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Abstract

The question of the breakdown of Fermi liquid theory in two dimensions is examined in

the context of perturbation theory for a dilute interacting Fermi gas. The quasiparticle

interaction function, fic;u;, is calculated for such a system. The interaction function,

calculated to second order in terms of the dimensionless coupling constant, shows various

singularities. The most divergent terms appear in the cross channel, but cancel out

leaving a much weaker singularity in the limit of two momenta approaching each other

( 0 —f 0 ). As in the case of the three dimensional Fermi gas, the Cooper channel contains

a logarithmic singularity in the limit 0 —f 7r. This singularity can be summed and is

known to be harmless to the structure of Fermi liquid theory. A different feature in two

dimensions is the existence of such a singularity for 0 —p 0. This feature needs further

investigation.

Calculations have also been extended to a polarized Fermi gas and the result is equiv-

alent to the unpolarized case and does not show any additional features. In conclusion,

the results do not indicate the presence of strong divergences which could cause the

breakdown of Fermi liquid theory in two dimensions for a dilute interacting Fermi gas.
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Chapter 1

Introduction

The motivation for this work partly arises from the recent emphasis on two dimentional

physics. Until recently, physics in two dimensions was considered relatively trivial, stud-

ied mainly as a matter of curiosity and occasionally to compare and contrast the results

to properties in three dimensions. The current interest in two-dimensional physics partly

stems from the success in producing thin films: for example, it has become possible' to

make monolayer films of 3He on superfluid 4He. The need to understand the physics

of surfaces, the two-dimensional electron gas and new high-transition-temperature su-

perconductors also has put emphasis on understanding physics in two dimensions.The

existence of anyons and their role in the mechanism of quantum Hall effect is just one

indication of the subtlety of the phenomena and features in two dimensions. 2

With the recent discovery of high-T, copper-oxide superconductors 3 there has been an

enormous effort to characterize and understand the physical behavior of these compounds

in the normal and superconducting states. 4 The measurements of electrical conductivity

and electron tunneling in these materials show their anisotropic behaviour, indicating

that the current carriers are confined to the layers of copper-oxide planes 4 . Despite the

experimental and theoretical efforts, the nature of the normal state and the mechanism

of superconductivity in these materials are still open questions. Almost all candidate

theories, such as the Luttinger liquid theory of Anderson'', marginal Fermi liquid theory

of Varma, et al.' and the anyon mechanism' have concentrated on this two dimensional

behaviour and almost all propose that electron (electron-pair) tunneling is responsible

1



Chapter 1. Introduction^ 2

for conductivity (superconductivity) in the direction perpendicular to a-b plane (c-axis).

The BCS theory of superconductivity' explains the nature and the onset of the

superconductivity in normal three dimensional superconductors. The normal state of the

electrons in a metal is that of an interacting Fermi system: a Fermi liquid. Such a system

is reached by adiabatic continuation from a free Fermi gas and its low-lying energy levels

have the same structure as the non-interacting system. There are natural instabilities

in a Fermi liquid which lead to the formation of Cooper pairs. 11 The prerequisite for

this mechanism is the existence of an effective attractive two-body interaction which in

a metal is provided by mediating phonons. Although the phonon-mediated mechanism

is not completely ruled out in the cuprate superconductors, the evidence points against

it . 12,13

The normal state properties of the cuprate superconductors are also quite puzzling.

These materials show metallic behaviour near their transition temperatures; however,

unlike normal metals, they do not obey the predictions of Fermi liquid theory in regard

to their decay rate, resistivity and tunneling properties ( for a review on this matter refer

to ref. [4-7}). Varma, et al. 8 ' 14 have suggested that Fermi liquid theory is obeyed in a

"marginal" sense and have proposed a phenomenological postulate from which several

features of the normal state could be derived. However, others have claimed that Fermi

liquid theory is irrelevant with regard to the ground state of these materials. Specifically

Anderson has claimed"' that in two dimensions, Fermi liquid theory breaks down due

to the presence of strong singular interaction terms.The question of the relevance of Fermi

liquid theory to two dimensional systems is obviously important. Perhaps the crucial test

would come from the experiments on the liquid 'He films on the substrate of superfluid

4He. This has been made possible recentlyl, and it could be the closest system to a two

dimensional Fermi liquid, if there is one.
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The fundamental assumptions and the consequences of Fermi liquid theory are ex-

plained in the next chapter. We only mention here that a Fermi liquid is the state of an

interacting system of fermions reached by adiabatic continuation from a non-interacting

Fermi gas. In a Fermi liquid, the role of particles is taken up by quasiparticles which are

particlelike excitations of the interacting system. The overlap between the wavefunctions

of the bare particle and the quasiparticle is given by the renormalization factor z:

zk =< 14 1 0 >

Anderson's argument for the breakdown of the Fermi liquid theory begins by suggest-

ing the existence of singular terms of the form

11 • (1)^Pi ) 
fppi^ (1.2)

IP P1 2

in the quasiparticle interaction function, and that these interactions produce a finite phase

shift for quasiparticles with p p' = 2pF . (Note that this form is actually asymmetric.

One way of justifying this would be to assume that one excitation is above and the other is

below the Fermi surface.) He argues that due to these singularities, the renormalization

constant z vanishes and it is no longer correct to speak of continuing from the non-

interacting system to the interacting system.

Anderson further draws analogy from the problem of a quantum impurity in a static

potential that this is also related to the overlap of the initial and final many-body wave-

functions:

< 0 I V > exP(—(7r
0

)

2 (1.3)

where 10 > and IV > are the wavefuctions for the free and interacting systems, respec-

tively, and 8 is the forward scattering phase shift. He argues that the scattering of

quasiparticles in the vicinity of the Fermi surface results in a finite phase shift which

makes this overlap zero and therefore adiabatic continuation is impossible.
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Faced with such propositions, there are questions which should be dealt with. The

first question is whether there are such singularities and and if so what their origins

are. Also one must show that they indeed lead to the breakdown of Fermi liquid theory,

since it is well known that many singularities, such as the Cooper pairing, only lead to

a modification of Fermi liquid theory.' Assuming that these tasks are accomplished, we

still have to find an alternative quantum liquid to describe the interacting ground state.

This work mainly deals with the first question and examines the validity of Fermi liquid

theory in the context of perturbation theory.



Chapter 2

Theoretical background:Fermi Liquid Theory

2.1 The Foundation of Fermi Liquid Theory

Fermi liquid theory is a microscopic theory of systems of interacting fermions at tem-

peratures where quantum effects dominate, i.e. below the degeneracy temperature of

the system. Initially proposed in 1957 by Lev Landau l' 19 to be applied to the prob-

lem of liquid 3He, Fermi liquid theory has also been successfully applied to the electron

liquid in a metal. The theory assumes that the low level excitations of the liquid have

fermionic statistics and consequently a necessary but not sufficient condition for Fermi

liquid theory to be applicable is that the interacting particles be fermions. Fermi liquid

theory has been applied to the dilute solutions of 3He in superfluid 'He' and it best suc-

ceeds in explaining the quantum behaviour of liquid 'Ile.' Fermi liquid theory predicts

low temperature properties of the electron liquid in a metal and provides a conceptual

understanding of the success of the free electron approximation.

In constructing his theory, Landau assumed that it is possible to turn on the inter-

action slowly so that there is an adiabatic continuation from a non-interacting Fermi

gas to the interacting Fermi liquid. An adiabatic continuation means that there is an

unambiguous and one-to-one correspondence between the low-lying levels of the inter-

acting system and those of a non-interacting Fermi gas. Therefore one is able to label

such states of the Fermi fluid by the levels of the initial Fermi gas. The justification for

applying this procedure is subtle, and depends on further assumptions appropriate to a

5



Chapter 2. Theoretical background:Fermi Liquid Theory^ 6

Fermi system.

Even in a strongly interacting Fermi system, the exclusion principle dramatically

reduces the phase space available for scattering processes. At T ,---- 0, the volume of

available phase space for scattering of a particle on the Fermi surface is zero, and therefore

its life-time is infinite. A particle with a momentum k > kF, has a volume proportional to

(k—kF ) 2 available for scattering. At low temperatures, a particle's energy is proportional

to the absolute temperature and its decay rate is proportional to the square of the

absolute temperature. Therefore, at sufficiently low temperatures it is possible to turn

on the interaction in a time that is less than the lifetime of a particle, and one can then

speak of one particle states which are approximate eigenstates of the interacting system.

Furthermore it is obvious that there are no single particle stationary states of the

interacting system. In the theory of Fermi liquids the role of particles is taken up by

quasiparticles which are the particle-like excitations of the liquid and which obey Fermi-

Dirac statistics. A quasiparticle can be thought of as a particle in the self-consistent

field of all other particles, and it carries the same charge and momentum as the actual

particles.' With this notion, the problem of interacting particles is replaced by inter-

acting quasiparticles whose number is always equal to the number of actual particles.

One should note that the energy of the particle depends on the state of the surrounding

particles, and therefore the total energy is no longer the sum of the energies of the in-

dividual particles; it is a functional of the distribution function. The energy of a single

quasiparticle is defined as the functional derivative of the total energy with respect to

the distribution function.

Now assuming that the state of the system remains of the same symmetry, we ask the

question: what happens if the distribution fuction,nk, varies slightly? The energies of

the quasiparticles are no longer independent, and by varying nk, the energy of any other

quasiparticle changes. The total energy of the system is a functional of the distribution
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function and has a perturbation expansion whose first few terms are :

E = E0 E Srik€(1), + -
1 E E f(k,11(5nOnk,^(2.4)
2 k

E li)( is the energy of the quasiparticle of wavevector k and f (k, k') is the second functional

derivative of the E. The great practical advantage of Landau's theory is that this ex-

pansion to second order is sufficient for obtaining the low temperature properties of the

system. These properties turn out to depend on some integral of the function f.

There are many reviews of Fermi liquid theory. For further discussions and applica-

tions to physical systems see ref.[22-24].

2.2 The Dilute Interacting Fermi Gas

In order to introduce the methods presented in this thesis, we must mention the case

of a three dimensional low-density degenerate Fermi gas. This was studied by Lee and

Yang', Abrikosov and Khalatnikov26, and others'.

Lee and Yang considered the cases of Fermi, Bose and Classical Boltzmann gases of

hard spheres of diameter a. The method involved finding a two-body pseudopotential to

replace the hard sphere potential. An expansion was obtained in terms of the diameter a

- which also coincides with the s-wave scattering length - for the ground state of a Fermi

gas at a finite density p and infinite volume. The energy per particle of such a system

was found to be (at T = 0):

E^3p2

N— = ( 1 ) + Eirap J(2J 1) - ' [1 + 6(1 - 21n 2) 357r + 0(n2 a2)]^(2.5)
^5^ .t-F /

where J is the spin of the particles. To the orders specified, this expansion is exact.

Abrikosov and Khalatnikov approached this problem from a different angle. They

also considered a dilute Fermi gas with two-body interactions, and assumed that the

interaction range is much smaller than the distance between two particles.This allows
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the expansion of the energy in terms of the small parameter (kFa) where kF is the Fermi

wavevector and a is the s-wave scattering length. Their method was the first to renormal-

ize the potential in terms of a physical quantity such as the s-wave scattering length. As

opposed to Lee and Yang, they did not calculate the ground state energy directly, rather

they used the quasiparticle approximation and calculated the quasiparticle interaction

function for the system. The advantage of their method is that one is able to obtain

formulas for thermodynamic and transport properties of the system without further in-

tegration, and that the energy can be obtained from the chemical potential. The details

of this method are explained in the next two chapters. Here we give a brief outline:

Consider a gas of fermions with two-body interactions as explained. As long as

the interaction range and the momentum exchange are small, one can approximate the

interaction to be independent of the momenta of the two particles. One can also ignore

three-body collisions if one is only interested in the first few terms of the series expansion.

This is because such collisions only affect terms of fourth order in (kFa) and higher. With

this method, they obtained the following expression for the quasiparticle interaction

function:

^27ra^3^cos 0^1 + sin(0/ 2) 
f (0) = 

^h2
[ 1 +2( 7r NN3 (2 +

m^ 2 sin(0/2) in 1 — sin(0/2) )1

8irah 2^3^sin(0/2)^1 + sin(0/2) \ -1 ( 6)

m (0-10-2)^+ 2( 7r Pa/(1 —^
2^In 1 — sin(0/2)

where 0 is the angle between the two momenta. The energy is obtained from the relation:

E = f ,a dN^ (2.7)

and coincides with that of Lee and Yang.

From the eq. (2.6), we observe that for angles near r, the function f has a logarithmic

singularity and that strictly speaking, the series is no longer meaningful. However, this

dilemma is resolved by summing the divergent terms to infinite order. This gives a
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non-singular result for a > 0. However, when a < 0, that is in the case of attractive

interactions, the scattering amplitude has a pole at a small imaginary value of E where

E = p2 + p '2 - 2pF. This pole corresponds to the instability of the Fermi liquid ground

state to formation of Cooper pairs and is the cause of (s-wave ) superfluidity in a Fermi

liquid.

With regard to the recent developements it is worthwhile doing a similar calculation in

two dimensions. Not only could this lead us to the formation of bound states as in three

dimensions, but it can also reveal divergences which signal the breakdown of validity of

the Fermi liquid theory. The latter is actually what happens for a one dimensional gas

of fermions and it is well known that the properties of a Fermi gas in one dimension are

fundamentally different from that in three dimension. 28 The situation in two dimension

is far from clear and we hope to shed some light on it.



Chapter 3

Quantum Mechanical Scattering in Two Dimensions in Free Space

3.1 General Formulations

We are interested in calculating the quasiparticle interaction function and from that the

thermodynamical properties of a dilute Fermi gas. The Hamiltonian includes the kinetic

energy and a second term for pair interaction of the particles. However, the interaction

energy increases at short distances (typical interatomic distances), and perturbation the-

ory is no longer valid. We can overcome this problem by renormalizing the potential in

terms of a physical quantity such as the scattering length. That is, we consistently re-

place the potential with one which has the same scattering amplitude at low energies and

is well behaved at short distances. As long as the energies are low, and the calculated

quantity includes the interaction only in terms of the scattering amplitude, the result

would be the same as the one which uses the actual, non-renormalized potential.

The scattering length is defined as:

a = — lim f (0)^ (3.8)
k--40

where f(0) is the scattering amplitude. In three dimensions a has the form

Mtto
a= ^

47h 2
where uo = I d3r V(r)^(3.9)

and V(r) is the interaction potential. However, as we shall soon see, in two dimensions

all scattering amplitudes diverge as (k) -1 at low energies. The problem is easily fixed by

introducing a well behaved dimensionless quantity as is done in the next section.

10



a2T
ao2

a , aR,^2^in2

VC - U(r) - )R = 0
r ar ar^r2

m 2T = 0 (3.13)
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The following is a calculation of the scattering amplitudes in two dimensions. They

are included for completeness. The derivation and notations are mainly followed from

Lapidus. 29 . For further discussion see ref. [30-32].

We begin by writing the SchrOdinger equation in two dimensions

 

V 20 + V (r, 0)0 = (3.10)
2m

which we can write as

V2 + (k 2 — U(r, 0))/ = 0^ (3.11)

where k 2 = 2mE
h2 and U(r, 0) = V(r , 0). Furthermore, we assume that the potential

is central which means U(r, 0) = U(r). Now in polar coordinates, the equation has the

form
a a^a2 

( ?75-
r 
(rw-

r
) r2a92 + (k 2 — U(r))0 = 0 (3.12)

This equation can be separated into radial and angular parts, so we take 0(r, 0) =

R(r)T(0). The two equations are

If we take the x-axis to be along the direction of the incident beam, it would be an axis

of the symmetry of the system. Therefore the probability distribution must be symmetric

about this axis. That means 'TOW IT(-6)1 2 . Then the normalized angular part of

the solution would have the form

T(0) = \Fir cos me^ (3.15)

m must be an integer so that T(0) is periodic in 0(single-valued).
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Now, let's look at the asymptotic form of the radial equation. Consider a potential

that vanishes at sufficiently large values of r. An example is a potential of the form

V(r) =

The radial equation has the asymptotic form

2 d2 R^dRp^p_

V(r)

0

(p 2

r < a

r > a

ni2) R 0

(3.16)

(3.17)
dp2^dp

where p = kr. Eq. (3.17) is in the form of the Bessel differential equation, solutions

of which are Bessel and Neumann functions of the first kind. At large values of r their

leading asymptotic terms are

Jrn (kr) --4 ( rkr )1 cos(kr — (m 2)2)^(3.18)

.^1 7r
Nm (kr)^( irkr ) 2 sm(kr — (m + —2 )-2 )^(3.19)

and therefore the radial solution has the asymptotic form

2^1 7r
Rm (kr)^ (m+2 + 8,)^(3.20)

The quatity Sni is called the phase shift of the mth partial wave.
h2 7.2

Now consider a free particle of a fixed energy E^4 . The incoming particle has2m

the wavefunction:

ikx
Oinc = e^ (3.21)

For a steady state configuration, conservation of energy requires that the scattered wave

have the asymptotic dependence of

eikr

I,„(r, 0) r.,^f (0)
\fr

(3.22)

where 1(0) contains the angular dependence of the scattered wave and has dimension of
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Therefore the asymptotic form of the steady state wavefunction must have the form :

e ikr
0(r, 0) = eikr go) (3.23)

Comparison of the above equation with the previously obtained asymptotic form of the

wavefunction (eq. 3.20) gives the scattering amplitude and phase shifts. We proceed by

first expanding the incident wavefunction in terms of Bessel functions. The Jacobi-Anger

relation (ref. [33], p585) gives

00

e = eiks^ikr cos()^E im Jni (kOe ime
m=-00

00

^= Jo (kr) + 2 E im Jrn (kr) cos(m0)^(3.24)
m=1

Then the following equality must be satisfied:

oo^ eikr^co^2^7r
Jo(kr)+2 E imJm (kr)cos(mo)+f(6)—,_ E Am (  ,

r
 cos(kr—(m+

1
)--2-+ ,5,) cos(m0)

^

v r^m.0^iricm=1
(3.25)

Writing this equation in terms of e ikr and e —ikr and putting the coefficient of each to zero

gives the following two equations:

Em im cos(m0)^Am ism

\/2lrk^z/Ue^
(3.26)

1(0)^(emim cos(m0)^Am e iSm)e—i=

^

m=o^f2irk^ViTc

where Em = 2, m 0 and co = 1. These equations give:

^Am = 2Em im(27r)e i6rn^ (3.28)

^1(0) =^
1
^E^cos(m0)(e2ism — 1)^(3.29)

(27rik) m=o

For m^0, the phase shift vanishes as km and therefore ensures that f(0) remains

regular. However, in the case of m = 0, we have ( C i is a fixed constant ):

it
So ^, (ln Clka ) -1

2^2
(3.30)

0^(3.27)



m=0
P = —

k 
E €77, sing (5m, (3.32)
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which is not enough to make the scattering amplitude finite.30 The divergence of the

scattering amplitude at small energies also appears in the Born approximation.

The analogous quantity to the three dimensional scattering cross section is a length

in two dimensions. We define it as

For a central potential:

P = i' 27r

If (6)1 2 de
(3

CO

(3.31)

3.2 Born Approximation

In cases where the scattering potential is weak and the phase shifts are small, one may

treat the scattered wave as a perturbation to the incident wavefunction. This is the

essence of the Born approximation. (see discussion in ref.[34])

We write:

(r) = 00(0 + OM
^

(3.33)

where 7b0 (r), OH and OM denote the incident, the scattered and the total wavefunction

respectively. They must satisfy :

^

(V 2 + k 2 )0(r) = U(r)0(r)^ (3.34)

Or

(V 2 + k2 )0(r) = Uibo(r)
^

(3.35)

The Green's function of the Helmholtz equation in two dimensions has the form':

^G (r, r') = Ti le ) (kir —71)^ (3.36)

where le ) is the zeroth order Hankel function of the first kind, defined by

^HO1) (kP) = Jo(kP) + iNo(kP)^ (3.37)



1^ei(kir—r'l+ U (r')e ikx 1 dr' (3.39)= 8rkir — r'l
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Then the scattered wave must be of the form

— J G(r,r')U(r')00 (r')dr'

= --4 f Ho (klr — r'1)U(r')00 (r')dr'^(3.38)

Using the asymptotic form of the Hankel function' :

where q is the momentum transter, i.e. q = k' — k and k' is the wavevector of modulus

k in the direction r'. In the limit of large r and using equation (3.23) for the scattering

amplitude, we obtain:

f(0) = 
^

1 ^I e i g .r i U(r')d2 r'^ (3.40)
rk

and in the limit q^0

Uo^2muo 
AO) = V8rk 

— 
h2V8rk

where
00

uo^V(r) d2 r^(3.41)

The analogous quantity to the three dimensional scattering length has the dimension of

(L) and is equal to :
2muo

a =  ^ (3.42)
h 2 \/8 k

This relation can be used for the scattering of two particles by replacing the wavevector

with the relative wavevector and the mass by the effective mass.



Chapter 4

Methods of Calculations and Results

4.1 The Quasiparticle Interaction Function for a 2D Dilute Fermi Gas

In the previous chapter, we described two particle scattering in free space. Now, we con-

sider the scattering of quasiparticles in a dilute Fermi gas. As mentioned in section(2.2),

this is a generalization of the method of Abrikosov and Khalatnikov to two dimensions.

We consider a short-range two body interaction that is independent of particle momenta.

The interaction is then renormalized in terms of its low energy scattering amplitude.

This procedure removes the difficulty of having to deal with strong interactions at short

distances.

The Hamiltonian of a system of particles with pair interaction is :

H = ckunk, +EEEE<Aai,Aa2IVIPicti,p2a2 >^alp-a2ap2c,, api , i

k,cr^Pl>al P2,cg2

(4.43)

where the summation is over all four momenta and four spin indices. Now, one can write:

<^f v(r)e-g-ind2r
^(4.44)

where q = p'1 — pl = — (p'2 — p2 ), and fl is the area of the system.Conservation of

momentum is implicitly assumed in this expression. Spin indices are suppressed because

the interaction is assumed to be independent of spin. Assuming the momentum exchange

of the particles to be small, and the interaction to be short ranged one can replace the

integral in the above equation with its value at q = 0 and the matrix element with 10-.

16
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n 2C2^4,(74--,a a2 , — (T a l,cr I On° >
Pi ,P2

U0 

= —29^E < Own I (m1,, —^— 1), (n2 , ,_, + 1),^+ 1) >
a 1,2 1',2'

—^\71 — nv ,,^ (4.51)
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We now consider the approximate Hamiltonian

H = Ecp,n2„, + "±-0EEEEcit,a+, a a
4S2^P1CX1 P2% P2 a2 Pi a ].

P,cr^P1,a1 P2 ,a2 14,c4 P1, 04

(4.45)

We restrict ourselves to s-wave scattering which is dominant in the limit of slow collisions.

Then only particles of antiparallel spin can scatter each other, and for particles of spin

2, the Hamiltonian simplifies to :

uoH = E Epu np, + E E
P,6^1,2 1',2'

where + and - represent the two possible spin states of the particles.

We consider this Hamiltonian as

(4.46)

^H = H0 + OH^ (4.47)

and find its ground state energy to second order of perturbative theory. The first and

second order corrections to the energy level E n are:

0
(1)E,,, = (OH)nn =< q OH 1 en, >

^
(4.48)

\--• I (All )nm 12^I< C6Cn1 I 'Ali 1^>1 2 (4.49)A (2) En^Eo Eo^nth^7E9, —mOn n^
m

where En° and 0°„ represent the eigenvalues and eigenvectors of H0 . The ground state

energy of the non-interacting system gives the zeroth order contribution:

Er) = E p ncr Pg

P,cr

and the first order correction is given by eq. 4.48

(4.50)
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The matrix elements will not vanish only if

nil =^—1

n2, = n 2 — 1^ (4.52)

so that
AME = U0 N:Nr-N2_, 711,0-n2,—

n^2S-2 L-1a 1,2
(4.53)

This term represent the shift of the energy levels due to the interaction. Similarly

<^AH 0913, >=---< 0 1-• E E^>
1,2 1',2'2Q

uo—EEE <o f;)„ (n i , + 1), (n2, + 1), (n2 — 1), (n i — 1) >
211^- 1,2 1',2'

— 111/0 n2,07,2TT1

Matrix elements will not vanish only if

= — 1

m2 = n 2 — 1

mt , = ni , + 1

m2, = n 2 , + 1

So now we have

„,2A (2) En^160^E ^—cr (1 —^,a)(1 

^21/ 2^EVcra 1,2 1',2'

(4.54)

(4.55)

(4.56)

with implicit conservation of momentum. This term represents the energy correction due

to pair collisions. It is proportional to the occupation number of the initial states and

the number of unoccupied final states.



Uo u2+  0  E E ^1 ^uo= —
21^4122 a 1 , 2' 1 °.E + E2,- cf — EV,a — E2/,_a 212

(4.58)
Up _.,
2l
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We now recall from the previous section that in two dimensions the "scattering length"

diverges as (k)* . However, we can renormalize the potential in terms of the dimension-

less coupling parameter A defined by:

A = acd87rk = mu° (4.57)
h 2

For the sake of consistency, we should also include the next term in eq. (3.41) or eq.

(4.57) which we have thus far ignored. Fortunately, this is easily done, as the second

order Born approximation is obtained by simply changing':

u2^1
Up = u0 — -'s E E^

211 a 1/ ,2/ E1,a + E2,--, — Ev,, — E2 , ,-,
L2 

A
,^h4 V^1

m^m2S1 E E Ei , + E2,-, —Elsa — E2 1 ,-.7
= —

a l',2 1^/

h^h2
—
m

2
 A(1 ^ A E E^

mm52
1

. 1,2E 1,a + E2,-a — Eli,a — E2',-a 
)=

Equations (4.50), (4.53) and (4.56) give the ground state energy to second order in :

UpE = E ,p,np, + —
252 

E E n i ,,n2,,
P,cr^0- 1,2

,2
+ L.0 v. E v. n1,,n2,_,(1 — ni,,,)(1 — 122/ 7 _a )

2S2 2 L'a, 1,2 1',2' Ei,a + E2,-a — E1',a — E2 , ,-,

and finally using the renormalized value of the potential from eq.(4.59):

(4.60)

h2^h21 v.„^2mE = E fp,np,, + 
2mf2 

A(1
mS2 /` La „2 + F, F2 „,.12^i2) E E n l,a n2 , -a

P'cr^ 1',2' Fl I 2 — l — P2^a 1,2

h4^(1 — ni , ,,)(1 — 7121,_,)+ ^ A2^ni un2,E E    
2m 2 52 2 a 1,2 1',2' El,a + E2,-a — El , ,a — E2 , ,-a

h 2

= E cp,u np,, + 
2m11 

A E E ni,, n2,-0-
p,o^ a 1,2

(4.61)

(4.59)



E = E 2n2S2p,a^ a 1,2

4^2,—cr (n1',cr^n2/,—o)

m12
A2^

711,crn
^ E E 

^+^P? — P122PI 492 pl ,p2

c nP,cr

h2

A E E
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h4 — nv , 0.)(1 —^— 1]
—92 A2 E E  ^

P1,P2^ +^P? — P/22

h 2

E fp,unp,, + 2rn9 A E E
p,cr^ a 1,2

h4̂Az^E nl,an2,—cr^— (71,v,o.

,d2MEP a 1,2^
,t2

Fl I F2 — Fl^F2

The third term is antisymmetric with respect to the transformation P1, P2

(4.62)

(4.63)

Fl F2

while the summation is over all four momenta, and therefore the summation of this term

vanishes:

(4.64)

The spin dependence of denominator has vanished because in the first approximation

E±, = E po-.B
^

(4.65)

Let's rewrite E as :

0E^
n

k,a + 
2h 2 A^v,

= E •--1c,c7"'^2mSZnl , al n2,0-2 Pal a2
k,a^ pl ,Q1 112, 0.2

2h4A2^ 6031 + P2 — P3 — P4) 
mf22 E E E 2_,^ n4,„)Pcri,2 4446)

Pi111 ,c7 1. P2 '0'2 pa 1 0-3 P410.4^
p22 p32 p42 n1,0.1 n2,(72 (n3,Cr3

 —

where Po- 1 0-2 is the spin exchange operator.

The energy per quasiparticle cp,, is the functional derivative of the total energy E:

^SE^0^^= E

^

o"^P,0"SnP, 
4h4 A2

nify E E
P2,a2

2h 2 A

PI , (7 1

( 
8(pi + P2 — P3 p) 
 2^ni ,0.1 n2 , 0.2 P0. 10.2 P,„

p3^+733^p2

mIZ 
E ni Pcra i

a(p + Pl — P2 — P3) 
(4.67)

P2 + P1 — P2 —
n i ai (n2,2 + n3,0 -3)Pcri , P0-20-3)
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and the quasiparticle interaction function fPP'" is the second functional derivative of the

total energy with respect to the quasiparticle distribution function n. So we have

fo- od

PP'
Scp,,„

 

2h 2 A n^2h4A2 
2 

2(nk+
-racr'^_,Trif2^mn2 k P2 + Pf2 k2^—

n ic ,_a l
p2 112 k2 (p pl + 102 + 112 p2 k2 (pl p k)2 )

^
(4.68)

Note the slight change of notation, namely initial momenta are now denoted by p and p'.

For the case of an unpolarized liquid n k , cr = n 11 ,— c and the interaction function becomes:

2h 2 A^2h4X2^4P„,=. 
m̂St P°"''^ms22 k p2 pI2 k2 (p pt 1̂02

p2 k2 pl2 (p pl +^p/2 k2 p2 (p/ p^)nk (4.69)

Except for the prefactor, this expression is identical to its form for the 3 — d case, see

ref.[26].

At this point, we could simply assume that p p' = pF , since important scattering

processes are on the Fermi surface. But note that we are also interested in expressions

of the form (1.2). Therefore we first evaluate the integrals for general values of p and p',

and at the end take the momenta to be on the Fermi surface. The following three terms

should be evaluated:

 

1

 

(4.70)Lk p2 + p'2 — k 2 —^p' — k) 2

  

1

 

(4.71)

(4.72)

(4.73)

k 132 + k 2 — p'2 — (p — p' k) 2

1

 

^

112 k2 p2^P k) 2

We can use the following geometric identities:

09 +^= p2 112 + 2p^2k • (p p') k 2

fac'
P131
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(p — p k) 2 = p2 + pi2 — 2p • p + 2k • (p — p) k 2^(4.74)

(p — p k) 2 = p2 p'2 — 2p • p/ — 2k • (p — p) k 2^(4.75)

Let's first evaluate the last two integrals:

52^fpF^kdOdk
= ^

^2(27rh) 2^Jo p' • (p — p') — k(p — p') cos 0

and with a change of variables:

=^ PF ^11 27  kdOdk
12

2(27rh) 2 I p — p' j Jo Jo S — k cos°

(4.76)

(4.77)

where S is defined by S — p1F^

The principle value of the integral over the angle can be evaluated by contour inte-

gration in the complex plane, and in general:

2ir dco 27r
P ^ sgn(a) 0(a 2 — b2 )Jo a — b cos co^/a2 — b2

SO:

/2 =
42 

P

- P'i
F ISI — e(ISI — 1)V S2 — 1) sgn(S)

7rh 

where 0 is the step function. Similarly:

(4.78)

(4.79)

/3 = ^
h2 Ip

P
—p'l 

(IS'l —0(IS/ 1-1)N/592 — 1) sgn(S')^(4.80)

where S' is defined by S' = 1 PPi)IP-p'l
It is interesting to notice that /2 and /3 both contain terms of the same form as (1.2).

But we then see that these two terms actually add up to a constant:

1/ ^p'(p'— p) 

P'1 2
= —1

Ip --^--
(4.81)
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Figure 4.1: The phase space restrictions for the singular terms in 1 -2 +1-3 . a) for p outside
the Fermi sea, b) for p inside the Fermi sea. The shaded area becomes narrower as p 0.

Therefore, these terms are harmless! Yet, there are other singularities as well, but the

step function puts severe phase space restrictions on them ; see Fig. (4.1).

Finally, the first integral is:

V  fpF^ kdkdO
Il 

= (271-h) 2 Jo Jo (k 2 p • /1) — klp III cos 0

This integral is equal to:

(4. 82)

1-1
if2
Jo

ir kk2ipw;c16it kc2o+sp.0p, \
(4.83)= (27C/02 foPF kipk +dkpl

k^sgnl kip+pil ) ^0[(k 2 + P • II ) 2 — 1]^(4.84)
9

Jo
dk^

klp + pi
= 27

^

(2irh) 2 o^kIP + /II \ I ( kk2ip+47 /1 ) 2^1

0{(k2 + p • p)2 — (14 +111)fj1.85)
f2 IPF

=  ^27rk sgn(k 2 + P • P') ^dk  
27rh 2 0^Ok2 + p . /39 2 — (kiP +71 1) 2

Let's define:

Q(k)..(k 2 4- 10. 1/) 2 --(k11)-k ii)2
^

(4. 86)

The roots of Q(k) 0 are given by :

ki = 711 (1.13 +^+ - 11 1) 2^(4.87)
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1
14 = 4(113 + 11 1 — 1P — P'1) 2 (4.88)

and the k values that make Q(k) positive are 0 < k 2 < /4 and ki2 < k 2 < p2 or

0 < k 2 < min(14,p2F). By a simple argument we can see that k 2 + p • p' is positive when

ki2 < k2 < pF , otherwise sgn(k 2 + p • p') = sgn(p • p').

After taking care of this small detail, we would like to evaluate the integral in eq.(4.84).

With a change of variable to y = k 2 , we have :

f  kdk^1 i  dy ^ — log[2VQ(y) + 2y — ( 2 + p' 2 )]^(4.89)

Now Ii can be written as:

f2^P + 11Ii =^{log( 
p — 

)
27r i2 

^p'

+ (0 [P2F — kfl + O[ki — P2F]sgn(P ' P')) 

x {log
2 V14 — (P2 + P'2 )P2F + (P ' p') 2 + 2P2F — (P2 + P'2 ) i}

2 1P • P'1 — (P 2 + 112 )
(4.90)

Note that the most important contribution in the above expression is the first term.

When p and p' are on the Fermi surface, it is this term that describes their interaction.

These equations give the following form for the quasiparticle interaction function in

two dimensions:

h2^h2^P + 11 = 2A( rnf2 )P,,,, + A 2 ( 27rTnn ){2P„, [log( p — p,)

+ ( 19 [P2F — ki] + O[kZ — P2F]sgn(P '71) 

x (log 
204 — (192 + P'2 )P2F + (P • p') 2 + 2132F — (132 + 13'2)

 )]21P • P'1 — (132 +112 )
+ [1 + ^

111IP 
PF^(0 (ISI - 1)\/S2 - 1 + 0 (1,5" 1 - 1)1/912 - 1)]}^(4.91)
- 

\/Q(k) 2 OW

fC17 1

i PP /

The cross channel (the last part of the above ) has singularities as p —> p' which are

strong, but only appear if p' > pF , while the Cooper channel (i.e. the part proportional
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Figure 4.2: The function f(0). Note the singular behaviour at 0 ,----- 0, r. The horizontal
scale at r has been slightly magnified for the sake of clarity.

to P e ) has a logarithmic singularity at that limit. In the case when both momenta are

on the Fermi surface the latter singularity remains, but the former disappears. In that

case the interaction function simplifies to :

1 + cos°17 , .= 2Ah 2 pero., + A2h2 1^ ( + P„, log^
JPP^mf/^27rnill^1 — cos 0 )

(4.92)

where 0 is the angle between the two momenta. The above can be separated into the

symmetric(parallel spin) and antisymmetric (antiparallel spin) parts:

and

A 2 n 2
fpp, _ ^

271-rat
(4.93)

fa = )h 2^A2h2
^(1 + 

1
 log 

1 + cos 0 \

P

p,^+
mfg 27mQ^2^1 — cos 0 )

(4.94)

Recall that A is dimensionless and 77- 17-2h 2 has the dimension of energy. The behaviour of

f as a function of angle is shown in Fig. (4.2).
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4.2 The Spin Polarized Case

Comparing equations (4.59) and (4.60), we observe that the form of the interaction

function for a spin polarized system is very similar to the unpolarized case. Before

proceeding to write the result, we note a few points.

The degree of polarization in the system is given by :

N.+. — N_ p2F+ — p2F _
a =^ =  ^ (4.95)

N+ + N_ 4+ + p2F_

As the degree of polarization increases in the system, s-wave scatterng becomes less

important. This is due to the fact mentioned earlier, that in the limit of s-wave scattering

only particles of antiparallel spin can scatter each other. By increasing polarization,

the amount of available momentum space for s-wave scattering decreases, and in high

magnetic fields, the p-wave scattering dominates. So our result is only valid for weak

magnetic fields.

For a polarized Fermi liquid , equation(4.59) gives the result :

h2^2  h 2^P + Pi' = 2)4—Finz )P„, + A( 27rrn2 {2P„, [log( p _ 13,)

+ [O[p2F+ — 4] + 0[14 — pF+ ]sgn(p - p')]

x (log 
204+ — (p2 + P'2 )P2F+ + (p • 130 2 + 213F+ — (p2 + p12) 

 )1
2 113 • PI I — (132 + 13'2 )

+ (pF+ --* pF+)+ [1

+ IP 1 Pii 
09 (1 ,9 1 - (PF,-,0)\152 - (PF,--,0 2 + 0 0 51- (PF,-,))\15'2 - (PF,--M31)

When the two momenta are on the respective Fermi surfaces, this expression reduces to :

f;;T: = 2P,„, [1

( 2

 ) + X2(2^g(P + 13 ^)(lo^) + 1)1 (4.97)
n1Q 27m12^p — p'

Equation (4.95) does not indicate any pecularities due to polarization. However, the

presence of two Fermi surfaces may put restrictions on the scattering events. 36 Therefore,

this case needs further investigation.

fa 03

 pp'
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Discussion

5.1 Recent Works on the Low Density Fermi Gas in 2D

For a long time, it was implicitly assumed that the structure of Fermi liquid theory

was consistent in two dimensions as well as three dimensions. Numerous papers have

been devoted to different aspects of the two dimensional Fermi liquids ( especially in

connection with the experiments on films of 'He ), without questioning its validity. 36-40

However, it is well known that interacting Fermions in one dimension do not form a Fermi

liquid, but form a state which has been called the Luttinger liquid.' It is characterized

by separation of charge and spin degrees of freedom and its low-energy excitations have

bosonic character.

In connection with new high-T, superconductors and their anamolous normal state

properties, 4 Anderson''' has claimed that the normal state of these new materials

is a new quantum liquid. To support his claim, Anderson asserts that there are two

known fundamentally different fixed points ( in the context of renormalization group )

for systems of interacting Fermions in any dimension and consequently, such systems

exhibit Fermi liquid behaviour or Luttinger liquid behaviour. Anderson argues that due

to singular terms in the quasiparticle interaction function, Fermi liquid theory breaks

down in two dimensions and a system of interacting Fermions shows non-Fermi liquid

behaviour. The breakdown occurs because as a result of the singular interactions, the

quasiparticle wavefunction's renormalization factor vanishes. The last point was explored

27



4 In 2
z(w = 0) = 1 ha2(pa2) (5.99)
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in a paper by P. Stamp. 41

In his paper,' Stamp showed that if such singularities as (1.2) are present, they

indeed lead to a breakdown of Fermi liquid theory. The proof was based on examin-

ing the perturbation series and separating graphs that contained such singularies. The

most divergent terms were self-consistently summed, and it was shown that they give a

quasiparticle pole vanishing as

2

'["—] 2 f6Oz(w) 1-1-Fo h N(0)w0 (5.98)

where So is the phase shift, w = E — 2EF and coo is some upper energy cutoff. p represents

the number density, No is the renormalized density of states and fro is the renormalized

zeroth order Fermi liquid parameter: coming from non-singular graphs. This form is

valid in the vicinity of Fermi surface ( —f 0 ) and signals the breakdown of Fermi

liquid theory. The subdominant (less divergent) terms were ignored in this calculation,

but later they were summed42 ( by eikonal expansion ) and were found to preserve the

essential structure of (5.98). It must be emphasized that Stamp's paper did not give a

justification for the existence of such singularities, but merely assumed it. Neither did it

give any clues to the relevant ground state.

Another work that has examined the validity of Fermi liquid theory in two dimensions

is by Fabrizio, et al.'. They calculated a nonperturbative, exact solution for the ground

state of a finite number of particles in the low density limit. What is of particular interest

to us is the Migdal discontinuity which they found to be

This indicates that z is well defined and non-zero in the low-density limit. Another work

which came to the same conclusion was by Fukuyama et al.' This work used t-matrix

approximation to study the Hubbard model in the limit of low density and found that
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it behaves like a Fermi liquid. However, both these results are shown by Stamp to be

consistent with formula (5.98), since z is nonzero in the limit of low density.

Furthermore, one should mention several papers by Engelbrecht and Randeria 45-49

on this subject. Their work" on the low density repulsive Fermi gas in 2D is of particular

interest to us. Their method was similar to ours in that they extended the method of

ref.[26] to 2D. Their dimensionless parameter, although defined differently, is equivalent

to ours. They also found the logorithmic singularity that appears in the Cooper channel

and signals the superconducting instability for 0 = 7r. However, their calculations were

done with the momenta on the Fermi surface , and hence is unsuited to detect any

singularities of the form (1.2). Note that (1.2) actually is finite (= 1,-) for k and k' on

the Fermi surface.

5.2 Discussion of Our Results

In this work, we have studied a two dimensional dilute interacting Fermi gas. The

quasiparticle interaction function has been calculated to second order in terms of the

dimensionless coupling parameter, A, which characterizes the renormalized potential.

The interaction function shows a number of interesting features which are :

I. The appearance of singular terms of the form proposed in equation(1.2). This shows

that in essence such terms can exist in the interaction function. However, in our case,

the two most divergent terms add up to a harmless constant. What remains is a much

weaker singularity which is described below.

II. From eq.(4.78), (4.79) and (4.91), we have other singular terms which are of the

form:

A PF,-, ^
IP - PI 1

( P • (11 — 13)
 ) 2 — 1

PF IP — li
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= 
1̂

IP — P'I 
v

/
p2 cos 2 7 — 

p2F

, 
\fipF  t ip' — PF )1
IP - PI I l PF j

As can be seen from the aforementioned equations, these terms only appear when p

or p' or both of them are above the Fermi surface. Even then, they have additional phase

space restrictions due to the presence of the step function, ( see Fig. 4.1). and they are

further weakend by a factor of (IPI
PF
' )1. Therefore, it is unlikely that they could lead

to a breakdown of the Fermi liquid ground state. The work by Stamp and Prokofiev 5°

shows that this conclusion is indeed correct. We shall look at their work in a bit more

detail later.

III.Finally, our result agrees with those of Randeria,et al.' that there is a logorith-

mic singularity in the Cooper channel This feature is not unique to two dimensional

systems and has previously been noted in 3D as well. It can be shown' that despite this

singularity, the interaction function remains regular for a > 0.This is done by summing

the ladder of such singular terms to infinite order. However, attractive interactions a < 0

lead to the appearance of a pole in the scattering amplitude, which is indicative of the

instability of the ground state to Cooper pairing. It marks the onset of superfluidity

in a Fermi liquid. However, our result also shows the presence of such a singularity for

0 = 0. This singularity has the peculiar feature that it is of exactly the same form as

0 = 7r divergence, but with a sign difference. This feature is definitely worthy of further

investigation.

5.3 Discussion of the Phase Shift

We have already looked at one or two aspects of Anderson's argument for the breakdown

of Fermi liquid theory. So far we have looked at the question of existence of such terms
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and their effect on the validity of Fermi liquid theory in two dimensions. Anderson argues

in analogy to the problem of a impurity with a static potential. He has argued that in the

presence of the Fermi sea, the two particle relative scattering phase shift (q , (.4.7) (where

q is the center of mass momentum and w = E — 2€F, ) is finite at q = 2kF, w = 0, and that

it leads to an orthogonality catastrophe:

< 0IV >f"4 eXP(—(7r-60 ) 2 ln (5.100)

where < 01 V > represents the overlap of the non-interacting state with the state in the

presence of the potential. In the case of a finite phase shift this overlap vanishes. This

leads to an orthogonality catastrophe which means we can no longer consider the free

Fermi gas as the relavant fixed point of the problem.

Now, one relevant question is whether there is a finite phase shift. Randeria and

Engelbrecht have claimed that near the Fermi surface

NAT) 
8(2kF,^21n(koa)

(5. 10 1)

which goes to zero as w -4 0. A work that has studied this problem in detail is that of

Stamp and Prokofiev.' In their paper, starting from the two-body SchrOdinger equation

for two particles, they calculated the scattered wave function and the phase shift for

such scattering in the presence of a Fermi sea. They found the behavior of (q , co) at the

limit of q 2kF and w -4 0 to be peculiar. This was also noted by Fukuyama et al.'

This dilemna is resolved using the Lippmann-Schwinger equation and applying boundary

conditions of a finite box. They noted that a) the answer should be independent of the

shape of the box in the thermodynamic limit (L oo) and b) that the direction of

Q, which is the momentum exchange, should be arbitrary. By angular averaging over

all possible directions, one derives an expression for the phase shift that properly and

unambiguiously vanishes in the limit of low energy. Therefore they concluded that within
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the context of perturbation theory and validity of the Lippmann-Schwinger equation the

phase shift remains zero, and Fermi liquid description remains valid.

In conclusion, our calculations show the presence of weak singularities which are

limited to a very narrow region of the phase space, and so there is no hint of a breakdown

of Fermi liquid theory. This finding is in agreement with other works on the subject,

especially that of Stamp and Prokofiev.' The conclusion is that perturbation theory

is consistent with a two dimensional Fermi liquid and if such strong singularities exist

which lead to the breakdown of the adiabatic continuity from a free Fermi gas, they must

have a non-perturbative origin.



Bibliography

[1] J. M. Valles et al., Phys. Rev. Lett. 60, 428 (1988); R. H. Higley et al., Phys. Rev.

Lett. 63, 2570 (1989); and D. T. Spragne et al., Phys. Rev. B 44, 9776 (1991).

[2] R. E. Prange and S. M. Girvin, Quantum Hall Effect, 2nd ed., Springer-Verlag New

York Inc., 1990.

[3] J. G. Bednorz and K. A. Muller, Z. Phys. B. 64, 189 (1986).

[4] B. Batlogg, in Proceedings of the Los Alamos Symposium on High Temperature Su-

perconductivity, ed. by K. S. Bedell, D. Coffey, D. E. Meltzer, D. Pines and J. R.

Schrieffer, Addison-Wesley, Reading, MA, 1989; also see P. A. Lee, same proceed-

ings.

[5] P. W. Anderson, ibid

[6] P. W. Anderson, Phys. Rev. B. 42, 2624 (1990).

[7] P. W. Anderson, Science 256, 1526 (1992).

[8] C. M. Varma, P. B. Littlewood, S. Schmitt-Rink, E. Abrahams and A. Ruckenstein,

Phys. Rev. Lett. 63, 1996 (1990); 64, 497(E) (1990).

[9] R. Laughlin, Phys. Rev. Lett. 60, 2677 (1988).

[10] J. Bardeen, L. N. Cooper, J. R. Schrieffer, Phys. Rev. 106, 162(1957); 108, 1175

(1957).

[11] A. J. Leggett, Phys. Rev. 140, A1869 (1965); and 147, 119 (1966).

33



[12] B. Batlogg, et al., Phys. Rev. lett. 58, 2333 (1987).

[13] L. C. Bourne, et al., Phys. Rev. Lett. 58, 2337 (1987).

[14] P. B. Littlewood and C. M. Varma, Phys. Rev. Lett. 45, 12636 (1992).

[15] P. W. Anderson, Phys. Rev. Lett. 64, 1839 (1990).

[16] P. W. Anderson, Phys. Rev. Lett. 65, 2306 (1990).

[17] P. W. Anderson, Phys. rev. Lett. 66, 3226 (1991).

[18] L. D. Landau, Sov. Phys. JETP 3, 920 (1957).

[19] L. D. Landau, Soy. Phys. JETP 5, 101 (1957).

[20] E. P. Bashkin and A. E. Meyerovich, Adv. Phys. 30, 1 (1981).

[21] A. J. Leggett, Rev. Mod. Phys. 47, 331 (1975).

[22] E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics, V. II, translated by J. B.

Sykes and M. J. Kearsley, Pergamon Press Ltd., 1980.

[23] D. Pines and P. Nozieres, The Theory of Quantum Liquids, V. I, W. A. Benjamin

Inc., N. Y., 1966.

[24] P. Nozieres, The Theory of Interacting Fermi Systems, translated by D. Hone, W.

A. Benjamin Inc., N. Y., 1966.

[25] T. D. Lee and C. N. Yang, Phys. Rev. 105, 1119 (1957).

[26] A. A. Abrikosov and I. M. Khalatnikov, Rep. Prog. Phys. XXII, 329 (1959).

[27] V. M. Galitskii, Sov. Phys. JETP 34(7), 104 (1958).

34



[28] F. D. M. Haldane, J. Phys. C: Solid State Physics 14, 2585 (1981).

[29] I. R. Lapidus, Am. J. Phys. 50, 45 (1982).

[30] P. G. Averbuch, J. Phys. A: math. Gen. 19, 2325 (1986).

[31] S. H. Patil, Phys. Rev. A 22, 2400 (1980).

[32] B. Simon, Annals of Phys. 97, 279 (1976).

[33] G. Arfken, Mathematical Methods for Physicists, Academic Press, Florida, 3rd ed.,

1985.

[34] R. Peierls, Surprises in Theoretical Physics, Princeton Univ. Press, Princeton, N.J.,

1979.

[35] L. D. Landau and E. M. Lifshitz, Quantum Mechanics, translated by J. B. Sykes

and J. S. Bell, 2nd ed., Pergamon Press Ltd., 1965.

[36] K. Miyake and W. J. Mullin, J. Low Temp. Phys. 56, 499 (1984).

[37] P. Bloom, Phys. Rev. B 12, 125 (1974).

[38] C. Hodges, H. Smith and J. W. Wilkins, Phys. Rev. B 4, 302 (1971).

[39] M. B. Vetrovec and C. M. Carneiro, Phys. Rev. B 22, 1250 (1980).

[40] E. P. Bashkin, Sov. Phys. JETP 51, 181 (1980).

[41] P. C. E. Stamp, Phys. Rev. Lett. 65, 2180 (1992); 68, 3938(E) (1992).

[42] P. C. E. Stamp, unpublished

[43] M. Fabrizio, A. Parola and E. Tosatti, Phys. Rev. B. 44, 1033 (1991).

35



[44] H. Fukuyama, 0. Narikiyo and Y. Hasegawa, J. Phys. Soc. Japan 60, 372 (1991).

[45] J. R. Engelbrecht and M. Randeria, Phys. Rev. Lett. 65, 1032 (1990).

[46] J. R. Engelbrecht and M. Randeria, Phys. Rev. Lett. 66, 3225 (1991).

[47] J. R. Engelbrecht, J. Duan and L. Shieh, Phys. Rev. Lett. 62, 981 (1989).

[48] J. R. Engelbrecht, M. Randeria and L. Zhang, Phys. Rev. B 45, 10135 (1992).

[49] J. R. Engelbrecht and M. Randeria, Phys. Rev. B 45, 12419 (1992).

[50] P. C. E. Stamp and N. Prokofiev, to be published

36


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43



