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Abstract

The State Space Model (SSM) encompasses the class of multivariate linear models, in

particular, regression models with fixed, time-varying and random parameters, time se

ries models, unobserved components models and combinations thereof. The well-known

Kalman Filter (KF) provides a unifying tool for conducting statistical inferences with

the SSM.

A major practical problem with the KF concerns its initialization when either the

initial state or the regression parameter (or both) in the SSM are diffuse. In these situa

tions, it is common practice to either apply the KF to a transformation of the data which

is functionally independent of the diffuse parameters or else initialize the KF with an ar

bitrarily large error covariance matrix. However neither approach is entirely satisfactory.

The data transformation required in the first approach can be computationally tedious

and furthermore it may not preserve the state space structure. The second approach is

theoretically and numerically unsound. Recently however, De Jong (1991) has developed

an extension of the KF, called the Diffuse Kalman Filter (DKF) to handle these diffuse

situations. The DKF does not require any data transformation.

The thesis contributes further to the theoretical and computational aspects of con

ducting statistical inferences using the DKF. First, we demonstrate the appropriate ini

tialization of the DKF for the important class of time-invariant SSM’s. This result is

useful for maximum likelihood statistical inference with the SSM. Second, we derive and

compare alternative pseudo-likelihoods for the diffuse SSM. We uncover some interesting

characteristics of the DKF and the diffuse likelihood with the class of ARMA models.

Third, we propose an efficient implementation of the DKF, labelled the collapsed DKF
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(CDKF). The latter is derived upon sweeping out some columns of the pertinent matrices

in the DKF after an initial number of iterations. The CDKF coincides with the KF in

the absence of regression effects in the SSM. We demonstrate that in general the CDKF

is superior in practicality and performance to alternative algorithms proposed in the lit

erature. Fourth, we consider maximum likelihood estimation in the SSM using an EM

(Expectation-Maximization) approach. Through a judicious choice of the complete data,

we develop an CDKF-EM algorithm which does not require the evaluation of lag one

state error covariance matrices for the most common estimation exercise required for the

SSM, namely the estimation of the covariance matrices of the disturbances in the SSM.

Last we explore the topic of diagnostic testing in the SSM. We discuss and illustrate the

recursive generation of residuals and the usefulness of the latters in pinpointing likely

outliers and points of structural change.
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Chapter 1

Introduction

This thesis deals with the statistical and computational aspects of prediction, model

fitting and diagnostic testing in the State Space Model (SSM), a model which has become

increasingly prominent in the time series literature during the last two decades.

The SSM originates from the systems science and owes much of its theoretical basis

to the seminal contributions of Kalman (1960) and Kalman and Bucy (1961). Duncan

and Horn (1972) introduced the SSM to the statistical community from the standpoint of

a random parameter regression model and connected its theory with the fixed parameter

regression theory. Harrison and Stevens (1976) refer to the SSM as the Dynamic Linear

Model in their work on Bayesian forecasting.

The SSM describes an observation process in terms of an underlying unobserved time

series known as the state. An example of the model is the time series model where the

observation (at time t) is specified as the sum of fixed regression effects and the state (at

time t) with the latter having components which are interpreted as the unobserved trend

and seasonalities. A simple stochastic model for the state may for example stipulate that

its trend component follows a random walk model while its seasonal components sum

to a white noise process over the span of a year. Observe that this time series model

consists of both fixed and dynamic random effects. The SSM that will be defined in the

next Chapter is a generalization of this example.

The SSM has carved a niche in engineering and (more recently) in statistical and socio

economic applications. The flagship application is perhaps the NASA space program
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Chapter 1. Introduction 2

which uses the SSM to monitor the progress of its spacecraft. In the field of econometrics,

the SSM has been employed in the estimation of unobserved wage rates (Watson and

Engle, 1983), the estimation of historical unobserved trend and cycle components of the

British industrial production index (Crafts et al. , 1989) and in the seasonal adjustment

of census data (Burridge and Wailis, 1984). Business applications include inventory

control (Downing et al. , 1980), short-term forecasting (Mehra, 1979) and statistical

quality control (Phadke, 1981). In the area of policy, Harvey and Durbin (1986) report

an interesting study of the impact of seat belt legislation on road casualties. Recently

in a series of contributions, Harvey (1984, 1989) expounds on the merits, in particular

the ease of interpretation, of a class of SSM’s called the structural models over another

class of SSM’s, namely the ARMA time series models which have been popularized

by Box and Jenkins (1970). Other uses of the SSM in the statistical arena deal with

cross-validation (De Jong, 1988b) and spline smoothing (Kohn and Ansley, 1987a). An

interesting application of the SSM deals with the prediction of outcomes of National

Football League (NFL) games (Sallas and Harville, 1981, 1989).

The SSM is formally defined in Chapter 2. The definition is nonstandard in that fixed

and random effects are treated separately. The conceptual and computational advantages

derived from this definition will be displayed throughout the thesis. We demonstrate that

many practical statistical models are in fact special instances of the SSM. Consequently

they can all be treated in a unified fashion upon casting them as SSM’s. The major part

of the Chapter is devoted to a summary of the technology associated with the SSM. In

this respect we cover the statistical and computational aspects of recursive filtering (i. e.

the Kalma.n Filter), smoothing and likelihood evaluation. The concepts discussed therein

are central to the contributions presented later in the thesis.

The KF needs to be properly initialized to allow its use for maximum-likelihood-based

inference in the SSM. Chapter 3 addresses this issue for an important class of SSM’s. The
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Chapter first defines the concepts of time invariance and stationarity in the SSM context.

Thereafter, assuming that a time invariant SSM has applied since time-immemorial, we

derive closed-form expressions for the unconditional mean and covariance matrix of the

states. The results hold for both stationary and nonstationary SSM’s and are useful for

initializing both the KF and the Diffuse Kalman Filter (De Jong, 1991b) when they are

applied to these time invariant models.

In Chapter 4, we turn to the problems of the initialization of the KF and the definition

of an appropriate likelihood for the general SSM, in particular the diffuse SSM. The latter

arises when there is uncertainty about the initial state or the regression parameter in the

SSM. These diffuse situations can be handled in a unified fashion by including a diffuse

random vector (i. e. a random vector with an arbitrarily large covariance matrix) in the

SSM. However the effect of this diffuse random vector needs to be factored out prior to

any statistical inference. This leads us to the study of the diffuse and marginal likelihoods

which are both suitable pseudo-likelihoods for the diffuse SSM. We establish the exact

relationship between these two pseudo-likelihoods. De Jong (1991b) has developed an

extension of the KF, called the Diffuse Kahnan Filter (DKF), to handle recursive filtering,

smoothing, likelihood evaluation and gls estimation of regression effects in the diffuse

SSM. Using basic arguments, we demonstrate why the DKF is a natural extension of

the KF. The Chapter concludes with the presentation of two interesting characteristics

of the DKF with the class of nonstationary ARMA models. These models are often

used in socio-economic applications. We demonstrate that when the DKF is applied

to nonstationary autoregressive models, it reduces de facto to the KF after an initial

number of iterations. This “collapse” of the DKF sets the motivation for the work of the

following Chapter where we implement a collapsed form of the DKF which, for arbitrary

SSM’s, is generally not equivalent to the KF. With nonstationary mixed ARMA (p,q)

processes, we demonstrate that it is critical from a computational standpoint to restrict
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ourselves to the invertible parametrization of these models.

The implementation aspects of the DKF are discussed in Chapter 5. The starting

point is the redefinition of the diffuse SSM in such a way that the diffuse parameter vec

tor is partitioned as -y = (71; 72) with 71 and 72 being solely associated with the initial

state and the unknown regression parameter. A proper estimate of 7i is obtainable (save

for collinearity problems) after an initial number of DKF iterations and this in turn can

be used to provide limiting estimates of the subsequent states. From a computational

standpoint, this suggests collapsing the DKF, specifically factoring out those columns of

various matrices in the DKF which are associated with ‘. This collapsed DKF, labelled

the collapsed DKF (CDKF), coincides with the KF in the absence of a regression effect

in the SSM. The smoothing algorithm associated with the DKF can also be collapsed in

an analogous fashion as the CDKF. We provide the details of the intricate adjustments

required by this smoothing algorithm when it has to be switched back to the smooth

ing algorithm associated with the DKF in the pre-collapse time period. In the final

section, we collate the CDKF and its associated smoothing algorithm with alternative

algorithms discussed in the literature. We conclude that the use of the CDKF (and its

associated smoothing) algorithm can lead to appreciable computational savings since it

employs recursions of state error covariance matrices of lower dimensionalities than its

competitors.

Maximum likelihood estimation of parameters in the SSM is covered in Chapter 6. It

is well-known that maximum likelihood estimators possess such desirable properties as

asymptotic consistency, efficiency, unbiasedness and normality. The estimation method,

labelled the CDKF-EM method, embeds the CDKF within the EM algorithm, a popular

derivative-free likelihood optimization algorithm. We generalize and unify previous works

in the literature. We also propose a novel CDKF-EM algorithm specifically designed for

the estimation of the error covariance matrices in the SSM. This new algorithm is simpler
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and computationally more efficient than the general algorithm discussed in the first part

of the Chapter since it does not require the evaluation of lag one state error covariance

matrices. We illustrate the CDKF-EM algorithm using examples borrowed from the

literature. Of interest is the fact that in some cases, the new CDKF-EM algorithm

generates solutions with higher log-likelihoods than previously reported.

In Chapter 7, we explore the topic of diagnostic testing in the SSM. The KF gen

erates a sequence of uncorrelated residuals known as the innovations. The latters have

proved useful in tests of goodness-of-fit (see Harvey (1989), p256-260) but they often

fail to distinguish between outliers and structural breaks in the SSM. In that regard, it is

worthwhile to study alternative residuals. The SSM defined in this thesis employs a single

disturbance vector Ut with specific components of the latter applying to the observation

and state equations (at time t). The Chapter focusses on the study of Vt which is defined

as the predictor of Ut conditional on the whole observation set. We demonstrate that

the Vt’5 are more useful than the innovations in the detection of outliers and structural

breaks in the SSM. The Vt’S are serially correlated and we therefore consider the idea

of orthogonalizing them (in a backward direction). We conclude that these backward

orthogonalized versions of Vt merely corresponds to the innovations. This tells us that no

advantage is derived from using orthogonalized versions of Vt’S in lieu of the innovations

in statistical tests of goodness-of-fit in the SSM.

1.1 Preliminaries

For clarity and completeness, we now define the notations employed in this thesis. Matri

ces are denoted by capital roman or caligraphic characters (e. g. M, M) and vectors by

ordinary characters (e. g. v). A matrix with all entries equal to zero is written as 0, the

identity matrix is denoted by I and a vector with all entries equal to one is denoted by
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1. For (appropriate) matrix M, the determinant, the Moore-Penrose generalized inverse,

the transpose, the conjugate transpose and a Choleski root are respectively denoted by

Ml, M-, M’, M* and M’/2. For (appropriate) matrices M and N, M 0 N, (M, N)

and (M; N) respectively stand for the Kronecker product of M and N, the matrix with

column blocks M and N and the matrix with row blocks M and N.

Time series observations are denoted by yt, t = 1,. . . , n with t the time index and n

the number of observations in the dataset. We will often use the shorthand notation y

to denote the stack of observations (yl; . . . ; y). For a statistical model with parameter

vector and under the assumption of normally distributed disturbances, -2 times the

log-likelihood of y, apart from constant terms which do not depend on 0, is denoted by

or more compactly by .\(y) when the role of 0 is unambiguous.

For random variables z and y, x ([L, V) is shorthand for saying that x has mean

E(x) = u and covariance matrix Cov(x) = V whereas Pred(xly) denotes the inhomoge

neous linear combination of the components of y which minimize the diagonal elements of

Cov{x—Pred(xy)} Mse(zy). In this thesis, we often consider the prediction of a ran

dom vector Xj conditional on observation vectors (yi;. . . ; yi) and (yi; . . . ; yj. We use

the shorthand notation, Mse(&t) and Mse(t) to respectively denote Mse(xtyi; . .
. ; yt-_1)

and Mse(xty1;..
. ; yn).



Chapter 2

The State Space Model

This Chapter reviews the state of the art in state space technology and in the process

it introduces the fundamental concepts behind the contributions presented later in the

thesis. The development of the theory associated with these fundamental concepts can

be found in the lucid textbooks of Anderson and Moore (1979) and Harvey (1981, 1989).

The programme of this Chapter is as follows. The SSM is formally defined in Section

1. This definition of the SSM differs from that commonly employed in the SSM literature.

We spell out the analytic and computational advantages arising from such a definition

of the SSM. The next section describes some attractive characteristics of the SSM. In

section 3, we demonstrate that familiar statistical models in the linear models literature

are in fact special cases of the SSM. Section 4 deals with the prediction aspects asso

ciated with the SSM, namely filtering and smoothing. These operations are conducted

via a pair of recursive algorithms known as the Kalman Filter (KF) and the Smoothing

algorithm. Direct implementation of these algorithms can be numerically unsafe, specif

ically with regards to maintaining the positive semi-definiteness of covariance matrices.

An attractive solution is to employ the square root forms of the KF and the smoothing

algorithm. These propagate covariance matrices in terms of their Choleski square roots.

We describe a computationally efficient version of these square root algorithms. We also

briefly discuss a variant of the KF which is known as the Information Filter.

7



Chapter 2. The State Space Model 8

2.1 Defining the SSM

The SSM stipulates the generation of an observation process, y = (yi; y2; .. . ; y,j. In this

thesis, the SSM is defined according to the following pair of equations

= Xt/3+Ztot+Gtut , t= 1,2,...,n (2.1)

= Wt/3+Ttot+Htut, t=O,1,...,n (2.2)

The first equation is called the observation (or measurement) equation while the

second equation is known as the state (or transition or system) equation. The latter

equation specifies the dynamics of the unobserved random vector a which is known as

the state (or system vector) at time t. The term 3 represents a regression. parameter, while

the Ut’5 are serially uncorrelated disturbances with mean 0 and covariance matrix o2J.

The SSM is anchored with a = 0 thereby implying an initial state, cv1 W03 + H0u0.

The system matrices Z, G, T and H as well as the regression matrices X, W are all

assumed known.

Our definition of the SSM differs from the one commonly employed in the literature.

We label the latter definition of the SSM, the augmented SSM (ASSM) on account of

the fact that the state is augmented to accomodate the regression parameter /3. The

specification of the ASSM which is equivalent to equations (2.1)-(2.2) is,

IQt\’
!It = (Z X) I I + Gu , (2.3)

T’V at lit
I I = I II I + I I Ut, t = O,1,...,n (2.4)

/3 ) O ‘)/3) O)

The above specification of the ASSM points out that the standard approach in the

SSM literature has been to deal with regression effects implicitly rather than explicitly.
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We now spell out the advantages associated with using our definition of the SSM as

opposed to the ASSM

1. Statistical. Regression effects (X/3 and W,8) are explicitly introduced in the

model. These effects form an integral part of any statistical model and should

be handled explicitly and not ignored or removed in an ad hoc fashion from the

observations. Furthermore this feature is useful (i) conceptually, to separate fixed

regression effects from the purely random effects induced by the states, (ii) theoret

ically, to introduce diffuse parameters in the SSM and (iii) empirically, to describe,

for instance, outliers and model shifts in the SSM.

2. Computational. It will be shortly demonstrated that the performance of filtering

and smoothing algorithms depends on the size of the state. It is therefore beneficial

to keep the dimension of the state in the SSM to a minimum. Furthermore we will

argue later in the Chapter that smoothing algorithms based on the ASSM are

inefficient since the smoothed estimate of corresponds to its final estimate in the

filtering cycle and is therefore not effectively updated during the smoothing cycle.

3. Analytic. Using the same /3 and Ut in the observation and state equation is

not restrictive since through appropriate choices of X, W, G and H, different

components of 9 and Ut can be brought into either equation. This parsimony

of notation contrasts with the situation in the ASSM which in general employs

distinct regression parameters and disturbance vectors in the measurement and

state equations.

The technical material introduced in this Chapter assumes that the regression param

eter 3 is either fixed and known or random with known covariance matrix. For the latter

case (a rare occurrence in practice), it is necessary to employ the ASSM specification
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wherein /3 is included in the state. The more common cases of fixed but unknown /3 and

random but diffuse 3 require special treatment and will be covered in Chapter 4.

2.2 Characteristics of the SSM

We now list some general characteristics of the SSM. These establish the usefulness of

the model especially when viewed in the context of its specializations which are described

in the next section.

1. Dimensionality. The dimensions of the system matrices are arbitrary at each

time point except for conformability constraints. In particular, the SSM covers

both univariate and vector observations in a unified framework.

2. State. Often the state has a physical meaning. For example, the progress of a

spacecraft can be monitored using a SSM with a state whose components describe

the velocity, acceleration, coordinates and rate of fuel consumption of the space

craft. In the structural model introduced in the next section, the components of

the state describe economic constructs such as trend and seasonalities. However in

many situations, the state can only be given an abstract interpretation.

Observe that the current state embodies all the information up to the present.

Therefore “knowledge” about the state implies the redundance of storing past ob

servations. The latter aspect is a major feature of the filtering and smoothing

algorithms described later in the Chapter.

3. Dynamics. In many natural or scientific phenomena, the evolution mechanism of

the state is known to vary with time. The SSM provides a simple and elegant

framework for capturing such knowledge via time-varying system matrices and

regression matrices.
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4. Markovian Nature. The fact that the state equation is Markovian is not re

strictive. When the dynamics of the state involve multiple lags, then a suitable

augmentation of the state keeps the Markovian feature intact. As an illustration,

suppose a4 = W/3 + Ttat + Stag_i + In this case, an appropriate state

equation is,

(€+ (w (T S ( o (H
I I = I 1,8—i— I I I I i- I Ut

a ) 0 ) I 0 ) \ at-i ) \ 0 )
Kalman (1960) exploited the Markovian nature of the state equation to design the

famous recursive filter named after him, namely the Kalman Filter.

5. Non-Uniqueness. The SSM specification for a particular process is not unique.

For example if U is any orthogonal matrix, then the SSM defined in (2.1)-(2.2) is

equivalent to another SSM where Z is postmultiplied by U and W_1, T_1 and

lI_ are premultiplied by U’. Furthermore it is possible for “equivalent” SSM’s to

have states and hence system matrices of different dimensions (equations (2.1)-(2.2)

and (2.3)-(2.4) for example). Obviously from a computational standpoint, SSM’s

with system matrices of minimum dimensions are preferred.

6. Missing Data. Missing observations do not require any special handling. Stoffer

(1981) has demonstrated a “zeroing-out” strategy whereby missing components

of yg as well as the corresponding rows of X, Zj and G are replaced by zeroes

and the “revised” data are then processed in the usual manner except for a minor

adjustment in the Kalman Filter.

7. Linearity. Repeated backsubstitutions of the state equation in the observation

equation lead to y = X3 + Gu where y and U are respectively the stacks of the

observations Yt and disturbances Ut and X and G are built up from Xt, Z, W, T
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and H. This implies that the SSM is a linear model if X and G do not depend on

the data or the error terms. As such, the well-known linear model theory applies

to the SSM.

8. Data Irregularities. The transition matrices X and W are useful for intervention

purposes in the presence of outliers and structural changes in the SSM.

2.3 Specializations of the SSM

It is now shown that the SSM straddles a wide class of popular multivariate linear models,

in particular regression models with fixed, time-varying or random coefficients, time series

models and unobserved components models.

Regression Model

Consider the SSM with scalar observations Yt (generalization for vector observations is

immediate) of the form,

Yt = X/’3 + o.t, at+1 = a a + Ut

Through appropriate specifications of X and a, we immediately recognise the following

familiar statistical models

• White Noise Model: = Ut, (put X = 0, a = 0).

• Fixed Parameter Regression Model: Yt = Xj3 + Ut, (put a = 0).

• Autoregressive Model of order 1 : (yt — 3) = a (yt—i — /3) + Ut, (put X = 1).

• Regression Model with autoregressive disturbances of order 1 : Yt = X/3 + o.t

= a c + Uj, (interpret the state as the autoregressive disturbance term).
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• Random Walk with drift: Ut = 3 + Ut-i + Ut, (put X1
—

X = 1, a = 1).

The random coefficients regression model (Nicholls and Pagan, 1985) can be described

by the SSM,

Ut = Ztcit + GtU, at+i = Wt13 + Ttag + HUt

Special cases of this model include (i) the regression model with random-walk parameters

(put Wt = 0 and T I), (ii) the Return to Normality Model discussed in Harvey (1981,

p202) where the regression parameter at evolves according to (at+1 — /3) = q(at — j3) + Ut

(put W = 1 — çb, T = and H = 1) and (iii) the time-varying (but non-random)

coefficient regression model (put lit = 0).

ARMA Model

There are several advantages in casting ARMA models as SSM’s. First, scalar and vector

ARMA processes are dealt with in a unified framework. Second, their log-likelihood is

evaluated in an exact and efficient fashion via the Kalman Filter. This contrasts with

the Box-Jenkins methodology which relies on ad hoc procedures such as back-forecasting.

Third, note that through the zeroing-out strategy, missing observations do not require

any special handling.

Consider the vector ARMA (p,q) model,

Yt = A1y1+ ... + Ay_ + t + B11 + ... + Bqct_q

which following Gardner et al. (1980) can be specified as a SSM of the form,
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= (1,0,. ..,0) c , t = 1,2,... (2.5)

A1 I0...0 I

A2 0I...0 B1

= . . .
. B2 Et+1 , t 0, 1,2,... (2.6)

Am_i 0 0 ... I

Am 00...0 Bm_i

wherem=max(p,q+1),A=0, i>pandB,=0,j>q.

In this specification, the first row block of the state vector is the observation itself.

To see this, denote block component j of the state by at,,. Then by repeated backsubsti

tutions,

= Aictt_i,i + at_1,2 + 6t

= Aiat_i,i + (A2at_2,i+ at2,3 +B1c_1)+ t

= Aicvt_i,i + ... + Amat_m,i + t + B1e_1+ . .. + Bm_i€t+i_m

As stated earlier, there exist alternative specifications for the SSM. For instance, Akaike

(1975) defines a SSM where at,, (1 i m) is the (j-1)-step ahead predictor of the

process.

An immediate extension of the ARMA model is the regression model with ARMA

error structure, yt = Xj3 + Vt where the disturbance term Vt follows an ARMA process.

This model can be written as the SSM above (equations 2.5-2.6) with the regression effect

X/3 included in the observation equation and the state now interpreted as Vt. Another

extension is the mixed linear model where the random effects evolve according to an
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ARMA process. This is cast as the SSM defined in (2.1)-(2.2) with /3 and c respectively

representing the fixed and random effects and the transition equation is as defined for the

ARMA process above. This particular SSM has been employed by Sallas and Harville

(1981) for the prediction of football scores and dairy cattle breeding values.

Unobserved Components Model

The familiar time series model comprising of trend, seasonal and irregular components is

a member of the class of unobserved components models. These models arise in many ap

plications. For instance, Watson and Engle (1983) use the SSM to estimate “unobserved”

wage rates whereas Downing et al. (1980) estimate the shrinkage or loss of materials in

an inventory control system. In general, the data is used to suggest the form of the

unobserved components model but it is often possible to impose plausible models for the

form of the components. In such cases, they are known as structural models.

An interesting application of the structural model is described in Harvey and Durbin

(1986) who assess the impact of seat belt legislation on British road casualties. One of

the structural models used by the authors is of the form,

Yt = Xt/3+itt+ct+et,

Pt÷i = Wj3 + ILt + Vt + “it, (Level)

= V + t, (Local Slope)

ct = Zt7t, (Seasonality)

=

where is a local linear trend with its level and slope (Vt) determined by random

walks, ct describes aspects of the vector of the seasonal components 7t in effect at time I

(the evolution of y, being specified by transition matrix F and disturbances Wt), Ct is the
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irregular component (i. e. measurement error) and X and W are matrices of explanatory

variables such as car traffic index, real price of gasoline and indicator variables reflecting

the permanent effects (via X) or the transient effects (via W) of the seat belt legislation.

This structural model can be written as the following SSM,

Yt = X/3+(1 , 0

Pt+i W 11

Vt+1 = at+1 = 0 + 0 1 t + ?-2 Ut

7t-i-i 0 0 I’ 7-i3

The above SSM with /3 = 0 and ft describing quarterly variations will be often used in

this thesis and it will labelled the Quarterly Basic Structural Model (QBSM).

SSM’s have also been employed in the study of non-linear and non-normal dynamic

phenomena, both possibly occurring in a continuous time setting; see for example Kita

gawa (1987,1989) and Pena and Guttman (1988), with the latters employing Bayesian

concepts to propose robust recursive algorithms for these situations. A class of nonlinear

models of interest to time series practitioners is the state dependent model (Priestley,

1988) where the current state depends on its previous realizations and/or past observa

tions. Special cases include the bilinear models (Granger and Andersen (1978) and Subba

Rao, 1981), the threshold autoregressive models (Tong and Lim, 1980), the exponential

autoregressive model (Haggan and Ozaki, 1981) and the autoregressive conditional het

eroscedasticity model (ARCH) introduced by Engle (1982) and thereafter generalized by

Bollerslev (1986). Finally we also mention the seminal work of Harvey and Fernandes

(1989) who extend the SSM technology to deal with count or qualitative time series data.

Non-linear models are often of limited practical utility and furthermore their statistical



Chapter 2. The State Space Model 17

analyses are complicated and lack the elegance of their linear counterparts. This thesis

deals exclusively with the class of linear SSM’s.

2.4 The Statistics of the SSM

Statistical issues concerning the SSM include the reconstruction of the states {} and

the evaluation of the likelihood function. Estimation of the states can be achieved in

two ways namely filtering and smoothing whereby the states are respectively estimated

conditional on (Yl; y2; . . . ; yt—i) and (yr; y2;.. . ; yn).

2.4.1 Filtering

The famous Kalman Filter (Kahnan, 1960) provides a recursive algorithm for the filtering

process with the recursiveness ocurring as a result of the Markovian nature of the transi

tion equation in the SSM. Filtering can be viewed as the process of updating a predictor

in light of new information. In the Bayesian context, this is equivalent to computing a

posterior distribution given a prior distribution and the data. It is therefore appropriate

that the KF be also viewed as a Bayesian procedure; see Harrison and Stevens (1976)

and Meinhold and Singpurwalla (1983). Jazwinski (1970), Anderson and Moore (1979)

and Harvey (1981, 1989) derive the KF using the classical ideas of the Prediction or

Projection Theorem. We now state without proof the following prediction results (where

/3 is assumed known), the equations of which make up the KF.

Theorem 2.1 (Kalman Filter) Suppose y, . . . , y are generated by the SSM. Then &,

the predictor of the state t conditional on (yr, . . . , yt—i), t n + 1, and its associated

Mse matrix u2P are evaluated according to the following recursions,

et = Yt — X/3 — D = ZPZ + = (TPZ + HG)D’,
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= W/3 + T& + Ktet and Pt+1 = TPT’ + HH — KDK

with & = W03 and P1 = H0H,.

The quantities employed in the KF have physical interpretations : et is called the

innovation or the one-step ahead prediction error resulting from the prediction of yt

conditional on (yi;. . . ; yt_i) and its covariance matrix is u2D ; K is the Kalman gain

matrix and it is used in updating the estimate of the state in light of observation yt (or

equivalently the innovation et).

Some merits of the Kalman Filter are the following:

1. It is suited for on-line or real-time applications.

2. It is efficient in terms of storage : past data need not be stored ; they manifest

themselves in the estimate of the current state vector.

3. It produces minimum mean square linear estimators of the states.

4. It provides a recursive scheme for evaluating the likelihood of the SSM. (see section

2.4.3). This contrasts for example with Box-Jenkins evaluation of ARMA processes

which employs the technique of iterated back-forecasting.

5. It produces a sequence of residuals namely the innovations, et. The latters are

generalizations of the ‘recursive residuals discussed by Brown et al. (1975) in their

study of the stability of regression parameters in the fixed regression model. The

innovations represent aspects of the observation yt that cannot be predicted from

previous observations and consequently they are serially uncorrelated. The latter

property makes the innovations useful in statistical tests of goodness-of-fit in the

SSM. This topic is discussed in more detail in Chapter 7.
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A major practical problem with the KF concerns the specification of & and P1 i. e.

Wo/3 and H0. This will be resolved in the next Chapter for the class of SSM’s with a time

invariant state equation. More general cases will be dealt with in Chapter 4. Observe that

the computation of P is the most time-consuming exercise in the KF. This emphasises

the importance of keeping the dimension of the state to a minimum. In Chapter 5, we

will demonstrate that the CDKF outperforms its competitors on account of the fact that

it recurs P of lower dimensionality.

We stated previously that the “zeroing-out” strategy permits one to process missing

observations in an automatic way except for a minor adjustment in the KF. We now

discuss the details of this adjustment. The zeroing-out strategy implies that D are

singular and consequently the KF fails. In this situation, it is practical to employ a

generalized inverse Dt = J’(JDJ’)’J where J is a “selector” matrix (e. g. a permu

tation of the identity matrix) such that rank(JDt) = rank(Dt). As De Jong (1991a,

section 3) remarks and illustrates with an example, although the choice of J is imma

terial for prediction purposes, it can however affect likelihood evaluation and maximum

likelihood estimation. To avoid these irregular situations, De Jong (1991a) proposes the

consideration of the regular SSM.

Definition 2.1 Let y denote the stack of observations Yt generated by the SSM. Then

y is said to generated by a regular SSM if y = Fz where Cov(z) is nonsingular and has

the same rank as Cov(y) and F is functionally independent of any unknown parameter.

The “zeroing-out” strategy coupled with the use of Dt as defined above is implicitly

tantamount to dealing with a regular SSM with z interpreted as the stack of the non

missing elements in y. More generally, in the consideration of the regular SSM, y#, IDtI
and the log-likelihood )(y) are to be interpreted respectively as z#, IJDtJ’I and X(z).
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Henceforth in this thesis, we imply the regular SSM whenever we refer to the SSM.

In Chapter 4, we discuss the DKF, a ifitering algorithm specifically designed by De

Jong (1991b) to handle diffuse parameters in the SSM. It turns out that the DKF is

the KF with the vectors et and & turned into matrices E and A with the same row

dimensions. The DKF can be viewed as a generalization of the KF since it uses the KF

to update each column of A. The DKF therefore enjoys most of the attractive features

of the KF.

2.4.2 Forecasting

Forecasting is easily carried out with the KF. For instance, using the concept of iterated

predictions, the k-step ahead predictor of the state is,

Pred(cvt+kyl,. . .,yt) Pred{Pred(a+kyl,.. .,yt+ki)Iy1,. . .,yt}

Wt+kl!3 + Tt+k_lPred(at+k_l Ui,. . . , y)

{Wt+k_i + Tt+k_iWt+k_2 + ... + (Tt+k_l .. .T+2)W+1}13

+ (Tt+k_l...Tt+1)&t+1

The mse matrix of the k-step ahead predictor is evaluated from the prediction error,

ot+k — Pred(ot+kI Ui,.. . , ye). It follows that,

o2Mse(o+kIyl,. . . ,yt) Ht+k_1H÷k_l + Tt+k_1Ht+k_2H+k_2T+k_l +

+ (Tt+k_i . . .Tt+2)Ht+lH+l(Tt+k_l . . . T2)’

+ (Tt÷k_i .. . Tt+l)Pt+l(Tt+kl . . . Tm)’

Therefore the k-step ahead observation predictor and its mse matrix are,

Pred(yt+kIyl,.. . ,yt) = Xt+k/3+Zg+k Pred(at+kyi,. . . ,yt) and

Mse(yt+kIyi,...,yt) = Zt+k Mse(a+kyl,...,y) Z+k+o2Gt+kG+k.
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2.4.3 Likelihood Evaluation

Assuming that the disturbances Ut are normally distributed, Schweppe (1965) and Harvey

(1981), the latter employing the Prediction Error Decomposition, have shown that —2

times the log-likelihood of the SSM, apart from a constant, is

,.2) = y#loga2+ 1og IDtI + a2 eD’et (2.7)

Here 9 denote the parameters in the SSM (i. e. the system and regression matrices) and

Cov(’ut) = a21. Interestingly, the likelihood function is expressed as a function of only

the innovations et and their covariance matrices a2D. This implies that the roles of the

regression effects Xj3 and W/3 are implicitly buried within the innovations.

Assuming that a2 is known and furthermore noting that et and D are produced

by the KF, it therefore ensues that (yI&, a2) can be evaluated in a recursive fashion

by attaching to the KF the extra recursion qt+i = qt + eD’et with q = 0. If a2 is

unknown then it can be concentrated out (i. e. replaced by its mie) of the above log-

likelihood function. The nile of a2 is &2 q,f/y# and upon its substitution in (2.7), we

obtain thea2-concentrated log-likelihood, (yI9) = y# log qn+i + log

In Chapter 4, we derive two pseudo-likelihoods, namely the marginal and diffuse

likelihoods. We demonstrate that they are both equal to )(yI9, a2) plus some additional

terms. It will also be shown that diffuse log-likelihood can be evaluated in a recursive

fashion via the DKF.

2.4.4 Smoothing

The KF constructs an estimate of the state at time t using only the information available

at time t — 1. In many situations however, it is desirable to estimate the state using

the entire dataset. For instance, the common exercise of least squares estimation of the

parameters of a statistical model is tantamount to a smoothing operation. Smoothing can
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be a complicated procedure requiring in many cases the inversion of covariance matrices

of the order of the data.

The SSM however provides a framework for recursive smoothing. This feature is

again due to the Markovian characteristic of the state equation. Smoothing in the SSM

context translates to updating the ifitered estimate of the state, &, using the observation

vector (yt; yt+i; .. . ; y,) or equivalently the innovation vector (et; et+1;. . .; en). Therefore

smoothing algorithms are designed to run backward using output produced by a forward

run of the KF. Smoothing algorithms fall into three categories namely (i) fixed-interval

which assume that n, the number of observations, is fixed and t, the time index, varies (ii)

fixed-point, where t is fixed and n increases and (iii) fixed-lag, where both t and n vary.

These are all detailed in Jazwinski (1970) and Anderson and Moore (1979, Chapter 7). De

Jong (1988b,1989) makes significant contributions towards enhancing the computational

efficiency of these smoothing algorithms.

The fixed-interval smoothing algorithm, by far the most commonly used, suffices for

the purpose of this thesis. We now state without proof De Jong’s (1988b,1989) results

concerning fixed-interval smoothing.

Theorem 2.2 (De Jong, 1988b) Suppose the KF is run and for t = 1,. . . , n, the

quantities ZD’et, ZD1Z, &, Pt and L = T
— KZ are stored. The smoothing

algorithm proceeds as follows : initialize r, and R respectively as a vector and a matrix

of zerocs and for t = n, . . . , 1 run the recursions,

‘it-i = ZD1e+ Lq and Ji_1 = ZD’Z +

Then the smoothed estimator of the state at and its associated mse matrix are,

= Pred(atlyi,. .
. ,yn) = & + F’it_i and

Mse(&t) = Mse(atlyi,..
. ,y,) = (P — PR_1P).
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Furthermore, for 1 <t r n + 1, the mse matrix between smoothed estimators of the

states is,

Mse(&t, &r) a2FtL_1,(1 — Rr_iPr)

where L._1, = fl’ L with L_1, = I.

Kohn and Ansley (1989) independently derive a scalar version of this smoothing

algorithm. Furthermore, they compare the efficiency of the algorithm to an alternative

one discussed in Anderson and Moore (1979, p187) and report for instance savings of the

order of 50% in the number of multiplication and division steps for a SSM with a state

consisting of 15 components. This is not surprising since the above smoothing algorithm

avoids further matrix inversions following the forward KF pass.

An interesting method to compute Mse(&t_i, &) is provided by Watson and Engle

(1983). They augment the state c by at_i, redefine the transition equation appropriately

and thereafter run the KF and smoothing algorithm. This method automatically yields

u2Mse(&t_i, &) as the off-diagonal matrix block of the mse matrix of the smoothed

estimate of the augmented state. This approach is however computationally inefficient

due to the dimensionality of the augmented state.

Two computational drawbacks of the ASSM are vividly portrayed in the smoothing

exercise. First, the smoothed estimate of 3 corresponds to its final estimate obtained

in the KF and hence it is effectively not updated during the smoothing cycle. Second,

the augmented state in the ASSM implies that a smoothing algorithm will require more

data storage than a smoothing algorithm based on the SSM described by (2.1)-(2.2).

These properties make smoothing algorithms based on the ASSM patently inefficient. A

numerical illustration attesting for this fact is provided in Chapter 5.

To conclude this subsection, we mention that the smoothing algorithm described in
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Theorem 2.2 is easily extended to handle diffuse parameters. This extended smoothing

algorithm will be discussed in detail in Chapter 4.

2.4.5 Information Filter

When there is uncertainty regarding either the initial state or the regression parameter

in the SSM, it is common practice to initialize the KF with a large P1. This method,

which is commonly known as the “big k” method, is inexact and can furthermore be

numerically unstable ; see Chapter 4 for an illustration. The numerical problems can

sometimes be avoided by using the Information Filter (IF) which differs from the KF in

that it recurs the inverse of P. The IF is easily derived from the KF using the well-known

Matrix Inversion Lemma ; see Anderson and Moore (1979, p139).

The IF has some serious shortcomings vis-a-vis the KF. For example, it does not

follow that generalized inverses of the covariance matrices can be readily employed if

these matrices are singular. For instance, Ansley and Kohn (1985b) remark that the

IF breaks down for a large class of ARMA models. Furthermore, the IF is numerically

inefficient, requiring the inversion of large covariance matrices when observations Yt are

of a multivariate nature. Applications of the IF can be found in Kitagawa (1981) and

Sallas and Harville (1988) which both deal with nonstationary time series models.

2.4.6 Computational Aspects

Direct implementation of the KF may lead to asymmetric or even negative definite co

variance matrices due to rounding errors. These problems can be circumvented through

the propagation of Choleski square roots of these covariance matrices. A survey on square

root filtering is provided in Anderson and Moore (1979, p147-162). The following efficient

square root form of the KF is due to De Jong (1991a).
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Theorem 2.3 (Square-Root Kalman Filter) The Kalman Filter described in Theo

rem 2.1 can be generated as follows : let U be such that UU’ = I and

IZtPh/2 ID O’
I IU = I I (2.8)
TP”2 H) K p)

with 13 of minimal column dimensions and with the same row dimension as Z. Then

D = D2, P = P’f and K KD and &t+ = W/3 + T& + KD(yt — X/3 — Z&).

The orthogonal matrix U may be obtained by various means, for example Givens rota

tion, Householder transformation or the QR algorithm as it is commonly known. All

the computations reported in this thesis are based on square-root algorithms with the

QR algorithm as their core component. The computer codes were written in the APL

language and run on an AT-type microcomputer. The codes for the QR algorithm were

taken from Heizer (1983).

The square-root form of the smoothing algorithm follows the same concept as the

square root KF. In particular, it only suffices to propagate R in square-root form. Thus

for t = n+ 1,. . . , 1, we find an orthogonal matrix U such that (D”2Z)’, (RI2L)’U =

D1/2
.1

2.5 Summary

We have demonstrated the versatility and usefulness of the SSM. The importance of

treating fixed effects separately from random effects has been emphasised. Statistical

inferences in the SSM can be achieved within the unified framework of the KF and the

associated smoothing algorithm. A major problem with the KF concerns its initialization.

This problem is dealt with in the next Chapter for the special case of S SM’s with a time

invariant state equation. The issues of how to handle diffuse initial states and regression



Chapter 2. The State Space Model 26

parameters in the SSM are covered in Chapter 4. In particular, it will be shown that

these diffuse situations can be handled by a generalization of the KF technology reported

in this Chapter.



Chapter 3

Time invariance and Stationarity in the State Space Model

Most practical time series models have time invariant parameters. ARMA models and

structural models are typical examples. In their study of ARMA models, Box and Jenk

ins (1970) consider the concept of stationarity and use it to develop such analytic features

as the unconditional mean and variance of the ARMA process. The work in this Chapter

extends these features to a more general class of SSM’s, namely those with a time in

variant state equation. The results are useful for initializing both the KF and the DKF

when they are applied to such SSM’s.

This Chapter is divided as follows. The concepts and definitions of time invariance

and stationarity within the SSM context which were originally devised by De Jong (1991c)

are reported in section 1. This section describes and investigates consequences of these

definitions. We derive the necessary and sufficient conditions for stationarity in the SSM.

These generalize the well-known conditions for stationarity in ARMA models. Section 2

deals with the evaluation of the unconditional mean and covariance matrix of the states

for the time invariant SSM assuming the latter has applied since time immemorial. Four

applications are reported. The Chapter concludes with an Appendix containing all the

technical proofs.

3.1 Preliminaries

Definition 3.1 The SSM is said to be time invariant if for t = 1,... ,n, W = W,

T = T and ii = H in the state equation (2.2).

27
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Remarks

1. The above definition does not say anything about Wo, T0 and H0 ; in particular

they may differ from the subsequent values of these same matrices.

2. Time invariance does not impose any conditions on the observation equation.

3. Time invariance implies that T is square. This follows since if T is a p x q matrix

with p q, then T+1 must have p columns thereby implying that T is not time

invariant.

Definition 3.2 The SSM is said to be stationary if it is time invariant and both E(ct)

and Covfrxt) are invariant to t.

This definition of stationarity parallels the definition of second-order or weak station

arity used in the ARMA model literature. Weak stationarity assumes that the autoco

variance function is a function of the lag between the arguments. In the case of stationary

S SM’s, this assumption translates to the following result.

Lemma 3.1 For a stationary SSM, Cov(at, at_s) = TCov(ot) , 0 .s t.

Proof. The result is obvious for s = 0. For s > 0, observe that

at = (I + T + T2 + . .. + T’)W/3 +T8at_ + (Hut_i + THu_2+ ... + T8_lHut_8)

and hence Cov(at, at_8) = T8Cov(crt_8)=T8Cov(at).

The following Theorem states the necessary and sufficient conditions for stationarity

in the SSM.
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Theorem 3.1 The SSM is stationary if Wo and H0 are such that W0/3 = Wj3 + TW0/3

and H0H = TH0H0T’+ HH’.

Proof. Suppose Wo and H0 are as specified. Then E(a2) = W/3 + TWoI3 = W0/3

and cr2Cov(c2)= TH0H0T’ + HH’ = H0H. Clearly for t > 2, E(ot) W0/3 and

Cov(crt) =a2H0Hwhich are both invariant to t. Conversely if W0 and H0 do not satisfy

the given relations then E(cr2) Wo3 = E(ai) and Cov(o2) rHoH = Cov(ai) and

hence the SSM is not stationary. •

The equations W0/3 = W/’3 + TW0/3 and H0H = TH0H0T’ + HH’ need not have

proper solutions for Wo or H0. This is the case, for example when T, H and W/3 are

all equal to one. Furthermore note that these equations do not appear to bear any

connection to the Box-Jenkins approach where stationarity conditions are couched in

terms of roots of polynomials. However a consequence of the next result, which gives

necessary and sufficient conditions for the existence of proper solutions and hence for

stationarity, is that these two approaches do in fact coincide for the ARMA model. The

result is stated in terms of the eigenvalues of T. An eigenvalue of T is called stationary

if it has modulus less than one; otherwise it is called nonstationary.

Theorem 3.2 The equation W0/3 = W/3 + TW0I3 has a solution for Wo if (W3)’x = 0

whenever T’x = x. The equation H0H = TH0H0T’ + HH’ has a solution for H0 if

H’x = 0 whenever x is an eigemvector of T corresponding to a nonstationary eigenvalue.

The proof is given in the Appendix at the end of the Chapter. A sufficient condition

for both conditions in the Theorem to hold is that T only have stationary eigenvalues.

Then, as suggested by Gardner et al. (1980), Ho may be solved as vec(HoH) = {I —
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(T 0T)}1vec(HH’). Note that I — (T 0 T) is nonsingular since none of the eigenvalues

of T equals ±1.

Application to ARMA(p,q) model. The SSM specification of an ARMA (p,q)

model is given in equations (2.5)-(2.6). Recall that the determinant of a matrix does not

change if a multiple of one row is added to another row. Consider T — zI and add zI

times the first block of rows to the second block of rows leading to a second block of rows

of (A2 + zA1 — z21, 0,1, 0,. . . , 0). Repeat this procedure by multiplying the resulting

second block of rows by zI and adding to the third block of rows and so on for subsequent

row blocks. The resulting matrix has a determinant equal to

(—1)1det (A + zA_1 + ... +z1A1 — z”I)

or equivalently (—l)’’det {(—z”) (I — z’A1 —... — zA)}

The Box-Jenkins approach states that the model is stationary iff the roots (z’) of the

polynomial (I —z1A1 — ... — zA) all lie outside the unit circle. This is equivalent to

z lying inside the unit circle or in other words T has all stationary eigenvalues.

3.2 Automatic Initialization of the Kalman Filter

The KF recursion for the SSM must be initialized with the unconditional mean and co

variance matrix of the initial state. In this section, explicit expressions for these quantities

are developed for the time invariant SSM. The expressions hold for both the stationary

and nonstationary cases. In related work, Ansley and Kolin (1985a) show how to initialize

the KF for the special case of ARIMA models.

The previous section dealt with the assignment of Wo and H0 in order to induce

stationarity in the SSM. A conceptual tool to get around the explicit assignments of Wo

and H0 is to suppose that the SSM has applied since time immemorial.
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Definition 3.3 The SSM is said to have applied since time immemorial if it is time

invariant and the state equation at+1 = W,6 + Tat + Hut is assumed to hold for t =

r,. . ., —1,0, 1,. . . , n where r —* —co and a,. = 0.

The concept of a model having applied since time immemorial is exploited in the

Box-Jenkins methodology to evaluate the unconditional mean and variance of an ARMA

process. This time immemorial assumption can also be used to find the unconditional

mean and covariance matrix of the states in a time invariant SSM. We first consider two

simple classes of time invariant SSM’s.

Theorem 3.3 Suppose the SSM has applied since time immemorial. If T has all sta

tionary eigenvalues then for t = . . . , —1, 0, 1,. .. , n + 1,

E(crt) = (I — T)’W/3 and Cov(at) =

where M is such that M = TMT’ + HH’. If T has all nonstationary eigenvalues then

{Cov(at)} 0.

The proof of this Theorem is also given in the Appendix. An immediate consequence

of the Theorem is that for stationary SSM’s which are assumed to have applied since

time immemorial, the KF may be initialized with E(ai) = (I — T)1W/3 and Pi = M.

These generalize the expressions derived by Gardner et al. (1980) who assume = 0.

In general, T can have both stationary and nonstationary eigenvalues. In this case,

the time immemorial argument leads to an arbitrarily large covariance matrix for the

states. This has led to the suggestion that the KF should then be initialized either

explicitly or implicitly with a state covariance matrix of the form kI or more generally

kG + D where k is large. For example, both Burridge and Wallis (1985) and Burmeister,
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Wall and Hamilton (1986) propose taking Cov(ai) = kI with k large. In their theoretical

works on ifitering, smoothing and signal extraction, Ansley and Kohn (1985b,1987) and

Kohu and Ansley (1986) use Cov(i) = kG + D with k —* oo. De Jong (1988b,1991b)

also employs this specification. There appears to be no literature explicitly justifying the

choice of E(o1)or the use of Cov(ci) = kC+D with k large or how to actually determine

the matrices C and D. The next Theorem provides expressions for these quantities under

the time immemorial assumption.

Theorem 3.4 Suppose the SSM is assumed to have applied since time immemorial.

Thenfort=...,—1,O,1,...,n+1,

u2{Cov(ct)} = S’MS= lim(kUiU+U2MU
k—+oo

where M is such that M QMQ’ + SHH’S’. Furthermore if for given x, x’U1 = 0 then

x’E(cit) = x’U2(I — Q)SW/3

The matrices Q, 5, U1 and U2 are as follows : U is any matrix such that UTU =

diag(P, Q) where P has all nonstationary eigenvalues and Q has all stationary eigenvalues

; U = (R; 5) with S having the same row dimension as Q and U’ = (U1, (12) where U2

has the same column dimension as the row dimension of S.

Proof. Consider Ucr1 = UWI3 + UTU(Uo.) + UHut. This can be written as the

following system of equations,

= RW/3 + Pnt + RHut,

mt+i = SWJ3 + Qmt + SHut

with t = Rat and mt = Sc.
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Since P has all nonstationary eigenvalues, it follows that {Cov(nt)} = 0. The

matrix Q has all stationary eigenvalues thereby implying E(int) = (I — Q)-’SWJ3 and

Cov(mt) o-2M where M is such that M = QMQ’ + SHH’S’. These results are now

used to show

u2{Cov(cxt)} (U’{Cov(Uat)}U”) = U’{Cov(Ucxt)}U = S’MS

= lim U’diag(k’I, M)U = urn {U’diag(kI, M)U”}
k—*oo k—oo

= lim (kU1U +U2MU
k—boo

Finally, if x’U, = 0, then x’E(cvt) x’U’E(Uct) = x’{U,E(rit) +U2E(mt)} = x’U2(I—

Q)’SWI3. This concludes the proof of the Theorem. •

Noteworthy features of Theorem 3.4 are:

1. It encompasses Theorem 3.3. If all the roots of T are stationary, then U = S = I

and U, is null and the Theorem implies the well known results (Gardner at al.,

1980), Cov(crt) = u2M where M = TMT’ + HH’ and E(ot) = (I — T)’W3. If all

the roots of T are nonstationary then U2 is null, U, = I and thus {Cov(ao)} =

limk k-11 = 0.

2. A general construction for U is as follows. Suppose )q, )‘2,. . . , ) are the roots

of T with algebraic multiplicities n1,n2,. . . , n,, and where conjugate pairs of roots

are included just once and .2I ...
For i=1,2, . .

. ,p, define matrices

N as follows. If ) is real then N has n: columns spanning the null space of

(T — )iI)fl’. If \, is complex then N: has 2n columns spanning the null space of

(T2 — 2r2T + P1I2IY where r2 is the real part of . Put U—’ = (N,, N2,. . . , N,,).

The decomposition UTU’ = diag(P, Q) is called a Real Jordan Canonical form of

T (see Brown (1988), p 141-150).
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3. With U as constructed in 2., the matrix Q is block diagonal with blocks of size

n x n1 or (2nd) x (2n1) depending on whether the corresponding root is real or

complex. Accordingly, the inversions of I
— Q 0 Q and I

— Q are reduced to

inverting relatively small diagonal blocks.

4. If x = S’7 for some y, then x’E(ct) —* 7’(I — Q)-1SW3. This result is obtained

upon noting that SU2 = I and 5U1 = 0.

5. The Theorem suggests that for nonstationary SSM’s, ao may be specified as o =

U17 + a where -y and c are uncorrelated and u2 Cov() = kI with k large

and u2 Cov(c) = U2MU. This specification in turn implies the initialization of

the KF with P1 = kTU1UT’ + TU2MUT’ + HH’, where k — cc. This however

is not a satisfactory solution for it induces numerical instability in the KF. The

latter situation arises since the update of P in the KF (Theorem 2.1) may possibly

involve the difference of two large quantities to yield a required small quantity.

These numerical difficulties will be circumvented via the use of an extended KF in

the next Chapter.

6. The Information Filter sometimes serves as a useful alternative to the KF, in partic

ular when the latter is to be initiated with a large state error covariance matrix (F1),

as for instance in the case of nonstationary SSM’s. For these cases, the Theorem

suggests that a suitable initialization for the IF is P = S’M S. This contrasts

with the common practice of employing P = 0.

We now illustrate the results of Theorem 3.4 in four applications. These provide

expressions for the unconditional mean and covariance matrix of the states in the AR (2)

model and three other empirical models borrowed from the literature. As stated in point

5. above, the derived expressions are useful for initializing the DKF when it is applied
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to these models. The results for the second and third applications were obtained with

the use of software written in APL.

Application to the AR(2) model. The AR(2) model Yt = /3+ ayt_i + by_2 + ct has

a SSM representation,

(/3 (a i (i
Yt = (1, 0) o, at+1 = I I + I I at + I I €t+i

0) b 0) \0)

The roots of T are (5 = (a + v’)/2 and -y = (a — /i)/2 where d = a2 + 4b. If

both roots are stationary then M =c2Cov(at) satisfies M TMT’ + diag(1, 0) and

E(at) = /3(1 — a — b)1(1; b). When both roots are nonstationary, {Cov(at)} —* 0 and

both components of E(at) diverge. Now suppose 6 is stationary and ‘-y is nonstationary

and hence the roots are real. Define the matrix U with columns U1 = (1; —6) and

U2=(l;—-y). Put Q=6. Then

11 (5 /i \ /1 \
lim — E(ao) + /3 I I I I and
k-*ook (‘—X-y—) \ —7 )J \ —6)

2

_______

(i (1—6
lim

1T
Cov(ao)

- (1- (59(-y - 6)2 72 ) -6 62

Application to the seasonal adjustment of data. Burridge and Wallis (1985) deal

with the seasonal adjustment of U.S. employment data. Part of one of the models relates

to a cyclical component specified by

2.26 1 0 0 1

—1.52 0 1 0 —.989
W/3=O, T= 2.144O9

0.26 0 0 1 .00686

0 0 0 0 .00001
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The matrix T has a nonstationary root 1 repeated twice and stationary roots of 0 and

.26. Assuming the model has applied since time immemorial thencr2Cov(co) is of the

form

.99 —.02 —.06 0 .12 .24 .12 —.33 x iO

.94 —.24 0 .48 —.24 .67 x iO
k +

.07 0 .12 —.33 x iO

0 1x10’°

where k —+ oo. Burridge and Waffis (1985) employed Cov(co) = 10121.

Application to the unobserved components model. Burmeister, Wall and Hamil

ton (1986) apply the Kalman filter to estimate unobserved monthly inflation rate in

economic time series. One of their SSM’s has parameters

W = 0, T

= ( o),
H’ = (1,0,0,0), 2

= 1.9537 x iO

where ‘ = (.14135, .89635, —.3817, .11173). The roots of T are 0, .1905 ± .2905i, .8497

and —1.0894. Under the time immemorial assumptiona2Cov(oo) is of the form

.27 —.25 .23 —.21 .19 1.40 1.42 1.00 1.00 .70

.23 —.21 .19 —.18 1.53 1.30 1.11 .90

k .19 —.18 .16 + 1.64 1.20 1.19

.16 —.15 1.73 1.12

.14 1.80

where k —* oo. Burmeister, Wall and Hamilton (1986) used Cov(cio) = 201.

Application to panel survey data. In many applications, it is possible to directly

partition the state into a nonstationary component and a stationary component. For
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instance, Pfeffermann (1991) employs the following state-space model for the estimation

and seasonal adjustment of population means based on rotating panel surveys carried

out on a quarterly basis

Yt = (10 100 1/4 1/4 1/4 1/40 0) , t = 1,2,...

t+i = diag(T1,T2)o+et , t=0,1,2,... where

000000
110 0 0

p000 00
010 0 0

0 0 0 0 p3 0
Ti = 0 0 —1 —1 —1 T2=

OOpO 00
00 1 0 0

000001
000 1 0

010000

Var(et) diag(Vi,V2), = diag(4,cr,o,0,0) and

V2 = o diag{(i—p2)’,i,(p4+p2+1),i,0,0}

Here Ti describes the quarterly basic strtctural model reported in Chapter 2 while T2

describes the rotation patterns of the units of the panel data under the assumption that

observations from the same unit follow an AR(1) model with autoregressive coefficient p

(II < 1). Observe that Ti has eigenvalues i,i,i,—i and 0 while T2 has all its eigenvalues

equal to 0.

To initialize the KF, Pfeffermann (1991) following Harvey and Peters (1990) uses a

diagonal covariance matrix of the form diag(Pi, ‘P2) where P is diagonal with a zero

diagonal element plus four arbitrarily large diagonal elements and P2 = o(i
—
p2)’I6.

These specifications are in line with the results of Theorem 3.4. In particular, observe

that the transition matrix is already in the required “nonstationary-stationary” diagonal

form thereby implying that U = I. Thus P diag(k14,0), k —* cc and P2 satisfies

‘P2=T2P2T+ V2.
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3.3 Summary

We have derived expressions for the unconditional mean and covariance matrix of the

states in time invariant SSM’s under the assumption that the latters have applied since

time immemorial. These expressions are useful for initializating the KF. However if the

covariance matrix of the states is arbitrarily large as in the case of nonstationary SSM’s,

then the KF will fail numerically. The next Chapter demonstrates an extension of the

KF to deal with this problem. The results of this Chapter will prove useful for initializing

this extended KF for the class of time invariant nonstationary SSM’s.
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3.4 Appendix

The following Lemma and its consequences will be useful for the various proofs. Proof

and details can be found in Brown (1988).

Lemma 3.2 Every square matrix T has a Jordan Decomposition such that T’ = U(D +

K)U—’, where D is a diagonal matrix with the eigenvalues of T as its diagonal entries

and K is a matrix with zeroes everywhere except on its superdiagonal where there may

be one or more ones. The matrices D and K are related as follows if K(j, j + 1) = 1

then D(j,j) = D(j + 1,j + 1). The matrices D and U may be complex with the columns

of U being the generalized eigenvectors of T’.

Furthermore D and K have the following useful properties, (i) DK = KD, (ii)

Jm = 0 where mis the order of T and (iii) (D + K)t =Dt7’ (D-K)i.

\J)

Proof of Theorem 3.2 The equation W0/3 = W13 + TW0/3 is equivalent to

® (I — T)}vec(Wo) W/3

Clearly the equation is consistent if 3 = 0. Suppose 3 0. Then consistency results 1ff

for x 0, x’{/3’ 0 (I — T)} 0 implies x’W/3 = 0. Since 3 0, x’{j3’ ®(1 — T)} = 0

implies x’T = x’. Thus for given W, T and /3, there is a W0 such that W03 = W/3+TW0/3

if T’x = x implies (W/3)’x = 0.

Next consider w*HoHw = w*THoHTw + w*HHw for w arbitrary. Then for t 0,

w*HoHw = w*TtHoHTt+h’w + w*TtHHTt’w + ... + w*HHw
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Using Lemma 3.2, write w*TtHHITt’w as w*U_l*(D +K)*t(U*HHIU)(D + K)tU’w.

A typical entry of (D + K)tU_lw is,

A{ro+tr1/A+...+ r/Ak}

k)

where A is an eigenvalue of T and (ro, . . . , r,) are consecutive elements in U’w, with

rk 4 0 if k > 0. Thus for large t, w*TtHHTt’w is dominated by a term of the form

2

x*HHlxIAI2(t) 1 1 Irk 2

k)

where x is a generalized eigenvector ofT’ associated with eigenvalue A. If A is nonstation

ary and x*HHIX 0 then the dominating term diverges and hence the equation cannot

hold for finite H0. Thus the stated condition is necessary for stationarity.

To show sufficiency, suppose the condition holds. Premultiply and postmultiply both

sides of H0H TH0HT’ + HH’ by U* and U to yield

C = (D + K)*C(D + K) + U*HHU

where C = U*HoHU. Without any loss in generality assume D + K and U*HH!U are

arranged so that D + K has two seperate blocks each containing all the nonstationary

and all the stationary eigenvalues of T’. A solution for C is obtained by setting the

diagonal block of C corresponding to the “nonstationary” block in D + K to zero which

is possible since the condition states that the “nonstationary” block in U*HHU is a zero

matrix. The vec of the “stationary” diagonal block of C (denoted by C) can be solved as

vec(C) = {I_(L®L*)}_1vec(R) where L and Rare respectively the “stationary” blocks of

(D+K) and U*HHU. Thus U_l*diag(0,C)U_l is a solution to H0H = TH0HT’+HH’.

.
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Proof of Theorem 3.3. Consider the state equation a Wj3 + Teat + Htut where

for t> 0, W = W, T = T and H = H. Backsubstitution shows

at = (I + T + ... +Tt2)W/3 + TtW0

+ Hut.i + THu2+ . + THu1+TtHu0

and in turn this implies,

= (I + T +... + Tt_2)W/ + Tt_1W0/3 and

cr2Cov(at) = HH’ + THH’T’ +... +Tt2HH’(Tt2)’+TtH0HTt’

Clearly the behaviour of Tt dictates the convergence of E(at) and Cov(at). Observe that

rn-i I
Tt’ = U(D + K)tU_i = U{Dt > I I (DK)3}U_i

jO \ j )
Suppose T has all stationary eigenvalues. Then Dt —* 0 implying Tt = 0. Accord

ingly, using a geometric sum argument, (I + T + T2 + .. + Tt)
,‘ (I T)_’. Hence as

t —* oo, E(at) = (I + T + T2 +. . + Tt_i)W,6 + Tt_iWo/3 (I — T)W/. The limiting

covariance matrix of the state vector is such that

vec{Cov(at)} u2(I + (T ® T) + ... + (T ®T)t)vec(HH’)

As t —* oo, vec{Cov(at)} .. 2{J_ (T®T)}_ivec(HH) which is the solutionu2vec(M)

where M is such that M = TMT’ + HH’. Gardner, Harvey and Philips (1980) obtain a

similar solution. Note that (I — T) and {I — (T 0 T)} are both nonsingular since T does

not have any root with unit modulus.

Now suppose T has all nonstationary roots. Clearly (I + T + T2 + ... + Tt) di

verges and hence x’E(at) diverges for every x 0. Finally it is shown that for any

w, w*TtHH1T’tw converges to zero or diverges to +oo. Thus every root of Cov(at)
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converges to zero or diverges to +oo which implies that {Cov(at)} —* 0. Recall

from the proof of Theorem (3.2), w*TtHHIT’tw is dominated by a term of the form

x*HIIxII2(t_c) I 1 Irk 12 where x is an eigenvector of T’ associated with the nonsta
\k)

tionary eigenvalue A. As I —* oo the dominating term diverges unless x*HHfX = 0 in

which case U*HHU = 0 which in turn implies H = 0 and therefore w*TtHHT’tw = 0.

.



Chapter 4

The Diffuse State Space Model

This Chapter is concerned with the problem of diffuseness in the SSM. In this thesis,

a diffuse random variable is viewed as one with an arbitrarily large covariance matrix.

Diffuseness arises in three situations within the SSM context : (i) when the SSM is

nonstationary and is assumed to have applied since time-immemorial, a situation we

encountered in the last Chapter, (ii) when there is uncertainty about the initial state in

a time-varying SSM and (iii) when the regression parameter vector /3 is unknown ; this

covers both the cases of fixed but unknown /3 and random /3 with unknown covariance

matrix. To reflect the lack of knowledge about the parameters in the last two situations,

it is convenient to regard them as diffuse random variables. It will be shown in this

Chapter that these three diffuse situations can be addressed in a unified fashion using

a transparent generalization of the KF technology introduced in Chapter 2. In the next

Chapter, we will demonstrate that this approach, when properly implemented, is superior

in practicality and computational performance to alternative approaches discussed in the

literature.

These alternative approaches can be categorised into four methods, all of which apply

to the ASSM, which as described in Chapter 2, employs an augmented state to accomo

date the regression parameter /3. The first one, commonly known as the “big k” method,

initiates the KF with an arbitrarily large covariance matrix in order to reflect the diffuse

ness in the initial state. The “big k” method is popular in empirical works (see Burridge

and Wallis (1985) and Den Butter and Mourik (1990) for example) since it makes use

43



Chapter 4. The Diffuse State Space Model 44

of readily-available KF software. However as we will illustrate graphically later in this

Chapter, it is inexact and numerically unstable. The second method employs the Infor

mation Filter (IF) ; see Kitagawa (1981), Sallas and Harville (1988) and Pole and West

(1989). The drawbacks of the IF have already been discussed in Chapter 2. The third

method, due to Harvey and Pierse (1984), is best introduced within the sphere of the

ARIMA model. Here the state vector used is the one associated with the differenced

model (i. e. stationary ARMA model) but augmented with the first d (the order of differ

encing) raw observations. More generally, the augmented part of the state corresponds

to regression-type estimates based on an initial stretch of the raw observations. This

technique is tantamount to producing an estimate of the state in effect at time t = d

and allows one to initiate the KF at t = d where d is equal to the number of regression

estimates. The method has two drawbacks: (i) the evaluation of the regression-type es

timates can be difficult and potentially complicated and messy (e. g. with missing data)

and (ii) the excessive augmentation of the state, when the SSM also includes an unknown

regression parameter vector, makes it computationally unattractive. The fourth method,

devised by Ansley and Kohn (1985b), applies in more generality than the three methods

discussed above. Conceptually, the method amounts to removing the diffuseness in the

SSM through a data transformation and thereafter applying the KF to the transformed

data. This data transformation is achieved in an implicit fashion by a “modified” KF

which is hereafter referred to as the AKKF. However the implementation of the AKKF

can be complicated ; in particular, “existing Kalinan Filter software cannot be used”

(Bell and Hillmer, 1991).

The method used in this Chapter to treat the diffuseness problem in the SSM is due

to De Jong (1991b). It expresses diffuse aspects of the SSM via a parameter vector ,

extends the KF technology discussed in Chapter 2 to estimate -y in parallel with the non

diffuse aspects of the state and finally indicates the appropriate adjustments required
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for factoring out the diffuse effects. This extended KF, called the Diffuse Kalman Filter

(DKF), operates by applying the KF technology to each column of a column-augmented

state. The latter consists of -y +1 columns with the first columns each corresponding

to a particular aspect of and the last column corresponding to the non-diffuse aspects

of the state. The DKF is therefore a transparent generalization of the KF ; it turns a

couple of vector iterations in the KF into matrix iterations. The DKF and the AKKF

are conceptually similar since they are designed to factor out the effects of the diffuse

parameter
.

However they differ in approach: is factored out explicitly in the DKF

but implicitly in the AKKF. Although matrix recursions are employed in the DKF, it

does not follow that the DKF is computationally expensive since its performance, like

that of the KF, is significantly more dependent on the number of rows than the number

of columns in the matrices that it computes. The issue of computational comparisons is

covered in detail in the next Chapter.

In this Chapter, we address two original topics associated with diffuseness in the SSM.

First, we derive, compare and relate two alternative pseudo-likelihoods called the diffuse

and marginallikelihoods which are suitable normalized likelihoods for a SSM with diffuse

parameters. This study is useful since it allows us to relate likelihoods evaluated from

different transformations of the data. In the absence of diffuseness in the SSM, both the

diffuse and marginal likelihoods reduce to the “ordinary” likelihood defined in Chapter

2. Second, we report some interesting properties of the DKF when it is applied to the

often-used class of nonstationary ARMA models. We show that when it is applied to

autoregressive processes, the DKF collapses de facto to the KF after an initial run. With

mixed ARMA processes, we demonstrate the prudence of restricting grid-searching of the

diffuse likelihood function to the invertibility region. This avoids numerical roundoff and

overflow problems in the DKF.
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The contents of this Chapter are as follows. In the first section, the SSM is rede

fined to incorporate diffuse parameters. Section 2 is concerned with the derivation and

comparison of the marginal and diffuse likelihoods. Section 3 deals the DKF. We start

with an intuitive explanation of the concepts behind the derivation of the DKF and

thereafter we summarize the results of De Jong (1991b) concerning filtering, smoothing,

gis estimation of the regression parameter and evaluation of the diffuse likelihood with

the DKF. The results of Chapter 3 are then used to initialize the DKF for use with the

class of time-invariant SSM’s. We also report the square-root forms of the DKF and its

associated smoothing algorithm. The section concludes with a graphical illustration of

the pitfalls of employing the inexact “big k” method as opposed to an exact method like

the DKF. Section 4 illustrates the DKF with the class of nonstationary ARMA models.

4.1 Anchoring the Diffuse SSM

In order to accomodate the three diffuse situations described in the preamble, it is nec

essary to redefine the anchoring of the SSM. This will be achieved via the device of a

diffuse random variable.

Definition 4.1 A sequence of random variables {y’, 72,. . .} is said to be diffuse if

Cov(7’j is nonsingular and the sequence of inverses of Cov(7c) converges, as k —* co, to

the zero matrix in the Eucidean norm.

Remarks

1. The above definition of diffuseness translates to the assumption of a noninformative

prior in Bayesian analysis.

2. This thesis henceforth uses the expression “diffuse random vector” to refer to the

above sequence of random variables.
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Definition 4.2 The diffuse SSM (DSSM) is the SSM defined by equations (2.1)-(2.2)

with a0 and /3 now specilled as

cvo=a+A7 and /3=b+B-y (4.1)

where a and b are known, (A; B) is of full column rank, y (c,2C) with C-’ —* 0 (i.

e. 7 is diffuse) and y uncorrelated with (uo,. . . , u,j.

The above specifications are flexible: (i) if a0 is totally diffuse then rank (A) =

i. e. the number of components in a0, (ii) if cVo is partially diffuse then rank (A) < 4
and (iii) if ao is not diffuse then A is null. Similar statements apply to 3 and rank (B).

Remark

In line with Definition 4.1, a diffuse SSM is a sequence of SSM’s with each term in the

sequence corresponding to a term in the sequence {7I}.

4.2 Pseudo-Likelihoods for the Diffuse SSM

The presence of a diffuse parameter in the DSSM implies that the likelihood function

of the latter converges pointwise to zero at every possible set of values of the parameter

and it is therefore uninformative. One approach suggested to deal with this problem is

to consider a likelihood based on a SSM where and consequently the initial conditions

are fixed. However, it has been established in the literature (Tunnicliffe Wilson (1989)

and Shepard and Harvey, 1990) that this approach may lead to erroneous statistical

inferences with a high probability. This has led researchers to instead study pseudo

likelihood functions based on particular normalizations of the probability distribution of

the model. An instance of normalization is differenced data which is employed by Box and

Jenkins (1970) in the context of scalar ARIMA models. In this section, we generalize the

differencing technique and thereafter construct normalized likelihoods based on implicit
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differencing of the data.

The differencing operation effects a data transformation which results in the trans

formed data being functionally independent of the diffuse parameter. The likelihood

based on the transformed data is called the marginal (or restricted or residual or invari

ant) likelihood. The marginal likelihood was introduced by Kalbfleish and Sprott (1970)

who were interested in defining a likelihood for those aspects of the data which are in

variant to a set of nuisance parameters. These can be viewed in an analogous fashion

to diffuse parameters. Thus if the “exact” likelihood is a product of two terms each

supplying exclusive information on two different sets of parameters, one of which is con

sidered a nuisance for the estimation process, then that part of the exact likelihood which

relates to the parameter set of interest is called the marginal likelihood. Kalbfleish and

Sprott (1970) “expounds marginal likelihood as a means for treating nuisance parameters

and reducing bias in the parameters of interest” (Tunniciffe Wilson, 1989). Marginal

likelihood has been employed in the modelling of variance components (Patterson and

Thompson, 1975) and in the estimation of ARMA parameters (Cooper and Thompson,

1977). Parameter estimation based on the marginal likelihood is commonly known as

restricted maximum likelihood (REML) estimation. Both Ansley and Kohn (1985b) and

Sallas and Harville (1988) employ a marginal likelihood for estimation purposes within

the context of the SSM.

Two practical problems confront the use of the marginal likelihood. First, there is

the issue of data transformation. This can be computationally tedious and intricate (e.

g. in the case of missing observations). Furthermore although differencing is a popular

data transformation in the scalar time series arena, its application to vector time series

is still a moot point. For instance, Tsay and Tiao (1990) report that for the case of

vector ARMA processes, identification of the “genuine” nonstationary components of

the vector process is not currently feasible and furthermore differencing of the individual
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components of the observation vector is not justified and may even induce noninvertibility

in the resulting stationary model. Second, we are faced with the issue of evaluating the

marginal likelihood in an efficient manner. From our discussion in Chapter 2, we would

expect that this could be done recursively. However this is not the case since the SSM

structure is not maintained after a data transformation except in special circumstances.

For instance, a necessary condition for the implementation of the AKKF of Ansley and

Kohn (1985b) is that the matrix A (defined in equation 4.1) have a canonical form.

De Jong (1991b) has proposed an alternate pseudo-likelihood called the diffuse like

lihood which does not have the shortcomings of the marginal likelihood for it is based

on the untransformed data. Furthermore he demonstrates the evaluation of the diffuse

log-likelihood via the DKF. In the next two subsections we review the derivation of the

diffuse likelihood and establish its connection with the marginal likelihood.

4.2.1 The Diffuse Likelihood

An expression for the diffuse likelihood is best derived upon regarding the DSSM as a

linear model. It is a straightforward exercise to show that upon repeated substitutions

of the transition equation into the measurement equation and taking into account the

anchoring of the DSSM defined in equation (4.1) that the DSSM can be written as the

linear model y = X(a; b) + X(A; B)7 + Gu where y and u are respectively the stacks

of the observations and the error terms and X and G are built up from the regression

and system matrices in the model. We will find it convenient to employ the following

shorthand notations: GG’ = , X(a; b) = x and X(A; B) = X and the linear model itself

will be denoted by (y, {x, X}, G). Furthermore we remind the reader that the various

log-likelihoods (AQi), ,Xd(y) and )m(y)) employed in the thesis are to be interpreted as

-2 times the “exact” log-likelihood minus all additive constants which are independent

of the parameters. These preliminaries set the stage for the derivation of the diffuse
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likelihood.

Theorem 4.1 (De Jong, 1991b) Suppose y is generated by a DSSM with (y; u) nor

mally distributed. Then as C —* 0, )(y) — log Icr2CI converges to the diffuse log-

likelihood,

= (y# where

S = X’D’X, s = X’Yr’(y — x) and q = (y — x)’E’(y — x).

The proof of the Theorem makes use of the following Lemma.

Lemma 4.1 Suppose y is generated by a SSM with (‘y; u) normally distributed. Then

71Y N(.5’,2(C-1+ S)’) where = (C’ + S)’(C’c+ s).

Proof. That 7y is normally distributed is a well known property of the normal distri

bution. Two well-known identities are needed to prove the result. Suppose P and Q are

nonsingular matrices and R is conformable with P. Then

PR’(RPR’ + Q)1 = (R’Q’R + P’)’R’Q’ (4.2)

(R’Q’R + P’)’ = P — PR’(RPR’ + Q)’RP (4.3)

These identities are now used to derive E(71y) and Cov(71y). Under the normality

assumption, it follows that

E(7y) = E(7) + Cov(7,y){Cov(y)}’[y — E(y)]

= c+CX’(XCX’+’{y-x-Xc}

= c+ (X’’X + C’)’X’Y’(y — x — Xc) by (4.2)

= c+(S+C’)’ (s—Sc)

= (I — (C-’ + S)”S)c + (C-’ + S)’s

=
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The last equality is obtained upon noting that (C-’ + S)(I — (C-’ + S)’S) = C’.

Finally,

o2Cov(7y) = Cov(7) — Cov(7,y){Cov(y)}’{Cov(7, y)}’

= C - CX’{XCX’ + E}’XC

= (C’ + S)1 by (4.3)

This asserts the Lemma. •

Proof of Theorem 4.1. Using Bayes’ Theorem, it follows that .\(y) = )(‘y) + )(yfry) —

)(‘yy) with

= 7#log a2 +log ICI +a2(7 — c)’C’(7— c)

Mfri) = y#log a2 +log El +a2(y — x —X7)’E’(y — x — X’y)

= y#log o2 + log El +a2(q — 2s’7 +71S7)

A(-yly) = 7# log a2 — log IC’ + S + g_2(7
— )‘(C’ + S)(-y —

Following direct simplification, )(y) = (y# — 7#)log a2 + log Ia2Cl + log El + log C’ +

SI + a2(q + c’C’c — (s + C’c)’(C’ + S)’(s + C’c). Now let C —* x. Then

= )(y) — log Ia2Cl is as stated in the Theorem. •

The nile’s of y and a2 are respectively ‘ = S’s and &2 = (q — s’S1s)/(y —

7#). Subtracting log Ia2CI from \(y) is tantamount to a normalization of the exact log

likelihood to ensure nondegeneracy. The “ordinary” log-likelihood described in Chapter

2 is a special instance of the diffuse likelihood ; it is obtained upon regarding 7 = 0.
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4.2.2 Connection between the Diffuse and the Marginal Likelihoods

In this subsection, we derive the marginal likelihood and establish its connection to the

diffuse likelihood. As previously stated, the marginal likelihood is based on a transforma

tion of (y, {x, X}, G) which is functionally independent of . This data transformation is

achieved by a class of well-known lineai maps whose interesting properties are described

in the following Lemma.

Lemma 4.2 Let M = I — X[X’E’X]-’X’E’. Then (i) M is idempotent with rank

y# _y#, (ii) MX = 0 and (iii) E-’M = M’’.

Furthermore suppose N is a (y# — x y matrix spanning the rowspace of M.

Then (iv) NX 0 and (v) N’(NN’)1N 1M.

Proof. Results (i)-(iii) are direct. For the second part of the Lemma, write N = JM

where J is of full-row rank. Then (iv) immediately follows from (ii). Now let V =

N’(NN’)1N. Then

NV = NN’(NEN’)’N = N

=‘ MDV = M since N spans the row space of M

=

=‘ M’V = r’M by result (iii)

= V = E’M by results (iii) and (i)

This asserts result (v) of the Lemma. .

Corollary 4.1 For q, s and S as defined in Theorem 4.1 and N as defined in Lemma

4.2,

q — s’S’s = {N(y — x)}’(NN’)’{N(y
—

x)}.
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Proof. Direct manipulation of the pertinent quantities leads to

q — s’S’s = {(y — — x)}
—

{(y — x)’E’X}{X’E1X}’{X’E’(y — x)}

= (y — — x)

= {N(y — {N(y — x)}

with the final equality following from result (v) of Lemma 4.2.

The results of the Lemma and the Corollary are now used to establish the marginal

likelihood and thereafter connect it with the diffuse likelihood. It is critical to recall at

this stage that we are considering the regular SSM whereby y is interpreted as the stack

of non-missing elements of the observations y. This ensures that every aspect of the

non-missing data can manifest themselves in all possible linear transformations of y, in

particular Ny.

Definition 4.3 The marginal likelihood of data y is the likelihood based on the trans

formed data Ny where N is as defined in Lemma 4.2.

Theorem 4.2 The marginal log-likelihood apart from an additive constant equals,

,\m(y) = (Ny) = (y# —7#)2 + log INEN’ + (q — s’S’s)/o2.

Proof. The result follows from corollary 4.1. .

An immediate consequence of the Theorem is the following result.

Corollary 4.2 The mie of .2 is the same when it is calculated from either the diffuse or

marginal likelihoods.
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We now establish the connection between the diffuse and marginal likelihoods.

Theorem 4.3 For the model (y, {x, X}, G), the diffuse and marginal log4ikelihoods differ

by log INN’I — log IX’XI.

Proof. We first express INEN’I as follows,

INN’I = I(NEN’)’L’

= I(NN’)’N{N’(NDN’)1N}N’(NN’)’ ‘

= (NN’)2IN’MN’I’

INN’I2IN{’ —

N1N’ NE’X
= NN’j2 IX’E1X1

X’E’N’ X’1X
—1

I N
= INN’2 I I ‘(N’ X) IX’1XI

x,)
/ —1

(N\
= INN’121E1 I I (N’ X) IX’’XI

x’)
—1

NN’ 0
= INN’I2I IX’E’XI

0 X’X

= NN’I X’X’ II SI

The second equality follows from result (v) of Lemma 4.2 ; the sixth equality from the well

known formula for the determinant of a covariance matrix and the penultimate equality

uses NX = 0. Upon substitution of the above expression for INEN’I, we obtain

\m(y) = (y —7#)2+ log INEN’I + (q — s’S’s)/u2



Chapter 4. The Diffuse State Space Model 55

= (y# — 7#)c72 + log IE + log SI + (q — s’S’s)/2+ log INN’I — log IX’XI
d() + log INN’I — log IX’XI

This asserts the Theorem. •

It follows from Theorem 4.3 that the difference between the diffuse and marginal log-

likelihoods, namely log INN’l — log IX’XI, can be interpreted as a penalty term resulting

from the non-removal of diffuse effects in the SSM. The diffuse likelihood coincides with

the marginal likelihood when the SSM is non-diffuse. Hence it can be used to discriminate

between diffuse and non-diffuse SSM’s. The penalty term contrasts with its counterpart

in the Akaike’s Information Criterion where it is expressed as an ad hoc function of the

number of parameters in the model. The next two results illustrate the significance of

this penalty term in the case of time invariant SSM’s.

Theorem 4.4 If matrix N represents ordinary differencing then \m(y)

Proof. Consider the scalar model (1 — L)yt = Vt, where Vt iS an arbitrary disturbance.

This can be written as y 1Yo + v where y and v are respectively the stacks of ut’s

and Vt’S. Here X = 1 thereby implying that IX’X I n. The matrix N has dimensions

(n—i) x n with N(i,i) = —1, N(i,i + 1) = 1 and zero elsewhere. It follows that NN’

is tridiagonal with diagonal entries of 2 and subdiagonal and superdiagonal entries of -1.

It is easy to show that INN’I = n. Therefore)m(y) )d(y) as asserted. •

Remarks

1. The Theorem is easily extended to higher order differencing i. e. (i — L)dyt, d 1

and to seasonal differencing i. e. (1 — L8)yt, s i. It also extends to vector

observations Yt.
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2. The Theorem indicates that differencing of the data, whereby the differenced data

are regarded as noise, is in fact unnecessary since statistical inferences based on the

diffuse and marginal likelihoods will in fact coincide. This is verified in the following

application which uses the DKF in the context of an ARIMA (0,1,1) model.

Application to IBM stock prices. Box and Jenkins (1970) fit the model Zt

et + 0.O9et_i, t = 1,2,. . . ,369, where Zt = — Ut—i with Ut representing the closing

prices of IBM stock for the period 17th May 1961 to 2nd November 1962 (Series B). In

this situation, the diffuse and marginal log-likelihoods are respectively based on data yt

and its differenced form Zt. Using the square-root DKF algorithm (presented in the next

section), we obtain Ad(y) = 1814.9 and 2
= 52.2. These results coincide with those

provided by Box and Jenkins.

The next example links Theorem 3.4 and Theorem 4.3. It is shown that in the context

of time invariant SSM’s with state transition matrix T, the penalty term log lNN’ —

log X’X is a function of the nonstationary eigenvalues of T.

Theorem 4.5 Consider the DSSM,

Yt Ztctt+Gtut, ctt+i=Tot+Hut, t=0,1,2,...

Then the difference between the diffuse and marginal log-likelihoods of this DSSM is a

function of the nonstationary eigenvalues of T.

Proof. As a consequence of Theorem 3.4 one can write c = U17 + 4. Repeated

substitution of the transition equation into the measurement equation allows one to write

Ut = ZtTtU17+vt where Vt 15 a linear function of c4 and (u0,. . . , ut) and U1 is as defined in

Theorem 3.3. Therefore the tth row of X = ZtTtU1 = ZU1P. Matrix X also affects the
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determination of N (see Lemma 4.2). Therefore we conclude that the difference between

the diffuse and marginal log-likelihoods is explained by the nonstationary eigenvalues of

T. .

Application to scalar explosive autoregressive processes. To assess the relevance

of Theorem 4.5, consider the scalar autogressive model Yt = ayt_i + t where a > 1. In

this case, the component of X is & while an appropriate (n — 1) x n matrix N has

entries N(i, i) = —a, N(i, i + 1) = 1 and zero elsewhere. It is easy to show through direct

algebra that IX’XI =a2INN’I thereby implying that the diffuse and marginal likelihoods

differ by the logarithm of the square modulus of the nonstationary eigenvalue, a.

4.3 Statistical Inference with the Diffuse SSM

The estimation of the states and regression parameters in the DSSM requires dealing

with the diffuse parameter -y. In the initial part of this section, we demonstrate using

ideas borrowed from Rosenberg (1973) that an efficient filtering algorithm for the DSSM

is tantamount to a modified KF which estimates y in parallel with the nondiffuse aspects

of the states. We then show that the DKF of De Jong (1991b) immediately follows

from these ideas. The section ends with a summary of the results of De Jong (1991a,

1991b) concerning diffuse filtering, smoothing, likelihood evaluation and generalized least

squares estimation of regression parameters with the DKF. We also briefly discuss the

implementation of the DKF via its square-root form.

For this informal introduction to the ideas behind the DKF, we assume without any

loss in generality (a; b) = 0. The following result is useful for subsequent discussions.

Lemma 4.3 The DSSM can be expressed as Yt = X-y + Vt with X built up from the

system and regression matrices and where Vt is generated as follows,

Vt = Ztc4 + Gtut , = Ttcr + Htut where
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u_2Cov(cr) = H0H.

Proof. The proof easily follows upon repeated substitutions of the transition equation

into the observation equation. .

Now suppose the KF is applied to {Vt}. This is possible since the initial state of

this process is non-diffuse. Denote the innovations and their covariance matrices by

et = Vt — Pred(vtlvo; . . . ; Vt_i) and a2D1. Put v = (vi; . .
. ; v,j, e = (ci; . .

. ; e,) and

D = Diag(Di, . . . , D). Then the log-likelihood of v is given by,

= nlogcr2+logD +o._2eID_ie

Observe that e = Ky = K(y — X’y) where y is the stack of the ys and K is lower

triangular with ones on the diagonal thereby implying IKI = 1. It is crucial to recognise

that K is orthogonal and is implicitly produced by the KF. Furthermore,

e’De = (Kv)’D’(Kv)

= (y —X7)!KD_iK(y
— X7)

= {ACQ,, — Xy)}’{K(y — X7)}

where K = D’2K. Therefore the gls of y is obtained upon regressing ICy on KX, a

process than can be done in parallel with the filtering of v. This suggests applying a

KF-like algorithm to the augmented observation (Xe, Ut) instead of Ut alone. This is the

concept behind the DKF.

4.3.1 Filtering and Likelihood Evaluation with the DKF

This subsection summarises the work of De Jong (1991b) with regards to the use of

the DKF in filtering, smoothing, gis estimation of regression parameters and evaluation

of the diffuse log-likelihood. First consider how the diffuse log-likelihood defined in
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Theorem 4.1 can be evaluated in a recursive fashion. As Schweppe (1965) did earlier in

the derivation of the likelihood of a SSM (see Chapter 2), De Jong (1991b) exploits the

fact that = K’D’K to express S and s as,

S = X’EX = (KX)’D(KX), s = — = (KX)’DK(y — x)

In Chapter 2, we saw that the stack of innovations produced by the KF is e = K(y —

where X3 is a known mean effect. Therefore replacing /3 by (a; b) allows the computation

of f = K(y — x). Furthermore each column of KX may be computed by substituting y

by a column of zeroes and /3 by the relevant column of —(A; B). These ideas are used in

the DKF for the recursive evaluation of S and s and ultimately the diffuse log-likelihood.

We now formally define the DKF.

Definition 4.4 The DKF is the KF (see Theorem 2.1) with the equations for Ct and

& respectively replaced by

E and A+1 =

with A1 = W0(—B, b) +T0(—A, a) and P1 unchanged.

Furthermore attach the recursion Qt+i = Qt + ED’E with Q = 0 to the DKF. The

matrix Qt is of the form,

I S St

Qt=I
s q

and hence the diffuse log-likelihood as stated in Theorem 4.1 is given by,

=
—

7#)logu2+logSiI + logD +2(q+i —
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Remarks

1. The DKF turns two vector recursions in the KF into matrix recursions. Further

more evaluation of the diffuse log-likelihood is made possible upon appending the

recursion of the matrix Qt to the DKF. This contrasts with the KF where Qt is a

scalar.

2. The matrices A and B are the same matrices used in defining a0 and 3. We will

address the appropriate specification of A for the nonstationary time-invariant SSM

in a future subsection.

3. The last column of A and E are interpreted as the nondiffuse aspects of the state

and the innovation at time t.

The above ideas put us in a position to appreciate De Jong’s (1991b) results on

filtering, smoothing with the DSSM. The predictors therein are interpreted as limiting

predictors since they assume that the diffuse parameter -y is such thatcr2{Cov(7)}’ =

c-i _* 0.

Theorem 4.6 (De Jong , 1991b) Suppose y = (yi;. . . ; yr,) is generated by the DSSM.

Let (i) and it respectively denote the limiting predictors of the random variable x

conditional on (yi;. . . ; yt_i) and (yi;. . . ; y,) and (ii) M7 denote all but the last column

of matrix M. Then

= S’s, .r2Mse(5it) = 5_i

= At(—5’t; 1), o2 Mse(&t) = P +A7SA7

yt — = Et7(—5’t; 1), r2Mse() = D +

b + B’5’t, g_2Mse(t) = BSB’
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Furthermore, for 1 t r n + 1,

= F(—+1;1) and o2Mse(&t, &r) = FtL._1,(I— Rr_iFr) +Ft7SiFr7

where N_1 = ZD’E + LN and R_1 = ZD’Z + LRL

with N and R,1 equal to zero matrices, F = A +P1N_1,L = T — KZ and L_1, =
i—rr—1 T’ s1. T —

.u1 W1&n =

If St is singular then a generalized inverse (e. g. S) can be employed. The results

of the Theorem clearly generalize those described in Chapter 2 for the non-diffuse SSM.

Thus the DKF is a transparent generalization of the KF. The conceptual elegance and

the computational simplicity of the DKF makes it an attractive proposition vis a vis a

competitor like the AKKF of Ansley and Kohn (1985b).

4.3.2 Square Root DKF

The connection between the KF and the DKF makes it obvious that their square-root

forms should be similar except for differences in the dimensionalities of various matrices.

This subsection presents a slightly modified version of the square root DKF originally

devised by De Jong (1991a). The algorithm proceeds as follows,

• Step 0. Initialize A = Wo(—B,b)+To(—A,a), P H0, .\ = m = 0 and set Q to a

null matrix.

For steps t = 1,2,.. . , n do

• Step 1. Postmultiply matrix on the left with an orthogonal matrix U such that

zP”2 G D 0
U=

TP”2 H K P

and D is row-echelon with the same number of rows as Z.
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• Step 2. E D-{(XtB,yt — Xb) — ZA}, A = W(—B, b) + TA + KE

= .-\ + log D, m m + column-rank (D)

• Step 3. Update Q via an orthogonal transformation U,

(Q;E)U = Q

De Jong (1991a) shows that at the end of each iteration, D = D”2, P =

1/2 • •A = A+1 and Q = . The matrix Q has canonical form Q = {(Q,w); (O,r)}, with

a scalar. Upon multiplying Q by its transpose, we immediately recognise St = Q’Q,
St = Q’zv and q = r2 + w’w. Therefore it follows that (i) 1t = Ss = (Q’Q)Q’w =

Q’w and (ii) mô qt — sS’st = (r2 + w’w) — w’Q(Q’Q)’Q’w r2.

Step 3 in the square-root DKF devised by De Jong (1991a) is more elaborate in the

sense that the update of the (generalized) inverse of Q is achieved with an orthogonal

matrix U such that,

( Q E(Q 0

Q’- 0) W

De Jong shows that R automatically holds Q” if Q was square on the previous iteration.

If Q is not square, then its generalized inverse must be explicitly computed. This is

necessary for only a few initial iterations unless a multicollinearity problem exists. The

advantage of this approach is that 5_41/2 is immediately available in R. This “luxury”

however comes at the price of carrying out an orthogonal transformation on an augmented

matrix at each iteration.

The use of either version of step 3 depends on the purpose under consideration. If

the square-root DKF is used for likelihood evaluation and smoothing, then our step 3 is

more appropriate since only is required and therefore only one matrix inversion is

needed. However if we are interested in monitoring the behaviour of , for example in
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a study of stability of regression relationships over time, then De Jong’s version is more

appropriate.

On a final note, we mention that a square-root form of the diffuse smoothing algorithm

is identical to the one used in the non-diffuse context except for the difference in the

dimensions of the pertinent quantities.

4.3.3 Automatic Initialization of the DKF

We now demonstrate, using the results of Chapter 3, the appropriate initialization of the

DKF for the class of nonstationary time-invariant SSM’s. From Theorem 3.4, it follows

that the initial state can be written as a1 = T(U17 + c) + H’u0 where y (0, kI) with

k —÷ co and _2Cov() = U2MU. Therefore for this class of SSM’s, an appropriate

initialization of the DKF is A1 = (—TU1,a) + W(—B, b) and P1 = TU2MUT’ + HH’.

4.3.4 Pitfall of employing the “big k” method

We have emphasized the fact that the “big k” method is inexact. As previously noted, it

is nevertheless a popular approach adopted in empirical works since it employs readily-

available KF software. We now demonstrate that employing the “big k” method can

have serious consequences for all aspects of statistical inference. This can be seen by

considering the behaviour of the time series u2D, the variance of the innovations, as

evaluated in the first instance from the KF using the “big k” method and in the second

instance using the DKF. For the purpose of illustration, we consider the QBSM discussed

in Chapter 2. Recall that the QBSM is a nonstationary SSM with its state transition

matrix having four nonstationary eigenvalues each with unit modulus. Therefore for the

“big k” method, the KF is initialized with the estimate of the initial state covariance

matrix equal to kI where k is large.
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Figure 4.1: o2D evaluated vith DKF and “big k” methods.

Since the DKF can be viewed as equivalent to the “big k” method with k arbitrarily

large, one would expect o2D to be highest when the DKF is employed. However this

is not the case in Figure 4.1. This is explained by the fact that the use of the “big k”

method, with k large, is numerically unstable. Bell and Hillnier (1991) report a similar

phenomenon upon applying a modified AKKF to a seasonal ARMA model.

4.4 Characteristics of the DKF with ARMA Models

The ARMA model is a popular tool in Time Series Analysis. Box and Jenkins (1970)

have built up a complete set of statistical techniques around stationary ARMA models.

However many applications, especially those arising in the socio-economic areas, require
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the use of nonstationary ARMA models such as ARIMA models. In these situations, sta

tistical inferences have been traditionally conducted with the stationary models resulting

from iterated differencing of these nonstationary models. This practice has however been

questioned in the case of vector data by Tsay and Tiao (1990) who ultimately go on to

recommend that statistical analysis be carried using the raw data. The material in the

last Chapter and the current Chapter indicate that the DKF provides a means for statis

tical inference in nonstationary ARMA models at all levels of generality. In particular,

vector ARMA processes and data irregularity problems such as missing data are covered.

In the next subsection, we display an interesting collapsing property of the DKF

when it is applied to nonstationary autoregressive processes. The subsection thereafter

focusses on the consequences of noninvertibility on the diffuse likelihood. For ease of

presentation, we have only considered scalar ARMA models ; however generalization for

the vector models is direct.

4.4.1 Autoregressive Processes

We demonstrate in this subsection that when the DKF is applied to a nonstationary

AR(p) process, the estimate of the diffuse parameter y associated with the state a0

is in fact obtained from the first p observations (we are assuming a regular SSM i. e.

without any missing observations). This has the interesting implication that after the

th iteration, the DKF self-collapses to the KF.

Theorem 4.7 Suppose the DKF is applied to a nonstationary AR(p) process. Partition

A = (A7,at) and E = (E7,et) where at and et are vectors. Then fort > p, E7 = =

o and at and et corresponds to the limiting predictors of the state and the innovation at

time t.
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Proof. Consider the AR (p) model, Ut = aiyt_i +. . .+apyt_p+ft, t 1. Upon repeated

substitutions, one can write y = (yi; . . . ; yr,) as y = Ayt + BE where yt
= (Ui;... ; y,,) and

= (ti; . . . ; c,,). Hence all the diffuse aspects of the process can be efficiently inferred

from yt only and this in turn implies that S and s attain their final values after iteration

p of the DKF. Since S is a positive semi-definite matrix, it then follows that for t > p,

E7 and in turn A7 are matrices of zeroes. Consequently, for t > p, at and et must

correspond to the limiting predictors of the state and the innovation at time t. .

Remark

The Theorem asserts when the DKF is applied to nonstationary AR (p) processes, it

collapses de facto to the KF i. e. at t = p + 1, we can reinitialize A = (0, at) and Qi

by at and q,,÷ —sS1s÷1,update the diffuse log-likelihood by log IS+iI and then

run the KF for t p + 1. Hence this collapsed DKF is as computationally efficient as

any alternative algorithm proposed in the literature (such as those described in the next

Chapter).

The de facto collapse of the DKF to the KF occurs whenever the diffuse aspects of the

SSM are completely determined by an initial stretch of the observations (yl; . . . ; Urn) (say)

in which case A = (A7,at) = (0, at) for t > m. Whether A exhibits such a behaviour in

other SSM’s is a moot point. It is an easier task to find SSM’s which do not lead to such

At’s. Consider the following two examples. First, suppose the SSM contains a diffuse

regression parameter 3. In that case, the optimal estimator of /3 is based on the entire

observation set and hence A7 does not necessarily stay a zero matrix. Second, consider

a nonstationary mixed ARMA (p,q) process. This can be written as y = Ayt + Be + Cet

where y, yt, and e are as described in the proof of Theorem 4.7 and e = (ei_; . .. ; co). In

this case, the diffuse aspects of the process are captured in both yt and et. The optimal
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estimator of Et requires the entire observation set y and consequently Ar.., 0.

Remark

Since it is often possible to approximate a mixed ARMA process by a relatively low order

AR process, we would expect, in view of Theorem 4.7, the entries of the matrices E7 to

be close to zero after an initial number of DKF iterations. Therefore we expect St and

st to substantially attain their their final values in the early iterations of the DKF.

The next Chapter focusses on the computational aspects of the DKF. The work

therein is motivated by the results in this subsection. In particular, it is shown that after

an initial run, the DKF can always be switched to a KF based on the ASSM (i. e. the

SSM with augmented states). This KF is however not computationally efficient due to the

dimensions of the states. This leads us to consider a collapsing strategy which consists of

reducing the column dimensions of pertinent matrices in the DKF. This collapsed DKF

is shown to outperform the competition.

4.4.2 Mixed ARMA Processes

Box and Jenkins (1970, p198-199) observe that a stationary ARMA (p,q) model may

have up to 2’ representations thereby implying that the processes described by these

representations have the same autovariance function. Therefore these processes must

also share the same likelihood function and consequently they also generate one-step

ahead prediction errors with identical means and variances. Osborn (1976) argues that

due to roundoff errors, grid searching of likelihood values across the parameter space

must be restricted to the invertibility region. This invertibility property is satisfied by

only one of these 2’ parametrizations of the ARMA model. For completeness, we now

define the concept of invertibility.
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Definition 4.5 The ARMA (p,q) process a(L)yt = b(L)e, where L is the lag operator

(i. e. Lx = Xt_i) and a(.) and b(.) are polynomials of order p and q in L, is said to be

invertible if the roots of b(L) = 0 lie outside the unit circle.

In this subsection, we demonstrate that the above remarks transcends to nonstation

ary ARMA processes with the diffuse likelihood used instead of the “exact” likelihood.

We show how roundoff errors arise in the DKF and therefore stress the prudence of

keeping to the invertible region while grid-searching the diffuse likelihood function.

Theorem 4.8 Up to 2q parametrizations of a nonstationary ARMA (p, q) process share

the same diffuse likelihood function.

Proof. It suffices to consider an MA (q) process, since the nonstationary ARMA

(p,q) process, a(L)yt = b(L)e can be viewed as Zt = b(L)e with Zt = a(L)yt. Suppose the

model is invertible with the roots of b(L) (possibly complex) denoted by 9,,j = 1,. . . , q.

The spectrum of z = (zi;..
. ; z) is given by,

=

=
2 + 8jexpiAi 12

=u2fJ(1+82+2OcosXj)

When 8 is real, it follows that

1 ++2S3cosAj 8(1 + (1/8)2 +2(1/83)cos)j)

This asserts that the spectrum is invariant to root ffippings. Since the spectrum stands a

1:1 relationship with the autocovariance function, this implies that the latter and hence by
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extension the diffuse log-likelihood is invariant to possibly 2q different parametrizations

of the ARMA (p,q) process. •

Theorem 4.8 implies that an identification problem is likely during grid-searching of

the diffuse likelihood function. Restricting the grid-searching to the invertibility region

avoids this identification problem. However a more consequential argument to keeping

to the invertibility region is that the evaluation of the diffuse likelihood of nonstationary,

noninvertible ARMA processes is prone to acute roundoff errors. To see this, write the

ARMA model as, in the previous subsection, y = Ayt + B + Ce. Then it is easy to see

that in this context, roundoff errors are likely to arise since when t is sufficiently large,

the entries of the ttIz row of A, B and C diverge.

We now illustrate with a simple example how the evaluation of the diffuse likelihood

of noninvertible processes is plagued by overflow problems when the DKF is employed.

Consider the ARIMA (0,1,1) process itt = itt_i + €t + b€_1, where the disturbances Ct’S

are serially independent with mean zero and variance v. Assign b = 8 (8 < 1) and

v = ,.2 for the invertible model and b = 1/8 and v = u22 for the noninvertible model.

Upon assuming that this process has applied since time-immemorial, it follows from

Theorem 3.4 that the stack of observations can be written as y = 17 + (1, 1)a + Gu,

where u_2Cov(a) = {(1, —1); (—1, 1)} and G is lower-triangular with diagonal entries

of one and subdiagonal entries of (1 + b). The “non-diffuse” portion ofcr2Cov(y) is E =

2(i, 1)Cov()(1, 1)’ + GG’ = GG’. This implies [>D = 1. Upon direct manipulation,

it can be shown that S(b) = 1’(GG’)’l’
=

b (here y# = 1) where 5(b)

is S evaluated with MA coefficient b. Let C(b, v) denote the sum of square of errors

q — s’S’s evaluated with parameters b and v. Then it is easy to deduce that C(8, 2) =

82C(8,82o2). Therefore, after noting that log E = 0 independantly of the value of b,
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we obtain

y#_1

)d(yI8_l,82J2) = (y#
— 1)log(822)+log 0 + (9u)2C(91,62o2)

y# —1

= 2(y#
— 1)logS+ (y#

— 1)log2+log6_2#_1) 2t

+ (0o202C(0,2)
y# —1

= (y—1)log92+log >
= A’(yI6,2)

as asserted in Theorem 4.8. Observe however that with the noninvertible process, S

blows up and this makes computations in the DKF unsound. This demonstrates the

prudence of restricting ourselves to invertible ARMA models.

4.5 Summary

In this Chapter, we have treated the problem of statistical inference in the DSSM. We

have demonstrated that recursive ifitering, smoothing, evaluation of the log-likelihood

and the gis estimation of regression parameters can be carried out with a transparent

extension of the KF labelled the DKF. We have considered the merits of the diffuse

and marginal likelihoods as suitable pseudo-likelihoods for the DSSM. We displayed two

interesting characteristics of the DKF when it is applied to nonstationary ARMA models.

First with autoregressive models, the DKF is shown to collapse de facto to the KF after an

initial number of iterations. Second we have stressed the prudence of restricting the grid-

searching of the diffuse likelihood function to the invertibility region. This is necessary

to avoid numerical roundoff and overflow problems. The work in the next Chapter is

motivated by the collapsibility property of the DKF. There we show a means of forcing

the collapse of the DKF, which for arbitrary SSM’s, is not necessarily equal to the KF.
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Efficient Algorithms for the State Space Model

In this Chapter we show that the DKF, when properly implemented, is superior in per

formance to alternative algorithms proposed in the literature for the purposes of ifiter

ing, smoothing, likelihood evaluation, gis estimation of regression effects and diagnostics

generation in the DSSM. This may appear surprising since the DKF has two apparent

shortcomings : (i) the vector recursions for Ct, & and the scalar recursion for qt in the

KF are replaced by matrix recursions and (ii) it does not immediately provide limiting

predictors of the state or estimates of the regression effects.

The alternative approaches to the DKF do not suffer from these shortcomings since

they apply the KF to all but an initial stretch of the observations. Ansley and Kohn

(1985b,1990) switch from their modified KF (hereafter called AKKF) to the standard

KF after an initial startup period whereas Sallas and Harville (1988) and Pole and West

(1989) both initially use the Information Filter (IF) and thereafter switch to the KF. In

both cases, the switch to the KF is explained by the fact that once a proper estimate of

the diffuse parameter -y can be constructed (from an initial stretch of the observations)

then it can subsequently be used to construct limiting predictors of the states via the

KF. This concept is evident in Harvey and Pierse (1984) and Bell and Hillmer (1991)

they both deal directly with the diffuseness problem by using an initial stretch of the

observations to construct regression type estimates for initializing the KF used for the

subsequent stretch of the observations.

It therefore appears that the usefulness of either the AKKF or the IF is confined to

71
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providing estimates for initializing the KF used thereafter. Since the DKF achieves the

same objectives as the AKKF and IF, it is of interest to study the merits of switching

from the DKF to the KF after a sufficient number of iterations. De Jong (1991a, 1991b)

provides the implementation details and discusses the utility of switching from the DKF

to the KF. The latter is based on a SSM with states augmented by the diffuse parameter

7.

We maice several contributions in this Chapter. In section 1, we demonstrate that

without any loss in generality, the SSM can be defined with the diffuse parameter 7

partitioned as 7 = (71; 72) where yi and 72 are respectively the diffuse effects associated

with the initial state and the regression parameter. With this redefined SSM, we argue in

the following section, that from the standpoint of likelihood evaluation, De Jong’s collapse

of the DKF to the KF only necessicates the augmentation of the states by 72. This KF,

which we label the Augmented KF (AKF), coincides with the alternative algorithms to

the DKF (discussed above) since these are based on the ASSM wherein the states are

augmented by the regression parameter 6. We next show in section 3 that an analogue

to the AKF is a column-reduced DKF, labelled the collapsed DKF (CDKF), where the

appropriate submatrices of A, E and Qt associated with 7i are partialled-out after an

initial stretch of the observations has been processed. Both the AKF and CDKF coincide

with the KF in the absence of a regression parameter in the SSM. Square root forms of

the AKF and CDKF and their associated smoothing algorithms are also described in

these two sections. Section 4 is devoted to the comparison of the computational aspects

of the DKF, AKF and CDKF. We conclude that the CDKF is generally more efficient

than either the DKF or the AKF since (i) it employ matrices A, E and Q with lower

dimensionalities than the DKF and (ii) it recurs mse matrices P of lower dimensionalities

than the AKF. This tells us that the performance of filtering and smoothing algorithms

is significantly more affected by the number of rows than the number of columns in their
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pertinent matrices and thereby validates our reservation (see Chapter 2) on incorporating

a regression parameter within the state, as in the ASSM specification.

5.1 The Canonical Form of the Diffuse State Space Model

In the previous Chapter, the DSSM was anchored with co = a + A7 and 3 = b + B7

with (A; B) of full column rank. The following result shows that without any loss of

generality, (A; B) may assume a canonical structure.

Lemma 5.1 The DSSM (see Definition 4.2) can be transformed such that (A; B) has

the canonical structure {(A1 A2); (0 B)} where A1 and B respectively have the same row

dimensions as A and B.

Proof. There exists a nonsingular matrix Q such that (A; B)Q has the stated canonical

structure. The effect of Q is undone upon reinterpreting 7 as Q—’-y. .

The canonical structure on (A; B) often arises naturally; therefore it is rarely neces

sary to determine the transformation matrix Q. In most applications, A2 = 0 but this

does not necessarily entail further simplifications of the results reported in this Chapter.

Also note that the theoretical results developed in the previous Chapter are unaffected

by nonsingular transformations of the diffuse parameter
.

Henceforth the DSSM will

always be anchored with,

a0 = a + (A1,A2)(71;72) and /3 = b + (0, B)(-yi; 72)

Consequently, 7i and 72 can then be viewed as the diffuse parameters associated respec

tively with the initial state and the regression parameter. The next two sections discuss

two ramifications of partitioning 7 in such a fashion.
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5.2 Switching from the DKF to the KF

De Jong (1991a) rewrites the DSSM as,

I
Yt = Xb+ (Z,XB) + Gtut (5.1)

\7)

Iat+i \ IW’ IT WB’\ fat’ (iit’
I I = I I b+ + Ut (5.2)

7 ) 0) I R7) 0)

This is a SSM with states augmented by the diffuse parameter -y. Clearly if (&t; ) is

available and corresponds to the limiting predictor of (at; 7) using (yi,.. . , yt—i), then

subsequent iterations of the KF (applied to (5.1)-(5.2)) yield (&r; r), r > t and the

associated error covariance matrix.

Since B = (0, B) where the zero matrix consists of columns, it follows that the

first columns of both XB and WB only contain zero entries. Consequently 71, apart

from being captured in the initial state cr1, does not figure in either Yt or at and hence it

need not be accomodated in the augmented state in (5.2). In essence then, the omission

of 7i from the augmented state has no repercussion with regards to likelihood evaluation

or prediction in the SSM. This observation leads us to the definition of the Augmented

KF (AKF).

Definition 5.1 The AKF is the KF applied to the SSM,

Yt = Xb+ Z6 + = VVb+ 76 +‘1-tu where (5.3)

(T WZ3’ (lit
I,Wt=l I’=I I and t=l

\72) \O) 0 I )
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Remarks

1. The AKF coincides with the alternative KF-based algorithms listed in the preamble

since these are based on the ASSM wherein the regression parameter is incorporated

within the state.

2. The AKF coincides with the KF when 3 is null.

3. When ‘y’ 0, it ensues that the state in (5.3) has -y less components than the state

in (5.2). Consequently the AKF will outperform the KF based on (5.1)-(5.2). The

computational savings can be appreciable, as for instance with monthly seasonal

data when y 11.

4. The AKF does not update the estimate of ‘. However Pred(7iy1;..
. ; y) is

sometimes required for smoothing purposes. The reconstruction of this estimator

is dealt with in the proof of Theorem 5.2.

We now turn to the problem of the appropriate initialization of the AKF. This requires

the construction of the limiting predictor of the augmented state and its associated error

covariance matrix at the point of collapse.

Theorem 5.1 Suppose y is generated by the DSSM. Apply the DKF and partition,

(Sm Sm
Am = (Am7,am) and Qm = I

s q,

Suppose Sm is nomsingular and for t > m, replace B = (0, B) by B and run the AKF

initialized with

( &m ‘ ( am ‘ ( Am-y
‘ -1

= I 1=1 11 I5mm and
‘\7m,2 ) \ 0 ) \ {O,—17#} )
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-2
(Pm + Am7S;’A Am7S

= o• Mse(6) = I
1 _S*21A1 S22\ m m in

where S denotes the last columns of 5;’ and S =t2Mse(,2)is the bottom

diagonal block of order 4L of S;’. Then subsequent recursions of the AKF yield the

limiting predictor of 6, I > m and its error covariance matrix.

Furthermore if the recursion q+1 = q + eD1’et where et is the innovation at time t,

Cov(et) = a2Dt and q = q — sS;’s is attached to the KF, then —2 x the diffuse

log-likelihood, apart from a constant, is given by,

= (y# — 7#)logg2+log ISmI + slog IDtI +

Proof. It follows from Theorem 4.6 that 6 is the limiting predictor of and that i’ =

o2Mse(Sm). Therefore subsequent iterations of the AKF yield the limiting predictor of

S, I> rn and its error covariance matrix. The second result is obtained as follows. Let

C =cr2Cov(7) —* oc. Then

= A(y)—logo2CI

= {(yi,...,ym_i)—logI2CI}+(ym,...,yny,,...,ym_i)
rn—i

—* [{(yi;... ; — 7#}logj2+log ISmI + log IDtI +2q,j

+

=

This completes the proof of the Theorem. •

With scalar observations, the switch from the DKF to the AKF can take place at the

earliest when m = 1 + in which case q = 0. This will be the case when each iteration

of the DKF leads to the identification of a separate component of
.

This however is not
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the case in general. For instance if for 1 <t 7# either of Z or X or W is equal to a

zero matrix then more than 7# iterations of the DKF will be required to identify 7 and

in this case q,, 0. With vector observations, fewer than iterations may be needed

to identify
.

The AKF has three attractive features vis-a-vis the DKF. First, it automatically

generates (i) limiting estimates of the states and the innovations and (ii) gls estimates of

the regression parameter ; with the DKF, such estimates are only obtained after further

computations. Second, it employs a scalar recursion for q as opposed to the matrix

recursion for Qt in the DKF. This implies that y#ô.2 = q1 can be read off from the

AKF ; this compares with the DKF where extra computations are required to evaluate

the same estimate. Third, it is numerically more stable than the DKF since it does not

recurs S. The latter was shown to explode when the DKF was applied to nonstationary

noninvertible ARMA models. These advantages are however overriden by the fact that

the high climensionality of the augmented state implies time-consuming computations of

crucial matrices in the AKF, in particular the computation of the state error covariance

matrix o2Pt. This fact will be highlighted during the discussion on the efficiencies of

collapsing strategies in section 5.4.

The square root form of the AKF is as described in Theorem 2.3 except for the

modified system matrices which are specified in (5.3) . The next Lemma describes the

safe computation of its initializing quantities (i. e. 6,,,, P,,/2 and )) using output generated

by the square root DKF.

Lemma 5.2 Suppose the square root form DKF described in section 4.3.2 is run un

til say t = m when rank(Q) = + Write (i) Q’ = {(Q,w); (0,r) where Q =

{(Q11,Q12); (0, Q22)} with Q11 and Q22 both square matrices with respective order y

and -ye, w is a vector and r is a scalar and (ii) Am = (Am7,am) = (Ami, Am2, am) where
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am is the final column of Am while Ami consists of the first columns of Am. Then the

reinitializations described in Theorem 5.1 can be evaluated as follows :

— ( &m — (am “ ( Am7
-13m

— I ii ii iQ W,

7m,2 ) 0 ) \ {0,—17#})

pi/2

= ((p1112, AmiQ)U Am7S*2

0

= r and \€—A+logQ

where U is an orthogonal matrix, (P,,/2,AmiQ’)U has no trailing zero columns and

c’*2 — I t—ii f—i. ç’—i
— -12.22 , -22

Proof. With matrix Q’ as stated, it follows that

(Sm QQI(Q o(Q w(Q’Q Q’w

k. s q ) w’ r ) \ 0 r ) \ w’Q w’w+r2

Therefore ISmI = 1Q12 and q — sS;’sm = r2 and these assert the reinitialization of X

and The expression for L ensues upon noting that S;’sm = (Q’Q)1Q’w = Q1w.

Using the canonical expression for Q it follows that,

S;;;1 =
= ( Qr —Q11Q12Qj ) ( -1

o )0 —Q22 Qi2Q11 Q22

/ ,-—1ç—1’ I r—lç ,,—1,-,—l’rv ç—1’ ,——1r ,—1t---1’
-11 -11 1 ..12 -‘22 22 -12 -iii — -ii 412 -22 22

I —1 (—i (I ,—1 j—1’
— 22 -22 -12 11 -22 -22

It is then a direct task, using this expression, to verify that Pj2 when post-multiplied

by its transpose equals Pm as specified in Theorem 5.1. .

It is clear that for I m, the smoothing algorithm associated with the KF (see

Theorem 2.2) can also be used in conjunction with the AKF provided that the pertinent
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matrices are appropriately redefined. This smoothing procedure is however not efficient

since it entails the redundant smoothing of 72. This is explained by the fact that 72 can

be viewed as a (diffuse) regression parameter and hence its smoothed estimate coincides

with the final estimate provided by the AKF. An extra drawback arises when t < m

since & is not available then. Thus for t < m, we need to revert to a diffuse smoothing

algorithm. The following Theorem specifies the necessary adjustments for extending the

smoothing algorithm associated with the AKF to a diffuse smoothing algorithm.

Theorem 5.2 Suppose the DKF is switched to the AKF at t = m and for t rn, run

the smoothing algorithm described in Theorem 2.2 using AKF-derived data. Partition

Tlm—i = (ni; n2) and Rm_i = {(R11,R12); (R21,R22)}, with n1 and R” cr2Cov(n1)of

the same order as the unaugmented state cm. Fort < m, carry the modified recursions

N_1 = ZD’E + LN and R,_1 = ZDZ +

where Nm_i = (0, ni) with matrix 0 having 7 + columns and R_1 = R11. Then

for 1 t < r m, & anda2Mse(&t,àr) are respectively given by,

Ft(w; 1) and PtL._1,(I— Rr_iPr) +F7WF,7 PtL,JF7— F7J’Lm,rPr

where F = A + PN_1, tO = Hum_i — 515m, H = S;’{A7,(0; —I)} with matrix 0

having dimensions x W =o2Mse(w) = S’ — HRm_1H’ and J = (Re,R’2)H’.

The proof of this Theorem (and Theorems 5.4 and 6.1) requires the following result.

Lemma 5.3 Consider the KF recursion given in Theorem 2.1. Then for t 1,

et = Zt(at
—

&) + Gtut and at+1 — = L(o
—

&) + Jtut

where L=T—KZ and J=H—KG.
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Proof. For the first result, observe that

et yt—Xt/3—Zt&t

= (X/3 + Ztcxt + Gtut) — X/3 — Z&

= Zt(crt — &) + Gtut

This result is now used to prove the second result

at+i — = (W/3 + Tcx + Htut) — (Wi3 + T& + Ktet)

= Tt(at — &) + Hu — Kt{Zt(at
—

&) + Gu}

= (T — KtZt)(crt — &) + (IIi — KtGt)ut

= Lj(at — &) + Ju

This concludes the proof of the Lemma.

Remark

The results of Lemma 5.3 still hold when the AKF is applied to the SSM defined by (5.3)

provided that at is interpreted as the augmented state = (at; 72) and all the matrices

are appropriately redefined.

Proof of Theorem 5.2. We first show that —w n+1 = Pred(71y1;
... ; y,). For

t m, let 6 = (at; 72), Zt = (Z, XZ3), £ =
— KZ where 2 is the transition matrix

in (5.4) and K is Kalman gain matrix generated by the AKF at time t. Then

Pred(7yi;...;y) =

= Pred(7yi;. .
. ; ym-i) + 2 Cov(7, et)D’et

t=m

= S1Sm +
-2 Cov(7, S — t)ZD1et

= S’Sm +Y2COV(7,6m
—

Sm)1_i,mZD’et
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= S’Sm + ci 2Cov{7, H’Sm(7
— ‘m)}7im-i

= 2Mse(m)SmH7m_i

= S’Sm — Hum_i

where £_i,m = ll7zt_i C’, with Cm_i,m = I. The second equality follows since the

stack of observations (yl;. . . ; y,—i) is uncorrelated with (em;.. . ; e,j, which is the stack

of innovations produced by the AKF for t m. The third and fourth equality uses

Lemma 5.3 and the fact that y and Ut are uncorrelated for all t. In the fifth equality, the

expression tm follows from Theorem 5.1. Furthermore repeated backsubstitutions of u

as defined in Theorem 2.2 shows that is as asserted.

We now show that Mse(yIy) =a2W:

Mse(71y) = Cov{7,7— Pred(7y)}

= Cov{7, y — Pred(7yi;. .
. ; ym—i)} + Cov(7, iim_i)H’

= M.se(71y1;. .
. ;y—i) + Co(S1m—

H?m_i,’qm_i)H’

= a2(S1 — HRrn_1H’) = u2W

The above expression for ‘n+1 implies that,

= ft)(—5’+i; 1) = (Ff7,ft)(Him_i — S’sm; 1)

= {Ft..(—Ssm) + ft} +Ft7Hum_i

= &tlm +Ft7H77m_i

where F = (Ff7,ft) and &tlm = Pred(atyi;. .
. ; ym).

Let P1,, = Then for 1 t r m,

Mse(&t, &,.) = Cov(ctt — &t, a
—

&r)

= Covfrit
— &tlm —Ft7Hum_i,ar — &rlm —Fr7Hum_i)
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= Mse(&t1m,&r1m)+ Cov(FtyHm_i,Fr7Him_i)

— Cov(at — &t + FtyH7lm_i,FryH7m_i)

— COV(Ft7H?lm_i, r — &r +Fr7H7lm_i)

= Mse(&tim, &rim) — COV(Ft.yHllm_i,Fr7Hiim_i)

— Cov(ct — &t,Fr7Thim_i) — COV(Ft7H71m_i,Yr — &r)

= {Pt,r_i(I — 1Z_iFr) +F7S’F — Ft,mR”P,m} —Ft7HRiH’F,’y

— COV(Ft,mfli,im_i)H’F, — Ft.yH Cov(qm_i,ni)F,,

= Pt,r_i{I — (R.r_i — L,rR”Lm,r)Pr} — Pt,mR’1P,m

+ F7WF,7— Ft,m(R11,R12)H’F, —Ft7H(R11;R21)P,m

= Pt,r.....i(I — ‘I?r_iPr) + F,mR11P,m — Pt,mR”P,m

+ F7WF — Pt,mJF,7— F7

= Pt,r_i(I
— r-ilr) +F7WF,7— 1t,mJ7— F7J’P,m

where the expression for Mse(&t1m,&rlm) is obtained upon noting that

tim = (At+PtNi)(—5’m;1) = (At+PtNi)(—S’sm;1)

with N,_1 = 0 and hence follows the same recursion as 1Z except that 7? = 0.

This concludes the proof of the Theorem. •

Remarks

1. For 1 t r m, the expression for Mse(&t,&r) is, except for a couple of

adjustment terms induced by the switch from the smoothing algorithm associated

with the KF to the diffuse smoothing algorithm, equal to the mse expression given

in Theorem 4.6 for an uncollapsed DKF.

2. For 1 t < rn < r n + 1, M.se(àt, &r) can be derived in an analogous fashion as
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in Theorem 5.2. This is however not required in this thesis since we only use lag

zero and lag one mse matrices of predictors of the states.

With regards to square-root smoothing, observe that the square-root smoothing algo

rithm associated with the KF (see section 2.4.6) can be employed using the AKF-derived

data in the post-switch time period (i. e. t m). In the pre-switch time period however,

square-root propagation of the lag zero mse matrices of the states does not appear to

be possible in light of the adjustments arising upon the switch from the AKF to the

DKF. Ansley and Kohn (1990) make the same comments with regards to the smoothing

algorithm associated with the AKKF.

The final section of this Chapter makes clear that the switch from the DKF to the

AKF is not advantageous save for the case of a null /3. This conclusion is explained by the

fact that the AKF is based on a SSM with augmented states and as we have previously

noted in Chapter 2, it is the dimensions of the states which determine the performances

of ifitering and smoothing algorithms. The next section discusses a collapse of the DKF.

This actually reduces the dimensions of pertinent matrices in the DKF and hence it is of

major computational interest.

5.3 The Collapsed DKF

The preceding section suggests the idea of partiaffing out the effect of ‘ in the DKF

itself after an initial run of the latter. Specifically this entails the partialling out of those

columns and rows of E, A and Qt which relate to y’. This modified DKF, which we

label the collapsed DKF (CDKF), can be viewed as an analogue of the AKF since the

only diffuse effects that it estimates are those associated with the regression parameter.

We now state the main result of this section.
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Theorem 5.3 Suppose the DKF is applied to observations y generated by the DSSM

until t = m. Partition Am and Qm conformably with ‘ and 72,

/ Smii Sm12 5m1

Am (Aml,Am2,am) and Qm = Sm21 Sm22 3m2

I I
Smi 8m2 q,

and suppose that Sm11 is nonsingular. For t m, replace B = (0, B) by B where the

latter is defined in Lemma 5.1 and reinitialize Am, Pm and Qm as follows

Am = (Am2 — AmiSiSmi2,am — AmiSimi), Pm = Fm + AmiS1Ai and

( Sm.i Sm2lSrnliSmi —
Qm1

I I C—iO I I 0—1
\ S)1J— 8m2 q, —8mi’m1i5mi

0 (1wnere ?m22.1 — 0m22 — ‘m21mip-’m12•

Then this collapsed DKF can be employed in lieu of the standard DKF for limiting pre

diction of the states and gis estimation of !. Furthermore —2 x the diffuse log-likelihood,

apart from a constant, is

=

— 7#)lOg 2 +ogDt +logSmii +logS+i

+ a (qn+i —

Proof. Without any loss in generality, assume = (-xi; 72) ‘— N{O, diag a2(Ci,C2)}.

Let Ci —* co. Then from Lemma 4.1,

Pred(jyi; . .
. ; ym—i) = {Sm + diag(0, C)}m and

a2Mse(7Iy1;. .
. ; ym—i) = {Sm + diag(0, C’)}

Observe that {Sm + diag(0, C’)} can be written as,

—i

I ( i 0 ‘\ ( Sm11 0
‘ ( I ShSm12

SmiS1 0 Sm22.i + Cl) 0 J
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Ir c—1c \ Icy—i
I ‘ “m11’m12 1 I mi1

—

i ) 0 {Sm22i+C1}’ —sm2is;h I

= UDU’

Let = (Sm22.i+ C’)-1 and p = 1(Sm2 —Sm2iSimi). Then using the above identity,

the predictor of conditional on (yi;. . . ; y—) jS

= am — (Ami,Am2)UD’U’(smi;sm2)

= (Am2 — AmiSiSmi2,am — AmiSismi)(p; 1) and

2Mse(&m) = Pm + (Ami,Am2)UDU’(Ami,Am2)’

— i A cy—i A i I A A a—i a \flI A A a—i a \
— Fm 1 mi’m1imi 1- k/1m2 — m1mi1mi2) ‘m2 —‘1mimii°mi2)

Therefore (ym; . . . ; y) can be envisaged as being generated by a DSSM anchored with,

= (am — AmiSiSmi) + (Am2 — Am1SlSmi2)W where w .‘ {p,cr2f)

Thus the DKF, reinitialized as stated in the Theorem, yields the same limiting predictors

as the standard DKF.

Next, express the diffuse log-likelihood as

Ad(y) = )‘(yi; . . . ; ym_i) + )‘(ym;.. . ; iIyi;.. . ; Ym—i) —log Iu2CiI — log Ia2C2I

The two likelihoods on the right can be evaluated by appealing to Theorem 4.1 and

Definition 4.4. These assert that the log-likelihood of a diffuse SSM with the diffuse

parameter (c,u2C) is given by,

(y#

+ log JC’ + S +u2{q + c’C’c — (s + Cc)’(C + S)(s + C_ic)}
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Recall Y1 (0,o2Ci). Thus as C1 —‘ oo,

rn—i
ym—i) — log Ia2CiI = {(yi; . . . ; Yrn_i)# — 7}log cr2 + log DtI

+ log I5rn + diag(O, C)I + log Io2C2I

+ [q — ,,{Sm + diag(O, C’)}srn1/2

{(yl;...;yrn_i)# _7}logcr2 +logD

+ log I5VmiiI — log II + log Ia2C2I

+ cr2(qm — SiSiSrni —

Furthermore A(ym;..
. ; yyi;.. . ; y,,_i) equals

(y;...;y)#1ogu2 +S1j

+ + — (+i + it)’(1 + +Q1t)}

where Q {(S, .s); (4’, q)} follows the same recursion as Q except that it is initialized

with Q = 0. Now let C2 —* oo. Then in view of the initialization of Qrn, it is a simple

task to ascertain the stated expression for )d(). This concludes the proof of the Theorem.

Remarks

1. With scalar observations, the earliest time that the DKF can be collapsed to the

CDKF is when m = 1 + y, in which case Qrn = 0. This contrasts to the switch

from the DKF to the AKF which can take place at m = 1 + y at the earliest.

2. When /3 is null, both the CDKF and the AKF coincide with the KF.

3. The matrix U performs a sweep operation : it factors out the effect of in the

DKF. As such, the matrices A, E and Q generated by the CDKF respectively

correspond to the71-partialled-out versions of A, E and Qt in the DKF.
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4. The matrix .A defined in Lemma 5.1 can be in row-echelon form. Then using the

ideas in Theorem 5.3, it is possible to implement a progressive collapse of the DKF.

This amounts to partialling out the columns related to those distinct elements of yi

as soon as the latters are identified. Ansley and Kohn (1990) employ this strategy

in turning their AKKF to the AKF. However in our opinion, progressive collapsing

is not an attractive proposition in view of the intricate bookeeping that is required

when smoothing (see Theorems 5.2 and 5.4) is called for.

We now consider the square root form of the CDKF. It follows the line of the square

root form of the DKF described in section 3.2.3 except for the modification of the per

tinent matrices for t rn. The following Lemma indicates the safe computations of the

reinitialized quantities.

Lemma 5.4 Suppose the square root form DKF described in section 4.3.2 is run for

t < m where m is as described in Theorem 5.2. Write

Q11 Q12 w1

= 0 Q22 w2

0 Or

where for i 1,2, square matrix Q22 and vector w both conform with and r is a scalar.

Then the reinitializations described in Theorem 5.3 can be obtained as follows :

Am = (Am2 — AmiQQi2,am — AmiQri’wi), -p’!2 = (P,/2,AmiQj)U,

1’2’
w2

= I I and =+logQn
O r)

where U is any orthogonal matrix and pf2 is without any trailing zero columns.
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Q’I1Q11 Q’11Q12
— iV / fV i I (,I / I

-1211 1212 1 -22 -22 .12W1 1

wQ11 wQ12 + wQ22 ww1 + ww + r2

I /I \ —1 — —1
= kii11) 1112

— ii 12,

— IfV fi \—1fl — f
— 11—11) liWl

— ..11) W1,

IQI
. \ /i1 r I tV \ —1 i-’ I,= i 12 12 + 22 22)

— 1211k11 11) ii 12 = 2222,

= (Q2Qi)Qiwi — (Q2wi + Q2w2)= —Q2w2,

= (wwi + ww2 + r2) — wQn((QiQn)1Qiwi = ww + r2

We then obtain upon using these expressions, the asserted reinitializations of .A, Am, ‘ph2

and Q’/2.

It is clear that the collapse the DKF to the CDKF also permeates to the related

smoothing algorithm. Note that the smoothing algorithm related to the CDICF makes

use of Pred(72yi; . .
. ; y,). Hovever for t < m, this smoothing algorithm additionally

requires Pred(71yi; . .
. ; yj. The next Theorem details this reconstruction as well as

other necessary adjustments to this smoothing algorithm for the pre-collapse time period.

Theorem 5.4 Suppose the DKF is collapsed to the CDKF at t m. Put N = 0, a

zero matrix with dimensions a+i x (y + 1), and R 0, a square matrix of order a,+i.

Iterate

Proof. With Q’ as specified in the Lemma, we obtain

Smii Sm12 8m1 Q1 0 0

Sm21 Sm22 5m = Qu12 Q2 0

5rn2 q w w r

Q11

0

0

Q 12 W1

Q22 W2

0 r

qi/2Therefore, -‘m11 Q’H and

SiSmi2

Shsrni

Sm22.1

Sm21S18m1 — Sm2

I c—iq
—8mimh13m1

N.1 = ZD’E + LN and Ji_1 = ZDZ + LRL
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except that fort < m, N is replaced byJVg WZthA1m_i (0, Nm_i) where 0 consists of7

columns. Then for 1 m t r, & andcr2Mse(&t, &r) are obtained as in Theorem

4.6 provided is replaced by 7n+i,2•

Furthermore for 1 I r m, à anda2Mse(àt, &r) are respectively,

Ft(w; 1), PL._1,(I— Rr_iPr) +F,7WF,7— PtL,JF,1— FtiJ’Lm,rPr

where

/ “ ‘\ IT c—i r’
I 7n+1,1 .Lmi

—
*m11Smi — ‘.372

W1 1=1
\ 7n+i,2 ) \

-2 (sh — HRm_iH’ + G1’G’ GF
W = o Mse(w)=I

PG’ F)

F1 and Fe,.,, respectively denote the first y1# and the first 7# columns of F =

H =S1A1,G = HNm_i,2— SiSmi2 where Nm_i = (Nm_1,2, flm—i) with Ttm1 as its

final column, I’ =o2Mse(-/+i,2)and J = Rm_1H’.

Proof. From Theorems 5.3 and 4.6, Pred{aml(7i;72)} is given by either

71 /

(Ami, Am2, am) —72 or (Am2 — AmiS1Smi2,am — AmiSimi) ( —72

\1
1

This implies after direct algebra that ‘ = Simi — SiSmi272.Hence

Pred(7iIy) = Pred(S1smiIy)
—
Pred(S1Smi272y)

= Pred(Sismi ui; . . . ; Ym—1 em;. . . ; e,j — SiSmi2/2

= S18mi + -2 COV(Simi, t — ât)ZD’et — SlSm12n+l,2

= Si(mi — Sm125’n+i,2) +cT2Cov(S.hsml, tm — &m)Nm1(n+i,2; 1)
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a—i I a
— ‘‘miikm1 — mi27n+i,2

+J2COV(SmiSmi, —AmiSismi)Nm_i(5’n+i,2;1)

= S•i(mi — Smi25’n+i,2) — SiAiNm_i(’5’n+i,2;1)

= SiSmi + G5’+i,2 — Hflm_i

where et = Et(—5’2,t; 1) is the limiting innovation and Nm_i(—5’n÷i,2;1) coincides with n1

in Theorem 5.2. The third and fourth equalities as in the proof of Theorem 5.2, follow

from Lemma 5.3. Therefore w = Fred(—7y) can be written as,

Ir ry\ Irr a—i
I iJ LLT1rn_i

— ‘mi13mi
w=I II

\O I)\, 7n+1,2

Observe thata2Mse(H
— Simi) = S1 — HRm_iH’ (as in Theorem 5.2) and

— SiSmi is uncorrelated with 2• Therefore

-2
(i G’\ (s iH1?m_11Z1’ 0

‘ ( I 0
u Mse(71y) = I II II

\0 I) 0 I

= (sn’ - HRmiH’ + GT’G’ GI’ ‘

= w
FG’ r)

Now observe that in both the pre-switch (from DKF to AKF) and the pre-collapse

(from DKF to CDKF), we employ the same DKF quantities. Furthermore the adjust

ments to Nm_i in both Theorem 5.2 and the present Theorem coincide since Nm_i as

described in this Theorem can always be written as Nm_i = (0, ni) upon factoring out

the effect of 72 and this in turn leads to a reinitialization A1m_i = (0, ni) as in Theorem

5.2. Thus the arguments developed in the proof of the cross state mse expressions in

Theorem 5.2 apply verbatim here. This concludes the proof of the Theorem.

A square-root form for the smoothing algorithm associated with the CDKF is similar

to one associated with the DKF (section 4.3.2) except that it only applies for t m, the
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post-collapse period. Due to the adjustments at t m, square-root smoothing algorithm

for t m appears intricate at best.

5.4 Efficiency of Collapsing Strategies

Ansley and Kohn (1990, p282) and Bell and Hilliner (1991, p284) have raised concerns

about the computational efficiency of the DKF, specifically the fact that it employs

recursions of matrices A and E in lieu of the vector recursions for and et in the AKF.

However we counter through the observation that the efficiency of the DKF and the AKF

is significantly more dependent on the dimensions of the mse matrices of the predictors

of the states. Thus the AKF, since it is based on a SSM with augmented states, is not

necessarily more computationaily efficient than the DKF.

In the present section, we demonstrate that the CDKF, the collapsed version of the

DKF which was derived in the last section, is computationally superior than both the

DKF and the AKF-type algorithms (unless /3 is null in which case they all coincide with

the KF) proposed by Ansley and Kohn (1990), Bell and Hillmer (1991) and Harvey and

Pierse (1984). As discussed previously, these alternative algorithms are all based on

the ASSM wherein the states are augmented to incorporate the regression parameter /3.

These algorithms therefore construct larger error covariance matrices than the CDKF

and this time-consuming activity explains the computational superiority of the latter

algorithm. The same explanation permeates to the associated smoothing algorithm.

Additionally, the latter employs, among other quantities, the state error covariance ma

trices generated by the CDKF and therefore has less data storage requirements than the

smoothing algorithm associated with the AKF.

A minor reason behind the computational superiority of the CDKF over the AKF is

due to the fact that the switch from the DKF to the AKF generally takes place at a later
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Strategy P Qt
DKF rx(-y+-y+1) rxr (+-y+1)x(-y+7+1)
AKF (r+4) xl (r+-y) x (r+-y) lxi

CDKF rx(4+l) rxr (-y+l)x(-y+l)

Table 5.1: Dimensionalities in filtering algorithms

stage than the collapse of the DKF to the CDKF. This follows since the switch can only

occur when St is nonsingular while the collapse requires that only the topmost diagonal

block of order of St be nonsingular. Therefore the use of the CDKF as opposed to the

AKF implies gains in the areas of computational efficiency and data storage requirements

when smoothing is called for.

The DKF, CDKF and AKF (and their associated smoothing algorithms) share the

same recursions except that they employ matrices of different dimensions. Hence the

difference in their computational performances is solely accountable to the dimensions of

pertinent matrices in these algorithms. As stated in Chapter 2, the most time-consuming

recursion in the KF, and by extension the DKF, CDKF and AKF, is the one concerning

the state error covariance matrix i. e. In the same vein, the smoothing algorithm

(see Theorems 2.2 and 4.6) evaluates a covariance matrix R with the same dimension

as P. The dimensions of these matrices, as well as other pertinent matrices, subsequent

to the switch or collapse of the DKF are given in Table 5.1 for the filtering cycle and in

Table 5.2 for the smoothing cycle. These tables assume that the transition matrix T is

time-invariant with dimensions r x r. For the time-varying case, the relative differences

will be exactly the same.

Since the computations of P, Qt and R are the most time-consuming in the ifitering

and smoothing algorithms especially when their square-root forms are employed, we can

immediately infer that the CDKF should be the most efficient of these three strategies
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Strategy N
DKF TX(7+7+1) rxr

AKF (r+-y)x1 (r+y)x(r+y)
CDKF rx(-y+1) TXT

Table 5.2: Dimensionalities in smoothing algorithms

for two reasons namely, (i) it is based on a SSM with states of minimal dimensionality

and (ii) its associated smoothing algorithm require less data storage.

5.4.1 Numerical Illustration

In order that the DKF and the CDKF can be compared on an equal footing with the AKF,

we must estimate the state, its error covariance matrix and also the gis estimate of / at

each iteration of the algorithms. The same benchmark applies with regards to smoothing.

For illustration purposes, we have chosen a regression model with -y = 0, 1,2,3 regressors

and a quarterly seasonal error term. This can be expressed as the following SSM,

—1 1 0 1

Yt = X/3 + (1 ci = —1 0 1 c1t + 0 Ut

—1 0 0 0

The transition matrix has nonstationary roots 1 and ±i. Hence following the collapse

stage, the quantities E, A and Qt in the CDKF have = 3 fewer columns than their

counterparts in the DKF. The AKF is based on a SSM with augmented states (ct; /3) (i.

e. the ASSM). Therefore the matrices P in the AKF and R in the associated smoothing

algorithm consists of y more rows and columns than their counterparts in the DKF and

its associated smoothing algorithm.

The computations were carried out on an AT-type microcomputer using the square

root forms of the DKF, AKF, and CDKF and their associated smoothing algorithms.
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0 1 2 3
DKF 23.34 30.92 40.53 53.99
AKF 15.26 19.33 26.75 37.29

CDKF 16.04 19.28 23.07 28.95

Table 5.3: Run times (seconds) for state prediction, regression parameter estimation and
likelihood evaluation

y 0 1 2 3
DKF 38.34 45.98 55.86 69.86
AKF 31.03 42.67 60.15 77.28

CDKF 31.46 35.15 38.50 43.55

Table 5.4: Run times (seconds) for smoothing

Recall that these square root algorithms are identical except that they employ matri

ces of different dimensions. Tables 5.3 and 5.4 display the run times of these square

root algorithms when the same 20 randomly generated observations are employed to

construct limiting estimates (ifitered and smoothed) of the state and the related error

covariance matrix and the gis estimate of the regression parameter at each iteration of

these algorithms as well as evaluating the diffuse log-likelihood at the final iteration.

These run times confirm our assertion that the CDKF is computationally more effi

cient than its competitors in all facets of statistical inference with the DSSM. The results

also clearly indicate that the inclusion of the regression parameters within the state leads

to patently inefficient smoothing algorithms.

5.5 Summary

We have demonstrated that a properly implemented DKF, labelled the CDKF, is compu

tationally superior to alternatives discussed in the literature. The next Chapter discusses
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maximum likelihood estimation of parameters in the SSM. This is conducted by embed

ding the DKF within the iterative EM algorithm. Chapter 7 deals with the recursive

generation of residuals using the DKF. The results of this Chapter indicate that corn

putational efficiency will be enhanced if the algorithms developed in these two Chapters

employ the CDKF in lieu of the DKF.



Chapter 6

Maximum Likelihood Estimation in the State Space Model

In many applications of the SSM, the focus in on the estimation of the unknown param

eters in its system matrices on account of their practical interpretation. In this Chapter,

maximum likelihood estimates (mie’s) are derived for these unknown parameters under

the assumption that they are time invariant. The estimation method, labelled the DKF

EM method, consists of embedding the DKF within the EM (Expectation-Maximization)

algorithm. The latter is a popular derivative-free likelihood optimization procedure.

The time series literature reports several applications employing an EM approach for

the estimation of unknown parameters in the SSM : Harvey and Peters (1990) for the

estimation of the error covariance matricesa2GG’ ando2HH’ in the str’uctural models,

Shumway and Stoffer (1981) for the estimation of a nonstationary scalar transition ma

trix T which is interpreted as an inflation rate and Watson and Engle (1983) for the

estimation of the observation matrix Z with the components of the latter interpreted as

the unobserved wage rates.

All these works employ a KF-EM estimation method with the KF initiated according

to the big “k” method. Initializing the KF in such a fashion is, as argued in previous

chapters, both theoretically and computationafly unsound. The DKF is more appropriate

in diffuse situations and therefore in this Chapter, we focus on maximum likelihood

estimation in the SSM via the DKF-EM technology. The DKF (like the KF) serves two

purposes (i) evaluate the diffuse log-likelihood and (ii) provide the required data for

the smoothing algorithm ; the latter is required by the EM algorithm. In view of the

96
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results of the previous chapter, it is computationally more efficient to employ the CDKF

in lieu of the DKF. The results reported in this Chapter are obtained via the CDKF-EM

estimation method.

This Chapter is organized along two main sections. Section 1 reviews the concepts

behind the EM algorithm and discusses its merits relative to other likelihood maximizing

procedures. A general CDKF-EM algorithm for estimating system matrices in the SSM

is developed. It generalizes and unifies the works of Shumway and Stoffer (1981), Watson

and Engle (1983) and Harvey and Peters (1990). The CDKF-EM estimation technology

is illustrated via two financial applications. The first application requires the estimation

of the exponential growth rate of a time series of quarterly earnings of a company. This is

tantamount to estimating the growth coefficient of the trend in a trend-seasonal transition

matrix. The second application employs the Capital Asset Pricing Model under the

assumption that the market premium (equivalent to the state) follows a random walk

to estimate the risk-free rate of return (equivalent to an unknown regression parameter)

and the “betas” (equivalent to the observation matrix) of three stocks traded on the New

York Stock Exchange (NYSE).

The majority of estimation applications in the SSM deal with the estimation of the

covariance matrices of the disturbances in the SSM, namely o2GG’ and o2HH’. The

second haff of the Chapter focusses on this estimation problem. Following the judicious

choice of the complete data (concept is explained in the next section), we investigate a new

and computationally more efficient CDKF-EM estimation method which avoids the time

consuming computation of lag one state error covariance matrices. In a recent discussion

paper, Koopman (1991) also suggests a similar estimation strategy. The section concludes

with a tabulation of the results obtained on employing this novel version of the CDKF

EM algorithm to structural models previously illustrated by Harvey (1989), Harvey and

Peters (1990) and West and Harrison (1989). Interestingly, we obtain solutions with
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higher log-likelihoods than previously found.

6.1 The EM approach

The EM algorithm is a popular tool for likelihood maximization in statistical models

which either explicitly involve missing data or which can be formulated in terms of

missing information. As such, it is often employed for maximum likelihood estimation

purposes in a variety of applications. Instances of its applications can be traced quite

far in statistical history. For example, Lauritzen (1981) reports a paper by Thiele (1880)

who formulated a time series model consisting of the sum of a regression component, a

Brownian motion and a white noise. Thiele employed a variant of the Kalman Filter to

estimate the regression component and evaluated the variances of the Brownian motion

and the white noise via an iterative process which is akin to the EM algorithm. A recent

application of the EM algorithm deals with the reconstruction of data images in the

field of positron emission tomography (PET) (Vardi et al., 1985). Dempster, Laird and

Rubin (1977) building on previous work by Orchard and Woodbury (1972) and Sund

berg (1974) generalize and unify the theory behind the EM algorithm and demonstrate

its usefulness to such applications as variance components estimation, hyperparameter

estimation, finite mixture models and factor analysis.

The SSM provides a suitable framework for explaining the concepts behind the EM

algorithm. In the SSM, we observe the incomplete data yt as a function of an unobserved

time series o. Call ({yt}, {o}) the complete data. Suppose the mle of a parameter vector

& is required. One possible estimation method is to maximize the likelihood based on the

incomplete data. However this is usually a complicated task requiring the optimization of

a nonlinear likelihood function. An attractive alternative is to employ the EM algorithm.

This consists of the repeated iterations of the following two steps
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1. Expectation or E-step : complete data sufficient statistics for i& are estimated con

ditional on the cur’rent estimate of and the observed data y.

2. Maximimization or M-step: a new estimate for & is evaluated using the expectation

of the complete data sufficient statistics computed in the E-step.

Dempster, Laird and Rubin (1977) prove that repeated iterations of the E and M steps

eventually lead to a stationary point of the likelihood function. The starting estimate of

b is arbitrarily chosen; however from the viewpoint of accelerating the convergence of

the EM algorithm, it is often possible to employ an easily-derived consistent estimate of

?b.

The appealing features of the EM algorithm are: (i) the E and M steps are often very

simple and interpretable, amounting in many cases to regression-like equations, (ii) the

sequence of log-likelihoods is monotone nondecreasing (Boyles (1983) and Wu, 1983) (iii)

a neighbourhood of the stationary point of the likelihood function is usually found within

a few initial iterations even when the EM algorithm is initiated with poor estimates of

the unknown parameters and (iv) the parameter estimates are mle’s if a global maximum

of the likelihood function is attained. Consequently, in the PET application, subsequent

iterations of the EM algorithm yield sharper images. The EM algorithm does have some

deficiencies : (i) it does not provide covariance matrices for the parameter estimates and

(ii) its convergence rate may be linear or sublinear in the neighbourhood of the station

ary point and thus unbearably slow for many applications. Louis (1982) and Meilijson

(1989) have proposed extensions to the EM algorithm for computing mse matrices for

the parameter estimates and speeding up the convergence of the EM algorithm using

pseudo-Aitken’s acceleration methods. These extensions are not covered in this thesis.

Alternative likelihood maximization methods include Newton-Raphson (for example

the Gill-Murray-Pitfield algorithm) and quasi-Newton methods such as scoring which
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require the use of complex software to solve the nonlinear equations which arise from

differentiating the likelihood function based on the incomplete data y. These estima

tion methods have the merits of (i) requiring fewer (but more involved) steps than the

EM algorithm to achieve convergence and (ii) providing mse matrices of the parameter

estimates. However they are not as stable as the EM algorithm in the sense that their re

peated applications do not generally yield a monotone sequence of log-likelihoods. Some

researchers like Watson and Engle (1983) have used a combination of both the EM and

scoring algorithms in order to exploit their desirable features. The EM algorithm is first

used to locate a neighbourhood of the stationary point of the likelihood function and the

scoring algorithm is subsequently applied to achieve the convergence of the parameter

estimates and the estimation of an approximate information matrix.

A serious flaw to the EM algorithm and most optimization routines is that they

converge to a stationary point and not necessarily to the global maximum of the likelihood

function. It is therefore always a wise strategy to initiate these algorithms with different

starting points and then compare the results. For instance, in the applications reported

in section 6.1.2, we have used two strategies to initiate the EM algorithm. The first

strategy (labelled A) initiates the EM algorithm with solutions provided by previous

researchers while the second strategy (labelled B) uses “naive” starting points where for

example the relative variances of disturbances in the SSM are set to one.

6.1.1 The general DKF-EM algorithm

This subsection customizes the EM algorithm for use with the SSM. We generalize and

unify the works of Shumway and Stoffer (1981), Watson and Engle (1983) and Harvey

and Peters (1990) dealing with the estimation of unknown parameters in the system
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matrices (i. e. Z, T, G or H) in the SSM. Consider the SSM,

Yt = X/3 + Za + Gut, at+i = W/3 + Tat + Hut

where a0 ‘-S’ N(ao,a2Po) with a0 and P0 known, X and W are known and Ut N(O,o21).

Suppose & = (/3; Z, G, T, H, 2) and furthermore assume without any loss in generality

that Yt and at respectively have p and k components. Then assuming {at} is known, the

SSM can be expressed as,

/ \ I \ 3 /

I ( X a 0 I, 0 \ ( G
I 11 I z +1 Ut

0 ct®Ik)
T

where z = vec (Z) and ‘r = vec (T).

It then follows from well-known linear models theory that the mie of (/3; z; T) is,

X W’
GG’ GH’ ( X a®I 0

= crØI,, 0 I I
HG’ HH’) \ W 0 a 0

0 aØI,

x w /
(GG’ GH’\ ( Yt

x aØI,, 0 I II
HG’ HH’ ) \

0 c0Ik

This general mie expression is easily modified when some of the parameters (possibly

time-varying) are known. Furthermore,

/ —1

(GG’ GH’”\
= tr M /(y;a)#

HG’ HH’)

(C.”
I f = (M/n)”2 where
H)
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/3
I Yt ‘\ (Xt cØI, 0

M = >mtmt with mt = I I — i I
Lt+i) \W 0 ø’k)

T

It is easily ascertained that the sufficient statistics for the above mie’s are E Yt,

::‘:=i YtY, =i Yta, =i cr and E=1 j,i = 0,1. Therefore the E-step of the

EM algorithm evaluates Et = E(atly) and E(at+1a+,Iy) = Mse(&t+2,&t+j) + &t+i&.

In essence then, the E-step constructs the complete data sufficient statistics by running

the smoothing algorithm associated with the CDKF. The M-step uses these complete

data sufficient statistics to evaluate a mew estimate for j,.

We conclude this subsection by pointing out a problem which affects the estimation of

system matrices in the SSM. In Chapter 2, we discussed the non-uniqueness of the SSM

specification. This property implies that parameter estimation may be only feasible up to

a scale and/or orthogonal transformation and consequently the EM algorithm converges

to a ridge of stationary points of the likelihood function. This characteristic is evidenced

by the multiple solutions obtained in the applications illustrated in this Chapter.

6.1.2 fliustrations

Estimation of growth rate of earnings. Sliumway (1988, pl8f3-192) describes an

exponential trend plus seasonal variation model for a time series of quarterly earnings

(from the fourth quarter, 1970 to the first quarter, 1980) of the U.S. conglomerate Johnson

& Johnson with the SSM,

q0 00 h100

0 —1 —1 —1 0 h2 0
Yt = (1 1 0 0)at + (0 0 1)ut, at+i = Ut

0100 000

0010 000
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The mie’s of , h1, h2 and .2 conditional on y are easily derived using the results of

the previous subsection. In particular, the nile of conditional on y is Sio[1; 1]/Sii[1; 1]

where S, = = Mse(&t+,&t+) + ,j = 0,1. Table 61.

lists the results obtained upon initiating the EM algorithm with (i) the final results

obtained by Shumway (strategy A) and (ii) naive estimates of the parameters (strategy

B). The second and third columns report theu2-concentrated log-likelihoods (denoted

by )2) respectively computed from the starting and final estimates generated by the EM

algorithm.

Starting Points Start. Final Solutions Number of
, h1, 112, h, 112, &2 Iterations
A : 1.037, 0.53, 1.66 -93.99 -93.83 1.037, 0.5853, 1.528, 0.0394 2
B : 1, 1, 1 -136.67 -94.04 1.0368, 1.0583, 1.8851, 0.0234 295

Table 6.1: Estimation results with Johnson & Johnson data

The results tell us that during the study period, Johnson & Johnson experienced an

average 3.7% quarterly increase in earnings. Furthermore the high value of h2 is evidence

of seasonal fluctuations in the earnings figures. The EM algorithm does not provide the

standard errors of its estimates. However, in the present context, hypothesis testing on a

particular value of 4 can be conducted in an indirect fashion by analysing the innovations

generated upon employing the stated value of q in the transition matrix.

It is clear from the results of strategy A that Shumway’s solution is indeed very close

to a stationary point of the likelihood function. His results and ours may possibly differ

due to the initialization of the KF : Shumway initializes the KF according to the “big

k” method whereas we employ an exact method, namely the CDKF. Interestingly, the

estimate of q5 converges very quickly (within the first 5 iterations) as opposed to the other

estimates. The other applications reported in this Chapter which also employ seasonal
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SSM’s also experience slow rates of convergence of the error covariance matrices.

Finally note that in this application, the CDKF coincides with the KF and thus A

and E are vectors. This contrasts with employing the DKF when A and E would then

consist of 4 columns. Thus employing the CDKF in lieu of the DKF leads to substantial

computational savings.

Estimation of asset betas. The Capital Asset Pricing Model (CAPM), devised by

Sharpe (1965) and which earned him a share of the 1990 Nobel prize in Economics, is

used in Finance to estimate the “beta” (a measure of riskiness or volatility) of financial

assets vis-a-vis a market portfolio. The latter is defined as the basket of all assets in a

financial market, such as the New York Stock Exchange. In its simplest form, the CAPM

can be viewed as a simple linear regression model with the intercept and regressor being

respectively interpreted as the risk-free rate of return and the market premium, which is

a premium offered as compensation for investing in a risky asset as opposed to a risk-free

asset. By design, risk-free assets like government treasury bills are assigned a “beta” of

zero while the market portfolio has a “beta” of one. Over the years, several modifications

have been proposed to the CAPM. One such modification posits a random walk model

for the unobserved market premium. This modified CAPM can be written as the SSM,

= 1/3+Zcrt+(G,O)u, Qt+1 = crt+(0,1)ut

where Yt is a vector of the rates of return of p assets, j3 is the unknown risk-free rate of

interest, cr is the market premium thereby implying that Z is a vector of the “betas”

of the assets and G is diagonal with unknown diagonal entries gj, i 1,..
.
,p. More

complicated asset-pricing models exist. For instance in the Arbitrage Pricing Mode4 the

state at has components which are thought to be inflation rate, growth in industrial

production, difference between long-term and short-term treasury bond yields etc. (Chen
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et aL, 1986). The estimation of these components is of obvious practical interest.

We now derive mie’s for the parameters of interest in the above CAPM. Denote

z = vec(Z) and rewrite the CAPM as,

(in, +(G,O)ut

Then the nile of (/3; z) is given by,

($)
= {(i; atØI) Diag(g2,...,g;2)(in,

X (1; atI) Diag(g2,...,g2)Yt

-1

n1g2g2at g2at g2Jcrt •.. g1ct g12at

gj2at g2c 0 0 ... 0 0

g2Zat 0 0 ... 0 0

gE2at 0 0 0 0 g,2cr
/
Etg2yt[iJ

gj2 cvtyt[l]

X g2atyt[2j

g, cryt[p] /

where yt[i] is the th component of y. Therefore the Frstep of the EM algorithm constructs

the estimates of the sufficient statistics crt and a conditional on y and feeds them

to the M-step to update the current estimate of (/3; z). The mie’s of 2 and G conditional

on y are derived according to the expressions given in the previous subsection.

Using the CDKF in lieu of the DKF in this application implies that (i) the matrices
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A and E consist of 2 as opposed to 3 columns and (ii) Qt has order 2 as opposed to

order 3. Thus the use of the CDKF attracts both computational and storage savings.

In order to obtain proper “betas”, i. e. the “betas” are such that the market portfolio

is assigned a “beta” equal to one, it is necessary to augment Yt by a proxy representing the

market rate of returns. The choice of an appropriate market index has been a subject of

debate in the financial research community. Two common choices are the CRSP (Center

for Research in Security Prices) equally-weighted and value-weighted market indices which

are respectively the arithmetic and price-weighted averages of the rates of return of all

the assets in the NYSE. Therefore an interesting side result of the current application

is to produce evidence if any in favour of these two market indices. This is achieved by

comparing the relative “betas” estimated when no market index is used to the “betas”

estimated by augmenting Yt with the two CRSP market indices.

The dataset considered in this application (courtesy of Dr. Dilip Madan of the Uni

versity of Maryland) consists of 336 monthly rates of returns of p = 3 assets for the

period 1959-1986 inclusive (see Appendix at the end of the dissertation). Listed in Table

6.2 are the summary statistics of the CRSP equally-weighted and value-weighted market

indices (denoted by EW and VW) and these 3 assets.

Asset EW VW 1 2 3
Mean (x104) 87 117 95 90 79
Variance (x104) 18 28 22 27 21

Table 6.2: Summaries for financial data

Table 6.3 summarises our results (with assets in the same order as above) obtained

under 3 strategies namely (I) without the use of a market proxy (therefore yielding

relative “betas”, which are denoted with f sign), (II) using the equally-weighted CRSP

index and (III) using the value-weighted CRSP index. The average monthly market
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premium a = n & is also reported. In all instances, the EM algorithm was initiated

with estimates of the “betas” and the diagonal elements of G (i. e. the gj’s) all set to

one.

I II III
,2

6767.74 9880.62 9880.64
/3 x i0 5.4160 7.5432 7.5433
. - 1 -

— — 1
it 1.0480 1.0480

1.i256t 1.1538 1.1538
i.OO34 1.0519 1.0519

i0 x 2.48 2.59 2.59
iO x diag a2th.!

- 0.1904 -

0.0938
0.4422 0.3428 0.3041
0.4814 0.3886 0.3908
0.3540 0.2869 0.2130

iterations 56 51 57
i0— x a 3.1556 1.1553 1.1552

Table 6.3: Estimates with financial data

From Table 6.3, we infer the following

1. The CAPM explains about 80% of the variations in

variances (i. e. the diagonal elements of o.2ããl) each

the unconditional variances listed in Table 6.1.

the assets since the residual

account for less than 20% of

2. The similarity in the results produced by strategies II and III suggest that the

value-weighted and the equally-weighted CRSP market indices are equally good

market proxies.

3. The relative betas of assets 1 through 3 in the three strategies are about the same

(since 1.04 : 1.15 : 1.05 translates to 1 : 1.1 : 1.003). In strategy I, the estimates
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of the beta were rescaled so that the first asset had a beta of one. This has the

drawback of subsequently confounding the estimates of /3 and a.

4. The results of strategies II and III indicate average risk-free and market premium

annualized rates of return of 9.4% (= 1.0075412
— 1) and 1.4%. Therefore the

average annualized rate of return in the NYSE for the period 1959-1986 is 10.8%

a figure which is in line with commonly held estimates.

5. The higher beta for the second asset tells us that the returns of this asset are more

sensitive to market fluctuations than the returns of the other two assets. The latters

have “betas” close to one and therefore can be categorised as conservative assets.

6.2 Estimation of covariance matrices in the SSM

The most common parameter estimation required in the SSM deals with the estimation

of the covariance matrices of its disturbances. This section considers a novel and more

efficient CDKF-EM algorithm for this specific application. Koopman (1991) recently

suggested a similar approach in the case of structural models. As a motivation, consider

the quarterly basic structural model (QBSM),

Yt = (10100)at+(0001)ut,

110 0 0 h10 00

010 0 0 Oh2 00

= = 0 0 —1 —1 —1 at + 0 0 h3 0 Ut

7t 001 0 0 0000

7t—i 000 1 0 0000

The QBSM is a seasonal structural model. Non-seasonal structural models include (i)

the basic structural model (BSM) where the state consists of only a level (it) and a
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slope (/3) components and (ii) the random walk plus noise (RWM) model where both the

observation matrix and transition matrix are equal to 1. The illustrations described later

in this section employ the RWM, BSM and QBSM.

The unknown parameters in these structural models are u2 and a subset of {h1,h2,h3}.

In the case of the QBSM, their nile’s are derived upon exploiting the following relation

ships,

= (0001)ut=yt—ztat,wherezt=(10100)

i,t = (hi000)ut=(10000)crt+i—(11000)at

62,t = (0 h2 0 0) Ut = (0 1 0 0 O)(at+i — at)

= (00h30)ut=(00111)at+i+(00001)at

Denote the variance of e by o, i 0,... , 3 with c = Clearly then, the mle of u

is & = 1/n e. Using the general CDKF-EM algorithm described in section 6.1.1,

we therefore obtain, conditional on

= 1/n {(yt — zt&t)Qjt
— :j&t)’ + ztMse(&j)z}

= 1/(no2){Sii(1;1)+Soo(i;j)—2 x [Sio(1;1)+S10(1;2)J}
i=1 j=1

= 1/(no2){Sii(2; 2) + Soo(2;2) — 2 x Sio(2; 2)}

= 1/(ncT2){> Sn(i;j) + Soo(5; 5) + 2 x Sio(i; 5)} where
i=33=3 i=3

=
i,j=0,1

These mle’s require the computation of Mse(&t_i, &). To obtain this quantity, Har

vey and Peters (1990), while working with the QBSM, innovate an idea originally devised

by Watson and Engle (1983) by augmenting at as defined above with (-y; [it—i; v1) and

thereafter write t = 1, 2, 3 as contrast functions of the augmented state. The mle’s of
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o conditional on y are then evaluated using smoothed estimates of the augmented states

and their mse matrices. From the discussions and illustrations in Chapters 2 and 5, it is

clear that the performance of ifitering and smoothing algorithms are dependent on the

size of the state. This may explain why Harvey and Peters (1990) found the performance

of the EM algorithm to be unsatisfactory. The next subsection proposes a means for

avoiding the computation of lag one state error covariance matrices.

6.2.1 A new CDKF-EM algorithm

In this subsection, we consider a version of the CDKF-EM algorithm for the efficient

estimation of G and H in the SSM. Its derivation is based on the observation that it is

more natural to regard the disturbances in the structural model or in the general SSM

as linear functions of Ut and not the state at. This suggests the consideration of (y; u)

as the complete data in lieu of (y; a). Consequently we are led to devise an CDKF-EM

algorithm which does not require any lag 1 error covariance terms since the components

of u (as opposed to a) are serially uncorrelated. Koopman (1991) has suggested a similar

implementation of this version of the EM algorithm for structural models.

The E-step of this new DKF-EM algorithm requires the evaluation of E(ut I) and

Mse(utly). The following Theorem indicates the recursive evaluation of these quantities.

Theorem 6.1 (De Jong, 1991c) Suppose y = (yi; y2; . . . ; y,) is generated by the SSM.

Then v = Pred(uty) and 4 = I —u2Mse(uty) are computed as,

Vt = GD1et+ J1’i,t, = GD’G + JRJ

where Jt = Ii — KG and all the quantities are as defined in the KF and in the smoothing

algorithm presented in Chapter 2.

The proof is given in the Appendix at the end of the Chapter. Koopman (1991) also

proves a similar result. The above Theorem will also prove useful in the next Chapter
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where we consider diagnostic testing in the SSM. We now state the main result of this

section.

Theorem 6.2 Consider the SSM,

X/3 + Ztc + Gut, t+i = W + Ttat + Hu

where c = 0, X, Z, W and T are known and Ut N(0,a21). Then the complete data

sufficient statistics in the mle ‘s of 6, v.2, G and H are constructed from

Ix (G\ Ic
= I I /3 + I Vt and B 2 I (I — 14)(G’ H’).

\W) \H) H)

Proof. Definefort=O,1,...,n,

fx IG (G
ft=I Ii+I lut, F=l I(G’H’)

W) H) \H)

Observe that at-i-i Ttcxt+(O, I)ft and yt Ztct+(I, 0)ft. Therefore f = (fo; fi; . . . ; f)
is a complete dataset for the SSM. Furthermore —2 x the log-likelihood of f,apart from

a constant is,

X(bIf) = f#log(u2)+ nlog Fl + cT2 YZ{ft - (Xt; Wt)/3}’F’{ft - (Xt; Wt)/3}

Thus E(A( If) I y) requires the evaluation of

E(ftly) b and E(ftfIy) = Mse(fty) + E(ftIy)E’(fty) = B + bb

and hence the Theorem is asserted. •

Therefore the Theorem indicates that the E-step of the CDKF-EM algorithm uses

the iterations described in Theorem 6.1 to evaluate Vt and V. The M-step is

described in the following result.
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Theorem 6.3 (M-step) For the SSM described iii Theorem 6.2, the mies of o.2, F and

3 conditional on the observed data y are

= 1/f# tr[E’ >{Bt + bb + (Xt; Wt)$$’(Xt; We)’ — (Xt; W)$b — b$’(Xt; W)’}]

P = 1/(n&2) {B + b1b + (Xt; Wt)$$’(Xt; We)’ — (Xt; W)$b —b1ã’(Xt; W)’}

= [(Xt; Wt)’P1(Xt;W)]1(Xt; W)’P’b

Proof. Differentiating (f) in turn with respect to a2, F and /9 and equating each

normal equation to zero respectively yields,

= 1/f# tr[F1>Z{ftf + (Xt; Wt)/3/3’(Xt; We)’ - (Xt; Wt)/9ft - f/3’(Xj; W)’}]

P = i/(2)
{ftf + (Xt; Wt)/9/3’(Xt; We)’ - (Xt; Wt)/3ft - f/3’(Xt; W)’}

= [E(Xt; Wt)’F’(Xt; W)]1(Xt; Wt)’F’ft

Taking the expectation of these mie’s conditional on y immediately leads to the results

listed in the Theorem. .

If /3 = 0, as for instance in the structural models, then the expressions given in the

Theorem for &2 and P simplify considerably.

Corollary 6.1 Suppose /3 = 0 in Theorem 6.8. Then the new estimate ofa2 and (G; H)

are

n

tr(E vtv)/tr(E 14) and I {I — 1/n( 14 —
vtV/j2)}h/2

t=o t=o H ) t=o

Proof. Put /3 = 0 in Theorem 6.3. Then

= 1/f# tr{Ea.2(I— 14) + VtV} => = tr (vtv)/tr(T4)
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Furthermore the new estimate of (G; H) is

(O ){[o2(I— 14) + vtvJ/nö2}’12= ((; fi){i — 1/n( 14 — vv/&2)}h12

This completes the proof of the Corollary. .

In order to derive consistent estimates of 2, it may be necessary to impose some

constraints on G and H. For instance in the QBSM, the zero constraints must be enforced

in the updated estimates of C and H. Furthermore these estimates should also be rescaled

such that the updated estimate of G has the form C (0 0 0 1).

This new version of the CDKF-EM algorithm is clearly simpler and more efficient

than the one discussed in section 6.1. It provides gains in storage requirements whenever

Ut is of lower dimensionality than o. This occurs for instance in the seasonal structural

model when the number of seasons is greater than 3. Furthermore, as previously noted,

it does not require the evaluation of lag one error covariance matrices.

6.2.2 Estimation of Structural Models

This subsection illustrates the improved CDKF-EM algorithm with some structural mod

els. A factor influencing the convergence of the EM algorithm is the initial estimate of

the parameter. It is desirable that a consistent and easily computable estimate be em

ployed. Harvey and Todd (1983) and Harvey (1989, p56) have suggested the construction

of consistent estimates of the unknown parameters in structural models through the con

sideration of the autocovariance function. They state that the autocovariance function

of (1 — L)(1 — L8)y, where L is the usual lag operator, s is the number of seasons and

o, j = 0, 1, 2, 3 are as defined previously in this Chapter, is

7(0) = 4u+2u+so+6cy

7(1) = —2o + (s — 1)o — 4T
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7(2) = (s — 2)a + o

7(i) = (s — i)o, i = 3,... , s — 2

7(s—1) =

7(S) = —2o —

7(s+1) =

7(i) = 0, i>s+2

Therefore particular estimates of are obtained upon solving any set of four au

tocovariance equations listed above. A serious flaw is that there is no guarantee of

non-negative solutions. To get around this problem, we may substitute a small positive

number for each negative estimate of c. We will employ this strategy (labelled C) in

addition to stategies A (which uses the reported solutions) and B (which uses naive

estimates) to initiate the EM algorithm in the next 3 applications.

We now report the results of applying this new version of the CDKF-EM algorithm

in the first instance to structural models that have been estimated by Harvey (1989) and

Harvey and Peters (1990). In the second instance, we apply the CDKF-EM algorithm to

structural models considered (but not estimated) by West and Harrison (1989). In the

applications below, the EM algorithm is stopped when the increase in the2-concentrated

log-likelihood is less than iO.

Estimation of variability in purse snatchings. Harvey (1989, p89) uses a random

walk plus noise model (RWM) for a time series of reported purse snatchings in the Hyde

Park area of Chicago. He reports estimates &2 = 24.79 and h1 = 0.4557. With these

as starting points in the new EM algorithm (strategy A) we could not attain a higher

log-likelihood (=-554.264). For strategy B we evaluated the lag 0 and lag 1 covariances

of (1 — L)yt as 57.23 and -31 thereby implying an estimate of ? of -4.77 ; strategy B
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therefore initiates the EM algorithm with h1 = 0.01. After 130 iterations, we obtain a

log-likelihood of -554.264, &2 24.8347 and h1 = 0.4537. Finally strategy C initiates the

EM algorithm with h1 = 1. After 26 iterations, we obtain a similar log-likelihood with

= 24.7763 and h1 = 0.4557. For this dataset, the CDKF-EM algorithm convergences

in all instances to a ridge of local maxima.

Estimation of seasonality in air travel. Box and Jenkins (1970, p531) provide a

dataset containing the number of monthly international airline departures for the period

January 1949 to December 1960. This dataset is a popular benchmark test in time series

analysis. Harvey (l99O,p93-94) and Harvey and Peters (1990) aggregate the data into 48

quarterly observations and thereafter apply the log transformation to them.

In the tables below, the first column lists the starting points employed by strategies

A, B and C. The second column and third column respectively list theo2-concentrated

log-likelihoods based on the initial and final estimates of the parameters ; the fourth

column contains the final parameter estimates and the last column reports the number

of iterations required for convergence.

The results in Table 6.4 relate relate to Harvey (1990) who estimates the QBSM using

all the 48 observations. Harvey and Peters (1990), on the other hand, only employ the first

Start. Points Start. Final Solutions Number of
7. X72 —2i I-. 7-. T •I, U3 , 111, ‘2, U3 Leradons

A : 22.19, 1, 11 121.88 123.22 6.88 x iO, 29.9946, 0.8138, 10.7035 110
B : 15, 15, 15 115.74 123.21 1.37 x iO, 66.9838, 2.0305, 23.9407 185
C : 3.52, 1, 1.24 119.76 123.21 2.83 x 10—6, 14.7877, 0.3258, 5.2631 301

Table 6.4: Estimation results for airline departures data (I)

40 observations for estimation puposes. They report solutions obtained upon using four

estimation methods namely (1) TD, maximization of the time domain prediction error
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decomposition form of the likelihood function using the Gill-Murray-Pitfield algorithm (2)

EM, the EM algorithm as discussed in section 1 but modified to incorporate a line search

in order to speed up convergence and using a stopping criterion based on differences

in log-likelihoods (3) EM*, same as (2) but using a different stopping criterion which

is based on differences between prediction error variances and (4) TD, maximization

of the frequency domain form of the likelihood function using the Gill-Murray-Pitfield

algorithm.

Start. Points Start. Final Solutions Number of
i. 1. L 2 T
“1, 112, 113 A A U I1J, I1 113 erauons
A (TD) : 13, 1, 5.77 101.71 102.31 2.17 x 10—6, 18.24, 0.84, 6.20 99
A (EM) : 14.35, 1, 4.47 102.16 102.31 2.41 x 106, 17.31, 0.82, 5.89 96
A (EM*) : 9.8, 4.11, 1 90.43 102.32 2.22 x 10_6, 18.07, 0.74, 6.11 236
A (FD) : 16.63, 1, 5.48 102.27 102.31 1.95 x 10, 19.26, 0.88, 6.54 88
B : 10, 10, 10 97.79 102.32 4.89 x i0, 38.32, 2.03, 13.09 140
C : 9.1, 1.24, 1 95.16 102.31 3.17 x 10_6, 15.14, 0.59, 5.11 240

Table 6.5: Estimation results for airline departures data (II)

In both Tables 6.4 and 6.5, the estimate of h2 is relatively small compared the esti

mates to h1 and h3. The same situation occurs in the next two applications (see Tables

6.6 and 6.7). Ledolter explains this phenomenom in the discussion of Harvey (1984) as

follows : structural models (apart from the random walk model) can be expressed as

ARIMA models with MA coefficients lying on the boundary of the invertibility region

and it is “structural components with small variances that introduce moving operators

in the equivalent ARIMA model that are close to the invertibility boundary”.

West and Harrison (1989) and Ng and Young (1990) discuss subjective interventions

in state-space models, specifically structural models. Following their Bayesian approach,

the first set of authors fix the unknown parameters of the basic structural model a priori
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rather than estimate them. The second set of authors assume zero variance for the level

and slope components of the state except at intervention points. Both papers illustrate

their methods with two applications. We have a two-pronged interest in the work of these

researchers : (i) provide mie’s for the unknown parameters of these structural models

under the assumption of no data irregularities and (ii) provide diagnostics based on the

models estimated in (i) and thereafter incorporating the necessary interventions. The

latter area of work is covered in the next Chapter.

Estimation of trend in tobacco sales. West and Harrison (1989) employ a BSM

to model standardized monthly total sales of tobacco products by a major company in

the UK for the period 1955-1959. In this application, we ignore the effects of possible

outliers and structural breaks in the model. Table 6.6 lists the results obtained upon

applying the CDKF-EM algorithm to this dataset.

Start. Points Start. Final Solutions Number of
hi, h2 2

ö2, h, h2 Iterations
B : 0.2, 0.2 -665.42 -659.93 540.80, 0.9357, 0.0626 124
C : 1, 1 -678.31 -659.92 539.67, 0.9402, 0.0600 105

Table 6.6: Estimation results for tobacco products sales data

These results tell us that the level component in the state account for more variability

in the observations than the slope components. In fact in our work in diagnostic-testing

in Chapter 7, we attribute the cause of data irregularities in this model to shifts in the

mean level.

Estimation of seasonality in UK weddings. West and Harrison (1989) posit a

QBSM for the quarterly number of UK weddings for the period 1965-1970. Ignoring

possible data iregularities, we obtain the following estimates for the parameters of this
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model in Table 6.7.

Start. Points Start. Final Solutions Number of
h1, 112, 113

2
ã2, h1, 112, 113 Iterations

B : 1, 1, 1 -174.25 -150 0.0582, 0.5035, 0.0933, 38.1495 181
C : 0.01, 0.03, 0.052 -166.08 -150 0.1865, 0.0888, 0.5, 21.30 287

Table 6.7: Estimation results for UK weddings data

The interesting finding in the UK weddings dataset is the wide variability of the

seasonal effects. West and Harrison (1989) attributes this to the abolishment of a tax

incentive which used to affect the timing of weddings. This will be considered in more

detail in the next Chapter.

Remarks

1. The results from the three seasonal models considered in this section suggest that

the likelihood function surface is flat. This is attested for by the multiplicity of

solutions. These findings are in line with those observed by Laird et al. (1987)

who employ the EM approach to estimate variance components models of which

the structural model is one.

2. The relatively high number of iterations required for convergence of the CDKF

EM algorithm does not necessarily constitute a drawback. For instance, scoring

methods require fewer iterations in the neighbourhood of a stationary point of the

likelihood function but each of these iterations are very involved usually requiring

several passes of the KF to compute first and second derivatives of the likelihood

with respect to the unknown parameters. For instance Watson and Engle(1983)

find the performance of the EM algorithm and the scoring method to be comparable

in an application involving vector observations.
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6.3 Summary

This Chapter considered maximum likelihood estimation in the SSM using an EM ap

proach. We showed a general method for estimating unknown time invariant system

matrices in the SSM. We also developed an efficient CDKF-EM estimation method for

the estimation of error covariance matrices in the SSM. This novel approach does not

require the computation of lag one state error covariance matrix. The preceding chap

ters dealt with the prediction aspects of the SSM. Therefore following the guidelines set

forward by Box and Jenkins (1970), it remains to cover the topic of model-fitting or

diagnostic testing in order to complete the statistical analysis of the SSM. This is the

focus of the following Chapter.
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6.4 Appendix

Proof of Theorem 6.1 The proof makes use of the fact that the innovation vector

e = (ei;. .
. ; e,) generated by the KF has the same information content as the observation

vector y = (yi; y;. .
. ; y,). Therefore,

Pred(uIy) = Pred(utle) = Pred(ut let; et+i; .. . ; e)

=

Cov(ut, e)(cr2D)’e

Using Lemma 5.3, Ct = — &) + Gu and for j = t + 1,. . , n,

= G,u3 + Z{J_iu_i +L3_i(a,_i
—

= G3u3 +Z3{J3_1u3_1+ L_iJ_2u_2+ L_iL_2(cv3_2— cv,_2)}

= G3u, +Z3{J3_iu,_i +L3_iJ_2u_2+

+ (L,_1L,_2. . . L)Ju + (L3_1L,_2.. . L)(c —

After noting that Cov(ut, j — = 0 for all t and j, we obtain

Pred(ut I y) = GD1e+ (ZL_1L_2. . .

jtt+1

= GD’e+Jr

= Vt, as asserted

Finally,

Mse(uIy) = Cov(ut)
—

Cov(ut, e)(a2D) ‘{Cov(nt, e)}’

= u2(I—GD1G

— J{ (ZL_1L_2. . . (ZL_1L_2. . .L+1J)}J)
j=t+1

=
— GD1G — JRJ)

=

This asserts the Theorem.



Chapter 7

Residual Analysis in the State Space Model

Time series models, especially those arising in socioeconomic applications, are prone to

data irregularities such as discordant observations, or outliers as they are commonly

called, and structural breaks. The exercise of detecting these unanticipated or extraor

dinary events, generally dubbed as residual analysis or diagnostic testing, is now firmly

entrenched as an essential and integral part of any statistical modelling. Residual analysis

allows us to revise the statistical model under consideration and consequently it enhances

the various facets of statistical inference namely parameter estimation, prediction and

tests for goodness of fit.

The residual analysis literature is extensive in the case of the linear regression model

where the observations are mutually independent. Foremost publications are the estab

lished textbooks of Belsey et al. (1980) and Cook and Weisberg (1982). The latter

authors introduce three types of residuals and discuss their uses in the detection of out

liers and influential observations. For the SSM defined by equations (2.1)-(2.2), these

residuals are defined as follows,

1. Ordinary or Signal residuals

= Yt — Pred(Xtf3 + Ztc I Yi,. . . , y)

= Zt{crt—Pred(at I

2. Deleted or Leave-one-out residuals

= Yt — Pred(yt I Yi,. . . , Yt—i, Yt+i,. . . , yn)

121
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= Zt{cxt—Pred(ct I yi,...,yt—i,Yt+i,...,yn)}

+ Gt{ut—Pred(ut I yi,...,yt—i,Yt+i,...,yn)}

3. Recursive or Innovation residuals

et = yt—Pred(ytyi,...,yt_i)

= Zt{ct—Pred(crt I yi,...,yt_i)}+Gt{ut—Pred(ut I

The ordinary and deleted residuals are often outputted by standard regression packages.

Brown et al. (1975) demonstrate the usefulness of the recursive residuals in assessing

the constancy of the regression parameter in the context of cross-sectional regression

analysis.

The ideas pertaining to the above residuals clearly extend to dynamic linear models

but they become more intricate due to the dependent nature of the observations (or more

precisely the states). The latter characteristic also makes the leave-one-out residual less

useful. This point is emphasised in a recent paper dealing with diagnostics for ARIMA

fitting of time series data where Bruce and Martin (1989) emphasise that “the dependency

aspect of time series data gives rise to a smearing effect, which confounds the diagnostics

for the coefficients ...“ and thereafter propose a “leave-k-out” diagnostics approach to

deal with patches of outliers.

Carrying out residual analysis via a linear regression model approach has the draw

back of being computationally demanding since the evaluation of the residuals requires

the inversion of error covariance matrices with dimensions equal to the size of the data.

The execution of this exercise via a SSM approach is however more attractive from a

computational standpoint. For instance, innovations are automatically generated by the

KF or the DKF after further algebraic manipulation. Early works in residual analysis
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within the SSM context made exclusive use of the innovations; see Harvey (1990, p256-

260) who survey their uses in tests of misspecifactions for serial correlation, non-linearity,

heteroscedasticity and normality in the SSM. Innovations have the nice statistical prop

erty of uncorrelatedness but suffer from the fact that they may not convey as much

information content as the signal and deleted residuals. These alternative residuals can

be generated in an efficient fashion using for example the recursive algorithms derived

independently by De Jong (1988b,1989) in the vector data case and Kolin and Ansley

(1989) in the scalar data case.

The residuals described above confound the observation errors (Gu) and the errors

incurred in the estimation of the states. Therefore they are unlikely to distinguish be

tween outliers and structural breaks. The detection of these data irregularities is more

satisfactorily addressed via the separate studies of estimators of Gu1 and the state or

transition errors Htut. Harvey and Koopman (1991) advocate and study the use of these

residuals for goodness-of-fit tests and diagnostic checks.

The SSM specification employed in this thesis attracts two benefits for residual anal

ysis. First, estimates of GtUt and Htu can be generated in a unified fashion from estima

tors of the disturbance vector Ut. Second, interventions in the SSM to incorporate data

irregularities is easily carried out via the use of the regression matrices X and W.

This Chapter emphasises the use of the predicted residuals Vt = Pred(ut I yi,. . . , y)

for exploratory residual analysis. Recursive formulae for the generation of Vt and Mse(V)

have already been provided in the previous Chapter (Theorem 6.1). Other predictors of

Ut are less useful. For instance, observe that the random variable Ut conditional on

• . . , has mean 0 and covariance matrix u21 and therefore Pred(ut I Yi,. . . , yt—i)

is uninformative from the standpoint of diagnostics. Furthermore, as argued above, leave

one-out residuals are ahnost similar in characteristics to signal residuals in the presence of

dependent data. These will be apparent in the illustrations presented in the final section
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of the Chapter. A recursive algorithm for the generation of the leave-one-out residuals is

provided by De Jong (1988b, 1989).

In the first section of this Chapter, we demonstrate that the results of De Jong

(1988b,1989) and Kohn and Ansley (1989) concerning signal residuals are in fact con

sequences of Theorem 6.1. Since the prediction residuals Vt are serially correlated, we

consider, in section 2, whitening or orthogonalizing {Vt} in a backward direction and

conclude that this orthogonalized sequence corresponds, up to a scaled factor, to the

innovations. This tells us that innovations are as statistically efficient as the backward

orthogonalized prediction residuals in statistical tests for goodness-of-fit of the SSM. In

section 3, we apply residual analysis to both the tobacco sales dataset and the the UK

weddings dataset which were discussed in the last Chapter. We illustrate the detection

of outliers and points of structural breaks via simple graphical devices.

7.1 Connection with the Literature

In many applications, it is only necessary to consider specific aspects of Vt, for example

Gtvt and Htvt. These have lower dimensionalities than Vt and hence it is worthwhile to

specialize Theorem 6.1 to these cases.

We now demonstrate how the results of De Jong (1988b,1989) and hence Kohn and

Ansley (1989) concerning the signal residuals follow from Theorem 6.1. The following

Theorem due to De Jong (1989) is reexpressed with notation consistent with this thesis

see also Koopman (1991) for a closely connected result.

Theorem 7.1 (De Jong, 1989) Consider the SSM defined by Yt = X/3 + Ztat + Gtut

and = W/3 + Tct + Hut where GH = 0 and the Ut ‘s are mutually and serially Un-

correlated zero-mean disturbance vectors with covariance matrix cr2I. Let y = (yi,.. . , y,j.
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Then

Pred(Gtutjy) = GtGmt and Mse(GtutIy) =o2(GtG — where

mt = D’et — and M = D’ + KRK

with ij and R as defined in Theorem 2.2.

Proof. We first establish a useful identity, namely ZPL = —GtJt, where L =

T — KZ and J = H — To see this, manipulate a couple of equations making up

the KF to obtain

ZPL = ZP(T — KZ)’

=

= —G(H—KG)’

= —cj:

Using the expression given in Theorem 6.1 for Vj, it follows that

Gv = GtGD’et +

= GtGD1et— ZP(T —

= GtGD’et — {D’K’ — (D —

= GtG(D1et— K)

= GtGrnt

The third equality follows from the KF (see Chapter 2), taking into account that GH =

0. Finallycr2Mse(Gtv) = G(I — 14)G equals,

G(I—14)G =

= GG - GGD’ GG -
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= GG - GG(D1+

— f1 çI fY g f f11
— —

These assert the Theorem. •

Theorem 6.1 can also be specialized for the efficient generation of Htvt and their

associated error covariance matrices. These residuals, which are sometimes known as

the smoothed auxilliary residuals, estimate the errors associated with components of the

state and convey information which is usually not apparent in the innovations.

Theorem 7.2 Consider the SSM described in Theorem 7.1. Then

Pred(Htuty) = and Mse(Htutly) =
—

Proof. Observe that Pred(Htuty) = Htvt = Ht{GD’et + (H — =

upon noting that HG = 0. Finally, Mse(Htuty) = Cov(Htut) — Cov(Htutly)

a2(HtH — HHRHH).

7.2 Backward Orthogonalization of Predicted Residuals

The predicted residuals Vt’S are serially correlated since they are inhomogeneous linear

combination of (yl,.. . , y) or equivalently e1,. . . , e,. This property makes the use of the

Vt’S in statistical tests for goodness-of-fit in the SSM a complicated task. This contrasts

with the ease with which the (uncorrelated) innovation lend themselves to in the same

tests. Hence we are led to consider the idea of whitening or orthogonalising the Vt’S.

Theorem 7.3 Suppose that for 1 <t n, the space spanned by (Vt; vt+i; . . . ; vt,) coin

cides with the space spanned by (et; et+1; . . . ; en). Then a backward orthogonalization of

Vt corresponds, up to a weighting matrix, to the innovations et generated in the KF.
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Proof. The assumption in the Theorem implies

vt—Pred(vtIvt+i;...;v) = vt—Pred(vtIet+i;...;e)

= (GD1et+ Jrt) — Jr

GD’et

Hence the backward orthogonalized version of Vt, corresponds up to a scale factor, to the

innovations. .

Remarks

1. A sufficient condition for the Theorem to hold is that G has full rank for all t.

2. The Theorem implies that innovations are as efficient as backward whitened versions

of Vt’5 in statistical tests of goodness-of-fit.

7.3 Illustrations

Theorem 6.1 was useful for maximum likelihood estimation of parameters in the SSM.

We now illustrate the Theorem in a different setting, namely exploratory residual anal

ysis. This consists of assessing time series plots of the studentized observation residuals,

{o2G(I— 14)G}’Gtvt and the studentized auxilliary residuals, {o2H(I— 4)H}’Htvt.

We have chosen the final two datasets covered in the previous Chapter for the purpose

of illustration.

Diagnostics for tobacco sales. The sales figures are graphed in Figure 7.1. The

observations clearly suggest the presence of outliers and possibly structural breaks. The

various residuals, displayed in the top two graphs of Figure 7.2 were obtained, from the

structural model estimated in the previous Chapter. A cursory examination of these
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diagnostic plots (especially the smoothed observation residuals and the auxiliary resid

uals) suggest the presence of one-time mean effects or outliers at Dec’55, Jan’57 and

Jan’58. In particular, note the statistically significant departures of the innovations and

the residuals associated with the level component from their expected value of zero at

these points.

The basic structural model (model C) employed in the previous Chapter was modified

to incorporate interventions at these points. This consists of defining X as indicator

variables at Dec’55, Jan’57 and Jan’58. The matrix H has revised parameters h1 = 1.30

and it2 = .08 whereas ö2 = 223.8 (compared respectively to 0.94, 0.06 and 540.8 in the

pre-intervention model). The residuals (innovations, signal and level residuals) produced

by this revised model (displayed in the bottom half of Figure 7.2) look reasonable and

furthermore reflect the larger variability in the data for the period Jan’58 - Dec’59.

Diagnostics for UK Weddings. West and Harrison (1989) attribute the unantic

ipated seasonal variations in the observations (see Figure 7.3), particularly in the first

quarter of each year to the tax benefits enjoyed upon matrimony. These benefits were

abolished at the end of 1967. The diagnostic plots in the top half of Figure 7.4 clearly

indicates this fact. Specifically observe the huge residual associated with the seasonal

component of the state at the first quarter of 1968.

We intervened in the model and associated a dummy regression variable with the

seasonal component of the state for the first quarter of 1968. The revised model has

parameters h1 = .11, h2 = .014, h3 = 1.32 and ö2 = 30.69 (compared respectively to

0.50, 0.09, 0.06 and 38.15 in the model without any intervention). The residuals in the

revised model (see bottom half of Figure 7.4) especially those arising after 1968 appear

to conform to expectations. In the absence of any financial incentives, we would expect

a seasonal low during the first quarter since it coincides with the winter months and
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seasonal highs during the two middle quarters. From the revised model, we inferred that

the abolishment of the tax benefits caused a decrease of about 34,200 weddings (or a

28% drop) from the expected number in the first quarter of 1968.

7.4 Summary

We have demonstrated that the specification of the SSM employed in this thesis allows us

to generate, in a unified fashion, residuals which are useful for pinpointing likely outliers

and point of structural change in the SSM. These residuals, unlike the innovations, are

serially correlated and should therefore be interpreted with care. We have shown that

the backward whitened versions of these residuals correspond (up to weighting matrix)

to the innovations generated by the KF. This implies that innovations are as efficient as

these whitened residuals in statistical tests of goodness-of-fit.
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Figure 7.1: Tobacco sales data
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Figure 7.3: UK weddings data
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Chapter 8

Epilogue

In this thesis, we have shown that the three facets of statistical analysis with the SSM,

namely prediction, model-fitting and residual analysis can be conducted in a computa

tionally sound and efficient manner using the DKF, which is the Kalman Filter extended

in order to handle diffuse effects in the SSM.

We have illustrated throughout the thesis the conceptual and computational advan

tages of our definition of the SSM over the standard definition employed in the literature,

namely the ASSM. Recursive algorithms based on the latter have been shown to be in

efficient when the states in the ASSM accomodate a regression parameter and/or initial

diffuse effects since they then require recursions of larger error covariance matrices than

the DKF. Another disadvantage of including a regression parameter in the state arises

in the smoothing cycle wherein the smoothed estimator of the regression parameter is

effectively not updated since it coincides with its final estimator in the filtering cycle.

We have discussed practical issues concerning the use of the DKF namely its initial

ization and its efficient implementation. We have shown how the DKF could be initialized

in the general case as well as in particular instances such as when the SSM is time in

variant. We have implemented a collapsing strategy in the DKF whereby columns of

pertinent matrices related to diffuse initial conditions were factored out. This revised

DKF, labelled the CDKF, which coincides with the KF when regression effects are ab

sent from the SSM, has been shown to be computationally more efficient than alternative

algorithms considered in the literature.
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Chapter 8. Epilogue 135

We have displayed two beneficial consequences of employing a single source of error

in the SSM. First, it allowed us to implement a novel and efficient CDKF-EM approach

which does not require the estimation of lag-one state error covariance matrices for the

maximum likelihood estimation of the covariance matrices of the error vector in the SSM.

Second, we showed how the predictor of the error vector conditional on the entire dataset

can be obtained recursively. These estimates were then used to detect likely outliers and

structural breaks in the SSM.



Appendix: CAPM Dataset

Dataset is kindly provided by Dr. Dilip Madan, University of Maryland. Read across and
down. Entries in each column are monthly rate of returns for the three assets. Example

(.00488 ; .00153; .00509), (-.01604; .02413 ; .03227) etc.

.00488 .00153 .00509

.03378 .07872 .04534

.03052 .03892 .04550

.02093 .02631 .00987
-.05316 -.10617 -.08731
-.01749 -.01572 -.03292
-.01202 -.02909 -.03807
-.00321 -.01668 -.01467

.07804 .05111 .06694
.01214 -.01640 -.00129

.02313 .05060 .02535
.03810 -.00859 .00185

-.04063 -.00709 -.04625
-.05668 -.07087 -.08011

.05346 .08264 .06045
-.01239 .02177 .02360
.05362 .05869 .06336
.03980 .05834 .05317

.00026 -.00849 -.01286
.01528 .09369 .02447

-.00065 .01083 .03446
.01836 -.00259 -.01343

-.00022 .02053 .03021
.01958 .02128 .01063

-.00644 -.02633 -.01106
.08750 .00799 .03519

-.01604 .02413 .03227
-.00876 .03910 .03543

.00753 -.00653 -.01043
.01396 .04359 .02384

-.00287 .00868 -.00263
.03306 .04078 .04443
.03044 .01588 .01471
.05385 .02855 .04241
.03832 .03008 .04395

-.00229 .03824 .04389
.03695 .01951 .02989
.06536 .06916 .02560

.04792 -.01064 .01806
-.07937 -.06558 -.09000

.02504 .03517 .00977

.12416 .10097 .13546
-.00766 -.03700 -.03178

-.00132 .05658 .01680
.05478 .06585 .07177

-.00694 -.03556 .00030
.02394 .01915 .01883
.01041 .00977 .01194

-.00663 .01181 -.01976
-.00252 -.00407 -.00405

-.00468 .00467 .01670
-.01176 -.02218 -.00591

.03324 .04000 .02734
.00288 -.00590 - .00740

-.02186 -.00538 -.01263
-.03393 -.08579 -.05524
-.08353 -.07456 -.07760

.01378 -.00466 .02407

-.00586 .00869 -.00231
-.00329 .00237 .01892

- .05926 -.04643 -.04989
.03798 .04033 .02503

.01118 -.03933 -.02236
-.00200 .00302 .01749

-.03827 -.07757 -.07178
.03924 .00750 .04233
.05504 AJ3143 .01655

- .02598 - .02390 - .03444
-.01909 .01390 -.04414
-.00498 .00770 .00199

-.02873 -.00471 .00071
-.07169 -.08016 -.09779
-.03258 -.04971 -.05365

.01665 .01728 -.01003
.03491 .04262 .03144

-.01304 -.02987 -.02801
-.03505 - .00905 - .00808

.03485 -.00061 .02842
.01734 .02048 .02921

-.00302 .01548 .00254
.02140 .04828 .04824

-.01540 .01553 .00163
-.00486 .01195 - .01284

-.02801 -.07065 -.06289
.01984 .07106 .02728
.00375 .01148 .03698

- .04000 -.02890 -.02684
-.00681 -.00701 -.01778
.03477 -.01601 -.03141
.01034 -.01518 .01248

.01987 .05097

.01233 .00143

.03547 .03677

.02181 .06228

.02140 .02766

.02561 .05777

.02117

.00728

.05415

.02978

.01519

.03724
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.08576 .11789 .09994

.02738 .08751 .03871

.06433 .09556 .06151
-.04199 -.03762 -.05762
.00410 -.07368 -.05400

.07802 .12163 .09577
-.01269 -.03754 -.03446

.04046 .02523 .02390
.01004 -.02060 -.00440

.01957 .00660 .02581
-.08161 -.07171 -.03729

.07821 .05345 .07560
-.08882 -.08982 -.06666
-.12047 -.11071 -.08238

.08884 .08788 .05401
-.04746 -.03388 -.01826

.05034 .05716 .04601

.02161 .07846 .02923
-.01385 -.06055 -.04150
-.02845 -.06168 -.05308

.01587 .03794 .02355

.01766 .00258 .01202
-.00968 -.02122 .01487
.02468 -.01991 .01639

-.05566 -.06866 -.01700
-.06642 -.06723 -.03791

.07761 .09048 .07028
-.0 1144 -.04287 .02047
-.00687 .05354 .00202

-.07467 -.03801 -.01158
-.05316 -.10298 -.06862

.20065 .06390 .21557

.15402 .19543 .08092

.01600 .05121 .08181
-.07351 -.04895 -.07783

.04024 .07696 .06146

.11204 .17004 .14620
-.01916 .00492 -.01265
.00578 -.01767 -.01495

-.00123 -.03328 -.02646

-.00356.00238 -.00381
-.04347 - .05871 -.03825
.00057 -.00641 -.00260
.00738 -.00395 -.00186

-.03 117 -.03256 -.03703
.01883 .00341 .02061
.02933 .01418 .02022
.04321 .02152 .05921

-.07823 -.04737 -.05577
.00013 -.00600 -.00227

.08002 .03335 .05140
-.05321 -.04181 -.01976

.10130 .05973 .07073
-.06444 -.07420 -.05777

.05562 .07688 .02984

.06190 .06513 .03061

.01776 .02397 .00731
-.04848 -.03633 -.02824

.05350 .08663 .04744
.01049 .00316 -.00681
.00295 .0203 1 .05592

-.00446 -.00223 .02148
.06204 .03414 .03575
.05275 .07311 .04180

- .05875 -.05895 -.00979
-.02465 -.02966 -.00280
-.01715 -.03953 -.03121
-.11437 -.16418 -.11602

.01101 -.00359 .01046
-.08675 -.00969 -.02994
-.10610 -.06650 -.09100
-.01773 -.03795 -.04117

-.01292 .06492 .09249
.07187 .04990 .03656

-.05480 -.03188 -.00615
.04050 .03322 .03347

.00994 .03371 -.00557
-.01188 -.01690 -.01819
.00278 -.01268 -.01229
.02182 .00406 -.03885

.02187 .04189 .06165

.03894 .03532 .01706

.01146 .04519 .03042

.04100 .01968 .04843

.00167 .00429 .00699
.05541 -.00814 .00648
.07839 .05467 .04417

-.04785 -.04135 -.01939
.02161 .03755 .02940

-.08081 -.06860 -.08060
-.01448 .00070 -.01293

-.02572 -.03004 -.00413
-.00295 .01695 -.01166

-.03412 -.04836 -.03248
.03772 .04152 .04197
.08108 .06549 .06844
.06776 .04626 .03572

.00132 -.00480 .00073
-.01083 -.00079 -.00814

.06075 .08147 .08777

.03640 .02434 .00923
-.03220 -.03823 -.01816
-.00719 -.01242 -.01785

-.00634 .01638 .01743
.00247 -.03338 .01001

.01495 -.03433 -.00290
.07600 .08756 .04532

.04143 -.03505 .01387
-.04428 -.02153 - .00342
-.05663 -.03825 .00311

-.03900 -.12378 -.13364
-.01950 -.03489 -.04007

.01155 .07801 .04573

.07908 .09545 .02840
-.05120 -.03301 -.06751
-.00022 -.00808 -.02513

.03755 .03176 .02528

.05937 .06495 .02745

.0 1784 .03969 .02155

.08856 .08683 .06774
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-.04467 -.04224 -.07186
.02260 .02803 -.01452

.00137 -.02982 -.03608
-.04581 -.04159 -.03653
-.06845 -.05918 -.04970

.08680 .10346 .09831

.04755 .06836 .07846
-.10496 -.11840 -.09411

.04939 .04795 .05707
.01981 .01795 -.00873
.03206 .00990 .01048

-.07246 -.08609 -.08062
.03404 .10487 .04552

.06077 - .00218 .03377
.02749 .12732 .09354

.03299 -.00331 -.01642
-.05670 -.04634 -.00859
-.04553 .02893 -.01914

-.00292 -.03099 -.02681
.06408 .02972 .03664

- .03266 -.00285 -.02933
.04914 .05548 .04331

-.04256 -.00453 -.01856
.14788 .16851 .11336
.00280 .04122 .04850
.09146 .08260 .06611

-.03127 -.04357 -.02216
-.02396 -.01691 -.01642
.00616 -.04841 -.02854
-.01160 .00939 -.00634

-.01098 -.00468 -.03757
.00518 .01440 .00969
.08983 .10779 .06663

.02094 -.03234 -.01243
-.02228 .01388 .02802
.07113 .02856 .03426
.02569 .01368 .01490

-.03602 -.00694 -.01509
-.04740 -.08905 -.05804

.04393 .05273 .07335

-.02559 -.02601 -.00299
-.00744 -.00192 -.04461
-.02434 -.01408 -.00400

.04768 .0349 1 .04258
-.00163 -.00023 -.03876

.00535 .02346 .02888

.04396 .02872 .02753

.01901 .02536 .01811
-.03785 -.05004 - .03385
.00690 -.02123 -.02298

.04549 .06756 .08332

.06894 .02200 .04872
.00016 -.05645 -.00775

.06792 .05224 .07461

.01182 .02858 .00888

.10915 .09398 .06943

.00780 .03459 .03477
.01606 .04328 -.00204

-.05553 -.07644 -.05209
.04925 .02293 .05434

- .04998 - .05334 - .03777
-.05096 - .03713 -.04824

.12889 .14373 .14028

.04919 .10020 .03990

.04167 .03691 .02399
-.00614 .00897 .00906
.01568 -.02049 .02952
.03691 .05742 .03401

-.03884 -.06501 -.03690
-.05965 -.07030 -.06563

.11213 .12325 .10835
-.00930 -.03926 -.00139

.02262 -.00023 .00862
.05626 .05513 .06738

-.00309 -.01907 -.00914
.06854 .07975 .08742
.07963 .08708 .09132
.05076 .01318 .06446
.09072 .07577 .06013
.00046 .03024 .02335

-.00703 -.01835 -.00879
.05775 .05226 .03151

-.00203 .00103 - .01689
-.00286 - .00536 .00713

.05136 .06597 .03842
-.01164 -.01443 -.01531
.00451 -.01772 -.01335

.01491 .00304 .01715

.07242 .06531 .06813

.07885 .04290 .03175
-.00381 .00176 .00860
.00871 .04504 .04777

-.08970 -.09564 -.10789
.06707 .01880 .01899
.04016 .03769 .02494

-.02087 -.01321 -.00811
.06955 .09137 .07477

.01715 -.06166 -.01682
-.0273 7 -.05894 -.06538
-.04413 -.00628 -.02378
-.01197 -.00045 -.03072
-.03189 .00852 -.02857
.04524 -.01120 -.00262
-.02211 .02439 .00840
.06484 .01443 .02524
.01555 .06979 .01632
.00582 .04651 .00502

-.00883 .00552 -.02902
.01581 .01272 .03733
.01397 .03906 .01896

.03535 -.01558 -.03242
.03756 .03901 .02083

.00009 -.04152 .00087
.02621 .01885 .01066

-.04015 -.04467 -.03129
.04794 .06467 .04023
.06504 .07057 .07876

.01509 -.00566 .02751
-.09890 -.06565 - .08089
-.01890 -.01764 -.01138
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Read across and down. Entries are monthly rate of returns for the CRSP equally-weighted
and value-weighted market indices. Example : (.00958 ; .04149), (.01120 ; .02747) etc.

.00958 .04149 — .01120 .02747 — .00490 .01280 — .03917 .02559

.02004 .00758 .00121 .00450 .03427 .03015 -.01160 -.01508
-.04475 -.04589 .01514 .02322 .01822 .01486 .02902 .02124
-.06726 -.03910 .01246 .00813 -.01212 -.02447 -.01548 -.01919

.03328 .02533 .02313 .02136 -.02077 -.01807 .03004 .03495
-.05811 -.05880 -.00457 -.02299 .04793 .04659 .04811 .03740

.06446 .08239 .03709 .05986 .03096 .05042 .00586 .00941

.02589 .04176 -.02848 -.04239 .03070 .01154 .02716 .02112
-.01881 -.02979 .02714 .02110 .04609 .04630 .00067 -.00351
-.03626 -.00789 .01904 .0 1544 -.00564 -.00594 -.06273 -.06806
-.08452 -.09804 -.08265 -.08497 .06608 .06378 .02287 .02800
-.05007 -.06058 .00418 -.02184 .11182 .13783 .01306 -.00914

.05129 .07819 -.02253 -.01477 .03421 .02083 .04789 .03845

.02038 .03268 -.01801 -.01577 -.00185 -.00968 .05408 .05094
-.01264 -.01950 .02937 .01633 -.00508 -.00766 .02273 .00772

.02590 .02024 .01766 .02661 .01767 .03179 .00432 -.00348

.01690 .01230 .01624 .01530 .01975 .02772 -.01140 -.00903

.03052 .03699 .00953 .01720 .00247 .00074 .00384 - .00693

.03785 .05926 .00710 .02795 -.01069 .00512 .03407 .03590
-.00434 -.00784 -.05035 -.07439 .01711 .02900 .03009 .04497

.03223 .03212 .02878 .04744 .00165 .02972 .01233 .03212

.01005 .04228 -.01024 .01108 -.02131 -.02182 .02371 .03372
-.05109 -.07242 -.01112 -.04999 -.01208 -.01208 -.07461 -.09325
-.00668 -.01355 .04583 .01299 .01666 .03814 .00444 .01643

.08330 .14337 .00992 .02088 .04301 .05193 .04196 .03708
-.04143 -.01790 .02356 .05147 .04825 .07033 -.00604 .00298

.03328 .03782 -.02801 -.03594 .00770 .00690 .03098 .05574
-.03890 -.00343 -.03130 -.04138 .00681 -.00421 .08971 .11645

.02336 .05951 .01181 .01845 -.02166 -.02687 .01654 .02810

.04174 .05859 .01047 .01620 .05739 .07289 -.03696 -.01562
-.00722 -.00923 -.05026 -.07071 .03117 .01889 .02127 .01059
.00304 -.00257 -.06235 -.09557 -.06301 -.07997 .05017 .05010

-.02231 -.01632 .05504 .07636 -.03151 -.04740 -.01766 -.04501
-.07634 -.05607 .05956 .05238 -.00269 -.00903 -.09977 -.12998
-.06159 -.08786 -.05059 -.07009 .07460 .07432 .04980 .06828

.04258 .08838 -.01576 -.04624 .05260 .03279 .06173 .08773

.04965 .09963 .01475 .02573 .04401 .05361 .03396 .03403
-.03662 -.04224 .00428 -.00845 -.04064 -.04601 .04228 .05205
-.00568 -.01265 -.03962 -.05032 .00018 -.02168 .09056 .11232

.02391 .06023 .03049 .03000 .00922 .00171 .00628 .00536
.01724 - .00908 -.02185 -.03300 -.00188 -.02258 .03791 .02915
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-.00655 -.02543 — .01038 -.00174 — .04951 .06556 — .01105 -.01313
-.02545 - .05051 - .04021 -.06447 - .00534 - .02362 - .04635 -.06336
-.01876 -.06291 -.00852 -.03135 .05210 .10438 -.03026 -.03454

.05259 .10404 -.00139 -.00911 -.11611 -.16980 .01522 -.01002
-.00057 .10283 .00318 .01038 -.02419 -.01766 -.04331 -.05963

-.03503 -.07316 -.01896 -.03387 -.07276 -.04621 -.08537 -.09296
-.11028 -.07791 .16800 .11779 -.04017 -.04206 -.02350 -.06631

.13483 .30024 .06037 .03453 .02901 .07982 .04685 .03106

.05499 .06829 .05150 .07621 -.06358 - .04080 - .02055 -.04364
-.03606 -.04109 .06086 .03704 .03128 .03112 -.01018 .00048

.12524 .19089 .00098 .07222 .02971 .01084 -.01099 -.01497
-.00907 - .01864 .04749 .04847 -.00737 -.00001 .00053 -.01354

.02572 .02195 -.02128 -.02419 .00515 .03402 .05806 .09372
-.03965 -.00069 -.01677 -.01623 -.01079 .00368 .00384 .01592
-.01238 -.00540 .05119 .06241 -.01548 -.00838 -.01412 -.01456

.00040 .00639 -.03944 -.02840 .04234 .07877 .00553 .00341
-.05739 -.03637 -.01217 .00650 .03182 .06494 .08347 .07615

.01896 .04454 -.01323 -.00604 .05683 .05966 .03755 .06751
-.00660 -.00768 -.10221 -.16731 .03170 .04482 .01652 .01170

.04721 .08699 -.02897 -.02915 .06199 .08643 .00680 .01737
-.01488 -.00773 .04467 .05410 .01532 .02813 .06299 .07851
-.00037 - .00908 -.06925 -.10039 .06059 .07540 .02280 .04380

.06193 .06412 -.00344 -.03120 -.10759 -.13698 .04880 .06376

.05840 .07789 .03345 .03966 .06848 .09627 .02003 .04153

.02906 .02628 .01965 .01800 .10769 .05668 -.03369 -.02104
-.04353 -.00337 .01833 .01956 .04297 .08058 -.01642 .01191

.00814 .01993 -.00789 -.00412 .00075 -.01852 -.05598 -.06503
-.05570 -.06441 .05729 .07096 .04585 .04131 -.02781 -.02020
-.02207 -.02273 -.04924 -.03775 -.00833 - .00122 .04188 .04788
-.02911 -.03329 -.01988 -.02074 -.02112 -.01444 .12520 .11348

.01264 .02535 .11569 .13465 .04713 .07346 .01615 .01450

.03695 .05305 .02794 .04766 .03343 .04331 .07215 .06774

.00373 .05105 .03830 .03808 -.03039 -.02021 .01239 -.00868

.01749 .02427 -.01824 -.03523 .02563 .04803 -.00821 -.01127
-.00888 -.00610 -.03688 -.04973 .01669 .01977 .00526 -.00599
-.05129 -.04961 .02325 .02578 -.01565 -.03727 .11144 .11793

.00205 .00682 .00331 -.00533 -.00938 -.01677 .02517 .01825

.07950 .10633 .01661 .02128 -.00037 -.00828 -.00277 -.01114

.05872 .04541 .01719 .01406 -.00351 .01465 -.00463 -.00294
-.03667 -.04905 .04462 .03495 .06884 .06549 .04554 .04245

.00737 .01326 .07374 .07056 .05560 .05967 -.01322 -.00631

.05146 .03973 .01509 .00034 -.05480 -.07165 .07312 .06207
-.07957 -.05350 .05402 .04518 .01857 .00726 -.02677 -.01967
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