
An Object-Oriented Workflow Management System

by

Samson Hui

B.Comm., University of British Columbia, 1995

A THESIS SUMBITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

THE FACULTY OF GRADUATE STUDIES

(Faculty of Commerce and Business Administration)

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

October 1997

© Samson Hui, 1997

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall hot be allowed without my written

permission. • ' / / . ; • " • •

• Department of ^ tJMOt^^ {

The University of British Columbia ,.-}".':
Vancouver, Canada .

.•ate pel'11 , n : ; • • -

DE-6 (2/88)

Abstract

Since many organizations have been facing pressure to reduce costs, to increase

quality, and to provide rapid delivery of new services and products, they often resort

to optimizing the way they do businesses. The use of workflow systems may improve

the efficiency of an organizational process, thereby reducing costs and increasing

workload capacity. It can also allow people to concentrate on value-added activities

by freeing them from worrying about paper flows, filing, information tracing, and

whether or not certain actions have been taken. Many workflow products, however,

are fundamentally driven by vendor specifications without the support of a well-

developed theoretical foundation. This thesis begins with an introduction of an Object-

Oriented Workflow Model (OOWM). The OOWM extends an ontologically

developed modelling method, Object-Oriented Enterprise Modeling (OOEM), by

including workflow constructs with the purpose of describing the task structure of an

organizational process. It also presents the architecture of an Object-Oriented

Workflow Management System (OOWMS) which enacts the contents of the OOWM.

Finally, based on the proposed architectural blueprint, a prototype of the workflow

system was implemented, by using existing technologies, for a purchase requisition

process.

ii

Table of Contents

ABSTRACT ii

TABLE OF CONTENTS... iii

LISTS OF FIGURES viii

LISTS OF TABLES x

ACKNOWLEDGMENTS x»

1. INTRODUCTION 1

1.1. M O T I V A T I O N 1

1.2. T H E S I S O B J E C T I V E S 2

1.3. T H E S I S O U T L I N E 3

2. INTRODUCTION TO WORKFLOW MANAGEMENT 5

2.1. I N T R O D U C T I O N 5

2.2. W H A T Is W O R K F L O W M A N A G E M E N T ? 6

2.3. W O R K F L O W T E R M I N O L O G Y 8

2.4. T H E W O R K F L O W R E F E R E N C E M O D E L 10

2.4.1. Process Definition Tools 12

2.4.2. Workflow Enactment Service 12

2.4.3. Workflow Client Applications 13

2.4.4. Invoked Applications 13

2.4.5. Administration and Monitoring Tools 14

iii

2 . 5 . G R O U P W A R E P R O D U C T S 1 4

2 . 6 . B U S I N E S S M O D E L I N G T E C H N I Q U E S 1 7

2.6.1. Traditional Modeling Approach 18

2 . 6 . 1 . 1 . Integrated Definition Language 0 (IDEFO) Approach 1 8

2 . 6 . 1 . 2 . ActionWorkflow™ Approach 2 0

2 . 6 . 1 . 3 . State Transition Diagrams 2 3

2.6.2. Object-Oriented (OO) Approach 24

2 . 6 . 2 . 1 . Coad and Yourdon's OOA/OOD 2 5

2 . 6 . 2 . 2 . Jacobson's Use Case-Driven Approach 2 7

2 . 6 . 2 . 3 . Rumbaugh's OMT 2 8

2 . 6 . 2 . 4 . The OOEM Approach 2 9

2 . 6 . 2 . 4 . 1 . OOEM Constructs 3 0

2 . 6 . 2 . 4 . 2 . Request Propagation 3 7

2 . 6 . 2 . 4 . 3 . OOEM Representation Technique 3 7

2 . 6 . 2 . 4 . 4 . A Shortcoming of OOEM 3 9

2 . 7 . S U M M A R Y 3 9

3. T H E O B J E C T - O R I E N T E D W O R K F L O W M O D E L41

3 . 1 . I N T R O D U C T I O N 4 1

3 . 2 . T H E O B J E C T - O R I E N T E D W O R K F L O W M O D E L (OOWM) 4 2

3.2.1. Constructs in the Object-Oriented Workflow Model (OOWM) 45

3 . 2 . 1 . 1 . Activity 4 5

3 . 2 . 1 . 2 . Business Rules 4 7

iv

3.2.1.3. Object Activity Template (OAT) 48

3.2.1.3.1. From an OOWM to an Activity Diagram 51

3.3. T H E OOWM M E T H O D 53

3.3.1. Steps to Building an OOWMfor an Organizational Process 53

3.3.1.1. Constructing an OOEM Model 54

3.3.1.2. Creating an OAT for an Internal Object 55

3.4. A N I M P L E M E N T A T I O N M O D E L O F A N O B J E C T - O R I E N T E D W O R K F L O W

M A N A G E M E N T S Y S T E M 56

3.5. C O N T R O L L E R 58

3.5.1. Control Schema 59

3.5.2. Access to Workflow Data in Other Processes 61

3.5.3. Time Control 63

3.6. S U M M A R Y 65

4. A N I M P L E M E N T A T I O N A R C H I T E C T U R E O F T H E O O W M S 6 7

4.1. R E Q U E S T P R O C E S S I N G C Y C L E 67

4.1.1. Request Instance Identification 71

4.2. I N F O R M A T I O N R E P R E S E N T A T I O N 72

4.2.1. Request Type Definition 72

4.2.2. Business Rules 73

4.2.3. State Information about a Process and Information about
Requests 74

4.3. L O G I C A L C O M P O N E N T S O F T H E C O N T R O L L E R O B J E C T 76

4.3.1. Business Rule Evaluator 76

V

4.3.2. Workflow Executor 77

4.4. A N O T H E R L O O K A T T H E A R C H I T E C T U R E 78

4.5. S U M M A R Y 79

5 . T H E I M P L E M E N T A T I O N O F T H E O B J E C T - O R I E N T E D

W O R K F L O W M A N A G E M E N T S Y S T E M (O O W M S) 8 1

5.1. I N T R O D U C T I O N 81

5.2. D E V E L O P M E N T P L A T F O R M 81

5.3. M A P P I N G S O F T H E A R C H I T E C T U R A L C O M P O N E N T S T O N O T E S F A C I L I T I E S . .. 82

5.3.1. The Controller Object and the Business Controller Object Agent 83

5.3.1.1. The Business Rule Evaluator and the Eval Module 84

5.3.1.2. The Workflow Executor and the Executor Module 84

5.3.2. The Clock Object and the Clock Object Agent 85

5.3.3. The Business Rule Repository and the Business Rule Documents 85

5.3.4. The Process State Repository and the Workflow State Documents87
5.3.5. The Request Information Repository and the Request Information

Documents 88

5.4. W O R K F L O W A P P L I C A T I O N : A P U R C H A S E R E Q U I S I T I O N P R O C E S S 88

5.5. L I M I T A T I O N S O F T H E I M P L E M E N T A T I O N 94

5.6. S U M M A R Y 95

6 . C O N C L U S I O N A N D F U T U R E R E S E A R C H 9 6

6.1. T H E S I S S U M M A R Y 96

6.2. C O N T R I B U T I O N S 98

6.3. L I M I T A T I O N S A N D F U T U R E R E S E A R C H 99

vi

BIBLIOGRAPHY 101

APPENDIX A - GRAPHICAL CONSTRUCTS OF THE USE-CASE
MODEL 104

APPENDIX B - GRAPHICAL CONSTRUCTS OF THE OBJECT
MODEL 105

APPENDIX C - GUIDELINES FOR CONSTRUCTING THE MODELS
OF RUMBAUGH'S OMT 106

APPENDED D - APPENDIX D - AN OOEM INTERNAL OBJECT
TEMPLATE (IOT) 108

APPENDTX E - SUMMARY OF WAND AND WOO'S MODELING
RULES 109

APPENDTX F - BUNGE'S ONTOLOGICAL CONSTRUCTS 112

APPENDIX G - THE COMPLETE OOWM FOR THE PURCHASE
REIMBURSEMENT PROCESS 117

APPENDIX H - THE OOEM, OATS FOR THE INTERNAL OBJECTS,
AND THE CONTROL SCHEMA FOR THE PURCHASE REQUISITION
PROCESS 119

vii

Lists of Figures

F I G U R E 2-1 A C T I V I T I E S I N V O L V E D I N W O R K F L O W M A N A G E M E N T 7

F I G U R E 2 - 2 W O R K F L O W T E R M I N O L O G Y R E L A T I O N S H I P S 9

F I G U R E 2 - 3 T H E W F M C S W O R K F L O W R E F E R E N C E M O D E L 11

F I G U R E 2 - 4 D D E F O G R A P H I C A L C O N S T R U C T S 1 9

F I G U R E 2 - 5 A R E I M B U R S E M E N T P R O C E S S I N D D E F O 2 0

F I G U R E 2 - 6 A N A C T I O N W O R K F L O W ™ L O O P 2 1

F I G U R E 2 - 7 A R E I M B U R S E M E N T P R O C E S S I N T H E A C T I O N W O R K F L O W ™

A P P R O A C H 2 2

F I G U R E 2 - 8 M A J O R C O M P O N E N T S O F A S T A T E T R A N S I T I O N D I A G R A M 2 3

F I G U R E 3-1 T H E B U I L D I N G B L O C K S O F T H E O O W M 4 3

F I G U R E 3 - 2 T H E O B J E C T - O R I E N T E D W O R K F L O W M O D E L (O O W M) 4 4

F I G U R E 3 - 3 A N A C T I V I T Y D I A G R A M A N D A N O O E M M O D E L 4 6

F I G U R E 3 - 4 A N O A T A N D A N A C T I V I T Y - B A S E D D I A G R A M . 5 2

F I G U R E 3 - 5 T Y P E S O F E X E C U T I O N O R D E R I N O A T 5 6

F I G U R E 3 - 6 T H E I M P L E M E N T A T I O N M O D E L O F A N O O W M S 5 7

F I G U R E 3 - 7 T H E O O E M F O R T H E E X T E N D E D R E I M B U R S E M E N T P R O C E S S 5 9

F I G U R E 3 - 8 T H E C O N T R O L L E R I N T H E P U R C H A S E R E I M B U R S E M E N T P R O C E S S 6 0

F I G U R E 3 - 9 T H E C L O C K O B J E C T I N T H E P U R C H A S E R E I M B U R S E M E N T

P R O C E S S . . . 6 5

F I G U R E 4 -1 T H E O O E M M O D E L W I T H T H E C O N T R O L L E R F O R T H E

R E I M B U R S E M E N T P R O C E S S 6 9

F I G U R E 4 - 2 T H E A R C H I T E C T U R E O F T H E C O N T R O L L E R O B J E C T 7 7

Viii

F I G U R E 5-1 T H E B U S I N E S S C O N T R O L L E R O B J E C T A G E N T 8 3

F I G U R E 5 - 2 T H E C L O C K O B J E C T A G E N T 8 5

F I G U R E 5 -3 I F A N D T H E N F I E L D S TN A B U S I N E S S R U L E S D O C U M E N T 8 6

F I G U R E 5 -4 A W O R K F L O W S T A T E D O C U M E N T 8 7

F I G U R E 5 -5 T H E B U S I N E S S R U L E S D O C U M E N T S F O R T H E R E Q U I S I T I O N

P R O C E S S 8 9

F I G U R E 5 - 6 A R E Q U I S I T I O N F O R M 9 0

F I G U R E 5 - 7 T H E A C C E S S C O N T R O L L I S T D I A L O G U E B O X 9 1

F I G U R E 5 -8 A R E Q U I S I T I O N F O R M F O R A C O M P U T E R - R E L A T E D I T E M 9 2

F I G U R E 5 - 9 A M E S S A G E G E N E R A T E D B Y T H E B U S I N E S S C O N T R O L L E R O B J E C T

A G E N T . 9 3

F I G U R E 5 - 1 0 A W O R K F L O W S T A T E D O C U M E N T C R E A T E D B Y T H E C O N T R O L L E R

A G E N T 9 3

F I G U R E 5 - 1 1 A W O R K F L O W S T A T E D O C U M E N T A F T E R A M E S S A G E W A S

S E N T T O T H E D I V I S I O N M A N A G E R 9 4

F I G U R E G - 1 C O M P L E T E O O E M F O R T H E P U R C H A S E R E I M B U R S E M E N T

P R O C E S S 1 1 7

F I G U R E H - 1 T H E O O E M M O D E L F O R T H E P U R C H A S E R E Q U I S I T I O N P R O C E S S . . . 1 1 9

F I G U R E H - 2 T H E O O E M M O D E L W I T H T H E C O N T R O L L E R O B J E C T F O R T H E

R E Q U I S I T I O N 1 1 9

Lists of Tables

T A B L E 2-1 E F F E C T S O F W O R K F L O W R E D E S I G N 7

T A B L E 2 - 2 S U M M A R Y O F T H E O O E M C O N S T R U C T S 3 1

T A B L E 3-1 A N O B J E C T A C T I V I T Y T E M P L A T E (O A T) 4 9

T A B L E 3 - 2 T H E O B J E C T A C T I V I T Y T E M P L A T E F O R T H E D I V I S I O N M A N A G E R 5 0

T A B L E 3 -3 S T E P S T O C O N S T R U C T I N G A N O O E M M O D E L 5 4

T A B L E 3 - 4 T H E C O N T R O L S C H E M A F O R T H E P U R C H A S E R E I M B U R S E M E N T

P R O C E S S 6 0

T A B L E 3 - 5 T H E R E V I S E D C O N T R O L S C H E M A T O I N C L U D E T H E A P P R O V A L

D E A D L I N E 6 4

T A B L E 5-1 M A P P I N G S O F T H E A R C H I T E C T U R E T O N O T E S E N V I R O N M E N T 8 2

T A B L E G - 1 A N O A T F O R T H E D I V I S I O N M A N A G E R 1 1 8

T A B L E G - 2 A N O A T F O R T H E C O R P O R A T E A C C O U N T A N T 1 1 8

T A B L E H - 1 T H E O B J E C T A C T I V I T Y T E M P L A T E F O R T H E C O M P U T E R E Q U I P M E N T

M A N A G E R 1 2 0

T A B L E H - 2 T H E O B J E C T A C T I V I T Y T E M P L A T E F O R T H E D I V I S I O N M A N A G E R 1 2 1

T A B L E H - 3 T H E C O N T R O L S C H E M A F O R T H E P U R C H A S E R E Q U I S I T I O N

P R O C E S S 1 2 2

x

Acknowledgments

I owe a debt of gratitude to Prof. Carson Woo and Prof. Yair Wand. They

have given me constructive criticisms and concrete advice, which have been very

helpful in shaping the content and style of this thesis. I am also indebted to Prof.

Shelby Brumelle who raised interesting questions which triggered a meaningful

discussion during my thesis defense. While credit is due to many people, a few stand

out: Daniel Chan, Jimmy Hui, Michael Han, and Scott Dalton. I would also like to

thank Victor Ng, who has given me valuable insights into the use of entity-relationship

(ER) diagrams and the development of a command-line interpreter. I am very grateful

to Eve Shamash who provided excellent editorial assistance. Finally, I want to

especially thank my family and Ada Chui. They have given me invaluable

encouragement which allowed me to overcome the difficulties that I encountered while

working on this project.

1. Introduction

The idea of structuring and managing processes has been in use since

industrialization. This idea was originally concerned with the movement of physical

entities in manufacturing plants. However, the idea of process management was

extended to organizational-administrative processes where information flow is more

emphasized than it is in the flow of physical products. Since these processes are

usually well-structured and repetitive, the use of information technology to automate

them becomes possible . Workflow management is concerned with the analysis,

design, implementation, execution, and monitoring of organizational processes with

the use of information technology (IT). According to Stark [1997], "workflow

systems offer anew model for the division of labor between people and computers"

[p.5]. They provide a "process control backbone" for business processes by mediating

"the flow of responsibility in a process from person to person and from task to task"

[p. 6].

Since many organizations have been facing pressure to reduce costs, to

increase quality, and to provide rapid delivery of new services and products, they often

resort to optimizing the way they do businesses. The use of workflow systems may

improve the efficiency of an organizational process, thereby reducing costs and

increasing workload capacity [Stark, 1997]. It can also allow people to concentrate

on value-added activities by freeing them from worrying about paper flows, filing,

information tracing, and whether or not certain actions have been taken.

1.1. Motivation

1

Many workflow products are fundamentally driven by vendor specifications

without the support of a well-developed theoretical foundation. These products may

demonstrate how "synergy is obtained by combining different technologies on

client/server networks" [Orfali, Harkey, and Edwards, 1996, p. 13] but fail to address

the challenges an organization may actually face when it implements the workflow

systems in a dynamic environment. These challenges include inconsistency of business

objectives within an enterprise and demand for local autonomy [Ruiz, 1997].

Individual divisions typically overlook the objectives of the enterprise when business

processes are reengineered at the local level. Consequently, conflicting business

objectives, as well as political and cultural boundaries, are created, which discourage

enterprise-wide workflow automation. Indeed, when a corporation deploys workflow

applications that span an enterprise, the physical and the political boundaries of

independent business units should be considered [Ruiz, 1997]. To address the

problem with conflicting business objectives when a process is locally automated,

analysts, as Ruiz [1997] suggests, must adopt a company-wide perspective to prevent

themselves from developing locally optimized workflows that cannot inter-operate

with other applications in the enterprise. To meet the demand for autonomy by

decentralized units, workflow applications should allow for locally operational

autonomy while enforcing policies at the corporation level.

1.2. Thesis Objectives

The Object Oriented Enterprise Modelling (OOEM) method, based on Wand

and Woo [1993] and proposed by Zhao [1995], provides a framework to address these

2

challenges. First, it captures an organizational process from a company-wide

perspective. It focuses on how independent objects work together in order to achieve

company objectives. Second, OOEM adheres to the concept of object orientation. In

other words, the objects in an OOEM model are autonomous.

Despite its merits, OOEM does not provide workflow specifications. For

instance, it does not capture how organizational policies govern the activities of a

process. To address this shortcoming, we will introduce a workflow model by adding

workflow constructs to OOEM. We will also use the model to develop an

implementation architecture of an object-oriented workflow system.

The objectives of this thesis are summarized as follow:

1. to develop a workflow model based on OOEM so that the model for an

organizational process can provide workflow specifications and allow analysts to

understand the process under study from an enterprise perspective;

2. to develop the architecture of a workflow management system which not only

enacts the model but also allows for operational autonomy at the local level; and

3 . to build a prototype by following the proposed architecture of the workflow

system.

1.3. Thesis Outline

This thesis consists of five chapters.

Chapter 2 provides an overview of the concepts of workflow management. It

also briefly reviews some groupware products. Different process modelling techniques

are presented with an emphasis on OOEM.

3

Chapter 3 presents an Object-Oriented Workflow Model (OOWM) which is an

extension of OOEM. It also discusses how an OOWM should be constructed. The

chapter concludes with the introduction of an implementation model which enacts the

OOWM.

Chapter 4 introduces the architecture of an Object-Oriented Workflow

Management System (OOWMS). The objective of this chapter is to identify the

functionality of components of an OOWMS, independently of specific implementation

platforms.

Chapter 5 delves into the details of the design and implementation of an

OOWMS, including a discussion of an implementation platform and the limitations of

the implementation. The objective of this chapter is to demonstrate how the

implementation architecture can be implemented using existing technologies.

Chapter 6 concludes the thesis by reviewing the contents and the contributions

of the thesis. It also suggests a framework for future research efforts.

4

2 . Introduction to Workflow Management

2.1. Introduction

Before we present our object-oriented workflow model, we would like to

provide a broad overview of the theoretical and practical aspects of workflow

management. We will first examine the basic concepts of workflow management,

including commonly used terminology. We will then delve into the Workflow

Reference Model proposed by the Workflow Management Coalition. The model

generalizes the functionality of different workflow products in the market, and it can

help us understand the critical components of a workflow system. We will also briefly

review some groupware products which can be used to develop workflow systems.

Several business process modeling techniques will be presented in this chapter. These

techniques include the Integrated Definition Language Approach (DDEFO), the

ActionWorkflow™ technique, and state transition diagrams. Moreover, we will

discuss what role object-oriented analysis (OOA) plays in business process modeling

and briefly look at some object-oriented analysis methods. These methods include

Coad and Yourdon's OOA method, Jacobson's Use Case-Driven Approach, and

Rumbaugh's OMT method; these three methods are among the best known OOA

methods. In addition to these methods, we will provide a brief overview of the

Object-Oriented Enterprise Modeling (OOEM) method proposed by Hao Zhao

[1995]. As a continuation of the research efforts undertaken by Wand and Woo

[1993], the OOEM method serves as a building block of our object-oriented workflow

model presented in the next chapter.

5

2.2. What Is Workflow Management?

While some literature defines workflow management as a technology to

automate the routing of documentation and tasks [Kobielus, 1997], to co-ordinate

user and system participants, with the appropriate data resources, and to achieve

defined objectives [Hales and Lavery, 1991], others define workflow management in a

broader sense. Georgakopoulos, Hornick, and Sheth [1995] consider that workflow

management involves "everything from modeling processes up to synchronizing the

activities of information systems and humans that perform the processes" [p. 130].

Jablonski and Bussler [1996], and Joosten [1994] offer similar definitions of workflow

management; they perceive workflow management as being a discipline which

involves not only business modeling but also the execution of workflows. Broader

definitions are parallel to our view of workflow management. Indeed, we believe that

workflow management is a process which focuses on analyzing, designing, controlling,

and executing business processes through the use of information technologies. Figure

2-1 illustrates the activities involved in workflow management and the requirements

for these activities.

6

Designing Analyzing

B Identifying reasons for
changes

B Suggesting changes to
the process under study

B

B

Modeling a workflow/
business process
Identifying problems

f Workflow
y Management)

B Collecting process in­
formation

B Determining need for
action

B
B

Initiating actions
Implementing a work­
flow management sys­
tem

Controlling Executing

Figure 2-1 Activities Involved in Workflow Management

Not only does workflow management require the analysis of an existing business

or workflow process, but it also involves the re-design and the implementation of the

process. Table 1 shows some of the changes which result from work flow redesign.

Redesigning work flow:
1. Eliminates tasks
2. Eliminate bottlenecks and delays

between the steps
3. Enables work to be processed in

parallel rather than serially.
4. Provides simultaneous access to

documents by multiple
departments/people

5. Allows for quick, simple access to
information

6. Eliminates rework/retyping
7. Provides broader responsibilities for

workers
8. Decreases defects

Resulting In:
1. Improved productivity
2. Reduced cycle times to

complete work
3. Reduced costs
4. Improved customer service
5. Improved quality and

consistency of results
6. Increased revenues (receive

revenues sooner)

SOURCE: T. May, "The First Steps to Imaging," Modern Office Technology (April 1991), p. 64.

Table 2-1 Effects of Workflow Redesign

7

2.3. Workflow Terminology

It is necessary to look at the terminology that we may encounter when we

manage a work process and build workflow management systems (WFMS). Please

note that this thesis does not offer an exhaustive description of this terminology;

instead, it only highlights the most popular definitions used when managing workflow

processes.

Many workflow product vendors provide their own definitions as building

blocks to develop workflow management systems; these building blocks can affect the

capabilities of the WFMS. But no matter how much these definitions may vary, many

vendors follow a general specification of a workflow management system proposed by

the Workflow Management Coalition (WfMC). The WfMC is a non-profit

organization whose purpose is to advance opportunities for exploiting workflow

technology through the development of common terminology and standards. By

1996, the WfMC had more than 170 members; nearly all the well-known vendors of

WFMS were founding members [WfMC, 1997].

Figure 2-2 outlines the relationships underlying the basic workflow

terminology proposed by the WfMC; the figure is directly taken from the WfMC's

Workflow Handbook 1997 [1997, p. 386].

8

Business Process
(i.e. what is intended to happen)

is defined as is managed by a

-*»• Protest Definition
(a representation of what is

intended to happen)

Workflow Management System
(controls automated aspects of the

business process)

Sub-Process

t

composed of via
used to create A
manage

Activities

wkick may be

Process Instances
(a representation of what is

actually happening)
I include one or more

or Manual Activities Automated
(which are not man- Activities
aged as part of the
Workflow System)

during execution are
represented by

-*» Activity Instances

Work Item ™ d Invoked Application
(tasks allocated to a ' o r (computer tools/appHca-

workflow participant) tions used to support an
activity)

Figure 2-2 Workflow Terminology Relationships

A business process, according to its corresponding process definition, consists of a

network of procedures or activities which "collectively realize a business objective or

policy goal, normally within the context of an organizational structure defining

functional roles and relationships" [WfMC, 1997, p. 387]. A reimbursement process is

an example of a business process which contains different activities performed by

different people. For instance, a division manager may approve a reimbursement form

for an amount less than $450, and a corporate controller may approve a form for an

amount which exceeds $450. A business process may not be confined to a single

organizational unit, and it can span several different functional units and organizations.

For instance, Bell Atlantic organized a case team to establish high-speed digital circuits

for business customers. The team consisted of members from different departments in

several geographic locations. From the organization's point of view, the team is a unit

that "naturally falls together to complete the whole piece of work - a process"

[Hammer and Champy, 1993, p. 66].

According to the WfMC, a workflow process is an automated component

of a business process which contains both automated and manual activities. An activity

is the smallest unit of the business process. The workflow process involves a network

of automated activities which are managed and coordinated by the workflow

management system. The system initiates a particular activity instance based on one or

more pre-conditions, decides if the activity instance is completed according to post­

conditions, and moves data between activities based on navigational rules. This

system can also monitor the state of all activities and report process status

performance to human agents.

2.4. The Workflow Reference Model

According to the WfMC [1997], the workflow management system should

help define, create, and manage the execution of workflow. Theoretically, the

workflow management system should support the following functions:

• Process modeling

The WFMS should include a tool to support the analysis and design of a

business process. The system should be able to interpret the definition of the

process and simulate the workflow under study.

• Process control

The system should provide a mechanism which can monitor process status,

measure process data, identify pre-determined process conditions, and report

10

process status, performance, and special conditions.

• Process execution

The system should coordinate the interaction with workflow agents and

applications. It should determine necessary actions or guide human agents when

decisions should be made.

With these objectives in mind, the WfMC proposed the Workflow Reference

Model in 1994. The model not only provides the general architectural representation

of a workflow management system, but it also helps MIS practitioners understand the

design and the functionality of many commercial workflow products. Figure 2-3

depicts the five major components of the model [WfMC, 1997, p. 260].

Process Definition
Tools

Administration
& Monitoring

Tools

Worfc&owEnutnentService

Workflow
EngSne(s)

Other Work-
'Bow Enactment

Services)

' — i k i

1 r
Workflow Invoked Appli­

Client Applica­ cations
tions

Figure 2-3 The WfMC's Workflow Reference Model

Since an understanding of the model serves as a basis for evaluating different

workflow products and may help us determine the implementation platform of our

proposed architecture, we will briefly examine each component of the model. The

11

examination of these components is largely based on the WfMC's Workflow

Handbook 1997 and on Kobielus' Workflow Strategies [1997].

2.4.1. Process Definition Tools

Process definition tools allow users to specify automated and manual activities,

workflow conditions, and information about individual workflow participants.

Theoretically, different workflow products should be able to interpret a logical process

representation generated by one vendor's process definition tool; however, users are

always limited to using the process definition features that come with their workflow

products or to manually convert a form which can be understood by another workflow

engine [Kobielus, 1997]. A workflow engine is a software program that provides

functions to support the execution of business processes including the interpretation of

a process definition, the creation of process instances, and the management of their

execution [WfMC, 1997].

A process can be graphically described in many different ways which depend

upon modeling techniques. We will review some of these techniques later in this

chapter.

2.4.2. Workflow Enactment Service

A workflow enactment service creates a process execution environment which

contains one or more workflow engines in order to create, manage, and execute

particular workflow instances. It plays an administrative role in managing and

coordinating workflow applications. It maintains information about process

definitions and workflow data. It also invokes external applications which support the

12

processing of activity instances. The interoperability between different workflow

enactment services is made possible by a functional interface which addresses the

exchange of process definitions and controls information between the services.

2.4.3. Workflow Client Applications

Workflow client applications provide users with a front-end interface to a

workflow enactment service. According to the Workflow Reference Model, the

applications should perform the following functions:

• Access workflow relevant, application, and control data;

• Allow users to access a worklist handler which enables work items to be passed

from the workflow management system to users and allows the status of a work

process to be passed between the users and the system;

• Invoke external applications from the worklist handler; and

• Retrieve and manipulate process definition data.

The communication between the workflow client applications and a workflow

engine is established via a workflow application interface (WAPI). We do not intend

to review the specifications of the interface in this paper. They can be found in

Workflow Handbook 1997 published by the WfMC [1997].

2.4.4. Invoked Applications

Invoked applications allow users to work with workflow relevant information

routed to them by the enactment service [Kobielus, 1997]. Application invocation can

be undertaken by the enactment service via either direct invocation calls or an

application agent which "provides a general mechanism for application invocation

13

independently from any native workflow management system facilities" [WfMC, 1997,

p. 409]. External applications can also be invoked by workflow client applications if

the applications are under user control or run on local workstations. The flexibility to

invoke applications in different ways is very important to the object-oriented

paradigm, because each object can independently and autonomously process a work

item.

2.4.5. Administration and Monitoring Tools

A workflow system should allow process administrators to perform

supervisory operations, including resource control; system configuration; audit

management; and initiation, termination and restoration of a process instance. These

functions ensure that a process runs smoothly and provide a basis for recovering from

system failure.

2.5. Groupware Products

Since there are more than 100 vendors of workflow products, it is beyond the

scope of this paper to review every product. However, the architecture of these

products is aligned closely to that of the Workflow Reference Model presented in the

previous section. These products may address different aspects of workflow

functionality; they have been divided into different areas by the trade press and

academic literature [WfMC, 1997; Kobielus, 1997; Georgakopoulos et al., 1995].

These areas include imaging processing, document management, electronic messaging,

database management, and form management products. We do not make a clear

distinction between the product types in this paper. These products provide

14

development platforms which allow developers to build workflow systems, since many

workflow products share the objectives of assisting users in communicating,

collaborating, and coordinating.

Groupware is a term for the development platform of the workflow

systems. According to the Lotus Corporation, groupware should integrate business

logic into the integrated push and pull model to support structured business activities.

The integrated model addresses the coordination aspect of the activities [Lotus

Corporation, 1995]. When people coordinate, they communicate and collaborate with

each other. The push model focuses on the communication dimension: senders simply

transmit information to recipients. The pull model addresses information sharing by

allowing users to retrieve information from shared databases. To illustrate the

application of the concept, a company stipulates specific policies about how a

reimbursement form should be processed throughout the organization so that it is

properly approved. These policies govern how people should coordinate with each

other. The routing of the form is implemented by the push model using a messaging

system. The tracking of the form can be achieved by the pull model using a shared

database.

Even though many groupware products provide development environments

for workflow applications to coordinate work activities, very few products offer an

integrated package for process modeling, control, and execution. The process

modeling feature is always separate from the other two features. For instance, one of

the most popular products in the groupware market, Lotus Notes, which includes

15

Domino, does not come with a modeling component [Lotus Corporation, 1997];

instead, it offers a flexible development environment to build a workflow application.

Oracle's Web Developer Suite 1.5 [Oracle Corporation, 1997] is one of the very few

packages that contain all the components of a workflow management system. Its

CASE tool is powerful and versatile enough to allow users to model business

processes and to automatically translate the models into workflow applications.

As we mentioned earlier, a work process can involve entities external to

organizations. Indeed, a workflow application should not be limited to the intra-

organizational units by proprietary technological standards. For instance, customers

can enter order information directly into a corporate database; the workflow system

should then automatically notify the employees to handle such orders. The advent of

the Internet has re-shaped the technical architecture of groupware products and offers

new opportunities for extending the boundaries of work processes. Many groupware

products, such as Lotus Notes and Novell GroupWise 5.2 [Novell Inc., 1997], which

once depended upon their own proprietary technology, now support open Internet-

based standards. The users do not need the proprietary client software to access

information stored in Lotus Notes servers and Groupwise servers. Domino, for

instance, turns a Notes server into a Web server and seamlessly integrates the Notes

components and information into the Internet [Edwards, 1997]. Novell GroupWise

allows users to access information via the Web by providing Java-based client software

[Novell Inc., 1997]. Many software developers have even developed products which

are solely based on the open standards. These products use the popular Web browsers

16

as standard interfaces to their systems. Products such as the Netscape SuiteSpot

[Netscape Communications Corporation, 1997] and Cold Fusion 3.0 [Allaire

Corporation, 1997] are pure web-based groupware products which allow users to

collaborate via the Internet. It should be noted that these web-based groupware

products offer little support for coordinating work activities, even though they help

break down the walls between organizations. These products were developed based

on push and pull models, and they provide few form-routing capabilities, such as the

ones offered by Lotus Notes.

2.6. Business Modeling Techniques

Before we build a workflow management system, we need to understand

the process under study. Business modeling graphically represents a business process;

it can depict the functional relationships, the information flows, and the roles of

workflow participants in the process. Specifically, a process model is an "abstract

description of an actual or proposed process" that represents the selected components

of the process [Wang, 1994, p. 37]. We divide business process modeling techniques

into two approaches - the traditional approach and the object-oriented (OO) approach.

The traditional approach usually addresses the functional and informational aspects of

a process, whereas the OO approach captures the organizational aspect of a process.

The organizational aspect usually represents "where, and by whom in the

organization", the components of a process are performed [Wang, 1994]. We will

first look into three different traditional process modeling methods in the following

sections: the Integrated Definition Language 0 (DDEFO) Approach, the

17

ActionWorkflow™ technique, and state transition diagrams. However, these sections

do not offer a critical review of these techniques.

2.6.1. Traditional Modeling Approach

As we mentioned earlier, this approach focuses on the functional and

informational aspects of a process. It requires system analysts to decompose a process

into functional areas or to model how information within a process is processed. The

problem is that functional representations always change in a dynamic business

environment. In turn, changes in these representations may cause inefficiency in

system development and maintenance [Coad & Yourdon, 1991, Wang, 1994].

2.6.1.1.Integrated Definition Language 0 (IDEFO) Approach

JDEFO, based on the Structured Analysis and Design Technique™

(SADT™), was developed for the U.S. Air Force Program for Integrated Computer

Aided Manufacturing (ICAM) in the 1970s [Laamanen, 1994]. Its original objective

was to depict manufacturing processes, but this objective was later extended to include

business process modeling application. An IDEFO model is composed of a hierarchical

series of diagrams which gradually display increasing levels of detail, describing

functions and their interfaces within the context of a system. Each diagram contains

boxes, arrows, and text. The boxes describe activities, processes, or transformations

within the context of the system; the arrows represent data or objects associated with a

function from which the arrows originate. The syntax and semantic rules of labeling

the graphical constructs are beyond the scope of this paper. Integration Definition for

18

Function Modeling (IDEFO) can be consulted for further information [FIPS, 1993].

Control

Input Function
Name

*- Output

Mechanism Call

Figure 2-4 IDEFO Graphical Constructs

Figure 2-4 illustrates the graphical constructs used in IDEFO. The input and

output arrows are self-explanatory; however, control, mechanism, and call arrows

deserve some explanation here. A control arrow specifies the conditions required for a

function to produce outputs. A mechanism arrow represents some of the means that

support the execution of the function. A call arrow simply refers to another box which

captures the details of the caller box which does not have its own descendent diagram.

The called box can be in the same or another model, and it can be shared by multiple

caller boxes. To understand how the approach can be applied to business modeling,

consider the following example which will also be used to illustrate the next two

modeling techniques.

In order to have his/her expenses reimbursed, an employee of the ABC

Company must submit a reimbursement form to the division manager or

the corporate accountant for approval. Reimbursement amounts greater

than $200 require a division manager's approval before they are

approved by the corporate accountant. All other reimbursements are

submitted directly to the corporate accountant. After his/her approval, the

19

division manager submits the reimbursement form to the corporate

accountant who then cuts the cheques and completes the process.

Figure 2-5 depicts the reimbursement process describe above. The

mechanism arrow pointing toward box A-11 represents the division manager who

approves a reimbursement request whose value is greater than $200.

Reirdbursement

Rairribusement
Amount Guideline

Reimbursement
Process

Official
Approval

A-0
Amount >

$200

RF

Amount <= $200 or
approved by DM Official

Approve

Division
Manager

(DM)

Approve Cut Cheques Approval
Approve Cut Cheques

i i J i
Ocnpoiftta

Accountant Accountant

A-l

Figure 2-5 A Reimbursement Process in IDEFO

IDEFO can be used to analyze complex information systems and to describe

derivation and relationships among the documents used and produced during process

performance [Laamanen, 1994]. However, this method may not be intuitive to first-

time learners. Also, "time and cost, the usual business process reengineering

objectives, can be derived but are not easily portrayed" [Lakin, Capon, and Botten,

1996, p. 18].

2.6.1.2.ActionWorkflow™ Approach

The ActionWorkflow™ approach focuses on the communication and

20

coordination aspects of a business process. Unlike IDEFO, the approach focuses on

the domain of business processes in which people enter into language based

transactions that have consequences for their future activities [Medina, Winograd,

Flores, and Flores, 1992]. The approach also captures the negotiation based aspect of

business processes. Such an approach is necessary because it combines "structured

work with opportunity-based initiative and individual responsibility for quality and

customer satisfaction" [p. 283]. Figure 2-6 shows an action workflow loop which

consists of four phases.

Proposal/ Agreement/
Request Negotiation

Customer Conditions of
Satisfacti on

Performer

Satisfaction/ Performance/
Approval Execution

Figure 2-6 An ActionWorkflow Loop

The loop begins with a customer who requests that a particular action be

completed according to conditions of satisfaction. In the agreement/negotiation phase,

the customer and the performer have to mutually agree on the conditions of

satisfaction. This agreement may not necessarily be based on negotiations, but

sometimes on a shared background of assumptions and standard practices. The

performer will then inform the customer of the completion of the action in the

performance phase; the customer will lastly declare to the performer that the

21

completion is satisfactory.

We use the previously mentioned reimbursement process to demonstrate

the approach.

Employee L

Amount >
$200
Request for
Approval^

Division Manager

Figure 2-7 A Reimbursement Process in the ActionWorkflowIM Approach

In Figure 2-7, an employee first requests that either the division manager or the

corporate accountant reimburse his/her expenses based on the reimbursement

amounts. It does not matter to whom the request is first addressed; the corporate

accountant completes the workflow loop. It is important to note that the

ActionWorkflow™ approach does not address the information flow, but it focuses on

the negotiation aspect of a work process. In this example, if the division manager has

questions regarding the requested reimbursement, he/she will address his/her questions

to the requester. This clarification process will continue in the agreement/negotiation

phase until the manager agrees to approve the request.

The ActionWorkflow™ approach depicts the coordination structure of

business processes instead of the task structure. The approach has been developed in a

series of systems for coordination among users of networked computers. It defines

tasks as the requests and cornrnitments of the workflow participants, whereas IDEFO

22

considers actions of coordination one kind of task or as a flow of information between

tasks.

2.6.1.3.State Transition Diagrams

State Transition Diagrams (STDs) capture the time-dependent behavior of

systems. STDs can be used to identify a bottleneck in work processes by highlighting

the states of the processes. Such systems range from telephone switching systems,

high-speed data acquisition systems, to military and command systems. Even though

customers do not often demand real-time response from business-oriented systems, a

delayed response certainly causes customer dissatisfaction and frustration. Figure 2-8

illustrates the essential components of a STD.

State 1

Condition

Action

State 2

Figure 2-8 Major Components of a State Transition Diagram

A rectangle represents a state of a system; a state describes a characteristic of

the system. For instance, in the example of the reimbursement process, waiting for the

manager's approval is one state of the process. Waiting for the corporate accountant

to cut cheques is another state. A state should represent some observable behavior of

the system and last for some finite period of time [Yourdon, 1989]. A transition from

one state to another is symbolized by an arrow. The arrow contains two major

23

components which specify the condition and the action of the transition.

Figure 2-9 demonstrates the application of STDs in the context of the

reimbursement process.

Draft Amount > $200

Submit To DM

Awaiting Divi­
sion Manager's

Approval

Amount <= $200

Siimit To Corpo­
rate Accountant

Approv

Awaiting
cheques
to be Cut Cut Cheques

Complete

Figure 2-9 A Reimbursement Process in a State Transition Diagram

This diagram is directly taken from the Lotus Notes Advisor. The process

contains three transitions, with actions being taken by either the division manager or

the corporate accountant. The difference between STDs and the other two modeling

techniques presented earlier is evident. STDs do not explicitly depict the functional

activities of a process. Instead, they only describe the behavior of the process. Even

though the functional activities may be illustrated by transition arrows, the objective of

STDs is to help users examine the time-dependent behavior of a system and to identify

bottlenecks in the system.

2.6.2. Object-Oriented (OO) Approach

The OO approach, according to Jacobson [1995, p. 72], is "very close to the

24

way in which human beings themselves view the world". It addresses the limitations

of the traditional approach. Not only does it capture the organizational aspect of a

process, but it also highlights the interactions between objects. Jacobson [1995]

further argues the need for building a process model based on the concept of object-

orientation. He says that the concept of object-orientation makes the process model

become "comprehensive, understandable, changeable, adaptable, and reusable" [p. 69].

Changeability refers to a change in a class of objects in the model which does not

affect other classes. Adaptability concerns the specializations of abstract classes based

on the concept of inheritance. Reusability means that the classes of objects can be

developed in such a way that their properties can be reused in different problem

domains. Despite the advantages of the OO approach, objects in a problem domain

may be interpreted in many different ways by different OO methodologies. Also, even

though the OO methods may help define workflow specifications and derive

implementations, they lack workflow model-specific constructs (i.e. pre-conditions and

post-conditions to an activity) and provide no explicit support for business process

modeling [Georgakopoulos, et al., 1994]. The following sections provide an overview

of four OO modeling methods. These methods include Coad and Yourdon's

OOA/OOD, Jacobson's use case driven approach, Rumbaugh's OMT, and the OOEM

approach.

2.6.2.1.Coad and Yourdon's OOA/OOD

Coad and Yourdon [1991] propose the Object-Oriented Analysis (OOA)

method in their book Object-Oriented Analysis. The method consists of five major

25

activities:

1. Finding class and object.

2. Identifying structures which capture the relationships between objects.

3. Identifying subjects which are used to partition large complex models.

4. Defining attributes.

5. Defining services.

Please note that the sequence of these activities does not affect how a model is

built. These activities may result in a OOA model which consists of five layers:

1. Subject layer, which serves as a partitioning mechanism;

2. Class & Object layer, which captures classes and objects;

3. Structure layer, which captures inheritance and whole part structures;

4. Attribute layer, which captures attributes and instance connections between classes

and objects; and

5. Service layer, which captures methods and message connections between classes

and objects.

Coad and Yourdon [1991] also extend the OOA method to address the design

of a system in their book Object-Oriented Design. The Object-Oriented Design

(OOD) method introduces four additional components to the OOA model. These

components include:

1. Human interaction component, which studies how users interact with a system by

means of prototyping;

2. Data management component, which provides the basis for storage and retrieval of

26

objects from a database management system;

3. Problem domain component, which carries the OOA results into the OOD model,

thereby improving the results by means of this component;

4. Task management component, which determines a need for tasks in the system and

defines the tasks.

2.6.2.2.Jacobson's Use Case-Driven Approach

While Rumbaugh's OMT and Coad and Yourdon's OOA/OOD methods are

based on software design and implementation, Jacobson's business process modeling

approach emphasizes the modeling of organizational activities [Jung, 1997].

Jacobson's use case-driven approach was originally developed for system design and

analysis [Jacobson et al., 1992]. The approach was later extended to include business

process modeling [Jacobson et al., 1995]. Jacobson's modeling technique consists of

two phases: the use case model which describes "what the business is meant to

accomplish" [p. 146], and the object model which focuses on "how the business is to

work" [p. 146].

The construction of the use case model begins with the identification of a

problem domain (a business system) and then an environment (actors) which interacts

with the domain. In the case of the reimbursement process presented in Section

2.5.1.1, the employees are the actors in the problem domain. A sequence of

transactions is also identified and presented as use cases, which may be grouped into

as a use-case class based on their similar characteristics. For instance, processing a PR

form whose amounts exceed $100 and processing a form whose amounts are less than

27

$100 are different use cases but may belong to the same use-case class. The graphical

constructs of the use case model are illustrated in Appendix A. The use case model

provides a top-level view of a business process; the details are captured in the object

model.

The object model contains three different types of objects: control objects,

entity objects, and interface objects. Control objects represent a set of operations

which may not have direct responsibility for contacts with the business environment.

Interface objects are responsible for handling communication between the system and

the external environment. For instance, these objects can be sales representatives who

have direct contact with customers. Entity objects represent "occurrences such as

products and things that are handled in the business" [p. 116]. Examples of entity

objects are a sales order and a reimbursement form. To construct an object model, the

following steps can be followed:

• Find subsystems that reflect the structure of an organization.

• Describe the use cases in relation to subsystems since the use cases may span

different subsystems in the organization.

• Identify objects which work together to realize a use case.

The constructs of the object model are shown in Appendix B.

2.6.2.3.Rumbaugh's OMT

Rumbaugh's Object Modeling Technique (OMT) [1991] is composed of three

models: the Object Model, the Dynamic Model, and the Functional Model. Although

these three models of a system are constructed independently, Rumbaugh, et al.

28

believe that they are essential to derive a complete representation of a system. The

object model describes the static structure of objects in a system through identity,

relationships, and operations. The dynamic model, represented in state diagrams,

portrays a sequence of operations over time within a system by modeling events,

states, and state transitions. The functional model, represented in a data flow diagram

(DFD), shows how data are transformed by the system's processes.

Rumbaugh considers the OMT "an enhanced form of the Entity-Relationship

(ER) approach" [p. 217]. He further claims that OMT "synthesizes different camps of

thought from databases, object-oriented concepts, and software engineering" [p. 273].

Guidelines for constructing different models are presented in Appendix C.

2.6.2.4.The OOEM Approach

The Object-Oriented Enterprise Modeling (OOEM) methodology, presented in

[Zhao, 1995], is based on Wand and Woo's modeling rules [Wand and Woo, 1993]

which are derived from Bunge's ontological V principles [Bunge, 1977]. With the

notion that objects should reflect a "natural" view of the world [Wand, 1989], Wand

and Woo [1993] adopt Bunge's ontological approach to develop a theoretical

foundation for object-oriented modeling. OOEM, built on this foundation, provides a

set of object-oriented analysis rules, a request propagation algorithm, and a model

representation technique [Jung, 1997].

1 Ontology, according to Angeles [1981], is defined as "That branch of philosophy
which deals with the order and structure of reality in the broadest sense possible".

29

2.6.2.4.1.OOEM Constructs

Since OOEM is based on ontological principles proposed by Bunge [1997], it

is useful to briefly summarize them below:

• The world is composed of things that possess properties.

• Attributes are characteristics humans assign to things.

• Every property can be modeled as an attribute.

• Everything abides by laws which are invariant relations among properties of things.

These laws limit possible states and state transitions.

• Interacting things form systems or aggregates.

• Everything changes, and every change is a change of states of things.

These principles "provide concepts for how we can reason about the world"

and serve as "the basis to model and talk about organizational activities" [Jung 1997,

p. 15]. Based on these principles, Wand and Weber [1990] extend Bunge's ontology

[1977] to information system (IS). Wand [1989] also categorizes the ontological

constructs for IS into four categories as summarized by Zhao [1995, p. 11].

• Static model of a thing, which describes thing, property, state, transformation, and

history;

• Dynamic model of an individual, which refers to event, transformation, and history;

• Static model of a system, which captures coupling, system, composition,

environment, structure, subsystem; and

• Dynamic model of a system, which describes stable and unstable state, external

30

event, internal event, well-defined event, and poorly defined event.

Detailed information about these constructs can be found in Appendix F.

The fundamental constructs of OOEM are : objects, services, attributes, and

requests. They are derived from the mapping of ontological constructs to the Object-

Oriented constructs. Table 2-2 briefly outlines these constructs, and the details are

presented below:

Construct Meaning
Object A model of a substantial thing in the problem

domain that interacts with other objects. An object
can be a client or an internal object. A client object
is not considered a part of the system directly under
study whereas an internal object is an object within
the system. An object can represent an
organizational unit, a division, a department, or a
role.

Interface Attribute A mutual property of things. It serves as a
mechanism by which objects communicate with each
other.

Internal Attribute An intrinsic property of a thing. It can represent
knowledge internal to an object and inaccessible to
other objects

Service A well-defined series of actions which satisfy a
request. A service may access or modify the
objects.

Request A representation of an interaction between objects.
It changes the interface attributes of a recipient
object, and it may trigger a service.

Table 2-2 Summary of the OOEM Constructs

a) Object: Some object-oriented literature loosely defines the concept of an object.

For instance, Jacobson et al. [1995] believe that an object is an occurrence that

contains information and offers behavior within a problem domain. He considers,

for example, a division reconciliation record an object in a company and a manager

31

another object in the same company. A broad definition of object does not give

analysts effective guidelines to identify object types. OOEM asserts that the world

is made of objects based on the ontological principle that states that the world is

composed of things [Zhao, 1995]. An object is "a model of a substantial thing in

the problem domain that interacts with other objects" [p. 12]. To be qualified as an

object in the problem domain, the candidate for an object, as illustrated in Figure

2-10, should interact with other objects by either generating or responding to a

request, or providing services (See Wand and Woo's modeling rule #2 in

Appendix E). In other words, we do not consider the reconciliation record to be

an object since it does not interactively participate in a process. However,

depending upon the problem domain, we may consider the manager an object. An

object and its dynamics are described by its attributes, services, and requests for

other services.

b) Attributes: According to Bunge's ontological principles, attributes model

properties of things. They represent the state of an object and its knowledge of the

problem domain [Jung 1997]. In other words, as indicated in Figure 2-10, an

attribute must belong to an object. There are two types of attributes: internal and

interface attributes. Internal attributes model the intrinsic properties of a thing;

they are not known to other objects and can only be accessed or modified through

the services of the object. For example, the division reconciliation records

represent the manager's knowledge of divisional financial status. These records

should be kept inside the manager object which manipulates these records via a

32

service. Interface attributes model the mutual properties of things; they provide a

mechanism by which objects communicate with each other. Zhao [1995] makes an

interesting analogy between object communication and a procedure call in

computer programming. Interface attributes function like procedure call

parameters which enable one program to pass arguments to another. It should be

noted that the change in interface attributes as a result of incoming requests may

trigger a service.

c) Service: Ontologically, a service models the state transformation of an object. It

comprises a series of actions performed by an object with the purpose of satisfying

a request. These actions are encapsulated into an object. When a request is sent

to an object, it invokes a service in the object (See Figure 2-10). A service, in its

course of action, may generate or spawn one or more requests to objects.

d) Request: An interaction between two objects can be modeled by a request. When

an object wants to communicate with another object, it sends a request to the

latter. Ontologically speaking, the interaction is the change in the history of one

thing as a result of the existence of another thing [Bunge, 1977]. Accordingly,

sending requests changes the state of the responding objects by modifying the

interface attributes of the recipients. The change in interface attributes may trigger

services of the responding objects which may undergo state transformation [Zhao,

1995]. The consequence of a request may affect the state of either a requesting

object, responding objects, or both. For instance, when Object A sends a request

to Object B, the state of each object may be affected in the following situations:

33

1. Object A can be in an unstable state if it waits for the response from Object B,

but Object B is doing nothing about it. For instance, a job seeker sends an

unsolicited job application to a company which does not reply to him/her.

2. Object A is not concerned about the response to its request. In other words, it

simply delivers information to Object B whose state becomes unstable since

Object B needs the information to perform a service. This point can be

illustrated by the situation of a purchase requisition process whereby a division

manager approves a requisition form and forwards it to a corporate accountant

for further approval. The manager does not expect the accountant to respond

to him/her; instead, the accountant should inform a requester of the approval

status.

3. Objects A and B are in an unstable state. This is, in fact, a combination of

situations (1) and (2). When Object A sends a request to Object B, Object A

expects Object B to act upon the request and to provide a response to the

request. To illustrate this point, we can consider a room-booking inquiry

process whereby a requester phones an administrative clerk to inquire about a

room-booking schedule.

A request usually carries with it information which is required by the receiving

object to process the request. The object obtains this information from its

interface attribute which has been modified by the request.

It is important to note that a request is a communication protocol between two

or more objects. There can be two kinds of protocols. One protocol involves two

34

objects where the first sends a request to the second, and the second directly

responds back to the first. For instance, if an employee submits a reimbursement

request whose value is less than $100 to the accountant, he/she will expect a

response back from the accountant. Another protocol involves more than two

objects when the sender of the request receives a response back from a different

object to which it does not send the request in the first place. The response, in this

case, is in the form of a different request. To illustrate our point, a customer

orders an item from a sales representative object via phone. The sales

representative, in turn, sends the order information to the accounting clerk who

generates an invoice and mails it to the customer. It is the clerk who sends the

invoice to the customer as a response to the original.

Since OOEM does not enforce the constraint that each request must have an

immediate reply, the distinction between these two protocols is essential for

understanding how an external request is processed by internal objects and which

internal objects an external object interacts with. This understanding will be

formalized in the concept of request propagation.

Figure 2-10, adapted from Tan [1997], describes the relationships of the

constructs in OOEM using the entity-relationship diagram.

35

Generalization/Specialization of Objects

Request

(0,1)

(1.1)

U*)

External Internal
Object Object

(0,*) (1*)

<^^rotes^<^sp^^^)>

(0*)

performs (1,1)
(1*)
Service

(1,1)

(0,*)

(1,*)

Attribute (1,*)

(U)

Figure 2-10 Meta-Model of O O E M

The meta-model depicts the constructs of OOEM as boxes and the relationships

between the constructs as diamond-shaped symbols. The cardinality constraints,

expressed by (m,n), mean that an entity is associated with at least m and at most n

occurrences of the related entity. For example, in Figure 2-10, an object can generate

no requests or any number of requests, but a request must be generated by at least one

object. A triangle symbol indicates the specialized roles that external and internal

objects play in the model. For example, an external object which belongs to a general

object class may own attributes and perform services, since the information about the

internal structure of an external object may not be readily available for analysts.

However, an internal object whose internal representation should be made known to

the analysts must own at least one attribute and perform at least one service.

36

2.6.2.4.2.Request Propagation

The central theme of OOEM is the concept of request propagation which

defines an organizational process in terms of the behavioral characteristics of the

participating objects. These characteristics include the interaction (requests) between

objects and the operations (services) resulting from the interactions. The concept

states that an organizational process is triggered by an external request [Wand and

Woo, 1993]. As a result of the request, the internal object which receives the request

may generate requests to other internal objects, which in turn may further generate

more requests. This sequence of request generation, known as request propagation,

may end with an external object receiving the result of the request or with internal

object which do not generate any further requests to other objects.

2.6.2.4.3.00EM Representation Technique

Figure 2.11 shows the graphical constructs of OOEM.

Incoming Request 1
Response to In­
coming Request

Figure 2-11 OOEM Graphical Constructs

We mentioned that an incoming request can imply a response. This response

should be placed at the head of an arrow, whereas the request should be placed at the

end of the arrow. Figure 2-12 illustrates the reimbursement process in the OOEM

Object Name
Re que st Generate d

Interface Attribute(s)
(Internal Atttibute(s))

by a Service Interface Attribute(s)
(Internal Atttibute(s))

Service Name(s)

37

model.

Employee

Request to process a
reimbursement form
(RF)

Rejection
Reason

Request to process
a reimbursement
form(RF) „

Approval
Result

Division Manager

Request to process RF
(Division Reconciliation
Record)

Process Request

Approval
Result

Corporate Accountant

Request to approve RF
(Corporate Reconciliation
Record)

Process Request

Request to ap­
prove divisonally
approved RF

Figure 2-12 The Reimbursement Process in the O O E M Model

Several assumptions were made to construct the model. For instance, we

assumed that the division manager will notify an employee if his/her form is rejected

and that both the division manager and the corporate accountant maintain records for

reconciliation. A rejection reason is modeled as a response to an employee's request

for reimbursement whose amount exceeds $200. It should be noted that an approval

result is sent to the employee object as a request. The result is a response to the

employee's request for reimbursement whose amount exceeds $200.

Zhao also introduces an object template (See Appendix D) to capture the

internal structure of an object. The object template may be used not only for

describing an internal object but also for a client object if more information about the

latter object is available (Tan, 1997). The template specifies which interface and

internal attributes are accessed and used by a service, and which requests are

38

generated by the service.

2.6.2.4.4.A Shortcoming of OOEM

Even though OOEM provides a bird's eye view of organizational activities

within a problem domain by focusing on the interactions among objects, it, in fact,

does not capture all the behavioral aspects of an organizational process. According to

Curtis et al. [1992], the behavior of a process is determined by the flow of control

among its functional units. OOEM describes workflow participants, their

responsibilities, and their interactions in a process; it does not capture the execution

order of work [Zhao, 1995]. Amber [1997] suggests that one of the basic concepts for

workflow modeling is the flow of work which determines "the control and data flow

between activities" [p. 63]. To address this limitation, Zhao [1995] suggests that pre­

conditions and post-conditions may be specified for services in an Internal Object

Template (IOT). However, he does not formalize his suggestion in the context of

workflow modelling.

2.7. Summary

This chapter provided an overview of workflow management. We introduced

the basic workflow terminology proposed by the Workflow Management Coalition

(WfMC) whose objective is to develop common terminology and standards for

workflow technology. We also presented the WfMC Reference Model which

identifies common characteristics of many workflow products in the market. Current

trends in the groupware market were discussed as well. Finally, we reviewed two

major categories of business process modeling techniques: the traditional approach and

39

the object-oriented approach. While the object-oriented approach seems to overcome

some of the traditional approach's limitations, the OO approach also has its own

limitations; these later limitations can be addressed by the object-oriented workflow

model proposed in the next chapter.

4 0

3. The Object-Oriented Workflow Model

3.1. Introduction

The previous chapter presented the fundamental concepts of workflow

management. This chapter introduces the Object-Oriented Workflow Model

(OOWM) which represents our view of a business process in an object-oriented

context. Based on our observation of the limitations of OOEM in association with the

concepts of workflow management, we will present the OOWM which extends

OOEM by including additional workflow constructs. The reasons that we build on

OOEM are presented as follow:

1. Compared to other OO approaches, OOEM reflects how human beings perceive

an organizational process. While other OO approaches are geared toward

software development, OOEM is designed to provide a high level of abstraction to

describe essential business activities. Accordingly, OOEM is more understandable

to analysts and management who are more concerned with business processes

rather than information on processing details.

2. Because of (1), OOEM provides analysts with a framework to design information

systems without overlooking a company's objectives.

3. Because OOEM deliberately excludes certain low level details, such as the details

of how objects process requests, and it concentrates how the objects communicate

with each other, it offers analysts a basis for developing a system in a

decentralized environment. Such a system gives decentralized units the flexibility

to operate autonomously.

41

Since the example of the reimbursement process presented in the previous chapter will

be used to demonstrate our concepts, we present it again in the following paragraph:

In order to have his/her expense reimbursed, an employee of the ABC

Company must submit a reimbursement form to the division manager or

the corporate accountant for approval. Reimbursement amounts greater

than $200 require a division manager's approval before they are

approved by the corporate accountant. All other reimbursements are

submitted directly to the corporate accountant. After his/her approval, the

division manager submits the reimbursement form to the corporate

accountant who then cuts the cheques and completes the process.

We will also put the OOWM into practice by presenting the OOWM method in

order to provide analysts with a systematic approach to building the OOWM

for an organizational process. At the end of the chapter, we will present the

implementation model of an Object-Oriented Workflow Management System

(OOWMS) which automates the organizational process based on the OOWM.

The implementation model serves as a building block of the architecture of the

OOWMS which will be formally presented in Chapter 4.

3.2. The Object-Oriented Workflow Model (OOWM)

Figure 3-1 illustrates how OOWM constructs are developed. The OOWM

constructs, as represented by the first block in the diagram, are based on the OOEM

constructs and the concepts of workflow management. Similarly, the OOEM

constructs are derived from a combination of the ontological constructs for

42

information systems (IS) and the Object-Oriented constructs. The ontological

constructs are based on Bunge's ontology [Bunge, 1977].

OOWM Construct!

OOEM Constructs
Concepts of
Workflow

Management
Ontological Constructs

for IS Object- Oriented
Constructs

Concepts of
Workflow

Management

Bunge's Ontology

Object- Oriented
Constructs

Concepts of
Workflow

Management

Figure 3-1 The Building Blocks of the OOWM

To address the shortcoming of OOEM, we extend OOEM by introducing

additional constructs to support workflow modeling. These constructs include:

activity and business rule. An activity refers to a unit of work that forms part of a

business process [WfMC, 1997]; the activity can be a manual or automated activity.

A business rule means an organizational policy that governs activities within a process.

Figure 3-2° depicts all the constructs and their relationships in our object-oriented

workflow model.

43

Figure 3-2 The Object-Oriented Workflow Model (OOWM)

The added constructs are enclosed by a dotted line in Figure 3-2. It is

important to note that the addition of the new constructs also introduces changes in

the relationships between the constructs originally defined in OOEM. In OOEM (See

Figure 2-10), a service accesses at least one attribute and spawns any number of

requests. But Figure 3-2 shows that it is an activity which accesses at least one

attribute and spawns any number of requests. The service in the OOWM, performed

by at least one object, comprises at least one activity, but OOEM does not define the

relationship between the service and the activity. A business rule entity, which is not

included in OOEM, is introduced in the OOWM to determine when activities should

begin and end if certain conditions are true. These conditions always refer to the

information included in the interface or internal attributes. We will examine the

constructs in the proposed model.

44

3.2.1. Constructs in the Object-Oriented Workflow Model (OOWM)

In Chapter 2, we presented the modeling constructs of OOEM. In this section,

we will formally define the additional constructs that we introduced earlier. While the

information about the modeling constructs originally defined by OOEM is taken from

existing OOEM literature [Wand and Woo, 1993; Zhao, 1995; Tan, 1997; Jung,

1997], we may extend the definitions of these constructs in order to support the

semantics of our workflow model.

3.2.1.1.Activity

Activities are the basic units of operations taken by an object; they form

services. A service contains an ordered set of activities {Ai ... A„}. The mechanism of

activities is encapsulated within an object. According to Figure 3-2, they can access

interface and internal attributes and generate requests to other objects. For instance,

when the manager approves a reimbursement form, he/she needs to access the

information about the request and the division reconciliation records. Figure 3-2 also

shows that the activities are initiated by an object in accordance with business rules

specified by an organization. The division manager, for example, cannot approve a

reimbursement request unless the amount of the request exceeds $200.

By examining the relationships between a traditional activity-based model and

OOEM, we may be able to determine how a service can be broken into activities in the

context of our workflow model. Figure 3-3 shows the activity diagram and the

OOEM model. We compare incoming and outgoing requests, and the returning result

of the requests in OOEM to the information flows going into or out of activity blocks.

45

An Activity-Based Diagram

Participant A

Fl

Participant B

A l
F2

F6

An OOEM Model

A4

Participant C

F4

F5

Participant D

A2 A3 A2
F3

A3

J A5

Object A Rl

R6

Object B

Attribute B

Service B

R2

R5
R4

— • »

Object CD

Attribute CD1
Attribute CD2

Service CD1
Service CD2

Figure 3-3 An Activity Diagram and an O O E M Model

The activity diagram is divided into columns. Each column corresponds to a

participant in the process. The boxes in the column represent the activities associated

with the participant, and an arrow indicates an information flow. All information and

request flows in both diagrams are labeled. It should be noted that F l in the activity

diagram corresponds to Rl in the OOEM model, F2 to R2, F4 to R4, F5 to R5, and

F6 to R6. Service B contains activities A l and A4; service CD1 has A2 and A3; and

service CD2 contains A5. The diagram helps explain the characteristics of an activity

in the context of our OOWM. The granularity of an activity is related to an interaction

between objects. In our OOWM, the activity begins with an incoming request or the

response to a request from another object. It terminates when one of the following

conditions is met:

1. The activity generates a request to another object.

2. The activity has completed all it needs to do.

46

In the activity diagram, there is no indication of showing which activities

belong to a service in the OOEM model. For instance, we cannot decide if A2 and A3

form a service and if A5 belongs to another service. In OOEM, every service is

responding to at least one request; therefore, a request defines the granularity of a

service. Also, the activity diagram does not indicate which participants should form an

object in OOEM. But when we refer to the OOEM model, we cannot tell what really

happens in a service; we cannot identify the sequence of generating R2 and R5. In

Section 3.2.3.1, we will show how an OOWM, an extension of OOEM, can be

converted to an activity diagram.

3.2.1.2.Business Rules

Even though objects are autonomous and independent, their responsibilities

within an organization are defined in organizational policies. It is the organization's

policies that determine when and what tasks are processed and, by whom [Rupietta,

1997]. Business rules basically achieve the same objectives as organizational policies.

As pointed out by Rupietta [1997, p. 165], "the cooperation and communication

between members of an enterprise in workflow management systems requires that

organizational rules be closely followed" [p. 165].

A business rule can be interpreted into pre-conditions and termination

conditions for an activity. The pre-conditions can be defined as entry criteria to an

activity, and the termination conditions as completion criteria for a particular activity

[WfMC, 1997]. These conditions may refer to information accompanying requests or

to state information about a process instance. For instance, the pre-condition for the

47

division manager to approve a reimbursement request is that the value of the request

must exceed $200. The termination condition for the approval activity is when the

manager approves or rejects the request. The pre- and termination conditions also

affect the generation of requests. For instance, if the reimbursement request is

approved by the division manager, another request is generated for the corporate

accountant. It is important to note that the introduction of business rules does not

violate the concept of object independence and encapsulation. These rules do not

restrict how the object should perform the tasks; instead, they only control the

interactions among the objects (i.e. incoming and outgoing requests).

3.2.1.3.0bject Activity Template (OAT)

An Object Activity Template (OAT), shown in Table 3-1, is used to specify the

behavior of objects. It is an extension of Zhao's Internal Object Template (IOT) and is

intended to capture workflow information. This information includes activities and

business rules which govern the activities. The name of an activity is expressed in the

Activity column. Since business rules provide organizational control, we need to

include them to understand their implications with respect to an activity. However, in

actual implementation, the rules are stored separately from the objects to preserve

object autonomy. The business rules can be represented by pre- and termination

conditions for an activity; these conditions are represented by the Pre-Conditions and

Termination Conditions columns.

48

Object Name - Object Code
Interface
Attributes

Internal
Attributes

Services

Service 1
incoming
interface
attributes

Internal
Attribute
to
support
Service 1

Access
Mode

Pre­
conditions

Activity Termination
Conditions

Request
Generated

Receiver

activity
code - R Pre-condition

1

activity
code

Termination
condition 1

Request
Generated
from

Object
receiving
a request

returning
interface
attributes

Pre-condition
1 Activity 1 Activity 1 generated

from
Activity 1

activity
code - R Pre-condition

activity
code

Termination
condition 2

Request
Generated
from

Object
receiving
a request

returning
interface
attributes

2 Activity 2 Activity 2 generated
from
Activity 2

Service 2

incoming
interface
attributes

Internal
Attribute
to
support
Service 2

Access
Mode

Pre­
conditions

Activity Termination
Conditions

Request
Generated

Receiver

activity
code - R Pre-condition

1

activity
code

Termination
condition 1

Request
Generated
from

Object
receiving
a request

returning
interface
attributes

Pre-condition
1 Activity 1 Activity 1 generated

from
Activity 1

Table 3-1 An Object Activity Template (OAT)

Because each service consists of several activities, all of its associated activities and

conditions are shown in a sub-table of a service. Each row of this table represents an

activity which is attached to pre- and termination conditions. If a precondition of one

activity holds, then that activity will be performed by an object. Similarly, if a

termination condition is true while an activity is being performed, the activity will stop.

The returning interface attribute captures the response to an incoming request. This

response is labeled with an activity code and "R" in order to distinguish which activity

49

generates the response. The access mode indicates how activities of a service use

internal attributes. "U" indicates read access, and "M" means read and write access.

To illustrate the application of the template, let us consider the object activity

template for the division manager object in the purchase reimbursement process

presented at the beginning of this chapter. The template is shown in Table 3-2.

Division Manager - DM

Interface
Atrrfcufcss

Internal
AlUfltutes

Service

Request to
process RF:
Items,
Amounts,
Requested
Date, Re-
questex

Division Ree-
oncflierkm
Record:
Items,
Amounts,
Requested
Date, Re­
quester, Ap­
proval Deci­
sion, Ap­
prover

M P recess Request tar ReirrfmrsemBJtt Request to
process RF:
Items,
Amounts,
Requested
Date, Re-
questex

Division Ree-
oncflierkm
Record:
Items,
Amounts,
Requested
Date, Re­
quester, Ap­
proval Deci­
sion, Ap­
prover

M
Pre­
condition*

Activity
Conditioiu

Request
Generated

Receiver

Request to
process RF:
Items,
Amounts,
Requested
Date, Re-
questex

Division Ree-
oncflierkm
Record:
Items,
Amounts,
Requested
Date, Re­
quester, Ap­
proval Deci­
sion, Ap­
prover

M

Amxx&s >>
$200

DH-1

Appvewe a.
MfUPt

Raqueri Ap­
proved or
Rejected

Reji
Rea

<

iclion
son

Division Ree-
oncflierkm
Record:
Items,
Amounts,
Requested
Date, Re­
quester, Ap­
proval Deci­
sion, Ap­
prover

M

Reqoett
Approved

DH-2

Generate*
wavw«t

Raquert
Genetated

Rafiait to
appzoro
divisixMialty
approved
RT

Corporate
Accountant Reji

Rea

<

iclion
son

Division Ree-
oncflierkm
Record:
Items,
Amounts,
Requested
Date, Re­
quester, Ap­
proval Deci­
sion, Ap­
prover

M

Reject**
DM-3 1 {baton <S*n-

rate Employee
Object

Division Ree-
oncflierkm
Record:
Items,
Amounts,
Requested
Date, Re­
quester, Ap­
proval Deci­
sion, Ap­
prover

M

Reject**
Generate 4
reject reason

{baton <S*n-
rate

Division Ree-
oncflierkm
Record:
Items,
Amounts,
Requested
Date, Re­
quester, Ap­
proval Deci­
sion, Ap­
prover

M

DM-2«r
DM-3 Com­
pleted

DM.4 |
TTwfljrt* fBPorf

Table 3-2 The Object Activity Template for the Division Manager

In the reimbursement process, an employee submits a request to the division

manager. Such a request should be accompanied by information such as the name of

the requester, the reimbursed amounts, the requested date, and the purchased item.

They are listed under the Interface Attribute column as incoming interface attributes.

The internal attributes that support the activities include the requester name, the

requested date, the requested amounts, the purchased item, the approval decision, and

50

the approver name. The manager can approve or reject the request only if the request

value exceeds $200. This condition is reflected by the 'Amounts > $200' statement in

the Pre-Conditions column. If the condition is true, the activity 'Approve a request"

labeled with the code 'DM' will be executed. This activity terminates when the

request is either approved or rejected. The division manager will generate a request to

the corporate accountant if the reimbursement request is approved; this information is

captured in the second row of the Process Request for Reimbursement sub-table. The

receiving object of the generated request, as specified in the Receiver column, is the

corporate accountant. A rejection reason will be returned to the requester as an

immediate response to the reimbursement request if the manager rejects the request.

3.2.1.3.1.From an OOWM to an Activity Diagram

Since activities and their associated conditions are represented in an Object

Activity Template (OAT), it is always possible to convert an OOWM into an activity

diagram. We can treat both requests and responses (i.e. the returning results of

requests) in the OAT as the information going into or out of activities blocks in

different participant columns in the activity diagram. In Figure 3-4, R l , R2 and R3 in

the OAT correspond to F l , F2 and F3 respectively in the activity diagram. If a

response to Rl is expected from object 2, how can a returning result of Rl be

represented in the activity diagram?

51

Object Activity Template

Object Nam - Symbol

Interface
Attributes

Internal
Alttflmtes

Service

Interface At-
tnbvfes

Nwswof
Internal
Attributes

A2-R
R2

1
Objl

Ac«e»
Mode

Service 1

Coadrhoris
Activity

Conditions
Request

Oencwttd
Receiver

CI Al Tl SI Obj2

C2 A2 T2

C3 A3 T3 K3 Obj3

A M Activity-Based Diagram

Objl

FO

j | Activity o Nodi
Inftnma-
t km Flow

ObjeetName

F2

TlTroe

C3Tme

T3TnU

Obj2 Obp

F4

Figure 3-4 An OAT and An Activity-Based Diagram

In an OOWM, a response to a request is required by an object to continue its service.

This requirement is usually captured in the pre-condition for an activity performed by

the object. Whether such a response is received and triggers another activity is

represented by a decision node. Assume that C3 specifies the need for the response to

Rl from object 2 in order to trigger activity A3. If C3 is satisfied (i.e. C3 is evaluated

to be true at the decision node D2), A3 will be triggered along with incoming

52

information represented by F4 in the activity diagram. The flows of activities blocks

can be determined by pre- and termination conditions in the OAT. T l , for example,

is represented by a diamond-shape symbol, D l , in Figure 3-4. If T l is false, then A l

will continues until T l is evaluated to be true. An activity following A l is decided by

whether C2 or C3 is true (i.e. the decision node is marked D2). By converting all the

OATs in an OOWM into activity diagrams, a complete activity diagram to describe an

organizational process can be developed.

3.3. The OOWM Method

The previous section presented the Object-Oriented Workflow Model

(OOWM) which reflects our view of an organizational process in an object-oriented

context. We also examined the theoretical foundations of the model. In this section,

we will introduce the OOWM method to describe a given organizational process in

our OOWM framework. The steps to building an OOWM for the process are similar

to those of the OOEM method, except that we need to consider additional workflow

constructs presented in the previous sections.

The quality of an OOWM is related to analysts' ability to apply the method to

capture an organizational process under study. The analysts should have sufficient

information to determine such a process. The sufficiency of information also affects

the quality of the OOWM.

3.3.1. Steps to Building an OOWM for an Organizational Process

The procedure of creating an OOWM can be divided into two main steps.

First, analysts should construct an OOEM model for an process under study. Second,

53

the analysts should look into the internal objects of the process and model their

characteristics by using the Object Activity Template (OAT) presented in the previous

section.

3.3.1.1. Cons true ting an OOEM Model

Zhao [1995] proposes an algorithm to identify objects, their services, interface

and internal attributes, and requests of a process under study. The algorithm which is

summarized in the following steps (See Table 3-3) provides an effective guideline for

applying Wand and Woo's modeling rules [1993] presented in Appendix E. Please

refer to Zhao's [1995] Object-Oriented Enterprise Modeling for the details of the

algorithm.

Steps to constructing an OOEM Model Corresponding Wand and Woo's
Modeling Rules

1. Determine the scope of the process. Rule #1: The scope identification rule is
applied since all external objects and their
requests being submitted to the process
are identified.

2. Identify external clients of the
process.

Rule #1: The scope identification rule is
applied since all external objects and their
requests being submitted to the process
are identified. 3. Identify the requests generated by the

external clients.

Rule #1: The scope identification rule is
applied since all external objects and their
requests being submitted to the process
are identified.

4. Trace an individual external request
and determine how the request is
processed by other internal objects
which may propagate other requests
in the process. During the tracing
process, identify internal objects, their
interface and internal attributes, and
their services.

Rules #2 - #5: The rules for identifying
objects, services, internal and interface
attributes, and the ownership of the
attributes are satisfied since this step
ensures that each object in the model
provide at least one service which
requires interface attributes and which
may access internal attributes.

Table 3-3 Steps to Constructing an OOEM Model

Once all objects are identified, they can be organized into whole-part and

generalization-specialization structures by applying Rules #6 and 7.

54

3.3.1.2.Creating an OAT for an Internal Object

This step requires information about company policies which stipulate how a

particular process should be carried out by different workflow participants. Services

identified in the previous step should be broken down into activities which are

associated with pre- and termination conditions. What constitutes an activity was

discussed in Section 3.2.1.1.

Appendix G shows the complete OOWM for the purchase reimbursement

process. Three objects, their interactions, their interface and internal attributes, and

their services are first identified in the OOEM model. Then, we take a microscopic

view of the division manager and corporate accountant objects and include their

internal characteristics in the OATs. The execution order of activities within an object

can be specified by the use of pre- and termination conditions. As an example, we

demonstrate how to model three common types of the order in Figure 3-5 [WfMC

1997, Grasso, Meunier, Pagani, and Pareschi, 1997].

55

Sequential execution Pre-Conditions Activity Termination Conditions

CI A l T l

A l Complete A2 T2

Parallel execution CI A l T l

A l Complete A2 T2
A l Complete A3 T3

A2 Complete
AND
A3 Complete

A4 T4
; ^

Conditional Branching CI A l T l

*t

Al Complete
ANDC2 ,

A2 T2

*t

Al Complete
ANDC3

A3 T3

*t

A2 Complete
OR
A3 Complete

A4 T4

Figure 3-5 Types of Execution Order in OAT

Different types of execution order are separated by double-arrow-head solid

lines. Sequential execution is captured by specifying the completion of the first

activity as criteria for starting the second activity in OAT. Parallel execution is

represented by two activities, namely A2 and A3, associated with the same pre­

condition. The completion of A2 and A3 becomes a prerequisite to starting the

convergent activity A4. Finally, an alternative activity can be determined based on the

completion of A l and its pre-condition in conditional branching.

3.4. An Implementation Model of an Object-Oriented Workflow
Management System

In previous sections, we introduced the Object-Oriented Workflow Model

(OOWM) methodology to study an organizational process from an ontologically

object-oriented perspective. In this section, we will propose the implementation model

56

of an Object-Oriented Workflow Management System (OOWMS) which enacts an

OOWM. The model serves as a basis for the architecture of the OOWMS which will

be presented in the next chapter. The model identifies the important components of

the architecture and specifies the general functions of the components.

Figure 3-6 illustrates the implementation model. The objective of our

OOWMS is to automate interactions among objects in accordance with workflow

business rules. Our system, however, does not control how objects perform their

services because of object autonomy and independence. Specifically, our system

controls and monitors when and what objects should react to requests. To achieve

such an objective, we introduce the Controller object which monitors all controlled

requests from and to the objects in a process. The specifications of the Controller

object are presented in the following sections.

Action

Object

Process State
Information

Figure 3-6 The Implementation Model of an OOWMS

57

3.5. Controller

Figure 3-6 depicts the general function of the Controller object. The object

is introduced to ensure that business rules (i.e. organization policies) be followed in an

automated workflow environment. It not only keeps track of the rules but it also

evaluates the rules based on the information carried by a request and the state of a

process. It generally takes two types of actions:

1. It can issue requests to other objects to obtain additional information for

evaluating business rules.

2. It performs actions specified by the business rules after evaluating the rules.

The Controller monitors or controls the flow of requests based on business logic and

the state of requests to ensure that interactions among objects satisfy organizational

process. All external requests are sent to the Controller object, and the Controller

takes care of all responses to external requests. If business rules are violated, the

Controller may follow instructions specified in violation clauses. This procedure is

equivalent to error handling in computer programming; the actions are defined to

handle specific errors.

Not every request nor interaction in a process needs to be monitored nor

controlled by the Controller object. To illustrate our point, let us return to the

purchase reimbursement process.

Before the division manager approves a reimbursement form, he/she may consult

the division accountant regarding the cash situation.

Figure 3-7 shows the OOEM for the extended reimbursement process, and all requests

58

flows are labeled. Since the division manager object may have its own policies and

resource constraints, all requests that the manager sends are related to those internal

policies and constraints (e.g., request R5 in the figure) are not monitored nor

controlled by the Controller.

Employee

Request to process a
reimbursement form
(RF)(>$200)

Rl Rejection
Reason

R3

Request to process &
reimbursement form
(RF) (<= $200)

Approval
Result

R4

Approval
Result

Corporate Accountant

Request to approve RF
(Corporate Reconciliation
Record)

Process Request

Division M anager

Request to process RF
(Division Reconciliation
Record)

Process Request

Request to approve
divisonally ap­
proved RF

R2

Request for cash position

R5

I Cash position

Division A c c ountant

Request for cash position
(Division Cash Statement)

Process Request

Figure 3-7 The OOEM for The Extended Reimbursement Process

3.5.1. Control Schema

A control schema specifies which requests are controlled by the Controller

object, what workflow business rules are applied to the requests, and what actions

should be taken by the Controller object if the rules are evaluated to be true. The

organization decides what requests should be controlled or monitored and how these

requests should be controlled.

As an example, consider the requests in the reimbursement process. The

59

workflow business rules can be obtained from the pre- and termination conditions as

well as the Request Generated and the Receiver columns of the Object Activity

Template (OAT) of each internal object. The result of this is the control schema

presented in Table 3-4. Using the information in the table, a Controller object can then

be formed, as is shown in Figure 3-8.

Request Workflow Business Rule(s) Action(s)
R l Amounts > $200 Send a form to the Division

Manager
R l ' (immediate
response to Rl)

Amounts < $200 AND the form is rejected
by the Division Manager . .

Inform the requester of the
rejection reason.

R2 The form is approved by the Division
Manager

Send the form to the
Corporate Accountant

R3 Amounts <= $200 Send the form to the
Corporate Accountant

R3' (immediate
response to R3)

The form is approved OR rejected by the
Corporate Accountant

Inform the requester of the
approval result.

R4 The form is approved OR rejected by the
Corporate Accountant

Inform the requester of the
approval result.

Table 3-4 The Control Schema for the Purchase Reimbursement Process

RjCtWutalRBM&t
form(RF)

Employe*

Approval
SIM]*

ConboDnr

fWbtkflow Butttttt
AIM*)
(PmetH Sut» Info.)

Process RF

Fami Approved
by the Dirsion

Reurihatseineni farm
(RF) t>$X>0!)

Rejection
Reason

Form Approved
by the Donjon.

Manager

Approval

Rrotitaivefcnaitt form
(RF) (<» $200)

Appmval
Remit

Composite Aocotiftt&rd

Request to approve RF
(Corporate Reconcilialion
Record)

Process Request

Division Manager

Request to ptro«» RF
(Division ReconcSutton
Kreord)

Process Request

Reqwsst for cash
position

Division Acccmrttenl

Request for cask position
(Dwiskm Cash Statement)

Procsss Request

Figure 3-8 The Controller in the Purchase Reimbursement Process

60

As shown in Figure 3-8, the Controller does not control how the manager and

the corporate accountant actually approve the form (i.e., the manager communicates

directly with the division accountant). The figure also shows that the workflow

business rules and the process state information are represented as internal attributes

of the Controller object. Finally, it should be noted that the interaction between the

employee object and the Controller object should be transparent in practice because

when the employee object submits a request to the object with which he/she wants to

communicate, the employee object does not know that his/her request first passes

through the Controller object for evaluation. Similarly, the internal objects do not

know the redirection of requests by the Controller object.

To evaluate the business rules, the Controller object requires not only

information carried by a request but also the state information about the current

process instance. However, the Controller may require information about other

processes. In this case, the Controller needs to communicate with other Controllers in

other processes to obtain such information. The details of accessing information about

other processes will be discussed in the next section.

3.5.2. Access to Workflow Data in Other Processes

The Controller object must access the workflow relevant data to evaluate

conditions throughout a process and to determine how to route, process, and

otherwise handle a work item [Kobielus, 1997]. Even though access to the data is

usually confined to the current process instance which, according to WfMC,

"represents a separate thread of execution of the process" [1997, p.391], it is

61

sometimes possible for the Controller to require information about other process

instances for evaluating conditions. For instance, process A cannot continue until

process B is completed In this case, the Controller in process A can request from the

Controller in process B the state information about process B. We allow

communication between Controller objects in different process instances. The way in

which these Controller objects interact is similar to the way the internal objects

interact. A request sent by one Controller modifies the interface state variables of a

receiving Controller object; however, it is the receiving object which decides to invoke

a service and to act upon the request. The communication between Controller

objects also triggers an important question: If the Controller object determines a target

object, how can the Controller object locate the target object?

Business objects always abide by business logic when they communicate

with each other. Based on this logic, the business objects always know what and

whom they should approach to solve their problems. For instance, if a division

manager needs to know the cash position of his/her division before he/she can approve

a reimbursement form, he/she will contact a division accountant for information

because he/she knows that the accountant is responsible for keeping track of the

financial health of his/her division. The same principle can be applied to the Controller

objects because these objects are business objects, and they logically represent owners

of organizational processes. For example, if the Controller object instance A which

monitors an instance of a purchase reimbursement process requires information about

the approval status of the budget for the sales department, how can the object instance

62

know which Controller object instance of a budget approval process it should contact

since there may be many ongoing budget approval process instances? Instance A may

first identify Controller instances in all active budget approval process instances and

then locate the target instance based on the budget type, the submitted date, the

submitted person, and so on. The search for the target instance can be achieved by

referencing a directory maintained in a central repository or by querying each

individual Controller object about all active budget approval process instances.

3.5.3. Time Control

Speed is an important concern for most business processes [Kobielus, 1997].

Thus, time control plays an important role in assuring the efficiency of an

organizational process. For instance, a deadline is a time-based scheduling constraint

which requires that a certain activity (or work item) be completed by a certain time

[WfMC, 1997]. The Controller object, as we mentioned earlier, is introduced to

enforce business rules. These rules may include scheduling conditions which describe

the maximum and minimum time allotted for each activity, including in-queue time,

process time, and out-queue time [Kobielus, 1997], Conceptually speaking, the

Controller object does not have an internal clock to keep track of time. Accordingly,

it must obtain the information about time in order to evaluate the scheduling

conditions. A clock object is proposed to provide the Controller object with the

information. The clock object functions like an alarm clock. The Controller not only

retrieves time information from the clock object, but it can also request the clock

object to notify it about a specified time occurrence.

63

We expand the example of the purchase reimbursement process to illustrate

what role the clock object can play in our implementation model.

After the division manager receives a reimbursement request from an employee,

he/she has to approve the request within five calendar days; otherwise, the

request will be assumed to have been rejected.

First, the control schema for the reimbursement process needs to be revised to reflect

the time control over the process.

Request Workflow Business Rule(s) Action(s)
Rl Amounts > $200 Send a form to the Division

Manager
Rl'
(immediate
response to
Rl)

(Amounts < $200 AND the form is
disapproved by the Division
Manager) Or the current date > the
submitted date + 5 calendar days

Inform the requester of the rejection
reason.

R2 The form is approved by the
Division Manager AND the
current date <= the submitted
date + 5 calendar days

Send the form to the Corporate
Accountant

R3 Amounts <= $200 Send the form to the Corporate
Accountant

R3'
(immediate
response to
R3)

The form is approved OR rejected
by the Corporate Accountant

Inform the requester of the approval
result.

R4 The form is approved or rejected
by the Corporate Accountant

Inform the requester of the
approval result.

Table 3-5 The Revised Control Schema to Include the Approval Deadline

Please note that request R2 has to satisfy an additional condition which ensures that

the request sent to the corporate accountant be approved by the division manager

within five calendar days after the manager receives the request. To enforce such a

condition, we include the clock object in the OOEM for the process (Figure 3-9).

64

Clock

Tirae information

Reejueet fortuna

Time notification

Reaoot for lime Eotificition

Renrdnnezueut
ft>rm(RF)

Approval
Re»uH

Conhnlbr

RtualuuttiniiEii Form
(Workflow Business
may
(Proces* State Into.)

Process RF

Reiwkrixrj*rn*»it form
CRR(»$200)

Rejection
Reason

Division Manager
Revest to process RF
(Division Reconciliation
Reeoxd)

Process Request

Employee

Form Approved
by the Diwiom

BSJUUGHT

Approval
Rtsult ^

ReutflHUMiiiuit fovm
CRF)(«*S200)

Approval
Result

Request for cash
position

Cash position

vorptnais Acoounxaiu

Request to approve RF
(Corporate Reconcination
ReeonJ)

Process Request

Divisian Accountant

Request for cash position
(Division Cash Statement)

Process Request

Figure 3-9 The Clock Object in the Purchase Reimbursement Process

When an employee submits a reimbursement form on September 12, 1997,

the Controller object obtains time information from the clock object to time-stamp the

form. If the form is routed to the division manager, the Controller object calculates

the deadline, September 16, 1997, and requests the clock to remind it of the

September 16, 1997. If the Controller object does not receive any approved form

from the division manager by September 16, 1997, and it is reminded by the clock of

the deadline, the Controller will reject the form and notify the requester.

3.6. Summary

In this chapter, we introduced the Object-Oriented Workflow Model (OOWM)

65

which extends Object-Oriented Enterprise Modeling (OOEM) by incorporating the

concepts of workflow management into OOEM. We also presented the OOWM

method so that analysts have guidelines for constructing the OOWM for an

organizational process. In order to capture the internal characteristics of objects, we

proposed the Object Activity Template (OAT) which enables Zhao's Internal Object

Template (IOT) to describe the internal behavior of the objects in terms of activities

which are governed by business rules. Finally, we presented the implementation model

of an Object-Oriented Workflow Management System (OOWMS). The model

identifies the major components of our OOWMS and provides the first step to

developing the architecture of the OOWMS presented in the next chapter.

66

4. An Implementation Architecture of the OOWMS

This chapter presents the implementation architecture of the Object-

Oriented Workflow Management System (OOWMS) which enacts the contents of the

model presented in the previous chapter. In our model, the Controller object is

introduced to monitor and control the flow of requests, and the services provided by

the internal objects are encapsulated in the objects themselves. The Controller object

is responsible for enforcing business rules which govern how internal objects should

interact with each other. We therefore focus on the architectural blueprint for the

Controller object. Specifically, we need to address the following questions:

1. What is the algorithm used for processing incoming requests by the Controller?

2. How is the information required by the Controller logically represented in the

architecture?

3 . What are the logical components of the Controller to implement the algorithm in

(1) ?

4.1. Request Processing Cycle

Before we answer the second and third questions, we must understand the

algorithm used for processing the incoming requests by the Controller. The process of

handling the requests is achieved by a request processing cycle which is similar to a

machine cycle performed by a control unit and an arithmetic-logic unit (ALU) in a

central processing unit (CPU). The control unit fetches an instruction from the

program stored in primary storage, decodes the instruction, places it in a special

instruction register, and directs the arithmetic-logic unit (ALU) to perform the

67

required tasks [Mano, 1993].

The purchase reimbursement process presented in the previous chapter will

be used to facilitate our discussion of the request processing cycle. Since we revised

the reimbursement process example in different places in Chapter 3, we will restate it

to avoid any confusion:

In order to have his/her expense reimbursed, an employee of the ABC Company

must submit a reimbursement form to the division manager or the corporate

accountant for approval. Reimbursement amounts greater than $200 require a

division manager's approval before they are approved by the corporate

accountant. After the division manager receives a reimbursement request from

an employee, he/she has to approve the request within five calendar days;

otherwise, the request will be assumed to have been rejected The division

manager may consult the division accountant regarding cash situation when

he/she approves the request. All other reimbursements are submitted directly to

the corporate accountant. After his/her approval, the division manager submits

the reimbursement form to the corporate accountant who then cuts the cheques

and completes the process.

The OOEM model with the Controller object is presented in Figure 4-1.

68

Clock

Time information

R«fi»*t tbt time

Time notification

Readiest for line BotrAsation

RenrAwiseiueiu'
fi>nu(RF)

Approval
BtauR

Controller
RflftHflffJITHIIMtllt Fprra
(Workflow Dullness
Rules)
(Process Slate I nib.)

Process RF

Mwagtif

yemfaineiweitf form
(RF)(*$300)

Rejection
Reason

Division Manager
Request to process RF
(Division Reconciliation

Process Request

Employee

Form Approved
by the Divsion

Approval
RttcOS f

Rtsnbanctntnl finm
(RF) («* $200)

Approval
Result

Request for cask
position

Cash position

Corporate Accountant

Request to approve RF
(Corporate Reconcile tio n
Record)

Process Request

Division Accountant

Request for cash position
(Division Cash Statement)

Process Request

Figure 4-1 The OOEM Model with the Controller for the Reimbursement
Process

In the Controller object, the business rules attribute contains the knowledge of

how an organization wishes to control a work process, and the process state attribute

captures the information about the state and the state transition of a process.

According to the Workflow Management Coalition (WfMC) [1996], a process state is

a "representation of the internal conditions, defining the status of a process instance at

a particular point in time" [p. 411], and a state transition reflects a "change in the

status of the workflow" [p. 413]. We will examine how this information can be

logically represented in our architecture.

To process a request, the Controller fetches the first request in the request

69

list, decodes it, and retrieves information carried by the requests. For instance, the

Controller in the reimbursement process receives a request from an employee (See

Figure 4-1). It needs to decode the request and decide what type of the request it will

process. In this case, the Controller should identify it as a reimbursement request.

Then, the Controller retrieves information carried by the request. This information

may include the name of a sender, the value of the reimbursement form, and so on.

The Controller must first update the process state attribute by recording when and by

whom the request is sent to the Controller. It then evaluates business rules according

to the values of the request and the state of the process to determine what actions it

should take. For instance, in the requisition process, the Controller has to determine

the receiver of a PR form based on a requested item. Once it sends out the form, it

updates the state of the process. The following list summarizes the request processing

cycle:

1. Fetch the next request

2. Decode the request

3. Retrieve the information accompanying the request

4. Update a process state for the incoming request

5. Invoke and evaluate business rules

6. Determine actions based on the evaluation of the business rule

7. Take actions, including sending request for future time events (as mentioned in

Chapter 3).

8. Update a process state for the outgoing request(s).

7 0

4.1.1. Request Instance Identification

We allow the Controller to be able to process more than one incoming request

instance of a same request type. When the Controller receives a response from an

operating object, it has to identify the original request instance to which the response

addresses. Handling multiple instances becomes challenging when dealing with

autonomous objects, because the Controller has no way of enforcing what an object

can respond to in a request. An example may help to explain this point. An employee

submits three reimbursement forms to the division manager at three different time

points; an organizational policy specifies only when the manager should approve the

form, but it does not specify how. The manager may send a message to the requester

such as "Approve All", "Approve the first request and Reject the last two", or "Reject

the first two request and Approve the last one". In this case, there is no indication of

which requests the response addresses. The Controller, on the other hand, will be able

to keep track of the origin of a request if one of the following conditions holds:

1. The responses include sufficient information to identify the original requests they

are responding to.

2. The responses are sent back in the same sequence as the original requests were

sent to the Controller.

These conditions reasonably reflect the way in which people work in reality.

The first condition implies that a request can be uniquely identified by a set of

information. There are many real-life examples to support the first condition. For

instance, a monthly bank statement on a chequing account displays a list of cheques

71

issued by a client for reconciliation. The cheques are referred to by their numbers. If

the statement simply printed out the total credit and debit amounts, then the client

could not trace his/her spending. The second condition reflects the temporal sequence

of processing a request. An example may illustrate our point. When we line up at a

ticket booth for concert tickets, a ticket booth attendant basically processes individual

requests one by one. We believe that these conditions do not restrict how people

should work in an organizational process but that they are essential for the process to

run efficiently and effectively.

4.2. Information Representation

The request processing cycle suggests answers to question (2) presented in the

beginning of this chapter: How is the information required by the Controller logically

represented in our architecture? The information required for processing the requests

includes: request type definition, business rules, state information about a process, and

detailed information about the requests.

4.2.1. Request Type Definition

From the Controller's perspective, there is no difference between a request and

a response. The Controller is only concerned about what kind of data it is passing

around in a process. For instance, in Figure 4-2, the Controller object treats the

approval status sent from either the division manager object or the computer manager

object as an instance of a request type, even though it appears as an immediate

response to a request for purchase requisition. The Controller considers each

incoming and outgoing request to be unique types of information. Each request type

72

should contain information about a sender and a receiver of a request:

Request-Type-Definition (request-type-id, sender, receiver)

4.2.2. Business Rules

Business rules specify the criteria for certain actions to be taken by the

Controller. Business rules can be represented in the following conditional statement:

JF <conditions> THEN <actions>

The JF clause specifies the conditions under which the Controller should take specific

actions stipulated in the THEN clause. The conditions refer to the workflow business

rules specified in the control schema introduced in Chapter 3 . For instance, according

to the control schema for the requisition process (See Appendix H), the computer

manager only approves a request for computer items. This condition can be encoded

into the following clause:

JF <requested_item = computer>

We allow all operations associated with a business rule to be represented as a

block of execution in the THEN clause. For example, we can instruct the Controller

not only to decide the recipient of a PR form but also to calculate the deadline:

JF <request_item = computer>

THEN

{

Send (RequestToComputerManager);

CalculateDeadlineO;

}

73

The business rule information can be organized and represented in a database

table format:

Business-Rulestrule-id, IFcIause, Thenclause)

where rule-id is the primary key of the table. In principle, the Controller scans all the

business rules in the repository to determine which rules will be "fired".

4.2.3. State Information about a Process and Information about Requests

The Controller not only keeps track of all the states of a process in the process

state attribute but also of the history of information about the values of requests. The

history of information serves two purposes in our architecture:

1. It provides the Controller with references to determine its course of actions

specified by the business rules.

2. It builds up an audit trail of workflow execution [Jablonski & Bussler, 1996].

An example can illustrate the need for the history of information. In the

purchase requisition process, all managers must approve PR forms within three

calendar days; otherwise, the forms will be automatically rejected. The Controller is

responsible for keeping track of when the PR forms were first sent to, for example, the

division manager. The Controller may refer to the time when the forms were sent and

decide if the manager has passed the deadline. If the manager has passed the deadline,

the Controller can reject the forms and notify the requesters on the manager's behalf.

Since the manager object is autonomous, the Controller cannot stop the manager from

submitting the approved forms to it. In this case, because all state information is in

long-term storage, the Controller is able to once again to refer to the time when the

74

original PR forms were submitted to the manager, and, according to a business rule, it

may simply inform the manager that he/she has passed the deadline and that the forms

have been rejected on his/her behalf.

The Controller stores the state information in the following manner:

Workflow-State(reauest-id. sent-time, request-reference-id,_sender, receiver)

The sent-time field stores the data about when a request is sent to the Controller and

out of the Controller. The request id field is used to uniquely identify individual

request instances. For instance, the reimbursement request submitted by employee A

can be distinguished from employee B's by the reimbursement ids. The request

reference id field refers to the id of the original request so that we will be able to know

what other requests are generated as a result of the original request. Finally, the

sender and receiver fields record the sender and the recipient of the request. The state

information is stored in the Workflow State Repository represented in Figure 4-2.

Apart from the state information about a process, the Controller should also

maintain a track record for the values of the requests throughout a process:

Request-Information(request-id, parameter, request-type-id, value)

where the parameter field records the names of all the variables carried by a request

instance and the value field stores the values of the variables. Since each request is

assigned to a unique id, we can trace back how a request instance was processed

throughout a work process. Also, the request type to which the instance belongs can

be identified by the request-type-id field. The request information is maintained in the

Request Information Repository (See Figure 4-2).

75

The specifications of the Workflow State and Request Information

Repositories are domain-independent; that is, they can be generally used for different

organizational processes.

4.3. Logical Components of the Controller Object

In previous sections, we identified the information required by the Controller in

the request processing cycle. This information can be stored and represented by using

database technology. But we have not identified the logical components of the

Controller to process this information. In this section, we will introduce two major

processing units which fetch and evaluate data which reside in different repositories,

and perform actions based on business logic. These two units are the Business Rule

Evaluator and the Workflow Executor. The reason that we separate the evaluation of

business rules from the execution of workflow operations is that while the structure of

a business rule is defined independently of business processes, the workflow

operations executed by the Controller vary from process to process. We will be able

to customize a unit without changing another. The design of the processing units is

analogous to the design of a silicon chip, which allows "a supplier to deliver tightly

encapsulated unit of functionality to be specialized for its intended function, yet

independent of any particular application" [Sprague & McNurlin, 1993, p. 280].

4.3.1. Business Rule Evaluator

The business rule evaluator functions like the control unit in the CPU does.

The control directs the other components of the computer by reading stored program

instructions one at a time [Mano, 1993]. Similarly, the business rule evaluator

76

instructs the Workflow Executor what to do based on the result of its evaluation of the

business rules (See Figure 4-2). The evaluator has access to all information previously

determined. In terms of the request processing cycle, the evaluator fetches a request,

decodes it, determines the type of a request from the type definition, and retrieves its

parametric values. The evaluator also evaluates the business rules that correspond to a

process state and the parametric values of the request. The design of the business rule

evaluator is independent of different process definitions. In other words, the same

evaluator can be used for the purchase requisition process as for other organizational

processes.

Incoming
Request

Business Rule
Evaluator

Workflow
Executor

Business Rule
Evaluator Instructions

Workflow
Executor Output (e.g.

notification)
Output (e.g.
notification)

Request Type
Definition

Workflow State
Repository

Request Infor­
mation

Figure 4-2 The Architecture of the Controller Object

4.3.2. Workflow Executor

The Workflow Executor, as suggested by its name, performs workflow

operations specified by the business rules. It can access and write to the request

information and the Workflow State Repository; it can also read information stored in

the Request Type Definition. A read access to the Business Rule Repository by the

Workflow Executor is not necessary because this component only carries out

77

the instructions sent by the Business Rule Evaluator which determines these

instructions based on the business rules. However, the Workflow Executor cannot

modify information residing in the Request Type Definition and the Business Rule

Repository. If this information was altered at run-time, the execution of other process

instance might also be affected. Since the workflow operations may vary from process

to process, there is no general design framework specified for the Workflow Executor.

4.4. Another Look at the Architecture

We have examined different components of our architecture in association with

the request processing cycle. We would like to demonstrate how these components

work together by using the purchase reimbursement process presented at the

beginning of this chapter.

Let us assume that an employee A submits a reimbursement form whose value

exceeds $200 to the division manager on August 4, 1997. The form passes through

the Controller object in which the business rule evaluator determines the type of a

request to which the reimbursement form belongs and stores the parametric values of

the form in the Request Information Repository. Then, the evaluator examines

business rules which correspond to the submitted request. Based on the parametric

values of the form and a current process state, the evaluator finds that this is a form

whose amount exceeds $200. It instructs the Workflow Executor to generate a

request to the division manager for approving the form within five calendar days

starting August 4, 1997. The Executor sets a time event which triggers the evaluator

to examine the approval status of the form on August 8, 1997. The Executor also

78

updates the Process State Repository to record when the form was sent to the division

manager from the request and the recipient of the form. It also writes to the Request

Information Repository the request that it generated for the manager. After the

manager has approved the form, his/her approval prompts the evaluator to look up

other business rules which determine the next action of the Executor based on the

approval status of the form. The evaluator directs the Executor to notify the requester

of the approval status if the form is rejected. If the form is approved, the evaluator,

according to the business rules, will generate another request to corporate accountant

for approving the reimbursement request. Similar tasks will be performed by the

Executor following the instructions of the evaluator.

4.5. Summary

The architecture of our workflow management system is quite straightforward.

Since all controlled requests must pass through the Controller object which acts on the

requests in accordance with business logic, we are only concerned with the

architecture of the Controller object. Our approach to developing the architecture of

the Controller is to first understand how the Controller processes an incoming request

in the request processing cycle. Then, we explore what basic information the

Controller needs in the cycle. This information includes business rules, information

about incoming request instances, process state information, and request type

definition. Finally, we introduce the Business Rule Evaluator and the Workflow

Executor in our architecture. These two units play different roles in processing

information in the request processing cycle. The Business Rule Evaluator is used for

79

accepting and retrieving information necessary for evaluating business logic stored in

the business rule repository. The Evaluator also instructs the Workflow Executor to

perform actions in accordance with the business rules. While different process

domains may require different designs and implementations of the Workflow Executor,

the design of the Evaluator should remain independent of the process domains.

80

5. The Implementation of the Object-Oriented Workflow
Management System (OOWMS)

5.1. Introduction

The objective of this chapter is to show how the implementation architecture

presented in Chapter 4 can be implemented using existing technologies. We will

explore topics which include the choice of development platform, the mapping of the

architectural components to the facilities of the recommended development tool, and a

sample workflow application. During the course of our discussion of the above topics,

we will also identify the gap between the architecture and the actual implementation.

5.2. Development Platform

To determine the development platform for the architecture, we must

understand what the current technologies can offer. In chapter 2, we briefly looked at

some groupware products ranging from Lotus Notes, which implements a proprietary

client-server protocol, to Web-based solutions such as Netscape's SuiteSpot which

relies on the World Wide Web's open specifications. According to Ginsburg and

Duliba [1997], the Web offers a variety of toolkits for application development. Users

of Web applications only need the Web browsers, also known as "thin clients", to run

the applications. These browsers are freely available on the Internet and support

various operating systems such as Microsoft Windows, OS/2, MacOS, and UNIX.

However, the Web technology does have weaknesses. For instance, the Hypertext

Transfer Protocol (HTTP) which allows users to serve and browse distributed

hypermedia documents on the Internet is "inherently stateless" [Ginsburg, et. al.,

81

1997]. Web servers keep "no memory of the clients' activities in prior sessions" [p.

207]; however, the state of client users is "crucial for security and collaborative work

across sessions" [p. 207]. Another weakness is that there is a lack of agreement on

security standards for the Web [Ginsburg, et. al., 1997]. Despite its proprietary design

philosophy, we have selected Lotus Notes 4.1 to be our development platform because

it offers an integrated development environment with a strong built-in security model.

Notes provides agent facilities which facilitate the tasks of automating a process. It

also offers a messaging system which allows users to communicate with others via

electronic mail. To address the need for supporting open Internet standards, Notes

moves toward compatibility with the HTTP and mail protocols by introducing

Domino, which is a web server that integrates the Notes databases into the Web.

5.3. Mappings of the Architectural Components to Notes Facilities

The following table summarizes the mappings of the implementation

architecture proposed in Chapter 4 to the Notes development environment.

Architectural Components Notes Facilities
Process Domain Shared Database
Request Type Document Class
Request Instance Document
Controller Object
• Business Rule Evaluator
• Workflow Executor

Business Controller Object Agent
• Eval Module written in LotusScript
• Executor Module written in

LotusScript
Clock Object Clock Object Agent
Business Rule Repository Business Rules Documents
Process State Repository Workflow State Documents
Request Information Repository Request Information Documents

Table 5-1 Mappings of the Architecture to Notes Environment

A process domain corresponds to a shared database which contains its own definitions

82

of document classes and other corresponding parts of the architectural components. A

request type resembles a document class which specifies the information requirement

of a request; a request instance is equivalent to a document. The following sections

explain the details of the other components presented in Table 5-1.

5.3.1. The Controller Object and the Business Controller Object Agent

The Controller object is implemented as a Notes agent, namely the Business

Controller Object. Figure 5-1 illustrates the Business Controller Object Agent which

can be triggered manually by users.

Business Contiollei Otn^cl - Aqcnl • Lotus Note*

nJ$y^JBusnett Coniioki Object

KTWTWPi" * MM.
j w w w P j ^ j Manually FtontAchanz Menu v CTM ; i j n y ^ ft^^'q^iW

lame ol an agent

i F.Kpi JP*M FP«|ifRi W WP»M ipirjlpi F.IXF.1 FPXi ' »pi l.»p

OimCvielMd^mA»NewNo)B^ateTM>'teeV'l
Set finaitaniori • New NoCetSescion

•fflisipla-ftis+sesix
Script panel

Figure 5-1 The Business Controller Object Agent

The agent is written in LotusScript, a Visual Basic-like scripting language. It contains

two main modules: the Eval and Executor modules; the modules were entered in the

83

script panel. These modules serve the functions of the Business Rule Evaluator and

the Workflow Executor presented in Chapter 4.

5.3.1.1. The Business Rule Evaluator and the Eval Module

When the Controller Agent is triggered, its Eval module looks at a submitted

document (request) and evaluates all the business rules stored in a Notes database.

The module invokes the rules by comparing the parameters of the rules to the field

names of the document. If not all the parameters of a rule exist in the document, then

the rule will be ignored. This rule selection mechanism requires unique field names for

all document classes. The module not only retrieves the values from the document

based on the parameters of a rule, but it also accepts complex conditional expressions.

The flexibility to evaluate complicated expressions gives our system the potential to be

used in automating complex processes.

5.3.1.2. The Workflow Executor and the Executor Module

The Executor Module, like the Workflow Executor, obtains an instruction

from the Eval module which passes the THEN clause as a string value to the Executor

module if a rule is evaluated to be true. The actions specified in the THEN clause are

defined as subroutines in the Business Controller Object Agent at design time. The

Executor module parses the passed string value and calls the subroutines that match

the names of the actions.

It is important to note that the Eval module is reusable; in other words, it can

be used in different process domains. The action subroutines in the Executor module,

84

however, may vary from process to process.

5.3.2. The Clock Object and the Clock Object Agent

In the architecture, the Clock object accepts requests from the Controller

object; however, in the Notes environment, the Clock Object Agent runs itself

periodically (See Figure 5-2).

.%^;jCte<*.ObrJd

jchcdule

Figure 5-2 The Clock Object Agent

The interval at which the agent is triggered is specified by application developers at

design time. Once the agent is triggered, it initiates the Business Controller Object

Agent which may take actions depending upon the business rules and the state of a

process.

5.3.3. The Business Rule Repository and the Business Rule Documents

85

A business rule document includes the If and Then fields which correspond to

the data definitions of the Business Rule Repository introduced in the previous

chapter. The If field accepts any comparison expressions which can be a set of

conjunctions, disjunctions, or both. The conjuncts of a conjunction are separated by a

keyword "AND" and the disjuncts of a disjunction by "OR" (See Figure 5-3).

Figure 5-3 If and Then Fields in a Business Rules Document

When a rule is evaluated, it is parsed into substring values by the Eval module. Then,

the substring values will be examined if they refer to the field names of the forms; the

literal values such as a number, a string constant, or a date; logical comparison

operators; or the conjunction or the disjunction keyword. If the substring value refers

to the field name of a form, the Eval module will retrieve the value of that field for

evaluation. The Then field allows a list of actions which are defined in the Business

86

Controller Object Agent as subroutines.

5.3.4. The Process State Repository and the Workflow State Documents

Whenever the Business Controller Object Agent acts on a request, a workflow

state document is created and filled with information about a process. Figure 5-4

shows the workflow state document which contains the information specified by the

Process State Repository in Chapter 4.

|Untrtlcd| - L o l u s N o l r i S I 3 E3

Workflow State information ^

Request Refe««e#rVNGG3LC8W2,3
Request IO#*VNGG-3LCsW2<s
Created Time: 8̂/2̂ 97 j
Evaluated Time: s*9/26/97,j
Sent Tirri6#J'8/5e/97J

Sender* V̂ictor Ng^
Recewer* pCN=Samson Hui/0=U8C_Comm8rc8 d

^%7elt] |J» (UrtWed) - Lotut Notet-W$0)Wi
Figure 5-4 A Workflow State Document

The Request Reference field indicates the identification number of the original

request submitted by an external object. The Request TD field simply refers to the

request the Business Controller Object Agent has acted upon. The Sent Time field

stores the information about when a request is sent from one party to another. The

87

Sender and Receiver fields are self-explanatory. Even though the Created Time and

the Evaluated Time field are not specified in the architecture in Chapter 4, they are

used here to keep track of when a request is generated and evaluated.

5.3.5. The Request Information Repository and the Request Information
Documents

We standardize the interface between the users and the system by using forms,

namely Request Information documents. The documents created in these forms

correspond to requests in our workflow model. For instance, in the purchase

requisition process, the requests sent by the requesters and by the internal objects can

be implemented as different Request Information documents. The purchase requisition

form can be one class of the Request Information document; the approval status can

be another. In order for the users and the system to trace an original request

document which triggers a process, an id is assigned to the request document and

copied to other request documents as a result of the original request. In the next

section, we will discuss how the requisition process can be automated in our system.

5.4. Workflow Application: A Purchase Requisition Process

We implemented our system to apply to a hypothetical purchase requisition

process.

In order to purchase an item, an employee must submit a purchase requisition

(PR) form to a division manager for approval. If the requested items are

computer equipment, the requester must first obtain approval from the computer

equipment manager and then the division manager. The person who approves the

form must inform the requester of the approval status. All forms must be

88

approved by the recipients of the forms within three calendar days; otherwise, the

forms will be assumed to have been rejected.

The OOEM model for the process, the model with the Controller object, the Object

Activity Templates for the internal objects, and the control schema for the process are

presented in Appendix H.

Figure 5-5 shows that all Business Rules documents which contain information

transferred from the control schema. This information was translated in such a way

that it can be interpreted by the Business Controller Object.

, h j i c Requisition - 0 us mess Flults - Lutu s Notes

e i i e V * J O

I
">(».•*•««

MartarjerAppt*vaJ= Approved AND Daaifliria MANAGERl_NOTIF YJREQICSTOR - *
>= Current SystemDate AND WorkStatus =
Pending
ComputerManagerApproval = Approved AND CMANAGER_T0_MANAGER
WorkStatus - Fending AND Deadline >=
Current SystemDate
StornputarManagerApproval= Disapproved CMANAGEFl_N0TlFY_REOUE5rOn
AND WorkStatus « Pending AND Deadline
>- QjrrerrtSysternDstte v ^ \
flequesljterrt = computer AND
Re^Progre^atus.Beoln \ ^

REQU£STOfl_SEND_TO^ANAGEfl

^ A c t i o n

RequesUiem = non-computer ANO
RequesProgtessStatus = Begin

\^r«QU£^OR.«NO_TO_MANAGER
^Business rule

ManagerAnproval = Disapproved AND
Deadline >• CunrerrtSysterrtDsde AND
WorkStatus = Pending

MANAGER.NOTIFV_REQU£STOR

?sri&&2>8%®Si3S3§3l&3?iirF? ^-P fl«nft*tt? tadtj H I *

4Bs>« Mr PurcKate Requiriuo... ' flnJJJMw

Figure 5-5 The Business Rules Documents for the Requisition Process

Three document classes were created as request types of the process. These classes

are the requisition form (See Figure 5-6), the approval form for the division manager,

and the approval form for the computer manager.

89

Figure 5-6 A Requisition Form

The requisition form carries information ranging from a requested item, the amounts of

the item to the process state information. The approval forms belongs to a response

type of the Notes documents. The documents of these forms cannot be created alone;

they must be based on parent documents which, in this case, are the documents of the

requisition form. The approval form for the computer manager can only be accessed

by a user whose role is a computer manager in the database. The role of users can be

defined in the Access Control List, as shown in Figure 5-7.

90

Figure 5-7 The Access Control List Dialogue Box

In the requisition process, when a user submits a PR form, a requisition request

should be generated to either the division manager or the computer manager according

to a requested item. Figure 5-8 shows that a PR form whose requested item is a

computer-related item was created; the deadline for approving it was also calculated

by the Business Controller Object Agent.

91

Purchase Requisition - fit-quest tnfrjinmtsun - Lotus Notes

-ftHtadtMnl Sew*, 1 ReWtfV"i
•St.-

•SHW-3MEBJM
(SHUI-3MEBJM Created By Samson Hui Created On: 09/30/97 Deadline: 10/3/97j

Figure 5-8 A Requisition Form for a Computer-Related Item

The Agent also sent a message to the computer manager according to business rules

(See Figure 5-9) and created a Workflow State document (See Figure 5-10). The

computer manager can go to the form by clicking on the icon in the message. Once

the computer manager reads the form, he/she can create an approval document. If

he/she approves the request, he/she can simply fill in "Approved" in the Approved field

and submit it to the Controller Agent which sends another message to the division

manager and updates the Workflow State information (See Figure 5-11). The

manager issues the final approval of the request and submits the approval to the

Controller Agent which informs the requester of the decision by electronic mail.

92

Hrm Purthmir Rnnueit - lotut Unlet

Vietor Ne • UBC_Ownroeic*

Street NewPurchase RaquaM

This'» a request sent by Samson Hw

Be tow is ihe W»l dsserijiiien «f the requested Hem

Mouse

Click on this icon to
jump to the PR form

Figure 5-9 A Message Generated by the Business Controller Object Agent

Fuichiisc Riuiuiiilion - Wvikllun atoJe - l.otuc Nulcs USE

SHUI-3MESJM 9(90/97 9/W97 9/30/97 Samson Hui VSrtwNg 1

Workflow State Information
Request Ret Branca* SHUI-3ME6JM
Request 10* SHUI-3MEBJM
Created Tmw: 9/30/97
Emlueted Tin*
Sent Time* 9/30/97
Sender* Samson Hui
Receive** Victor Mg

Figure 5-10 A Workflow State Document Created by the Controller Agent

93

.it.r - L u l u i h o l m

f £: rj Wrt 1>W"*J V « T d
j

|i{ wt t\

i II

i W " ^ '•• v gt Fdden a n d V M M

^ BurmttRUto* 1

ÎWoMlowStalel
? Aoenk

• lb D*oign

*
^SHUI-SMEBJM [

SKUI-3MEBJM mo&7 mm? j

^ BurmttRUto* 1

ÎWoMlowStalel
? Aoenk

• lb D*oign

* VNGG.3MEC6J 9/3W97 i'AT,2B * 9/3 W97 j

^ BurmttRUto* 1

ÎWoMlowStalel
? Aoenk

• lb D*oign

Workflow Stale Information
Request Reference*" SHUMMEBJM
Request I0# wGG-3»i£CW
Crested Tims: flfcOVW1:47:25 AM
EvaluadeOime:
$ttt Timet 9/3o/»7
Sender* CNnVctor N8ACtl^S/OU^OTWee/0«UBC_Cortrnefce
ft«e*wer# GN̂ Semsen Hna/0=U8C_C*mmem«

Figure 5-11 A Workflow State Document After a Message Was Sent to the
Division Manager

It is important to note that the Controller Agent is triggered by the Clock

Object Agent once a day. The Controller Agent compares the deadlines of all PR

forms to the current system date to determine if any forms are due. If a form is due,

the Controller Agent, according to a business rule, will reject the form, inform the

requester, and update the Workflow State Information.

5.5. Limitations of the Implementation

There is still a gap between the system and the architecture. First, our

architecture allows communication between the Clock object and the Controller

object. The Controller can request the Clock to remind it of specific time occurrences.

However, the Clock Object Agent in our system cannot be triggered at a specific time

defined by the Business Controller Object Agent. Instead, the Clock Object

94

Agent triggers the Business Controller Object Agent at certain time intervals specified

by application developers but not by the Business Controller Agent. Second, the

Business Rule Evaluator in our architecture may refer to the state information about a

process from the Workflow State Repository when it evaluates business rules. In our

workflow system, the Business Controller Object Agent can simply update the state

information in the Repository, but it cannot cross-reference the information to evaluate

the business rules. All relevant state information is carried by a request. Finally, the

conjuncts and disjuncts in a business rule in our system are limited to the field names in

the same document type. For instance, a rule may refer to a certain value of a

document, but it cannot simultaneously refer to another value of another document of

a different document class.

5.6. Summary

We have discussed the pros and cons of Web-based development platforms

and Lotus Notes in this chapter. The reason that we chose Notes as our

implementation platform is that Notes provides a mature development environment

and facilities that mesh well with the architectural components of our Object-Oriented

Workflow Management System (OOWMS). To test our system, we developed a

workflow application to automate the purchase requisition process. In spite of the fact

that there are limitations to our implementation, the demonstration of the application

proves that our architecture, derived from a set of well-formulated ontological

concepts and principles, suggests a new way of building a workflow system.

95

6. Conclusion and Future Research

6.1. Thesis Summary

The central theme of this thesis is to suggest an architectural blueprint for a

workflow management system. We developed this blueprint by exploring the concepts

of workflow management and ontologically developed modelling methodology, the

Object-Oriented Modelling (OOEM) method. We discussed what workflow

management is and examined some common workflow terminology by following the

specifications proposed by Workflow Management Coalition (WfMC). We also

reviewed the WfMC's Workflow Reference Model so that we could achieve a better

understanding of what workflow products should offer. Different workflow modelling

techniques were compared. These techniques can be divided into two types: the

traditional approach and the object-oriented approach. While the traditional approach

focuses on the informational and functional aspects of a process, the object-oriented

approach concentrates on the interactions between objects and captures the

organizational aspects of the process.

Since OOEM provides a "natural view" of an organizational process, and since

it offers no support for workflow constructs, we extended it by introducing two

different workflow constructs: activity and business rule. The extension of OOEM,

namely the Object-Oriented Workflow Model (OOWM), reflects our view of the

organizational process in an object-oriented context. We argued that a service

consists of an ordered set of activities which are governed by business rules defined by

an organization. These rules only control when and by whom a specific activity

96

should be performed. We also extended the notion that an activity within a service can

generate requests or responses to other objects.

The process of creating an OOWM was introduced; this process is referred to

as the OOWM method. The method consists of two general steps which include the

construction of an OOEM model for a process under study and the representation of

the internal characteristics of objects by means of Object Activity Templates (OAT).

In the first step, a request propagation algorithm, proposed by Zhao [1995], can be

used to identify objects, their services, interface and internal attributes, and request of

a process. The second step divides services into activities and identifies information

about company policies which govern these activities. All this information can be

represented in the OAT. The OAT is derived from the Zhao's Internal Object

Template [Zhao, 1995] and introduces three additional columns: pre-condition,

activity, and termination-condition columns. With these columns, the OAT is able to

show the execution sequence of work within an object. Because of the ability of the

OAT to describe the task structure, we also drew a relationship between an OOWM

and an activity-based diagram. We found that an OOWM can be used to derive an

activity diagram, but the reverse is not true.

We proposed an implementation model for an Object-Oriented Workflow

Management System (OOWMS) which enacts a process described in our workflow

model. The objective of the implementation model is to identify the general

functionality and critical components of the OOWMS. We introduced the Controller

object which monitors and controls the interactions among objects based on business

97

rules. Because objects can independently interact with each other, we presented a

control schema which specifies which requests should be controlled by the Controller

under organizational policies. Based on the implementation model, we proposed the

architecture of the Object-Oriented Workflow Management System (OOWMS). We

presented a request processing cycle, an algorithm taken by the Controller object to

process an incoming request. In the request processing cycle, the Controller fetches a

request, decodes it, retrieves information carried by the request, evaluates business

rules based on the request information and state information about a process, and

takes actions in accordance with the result of this evaluation. The Controller object

consists of two components: the Business Rule Evaluator and the Workflow Executor.

The Evaluator is responsible for evaluating the business rules and instructing the

Executor to perform work according to the rules. Different kinds of information are

also required for the request processing cycle; such information includes the state

information about a process, the information carried by requests, the business rules,

and request types.

Finally, we used Lotus Notes to build a simple workflow system by following

the architecture. The Notes facilities seem to mesh well with the identified

architectural components. We showed that the system is functional by applying it to a

hypothetical purchase requisition process.

6.2. Contributions

This thesis continues previous research efforts focused on developing an

ontologically-based Object-Oriented Enterprise Modelling (OOEM) method. It

98

addresses the inability of OOEM to capture the task structure at an object level by

proposing workflow constructs to OOEM so that a more complete model is

formulated. We believe that our OOWM captures the informational, functional, and

organizational aspects of a process.

Another major contribution of the thesis is the architecture of the OOWMS

which enacts an OOWM. Since the architecture is derived from purely object-oriented

thinking, a workflow system following this architecture can be very flexible and

adaptable to fit into a constantly changing business environment. The architecture

also sheds some light on how a workflow system can be developed in a heterogeneous

business environment in which business divisions or departments are autonomous.

Finally, our prototype of a workflow system suggests another approach to

building workflow applications in the Notes environment. Traditionally, Notes

developers have been hardcoding business logic into their applications. Our prototype

shows that it is possible to separate the business logic from programming codes and to

allow non-technical users to customize the rules.

6.3. Limitations and Future Research

Several research issues need to be addressed. First, the number of cases to which the

OOWM method and the architecture has been applied is very limited. Case studies

should be conducted to further examine the practicality of the method and the

architecture. Second, this thesis does not address the technical aspect of how the

objects should communicate with each other. How can the Controller object be

introduced into a technologically heterogeneous environment? Even though some

99

technological initiatives such as CORBA and DCOM are currently being taken by

research institutions and computer vendors, the question of how these initiatives may

be applied to our architecture should lead to future research. Finally, CASE tools can

be developed to support the construction of an OOWM and to generate workflow

implementations on the basis of workflow specifications.

100

Bibliography

1. Allaire Corporation. (1997). Cold Fusion 3.0 Home Page,
http ://www. allaire.com/product s/coldfusion/3 O/index. cfm.

2. Amberg, M. (1997). "The Benefits of Business Process Modeling for Workflow
Systems". Workflow Handbook 1997. Edited by Peter Lawrence. England: John
Wiley & Sons Ltd. p. 61-68.

3. Angeles, P. A. (1981). Dictionary of Philosophy. New York: Harper Perennial.

4. Coad, P., and Yourdon, E. (1991). Object-Oriented Analysis, 2nd edition.
Englewood Cliffs, New Jersey: Yourdon Press/Prentice Hall.

5. Coad, P., and Yourdon, E. (1991). Object-Oriented Design, 2nd edition.
Englewood Cliffs, New Jersey: Yourdon Press/Prentice Hall.

6. Curtis, B., Kellner, M., and Over, J. (1992). "Process Modelling". Communication
of the ACM, Vol. 35, No. 9. p. 75-90

7. Georgakoopoulos, D., Hornick, M., and Sheth, A. (1995) "An Overview of
Workflow Management: From Process Modeling to Workflow Automation
Infrastructure", Distributed and Parallel Database, No. 3, p. 119-153.

8. Ginsburg, M. and Duliba, K. (1997) "Enterprise-Level Groupware Choices:
Evaluating Lotus Notes and Intranet-Based Solutions". Computer Supported
Cooperative Work: The Journal of Collaborative Computing, No. 6. p. 91-115.

9. Grasso, A., Meunier, J.L., Pagani, D., and Pareschi, R. (1997). "Distributed
Coordination and Workflow on the World Wide Web", Computer Supported
Cooperative Work: The Journal of Collaborative Computing, No. 6. p. 175-200.

10. Greene, C. (1995). "Workflow Management 101", Lotus Notes Advisor, Vol. 1,
no. 1, Premiere Issue, p. 34-39.

11. Hales, K., and Lavery, M. (1991). Workflow Management Software: the Business
Opportunity. London, UK: Ovum Ltd.

12. Integrated Definition for Function Modeling (IDEFO). Federal Information
Proceeding Standard Publication 183, December 12, 1993.

13. Jablonski, S., and Bussler, C. (1996) Workflow Management: Modeling Concepts,
Architecture and Implementation. UK: International Thomson Computer Press.

101

http://allaire.com/product

14. Jacobson, I., Ericsson, M., and Jacobson, A. (1995). The Object Advantage -
Business Process Re-engineering with Object Technology. ACM Press. Addison-
Welsey Publishing Company.

15. Jung, D. (1997). Object-Oriented Modeling: From Analysis to Logical Design.
M.Sc. Dissertation. The University of British Columbia.

16. Kobielus, J. G. (1997). Workflow Strategies, CA: DDG Books Worldwide, Inc.

17. Laamanen, M. T. (1994). "The LOEF standards", in: Methods and Associated
Tools for the Information Systems Life Cycle, A. A. Verrijn-Stuart and T.W. Olle
(Editors), Elsvier Sciences B.V. (North Holland), p. 121-130.

18. Lakin, R., Capon, N., and Botten, N. (1996). "BPR Enabling Software for the
Financial Services Industry", Management Services, March, p. 18-20.

19. Lotus Corporation. (1995). Lotus Notes "White Paper",
http ://www. lotus, com/bible/.

20. Lotus Corporation. (1997). Domino Home Page.
http://www2.Iotus.com/domino.nsf.

21. Mano, M. M. (1993). Computer System Architecture, 3rd edition. New Jersey:
Prentice Hall.

22. Medina-Mora, R., Winograd, T., Flores, R., and Flores, F. (1992). "The Action
Workflow Approach to Workflow Management Technology," Proceedings of the
Conference on Computer-Supported Cooperative Work (CSCW), New
York:ACM. p. 281-288.

23. Netscape Communications Corporation. (1997). Netscape Server Central -
SuiteSpot Home Page.
http://www.netscape.com/comprod/server_central/product/suite_spot/index.html.

24. Novell Inc. (1997). Groupwise Home Page, http://www.novell.com/groupwise/.

25. Oracle Corporation. (1997). Web Developer Suite Home Page.
http://www. oracle. com/products/tools/WDS/.

26. Orfali, R. Harkey, D., and Edwards, J. (1996). The Essential Distributed Objects
Survival Guide. Canada: John Wiley & Sons, Inc.

27. Ruiz, D. (1997). "Growth and Challenges in Enterprise Workflow". Workflow
Handbook 1997. Edited by Peter Lawrence. England: John Wiley & Sons Ltd. p.
223-230.

102

http://www2.Iotus.com/domino.nsf
http://www.netscape.com/comprod/server_central/product/suite_spot/index.html
http://www.novell.com/groupwise/
http://www

28. Rumbaugh, J., Blaha M., Premerlini W., Eddy F., and Lorensen W. (1991).
Object-Oriented Modeling and Design. Englewood Cliffs, New Jersey: Prentice
Hall.

29. Sprague, R. H., Jr., and McNurlin, B. C. (1993). Information systems
Management In Practice, 3rd edition. New Jersey: Prentice Hall.

30. Stark, H. (1997). "Understanding Workflow". Workflow Handbook 1997. Edited
by Peter Lawrence. England: John Wiley & Sons Ltd. p. 5-25.

31. Tan, W. (1997). A Semantically-Enhanced Object-Oriented Case Tool For
Enterprise Modeling. M.Sc. Dissertation. The University of British Columbia.

32. Wand, Y. (1989). "A Proposal for an Formal Model of Objects", Object-Oriented
Concepts, Language, Applications, and Database. Kim, W., and Lochovsky,
F.H.. New York: ACM Press/Addison-Welsey Publishing Company, p. 537-599.

33. Wand, Y., and Weber, R. (1990). "An Ontological Model of an Information
System", TEE Transactions On Software Engineering. Vol. 16. No. 11. p. 1282 -
1292.

34. Wand, Y., and Woo, C. C. (1993). "Object-Oriented Analysis - Is It Really That
Simple?", Proceedings of the 3rd Workshop on Information Technology and
Systems. December. Orlando, Florida, p. 186-195.

35. Wang, S. (1994). "OO Modeling of Business Processes", Information Systems
Management, Spring, p. 36-43.

36. Workflow Management Coalition. (1997). Workflow Handbook 1997. Edited by
Peter Lawrence. England: John Wiley & Sons Ltd.

37. Yourdon, E. (1989). Modern Structured Analysis. New Jersey: Prentice Hall. p.
259-274.

38. Zhao, H. (1995). Object-Oriented Enterprise Modeling. M.Sc. Dissertation. The
University of British Columbia.

103

Appendix A - Graphical Constructs of the Use-Case Model

0
Actor A Business system

Use case

0 Communication

Use ^ 1 \ ^ U s e s Uses

Extends
Extends

104

Appendix B - Graphical Constructs of the Object Model

o

o

KJ

Interface Object

Control Object

Entity Object

Subsystem

communication

acquaintance
consistOf

inheritance

communication

depends On

105

Appendix C - Guidelines for Constructing the Models of
Rumbaugh's OMT*

1. Determine the problem domain

2. Construct an Object Model

• Identify object classes

• Begin a data dictionary containing descriptions of classes, attributes, and

associations

• Add associations between classes

• Add attributes and links

• Organise and simplify object classes using inheritance

• Test access paths using scenarios and iterate the above steps

• Group classes into modules, based on close coupling and related functions

3. Develop a Dynamic Model

• Prepare scenarios of typical interaction sequences

• Identify events between objects and prepare an event trace for each scenario

• Prepare an Event Flow Diagram for the system

• Develop a state diagram for each class that has important dynamic behavior

4. Construct a Function Model

• Identify input and output values

The guidelines are directly taken from Zhao's Object-Oriented Enterprise
Modeling in which the steps to constructing the models of OMT are summarised.

106

• Use data flow diagrams as needed to show functional dependencies

• Describe what each function does

• Identify constraints

• Specify optimization criteria

5. Verify, iterate and refine the three models

107

Appendix D - Appendix D - An OOEM Internal Object Template
(IOT)

Object N<

Services Interface
Attributes

Internal
Attributes

Request
Generated

Semites 1

Incoming
Interface
Attributes

Internal At­
tributes to
Support
Service 1

Access
Mode

Request Gener­
ated From Ser­
vice 1 Semites 1

Returning
Interface
Attributes

Internal At­
tributes to
Support
Service 1

Access
Mode

Request Gener­
ated From Ser­
vice 1

Strokes 2

V J

108

Appendix E - Summary of Wand and Woo's Modeling Rules

The modelling rules proposed by Wand and Woo [1993] are summarized in this

section. They provide fundamental guidelines for constructing an Object-Oriented

Enterprise Modelling (OOEM) model.

1. The scope identification rule

This rule defines the boundary of an enterprise model. It separates activities within

the system from those in the external environment. The environment is

represented by the external objects or clients of the system. The interaction

between the environment and the system is modelled by an external request. When

the system receives the request, its state becomes unstable until such a request is

satisfied.

2. The object identification rule

This rule identifies things that should be modelled as objects. An object is included

if and only if it provides or request at least one service. The rule reflects the

principle that every change is tied to a change of state of things and that everything

changes. An internal object is an object that is part of the system and provides at

least one service. An external object belongs to the environment that interacts

with the system.

3. The service inclusion rule

A service is included in an object if and only if it is invoked by at least one request

in the system as defined by Rule #1. Such a request can be generated by either an

109

external object or an internal object. Services reflect internal transformations

(state changes) of things.

4. The attribute inclusion rule

This rule determines which object attributes should be included in a model. An

interface attribute must be used or affected by at least one service, and known to at

least one other object. An internal attribute must be affected by at least one

service and be unknown to other objects.

5. The attribute ownership rule

This rule reflects the ontological principle that properties always belong to things.

This rule identifies the owner of the attribute. When an object modifies the

attribute via its service, that object is known as the custodian of the attribute.

Other objects can only obtain or modify the value of the attribute through the

actions of the custodian object. This rule ensures that every attribute belongs to a

specific object.

6. The aggregation and decomposition rule

This rule determines when objects, as defined in Rule #2, should be combined

(aggregated) and decomposed in the model. A composite object refers to the

aggregation of the objects. It is included if and only if it provides services that are

not provided by any of its components (its aggregate objects). When modelling

the properties of the composite object, one must include those properties not

modelled in components. The rule echoes the ontological principle that a

composite thing must have emergent properties.

110

The generalization and specialization rule

This rule states that a general object class can be created if and only if two or

more object classes provide one or more common services. This general object

class is called a super-class of the original object classes. The original object class

is referred to as a sub-class of the general object class. All services provided by

the super-class should be eliminated from the sub-classes which can inherit those

services from their super-class and which entail different services and attributes

from their super-class.

I l l

Appendix F - Bunge's Ontological Constructs

This appendix summarizes Bunge's ontological constructs [Bunge, 1977,

1979]. The summary of the constructs is taken from Zhao [1995], much of whose

work is largely based on Bunge's.

Static Model of an Substantial Individual

• Thing. A thing is defined as an entity or substantial individual endowed with all its

properties. The world is made of things that have properties.

Bunge distinguishes thing and constructs. Constructs are creations of the human

mind. There are four basic kinds of constructs: concepts, propositions, contexts,

and theories. Constructs do not have all the properties of things. For example,

sets add and intersect but do not move around, have no energy and no causal

efficacy, etc. Constructs, even those representing things or substantial properties,

have a conceptual structure, not a material one. In particular, predicates and

propositions have semantic properties, such as meaning, which is a non-physical

property.

• Properties, Attributes, and Functional Schema. Properties of substantial

individuals are called substantial properties. Properties of things can be intrinsic or

mutual to several things, e.g. if a person is employed by a company, employment is

a property of both the person and the company. A property is modelled via an

attribute function that maps the thing into a set of values. Attributes are

characteristics assigned to things by humans; therefore, they reflect the view point

of an individual observer. An attribute can be represented as a function from a set

112

of things and a set of observation points into a set of values. This is the basis for

defining a model of a thing as a functional schema: a functional schema is a set of

attribute functions defined over a certain domain, usually time. Similar things can

be modelled using the same functional schema.

Composite things. Composite things are things composed of other things. More

precisely, an individual is composite if and only if it is composed of individuals

other than itself and the null individual. A composite thing has hereditary

properties and emergent properties. A property of a composite thing that belongs

to a component thing is called a hereditary property; otherwise, it is called an

emergent property. A composite thing must have an emergent property. The

notion of emergent property is an important assumption in Bunge's ontology.

According to him, every concrete system is assembled from, or with the help of,

things in the same or lower order genera but possesses properties not available in

the components of the system. The hierarchy of system genera can be

characterised as: physical, chemical biological, social, and technical.

State and Conceivable State Space. Every thing is - at a given time associated

with a given reference frame - in some state or other. The vector of values for all

attribute functions of a thing is the state of the thing.

The set of all states that the thing might ever assume is the conceivable state space

of the thing.

State Law. A state law restricts the values of the properties of a thing to a subset

that is deemed lawful because of natural laws or human laws. A law is also

113

considered a property of the thing.

• Class, Kind, and Natural Kind. A class is a set of things that possess a common

property.

A kind is a set of things that possess two or more common properties.

A natural kind is a set of things that share the same laws.

Things come in natural kinds, i.e. classes of things possessing ("obeying") the

same laws. A natural kind constitutes a natural grouping because it rests on a set

of laws, but it is not a real thing: it is a construct.

Dynamic Model of a Substantial Individual

• Event. An event is a change in the state of a thing.

In order to keep track of the changes undergone by things, we need the principle

of nominal invariance which states that a thing, if named, shall keep its name

throughout its history as long as the latter does not include changes in natural kind

- changes which call for changes of name.

• Event Space. The event space of a thing is the set of all possible events that can

occur in the thing. Let S(x) be a state space for a thing x. Any pair of points in

this set will unambiguously represent a conceivable event in x.

• Transformation and Lawful Transformation. A transformation is a mapping

from a domain comprising states to a co-domain comprising states.

• History. The chronologically ordered states that a thing traverses are the history

of the thing.

Static Model of System

114

• Coupling. A thing acts on another thing if its existence affects the history of the

other things. The two things are said to be coupled or to be interacting.

• System. A set of things forms a system if and only if for any bi-partition of the set,

coupling exists among things in the two sets.

• System Composition. A decomposition of a system is a set of subsystems such

that every component in the system is either one of the subsystems in the

decomposition or is included in the composition of one of the subsystems.

• System Environment. Things that are not in the system but interact with things

in the system are called the environment of the system.

• System Structure. The set of couplings that exists among things in the system

and among things in the system and things in the environment of the system is

called the structure of the system.

• Subsystem. A subsystem is a system whose components and structure are subsets

of the components and structure of another system.

• Level Structure. A level structure defines a partial order over the systems in a

decomposition to show which subsystems are components of other subsystems or

of the system itself.

Dynamic Modelling of System

• Stable State and Unstable State. A stable state is a state in which a thing,

subsystem or system will remain unless forced to change by virtue of the action of

a thing in the environment (an external event).

• External Event. An external event is an event that arises in a thing, subsystem or

115

system by virtue of the action of some thing in the environment on the thing,

subsystem or system. The before-state of an external event is always stable. The

after-state may be stable or unstable.

Internal Event. An internal event is an event that arises in a thing, subsystem or

system by virtue of lawful transformations in the thing, subsystem or system. The

before-state of an internal event is always unstable. The after-state may be stable

or unstable.

Well-Defined Event. A well-defined event is an event in which the subsequent

state can always be predicted, given that the prior state is known.

Poorly Defined Event. A poorly defined event is an event in which the

subsequent state cannot be predicted, given that the prior state is known.

116

Appendix G - The Complete OOWM for the Purchase
Reimbursement Process

Employee

Request to process a
reimbursement form
(RF) (>$200)

Rejection
Reason

Request to process
a reimbursement
form (RF) (<=_
$200)

Approval
Result

Division Manager

Request to process RF
(Division Reconciliation
Record)

Process Request

Approval
Result

Corporate Accountant

Request to approve RF
(Corporate Reconciliation
Record)

Process Request

Request to ap­
prove divisonally
approved RF

Figure G-l Complete OOEM for the Purchase Reimbursement Process

117

Division Maxager - DM

Interface
Afiribste*

Internal
Attributes

Sendee

process RF:
Items,
Amounts,
Requested
Date, Re­
quester

DmeionRec-
wicfliatwft
Record:
Items,
Amounts,
Requested

qaeeter, Ap-

sion, Ap­
prover

Process Reytest far Reimbursement
process RF:
Items,
Amounts,
Requested
Date, Re­
quester

DmeionRec-
wicfliatwft
Record:
Items,
Amounts,
Requested

qaeeter, Ap-

sion, Ap­
prover

Pre­
conditions

Activity Teimination
Condrtioiis

Request
Oertenled

Eeceiver
process RF:
Items,
Amounts,
Requested
Date, Re­
quester

DmeionRec-
wicfliatwft
Record:
Items,
Amounts,
Requested

qaeeter, Ap-

sion, Ap­
prover

Amounts >
$200

DM-1 Fomt Ap­
proved or
Rejected

Request to
approve
divifionaUy
approved
RF

Corporate
Accountant

process RF:
Items,
Amounts,
Requested
Date, Re­
quester

DmeionRec-
wicfliatwft
Record:
Items,
Amounts,
Requested

qaeeter, Ap-

sion, Ap­
prover

Amounts >
$200

Approve a

Fomt Ap­
proved or
Rejected

Request to
approve
divifionaUy
approved
RF

Corporate
Accountant

DM-i-R

DmeionRec-
wicfliatwft
Record:
Items,
Amounts,
Requested

qaeeter, Ap-

sion, Ap­
prover

Amounts >
$200

f b i H i

Fomt Ap­
proved or
Rejected

Request to
approve
divifionaUy
approved
RF

Corporate
Accountant

Rejection
Tfeflerm

DmeionRec-
wicfliatwft
Record:
Items,
Amounts,
Requested

qaeeter, Ap-

sion, Ap­
prover

Amounts >
$200

f b i H i

Fomt Ap­
proved or
Rejected

Request to
approve
divifionaUy
approved
RF

Corporate
Accountant

Rejection
Tfeflerm

DmeionRec-
wicfliatwft
Record:
Items,
Amounts,
Requested

qaeeter, Ap-

sion, Ap­
prover DM-1 com­

pleted
DM-2 Vpdttt

Completed

DmeionRec-
wicfliatwft
Record:
Items,
Amounts,
Requested

qaeeter, Ap-

sion, Ap­
prover DM-1 com­

pleted
Update Divi­
sion Recoids

Vpdttt
Completed

1 r
Employee
Object

Table G-l An OAT for the Division Manager

Corporate Aeeeiuttaitt- CA

Interface
Attributes

bote m i l
Attributes

Service

Request to
process RF:
Items,
Amounts,
Requested
Date, Re­
quester

CA-l-R

Corporate
Reconcilie-
tioa Record:
Items,
Amounts,
Requested
Date, Re­
quester, Ap­
proval Deci­
sion, Corpo-
rate Ap­
prover, Divi­
sion Ap-

M Pre cess Refuaet frr Reimbursement Request to
process RF:
Items,
Amounts,
Requested
Date, Re­
quester

CA-l-R

Corporate
Reconcilie-
tioa Record:
Items,
Amounts,
Requested
Date, Re­
quester, Ap­
proval Deci­
sion, Corpo-
rate Ap­
prover, Divi­
sion Ap-

M
Pre-
Conditions

Activity Tenninanon
Conditions

Request
Generated

Receiver

Request to
process RF:
Items,
Amounts,
Requested
Date, Re­
quester

CA-l-R

Corporate
Reconcilie-
tioa Record:
Items,
Amounts,
Requested
Date, Re­
quester, Ap­
proval Deci­
sion, Corpo-
rate Ap­
prover, Divi­
sion Ap-

M

Amounts <a

$300
CA-1

Approve A
form

Foim Ap­
pro wd or
Rejected.

Ap)
Res

•

pmvel
•U

Corporate
Reconcilie-
tioa Record:
Items,
Amounts,
Requested
Date, Re­
quester, Ap­
proval Deci­
sion, Corpo-
rate Ap­
prover, Divi­
sion Ap-

M

Amount* >
$300 AND
FormAp-

DM

CA-2

Approve i
fbroi

Form Ap­
proved or
Rejected

Approval
Result

Employee
Ap)
Res

•

pmvel
•U

Corporate
Reconcilie-
tioa Record:
Items,
Amounts,
Requested
Date, Re­
quester, Ap­
proval Deci­
sion, Corpo-
rate Ap­
prover, Divi­
sion Ap-

M

CA-1 Com-
pfetedorCA-
2 Consisted

CA-3
Update
Reoonds

Update
Completed

•—̂ Employee
Object

Table G-2 An OAT for the Corporate Accountant

118

Appendix H - The OOEM, OATs for the Internal Objects, and
the Control Schema for the Purchase Requisition Process

Requester Yl\ Approval Status

Request for com­
puter items (PR
Form)

Request for non-
computer items
(PR Form)

R3

Computer Equipment
Manager

Request for computer
items
(Equipment List)

Process PR Form

Request Approved
By Computer
Equipment Mana^rl

R2

Approval Status

R4 Approval Status

Division M anager

Request for items
(Division Budget)
(Requisition Records)

Process PR Form

Figure H- l The OOEM Model for the Purchase Requisition Process

Controller

* Please note that a request
sent from the Controller object
to the Division Manager object
canbe of two different types of
requests: a request fat non-
computer items and a request
approved by the Computer
Equipment Manager

Request for items
(Business Rules)
(Process State)

P»«e**PRFo«n

Request for time

Time information

Request tor time
notification

Clock

Time notification

Bequest for
items*

Request for
compsterdems

Appro valStatus

Appro valStatus

Division Manager

Request for items
(Wvwwn Budget)
(Inquisition Recoxfc).

Process PR Form

Computer Equip­
ment Manager

Request for computer
items
(Equipment List)

Process PR Form.

Figure H-2 The OOEM Model with the Controller Object for the Requisition
Process

119

Cwrcpiiter Equfpment Manager-CM CD = Current Date DL - Requested Data+3

Interlace
Attributes

Internal
Attributes

Service

Requeit for
computer
items (PR
lean):
Form^
I t e m ,
Amounts, Re-
—»ted Data,
Regu«ler

Equipment
List: Bar
Cade ff, here,
location

U Process Request lor Purchase Requisition Requeit for
computer
items (PR
lean):
Form^
I t e m ,
Amounts, Re-
—»ted Data,
Regu«ler

Equipment
List: Bar
Cade ff, here,
location

U

P«-
Condilions

Activity Termination
Conditions

Request
Generated

Receiver

Requeit for
computer
items (PR
lean):
Form^
I t e m ,
Amounts, Re-
—»ted Data,
Regu«ler

Equipment
List: Bar
Cade ff, here,
location

U

item = com-
pultr

CM-1 |
Approve a
teqost

Request Ap-
ywveiear
Rejected

CM-2-R
CM-3-R

Approval
Status i
Requester

Equipment
List: Bar
Cade ff, here,
location

U

Request
Approved
AND CD
<=VL

CM-2 |

Generate a
nequest

Request Gen­
erated Approved

Request
Division
Manager

CM-2-R
CM-3-R

Approval
Status i
Requester

Equipment
List: Bar
Cade ff, here,
location

U

Request
Ejected
ORCD>
DL

CM-3 |
Generate*
rejection no­
tice

Notice GcaaD-
ated

Table H- l The Object Activity Template for the Computer Equipment
Manager

120

Division Manager - DM CD=Current Date PL = Requested Date+3

Interfere
Attributes

Internal
Attributes

Service

Regies! for
items (PR
Form):
Term Ifr

Ilein,

Division
Budget

Requisition
Records: PR
Form JV, Re­
quester, Re-
quested Date,
Amounts,
Requested
Item, Ap­
proval Deci­
sion, Ap­
proved Date

M Process Request ftr Purchase Rebuts it Ion Regies! for
items (PR
Form):
Term Ifr

Ilein,

Division
Budget

Requisition
Records: PR
Form JV, Re­
quester, Re-
quested Date,
Amounts,
Requested
Item, Ap­
proval Deci­
sion, Ap­
proved Date

M

P»-
Candiliota

Activity Terminatioa
Conditions

Request
O&nerated

Receiver

BegiMled
DatetRe-
jjgwtar

Division
Budget

Requisition
Records: PR
Form JV, Re­
quester, Re-
quested Date,
Amounts,
Requested
Item, Ap­
proval Deci­
sion, Ap­
proved Date

M

item "new-
computer

DM.1 |

Approve a
fbtm

Form Ap­
proved or
Rejected

DM-3-R
DM-4.R

Approval

Division
Budget

Requisition
Records: PR
Form JV, Re­
quester, Re-
quested Date,
Amounts,
Requested
Item, Ap­
proval Deci­
sion, Ap­
proved Date

M

item ̂ com-
paler AND
Fonn Ap­
proved by
CM

DM-2

Approve A
fomi

Form Ap­
proved mr
Rejected

Stat

Division
Budget

Requisition
Records: PR
Form JV, Re­
quester, Re-
quested Date,
Amounts,
Requested
Item, Ap­
proval Deci­
sion, Ap­
proved Date

M

Form Ap-
pmvedAND
CO«=DL

DM-3 1
Generate an
approval
uolice

Notice Gener­
ated

Approval
Sianv

Requester

Requester

Division
Budget

Requisition
Records: PR
Form JV, Re­
quester, Re-
quested Date,
Amounts,
Requested
Item, Ap­
proval Deci­
sion, Ap­
proved Date

M

Form Re­
jected OR
CD>DL

DM-4 Notice Gener­
ated

Approval
Status

Requester

Division
Budget

Requisition
Records: PR
Form JV, Re­
quester, Re-
quested Date,
Amounts,
Requested
Item, Ap­
proval Deci­
sion, Ap­
proved Date

M

Form Re­
jected OR
CD>DL Generate*

rejection
j»tie»

Notice Gener­
ated

Approval
Status

Requester

Division
Budget

Requisition
Records: PR
Form JV, Re­
quester, Re-
quested Date,
Amounts,
Requested
Item, Ap­
proval Deci­
sion, Ap­
proved Date

M

DM-30R
DM-4 com­
piled

DM -5
Update
IVGOldf

Update
Completed

Table H-2 The Object Activity Template for the Division Manager

121

Request Workflow Business Rule(s) Action(s)
Rl item = computer Sends a form to the Computer

Equipment Manager
R l ' (immediate
response to Rl)

(Request approved or rejected
by the Computer Manager) OR
(the current date > the Rl
submitted date + 3 calendar
days)

Informs the requester of the
Approval Status

R2 The request is approved by The
Computer Manager AND the
current date <= Rl submitted
date + 3 calendar days

Sends the approved request to
the Division Manager

R3 item = non-computer Sends the form to the Division
Manager

R3' (immediate
response to R3)

(Request approved or rejected
by the Division Manager) OR
(the current date > the R3
submitted date + 3 calendar
days)

• Informs the requester of the
Approval Status

• Updates the Requisition
Records

R4 (Request approved or rejected
by the Division Manager) OR
(the current date > the R2
submitted date + 3 calendar
days)

• Informs the requester of the
Approval Status

• Updates the Requisition
Records

Table H-3 The Control Schema for the Purchase Requisition Process

122

