length of the shorter edge 

In the future, I would like to evaluate other proposed methods, such as decision tree [5] 

and H M M [6], to determine the optimal assessment for splice junction predictions. In 

addition, because the length of the shorter edge plays an important role in determining the 

reliability of a predicted candidate, I would also like to incorporate this into the 

generation of candidate p-values. 
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3 . 2 . 4 I m p r o v e m e n t t o S e a r c h N o n - c a n o n i c a l S p l i c e J u n c t i o n s 

Some of the remaining 91.8% of the unmapped tags are likely to span a splice 

junction with intron boundary dinucleotides that do not follow the GU-AG rule, the non-

canonical splice junctions, or have introns longer than 10,000 bp. To detect the less 

conserved and larger introns, the p-value cutoffs and maximum intron length can be 

relaxed. Also, improvements to the algorithm could be made to include searches of the 

non-canonical splice junctions. 

3 . 2 . 5 S c r e e n M o r e U n m a p p e d T a g s C a n L e a d t o t h e D i s c o v e r y 

o f M o r e T r a n s c r i p t s 

The Mouse Atlas of Gene Expression Project has produced more than 200,000 unmapped 

tags. Of which, less than 10% were analyzed using SAGE2Splice. To search all 200,000 

unmapped tags, allocation of time and of hardware resources is required. By using a 

computer cluster with several nodes, this task can be completed in several days. 

3 . 2 . 6 H i g h T h r o u g h p u t L a b o r a t o r y P r o c e s s e s W i l l b e R e q u i r e d 

To test the predicted candidate splice junctions for all 200,000 unmapped tags (an 

estimate of ~24,000), a high throughput laboratory process is required. First, because of 

the large number of candidates, the laboratory will require a large amount of RNA for 

testing. To ensure the resemblance of the RNA samples, the dissection and RNA 

extraction procedures for the new RNA should be identical to that used for the sample 

preparation of the SAGE libraries. Second, we demonstrated that candidates with their 

shorter edge lengths > 5 bp are more likely to reveal true splice junctions (Error! 

Reference source not found.). Our RT-PCR experiments also confirmed this 
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observation. Thus, the high throughput procedure should focus only on candidates with 

their shorter edges > 5 bp. Third, with a 5 bp length restriction on the shorter edge, > 90% 

of the true junctions were revealed. For each tag, only the candidate with the lowest 

composite p-value should be tested. Our data suggests there will be little advantage to test 

more than one candidate for each tag. Furthermore, candidates with additional computer 

prediction support should be given higher priority for testing because these are more 

likely to be validated. Fourth, an automated primer design pipeline should be created. 

Finally, should a pair of primers yield more than one product, only the product that 

matches the expected size should be sequenced. We expect that a high throughput 

laboratory procedure should ensure that candidate junctions predicted by SAGE2Splice 

are tested efficiently and would assist in the discovery of novel transcripts. 

3.3 Conclusion 

Continuous discovery of novel transcripts has demonstrated that the transcriptome 

is more complex than the genome. In addition to the current techniques for novel 

transcript discovery, we have developed SAGE2Splice that combines experimental 

evidence of SAGE tags and a computational prediction method to identify candidate 

splice junctions in a genome. We demonstrated that nine candidates predicted by 

SAGE2Splice revealed both previously unknown alternative variants and previously. 

unknown exons. With further improvements to the SAGE2Splice candidate evaluation 

algorithms and the use of better computer hardware, we expect that many novel 

transcripts and genes can be discovered. 
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Appendix: Novel Transcript Sequence Information 

LOCUS 
26-AUG-2005 
DEFINITION 
ACCESSION 
VERSION 
KEYWORDS 
SOURCE 

ORGANISM 

REFERENCE 
AUTHORS 

DQ113644 

Mus musculus 
DQ113644 
DQ113644 

184 bp mRNA l i n e a r ROD 

P p i h - l i k e mRNA, p a r t i a l sequence. 

(house mouse) 

C r a n i a t a ; V e r t e b r a t a ; 

Mus musculus 
Mus musculus 
Eukaryota; Metazoa; Chordata; 
E u t e l e o s t o m i ; 
Mammalia; E u t h e r i a ; E u a r c h o n t o g l i r e s ; G l i r e s ; R odentia; 
S c i u r o g n a t h i ; Muroidea; Muridae; Murinae; Mus. 
1 (bases 1 to 184) 

Chen,Y., Bohacec,S., Wasserman,W.W. and 

TITLE 

JOURNAL 
REFERENCE 
.AUTHORS 

TITLE 
JOURNAL 

FEATURES 
source 

Unmapped SAGE Tags Reveal Novel S p l i c e 

to 184) 
Chen,Y. Bohacec,S., Wasserman,W.W. and 

Kuo,B.Y.L., 
Simpson,E.M. 
SAGE2Splice: 
J u n c t i o n s 
Unpublished 
2 (bases 1 
Kuo,B.Y.L., 
Simpson,E.M. 
D i r e c t Submission 
Submitted (27-JUN-2005) M e d i c a l G e n e t i c s , U n i v e r s i t y of 
B r i t i s h Columbia, 950 West 28th Avenue, Vancouver, B r i t i s h 
Columbia V5Z 4H4, Canada 

L o c a t i o n / Q u a l i f i e r s 
1. . 184 
/organism="Mus musculus" 
/mol_type="mRNA" 
/strain="C57BL/6J" 
/db_xref="taxon:10090" 
/chromosome="4" 
/tissue_type="whole head" 
/dev_stage="embryonic day 11.5" 
<1..>184 
/n o t e = " s i m i l a r t o P p i h " 

ORIGIN 
1 t t c a a a c a g t g g t c c c a g t a caaatggctg c c a g t t c t t t t c a a a c a g t g g t c c c a g t a c 

61 aaatgggtgc g c a g t t c t t t a t c a c g t g t t e t a a g t g t g a t t g g c t g g a t ggaaagcatg 
121 t a g t g t t t g a a t g t t c c c a c aggcaacttc t a g t g a t g a g g a a g a t t t g a a t g t t c c c a c 
181 aggc 

misc f e a t u r e 
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LOCUS 
26-AUG-2005 
DEFINITION 
ACCESSION 
VERSION 
KEYWORDS 
SOURCE 

ORGANISM 

REFERENCE 
AUTHORS 

TITLE 

JOURNAL 
REFERENCE 
AUTHORS 

TITLE 
JOURNAL 

DQ113645 

Mus musculus 
DQ113645 
DQ113645 

221 bp mRNA l i n e a r 

unknown mRNA, p a r t i a l sequence. 

(house mouse) 

ROD 

Chordata; C r a n i a t a ; V e r t e b r a t a ; 

Mus .musculus 
Mus musculus 
Eukaryota; Metazoa; 
E u t e l e o s t o m i ; 
Mammalia; E u t h e r i a ; E u a r c h o n t o g l i r e s ; G l i r e s ; 
S c i u r o g n a t h i ; Muroidea; Muridae; Murinae; Mus 
1 (bases 1 to 221) 
Kuo,B.Y.L., Chen,Y., Bohacec,S. 
Simpson,E.M. 
SAGE2Splice 
J u n c t i o n s 
Unpublished 
2 (bases 1 
Kuo,B.Y.L., 
Simpson,E.M. 
D i r e c t Submission 
Submitted (27-JUN-2005) 

Rodentia; 

Wasserman,W.W. and 

Unmapped SAGE Tags Reveal Novel S p l i c e 

to 221) 
Chen,Y., Bohacec,S., Wasserman,W.W. and 

Med i c a l G e n e t i c s , U n i v e r s i t y of 
28th Avenue, Vancouver; B r i t i s h 

FEATURES 
source 

B r i t i s h Columbia, 950 West 
Columbia V5Z 4H4, Canada 

L o c a t i o n / Q u a l i f i e r s 
1..221 
/organism="Mus musculus" 
/mol_type="mRNA" 
/strain="C57BL/6J" 
/db_xref="taxon:10090" 
/chromosome="5" 
/ t i s s u e _ t y p e = " v i s u a l c o r t e x " 
/dev_stage="post n a t a l day 27" 
<1..>221 
/note="un-known; t r a n s c r i p t v a r i a n t 2; s i m i l a r t o 

. mRNA i n GenBank A c c e s s i o n Number AK081926' 
ORIGIN 

1 tctaaggaag atggcgaaga cagtgaggga agagagcaga c g t c t g a c t c c g g g g t g c t t 
61 a t c t g t g t g g aagagaccgg t t c t t c c t g a c t g g c t t c a t g t c c c t c a a g g t g t t c t c c t 

121 g g c t c t t c a a g t a t t t a c c c g t c t g t g t g t g a c t c a t a t c caggaaccca g g c a g c t t c c 
181 c t c a a t a g a t t g c t g g c t t c agaagatgag c c t c c c c t a a g 

misc f e a t u r e 
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LOCUS 
26-AUG-2005 
DEFINITION 
ACCESSION 
VERSION 
KEYWORDS 
SOURCE 

ORGANISM 

DQ113646 

Mus musculus 
DQ113646 
DQ113646 

361 bp mRNA l i n e a r 

unknown mRNA, p a r t i a l sequence. 

(house mouse) 

ROD 

REFERENCE 
AUTHORS 

TITLE 

JOURNAL 
REFERENCE 
AUTHORS 

TITLE 
JOURNAL 

FEATURES 
source 

Chordata; C r a n i a t a ; V e r t e b r a t a ; 

Wasserman,W.W. and 

Ge n e t i c s , U n i v e r s i t y of 
Vancouver, B r i t i s h 

Mus musculus 
Mus musculus 
Eukaryota; Metazoa; 
E u t e l e o s t o m i ; 
Mammalia; E u t h e r i a ; E u a r c h o n t o g l i r e s ; G l i r e s ; Rodentia; 
S c i u r o g n a t h i ; Muroidea; Muridae; Murinae; Mus. 
1 , (bases 1 t o 361) 
Kuo,B.Y.L., Chen,Y., Bohacec,S., Wasserman,W.W. and 
Simpson,E.M. 
SAGE2Splice: Unmapped SAGE Tags Reveal Novel S p l i c e 
J u n c t i o n s 
Unpublished 
2 (bases 1 to 361) 
Kuo,B.Y.L., Chen,Y., Bohacec,S. 
Simpson,E.M. 
D i r e c t Submission 
Submitted (27-JUN-2005) M e d i c a l 
B r i t i s h Columbia, 950 West 28th Avenue, 
Columbia V5Z 4H4, Canada 

L o c a t i o n / Q u a l i f i e r s 
1..361 
/organism="Mus musculus" 
/mol_type="mRNA" 
/strain="C57BL/6J" 
/db_xref="taxon:10090" 
/chromosome="5" 
/ t i s s u e _ t y p e = " v i s u a l c o r t e x " 
/dev_stage="post n a t a l day 27" 
<1..>361 
/note="unknown; t r a n s c r i p t v a r i a n t 3; s i m i l a r t o 

mRNA i n GenBank A c c e s s i o n Number AK081926" 
ORIGIN 

1 ttaaggaaga tggcgaagac agtgagggga gagagcagac g t c t g a c t c c g g g g t g c t t a 
61 t c t g t g t g g a agagaccggt t c t t c c t g a c t g g c t t c a t g t c c c t c a a g g a t c c c a a a c c 

121 aaggctntgg a c t a t t t c a a agccantagt aatangggtc a g t a g t a c t c agcagccctg 
181 c t c c t g g g t g caaaganacn aggncaggtg cagactgtgc t c n c a t a c t t ggaagctt'gg 
241 tggtggtgga g g t g t t c t c c t g g c t c t t c a a g t a t t t a c c c g t c t g t g t g t g a c t c a t a t 
301 ccaggaaccc aggcagcttc c c t c a a t a g a t t g c t g g c t t cagaagatga g c c t c c c c t a 
361 a 

misc f e a t u r e 
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LOCUS 
26-AUG-2005 
DEFINITION 
ACCESSION 
VERSION 
KEYWORDS 
SOURCE 
ORGANISM 

DQ113647 

Mus musculus R p l 4 1 - l i k e 
DQ113647 
DQ113647 

202 bp mRNA l i n e a r 

mRNA, p a r t i a l sequence. 

ROD 

(house mouse) 

Chordata; C r a n i a t a ; V e r t e b r a t a ; 

Mus musculus 
Mus musculus 
Eukaryota; Metazoa; 
E u t e l e o s t o m i ; 
Mammalia; E u t h e r i a ; E u a r c h o n t o g l i r e s ; G l i r e s ; Rodentia; 
S c i u r o g n a t h i ; Muroidea; Muridae; Murinae; Mus'. 
1 (bases 1 t o 202) 
Kuo,B.Y.L., Chen,Y., Bohacec,S., Wasserman,W.W. and 
Simpson,E.M. 
SAGE2Splice: Unmapped SAGE Tags Reveal Novel S p l i c e 
J u n c t i o n s 
Unpublished 
2 (bases 1 t o 202) 
Kuo,B.Y.L., Chen,Y., Bohacec,S., Wasserman,W.W. and 
Simpson,E.M. 
D i r e c t Submission 
Submitted (27-JUN-2005) M e d i c a l G e n e t i c s , U n i v e r s i t y of 
B r i t i s h Columbia, 950 West 28th Avenue, Vancouver, B r i t i s h 
Columbia V5Z 4H4, Canada 

L o c a t i o n / Q u a l i f i e r s 
1..202 
/organism="Mus musculus" 
/mol_type="mRNA" 
/strain="C57BL/6J" 
/db_xref="taxon:10090" 
/chromosome="10" 
/tissue_type="whole head" 
/dev_stage="embryonic day 11.5" 
<1..>202 
/n o t e = " s i m i l a r t o Rpl41" 

ORIGIN 
1 tcatgagagc gaaggctgaa t t c a t g a g a g cgaaggctga agcgcaagag aagaaagatg 

61 aggcagaggt ccaagtaagc cagcccgtgc acctacgacg cctgcaggag cagaagtgag 
121 ggatgctgag ggccgggaca agctatcgga c t g t g t g c t g c c a t c g g t a a t g a g t c t c a a 
181 t g c c a t c g g t a a t g a g t c t c aa 

REFERENCE 
AUTHORS 

TITLE 

JOURNAL 
REFERENCE 
AUTHORS 

TITLE 
JOURNAL 

FEATURES 
source 

misc f e a t u r e 
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LOCUS 
26-AUG-2005 
DEFINITION 
ACCESSION 
VERSION 
KEYWORDS 
SOURCE 
ORGANISM 

REFERENCE 
AUTHORS 

DQ113648 

Mus musculus T p t l h - l i k e 
DQ113648 
DQ113648 

131 bp ' mRNA l i n e a r 

mRNA, p a r t i a l sequence. 

ROD 

(house mouse) 

Chordata; C r a n i a t a ; V e r t e b r a t a ; 

Mus musculus 
Mus musculus 
Eukaryota; Metazoa; 
E u t e l e o s t o m i ; 
Mammalia; Eutheria;" E u a r c h o n t o g l i r e s ; G l i r e s ; Rodentia; 
S c i u r o g n a t h i ; Muroidea; Muridae; Murinae; Mus. 
1 (bases 1 t o 131) 

Chen,Y., Bohacec,S., Wasserman,W.W. and 

TITLE 

JOURNAL 
REFERENCE 
AUTHORS 

TITLE 
JOURNAL 

FEATURES 
source 

Unmapped SAGE Tags Reveal Novel S p l i c e 

to 131) 
.Chen, Y. Bohacec,S., Wasserman,W.W. and 

Gen e t i c s , U n i v e r s i t y of 
Vancouver, B r i t i s h 

Kuo,B.Y.L., 
Simpson,E.M 
SAGE2Splice 
J u n c t i o n s 
Unpublished 
2 (bases 1 
Kuo,B.Y.L., 
Simpson,E.M. 
D i r e c t Submission 
Submitted (27-JUN-2005) M e d i c a l 
B r i t i s h Columbia, 950 West 28th Avenue, 
Columbia V5Z 4H4, Canada 

L o c a t i o n / Q u a l i f i e r s 
1..131 
/organism="Mus musculus" 
/mol_type="mRNA" 
/strain="C57BL/6J" 
/db_xref="taxon:10090" 
/chromosome="19" 
/tissue_type="hypothalamus" 
/dev_stage="12 weeks" 
<1..>131 
/n o t e = " s i m i l a r t o T p t l h " 

ORIGIN 
1 t t c c g a a a t g t g c a g c t g t c t a a g g c t c t g t g c c t a t g c c c t t c g c c a c g gggccttgaa 

61 g c t g g g a c t t cccatgcgag c t g g c a t t c g t c c a a a t t g t gaggtggcgg t g t t c a t c g a 
121 t g g a c c c c t a a 

misc f e a t u r e 
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LOCUS 
26-AUG-2005 
DEFINITION 
ACCESSION 
VERSION 
KEYWORDS 
SOURCE 

ORGANISM 

DQ113649 79 bp mRNA l i n e a r ROD 

Mus musculus R p l l 3 6 a - l i k e mRNA, p a r t i a l sequence. 
DQ113649 
DQ113649 

Mus musculus (house mouse) 
Mus musculus 
Eukaryota; Metazoa; Chordata; C r a n i a t a ; V e r t e b r a t a ; 
E u t e l e o s t o m i ; 
Mammalia; E u t h e r i a ; E u a r c h o n t o g l i r e s ; G l i r e s ; Rodentia; 
S c i u r o g n a t h i ; Muroidea; Muridae; Murinae; Mus. 

TITLE 

JOURNAL 
REFERENCE 
AUTHORS 

TITLE 
JOURNAL 

FEATURES 
source 

Bohacec,S., Wasserman,W.W. and 

Unmapped SAGE Tags Reveal Novel S p l i c e 

Bohacec,S., Wasserman,W.W. and 

REFERENCE 1 (bases 1 t o 79) 
AUTHORS . Kuo,B.Y.L., Chen,Y 

Simpson,E.M. 
SAGE2Splice: 
J u n c t i o n s 
Unpublished 
2 (bases 1 to 79) 
Kuo,B.Y.L., Chen,Y., 
Simpson,E.M. 
D i r e c t Submission 
Submitted (27-JUN-2005) M e d i c a l G e n e t i c s , U n i v e r s i t y of 
B r i t i s h Columbia, 950 West 28th Avenue, Vancouver, B r i t i s h 
Columbia V5Z 4H4, Canada 

L o c a t i o n / Q u a l i f i e r s 
1. .79 
/organism="Mus 'musculus" 
/mol_type="mRNA" 
/strain="C57BL/6J" 
/db_xref="taxon:10090" 
/chromosome="X" 
/ t i s s u e _ t y p e = " v i s u a l c o r t e x " 
/dev_stage="12 weeks" 
<1..>79 
/ n o t e = " s i m i l a r to R p l l 3 6 a " 

ORIGIN 
1 g c t c c t g c g a acatggaaag cggcgttacg acaggaaaca gagtggctat ggtgggcaga 

61 c t a a g c c t a t t t t c c g c a a 

misc f e a t u r e 
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LOCUS 
26-AUG-2005 
DEFINITION 
ACCESSION 
VERSION 
KEYWORDS 
SOURCE 

ORGANISM 

REFERENCE 
AUTHORS 

DQ113650 

Mus musculus 
DQ113650 
DQ113650 

178 bp mRNA l i n e a r 

C c s - l i k e mRNA, p a r t i a l sequence. 

(house mouse) 

ROD 

Mus musculus 
Mus musculus 
Eukaryota; Metazoa; Chordata; C r a n i a t a ; V e r t e b r a t a ; 
-Euteleostomi ; 
Mammalia; E u t h e r i a ; E u a r c h o n t o g l i r e s ; G l i r e s ; Rodentia; 
S c i u r o g n a t h i ; Muroidea; Muridae; Murinae; Mus. 
1 (bases 1 t o 178) 

Chen,Y., Bohacec,S., Wasserman,W.W. and 

TITLE 

JOURNAL 
REFERENCE 
AUTHORS 

TITLE 
JOURNAL 

FEATURES 
source 

Unmapped SAGE Tags Reveal Novel S p l i c e 

t o 178) 
Chen,Y. Bohacec,S., Wasserman,W.W. and 

Kuo,B.Y.L., 
Simpson,E.M. 
SAGE2Splice: 
J u n c t i o n s 
Unpublished 
2 (bases 1 
Kuo,B.Y.L., 
Simpson,E.M. 
D i r e c t Submission 
Submitted (27-JUN-2005) M e d i c a l G e n e t i c s , U n i v e r s i t y of 
B r i t i s h ' Columbia, 950 West 28th Avenue, Vancouver, B r i t i s h 
Columbia V5Z 4H4, Canada 

L o c a t i o n / Q u a l i f i e r s 
1..178 
/organism="Mus musculus" t 

/mol_type="mRNA" 
/strain="C57BL/6J" 
/db_xref="taxon:10090" 
/chromosome="4" 
/ t i s s u e _ t y p e = " v i s u a l c o r t e x " 
/dev_stage="post n a t a l day 20" 
<1..>178 
/ n o t e = " s i m i l a r t o Ccs" 

ORIGIN 
1 c t a t c a c c a a c t g c t g t g c t g t g c t c t g t g gcccact.gcc t c c c a g c c t g a t t g a c c g g c 

61 gaggattcgt g c a g t c t g a t a c c g c g t t g c c c t c g c c c a t cagaagtgat gacccggcct 
121 gtggagccaa gccagacgcc agcatggagg a c a c t t g t c a g g a c t t t g c c a t c t a g a a 

misc f e a t u r e 
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LOCUS 
26-AUG-2005 
DEFINITION 
ACCESSION 
VERSION 
KEYWORDS 
SOURCE 

ORGANISM 

DQ113651 

Mus musculus 
DQ113651 
DQ113651 

143 bp mRNA l i n e a r 

Ywhae-like mRNA, p a r t i a l sequence. 

ROD 

(house mouse) 

C r a n i a t a ; V e r t e b r a t a ; 

Rodentia; 

Wasserman,W.W. and 

Mus musculus 
Mus musculus 
Eukaryota; Metazoa; Chordata; 
E u t e l e o s t o m i ; 
Mammalia; E u t h e r i a ; , E u a r c h o n t o g l i r e s ; G l i r e s ; 
S c i u r o g n a t h i ; Muroidea; Muridae; Murinae; Mus. 
1 (bases 1 to 143) 
Kuo,B.Y.L., Chen,Y., Bohacec,S. 
Simpson,E.M. 
SAGE2Splice: Unmapped SAGE Tags Reveal Novel S p l i c e 
J u n c t i o n s 
Unpublished 
2 (bases 1 t o 143) 
Kuo,B.Y.L., Chen,Y., Bohacec,S., Wasserman,W.W. and 
Simpson,E.M. ' " 
D i r e c t Submission 
Submitted (27-JUN-2005) M e d i c a l G e n e t i c s , U n i v e r s i t y of-
B r i t i s h Columbia, 950 West 28th Avenue, Vancouver, B r i t i s h 
Columbia V5Z 4H4, Canada 

L o c a t i o n / Q u a l i f i e r s 
1. . 143 
/organism="Mus musculus" 
/mol_type="mRNA" 
/strain="C57BL/6J" 
/db_xref="taxon:10090" 
/chromosome="ll" 
/ t i s s u e _ t y p e = " l e g s k e l e t a l muscle" 
/dev_stage="embryonic day 17.5" 
<1..>143 
/ n o t e = " s i m i l a r t o Ywhae" 

ORIGIN 
1 c c t a g c a g c t t t t g a t g a c g caattgcaga actggaccgc tgaagtgaag aaagctataa 

61 g g a c t c t a c g g c t c a t t c a t g c a g c t g c t a cgtgataacc c t g a c g c t g t ggacctcaga 
121 catgcagggt g a t g a t t c c t aaa 

REFERENCE 
AUTHORS 

TITLE 

JOURNAL 
REFERENCE 
AUTHORS 

TITLE 
JOURNAL 

FEATURES 
source 

m i s c f e a t u r e 
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LOCUS 
26-AUG-2005 
DEFINITION 
ACCESSION 
VERSION 
KEYWORDS 
SOURCE 

ORGANISM 

REFERENCE 
AUTHORS 

TITLE 

JOURNAL 
REFERENCE 
AUTHORS 

TITLE 
JOURNAL 

FEATURES 
source 

DQ113652 

Mus musculus 
DQ113652 
DQ113652 

243 bp mRNA l i n e a r 

i s o l a t e s2sEMSl mRNA sequence. 

ROD 

(house mouse) 

Chordata; C r a n i a t a ; V e r t e b r a t a ; 

Mus musculus 
Mus musculus 
Eukaryota; Metazoa 
E u t e l e o s t o m i ; 
Mammalia; E u t h e r i a ; E u a r c h o n t o g l i r e s ; G l i r e s ; Rodentia; 
S c i u r o g n a t h i ; Muroidea; Muridae; Murinae; Mus. 
1 (bases 1 to 243) 
Kuo,B.Y.L., Chen,Y., Bohacec,S., Wasserman,W.W.'and 
Simpson,E.M. 
SAGE2Splice: Unmapped SAGE Tags Reveal Novel S p l i c e . 
J u n c t i o n s 
Unpublished 
2 (bases 1 to 243) 
Kuo,B.Y.L., Chen,Y 
Simpson,E.M. 
D i r e c t Submission 
Submitted (27-JUN-2005) M e d i c a l 
B r i t i s h Columbia, 950 West 28th 
Columbia V5Z 4H4, Canada 

L o c a t i o n / Q u a l i f i e r s 
1. .243 
/organism="Mus musculus" 
/mol_type="mRNA" 
/strain="C57BL/6J" 
/ i s o l a t e = " s 2 s E M S l " 
/db_xref="taxon:10090" 
/chromosome="4" 
/ t i s s u e _ t y p e = " u t e r u s " 
/dev_stage="post n a t a l day 21 

Bohacec,S., Wasserman,W.W. and 

Ge n e t i c s , U n i v e r s i t y of 
Avenue, Vancouver, B r i t i s h 

ORIGIN 
1 c t a t a g a a t c 

61 t g a t g g g g t t 
121 atgcccaggt 
181 a c t a t g t g t g 
241 aga 

c t c g t c g c c a 
gacctacacc 
c c a c g g c t c c 
ccgagtggag 

t c c g t g a c t g 
caggtcacat 
cggctgcggc 
agganngtga 

aaggacagac 
ggtacaagcg 
tcccgcaggt 
cgtgggccct 

g c t t g a c c t t 
agggggcagc 
ctcaccggca 
aaggaggctt 

aactgtgcgg 
c t g c c t c c c c 
gactccggag 
c c a t t g t t g t 

61 



LOCUS DQ113653 266 bp mRNA l i n e a r ROD 
26-AUG-2005 
DEFINITION Mus musculus i s o l a t e s2sEMS2 mRNA sequence. 
ACCESSION DQ113653 
VERSION DQ113653 
KEYWORDS 
SOURCE Mus musculus (house mouse) 

ORGANISM Mus musculus 
Eukaryota; Metazoa; Chordata; C r a n i a t a ; V e r t e b r a t a ; 
E u t e l e o s t o m i ; 
Mammalia; E u t h e r i a ; E u a r c h o n t o g l i r e s ; G l i r e s ; Rodentia; 
S c i u r o g n a t h i ; Muroidea; Muridae; Murinae; Mus. 

REFERENCE 1 (bases 1 t o 266) 
AUTHORS Kuo,B.Y.L., Chen,Y., Bohacec,S., Wasserman,W.W. and 

Simpson,E.M. 
TITLE . SAGE2Splice: Unmapped SAGE Tags Reveal Novel S p l i c e 

J u n c t i o n s 
JOURNAL Unpublished 

REFERENCE 2 (bases 1 t o 266) 
AUTHORS Kuo,B.Y.L., Chen,Y., Bohacec,S., Wasserman,W.W. and 

Simpson,E.M. 
TITLE D i r e c t Submission 
JOURNAL Submitted (27-JUN-2005) M e d i c a l G e n e t i c s , U n i v e r s i t y of 

B r i t i s h Columbia, 950 West 28th Avenue, Vancouver, B r i t i s h 
'Columbia V5Z 4H4, Canada 

FEATURES L o c a t i o n / Q u a l i f i e r s 
source 1..266 

/organism="Mus musculus" 
/mol_type="mRNA" 
/strain="C57BL/6J" 
/isolate="s2sEMS2" 
/db_xref="taxon:10090" 
/chromosome="13" 
/ t i s s u e _ t y p e = " v i s u a l c o r t e x " 
/dev_stage="post n a t a l day 42" 

ORIGIN 
1 tccgtgagag t g a c t t t g g a t t t t a a c c t c a c t g a t c c a g aaaatgggcc c g t g c t c g a t 

61 g a c g c t c t g c c a a a c t c a g t ccatggacat a t t c c t t t t g ccaaagactg tgggaacaag 
121 gaaagatgcg t t t c a g a c c t c a c c c t g g a t g t g t c c a c a a cagaaaagaa c c t g c t g a t t 
181 g t c a g a t c c c agaatgacaa g t t c a a t g t c a g c c t c a c c g tcaaaaacaa gggagacagt 
241 gcgtacaaca cccggacagt g g t t a a 
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