
A Computational Model of a Behaviour in C. elegans
and a Resulting Framework for Modularizing

Dynamical Neuronal Structures
by

Chris J. Roehrig

B.Math (1988), M.Math (1991), University of Waterloo

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

Doctor of Philosophy

in

THE FACULTY OF GRADUATE STUDIES

(Program in Neuroscience)
We accept this thesis as conforming

to the required standard

The University of British Columbia
September 1998

© Chris J. Roehrig, 1998

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. 1 further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

Department of ("jŴ dfel ^ W A ^ / k] ^MAQ^IS^A^

The University of British Columbia
Vancouver, Canada

Date od IH h i

DE-6 (2/88)

Abstract

The work presented in this dissertation grew out of a study of a physiologically

based computational model of the tap withdrawal response in the nematode Cae-

norhabditis elegans. A computational model using all available anatomical and

physiological data was unable to explain a dynamic property of the circuit: the

ability of the behaviour to continue after the termination of the stimulus. To account

for this behavioural observation, a novel approach was taken: a neuronal circuit was

engineered from a set of modules each consisting of several physiologically realistic

model cells. The mathematical dynamics of the resulting neuronal circuit produced

an output that was similar to the behaviour observed in the intact worm and shows

that neuronal network dynamics could account for the behaviour.

In the course of this study, it became clear that little is known about the mod­

ular properties of neuronal dynamics. This dissertation presents an approach for

combining non-linear neuronal circuits into larger systems using dynamical mod­

ules (dymods), and a set of tools for studying dymods, and discusses a research

strategy for studying the modular properties of neuronal dynamics.

ii

Contents

Abstract ii

Contents iii

List of Tables viii

List of Figures ix

List of Symbols xii

Acknowledgements xv

Dedication xvii

1 Introduction 1

1.1 Thesis Statement 4

1.2 Document Overview 4

1.2.1 A Physiological Model of C. elegans Cells 5

1.2.2 Dymods: A Framework for Modularizing Dynamical Neu­

ronal Structures 6

iii

1.2.3 The DSS Network Protocol for Dymod Implementation . . 7

1.2.4 A Desktop Robot System for Experimental Neuroethology

using Dymods 8

2 A Physiological Model of

C. elegans Cells 9

2.1 Introduction 9

2.2 The Model 9

2.3 Neurons 13

2.4 Gap Junctions 18

2.5 Synapses 19

2.6 Synaptic Activation 21

2.7 Steady-state Potential • 22

2.8 Synaptic Parameters 24

2.8.1 Modelling Ascaris Monosynaptic Response 25

2.9 The Gearbox 31

2.10 Results and Conclusions 33

3 Dymods: An Approach to Modularizing Dynamical Neuronal Struc­

tures 36

3.1 Methods and Results 37

3.1.1 The Cell Model 38

3.1.2 The Switch Dymod 41

3.1.3 The Oscillator Dymod 45

iv

3.1.4 The Charger Dymod 49

3.1.5 Dymod Assembly: The Reversal Maintenance Circuit . . . 52

3.2 Discussion 53

3.2.1 The Locus of C. elegans Reversal Dynamics 55

3.2.2 Oscillations 58

3.2.3 The Forward-Engineering Approach 61

3.2.4 The Human Engineered Approach 63

3.2.5 Conclusions and Future Directions 66

4 The DSS Network Protocol for Dymod Implementation 69

4.1 Introduction 69

4.2 Design Goals 71

4.3 Review of Existing Frameworks 72

4.4 Theory of Operation 74

4.4.1 Signal and Time Representation 75

4.4.2 Signal Reconstruction . 77

4.4.3 Real-time Scheduling 80

4.4.4 Time Synchronization 83

4.4.5 Connection Management 85

4.4.6 Network Transmission 85

4.5 Conclusions 86

5 A Desktop Robot System for Experimental Neuroethology using Dy-

mods 88

v

5.1 Introduction 88

5.2 Design Goals 89

5.3 Chassis Design 90

5.3.1 Locomotion 90

5.3.2 Proprioception and Sensors 92

5.3.3 Construction 94

5.4 Controller 94

5.4.1 Overview 95

5.4.2 BINMON: The Miniboard Control Program 96

5.5 Future Work 101

5.6 Conclusions 102

6 Conclusions 104

6.1 Future Directions 105

6.2 Novel Contributions 107

Bibliography 109

Appendix A The DSS Protocol Specification and API 118

A . l The DSS Protocol Specification 118

A. 1.1 DSS Port Addresses 119

A. 1.2 DSS Messages 120

A. 2 The DSS Application Programmer Interface (API) 127

Appendix B Robot Assembly Instructions and m b l i b API 132

B. l LEGO Tank Robot Construction 132

vi

Miniboard Host C Library

List of Tables

2.1 Average simulation parameters 13

2.2 Summary of neuron characteristics 15

3.1 Default model parameters 45

A . l DSS Message Header Flags 121

viii

List of Figures

2.1 The complete connectivity of the tap withdrawal circuit 12

2.2 Example of neuron process length and diameters 16

2.3 Fit for the VI-VM synapse 29

2.4 Fit for the DE1-DM synapse 30

2.5 Comparison of model data to behavioural data 34

3.1 A coupled pair of cells 39

3.2 Nullclines for a coupled pair of cells 41

3.3 Fixed points for an inhibitory switch 42

3.4 Inhibitory switch turning on 43

3.5 Simulated recording traces for an inhibitory switch 44

3.6 Oscillator circuit 46

3.7 Delay due to increased steepness of activation curve 47

3.8 Simulated recording traces for an oscillator 48

3.9 Phase portrait of an oscillating switch 49

3.10 Phase portrait of charging behaviour 50

3.11 Simulated recording traces of charging circuit 51

ix

3.12 Complete reversal maintenance circuit 52

3.13 Simulated recording traces for the complete reversal circuit 54

3.14 The dymod view of the reversal maintenance circuit 55

4.1 A neuronal dymod control system for C. elegans reversal maintenance 70

4.2 Dymod interconnections in a coupled two-dimensional system . . . 74

4.3 Reconstruction Error vs Filter Width 79

4.4 DSS Reconstruction Errors vs Sampling Interval 84

5.1 Preliminary Tail-dragger Robot Design 91

5.2 LEGO Tank Robot Design 92

6.1 The Next Step in the Research Programme 106

A . l DSS Architecture 119

A.2 DSS Address 119

A.3 DSS Message Header 121

A.4 DSS Isochronous Message 122

A.5 DSS Asynchronous Message 122

A.6 DSS Connection Request Message 123

A.7 DSS Disconnection Request Message 123

A. 8 DSS Add Target Message 124

A.9 DSS Delete Target Message 124

A. 10 DSS Name Register Message 125

A. 11 DSS Name Query Message 125

A. 12 DSS Name Response Message 126

x

A. 13 DSS Epoch Message 126

A. 14 Epoch Renegotiation 128

B. l Robot Tank Chassis LEGO Assembly, Part 1 133

B.2 Robot Tank Chassis LEGO Assembly, Part 2 134

B.3 Robot Tank Chassis LEGO Assembly, Part 3 135

B.4 Robot Tank Chassis LEGO Assembly, Part 4 136

B.5 Robot Tank Chassis LEGO Assembly, Part 5 137

xi

List of Symbols

Cm Membrane capacitance 17

d Process diameter 16

Esm Equilibrium (reversal) potential for synaptic channels 19

EsYNij Synaptic reversal potential for current Uj 23

EACTJ Presynaptic activation potential for cell j 40

ELEAK Membrane leakage equilibrium potential 17

ERANGE Presynaptic activation range (mV) 22

g maximal post-synaptic membrane conductance 22

cjij Gap junction conductance between cell i and cell j 18

9LEAK Membrane leakage conductance {giEAK =1/Rm) • 40

9OO(VPRE) Steady-state post-synaptic conductance 21

g(t) Synaptic conductance 19

gij Synaptic conductance to cell i from cell j 23

I m Externally injected current 17

IINJi Externally injected current into cell i 23

xii

Iij Gap junction current into cell i from cell j 18

Iij Synaptic current flowing into cell i from cell j 23

ISYN Synaptic current 17

JijiVj) Dimensionless synaptic input to cell i from cell j 40

K Scaling constant for synaptic activation range 22

A Length constant 17

hij Number of gap junctions between cell i and cell j 23

n-ij Number of synapses to cell i from cell j 23

iV Number of cells in the circuit 23

Ri Intracellular resistivity (fi cm) 14

RM Specific membrane resistance (ktt cm2) 14

RM Membrane leakage resistance 17

RPOST Input resistance of postsynaptic cell 27

RPRE Input resistance of presynaptic cell 27

^ Membrane time constant for cell i 39

Synaptic time constant for synapses to cell i from cell j 23

IINJ External input current in volts/sec 40

Vsst Steady-state in-circuit membrane potential for cell i 22

Vi Membrane potential for cell i 22

Vposr Membrane potential of postsynaptic cell 19

VpRE Membrane potential of presynaptic cell 21

xiii

W{j Dimensionless weight for synapses into cell i from cell j 40

xiv

Acknowledgements

I'd like to thank my PhD supervisory and examination committees for their

insightful remarks and guidance: Leah Keshet, Steve Kehl, Mark Greenstreet, Nick

Swindale, and especially Jim Little and Cathy Rankin for footing the bill.

In addition, my previous advisors Robert Miura, Bob Woodham, Dinesh Pai

and the Computer Science Department's Laboratory for Computational Intelligence

were instrumental in the inception of this work.

I'd like to acknowledge Jennifer Enns-Ruttan, Bard Ermentrout and Randy

Beer for helpful discussions in the construction of the dymod circuit of Chapter 3.

Shawn Lockery provided useful advice and experimental evidence to support the

physiological model, and Tom Ferree and Tom Morse gave feedback on the model

and the robotic implementation tools. I owe thanks to Steve Wicks for starting on

the path to modelling the C. elegans tap withdrawal circuit and working with me

through to its publication, and Bruce Hutcheon for his participation and insight.

Life would have been a lot tougher if not for my esteemed fellow

House.ORGians: Tom Glenne, Yggy King, Brenda Mary Haggard, Hanan Elmasu,

Vicki Sawyer, Sabine Tamm, Glenn Wells, and Jackie Taylor. A special thanks to

Hugh Thompson for those late-night eye-scorchers that I hope will be remain the

xv

extremes of my terror, and Fiona Miller whose friendship made the first years here

bearable. To Mike Horsch whose philosophical discussions have inspired me prob­

ably more than anything else. To my family, Mom, Dad, Andy and Lisa for being

there for me, and to my soulmate Christina Pechloff: your support made finishing

this thing easier than I could have imagined.

C H R I S J . R O E H R I G

The University of British Columbia

September 1998

xvi

This thesis is dedicated to my supervisor, Cathy Rankin.

Without her unfailing support through many trials,

this thesis would never have been completed.

xv i i

Chapter 1

Introduction

The brain has a rich dynamical structure. We already have a good idea of

the complexity of its physical structure, its molecules, channels, cells, nerves, and

nuclei, but we have only begun to understand the dynamical structure that emerges

from the interactions among these components. In this thesis, the distinction is

made between dynamical structure and dynamic structure, i.e. structure that is

merely changing over time. An example of dynamic structure is an ion channel:

a cell membrane protein that can change its molecular configuration to allow cur­

rent to flow through. Rather, a dynamical structure may not exist as a physical

entity but rather it only emerges from patterns of changes. For example, in pattern

generators such as the lobster stomatogastric ganglion (Harris-Warrick, Nagy and

Nusbaum, 1992), current flowing through ion channels can ultimately affect other

connected cells and result in periodic patterns of activity — oscillations — among

the cluster of cells. These oscillators are not physical structures: they exist only in

the patterns of changes in the underlying physical structures.

1

Pattern generators like these are the simplest examples of dynamical struc­

tures, but there are likely to be many levels of more complex dynamical structures.

Patterns can emerge in the way that dynamical structures themselves change — pat­

terns of change in the patterns of change, and so on. These dynamical structures

do not necessarily correspond to any physical structures and may not be readily

apparent by examining physical structure, as this thesis shows. There is a grow­

ing appreciation among neuroscientists (Chiel and Beer, 1997) and cognitive and

behavioural scientists (Port and van Gelder, 1995; Kelso, 1995) that understanding

the dynamical structures that emerge from the brain's physical structure is the key

to understanding how the brain generates behaviour.

The dynamical study of neuronal circuits is still in its infancy, and has con­

centrated on small systems. An interesting model system for studying small cir­

cuits is the soil nematode C. elegans. Its nervous system contains only 302 neurons

all of which have been completely described in terms of their location and synap­

tic connectivity (White, Southgate, Thomson and Brenner, 1986; Hall and Rus­

sell, 1991; Achacoso and Yamamoto, 1992). Moreover, the system is amenable to

laser microsurgery so that it is possible to destroy individual neurons in the living

animal with little or no damage to the remaining nervous system (Chalfie, Sulston,

White, Southgate, Thomson and Brenner, 1985; Wicks and Rankin, 1995). In spite

of this simplicity, it has a rich behavioural repertoire and has been chosen as a

model system for studying learning and memory (Rankin, Beck and Chiba, 1990)

and genetics (Wood, 1988). C. elegans has been studied in sufficient detail that it is

feasible to construct a cellular account of a non-trivial behaviour.

2

One such behaviour that has been studied in detail is the tap withdrawal re­

flex in which the nematode swims backwards in response to a vibratory tap stimulus

to the agar jelly on which it locomotes (Rankin et al., 1990). The circuitry underly­

ing this tap withdrawal response has been well-studied (Chalfie et al., 1985; Wicks

and Rankin, 1995). It consists of a sensory and interneuronal subcircuit that pro­

cesses potentially conflicting mechanosensory stimuli to arrive at a graded decision

output (Rankin, 1991). Locomotion is mediated via two command interneuron pairs

called AVA and AVB which drive two independent motor systems for reverse and

forward sinuous locomotion respectively (Chalfie et al., 1985; White et al., 1986).

We have previously constructed (Wicks, Roehrig and Rankin, 1996) a de­

tailed computer model using all available anatomical and physiological data to

predict the functional polarities of the synapses in the C. elegans tap withdrawal

circuit. These predictions were made by optimizing the behaviour of a modelled

circuit when various cells are removed to the tap withdrawal behaviour of real an­

imals when the corresponding cells are removed using laser ablation. Our model

accounts for how the tap response resolves the conflicting stimuli to head and tail

to arrive at a decisive response, and when neurons are removed from the model, it

responds in a way that is commensurate with the response of the animal when the

corresponding cell is ablated. Although this model was useful for predicting the po­

larities of the synapses in the circuit, it was unable to account for the continuation

of the reversal behaviour when the stimulus ended.

3

1.1 Thesis Statement

The hypothesis of this thesis is that network dynamics could account for re­

versal maintenance. While the anatomical map of the nervous system is known,

the connectivity alone is not sufficient to determine the dynamics of the neuronal

circuitry. In-circuit recordings are not yet possible in the animal, and so the cellular

patterns of activity during behaviour are still largely unknown. Therefore, a novel

approach was taken: a neuronal circuit was engineered from a set of distinct mod­

ules each consisting of several physiologically realistic model cells. The circuit was

designed so that its mathematical dynamics produces an output that is similar to the

behaviour observed in the intact worm. The novelty of this approach is the way that

a human engineer was able to design the circuit dynamics in parts to simplify the

process: the dynamics of each module were designed separately using model cells,

and the modules were then assembled to form the complete circuit with the desired

dynamical behaviour. The term "dymod" was coined to refer to these dynamical

modules.

1.2 Document Overview

This dissertation is organized into the following chapters. Chapter 2 de­

scribes the physiological derivation of the mathematical and computational model

used in our polarity predictions (Wicks, Roehrig and Rankin, 1996) and in the con­

struction of the neuronal circuit to account for the reversal maintenance behaviour

(Chapter 3). Chapter 3 describes the dynamical design of the reversal maintenance

4

circuit model and introduces the concept of dymods. Chapter 3 also discusses a

research strategy for studying the interactions between dynamical neuronal struc­

tures using dymods. Chapter 4 presents the Digital Signal Sockets (DSS) network

protocol — a preliminary implementation framework for dymods that emphasizes

their modular aspect by requiring dymods to have a clearly defined interface, and

uses computer networks for interconnection. Finally, Chapter 5 presents another

key component in the dymod research strategy: a desktop robot system for per­

forming neuroethological experiments to investigate how dymods can be used to

model complete behavioural systems.

1.2.1 A Physiological Model of C. elegans Cells

Chapter 2 presents the derivation of the physiologically-based computational

model used in Chapter 3 and previously used (Wicks, Roehrig and Rankin, 1996)

to predict the functional polarities of the synapses in the C. elegans tap withdrawal

circuit. The model uses a simple single-compartment model for the nearly isopo-

tential cells and presents a novel graded and tonic synaptic model. The synap­

tic model emphasizes the distinction between an isolated cell's leakage (resting)

membrane potential and its in-circuit steady-state potential which differs because

of tonic synaptic currents flowing in the circuit. The model's parameters were de­

rived from all available anatomical and physiological data from C. elegans and a

related nematode Ascaris. While the model successfully predicted the magnitude

of the behavioural response in the animal, it did not account for the time course

of the animal's reversal behaviour. To account for this discrepancy, a new model

5

that uses network dynamics to maintain the reversal was proposed, and this is the

subject of the next chapter.

1.2.2 Dymods: A Framework for Modularizing Dynamical Neu­

ronal Structures

Chapter 3 presents the design of a circuit to help explain how the nematode

C. elegans makes transitions between forward and reverse locomotory modes and

maintains its reversal for a duration much longer than the time constants of the cells

controlling the behaviour. This circuit shows that the maintenance of a reversal

could be the result of network dynamics and a bifurcation between two quasi-stable

states governing forward and reverse locomotion.

To engineer the circuit, a novel approach was taken: a human engineer used

intuition about the dynamical processes involved to hand-engineer a modular set

of component dynamical systems ("dymods" — short for dynamical modules) that

were assembled to form the final circuit. In spite of the non-linear interactions

between dymods, the assembly was remarkably straight-forward suggesting that a

human-engineered approach might not be so difficult as it seems.

The reversal dynamics circuit designed in this chapter is a single continu­

ous dynamical system consisting of simple tonic cells. Yet it governs two discrete

behaviours and the crisp transitions between them. These behavioural transitions

occur as the result of bifurcations in the underlying dynamical system and raises

the question of whether bifurcations can account for other behavioural transitions.

A research strategy for investigating the generality of this phenomenon is discussed.

6

1.2.3 The DSS Network Protocol for Dymod Implementation

Chapter 4 presents the Digital Signal Sockets (DSS) network protocol as

an experimental framework for interconnecting dynamical modules (dymods). Dy­

mods are continuous dynamical systems with a denned functional interface of in­

put and output signals designed for use in constructing complex neuronal models

of behaviours for neuroethological experiments, but may have applications to other

control systems. Dymods are implemented as numerical solutions to ordinary dif­

ferential equations (ODEs) and DSS provides a standard mechanism to intercon­

nect independent real-time dymod implementations together with each other and

live motor and sensor signals. The DSS protocol solidifies the modular aspect of a

dymod by providing an explicit definition of a dymod's interface inputs and outputs.

DSS is targeted at two network architectures: TCP/IP for inexpensive exper­

iments with low-bandwidth systems, and IEEE 1394 "Firewire" for high-bandwidth

applications with guaranteed performance. This chapter discusses the following is­

sues for a dymod implementation: signal and time representation, signal reconstruc­

tion, connection management, time synchronization, real-time scheduling, and net­

work transmission. The unoptimized experimental DSS implementation described

here is suitable for low-bandwidth signals of less than 50 Hz and suggests the feasi­

bility of using digital networks to interconnect real-time simulations of dynamical

systems.

7

1.2.4 A Desktop Robot System for Experimental Neuroethology

using Dymods

Chapter 5 adds to the dymod tools by presenting a robot system for neu­

roethology experiments. It continues the theme of the previous chapters with the

goal of empowering the general neuroscience researcher, in this case to perform

robot neuroethology experiments without requiring expertise in robotic engineer­

ing or real-time numerical computation.

The inexpensive LEGO robot uses a wheeled-design for simplicity and re­

liability. It uses a tank-like chassis with treads, which gives it the ethologically

relevant ability to orient in place, unlike other car-like designs which require three-

point turns. The chassis is compact and houses the battery compartment, motors

and computer control system below the tank's "deck" to provide maximum flexi­

bility for adding sensory and actuator apparatus. The control system is a tethered

design: an MIT Miniboard monitors and controls the robots sensors and motors and

transmits them along a cable to a host UNIX computer which performs the actual

neuronal computation. This chapter also presents a Miniboard program (BINMON)

that performs the control functions, a UNIX library to communicate with the robot

via serial cable, and a library add-on for the popular GENESIS neuronal simulator

to allow it to communicate with the robot.

8

Chapter 2

A Physiological Model of

C. elegans Cells

2.1 Introduction

This chapter presents the derivation of the physiologically-based computa­

tional model used in Chapter 3 and previously used (Wicks, Roehrig and Rankin,

1996) to predict the functional polarities of the synapses in the C. elegans tap with­

drawal circuit.

2.2 The Model

The nematode C. elegans reverses its locomotion and swims backwards in

response to a tap stimulus (Rankin et al., 1990), and maintains this reversal for

several seconds before resuming forward locomotion. The circuitry underlying this

9

tap withdrawal response has been well-studied (Chalfie et al., 1985; Wicks and

Rankin, 1995). It consists of a sensory and interneuronal subcircuit that processes

potentially conflicting mechanosensory stimuli to arrive at a graded decision output

(Rankin, 1991). Locomotion is mediated via two command interneuron pairs called

AVA and AVB which drive two independent motor systems for reverse and forward

sinuous locomotion respectively (Chalfie et al., 1985; White et al., 1986). While

the anatomical map of the nervous system is known, the connectivity alone is not

sufficient to determine the dynamics of the neuronal circuitry. In-circuit recordings

are not yet possible in the animal, and so the cellular patterns of activity during

behaviour are still largely unknown.

The model used was a physiologically motivated one. However, in the ab­

sence of detailed physiological data from C. elegans, it was necessary to make a

number of extrapolations from the related nematode Ascaris lumbricoides. These

assumptions are presented in physiological rather than mathematical form to ensure

that they are realistic. Furthermore, preliminary investigations suggested that po­

larity predictions based on the modelled circuit were more strongly determined by

circuit connectivity than the exact values of parameters used. Thus, approximate

ranges for these parameters rather than precise values were derived. The effects of

varying some of the more uncertain parameters were then assessed by rerunning the

same experiments with the values of these parameters varied over three orders of

magnitude.

The circuitry was constructed by extracting connectivity data from AY's

Neuroanatomy of C. elegans for Computation (Achacoso and Yamamoto, 1992).

10

This data indicated not only the presence or absence of a set of synaptic contacts

between a pair of neurons, referred to here as a synaptic class, but also incorpo­

rated the actual number of documented electrical and chemical connections within

that synaptic class. Each synaptic contact within a class of synapses was assigned

the same reversal potential and conductance as all other synapses within that class.

This enabled the simple construction of complex circuits in which all documented

synapses (including all bilateral asymmetries) were included in the model. It was

assumed that the functional efficacy of a synaptic class was correlated with the

number of contacts observed within that synaptic class. Thus, circuits constructed

in this way possessed connections with weights determined by anatomical criteria.

These weights were not varied further in this model; only the reversal potential,

which determined the sign of the connection, was allowed to vary. The complete

connectivity of the modelled tap withdrawal circuit is shown in Figure 2.1.

The model was based on all available physiological and anatomical data

from C. elegans and the related nematode Ascaris. The physiological parameters

used in the derivation of the data presented in this report are shown in Table 2.1

and Table 2.2. The model was implemented in Objective-C on Intel-486, HP series

9000, and NeXT computers running NEXTSTEP software, and was integrated us­

ing fourth-order Runge-Kutta (Press, Flannery, Teukolsky and Vetterling, 1988) to

an accuracy of 0.5%.

11

Figure 2.1: The complete connectivity of the tap withdrawal circuit (extracted from
Achacoso and Yamamoto, 1992). The circuit consists of seven sensory neurons
(shaded circles), nine interneurons (unshaded circles), and two motorneuron pools
(not shown), which produce forward and backward locomotion (triangles). Chemi­
cal connections are indicated by arrows, with the number of synaptic contacts being
proportional to the width of the arrow. Gap junctions are indicated by dashed lines.
Every connection represented in this figure was also represented in the model. This
representation is useful for identifying connection asymmetries which might un­
derlie the origins of oscillations that control locomotion and are hidden in simpler
views of the circuitry.

12

Neuron Parameters Value Units
Membrane resistance see Table 2.2 Ohms
Membrane capacitance see Table 2.2 Farads
Membrane leakage potential -0.035 Volts
Synaptic Parameters Value Units
EPSP reversal potential 0.00 Volts
IPSP reversal potential -0.048 Volts
Synaptic conductance 6.00E-10 Siemens
ERANGE 0.035 Volts
Gap junction conductance 5.00E-09 Siemens
Tap Parameters Value Units
Pulse rest 0 Amps
Phasic pulse 1.00E-11 Amps
Start time 0.01 Sec
Duration 0.3 Sec
Tonic pulse 2.50E-10 Amps

Table 2.1: List of physiological parameters used in the four experiments run in
Wicks, Roehrig and Rankin (1996) are summarized. For a more detailed discussion
on the origin of these values, see the text.

2.3 Neurons

The neurons of C. elegans have simple morphologies which are preserved

across individuals. Many neurons consist of a single unbranched process, and few

have more than two branches (Wood, 1988). Electrophysiological analysis of C. el­

egans cells is still in its infancy (however, see Raizen and Avery, 1994; Avery,

Raizen and Lockery, 1995; Goodman, Hall, Avery and Lockery, 1998) and little

is known about the membrane characteristics of its neurons. However, electro-

physiology has been done on Ascaris lumbricoides, a larger nematode related to

C. elegans (Davis and Stretton, 1989a; 1989b). Its dorsal and ventral nerve chords

have been reconstructed and show considerable similarity to those of C. elegans,

and anatomical homologues of C. elegans motorneurons have been found in Ascaris

13

(Wood, 1988; Stretton, Donmoyer, Davis, Meade, Cowden and Sithigorngul, 1992).

For our model, we used electrophysiological data from Ascaris to determine our

model parameters.

Evidence from Ascaris suggests that signal propagation in C. elegans neu­

rons is likely accomplished electrotonically, without classical all-or-none action po­

tentials. Intracellular recordings of Ascaris motoneurons and interneurons show

no evidence of action potentials, nor has it been possible to evoke them (Davis and

Stretton, 1989a). Specific membrane resistance in Ascaris is unusually high and

is within the range that would permit signal propagation without action potentials.

Niebur and Erdos (1993) have used Ascaris data to do detailed computational stud­

ies of the electrotonic characteristics of C. elegans neurons and have shown that the

function of C. elegans locomotion circuitry can be accounted for by purely electro-

tonic signals.

Davis and Stretton (1989a) have measured specific membrane resistances

R m and intracellular resistivity R{ in Ascaris. In four motorneurons, R m varied

from 61 - 251 kfi cm2, and R, from 79 - 314 fi cm. We assumed that membrane

properties in C. elegans are similar, and used an average of the four measurements:

Ri = 180 ficm, and Rm = 150 kficm 2. We assumed a specific membrane ca­

pacitance of 1 pF/ cm2, a standard value for a lipid bilayer (Rail, 1989). These

membrane properties were adapted to C. elegans anatomy by using the estimated

surface area of each cell (see Table 2.2).

Each neuron's branching morphology is given in Wood (1988) and White

et al. (1986). This, together with measurements of electron micrographs in White

14

Process Length
Cell primary secondary surface area C m Rm v(0

Vb (mm) (mm) (10-6cm2) (pF) (Gfi)
v(0
Vb

A L M 0.50 0.03 9.1 9.1 16 0.89
PLM 0.48 0.06 9.1 9.1 16 0.90
AVM 0.24 0.03 5.0 5.0 30 0.97
PVM 0.50 — 8.7 8.7 17 0.89
LUA 0.10 1.4 1.4 107 0.99
PVD 0.74 0.22 16 16 9.4 0.78
PVC 0.96 — 16 16 9.4 0.68
AVA 0.93 - 15 15 10 0.69
AVB 0.86 - 14 14 11 0.73
AVD 0.86 - 14 14 11 0.73
DVA 0.91 - 15 15 10 0.70

Table 2.2: Summary of neuron characteristics. Branching morphology and process
length were taken from Wood (1988) and White et al. (1986), assuming a stan­
dard worm length of 1 mm. An average process diameter of 0.5 fxm was obtained
from measurements of electron micrographs in White et al. (1976) and White et al.
(1986). An average soma diameter of 5.0 pm was measured from camera lucida
drawings in Wood (1988). V(l)/V0 is the attenuation of a voltage clamp VQ along
the full length of the primary process according to a sealed-end cable equation
(Rail, 1989), and gives an indication of a cell's isopotentiality.

15

et al. (1986) and White et al. (1976) was used to determine average process lengths

and diameters (see Figure 2.2 for an example).

Figure 2.2: Example of neuron process length and diameters. This figure depicts
a schematic of the AVA cell and electron micrographs taken at different cross sec­
tions (labelled e,b,d c). The perimeter of a process was measured at each cross
section, corrected for 10% shrinkage due to fixation, and the diameter of cylinder
with equivalent perimeter was computed. (Adapted from White et al., 1986).

Processes were assumed to be cylindrical and somas were assumed to be

spherical. Process diameters varied from 0.2 to 1.0 pm, and an average value of

d = 0.5 jira was used.

Process lengths were taken from diagrams in Wood (1988) assuming a stan­

dard worm length of 1 mm. Soma diameters were taken from camera lucida draw­

ings in Wood (1988). Soma diameters varied from 2 pm to 10 fim, but since the

soma contributed only a small fraction of the total surface area, we used an average

soma diameter of 5 pm. From these data, a total membrane surface area for each

cell was computed and the resulting total membrane capacitances and resistances

16

for the entire cell was derived (see Table 2.2).

For simplicity we assumed that cells were isopotential. Because the length

constant (Rail, 1989) — given by

dRm 1 1N

•i 1mm, (2.1)

where d is the process diameter — was generally longer than the process (data not

shown), this isopotential assumption was reasonable (also see Table 2.2).

Recent electrophysiological studies in C. elegans by Goodman et al. (1998)

support these basic assumptions. They found that the isopotential assumption holds

in an identified C. elegans neuron ASER, as well as many other unidentified C. ele­

gans neurons. However, several of the interneurons used in our model (AVA, AVB,

PVC and AVD) have processes that are significantly longer than that of ASER and

no direct recordings have yet been made in these cells to test the isopotential as­

sumption. Goodman et al. (1998) also report that the neurons they studied have

electrotonic properties that would enable passive signal transmission without spik­

ing and that they failed to elicit classical Na+action potentials from all neurons they

studied. However, they did not preclude the possibility of Ca2+-dependent spiking

resulting from a regenerative calcium current they found in ASER.

Thus, a neuron's membrane potential, V, is governed by the usual single-

compartment membrane equation (Segev, Fleshman and Burke, 1989):

^m~lZ ~ TT~(BLEAK — V) + 2)2 ^SYN + IINJ, (2.2) at Km

where CM is the total membrane capacitance for the cell, Rm is the total membrane

leakage resistance for the cell, ELEAK is the equilibrium potential of the cell mem­

brane's leakage channels, ISYN is the current attributable to a synaptic input, and IINJ

17

is any injected current. A value of -35 mV was used for E L E A K in these cells (R. E.

Davis, personal communication).

For the direction of current flow, this document adopts the engineering con­

vention that is used in other computational neuroscience works (e.g. Bower and

Beeman, 1995): positive current flows in the direction of positive charge. Note that

this is in the reverse direction from the convention used by electrophysiologists.

2.4 Gap Junctions

The anatomical reconstruction of the nematode nervous system allowed the

identification of both electrical and chemical synapses (White et al., 1986). Gap

junctions were modelled as ohmic resistances where current flowing into cell i from

cell j is given by

k = h (v i - v i) (2-3)

where c/ij is the total conductance of the gap junction area. Niebur (1988) used a

specific conductance of 1 S/cm2 (Bennett, 1972) for a patch of membrane area,

and used unpublished micrographs to determine the area of each gap junction. He

reported that areas of gap junction contact ranged from 0.2 to 2 ̂ m long and were

0.5 pm wide (Niebur, 1988). In our model, a standard gap junction length of 1

pm was assumed, with a resulting conductance of 5 nS for all gap junctions. In

some experiments, this value was increased or decreased by a factor of 10 to test

the sensitivity of the model's predictions to the precise value of the conductance

used.

18

2.5 Synapses

Synaptic classes consisted of a number of individual synaptic contacts. The

number of contacts in each class was extracted from an anatomical database of C. el­

egans synaptic connectivity (Achacoso and Yamamoto, 1992). The identification

of chemical synapses from the anatomical reconstruction was done by identifying

presynaptic specializations and inferring postsynaptic partners based on proximity;

no postsynaptic specializations were evident in the electron microscope reconstruc­

tion (White et al., 1986). Any error associated with this technique would tend to

overestimate the number of chemical synapses in the organism, but these errors

would not appear with high frequency, and would therefore not have a large impact

on the response of the circuit to stimulation.

Each modelled synapse represented a class of synaptic contacts with total

synaptic conductance — the "weight" — given by the product of the number of

individual contacts within the class and the individual synaptic conductance.

The synapse model used was based on the graded synapse model used by

Lockery and Sejnowski (1992) in the leech local bending circuit. However, it was

extended to explicitly include the synaptic reversal potential as well as the conduc­

tance. Post-synaptic current was attributable to gated channels in the post-synaptic

membrane with inward current given by

I = 9(t)(EsYN-VP0ST), (2.4)

where g(t) is the synaptic conductance of the postsynaptic membrane (which is

related to neurotransmitter release which in turn depends on presynaptic potential),

ESYN is the reversal potential for the synaptic conductance, which was assumed

19

to be constant, and VPosr is the postsynaptic membrane potential. For excitatory

synapses, a reversal potential of 0 mV was used, and for inhibitory synapses -45

mV was used (from Ascaris data; R. E. Davis, personal communication).

For simplicity, it was assumed that all synapses made by a given presynap­

tic cell were of the same polarity and class. This is a version of Dale's Principle

(Osborne, 1983) which, although it is not always true, is often used in mathemati­

cal neurosciences to simplify models (Hoppensteadt and Izhikevich, 1997). Com­

putationally, this reduced the number of optimized parameters — each of which

possessed two possible values — to the number of neurons in the modelled circuit.

It was further assumed that all modelled synapses functioned as fast ligand-gated

channels. It was possible that some anatomically defined synapses were modula­

tory and acted via slow second-messenger systems, or that synaptic function was

altered by the milieu interieur (Harris-Warrick et al., 1992); however, we assumed

that these modulatory effects did not affect a single tap withdrawal response.

In the leech local bending reflex, Lockery and Sejnowski (1992) observed

multiple time courses in some of the postsynaptic responses and to model this, they

used a fast (10 ms) and a slow (1500 ms) decaying membrane current, each gov­

erned by its own first order equation. Preliminary versions of this model used a

dynamic synaptic model with a fast (10 ms) synaptic time constant, but no sig­

nificant differences were noted in the results of circuits containing these synapses

and simulations, which used an instantaneous synapse. To reduce the complexity

of the model, we therefore used a synaptic conductance that depended only on the

20

presynaptic membrane potential:

g{t) = goc(vPRE), (2.5)

where represents the steady-state post-synaptic conductance in response to a

presynaptic voltage.

2.6 Synaptic Activation

No direct recordings have yet been made in C. elegans to determine prop­

erties of synaptic activation. In recordings made from Ascaris commissural mo-

torneurons, Davis and Stretton (1989b) demonstrated that synaptic transmission is

graded and transmitter is released tonically between both excitatory and inhibitory

motorneurons and postsynaptic muscle and motorneurons. They found that changes

in postsynaptic potential were related to presynaptic depolarizing current by a sig-

moidally shaped curve and that the presynaptic resting potential lies approximately

in the middle of the voltage-sensitive range of synaptic transmission.

Dynamic network simulations based on graded synaptic transmission have

been described previously (Lockery, Nowlan and Sejnowski, 1992; De Schutter,

Angstadt and Calabrese, 1993). We assumed that synaptic activation and transmis­

sion in C. elegans was similar to Ascaris, namely that it is graded and sigmoidally

shaped with presynaptic potential, and is tonically active with the steady-state po­

tential in the middle of the voltage sensitive range. Accordingly, we used a sig-

moidal function to model the steady-state post-synaptic membrane conductance:

9OO{VPRE) -
9

(2.6)

21

where g is the maximal post-synaptic membrane conductance for the synapse and

Vss is the presynaptic cell's in-circuit steady-state potential, and ERANGE is the presy­

naptic voltage range over which the synapse activated.

Note that because of tonic synaptic input, the in-circuit steady-state potential

of a cell must be determined from the fixed point of the entire system of equations

governing the circuit and this was computed prior to each run.

We used a value of

tf = 21n(^) = -4.3944 (2.7)

so that the conductance changes from 10% to 90% of its maximal value over a

presynaptic voltage range of ERANGE. Note that because synapses were tonically

active, a cell's steady-state potential was not defined solely by its membrane leakage

reversal potential, but rather was determined from the steady-state solution of the

entire system of equations governing the circuit. This was computed before each

run in the following way.

2.7 Steady-state Potential

The assumption that tonically active synapses were active in the middle of

their voltage sensitive range at the steady-state potential implied that the postsy­

naptic conductance g(t) was one-half its maximal value g when the circuit was at

steady-state.

Let Vi denote the membrane potential for neuron i and similarly for other

quantities pertaining to neuron i (see Equation 2.2). Let 7^ denote the ligand-gated

22

synaptic current flowing into neuron i resulting from neurotransmitter release from

neuron j across a single synapse, let Esmij denote the synaptic reversal potential

for synaptic current 1^, and let n t J denote the total number of synaptic connections

from neuron j to neuron i. Similarly, let 1^ denote current flow across a single

gap junction where positive current is in the direction from neuron j to neuron i

and hij denote the total number of gap junctions between neuron j and neuron i.

Finally, let IINJi denote the external current flow into cell i (caused by either sensory

stimulation or external current injection). Then the entire system is given by:

dVi N

RmiCmi—jj- = EiEAKi —Vi + Rmi + Iij) + RmJlNJi (2.8)

at j=1

Iij = fujgijiVj -Vi) (2.9)

hj = riijgij(EsYNij ~ Vi) (2.10)

d9ij _ 9ooM)-9ij (2 11)
dt Tij

900M) = (2.12)
1 + e

 i j ^RANGEij

where N is the number of neurons in the circuit and is the synaptic time constant.

At steady-state, Vi — Vss{, and and external inputs IINJi are zero.

Synaptic conductances are tonic and at their half-activation at steady-state, so that

g0oii(VSSj)=gij/2. (2.13)

After algebraic manipulation, this yields a system of linear equations that can be

solved using standard Gaussian elimination to find (Press et al., 1988):

VSS = A - J b (2.14)

23

where is the ith row and jth column of matrix A and is given by

Aij = -Rmirlijgij, i ^ j , (2.15)
N

An = 1 +Rmi^2(nijgij+ riijgij/2), (2.16)
3=1

and b is a vector is given by

N '
bi = ELEAKI + RM. ^2 EsYNijnijgij/2. (2.17)

j=i

The computed steady-state potential of a cell varied within a physiological

range of -47 mV to 0 mV, with a mean of -24 mV and a standard deviation of 13 mV.

This did not vary appreciably from cell to cell, but rather depended on the circuit's

polarity configuration and ablation condition (i.e. which cells were removed from

the circuit).

As an aside, the system (2.14) can also be inverted to explicitly give ELEAKI

in terms of :

N N

ELEAK, = VsSi-Rmi^nijgijfeiEsn/ij-VssJ-RmiY^nijfa (2-18)
3=1 3=1

2.8 Synaptic Parameters

To determine values for ERANGE and g, the synapse model was fitted to pub­

lished measurements (Davis and Stretton, 1989b) of Ascaris muscle cell postsynap­

tic response to presynaptic current injection as detailed below.

Thus, values for g and ERANGE for particular Ascaris synapses were found.

We assumed that C. elegans synapses activated over voltage ranges similar to As­

caris synapses. However, the maximal synaptic conductance g needed to be adapted

24

to C. elegans. We assumed that g represents the product of a synaptic conductance

per unit area and a synaptic area. In the case of a synapse mediated by a single pop­

ulation of ion channels, g would be equivalent to the single-channel conductance

times the total number of available channels. To adapt the g value from Ascaris

to C. elegans, we assumed C. elegans synapses had similar unit-area conductances

and accordingly scaled the Ascaris g by a factor to account for the presumed differ­

ence in synaptic areas. We assumed the total synaptic area between two cells was

proportional to the length of the process which we estimated by the ratio of body

lengths — approximately 1/250. As this represents only a gross approximation,

the value of g used in these studies was varied over three orders of magnitude in

different experiments (see Wicks, Roehrig and Rankin, 1996).

2.8.1 Modelling Ascaris Monosynaptic Response

Data from Davis and Stretton (1989b, their Figs. 13 and 14) show the post­

synaptic response of an Ascaris dorsal muscle cell (DM) to current injected into

a presynaptic excitatory motorneuron, DEI, and the response of a ventral muscle

cell (VM) to current injected into a presynaptic inhibitory motorneuron, VI. Both

of these response profiles were sigmoidal in shape, were centred approximately at

the resting potential, and had asymptotic post-synaptic responses at the extremes

of positive and negative pre-synaptic current injection. Therefore, the sigmoidal

tonic synapse model presented here was well-suited to modelling these synaptic

responses.

25

Davis and Stretton (1989a; 1989b) placed a recording electrode in a muscle

cell within the output zone of the motorneuron, and an injecting electrode at the

ventral end of a commissural process leading to the synapse. The measured input

resistance of the motorneuron was used to obtain the resulting membrane potential

at the point of injection, and an infinite cable model was used to determine the

membrane potential at the presynaptic site.

Because the recordings that were used to determine input resistance were

made at the same ventral end of the commissure as was injected for the synaptic

response measurements (R. E. Davis, personal communication) and because the

input resistance was approximately constant over the relevant range of injected cur­

rent (Davis and Stretton, 1989a), it is possible to directly use the measured input

resistance to determine the membrane potential at the point of current injection.

Davis and Stretton (1989a) determined the motorneuron cable properties

by fitting their measurements along the commissure to an infinite cable model

(Rail, 1989), and found that the length constant was unusually high (A « 8mm)

— roughly the same magnitude as the length of the process they were measuring.

With such a large length constant, it is possible that the cable's branching morphol­

ogy and sealed ends play a significant role in determining these cable properties

(Rail, 1977), suggesting that a sealed-end cable model might be more appropri­

ate. However, for consistency we used an infinite cable model with cable constants

as determined by Davis and Stretton (1989a) to reproduce their measured voltage

response along the commissure.

Specifically, the presynaptic depolarization in response to an injected current

26

is given by

AVPRE = IMRPREe-Llx (2.19)

where L is the distance from the point of current injection to the synapse, and

RPRE is the input resistance at the point of injection. For the DEI - D M synapse,

the distance L was 5 - 8 mm, and for the VI-VM synapse, it was 0.5 - 2.5 mm

(R. E. Davis, personal communication). We used the mean of 7 mm and 1 mm,

respectively. The input resistances for DEI and VI were reported to be 6 Mfi and

17 Mft respectively (Davis and Stretton, 1989a).

According to the sigmoidal tonic synapse model, the steady-state plateau

response of the post-synaptic muscle is expressed as:

Vposr = ELEAK + RPOST n 9oo (A VPRE) (ESYN — VPOST) , (2.20)

where E L E A K and E$YN pertain to the post-synaptic muscle cell, RPOST is the post­

synaptic cell's input resistance, goo(AVPRE) is the steady-state synaptic conduc­

tance, and n is the number of synapses between the motorneuron and the muscle

cell. Note that here, the presynaptic potential is written as AVPRE and is taken rel­

ative to the presynaptic cell's steady-state potential since the data points taken for

Figure 2.3 and Figure 2.4 were taken relative to steady-state and not to any absolute

voltage reference (Davis and Stretton, 1989b).

The input resistance of ventral and dorsal muscle cells was measured to be

0.18 - 0.50 MfL with a mean of 0.3 Mfi(R. E. Davis, personal communication).

However, it is worth noting that since muscle cells exhibit spiking behaviour, this

input resistance may not be truly constant. We used ELEAK = —35 mV and ESYN = 0

mV for excitatory and ESYN = —45 mV for inhibitory reversal potentials (Davis,

27

personal communication).

A light microscope study of dye-injected muscle cells in Ascaris suggested

that the DEI motorneurons make 5-10 synapses to each dorsal muscle cell and the

VI motorneurons make 8-16 synapses to each ventral muscle cell (J. Donmoyer,

personal communication).

Equation (2.20) can be arranged to give VPOsr explicitly in terms of VPRE:

, , ELEAK + ESYN RpOST H goo (AVPRE) /<-><-> 1 \
yposr = T T ~ D TWT7—\ U . z t ;

1 + RPOST n goo{AVPRE)

where
9oo(AVPRE) = j L — . (2.22)

1 - | - e ERANGE

The change in postsynaptic potential is therefore given by

AVPosr = Vposr — Vss, (2.23)

where Vss is the steady-state potential of the postsynaptic cell under unstimulated

tonic synaptic input, and is given by

T r EiEAK + ESYN RpOST^g/2 /^O^N
vss = n , p ZTJT: • (2.14)

1 + Rposrng/2

Equations (2.19) and (2.21) — (2.24) define a non-linear function for post­

synaptic membrane potential in terms of presynaptic injected current and contains

two unknown parameters, g and ERANGE- Levenberg-Marquardt's method (Press

et al., 1988) was used to fit this function to the data from Davis and Stretton (1989b).

We obtained good results to the fit for the VI-VM synapse (see Figure 2.3).

This fit included the reversal potential ESYN as a fit parameter; this improved the

fit substantially without significantly changing the reversal potential (-48 mV as

28

Figure 2.3: Fit for the VI-VM synapse. The diamonds indicate individual measure­
ments made of the change in postsynaptic membrane potential in a muscle cell V M
in response to a current injected into a presynaptic inhibitory motorneuron VI (ex­
perimental data taken from Davis and Stretton (1989b), their Fig. 14). The curve is
the fit by equations (2.19) — (2.24) produced by Levenberg-Marquardt's method,
with results of g = 150 nS, ERANGE = 52 mV, and ESYN = —48 mV.

29

opposed to -45 mV). The fit results were g = 150 nS, ERANGE = 52 mV, ESYN —

—48 mV and were stable under various initial conditions.

The DEI-DM fit was less accurate since the steady-state conductance was

not precisely a symmetric sigmoid. Therefore, to find approximate ranges for

ERANGE and g, a number of parameter values were explored manually to fit each

branch of the sigmoid separately, and we found that ERANGE ranged from 13-20

mV, and g ranged from 50-150 nS (see Figure 2.4).

DE1-DM
6 I 1 1 1 1 1 1 1 1 r

-8 I i i i i i i i i i I
-10 -8 -6 -4 -2 0 2 4 6 8 10

linj (nA)

Figure 2.4: Fit for the DE1-DM synapse. The diamonds indicate individual mea­
surements made of the change in postsynaptic membrane potential in a muscle cell
DM in response to a current injected into a presynaptic excitatory motorneuron
DEI (experimental data taken from Davis and Stretton (1989b), their Fig. 13). Be­
cause the data do not form a perfect sigmoid, a good fit was not obtained to both
branches simultaneously. The solid curve shows a fit to the upper branch (g = 150
nS; ERANGE =13 mV; ESYN = 0 mV), and the dashed curve shows a fit to the lower
branch (g = 50 nS; ERANGE = 20 mV; ESYN = 0 mV). In both cases, the curves
were fit by hand.

30

To adapt these results to C. elegans we took a rough average of the two

ERANGE estimates to get an activation range of -35 mV, and scaled the g estimate

from the VI-VM synapse by the 1/250 ratio of body lengths to obtain a maximal

conductance of 0.6 nS for an individual C. elegans synapse.

2.9 The Gearbox

This model does not explicitly incorporate nematode locomotion; these is­

sues have been dealt with adequately elsewhere (Niebur and Erdos, 1991; Niebur

and Erdos, 1993). Rather, this report concentrates specifically on sensorimotor in­

tegration. However, because a behavioural variable was used to optimize the mod­

elled output, it was necessary to rigorously define the relationship between the an­

imal's locomotion and activation of the circuitry that controls that behaviour. This

issue was addressed with simple assumptions, which were consistent with work

on the modelling of nematode locomotion (Niebur and Erdos, 1991; Niebur and

Erdos, 1993; Stretton et al., 1992) and current theories of tap withdrawal circuit

function (Chalfie et al., 1985; Wicks and Rankin, 1995). The output of the tap with­

drawal circuit was assumed to control locomotory behaviour primarily through the

action of the interneurons AVB and AVA. These two interneurons make electrical

connections with motorneurons all along the ventral cord of the worm. The AVA

interneurons make gap junctions with the motorneurons AS, VA, and DA, which are

presumed to excite backward locomotion; the AVB interneurons form gap junctions

with the motorneurons VB and DB, which are presumed to excite forward locomo­

tion. Ablation of these cells almost completely destroys an animal's ability to move

31

forward (in the case of AVB ablations) or backward (in the case of AVA ablations)

(Chalfie et al., 1985; Wicks and Rankin, 1995). Thus, it was simply assumed that

the degree to which an animal reversed was proportional to the depolarization of

the AVA interneuron and inversely proportional to the depolarization of the AVB

interneuron. Forward locomotion in response to tap was also proportional to this

value; a lower propensity to reverse was equivalent to a higher propensity to ac­

celerate. The exact nature of this proportionality was not defined because in vivo

it will be modulated by a number of neural, hydrostatic, and physical forces that

are beyond the scope of this endeavour. The gearbox, i.e., the transformation equa­

tion that was used to convert depolarization of AVA and AVB into behaviour, was

simply:

Propensity to Reverse oc J(VAVB — VAVA) dt. (2.25)

The integration was calculated from the time of the tap stimulation until either the

end of the simulation or until the integrand changed sign. Additionally, the test for

a change of integrand sign was suppressed for a grace period of 100 ms to allow

for initial transients after the tap. The tap stimulus was modelled as a phasic depo­

larization of the sensory neurons PLM, A L M and AVM which have been shown to

mediate the response to tap in the intact animal (Wicks and Rankin, 1995).

One consequence of the gearbox assumption is that, because of uncertainty

regarding the exact nature of the proportionality between the output of the AVA

and AVB interneurons and the magnitude of the evoked behaviour, comparisons

of model data and empirical data must be limited to relative changes in response

magnitude. Thus, such comparisons were made between data profiles that had been

32

normalized about the mean of that polarity configuration's response level (i.e. the

value of the integral (2.25) for the model data, and the living animal's reversal

magnitude for the empirical data. See Wicks, Roehrig and Rankin, 1996) This

measure detected changes in the levels of responding to tap produced by an ablation

series, without being sensitive to the absolute response magnitude of a particular

circuit configuration — information which in any case is meaningless in the context

of the gearbox assumption.

2.10 Results and Conclusions

This model was successfully used (Wicks, Roehrig and Rankin, 1996) to

predict the functional polarities of synaptic connections in the tap withdrawal cir­

cuit in the following manner. Because the synaptic weights were determined by

anatomical data and other model parameters were determined from physiological

criteria, the only free parameters in the model were the synaptic polarities. The out­

put of the model was then tested against the behaviour of the living animal under

various conditions of degradation involving the removal of one or more cells from

the circuit (using laser ablation to kill the cell in the animal). For each ablation con­

dition, all possible synaptic polarity configurations of the model were exhaustively

enumerated and tested to find the best overall fit to the behavioural data. The model

provided statistically significant predictions for 13 of the 15 neuron classes and ac­

curately reproduced the response of the animal to ablations (see Figure 2.5). For

full details on the polarity determination strategy and results, the reader is referred

to Wicks, Roehrig and Rankin (1996).

33

ABLATION DATA

CON PLM PVC PVD AVM ALM ALMAVM

MODEL DATA

z
o

CON PLM PVC PVD AVM ALM ALMAVM

Figure 2.5: Comparison of model data to behavioural data. The top figure shows
the reversal response of the animal, normalized to the control (CON) response.
The bottom figure shows the response of the model to the same set of ablations
when the predicted synaptic polarities are used. (Adapted from Wicks, Roehrig and
Rankin, 1996).

34

A novel contribution of this model is the tonic and graded synaptic model it

uses and the resulting distinction that it makes between a cell's resting membrane

potential and its in-circuit equilibrium potential. Graded (non-firing) synaptic mod­

els have been proposed previously (Lockery et al., 1992; De Schutter et al., 1993),

but our assumption that synapses were tonically active forced us to consider whether

they were tonically active in an isolated cell or while in a circuit. In the latter case,

the half-activation threshold of the cell is its in-circuit equilibrium potential which

differs from its leakage membrane potential due to the tonic synaptic currents flow­

ing in the circuit. The preceding derivation contains a treatment of the equilibrium

vs. resting potential and formulas to convert from one to the other.

For the purposes of this dissertation, the interesting consequence of this

model is that the output of the model (the gearbox), while successfully predict­

ing the magnitude of the behavioural response in the animal, did not follow the

same time course as the animal's behaviour. Following a transient tap stimulus last­

ing from 100-600 ms, the nematode continues to swim backwards for up to several

seconds before resuming forward locomotion. The gearbox output of the model, on

the other hand, decays quickly after the termination of the stimulus — with a time

constant equivalent to the average cell membrane time constant, approximately 150

ms. To account for this discrepancy, a new model that uses network dynamics to

maintain the reversal was proposed, and this is the subject of the next chapter.

35

Chapter 3

Dymods: An Approach to

Modularizing Dynamical Neuronal

Structures

The physiological model of the tap withdrawal circuit we developed in

Chapter 2 successfully predicted the behavioural response, but it did not explain

how the reversal locomotion was maintained for several seconds after the comple­

tion of the transient tap stimulus which lasts for only a few hundred milliseconds.

The duration of a reversal response is much longer than both the stimulus and the

characteristic time constants of the neurons that participate in the response (Wicks,

Roehrig and Rankin, 1996; Goodman, Hall, Avery and Lockery, 1998). Moreover,

the crispness of the change from forward locomotion to reverse and back again to

forward suggests that it is an active transition between two states rather than a decay

of an impulse that is responsible for maintaining and terminating the reversal.

36

One possibility is that the maintenance of a reversal could be the result of

network dynamics and a bifurcation between two quasi-stable states governing for­

ward and reverse locomotion. To test this hypothesis, physiologically-based models

of C. elegans cells were used to engineer a neuronal circuit to account for the rever­

sal maintenance response. Because the goal was to see if network dynamics could

account for the behaviour and because so little is known about cellular activity in

C. elegans the design was accomplished without the connectivity constraints of the

anatomical data. The way that the resulting circuit might fit into the anatomical

map is addressed in the discussion.

3.1 Methods and Results

The initial conceptual design of this circuit consisted of a pair of cells to

drive forward and reverse locomotion. The tap was assumed to cause the forward

drive cell to inactivate, the reverse drive cell to activate, and a charging circuit to

begin a charging cycle. When the charging circuit reached a threshold, it was as­

sumed to cause the reversal cell to inactivate and the forward cell to reactivate.

Because there is some evidence that an oscillatory signal is needed to drive loco­

motion (Niebur and Erdos, 1991), the circuit was assumed to exhibit oscillatory

activity. A current input pulse lasting 100 ms was used as an approximation to the

tap stimulus (Wicks, Roehrig and Rankin, 1996).

The resulting neuronal circuit model for maintaining reversals is a dynam­

ical system and it was constructed in a modular way from three dymods, each

themselves a dynamical system: a bistable switch dymod,-a.bistable oscillator dy-

37

mod and a charger dymod. These dymods were designed independently and in­

terconnected to form the complete circuit. The dymods were designed using the

XPP phase plane analysis software for non-linear systems of differential equations

(Ermentrout, 1998). Al l graphs were produced from the output of XPP computa­

tions.

3.1.1 The Cell Model

C. elegans neurons are simple. Although electrophysiology in C. elegans is

in its infancy, current results suggest that signalling in C. elegans neurons is accom­

plished passively without spiking (Goodman et al., 1998). Direct recordings from

some neurons (Goodman et al., 1998) and estimations based on data from a related

nematode species, Ascaris (Wicks et al., 1996; Davis and Stretton, 1989a) suggest

that neurons are nearly isopotential and can be approximated by a single mem­

brane equation, equivalent to a passive RC circuit (Wicks et al., 1996; Koch and

Segev, 1989). Synapses in C. elegans are also simple: evidence from Ascaris (Davis

and Stretton, 1989b) suggests that neurotransmitter is released tonically (even when

the cell is at "rest"), so that positive or negative changes in the cell's activity (i.e.

its membrane potential) result in proportional changes in synaptic transmitter out­

put. In the cell model, the synaptic activation function describes how much neu­

rotransmitter is released at a given presynaptic cell membrane potential. Based on

data from Ascaris (Davis and Stretton, 1989b), this function was assumed to be

sigmoidally shaped: it is approximately linear at the cell's resting potential and

saturates smoothly at both extremes. As in our previous study (Wicks, Roehrig

38

and Rankin, 1996), a simple equivalent channel model was used for synaptic input:

current flows into the postsynaptic cell with a driving force equal to the difference

between the post-synaptic cell's membrane potential and an effective channel re­

versal potential. This reversal potential determines the synaptic polarity (whether it

is excitatory or inhibitory). For full details about the physiological derivation of the

model and its assumptions, see Wicks, Roehrig and Rankin (1996) or Chapter 2.

Figure 3.1: A coupled pair of cells.

The design of the dynamical system for maintaining reversals was begun by

examining the dynamics of a pair of two reciprocally connected cells (Figure 3.1).

This system has two types of behaviour. The first is simple: each cell's membrane

potential tends toward a stable steady-state voltage that is dependent on the synaptic

efficacies (weights). The second is more interesting: a pair of cells can operate as a

switch that can toggle between two different stable states in response to an external

transient input.

The voltage response of a pair of coupled cells is described by the following

system:

m -V1 + J12(V2) (2 W - V i)
dt T\

dV2 -V2 + MV,) (ESYN21-V2)

+ IINJI (3-1)

+ IINJ2 (3.2)
dt T2

where Vi is the membrane potential of cell i (i = 1 or 2) taken with respect to the

cell's leakage (resting) potential, r,- is the membrane time constant for cell i, ESYNIJ

is the synaptic reversal potential for connections into cell i from cell j, taken with

39

respect to the resting potential of cell i (the postsynaptic cell). The sign of Esmij

determines whether the synapse is excitatory (positive) or inhibitory (negative). The

derivation of this model is presented in Wicks, Roehrig and Rankin (1996) and

Chapter 2, but note that voltage quantities here are expressed relative to the cell's

leakage potential, rather than as the absolute quantities used in Chapter 2.

Jij (Vj) is the synaptic input to cell i from cell j and is given by

Jij{V-) = wn s(V j~ E A C T j), (3.3)
GRANGE]

where EACTJ is the synaptic half-activation potential for cell j , and E'RANGEJ is the

voltage range over which cell j activates.

The weight coefficient uiij is the dimensionless synaptic coupling for con­

nections into cell i from cell j . In physiological terms, Wij is the ratio of the

fully-activated postsynaptic conductance (gsYN) to the postsynaptic cell's leakage

conductance (C/LEAK\ multiplied by total number of synapses.

The sigmoidal synaptic activation proportion is given by s(x) = l+\k'x,

where K = -21n(£f) = -4.3944 so that the synapse activates from 10% to 90%

over a voltage range of ERANGE-

The external input to cell i is expressed as Imji which is the change in the

cell's membrane potential induced by an injected current I across the cell's input

resistance, Rmpw, and is expressed in mV/s: IINJ = I x RINPUT, where the input

resistance was taken to be a constant 10 GQ for the short duration of the pulse input

used in the experiments (Wicks et al., 1996).

40

3.1.2 The Switch Dymod

The possible behaviours of this system can be deduced by studying the null-

clines of the system in the (Vi, V2) phase-space. (The nullcline is the set of points

where the membrane potential of the cell does not change.) At an intersection of

the two nullclines, both cells are unchanging so this defines a steady-state or fixed

point of the system (Strogatz, 1994).

100

50 h

v2 0

-50

-100

1
v1 = o

1
r 1

v2 = o

1
v1 = o

1

\
•

-100 -50 50 100

Figure 3.2: Nullclines for a coupled pair of cells. In this case, cell Vi makes an
excitatory connection to cell V2 (ESYN2I > 0). and cell V2 makes an inhibitory
connection to cell V\ (ESYN\2 < 0).

The nullclines of the system (3.1) and (3.2) are given by ^ = 0 and ^ = 0,

and can be written as:

y _ W) J2i(Vi) F
yl - T-—rTT7TEsYNi2, v2 - 7TT1T7T^«V21 (3.4)

l + JM) d " V i Z ' ' I + J21W

In the (Vi, V2) phase plane, these nullclines are sigmoidal in shape and have

asymptotes parallel to their respective axes (see Figure 3.2). In the simple case,

41

Vj (m V)

Figure 3.3: Fixed points for an inhibitory switch. In this case, both cells make in­
hibitory connections with one another (E$YN < 0), and the synaptic weights and
activation ranges have been adjusted so that the nullclines V\ = 0 and V2 — 0 inter­
sect at three fixed points (circles). Stable and unstable manifolds for the hyperbolic
middle fixed point are shown in dashed lines. See text for parameter values.

the two nullclines intersect at a single point which defines the steady-state point for

the system. That this point is stable can be deduced from the sign of ^ in each

quadrant. It is also possible for the two sigmoids to intersect at more than one point

and this underlies the second, more interesting behaviour of the system.

The sigmoids can have multiple intersections in the third quadrant when both

connections are inhibitory (Figure 3.3), or in the first quadrant when both connec­

tions are excitatory. In both cases, there are three intersections corresponding to

three equilibrium states of the system. The outermost two fixed points are stable,

and the middle one is an unstable hyperbolic point. The excitatory case has stable

points when the cells are either both activated or both inactive. The inhibitory case

has stable points when only one is active and this is more suitable for the design

42

since only one of the forward and reverse drive cells can be active at a time.

Figure 3.3 also shows the stable and unstable manifolds for the middle hy­

perbolic point. Trajectories that start precisely on the stable manifold will tend

toward the middle hyperbolic point. All others will tend toward one of the outer sta­

ble fixed points, so that the stable manifold is a separatrix which separates (Vi, V2)

space into two basins of attraction for their respective outer stable fixed point. Fig­

ure 3.4 and Figure 3.5 show how this circuit can operate as a neural switch.

5

0

-5

-10

V2 -15

(mV) -20

-25

-30

-35

-35 -30 -25 -20 -15 -10 -5 0 5

Vj (mV)

Figure 3.4: Inhibitory switch turning on. The trajectory starts at stable fixed point A
with cell 1 turned on (0 mV), and cell 2 off (-32 mV). At t = 200 ms, an inhibitory
current pulse of -2.5 pA is injected into cell 1 for 100 ms, causing the trajectory to
cross the threshold (Figure 3.4), after which the system settles into its other stable
state.

This behaviour is not singular and occurs within the physiological ranges of

parameter values (see Wicks, Roehrig and Rankin, 1996). Parameter values for this

example are shown in Table 3.1. In subsequent design phases, the cells were taken

to have these default parameter values, unless the design necessitated a change.

43

'mj.

50 mV

200 ms

Figure 3.5: Simulated recording traces for an inhibitory switch. The trajectory
starts at a stable fixed point (Figure 3.4) with cell 1 turned on (0 mV), and cell 2 off
(-32 mV). At t = 200 ms, an inhibitory current pulse of -2.5 pA is injected into cell
1 for 100 ms, causing the trajectory to cross the threshold (Figure 3.4), after which
the system settles into its other stable state. At 700 ms, an inhibitory current pulse
is injected into cell 2 and the system switches back to its original state.

44

Note that EAcr = 0 mV corresponds to the assumption that synapses are tonically

active at their resting potential.

Model Parameters Value
r 75 ms
ERANGE 20 mV

Wij 25
EACT 0 mV

ESYN -35 mV

IINJ -2.5 pA x 10 GQ = 25 mV/s

Table 3.1: Default model parameters used for all cell models unless otherwise
noted.

The switch is a dymod that forms the basis for the reversal maintenance

circuit. It has two outputs: Vi which drives forward locomotion, and V2 which

drives reverse locomotion. It has two hyperpolarizing pulse inputs IINJi and ItNJ2

which are used to toggle the switch on and off.

3.1.3 The Oscillator Dymod

The switch dymod has two stable output states which are suitable for switch­

ing between forward and reverse locomotion, but they are static. To satisfy the

requirement of an oscillatory output, the next step was to investigate the possible

oscillatory behaviour of these model cells.

With these model cells, oscillations are not possible with only two cells (al­

though see the discussion following). Oscillations can emerge when a third cell is

added to the circuit. In three dimensions, the nullclines become null surfaces, and it

is quite difficult to visualize the ways that three null surfaces might intersect and the

kinds of trajectories that might arise. Optimization techniques such as genetic al-

45

gorithms have been used to construct neuronal dynamical systems in the past (Beer

and Gallagher, 1992; Yamauchi and Beer, 1994), but because it was difficult to ex­

press a suitable objective function for the desired behaviour, a direct engineering

approach was taken.

The oscillator dymod was built up from the two-cell inhibitory switch by

adding an third cell (Figure 3.6). The basic idea was that the third cell would be

made to "pull" the trajectory in its opposite direction, but operating with a delay to

result in oscillations.

Figure 3.6: Oscillator circuit

Because the two switch cells already made inhibitory connections with one

another, they were assumed to be restricted to making inhibitory connections with

the third cell. This is the same application of Dale's Principle as used in Chapter 2

and it was applied with the understanding that it is not always true. Because of this

inhibitory connection, cell 3 would therefore become activated as cell 1 turns off,

and by making an inhibitory connection to cell 2, it would "pull" cell 2 off in the

desired manner.

When the third cell was added, this system produced a new stable fixed point

instead of oscillations because the activation of cell 3 was not delayed with respect

to cell 1. A delay was added by reducing cell 3's activation range to 5 mV, but

leaving its half-activation potential the same as the other cells (to preserve the tonic

46

synapse assumption). The increased steepness of the activation curve gave cell 3

an effective activation delay compared to cell 1 (see Figure 3.7). (This "delay" is

not a "hard" delay in the sense of AT(t) = t — r, but rather an apparent delay

induced by different activation characteristics.) The activation range was chosen to

be steep enough so that cell 3's synaptic transmission only occurred when cell 3

was almost maximally activated, resulting in a pulse-like activation pattern (see the

s 3 trace in Figure 3.8). Note that the assumption that cells are tonically active at

their resting (leakage) potential does not necessarily imply that they are active at

their in-circuit steady-state potential. In fact, in the oscillator, cells 2 and 3 never

attain their leakage potential (0 mV in the simulated traces). See Section 2.7 or

Wicks, Roehrig and Rankin (1996) for a treatment of steady-state potential versus

leakage potential.

i

synaptic
activation

0

presynaptic potential

Figure 3.7: Delay due to increased steepness of activation curve. Cell 3 has steeper
activation characteristics than cell 1. Because both are centred at EACT (i.e. they are
tonically active), cell 1 will begin to activate earlier at a lower presynaptic potential
than cell 3.

Adding this delay did indeed result in oscillations which tended toward a

limit cycle (Figure 3.9). As with the switch, an inhibitory current pulse of 2.5 pA

into cell 1 was used to start the oscillations and the same pulse into cell 2 was used

47

'uv2 IT

J
500 ms

50 mV

75% activation

Figure 3.8: Simulated recording traces for an oscillator. The s, curve is the synaptic
VJ-EACTJ

ERANGE i
activation for cell i (0 < s,- < 1) given by Sj = s(^^^1).

48

to stop the oscillations (Figure 3.8).

5

0

-5

-10

-15

(m V) - 2 0

-25

-30

-35

-35 -30 -25 -20 -15 -10 -5 0 5

Vj (m V)

Figure 3.9: Phase portrait of an oscillating switch. This graph shows the projection
of the phase space trajectory onto the (Vi, V2) plane. The trajectory starts at the
lower right-hand fixed point and settles onto a limit cycle before an inhibitory pulse
returns it to its stable state.

3.1.4 The Charger Dymod

The next step in constructing the reversal maintenance circuit was to design

the circuit to automatically generate the inhibitory pulse into cell 2 that stops the

oscillation. This was done using a charger dymod that received input from the

oscillator and gradually increased its activity over a few seconds before exceeding

a threshold and delivering the inhibitory pulse to cell 2.

A single cell did not easily work as a charger, since it needed excitatory

input in order to charge to a threshold, and so far the circuit design only had in­

hibitory neurons in it. So again, the two-cell inhibitory switch was chosen as the

49

starting point for the charger dymod. The charger dymod was designed separately

as an independent module, with a periodic pulse train test input. The input cell that

received the pulse train was labeled cell 4 and its partner, cell 5.

When used as input to the switch, a periodic pulse train induced forced os­

cillations which can be clearly seen in (V 4 , V 5) phase space (Figure 3.10). There

are three different qualitative behaviours that can occur, depending on the strength

of the pulse input. For small pulse inputs, the switch is driven into oscillations

which settle onto a limit cycle around the nullclines near the initial fixed point. For

large inputs, the switch is driven first into its other state and then into small stable

oscillations near the other fixed point.

v5

(m V)

5
r—i 1 1 1 1 1 1 1

\ 0

-5

\
0

-5 •

-10 ^ A v .'"
-15 \̂_̂ '' •

-20 •

-25 •

-30 -

-35 l
' _ - ' 1

•

-40 . 1 i 1 1 1 1 1 i 1

-35 -30 -25 -20 -15 -10 -5 0 5
V4 (m V)

Figure 3.10: Phase portrait of charging behaviour. The input pulse train kicks
the trajectory a bit further each cycle until it finally crosses the threshold. (Input
strength of 14.7mV/s).

Between these extremes is a fairly narrow, continuous range where the

forced oscillations slowly creep along the nullclines until the trajectory nears the

50

switching threshold at which point it is driven across and the switch changes state

(Figure 3.10). This is the desired charging behaviour. The charging time depends on

the input level, and is determined by the number of oscillations that occur before the

trajectory crosses the threshold. Figure 3.11 shows the simulated recording traces

for the charging behaviour. The synaptic activation of Cell 5 is suppressed until

the trajectory crosses the threshold, at which point it becomes activated. Cell 5 was

therefore used as the output of the charger dymod to deliver the inhibitory "turn-off'

signal to the oscillator.

v4

ys

s5

500 ms

Figure 3.11: Simulated recording traces of charging circuit. The Sj curves are as
defined in Figure 3.8.

This charging behaviour, although quite sensitive to the input level, is not

a singular occurrence and can occur whenever the nullclines have 3 intersections

njirLTLnnriTLTinj

50 mV

75% activation

51

to form a switch. However, the appropriate input range for charging is sensitive to

the precise configuration of the nullclines, and therefore depends on the other cells'

parameters. In the example in Figure 3.10, the charging behaviour occurred over an

input range of about 0.1 mV/s.

3.1.5 Dymod Assembly: The Reversal Maintenance Circuit

The final stage in the construction of the reversal maintenance circuit was

to connect the charger dymod to the oscillating switch dymod to turn it off (Fig­

ure 3.12).

Figure 3.12: Complete reversal maintenance circuit.

Cell 3 was chosen as input to the charger dymod because its synaptic output

was pulse-like (see S3 in Figure 3.8). The charging behaviour of the circuit was

first tuned with its output disconnected by adjusting the input coupling strength to

cell 4 (W 4 3) until the appropriate charging behaviour was manifest. This was done

by observing the charging trajectory in (V4, V5) phase space as in the design of the

charger. Cell 5 was then connected to Cell 2 to deliver the inhibitory "turn-off"

signal, and its coupling strength (W25) was gradually turned up until the oscillator

turned off. During this process, the input coupling strength to cell 4 needed to be

adjusted to compensate for the interactions between the oscillator and the charger

and maintain the appropriate charging behaviour. The process was straight-forward

52

and required only a few iterations of adjustments. The simulated recording traces

of the complete circuit are shown in Figure 3.13.

Note that the shape of the charger traces (V^V^) in Figure 3.13 is more

rounded than those of Figure 3.11. This could be because a more rounded pulse

(« 3 in Figure 3.13) was used as charger input (compared to the square pulse of

Figure 3.11), but it might also be due to some non-linear interactions between the

oscillator and charger dymods.

3.2 Discussion

In this chapter a circuit was designed to help explain how the nematode

C. elegans makes transitions between forward and reverse locomotory modes and

maintains its reversal for a duration much longer than the time constants of the cells

controlling the behaviour. The circuit was designed using the novel approach of

combining separate dynamical modules ("dymods") governed by non-linear ordi­

nary differential equations. In spite of the non-linear interactions between dymods,

the assembly was remarkably straight-forward suggesting that a human-engineered

approach might not be so difficult as it seems.

The system is depicted in Figure 3.14 and consists of three multi-cell dynam­

ical modules (dymods): a switch, an oscillator, and a charger. The switch bifurcates

between two stable states in response to a tap stimulus: a stable forward state where

Vi drives forward locomotion and V2 is off, and a reverse state where V\ is off and

V2 drives reverse locomotion. The oscillator was constructed out of the switch by

adding an "oscillator helper" cell V3 to "pull" V2 against its trajectory, but with a

53

'mjj

Vl

FORWARD DRIVE

REVERSE DRIVE

OSCILLATOR HELPER

CHARGER (INPUT)

CHARGER (OUTPUT)

50 mV
75% activation

500 ms

Figure 3.13: Simulated recording traces for the complete reversal circuit. The
curves are as defined in Figure 3.8. Non-default parameter values: ERANGES
5 mV; W2§ = 5; = 30. See Table 3.1 for other parameter values.

54

osc i l l a tor

FWD REV

Figure 3.14: The dymod view of the reversal maintenance circuit.

"soft" delay (as opposed to a "hard" t — r delay) which was induced by adjusting

the synaptic activation characteristics of V3. The oscillator's job was to generate an

oscillatory locomotion signal for reverse locomotion. (Note that the forward signal

is not oscillatory, but it can be made so by connecting it to another oscillator.) The

reverse locomotion is turned off by a signal from the charger (V5). The charger is

a variant of the switch which gradually approaches its switching threshold in re­

sponse to an oscillatory input from V3. When the threshold is reached, it switches

state and Vj> delivers its "turn off' signal to end the reversal. The circuit's operation

can be seen in Figure 3.13.

3.2.1 The Locus of C. elegans Reversal Dynamics

The reversal maintenance circuit constructed here was based on physiolog­

ically realistic cell models, but did not take into account the known anatomical

connectivity of the nervous system. The function of the two switch cells V\ and

55

V2 bear a striking resemblance to that of two pairs of ventral cord interneurons:

Vi corresponds to the bilateral pair AVBL and AVBR which connect to the for­

ward motorneuron pool and V2 corresponds to the pair AVAL and AVAR which

connect to the reverse motorneuron pool (White et al., 1986; Chalfie et al., 1985).

However, neither AVAL nor AVAR make direct reciprocal connections with either

AVBL or AVBR (White et al., 1986) which suggests that they do not function as

a switch of the form Vi,V2. Another interneuron pair, PVC, makes strong recip­

rocal connections with AVA and is involved in the response to tail-touch (Wicks

and Rankin, 1995). However, laser ablation of PVC does not affect the dura­

tion of spontaneous reversals (Wicks and Rankin, 1997), which suggests that it

is not involved in the reversal maintenance dynamics. As no other interneurons

from the tap withdrawal circuit make any strong reciprocal connections (Wicks and

Rankin, 1995; Chalfie et al., 1985; White et al., 1986), this suggests that if reversal

dynamics is governed by a circuit like that of Figure 3.12, the circuit likely does not

lie in the interneuronal circuitry and may instead lie downstream in the motorneuron

circuitry or may involve other processes than network level dynamics.

Mechanical interactions may play a role in reversal dynamics. When a re­

versal is initiated, the body goes into a deep bend which is thought to activate

a stretch-related current (Tavernakis, Shreffler, Wang and Driscoll, 1997; Corey

and Garcia-Anoveros, 1996) which could modulate neuronal function. Niebur and

Erdos's (1991) model of C. elegans locomotion circuitry suggests that interactions

between the interneurons, muscle cells, body wall and the medium in which the

nematode swims all may play a role in determining the locomotion dynamics. It

56

may be possible, however, to rule out an external component in the reversal dynam­

ics. When the worm is placed in water, thus removing the mechanical resistance

to body movement, it thrashes in an oscillatory manner during periods of forward

locomotion and bends into an unmoving hoop during periods of spontaneous re­

verse locomotion before resuming thrashing If the duration of this "reversal" period

is unchanged in water, it would suggest that the reversal maintenance dynamics is

generated entirely internally without interaction with the medium in which it swims.

It is also possible that reversal dynamics is governed by more diffuse pro­

cesses which modulate synaptic activity such as neuropeptides (Schinkmann and

Li , 1992). A slowly increasing neuropeptide concentration might be a more plausi­

ble charging mechanism than the charger presented in this chapter which has very

sensitive charging regime and would need some kind of precise regulation.

In order to reduce the complexity of the model, gap junctions were ignored

during the design process. However, there are strong gap junctions connecting the

tap withdrawal interneurons to the motorneurons governing locomotion (Chalfie

et al., 1985) and they may also play a role in the reversal maintenance dynamics.

Further experiments in the animal could narrow down the possibilities for the

locus of the reversal dynamics. Chalfie et al. (1985) and Wicks and Rankin (1995)

have successfully used laser ablations to determine the functional roles of neurons

in the reversal response to mechanosensation. If the charging component of the

reversal dynamics was performed by a neuronal circuit like V4 and V5 in Figure 3.12,

one would expect that a suitable ablation would destroy the charging behaviour and

the reversal would continue without stopping. This has not been the case for the

57

ablations performed on any of the tap withdrawal interneurons (Wicks and Rankin,

1995; Wicks and Rankin, 1997). It may be possible to perform an ablation study of

the locomotory motorneurons to find such a cell, but if the charging mechanism is

a modulatory peptide rather than a neuronal circuit, no such cell would be found.

Modelling efforts in C. elegans are frustrated by the inability to record neu­

ronal activity during behaviour. It appears unlikely that the usual electrophysio­

logical recording methods will ever be possible in vivo in C. elegans since its ex­

ternal cuticle is under hydrostatic pressure and the worm explodes when it is punc­

tured. However, new genetic techniques have been developed to engineer C. elegans

strains that express green fluorescent proteins (GFP) in specific cells (Chalfie, Tu,

Euskirchen, Ward and Prasher, 1994) and it may be possible in the future to obtain

activity information from voltage-sensitive fluorescence resonance energy transfer

(FRET) imaging (Gonzalez and Tsien, 1995) using fluorescent proteins expressed

in the cells of interest. For the quantitative studying of locomotory behaviour, the

most interesting cells are AVB and AVA, the command interneurons that play a key

role in mediating forward and reverse locomotion, respectively. Knowing the activ­

ity patterns of these cells during a reversal — whether they have transient activity,

prolonged activity or oscillatory activity — is crucial to further modelling efforts.

3.2.2 Oscillations

Niebur and Erdos (1991) found in their computer model that an oscillatory

signal was needed to drive the locomotion circuitry and so the model circuit was as­

sumed to exhibit oscillatory behaviour. While this is weak evidence of the existence

58

of a neuronal oscillator, other evidence of intrinsic rhythmic signals in the animal

(e.g. the defecation cycle (Thomas, 1990), and side-to-side head oscillations) led us

to consider how oscillations might arise from these tonic cells. Additionally, in the

initial concept of the charger it was considered that a rhythmic pulsed input would

allow for a longer charging time and less sensitivity to the input strength than if a

continuously increasing input signal was used, but this has not been verified.

In the model, oscillations were obtained by adding a third "delay" cell into

the switch circuit (Figure 3.1). This delay was accomplished within the constraints

of the simple cell model by using a narrow synaptic activation range (Figure 3.7).

However, there may be other ways to obtain oscillations. The dynamic processes

underlying synaptic transmission could provide a sufficient delay for oscillations.

The cell model used here did not include synaptic dynamics but instead considered

synapses to act instantaneously. In earlier work with these model cells (Wicks et al.,

1996), we found that a simple model of synaptic dynamics that used a first-order

relaxation equation and a 10 ms time constant made no appreciable difference to

our simulations. However this synaptic model also did not include a hard delay and

it may be possible to obtain oscillations with a synaptic model that included hard

delays.

Beer (1995) has shown that oscillations can arise in a 2-cell circuit when the

cells have self-connections. The cell models he used are continuous time recurrent

neural network (CTRNN) cells (Funahashi and Nakamura, 1993) and are very sim­

ilar to the C. elegans cell model used here, differing only in that CTRNN cells use a

synaptic driving force that is assumed to be constant. Although cells in C. elegans

59

are typically unbranched cylindrical processes and are unlikely to form anatomical

self-connections (White et al., 1986), Goodman et al. (1998) have recently discov­

ered a regenerative calcium current in a C. elegans neuron which could achieve the

same effect as a self-connection.

A vast amount of work has been done on neuronal oscillations. Some related

modelling work in other biological systems include the central pattern generator

(CPG) of the lobster stomatogastric ganglion (Marder and Selverston, 1992; Ab­

bott, Marder and Hooper, 1991) which uses a bursting "pacemaker" cell to generate

rhythmic oscillations, and the Tritonia sea slug locomotory CPG which generates

oscillations at a network level (Getting, 1989). Jung, Kiemel and Cohen (1996)

have undertaken a bifurcation analysis of the dynamics of a computational model

of the lamprey locomotor CPG. Considerable theoretical work has been done on the

dynamics of neuronal oscillations (Hoppensteadt and Izhikevich, 1997; Ermentrout

and Kopell, 1990; Beer, 1995), and its physiological mechanisms (Skinner, Kopell

and Marder, 1994). Campbell and Wang (1998) have analyzed the dynamics of neu­

ronal oscillators that use hard delays. Yang and Dillon (1994) have proven using

cells similar to the C. elegans model that 2-cell oscillations not possible without

self-connections, and Yang (1995) has analyzed a 3-cell network oscillator similar

to the one derived here.

It is also interesting to note that C. elegans cells may have some generality as

model cells. They are almost the same as CTRNN cells which have been shown to

be universal dynamics approximators (Funahashi and Nakamura, 1993). Although

C. elegans neurons do not exhibit classical spiking behaviour, passive cell models

60

can be used to model spiking systems by considering cell activity to represent the

firing frequency (Bialek, Rieke, de Ruyter van Steveninck and Warland, 1991; Jung

et al., 1996). However, this should be tempered with evidence that temporal spiking

patterns can encode essential information (Hopfield, 1995).

3.2.3 The Forward-Engineering Approach

In this chapter a forward-engineering approach was used to design a circuit

whose operation resembles the reversal behaviour observed in the worm. It is nat­

ural to ask why this artificial system should tell us anything about reversal mecha­

nism in the worm or give insight into biological systems in general, especially when

there are so many other possible candidate mechanisms.

In the worm, this forward-engineered model elucidates the key concepts in

the reversal mechanism: the active transition between two locomotory states and

a charger that builds to a threshold, and it provides quantitative evidence that this

transition could be accomplished by network dynamics alone, even using simple

and physiologically plausible tonic cells. Even if such a mechanism is ultimately

not found in the worm, this result has a useful generality. The model also pro­

vides a quantitative framework for adding new data about cellular and intra-cellular

activity in C. elegans as it becomes available, and it suggests an approach using

dynamical phase-plane analysis that could be used in subsequent models. Similar

forward engineering approaches have been used to model the leech local-bending

reflex (Lockery and Sejnowski, 1992), cockroach locomotion and escape (Beer and

Chiel, 1993), and chemotaxis in C. elegans (Morse, Ferree and Lockery, 1998). In

61

these studies, optimization techniques were used to train neural networks to produce

behaviour which approximates that of the animal. Although there is no guarantee

that the resulting circuits actually exist in those animals, those artificial models pro­

vide insight into the issues involved when there is insufficient biological data to

construct anatomically realistic models.

Where artificial forward-engineered systems have an advantage over strict

biological models is in their effectiveness for producing generalizable understand­

ing of how behaviour can arise from neuronal systems. Ultimately, we are not par­

ticularly interested in how the worm locomotes — we study it because we hope to

understand general principles about neuronal systems that we can apply to other bi­

ological organisms including humans. There is no guarantee that neuronal circuitry

or dynamical mechanisms found in the worm will also be found in other organisms,

and in this sense an artificial forward engineered system is on the same footing as

a real biological system for producing generalizable knowledge. However, detailed

biological studies are extremely time consuming and arduous endeavours: for ex­

ample, nearly 30 years of research on C. elegans circuitry still has failed to provide

an adequate cellular account of a simple behaviour in a simple organism. In con­

trast, artificial systems are relatively cheap and quick to construct and analyze.

The selection of a model biological system involves an intuition about the

tractability of its analysis and the generality of its mechanism. The same intu­

ition can be applied to the selection of an artificial system in order to ensure that

it gives insight that generalizes to biological systems. This knowledge transfer can

be improved by using models based on physiological mechanisms and expressed

62

in physiological units so they can be readily interpreted by biological researchers

working on other systems.

3.2.4 The Human Engineered Approach

Previous approaches to engineering non-linear dynamical systems used

computer optimization techniques such as recurrent backpropagation (Pearlmut-

ter, 1989), genetic algorithms (Beer and Gallagher, 1992), or simulated annealing

(Morse et al., 1998). A computer optimized approach has the advantage of finding

solutions when the solution space is large and there is little human intuition for guid­

ance. However, this is also the weakness of a computer-generated approach when

the goal is to develop an intuition for how behaviour can arise from network dynam­

ics. Unless the dynamics of resulting circuit is mathematically analyzed (as in Beer

and Gallagher, 1992), the mechanism remains mysterious and the designer misses

out on the intuition that might be gained by understanding its function. Dynamical

systems become extremely difficult to analyze as they increase in size (see Beer

(1995) for some of the difficulties involved) and as we progress to larger systems, a

computer-generated solution may not be amenable to mathematical analysis.

In this chapter, a novel approach was taken instead: a human engineer used

intuition about the dynamical processes involved to hand-engineer a modular set

of component dynamical systems that were assembled to form the final circuit. As

far as the authors know, this is the first attempt to engineer a non-trivial continu­

ous dynamical system in this way. A human engineered approach forces the de­

signer to identify the issues and develop an intuition about the problem. This chap-

63

ter suggests that in spite of the complexities of non-linear interactions, a human-

engineered approach might not be so difficult as it seems.

To facilitate a human-engineered approach, the design of the dynamical sys­

tem was done in steps by building a simple component (the switch) and using it

to build more complex components (the oscillator and charger) which were assem­

bled to form the complete system. To simplify discussions, the term "dymod" —

short for dynamical module — was coined to describe a continuous dynamical sys­

tem that is used as a component in the design of a larger dynamical system (which

itself is a dymod that could be used to build still larger systems). The term was in­

tended to be reminiscent of terms describing computer programming modules such

as objects, functions and procedures.

It is remarkable that a complex, interdependent, non-linear dynamical sys­

tem can be designed in parts and recombined in this way. The design process

proceeded according to plan from the original sketch to the final assembly of the

dymods into a working system in a surprisingly straight-forward manner. It is in­

teresting to speculate whether it is merely a fluke that in this case the non-linear

interactions did not destroy the functional properties of the separate modules, or

whether this approach is generalizable: are dymods a useful general concept for

building non-linear dynamical systems? How scalable is this approach?

Because there is no convenient unifying superposition principle for non­

linear systems as there is for linear systems, there is no guarantee that it is possible

in all cases to combine dymods without destroying their function. The important

point here is that we may not necessarily need a guarantee for all cases. It may

64

be sufficient to know how a dymod can be used in a finite set of cases and how to

correct for any non-linear interactions in those cases.

There are at least two industries that operate on a similar principle to pro­

duce extremely large and complex non-linear dynamical systems: the electronics

industry, and computer software engineering. They have no appreciable theoreti­

cal framework or guarantees (though there is considerable work being done in this

direction). Instead of a unifying principle, these fields have a vast collection of tech­

niques for solving specific problems (e.g. Knuth, 1997; Horowitz and Hill, 1989).

Each technique has a great deal of lore associated with it: when it is appropriate,

what pitfalls to watch for, modifications for specific cases, and the success of a so­

lution depends in a large part upon the intuition and experience of the designer who

has accumulated this lore. The overwhelming success of these industries suggests

that a pragmatic, informal approach to combining non-linear modules might be a

good starting point in the absence of a unifying theory.

If a modular approach to constructing non-linear dynamical systems is pos­

sible in a general way, it has a number of advantages over optimization techniques

which generate an entire solution at once. Optimization algorithms require the spec­

ification of an objective function which characterizes the desired behaviour as a

single real-valued "score". This can be sufficient for simple behaviours, but it is

uncertain whether complex behaviours or interactions between multiple behaviours

can always be characterized so simply. A human-engineered design is limited only

by the intuition of the designer and has no requirements that its behaviour be char­

acterized in this way.

65

A modular approach may be more scalable than an all-at-once technique

since different dymods can be designed and implemented independently. A modu­

lar solution is also easier to understand since it provides a decomposition in terms

of higher-level building blocks (e.g. compare the dymod view of the reversal cir­

cuit in Figure 3.14 with the "flat" cellular view of Figure 3.12). Finally, forward-

engineered dymods might suggest higher-level building blocks to use in understand­

ing biological circuits.

Related work is being done in the emerging field of hybrid systems (Lygeros,

1996) which also seeks to combine non-linear, continuous dynamical systems in a

modular way. However, in a hybrid system, the interactions between distinct con­

tinuous systems are discrete automata so the result is a hybrid discrete/continuous

system. By contrast, the dymod approach seeks to combine continuous dynamical

systems into larger continuous dynamical systems and hybrid systems theory does

not provide any framework for doing this.

3.2.5 Conclusions and Future Directions

The reversal dynamics circuit designed in this chapter is a dynamical sys­

tem that governs two discrete behaviours: a persistent forward locomotion and a

temporary reversing locomotion. These two behaviours have different underlying

mechanisms and the transitions between them are crisp: there is no blending of the

two behaviours. Yet both behaviours are governed by a single continuous dynam­

ical system consisting of simple tonic non-spiking cells. These behavioural transi­

tions occur as the result of bifurcations in the underlying dynamical system. How

66

general is this phenomenon? Can bifurcations explain other forms of behavioural

transitions?

My further research lies in exploring this question by expanding upon this

human-engineered dymod approach. I am constructing a robotic implementation

of an artificial creature that exhibits several interacting behaviours, starting with

the obvious choices of locomotion, mechanosensation and chemotaxis (using light

instead of chemical sensation, in the same manner as Morse et al., 1998). While

these behaviours have been well studied in a variety of organisms, I do not seek to

mimic the mechanism of any specific organism, but rather to develop mechanisms

that make neuroethological sense within the desktop environment and tracked tank­

like locomotion of the robot, and relate them to the mechanisms found in other

organisms to extract their salient features.

This artificial creature approach borrows heavily from the pioneering work

of Brooks (1986a), Cliff (1991), Beer (1997), and others and combines the modu­

lar behaviour approach of Brooks's (1986b) subsumption architecture with Beer's

(1997) dynamical systems approach. The goal of the project is to engineer each

behaviour in a modular way, but so that the complete control system is a single

continuous dynamical system of biologically plausible cellular mechanisms. This

project will also be a good test case for the validity of the human engineered dymod

approach since I intend not to resort to automated trial-and-error methods until my

intuition completely fails.

It is my firm belief that the accumulation of lore and intuition by individual

researchers is a necessary precursor to the development of any theoretical frame-

67

work for understanding the cellular dynamics underlying behaviour. In fact, it is

my suspicion that the brain may not yield to any unifying theory: the accumulated

lore may be all we get.

The dymod research strategy proposed here is a pragmatic, generative one

based on experimentation to determine the conditions under which dynamical sys­

tems can be decomposed into modules. To facilitate this strategy, the next chapter

presents a framework for implementing and interconnecting dymods in the form of

a digital networking protocol called DSS that solidifies the separation of interface

from implementation that characterizes dymods.

68

Chapter 4

The DSS Network Protocol for

Dymod Implementation

4.1 Introduction

A dynamic module (dymod) is a non-linear continuous dynamical system to­

gether with a qualitative description of its inputs, outputs, and functional character­

istics. Dymods are an approach to constructing and understanding large non-linear

dynamical systems in term of smaller modules. They were originally conceived to

describe neuronal dynamics in nervous systems (Roehrig and Rankin, 1998) and

for experimentally testing their behavioural characteristics (for example, see Fig­

ure 4.1), but they may also apply to other control systems governed by continuous

dynamical laws.

This chapter presents an experimental implementation framework for dy­

mods in the form of a network protocol called Digital Signal Sockets (DSS). Dy-

69

charger forward
oscillator

oscillator

^ ^ ^ ^ ^ ^ ^ ^

World

Figure 4.1: A neuronal control system for the reversal maintenance behaviour of the
nematode C. elegans (Roehrig and Rankin, 1998). It consists of several indepen­
dent dymods that are interconnected with sensors and actuators to form a complete
behavioural system. The small arrows depict dymod interconnections representing
continuous signals. The squares indicate dymods which are governed by non-linear
ODEs and the circles represent sensory and motor transducers

mods are governed by systems of ordinary differential equations (ODEs) and are

implemented using numerical integration techniques. DSS allows dymods to be

interconnected with continuous signals and to operate asynchronously using inde­

pendent time steps for their internal computation. It also allows these numerical

simulations to incorporate live signals from sensors and actuators. Most impor­

tantly, the DSS protocol solidifies the modular aspect of a dymod by providing an

explicit definition of a dymod's interface inputs and outputs.

This work arose out of a prototype neuronal simulator software developed by

the author to allow neuronal simulations to be constructed in a modular fashion (i.e.

using dymods). The prototype simulator was used to numerically solve the system

in Chapter 2, and it handled the explicit definitions of a dymod's input and output

interface as well as the mechanisms to send signals between dymods and manage

their interconnections. As that work progressed, it became clear that a cleaner and

70

more general approach could be taken by separating the task of numerical simula­

tion from the task of managing the interface and communication of signals between

different dymods. It also became clear that there was a natural correspondence be­

tween dymod interconnections and computer network connections and that for a

modest extra effort, a dymod interconnection implementation framework could be

cast into a networking protocol to allow large simulations to be distributed over

multiple computers, but also to bypass the network if the simulation was entirely

contained on a single computer.

4.2 Design Goals

The design goals of DSS were:

• to solve the problem of interconnecting independent real-time simulations

which are numerically computed solutions to ODE initial value problems,

• to interconnect simulations using band-limited continuous signals that repre­

sent any one-dimensional physical quantity,

• to allow live signals to be incorporated into simulations,

• to handle all resampling issues that arise when two interconnected simu­

lations use unrelated integration step sizes, and provide predictable error

bounds,

• to multiplex signals over digital computer networks,

71

• to operate with workstations and networks that lack hard real-time facilities

(e.g. typical UNIX workstations and TCP/IP networks used by neuroscience

researchers), but also to be efficient and have guaranteed performance when

these facilities do exist.

• to scale well in both number of connections and signal bandwidth. For neu­

ronal systems, dymods typically have internal computation step sizes in the

order of microseconds and inter-dymod signals have bandwidths in the 1 Hz -

1 kHz range. The DSS implementation framework is intended for these low

bandwidth, high accuracy signals, but was also designed to scale to higher

bandwidth signals as computer and network hardware permit, allowing for

the implementation of arbitrarily large dymod systems.

4.3 Review of Existing Frameworks

Several existing frameworks were considered as candidates for dymod im­

plementation. Quantitative studies of neuronal dynamics are done using numerical

neuronal simulators such as Neuron (Hines, 1993) and GENESIS (Bower and Bee-

man, 1995). Although parallel and distributed versions are available (Pittsburgh

Supercomputing Center, 1998a; Pittsburgh Supercomputing Center, 1998b), these

simulators do not support real-time operation and interaction with live signals1.

Real-time neuronal studies have been done using silicon artificial neural network

(ANN) chips (Hammerstrom, 1995) and a simple bus protocol exists for intercon-
1 although the DSS architecture can be readily incorporated in a GENESIS add-on package to

add real-time and distributed support in the same straight-forward manner as the mblib GENESIS
add-on package (see Chapter 5).

72

necting chips for modular, distributed operation (Mahowald, 1992; Northmore and

Elias, 1997). However, these chips typically use limited or inflexible biological

models and are complex and expensive to produce. The DIS protocol (IEEE, 1993;

Schug, 1995) for performing distributed interactive simulation over the Internet is

designed for real-time operation, but it is event-based and intended for military ex­

ercises and not suitable for the graded, continuous signals that realistic neuronal

simulations require. There are several protocols for distributed digital audio pro­

duction (Yamaha, 1998; Young Chang RDI, 1998; Peak Audio Inc., 1998) that are

suitable for real-time interconnections of continuous signals, but they are either im­

mature or proprietary, and are not well-suited to low-bandwidth signals or TCP/IP

networks. Other real-time, distributed networking protocols exist for industrial au­

tomation and embedded systems (CAN, 1998; Profibus, 1998) and consumer and

professional electronics (1394TA, 1998). These protocols do not provide the re­

quired functionality for a dymod implementation framework, but instead may serve

as suitable network transmission layers for the higher-level DSS protocol. Of these,

IEEE 1394 "Firewire" (1394TA, 1998; IEEE, 1995) is particularly appealing as a

network layer because of its high bandwidth, real-time delivery guarantees, and the

promise of cheap and widespread availability in the near future. For the TCP/IP

networks, there are emerging standards such as RTSP (Real Networks, Inc, 1998)

and multicast IP (Comer, 1995), to better handle real-time multimedia transmission

over the Internet, and these are also suitable as DSS network layers.

The DSS design is independent of the underlying networking layer, but

was specifically targeted at two network transport protocols: TCP/IP which is the

73

foundation of the Internet and the desktop workstations used by neuroscience re­

searchers, and IEEE 1394 for high-performance dymod implementations with guar­

anteed performance.

4.4 Theory of Operation

Dymod interconnections represent a shared quantity between two continu­

ous dynamical systems. For example, in the coupled system

v\ = F1(v1,v2,t)

v2 = F2(vuv2,t), (4.1)

the variables and v2 represent the shared quantities that couple the system and

t represents time. This system is depicted in Figure 4.2 as two dymods with two

interconnections. T[vi] and T[v2] represent the transmitted, reconstructed versions

of vi and v2 respectively.

Figure 4.2: Dymod interconnections in a coupled two-dimensional system.

The DSS dymod implementation framework maintains a notion of simula­

tion time that is distinct from the actual passage of time, but requires that compu­

tation be scheduled and synchronized to the actual wall-clock time. For example,

74

the discrete values wi(ti), ^1(^2), • • • produced by the JFi dymod must be delivered

to the F 2 dymod within some interval of the actual times ti, i 2 , • • • which are taken

relative to some starting time. There are several distinct problems to be addressed in

a dymod framework: signal and time representation, signal reconstruction, connec­

tion management, time synchronization, real-time scheduling, and network trans­

mission. The DSS protocol deals with signal and time representation, signal re­

construction and connection management. Solutions to the other problems are also

discussed in the following sections.

4.4.1 Signal and Time Representation

DSS version 1 is experimental and deals with only one type of signal: a

continuous real-valued signal that is bandlimited (containing no frequency compo­

nents above a highest frequency). The Nyquist sampling theorem (Oppenheim and

Schafer, 1989; Nyquist, 1928), states that bandlimited signals can be exactly rep­

resented by a discrete series of samples taken at a sampling rate of at least twice

the highest frequency. This minimum sampling rate is called the signal's Nyquist

frequency. DSS version 1 represents these signals by a discrete set of 32 bit values,

but in future versions, this can be expanded to include other signal encodings.

DSS uses an absolute time reference for signal data, and each signal sam­

ple is timestamped with the absolute time at which that sample was taken. Using

a timestamp allows a receiving dymod to recover the time the sample was taken

without needing to account for the latencies and variabilities of network transmis­

sion. By using an absolute time reference, the DSS protocol is simplified because

75

the time synchronization problem can be solved by well-known time synchroniza­

tion protocols (Mills, 1992). This lightens the requirements for the DSS network

transmission mechanism so that DSS messages can easily be bridged between dif­

ferent network types (such as TCP/IP networks and the higher-speed IEEE 1394

isochronous network that has its own intrinsic clock) without requiring network-

level clock synchronization.

In DSS version 1, the timestamp is a 64 bit fixed-point quantity representing

the time in seconds since the epoch of midnight January 1, 1970 Coordinated Uni­

versal Time (UTC) and is computed according to the POSIX.l get t imeofday

system call (IEEE, 1996). Note that the value returned by this call is computed

from the current time of day and ignores leap seconds. While this is adequate for

experimental purposes, is discontinuous whenever a leap second is inserted into

UTC (roughly every two years) and future DSS versions may incorporate a differ­

ent encoding.

For a more efficient and compact representation, each DSS connection main­

tains a 32 bit reference time in whole seconds — the connection epoch — as the

zero point for transmitted signal timestamps. The absolute timestamp is obtained

by adding the sample's transmitted timestamp to this epoch. The transmitted times­

tamps are also represented in 32 bits and can only represent a fixed interval of

time: in DSS version 1, the timestamp represents microseconds since the connec­

tion epoch, and will overflow the 32-bit quantity approximately 72 minutes after

connection establishment. Before this occurs, the connection epoch is renegoti­

ated as described in Section A. 1.2. Future DSS versions may incorporate higher

76

resolution timestamps.

4.4.2 Signal Reconstruction

Dymod implementations operate independently and asynchronously, typi­

cally with internal computation rates that are higher than the signal interconnection

sampling rates. Incoming signal samples must therefore be used to reconstruct

the continuous signal in order to avoid step discontinuities between sample values.

This reconstructed continuous signal is then resampled at the appropriate intervals

for computation in the receiving dymod.

In Figure 4.2, the transmitted versions of a signal v is given by T[v]. The

transmission functional T involves two undesirable components: delay and approx­

imation. It can be written as:

T[v](t) = v(t-5) + e(t) (4.2)

where 8 is the delay incurred by signal transmission and reconstruction, and e(t) is

the error in the reconstruction.

There is a tradeoff between the amount of delay and the amount of inter­

polation or prediction error. For instance, in the system (4.1) it is possible to use

a zero delay by fitting a polynomial to the samples of v\ for t < tn and use it to

predict values for v\ in the interval [£„,t„+i]. This is a similar approach to the

predictor-corrector numerical method for ODE integration (Gear, 1971), except

for the corrector step: because the solution to (4.1) is distributed, the correction

of v\ via the computation of F\ cannot be applied immediately to the computa­

tion of v2(tn+i), but must wait instead until the computation of v2{tn+2) when a

77

new v\ sample has been received from the F\ dymod. For smooth functions, the

predictor-corrector method is highly accurate and this modification may still yield

good results. However, the formal error analysis would be complex and this modi­

fied predictor-corrector approach is left for a future endeavour.

In some cases a delay is acceptable. If the physical system includes delays,

a model can incorporate them so that the dymod interconnection delay plays a part

in the model. This is the case for neuronal systems when synaptic transmission and

axonal spike propagation involve delays.

If a delay is used, no prediction is required and the problem is a simpler

one of interpolating an intermediate signal value from data samples on either side.

For bandlimited signals, there is a well-established theory and a wealth of efficient

numerical techniques for doing this (Crochiere and Rabiner, 1983). A bandlimited

signal can be reconstructed exactly from its sequence of samples using the well-

known sine interpolation function (Oppenheim and Schafer, 1989)

oo

>() = E vnsmc(n(t-tn)Fs), (4.3)
n=—oo

where Fs is the signal's Nyquist frequency, tn is the time value for sample n,

vn = v(tn) are the sample values, and sinc(a;) = sin(x)/x. In practice, there

are different techniques for truncating this doubly-infinite sum and implementing it

using efficient digital reconstruction filters (Crochiere and Rabiner, 1983). For ex­

ample, a A;-tap finite impulse response low-pass digital filter uses a symmetrically

truncated sum of k terms and incurs a delay of ^ in the signal pathway.

If an incoming signal has a higher bandwidth than the internal computation

rate of the receiving dymod, the signal should be filtered to remove the higher fre-

78

quency components which would cause aliasing — a form of noise caused when

higher frequencies obscure the low frequency trends when sampling the signal. In

this case, Fs in (4.3) should be set to the Nyquist frequency of the receiver's band­

width capabilities.

The reconstruction accuracy is determined by the design and width of the

reconstruction filter. Better accuracy is obtained by using more input samples with

a wider interpolation filter kernel, but at the expense of a longer delay. Figure 4.3

shows how reconstruction accuracy changes with filter width and delay.

0.001 1 ' ' ' ' 1 1 ' ' 1
1 2 3 4 5 6 7 8 9 10

Zero Crossings

Figure 4.3: Reconstruction Error vs Filter Width. This shows typical peak inter­
polation errors in upsampling a spectrally-white test signal to 14.3 times its orig­
inal sampling frequency Fs (n=1000 interpolations). The upsample ratio of 14.3
was chosen to avoid a simple rationally related sampling rate change, but these
interpolation errors are typical of other ratios. Filter width is given as the num­
ber of zero crossings on either side of the sine reconstruction kernel included in
a Ffann-windowed filter design. The test signal was bandlimited to Fs/4 so that
it was in effect oversampled by a factor of 2. The filter delay can be computed
by delay = zero crossings/Fs, and the approximate number of samples used by
samples — 2 x zero crossings + 1. The average errors were less than 0.00002%
when at least 3 zero crossings were used.

In this experimental DSS version, a simple Hann-windowed filter design

79

(Oppenheim and Schafer, 1989) that included three zero crossings on either side

of the sine interpolation kernel was used, with a resulting delay of three sample

periods. The reconstruction filter was computed using double-precision floating

point arithmetic and was not optimized for minimum error or performance. Win­

dowed filter designs such as this one yield good frequency-domain characteristics

and efficient implementations, but do not produce optimal time-domain interpo­

lations. Filter design techniques to minimize the maximum or least-squares error

in the time domain are provided in Crochiere and Rabiner (1983). For a more

efficient fixed-point arithmetic interpolation filter that supports non-uniform resam­

pling and is suitable for hardware or embedded DSP applications, see Smith and

Gossett (1984).

Reconstruction accuracy is also affected by "lost samples" which occur

when a sample has not been received in time to be used in the signal reconstruction.

This can happen for three reasons: real-time scheduling problems, time synchro­

nization errors, and network delay.

4.4.3 Real-time Scheduling

Accurate signal reconstruction is critically dependent upon accurate real­

time scheduling of computation. If a receiver's computation begins too early, the

samples required for computation may not have arrived; if it begins too late, the

computation might not complete in time resulting in a delay (and more lost samples

downstream). These lost samples result in a reduction in the signal reconstruction

accuracy and possibly exceeding the error tolerance of the application. This can be

80

mitigated by oversampling the signal (sampling it at a rate greater than its Nyquist

frequency) so that even if occasional samples are lost, the Nyquist criterion is still

satisfied.

A dymod's computation of a value v(U) at time tt must be scheduled to

commence at time in order to incorporate any live signal values at time U. In order

to keep up with real time, this computation must be completed by time ti+i = ti+dt

where dt is the dymod's internal step size. If 8c is the time taken for internal

computation, then Sc/dt is the dymod's "real-time load".

When v(t) is transmitted to another dymod, its transmitted version is T[v] (t) =

v(t—5)+e(t). In order to ensure that no samples are lost, the receiver must schedule

the computation that makes use of T[t>](i) to occur in the interval [t, t + Ts] where

Ts is the sampling interval of the transmitted signal v and, in addition, the signal

delay 8 must satisfy

8> 8R + 8C + 8N, (4.4)

where 8R is the reconstruction delay imposed by the reconstruction filter, 8c is the

computation time taken to produce samples of v(t), and 8N is the network trans­

mission time. Note that 8R is determined by the reconstruction filter design char­

acteristics while 5c and 8^ are empirical quantities determined by the speed of the

computer and network hardware. Faster hardware can reduce 5c and 5N, but only a

design change in the reconstruction filter can reduce 8R.

In our experimental DSS version 1, the filter delay 8R is negotiated at con­

nection time based on the sender's and receiver's sample rate and filter width, and

the signal's delay 6 is set to 5R with no provision for 8c and 8N. This does not

81

present a problem providing 8c + 8N < Ts, in which case at most one sample will

be lost per reconstruction. In our experiments, we compensated for this by over-

sampling by 2 times. The signal delay is made available to the application via the

DSS API (dss_get inf o, Section A.2) Future versions of DSS will provide the

means to establish and monitor 8c and 8N in addition to 8R.
Embedded systems typically have excellent real-time facilities, but UNIX-

based dymod implementations are more problematic. The Posix s e t i t i m e r sys­

tem call is typically used to schedule real-time activity on UNIX systems, but

real-time guarantees vary widely between UNIX implementations. Sun's Solaris

and SGI's IRIX are considered real-time operating systems (Real-Time Magazine,

1998) with guarantees on real-time performance, but that is somewhat moot con­

sidering the lack of any real-time guarantees for TCP/IP networks. A UNIX and

TCP/IP dymod implementation is intended for experimenting with the qualitative

behaviour of systems and should not be relied upon for guaranteed numerical ac­

curacy. However, the performance of UNIX systems and TCP/IP networks can

be quite adequate for behavioural experiments providing that the system limita­

tions are tested and determined in advance. Some UNIX implementations — on

PC hardware in particular — have poor real-time clock support with resolutions in

the tens of milliseconds, and any more precise scheduling is impossible. An em­

bedded DSP (digital signal processing) implementation using a real-time network

such as IEEE 1394 can be used for guaranteed numerical accuracy. For a good

practical starting point on real-time computation issues, see the online Real-Time

Encyclopaedia (Real-Time Magazine, 1998).

82

4.4.4 Time Synchronization

DSS requires accurate time synchronization between sender and receiver,

but does not provide a synchronization mechanism and instead relies on an exter­

nal protocol. On TCP/IP-based UNIX implementations, the NTP protocol (Mills,

1992) is used to synchronize the workstation clock to a reference signal obtained by

radio or the Internet. In embedded implementations using isochronous networks, a

hardware clock synchronization mechanism can be used. In order for an embedded

implementation to interact with a TCP/IP implementation, the embedded network

clock master should be synchronized to Universal Coordinated Time.

The accuracy of time synchronization limits the real-time scheduling accu­

racy and therefore the signal reconstruction accuracy as described in the previous

section. Most typical UNIX installations can maintain a synchronization accuracy

to within a few tens of milliseconds using NTP (Mills, 1990). This time synchro­

nization error is the major factor that limits signal bandwidth when using DSS in a

UNIX and TCP/IP environment. Sub-millisecond accuracy is possible using special

kernel patches and extra hardware (Mills, 1994).

In our experimental test network, system clocks were synchronized with

an accuracy of approximately 10 milliseconds and we experienced nominal recon­

struction errors when the sampling interval was substantially greater than the time

synchronization error, but the reconstruction errors increased dramatically to 100%

as the sampling interval approached the time synchronization error and the result­

ing real-time scheduling errors caused samples to be lost from the reconstruction

(Figure 4.4).

83

Peak
Error

(%)

5 10 15 20 25 30 36 40 45 60

Sampling Interval (ms)

Figure 4.4: DSS Reconstruction Errors vs Sampling Interval. This shows how
the peak interpolation error changes as the sampling interval approaches the time
synchronization error (approx 10 ms) and the resulting real-time scheduling errors
cause samples to be lost from the reconstruction. A spectrally-white test signal that
was bandlimited to Fs/4 was used and it was upsampled at the receiver by a factor
of 14.3. Three zero crossings were used for the reconstruction filter resulting in
nominal reconstruction errors of 0.2% (cf. Figure 4.3) when no samples were lost.

84

4.4.5 Connection Management

DSS signal connection endpoints are called DSS ports and they are identified

by a DSS address (see Section A. 1.1). DSS connections carry unidirectional sig­

nals and therefore ports must be of either input or output type. This directionality

only refers to signal data transmission; all ports can send and receive DSS con­

trol messages which are used to establish and remove connections between DSS

ports. Both ports must exist and be active before the connection can be made. The

use of DSS control messages for connection management allows dymods to be im­

plemented independently of any controlling user interface: for instance, a dymod

implementation can be a featureless black box with a network jack, and a DSS-

enabled web browser could be used to control its behaviour and to connect it to

other dymods. To facilitate connection management, the DSS protocol includes a

name service to associate symbolic names with DSS ports. This allows a user inter­

face to specify connection endpoints by name rather than their DSS addresses. In

future versions, the name service may also provide additional information such as

the physical quantity and units the signal represents.

4.4.6 Network Transmission

The DSS protocol does not include a network transmission mechanism and

is meant to be layered on top of an additional networking protocol (see Figure A. 1).

DSS requires two kinds of network transport services: an unacknowledged iso­

chronous datagram service for delivering sample data at regular rates, and an asyn­

chronous acknowledged datagram service for control messages. This experimental

85

DSS version was implemented on top of TCP/IP using UDP (Comer, 1995) for both

isochronous and asynchronous services. Future versions may be implemented us­

ing the emerging real-time streaming protocol (RTSP) (Real Networks, Inc, 1998)

for TCP/IP.

Typical 10 Mbit Ethernet LANs can saturate at 4 Mbit/s data rates. The DSS

isochronous signal messages are 20 bytes (Section A. 1.2), the IP and UDP headers

are 28 bytes and the ethernet frame overhead is 26 bytes (Comer, 1995), yielding

a maximum total signal bandwidth of a few kHz, which is sufficient for simple

neuronal simulations.

IEEE 1394 provides isochronous and asynchronous services intrinsically

and is designed with scalable data transfer rates with current rates of 100, 200 and

400 Mbit/s. With a more compact 12 byte isochronous frame overhead (IEEE,

1995), IEEE 1394 can theoretically support a total DSS signal bandwidth of over 1

MHz.

The DSS protocol specification and application programmer interface (API)

is presented in Appendix A.

4.5 Conclusions

The experimental DSS implementation described here suggests the feasibil­

ity of using digital networks to interconnect continuous dynamical systems modules

(dymods) for distributed real-time simulations. DSS solidifies the dymods' separa­

tion of interface from implementation by providing an explicit mechanism to define

the interface inputs and outputs via DSS input and output ports. DSS provides a

86

standard mechanism to interconnect dymods ports with band-limited continuous

signals, and also provides a name service to allow a remote connection manager to

identify dymod ports by name.

The DSS protocol is targeted at two network architectures: TCP/IP for low-

cost, low-bandwidth simulations and IEEE 1394 for high-bandwidth simulations

with guaranteed performance. With UNIX and TCP/IP implementations, the total

signal bandwidth is theoretically limited to a few kHz on typical 10 Mbit ethernet

networks, but in practice this is limited by the accuracy of time synchronization

across the network. In order to use signals with bandwidths of greater than about

50 Hz, special UNIX kernel modifications and hardware are required for accurate

time keeping and network time synchronization.

The current experimental implementation requires a hard delay along dymod

interconnections which limits its utility for solving general systems of ODEs such

as the C. elegans dymod example (Roehrig and Rankin, 1998). However, an extrap­

olation algorithm may be used to implement a modified predictor-corrector numer­

ical method for solving general ODE initial value problems without delays. The

next step in the development of the DSS dymod implementation framework is to

perform the error analysis and implementation for this modified predictor-corrector

method.

DSS provides only a basic implementation framework on which to build

other dymod tools such as neuronal simulators, and robots for experiments in com­

putational neuroethology using dymods. The next chapter presents an inexpensive

robot system to be used for dymod experimentation.

87

Chapter 5

A Desktop Robot System for

Experimental Neuroethology using

Dymods

5.1 Introduction

The dymod approach of Chapter 3 is intended for constructing complex neu­

ronal models of behaviours and to ultimately allow neuroscientists to create com­

plex behavioural models using high-level building blocks that are grounded in a

physiological implementation, but without having to understand all the physiolog­

ical details. The DSS network protocol of Chapter 4 provides the means to inter­

connect dymod implementations using typical UNIX workstations and TCP/IP net­

works, scales to support arbitrarily large dymod systems, and provides an explicit

mechanism to define a dymod's interface.

88

This chapter adds to the dymod tools by presenting a robot system that the

author has constructed in order conduct neuroethology experiments. It continues

the theme of the previous chapters with the goal of empowering the general neuro-

science researcher, in this case to perform robot neuroethology experiments without

requiring expertise in robotic engineering or real-time numerical computation.

5.2 Design Goals

The robot was designed to meet the following goals. To be accessible to gen­

eral neuroscience researchers, the robot needs to be inexpensive and easy to con­

struct. It should not require any special expertise in electronics or robotics design. It

should be easy to use so that neuroscientists can quickly experiment with ideas with

a minimal of complication by irrelevant technical issues. The robot should be flex­

ible and adaptable to different neuroethological tasks in order to appeal to a wide

neuroscience audience. For instance, a chemotaxis simulation could use simple in­

frared or optical sensors mounted to the robot and use lights of different colours to

represent different chemicals. Finally, to allow easy comparison between different

levels of behaviour models, the robot control system should allow for testing of

both simple neuronal models and quite complex and realistic models.

89

5.3 Chassis Design

5.3.1 Locomotion

A wheeled design was chosen because it is simple, robust, and requires few

motors and mechanical components. A disadvantage of a traditional wheeled car

chassis is that the vehicle must perform a 3-point turn to reorient it self in place.

This is a fairly complex task that doesn't have much neuroethological relevance

and would require a substantial neuronal control system. To avoid this problem,

two approaches were considered.

The first was a tricycle design with a tail-dragger wheel (see Figure 5.1).

Two motors drove the main left and right wheels, and a third free-rotating

wheel at the tail provided support and proprioceptive feedback. The two drive mo­

tors operated independently to move the vehicle or turn it left or right. The rear

wheel was mounted on a swing arm which pivoted as the robot turned. The swing

arm was mounted on the shaft of a 360° precision servo potentiometer to provide

proprioceptive feedback on the tail's angular orientation. The rotational speed of

the rear wheel was to provide proprioceptive feedback as to the vehicle's motion,

but it was difficult to construct a sensor on the small tail-wheel swing arm as well

as rig the wiring across the freely-rotating shaft it was mounted on.

This design was unnecessarily complex and was abandoned in favour of a

tank-like design (Figure 5.2) which suggested itself by the presence of tank treads

in a LEGO Dacta kit. The tank chassis is much simpler, requiring only the two

drive motors and is able to orient itself in place by driving its two treads in opposite

90

r\IK)l&OnfU> MOXfOT>WGi | f0U=S .

Figure 5.1: Preliminary Tail-dragger Robot Design

91

Figure 5.2: LEGO Tank Robot Design

directions.

5.3.2 Proprioception and Sensors

Proprioception is an important part of a control system. Most biological

motor control operations require sensory feedback from stretch receptors to operate

properly. Robotic limbs also use sensors to provide information on the joint angles

and stresses. In a wheeled vehicle, proprioception does not have a direct analogue

in the biological world, but is nevertheless important. If the robot is driving a motor

in order to locomote, it is important to know whether the motor is actually turning.

The robot may have run against an obstacle, or encountered more difficult terrain

requiring more motor power. More importantly, if power is being delivered to a

motor but the motor is not turning, it draws considerably more power than if it were

turning and can uselessly drain valuable battery energy.

92

There are two possible signals that can be used as proprioceptive feedback

from a wheeled vehicle: the angular position of each wheel, and the rotational speed

of each wheel. The latter was chosen as being generally more ethologically relevant

since the wheel's absolute position is typically unimportant. However, there may

be some tasks involving slow or precise positioning where absolute wheel position

is more important.

Several ways of encoding wheel speed were explored. A small DC motor

from a slot-car racing car was geared to the wheel. As the wheel turned, the DC

motor generated a voltage proportional to the rotation speed. However, the motor

needed to be geared up from the wheel in order to provide a sufficient voltage and

the geared-up inductive resistance of the motor was sufficient to prevent the wheel

from rotating as the vehicle moved. A larger, heavier vehicle might be able to

overcome this frictional resistance, but it would not be as suitable for a desktop

robot.

Optical shaft encoders use a photocell to detect a light beam passed through

a wheel containing slits. By measuring the time difference between on and off light

pulses, the rotational speed of the wheel can be determined. The existing design

does not use an optical shaft encoder, but rather a resistive one (manufactured by

ALPS) that was cannibalized from an old Microsoft mouse. However, it has proven

to be noisy and somewhat unreliable and is now difficult to obtain. The next revision

will use Bourne optical sensors.

Additional sensors can be used depending on the neuroethological experi­

ments to be done.

93

5.3.3 Construction

The chassis was constructed from LEGO Dacta (Technics) using kits 9605,

8826, as well as some other assorted LEGO parts.

The chassis has a compact gearing mechanism to gear the motors down by a

ratio of 25:1 to provide adequate torque to the treads. The design also houses both

the microcontroller and a battery compartment below the tank's deck, providing a

clean base for additional sensory and actuator mechanisms for various neuroetho­

logical experiments. The battery compartment holds 4 C-cell batteries which can

deliver a typical maximum load of 500 mA (with 2 motors fully activated) for 14

hours (using alkaline batteries).

The construction diagrams are given in Appendix B.

5.4 Controller

To allow for arbitrarily complex and realistic neuronal control systems, the

controller was designed so that the detailed neuronal simulations would be com­

puted by outboard high-speed computers that are connected to the robot with a wire

tether, while an inexpensive onboard microcontroller handles the simpler task of

managing the sensory data acquisition, motor control, and host communication.

This approach was taken because there are two different tasks that need to

accomplished: detailed, timing-sensitive control of sensors and motors, and high­

speed numerical computation. These tasks have different computational require­

ments and there are inexpensive generic solutions to each problem, but a single

94

solution to both would require special-purpose hardware. The limitation of having

to tether the robot to a computer was not seen as a significant one for a desktop

system.

While the recent availability of inexpensive high-performance 32-bit micro­

controllers makes it feasible to build stand-alone autonomous robots which perform

all neuronal computations onboard, a tethered solution has the advantage of being

able to use a workstation to monitor, analyze and modify the neuronal operating

parameters during behaviour.

5.4.1 Overview

Fred Martin's MIT Miniboard (version 2.1) was chosen for providing on­

board sensor and motor control. (Martin, 1995) This is a compact, low-power, in­

expensive ($50) board based on the E2 variant of the popular Motorola 68HC11

microcontroller chip, and fits nicely into the chassis of the LEGO robot. The

68HC11E2 has 2 Kbytes of on-chip read-only program memory and 256 bytes of

R A M which is sufficient for the control and communication program (but would be

wholly inadequate for numerical computation).

A communication protocol was designed to allow communication of sensor

and motor signals between the Miniboard and the host computer over a serial cable.

The protocol was implemented in the control program of the Miniboard as well as

in a portable C library for use on the host computer. This allows any standard C

program to interact with the robot, and gives maximum flexibility in implementing

computational neuronal models for use with the robot. An add-on module for the

95

popular GENESIS neuronal simulator was created to allow the use of GENESIS

simulation for real-time control of the robot.

The Miniboard provides the robot with the capability for eight analog (grad­

ed) sensors, eight digital (on/off) inputs or outputs, four higher-power motor out­

puts, and two timer inputs for response to time-sensitive events.

5.4.2 BINMON: The Miniboard Control Program

The miniboard control program (called BINMON) is responsible for several

tasks.

• It reads and records the robot's analog and digital sensor values every mil­

lisecond.

• It maintains an accurate millisecond clock to use as timestamps.

• It implements the host communication protocol to communicate sensor and

motor signals.

• It modulates the motor output signals to provide different motor speeds using

pulse-width modulation (PWM).

• It decodes the timer input signals to implement a simple shaft-encoder sup­

port.

The control program was based on Fred Martin's original HEXMON code,

but was substantially rewritten to support the communication protocol and resistive

shaft-encoder support. Full details are included in the m b l i b package (see below).

96

Communication Protocol

The communication protocol provides a mechanism for the host computer to

communicate with the Miniboard. This protocol operates in two modes: an "ASCII"

(human-readable) mode which can be used for diagnostics and a binary mode for

efficient communication of sensor and motor signals.

It is important for the sensor data to be accurately timestamped in order

to maximize numerical accuracy when simulating the neuronal controller model.

Rather than try to synchronize the Miniboard's clock with the host computer's

clock, a simpler approach was taken. The Miniboard operates in a passive mode,

recording sensor data every millisecond, but not initiating any communication.

When it receives a request from the host computer, it responds by transmitting the

sensor data. The host computer can timestamp the sensor data when it receives

it, and can correct for the transmission delay to accurately determine the sensor

acquisition time.

This mechanism fits well with existing ASCII command-response mode of

the original HEXMON code. The original ASCII commands were preserved mostly

unchanged for debugging purposes. The ASCII commands return a human-readable

response which is terminated by a command-prompt' >'. The ASCII commands are

summarized as follows:

s Perform a reset and resynchronize to the host.

rmmmm Read byte at location mmmm.

wmrnmmdd Write byte dd at location mmmm.

97

qmmmm Read word at location mmmm.

zmmmmdddd

Write word dddd at location mmmm.

v Print monitor version.

d ASCII dump of state.

The binary communication protocol is initiated by the host by a b command.

This causes the Miniboard to receive a frame of control commands and once it has

been received, to return a frame of sensory data. Full-duplex operation (i.e. trans­

mitting the sensory data simultaneously with receiving the control commands) is

not possible due to the specifics of the Miniboard's serial communication hardware

implementation (see (Martin, 1995)). The control command frame consists of 11

bytes: a motor control byte (4 bits on/off, 4 bits direction), 4 motor speed words

(each consisting of a 16-bit PWM mask), a data direction control byte for the digital

input/output port, and a data byte for that port. The sensory data frame consists of

11 bytes: one byte for each of the eight analog inputs, a data byte for the digital in­

put/output port, and a byte for each of the two shaft encoder inputs. The transaction

is terminated by the command prompt character.

Timing Discussion

Since computer operations occur many orders of magnitude faster than the

communication time over a serial cable, it is necessary to correct for serial transmis­

sion time to obtain an accurate timestamp for the sensory data. The binary trans­

mission time can be computed by the number of bits of information transmitted

98

divided by the bit rate. At the current bit rate of 9600 baud, command transmission

(12 bytes of 8 bits with 1 stop bit) takes 11.25 milliseconds. Because of peculiarities

of the Miniboard's serial communication hardware implementation, all transmitted

bytes are echoed back to the host. In addition to these bytes, the return frame con­

sists of 11 bytes for a total of 23 bytes that must be received by the host (there is no

reason to wait for the command prompt). This reception takes 21.56 milliseconds

(but because of the hardware echo, this happens concurrently with transmission of

control information).

Therefore, the Miniboard will respond with motor commands with a 11 ms

delay from the issuing of the motor commands, and the sensory data from the Mini-

board will only be able to be used by the numerical simulation 22 ms after it is

actually acquired. (Because the Miniboard only updates at a rate of 1 kHz, these

delays are only accurate to within 1 ms.)

DSS can be used for the numerical simulation by embedding the Miniboard

sensor values into DSS packets. If this is the case, the DSS timestamps can be cor­

rected for this delay and the Miniboard sensory signals can be processed accurately.

However, as in the case of DSS network transmission latencies, this delay imposes

a bandwidth restriction on the signals which can only be overcome by faster trans­

mission time. (A 22 ms delay means a maximum signal bandwidth of about 20

Hz.) See below for a brief discussion on how to increase the Miniboard's serial

transmission speed.

99

Miniboard Host C Library

A library of routines was implemented in the C programming language to

allow a host computer to interact with the Miniboard using the communication pro­

tocol. The C library maintains a copy of the miniboard's state on the host computer

and periodically synchronizes this state with the Miniboard.

The library application programmer interface (API) is given in Appendix B.

The m b l i b Package

The m b l i b package contains implementations of the BINMON Miniboard

control program and Miniboard C Library, together with the following additional

components:

mbview An interactive miniboard viewer to allow viewing and manipulation

of the Miniboard. It has a simple keyboard interface and a text-based

display to allow it display on any VT100 compatible terminal. It also

displays various timing measurements to analyze serial port latencies.

d l m l l A UNIX port of the Miniboard program downloader.

GENESIS Miniboard Library

This is a library module for the popular GENESIS neuronal simulator

to allow it to synchronize the simulation to real-time and interact with

live signals from the Miniboard.

The m b l i b package can be obtained from http://www.crispart.com/mblib.

100

http://www.crispart.com/mblib

5.5 Future Work

There are many avenues for continued work on this robot project. At the

forefront, is the implementation of a Miniboard DSS interface to encapsulate the

Miniboard signals into DSS packets. This will allow the Miniboard to interoperate

with other DSS modules. The implementation would be in the form of a daemon

process that runs a continuously updating Miniboard on a serial port and maintains

a collection of DSS ports for each Miniboard signal.

In addition, a GENESIS DSS module needs to be implemented which would

allow the GENESIS simulator to interoperate with any DSS signal.

The BINMON Miniboard Control Program needs to be modified to support

optical shaft encoders. The Bourne Model ENC1J-D28-L00T28 shaft encoder is a

compact low-friction shaft encoder that can be used with appropriate modifications

to the BINMON program. Modifications to the LEGO robot to accommodate this

encoder also need to be done. In addition, the binary communication protocol can

be made more compact. Currently, the motor PWM masks are 16-bits which means

8 bytes are transmitted every frame. However, these PWM masks only encode 16

different speeds according to a table kept on the host. This table could be moved to

the Miniboard and the 4-bit motor speeds could be transmitted instead for a savings

of 6 bytes (6 ms at 9600 baud).

To substantially improve the signal bandwidth between the Miniboard and

the host, the serial speed needs to be increased. The maximum standard speed of

the Miniboard is 9600 baud using the standard 8 MHz clock, but this clock could

be replaced by a 4.9152 MHz crystal to obtain higher standard baud rates (such as

101

38.4 Kbaud) at the expense of reducing the Miniboard CPU's bus frequency from 2

MHz to 1.2 MHz. However, the Miniboard is not performing any computationally

intensive work, and this loss of CPU speed will likely not be a problem. At 38.4

Kbaud with the savings from the PWM modifications, the host-Miniboard update

time would be reduced from its current 22 ms to 4 ms, with signal bandwidth of

125 Hz.

5.6 Conclusions

This chapter presents a desktop robot system the author has constructed

for conducting neuroethology experiments using dymods. The inexpensive LEGO

robot uses a wheeled-design for simplicity and reliability. It uses a tank-like chassis

with treads, which gives it the ethologically relevant ability to orient in place, un­

like other car-like designs which require three-point turns. The chassis is compact

and houses the battery compartment, motors and computer control system below

the tank's "deck" to provide maximum flexibility for adding sensory and actuator

apparatus. The control system is a tethered design: an MIT Miniboard monitors and

controls the robots sensors and motors and transmits them along a cable to a host

UNIX computer which performs the actual neuronal computation. This chapter

also presents a Miniboard program (BINMON) that performs the control functions,

a UNIX library to communicate with the robot via serial cable, and a library add-on

for the popular GENESIS neuronal simulator to allow it to communicate with the

robot.

Currently, the LEGO robot is fully mobile and contains proprioceptive sen-

102

sors for tread motion, and the microcontroller's other 6 sensory inputs and 2 motor

outputs are not utilized and available for expansion. The support software has been

developed to the point where a simple single-compartment neuron simulation run­

ning under GENESIS was able to successfully control locomotion in the robot.

103

Chapter 6

Conclusions

This dissertation introduced the dymod concept to help account for a pre­

viously unexplained behaviour in the nematode C. elegans: its ability to continue

swimming backwards for a period of time after the end of a tap stimulus. The dy­

mod approach provides building-blocks for constructing a dynamic behaviour out

of a set of simpler dynamical structures.

Current brain theories (Kelso, 1995) speculate that understanding dynamical

structures is the key to understanding how the brain generates abstract behaviours

like language, planning and perception. However, so far we have no building blocks

to quantitatively describe dynamical structures except at the most detailed level of

the physiological components: cells, channels, etc. It is unlikely that we will be able

to understand as complex a behaviour as perception in terms of cells and channels

without some form of higher-level abstract building blocks. The dymod approach

is a step towards those building blocks.

The purpose of the dymod framework is to describe a dynamical system in

104

terms of a set of simpler dynamical modules. This dissertation illustrates the dymod

concept with a simple example and lays out a research programme to investigate

the generality and usefulness of the dymod approach. The research programme is

based on the generative computational neuroethology approach pioneered by Beer,

Cliff and others (Beer, 1997; Harvey, Husbands, Cliff, Thompson and Jakobi, 1997)

using robots to ground neuronal models in a complete behavioural system that in­

cludes its environment as part of the system. The dissertation also presents a pre­

liminary set of tools for embarking upon this research programme: the DSS dymod

implementation framework, and a general-purpose desktop robot platform.

6.1 Future Directions

The next step in the research programme that was laid out in Chapter 3 is

to combine the locomotory circuit of Chapter 3, the implementation framework of

Chapter 4 with the robot of Chapter 5 (see Figure 6.1)

To complete the next step, the following projects need to be completed.

• The DSS protocol must implement the modified predictor-corrector numer­

ical method (Section 4.4.2) to allow signal reconstruction without hard de­

lays. The tonic and graded synaptic model for C. elegans (Section 2.6 and

Section 3.1.1) does not use hard delays — indeed many neuronal dynami­

cal systems do not use hard delays — and the current DSS implementation

cannot be used for these models which substantially limits its utility. The

implementation of the modified predictor-corrector numerical method would

require a fair amount of detailed numerical analysis to determine convergence

105

DSS CONNECTION

Figure 6.1: The next step in the research programme is to combine the locomo-
tory circuit with the DSS implementation framework and the robot. A robot with
a tap sensor is to be tethered to a computer running a DSS-enabled m b l i b (Sec­
tion 5.4.2) to implement a dymod representing the robot's sensors, motors and its
environment. It will be connected to a second computer implementing the oscilla­
tor dymod which would in turn be connected to a third computer implementing the
charger dymod. The dymods can be implemented using a DSS-enabled version of
the GENESIS neuronal simulator (Section 5.4.2).

106

properties and error bounds.

• DSS-enabled implementations of mbl ib and GENESIS need to be com­

pleted. Both are relatively straight-forward modifications of the existing im­

plementation presented in Section 5.4.2.

.2 Novel Contributions

The novel contributions of this dissertation are summarized as follows:

1. A physiologically detailed cellular model of the nematode tap withdrawal

circuit (Chapter 2).

2. A graded and tonic synaptic model and a treatment of the distinction between

a cell's resting potential and its in-circuit steady-state potential (Section 2.7).

3. A cellular account of how the nematode might continue its reversing after the

end of a stimulus using neuronal network dynamics (Chapter 3).

4. Dymods: a way of decomposing dynamical neuronal structures into modular

subcomponents (Chapter 3).

5. DSS: an implementation framework for dymods that is designed to scale to

handle large, complex systems of dymods (Chapter 4).

6. A hybrid numerical method for solving ODE initial value problems in real­

time using digital signal reconstruction filters as part of the numerical method

(Section 4.4.2).

107

7. An inexpensive, general-purpose desktop robot system intended to allow neu­

roscience researchers to experiment with the dynamical basis of behaviour

without requiring expertise in robotics or numerical solutions to systems of

ODEs (Chapter 5).

8. A research programme for investigating the modular properties of dynamical

neuronal structures and how they interact, together with a preliminary set of

tools for embarking upon that programme.

108

Bibliography

1394TA (1998). IEEE 1394 trade association. URL: (http://www.1394ta.org)
[accessed Apr 7, 1998].

Abbott, L., Marder, E. and Hooper, S. (1991). Oscillating networks: Control of
burst duration by electrically coupled neurons, Neural Computation 3(487-
497).

Achacoso, T. B. and Yamamoto, W. S. (1992). AY's Neuroanatomy ofC. elegans
for Computation, CRC Press, Boca Raton, FL.

Avery, L., Raizen, D. and Lockery, S. (1995). Electrophysiological methods, in
H. Epstein and D. Shakes (eds), Caenorhabditis elegans: Modern Biological

Analysis of an Organism, Academic Press, San Diego, pp. 251-269.

Beer, R. D. (1995). On the dynamics of small continuous-time recurrent neural
networks, Journal of Adaptive Behavior 3(4): 469-509.

Beer, R. D. (1997). The dynamics of adaptive behavior: A research program,
Robotics and Autonomous Systems 20: 257-289.

Beer, R. D. and Quel, H. J. (1993). Simulations of cockroach locomotion and
escape, in R. D. Beer, R. E. Ritzmann and T. McKenna (eds), Biological Neu­

ral Networks in Invertebrate Neuroethology and Robotics, Academic Press,
pp. 267-285.

Beer, R. D. and Gallagher, J. C. (1992). Evolving dynamical neural networks for
adaptive behavior, Adaptive Behavior 1: 91-122.

Bennett, M . V. L. (1972). A comparison of electrically and chemically mediated
transmission, in G. D. Pappas and D. P. Purpura (eds), Structure and Function

of Synapses, Raven Press, New York, pp. 221-256.

109

http://www.1394ta.org

Bialek, W., Rieke, E, de Ruyter van Steveninck, R. and Warland, D. (1991). Read­
ing a neural code, Science 252: 1854-1857.

Bower, J. M . and Beeman, D. (1995). The Book of Genesis, Springer-Verlag.

Brooks, R. A. (1986a). Achieving artificial intelligence through building robots,
A.I. Memo 899, M.I.T.

Brooks, R. A. (1986b). A robust layered control system for a mobile robot, IEEE

Journal of Robotics and Automation 2(1): 14—23.

Campbell, S. and Wang, D. L. (1998). Relaxation oscillators with time delay cou­
pling, Physica D 111: 151-178.

CAN (1998). KVASER's controller area network (CAN) introduction. URL: (http:
//www.kvaser.se/can/initial.htm)[accessed Apr 7, 1998].

Chalfie, M. , Sulston, J. E., White, J. G., Southgate, E., Thomson, J. N. and Brenner,
S. (1985). The neural circuit for touch sensitivity in Caenorhabditis elegans,

Journal of Neuroscience 5(4): 956-963.

Chalfie, M. , Tu, Y., Euskirchen, G., Ward, W. and Prasher, D. (1994). Green fluo­
rescent protein as a marker for gene expression, Science 263: 802-805.

Chiel, H. J. and Beer, R. D. (1997). The brain has a body: Adptive behavior emerges
from interactions of nervous system, body and environment., Trends in Neu­

roscience 20: 553-557.

Cliff, D. (1991). Computational neuroethology: A provisional manifesto, in J. A.
Meyer and S. W. Wilson (eds), From Animals to Animats: Proceedings of

the First International Conference on Simulation of Adaptive Behaviour, MIT

Press, pp. 29-39.

Comer, D. E. (1995). Internetworking with TCP/IP, Volume I, Third Ed.: Princi­

ples, Protocols, and Architecture, Prentice-Hall.

Comer, D. E. and Stevens, D. L. (1993). Internetworking with TCP/IP, Volume III,

BSD Socket Version: Client-Server Programming and Applications, Prentice-
Hall.

110

http://www.kvaser.se/can/initial.htm)%5baccessed

Corey, D. P. and Garcia-Anoveros, J. (1996). Mechanosensation and the
DEG/ENaC ion channels, Science 273: 323-324.

Crochiere, R. and Rabiner, L. (1983). Multirate Digital Signal Processing, Prentice-
Hall.

Davis, R. E. and Stretton, A. O. W. (1989a). Passive membrane properties of mo­
torneurons and their role in long-distance signaling in the nematode Ascaris,

Journal of Neuroscience 9(2): 403-414.

Davis, R. E. and Stretton, A. O. W. (1989b). Signaling properties of Ascaris mo­
torneurons: Graded active responses, graded synaptic transmission, and tonic
transmitter release, Journal of Neuroscience 9(2): 415^25.

De Schutter, E., Angstadt, J. and Calabrese, R. (1993). A model of graded synaptic
transmission for use in dynamic network simulations, Journal of Neurophysi­

ology 69:1225-1235.

Ermentrout, B. (1998). X-windows phaseplane plus auto. URL:http://mrb.niddk.
nih.gov/xpp.

Ermentrout, G. and Kopell, N. (1990). Oscillator death in systems of coupled neural
oscillators, SIAMJ. Appl. Math. 50: 125-146.

Funahashi, K. and Nakamura, Y. (1993). Approximation of dynamical systems by
continuous time recurrent neural networks, Neural Networks 6: 801-806.

Gear, C. W. (1971). Numerical Initial Value Problems in Ordinary Differential

Equations, Prentice-Hall.

Getting, P. (1989). A network oscillator underlying swimming in Tritonia, in

J. Jacklet (ed.), Neuronal and Cellular Oscillators, Marcel Dekker Inc, New
York, pp. 215-236.

Gonzalez, J. and Tsien, R. (1995). Voltage sensing by fluorescence resonance en­
ergy transfer in single cells, Biophys. J. 69: 1272-1280.

Goodman, M . B., Hall, D. H., Avery, L. and Lockery, S. R. (1998). Active currents
regulate sensitivity and dynamic range in C. elegans neurons, Neuron 20: 763-
772.

I l l

http://mrb.niddk
http://nih.gov/xpp

Hall, D. H. and Russell, R. L. (1991). The posterior nervous system of the nema­
tode Caenorhabditis elegans: serial reconstruction of identified neurons and
complete pattern of synaptic interactions, Journal of Neuroscience 11(1): 1-
22.

Hammerstrom, D. (1995). Digital VLSI for neural networks, in M . A. Arbib (ed.),
Handbook of Brain Theory and Neural Networks, MIT Press, pp. 304—309.

Harris-Warrick, R., Nagy, F. and Nusbaum, M . (1992). Neuromodulation of
stomatogastric networks by identified neurons and transmitters, in R. Harris-
Warrick, E. Marder, A. Selverston and M . Moulins (eds), Dynamic Biological

Networks: The Stomatogastric Nervous System, MIT Press, pp. 87-137.

Harvey, I., Husbands, P., Cliff, D., Thompson, A. and Jakobi, N. (1997). Evo­
lutionary robotics: The Sussex approach, Robotics and Autonomous Systems

20: 205-224.

Hines, M . (1993). The NEURON simulation program., in J. Skrzypek (ed.), Neu­

ral Network Simulation Environments, Kluwer Academic Publishers, Norwell,
MA.

Hopfield, J. (1995). Pattern recognition comutation using action potential timing
for stimulus representation, Nature 376: 33-36.

Hoppensteadt, F. and Izhikevich, E. (1997). Weakly Connected Neural Networks,

Springer, New York.

Horowitz, P. and Hill, W. (1989). The Art Of Electronics, second edn, Cambridge
University Press.

IEEE (1993). IEEE standard for information technology: Protocols for distributed
interactive simulation applications. IEEE Std. 1278-1993.

IEEE (1995). IEEE standard for a high performance serial bus. IEEE Std. 1394-
1995.

IEEE (1996). The POSIX system application program interface. IEEE Std. 1003.1-
1988.

112

Jung, R., Kiemel, T. and Cohen, A. (1996). Dynamic behavior of a neural net­
work model of locomotor control in the lamprey, Journal of Neurophysiology

75: 1074-1086.

Kelso, J. A. S. (1995). Dynamic Patterns. The Self-Organization of Brain and Be­

havior, MIT Press.

Knuth, D. (1997). The Art Of Computer Programming, Vol 1: Fundamental Algo­

rithm, third edn, Addison-Wesley.

Koch, C. and Segev, I. (1989). Methods in Neuronal Modeling: From Synapses to

Networks, MIT Press, Cambridge, MA.

Lockery, S. R., Nowlan, S. J. and Sejnowski, T. J. (1992). Modelling chemotaxis in
the nematode C. elegans, in J. Bower and F. Eechman (eds), Computation and

Neural Systems, Kluwer Academic Publishers, Norwell, MA.

Lockery, S. R. and Sejnowski, T. J. (1992). Distributed processing of sensory in­
formation in the leech. III. a dynamical neural network model of the local
bending reflex, Journal of Neuroscience 12(10): 3877-3895.

Lygeros, J. (1996). Hierarchical Hybrid Control of Large Scale Systems, PhD the­
sis, Department of Electrical Engineering, University of California, Berkeley.

Mahowald, M . A. (1992). Evolving analog VLSI neurons, in T. McKenna, J. Davis
and S. F. Zornetzer (eds), Single Neuron Computation, Academic Press.

Marder, E. and Selverston, A. I. (1992). Modeling the stomatogastric nervous sys­
tem, in R. M . Harris-Warrick, E. Marder, A. I. Selverston and M . Moulins
(eds), Dynamic Biological Networks: The Stomatogastric Nervous System,

MIT Press, pp. 161-196.

Martin, F. (1995). Mini board 2.0 technical reference. URL: (http://fredm.www.
media.mit.edu/people/fredm/papers/mb) [accessed Apr 27,1998].

Mills, D. (1990). On the accuracy and stability of clocks synchronized by the Net­
work Time Protocol in the Internet system, ACM Computer Communication

Review 20(1): 65-75.

Mills, D. (1994). Precision synchronization of computer network clocks, ACM
Computer Communication Review 24(2): 28-̂ 1-3.

113

http://fredm.www

Mills, D. L. (1992). Network Time Protocol (version 3) specification, implementa­
tion and analysis. IETF Network Working Group Report RFC-1305.

Morse, T, Ferree, T. and Lockery, S. (1998). Robust spatial navigation in a robot
inspired by chemotaxis in Caenorhabditis elegans, Adaptive Behavior 6: 393-
410.

Niebur, E. (1988). Theorie du systeme locomoteur et neuronal des Nematodes, PhD
thesis, University of Lausanne.

Niebur, E. and Erdos, P. (1991). Theory of the locomotion of nematodes: Dynamics
of undulatory progression on a surface, Biophysical Journal 60: 1132-1146.

Niebur, E. and Erdos, P. (1993). Theory of the locomotion of nematodes: Con­
trol of the somatic motor neurons by interneurons, Mathematical Biosciences

118:51-82.

Northmore, W. W. D. P. M . and Elias, J. G. (1997). Neuromorphic synapses for
artificial dendrites, Analog Integrated Circuits and Signal Processing 13: 167—
184.

Nyquist, H. (1928). Certain topics in telegraph transmission theory, AIEE Trans.

pp.617-644.

Oppenheim, A. V. and Schafer, R. W. (1989). Discrete-Time Signal Processing,

Prentice Hall.

Osborne, N. (1983). Dale's Principle and Communications Between Neurones,

Pergamon Press, New York.

Peak Audio Inc. (1998). CobraNet. URL: (http://www.peakaudio.com/public/
CobraNet/index.html) [accessed Apr 7,1998].

Pearlmutter, B. (1989). Learning state space trajectories in recurrent neural net­
works, Neural Computation 1: 263-269.

Pittsburgh Supercomputing Center (1998a). NEURON. URL: (http://www.psc.edu/
general/software/packages/neuron/neuron.html) [accessed Apr 7, 1998].

Pittsburgh Supercomputing Center (1998b). Parallel GENESIS at PSC. URL:(http:
//www.psc.edu/general/software/packages/pgenesis/project_docs%) [ac­
cessed Apr 7, 1998].

114

http://www.peakaudio.com/public/
http://www.psc.edu/
http://www.psc.edu/general/software/packages/pgenesis/project_docs%25

Port, R. F. and van Gelder, T. (eds) (1995). Mind as Motion: Explorations in the

Dynamics of Cognition, MIT Press.

Press, W., Flannery, B., Teukolsky, S. and Vetterling, W. (1988). Numerical Recipes

in C, Cambridge University Press, Cambridge.

Profibus (1998). PROFIBUS. URL: (http://www.profibus.com) [accessed Apr 7,
1998].

Raizen, D. and Avery, L. (1994). Electrical activity and behavior in the pharynx of
Caenorhabditis elegans, Neuron 12: 483-495.

Rail, W. (1977). Core conductor theory and cable properties of neurons, in E. R.
Kandel (ed.), Handbook of Physiology: The Nervous System, Vol. 1, American
Physiological Society, Bethesda, MD.

Rail, W. (1989). Cable theory for dendritic neurons, in C. Koch and I. Segev (eds),
Methods in Neuronal Modelling: From Synapses to Networks, MIT Press,
pp. 9-62.

Rankin, C. H. (1991). Interactions between two antagonistic reflexes in the nema­
tode Caenorhabditis elegans, J. Comp. Physiol. A 169: 59-67.

Rankin, C. H., Beck, C. D. O. and Chiba, C. M . (1990). Caenorhabditis elegans: a
new model system for the study of learning and memory, Behavioural Brain

Research 37: 89-92.

Real Networks, Inc (1998). Realtime streaming protocol resource center. URL:
(http.7/www.real.com/rtsp) [accessed Apr 7,1998].

Real-Time Magazine (1998). Real-time encyclopaedia. URL: (http://www.
realtime-info.be) [accessed Apr 7,1998].

Roehrig, C. J. and Rankin, C. H. (1998). Dymods I: A framework for modularizing
dynamical neuronal structures, (submitted).

Schinkmann, K. and Li , C. (1992). Localization of FMRFamide-like peptides in
Caenorhabditis elegans, J. Comp. Neurol. 316(251-260).

Schug, K. H. (1995). DIS NG - a flexible protocol for all simulation applications,
Proc. 13th DIS Workshop on Standards for the Interoperability of Distributed

Simulations, Orlando, Florida, Sep. 18-22.

115

http://www.profibus.com
http://http.7/www.real.com/rtsp
http://www
http://realtime-info.be

Segev, I., Fleshman, J. W. and Burke, R. E. (1989). Compartmental models of com­
plex neurons, in C. Koch, and I. Segev (eds), Methods in Neuronal Modelling:

From Synapses to Networks, MIT Press, pp. 63-96.

Skinner, F., Kopell, N. and Marder, E. (1994). Mechanisms for oscillation and
frequency control in reciprocally inhibitory model neural networks, Journal

of Computational Neuroscience 1: 69-87.

Smith, J. O. and Gossett, P. (1984). A flexible sampling-rate conversion method,
Proceedings of the IEEE Conference on Acoustics, Speech and Signal Pro­

cessing, San Diego, Vol. 2, pp. 19.4.1-19.4.4.

Stretton, A. O. W., Donmoyer, J. E., Davis, R. E., Meade, J., Cowden, C. and
Sithigorngul, P. (1992). Motor behavior and motor nervous system function
in the nematode Ascaris suum, J. Parasitol 78: 206-214.

Strogatz, S. H. (1994). Nonlinear Dynamics and Chaos with Applications to

Physics, Biology, Chemistry, and Engineering, Addison-Wesley.

Tavernakis, N., Shreffler, W., Wang, S. and Driscoll, M . (1997). Unc-8, a
DEG/ENaC family member, encodes a subunit of a candidate mechanically
gated channel that modulates C. elegans locomotion, Neuron 18: 107-119.

Thomas, J. H. (1990). Genetic analysis of defecation in Caenorhabditis elegans,

Genetics 124: 855-872.

White, J. G., Southgate, E., Thomson, J. N. and Brenner, S. (1976). The structure
of the ventral cord of Caenorhabditis elegans, Philos. Trans. R. Soc. Lond.

(Biol.) 275: 327-348.

White, J. G., Southgate, E., Thomson, J. N. and Brenner, S. (1986). The structure
of the nervous system of the nematode Caenorhabditis elegans, Philos. Trans.

R. Soc. Lond. (Biol.) 314: 1-340.

Wicks, S. R. and Rankin, C. H. (1995). Integration of mechanosensory stimuli in
Caenorhabditis elegans, Journal of Neuroscience 15(3): 2434-2444.

Wicks, S. R. and Rankin, C. H. (1997). The effects of tap withdrawal response
habituation on other withdrawal behaviors: The localization of habituation,
Behavioral Neuroscience 111: 342-353.

116

Wicks, S. R., Roehrig, C. J. and Rankin, C. H. (1996). A dynamic network simula­
tion of the nematode tap withdrawal circuit: Predictions concerning synaptic
function using behavioral criteria, Journal of Neuroscience 16(2): 4017-4031.

Wood, W. B. (1988). The Nematode Caenorhabditis elegans, Cold Spring Harbor
Laboratory, Cold Spring Harbor, NY.

Yamaha (1998). mLAN: Audio and music data transmission protocol. URL: (http:
//www.yamaha.co.jp/tech/1394mLAN/)[accessed Apr 7, 1998].

Yamauchi, M . M . and Beer, R. D. (1994). Sequential behavior and learning in
evolved dynamical neural networks, Adaptive Behavior 2: 219-246.

Yang, H. (1995). Intrinsic oscillations of neural networks, Proc. ICNN'95, Vol. 6,
pp.3044-3047.

Yang, H. and Dillon, T. (1994). Exponential stability and oscillation of hopfield
graded response neural network, IEEE Trans, on Neural Networks 5: 719-
729.

Young Chang RDI (1998). Presto digital audio interface. URL: (http://www.ycrdi.
com/presto) [accessed Apr 7, 1998].

117

http://www.yamaha.co.jp/tech/1394mLAN/)%5baccessed
http://www.ycrdi

Appendix A

The DSS Protocol Specification and

API

A . l The DSS Protocol Specification

The DSS protocol implements layers 5 to 7 of the ISO 7-layer reference

model (Comer, 1995) and relies on an underlying network transport protocol such

as TCP/IP or IEEE 1394.

The protocol has three main components (Figure A.l) . The DSS Signal

component deals with messages that carry the signal data. This component is re­

sponsible for presenting a continuous signal abstraction to the receiver application,

and performs the necessary signal reconstruction and resampling as required by

the receiver. It uses an unacknowledged isochronous datagram transport service.

The DSS Control component is responsible for establishing, managing and break­

ing DSS connections. It uses an acknowledged datagram transport service. The

118

DSS API

DSS , r protocol ,

DSS Signal DSS Control DSS Name Service

ISOC Transport ASYNC Transport

>

Network Transport

Figure A . l : DSS Architecture

DSS Name Service provides a name registry to allow DSS signal connections to be

specified by a symbolic name rather than numerical addresses.

Much of the nomenclature used here has been adopted from the TCP/IP

protocol (Comer, 1995). An octet refers to an 8-bit quantity (i.e. a byte on most

computers). All numerical quantities appearing in DSS messages are in network

byte ordering (i.e. MSB first), and are aligned on type boundaries.

A. l . l DSS Port Addresses

DSS port addresses have two components: a 32-bit local address to uniquely

identify the port on a single host computer or device, and an 8-octet transport ad­

dress to uniquely identify the host. The transport address consists of a single octet

to identify the transport family, plus a 7-octet transport-dependent address (see Fig­

ure A.2). The transport family is 1 for TCP/IP using UDP, and 2 for IEEE 1394.

0 8 16 24 31
local DSS port

transport tamily transport-dependent address

transport-dependent address

Figure A.2: DSS Address

119

In the TCP/IP UDP implementation of DSS version 1, the 7-octet transport address

octets are in order: a zero-pad octet, a 2-octet UDP port number in network byte

order, and a 4-octet IP address in network byte order.

A.1.2 DSS Messages

DSS messages are an integral number of quadlets (4-octets) and consist of

a DSS header followed by the message contents. DSS messages can be one of

two types: isochronous (ISOC) or asynchronous (ASYNC). ISOC messages are

unacknowledged and used for carrying the time-critical signal data. ASYNC mes­

sages are used for control and name service functions and are acknowledged using

a sequence number to match acknowledgement responses to requests. To allow

for efficient embedded implementations and mappings onto transport layers such

as IEEE-1394, all DSS messages are guaranteed to have a size of 200 octets or

less. The two message types were designed to be efficiently mapped onto the asyn­

chronous and isochronous services provided by the underlying transport layer. In

the case of IEEE-1394, these would be the similarly named services. DSS version

1 was implemented on TCP/IP using UDP datagrams to provide both services.

The DSS Header

The DSS message header is shown in Figure A.3.

The four high-order bits of the header is used to identify the version of the

DSS protocol, encoded in reverse bit order. The current version is 1 and it is en­

coded as 0x8. Bits 12-15 of the first header quadlet contain message flags as shown

120

VERS
8

reserved
16

FLAGS
24 31

MSGTYPE MSGLEN

DSS src port

DSS dst port

in Table A. 1:

flag

Figure A.3: DSS Message Header

value description
DSS_ACKREQ 0x1 requires an a acknowledgement
DSS_ACK 0x2 this is an acknowledgement
DSS_TIMEOUT 0x4 request timed out
D S S _ F A I L 0x8 request failed

Table A . l : DSS Message Header Flags

The MSGTYPE octet encodes the DSS message type as described below.

The MSGLEN octet encodes the size of the DSS message contents in octets, not

including the DSS header. The DSS source port and destination port identify the

endpoints of the DSS connection. To form a complete DSS address, they must be

combined with the transport-dependent address which must be obtained from the

transport layer. Since DSS messages are encapsulated in transport-layer datagrams,

these datagrams must include the source transport address if the full DSS source

address is to be recoverable. This is the case for TCP/IP (Comer, 1995) and IEEE-

1394 (IEEE, 1995).

I S O C Message (M S G T Y P E = 1)

An isochronous message (Figure A.4) carries signal data. The sample times-

tamp is the number of microseconds since the connection epoch. In DSS version

1, the signal data is a single sample encoded as an integer scaled up by a factor of

121

16 24 3J
signal tlmestamp

signal data

Figure A.4: DSS Isochronous Message

106. This allows a representation of signal values in the range -2147 to 2147 with

a precision of 10 - 6 . Future DSS versions will specify the signal and timestamp

format at connection time and may encode multiple samples in a single message.

A S Y N C Message (MSGTYPE=2)

A generic asynchronous message is shown in Figure A.5. This message is

0 8 16 24 31
SEQNO reserved

Figure A.5: DSS Asynchronous Message

used for simple acknowledgments and to "ping" ports to see if they are alive. For

acknowledgements, the DSS_ACK bit is set in the header and SEQNO identifies

the original message that requested the acknowledgment. For pings, the DSS_-

ACKREQ bit is set in the header flags, and the destination port returns an ASYNC

acknowledgement message. A 16-bit data field can be used to return error codes or

other data.

C O N N E C T Message (MSGTYPE=3)

A connection request message is shown in Figure A.6. This message is

sent by an output port to a target input port to request its connection. The DSS

source address is the originating output port of the signal. FORMAT indicates the

122

8
SEQNO

16 24
FORMAT

31

DSS source address

DSS source address

DSS source address

SRATE

EPOCH

Figure A.6: DSS Connection Request Message

data format for the signal and is currently unused in DSS version 1. In future

versions, this will indicate the encoding format and scaling factor for the signal

data. SRATE is the nominal sampling rate (i.e. twice the bandwidth) of the signal

in thousandths of Hertz. SRATE is used to determine the filter cutoff frequency of

the reconstruction filter. EPOCH is the reference time for the connected signal's

timestamps in seconds since midnight, January 1, 1970, GMT. This value is added

to the signal's timestamps to give their actual absolute time reference. An ASYNC

acknowledgement packet is returned to the sender upon completion.

DISCONNECT Message (MSGTYPE=4)

The DISCONNECT message (Figure A.7) is sent to a target DSS input port

by an output port to request its disconnection. The DSS source address is the orig-

8 16 24 31
SEQNO reserved

DSS source address

DSS source address

DSS source address

Figure A.7: DSS Disconnection Request Message

inating output port of the signal. An ASYNC acknowledgement packet is returned

to the sender upon completion.

123

A D D T A R G E T Message (MSGTYPE=5)

The ADD TARGET message (Figure A.8) is sent to a DSS output port to

request its connection to a target input port. The DSS destination address is the

8 16
SEQNO

24 31
reserved

DSS target address

DSS target address

DSS target address

Figure A.8: DSS Add Target Message

address of the target input port to be connected. An ASYNC acknowledgement

packet is returned to the sender upon completion. If the output port was unable

to contact the target port, the D S S _ T I M E O U T bit is set in the acknowledgement

packet.

D E L T A R G E T Message (MSGTYPE=6)

The DEL TARGET message (Figure A.9) is sent to a DSS output port to re­

quest its disconnection from a target input port. The DSS destination address is the

8 16
SEQNO

24 31
reserved

DSS target address

DSS target address

DSS target address

Figure A.9: DSS Delete Target Message

address of the target input port to be disconnected. An ASYNC acknowledgement

packet is returned to the sender upon completion. If the output port was unable

124

to contact the target port, the D S S _ T l M E O U T bit is set in the acknowledgement

packet.

N A M E REGISTER Message (MSGTYPE=7)

The NAME REGISTER message (Figure A. 10) is sent to a DSS name server

to register the name with a DSS address. NAMELEN is the length in octets of the

0 8 16 24 31
SEQNO NAMELEN reserved

DSS target address

DSS target address

DSS target address

DSS name string

Figure A. 10: DSS Name Register Message

name string to be registered, not counting any padding octets. DSS address is the

address to be registered with the name. DSS name string is a sequence of ASCII

octets, padded to a quadlet boundary. An ASYNC acknowledgement packet is

returned to the sender upon completion.

N A M E QUERY Message (MSGTYPE=8)

The NAME QUERY message (Figure A . l 1) is sent to a DSS name server

to lookup a DSS address by name. NAMELEN is the length in octets of the name

0 8 16 24 31
SEQNO NAMELEN reserved

DSS name string

Figure A . l l : DSS Name Query Message

125

string to be looked up, not counting any padding octets. DSS name string is a

sequence of ASCII octets, padded to a quadlet boundary. A N A M E RESPONSE

acknowledgement packet is returned is returned to the sender upon completion. If

the lookup was unsuccessful, the DSS_FAIL flag is set in the header of the N A M E

RESPONSE packet.

NAME RESPONSE Message (MSGTYPE=9)

The N A M E RESPONSE message (Figure A. 12) is an acknowledgement

packet containing the response to a N A M E QUERY message. SEQNO identifies

1£_
SEQNO

31
reserved

DSS

DSS address
DSS address

Figure A. 12: DSS Name Response Query

the original N A M E QUERY message that requested the name lookup. If the DSS_-

FAIL flag is not set, the DSS address is the address that is registered with the name.

EPOCH Message (MSGTYPE=10)

The EPOCH message (Figure A. 13) is used to renegotiate the connection's

epoch as described below. EPOCH is encoded in the same format as in the CON-

0 8 16 24 31
SEQNO reserved

EPOCH

Figure A. 13: DSS Epoch Query

126

N E C T message. A n A S Y N C acknowledgement message is returned to the sender

upon completion.

The epoch renegotiation proceeds as follows. Let E0 be the current connec­

tion epoch, and let M A X _ T I M E S T A M P be the maximum timestamp interval encoded

in 32 bits (this is 2 3 2 microseconds in DSS version 1, but in future versions may de­

pend on the encoding format). The relative timestamp is difference between the

absolute timestamp and the current connection epoch. When the time is such that

the relative timestamp exceeds M A X T I M E S T A M P / 2 , the connection is in an epoch

renegotiation phase. Timestamps relative to the old epoch E0 can be identified by a

1 in the high-order bit. A new epoch E\ is established by the signal output port and

sent to the input port which records and acknowledges it. When the output port has

received the acknowledgement, it begins using the new E\ epoch for its timestamp

references. Figure A . 14 depicts the process.

This mechanism ensures that any out-of-order samples w i l l still have their

timestamps computed correctly. This method assumes that epoch renegotiation

takes less than M A X T I M E S T A M P / 2 and that packet transmission delays are less

than M A X _ T I M E S T A M P .

A.2 The DSS Application Programmer Interface (API)

The DSS application programmer interface (API) is a set of C program

functions that provides an application with the capability to interact with DSS sig­

nals. The interface abstraction is similar to the B S D sockets interface (Comer and

Stevens, 1993) and consists of the following functions.

127

DSS OUTPUT Port

EPOCH
RENEGOTIATION
PHASE

EPOCH ACK

I . E .

DSS INPUT Port

l i - E . < MAX_TIMESTAMF/2

l 2 • K0 > HAXilTIMESTAMP/2•:

EPOCH ACK

t} - E„ | > MAX_TIMESTAMP / 2

t 4 - E , < HAX_TIMESTAMP/2

Figure A. 14: Epoch renegotiation. The boxes represent DSS messages sent between
a DSS output port and a DSS input port and time flows downwards. The dashed ar­
rows show isochronous messages carrying signal data, and the solid arrows show
the control messages involved in epoch renegotiation. The relative timestamp con­
tained in an isochronous message is shown as tt — En where is the absolute
timestamp of that sample datum, and En is the epoch in effect when that message
was sent. The shaded area represents the epoch negotiation phase (see text).

void dss_init(char *nameserver)

Initializes the DSS subsystem. The nameserver is the transport-dependent

name string that identifies the host functioning as the DSS name registry,

void dss_fini()

Terminates the DSS subsystem,

dss socket dss open input(char *name, double rate)

Creates an input socket called name, registers it with the name server and

returns it. The rate is the expected rate at which samples will be read from the

socket and is used to determine the interpolation filter characteristics,

dss socket dss open output(char *name, double rate, int format)

Creates an output socket called name, registers it with the name server and

returns it. The rate is the expected rate at which samples will be written to

128

the socket and is used to determine the interpolation filter characteristics of the

receiver. In DSS version I, format is unused; in future versions it will specify

the signal data format,

void dss_close(dss socket s)

Closes socket s. Disconnects all open connections and removes its name from

the registry.

int dss_lookup(char *name, struct dss_addr *addr)

Looks up the name in the DSS registry and returns its full DSS address in addr.

Returns 1 if successful, 0 otherwise,

int dss_ping(struct dssaddr *addr)

Pings a DSS port to see if it is alive. Returns 1 if successful; 0 if the ping times

out.

double dss_read(dss_socket s, double t)

Interpolates and returns the signal's value from input socket s for the time t.

This function performs the signal reconstruction from the currently available

samples and will therefore only be accurately reconstructed for t values in the

interval [t, t + dt] where dt is the sampling interval of the received signal.

Therefore, it should be scheduled in the following manner:

while (wallclockO < t)
usleep (S L E E P _ I N T E R V A L) ; /* wait */

x = dss_read(s, t);

where SLEEP_INTERVAL is a suitably small fraction of dt. If the system

supports better real-time scheduling facilities, they should be used instead of

usleep.

129

int dss getinfo(struct dssinfo *info)

Gets information associated with input socket s:

struct dss_info{
double delay;
int bufsize;
int samples;

The de l ay is established at connection time and is determined by the inter­

polation filter width. The b u f s i z e is the size of the signal input buffer and

samples is the number of samples used in the most recent interpolation (in­

vocation of d s s r e a d) .

int dss addtarget(dss_socket s, struct dss_addr *addr)

Adds the DSS port with address addr to the list of targets for output socket s.

Returns 1 if successful; 0 otherwise,

int dss_deltarget(dss_socket s, struct dssaddr *addr)

Removes the DSS port with address addr from the list of targets for output

socket s. Returns 1 if successful; 0 otherwise,

void dss_write(dss_socket s, double t, double val)

Writes the signal's value val to the output socket ^ with timestamp t. The

caller is responsible for ensuring that the sampling interval is sufficient to rep­

resent the signal's bandwidth as declared in the rate parameter of the d s s -

open_output call, and for scheduling calls to d s s_wr i te within the in­

terval [t, t + dt] where dt is the sampling interval. Otherwise, the receiver may

not receive the necessary samples for accurate reconstruction.

In DSS version 1, dss_addtarget operates on an open output socket. In

future versions, the d s s a d d t a r g e t function will take two DSS addresses and

will not require an open socket. This will allow connections to be established and

managed remotely by a connection manager.

The following example illustrates how to set up a DSS output port to deliver

a signal computed by f (t) to a destination DSS input port with name l i s t e n e r .

The sampling interval is dt.
d s s _ a d d r d s t ;
d s s _ s o c k e t * m e ;
d s s _ i n i t () ;
me = d s s _ o p e n _ o u t p u t (" s e n d e r " , 1 . 0 / d t , 0) ;
i f (d s s _ l o o k u p (" l i s t e n e r " , & d s t))

d s s _ a d d t a r g e t (m e , & d s t) ;
f o r (t = w a l l c l o c k () . ; t < M A X _ T ; t + = d t) {

w h i l e (w a l l c l o c k O < t)
u s l e e p (S L E E P _ I N T E R V A L) ; / * w a i t * /

d s s _ w r i t e (m e , t , f (t)) ;
}

The following example illustrates how to set up a DSS input port that reads

a signal and compares it to a computed version. Its sampling interval is dt , which

is unrelated to the sampling interval of the transmitted signal.
d s s _ s o c k e t * m e ;
d s s _ i n i t () ;
me = d s s _ o p e n _ i n p u t (" l i s t e n e r " , 1 . 0 / d t) ;
d e l a y = d s s _ d e l a y (m e) ;
f o r (t = w a l l c l o c k () ; t < M A X _ T ; t + = d t) {

w h i l e (w a l l c l o c k O < t)
u s l e e p (S L E E P _ I N T E R V A L) ; / * w a i t * /

x = d s s _ r e a d (m e , t) ;
p r i n t f (" d i f f e r e n c e = % g \ n " , x - f (t - d e l a y)) ;

131

Appendix B

Robot Assembly Instructions and

mblibAPI

B.l LEGO Tank Robot Construction

The assembly diagrams for the the LEGO tank robot of Chapter 5 are shown

in Figure B . l - Figure B.5.

132

P a g e 1

Figure B . l : Robot Tank Chassis LEGO Assembly, Part 1

133

P a g e 2

Figure B.2: Robot Tank Chassis LEGO Assembly, Part 2

134

Insert battery clips in
slots before attaching top
8x1 battery cover beams.

"| 7 Insert a large 40-tooth gear into
the slot and impale it with short
3cm axle. Attach a small 8-tooth
gear to the other end of the ax

Attach a large 40-tooth gear
to a 5 cm axle and insert it
so that it meshes with the
8-tooth gear. Secure it on
the other end with an axle
"nut".

P a g e 3

Figure B.3: Robot Tank Chassis LEGO Assembly, Part 3

135

Page 4

Figure B.4: Robot Tank Chassis LEGO Assembly, Part 4

136

20 Sprocket Positioning
Attach freewheeling sprockets at indicated positions. You'll need
to use snap-in axles for the middle pair of small sprockets because
there is no clearance on the other side of the hole. Snap-in axles
aren't found in kit 9605, but can be found in other Technics kits.

With a little modification, the two rear-most sprockets can be
mounted on shaft-encoders. The rear engine space was
designed to accommodate a modified ALPS "press brush contact"
type rotary encoder from an old (circa 1990) Microsoft mouse.

24-tooth sprockets 40-tooth
sprocket

Link together 74 chain links to form each tread.

P a g e 5

Figure B.5: Robot Tank Chassis LEGO Assembly, Part 5

137

B.2 Miniboard Host C Library

The m b l i b host library consists of the following API:
m b o p e n (p o r t)

Open and return a miniboard descriptor using the given serial port,
mb c l o s e (m b)

Close the given miniboard descriptor,
mb c l e a n u p ()

Clean up the miniboard system after an error,

mb r u n (m b , i n t e r v a l , u s e r f u n c , u s e r p a r m

Start periodically updating the Miniboard at the specified interval. Af­

ter each update, the user supplied function is called with the provided

parameter,
mb s t o p (m b)

Stops the periodic Miniboard updating,

m b s e t m o t o r p w r (mb, n , o n)

Turns motor n on or off.
m b m o t o r p w r (mb, n)

Returns the on/off state of motor n.
m b _ m o t o r _ s e t _ d i r (mb, n , d i r)

Sets the direction for motor n.
m b _ m o t o r _ d i r (mb, n)

Returns the direction for motor n.
mb m o t o r s e t s p e e d (m b , n , s p e e d)

Sets the speed for motor n.

mb m o t o r s p e e d (m b , n

Returns the speed for motor n.

138

m b s e t d i g i t a l d i r (m b , n , d i r)

Sets the direction for digital I/O bit n.

mb d i g i t a l d i r (m b , n)

Returns the direction for digital I/O bit n.

mb s e t d i g i t a l (m b , n , v a l u e)

Sets the output value for digital I/O bit n.

mb d i g i t a l (m b , n)

Returns the state of digital I/O bit n.

mb s w i t c h (m b , n)

Returns the complement of the state of digital I/O bit n (more intuitive

when using switches).

m b _ a n a l o g (m b , n)

Returns the value of analog input n.

m b _ d s h a f t (m b , n)

Returns the number of milliseconds between edges on the digital shaft

n.
mb r e a d v e r s i o n (mb)

Reads the BINMON version string,

mb r e a d b y t e (mb, a d d r)

Reads the byte at Miniboard address addr.

m b w r i t e b y t e (mb, a d d r , d a t a)

Writes the given byte of data at Miniboard address addr.

mb r e a d w o r d (m b , a d d r)

Reads the 16-bit word at Miniboard address addr.
mb w r i t e w o r d (m b , a d d r , d a t a)

Writes the given word of data at Miniboard address addr.

139

mb r e s e t (m b)

Resets the Miniboard.

For a full description of this API, see the m i n i b o a r d . h file in the m b l i b pack­

age.

140

