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A B S T R A C T 

Collared lemmings (Dicrostonyx groenlandicus) fluctuate periodically in abundance on 

the Kent Peninsula, Northwest Territories, Canada. I tested whether predation was necessary to 

(1) limit the lemming population during a peak and decline summer (1996 and 1997), and (2) 

cause the population decline. The nesting success of geese also fluctuates at this location. I 

tested whether the relative number of goose nests lost could be predicted from functional and 

numerical responses of nest predators to lemming density. 

I reduced predation on lemmings with a fence and an overhead mesh of monofilament 

line over 11 ha, completed during the lemming increase (summer 1995). I used mark-recapture 

and radio-telemetry to investigate demography in this "Exclosure" and three Control areas, and 

estimated winter predation from droppings and abundance of predators. 

Density increased in Exclosure relative to Controls in both summers. Survival was 

significantly higher within Exclosure during the lemming decline only. Neither proportions of 

reproductive animals nor net movements differed significantly between treatments. I conclude 

that predation was a necessary limiting factor in the peak and decline summers, but that the 

magnitude of limitation was greater in the decline. 

Density declined over winter on all sites. The next summer (1997), the decline 

accelerated on controls but was reversed within Exclosure. Summer survival was lower in the 

decline than in the peak. Lemmings stopped reproducing early in the peak summer. If there was 

no winter breeding, winter survival was high. The contribution of predation to the winter decline 

depends on the extent to which mortality factors were compensatory. I conclude that predation 

may not have been necessary to cause the decline; instead the decline was initiated by cessation 

of reproduction. However, predation accelerated and extended the decline the next summer. 



From observed responses of nest predators to lemming density, I predicted that the 

number of goose nests depredated should be lowest during lemming peaks. This was not true in 

past lemming cycles in this region (1989 - 1994). I conclude that nest loss cannot be predicted 

from the phase of the lemming cycle alone, and make testable predictions of how other factors 

should affect nest loss. 
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CHAPTER ONE 

INTRODUCTION 

Lemmings fluctuate periodically in abundance throughout most of the Arctic. The causes of this 

intriguing phenomenon have been sought for 75 years since it was first recognised by Elton 

(1924). Understanding was initially slow because the results of observational and correlational 

studies, of both lemmings and related species, were perplexingly inconsistent. More recent 

experimental studies of small mammal ecology, most on vole populations, have led to faster 

advances (Stenseth and Ims" 1993a). As well, the technology of radio-telemetry has made it 

possible to study the movements and survival of individuals. Still, few experiments have been 

conducted on wild populations of lemmings because in the far north such research is costly and., 

arduous. 

Lemmings are small rodents broadly distributed through the Holarctic. Known as 

microtines, in the family Muridae and subfamily Arvicolinae (formerly Microtinae), lemmings' 

closest relatives are voles and muskrats. Two genera of lemmings are almost circumpolar -

collared lemmings (Dicrostonyx) in arctic North America, Greenland, and Siberia, and brown 

and Norwegian lemmings (Lemmus) in Siberia, all but the eastern regions of northern North 

America, and Fennoscandia (Jarrell and Fredga 1993). Although the two are often sympatric, 

Lemmus is generally found in moist tundra habitat dominated by grasses and sedges, and 

Dicrostonyx often on drier tundra dominated by shrubs (Fuller et al. 1975a, Rodgers and Lewis 

1986a, b). 



Characteristics of lemming cycles 

Patterns of lemming cycles have been reviewed by Krebs and Myers (1974) and more 

recently by Krebs (1993) and Stenseth and Ims (1993b), and several long-term data sets have 

been published (e.g. Pitelka 1973; Fuller etal. 1977; Framstad etal. 1993a, 1993b). Lemming 

cycles typically have a period of 3 to 4 years and amplitudes between 25:1 and 200:1 (Krebs 

1993). Cycles are often synchronous over large geographic areas and among sympatric species. 

Growth to the peak density is explosive, usually within one year. A rapid decline follows; it is 

often more variable in rate than the increase, and may occur in any season and last one or more 

years. The low phase is usually the longest and may last more than two years. 

Although the data are sparse, several characteristics of lemmings and their environment 

seem to vary consistently within a cycle. During the peak phase, body size may be greater than 

at other times (Krebs 1964a). The maturation rate and length of the breeding season are lowest 

at the peak, but pregnancy rates and litter sizes are relatively invariant through the cycle (Krebs 

and Myers 1974). Winter reproduction is thought to be common in the year before the peak but 

uncommon at other times (Kaikusalo and Tast 1984). The rate of winter mortality seems to be 

low, except during certain declines (Krebs 1993). Damage to vegetation is sometimes, but not 

always, evident during or after a peak phase (Krebs and Myers 1974). It is well known that 

predators increase in numbers during lemming peaks; their per capita consumption of lemmings 

also increases when these prey are abundant (Reid et al. 1995, and see Batzli et al. 1980). 

Hypotheses for the causes of lemming cycles 

Many hypotheses have been advanced to explain rodent population cycles: Batzli (1992) 

listed twenty-two. The rapid increase phase of microtine cycles is not surprising given the 

fecundity of these animals. Most research has focussed on causes of the decline. Hypothetical 

mechanisms causing cycles are traditionally separated into intrinsic and extrinsic factors; both 
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types are proposed to result in cycles owing to delayed density dependence. In the following 

paragraphs I summarise the major categories of hypotheses. 

Intrinsic hypotheses emphasise the importance of differences among individuals. 

Proportions of individuals of different genotypes or phenotypes may vary during the cycle as a 

result of differential selection, maternal effects, or social interactions (Chitty 1952, 1996; Krebs 

1978, 1996). Demographics may vary not only in response to changing density, but as a result of 

fluctuation in the composition of the population. There is a growing body of work on the social 

structure of voles, but apart from a few studies of aggression (Semb-Johansson et al. 1979, 

Heske and Jensen 1993, Heske et al. 1993), home range, and dispersal (Brooks 1993, Reid et al. 

1995, Blackburn et al. in press), little is known about this aspect of lemming behaviour (Krebs 

1993, 1996). 

Fluctuations in extrinsic factors - disease, food quantity or quality (nutrients and 

secondary plant compounds), and predation - could hypothetically cause microtine cycles. Few 

studies have been able to associate population cycles with pathogens, although levels of virus 

were higher in voles (M. pennsylvanicus) in a declining population (Desicoteaux and Mihok 

1986). Little is known about lemming pathogens or their population effects. Although 

supplemental feeding of voles affects reproduction, growth, and survival, the addition of food 

has never prevented a decline (Stenseth and Ims 1993b) unless predators were excluded (Ford 

and Pitelka 1984). However, because voles (Microtus agrestis) showed poor growth and 

reproduction when introduced into habitats that had previously supported high vole densities, 

Agrell et al. (1995) suggested that food quality might have been impacted by the abundant voles 

in the previous year. 

Most experimental removals of vole predators have been on a small scale and resulted in 

increased densities but did not affect population dynamics (Erlinge 1987, Desy and Batzli 1989). 

More recently, the exclusion of predators from an 11.2 ha area prevented seasonal declines in a 



non-cyclic population of collared lemmings, and resulted in enhanced recruitment and adult 

survival (Reid et al. 1995). When Norrdahl and Korpimaki (1995b) removed either avian 

predators or least weasels from large areas, the density of voles did not increase, but when they 

removed avian predators, least weasels, and ermine, vole densities increased within the removal 

areas while they continued to decline elsewhere (Korpimaki and Norrdahl 1998). It has also 

been recognised that predation may interact with prey behaviour to affect factors other than 

mortality - growth and reproduction may be impacted if animals alter their foraging patterns in 

response to a high risk of predation (Lima and Dill 1989, Korpimaki and Krebs i996). 

The consistent cyclic changes that have been observed in reproduction, body size, and the 

. abundance of predators suggest that multiple factors interact to generate microtine cycles (Batzli 

1992). There is a growing consensus that predation and intrinsic factors may both be necessary 

to generate declines (e.g. Krebs 1996, Stenseth et al. 1996). 

Indirect effects of lemming abundance on other prey species 

The swings in predator numbers and diets in response to changing lemming density affect 

other prey species. Roselaar (1979) suggested that the numbers of migrating shorebirds would 

fluctuate if predators ate their eggs and young in years when lemming numbers were low. 

Summers (1986) later associated regular fluctuations in the abundance of young brent geese 

(Branta bernicla) in Britain with published observations of lemming abundance on the Taymyr 

Peninsula in Siberia, where the geese breed. More rapid reproduction by predators during 

lemming peaks might lead to particularly severe loss of goose nests the following year (Dhondt 

1987, Summers and Underhill 1987). Until lately, field research to test these hypotheses has 

been absent or short-term, and the reality of the relationships has been controversial. Recently, 

in a 6-year study on the western Taymyr, Spaans et al. (1998) found that the system was not as 

simple as had been supposed. They observed a delayed numerical response of arctic foxes after 
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one lemming peak, but not after another, when even though no nests were taken, most goslings 

were killed by gulls. 

Lemmings and geese on the Kent Peninsula, N.W.T. 

Populations of collared lemmings (Dicrostonyx groenlandicus) and brown lemmings 

(Lemmus trimucronatus) have peaked every three years since 1984 on the Kent Peninsula, 

N.W.T., Canada (Poole and Boag 1988, Cotter 1991, Chapter 4). The rates of nest success of 

white-fronted geese (Anser albifrons) and Canada geese (Branta canadensis) on the Kent 

Peninsula have fluctuated widely since 1987 (Bromley et al. 1995). Nesting success was 

synchronous between the two species of geese and most nest failures were due to predation by 

arctic foxes and avian predators. 

Thesis questions 

The research reported in this thesis focussed on two main questions: (1) How does 

predation affect the population dynamics of lemmings, and (2) How do fluctuations in lemming 

abundance affect the loss of goose nests? I used a combination of experiments and observations 

to study collared lemmings and their predators during four summers on the Kent Peninsula. To 

test experimentally the population effects of predation, I built a predator exclosure consisting of 

a fence and an overhead mesh of monofilament, over 11 ha of tundra. The structure was 

completed late in summer 1995, a lemming increase year. I live-trapped lemmings to estimate 

their abundance and reproductive condition (Tables 1-1, 1-2), and estimated their survival with 

radio-telemetry in the summers of 1994 - 1997. I monitored the reproductive success of 

predators and estimated their summer and winter diets from pellets and scats. Finally, I built 

simple simulation models to test whether the estimated demographic parameters could cause the 

observed population decline (1996 - 1997). 



To test for possible indirect interactions between lemming abundance and the loss of 

goose nests, I assessed numerical and functionalresponses of nest predators to lemming density. 

I recorded sightings of predators and observed them foraging in prime goose nesting areas. I 

supplemented nest predation data collected by the N.W.T. government (Bromley et al. 1995) by 

recording attacks on artificial plaster goose eggs, as an index of the. total response of predators to 

lemming abundance. 

The structure of this thesis is as follows: 

Chapter 1. Introduction. 

In this chapter I review the background leading to the questions asked in this thesis, and 

list the main hypotheses tested. 

Chapter 2. Limitation of collared lemming populations during a population cycle. 

This chapter describes tests of the hypothesis that predation is necessary to limit lemming 

populations during the peak and decline phases of the cycle. I report comparisons of density and 

demography between a population of collared lemmings that was experimentally protected from 

predation, and three control populations. 

;Chapter 3. Predation and the decline of collared lemming populations. 

In this chapter I describe tests of the hypothesis that predation is a necessary cause of the 

decline of lemming populations.' I compared rates of survival between the peak (1996) and 

decline (1997) summers, examined evidence of winter predation (1996 - 1997), and compared 

rates of decline between the protected and control populations. In addition, I compared 

reproductive parameters among years and used simple population models to test whether the 

estimated demographic rates could cause the observed decline in winter and summer. 
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Chapter 4. Functional and numerical responses of predators to cyclic lemming abundance: 

effects on loss of goose nests. 

This chapter describes a test of the hypothesis that the pattern of predation on goose nests 

(nests lost per km 2) during a three-year lemming cycle can be predicted from (1) functional 

responses of nest predators to lemming density, and (2) timing of numerical responses. I 

compared the relative abundance of predators on goose eggs and indices of their functional and 

total responses among three years of the lemming cycle. The pattern of nest losses during a 

cycle predicted from these results is then compared with data from previous lemming cycles at 

this location. 

Chapter 5. Conclusion. 

This chapter summarises the main results reported in this thesis and recommendations for 

further research. 
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Table 1-1. Trapping dates in 1994, 1995, 1996, and 1997. Trapping sessions used for M A R K 

analyses in 1996 and 1997 are noted (e.g. Session 1, 96; see Chapter 2). 

Trap cleaning 

Trapping 

Grid 1994 1995 1996 1997 

Control 1 May 30 June 10-11 May 30, June 3 June 13-14 
Control 2 May 30 June 8-9 May 31, June 4 June 13 
Control 3 May 30 June 14 June 2 June 14 
Exclosure — June 13 June 1 June 13 

(Session 1, 97) 
Control 1 June 8 June 20 June 14 June 15-16 
Control 2 June 8 June 22 June 20 June 15-16 
Control 3 June 8 June 23 June 10 June 17-18 
Exclosure — June 24 June 7 June 17-18 

Control 1 June 29 June 28 
Control 2 June 28 June 30 
Control 3 June 29 — 

Exclosure — July 1 

(Session 1, 96) (Session 2, 97) 
Control 1 July 9 July 9 July 15-16 June 28-29 
Control 2 July 9 — July 20-21 June 28-29 
Control 3 July 11 — July 7-8 July 4-5 
Exclosure — July 15 July 3-4 July 1-2 

(Session 2, 96) (Session 3, 97) 
Control 1 July 23 August 2 August 3-4 July 19-20 
Control 2 July 22 August 2 August 7-8 July 23-24 
Control 3 — — July 29-30 — 

Exclosure — July 29 July 25-26 July 25-26 

(Session 3, 96) (Session 4, 97) 
Control 1 August 11 August 23 August 14-15 August 10-11 
Control 2 August 11 August 25 August 17-18 August 12-13 
Control 3 August 13 — August 20-21 — 

Exclosure — August 22 August 11-12 August 15-16 

Control 1 September 1 
Control 2 August 30 
Control 3 August 30 
Exclosure — August 24-25 
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Table 1-2. Trapping sessions used in analyses of reproductive and age structure data (Chapters 2 

and 3). Each season was divided into four periods, as similar as possible among years. Trapping 

sessions on Control 3 grid were excluded from the analyses requiring comparisons among years. 

Period Grid 1995 1996 1997 

June 
Control 1 
Control 2 
Control 3 
Exclosure 

June 20 
June 22 
June 23 
June 24 

June 14 
June 4 
June 10 
June 7 

June 15-16 
June 15-16 
June 17-18 
June 17-18 

Late June - mid July 
Control 1 
Control 2 
Control 3 
Exclosure 

Late July - early August 

August 

Control 1 
Control 2 
Control 3 
Exclosure 

Control 1 
Control 2 
Control 3 
Exclosure 

July 9 
June 30 

July 15 

August 2 
August 2 

July 29 

August 23 
August 25 

August 22 

July 15-16 
June 20 
July 7-8 
July 3-4 

August 3-4 
August 7-8 
July 29-30 
July 25-26 

August 14-15 
August 17-18 
August 20-21 
August 11-12 

June 28-29 
June 28-29 
July 4-5 
July 1-2 

July 19-20 
July 23-24 

July 25-26 

August 10-11 
August 12-13 

August 15-16 
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CHAPTER TWO 

LIMITATION OF COLLARED LEMMING POPULATIONS 

DURING A POPULATION C Y C L E 

INTRODUCTION 

Populations of collared lemmings (Dicrostonyx spp.) exhibit multi-annual fluctuations in 

many circumpolar regions. This pattern has been documented for D. torquatus on the Taymyr 

Peninsula (Dorogov 1983) and Wrangel Island (Chernyavski 1979), D. hudsonius in Ungava 

(Elton 1942), D. richardsoni in northern Manitoba (Shelford 1943, Mallory et al. 1981, Scott 

1993), and D. groenlandicus near Baker Lake (Krebs 1964a), near Igloolik (Rodgers and Lewis 

1986b), on Devon Island (Fuller et al. 1975b), on the north slope of Alaska (Batzli et al. 1980), 

in the Central Northwest Territories (Poole and Boag 1988, Cotter 1991, Chapter 4), and in 

Greenland (Sittler 1995). An exception is the population of D. g. kilangmiutak at Pearce Point in 

the Northwest Territories (Krebs et al. 1995, Reid et al. 1995) that maintains persistent low 

densities. Where other sympatric microtines occur, including Siberian lemmings (Lemmus 

sibiricus), brown lemmings (L. trimucronatus), red-backed voles (Clethrionomys rutilus), and 

tundra voles (Microtus oeconomus), they tend to cycle synchronously with Dicrostonyx. 

Predators respond (Solomon 1949) numerically (Maher 1967, 1970, Pitelka 1973, 

MacLeaneJa/. 1974, Batzli et al. 1980, Henttonen et al. 1987,Underbill etal. 1993) and 

functionally (Reid et al. 1997 and see Batzli et al. 1980) to increases in lemming numbers. 

Because the increase in numbers of predators may lag the increase in lemming density, delayed 

density-dependent predation is one of many hypothesised causes of population cycles in 

lemmings (Stenseth and Ims 1993b), as in other microtines (Taitt and Krebs 1985). Even if 

predation does not cause the cycle, it may limit (reviewed by Sinclair 1989) prey density, 
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resulting in reduced peak densities, accelerated declines, and extended periods of low density 

(Taitt and Krebs 1985). However, if other causes of mortality compensate sufficiently 

(Errington 1946) predation may not be limiting. Also, if the population is limited by food or by 

spacing behaviour then any reduction in predation may be offset by changes in reproduction or 

emigration. On the other hand, predation may be limiting in only certain phases of the cycle - in 

the decline phase, for example, when the predation rate is expected to rise owing to a delayed 

numerical response of predators. 

Radio-telemetry studies of microtines have revealed that a large proportion die 

proximately of predation (Brooks and Banks 1971, Heske et al. 1993, Krebs al. 1995, 

Norrdahl and Korpimaki 1995a, Reid et al. 1995, Steen 1995, and see Steen et al. 1997). When 

predators have been experimentally excluded or removed, microtine numbers have usually, but 

not always, increased relative to control populations (Erlinge 1987, Desy and Batzli 1989, Reid 

et al. 1995, Korpimaki and Norrdahl 1998; cf. Marcstrom et al. 1988, Norrdahl and Korpimaki 

1995b). The sole experiment of this type on lemmings was that of Reid et al. (1995), who 

concluded that predation curtailed summer growth of a non-cyclic population of Dicrostonyx. 

Limitation by predation of a cyclic lemming population has not previously been studied 

experimentally. 

By experimentally reducing predation on 11 ha of tundra and using radio-telemetry to 

determine the fates of collared lemmings (D. g. kilangmiutak Anderson and Rand), we tested 

whether and to what extent predation was necessary to limit the lemming population in the 

summer during the peak and decline phases of a cycle. A necessary condition is a prerequisite, a 

condition that must prevail for another to occur. Hence if predation is necessary to limit the 

population then reducing predation will cause density to increase. We tested the following 

predictions. If predation is a necessary limiting factor in summer, then (1) some mortalities must 

be due proximately to predation, and when predators are removed (2) density will increase, (3) 
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survival will increase, (4) reduced predation will not be compensated for by increases in other 

sources of mortality, and (5) increased survival will not be negated by changes in other 

demographic factors such as emigration or reproduction. 

S T U D Y SITE 

This study took place at the Walker Bay field station on the Kent Peninsula, Northwest 

Territories, Canada (68° 21'N, 108° 05'W). The region is characterised by shallow tundra ponds 

and lakes separated by low-lying flat grassy areas, mud flats, sedge meadows, or moist broad 

hummocks (less than 20 m above sea level). Several ridges of higher land (less than 40 m a.s.l.) 

rise above the wet tundra; dens of arctic foxes and nests of owls and raptors are commonly 

situated on this high ground. Collared lemmings are most abundant in the hummocky habitats, 

where the predominant vegetation is Salix lanata, S. arctica, S. reticulata, Dryas integrifolia, and 

Carex bigelowii. Brown lemmings prefer wetter habitats dominated by sedges and grasses 

including Carex bigelowii, C. salina, Eriophorum angustifolium, and Dupontia fished. 

Predators on lemmings in this region include arctic foxes (Alopex lagopus), ermine 

(short-tailed weasels or stoats) (Mustela erminea), arctic ground squirrels (Spermophilus parryi), 

parasitic, pomarine, and long-tailed jaegers (skuas) (Stercorarius parasiticus, S. pomarinus and 

S. longicaudus), short-eared owls (Asio flammeus), snowy owls (Nyctea scandiaca), 

rough-legged hawks (Buteo lagopus), glaucous gulls (Lams hyperboreus), sandhill cranes (Grus 

canadensis), common ravens (Corvus corax), and peregrine falcons (Falco peregrinus). 

M E T H O D S 

We trapped lemmings on four plots, each 300 m x 300 m (9 ha), in predominantly 

hummocky habitat (Fig. 2-1). The sites were at least 0.5 km apart and largely separated by 
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Fig. 2-1. Map of trapping grids at the Walker Bay field station, Kent Peninsula, N . W . T . used in 

1994 through 1997. Control grids are indicated as C I , C2, and C3; the predator exclosure is 

labelled E and the surrounding fence is shown. Dark shading represents the largest lakes and 

ponds; light shading shows the approximate extent of mud flats. Unshaded contours represent 

ridges of high ground (< 20 m above sea level). 
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ridges, ponds, or mud flats. We protected one plot from predators by building a predator 

exclosure (approximately 11 ha) consisting of a chicken wire, fence to deter large mammalian 

predators and a cover of parallel lines of taut monofilament fishing line to deter avian predators. 

Lemmings could pass through the chicken wire (2.5 cm mesh size). The fence stood 1.5 m high; 

the monofilament was spaced approximately 45 cm apart, about 2 m above the ground. Reid et 

al. (1995) described a similar construction. The monofilament was completed by 27 July.1995. 

The fence was erected by 25 July 1995 and the,50-cm apron of chicken wire at its base was 

buried in soil by 8 August. It acted as a predator exclosure during the snow-free period. 

The protected area was not designed to exclude ermine, but we have few records of these 

animals within the exclosure. We found an apparently starved ermine in the exclosure in July 

1995 when it was under construction. In August 1996 we trapped and removed two ermine, and 

in August 1997 we saw one ermine in the exclosure. Arctic ground squirrels could have • •, 

burrowed under the fence, but they tended to use drier habitats and were not observed on any of 

our plots. The structure effectively excluded avian predators in summer, but predation by arctic 

foxes occurred inside in August 1996 and June and August 199.7; the foxes jumped the fence or 

sometimes-chewed through it. We estimate that the risk of predation was reduced by about 50% 

within the protective structure. The exclosure was less effective in winter - snow covered the 

fence and signs of arctic foxes and snowy owls were found within the area each spring. 

On each plot we surveyed a trapping grid of 10 rows and 10 columns of wooden stakes 

30 m apart. A Longworth trap was placed near ah active burrow or in a runway near each grid 

point. The traps were left locked open on the grids during winter (since 1993 on Control plots 

and since 1994 on the Exclosure plot). Throughout the summers of 1994 and 1995 we trapped 

on each grid in one-day sessions (trapping in the Exclosure began in 1995; Table 1-1). In 1996 

and 1997 we trapped in two-day sessions whenever possible (Table 1-1); on the second day traps 

were moved to a new location. We also caught lemmings that were sheltering in open traps when 
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we cleaned traps during snowmelt each spring. Traps were baited with apple, shaded with 

wooden boards, and checked every five hours. We marked both collared and brown lemmings 

with numbered metal ear tags (fingerling tags). Of more than 1200 lemmings tagged in 1995 and 

1996, only a few were recaptured in the subsequent year - all Dicrostonyx, two on Control grids 

and five in the Exclosure. 

Estimation of density and survival 

We estimated the abundance and survival of Dicrostonyx in 1995 by means of the Jolly-

Seber method (program JOLLY, Krebs 1989, p. 485). For the equivalent estimates in 1996 and 

1997 we used the robust design method (Pollock 1982, Pollock et al. 1990) in program M A R K 

(White 1998). (In 1995 our trapping sessions did not follow the robust design; the analyses 

performed by program J O L L Y were equivalent to those now available in M A R K for such data). 

M A R K computes maximum likelihood estimates of the parameters of models that predict the 

encounter histories of animals. The robust design model combines the Cormack-Jolly-Seber 

(CJS) (Cormack 1964, Jolly 1965, Seber 1965) open population mark-recapture model and 

models developed for closed populations (Otis et al. 1978). The robust design requires a 

sampling protocol in which primary trapping sessions each consist of multiple secondary 

sampling sessions close together in time. It is assumed that the population is closed within each 

primary trapping session (i.e. among secondary sessions within each primary session), and 

therefore data from each primary session are analysed with closed-capture models. Unlike the 

Jolly-Seber method, some of the closed-capture models allow unequal catchability among 

individuals; therefore they can provide improved estimates of capture probability and hence 

population size. Survival between the primary sessions can then be estimated with greater 

precision than is possible with the Jolly-Seber method alone. It is also possible to estimate 

probabilities of temporary emigration from, and re-immigration to, the study area. 
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Closed-capture models with only two secondary trapping sessions, as we had, cannot 

allow for a behavioural trap response (Otis et al. 1978). However, with a series of closed-

capture sessions, M A R K allows estimation of a temporary trap response. For each primary 

trapping session comprising two secondary sessions, M A R K estimates three parameters: the 

probability of capture in the first secondary session (pi), the probability of capture of an 

unmarked animal in the second secondary session (p2), and the probability of recapture (c). Only 

two of these are estimable for one primary session, but they all can be estimated with multiple 

primary sessions under the realistic assumption of an additive relationship among the parameters 

over time - that is, that differences between pi, p 2, and c are constant among the primary 

sessions. This model accommodates both a temporary trap response and time variation. It is 

possible to determine whether these parameters are needed by testing for differences among pi, 

p 2, and c, as well as among primary sessions. Differences in trappability among groups of 

animals - among trapping grids in our case - can also be modelled. Other heterogeneity among 

individuals cannot be accounted for with only two secondary trapping sessions and can lead to 

underestimation of density; however, survival estimates are relatively insensitive to such 

variation (Pollock et al. 1990). A permanent trap response can bias density estimates in either 

direction, but does not affect survival estimates (Pollock et al. 1990). We assumed that any 

heterogeneity in the trappability of lemmings was consistent among grids, thereby introducing a 

constant bias. 

From the probabilities of capture and recapture described above, the robust design model 

estimates a capture probability parameter (p*) for each primary trapping session. Other 

parameters estimated are N i ; the population density at the beginning of the i t h primary session, 

and Sj, the probability of survival between primary sessions i and i + 1. Each parameter can be 

estimated separately for identified groups of animals (trapping grids in our case, next paragraph). 

We set the emigration and re-immigration parameters, y " and y', to 0 so that the survival 
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parameters represented the same apparent survival estimated by the Jolly-Seber model - that is, 

the survival parameters included effects of emigration. 

We used M A R K to fit a series of increasingly parsimonious hypothetical models to the 

data of individual encounter histories (Table 2-1). From these we.selected a model by 

minimising Akaike's information criterion (AIC) (Akaike 1974). A I C is calculated as A I C = 

-21n(L) + 2p, where L represents the maximised likelihood of the model, and p the number of 

parameters in the model. ( M A R K actually computes A I Q , which corrects the bias introduced 

when the sample size is small relative to the number of parameters estimated.) A I C attempts to 

trade off bias against variability of estimates. As the number of parameters in a model increases, 

both the bias and precision of estimates tend to decrease. Therefore A I C penalises the increased 

likelihood of a better-fitting model by the number of additional parameters required. Examples 

of successively simpler models of trappability in the first secondary session (pi) are (1) non-

additive (interactive) effects of time and trapping grid, abbreviated pi(t * g); (2) additive effects 

of time and grid, pi(t + g); (3) a time effect only, pi(f). In model pi(t * g) a separate trappability 

parameter is estimated for each grid and time period; therefore the number of parameters is n t x 

n g , where n t is the number of primary trapping sessions and n g the number of grids. In model 

pi(t + g) the differences between parameters for each grid are constant at each time step; only 

n t + n g - 1 parameters are required, one for each trapping session and one each, for the difference 

between the first and each other grid.. In model pi(t) the parameters for all grids are equal but 

vary through time; only n t parameters are needed. Similar sets of models can be built for other 

trappability (p 2, c) and survival (S) parameters (Table 2-1). We found that likelihood ratio tests 

(White and Bennetts 1996) led to selection of the same model as did AIC C . In these tests the fits 

of two nested models are compared by means of the ratio of their likelihoods, which follows a 
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Table 2-1. Procedure for testing increasingly parsimonious models of density and survival in 

M A R K . If any step caused A I C C (see text) to increase, it was omitted. 

(1) Start with full model: c = x + p 2 = y + pi(t * g) N(t * g) S(t * g) 

(2) Setp 2 = p,: c = x + p 2 = p i ( t * g ) N ( t * g ) S ( t * g ) 

(3) Setc = p 2: c = p 2 = P l ( t * g) N(t * g) S(t * g) 

(4) Remove (t * g) interaction from c, pi , p 2: c = p 2 = pi(t + g) N(t * g) S(t * g) 

(5) Remove g and then t effects on c, pi, p 2: c = p 2 = pi(f) N(t * g) S(t * g) 

c = pa = pi(.) N(t * g) S(t * g) 

(6) Remove t * g interaction from S: c = p 2 = pi(.) N(t * g) S(t + g) 

(1997 model only) 

Notation is as follows: 

N population density estimates 

S survival estimates 

pi probability of capture in first secondary trapping session 

p 2 probability of capture in second secondary trapping session 

c probability of recapture: the probability that an animal caught in the first 

secondary trapping session is recaptured in the second secondary session 

t a time effect 

g a trapping grid effect 

* an interactive effect: (t * g) includes effects of t, g, and the interaction 

between t and g 

+ an additive effect: (t + g) includes effects of t and g but no interaction 

a constant parameter; i.e. no variation among grids or times 

c = p 2 = pi pi , p 2 , and c all equal 

c = x + p 2 = pi P i and p 2 equal; the difference between these parameters and c constant 

among grids or times 

c = x + p 2 = y + pi differences between pi, p 2 , and c constant among grids or times. 
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% 2 d distribution where the degrees of freedom, d, is the difference in the number of parameters 

between the two models. 

In 1996 we trapped on two consecutive days on three occasions on each Control grid and 

on four occasions on the Exclosure grid. In order to compare among grids we grouped sessions 

on the four grids that were as close as possible in time. However, to avoid confounding density 

with time as the populations increased owing to summer reproduction, we ignored the last 

trapping session in the Exclosure (24 - 25 August) because it was later than sessions on the other 

grids. Our conclusions from this conservative procedure were the same as those reached if the : 

last three rather than the first three sessions on the Exclosure were included. In 1997 we trapped 

on two consecutive days on four occasions on two Control grids and in the Exclosure. As in 

1996, we grouped occasions for each of these three grids that were close in time. On the third 

Control grid there were only two trapping sessions, each of two consecutive days, in 1997. We 

estimated the densities on that grid by means of a closed-capture model under the same 

assumptions (pi = p 2 = c) made for the other grids in 1997. We used the adjusted t-test for 

comparing a single observation to the mean of a sample (Sokal and Rohlf 1995, p. 228) to 

compare an estimate for the Exclosure with the mean of the corresponding estimates for the 

Control grids at a particular time. ; 

Survival estimation from mark-recapture data 

In 1997 the time intervals between primary trapping sessions were similar among grids 

(Control 1: 13, 21, 22 days; Control 2: 13, 25, 20 days; Exclosure 14, 24, 21 days). Therefore we 

tested the null hypothesis that the survival rates in the Exclosure were equal to the survival rates 

of animals on the Control grids by comparing models generated in M A R K , by means of 

likelihood ratio tests (White and Bennetts 1996). We compared the fits of three nested models 

all with survival (S) varying among the different time periods (t) between primary trapping 
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sessions: (1) separate survival parameters for each grid (S(t + g)), (2) separate survival 

parameters for the Controls and the Exclosure (S(t + Excl)), (3) equal survival on all grids (S(t)). 

In 1996 the time intervals between primary sessions differed too much among trapping 

grids for us to be able to compare models. Instead we arithmetically converted the survival 

estimates from M A R K into 14-day survival rates and 95% confidence intervals and compared 

them graphically among grids. 

Survival estimation from radio-telemetry 

We used radio-telemetry to obtain independent estimates of actual survival, by fitting a 

total of 214 adult and subadult lemmings with transmitters. We used Biotrack radio collars (SSI, 

SS2, and TW4) weighing approximately 3 g. No lemming received a radio weighing more than 

10% of its weight. The position of each radio (a "fix") was recorded approximately every three 

days. If an animal could not be located, we searched extensively on and around the trapping grid 

and at known predator dens, nests and perches. When a dead lemming was found, the type of 

predator responsible was inferred from a necropsy, from the location of the radio, and from 

damage to the radio, lemmings killed by arctic foxes had massive haemorrhaging under the skin 

or large puncture wounds, and were often found cached under moss or leaf litter. Foxes 

sometimes left only the stomach and radio but often dug up burrows or chewed collars. Ermine 

skinned their prey or ate the brain. Avian predators often left only the stomach and radio or a 

regurgitated casting containing the radio. We found transmitters and the remains of lemmings in 

fox dens, in ermine dens and near the nests of pomarine jaegers. Occasionally a dead lemming 

was found on or under the ground with no apparent injuries; we classified these as "non-

predation mortalities". When possible, we removed or changed radios during the summer when 

batteries were due to fail. Most radio-collared animals that were alive at the end of the study 

were recaptured and their collars were removed. 
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We estimated survival rates from the radio-telemetry data by means of Kaplan-Meier 

analyses with both singly-censored and progressively-censored (staggered-entry) data (Pollock et 

al. 1989). We plotted the survivorship function of animals in two groups, Control and 

Exclosure, in 1995, 1996, and 1997, and estimated their survival in June, July and August of 

each summer. Data from four animals that died within the first two days after radios were fitted 

were deleted because collars may compromise survival in the short term (Reid et al. 1995). Log-

rank tests (Pollock et al. 1989; equivalent to Mantel and Haenszel's %2 test, Lee 1980, p. 136) . 

were used to compare estimates between the Control and the Exclosure groups. 

Reproductive activity 

We weighed lemmings to the nearest 1 g and recorded their reproductive condition. We 

assigned them to weight classes according to their mass as follows: small (< 25g), medium (25 -

49g), and large (> 50g). They were additionally assigned to age classes based on their weight 

and pelage at first capture. Animals weighing < 40 g at first capture were classified as born that 

season, either under the snow ("spring born") or in the first, second, or third summer litters, 

depending on the date of capture. Animals in juvenile or subadult pelage in May or June were 

classified as spring born regardless of their weight (usually < 40 g). A l l other lemmings 

weighing more than 40 g at first capture were considered adults. 

A male was considered reproductive if his testes were scrotal, a female if her pubic 

symphysis was at least slightly open, her nipples enlarged, or she was obviously pregnant. To 

compare reproductive status among years, we chose four periods within each season that 

included, whenever possible, a trapping session from each year on the three main grids (Table 

1-2). We ignored data from the few trapping sessions outside these periods and from Control 

grid 3, where trapping was infrequent in 1995 and 1997. The relationship between reproductive 
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condition and year, sampling period, and trapping grid was modelled by means of logistic 

regression (a generalised linear model for binomial data). This method uses an iterative weighted 

least-squares algorithm to estimate a maximum likelihood coefficient for each level of each 

factor (Statistical Sciences 1995, p. 8-27). The coefficient represents a transformation of the 

incremental probability that an animal at that factor level was in reproductive condition. 

Separate models were fitted for large, medium and small males and for large and medium 

females (no small females were classified as reproductive). In each case, a parsimonious model 

was selected by eliminating terms that did not explain much variation in the response variable, 

according to an approximation of Akaike's information criterion (AIC) (Akaike 1974). Planned 

Helmert contrasts (Statistical Sciences 1995, p. 2-13) were used to compare the coefficient for 

the Exclosure with the mean of the coefficients for the Control grids. Planned "treatment" 

contrasts were used to compare other coefficients of interest: the peak year versus other years, 

and August versus other time periods. Functions "glm" and "step" in S-Plus (Statistical Sciences 

1995) were used for these analyses. 

Beginning in July 1996 we recorded oestrus (perforate vagina) as a separate indicator of 

female reproductive condition, but because of differences in assessments among field workers 

we could not compare rates of oestrus between years. Because the proportion of large animals in 

oestrus declined linearly throughout the 1996 season, the logistic regression for 1996 was 

modelled with trapping date as a continuous variable and grid as a discrete factor. A separate 

slope could therefore be fitted for each grid. We included in this regression the data from the last 

trapping session in the Exclosure in 1996 (August 24-25). 

Sex ratio and age structure 

We compared the proportion of male lemmings, and the proportion of lemmings 

classified as adults when first captured, among years, sampling periods, weight classes and grids 
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by means of logistic regressions similar to those described above. We grouped the trapping 

sessions in the same way as for analyses of reproductive condition. 

Mass of adult and juvenile lemmings 

We used a general linear model to compare the weights of adult animals of both sexes 

among years, sampling periods, and grids. A logio transformation was applied to the data to 

normalise distributions and equalise variances. As above, A J C was used to identify a 

parsimonious model. We grouped the trapping sessions in the same way as for the analyses 

described above. 

We wanted to compare weights of juvenile lemmings among grids after the juveniles had 

grown to adult size; the only cohort large enough for such a comparison was the first summer-

born litter in 1996. We used models similar to those described above to compare the mass of 

these animals among grids in late July - early August when most were below 40 g and in August 

when most were above 40 g. 

Movements of lemmings 

As an index of distances moved by the lemmings on the different trapping grids, we 

calculated the net displacement between primary trapping sessions of lemmings caught in two 

successive sessions. The same trapping sessions were used for this analysis as for the above 

analyses. A logio transformation was applied to the data to normalise the distributions and the 

95% confidence intervals for the mean displacements of males and females in each year were 

compared graphically. Most of the data were for large animals and none for animals weighing 

less than 25 g. The distances moved by animals of medium weight were similar to those moved 

by large animals, so we combined the two groups for these analyses. We also recorded the 
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numbers of telemetered lemmings that moved away from the grid on which they were first 

captured. 

R E S U L T S 

Abundance 

In 1994 the density of lemmings was very low and we caught only two - a male Lemmus 

on 9 June and a female Dicrostonyx on 1 September. Nor were any lemmings trapped in 1994 in 

a snap-trapping survey conducted annually in July at Walker Bay (Chapter 4). We display 

estimates of 0.11 ha"1 (1 animal per grid) throughout 1994 (Fig. 2-2); otherwise data from the 

animals caught in 1994 are not included in the analyses reported below. 

Jolly-Seber estimates of Dicrostonyx density in 1995 were approximately 2 ha"1 

throughout the summer on all grids (Fig. 2-2) although 95% confidence intervals were large. 

Because the predator exclosure was not completed until late July, we did not expect to detect 

differences in density or survival between the Exclosure and the Control grids. 

In all our robust design models of density and survival, A I C C was reduced (AAIC C < -1.4) 

by equating the probabilities of capture during the first secondary session (pi), the second 

secondary session (p2), and the probability of recapture (c) (Table 2-2, models 2, 4, 5). 

Therefore we assumed these parameters to be equal. In models of the 1996 data it was possible 

to assume that these parameters were also equal among grids ( A A I Q = -3.2, Table 2-2, models 1 

- 3). Because the time intervals between primary sessions differed among trapping grids in 

1996, we did not try to equate survival parameters among grids. In models of the 1997 data we 

were able to assume no interaction between grids and time in the case of survival estimates 

(AAIC C = -1.8). 
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Table 2-2. Successively parsimonious models from program M A R K of 1996 Dicrostonyx 

density and survival. Models are sorted in increasing order of A I Q (therefore the best model 

first). Only the change in A I C C (AAIC C) relative to the best, model is shown. Models are 

described using the notation shown in Table 2-1. 

Model A A I C c Parameters 

1. C = P2=pl(t) N(t * g) S(t*g) 0.0 23 

2. c = p 2 = pi(t*g) N(t * g) S(t*g) 3.2 . 32 

3. C = P2 = Pi (t + g) N(t * g) S(t*g) 4.0 26 

4. c = x + p 2 = pi(t* g) N(t * g) S(t * g) 4.4 33 

5. c = x + p 2 = y + P l (t * g) N(t * g) S(t*g) 4.7 34 

6. c = p 2 = pi -(•) N(t * g) S(t * g) 7.8 21 
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In early July 1996 the estimated density of Dicrostonyx was 8 - 1 1 ha"1 on all grids (Fig. 

2-2). In late July the estimated density in the Exclosure was nearly double the mean of the 

estimated densities on the Control grids (one-tailed t-test, t 2 = 3.2, p < 0.05). By mid-August the 

estimated density in the Exclosure was 34.1 ha"1 (95% c.i. 26.5 - 46.2), more than double the 

mean of the estimates for the Control grids (16.4 ha"1; one-tailed t-test, t 2 = 2.5, p < 0.07). 

During the winter of 1996 - 1997 the density of lemmings declined on all trapping grids. 

In mid-June 1997 the estimated density of Dicrostonyx was approximately 1 - 2 ha"1 on two 

Control grids and 7 ha"1 on Control 1 grid and within the Exclosure (Fig. 2-2). On the Control 

grids the densities declined throughout the summer. The estimated densities on Control grids 1 

and 2 in August, and on Control grid 3 in our last trapping session there in early July, were 

approximately 1 ha"1 or less (the largest 95% c.i. was 1.0 - 2.5). Within the Exclosure, the 

density declined to about 3 ha"1 (95% c.i. 2.3 - 5.2) by 1 July, but by August it rose to 

approximately 7.2 ha"1 (95% c.i. 4.4 - 14.7). This estimated density in the Exclosure in August 

1997 was 10 times that on the Control grids (0.7 ha"1; one-tailed t-test, t) = 7.7, p = 0.04). Hence, 

the decline was reversed in the experimentally treated area in summer 1997. The rate of change 

of density (r) was -0.19 per week on Control grids in summer 1997 and +0.002 per week in the 

Exclosure. ' • 

We caught few Lemmus except in 1996; in that.year we caught few until July but they 

then increased in abundance on all grids. In 1996 there tended to be fewer Lemmus in the 

Exclosure than on the other grids (Fig. 2-3a); indeed there seemed to be an inverse relationship 

between the densities of the two species. The density of Lemmus remained lower than that of 

Dicrostonyx except that in mid-August on Control 1 grid the densities of the two species were 

not significantly different (Figs. 2-2, 2-3a). Because the grids were not chosen to include 

Lemmus habitat, it may be inappropriate to estimate total lemming density. We were not able to 

do so formally in any case because we could not assume probabilities of capture were equal in 
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Fig. 2-3. (a) Estimates and 95% confidence intervals of the population density of Lemmus 

trimucronatus on Control (diamonds, circles and triangles) and Exclosure (squares) grids, in 

1996, obtained by means of the robust design, (b) Estimates of densities of both species of 

lemmings on the four grids, obtained by summing data from corresponding trapping sessions in 

Figs. 2-2 and 2-3a. 
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the two species (AAIC C = 4.2). Nonetheless, because the question of how total lemming 

abundance differed among the grids was interesting, we summed the estimated densities of the 

two species (Fig. 2-3b). The estimated density of all lemmings in the Exclosure in 1996 

exceeded the mean of the estimates for Control grids by 45% at the end of July and by 56% in 

mid-August (one-tailed t-tests, t2= 4.0, p < 0.03 and t 2 = 2.7, p < 0.06). 

Survival estimates from mark-recapture data 

During the period from late July to mid-August 1996, the 14-day survival rate of 

Dicrostonyx estimated from mark-recapture data was 50% higher in the Exclosure than the mean 

of the estimates on Control grids (Fig. 2-4). The difference approached statistical significance 

(one-tailed t-test, t3 = 2.0, p < 0.09), but the 95% confidence intervals overlapped considerably. 

Earlier in 1996 the survival rate in the Exclosure did not differ greatly from those on Control 

grids (Fig. 2-4). Throughout the summer of 1997, the survival rate of Dicrostonyx in the 

Exclosure, estimated with M A R K , was roughly double the mean survival on Control grids in the 

three periods between primary trapping sessions. We rejected the null hypothesis that in 1997 

survival in the Exclosure equalled that on Control grids because model S(t), in which survival 

varied through time but was equal among grids, fitted the data far less well than model S(t + 

Excl), in which survival varied through time and differed between the Exclosure and Control 

grids (%2i = 8.8, p < 0.005). Model S(t + Excl) fitted the data less well than model S(t + g), in 

which survival differed among all grids ( % 2 i = 3.8, p < 0.06), showing that only part of the 

variation among grids was explained by the difference between the Exclosure and Controls. 

Survival estimates in 1995 from Jolly-Seber models are not reported here because these 

estimates had 95% confidence intervals spanning most of the range from 0 to 1. Survival rates of 



31 

w 
ro 

(0 
> 
3 
(0 
o 

n o 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 

Ii 

Jul-96 

0 

I 
li1 Ii 

Aug-96 Jun-97 Jul-97 
Approximate sampling period 

Aug-97 

Fig. 2-4. Estimates and 95% confidence intervals from the robust design of the survival of 

Dicrostonyx groenlandicus on Control (diamonds, circles and triangles) and Exclosure (squares) 

grids, in 1996 and 1997. Survival was measured between the primary trapping sessions for 

which density estimates are plotted in Fig. 2-2. 
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Lemmus could be estimated only in 1996 and were quite imprecise; the estimated survival of 

Lemmus within the Exclosure did not differ significantly from that on Control grids (Fig. 2-5). 

Survival estimates from radio-telemetry 

We fitted 38 adult and subadult Dicrostonyx (weighing at least 28 g) with radio collars in 

1995, 114 in 1996, and 62 in 1997 (Table 2-3). The lemmings were killed by arctic foxes in all 

three years, by ermine in 1995 and 1997, and by various avian predators (Table 2-3). We knew 

of five active natal fox dens within 5 km of our trapping grids in 1995, 10 in 1996, but none in 

1994 or 1997. Predation by pomarine jaegers occurred only in 1996, when many bred in the 

study area (Chapter 4). Predation on juvenile lemmings (reported below) by ermine occurred in 

1996 on Control grid 1; a female ermine with seven young denned on the ridge nearby. 

Predation by ermine was heavy on the Control grids in 1997 but no known ermine predation 

occurred in the Exclosure in that year. This difference was most likely due to a patchy 

distribution of ermine, rather than an Exclosure effect, since these animals could pass through the 

fence. We knew of a male ermine and a female with four offspring denning on the ridge 

between Control grids 1 and 2, but we were not aware of ermine in the Exclosure until August. 

We recorded a lemming as "lost" when neither the individual nor its transmitter were 

ever found. Some of these losses may have been due to radio failure but probably most were due 

to predation, since the proportion lost was lower in the Exclosure by an amount similar to the 

reduction in the proportion killed by predators (next paragraph and Table 2-3). 

In the three years respectively, 23%, 23%, and 49% of the telemetered lemmings were 

killed by predators on Control grids, compared with 9%, 16%, and 22% in the Exclosure (Table 

2-3). The proportions of animals depredated, lost, and either alive or dead of unknown ("non-

predation") causes (alive animals and non-predation mortalities were pooled because of small 

expected values for the latter) differed significantly between the Exclosure and Control grids 
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Table 2-3. Natural mortalities of adult and subadult radio-tagged Dicrostonyx (weighing at least 

28 g) from the Control (C) grids and the Exclosure (E) in 1995, 1996, and 1997. Animals "alive 

when battery failed" were those that we were unable to recapture but were known to be alive and 

moving from radio fixes. "Lost" means both the radio and the lemming were never found. Not 

included are 1 animal in 1995 and 3 in 1996 that died within 2 days of being radio-collared. 

1995 1996 1997 

C E C E C E 

Animals radio-tagged 26 11 79 32 39 23 

Still alive when radio removed 14 9 40 20 11 12 

or when battery failed 

Lost 5 1 20 4 9 4 

Mortalities due to predation 6 1 18 5 19 5 

Fox or suspected fox 2 0 11 5 a 7 5 b 

Pomarine jaeger 3 0 

Short-eared owl 3 0 

Unknown or suspected avian 4 0 1 0 

Ermine or suspected ermine 1 1 10 0 

Unknown predator 1 0 

Non-predation mortalities 1 0 1 3 0 2 

% depredated 23 9 23 16 49 22 

% non-predation mortalities 4 0 1 9 0 9 

% total mortalities 27 9 24 25 49 30 

% lost 19 9 25 13 23 17 

a all in August b 4 on 28 June and 1 on 17 August 
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only in 1997 (1995: % 2

2 = 2.0, p > 0.3; 1996: % 2

2 = 3.9, p > 0.1; 1997: % 2

2= 6.8, p < 0.05). In 

1996 and 1997 only about 9% of the telemetered animals in the Exclosure died of causes other 

than predation, compared with less than 2% of Control animals. In 1996 the proportions of 

animals known to have died of all causes combined were approximately equal within (25%) and 

outside (24%) the Exclosure. 

Although survivorship of adult and subadult Dicrostonyx (at least 28 g) estimated with 

Kaplan-Meier analyses of radio-telemetry data (Fig. 2-6) was generally higher within the 

Exclosure than on Control grids, the difference was significant in 1997 only (log-rank tests, 

1995: % 2 i = 0.4, p > 0.5; 1996: % 2

{ = 0.3, p > 0.5; 1997: % 2

{ = 3.7, p < 0.054). Even while the 

predator exclosure was under construction in 1995, it probably afforded some protection to the 

lemmings within. Predation events within the Exclosure are clearly apparent in Fig. 2-6, in July 

1995 (by ermine), August 1996, and June and August 1997 (all by fox). Without the fox 

predation events, the difference in survival between the treatments in 1996 approaches 

significance (% i = 3.3, p < 0.071). Fourteen-day survival estimates were high (> 0.8) in each 

month of 1995 and 1996 in both treatments (Fig. 2-7). The estimated survival of animals on 

Control grids in 1996 exceeded that in 1997 by 14% (log-rank test, % 2 i = 5.2, p < 0.025). The 

estimated survival of Exclosure animals significantly exceeded that of Control animals (by 25%, 

log-rank test, % 2 i = 5.2, p < 0.025) only in July 1997, when no predation occurred within the 

protected area. 

Comparison of results from the two methods 

Analysis of our mark-recapture and radio-telemetry data led to different estimates of 

survival rates (Figs. 2-4, 2-7). The estimates from mark-recapture were generally lower and less 

precise than those from radio-telemetry, but mark-recapture estimates showed improved survival 
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Fig. 2-6. Kaplan-Meier survivorship functions for telemetered adult and subadult Dicrostonyx 

(weighing at least 28 g) on Control (open circles) and Exclosure (filled squares) grids in (a) 

1995, (b) 1996, and (c) 1997. In 1995, the first Exclosure lemming was telemetered on 6 July. 

The Exclosure was completed late in July 1995. 
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Fig. 2-7. Estimates and 95% confidence intervals of Kaplan-Meier 14-day survival of 

telemetered adult and subadult Dicrostonyx (weighing at least 28 g) on Control (open circles) 

and Exclosure (filled squares) grids in June, July, and August of 1995, 1996, and 1997. 
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in the Exclosure more consistently. A l l the instances when radio-telemetry estimates showed 

lower survival in the Exclosure than on Controls were associated with known predation events in 

the Exclosure. The differences between the estimates can be attributed to three main factors. 

First, the age classes of the two groups differed since we included all animals in mark-recapture 

estimates and only those at least 28 g in Kaplan-Meier estimates. Second, mortalities that 

occurred when few animals were telemetered had a large effect on the Kaplan-Meier estimates. 

For example, on 17 August 1997 one of the two remaining telemetered lemmings in the 

Exclosure was killed by a fox, resulting in a low, imprecise survival estimate even though it was 

the only mortality that month. Finally, as mentioned earlier we incorporated emigration into our 

mark-recapture survival estimates. In 1996 we observed little long-range emigration, but many 

animals caught early in the season were not recaptured later. At the high densities during the 

peak year our traps sampled only a small fraction of the population; therefore small-scale shifts 

in animals' home ranges, combined with our practice of moving traps to ensure random 

sampling, may have led to apparent emigration. 

Reproductive condition - males 

The factor "trapping grid" was not retained in the logistic models of reproductive 

condition for either large or medium-sized males (AAIC = -1.7 and -3.7 respectively); the only 

significant factors in these models were year and period. Further results of these analyses are 

presented in Chapter 3. So few small males were in reproductive condition that we did not try to 

incorporate grid into the model for these males. O f 14 small males in 1996, five were caught in 

the Exclosure and one of these was reproductive. O f four small males in 1997, two were caught 

in the Exclosure and one of these was reproductive. 
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Reproductive condition - females 

In the models of large and medium-sized female reproductive condition, the trapping grid 

term was retained. A n example of the interpretation of such models is given under Age Structure 

below. In the case of large females, differences among trapping grids in the proportion of 

females in reproductive condition were neither statistically significant (t 4 26 < 1.2, p > 0.2) nor 

consistent among years or periods. The proportion of medium sized females in reproductive 

condition in the Exclosure exceeded the mean proportion on the other two trapping grids but the 

difference was not significant ( t ig3 = 1.6, p > 0.1). We confirmed the lack of significance with a 

model incorporating all three Control grids in 1996 and 1997; the equivalent statistic was t 2g4 = 

0.7, p > 0.4. No small females were classified as reproductive. 

Trapping grid was not retained in the models of female oestrus (AAIC < -2.5) in either 

1996 or 1997. Few medium-sized females were observed in oestrus: of 151 animals in 1996, 

four were in oestrus (two in the Exclosure and two on Control grids) and of 21 animals in 1997, 

one was in oestrus. No small females in oestrus were seen in any year. 

Sex ratio 

Trapping grid was not retained in the model relating sex ratio to year, period, and grid 

(AAIC = -0.18); we conclude that the proportions of males and females did not differ 

significantly between the Exclosure and Control grids. 

Mass of adults and juveniles 

The average mass of animals classified as adults when first caught (weighing > 40 g) was 

greater in the Exclosure than on Control grids across all years (Fig. 2-8, t^j = 9.9, p < 0.0001) 

(see also Fig. 2-9). This pattern was true of both males and females (t259 = 5.4 and t43i = 8.9, p < 

0.0001). The mean mass of males and females in the Exclosure across all years and periods was 
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Fig. 2-8. Mass of adult Dicrostonyx caught in (a) 1995, (b) 1996, and (c) 1997 on Control 

(diamonds and circles) and Exclosure (squares) grids. Points (diamonds, circles, and squares) 

show the mean body weights of adults (i.e. weighed at least 40 g when first captured) estimated 

with a general linear model. Error bars represent 95% confidence intervals. Horizontal lines 

show the actual mean weights of adults captured during each time period on each grid. Triangle 

symbols show the actual mean weights of adults captured on Control grid 3 in 1996 and 1997, 

which were not included in the model but were plotted to provide additional information about 

adults on Control grids. Means were calculated based on logio transformed data. 
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68.9 g and 78.5 g, 12.6% and 19.1% higher than the corresponding mean weights on Control 

grids 1 and 2, 61.2 g and 66.0 g (calculated based on logio transformed data). The model fitted 

the data well except that in June and early July 1995, before the protective structure was 

completed, observed mean weights of animals in the Exclosure were similar to the observed 

means on the Control grids and lower than the values predicted for the Exclosure (Fig. 2-8a). 

The mass of juveniles from the first summer litter of 1996 did not differ significantly 

between the Control and Exclosure grids (tin = 0.95, p > 0.3) nor between sexes (tin = 0.13, p > 

0.8) in July - August. In August females were heavier in the Exclosure than on Control grids (t27 

= 2.5, p < 0.02), but there was no significant difference among grids in the mass of males (t J 3 = 

0.45, p > 0.6). Females weighed on average 50.8 g in the Exclosure, 13.7% above their mean 

weight on Control grids, 44.7 g. Males weighed on average 43.9 g on all grids combined. 

Age structure of the populations 

Histograms of the frequencies of animals of different mass (Fig. 2-9) show clearly that 

once the predator exclosure was completed in late July 1995, there was a higher proportion of 

heavy animals within the protected area than on Control grids. There was also a smaller 

proportion of juvenile animals (< 40 g) within the Exclosure than on Control grids throughout 

1996 and in June and early July 1997. For example, in August 1996 55 of 176 (31%) animals on 

Control grids weighed < 40 g, whereas only 15 of 145 (10%) animals in the Exclosure did so. 

This effect was not apparent in 1995 nor in late July or August 1997. In August 1997 there was 

a higher frequency of juveniles within the Exclosure than outside (see also following paragraph). 

In the model of proportions of adults as a function of year, period, and grid, there were 

interactions between year and grid. Therefore we analysed the data from the three years 

separately, and included the third Control grid in models of the data from 1996 and 1997. Table 

2-4 shows the coefficients of the model fitted to the 1996 data. The interaction between grid and 
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Fig. 2-9. Histograms of the frequency of Dicrostonyx of different mass, on the Exclosure grid 

and all Control grids combined, in August 1995, June 1996, August 1996, June 1997, and August 

1997. The label below each bar represents the midpoint of the range; e.g. the bar labelled 35 

includes animals of mass > 30 g and < 40 g. Numerals above each histogram indicate the sample 

size. 
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Table 2-4. Coefficients of the logistic regression model of the proportion of Dicrostonyx 

classified as adult when first caught, in 1996. Coefficients for time periods are compared by 

means of t-tests to that for August (treatment contrasts). Grids were compared with Helmert 

contrasts; hence the t-test for the Exclosure coefficient compares it with the mean of the 

coefficients for the 3 Control grids. 

Value S E t P < 

Intercept 0.32 0.12 2.63 

Period: June 0.46 0.23 2.00 0.05 

Period: June-July 0.93 0.22 4.18 0.0001 

Period: July-August -0.49 0.17 -2.98 0.005 

Grid: Control 2 0.37 0.11 3.43 0.001 

Grid: Control 3 0.08 0.07 1.25 0.3 

Grid: Exclosure 0.18 0.04 4.94 0.0001 

Null Deviance: 

Residual Deviance: 

1244 on 935 degrees of freedom 

1165 on 929 degrees of freedom 
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period did not remain in the model. The value of each coefficient is the estimated difference in 

the probability, q (on a logit scale: logit(q) = ln[q/(l-q)]), of a Dicrostonyx being an adult, 

relative to a reference grid and sampling period. The coefficient for each period was calculated 

relative to August (treatment contrasts). For example, the logit(probability) of an animal caught 

in late June to early July being an adult was 0.93 greater than that of an animal caught in August 

being an adult. This difference was significantly different from 0 (t929 = 4.2, p < 0.0001). The 

parameter for each grid was fitted relative to the mean of the grids previously entered into the 

model (Helmert contrasts). Thus, the logit(probability) of an animal caught in the Exclosure 

being an adult was 0.18 greater than the mean probability on the other three grids (t 9 2 9 = 4.9, p < 

0.0001). The residual deviance approximately corresponded with the degrees of freedom, which 

suggests a satisfactory fit (Venables and Ripley 1997, p. 235). The actual proportion of adults 

across all periods in 1996 was 70% in the Exclosure, compared with 56% on all Control grids 

(Fig. 2-10a). 

In 1995 the difference between the Exclosure and the Control grids was in the other 

direction and was not statistically significant (tgi = -0.23, p > 0.8). In 1997 there was a 

significant interaction between period and grid; as the season progressed the proportion of adults 

in the Exclosure declined whereas the proportions on the other grids stayed relatively constant 

(Fig. 2-10b). Relative to August, the difference in the probability of being an adult between the 

Exclosure and Control grids 1 and 2 was greater (more positive) in both June (t 2 2 4 = 2.16, p < 

0.05) and June-July (t 2 2 4 = 1.99, p < 0.05). (Control grid 3 was not included in these 

comparisons because of missing data late in the season.) In August 1997 there was a higher 

proportion of juveniles in the Exclosure than on the Control grids although the difference was 

not statistically significant (t35 = -1.65, p = 0.11). In the last trapping session of 1997 only 2 of 

16 Dicrostonyx caught on the two Control grids, but 12 of 23 caught in the Exclosure, weighed 

less than 40 g. 
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Fig. 2-10. Age structure of populations of Dicrostonyx groenlandicus in (a) 1996 and (b) 1997 

on Control (diamonds, circles and triangles) and Exclosure (squares) grids. Points show the 

proportions of adult animals (> 40 g when first captured) estimated with logistic regression 

models. Error bars represent 95% confidence intervals. Horizontal lines in (a) show the actual 

proportions of adults captured during each time period on each grid. Lines are not shown in (b) 

because the predicted means matched the observed proportions exactly, owing to an interaction 

term in the model. 
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The proportions of adults captured fell within the 95% confidence intervals of the 

probabilities estimated by the models in all instances except Control grid 3 in August 1996 (Fig. 

2-10a, b). Because the interaction term was retained in the model of the data from 1997, the 

fitted means matched the observed proportions exactly. The greater proportion of adults in the 

•Exclosure than on Control grids in 1996 is evident both from the data and from the model's 

estimates. The same pattern was apparent early in 1997 until the proportion of adults began to 

decline in the Exclosure. 

Movements of lemmings 

In 1996, both male and female Dicrostonyx weighing at least 25 g showed net 

displacements of less than 1 m day"1, on average, between trap sessions. There were no 

significant differences among trapping grids (Fig. 2-1 la). In 1997, males showed net 

displacements of an average of about 5 m day"1 between trap sessions, and females about 2 m 

day"1. Again, there were no significant differences among grids (Fig. 2-1 lb). The mean net 

displacements in 1995 were similar to those in 1997, but since sample sizes were small and 

confidence intervals large they are not shown. 

The fence around the Exclosure was permeable to lemmings and we observed runways 

crossing it. In 1996 and 1997 some telemetered lemmings moved outside the Exclosure although 

the fence was a minimum of 25 m from the edge of the trapping grid. In 1995 no telemetered 

animals left the Exclosure even though the fence was not finished until August. In 1996 only 

one animal, a male, did so, compared with 3 Control animals (2 females and 1 male) that moved 

more than 25 m from the edges of their grids. In 1997, one male and one female moved outside 

the Exclosure, compared with 5 males that left Control grids. Since 2.5 and 1.7 times as many 

Control lemmings as Exclosure lemmings were radio-collared in 1996 and 1997 respectively 

(Table 2-3), the number of Exclosure animals that crossed the fence was not lower than expected 
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Fig. 2-11. Means and 95% confidence intervals of net displacement distances between 

successive primary trapping sessions of large and medium-sized Dicrostonyx in 1996 and 1997 

on Control (CI, C2, C3) and Exclosure (E) grids. Males are indicated by open diamonds and 

females by filled triangles. Means were calculated based on login transformed data. Note the 

different scales in (a) and (b). 
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relative to the movements of Control animals (log-linear analysis of 3-dimensional 2 x 2 x 2 

contingency table, % 2

2 = 0.18, p > 0.9). The female that left the protected area in 1997 later re

entered and then went back outside. 

Dispersal and survival of juveniles 

In a simultaneous study of juvenile dispersal at this location in 1996, sexually immature 

Dicrostonyx weighing 11 - 40 g in the Exclosure and on one Control grid were fitted with small 

glue-on radio transmitters or with radio-collars (Blackburn et al. in press). There was no 

significant difference between treatments in home range size or mean or maximum distance 

between fixes, and no juveniles dispersed from the small home ranges (95% c i . of mean area 69 

- 145 m ) where they were initially caught. We have a few observations of juvenile movements 

in other years. In 1995 an 18-g female moved 248 m from where she was initially caught in 9 

days and a 20-g male moved 41 m in 5 days. In 1997 a sexually mature 35-g male moved 250 m 

in 12 days, and a 17-g male tagged at the research camp was trapped 21 days later, 800 m away 

on Control 2 grid. 

The fates of the 14 Dicrostonyx with radio-collars from the above study are included in 

our results presented here (Table 2-3). Of the juveniles with glue-on radios, which fell off and 

were retrieved within 3 - 7 days, the fates of 29 from the above study and 14 not previously 

reported are shown in Table 2-5. Three individuals (17%) were killed on the Control grid 

compared with zero in the Exclosure, and 44% were lost from the Control grid compared with 

12% from the Exclosure. No non-predation mortalities were recorded. The proportions of 

animals depredated, lost, and that shed their radios differed significantly between the Exclosure 

and Control grids (%2

2 = 12, p < 0.005). 
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Table 2-5. Fates of immature Dicrostonyx fitted with glue-on radios, including 29 individuals 

reported by Blackburn et al. (in press) and 14 not reported in that study. "Lost" means both the 

lemming and its radio were never found. 

1996 
C E 

Animals with glue-on radios 18 25 

Radio found off 7 22 
Lost 8 3 

Mortalities due to predation 3 0 
Pomarine jaeger 1 0 
Ermine 2 0 

Non-predation mortalities 0 0 

% depredated 17 0 
% non-predation mortalities 0 0 
% total mortalities 17 0 
% lost 44 12 
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D I S C U S S I O N 

In the following discussion we first examine alternative hypotheses to account for the 

observed increased mass of individuals and altered age structure of the population within the 

predator exclosure. We next conclude from our experimental and radio-telemetry results that 

predation was necessary to limit the density of Dicrostonyx during the peak and decline summers 

studied, but that the magnitude of the limitation was greater in the decline. We discuss the 

apparently contradictory results we obtained in the case of Lemmus. Finally, we describe effects 

of predation on the cyclic dynamics of the lemming population. 

Effects of predator reduction on mass, age structure, and reproduction 

Both male and female adults (animals weighing over 40 g when first caught) were larger 

within the Exclosure than outside throughout the experiment (Figs. 2-8, 2-9). Female juveniles 

from the first summer litter in 1996 also weighed more, on average, in the Exclosure than on 

Control grids by the time they reached adult size in August. The size differences could have 

resulted from increased survival in the protected area, in two ways. First, individuals that 

survived and had not yet reached their adult weight continued to grow. Second, large individuals 

that had stopped growing remained in the population longer within the Exclosure than outside, 

and were not replaced during the summer. A l l the large adults we caught in June (Fig. 2-9) were 

over-wintered animals, born the previous summer or fall. Only one spring-born juvenile in 1996 

and one in 1997 grew into the 81 - 90 g weight class (both females). Therefore, the very large 

animals that we continued to catch throughout both years were most likely also over-wintered 

adults. The survival of these large animals was enhanced in the Exclosure relative to that of 

Control animals both in the previous autumn when they were growing, and after their size 

stabilised. Larger size of non-cyclic Microtus agrestis in some years was also correlated with 
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longer survival (Agrell et al. 1992). A n alternative hypothesis is that the larger size was due to 

better nutrition enabled by changes in foraging behaviour as a result of lowered risk of predation. 

This phenomenon, known as risk-sensitive foraging (RSF), is discussed further below. These 

two hypotheses are not mutually exclusive. 

It is possible that the larger size of animals in the Exclosure was due to the same causes 

as the phenomenon first observed by Chitty (1952), in which microtines are heavier in the peak 

phase of a cycle. The "Chitty effect" has not been explained but a number of alternative 

hypotheses have been proposed (reviewed by Stenseth and Ims 1993b). The relationship 

between skull size and body size of lemmings also changes during the cycle (Krebs 1964b). The 

changes could be genotypic (Chitty 1960), perhaps the result of selection for breeding in an 

increasing population or for aggression in a high-density population (Boonstra and Krebs 1979). 

In our study, the larger size was evident even in August 1995 and June 1996 when densities were 

similar among grids and selection pressures should not have been stronger in the Exclosure than 

elsewhere. The large animals did not appear to have a high reproductive rate, since the 

proportion of lemmings in reproductive condition was similar between the treatments, and since 

there was a reduced proportion of juveniles in the Exclosure in 1996 and early 1997 (Fig. 2-9, 

discussed further below). These results do not support the hypothesis of genotypic change, but 

they are insufficient to rule it out. A second hypothesis to explain large size in peak populations 

is that growth rate varies according to the season (summer or winter) in which the animal 

develops (Malcolm and Brooks 1993) and age structure shifts as a result of differential 

reproductive and survival rates among cohorts. Specifically, Malcolm and Brooks (1993) 

proposed that during the peak there is a high proportion of animals that developed in winter, 

which are larger than those that develop in summer. Finally, since heavy animals have been 

observed in high-density non-cyclic populations (Tamarin et al. 1984, Lidicker and Ostfeld 

1991) and in non-peak years in cyclic populations (Chitty and Chitty 1962, Krebs 1964a, 
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Lidicker and Ostfeld 1991), it has been argued that they occur simply when conditions favour 

growth and survival (Lidicker and Ostfeld 1991, Agrell et al. 1992). The mechanisms we 

postulated in the preceding paragraph, to account for the difference in mass of animals between 

our experimental treatments, incorporate elements of both the latter hypotheses. 

The age structure of the population of collared lemmings within the predator exclosure 

differed from that outside during the peak summer and in the early part of the decline summer. 

The proportion of animals classified as adults when first caught (> 40 g) was greater in the 

Exclosure than on Control grids (Fig. 2-10), and the proportion of juveniles caught at each 

trapping session (< 40 g) was smaller (Fig. 2-9). Possible hypotheses to account for these 

patterns are (1) density-dependent reproduction, (2) density-dependent dispersal of juveniles, (3) 

density-dependent infanticide, (4) a higher rate of predation on juveniles within the Exclosure, 

most likely by ermine, (5) an effect of different habitat in the Exclosure, (6) higher growth rates 

of juveniles protected from predation, and (7) the exclusion of juveniles from traps by large 

animals. We have evidence against most of these hypotheses. The first three incorporate 

density-dependence, and can be eliminated because the difference in age structure was apparent 

early in 1996 when the density in the Exclosure was similar to that on Control grids (Figs. 2-9, 2-

10a). Density-dependent reproduction (hypothesis 1) is further refuted because we found no 

difference in the proportions of males or females that were in reproductive condition in the 

Exclosure compared with Control grids. We conclude that we have no evidence of a difference 

in reproductive rate between the treatments. Hypothesis (2), density-dependent juvenile 

dispersal, is further refuted because juveniles did not disperse from either the Exclosure or a 

Control grid during the peak summer (details in Results; Blackburn et al. in press). A higher 

predation rate on Exclosure juveniles (hypothesis 4) is refuted because the predation rate on 

juveniles during the peak seems to have instead been lower within the Exclosure than outside 

(Table 2-5). Hypothesis (5), differences in habitat, must be considered because the predator 
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exclosure treatment was not replicated in any year. However, if the difference in age structure 

between the treatments were a result of habitat differences, the observed patterns should have 

been evident throughout the study. Instead, the age structure difference was not apparent before 

the protective structure was completed in 1995 (Fig. 2-9) or late in the decline summer of 1997 

(Figs. 2-8b, 2-10d). High growth rates of neonates within a predator exclosure (hypothesis 6) 

was observed by Reid (1995) and may occur as a result of reduced predation risk to lactating 

females (discussed below). However, the persistent reduction in captures of the smallest 

lemmings (< 20 g and 21 - 30 g) in the Exclosure is not consistent with this hypothesis unless 

the next is also true. Hypothesis (7), that larger adults in the Exclosure prevented juveniles from 

entering traps is not entirely satisfactory since the difference in age structure was apparent in 

June 1996 when densities were similar on all grids. However, since as discussed above, adults 

were on average larger and possibly older in the Exclosure than outside, they may have been 

more aggressive or more territorial. We do not know the reason for the difference in age 

structure between our experimental treatments; it remains an opportunity for further research. 

Predation as a limiting factor of Dicrostonyx populations 

The results of our predator exclosure experiment support the hypothesis that predation 

was necessary to limit density of Dicrostonyx during the summer decline phase of the cycle 

(1997). A l l five predictions of this hypothesis were met. First, the great majority of all 

mortalities on Control grids were due proximately to predation. Second, density increased in the 

protected area more than on the Controls. Third, both mark-recapture and Kaplan-Meier 

estimates of survival within the Exclosure were higher than on Control grids in 1997. Fourth, 

although some compensatory mortality may have occurred it was not enough to negate the effect 

of reduced predation. Fifth, emigration did not rise nor did reproduction drop to offset the 

increased survival within the Exclosure. 
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Support for the hypothesis that predation was necessary to limit the population in the 

summer of the peak phase (1996) is more ambiguous. Our first, second, and fifth predictions 

were met. However, in 1996 neither method of estimating adult survival led to consistently 

higher estimates within the Exclosure, and other sources of mortality compensated for the 

reduced predation on radio-collared animals in the Exclosure, since the proportions of total 

mortalities were about equal between the Control and the Exclosure grids (Table 2-3). In 1996 

mortality was low (Figs. 2-6b, 2-7); hence the predation rate was low. Therefore experimentally 

reducing predation, even if no compensatory mortality occurred, could have only a limited effect 

on survival. Still, although the adult survival rate was only slightly higher within the Exclosure 

than on Control grids, it was apparently sufficiently so to lead to greater density in the Exclosure. 

As well, the considerable reduction in lost glue-on transmitters in the Exclosure suggests that 

juvenile survival was much improved there compared with Control grids (Table 2-5) since 

juveniles did not disperse and the rate of radio failure should not have varied among grids. 

Therefore, we conclude that our results support the hypothesis that predation was necessary to 

limit density in the peak summer. However, the magnitude of the limitation was smaller during 

the peak than during the decline as evidenced by the relative differences in density observed 

between treatments during the two years (10-fold in 1997 but only 2-fold in 1996). Predation 

may limit the population only while density remains below a level at which some other factor 

becomes limiting. 

If predation were sufficient (as well as necessary) to limit the lemming population in the 

peak and decline summers, then no manipulation other than predator reduction would cause the 

density increase we observed in the predator exclosure. We do not have direct evidence about 

the effects of other factors on density, but the occurrence of compensatory mortality in the peak 

suggests that other loss factors such as disease might also be limiting then. However, the low 

survival rate (Figs. 2-6c, 2-7) and the lack of compensatory mortality during the decline (Table 
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2-3) imply that no other loss factor was significantly limiting in that summer. Production factors 

and social factors can also limit population growth. During the peak, a smaller proportion of 

animals was in reproductive condition than in the increase and decline phases (Chapter 3), 

implying that food or space may have been limiting. However, in the low-density declining 

population effects of food and space may have been small relative to the high impact of 

predation. In summary, these results suggest that predation may have been a sufficient limiting 

factor during the decline, but probably not during the peak phase. 

Up to this point we have not discussed possible impacts of predation upon behaviour and 

reproduction. If lemmings forage in a risk-sensitive manner (Mangel and Clark 1988, Lima and 

Dil l 1989), the absence of predators might also result in better physical condition of animals and 

an increased birth rate. In 1996, juvenile Dicrostonyx in the Exclosure were found twice in 

succession in the same burrow less often than were juveniles on a Control grid (Blackburn et al. 

in press). One interpretation of this result is that protected juveniles foraged further from shelter 

and moved among burrows rather than staying close to one refuge. The risk-sensitive foraging 

(RSF) hypothesis leads to the following predictions within the Exclosure: larger animals, an 

increased proportion of juveniles, and either a greater proportion of animals in reproductive 

condition, or larger litter sizes. As discussed above, we did find larger animals in the protected 

area, but a smaller proportion of juveniles and no difference in the proportion of reproductive 

individuals. We have no data on litter sizes. In short, we cannot reject the R S F hypothesis; in 

our experiment reduced predation risk may have led to enhanced reproduction, resulting in an 

increase in density that was confounded with the increase in density resulting from enhanced 

survival. This potential secondary effect of predation represents an opportunity for further 

research. 



Possible criticisms of the predator exclosure experiment 

The increased density in 1996 without a significant increase in survival in the protected 

area makes it worth considering whether other factors could have enhanced the density of 

lemmings in the Exclosure. As discussed above, we cannot discount the possibility that the 

habitat was better there, because the treatment was not replicated within any year. However, if 

habitat were superior within the Exclosure, density there should have exceeded that on Control 

grids before the protective structure was complete and each spring when the structure was likely 

just beginning to be effective. Instead, density within the Exclosure was similar to that on 

Control grids in 1995 and early in the summer of 1996, and to that on Control 1 grid early in 

1997 (Fig. 2-2). Our conclusion that the habitats were of equivalent quality between treatments 

is supported further by the lack of enhanced reproduction within the Exclosure, although we 

have no data on litter sizes. A second factor that could have increased density within the 

Exclosure is restricted emigration due to a partial fence effect (Krebs et al. 1969). This is 

unlikely because neither the net distances moved by lemmings nor the proportions of lemmings 

that travelled away from their grids differed significantly between treatments. The most 

parsimonious explanation for the observed density increase is that it was due to the experimental 

treatment of reduced predation. 

Predation within the Exclosure may have been intensified late in the season because 

predators were attracted to the abundant prey within. Ermine and foxes appeared in the 

Exclosure in mid-August of both 1996 and 1997 and snowy owls perched on the posts that 

supported the overhead mesh in September 1996. The high survival estimate from mark-

recapture data in August 1997 includes only up to 16 August, but survival may have 

subsequently declined in the autumn of both years. The attraction of predators to local hotspots 

of high prey density, termed a "pantry effect" (Batzli 1985), has plagued other food-addition and 

predator-removal experiments. Reid et al. (1995) found that their predator exclosure did not 
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enhance recruitment because juvenile lemmings in a low-density population dispersed outside 

and were not replaced by reciprocal immigration. We observed no juvenile dispersal in 1996 

(Blackburn et al. in press) but our few observations from 1995 and 1997 suggest higher rates of 

juvenile dispersal in years of lower density. Dispersal of juveniles may therefore have diluted 

the effect of predator removal in the decline phase. 

Abundance and survival of brown lemmings 

Since Lemmus prefer wet habitats (Rodgers and Lewis 1986b) where they feed primarily 

on sedges and grasses (Rodgers and Lewis 1986a), their increase on our study grids in the peak 

year may have been in part a result of emigration from overpopulated preferred habitats. 

Lemmus were most abundant on Control 1 grid, which had the largest area of wet habitat, but 

they were caught in drier parts of the grids also. In July 1995 and 1996 approximately equal 

numbers of Dicrostonyx and Lemmus were caught in snap-trap lines that traversed both 

hummocky and sedge-grass habitats (4 of each in 1995, 28 Dicrostonyx and 24 Lemmus in 1996, 

but 4 Dicrostonyx only in 1997; R . G . Bromley, pers. comm.). 

Protection from predators had no apparent effect on abundance or survival of Lemmus, 

perhaps owing to a combination of small sample size and immigration of Lemmus from adjacent 

areas. As well, Lemmus, which are aggressive and run fast, may be less vulnerable to predation 

than are Dicrostonyx. Lemmus may not have been limited by predation in the hummocky areas, 

but we cannot draw conclusions about their population dynamics in sedge-grass habitats. 

Changes in predation rate during the cycle 

In the decline summer of our study, the survival rate was lower than in the peak summer 

(Fig. 2-7) and a larger proportion of animals died as a result of predation (Table 2-3). A low 

predation rate at very high prey density is predicted when the functional and numerical responses 
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of predators are asymptotic (Holling 1959a). Further, a delayed numerical response of predators 

can elevate the predation rate at declining prey density, known as delayed density-dependent 

predation. Increases in ermine numbers commonly follow microtine peaks (Maher 1967, 

MacLean et al. 1974, Fuller et al. 1975a, Fitzgerald 1977, Korpimaki et al. 1991, Korpimaki 

1993, Sittler 1995). In our study ermine were most abundant in 1996 and 1997 and were 

responsible for most known predation events in 1997 but few in other years. We did not observe 

a delayed numerical response of arctic foxes (Chapter 4). The survival rate of radio-collared 

animals on Control plots tended to decrease as the population declined in the summer of 1997 

(Fig. 2-7). During the same period, the difference in density between the Exclosure and Control 

grids increased (Fig. 2-2). These trends imply an inversely density-dependent (depensatory) 

predation rate during the decline phase of the cycle. Again, this pattern is expected to occur 

unless predator numbers fall sharply or functional responses follow a sigmoid (Type III) curve 

within the relevant range of prey densities (Holling 1959a). 

Implications for lemming population dynamics 

Five effects of predation on the population cycle of Dicrostonyx are evident from our 

results. First, predation depresses the peak density. Second, predation reduces densities during 

the decline phase, leading to a depressed minimum summer density. These two effects follow 

from our demonstration that predation limited the lemming population in the summers of both 

the peak and decline phases of the cycle. During the peak, other sources of mortality 

compensated for predation mortality within the experimental predator exclosure, hence disease 

or other mortality factors might depress peak density in the absence of predation. Third, in 

unprotected populations predation may extend the duration of the decline, further lowering 

minimum density, since when numbers were still declining on Control grids in July and August 

1997, density began to increase within the predator exclosure (Fig. 2-2); that is, the decline was 
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reversed within our experimental treatment. Fourth, our finding of a higher predation rate during 

the decline phase than during the peak shows that predation accelerates the decline, as proposed 

by Pearson (1971); the increased proportion of losses in the decline relative to the peak phase 

results in a steeper negative rate of population change than would occur in the absence of 

predation. Fifth, predation may reduce population density throughout the summer increase 

phase, since the same proportion of animals was depredated on Control grids in 1995 (the 

increase phase) as in 1996 (the peak). 

Our results indicate that predation alters the amplitude and period of the lemming 

population cycle, but without autumn and winter data they cannot show whether predation 

caused the population decline. The only predators present in winter are arctic foxes, snowy owls, 

and ermine. In Chapter 3 I compare indicators of reproduction among years and analyse predator 

numbers and diets to examine the role of these predators in initiating the decline. 
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CHAPTER THREE 

PREDATION AND THE DECLINE OF COLLARED LEMMING POPULATIONS 

INTRODUCTION 

What pushes a growing population into a decline? This question has been a recurring 

focus of attempts to explain fluctuations in the population density of lemmings and other small 

mammals (reviewed by Krebs and Myers 1974, Stenseth and Ims 1993b). Predation is one of 

many hypotheses advanced to explain declines. This hypothesis has not been tested 

experimentally in lemmings, but Korpimaki and Norrdahl (1998) halted a summer decline in 

vole populations by removing predators. Even so, the direct effects of predation alone may not 

be enough to initiate a decline from high density. A mortality factor that triggers a decline in a 

cyclic population must act in a delayed density-dependent manner, leading to a higher per capita 

mortality rate during the decline than during the peak phase of the cycle. But because the 

number of predators in an area and their rate of prey consumption are limited they may have 

little impact on a high-density prey population. Lack (1954) suggested predation could not cause 

a decline without a decrease in reproduction as a result of food shortage, but evidence of 

starvation in the peak phase has not been found. Henttonen et al. (1987) proposed that declines 

in microtine populations might involve predation, an extrinsic factor, combined with intrinsic 

factors that slow population growth. Many researchers now agree that population cycles in small 

mammals may result from an interaction between intrinsic and extrinsic factors (e.g. Krebs 1996, 

Stenseth et al. 1996). 

At Walker Bay on the Kent Peninsula, N . W . T . , the collared lemming (Dicrostonyx 

groenlandicus) population declined from August 1996 to August 1997. By experimentally 
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reducing predation on an 11-ha area of tundra and using radio-telemetry to determine the fates of 

collared lemmings, I showed that predation limited the lemming population during both the peak 

(1996) and the decline (1997) summers (Chapter 2). In the summer of 1997, density rose in the 

protected area while the decline continued elsewhere (Chapter 2). However, much of the 

population decline occurred in autumn and winter, when I was neither trapping nor monitoring 

lemming survival, and the exclosure was less effective because snow covered the fence. Did 

predation cause the population decline in fall and winter? 

I compared rates of survival between the peak (1996) and decline (1997) summers, 

examined evidence of winter predation (1996 - 1997), and compared rates of decline between 

the protected and control populations to test the hypothesis that predation was a necessary cause 

of the lemming population decline. I tested three predictions of this hypothesis: (1) the lemming 

population will not decline in an area protected from predation when it declines on unprotected 

sites, (2) the predation rate on lemmings is delayed density-dependent, and (3) the population 

decline is associated with an increase in predation rate. Since the rate of decline is affected by 

reproductive rate, I also compared indicators of reproduction among years. I used simple 

population models to test whether the observed demographic rates would lead to the observed 

decline. 

M E T H O D S 

I live-trapped lemmings on three Control grids and on one "Exclosure" grid that was 

protected from predators (9 ha per grid) at Walker Bay on the Kent Peninsula, N .W.T . , in the 

summers of 1994 - 1997 (Chapter 2). The density of lemmings was very low in 1994, increased 

in 1995, was high in 1996, and declined in 1997. Details of density estimation with mark-

recapture analyses, survival estimation with radio-telemetry, and assessment and statistical 
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analyses of mass and reproductive condition, are given in Chapter 2. I also used snap-traps to 

survey the relative abundance (Chapter 4) and reproductive condition of lemmings, in June 1996 

- 1997 and July 1994 - 1997! I caught collared lemmings (Dicrostonyx groenlandicus) and 

brown lemmings (Lemmus trimucronatus) with both methods. However, because collared 

lemmings were most abundant and brown lemmings were found in large numbers only in 1996,1 

discuss only collared lemmings in this chapter. 

Numerical response of predators 

I recorded all known dens, nests, and when possible litter or clutch sizes of predators. 

Others and I regularly visited or systematically searched an area of approximately 35 km 2 (the 

"study area") in the course of research on geese (Bromley et al. 1995 and Chapter 4), lemmings 

(Chapter 2) and predators (this chapter). I found most fox dens and nests by observing the 

movements of predators, or by chance. Each spring and periodically in summer I visited all 

previously known fox dens to determine which were active. Once or twice each summer I 

searched systematically for raptor (rough-legged hawk and peregrine falcon) nests along a line of 

cliffs running approximately north - south about 3 - 5 km east of our study grids (snowy owl 

nests were also found in this area in 1996). These searches were done on foot each year and by 

helicopter once in each of 1995 and 1996. I did not search systematically for ermine dens in 

summer, and found them by chance only. Because glaucous gulls nested on islands that were 

difficult to reach, I have no data of the breeding of gulls. Territorial pairs of pomarine jaegers 

were counted in summer 1996 in a helicopter survey of 11.2 km 2 within the study area (Chapter 

4). Nests of sandhill cranes were recorded during annual ground searches (10 - 12 km 2) for 

goose nests in and near the study area (Bromley et al. 1995). 
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Winter nests of ermine 

In winter, lemmings build nests of grass and other plant material on the surface of the 

ground under the snow. When an ermine kills a lemming it sometimes occupies its winter nest 

and lines the nest with lemming fur (MacLean et al. 191 A). Each year I searched some of the 

trapping grids for evidence of winter ermine predation. I counted winter nests each summer by 

walking parallel transects 6 m apart across a grid and recording and then destroying all nests 

found. I considered nests lined with fur and containing ermine scats to have been occupied by 

ermine, but not nests with only a trace of fur (Sittler 1995). I did not search the vicinity of the 

nests for ermine scats. I assumed that very flattened, decomposing nests were from a previous 

year and did not count them; this assumption may have led to errors, particularly in the first year 

(1994) of the survey (Sittler 1995). 

Diets of predators - analysis of fox scats 

Each summer I collected fresh arctic fox scats periodically from dens and 

opportunistically from elsewhere. I also collected scats from the snow each spring beginning in 

1995. Each scat was bagged and, if wet, frozen for later analysis. In years when sample sizes 

were large enough, I grouped scats according to sampling periods approximately corresponding 

to dates when I had estimates of lemming population density. Samples collected from the snow 

were grouped as "winter scats". I used the method of Reid et al. (1997) to distinguish scats of 

adult and juvenile foxes according to their diameter. From each period I analysed up to 30 adult 

scats and 19 juvenile scats when the latter were available. In order to maximise the 

independence of the samples within each period, I selected all opportunistically collected scats, 

and randomly chose equal numbers of scats from each den from which they had been collected 

during that period. M y method of analysis of scat composition generally followed that of Reid et 
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al. (1997) except that I focussed on lemmings in the diet rather than on the entire diet. Details 

are given in Appendix 1. 

Functional response of foxes 

I plotted the functional response of foxes to lemming density as the number of lemmings 

consumed per fox (adults and juveniles) per day against the mean density estimated by mark-

recapture (Chapter 2) during the period.. I fitted a curve to the adult fox data, with the form 

Attacks = — — (l) 
l + a h N m v ' 

When the exponent m = 1, this is Holling's (1959b) disc equation for a Type II functional 

response, where Attacks is the number of attacks on the prey per unit of time, a is the predator's 

rate of effective search for that prey, h is handling time, and N is prey density. If m > 1, the 

curve is sigmoid, as in a Type III response. The curve was fitted with JMP IN software's non

linear fit routine (Sail and Lehman 1996), by minimising the residual (error) sum of squares. 

Mortality rate of lemmings from radio-telemetry data 

I used Kaplan-Meier analysis of radio-telemetry data to estimate the mortality rate due to 

fox predation alone, using the methods described in Chapter 2. I compared these mortality rates 

with those estimated from the total response of foxes to lemming density (observed functional 

response x observed numerical response prey density). 

Analysis of pellets from avian predators 

Tgathered fresh raptor pellets from rock perches and from below nests periodically 

throughout each summer. I collected pomarine jaeger pellets opportunistically in 1996, and 
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short-eared owl pellets from where owls had killed telemetered lemmings in 1995. I obtained a 

few gull pellets from an island colony and from a ridge where gulls perched. To estimate winter 

diet, I also collected snowy owl pellets from the snow in spring 1997. Because my sample sizes 

were too small for me to group pellets from different periods within each summer, I estimated 

the number of lemmings per pellet for each species of avian predator in each summer for which I 

had samples, and for snowy owls in winter 1996 - 1997 (Appendix 2). 

Functional responses of rough-legged hawks and snowy owls 

I plotted the functional responses of rough-legged hawks and snowy owls to lemming 

density as the number of lemmings consumed per bird per day against the mean density 

estimated with mark-recapture (Chapter 2) during the period. Because there were few data (5 for 

owls and 3 for hawks) especially from low densities, I did not attempt to fit functional response 

curves. 

Reproductive data from live-trapping 

I assessed the reproductive condition of lemmings caught in live-traps (Chapter 2). I 

classified males as reproductive if their testes were scrotal, and females if the pubic symphysis 

was at least slightly open or the nipples enlarged, or if they were obviously pregnant. Beginning 

in July 1996 I recorded oestrus (perforate vagina) as a separate indicator of female reproductive 

condition, but because of differences in assessment among field workers I could not compare 

rates of oestrus among years. Only one Dicrostonyx was caught in 1994, in August; this animal 

is not included in the analyses reported below. 
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Reproductive data from snap-trapping 

I dissected lemmings caught in snap-trap surveys to determine the reproductive status of 

females and males. For females I recorded pregnancy, number and size of embryos, and 

presence or absence of placental scars from previous pregnancies (scars were not recorded in 

June 1996). I considered that embryos much smaller than the others in a litter were being 

resorbed (Krebs 1964a) and excluded them from estimates of litter size. For males I recorded 

whether the epididymis was visible, as an indication of spermatogenesis. No lemmings were 

caught in snap-trap surveys in 1994. 

Population decline models 

I built a simple, deterministic population model (Fig. 3-1) in Microsoft Excel to compute 

winter population trajectories with different survival rates. I assumed that no reproduction 

occurred in the fall and winter (mid-August - mid-March) following the peak summer (Krebs 

1964a, Chernyavski 1979). Chernyavski (1979) concluded that the reproductive rate was low in 

the spring of a decline on Wrangel Island, because of a low frequency of females with placental 

scars and a paucity of small animals trapped in June. Chernyavski and Kiriushchenko (1979) 

concluded, using the same data, that only one litter was born under the snow in the spring of the 

decline, in March, whereas in the increase year an additional spring litter was born in April. 

However, although none of the animals dissected at Walker Bay in June 1997 had placental scars 

(see Results, Table 3-14), I caught many small and medium-sized lemmings in June 1997. 

Forty-two percent caught in snap-traps weighed between 25 and 50 g (one weighed 29 g, all 

others > 30g; see Results, Table 3-15), and 20% of live-trapped Control animals were < 30 g and 

34% were between 30 and 50 g; Chapter 2, Fig. 2-9). Animals weighing 30 g are about 1 month 

old, and those 30 - 50 g are between 1 and 3 months old (Chernyavski and Kiriushchenko 1979). 

Krebs (1964) also caught only 1 female with placental scars (n = 27) in a decline year, although 
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Initial density 17 Aug. 

x fall survival 

x fall survival 

Adults 16 Sept, 

Adults 16 Oct. 

x fall survival 

x winter survival 
V 

Adults 15 Nov 

x winter survival 
Adults 15 Dec. 

Adults 14 Jan 
x winter survival 

x winter survival 
N, 

Adults 13 Feb 

Adults 15 Mar. 
x spring survival 

Ni 

reproductive rate = 

0.5 x proportion pregnant 

x litter size 

x (1 - prenatal mortality) 

x (1 - mortality before leaving nest) 

x spring surviva^ 

Adults 14 April 

x spring surviva^ 

Adults 14 May 

x reproductive rate 

N i 
x reproductive rate 

Litter 1 

Litter 2 Litter 1 

x juvenile survival 
If 

N 
x juvenile survival x spring survival 

Adults 13 June Litter 2 Litter 1 

Fig. 3-1. Flow diagram of population decline model. Parameters are shown in Tables 3-1 to 3-3; 

survival and initial density parameters are described in Methods. Values in boxes show densities 

of Dicrostonyx. Steps are in increments of 30 days. The factor 0.5 in the reproductive rate 

represents a sex ratio of 1:1. 
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the females he collected in spring were pregnant (1 in each of April and May). From the size of 

the animals trapped, I assumed lemmings were born under the snow in two periods, March -

April and April - May. I set the sex ratio of adults in 1996 to 1:1, and arbitrarily assumed that 

30% of over-wintered females reproduced during each spring reproduction period, but that no 

spring-born animals reproduced in spring (Chernyavski et al. 1981). 

In the first spring reproduction period I used a mean litter size of 3.8 (Chernyavski 1979) 

and for the second period I used 4.0 (Krebs 1964a, based on 1 female caught in May). I assumed 

that the rate of pre-natal, post-implantation mortality (resorbed embryos) was 0.063 and that 

5.2% of juveniles died before leaving the nest about 14 days after birth (based on an increase 

year, Chernyavski and Kiriushchenko 1979). I set juvenile survival in the first month after 

leaving the nest to 0.63 (based on a peak year, Chernyavski and Kiriushchenko 1979). These 

juvenile survival rates are high; other estimates suggest much greater juvenile mortality in a 

decline year. Chernyavski and Kiriushchenko (1979) estimated that in a peak year 33% of 

neonates died before leaving the nest. Krebs (1964) estimated 28-day survival rates from birth to 

first trapping date (28 or 29 days of age) at 0.38 in the first summer litter of the peak, 0.05 in the 

first summer litter of the decline, and 0.28 in the first summer litter of an increase year. I 

assumed that juvenile survival in the second month after weaning was equal to the adult survival 

rate. Lemmings may temporarily cease to breed during or before snowmelt about May - June 

(Chernyavski and Kiriushchenko 1979, Batzli et al. 1980). Births occurred in June at Walker 

Bay, but I did not model juveniles born in June because most would not have been trappable in 

my June live-trapping sessions. These parameters are summarised in Table 3-1. 

I tested several adult survival rates in the model. First, I used an autumn survival rate 

from mid-August to mid-November, before deep snow cover makes lemmings less vulnerable to 

foxes and snowy owls. The density of foxes and owls may be highest during this period; they 

may disperse or die as lemming numbers decline and winter conditions set in. Second, I used a 
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Table 3-1. Parameters of reproduction and juvenile survival used in the deterministic Microsoft 

Excel model of population decline. Distributions were used in the stochastic Crystal Ball model; 

when a normal distribution was assumed, the mean was set to the "estimate". In most cases, only 

the estimate was published in the cited source; * indicates the only instance in which the standard 

deviation was also published. Details in Methods. 

i 
Parameter Estimate Distribution Source 

Winter reproduction 0 

Spring reproduction 

Litter size, March-April 3.8 

Litter size, April-May 4.0 

Proportion of females breeding 0.3 

in each period 

Early juvenile mortality (proportion dying) 

Pre-natal, post-implantation 0.063 

Before leaving nest 0.052 

Juvenile survival per 30 days 

First month after leaving nest 0.63 

Constant 1, 2 

Normal, SD = 0.85 2* 

Normal, SD = 0.9 1 

Uniform, range 0.1-0.5 4 

Normal, SD = 0.02 3 

Normal, SD = 0.017 3 

Uniform, range 0.04 - 0.63 1, 3 

Sources: 

1) Krebs(1964) 

2) Chernyavski (1979) 

3) Chernyavski and Kiriushchenko (1979) 

4) based on my data, see text 

* both mean and standard deviation (SD) are from this source 
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winter survival rate from mid-November to mid-March. Third, I used a spring survival rate from 

mid-March to mid-June, when days lengthen and snow softens. In the initial run of the model I 

set the autumn and winter survival rates to the rate estimated from radio-telemetry in August 

1996 and the spring survival rate to that estimated in June 1997 (Chapter 2). I used 30-day 

survival estimates based on the 14-day estimates reported in Chapter 2 (Table 3-2, this chapter). 

The models were initialised with population densities estimated from mark-recapture data 

(Chapter 2). In the case of Control grids I calculated the mean of the three Control densities in 

each of August 1996 and June 1997 (Table 3-2). The start date for Control grids, 17 August, was 

the mean trapping date on Control grids in August 1996, and the time-step used in the model was 

30 days. I then extrapolated the forecasted density on 13 June to 16 June, the mean trapping date 

on Control grids in June 1997, by multiplying adult and juvenile densities by the spring survival 

rate. Similarly, actual and modelled dates for the Exclosure were 11 August to 17 June. 

Between trapping sessions in mid-August 1996 and mid-June 1997, the populations on 

the three Control grids declined at a mean rate of change (r) of -0.042 per week (SE: 0.016). 

Estimating the rate of decline as the weekly rate of change frorn the mean August 1996 density 

on Control grids to the mean June 1997 density on Control grids yields a similar r value, .-0.036 

per week. I used this latter rate for comparison to modelled results because of its straightforward 

relationship to mean density. The rate of change in the Exclosure was similar to the mean rate of 

change on Controls, -0.036 per week (Table 3-3). 

I used Crystal Ball software, which interacts with Microsoft Excel as an "add-on", to 

forecast the effect of uncertainty in the parameter estimates. This program allows statistical 

distributions to be specified for each parameter and runs Monte Carlo simulations, randomly 

selecting parameters with the defined distributions (Decisioneering 1996). I used the same 

algorithm as in the deterministic Microsoft Excel model described above (Fig. 3-1). I defined 

adult survival parameters as normally distributed and set the means and 95% confidence limits 
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Table 3-2. Survival estimates (30 days"1) of Dicrostonyx in 1996 and 1997, calculated from 

results of radio-telemetry studies reported in Chapter 2. Estimates for August 1996 and June 

1997 were used in the population decline model. Other estimates and confidence intervals are 

shown for comparison. 

Year Month 

Control animals 

Estimate 95% confidence interval 

1996 June 0.820 0.730-0.909 

July 0.816 0.681 -0.951 

August 0.876 0.445-1.0 

1997 June 0.877 0.734- 1.0 

July 0.546 0.348 - 0.740 

August 0.487 0.061 - 1.0 

Exclosure animals 

1996 June 0.882 0.729- 1.0 

July 0.952 0.869- 1.0 

August 0.684 0.012-1.0 

1997 June 0.703 0.477 - 0.963 

July 0.879 0.721 - 1.0 

August 0.315 0.0 -1 .0 
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Table 3-3. a) Estimated densities of Dicrostonyx (individuals ha"1) in August 1996 and June 

1997, on 3 Control grids and in the Exclosure, from Chapter 2. b) Rates of weekly population 

change during winter 1996-7 and summer 1997 on Control grids and in the Exclosure. 

a) Density 

Trapping grid Date Density 95% confidence interval 

Control 1 14 August 1996 12.8 9 .5 - 18.6 

Control 2 17 August 1996 23.6 18.1 - 32.4 

Control 3 20 August 1996 12.9 9 .6- 18.7 

Mean Control density, August 1996 16.4 (S.D. 6.2) 

Exclosure 11 August 1996 34.1 26 .5- 46.2 

Control 1 15 June 1997 6.7 6 .4- 7.9 

Control 2 15 June 1997 1.1 1.0- 2.0 

Control 3 17 June 1997 2.5 2 . 3 - 3.4 

Mean Control density, June 1997 3.4 (S.D. 2.9) 

Exclosure 17 June 1997 7.1 5 .6- 10.5 



b) Rates of weekly population change (r) 

August 1996-June 1997 

Mean rate of change on Control grids 

Rate of change between mean Control grid densities 

Rate of change in Exclosure 

-0.042 per week 

-0.036 per week 

-0.036 per week 

June 1997-August 1997 

Mean rate of change on Control grids 

Rate of change between mean Control grid densities 

Rate of change in Exclosure 

-0.192 per week 

-0.187 per week 

+0.002 per week 
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for fall and winter survival to those estimated in August 1996, and for spring survival to those 

estimated in June 1997. Upper and lower limits for all survival parameters were set to 1 and 0. 

For initial density in August 1996 I assumed a normal distribution with the mean and standard 

deviation of the densities on the three Control grids (Table 3-3) and a lower limit of 0. For most 

other parameters I also assumed normal distributions (Table 3-1) with lower limits of 0. A 

standard deviation was available for only one parameter, March-April litter size (Chernyavski 

1979). For April-May litter size I used a standard deviation in the same proportion to the mean 

(22%) as in the March-April case. For the parameters of juvenile pre-natal mortality and 

mortality in the nest I set the standard deviation to 33% of the mean. Because I have no data for 

the proportion of pregnant females in spring, I assumed a uniform distribution from 0.1 to 0.5. 

Different sources gave various estimates of juvenile survival in the first month of life or the first 

month after leaving the nest (see above; Krebs 1964a, Chernyavski and Kiriushchenko 1979); for 

survival in the first month after leaving the nest I used a uniform distribution covering the range 

of the published estimates (0.04 to 0.63 per 30 days). 

To estimate the effect of variation in only the adult survival parameters, I ran a reduced 

Monte Carlo simulation model with all other parameters fixed at their estimated values (Table 3-

1). I defined adult fall and winter survival parameters as described above but with the lower 

95% confidence limit set to the lower limit estimated in July 1996 (because the August 95% 

lower confidence limit was very low). 

I used Crystal Ball to obtain a sensitivity analysis of the full stochastic model. The 

program computes rank correlation coefficients between each parameter and the June density 

forecasted by the model. Each correlation coefficient is then squared and normalised to 100%, to 

indicate the approximate contribution made by each parameter to the total variance among 

forecasts (Decisioneering 1996). 
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R E S U L T S 

Predation on telemetered Dicrostonyx 

Most predation on telemetered lemmings was due to arctic foxes and ermine (Chapter 2, 

Tables 2-3 and 2-5). The only identified avian predators on telemetered lemmings were short-

eared owls (in 1995 only) and pomarine jaegers (in 1996 only). Several mortalities were 

classified as due to unknown or suspected avian predators, and each year a large fraction of 

radios (and the lemmings wearing them) were lost, probably often due to predation (Chapter 2). 

However, although I checked for radios at nests, I knew of no telemetered lemmings killed by 

peregrine falcons, rough-legged hawks, or snowy owls. 

Numerical response of foxes 

Foxes bred in the 35-km 2 study area in 1995 (increase phase) and 1996 (peak phase), but 

not in 1994 (low phase) or 1997 (decline) (Table 3-4). The largest known litter sizes were 4 in 

1995 and 11 in 1996. Den F l , which had 4 pups in 1995 and at least 4 in 1996, was within 2 km 

of Control 2 and 3 grids and the Exclosure, and within 3 km of Control 1 grid. This den was the 

closest successful den to all the trapping grids in 1995. In 1996, Den F5, which had 11 pups, 

was located on the ridge within 1 km of all the Control grids and less than 2 km from the 

Exclosure (Fig. 2-1). In 1995 this den was briefly occupied, but apparently the pups were later 

moved, about 0.6 km away to another den, which subsequently failed. Den F2, less than 1 km 

south of the Exclosure, was active in both years, with at least 2 pups in 1995 and at least 4 in 

1996. 

The behaviour of both adult and juvenile foxes appeared different in 1995 from that in 

1996. In 1995 adults and pups at dens seemed lethargic: adults and older pups basked in the sun 

and often permitted observers to approach closely. In contrast, in 1996 adults barked and 
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Table 3-4. Numbers of known arctic fox dens and litter sizes within the 35 km 2 area that was 

regularly visited or searched in 1994 through 1997. In 1995 and 1996 I visited only 1 den often 

enough to be certain of the litter size (not the same den). "Minimum litter sizes" refers to litters 

at other dens where I saw or heard pups but may not have seen them all. In 1996 I knew of 4 

other dens, one with at least 6 pups, outside this intensive study area but within 5 km of the 

lemming trapping grids. 

Year Dens Known Other minimum litter sizes and notes 
litter sizes _ _ 

1994 0 

1995 5 4 2, 3 (+ 1 pup that died), 1 (this den was apparently moved to another 

location and subsequently failed) 

1996 6 11 4, 4, 4, 1, 1 (4 known pups at one den and 1 known pup at another 

about 1 km away may have been parts of a single litter) 

1997 0 
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aggressively herded observers away from active dens, and pups ran and played and did not allow 

close approach. The lethargy of foxes in 1995 may have been the result of insufficient food. 

To estimate how many lemmings these foxes could eat per unit area, I estimated the 

home range of foxes from published values. The typical summer home range of arctic foxes in 

Alaska is 20 km 2 (Eberhardt et al. 1982, Garrott and Eberhardt 1987), but estimates from other 

regions vary considerably. Home ranges were smaller in the Yukon-Kuskokwim Delta, where 

foxes live on birds and eggs (Anthony 1997), and on the coast of Iceland, where they eat birds, 

marine organisms, and carrion (Hersteinsson and Macdonald 1982, 1996), but larger on 

Svalbard, where they eat birds, seals, and carrion (Frafjord and Prestrud 1992, Prestrud 1992). 

Home ranges of individual foxes may overlap considerably, and a pair may share the same range 

(Frafjord and Prestrud 1992, Anthony 1997). On Svalbard, home ranges were often slightly 

smaller in fall and winter than in summer (Frafjord and Prestrud 1992). I assumed that a pair of 

foxes would forage over 25 km to feed themselves and their offspring. I considered the 5 km x 

5 km area centred on fox den F5, located on the ridge less than 2 km from all grids. I estimated 

by eye from a satellite map that this area included about 55% Dicrostonyx habitat (13.65 km 2 , 

1,365 ha) (all the habitat excluding water, mudflat, and very wet tundra) where Dicrostonyx 

would occur at the same average density as that measured on Control grids. Any overestimation 

of Dicrostonyx habitat, such as high rocky ground that might support a low density, may be 

balanced by underestimation of Dicrostonyx in wet habitats, where they were sometimes caught 

during the peak. Eberhardt et al. (1992) estimated that the dry land portion of the 20-km 2 home 

ranges they measured was 10.4 km . I assumed that on average 2 adult foxes and 4 pups used 

the estimated 1,365-ha area in 1995 (den F5 was only temporarily occupied, but two dens within 

2 - 3 km had this litter size), and 2 adults and 11 pups in 1996 (den F5). 

In 1994 and 1997 no foxes bred in the area. I saw at least 3 different individual foxes 

in May 1994, 2.in August 1994, and 5 in June 1997. I assumed that only 1 fox used the 
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estimated 1,365 ha area described above throughout summer 1994, and 2 used it throughout 

summer 1997. 

Numerical responses of avian predators 

Rough-legged hawks did not breed in the study area (see above) in 1994, but bred in 

1995 (1 nest), 1996 (4 nests) and 1997 (1 nest); clutch sizes and numbers of hatchlings were 

generally highest in 1996 (Table 3-5). The closest nest was more than 2 km from the trapping 

grids and rough-legged hawks were not often seen near the grids. 

Peregrine falcons and sandhill cranes did not seem to respond numerically to lemming 

abundance. Each year one pair of peregrines nested in the study area; in 1995 the nest failed, but 

chicks hatched in 1994 and 1996 and fledged in 1994 (Table 3-5; I do not have data about 

hatching in 1997 or fledging in 1996). The mean density of sandhill crane nests was highest in 

1994 and 1996 and clutch sizes were similar among years (Table 3-5; R . G . Bromley 

unpublished). Both peregrines and sandhill cranes were occasionally seen near trapping grids. 

Snowy owls bred in the study area only during the lemming peak (Table 3-5). There 

were 5 nests in the study area and at least 5 others within 7 km of the trapping grids. One nest 

failed (the male died or departed) but chicks hatched at 3 others (the remainder were not 

revisited). The known numbers of chicks per nest were 8, 7, and 4. I rarely saw snowy owls 

near the trapping grids except in spring and in August 1995 and 1996. In August 1995 I saw 1 -

2 owls at a time, and once 4; in August 1996 I several times saw 2 - 3 owls, and once 6. From 4 

- 14 September 1996, a worker saw 6 - 1 0 owls in the area each day. In October 1996, owls 

were exceedingly common on Victoria Island to the north - an observer walking 10 km on the 

south shore counted about 50 (D.R. Stern, pers. comm.). 
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Table 3-5. a) Numbers of known nests or pairs of avian predators within the 35-km2 study area 

that was regularly visited or searched in 1994 through 1997. Territorial pairs of pomarine 

jaegers were counted in an aerial search of 11.1 km 2 within this area (Chapter 4). I saw one 

territorial pair of long-tailed jaegers. Sandhill crane figures show numbers of nests found and, in 

parentheses, mean number per km 2 in 10 - 12 km 2 searched each year (R.G. Bromley, unpubl.). 

b) Known clutch sizes (e), chicks hatched (h), and chicks fledged (fl) in the above nests. 

Sandhill crane data are mean (and SE) clutch sizes (R.G. Bromley, unpubl.). 

a) Nests 1994 1995 1996 1997 

Rough-legged hawk 1 4 1 

Peregrine falcon 1 1 (failed) 1 1 

Snowy owl 5 (1 failed) 

Pomarine jaeger 17 pairs 

Long-tailed jaeger 1 pair 

Sandhill crane 9(0.84) . 6(0.60) 10(0.83) 4(0.33) 

b) Nesting data 1994 1995 1996 1997 

Rough-legged hawk — 4e, 3h, 3fl 6e, 4h 2e 

5e, 4h 

3h,2fl 

Peregrine falcon 4e, 3h, 3fl 3e, 2h, Ofl 4e, 3h 4e 

Snowy owl 8e, 8h 

7e, Oh 

7e, 7h 

Pomarine jaeger typically 2e 

Sandhill crane 1.6(0.17) 2.0(1.7) 1.9(0.11) 1.3(0.34) 
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Pomarine jaegers bred in the study area only during the lemming peak: 17 territorial pairs 

of pomarine jaegers were counted in an aerial search of 11.1 km 2 (Chapter 4; Table 3-5, this 

chapter). Several pairs of pomarine jaegers nested near the trapping grids. In 1996 I saw a pair 

of territorial long-tailed jaegers but I did not find their nest. Short-eared owls were seen in the 

study area in 1995 - 1997, but I found no nests. 

In late August and September of the peak year, avian predators in addition to snowy owls 

were very abundant in migration - up to 8 short-eared owls at a time and 2 peregrine falcons 

perched on high points at the research camp on several occasions. Pomarine jaegers and 

glaucous gulls were still present in August; observers saw approximately 4 - 6 jaegers and 0 - 2 

gulls daily. Flocks of migrating predatory birds stopped temporarily in the area - for example, a 

flock of 30 gulls was seen on 25 August 1996. 

Numerical response of ermine 

Ermine were rarely seen in 1994 or 1995. In June 1994, to prevent an artificial increase 

in the abundance of predators, I removed an ermine that was scavenging at the research camp. I 

saw ermine several times later in 1994. I saw one ermine in June 1995; then in July I found one 

apparently dead of starvation in the Exclosure, and saw none later that year. In 1996 a female 

raised 7 offspring on the ridge between Control grids 1 and 2; I ear-tagged 5 of these juveniles. 

In August 1996 several ermine were seen on trapping grids and elsewhere in the study area, but 

ermine killed few of our telemetered lemmings (although the fates of some lemmings were 

unknown); I removed two ermine from the Exclosure in 1996. One of the young females tagged 

in 1996 raised 4 offspring on the same ridge in 1997; I marked two. In 1997 a male ermine also 

used dens on and near the ridge (H. Steen, unpublished). I saw only one ermine elsewhere in 

1997, an untagged animal in the predator exclosure in August. 
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Occupation of lemming winter nests by ermine 

I found few instances of occupation by ermine of lemming winter nests in any year 

(maximum 4% in 1996-7, Table 3-6). I found only one nest (in 1997) clearly occupied by 

ermine for a long time - it contained layers of fur, ermine scats, and lemming caeca. This nest 

was on Control 2 grid and had probably been used by one of the two adults caught later on the 

ridge nearby. In 1996, one nest contained a lemming skin, and in 1997, 4 nests contained small 

tufts of fur; both are typical signs of ermine predation. I did not classify these nests as having 

been occupied by ermine, but they may indicate instances of predation after which the ermine did 

not stay in the nest. In each of 1996 and 1997 I found a nest containing dead juvenile lemmings, 

suggesting that the mother had been killed. 

The factor "year" was not retained in a logistic regression model of the proportion of 

occupied nests as a function of year (AAIC = 1.6). When nests with other signs of ermine 

predation in 1997 were also considered, year was retained in the model but the proportion of 

nests with signs of ermine in 1997 did not differ significantly from the proportions in the other 

years (X294 = 0.6, p > 0.5). 

The number of winter nests was significantly correlated with spring lemming density on 

each grid (Pearson correlation coefficient r = 0.6, t i 4 = 2.9, p < 0.02) but not with autumn 

lemming density (r = -0.1). However, in most years the abundance of nests varied considerably 

among grids (Table 3-6). Mounds of lemming faeces near burrows in spring were often not 

associated with winter nests, suggesting that some lemmings nested underground in winter. 

Habitat and snow and ice conditions may affect both where lemmings nest in winter and whether 

they build above-ground nests or are able to use burrows. At Walker Bay, therefore, the absolute 

number of nests occupied by ermine may be a poor indicator of the number of lemmings killed. 
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Table 3-6. Numbers of winter nests examined, numbers that had been occupied by ermine, and 

numbers found per hectare on searched trapping grids in 1994 through 1997. In 1994 I searched 

three additional Control grids (Control 5, 6, and 7) on upland habitat that I neither searched nor 

trapped on in subsequent years. Nests with other "signs of ermine predation" contained a 

lemming skin (in 1996) and tufts of fur (in 1997). 

Counts of winter nests Percent of nests 
occupied signs of occupied by 

Year total found by ermine ermine predation ermine Grid Nests h 

1994 45 1 0 2% Control 2 1.3 
Control 3 1.3 
Control 5 1.8 
Control 6 1.4 
Control 7 0.5 

1995 66 0 0 0% Control 1 1.6 
Control 2 2.8 

1996 110 1 1 1% Control 1 6.4 
Control 2 0.8 
Control 3 2.4 
Exclosure 5.2 

1997 77 3 4 .4% Control 1 2.1 
Control 2 2.1 
Control 3 2.2 
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Discrimination of adult and juvenile fox scats 

There was a shift in the distribution of the diameters of scats collected from dens as 

summer 1996 progressed (Fig. 3-2). The diameters of scats from dens in June and July had a 

somewhat bimodal distribution, with many scats of diameter < 12 mm, whereas few such small 

scats were collected from dens later in summer or opportunistically (not from active dens) 

throughout summer. Therefore I assumed that all scats of diameter < 12 mm collected at active 

natal dens in June and July 1995 and 1996 were those of juvenile foxes. 

Occurrence of prey types in scats 

Lemming remains, most often Dicrostonyx, were found in most scats, in both summer 

and winter (Table 3-7). Ground squirrel, bird and insect remains often occurred in adult fox 

scats. Eggshell was found in adult fox scats collected in June 1995 and 1996 and in scats from 

the preceding winters, suggesting that foxes retrieved eggs cached during the previous spring. 

No eggshells were found in scats in 1997, a year when few geese nested (Chapter 4). Insects, 

caribou (Rangifer tarandus), arctic hare (Lepus arcticus), arctic fox, and shrews (Sorex ugyunak 

Anderson and Rand) were less common prey items in adult fox scats. One scat found early in 

1996 contained white fox hair and little else; I assumed the hair was from grooming during the 

moulting period and omitted this scat from estimates of biomass consumption. A few scats 

contained a large amount of vegetation. 

Scats from juvenile foxes (Table 3-7b) contained a smaller variety of remains than did 

adult scats. Lemmings occurred in 95% (n = 19) of juvenile scats in 1995 and in 100% (n = 21) 

in 1996. In 1995 some juvenile scats contained squirrel and bird remains but in 1996 the only 

prey items in juvenile scats were lemmings. No juvenile scats contained eggshell. 
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Fig. 3-2. Frequency distributions of the diameters of arctic fox scats collected from active dens 

in 1996 during the sampling periods (a) 1 June - 3 July, (b) 7 - 21 July, (c) 30 July - 8 August, 

(d) 17 - 28 August; and (e) scats collected opportunistically (not from active fox dens) 

throughout the summer of 1996. 
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Biomass of prey remains in arctic fox scats 

The mean estimated biomass of all ingested animal material per adult fox scat, based on 

biomass in scats and conversion factors for different prey (Appendix 1), exceeded 50 g in most 

sampling periods (Table 3-8a). Exceptions were the winters of 1994-5 (mean 40.2 g, n = 6) and 

1995-6 (40,2 g, n = 20), early in the summer of 1995 (37.3 g, n = 20), and late in 1997 (15.9 g, n 

= 3). Food may have been relatively scarce during these periods. In July 1996 the mean biomass 

per scat was quite low (45.2, n = 24) even though lemmings were plentiful; some juvenile fox 

scats may have been mixed in my sample of adult scats. 

Lemmings accounted for 44 - 100% of the total biomass in each sampling period. In 

scats in which the species of lemming remains could be identified, Dicrostonyx accounted for 42 

- 88% and Lemmus for 0 - 28%. Because the estimation of total ingested biomass was very 

approximate (Appendix 1), I have not based further conclusions or statistical comparisons on 

these estimates. 

Scats from juvenile foxes accounted for less ingested biomass than did scats from adults 

(Table 3-8b). In June 1996 biomass in juvenile scats represented on average 22.8 g of ingested 

biomass; in July 1995 and 1996 juvenile scats represented approximately 35 g. Lemmings 

accounted for 71% of the biomass ingested by juvenile foxes in 1995 and 100% in 1996. As 

with adult foxes, most of the identifiable lemming remains were Dicrostonyx. 

Daily consumption of Dicrostonyx biomass 

For the purpose of estimating the defecation rate of foxes, I considered that foxes (adults 

and juveniles) were well fed only during summer 1996 (5 scats day"1). At other times there were 

indications of food shortage: foxes did not breed in 1994 and 1997, and in 1995 one pup died, 

one litter apparently failed (Table 3-4), and juveniles and adults at dens seemed lethargic. The 

biomass per scat was also low during these periods (Table 3-8). Because biomass per scat was 
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very low in August 1997,1 assumed severe food stress during this period (3 scats day"1), and 

moderate food stress throughout 1994, 1995, June 1997, and all three winters (4 scats day"1). 

Juvenile arctic foxes are born in May or June, emerge from the den after 3 - 4 weeks, and 

are weaned at 6 - 7 weeks of age (Garrott and Eberhardt 1987). I first saw juveniles at dens on 

28 July 1995 and 25 June 1996. I assumed that juveniles from 16 June - 14 July 1995 and 1 

June - 1 July 1996 had half the defecation rate of adults because they were not fully weaned 

(Reid et al. 1997 made the same assumption). I considered that pups were equivalent to adults in 

August, when they were hunting independently and their scats could no longer be distinguished. 

Functional response of arctic foxes: number of individual lemmings consumed 

The ratios of adult (> 40 g) to juvenile (< 40 g) lemmings in scats ranged from 1:6 to 5:8 

in the 4 summer periods of 1996 and during 7 June - 7 July 1997 (Table 3-9). These were the 

only sampling periods when I could determine the size of at least 4 lemmings from their remains. 

During the same periods the corresponding ratios of adults to juveniles caught in live-traps 

ranged from 1.8:1 to 4:1. The fact that the proportion of adults in scats was much lower than the 

proportion trapped suggests that juveniles were more susceptible to fox predation than were 

adults^ The average correction factor indicating the reduced vulnerability of adults relative to 

juveniles (proportion in scats proportion caught) was 0.18 (Table 3-9). The adjusted ratios of 

adult to juvenile lemmings killed by foxes in all sampling periods, estimated by multiplying the 

ratios of adults to juveniles trapped in each sampling period by this correction factor, are shown 

in Table 3-10. Applying these ratios and the mean mass of adult and juvenile lemmings caught 

in each period to the estimated daily biomass of Dicrostonyx consumed per fox yielded estimates 

of up to 6.9 Dicrostonyx consumed daily per adult fox and up to 3.3 per juvenile fox (Table 3-

10). When Lemmus were included the corresponding estimates of daily lemming consumption 

were 7.4 and 4.3 individuals. 
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Table 3-9. Estimation of ratio of adult to subadult lemmings killed by foxes. 

1996 1997 
1 Jun- 7-21 30 Jul- 14-21 7 Jun-

1 Jul Jul 8 Aug Aug 7 Jul 

Adultijuvenile lemmings in scats 2:4 1:6 5:8 2:6 1:3 

(1) Convert to fraction: Adults/juveniles 0.50 0.17 0.63 0.33 0.33 

(2) Adult/juvenile lemmings trapped 3.97 2.78 1.82 2.20 ' 1.71 

(1) /(2) Vulnerability of adults relative to juveniles 0.13 0.06 0.34 0.15 0.20 

(3) Mean relative vulnerability: 0.18 

(2) x(3) Adjusted adult/juvenile lemmings killed 0.70 0.49 0.32 0.39 0.30 



100 

c o 
rt o 
o 

CO 
CD 

rt o 
co 

rt E o x> c o 
•a 
CU CO 
rt 

X ) 

r-? 

ON 
GN 

r t ON 
ON 

cu 
X 
,o 
U s-. rt 
>. 

X 

I 
to 

CJ 

O 
'• c 
•4—> ex £ 
co 
C o o 

rt 
T3 

O 
' C 
.o 
rt 
e 
•*—> 

w 
© 

• 

— 

« 

CO 
g 
cu 
& 
s-
<D 

CO 
CU 
X 
,o 

CU 
X 
E 
3 
C 

•a 
CU 
"3 
E 

T3 
3 

Co 
i 
un 
ON 
ON 

3 
co 
bo 
e 

•3 
CU 
cu 

X 
c 
CU 
X 
,o 

o 
rt 

CD' 
X ) 
E 
3 
C 
c 
o c 
M 
co" 
cu 

rt 

ON ON 

N O 
O N 
O N 

un 
O N 
O N 

Un 
-I 

rt ON 
O N -

r t ON ON 

00 00 

3 I 

i e 
O N -3 
ON ^ 

—^ 00 
CN 3 

4 < 
JL, b0| 

8 0 0 

CN i 

C 3 
3 

ON -3 
O N £ 

un oo CN 3 
CN < CM 

00 
cn 

r-
cn 

r t 

rt 

un 

>-< oo 
cn CN 

un cN 
un CN 

CN d 
cn 

CN 
un 
CM 

1 00 rt 

3 
>—> Au

 

un 
cn 

un CM 

c "3 rt 

3 1—5 

rt —< 
NO ' 1 

' — 1 

L-
co -t—' 
c 

d 
cn 

cn 
CM 

un un 
CM 

rt rt 

r t CM 

un 

rt 
N O 

O N 
cn CN 

rt 

CM 

0O rt 
un r t 

O N r-~ 
r~ un 
CN 

CM r -
r t oo 

O un 
r-- cn 

cn 
CN 

rt 

ON 

cd 
O 
CO 

a 
g 
cj 

cd 
-o 
cd o 

3 
-a 

CD 
X 
O 

c 
CO > 
3 

O rt u. 
C 

_o 
' r t 

c £ < r t 
CD 
Q 

CU 
X 

o 
X ,o 

X 
.o 
rt -o 
00 

I 
o 
Co 
Cj 
cj 

<D 
X 
o 

CO 
> 
3 

CM 0O NO NO -H r t 
CM d d 

— 00 O 
i> ^ cn 
" d o 
O oo cn 
O ^ un ^ d r~: 

O OO O N 

CN ^ cn 
CM d d 
CM oo CM 
oo cn 
" d d 

0O 00 O N r- —< r t 
<N d d 

r- oo o 
ON rt r-; 
cn d d 
o oo un o rt cn 
CN d d 

cn oo rt 
cn rt rt 

cM d d 

cn oo un 
rt rt CM 
^ c5- ci 

O OO rt 
O rt 0O 
NO d CM 

o oo un 
O —< cn 

CM d d 
O 00 00 
O rt rt 

d d 

-§ a, ex rt 

00 p 

c 
CO > 

o 
.cd 

c 
o " Q rt 

•O O co 

< U PQ 

co :3 > M .5, =o 
00 

3 •a rt 
•o 
a> 

rt 

NO ^ un cn 
oo o i od CM 
un CN 

cn CN q 

C~~ rt ON rt 
un CM 

cn NO ON -3-
^ d> ^ d> NO cn 

CN cn NO 
00 rt 
un 

cn 
NO rt CN 

m 

N O 

cn NO ON 
NO O rt 

cn 

N O 
cn cn 

cn 

co 1 ; 
r-̂  cn d 
NO 

^t 
N O 

rt 
N O 

O rt 
. cn 

3 
CO 
CO 
cd 
C 
CO 00 
> O 

rt 

yx
 

to
n CO 

to 3 p -o !^ 
CJ < 

PJ 
co 

d 

rt un cn oo 
d 

un NO O d ^ ON rt r- CN 

r - N O oo cn 
rt O rt 

cn 

rt 

d 

ON rt NO OO 
oo cn CM rt 
un cn 

O O d 

Cn NO ON rt 

" o" rt d 
cn 

cn NO ON rt 

d 

00 
o 
rt 
II 

co 
- pq 'S co 
> " 
3 



101 

T3 
CU 
S 

"-3 c o 

3 

r-
as 

i 
so 
as 
as 

so 
as 
Os 

i n 
as 
as 

i n 
as 
Os 

Os 
as 

00 60 
3 

1 
•<* < 

1 

s 3 i—i 
i—i r> 
f -

u 

B 
a 

60 
CN 3 
< 

^~ 
_ i 

3 3 
I — » < O 
C O 

CO 

CN Ju
l 

• 

c 3 
3 H I 

u 
CU 

wi
nl

 

I T ) 60 
CN 3 
CN < CN 

00 
3 

3 3 
3 •-> 

VO rt 

as .5 
ov £ 

— co. r -
—I d d 

CN O CN 
-sf. ^ rn 

vo i n rt 
CN CN O 

00 VO CN 
i n —-

OV CN 
vd —< i n 

r-; CN i n co —; CN 
CO —• CN CO —< CN 

\q CN in 
vd CN co ^ d d 

O CO CN 
CO O CN 

i n r— oo 
N O " 

I f ) r-; 0O CN ^ h 
co d CN CN d rt 

rt 00 CO vo ^ CN 
^< c> d d d d 

O CO CO 
co d CN 

vq ^j- CN 
CN d CN 

X 
.o 

CN 

CN 

CN rt 

CN rt 

vo 

CN 

CN 

CU 
X 
o 

E < 
3 

Z 

c 
CO > 
3 

O rt 

Ov 
rt vo 

o 
rt ^ 
CN liO 

vo Ov 
rt r-; 
CN vo 

Tt- Os 
rt CN 

• vq CN 
d i n 

co c -
CN vd 

d 

CN vq 
co CN 

T t C N 

co —< 

oo co 
O CN 

•3- CN 
d CN 

•a 
_o 
' u 

CO a, 

rt 

60 
s 
3 

cu 
C 
3 

O "3 3 
"O T 3 

§ 
cu .3 

JS *J 
rt 

_>i -S "53 „, 
i 
X 
o 
u a, OH rt 

rt 
I rt 

•s rt 
3 £ 
rt ^ 
<_ ON 
CU <<-

JO 
CU 3 

co 
> 3 •—i 

I 
2 
cj 

O c« 
cu P 
"I -2 
3 - 0 

E 
<u -3 « "8 •o e cu 3 
> 3 
— ; 0O rt 00 JS rt 

E 
3 
cn 
rt 
cu a, 

cu 
<tS 
rt 
3 

_o 
O 
-§ 
o 
u 

o-cu 
u 

U 
CU —» 

' § 

_o 
60 
3 

cu 

"53 
U i 
00 
60 
3 
E 
E 
CU •C 3 -

CO 
a, rt 

• 

VO 
as 
as. 

=i .5 o 
o 
o 

3 
-a 
rt 
O 
>> 

J O 
rt 
u 
CU 
C 

-a 
_o 
' u 

CU. 
a, 
60 

rt 

" vo > = 

CN 
u 

B 
3 
'I 
.2 

"8 
u 
3. 

-a 
CU 

as i 
C O 

JO 
3 
rt 

H 
E 
o 

cu 
60 
rt 
u 
CU > rt 

as 
Os 

T5 
3 
rt 

u 

3 'S >- 3 
« O 



102 

The plot of numbers of individual Dicrostonyx consumed per fox as a function of prey 

density (Fig. 3-3) suggests a Type II functional response (Holling 1959a), but the curve-fitting 

algorithm could not solve equation (1) unless the high consumption at very low density in 1994 

was deleted. Without this datum, the curve fitted to the adult fox data had m = 0.26, indicating 

no evidence of a Type III response (sigmoid curves have m > 1). A Type II curve appears more 

strongly indicated with the low-density datum present, but this high consumption may be a result 

of my mistaking old scats, from previous years when lemming density was higher, for fresh ones. 

The apparent lack of an asymptote was dependent on my assumption of different defecation rates 

at different lemming densities; with a constant defecation rate of 4 scats day"1, the best value was 

m = 0.7. In short, there was no evidence of a Type III response, although without more scats 

from low lemming densities it is best to be cautious about this conclusion. As mentioned above, 

the low daily consumption by adults in June 1996, which was very similar to that of juvenile 

foxes, may be a result of accidentally including juvenile scats in the sample of adult scats. 

Predation rate estimated from fox scats 

The product of the number of lemmings eaten per fox and the estimated number of foxes 

in the 25 km 2 area equals the estimated number of Dicrostonyx killed daily in the area (Table 3-

10). The rates of predation by arctic foxes in 14 days, estimated by converting these values to 

units of ha"1 14 days"1 and dividing by mean Dicrostonyx density on Control grids during each 

sampling period, were remarkably similar to those determined from radio-telemetry (Table 3-11) 

in 1996 and early in 1997. Rates of fox predation per 14 days estimated from telemetry in these 

sampling periods varied from about 0.032 in June 1997 to 0.079 in July 1996; rates estimated 

from fox scats varied from 0.035 to 0.064. The correspondence was weaker in 1995 and poor 

late in 1997; in these periods sample sizes for radio-telemetry were low (Chapter 2). In August 

1997 there were several additional sources of error - only 3 scats were collected, population 
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Fig. 3-3. Functional responses of adult (filled squares),and juvenile (open circles) arctic foxes to 

lemming density, which was estimated by means of mark-recapture (Chapter 2). Lemming 

densities are the means of estimates on Control grids (not protected from predators). In the 

period 7 June - 7 July 1997, density is the mean of estimates on Control grids from 15-18 June 

and 28 June - 5 July. The high daily consumption in 1994 may be a result of my mistaking old 

scats for fresh ones; The low daily consumption by adults in June 1996 may be a result of 

confusing juvenile with adult scats. The curve fitted to the adult fox data, without the 1994 

datum, has the form of equation (1), where m = 0.26. 
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density was declining, and it was difficult to estimate the number of foxes using the area. 

Estimated rates of fox predation were high only in 1994 (0.24, estimated from scats) and in 

August 1997 (0.19, estimated from ratio-telemetry). 

Prey remains in pellets from avian predators 

Lemming remains occurred in all pellets of rough-legged hawks in 1995 - 1997, short-

eared owls in 1995, snowy owls in 1994 - 1997, and pomarine jaegers and a sandhill crane (n = 

1) in 1996 (Table 3-12). No pellets from peregrine falcons contained lemming remains in 1994, 

but lemming was found in 25 - 60% of these pellets in 1995 - 1997. A l l glaucous gull pellets 

contained lemming remains in 1996 (n'= 11) but did not in 1994 (n = 1) or 1995 (n = 1). 

Dicrostonyx was the sole lemming species in pellets of pomarine jaegers, peregrine falcons, and 

the sandhill crane; all other species of avian predators had consumed both species of lemmings, 

Dicrostonyx more often than Lemmus. 

A l l the birds of prey ate small birds and insects in addition to lemmings, except that the 

single sandhill crane pellet contained lemming remains only. Eggshell was found in one rough-

legged hawk pellet, one peregrine falcon pellet, and four gull pellets. Arctic ground squirrel 

remains were found in two rough-legged hawk pellets and one peregrine falcon pellet. Mollusc 

shell was found in both glaucous gull pellets from 1994 and 1995. In 1995, one rough-legged 

hawk pellet contained remains of five tundra voles (Microtus oeconomus), which I never trapped 

at Walker Bay. Two short-eared owl pellets in 1995 each had remains of two shrews. Two fox 

scats also contained shrew remains in 1995 (Table 3-12a), and I caught more shrews in lemming 

traps in 1995 than in other years. 

Individual short-eared owl and pomarine jaeger pellets had a maximum of two lemmings, 

glaucous gull pellets from one to four, and peregrine falcon pellets a maximum of one lemming 

(Fig. 3-4). Rough-legged hawk pellets contained from one to four lemmings (one Dicrostonyx 
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Fig. 3-4. Number of Dicrostonyx, indicated by unique molar teeth, found per pellet of peregrine 

falcons, glaucous gulls, pomarine jaegers, and short-eared owls, at different prey densities in 

different sampling periods. 
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was also in the pellet with five voles), and snowy owl pellets contained from one to eight 

lemmings. 

Functional responses of avian predators 

Since rough-legged hawks bred in each year from which I have pellets (1995 - 1997), I 

have no strong evidence that they were food-stressed, although clutch sizes were generally 

higher in the peak year (Table 3-5b). Therefore I converted the number of lemmings per pellet to 

lemmings ingested per day (Fig. 3-5) with the digestion factor and casting rate from Reid et al. 

(1997) for a well-fed hawk (Appendix 2). For snowy owls I used a casting rate of 1.55 pellets 

day"1, the higher of Lockie's (1955) two estimates for short-eared owls; I chose the higher rate 

because most of my owl pellets came from periods when lemming density was relatively high. 

Daily pellet formation by owls varies with diet and among owl species; some owls may produce 

as many as 4 pellets day"1 (reviewed by Chitty 1938). Nestling snowy owls ejected between 0.7 

and 1.7 pellets day"1, higher numbers as they grew larger (Watson 1957). I have no evidence of 

food stress in snowy owls except for the single owl seen in 1994, which left a small pellet (2 g, 

whereas most exceeded 10 g) containing the remains of a single lemming. For this owl I 

assumed a casting rate of 1 pellet day"1. The casting rate of 1.55 pellets day"1 yielded an 

estimated daily consumption of lemmings by snowy owls of 4.7 to 5 in 1995, 1996, and the 

winter of 1996-7, and 7 in June 1997 (Fig. 3-5). 

Reproductive condition - male lemmings 

A smaller proportion of large male lemmings (> 50 g) was reproductive in 1996 than in 

either 1995 (t 2 4i = 2.4, p < 0.02) or 1997 (t 2 4i = 3.3, p < 0.001) (Fig. 3-6a). The proportion of 

reproductive males was lower in August than in each preceding sampling period (June, June-

July, and July-August, t 2 4 ) > 3.2, p < 0.002). Neither trapping grid nor any interactions were 
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Fig. 3-5. Functional responses of snowy owls (filled diamonds) and rough-legged hawks (open 

squares) to density of Dicrostonyx, based on mean numbers of prey per pellet, estimated 

conversion factors for digestion in the case of hawks, and estimated daily casting rates. Error 

bars indicate standard errors, which were calculated based on mean numbers of prey per pellet 

and then multiplied by the same constants as were the means. 
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Fig. 3-6. The proportions of (a) large (> 50 g) and (b) medium-sized (25 - 49 g) male 

Dicrostonyx, caught in live-traps, that were in reproductive condition in 1995 (diamonds), 1996 

(open circles), and 1997 (triangles). Points show the proportions of animals in reproductive 

condition, estimated by logistic regression models. Error bars represent 95% confidence 

intervals. Horizontal lines show the actual proportions of males in reproductive condition 

captured during each time period. 
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retained in the model. The actual percentage of large males that were in reproductive condition 

declined from 100%, 82%, and 100% in June 1995, 1996, and 1997, to 67%, 27%, and 40% in 

August of the three years respectively (Fig. 3-6a). 

The reproductive condition of medium-sized males (25 - 49 g) followed the same pattern 

as that of large males (Fig. 3-6b) although a smaller proportion tended to be in reproductive 

condition. The fractions in reproductive condition declined from 50% (n = 2), 60%, and 100% in 

June 1995, 1996, and 1997 respectively, to 20%, 4%, and 13% in August of the same years. The 

differences between 1996 and the other years were significant ( t i 6 i > 2.5, p < 0.02). Few small 

males (< 25 g) were in reproductive condition (0 of 0 in 1995, 1 of 14 in 1996 and 2 of 4 in 

1997). Because of the small sample size, year was the only factor tested in the model; the 

increase in proportion, in 1997 compared with 1995 and 1996 approached statistical significance 

(t t 6 = 1-79, p < 0.10). 

In snap-trapping surveys in June 1996 and 1997 and July 1995 and 1997, the percentage 

of males producing sperm (epididymis visible) varied from 50% to 100% (n = 1 to 8, Table 3-

13). In July 1996 none of the 14 males caught were producing sperm. Only 3 of these were 

large males (> 50 g), 4 weighed 25 - 49 g, and 7 weighed < 25 g. 

Reproductive condition - female lemmings 

The indicators of reproductive condition of a live female, a slightly open pubic symphysis 

and evidence of lactation, both lag behind actual pregnancy. Most large females were in 

reproductive condition (Fig. 3-7a). In the model of reproductive condition of large females all 

terms were retained, including trapping grid ( A A I Q = -1.9) and an interaction between year and 

period (AAIC C = -0.9). The slight interaction was evident (Fig. 3-7a) in that the actual proportion 

reproductive remained at 1.0 beginning in late June-July 1995 and 1997, but declined in late 

summer 1996. However, differences among trapping grids were neither, significant nor 



Table 3-13. Mass and reproductive condition of male Dicrostonyx caught in snap-traps at 

Walker Bay in June 1996 - 1997 and July 1995 - 1997. I assumed that spermatogenesis was 

indicated if the epididymis was visible. The reproductive status of one male was unknown 

because the carcass had been partly consumed by a predator. 

Male Dicrostonyx 

Year Trapping dates N 
% Epididymis visible 

Year Trapping dates N <25g 25 - 50 g >=50g % visible % unknown 
1996 12- 17 June 8 0 38 50 ' 7 5 4 
1997 17-23 June 2 0 50 50 50 

1995 10- 16 July 3 0 •33 67 67 
1996 11 - 16 July 14 50 29 21 0 
1997 15 - 16 July 1 0 100 0 100 



1 1 4 
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Fig. 3-7. The proportions of (a) large (> 50 g) and (b) medium-sized (25 - 49 g) female 

Dicrostonyx, caught in live-traps, that were in reproductive condition in 1995 (diamonds), 1996 

(open circles), and 1997 (triangles). Reproductive condition did not include oestrus (see text and 

Fig. 3-8). Points show the proportions of animals in reproductive condition, estimated by 

logistic regression models. Error bars represent 95% confidence intervals. Horizontal lines in 

show the actual proportions of females in reproductive condition captured during each time 

period in each year. 
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consistent among sampling periods (t426 = 1-2, p > 0.2), and none of the interaction coefficients 

differed significantly from zero (p > 0.5). Therefore, to obtain power for comparison among 

years, I dropped these terms from the model. This reduced model fitted well (Fig. 3-7a) except 

for discrepancies resulting from deleting the interaction term: in June 1995 when the sample size 

was very small (n = 6), and in August 1995 and 1997, when although all large females were 

reproductive, the model estimated a smaller fraction. The conclusions drawn from this 

simplified model made sense when compared with the observed data (Fig. 3-7a). 

A smaller proportion of large females was reproductive in 1997 than in 1996 (t 4 3 4 = 2.6, p 

< 0.01). The same pattern was apparent between 1995 and 1996, but the difference was not 

statistically significant (t 4 3 4 = 1.5, p > 0.1). A significantly smaller proportion of large females 

was reproductive in August than in June-July or in July-August (t 4 3 4 > 3.8, p < 0.0002), and it is 

apparent from Fig. 3-7a that this difference was due to a decline in reproductive condition in 

1996 only. A l l large females were reproductive in July-August and August 1995 and 1997 (11 < 

n < 21 in each period), but only 91% in July-August 1996 and 66% in August 1996 (n > 90). 

Few medium-sized adult females were in reproductive condition (Fig. 3-7b) but the 

proportion of medium-sized females that were reproductive was greater in both 1995 (tig3 = 2.6, 

p < 0.02) and 1997 (ti 8 3 = 3.1, p < 0.005) than in 1996. The fraction of reproductive medium-

sized females trapped in 1996 never exceeded 5% (4 < n < 61 in each period), but was 12.5% in 

August 1995 (n = 8), 28% in June 1997 (n = 8), and 33% in August 1997 (n = 3). The only time 

period in which the proportion of reproductive females approached a significantly higher level 

than that in August was the July-August time period (t| 8 3 = 1.95, p < 0.06). There were no 

significant differences among trapping grids (p > 0.1, Chapter 2). No small females were 

classified as reproductive. 

I could not compare the absolute proportions of females in oestrus among years because 

of differences in assessments among field workers, but I estimated the change in rates of oestrus 
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within each summer. In 1996 the proportion of large females recorded as in oestrus declined 

linearly (on a logit scale) throughout the summer (t365 = 6.4, p < 0.0001, Fig. 3-8a), from about 

40% in late June to close to 0% in late August. In 1997 I used date as a categorical rather than a 

continuous variable because the proportion of females in oestrus did not change linearly 

throughout the summer (Fig. 3-8b). The proportion of large females recorded as in oestrus on all 

grids combined rose from 10% in June to 55% in July and fell to 31% in August (Fig. 3-8b). The 

difference between the proportions in oestrus in August and mid-June approached statistical 

significance (tsg = 1.7, p < 0.1), but the difference between the proportions in oestrus in August 

and July was not significant (t88 = 1.3, p > 0.15). 

In snap-trapping surveys in June 1996 and 1997 the crude (observed) pregnancy rates of 

females were 82% (n = 17) and 70% (n = 10) respectively (Table 3-14). A n observed pregnancy 

rate of 75% in Dicrostonyx equates to a true rate of 100%, because early stages of pregnancy 

cannot be detected macroscopically (Krebs 1964a). It is therefore probable that in June of both 

the peak and decline all mature females were pregnant. Only one female was trapped in each of 

July 1995 and July ,1997; both were pregnant. In July 1996, however, only 27% of the 15 

females trapped were apparently pregnant, even though 7 weighed > 50 g; all the pregnant 

females were in this weight class. In addition, none of 7 telemetered females killed by predators 

between 12 July and 22 August 1996 were pregnant, though they weighed 53 - 112 g. In 

contrast, a female (55 g\ killed on 12 August 1995 was pregnant, as were two (69 and 81 g) 

killed 29 and 30 July 1997. I found placental scars, indicating previous pregnancy, in both 

telemetered females in 1997 and in all but the smallest one (53 g) of the telemetered females in 

1996. 

None of the females trapped in June 1997 had placental scars from previous pregnancies. 

I did not assess placental scars in June 1996. However, 17 of 30 females trapped from 1 7 - 2 6 
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Fig. 3-8. a) The proportions of large (> 50 g) female Dicrostonyx, caught in live-traps, recorded 

as in oestrus in 1996. Lines show the proportions (and 95% confidence intervals) of females in 

oestrus on all grids, estimated by a logistic regression model with trapping date as a continuous 

variable. Diamonds, circles, triangles (Control grids) and filled squares (Exclosure) show the 

actual proportions of large females that were in oestrus on each trapping grid, b) The 

proportions of large female Dicrostonyx that were recorded as in oestrus in 1997. Crosses (x) 

show the proportions of females in oestrus on all grids, estimated by a logistic regression model 

with trapping period as a discrete variable. Error bars indicate 95% confidence intervals. 

Diamonds, circles, triangles (Control grids) and filled squares (Exclosure) show the actual 

proportions of large females that were in oestrus on each trapping grid. Points for Control 2 grid 

(circles) in late June and in August, and for Control 3 grid (triangles) in early July, represent 

single individuals. 
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June 1996 at other study sites near Walker Bay had scars; scars occurred in 2 of 5 females 

weighing 30 - 50 g and in 15 of 23 weighing > 50 g (C.J. Krebs and A.J . Kenney unpublished). 

Mean June litter sizes were similar in 1996 and 1997 (mean ± SE: 5.9 ± 0.6 and 6.1 ± 0.7 

respectively, Table 3-14). In July 1996 the mean litter size (4.3 ± 0.5) was slightly but not 

significantly lower than in June. Sample sizes in July 1995 and 1997 were too small for me to 

compare litter sizes among years or trapping periods. I observed resorbed embryos in 1996 only; 

3.5% were resorbed in June, and 5.6% in July (Table 3-14). 

Sex ratio 

The proportion of males trapped was higher in 1997 than on average in 1995 and 1996 

(unplanned Helmert contrast, ti073 = 2.18, p < 0.03). This effect results from a difference in sex 

ratio of large animals only (Fig. 3-9), evident from the actual proportions of males captured). 

The percentages of large animals caught that were male were. 25% in 1995, 34% in 1996 and 

45% in 1997. More small and medium-sized lemmings than large ones were classified as males 

(tio?3 > 2.5, p < 0.01) but this may have been a result of errors in determining the sex of 

immature animals. Neither grid nor period, nor any interaction terms remained in the model. 

In snap-trapping surveys, a smaller proportion of males was caught in June 1997 (17%, n 

= 12, Table 3-15) than in June 1996 (32%, n = 25), but the difference was not significant 

(Fisher's exact test, p > 0.4). 

Age structure 

The proportion of adults caught in 1996 was lower than the mean of 1995 and 1997 

(unplanned Helmert contrast, t | 0 7i = 2.8, p < 0.01). The proportion of adults was higher in the 

periods June and June-July than in August, over all years (tio7i > 3.7, p < 0.0005). The 

proportion of adults in the Exclosure exceeded the mean proportion on the two Control grids 
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1995 1996 1997 

Year 

Fig. 3-9. The proportions of large (diamonds), medium-sized (open circles), and small 

(triangles) Dicrostonyx that were male, captured in live-traps in 1995, 1996, and 1997. Points 

show the proportions of male animals estimated by a logistic regression model. Error bars 

represent 95% confidence intervals. Horizontal lines show the actual proportions of animals of 

each size class that were male during each year. 
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Table 3-15. Sex ratio and size distributions of Dicrostonyx caught in snap-trap surveys at 

Walker Bay in June 1996 - 1997 and July 1995 - 1997. One carcass in each of June and July 

1996 had been scavenged and was not weighed; in July the sex of the remains could not be 

determined. 

Dicrostonyx caught in snap-traps 

% % 
Year Trapping dates N male female not sexed <25g 25 - 50 g >=50g not weighed 
1996 12- 17 June 25 32 68 0 32 64 4 
1997 17-23 June 12 17 83 ' 0 42 58 

1995 10- 16 July 4 75 25 0 25 75 
1996 11-16 July 30 .. 47 50 3 33 30 33 3 
1997 15 - 16 July 2 50 50 0 50 50 
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(tio7i = 5.2, p < 0.0001), but there was a significant interaction between year and grid. Grid 

(Exclosure) effects are discussed fully in Chapter 2. 

In a model comparing the proportions of adult animals from Control grids 1 and 2 among 

years and sampling periods, the proportion of adults caught in 1996 was lower than in either 

1995 or 1997 (treatment contrasts, t 5 7 8 = 2.2, p < 0.03 and t 5 7 8 = 2.9, p < 0.005). Across all years, 

a smaller proportion of adults was caught in June and in June-July than in August (ts78 = 2.8, p < 

0.01 and ts^ = 3.0, p < 0.005). The interaction between year and sampling period was not 

retained in the model. The model fitted the data well (Fig. 3-10) except in June, when the actual 

proportions of adults were similar in 1996 (71%) and 1997 (68%), but only adults were caught in 

June 1995. 

The proportions of snap-trapped Dicrostonyx weighing > 50 g were similar in June 1996 

and June 1997: 64% in 1996 and 58% in 1997 (Table 3-15). No lemmings weighing < 25g were 

caught in June of either year. In July 1996 animals were distributed fairly evenly among the 

three size classes (< 25 g, 25 - 50g, and > 50 g); one additional partially scavenged animal was 

not weighed but appeared to be > 25 g. In July 1995 and July 1997 no small animals were 

trapped and the proportions of large animals (> 50 g) were greater than in July 1996 (75%, n = 4 

in 1995 and 50%, n = 2 in 1997), but sample sizes were small so the difference may not be 

important. 

Mass of adult Dicrostonyx 

Because of an interaction between year and period in the model of mass of adult 

Dicrostonyx, I modelled each period separately. Adults (> 40 g when first caught) weighed 

significantly less in June 1997 than in June 1996 (t ) 5 1 = 6.0, p < 0.0001) (Chapter 2, Figs. 2-8b,c, 

2-9). In June 1995 the mean mass of adults was also lower than in June 1996 but the difference 

was not statistically significant (t 151 = 1.5, p > 0.1) (Chapter 2, Fig. 2-8a, b). The factor "sex" 



126 

1.0 • 

"5 0.8 -
T3 
re 

« ^ 

o 0.6 -
o 
r o 
Q. 
0.4 -

O 
a! 0.2 -

0.0 -
June June-July July-August August 

Trapping period (1995-1997) 

Fig. 3-10. The proportions of Dicrostonyx on Control grids 1 and 2 that were classified as adults 

(> 40 g) when first caught in live-traps, in four sampling periods in 1995 (diamonds), 1996 (open 

circles), and 1997 (triangles). Points show the proportions of adults estimated by a logistic 

regression model. Error bars represent 95% confidence intervals. Horizontal lines show the 

actual proportions of adults captured during each sampling period. 



127 

was not retained in the June model (AAIC C = -0.02), showing that the differences among years 

occurred in both sexes. The mean mass of adult males on Control grids in June 1995, 1996, and 

1997 respectively was 75.4 (n = 1), 65.5, and 61.3 g; the corresponding figures for adult females 

were 67.8 g, 70.1 g, and 61.1 g. Mean mass of adults was higher in the Exclosure throughout 

1996, 1997, and the latter part of 1995 (Chapter 2). In none of the models was there an 

interaction between grid and year or grid and sampling period; hence my conclusions about 

differences in mass apply to both the Exclosure and Control grids. Because year was not 

retained in the models of mass of adults for the periods June-July, July-August, or August (-0.02 

< A A I C C < 0), I conclude that the difference in mass among years was evident only in June. 

Population decline models 

When the survival rates observed in August 1996 and June 1997 (Table 3-2) were used in 

the model of winter population decline; the predicted rate of decline (r) was -0.017 week"1 (Fig. 

3-1 la), less than half that observed on Control grids (-0.036 week"1). However, a 30-day adult 

fall and winter (mid-August - mid-March) survival rate of 0.775, which was within the 95% 

confidence interval for July and August survival on Control grids, predicted a decline similar to 

that observed on Control grids (16 June density 3.4, r = -0.037 week"1; Fig. 3-l ib). A 30-day fall 

(mid-August - mid-November) survival rate of 0.66, and winter survival of 0.876 as observed in 

August, predicted a similar result (16 June density 3.4, r = -0.036 week"1; Fig. 3- l lc) . This latter 

survival rate is within the rather large 95% confidence interval for survival of Control animals in 

August 1996, but is slightly below that for July 1996 (Table 3-2). 

In contrast to the results of the model of the decline on Control grids, when the observed 

Exclosure survival rates (Table 3-2) were used in the model of winter population decline in the 

Exclosure, the modelled rate of decline (r) was -0.068 week"1 (Fig. 3-12a), almost double that 

observed in the Exclosure (-0.036 week"1). Survival estimates in the Exclosure were very low in 
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Fig. 3-11. Modelled population declines (solid lines and crosses, x) of untreated (Control) 

Dicrostonyx populations from August 1996 to June 1997. Dotted lines and filled diamonds, 

circles, and triangles show observed declines on Control grids. Open squares show mean 

Control densities, (a) Autumn and winter survival parameters set to Control grid estimates from 

August 1996, and spring survival set to Control grid estimate from June 1997 (Table 3-2). (b) 

Fall and winter survival (mid-August - mid-March) set to 0.775 per 30 days, (c) Fall survival 

(mid-August - mid-November) set to 0.66 per 30 days. 
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Fig . 3-12. Modelled population declines (solid lines and crosses, x) of the protected (Exclosure) 

Dicrostonyx population from August 1996 to June 1997. Filled squares show observed 

Exclosure densities and 95% confidence intervals, (a) Survival parameters set to Exclosure 

estimates from August 1996 and June 1997 (Table 3-2). (b) Fall and winter survival (mid-

August - mid-March) set to 0.78 per 30 days, spring survival set to June 1997 value estimated 

for Control animals (Table 3-2). (c) Fall survival (mid-August - mid-November) set to 0.67 per 

30 days, winter and spring survival set respectively to August and June estimates for Control 

animals (Table 3-2). 
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August 1996 and June 1997 because of foxes entering the protected area (Chapter 2). Because 

the observed rate of decline was similar in the Exclosure to that elsewhere, it could be simulated 

with similar survival parameters to those described above for Control grids. A spring survival 

rate equal to that observed on Control grids and a fall and winter survival rate of 0.78, marginally 

higher than that used in the model for Control grids, predicted a decline similar to that observed 

in the Exclosure (17 June density 7.0, r = -0.036 week"1; Fig. 3-12b). A 30-day fall (mid-August 

- mid-November) survival rate of 0.67, slightly above that used in the model for Control grids, 

and winter and spring survival modelled as on Control grids, yielded a similar result (17 June 

density 7.1, r = -0.036 week"1; Fig. 3-12c). The modelled survival rates of 0.78 and 0.67 were 

within the large 95% confidence intervals for August survival in the Exclosure and on Control 

grids (Table 3-2, and see preceding paragraph). 

The reproductive and juvenile survival parameters in all these models led to a predicted 

age structure in June 1997 of 54% overwintered animals, 23% animals from spring litter 1, and 

23% from spring litter 2. This distribution is acceptably close to the age structure indicated by 

the distribution of mass of lemmings trapped in June 1997 on Control grids. Forty-seven percent 

of the lemmings trapped weighed > 50 g, 33% weighed 31 - 50 g, and 20% weighed < 30 g. 

Dicrostonyx weighing 30 g are about 1 month old, and those 30 - 50 g are between 1 and 3 

months old (Chernyavski and Kiriushchenko 1979). This correspondence between the actual and 

predicted age structures provides assurance that the reproductive and juvenile survival 

parameters used were realistic. 

^ The results of 1,000 Monte Carlo simulations of the full stochastic Crystal Ball decline 

model are shown in Fig. 3-13a and Table 3-16. The mean predicted density of Dicrostonyx in 

mid-June 1997 was 3.5 ha"1 (compared with the observed mean density of 3.4) with a standard 

deviation of 3.6. The model predicted results within the range of those observed on Control 

grids (1.1 - 6.7 ha"1) in 54% of simulations (Fig. 3-13a). Hence, when uncertainty in the 
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Fig . 3-13. Results of 1,000 Monte-Carlo simulations, with Crystal Ball software, of the winter 

1996 - 1997 decline in Dicrostonyx density. Graphs show the distribution of forecasted densities 

of Dicrostonyx (individuals ha"1) on Control grids on June 16, 1997. Outliers refer to predicted 

densities above the maximum value on the X-axis, (a) Full model with all parameters allowed to 

vary as shown in Tables 3-1 to 3-3. Darker bars show the 54 percent of simulations that yielded 

results within the observed range of Control densities (1.1 - 6.7 ha"1), (b) Reduced model with 

only adult survival parameters allowed to vary. Darker bars show the 66 percent of simulations 

that yielded results within the observed range of Control densities (1.1 - 6.7 ha"1). 
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Table 3-16. Results of 1,000 Monte-Carlo simulations, using Crystal Ball software, of the 

winter 1996 - 1997 decline in Dicrostonyx density. Results are given for the full and reduced 

stochastic models (described in Methods). Statistics refer to the distributions of the forecasted 

density of Dicrostonyx (individuals ha"1) on Control grids on June 16, 1997. 

Full model Reduced 

Mean density 3.5 5.5 

Median density 2.2 4.5 

Standard deviation 3.6 4.1 

Variance 13.2 16.5 

Standard error of the mean 0.12 0.13 

Skewness 2.0 1.8 

Kurtosis 8.8 8.6 

Coefficient of variation 1.1 0.7 

Minimum density 0.0 0.1 

Maximum density 30.3 36.6 

Range width 30.3 36.5 

model 
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parameter estimates was taken into account, the observed survival parameters combined with 

estimates of winter and spring reproduction from the literature predicted the observed decline 

well. However, because of the large uncertainty in most of the parameter estimates, this model 

often predicted extinction or severe declines (Fig. 3-13a). 

The results of 1,000 Monte Carlo simulations of the reduced model, with only adult 

survival parameters allowed to vary, are shown in Fig. 3-13b and Table 3-16. The mean 

predicted density of Dicrostonyx in mid-June 1997 was higher than in the full model: 5.5 ha"1 

(compared with the observed mean density of 3.4) with a standard deviation of 4.1. However, 

the model predicted results within the range of those observed on Control grids (1.1 - 6.7 ha"1) in 

66% of simulations (Fig. 3-13b), and never predicted extinction (Table 3-16). In summary, with 

no variation in initial density or in reproduction parameters, and restricted variation in adult 

survival parameters (means equal to estimated values and variation less than the estimated 95% 

confidence intervals), this reduced model predicted June densities similar to those observed 66% 

of the time. These results provide further support for my above conclusion that the measured 

survival rates, even taking into account only part of the uncertainty in the estimates, can account 

for the observed decline. 

Sensitivity analysis of the full stochastic model showed that the June density predicted by 

the simulation was most sensitive to variation in the following parameters: adult autumn 

survival, adult winter survival, initial density, and adult spring survival (Fig. 3-14). Adult 

autumn and winter survival together accounted for approximately 74% of the variation in the 

results of the model. The model was insensitive to variation in parameters of reproduction and 

juvenile survival. The survival of juveniles in the first month after leaving the nest accounted for 

1.8% of the total variation. Other parameters related to reproduction and survival of neonates 

were jointly responsible for only 1.4% of variation in the predicted June density of Dicrostonyx. 

However, it is important to recognise that a key assumption of the model was that no 



Sensitivity Chart 

Target Forecast: June 16 density on Control grids 

Adult survival, Winter 46.6% 

Adult survival - Autumn 25.2% 

Start density 20.3% 

Adult survival-Spring 4.7% 

Juvenile survival afterleaving nest 1.8% I • ; [ 
Prop, of females pregnant, March - April 0.6% 

Mortality before leaving nest 0.3% 

Mean litter size, April - May 0.2% 

Mean litter size, March - April 0.2% 

Pre-natal mortality (resorbed embryos) 0.1% 

Prop, of females pregnant, April - May 0.0% 

—I , , , 1 
0% 25% 50% 75% 100% 

Measured by Contribution to Variance 

Fig. 3-14. Sensitivity analysis of the full Monte Carlo simulation model. Bars show the 

approximate percentage of total variation in the results of the model accounted for by each 

parameter. 
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reproduction occurred in winter, and because this parameter did not vary, its effect is not 

reflected in the sensitivity analysis. 

D I S C U S S I O N 

The rate of population decline in the predator exclosure (-0.036 per week, Table 3-3b) 

was the same as that on Control grids in winter 1996 - 1997. In contrast, in the following 

summer, density began to increase within the Exclosure (+0.002 per week) while it declined on 

Control grids at an accelerated rate of -0.19 per week (Table 3-3b and Chapter 2). Hence my 

first prediction, that if predation is necessary to cause the population decline then the decline will 

not occur within the protected area, was not supported in the winter of the decline but was 

supported in the following summer. However, the conclusion for winter is weakened because 

the protective structure was less effective in deep snow and ineffective against ermine (Chapter 

2). Further, arctic foxes and ermine entered the Exclosure in August 1996 (Chapter 2) and 

predation may have intensified in autumn as these predators responded to the enhanced density 

of lemmings within. 

M y second prediction, of a delayed density-dependent predation rate, was supported, 

since survival of Dicrostonyx was significantly lower in summer 1997 than in summer 199.6, 

most deaths were due to predation, and predation rates were particularly high late in summer 

1997 (Chapter 2; this chapter, Table 3-2). However, although the population declined 

substantially over winter, estimated survival in June 1997 equalled that in August 1996 (Table 3-

2), suggesting that the predation rate did not rise until after the decline began. Did the predation 

rate increase in the winter following the peak summer? This question must be answered to test 

my third prediction, that the decline should be associated with a rise in predation rate. In the 
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following sections I estimate a winter predation rate based on the abundance of predators and 

their winter diets. 

Numerical responses of lemming predators 

Arctic foxes, ermine, rough-legged hawks, snowy owls, pomarine jaegers, and, to a small 

degree, short-eared owls all responded numerically to lemming abundance (Results and Tables 

3-4, 3-5). However, snowy owls and rough-legged hawks did not seem to be important predators 

on the trapping grids in summer, perhaps owing to the low numbers of hawks and the distance of 

the nests of both species from the grids. Snowy owls, which were seen more often in late 

summer and fall, may have had a greater impact in autumn. Foxes were important predators in 

all three summers of the study, ermine in the peak and decline summers, pomarine jaegers in the 

peak only, and short-eared owls in the increase phase only. Only arctic foxes, ermine, and 

snowy owls would have been present in the winter of the decline, 1996 - 1997. Short-eared 

owls, pomarine jaegers, rough-legged hawks, and other birds of prey stopping on their southward 

migration, may all have been abundant until late in the autumn of 1996. 

Functional responses of lemming predators 

Foxes, snowy owls, rough-legged hawks, and probably glaucous gulls and peregrine 

falcons responded functionally to lemming density (Figs. 3-3, 3-4, 3-5). The apparent Type TI 

response (Holling 1959a) of arctic foxes (Fig. 3-3) contrasts with the Type III response of red 

foxes observed by Reid et al. (1997). This pattern, and their inability to breed at low lemming 

densities (Table 3-4), suggest that arctic foxes in this region may be more specialised lemming 

predators than were the red foxes at Pearce Point (western N.W.T.) . Reliance on lemmings was 

particularly evident in juvenile arctic foxes, as in 1996 their scats contained remains of no other 

prey types. In some regions, however, arctic foxes live primarily on carrion and avian or marine 
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prey (Hersteinsson and Macdonald 1982, 1996; Frafjord and Prestrud 1992, Prestrud 1992, 

Anthony 1997). Their apparent specialisation on lemmings on the Kent Peninsula may therefore 

be related to a shortage of other prey. 

Predation in winter by arctic foxes 

The estimated mean biomass of Dicrostonyx ingested per adult fox scat remained high in 

winter 1996-7 (41.1 g compared with 47.8 g in August 1996). However, assuming low winter 

reproduction of lemmings (100:1 ratio of adults to juveniles), the estimated average number of 

Dicrostonyx consumed per day per fox in winter (2.6) was much lower than in summer 1996 (up 

to 6.9, Table 3-10). M y estimate of the total consumption of lemmings by foxes in winter 1996-

7 (Table 3-10.) is rough because it depends on an arbitrary assumption of linear dispersal 

throughout winter of juvenile foxes (i.e. over a 10-month period about one fox dies or emigrates 

monthly). This assumption leads to an estimate of average consumption by all foxes of 18.4 

lemmings day"1 throughout winter, or 0.19 lemmings ha"1 14 days"1. 

Predation in winter by ermine 

The number of lemming nests occupied by ermine in winter 1996-7 (4%, Table 3-6) was 

low compared with observations in Greenland of 9% and 14% in two declining years (Sittler 

1995). At Barrow, Alaska least weasels (Mustela nivalis) occupied 35% of lemming nests in a 

decline year (MacLean et al. 1974). Since I knew of several ermine near the trapping grids in 

August 1996, and one marked female and one unmarked male in June 1997, at least two ermine 

probably lived in the area throughout winter. Estimates of the home range size of North 

American ermine, which have smaller bodies and ranges than do European ermine, vary 

considerably depending on habitat, food availability, and the abundance of conspecifics 

(Fagerstone 1987). Ranges of males and females overlap (Fagerstone 1987). Average home 
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range sizes in Ontario in the non-breeding season were 10.5 ha for females and 23 ha for one 

male (home ranges of breeding males averaged 20.7 ha; Simms 1979). Home ranges in 

California were smaller (Fitzgerald 1977), but in central Alberta home ranges were much bigger: 

79.9 ha for females outside the breeding season and 141.6 ha for males, combining both breeding 

and non-breeding periods (K. Lisgo, unpublished). To recognise both the high density of prey at 

Walker Bay in 1996 - 1997, and the large size of northern ermine, I averaged these estimates to 

obtain 45.2 ha for females and 82.3 ha for males. I assumed that the trapping.grids lay within 

non-overlapping ranges of one male and one female. 

Gessaman (1972) estimated that one 60-g lemming is equivalent to 77 kcal of energy 

(322 kJ). I estimated the daily food requirements of ermine by extrapolating from Brown and 

Lasiewski's (1972) predictions of the energy requirements of long-tailed weasels (Mustela 

frenata) as a function of mass and ambient temperature. The mass of ermine varies considerably 

and increases at high latitudes, so I used the mean mass of 7 females (mean ± SE: 113 + 6.7 g) 

and 3 males (154.5 ± 17.3 g) weighed at Walker Bay in 1996 and 1997. These means are 

probably underestimates since many of the weighed animals were subadults. The results of these 

calculations were that at - 1 0 ° C , a female ermine would need 1.3 60-g lemmings daily, and a 

male would need 1.4. The winter air temperature at Walker Bay is much lower than - 1 0 ° C , but 

by using lemming winter nests ermine may attain a higher ambient temperature (MacLean et al. 

1974). These calculations lead to an estimated consumption by ermine of 0.34 lemmings ha"1 14 

days"1. Because ermine cache prey for future use (Oksanen et al. 1985), they may take more 

prey in some periods but less when hoarded food is retrieved. 

Predation in winter by snowy owls 

I do not know how many snowy owls foraged in the area in winter. Many of the large 

number present in August - September likely emigrated or died during winter, and others 
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immigrated in spring. One owl remaining in the 25-km 2 home range assumed for foxes (1,365 

ha of Dicrostonyx habitat) in mid-winter, eating 3.3 Dicrostonyx day"1 as I calculated from winter 

owl pellets (Fig. 3-5), would eat 0.034 Dicrostonyx ha"1 14 days"1. 

Total winter predation rate 

The above estimates of Dicrostonyx eaten by arctic foxes, ermine, and snowy owls sum 

to a total winter consumption of 0.6 Dicrostonyx ha"1 14 days"1. Based on an average winter 

density of 9.6 lemmings ha"1, this estimate equates to a predation rate of 0.06 14 days"1 and 30-

day survival rate of 0.88. This estimate is, of course, very rough, but is similar to my estimates 

of summer survival rates based on radio-telemetry (Table 3-2). Estimated winter predation based 

on the above calculations is shown in Fig. 3-15. 

These estimates offer no evidence of an increased predation rate in the winter following 

the peak. Hence my third prediction, that the decline should be associated with an increased 

predation rate, is not supported. It is, however, possible that predation rates rose temporarily in 

autumn when foxes and owls were abundant and before the snow was deep and densely packed. 

Both foxes and snowy owls must find it difficult to hunt lemmings under hard snow. Ermine 

were probably also more abundant in autumn, before winter mortality occurred. As well, some 

migratory predators were present in autumn and those passing through from further north may 

have stopped for longer than in other years because of the abundance of prey. 

A constant number of predators with Type II functional responses in the absence of prey 

reproduction would lead to an increasing rate of predation as lemming numbers declined 

(Holling 1959a), i.e. inversely density-dependent or depensatory predation. In this case the 

predation rate would have been higher in late winter than in fall. A moderate rate of decline in 

numbers of predators does not preclude depensatory predation, but if predator numbers drop 

rapidly or functional responses are Type III, the predation rate may decrease (Holling 1959a). 
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Fig. 3-15. Estimated 1996 - 1997 winter predation by arctic foxes, snowy owls, and ermine on 

Dicrostonyx, based on estimates from scats, pellets, and metabolic requirements (see 

Discussion), compared with modelled predictions of the population decline. I assumed linear 

dispersal of foxes as described in the text, 2 snowy owls per 25 km 2 from August - October and 

April - June and 1 at other times, and a constant number of ermine (2, see text). "Lemmings 

born 1996" shows the modelled population decline of adults as shown in Fig. 3-1 lb (fall and 

winter survival 0.775, spring survival 0.877). Reproduction shows spring-born individuals from 

the same model. Unexplained mortality illustrates the gap between estimated predation and the 

modelled mortality. The initial and final population densities equal the observed mean Control 

densities in mid-August 1996 and mid-June 1997 respectively. 
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Ermine are particularly likely to continue to exploit lemmings at low density before emigrating, 

because ermine are adapted to hunt under the snow (Fitzgerald 1977) and are more specialised 

than foxes and cannot emigrate as far as owls can. However, the predation rate on Control grids 

was not lower in June 1997 than in 1996 (Table 3-2), and without knowing rates of emigration or 

death of predators, I cannot estimate changes in predation rate during fall and winter. 

With no evidence that an increased predation rate initiated the population decline, we 

must look for other causes. The decline could have been initiated either by an increase in 

sources of mortality other than predation, or by a decrease in reproduction. The mortality rate 

may have risen in autumn 1996 owing to deteriorating weather and competition for food as plant 

growth slowed. I observed but did not quantify damage from lemmings gnawing on willow bark 

(Salix lanata and S. arctica) and browsing on shoots of Dryas integrifolia. M y survival 

estimates show no evidence of an increase in mortality before the end of August (Chapter 2 and 

Table 3-2). 

Cessation of reproduction in the peak summer 

Collared lemmings stopped reproducing by the end of July in the peak summer, but were 

still reproducing in late August of the increase (1995) and decline (1997) years. This difference 

was apparent from the proportions of males and females in reproductive condition (Figs. 3-6, 3-

7), the lack of spermatogenesis and low rate of pregnancy in lemmings snap-trapped in July 1996 

(Tables 3-13, 3-14), and the absence of pregnancies in telemetered females killed by predators in 

July and August 1996 (Results). As well, the proportion of large females that were in oestrus in 

1996 decreased monotonically to almost zero by the end of summer, whereas no such decrease 

occurred in 1997 (Fig. 3-8). 

The few studies of winter reproduction in Dicrostonyx report no winter breeding after 

peak summers, until spring (April - May) (Krebs 1964a, Chernyavski 1979, Chernyavski and 
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Kiriushchenko 1979). MacLean et al. (1974) deduced from the abundance of lemming winter 

nests (most oi Lemmus trimucronatus, but a few of Dicrostonyx) that winter breeding was 

reduced after peak years, and attributed a population decline to reduced breeding combined with 

non-predation mortality. Sittler (1995) concluded from the paucity of small faecal droppings in 

winter nests that reproduction was low after a peak summer, but suggested that this effect could 

have resulted from disproportionate predation by ermine on oestrous females. Only spring 

breeding of L. lemmus after a peak has been reported [review of winter reproduction in 

Scandinavian microtines, Hansson (1984); the January - April breeding observed by Henttonen 

and Jarvinen (1981) occurred before an early summer peak, not after as reported in the review]. 

Without reproduction, a decline must occur if there is mortality. The decrease in 

reproduction, but not in survival, in August of the peak implies that the lemming decline was 

initiated not by increased predation, but by cessation of reproduction. Krebs (1964) pointed out. 

that in the absence of winter and spring breeding, even a low rate of mortality (e.g. 30-day 

survival of 0.75 - 0.90) would result in a substantial population decline during the 10-month 

arctic winter. M y simple population decline models predicted the observed winter decline even 

assuming spring breeding, and with adult survival parameters within the range of values 

estimated from radio-telemetry in summer. 

Predictions of the population decline models 

The deterministic population decline model (Fig. 3-1) assumed no winter reproduction, 

spring reproduction from mid-March to mid-May (Table 3-1), and spring adult survival equal to 

the June 1997 value (0.877, Table 3-2). With fall and winter 30-day survival rates of 0.775, or 

lower rates of survival (0.66) in the first 3 months of autumn, the model predicted the observed 

decline. These survival rates are within the 95% confidence intervals for survival in July and 

August 1996 on Control grids (Table 3-2). The reduced stochastic model set mean adult autumn 
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and spring survival rates to the observed August 1996 and June 1997 values respectively, and 

allowed them to vary from the upper 95% confidence limits of those parameters, to values higher 

than the lower 95% confidence limits. This model predicted the observed decline 66% of the 

time (Figs. 3-1, 3-13b). None of the modelled survival rates were low compared with those 

estimated for other small mammals, even in phases other than the decline (Krebs and Myers 

1974, Batzli etal. 1980). 

Factors contributing to the winter decline 

In summary, the beginning of the decline was associated with decreased reproduction but 

not decreased survival. M y rough estimate of the winter predation rate based on fox scats, owl 

pellets, and the energy requirements of ermine approximated estimates of predation rates 

obtained in summer 1996 from radio-telemetry. Simple population decline models showed that 

with no reproduction until spring, low mortality rates could lead to the observed decline. The 

winter decline was not prevented within the predator exclosure. These results imply that 

predation was not a necessary cause of the population decline, but are not conclusive because the 

effectiveness of the predator exclosure was reduced in fall and winter. Whether the rate of 

decline would have been less in the complete absence of predation depends on the extent to 

which other sources of mortality compensated for the removal of predation. Some compensatory 

mortality of telemetered lemmings was observed in the Exclosure at high population density in 

1996, although less occurred in 1997 (Chapter 2); compensation may occur to a greater extent at 

high density. I cannot draw a firm conclusion about whether predation was a necessary cause of 

the winter population decline, but I propose that a decreased reproductive rate may have been a 

necessary cause. 
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Factors contributing to the summer decline 

The rate of decline was much higher in the summer of 1997 (-0.19 per week on Control 

grids) than in the previous winter (-0.036 per week, Table 3-3b). This pattern has been termed a 

Type L decline (Chitty 1996, p. 94). The faster decline in summer appeared to be due to a higher 

rate of predation, although I cannot pinpoint with precision when the more rapid decline began. 

Delayed density-dependent predation mortality was observed between the peak and decline 

summers: survival was significantly lower in summer 1997 than in summer 1996, and predation 

rates were particularly high in July and August 1997 (Chapter 2; this chapter, Table 3-2). The 

predator reduction experiment showed that predation, primarily by ermine, was necessary and 

possibly sufficient, to limit the lemming population in the summer of the decline (Chapter 2). 

While the population declined on Control grids, it began to increase within the Exclosure (r = 

+0.002 per week in summer, Table 3-3b). Ermine were not prevented from entering the 

Exclosure, but no known predation by ermine occurred in the treated area (Chapter 2), either 

because I had removed two ermine in 1996, or because of a naturally patchy distribution of these 

animals. Ermine were the only predators with a delayed numerical response to lemming density; 

they were abundant in both 1996 and 1997. In the peak year the lemming population may have 

been too dense to be regulated by ermine predation (Sinclair etal. 1992). M y conclusion that 

predation by ermine was a necessary cause of the summer decline is supported by the fact that 

the lemming population did not decline in 1995 when ermine were rare, even though the June 

population density was similar to that in 1997 (Chapter 2, Fig. 2-2). 

I showed in Chapter 2 that before the protective predator exclosure was built, 

demographic parameters did not differ between the Exclosure and Control grids, suggesting that 

the different population dynamics between the treatments should not be the result of differences 

in the habitats. Still, my comparison of population trajectories between the Exclosure and 

Control sites is weakened by the lack of replication of the experimental treatment. The results of 
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this study, together with the experimental results of Korpimaki and Norrdahl (1998), show the 

potential of predator-removal experiments to test hypotheses about the role of predation in the 

dynamics of cyclic microtines. Repeating my experiment on lemmings, with more replication 

and an improved protective structure, has a very good chance of yielding conclusive results. 

Sources of error in estimating diets of lemming predators 

M y estimation of per hectare consumption of lemmings by arctic foxes relies on many 

untested assumptions. First, the area of the foxes' foraging range was based on the literature and 

a rough estimate of the proportion of Dicrostonyx habitat within that area. Second, conversions 

of biomass excreted to that ingested were based on red fox data (Appendix 1). Third, the 

defecation rate of arctic foxes was based on rates for red foxes, captive arctic foxes, and 

unqualified observations. Fourth, my conversion of unidentified prey biomass in scats (which 

occurred in the low and increase years only) to ingested biomass may have been inaccurate. 

Other possible sources of error discussed by Reid etal. (1997) were (1) an overestimate of 

consumption by juvenile foxes because they digest food less completely than do adults, and (2) 

an underestimate of consumption of juvenile lemmings because some small bones may be 

entirely digested (Lockie 1959). M y highest estimated daily consumption of 7.4 lemmings 

(Dicrostonyx plus Lemmus, both adults and juveniles; Results and Table 3-10) by adult foxes in 

the peak summer may be an underestimate. Captive wild arctic foxes consumed on average 530 

kcal day"1 (2219 kJ day"1; Frafjord 1993), equivalent to 6.9 60-g lemmings (Gessaman 1972), and 

Dorogoy (1983) estimated that adult arctic foxes ate 10 lemmings daily during a peak. In 

contrast, my estimate of 4.3 lemmings eaten day"1 by juvenile foxes corresponds better with 

Dorogoy's (1983) estimates that juveniles needed up to 3 lemmings daily in the first month after 

weaning and 8 - 10 in the next month. Hence the conversion factor of 28 (Appendix 1) for arctic 
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fox digestion of lemming biomass might be too low for adult arctic foxes but appropriate for 

juveniles. 

Although the estimated absolute daily consumption of lemmings per fox may not be 

accurate, comparing the relative numbers eaten among years of different lemming densities - the 

functional response; discussed below - is valid. The fit of a Type II function was robust to 

smaller differences among defecation rates in periods of high and low lemming abundance (Fig. 

3-3). However, conclusions based on scats from the low year, 1994, may be misleading because 

of the chance of scats from previous years being included. As well, as mentioned above, in July 

1996 the sample of adult fox scats may have included some juvenile scats. 

These calculations probably underestimate the number of lemmings killed by foxes when 

lemmings were abundant, because foxes engage in surplus killing (Oksanen et al. 1985) by 

hoarding prey for later use (Seton 1929, Pedersen 1962, Garrott and Eberhardt 1987, 

Sklepkovych and Montevecchi 1996) and by killing apparently unwanted prey (pers. obs.). 

During 1996 I found four telemetered lemmings in the predator exclosure that had apparently 

been killed by foxes and left lying on the tundra. Conversely, consumption rates after periods of 

high abundance may be over-estimated, because of retrieval of cached prey. 

In spite of these sources of error, my estimates of lemming mortality from fox predation 

corresponded very well with estimates based on radio-telemetry in the summer sampling periods 

from July 1996 to early July 1997 (Table 3-11). During these periods sample sizes were high, 

and I was able to identify all prey items in the scats (Table 3-7). The different biases may have 

cancelled each other during these periods. I conclude that interpolating these results to estimate 

fox predation in the 1996 - 1997 winter decline period was appropriate. 

Sources of error in the estimation of the functional responses of rough-legged hawks and 

snowy owls were less grave. The most serious was my arbitrary choice of a casting rate by 

snowy owls of 1.55 pellets day"1, based on the short-eared owl literature, and 1 pellet day"1 for a 
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food-stressed owl in 1994. However, my estimated daily consumption by snowy owls of about 5 

or 7 lemmings day"1 (both species, see Results) corresponds well with published estimates. 

Gessaman (1972) concluded from bioenergetics that an adult snowy owl needed 6.6 60-g 

lemmings day"1 in cold weather ( -29°C) and 4 in autumn (-5 to + 5 ° C ) . Pitelka et al. (1955). 

found that once growth of a captive young owl stabilised it ate the equivalent of 5.4 60-g 

lemmings day"1, and Dorogoy (1983) concluded that an adult bird on Wrangel Island ate 5 

lemmings day"1. 

Sex ratio 

The higher proportion of males among large lemmings caught in 1997 could have been 

the result of a lower winter mortality rate of males than of females. MacLean et al. (1974) 

proposed that in winter ermine preyed more heavily on breeding females, identifiable by their 

larger winter nests, accounting for higher proportions of males after increase winters. Males 

were also less vulnerable than females to summer predation by red foxes (Reid et al. 1997), but 

male brown lemmings were more vulnerable than females to summer predation by snowy owls 

(Pitelka et al 1955, Batzli et al. 1980). 

Age structure 

Since there was no evidence of larger litters in the peak than in other years (Table 3-14), 

the smaller proportion of adults than juveniles trapped in the peak could have resulted from 

better juvenile survival in the peak phase. The mortality rate of telemetered juveniles was very 

low in the peak (Blackburn et al. in press). However, the low proportion of juveniles in the 

increase phase (1995) is surprising, since in fluctuating populations juvenile mortality is 

generally highest in peak and decline phases (Krebs 1993). I have no data on juvenile survival in 

1995. Possibly, by moving traps between secondary trapping sessions in 1996 and 1997, but not 
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in 1995 (Chapter 2, Methods), I increased the chance of catching juveniles that territorial adults 

might otherwise might have prevented from entering traps. 

Mass of adult Dicrostonyx 

M y observation that adult collared lemmings were heavier, on average, in June of the 

peak than in June of the decline phase (Chapter 2, Figs. 2-8b,c, 2-9) is consistent with the "Chitty 

effect" (Chitty 1952), that over-wintered microtines in peak populations tend to be large. I also 

found that adults were larger in the Exclosure than on Control grids throughout the experiment 

(Chapter 2, Figs. 2-8, 2-9). Alternative hypotheses to account for these size differences are 

discussed in Chapter 2. ' 

Summer and winter reproduction in lemmings 

A n abbreviated breeding season during the peak phase is typical of cyclic microtines ' 

(Krebs and Myers 1974), and was observed in Dicrostonyx by Krebs (1964) and Chernyavski 

(1979). Several studies df lemmings reported no early cessation of reproduction in the peak, but 

found lower rates of maturation of Dicrostonyx or Lemmus trimucronatus (Pitelka 1973, Fuller et 

al. 1975b, Batzli et al. 1980). It is not known why lemmings stop reproducing at high density. 

Alternative hypotheses include declines in food abundance or quality (Batzli 1985), 

physiological effects of aggression or crowding (Christian and Davis 1966), high risk of 

predation (Korpimaki et al. 1994, Ylonen 1994), and other cyclic genetic or phenotypic changes 

in the individuals (Chitty 1960). Two hypothetical ultimate causes leading to a reproductive 

response to the presence of nearby conspecifics are avoidance of breeding with relatives and risk 

of infanticide (Wolff 1997). 

Whether lemmings never reproduce in the winter after a summer peak is not known. 

Like the early cessation of reproduction in the peak summer, the lack of winter reproduction 
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could result from intrinsic changes or to responses to environmental conditions. Agrell et al. 

(1995) showed that poor growth and reproduction of experimentally introduced voles (Microtus 

agrestis) was associated with previous high vole density, and suggested that the abundant voles 

in the previous year might have impacted food quality. 

It has been hypothesised that winter reproduction occurs only during the increase phase 

in arctic and subarctic small mammals, and that therefore winter breeding is important in the 

generation of cycles (Kaikusalo and Tast 1984). However, it is not easy to procure animals for 

testing when densities are low. Lemmings may breed in all winters except when densities are 

high, and the cessation of breeding, combined with winter mortality, may lead to over-winter 

declines. Obviously, much more information is needed about winter reproduction in lemmings. 

The importance of predation by mustelids 

It has been proposed that predation by mustelids, which are specialist rodent predators, is 

a necessary cause of declines in cyclic small mammal populations in Fennoscandia (e.g. 

Henttonen et al. 1987, Hanski et al. 1993, Korpimaki 1993, Korpimaki and Norrdahl 1998). 

When Norrdahl and Korpimaki (1995b) removed avian predators or least weasels only the 

density of voles did not increase, but when they removed both avian predators and mustelids 

(least weasels and ermine), vole densities increased in summer within the removal areas when 

they were declining elsewhere (Korpimaki and Norrdahl 1998). Mustelids have also been 

implicated in declines of voles and lemmings in North America (Maher 1967, MacLean et al. 

1974, Pitelka 1973, Fitzgerald 1977) and of lemmings in Greenland (Sittler 1995). 

M y results do not support the hypothesis that predation was a necessary cause of the 

population decline in winter. None of the three predictions of this hypothesis were met in winter. 

First, the decline occurred at the same pace within and outside a predator exclosure. Second, a 

delayed density-dependent rise in predation rate was not evident until the following summer. 
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Third, the beginning of the decline was not associated with an increase in predation rate. 

Instead, the decline seems to have been initiated by cessation of reproduction by the end of July 

in the peak summer, implying that predation was not a sufficient cause of the winter decline. But 

because the effectiveness of the predator exclosure was reduced in winter,! cannot with certainty 

refute the hypothesis that predation was a necessary cause of the winter decline. The 

contribution of predation to the decline depends on the extent to which sources of winter 

mortality were compensatory. 

The results do support the hypothesis that predation was a necessary cause of the 

population decline in the following summer, when all three predictions of the hypothesis were 

met. First, the decline was reversed within the predator exclosure in summer 1997. Second,, a 

delayed density-dependent increase in predation rate occurred in summer 1997 compared with 

the previous summer. Third, the steeper summer decline was associated with this increase in 

predation rate. I conclude that the decline was initiated late in the peak summer (1996) by 

cessation of reproduction, but that a high rate of predation, primarily by ermine, was necessary to 

accelerate and extend the decline in the following summer (1997). Predation was therefore 

regulatory in summer 1997, but may not have been regulatory in autumn or winter. 

In lemming populations, the decline phase can occur in any season at a low or high rate (Krebs 

1993). For example, brown lemmings at Barrow crashed in spring and summer, associated with 

heavy predation by avian predators and least weasels (Pitelka 1973, Batzli et al. 1980). 

Therefore my conclusions might apply to only certain declines. Alternatively, all declines from 

high density may have in common reduced breeding and elevated rates of mortality due to 

various causes, such as shortage of food or space and the numerical and functional responses of 

predators. The extent to which changes in reproduction and the different causes of mortality 

contribute to declines may vary among species, locations, and years. 



154 

CHAPTER FOUR 

FUNCTIONAL AND NUMERICAL RESPONSES OF PREDATORS TO CYCLIC 

LEMMING ABUNDANCE: EFFECTS ON LOSS OF GOOSE NESTS 

INTRODUCTION 

Throughout the Arctic, most populations of lemmings have cyclic dynamics, peaking in 

density about every three to five years (Elton 1942). On the Taymyr Peninsula in Siberia the 

breeding success of brent geese (Branta bernicla) fluctuates dramatically (Summers 1986). The 

number of first-year birds reaching the wintering grounds in Britain is usually highest after a 

summer of peak lemming (Lemmus sibiricus and Dicrostonyx torquatus) abundance, and lowest 

in the following year. This pattern is thought to result from predators feeding on lemmings when 

they are abundant but "switching" to the eggs and young of birds after lemming numbers crash 

(Roselaar 1979, Summers 1986). Predation on birds is expected to be particularly severe in the 

year after a lemming peak, if predators breed most successfully during the peak and hence 

increase in numbers in the subsequent year (Dhondt 1987, Summers and Underhill 1987). 

However, Spaans et al. (1998) observed that this delayed numerical response of arctic foxes did 

not always occur on the western Taymyr. Good breeding success in peak lemming years and 

poor productivity in other years has been documented in other species of Arctic-nesting geese, 

including lesser snow geese (Anser caerulescens caerulescens) on Wrangel Island (Bousfield 

and Syroechkovskiy 1985), greater snow geese (A. c. atlantica) in the eastern Canadian Arctic 

(Boyd 1989, Tremblay etal. 1997), and barnacle geese (Branta leucopsis) on Vaygach Island in 

Russia (Syroechkovskiy et al. 1991). Rates of nest failure in lesser snow geese at L a Perouse 
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Bay in northern Manitoba, however, were low and varied little among years (Cooke et al. 1995, 

p. 113). 

In the central Northwest Territories of Canada, the abundance of small mammals, 

including collared and brown lemmings (Dicrostonyx groenlandicus (Traill) and Lemmus 

trimucronatus (Richardson)), has peaked every three years since 1984 (Fig. 4-la) (Poole and 

Boag 1988, Cotter 1991, this study). Nest success, the fraction of nests in which at least one egg 

survived to hatch, of greater white-fronted geese (Anser albifrons frontalisBaird) and 

Richardson's Canada geese (Branta canadensis hutchinsii (Richardson)) has fluctuated widely 

since 1987 (Fig. 4-lb; Bromley et al. 1995). Nest success was synchronous between the two 

species and most nest failures were due to predation. However, the fluctuations in nest success 

were not highly synchronised with the lemming cycle. For example, during the 1987 lemming 

peak nest success was poor, in the 1996 peak it was good, and in 1990 and 1993 it was 

intermediate. 

Indirect effects of lemmings on geese as a consequence of shared predators could occur 

through the predators' functional or numerical responses (Solomon 1949; Holling 1959a, 1961) 

to changes in lemming density. If predators spend less time searching and hence encounter 

fewer goose nests when lemmings are abundant, the predation rate on nests will tend to decrease 

then. If predators breed during lemming peaks and therefore increase in numbers, the predation 

rate on nests might increase instead. Holt (1977) called these alternatives "apparent mutualism" 

and "apparent competition". Theoretically, if prey types share habitat patches apparent 

competition should occur at equilibrium, but if prey types are in separate patches the competition 

will be weakened (Holt 1977, 1984). In model systems, cyclic population fluctuations also tend 

to weaken apparent competition because the variability in prey abundance reduces the average 

density of predators (Abrams et al. 1998). Indirect interspecific effects are usually predicted in 

terms of changes in equilibrium abundance, which are difficult to define and measure in 
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Fig. 4-1 (a) The small mammal abundance index in June (unconnected open squares) and July 

(connected open squares) snap-trapping at Walker Bay (this study), at Hope Bay (40 km south

east of Walker Bay) (Poole and Boag 1988, Cotter 1991, C.J. Krebs and A.J. Kenney unpubl.), 

and on Victoria Island (this study and C.J. Krebs and A.J. Kenney unpubl.), from 1984 to 1997. 

Collared and brown lemmings were caught at all three locations. Voles {Clethrionomys rutilus 

and Microtus oeconomus) were caught at Hope Bay only. Comparison of the June and July 

results from Walker Bay suggests that lemming density was increasing in 1992 and decreasing in 

1993; the peak may therefore have occurred between the July trapping dates, (b) Mean nest 

success rates of Canada and white-fronted geese at Walker Bay from 1987 to 1997 (Bromley et 

al. 1995, this study). Error bars indicate standard errors of the mean. "P" denotes peak lemming 

years. 
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fluctuating populations. More mechanistic indicators, such as predation rate, predator effort per 

prey type (Abrams and Matsuda 1993), and the numerical, aggregative, and switching responses 

of predators may be more useful (Holt and Lawton 1994). 

We tested the hypothesis that the pattern of predation on goose nests (nests lost per km 2) 

during a three-year lemming cycle could be predicted from (1) functional responses of nest 

predators to lemming density, and (2) timing of the numerical response: whether predator 

numbers increase during the lemming peak (e.g. through aggregation) or the following year (e.g. 

through breeding). Nest density was much more consistent among years than was lemming 

density (C.V.: white-fronted goose nest density 1989 - 1994: 31; Canada goose nest density: 33; 

July lemming index 1990 - 1994: 97) and therefore we ignored possible responses of predators 

to changes in nest abundance. The primary predators on goose eggs at this location are arctic 

foxes (Alopex lagopus), glaucous gulls (Larus hyperboreus), and parasitic jaegers (Stercorarius 

parasiticus); all three also eat lemmings. We estimated the numerical responses of these 

predators by recording all sightings during the nesting periods of 4 years, 1994 - 1997, 

characterised by low, increasing, peak, and declining lemming abundance. We obtained indices 

of functional and total responses of the predators by observing them foraging in prime goose 

nesting areas in the summers of 1995 - 1997. Finally, we used the rate of attacks on artificial 

goose eggs as an index of the total response of egg predators to lemming density. 

S T U D Y S I T E 

This study took place at the Walker Bay field station on the Kent Peninsula, Northwest 

Territories, Canada (68° 21'N, 108° 05'W). The region is characterised by shallow tundra ponds 

and lakes separated by low-lying flat grassy areas, mud flats, sedge meadows, or moist broad 

hummocks (less than 20 m above sea level). Annual systematic searches for goose nests are 

conducted over 10 - 15 km (Bromley et al. 1995). Canada geese nest preferentially on islands 
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and the edges of ponds; white-fronted geese typically nest among hummocks away from pond 

edges. Several ridges of higher land (less than 40 m a.s.l.) rise above the wet tundra; dens of 

arctic foxes and nests of owls and raptors are commonly situated on this high ground. Glaucous 

gulls nest colonially on islands in several lakes. 

Collared lemmings are most abundant in hummocky habitats dominated by shrubs, and 

brown lemmings in wetter habitats dominated by grasses and sedges. Because of the fine

grained character of the study area, hummocky habitats and wet habitats are closely juxtaposed, 

often within a few to 50 m of each other. Thus lemmings may be abundant throughout much of 

the study site, and habitats of lemmings and geese overlap to a large degree. However, the 

distribution of goose nests was not uniform: patches (about 1 - 3 km 2) with high nest densities 

were identifiable (Fig. 4-2). 

METHODS 

We assessed relative abundance of lemmings at Walker Bay annually from 1990 to 1997, 

and on Victoria Island from 1990 to 1994, by means of Museum Special snap-traps. We trapped 

in July and in some years at Walker Bay also in June. One hundred traps, baited with a mixture 

of peanut butter and rolled oats, were placed 10 m apart in 2 - 3 lines separated by at least 100 m 

and checked each morning. Trap lines crossed a mixture of habitats; when possible traps were 

placed near burrows or runways. Each year the number of effective trap-nights (defined as total 

trap-nights less misfires, lost traps and captures of non-target species) exceeded 400 at each 

location. We calculated an index of small mammal abundance as the number caught (excluding 

shrews) per 100 effective trap-nights. We did not correct for reduced trapping time per trap 

when catch rates of target species were high, because we assumed any such reduction was small 

since the highest catch was about 11 per 100 trap nights (Results). Similar surveys took place at 
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Fig. 4-2. Map showing approximate areas where geese nest at high density (grey contours) at the 

Walker Bay study area on the Kent Peninsula, N.W.T. The boundaries of these patches varied 

from year to year. Crosses (north-central area of map) represent observation towers used for 

predator studies in 1995 - 1997. Squares show trapping grids (9 ha) used for live-trapping 

lemmings, for comparison to Fig. 2-1. 
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Hope Bay (40 km south-east of Walker Bay) from 1984 to 1991 (Poole and Boag 1988, Cotter 

1991). C . J. Krebs and A.J . Kenney (pers. comm.) have surveyed lemmings since 1995 on 

Victoria Island and since 1994 at Hope Bay, with slightly different protocols and over 1100 trap-

nights annually at each site. 

We measured the numerical responses of predators during the goose nesting period by 

summing all sightings per hour recorded in the field by all observers (a single datum per day). 

Observers travelled throughout the study area and spent less than half their time in the most 

intensive goose nesting areas. To represent the goose nesting period in each year we selected 

data from the 30 days (Bromley et al. 1995) beginning on the estimated first day of nesting 

(mean nest initiation date minus 2 SE). We could not compare the observation data among years 

with conventional parametric or non-parametric statistics without violating assumptions of these 

methods: the data contained many zeroes, their skewed distributions could not be transformed to 

become normal, and the distributions differed among years, violating an assumption of non-

parametric tests (Conover 1980). Instead we used the bootstrap technique (Efron and Tibshirani 

1993) to estimate confidence intervals of the means of the data from each year, without requiring 

any assumptions about probability distributions. For example, from the 30 days of fox 

observation data in 1996, we randomly sampled 30 values, with replacement, and calculated their 

mean. We repeated this procedure 5,000 times and calculated the grand mean. The 95% 

confidence limits were set to upper and lower percentiles of the 5,000 means. The percentiles 

used were not precisely the 2.5 t h and 97.5 t h, but bias-corrected and accelerated (BC a ) values 

(Efron and Tibshirani 1993). We inferred a significant difference between means when 

confidence intervals did not overlap. Because such a guideline is conservative when the size of 

each sample exceeds 10 (Browne 1979), in one instance we considered non-overlapping 94% 

confidence intervals to indicate significance, and we noted non-overlapping 90% confidence 

intervals also. 
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To observe the abundance and behaviour of predators in the prime goose nesting areas, 

we performed continuous scans from two observation towers, about 3 m high and 1.2 km apart. 

In clear weather it was possible to identify predators from a distance of 1 km; we deleted 

observations from the few occasions when visibility was poor. Observations were made during 

the nesting period from alternate towers, from 0700 to 0900 hours. This time of the morning was 

chosen to coincide with times when foxes, jaegers, and gulls were all active, based on 

preliminary trials. It is possible that predator behaviour differed at other times; for example 

foxes may have made more or fewer predation attempts at night when both geese and predatory 

birds were less active. Every 6 minutes we scanned with binoculars (8 x magnification) 

throughout 360°. Of this time, 4.8 minutes were spent scanning (the remaining 1.2 minutes were 

used for recording). A l l sightings of predators were recorded; if the same individual was seen in 

two scans it was recorded again. We averaged the numbers of sightings of each species per scan 

over the two-hour session to create a single observation per session. We then bootstrapped 

means and confidence intervals for all observation sessions within each year, as above. The 

numbers of tower observation sessions were 16 in 1995, 18 in 1996, and 13 in 1997. 

When a fox was sighted we focussed on it with binoculars or a spotting scope (20 x) and 

recorded its behaviour every 9 seconds, as one-letter codes on a pre-printed form. Scan sampling 

ceased during these focal observations. We recorded the following activities: travelling and 

searching (as defined by Stickney 1991), stopped, attacking, eating, and intraspecific and 

interspecific interactions. When the behaviour involved prey, we noted the prey type. Within a 

particular 2-hour session it was possible to distinguish individual foxes either by unique pelage, 

because arctic foxes moult during this period, or by location. For each fox seen on a given day, 

the proportion of time spent foraging was estimated as the ratio of the number of observations of 

foraging behaviours to the total number of observations. We defined travelling, searching, and 

attacking to be foraging behaviours; we initially supposed travelling not to be a foraging activity, 
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but it became clear that rapidly moving foxes were hunting, traversing large areas in zig-zag 

"transects". Eating, which in functional response theory is considered handling time, was not 

considered foraging behaviour. The mean proportions of time spent foraging by foxes were 

compared among years by examining bootstrapped confidence intervals as described above. 

The nesting success of geese, the fraction of nests in which at least one egg survived to 

hatch, was determined as described in Bromley et al. (1995). Predation was the usual proximate 

cause of nest failure. We also estimated the mean number of nests of each species lost per km 2 

in 1989 - 1997 because this statistic should reflect the total response of nest predators, i.e. the 

product of the number of predators and the number of nests taken per predator. Precision of 

these means was estimated by applying the bootstrap method described above to the numbers of 

nests depredated in each km 2 searched in systematic ground searches (these were not done in 

1987 or 1988), not including nests preyed upon or abandoned as a result of disturbance by 

humans. 

We supplemented nest predation data by counting attacks on artificial goose eggs, 

because it can be difficult to determine the type of predator responsible for nest loss, and because 

a single natural egg stolen from a nest may not be recorded. We made plaster eggs in moulds 

and painted them with latex paint. At the beginning of the nesting period, we placed eggs 

uncovered on the tundra near the intersections of a 300 m x 300 m grid of 4 rows of 4 solitary 

eggs spaced about 100 m apart (the typical minimum distance between goose nests). We 

introduced variation into the grid by placing the eggs at random 10 m to the north, south, east or 

west of the grid points. We tethered each egg to a tent peg with 1 m of fishing line tied to a 

screw in the plaster. Chicken eggs were embedded in the plaster of 2 of each 16 artificial eggs in 

an attempt to prevent predators from learning that the eggs were inedible. We used 6 grids of 16 

eggs in 1995 and 4 grids in each of 1996 and 1997. Half the grids were placed in high-density 

goose nesting areas, and half in low-density nesting areas. We put eggs out 3 - 4 days after the 



164 

mean date of nest initiation and checked them after 24 h to determine whether they had been 

attacked. Usually it was easy to identify the type of predator responsible for attacks by the 

marks left by its bill or teeth. Gulls made deep scratches, whereas jaegers made small paired 

indentations with the tips of their bills. Foxes sometimes scent-marked with urine or faeces. 

Each year we spent about 2 hours watching from observation towers to validate our species 

identifications. 

We compared the number of eggs attacked per grid among years and between areas of 

high and low nest density with logistic regression (a generalised linear model for binomial data). 

We selected a parsimonious model by eliminating terms that explained little variation in the 

response variable according to an approximation of Akaike's information criterion (AIC) 

(Akaike 1974). Treatment contrasts (t-tests) were used to compare means that appeared to differ 

among years - the increase versus the peak phase and the increase versus the decline phase -

without performing an excessive number of comparisons. Functions "glm" and "step" in S-Plus 

(Statistical Sciences 1995) were used for these analyses. 

R E S U L T S 

In 1994, numbers of lemmings were extremely low (July small mammal index at Walker 

Bay = 0) following a decline late in 1993 (Fig. 4-la). Lemming density increased in 1995 (index 

= 1.8) and peaked in 1996 (index = 11.4). In 1997 lemming density declined during the summer: 

the index fell from 2.2 in June to 0.7 in July. 

Numbers and foraging patterns of predators 

Sightings of arctic foxes, but not of glaucous gulls or parasitic jaegers, were positively 

related to lemming density (Fig. 4-3). During the peak lemming year (1996), the 94% 



165 

Fig . 4-3. Mean sightings per hour of arctic foxes, glaucous gulls, and parasitic jaegers in the : 

study area as a whole, during the goose nesting periods of 1994 through 1997, (a) relative to year 

(phase) of the lemming cycle, (b) relative to lemming density (mark-recapture estimates, Chapter 

2). Error bars show 95% confidence intervals of the mean, calculated by bootstrapping from the 

data. The filled diamond shows the mean sightings of parasitic jaegers in 1996 after removal of 

an outlying datum of 7 seen in one hour. 
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confidence interval for mean hourly sightings was 0.068 - 0.183; in the following year (1997) 

the equivalent interval was 0.030 - 0.066. Though there were not significantly more sightings in 

1996 than in 1994 or 1995, the above result emphasises the lack of a one-year delay in the 

increase in fox numbers. We observed more active fox dens and larger litter sizes during the 

lemming peak than in other years (Table 4-la). 

Sightings of glaucous gulls (Fig. 4-3) seemed to be inversely related to lemming 

abundance. We saw more gulls hourly during the increase than during the subsequent decline 

phase (95% confidence); in the peak and the preceding low phase (1994) numbers of sightings 

were intermediate. Sightings of parasitic jaegers followed a trend similar to gulls (90% 

confidence), except in the peak year. The high mean and variance in 1996 resulted from an 

outlying observation of 7 jaegers per hour on one day; removing this datum resulted in a mean 

close to that of 1997 (Fig. 4-3). There were no substantial trends in the frequency of sightings of 

predators over the 30 days of observations in each year. 

In 4.8-minute scans from observation towers in the goose nesting area during the nesting 

period, we saw gulls much less often during the peak phase of the lemming cycle than during the 

increase phase (99% confidence, Fig. 4-4). This result confounds the number of gulls in the 

study area as a whole with the proportion of time each spent in the goose nesting area. Although 

the mean number of hourly sightings of gulls in the study area was also lower during the peak 

than during the increase phase (Fig. 4-3), the difference was not statistically significant (< 90% 

confidence). Together, these results imply that gulls spent less time foraging in the goose 

nesting area during the peak than during the increase phase, irrespective of their relative 

abundance in the two years. Pomarine jaegers (Stercorarius pomarinus), which are usually seen 

at Walker Bay only during migration, nested in wet areas of the study site at a density of 

approximately.2 pairs km"2 during the lemming peak of 1996. We observed them in the goose 
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Table 4-1 (a) Numbers of known active dens of arctic foxes and largest observed litter sizes (one 

litter per active den per year) in the Walker Bay study area, Kent Peninsula, N . W . T . in 1994 

through 1997, and (b) numbers of arctic fox pelts sold by the communities of Omingmaktok 

(Bay Chimo) (Om), Bathurst Inlet (BI), and Cambridge Bay (CB) in the preceding winters (fox 

pelt data courtesy of A . D'hont, Department of Resources, Wildlife and Economic Development, 

Government of the N.W.T.) . 

(a) Known Largest 
Year (phase of lemming cycle) active dens observed litter 

1994 (low phase) 0 — 

1995 (increase phase) 5 

1996 (peak phase) 10 

1997 (decline phase) 0 

Sales of arctic fox pelts 

Winter Om BI C B 

1993 - 1994 280 47 419 

1994- 1995 267 51 469 

1995 - 1996 0 0 70 

1996- 1997 149 23 597 
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Fig. 4-4. Mean sightings per 4.8-minute scan from observation towers in the goose nesting area, 

of glaucous gulls, parasitic jaegers, and pomarine jaegers. Scans took place during the goose 

nesting periods of 1995 through 1997. Error bars show 95% confidence intervals of the mean, 

calculated by bootstrapping from the data. 
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nesting area much more often during that year than in the increase or decline years (Fig. 4-4; 

99% confidence). In the first 5 days of the goose nesting period of each year we saw relatively 

few predators from the towers, but otherwise there were no within-year trends in our 

observations. 

The proportion of time that foxes were seen engaging in foraging activities in the goose 

nesting area during the nesting period was lowest in the peak year (Fig. 4-5). Observed foxes 

spent 45% of their time foraging in the peak year, significantly less than the 83% of their time 

spent foraging in the decline (95% confidence intervals did not overlap). In the increase phase 

the corresponding fraction was 87%, which also approached a statistically significant difference 

from the 1996 value (91% confidence). We recorded a fox eating only in 1995, when one 

individual ate what appeared to be carrion, for almost half the total time it was observed. We 

saw only 4 foxes from towers during' the lemming peak, although in that year we saw them more 

often in the study area as a whole and we spent more time scanning than in other years. Only 2 

of these 4 foxes foraged; the others carried offspring or rested. 

Nest predation 

The numbers of goose nests depredated per km (Fig. 4-6) appeared more synchronised 

between the two species than did nesting success (Fig. 4-lb). The number of goose nests of both 

species lost per km 2 were generally inversely proportional to nesting success. This relationship 

was not consistent in the case of Canada geese because the mean number of nests lost per km 2 

each year was correlated with mean nest density (r = 0.63, t 7 = 2.2, p < 0.07). The number of 

white-fronted goose nests lost per km 2 each year was not correlated with the density of nests of 

white-fronted geese (r = 0.21, t7 = 0.6, p > 0.5), but was correlated with the density of Canada 

goose nests (r = 0.74, t7 = 2.9, p < 0.03) and with the total density of nests of both species (r = 

0.61, t7 = 2.0, p < 0.09). Nest density was less variable than lemming density, but in 1997 the 
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Fig. 4-5. Mean proportion of time spent in foraging activities by arctic foxes seen from 

observation towers in the goose nesting area, during the nesting periods of 1995 through 1997. 

Error bars show 95% confidence intervals of the mean, calculated by bootstrapping from the 

data. Sample sizes (n) refer to numbers of foxes observed. 
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Predictions: foxes gulls 
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Fig. 4-6. Mean number of nests of white-fronted and Canada geese depredated per km 2 in 1989 

through 1997, at Walker Bay on the Kent Peninsula, N.W.T. "P" indicates peak lemming years. 

Inset shows the patterns of nest predation predicted during 1995 (increase phase of lerrrming 

cycle), 1996 (peak), and 1997 (decline) if either gulls or foxes are the more important predator 

(see Discussion). 
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nest density of both species was unusually low (white-fronted geese 0.67 km"2, 95% confidence 

interval 0.25 - 1.25; Canada geese 1.75 km"2, 95% C.I. 1.08 - 2.83; cf. Bromley etal. 1995). 

Hence the number of Canada goose nests lost was moderate relative to previous years, even 

though nest success was low. 

Artificial eggs 

A higher proportion of artificial eggs was attacked during the increase phase than during 

either the peak or the decline phases of the lemming cycle (Fig. 4-7) (treatment contrasts, t'n > 

4.4, p < 0.001). Nest density explained little variation in attack rates on artificial eggs and was 

eliminated from the model; data from areas of high and low nest density were pooled in Fig. 4-7. 

In 1995, most attacks on the eggs were by gulls (Fig. 4-7). Especially in that year, gulls often 

attacked the same egg repeatedly, causing considerable damage that may have masked earlier 

attacks by other types of predators. In 1996 and 1997, most attacks were by jaegers (all species 

combined). Attacks (including scent-marking) by foxes were observed in 1997 only. One attack 

by a common raven (Corvus corax) was recorded in 1997. Although part of the decrease in gull 

attacks could have occurred because gulls became habituated to the artificial eggs after the first 

year, this bias is likely unimportant, since the pattern of gull attacks matched the pattern of 

sightings of gulls in the goose nesting area (Fig. 4-4). 

DISCUSSION 

Predator abundance 

Peak abundance of arctic foxes may occur in the same years as lemming peaks or may be 

delayed by one year (Elton 1942). Arctic foxes rear larger than average litters during peak 

lemming years and may not breed in other years (Garrott and Eberhardt 1987, Angerbjorn et al. 
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Fig. 4-7. Mean numbers of artificial goose eggs per grid of 16 eggs attacked by arctic foxes, 

glaucous gulls, jaegers (all species combined), and other predators within 24 hours, at the 

beginning of the nesting periods of 1995 through 1997. The numbers of grids were 6 in 1995 

and 4 in each of 1996 and 1997. Different lower case letters denote significant differences 

between years in attacks by all predator types combined (treatment contrasts, p < 0.001). The 

error bars represent the standard error of the mean of the number of attacks by all predator types 

combined. 
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1995); the foxes at Walker Bay were no exception (Table 4-la). However, although juvenile 

foxes hunting alone or in groups were common at Walker Bay in August and September of 1996, 

many had apparently emigrated or died before the following spring. Arctic foxes travel long 

distances (Garrott and Eberhardt 1987); some may succumb to other predators or starve when 

lemmings decline or become less accessible under deep snow. We found two foxes dead of 

unknown causes on the study area during spring 1997. Hunting by humans doubtless has an 

impact, as people traditionally trap on the Kent Peninsula in winter. In 1997 we found 5 fox 

traps left on the tundra, whereas from 1986 to 1996 we found only one or none each year. 

Trappers reported that 162 pelts came from the Kent Peninsula in the winter of 1996 - 1997 (G. 

Corey, Department of Resources, Wildlife and Economic Development, Government of the 

N .W.T . , pers. comm.). The number of furs sold by trappers from Omingmaktok (the nearest 

community, 80 km to the south) in the winter following the lemming peak (1996 - 1997) was not 

high, but sales from Cambridge Bay that winter exceeded those in the preceding three years 

(Table 4-lb). 

Functional responses of predators 

Arctic foxes and probably glaucous gulls foraged less in the goose nesting area during the 

lemming peak than during the increase phase. We infer from these reductions in time directed at 

foraging for eggs that the number of nests taken by individual foxes and gulls declined 

accordingly. Such a decline demonstrates a third dimension of the functional response -

decreases in the number of nests taken per predator as a function of lemming density. It is 

unnecessary to our purpose here to assess the probable increase in the number of lemmings eaten 

per predator. 

The functional response by arctic foxes to lemming density likely resulted in part from 

habitat structure, since arctic foxes seem to prefer large eggs to small mammals. On two 
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occasions during the long-term nesting study from 1986 to 1997, a sandhill crane egg (Grus 

canadensis) was removed from a nest of two eggs and a lemming carcass left in its place, and 

once a fox temporarily dropped four dead lemmings to try to take one of the tethered artificial 

eggs. Stickney (1991) observed that eggs were a primary prey of arctic foxes in Alaska even 

when microtines were abundant. Breeding foxes remain within territories large enough to 

sustain them and their offspring, whereas non-breeders are not territorial and can hunt elsewhere 

(Bousfield and Syroechkovskiy 1985). Another interpretation of this behaviour is that if the 

habitat near the den is sufficiently productive in terms of lemmings, it is inefficient to travel 

further to search for goose eggs (the marginal value theorem, Charnov 1976). The fine-grained 

distribution of habitat at the Walker Bay study area meant that some goose eggs were available 

near dens, but breeding foxes may not have travelled to the high-density nesting areas. 

Similarly, the inverse numerical response by gulls may have occurred as a result of habitat 

patchiness. Lemmings may have been sufficiently abundant during the peak for gulls to forage 

near their own nests, not hunt further afield, and therefore be observed less often. The same 

thing may have occurred during the decline in 1997. Lemming density may have been quite high 

early in spring 1997. In a concurrent live-trapping study, mean lemming density in June 1997 

was higher than in June 1995, and since density was declining in 1997, it may have been even 

higher in May 1997 (Chapter 2). In late May and early June 1997, we often saw snowy owls 

(Nyctea scandiaca) and short-eared owls (Asio flammeus) and found owl pellets containing 

lemming remains. Sightings of parasitic jaegers may have been affected in this way (Fig. 4-3), 

but we have too few observations to be able to draw conclusions about their foraging effort (Fig. 

4-4). 

Changes in foraging behaviour could be examples of prey switching, which can be 

thought of as a change in the preferences of the predator (Murdoch 1969). Switching is 

recognised when the proportion of a prey type in the predator's diet is an increasing function of 
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the density of that prey, within a range of prey densities (Murdoch 1969). Alternatively, 

switching may be thought of as an increase in the rate of effective search for one prey relative to 

another, as the ratio of the densities of the two prey types increases (Murdoch 1973). This model. 

often (but not always) leads to a sigmoid (Type III, Holling 1959a) functional response curve 

(Murdoch 1973). However, we have not estimated most of these relationships. A Type II curve 

fitted the data of numbers of lemmings consumed by arctic foxes as a function of lemming 

density better than did a Type III curve (Chapter 3), but there were few data at low lemming 

density. Switching is not necessary for apparent mutualism to occur, as long as one prey type is 

substituted for another in proportion to their abundance (Noy-Meir 1981). 

Loss of goose nests 

If we were correct in predicting that the number of goose nests depredated depends on the 

numerical and functional responses of nest predators to lemming density; then the pattern of nest 

predation (nests lost per km , Fig. 4-6) should match the total response, i.e. the pattern of the 

products of the observed responses of predators. Although both arctic foxes and glaucous gulls 

showed strong to moderate functional responses to lemming density, their numerical responses 

differed greatly. The inset in Fig. 4-6 shows predictions of how the number of nests taken by 

foxes and gulls were expected to vary in 1995, 1996, and 1997. We developed the prediction for 

foxes by graphically multiplying their numerical response (inferred from Fig. 4-3) by their 

functional response (inferred from Fig. 4-5); the vertical line indicates the considerable 

uncertainty in the peak year (Figs. 4-3, 4-5). The prediction for gulls was taken from the total 

response, inferred from the pattern of gull sightings in the goose nesting area (Fig. 4-4). The 

predicted pattern of nest predation depends on the relative importance of the two predators. If 

foxes were the only predators on goose nests there should be less predictable variation in the 

number of nests depredated because their functional and undelayed numerical responses would 
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tend to cancel each other (Fig. 4-6, inset) although they are unlikely to do so entirely. If gulls are 

important predators the number of depredated nests should be inversely related to the abundance 

of lemmings (Fig. 4-6, inset). Combining the effects of both predators averaged over many 

cycles, nest loss should be lowest during lemming peaks but should not differ consistently 

between increase and decline years. 

In the case of Canada geese, the fewest nests were lost in the peak lemming year (1996), 

as predicted for predation by gulls or by both types of predator. Contrary to our prediction, more 

nests per km on average were lost in the decline (1997) than in the increase phase (1995) but 

these estimates were not significantly different. The numbers of depredated nests of white-

fronted geese were relatively invariant but were also lowest in the peak year, as predicted for 

predation by foxes or by both types of predator. Indeed, field observations indicate that the 

highly traditional and relatively visible nests of Canada geese are preyed on more often by avian 

predators than are the cryptic nests of white-fronted geese, which are used for one season only; 

and are preyed on more often by foxes. However, because destroyed nests of white-fronted 

geese are difficult for biologists to find, we may have underestimated the numbers taken early in 

the season (Bromley et al. 1995). The pattern of attacks on artificial eggs was similar to that of 

nest loss predicted for predation by gulls. It is not surprising that gulls and jaegers were most 

often responsible for attacking artificial eggs, since these eggs were highly visible from the air 

and lacked the scent associated with geese and their nests. 

Our prediction that the number of goose nests depredated should be a function of the 

numerical and functional responses of nest predators to lemming density was met during the 

years in which the responses were studied. This model would be of most use if it could be 

extended to other years. But data from previous 3-year lemming cycles at this location do not 

meet our prediction that during lemming peaks (1990, 1993) the number of nests lost should be 

lowest (Fig. 4-6). Instead, nest loss has tended to be greatest in the years following peaks (1991, 
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1994) with little variation among increase and peak years. Predators' numerical and functional 

responses probably vary among cycles; even the suite of predators in the system varies. For 

example, we observed an aggregative response to the lemming peak by breeding pomarine 

jaegers (Fig. 4-4), a well-known phenomenon (Maher 1970, 1974), but a response of such 

magnitude occurred only once in 11 years at Walker Bay. Pomarine jaegers depend more on 

small mammals and less on eggs than do parasitic jaegers (Maher 1974). In 1996, they were 

repeatedly observed aggressively defending their nests against foxes, gulls and other jaegers; in 

some instances the gulls and other jaegers were attempting to depredate goose nests within the 

territories of the pomarine jaegers once humans had disturbed the geese. In some Arctic regions, 

snowy owls nesting during lemming peaks protect the nearby nests of geese from other predators 

(Bousfield & Syroechkovskiy 1985, Tremblay et al. 1997), but at Walker Bay nesting snowy 

owls are uncommon. 

The seasonal timing of the decline in lemming density is another likely source of 

variation in the abundance of predators. For example, if the decline occurs late in the peak year 

fewer foxes may survive or remain throughout the winter, and in the following spring migrating 

avian predators will be less likely to stop. O f course, a host of weather-related effects will 

introduce variation. Nest density has not varied much in most years, but in 1997 few nests were 

initiated because of persistent cold weather and delayed snowmelt. Predators may have 

responded functionally to the large reduction in the number of goose nests, taking fewer nests. 

We found positive correlations between nest density and the number of depredated goose nests, 

but observed a high rate of predation on Canada goose nests when nest density was low in 1997. 

When predators have a Type II functional response to prey (nest) density, the rate of predation is 

predicted to rise as density falls unless predator numbers drop sharply (Holling 1959a) 

If the numerical and functional responses of predators vary among 3-year lemming 

cycles, then the phase of the cycle is not sufficient to predict the loss of goose nests. However, 
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in addition to fox trapping, the factors discussed above - abundant breeding pomarine jaegers, 

the timing of the lemming decline, and the density of goose nests - are all variables that are 

expected to alter the numerical and functional responses of predators. Measuring these variables 

may allow more accurate prediction of future relative nest loss in the increase, decline, and peak 

phases of the cycle on the Kent Peninsula (Table 4-2). 

This system seems less predictable than that on the Taymyr Peninsula, where arctic foxes 

and parasitic jaegers are present, but the Taymyr gull (Lams argentatus taimyrensis) replaces the 

glaucous gull. However, it is important to recognise that the long-term data indicating breeding 

success in brent geese (Summers 1986) reflect not only nest success but also survival of goslings 

and migrating birds; hence variation in these individual components may be masked. For 

example, post-fledging survival of lesser snow geese at L a Perouse Bay varied greatly, 

apparently owing to natural mortality (not to hunting), whereas nest success varied little (Cooke 

et al. 1995, p. 115). Recently, in 6 years (2 lemming cycles) of field research on the western 

Taymyr, Spaans et al. (1998) identified several factors that interacted to affect the breeding 

success of brent geese. In that region, most geese bred on offshore islands, where no nest 

predation was recorded because in most years foxes did not visit the islands. However, in the 

year after one lemming peak, few nests were initiated even on the islands, apparently because of 

frequent disturbance by abundant foxes. In the year after a second lemming peak, few foxes 

were seen even on the mainland; some had been trapped and it appeared others had died of 

starvation. In that year, nest success was high but gulls killed most goslings. Differences in 

habitat structure and geography between the Kent and Taymyr Peninsulas, together with rates of 

fox trapping, may contribute to differences in numerical responses of predators in the two 

locations. 

This study supports the hypothesis that nesting success of geese at Walker Bay was 

affected by abundance of lemmings through the functional and numerical responses of nest 
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Table 4-2. Testable predictions showing how factors discussed in the text should affect winter 

survival of arctic foxes, spring abundance of avian predators, and hence the relative number of 

goose nests depredated per km 2 on the Kent Peninsula, N.W.T. Table entries show predictions 

for the nesting period (spring) of the increase, peak, and decline phases of the lemming cycle. 

Loss of goose nests per km 2 

Winter survival Avian 
of arctic foxes predators • Increase Peak Decline 

Abundant breeding pomarine jaegers 
during lemming peak 

Timing of lemming decline: 

Preceding summer or fall 

Spring 

Fox trapping in winter after peak: 

Many trapped 

Few trapped 

Low density of goose nests 

Poor Few 

Good Many 

Poor 

Good 

Low 

Low 

High 

Low 

High 

Low Low Low 
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predators, during the 3-year cycle studied. Arctic foxes and glaucous gulls, foraging in a patchy 

environment, exhibited strong functional responses. Gulls showed no numerical response (or an 

inverse one) resulting in an apparent mutualism between geese and lemmings. A numerical 

response of foxes occurred during the peak lemming year only, which may have cancelled out 

the functional response leading to little net effect on nest predation. Better winter survival of 

foxes after a lemming peak might lead to apparent competition: heavier losses of goose nests in 

the subsequent year. Because the functional and numerical responses of predators are likely to 

vary among 3-year lemming cycles, these indirect effects cannot be predicted from the phase of 

the lemming cycle alone. Instead we have made testable predictions of how variation in the 

abundance of pomarine jaegers, the timing of the lemming cycle, the trapping of arctic foxes, and 

the density of goose nests are expected to affect the relative number of goose nests lost during 

the lemming cycle. 
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CHAPTER FIVE 

CONCLUSIONS 

In this thesis I tested three main hypotheses: (1) predation is necessary to limit the lemming 

population during the peak and decline phases of the cycle, (2) predation is a necessary cause of 

the decline of the lemming population, (3) the pattern of predation on goose nests (nests lost per 

km 2) during a three-year lemming cycle can be predicted from functional responses of nest 

predators to lemming density, and timing of numerical responses. 

Limitation of a population 

Different ecologists have used the term "limitation" to describe different phenomena. In 

this thesis I have applied Sinclair's (1989) definition, which referred to equilibrium population . 

density, to fluctuating populations. Hence, a limiting factor is any factor that alters the density of 

the population by changing production or losses. For example, predation is a limiting factor 

during a time period if it lowers population density during that period; it may not do so if other 

production or loss factors are compensatory. Recognising limitation by some factor relies on 

detecting a difference in density between populations with that factor present and those without. 

This usage of the term limitation is gaining currency (e.g. Krebs 1995). 

Necessary and sufficient conditions 

The terms "necessary" and "sufficient" lend precision to descriptions of causes, but can 

be difficult to understand. A necessary condition is a prerequisite; it must be present for the 

indicated effect to occur. Hence a test of necessity is that when the condition is not present, the 

effect must not occur, other things being equal (Chitty 1996, p. 53). If predation is necessary to 
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limit population density to a certain level, then without predation the population will not be 

limited; that is,its numbers will be higher than when predation is present. In the language of 

logic, this statement can be written P' -i> L', which is read "if not P then not L " , where the 

symbol' denotes "not", and P symbolises predation and L limitation. This logical proposition 

describes one prediction of a predator reduction experiment (Krebs 1996). 

A sufficient condition is one that assures that an effect will occur. Sufficiency can be 

refuted if when the condition is present, the effect does not occur, other things being equal 

(Chitty 1996, p. 53). Therefore, if predation is sufficient to limit density by a specific amount, 

then density will not rise by an equivalent amount in the presence of predation. This proposition 

is written P -> L , which is logically equivalent to L' -> P'. These statements imply that no other 

experimental manipulation will result in an increase in population density equivalent to that of 

predator removal. Obviously, a sufficient condition is difficult to test, and I did not directly test 

the effects of factors other than predation on population density. Instead, I used the presence or 

absence of compensatory mortality to infer that other mortality factors might or might not also 

have been limiting in different phases of the cycle (Chapter 2). In the same way, I considered 

that the lower proportion of reproductive lemmings in the peak phase implied that food, space, or 

social factors might also have been limiting at that time (Chapter 2); therefore, predation may not 

have been a sufficient limiting factor during the peak. 

If one factor is both necessary and sufficient for an event to occur, that event has a single 

cause. However, events can have multiple causes, all sufficient or all necessary (Hilborn and 

Stearns 1982). As well, a specific combination of antecedents might be both necessary and 

sufficient for a phenomenon to occur (Krebs 1996). In order to untangle multiple causes, it is 

important to design research carefully and to clarify with precision the hypotheses tested. 
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Conclusions of this thesis 

1) Predation was necessary to limit the lemming population in summer of the peak and decline 

I tested five predictions Of the hypothesis that predation is necessary to limit the lemming 

population: (1) some mortalities must be due proximately to predation, and when predators are 

removed (2) density will increase, (3) survival will increase, (4) reduced predation will not be 

compensated for by increases in other sources of mortality, and (5) increased survival will not be 

negated by changes in other demographic factors such as emigration or reproduction. 

A l l five predictions were met during the summer decline phase of the cycle. In the 

summer of the peak phase, the first, second, and fifth predictions were met. However, survival 

in the peak was not consistently higher within the predator exclosure than elsewhere. In 

addition, other unidentified sources of mortality apparently sometimes compensated for the 

reduced predation on telemetered animals. Still, the increase in survival was apparently enough 

to lead to greater density in the Exclosure. Therefore, I conclude that predation was necessary to 

limit density during both the peak and decline summers. However, the magnitude of the 

limitation was less during the peak than during the decline; this was evident in the relative 

differences in density observed between treatments (10-fold in the decline but only 2-fold in the 

peak). Predation may limit lemming density only until density rises to a level at which another 

factor becomes limiting. 

2) Predation did not seem to be necessary to initiate the population decline, but was necessary to 

accelerate and continue the decline in the following summer 

I tested three predictions of the hypothesis that predation is a necessary cause of the 

lemming population decline: (1) the lemming population should not decline in an area protected 

from predation when it declines on unprotected sites, (2) the predation rate on lemmings is 
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delayed density-dependent, and (3) the population decline is associated with an increase in 

predation rate. 

None of the three predictions were met in autumn or winter when the decline began. 

Instead, the decline seems to have been initiated by cessation of reproduction by the end of July 

in the peak summer, implying that predation was not a sufficient cause of the winter decline. But 

because the predator exclosure was less effective in winter, Icannot with certainty refute the 

hypothesis that predation was a necessary cause of the winter decline. The contribution of 

predation to the winter decline depends on the extent to which causes of winter mortality were 

compensatory. In contrast, all three predictions were met in the following summer, when the 

decline accelerated. I conclude that the decline was initiated late in the peak summer by 

cessation of reproduction, but that a high rate of predation, primarily by ermine, was necessary to 

accelerate and extend the decline in the following summer. 

3) The indirect effects of lemming abundance on loss of goose nests cannot be predicted from 

the phase of the lemming cycle alone. 

I tested the hypothesis that the relative number of goose nests lost per km2 during a three-

year lemming cycle on the Kent Peninsula could be predicted from functional and numerical 

responses of nest predators to lemming density. This hypothesis was supported during the years 

in which I recorded the predators' responses. However, data from previous three-year lemming 

cycles at this location did not meet my prediction that the number of nests depredated should be 

lowest during lemming peaks. Instead, nest loss tended to be greatest in the years following 

peaks with little variation among increase and peak years. I conclude that because predators' 

functional and numerical responses are likely to vary among cycles, their effects on geese cannot 

be predicted from the phase of the lemming cycle alone. Instead, I propose testable predictions 

of how the abundance of pomarine jaegers, the timing of the lemming cycle, the trapping of 
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arctic foxes, and the density of goose nests should affect the relative number of goose nests 

depredated during the lemming cycle. 

What causes population cycles in lemmings? 

The rapid increase in numbers of collared lemmings at Walker Bay is easy to explain if 

their reproductive rate is high at all times except during the peak summer and the subsequent 

winter. Predation may limit population density to a varying degree throughout the cycle. The 

cessation of reproduction early in the peak summer, apparently an intrinsic response to the 

presence of conspecifics, initiated the decline. Assuming breeding did not recommence until 

March - April, the winter mortality rate was low. Hence, predation may not have been a 

necessary factor in the winter population decline. On the other hand, it is possible that 

competition for food and space in autumn and winter led to higher mortality than occurred in 

summer. Predation, primarily by ermine, accelerated and extended the decline in the following 

summer. Therefore, the deaths of ermine once the lemming population reached very low density 

would allow the population to grow again. I have seen no evidence of an extended low phase in 

this population of lemmings. 

What should be done next? 

O f the factors in the preceding paragraph hypothesised to explain lemming cycles, I 

tested only those related to predation and to summer reproduction. M y conclusions about 

predation were weakened by imperfections in the predator exclosure and by its lack of 

replication. I recommend the following further research: 

1) M y study should be repeated with a replicated predator reduction treatment. Predator 

exclosures should have higher fences (at least 1.7 m) of doubled chicken wire to exclude 

arctic foxes in summer. These structures will be permeable to ermine, but summer predation 
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by ermine was light except in the decline, and removing ermine seemed a satisfactory 

solution. 

2) Winter reproduction in collared and brown lemmings has been studied directly only in 

Siberia (Chernyavski 1979) and to a small extent in Canada (Krebs 1964a). The hypothesis 

that winter reproduction occurs in all years except at peak density needs to be tested, by 

trapping in autumn and winter. This project would be logistically challenging, but might be 

facilitated by involving people living in the north. 

3) What shortens the breeding season in the peak summer is unknown. The social structure and 

relatedness of lemmings should be studied and compared among phases of the cycle. Useful 

methods include radio-telemetry and tagging young in nests or nest boxes, as Lambin (1993) 

has done with voles, and D N A fingerprinting. Our knowledge will increase fastest if we do 

experimental manipulations: for example, testing effects on the maturation of juveniles of (1) 

removing parents as Wolff (1992) did with mice, and (2) artificially enhancing density by 

reducing predation. 

4) Autumn mortality of lemmings, in the peak phase before the snow is deep, should be 

assessed with radio-telemetry. It seems likely that the mortality rate increases in autumn 

owing to deteriorating weather and competition for food and space, but it is difficult to assess 

the condition of lemmings and to quantify food availability in the patchy tundra environment. 

Even data comparing mortality between August and September might be highly informative. 
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APPENDIX 1 

ESTIMATION OF LEMMING CONSUMPTION BY ARCTIC FOXES 

Determining the prey composition of arctic fox scats 

M y method of analysis of scat composition generally followed that of Reid et al. (1997) 

except that I focussed on lemmings in the diet rather than on the entire diet. I autoclaved the 

scats, dried them at 5 0 ° C for 24 hours, and weighed each to the nearest 0.01 g. I soaked each 

scat in water for 24 h, broke it up, and washed it over a 500 p,m sieve. I discarded the particles 

that passed through the sieve." Discarding this microscopic fraction can lead to a slight 

underestimation of birds ingested, because fragments of feathers may be lost; and in temperate 

regions the microscopic particles can be used to estimate earthworm consumption (Reynolds and 

Aebischer 1991). I ignored the microscopic fraction because (\) my primary interest was in 

mammals in the diet, (2) earthworms do not occur in the Arctic, and (3) in preliminary 

examinations, the particles were composed of fine organic and mineral material, with no 

identifiable fragments. 

I sorted the macroscopic material by species or type (bones, teeth, eggshell, large 

feathers, insect parts, vegetation), leaving the "remainder", which usually consisted of 

mammalian hair, sometimes mixed with small feathers, particles of soft tissue, vegetation, and 

inorganic matter (e.g. sand). I identified the remains to species, by means of mammalian teeth, 

bones, and hair, or to class (birds, insects). I used diagrams of microtine teeth in Banfield (1974, 

p. 182) and museum specimens for reference. I did not identify the species of mammals or birds 

by microscopic examination of hair or feathers as described by Day (1966) and Kennedy and 

Carbyn (1981), except to distinguish fur of arctic hare and arctic fox. I measured the length of 

all lemming ulnas and molar tooth rows. I estimated the percentage weight composition of the 
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"remainder" (hair, small feathers, soft tissue, small pieces of vegetation, sand etc.) by eye, taking 

into account different densities. I dried and weighed the separated fractions. I apportioned the 

mass of lemming hair between species of microtines based on the proportion of molars of each 

species (Reid et al. 1997). When both ground squirrel and lemming remains were present in a 

scat, I apportioned the mass of hair according to the mass of bones and teeth of each species. If 

no teeth were available for species identification, I determined the species of lemmings by the 

morphology of their forefeet (Banfield 1974, pp. 185, 194), which were often well preserved, or 

by hair colour (although hair was often very discoloured). This method usually required an 

assumption that only one species of lemming was present. It was possible to determine the 

species of lemming remains in all but 17 of 251 scats. 

Estimation of biomass ingested by foxes 

To estimate the ingested biomass of lemmings that would yield the observed macroscopic 

biomass of lemming egested per scat, I multiplied by a conversion factor of 28, which was 

chosen by Reid et al. (1997) based on lower estimates for digestion of voles by red foxes (Vulpes 

vulpes) (Lockie 1959, Goszczynski 1974). Reid et al. (1997) found that this value yielded 

estimates of lemming biomass ingested by red foxes similar to those based on the mass of 

undigested lemming hair. 

I roughly estimated the total biomass per scat of all species ingested, in order to identify 

periods when the food intake of the foxes was high or low. For these conversions I classified 

birds as large (anseriform, galliform) or small (passeriform, charadriiform) based on feather and 

bone size. I used conversion factors from Reid et al. (1997) for red fox digestion, based on those 

developed by Lockie (1959), Goszczynski (1974), and Reynolds and Aebischer (1991) to convert 

the biomass of voles (23), ground squirrels (43, conversion factor for rabbit in Lockie), arctic 

hare and arctic fox (50, conversion factor for lagomorphs in Goszczynski), large (61) and small 
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(45) birds, caribou (100), and eggshell (9.1). I used the figure for beetles (12.4) in Reynolds and 

Aebischer (1991) to convert invertebrate remains. For unidentified bones I chose a conversion 

factor based on the size of the bones (e.g. squirrel-like). A few scats had large amounts of soft 

tissue with no associated bones; I used an intermediate conversion rate of 45 for this tissue as if it 

was ground squirrel, possibly an underestimate. I did not convert shrew remains because they 

occurred in trace amounts in only two scats. 

Estimation of daily consumption of biomass 

Red foxes defecate, on average, about 7 times day"1 when well-fed (determined from 

snow-tracking; P.-O. Palm, pers. comm. to Reid et al. 1997); This estimate may be too high for 

arctic foxes since one can follow their tracks for many kilometres without finding a scat (K. 

Frafjord, pers. comm.). Captive arctic foxes eating a fixed daily amount of commercial food 

high in carbohydrate produced very roughly 10 scats day"1 (0. Ahlstr0m and E . Fuglei, pers. 

comm.), but arctic foxes eating meat would produce fewer scats. I assumed a defecation rate of 

5 scats day"1 when foxes were well fed. Following the method of Reid et al. (1997), in periods 

when lack of breeding or low estimates of biomass intake per scat indicated that the foxes were 

poorly fed, I used lower defecation rates of 4 day"1 or 3 day'1 (see Results). 

Estimation of daily consumption of Dicrostonyx 

I applied the regression equations in Reid et al. (1997) to the lengths of ulnas and upper 

and lower molar rows in scats to estimate the mass of individual Dicrostonyx in the scats. From 

this I calculated the ratio of adult (> 40 g) to juvenile (< 40 g) Dicrostonyx consumed during 

each sampling period. Sample sizes were large enough to do this only in the summer of 1996 

and in early 1997. For each of these periods I divided the proportion of adults in scats by the 

proportion trapped to indicate the reduced vulnerability to fox predation of adult lemmings 
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relative to juvenile lemmings. I estimated a correction factor to account for this reduced 

vulnerability in all sampling periods, as the mean of these fractions. I then adjusted the ratio of 

adults to subadults killed by foxes by multiplying the proportion of adults caught in each period 

. by this factor. I then estimated the total number of Dicrostonyx eaten based on the biomass 

consumed, these ratios, and the mean mass of adults and juveniles trapped during the period. 
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APPENDIX 2 

ESTIMATION OF LEMMING CONSUMPTION BY BIRDS OF PREY 

Determining the prey composition of avian pellets 

I dried each pellet at 5 0 ° C for 24 hours. I separated the pellets with forceps, sorting the 

hard material by species or type (bones, teeth, eggshell, large feathers, insect parts, vegetation), 

leaving mammalian hair sometimes mixed with small feathers. As with fox scats (above) I 

identified mammal remains to species by means of their teeth, feet, and hair, but did not identify 

the species of bird or invertebrate remains. I was able to identify the species of all lemming' 

remains in pellets. As each of a lemming's 12 molar teeth (3 upper and 3 lower on each side) is 

unique, I counted and identified the species and position in the jaw of all lemming molars. I 

recorded the minimum number of lemmings contained in a pellet based on the number of unique 

molar teeth (Reid et al. 1997). 

To estimate the number of lemmings ingested per rough-legged hawk pellet and per day, 

I used the conversion factors obtained from a feeding experiment by Reid et al. (1997). They 

found that the number of lemmings ingested by a rough-legged hawk exceeded the number 

identified in pellets according to unique molar teeth, by a factor of 1.02 when the hawk was well 

fed and by 1.27 when it was slightly food-stressed. A well-fed hawk produced 1.1 pellets day"1 

and a food-stressed hawk produced 0.9. I did not apply a conversion factor to owl digestion, 

because they digest less bone than hawks do (Craighead and Craighead 1956) and short-eared 

owl pellets closely reflected the number of voles eaten when skulls were used as an index 

(Lockie 1955). I assumed a casting rate of 1.55 pellets day"1 for well-fed snowy owls, based on 

values published for other owl species (details in Results). 
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