INTERACTING FOREGROUND AND MIDDLEGROUND STRUCTURES
IN BERG'S ALTBURG LIEDER, OPUS 4, NOS. II AND III

by

KAREN JANE DICK

B.Mus., Wilfrid Laurier University, 1994
Hons. B.A. (German), Wilfrid Laurier University, 1994

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF ARTS
(MUSIC THEORY)

in
THE FACULTY OF GRADUATE STUDIES
(School of Music)

We accept this thesis as conforming
to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA
April 1997
© Karen Jane Dick
In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of Music
The University of British Columbia
Vancouver, Canada

Date 30.04.97
ABSTRACT

Although Berg's Altenberg Lieder were composed at the time when tonal boundaries were being broken and have many atonal features, they also employ tonal elements and traditional features such as Bogenform. In song II the tonal elements might be interpreted as middleground structures, leaving the more atonal ones as foreground structures. While such foreground materials remain more or less constant from song II to song III, it becomes evident that the middleground elements in song III have developed into more atonal structures than in song II. This coincides with the progressive nature of the entire cycle from tonal to more atonal. In this thesis, analyses of songs II and III, based on their foreground and middleground elements, show how middleground elements emerge from foreground structures. Interaction between the foreground and middleground suggests a relationship between them, not only in each song but also in the two songs together. These relationships are defined in this thesis as "links"—a term derived loosely from Theodor Adorno's idea of the "smallest link" and "continuous transition" techniques in Berg's music. This thesis shows how the middleground and foreground elements interact in songs II and III and ultimately establish relationships between the two songs.
TABLE OF CONTENTS

Abstract ii

Table of Contents iii

List of Examples iv

Acknowledgements vii

Introduction 1

Chapter 1 *Analytical and Theoretical Discussions of the Altenberg Lieder* 3
- Form and Symmetry 7
- Motivic Structure 13
- Tonality and Atonality 15

Chapter 2 *Foreground and Middleground Structures in Song II* 18
- Section A: mm. 1-3 19
- Section B: mm. 3-7 25
- Section A': mm. 8-11 34

Chapter 3 *Foreground and Middleground Structures in Song III* 44
- Section A: mm. 1-8 45
- Section B: mm. 9-17 51
- Section A': mm. 18-25 57

Chapter 4 *Summary and Conclusion: Foreground and Middleground Structures in Songs II and III* 61
- Songs II and III 62
- Conclusion 70

Appendix A 72

Appendix B 74

Bibliography 75
LIST OF EXAMPLES

<table>
<thead>
<tr>
<th>Example</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Bogenform structure in songs I-V</td>
<td>10</td>
</tr>
<tr>
<td>2.1</td>
<td>Altenberg Song II, mm. 1-3, viola, piano, and voice</td>
<td>19</td>
</tr>
<tr>
<td>2.2</td>
<td>Altenberg Song II, mm. 1-3, voice: tonal functions</td>
<td>20</td>
</tr>
<tr>
<td>2.3</td>
<td>Altenberg Song II, mm. 1-3, voice: phrase divisions</td>
<td>21</td>
</tr>
<tr>
<td>2.4</td>
<td>Altenberg song II, mm. 1-3, voice: WT(F) and WT(Bb) separation</td>
<td>22</td>
</tr>
<tr>
<td>2.5</td>
<td>Altenberg Song II, mm. 1-3, voice: set-class content</td>
<td>23</td>
</tr>
<tr>
<td>2.6</td>
<td>Altenberg Song II, mm. 1-3, voice: inversionsal relationship between P and T0I(P)</td>
<td>23</td>
</tr>
<tr>
<td>2.7</td>
<td>Altenberg Song II, mm. 2-3, viola and voice: [014] set-classes</td>
<td>24</td>
</tr>
<tr>
<td>2.8</td>
<td>Altenberg Song II, mm. 3-6, voice</td>
<td>25</td>
</tr>
<tr>
<td>2.9a</td>
<td>Altenberg Song II, mm. 3-6, voice: set-class [014] development</td>
<td>25</td>
</tr>
<tr>
<td>2.9b</td>
<td>Altenberg Song II, mm. 3-6, voice: foreground set-class content</td>
<td>27</td>
</tr>
<tr>
<td>2.10</td>
<td>Altenberg Song II, mm. 1-2, m. 6, voice: inversionsal symmetry about F#</td>
<td>27</td>
</tr>
<tr>
<td>2.11</td>
<td>Altenberg Song II, mm. 1-2, m. 6, voice: rhythmic similarities between R’ and T0I(R’)</td>
<td>28</td>
</tr>
<tr>
<td>2.12</td>
<td>Altenberg Song II, mm. 3-6, voice: WT(F) and WT(Bb) separation</td>
<td>28</td>
</tr>
<tr>
<td>2.13</td>
<td>Altenberg Song II, mm. 3-5, condensed orchestra</td>
<td>29</td>
</tr>
<tr>
<td>2.14</td>
<td>Altenberg Song II, m. 5, orchestra: WT(F) and WT(Bb) separation</td>
<td>31</td>
</tr>
<tr>
<td>2.15</td>
<td>Altenberg Song II, mm. 5-6, orchestra: condensed</td>
<td>32</td>
</tr>
<tr>
<td>2.16</td>
<td>Altenberg Song II, m. 6, solo cello: set-class content</td>
<td>33</td>
</tr>
</tbody>
</table>
2.17 *Altenberg Song* II, m. 7, orchestral pitch class content

2.18 *Altenberg Song* II, mm. 8-10, voice

2.19 *Altenberg Song* II, mm. 8-10, voice: [0167], [014], and [0157] set-classes

2.20 *Altenberg Song* II, mm. 8-10, voice: set-class content

2.21 *Altenberg Song* II, mm. 1-2, m. 9, voice: comparison of $T_7(R')$ and $T_7I(R')$

2.22 *Altenberg Song* II, mm. 8-10, voice: $WT(F)$ and $WT(B^b)$ separation

2.23 *Altenberg Song* II, mm. 8-11, strings and voice

2.24 *Altenberg Song* II, mm. 8-11, winds: set-class content

2.25a *Altenberg Song* II, $T_8(Y)$ from orchestra mm. 8-11

2.25b *Altenberg Song* II, Y from orchestra mm. 8-11

2.26 *Altenberg Song* II, comparison of $T_8(Y)$ and (Y) in m. 5 and mm. 8-11

2.27 *Altenberg Song* II, mm. 8-11, winds: $WT(F)$ and $WT(B^b)$ separation

3.1a *Altenberg Song* III, mm. 2-8, voice

3.1b *Altenberg Song* III, mm. 2-8, voice: K-symmetry

3.2 *Altenberg Song* III, mm. 1-8, orchestra

3.3a *Altenberg Song* III, mm. 1-6, orchestral rhythmic pattern

3.3b *Altenberg Song* III, mm. 1-6, rhythmic polymeter

3.4 *Altenberg Song* III, mm. 6-8, orchestra

3.5 *Altenberg Song* III, mm. 9-10, voice

3.6 *Altenberg Song* III, mm. 8-11, woodwinds and strings

3.7 *Altenberg Song* III, mm. 9-11, remaining instruments

3.8 K-cycles in $T_{10I}(V)$ and $T_{1I}(V)$

3.9 *Altenberg Song* III, mm. 11-15, orchestra: condensed

v
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.10</td>
<td>Altenberg Song III, mm. 16, set-class [0157]</td>
</tr>
<tr>
<td>3.11a</td>
<td>Altenberg Song III, mm. 13-17, voice</td>
</tr>
<tr>
<td>3.11b</td>
<td>Altenberg Song III, mm. 13-17, voice: L-symmetry</td>
</tr>
<tr>
<td>3.12a</td>
<td>Altenberg Song III, mm. 19-25, voice</td>
</tr>
<tr>
<td>3.12b</td>
<td>Altenberg Song III, mm. 19-25, voice: K-symmetry</td>
</tr>
<tr>
<td>3.13</td>
<td>Altenberg Song III, mm. 18-25, orchestra</td>
</tr>
<tr>
<td>3.14</td>
<td>Altenberg Song III, mm. 18-25, rhythmic conflict</td>
</tr>
<tr>
<td>4.1</td>
<td>"Continuous transition" on the word Kapuziner</td>
</tr>
</tbody>
</table>
ACKNOWLEDGEMENTS

Upon completion of this thesis I would like to thank the following people whose support and encouragement made it possible. To Dr. Charles Morrison for opening the door into the area of music theory and for encouraging me to pursue studies in this area. Thank-you to Dr. Richard Kurth, my thesis advisor, for his direction, insight, and for the many hours spent on revisions. Also for his patience and encouragement in the development of my writing style. Thank-you also to Dr. John Roeder for his contributions to this project. I would like to thank my parents for their endless love, many words of encouragement, and prayer support. Most of all I would like to thank God who gave me the strength, motivation, and ability to complete this thesis.
INTRODUCTION

The *Altenberg Lieder* for voice and orchestra, Op. 4, Berg's first independent work, were composed in the Summer and Fall of 1912. The texts Berg used in these five songs are taken from "postcard" texts by Peter Altenberg. Both the text and the music of songs I and V are discussed in detail in the literature; this thesis will study songs II and III.

Chapter 1 discusses critical, analytical, and theoretical literature pertaining to the *Altenberg Lieder*. Most of the analytical and theoretical literature concerning the *Altenberg Lieder* concentrates upon the first and fifth songs; therefore this discussion focuses upon these two songs in the interest of devising possible models for approaching the second and third songs. The main contributors to this literature are Theodor Adorno, Mark DeVoto, Douglas Jarman, René Leibowitz, Hans Redlich, and Willi Reich.

Chapters II and III, both analytical, explore the main subject of the thesis—how foreground and middleground materials can be differentiated in songs II and III. Foreground and middleground elements are discussed in each song as well as the relationships developed between those elements.

Chapter 2 focuses on song II, observing how certain tonal features operate at the middleground level; in particular, middleground reference to B♭ as a tonic and to F as a dominant or possibly a secondary tonic is examined. At the foreground level of song II, chapter 2 explores the development of certain set-classes presented in the opening vocal line ([014], [0124], and [0167]), concentrating on their foreground ("atonal") implications, and on how the middleground materials emerge from and interact with them.
Chapter 3 concentrates on the analysis of the third song, with particular attention paid to the importance of inversional symmetries about G (or C♯) and E (or B♭). As in chapter 2, much of the discussion in chapter 3 focuses on distinguishing foreground and middleground elements and on how they are related to each other. For example, the inversional axes mentioned above outline a diminished-seventh chord (C♯, E, G, B♭) which is a member of set-class [0369]; this set-class is characterized by the analysis as a foreground structure. This particular diminished-seventh chord enables the shift from one middleground inversional symmetry to the other, thus middleground elements are shown to be developed or connected through foreground materials.

The discussion in Chapter 4 develops one of Theodor Adorno's ideas about Berg's compositional techniques. Adorno defines one of Berg's techniques as "der Prinzip des kleinsten Übergang" or the "principle of the smallest link." This principle is at work in Adorno's definition of "continuous transition," where new motives are created out of the smallest particles of ones already stated. Adorno feels that in the Altenberg Lieder "nothing is simply set down, everything is derived."¹ Adorno's ideas of the "smallest link" and of "continuous transition" are used in Chapter 4 to summarize the connections between the foreground and middleground materials in songs II and III individually and also between the two songs.

CHAPTER 1

Analytical and Theoretical Discussions of the Altenberg Lieder

In October 1912 Berg completed the Altenberg Lieder, his op. 4, which he began composing in the Summer of the same year. In these five songs for orchestra and voice Berg used texts from picture postcards by the poet Peter Altenberg (the nom-de-plume of Richard Englaender). Altenberg was known as the "Socrates of the coffee house and he often wrote short and scurrilous poems in blank verse on picture postcards, which he sent to his friends."¹ He was a close friend of Alban and Helene Berg; until Berg married Helene, Alban was quite jealous of Altenberg, as he had written many poems dedicated to Helene.

By 1912 Berg was no longer a formal student of Schönberg's, yet there are signs that Schönberg did advise him and give suggestions regarding the work. The first indication is seen in a letter to Berg dated Feb. 14, 1912 in which Schönberg encouraged Berg to compose something orchestral by saying "Perhaps a few songs for the time being!! Perhaps orchestral songs!!"² Karen Monson suggests that "there is also some indication that Schönberg helped Berg with some technical problems in the work."³ This suggestion is based on the fact that a short vocal phrase in the autograph version of an early draft of the fourth and fifth Altenberg Lieder is not written in Berg's handwriting.⁴

²Juliane Brand, Christopher Hailey, and Donald Harris, eds. The Berg-Schönberg Correspondence: Selected Letters (New York: W. W. Norton & Co., 1987), 74.
Berg's composition of op. 4 was also influenced by other outside sources. For example, the vocal style is modeled after Schönberg's op. 15 and op. 17, which have narrow chromatic steps with wide leaps, a trait that is shared by the vocal part of the Altenberg Lieder. Karen Monson feels that the brevity of the songs and their soft dynamics are directly influenced by Webern's op. 6 and op. 10. Douglas Jarman also believes the Altenberg Lieder were influenced by both Webern and Schönberg, since they share the tendency to build from tiny cellules within each song. For Mark DeVoto, the Bogenform and cyclic themes found in song I are "legacies from Schönberg's Gurrelieder." Hans Redlich's detailed discussion of op. 4 refers specifically to songs II, III, and V, suggesting that the interval of the tritone and its motive in song II is closely related to the last movement of Schönberg's op. 10. He points out a similarity between the changing combinations of instruments in Schönberg's op. 16, no. III and the twelve-note chord in Berg's op. 4, song III. Redlich also mentions other prominent motives in the Altenberg Lieder that are influenced by Schönberg's Chamber Symphony, op. 9. Although these authors all suggest influences on op. 4 from other works, Mark DeVoto clearly states that this work was composed independently of Schönberg: "Berg's Altenberg Songs are about as striking a declaration of independence from his teacher as could be imagined." Although other authors agree, Karen Monson mentions that op. 4 was also influenced by Berg's earlier works, saying that "the cue for the Altenberg Songs was the last song in Berg's op. 2, 'Warm die Lüfte.'"
The original order of the songs is an issue that has been discussed in great detail. In a letter to a friend Berg says "my third song is a large one, it is about two to three times as long as the other two, that you know. The fourth, which I'm just finishing, is shorter than all three. Altogether, there will be five songs."\footnote{cited in Hans Redlich, \textit{Alban Berg: Versuch einer Würdigung}, 78, my translation.} The song Berg referred to as his third song could possibly be the fifth song of the published edition (55 measures) as it is the longest one of the cycle. Berg's reference to the short fourth song corresponds with song II of the published edition, the shortest at only 11 measures in length. In a letter from Berg to Schönberg dated January 1913, it is evident that Berg had by then ordered the songs as they were published by Universal Edition. Berg says "they are all short. Some (II, III, and IV) extremely short."\footnote{Juliane Brand, Christopher Hailey, and Donald Harris, eds. \textit{The Berg-Schönberg Correspondence}, 141.}

Many commentators feel that the combination of the scandalous poetic texts with the music in op. 4 affected its first performance. The first performance occurred in a concert organized by Schönberg on March 31, 1913 in Vienna. The program for this concert, which broke out into a riot during the \textit{Altenberg Lieder}, consisted of the following works:

- \textit{Orchesterstücke} op. 6 (complete)\footnote{Hans Redlich, \textit{Alban Berg: Versuch einer Würdigung}, 78.}
- \textit{Chamber Symphony} op. 9
- 4 \textit{Songs for Orchestra} (from texts by Maeterlinck)
- \textit{Altenberg Lieder} op. 4
- \textit{Kindertotenlieder}.

Only two of the op. 4 songs were performed at this concert and there is much debate as to which ones these were. Berg, in a letter to Schönberg on January 9th, 1913, suggested performing a combination of either songs II and V or IV and V. He said that "II is too short and I is too difficult!"\footnote{Juliane Brand, Christopher Hailey, and Donald Harris, eds. \textit{The Berg-Schönberg Correspondence}, 141.} Mosco Carner argues that this performance must have consisted of songs II and III, whereas Redlich suggests that songs II and IV were...
performed. Redlich later amends this idea when he says "the second song (to be performed) cannot have been no. IV, as previously suggested by me, for Förster says that the excessively noisy orchestra prelude to that song culminating in a grinding dissonance, caused the final upheaval in the audience. An instrumental introduction of that description appears only in the first song, Seele, wie bist du schöner, tiefer... " Following the first performance there was much speculation about the work; Die Zeit even suggested that Schönberg had been forced to put Berg and Webern's works on the program out of indebtedness for their financial support.

The Altenberg Lieder were not performed again until performances in Paris and Rome were conducted by Jascha Horenstein in 1953. Mark DeVoto feels that "the rarity of performances of the Altenberg Lieder is attributable to a single cause: the unavailability of the orchestral score has severely discouraged the widespread curiosity and understanding for the work." The first score of op. 4, for piano and voice, was published by Universal Edition in 1953. A pocket-size full score, also published by Universal Edition, was not available until 1966. In 1921 a vocal score of song V with piano accompaniment was published in the periodical Menschen and was then reprinted as an appendix in René Leibowitz's article in 1948.

Before 1966 the only writings about the Altenberg Lieder were those by René

19Hans Redlich, "Alban Berg's Altenberg Songs, op. 4," Music Review 31 (1970): 44. Redlich, in this later article, suggests that songs I and II were performed rather than songs II and IV.
20Die Zeit (Vienna), April 2, 1913.
Leibowitz and Hans Redlich. Mark DeVoto discusses Leibowitz's and Redlich's writings in his own article of 1966, observing that Leibowitz's 1948 article is "lengthy and admiring but not analytically profound," and that Redlich's "conclusions about the work overlook a great many of its most important features." Since DeVoto's article of 1966, many more articles on op. 4 have been written; these are authored by DeVoto, Nicholas Chadwick, Douglas Jarman, Hans Redlich, and Wolfgang Martin Stroh. There are also many books about Berg which devote small sections to the Altenberg Lieder. The most extensive ones are those by Theodor Adorno, Mosco Carner, Douglas Jarman, Karen Monson, Robert Morgan, Hans Redlich, and Joan Allen Smith.

The above articles and sections of books are examined under the following headings: form and symmetry, motivic structure, and tonality and atonality.

FORM AND SYMMETRY

The literature that examines the form of the Altenberg Lieder deals with it on two levels: the form within each song and the form of all five songs as a whole. It is generally agreed that the form on both levels is Bogenform. As Douglas Jarman puts it, "the arch-scheme makes its first appearance in Berg's ... Altenberg Lieder where ... both the individual songs and the cycle as a whole exhibit such a symmetry." Regarding song I, DeVoto suggests that it consists of three sections (ABA') which create a Bogenform. (The A section is composed of mm. 1-19, the B section of

DeVoto's presentation of the main motives in song I illustrates the *Bogenform* since the motives heard in A are not present in B yet return in the A' section. He also notes how "the crescendo of the A has its polar opposite in the decrescendo of the A'." Although Mosco Carner also perceives the song to be in three sections, he suggests that it is "something like a ternary form, A-B-C, rather than an ABA form."

Douglas Jarman, Mark DeVoto, and René Leibowitz all understand song II to have a strong ABA' form that is emphasized by its motives. Jarman notes that the first vocal phrase has its own ABA' form that "mirrors an ABA structure of the song itself." My analysis of the song (in chapter 2) agrees with this statement and develops it further. My analysis also concurs with and develops DeVoto's observation that *Bogenform* is suggested by the F octaves heard in m. 2, m. 7, and m. 11. Leibowitz claims that the F octave in m. 7 is a short codetta, with which I do not agree.

There are many indications that point to an ABA' form within song III. DeVoto and Leibowitz both suggest that an ABA' form is stressed by the occurrence of the twelve-note chords in the A and A' sections. Still, Leibowitz feels that A' is radically varied from A in two ways: the opening involves a twelve-note chord in the winds from which pitch classes are successively removed, while the chord in A' involves strings, and builds up to twelve pitch classes. Jarman adds that the dismantling (A) and building up (A') of the twelve-note chord creates symmetry and arch-form within the song. DeVoto notes that

27Ibid., 59.
32Ibid., 499.
the similarity in the vocal lines of A and A' creates Bogenform not only in the song itself but in the cycle as a whole.34

Adorno and DeVoto both suggest that the form of song III answers the form of song II, creating a link between the two songs. According to Leibowitz and DeVoto, Berg's use of whole-tone sonorities in songs II and III are often related by means of motivic transformations which create another connection between the two songs. Chapters 2 and 3 discuss in detail the presence of whole-tone sonorities in songs II and III individually; chapter 4 summarizes and compares their roles in these two songs.

Leibowitz states that song IV also has an ABA' form, but one that is more complex than in songs II and III.35 Arguments for Bogenform in this song are presented by DeVoto, Jarman, and Adorno.36 These authors all agree that the Bb-B semitone heard at the beginning and the end of the song helps create Bogenform.

Much is written about song V, especially concerning its passacaglia form. Even so, René Leibowitz, Wolfgang Martin Stroh, and Mark DeVoto disagree on how the music adheres to and develops this form. Leibowitz proposes that the passacaglia variations outline sonata form. Stroh, on the other hand, perceives that the passacaglia is handled in a "serial form."37 DeVoto thinks the passacaglia adheres once again to Bogenform, and that "the Bogenform is further reinforced by motivic relationships as well as dispositions of orchestral forces."38

Bogenform in op. 4 as a whole emerges from its presence within the individual songs, for as Douglas Jarman says, "the arch shape design is reflected by its constituent

34Mark DeVoto, "Some Notes on the Unknown Altenberg Lieder," 39. In this article DeVoto develops the idea of Bogenform in the complete cycle.
35René Leibowitz, "Alban Berg's Five Orchestral Songs," 499.
38Mark DeVoto, "Some Notes on the Unknown Altenberg Lieder," 39.
Example 1.1 presents the arch-form of the entire cycle with the corresponding songs labeled.

Example 1.1

Songs:

I II III IV V

Carner states that "Berg's sure sense of form is seen in the fact that the two longest songs, I and V, enclose the shorter middle songs, II, III, and IV." Adorno confirms this idea when he suggests that songs II-IV are related to each other and "could be regarded as a tripartite intermezzo." DeVoto asserts that songs I and V "match in orchestra complement and declamatory extremes but are constructed quite differently." The recurrence of motives from song I also reinforces the overall Bogenform. For example, DeVoto points out that set-class [01369] in song I is transformed into set-class [01469], while in song V set-class [01469] devolves towards [01369], thus complementing the Bogenform. According to René Leibowitz, "the last song tends to create a synthesis of the principal elements of the preceding songs." DeVoto concurs with this viewpoint, saying that song V "not only summarizes the cyclic structure of the Altenberg Lieder but gives a superlative demonstration of the capacity of Berg's intellect and imagination."

There is much literature that pertains specifically to song III, the apex of the overall Bogenform. DeVoto suggests that it is in song III that the listener senses the existence of the Bogenform. This is because lines 1 and 3, with their twelve-note accompaniment

43Ibid., 48-49, 72.
45Mark DeVoto, "Some Notes on the Unknown Altenberg Lieder," 60.
chord, "create the central symmetry for the song and the entire cycle." Stroh agrees with this idea stating that the words "Plötzlich ist alles aus" maintains as the turning point of events a central position within the cycle owing to the fact that the third song is positioned as the symmetrical axis. Chapter 3 will explore this idea, by studying pitch-class symmetries in song III.

Nicholas Chadwick believes there are characteristics of *Bogenform* in op. 4, but feels that they emerge from an overall sonata form in which songs I-IV "form the exposition and the fifth a telescoped development and recapitulation." Redlich says that the presence in song V of the passacaglia based on a [01369] motive, of the "twelve-note motive" from song I, and of the perfect fourth motive originally heard in song II all support the notion that song V is a large-scale recapitulation.

Clearly *Bogenform* is important in the individual songs and also in the entire cycle, but various commentators fail to agree on precisely how *Bogen*-relations shape the overall form of the songs.

Symmetry and *Bogenform* reinforce each other in op. 4. DeVoto, in his discussion of the structure of the *Altenberg Lieder*, uses the words *Bogenform* and symmetry in conjunction. He feels that songs II-IV certainly demonstrate *Bogenform* symmetry, but says that "it is in the two big songs, the first and the fifth, that Berg's remarkable sense of formal symmetry is realized in full force." The following discussion of symmetry in each song focuses on phrases, set-classes, dynamics, orchestration, palindromes, and textual symmetry.

46 Ibid., 39.
49 This twelve-note motive does not function as a twelve-note serial row; rather it is a twelve-note motive which many, especially Krenek, feel is a precursor to twelve-tone material.
50 Mark DeVoto, "Berg the Composer of Songs," 53.
Leibowitz proposes that what might be called set-class content of the first vocal phrase of song II projects the ABA' formal symmetry evident in the entire song. In this vocal line a member of the symmetrical set-class [0167] occurs between a member of set-class [014] and its inversion, creating a small-scale ABA' form. My analysis of song II presents other elements that exemplify this formal symmetry in the song.

The formal symmetry of song III is presented clearly by certain retrograde-inversional figures and is also reinforced by the text. Robert Morgan suggests that the dismantling of the twelve-note aggregate chord in A and the rebuilding of it in A' is a strong example of Berg's tendency to use mirror forms, which also create symmetry in the song.51 The text heard in the A section is repeated almost verbatim in the A' section. DeVoto states that this "creates textual symmetry in the song emphasizing the twelve-note chord,"52 ultimately allowing these two features in the song to work together. My analysis of song III, through its emphasis upon inversional symmetry as well as retrograde figures, will also project the symmetry of the song in a manner not yet discussed.

The discussion of symmetry in song V focuses around its relationship with song I and the symmetry created by these two songs together. The motivic content of song V, brought forth by DeVoto, indicates symmetry with song I because the three principal motives as well as two subsidiary motives used in song V are taken directly from song I. Leibowitz proposes symmetry within the twelve-note motive, one of DeVoto's principle motives from song I, in the first variation of song V (mm. 5-10). He feels that the motive can be subdivided into three set-classes of four pitch-classes that illustrate its symmetry: the first is a member of set-class [0123] followed by a member of set-class [0167]

52 Mark DeVoto, "Berg the Composer of Songs," 53.
succeeded by another of [0123]. This symmetry is reminiscent of the vocal symmetry already noted in the first phrase of song II, which consists of a member of set-class [0167] preceded and followed by a member of set-class [014].

MOTIVIC STRUCTURE

Many of the motives Berg used in the *Altenberg Lieder* can be broken down into smaller motivic cells. These cells create a connection between the songs and it is from their development that the motivic variations and transformations emerge. Leibowitz suggests that a wealth of musical ideas are generated from a few motivic cells because of Berg's "technique of elaborating 'remainders' to create new figures which can always be reduced to the motivic germs that engendered them." This statement, confirmed by DeVoto's remark that "the motivicity of the Altenberg Lieder is the cycle's most powerfully cohesive structural force," gives evidence of many musical ideas being generated from a few motivic cells.

Berg also deploys and develops rhythmic motives in op. 4. Jarman suggests that because certain rhythmic motives are often highly syncopated and are initially stated on one pitch class, they are therefore established as independent rhythmic motives before being applied to thematic material.

Because of the chaotic sound of the opening in song I, (DeVoto calls mm. 1-18 a "motivic jungle") its motivic organization is not obvious. Carner feels that this song and its motives are based upon the pentatonic collection, set-class [02479]. But both Leibowitz and Redlich state that the orchestral accompaniment of song I is based on a five-note motive

54 Ibid., 505.
which is a member of set-class [01357]. Leibowitz believes that other prominent set-
classes in the opening measures are derived from [01357]: for example, set-classes [016],
and [027], as well as IC4.57 Chadwick suggests that the prominent [01369] set-class in
songs I, IV, and V is created from the beginning pitches of each member of set-class
[01357] in the opening measures of song I.58

DeVoto devotes two entire pages to the presentation of the motives he hears in
song I. These motives are subdivided into two categories: those heard only in song I and
those heard also in the other songs. Appendix A (p. 72-73) reproduces his example
showing these motives. (Motives labeled with Greek letters occur in more than one song,
while Roman-numbered motives are heard only in song I.) DeVoto also studies the
transformations of the melodic and rhythmic motives and points out how these
transformations often follow a pattern. Appendix B (p. 74) provides a specific instance,
showing how the interval between the consecutive bass notes of each IC3 dyad increases
by a semitone with each transposition.

The discussions pertaining to song II focus upon the presence of motives from
song I as well as some new motives. DeVoto and Jarman concentrate specifically on the
development of the short ascending fifth motive heard first in song I. This motive occurs
in m. 6 of the cellos in song II with a statement of set-class [027] followed by set-class
[0257]. This set-class illustrates how Berg develops small motivic cells into larger ones
since it contains two [027] subsets and three IC5's. Two other set-classes are prominent in
song II: set-class [0369] and set-class [0167]. My analysis of song II (in chapter 2)
concentrates on the development of motivic cells that are subsets of the whole-tone and
octatonic collections.

57René Leibowitz, "Alban Berg's Five Orchestral Songs," 492-93.
58Nicholas Chadwick, "Thematic Integration in Berg's Altenberg Songs," 301.
Adorno concurs with DeVoto's ideas about the motivic structure in song IV, remarking that it "has minimal motivic ideas yet is dense and chromatic."⁵⁹ One motive which is developed quite extensively in song IV is based on set-class [01369] (which corresponds with the passacaglia theme of song V). Carner and Leibowitz mention the development of this set-class on the word "wartet."⁶⁰

Mark DeVoto, in his discussion of song V, outlines how Berg used motives from song I. The main motives Berg used from song I are set-class [01369], the twelve-note motive, and the shift from set-class [01469] to [01369] (the reverse of what occurred in song 1). Even though Berg reuses these motives, "they are used in new ways."⁶¹ Therefore, as Leibowitz says, "this last song tends to create a synthesis of the principal elements of the preceding songs."⁶²

TONALITY AND ATONALITY

According to Stephen Kett, "in all his mature compositions, Berg integrated tonal and non-tonal elements into his musical language. And yet, while this language is both tonal and atonal it is neither one nor the other exclusively."⁶³ In the literature on the Altenberg Lieder (especially DeVoto's writings) tonal features are often instantiated by vertical or harmonic elements, whereas atonal features are observed in the horizontal or melodic domain. A balance between the tonal and atonal elements, according to Jarman, comes from their thematic and motivic developments.⁶⁴ Redlich portrays the balance

⁵⁹ Theodor Adorno, Alban Berg: Master of the Smallest Link, 66.
between the tonal and atonal elements in opus 4 as an "endeavor to compensate for the weakened feeling of tonality by establishing associations with historical musical forms and techniques.65

The question of some sort of balance between tonal and atonal elements also arises in discussions of the individual songs. DeVoto, speaking of song I, mentions a number of places where "fleeting tonal impressions occur." One of these, the C major triad, emerges at the end of the 'motivic jungle' in m. 19. DeVoto also observes implications of various keys in m. 24. More importantly though, he feels that during mm. 29-38 the song has a "feeling of A minor in the midst of the highly complex and pointillistic texture of these measures" and that "as the song progresses towards its final measures, the tonal-modal feeling of A minor-E minor becomes more pronounced."66

Mosco Carner describes song II as having a "tenuous tonality" that emerges through the union of vertical and horizontal elements, namely the F octaves in m. 2, m. 7, and m. 11.67 But Jarman also notes how Berg's use of set-classes [014] and [0167] in the opening vocal line, create both a melodic and a harmonic basis for the entire song.68 It is Berg's use of certain set-classes that allows both tonal and atonal features to emerge. For example, the pitch classes heard in m. 7 with the F octave create a member of set-class [01369], figured here as a Vb9 chord in Bb. Jarman also mentions the importance of diminished-seventh chords (set-class [0369]) in the song.69 In the horns in mm. 4-5 two diminished-seventh chords an IC4 apart create an octatonic subset. These passages are explored in more detail in Chapter 2 in terms of their atonal and tonal features.

Much is written about the third song with reference to the twelve-note chords and their implications. Redlich mentions how "Ernst Krenek has already pointed out the

66Mark DeVoto, "Some Notes on the Unknown Altenberg Lieder," 59.
67Mosco Carner, \textit{Alban Berg: The Man and the Work}, 90.
prophetic nature of the twelve tone chord" suggesting that the song is leading to the twelve-tone system.70 Redlich also states that "Krenek made the correct observation about the fifth and final song, that the entry of the treble at the passacaglia bass theme presents a \textit{pure and strong twelve-tone row}."71 However, Adorno states that "one should not ... hasten to proclaim the third song an early precursor of twelve-tone composition."72 Karen Monson agrees that the idea of Berg "consciously working on a twelve-tone system of composition is an exaggeration."73

Focusing henceforth on songs II and III, the present thesis develops the idea that there is a balance between tonal and atonal elements in song II. My analysis of song II explores the idea that the tonal and atonal elements work together to create balanced atonal foreground and tonal middleground structures in the song.74 The analysis of song III focuses again on the balance between foreground and middleground elements, showing how the middleground has become progressively more atonal.

70Hans Redlich, \textit{Versuch einer Würdigung}, 83, my translation.
71Ibid., 85, my translation.
72Theodor Adorno, \textit{Alban Berg: Master of the Smallest Link}, 66.
73Karen Monson, \textit{Alban Berg}, 105.
74The foreground elements in both songs remain fairly similar while the middleground elements in song III become more atonal from those in song II. The definitions of foreground and middleground elements in this thesis do not correspond with the Schenkerian view of a foreground and middleground framework.
CHAPTER 2
Foreground and Middleground Structures Song II

Although the Altenberg Lieder engage tonal structuring to a certain degree, there is much evidence of Berg's reaching outside the tonal boundaries into atonality. As Stephen Kett says, Berg "integrates tonal and non-tonal elements into his musical language. And yet while this language is both tonal and non-tonal it is neither one nor the other exclusively."¹ The following analysis of song II draws on both tonal theory and set-class theory. The analysis shows that tonic and dominant functions centred on a B⁵ tonic offer a middleground structure while the foreground structure is essentially atonal, and that there is, as Kett suggests, a balance between the tonal and atonal elements.²

In light of the above thesis, the division between tonal and atonal material in the song must be defined. In this analysis, foreground atonal elements include the whole-tone collection (set-class [02468T]), the octatonic collection ([0134679T]), certain of their subsets, and a small number of other set-classes. The two whole-tone collections are referred to as follows: WT(B⁵) denotes the whole-tone collection that contains B⁵ and WT(F) denotes the collection that contains F.³ Although the whole-tone and octatonic collections are considered here to be atonal in cast, tonal references sometimes result from their subsets, in particular those octatonic subsets that can project tonic or dominant functions. For example: set-class [01369] includes chords of the V⁷⁵ type (for example, F-A-C-E⁵-G⁵); members of set-class [0347] compose major and minor triads with the

²In this analysis the use of the terms foreground and middleground do not correspond with the Schenkerian definitions of these terms.
³In this thesis pitch classes that are not followed by # or b will be natural.

18
same root; set-class [037] includes the minor and major triads. The emergence of tonal references out of the "atonal foreground" helps to portray the overall formal design of the song.

The song can be interpreted as a tripartite form, since it divides into three phrases: mm. 1-3 (A), mm. 3-7 (B), and mm. 8-11 (A'). The following analysis, proceeding phrase by phrase, will generally begin with an examination of the vocal line; the orchestral accompaniment will then be considered, to discover whether it supports the ideas suggested by the analysis of the vocal part.

Section A: mm. 1-3

Example 2.1 presents the first vocal phrase (mm. 1-3), which is unaccompanied until the viola and piano enter on the fourth beat of m. 2. (All musical examples will present the instrumental parts at sounding pitch.) The opening B♭ is the first indication of a possible B♭ tonic.

Example 2.1

\begin{example}
\begin{music}
\begin{musicşekil}
\end{music}
\end{example}
Example 2.2 presents the vocal line with this B♭4 beamed to the final E♯4, the enharmonic equivalent of F, the dominant of B♭. The beam suggests a phrase ultimately controlled by tonal function (I-V). The F4 in m. 1 is stemmed, and a dashed slur connects it to the final E♯4. The F4 is also beamed to the E♭5 in m. 2, indicating that these consecutive pitches are not only the roots of the dominant and subdominant chords of a B♭ tonic but that they also outline a structural V7 chord at the midpoint of the phrase. The beam joining the F4 to E♭4 in mm. 1-2 is extended with a dashed line to the A4 in m. 2, to indicate how the V7 function is further suggested as the melody proceeds. The A4 is easily heard as the leading tone of the immediately preceding B♭4, which echoes the opening B♭4 of m. 1. The durational values of pitch classes B♭, E♭, and E♯ in mm. 1-3 (see Example 2.1, p. 19) are the longest of these measures, re-emphasizing their importance. Note that the opening B♭4 symmetrically divides the ten semitones between the highest note E♭5 (m. 2) and the last note E♯4=F4 (m. 3 and m. 6).

These pitch classes, F, E♭, and B♭, join to create a member of set-class [027], which will henceforth be referred to as S. S structures the first, highest, and last notes of the phrase and is also stated consecutively, mid-phrase, at "Gewitterregen." Although set-class [027] is not a subset of the octatonic or whole-tone collection, it will become important later in the song.
The tonal control evident thus far in mm. 1-3 creates the basis for the phrase divisions shown on Example 2.3. The first phrase proceeds down to F₄, 5 of Bᵇ. The second and third phrases, separated by an eighth rest (during which the viola and piano state the pitch class F₄ in three octaves), will be shown to develop an extended dominant sonority from that F₄ ending on its enharmonic equivalent of Eᵇ₄. The F₄ in m. 1, even though it is part of the first phrase, acts as an upbeat to the Eᵇ₅ in m. 2 outlining the V⁷ of Bᵇ. We will see later that each sub-phrase in mm. 1-3 corresponds with the overall ABA' form so that mm. 1-3 "mirror an ABA structure of the song itself."⁴ The first phrase

Example 2.3

![Musical notation](image)

corresponds with the A section, the second with the B section, and the third with the A' section. Therefore, the ABA' formal design has been alluded to in mm. 1-3 by elements of tonal control just summarized on Example 2.2.

Example 2.4 displays a whole-tone partition of the vocal line in mm. 1-3. WT(Bᵇ) is denoted by solid noteheads and WT(F) by open noteheads. Pitches that are members of WT(F) outline an altered and extended V⁷ chord in Bᵇ. B, the first open notehead on Example 2.4 is the diminished-fifth, enharmonically Cᵇ. The ninth of the chord is represented by G₄. The previously discussed F₄, Eᵇ₅, and A₄ in mm. 1-2 form the root, seventh, and third of the chord. The pitches Cᵇ₄ and Eᵇ₄ in m. 3 represent, respectively, the augmented fifth and the enharmonic root of the dominant sonority. The beam joining

all these pitches on Example 2.4 highlights the contour depicted by WT(F). The first pitch under the beam, B\textsubscript{4}, is the high point in the line thus far. G\textsubscript{4} functions as an appoggiatura or upper neighbour tone with the F\#\textsubscript{4} black-note as a chromatic passing tone reaching the dominant root F, the lowest point in the line thus far. Slurs joining G\textsubscript{4} to F\textsubscript{4} on Example 2.4 outline the roles of these pitch classes. The E\textsubscript{b5} in m. 2 is a new high point in the phrase; reached by a large leap, it stresses the importance of the dominant function outlined here. The B\textsubscript{b4} black-note in m. 2 is slurred to the A\textsubscript{4} white-note on Example 2.4, as it acts as an appoggiatura to the A. The black-note E\textsubscript{4} in m. 2 can be heard as the leading tone of the root F in m. 1 or its enharmonic equivalent E\# in m. 3. (This relationship suggests that the E represents V7 of V.) This relationship is denoted on Example 2.4 with slurs connecting E\textsubscript{4} to F\textsubscript{4} and E\#\textsubscript{4}. The black-note D\textsubscript{4} acts as a passing tone or appoggiatura to the new lowest point of the line, C\#\textsubscript{4}, as expressed on Example 2.4 by the slur from D\textsubscript{4} to C\#\textsubscript{4}. The final pitch of the phrase returns to the root of the V7 chord. The white-note altered dominant chord occurs entirely within the atonal WT(F) collection, but the contour depicted in mm. 1-3 by WT(F) helps a middleground tonal structure to emerge from atonal foreground elements, to portray a B\textsubscript{b} tonic exerted by its dominant.

Certain whole-tone patterns are evident from the whole-tone partitions on Example 2.4. For example, black-white-white, black-white-white, black-white-black. These
patterns correlate with the important sets and set-classes in mm. 1-3 that are identified on Example 2.5. Set P, a member of set-class [014], is a subset of the octatonic collection. Set R states another subset of the octatonic collection, set-class [013]. Set Q is a member of set-class [0167], yet another octatonic subset. Measure 3 closes with another member of set-class [014], labeled $T_0 I(P)$. As an inversion of the opening set-class, $T_0 I(P)$ helps create closure within the phrase as well as a formal balance that concurs with the underlying ABA' form in mm. 1-3. Since Q occurs midphrase and is a symmetric set it also highlights an ABA' symmetry with P and $T_0 I(P)$ in the first phrase that parallels the ABA' form of the song. Example 2.6 suggests how the inversional relation between the first and last phrases (as per Example 2.3) might possibly be heard as a pitch-inversion about the F#4 in m. 1, with the immediately following F4 as a harbinger of $T_0 I(P)$ in mm. 2-3. This interpretation suggests how set R could be subsumed into a miniature P-Q-($T_0 I(P)$) Bogenform.

Example 2.6

5Set-class [0167] can be subdivided either into two IC5's a semitone apart or two IC6's a semitone apart. The two linear IC5's outlined in Q, although they have no obvious tonal references in this context, are developed later in the song with more tonal references.
The pitches B♭ and B of P, \{B♭, B, G\}, create a major and minor third over the G, and the first two pitches of T₀I(P), \{D, C♯\}, are major and minor thirds below the final pitch class of the set, E♯. The IC3’s and IC4’s presented in these two sets are important ICs in the song and are developed throughout it. Also labeled on Example 2.5 is a member of set-class [0124], labeled R' as it is closely related to R. This set links P to Q as it overlaps with one pitch from each set. R' also highlights the IC2 emphasizing the outer pitch classes of V⁷ of B♭ as they are the final two pitch classes heard in the set, and this set-class is developed later in the song.

As already mentioned, the first pitch class heard in the orchestra is F in the viola and piano (m. 2), which enters on a vocal rest and is preceded by an E in the voice (see Example 2.1, p. 19). This E reinforces the impression that the F is tonicized, promoting and strengthening the tonic/dominant relationship outlined by the analysis of the vocal line. In the viola, F is followed by E and G♯ in m. 3 to create another member of set-class [014], T₃I(P). Example 2.7 displays how T₃I(P) and T₀I(P) occur simultaneously, highlighting the vertical IC3’s expressed by dashed lines on the example. Interval class 3 is already available within set-class [014] and when these two sets are combined it is developed further. The union of T₀I(P) and T₃I(P) creates a member of set-class [01347], an octatonic subset which will reappear frequently later in the song. The T₃ relation between
the two members of set-class [014] also foreshadows two T₃-related statements of another set-class later on in the song.

Section B: mm. 3-7

In mm. 3-7, which we might call the "development" section, foreground set-classes presented in section A are manipulated. Although a tonic/dominant relationship is not projected as strongly in this section, tonal structuring at the middleground still works in conjunction with foreground atonal elements.

Example 2.8 presents the vocal line in mm. 3-6, while Example 2.9a

Example 2.8

Alles rast, blinkt und ist schöner als vor.

Example 2.9a

illustrates the members of set-class [014] formed by consecutive pitches in the phrase. Specifically, Example 2.9a shows T₂I(P), T₇I(P), P itself, T₉I(P), and T₄(P). Having
introduced these members of set-class [014], certain tetrachords are of interest because they are formed from the union of two members of [014]. The first tetrachord of interest is the only one not formed from consecutive P-forms. If one joins $T_2I(P)$ with its preceding pitch, $F^4#$, a member of set-class [0134] is formed, labeled U on Example 2.9a. Set-class [0134] is created by inverting [014] about its IC4. In m. 5, P and $T_9I(P)$ overlap certain pitches, as do $T_9I(P)$ and $T_4(P)$, to create other symmetrical tetrachords. P and $T_9I(P)$ share the pitches B^4b and B^4; their union is a member of set-class [0347]. The outer pitch classes of this set-class, G^4 and D^5 enclose both a major and a minor third, thus creating a major/minor triad. This set is labeled V on Example 2.9a. Set-class [0347] can be created by inverting a member of [014] about its IC1, just as [0134] can be created by inverting an [014] about its IC4. $T_9I(P)$ also shares pitches B^4 and D^4 with the following set-class, $T_4(P)$. When these two sets are combined a member of set-class [0145] is created; this set is labeled W on Example 2.9a. As before, [0145] can be obtained by inverting a member of [014] about its IC3. Set-classes [0134], [0347], and [0145] can thus be developed out of set-class [014], and [0134] and [0347] in particular are subsets of the octatonic collection. If certain members of set-classes [0134] and [0347] are joined, a member of [01347] can be created; this subset of the octatonic collection becomes more prominent later in the song.

Example 2.9b presents other foreground set-classes heard mm. 3-7 which are also all, with one exception, subsets of the octatonic collection. The first three pitches in m. 5, C^5, A^4b, and E^4b, form an A^b major triad and are a member of set-class [037], labeled X on Example 2.9b. Set-class [037] is represented either by an inverted major or a minor triad and is a subset of the octatonic collection and also of two octatonic subsets previously discussed: [01347] and [0347]. $T_7(X)$ (m. 5) shares one pitch with X and represents an E^b major triad, the subdominant of the B^b tonic suggested earlier. The final occurrence of

26
set-class [037] in m. 5, $T_2(X)$, excludes the trill and grace notes. This is the first occasion that a complete B^b major triad is heard, projecting the middleground B^b tonic implied earlier in mm. 1-3. Like the set S observed in the commentary on Example 2.2, the roots of these members of set-class [037], A^b, E^b, and B^b, respectively, form a member of set-class [027]. Labeled $T_5(S)$ on Example 2.9b, this set thus develops and expands the original idea of S, \{Eb, F, Bb\} observed in mm. 1-3, and it retains Bb and Eb as common tones with S. The final set-class labeled on Example 2.9b is a member of set-class [0124], $T_0I(R')$, which was heard previously in mm. 1-2. We will return to this set shortly.

Example 2.10 presents R' from mm. 1-2 and $T_0I(R')$ from m. 6. $T_0I(R')$ creates an inversional symmetry about F$^#$ with R', the cycles of which include: (F$^#$), (F, G), and (Eb, A). Example 2.10 indicates these cycles with beams, and shows the F$^#$ axes by open noteheads. It is evident from Example 2.10 that the two sets are exact pitch inversions.
about F♯4 with the results that the three common tones are retrograded—a variation which
draws the listener to the inversional relation among the tetrachords, and is also a reminder
of T₀(P) and T₀I(P) in mm. 1-3. The remaining tones in each set-class are beamed together
to show how this cycle makes a long-range motivic connection. Example 2.10 thus
supports and develops observations made from Example 2.6, concerning pitch inversion
about F♯4 relating sets P and T₀I(P) in mm. 1-3. To strengthen these observations,
Example 2.11 shows the rhythmic similarities of R' and T₀I(R'), which both involve
triplet-eighth notes followed by a dotted quarter-note.

Example 2.11

Like Example 2.3, Example 2.12 presents mm. 3-6 with WT(F) indicated by open
noteheads and WT(B♭) by filled-in noteheads. The final five pitch classes from WT(F) on
Example 2.12 are beamed together. These pitches, C♭ (B), E♭, F, G, and A, once again
create an altered V⁹ in B♭. The importance of the F root in this sonority is plausibly

Example 2.12

supported by the expanding wedge of the first six notes on the example (F♯4-E4-G4-E♭4-
A♭4-D4) which is symmetric about the F4 which does not occur until m. 6, where it is
engaged by the symmetries just observed on Example 2.10. As in mm. 1-3, middleground materials have emerged out of the foreground whole-tone alternations.

Example 2.13 presents part of the orchestral accompaniment in condensed form in mm. 3-5. Besides supporting the developments of the voice in mm. 3-6, they also develop the tonal and set-class material of mm. 1-3.

Measure 3 opens with $T_4(V)$, a member of set-class [0347], in horn 1. This set suggests superimposed B-major and minor triads. Also emphasized are the IC4's of \{B, D\#\} and \{D, F\#\}. Within $T_4(V)$ there are two overlapping members of set-class [014]; $T_4(P)$ and $T_1 I(P)$. These two members of set-class [014] instigate the creation of set-class [0347] by inverting $T_4(P)$ about its IC1 dyad, \{D, D\#\}.

The harp and first clarinet enter in m. 4 with two ascending IC4 motives; \{A, C\#\} then \{C, E\}. These two dyads also create a member of set-class [0347], labeled $T_2(V)$ on Example 2.13. Like $T_4(V)$, $T_2(V)$ is also created by two members of set-class [014], $T_2(P)$ and $T_1 I(P)$, that are inverted about their IC1 dyad.

Example 2.13
In m. 4 set-class [014] is also developed in bassoons 1 and 2, and in the violas which have an almost identical line to the bassoons. In bassoons 1 and 2 there are three members of set-class [014]: $T_4(P) = \{F^#, F, A\}$, and $T_{10}(P) = \{F, A^b, A\}$ and $T_7(P) = \{A^b, A, C\}$, all of which are labeled on Example 2.13. The union of $T_4(P)$ and $T_7(P)$ creates a member of set-class [01347], labeled $T_4(UV)$ on Example 2.13. This set-class, like [014], [0134], and [0347], is also a subset of the octatonic collection.

The solo viola presents $T_9(X)$, a member of set-class [037] which outlines an F major triad. In the rest of the violas set-class [014] continues to be developed. The violas in m. 4 add A^b to the solo viola's $T_9(X)$, creating $T_{10}(V)$ which contains $T_{10}(P)$ and $T_7(P)$ (two members of set-class [014]) as subsets). The suggestion of an F root here ($T_{10}(V)$ is an F major-minor chord) is important as it suggests a return to the dominant of Bb—which will occur at the end of the "development" section. Thus far in mm. 3-4 the foreground structure of subsets of the octatonic collection, especially members of set-class [0347], have emerged quite prominently, yet references to middleground tonal elements are also alluded to.

Example 2.13 also shows how the accompaniment changes on the downbeat of m. 5, where two direct statements of set-class [0369] occur an IC4 apart. Pitches $\{B, D, F, G^#\}$ are heard in horn 2 and the solo viola, and are labeled Y. $T_8(Y) = \{G, B^bC^#, E\}$ is heard in horn 3 and the remaining violas. Middleground elements can emerge from the foreground sets $T_8(Y)$ and Y since they can function as vii7 chords resolving to a tonic. Y and $T_8(Y)$ together form a member of set-class [0134679T], the octatonic collection—of which so many subsets have already been observed. Measure 5 clearly represents the high point of the octatonic developments in the song.

Measure 5 is not only the high point of the octatonic foreground aspects of the song; certain whole-tone features (and their relation to dominant function) are also subsumed at this moment. Example 2.14 presents the pitches in m. 5 focusing on the IC4
vertical dyads, and on the whole-tone partition of the octatonic collection. The whole-tone collections show how the vertical dyads alternate between the two whole-tone collections. (As before WT(F) is denoted by open noteheads and WT(B♭) by closed noteheads.) The example establishes an important relationship between the whole-tone collection and the octatonic collection via the presence of IC4's within both these collections.

Example 2.14

![Example 2.14](image)

Example 2.15 presents a condensed version of the remaining accompaniment in mm. 5-6, which continues the development of IC's 2 and 4. The flutes in m. 5, and the trombones in m. 6, begin with a vertical IC4 echoing the opening G-B heard in the voice in m. 1. The two IC4's in each instrument frame an IC2 formed by the pitch classes F and E♭, which echo the voice in mm. 1-2. Similar to the linear IC4's of mm. 3-4 being emphasized in m. 5, here the IC4 (G, B) and IC2 (F, E♭), in retrospect, stress the linear IC4's and IC2's of mm. 1-3. These four pitches, all members of the same whole-tone collection, once again outline a middleground V⁹ (with a diminished fifth, and missing the third) of B♭. The reference to this chord prepares the listener for what will take place in

6The prominence of IC4 occurring and being emphasized within the song is quite clear. Each member of a whole-tone collection makes two IC4's with other members; each member of an octatonic collection makes one IC4 with some other member.

<table>
<thead>
<tr>
<th>C#</th>
<th>D#</th>
<th>F</th>
<th>G</th>
<th>A</th>
<th>B</th>
<th>C#</th>
<th>D#</th>
</tr>
</thead>
<tbody>
<tr>
<td>C#</td>
<td>D</td>
<td>E</td>
<td>F</td>
<td>G</td>
<td>Ab</td>
<td>Bb</td>
<td>B</td>
</tr>
</tbody>
</table>

Each whole-tone collection contains no members of set-class [014]; each octatonic collection contains eight.
m. 7. Another important feature of mm. 5-6 is the canon that occurs between the flutes and trombones; this is developed later in the song. The remaining instruments in mm. 5-6, the horns, harp, and strings, all sound pitch class C#. C# is passed from one instrument to another and is heard continuously throughout mm. 5-6. All of the pitch classes present in mm. 5-6, C#, E♭, F, G, and B, are all members of WT(F). Thus, a powerful and pervasive shift from the octatonic collection back to WT(F) has occurred. Throughout this shift IC4 has remained prominent so that the relationship between the octatonic and whole-tone collections is emphasized.

Example 2.15

There are only three pitches on Example 2.15 not yet accounted for as they are not members of WT(F). The first is the D heard in the second violins and celli in m. 5; this D resolves down to the prominent C# heard throughout mm. 5-6 and we will consider it to be merely a "neighbour" tone. It is reminiscent of the voice's D4 in m. 3, which likewise "resolved" to C#4. The second occurs in the first trumpet in m. 6, where an F#4 is sounded as part of an ascending line including B3 and D#4. This F#4 can be explained motivically, since these pitches, B, D#, and F#, are reminiscent of horns 1 and 2 in
mm. 3-4 (Example 2.13, p. 29) and create a B major triad, T₃(X), a member of set-class [037]. The Bᵇ in the first trombone on the third triplet eighth of beat three in m. 6 is the third pitch which does not belong to WT(F). When combined with the other pitches heard at this moment, excluding the C♯ "pedal," this Bᵇ completes S, an important member of set-class [027] stated by the voice in mm. 1-3. The C♯ pedal is discussed in chapter 4 in conjunction with its presence in song III.

Example 2.16 presents the solo cello line at the end of m. 6, which also outlines three members of set-class [027]: T₁₁(S), T₅(S), and T₁₀(S). The concentration of these

Example 2.16

three members of set-class [027] is reminiscent of the original statement of S developing it further. T₁₁(S), T₅(S), and T₁₀(S) also echo the fleeting statement of S in the trumpets and trombones in m. 6 (Example 2.15).

Example 2.17 presents the pitch class content in m. 7, the final measure of the "development" section. These pitch classes, F, A, C, Eᵇ, and Gᵇ, form a member of set-class [01369], which as well as being a Vᵇ⁹ chord in Bᵇ, is also a subset of the octatonic collection {C, D, Eᵇ, F, F♯, G♯, A, B}. With this chord, the foreground and middleground structures converge, as it is an octatonic subset (foreground) and yet is also the Vᵇ⁹ in Bᵇ (middleground). The middleground tonal function as Vᵇ⁹ of Bᵇ is particularly strong here, given the fermata, its position just before the reprise (A'), and its
relation to the opening A section which also suggested a B^b tonic exerted by its dominant in the earlier analysis.

Example 2.17

Section A': mm. 8-11

Example 2.18 presents the vocal line in mm. 8-10, the reprise of the A section. The orchestra does not enter until beat three of m. 8, leaving the first two pitches in the voice unaccompanied. Although not as much of the vocal line is unaccompanied as in mm. 1-3, this feature in m. 8 is reminiscent of mm. 1-3. Example 2.19 presents the same material as Example 2.18, but labels members of set-classes [0167], [014], and [0157]. (Set-classes [0167] and [014] are subsets of the octatonic collection.) The first three pitches in m. 8, A5, E5, and E^b5, begin like a transposition at the tritone of the original statement of [0167]
in m. 2; the listener now expects B\textsubscript{b} to follow so that set-class [0167] will be heard. The B\textsubscript{b}, though, is preceded by a B\textsubscript{4} so that set-class [0167] is expanded to [01267]. Since this set is developed out of set-class [0167] it is labeled Q' on Example 2.19. Set Q' includes all the pitch classes in m. 8 and is a member of set-class [0157] another set-class closely related to [0167]. In m. 9 the B\textsubscript{4} "resolves" down to B\textsubscript{b4}: because the B\textsubscript{b} was expected to create [0167], a sense of resolution is felt when the B\textsubscript{b4} is sounded, even though an eighth rest occurs between B\textsubscript{4} and B\textsubscript{b4}. Set-class [0167] may have been expanded to link "Siehe Fraue" with "du brauchst"; the B\textsubscript{b} is heard on the word "auch" which joins these two ideas. Set-class [0167] is heard in its original transposition at the end of m. 10, completing the word "Gewitterregen," the subject of "du brauchst." Thus, set-class [0157] and set-class [0167] are connected through the text. Four members of set-class [014] are also labeled on the example: T\textsubscript{9}I(P), T\textsubscript{3}(P), T\textsubscript{11}I(P), and T\textsubscript{2}I(P). Each statement of set-class [014] in mm. 8-10 shares pitches with the preceding set-classes, creating a measure highly concentrated with P-forms. The chaining of P-forms also helps to motivate the B that briefly substitutes for the expected B\textsubscript{b} in m. 8.

Example 2.20 shows mm. 8-10 of the voice with set-classes other than [014] labeled. Following Q', two overlapping members of set-class [0124] occur, both in m. 9: T\textsubscript{7}(R') and T\textsubscript{7}I(R'). Rhythmic similarities between R' in m. 1 and T\textsubscript{7}(R') and T\textsubscript{7}I(R') in
m. 9 highlight the relationship between mm. 1-3 and mm. 8-10. Example 2.21 compares the rhythm of R' in m. 1 and T_7(R') and T_7I(R') in m. 9. The triplet eighth-note pattern from m. 1 contains the [012] subset in each case. (See also Example 2.11, p. 28) The two remaining set-classes on Example 2.20 are both subsets of the octatonic collection. T_5(V), a member of set-class [0347], overlaps with T_7I(R') in mm. 8-9 and also overlaps with T_7(X) in mm. 9-10.

Examples 2.19 and 2.20 together indicate that Q' and Q are joined by means of one measure that has a high concentration of overlapping members of pertinent set-classes. The location of these set-classes within the phrase again allows the Bogenform ABA' structure to emerge again within the phrase. The two examples also suggest that mm. 8-10 have a highly condensed recapitulatory function, manipulating several set-classes that were prominent in earlier sections.
In fact, Berg has structured mm. 8-10 exactly opposite to mm. 1-3. The main components of the voice in mm. 1-3 were one statement of set-class [0167] framed by members of set-class [014]. Measures 8-10, on the other hand, reverse that structure, using the closely related set-classes [0157] and [0167] to frame a series of overlapping members of set-classes [0124] and [014]. Tonal control in the vocal line itself is not emphasized but emerges more strongly when combined with the accompaniment.

Example 2.22 displays the whole-tone collections in the vocal line of mm. 8-10 with the pitch classes from WT(F) indicated as open noteheads and those from WT(Bb) with closed noteheads. Although the (open) pitches that compose an altered V9 of Bb are accented by the contour of the line, (closed) pitches outlining a V9 of F are also emphasized. Because of the events we will observe at the end of the song, V9 in F is arguably more important here than V9 in Bb. The pitches in mm. 8-10 that make up the V9 of F are all members of WT(Bb) and are beamed together on Example 2.22. These tones are also quite strongly projected as the syllables of "Gewitterregen" and are enunciated successively (see Example 2.18, p. 34). The pitch that is heard most often, three times in mm. 8-10, E, is the leading tone of F. E is also the first and last of the pitch classes taken from WT(Bb). It is worth comparing the two settings of the word of "Gewitterregen." In mm. 1-3 "Gewitterregen" began on pitch F, the root of the dominant chord of Bb; in
mm. 9-10 "Gewitterregen" begins with the pitch C, the dominant of F. Through this comparison the suggestion of F as the implied tonic in mm. 8-10 is reinforced. The tonal control, evident from the projection of WT(B♭), again combines the foreground and middleground structures so they are presented simultaneously. Overall, Example 2.22 shows the coexistence of V⁹ of B♭ and V⁹ of F, but suggests that the latter will emerge as the more important of the two in the remaining measures.

The accompaniment in mm. 8-10 is different from that of mm. 1-3. Example 2.23 shows how the cellos repeat the vocal line exactly, but enter a dotted quarter-note after the voice, creating a canon with it. Even though the pitch-class content in the cellos is identical to the voice, there are some slight differences in set-class emphasis because of the phrasing. Similar to the voice in m. 8, the cellos begin with a member of set-class [01267]. The first difference from the vocal line is heard in m. 9 in the second cello. At this point, the second cellos play through the B linking it directly to the B♭, rather than having an eighth rest between them. This alteration, indicated also by the phrasing, emphasizes the B-B♭ semitone "resolution" to complete set-class [01267], and indeed the second cellos drop out after this statement of Q'. In m. 10 the first cellos also end with B
descending to Bb. This figure, heard twice, is important as its resolution to the Bb stresses the seventh of the newly emphasized V7 chord of F and yet it also recalls Bb as the opening tonal centre, and even treats Bb as a sort of goal. The rhythm in the third phrase of the solo cello is altered slightly from the voice. An important feature are the repeated E's at the end, which resolve to F octaves in the basses and confirm F as the closing tonic.

Example 2.24 presents the pitch-class content of the winds and celeste in mm. 8-11. The celeste passage in mm. 8-9 is similar to the cello solo in m. 6 (Example 2.16, p. 33) except that here the IC5's are expressed by grace notes. The celeste in m. 8 enters with an IC5 dyad followed by a member of set-class [027] labeled T10(S) on Example 2.24. Two members of set-class [027], T9(S) and T2(S) are then heard. These Example 2.24 combine to create a member of set-class [0257], labeled T11(Z) on the example. If the grace notes are excluded from this passage, the remaining pitches, D, Db, and F, form a member of set-class [014], labeled T01(P) also on Example 2.24. These sets also include two consecutive members of set-class [0167] which share the pitch Ab: T11(Q)=

39
\{A, D, E^b, A^b\} and \(T_{10}(Q)=\{A^b, D^b, D, G\}\) and are labeled on Example 2.24. This little solo is very notable for the striking way it reprises and combines three of the most important set-classes in the piece, \([014]\), \([0167]\) and \([025]\) (also \([0257]\)).

Example 2.24 also presents the accompaniment in the winds in mm. 8-11. Each instrument group sounds two vertical IC4's an IC3 apart. These IC4's are passed through the instruments, each instrument group restates the last dyad of the previous group, then transposes it down three semitones. Oboes 1 and 2 begin with a statement of pitch classes B and G followed by E and G#. Pitch classes E-G# are then restated by trumpets 1 and 2 which follows them by D^b-F. The latter is then repeated in the trombones, followed by B^b-D. The latter is repeated in horns 2 and 3 followed by G-B, where the cycle ends. When the two IC4 dyads in each instrument group are combined, they create a member of the familiar set-class \([0347]\). These members of set-class \([0347]\) are labeled on Example 2.24 as \(T_9(V), T_6(V), T_3(V),\) and \(V\). The transpositional structure corresponds with the diminished seventh chord, set-class \([0369]\). The configuration of this passage is reminiscent of the accompaniment material heard in mm. 3-5 (Example 2.13, p. 29 and 2.15, p. 32) and the presence of set-class \([0369]\) clearly indicates that mm. 8-11 are a recapitulation of the octatonic collection in m. 5, since these four V-forms also "add up to" the same octatonic collection. Thus the middleground structure, the quasi-tonal character of set-class \([0347]\), and the foreground octatonic collection (formed out of a union of \([0347]\)'s), are all united and emerge together strongly.

Example 2.25a observes that the lowest pitches of each member of each simultaneous IC4 in mm. 8-11 form the member of set-class \([0369]\) labeled \(T_8(Y)\). And as in m. 5, \(Y\) is created by the upper pitch classes of the vertical IC4's, as shown on Example 2.25b. \(T_8(Y)\) and \(Y\) were heard already in m. 5 (see Example 2.13, p. 29) where they ascended rather than descended. Example 2.26 summarizes by showing that mm. 8-11 are
the retrograde of m. 5, stating the same octatonic collection. Measures 8-11 are thus clearly recapitulatory, and they strengthen the importance of the octatonic collection in this song.

Example 2.25a-b

Example 2.26

Example 2.27, like Example 2.14 (p. 31), displays the whole-tone content of the winds in mm. 8-11. Two pitches from each collection are heard simultaneously in the vertical IC4's with the collections alternating each IC4. As already mentioned, the pitches

Example 2.27
presented here create a member of the octatonic collection. Of course, the example is also an exact retrograde of Example 2.15 (p. 32). The example also shows once again how the two whole-tone fields are engaged "within" a structural use of the octatonic collection.

Upon completion of the song, tonal control has shifted from B♭ to F. The first indication of this shift occurs in the final pitches of the voice and cello in mm. 10-11 (see Examples 2.22, p. 37 and 2.23, p. 38). The final vocal E is repeated by the celli and then resolves "up by step" to F octaves in the double bass, the last event in the song. The resolution of E to F is reminiscent of the entrance of the F octave in the piano and viola in m. 2, which also was preceded by E (see Example 2.1, p. 19). The remaining instruments in mm. 8-11 also support the new tonic F. The lowest pitches of each member of set-class [0347] in the winds in mm. 8-11 were E, C♯, B♭, and G, which form the vii°7th chord of F. Once more, tonal elements emerge from the "atonal" set-classes. And the altered V⁹ chord outlined by WT(B♭) in mm. 8-10 of the voice (see Example 2.23, p. 38) has now been "confirmed" as the dominant of F.

By the end of the song F octaves have been heard three times: in m. 2, mm. 6-7, and m. 11. These octaves, although they stand out as foreground material, bear the deeper middleground structure. In m. 2 the F seems to be tonicized by the preceding E, but in relation to the opening B♭ in the voice and the "cadential" E♯ (m. 3), it is made to play the role of a dominant. In m. 7 the F octave functions as a dominant of B♭ in preparation for the reprise of section A. In m. 11, in part due to the preceding E, the F functions now as a new tonic. Because of the tonal references implied by these octaves a tonal middleground form emerges quite strongly.

The foreground sonorities of this song tend to involve atonal elements, specifically the whole-tone and octatonic collections and their subsets. The octatonic collection tends to function somewhat more structurally, emerging in complete form at important moments (mm. 3-5, mm. 8-11). But examples such as Examples 2.14 (p. 31), and 2.27 (p. 41)
have attempted to show how alternating whole-tone fields are ultimately subsumed within the presentation of a complete octatonic collection.

It is remarkable that through this "atonal" foreground a middleground structure emerges that highlights tonal elements in the song. More often than not, the atonal elements work together to produce the tonal ones and vice-versa, creating as Kett says, "a language that is both tonal and non-tonal but is neither one nor the other exclusively."7

CHAPTER 3

Foreground and Middleground Structures in Song III

In song III, as in song II, middleground elements emerge from the foreground elements. Since the songs in the cycle become progressively more atonal, the middleground elements prolonged in song III do so as well in comparison with those of song II. In the following analysis the middleground material in song III will be taken to include pitch class symmetry about the pitch classes G (or C#) and E (or Bb). The foreground material remains generally the same as in song II (whole-tone and octatonic collections and their subsets), with the addition of the twelve-note chord, certain polymetric conflicts and retrograde figures. These "new" elements are, indeed, foreground phenomena since they only relate to the A and A' sections, whereas the middleground symmetries relate "continuously" to the ABA'. Nonetheless, because these structures are consistent with A and A', they also signal middleground structures and the overall Bogenform.

Song III can also be divided into three sections: mm. 1-8, mm. 9-17, and mm. 18-25. The tripartite Bogenform ABA' is projected by the prolongation of inversional symmetries, by certain set-classes, and by rhythmic or metric features. The focus in this analysis upon these elements will give evidence of the foreground and middleground structures in the song.
Inversion about pitch class G, represented henceforth by K, has the following cycles: (G), (F#, G#), (F, A), (E, B♭), (E♭, B), (D, C), and (C#). (G and C# each map onto themselves, and form the axes of inversion K.) In light of the earlier definition, K-symmetry falls into the category of middleground material, yet is still related to the foreground whole-tone fields since each K-cycle has whole-tone interval content. Example 3.1b presents the vocal line of mm. 2-8 with the axes of K indicated with open note heads; the other K-cycles are represented by solid noteheads connected by beams.

Our study of K is prompted by the retrograde-inversional symmetry about G in mm. 2-3. This figure begins on the axis G₄, soon returns to G₄, and is then followed by the largest leap so far, to the other axis, C♯₄. This entire figure is labeled U on Example
3.1b. U is the first of three smaller segments within mm. 2-8; V and W, labeled respectively on the example, comprise the other two sections.

Example 3.1b

As is apparent from Example 3.1b, segment V contains no complete K-cycles and is the shortest of the three sections. The broken slurs (in V) from A$_b$4 and D4 indirectly link these pitches with their K-images (F$\#$ and C respectively) elsewhere in m. 2-8: A$_b$4 in m. 5 is linked back to F$\#$4 in m. 2 via G$\#$4 in m. 3; D4 in m. 5 is linked forward to C4 in m. 8, (the last note in the phrase) via D5 in m. 7. Since E is missing, Bb4 has no K-image in the phrase. To indicate this, Bb4 is enclosed in a box on Example 3.1b; observe that Bb4 occurs roughly in the middle of the phrase, begins the middle section (V), is reached by the largest leap so far, but also connects back registrally to the A4 in m. 3, the previous highpoint. The pitches in V form a member of set-class [026]. Set-class [026], a subset of the foreground whole-tone collection, will be shown to serve a foreground function in the song. Set-class [026] is developed extensively in mm. 9-12 and will be discussed further on.

In contrast with segment V, segment W involves complete K-images. But unlike U, the axes C$\#$ and G lie within the figure rather than framing it. If one ignores the C$\#$ and G for a moment, one sees that the K-cycles are introduced, then completed in order: the K-cycles involving the first three pitch classes (B, F, D) are completed, respectively, by the next three (Eb, A, C).
Segments U, V, and W help to define the form of the entire song since they present a kind of miniature ABA' form within the phrase. The A and A' sections are represented by segments U and W, and the B section by segment V.

Example 3.2 displays the aforementioned twelve-note chord heard in the woodwinds and brass in m. 1 and deployed through m. 8. The "missing" E is of course

Example 3.2
accounted for here, but it is in no way accented or emphasized. The K-cycles are also all present, but they are obscure; only one is completed in succession within a single instrument. This is the (A, F) cycle played by the flute in mm. 5-8, and circled on Example 3.2. This particular IC4 dyad will be referred to henceforth as Z. The flute's (A, F) dyad is not set in particularly high relief, but it is still somewhat perceivable in the higher register of the shifting orchestral chord. The flute's A4 also echoes the voice's A4 on the downbeat of m. 3 (which immediately follows the vocal F4), and the flute's F5 anticipates the voice's climactic F5 of m. 7. These relations are indicated by diagonal lines on the example.

Example 3.3a presents the rhythmic pattern created in mm. 1-6 by the alteration of the voicing of the twelve-note chord, every four quarter-notes. The technique of Klangfarbenmelodie thus creates a subtle metric polyphony between the voice and the orchestra—a feature defined earlier as belonging to the foreground. The vocal line in

Example 3.3a

mm. 2-6 consists of five measures of 3/4 time, but the orchestra, due to the cited rhythmic pattern, sounds as if it consists of four measures of 4/4 time. Example 3.3b consequently shows both the voice and orchestral rhythms in mm. 1-6. Berg's 3/4 time signature is indicated with solid bar lines and the implied 4/4 time signature with broken bar lines. This
Example 3.3b

creates a metric conflict of four against three. This foreground polymeter is not evident in the B section, but reappears in the A' section. The accents in the vocal text generally conform with the notated 3/4 meter, at least at the beginning. But by m. 6, the 4/4 meter suggested by the accompaniment has become sufficiently persistent that the voice's C#5—an axis of inversion K, corresponding with the last duration written on Example 3.3b—can receive two kinds of accents: it coincides with a 4/4 downbeat, and is also syncopated with the 3/4 of the vocal line. (This syncopation seems to respond, also, to the vocal hemiola in mm. 4-5.) The metric conflict and the twelve-note chord, even though they signal the formal A and A' sections, function as foreground elements.

Example 3.4 presents the "dismantling" of the twelve-note aggregate chord from m. 6 to m. 8, with the pitches being removed numbered 1 through 12. One pitch class is removed every eighth-note until only B5 remains in the B♭ clarinet. (Note that the voice's B3 in m. 6 is also the lowest note in the vocal line of mm. 2-8.) The first pitch to be omitted from the chord is the C#1 in the bass tuba, an axis of K; it is worth noting that the initial G of the vocal line was the other axis of K. The removed pitches generally ascend in
register, with the exception of D3 (#3) and E4 (#10). The "dismantling" of the chord places no emphasis on the middleground K-cycles.

1The written D3, sounding D2, is lower than the previous G#2 (#2) and the E4 (#10) is lower than the previous pitches F#4 (#7), A4 (#8), and C5 (#9).
Section B: mm. 9-17

The B section (mm. 9-17) can be subdivided into two smaller subsections: mm. 9-12, and mm. 13-17. Example 3.5 displays the vocal line in the first subsection (mm. 9-10), which consists of only pitch classes F and A. It will be recalled that Z, the K-cycle (F, A), was the only one to occur in succession in the voice in mm. 2-8 and the only one to be heard as an instrumental succession in the orchestral accompaniment. The repetition of this cycle in mm. 9-10 re-emphasizes and confirms the importance of (F4, A4) in m. 2 and the (A4, F5) in the flute in mm. 5-8. The foreground rhythmic conflict presented in the A section is no longer present in the B section.

Example 3.6 displays the bass, cello, 2nd trombone, first clarinet, English horn, and oboe in mm. 8-11, and outlines the development of IC3 and IC4 dyads. (All instruments are indicated at sounding pitch.) The development of these two interval classes is linear and begins with the IC3 {B, D} in m.8, which is labeled X on Example 3.6. This IC3 in the first clarinet begins on B5 and descends to D5 creating a descending major sixth. Likewise, all the IC3’s in mm. 8-11 take the form of descending major sixths or major thirteenths. X is succeeded in m. 9 (first clarinet) by T4(X) consisting of pitches Eb and Gb. In m. 10 the first IC4 is heard; it consists of Db5 ascending to F5 in the first oboe and is labeled T8(Z) on Example 3.6. The untransposed label Z is thus retained for the
Example 3.6

important K-cycle (F, A), which is twice represented as a descending minor sixth following $T_8(Z)$, in the oboe and the English horn. Another statement of IC4 follows in the first oboe ($T_3(Z)$) in m. 10. The pitch class C5 of $T_3(Z)$ is now shared with $T_1(X)$ which descends to Eb4. Two final IC3's are heard in m. 11: $T_{11}(X)=$\{Bb, Db\}, in the 2nd trombone, and $T_5(X)=$\{E, G\}, in the bass and cello. These final two IC3's project the two axes of inversion K (G and Db), as well as Bb and its "missing" K-image, E. From these foreground ICs middleground elements are being prolonged as will be seen shortly. For example, when $T_{11}(X)$ and $T_5(X)$ are joined they create a member of the octatonic subset [0369]. It should be noted that the oboe line in mm. 9-10 begins with Eb-D-Db-F, a T_8 transposition of the opening vocal gesture, suggesting that symmetry about E may be forthcoming, as we shall see.

Example 3.7 presents the other instruments in mm. 9-12. These instruments develop IC4 vertically rather than linearly, and place it within members of set-class [026], a subset of the whole-tone collection. Example 3.7 shows two inversions of set V from the vocal line in Example 3.1b (p. 46): $T_{10}(V)=$\{C, D, Ab\}, and $T_1(V)=$\{Eb, F, B\}. As can be seen on Example 3.7, these two inversions are passed through the instrument groups,
Example 3.7

beginning with T_{10}I(V) in the flutes in m. 9. At the end of m. 9 the horns repeat T_{10}I(V) then state T_{1}I(V) in m. 10. The violas enter in mm. 10-11 with a statement of T_{10}I(V) also followed by T_{1}I(V) which is doubled by the piano. Even though IC4 is prominent within set-class [026], IC3 is also developed in this sequence, since T_{10}I(V) and T_{1}I(V) are an IC3 apart.\(^2\)

As Example 3.8 indicates, each of these members of set-class [026] contains one K-cycle: (D, C) in T_{10}I(V), and (Eb, Cb) in T_{1}I(V). Example 3.8 shows the two K-cycles aligned vertically. The presence of these two K-cycles within T_{10}I(V) and T_{1}I(V) help promote middleground elements from the foreground ones and also prolong the middleground K-symmetry of the A section.

\(^2\)When these two members of set-class [026] are joined together, a member of set-class [013469], an octatonic subset, is created.
Example 3.9 presents the condensed orchestral accompaniment in mm. 11-15. In m. 12 a transition from inversional symmetry about G to inversional symmetry about E begins. Henceforth, L will refer to the inversion about E. The cycles of L are (E), (E♭, F), (D, F♯), (C♯, G), (C, G♯), (B, A), and (B♭). The relation of inversions K and L is an interesting one, since each set of axes is a cycle under the other inversion: (C♯, G), the axes of K, are an L-cycle; likewise (E, B♭), the axes of L, are a K-cycle.

To project the transition from K to L, IC3 {E, G} oscillates in different instruments in mm. 11-13, where the inversional symmetry about E is confirmed upon the entry of the voice on E5. The oscillation begins in the bass and cello in the latter half of m. 11, continues in the timpani in a triplet eighth-note pattern in m. 12, and returns back to the bass, cello, and viola at the end of m. 12.

Example 3.9 also shows the accompanying IC3 heard in mm. 12-15. This dyad, {B♭, D♭}, in the horns and harmonium, also has a triplet rhythmic pattern (sixteenth-notes rather than eighth-notes). The two IC3's, {E, G} and {B♭, D♭} together form a diminished-seventh chord which projects the axes of both inversions K and L. This diminished-seventh chord, a member of set-class [0369], is also a subset of the foreground octatonic collection. Thus, the middleground inversional symmetries again emerge from

3 The L-cycles of the B section, like the K-cycles in the A section, are related to the foreground whole-tone fields since each L-cycle also has whole-tone interval content.
foreground elements. This particular member of set-class [0369], \{E, G, B^b, D^b\}, will be referred to as \(T_8(Y)\), to correspond with the same set in song II.

Example 3.9

In mm. 13-14 (Example 3.9) the oscillation figure shifts from E-G to F-F\# (celli and harp). These latter pitch classes emphasize the relationship between the G axis of K and the E axis of L, as they lie symmetrically between them. They are also the pitch-classes heard in the original retrograde-inversion figure of mm. 2-3 in the voice, which is transposed at precisely this point in the voice.

In m. 15, \(T_8(Y)\) is heard again because of the return of the E-G oscillation. Since \(T_8(Y)\) contains the axes of both inversions it encapsulates the transition from one inversional balance to the other. \(T_8(Y)\) proceeds to a member of set-class [0157] in m. 16, as shown on Example 3.10. This tetrachord includes an [026] subset,
Example 3.10

represented here by the pitches Eb, Db, and A and is labeled T\textsubscript{11}I(V) on the example. Members of set-class [026] were catalytic in the transition from K- to L- symmetry in mm. 9-12; thus the inclusion of a [026] set within this tetrachord points to the transition soon to occur, in moving to the A' section.

Example 3.11a presents the vocal phrase in mm. 13-17. Notably mm. 13-15 are modeled after mm. 2-4 and begin with the E that was "missing" earlier. The similarities between mm. 2-4 and mm. 13-15 confirm L-symmetry in m. 13 corresponding with the K-symmetry in mm. 2-4. Much like Example 3.1b (p. 46), Example 3.11b shows the axis of L is indicated with open note heads and the L-cycles are beamed together. Because the first five pitches in mm. 13-17 are a transposition of mm. 2-4 by T\textsubscript{9}, the location of the L-cycles are the same as that of the K-cycles in mm. 2-3. Thus, the (D, F\#) cycle
Example 3.11b

Example 3.11b corresponds under T_9 with the important (F, A) cycle. After the first five pitches of mm. 13-17, the similarities with mm. 2-4 cease. Rather than returning to E as the sixth pitch, an Eb, is heard: note, however, that this variation does not completely undermine the inversional symmetry of the figure, as the lower beam on Example 3.11b indicates. C5, the next pitch in m. 15, does alter the situation, though. In mm. 2-4 the seventh pitch class, C$\#$, was an axis of K; in mm. 13-15 the seventh pitch class, C, is not an axis of L. Thus, only one of the axes of inversion L is presented in mm. 13-17; in fact E is the only axis present among the four axes of K and L. The presence of only this axis in mm. 13-17 strengthens the projection of L-symmetry that has been suggested by some of the preceding events, and also compensates for the "missing" E in mm. 2-8. The achievement of the temporary middleground L-symmetry by means of foreground materials prolongs the middleground in a developmental sense that corresponds with the formal B section.

The final pitch on Example 3.11b is the Sprechstimme A3. This pitch, like the preceding C5, has no complete L-cycle. The fact that this pitch is repeated and is the only instance of Sprechstimme may be indicative that a change is forthcoming.

Section A': mm. 18-25

Example 3.12a presents the vocal line in mm. 19-25, the A' section. This vocal phrase is a nearly exact repetition of the vocal line in mm. 2-8, unequivocally establishing mm. 18-25 as the reprise of the A section. The notational value of the pitch classes in
mm. 18-25 has been cut in half from those of mm. 2-8 due partially to the meter change

Example 3.12a

from 3/4 in A to 3/8 in A'. In real durations A' is the same length as A, thus creating a balance between the length of the two sections. Another subtle change in mm. 19-25 is the dynamic markings: mm. 2-8 are based around piano and mm. 19-25 around pianissimo. The one remaining difference between mm. 2-8 and mm. 18-25 is that the final vocal pitch in m. 25 (C6) is two octaves above the final vocal pitch in m. 8 (C4). As in mm. 1-8, the voice enters one measure after the orchestra and once again projects middleground K-symmetry, as is shown on Example 3.12b (which is to be read in the same manner as Example 3.1b (p. 46), which it essentially duplicates).

Example 3.12b

Example 3.13 displays the orchestral accompaniment of mm. 18-25. Like
mm. 1-8, it consists of a twelve-note chord. This time, however, the chord is heard in the strings only, and rather than being dismantled it builds up from one pitch class to twelve;

Example 3.13

\[
\begin{array}{c}
\text{Example 3.14}\text{ displays the rhythmic conflict which reemerges between the orchestra and voice in mm. 18-25. As before, the conflict is created by two rhythmic patterns; one of entries in the voice and one of entries in the orchestra. The vocal rhythm is based on three eighth-notes per measure, whereas each measure in the orchestra consists of two dotted eighth-notes. The original foreground conflict of four against three in}
\end{array}
\]

in fact, the entrance of pitch classes precisely reiterates the order in which they were removed in mm. 6-8. Thus, the first pitch class in the orchestra, C#, is one of the axes of K, suggesting the shift back to K-symmetry that will be achieved by the vocal reprise. In mm. 18-25 the foreground twelve-note chord operates as a formal signal indicating the reprise of the A section.

Example 3.14 displays the rhythmic conflict which reemerges between the orchestra and voice in mm. 18-25. As before, the conflict is created by two rhythmic patterns; one of entries in the voice and one of entries in the orchestra. The vocal rhythm is based on three eighth-notes per measure, whereas each measure in the orchestra consists of two dotted eighth-notes. The original foreground conflict of four against three in
mm. 1-8 is altered to three against two, but like the twelve-note chord, it too signals the reprise of the A section.

Example 3.14

The preceding analysis of song III supports the choice of the middleground and foreground elements. As in song II, the middleground is prolonged throughout the entire song by means of foreground elements, specifically by set-classes [0369] and [026]. Set-class [026], in conjunction with [0369] helps to develop K-symmetry into L-symmetry during the B section. Set-class [0369] {E, G, B♭, D♭} is used to realize and project the relationship between K- and L-symmetry since it consists of the axes of both inversions. The development of the temporary L-symmetry during the B section also helps the ABA' form of the song to emerge. The ABA' form, suggested in miniature in A, was confirmed by the foreground twelve-note chord and polymetric conflict. The ABA' formal design has emerged as a result of the prolongation of the middleground elements by means of foreground ones throughout the song.
CHAPTER 4

Summary and Conclusion: Foreground and Middleground Structures in Songs II and III

The analyses in chapters 2 and 3 have described and demonstrated relationships between middleground and foreground structures in songs II and III. Theodor Adorno might categorize some of these relationships by what he calls Berg's technique of the "smallest link." For Adorno, this technique involves using a remnant of a motive as the basis for the development of other motives. Adorno suggests that such "smallest links" arise in Berg's music because "the main principle he [Berg] conveyed was that of variation; everything was supposed to develop out of something else and yet be intrinsically different."¹ Example 4.1 presents a child's word game built on the word Kapuziner which is disassembled and put back together again.

Example 4.1

"Kapuziner - Apuziner - Puziner - Uziner - Ziner - Iner - Ner - Er - R; R - Er - Ner - Iner - Ziner - Uziner - Puziner - Apuziner - Kapuziner"²

This word game illustrates Adorno's idea of "continuous transition." In this sequence each word is part of the previous one yet has a completely different meaning from it, no meaning whatsoever, or only a nonsense "meaning." Adorno discusses continuous variation in the

¹Theodor Adorno, Alban Berg: Master of the Smallest Link, 33.
²Ibid., 4.
following of Berg's works: *Seven Early Songs*, *String Quartet* op. 3, *Clarinet Pieces* op. 5, *Orchestral Pieces* op. 6, *the Lyric Suite*, and in the *Altenberg Lieder* op. 4.

In his analysis of the first Altenberg song, Adorno suggests that continuous transition plays an important role in all of op. 4: "in a rudimentary fashion the first piece follows a formal principal Berg was to use frequently thereafter: gradually ... compositions are led from the amorphous to the articulate and then occasionally with acts of destruction, back into the indeterminate." The present chapter explores the idea that continuous transition occurs between the foreground and middleground structures as they emerge from one another in these two songs. The term "link," taken from Adorno's "smallest link," will be used here to define the elements that enable continuous transition to occur between the foreground and middleground materials. The term "link" will also be used to illustrate the relationships between the middleground and foreground structures in songs II and III.

Songs II and III

Adorno remarks that "the design of the whole [op. 4] ... is held together by two rather extended and above all dynamically expansive movements at the beginning and the end." If songs I and V function as book-ends to op. 4, one is prompted to examine relationships between the middle songs, in our case between songs II and III. Indeed, Adorno does say that "the middle three songs are (likewise) architecturally related to one another." This remark opens the door to examine the relationships between songs II and III.

3Ibid., 64.
4Ibid., 64.
5Ibid., 65.
As we have seen, Stephen Kett's remark that while Berg's "language is both tonal and atonal it is neither one nor the other exclusively," applies specifically to song II. In chapter 2, atonal material (including the whole-tone and octatonic collections as well as their subsets) characterized the foreground in song II. Tonal factors, such as tonic and dominant functions, characterized the middleground. In song III the middleground elements have become more atonal, principally consisting of inversional symmetries. The foreground elements remain more or less the same as in song II (the octatonic and whole-tone collections and their subsets), but now also include the twelve-note chord and rhythmic conflicts. The reason for the more atonal middleground elements in song III lies in the fact that the songs themselves become more atonal as the cycle progresses. The strongest connection between the two songs, the one that makes all the other relationships possible, is their similar foreground structures.

In both songs, many of the middleground elements became apparent or were projected by the foreground subsets of the octatonic and whole-tone collections. Because these subsets in both songs are engaged by the middleground and the foreground they will be described as "links." Most important among these is set-class [0369]. The connections within the individual songs and between the two songs will be studied here, often in conjunction with the ABA' form of both songs.

The vocal line in mm. 1-3 of song II (see Example 2.2, p. 20) offered our first example of tonic/dominant control in B♭. This middleground tonal structuring was confirmed by Example 2.4 (p. 22), which showed how the pitch classes of foreground WT(F) outlined an altered V7 chord in B♭ across mm. 1-3. Example 2.5 (p. 23) showed how the sets P, Q, and T0l(P) support the miniature ABA' structure in the first vocal phrase, corresponding to the Bogenform of the song as a whole.

In song III, the middleground element of inversive symmetry was shown to be immediately evident in the opening vocal line. Example 3.1b (p. 46) presented K-symmetry around pitches G and C# in mm. 2-8. In mm. 2-3 a retrograde figure beginning on G and returning to G occurs. Located at the middle of this figure is the important IC4 dyad (F, A). Since the IC4 dyad is a subset of the whole-tone collection, its presence within K-symmetry creates a link between the middleground and foreground structures. The presence of K-symmetry divides mm. 2-8 into three subsections that correspond with the ABA' form of the entire song. The first and last sections of the movement involve K-symmetries while the B section projects set-classes [026] and [0369], foreground elements which ultimately generate the middleground L-symmetry, found later in the B section. The relationship between the vocal lines in the A sections of songs II and III is created because the middleground elements in both are generated from foreground structures. Another similarity between the two A sections is their individual miniature ABA' forms.

Although not strong, there is a connection between the orchestral accompaniments in the A sections of songs II and III as they both use foreground material. In song II two statements of foreground [014] sets are heard; in song III the accompaniment consists of the foreground twelve-note chord. In song II the middleground elements are projected by the tonicization of the F octave in m. 2 by the preceding E in the voice. The twelve-note chord in song III, although it is foreground material, "signals" the middleground A structure.

The vocal line in each B section develops foreground subsets so that middleground structures emerge, even if only subtly. In song II the foreground set-classes were developed by an inversive principle. For instance, in mm. 3-6, as seen on Example 2.9a (p. 25), five members of set-class [014] were shown. From these five sets one member of each of the following tetrachords were created: [0134], [0347], and [0145]. Set-class
[0134] is created by inverting [014] about its IC4, set-class [0347] is created by inverting [014] about its IC1, and set-class [0145] by inverting [014] about its IC3. Even though the formation of set-classes [0134] and [0347] through inversion enhances their foreground nature as octatonic subsets, middleground tonal elements are also evident within them. In particular, set-class [0347] projects both major and minor triads, both with the same root, suggesting tonal sonorities and potential tonal relations. Members of set-class [037] are also prominent in mm. 3-6 (see Example 2.9b, p. 27). As a subset of the octatonic collection these set-classes constitute foreground material, yet by outlining tonal triads they also reflect iconically the middleground tonal structure. As in mm. 1-3, a separation of the whole-tone collections within mm. 3-6 shows how the middleground elements emerge out of foreground ones (see Example 2.12, p. 28). The pitch classes of WT(F) in mm. 5-6 highlight tonal control through an altered V⁹ chord in B⁷ that is supported by the expanding wedge pattern around F⁴ that precedes it in mm. 3-4.

The vocal line in the B section of song III is subdivided into two smaller sections. The first, mm. 9-10, develops foreground elements into the middleground structures heard eventually in mm. 13-17. The vocal line in mm. 9-10 consists only of Z, the IC4 dyad {F, A} (see Example 3.5, p. 51). The presence of only this dyad and its repetition suggest a progression from the previous middleground K-symmetry to the forthcoming middleground elements. This is due to the fact that IC4 is a subset of the foreground set-class [026] which, in mm. 8-11, plays an important role in the transition from K- to L-symmetry. The voice in mm. 13-17 (see Example 3.11b, p. 57) displays the prominent middleground L-symmetry related to the earlier K-symmetry by the foreground transposition of T⁹ (compare Example 3.1b, p. 46, and Example 3.11b, p. 57). The foreground elements in the accompaniment of mm. 9-17, especially the [0369] set, also act as "links" that permit the shift from K-symmetry to L-symmetry. Although the vocal lines

65
in the B section of songs II and III are different in character, the link between them lies in the fact that middleground elements emerge from the development of foreground materials.

In the accompaniment of both B sections, subsets of the foreground materials are also developed. Within this development, middleground elements emerge quite strongly. Octatonic subsets occur in mm. 3-4 of the accompaniment in song II. The ordering of the pitches in the prominent members of set-class [0347] emphasize the two IC4's, yet a major and minor triad are built on the bass note of each tetrachord so that sounds characteristic of both the middleground and foreground are heard (see Example 2.13, p. 29). In m. 5 two members of set-class [0369] are presented: Y={B, D, F, C#} and T_8(Y)={G, B, D, E} (see Example 2.13, p. 29). As subsets of the octatonic collection, they represent foreground materials and, indeed, Y and T_8(Y) combine to form a complete octatonic collection. Middleground materials are represented by the potential these sets have to resolve, as diminished-seventh chords, to a tonic. T_8(Y) suggests the eventual tonicization of F at the end of the song. It will be seen shortly how set-class [0369], T_8(Y) in particular, becomes the most important "link" in both songs, therefore also creating a significant connection between the songs.

Another example of middleground structures originating out of foreground structures occurs in mm. 5-6 of song II. There pitches G, B, F, E, and C#, all members of WT(F), form a V_7^9 in B; F-(A)-C-Eb-G, and thus forge a link between the atonal foreground and tonal middleground (see Example 2.15, p. 32). It is in m. 7 where the strongest middleground element emerges from the foreground octatonic subset [0369]. The middleground F octave heard in m. 2 has, in m. 7, been developed into a member of set-class [01369]. This set-class also functions as a V_b9 in B (F-A-C-Eb-Gb) (see Example 2.17, p. 34). Thus, set-class [0369] is the "link" that allows the foreground and middleground structures to converge at the structural high point of the song.
Foreground structures are also developed in the accompaniment in the B section of song III, from which prominent middleground elements emerge. The first example of this is the foreground linear IC3's and IC4's in mm. 8-11 (see Example 3.6, p. 52). The emergence of the middleground structures from these ICs are evident in the combination of the final two sets, T_{11}(X) and T_{5}(X), which create a member of set-class [0369] that contains the four axes of K- and L-symmetry. Therefore the foreground [0369] octatonic subset T_{8}(Y)=\{C^#, E, G, B_b\} functions as a link between the two middleground symmetries. This set continues to be developed in mm. 11-15 (see Example 3.9, p. 55) generating a transition from the axes of K-symmetry (G and C^#) to the axes of L-symmetry (E and B_b). The middleground continuation between inversions K and L is also reinforced since the axes of L, \{E, B_b\} are a K-cycle and the axes of K, \{C^#, G\} are an L-cycle. Similar to song II, the foreground [0369] set has converged with middleground elements at a structural high point.

Set-class [0369] is rich in IC3's which function as "links" between the foreground and middleground structures. The foreground [026] set-classes developed in the viola, piano, horns, and flutes in mm. 9-11 of song III (see Example 3.7, p. 53) generate middleground material by means of the IC3 "link." The foreground function, from which middleground elements ensue, is the T_3 (or IC3) relationship between the two sets. K-cycles within these two sets thus illustrate tangible middleground elements. In T_{10} I(V)=\{C, D, A_b\} the K-cycle (C, D) is present and in T_{11}(V)=\{C^b, E^b, F\}, the K-cycle (C^b, E^b) is likewise present (see Example 3.8, p. 54). In mm. 9-12, even though foreground materials dominate, deeper middleground structures emerge through the foreground, particularly set-class [0369].

Set-class [0369], in addition to functioning as a "link" within the individual songs, also creates a relationship between the two songs. Significant middleground structures emanate out of this set-class, especially from T_{8}(Y)=\{C^#, E, G, B_b\}, at structural high
points, helping to define the form of both songs. Another relationship between the two songs are the C# pedals. A C# pedal was heard in mm. 5-6 in song II (see Example 2.15, p. 32). This pedal is directly related to the Db pedal in the 2nd horn in mm. 12-14 in song III (see Example 3.9, p. 55). In both songs the prolonged C# has similar rhythms. In song II it precedes [01369] in m. 7, and in song III it precedes and confirms L-symmetry.

Middleground structures also emerge from the foreground in the A' sections of both songs, creating relationships between the songs similar to those observed between their A sections. In the vocal line of mm. 8-11 of song II tonal structuring is again evident, although now centred around F as a tonic rather than B♭. This tonal shift is confirmed by the whole-tone separation which outlines a V⁷ chord of F (see Example 2.22, p. 37) allowing middleground elements to emerge from the foreground ones. The vocal line of mm. 1-3 in song III projected a miniature ABA' formal structure due to the ordering of the set-classes P-Q-T₀l(P); in mm. 8-11 an ABA' structure again emerges from the foreground set-class ordering although the set-class ordering is now "reversed": Q'-P-Q (see Example 2.20, p. 36).

The accompaniment in the A' section of song II again promotes middleground elements through foreground ones. Similar to m. 2, the closing F tonal centre is tonicized by E in the strings in m. 11 (see Example 2.23, p. 38). Berg's development of the F octave, from a single note in m. 2 to the root of the Vᵇ⁹ set-class [01369] in m. 7 and back to the octaves in m. 11 is reminiscent of Adorno's statement that "construction for Berg was simply a matter of creating a maximum out of nothing and then retracting it, thoroughly paradoxical."⁷ Throughout the course of the song the F octaves project foreground material but also become the pillars of the middleground structures.

The winds in mm. 8-11 (see Example 2.24, p. 39) present strong foreground elements within which IC3 and IC4 are developed. Four members of set-class [0347], V,

T₃(V), T₆(V), and T₉(V), that are related to each other by a [0369] transpositional structure are presented. Once again, the major and minor triads present within [0347] might be heard as icons of the tonal middleground structure. But the foreground elements in this passage are much more pronounced than the middleground elements for two reasons. First, when the four members of set-class [0347] are joined they form a complete octatonic collection. Second, the lower pitches of each IC4 join to form Y and the upper pitches T₈(Y), both members of set-class [0369], from m. 6, where they combined to form the complete octatonic collection. But T₈(Y) can also function as vii°₇ of F, a weak middleground element that subtly reinforces the new tonic F.

Since the vocal line in the A' section of song III is the same as the A section, the earlier relationship of middleground and foreground elements is repeated. The orchestral accompaniment in mm. 18-25, which rebuilds the twelve-note chord dismantled in mm. 6-8, is foreground material yet its consistent association with the A and A' sections signals the return of the A' section.

Emergence of middleground structures from foreground in the A' sections promotes the relationship between the two songs. The similar foreground elements in songs II and III, especially T₈(Y), create the most important relationship between the songs from which all others stem, as is apparent by the above comparison. This relationship also confirms the close connection of the ABA' form of each song.

Another feature connecting songs II and III is inversional symmetry. In song II inversional symmetry is used to develop foreground set-classes and in song III, since it is a more atonal feature of song II, it has been developed into one of the main middleground elements. For instance, in song II set-class [014] is developed by inverting it about its IC1 and IC4 dyads to create larger symmetric subsets of the foreground octatonic collection: [0134] and [0347]. The main middleground structure in song III, K-symmetry, originated from inversion about the initial vocal pitch G₄, creating the axes G and C♯. L-symmetry,
heard later in the song, involves inversion about the axes E and B♭. Therefore inversional symmetry has been developed from a device used to enhance foreground material in song II into a main middleground element in song III, creating an important developmental link between the two songs.

CONCLUSION

The preceding summary, coupled with the analyses of each song, supports and confirms the choice of foreground and middleground elements. The similar foreground elements in each song allow the middleground materials, although different in the two songs, to emerge. Emergence of the middleground materials, specifically through set-class [0369], verifies that the whole-tone and octatonic collections and their subsets are, indeed, foreground elements. The foreground elements are also substantiated by their ability to act as "links" between the middleground and foreground structures in each song. Thus they also create "links" between the two songs, as was seen above.

Middleground differences between song II and III concur with the overall progressive nature of the entire cycle from tonal to more atonal. The middleground in song II, with its emphasis upon tonic and dominant functions, develops into the atonal K- and L-symmetries in song III. Thus, "Berg's sense of form answers this song [II] in the next one."8

The "convergence" of the foreground and middleground elements in songs II and III, through their "links," confirms the ABA' formal design of each song. The relationships between the two songs, as seen in chapter 4, are also made apparent by this convergence.

8Adorno, Alban Berg: Master of the Smallest Link, 65.
Thus, the connections between the foreground and middleground elements in the songs individually and together confirms Adorno's idea, altered somewhat, of the presence of "smallest link" and continuous transition principles in the *Altenberg Lieder*. This principle has illustrated the connections between the foreground and middleground materials in songs II and III individually and between the two songs together.
Appendix A

Appendix B

BIBLIOGRAPHY

