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Abstract 

To understand ecological processes, it is important to study observed patterns at appropriate 

scales. Patterns of habitat use by animals have a spatial dimension that is usually ignored in 

analyses of habitat selection and preference. Hence, I studied the interaction between animal 

movement behaviour and landscape pattern, across a variety of spatial scales. The purpose of 

the study was to determine how these variables affect our ability to make inferences about the 

habitats used by animals. 

I simulated the movements of animals on maps of real and simulated landscapes. I modelled 

movements that were either insensitive or sensitive to the underlying distribution of habitats. 

The unequal proportions of different habitat types had the greatest influence on measures of 

habitat use and preference, but measures were also affected by the scale of animal movements, 

the affinity of animals for different habitats, the size and arrangement of habitat patches, and the 

method of analysis. 

Changing the scale of animal movements by varying the daily distances that simulated 

animals moved, had little effect on the mean use of different habitats, but scale affected the 

variance of habitat use among simulated animals. Small-scale movements produced the largest 

overall variances, and variances were greatest for the most abundant habitats. The correlation 

between variance in habitat use and proportions of habitat types was an expected result, 

although previous researchers have not assessed the implications of the correlation. Spatial 

effects were evident primarily where home ranges were less than about ten times the median 

size of habitat patches on the landscape. 

The relationship between variance in habitat use and scale of animal movements was similar 

among all simulations. Regions where variance did not change with scale were next to a region 
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where variance changed mono tonically with scale (log-transformed). This suggested the 

existence of 'domains of scale' or regions where a given property (in this case, variance in 

habitat use) changes predictably with scale. Characteristics of these regions were a function of 

the proportions of habitat types on the landscape, the size and arrangement of habitat patches, 

and of the variances associated with other parameters of the model. Domains were not 

separated by sharp discontinuities; higher variances among variables such as home range size 

and patch size, as well as the random placement of simulated animals tended to make scaling 

properties less distinct. 

Preference analyses often distorted the true habitat affinities of simulated animals. These 

distortions were partly due to the unit-sum constraint which affected measures of both habitat 

use and availability (measures for different habitat types summed to one), and the analyses used 

to compare them. However, landscape pattern also affected the ability to make accurate 

inferences about habitat preference. The proportions of different habitat types, as well as their 

patch sizes and arrangement, constrained the ability of animals to exploit habitats according to 

their affinity for habitats. These constraints were reflected in the results of preference analyses, 

which rarely detected strong preference for rare habitat types, even when animals had a high 

affinity for those habitats. This result depended on the inability of simulated animals to learn 

the locations of high quality patches. 

I analysed radio telemetry data collected on grizzly bears (Ursus arctos) in the Flathead 

Valley, British Columbia to examine the degree to which landscape characteristics could 

produce similar patterns of habitat preference in real and simulated animal movement data. 

Results- suggested that simulated animals that did not discriminate among different habitat types 

could have rank orders of habitat preference similar to that observed in the actual grizzly bear 

data, but only when the movements of simulated animals were determined by a spatially-



explicit model. However, there was a 'boundary effect' in the spatially-explicit simulations that 

was largely responsible for the fit between simulated and actual data. The magnitudes of 

preference and avoidance of habitats were greater in the bear data than in the simulated data. 

Additional simulations based on a model of grizzly bear habitat capability revealed that 

methods of analysing preference differed in their ability to reflect the habitat affinities 

suggested by the bear data. 

These results underline the importance of considering the spatial dimension of habitat use 

data when mapping habitats, developing data collection protocols, and interpreting results. 
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Quotation 

"Ecology is the science which says what everyone knows, 

in language that no one understands" 

Charles S. Elton 
Animal Ecology 1927 
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Chapter 1. General Introduction 

Descriptions of wildlife habitat that account for both the arrangement and amounts of 

different habitats are beginning to emerge in wildlife studies (McGarigal and Marks 1995, 

Roseberry and Hao 1996). The distribution of resources in space is one of the factors that 

determines the distribution and abundance of species, and to understand ecological processes 

often requires an examination of spatial patterns at appropriate scales (Wiens and Milne 1989, 

Dunning et al. 1992, Milne et al. 1992, Thomson et al. 1996). There is also the practical issue 

for researchers conducting wildlife studies with radio telemetry, that the spatial pattern of 

available habitats and the scale of animal movements may affect the results of habitat use 

analyses (Porter and Church 1987, Shulz and Joyce 1992, Turner et al. 1993, Arthur et al. 1996, 

Wilson et al. in press). 

Issues of spatial pattern and scale can be articulated within the context of the emerging field 

of landscape ecology (Forman and Godron 1986, Turner 1989). A basic principle of this 

discipline is that the arrangement of landscape elements may regulate the distribution of 

organisms, resources, and energy (Milne et al. 1989). Here, I define a 'landscape' as an area 

that is spatially heterogeneous with respect to the resources an animal requires, is larger than an 

average home range, but smaller than the regional distribution of a species (Turner and Gardner 

1991, Dunning et al. 1992). Therefore, a landscape is a species-specific area large enough to be 

used by several individuals, but not large enough to be considered a regional population. This is 

a size that corresponds to the study areas that many wildlife researchers use. 

Landscape ecology provides a framework for understanding the manner in which smaller-

scale processes are influenced and/or constrained by larger-scale phenomena (O'Neill et al. 

1988b), and whether there are emergent properties that are at least partly independent of the 



smaller-scale behaviour (Levin 1992). In this thesis, I defined the smaller-scale behaviour by 

the daily movements of individual animals. Describing habitat use generated by animal 

movements has been a central theme of modern ecology and in particular, of wildlife ecology 

and management (Neu et al. 191 A, Johnson 1980, Arthur et al. 1996). The larger-scale 

constraints that I consider are those imposed by the amounts and arrangement of habitats across 

a landscape. While biologists have commonly incorporated measures of habitat availability in 

their analyses (Neu et al. 191 A, Johnson 1980, Alldredge and Ratti 1986, Aebischer et al. 1993), 

rarely have they considered habitat juxtaposition, interspersion, and other aspects of landscape 

structure. 

Studies that have examined habitats available to animals in a spatially-explicit manner have 

found that habitat patch size and the extent of study areas can affect measures of available 

habitat (Porter and Church 1987), and that considering available habitat in the context of animal 

mobility can generate predictions different from those produced by a spatially-neutral model 

(Shulz and Joyce 1992, Wilson et al. in press). It is important to understand the applicability of 

this results to habitat use studies in general. 

Modelling Wildlife-Habitat Relationships 

Habitat use is often measured by comparing an index of use (either the number or proportion 

of animal locations, or the proportion of an estimated home range, contained within different 

habitat types) to a measure of habitat availability (Alldredge and Ratti 1986). Johnson (1980) 

introduced the concept of a hierarchy of selection, and classified the largest (or first) order of 

selection as the selection of a species range, and the smallest (or fourth) order as selection of 

individual bites by animals. In this hierarchy, the larger-scale selection behaviour constrains 

choices available at smaller scales, however, most analyses (including Johnson 1980) assume 
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that the nature of this constraint is limited only to the quantity of different habitats included in 

the analysis; the spatial characteristics of the habitats within the study area are not considered. 

It is difficult to determine the role of spatial characteristics in generating habitat use results 

with data from field studies because the true behaviour of sampled animals is not known. 

However, models of animal movements allow the study of spatial effects where animal 

behaviour is known and where locations can be sampled and habitat maps generated without 

error. I examined habitat use in a spatially-explicit context by using 'individual-based' models 

of animal movements (Judson 1994). This modelling method attempts to simulate the behaviour 

of individuals based on relevant decision rules, and to build the dynamics of systems by 

simulating many animals. The focus is on the resulting broad-scale patterns, in this case the 

distribution of animal locations, rather than the details of the fine-scale behaviour (i.e. the 

movements of individuals). It is not assumed that complex rules defining fine-scale behaviour 

do not exist, but rather that they do not significantly influence broader-scale patterns (Levin 

1992). Therefore, the goal is not to capture all the decision rules used by animals moving 

through landscapes, but to use the simplest possible model to generate broad-scale patterns that 

are consistent with those observed in the field (Levin 1992, Starfield 1997). 

An individual-based model of animal movements is a novel approach to studying the effects 

of spatial variables on habitat use. More commonly, models of habitat selection attribute no 

behaviour to individuals and assume that locations will be distributed according to the 

suitability of habitat patches, regardless of the distribution of habitats or of the mobility or 

energetics of animals (Lima and Zollner 1996). 

My models were based on random walks (Kareiva and Shigesada 1983, Bovet and Benhamou 

1988, Marsh and Jones 1988, Johnson et al. 1992, Gross et al. 1995), which have been used in 

ecology to characterise and simulate the movements of animals (Kareiva and Shigesada 1983, 
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Johnson et al. 1992, Gautestad and Mysterud 1993, With 1994, Gross et al. 1995, Boone and 

Hunter 1996) and to analyse search paths in the context of foraging theory (e.g. Pyke 1978, 

1983). 

Random walk models in biology have been based on either discrete or continuous movements 

(McCulloch and Cain 1989). Discrete models characterise animal paths as a distribution of step 

lengths and turning radii (Kareiva and Shigesada 1983, Wiens and Milne 1989, Johnson et al. 

1992, With 1994, Nams 1996). In contrast, continuous or diffusion models generate movements 

in a cell-to-cell fashion, at a scale equal to the grain of the map and the time necessary to 

traverse a cell (Turner et al. 1993, Boone and Hunter 1996). These models have been used to 

simulate animal dispersal movements, usually on artificial landscapes consisting of a random 

grid of resource and non-resource sites {e.g. Gardner et al. 1989, Turner et al. 1993). 

Animal movement models based on random walks are 'information free'; that is, animals 

have no information about surrounding habitat and cannot learn, although they are usually 

given the ability to instantly assess the value of a patch upon arrival. By contrast, most methods 

of modelling habitat use assume that animals have perfect information about all available 

habitats and have no need to learn (Lima and Zollner 1996). Which approach is more useful is 

open to debate, but following one set of assumptions or the other may affect the inferences 

made about habitat use. I used simulation models to compare results based on these sets of 

assumptions. 

In this thesis, I use both discrete and continuous correlated random walk models to examine 

the effects of spatial variables on measures of habitat use. The goal is to generate system-

independent relationships between the spatial characteristics of location and habitat data, and 

the inferences made about habitat use by animals. There are many variables with spatial 

consequences that are at least partly under the control of researchers. These include the 
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frequency of animal relocation, the number of habitats mapped, and average habitat patch sizes. 

As a result, data collection protocols have spatial consequences, and a better understanding of 

the relationship between spatial variables and habitat use measures wil l assist researchers in 

designing better studies, and in interpreting results that can lead to better management 

prescriptions and policies. 

In Chapter 2,1 describe the characteristics of the landscapes that I use in subsequent chapters. 

In Chapter 3,1 use a discrete movement model, insensitive to the distribution of habitats, to 

investigate the effects of landscape characteristics on habitat use. This is an application of a 

'null model', which allows the inference of a particular mechanism by generating patterns that 

are expected in the absence of the mechanism (Lewin 1983, Gotelli and Graves 1996). In this 

case, I use habitat-insensitive simulations of animal movements to generate expected patterns of 

habitat use, in the absence of habitat selection (see Arthur et al. 1996 for a similar application). 

I simulate the movements of animals, at different scales, on maps based on both real and 

random landscapes, to examine and characterise these interactions. 

In Chapter 4,1 develop a continuous movement model that is sensitive to the underlying 

value of habitat types. M y objective is to predict ways in which affinities for different habitats 

interact with landscape characteristics to produce patterns of habitat use across spatial scales. 

Finally in Chapter 5,1 examine radio telemetry data collected on grizzly bears {JJrsus arctos) 

in the Flathead Valley, British Columbia, and investigate patterns of habitat use from the 

perspective developed in the previous chapters. Grizzly bears provide an excellent opportunity 

for examining landscape effects, primarily because they move at scales similar to those at which 

we often produce multipurpose maps. Also, a long-term study in the Flathead Valley has 

provided a large dataset of telemetry locations on many (n = 116) grizzly bears (McLellan 1989, 

F. Hovey, unpubl.), and contributed to the map upon which many of my simulations were based 
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(Lea et al. 1988, Fuhr and Demarchi 1990). In the chapter I investigate the degree to which 

landscape variables can produce similar patterns of habitat use in both real and simulated data, 

despite the oversimplifications used in simulating animal movements. This provides an example 

of broad-scale patterns (i.e. habitat use) emerging from processes with dissimilar fine-scale 

behaviours (actual and simulated movements; Levin 1992, Wiens and Milne 1989). 
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Chapter 2. Habitat Maps 

Introduction 

In this chapter, I describe the habitat maps on which I base animal movement simulations. 

The maps were originally generated from a grizzly bear habitat capability model (Fuhr and 

Demarchi 1990) for the Flathead Valley, BC (49° N , 114° 85' W; for details of the study area 

see McLellan 1989), and consist of four habitat types that correspond to different classes of 

habitat quality for grizzly bears. I used the maps only because they provided good examples of 

landscapes often encountered in habitat use studies. 

I first outline the general methods used to adapt the maps for my purposes, and then 

characterise them with common landscape indices. Finally, I discuss the usefulness of different 

indices for describing landscape structure in the context of habitat use studies. 

Methods 

Three seasonal maps (spring, summer, fall) were used for the simulations, and each contained 

four habitats that I arbitrarily labelled h i , h2, h3, and h4. The maps covered approximately 

1100 km at a resolution of 50 m . I generated an additional map by reclassifying two of the 

habitat types into one on the fall map ('3-habitat fall map'). 

I also generated 'random' landscapes (With 1997) that had the same habitat proportions as the 

original fall map (chosen arbitrarily from the three seasonal maps). To generate these maps, 

each pixel was pseudorandomly (i.e. by a computerised random number generator) assigned a 

value between 0 and 1, and pixels were then classified into the four habitat types according to 

pixel value, such that values between 0 and 0.127 were assigned to habitat h i (to correspond to 

the 12.7% of the fall map that was comprised of habitat type hi) , values between 0.12701 and 

0.754 were assigned to h2, and so on. The result of this exercise was a map that contained 
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several thousand very small patches, many no larger than a single 0.25 ha pixel. I increased the 

average patch sizes by first contracting the map by repeatedly removing every other pixel until I 

had maps that were smaller than the original by factors of 4 and 10.1 then expanded these two 

maps to their original size by repeatedly duplicating pixels. This resulted in maps with patches 

that were, on average, 4 and 10 times the size of patches on the initial random map, and that had 

similar proportions of habitats as the fall map, but that differed in other landscape 

characteristics. I labelled these maps 'random a' and 'random b' respectively. 

Map files were maintained in Idrisi 4.1 (Clark University Graduate School of Geography, 

Worcester, M A ) . Landscape characteristics were calculated with Frags tats 2.0 (McGarigal and 

Marks 1995), and I used the program's definitions of interspersion/juxtaposition, and contagion 

indices to quantify landscape pattern (Appendix I). Fragstats' interspersion/juxtaposition index 

is a measure of the intermixing of habitats based on patch adjacencies. It measures the degree of 

patch type interspersion. Higher values indicate greater interspersion; that is, patch types are 

more equally adjacent to each other. The contagion index is based on pixel adjacencies and 

measures the extent to which patch types are clumped or aggregated. As such, contagion 

measures both patch interspersion and dispersion (the spatial distribution of habitat patches). 

Higher contagion values result from landscapes with few large, contiguous patches. 

Results 

The landscape characteristics of the maps that I used were dominated by the h2 habitat 

type, with the proportions of other habitats varying among seasons (Table 1). In general, the 

broad patterns of habitat arrangement were similar across the three seasons (Figure 1), because 

the biogeoclimatic characteristics of the Flathead Valley are dominated by the valley's 

topography (Lea etal. 1988). 
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Table 1. Common landscape statistics for the habitat maps used in the movement simulations. In 
addition to the three seasonal maps, the two rarest habitat types on the fall map were combined to 
produce a fourth seasonal map. 'Random' maps that had the same habitat proportions as the fall 
map were also generated by randomly assigning pixels to one of the four habitats. 

Maps 
Spring Summer Fall Fall Fall Fall 

habitat characteristics 3-habitat r a n d o m a 1 r a n d o m b2 

hi % landscape 
# of patches 
mean size (ha) 
patch size CV 3 (%) 

23.0 
69 

366.7 
226.9 

20.8 
56 

408.2 
324.9 

h2 % landscape 
# of patches 
mean size (ha) 
patch size CV 3 (%) 

62.0 
32 

2126.9 
234.9 

65.8 
16 

4521.0 
191.7 

h3 % landscape 
# of patches 
mean size (ha) 
patch size CV 3 (%) 

8.4 
68 

135.3 
109.7 

6.2 
43 

159.4 
99.7 

h4 % landscape 
# of patches 
mean size (ha) 
patch size CV 3 (%) 

6.6 
26 

280.7 
236.1 

7.1 
31 

252.0 
243.2 

12.7 12.7 12.6 12.9 
37 37 1961 315 

378.0 378.0 7.1 45.0 
208.4 208.4 78.6 82.7 

62.7 62.7 62.4 62.7 
20 20 18 3 

3445.4 3445.4 3811.1 22983. 
239.8 239.8 411.2 141.0 

19.0 24.5 19.4 19.2 
111 113 2023 314 

188.9 238.6 10.5 67.4 
131.3 153.6 113.5 112.1 

5.5 5.6 5.1 
47 1189 185 

127.7 5.2 30.5 
94.6 48.4 45.0 

landscape characteristics 

median size (ha) 
mean size (ha) 
patch size CV 3 (%) 
inters./jux.4 (%) 
contagion4 (%) 

85.0 80.4 
563.4 752.5 
392.8 435.7 
86.7 86.6 
56.2 59.8 

84.3 105.0 
511.0 646.2 
531.6 471.9 
79.3 80.9 
55.6 50.9 

4.0 25.0 
21.2 134.5 

1485.5 1787.7 
78.9 78.0 
44.6 54.0 

'same habitat proportions as 'fall' map, but pixels were randomly interspersed, then resampled to increase patch sizes by a 
factor of 4 - see Methods 
^same as 'random a', but resampled to generate patches 10 times in size - see Methods 
J CV = coefficient of variation 
4inters. = interspersion, jux. = juxtaposition -- see Methods and Appendix I for definitions and equations 
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Figure 1. Maps used in simulations. Random maps had the same proportions of habitat types as the fall 
map. 
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For the two random maps ('a' and 'b'), average patch size was much smaller than that for the 

seasonal maps, and patches were much more numerous, except for h2 (Table 1). The random 

interspersion of different habitats resulted in large numbers of small patches within a matrix of 

the most common habitat type. Further resampling of the map by factors larger than 10 did little 

to alter this effect. 

Although the fall and random maps looked very different (Figure 1), landscape indices of 

patch arrangement (interspersion/juxtaposition and contagion) were similar. 

Discussion 

Measures of patch size and amounts of habitat were useful for describing differences among 

maps, while measures of patch arrangement were relatively insensitive to visually dissimilar 

maps. Landscape indices must be interpreted with caution because many are not independent 

{cf. O'Neill et al. 1988a) and different statistics change in different ways with simple changes 

in scale (Turner 1989, Turner et al. 1989c). 

Simple measures such as mean patch size can be misleading because distributions of patch 

sizes are rarely normal; small patches are usually more common than large patches. The picture 

is further clouded by landscapes with several types of habitats. The same statistic can vary 

among habitat types on the same landscape (although not independently), and often the same 

statistic is used to characterise an entire landscape {e.g. measures of mean patch sizes and 

dispersions). 

In general, the similarities among characteristics of the different landscapes were surprising, 

particularly the similarities between landscape-wide measures of the patch arrangement for real 

and random maps. However, the interspersion/juxtaposition and contagion indices calculated by 

Fragstats are strongly affected by the proportions of the different habitats on a landscape 
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(Riitters et al. 1996). For example, I generated a random test map with equal proportions of four 

habitat types. The interspersion/juxtaposition index was 100%, and the contagion index was 

25%. By contrast, random habitat maps with unequal habitat proportions such as those that I 

used for analysis (Table 1), had lower interspersion/juxtaposition and higher contagion values. 

The arrangement of patches on the maps were random and, therefore, the 

interspersion/juxtaposition values were the maximum and the contagion values the minimum 

possible for the habitat proportions that I used. Interspersion/juxtaposition and contagion are 

less sensitive to different patch arrangements when the amounts of habitats among maps are 

similar. These results underline the importance of using appropriate landscape indices for the 

properties of interest, and interpreting common landscape statistics with caution. 

The consideration of four habitat types in this study rather than the more common two-habitat 

design (Gardner et al. 1989, Turner et al. 1989b, Milne et al. 1992, Wiens et al. 1997) make the 

interpretation of landscape characteristics more difficult. From the perspective of animal habitat 

use, a four habitat design is a better representation of the habitat faced by most animals (With 

1997). Four habitats is still a simplification, and ignores within-patch heterogeneity. Habitat use 

studies are often restricted to 4 - 7 habitat types to simplify analyses (Alldredge and Ratti 1986). 
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Chapter 3. Effects of Scale and Landscape Pattern on Habitat Use 

Introduction 

It is important that we measure phenomena at appropriate scales for the ecological process 

of interest (Burrough 1981, Addicott et al. 1987, Wiens and Milne 1989, Dunning et al. 1992). 

A number of techniques have been developed to sample and analyse interactions between 

animal behaviour and habitat {e.g. Neu et al. 1974, Johnson 1980, Aebischer et al. 1993, Arthur 

et al. 1996), but while frequently recognised, consideration of the spatial dimension of wildlife-

habitat relationships is rarely addressed in study designs or analysis techniques {cf. Porter and 

Church 1987, Shulz and Joyce 1992, Otis 1997). 

Here, I consider 'spatial dimension' to be the spatial relationships among the sample of 

animal locations that we use to characterise habitat use behaviour, and among the habitat 

patches that comprise available habitat. These relationships arise from both scale and pattern. 

The scale of animal movements is defined by the distance between sample locations, and is a 

function of both ecology {e.g. body size, food habits, physical characteristics of habitat) and 

data collection {e.g. relocation frequency). The pattern of animal movements refers to the 

description of sampling points in relation to each other in space. The scale of a landscape is a 

function of the sizes of its habitat patches, while landscape pattern is defined by the spatial 

relationship among patches. 

The influence of spatial variables on habitat use measures has remained largely unstudied for 

two general reasons. First, the computer hardware and software required to examine spatial 

relationships has only recently become widely available (McGarigal and Marks 1995). Second, 

the consideration of spatially-correlated variables complicates statistical analysis. For example, 

a standard technique in wildlife field research is to sample animal locations widely separated in 
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time to ensure locations are spatially independent (i.e. no autocorrelation; Swihart and Slade 
i 

1985). This is done to meet assumptions of statistical tests (Swihart and Slade 1985, White and 

Garrott 1990, Legendre 1993), which assume that each animal location represents an 

independent choice taken from all available habitats (Arthur et al. 1996). This assumption 

requires that animals have a knowledge of, and are able to move with negligible cost among, all 

habitats within the area under study (Rosenzweig 1981, Arthur et al. 1996). Following these 

assumptions, there can be no spatial effects by definition. The time and cost of moving between 

patches are the restrictions that give rise to spatialeffects (Arthur et al. 1996). 

Aebischer et al. (1993) questioned the need to eliminate autocorrelation among sample 

locations by arguing that doing so is only necessary i f the experimental unit of tests is 

erroneously assigned to radio locations rather than to animals. Where the experimental unit is 

properly assigned to animals, individual locations serve only to approximate the habitat use of 

animals (although problems occur if sampling frequency varies within animals). Of course, for 

each individual, its locations are autocorrelated, and using sampling methods to ensure that 

autocorrelation is not statistically significant may obscure the real patterns of interest 

(Meentemeyer and Box 1987, Legendre 1993, McNay et al. 1994, Reynolds and Laundre 

1990). 

When characterising habitat use and availability in a spatially-neutral manner, the assumption 

is that little information is lost by ignoring the spatial component of data. However, the effects 

of this assumption are largely unknown. Rarely do studies compare spatially-explicit with 

spatially-neutral results, and those that have done so suggest that the two approaches can lead to 

different results (Shulz and Joyce 1992, Wilson et al. in press). Such studies have provided 

'snapshots' of spatial effects at one or a few spatial scales, and hence, the general applicability 

of the results are unknown. To fully understand the effects of spatial variables, we need to 



15 

establish relationships between habitat use and availability data that account for spatial 

characteristics across a continuum of scales. Only then can we anticipate the effects of spatial 

variables on our study designs, analyses, and conclusions. 

M y objective is to determine the mechanistic relationship between measures of habitat use by 

animals and the spatial characteristics of landscapes. Specifically, I use simulations of animal 

movements through landscapes to generate distributions of expected habitat use under a null 

model of no habitat selection. Because simulations are insensitive to the underlying distribution 

of habitats, I expect the variances, but not the means, associated with habitat use to differ 

among the simulations. Turner et al. (1989a) suggested that, in landscape ecology problems, 

examining variance may be more useful than considering means. 

I address the following questions: 1) how does expected habitat use under the null hypothesis 

differ between spatially-explicit and spatially-neutral models?; 2) how does expected habitat 

use under the null hypothesis differ across spatial scales?; and 3) how is the relationship 

between expected habitat use under the null hypothesis and spatial scale affected by landscape 

characteristics? 

Establishing these general relationships w i l l help us to understand the potential effects of 

spatial characteristics on habitat use analyses, and guide managers in making decisions that are 

ecologically sound. 

Methods 

I used a correlated random walk model (see Chapter 1) that was insensitive to the underlying 

distribution of habitats to generate expected patterns of habitat use. Changing the number and 

distribution of daily movement distances, and the spatial distribution of starting points, 

provided the variation in scale and pattern of movements relative to specific habitat maps. 
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Different habitat maps provided the variation in landscape characteristics. Models were written 

in the R E X X scripting language (International Business Machines, Hursley, U K ; Appendix II). 

Each model run consisted of 1000 simulations, each representing the movements of one 

animal over either 20 or 50 days. Animals were located once per day (Figure 2). Simulations 

were started at random points on habitat maps. I also ran simulations where starting points were 

restricted to a smaller area on the landscape (representing about 13% of the mapped area in the 

south-central portion of the map) to test the effects of sampling animals that were not 

distributed randomly across the landscape. 

Changes in an animal's direction between subsequent locations were correlated by summing 

two random numbers between 0 and 360 degrees drawn from a uniform distribution, and 

dividing by two. The result of this calculation was to bias the next direction of travel opposite to 

the previous direction. This was done to generate more realistic home ranges; uncorrelated 

movements produced very large home ranges. However, the bias did not produce a central 

tendency to movements. Increasing the number of locations in a simulation always increased 

home range size. 

Daily movement distances were drawn from a decay distribution. The shape and size of this 

distribution was varied in different model runs, to test the effects of movement characteristics. 

Movement distances were based on a draw of random numbers (x) from a normal distribution 

(x = 0; s2 = 1). The draws were transformed by the equation: y = abs(x/- k; wherey represented 

the transformed variate,y was the rate of decay (varied between 1 and 3; Figure 3), and A: was a 

multiplier (varied between 10 m and 10 000 m) that determined the spatial scale of the daily 

distances moved. Changes in j altered the variance of daily movement distances, while changes 

in k affected the scale of the movements. 
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Calculate random 
starting location 

Figure 2. Structure of the habitat-insensit ive, spatial ly-explicit movement mode l . Va r i ab l e s y ' and k 
control led the s h a p e and s i ze of the distribution regulat ing daily movement d i s t ances . T h e structure of 
the spatial ly-neutral mode l w a s the s a m e , except that subsequen t locat ions were drawn randomly rather 
than being determined by a movement d is tance. 

Data from each model run of 1000 simulations were compiled by calculating the proportion 

of locations from each simulation that fell in each of the four habitat types. To be included in 

further analyses, >9 locations had to be located on the mapped area of the landscape. The 

proportions of locations in each habitat were arcsine square-root transformed to compensate for 

the truncated distribution of proportions (Sokal and Rohlf 1981). 
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Daily distance moved (m) at k = 1000 
3700 

Figure 3. Distributions of daily distances moved (y) for habitat-insensitive simulations. Decay functions 
illustrated were calculated with k = 1000 and j = 1, 2, or 3 for the equation y = abs(x/-k. 

I generated simulations at different spatial scales by systematically changing k, producing 

changes in home range sizes among model runs. If there were effects due to spatial variables, I 

predicted that variance associated with the use of each habitat type would decrease as spatial 

scale (i.e. home range size) increased, because simulated animals within a model run would be 

more likely to use habitats differently if their mobility was restricted on the landscape. I also 

expected this effect to lead to different variances among maps with similar habitat proportions 

but different habitat arrangements. 

To illustrate the relationship between variance in habitat use and spatial scale under a null 

model, I plotted the variance of habitat use for each of the habitat types against the average 
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home range size for each set of 1000 simulations. Fifty-seven sets of simulated movements at 

distinct spatial scales were plotted. 

To clarify the role of landscape pattern in generating the patterns of variance in habitat use, I 

plotted the coefficient of variation (CV) of habitat'use at each scale for each habitat, for the fall 

and 'random a' maps, against the ratio of average home range size to median patch size. C V 

controlled for the correlation between variance in habitat use and the proportions of different 

habitat types. The transformation on the x-axis to the ratio of average home range size to 

median patch size made the comparison of landscapes easier to interpret by partially controlling 

for differences in patch size distributions among maps. I used the median patch size rather than 

the average because size distributions were strongly skewed towards small patches, and the 

shapes of the distributions differed between the two landscapes. I used the median patch size for 

the entire landscape, rather than the medians for individual habitat types. Using either the 

overall median, or individual medians for different habitat types, produced curves of the same 

shape, although using different medians for each habitat shifted the curves slightly along the 

horizontal axis. Larger median patch sizes shifted curves to the left along the x-axis. 

I also examined the relationship between variance in habitat use and the proportions of 

different habitats among all landscapes by plotting a scaling dimension (1 - D; Gardner et al. 

1989, Sugihara and May 1990), against the proportions of habitats, where D was equal to the 

slope of the double-log plot of variance in habitat use versus the ratio of average home range 

size to median patch size. To avoid distortions caused by the tails of the variance distributions, I 

restricted the plots to x-axis values between 0.02 and 50 (these values were the ratio of average 

home range size to median patch size). 

D is the fractal dimension and is commonly used to characterise how a measured quantity 

changes as the scale of observation changes (Sugihara and May 1990). In this case, it measured 
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the rate of change in variance in habitat use with changes in spatial scale. Habitat types that 

differed in their sensitivity to scale with respect to variance in habitat use had different values of 

D. A high value of 1- D suggested that the distribution and abundance of a habitat type 

generated large changes in variance in habitat use as the scale of animal movements changed. 

This plot summarised the relationship among the slopes of the variance in habitat use - spatial 

scale curves in a manner similar to other studies examining issues of scaling in ecology 

(Sugihara and May 1990). 

I ran parallel simulations with a spatially-neutral model to generate distributions of variance 

in habitat use that would be expected under a spatially-neutral null hypothesis. This model 

followed the structure of the spatially-explicit model and was also insensitive to the underlying 

distribution of habitats (Figure 2), but each new location was randomly assigned a habitat type 

solely on the basis of that habitat type's proportion on the landscape, rather than on the basis of 

a spatially-referenced movement on the landscape. As a result, no movement or landscape 

characteristics were considered in the spatially-neutral model, and hence there were no spatial 

effects by definition (Figure 4). The same results could have been derived analytically, but I 

used this model to parallel the construction of the spatially-explicit model. 

I calculated home ranges by the fixed kernel technique (Worton 1987) with the Kernelhr 

home range program (D. E. Seaman and R. A . Powell, North Carolina State University, 

Raleigh, NC). Mean home ranges were calculated from the first 100 simulations of each model 

run because of practical computational limitations! 

Results 

Both the spatially-explicit and spatially-neutral simulations produced mean proportions of 

habitat use that were equal to the proportions of habitat types on the landscapes. However, 
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Figure 4. A comparison of spatially-neutral and spatially-explicit methods. In spatially-neutral 
simulations, locations (L) at time f were drawn independently from habitats according to their 
proportions on the landscape (p). In spatially-explicit simulations, habitat use at t + 1 was a function of 
the initial location (L t), the direction of movement (<9), and the distance travelled (d). 

variance in habitat use differed between the two models. Variances associated with the 

spatially-explicit null model changed with spatial scale and were at least an order of magnitude 

greater than those associated with the spatially-neutral model. Variances associated with the 

spatially-neutral model did not differ across spatial scales (by definition). The following results 

refer to the distributions generated by the spatially-explicit null model simulations. 

Variance in habitat use differed among habitats and landscapes, and differed among sets of 

animal movements with different characteristics. Variance was highest at small home range 

sizes and for the most common habitats in a landscape. Differences in variance in habitat use 

among habitats disappeared at larger home range sizes. This produced an inverse-logistic 

distribution of variances when plotted against home range size (log-transformed; Figure 5). I 

defined the 'intersection point' of the curves as the minimum home range size where the 

greatest difference among variances was <10% of the maximum variance on the graph. 

The three seasonal maps, and the 3-habitat fall map (not illustrated) produced similar plots; 

however, the shapes of the curves for each habitat type were related to the proportions of 
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Figure 5. Relationship between average home range size (log-transformed) and variance in proportional 
use of the four habitat types. Movements were simulated on the fall map. Habitat use proportions were 
square-root arcsine transformed. Each point represents the mean of 1000 simulations. The vertical line 
marks the smallest home range size where the greatest difference among the variances was <10% of 
the maximum variance on the graph. 

habitats on the landscapes; variances were higher at small home range sizes for more abundant 

habitat types (Figures 5, 6). The intersection point differed on each map in its position along the 

x-axis. The general shapes of the curves generated from the seasonal and random landscapes 

were similar, but the intersection points differed (Figure 7). 

Increasing the sample size of locations from 20 to 50 points had no effect on results. Home 

ranges based on 50 points were larger than those based on 20 points, but the variance in habitat 

use associated with a given home range size, regardless of whether it was generated from 20 or 

50 points, was the same. Because simulated animal movements were habitat insensitive, this 
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Figure 6. Relationship between average home range size (log-transformed) and variance in proportional 
use of the four habitat types. Movements were simulated on the spring (top) and summer (bottom) maps. 
Habitat use proportions were square-root arcsine transformed. Each point represents the mean of 1000 
simulations. The verticals line mark the smallest home range sizes where the greatest difference among 
the variances was <10% of the maximum variance on the graphs. 
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Figure 7. Relationship between average home range size (log-transformed) and variance in proportional 
use of the four habitat types. Movements were simulated on the 'random a' and 'random b' maps. 
Habitat use proportions were square-root arcsine transformed. Each point represents the mean of 1000 
simulations. The verticals line mark the smallest home range sizes where the greatest difference among 
the variances was <10% of the maximum variance on the graphs. 
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result did not differ among different landscapes. 

Restricting starting points to an area smaller than the entire landscape ('biased simulations') 

affected the shape of the variance curves for simulations based on the fall map, but not for 

simulations based on the 'random a' map (not illustrated). Variance curves for the biased 

simulations based on the fall map were shallower than those based on unbiased simulations, 

although the shapes were very similar. 

The shapes of the distributions of daily distances moved affected the variance-home range 

plots. Distributions based on higher values of j (producing long, flat tails in the frequency 

distributions; Figure 3) flattened the variance curves (Figure 8). Increasing the value of j 
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Figure 8. Effect of varying the shape of the distribution of daily distances moved on the variance in 
habitat use across home range sizes. Habitat type h2 is illustrated. Curves for j = 1 and j = 3 in the 
equation: y = abs(xf- k are illustrated. The shapes of the distributions are illustrated in Figure 3. More 
skewed distributions flattened the curves. 
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increased the coefficient of variation (CV) in home range size among simulations. C V for j=l 

averaged 61%, while for j ~ 3, C V averaged 121%. A more skewed distribution of daily 

movement distances generated more variable home range sizes. 

Plotting C V in habitat use against the ratio of home range size to median patch size (of all 

habitat types combined) controlled for the correlation between habitat quantity and variance in 

habitat use, and allowed the direct comparison of landscapes with different patch sizes (Figure 

9). The differences among the slopes were much smaller on these plots when compared to 

Figures 5, 6 and 7. In addition, the rank order of the habitat types from highest to lowest 

variance were the reverse of those on the variance home range plots. 

The reason for the reversal was likely related to the small denominator used to calculate C V 

for rare habitat types. Within regions of relatively constant slope, the slopes were steeper on the 

random map than on the fall map (Figure 9). 

Variances in use of more common habitats were generally more affected by changes in the 

scale of animal movements (Figure 10). Across maps, the magnitude of the scaling dimension 

was also weakly related to contagion; variance in habitat use was more strongly affected by 

scale on maps with lower contagion values. 

Discussion 

Habitat use analyses usually test a null hypothesis which asks whether animals use habitats in 

proportion to their availability. The results from the simulations in this chapter suggest that the 

variances associated with the use of habitats expected under the null hypothesis, differ between 

spatially-explicit and spatially-neutral hypotheses, and in the spatially-explicit case, also differ 

across spatial scales. That is, the predictions of a spatially-neutral null model will not reflect 

expected habitat use when there are significant spatial effects. The patterns of variance in 
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Figure 9. Relationship between the ratio of average home range size to median patch size (log-
transformed) and coefficient of variation in habitat use. Model parameters were the same as those in 
Figures 5, 6, and 7. 
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Figure 10. Relationship between scaling dimension (1 - D) and the proportions of habitat types for all the 
maps with four habitats (see Table 1). Scaling dimension is simply one minus the slope of the log-log 
plot of the variables plotted in Figure 9. Only average home range size to median patch size ratios 
between 0.02 and 50 were considered. 

habitat use for the spatially-explicit simulations suggest the circumstances for which spatial 

effects can be expected to influence the results of habitat use analyses. 

Understanding Patterns of Variance in Habitat Use in the Spatially-explicit Model 

The relationship between variance in habitat use and average home range size that was 

generated by the spatially-explicit model was similar among all the landscapes that I analysed. 

A l l of the variance curves had the characteristic inverse-logarithmic shape, with apparent 

asymptotes at very small and very large home range sizes on most maps. This shape described 

the general relationship between variance in habitat use and spatial scale for the spatially-

explicit model. 
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Other theoretical studies have demonstrated the existence of critical thresholds in spatial 

patterns which identify changes in important variables above and below critical scaling limits 

(in double-log plots; Turner et al 1989a). In my analysis, there were no such sharp 

discontinuities, but there were three different phases to the curves for each habitat type in each 

simulation. These areas of relatively constant change in variance with changes in home range 

size, indicated the existence of'domains of scale' (Wiens 1989). The asymptotes at very small 

and at very large home range sizes indicated the scaling limits imposed by the characteristics of 

the maps. At these asymptotes, variance ceased to be a useful measure for describing the scaling 

properties of the interaction between animal movements and landscape pattern. For example, 

the variance in habitat use of the habitat types on the fall map (Figure 5) were almost the same 

for home ranges >5000 ha. For animals with home ranges of this size and larger, habitat use 

inferences could be made with little regard for the spatial characteristics of the fall landscape. 

The distinctiveness of the three phases of the variance curves was most evident for the most 

common habitat types. One of the principal reasons for this was that the more common types 

could comprise more variable proportions of each home range. For instance, a rare and widely 

scattered habitat type could never comprise a large portion of an animal's home range. 

However, a common habitat type could completely fill a home range or be completely absent, 

depending on the location of the home range on the landscape, and on the size and distribution 

of habitat patches. In effect, variance in habitat use was positively correlated with the 

proportions of habitats on the landscape. Correlations of this kind are a well known statistical 

property, but their potential effects have not been considered in habitat use analyses. M y 

analyses suggest that their importance will depend on the relative spatial scale of investigation. 

Theoretically, a curve should have reached an asymptote at a point where entire home ranges 

fell completely within a single pixel. Variance is maximised at this point because proportional 
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use of habitat can be only 0 or 100%. Therefore, the grain of the map (pixel size) sets the point 

at which variance in habitat use is maximised. In practice, results at this resolution are trivial; i f 

animals are to use different resources, their home ranges should never fall within a single pixel. 

If they do, the habitat has been mapped at an inappropriate scale to identify the differential use 

of resources by animals (Kotliar and Wiens 1990). 

Beyond the absolute limit of resolution governed by a map's pixel size, patch size also 

imposes a practical limit. Below a particular size, home ranges can fit completely within a 

single patch. At this point, the variance is also maximised, for the same reasons given above. 

However, this home range size will vary for each habitat type, because habitat types differ in 

average patch size. In general, the most common habitat has the largest patches, and larger 

home ranges can fit entirely within these patches than within the patches of rare habitats. This 

suggests that the variance curves should reach asymptotes at different home range sizes, with 

the curve for the most common habitat type flattening at the largest home range. However, the 

variance curves are not independent; the amount of the most common habitat type constrains 

the variance of the other habitat types and affects the shapes of their curves. Also, when 

variance in habitat use of the most common habitat is small, then variances associated with 

other habitat types must also be small. 

Variance in habitat use decreased as home range size increased. Although the curves changed 

at different rates, the slope was greatest for the most common habitat type. At large home range 

sizes the different variance curves converged. The intersection point was where most home 

ranges contained a proportion of each habitat type similar to the habitat's proportion on the 

landscape. Because simulated animals had no habitat preferences, the sets of simulations with 

large home range sizes most closely reflected the predictions of the spatially-neutral null model; 

that is, spatial effects were minimised at large home ranges where variances were low and 
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curves flat. However, variances were still an order of magnitude larger than those generated by 

the spatially-neutral simulations. 

Variance in home ranges size affected the shapes of the variance curves. Where home range 

size was more variable (higher values of j), variance in habitat use curves tended to be flatter. 

Normally of course, home ranges vary in size within species, although the differences between 

home range sizes may be correlated with important variables that should not be pooled (age, 

sex, reproductive, season, etc.; e.g. Schooley 1994). 

Landscape Pattern 

Fahrig (1997) suggested that, in some landscape ecology studies, the effects of absolute 

amounts of habitats may have been understated and the effects of spatial pattern may have been 

overstated because the variables are rarely varied independently. In my study, the proportions of 

different habitat types (and the resulting correlation with variance in habitat use) were the most 

important variables affecting the shapes of the variance-home range curves, although the 

distribution of patch sizes and their arrangement also affected results. The size and spatial 

distribution of patches are related characteristics; when patches are smaller, different habitat 

types can be more interspersed. Variables that measure spatial distribution of habitat types such 

as contagion (based on pixel adjacencies) and Fragstat's interspersion/juxtaposition index 

(based on patch adjacencies) tend to vary with changes in patch size distributions. 

The effect of patch size and distribution was clear from comparisons of curves for different 

maps. For example, the upper curves for the fall and summer maps (h2; Figures 5, 6) were 

generated from similar habitat proportions, but the summer curve was considerably flatter, 

probably reflecting its higher average patch size (Table 1). 
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Combining two rare habitat types on the fall map (3-habitat fall map, Table 1) did not 

influence the shapes of the remaining variance curves. This may at first appear at odds with the 

fact that the curves were not independent; however, the lack of independence was due to the 

unit-sum constraint of habitat proportions (Aebischer et al. 1993). Simply summing two 

proportions did not influence the proportional use of the other two habitat types. Conversely, 

the effect of increasing the number of habitats by classifying one of the four habitats into 

additional types would have resulted in flatter curves for the resulting subdivided habitat types, 

with no effect on the curves for the other habitats. 

The role patch size and distribution played in defining the variance curves was also clear in 

the results for the random landscapes, dominated as they were by small and evenly distributed 

patches. Small patches pushed the intersection of the variance curves to the left along the x-

axis. That is, even small home ranges on the random landscape consisted of representative 

proportions of the habitat types (Figure 7). 

When I controlled for the differences among maps in the ratio of home range size to median 

patch size, and for differences caused by the correlation of variance in habitat use with 

proportion, the resulting curves still had a characteristic shape. These differences were primarily 

the result of the different spatial arrangement of habitat patches on the maps, independent of 

differences in median patch size. Variance in habitat use was scale dependent over a smaller 

range of animal movement scales on maps with more evenly distributed habitat types (low 

contagion; e.g. 'random a' map), than on maps with more clumped distributions (higher 

contagion). A n additional effect of an even distribution of habitat types was to maintain low, 

stable variances at smaller home range sizes (relative to patch size). 

The influence of landscape pattern was not always clear from the model simulations. This 

was probably due to the large number of simulations run on each landscape, and to the starting 
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points being completely random. This generated large, unbiased but area-restricted sampling of 

the landscape. Simulations with restricted starting points generated different variance curves 

than simulations with random starting points, although the effects were relatively minor. Curves 

of variance in habitat use were similar in shape, although variances tended to be lower at 

smaller home range sizes than in unbiased simulations. Because simulations were started on a 

smaller area of the landscape (smaller map extent), there was less overall variation in habitat 

composition among home ranges. 

The interaction between map extent and patchiness, and its effect on habitat use analyses, was 

first suggested by Porter and Church (1987). They noted that changing the boundaries of a map 

(the extent) could affect the measurement of habitat selection, particularly i f the landscape was 

composed of a few, large patches. This is the effect that I detected when comparing unbiased 

simulations to simulations with biased starting points. Reducing the area on which the 

simulations were started, effectively reduced the extent of the sampling area, which in turn 

reduced the variation in the habitat composition of home ranges. However, the effect on curves 

of variance in habitat use was only obvious on the seasonal maps, which were dominated by 

fewer, larger, less evenly distributed patches than were the random maps. Therefore, contagion 

was a useful measure for distinguishing trends in variance in habitat use. 

Map extent has attracted attention in the habitat use literature (e.g. Porter and Church 1987), 

although the language has often been different than that used here. Defining habitat available to 

animals is largely an issue of defining an appropriate mapping extent. By dividing selection 

analyses into different orders, Johnson (1980) was effectively determining habitat availability 

within different mapping extents. Many subsequent studies have followed Johnson's suggestion 

and analysed habitat use at more than one scale, although many researchers have used the same 

location and/or mapping data to test selection within a study area and within home ranges (e.g. 
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Aebischer et al. 1993, Mauser et al. 1994, Carroll et al. 1995). This erroneously treats the two 

selection events as independent, although the same location data are tested twice, and the 

selection behaviour at larger scales constrains selection at the smaller scales. 

Summary of Spatial Effects 

How do these results suggest better study designs? Measuring habitat at scales relevant to the 

study animal reduces the errors that occur with the arbitrary imposition of mapping scale 

(Burrough 1981, Addicott et al. 1987, Wiens and Milne 1989). Using simulations to generate 

expected patterns of habitat use under a spatially-explicit null hypothesis can help to identify 

appropriate scales, and also illustrate the consequences of choosing an inappropriate scale. 

The ratio of home range size to median patch size can serve as a rough indictor of the 

potential for spatial effects. In my simulations, variance in habitat use began to increase when 

i 

home ranges were less than about ten times the median patch size. This effect is independent of 

the number of habitat types. The more habitat types on the landscapes, the smaller the median 

patch size, and the smaller the effect of spatial variables at a given home range size. The ratio of 

home range to patch size would be a simple statistic to include in published studies of habitat 

use. Although researchers often report home range sizes, they rarely include patch size 

characteristics with descriptions of study areas (Wilson, in prep.). 

I emphasise that the ratio of average home range to median patch size is only a rough 

estimation of the probability of spatial effects. The median patch size that generates adequately 

low variances in habitat use will differ for each research circumstance, depending on several 

different variables, including those which I examined in this chapter {i.e. characteristics of daily 

movement distances, spatial distribution of starting points, various landscape characteristics). 
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The relationship between spatial scale and variance in habitat use also suggests that the power 

of statistical tests to examine habitat use will change with scale. Where home ranges are small 

in relation to average patch size, more animals will be required to detect a given effect size than 

where home ranges are large. 

Researchers should also consider the possible effects on analyses of the correlation between 

variance in habitat use and habitat proportions. The effects can be significant where home 

ranges are small relative to the size of habitat patches. 

Beyond the methodological issues for researchers, land managers should exercise caution 

when basing management decisions on the results of habitat use studies. For example, high 

variances in use of certain habitats by sampled animals may be an artefact of spatial variables, 

rather than an indication of differences in individual behaviour. Common habitat types, or 

habitats that consist of large patches relative to the mobility of animals, are particularly 

vulnerable to this effect. 

The results of the simulations in this chapter generate a number of interesting questions that 

could be tested in field studies. Examples include: 1) does reclassifying several habitat types 

into one make null hypotheses about habitat selection more difficult to reject?; 2) within a 

study, is there a correlation between the size of home ranges and the likelihood of detecting 

habitat selection?; and 3) is the failure to reject the null hypothesis of no selection due to the use 

of a habitat type in equal proportion to its availability, or due to high variance in use among 

individuals? Examining questions such as these in the context of field studies could provide 

evidence for the relationships I have described in simulated data. 
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Chapter 4. Effects of Habitat Affinity on Habitat Use 

Introduction 

In Chapter 3,1 examined the effect of spatial variables on habitat use across a variety of 

scales, using simulated animal movements insensitive to the quality of different habitat types. 

Of course real animals are not expected to use habitats in proportion to their availability. They 

are sensitive to different habitats in their environment, and their use of habitats is expected to 

differ from that predicted by a null model. 

Examining how animals differentially use habitats in space and time is the purpose of most 

telemetry studies (Stoms et al. 1992, Arthur et al. 1996). Differential habitat use is usually 

reported as selection or preference index values, where selection is defined as the use of habitats 

disproportionately from their availability, and preference as the likelihood that a habitat would 

be chosen i f offered on an equal basis with others (Johnson 1980). Habitat use studies usually 

test a simple hypothesis: whether habitats are used in proportion to their availability (Alldredge 

and Ratti 1986). In practise, this hypothesis is usually rejected in published studies; a failure to 

reject this null would suggest that habitats had been categorised or mapped incorrectly for the 

species in question. 

The spatial dimension of use-availability data is not considered in analyses of selection and 

preference, except where the analysis is repeated at different 'levels of selection' (Johnson 

1980). However, this only captures the spatial effects of different mapping extents, it does not 

address the possible effects of other variables, such as the characteristics of animal movements 

or the arrangement of habitat patches {cf. Porter and Church 1987, Otis 1997). Hence, the role 

of spatial variables in determining the preference of animals for different habitats is largely 

unknown. 
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A central difficulty in studying the effects of spatial variables on habitat use in the field is that 

the true behaviour of animals is unknown. Therefore, the problem lends itself well to modelling 

where behaviour can be defined by specific rules and sampled without error. However, a 

complication arises when modelling differential habitat use because there are few studies that 

have addressed how animals should move among habitats to maximise fitness (Milne 1988, 

Lima and Zollner 1996). The issue has been studied in the context of optimal foraging (e.g. 

Pyke 1978), but the design and purpose of habitat use studies do not immediately suggest a 

simple currency to maximise, because habitat use is assumed to be correlated with a host of life 

history requisites. 

In this chapter, I examine the effects of spatial variables on habitat use by first introducing a 

currency of value called 'habitat affinity', which is simply the likelihood that an animal will 

remain in a patch for the rest of the day. I present this currency as a simple behaviour rule to 

serve as a starting point to examine the optimal movements of animals in the context of habitat 

use studies. In addition to a currency of habitat value, habitat-sensitive modelling requires a rule 

to define the information available to simulated animals about their habitats. I use an 

'information-free' approach (Lima and Zollner 1996) in which animals have no information 

about habitats before they arrive, either from prior experience, or from environmental cues 

about distant habitats. Although they have no information about surrounding habitats, they 

know the value of the patch in which they are located. I use this rule to minimise assumptions, 

and also to provide a contrast with the omniscience assumption of use-availability analyses. The 

approach that better approximates the behaviour of animals is unknown, but the different 

assumptions affect the inferences we make about the relationships between wildlife and their 

habitats. 
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Using habitat affinity as the basis for making my models habitat-sensitive, I then develop 

spatially-neutral and spatially-explicit models to examine how habitat affinity, landscape 

pattern, and the scale of animal movements interact to generate habitat selection. Specifically, I 

pose the following questions: 1) does habitat affinity affect measures of habitat preference 

differently for spatially-explicit and spatially-neutral models?; 2) how do habitat affinity and 

landscape characteristics interact to influence measures of habitat preference?; and 3) how well 

do different measures of habitat preference reflect habitat affinity, given the influence of spatial 

variables? 

Methods 

The spatially-explicit model used to generate simulations in this chapter was based on the 

correlated random walk model used in Chapter 3, but modified to make animal movements 

sensitive to the underlying habitat. The model was written in Borland C++ 1.0 (Borland 

International, Inc., Scotts Valley, C A ; Appendix III). Modifying the model to make it habitat-

sensitive required a number of changes (Figure 11). First, modelled animals made at least one 

or several small steps of equal length per day, as opposed to the one step of variable length per 

day used in the Chapter 3 model. This introduced two new variables: step length and the 

number of steps per day. 

In addition, 'habitat affinity' provided the sensitivity of modelled animals to the underlying 

habitats. Habitat affinity was the probability that an animal would remain at a location for the 

rest of the day. This was the currency of value that I defined for habitats. It was meant to 

represent a composite rating of all the characteristics that contribute to the life history 

requirements of simulated animals on a daily basis. Habitat affinity values were defined for 
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Calculate random 
starting location 

Figure 11. Structure of the habitat-sensitive, spatially-explicit model. Simulated animals moved at least 
one step per day. Step-length was varied from 1 to 20 map pixels in different simulations. The structure of 
the spatially-neutral model was the same, except that subsequent locations were drawn randomly rather 
than being determined by a movement distance. 
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each of the habitat types, and remained constant through the sampling period. Note that habitat 

affinities were absolute values and did not depend on the relative affinities of other habitats. 

In reality, the value of habitats reflects a mix of depletable or seasonal and non-depletable 

resources, and some real habitats contain only a single resource used by animals (e.g. mineral 

licks, water holes, dens). I used the simple concept of habitat affinity to minimise assumptions. 

Model runs consisted of 1000 simulations of 30 days each. Each simulated day consisted of 

up to 20 steps. Step length was varied between 1 and 20 map pixels for different model runs. 

Each map pixel was 50 m x 50 m, and this unit set the lower limit of the scale for modelled 

movements. Step lengths were measured in pixelsrather than in metres because pixel-to-pixel 

distances were slightly longer if movements occurred along the four diagonal directions than 

along the four cardinal directions. Changing step lengths among simulations allowed me to vary 

the scale of animal movements, and hence, the size of home ranges. As with the model used in 

Chapter 3, correlated animal movements reduced the size of home ranges compared to an 

uncorrelated model, but the home ranges had no central tendency. Hence, increasing the step 

length always increased home range size. A consequence of this was that there was no 

difference between varying step length and changing the sampling frequency of animals. 

Therefore, I held sampling frequency constant at one location per day and varied step length 

only. 

Habitat affinities were varied between 10% and 100% for one habitat type at a time. Other 

habitat affinities were held constant at 0%. To test the effects of moderate 'background' 

affinities, I also ran simulations where affinities were increased from 0% to 20%. As a result, I 

only modelled two different habitat affinities at a time among four habitat types (see Chapter 5 

for an example for modelling four different affinities simultaneously). Because affinities 
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affected daily movement distances, they also affected home range sizes; higher habitat affinities 

resulted in smaller home ranges. 

I used the fall and 'random b' maps for the simulations (Table 1, Figure 1). These maps had 

identical habitat proportions but differed in the size and distribution of habitat patches (Chapter 

2). I restricted simulations to these maps to simplify the interpretation of results. I used the 

'random b' rather than the 'random a' map because of the larger patches on the 'random b' 

map; the lower limit of movements for the habitats-sensitive model were still several times the 

average x or y dimension of most patches on the 'random a' map. 

I also ran parallel simulations with a spatially-neutral model to distinguish trends in 

preference analyses resulting from spatially-neutral effects. Because preference is a relative 

measure of habitat value and habitat affinity is absolute, I predicted that the two measures 

would not always correspond, regardless of the effects of spatial pattern. The spatially-neutral 

model followed the structure of the spatially-explicit model (Figure 11), except that each new 

position was randomly assigned a habitat type solely on the basis of that type's proportion, 

rather than on the basis of a spatially-referenced movement (Figure 4). As a result, there was no 

step length. This procedure was similar to one used by Alldredge and Ratti (1986, 1992) to 

examine rates of type I and type II error among four habitat use analysis methods. However, 

they determined habitat use on the basis of random draws from a priori 'used' habitat 

proportions, rather than using the concepts of steps and habitat affinity that I used. 

The random starting points of simulated animals may produce a spatial effect, and to examine 

the effect of this model parameter, I also ran simulations that did not begin to record the 

locations of simulated animals until they had already made 30 daily movements. 

I used three indices to examine results: one based on differences between use and availability, 

one based on ratios, and one based on ranks (Appendix IV). The difference method I used was 
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Strauss' Linear Index ('SLF; Strauss 1979). SLI has a number of properties that make it ideal 

for analysing these types of simulations (Lechowicz 1982). The index varies linearly from -1 to 

1, allowing the use of inferential statistics. This was particularly important because I calculated 

means and dispersions across the 1000 simulations of each model run. The primary drawback of 

the index is that values cannot be compared across maps with different proportions of habitat. 

This is important for researchers who make inferences across several, diverse sites (Lechowicz 

1982). However, the proportions of different habitats on the maps that I used for simulations did 

not differ. 

For comparison purposes I also analysed simulations with Chesson's (1983) index. 

'Chesson's alpha' is essentially a normalised forage ratio, and is unaffected by different habitat 

proportions, unlike SLI. However, it is a non-linear index, so changes in used or available 

habitat proportions do not produce consistent changes in alpha across all values of use and 

availability (Lechowicz 1982). This hampers statistical analysis and reported means and 

measures of dispersion should be interpreted with caution. The index varies from 0 to 1, with 

'preference' indicated by values greater than Xln, where n is the number of habitats (in this case, 

four). 

Both SLI and Chesson's alpha are affected by the unit-sum constraint of proportions 

(Aebischer et al. 1993). To address this problem, I also analysed simulations with Johnson's 

(1980) method. This method is similar to SLI in that it calculates a difference between use and 

availability, but uses relative ranks of both the use and availability of different habitats. The 

resulting 'Johnson ranks' are averaged among animals. The ranks are normally distributed and 

can be used in parametric statistical tests (Johnson 1980). Alldredge and Ratti (1986, 1992) 

discuss the advantages and disadvantages of this method. 
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SLI and Johnson ranks are selection indices, while Chesson's alpha is a preference index 

because habitat availability is normalised (Johnson 1980, Chesson 1983). However, Johnson 

(1980) refers to differences in selection indices as indicating preference, and I use this 

convention in reporting results from all three indices. 

I chose these three methods for their relative simplicity and applicability to use-availability 

problems. Logistic or other regression methods appear in the literature, however, they have 

been used to compare used and unused sites, or to generate statistical models of habitat 

preference across a number of variables or map layers (e.g. Pereira and Itami 1991, Manly et al. 

1993, Mladenoff et al. 1995), rather than the more common approach of determining habitat 

availability based on map coverages. Other methods were unsuitable for this study because they 

were based simply on confidence intervals (Neu et al. 1974). 

Sample sizes were large enough that confidence intervals (± 2 SE) for mean index values 

were very small (typically two orders of magnitude smaller than means); hence, error bars were 

omitted from graphs for legibility. 

Results 

Habitat affinity values had a strong effect on the SLI analysis for both the spatially-explicit 

and the spatially-neutral models, although the relationship was not linear. In other words, the 

measured preference of animals for different habitat types was related to the habitats' perceived 

value (i.e. affinity), but other variables affected the correspondence between the two measures, 

producing curves that approaches asymptotes at higher affinity values (Figure 12). The 

relationship between habitat affinity and SLI values depended on the proportions of different 

habitat types on the landscapes. SLI values were higher for more common habitats at a given 

affinity. The only exception to this was h2, the most abundant type. The curve defining the 
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Figure 12. Relationship between Strauss' linear index (SLI) and actual habitat affinity for simulations on 
the fall map. Each point represents 1000 simulations. Each simulation modelled movements for 30 days, 
with 20 movements (each of 5 pixels) per day. Affinity values were varied for one habitat type at a time 
and are graphed separately (hi - h4; proportions for the fall map are in parentheses). Habitat affinity was 
held at 0% for the other three habitat types in each graph. 

relationship between affinity and selection for this habitat reached an asymptote near its highest 

theoretical SLI value (1 -p; Figure 12). 

There was only one case among all simulations where there was ambiguity in the habitat 

preference results. That was in the case of h4, the rarest habitat type, where an affinity of 10% 

produced an SLI that was only slightly greater than the SLI of the most common habitat type, 

h2, even though the affinity of h2 was 0%. 

SLI values for different habitat types on the same landscape were not independent. Hence, 

when affinities were held constant for all but one habitat type, the habitats assigned affinities of 
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0% almost always had negative SLI values. The magnitude of these three values varied directly 

with their own proportion on the map, and inversely with the proportion, and directly with the 

affinity, of the other habitat type (Figure 12). For example, h2 had the most negative SLI values 

when a habitat affinity >0% was assigned to any one of the other three habitats (Figure 12). 

I reanalysed the same simulations using Chesson's alpha (Figure 13). Curves for habitat types 

with >0% affinity were similar to the results of the SLI analysis, with magnitudes of alpha still 

sensitive to the amount of the habitat. For habitat affinities of 0%, Chesson's alpha was more 

effective than SLI at controlling the impact of different habitat proportions, although 
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proportions still affected alpha values. 

For example, h2 had alpha values greater than 0.25 (i.e. >\ln, therefore indicating preference, 

although the actual habitat affinity was zero) when rare habitat types had affinities of 10-20%. 

The rank order of preference for h2 was greater than h i or h3 across all simulations where the 

affinity for all three habitat types was held at 0%. 

Johnson's (1980) ranking method misidentified preference for the rarest habitat type (h4) in 

all simulations where its affinity was held constant at 0% (Figure 14). The magnitude of the 

preference was related to the amount of habitat with an affinity >0%. For instance, where 
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affinity for h2 was varied between 10% and 100%, preference was highest for h4, and the index 

for h2 was about 0 across all habitat affinities. Preference was correctly identified for h i and h3 

over most affinities, but preference was still higher for h4 than would be expected for a habitat 

type with an affinity of 0%. 

Holding the affinity values of three habitats at 20% while varying those of the fourth habitat, 

produced a different pattern of SLI values to those in Figure 12 (Figure 15). SLI values were 

smaller and less variable than the corresponding values in Figure 12. Also, the lowest affinity at 

which a habitat type was distinguishable from the other three, varied according to its proportion 
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on the landscape. For instance, preference for h2 was obvious at an affinity value of 30%, just 

above the 20% affinity for the other habitat types. However, for h3, preference was only 

distinguishable for affinity values >40%. Preference for rarer types was even more difficult to 

distinguish (Figure 15). 

Analysis of the same data with Chesson's alpha produced a similar pattern, although 

preference for habitat types was only evident at higher affinities than in the SLI analysis (Figure 

16). In fact, the rarest type was never the most preferred, even at an affinity of 100%. The most 

abundant habitat had a strong effect on relative preferences. Johnson's rank analysis produced 
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Figure 16. Relationship between Chesson's alpha and actual habitat affinity for simulations on the fall 
map. Each point represents 1000 simulations. Each simulation modelled movements for 30 days, with 20 
movements (each of 5 pixels) per day. Affinity values were varied for one habitat type at a time and are 
graphed separately (hi - h4; proportions for the fall map are in parentheses). Habitat affinity was held at 
20% for the other three habitat types in each graph. Note the different y-axis scale than the Chesson's 
alpha results in Figure 13. 
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the opposite result; the rarest habitat type (h4) was preferred among all simulations (not 

illustrated). 

A l l of the trends described so far were the result of a single characteristic scale of animal 

movements on the same map (fall), so the resulting patterns were not strictly the result of 

movement scale and/or landscape pattern. The same general patterns appeared when the same 

parameters were used to model movements with the spatially-neutral model. However, the 

spatial dimension of the data did have an effect. This is illustrated by plotting the SLI results 

for simulations on the fall and 'random b' maps, as well as for the spatially-neutral model 

(Figure 17). 

Across all habitat types, the spatially-neutral model produced the highest SLI values, 

followed by simulations on the 'random b' map, with the lowest values on the fall map. Home 

ranges were the same for simulations on the two seasonal maps, although the ratio of average 

home range size to median patch size was higher for the 'random b' map due to the smaller 

relative patch size on the random map. Because Figure 17 shows results across models but 

within habitat types, other analysis methods would produce the same patterns and I did not plot 

results for Chesson's alpha and Johnson's rank results. 

Random starting points for animals had little effect on the preference analysis. SLI results 

were nearly identical to the plots in Figure 12. Maximum SLI values were between 3% and 

14% higher for simulations where animals were left for 30 daily movements before being 

recorded. The greatest effect was on preference for the rarest habitat. 

Varying step lengths gave rise to different home range sizes, and home range size affected 

SLI values. The magnitude of the effect of home range size varied across different habitat 

affinities (Figure 18). SLI differed little across affinities for small step lengths, but were more 
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Figure 17. Relationship between Strauss' linear index and habitat affinity for the spatially-neutral model 
and the spatially-explicit model when simulated on the 'random b' and fall maps. Each point represents 
1000 simulations. Each simulation modelled movements for 30 days, with 20 movements (each of 5 
pixels) per day. Affinity values were varied for one habitat type at a time and are graphed separately (hi -
h4; proportions for the fall map are in parentheses). Habitat affinity was held at 0% for the other three 
habitat types (not illustrated). ! 

obvious at longer step lengths. That is, habitat affinity had the least influence on preference 

when home ranges were small. 

Although I used step length in Figure 18 to represent differences in home range sizes, the 

relationship was more complicated. Larger step lengths produced larger home ranges when 

affinity values were held constant, but higher affinity values produced smaller home ranges 

when step length was held constant. When affinity values were higher, simulated animals were 

more likely to remain in the same location for longer periods of time, thus leading to smaller 
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Figure 18. Relationship between Strauss' linear index, habitat affinity, and home range size, as 
represented by step length. Simulations were conducted on the fall map. Only the hi habitat type is 
illustrated. Each point on the surface grid represents 1000 simulations. Each simulation modelled 
movements for 30 days, with 20 movements per day. 

home range sizes. However, step length had a greater effect on home range size than did habitat 

affinity, although the effect of affinity on home range size was greatest for long step lengths. 

The net result of the interaction between step length and habitat affinity was that the 

relationship between habitat affinity and SLI was flatter than if home range size been kept 

constant, because home ranges actually decreased in size along the x-axis in Figure 18. Home 

range sizes varied between 152 ± 113 ha for the shortest step length and the highest affinity, to 

4.5 ± 2.0 km 2 for the longest step length and lowest affinity. In general, higher affinities 

produced smaller home ranges, particularly for abundant habitat types. 
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Discussion 

As in Chapter 3, results differed between spatially-neutral and spatially-explicit simulations, 

although the general trends in preference results were similar for both models. The magnitudes 

of preferences for different habitats were influenced by affinities, landscape pattern, and the 

scale of animal movements. 

Effects of Habitat Affinity on Preference Analyses 

In the case of strong selection for, or preference of, one habitat type, the other types are 

necessarily measured as avoided, or at least less preferred. This will always be true because of 

the unit-sum constraint of proportions (Aebischer et al. 1993), and is one of the basic problems 

of preference analyses. It gave rise to the curious situation in my analyses where habitats with 

affinities of 0% often had different preference ranks, although simulated animals were 

essentially indifferent to these habitats. 

Chesson's (1983) method claimed to calculate an index that is independent of relative 

proportions (Lechowicz 1982); however, this independence only applies to situations where 

behaviour with respect to different 'components' (in my case, habitats) is the same (Chesson 

1983). Hence, the three habitats with 0% affinity in Figure 13, had similar alpha values despite 

differences in proportions, because an animal's behaviour associated with the habitats (i.e. 

affinity) was the same. But the magnitude of these alpha values was still dependent on the 

amount of habitat and habitat affinity for the type assigned an affinity >0%. 

Aebischer et al. (1993) cited Johnson's (1980) method as one which is unaffected by the unit-

sum constraint, however, in my study it generated.a number of misleading results, due to the 

ranking method used to classify use and availability. Both Johnson's ranks and SLI were very 

sensitive to relative habitat proportions, but had the advantage of being readily analysed with 
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conventional statistics. Calculating means and dispersions for preference values is important in 

light of Aebischer's et al. (1993) warning about the correct assignment of experimental units to 

animals rather than to location points. 

The affinity for habitat types, as well as their proportions on the landscape, had strong effects 

on preference indices, regardless of the method of analysis. As expected, higher affinities 

produced higher preference values, but the magnitudes were affected by the proportions of 

habitat types. The effect of habitat proportions on model results differed among analysis 

methods. For SLI, the most common habitat (h2) had the lowest theoretical SLI value (1 - p), 

which led to asymptotes at a lower SLI than some less abundant habitats (hi and h3). Chesson's 

alphas for h2 also reached an asymptote, but at a preference value higher than all the less 

abundant habitats. Johnson's method failed to identify preference for h2, because the rarity of 

the h4 habitat type ensured a high preference ranking among all simulations, even when its 

affinity was held at 0%. 

At high affinities for h2, simulated animals essentially stayed in h2 patches for most of the 

sampling period. Because starting points were random, animals began proportionally in all four 

habitat types, but upon entering an h2 habitat, were unlikely to leave. Because animals also 

started in other habitats, the asymptote was slightly lower than the theoretical maximum 

preference values. 

There were less obvious asymptotes in simulations that tested affinity for other habitat types, 

when analysed by Strauss' (1979) method. These habitats had higher theoretical SLI values 

because they were less abundant. However, the maxima were not realised because habitats were 

too rare on the landscape to be exploited to the extent suggested by their habitat affinities. This 

arose for at least two reasons. First, simulated animals began at random locations such that at 

least the distribution of first locations were in proportion to the proportions of habitats on the 
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landscape. Reducing this bias by allowing simulated animals to move across landscapes before 

recording their habitat use increased the preference for habitats with >0% affinity 3% to 14%. 

Second, animals were forced to move at least once per day. As a result, the rarest habitat (h4) 

was never highly preferred, simply because simulated animals encountered it so rarely. 

Authors have expressed concern about the difficulties of measuring preference or selection 

for rare habitat types (Johnson 1980, Lechowicz 1982, Chesson 1983). These concerns are 

based on the effects of low sampling frequencies, or few 'use' observations for habitats with 

low proportions. Preference values for rare types can be spurious because just one observation 

can have a major impact on preference results. M y results were free of such sampling concerns 

due to the large sample sizes used, but they did point to another potential problem: even where 

sampling is adequate, preference indices may still underestimate affinity for a habitat because 

animals are unable to fully exploit it due to low encounter rates. This will hold for animals that 

rely primarily on searching for suitable habitats, rather than for animals that return to sites based 

on prior experience. 

Moderate habitat affinities (20%) for the three habitats held constant in simulations generally 

made preference for the fourth habitat more difficult to distinguish. Chesson's alpha values 

were similar among habitats with 0% affinity, but differed considerably among habitats with 

20% affinity (except where affinity for h2 was varied between 10% and 100%). Again, the 

differences were related to the proportions of the habitat types. Preference for h2 at 20% affinity 

was higher than preference for less abundant habitats with 20% affinity. 

Effects of Landscape pattern on Preference Analyses 

Preference results differed between landscapes with the same habitat proportions but different 

arrangements, and differed from the spatially-neutral model results generated by the same 
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habitat proportions. The spatially-neutral simulations produced the highest SLI values, and the 

landscape with the largest and most poorly interspersed habitat patches produced the lowest SLI 

values, for a given habitat affinity. This pattern held for all but the most common habitat type, 

for which SLI values were the same across the range of affinities. This occurred because large 

and poorly interspersed habitat patches, relative to the mobility of the study animal, generally 

reduced the likelihood that different habitats would be encountered in direct proportion to their 

availability. In fact, the rare habitats were consistently encountered less often than predicted by 

their availability by animals with small home ranges. 

The h i habitat type serves as an example of how the patchiness of landscapes affected the 

results of preference analyses. This habitat type comprised about 13% of the landscape. In the 

spatially-neutral model, each movement that began from an h i patch had a 13% chance of 

encountering another patch of h i . On the ' random b' and fall maps, h i patches were small and 

surrounded by other habitat types. Therefore, for spatially-explicit simulations on these maps, 

the probability that an animal which began in an h i patch would move into another h i patch 

was actually less than 13%. The larger and more poorly interspersed the habitat patches on the 

map, the stronger the effect. 

This example demonstrates one way in which the coincidence of habitats affected preference 

results. The use of habitats was a function of both their abundance and of how patches were 

arranged with respect to each other on the landscape. In this case, the arrangement of h i patches 

resulted in less use by simulated animals in the spatially-explicit simulations than in simulations 

based on the spatially-neutral model. Conversely, habitat types consistently associated with h i 

patches would be used more than predicted by a spatially-neutral analyses, particularly when 

habitat affinity for the h i type is high. 
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Effects of Movement Scale on Preference Analyses 

Home range size affected the magnitude of preference values in the simulations. Small home 

ranges produced low preference values, even at high habitat affinities. This was a function of 

the frequency with which habitats were encountered. Animals with small home ranges were 

able to exploit only a small number of patches and were less likely to fully exploit habitats with 

high affinities. In contrast, simulated animals that ranged widely were more likely to exploit all 

available habitats because they were more likely to encounter all habitat types in proportion to 

their availability. This led to the interesting and important conclusion that preference was scale-

dependent. The scale dependency of predictions is an important area of interest in landscape 

ecology (Milne et al. 1989, Turner et al. 1989a, Keitt et al. 1997). M y results here underline the 

importance of mapping habitat at the proper scale for animal movements, as explained in 

Chapter 3. 

The emergence of a discrepancy between what animals wanted (habitat affinity) and what 

they were able to exploit (measured habitat preference) was an important result of my 

simulations. Some differences were expected, because preference is a relative measure that 

depends on other available habitats, while habitat affinity is absolute. However, what was 

unexpected was that the spatial characteristics of habitats interacting with the scale of animal 

movements also influenced the magnitude of the discrepancy between preference and affinity. 

Isolated but suitable habitat patches may not be used by animals due to the scale of their 

movements (Milne et al. 1989). 

M y results suggest that rare, but high quality habitat patches will be under-utilised, regardless 

of their location on the landscape, and the degree of this under-utilisation will be related to the 

pattern and size of habitat patches, and on the movement rules of animals. This result depended 

on the 'information-free' nature of the simulations. Spatial learning and memory wil l reduce, or 
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even reverse this effect. Where resources are predictable in space and/or time, learning and 

memory, rather than random encounter rates, are more likely to explain the use of rare, high 

quality patches. 

Applicability of the Model 

The model presented in this chapter is only one of many models that could be used to 

describe the movements of animals through landscapes. However, as an early attempt for this 

type of modelling, it provides a basis against which to examine the movement behaviour of 

animals in the field. Prior to this work, animal movements had been modelled as diffusion 

processes through landscapes consisting of a grid of habitat and non-habitat pixels (Gardner et 

al. 1989, Turner et al. 1993, Boone and Hunter 1996). I have extend these methods in several 

novel ways. 

First, I considered the effects of modelling more than two habitats. Many published models 

consider only suitable and unsuitable habitats (Milne et al. 1992, Wiens et al. 1997). Second, all 

the habitat types in my landscapes were 'permeable.' That is, all could be traversed, albeit at 

different rates. This is in contrast with the permeable/impermeable scenario used in percolation 

modelling (Gardner et al. 1989, O'Neill et al. 1988b, Turner et al. 1989b, cf. Turner et al. 

1994), and in studies of spatially-explicit population dynamics (Wiens et al. 1997). Finally, 

rather than examining movements through a simple grid with randomly arranged pixels (e.g. 

Gardner et al. 1989), I used both random maps and actual landscapes (Milne et al. 1992, Turner 

et al. 1994, Boone and Hunter 1996, also used real landscapes). Although more sophisticated, 

the model was not necessarily a better predictor of the optimal movements of animals through 

landscapes, but it provides a predictive basis against which the movements of animals sampled 

in the field can be compared. 
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I modelled movements in a relatively 'information-free' manner (Lima and Zollner 1996), 

which limited the behaviour of simulated animals to rudimentary responses to different habitats. 

Habitat sensitivity in the model was restricted to influencing the time that an animal remained 

in a patch. This is only one potential response of animals to habitat cues. For instance, animals 

with distinct home ranges may exhibit habitat sensitivity by returning often to high quality 

habitats, rather than simply staying longer when they enter them. They may also periodically 

move away from high quality habitats to avoid predators, or to move into habitats that contain 

different habitat attributes. Although learning, perception, and other behaviours may be 

incorporated into movement models (Saarenmaa et al. 1988, Turner et al. 1994), they add 

several untested, and perhaps untestable variables to the equation (Boone and Hunter 1996). I 

followed the logic of Starfield (1997), who argued that we should build small, pragmatic 

models that focus on particular problems rather than attempting to model reality with complex 

models. 

Finally, I also extended the method to consider the differential use of habitats defined by 

differences in overall 'value' (i.e. affinity). Defining habitats as patches of different overall 

'value' to animals is common in habitat capability and suitability modelling (Laymon and 

Barrett 1986). With the proliferation of these models and their application in wildlife 

management, I believe it is important to understand the variables affecting the performance of 

such models. 

In my model, I affected the amount of time that animals spent in patches by changing habitat 

affinity. Increasing habitat affinity decreased the average size of home ranges. Other researchers 

have theorised that animals exploiting sparse resources may do so over larger scales than when 

resources are abundant (O'Neill et al. 1988b). The foraging theory equivalent is the question of 

whether optimal territory size should decrease with increasing with food density. This is only 
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roughly equivalent because territory implies an exclusive area rather than a nonexclusive home 

range. The theoretical literature suggests that territory size may either increase or decrease with 

increasing food density, depending on the currency animals are trying to maximise, and on 

trade-offs with intruder pressure (Schoener 1983). 

A n unavoidable consequence of making the model habitat-sensitive was that unlike the 

simulations in Chapter 3, movements reported in this chapter were not independent of the map's 

scale. That is, movements from patch to patch were influenced by the size and arrangement of 

the patches themselves. If I had used a more general map that had been produced at a smaller 

scale (larger and fewer patches), the simulated movements would have been different. I 

restricted simulations to just two maps to minimise this scaling effect. In reality, we face many 

decisions when mapping habitat, and animals may move independently of some of the features 

we choose to map. Animals also make decisions simultaneously at a number of different spatial 

and temporal scales (Johnson 1980, Addicott et at. 1987), responding to environmental features 

that also exist at a variety of scales (Kotliar and Wiens 1990). We may or may not be capturing 

these features in our single-scale habitat mapping (Addicott et al. 1987, Morris 1987). My 

model was restricted to examining habitat selection at a single scale, where scale was ultimately 

determined by the size and arrangement of the habitat patches. I know of no way around this 

problem because of the necessity to establish a 'true' habitat for simulated animals to sample. 

Decisions about currency, and issues surrounding the dependence of modelled movements on 

mapping scale, obviously affect the applicability of my model; however, we need more 

empirical evidence before deciding i f these assumptions are any more or less realistic than those 

of spatially-neutral habitat use studies, in which animals have information about all habitats, 

and can move among them with little or no cost. Incorporating these rules into my movement 
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model would have produced simulations in which animals would have moved only once to a 

single, high-quality patch, and stayed there for the remainder of simulation period. 

The information-free aspect of my model was the reason simulated animals moved, but there 

is an obvious middle ground between the information-free and perfect information extremes. 

Animals should move among patches when the quality of patches changes with time, and if 

sampling habitats is the primary means of assessing patch quality. Quality changes with forage 

growth and with depletion by foragers. Foraging studies have provided some evidence that 

animals react in a way that maximises net energy gain in a fluctuating environment; that is, they 

use all foraging choices, good and bad, according to their value, rather than simply staying in 

the best patch (e.g. Smith and Dawkins 1971, Pyke et al. 1977). Studies of wildlife habitat use 

usually ignore the dynamic nature of patch quality (other than gross seasonal stratification, e.g. 

Fuhr and Demarchi 1990). The landscapes I used were also static with respect to patch quality, 

and animals were aware of the value of patches without sampling. Modelling habitat affinity as 

I did in this chapter produced a pattern of habitat use similar to that which might have been 

expected in a foraging model that considered varying patch qualities. 

Summary of spatial effects 

M y concept of separating habitat affinity and habitat preference revealed a number of 

potential problems with employing preference analyses to assess the value of habitats to 

animals. An important result of my simulations was that the magnitude of preference index 

values depended on the proportions of different habitat types and their arrangement on the 

landscape. Traditional use-availability studies of wildlife have not considered the constraints 

imposed by the spatial dimension of landscapes and the potential effect of these constraints on 

preference analyses. 
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Rare habitat types were less likely to be identified as preferred, particularly i f they were 

distributed in a few, widely dispersed patches. This occurred even i f animals had high affinities 

for those habitats. This result was dependent of the 'information free' nature of the simulations. 

Nominal affinities for common habitat types distorted the rank order of preference for different 

habitats. Generating preferences that reflected habitat affinity was more difficult for landscapes 

that were dominated by large, poorly interspersed patches. Researchers should be cautious when 

making inferences about the value of rare habitats based on the results of habitat preference 

analyses. 

The unit-sum constraint, and constraints imposed by the spatial dimension of the landscapes, 

produced measures of habitat preference that were inconsistent with actual habitat affinity. The 

proportions of different habitat types, their patch size and arrangement on the landscape, and the 

relative magnitudes of habitat affinities all influenced the contrast between habitat preference 

and habitat affinity. A useful technique may be to iterate the absolute affinities for habitats 

based on preference analyses. This idea is explored in the next chapter. 

Finally, different measures of habitat preference differed in their ability to reflect habitat 

affinities. Johnson's (1980) method performed poorly, particularly when identifying the 

affinities for rare habitats. SLI's weakness was the different rank order of preference reported 

for habitats with identical affinities. Chesson's alpha controlled this problem, but the non-linear 

nature of the index could result in misleading results i f the preferences of animals with different 

selection behaviours were combined in a single analysis. None of these problems were unique 

to the spatially-explicit model; including the spatial dimension of the data primarily influenced 

the magnitude of preference values. Understanding the performance of the various indices is 

critical to applying the methods and interpreting results. 
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These conclusions raise a number of issues for land managers. First, rare habitat types that are 

important for wildlife may not be revealed through studies of habitat use. The values of rare but 

high quality habitats may be discounted as a result of low encounter rates by animals. This 

effect will be magnified when patches are widely dispersed across the landscape (i.e. more 

fragmented) and contain ephemeral resources. 

Second, the nature of rare habitat types may not be captured by preference analyses. Small, 

high quality patches may contain important life history requisites (e.g. dens) that are used by 

animals over broader temporal scales than day-to-day movements. Analyses based on counts of 

locations may not capture these important habitats. In addition, the behaviour rules governing 

the use of these habitats may be different than those for more common habitat types. Dens, 

water holes, etc. are more permanent and their use will depend more on learning and memory 

than on encounter rates. 

Understanding the relationships between animals and rare and/or fragmented habitats is a 

significant challenge to researchers, and the reduction and further fragmentation of these 

habitats through landscape change make the relationships even more difficult to infer. 

These conclusions generate several questions that could be examined in field studies. For 

example, is there a negative correlation between habitat patch size and preference (within a 

habitat type)? Or, can habitat preferences be altered by manipulating the size and arrangement 

of patches, while keeping overall habitat proportions the same? Much of this chapter deals with 

the perception of habitats by animals, and in moving from simulations to field studies, we are 

restricted to measuring correlates of animals' perceptions. The actual relationship between a 

perception like habitat affinity, and measured habitat preference, is unknowable. However, the 

simulations in this chapter have suggested that different methods of measuring preference vary 
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in their ability to detect true habitat affinities (where such affinities are known). These results 

can lead to better designs, even if actual affinities remain unknown. 
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Chapter 5. A Spatially-explicit Examination of Grizzly Bear Telemetry Data 

Introduction 

Habitat-use studies have been the traditional method used to assess habitat for grizzly bears in 

specific areas of British Columbia (Hamilton 1987, Simpson 1987, McLellan 1989, 

MacHutchon et al. 1993); however, Fuhr and Demarchi (1990) developed a method of 

assessing grizzly bear habitat in B C at mapping scales of 1:50 000 and 1:250 000 (hereafter 

referred to as 'the F-D models') without the use of radio telemetry data. The 1:50 000 model 

was intended to evaluate habitat at the operational level (the scale at which most decisions are 

made about habitat modifications), while the 1:250 000 model was intended to be used at the 

planning scale. The F-D models are best described as 'capability' rather than 'suitability' 

models, although the terms are not consistent in the literature (e.g. Laymon and Barrett 1986, 

Suring et al. 1988). That is, they attempt to assess the ability of habitats to provide the life 

history requisites of grizzly bears based on the overall characteristics of habitat types under 

optimal conditions. The currency of the models is carrying capacity, measured in grizzly bears 

per 100 km . Carrying capacity is used because the goal of the models is to predict the potential 

size of grizzly bear populations. This goal is in contrast with habitat suitability index (HSI) 

modelling, which commonly refers to models that generate a suitability index based on the 

interaction of a number of relationships between elements of the habitat, and their importance to 

a species (Laymon and Barrett 1986, Suring et al. 1988, Pereira and Itami 1991, Mladenoff et 

al. 1995). 

One of the principal reasons the F-D models were developed for the Flathead Valley, BC is 

that a long-term study of grizzly bear ecology has been conducted there since 1978 (McLellan 

1989, F. Hovey, pers. comm.). As a result, a large sample of telemetry locations are available to 
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validate the models. A thorough test of the F-D models is beyond the scope of this chapter; 

however, the data and habitat capability maps provide an opportunity to examine differences 

between the patterns of habitat use generated by real and simulated data, and to examine the 

role of spatial variables. 

In this chapter, I examine overall patterns of habitat use by grizzly bears among the F-D 

capability classes, and compare them to patterns generated with the results of simulated animal 

movements on the F-D 1:50,000 scale capability map. The fit of the data to the F-D model is 

unimportant for the interpretation of the comparison, only the actual association between 

locations and the capability map is relevant. The purpose of the comparison is to determine the 

relative roles of spatial variables, habitat affinities, and analysis methods, on the inferences 

made about broad-scale patterns of habitat use. 

Following the results of the last two chapters, I pose two main questions: 1) could the spatial 

dimension of habitat data an important factor in generating the observed pattern of habitat 

preference?; and 2) how well do measures of habitat preference reflect the habitat affinities 

suggested by the model? 

Methods 

I assumed: 1) that the sampling intensity of individual bears did not affect measures of habitat 

use, and; 2) that relative differences in location density reflected differences in habitat use. 

Error due to the violation of this second assumption may occur if a population is not near 

carrying capacity (Hobbs and Hanley 1990), or i f locations are strongly affected by social 

behaviour (Van Home 1983, cf. Fagen 1988). McLellan and Hovey (1995) provide evidence 

that the Flathead population is close to carrying capacity. 
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Maps derived from the F-D model contained patches consisting of one or more biophysical 

habitat units. I pro-rated the value of each patch based the relative proportions of different 

habitat types within each patch. After this adjustment, patches were classified into nil, low, 
i 

medium, and high categories by using Fuhr's and Demarches (1990) carrying capacity 

estimates as the upper boundary of each rank category. 

Because telemetry data do not directly estimate carrying capacity, I assumed the model 

predicted that habitat use by bears would be proportional to the carrying capacity estimates of 

patches. The F-D model is based on the premise that habitats with higher predicted carrying 

capacities should exhibit higher use by bears. This use should be reflected in the telemetry data 

collected in the Flathead Valley. Regionally, the F-D model is supposed to be adjusted for 

current conditions through the application of 'step^downs' (Manning et al 1994). There are 

adjustments in carrying capacity estimates that account for modifications to the habitat such as 

roads. Fuhr and Demarchi (1990) suggested the use of such adjustments, but no standard 

guidelines are available (Manning et al. 1994) and I do not consider them here. Because they 

apply regionally, they should not affect the relative qualities of habitats among capability 

classes. 

I calculated habitat preference for grizzly bears during the summer season to compare against 

simulated data. The summer data were most appropriate for this analysis because they provided 

a large sample of bear-years (n = 78 individuals with >9 locations) and an initial analysis 

indicated a significant pattern of preference among habitat classes. The spring sample consisted 

of few bear-years with >9 locations (n = 9), while in the fall sample use did not differ 

significantly among habitat classes (unpubl. data). J needed >9 locations for each bear for 

comparison with results from my movement model, which required that >9 locations be located 



67 

on the mapped landscape to be included in the analysis. The same bears in different years were 

treated as independent samples, and data were pooled across age and sex classes. 

I compared the preference results for the summer grizzly bears to simulated results based on 

the spatially-neutral and spatially-explicit models used in Chapter 4, using Strauss' Linear 

Index (SLI; Strauss 1979), and the methods of Johnson (1980) and Chesson (1983). For the 

simulations, I generated results at a scale similar to the grizzly bear data by using step lengths 

that resulted in home ranges that were similar in size to the seasonal bear home ranges (using 

the fixed kernel technique; Worton 1987). In practise, the simulated home ranges varied 

considerably due to the relationship between habitat affinity and home range size in the model. I 

generated parameters for the model based on home range data, rather than on the characteristics 

of bear movements, because of the variable 'step lengths' of the field data. That is, the time 

between bear relocations was variable, and therefore an analysis of turning radii and movement 

distances would have been inappropriate. 

For both the spatially-neutral and spatially-explicit models, I generated model runs of 1000 

simulations for each of two different sets of habitat affinities. I used a null model set (no 

affinity for any of the habitat classes), and a set of affinities based on the qualitative habitat 

ranks outlined by the F-D model. The affinity values I used were: nil 0%; low 11%; medium 

34%; and high 100%. This was only one of many sets of affinities that could have been used, 

based on the interpretation of carrying capacity estimates from the F-D model. I ran simulations 

where starting points were randomly located throughout the study area, and where they were 

restricted to the centre portion of the landscape, as in Chapter 3. This was to reflect a bias in the 

actual bear data; most bears were captured in the south-central portion of the study area. 

I also determined the set of affinities that would produce the same pattern of habitat 

preference in simulations as that observed in the grizzly bear data. I systematically varied 
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affinities for the habitat classes between 0 and 90%, in 30% intervals (due to practical 

computational limitations). I then determined the set of affinities that produced the best fit to 

the observed grizzly bear data. 

I compared mean SLI values between ranks with two-tailed t-tests with an adjusted alpha of 

0.008 to compensate for the non-independence of comparisons (Sokal and Rohlf 1981). 

Results 

Summer bear home ranges averaged 84 ± 61 km (n = 59 bear-years; home ranges were 

calculated for bears with >19 locations). For the actual grizzly bear data, nil habitats were used 

most frequently and medium habitats the least, according to gross proportions of locations 

(Figure 19). SLI values among the four habitat classes were significantly different from each 

other, and followed the expected rank order for all except the nil class (Figure 20). Simulations 

based on starting points restricted to the south-central portion of the study area did not change 

the rank order of habitat use, nor significantly the magnitude of preference values. 

The spatially-neutral model produced expected results when run with all habitat affinities 
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Figure 19. Proportional use of the four habitat classes by grizzly bears (n = 78) in the Flathead Valley, 
BC. Error bars are ±2 standard errors and are based on non-transformed data. They are provided for 
descriptive purposes. 
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Figure 20. Comparison between summer grizzly bear data and several simulations. All pairwise 
comparisons were significant (P < 0.001) except comparisons between n//and high habitat capability 
classes for the bear data, and between nil and low habitat capability classes for the spatially-neutral 
model results. The four numbers following the model descriptions are the habitat affinities assigned to 
the nil - high habitat capability classes. Error bars are +2 standard errors. 
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equal to zero; preference among the four habitat classes did not differ from each other and were 

all very close to zero (not illustrated in Figure 20). 

For the spatially-explicit model, the same habitat affinities produced significantly different 

preferences among the four rank classes, and the rank order was the same as that for the grizzly 

bear data, except that the nil class was preferred over the high category (Figure 20). Home 

ranges for the simulated data ranged between 32 ± 26 km for simulations with high affinities, 

to 179 ± 59 km for simulations with affinities of zero. 

Using estimated habitat affinities to correspond to the four rank classes of the F-D model 

further altered the habitat preference results of the simulations. The spatially-neutral and 

spatially-explicit models generated similar preferences, with the exception again of the nil class, 

which was not preferred over the low class in the spatially-neutral simulations as it was in the 

spatially-explicit results (Figure 20). 

Not surprisingly, analysis of the bear data with Johnson's ranks and Chesson's alpha 

produced different patterns (Figure 21). Johnson's ranks are distributed normally, but Chesson's 

alpha values are not. Therefore, measures of dispersion for Chesson's alpha should be 

interpreted with caution. 

The habitat affinities that best fit the observed pattern of habitat preference for the summer 

bear data were: nil 30%; low 0%, medium 0%; and high 60%. This pattern was best reflected in 

Chesson's alpha results (although not the same), but could not have been predicted by SLI or 

Johnson's ranks. In fact, multiple optima were predicted by iterations based on Johnson's ranks. 

Discussion 

Despite the potential problems of the F-D 1:50,000 model, and the problems with evaluating 

these types of models in general (Manning et al. 1994, Rickers et al. 1995), the summer data fit 
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Figure 21. Johnson's rank and Chesson's alpha analysis of the summer grizzly bear data. For the 
Johnson's rank results, all pairwise comparisons were significant (P < 0.001) except comparisons 
between medium and high habitat capability classes. Chesson's alphas are not normally distributed and 
error bars should be interpreted with caution. 

the expected rank order of preference for three of the four habitat classes. The exception was the 

nil class, which was one of the most preferred. This identifies a weakness in the F-D model. 

The Role of Spatial Variables 

Landscape characteristics consist of two categories of variables: the spatially-neutral 

proportions of habitats, and the spatially-explicit arrangement of habitats. Previous chapters 

have demonstrated the effects of different habitat proportions, and of habitat arrangement on 
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measures of habitat use and preference. The results of simulations in this chapter suggest that 

the pattern of habitat preference observed in grizzly bear data could be at least partly explained 

by the spatially-explicit arrangement of habitats. In simulations with 0% affinity across all 

habitat classes, the rank order of preference in the spatially-explicit simulated data was 

essentially the same as that in the grizzly bear data. That is, animals with no affinity for the 

different habitat classes produced the same pattern of preference. This pattern was not evident 

in the spatially-neutral results, suggesting the pattern of preference was the result of the 

arrangement of habitats, rather than of the spatially-neutral habitat proportions. The only 

substantial difference between the spatially-explicit simulation results and the bear data results 

was the greater magnitudes of preference calculated for the bear data. Unfortunately, the 

relative roles of habitat arrangement and of habitat affinity in generating these higher 

magnitudes are difficult to separate. 

The habitat preferences calculated for simulations with habitat affinities of 0% appear to 

contradict the results of Chapter 3, where habitat-insensitive simulations at different scales led 

to variance differences in habitat use, but did not generally change the means. The reason for 

this discrepancy lies in the different movement rules of the models used in Chapters 3 and 4. 

Because the model in Chapter 3 was completely insensitive to the underlying habitat map, 

simulated animals were allowed to wander back and forth across the landscape boundary. In 

contrast, the Chapter 4 model, also used in this Chapter, truncated the movements of simulated 

animals once they left the landscape. The reason for this was that there was no way to assign 

movement rules to animals that were not located on mapped patches. This may seem like a 

minor difference, but it introduced a bias with respect to which animals were included in the 

analysis. Because >9 locations had to be available for an animal to be included, there was a 

natural tendency for the simulated home ranges to be centred closer to the interior of the map 
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than i f the simulations had followed the rules of the model used in Chapter 3. The distribution 

of the nil class of habitats, which were found primarily in the valley, resulted in the pattern seen 

in Figure 20; habitats classified as nil value were one of the two most preferred classes. 

The rule for including simulated animals on the edge of the map was largely responsible for 

producing a pattern of habitat use similar to that observed in the grizzly bears data. Only bear-

years that included >9 locations on the mapped area were included in the analysis, which biased 

bear locations towards the centre of the valley. Of course the bias may not have been entirely 

methodological. The Flathead map is flanked on the east and west by rugged mountains that 

may influence the movements of both grizzly bears and grizzly bear researchers, leading to a 

greater number of locations in and near the valley. 

Habitat Affinities Predicted by the Model 

Simulations based on habitat affinities derived from the F-D model produced a different 

pattern of preference than that observed in the bear data. The nil habitat category was less 

preferred, but the magnitude was smaller than in the spatially-explicit simulations than in the 

spatially-neutral results, where the nil class had SLI values that did not differ from those of the 

low class. In the spatially-neutral results, the rarity of the nil category was countered by its 

lower affinity to produce a preference similar to the low class. In the spatially-explicit results, 

the nil class was preferred over the low class, even though the assigned affinities suggested the 

opposite. A conclusion of Chapter 4 holds here - preference is not necessarily an accurate 

predictor of habitat affinity, and whether it is will be influenced by the proportions of different 

habitats and their spatial characteristics. Once again, only habitat proportions are usually 

considered in traditional studies of wildlife habitat use. 
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Habitat Affinities Suggested by the Grizzly Bear Data 

The results of the SLI preference analysis of the grizzly bear data suggested that bears 

preferred habitats classified as nil and high, strongly avoided low habitats, and were essentially 

indifferent towards medium habitats. The affinities that provided the best fit to this pattern of 

preference were quite different, suggesting no discrimination between low and medium habitats, 

and a greater affinity for high than nil habitats. Analysis of the bear data with Chesson's alpha 

produced a pattern that was close to that which would be expected based on the modelled 

habitat affinities. Johnson's ranks produced yet another pattern in the bear data that did not 

resemble the modelled habitat affinities. M y analysis suggests that Chesson's alpha may 

provide the best method for generating a correspondence between preference and actual habitat 

affinities. 

Patterns of Habitat Use and Constraints of Landscapes 

Returning to my original hypothesis, the pattern of habitat preference observed in the summer 

grizzly bear data was at least partly caused by the spatial characteristics of the landscape. The 

rank order of preference could be explained by the spatially-explicit arrangement of habitats, 

without reference to the affinity of bears for different habitats, but the magnitudes of the 

preferences were influenced by unknown habitat affinities. 

Grizzly bears respond to environmental patterns at several scales (Johnson 1980, Addicott et 

al. 1987). As a result, their movement behaviour represents an integration of information across 

both temporal and spatial scales. The transfer of information across scales reduces the sharpness 

of scale boundaries, making inferences about scale effects more difficult (Wiens 1989). 

Simulated movements in this chapter were sensitive to environmental pattern at only one scale, 

but still produced a broad-scale pattern of habitat preference that resembled that shown in the 
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grizzly bear data. Thus the complex behaviour of grizzly bears at small scales did not appear to 

obscure the broader-scale pattern of habitat preference. 



Chapter 6. Conclusions 

A common theme throughout this study has been the notion that scale and pattern affect our 

ability to make inferences about ecological processes. To understand mechanisms that produce 

patterns of habitat use, we need to understand how the patterns of points that we use to 

represent animal behaviour, interact with the patterns of habitat patches we use to represent 

animal environments. The scales of both can be at least partly controlled by data collection 

methods. We can change the representation of an animal's use of habitat by relocating the 

individual more or less frequently. Also, we can change the representation of an animal's 

habitat by measuring different environmental variables, or by choosing different limits along 

environmental gradients to delimit habitats. The results of my study suggest that these scaling 

decisions can affect our ability to make inferences about the process of habitat selection. 

Decisions about scale affect the expected pattern of habitat use under a null model of no habitat 

selection (Chapter 3), the measurement of habitat preference (Chapter 4), and can produce 

significant habitat preferences in the absence of a mechanism of habitat selection (Chapters 3 

and 5). 

A reductionist approach to examining habitat use might call for the measurement of animal 

behaviour and of habitats at the finest possible scales, to build the dynamics of the system from 

the 'ground-up'. Doing so may leave us vulnerable to becoming lost in endless detail, with few 

rules for separating the trivial from the non-trivial. We would also run the risk of being misled 

by local idiosyncrasies. An alternative, but complementary approach for complex systems, is to 

recognise the scale-dependency of their processes, and to look for broader-scale, robust patterns 

that emerge above the intractable detail. 
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As ecologists, we rarely use the language of systems theory, although we exercise some of its 

concepts (Allen and Starr 1982). The process of ecological modelling involves making 

decisions about scale; the variables that we include in a model are related to the scale of the 

process we are trying to capture. These decisions are often intuitive, particularly for species 

such as grizzly bears that range at very human scales. Hence, there was little evidence in the 

grizzly bear data that I examined, to suggest the Flathead mapping was conducted at an 

inappropriate scale. However, the appropriate scale for modelling the habitat use behaviour of 

other species may not be as obvious. For example, wolverines (Gulo luscus) are relatively small 

animals that have very large home ranges (Hornocker and Hash 1981). This species suggests 

scales of perception that are both larger and smaller than human scales. Our perceptions may 

affect our characterisations of habitat for animals with very different perceptions. I have shown 

that the scale consequences of these perceptions can affect the inferences we make about habitat 

use. 

I investigated the consequences of the scales that we impose on studies of wildlife habitat 

use, and attempted to generate some system-independent guidelines for anticipating these 

consequences when designing and analysing habitat use data. As with the approaches of most 

researchers in this area, my results arose primarily from simulated data. However, my system 

was generally more complex than other attempts at modelling animal movements and habitat 

use. The introduction of habitat affinities, four different habitat types, and variation in 

movement behaviour, were important steps in generating more realistic models. In some ways, 

these variables tended to blur the effects of scale and pattern, but a number of important 

relationships emerged. 

I have shown that the proportions of different habitat types had the greatest influence on 

measures of habitat use and preference. Common habitats provided the clearest evidence for the 
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existence of domains of scale, but were also responsible for distorting preference analyses and 

misrepresenting the true affinities of animals for habitats. On the other hand, rare habitat types 

often produced no discernible patterns of preference at all, regardless of their affinity values. It 

was also clear from my simulations that the arrangement of habitats influenced habitat use, and 

its effects were greatest when animal movements were small in relation to habitat patch size. 

However, habitat arrangement was also sufficient to produce significant patterns in habitat 

preference, even without a mechanism for animals to differentially select habitats. 

The effects of landscape pattern were not only restricted to the measurement of habitat use 

and preference. The amount and arrangement of habitats constrained the ability of animals to 

exploit habitats according to their affinities. Hence, rare habitat types with high affinities were 

never highly preferred, because they were encountered so rarely by animals. This produced 

preferences that were scale dependent, such that the response of animals to the quality of 

habitats depended on the scale of their movements across the landscape. 

Perhaps the most striking conclusion of my study was the inter-dependency of nearly all the 

variables that I examined. Measures of the proportion, arrangement, use, and preference of one 

habitat type, were dependent on the same measures of all other habitat types. The scale-

dependency of preference meant not only that the magnitude of preference for a habitat type 

depended on the scale of animal movements, but that it also depended on the size of the habitat 

patches. This in turn influenced the interspersion and juxtaposition of habitat types, and this 

then influenced movements by altering the time animals spent in patches. Understanding the 

nature of these interdependencies is important if we are to exploit the information provided by 

the spatial dimension of habitat use and availability data. 
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Appendix I 

Definitions of landscape indices (McGarigal and Marks 1995). 

Interspersion/Juxtaposition index (UT): 

IJI = -
-SI 

/=1 k=i+\ L 

dk \ , I eik 

. In 
E ln(I[m-(w-_l)]) 

(100) 

Contagion index (CONTAG): 

Variables: 

m 

m' 

e ik 

E 

Pi 

gik 

CONTAG = 

ZZ 
i=l k = \ 

1 + -

f \ 

(Pi) 
gik 

m • ln(P,) 

f \ 

gik 
m 

2 \n(m) 
(100) 

1,..., m or m' patch types 

1,..., m or m' patch types 

number of patch types, excluding landscape border 

number of patch types, including landscape border 

total length (m) of edge in landscape between patch types i and k; includes 

boundary and background edge segments involving patch type i 

total length (m) of edge in landscape 

proportion of landscape occupied by patch type i 

number of adjacencies between pixels of patch types i and k 



87 

Appendix II 

The R E X X script used in the habitat-insensitive simulations. Additional scripts to summarise 

output are not included. 

/* This i s the h a b i t a t - i n s e n s i t i v e movement REXX s c r i p t */ 

c a l l MathLoadFuncs 
c a l l Rexxbase_init 

/* data entry */ 

SAY 
SAY 
SAY " I n s e n s i t i v e movement model v5.6" 
SAY "Number of animals?" 
num_animals=linein(input.txt) 
SAY num_animals 
SAY "Locations per animal?" 
num_loc=linein(input.txt) 
SAY num_loc 
SAY "Decay power? (between 1 and 3)" 
power=linein(input.txt) 
SAY power 
SAY "Distance m u l t i p l i e r ? " 
m u l t i p l i e r = l i n e i n ( i n p u t . t x t ) 
SAY m u l t i p l i e r 
SAY "map f i l e " 
m a p f i l e = l i n e i n ( i n p u t . t x t ) 
SAY mapfile 

error=rexxbase_opendbf( 1mapfile') 

/* main program loop, repeated f o r each animal and simulation */ 

theta=0 

DO i = l TO num_animals 
SAY i 
x=RANDOM(680000, 695000) /* sets l i m i t s of s t a r t i n g p o s i t i o n s */ 

y=RANDOM(5428900, 5444000) 
CALL C a l c u l a t e 
DO j=2 TO num_loc 

CALL Distance /* c a l c u l a t e s distance */ 
CALL D i r e c t i o n /* c a l c u l a t e s new d i r e c t i o n */ 
x=x+sin(theta)*d /* new x,y p o s i t i o n */ 
y=y+cos(theta)*d 
CALL C a l c u l a t e 

END 
END 

error=rexxbase_closedbf('mapfile 1) /* closes map f i l e */ 
error=stream( 1.\output\output.txt 1, command, close) 
error=stream( 1.\output\hrinput.txt', command, close) 
EXIT 

/* f u n c t i o n to c a l c u l a t e new row/column p o s i t i o n , and write the values to the output f i l e s */ 

Ca l c u l a t e : 
x l = TRUNC((x - 661000)/50) 
y l = TRUNC((5459150 - y)/50) 
IF xl>=l & xl<=1141 & yl>=l & yl<=604 THEN /* checks to make sure l o c a t i o n i s on map */ 

ECHO OFF 
c a l l RxFuncAdd 'MathLoadFuncs', 1REXXMATH', 'MathLoadFuncs' 
c a l l RxFuncAdd 'Rexxbase_init', 'REXXBASE', 'Rexxbase_init' 

/* load REXXMATH functions */ 
/* load REXXBASE functions */ 

DO 

file:///output/hrinput
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record=(yl-l)*1141+xl /* c a l c u l a t e s record number and queries dbf f i l e */ 
error=rexxbase_gotorecord( 1mapfile 1, record) 
z=mapfile.habitat 

END 
ELSE z=-l 

error=LINEOUT('.\output\output.txt', i x y z) /* general output f i l e */ 
i f i<101 then error=LINEOUT( 1.\output\hrinput.txt', i x y) 

/* f i l e f o r kernelhr, f i r s t 100 hr's */ 
RETURN 

/* C a l c u l a t e s distance */ 
Distance: 

d=0 

DO k=l TO 12 /* 12 numbers are summed to produce one random number */ 
c=RANDOM(10000)/10000 /* adjusted f o r the whole numbers drawn by RANDOM */ 
d=d+c 

END 

d=d-6 /* adjustment t o mean 0 and variance 1 */ 
d=pow(ABS(d),power)*multiplier /* c o n t r o l s decay d i s t r i b u t i o n */ 

RETURN 

/* Biased d i r e c t i o n c a l c u l a t i o n */ 
D i r e c t i o n : 

theta_old=theta /* remembers previous d i r e c t i o n */ 
theta=0 
DO k=l TO 2 

theta=theta+RANDOM(3 60) 
END 
theta=theta/2 
theta=theta/360*2*3.141593 /* converts t h e t a t o radians */ 

theta=theta_old+theta 
/* adds o l d and new radian values f o r new d i r e c t i o n , r e l a t i v e to north */ 

IF theta>6.283185 /* checks to see i f the sum of the d i r e c t i o n s exceeds 360 degrees */ 
THEN theta=theta-6.283185 

RETURN 

file:///output/hrinput
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Appendix III 

The C++ script used in the habitat-sensitive simulations. Additional scripts to summarize 

output are not included. 

// s e n s i t i v e . c p p : t h i s i s the habitat s e n s i t i v e movement s c r i p t 

#include <stdio.h> 
#include <conio.h> 
#include <math.h> 
jfinclude <stdlib.h> 
ftinclude <time.h> 

vo i d map_load(); 
v o i d s t a r t ( ) ; 
v o i d map_query () ; 
v o i d d i r e c t i o n ( ) ; 
v o i d s t e p ( ) ; 
v o i d stay_go(); 

i n t mapfile[700000]; 
char *mapname; 
in t p i x e l _ v a l u e , column, row, 
m u l t i p l i e r , theta, n, go; 
long x, y; 
i n t p r _ z [ 5 ] ; 
t ime t t; 

i , num_animals, x l , y l , 

/ / f o r c l r s c r 
/ / f o r t r i g functions 
/ / s t r i n g conversion functions 
/ / f o r time functions 

//user functions 

// g l o b a l d e c l a r a t i o n s 

num_locations, num_steps, j , 

main(int argc, char *argv[]) 

{ 

FILE *stream2, *stream3; 

i f (argc != 10) 

//main f u n c t i o n v a r i a b l e d e c l a r a t i o n s 

p r i n t f ( " \ n n o t enough command l i n e paramters were entered\n\n"); 
e x i t (1) ; 

//read command l i n e parameters i n t o v a r i a b l e s 
mapname = a r g v [ l ] ; 
num_animals = a t o i ( a r g v [2]); 
num_locations = a t o i ( a r g v [ 3 ] ) ; 
num_steps = a t o i (argv [4] ) ; 
m u l t i p l i e r = a t o i ( a r g v [ 5 ] ) ; 
pr_z [1] = a t o i (argv [6] ) 
pr_z[2] = a t o i (argv [7] ) 
pr_z [3] = a t o i (argv [8] ) 
pr_z [4] = a t o i (argv [9] ) 

//sets mapfile to f i r s t command l i n e argument 
//takes number of animals from the command l i n e 
//number of l o c a t i o n s per animal 
//number of steps per day 
//step distance 
//stay p r o b a b i l i t y f o r habitat 1 
//stay p r o b a b i l i t y f o r habitat 2 
//stay p r o b a b i l i t y f o r habitat 3 
//stay p r o b a b i l i t y f o r habitat 4 

/ / p r i n t s parameters 
printf("\n\nmap f i l e : %s", mapname); 
printf("\nnumber of animals: % i " , num_animals); 
printf("\nnumber of l o c a t i o n s : % i " , num_locations); 
printf("\nnumber of steps: % i " , num_steps); 
p r i n t f ( " \ n m u l t i p l i e r : % i " , m u l t i p l i e r ) ; 
p r i n t f ( "\nprob. h i : % i " , Pr_ z [ l ] ) 
p r i n t f ( "\nprob. h2 : % i " , P r. z[2]) 
p r i n t f ( 1 \nprob. h3: % i " , P r. z[3]) 
p r i n t f ( 1 \nprob. h4 : % i " , P r. z[4]) 

map_load(); 
srand((unsigned) time(&t) 

//loads map i n t o RAM 
/ / r e i n i t i a l i z e s random number generator 

stream2 = fopen(".\\output\\output.txt", "w"); / / f i l e f o r general output 
stream3 = f open ( " .\\output\\hrinput. t x t 1 1 , "w"); / / f o r kernelhr 

file:///nnot
file:///n/nmap
file:///nnumber
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file:///nnumber
file:///nmultiplier
file:///nprob
file:///nprob
file:///nprob
file:///nprob
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//main program loop 

theta = 0; //necessary, don't ask.. 

fo r ( i = 1; i < (num_animals+l) ,- i++) //repeats f o r each animal 
{ 

p r i n t f ( " \ n % i " , i ) ; 
do //ensures s t a r t i n g p o s i t i o n on non-zero p i x e l 
{ 

s t a r t ( ) ; 
map_query(); 

} 
while(z < 1); 
fp r i n t f ( s t r e a m 2 , " % i % i % i % i \ n " , i , x, y, z) ; //writes output f i l e 
f p r i n t f ( s t r e a m 3 , " % i % i % i \ n " , i , x, y ) ; 

//writes output from the f i r s t 100 animals f o r kernelhr 

f o r (j = 2; j < (num_locations+l); j++) 
{ 

f o r (k = 1; k < (num_steps+l); k++) 
{ 

d i r e c t i o n ( ) ; 
stepO ; 
map_query(); 
i f (z < 1) / / i f animal wanders o f f map, stop and go to next animal 

break; 
stay_go(); 
i f (go == 0) 

break; 
} 

i f (z < 1) 
break; 

e l s e 
{ 

fp r i n t f ( s t r e a m 2 , 
f p r i n t f ( s t r e a m 3 , 

} 
} 

} 

fclose(stream2); 
fclose(stream3); 

return 0; 
} 

/ / t h i s code loads the f i l e i n t o RAM 

v o i d map_load() 
{ 

FILE *streaml; 

p r i n t f ( " \ n \ n l o a d i n g map..."); 
streaml = fopen(mapname, " r " ) ; //opens map f i l e f o r input 

column = 1; //ignore that C arrays s t a r t with l o c a t i o n 0 
row = 1; 

do //loads map 1 row at a time 
{ 

do 
{ 
fsca n f ( s t r e a m l , " % i " , &pixel_value); //reads from input map f i l e , writes to array 
mapfile[(row - 1)* 1141 + column] = p i x e l _ v a l u e ; 
++column; ' 
} 
while(column < 1142); 

column = 1; 

/ / d e c i s i o n to stay on p i x e l or move on 

//needed to drop out of current animal 

ki % i % i % i \ n " , i , x, y, z) ; //writes output f i l e 
t i % i % i \ n " , i , x, y) ; 

//writes output from the f i r s t 100 animals f o r kernelhr 

file:///n/nloading


++row; 
} 
while(row < 605) ; 

fclose(streaml) 

/ / c a l c u l a t e s s t a r t i n g p o s i t i o n 

v o i d s t a r t () 
{ 

x = 661050 + (rand() % 57001); 
y = 5428900 + (rand() % 30151), 
x l = i n t ( ( x - 661000) / 50); 
y l = int((5459100 - y) / 50); 

//random func t i o n picks integer 

//queries map and returns value 

v o i d map_query() 
{ 

i f ( x l >= 1 && x l <= 1141 && y l >= 1 && y l <= 604) 
z = m a p f i l e [ ( y l - 1) * 1141 + xl] ; 

e l s e 
z = -1; 

//ensures l o c a t i o n i s on map 

/ / c a l c u l a t e s new d i r e c t i o n 

v o i d d i r e c t i o n ( ) 
{ 

i n t theta_old; 
theta = 1 + (rand() % 8) ; 
i f (theta > 8) 
{ //checks to see i f the sum of the d i r e c t i o n s exceeds 360 degrees 

theta = theta - 8; 
} //brackets required due to consecutive i f statements 
i f (theta < 1) 

theta = theta + 8; //same but opposite to above 
} 

//increments p i x e l on map 

v o i d stepO 
{ 

switch (theta) 
{ 

case (1) : 
y l = y l - m u l t i p l i e r ; 
break; 

case (2) : 
y l = y l - m u l t i p l i e r ; 
x l = x l + m u l t i p l i e r -
break; 

case (3) : 
x l = x l + m u l t i p l i e r ; 
break; 

case (4) : 
y l = y l + m u l t i p l i e r ; 
x l = x l + m u l t i p l i e r ; 
break; 

//N 

//NE 

//E 

//SE 

case (5): //S 
y l = y l + m u l t i p l i e r ; 
break; 

case (6): //SW 
y l = y l + m u l t i p l i e r ; 
x l = x l - m u l t i p l i e r ; 
break; 



case (7) : //w 
x l = x l - m u l t i p l i e r ; 
break; 

case (8): //NW 
y l = y l - m u l t i p l i e r ; 
x l = x l - m u l t i p l i e r ; 
break; 

d e f a u l t : 
p r i n t f ( " \ n i n v a l i d " ) ; 

} 

x = x l * 50 + 661000; //sets next x and y l o c a t i o n 
y = 5459100 - y l * 50; 

} 

/ / d e c i s i o n to stay on p i x e l or leave 
v o i d stay_go() 
{ 

i n t prob; 
prob = (rand() % 1001) ; 

i f (prob > (pr_z[z] * 10)) 
go = 1 ; 

e l s e 
go = 0 ; 

//choose p r o b a b i l i t y between 0 and 1 
//returns 1 to move, 0 to stay 

file:///ninvalid


Appendix IV 

Calculation of indices use to measure habitat preference among simulated animals. 

Strauss' Linear Index (Strauss 1979): 

SLI = r, - pt 

Chesson's alpha (Chesson 1983): 

n 

cu = 

where r, is the proportional use of the ith habitat type, and pt is its proportional availability 

Johnson's ranks (Johnson 1980): 

_ J 

tt = J~iy*T(ry-Sij) 
7=1 

where rtj is the rank of the usage of habitat / by animal j, stj is the rank of the availability of 

habitat i for animal j, and ti is the preference for habitat i averaged among all animals (J) 


