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Abstract 

In diseases like relapsing-remitting multiple sclerosis (MS), patients expe­
rience repeated transitions between symptom-free and symptomatic disease 
states (the symptomatic state is called an exacerbation). Analyses for this 
kind of data commonly ignore the information available on the second state 
(the lengths of the exacerbations, for example). 

In this thesis, we consider models that incorporate the second state 
into the analyses. The basic stochastic models are Markov chains, alternating 
renewal processes and marked point processes. For the Markov chains and 
alternating renewal process models, we consider simple fixed effects models as 
well as random effects models where the random effects are introduced to al­
low for heterogeneity between patients and correlation of data on one patient. 
For these models, the statistical inference is based on maximum likelihood. 
For the marked point process model, we use a generalized estimating equation 
approach. 

We apply these models to a data set from a MS clinical trial. The aim 
of the analyses is to relate the available covariates to the disease process. We 
do not attempt a comprehensive analysis of the data set, rather the aim here 
is to see what can be achieved and which questions can be addressed with the 
different models. 
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Chapter 1 

Introduction 

1.1 Motivation for this Thesis 
The motivation for this thesis comes from a data set collected in a multiple 
sclerosis (MS) clinical trial. In this section we give some background on MS 
and this clinical trial and in the next section we describe the data. For a more 
detailed description of the data set and more information on MS and this trial, 
see D'yachkova [6]. 

Multiple sclerosis is a common neurological disease in young adults. It is 
most prevalent in north-west Europe, in Canada, the northern United States, 
southern Australia and New Zealand; women are more frequently affected by 
it than men with a ratio of about 3 to 2. Its cause is unknown; it is character­
ized by the appearance of lesions in the central nervous system. MS patients 
experience repeated exacerbations during the course of the disease. The initial 
exacerbation, which leads to the diagnosis of MS, is usually experienced as a 
young adult (most commonly in the early 30's). During these exacerbations 
patients can suffer from a variety of symptoms such as blurred vision, a sen­
sation of numbness in parts of the body or loss of control of the movements in 
parts of the body. 

After the initial exacerbation, MS patients typically enter into the 
relapsing7remitting stage of the disease, which usually lasts for about 5 years. 
In this stage, patients experience repeated exacerbations that can vary in 
length and severity. Initially, patients recover completely or almost completely 
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from these exacerbations, but the recovery can become less and less complete 
after each exacerbation. Eventually patients leave the relapsing-remitting 
stage and move on to the secondary progressive stage, where the degree of 
disability is relatively stable and the patients' health declines steadily. 

The M S disease process is extremely variable. Some patients experience 
a benign form with complete recovery from the exacerbations; others develop 
grave disabilities. The exacerbations can also be quite different in length and 
severity. 

M S has many symptoms, and there are a number of ways to evaluate 
the progression of the disease and hence potentially judge the efficacy of a 
treatment. These include 

• the occurrence of exacerbations 

• the degree of disability 

• counts of lesions in the brain 

The degree of disability for M S patients is commonly measured by the Kurtzke 
expanded disability score (EDSS) . The E D S S is an ordinal score based on a 
neurological examination that describes the degree of disability of a patient (0 
meaning healthy, 10 meaning death from M S ) . Lesion counts can be obtained 
using magnetic resonance imaging (MRI) ; for more detail on M R I and lesion 
counts, see Smith [29]. 

To date there is no known cure that can completely reverse al l the 
effects of M S . Interferon-lb is the first drug that was demonstrated to be 
beneficial to M S patients. The data set to be analyzed in this thesis comes 
from the clinical t r ia l involving patients with relapsing-remitting M S in which 
it was first demonstrated that Interferon-lb decreases the rate of exacerba­
tions and increases the proportion of patients remaining exacerbation-free [9]. 
There have been subsequent trials demonstrating that other drugs (Interferon-
l a and Copolymer) are beneficial for relapsing-remitting M S patients, see [11], 
[27] and [12]. More recently Interferon beta-lb has also been demonstrated to 
be beneficial for secondary progressive M S patients [8]. 
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1.2 Description of the Data 
In this section we describe the design of the trial and the data set to be 
analyzed in this thesis. 

1.2.1 Design of the Clinical Trial 
As mentioned above, the data considered in this thesis comes from a clinical 
trial [9]. This trial involved 372 patients in 11 centers in the U.S. and Canada 
on three treatment arms (placebo, low dose and high dose). Patients were 
randomized to these arms within each center. The dosage was 1.6 million in­
ternational units (MIU) for the low dose treatment and 8 MIU for the high 
dose treatment. The inclusion criteria for the trial were that patients had to 
have experienced at least 2 exacerbations in the previous 2 years and their 
EDSS at time of randomization had to be 5.5 or less. 

The original planned duration of this trial was 2 years; it was later de­
cided to extend the trial to 3 years. After 3 years the treatment effect became 
obvious, so all patients in the study were offered the high dose treatment for 
2 more years (see [10] for results on the complete 5 year period). We analyze 
the data from the 3-year period. Figure 1.1 shows the proportion of patients 
remaining on study by treatment group, the solid line in the plot indicates the 
end of the 2-year period. The plot shows that the high dose group had the 
most early drop-outs, but all groups have a modest number of patients leaving 
the trial during the first 2 years, with the number of patients remaining in 
each group approaching 80% after 2 years. There are a number of patients 
in each treatment arm that drop out at the end of the 2-year period, but the 
proportion remaining for most of the third year of the study is still about 70% 
in each group. 

1.2.2 Baseline Covariates 

The baseline covariates we consider are: 

• gender 

• age 
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Figure 1.1: Kaplan-Meier survival curves for time on study 

• the time since onset of MS 

• the Kurtzke Expanded Disability Status Score (EDSS) 

The center identities are also available, but we don't incorporate them into 
the analyses for reasons of convenience (see Section 1.3 for a discussion of the 
objectives of our analyses). Table 1.1 shows that there are more female than 
male patients in the trial; the female to male ratio is slightly more than 2 in 
each treatment arm. The boxplots of age by treatment group in Figure 1.2 
show that about half the patients were between 30 and 40 years old, with all 
patients being between 18 and 50 years old. The distribution of the ages is 
almost the same for the 3 treatment groups. Figure 1.2 also shows that the 
time since onset of MS varies between 1 and 31 years, and the median time 
since onset is slightly higher in the high dose group. The boxplots for the 
EDSS scores by treatment group (Figure 1.2) shows that the distribution is 
fairly balanced across the treatment arms, with the scores ranging from 0 to 
5.5 in each arm. 
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placebo low dose high dose 
male 35 40 38 

female 88 85 86 

Table 1.1: Number of male and female patients in each treatment group 
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Figure 1.2: Boxplots of age, time since onset and EDSS by treatment group 
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1.2.3 Outcome Variables 
The only outcomes we consider are related to the exacerbation data. The 
start and end dates of each exacerbation were recorded as well as the severity 
of the exacerbation; our analyses use the data on the start and end of the 
exacerbations. We don't use the data on severity, although they could contain 
valuable information; we comment on this in Chapter 6. We only use data 
from the first three years of the trial; we will discuss how the data enter into 
the analyses in the respective chapters. 

Figure 1.3 shows the patterns of exacerbations for some patients selected 
for illustrative purposes from the high dose and placebo groups. We chose these 
patients to demonstrate that the data is quite variable, even within a patient, 
in both the high dose and placebo groups. This plot shows that the patterns 
over time are different for different patients. Some patients have exacerbations 
in close succession, some have no exacerbation at all and others have a succes­
sion of early exacerbations followed by a long period without an exacerbation 
and then a late exacerbation. Another patient has one early exacerbation fol­
lowed by three late ones after a long exacerbation-free period. The length of 
time in exacerbation is also quite variable, with some exacerbations lasting 
only a few days and others lasting almost 100 days. 

For an initial summary of the information available on the exacerba­
tions, we use boxplots for the length of times not in exacerbation and of times 
in exacerbation. Figure 1.4 shows the length of the exacerbation-free periods 
by treatment arm. This plot shows that each treatment arm has patients with 
very long time periods without an exacerbation (as mentioned earlier, we used 
a time cut-off of 3 years = 1095 days), but it appears that the waiting times to 
exacerbation are longer in the high dose group compared to the placebo group, 
and even for the low dose group the waiting times seem to be longer compared 
to the placebo group. This indicates that there might be a treatment effect. 
For the time in exacerbation (Figure 1.5), we see that each treatment group 
has quite extreme observations, with exacerbations as long as 300 days. The 
median exacerbation length for the high dose group and low dose group seem 
to be slightly lower compared to the placebo group. 

Another way of summarizing these data is to use the proportion of 
time in exacerbation; this takes the dropout into account and gives only one 
number per individual (whereas there are usually several exacerbations per 
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Figure 1.3: Patterns of exacerbations for selected patients 
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patient). We do not consider this outcome in any of the models in this thesis; 
we included it only for the purpose of data exploration since it gives a useful 
summary of the data on one individual that incorporates the length of exac­
erbations and allows us to investigate patterns over time and heterogeneity 
of the patients. In a disease process like MS, we expect that the exacerba­
tion data early in the trial might differ from the exacerbation data late in the 
trial. To get an assessment of the pattern over time by treatment arm, we cut 
the time axis into intervals of 200 days (1-200, 201-400, 401-600, 601-800 and 
801-1000 days) and computed the average proportion of time in exacerbation 
(number of days in exacerbation divided by number of days on trial) for each 
treatment arm; the results are shown in Figure 1.6. This plot shows that the 
treatment groups are separated quite consistently, with high dose having the 
lowest average proportion and placebo having the highest average proportion 
of time in exacerbation (except for one exception at time period 2, where the 
low dose and placebo arms have almost the same proportion. It also shows 
that the proportion of time in exacerbation decreases over time in the low dose 
and placebo groups; in the high dose group there is not much evidence of a 
decrease. 

Figure 1.7 shows the proportion of time in exacerbation over the entire 
three years versus the covariates. Note that we have one proportion > 1, 
because according to the data set this person left the trial before the recorded 
end of an exacerbation (so that the recorded the time on study was less than 
the recorded time in exacerbation). This plot shows that the proportions are 
quite variable, ranging from 0 to 1. There is an indication that the proportion 
is higher in female patients than in male patients and patients with a lower 
time since onset tend to have a higher proportion of time in exacerbation. 
Age and EDSS do not have any apparent effect on the proportion of time in 
exacerbation. For the treatment groups, it seems that the proportion of time 
in exacerbation is higher in the placebo group compared to low dose and high 
dose groups, and the proportion seems to be a little higher in the low dose 
group compared to the high dose group. 
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Figure 1.6: Proportion of time in exacerbation over time in 200 day periods 
by treatment 
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Figure 1.7: Proportion of time in exacerbation versus covariates 
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1.3 Previous Analyses and Our Objectives 
As mentioned in the previous section, this data set has already been analyzed. 
The analyses presented for the exacerbation data in the paper describing the 
clinical results of the trial [9] focus on the annual exacerbation rates and the 
proportion of patients remaining exacerbation-free (the analysis in the other 
clinical trials was similar with respect to the exacerbation data). These data 
were also analyzed by D'yachkova [6]. She performed a number of different 
analyses for the exacerbation data, all based on the repeated binary responses 
for each patient obtained by cutting the time-axis into 6-week intervals and 
then recording if an exacerbation began in this interval. 

These previous analyses use only the information on when an exacer­
bation started; they ignore the information available on the length of exacer­
bations. Figure 1.5 shows that the variability of the length of exacerbations is 
quite high. Ignoring this information means that we judge the efficacy of the 
treatment only by the number of exacerbations; a series of short exacerbations 
is considered worse for the patient than one long exacerbation. Given that 
some exacerbations are quite long, this is a questionable criterion for judging 
the treatment effect. 

In contrast to these analyses, we will regard the data set as describ­
ing a two-state disease process. State 1 refers to the exacerbation-free state, 
and state 2 is the state where patients are in exacerbation. Our models will 
incorporate this second state and hence distinguish between exacerbations of 
different lengths. We investigate three basic stochastic models to analyze these 
data, which we introduce in the next section. The outcome variables we con­
sider differ from model to model, but all incorporate some of the information 
available on the lengths of exacerbations. The aim of this thesis is to imple­
ment and compare several models that allow us to incorporate the information 
on the lengths of exacerbations. We did not attempt a comprehensive analysis 
of the data set with any of these models. Rather, the aim here is to see what 
can be achieved and which questions can be addressed with these different 
models. 

There are two measures available in this data set to distinguish different 
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exacerbations: length and severity. We will only use the length to distinguish 
different exacerbations, although some of the models proposed could also be 
extended to incorporate the severity of exacerbations. In hindsight, the incor­
poration of severity could have been quite interesting, but we did not attempt 
this. We will discuss this point further in Chapter 6. 

We are primarily interested in the assessment of the treatment effects 
on the outcomes related to the exacerbations data, but patterns in the data 
over time and the effect of the baseline covariates are also of interest. The 
distinction between baseline covariates and treatment groups is not sharp, 
and we will sometimes also view the treatments as covariates. The assessment 
of the effect of covariates can be done in two ways: 

• assessment of the impact of covariates at the population level (i.e. on 
the distribution of the outcome variable in the patient population) 

• assessment of the impact of covariates on a patient's disease process 

Both these assessments are of interest. The first allows us, for exam­
ple, to describe a treatment effect in a clearly interpretable way, so that we 
can quantify the beneficial effect of the treatment in clinically meaningful 
ways. The second assessment gives us more insight into the disease process to 
identify risk factors. The assumptions that are needed to address the first as­
sessment might also be too restrictive, since we typically have to assume that 
the subgroups that are characterized by explanatory variables are relatively 
homogeneous. In a highly variable disease process like MS, this might not be 
appropriate. 

For linear models with continuous data, regression coefficients from 
models that address the first assessment can be translated into regression 
coefficients that address the second assessment and vice versa. Regression 
coefficients from models for non-continuous responses that address these as­
sessments usually have different interpretations, so that regression parameters 
on an individual level do not necessarily have an interpretation on the popu­
lation level (see [7], p. 137). 
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1.4 Models Considered 
We have seen in the previous section that different models for the analyses of 
the exacerbation data address different questions with regard to the assessment 
of covariates. Three types of stochastic models will form the basis of our 
analyses of the data: 

• Markov chains 

• alternating renewal processes 

• marked Poisson processes 

There are two general features we need to consider for these models: the 
stochastic aspects of the data set the model can capture, and the approach 
to estimation and inference for the model. In this section we describe the 
stochastic properties of these models and the advantages or disadvantages 
of each model and what questions concerning the covariates each model can 
address. The next section describes the approaches to inference for each model. 

1.4.1 Markov Chains 
Markov chains provide a convenient stochastic model for categorical longitu­
dinal data. In our application, we have two categories (not in exacerbation, 
in exacerbation) and the Markov chain models the transition probabilities be­
tween these two states. This means we model the probability of the response 
being equal to category k at time j conditional on responses at times I < j and 
the covariates. In contrast, for independent categorical data the probability 
of the response being equal to category k is modeled conditionally only on the 
covariates but not on previous responses. 

This approach incorporates the longitudinal nature of the data by condi­
tioning on previous responses. The dependence over time and the dependence 
on covariates is expressed in one model. Thus, it is a simple model for the 
dependence of categorical data over time and the model fitting is straightfor­
ward. The major disadvantage is that the interpretation of parameters for the 
covariates is in terms of the transition probabilities. This means that we have 
to interpret the regression parameters conditional on the previous responses. 
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This makes it easy to assess the impact of covariates on the disease process, 
but does not give a clear interpretation of their impact at the population level. 

Another disadvantage is that the lengths of exacerbations enter the 
model only indirectly through the conditioning on previous responses. In this 
data set with fairly long exacerbation times, we need to consider a large number 
of previous responses if we use days as our unit of time since we expect the 
transition probability to decrease with the length of the current exacerbation. 

1.4.2 Alternating Renewal Processes 

We alluded in the previous section to the fact that the differences between 
the lengths of different exacerbations is difficult to capture in a Markov chain 
model. A model that takes the the length of exacerbations directly into account 
is that of alternating renewal processes. Renewal processes are commonly used 
as models for repeated failure times and alternating renewal processes can be 
used to model a process that alternates between two (or more) states. In our 
application, we have two states where state 1 refers to the exacerbation-free 
state and state 2 to the in exacerbation state. 

Renewal processes are defined in terms of their conditional intensity 
function. The intensity function at time t can be interpreted as the proba­
bility of an event occurring in the next instant given the history up to time 
t. The defining characteristic of a renewal process is that the model for this 
intensity incorporates the time since the last event (called the backward re­
currence time). 

To extend this model to a two-state process, we need to model the tran­
sition from state 1 to state 2 as well as the transition from state 2 to state 
1. When both these transitions are modeled according to a renewal process 
(i.e. the transition probability is modeled conditionally on the time since en­
tering this state) and an individual process alternates between these states, 
this model is called an alternating renewal process. We incorporate covariates 
into the parameterization for the conditional intensity functions. This means 
that, as was the case for the Markov chain model, we assess the impact of 
covariates on the transition probabilities. 
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The advantage of the alternating renewal process model over the Markov 
chain model is that the lengths of exacerbations are incorporated directly 
into the model through the backward recurrence time. The model has the 
shortcoming that we still assess covariates by their impact on the transition 
probabilities, which limits the interpretation of the results. An approach that 
models the mean counts and mean length of exacerbations directly is presented 
in the next section. 

1.4.3 Marked Point Processes 

The two previous models focus on the transition probabilities, conditional on 
either the response at the previous time-point or the time spent in the current 
state. This leads to mathematically convenient models, but the interpretation 
of the effects of covariates on the population level is not straightforward. To 
have directly interpretable results we want to model the mean counts of ex­
acerbations and the mean length of exacerbations. This can be accomplished 
through marked Poisson processes and more generally, through marked point 
processes. 

Poisson processes model the marginal means of the event counts at each 
time-point. They are popular models for repeated events partly because they 
are easy to fit and the interpretation of parameters is straightforward. Similar 
to renewal processes they can also be specified in terms of their intensities. 
They can be characterized by the fact that the inter-event times have expo­
nential distributions. For a more detailed discussion, see Chapter 3. 

Marked Poisson processes are a generalization of Poisson processes. In 
a Poisson process, the events have no associated properties; all events are iden­
tical. In marked processes, the events are distinguished by associated marks. 
These marks can be random variables; in our application they will count the 
number of days a patient was in exacerbation. Hence in this model events are 
not just points in time but have associated lengths. 

Poisson processes assume that the counts of events occurring in disjoint 
time intervals are independent and have a Poisson distribution. Equivalent to 
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this assumption is that the inter-event times are independent and have an ex­
ponential distribution. These assumptions about the distribution of the counts 
and the inter-event times are too restrictive for our longitudinal data set, so we 
need to adopt a more general model within the very general class of point pro­
cesses. To incorporate the lengths of exacerbations, we also introduce marks 
for this model which leads to a marked point process model. Marked point 
processes are generalizations of marked Poisson processes where the process 
for the event counts is a point process instead of a Poisson process. Chapter 
3 gives more background on point processes. 

1.5 Methods of Analysis 
In the previous section we discussed how the different models incorporate the 
two states and the advantages or disadvantages of these models with respect 
to the interpretation of covariates. In this section we discuss how the analysis 
for these models proceeds. By this we mean: 

• How does the exacerbation data enter into the analysis ? 

• How do the analyses incorporate the longitudinal aspect of the data set 
? 

Before we proceed with the discussion for the different models, we first 
describe the coding for the baseline covariates, since this is the same for all 
models. The baseline covariates were coded as follows: 

• treatment: we included the three arms as categorical variables, with 
the low dose and high dose included as indicator variables so that the 
treatment effects reflect the difference from placebo 

• time since onset of MS: as a continuous variable in years 

• EDSS: this is in fact an ordinal variable, but we treated it as a continuous 
covariate 

• gender: female as 1, male as 0 

• age: as a continuous variable in years 
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We used only time-independent covariates except for time on study itself. This 
simplifies the theoretical development and the computations, but some of the 
methods could also be applied with time-varying covariates. 

All patients were exacerbation-free when they entered the trial, so one 
might want to take this into account when modeling the data. We did not 
consider this in our models. 

For each modeling approach, we faced a considerable scope of possible 
models. However, the objective in this thesis is to provide a comparison of 
modeling approaches for a two-state disease process, not the comprehensive 
analysis of this particular data set. Hence we simplified this task and limited 
ourselves to just fitting the main effects. Further, we did not drop the non­
significant covariates from the models; this also makes the comparison between 
the results obtained in different chapters easier. 

1.5.1 Markov Chains 

We have seen in Section 1.2 that most times in exacerbation and times not 
in exacerbation are relatively long (Figure 1.5). This implies, for example, 
that the transition probabilities out of exacerbation depend on how long this 
patient has been in exacerbation, since the probability an exacerbation ends is 
relatively low for the first few days but higher if the exacerbation has already 
lasted for a while. To capture this long-range dependence, we would need 
to incorporate a relatively large number of previous responses into the condi­
tional specification (the number of previous responses is called the order of the 
chain). This introduces additional parameters into the model and makes the 
interpretation of covariates even more dependent on the disease process. To 
avoid having to consider high order chains, we collapsed the data over time. 
This is commonly done for data that has been collected over time to reduce the 
autocorrelation, although it results in some loss of information. To collapse 
the data, we considered only the data at every 10th day the patient was on the 
study and ignored all days in between. In this way we obtain a sequence of up 
to 110 data points, which is simply the subset consisting of the observation on 
every 10th day from the original daily sequence of 1095 days. Patients that 
drop out of the study before the end of the third year hence have a shorter 
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sequence of observed values. 

The simplest versions of such models would assume common transition 
probabilities for individuals with the same covariates. In the case of MS, 
we have highly variable disease processes so this assumption might be too 
restrictive. By introducing random effects into the model, we need only assume 
that the process is a Markov chain conditionally on these random effects, but 
not at the population level. 

1.5.2 Alternating Renewal Processes 

The alternating renewal process model incorporates the exacerbation data as 
the lengths of time intervals in state 1 (not in exacerbation) or state 2 (in 
exacerbation). Hence we can use the original data without collapsing it and 
incorporate the length of time intervals in days. For intervals not observed 
completely because the patient drops out before the next transition, we model 
the survival function for these censored times. This is analogous to the com­
mon approach in survival analysis. 

A simple model is the fixed effects model which assumes that the in­
tensities are determined by the covariates and the backward recurrence time. 
This model assumes that for both states the sojourn times for an individual 
are independent random variables. To allow for correlated sojourn times on 
one individual and to accommodate heterogeneity between the individuals, we 
introduce random effects into the model. 

1.5.3 Marked Point Processes 
As mentioned in Section 1.4.3, our marked point process approach models the 
mean event counts and the associated sum of the length of exacerbations at 
each time-point. Although an extension of this model to a continuous time 
setting is possible, we only consider a fixed number of time-points. That is, we 
choose a fixed set of time-points and then count the number of exacerbations 
and the sum of the lengths of exacerbations in the intervals between these 
time-points. Hence each patient contributes a sequence of pairs of numbers: 
the number of exacerbations starting in each time-period and the sum of the 
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lengths of these exacerbations for each time-period. If a patient drops out be­
fore the end of the current interval, data for this and al l subsequent intervals 
are missing. 

We have mentioned previously that Poisson processes assume indepen­
dence of the data wi thin individuals, and thus are not suitable as models for 
longitudinal data where we expect the counts on an individual to be correlated 
over time. However, more complicated models based on the conditional inten­
sity of the process lose the simplicity of interpretation of parameters. To over­
come this difficulty, we use a G E E approach in a point process setting. This 
approach allows us to model the regression of the response on the covariates at 
each time-point separately from the correlation within individuals over time. 
This means we can use the estimating equations for a Poisson process model 
to obtain estimates for the regression parameters and then obtain standard 
errors that are valid more generally by using the so-called sandwich estimator 
for the covariance matrix. This inference is valid for any point process that has 
the same marginal mean event counts, no matter what the correlation between 
these counts. This is referred to as the robustness property of this approach. 

1.6 Outline of this Thesis 
The remainder of this thesis is organized as follows: Chapter 2 discusses the 
Markov chain model; Chapters 4 and 5 deal wi th the implementation of the 
alternating renewal processes and the marked point processes model, respec­
tively. Since both Chapters 4 and 5 use point processes as their underlying 
framework, we introduce some general properties in Chapter 3. This chapter 
also includes the ini t ia l data analysis for Chapters 4 and 5, since in both cases 
it relies mainly on Poisson processes. We conclude with a comparison of the 
approaches and some general discussion in Chapter 6. 
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Chapter 2 

A Markov-Chain Model 

2.1 Introduction 
In this chapter, we model each individual patient's disease process as a Markov 
chain. Each patient is represented by a sequence of zeroes and ones correspond­
ing to the states "no exacerbation" or "exacerbation" (we explain the definition 
of the response in more detail below). We model the transition probabilities 
between these two states. 

In Chapter 1 we mentioned that the model for the transition probabil­
ity at time j can involve any fixed number (which is called the order of the 
chain) of responses yi at previous time points I < j. Figure 1.5 shows that the 
exacerbations usually last at least a few days, hence we would need to consider 
a relatively high order for the chain if we modeled the daily transitions to cap­
ture this long-range dependence. This would introduce more parameters into 
the model and also make the interpretation of the covariates more dependent 
on the disease process. To overcome this difficulty, we collapse the data on 
each individual. More precisely, we fix a number of time points in advance and 
record for each patient if on this day the patient is in exacerbation (recorded 
as 1; referred to as state 2) or not (recorded as 0; referred to as state 1). This 
is done for all of the time points where the patient was still on the trial (i.e. 
the dropout occurred after this time point). This way we have common time 
points on which all patients are observed, but sequences of different length for 
different patients. 
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We develop parametric models for the transition probabilities between 
these states at successive time points. We first consider a fixed effects model 
which assumes common transition probabilities for individuals with the same 
covariates. To allow for different underlying disease activity for different indi­
viduals that is not explained by covariates, subsequently we introduce random 
effects into this model. 

The body of literature on Markov chains from a mathematical perspec­
tive is vast. Papers dealing with statistical inference for Markov chains are 
Anderson and Goodman [2] and Kalbfleisch and Lawless [13]. Random effects 
are commonly used in models for repeated observations, see Lawless [16] or 
Diggle, Zeger and Liang [7], for example. For applications of random effects 
models to Markov chains, see Stiratelli, Laird and Ware [30] or Cook and Ng 
[3]. 

We first introduce some general theory for inference on Markov chain 
models and introduce a parametric model for the transition probabilities. We 
then extend this fixed effects model to a random effects model. We apply these 
methods to the MS data set and conclude with a goodness-of-fit assessment 
and some discussion of the results. 

2.2 The Likelihood 
In this section we introduce the notation and derive the likelihood for general 
two-state Markov chains. We assume the response Yij for individual i at time 
j is binary and that the distribution of the response given the response 
Yij-i is independent of all earlier responses (Yij-2,Yi,j-3, • • • )• This is called 
a first-order Markov chain. Hence we model P(Yij = yij\Yij-i = yij-i,x^-); 
that is, the response at time j given the response at time j — 1. 

We assume that we observe individual i,i = 1,..., m, at a set of equally 
spaced times j = 1,... ,7ij. This is convenient since then we don't have to 
account for time intervals of different lengths. Let us denote the vector of 
observed responses y^ € {0,1} for this individual by yj. Then the probability 
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of this realization y* for the random sequence Y j becomes, conditional on Yn, 

3=2 

by virtue of the Markov property. 

Since Yij is a Bernoulli random variable, we have 

PiYj = l\Yi^ = yid^) + P(Yij = OlYij-! = yl,j-1) = 1. (2.1) 

Together with the assumption that sequences from different individuals are 
independent, this leads to the likelihood, conditional on Yn, of: 

m rii 

L = I I I I p ( y « = = K J - I W I - PV* = = y y - i ) ) 1 " ^ -
1=1 j=\ 

(2.2) 

This likelihood is very similar to a likelihood for independent Bernoulli ran­
dom variables. This fact is exploited below to obtain estimates. 

For an initial analysis ignoring the baseline covariates, we are interested 
in nonparametric estimates of the transition probabilities. To allow us to 
explore the changes over time separately for each treatment group, we cut the 
time-axis into intervals and examine the data stratified by these time intervals 
and by treatment group. Hence we get an estimated transition matrix for each 
treatment group and time interval. 

Let us denote the transition probabilities (which are the parameters 
here) by 

Pgh = P{Yij = h\Yi j-i = g) 

for g, h = 0,1 where individual i is in a specified treatment group and time j is 
in a specified time interval. For notational convenience we do not include the 
treatment group and time-interval in the notation. For each treatment group 
and time interval, the following likelihood for the parameters pgh, g,h = 0,1 
can be obtained using expression (2.2) 

g h 
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where ngh is the number of g to h transitions for this treatment group in this 
time interval. Since the constraints are given by (2.1), L is proportional to a 
binomial density. Hence the MLEs in this case are the same as for a binomial 
distribution, namely 

Ugh 
Pgh = ^ • 

2.3 A Parametric Fixed Effects Model 
As we have seen in the previous section, we can parametrize the likelihood in 
terms of the transition probabilities P{Y^ = l |Y j j_ i = yij-i)- To incorporate 
the covariates into the model, we model the dependence of the transition 
probabilities P(Yij = l |Yj j_ i = Vij-i) on the vector of covariates for 
individual i at time j as 

l o g i t P ^ - l l F ^ - C x ^ ) = X i / A , (2.3) 

logitP(^- = 1 ^ - 1 = 1, Xij-) = x y 2 / ^ . (2.4) 

Here (30 and (3l are vectors of regression parameters and we assume that each 
model contains an intercept term. This way, we obtain separate regression 
parameters for the different transitions. /30 is the parameter vector for the 
probability to be in exacerbation when the patient was not in exacerbation at 
the previous time point, and f3l is the parameter vector for the probability to 
be in exacerbation when the patient was in exacerbation at the previous time 
point. 

The parametrizations (2.3) and (2.4) make a combined inference for 
both states more difficult, since they are stratified by the response at the 
previous time point. To allow for more general models, we follow Diggle, Liang 
and Zeger [7] and parametrize this model in a more concise way. To judge if 
the effects of covariates are the same for both transitions in the first-order 
Markov chain model, we re-express (2.3) and (2.4) as 

logit P(Yij = = Vij-i, Xij) = Xij-rj9 + yitj-iXijTa (2.5) 

so that f30 = j3 and [31 = [3 + ct. If an element of a is estimated as being 
significantly different from 0, this indicates that the effect of the covariate on 
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the probability of being in exacerbation depends on whether the patient was 
in exacerbation at the previous time point or not. 

We use a similar parametrization to compare the first-order model to a 
second-order model. We do not attempt to find the most appropriate order of 
the chain; we simply want to assess the adequacy of the first-order model com­
pared to a second-order model and investigate departures from the assumption 
of order 1. For a chain of order 2, the transition probabilities depend on the 
responses at the previous two time points. Analogously to (2.3) and (2.4) we 
can fit 4 separate logistic regressions with parameter vectors /300, /301, /310 and 
(3U for the history (1^-2, Yij-i) = (0,0), (0,1), (1,0) and (1,1), respectively. 
We can express these 4 models in a single regression: 

logit P(Yij = l | l i j _ i = y i j _ i , y i j _ 2 = y ij_ 2 , x i j ) = 

XijT(3 + Vij-iXij7ai + yitj-2X-ijTOL2 + yij-1yij^ijTOL3. (2.6) 

Hence j3m = /3,/301 = (3 + ai , / 3 1 0 = f3 + a 2 and 0n = (3 + cx1 + a2 + a3. 
If the Markov chain is in fact of order one, the transition probability does 
not depend on the outcome 1^-2 and thus /300 = /310 and /301 = (3n or, in 
other words, a2 = 0 and a 3 = 0. So we can use a likelihood-ratio test of 
Ho '• c*2 = 0, a 3 = 0 to assess if a chain of order 2 would significantly improve 
the fit. If this is the case, we can examine the nature of the departure from 
the first-order model in by examining the fit of model (2.6). 

Note that for estimation purposes this model treats the previous re­
sponses as a covariate. Hence we can utilize GLM-software to fit this model. 

2.4 A Random Effects Model 
In this section we extend the fixed effects model given by (2.3) and (2.4) from 
the previous section to a random effects model. The likelihood for the Markov 
chain model in the previous section resembles the likelihood for independent 
Bernoulli variables. We can exploit this connection further by using MIXOR, 
software for fitting mixed effects ordinal regression models, to fit a random 
effects model. We now describe the software and how we utilize it. 
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MIXOR is a program for mixed effects ordinal regression models de­
veloped by Hedeker and Gibbons (MIXOR: A Computer Program for Mixed-
effects Ordinal Probit and Logistic Regression Analysis, available on 
http:\\www.uic.edu\~ hedeker). For simplicity and since this is our case, we 
limit our discussion to the case of binary responses with a logistic link. 

The basic idea underlying the model is that the binary outcome is re­
flecting an unobservable continuous latent variable. The two variables are 
related by the so-called threshold concept: a response occurs when the latent 
variable exceeds the threshold value. The random effects are incorporated on 
the latent variable scale. 

We denote the latent response by Zij and the observed binary variable 
by Yij for individual i at time j. We model the latent response for individual 
i as 

where X ; is the design matrix for the fixed effects and .Wj is the design matrix 
for the random effects. The errors are assumed to be independent random 
variables following a logistic distribution with mean 0 and common variance. 
The random effects T/J are assumed to be independent of the errors and to be 
multivariate normal with mean vector 0 and covariance matrix S^. 

The log odds of the event Y^ = 1 for a given individual i are then 
modeled as 

logit P(Yi:i = l\u,rii) = z^, 

where =xT

iu + w ^ r ^ . Alternatively, we can write 

P(Ylj = l\v,71i) = V(zij), 

where \&(«) = exp(it)(l + exp(u)) - 1. 

With these model assumptions, the contribution to the likelihood for 
individual i becomes 

(2.7) 
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The marginal likelihood for individual i is then given by 

h(yi) = J Li(yi\u,r])g(r])drj, 

where g is the multivariate normal distribution of the random effects. 

MIXOR uses Fisher's scoring algorithm to get maximum marginal like­
lihood estimates for the parameters, which involves numerical integration to 
solve the maximum marginal likelihood equations. The numerical integration 
is implemented through Gauss-Hermite integration (see Section 4.6 for a de­
scription of this method). The information matrix at convergence is then used 
to get the large sample variances and covariances. 

So far we have modeled Bernoulli random variables with a random 
effect, that is we have modeled P(Yij = l\v, 77̂  Xy). To make the connection to 
the Markov chain model, we now model the transition probabilities conditional 
on the random effects; that is, we now model the probability of being in 
exacerbation conditional on the random effects, the covariate vector and the 
response at the previous time point. We denote the random effects for the 
transition into exacerbation by 7̂  and the random effects for the exacerbation 
to exacerbation transition by <5j. In analogy to (2.3) and (2.4), we can obtain 
regressions separately for each state as 

logitP(F i j = l | F i ) i _ 1 = 0 , x i j , 7 J = x ^ o + w ^ , (2.8) 

\o®tP{Yij = \\Yi^1 = \,xii,6i) = X i / X + W i / X (2.9) 

2.5 Model Assessment 
To assess the appropriateness of the fixed and random effects models we fol­
low the approach of Muenz and Rubinstein [21]. They compare the estimated 
occupation probabilities with the observed frequencies for each state. We first 
discuss this in the context of fixed effects and then extend it to the context of 
random effects. 

A single Markov chain with two states switches between these states 
over time. The occupation probability of the chain at time j is determined by 
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the response at the first time-point and the transition probabilities for times 
I < j, since 

P(Yv = Va) 

= Ply* = ylj\Yl^l = 0)P(Yi,j_l = 0) + P(Ytj = yalYij^ = i ) P ( y y _ i = 1) 

and 

P{Ya = yi2) = P(Yi2 = yi2\Yil = 0)(l-Yil) + P(Yi2 = yi2\Yil = l)Yil. 

Applying these equations recursively, we obtain 

P(Yij = 0) 
P(Ya = 1) 

1 ' p ( y y = m,i-x = o) P{Yi3 = o |y y _! = l) 
PiYj = l\Yitj^ = 0) P{Yl3 = = 1) 

To get estimates P(Yiit = 0) and P(Yitt = 1) for the fixed effects model 
given by (2.3) and (2.4), we simply plug in /30 and f31 in the respective 
parametrizations. For the random effects model, we also need to estimate 
the individual random effects. This is discussed at the end of this section. 

We want to compare the estimated occupation probabilities to the ob­
served relative frequencies F(k,j) for subsets of individuals, given by 

F { k i j ) = \ { i - - y * = l>.ieG}\ 
| G | 

for k = 0,1 and G a subset of {1,..., m). G will be determined by the quartiles 
of the estimated transition probabilities. We could also take G to be the set 
of all individuals, but by using (for example) 4 subsets we get a more refined 
assessment to detect potential systematic differences between these subsets. 

We evaluate the estimated exacerbation to exacerbation transition prob­
abilities at one point in time (we arbitrarily took day 500) and group individu­
als according to the quartile of their estimated no exacerbation to exacerbation 
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transition probability on that day. For each quartile, we calculate the observed 
occupation frequencies at each time point and the average occupation proba­
bilities at each time point and plot these two time series to graphically assess 
the lack of fit. 

To apply the same method to the random effects model, we need to 
estimate the transition probabilities which are modeled conditionally on the 
unobservable random effects. We want to estimate the individual random ef­
fects 7j and Si and plug these estimates into the conditional specification to 
obtain estimates for the transition probabilities. This procedure is described 
in the next paragraph. 

We have specified a prior distribution for the random effects given by 
the density #(7, t5) and we have a sampling distribution for individual i given 
by 

£i(y*|xt,/3,a.7i,tft) 
Tii 

= = l | x i , / 3 , a , 7 i , ^ ' ( l - PiXn = l l x ^ a , ^ ) ) 1 - ^ ' . 

i=2 

Hence the posterior distribution for 7 i and t5j, given the data and cx and (3, is 
proportional to 

Li(yi\xi,(3,cx,'Yi,di)g('yi,6i) 

which can be estimated as 

Li{yi\xi, (3, a, 7 i ; di)p(7is Si). 

To estimate the random effects, we use the means with respect to the posterior 
distribution with estimates for a and /3 and the variance for the random-effects 
plugged in. 

2.6 Application to the Exacerbation Data 
To achieve a reasonably low order for the Markov chain we collapsed the data 
as already mentioned by using only every 10th day. Since most of the exac­
erbations are a lot longer than 10 days (see Figure 1.5), we still observe most 
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exacerbations that occurred. We defined y* = 1, j = 1,..., 110, if patient i 
had an exacerbation on day j times 10, and y* = 0 otherwise. 

To get an initial assessment for this data set, we split the time axis into 
5 intervals (1-200, 201-400, 401-600, 601-800 and 801-1000 days) and obtained 
non-parametric estimates for the 10-day transition probabilities as described 
earlier for each interval and treatment group separately. The estimates for 
the no exacerbation to exacerbation transition given in Figure 2.1 indicate a 
treatment effect for the comparison of the high dose and placebo groups; there 
is not much difference between the low dose and placebo groups. There also 
seems to be a time-trend in all treatment groups with different trends for the 
treatment groups for the first 4 time-intervals and a drop-off in all groups in 
the last interval. The fact that the placebo group also seems to have a trend 
to have less exacerbations over time is consistent with findings in [6]. 

For the exacerbation to exacerbation transition (Figure 2.2) there seems 
to be a treatment effect only in the last time-interval, and overall there is no 
consistency in this effect over time. There also seems to be a time-effect which 
is similar in the low dose and placebo groups except for the last interval. In 
summary both plots show the need to incorporate time as a covariate and we 
anticipate a much more prominent treatment effect for the transition into exac­
erbation. A linear time trend seems a bit questionable, but not unreasonable. 
We explore this with parametric models in the next section. 

We now implement the parametric models as outlined in the previous 
sections. We have already stated in Chapter 1 that we use the data set to 
motivate our models, but a comprehensive analysis is not our goal. This 
should be kept in mind for this application of the Markov chain model. 

2.6.1 Fixed Effects Models 

We first fit a first-order model with the parsimonious parametrization (2.5). 
This model allows us to judge if the effect of the covariates is different if the 
patient was in exacerbation at the previous time point or not. Table 2.1 shows 
the estimated effects. A significant value for a component of a means the 
effect of that covariate is different for the different transitions. We see that 
except for the time since onset, EDSS and the low dose treatment, the effects 
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Transition no exacerbation to exacerbation 

o 

1 2 3 4 5 
time period 

Figure 2.1: No exacerbation to exacerbation transition probabilities by time 
period 

Transition exacerbation to exacerbation 

time period 

Figure 2.2: Exacerbation to exacerbation transition probabilities by time pe­
riod 
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0 a 

covariate estimate z-score estimate z-score 
low dose -0.1754 -2 .20 0.0940 0.78 
high dose -0.4468 -5 .25 0.4078 3.14 

age -0.0191 -3 .43 0.0252 3.06 
gender 0.2011 2.62 -0.2283 -1 .94 

time since onset -0.0035 -0 .55 -0.0063 -0 .63 
E D S S 0.0889 3.32 -0.0577 -1 .37 
time -0.0051 -4 .62 0.0068 4.00 

Table 2.1: Covariate effects for the first-order fixed effects model (2.5) 

into exacerbation exacerbation to exacerbation 
covariate estimate s.e. z-score estimate s.e. z-score 
low dose -0.1754 0.0798 -2 .20 -0.0814 0.0904 -0 .90 
high dose -0.4468 0.0850 -5 .25 -0.0389 0.0979 -0 .40 

age -0.0191 0.0056 -3 .43 0.0061 0.0061 1.01 
gender 0.2011 0.0766 2.62 -0.0273 0.0892 -0 .31 

time since onset -0.0035 0.0064 -0 .55 -0.0098 0.0075 -1 .30 
E D S S 0.0889 0.0268 3.32 0.0313 0.0323 0.97 
time -0.0051 0.0011 -4 .62 0.0018 0.0013 1.34 

Table 2.2: Covariate effects for the first-order fixed effects model, separate 
regressions for the transitions 

of the covariates are in fact estimated to be different. Hence we re-express this 
model wi th the separate logistic regressions given by (2.3) and (2.4), since this 
gives more interpretable coefficients. 

Table 2.2 shows the results for the separate regressions. For the no ex­
acerbation to exacerbation transition, we see a strong beneficial effect of the 
high dose treatment (which we anticipated from the exploratory analysis), but 
there is also a significant treatment effect for the low dose treatment. There 
is a significant decrease in the transition probability over time, which we also 
expected after the exploratory analysis. Older patients are less likely to start 
an exacerbation as well as patients with a greater time since onset. Female 
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patients are also more likely to start an exacerbation, which indicates that 
gender has an impact not only on the prevalence but also on the disease pro­
cess. Patients with a higher baseline EDSS are also more likely to have an 
exacerbation, which indicates a relationship between the disease progression 
measured by exacerbations and by EDSS. For the exacerbation to exacerbation 
transition, we find that no covariate is statistically significant. The treatments 
seem to be slightly beneficial, but the effects are very weak. Time has a mod­
estly strong effect; patients are more likely to remain in exacerbation later in 
the trial. Time since onset also has a modest effect, with patients who have a 
greater time since onset being less likely to remain in exacerbation. We have 
seen previously that the effects of covariates are estimated to be different for 
the two transitions. This table shows that for most covariates this difference 
is significant because the effect is significant for the transition into exacerba­
tion, but not significant for the exacerbation to exacerbation transition. One 
exception is age, where older patients have a significantly lower probability 
of starting an exacerbation but there is some indication that older patients 
have a higher probability of staying in exacerbation. The other exception is 
time; the probability of starting an exacerbation decreases over time but the 
probability of remaining in exacerbation increases over time. 

We have previously mentioned that a first-order Markov chain might 
not be sufficient to capture the longitudinal structure of this data set and that 
it might require a higher order chain to capture this structure. We employ 
a different model in Chapter 4 that deals directly with the lengths of exacer­
bations, so we do not explore which order of the chain is most appropriate. 
We simply use the likelihood ratio test to test if a second-order model pro­
vides a better fit than the first-order model. The x2 test-statistic is 44.04 on 
16 degrees of freedom (p < 0.001), hence the second-order model provides a 
significantly better fit. To examine the departures from the first-order model 
more closely, we fit the second-order model given by (2.6) and see how far we 
can reduce it to a first-order model. 

The z-scores for model (2.6) with all baseline covariates included are 
shown in Table 2.3. If a first-order model was adequate, the effects of cx.2 and 
a 3 would be weak. However, we see that there are some fairly strong estimated 
effects for these parameters. To simplify this model and to see how much we 
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0 ai oc2 «3 
covariate z-score z-score z-score z-score 
low dose -2.21 0.12 0.40 -0.20 
high dose -5.28 1.90 1.04 -1.12 

age -3.53 1.03 0.98 -0.49 
gender 2.57 -0.60 0.05 -0.25 

time since onset -0.20 0.86 -2.02 1.14 
EDSS 3.07 0.86 1.19 -1.85 
time -4.65 2.99 0.68 -1.09 

Table 2.3: Z-scores for covariate effects for the second-order fixed effects model 
(see (2.6)), initial model 

can reduce it towards a first-order model, we used a backward selection (with 
a cutoff of 1.30 or —1.30 for the z-score) to drop components of ot^ or a 3 
from the model. The estimates for the reduced model are shown in Table 2.4. 
This table shows that for most covariates, we can indeed eliminate the effects 
corresponding to interactions with the response two time-points previously. 
For EDSS and time since onset however, these interactions are quite strong, 
so that the interpretation of the effects for these covariates in the first-order 
model may not be quite appropriate. 

We re-expressed these covariate effects in terms of the parameters 
(300, (310, (301 and (3U to see the differences in the effects for these two-stage 
transitions; the results are shown in Table 2.5. To compare to the first-order 
model, we have indicated in the top row which transition these estimated 
effects correspond to in the first-order model (y(t — 1) represents the response 
at the previous time-point, so the two columns with the heading y(t — 1) = 1 
correspond to the exacerbation to exacerbation transition in the first-order 
model). In a first-order model, we have /300 = /310 and (30l = (3U. We have 
seen already that for the covariates in this table, this is not the case; this table 
shows that for both cases (y(t — 1) = 1 and y(t — 1) =0), the estimates differ 
considerably. This means that the interpretation of the covariate effects from 
the first-order model has to be viewed with some caution. 
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(3 
covariate estimate /-score estimate z-score 
low dose -0.1746 -2.18 0.0892 0.73 
high dose -0.4421 -5.19 0.3947 3.03 

age -0.0189 -3.40 0.0249 3.02 
gender 0.2007 2.61 -0.2277 -1.92 

time since onset -0.0025 -0.38 0.0231 1.31 
EDSS 0.0845 3.13 0.0500 0.64 
time -0.0050 -4.60 0.0072 4.20 

covariate estimate z-score estimate z-score 
low dose — — — — 

high dose — — — — 

age — — — — 

gender — — — — 

time since onset -0.0369 -2.12 — — 

EDSS 0.1219 1.44 -0.2415 -3.71 
time — — — 

Table 2.4: Covariate effects for the reduced (after backward selection) second-
order fixed effects model (2.6), final model; a — indicates this term was dropped 
from the model 

y(t - 1) = 0 y(t-l) = l 

Poo 010 A n 
covariate estimate estimate estimate estimate 

time since onset 
EDSS 

-0.0025 
0.0845 

-0.0394 
0.2064 

0.0206 
0.1345 

-0.0163 
0.0149 

Table 2.5: Estimates for the second-order transition probabilities from the 
reduced second-order model (other estimates omitted) 
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into exacerbation exacerbation to exacerbation 
covariate estimate s.e. z-score estimate s.e. z-score 
low dose -0.2800 0.1454 -1.93 -0.0923 0.1041 -0.89 
high dose -0.5118 0.1435 -3.57 -0.0311 0.1303 -0.24 

age -0.0196 0.0102 -1.93 0.0052 0.0064 0.80 
gender 0.2219 0.1292 1.72 -0.0100 0.1070 -0.09 

time since onset -0.0061 0.0111 -0.55 -0.0069 0.0093 -0.74 
EDSS 0.0960 0.0518 1.86 0.0347 0.0377 0.92 
time -0.0037 0.0011 -3.34 0.0015 0.0017 0.90 

a 0.84 0.06 0.33 0.07 

Table 2.6: Covariate effects for the random intercept models (2.8) and (2.9). 
a denotes the standard deviation for the random intercepts 

2.6.2 Random Effects Models 
In Chapter 1 we alluded to the fact that MS is a highly variable disease process. 
For this reason, we want to introduce random intercepts into the model to al­
low patients to have different tendencies to remain in exacerbation or start an 
exacerbation. A higher intercept for the transition into exacerbation indicates 
that this patient has a higher probability to start an exacerbation than another 
patient with the same covariates and a lower intercept. So this random inter­
cept can explain differences between patients who have the same covariates, 
but different tendencies to start an exacerbation. It does not explain variabil­
ities within patients, however. The random intercepts for the exacerbation to 
exacerbation transition have an analogous interpretation. Table 2.6 shows the 
results for the separate regressions for each state with random intercepts given 
by the model (2.8) and (2.9). 

The results for the covariates are qualitatively similar to the results for 
the fixed effects model (although the interpretation here is conditional on the 
random intercepts). Again most covariates are significant for the transition 
into exacerbation, whereas no covariate is significant for the exacerbation to 
exacerbation transition. We will compare the fixed and random effects models 
in the next section. The estimated standard deviation for the random in­
tercepts for the transition into exacerbation is fairly high, which means that 
the intercepts can explain some of the patient to patient variability of the 
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transition probability that is not explained by the covariates. The estimated 
standard deviation for the random intercepts for the exacerbation to exacer­
bation transition is also different from zero, although much smaller than the 
standard deviation for the transition into exacerbation. 

We also tried to fit models with a random coefficient for the time effect 
for each state, however MIXOR did not converge for these models with these 
two random effects included. 

2.7 Discussion 
In this section we compare the results for the different first-order models and 
perform a goodness-of-fit assessment for the fixed effects model. 

We want to compare the implications of these different fitted models , 
although as pointed out in Chapter 1, these coefficients have different inter­
pretations in random effects and fixed effects models. However, one can still 
compare which covariates are the most important in the respective models 
and which lead to significant decreases or increases in the respective transition 
probabilities. 

Although the interpretation of covariates is different in random and 
fixed effects models, there are some results available on the relationship of the 
regression coefficients from these models. Diggle, Liang and Zeger ([7], p. 140) 
discuss this for a logistic regression example (slightly different from our mod­
els). They show that in their situation, for any specific covariate, the ratio of 
the regression parameters from the fixed effects model and the corresponding 
random intercept model is a constant less than 1 that is monotonically de­
creasing in the variance of the random intercepts. The model considered here 
is not the same, but it is still interesting to examine these ratios to see if this 
ratio is consistent across different covariates. Table 2.7 shows the estimated 
effects for the fixed effects model given by (2.3) and (2.4) and the random 
intercepts model given by (2.8) and (2.9) as well as the ratios of the estimated 
effects. For the transition into exacerbation, the table shows that except for 
time the ratio is indeed smaller than 1. The ratio is also reasonably consistent 
across different covariates. For the exacerbation to exacerbation transition, 
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into exacerbation exacerbation to exacerbation 
covariate fixed random ratio fixed random ratio 
low dose -0.1754 -0.2800 0.63 -0.0814 -0.0923 0.88 
high dose -0.4468 -0.5118 0.87 -0.0389 -0.0311 1.25 

age -0.0191 -0.0196 0.97 0.0061 0.0052 1.17 
gender 0.2011 0.2219 0.91 -0.0273 -0.0100 2.73 

time since onset -0.0035 -0.0061 0.57 -0.0098 -0.0069 1.42 
E D S S 0.0889 0.0960 0.93 0.0313 0.0347 0.90 
time -0.0051 -0.0037 1.38 0.0018 0.0015 1.20 

Table 2.7: Comparison of covariate effects for first-order models 

into exacerbation exacerbation to exacerbation 
covariate fixed effects random effects fixed effects random effects 
low dose -2 .20 -1 .93 -0 .90 -0 .89 
high dose -5 .25 -3 .57 -0 .40 -0 .24 

age -3 .43 -1 .93 1.01 0.80 
gender 2.62 1.72 -0 .31 -0 .09 

time since onset -0 .55 -0 .55 -1 .30 -0 .74 
E D S S 3.32 1.86 0.97 0.92 
time -4 .62 -3 .34 1.34 0.90 

Table 2.8: Comparison of z-scores for first-order models 

the values range from 0.88 to 2.73, so this is much less consistent than the 
other transition. 

To compare the assessment of covariates in the different models we listed 
all the z-scores for the separate regressions in Table 2.8. Overall , the results 
are qualitatively quite similar for the random intercept and fixed effects model, 
although some of the covariates (low dose, age, gender and EDSS) which have 
statistically significant estimates in the fixed effects model are not significant 
in the random intercepts model at the 5% level (but they are st i l l significant 
at the 8% level). 

We performed a goodness-of-fit analysis as described in Section 2.5 for 
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the fixed effects model given by (2.3) and (2.4). The data were split accord­
ing to the estimated no exacerbation to exacerbation transition probability 
at day 500. The results are shown in Figure 2.3. These plots show that the 
observed frequencies exhibit different behaviour in the different quartiles, and 
hence the departure from the estimated proportion of patients in exacerbation 
is also different in each quartile. Figure 2.4 shows the assessment for all the 
data. This plot suggests a better fit of the model than Figure 2.3, mainly be­
cause the observed frequencies show less variability over time. The estimated 
probabilities capture the pattern over time quite well for all the data, whereas 
the pattern over time is quite different in the different quartiles and hence 
the discrepancy between estimated occupation probabilities and the observed 
frequencies is considerable. 

Although we have outlined in Section 2.5 how to proceed with the 
goodness-of-fit assessment for the random effects model, we did not carry this 
out, since the calculation of the estimates for the random effects is tedious. 

We have noted earlier that one of the shortcomings of the Markov chain 
model is that the estimated effects of covariates have to be interpreted in terms 
of transition probabilities. However, as we have seen in the goodness-of-fit sec­
tion, it is possible in principle to estimate marginal occupational probabilities 
(that is, the probability that a given patient is in exacerbation at time j) from 
the estimated transition probabilities and the response at the first time point. 
While this is mathematically straightforward, the fact that the starting values 
have a strong influence on the estimated occupation probabilities, particularly 
at early time points, makes this approach not very appealing. This dependence 
of the estimates on the initial values again results in a model where the covari­
ates have to be interpreted conditional on the disease process. Furthermore 
it is not straightforward to obtain estimates for the standard errors for these 
estimated occupational probabilities. Muenz and Rubinstein (21] develop this 
approach in some detail. 

The main objective for this thesis is to explore a model that incorpo­
rates the information available on the lengths of exacerbations. However, the 
Markov chain models presented in this chapter did not use all the information 
available since we collapsed the data to reduce the order of the chain. A model 
that takes advantage of all the information available is that of alternating re-
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Figure 2.3: Average estimated probability and proportion of patients in exac­
erbation over time, by quartiles of estimated transition probability (see text 
for details) 
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All data 

0 20 40 60 80 100 
time 

Figure 2.4: Average estimated probability and proportion of patients in exac­
erbation over time 

newal processes, which will be presented in Chapter 4. 
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Chapter 3 

Point Processes: Basic 
Properties and Preliminary 
Analyses 

This chapter has a different scope than the other chapters in this thesis. Here 
we do not present an approach to inference for the MS data set; rather we 
set the stage for the two subsequent chapters which will present analyses for 
the data set. In Chapter 1 we noted that alternating renewal processes and 
marked point processes can be expressed within the (very general) framework 
of point processes, so we introduce some terminology and basic properties for 
point processes in this chapter to avoid repetition in the subsequent chapters. 

Poisson processes are an important and convenient tool for exploratory 
analysis for both the alternating renewal process models and the marked point 
process model, so we also include the exploratory analysis for the subsequent 
chapters here. 

We do not attempt any detailed formal introduction of point processes. 
For this, the reader is referred to Cox and Isham [5] who cover statistical 
inference for point processes in some detail and Kingman [14] who gives a 
short introduction to Poisson processes and marked Poisson processes. 
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3.1 Terminology and Basic Properties 
In this section, we review some general properties and terminology related to 
point processes. We introduce Poisson and renewal processes as important 
examples and show the connection to our application. 

Point processes on the real line model the counts of events of a specified 
type in an interval. There is a close connection between the number Nt of 
events in [0, t] and the event times Tk given by 

{Nt >n} = {Tn < t}. 

Alternatively one can also consider the inter-event times Tk — Tk-i, which are 
usually assumed to be independent. 

A point process Nt can be characterized in terms of its conditional 
intensity function. If we denote the history of the process up to time t as 
H(t) = {Ns : s < t}, then the conditional intensity at time t given the history 
H(t) is defined as 

A ( i , H ( ( ) ) = l i m ^ L ^ W ) , 

where dNt = 1 if an event occurs at time t, dNt = 0 otherwise. Hence we can 
interpret the conditional intensity function (henceforth just called conditional 
intensity) as the probability that an event occurs in the next instant given the 
prior history. 

Covariates are usually included in the model by incorporating them 
into the conditional intensity. A convenient way to do this is to factor the 
intensity into a baseline intensity that depends on the history H(t) and the 
current time t and a positive function <f>(z) which depends upon a vector of 
time-independent covariates z, i.e. 

X{t,H{t),z) = X0{t,H(t))<f>{z) 

A common choice for 0(z) is exp(z'0) for a parameter vector 0. 

So far we have not assumed any particular dependence of the conditional 
intensity on the history H(t) of the process. The modeling of this dependence 
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defines the basic stochastic properties of the process and leads to the distinc­
tion between different kinds of processes. For Poisson processes, we incorpo­
rate only t and the covariates into the intensity so that X(t, H(t),z) = X(t, z); 
the special case where the intensity is independent of time (i.e. X(t, H(t), z) = 
A(z)) is called a homogeneous Poisson process. For renewal processes, the con­
ditional intensity for the k-ih inter-event time — T^-i depends only on the 
so-called backward recurrence time t — Tk-i so that X(t, H(t), z) = X(t — Tu-x, z) 
for the /c-th inter-event time. We will also use a more general class of processes 
called modulated renewal processes, in which the conditional intensity for the 
fc-th inter-event time — Tk-\ depends on the backward recurrence time and 
time itself so that X(t, H(t), z) = X(t, t — Tfc_i, z) for the fc-th inter-event time. 
The specification of the intensity leads to the distribution of the inter-event 
times Tk — T^-i which have density X(t, H(t), z) exp(— J0* A(s, H(s), z)ds). 

While the specification of the intensity leads to a distribution for the 
inter-event times, in applications the interest often lies in modeling the event 
counts at each time-point or the rate of events in a specified time interval. 
Poisson processes are particularly attractive for this situation, since they pro­
vide a simple connection between the intensity and the mean counts given 

Hence the incorporation of covariates into the intensity leads to an easy in­
terpretation of covariates with respect to the mean counts and the rate of 
occurrence of events (given by •^E(Nt\z)) is also the intensity. Homogeneous 
Poisson processes also provide a simple connection between the lengths of in­
tervals between events and the intensity. More precisely, if the process has 
the constant intensity A(z), then the inter-event times have an exponential 
distribution with mean A(z) _ 1 (and hence variance A(z) - 2 ) . 

Our objective is to build models for a two-state process, but the point 
processes considered so far do not distinguish between different events and 

by 

In the special case of an homogeneous Poisson process this leads to 

E(Nt\z) = A(z)t. 
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hence are not general enough. To incorporate this second state into the anal­
ysis, we use two models: alternating renewal processes and marked point pro­
cesses. In the remainder of this section we will give an introduction to both 
models and show the connection to the application to the MS data set. 

Alternating renewal processes assume that an individual process alter­
nates between two states. An event is the change of state and the intensity for 
the next event depends on the time that has elapsed since the process entered 
the current state. This means that to incorporate the second state we simply 
need to model two transition intensities. A bit more formally, we denote the 
event times for the state 1 to state 2 transitions by Tjt and the conditional 
intensity associated with this transition by Ai. Similarly we denote the event 
times for the state 2 to state 1 transition by Sk and the associated conditional 
intensity by A 2 . In this way we can represent the process as a sequence of event 
times (Ti, Si, T2, S2, • • •) or (Si,T2, S2, T 3 , . . . ) , depending on whether the pro­
cess starts in state 1 or state 2 (we omit Ti in the latter case for notational 
convenience). We then assume that the inter-event time Sk — Tk (during this 
time the process is in state 2) has intensity X2(t, t — Tk,z) and the inter-event 
time Tfc — Sk-i where the process is in state 1 has intensity Xi(t,t — Sk-i,z). 
In the application to the MS data, state 1 is "not in exacerbation", state 2 is 
"in exacerbation" and an event is hence the beginning or the end of an exac­
erbation. 

Marked point processes take a different approach. For this model we 
assume that we have a sequence of events (as for any point process), but each 
event has a so-called mark associated with it. This means we can describe the 
process by a sequence of event times Tk combined with a sequence of marks 
Xk, with the A;-th mark Xk associated with the k-ih event time Tk. Hence we 
have an underlying point process Nt given by the sequence ( T i , T 2 , . . . ) and 
a process of marks Mt — 2^{i-o<7j<t} -^»- They are related by the assumption 
that, given Nt = n, Mt is a sum of n independent random variables. For a 
more detailed discussion and more general examples, see [5], p. 131. In the 
application to the MS data set an event is the beginning of an exacerbation 
and the mark associated with this event is the length of this exacerbation. 
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3.2 Initial Data Analysis 
In this section we first show that we can use the same initial data analysis for 
the alternating renewal process model and the marked point process model. 
We then proceed with the initial data analysis for the MS data set, which is 
relevant to both of the next two chapters. 

We have seen in the previous section that we need to model : 

• the conditional intensity for transition into and out of exacerbation for 
alternating renewal processes 

• the conditional intensity for transition into exacerbation and length of 
exacerbations for marked point processes. 

We have also seen that for a point process with constant intensity A (which is 
then also the rate) the inter-event times have mean 1/A. Hence for purposes 
of data exploration we can use alternatively the mean inter-event times or the 
rate of events (i.e. the number of events in a specified time period). Hence 
we use the yearly rate of exacerbations and the mean length of time spent in 
exacerbation for both approaches. 

We are interested how the baseline covariates are related to these two 
outcomes (rate of exacerbation and mean exacerbation length). To explore 
this relationship, we summarize the data on each individual and then plot the 
outcomes versus the covariates. We summarize the data for each patient for 
state 1 as yearly exacerbation rates (number of exacerbations divided by the 
time on study, rescaled by 365 to obtain the rate per year) and the data for 
the exacerbations as the average lengths of exacerbations (if the patient did 
not have an exacerbation, this summary is missing). 

Figure 3.1 shows the individual rates versus the baseline covariates. We 
see that a number of patients have fairly high yearly rates (up to 12, but this 
patient, number 418, dropped out early), and there is a substantial amount 
of variation among individual rates. We notice that the rates in the placebo 
group seem to be higher than in the low dose and high dose groups, but there 
is no apparent difference between the low dose and high dose group. The time 
since onset seems to be correlated with the rates decreasing as the time since 
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Gender Time since onset Age 

male female 

EDSS 

0 5 10 15 20 25 30 

years 
20 25 30 35 40 45 50 

years 

Treatment 

0 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 placebo low dose high dose 

Figure 3.1: Rate of exacerbations versus covariates 
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Gender Time since onset Age 

male female 0 5 10 15 20 25 30 
years 

20 25 30 35 40 45 50 

years 

EDSS Treatment 

0 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 placebo low dose high dose 

Figure 3.2: Average lengths of exacerbations versus covariates 
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onset increases. There is an indication that female patients have higher exac­
erbation rates. The plots for EDSS and age do not show any particular pattern. 

Figure 3.2 shows the individual average exacerbation lengths versus the 
baseline covariates. There is a striking variability in the average lengths of ex­
acerbations across individuals with one extreme observation (outlier) of more 
than 300 days (this patient, number 502, had one exacerbation 368 days long). 
There is not much indication of a treatment effect, and there is no apparent 
relationship between EDSS and the length of exacerbations. It is worth noting 
that the patient with the extreme average length has an EDSS of zero, which 
could mean that this point has high leverage. The median average exacerba­
tion length for male and female patients is almost equal, but there are more 
extreme observations for the female patients. There seems to be a tendency 
for shorter exacerbations among patients who had MS for a longer time, and 
a tendency for longer exacerbations among older patients. Note also that the 
outlier amplifies the apparent relationship for both the time since onset and 
age. 

We are also interested in changes in these outcomes (rates of exacerba­
tions and average exacerbation lengths) over time, and in particular how the 
treatment effect changes over time. To explore this, we split the time axis into 
5 intervals of 200 days (0-200, 201-400, 401-600, 601-800 and 801-1000) and 
calculated the rate of exacerbations and the average lengths of exacerbations 
for exacerbations starting in this time period for each treatment group and 
time period. 

Figure 3.3 shows the rates by treatment group over time. This plot 
shows a marked difference between the placebo and high dose groups so that 
there is apparently a treatment effect with the high dose treatment. There is 
some hint that the low dose treatment is effective as well, but the difference 
from placebo group is much less apparent. There is also a clear decrease over 
time of the rates in all treatment arms. There is some indication of a treatment 
by time interaction for the rates, since the lines are not parallel. However, this 
effect does not seem to be very strong. 

We are also interested in the average length of exacerbations over time. 
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Time Period (days on study) 
treatment group 0-200 201-400 401-600 601-800 801-1000 

placebo 108 75 71 59 43 
low dose 83 76 63 52 44 
high dose 65 54 46 44 37 

Table 3.1: Number of exacerbations by treatment and time-period 

However, we have seen there are some extreme observations for the average 
length of exacerbations. To see if these influence the patterns over time un­
duly, we also included a plot of the median average exacerbation length by 
time-period. Figure 3.4 shows the mean and median average exacerbation 
length by treatment arm over time. This plot shows that there is apparently 
no consistent pattern over time for the different treatment arms, neither for 
the median nor for the mean. Comparing these two plots we can see that the 
extreme observations indeed have quite a strong influence on the average time 
in exacerbation. 

Part of the reason that this plot is so erratic could also be that the 
number of patients who experience an exacerbation is decreasing over time 
as noted earlier, so that the total number of exacerbations is decreasing over 
time,which can be seen in Table 3.1. 

The next two chapters implement the alternating renewal process and 
marked point process models for the MS data. 
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Rate of exacerbations over time 

1 2 3 4 5 

time period 

Figure 3.3: Rate of exacerbation over time in 200 day time periods by treat­
ment 
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Mean average lengths of exacerbations over time 

placebo 
low dose 
high dose 

3 
time period 

(a) Mean average lengths of exacerbations 

Median average exacerbation length over time 

3 
time period 

(b) Median average lengths of exacerbations 

Figure 3.4: Mean and median average lengths of exacerbations over time 
200 day time periods by treatment 

51 



C h a p t e r 4 

A n A l t e r n a t i n g R e n e w a l 

P r o c e s s M o d e l 

4.1 Introduction 

The previous chapter introduced basic properties of point processes and set 
the stage for this chapter, which deals with the implementation of the alter­
nating renewal process model. We have seen in Chapter 2 that the Markov 
chain model has the disadvantage that it is not easy to incorporate the lengths 
of exacerbations directly. In Chapter 3 we have seen that renewal processes 
incorporate the backward recurrence time, hence this approach allows us to 
deal directly with the length of exacerbations. 

For the alternating renewal process approach, we model each individ­
ual disease process as an alternating renewal process. The patient alternates 
between state 1 (not in exacerbation) and state 2 (in exacerbation) and we 
record when the transition between these states occurred and how long the 
patient stayed in each state. Hence we can use the exacerbation data from the 
trial as it was recorded. 

As outlined in Chapter 3, we model the intensity for the waiting time 
to the next event (events here are a change of state) given the covariates 
(including time since randomization) and the time since the last event (the 
backward recurrence time). One expects the backward recurrence time to be 
an important predictor, particularly for the time in exacerbation, since these 
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exacerbations usually last at least a few days, but not very long. For the times 
where patients are not in exacerbation, one expects this effect to be less ap­
parent due to the large individual differences in the length of exacerbations. 

The time since randomization is also of interest. The data set at hand 
is for relapsing-remitting MS patients. These patients eventually enter the 
secondary progressive stage where the disease process is very different, so one 
wants to allow for changes over time in the transition probabilities. Cox [4] 
named this kind of renewal process with multiple time scales a modulated 
renewal process. Other papers that deal with statistical inference for these 
processes are Lawless and Thiagaraja [19] and Oakes and Cui [25]. 

One should note that for repeated events the backward recurrence time 
plays the role of "time" in survival analysis where there is at most one event 
per individual. We also incorporate time since randomization as a covariate 
into our model, but in contrast to survival analysis this does not mainly de­
scribe the hazard function for the waiting times, but rather the changes for 
this hazard over time (i.e. how an early exacerbation differs from a late one). 

Initially, we develop a fixed effects model. To accommodate heterogene­
ity between the individuals and to allow for correlation between the multiple 
waiting times on one individual (both for waiting times in one state as well as 
for the correlation of waiting times in state 1 with the waiting times in state 
2), we introduce bivariate random intercepts into the fixed effects model. One 
interpretation of random effects is that they account for unobserved covariates 
which cause both heterogeneity between different individuals and correlation 
within an individual. Our approach follows closely the paper by Ng and Cook 
[23]. Another paper that uses bivariate random effects is Xue and Brook-
meyer [34]. Aalen and Husebye [1] discuss random effects models for renewal 
processes and Lawless [16] discusses random effects for Poisson process models. 

We use the subscripts i = 1,..., m for the individuals, j — 1,2 for the 
state (1 = not in exacerbation, 2 = in exacerbation). Let tn < • • • < t i n. < 
Um+i be the observed transition times and the censoring (dropout) time for 
individual i. We denote the history of subject i up to time t by #; (£) , including 
the covariate vectors x i 1 , X j 2 for states 1 and 2 respectively; that is, if tik is 
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the last event time prior to t, we have 

Hi(t) = {Xji, Xi 2, in, • • •, Uk} 

4 . 2 F i x e d E f f e c t s 

In this section, we introduce a fixed effects model. It assumes the independence 
of inter-event times and hence may be too simple a model for a longitudinal 
data set, but it is the building block for the random effects model considered 
in the next section. 

4.2.1 Parameterization of the Intensities 

As mentioned in the previous chapter, we use the conditional intensities into 
exacerbation and out of exacerbation to model the alternating renewal process. 
Let X * denote the intensity for individual i for the transition out of state j, 
with Oj = {(3j,£j) the vector of parameters for state j. Here /3j is the set of 
regression parameters related to the time-independent covariates and £j is the 
set of parameters associated with the baseline intensity XQ3. The intensity is 
modeled as 

We describe the parametrization for the baseline intensity in Section 4.4. 

Let tn < • • • < Uni < Uni+i be the observed transition times and the censoring 
time for individual i (with abuse of notation, we denote the corresponding 
random variables by Uk as well) . The inter-event times Uk — U,k-i, k = 
1,..., rii + 1, are assumed to be independent and tik, given U^-i has density 

(if Uk — U,k-\ corresponds to a sojourn time in state j) and survival function 

Xi3{t,03\Hi(t)) = e x p ( x ' i j / 3 j ) A 0 j ( t , ^ | ^ ( i ) ) . (4.1) 

4.2.2 The Likelihood 
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Then the likelihood for individual i is (denoting the vector of parameters for 
both states by 0 = (0i,0 2) ) 

HO)=n | n / ( ^ i ^ ( ^ ) ) 5 ( ^ + i i ^ ( ^ i + i ) ) i { „ i + i G A j . c } 1. (4.2) 

Here Dij is the set of indices k < rii where subject i is in state j for Utk-\ < t < 
and DijC is U {rii +1} if the censoring occurred in state j and otherwise 

just D^. Plugging in the formulas for Ay, we get 

Li(0) = T[ II exp(x^/3j)A0i(t)exp I - ^ e ^ A o j ( t i l f c - i , t i * ) 
j=l keDij \ keDijc 

where 

A0j-(a,6) = / Arjj {s)ds 
J a 

is the integrated baseline intensity.By the independence of data from different 
individuals, the likelihood for m individuals L(6) is then 

m 

L(0) = Y[Li(e). 
i=l 

4.3 Random Effects 

The fixed effects model assumes that the sojourn times on an individual are 
independent, so does not allow for correlation of the data on an individual. 
To accommodate this, we expand the fixed effects model introduced above by 
introducing random intercepts (un, Ui2) in the model specification (4.1) for the 
intensities, i.e. 

Ay (t, Oj |Hi(t), ui:j) = exp(x'y/^- + Uij)X0j {t, ̂  |Hi(t)). (4.3) 

By assuming that the individual intercepts for each state are a random sample, 
we introduce a positive correlation between the sojourn times in state 1 and 
between the sojourn times in state 2 on each individual. In addition, we 
assume that the random effects are correlated; that is, that (un:Ui2) are a 
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random sample from a bivariate distribution. This allows a correlation for 
the sojourn times in state 1 with the sojourn times in state 2. Unfortunately, 
the correlation of the transition intensities does not easily translate into a 
correlation of the sojourn times (see Lindeboom and Van Den Berg, [20]) so 
that the correlation for the intensities is not easily interpretable. But the sign 
of the correlation is the same for the transition intensities as for the sojourn 
times, so the sojourn times can be negatively correlated and the sign of the 
estimated correlation for the intensities can be used for a qualitative assessment 
of the correlation of the sojourn times. 

4.3.1 The Distribution of the Random Effects 
We assume that the intercepts (un,ui2) follow a bivariate normal distribu­
tion with mean vector //. = (jUi, p2) and unknown covariance matrix E = (<7fc/). 

The parametrization (4.3) then implies that, at any fixed time t, the intensities 
(Aa(t, 0j\H~i(t),Uij), Xi2(t, 0j\H~i(t), Uij)) follow a bivariate log-normal distribu­
tion. This choice for the distribution of the random effects differs from the 
usual choice for random effects for repeated failure times; we discuss this at 
the end of this chapter. We now introduce some general properties of the bi­
variate log-normal distribution. 

Let U = (Ui, U2) be bivariate normal with mean vector \x = (fj,i, /z2) and 
covariance matrix E = (o~ki)- Then (Xi,X2) = (exp(Ui), exp(U2)) is bivariate 
log-normal and we have 

where the last equation follows from the expression for the moment generating 
function of a bivariate normal random variable. In our application, we require 
the mean of U to be /x = (0,0). In this case, we have 

E(Xr

l

1Xr

2

2) £ ( e x p ( r T U ) ) 

exp(rT/x + - r T E r ) 

(4.4) 

In addition we have 

cov(X1,X2) = exp -(an + o22) (exp(cr12) - 1) 
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and 

coviX^Xj) = exp(a i j)(exp(a j i) - 1) 

for j = 1,2. Thus 

corr{XuX2) = ™ ^ ~ 1 (4.5) 
v

/(exp(an) - l)(exp(a2 2) - 1) 

We mentioned above that the transition intensities have a bivariate 
log-normal distribution. Hence (4.5) shows that a negative correlation of the 
intercepts leads to a negative correlation of the transition intensities. 

4.3.2 The Likelihood 
The derivation of the likelihood for the fixed effects model depends on the 
assumption that the inter-event times are independent. In the random effects 
model, we assume that the inter-event times Uk — U^-i, k = 1,..., n; + 1, are 
independent conditional on u;. Furthermore, Uk given U^-i has density 

f(t\Hi(t),Uij) = \i:i(t,Oj\Hi(t),Uij)exp I- \ij(s,0j\Hi(s),Uij)ds 
{ Jti,k-i 

so that, in analogy to (4.2) the conditional likelihood for individual i is 

Li{0\ui) = H H exp(x^. + u l j)A 0 j(t)exp ( - ] T e ^ ^ + " ^ A o j ( ^ - i , U k ) 

j=l keD^ \ keDijc 

(4.6) 

The marginal likelihood is obtained by integrating with respect to the density 
g of the random effects (un,Ui2). In our application, g is the bivariate normal 
density with mean (0,0) and unknown covariance matrix E . Since the data and 
the random effects for different individuals are assumed to be independent, the 
marginal likelihood is given by 

m „ 

L{0) = / Li(0\u)g(vL)du. (4.7) 
• i=i J 
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4.4 Parameterization of the Baseline Intensity 

Like Ng and Cook [23], we also consider two time scales as covariates in the 
model: the time since randomization and the backward recurrence time. We 
refer to the first as the "Markov" time, since it represents the history on this 
time scale for this individual. We refer to the backward recurrence time as 
the "Renewal" time scale. This is in analogy to renewal processes, where the 
conditional transition probabilities given the complete history depend only on 
the time since the last event. In a disease process like relapsing-remitting MS, 
these time scales have different interpretations. The renewal scale represents 
the dynamics of the waiting times in one state: Given the time spent in this 
state, how likely is it to switch to the other state in the next instant? The 
Markov scale on the other hand describes the disease progression: How does 
the transition probability after three years differ from that shortly after ran­
domization? 

These time-scales are included in the baseline intensity, which we 
parametrize as the product of the Markov component 7) and the renewal 
component Rj 

We consider three different parametrizations for the two time-scales, 
separately for each state: 

• linear: 

Rj(s) 

Tj(s) 

exp(7j-s) 

exp(<5js) 

• piecewise constant: 

1=1 
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where a3i and bji are known constants specifying the intervals on which 
the functions are constant. 

• with cubic B-splines spR , J(s; 7 - ) , spM j'(s, Sj): 

Rj(s) = exp(sp B j'(s;7 J-)) 

Tj(s) = e x p ( S ^ ( S , ( 5 I ) ) . 

We consider different parametrizations for the time-scales for two reasons: 
to check the sensitivity of the inference for the baseline covariates on the 
parametrization of the time-scales and to allow a flexible dependence of the 
transition intensities on time to examine the patterns over time. We don't ex­
pect the dependence on the backward recurrence time to be linear; we mainly 
considered the linear parametrization for this time-scale to see if this overly 
simple model still leads to correct inference for the baseline covariates. For 
the Markov time-scale, the linear parametrization might not be unreasonable 

Two of these parametrizations allow a flexible pattern over time: the 
piecewise constant and cubic B-splines parametrizations. The piecewise con­
stant parametrization is a flexible approach that allows us to investigate effects 
over time without assuming a complicated functional form for these effects. It 
is easy to fit with relatively few parameters, but assumes a step function for 
the estimated dependence on time which may not be the functional form one 
expects for these effects. Splines, on the other hand, model the dependence 
over time with flexible, smooth functions. This parametrization has the ad­
vantage that it is a more plausible model for a disease process as we expect 
the dependence of the transition probabilities to be smooth over time. The 
parametrization is more complicated to implement however, and we encoun­
tered numerical difficulties with this approach. 

In the remainder of this section we outline our implementation of the 
spline parametrization; the implementation of the other parametrizations is 
straightforward. To simplify notation, we drop all subscripts for the state or 
time-scale and use generic parameters and functions instead; so for example 
the l-th basis function bi(s) (introduced below) represents one of the four basis 
functions bf'1(s),bfI'1(s),bf'2(s) or bf'2{s). 
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A B-spline sp(s, 7) on the interval [a, b] is a linear combination of basis 
functions bi(s), say 

The number and the shape of the basis functions bi(s) depend on the number 
and values of the knots s/ £ [a, b] which have to be chosen first. These basis 
functions are defined such that sp(s, 7) has continuous second derivatives on 
[a, b], and is a polynomial on each of the intervals [SJ,SJ+I]. The most im­
portant feature of splines for our implementation is that once the number and 
location of the knots is fixed, the spline is completely determined by the vector 
of parameters 7. Possible choices for the knots sk are, for example, quantiles 
from the sample of observed Markov or renewal times; this ensures that each 
of the intervals [sk, Sfc+i] contains the same number of data points. 

In the application to the MS data set, for each state (1,2) and each 
time-scale (Markov, renewal) we first choose a set of knots. The splines are 
then completely determined by the parameter vectors 7i,<5i,72 and S2. We 
then include these four parameter vectors in the procedure to maximize the 
likelihood. 

Choosing the knots prior to the maximization of the likelihood is in 
contrast to the usual statistical use of splines, where the choice of the knots 
is also optimized in some way. We felt, however, that for our purposes this 
simpler approach would suffice. Our use of splines is intended to allow for a 
flexible functional form, but we do not necessarily want to obtain the "best" 
approximation to the relationship between time and transition intensities. The 
main advantage of fixing the knots in advance is that the implementation is 
relatively straightforward and does not require many changes from the imple­
mentation for other parametrizations for the time-scales. 

p 
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4.5 Numerical Methods 

4.5.1 Random Effects 
As a part of the estimation, we have to derive estimates for the entries of the 
covariance matrix of the random effects: 

Var ( t i y ) = E = f ^ M . 
\ \JO\\0~22P Cr22 J 

The estimation must take the constraints on the parameters into account: 
the variances have to be positive and the correlation between —1 and 1. To 
ensure these constraints are satisfied, we use the Cholesky decomposition to 
re-parametrize E = flflT where 

a = ( ^ ° ) . 
\ U3 UJ2 J 

Then a"n = oof, 022 = ^ 2 + ^ 3 a r j d P — ^ 3 / + ^3 a n d there are no 
restrictions on the vector u> = (cu±, U2, ^3). We re-parametrize the random 
effects as z, = Q _ 1 U j where z, ~ N(0,I2) and I2 is the 2 x 2 identity matrix. 
The conditional intensity then becomes 

\ij(t, Oj\Hi{t), Zij) = e x p ( x j j / 9 i + QjZ-^Xojit, 

where f2j is the jih row of Q. The marginal likelihood for subject i thus 
becomes 

/

CO poo 
/ Li(e,u\zi)d^(zn)d^(zi2) 

-00 J —00 

= — / Li(0,w|zi)e~Hi e -H2d,2 i l f l !2. 2 

27T 7 -oo7 -oo 

= ^ III] exp(x:j./3,)A0j(t) 
\j=l keDij 

/

oo /-co 

/ exp IriiiUiZii + ni2(u2Zi2 + wzZii)) 
•00 J —00 

2 
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where n* is the number of uncensored transitions out of state j. 

To maximize the log-likelihood for m individuals, given by (see (4.7) ) 

m 

\ogL(e,co) = ^ogLi{d,u), 

1=1 

we use a quasi-Newton method. That is, the parameter vector in the (k + l)st 
iteration is given by 

0(fc+i) \ / 0(fc) 

w(*+l) ) = ( w(fc) ) - (A 2 logL(6> ( f c ) ,o; w )) 1 AlogL(6> ( f c ),o;W) 

where A\ogL(6,uj) is the finite difference approximation to the first deriva­
tive of the log-likelihood (i.e. the score vector) and A 2 logL(0,u;) is the cor­
responding approximation to the second derivative of the log-likelihood. Here 
the vector A / for a function / : BP —>• R and a suitably chosen small constant 
h is given by 

/ ( a i , . . . ,aj + h,... ,Op) - / ( a i , . . . , a, - h,... ,ap) 
(A/(ai , • • • ,aP))i — ^ , 

and the (I, m)th element of the matrix A 2 / is given by 

= {[/(oi, .-,ai + h , a m + h , a p ) - f(au at + h , a m - h , a p ) ] 

- [/(oi, ...,at-h, ...,Om + h, ...,Op) - / ( a i , . . . , a j - / i , . . . , a m - h , a p ) ] } / 4 / i 2 . 

4.5.2 Splines 

The evaluation of the splines for implementation in C caused some complica­
tions. Initially we thought that we could use the functions supplied in S-plus 
to evaluate the basis functions. While this is possible in principle, Venables 
and Ripley [33] suggest the use of a look-up table instead to achieve higher 
speed. 

To implement this, we create vectors of values for the different basis 
functions in S-plus and import them into C (the use of a fixed set of knots 
makes this feasible). This gives us the values at a set of points; we use linear 
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interpolation to approximate these basis functions at intermediate points. By 
increasing the number of points that we import into C, we can improve this 
approximation (at the expense of speed, since for each evaluation of the spline 
we have to locate the appropriate values in the look-up tables). 

4.6 Comments on the Numerical Method 

Our implementation of the maximization routine to obtain the M L E differs 
from that suggested by Ng and Cook [23]. They use Gauss-Hermite integration 
to obtain weights wi, wm and points a/, am for /, m = 1... N at which to eval­
uate the integrand (often called abscissas in the numerical analysis literature), 
to approximate an integral of the form 

for individual i. These integrals appear in the marginal log-likelihood function. 
To implement the Newton-Raphson algorithm, they simply approximate the 
log-likelihood using (4.8) and then analytically differentiate the approximation. 

We chose to use a different approach for two reasons. First, the second 
derivatives of the log-likelihood are quite complicated analytical expressions, 
so we prefer a quasi-Newton routine that is less prone to programming errors 
and also much easier to change if one wants to implement a different model 
(e.g. with splines). Second, we found that the Ng and Cook approach was 
quite unstable numerically, for reasons that we now explain. 

To simplify the discussion, consider the case of a one-dimensional func­
tion g(z) and the integral 

with a sum 

(4.8) 

where 

g(zuz2) = Li(0,Lo\zuz2) 
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Gauss-Hermite integration selects "optimal" weights wm and abscissas am for 
m = 1,..., N to obtain the approximation 

These weights and abscissas are optimal in the sense that this approximation 
is exact for a polynomial of degree < 2N — 1, and works well if g is well-
approximated by a polynomial (for further discussion, see Press et al. [26]; 
expressions for the error are given in Stoer and Bulirsch [31]). 

But the function we have to integrate is very different from a polyno­
mial. For independent random effects (i.e. u>3 = 0 ), the part of the likelihood 
we have to integrate factors into 

so the two-dimensional integral factors into two one-dimensional integrals. To 
see why this integrand causes problems, consider the behavior of the function 

for different values of n, UJ and c. 

To get a realistic picture, we used the parameters obtained in the fixed 
effects model to obtain values of c which correspond to the integrated intensity 
(for a detailed description of the model, see below). Figure 4.1 shows the inte­
grated intensity versus the number of exacerbations for each state to illustrate 
which values occurred in our application. Figure 4.2 show g for a "typical" case 
(number of exacerbations = 4, c = 8) and for the extreme case (number of ex­
acerbations = 17, c = 3). Each plot shows two plots for values of u> = 0.2 and 1. 

These plots show that the function is very different from a polynomial. 
It also shows that for the extreme case, different values of to have quite a 
dramatic impact on the function. An increase in the number of points for a 
Gauss-Hermite integration will hardly improve the precision, since this spreads 
the abscissas over a wider range. 

exp (n\U)iZi — eW l 2 le : * A i ) exp (n2cu2z2 - e^eX2^A2) 

g : z —>• exp(nujz — euzc) 
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slate 1 state 2 

(a) state 1 (b) state 2 

Figure 4.1: Integrated intensity versus number of exacerbations 

To overcome this difficulty, we used Romberg integration to evaluate the 
integral. This method interpolates the function values between abscissas and 
works for general smooth integrands to be integrated over a finite interval. 
This is a suitable method in our case since we know that the integrand is 
almost 0 for large values. We gain more precision when using more abscissas 
since the additional abscissas are allocated to locations where the function is 
non-negligible. We set the integration limits at —4 and 4, which corresponds 
for fixed effects (u = 0) to a loss of precision of roughly 10 - 5 for the integral; 
i.e. we could get any value in the interval 1 ± 10 - 5 when the integral equals 1. 

4.7 Model Assessment 

To assess how suitable the random effects models are for the data set at hand, 
we construct residuals based on the cumulative transition intensities 

rkk 
hij(ti,k-i,tik\Hi(tik),Uij,0j) = / \ij(s,8j\Hi(s),Uij)ds 

(j = 1,2; i = 1,..., m) over consecutive transition times. This is in analogy to 
the construction of residuals in survival analysis (see Lawless [15], page 281). 
If all the parameters including the random effects are known, these Ay are 
exponentially distributed with mean 1, since the survival function for the to-
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omega = 0.2 omega - 1 omega = 0.2 omega = 1 

(a) typical case (b) extreme case 

Figure 4.2: g for a typical and an extreme case (see text for definition) for 
different values of u 

is given by S(t) = exp(—A^) and S(t) is uniformly distributed. 

To use this property, we have to estimate the random effects Uij. In 
analogy to Section 2.5, we use the posterior means as estimates u „ . With 
this, we obtain the following residuals: If tik is not censored we take 

^ijk A.ij(ti,k—li tik\Hi(tik), Uij, 0j)i 

and if Uk is censored we take 

fijk = Kj(U,k-l, tik\Hi(tik), Uij, 6j) + 1. 

This last definition is motivated by the fact that the A^ are exponential ran­
dom variables with mean 1, so for any A > 0, we have 

E{Aij\Aij > A) = A + l . 

Hence to construct a residual for a censored event-time, we first evaluate a 
residual as if the event-time was not censored and then adjust this residual. 
These residuals can then be compared to a sample from an exponential distri­
bution with a probability plot. 
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4.8 Results for the Alternating Renewal A p ­
proach 

4.8.1 Models Fit 

We fit models with different parametrizations of the effects of the time-scales 
with and without random effects. As pointed out earlier, we are interested 
in the time-scales themselves as they describe the patterns over time and in 
the influence of different models for the time-scales on the estimates of the 
covariate effects. 

We model states 1 and 2 with separate sets of parameters. Initially we 
anticipated a parsimonious model with common parameters for the two states, 
but the numerical problems we had took so much time that we did not explore 
this further. We ended up fitting only completely separate models for the two 
states. 

We scaled the event-times by 100 to achieve more numerical stability; 
the effect estimates for the time-scales in the linear parametrization are given 
in these units. 100 days also corresponds to roughly three months, which was 
the schedule for patient visits to the clinic, so is an interpretable unit of time. 
We experienced numerical difficulties with the parametrization of the effects 
of the time scales as splines, so we have no results for splines. We are not sure 
of the source of this difficulty. 

For the piecewise parametrization of the effects of the time-scales, we 
need to choose intervals on the time-axis for each of the 4 scales (Markov 
state 1, renewal state 1, Markov state 2 and renewal state 2) where the corre­
sponding effect is constant. A possible choice for these pieces is given by the 
quartiles of the corresponding sample of event-times, which are the inter-event 
times for the renewal scales and the times of events for the Markov scales. For 
convenience we chose the same pieces for the Markov scales in both states; 
we took the quartiles from the distribution of the end of exacerbations, since 
they were a bit more evenly spread. Figure 4.3 shows the distribution of the 
end of exacerbations as the Markov component and the backward recurrence 
times for both states as the renewal components. Table 4.1 lists the quartiles 
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time-scale 1st quartile median 3rd quartile 
Markov 191 424 701 

renewal state 1 43 109 230 
renewal state 2 20 35 58 

Table 4.1: Quartiles for the time-scale parametrizations (in days) 

for reference. 

We chose the effect for the first quartile as the baseline (effect = 0), and 
hence the effects for the other intervals are changes in the transition intensity 
from this baseline. For example, the estimated effect for the renewal scale in 
state 1 corresponds to the exacerbation-free time periods. The effects of this 
renewal time-scale are allowed to be different for the different quartiles (that 
is, if the exacerbation-free time period lasted for 1-43, 44-109, 110-230 or 231-
1095 days) and the effects for the last three quartiles describe the change in 
the transition intensity into exacerbation compared to the transition intensity 
into exacerbation if the exacerbation-free time period lasted only 1-43 days. 

4.8.2 Fixed Effects 

Table 4.2 presents the results for the fixed effects models with the linear and 
piecewise constant parametrizations of the time-scales. The estimates and 
95% pointwise confidence intervals for the piecewise constant parametrization 
of the time-scales are given in Figures 4.4 and 4.5. For the transition into 
exacerbation, the estimates for the baseline covariates are almost identical 
for the two parametrizations of the time-scales. The estimates indicate both 
the low and high dose treatment are beneficial in that they significantly re­
duce the probability of starting an exacerbation compared to placebo, with 
the transition intensity for the high dose and low dose groups being roughly 
exp(—0.39) « 68% and exp(—0.19) « 83% times the transition intensity for 
the placebo group. Patients with a higher EDSS tend to have a higher proba­
bility to start a exacerbation and older patients tend to have a lower probability 
to start a exacerbation. There is some indication that female patients have 
a higher probability to start a exacerbation and that patients who had MS 
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for transition into exacerbation 
linear time-scales piecewise time-scales 

covariate estimate s.e. z-score estimate s.e. z-score 
low dose -0.1936 0.0765 -2.53 -0.1858 0.0765 -2.43 
high dose -0.3940 0.0826 -4.77 -0.3855 0.0826 -4.67 

EDSS 0.0686 0.0259 2.65 0.0638 0.0259 2.46 
gender 0.1008 0.0734 1.37 0.1034 0.0734 1.41 
age/10 -0.1503 0.0530 -2.84 -0.1520 0.0530 -2.87 

time since onset -0.0066 0.0063 -1.05 -0.0047 0.0063 -0.75 
renewal 
Markov 

-0.1822 
-0.0019 

0.0188 
0.0111 

-9.67 
-0.17 

for transition out of exacerbation 
linear time-scales piecewise time-scales 

covariate estimate s.e. z-score estimate s.e. z-score 
low dose 0.0224 0.0763 0.29 0.0340 0.0764 0.44 
high dose 0.0141 0.0825 0.17 0.0215 0.0825 0.26 

EDSS -0.0287 0.0270 -1.06 -0.0386 0.0273 -1.41 
gender -0.0113 0.0749 -0.15 -0.0010 0.0750 -0.01 
age/10 -0.0974 0.0513 -1.90 -0.0955 0.0513 -1.86 

time since onset 0.0126 0.0064 1.95 0.0121 0.0064 1.89 
renewal 0.3276 0.0684 4.79 
Markov -0.0335 0.0107 -3.13 

log-likelihood -2144.51 (both transitions) —2103.18 (both transitions) 

Table 4.2: Results for the fixed effects models 
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Markov renewal state 1 renewal state 2 

Figure 4.3: Boxplots of Markov and renewal times (in units of 100 days) 

for a longer time have a decreased probability of starting a exacerbation, but 
neither effect is significant. It is interesting that time since onset and gender 
both showed a pattern in the exploratory analysis (see Figure 3.1, where the 
rate of exacerbations is shown versus the covariates) but are not significant, 
whereas there are no evident patterns for EDSS and age, both of which are 
estimated as being significant. 

The estimated time-scales for the piecewise specification for the transi­
tion into exacerbation are plotted in Figure 4.4 (for reference, the quartiles are 
given in Table 4.1). The baseline probability here is the probability of starting 
a exacerbation after being exacerbation-free for less than 43 days. The esti­
mated renewal component indicates that the probability of starting a exacerba­
tion is not significantly different from baseline if the patient was exacerbation-
free between 43 and 109 days. If the patient has been exacerbation-free for 
110 to 230 days however, this baseline probability is decreased significantly 
compared to the baseline probability. The decrease from the baseline prob­
ability is even more significant if the patient was exacerbation-free for more 
than 231 days (with the probability of starting a exacerbation being roughly 
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State 1: Renewal with confidence limits, fixed effects State 1: Markov with confidence limits, fixed effects 
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(a) renewal state 1 (b) Markov state 1 

Figure 4.4: Estimated effect of time-scales for transition into exacerbation 
with pointwise confidence intervals, fixed effects model 

exp(—0.9) ~ 40% that of the baseline). For the Markov-component, there 
seems to be a slight increase of the probability to start a exacerbation for the 
time period between 192 and 424 days compared to the 1-191 day time period; 
for the other time periods there is no significant difference from the 1-191 day 
time period. The fact that the renewal time-scale shows a decrease in the 
transition into exacerbation probability is surprising, since one expects the 
probability of starting a exacerbation to increase the longer a patient remains 
exacerbation-free. 

For the transition out of exacerbation, the estimated effects are slightly 
different depending on the parametrization of the time-scales. But this is pri­
marily for the estimates with a low z-score, which means that they are not 
well-determined. The estimates for age and time since onset are almost iden­
tical for the two parametrizations, but the estimates for EDSS show some 
discrepancy. The only covariates that seem to have an effect on the transition 
out of exacerbation are time since onset, age and EDSS. Patients who had 
MS for a longer time tend to have a higher probability to end a exacerbation. 
Patients who are older or have a higher EDSS, on the other hand, tend to have 
lower probabilities to end a exacerbation. 

Figure 4.5 shows the effects of the time-scales for the transition out of 
exacerbation. As expected, the renewal scale increases quite steeply (since 
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State 2: Renewal with confidence limits, fixed effects State 2: Markov with confidence limits, fixed effects 

ZOO 300 400 200 400 

(a) renewal state 2 (b) Markov state 2 

Figure 4.5: Estimated effect of time-scales for transition out of exacerbation 
with pointwise confidence intervals, fixed effects model 

we expect the probability of ending a exacerbation to increase the longer the 
exacerbation lasts), but then is almost constant. This indicates that once the 
exacerbation lasts more than 20 days, the probability does not increase much 
with length any more. The Markov scale indicates that the probability to end 
a exacerbation decreases over time. But the decrease is modest; only the time 
period 702-1095 days exhibits a significant reduction compared to the time 
period 1-191 days. 

Table 4.2 also gives the log-likelihoods for the linear and the piecewise 
parametrizations. These models are not nested, so we cannot use the usual x2 

test for the differences in log-likelihood. Nevertheless, the reduction in like­
lihood per added parameter is still useful to judge how much the additional 
parameters contribute to the model fit. In this case, the gain in the maximized 
log-likelihood is 41.33 with an additional 8 parameters for the piecewise spec­
ification compared to the linear one. This indicates a slightly better fit of the 
piecewise specification. 

4.8.3 Random Effects 

As an initial description of the variation in the length of time in both states, we 
plotted the variance versus the mean length of times in one state for individual 
patients (Figure 4.6). The plots indicate a lot of variability in state 1, but 
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State 1 State 2 

0 1 2 3 4 5 0.5 1.0 1.5 
Mean Mean 

Figure 4.6: Variance versus mean for the lengths of inter-event times (in 100 
days) for individual patients 

not much in state 2. Hence we anticipate that the estimated variance for the 
random intercept in state 1 will be fairly large and the variance for the random 
intercept in state 2 will be modest. 

We also want to assess the need to incorporate the correlation between 
the sojourn times in state 1 and state 2. Figure 4.7 shows the relationship 
between the mean sojourn time in state 1 versus the mean sojourn time in 
state 2. There is not much indication of a correlation between the sojourn 
times in the two states. 

The optimization for the case of correlated random effects was very 
slow, so we only fit models with independent random effects (that is, u>3 = 0). 
We could not get the Newton-Raphson algorithm to converge for the variance 
parameters u>i, I = 1,2. So we evaluated profile-likelihoods for fixed values of 
LOI , / = 1,2 instead; that is, we obtained 

h(u) = max logL(0,to). 

Figure 4.8 shows the log-likelihood evaluated on a grid of values for 

.-ate*'-
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Mean times in/not in exacerbation per person 

o 

not in exacerbation 

Figure 4.7: Mean sojourn time (in 100 days) in state 1 versus state 2 

log-likelihood for independent random effects 

Figure 4.8: Profile log-likelihood for independent random effects 
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for transition out of no exacerbation 
linear time-scales piecewise time-scales 

covariate estimate s.e. z-score estimate s.e. z-score 
low dose -0.2547 0.1320 -1.93 -0.2569 0.1319 -1.95 
high dose -0.4959 0.1380 -3.59 -0.4932 0.1381 -3.57 

EDSS 0.0798 0.0448 1.78 0.0783 0.0449 1.74 
gender 0.1432 0.1220 1.17 0.1396 0.1221 1.14 
age/10 -0.2000 0.0888 -2.25 -0.1995 0.0888 -2.25 

time since onset -0.0083 0.0105 -0.79 -0.0082 0.0105 -0.78 
renewal 
Markov 

-0.0187 
-0.0403 

0.0212 
0.0121 

-0.88 
-3.33 

for transition out of exacerbation 
linear time-scales piecewise time-scales 

covariate estimate s.e. z-score estimate s.e. z-score 
low dose -0.0131 0.1196 -0.11 0.0162 0.1213 0.13 
high dose -0.0201 0.1264 -0.16 -0.0318 0.1273 -0.25 

EDSS -0.0262 0.0405 -0.65 -0.0504 0.0418 -1.21 
gender -0.0675 0.1160 -0.58 -0.0529 0.1166 -0.45 
age/10 -0.1235 0.0859 -1.44 -0.0789 0.0796 -0.99 

time since onset 0.0120 0.0100 1.20 0.0075 0.0099 0.76 
renewal 0.9594 0.0791 12.13 
Markov -0.0342 0.0123 -2.78 

log-likelihood -2068.54 (both transitions) -2012.01 (both transitions) 

Table 4.3: Results for the random intercepts models 

(uii,u)2). From this plot we can see that the maximum on this grid is attained 
at (u>i, oo2) = (0.8,0.6). Hence we fit a random effects model with these values, 
which correspond to a standard deviation of 0.8 for the transition intensity 
into exacerbation and a standard deviation of 0.6 for the transition intensity 
out of exacerbation. We treated these values as known for all the results pre­
sented in this section. 

Table 4.3 shows the results for the model with random intercepts. Fig­
ures 4.9 and 4.10 show the estimated piecewise constant time-scales. For the 
transition out of no exacerbation, the effect estimates for the baseline covari-
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ates are almost identical for the linear and piecewise constant parametriza­
tions. There is a significant treatment effect for low dose and high dose treat­
ment. Here the transition probability into exacerbation for a patient with high 
dose treatment is about exp(—0.49) ~ 61% of the transition probability of a 
placebo patient with the same intercept. For a low dose patient, the transition 
probability is about exp(—0.25) « 78% of that of a placebo patient with the 
same intercept. The only other baseline covariate that is significant is age, with 
older patients having a lower transition probability into exacerbation. Female 
patients seem to have a higher transition probability, but it is not significant. 
Similarly, higher EDSS seems to increase the transition probability, but again 
the effect is not significant. The estimated piecewise constant time-scale in 
Figure 4.9 indicates that there is no effect of the backward recurrence time on 
the transition probability. The estimated Markov scale shows a slight decrease 
over time, that is significant only in the last quartile. 

For the transition out of exacerbation we see that the estimated ef­
fects for the baseline covariates are influenced by the parametrization of the 
time-scales, with no consistent relationship between the effects in the two 
parametrizations. Overall, no effect in either parametrization is significant. 
There is some indication that higher EDSS and higher age lead to longer ex­
acerbations whereas time since onset seems to contribute to shorter ones. The 
estimated time-scales for the piecewise parametrization shown in Figure 4.10 
indicate that the renewal scale increases very sharply from baseline in the sec­
ond time-interval and keeps on increasing the longer the exacerbation lasts. 
The Markov scale shows a decreasing trend, although the estimated effect is 
significantly smaller than 0 only in the last interval. 

4.9 Discussion 

In this section we compare the fixed effects and random effects model. A l ­
though we have discussed that the fixed effects model does not allow for cor­
relation of the data within an individual, it is closely related to the random 
effects model and so it is instructive to see how the introduction of random 
intercepts changes the estimates. We first compare the estimated effects for 
the baseline covariates. We discussed already in Chapter 1 that the effect 
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State 1: Renewal with confidence limits, random effects State 1: Markov with confidence limits, random effects 

WO 400 too 

(a) renewal state 1 (b) Markov state 1 

Figure 4.9: Estimated time-scales for transition into exacerbation with point-
wise confidence interval, random intercept model 

State 2: Renewal with confidence limits, random effects State 2: Markov with confidence limits, random effects 

200 400 

(a) renewal state 2 (b) Markov state 2 

Figure 4.10: Estimated time-scales for transition out of exacerbation with 
pointwise confidence interval, random intercept model 
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covariate fixed effects random intercept ratio 
for transition out of no exacerbation 

low dose -0.1858 -0.2569 0.72 
high dose -0.3855 -0.4932 0.78 

EDSS 0.0638 0.0783 0.86 
gender 0.1034 0.1396 0.74 
age/10 -0.1520 -0.1995 0.76 

time since onset -0.0047 -0.0082 0.57 
for transition out of exacerbation 

low dose 0.0340 0.0162 2.10 
high dose 0.0215 -0.0318 -0.68 

EDSS -0.0386 -0.0504 0.77 
gender -0.0010 . -0.0529 0.02 
age/10 -0.0955 -0.0789 1.21 

time since onset 0.0121 0.0075 1.61 

Table 4.4: Estimated effects of baseline covariates for fixed effects and random 
intercept models for the model with a piecewise constant parametrization of 
the time-scales 

estimates for the fixed and random effects models are strictly speaking not 
comparable, since the effect estimates for the random effects model have to 
be interpreted conditional on the random effects. But we have already men­
tioned in Chapter 2 that Diggle, Liang and Zeger ([7], p. 141) discuss a model 
where the ratios of the fixed to the random effects coefficients are constant 
(with a constant smaller than one related to the variance of the random ef­
fects). Although the alternating renewal processes are a different model, it is 
still interesting to compare the size of the coefficients to see if the relationship 
in this case is similar. Since we have seen in the last section that the linear 
parametrization of the time-scales were too simple to capture the renewal scale 
in particular, we compare the models with the piecewise parametrization only. 

Table 4.4 shows the coefficients from the fixed and random effects mod­
els along with the ratio of the fixed and random effects estimates. For the 
transition into exacerbation, this ratio is fairly consistent and smaller than 1. 
This is what we anticipated in the previous paragraph. For the transition out 
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covariate fixed effects random intercept 
for transition out of no exacerbation 

low dose -2.43 -1.95 
high dose -4.67 -3.57 

EDSS 2.46 1.74 
gender 1.41 1.14 
age/10 -2.87 -2.25 

time since onset -0.75 -0.78 
for transition out of exacerbation 

low dose 0.44 0.13 
high dose 0.26 -0.25 

EDSS -1.41 -1.21 
gender -0.01 -0.45 
age/10 -1.86 -0.99 

time since onset 1.89 0.76 
log-likelihood -2103.18 -2012.01 

Table 4.5: Z-scores for different models 

of exacerbation, however, this ratio is very different for different covariates; 
this might partly be due to the fact that the standard errors for these esti­
mates are quite high for this transition for both the fixed and random effects 
models. 

Table 4.5 compares the z-scores obtained from the fixed effects and 
random effects models. Although the estimated size of the coefficients has a 
different interpretation in the fixed and random effects models, the z-scores 
are used to judge if a covariate has an effect on the transition probabilities 
and are comparable in this sense. For example, the estimate for the high dose 
treatment has a z-score of less than —3 in both models, which leads in both 
cases to the conclusion that the high dose treatment is beneficial for the pa­
tients since it reduces the probability of starting a exacerbation. On the other 
hand, the time since onset is not estimated to be significant in either model 
and hence we conclude that this covariate has no influence on the transition 
probability into exacerbation. Compared in this way, the table shows that the 
conclusions are quite similar for the random effects model and the fixed effects 
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model. The biggest difference is EDSS, which is estimated to be significant 
in the fixed effects model, but not significant at the 5% level in the random 
effects model. The last line of Table 4.5 shows the maximized log-likelihood. 
The difference between the values for the log-likelihood is 91.17 with an ad­
ditional 2 parameters in the random effects model. This is a considerable 
reduction, although we cannot use the usual x2 test since the extra parame­
ters in the random effects model are the variances of the random intercepts; 
the fixed effects model is obtained by letting these variances go to 0, which 
corresponds to the boundary of the parameter space for the fixed effects model. 

The estimated effects for both the renewal and Markov time-scales for 
state 1 are quite different for the fixed (Figure 4.4) and random effects mod­
els (Figure 4.9). The estimated effects for the renewal time-scale decrease 
significantly over time for the fixed effects model, whereas in the random ef­
fects model there are no clear differences over time. This suggests the renewal 
effect may be reflecting the fact that different patients have very different prob­
abilities to remain exacerbation-free beyond the differences explained by the 
covariates. Then patients with a tendency to remain exacerbation-free for a 
long time would contribute to a negative effect in the renewal scale for a fixed 
effects model, whereas in a random effects model these patients would have a 
higher estimated intercept so that on an individual level the backward recur­
rence time is not important anymore. The estimated effects for the Markov 
scale for state 1 are basically 0 for the fixed effects model, and slightly de­
creasing in the random effects model. The fact that the effects for the Markov 
scale are not decreasing in the fixed effects model is a bit surprising, since we 
have seen in Chapter 3 that the rates have a tendency to decrease over time. 

For state 2, the estimated effects for the renewal and Markov scale for 
the fixed (Figure (4.5)) and random effects models (Figure 4.10) show qualita­
tively the same patterns over time.In fact, the Markov scale is almost identical. 
The estimated effects for the renewal scale for both models show a sharp in­
crease for the probability to end an exacerbation for all time-periods compared 
to baseline. For the fixed effects model, the estimated effects are almost the 
same for all exacerbations that last more than 20 days, while for the random 
effects model the effects keep increasing over time. Hence the estimated effects 
for the renewal scale for state 2 suggests a dichotomy between long and short 
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exacerbations for the fixed effects model. The probability to end the exacer­
bation increases a lot after 20 days, but then remains almost the same. In the 
random effects model, on the other hand, the probability keeps increasing as 
one would expect. Again this can be explained by differences between patients 
who tend to have long exacerbations and patients who tend to have short exac­
erbations. If this difference is not explained sufficiently by the covariates, this 
leads to pooling short and long exacerbations in the fixed effects model and 
hence a fairly uniform probability of ending the exacerbation. In a random 
effects model, the random intercept allows for individual differences and then 
the renewal scale estimates the effect of the length of the exacerbation within 
this individual. 

We noted earlier that our choice of the bivariate normal distribution for 
the random effects is different from the usual choice in models for repeated 
failure times of a single type. Such random effects are often assumed to be 
Gamma distributed. This simplifies the form of the marginal likelihood; for a 
detailed discussion, see Lawless [16], Venables and Ripley [32] p. 242 or Aalen 
and Husebye [1]. However, bivariate extensions of the Gamma distribution 
allow only positive correlations and are hence not a natural choice for our 
model. 
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Chapter 5 

A Marked Point Process Model 

5.1 Introduction 

In this chapter, we introduce another point process model. In the previous 
chapter, we have seen how we can use alternating renewal processes to model 
the MS disease process. This leads to a plausible and flexible stochastic model. 
However, as discussed in Chapter 1, the interpretation of treatment effects 
and baseline covariates is easier in a model that models the mean exacerba­
tion counts and mean exacerbation lengths directly. The marked point process 
model introduced in this chapter accomplishes this. 

We model each individual as a marked point process, for which we need 
to model the process of events Kt, which is given by the sequence of days 
an exacerbation started, and the process of marks Mt, which is given by the 
lengths of exacerbations. Although Lawless [17] indicates that this approach 
can be developed in a continuous time setting, for convenience we considered 
only a discrete time setting. We observe the underlying continuous process 
(Kt, Mt) at a set of fixed and equally-spaced time-points t\,... ,tk. We give 
more detail below. 

We have seen in Chapter 3 that a model for the marginal means does 
not specify a point process completely. To avoid making strong assumptions 
on the process, we use an approach to inference that does not need a full dis­
tributional model for the point process: the generalized estimating equations 
(GEE) approach. In summary, the G E E approach, as often implemented, 
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proceeds according to the following steps: 

• derive estimating equations obtained under independence and full dis­
tributional assumptions 

• study the asymptotic behaviour of estimators arising as solutions of these 
estimating equations under weaker distributional assumptions, typically 
specifications relating only to the marginal distributions rather than the 
joint distributions 

• estimate this asymptotic covariance matrix. 

We use a Taylor-expansion of the score vector about the true value to derive the 
asymptotic covariance matrix of the estimates under the reduced assumptions. 

In this chapter, we first derive score equations for Poisson processes and 
then show how the G E E approach can use these equations to obtain an infer­
ence valid for more general point processes. We then extend this approach to 
the setting of marked point processes. 

Let us first introduce some notation. Let Ki(t) = K(t,x.i) be inde­
pendent processes for i = l , . . . , m , observed at a fixed set of time points 
0 < ti < • • • < tk{ < T. Here T is the end of the observation period and m 
is the number of individuals. We assume that these time points are equally-
spaced, since in our application we have daily data on individuals over a span 
of three years and we can choose our time points to be equally-spaced. All 
individuals are observed at the same time points unless the individual drops 
out before time T, which leads to a different number ki of observations on 
this individual. The number of events for individual i in [0, t] is denoted by 
Ki(i). We model the counts niiti) — Ki(ti) — Ki(ti-i) occurring in each in­
terval (ti-i, ti], I — 1,... ,k, so that rii(ti) counts the number of exacerbations 
starting in this interval. We abuse notation and denote both the random vari­
ables and observed counts by n;(fy) depending on the context. Note that the 
counts {rii(t[);l = 1,..., ki} on an individual are independent if the Ki are 
Poisson processes. 

The equal spacing of the time points at which individuals are observed 
simplifies the modeling, since this way we don't have to take the lengths of the 
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intervals U] into account. The dependence on t in our context reflects the 
changes in the distribution of n;(£) over time. We incorporate the covariate 
vector Xj into the specification for the mean counts. Let us denote the mean 
for these counts by 

5.2 Estimating Equations for Poisson Processes 

Under specification of the joint distribution, maximum likelihood estimates 
are obtained by solving estimating equations derived from the derivative of 
the likelihood. The generalized estimating equations approach uses these same 
estimating equations, but drops the assumption that these equations are score 
equations. In this section we derive score equations under the assumption 
that Ki(t) are independent Poisson processes. In the next section we study 
the properties of the solutions of these equations after dropping the assump­
tion that the data within individuals are independent. 

In this section we assume that: 

1. data from different individuals are independent 

3. riiit) is a Poisson random variable 

4. rii(tj) and riiiti) are independent for j ^ I. 

We refer to these assumptions subsequently as the Poisson assumptions. 
Assumptions 3. and 4. are satisfied if the processes Ki(t, Xj) are Poisson pro­
cesses. 

Under these assumptions, the likelihood would be 

E(rn(t)) 6) =:gi(t,0), 

where we suppress the Xj for notational convenience. 

2. E(ni(t))=gi(t,0) 

=nn 
i=l 1=1 

e-9iitl'0)gi(th0)ni^ 

m(ti)\ 
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with log-likelihood 

m ki 

logL(6) = const + J2J2ini(ti)^ggiitt, 6) - gi(th0)} . 
i=i 1=1 

This leads to the score vector 

TT ia\ _dlogL \nj(ti) - gj{tu0)\ dgj(th0) . . 

^ ^ - ^ - - ^ ^ i J—55— ( 5 1 ) 

Let 0 be the solution to Ui(0) = 0. We assume the solution is unique and 
maximizes the log-likelihood. Under the Poisson assumptions 0 is the M L E 
for 0. In the next section we relax the assumptions and show that we can still 
use 0 for inference. 

5.3 Generalized Estimating Equations for Point 
Processes 

Lawless and Nadeau [18] use the score equations obtained under the Poisson 
assumptions and then weaken the assumptions to generalize their approach 
to a point process setting. We review their approach here. We drop the 
independence assumption for data within individuals and we no longer assume 
that the counts have a Poisson distribution. More precisely, we simply assume 
that 

1. data from different individuals are independent 

2. E(ni(t))=gi(t,0). 

Since we are only sketching the argument, we do not list the necessary regu­
larity conditions here. 

The basic idea is to use the estimating equations obtained under the 
Poisson assumptions as in the previous section to get an estimate and use the 
so-called sandwich estimator for the asymptotic covariance matrix of that esti­
mate. The next paragraph sketches the argument. The assumption E(rti(t)) = 
gi(t,0) ensures that the score equations are unbiased, that is E(\Ji(0)) = 0. 
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This is important since, combined with the independence across individuals, 
it leads to a consistent estimator, that is 0 —>• 0 in probability as m —>• oo. 

Let 0 be the solution to Ui(0) = 0 as in the previous section. The 
asymptotic distribution of 0 is found by using a Taylor-expansion of U i about 
0: 

0 = U x(0) = \JX(0) + ^i(O*)(0 - 0), 

where 0* is between 0 and 0. Since 0 is consistent, 0* —> 0 in probability 
and we can substitute 0 for 0* in all the limiting expressions below. The 
Taylor-expansion can be written as 

^ - e ) = - ( ^ u ' ( " , ) ) " , ^ U l ( f l ) -

Because U i is a sum of m independent random variables, each with mean 0, 
we can apply a Central Limit Theorem. Setting (assuming the limit exists and 
is finite) 

Io(0) = lim -VariU^O)), 
m-»oo m 

we thus have 

Hence, denoting 

V^-Ui(0) - ^ i V ( 0 , I 0 ( 6 > ) ) , 
171 m-+oo 

1^0) = - lim E 

we get 

^ ( 0 _ e) N(0,1^(0)10(0)1^(0)'). (*) 

Under the Poisson assumptions, it can be shown that I 0 = Ii (see (5.3) and 
(5.4) below); so we obtain the well-known result for the asymptotic distribu­
tion of the M L E . 

86 



In practice this result would be utilized in the form 

d~N(0,^\e)Uo)i^(ey) 

where with abuse of notation 

1,(0) = -E 

and 

1 
I„(9) = -VortUi f f l ) ) . 

m 

The asymptotic distribution of 9 depends on 1Q(9) and li(0). To enable us 
to carry out inference for 9, we have to provide estimates for these matrices. 
This is done in the remainder of this section. 

Note that, since data from different individuals are independent, 

i(ti) - f t ( fr ,g)] dgi{th0) 
9i(ti,0) J 89 

-VarOjAO)) 
m 

i Tn [" ki f 

i=l U = l ^ 

1 y y y 1 1 dgi(tj,d)dgi(ti,0) 
m i t U ^ t 9^,9)9^1,9) d9 89 

771 ki ki Q ^ 

= ™ J2 J2 w l°S9i(tj,0)^\og9i{tu9)'Cov(ni(tj)>nl(tl)). 

Cov(ni(tj),ni(ti)) 

m ^ ^ ^ 89 
i=i j=i /=i 

89 

To estimate Cov(rii(tj),rii(t[)), we simply use the empirical covariance 
given by 

C^iriiitj), ni(U)) = (mitj) - g^tj, 9 ) ) ^ ) - 9i(tu 9)). (5.2) 

Substituting 9 for 9, we obtain 

M9) = ^ ( ^ ( 9 ) ) = ^EEE^log^-.d) (5.3) 
m ^ ^ ^ 89 

i=i j=i i=i 

^loggi(ti,e)\rH(tj)-gi(tjf9)){Tu{ti)-gi(th0)y 

87 



For li(0), we obtain (after simplification arising from 
E(m(tj)-gi(tj,0)) = O) 

I1(0) = -E 
' \_d_ 
mdO 

(5.4) 

which can be estimated by plugging in 0 . 
The empirical covariance (5.2) would be a poor estimator of the covari­

ance, since it uses only two observations. What makes this approach work is 
the fact that this estimator appears in the middle layer of the sandwich esti­
mator Ir^lolf 1 so that these estimates for the covariance are averaged across 
individuals (see Diggle, Liang and Zeger [7], p.71). 

5.4 Estimating Equations for Marked Poisson 
Processes 

We now extend the Lawless and Nadeau approach to a specific case of a 
marked process. This allows us to incorporate the length of exacerbations 
into the analysis. We first introduce some notation. Let us assume that the 
length of an exacerbation for individual i is a random variable with mean 

= M ^ & X i ) where x* is the vector of covariates. The use of time as 
a covariate here represents the changes in the distribution of the length of 
exacerbations over time. We model the total length of exacerbations rrii(ti) 
beginning in an interval {ti-\,ti\, given the number of exacerbations rii(ti) 
starting in this interval (note that m^ti) includes the complete length of an 
exacerbation starting in this time interval, even if this exacerbation lasts past 
time ti). We model the effects of the covariates on the counts and the effects 
of the covariates on the lengths of exacerbations with separate sets of parame­
ters. Since the expected total length of exacerbations depends on the expected 
counts and the expected length of an exacerbation, the parameters £ model 
the additional information from the lengths of exacerbations beyond that from 
the number of exacerbations. 
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We first derive estimating equations under independence assumptions. 
In particular, we assume that 

1. data from different individuals are independent 

2. E(m{t)) = gi{t,e) 

3. rii{t) is a Poisson random variable 

4. rii(tj) and rii(ti) are independent for j ^ I. 

We further assume that 

5. conditional on the number of events nj(fy), rn,i(ti) is the sum of nj(i/) 
independent and identically distributed random variables Xj' where Xj' 
has mean hi(ti, £) 

6. Xj'1 is a Poisson random variable (other distributional forms could be 
considered, but we do not pursue this here) 

7. the pairs (n;(£;), mj(^)), I = 1,..., k are independent for each i = 1,..., m. 

It might be possible to weaken these assumptions, but we did not pursue 
this here. These assumptions imply that given nj(i/), rrii(ti) has a Poisson 
distribution with mean rii(ti)hi(t[,£). It follows that 

Elrriifa)) = gi(ti,e)hi(ti,i) (5.5) 

Var{mi(ti)) = E(Var{rm(ti)\ni{ti)) + Var(E(7m(ti)\m{ti)) 

= & ( M ) M * J , O + 0 i ( M ) ^ ( M ) 2 - (5-6) 

The expression for the variance is not used below and is given only to empha­
size that the mj(i ;) are not Poisson random variables. 

To derive the likelihood, first note 

PMUlrmiti)) = P(ni(tj))^K(*«)K(*i)) 

rii(ti)\ mitiV-
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Hence the likelihood becomes 
m 

L(0,£) = Y[ P{{ni{U), mi(ti); I = 1,..., k}) by independence of individuals 
i=i 

= Y\ IIP (n* (*')'mi )) b y assumption 7 
i=l i=l nn g . ( ^ ) " , ( ' , )

c - , ( t , W M U ) " , ( t l ) ) ' " - ( ' ' )

c - M t , A , ( t 

«<(*,)! m,(t()! 

The log-likelihood 

logL{0, it) = const+ ^2J2{ni(tl) loggi(the) - gi(the)} 
1=1 1=1 

m ki 

t=l (=1 

leads to the score vectors: 

Note that Ui(0, £) does not depend on £ and U2(0, £) does not depend on 0. 
This implies that the score equations for 9 are the same as before and we have 

^ U , ( f l ) = 0, 

£ u , « ) = 0. 

The key point is that again we have unbiased score equations: 

E(U1(0))=E(V2(t-))=O. 

We denote the solutions to the estimating equations Ui(0) = 0 and U 2 ( £ ) = 0 
by 6 and £. We assume that these solutions are unique and maximize the log-
likelihood. 
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5.5 G E E for Marked Point Processes 

As in Section 5.3, we now use the estimating equations obtained above as 
a basis for inference in a more general context. We drop the distributional 
assumptions (3) and (6) and the assumptions (4) and (7) of independence of 
the data within individuals. In particular, we now assume that 

1. data from different individuals are independent 

2. E(nl(t)) = gi(t,0) 

and 

3. conditional on the number of events rii(ti), rrii(t[) has mean rii(t[)hi(t[, £). 

To develop the G E E approach under these assumptions, we follow the 
same steps as in Section 5.3. The Taylor-expansion of the score vector about 
(0, 0 yields 

' u 2 ( i ) J \U2(Z)) + \ 0 £ U a ( 0 

where 0* is between 0 and 0 and £* is between £ and £. Because we assume 
that both estimators are consistent, we can replace 0* by 0 and £* by £ in the 
limiting expressions below. 

Analogous to the previous derivation of the asymptotic distribution in 
Section 5.2 we obtain 

^ ^ ( c i ^ i o i i r 1 ) ' ) 

where 

i„ = lim l-Var 
m->oo m \ U 2 ( £ ) 

and 

h = - lim E— ' 8 0 

m{ 0 | U 2 ( 0 
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(where we assume that the limits exist). We suppress the dependence of I 0 

and Ii on 0 and £ for notational convenience. 

The block-diagonal structure of Ii has important implications, since it 
means that the covariance between U i and U 2 does not enter the asymptotic 
covariance matrix of 0 or the asymptotic covariance matrix of £ which are given 
by the corresponding matrices along the diagonal of l7'1Io(Ii"1)'.. This implies 
that the inference for 0 is not affected by incorporating the length of exac­
erbations through the parameters £. The off-diagonal matrices of I^1I0(l5~1)' 
can also be easily calculated. They would be needed for inference concerning 
functions involving both 9j and Since we do not pursue this here, we omit 
these expressions. 

To estimate Var(Ui(0)), we use (5.3). For Var (U 2 (£ ) )> we obtain 
similarly 

Var(U2(0) = EEE ^ l o S ^ ^ ^ ) ^ l o g ^ ^ , 0 ' 
i j I 

Cov ({rriiitj) - hiitji^Tiiitj)}, {m^ti) - htfa, 0™^/)}). 

To obtain an estimator for V rar(U 2) we again use the empirical covariance and 
then replace £ by £ in the resulting expression. 

To obtain an estimator for (Ii), we can use (5.4) for E(-^XJi(0)). For 
£ ? ( ^ U 2 ( £ ) ) , we obtain similarly (after simplification arising from E(rrii(t) — 
rn{t)hi(t,t))=0) 

E ( ^ U 2 ( £ ) ) - -EE^ l o g^fe '0(^log^(t„0) '^(^^)^(^,0 

To obtain an estimator, we plug in 0 and £. 

5.6 Parametrization of the Mean Functions 

We now specify the form of the mean functions for the counts of exacerba­
tions, gfc, t, 0), and the lengths of exacerbations, /I(XJ, t, £ ) . We parameterize 
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g(x.i, t, 0) as the product of a factor go(t, <*) that is common for all individuals 
and incorporates the changes in the distribution of the counts over time and a 
factor exp(xj'/3) that expresses the dependence of the counts on the covariates: 

gfc, t, 9) = g(xi, t; a, (3) = g0(t, a) exp(x//3). 

For the parameterization of go(t,at) we can choose a convenient and flexible 
Weibull form; that is 

g0(t,at) = axta\ 

This has the advantage that it leads to a log-linear model, since 

E{ni(ti)) = g(xi,tf,a,P) = exp(loga1 + a2 logtj + x/^9). 

Since we use estimates obtained by solving the usual score equations (obtained 
under independence assumptions), we can use generalized linear models soft­
ware to get d and J3. 

Similarly, we parameterize h(x4,t,£) as 

h(xi, t, it) = ho(t, 7 ) exp(x/<5) 

with 

/*>(*> 7 ) = 7i^72-

We solve U 2 ( £ ) = 0 with a Newton-Raphson algorithm to obtain 7 and S. 

The estimator for the asymptotic covariance matrix can be calculated 
directly once we have obtained d , / 3 , 7 and 6. For these calculations we note 
that the log-linear form for h and g makes them quite convenient, because the 
expressions we have to evaluate involve derivatives of the logarithms of h and g. 

The regression coefficients (3 describe the impact of the covariates on 
the mean number of exacerbations. The regression coefficients 6, on the other 
hand, describe the effect of the covariates on the mean length of exacerbations. 
We modeled these two regressions with separate sets of parameters. 
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With the methods described above, we can obtain two kinds of stan­
dard errors . The so-called "naive" standard errors are based solely on the 
information matrix I4 and are valid only if the data on each individual actu­
ally follows a marked Poisson process with Poisson distributed marks. The 
"robust" standard errors are obtained from the sandwich estimator and are 
generally valid, as discussed in the previous section. 

We also evaluated standard errors for the estimated parameters using 

the jackknife method. We describe how we applied the jackknife here; for a 

more general description see [28], p.437. We remove the data on individual i 

and recalculate estimates of the parameters, denoted by (0 , £ ). We then 

calculate the so-called pseudo-values 0l = m0 — (m — l)0 and £ l = m£ — (m — 

1)£ , where m is the number of individuals. We then estimate the covariance 

individual to the vectors U i and U 2 . 

We expect the jackknife method to work well for the estimation of stan­
dard errors in situations where the parameter is obtained as the solution of 
score equations, if the individual contributions to the score vector can be 
viewed as a sample of independent and identically distributed random vari­
ables. To link this to our application, let us rewrite Ui(0) = £ ^ ̂ ({n;}, Xj, 0) 
and U 2 ( £ ) = 2̂ iM{ni>m;}>xi>0 where {n{\ are all event counts on individ­
ual i and {n^m;} is the set of all event counts and marks on individual i. 
Hence one expects the jackknife method to work well if the individual con­
tributions di and hi to the vectors U i and U 2 are independent (as they are) 
and roughly identically distributed. While this is appropriate for Ui, U 2 in­
volves both the counts rii and the marks nii, so that bi involves a sample from 
a bivariate distribution. We have seen that the differences in mean time in 
exacerbation are quite extreme across individuals, so we don't expect the 6;s 

matrix for as 

where 0 = ^YllLi01 and £ = ~Y1T=\^1- Viewed in a different way, we 
calculate the estimates 0% and £ l by eliminating the contribution of the zth 
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covariate estimate robust s.e. robust z-score 
low dose -0.1582 0.1089 -1.45 
high dose -0.4038 0.1120 -3.60 

age/30 -0.4295 0.2114 -2.03 
sex 0.1338 0.1076 1.24 

time since onset -0.0043 0.0087 -0.50 
EDSS 0.0498 0.0316 1.57 
time -0.3639 0.0427 -8.52 

Table 5.1: Estimated effects for the mean counts of exacerbations 

covariate naive s.e. robust s.e. jackknifed s.e. naive/robust 
low dose 0.0756 0.1089 0.1117 0.69 
high dose 0.0811 0.1120 0.1144 0.72 

age/30 0.1524 0.2114 0.2165 0.72 
sex 0.0728 0.1076 0.1106 0.68 

time since onset 0.0062 0.0087 0.0090 0.71 
EDSS 0.0252 0.0316 0.0324 ' 0.80 
time 0.0410 0.0427 0.0429 0.96 

Table 5.2: Estimated standard errors for the mean counts of exacerbations 

to be identically distributed. In summary we expect the jackknife method to 
work well for the standard errors of 0 but it is not clear the method yields 
appropriate standard errors for £. 

5.7 Application to the M S Dataset 

We now apply the method outlined in the previous sections to the MS data 
set. We first have to define a set of equally-spaced time points £ i , . . . , tk. We 
chose 11 time points (days 100, 200,..., 1000 and 1095), so that each interval 
covers roughly 100 days (the last one covers only 95 days, since the trial ended 
on day 1095). This is close to the scheduled visits of the patients at the clinic, 
so that one unit of time corresponds roughly to the time interval between visits. 

Table 5.1 shows the estimated effects of the baseline covariates on the 
event counts. There is a significant treatment effect for the high dose treatment 
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(patients in the high dose group have about exp(—0.40) « 67% the number of 
exacerbations of a placebo patient with the same covariates at the same time 
point). There is some indication of a treatment effect for the low dose treat­
ment as well, but it is not significant at the 5% level. The mean number of 
exacerbations decreases over time with the number of exacerbations being re­
duced by about 30% for each succeeding 100-day interval. Older patients tend 
to have fewer exacerbations. The other effects are not significant, although 
there is some indication that female patients and patients with a higher EDSS 
have more exacerbations. 

Table 5.2 compares the naive, robust and jackknifed standard errors 
(s.e.). The comparison of the robust to the naive s.e.'s shows how different 
the conclusions about the covariates would be if they were based on the naive 
model. The ratio of the naive s.e.'s to the robust s.e.'s shows that the naive 
s.e.'s for most covariates are about 70% as large as the robust ones. This 
ratio is quite consistent across different covariates, with the exception of the 
covariate time. The jackknifed s.e.'s are almost identical to the robust ones, 
which confirms the results for the robust s.e.'s. 

Table 5.3 shows the estimated effects for the mean exacerbation lengths; 
no covariate has a significant effect on the lengths of exacerbations, and the 
z-scores are all quite small. This is a bit surprising, since we have seen that 
the Markov chain and alternating renewal process models considered earlier 
showed at least some indication of covariate effects. Table 5.4 shows the es­
timated standard errors for the mean exacerbation lengths. Except for the 
covariate time, the ratio of naive to robust s.e. is roughly 25 %, which means 
that use of the naive s.e.'s could be quite misleading. We also see that the 
jackknife s.e.'s are not consistent with either the naive or the robust s.e.'s; 
they are even smaller than the naive ones and the ratio of the naive to the 
jackknifed s.e.'s varies considerably across different covariates. We anticipated 
that the jackknife might not work in this situation, and the results indicate 
that this is in fact the case. 

5.8 Discussion 

The analysis for the counts of exacerbations showed the anticipated results: 
the robust standard errors are larger than the naive ones that assume in-
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covariate estimate robust s.e. robust z-score 
low dose -0.0192 0.4451 -0.04 
high dose -0.0100 0.5271 -0.02 

age/30 0.1936 0.9447 0.20 
sex 0.0107 0.4640 0.02 

time since onset -0.0090 0.0386 -0.23 
EDSS 0.0290 0.1530 0.19 
time 0.0671 0.0711 0.94 

Table 5.3: Estimated effects for the mean exacerbation lengths 

covariate naive s.e. robust s.e. jackknifed s.e. naive/robust 
low dose 0.1129 0.4451 0.0916 0.25 
high dose 0.1209 0.5271 0.0867 0.23 

age/30 0.2254 0.9447 0.1881 0.24 
sex 0.1091 0.4640 0.0856 0.24 

time since onset 0.0095 0.0386 0.0065 0.25 
EDSS 0.0399 0.1530 0.0322 0.26 
time 0.0645 0.0711 0.0400 0.91 

Table 5.4: Estimated standard errors for the mean exacerbation lengths 
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dependence of data within individuals and the jackknife standard errors are 
comparable to the robust ones. For the length of exacerbations the naive stan­
dard errors are much smaller than the robust ones (roughly by a factor of 4 for 
most covariates). This means that inference based on the naive s.e.'s would 
be quite misleading. 

We have in our approach by-passed a model for the covariances between 
observations on an individual. A different option would be to work with cor­
relations induced by random effects instead of the empirical estimates (5.2). 
We did not pursue this approach here; see Nadeau and Lawless [22] and Ng 
and Cook [24]. 
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Chapter 6 

Discussion 

6.1 Conclusions for the Data Set 

We first compare the conclusions we have obtained by using the different mod­
els for the data set. These models address different outcomes: our Markov 
chain model expresses covariate effects in terms of the transition probabili­
ties at a set of discrete time-points; alternating renewal processes express the 
effects in terms of transition probabilities that are continuous in time, and 
marked point processes model mean exacerbation counts and mean exacerba­
tion lengths. However, these outcomes are qualitatively related in that we can 
identify factors that lead to qualitatively different disease processes. A higher 
transition probability into exacerbation is not desirable for the patient, nor is 
a higher count of exacerbations. A higher probability to stay in exacerbation 
is undesirable as well, as is a higher mean exacerbation length. Hence the 
z-scores from these different models can be related, as they identify covariates 
that lead to significantly "worse" or "better" disease processes. . 

For the alternating renewal process model and the marked point process 
model, we have obtained z-scores that are valid if we assume that data within 
individuals is independent (the z-scores from the fixed-effects model for the 
alternating renewal process model and those corresponding to the naive stan­
dard errors for the marked point process model). Although these models are 
clearly too simple, they were the basis for the models that we then developed 
to take the correlation of observations on an individual into account. Hence it 
is interesting to see how the z-scores from these simple models compare before 
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one compares the z-scores from the models that take the longitudinal nature of 
the data into account. Although the Markov chain fixed effects model differs 
in that it does not assume the independence of data within an individual, we 
include those results in this naive comparison. Table 6.1 shows the z-scores for 
the fixed effects model for the Markov chain and alternating renewal process 
model and the z-scores based on the naive standard errors for the marked point 
process model (so these are the z-scores for a marked Poisson process). Note 
that the renewal process model has a different interpretation for the sign of the 
z-score for state 2: here we model the transition from exacerbation to no exac­
erbation, so that a positive z-score indicates a beneficial effect for the patient. 
The Markov chain model models the probability of remaining in exacerbation 
and in the Poisson process model we model the length of exacerbations; in both 
cases a negative z-score indicates a beneficial effect for the patient. For the re­
newal process model we list the z-scores for the linear parameterization of the 
time-scales since we did not consider more complicated parameterizations for 
time in the other models. Table 6.1 shows that the z-scores for a covariate are 
fairly comparable (in the sense outlined earlier) across these models for state 
1 as well as for state 2. An exception for state 1 is gender, which is significant 
in the Markov chain model but not in the other models. For state 2, the only 
significant (or almost significant) z-scores are for age and time since onset in 
the alternating renewal process model. 

Table 6.2 shows the corresponding z-scores for the random effects mod­
els (Markov chains, alternating renewal processes) and the marked point pro­
cesses (with robust standard errors). For state 1, the z-scores for different 
covariates are fairly comparable across the different models. For state 2, we 
see that the z-scores for the point process model are much smaller in abso­
lute value than the corresponding z-scores from the Markov chain and renewal 
process models. The z-scores from the Markov chain model and the renewal 
process model indicate comparable estimated effects of a covariates on the dis­
ease process in both models. 

The magnitude of the z-scores for the covariate effects for state 1 drops 
considerably from Table 6.1 to Table 6.2, but most of the effects that were 
significant in the simpler models are still significant in the more complicated 
models. For state 2, on the other hand, the effects are quite weak in the simple 
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Markov chain renewal process point process 
covariate (fixed effects) (fixed effects) (naive s.e.) 

for state 1 
low dose -2.20 -2.53 -2.09 
high dose -5.25 -4.77 -4.98 

age -3.43 -2.84 -2.84 
gender 2.62 1.37 1.84 

time since onset -0.55 -1.05 -0.70 
EDSS 3.32 2.65 1.97 

for state 2 
low dose -0.90 0.29 -0.17 
high dose -0.40 0.17 -0.08 

age 1.01 -1.90 0.86 
gender -0.31 -0.15 0.10 

time since onset -1.30 1.95 -0.94 
EDSS 0.97 -1.06 0.73 

Table 6.1: Z-scores for different simple models (fixed-effects and naive standard 
errors) 
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Markov chains renewal process point process 
covariate (random intercept) (random intercept) (robust s.e.) 

for sta te 1 
low dose -1.93 -1.95 -1.45 
high dose -3.57 -3.57 -3.60 

age -1.93 -2.25 -2.03 
gender 1.72 1.14 1.24 

time since onset -0.55 -0.78 -0.70 
EDSS 1.86 1.74 1.57 

for state 2 
low dose -0.89 0.13 -0.04 
high dose -0.24 -0.25 -0.02 

age 0.80 -0.99 0.20 
gender -0.09 -0.45 0.02 

time since onset -0.74 0.76 -0.23 
EDSS 0.92 -1.21 0.19 

Table 6.2: Z-scores for different models (random effects and robust standard 
errors) 
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models and there is no significant covariate in any of the more complicated 
models. Both tables show reasonable overall agreement in the assessment of 
covariates. 

6.2 Comparison of Methods 

In the introduction, we have already compared the modeling aspects of the 
three different models. We also discussed the interpretation of covariates in 
these models. Here we consider the practical aspects and usefulness of these 
models. 

" A l l models are wrong but some are useful." 

Following this famous quote by G.E.P. Box, we want to compare these 
different models from the perspective of an applied statistician: 

• How much of the structure can the model capture? 

• How helpful is the model for the assessment of covariates? 

• How difficult is the estimation of parameters? 

We have already discussed the assessment of covariates at some length in 
Chapter 1. Here we focus primarily on the estimation aspects and make some 
general remarks on each model. 

We have seen that Markov chains model the exacerbation data by mod­
eling the transition probabilities. This means that the effects of covariates are 
judged conditionally on previous responses and the exacerbation data enters 
into the analysis in the form of transition counts. As discussed in Chapter 1, 
the resulting interpretation of covariates is not straightforward. We have also 
seen that this model cannot deal effectively with long-range dependence of 
data over time; this forced us to consider a subset of the available daily data. 
Even then, it turned out that a first-order model is not quite appropriate, and 
the interpretation of covariates in higher-order models is even less clear. 

The estimation of parameters in Markov chain models is straightfor­
ward. We can use generalized linear models software for fixed effects models 
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and we have the MIXOR software available for random effects models, al­
though MIXOR could not handle complicated models. 

Alternating renewal processes incorporate the length of exacerbations 
directly into the model. This takes full advantage of the information available 
and makes the interpretation of covariates similar to that in survival analysis. 
For our application, however, it turned out that the estimated effects were 
comparable (judged by significance) to those obtained in the Markov chain 
model, so that the extra effort did not pay off in this sense. But this might 
be due to highly variable behaviour of the times in exacerbation, so that the 
length of exacerbations is not related to any of the covariates. 

The estimation for the fixed effects model with simple parameterizations 
for time as a covariate was not difficult; the random effects models turned out 
to be very difficult to fit. The estimation procedure suggested by Ng and Cook 
[23] was numerically unstable, and even with our modification of the essential 
integration the estimation was very slow. These problems might be overcome 
with the use of more sophisticated software, but this may not be worth the 
effort in our application. 

Our marked point processes approach models the event counts and 
length of exacerbations for a fixed set of time-points; Lawless and Nadeau 
[18] indicate that this can be extended to a continuous time setting. The G E E 
approach allows us to use estimates obtained under the Poisson assumptions in 
more general contexts and makes the interpretation of the coefficients straight­
forward. The results for the counts of exacerbations were very consistent with 
the results from the other models, and the jackknife s.e.'s were almost identical 
to the robust ones. For the exacerbation length, on the other hand, the robust 
z-scores were quite small in comparison to the other models. 

Computations for the marked point processes were straightforward; the 
log-linear modeling of the mean functions enabled us to use GLM-software and 
also simplified the calculations for the sandwich estimator. 
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6.3 Conclusion 

Our main objective was to incorporate the length of exacerbations into the 
analyses (along with the length of exacerbation-free time periods) to assess 
the effect of covariates on this two-state process. Different models approach 
this objective quite differently, but in all models the estimated effects on the 
length of exacerbations are quite weak. We have also seen that the second 
state seems to behave quite differently from the first. One of the problems all 
these models face is that they have to model the length of an exacerbation 
conditional on, an exacerbation occurring. This means that a person without 
any exacerbation does not contribute to the inference for the length of exac­
erbations. Together with the fact that the number of exacerbations decreases 
over time, this means that it will be difficult to estimate a treatment effect. For 
example, if the treatment works well, the patient will have fewer exacerbations 
and hence contribute less to the inference for the lengths of exacerbations. But 
without plausible models for the relationship between number and lengths of 
exacerbations, this would be difficult to incorporate into any analysis. 

We mentioned earlier that we also have the severity of exacerbations 
available. Some of the analyses we suggested could also incorporate this in­
formation. Markov chains can (at least in theory) be extended to any number 
of states, not just the two we utilized. The alternating renewal process could 
also be extended to include more states. Marks in marked point processes 
can also be categorical; if we just used the severity as marks we would in fact 
simply obtain a multivariate point process. While all of these extensions or 
alternatives are possible in principle, the estimation could be more difficult, 
particularly for the alternating renewal process model. 

This thesis suggests that the covariates available in this data set do not 
contain much information about the lengths of exacerbations. This could mean 
either that there really is little information in the lengths of exacerbations and 
they are fairly random, or that we need more specific covariates that are not 
as crude as gender, for example. In any case, a better understanding of the 
biological mechanisms underlying the exacerbations would be helpful to answer 
these questions conclusively. 
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