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A B S T R A C T 

Magnitude estimation, although a very valuable technique for the study of sensory 

systems, suffers from the problems of excessive intersubject variability and interlab 

variability (Marks, 1974). Assuming that healthy normal subjects experience 

approximately the same levelof perceived stimulus magnitude when presented with the 

same stimulus under the same conditions, the seemingly excessive intersubject 

variability revealed by magnitude estimation techniques must be due to factors left free 

to vary during the magnitude estimation procedure. In this dissertation I explore a 

methodology called constrained scaling, which is an attempt to establish a methodology 

for magnitude estimation that exerts greater control over the scaling process. 

Constrained scaling consists of using feedback to train subjects to respond to a set of 

stimuli according to a power function with a particular exponent and then asking them 

to respond to a different set of stimuli using the response scale they have learned, but 

without feedback. Thus this dissertation was an investigation of the degree to which, 

and under what conditions, subjects could extend a learned scale to novel stimuli. The 

results indicate that under the right conditions subjects can perform this task with a 

level of precision sufficient to significantly reduce intersubject variability as compared to 

standard magnitude estimation results. The consequences of constraining subjects to 

answer according to a predetermined function are discussed in terms of the type of 

scale that is produced. Also, the conceptual implications of constrained scaling for 

modeling sensory systems and conscious perception are discussed. 
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"Decide on standard weights and measures after careful consideration." 

Confucius (551 to 479 B.C.) 

Introduction 

This dissertation is concerned with the measurement of psychological magnitude by 

means of magnitude estimation, a technique devised by S.S. Stevens (see Stevens, 

1975 for a detailed historical account of the creation of magnitude estimation). The 

process of magnitude estimation involves presenting stimuli to subjects and having 

them match the magnitude of a particular psychological dimension mediated by the 

stimuli to their subjective impressions of the magnitude of numbers. For example, 

various tones could be presented and subjects could be required to match the loudness 

of each tone to a number so that the subjective magnitude of the number equaled the 

subjective magnitude of the tone. Although this technique is simple, a storm of 

controversy has ensued as to the details of implementing the technique and what 

exactly the results mean. However, more on this later. Before proceeding to the issues 

specific to magnitude estimation it will be necessary to briefly digress and consider the 

issue of measurement in general. 

Measurement 

Without measurement it would not be possible to link mathematics to empirical 

observations, an enterprise central to scientific inquiry. But despite the obvious 

importance of this activity the status of measurement theory within the philosophy of 

science is diminutive. With a only a few exceptions the issue of measurement has been 

dismissed as, "neither interesting nor important," (Ellis, 1968). However, because some 
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of these issues are relevant to this dissertation a brief, selective review of measurement 

theory is in order. 

Measurement is "the assignment of numerals to objects or events according to 

rules" (a paraphrase of Campbell, 1940, by Stevens, 1946). In order to be clear 

concerning terminology and the classification of different types of measurement I will 

use Ellis's (1968) classification scheme, as it is arguably the most comprehensive. 

Ellis's classification scheme distinguishes between direct measurement, which occurs 

when a quantity is measured without reference to any other quantities, and indirect 

measurement, which occurs when a quantity is measured with reference to one or more 

other quantities. Fundamental scales (Campbell, 1940) are a form of direct 

measurement. To achieve this type of scale there must be a way of combining two 

systems both with a quantity, p (eg. p could be weight), such that the combination also 

posses p. Also the combining operation, o, must satisfy at least the following, where x 

and y are different amounts of quantity p (eg. x and y could be the weights of two 

different objects): 

o(x,y)=o(y,x) 

o(x,y)>x 

o(x,y)=o(a,b) when x=a and y=b , 

o(o(x,y),z)=o(x,o(y,z)) 

(Ellis, 1968) 

The classic example of a fundamental measurement is using a pan balance to 

measure mass. Another example is the measurement of length by overlapping two 

objects to see if one is greater than, less than, or equal to the other. However, not all 

direct scales are fundamental scales. When a combining operation is not possible the 
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resulting scales are referred to as elemental scales (eg. hardness can be measured by 

smashing different substances together, but there is no way to combine hardnesses). 

Associative scales are a form of indirect measurement. An associative scale can be 

constructed when there is a measurable quantity, q, associated with the quantity, p, to 

be measured, such that, under specified conditions, if the quantities are ordered 

according to q they are also ordered according to p. The classic example of an indirect 

scale is when temperature is measured by measuring the volume of various substances 

(eg. mercury, alcohol) assumed to expand and contract in response to temperature 

differences. Derived scales are another type of indirect scale that are derived from 

already known scale values (eg. scales of density). 

Magnitude estimation is a form of associative measurement in which subjective 

magnitude is assumed to vary systematically with subjects' numerical responses. The 

primary advantage that fundamental scales have over associative scales is that, by 

definition, the addition of fundamental scale values directly reflects the physical process 

of addition. With associative scales the addition of scale values may or may not reflect 

physical or psychological reality. For example, if tone A is perceived to be twice as loud 

as tone B, then in order to reflect this a subject should match tone A to a number twice 

as large as the number tone B was matched to. If a scale directly reflects physical or 

psychological reality in this manner then I will refer to it as linear. Scales that do not 

meat this criterion or for which it cannot be proven that they meet this criterion, I will 

refer to as nonlinear. 

It is important to note that if an associative scale is nonlinear very little practical 

advantage is lost. Consider two associative scales describing the same quantity, one 

linear and one nonlinear. All other things being equal, the nonlinear scale will be 
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systematically related to the linear scale and all lawful relationships existing for the 

linear scale will also exist for the nonlinear scale (Ellis, 1968, Stevens, 1951). 

Philosophically, the linearity issue is complex and controversial (see Ellis, 1968). 

Important for this dissertation is the importance of having a physical means of 

concatenating the quantity to be measured. As Ellis (1968), Stevens (1951) and Luce 

(1972) have pointed out, it is possible to construct fundamental scales without using a 

measurement procedure involving physical concatenation or addition. Finally, both Ellis 

(1968) and Stevens (1951) have argued that considerations of additivity (i.e. 

concatenation) and linearity should be secondary to considerations of the mathematical 

desirability of the scale. In other words, they maintain that the main criterion for creating 

a scale should be to create simple and elegant mathematical models. 

To achieve a meaningful associative scale three conditions must be met: 

1) there must be a process (invented or naturally occurring) that transforms one 

variable into another (Luce, 1972), 

2) the same, specified process must be used for each measurement (Ellis, 1966) 

3) the relevant variables must be related by an interlocking algebraic structure (Ellis, 

1966; Luce, 1972). 

The second point in this list is often taken for granted in the physical sciences. It 

simply asserts that different methods of measurement (i.e. methods that result in 

different units of measurement) cannot be mixed. For example, if length A is 3 feet and 

length B is 47 centimeters, B cannot be said to be greater than A simply because 47 is 

greater than 3 (i.e you cannot compare numbers derived using different measurement 

processes, unless of course, you have a formal means of equating the units). This point 

is trivial for physical measurement where well defined units of measurement are 
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common but it is arguably one of the greatest impediments in creating valid associative 

scales of psychological quantities or magnitudes. This is because the responses of 

individuals, or the average responses of naturally occurring groups (eg. male/female, 

different cultural groups etc.) can only be compared if the associative functions 

mapping responses to psychological states are equivalent across the individuals or 

groups being compared. For example, if person A reports a level of happiness equal to 

7 on a 10 point scale, and person B reports a level of happiness equal to 8 on the 

same scale, we are unable to conclude that person B is happier than person A because 

we cannot be sure that the associative functions mapping responses to psychological 

states were the same for A and B. Essentially, the problem is one of calibrating 

individual subjects (or groups) to each other. The situation is analogous to when 

temperature was measured using different types of wine and alcohol, resulting in a 

confusing array of scale values (Ward, 1992). In the following section I will examine 

how this issue has impacted on psychophysical scaling in general and on magnitude 

estimation in particular. 

One last note concerning terminology. Sensations have different aspects or 

attributes that are available to consciousness. For example, a subject can report how 

long, how clear, how intense, or how pleasant a sensation is. However, this dissertation 

will be concerned primarily with the magnitude (i.e. intensity) aspect of sensations 

evoked by experimentally controlled stimuli of differing physical magnitudes. In all 

cases, unless otherwise noted, any reference to perception should be taken as 

referring specifically to this situation. Also, in all cases, unless otherwise noted, 

consciousness is defined as the awareness of the magnitude aspect of a sensation, "so 

that a verbal or nonverbal description of it can be provided, or a voluntary response, 
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equivalent to the description, may be produced" (Ladavas, Cimatti, Pesce, and Tuozzi, 

1993). 

A Brief History of Psychophysical Scaling 

When Fechner created psychophysics it was based on his insight that conscious 

perceptions of stimulus magnitudes could be measured if a consistent relationship 

existed between perceived magnitude and subjects' overt responses.-Since Fechner 

assumed that perceptions of stimulus magnitudes were lawfully related to physical 

magnitudes, a lawful relationship between physical magnitudes and response 

magnitudes would be a sign that a lawful relation existed between perceptual 

magnitudes and response magnitudes. Weber's Law, 

AS=WS (1) 

which states that the amount that a stimulus magnitude (S) needs to be increased (AS) 

in order to create a just noticeable difference (JND), is a constant proportion (W) of the 

stimulus magnitude (S), provided Fechner with the lawful relationship that he needed. 

Fechner assumed an additive relationship between JNDs and units of conscious 

perception^ so that if stimulus threshold equaled 0, one JND above threshold would 

equal 1, one JND above 1 would equal 2, and so on. By further assuming that JNDs 

reflected a continuous function, as opposed to the discrete function suggested by the 

summing procedure, Fechner was able to derive what has come to be known as 

Fechner's Law, 

P = (1/W)log(S/T) (2) 

where P is conscious perception, T is threshold, and 1/W is a scaling constant. Note, 

however, that for Fechner to claim that his scale was linearly related to the true 

1 With only two relevant variables the interlocking algebraic structure requirement is redundant. 
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psychological scale, it was necessary for him to assume that JNDs could be summed to 

measure conscious perception; to claim a nonlinear scale he needed only to assume 

that JNDs were systematically related to perceived magnitude. Despite the fact that 

consciousness is, by definition, composed of mental phenomena that we have access 

to, it was widely believed at the time that people could not accurately report conscious 

perceptions of magnitude (Stevens, 1975). Because Fechner subscribed to this view it 

did not occur to him to test his assumption by asking subjects to report their conscious 

perceptions. Instead, he measured JNDs and derived subjects' perceptions of 

magnitude. 

The idea that people can report conscious perceptions of stimulus magnitudes with 

a reasonable degree of accuracy was first introduced by Stevens in a series of studies 

(see Stevens, 1975 for a review). Essentially, what Stevens did was to demonstrate 

that people could systematically match their perceptions of stimulus magnitudes from 

one modality to their perceptions of stimulus magnitudes from another modality. This 

general approach was termed cross-modality matching (CMM) and involved presenting 

a series of stimuli in one modality and having subjects match the magnitude of each 

one by adjusting the magnitude of a stimulus from a different modality. For example, 

subjects could be instructed to adjust the intensity of a light so that their perceptions of 

brightness matched the perceived loudness of various tones presented by the 

experimenter. 

By assuming that subjects' perceptions of numerosity, or numbers, was linear to the 

properties of actual numbers (see Poulton, 1989b, for a discussion of the validity of this 

assumption), and also that the mapping of subjective number magnitude to the 

subjective experience of other stimulus magnitudes was linear, Stevens argued that the 
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matching of numbers to the magnitudes of perceived stimuli produced a linear scale of 

conscious perception (note, I shall refer to the combination of these two assumptions 

as the linearity assumption). Stevens referred to this special case of CMM (Luce 1972) 

as magnitude estimation (ME). Using ME and the linearity assumption, Stevens found 

that Fechner's law did not hold for perceptions of prothetic sensory continua, such as 

loudness and brightness2. Instead he found that the perception of magnitude obeyed a 

power law, 

R=KSB (3) 

where both B and K are constants. According to this function, each modality is 

characterized by an exponent value, B, that describes the relationship between the 

physical intensity of a stimulus and the perceptions of magnitude evoked by it. K was a 

multiplicative constant representing the unit of the scale and was generally considered 

less interesting as it was thought to be arbitrary (however, see Borg & Marks, 1983 for 

a review of the possible meanings of K). Note also that the value of the exponent is 

entirely dependent on the choice of the scale used to quantify the stimuli. For example, 

for 1000 Hz tones Stevens' results (see Stevens, 1975) indicate that the exponent is 

approximately 0.30 if sound power is used to quantify the stimuli, and 0.60 if sound 

pressure is used (in this dissertation sound pressure is used). Thus the value of the 

exponent has no absolute meaning in relationship to the physical worid, its meaning is 

always relative to the measurement unit of the stimulus. 

In terms of psychophysical scaling, the most important feature of the power law is 

that it exhibits an internal algebraic consistency. Although it raises interesting 

2 Prothetic refers to differences in quantity whereas metathetic refers to differences in quality (Stevens, 1975). For example, 
brightness is a prothetic dimension whereas color is a metathetic dimension. Fechner's law did hold for some metathetic 
continua such as pitch, apparent position, apparent inclination, and apparent proportion. Fechner's law was also thought to 
hold for visual saturation and visual hue, although some evidence suggests otherwise (Indow & Stevens, 1966). The problem in 
distinguishing log functions from power functions is that sometimes both fit the data reasonably well (Norwich, 1993). 
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questions, this dissertation will not be concerned with relating the power law to external, 

physical measurements except in so far as they can be used to reveal an inner, 

psychological consistency. For example, CMM exponents are predictable from the ME 

exponents of the two modalities involved, according to the derived relation 

R = K S A / B (4) 

where A is the ME exponent associated with S and B is the ME exponent associated 

with R (Stevens, 1975). The power law results are also systematically related to other 

psychological phenomena related to magnitude perception (Luce, 1972), such as 

intensity-duration exchange (Stevens, 1966; Stevens & Hall, 1966), adaptation level 

(Stevens & Stevens, 1963), reaction time (Vaughan, Costa, & Gilden, 1966), Weber's 

law (Teghtsoonian, 1971), and signal detection theory (Norwich, 1995; Ward, 1995). 

Furthermore, several comprehensive theories from which these empirical relationships 

can be derived have recently been developed (Norwich, 1993; Zwislocki, 1994; Link, 

1992). This sort of consistency makes ME much more than a mere curve fitting 

exercise. In fact, Stevens did not need his linearity assumption to claim valid (nonlinear) 

scales, the internal and external consistency of the power law were enough. 

Stevens' linearity assumption rested primarily on face validity. Other methods of 

indirect scaling also produced legitimate scales different from, but systematically 

related to Stevens' ME scales. For example, category scaling, which is the same as ME 

except that the range of allowable responses is restricted to a limited number of 

categories, systematically produces lower exponents than ME (on average about half 

the size, Ward, 1971). Also, Fechner's JND scales are different from but systematically 

related to Stevens' ME scalessince the Weber fraction (W) for any modality can be 



predicted from the ME exponent (B) associated with that modality according to the 

formula, 

W = (1.03 1 / B)-1 (5) 

where 1.03 is a fixed constant (Teghtsoonian, 1971)3 note - this law applies only to 

Steven's ME data and a specially selected set of Weber fractions and should be 

considered only in this context. See later for a discussion of the extent to which findings 

associated with Stevens' ME results can be generalized). In fact, in theory, it is 

possible to concoct many different scales from the interlocking results of 

psychophysics, all of which would meet the criterion for a nonlinear associative scale. 

Stevens' assumption that his ME scale was linearly related to conscious perception can 

be justified only in so far as ME gives subjects the most freedom in reporting their 

perceptions, and therefore could be considered to have the greatest face validity. A 

separate argument for the linearity assumption is that linearity is a desirable 

mathematical property to assume (Stevens, 1946, Zwislocki, 1991), however, this 

argument has no bearing on the issue of validity. 

Stevens also believed, as is common in psychology and physiology, that healthy, 

normal individuals should experience similar sensations of magnitude when confronted 

with the same stimuli. Because of this Stevens attributed individual differences in ME 

exponents to biases in reporting magnitudes. Therefore, Stevens' implicit scaling model 

consisted of two parts, a stimulus input function and a response output function (which 

could be linear or nonlinear, i.e. biased). This general approach has been termed by 

Marks (1991) the "canonical model of psychophysics." It asserts that subjects' 

responses are directly proportional to the sensation magnitudes that gave rise to them, 
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provided the responses have been collected using a method that does not bias the 

response output function (Stevens, 1975, Zwislocki, 1983)4. 

The problem of coupling numbers to subjective impressions in such 

experiments (ME and CMM) has been solved in principle, but work 

should continue on minimizing biases and variability associated with the 

coupling. (Zwislocki, 1991, p. 25) 

Problems with the Power Law 

Stevens highly consistent results promised great things. However, cracks soon 

appeared in the edifice he had built. Although a considerable amount of evidence 

indicated that subjects do obey the power law (see Stevens, 1975; and Bolanowski and 

Gescheider, 1985 for reviews), the specific exponent values that Stevens found could 

not be reliably replicated. At the level of the individual the value of the exponent for the 

same modality varied considerably across individuals in the same experiment (eg. 

Algom and Marks, 1984; Luce and Mo, 1965; Marks and J. C. Stevens, 1965; Rule and 

Markley, 1971; Wanschura and Dawson, 1974; Logue, 1976) and also across time 

within individuals (Logue, 1976; Marks, 1991; Teghtsoonian and Teghtsoonian, 1983). ' 

Figure 1, taken from Hellman and Meiselman (1988), illustrates the intersubject 

variability found for loudness exponents within a single experiment. Note, however, that 

this graph represents a best case scenario as Hellman is noted for achieving unusually 

low levels of intersubject variability. Clearly these results were at odds with the general 

expectation that normal individuals are similar to each other and that individuals are 

consistent across time. Stevens also found individual differences but he argued that 

3 Note, this law applies only to Steven's ME data and a specially selected set of Weber fractions (see Teghtsoonian, 1971) and 
should be considered only in this context. See later for a discussion of the extent to which findings associated with Stevens' -
ME results can be generalized 
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response biases vary randomly across individuals and that therefore the data could be 

averaged to get the true exponent value (see Stevens, 1975 for a detailed account of 

Stevens' position). However, Marks (1974) reviewed the literature and found that the 

average value of the exponent varied across experiments done in different labs, even 

when the same method was used. Figure 2, taken from Marks (1974), illustrates the 

interlab variability found for loudness exponents (note, in Figure 2, interval scaling is 

the same as category scaling). Thus, even at the group level, Stevens' exponent 

values could not be reliably replicated. 

The central problem with the inconsistencies in exponents is that it is unclear 

whether they represent biases in reporting or actual differences in perception due to 

context effects or individual differences. This is because the stimulus input and 

response output functions are not uniquely defined due to our inability to directly 

measure conscious perception. For example, a stimulus/response power function could 

arise if the stimulus input function is a power function and the response output function 

is a linear function (Stevens, 1959), or if both functions are power functions (Attneave, 

1962), or if both functions are log functions (MacKay, 1963), depending on the 

theorized intervening mechanism. Ascertaining whether individual differences occur in 

the stimulus input function or in the response output function is critical for the canonical 

model since, as Luce & Mo (1965) pointed out, real individual differences in the 

stimulus input function would mean that the average exponent values associated with 

different modalities have no meaning at the level of the individual. The same problem 

also prevents proponents of the canonical model from ascertaining which labs produce 

legitimate, unbiased exponents. 

4 Both Stevens and Zwislocki admit that the linearity assumption cannot be proven, but go on to argue that it is a practical and 
mathematically desirable assumption. Over all, their position seems to be that the linearity assumption is probably correct, but 
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Figure 1. Distribution of individual loudness exponents, taken from Hellman and 

Meiselman (1988). 
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Figure 2. Distribution of average loudness exponents, taken from Marks (1974). 
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Overall, these difficulties indicate that the problem of demonstrating the validity of 

the linearity assumption is currently intractable due to our inability to differentiate the 

stimulus input function from the response output function, and that there is currently 

insufficient interindividual, intraindivual, and interlab consistency to create a nonlinear 

associative scale. As noted above, a necessary condition for the creation of an 

associative scale is that the same processes (including the response output function) 

are used to make each measurement. Assuming that normal individuals are not vastly 

different from each other, the highly variable results of ME suggest that this condition is 

not being met, as ME is currently implemented. 

Constrained Scaling 

Due to the problems created by the excessive intersubject variability found using 

ME, there has been considerable concern over eliminating biases from current scaling 

procedures in order to reveal the true stimulus input exponent (see Poulton, 1989, for 

a review). However, Ward (1992, 1993) has argued that this view is consistent with a 

model of the mind as unitary and static, as opposed to distributed and dynamic. 

Pursuing a view consistent with Minsky's (1986) position that the mind is composed of 

specialized mental subunits which in turn are composed of smaller specialized mental 

subunits, and so on down to the level of individual neurons, Ward (1992) proposed that 

psychophysical scales should be defined and that observers should be taught how to 

use these scales,- "in situations that have been studied and analyzed so as to engage a 

known and consistent subset of mental agents." In theory, it is possible that such scales 

could then be applied to novel stimuli without altering the set of mental subunits 

responsible for matching response outputs to stimulus inputs (Ward, 1992). From the 

point of view of creating valid associative scales this situation would be highly desirable 
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since it would satisfy the condition that the same, specified process be used for each 

measurement (see above). 

In this dissertation I explore a method called constrained scaling (West & Ward, 

1994), which is an attempt to establish a method for ME consistent with Ward's (1992) 

position. Constrained scaling consists of using feedback to train subjects to respond to 

a set of stimuli according to a power function with a particular exponent and then 

asking them to respond to a different set of stimuli using the response scale they have 

learned, but without feedback. Provided the stimulus input function and the response 

output function do not interact, magnitude scaling tasks can be conceptualized in the 

following way: 

r(s(x)) = y (6) 

(Marks, 1991) where x is the physical intensity, y is the subject's response, / is the 

response output function, and s is the stimulus input function (assumed to occur before 

r). By training subjects to relate x to y by a single function, call it m, we can make 

r(s(x)) isomorphically the same across subjects, although r and s would not necessarily 

need to be the same across subjects for this to occur. 

r(s(x)) = m(x) = y (7) 

After this calibration procedure, by altering the stimuli (i.e. in a manner predicted to 

alter the exponent; eg. in the case of loudness altering the frequency of the sound 

stimuli should change the exponent value) we can alter s to a different function, call it 

s'. If r(s'(x)) remains calibrated across subjects it implies that the function describing 

the transformation from s to s', call it q, was the same across subjects. For example, if 

we assume a power function for the stimulus input system and another power function 

for the response output system (Attneave, 1962; Curtis, Attneave & Harrington, 1968; 
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Rule, Curtis and Markely, 1970), then transforming s to s' by raising s by some power q, 

would maintain the calibration between subjects even if they differed across r and s, 

provided that q was the same for all subjects. Thus, if subjects are calibrated to 

respond the same way to standard stimuli, and their responses remain calibrated when 

presented with novel stimuli, it would imply that q is the same. 

However, it would be overly conservative to limit ourselves to discussing q. Putting 

aside the question of conscious perception for the moment, the m function can be 

decomposed into an initial hard wired, fixed function (f) that is the same across 

healthy, normal individuals, followed by an unfixed function (u) that can be cognitively 

altered. 

m(x) = u(f(x)) = y (8) 

Given that f is the same across subjects, calibrating subjects to the same m function 

would also mean that their u functions are the same. In this view, constrained scaling 

exponents will systematically reflect the initial, fixed function (Baird, Kreindler, and 

Jones, 1971). Furthermore, because people are not computers that can be 

programmed in arbitrary ways, it is reasonable to assume that fixing the u function, 

through training and the constraints of the task, will create a situation in which subjects 

use the same set of mental subunits, in the same way, to perform the task. And, since 

the task involves matching response magnitudes to consciously perceived stimulus 

magnitudes, this process would include the mental subunits responsible for conscious 

perception of the stimuli. Following from this we would expect the relationship between 

response magnitudes and consciously perceived stimulus magnitudes to be the same 

across subjects. 
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Therefore, if it is possible to teach subjects a scale and for them to extend it to novel 

stimuli, it should result in a true associative scale. Such a scale would be characterized 

by reduced intersubject and interlab variability (i.e. relative to ME) and would allow for 

the replication of specific quantitative results (i.e. specific exponent values and laws 

relating them). Based on the support the power law has received from ME and CMM 

results (eg. see Stevens, 1975, Bolanowski and Gescheider, 1991), the use of a power 

function for the scale to be learned would seem the most appropriate choice as it 

should make the task seem natural to subjects. However, as no one has ever 

attempted to get subjects to extend a learned psychophysical scale to novel stimuli, the 

best approach will ultimately be determined empirically. 

In general, this approach of creating scales rather than discovering them (as in 

standard ME) has profound consequences for how we interpret the results of ME 

experiments. Essentially, what looks like a reduction in response biases according to 

the discovery approach, is actually the setting up of strong informal constraints so as to 

engage a consistent set of mental sub units, according to the creation approach. This 

can explain how some labs can get very consistent results across experiments (i.e. 

average exponent values) that cannot be replicated in other labs. In fact, there is 

evidence that Stevens used such informal constraints. The cartoon in Figure 3 is taken 

from Poulton (1989) and is a reproduction of a drawing by one of Stevens' graduate 

students illustrating his or her perception of Stevens' methods. Similar reports were 

obtained from R. Teghtsoonian (1994), a former visitor in Stevens' lab, who reported 

that Stevens interrupted his scaling session to inform him that his results were in error. 

Stevens also trained subjects on ME of line length before letting them judge other 
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Figure 3. A cartoon reproduction, taken from Poulton (1989). 
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stimuli (Stevens, 1975) and tended to use the same, highly practiced subjects over and 

over (Teghtsoonian & Teghtsoonian, 1994). 

However, there is also evidence that constraining the ME task can have undesirable 

results. Stevens originally included a standard stimulus with an assigned numerical 

value as part of the ME procedure, but found it produced less satisfactory results than 

unconstrained ME, or free ME as he called it (Stevens, 1975). The following quote, 

reported in Stevens (1975), is from one of Stevens' ME subjects. 

I felt freer to use numbers over a wide range. I liked the idea that I could 

just relax and contemplate the tones. When there was a fixed standard I 

felt more constrained to try to multiply and divide loudnesses, which is 

hard to do; but with no standard I could just place the tone where it 

seemed to belong, (p. 28) 

Therefore, it could be argued that constrained scaling will result in contrived, 

artificial, and/or confused scales. However, if the arguments presented above in favor 

of constrained scaling are correct, then it should be possible to reliably recreate past 

ME and CMM findings. If this is possible, it would be very difficult to argue that 

constrained scaling is not as legitimate an approach as ME or CMM. 

Previous Empirical Results 

Several studies have already been performed indicating the feasibility of training 

subjects to respond to a standard scale. King & Lockhead (1983), Koh & Meyer (1991), 

Koh (1993), West & Ward (1994), and Marks Galanter, & Baird (1995) have all 

provided evidence that, given feedback, subjects can learn to respond according to 

power functions of a given exponent, quickly and with a high degree of accuracy. Of 

these, only West & Ward (1994) and Marks, Galanter, & Baird (1995) employed the 
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learned scale on novel stimuli. In terms of the chronology of events leading up to this 

dissertation it is important to note that Marks, Galanter, & Baird (1995) based their 

method on West & Ward (1994) which was an initial report of the results of Experiment 

1 of this thesis. Therefore the results of West & Ward (1994) are reported later, in 

Experiment 1. 

Marks, Galanter, & Baird (1995) trained their subjects to respond to 500 Hz 

monaural tones according to power functions with exponents of 0.3, 0.6 and 1.2 and 

then removed the feedback and presented subjects with the same monaural 500 Hz 

tones alternated with binaural 500 Hz tones, both without feedback. Looking at the data 

averaged across subjects, their finding was that loudness summation was unaffected 

by the training, although the exponent value for both the monaural and binaural tones 

decreased when feedback was removed, by roughly 25% in all cases. Although they 

did not report individual exponents directly, it is possible to estimate the range of 

individual exponents from their graph of individual exponents versus individual binaural 

summation ratios. For subjects trained to respond according to an exponent of 0.3 the 

ratio of highest to lowest exponent was about 1.50:1, for an exponent of 0.6 it was 

about 1.58:1, and for an exponent of 1.2 it was about 1.44:1, somewhat better than 

the usual ME results (see Table 1, later). 

These results indicate that standard psychophysical results can be obtained using a 

learned scale, and suggest that intersubject variability is reduced. However, having 

subjects extend a learned, 1000 Hz, monaural scale to 1000 Hz binaural tones might 

constitute a special case in that, for purposes of scaling, subjects might experience 

monaural and binaural 1000 Hz tones in a very similar way. In order to establish the 

viability of constrained scaling stimuli that were clearly different would need to be used. 
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Research Goals 

The primary research goal of this dissertation was to demonstrate that constrained 

scaling can be used to calibrate subjects sufficiently to produce a meaningful, nonlinear 

(in the sense that it cannot be established if it is linear or not), associative scale of 

psychological magnitude, and to understand the psychological processes by which this 

is accomplished. The program of research investigated subjects' abilities to extend 

magnitude scales, learned using the loudness of 1000 Hz, pure tones, to other stimuli. 

Several different approaches were attempted, the success and failure of each shedding 

light on the psychological mechanisms involved in this task. The ability to extend the 

learned scales was investigated for intramodal stimuli (other sound frequencies), 

( 

intermodal stimuli (brightness), and extramodal stimuli (i.e. cognitively generated 

magnitudes, in this case the magnitude of happiness expected if various amounts of 

money were to be received). In each case the pattern of results was compared to 

established ME and CMM findings. Also, the range of the response scales subjects 

were trained on (and hence the value of the exponent they were trained on), and the 

range of the stimuli that subjects were exposed to, were examined separately in terms 

of their effect on the constrained scaling process. In both cases the effects of these 

variables were found to be related to the constrained scaling process. 

In order to demonstrate that constrained scaling produces less individual variation 

than ME scaling, several benchmarks were employed in this dissertation. According to 

Marks (1974), individual ME experiments can produce highest to lowest exponent ratios 

of at least 2:1. However, a sampling of the literature (see Table 1) reveals that the 

variance is typically higher than this and can, in fact, be much higher. An exception to 
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Marks' 2:1 rule is study 8 by Hellman & Meisselman (1993)5 which has a highest to 

lowest exponent ratio of 1.60:1. However, I would argue that these results were 

achieved by using and improving on Stevens informal constraints. In fact, during 

loudness scaling Hellman monitors the process and if she feels the subject is getting 

confused she presents them with a very loud tone (Hellman, 1994). 

Table 1. Variability in a convenient sample of ME and CCM experiments. 

mean/sd high/low method N stimulus study 
1 3.50 2.75 ME 11 loudness Stevens & Guirao, 1964 
2 2.30 NA ME 32 loudness Teghtsoonian & Teghtsoonian, 1983 
3 2.58 NA ME 35 loudness Teghtsoonian & Teghtsoonian, 1983 
4 3.45 3.95 ME 8 loudness Algom & Marks, 1990 
5 3.41 2.30 ME 11 loudness Algom & Marks, 1990 
6 2.25 3.32 ME 8 loudness Ward, 1982 
7 2.24 6.00 ME 8 brightness Ward, 1982 
8 5.38 1.60 ME 10 loudness Hellman & Meiselman, 1988 
9 3.65 2.27 ME 6 heaviness Luce & Mo, 1965 

10 4.33 1.75 ME 6 loudness Luce & Mo, 1965 
11 3.05 3.37 CMM 20 duration to loudness Lilienthal & Dawson, 1976 
12 2.88 3.81 CMM 20 loudness to duration Lilienthal & Dawson, 1976 
13 2.55 2.44 CMM 5 loudness to line length Zwislocki, 1983 
14 3.07 2.40 CMM 10 duration to loudness Ward, 1975 

high/low is the ratio of the highest to lowest individual exponent 

Most importantly, nobody is able to replicate the low levels of variation achieved in 

Hellman's lab. The most relevant experiments for this study are Experiments 6 and 7 in 

Table 1 which were performed in the same lab and used the same equipment as the 

experiments reported in this dissertation. The higher variability in these studies was 

likely due to the use of inexperienced subjects and the relative absence of informal 

constraints. Likewise the experiments in this study all involved inexperienced subjects. 

Taking Hellman and Meisselman (1993) as a rough guideline for what is possible when 

5 Although Hellman and Meiselman tested 51 subjects they reported individual exponent values for only 10. 
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informal constraints are imposed it was predicted that constrained scaling should 

always result in a ratio of highest to lowest exponent of 1.60:1 or lower and that the 

mean exponent divided by the standard deviation of exponents should always be 5.50 

or higher. Also, although it is common in ME experiments for some subjects to produce 

reversals (exponent values that violate expected directional predictions), if constrained 

scaling is to produce valid results at the level of the individual reversals should ideally 

be absent. 

In terms of creating an associative scale of conscious perception, there is no set 

criterion as to the level of consistency required between inputs and outputs. Given that 

subjects will probably not learn the standard scale perfectly, some individual variation 

should be expected when novel stimuli are presented, even if large numbers of trials 

are used. However, with any measurement, noise due to the imperfection of the 

measuring instrument is a factor. What I hope to show in this dissertation is that, 

through the use of constrained scaling, individual psychophysical differences can be 

consistently reduced to an unprecedented level (i.e. below the benchmarks), without 

compromising established psychophysical laws. Whether or not the variation is reduced 

sufficiently to create a stable indirect scale will be open to interpretation. Should these 

experiments be successful, further research can be undertaken to further reduce 

individual differences. 

What strikes the scientist as a reasonable degree of accuracy varies 

widely form field to field, and even from problem to problem. 

Approximations become the rule at the forward edge of any advancing 

science, and the accepted notion of what degree of accuracy will qualify 
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as reasonable may alter as the art of measurement evolves. (S.S. 

Stevens, 1975, p. 268) 

Overview of Experiments 

In addition to the main experiments, numerous pilot studies were done and are referred 

to when they were the basis for various decisions. All experiments were analyzed 

according to two criteria: 

1) Did constrained scaling produce results equal to or better than the 

benchmarks for intersubject variability for the novel stimuli? 

2) Did constrained scaling produce results consistent with established ME 

and CMM findings? 

Part 1: Achieving the Phenomenon: Intramodal Constrained Scaling 

Experiments 1 to 4 were attempts to get constrained scaling to work in the auditory 

domain, using 1000 Hz tones, an exponent of 0.6, and a response range of 1 to 100 as 

the training continuum. The testing continuum consisted of tones with frequencies 

known to produce exponents that differ from those of the 1000 Hz training tones. There 

were a number of reasons, which are discussed in Experiment 1, why these conditions 

seemed favorable for constrained scaling. In the end, a successful application of 

constrained scaling was attained. Several important findings with relevance to 

constrained scaling and to ME were uncovered. 

Part 2: Cross-Modality Applications: Intermodal Constrained Scaling 

Experiment 5 was an attempt to apply constrained scaling cross-modally. In this 

case the same training regimen as in experiments 1 to 3 was used (Le. 1000 Hz tones) 
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but the test continuum was brightness instead of loudness. This experiment was critical 

for establishing that constrained scaling could be used to create the interlocking set of 

cross-modality results necessary to establish legitimate scales. Also, if it is assumed 

that Stevens was successful at informally constraining his scales at the aggregate level, 

then fixing subjects on the exponent that Stevens attained for loudness (i.e. 0.60) 

should also lock them onto the exponent that Stevens attained for brightness (i.e. 

0.30). Therefore, it was possible to test the hypothesis that constrained scaling 

eliminates interlab differences. 

Part 3: Stimulus Range Effects 

For ME, Stevens always used a range of stimulus intensities that was close to the 

full range, but not uncomfortably intense or too difficult to detect for the subject 

(Stevens, 1975). This type of procedure, which is very common in ME, has the effect of 

making the bottom and top of the stimulus range close to the bottom and top of the 

subject's perceptual range. An important effect of anchoring the stimulus range to the 

subject's own subjective range may be to provide the subject with a familiar context 

within which to make judgments. Experiments 6 and 7 examined the importance of this 

highly familiar context for the constrained scaling process by using constrained scaling 

to test subjects on various stimulus intensity ranges. 

Part 4: Different Exponents (i.e. Different Response Ranges) 

Marks, Galanter & Baird (1995) demonstrated that the exponent value of the 

function that subjects were trained on had no effect on loudness summation at the 

group level. However, because their subjects did not remain calibrated, it is still unclear 

if certain exponents are more natural to use, as suggested by the Canonical Model. 
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Experiments 8 and 9 investigated this question by using the auditory paradigm of 

Experiment 3 but training subjects on exponents of 0.30 and 0.90, instead of 0.60. 

Part 5: Nonperceptual Stimuli: Extramodal Constrained Scaling 

Experiment 9 extends constrained scaling beyond the perceptual domain and into 

the social, cognitive domain, by examining the magnitude of happiness resulting from 

winning various amounts of money. Specifically, subjects were trained using the 

standard auditory scale (i.e. 1000 Hz tones) and then asked to use that scale to rate 

how happy they would be if they won various amounts of money in a lottery. The social 

domain differs from the perceptual domain in that we should expect some legitimate 

individual differences. If constrained scaling can be extended beyond the perceptual 

domain it may be possible to detect these differences in a reliable way. This would 

have far reaching consequences for social, personality, and clinical psychology which 

currently lack the ability to clearly differentiate real individual differences from 

differences in response styles. 
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Part 1: Achieving the phenomena 

Experiment 1 

In this experiment observers were trained using 1000 Hz pure tones and then tested 

on tones of 65 Hz, 100 Hz, 1000 Hz, and 8000 Hz without feedback. The auditory 

modality was chosen because research has indicated that it tends to produces less 

intrasubject variability compared to other modalities (Teghtsoonian & Teghtsoonian, 

1983). According to previous research establishing equal loudness contours for these 

frequencies (see Ward, 1990 for a summery), 65, 100, and 8000 Hz tones should be 

perceived as less loud than 1000 Hz tones of same physical intensity. Moreover, the 

exponents of the psychophysical functions describing the 65, 100, and 8000 Hz tones 

should be higher than the exponent of the psychophysical function describing the 1000 

Hz tones. It was predicted that, using the constrained scaling method, all subjects 

would produce this pattern of results. Furthermore, it was also predicted that the 

intersubject variability for each frequency would be below the benchmark levels set out 

in the introduction. 

Subjects 

Four volunteers were paid to participate. All claimed to have normal hearing and 

there was no evidence of hearing abnormalities during the task. None had participated 

in a scaling experiment before. 

Apparatus 

Subjects were seated in a dimly lit sound attenuation chamber and the tones, which 

were 1 second in duration with a 2.5 msec rise and fall time, were monaurally 

presented to them through high quality headphones. Subjects estimated the loudness 

of the tones by entering a number on a computer keyboard. The number was displayed 
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on a two digit LED display for verification or correction by the subject. Following 

verification the estimate would be replaced by either feedback indicating the correct 

response or a code indicating no feedback. The tones were produced by a custom built 

sound generator controlled by a computer. 

Procedure 

Observers were first trained to respond to different intensities of a 1000 Hz pure 

tone according to the power function 

R=16.6S6 (9) 

where R is the correct response and S is the sound pressure in dynes/cm2. The 

exponent was set to 0 .60 to make the scale consistent with Stevens' s (1975) sone 

scale, which is an excellent candidate for a standard scale of loudness, and the 

multiplicative constant was set to 16.60 so that R=100 would result from an S 

equivalent to approximately 100 dB SPL. Before the training, observers were 

instructed that they would be learning to use a particular number scale to judge the 

loudnesses of pure tones. After each tone observers estimated its loudness by entering 

a number on a computer keyboard. The entered number was then displayed on the 

LED display for verification or correction by the observer. Following this, the correct 

response (feedback) was presented on the same display. At a signal from the observer 

(using the keyboard) the next tone was presented and the process began again. 

Observers were able to respond using whole numbers from 1 to 99. The training 

tones always corresponded to a whole number between 1 and 99 on the observers' 

response scale resulting in a stimulus range from approximately 33.3 dB SPL 

(response "1") to slightly below 100 dB SPL (response "99"). The sound pressure of the 

tones was varied by randomly selecting values of R (i.e. randomly selecting the 
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feedback) and then presenting the corresponding sound pressure level for judgment. 

This was done to make the pattern of sound pressures random with respect to the 

scale that observers were learning. Because individual stimuli were selected at random 

there were seldom repeats of particular sound pressures. This procedure contrasts with 

the usual procedure in psychophysical scaling in which relatively few stimulus intensity 

levels are selected for repeated presentation and the spacing of the stimuli is related to 

the physical scale by a log function, rather than a power function as in this case. 

However, it was not possible to use a few selected intensities since their identity would 

have been revealed through the feedback. Observers were each given 210 trials to 

learn the function. 

In the second part of the experiment observers were instructed to use the scale they 

had learned to judge the loudnesses of the test tones. These tones were presented in 

30-trial blocks of no-feedback-trials in which both the frequency (65, 100, 1000, or 8000 

Hz) and sound pressure were selected at random. The random selection of sound 

pressure was done using the same method as in the learning trials so that the sound 

pressure spanned the same range for all frequencies. Therefore, according to the 

research on equal loudness contours, some of the 65, 100, and 8000 Hz tones should 

have been perceived as below the scale value associated with a response of 1, and 

could also occasionally occur below threshold. Because of this, subjects were 

instructed to respond with a 1 to anything equal to or less than 1, including 0. 

The test blocks were alternated with blocks of 30 feedback-trials in which observers 

judged 1000 Hz tones of random sound pressure followed by feedback (these blocks 

were identical to the learning trials). The purpose of the feedback blocks was to refresh 

the observers' memory of the scale at regular intervals (Mori and Ward, 1995). 
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Observers were given a break after 210 trials and then repeated the process for a total 

of 420 test trails, 210 (7 blocks of 30) with feedback and 210 without. 

Results and Discussion 

Because of the stimulus spacing it was more appropriate to fit power functions 

directly to the raw data rather than using the more traditional method of linear 

regression on the logarithms of the stimulus and response amplitudes. The simplex 

algorithm available on the Systat 5.02 for Windows statistical package was used to fit 

power functions directly to the raw data. Also, before analyzing the data all responses 

equal to 1 were discarded, due to the ambiguous nature of this response. 

During the learning phase the four subjects produced exponents of 0.50, 0.55, 0.47, 

0.45, respectively. The average exponent was 0.50, the mean/sd was 11.25, and the 

ratio/of highest to lowest exponent was 1.23:1. These figures indicate that the subjects 

were well calibrated across the learning phase, the mean/sd and the highest to lowest 

exponent ratio both indicated a level of intersubject variability much lower than the 

bench mark figures (mean/sd=5.50, hi/low exponent ratio=1.60:1), although this should 

be no surprise as subjects were receiving feedback on every trial. 

Table 2 gives the results of the Simplex Estimation procedure for the second part of 

the experiment. For the blocks of refresher trials (the 1000 Hz tones, with-feedback 

trials), subjects seemed less able to maintain the exponent of 0.6 but interestingly 

remained well calibrated to each other at a lower exponent. The mean exponent was 

0.45, the mean/sd was 12.82, and the highest to lowest exponent ratio was 1.20:1. On 

the 1000 Hz tones without feedback the mean exponent dropped even further and 

subjects appeared to be less calibrated. The mean exponent was 0.37, the mean/sd 

was 5.03, and the highest to lowest ratio was 1.45:1. 
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Table 2. Test trial results for Experiment 1. 

Analysis S S S 
Block F NF NF 
Subject* Exponent Corrected Exponent Corrected Exponent Corrected 

1000 Hz RA2 1000 Hz RA2 8000 Hz RA2 

1 0.46 0.77 0.38 0.77 0.39 0.62 
2 0.43 0.71 0.31 0.57 0.45 0.63 
3 0.41 0.71 0.33 0.65 0.46 0.69 
4 0.49 0.75 0.45 0.73 0.52 0.62 

mean 0.45 0.37 0.46 
sd 0.04 0.06 0.05 
m/sd 12.83 5.83 8.92 
h/l 1.20 1.45 1.31 
Analysis S S 
Block NF NF 
Subject* Exponent Corrected Exponent Corrected 

100 Hz RA2 65 Hz RA2 

1 0.30 0.50 0.32 0.37 
2 0.42 0.67 0.37 0.59 
3 0.33 0.74 0.41 0.70 
4 0.44 0.61 0.55 0.68 

mean 0.37 0.41 
sd 0.07 0.10 
m/sd 5.33 4.14 
h/l 1.48 1.73 

S: R=KSAB 
F: feedback block 
NF: no feedback block 

Comparing the other frequencies to the 1000 Hz no-feedback results produced 

mixed results. As predicted all subjects gave the higher exponents for the 8000 Hz 

tones. Also subjects were well calibrated on the 8000 Hz tones relative to the bench 

marks. The mean/sd was 8.92, and the highest to lowest ratio was 1.31:1. However, for 

the 65 and 100 Hz tones some subjects gave exponents lower than the 1000 Hz no-
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feedback exponents, while others gave higher exponents (i.e. there were reversals, see 

Table 2). Subjects also appeared to be less calibrated on these frequencies and, 

except for the highest to lowest exponent ratio for the 100 Hz tones, failed to meet the 

bench marks set out in the introduction, although they did come closer than is typical 

for ME (compare to the sample ME results in Table 1). For the 100 Hz tones the 

mean/sd was 5.36, and the highest to lowest ratio was 1.47:1. For the 65 Hz tones, the 

mean/sd was 4.14, and the highest to lowest ratio was 1.73. 

Although subjects did not always provide exponents in the predicted directions, their 

responses nevertheless indicated that they consistently found the 65, 100, and 8000 

Hz tones to be less intense than the 1000 Hz tones at the same sound pressures. For 

individual subjects, t-tests revealed that responses to the 1000 Hz tones were 

significantly higher than responses to the 65, 100, and 8000 Hz tones (p<.001 except 

for the difference between the 100 Hz responses and the 1000 Hz responses of 

subject 3 which was significant at p=0.014). Thus this first attempt at constrained 

scaling did reproduce the basic finding that 1000 Hz tones are perceived as more 

intense than 65, 100, and 8000 Hz tones of the same sound pressure amplitudes, in all 

of the subjects. Figure 4 displays the fitted functions for the 65, 100, 1000, and 8000 

Hz tones for subject 3, who produced the highest R 2 values (as Experiment 1 was more 

in the nature of a pilot study, only the data from one subject are presented). 
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Figure 4. Experiment 1: Fitted Power Functions for an Individual Subject. 

65 Hz 100 Hz 



Experiment 2 

Experiment 2 emended the procedure used in Experiment 1 in several ways to 

make the task easier for subjects and improve the results. In particular, the number of 

frequencies used in the test blocks was reduced from four (8000, 1000, 100, and 65 

Hz) to two (1000 Hz and 65 Hz). This was done to reduce any confusion arising from 

having to keep track of multiple scales. 

Subjects 

Four volunteers were paid to participate. All claimed to have normal hearing and 

there was no evidence of hearing abnormalities during the task. None had participated 

in a scaling experiment before. 

Procedure 

The procedure was the same as in Experiment 1 except that only a 1000 Hz tone 

and a 100 Hz tone were used during the test phase. This was done to reduce any 

confusion that subjects might experience when trying to keep track of multiple 

frequencies. Also the apparatus was altered so that subjects were able to respond 

using whole numbers from 1 to 99, or 0 in the event they heard nothing, or the letter L 

to indicate a judgment of less than 1 but greater than 0. This was done in order to make 

it clear to subjects that the tones could go below 1 and to retain the responses equal to 

1 in the analysis. Subjects were instructed that the 100 Hz tones would go below a 

scale value of 1 and might be inaudible. 

Results and Discussion 

Once again the simplex algorithm (on Systat 5.02 for Windows) was used to fit 

power functions directly to the raw data. Of course, before analyzing the data all 

responses below 1 were discarded (either L or 0) as they carried no information 
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regarding the power function. During the learning phase the four subjects produced 

exponents of 0.50, 0.53, 0.61, 0.59. In terms of the intersubject variability the results 

were almost identical to those found in the learning trials of Experiment 1. The mean/sd 

was 11.14 and the ratio of highest to lowest exponent was 1.24:1. 

Table 3 gives the results from the second part of the experiment. As can be seen 

from the 1000 Hz with-feedback refresher trials, this time subjects were able to stay 

quite close to the learned scale as long as they had feedback (mean exponent = 0.59, 

see Table 3), indicating that the apparent drop in the exponent which occurred in this 

condition in Experiment 1 may have been due to the overall greater complexity of the 

task. The results from this condition also indicate an extremely low level of intersubject 

variability. The mean/sd was 36.88 and the ratio of highest to lowest exponent was 

1.06:1. 

On the 1000 Hz without-feedback trials subjects dropped to a mean exponent of 

0.47, although they remained remarkably well calibrated. The mean/sd was 31.00 and 

the ratio of highest to lowest exponent was 1.08:1. The fact that subjects remained 

closely calibrated indicates that the drop was probably not caused by subjects returning 

to their own idiosyncratic response preferences. Instead it would appear that subjects 

were affected in the same way by the removal of feedback and the additional 100 Hz 

tone. Of course, four subjects is a small sample and it is possible that these results 

could have occurred by chance, however, it is interesting to note that Marks, Galanter, 

& Baird (1995) found that when feedback was removed, subjects who had been trained 

to respond to 500 Hz tones according to a power function with an exponent of 0.60, fell 

to an average exponent of 0.45 as measured by monaural magnitude estimation, and 

0.44 as measured assuming loudness summation for binaural stimuli (they did not 
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report the exponents of individual subjects for this task). From a black box perspective 

(i.e. the m function, see equation 7), exactly the same process occurred in this 

experiment as in Marks, Galanter, & Baird (1995), suggesting a common cause for this 

result. This issue will be pursued further in the discussion section of this dissertation. 

Table 3. Test trial results for Experiment 2. 

Analysis S R S R 
Block F F NF NF 
Subject* Exponent Corrected Exponent Corrected Exponent Corrected Exponent Corrected 

1000 Hz RA2 1000 Hz RA2 1000 Hz RA2 1000 Hz RA2 

1 0.57 0.82 0.63 0.82 0.48 0.74 0.62 0.77 
2 0.60 0.85 0.60 0.83 0.49 0.82 0.47 0.74 
3 0.61 0.85 0.59 0.84 0.45 0.83 0.49 0.78 
4 0.58 0.84 0.62 0.85 0.47 0.80 0.64 0.85 

• 

mean 0.59 0.61 0.47 0.55 
sd 0.02 0.02 0.01 0.09 
m/sd 36.88 37.94 31.00 6.44 
h/l 1.06 1.06 1.08 1.35 j 
Analysis S R 
Block NF NF 
Subject* Exponent Corrected Exponent Corrected 

100 Hz RA2 100 Hz RA2 

1 0.41 0.43 0.58 0.46 
2 0.37 0.70 0.55 0.72 
3 0.39 0.71 0.67 0.68 
4 0.57 0.57 0.77 0.72 

mean 0.43 0.64 
sd 0.09 0.10 
m/sd 4.81 6.43 
h/l 1.53 1.40 

S: R=KSAB 
R: log(R)=B*log(S)+log(K) 
F: feedback block 
NF: no feedback block 



Unfortunately, although subjects remained calibrated with each other on the 1000 

Hz no-feedback tones, albeit to a (ower exponent, the simplex estimates of the 

exponents for the 100 Hz tones were substantially more variable. Figure 5 displays the 

fitted functions for the 100 Hz trials. The mean/sd was 4.81 and the ratio of highest to 

lowest exponent was 1.53:1 (benchmarks: mean/sd=5.50, hi/low exponent 

ratio=1.60:1). Also, the simplex estimates for the 100 Hz exponents were all lower than 

the 1000 Hz exponents, the opposite of what was predicted. However, when the log of 

the responses was (inearly regressed against the log of the stimulus intensities 

according to the function, 

log(R) = B log(S) + log(K) (10) 

except for subject 1, the differences in exponents was in the predicted direction (see 

Table 3). Also the intersubject variability for the 100 Hz tones was reduced. The 

mean/sd was 6.43 and the ratio of highest to lowest exponent was 1.40:1. For the 1000 

Hz tones the intersubject variability was substantially increased. The mean/sd was 6.44 

and the ratio of highest to lowest exponent was 1.35:1. However, the intersubject 

calibration results for the 1000 Hz with-feedback trials were unaffected by the change 

in analysis (see Table 3). Overall, an increase in intersubject variability was expected. 

Figure 6 illustrates the problem using the 1000 Hz no-feedback trials of subject 2. It 

displays the simplex and regression functions plotted as response against stimulus and 

as log response against log stimulus. As can be seen, a likely reason that the 

regression analysis failed to show the same level of calibration on the 1000 Hz without-

feedback tones is that the lower end of the stimulus range was no longer sufficiently 

• sampled when both axes were logged (this can also explain the aberrant results of 

subject 1). However, the failure of the simplex estimates to produce the expected 
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relationship between exponents is more problematic. It may be the case, at least under 

these conditions, that the relationships between the exponents is method dependent. It 

was also interesting that the regression approach seemed, if anything, to lower the 

intersubject variability for the 100 Hz tones. This would suggest that subjects were 

better calibrated on the less intense sound pressure levels, which were more heavily 

weighted in the regression analysis. Similarly, the fact that regression approach raised 

the intersubject variability for the 1000 Hz tones without feedback but not for the 1000 

Hz tones with feedback, suggests that feedback is particularly important for the less 

intense tones. 
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Figure 5. Experiment 2: Fitted Functions for the 100 Hz Test Trials. 
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Figure 6. Nonlinear and linear fitted functions for the 1000 Hz, no-feedback trials of 

subject 2. 
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Experiment 3 

In Experiment 3 the same general approach as in Experiments 1 and 2 was 

employed, but with several important changes in the method. Because the regression 

analysis in Experiment 1 produced the predicted relationship between exponents, 

whereas the nonlinear curve fitting approach did not, Experiment 3 returned to the 

more traditional psychophysical practice of spacing the stimuli according to a 

logarithmic function and estimating the exponents according to Equation 10. To 

eliminate the drop in the 1000 Hz exponent found in Experiments 1 and 2 when 

feedback was removed, the frequency of feedback was increased to feedback on every 

second trial. The apparatus was also improved so that subjects could enter responses 

below 1, and 65 Hz tones were used instead of 100 Hz tones on the test trials in order 

to create a stronger contrast with the standardized 1000 Hz tones. Additionally, all 

subjects were run in a base line condition in which the 65 Hz tones were replaced with 

1000 Hz tones. 

Subjects 

Six volunteers participated for pay. All claimed to have normal hearing and there 

was no evidence of hearing abnormalities during the task. None had participated in a 

scaling experiment before. 

Apparatus 

The apparatus was the same as Experiment 1 except that the LED was replaced 

with a computer screen and the keyboard was replaced with a mouse. A program 

written in Visual Basic for DOS was used to allow subjects to enter their responses by 

using a mouse to manipulate a specially designed scroll bar that appeared on a 

computer monitor screen. The scroll bar (which was 25 cm long) allowed subjects to 
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move the scroll bar cursor by 1, 10, or 0.1, and to access all numbers from 0 to 99.9 

with a precision of one decimal place. A text box on the screen displayed the digital 

value the scroll bar was set at. To receive a tone the subject used the mouse to click on 

a button marked PLAY TONE. After subjects had indicated their response by using the 

scroll bar they used the mouse to click on a screen button marked OK, at which point 

their response was replaced with feedback. The feedback was accurate to five digits, 

as many as would fit in the box, to encourage subjects to use the full three digits 

available to them for their responses. 

Procedure 

The learning phase was the same as in Experiments 1 and 2, except that the 

number of learning trials was reduced to 100 trials. In the second part of the 

experiment, without-feed back trials were alternated with with-feedback trials and only a 

single frequency was used for the test stimuli. Thus subjects would receive a test 

stimulus, provide a response, receive no feedback, receive a trained 1000 Hz stimulus, 

provide a response, receive feedback, and so on. The method for selecting the sound 

pressures was to randomly select dB values between 33 dB and 99 dB, so some of the 

65 Hz tones would have been perceived as below the scale value corresponding to 1 

and a few would have occurred below threshold. Subjects were told that the 1000 Hz 

tones would always fall in the response range of 1 to 100, while the 65 Hz tones could 

require responses as low as 0 and as high as 99.9. The same subjects were also run in 

a base line condition in which the 65 Hz tones were replaced with 1000 Hz tones. Other 

than this change the procedure was identical, including the use of 100 training trials 

prior to testing, Subjects completed the experimental condition and the base line 

condition on different days. The order of testing was counterbalanced, half of the 
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subjects received the baseline condition first while the other half received the 

experimental condition first. 

Results and Discussion 

For all power function analyses the log of the response was linearly regressed 

against the log of the stimulus according to Equation 10. Combining both learning 

sessions, the individual exponents were 0.56, 0.60, 0.59, 0.57, 0.589, and 0.60. The 

level of intersubject variability for this phase was substantially reduced from 

Experiments 1 and 2. The mean/sd was 36.63 and the ratio of the highest to lowest 

exponent was 1.03:1 (Experiment 1: mean/sd=11.25, hi/low exponent= 1.23:1; 

Experiment 2: mean/sd=11.14, hi/low exponent=1.24:1). This improvement can be 

accounted for by subjects learning to exploit the logarithmic spacing of the stimuli. 

Traditionally, ME has employed log-equally spaced stimuli, however, it is rarely noted 

that this stimulus spacing should appear uneven (i.e. a preponderance of less intense 

stimuli) to subjects, if they truly experience sensation magnitude according to the power 

law. Figure 7 displays the learning curves for subjects in the learning phase in ^ 

Experiment 2 (line A) and subjects in their initial learning phase in Experiment 3 (line 

B). Each point in the figure is the mean of the median errors of each subject in blocks 

of 10 trials. The graph illustrates that extensive training with feedback had no 

discernible benefit beyond the first 10 trials when the stimuli were spaced according to 

a power function with an exponent of 0.60 (line A), but a substantial effect over the first 

30 trials when the stimuli were spaced according to a logrequal function (line B). These 

results suggest that naive subjects initially respond with the expectation that the stimuli 

will be evenly spaced according to a power function, as in Experiments 1 and 2. 
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For the baseline test trials and the actual test trials there was no discernible affect 

for order. For the base line test trials, the 1000 Hz with-feedback trials produced a 

mean exponent value of 0.54. The mean/sd was 22.54 and the highest to lowest 

exponent ratio was 1.11:1. For the 1000 Hz without-feedback trials, the mean exponent 

value was 0.54, the mean/sd was 14.13 and the highest to lowest exponent ratio was 

1.21:1. Although an F-test for variance revealed no significant differences between the 

with-feedback and without-feedback trials, it was interesting to note that the intersubject 

variability for the without-feedback trials appeared higher. One might have expected 

this condition to produce less variable results since subjects had the benefit of just 

haying received feedback on the previous 1000 Hz tone, whereas for the with-feedback 

trials subjects did not receive feedback on the previous tone. These results suggest 

that subjects were not sensitive to this potential advantage. 

The results of the test trials are displayed in Table 4. The mean exponent values 

were 0.55 for the 1000 Hz trials and 0.83 for the 65 Hz trials. For all subjects, as 

predicted, the 65 Hz tones produced exponents higher than the exponents produced by 

the 1000 Hz tones with which they were alternated. A t-test revealed that the difference 

in exponent values was significant at p<.001. In terms of intersubject variability both the 

1000 Hz trials and the 65 Hz trials exceeded the intersubject variability benchmarks 

(mean/sd=5.50, hi/low exponent ratio= 1.60:1). For the 1000 Hz tones the mean/sd 

was15.31, and the ratio of highest to lowest exponent was 1.21:1. For the 65 Hz tones 

the mean/sd was 8.22 and the ratio of highest to lowest exponent was 1.36:1. 
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Table 4. Test trial results for Experiment 3. 

Analysis R R 
Subject* Exponent Corrected Exponent Corrected 

1000 Hz RA2 65 Hz RA2 

1 0.54 0.83 0.82 0.89 
2 0.59 0.87 0.96 0.85 
3 0.49 0.84 0.71 0.87 
4 0.57 0.89 0.70 0.92 
5 0.58 0.83 0.93 0.89 
6 0.54 0.88 0.88 0.93 

mean 0.55 0.83 
sd 0.04 0.11 
m/sd 15.31 8.22 
h/l 1.09 1.36 
Analysis RT RC 
Subject* Exponent Corrected Estimated Exponent Corrected 

65 Hz RA2 Threshold 65 Hz RA2 

1 0.78 0.90 0.01 0.70 0.87 
2 0.87 0.87 0.01 0.73 0.75 
3 0.64 0.89 0.01 0.56 0.84 
4 0.66 0.92 0.01 0.67 0.90 
5 0.85 0.90 0.01 0.75 0.87 
6 0.85 0.93 0.00 0.80 0.85 

mean 0.77 0.70 
sd 0.10 0.08 
m/sd 7.58 8.75 
h/l 1.36 1:42 
R: log(R)=B*log(S)+log(K) 
RT: log(R)=B*log(S-T)+log(K) 
RC: log(R)=B*log(S)+log(K); R=>1. 

The 65 Hz tones also exhibited a tendency for the slope to increase below a 

response of 1 as is typical of near threshold responses (eg. see Stevens, 1975). Figure 

8 shows the raw data of individual subjects for the 65 Hz tones with best fitting lines 

according to the function, 

log(R) = B log(S - T) + log(K) (11) 
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which Stevens used to account for the deviation from the power law near threshold. 

The reasoning behind this function is that subjects use threshold (T) as zero, which 

causes a distortion since power law functions must pass through the zero point 

associated with the physical absence of the stimulus. Subtracting T from S corrects for 

this problem and, in general, accounts for the deviation near threshold (Stevens, 1975). 

From Figure 8 it is clear that this function does a reasonably good job of fitting the data. 

For these results the mean exponent was 0.77 and according to a t-test the exponents 

were significantly different from the 1000 Hz exponents at p<.001. In terms of 

intersubject variability the mean/sd was 7.39, and the highest to lowest exponent ratio 

was 1.33:1. Both of these figures indicate a level of intersubject variability below that 

indicated by the benchmarks. 

Yet another way to analyze the data is to discard subjects' responses below 

response=1, on the basis that subjects were not trained to respond below 1 and 

therefore might exhibit idiosyncratic tendencies in this range, especially considering the 

fact that the near threshold deviation from the power law occurred in this range. 

Therefore, the 65 Hz data were reanalyzed, excluding responses below 1, according to 

Equation 10. The mean 65 Hz exponent was 0.70, the mean/sd was 8.75, and the 

highest to lowest exponent ratio was 1.42:1. Once again, a t-test revealed that these 65 

Hz exponents were significantly different from the 1000 Hz exponents at p<.001. The 

intersubject variability across the different types of analyses used in this experiment are 

illustrated in Figure 9. As can be seen the different methods of analysis are highly 

consistent, although there was a general tendency for the difference between the 1000 

Hz exponents and the 65 Hz exponents to become smaller as the higher slope for the 

near threshold 65 Hz tones was either accounted for or left but of the analysis. 
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Following Ward (1990) and Marks (1974), the exponents for different sound 

frequencies can be approximated by the following equations 

, F <= 400 Hz: B = 2 (H+G (400-F)) (12) 

F> 400Hz:B = 2(H) (13) 

where F is frequency, B is the exponent, and H and G are constants. Equation 12 

describes a linear approximation of the relationship between frequency and exponent 

for frequencies =< 400 Hz, and can be rearranged into the more familiar Y=MX+B form, 

F <= 400Hz: B = (-2G)F + (2H+2G(400)) (14) 

As Equation 14 illustrates, -2G describes the slope of the increase in exponents for 

frequencies <= 400 Hz. Ward (1990) found a value for G equal to 0.0004. Using the 

exponents found in this experiment it was determined that G was equal to 0.0004 when 

the mean 65 Hz exponent was 0.83 (the first analysis), 0.0003 when the mean 65 Hz 

exponent was 0.77 (the second analysis), and 0.0002 when the mean 65 Hz exponent 

was 0.70 (the third analysis). These estimates are very close to Ward's (1990) 

estimates illustrating that constrained scaling produces results consistent with 

established psychophysical methods. However, this is not to say that estimates of G do 

not suffer from the excessive variability that plagues psychophysics. Marks (1974), 

using equal loudness contours and the results of standard ME experiments from 

various labs (see Marks, 1974), estimated G to be approximately 0.0009 which, based 

on the 1000 Hz exponent found in this experiment (i.e. 0.55), predicts a 65 Hz 

exponent of 1.15. 
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Figure 7. Average median error for 10 trial blocks for the learning trials of Experiment 2 

(line A) and Experiment 3 (line B). 
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Figure 8. Experiment 2: Raw 65 Hz data fitted according to log(R)=B*log(S-T)+log(K) 
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Figure 9. Experiment 3: Individual exponent values. 
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Experiment 4 

Experiment 4 employed the same apparatus and the same stimuli as in the learning 

condition of Experiment 3 to perform a standard ME experiment. This was done in 

order to assure that the apparent difference in intersubject variability between a 

successful application of constrained scaling (i.e. Experiment 3) and standard ME 

results (as represented in Table 1) was real. 

Subjects 

Six volunteers participated for pay. All claimed to have normal hearing and there 

was no evidence of hearing abnormalities during the task. Two of the subjects (subject 

numbers 3 and 4) had previously participated in short pilot studies (one each) involving 

training similar to that given in Experiment 3. None of the others had participated in a 

scaling experiment before. 

Apparatus 

The apparatus was the same as Experiment 3 except that the scroll bar was 

removed and subjects were provided with a keyboard. By using the mouse to click on 

the response text-box subjects were able to key in a response of any length. 
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Procedure 

Subjects were instructed that they would hear 1000 Hz tones presented at a variety 

of intensities and that they should match the intensities of the tones to their own 

subjective impression of the intensity of number. Special care was taken to ensure that 

each subject fully understood the ME instructions. Examples were given and subjects 

were questioned in order to detect any misconceptions. The motivation of subjects was 

also noted, all seemed highly motivated and positive about the task. Each subjected 1 

completed 100 trials. 

Results and Discussion 

Figure 10 shows the raw data of each subject in log-log coordinates with the best 

fitting line according to Equation 10 (note that the range of the response axis varies 

from subject to subject in order to accommodate the wide variety of response ranges). 

Individual exponent values are displayed in Table 5 and Figure 11. Figure 11 also 

includes the 1000 Hz with-feedback results of Experiment 3 as a reference. While the 

mean exponent for the ME results was close to 0.6 (mean exponent = 0.638) little 

meaning can be attached to this figure due to the high level of individual variability and 

deviations from the power law itself (see subjects 3 and 5, Figure 10). In terms of 

intersubject variability, the mean/sd was 2.44, and the highest to lowest exponent ratio 

3.05:1. These results were typical of ME (see Table 3) and failed to come close to the 

bench marks for intersubject variability (mean/sd=5.50, hi/low exponent ratio=1.60;1). 

Comparing these results to the Equation 10 analysis of the 65 Hz results from 

Experiment 3 (i.e. the no feedback results), an F-test for variability revealed that 

constrained scaling produced significantly less intersubject variability (p=0.04) than 

standard, free ME. 
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Table 5. Test trial results for Experiment 4. 

Analysis R 
Subject* Exponent Corrected 

1000 Hz RA2 

1 0.71 0.88 
2 0.33 0.83 
3 0.75 0.62 
4 1.00 0.80 
5 0.34 0.66 
6 0.71 0.75 

mean 0.64 
sd 0.26 
m/sd 2.44 
h/l 3.05 
R: log(R)=B*log(S)+log(K) 



Figure 10. Experiment 4: Fitted functions for 1000 Hz tones. 
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Figure 11. Experiment 4: Individual exponent values. 
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. Part 2: Cross- Modality Applications 

Experiments 

Experiment 5 was done to demonstrate the feasibility of using constrained scaling to 

perform cross-modality matching. In this case the same training regimen as in 

experiments 1 to 3 was used (i.e. 1000 Hz tones) but the test continuum was 

brightness instead of loudness. Also, if it is assumed that Stevens was successful at 

informally constraining his scales at the aggregate level, then fixing subjects on the 

exponent that Stevens attained for loudness (i.e. 0.60) should also lock them onto the 

exponent that Stevens attained for brightness. Based on this assumption it was 

predicted that each subject in this experiment would replicate Stevens' average result 

of an exponent of 0.30 for brightness. If obtained this result would imply that interlab 

differences in exponent values can be minimized by using constrained scaling. 

Subjects 

Eight volunteers participated for pay. All claimed to have normal hearing and there 

was no evidence of hearing abnormalities during the task. None of the subjects 

reported any visual system abnormalities other than those corrected for by wearing 

glasses. Subjects who wore glasses wore them during the experiment. Unlike 

Experiments 1 to 4, several subjects participated in more than one of Experiments 5 to 

10, however, their results were indistinguishable from those of novice subjects. 

Apparatus 

The apparatus was the same as in Experiment 3 except that the colors of the 

computer monitor screen were altered (primarily to dark red on a black background) 

and the overall luminance of the monitor was reduced to make the interior of the sound 

attenuation chamber as dark as possible without making it too difficult for the subject to 
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see the screen. The light stimuli were produced in the form of a dot, 6.5 centimeters in 

diameter and of approximately uniform luminance. It was positioned at eye level, 

directly in front of the subjects, and approximately 60 cm from their eyes. The 

intensities of the light stimuli were six, equal-log spaced, levels of luminance: 0.013, 

0.760, 0.430, 2.400, 13.800, and 79.400 footlamberts. They were produced by a 565 

nm wavelength LED embedded in diffusing plastic and controlled by varying the voltage 

across the LED. Light stimuli were presented for 1 sec with rise and fall times of less 

than 1 microsecond. 

Procedure 

The learning procedure was identical to the procedure in Experiment 3 except that 

subjects were only given 50 learning trials. This was based on the finding from 

Experiment 3 that subjects exhibited no significant evidence of further learning beyond 

approximately 20 to 30 trials (see Figure 7). The testing procedure was also the same 

as in Experiment 3 except that the 65 Hz tones were replaced by the luminance levels, 

which were also presented randomly. Subjects performed 100 test trials alternating 

between sounds and lights (approximately 8 or 9 presentations for each luminance 

level). 

Results and Discussion 

Except for the light stimuli, the results were analyzed in the same way as 

Experiment 3. For the learning trials the mean exponent was 0.56. In terms of individual 

variability the mean/sd was 10.67 and the highest to lowest exponent ratio was 1.29:1 

(these figures will be relevant for comparisons to later experiments). The results of the 

test trials are displayed in Table 6. The responses to the six luminance levels were 

analyzed by taking the mean response values for each luminance level and regressing 
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the best fitting line through them. These fitted functions are displayed in Figure 12. 

Figure 13 displays subjects' individual exponents for loudness and brightness. For both 

modalities, the mean divided by the standard deviation, and the highest to lowest 

exponent ratio were better than the bench marks for intersubject variability (see Table 

6). Additionally, a t-test revealed that the difference between the loudness exponents 

(mean = 0.534) and the brightness exponents (mean = 0.328) was significant at 

p<001. 

Table 6. Test trial results for Experiment 5. 

Analysis R R 
Subject* Exponent Corrected Exponent Corrected 

1000 Hz RA2 lights RA2 

1 0.56 0.87 0.36 0.89 
2 0.61 0.91 0.34 0.99 
3 0.55 0.86 0.40 0.89 
4 0.48 0.87 0.27 0.92 
5 0.60 0.90 0.25 0.91 
6 0.50 0.84 0.36 0.94 
7 0.46 0.74 0.31 0.93 
8 0.52 0.83 0.35 0.97 

mean 0.53 0.33 
sd 0.06 0.05 
m/sd 9.37 6.56 
h/l 1.34 1.59 
R: log(R)=B*log(S)+log(K) 

This experiment clearly demonstrates that subjects can extend the use of a learned 

scale across modalities. Furthermore, by fixing subjects to the average exponent value 

Stevens typically found for loudness (approximately 0.60) it was possible to come very 

close to the average exponent value Stevens typically found for brightness 
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(approximately 0.30, see Stevens, 1975), suggesting that Stevens was successful at 

informally constraining subjects at the aggregate level. Note also that, individually, each 

subject came close to the predicted exponent values of 0.60 for loudness and 0.30 for 

brightness. 
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Figure 12. Experiment 5: Fitted Functions for the Light stimulus. 
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Figure 13. Experiment 5: Individual exponent values. 
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Part 3: Range Effects 

Experiments 6 and 7 

For ME, Stevens always used a stimulus range that was close to the full range 

possible, but not uncomfortably intense or too difficult for subjects to detect (Stevens, 

1975). This type of procedure, which is very common in ME, has the effect of making 

the bottom and top of the stimulus range close to the bottom and top of the subject's 

perceptual range. An important effect of anchoring the stimulus range to the subject's 

own subjective range may be to provide the subject with a famijiar context within which 

to make judgments. Experiments 6 and 7 examined the importance of this highly 

familiar context for constrained scaling by using constrained scaling to test subjects on 

subranges of the stimulus continuum. 

On average, Within a modality, as the range of the stimuli decreases, the estimated 

exponent of the power function increases (Poulton, 1968, 1989, Teghtsoonian and 

Teghtsoonian, 1978). In an attempt to eliminate this range effect subjects were trained 

to respond according to an exponent of 0.60 using the same subranges to be later 

employed in the test phase. If the range effect was approximately the same size for the 

stimuli subjects were trained on and for the novel stimuli in the test phase, then training 

subjects to "undo" the range effect in the learning phase should also cause them to 

"undo" the range effect in the test phase. However, if the range effect for the novel 

stimuli was larger, then the training would be insufficient to undo it. Or, if the range 

effect for the novel stimuli was smaller, then the training would result in an over 

compensation and an effect in the opposite direction. 
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Subjects 

In each experiment seven volunteers participated for pay. All claimed to have 

normal hearing and there was no evidence of hearing abnormalities during the task. 

Apparatus 

The apparatus was the same as in Experiment 3. 

Procedure 

The procedure was identical to Experiment 3 (i.e. exponent =0.60) except that 

subjects received only 50 learning trials and performed only 100 alternating test trials, 

similar to Experiment 5. Also the range of the 1000 Hz tones was reduced by changing 

the most intense tone from 100 dB to 90 dB in Experiment 6, and to 80 dB in 

Experiment 7. This was done for both the training trials and the test trials. Likewise the 

top range of the 65 Hz test tones was reduced to 90 dB (Experiment 6) and 80 dB 

(Experiment 7). The bottom of the stimulus range of the 65 Hz tones was also altered 

from 33 dB to 40 dB in both experiments in order to subjectively equalize the bottom of 

the 65 Hz range with the bottom of the 1000 Hz range. This was done in order to focus 

on subjective range differences occurring at the tops of the ranges and also to avoid 

the added complication of having subjects respond over a subjective range they had 

not been trained on (i.e. below response=1) and that deviates from the power law (see 

Experiment 3). The range equalization was based on the results of a pilot study and 

was consistent with the research on equal loudness contours (eg. see Ward, 1990). 

Subjects responded on the same 0 to 100 response scale but a marker was placed at 

response=50 in Experiment 6 and response=25 in Experiment 7. Subjects were told 

that the 1000 Hz tones would not be louder than indicated by the marker. Subjects 

were also told that the lower range of the 65 Hz tones would be around response=1, 
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but to use their best judgment. This was similar to the procedure in Experiment 3 in 

which subjects were told that the bottom of the 65 Hz range could require a response . 

as low as response=0. As in Experiment 3, subjects were free to respond below 

response=1.^ 

Results 

The results were analyzed in the same way as those of Experiment 3. Taking 

Experiment 6 first, for the learning trials the mean exponent value was 0.56, the 

mean/sd was 8.93 and the highest to lowest exponent ratio was 1.35:1. These results 

were very similar to the results from the learning trials of Experiment 5, which used a 

greater stimulus range but was otherwise the same, suggesting that the difference in 

range did not adversely affect intersubject variability as long as feedback was supplied. 

The results of the test trials are displayed, in Table 7. The exponent values were 

derived by fitting Equation 10 to the raw data. The fitted functions for the 65 Hz tones 

are displayed in Figure 14. Both the 1000 and 65 Hz test trial results indicate a level of 

intersubject variability less than the benchmark criteria. The individual 1000 and 65 Hz 

exponents are displayed in Figure 15. As predicted the 65 Hz exponents were higher 

than the 1000 Hz exponents for all subjects. Across subjects this was significant at 

p=.001, as indicated by a t-test. For the 65 Hz test trial results the most appropriate 

comparison was to the Experiment 3, 65 Hz results analyzed excluding responses 

below 1. Comparing the results we find that in this experiment the mean 65 Hz 

exponent was lower and so was the intersubject variability. However, a t-test comparing 

exponent values revealed no significant difference (p=0.20 one tailed, p=0.40 two 

tailed). Likewise, an F-test for variance revealed no significant difference in intersubject 

variability (p=0.30). 
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Table 7. Test trial results for Experiment 6. 

Analysis R R 
Subject* Exponent Corrected Exponent Corrected 

1000 Hz RA2 65 Hz RA2 

1 0.57 0.91 0.68 0.89 
2 0.55 0.84 0.70 0.81 
3 0.60 0.83 0.69 0.64 
4 0.57 0.89 0.72 0.72 
5 0.59 0.91 0.67 0.71 
6 0.51 0.67 0.68 0.82 
7 0.49 0.78 0.52 0.61 

mean 0.56 0.67 
sd 0.04 0.06 
m/sd 13.53 10.39 
h/l 1.23 1.37 
R: log(R)=B*log(S)+log(K) 
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Figure 14. Experiment 6: Fitted Functions for the 65 Hz Test Trials. 
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Figure 15. Experiment 6: Individual exponent values. 
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Examining the results for Experiment 7, for the 1000 Hz learning trials the mean 

exponent was 0.53, the mean/sd was 5.29, and the highest to lowest exponent ratio 

was 1.75:1. These results were quite poor compared to the learning trial results of 

previous experiments and the mean divided by the standard deviation did meet the 

benchmark criterion. 

The results of the test trials are displayed in Table 8. As in Experiment 6 the 

exponent values were derived by fitting Equation 10 to the raw data. The fitted 

functions for the 65 Hz tones are displayed in Figure 16. The individual 1000 and 65 Hz 

exponents are displayed in Figure 17. Similar to the 1000 Hz learning trials, both the 

1000 Hz and 65 Hz test trials resulted in intersubject calibration levels substantially 

lower than those found in Experiments 3 and 6. Except for the mean divided by the 

standard deviation for the 1000 Hz test trials, the calibration indicators failed to meet 

the benchmarks (mean/sd => 5.50, high/low <=1.60). Also, subject 2 produced the 

reverse Of the predicted patter of exponents (i.e. the 65 Hz exponent was lower than 

the 1000 Hz exponent). F-tests for variance revealed that the intersubject exponent 

variability was significantly higher in Experiment 7 (top of range=80 dB) compared to 

Experiment 6 (top of range=90 dB), for both the 1000 Hz test trials (p=0.05) and the 65 

Hz test trials (p=0.04), indicating that the reduction in range resulted in a decrement in 

subjects' abilities to maintain the learned scale. Furthermore, a glance at Figure 17 

reveals that subjects' 1000 and 65 Hz test trial results were not correlated (r = -0.31, 

p=0.50), indicating that subjects were not simply exhibiting idiosyncratic tendencies to 

use either lower or higher exponents, across both frequencies. 
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Table 8. Test trial results for Experiment 7.. 

Analysis R R 
Subject* Exponent Corrected Exponent Corrected 

1000 Hz RA2 65 Hz RA2 

1 0.49 0.75 0.59 0.64 
2 0.52 0.81 0.43 0.59 
3 0.63 0.81 0.64 0.70 
4 0.55 0.70 0.82 0.73 
5 0.55 0.90 0.69 0.75 
6 0.44 0.65 0.69 0.70 
7 0.37 0.49 0.84 0.76 

mean 0.51 0.67 
sd 0.09 0.14 
m/sd 5.97 4.88 
h/l 1.72 1.95 
R: log(R)=B*log(S)+log(K) 

Although subjects were less well calibrated in Experiment 7, the mean 65 Hz 

exponent of 0.67 was the same as the 65 Hz exponent of 0.67 found in Experiment 5 

(at this level of precision). Also, both of these were close, and not significantly different 

from, the mean 65 Hz exponent of 0.70 found in Experiment 3. The mean 65 Hz 

exponent across all three experiments was 0.68 which at plus or minus 0.02 includes 

the lowest and highest mean exponent values. Thus it can be concluded that for all 

practical purposes the range effect was either eliminated or controlled by the procedure 

used in these experiments. 
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Figure 16. Experiment 7: Fitted Functions for the 65 Hz Test Trials. 
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Figure 17. Experiment 7: Individual exponent values. 

Frequency 
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Part 4: Different Exponents 

Experiments 3, 5 and 6 of this dissertation demonstrated that subjects can learn a 

loudness scale based on an exponent of 0.60 and use it to judge sensory magnitudes 

associated with other unlearned stimuli. The exponent of 0.60 was chosen because of 

the claim by Stevens and his supporters that the stimulus input function for the 

loudness of 1000 Hz tones is characterized by this exponent. If this is true then the 

learning portion of constrained scaling may operate not by teaching subjects a specific 

exponent, but by teaching them to relax and cease to bias what comes naturally. 

Marks, Galanter & Baird (1995) demonstrated that the exponent of the power function 

that subjects were trained on had no effect on loudness summation at the group level. 

However, it remains unclear whether subjects can extend a learned 1000 Hz scale to 

novel stimuli if the learned exponent is other than 0.60. 

Experiment 8 

Experiment 8 tested whether constrained scaling would work if subjects were trained 

to respond to 1000 Hz tones according to an exponent of 0.30. Similar to Experiment 3 

the novel stimuli were 65 Hz tones. In terms of learning the scale, Marks, Galanter, and 

Baird (1995) used feedback to train subjects to respond according to an exponent of 

0.30 to 500 Hz tones (according to Stevens, 500 Hz tones are also characterized by an 

exponent of approximately 0.60). Taking pooled geometric means within and across 

subjects they found a group exponent of 0.31. Between subjects the mean/sd was 

14.71, and the highest to lowest exponent ratio was 1.27:1. These figures were very 

close to the results obtained when Marks, Galanter, and Baird (1995) trained subjects 

to respond to 500 Hz tones according to an exponent of 0.60. In this case the group 

exponent was 0.58, between subjects the standard deviation for exponents was 0.03, 
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the mean/sd was 16.67, and the highest to lowest exponent ratio was 1.38:1. In 

addition to the Marks, Galanter, and Baird (1995) results, King and Lockhead (1981) 

were able to use feedback to train a single naive subject to respond to 1000 Hz tones 

according to ah exponent of 0.33 with remarkable accuracy (exponent value not 

reported, see graph in King and Lockhead, 1981). 

In terms of responding without feedback, Baird, Kreindler, and Jones (1971), 

constrained subjects to respond to line length according to different exponents by 

assigning two moduli. Specifically, they showed all subjects a line length which was to 

have a response value equal to 1 and also assigned a response value to the longest 

line length. Once any two response values have been set, the exponent of the power 

function passing through those two points is determined. Thus, Baird, Kreindler, and 

Jones (1971) were able to constrain subjects to respond according to various 

exponents, without providing any feedback. Baird, Kreindler, and Jones (1971) do not 

report individual exponents, however, at the group level subjects were able to respond 

more accurately, the lower the exponent was. Specifically, subjects constrained to 

respond according to exponents of 0.33, 0.50, 0.75, 1.00, 1.33, 2.0, and 3.0, and 

responded with exponents of 0.31, 0.48, 0.71, 0.90, 1.24, 1.71, and 2.55 (according to 

Stevens, the correct exponent for line length is equal to 1). 

Based on these past research results, it was predicted that subjects would find 

learning and applying an exponent of 0.30 no more difficult than subjects found 

learning and applying an exponent of 0.60. Also, if the learned exponent is altered then 

the most straightforward prediction for the responses to the novel stimuli would be that 

they would be altered in the same way. If this were the case, subjects trained on 

different exponents could be calibrated by simply dividing or multiplying one set of 
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exponents by the ratio of the exponents the two groups were trained on. Therefore, 

since 0.30 is half of 0.60 it was predicted that the average 65 Hz exponent from 

Experiment 8 should equal 0.42 which is half of the average 65 Hz exponent found in 

Experiment 3 (using all responses and fitting the best fitting line according to Equation 

10). 

Subjects 

Seven volunteers participated for pay. All claimed to have normal hearing and there 

was no evidence of hearing abnormalities during the task. 

Apparatus 

The apparatus was the same as in Experiment 3 except that the response scale 

went from 0 to 10 and subjects could respond to two decimal places of accuracy. 

Procedure 

The procedure was identical to that of Experiment 3 except that subjects received 

only 50 learning trials and performed only 100 alternating test trials, similar to 

Experiments 5, 6, and 7. Also, instead of learning the 0.60 scale subjects learned a 

scale based on an exponent of 0.30, with a response range of 1 to 10 for the 1000 Hz 

tones. It is important to note that once one stimulus value is matched to a particular 

response value by a particular exponent, the response values for all other stimuli are 

fixed. In this case the response scale was determined by choosing an exponent of 0.30 

and by assigning the least intense 1000 Hz tone a value of 1, as was the case when an 

exponent of 0.60 was used. By doing this the upper bound of the response continuum 

was fixed at approximately 10. The value of 0.30 was chosen to produce a response 

scale compatible with the base 10 number system that subjects prefer (similar to the 

response scale associated with an exponent of 0.60, i.e. 1 to 100). The information 
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content, or fidelity, of the 0.30 response scale was equalized to the previous 0.60 

response scales by restricting subjects to three digit responses for the 0.30 response 

scale, as was the case for the 0.60 response scale. For example, the number just 

below the maximum response value was 9.99 for the 0.30 response scale, and 99.9 for 

the 0.60 response scale. 

Results and Discussion 

The learning trials were analyzed by fitting the best line through the raw data 

according to Equation 10. The mean exponent was 0.31, the mean/sd was 8.94, and 

the highest to lowest exponent ratio was 1.39:1 .These results were similar to the test 

trial results from Experiments 5 and 6 suggesting no difference in the learning process 

for power functions based on the exponents of 0.60 and 0.30. 

The results of the test trials are displayed in Table 9. The exponent values were, 

again derived by fitting Equation 10 to the raw data. The fitted functions for the 65 Hz 

trials are displayed in Figure 18. Both the 1000 and 65 Hz test trial results indicate a 

level of intersubject variability less than the benchmark, although the 65 Hz results 

appeared to be more variable than the 65 Hz results in past experiments. The individual 

1000 and 65 Hz exponents are displayed in Figure 19. As predicted the 65 Hz 

exponents were higher than the 1000 Hz exponents for all subjects. Across subjects 

this was significant at p=.04, as indicated by a t-test. Also, for the 65 Hz tones the 

mean exponent was 0.42, which was equal to the predicted value. 

As in Experiment 3, the 65 Hz results were also analyzed excluding responses 

below response=1, where subjects had not been trained and where the near threshold 

deviation from the power law would have occurred. Similar to Experiment 3, this 

analysis had the effect of lowering the estimated exponent values as well as the 
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Table 9. Test trial results for Experiment 8. 

Analysis R R RC 
Subject* Exponent Corrected Exponent Corrected Exponent Corrected 

1000 Hz RA2 65 Hz RA2 65 Hz RA2 

1 0.27 0.74 0.41 0.76 0.34 0.81 
2 0.28 0.86 0.47 0.81 0.29 0,82 
3 0.30 0.86 0.56 0.75 , 0.35 0.86 
4 0.30 0.83 0.42 0.76 0.33 0.79 
5 0.26 0.87 0.36 0.87 0.28 0.77 
6 0.27 0.69 0.37 0.69 0.24 0.63 
7 0.26 0.74 0.36 0.77 0.32 0.77 

mean 0.28 0.42 0.31 
sd 0.02 0.07 0.04 
m/sd 13.75 5.81 7.87 
h/l 1.19 1.57 1.49 
R: log(R)=B*log(S)+log(K) 
RC: log(R)=B*log(S)+log(K); R=>1. 

intersubject variability (see Table 9). Although the difference between the 1000 Hz 

exponents and the 65 Hz exponents was reduced, it was actually more significant due 

to the reduction in intersubject variability. According to a t-test the difference was 

significant at p<.001. However, the mean 65 Hz exponent of 0.31 was not so close to 

the predicted value of 0.35 (i.e. half of the mean 65 Hz exponent found using the same 

analysis procedure in Experiment 3). To test the difference, the exponents for individual 

subjects in Experiment 3 were divided in half and contrasted with the individual 65 Hz 

exponents found in this experiment. A t-test revealed a marginal difference, significant 

at p= 0.07. Thus it may be the case that, under certain conditions, dividing the novel 

stimuli exponents of subjects trained on an exponent of 0.60 by two does not make 

them calibrated to subjects trained on an exponent of 0.30. 
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Figure 18. Experiment 8: Fitted Functions for the 65 Hz Test Trials. 
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Figure 19. Experiment 8: Individual exponent values. 

Frequency/Analysis 
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Experiment 9 

Having demonstrated that constrained scaling, based on a 1000 Hz training regime, 

can work for exponents less than the canonical value of 0.60, we turn to exponents 

greater than 0.60. Marks, Galanter, and Baird (1995) trained subjects to respond to 500 

Hz tones according to an exponent of 1.20 and found that even with feedback subjects 

produced a group exponent that was significantly different from 1.20 (the exponent was 

1.11). In addition, compared to when the same subjects were trained on exponents of 

0.30 and 0.60, the mean/sd was lower (9.09 compared to 14.71 and 16.67 respectively) 

and the highest to lowest exponent ratio was higher (1.60:1 compared to 1.27:1 and 

1.38:1 respectively). Baird, Kreindler, and Jones (1971), also constrained subjects to 

respond with unusually high exponents and found a greater tendency to fall short of the 

exponent they were trained on as the exponent was increased (see Experiment 8, 

Introduction section). Furthermore, they found substantial deviations from the power 

law for the highest exponents. King and Lockhead (1981), however, were able to.use 

feedback to train two naive observers to respond to 1000 Hz tones according to an 

exponent of 1.00 with an extremely high level of accuracy (exponent value not 

reported, see the graph in King and Lockhead, 1981). 

This experiment examined whether constrained scaling would work if subjects were 

trained to respond to 1000 Hz tones according to an exponent of 0.90. An exponent of 

0,90 was chosen because it results in a scale of 1 to 1000 when the lowest 1000 Hz 

training tone is set to 1. Thus, similar to the 0.60 response scale used in Experiments 1 

to 7 (1000 Hz response range = 1 to 100) and the 0.30 response scale used in 

Experiment 8 (1000 Hz response range = 1 to 10) this 0.90 scale would also be 

compatible with the base 10 number system that subjects are familiar with. The 
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information content, or fidelity, of the 0.90 response scale was made equal to the 

previous 0.60 and 0.30 response scales by similarly restricting subjects to three digit 

responses. For example, the number just below the maximum response value was 9.99 

for the 0.30 response scale, 99.9 for the 0.60 scale, and 999 for the 0.90 response 

scale. However, in this case the three digit accuracy meant that subjects could only 

respond to tones below response=1, with a 1 or a 0. In Marks Galanter and Baird 

(1995) the same problem resulted in subjects being required to respond with four digit 

accuracy when trained on the exponent of 1.20, whereas they were restricted to three 

digit accuracy for the exponents of 0.60 and 0.30. Baird, Kreindler, and Jones (1971) 

also encountered this problem. King and Lockhead (1981) do not report enough 

information to ascertain if this was a problem; however, if they did hold the fidelity 

constant the decrease in accuracy found in the other studies could be attributed to the 

greater cognitive load created by requiring subjects to learn responses with more digits. 

To avoid this confound, it was decided to maintain a three digit response precision in 

Experiment 9 and to eliminate the 65 Hz tones below response=1 by subjectively 

equalizing the bottom of the 65 Hz range to the bottom of the ,1000 Hz range, as in 

Experiments 6 and 7. 

Subjects 

Seven volunteers participated for pay. All claimed to have normal hearing and there 

was no evidence of hearing abnormalities during the task. 

Apparatus 

The apparatus was the same as in Experiment 3. 
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Procedure 

Experiment 9 was identical to Experiment 8 except that subjects were trained on an 

exponent of 0.90 and the bottom of the 65 Hz range was subjectively equalized to the 

bottom of the 1000 Hz range using the same method as in Experiments 6 and 7. 

Subjects were told that the lowest 65 Hz tone would be around response=1 and to use 

a response of 1 for any tones equal to or less than 1. 

Results and Discussion 

The learning trials were analyzed by fitting the best line through the raw data 

according to Equation 10. The mean exponent was 0.700, the mean/sd was 5.63 and 

the highest to lowest ratio was 1.71:1. These results differed from King and Lockhead 

(1981) in that subjects were unable to learn to respond accurately according to the 0.90 

exponent (the closest subject produced an exponent of 0.81; the worst subject 

produced an exponent of 0.48). At present the only explanation I can offer for the King 

and Lockhead (1981) results is that had they used more than two subjects their results 

would be more in line with Baird, Kreindler, and Jones (1971), Marks Galanter and 

Baird (1995), and the results of this experiment. 

The results of the test trials are displayed in Table 10. The exponent values were 

derived by fitting Equation 10 to the raw data. The fitted functions for the 65 Hz trials 

are displayed in Figure 20. In terms of intersubject variability the results were quite poor 

and failed to surpass the benchmarks, except for the 1000 Hz mean/sd which just 

squeaked by. Also, a t-test indicated that the difference between the 65 Hz exponents 

and the 1000 Hz exponents was not significant. The individual 1000 and 65 Hz 

exponents are displayed in Figure 21. Overall the level of variability was very similar to 

that found in Experiment 7, in which the top of the stimulus range was 
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Table 10. Test trial results for Experiment 9. 

Analysis R R 
Subject* Exponent Corrected Exponent Corrected 

1000 Hz RA2 65 Hz RA2 

1 0.79 0.84 0.68 0.54 
2 0.76 0.80 0.77 0.67 
3 0.74 0.81 0.97 0.85 
4 0.74 0.79 0.71 0.55 
5 0.91 0.95 1.01 0.82 
6 0.48 0.44 0.60 0.54 
7 0.82 0.74 1.01 0.74 

mean 0.75 0.82 
sd 0.13 0.17 
m/sd 5.66 4.78 
h/l 1.90 1.68 
R: log(R)=B*log(S)+log(K) 

reduced to 80 dB. However, closer inspection of Figure 21 reveals an important 

difference between these results and the results of Experiment 7. In Experiment 7 there 

was a negative, nonsignificant correlation between the 1000 Hz test trial exponents and 

the 65 Hz test trial exponents, while in this experiment the correlation was r = +0.69 

which was marginally significant at the p= .08. This correlation suggests that while 

subjects deviated from the 0.90 exponent in idiosyncratic ways, there was a tendency 

to respond consistently across the 1000 and 65 Hz test tones. 

Overall, considering the results of Experiments 8 and 9 as well as previous 

research, it would seem that exponents greater than 0.60 for 1000 Hz tones are less 

natural in that they are more difficult to learn and harder to maintain without feedback, 

while there is no significant evidence that exponents less than 0.60 are any less easy 

to learn, maintain, or generalize to other stimuli. This pattern of results suggests that 

the exponent values describing the perception of loudness are not completely arbitrary, 
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but rather are limited to a certain range. However, another possibility is that higher 

exponent values are more difficult because they require a larger response range in 

absolute terms. Thus, using a scale of 1 to 10 might seem more daunting and less 

familiar than using a scale of 1 to 1000, even though both require the same degree of 

accuracy (i.e. three digits in this case). 
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Figure 20. Experiment 9: Fitted Functions for the 65 Hz Test Trials. 
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ure 21. Experiment 9: Individual exponent values. 

Frequency 
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Part 5: Nonperceptual Stimuli 

Experiment 10 

It has long been known that the scaling of social stimuli, such as the seriousness of 

crimes (Ekman, 1962) or the desirability of various wrist watches (Indow, 1961), 

produces the same general pattern of results as the scaling of perceptual stimuli (see 

Stevens, 1975 for a review). However, very little has been made of this fact. 

Experiment 10 extends constrained scaling beyond the perceptual domain and into the 

social, cognitive domain, by examining the magnitude of happiness resulting from 

winning various amounts of money. Specifically, subjects were trained using the 

standard auditory scale (i.e. 1000 Hz tones) and then asked to rate how happy they 

would be if they won various amounts of money in a lottery (i.e. to rate the perceived 

utility under these specific conditions). The social domain differs from the perceptual 

domain in that we should expect legitimate individual differences. If constrained scaling 

can be extended into the social domain it may be possible to detect these differences 

in a reliable way which could have far reaching consequences for social, personality, 

cross-cultural, and clinical psychology which currently lack the ability to clearly 

differentiate real individual differences from differences in response styles. Thus, it was 

predicted that subjects would remain well calibrated on the 1000 Hz test trial tones, but 

exhibit substantial intersubject variability on the hypothetical lottery winnings. 

In terms of predicting the mean exponent for money, values range from 0.17 (Sellin 

& Wolfgang, 1964, as cited in Stevens, 1975), based on ME scaling of the seriousness 

,of stealing various amounts of money, to 0.5 (G. Cramer, 1728, as cited in Stevens, 

1975), calculated based on a gambling game. In possibly the most thorough study, 

2000 Canadian university students provided an average ME exponent of 0.25 for the 
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seriousness of money thefts (Akman & Normandeau, 1967, as cited in Stevens, 1975). 

It is not possible to tell if the differences between these exponents were due to 

differences in the task (eg. gambling versus theft), differences in the groups (eg. 

cultural or economic differences), or differences in the informal constraints contained in 

the ME procedure. However, overall it seemed reasonable to predict that the average 

exponent for money would be less than 0.6. 

Subjects 

Seven volunteers participated for pay. All claimed to have normal hearing and there 

was no evidence of hearing abnormalities during the task. 

Apparatus 

The apparatus was the same as in Experiment 3 except a text box was placed 

above the response scale to display amounts of money. 

Procedure 

The procedure was the same as in Experiment 5 except that instead of luminance 

levels, subjects were presented with amounts of money that were generated by 

selecting random numbers between 17 and 60, dividing by 10, and raising 10 to the 

resulting value. This resulted in a log-equally spaced scale from approximately $50 to 

$1,000,000. The money values were displayed to two decimal places, as is common 

practice. 

Results and Discussion 

, The learning trials were analyzed by fitting the best line through the raw data 

according to Equation 10. The results were typical for this phase, the mean exponent 

was 0.57, the mean/sd was 10.46 and the highest to lowest ratio was 1.36:1. 
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The results of the test trials are displayed in Table 11. The exponent values were 

derived by fitting Equation 10 to the raw data. The 1000 Hz test trial results produced a 

level of intersubject variability well below the bench mark criteria, indicating that 

subjects remained calibrated during the test phase (see Table 11). For the money 

stimuli the mean exponent was 0.27, the mean/sd was 2.35, and the highest to lowest 

exponent ratio was 6 16, indicating substantial individual differences. However, 

although the R2 values for money were all above 0.80, it was clear from examining 

graphs of the raw data that many subjects did not conform to the straight line in log/log 

coordinates predicted by the power law (see Figure 22). 

The data were reanalyzed according to Equation 11 in Experiment 3 to see if the 

deviations were consistent with the deviations from the power law found near threshold 

(see Experiment 3). These results are also displayed in Table 11. As can be seen, 

subjects 3 and 4 produced unusual threshold estimates (i.e. because they were 

negative). These values were probably due to the fact that estimates of the threshold 

values in Equation 11 can be unstable, due to undesirable trade offs between the 

parameters. In order to get a second estimate the data were reanalyzed according to 

the equation, -

R = K(S-T)B (12) 

which is equivalent to equation 11, but does not treat the stimuli or responses as log 

spaced. These results are also displayed in Table 11. Using this procedure, subject 3 

produced a reasonable threshold estimate, although subjects 1, 2, and 4 did not. 

Subject 4 was the only subject to fail to produce a reasonable threshold estimate using 

either procedure. Therefore, subject 4's data were reanalyzed using equation 12 and 

fixing the value of T at 50. This produced an exponent of 0.20. The corrected R2 value 
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Table 11. Test trial results for Experiment 10. 

Analysis R R 
Subject* Exponent Corrected Exponent Corrected 

1000 Hz RA2 money RA2 

1 0.59 0.93 0.33 0.82 
2 0.55 0.87 0.06 0.87 
3 0.48 0.79 0.38 0.84 
4 0.60 0.93 0.18 0.88 
5 0.60 0.86 0.30 0.85 
6 0.55 0.90 0.24 0.93 
7 0.61 0.93 0.21 0.64 
8 0.57 0.93 0.26 0.84 

mean 0.57 0.24 
sd 0.04 0.10 
m/sd 13.50 2.53 
h/l 1.27 6.16 
Analysis RT ST 
Subject* Exponent Corrected Exponent Corrected 

money RA2 Threshold money RA2 Threshold 

1 0.29 0.84 47.00 0.31 0.75 -0.39 
2 0.06 0.90 71.01 0.06 0.86 -46.89 
3 0.39 0.85 -41.04 0.27 0.89 46.94 
4 0.23 0.89 -1140.47 0.22 0.89 -872.68 
5 0.29 0.87 44.28 0.24 0.89 49.20 
6 0.22 0.95 44.96 ,0.18 0.95 49.61 
7 0.19 0.72 49.66 0.13 0.67 50.10 
8 0.23 0.87 49.44 0.19 0.89 50.07 

mean 0.24 0.20 
sd 0.09 0.08 
m/sd 2.50 2.55 
h/l 4.91 5.19 
R: log(R)=B*log(S)+log(K) 
RT: log(R)=B*log(S-T)+log(K) 
ST: R=K(S-T)AB 

resulting from this procedure (corrected R2=0.88) was only marginally lower than the 

corrected R 2 value using Equation 12 (corrected R2=0.89) or Equation 11 with T free to 

vary (corrected R2=0.89). The results of these analyses are displayed in Figure 22. 

90 



When plausible the results from Equation 11 were used to fit the function, for subject 3 

the results from Equation 12 were used and for subject 4 the results from Equation 12 

with T fixed at 50 were used. 

Overall, it is equivocal whether subjects 1 to 4 produced a near-threshold distortion 

in the power law. However, subjects 5 to 8 produced remarkably stable estimates of T, 

both across subjects and across methods of analysis, clearly indicating the presence of 

the near threshold distortion. Also, in all cases, the estimate of T is remarkably close to 

$50 which subjects were told would be the least amount that could be won (equation 12 

estimates = 49.20, 49.61, 50.10, 50.07; equation 11 estimates = 44.28, 44.96, 49.66, 

49.44). Thus subjects 5 to 8, and possibly subjects 1 to 4, used the stimulus they were 

told would be the least intense as threshold, rather than the actual informational 

threshold (i.e. $0). This indicates that when judging the magnitude of nonperceptual 

stimuli, context and knowledge of the situation can be accounted for in a very precise 

manner. 

In terms of individual differences, in Experiments 3, 5, 6, and 8 subjects remained 

calibrated on novel stimuli under conditions very similar to this experiment. 

Furthermore, when subjects failed to remain calibrated on the novel stimuli (i.e. 

Experiments 7 and 9) they were also less calibrated on the 1000 Hz test trial tones. 

However, in this experiment subjects remained highly calibrated on the 100.0 Hz tones. 

Therefore, it seems reasonable to assume that the higher variability found for the 

money exponents reflects real individual differences. For example, using the Equation 

11 results (which accounted for the most variance) we find that to double the happiness 

of subject 5 (exponent=0.29) the amount of money would need to be increased by 

approximately 11 times, while for subject 7 (exponent=0.Q8) the amount of money 
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would need to be increased by approximately 39 times. However, because constrained 

scaling cannot claim to produce linear scales (i.e. what would the money exponents 

have been if subjects were trained on an exponent of 0.30) the importance of this 

measure lies in what it reveals about the relative sensitivity of subjects to the money 

stimulus. 
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Figure 22. Experiment 10: Fitted Functions for happiness. 
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Discussion 

Psychophysical Models 

Fechner originally intended psychophysics as a way of studying consciousness, 

while Stevens was primarily interested in using psychophysics to study perceptual 

systems. In reality, both were studying the path, or possible paths from the perceptual 

system, through the extraction of a conscious perception of magnitude, to a response 

based on that conscious perception. The issue of response bias has already been 

raised in the introduction so we turn here to the issue of consciousness. Although the 

canonical model of psychophysics assumes that conscious perception is driven directly 

by the sensory system (Stevens, 1975; Marks, 1991), others disagree, the logical 

alternative to the canonical model is Mark's (1991) contextual model. According to this 

model, the context of the situation can cognitively alter the perception of magnitude 

before it reaches consciousness. For example, the range effect discussed in 

Experiment 6 is thought by proponents of this model to occur before conscious 

perception (eg. Marks and Warner, 1991; Schneider and Parker, 1994). The difficulty in 

distinguishing between the contextual model and the canonical model lies in the fact 

that there is no definitive criterion for distinguishing whether an effect was due to a 

preconscious cognitive factor or a response bias factor. However, in both models the 

implied model of consciousness is as defined in the introduction, that is as an 

awareness of an essentially static representation of stimulus magnitude. Both the 

canonical model and the contextual model are illustrated in Figure 23. 

Constrained scaling has different implications depending on which model is 

adopted. Under the assumptions of the canonical model it effectively circumvents the 

problem of idiosyncratic response biases, in effect, by assuring that all subjects have 
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the same response bias. According to the canonical model, properly executed ME 

experiments will produce a linear scale of consciousness, whereas constrained scaling 

will only produce a linear scale only if subjects are trained on the true exponent value in 

the training phase. However, this is not a serious problem as, should the proponents of 

the canonical model discover a means of divining the true exponents, subjects could be 

trained on them. However, it is incumbent on the proponents of the canonical model to 

come up with a means of identifying the true exponent. 

In terms of the contextual model, the training involved in constrained scaling offers 

greater support for the assumption that the response function does not change across 

tasks (i.e. because of the response training), a critical assumption if we are to assume 

that context-induced response differences are due to effects upstream of 

consciousness. However, it is still not possible to absolutely rule out the possibility that 

a change in context could systematically bias subjects' response functions such that 

they remained calibrated but produced different results under different contexts. For 

example, the systematic drop in exponent value found in Experiment 2 when the 

feedback was removed could indicate that providing feedback sets up a context that 

alters perceptions of loudness. In memory psychophysics (see Algom, 1992, for a 

review), a similar drop in the exponent value with the passage of time is taken as a real 

effect on perceptions of stimulus magnitude. On the other hand, the drop could also 

represent a highly systematic effect on subjects' response functions. 

Although a single constrained scaling experiment cannot rule out the possibility that 

an effect was due to a highly systematic response bias, such biases should be quite 

rare if they exist at all. Indeed, one might rule them out all together on the basis that the 

response output system has never been conceived of as a precise system, identical 
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across subjects, but rather as a highly variable and idiosyncratic system (eg. based on 

personal experience with numbers and arbitrary decisions). However, even with the 

caveat that constrained scaling cannot completely rule out response bias, the effect of 

making the response function empirically penetrable is highly desirable. For example, 

Algom and Marks (1990) found that stimulus range affected the binaural gain 6 and 

attributed it to a change in the gain of the auditory system (see Schneider and Parker, 

1990, 1994), however, the effect could also be accounted for by assuming that subjects 

maintained the same binaural ratio7 across a response bias resulting in higher 

exponents for the smaller stimulus range (see Marks, Galanter and Baird, 1995). By . 

using the constrained scaling approach, Marks, Galanter, and Baird (1995) were able to 

significantly reduce the plausibility of the second argument by demonstrating that, at 

the group level, training subjects to respond according to different exponents had no 

effect on the binaural gain (i.e. in order to maintain the second; argument, one would 

have to argue that there is something fundamentally different about altering the 

exponent through feedback and altering it through the use of the range effect response 

bias). 

A third psychophysical model, proposed by Ward (1992, 1993), also exists. This 

model, which I will refer to as the "dynamic model", views the mind as a highly dynamic 

system and is consistent with cognitive models of consciousness such as those put 

forward by Dennet (1991), Minsky(1986), and Hofstadter(1979). These models all differ 

from the view of consciousness employed so far in this dissertation, in that conscious 

perceptions are viewed as fluid and constantly changing, rather than static 

representations which can be accessed and reported. For example, according to 

6 The binaural gain is the amount (in dB) that must be added to a monaural stimulus to make it as loud as a binaural stimulus. 
7 The binaural ratio is the ratio of the log of binaural responses to the log of monaural responses, generally found to be 2:1. 
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Denhet's (1991) multiple drafts model of consciousness, conscious perceptions are 

constantly being rewritten, edited, and recorhbined so that there is no static state that 

can be labeled as the conscious perception. An example of this is the phonetic 

restoration phenomenon (Warren, 1970), which can be demonstrated by presenting 

subjects with a burst of white noise, followed by a word stem, followed by a sentence 

stem. Under these conditions, instead of hearing the word stem subjects report that 

they hear a whole word, however, the word that they hear is determined by the 

sentence stem which occurs after they have already heard the word stem. For 

example, if the word stem was "eel," subjects would report having heard "peel" if the 

sentence stem was "the orange," and "heel" if the sentence stem was "of the shoe." 

Similarly, according to the dynamic model, conscious perceptions of magnitude will 

undergo various revisions, including retroactive revisions, up to and even beyond the 

giving of a response. Thus the dynamic model postulates a plethora of conscious 

representations, constantly in flux. This is not to say that a jet engine will ever sound 

quieter than the chirping of a cricket, but that within certain parameters perceptions of 

sensory magnitudes are not fixed but fluid. 

The dynamic model is also illustrated in Figure 23. As can be seen, as one moves 

towards increasing complexity (i.e. from the canonical model towards the dynamic 

model) it becomes increasingly pragmatic to think in terms of particular sets of mental 

processes or pathways from the stimulus to the response, rather than in terms of 

characterizing a single mental process (i.e. the logical goal of the canonical model). 

Therefore, under the assumptions of the dynamic model, the goal of psychophysical, 

scaling becomes one of engaging the same mentahsub units in the same order for 

each subject (Ward, 1992), a task for which constrained scaling was specifically 
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designed. Note also that the dynamic model is the only model in which consciousness 

plays an important role. In the canonical model and the contextual model 

consciousness is merely a transparent window through which perceptual processes can 

be viewed. The consciousness part of these two models could be eliminated without 

changing the interpretation of experimental results. This is not the case with the 

dynamic model. 

Another interesting point is that under the assumptions of the dynamic model, 

response bias does not necessarily have to be postulated. The responses that subjects 

provide may be considered representations of magnitude, just as the neurologically 

encoded representations preceding them (moreover, we know that subjects are 

generally conscious of their responses). In this view a subject's response is just one in 

a stream (or possibly several parallel streams) of representations evoked by the 

stimulus8. Anecdotally, it was interesting to note that in the research for this 

dissertation, for the same maximum stimulus value, subjects trained on an exponent of 

0.30 and a maximum response value of 10 complained the least about the volume of 

the loudest tone, while subjects trained on an exponent of 0.60 and a maximum 

response value of 100 complained more, and subjects trained on an exponent of 0.90 

and a maximum response value of 1000 complained quite a bit. Therefore, although 

highly speculative, it is possible that the values or patterns of responses can 

retroactively influence subjects' impressions of stimulus magnitudes in a manner similar 

to the phonetic restoration phenomenon. 

Scaling Issues 

Dennet (1991) and Hofstadter (1979) have both argued that, from a functionalist perspective, there is no compelling reason 
not to extend the definitions of cognitive systems to include representations outside of the brain. 
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The primary goal of this dissertation was to demonstrate that constrained scaling 

can be used to calibrate subjects sufficiently to produce a meaningful, nonlinear (in the 

sense that it cannot be established ff it is linear or not), associative scale of 

psychological magnitude. According to the benchmarks set out in the introduction, this 

has been accomplished. Constrained scaling has been demonstrated to provide 

meaningful results intramodally, within the auditory domain; intermodally, between 

audition and vision; and extramodally, between audition and cognitively generated 

estimates of the expected utility of money. Using constrained scaling for sensory 

continua, subjects who receive the same level of stimulus magnitude report 

approximately the same level of subjective magnitude. Assuming that subjects with the 

same perceptual mechanisms (i.e. healthy and normal) experience the same 

magnitudes when exposed to the same sensory stimuli under the same conditions, this 

indicates that constrained scaling provides calibrated results. In other words, when 

successfully applied, constrained scaling causes subjects to respond using the same 

unit of psychological magnitude. Therefore, just as many different physical objects can 

be measured for length using a single unit (eg. centimeters, feet, cubits) so too, in 

theory, any psychological magnitude can be measured using the common unit provided 

by constrained scaling. The idea of a single unit to describe the magnitudes of such 

diverse phenomena as the brightness of a light and the utility of money might at first 

seem strange as the study of such phenomena are treated as different areas in 

psychology. However, as Norwich (1993) points out, the moment energy is detected by 

a perceptual organ it becomes information, much the same as an amount of money is 

coded as information. Thus the common unit provided by constrained scaling can be 

thought of as a measure of information. 
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Several points are pertinent to the drawback that constrained scaling produces 

nonlinear scales. The first is that there is no strong evidence that other forms of ME 

produce linear scales. The second is that it is debatable whether linear scales are 

necessarily superior to nonlinear scales, since equivalent interlocking systems of 

mathematical laws can be derived from either (see Stevens, 1951; Ellis 1968). The 

third is that, according to the dynamic model (Ward, 1991, 1993), there are no "true" 

scales to be measured. Rather than worrying about linearity, a more practical approach 

is to develop reliable scales and to attach meaning to the scale values empirically. As in 

physics, once a systematic, reliable means of measurement has been achieved, any 

underlying structure will be revealed through experimentation. 

In terms of the claim that constrained scaling eliminates idiosyncratic response 

biases from the resulting scale, it is interesting to compare the results of constrained 

scaling to exponents derived using a method that avoids the use of a response 

continuum, such as Shepard's (1966) nonmetric approach. Specifically, it can be 

argued that avoiding the use of a response continuum avoids response biases 

altogether, and that any remaining individual differences must be due to real individual, 

sensory system differences (Schneider, 1980, 1988). However, according to the 

dynamic model, avoiding the use of a response continuum would not necessarily cause 

subjects to lock onto the same cognitive pathway, and therefore not necessarily reduce 

idiosyncratic differences to a minimum. 

In order to eliminate the response continuum, Schneider (1980) employed the 

nonmetric approach and, in a separate study (Schneider, 1988), the conjoint 

measurement approach (Luce and Tukey, 1964). In both cases subjects were required 

only to make binary judgments of "greater than" or "less than" for paired stimuli. For 
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example, in Schneider (1980) subjects judged which of two pairs of tones displayed the 

greatest loudness difference. Similarly, in Schneider (1988) subjects were presented 

with two-tone complexes, each made up of two simultaneous tones of different 

frequency and intensity, and asked to judge which was louder. In both cases subjects 

satisfied all the conditions for the construction of a scale and exponent values were 

calculated. In Schneider (1980), for 1,200 Hz tones, the mean/sd was 3.25, and the 

highest to lowest exponent ratio was 2.55. In Schneider (1988), for 2 kHz tones, the 

mean/sd was 7.51, and the highest to lowest exponent ratio was 1.36; for 5 kHz tones, 

the mean/sd was 5.67, and the highest to lowest exponent ratio was 1.57. 

Using the conjoint measurement approach (Schneider, 1988) intersubject variability 

was reduced to about the same level found using constrained scaling, while the 

nometric approach (Schneider, 1980) produced results similar to ME in this regard (see 

Table 1). However, a closer examination of the conjoint measurement results reveals 

problems. As in constrained scaling, Schneider (1988) presented both tone frequencies 

within the same experiment. Examining the ratios of the 2 Khz tones to the 5 Khz tones 

for individual subjects, we find that the mean ratio was 0.91, the standard deviation was 

0.19, and the mean/sd was 4.93. Comparing these figures to Experiment 6 of this 

dissertation (which used 65 and 1000 Hz tones): the mean ratio was 0.83, the standard 

deviation was 0.07 and the mean/sd was 12.16, the later more than double that found 

using Conjoint Measurement. 

If individual differences were due only to idiosyncratic response biases and real 

sensory system differences then, in theory, the methodologies used by Schneider 

(1980,1988) should have produced lower or equally low levels of individual variability, 

particularly for the exponent ratios between frequencies. Of course it is possible, but 
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unlikely, that in both studies Schneider selected subjects with unusually high individual 

differences compared to the subjects in Experiment 6 of this dissertation. A second 

possibility is that the models he used were simply wrong, although this too seems 

unlikely as the models produced results very similar to those found using ME and the 

data satisfied the rigorous requirements of the models (Schneider, 1980, 1988). The 

most likely explanation is that subjects have some cognitive latitude in the combining 

operations required by these techniques (i.e. subtracting and adding magnitudes), 

which is consistent with the assumptions of the dynamic model. 

The Systems Perspective 

Viewed from a strictly cognitive, artificial intelligence perspective, the process 

leading from stimulus input to response output can be understood as a formal system. 

Given the same inputs, whenever one system always produces the same output as 

another system they are isomorphicallv the same, even if the actual transducing 

mechanisms are quite different (Hofstadter, 1979). For example^ if the same program is 

run on a Turing machine and on a Von Neuman machine the two resulting systems 

would be isomorphically identical, even though the physical and computational 

processes involved in each system would be quite different. Constrained scaling 

attempts to make subjects isomorphically the same. From a systems perspective this 

goal is highly desirable as it means the system could be studied independently of 

considerations of individual subjects. As Luce (1972) pointed out, psychophysics 

cannot be like physics unless the object of study can be successfully abstracted from 

its instantiation within individual subjects. If the object of study is a formal system that 

subjects can become (i.e with training) then it may be possible to achieve this goal. 
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In fact, it is trivially easy to make subjects isomorphically the same. For example, 

subjects could be instructed to take whatever number they are given and respond with 

the sum of the number plus 7. Of course this is quite uninteresting, but if the system 

were one that could process many different types of inputs then these inputs would be 

related by a fixed intedocking mathematical structure, provided that subjects stayed 

locked onto the system. The results of this dissertation indicate that this is possible, at 

least to an approximation. A related point is that it was clear that some subjects were 

better than others at locking onto the system. If a criterion were imposed (i.e. use only 

subjects who have demonstrated an expertise at locking on) the results could probably 

be substantially improved. Also, as noted in the introduction, this research is only a 

starting point. As more is learned about what factors enable subjects to "lock on," (eg. 

Experiments 6 to 9) results should become increasingly precise. 

Future Directions: Beyond the Power Law 

This dissertation has focused on calibrating subjects to power functions with 

particular exponent values. However, the power law, although extremely popular, may 

not be the optimal way to characterize ME results. Competing with the power law are 

various forms of what Norwich (1993) has termed the complete law of sensation (see 

Norwich, .1993, for a historical review). Norwich's version of this law, contained within 

the entropic theory of perception, has proven particularly powerful in that many of the 

empirically discovered laws of psychophysics have been derived from it (see Norwich, 

1993, for a review). According to the entropic theory, ME results should follow the 

function 

R=(1/2)Kln(1+YSN) (15) 
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where Y and N are constants, with N approximating the exponent (B) from the power 

law (Equation 3). When Y S N is small, Equation 15 is approximated by the power law 

(see Norwich, 1993, for the derivation), however, as Y S N grows larger (i.e. so that the 

relative contribution of the +1 term becomes small) Equation 15 is better characterized 

by a version of Fechner's log law (i.e. dropping the +1 term, R=(1/2)K ln(YSN)). In log-

log coordinates this would predict a deviation from a straight line that would appear as 

a slight downward curve at higher stimulus magnitudes (Norwich, 1993). 

If the entropic theory is correct then at high stimulus intensities the power law should 

have seemed unnatural to subjects. A visual inspection of the raw data presented in 

this dissertation reveals that subjects who visibly deviated from the power law did so in 

the manner predicted by the entropic theory (except for the standard ME results in 

Experiment 4). As a test, the data from the test trials of Experiment 3 were reanalyzed 

excluding stimuli below ln(S)=1, a some what arbitrary cut off point for "high" stimulus 

magnitudes9. Functions were fit in both log-log coordinates and log-linear coordinates. 

The corrected R 2 values are displayed in Tables 12 and 13. As can be seen, even for 

the with-feedback tones, subjects, with only a few exceptions, responded in a way 

more consistent with Fechner's log law than Steven's power law (i.e. log-linear R 2 > log-

log R2), at high stimulus magnitudes. Also, a paired-comparison, two-tailed t-test 

revealed that the difference in the R 2 values was significant at p<.001. Given that 

subjects were specifically taught to use a power function, these results can be 

considered a strong indication that Equation 15 constitutes a better description of 

subjects' natural tendencies. 

9 Traditionally the power law is described using logs, whereas Norwich perfers Ins to describe the entropic theory. 
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The mystery of the method dependent results found in Experiments can also be 

resolved if it is assumed that subjects were responding according to Equation 15. . 

Specifically, it was found that a nonlinear curve fitting approach (i.e. on the raw data) 

resulted in exponent values significantly lower than 0.60 for the no-feedback, 1000 Hz 

tones, while fitting a straight line through the log of the stimuli and the log of the 

responses (Equation 10) resulted in exponent values approximately equal to 0.60 (see 

Experiment 2). If subjects were responding according to Equation 15, then using the 

log of the stimuli would compress the higher stimulus values where Equation 15 is not 

well approximated by the power law, and expand the stimulus range in which Equation 

15 is well approximated by the power law. Thus it may only be meaningful to fit the 

power law according to log-stimulus values. 

Overall, these results suggest that training subjects on Equation 15 may be an 

avenue to further reduce intersubject variability. However, there are problems 

associated with fitting Equation 15 to the data. Specifically, the values for K and Y trade 

off and the estimates are nonrobust (Norwich, 1993). Estimates of N are more robust 

but still vary significantly, although in practice they are quite close to power law 

estimates of B for the same data (Norwich, 1993). Future research will need to address 

these technical problems. One possibility is that training subjects on Equation 15 would 

make it possible to assume the value of one of the three parameters (K, Y and N). If the 

number of parameters to be estimated could be reduced to two the curve fitting results 

should become more stable. 
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Table 12. 1000 Hz test trial results for Experiment 3. 

Frequency 1000Hz 1000Hz 1000Hz 1000Hz 
Feedback NF NF F F 
Analysis log-log log-linear log-log log-linear 
Subject* Corrected Corrected Corrected Corrected 

RA2 RA2 RA2 RA2 

1 0.561 0.655 0.718 0.759 
2 0.474 0.555 0.632 0.733 
3 0.763 0.784 0.645 0.588 
4 0.754 0.837 0.708 0.715 
5 0.327 0.680 0.843 0.847 
6 0.729 0.776 0.759 0.816 

mean 0.601 0.715 0.718 0.743 
F: feedback 
NF: no feedback 

Table 13. 65 Hz test trial results for Experiment 3. 

Frequency 65Hz 65Hz 1000Hz 1000Hz 
Feedback NF NF F F 
Analysis log-log log-linear log-log log-linear 
Subject* Corrected Corrected Corrected Corrected 

RA2 RA2 RA2 RA2 

1 0.520 0.573 0.718 0.844 
2 0.363 0.461 0.729 0.791 
3 0.247 0.222 0.569 0.660 
4 0.371 0.380 0.618 0.655 
5 0.694 0.781 0.840 0.885 
6 0.538 0.499 0.776 0.844 

mean 0.456 0.486 0.708 0.780 
F: feedback 
NF: no feedback 
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