An Object-Oriented Workflow Management System
by
Samson Hui
B.Comm., University of British Columbia, 1995 |
A THESIS SUMBITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
MASTER OE | SCII-;NCE
in |
THE FACULTY OF GRADUATE STUDIES
(F acu}ty of Commerce and Business Administration)

We accept this thesis as conforming

to thwi’rgg standard

THE UNIVERSITY OF BRITISH COLUMBIA

Qctober 1997

© Samson Hui, 1997

i presentmg thls theSIS |n partlal fulfllment of the requ1rements for an advanced.-_

'.degree at the’ Unnversrty of Brltlsh Columbla “agree . that the lerary shaII make ‘it

’ freely avarlable for reference and study further agree that permlssnon for extenswe?

R permlssron

) 'copymg of thls thesns for scholarly purposes may be granted by the head of my' L

j"department by hns Lor. her . representatrves ’It ti~ understood that copymg or}_

publlcatlon of thls thesrs for fmancnal gam shall not be allowed wrthout my wrltten',‘ﬁ_‘f'

. .Department of
."l;fThe Umversrty of Brltlsh Columbla R
L»‘Vancouver Canada ’

Abstract

Since many organizations have been facing pressure to reduce costs, to increase
quality, and to provide rapid delivery of new services and products, they often resort
to optimizing the way they do businesses. The use of workflow systems may improve
the efficiency of an organizational process, thereby reducing costs énd increasing
workload capacity. It can also allow people to concentrate on value-added activities
by freeing them from worrying about paper flows, filing, information tracing, and
whether or not certain actions have been taken. Many workflow products, however,
are fundamentally driven by vendor specifications without the support of a well-
developed theoretical foundation. This thesis begins with an introduction of an Object-
Oriented Workflow Model (OOWM). The OOWM extends an ontologically
developed modelling method, Object-Oriented Enterprise Modeling (OOEM), by
including workflow constructs with the purpose of describing the task structure of an
organizational process. It also presents the architecture of an Object-Oriented
Workflow Management System (OOWMS) which enacts the contents of the OOWM.
Finally, based on the proposed architectural blueprint, a prototype of the workflow
system was implemented, by using existing technologies, for a purchase requisition

process.

il

Table of Contents

ABSTRACT ...ccocvciisrnssensnssnesnsssssssssasssnssnsesasssasssnesanssasassssssssssase i
TABLE OF CONTENTS it
LISTS OF FIGURES viij
LISTS OF TABLES x
ACKNOWLEDGMENTS xi
1. INTRODUCTION 1
1.1, MOTIVATIONouuniiiiiiiiieeseceriiier e ettt e eetmae e e e raae st taas s saa s e saaaeasbtasasaenaaesnes 1
1.2. THESIS OBJIECTIVESeiieeiiiieeiiietirinenaeseeeeeeeecieianeeeeeenennneesssinnisarennnsseeennes 2
1.3. THESIS OUTLINEcoooiiiiiiiiiiiiiieiititii it e e s e e vaanana e e e 3
2. INTRODUCTION TO WORKFLOW MANAGEMENT 5
2.1. INTRQDUCTION .. 5
2.2. WHAT IS WORKFLOW MANAGEMENT?.........cccttiieieieieieniiieiiieeniineeneeeeeees 6
2.3. WORKFLOW TERMINOLOGYcceeiveeeiiiiiiiaiiiaeeeeeeeenieieeeinirviiiisiee e e e eeeeeeeees 8
2.4. THE WORKFLOW REFERENCE MODEL............ouvviiiiieiereieieeeieeeieciiees 10
2.4.1. Process Definition TOOISoueemrereinreiniiniiiniiiniiicseinnicnnens 12
2.4.2. Workflow Enactment Sérvice .. 12
2.4.3. Workflow Client Applications.................covuvvueeumnieeniniieninenninenieens 13
2.4.4. Invoked Applications...................cccooovuiiveiiniriniiiinieeininiecesseieeans 13
2.4.5. Administrfa’tion and Monitoring ToOls....................oiinieinecnnnnnns 14

iid

2.5. GROUPWARE PRODUCTScceetiiiiiiiiiiiiiieeeiiieeeeeeiiiiiiceeeiii e eeneaans 14

2.6. BUSINESS MODELING TECHNIQUESccvtvuriieeeeeeeninareereemiieeerniinessnenies 17
2.6.1. Traditional Modeling Approach......................cuveeumienveieciinencnnnnns 18
2.6.1.1. Integrated Definition Language 0 (IDEFO0) Approach................. 18
2.6.1.2. ActionWorkflow™ Approachcccoevorrereviieivieieeeieeeenes 20
2.6.1.3. State Transition Diagrams...............cccoovveeeeriiiennninierinciineennnne 23
2.6.2. Object-Oriented (O0) APProach...............uecueeeeeivreenieecieeniieensesane 24
2.6.2.1. Coad and Yourdon’s OOA/OODc.cccceiviiiiniininniiiiiiiin, 25
2.6.2.2. Jacobson’s Use Case-Driven Approach.............cc.cccccniiniinn. 27
2.6.2.3. Rumbaugh’s OMT ... 28
2.6.2.4. The OOEM Approach...........c.cccoviiiiiiniecciiiiiiiiiicecceiee 29
2.6.2.4.1. OOEM CONSLIUCESoeerveeeniieeniiiiiiiiien e 30
2.6.2.4.2. Request Propagationcccceiiiiininiiiiniiiei, 37
2.6.2.4.3. OOEM Representation Technique...............cc.cccocooeinn 37
2.6.2.4.4. A Shortcoming of OOEMcccooviiiiiiniiiiiiienen, 39

2.7. SUMMARYoouviiemierieienieieteteeete st sreeseesaesresbe e enesaseasseaseneaaesaeaseas 39
3. THE OBJECT-ORIENTED WORKFLOW MODEL 41
3. 1. INTRODUCTIONouuiiiiiieeeeeeireeeerieeeeinnaeeeeeeeeenniia e eeersuitasssssataanesssrnnannns 41
3.2. THE OBJECT-ORIENTED WORKFLOW MODEL (OOWM) e 42
3.2.1. Constructs in the Object-Oriented Workflow Model (OOWM) 45
3.2 1.1 ACHVILYoovviiiiiiieciteie ettt 45
3.2.1.2. Business Rules..............ccccoeiiiiniiniiiiiicciicc 47

3.2.1.3. Object Activity Template (OAT).........cooovieiiiiiiiiiis 48

3.2.1.3.1. From an OOWM to an Activity Diagram............................. 51
3.3. THEOOWM METHODccccoitiaiinuieiienteeieeneesiesiiseaiesnresnnseaneeeassaessaenns 53
3.3.1. Steps to Building an OOWM for an Organizational Process............. 53
3.3.1.1. Constructing an OOEM Modelcccocoiiiiiiiiiii 54
3.3.1.2. Creating an OAT for an Internal Object..................cccoceiinnnn. .55

3.4. AN IMPLEMENTATION MODEL OF AN OBJECT-ORIENTED WORKFLOW
MANAGEMENT SYSTEMoviiiiiiiiiiiieierieeeeeeeeeeeeeernetteeriemmissnsseesaeeesrrnnnes 56
3.5, CONTROLLERuuiiiiiiitiiteeereriireretinaeseeeetiaaeaeanssreusssertneearaerssienarsiensens 58
3.5.1. Control SCRema.................oeeeueeeseiereiieneiieiiireeeiiie et e s 59
3.5.2. Access to Workflow Data in Other Processes...............ccccoceuvevereennne. 61
3.5.3. Time Control...............cocceueevcuuecovueinniiiiniiiicniiireesiese s sise s saeee s 63
3.6. SUMMARYoooviimiiitiiiiiiteenteeteeieesee et sitesisesieesmeesasesaeesneeenaeaseesaseeaeeeneas 65
4. AN IMPLEMENTATION ARCHITECTURE OF THE OOWMS........... 67
4.1. REQUEST PROCESSING CYCLEcccoiiieiiieieiieeeniece e 67
4.1.1. Request Instance Identification...................coovuveveeinicniioncesenncnnn 71
4.2. INFORMATION REPRESENTATIONccceeiiiiiiiineeeeiimieeeiiiiineeereniineeeaens 72
4.2.1. Request Type Definitionocoeevieniiniennneenneeiiesnnsinnneecennenns 72
4.2.2. BuSiness RUIES.............cooveeeeveirinniiiiiiiciieiiiniiiniiec it 73

4.2.3. State Information about a Process and Information about

ReqUESES ..ottt 74
4.3. LoGICAL COMPONENTS OF THE CONTROLLER OBJECT........ccoiiiiieiiiiiieennins 76
4.3. 1. Business Rule EVAIUQIOLccouuuveeeeeeueeiiiiiireerieierseesresssessssnsnssens 76

4.3.2. Workflow Executor vvessreeseesteeseseriesabtesatisaneransensessasasrtaeres 77

4.4, ANOTHER LOOK AT THE ARCHITECTUREcoovviiimiimiiinnniiieeeeeeeinniinnanans 78

. THE IMPLEMENTATION OF THE OBJECT-ORIENTED

WORKFLOW MANAGEMENT SYSTEM (OOWMS)....cccoocceunsaeseesann 81
5.1. INTRODUCGTIONcuuiiiaeneeieititniiaenneisteruressestieeattaiiaettarrarsiesissaseosnens 81
5.2. DEVELOPMENT PLATFORMccuuiiiiiniiiiiiiiieriineiinerenenieris et eaessiasnes 81

5.3. MAPPINGS OF THE ARCHITECTURAL COMPONENTS TO NOTES FACILITIES. .. 82

5.3.1. The Controller Object and the Business Controller Object Agent 83
5.3.1.1. The Business Rule Evaluator and the Eval Module..................... 84
5.3.1.2. The Workflow Executor and the Executor Module 84

5.3.2. The Clock Object and the Clock Object Agent..................cocvenvennenn. 85

5.3.3. The Business Rule Repository and the Business Rule Documents...... 85

5.3.4. The Process State Repository and the Workflow State Documents 87

5.3.5. The Request Information Repository and the Request Information

DOCUMERLS.evvveeeeeeiirreerereeeaaninrttiesse s esesiiarsrars s tastts st tar s nasssess 88

5.4. WORKFLOW APPLICATION: A PURCHASE REQUISITION PROCESS 88
5.5. LIMITATIONS OF THE IMPLEMENTATIONc.curvucrieumeeiaciinnmnnsinsnnsnseenees 94
5.6. SUMMARYooeveeeeiiiiieeiteeseeeeessaeeasesaseettetaaaessssenaniisasssbsrstbesaseeneeeneseeas 95

. CONCLUSION AND FUTURE RESEARCH .. 96
6.1. THESIS SUMMARYooorerrrerrrronnsonns et 96
6.2. CONTRIBUTIONSvveevvvseeeesaesssssssssessaseasaesenasssssssssssesassssssssssssssecns 98
6.3. LIMITATIONS AND FUTURE RESEARCH...........c.coeuntmieeuimiiacnicinnninneneseneses 99

BIBLIOGRAPHY .. 101

APPENDIX A - GRAPHICAL CONSTRUCTS OF THE USE-CASE
MODEL 104

APPENDIX B - GRAPHICAL CONSTRUCTS OF THE OBJECT
MODEL 105

APPENDIX C - GUIDELINES FOR CONSTRUCTING THE MODELS
OF RUMBAUGH’S OMT 106

APPENDIX D - APPENDIX D - AN OOEM INTERNAL OBJECT
TEMPLATE (TOT) c.uuuovvenesssnsnsssssssssssssssssssesssssosssssassssssssess 108

APPENDIX E - SUMMARY OF WAND AND WOO’S MODELING
RULES 109

APPENDIX F - BUNGE’S ONTOLOGICAL CONSTRUCTS....ccccceeueeuneee 112

APPENDIX G - THE COMPLETE OOWM FOR THE PURCHASE
REIMBURSEMENT PROCESS 117

APPENDIX H - THE OOEM, OATS FOR THE INTERNAL OBJECTS,
AND THE CONTROL SCHEMA FOR THE PURCHASE REQUISITION
PROCESS 119

i

Lists of Figures

FIGURE 2-1 ACTIVITIES INVOLVED IN WORKFLOW MANAGEMENT 7
FIGURE 2-2 WORKFLOW TERMINOLOGY RELATIONSHIPSccccoviemuenueniinenn. 9
FIGURE 2-3 THE WFMC’s WORKFLOW REFERENCE MODELccccoueinvennnenn. 11
FIGURE 2-4 IDEFO GRAPHICAL CONSTRUCTScccoviumimiiriiiiiniiireenceeneerieeeneeess 19
FIGURE 2-5 A REIMBURSEMENT PROCESS INIDEFO...........cccccocvinieniieniieiinnnn 20
FIGURE 2-6 AN ACTIONWORKFLOW ™ LOOP............cccovevverrierieiiesiniersereeseesenen. 21

FIGURE 2-7 A REIMBURSEMENT PROCESS IN THE ACTIONWORKFLOW™

APPROACHoouiiuiiietieeeteeeeeeee et eat et sete et et ettt eae e et eeneencensanees 22
FIGURE 2-8 MAJOR COMPONENTS OF A STATE TRANSITION DIAGRAM................ 23
FIGURE 3-1 THE BUILDING BLOCKS OF THEOOWMcccovniiiiiiiin, 43
FIGURE 3-2 THE OBJECT-ORIENTED WORKFLOW MODEL (OOWM)................... 44
FIGURE 3-3 AN ACTIVITY DIAGRAM AND AN OOEM MODELc..cocuevuenenen. 46
FIGURE 3-4 AN OAT AND AN ACTIVITY-BASED DIAGRAM...........ccccovenenninecnnnne 52
FIGURE 3-5 TYPES OF EXECUTION ORDERIN OATooooviiiiiiiiiiiiinnn. 56
FIGURE 3-6 THE IMPLEMENTATION MODEL OF ANOOWMSc..cocvvvannnnn. 57
FIGURE 3-7 THE OOEM FOR THE EXTENDED REIMBURSEMENT PROCESS............ 59
FIGURE 3-8 THE CONTROLLER IN THE PURCHASE REIMBURSEMENT PROCESS..... 60

FIGURE 3-9 THE CLOCK OBJECT IN THE PURCHASE REIMBURSEMENT
PROCESS.oououivreeeeeessesssessssassessssssses st sse s ss e se s sttt 65

FIGURE 4-1 THE OOEM MODEL WITH THE CONTROLLER FOR THE
REIMBURSEMENT PROCESScuuuuiiiiiiiiiiririeeeeeeeteeeeeeeeeereumisiaassis st eenaensaiiannnens 69

FIGURE 4-2 THE ARCHITECTURE OF THE CONTROLLER OBJECTcc.cccvveeennnnee. 77

FIGURE 5-1 THE BUSINESS CONTROLLER OBJECT AGENT.........ccoocuianiiiinieaannne. 83

FIGURE 5-2 THE CLOCK OBJECT AGENTccooviiiiiiiiiiiiennieiesieeie st 85
FIGURE 5-3 IF AND THEN FIELDS IN A BUSINESS RULES DOCUMENT................... 86
FIGURE 5-4 A WORKFLOW STATE DOCUMENTcccccooviiiiiiiiniiiiieieiecn 87

FIGURE 5-5 THE BUSINESS RULES DOCUMENTS FOR THE REQUISITION

PROCESS. .. ittt ee et et e eeen et b ettt s e e e et e et e e et e s e e e n s e et e et 89
" FIGURE 5-6 A REQUISITION FORM.........cvitiiiiiiiiiiiiiiiiiiiiiiiiiien e 90
FIGURE 5-7 THE ACCESS CONTROL LIST DIALOGUE BOX........cccocovviiiiiiiinnninn 91
FIGURE 5-8 A REQUISITION FORM FOR A COMPUTER-RELATED ITEM................. 92

FIGURE 5-9 A MESSAGE GENERATED BY THE BUSINESS CONTROLLER OBJECT

FIGURE 5-11 A WORKFLOW STATE DOCUMENT AFTER A MESSAGE WAS
SENT TO THE DIVISION MANAGERccooiiiiiiieeeeiiee e ieiiieeeeesevrieeseseaennaaaeaeeeenens 94

FIGURE G-1 COMPLETE OOEM FOR THE PURCHASE REIMBURSEMENT
PROCE S S .o ooeeeee ettt e et e e e e e et eeeeeess s st et e eass s b braaasensnaaeannnnans 117

FIGURE H-1 THE OOEM MODEL FOR THE PURCHASE REQUISITION PROCESS... 119

FIGURE H-2 THE OOEM MODEL WITH THE CONTROLLER OBJECT FOR THE
REQUISITION.........ccutimieuiiiiiiiiiiiiie et et st ebe sttt sttt 119

X

Lists of Tables

TABLE 2-1 EFFECTS OF WORKFLOW REDESIGN............ccovtetinieeiraieereenenneneeeeneenes 7
TABLE 2-2 SUMMARY OF THE OOEM CONSTRUCTSccveeereremairaieennennen. 31
TABLE 3-1 AN OBJECT ACTIVITY TEMPLATE (OAT).....cccooiiviiiiiiniiiiiiiiecies 49
TABLE 3-2 THE OBJECT ACTIVITY TEMPLATE FOR THE DIVISION MANAGER....... 50
TABLE 3-3 STEPS TO CONSTRUCTING AN OOEM MODEL.........c.cococovveeuiiiuinicnns 54

TABLE 3-4 THE CONTROL SCHEMA FOR THE PURCHASE REIMBURSEMENT

DEADLINEoooiuiitiititeeeeeeeeeeeteeseeseeseseeseeseeseeseeeenbe bt estenaeesseeuseeuessneeseesnesns e 64
TABLE 5-1 MAPPINGS OF THE ARCHITECTURE TO NOTES ENVIRONMENT............. 82
TABLE G-1 AN OAT FOR THE DIVISION MANAGER..........cccovemiaieiineenieneneenenns 118
TABLE G-2 AN OAT FOR THE CORPORATE ACCOUNTANTc.ccoeriiiirinnenns 118

TABLE H-1 THE OBJECT ACTIVITY TEMPLATE FOR THE COMPUTER EQUIPMENT

TABLE H-2 THE OBJECT ACTIVITY TEMPLATE FOR THE DIVISION MANAGER ... 121

TABLE H-3 THE CONTROL SCHEMA FOR THE PURCHASE REQUISITION
PROCESS.....uiteeetee ettt ettt ettt ettt e sttt e s e bb e e s e e e e e b ee e s 122

Acknowledgments

I owe a debt of gratitude to Prof. Carson Woo and Prof. Yair Wand. They
have given me constructive criticisms and concrete advice, which have been very
helpful in shaping the content and style of this thesis. I am also indebted to Prof.
Shelby Brumelle who raised interesting questions which triggered a meaningful
discussion during my thesis defense. While credit is due to many people, a few stand
- out: Daniel Chan, Jimmy Hui, Michael Han, and Scott Dalton. I would also like to
thank Victor Ng, who has given me valuable insights into the use of entity-relationship
(ER) diagrams and the development of a command-line interpreter. I am very grateful
to Eve Shamash who provided excellent editorial assistance. Finally, I want to
especially thank my family and Ada Chui. They have given me invaluable

encouragement which allowed me to overcome the difficulties that I encountered while

working on this project.

1. Introduction

The idea of structuring and managing processes has been in use since
industrialization. This idea was originally concerned with the movement of physical
entities in manufacturing plants. However, the idea of process management was
extended to organizational-administrative processes where information flow is more
emphasized than it is in the flow of physical products. Since these processes are
usually well-structured and repetitive, the use of information technology to automate
them becomes possible . Workflow management is concerned with the analysis,
design, implementation, execution, and monitoring of organizational processes with
the use of information technology (IT). According to Stark [1997], “workflow
systems offer a new model for the division of labor between people and computers”
[p.5). They provide a “process control backbone” for business processes by mediating
“the flow of responsibility in a process from person to person and from task to task”
[p. 6].

Since many organizations have been facing pressure to reduce costs, to
increase quality, and to provide rapid delivery of new services and products, they often
resort to optimizing the way they do businesses. The use of workflow systems may
improve the efficiency of an organizational process, thereby reducing costs and
increasing workload capacity [Stark, 1997]. It can also allow people to concentrate
on value-added activities by freeing them from worrying about paper flows, filing,

information tracing, and whether or not certain actions have been taken.

1.1. Motivation

Many workflow products are fundamentally driven by vendor specifications
without the support of a well-developed theoretical foundation. These products may
demonstrate how “synergy is obtained by combining different technologies on
client/server networks” [Orfali, Harkey, and Edwards, 1996, p.13] but fail to address
the challenges an organization may actually face when it implements the workflow
systems in a dynamic environment. These challenges include inconsistency of business
objectives within an enterprise and demand for local autonomy [Ruiz, 1997].
Individual divisions typically overlook the objectives of the enterprise when business
processes are reengineered at the local level. Consequently, conflicting business
objectives, as well as political and cultural boundaries, are created, which discourage
enterprise-wide workflow automation. Indeed, when a corporation deploys workflow
applications that span an enterprise, the physical and the political boundaries of
independent business units should be considered [Ruiz, 1997]. To address the
problem with conflicting business objectives when a process is locally automated,
analysts, as Ruiz [1997] suggests, must adopt a company-wide perspective to prevent
themselves from developing locally optimized workflows that cannot inter-operate
with other applications in the enterprise. ~To meet the demand for autonomy by
decentralized units, workflow applications should allow for locally operational

autonomy while enforcing policies at the corporation level.

1.2. Thesis Objectives

The Object Oriented Enterprise Modelling (OOEM) method, based on Wand

and Woo [1993] and proposed by Zhao [1995], provides a framework to address these

challenges. First, it captures an organizational process from a company-wide

perspective. It focuses on how independent objects work together in order to achieve

company objectives. Second, OOEM adheres to the concept of object orientation. In
other words, the objects in an OOEM model are autonomous.

Despite its merits, OOEM does not provide workflow specifications. For
instance, it does not capture how organizational policies govern the activities of a
process. To address this shortcoming, we will introduce a workflow model by adding
workflow constructs to OOEM. We will also use the model to develop an
implementation architecture of an object-oriented workflow system.

The objectives of this thesis are summarized as follow:

1. to develop a workflow model based on OOEM so that the model for an
organizational process can provide workflow specifications and allow analysts to
understand the process under study from an enterprise perspective;

2. to develop the architecture of a workflow management system which not only
enacts the model but also allows for operational autonomy at the local level;, and

3. to build a prototype by following the proposed architecture of the workflow

system.

1.3. Thesis Outline
This thesis consists of five chapters.
Chapter 2 provides an overview of the concepts of workflow management. It

also briefly reviews some groupware products. Different process modelling techniques

are presented with an emphasis on OOEM.

Chapter 3 presents an Object-Oriented Workflow Model (OOWM) which is an
extension of OOEM. It also discusses how an OOWM should be constructed. The
chapter concludes with the introduction of an implementation model which enacts the
OOWM.

Chapter 4 introduces the architecture. of an Object-Oriented Workflow
Management System (OOWMS). The objective of this chapter is to identify the
functionality of components of an OOWMS, independently of specific implementation
platforms.

Chapter 5 delves into the details of the design and implementation of an
OOWMS, including a discussion of an implementation platform and the limitations of
the implementation. The objective of this chapter is to demonstrate how the
implementation architecture can be implemented using existing technologies.

Chapter 6 concludes the thesis by reviewing the contents and the contributions

of the thesis. It also suggests a framework for future research efforts.

2. Introduction to Workflow Management

2.1. Introduction

Before we present our object-oriented workflow model, we would like to
provide a broad overview of the theoretical and practical aspects of workflow
management. We will first examine the basic concepts of workflow management,
including commonly used terminology. We will then delve into fhe Workflow
Reference Model proposed by the Workflow Management Coalition. The model
generalizes the functionality of different workflow products in the market, and it can
help us understand the critical components of a workflow system. We will also briefly
review some groupware products which can be used to develop workflow systems.
Several business process modeling techniques will be presented in this chapter. These
techniques include the Integrated Definition Language Approach (IDEFO), the
ActionWorkflow™ technique, and state transition diagrams. Moreover, we will
discuss what role object-oriented analysis (OOA) plays in business process modeling
and briefly look at some object-oriented analysis methods. These methods include
Coad and Yourdon’s OOA method, Jacobson’s Use Case-Driven Approach, and
Rumbaugh’s OMT method,; these three methods are among the best known OOA
methods. In addition to these methods, we will provide a brief overview of the
Object-Oriented Enterprise Modeling (OOEM) method proposed by Hao Zhao
[1995]. As a continuation of the research efforts undertaken by Wand and Woo

[1993], the OOEM method serves as a building block of our object-oriented workflow

model presented in the next chapter.

2.2. WhatIs Workflow Management?

| While some literature defines workflow management as a technology to
automate the routing of documentation and tasks [Kobielus, 1997], to co-ordinate
user and system participants, with the appropriate data resources, and to achieve
defined objectives [Hales and Lavery, 1991], others define workflow management in a
broader sense. Georgakopoulos, Hornick, and Sheth [1995] consider that workflow
management involves “everything from modeling processes up to synchronizing the
activities of information systems and humans that perform the processes” [p. 130].
Jablonski and Bussler [1996], and Joosten [1994] offer similar definitions of workflow
management; they perceive workflow management as being a discipline which
involves not only business modeling but also the execution of workflows. Broader
definitions are parallel to our view of workflow management. Indeed, we believe that
workflow management is a process which focuses on analyzing, designing, controlling,
and executing business processes through the use of information technologies. Figure

2-1 illustrates the activities involved in workflow management and the requirements

for these activities.

Designing Analyzing

Identifying reasons for Modeling a workflow/

changes business process
B Suggesting changes to Identifying problems
the process under study

Collecting process in- Initiating actions

formation Irplementing & work-
8 Determining need for flow management sys-
action tem
Conirolling Executing

Figure 2-1 Activities Involved in Workflow Management

Not only does workflow management require the analysis of an existing business
or workflow process, but it also involves the re-design and the implementation of the

process. Table 1 shows some of the changes which result from work flow redesign.

ot

No

Redesigning work flow:

Eliminates tasks

Eliminate bottlenecks and delays
between the steps

Enables work to be processed in
parallel rather than serially.

Provides simultaneous access to
documents by multiple
departments/people

Allows for quick, simple access to
information

Eliminates rework/retyping

Provides broader responsibilities for
workers

Decreases defects

Resulting In:

1. Improved productivity

2. Reduced cycle times to
complete work

3. Reduced costs

4. Improved customer service

5. Improved quality and

consistency of results
6. Increased revenues (receive
revenues sooner)

SOURCE: T. May, “The First Steps to Imaging,” Modern Office Technology (April 1991), p. 64.

Table 2-1 Effects of Workflow Redesign

2.3. Workflow Terminology

It is necessary to look at the terminology that we may encounter when we
manage a work process and build workflow management systems (WFMS). Please
note that this thesis does not offer an exhaustive description of this terminology;
instead, it only highlights the most popular definitions used when managing workflow
processes. |

Many workflow product vendors provide their own definitions as building
blocks to develop workflow management systems; these building blocks can affect the
capabilities of the WFMS. But no matter how much these definitions may vary, many
vendors follow a general specification of a workflow management system proposed by
the Workflow Management Coalition (WMC). The WMC is a non-profit
organization whose purpose is to advance opportunities for exploiting workflow
technology through the development of common terminology and standards. By
1996, the WEMC had more than 170 members; nearly all the well-known vendors of
WFMS were founding members [WIMC, 1997].

Figure 2-2 outlines the relationships underlying the basic workflow

terminology proposed by the WIMC; the figure is directly taken from the WIMC’s

Workflow Handbook 1997 [1997, p. 386].

Business Process
{1.e. what is intended to happen)

is deﬁnedy \w\managed bya

———» Process Definition Workflow Management System
i (a representation of what is {controls automated aspects of the
intended to happen) business process)
Sub-Process composed of ~ via
* u"ﬁ:‘:o:reau & Process Instances
... v g (a mplesemation o f Whﬂt]s
Activities actually happening)
which may be include one or more
Manual Activities ° Automated —— , > Activity Instances
(which are not man- Activities Q4"ng execulion are
aged as part of the represented by :
Workflow System)

WorkItem™ 224 Jnvoked Application
(tasks allocatedtoa 7 (computer toolsfapplice-
workflow participant) tions used to support an
activity)

Figure 2-2 Workflow Terminology Relationships

A business process, according to its corresponding process definition, consists of a
network of procedures or activities which “collectively realize a business objective or
policy goal, normally within the context of an organizational structure defining
functional roles and relationships” [WfMC, 1997, p. 387]. A reimbursement process is
an example of a business process which contains different activities performed by
different people. For instance, a division manager may approve a reimbursement form
for an amount less than $450, and a corporate controller may approve a form for an
amount which exceeds $450. A business process may not be confined to a single
organizational unit, and it can span several different functional units and organizations.
For instance, Bell Atlantic organized a case team to establish high-speed digital circuits

for business customers. The team consisted of members from different departments in

several geographic locations. From the organization’s point of view, the team is a unit

that “naturally falls together to complete the whole piece of work — a process”
[Hammer and Champy, 1993, p. 66].

According to the WIMC, a workflow process is an automated component
of a business process which contains both aufomated and manual activities. An activity
is the smallest unit of the business process. The workflow process involves a network
of automated activities which are managed and céordinated by the workflow
management system. The system initiates a particular activity instance based on one or
more pre-conditions, decides if the activity instance is completed according to post-
conditions, and moves data between activities based on navigational rules. This
system can also monitor the state of all activities and report process status

performance to human agents.

2.4. The Workflow Reference Model
According to the WEMC [1997], the workflow management system should
help define, create, and manage the execution of workflow. Theoretically, the
workflow management system should support the following functions: |
e Process modeling
The WFMS should include a tool to support the analysis and design of a
business process. The system should be able to interpret the definition of the
process and simulate the workflow under study.
o Process control
The system should provide a mechanism which can monitor process status,

measure process data, identify pre-determined process conditions, and report

10

process status, performance, and special conditions.
e Process execution
The system should coordinate the interaction with workflow agents and
applications. It should determine necessary actions or guide human agents when
decisions should be made.

With these objectives in mind, the WIMC proposed the Workflow Reference
Model in 1994. The model not only provides the general architectural representation
of a workflow management system, but it also helps MIS practitioners understand the
design and the functionality of many commercial workflow products. Figure 2-3

depicts the five major components of the model [WIMC, 1997, p. 2601.

Process Definition
Tools
Workflow Enactment Seyvice
Administration Other Wotk.
& Monitoring 1g 4 Workflow %l flgw Enactment
Tools Engine(s) Service(s)

L]

Wotldlow Invoked Appli-
Client Applica- cations
tions

Figure 2-3 The WIMC’s Workflow Reference Model

Since an understanding of the model serves as a basis for evaluating different
workflow products and may help us determine the implementation platform of our

proposed architecture, we will briefly examine each component of the model. The

11

examination of these components is largely based on the WIMC’s Workflow

Handbook 1997 and on Kobielus’ Workflow Strategies [1997].

2.4.1. Process Definition Tools

Process definition téols allow users to specify automated and manual activities,
workflow conditions, and information about individual workflow participants.
Theoretically, different workflow products should be able to interpret a logical process
representation generated by one vendor’s process definition tool, however, users are
always limited to using the process definition features that come with their workflow
products or to manually convert a form which can be understood by another workflow
engine [Kobielus, 1997]. A workflow engine is a software program that provides
functions to support the execution of business processes including the interpretation of
a process definition, the creation of process instances, and the management of their
execution [WIMC, 1997].

A process can b¢ graphically described in many different ways which depend
upon modeling techniques. We will review some of these techniques later in this

chapter.

2.4.2. Workflow Enactment Service

A workflow enactment service creates a process execution environment which
contains one or more workflow engines in order to create, manage, and execute
particular workflow instances. It plays an administrative role in managing and
coordinating workflow applications. It maintains information about process

definitions and workflow data. It also invokes external applications which support the

12

processing of activity instances. The interoperability between different workflow
enactment services is made possible by a functional interface which addresses the

exchange of process definitions and controls information between the services.

2.4.3. Workflow Client Applications

Workflow client applications provide users with a front-end interface to a
workflow enactment service. According to the Workflow Reference Model, the
applications should perform the following functions:

e Access wdrkﬂow relevant, application, and control data;

e Allow users to access a worklist handler which enables work items to be passed
from the workflow management system to users and allows the status of a work
process to be passed between the users and the system,

e Invoke external applications from the worklist handler; and

e Retrieve and manipulate process definition data.

The communication between the workflow client applications and a workflow
engine is established via a workflow application interface (WAPI). We do not intend
to review the specifications of the interface in this paper. They can be found in

Workflow Handbook 1997 published by the WIMC [1997].

2.4.4. Invoked Applications

Invoked applications allow users to work with workflow relevant information
routed to them by the enactment service [Kobielus, 1997]. Application invocation can
be undertaken by the enactment service via either direct invocation calls or an

application agent which “provides a general mechanism for application invocation

13

independently from any native workflow management system facilities” [WIMC, 1997,
p. 409]. External applications can also be invoked by workflow client applications if
the applications are under user control or run on local workstations. The flexibility to
invoke applications in different ways is very important to the object-oriented
paradigm, because each object can independently and autonomously process a work

item.

2.4.5. Administration and Monitoring Tools

A workflow system should allow process administrators to perform
supervisory operations, including resource control; system configuration; audit
management; and initiation, termination and restoration of a process instance. These
functions ensure that a process runs smoothly and provide a basis for recovering from

system failure.

2.5. Groupware Products

Since there are more than 100 vendors of workflow products, it is beyond the
scope of this paper to review every product. However, the architecture of these
products is aligned closely to that of the Workflow Reference Model presented in the
previous section. These products may address different aspects of workflow
functionality; they have been divided into different areas by the trade press and
academic literature [WIMC, 1997; Kobielus, 1997, Georgakopoulos et al., 1995].
These areas include imaging processing, document management, electronic messaging,
database management, and form management products. We do not make a clear

distinction between the product types in this paper. These products provide

14

development platforms which allow developers to build workflow systems, since many
workflow products share the objectives of assisting users in communicating,
collaborating, and coordinating.

Groupware is a term for the development platform of the workflow
systems. According to the Lotus Corporation, groupware should integrate business
logic into the integrated push and pull mc;del to support structured business activities.
The integrated model addresses the coordination aspect of the activities [Lotus
Corporation, 1995]. When people coordinate, they communicate and collaborate with
each other. The push model focuses on the communication dimension: senders simply
transmit information to recipients. The pull model addresses information sharing by
allowing users to retrieve information from shared databases. To illustrate the
application of the concept, a company stipulates specific policies about how a
reimbursement form should be processed throughout the organization so that it is
properly approved. These policies govern how people should coordinate with each
other. The routing of the form is implemented by the push model using a messaging
system. The tracking of the form can be achieved by the pull model using a shared
database.

Even though many groupware products provide development environments
for workflow applications to coordinate work activities, very few products offer an
integrated package for process modeling, control, and execution. The process
modeling feature is always separate from the other two features. For instance, one of

the most popular products in the groupware market, Lotus Notes, which includes

15

Domino, does not come with a modeling component [Lotus Corporation, 1997];
instead, it offers a flexible development environment to build a workflow application.
Oracle’s Web Developer Suite 1.5 [Oracle Corporation, 1997] is one of the very few
packages that contain all the components of a workflow management system. Its
CASE tool is powerful and versatile enough to allow users to model business
processes and to automatically translate the models into workflow applications.

As we mentioned earlier, a work process can involve entities external to
organizations. Indeed, a workflow application should not be limited té the intra-
organizational units by proprietary technological standards. For instance, customers
can enter order information directly into a corporate database; the workflow system
should then automatically notify the employees to handle such orders. The advent of
the Internet has re-shaped the technical architecture of groupware products and offers
new opportunities for extending the boundaries of work processes. Many groupware
products, such as Lotus Notes and Novell GroupWise 5.2 [Novell Inc., 1997], which
once depended upon their own proprietary technology, now support open Internet-
based standards. The users do not need the proprietary client software to access
information stored in Lotus Notes servers and Groupwise serveré. Domino, for
instance, turns a Notes server into a Web server and seamlessly integrates the Notes
components and information into the Internet [Edwards, 1997]. Novell GroupWise
allows users to access information via the Web by providing Java-based client software
[Novell Inc., 1997]. Many software developers have even developed products which

are solely based on the open standards. These products use the popular Web browsers

16

as standard interfaces to their systems. Products such as the Netscape SuiteSpot
[Netscape Communications Corporation, 1997] and Cold Fusion 3.0 [Allaire
Corporation, 1997)] are pure web-based groupware products which allow users to
collaborate via the Internet. It should be noted that these web-based groupware
products offer little support for coordinating work activities, even though they help
break down the walls between organizations. These products were developed based
on push and pull models, and they provide few form-routing capabilities, such as the

ones offered by Lotus Notes.

2.6. Business Modeling Techniques

Before we build a workflow management system, we need to understand
the process under study. Business modeling graphically represents a business process;
it can depict the functional relationships, the information flows, and the roles of
workflow participants in the process. Specifically, a process model is an “abstract
description of an actual or proposed process” that represents the selected components
of the process [Wang, 1994, p. 37). We divide business process modeling techniques
into two approaches - the traditional approach and the object-oriented (OO) approach.
The traditional approach usually addresses the functional and informational aspects of
a process, whereas the OO approach captures the organizational aspect of a process.
~ The organizational aspect usually represents “where, and by whom in the
organization”, the components of a process are performed [Wang, 1994]. We will
first look into three different traditional process modeling methods in the following

sections: the Integrated Definition Language O (IDEF0) Approach, the

17

ActionWorkflow™ technique, and state transition diagrams. However, these sections

do not offer a critical review of these techniques.

2.6.1. Traditional Modeling Approach

As we mentioned earlier, this approach focuses on the functional and
informational aspects of a process. It requires system analysts to decompose a process
into functional areas or to model how information within a process is processed. The
problem is that functional representations always change in a dynamic business
environment. In turn, changes in these representations may cause inefficiency in

system development and maintenance [Coad & Yourdon, 1991, Wang, 1994].

2.6.1.1.lntegrated Definition Language 0 (IDEF0) Approach

IDEF0, based on the Structured Analysis and Design Technique™
(SADT™), was developed for the U.S. Air Force Program for Integrated Computer
Aided Manufacturing (ICAM) in the 1970s [Laamanen, 1994]. Its original objective
was to depict manufacturing processes, but this objective was later extended to include
business process modeling application. An IDEFO model is composed of a hierarchical
series of diagrams which gradually display increasing levels of detail, describing
functions and their interfaces within the context of a system. Each diagram contains
boxes, arrows, and text. The boxes describe activities, processes, or transformations
within the context of the system; the arrows represent data or objects associated with a
function from which the arrows originate. The syntax and semantic rules of labeling

the graphical constructs are beyond the scope of this paper. Integration Definition for

18

Function Modeling (IDEF0) can be consulted for further information [FIPS, 1993].

Control

|

Function
Input ' Name

k

» Output

Mechanism Call

Figure 2-4 IDEF0 Graphical Constructs

Figure 2-4 illustrates the graphical constructs used in IDEFO. The input and
output arrows are self-explanatory; however, control, mechanism, and call arrows
deserve some explanation here. A control arrow specifies the conditions required for a
function to produce outputs. A mechanism arrow represents some of the means that
support the execution of the function. A call arrow simply refers to anotﬁer box which
captures the details of the caller box which does not have its own descendent diagram.
The called box can be in the same or another model, and it can be shared by multiple
caller boxes. To understand how the approach can be applied to business modeling,
consider the following example which will also be used to illustrate the next two
modeling techniques.

In order to have his/her expenses reimbursed, an employee of the ABC
Company must submit a reimbursement Jform to the division manager or
the corporate accountant for approval. Reimbursement amounts greater
than $200 require a division manager’s . approval before they are
approved by the corporate accountant. All other reimbursements are

submitted directly to the corporate accountant. After his/her approval, the

19

division manager submits the reimbursement form to the corporate

accountant who then cuts the cheques and completes the process.

Figure 2-5 depicts the reimbursement process describe above. The

mechanism arrow pointing toward box A-11 represents the division manager who

approves a reimbursement request whose value is greater than $200.

Reimbusemant
Amwount Guideline
Reindrursement Offieial
Form (RF) Reimbutsement | Approval
Process
Amount >
AD $200 Amount <= $200 or
Y l approved by DM Official
RF Appravel
Approve | ——a Approve | — | CutCheques | —
Divisi
Mansger Corpomte T Corporate I
(DM) T Accomtant Accoxmtant
A1

Figure 2-5 A Reimbursement Process in IDEF0

IDEFO can be used to analyze complex information systems and to describe

derivation and relationships among the documents used and produced during process

performance [Laamanen, 1994]. However, this method may not be intuitive to first-

time learners. Also, “time and cost, the usual business process reengineering

objectives, can be derived but are not easily portrayed” [Lakin, Capon, and Botten,

1996, p. 18].

2.6.1.2.ActionWorkflow™ Approach

The ActionWorkflow™ approach focuses on the communication and

20

coordination aspects of a business process. Unlike IDEFO, the approach focuses on
the domain of business processes in which people enter into language based
transactions that have consequences for their future activities [Medina, Winograd,
Flores, and Flores, 1992]. The approach also captures the negotiation based aspect of
business processes. Such an approach is necessary because it combines "structured
work with opportunity-based initiative and individual responsibility for quality and
customer satisfaction” [p. 283]. Figure 2-6 shows an action workflow loop which

consists of four phases.

_Proposal/ Agreement/
Request Negotiation]

| Satisfaction/ Performance/ |
Approval Execution

Customer Performer

Figure 2-6 An ActionWorkflow™ Loop

The loop begins with a customer who requests that a particular action be
completed according to conditions of satisfaction. In the agreement/negotiation phase,
the customer and the performer have to mutually agree on the conditions of
satisfaction. This agreement may not necessarily be based on negotiations, but
sometimes on a shared background of assumptions and standard practices. The
performer will then inform the customer of the completion of the action in the

performance phase; the customer will lastly declare to the performer that the

21

completion is satisfactory.

We use the previously mentioned reimbursement process to demonstrate

the approach.

Employee / Approve Reim-

\ Division Manager
bursement ;

Amount >

$200
Request for Approved
Approval imbursemeant
f Approve Reim-
Employee : orporate Accountant

Figure 2-7 A Reimbursement Process in the ActionWorkflow™ Approach

In Figure 2-7, an employee first requests that either the division manager or the
corporate accountant reimburse his’her expenses based on the reimbursement
amounts. It does not matter to whom the request is first addressed; the corporate
accountant completes the workflow loop. It is important to note that the
ActionWorkflow™ approach does not address the information flow, but it focuses on
the negotiation aspect of a work process. In this example, if the division manager has
questions regarding the requested reimbursement, he/she will address his/her questions
to the requester. This clarification process will continue in the agreement/negotiation
phase until the manager agrees to approve the request.

The ActionWorkflow™ approach depicts the coordination structure of
business processes instead of the task structure. The approach has been developed in a
series of systems for coordination among users of networked computers. It defines

tasks as the requests and commitments of the workflow participants, whereas IDEF0

22

considers actions of coordination one kind of task or as a flow of information between

tasks.

2.6.1.3.State Transition Diagrams

State Transition Diagrams (STDs) capture the time-dependent behavior of
systems. STDs can be used to identify a bottleneck in work processes by highlighting
the states of the processes. Such systems range from telephone switching systems,
high-speed data acquisition systems, to military and command systems. Even though
customers do not often demand real-time response from business-oriented systems, a
delayed response certainly causes customer dissatisfaction and frustration. Figure 2-8

illustrates the essential components of a STD.

State 1 »

Condition
Action

State 2

Figure 2-8 Major Components of a State Transition Diagram

A rectangle represents a state of a system; a state describes a characteristic of
the system. For instance, in the example of the reimbursement process, waiting for the
manager’s approval is one state of the process. Waiting for the corporate accountant
to cut cheques is another state. A state should represent some observable. behavior of
the system and last for some finite period of time [Yourdon, 1989]. A transition from

one state to another is symbolized by an arrow. The arrow contains two major

23

components which specify the condition and the action of the transition.

Figure 2-9 demonstrates the application of STDs in the context of the

reimbursement process.

Draft Awount > $200
Submit To DM
Awaiting Divi-
sion Manager’s
Approval l -A—m:-on—
Awaiting
' cheques -
Amount <= $200 to be Cut Cut Cheques
Sibmit To Corpo-
rate Accountant
Complete

Figure 2-9 A Reimbursement Process in a State Transition Diagram

This diagram is directly taken from the Lotus Notes Advisor. The process
contains three transitions, with actions being taken by either the division manager or
the corporate accountant. The difference between STDs and the other two modeling
techniques presented earlier is evident. STDs do not explicitly depict the functional
activities of a process. Instead, they only describe the behavior of the process. Even
though the functional activities may be illustrated by transition arrows, the objective of
STD:s is to help users e)l(amine the time-dependent behavior of a system and to identify

bottlenecks in the system.

2.6.2. Object-Oriented (O0O) Approach

The OO approach, according to Jacobson [1995, p. 72], is “very close to the

24

way in which human beings themselves view the world”. It addresses the limitations
of the traditional approach. Not only does it capture the organizational aspect of a
process, but it also highlights the interactions between objects. Jacobson [1995]
further argues the need for building a process model based on the concept of object-
orientation. He says that the concept of object-orientation makes the process model
become “comprehensive, understandable, changeable, adaptable, and reusable” [p. 69].
Changeability refers to a change in a class of objects in the model which does not
affect other classes. Adaptability concerns the specializations of abstract classes based
on the concept of inheritance. Reusability means that the classes of objects can be
developed in such a way that their properties can be reused in different problem
domains. Despite the advantages of the OO approach, objects in a problem domain
may be interpreted in many different ways by different OO methodologies. Also, even
though the OO methods may help define workflow specifications and derive
implementations, they lack workflow model-specific constructs (i.e. pre-conditions and
post-conditions to an activity) and provide no explicit support for business process
modeling [Georgakopoulos, et al., 1994]. The following sections provide an overview
of four OO modeling methods. These methods include Coad and Yourdon’s
OOA/OOD, Jacobson’s use case driven approach, Rumbaugh’s OMT, and the OOEM

approach.

2.6.2.1.Coad and Yourdon’s OOA/O0OD

Coad and Yourdon [1991] propose the Object-Oriented Analysis (OOA)

method in their book Object-Oriented Analysis. The method consists of five major

25

activities:

R

. Finding class and object.

Identifying structures which capture the relationships between objects.
Identifying subjects which are used to partition large complex models.

Defining attributes.

. Defining services.

Please note that the sequence of these activities does not affect how a model is

built. These activities may result in a OOA model which consists of five layers:

1.

2.

Subject layer, which serves as a partitioning méchanism;

Class & Object layer, which captures classes and objects;

Structure layer, which captures inheritance and whole part structures;

Attribute layer, which captures attributes and instance connections between classes
and objecfs; and

Service layer, which captures methods an;i message connections between classes
and objec;s. |

Coad and Yourdon [1991] also extend the OOA method to address the design

of a system in their book Object-Oriented Design. The Object-Oriented Design

(OOD) method introduces four additional components to the OOA model. These

components include:

1. Human interaction component, which studies how users interact with a system by

means of prototyping;

2. Data management component, which provides the basis for storage and retrieval of

26

objects from a database management system;

3. Problem domain component, which carries the OOA results into the OOD model,
thereby improving the results by means of this component;

4. Task management component, which determines a need for tasks in the system and

defines the tasks.

2.6.2.2.Jacobson’s Use Case-Driven Approach

While Rumbaugh’s OMT and Coad and Yourdon’s OOA/OOD methods are
based on software design and implementation, Jacobson’s business process modeling
approach emphasizes the modeling of organizational activitie§ [Jung, 1997].
Jacobson’s use case-driven approach was originally developed for system design and
analysis [Jacobson et al., 1992]. The approach was later extended to include business
process modeling [Jacobson et al., 1995]. Jacobson’s modeling technique consists of

(13

two phases: the use case model which describes “what the business is meant to
accomplish” [p. 146], and the object model which focuses on “how the business is to
work” [p. 146].

The construction of the use case model begins with the identification of a
problem domain (a business system) and then’_an environment (actors) which interacts
with the domain. In the case of the reimbursement process presented in Section
2.5.1.1, the employees are the actors in the problem domain. A sequence of
transactions is also identified and presented as use cases, which may be grouped into

as a use-case class based on their similar characteristics. For instance, processing a PR

form whose amounts exceed $100 and processing a form whose amounts are less than

27

$100 are different use cases but may belong to the same use-case class. The graphical
constructs of the use case model are illustrated in Appendix A. The use case model
provides a top-level view of a business process; the details are captured in the object
model.

The object model contains three different types of objects: control objects,
entity objects, and interface objects. Control objects represent a set of operations
which may not havé direct responsibility for contacts with the business environment.
Interface objects are responsible for handling communication between the system and
the external environment. For instance, these objects can be sales representatives who
have direct contact with customers. Entity objects represent “occurrences such as
products and things that are handled in the business” [p. 116]. Examples of entity
objects are a sales order and a reimbursement form. To construct an object model, the
following steps can be followed:
¢ Find subsystems that reflect the structure of an organization.

e Describe the use cases in relation to subsystems since the use cases may span
different subsystems in the organization.
o Identify objects which work together to realize a use case.

The constructs of the object model are shown in Appendix B.

2.6.2.3.Rumbaugh’s OMT

Rumbaugh’s Object Modeling Technique (OMT) [1991] is composed of three
models: the Object Model, the Dynamic Model, and the Functional Model. Although

these three models of a system are constructed independently, Rumbaugh, et al.

28

believe that they are essential to derive a complete representation of a system. The
object model describes the static structure of objects in a system through identity,
relationships, and operations. The dynamic model, represented in state diagrams,
portrays a sequence of operations over time within a system by modeling events,
states, and state transitions. The functional model, represented in a data flow diagram
(DFD), shows how data are transformed by the system’s‘ processes.

Rumbaugh considers the OMT “an enhanced form of the Entity-Relationship
(ER) approach” [p. 217]. He further claims that OMT “synthesizes different camps of
thought from databases, object-oriented concepts, and software engineering” [p. 273].

Guidelines for constructing different models are presented in Appendix C.

2.6.2.4.The OOEM Approach

The Object-Oriented Enterprise Modeling (OOEM) methodology, presented in
[Zhao, 1995], is based on Wand and Woo’s modeling rules [Wand and Woo, 1993]
which are derived from Bunge’s ontological' principles [Bunge, 1977]. With the
notion that objects should reflect a “natural” view of the world [Wand, 1989], Wand
and Woo [1993] adopt Bunge’s ontological approach to develop a theoretical
foundation for object-oriented modeling. OOEM, built on this foundation, provides a
set of object-oriented analysis rules, a request propagation algorithm, and a model

representation technique [Jung, 1997].

' Ontology, according to Angeles [1981], is defined as “That branch of philosophy
which deals with the order and structure of reality in the broadest sense possible”.

29

2.6.2.4.1.00EM Constructs

Since OOEM . is based on ontological principles proposed by Bunge [1997], it

is useful to briefly summarize them below:

The world is composed of things that possess properties.

Attributes are characteristics humans assign to things.

Every property can be modeled as an attribute.

Everything abides by laws which are invariant relations among properties of things.
These laws limit possible states and state transitions.

Interacting things form systems or aggregates.

Everything changes, and every change is a change of states of things.

These principles “provide concepts for how we can reason about the world”

and serve as “the basis to model and talk about organizational activities” [Jung 1997,

p; 15]. Based on these principles, Wand and Weber [1990] extend Bunge’s ontology

[1977] to information system (IS). Wand [1989] also categorizes the ontological

constructs for IS into four categories as summarized by Zhao [1995, p. 11].

Static model of a thing, which describes thing, property, state, transformation, and
history;

Dynamic model of an individual, which refers to event, transformation, and history;
Static model of a system, which captures coupling, system, composition,
environment, structure, subsystem; and

Dynamic model of a system, which describes stable and unstable state, external

30

event, internal event, well-defined event, and poorly defined event.

Detailed information about these constructs can be found in Appendix F.

The fundamental constructs of OOEM are : objects, services, attributes, and

requests. They are derived from the mapping of ontological constructs to the Object-

Oriented constructs. Table 2-2 briefly outlines these constructs, and the details are

presented below:

Construct

Meaning

Object

A model of a substantial thing in the problem
domain that interacts with other objects. An object
can be a client or an internal object. A client object
is not considered a part of the system directly under

| study whereas an internal object is an object within

the system. An object can represent an
organizational unit, a division, a department, or a
role.

Interface Attribute

A mutual property of things. It serves as a
mechanism by which objects communicate with each
other.

Internal Attribute

An intrinsic property of a thing. It can represent
knowledge internal to an object and inaccessible to
other objects -

Service

A well-defined series of actions which satisfy a
request. A service may access or modify the
objects. '

Request

A representation of an interaction between objects.
It changes the interface attributes of a recipient
object, and it may trigger a service.

Table 2-2 Summary of the OOEM Constructs

a) Object: Some object-oriented literature loosely defines the concept of an object.

For instance, Jacobson et al. [1995] believe that an object is an occurrence that

contains information and offers behavior within a problem domain. He considers,

for example, a division reconciliation record an object in a company and a manager

31

b)

another object in the same company. A broad definition of object does not give
analysts effective guidelines to identify object types. OOEM asserts that the world
is made of objects based on the ontological principle that states that the world is
composed of things [Zhao, 1995]. An object is “a model of a substantial thing in
the problem domain that interacts with other objects” [p. 12]. To be qualified as an
object in the problem domain, the candidate for an object, as illustrated in Figure
2-10, should interact with other objects by either generating or responding to a
request, or providing services (See Wand and Woo’s modeling rule #2 in
Appendix E). In other words, we do not consider the reconciliation record to be
an object since it does not interactively participate in a process. However,
depending upon the problem domain, we may consider the manager an object. An
object and its dynamics are described by its attributes, services, and requests for
other services.

Attributes: According to Bunge’s ontological principles, attributes model
properties of things. They represent the state of an object and its knowledge of the
problem domain [Jung 1997]. In other words, as indicated in Figure 2-10, an
attribute must belong to an object. There are two types of attributes: internal and
interface ,attributes. Internal attributes rﬁodel the intrinsic properties of a thing;
they are not known to other objects and can only be accessed or modified through
the services of the object. For example, the division reconciliation records

represent the manager’s knowledge of divisional financial status. These records

should be kept inside the manager object which manipulates these records via a

d)

service. Interface attributes model the mutual properties of things; they provide a
mechanism by which objects communicate with each other. Zhao [1995] makes an
interesting analogy between object communication and a procedure call in
computer programming. Interface attributes function like procedure call
parameters which enable one program to pass arguments to another. It should be
noted that the change in interface attributes as a result of incoming requests may
trigger a servic‘;.

Service: Ontologically, a service models the state transformation of an object. It
comprises a series of actions performed by an object with the purpose of satisfying
a request. These actions are encapsulated into an object. When a request is sent
to an object, it invokes a service in the object (See Figure 2-10). A service, in its
course of action, may generate or spawn one or more requests to objects.

Request: An interaction between two objects can be modeled by a request. When
an object wants to communicate with another object, it sends a request to the
latter. Ontologically speaking, the interaction is the change in the history of one
thing as a result of the existence of another thing [Bunge, 1977]. Accordingly,
sending requests changes the state of the responding objects by modifying the
interface attributes of the recipients. The change in interface attributes may trigger
services of the responding objects which may undergo state transformation [Zhao,
1995]. The consequence of a request may affect the state of either a requesting

object, responding objects, or both. For instance, when Object A sends a request

to Object B, the state of each object may be affected in the following situations:

1. Object A can be in an unstable state if it waits for the response from Object B,
but Object B is doing nothing about it. For instance, a job seeker sends an
unsolicited job application to a company which does not reply to him/her.

2. Object A is not concerned about the response to its request. In other words, it
simply delivers information to Object B whose state becomes unstable since
Object B needs the information to perform a service. This point can be
illustrated by the situation of a purchase requisition process whereby a division
manager approves a requisition form and forwards it to a corporate accountant
for further approval. The manager does not expect the accountant to respond
to him/her; instead, the accountant should inform a requester of the approval
status.

3. Objects A and B are in an unstable state. This is, in fact, a combination of
situations (1) and (2). When Object A sends a request to Object B, Object A
expects Object B to act upon the request and to provide a response to the
request. To illustrate this point, we can consider a room-booking inquiry
process whereby a requester phones an administrative clerk to inquire about a
room-booking schedule.

A request usually carries with it information which is required by the receiving

object to process the request. The object obtains this information from its

interface attribute which has been modified by the request.

It is important to note that a request is a communication protocol between two

or more objects. There can be two kinds of protocols. One protocol involves two

objects where the first sends a request to the second, and the second directly
responds back to the first. For instance, if an employee submits a reimbursement
request whose value is less than $100 to the accountant, he/she will expect a
response back from the accountant. Another protocol involves more than two
objects when the sender of the request receives a response back from a different
object to which it does not send the request in the first place. The response, in this
case, is in the form of a different request. To illustrate our point, a customer
orders an item from a sales representative object via phone. The sales
r_epresentative, in turn, sends the order information to the accounting clerk who
generates an invoice and mails it to the customer. It is the clerk who sends the
invoice to the customer as a response to the original.

Since OOEM does not enforce the constraint that each request must have an
immediate reply, the distinction between these two protocols is essential for
understanding how an external request is processed by internal objects and which
internal objects an external object interacts with. This understanding will be
formalized in the concept of request propagation.

Figure 2-10, adapted from Tan [1997], describes the relationships of the

constructs in OOEM using the entity-relationship diagram.

/Geneta]ization!Speciaﬁzation of Objects

may own /

0,*)
©.% ZIX :
External Internal Loeemves invokes > spawns
Object Object

0.%)

(1,1

Request
@, 1) (1,

generates

(1,*)

(1,%) (0,%)

Service

(1"

accesses

(1,*)
(L,1) | Attribute | (1™

(LD

way

interfaces

owns

Figure 2-10 Meta-Model of OOEM
The meta-model depicts the constructs of OOEM as boxes and the relationships
between the constructs as diamond-shaped symbols. = The cardinality constraints,
expressed by (m,n), mean that an entity is associated with at least m and at most n
occurrences of the related entity. For example, in Figure 2-10, an object can generate
no requests or any number of requests, but a request must be generated by at least one
object. A triangle symbol indicates the specialized roles that external and internal
objects play in the model. For example, an external object which belongs to a general
object class may own attributes and perform services, since the information about the
internal structure of an external object may not be readily available for analysts.

However, an internal object whose internal representation should be made known to

the analysts must own at least one attribute and perform at least one service.

2.6.2.4.2.Request Propagation

The central theme of OOEM is the concept of request propagation which
defines an organizational process in terms of the behavioral characteristics of the
participating objects. These characteristics include the interaction (requests) between
objects and the operations (services) resulting from the interactions. The concept
states that an organizational process is triggered by an external request [Wand and
Woo, 1993]. As a result of the request, the internal object which receives the request
may generate requests to other internal objects, which in turn may further generate
more requests. This sequence of request generation, known as requeSt propagation,
may end with an external object receiving the result of the request or. with internal

object which do not generate any further requests to other objects.

2.6.2.4.3.00EM Representation Technique

Figure 2.11 shows the graphical constructs of OOEM.

r)

Object Name

Request Generated
Incoming Request o] Interface Attribute(s) by aService -
Response to In- (Internal Attribute(s))
coming Request
Service Name(s)
\. S/

Figure 2-11 OOEM Graphical Constructs
We mentioned that an incoming request can imply a response. This response

should be placed at the head of an arrow, whereas the request should be placed at the

end of the arrow. Figure 2-12 illustrates the reimbursement process in the OOEM

model.

Request to process a -~ ~\

[Employee] :;iFm;oursemm fom Division Manager

- > Request to process RF
Rejection | (Dyvicion Reconciliation

Reason Record)
/ Process Request
Request to process Approval
a reircbursement ~ ~
Result
form (RF) Request to ap-
7 h prove divisonally
Cotporate Accountant approved RF
. Request to approve RF -
{Corporate Reconciliation
Approval Record)
Result
Process Request
\. A

Figure 2-12 The Reimbursement Process in the OOEM Model

Several assumptions were made to construct the model. For instance, we
assumed that the division manager will notify an employee if his/her form is rejected
and that both the division manager and the corporate accountant maintain records for
reconciliation. A rejection reason is modeled as a response to an employee’s request
for reimbursement whose amount exceeds $200. It should be noted that an approval.
result is sent to the employee object as a request. The result is a response to the
employee’s request for reimbursement whose amount exceeds $200.

Zhao also introduces an object template (See Appendix D) to capture the
internal structure of an object. The object template may be used not only for
describing an internal object but also for a client object if more information about the
latter object is available (Tan, 1997). The template specifies which interface and

internal attributes are accessed and used by a service, and which requests are

38

generated by the service.

2.6.2.4.4 A Shortcoming of OOEM

Even though OOEM provides a bird’s eye view of organizational activities
within a problem domain by focusing on the interactions among objects, it, in fact,
does not capture all the behavioral aspects of an organizational process. According to
Curtis et al. [1992], the behavior of a process is determined by the flow of control
among its functional units. ~OOEM describes workflow participants, their
responsibilities, and their interactions in a process; it does not capture the execution
order of work [Zhao, 1995]. Amber [1997] suggests that one of the basic concepts for
workflow modeling is the flow of work which determines “the control and data flow
between activities” [p. 63]. To address this limitation, Zhao [1995] suggests that pre-
conditions and post-conditions may be specified for services in an Internal Object
Template (IOT). However, he does not formalize his suggestion in the context of

workflow modelling.

2.7. Summary

This chapter provided an overview of workflow management. We introduced
the basic workflow terminology proposed by the Workflow Management Coalition
(WIMC) whose objective is to develop common terminology and standards for
workflow technology. We also presented the WIMC Reference Model which
identifies common characteristics of many workflow products in the market. Current
trends in the groupware market were discussed as well. Finally, we reviewed two

major categories of business process modeling techniques: the traditional approach and

39

f

the object-oriented approach. While the object-oriented approach seems to overcome
some of the traditional approach’s limitations, the OO approach also has its own

limitations; these later limitations can be addressed by the object-oriented workflow

model proposed in the next chapter.

3. The Object-Oriented Workflow Model

3.1. Introduction
The previous chapter presented the fundamental concepts of workflow
management. This chapter introduces the Object-Oriented Workflow Model

(OOWM) which represents our view of a business process in an object-oriented

context. Based on our observation of the limitations of OOEM in association with the

concepts of workflow management, we will present the OOWM which extends

OOEM by including additional workflow constructs. The reasons that we build on

OOEM are presented as follow:

1. Compared to other OO approaches, OOEM reflects how human beings perceive
an organizational process. While other OO approaches are geared toward
software development, OOEM is designed to provide a high level of abstraction to
describe essential business activities. Accordingly, OOEM is more understandable
to analysts and management who are more concerned with business processes
rather than information on processing details.

2. Because of (1), OOEM provides analysts with a framework to design information
systems without overlooking a company’s objectives.

3. Because OOEM deliberately excludes certain low level details, such as the details
of how objects process requests, and it concentrates how the objects communicate
with each other, it offers analysts a basis for developing a system in a

decentralized environment. Such a system gives decentralized units the flexibility

to operate autonomously.

' Since the example of the reimbursement process presented in the previous chapter will
be used to demonstrate our concepts, we present it again in the following paragraph:
In order to have his/her expense reimbursed, an employee of the ABC
Company must submit a reimbursement form to the division manager or
the corporate accountant for approval. Reimbursement amounts greater
than 3200 require a division manager’s approval before they are
approved by the corporate accountant. All other reimbursements are
submitted directly to the corporate accountant. After his/her approval, the
division manager submits the reimbursement form to the corporate

accountant who then cuts the cheques and completes the process.
We will also put the OOWM into practice by presenting the OOWM method in
order to provide analysts with a systematic approach to building the OOWM
for an organizational process. At the end of the chapter, we will présent the
implementation model of an Object-Oriented Workflow Management System
(OOWMS) which automates the organizational process based on the OOWM.
The implementation model serves as a building block of the architecture of the

OOWMS which will be formally presented in Chapter 4.

3.2. The Object-Oriented Workflow Model (OOWM)
Figure 3-1 illustrates how OOWM constructs are developed. = The OOWM
constructs, as represented by the first block in the diagram, are based on the OOEM

constructs and the concepts of workflow management. Similarly, the OOEM

constructs are derived from a combination of the ontological constructs for

information systems (IS) and the Object-Oriented constructs. The ontological

constructs are based on Bunge’s ontology [Bunge, 1977].

OOWM Construcits
OOEM Construcis
Concepis of
Ontological Construrcts . Workdlow .
for 15 Object Oriented Managemen
Consirucis
Bunge’s Ontology

Figure 3-1 The Building Blocks of the OOWM
To address the shortcoming of OOEM, we extend OOEM by introducing
additional constructs to support workflow modeling. These constructs include:
activity and business rule. An activity refers to a unit of work that forms part of a
business process [WIMC, 1997]; the activity can be a manual or automated activity.
A business qlle means an organizational policy that governs activities within a process.

Figure 3-2" depicts all the constructs and their relationships in our object-oriented

workflow model.

43

Request A spawns

oy |0D
SRR)
Activity |1 »
(1,1)
\ interfaces . s /
governed

perforrs @D Service comprises

" by

0"
owns\ Attbute 02 /\ (1,*) | Business
refers to !
(l:l) \/ Rule (l,*)
4%

accesses

Object
(Uv"j (l’*)

Figure 3-2 The Object-Oriented Workflow Model (OOWM)

The added constructs are enclosed by a dotted line in Figure 3-2. It is
important to note that the addition of the new constructs also introduces changes in
the relationships between the constructs originally defined in OOEM. In OOEM (See
Figure 2-10), a service accésses at least one attribute and spawns any number of
requests. But Figure 3-2 shows that it is an activity which accesses at least one
attribute and spawns any number of requests. The service in the OOWM, performed
by at least one object, comprises at least one activity, but OOEM does not define the
relationship between the service and the activity. A business rule entity, which is not
included in OOEM, is introduced in the OOWM to determine when activities should
begin and end if certain conditions are true. These conditions always refer to the

information included in the interface or internal attributes. We will examine the

constructs in the proposed model.

44

3.2.1. Constructs in the Object-Oriented Workﬂow Model (OOWM)

In Chapter 2, we presented the modeling constructs of OOEM. In this section,
we will formally define the additional constructs that we introduced earlier. While the
information about the modeling constructs originally defined by OOEM is taken from
existing OOEM literature [Wand and Woo, 1993; Zhao, 1995; Tan, 1997; Jung,
1997], we may extend the definitions of these constructs in order to support the

semantics of our workflow model.

3.2.1.1.Activity

Activities are the basic units of operations taken by an object; they form
services. A service contains an ordered set of activities {A; ... A,}. The mechanism of
activities is encapsulated within an object. According to Figure 3-2, they can access
interface and internal attributes and generate requests to other objects. For instance,
when the manager approves a reimbursement form, he/she needs to access the
information about the request and the division reconciliation records. Figure 3-2 also
shows that the activities are initiated by an object in accordance with business rules
- specified by an organization. The division manager, for example, cannot approve a
reimbursement request unless the amount of the request exceeds $200.

By ex‘amining the relationships between a traditional activity-based model and
OOEM, we may be able to determine how a sérvice can be broken into activities in the
context of 0]:11' workflow model. Figure 3-3 shows the activity diagram and the
OOEM model. We compare incoming and outgoing requests, and the returning result

of the requests in OOEM to the information flows going into or out of activity blocks.

45

An Activity-Based Diagram

Participant A Participant B Participant C Participant D
~ (]
F1 F2 F3
F5
An OOEM Model
P Object CD
: Rl . R2
Object A

e Object B ™ Attribute CDI1
R6 | Attibute B os R4 | Attribute CD2

Service B ! Service CD1

Service CD2

|

Figure 3-3 An Activity Diagram and an OOEM Model

The activity diagram is divided into columns. Each column corresponds to a
participant in the process. The boxes in the column represent the activities associated
with the participant, and an arrow indicates an information flow. All information and
request flows in both diagrams are labeled. It should be noted that F1 in the activity
diagram corresponds to R1 in the OOEM model, F2 to R2, F4 to R4, F5 to RS, and
F6 to R6. Service B contains activities A1 and A4; service CD1 has A2 and A3; and
service CD2 contains A5. The diagram helps explain the characteristics of an activity
in the context of our OOWM. The granularity of an activity is related to an interaction
between objects. In our OOWM, the activity begins with an incoming request or the
response to a request from another object. It terminates when one of the following
" conditions is met:

1. The activity generates a request to another object.

2. The activity has completed all it needs to do.

In the activity diagram, there is no indication of showing which activities
belong to a service in the OOEM model. For instance, we cannot decide if A2 and A3
form a service and if A5 belongs to another service. In OOEM, every service is
responding to at least one request; therefore, a request defines the granularity of a
service. Also, the activity diagram does not indicate WMch participants should form an
object in OOEM. But when we refer to the OOEM model, we cannot tell what really
happens in a service, we cannot identify the sequence of generating R2 and R5. In
Section 3.2.3.1, we will show how an OOWM, an extension of OOEM, can be

converted to an activity diagram.

3.2.1.2.Business Rules

Even though objects are autonomous and independent, their responsibilities
within an organization are defined in organizational policies. It is the organization’s
policies that determine when and what tasks are processed and, by whom [Rupietta,
1997]. Business rules basically achieve the same objectives as organizational policies.
As pointed out by Rupietta [1997, p. 165], “the cooperation and communication
between members of an enterprise in workflow management systems requires that
organizational rules be closely followed” [p. 165].

A business rule can be interpreted into pre-conditions and termination
conditions for an activity. The pre-conditions can be defined as entry criteria to an
activity, and the termination cénditions as completion criteria for a particular activity

[WEMC, 1997]. These conditions may refer to information accompanying requests or

to state information about a process instance. For instance, the pre-condition for the

division manager to approve a reimbursement request is that the value of the request
must exceed $200. The termination condition for the approval activity is when the
manager approves or rejects the request. The pre- and termination conditions also
affect the generation of requests. For instance, if the reimbursement request is
approved by the division manager, another request is generated for the corporate
accoﬁntant. It is important to note that the introduction of business rules does not
violate the concept of object independence and encapsulation. These rules do not
restrict how the object should perform the tasks; instead, they only control the

interactions among the objects (i.e. incoming and outgoing requests).

3.2.1.3.0bject Activity Template (OAT)

An Object Activity Template (OAT), shown in Table 3-1, is used to specify the
behavior of objects. It is an extension of Zhao’s Internal Object Template (IOT) and is
intended to capture workflow information. This information includes activities and
business rules which govern ihe activities. The name of an activity is expressed in the
Activity column. Since business rules provide organizational control, we need to
include them to understand their implications with respect to an activity. However, in
actual implementation, the rules are stored separately from the objects to preserve
object autonomy. The business rules can be represented by pre- and termination

conditions for an activity; these conditions are represented by the Pre-Conditions and

Termination Conditions columns.

Object Name - Object Code
Interface Internal Services
Attributes Attributes
Service 1
incoming Internal | Access | Pre- - Activity | Termination | Request Receiver
interface Attribute | Mode Conditions Conditions Generated
attributes to
support
I Service 1
: - . Request Object
activity P diti activity Termination Generated receiving
code -R lre-con thon cod'e' condition 1 from a request
returning Activity 1 Activity 1 %rt:)ncrated
. m
interface Activity 1
| attributes __|
. S Request Object
activity P ditio activity Termination Generated receiving
code -R 2 ndition | code condition 2 from a request
- Activity 2 Wi
re ng Activity 2 %?;rated
interface Activity 2
attributes
Service 2
incoming Internal | Access | Pre- Activity | Termination | Request Receiver
interface Attribute | Mode Conditions Conditions Generated
attributes to
support
________ Service 2
. - Request Object
activity p diti activity Termination Generated receiving
code -R lre-con ition cod.e. condition 1 from a request
returning Activity 1 Activity 1 tgnrenemteo:l
. om
1ntgrface Activity 1
attributes

Table 3-1 An Object Activity Template (OAT)

Because each service consists of several activities, all of its associated activities and
conditions are shown in a sub-table of a service. Each row of this table represents an
activity which is attached to pre- and termination conditions. If a precondition of one
activity holds, then that activity will be performed by an object. Similarly, if a
termination condition is true while an activity is being performed, the activity will stop.

The returning interface attribute captures the response to an incoming request. This

response is labeled with an activity code and “R” in order to distinguish which activity

generates the response. The access mode indicates how activities of a service use
internal attributes. “U” indicates read access, and “M” means read and write access.
To illustrate the application of the template, let us consider the object activity

template for the division manager object in the purchase reimbursement process

presented at the beginning of this chapter. The template is shown in Table 3-2.

Division Manager - DM
Intexface Buternal .
Attributes AtirSutes Se.
‘Request to | Division Rec- Precess Request for Reindursement
process RF: | oncilistion :
Ttoms, Recoxd: Pre- Activity | Termimation | Request Receiver
Amounts, Ttarns, Conditions Conditionw | Cenerated
Racpuested Amounts, —
Date, Rs. Requested Amounts » _::'. Request Ap-
quester Date, Re. $200 proved or
quester, Ap- %‘;‘" & Bejected
oM3R || Elh e S P P
g t 4 to ate
Rejection prover Approved Generated approve Accomtant
Reason Geunerate & divisionally
yoqoast approved
‘__l_ =
o e
] Rajected mp
Employee Ry Generate &
Object reject reason
D2 o
D3 Comn- Update recond

Table 3-2 The Object Activity Template for the Division Manager

In the reimbursement process, an employee submits a request to the division
manager. Such a request should be accompanied by information such as the name of
the requester, the reimbursed amounts, the requested date, and the purchased item.
They are listed under the Interface Attribute column as incoming interface attributes.
The internal attributes that support the activities include the requester name, the

requested date, the requested amounts, the purchased item, the approval decision, and

50

the approver name. The manager can approve or reject the request only if the request
value exceeds $200. This condition is reflected by the ‘Amounts > $200’ statement in
the Pre-Conditions column. If the condition is true, the activity ‘Approve a request”
labeled with the code ‘DM’ will be executed. This activity terminates when the
request is either approved or rejected. The division manager will generate a request to
the corporate accountant if the reimbursement request is approved; this information is
captured in the second row of the Process Request for Reimbursement sub-table. The
receiving object of the generated request, as specified in the Receiver column, is the
corporate accountant. A rejection reason will be returned to the requester as an

immediate response to the reimbursement request if the manager rejects the request.

3.2.1.3.1.From an OOWM to an Activity Diagram

Since activities and their associated conditions are represented in an Object
Activity Template (OAT), it is always possible to convert an OOWM into an activity
diagram. We can treat both requests and responses (i.e. the returning results of
requests) in the OAT as the information going into or out of activities blocks in
different participant columns in the activity diagram. In Figure 3-4, R1,R2 and R3 in
the OAT correspond to F1, F2 and F3 respectively in the activity diagram. If a

response to R1 is expected from object 2, how can a returning result of R1 be

represented in the activity diagram?

51

Ohject Activity Tewplate

Object Name - Synidol
Beisrfare Iuteasal Service
Atiribuies Atiributes
. of Hums of Servic
Imtestase At | Tutemal | Accwn ol |
trirates Attrdutes Pre- Activity | Tenmination | Request | Receiver
AR Conditions Conditions | Genexsted
R Cl Al Tl Rl OY;2
c2 A2 T2
] Obj1 — ,
c3 A3 T3 B3 Obj3
An Activity-Based Diagram
Obil Object Name Ob2 Obj3
Al

Figure 3-4 An OAT and An Activity-Based Diagram
In an OOWM, a response to a request is required by an object to continue its service.
This requirement is usually captured in the pre-condition for an activity performed by
the object. Whether such a response is received and triggers another activity is
represented by a decision node. Assume that C3 specifies the need for the respoﬁse to
R1 from object 2 in order to trigger activity A3. If C3 is satisfied (i.e. C3 is evaluated

to be true at the decision node D2), A3 will be triggered along with incoming

information represented by F4 in the activity diagram. The flows of activities blocks
can be determined by pre- and termination conditions in the OAT. T1, for example,
is represented by a diamond-shape symbol, D1, in Figure 3-4. If T1 is false, then Al
will continues until T1 is evaluated to be true. An activity following Al is decided by
whether C2 or C3 is true (i.e. the decision node is marked D2). By converting all the
OATs in an OOWM into activity diagrams, a complete activity diagram to describe an

organizational process can be developed.

3.3. The OOWM Method

The previous section presented the Object-Oriented Workflow Model
(OOWM) which reflects our view of an organizational process in an object-oriented
context. We also examined the theoretical foundations of the model. In this section,
we will introduce the OOWM method to describe a given organizational process in
our OOWM framework. The steps to building an OOWM for the process are similar
to those of the OOEM method, except that we need to consider additional workflow
constructs presented in the previous sectioné.

The quality of an OOWM is related to analysts’ ability to apply the method to
capture an organizational process under study. The analysts should have sufficient
information to determine such a process. The sufficiency of information also affects

the quality of the OOWM.

3.3.1. Steps to Building an OOWM for an Organizational Process

The procedure of creating an OOWM can be divided into two main steps.

First, analysts should construct an OOEM model for an process under study. Second,

the analysts should look into the internal objects of the process and model their

characteristics by using the Object Activity Template (OAT) presented in the previous

section.

3.3.1.1.Constructing an OOEM Model

Zhao [1995] proposes an algorithm to identify objects, their services, interface

and internal attributes, and requests of a process under study. The algorithm which is

summarized in the following steps (See Table 3-3) provides an effective guideline for

applying Wand and Woo’s modeling rules [1993] presented in Appendix E. Please

refer to Zhao’s [1995] Object-Oriented Enterprise Modeling for the details of the

algorithm.

Steps to constructing an OOEM Model

Corresponding Wand and Woo’s

Modeling Rules

1. Determine the scope of the process.

2. Identify external clients of the
process.

3. Identify the requests generated by the
external clients.

Rule #1: The scope identification rule is
applied since all external objects and their
requests being submitted to the process
are identified.

4. Trace an individual external request
and determine how the request is
processed by other internal objects
which may propagate other requests
in the process. During the tracing
process, identify internal objects, their
interface and internal attributes, and
their services.

Rules #2 - #5: The rules for identifying
objects, services, internal and interface
attributes, and the ownership of the
attributes are satisfied since this step
ensures that each object in the model
provide at least one service which
requires interface attributes and which
may access internal attributes.

Table 3-3 Steps to Constructing an OOEM Model

Once all objects are identified, they can be organized into whole-part and

generalization-specialization structures by applying Rules #6 and 7.

3.3.1.2.Creating an OAT for an Internal Object

This step requires information about company policies which stipulate how a
particular process should be carried out by different workflow participants. Services
identified in the previous step should be broken down into activities which are
associated with pre- and termination conditions. What. constitutes an activity was
discussed in Section 3.2.1.1.

Appendix G shows the complete OOWM for the purchase reimbursement
process. Three objects, their interactions, their interface and internal attributes, and
their services are first identified in the OOEM model. Then, we take a microscopic
view of the division manager and corporate accountant objects and include their
internal characteristics in the OATs. The execution order of activities within an object
can be specified by the use of pre- and termination conditions. As an example, we
demonstrate how to model three common types of the order in Figure 3-5 [WIMC

1997, Grasso, Meunier, Pagani, and Pareschi, 1997].

55

Sequential execution Pre-Conditions | Activity | Termination Conditions
O—@ = __[al:
Al Complete A2 T2
- L ad
Parallel execution Cl Al T1
@\ Al Complete A2 T2
. . A1 Complste | A3 T3
\®/ A2 Complete
AND Ad T4
A3 Complete
- . —
Conditional Branching Ci 1 at T1
@ Al Complete A2 T2
. . ANDC2 -,
Al Complete
g A3 T3
A2 Complete
oR A4 T4
A3 Complete
-t —

Figure 3-5 Types of Execution Order in OAT
Different types of execution order are separated by double-arrow-head solid
lines. Sequential execution is captured by specifying the completion of the first
activity as criteria for starting the second activity in OAT. Parallel execution is
represented by two activities, namely A2 aﬁd A3, associated with the same pre-
condition. The completion of A2 and A3 becomes a prerequisite to starting the
convergent activity A4. Finally, an alternative activity can be determined based on the

completion of Al and its pre-condition in conditional branching.

3.4. An Implementation Model of an Object-Oriented Workflow
Management System

In previous sections, we introduced the Object-Oriented Workflow Model
(OOWM) methodology to study an organizational process from an ontologically

object-oriented perspective. In this section, we will propose the implementation model

56

of an Object-Oriented Workflow Management System (OOWMS) which enacts an
OOWM. The model serves as a basis for the architecture of the OOWMS which will
be presented in the next chapter. The model identifies the important components of
the architecture and specifies the general functions of the components.

Figure 3-6 illustrates the implementation model. The objective of our
OOWMS is to automate interactions among objects in accordance with workflow
business rules. Our system, however, does not control how objects perform their
services because of object autonomy and independence. Specifically, our system
controls and monitors when and what objects should react to requests. To achieve
such an objective, we introduce the Controller object which monitors all controlled
requests from and to the objects in a process. The specifications of the Controller

object are presented in the following sections.

Action €
[¢PY) a,0
geneyales takes
sends liversc 09
by
—h a9 D PN 2 .
Object Request * | Controller defermines
& eB)) b 0.9
09 "9
accepts wceived
by
uses
relates to
0| o
o \ Wotkflow
Prwocess State whors to o) Business Rule
Information . ’ | (249

Figure 3-6 The Implementation Model of an OOWMS

57

3.5. Controller

Figure 3-6 depicts the general function of the Controller object. The object
is introduced to ensure that business rules (i.e. organization policies) be followed in an
automated workflow environment. It not only keeps track of the rules but it also
evaluates the rules based on the information carried by a request and the state of a
process. It generally takes two types of actions:
1. It can issue requests to other objects to obtain additional information for

evaluating business rules.

2. It performs actions specified by the business rules after evaluating the rules.
The Controller monitors or controls the flow of requests based on business logic and
the state of requests to ensure that interactions among objects satisfy organizational
process. All external requests are sent to the Controller object, and the Controller
takes care of all responses to external requests. If business rules are violated, the
Controller may follow instructions specified in violation clauses. This procedure is
equivalent to error handling in computer programming; the actions are defined to
handle specific errors.

Not every request nor interaction in a process needs to be monitored nor
controlled by the Controller object. To illustrate our point, let us return to the
purchase reimbursement process.

Before the division manager approves a reimbursement form, he/she may consult
the division accountant regarding the cash situation.

Figuré 3-7 shows the OOEM for the extended reimbursement process, and all requests

58

flows are labeled. Since the division manager object may have its own policies and
resource constraints, all requests that the manager sends are related to those internal
policies and constraints (e.g., request RS in the figure) are not monitored nor

controlled by the Controller.

Request to process a ’~ \
[Employee E;F) ?:5;;"690'; orm Division Manager
I~ . Request to process RF
Rejection | (Dyvision Reconciliation
——— Reason Record)
S
t
Request to process a Process Reques
reimbursement form N /
(RF) (<= $200) Request to approve Request for cash position
divisonally ap-
proved RF @
Approval Approval @
Result Result ¥ Cash position
- N - A
Corporate Accountant Division Accountant
Request to approve RF Request for cash position
{Corporate Reconciliation — {Division Cash Statement)
Record)
Process Request | Process Request
\. J . J

Figure 3-7 The OOEM for The Extended Reimbursement Process

3.5.1. Control Schema

A control schema specifies which requests are controlled by the Controller
object, what workflow business rules are applied to the requests, and what actions
should be taken by the Controller object if the rules are evaluated to be true. The
organization decides what requests should be controlled or monitored and how these
requests should be controlled.

The

As an example, consider the requests in the reimbursement process.

' workflow business rules can be obtained from the pre- and termination conditions as

well as the Request Generated and the Receiver columns of the Object Activity

Template (OAT) of each internal object. The result of this is the control schema

presented in Table 3-4. Using the information in the table, a Controller object can then

be formed, as is shown in Figure 3-8.

Request Workflow Business Rule(s) Action(s)
R1 Amounts > $200 Send a form to the Division
. Manager
R1’ (immediate | Amounts < $200 AND the form is rejected | Inform the requester of the
response to R1) | by the Division Manager .. rejection reason.
R2 The form is approved by the Division | Send the form to the
Manager Corporate Accountant
R3 Amounts <= $200 Send the form to the
Corporate Accountant
R3’ (immediate | The form is approved OR rejected by the | Inform the requester of the
response to R3) | Corporate Accountant approval result.
R4 The form is approved OR rejected by the | Inform the requester of the
' Corporate Accountant approval result.

Table 3-4 The Control Schema for the Purchase Reimbursement Process

o sssninisinan F‘c:nu l:;pbpwve&
the Drivss
d H:&r Division Manager)
Ruirdazvemuent Form ES—— -
Apm (Process State Info) |(RF) (> $200) Feeord)
Rajectio
Process RF Jgfm: Process Request
Reimmrrement L Vs
hn:‘@— — Raqwst forcash
ition
Employes Foe
Cash position
{ y
Division Accomtent
st to RF ...
o Request for cash position
wm“m (Division Cash Stetement)
Process Request
L Process Request) L Req)

Figure 3-8 The Controller in the Purchase Reimbursement Process

As shown in Figure 3-8, the Controller does not control how the manager and
the corporate accountant actually approve the form (i.e., the manager communicates
directly with the division accountant). The figure also shows that the workflow
business rules and the process state information are represented as internal attributes
of the Controller object. Finally, it should be noted that the interaction between the
employee object and the Controller object should be transparent in practice because
when the employee object submits a request to the object‘ with which he/she wants to
communicate, the employee object does not know that his/her request first passes
through the Controller object for evaluation. Similarly, the internal objects do not
know the redirection éf requests by the Controller object.

To evaluate the business rules, the Controller object requires not only
information carried by a request but also the state information about the current
process instance. However, the Controller may require information about other
processes. In this case, the Controller needs to communicate with other Controllers in
other processes to obtain such information. The details of accessing information about

other processes will be discussed in the next section.

3.5.2. Access to Workflow Data in Other Processes

The Controller object must access the workflow relevant data to evaluate
conditions throughout a process and to determine how to route, process, and
otherwise handle a work item [Kobielus, 1997]. Even though access to the data is

usually confined to the current process instance which, according to WIMC,

“represents a separate thread of execution of the process” [1997, p.391], it is

sometimes possible for the Controller to require information about other process
instances for evaluating conditions. For instance, process A cannot continue until
process B is completed. In this case, the Controller in process A can request from the
Controller in process B the state information about process B. We allow
communication between Controller objects in different process instances. The way in
which these Controller objects interact is similar to the way the internal objects
interact. A request sent by éne Controller modifies the interface state variables of a
receiving Controller object; however, it is the receiving object which decides to invoke
a service and to act upon the request. =~ The communication between Controller
objects also triggers an important question: If the Controller object determines a target
object, how can the Controller object locate the target object?

Business objects always abide by business logic when they communicate
with each other. Based on this logic, the business objects always know what and
whom they should approach to solve their problems. For instance, if a division
manager needs to know the cash position of his/her division before he/she can approve
a reimbursement form, he/she will contact a division accountant for information
because he/she knows that the accountant is responsible for keeping track of the
financial health of his/her division. The same principle can be applied to the Controller
objects because these objects are business objects, and they logically represent owners
of organizational processes. For example, if the Controller object instance A which

monitors an instance of a purchase reimbursement process requires information about

the approval status of the budget for the sales department, how can the object instance

know which Controller object instance of a budget approval process it should contact
since there may be many ongoing budget approval process instances? Instance A may
first identify Controller instances in all active budget approval process instances and
then locate the target instance based on the budget type, the submitted date, the
submitted person, and so on. The search for the target instance can be achieved by
referencing a directory maintained in a central repdsitory or by querying each
individual Controller object about all active budget approval process instances.
3.5.3. Time Control

Speed is an important concern for most business processes [Kobielus, 1997].
Thus, time control plays an important role in assuring the efficiency of an
organizational process. For instance, a deadline is a time-i)ased scheduling constraint
which requires that a certain activity (or work item) be completed by a certain time
[WEIMC, 1997]. The Controller object, as we mentioned earlier, is introduced to
enforce business rules. These rules may include scheduling conditions which describe
the maximum and minimum time allotted for each activity, including in-queue time,
process time, and out-queue time [Kobielus, 1997]. Conceptually speaking, the
Controller object does not have an internal clock to keep track of time. Accordingly,
it must obtain the information about time in order to evaluate the scheduling
conditions. A clock object is proposed to provide the Controller object with the
information. The clock object functions like an alarm clock. The Controller not only
retrieves time information from the clock object, but it can also request the clock

object to notify it about a specified time occurrence.

63

We expand the example of the purchase reimbursement process to illustrate
what role the clock object can play in our implementation model.
After the division manager receives a reimbursement request from an employee,
he/she has to approve the request within five calendar days; otherwise, the
request will be assumed to have been rejected.
First, the control schema for the reimbursement process needs to be revised to reflect

the time control over the process.

Request Workflow Business Rule(s) Action(s)

R1 Amounts > $200 Send a form to the Division
Manager

RY’ (Amounts < $200 AND the form is | Inform the requester of the rejection

(immediate disapproved by the Division | reason.
response to | Manager) Or the current date > the
R1) submitted date + 5 calendar days ,
R2 The form is approved by the [Send the form to the Corporate
Division Manager AND the | Accountant

current date <= the submitted
date + 5 calendar days

R3 Amounts <= $200 Send the form to the Corporate
Accountant

R3’ The form is approved OR rejected | Inform the requester of the approval

(immediate by the Corporate Accountant result.

response to

R3)

R4 The form is approved or rejected | Infform the requester of the
by the Corporate Accountant approval result.

Table 3-5 The Revised Control Schema to Include the Approval Deadline
Please note that request R2 has to satisfy an additional condition which ensures that
the request sent to the corporate accountant be approved by the division manager

within five calendar days after the manager receives the request. To enforce such a

condition, we include the clock object in the OOEM for the process (Figure 3-9).

Time wotification
Request for time notifieation
mﬂﬁm‘f N
1SN
Controlty | Musgr] Division Manager
Raudbursemant Fe
(Woarkflow Eun::n Reirdrorsernent form (R;@est to WOees!shEt!;
- 1VISIOXL Reconc). %
Approval (hozeu State Infoy |(RF) (> $200) Record)
Bt Process RF wg,;mm Process Request
ivtharserment \ J/
Torm (BF) 'f,‘,"{‘,:’,’é“"f'“ Reimburserant form Request for cash
Enployee (BF) (== $200) position
Approval Approval
Resalt Resalt Cush position
4 N 7 ~
Corparets Accountant Division Accountant
Request to approve RE Reguest for cash position
m’“‘ Reconcliation (Division Cesh Statervext)
P t
X Prooess Request) | eSS Reques)

Figure 3-9 The Clock Object in the Purchase Reimbursement Process
When an employee submits a reimbursement form on September 12, 1997,
the Controller object obtains time information from the clock object to time-stamp the
form. If the form is routed to the division manager, the Controller object calculates
the deadline, September 16, 1997, and requests the clock to remind it of the
September 16, 1997. 1If the Controller object does not receive any approved form
from the division manager by September 16, 1997, and it is reminded by the clock of

the deadline, the Controller will reject the form and notify the requester.

3.6. Summary

In this chapter, we introduced the Object-Oriented Workflow Model (OOWM)

which extends Object-Oriented Enterprise Modeling (OOEM) by incorporating the
concepts of workflow management into OOEM. We also presented the OOWM
method so that analysts have guidelines for constructing the OOWM for an
organizational process. In order to capture the internal characteristics of objects, we
proposed the Object Activity Template (OAT) which enables Zhao’s Internal Object
Template (IOT) to describe the internal behavior of the objects in terms of activities
which are governed by business rules. Finally, we presented the implementation model
of an Object-Oriented Workflow Management System (OOWMS). The model

identifies the major components of our OOWMS and provides the first step to

developing the architecture of the OOWMS presented in the next chapter.

4. AnImplementation Architecture of the OOWMS

This chapter presents the implementation architecture of the Object-
Oriented Workflow Management System (OOWMS) which enacts the contents of the
model presented in the previous chapter. In our model, the Controller object is
introduced to monitor and control the flow of requests,- and the services provided by
the internal objects are encapsulated in the objects themselves. The Controller object
is responsible for enforcing business rules which govern how internal objects should
interact with each other. We therefore focus on the architectural blueprint for the
Controller object. Specifically, we need to address the following questions:
1. What is the algorithm used for processing incoming requests by the Controller?
2. How is the information required by the Controller logically represented in the

architecture?
3. What are the logical components of the Controller to implement the algorithm in
(1)?

4.1. Request Processing Cycle

Before we answer the second and third questions, we must understand the
algor‘ithm used for processing the incoming requests by the Controller. The process of
handling the requests is achieved by a request processing cycle which is similar to a
machine cycle performed by a control unit and an arithmetic-logic unit (ALU) in a
central prdcessing unit (CPU). The control unit fetches an instruction from the
program stored in primary storage, decodes the instruction, places it in a special

instruction register, and directs the arithmetic-logic unit (ALU) to perform the

67

S

) required tasks [Mano, 1993].

The purchase reimbursement process presented in the previous chapter will
be used to facilitate our discussion of the request processing cycle. Since we revised
the reimbursement process example in different places in Chapter 3, we will restate it
to avoid any confusion:

In order to have his/her expense reimbursed, an employee of the ABC Company
must submit a reimbursement form to the division manager or the corporate
accountant for approval. Reimbursement amounts greater than 3200 require a
division manager’s approval before they are approved by the corporate
accountant. After the division manager receives a reimbursement request from
an employee, he/she has to approve the request within five calendar days;
otherwise, the request will be assumed to have been rejected. The division
manager may consult the division accountant regarding cash situation when
he/she approves the request. All other reimbursements are submitted directly to
the corporate accountant. After his/her approval, the division manager submits
the reimbursement form to the corporate accountant who then cuts the cheques

and completes the process.

The OOEM model with the Controller object is presented in Figure 4-1.

68

Time information Time notification

R‘N_ﬂ‘ for ':;: Roquest for time notifleation
(mﬁﬁdf N
gt s .
Controllsy Muagd Division Menager
Reirmburswmant Form Request to RF
mh Busizess Heimbursement foom (Drish " Rpmmusisﬁa&u
Approval | (Process State Info)) | (RFY (» $200) Record)
ProcessRF gﬁ,ﬁ Process Request
\, S/
Request for cash
position
Cash position.
— ~
Corparste Aocountant Division Accountant
Reqasst to epprove RF Request for cash position
mm Reconciliation {Divisian Cash Staterent)
P t
Process Raquest L mcess Reques J

\, v

Figure 4-1 The OOEM Model with the Controller for the Reimbursement
Process

In the Controller object, the business rules attribute contains the knowledge of
how an organization wishes to control a work process, and the process state attribute
captures the information about the state and the state transition of a process.
According to the Workflow Management Coalition (WIMC) [1996], a process state is
a “representation of the internal conditions, defining the status of a process instance at
a particular point in time” [p. 411], and a state transition reflects a “change in the
status of the workflow” [p. 413]. We will examine how this information can be

logically represented in our architecture.

To process a request, the Controller fetches the first request in the request

list, decodes it, and retrieves information carried by the requests. For instance, the
Controller in the reimbﬁrsement process receives a request from an employee (See
Figure 4-1). It needs to decode the request and decide what type of the request it will
process. In this case, the Controller should identify it as a reimbursement request.
Then, the Controller retrieves information carried by the request. This information
may include the name of a sender, the value of the reimbursement form, and so on.
The Controller must first update the process state attribute by recording when and by
whom the request is sent to the Controller. It then evaluates business rules according
to the values of the request and the state of the process to determine what actions it
should take. For instance, in the requisition process, the Controller has to determine
the receiver of a PR form based on a requested item. Once it sends out the form, it
updates the state of the process. The following list summarizes the request processing
cycle:

1. Fetch the next request

2. Decode the request

3. Retrieve the information accompanying the request

4. Update a process state for the incoming request

5. Invoke and evaluate business rules

6. Determine actions based on the evaluation of the business rule

7. Take actions, including sending request for future time events (as mentioned in

Chapter 3).

8. Update a process state for the outgoing request(s).

4.1.1. Request Instance Identification

We allow the Controller to be able to process more than one incoming request
instance of a same request type. When the Controller receives a response from an
operating object, it has to identify the original request instance to which the response
addresses. Handling multiple instances becomes challenging when dealing with
autonomous objects, because the Controller has no way of enforcing what an object
can respond to in a request. An example may help to explain this point. An employee
submits three reimbursement forms to the division manager at three different time
points; an organizational policy specifies only when the manager should approve the
form, but it does not specify how. The manager may send a message to the requester
such as “Approve All”, “Approve the first request and Reject the last two”, or “Reject
the first two request and Approve the last one”. In this case, there is no indication of
which requests the response addresses. The Controller, on the other hand, will be able
to keep track of the origin of a request if one of the following conditions holds:
1. The responses include sufficient information to identify the original requests they

are responding to.
2. The responses are sent back in the same sequence as the original requests were
sent to the Controller.

These conditions reasonably reflect the way in which people work in reality.
The first condition implies that a request can be uniquely identified by a set of
information. There are many real-life examples to support the first condition. For

instance, a monthly bank statement on a chequing account displays a list of cheques

71

issued by a client for reconciliation. The cheques are referred to by their numbers. If
the statement simply printed out the total cfedit and debit amounts, then the client
could not trace his/her spending. The second condition reflects the temporal sequence
of processing a request. An example may illustrate our point. When we line up at a
ticket booth for concert tickets, a ticket booth attendant basically processes individual
requests one by one. We believe that these conditions do not restrict how people
should work in an organizational process but that they are essential for the process to

run efficiently and effectively.

4.2. Information Representation

The request processing cycle suggests answers to question (2) presented in the
beginning of this chapter: How is the information required by the Controller logically
represented in our architecture? The information required for processing the requests
includes: request type definition, business rules, state information about a process, and

detailed information about the requests.

4.2.1. Request Type Definition

From the Controller’s perspective, there is no difference between a request and
a response. The Controller is only concerned about what kind of data it is passing
around in a process. For instance, in Figure 4-2, the Controller object treats the
approval status sent from either the division manager object or the computer manager
object as an instance of a request type, even though it appears as an immediate
response to a request for purchase requisition. The Controller considers each

incoming and outgoing request to be unique types of information. Each request type

72

should contain information about a sender and a receiver of a request:

Request-Type-Definition (request-type-id, sender, receiver)

4.2.2. Business Rules
Business rules specify the criteria for certain actions to be taken by the
Controller. Business rules can be represented in the following conditional statement:
IF .<conditions> THEN <actions>
The IF clause specifies the conditions under which the Controller should take specific
actions stipulated in the THEN clause. The conditions refer to the workflow business
rulés specified in the control schema introduced in Chapter 3. For instance, according
to the control schema for the requisition process (See Appendix H), the computer
manager only approves a request for computer items. This condition can be encoded
into the following clause:
IF <requested_item = computer>
We allow all operations associated with a business rule to be represented as a
block of execution in the THEN clause. For example, we can instruct the Controller
not only to decide the recipient of a PR form but also to calculate the deadline:
IF <request_item = computer>

THEN

Send (Request_To_Computer_Manager),

Calculate_Deadline();

73

The business rule information can be organized and represented in a database
table format:
Business-Rules(rule-id, IF_clause, Then_clause)
where rule-id is the primary key of the table. In principle, the Controller scans all the

business rules in the repository to determine which rules will be “fired”.

4.2.3. State Information about a Process and Information about Requests

The Controller not only keeps track of all the states of a process in the process
state attribute but also of the history of information about the values of requests. The
history of information serves two purposes in our architecture:

1. It provides the Controller with references to determine its course of actions
specified by the business rules.
2. Tt builds up an audit trail of workflow execution [Jablonski & Bussler, 1996].

An example can illustrate the need for the history of information. In the
purchase requisition proce.ss, all managers must approve PR forms within three
calendar days; otherwise, the forms will be automatically rejected. The Controller is
responsible for keeping track of when the PR forms were first sent to, for example, the
division manager. The Controller may refer to the time when the forms were sent and
decide if the manager has passed the deadline. If the manager has passed the deadline,
the Controller can reject the forms and notify the requesters on the manager’s behalf.
Since the manager object is autonomous, the Controller cannot stop the manager from
submitting the approved forms to it. In this case, because all state information is in

long-term storage, the Controller is able to once again to refer to the time when the

74

original PR forms were submitted to the manager, and, according to a business rule, it
may simply inform the manager that he/she has passed the deadline and that the forms
have been rejected on his/her behalf.

The Controller stores the state information in the following manner:

Workflow-State(request-id, sent-time, request-reference-id, sender, receiver)

The sent-time field stores the data about when a request is sent to the Controller and
out of the Controller. The request id field is used to uniquely identify individual
request instances. For instance, the reimbursement request submitted by employee A
can be distinguished from employee B’s by the reimbursement ids. The request
reference id field refers to the id of the original request so that we will be able to know
what other requests are generated as a result of the original request. Finally, the
sender and receiver fields record the sender and the recipient of the request. The state
information is stored in the Workflow State Repository represented in Figure 4-2.

Apart from the state information about a process, the Controller should also
maintain a track record for the values of the requests throughout a process:

Request-Information(request-id, parameter, request-type-id, value)

where the parameter field records the names of all the variables carried by a request
instance and the value field stores the values of the variables. Since each request is
assigned to a unique id, we can trace back how a request instance was processed
throughout a work process. Also, the request type to which the instance belongs can
be identified by the request-type-id field. The request information is maintained in the

Request Information Repository (See Figure 4-2).

75

The specifications of the Workflow State and Request Information
Repositories are domain-independent; that is, they can be generally used for different

organizational processes.

4.3. Logical Components of the Controller Object

In previous sections, we identified the information required by the Controller in
the request processing cycle. This information can be stored and represented by using
database technology. But we have not identified the logical components of the
Controller to process this information. In this section, we will introduce two major
processing units which fetch and evaluate data which reside in different repositories,
and perform actions based on business logic. These two units are the Business Rule
Evaluator and the Workflow Executor. The reason that we separate the evaluation of
business rules from the execution of workflow operations is that while the structure of
a business rule is defined independently of bﬁsiness processes, the workflow
operations executed by the Controller vary from process to process. We will be able
to customize a unit without changing another. The design of the processing units is
analogous to the design of a silicon chip, which allows “a supplier to deliver tightly
encapsulated unit of functionality to be specialized for its intended function, yet

independent of any particular application” [Sprague & McNurlin, 1993, p. 280].

4.3.1. Business Rule Evaluator
The business rule evaluator functions like the control unit in the CPU does.

The control directs the other components of the computer by reading stored program

instructions one at a time [Mano, 1993]. Similarly, the business rule evaluator

instructs the Workflow Executor what to do based on the result of its evaluation of the
business rules (See Figure 4-2). The evaluator has access to all information previously
determined. In terms of the request processing cycle, the evaluator fetches a request,
decodes it, determines the type of a request from the type definition, and retrieves its
parametric values. The evaluator also evaluates the business rules that correspond to a
process state and the parametric values of the request. The design of the business rule
evaluator is independent of different process definitions. In other words, the same
evaluator can be used for the purchase requisition process as for other organizational

processes.

Incomingl

Request
Business Rule - Workdlow |
Evaluator Instractions Executor Output(e.g

notification)

Workilow Stete
Repository

Retjuest Infor-
mation

Businaess Ruls
Repository

Reguest Type
Definition

Figure 4-2 The Architecture of the Controller Object

4.3.2. Workflow Executor

The Workflow Executor, as suggested by its name, performs workflow
operations specified by the business rules. It can access and write to the request
information and the Workflow State Repository; it can also read information stored in
the Request Type Definition. A read access to the Business Rule Repository by the

Workflow Executor is not necessary because this component only carries out

77

the instructions sent by the Business Rule Evaluator which determines these
instructions based on the business rules. However, the Workflow Executor cannot
modify information residing in the Request Type Definition and the Business Rule
Repository. If this information was altered at run-time, the execution of other process
instance might also be affected. Since the workflow operations may vary from process

to process, there is no general design framework specified for the Workflow Executor.

4.4. Another Look at the Architecture

We have examined different components of our architecture in association with
the request processing cycle. We would like to demonstrate how these components
work together by using the purchase reimbursement process presented at the
beginning of this chapter.

Let us assume that an employee A submits a reimbursement form whose value
exceeds $200 to the division manager on August 4, 1997. The form passes through
the Controller object in which the business rule evaluator determines the type of a
request to which the reimbursement form belongs and stores the parametric values of
the form in the Request Information Repository. Then, the evaluator examines
business rules which correspond to the submitted request. Based on the parametric
values of the form and a current process state, the evaluator finds that this is a form
whose amount exceeds $200. It instructs lthe Workflow Executor to generate a
request to the division manager for approving the form within five calendar days

starting August 4, 1997. The Executor sets a time event which triggers the evaluator

to examine the approval status of the form on August 8, 1997. The Executor also

updates the Process State Repository to record when the form was sent to the division
manager from the request and the recipient of the form. It also writes to the Request
Information Repository the request that it generated for the manager. After the
manager has approved the form, his/her approval prompts the evaluator to look up
other business rules which determine the next action of the Executor based on the
approval status of the form. The evaluator directs the Executor to notify the requester
of the approval status if the form is rejected. If the form is approved, the evaluator,
according to the business rules, will generate another request to corporate accountant
for approving the reimbursement request. Similar tasks will be performed by the

Executor following the instructions of the evaluator.

4.5. Summary

The architecture of our workflow management system is quite straightforward.
Since all controlled requests must pass through the Controller object which acts on the
requests in accordance with business logic, we are only concerned with the
architecture of the Controller object. Our approach to developing the architecture of
the Controller is to first understand how the Controller processes an incoming request
in the request processing cycle. Then, we explore what basic information the
Controller needs in the cycle. This information includes business rules, information
about incoming request instances, process state information, and request type
definition. Finally, we introduce the Business Rule Evaluator and the Workflow
Executor in our architecture. These two units play different roles in processing

information in the request processing cycle. The Business Rule Evaluator is used for

79

accepting and retrieving information necessary for evaluating business logic stored in

the business rule repository. The Evaluator also instructs the Workflow Executor to

| perform actions in accordance with the business rules. While different process
domains may require different designs and implementations of the Workflow Executor,

the design of the Evaluator should remain independent of the process domains.

5. The Implementation of the Object-Oriented Workflow
Management System (OOWMS)

5.1. Introduction

The objective of this chapter is to show how the implementation architecture
presented in Chapter 4 can be implemented using existing technologies. We will
explore topics which include the choice of development platform, the mapping of the
architectural components to the facilities of the recommended development tool, and a
sample workflow application. During the course of our discussion of the above topics,

we will also identify the gap between the architecture and the actual implementation.

5.2. Development Platform

To determine the development platform for the architecture, we must
understand what the current technologies can offer. In chapter 2, we briefly looked at
some groupware products ranging from Lotus Notes, which implements a proprietary
client-server protocol, to Web-based solutions such as Netscape’s SuiteSpot which
relies on the World Wide Web’s open specifications. According to Ginsburg and
Duliba [1997], the Web offers a variety of toolkits for application development. Users
of Web applications only need the Web browsers, also known as “thin clients”, to run
the applications. These browsers are freely available on the Internet and support
various operating systems such as Microsoft Windows, OS/2, MacOS, and UNIX.
However, the Web technology does have weaknesses. For instance, the Hypertext
Transfer Protocol (HTTf) which allows users to serve and browse distributed

hypermedia documents on the Internet is “inherently stateless” [Ginsburg, et. al.,

81

1997). Web servers keep “no memory of the clients’ activities in prior sessions” [p.
207]; however, the state of client users is “crucial for security and collaborative work
across sessions” [p. 207]. Another weakness is that there is a lack of agreement on
security standards for the Web [Ginsburg, et. al., 1997]. Despite its proprietary design
philosophy, we have selected Lotus Notes 4.1 to be our development platform because
it offers an integrated development environment with a strong built-in security model.
Notes provides agent facilities which facilitate the tasks of automating a process. It
also offers a messaging system which allows users to communicate with others via
electronic mail. To address the need for supporting open Internet standards, Notes
moves toward compatibility with the HTTP and mail protocols by introducing

Domino, which is a web server that integrates the Notes databases into the Web.

5.3. Mappings of the Architectural Components to Notes Facilities
The following table summarizes the mappings of the implementation

architecture proposed in Chapter 4 to the Notes development environment.

Architectural Components Notes Facilities

Process Domain Shared Database

Request Type ' , Document Class

Request Instance Document

Controller Object Business Controller Object Agent

¢ Business Rule Evaluator e Eval Module written in LotusScript

o Workflow Executor o Executor Module written in
LotusScript

Clock Object Clock Object Agent

Business Rule Repository Business Rules Documents

Process State Repository Workflow State Documents

Request Information Repository Request Information Documents

Table 5-1 Mappings of the Architecture to Notes Environment

A process domain corresponds to a shared database which contains its own definitions

82

of document classes and other corresponding parts of the architectural components. A
request type resembles a document class which specifies the information requirement
of a request; a request instance is equivalent to a document. The following sections

explain the details of the other components presented in Table 5-1.

5.3.1. The Controller Object and the Business Controller Object Agent
The Controller object is implemented as a Notes agent, namely the Business
Controller Object. Figure 5-1 illustrates the Business Controller Object Agent which

can be triggered manually by users.

e
R S R, [Teiusaesiradadeiddstan st

T,
PR T K EEN

RN EE b e

T AT rrereet
R xxxxxxxxnxfzxtx S
PR STRG e aR:

Dim Evaluasted?ime As New NotesDataTime"Today”)
Set fnalseasion » New NotesSeson
D s:::innl

yrxuinvyd Ny

V:§§45

Figure 5-1 The Business Controller Object Agent
The agent is written in LotusScript, a Visual Basic-like scripting language. It contains

two main modules: the Eval and Executor modules; the modules were entered in the

83

script panel. These modules serve the functions of the Business Rule Evaluator and

the Workflow Executor presented in Chapter 4.

5.3.1.1.The Business Rule Evaluator and the Eval Module

When the Controller Agent is triggered, its Eval modﬁle looks at a submitted
document (request) and evaluates all the business rules stored in a Notes database.
The module invokes the rules by combaring the parameters of the rules to the field
names of the document. If not all the parameters of a rule exist in the document, then
the rule will be ignored. This rule selection mechanism requires unique field names for
all document classes. The module not only retrieves the values from the document
based on the parameters of a rule, but it also accepts complex conditional expressions.
The flexibility to evaluate complicated expressions gi\)es our system the potential to be

used in automating complex processes.

5.3.1.2.The Workflow Executor and the Executor Module

The Executor Module, like the Workflow Executor, obtains an instruction
from the Eval module which passes the THEN clause as a string value to the Executor
module if a rule is evaluated to be true. The actions specified in the THEN clause are
defined as subroutines in the Business Controller Object Agent at design time. The
Executor module parses the passed string value and calls the subroutines that match
the names of the actions.

Tt is important to note that the Eval module is reusable; in other words, it can

be used in different process domains. The action subroutines in the Executor module,

however, may vary from process to process.

5.3.2. The Clock Object and the Clock Object Agent

In the architecture, the Clock object accepts requests from the Controller
object; howgver, in the Notes environment, the Clock Object Agent runs itself
Vperiodically (See Figure 5-2).

A ' AR
Pt PR
it

.(\24‘

R
R
N“"‘!{'ﬂj i

e 2
o e bovoumeiine Ao e e o oareaaon oy a ey A ot e
e

S LR A s

ipdebatalE

53
T BT A0S A RS RA SIS YN DSBS

R FRIHTL

cemniy Tt o o s o
TN T T R P S TR T
S AR SY ki

Figure 5-2 The Clock Object Agent
The interval at which the agent is triggered is specified by application developers at
design time. Once the agent is triggered, it initiates the Business Controller Object
Agent which may take actions depending upon the business rules and the state of a

process.

5.3.3. The Business Rule Repository and the Business Rule Documents

A business rule document includes the If and Then fields which correspond to
the data definitions of the Business Rule Repository introduced in the previous
chapter. The If field accepts any compariéon expressions which can be a set of
conjunctions, disjunctions, or both. The conjuncts of a conjunction are separated by a

keyword “AND” and the disjuncts of a disjunction by “OR” (See Figure 5-3).

T (Untitled) - Lotus Notes

Business Rule

{F: ManagerApproval = Approvad AND Deadline »= CurentSystemDate AND WorkStatus = Pending
Then: MANAGER_NOTIFY_REQUESTOR

Figure 5-3 If and Then Fields in a Business Rules Document
When a rule is evaluated, it is parsed into substring values by the Eval module. Then,
the substring values will be examined if they refer to the field names of the forms; the
literal values such as a number, a string constant, or a date; logical comparison
operators; or the conjunction or the disjunction keyword. If the substring value refers
to the field name of a form, the Eval module will retrieve the value of that ﬁeld for

evaluation. The Then field allows a list of actions which are defined in the Business

Controller Object Agent as subroutines.

5.3.4. The Process State Repository and the Workflow State Documents
Whenever the Business Controller Object Agent acts on a request, a workflow

state document is created and filled with information about a process. Figure 5-4

shows the workflow state document which contains the information specified by the

Process State Repository in Chapter 4.

Untitled} - Lotus Notex

Workflow State Information

Request Referenced " VNGG-SLCOW2

Request ID# TYNGG-SLCIWZ

Croated Time: * 8/26/97 ,

Evaluated Time: ¥ 8/26/97 4

Sent Timed ™ &/26/97

Sender# ¥ Victor Ng

Receivers ¥ CN=Samson HuO=UBC_Commerce ;

Figure 5-4 A Workflow State Document
The Request Reference field indicates the identification number of the original
request submitted by an external object. The Request ID field simply refers to the
request the Business Controller Object Agent has acted upon. The Sent Time field

stores the information about when a request is sent from one party to another. The

87

Sender and Receiver fields are self-explanatory. Even though the Created Time and
the Evaluated Time field are not specified in the architecture in Chapter 4, they are

used here to keep track of when a request is generated and evaluated.

5.3.5. The Request Information Repository and the Request Information
Documents

We standardize the interface between the users and the system by using forms,
namely Request Information documents. The documents created in these forms
correspond to requests in our workflow model. For instance, in the purchase
requisition process, the requests sent by the requesters and by the internal objects can
be implemented as different Request Information documents. The purchase requisition
form can be one class of the Request Information document; the approval status can
be another. In order for the users and the system to trace an original request
document which triggers a process, an id is assigned to the request document and
copied to other request documents as a result of the original request. In the next

section, we will discuss how the requisition process can be automated in our system.

5.4. Workflow Application: A Purchase Requisition Process
We implemented our system to apply to a hypothetical purchase. requisition
process.
In order to purchase an item, an employee must submit a purchase requisition
(PR) form to a division manager for approval. If the requested items are
computer equipment, the requester must first obtain approval from the computer

equipment manager and then the division manager. The person who approves the

Jform must inform the requester of the approval status. All forms must be

approved by the recipients of the forms within three calendar days; otherwise, the
Jforms will be assumed to have been rejected.
The OOEM model for the process, the model with the Controller object, the Object
Activity Templates for the internal objects, and the control schema for the process are
plresented in Appendix H.
Figure 5-5 shows that all Business Rules documents which contain information
transferred from the control schema. This information was translated in such a way

that it can be interpreted by the Business Controller Object.

ManagarApproval = Approved AND Deadline MANAGER_NOTIFY_REQUESTOR
»= GurenmSystemDate AND WorkStatus =

Pending

ComputerManagerApproval = Approved AND CMANAGER_TO _MANAGER
WorkStatus = Penting AND Deadline >=

CurrentSystemDate

CompuleranagerApproval = Disapprovad ANAGEH_NQTIF Y_REQUEST O

D WorkStatus = Fending AND Deadline
b= CurrentSystemDate

Reques_itam = computer AN EQUESTOR, SEND. 10 ™R
RequestPrograssStalus = Begin Action

Request_tem = non-cemputer AND REQUESTOR_SEND_TO_MANAGER
RequestProgressStalus = Begin usiness rule

ManagerApproval = Disapproved AND MANAGER_NOTIFY_REQUESTOR
Deadline »= CuirertSystemDate AND
WorkStalus = Pending

Figure 5-5 The Business Rules Documents for the Requisition Process
Three document classes were created as request types of the process. These classes
are the requisition form (See Figure 5-6), the approval form for the division manager,

and the approval form for the computer manager.

el

et el i

T

Rergwss&atus i

T T
A S N T S S

R

G- P & il % g &% G %iﬁ’ % (
AT ¥ 2 3 o -)
Fiages : 3 e SN Sh: LGN T Cl1s £
A e 1ot 4t b i : 5 i3 3 ; £ibseedieablisdicd
i = L e g ey R AL
el
SO
trehsiere e
i

Figure 5-6 A Requisition Form
The requisition form carries information ranging from a requested item, the amounts of
the item to the process state information. The approval forms belongs to a response
type of the Notes documents. The documents of these forms cannot be created alone;
they must be based on parent documents which, in this case, are the documents of the
requisition form. The approval form for the computer manager can only be accessed
by a user whose role is a computer manager in the database. The role of users can be

defined in the Access Control List, as shown in Figure 5-7.

90

s

i d i : u,; :‘“ 5 "__. ARA &
Defaul: o Desver]
Hf LocalDomainServers ! :
HH OtherDomainServers
& Samson Hui/UBC_Commeice
* Wictor Ng

A 3
EITLENLTILLIIULY!

Figure 5-7 The Access Control List Dialogue Box
In thé requisition process, when a user submits a PR form, a requisition request
should be generated to either the division manager or the computer manager according
to a requested item. Figure 5-8 shows that a PR form whose requested item is a
computer-related item was created; the deadline for approving it was also calculated

by the Business Controller Object Agent.

91

oo Putchase Requizition - Aequest Infoimation - Lotus ancs

f"ﬁfiﬁ?wﬁ‘“s R e R R P oy

x;gn 7 :«,*;

r&t

.........._.-._......
B
Ady

; rwff"‘!d

RN

Figure 5-8 A Requisition Form for a Computer-Related Item
The Agent also sent a message to the computer manager according to business rules
(See Figure 5-9) and created a Workflow State document (See Figure 5-10). The
computer manager can go to the form by clicking on the icon in the message. Once
the computer manager reads the form, he/she can create an approval document. If
he/she approves the request, he/she can simply fill in “Approved” in the Approved field
and submit it to the Controller Agent which sends another message to the division
manager and updates the Workflow State information (See Figure 5-11). The
manager issues the final approval of the request and submits the approval to the

Controller Agent which informs the requester of the decision by electronic mail.

Victor Ng @ USC_Commene Click on this icon to
o jump to the PR form
Subjeck New Purchass Racuast
This is a qeques? sent by Samson Hu
Below is the brief dasoription of the requested item

Mouse

Papgrerirrciosss

9/30/97 Sarmson Mui Victor Ny

Referenced SHU IUEBIM
Ragquest 1D# SHULIMEBIM
Created Tima: 9/30/97

Figure 5-10 A Workflow State Docﬁment Created by the Controller Agent

v G Folders and Viewe s Hah
Q, Burhess flules v SHUI 2MEBJM

& sz‘* * SHULSHEBIM /3057 9097
Q r— T * 2 /30597 14726 29A30/97
T Agenis
B Design -
Workflow State Information
Request Refarenced SHUI-SMERM o
Bequest I0# VNGG-IMECK)
Created Tmwe: 9/3087 1:47:25 \M r
Evaluated Time: 2/90/97 s
Sent Tirne# 9/30/97 :
Senderd CN=Nictor Np#OU=MIS/OUzDeanOffice/O=UBC._ Convrerce 4
Recsiver$ CN=Samson Hui/0=UBC_Commerce o

s

Figure 5-11 A Workflow State Document After a Message Was Sent to the
Division Manager

It is important to note that the Controller Ageht is triggered by the Clock
Object Agent once a day. The Controller Agent compares the deadlines of all PR
forms to the current system date to determine if any forms are due. If a form is due,
the Controller Agent, according to a business rule, will reject the form, inform the

requester, and update the Workflow State Information.

5.5. Limitations of the Implementatibn

There is still a gap between the system and the architecture. First, our
architecture allows communication between the Clock object and the Controller
object. The Controller can request the Clock to remind it of specific time occurrences.

However, the Clock Object Agent in our system cannot be triggered at a specific time

defined by the Business Controller Object Agent. Instead, the Clock Object

Agent triggers the Business Controller Object Agent at certain time intervals specified
by application developers but not by the Business Controller Agent. . Second, the
Business Rule Evaluator in our architecture may refer to the state information about a
process from the Workflow State Repository when it evaluates business rules. In our
workflow system, the Business Controller Object Agent can simply update the state
information in the Repository, but it cannot cross-reference the information to evaluate
the business rules. All relevant state information is carried by a request. Finally, the
conjuncts and disjuncts in a business rule in our system are limited to the field names in
the same document type. For instance, a rule may refer to a certain value of a
document, but it cannot simultaneously refer to another value of another document of

a different document class.

5.6. Summary

We have discussed the pros and cons of Web-based development platforms
and Lotus Notes in this chapter. The reason that we chose Notes as our
implementation platform is that Notes provides a mature development environment
and facilities that mesh well with the architectural components of our Object-Oriented
Workflow Management System (OOWMS). To test our system, we developed a
workflow application to automate the purchase requisition process. In spite of the fact
that there are limitations to our implementation, the demonstration of the application
proves that 6ur architecture, derived froml a set of well-formulated ontological

concepts and principles, suggests a new way of building a workflow system.

95

6. Conclusion and Future Research

6.1. Thesis Summary

The central theme of this thesis is to suggest an architectural blueprint for a
workflow management system. We developed this blueprint by exploring the concepts
of workflow management and ontologically developed modelling methodology, the
Object-Oriented Modelling (OOEM) method. We discussed what workflow
management is and examined some common workflow terminology by following the
specifications proposed by Workflow Management Coalition (WMC). We also
reviewed the WIMC’s Workflow Reference Model so that we could achieve a better
understanding of what workflow products should offer. Different workflow modelling
techniques were compared. These techniques can be divided into two types: the
traditional approach and the object-oriented approach. While the traditional approach
focuses on the informational and functional aspects of a process, the object-oriented
approach concentrates on the interactions between objects and captures the
organizatfonal aspects of the process.

Since OOEM provides a “natural view” of an organizational process, and since
it 6ﬁers no support for workflow constructs, we extended it by introducing two
different workflow constructs: activity and business rule. The extension of OOEM,
namely the Object-Oriented Workflow Model (OOWM), reflects our view of the
organizational process in an object-oriented context. We argued that a service

consists of an ordered set of activities which are governed by business rules defined by

an organization. These rules only control when and by whom a specific activity

should be performed. We also extended the notion that an activity within a service can
generate requests or responses to other objects.

The process of creating an OOWM was introduced; this process is referred to
as the OOWM method. The method consists of two general steps which include the
construction of an OOEM model for a process under study and the representation of
the internal characteristics of objects by means of Object Activity Templates (OAT).
In the first step, a request propagation algorithm, proposed by Zhao [1995], can be
used to identify objects, their services, interface and internal attributes, and request of
a process. The second step divides services into activities and identifies information
about company policies which govern these activities. All this information can be
represented in the OAT. The OAT is derived from the Zhao’s Internal Object
Template [Zhao, 1995] and introduces three additional columns: pre-condition,
activity, and termination-condition columns. With these columns, the OAT is able to
show the execution sequence of work within an object. Because of the ability of the
OAT to describe the task structu‘re, we also drew a relationship between an OOWM
and an activity-based diagram. We found that an OOWM can be used to derive an
activity diagram, but the reverse is not true.

We proposed an implementation model for an Object-Oriented Workflow
Management System (OOWMS) which enacts a process described in our workflow
model. The objective of the implementation model is to identify the general
functionality and critical components of the OOWMS. We introduced the Controller

object which monitors and controls the interactions among objects based on business

97

rules. Because objects can independently interact with each other, we presented a
control schema which specifies which requests should be controlléd by the Controller
under organizational policies. Based on the implementation model, we proposed the
architecture of the Object-Oriented Workflow Management System (OOWMS). We
presented a request processing cycle, an algorithm taken by the Contréller object to
process an incoming request. In the request processing cycle, the Controller fetches a
request, decodes it, retrieves information carried by the request, evaluates business
rules based on the request information and state information about a process, and
takes actions in accordance with the result of this evaluation. The Controller object
consists of two components: the Business Rule Evaluator and the Workflow Executor.
The Evaluator is responsible for evaluating the business rules and instructing the
Executor to perform work according to the rules. Different kinds of information are
also required for the request processing cycle; such information includes the state
information about a process, the information carried by requests, the business rules,
and request types.

Finally, we used Lotus Notes to build a simple workflow system by following
the architecture. The Notes facilities seem to mesh well with the identified
architectural components. We showed that the system is functional by applying it to a

hypothetical purchase requisition process.

6.2. Contributions

This thesis continues previous research efforts focused on developing an

ontologically-based Object-Oriented Enterprise Modelling (OOEM) method. It

addresses the inability of OOEM to capture the task structure at an object level by
proposing workflow constructs to OOEM so that a more complete model is
formulated. We believe that our OOWM captures the informational, furictional, and
organizational aspects of a process.

Another major contribution of the thesis is the architecture of the OOWMS
which enacts an OOWM. Since the architecture is derived from purely object-oriented
thinking, a workflow system following this architecture can be very flexible and
adaptable to fit into a constantly changing business environment. The architecture
also sheds some light on how a workflow system can be developed in a heterogeneous
business environment in which business divisions or departments are autonomous.

Finally, our prototype of a workflow system suggests another approach to
building workflow applications in the Notes environment. Traditionally, Notes
developers have been hardcoding business logic into their applications. Our prototype
shows that it is possible to separate the business logic from programming codes and to

allow non-technical users to customize the rules.

6.3. Limitations and Future Research

Several research issues need to be addressed. First, the number of cases to which the
OOWM method and the architecture has been applied is very limited. Case studies
should be conducted to further examine the practicality of the method and the
architecture. Second, this thesis does not address the technical aspect of how the

objects should communicate with each other. How can the Controller object be

introduced into a technologically heterogeneous environment? Even though some

technological initiatives such as CORBA and DCOM are currently being taken by
research institutions and computer vendors, the question of how these initiatives may
be applied to our architecture should lead to future research. Finally, CASE tools can
be developed to support the construction of an OOWM and to generate workflow

implementations on the basis of workflow specifications.

100

Bibliography

1.

10.

11.

12.

13.

Allaire Corporation. (1997). Cold Fusion 3.0 Home Page.
http://www allaire.com/products/coldfusion/30/index.cfm.

Amberg, M. (1997). “The Benefits of Business Process Modeling for Workflow
Systems”. Workflow Handbook 1997. Edited by Peter Lawrence. England: John
Wiley & Sons Ltd. p. 61-68.

. Angeles, P.A. (1981). Dictionary of Philosophy. New York: Harper Perennial.

Coad, P, and Yourdon, E. (1991). Object-Oriented Analysis, 2™ edition.
Englewood Cliffs, New Jersey: Yourdon Press/Prentice Hall.

Coad, P., and Yourdon, E. (1991). Object-Oriented Design, 2" edition.
Englewood Cliffs, New Jersey: Yourdon Press/Prentice Hall.

Curtis, B., Kellner, M., and Over, J. (1992). “Process Modelling”. Communication
of the ACM, Vol. 35, No. 9. p. 75-90

Georgakoopoulos, D., Hornick, M., and Sheth, A. (1995) “An Overview of
Workflow Management: From Process Modeling to Workflow Automation
Infrastructure”, Distributed and Parallel Database, No. 3, p. 119-153.

Ginsburg, M. and Duliba, K. (1997) “Enterprise-Level Groupware Choices:
Evaluating Lotus Notes and Intranet-Based Solutions”. Computer Supported
Cooperative Work: The Journal of Collaborative Computing, No. 6. p. 91-115.

Grasso, A., Meunier, J.L., Pagani, D., and Pareschi, R. (1997). “Distributed
Coordination and Workflow on the World Wide Web”, Computer Supported
Cooperative Work: The Journal of Collaborative Computing, No. 6. p. 175-200.

Greene, C. (1995). “Workflow Management 101, Lotus Notes Advisor, Vol. 1,
no. 1, Premiere Issue, p. 34-39.

Hales, K., and Lavery, M. (1991). Workflow Management Software: the Business
Opportunity. London, UK: Ovum Ltd.

Integrated Definition for Function Modeling (IDEF0). Federal Information
Proceeding Standard Publication 183, December 12, 1993.

Jablonski, S., and Bussler, C. (1996) Workflow Management: Modeling Concepts,
Architecture and Implementation. UK: International Thomson Computer Press.

101

http://allaire.com/product

- 14. Jacobson, L, Ericsson, M., and Jacobson, A. (1995). The Object Advantage -
Business Process Re-engineering with Object Technology. ACM Press. Addison-
Welsey Publishing Company.

15. Jung, D. (1997). Object-Oriented Modeling: From Analysis to Logical Design.
M.Sc. Dissertation. The University of British Columbia.

16. Kobielus, J. G. (1997). Workflow Strategies, CA: IDG Books Worldwide, Inc.

17. Laamanen, M. T. (1994). "The IDEF standards", in: Methods and Associated
Tools for the Information Systems Life Cycle, A.A. Verrijn-Stuart and T.W. Olle
(Editors), Elsvier Sciences B.V. (North Holland). p. 121-130.

18. Lakin, R., Capon, N., and Botten, N. (1996). “BPR Enabling Software for the
Financial Services Industry”, Management Services, March , p. 18-20.

19. Lotus Corporation. (1995). Lotus Notes “White Paper”.
http://www lotus.com/bible/.

20. Lotus Corporation. (1997). Domino Home Page.
http://www?2 lotus.com/domino.nsf.

21. Mano, M. M. (1993). Computer System Architecture, 3" edition. New Jersey:
Prentice Hall. '

22. Medina-Mora, R., Winograd, T., Flores, R., and Flores, F. (1992). "The Action
Workflow Approach to Workflow Management Technology," Proceedings of the
Conference on Computer-Supported Cooperative Work (CSCW), New .
York:ACM. p. 281-288.

23. Netscape Communications Corporation. (1997). Netscape Server Central -
SuiteSpot Home Page.
http://www.netscape.com/comprod/server_central/product/suite_spot/index.html.

24. Novell Inc. (1997). Groupwise Home Page. http://www.novell.com/groupwise/.

25. Oracle Corporation. (1997). Web Developer Suite Home Page.
http://www.oracle.com/products/tools/WDS/.

26. Orfali, R. Harkey, D., and Edwards, J. (1996). The Essential Distributed Objects
Survival Guide. Canada: John Wiley & Sons, Inc.

27.Ruiz, D. (1997). “Growth and Challenges in Enterprise Workflow”. Workflow
Handbook 1997. Edited by Peter Lawrence. England: John Wiley & Sons Ltd. p.
223-230.

102

http://www2.Iotus.com/domino.nsf
http://www.netscape.com/comprod/server_central/product/suite_spot/index.html
http://www.novell.com/groupwise/
http://www

28. Rumbaugh, J., Blaha M., Premerlini W., Eddy F., and Lorensen W. (1991).
Object-Oriented Modeling and Design. Englewood Cliffs, New Jersey: Prentice
Hall.

29. Sprague, R. H., Jr, and McNurlin, B. C. (1993). Information systems
Management In Practice, 3" edition. New Jersey: Prentice Hall.

30. Stark, H. (1997). “Understanding Workflow”. Workflow Handbook 1997. Edited
by Peter Lawrence. England: John Wiley & Sons Ltd. p. 5-25.

31.Tan, W. (1997). A Semantically-Enhanced Object-Oriented Case Tool For
Enterprise Modeling. M.Sc. Dissertation. The University of British Columbia.

32. Wand, Y. (1989). “A Proposal for an Formal Model of Objects”, Object-Oriented
Concepts, Language, Applications, and Database. Kim, W., and Lochovsky,
F.H.. New York: ACM Press/Addison-Welsey Publishing Company. p. 537-599.

33. Wand, Y., and Weber, R. (1990). “An Ontological Model of an Information
System”, IEE Transactions On Software Engineering. Vol. 16. No. 11. p. 1282 -
1292.

34. Wand, Y., and Woo, C. C. (1993). “Object-Oriented Analysis - Is It Really That
Simple?”, Proceedings of the 3° Workshop on Information Technology and
Systems. December. Orlando, Florida. p. 186-195.

35. Wang, S. (1994). “O0O Modeling of Business Processes”, Information Systems
Management, Spring, p. 36-43.

36. Workflow Management Coalition. (1997). Workflow Handbook 1997. Edited by
Peter Lawrence. England: John Wiley & Sons Ltd.

37. Yourdon, E. (1989). Modern Structured Analysis. New Jersey: Prentice Hall. p.
259-274.

38. Zhao, H. (1995). Object-Oriented Enterprise Modeling. M.Sc. Dissertation. The
University of British Columbia.

103

Appendix A - Graphical Constructs of the Use-Case Model

© Use case
0
A

- © Communication

Use / "R\Uses Uses

> IO
!

>

Extends

104

Appendix B - Graphical Constructs of the Object Model

Interface Object

Control Object

Entity Ohject.

Subsystem

communication

acquaintance
consistOf

inheritance

communication

dependsOn

105

Appendix C - Guidelines for Constructing the Models of
Rumbaugh’s OMT*

1. Determine the problem domain
2. Construct an Object Model

e Identify object classes

‘e Begin a data dictionary containing descriptions of classes, attributes, and

associations

e Add associations between classes

e Add attributes and links

e Organise and simplify object classes using inheritance

e Test access paths using scenarios and iterate the above steps

e Group classes into modules, based on close coupling and related functions
3. Develop a Dynamic Model

e Prepare scenarios of typical interaction sequences

e Identify events between objects and prepare an event trace for each scenario

e Prepare an Event Flow Diagram for the system

o Develop a state diagram for each class that has important dynamic behavior
4. Construct a Function Model

e Identify input and output values

® The guidelines are directly taken from Zhao’s Object-Oriented Enterprise
Modeling in which the steps to constructing the models of OMT are summarised.

106

e Use data flow diagrams as needed to show functional dependencies
e Describe what each function does

o Identify constraints

e Specify optimization criteria ’

5. Verify, iterate and refine the three models

107

Appendix D - Appendix D - An OOEM Internal Object Template
(10T)

/ Ohject Name \

. Interface . Internal Request

Services Attributes Attributes Generated

Incoming | Intemal At- A Request Gener-
. Interface | tributes to €CeS5 | ated From Ser- Obiect 3

Serrices 1 Mode .)

Attrbutes | Support vice 1
Service 1
Returning Request Gener-
il;l::g:re aifed fmm Ser- Object 4
es vice
Seavices 2 _/

108

Appendix E - Summary of Wand and Woo’s Modeling Rules

The modelling rules proposed by Wand and Woo [1993] are summarized in this
section. They provide fundamental guidelines for constructing an Object-Oriented
Enterprise Modelling (OOEM) model.

1. The scope identification rule

This rule defines the boundary of an enterprise model. It separates activities within

the system from those in the external environment. The environment is

represented by the external objects or clients of the system. The interaction
between the environment and the system is modelled by an external request. When
the system receives the request, its state becomes unstable until such a request is
satisfied.

2. The object identification rule

This rule identifies things that should be modelled as objects. An object is included

if and only if it provides or request at least one service. The rule reflects the

principle that every change is tied to a change of state of things and that everything
changes. An internal object is an object that is part of the system and provides at
least one service. An external object belongs to the environment that interacts
with the system.

3. The service inclusion rule
A service is included in an object if and oniy if it is invoked by at least one request

in the system as defined by Rule #1. Such a request can be generated by either an

109

external object or an internal object. Services reflect internal transformations

(state changes) of things.

. The attribute inclusion rule

This rule determines which object attributes should be included in a model. An
interface attribute must be used or affected by at least one service, and knoWn to at
least one other object. An internal attribute must be affected by at least one
service and be unknown to other objects.

. The attribute ownership rule

This rule reflects the ontological principle that properties always belong to things.
This rule identifies the owner of the attribute. When an object modifies the
attribute via its service, that object is known as the custodian of the attribute.
Other objects can only obtain or modify the value of the attribute through the
actions of the custodian object. This rule ensures that every attribute belongs to a
specific object.

. The aggregation and decomposition rule

This rule determines when objects, as defined in Rule #2, should be combined
(aggregated) and decomposed in the model. A composite object refers to the
aggregation of the objects. It is included if and only if it provides services that are
not provided by any of its components (its aggregate objects). When modelling
the properties of the composite object, one must include those properties not

modelled in components. The rule echoes the ontological principle that a

composite thing must have emergent properties.

110

7. The generalization and specialization rﬁle
This rule states that a general object class can be created if and only if two or
more oi)ject classes provide one or more common services. This general object
class is called a super-class of the original object classes. The original object class
is referred to as a sub-class of the general object class. All services providéd by
the super-class should be eliminated from the sub-classes which can inherit those
services from their super-class and which entail different services and attributes

from their super-class.

111

Appendix F - Bunge’s Ontological Constructs

This appendix summarizes Bunge’s ontological constructs [Bunge, 1977,

1979]. The summary of the constructs is taken from Zhao [1995], much of whose

work is largely based on Bunge’s.

Static Model of an Substantial Individual

Thing. A thing is defined as an entity or substantial individual endowed with all its
properties. The world is made of things that have properties.

Bunge distinguishes thing and constructs. Constructs are creations of the human
mind. There are four basic kinds of constructé: concepts, propositions, contexts,
and theories. Constructs do not have all the properties of things. For example,
sets add and intersect but do not move around, have no energy and né causal
efficacy, etc. Constructs, even those representing things or substantial properties,
have a conceptual structure, not a material one. In particular, predicates and
propositions have semantic properties, such as meaning, which is a non-physical
property.

Properties, Attributes, and Functional .Schema. Properties of substantial
individuals are called substantial properties._ Properties of things can be intrinsic or
mutual to several things, e.g. if a person is employed by a company, employment is
a property of both the person and the company. A property is modelled via an
attribute function that maps the thing into a set of values. Attributes are

characteristics assigned to things by humans; therefore, they reflect the view point

of an individual observer. An attribute can be represented as a function from a set

112

of things and a set of observation points into a set of values. This is the basis for
defining a model of a thing as a functional schema: a functional schema is a set of
attribute functions defined over a certain domain, usually time. Similar things can
be modelled using the same functional schema.

Composite things. Composite things are things composed of other things. More
precisely, an individual is composite if and only if it is composed of individuals
other than itself and the null individual. A composite thing has hereditary
properties and emergent properties. A property of a composite thing that belongs
to a component thing is called a hereditary property; otherwise, it is called an
emergent property. A composite thing must have an emergent property. The
notion of emergent property is an important assumption in Bunge’s ontology.
According to him, every concrete system is assembled from, or with the help of,
things in the same or lower order genera but possesses properties not available in
the components of the system. The hierarchy of system genera can be
characterised as: physical, chemical biological, social, and technical.

State and Conceivable State Space. Every thing is - at a given time associated
with a given reference frame - in some state or other. The vecior of values for all
attribute functions of a thing is the state of the thing.

The set of all states that the thing might ever assume is the conceivable state space
of the thing.

State Law. A state law restricts the values of the properties of a thing to a subset

that is deemed lawful because of natural laws or human laws. A law is also

113

considered a property of the thing.

e C(lass, Kind, and Natural Kind. A class is a set of things that possess a common
property.

A kind is a set of things that possess two or more common properties.

A natural kind is a set of things that share the same laws.

Things come in natural kinds, i.g. classes of things possessing (“obeying™) the
same laws. A natural kind constitutes a natural grouping because it rests on a set
of laws, but it is not a real thing; it is a construct.

Dynamic Model of a Substantial Individual

e Event. An event is a change in the state of a thing.

In order to keep track of the changes undergone by things, we need the principle
of nominal invariance which states that a thing, if named, shall keep its name
throughout its history as long as the latter does not include changes in natural kind
- changes which call for changes of name.

o Event Space. The event space of a thing is the set of all possible events that can
occur in the thing. Let S(x) be a state space for a thing x. Any pair of points in
this set will unambiguously represent a conceivable event in x.

e Transformation and Lawful Transformation. A transformation is a mapping
from a domain comprising states to a co-domain comprising states.

e History. The chronologically ordered states that a thing traverses are the history
of the thing.

Static Model of System

114

¢ Coupling. A thing acts on another thing if its existence affects the history of the
other things. The two things are said to be coupled or to be interacting.

e System. A set of things forms a system if and only if for any bi-partition of the set,
coupling exists among things in the two sets.

e System Composition. A decomposition of a system is a set of subsystems such
that every component in the system is either one of the subsystems in the
decomposition or is included in the composition of one of the subsystems.

e System Environment. Things that are not in the system but interact with things
in the system are called the environment of the system.

e System Structure. The set of couplings that exists among things in the system
and among things in the system and things in the environment of the system is
called the structure of the system.

e Subsystem. A subsystem is a system whose components and structure are subsets
of the components and structure of another system.

e Level Structure. A level structure defines a partial order over the systéms ina
decomposition to show which subsystems are components of other subsystems or
of the system itself.

Dynamic Modelling of System

e Stable State and Unstable State. A stable state is a state in which a thing,
subsystem or system will remain unless forced to change by virtue of the action of
a thing in the environment (an external event).

o External Event. An external event is an event that arises in a thing, subsystem or

115

system by virtue of the action of some thing in the environment on the thing,
subsysterh or system. The before-state of an external event is always stable. The
after-state may be stable or unstable.

Internal Event. An internal event is an event that arises in a thing, subsystem or
system by virtue of lawful transformations in the thing, subsystem or system. The
before-state of an internal event is always unstable. The after-state may be stable
or unstable.

Well-Defined Event. A well-defined event is an event in which the subsequent
state can always be predicted, given that the prior state is known.

Poorly Defined Event. A poorly defined event is an event in which the

subsequent state cannot be predicted, given that the prior state is known.

116

Appendix G - The Complete OOWM for the Purchase
Reimbursement Process

Request to process a 7
) reimburserment form Division Manager
[Employee (RF) (> $200) . g
™ Request to process RF
Rejection | (Dyvision Reconciliation
Reason Record)
4 Process Request
Request to process Approval
a reirabursement Result N g
form (RF) (<= Request to ap-
$200 4 N prove divisonally
)
Corporate Accountant approved RF
Request to approve RF —
_Apm. g:z;pnol;ate Reconciliation
Result
Process Request
\. v

Figure G-1 Complete OOEM for the Purchase Reimbursement Process

117

Division Manager - DM
Interface Butermal
Aitribwtes Attributes Service
Ratuest to DivisionRec- | 34 . Process Reyuest fixr Roimbuxsement
process RF: | oncilistion
Tterme, Record: Pn. Activily | Tenviration | Requast Raceiver
Amounts, Tteres, Conditions Conditions | Cenrated
Requasted Arounts,
Date, Ry | Rectuasted Amowts> |[DM.1 | |Fomdp- | Regestto | Corporate
cuester " $200 proved or approve Accomtant
quester, Ap- Appmovea | Rejected divisionally
pywdDm- form approved
sion, Ap- RF
13 3 t P ——
Rejection prove Dmcm gpm.
{ P Update Divi-
sion Reconds
Employee
Object
Table G-1 An OAT for the Division Manager
Coxporate Accountant. CA
| Interface uternal .
Attrbutes Atiributes Service
Request to Corporate M Precess Request fir Reinbunsement
| process RF: | Recoxcilie-
Herns, tion Record: Pre. Activity Tenmination | Request Receiver
Amounds, Items, Conditioms Conditions | Generated
Reciested | Amounts,
Date, Re- Requested .
questar Date, Re- m‘h“’" ands <= 1|CA -1 :::::g
1 qusster, Ap- .
> PO F Approve a Rejected
povlDet b
sion, Corpo- >
Al | o Divi il Lo i L ol Al
Rasult orm Ap- :
I sion Ap- sovadby | APmovea | Rejected
DM
CA-1Com- {|CA-3 Update
g%t:r:ﬁi Update Completed
Records
Employes
Object

Table G-2 An OAT for the Corpobrate Accountant

118

Appendix H -The OOEM, OATs for the Internal Objects, and
the Control Schema for the Purchase Requisition Process

g ™
” Computer Equipment
| Requester | R1 Approval Status . Manager

Request for com-]

puter items (PR Request for computer

Form) items

(Equipment List)
Request for nom- Process PR Form
computer items h
(PR Form) Request Approved
' By .Computer
Equipment Mamgy
R2
R3
. .- . \
Division Manager
ApprovalStatus | Request for items
| (Division Budget)
R4 Approval Statss (Requisition Records)
Process PR Form
\.

Figure H-1 The OOEM Model for the Purchase Requisition Process

Appoval C h’olle:";
[Requester | Stk | | Raquest fortime

Raquest | Rogsast for itams Tisme information m |

for iherns (Basiness Rules)

(PR form) (Process State) Roqaest for time

T wotification
Process PRFoEm Tise notificaion
i | Request for
— "] compaterfemns
" Please note that a request .
sent from the Conttoller object i ¢ tor Bt ™
to the Division Manager object Appraval Status omh;’ quip-
canbe aftwo different types of Approval Status ment Menager
requests: a request for non- ” — Raquast for cormputay
computer items and & request Division Manager iters .
approved by the Computer - (Equipmant List)
3 Request for fems
Equipment Manhager (Division Budest) Process PRForm
(Bequisition Becaads) . ~ /
\Pnocess PRqu

Figure H-2 The OOEM Model with the': Controller Object for the Requisition

Process

119

Conputex Equipment Manager - CM CD=Curreni Date DI = Recuesied Data +3 I
Interfice Internal Sexvice
Atixibuies Attributes
Request for | Equipment U Pracess Regquest for Purchase Reguicition '
compu ter | List: Bar .
gmﬁ (PR | Coda , iter, Pre- Activily | Termiration | Request Receiver
o, location Condilions Conditions | Generated
onn &,
ltem,
Arucunts, Re- jtoam=com- ||CM- 1 Request Ap-
quested Daale, puler L—'—l proved ox
Requester ;‘:::" s Rajected
g&‘:g:g Awd“ M ml"“"t ““ Gen- | Approved | Division
ANDCD Generate a Reguest Manager
Apyproval ==DL request
Status Roquest Icm- 3 I)
Rejected N Notiee Genr-
ORCD> seajection no- ated
Requester DL Yce

Table H-1 The Object Activity Template for the Computer Equipment
Manager

120

Division Manager - DM

CD=Currend Date DL = Reguasied Date +3

Intexface Intexmal Sexvi
sxvice
Atiriluies Attrhutes j |
Bél!mttp !lttn- Division M Process Request iy Furchase Regquisition l
items Budget
Form): Pre- Activil Termination | Request Receiver
Form & 4 ques
Ttews, Requisition Condiliony Conditions | Chanorated
Amownls, Records: PR
Reguasted Form #i, Rs- A
- it item = none Foran Ap-
i |emar | e
| W e fuested Date, Approve a Rejected
tet =
ueste F
item = costw
g;&%ﬁ Ttern, Ap- pateranp ||DM-2 Foas Ap-
' proval Decl Formdp |, ves | Bejected
sion, Ap- proved by . ppeove
ékt}:tpl'wd proved Date CM om
v I l
Form Ap- DM -3 Notice Gaser
proved AND A wval Raquest
¢D <DL Ganerataan | ated s::: "
approval
wolice
) [T e pe—
jected OR Gemerate a ated States
CD>DL P
rjection
notice
gﬁ: OR “DM -5 | Update
- mm—
plated va Complated
by o

Table H-2 The Object Activity Template for the Division Manager

121

Request Workflow Business Rule(s) Action(s)
R1 item = computer Sends a form to the Computer
Equipment Manager
RY1’ (immediate | (Request approved or rejected | Informs the requester of the
response to R1) | by the Computer Manager) OR | Approval Status
(the current date > the Rl
submitted date + 3 calendar
days)
R2 The request is approved by The | Sends the approved request to
Computer Manager AND the | the Division Manager
current date <= Rl submitted
date + 3 calendar days
R3 item = non-computer Sends the form to the Division
Manager
R3’ (immediate | (Request approved or rejected | ¢ Informs the requester of the

response to R3)

by the Division Manager) OR
(the current date > the R3
submitted date + 3 calendar
days)

Approval Status
o Updates the
Records

Requisition

R4

(Request approved or rejected
by the Division Manager) OR
(the current date > the R2
submitted date + 3 calendar
days)

e Informs the requester of the
Approval Status

e Updates the
Records

Requisition

Table H-3 The Control Schema for the Purchase Requisition Process

122

