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Abstract 

This thesis addresses problems of optimization and estimation encountered in the pro­

cess of airline yield management, also called airline seat inventory control. Optimality 

conditions are given for the problem of setting booking limits for multiple, stochastically 

independent demand classes that are booked in a nested fashion into a fixed pool of 

airline seats. These optimality conditions are compared with the approximations given 

by the EMSR method. Additional conditions are given for two stochastically dependent 

fare classes, and extensions are made that allow for incorporation of passenger goodwill 

and upgrades of passengers between fare classes. The model developed for the depen­

dent demand case is also applied to the problem of determining an optimal overbooking 

limit in a single fare class. Finally, a methodology is developed for using multivariate 

multiple regression in conjunction with the EM method to estimate the parameters of 

demand distributions on the basis of historical demand data that have been censored by 

the presence of booking Hmits. 
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Chapter 1 

Introduction 

1.1 Airline Yield Management and the Seat Allocation Problem 

One of the obvious impacts of the deregulation of North American airlines has been in­

creased price competition and the resulting proliferation of discount fare booking classes. 

While this has had the effect of greatly expanded demand for air travel, it has presented 

the airlines with a tactical planning problem of considerable complexity — how to estab­

lish booking policies that result in optimal allocations of seats among the various fare 

classes. What is sought is the best trade-off between the revenue gained through greater 

demand for discount seats against revenues lost when full fare reservations requests must 

be turned away because of prior discount seat sales. 

The component of airline planning that deals with these allocation problems has come 

to be known in the industry as airline yield management. Alternate terms are airline 

seat allocation and airline seat inventory control. The latter, more specific terms will be 

used in this thesis. 

1.1.1 Components of the Seat Allocation Problem 

The seat allocation problem is complicated by a number of factors, some of which are 

listed below. 

advance booking: Bookings for flights are made over a long period prior to departure; 

300 day lead times are common. The discount fare classes tend to book earlier than 

1 



Chapter 1. Introduction 2 

the full fare classes both because of the nature of the customers for the respective 

classes (leisure travellers in the discount classes, business travelers in full fare) and 

because of early booking restrictions placed on the discount classes. Thus decisions 

about limits to place on the number of discount fare bookings must often be made 

before any full fare demand is observed. 

stochastic demand: Demands are highly variable and exhibit significantly random be­

haviour even after allowance is made for factors like season, day of week, com­

petitor pricing, etc.. Thus, obtaining reliable forecasts of demand is a significant 

sub-problem of the seat allocation problem. This forecasting problem is made more 

difficult by the fact that historical demand data are censored by the presence of 

booking limits and the finite capacity of aircraft. 

shared seating and nested booking: Rather than simply dividing the available seats 

into separate groups reserved solely for particular booking classes, manj' airlines 

are now placing some or all of the classes below first class into shared seating areas. 

The booking of passengers is often done in a 'nested' fashion. That is, bookings in 

the lowest fare class are permitted up to a certain limit, combined bookings in the 

two lowest classes are permitted up to a second, higher limit, and so on. 

late cancellations and overbooking: Passengers with full fare tickets generally have 

the right to cancel their booking at any time before flight, or simply to fail to 

show-up at flight time without penalty. Airlines failing to take this into account 

can experience significant losses from underloaded planes. One solution to this 

problem is to overbook to compensate for expected late cancellations; however, this 

complicates the planning process since allowance must be made for compensation 

of passengers who are denied boarding on those occasions when the number of 

show-ups exceeds plane capacity. 
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passenger itineraries: Many bookings for particular legs of a flight are parts of a larger 

passenger itinerary involving other legs of the same flight or other flights. Thus, 

in assessing the revenue impact of accepting or rejecting a booking for one leg, 

allowance should be made for potential revenues from other legs of the passenger's 

itinerary. Also, allowance should be made for potential revenues from all other 

itineraries that might require the same flight leg. 

full fare passenger spillage: Airlines typically place goodwill value on full fare pas­

senger bookings above and beyond the higher fare value of the bookings. This is be­

cause full fare travellers are predominantly business travellers who can be expected 

to be repeat customers. Excessive sales of discount seats may result in significant 

numbers of full fare passengers being refused bookings or 'spilled'. There is some 

concern that regular customers refused reservations might be lost to competitors. 

demand dependencies: The demands in different fare classes may be stochastically 

dependent. The existence of such dependencies should permit revision of probabil­

ity distribitions of final demand in one fare class on the basis of booking levels in 

a different fare class. 

dynamics: Airlines with modern reservations control systems monitor the bookings for 

flights as the day of flight departure approaches. Changes to booking limits for 

different fare classes can be made several times prior to departure of the flight 

as more information becomes available concerning eventual demands. Thus the 

setting of booking policies is, in practice, a dynamic problem. 

problem size: A typical airline may handle traffic volumes of one to two thousand flights 

per day and may make booking control decisions many times during the lead time 

before each flight departs. One airline (American Airlines) estimates that it must 
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make approximately 100 million control decisions per year [1, (1988)]. Thus any 

method designed to aid booking control decisions cannot involve computation times 

of more than a fraction of a second per decision. 

1.1.2 Two Approaches to the Seat Allocation Problem 

Prior work on this problem has tended to fall into one of two categories. First, attempts 

have been made to encompass some or all of the above-mentioned problem components 

with large-scale mathematical programming models [3, 38, 57, 95, 150]. In those cases 

where implementation of such models has been attempted, it has been necessary to make 

significant compromises in order to make it computationally feasible to solve realistic 

versions of the problem. For example, in their dynamic programming treatment of the 

two-fare overbooking problem for a single flight, Alstrup, Boas, Madsen and Vidal [3, 

(1986)] found it necessary to aggregate seats into blocks in order to reduce computation 

time from an estimated 100 hours per flight to a more reasonable 9 seconds. F. Glover, 

R. Glover, J. Lorenzo and C. McMillan [57, (1982)] suppressed the stochastic elements 

of the problem in order to deal with the network elements (i.e. the interaction of various 

passenger itineraries). These approaches achieved a measure of success in providing 

approximate solutions to realistic versions of the problem but they did not offer insights 

into the nature of optimal solutions nor facilitate study of the effects of changes in the 

parameters of the problem. 

In the second category, the one most relevant to this thesis, elements of the problem 

have been studied in isolation under restrictive assumptions. These studies have produced 

easily applied rules that provide some insight into the nature of good solutions. These 

rules are suboptimal when viewed in the context of the overall problem, but they can point 

the way to useful approximation methods. For example, Littlewood [89, (1972)] proposed 

a simple rule for a restricted version of the two fare allocation problem. Variations on 
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this rule were later applied to multiple fare classes and multiple flight legs by Wang [145, 

(1983)], Simpson [126, (1985)] and Belobaba [13, (1987)]. These generalizations were 

proposed on the basis of intuitive rather than rigorous reasoning, and it will be shown 

in this' thesis that they are not optimal, even for restricted versions of the problem. 

However, there is evidence that they do provide reasonable approximations, and they are 

particularly easy to implement. 

1.2 Objectives of this Thesis 

This thesis addresses the seat allocation problem in the manner described in the second 

category above. That is, components of the problem are studied in isolation using ana­

lytical rather than computational approaches. In contrast to the prior work, however, the 

analysis is rigorous, and optimal solutions are sought for the problem components. The 

emphasis is on finding structural solutions specifying policies that maximize revenues. 

Where appropriate, these structural solutions are used to examine the qualitative be­

haviour of optimal solutions. Simplifications and/or approximations of optimal solutions 

are sought that facilitate implementation, and consideration is given to the problems 

of integrating solutions to individual components into the overall reservations control 

framework. 

The components of the seat allocation problem that are studied are: 

1) seat allocation among multiple, independent fare classes sharing the same 

seating pool on one leg of a flight when reservations are nested and occur in 

order of fare class, 

2) seat allocation between two nested fare classes when the demands between 

the two classes are stochastically dependent, and 
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3) estimation of the parameters of the joint demand distribution for two depen­

dent fare classes on the basis of data that have been censored by the presence 

of booking limits. 

More detailed statements of the objectives are furnished in the chapter summaries 

given later in this introduction. The next section provides an overview of past research 

on airline seat allocation. 

1.3 A Survey of Past Research 

The objective of this section is to survey the large body of previous research on compo­

nents of the airline seat inventory control problem so that the findings presented in this 

thesis can be placed in context. Published work on components of the seat management 

problem dates back to the 1950's when the overbooking problem first received attention 

from researchers. Since that time there has been a steady stream of results reported in 

technical journals, proceedings of airline professional conferences and internal and ex­

ternal company reports. Emphasis is given here to reviewing previous research that is 

either significant in the field or directly relevant to this thesis, thus many publications 

are not directly discussed. The bibliography contains a listing of all work that turned 

up during the literature search for this thesis, whether cited or not. It is hoped that this 

will provide a source list useful to future researchers in the area. 

This survey will be organized under the subheadings "Overbooking", "Single Flight 

Leg Seat Allocation" and "Multiple Flight Leg Seat Allocation." 

1.3.1 Overbooking 

The overbooking problem has received by far the most attention of the problems dis­

cussed above. An early, non-dynamic optimization model for overbooking is that of 
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Beckmann [11, (1958)]. Shlifer and Vardi [123, (1975)] provide a similar model extended 

to allow for two fare classes and a two-leg flight. Statistical models of various levels of 

sophistication are described in Thompson [135, (1961)], Taylor [134, (1962)], Rothstein 

and Stone [118, (1967)], Martinez and Sanchez [94, (1970)], and Littlewood [89, (1972)]. 

The objective of most of these models is to permit controlled overbooking of flights so 

that the probability that passenger show-ups exceed seating capacity on a flight is kept 

within limits set by the airline or external regulating bodies. None of these allow for 

the dynamics of the passenger cancellation and reservation process subsequent to the 

overbooking decision. The Rothstein and Stone model was implemented at American 

Airlines, and trial implementations were reported by other authors (e.g. Deetman [35, 

(1964)]); however, it is unclear from the literature whether or not this model or any of 

the others are in use today. (The airlines are understandably reticent about revealing 

what methods they do or do not use for yield management.) 

A number of researchers have developed dynamic optimization approaches to the 

airline overbooking problem (as well as the similar problem in the hotel/motel indus­

try). The usual objective in these formulations is to determine a booking limit for each 

time period before flight departure that maximizes expected revenue, where allowance 

is made for the dynamics of cancellations and reservations in subsequent time periods 

and for penalties for oversold seats. Kosten [76, (I960)] develops a continuous time 

approach to this problem, but this approach requires solution of a set of simultaneous 

differential equations that make implementation impractical. Rothstein [117, (1968)], in 

his Ph.D. thesis, describes the first dynamic programming model for overbooking and 

reviews the results of test runs of the model at American Airlines. It is not clear whether 

or not American or any other airline carried out a full scale implementation; however, 

Andersson [6, (1972)] reports that, to his knowledge, Rothstein's model had not been 

implemented as of that time. A dynamic programming analysis similar to Rothstein's 
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but developed for the hotel/motel industry and extended to two fare-classes is described 

in Ladany [80, (1976)], [79, (1977)]. Liberman and Yechiali [87, (1977)],[88, (1978)] em­

ploy a similar analysis to obtain a control-limit type structural solution to the (one-class) 

hotel overbooking problem. Discussions of policy issues relating to passenger overbook-

ing and equitable 'bumping' are found in Simon [125, (1968)],[124, (1972)]; Falkson [51, 

(1969)]; Bierman and Thomas [19, (1975)]; Rothstein [114, (1971)],[112, (1975)], [116, 

(1985)]; Vickrey [143, (1972)]; Nagarajan [98, (1979)]; and Ruppenthal [119, (1983)]. Be-

lobaba, in a recent Ph.D. dissertation [13, (1987)], discusses the problem of overbooking 

in multiple fare classes and suggests a heuristic approach to solving the problem. 

1.3.2 Single Flight Leg Seat Allocation 

The problem of optimal allocation of seats to fare classes, which is more central to 

the yield management problem than the overbooking problem, has been addressed by a 

number of researchers. Littlewood [89, (1972)] is apparently the first to present (without 

proof) the simple seat allotment rule that will be discussed in chapter 2 of this thesis. 

Derivations are given by Bhatia and Parekh [18, (1973)] and, by a different method, 

Richter [108, (1982)]. Mayer [95, (1976)] performs some sensitivity analysis on the simple 

model and offers evidence, based on trial runs, that the model, if used more than once 

before flight departure, can perform as well as a more complex dynamic programming 

model. He also suggests that the seat allotment and overbooking analyses can be done 

independently. Titze and Greisshaber [136, (1983)] describe the results of a simulation 

study that suggests that the simple seat allotment rule remains approximately optimal 

in spite of departures from the assumption (implicit in the formula) that all low fare 

passengers book before high fare passengers. In the thesis mentioned above, Belobaba [13, 

(1987)] generalized the simple seat allotment rule to obtain approximate formulas for 

more than two fare classes. Pfeifer [106, (1989)] presents an analysis of the two fare class 
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problem that allows for the possibility of upgrades from the lower fare class to the higher. 

The same result is proposed without proof in Belobaba's thesis. (Another derivation of 

this result is provided in this thesis to illustrate the generality of a general model of seat 

allocation between dependent demands.) 

1.3.3 Multiple Flight Leg Seat Allocation 

Research that incorporates the interaction of different legs of the same or other flights 

into the seat allocation problem has been reported since the mid-1970's. Shlifer and 

Vardi [123, (1975)] develop a simple, non-dynamic overbooking model for a two leg flight 

with two fare classes. Buhr [24, (1982)] describes a computer program for seat allocation 

for a two-sector flight with one fare class. He suggests that, under normal circumstances, 

the multileg allocation problem can be solved independently of the fare-class allocation 

problem. Hersh and Ladany [67, (1978)] use Bayesian updating of demand forecasts in 

a dynamic programming model for a two-sector flight with one fare class. F. Glover,. 

R. Glover, Lorenzo and McMillan [57, (1982)] outline a non-dynamic, minimum cost 

network flow approach. Related network approaches are presented by Dror, Trudeau and 

Ladany [38, (1988)] and Wollmer [148, (1986)]. Wang [145, (1983)], Simpson [126, (1985)] 

and Belobaba [13, (1987)] propose extensions of the simple seat allotment approach to 

multiple leg flights. 

1.4 An Overview of this Thesis 

This section provides a summary of the objectives and main results of the remaining 

chapters of the thesis. 
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Summary of Chapter 2: Multiclass Allocation when Demands are Indepen­

dent 

Current airline reservations control systems may admit as many as eight main fare classes. 

The problem of controlling bookings into multiple classes is thus of considerable practical 

interest. As discussed earlier, the approach followed in this thesis is to seek simple rules 

based on restricted versions of the seat allocation problem and then investigate practical 

ways of implementing these rules in more realistic settings. 

This chapter addresses multiple fare class allocation when the conditions listed below 

are assumed to hold. 

1) Demands for different booking classes occur in a sequential manner with lower 

fare classes booking before higher. 

2) The demands for the different booking classes are stochastically independent. 

3) At any stage of the booking process, the only information available about 

demands is the prior probability distributions of demand and the number of 

current bookings in all fare classes. 

4) No allowance is made for overbooking. 

These assumptions underly all previous attempts to derive simple optimality conditions 

for control of bookings into two or more fare classes. Their implications will be discussed 

later. 

A new, rigorous formulation of the multiple fare class allocation problem is presented 

here, and a number of new results are obtained. In particular, chapter 2: 
1) presents a recursive formulation of the revenue function for multiple booking 

classes, 

2) characterizes the problem of maximizing expected revenues as a series of 
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monotone optimal stopping problems, 

3) presents conditions under which the expected revenue function is concave and 

derives optimality conditions, 

4) proves the equivalence of a simple set of probability statements to the opti­

mality conditions for the continuous demand case, and 

5) demonstrates the non-optimality of the EMSR method proposed by Belob-

aba [13, (1987)] and presents numerical comparisons of the EMSR versus 

optimal solutions. 

Summary of Chapter 3: Allocation Between Two Classes when Demands are 

Dependent 

It is a common perception among airline personnel1 that demands in different fare classes 

are not independent even after allowance is made for factors that influence overall demand 

such as the season, fare pricing, or the day-of-week. There are at least two reasons that 

dependency between demands might arise. The first is that customers refused a booking 

in one discount fare class may elect to upgrade to a higher fare class. This introduces 

a positive dependency between the observed demands for the two classes. The second 

reason is that scheduled events such as conferences permit advanced bookings by budget-

conscious attendees. Such events stimulate demand across several booking classes, and 

this can again introduce positive dependency between demands. 

Previous efforts to obtain optimality conditions in the two fare class case have as­

sumed that demands are independent. This chapter addresses the problem without this 

assumption. Specific contributions follow. 

1) A general model for the revenue in the two fare class case is introduced that 
1 personal communication, E. R. L'Heureux, Canadian Airlines International 
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admits dependency between classes. Optimization of this revenue function is 

shown to be equivalent to solution of a monotone optimal stopping problem. 

2) A generalization to Littlewood's formula is shown to be optimal for the de­

pendent demand case as long as demands are monotonically associated (a 

condition introduced here). 

3) A rigorous proof is provided of an optimality condition proposed by Belobaba 

[13, (1987)] for the case that dependency arises because of upgrades. 

4) It is shown that a variant of the simple allotment rule can allow for the 

perceived extra value of full fare passengers. 

5) Numerical comparisons of airline seat allocations with and without depen­

dency are given. 

6) It is proven that monotonic association is satisfied by positively correlated 

bivariate normal demands and that the discount class booking limit decreases 

as correlation increases. 

Summary of Chapter 4 : A Simple Overbooking Model 

As mentioned previously, the overbooking problem has received by far the greatest 

amount of attention of all of the components of the seat inventory control problem, 

and it remains an area of active research. As discussed in the literature survey above, 

the appoaehes have ranged from simple heuristics for multiple fare classes like that of Be­

lobaba [13, (1987)] through static models like those of Shlifer and Vardi [123, (1975)] to 

computationally intensive, dynamic programming approaches like that of Rothstein [117, 

(1968)]. 

This chapter addresses a primitive version of the overbooking problem from a new 

perspective. Specifically, the problem of determining an optimal overbooking limit for 
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one fare class is handled with a variant of the general model for seat allocation for two 

dependent demands that is developed in Chapter 3. 

Specific contributions of this chapter are: 

1) It is shown that the general revenue model employed to analyze the dependent 

demand allocation problem in Chapter 3 can be applied to the single fare 

overbooking problem. 

2) A simple optimality condition is derived for overbooking under the (reason­

able) assumption that passenger show-ups occur according to a Bernoulli 

process. 

3) An approximation is derived for the optimality condition, and it is shown that 

this condition is essentially equivalent to the solution developed by Shlifer and 

Vardi but much easier to apply. 

4) Conditions are determined under which simply dividing the capacity by the 

confirmation probability yields a near optimal overbooking level for a single 

fare class. 

5) A numerical example is provided. 

Summary of Chapter 5 : Estimation of Dependent Demands from Jointly 

Censored Data 

Application of the optimality condition obtained in Chapter 3 for dependent demands 

requires knowledge of probability distributions of full fare demand conditioned on the 

observed demand in the discount fare class. One convenient way of obtaining these 

distributions is by estimating the parameters of the joint distribution of demand for 

the two fare classes. The estimation of these parameters is greatly complicated by the 

fact that historical demand data for different booking classes on flights are censored by 
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booking limits and the finite capacity of aircraft. That is, in any set of observations of 

demand on past flights, many observations come from flights on which one or both fare 

classes exceeded their booking limits. In such cases it is known that demand exceeded 

the booking limit but not by how much. Failure to take such censorship into account 

when estimating demand parameters can produce estimates that are so seriously biased 

as to be unusable. 

Chapter 5 provides a methodology for estimating the parameters of a bivariate de­

mand distribution from data that is censored in the manner described above. Specific 

contributions are: 

1) A censored, bivariate, multiple regression model is presented for estimating 

the parameters of the joint demand distribution. 

2) The details of an iterative maximum likelihood estimation procedure based 

on the EM method of Dempster, Laird and Rubin [36, (1977)] are presented. 

3) A computer implementation of the estimation procedure is described. 

4) Numerical examples are provided which demonstrate the accuracy and effi­

ciency of the method. 

1.4.1 Notation 

The following notational conventions are followed in this thesis. Exceptions, when they 

occur, are noted. 

1. Scalar constants and non-random variables are represented by small italic roman 

or greek letters; e.g. x,Xi,a,p . . . . An exception to this is the symbol for aircraft 

capacity, C. 
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2. Scalar random variables are represented by capital roman italic letters; e.g., X, Y, 

A i , X2, • • •• 

3. Vectors and matrices are represented by boldface roman or greek letters; e.g. 

p,H,/3, . . . . No notational distinction is made between random and non-random 

vectors or matrices. 

4. Pr[A] denotes the probability of event A. 

5. The expectation of the random variable X will be denoted by E{A} or E[A]. 

Expected revenue with respect to a random variable A as a function of parameters 

in p is written ER[p;X]. 

6. Maximum, minimum and positive part are represented as follows: aV6 = max(a, b), 

a A b = min(a, b), and a+ = a V 0. 

7. The indicator operator I is denned for logical propositions as 1 if the proposition 

is true and 0 otherwise. For example, 

f 1 if a < (3, 
J[a</3] = S 

0 if a > [3. 

8. The end of proofs will be marked with the symbol '•' at the right-hand margin. 



Chapter 2 

Multiclass Allocation when Demands are Independent 

2.1 Introduction 

This chapter deals with the airline seat allocation problem when multiple fare classes are 

booked into a common seating pool in the aircraft and when the demands for the fare 

classes are assumed to be stochastically independent. The following additional assump­

tions are made: 

1. single flight leg: Bookings are made on the basis of a single departure and landing. 

No allowance is made for the possibility that bookings may be part of larger trip 

itineraries. 

2. low before high booking: The lowest fare reservations requests arrive first, followed 

by the next lowest, etc.. 

3. nested booking: Bookings are done in a nested fashion as follows: A fixed upper 

limit is set for bookings in the lowest fare class, a second, higher limit is set for 

the total bookings in the two lowest classes and so on, up to the highest fare class 

which is limited only by the total number of seats available. Any fare class can 

be booked into seats not taken by bookings in lower fare classes. (Equivalently, a 

fixed protection level of seats is set for the highest fare class, a second protection 

level for the total of two highest fare classes, and so on.) 

4. no cancellations: Cancellations, 'no-shows' and overbooking are not considered. 

16 
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5. no revision of probabilities: Probability distributions of demand are not revised on 

the basis of information gained during the booking process. 

As discussed in Chapter 1, these assumptions are restrictive when compared to the 

actual decision problem faced by airlines, but analysis of this simplified version can both 

provide insights into the nature of optimal solutions and serve as a basis for approximate 

solutions to more realistic versions. 

The first useful result on this seat allocation problem was presented in 1972 by Lit-

tlewood [89, (1972)] for two fare classes. He proposed that an airline should continue 

to reduce the protection level for class 1 (full fare) seats as long as the fare for class 2 

(discount) seats satisfied 

f2>f1TT[X1>Pl], (2.1) 

where f; denotes the fare or average revenue from the z-th fare class, Pr[-] denotes prob­

ability, A'I is full fare demand, and p1 is the full fare protection level. The intuition here 

is clear—accept the immediate return from selling an additional discount seat as long as 

the discount revenue equals or exceeds the expected full fare revenue from the seat. 

The following interpretation of (2.1) will prove useful in the sequel. If the combined 

lower fare demands reach the limit C —p1 on every flight, then the probability Fi[Xi > px) 

is the expected proportion of flights on which some full fare demand is turned away, or 

spilled. The actual proportion of flights on which such spillage occurs is termed the flight 

spill rate, thus the probability above represents the highest possible flight spill rate given 

the distribution of the Y demand (highest because discount bookings might not reach the 

booking limit (C — Pi) on every flight). This is referred to henceforth as the maximum 

flight spill rate. Clearly, with independent demands the maximum flight spill rate will 

increase as px decreases. Littlewood's rule specifies that the optimal booking limit is the 

smallest value of px for which this maximal rate does not exceed the ratio of discount to 
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full fare. 

A continuous version of Littlewood's rule was derived by Bhatia and Parekh [18, 

(1973)] in 1973. Richter [108, (1982)] in 1982 gave a marginal analysis which proved that 

(2.1) gives an optimal allocation. 

More recently, Belobaba [13, (1987)] proposed a generalization Of (2.1) to more than 

two fare classes called the expected marginal seat revenue (EMSR) method. In this 

approach, the protection level for the highest fare class, p1} is obtained from 

/ 2 = / 1 P r [ A ' a > P l ] . (2.2) 

This is just Littlewood's rule expressed as an equation, and it is appropriate as long 

as it is reasonable to approximate the protection level with a continuous variable and 

to attribute a probability density to the demand A i . The total protection for the two 

highest fare classes, p 2, 1 S obtained from 

P2=Pl+Pl (2-3) 

where p\ and p\ are two individual protection levels determined from 

/, = flVr[Xl>p\) (2.4) 

and 

/ , = / 2 P r [ A 2 > ^ ] . (2.5) 

The protection for the three highest fare classes is obtained by summing three individual 

protection levels, and so on. This process is continued until nested protection levels pk, 

are obtained for all classes except the lowest. The booking limit for any class k is then 

just (C — Pfc_i), where C is the total number of seats available. It was originally proposed 

that this method yielded optimal protection levels for the seat allocation problem denned 

above, but, as will be shown here, this is not the case. While the idea of comparing the 
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expected marginal revenues from future bookings with current marginal revenues is valid, 

the method outlined above leads to a correct assessment of expected future revenues 

only for the highest fare class. The analysis provided in this thesis corrects this problem 

and produces an exact EMSR solution. To avoid confusion, the EMSR approximation 

described above will henceforth be referred to as the EMSRa method. 

In this chapter it is shown that an optimal set of protection levels p ^ p j l , . . . must 

satisfy the conditions 

6tERk]pl\ < fk+l < Sj-ERk\pl] for each k = 1, 2, . . . ; (2.6) 

where ERk[pk] is the expected revenue from the k highest fare classes when pk seats 

are protected for those classes, and 6kand 8k denote the right and left derivative with 

respect to pk, respectively. These conditions are just an expression of the usual first-order 

result — a change in pk away from pi in either direction will produce a smaller increase 

in expected revenues than the immediate increase o f / f c + 1 . Of course the sufficiency of 

these conditions must be confirmed by a demonstration of the concavity of the expected 

revenue function. 

It is further shown that these optimal protection levels can be obtained by finding 

Pi,j>2> • • • that satisfy 

f2 = A P r ^ > K ] 

/3 = f1?T[X1>P;nXl+X2>p*} 

/fc+i = fi P r[*i >p~1nxl+x2>pin---nx1+x2 + ---+xk> P-k}. 

Note that the first of these equations is identical to the first in the EMSRa method, so 

the EMSRa method does derive the optimal protection level for the highest fare class. 

This chapter is organized as follows. In the next section notation and assumptions 

are presented. In section 2.3 the revenue function and its directional derivatives are 
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given. In the following section concavity properties of the expected revenue function 

are established and results (2.6) and (2.7) are obtained. In the final section numerical 

comparisons of the EMSRa and optimal solutions are provided. 

2.2 Notation and Assumptions 

The demand for fare class k is (k = 1 , 2 , . . . ) , where Xi is the highest fare class. 

The vector of demands is X = ( A " i , X 2 , . . . ) . It is assumed that these demands are 

stochastically independent. Each booking of a fare class k seat generates average revenue 

of fk where f1 > f2 > 

Demands for the lowest fare class arrive first, and seats are booked for this class 

until a fixed time limit is reached, bookings have reached some limit, or the demand is 

exhausted. Sales to this fare class are then closed, and sales to the class with the next 

lowest fare are begun, and so on for all fare classes. It is assumed that any time limits on 

bookings for fare classes are pre-specified. That is, the setting of such time limits is not 

part of the problem considered here. It is possible, depending on the airplane capacity, 

fares, and demand distributions that some fare classes will not be opened at all. 

A booking policy is a set of rules which specify at any point during the booking process 

whether a fare class that has not reached its time limit should be available for bookings. 

In general, such policies may depend on the pattern of prior demands or be randomized 

in some manner (any stopping rule for fare class k which is measurable with respect 

to the sigma field generated by [Xk > x], for x — 0 , 1 , . . . is admissible). However, we 

restrict attention to a class of booking policies, denoted by V, that can be described by 

a vector of fixed protection levels p = (pi,p2, • • •), where pk is the number of seats to be 

protected for fare classes 1 through k. If at some stage in the process described above 

there are s seats available to be booked and there is a fare class k demand, then the seat 
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will be booked if s is greater than the protection level pk_t for the higher fare classes1. 

The initial number of classes that are open for any bookings is, of course, determined by 

setting s equal to the capacity of the aircraft or compartment. It will be shown formally 

that the class V contains a policy that is optimal over the class of all admissible policies. 

2.3 The Revenue Function 

The function i?fc[s;p;x] is the revenue generated by the k highest fare classes when s 

seats are available to satisfy all demand from these classes, when x = (x1,x2, • •.) is the 

demand vector, and when p = (p-i,P2, • • •) is the vector of protection levels. We define 

the revenue function recursively by 

#i[*;p;x] 
/,5 for 0 < s < X\ 

(2.8) 
f-^Xi for Xi < s 

Rk+l[s;p;x} = < 

-Rfc[s;p;x] for0<5<p f c 

(s-Pk)fk+i + Rk\Pk,P;x] for pk < s < pk + Xfc+i (2-9) 

xk+ifk+i + Rk[s - Xk+i] p; x] for pk + Xk+i < s, 

for fe = 1,2,.... 

For convenience of notation, a dummy protection level p0 will be introduced; its value 

will be identically zero throughout. There is no limit to the number of fare classes or to 

the corresponding lengths of the protection and demand vectors; however, the revenue 

from the k highest fares depends only on the protection levels (p 0,P!,... ,Pk-i) a n a f n e 

demands (xi,x2,... ,%k)- The symbols p and x will be used to denote vectors of lengths 

which vary depending on context, as in 

#fc[s;p;x] = i2fc[a;(p0.Pi> • • • (xux2, • • -,xk)}. 
1 Restriction to this class of policies is implicit in previous research. 
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The objective is to find a vector p that maximizes the expected revenue £i2fc[5;p;X ] for 

all k. If s is viewed as a real-valued variable, the function ERk[s;p;X] is continuous and 

piecewise linear on s > 0 and not differentiable at the points s = pk. Maximization of 

this function can be accomplished either by treating all variables as integer-valued and 

using arguments based on first differences, or by treating all quantities except demands 

as continuous and using standard tools of nonsmooth optimization. Both approaches are 

equivalent for this problem and yield the same optimality conditions. The second ap­

proach will be used here because it permits greater economy of notation and terminology. 

2.3.1 Marginal Value of an Extra Seat 

This section develops the first-order properties of the revenue function. The notation and 

terminology used here and in what follows are consistent with Rockafellar [109, (1970)]. 

Let 6+ and S~ denote the left and right derivatives with respect to the first argument 

of the revenue or expected revenue functions. Thus S~ER[s; (p 0,... ,pk-i)', X] is the left 

derivative of ER[-] with respect to s. (This slightly unconventional notation is required 

because s, the number of seats remaining, will sometimes be replaced by pk when the 

argument is being viewed as a discretionary quantity.) For fixed p and x, the derivatives 

for the revenue function are easily computed from (2.8) and (2.9) to be 

fi for s < Xj 
(2.10) 

0 for s > x 

6 #a[s;p;x] 
for s < xi (2-11) 

0 for 5 > x 
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and 

for 0 < s < pk 

for pk < s < pk + xk+1 (2-12) 

for pk + xk+1 < s. 

for 0 < s < pk 

for pk < s < pk + xk+t ( 2 - l 3 ) 

for pk + xk+1 < s. 

Any continuous, piecewise-linear function G[s] is concave on s > 0 if and only if the 

right derivative is less than or equal to the left derivative for any s. This condition can 

be extended to the point s = 0 by defining 6-G[0] = +oo. The sub differential, SG[s], is 

then defined for any s > 0 as the closed interval from to 6~G[s]. Given concavity, 

G[-] will be maximized at any point s for which 0 € £G[s]. 

2.4 Optimal Protection Levels 

This section establishes the optimality within the class V of protection levels determined 

by the first-order conditions given in (2.6). 

We first consider a point in the booking process when s seats remain unbooked, fare 

class fc + 1 is being booked, and the decision of whether or not to stop booking that class is 

to be made. That is, a decision on the value of the protection level pk for the remaining 

fare classes is to be made. The following lemma establishes a condition under which 

concavity of the expected revenue function with respect to s is ensured, conditional 

on the value of Xk+i. This leads to an argument by induction that concavity of the 

conditional expected revenue function will be satisfied if condition (2.6) is satisfied for all 

of the higher protection levels. Finally, it is shown that condition (2.6) also guarantess . 

optimality of pk. 

6+Rk+1[s;p;x} 

6 Rk+l[s;p;x} = .< 

S+Rk[s;p;x] 

/fc+i 

6+Rk[s - a;fc+i;p';x] 

6-Rk[s\p;x\ 

/fc+i 
6'Rk[s - xfc+1;p;x] 
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Lemma 2.4.1 If some policy, p, makes ERk\s;(p0,... ,pk_1)]~K] concave on s > 0 and 

if pk satisfies 

fk+1 <= 8ERk[pi;(Po,... ,p f c_a); X] , (2.14) 

then E^Rk+i[s; (p0, ... ,Pk-i,Pk)>^-} I -̂ fc+i} *s concave on s > 0 with probability 1. 

Proof: It follows from the definition of the revenue function in (2.9) and the hy­

pothesized concavity of ERk that E{Rk+i[s;(p0,... ,pk_1,pl)]X]\Xk+i} is continuous 

on s > 0 and concave on the three intervals 0 < s < pk, pk < s < pk -f Xk+i, and 

pk + Xk+i < s. 

To complete the proof, it is enough to verify that 

8+E{Rk+i[s;(p0,... ,p fc_i,Pfc);X] I A ' f c + i} 

< 5-E{iE* + 1 [ B ; (po , . . . ,P f c -i ,P*);X ] |A ' f c + 1 } (2.15) 

at the two points s = pk and s — pk + A"fc+1. From (2.12) and (2.13) the left and right 

derivatives at s — pk are 

6-E{Rk+1\p'k] (p 0,... ,Pk^Tl)\ X] I Xk+i} = 8-ERk\pl; p; X] (2.16) 

and 

*+E{jZfc+xfa;; (p0>. -. . f t ^ r i f c X ] I Xk+1} = / f c + 1 . (2.17) 

By the hypothesis of the lemma, inequality (2.15) must be satisfied. 

Again applying (2.12) and (2.13), the left and right derivatives at s — pk + Xk+i are 

5-E{i2 f c + 1 bJ[+A' f c + 1 ; (p 0 > . . . ) p f c _ 1 > p ;);X ] |A ' f c + 1 } = fk+1 (2.18) 

and 

£ + E {i?fc+1[pfc + Xk+i] (p0, • • • iPfc_i,Pfc);-X] I A f c + 1 } = 

5 + £: J R f c [p f c ;(po,. . . ,p f c_ 1);X]. (2.19) 

By the hypothesis of the lemma, inequality (2.15) must be satisfied at s — pk -j-Xk+i- • 
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Corollary 2.4.2 If, for some k £ {1,2,...} the conditions of the lemma hold, then 

£#fc+ik (PO, • • • >Pfc-i>Pfc);xl 

is concave on s > 0. 

Proof: We have 

ERk+i[s;{Po, • • • ,Pfe-i,Pfc);X] = E [ E { i ? A . + 1 [ B ; ( p 0 , . . . , p f c _ 1 , P f c ) ; X ] \Xk+1} ] 

It follows from the concavity of the conditional expectation on the right-hand side that 

8+ERk+1[s;(p0,... ,p f c_ 1,p£);X] < 8~ERk+1 [s; (p 0,... ,p f c_1 ;Pfc);X] 

(The expectation operator E and the differential operators 8+ and 8~ can be interchanged 

since R1 is bounded by fjS for all policies p and demand x.) • 

Theorem 2.4.3 Let p be any policy satisfying 

fk+1 € 8ERk\pk-(p0,... , P f c _ a ) ;X] (2.20) 

for k = 1,2,.... Then E{Rk+i[s; p; X] | Xk+i} is concave on s > 0 for k = 1,2,.... 

Moreover, it is optimal to stop the sales of fare class k + 1 whenever pk seats remain 

unsold. 

Proof: From (2.10) and (2.11), 

and 

E{8-R1[s;p;X}\X1} = fj^s], 

where 1^) = 1 if condition A holds, and 1^ = 0 otherwise. Then £+E{.Ri[.s;p;X] | X^} < 

8~rj{Ri[s; p; X] | Xi}. Thus, E{i?i[s, p; X] | Xi} is concave in s for any policy p, and, 
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given condition (2.20), the concavity assertion in the theorem follows from Lemma 2.4.1 

by induction. 

To prove optimality of the protection level pk it is necessary to examine the behaviour 

of ERk+i[s; (p 0,... ,Pk)', X] as a function of pk for any s. Denote the left derivative, right 

derivative and sub differential with respect to pk by 8k , 8k , and 8k) respectively. 

From (2.9), 

8£Rk+1[s;p;x] = 

8k Rk+1{s;p;x] = < 

0 for 0 < s < pk 

-fk+i+°~+Rk\pk\P;x] for pk < s < P k + xk+1 (2.21) 

0 for pk + xk+1 < s. 

0 for 0 < s < pk 

-fk+i+6~Rk\pk;P;x) for pk < s < pk + xk+i (2.22) 

0 for pk + Xk+i < 

Recall that ilfc[pfc;p;x] is independent of xk+i. Taking the expectations of these 

derivatives and reversing the order of differentiation and expectation yields 

6+ERk+1[s;p;X] = (-/ f c + a + 8+ERk\pk]p;X])Pr[Xfc+i > s - Pk] (2.23) 

^-^ f c + 1 [ 5 ;p;X] = ( - / f c + 1 +r£i4 [p f c ;p;X ] )Pr[X f e + 1 > s - Pk] (2.24) 

Now 8+ERk\pk] p;X] < 8~ERk\pk;p;^] for all pk by concavity of £i2/j[5;p;X] with 

respect to a: But then 8£ERk+1[s;p;X] < 8kERk+1[s;p;X] from (2.20), (2.23) and 

(2.24); and hence ERk+1[s; (p 0 , . . . ,pfc); X] is concave with respect to pk. Furthermore, 

condition (2.20) implies 

8+ERk+1[s;p;X] < 0 < ^ ^ f c + 1 [ 5 ; p ; X ] ; 

that is, 0 € 8kERk+i[s;p;X], and pk maximizes ERk+i[s;p;X], as required. 
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2.4.1 Evaluation of the Protection Levels 

In this section a more explicit expression for computing the optimal protection levels is 

derived. 

Lemma 2.4.4 If p satisfies 

f, Pr[Xi > P l n xx + x2 > p2 n • • • n x1 + x2 + • • • + xk > Pk] = fk+1, (2.25) 

for all k, then with probability 1 for k — 1, 2, . . . and s > pk 

S+E[Rk+1[s; p; X] | Xk+1] = f1 Pr[X a > P l n • • • 

n X i + x2 + • • • + xk > P k n xl + • • • + xk+1 > s \ xk+l) (2.26) 

Proof: 

Assume that p satisfies the hypothesis of the Lemma. For s > pfc, we can obtain the 

following expression from (2.12) by taking the expectation and interchanging E and 6+ : 

£ + E{i4+i[s ;p;X] \Xk+i} = /*+i^[a<pt+xt+1] 

+6+E{Rk[s-Xk+l]p-,X]\Xk+l}Ila>Pk+Xk+l]. (2.27) 

Using (2.25) to substitute for the right-hand side of this expression can be rewritten 

as 

f1 Pr[X! > P l n • • • n x1 + • • • + xk > P k n s < P k + xk+1 \ xk+1] 

+8+E{Rk[s-Xk+up;X}\Xk+1}I[s>Pk+Xk+l]. (2.28) 
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For k = 1, using (2.10) and the fact that [Xr + X2>sDs>Pl + X2) [Xx > Pl], 

(2.27) becomes 

6+E{R2[s-p-X}\X2} = / 1 P r [ A ' 1 > p , n X 1 + X2 > s n s < P l + X2\X2] 

+f1 Pr[X! > P l n xx + x2 > s n s > P l + x21 x2] 

= / , Pr[X! > Pi n X i + A 2 > a | X2\. (2.29) 

Thus the Lemma holds for k = 1. 

The proof is completed by induction. Using the induction hypothesis that the Lemma 

holds for k, substitute for S+ Rk in the last term of (2.28). 

E{6+Rk+1[s;p;X}\Xk+1} 

= f, PrfX: > P l n • • • 

r\Xi + • •• + xk > P k n s < P k + xk+11 xk+l] + 

/jPrfA-x > p i n - - -

n X i + • • • + xk > s - x k + 1 ns-xk+1 >Pk|xk+1] 

= fi Pr[Xj > pi n • • • 

n X i + • • • + xk > P k n x x + • • • + xk+1 > s | xk+1], (2.30) 

completing the proof of the lemma. • 

Corollary 2.4.5 If p satisfies (2.25), then for s > pk 

8+ERk+1[S;p;X} = 

f1 Pr[Xi > P l n • • • n A- ! + • • • + xk > P k n x1 + • • • + x k + 1 > s]. (2.31) 

Theorem 2.4.6 If p satisfies (2.25), then p is optimal. 
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Proof: By Lemma 2.4.4 if p satisfies (2.25), then 

/fc+i = / 1 P r [ X a > p 1 n . . . n x 1 + - - .+x f c >pJ 

= S+ERk\pk;p;X]. (2.32) 

By Theorem 2.4.3, p is thus optimal. • 

2.4.2 Monotone Optimal Stopping Problems and the Optimality of Fixed 

Protection Level Booking Policies 

In this section it is established that the fixed protection levels p denned by condition 

(2.20) are optimal over the set of all admissible policies, not just over the set of fixed 

policies V • To this end, first consider the problem of stopping bookings in fare class 2 

when there are s seats remaining and X2 > x2 has been observed, where x2 > 0. If the 

protection level px is to be chosen by any admissible policy, it may in general depend 

on the number of seats remaining and the value of x2. That is, a priori p1 must be 

regarded as a random variable on the sigma-field generated by {X2 > x2}. In the usual 

terminology of stochastic processes, p1 is classified as a stopping time for the X2 booking 

process. The problem of finding an optimal policy for choosing P i belongs to a class of 

stochastic optimization problems known as optimal stopping problems. In the discrete 

case, it has been shown by Derman and Sacks [37, (I960)] and Chow and Robbins [26, 

(1961)] that optimal stopping problems denned as monotone have particularly simple 

solutions. The seat allocation problem is in reality a discrete problem, so a proof of 

monotonicity could be obtained by using these results. However, to avoid departing 

from the continuity assumptions and notation used throughout this chapter, use is made 

instead of a continuous generalization reported by Ross [111, (1971)]. To do this, the 

additional stipulation must be made that the probability distribution functions of the 

demands are continuous. 
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In the context of the booking problem for fare class 2, Ross's conditions for mono-

tonicity will be satisfied if: 

1. There is a p\ such that 

S+iERifcip^-X] > 0 f o r P l < K , 

and 

S+

1ER2[s](p1);X} < 0 f o r P l > p J . 

(Recall that 8+i denotes the right derivative with respect to p1.) 

2. R2[s;(p1);x] and 8+iER2[s; (pj); X] are bounded and continuous in p1. 

3. pj is finite with probability 1. 

Now condition 1 follows from the proof of theorem 2.4.3. For condition 2, R2[s; (p-J; x] is 

continuous in p1 by inspection of (2.9) and bounded if the fares and demands are bounded. 

Also, from (2.23), 8+

tER2[s; (pj; X] = (-f1 + f2Fv[X1 > P l ])Pr[A' 2 > s - Pl\. This 

directional derivative will be bounded if the fares are bounded, and is continuous by the 

continuity assumption on the demand distribution. Finally, p\ will be finite if fares and 

demands are bounded, by inspection of the expression for 8+iER2[s; (px); X] given above. 

If the model is monotone the expected revenue will be maximized by protecting p\ 

seats for X\ demand; that is, a fixed-limit policy will be optimal for the protection level 

p1. As demonstrated previously, choice of the protection level pj ensures concavity of 

ER2[s; (Pl); X] on s > 0, hence the stopping problem for fare class three will be monotone 

and pj will be optimal for the protection level p 2. The optimality of the fixed-limit policies 

for the remaining fare classes follows by induction using the concavity results proved in 

the previous section. 

The significance of this result in the context of airline seat allocation is that static 

protection levels defined by condition (2.25) will be optimal as long as no change in the 
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probability distributions of demand is forseen. In other words, no ad hoc adjustment of 

protection levels is justified unless a shift in the demand distributions is detected. This is 

not a particularly suprising result, given the assumed independence of demand and other 

restrictive assumptions, of the underlying model; however, it is less obvious that a similar 

result holds in the case of two classes of demand that are stochastically dependent. This 

result and others are the subject of chapter 3. 

2.4.3 Implementation of Independent Demand Optimal Protection Levels 

The problem of solving for the optimal protection levels is reduced to finding a solution 

P* = (Pi)?2> • • •) to (2.25) for k = 1, 2, . . .. A condition which guarantees the solvability 

is that the demand distribution have a density function. If an empirical distribution for 

integer demand is being used, then the above equations can likely be solved to within 

the statistical error of the demand distribution.. 

Empirical studies have shown that the normal probability distribution gives a good 

continuous approximation to airline demand distributions [13, 123]. If normality is as­

sumed, solutions to (2.25) can be obtained with straightforward numerical methods. It 

is important to note, however, that with a large number of fare classes solution of (2.25) 

could become time-consuming because of the need to perform a large number of numerical 

integrations. 

There is a way in which the optimality conditions (2.25) can be used to monitor the 

past performance of seat allocation decisions given historical data on seat bookings for 

a series of flights. Detailed discussion of this idea is deferred until after the optimality 

conditions for dependent demands are obtained in chapter 3; however, the approach will 

be outlined here. For simplicity the discussion will assume three fare classes; the method 

generalizes easily to an arbitrary number of classes. 
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With three fare classes, conditions (2.25) can be written 

Pr[Xi > Vi n X1 + X2 > p2] = 

P r [ X 1 > P l ] = 
fx 

(2.33) 

(2.34) 

Given a series of past flights, the probability Pr[A'i > P l ] can be interpreted as the 

proportion of flights on which class 1 demand exceeded its protection level. Then (2.33) 

specifies that this proportion should be close to the ratio / 2 / / i - Similarly, (2.34) specifies 

that the proportion of flights on which both class 1 demand exceeded its protection level 

and the total of class 1 and 2 demands exceeded their protection level should be close 

to the ratio f3/fi- If allocation decisions are being made optimally, these conditions 

should be approximately satisfied in a sufficiently long series of past flights. Severe 

departures from these ratios would be symptomatic of sub-optimal allocation decisions. 

The appealing aspect of this approach is its simplicity — no modeling of the demand 

distributions and no numerical integrations are required. 

2.5 Comparison of EMSRa and Optimal Solutions 

The EMSRa method determines the optimal protection level for the full fare class but is 

not optimal for the remaining fare classes. However, the EMSRa equations are partic­

ularly simple to implement because they do not involve joint probability distributions. 

It is thus of interest to examine the performance of the EMSRa method relative to the 

optimal solutions given above. Note that neither the EMSRa nor optimal equations give 

explicit solutions for the optimal protection levels, so analytical comparison of the rev­

enues produced by the two methods is difficult unless unrealistic demand distributions are 

assumed. Numerical comparison of the two methods can, however, give some indication 

of relative performance. 
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Table 2.1: Comparison of EMSRa versus Optimal - Three Fare Classes 
example 
number h h Pi 

P 2 
% error 
revenue 

example 
number h h Pi EMSRa optimal 

% error 
revenue 

1 0.6 0.7 32 70 80 0.37 % 
2 0.6 0.8 27 80 87 0.32 % 
3 0.6 0.9 19 86 91 0.19 % 

4 0.7 0.8 27 64 75 0.41 % 
5 0.7 0.9 19 73 82 0.45 % 

6 0.8 0.9 19 57 70 0.50 % 

Table 2.2: Effect of Capacity on EMSRa Error 
% error 

capacity revenue 
82 0.54 % 
100 0.45 % 
120 0.35 % 
140 0.24 % 
160 0.14 % 

This section gives the results of numerical comparisons of EMSRa versus optimal 

solutions in a three fare-class problem2. Table 2.1 presents the results of six examples 

in which cabin capacity is fixed at 100 seats and fares fi are varied. Fares are expressed 

as proportions of full fare; thus, / i = 1 throughout. The '% error revenue' column gives 

the loss in revenues incurred from using the EMSRa method as a percentage of optimal 

revenues. In Table 2.2, the fares are held constant at levels / 3 = 0.7 and / 2 = 0.9, and 
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cabin capacity is varied. 

Discrete approximations to the normal probability distribution were used for all de­

mand distributions. The nominal mean demands for fare classes 1, 2 and 3 were 40, 60 

and 80, and the nominal standard deviations, 16, 24 and 32, respectively. These figures 

are nominal because the discretization procedure introduced small deviations from the 

exact parameter values. These parameters correspond to a coefficient of variation of 0.4; 

i.e., the standard deviation is 40% of the mean. This is slightly higher than the 0.33 that 

Belobaba [13, (1987)pl43] mentions as a common airline 'k-factor' for total demand. 

Remarks: 

In this set of examples the EMSRa method produces seat allocations that are signifi­

cantly different from optimal allocations, but the loss in revenue associated is not great. 

Specifically: 

1. In these examples, the EMSRa method consistently underestimates the number of 

seats that should be protected for the two upper fare classes. The discrepancy is 

19% in the worst case (example #6). It will be shown below with a counterexample 

that the EMSRa method is not guaranteed to underestimate in this way. 

2. In the worst case the discrepancy between EMSRa and optimal solutions with 

respect to revenues is approximately 1/2 percent. 

3. The error appears to increase as the discount fares approach the full fare; however, 

the sample is much too small here to justify any general conclusion of this nature. 

4. The error decreases as the aircraft capacity increases. This effect is to be expected 

since allocation policies have less impact when the capacity is able to accomodate 
2 These calculations were carried out on a microcomputer. Computations for four or more fare classes 

were not carried out because of the excessive running times that would have been required with realistic 
aircraft capacities. (The size of the joint demand distributions that must be dealt with are of the order 
Ck~l, where k is the number of fare classes.) 
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most of the demands. 

On the basis of these examples, a decision of whether or not to use the EMSRa 

approach rests on whether or not a potential revenue loss in the order of 1/2 percent or less 

(with three fare classes) is justified by the simpler implementation of the method relative 

to the optimal method. Further work is needed to determine the relative performance of 

the EMSRa method with a larger number of fare classes or under other conditions. 

EMSRa Underestimation of Protection Levels — A Counterexample 

As mentioned above, the EMSRa method consistently underestimated the protection 

level p 2 for the two upper fare classes in all of the numerical trials. It is thus reasonable 

to conjecture that the approximation will always behave in this way. This is not true for 

all demand distributions, as shown by the following counterexample using exponentially 

distributed demands. It remains an open question whether or not the conjecture holds 

true for normally distributed demands. 

For convenience, let the unit of demand be 100 seats, and introduce the relative fares 

r 2 = / 2 / / i a nd r 3 = f3/fi- Now suppose that Xi and X2 follow identical, independent 

exponential distributions with mean 1.0 (100 seats). That is Pr[Xj > sc,-] = e~Xi for 

i = 1,2. It is not suggested that the exponential distribution has any particular merit 

for modeling airline demands, although it could serve as a surrogate for a severely right-

skewed distribution if the need arose. Its use here is purely as a device for establishing a 

counterexample to a general conjecture. 

Let p? denote protection levels obtained with the EMSRa method. Then with the 

above distributional assumptions and equations (2.2) through (2.5), we havep" = — ln(r2), 

and p5 = - ln( r 3 ) - ln(r 3/r 2). 
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For the optimal solutions, condition (2.7) gives pi = — ln(r2) = p", and 

r3 = Pr[A r

x > pi n Ax + A 2 > p2] 

= Pr[Xi > p2] + Pr[ P l <X1<p2n A 2 > p 2 -

= e-p2 + T2 Pr[A 2 > p 2 - x^e- 1 1 <tea 

•'pi 

= e - p 2 ( l - f p 2 - P l ) . (2.35) 

Suppose that r2 = 1/2 and r 3 = 1/4. Then p\ = 0.69 and p% = 2.08 (69 and 208 seats, 

respectively). Given pi, a simple line search using (2.35) produces the optimal p 2 = 2.37 

from the equation above. Thus, for this example, the EMSRa method underestimates p 2 

by 29 seats. This behavior is consistent with the conjecture. 

Now suppose instead that r2 = 4/10 and r 3 = 1/10. Then p\ = 0.92 and p° 3* 3.69. 

In this case, however, p 2 = 3.61, and the EMSRa method overestimates p 2 by 8 seats. 

It is not difficult to show that for these demand distributions, the EMSRa method will 

overestimate p 2 whenever r2/r3 > 3.51, approximately. 

2.6 Summary — Independent Demands Case 

This chapter provides a rigorous formulation of the revenue function for the multiple 

fare class seat allocation problem and demonstrates conditions under which the expected 

revenue function is concave. It is shown that a booking policy that maximizes expected 

revenue can be characterized by a simple set of conditions on the sub differential of the 

expected revenue function. These conditions are further simplified to a set of conditions 

relating the probability distributions of demand for the various fare classes to their re­

spective fares. It is proven that the optimal fixed protection limit policies are optimal 

over the class of all policies that depend only on observed demands. A numerical com­

parison is made of the optimal solutions with the approximate solutions yielded by the 
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expected marginal seat revenue (EMSRa) method. A tentative conclusion on the basis of 

this restricted set of examples is that the EMSRa method produces seat allocations that 

are significantly different from optimal allocations with an associated loss in revenue of 

the order of 1/2 percent. 



Chapter 3 

Allocation Between Two Classes when Demands are Dependent 

This chapter deals with the airline seat allocation problem in the case that there is 

stochastic dependency between the demands for two fare classes, henceforth referred to 

as the discount fare class, and the full fare class. The other assumptions are the same 

as those of the previous chapter (see page 16). The reduction in the number of fare 

classes might seem to limit the usefulness of this analysis, given that airlines typically 

offer eight or more major fare classes. However, the fares appearing in this and the 

previous analysis are only assumed to be average fares, so in the present analysis one can 

consider the discount fare class to be composed of several sub-classes with different fares. 

If full fare demand is correlated in some way with aggregate demand for the discount 

sub-classes, the analysis of this chapter provides a useful estimate of an appropriate 

protection level for the full fare class. More importantly, the present analysis provides 

a means of evaluating the general significance of demand dependencies and gives some 

indication of the appropriate response to such dependencies. 

Any discussion of protection levels for the full fare class must inevitably involve the 

so-called spill rate for full fare passengers — the rate at which full fare passengers are 

refused bookings because of prior sales of discount seats. This chapter shows that a 

simple modification to the optimality formula for the full fare protection level can allow 

for additional control of full fare spillage or, conversely, for estimation of the revenue 

impact of a particular spill rate policy. 

With some exceptions to be noted later, previous work on the two fare seat allocation 

38 
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problem has assumed stochastic independence between discount and full fare demands. 

However, there are at least two reasons that such independence might fail to hold. First, 

scheduled events such as conferences can be expected to stimulate demand for both fare 

classes since there is generally sufficient time for budget-conscious travellers to book in 

the early-booking discount class. The occurrence of many such stimuli would lead to a 

positive correlation between the demands for the fare classes, even after such effects as 

day-of-the-week, season, fares, etc. had been allowed for. Second, a proportion of cus­

tomers seeking discount fare bookings can be expected to upgrade to full fare if they find 

that all discount seats have been sold. Such behaviour also causes positive dependency 

between discount demand and the ultimate full fare demand. In this case, the strength of 

the dependency is infuenced in part by the booking limit set for the discount fares — the 

lower the booking limit, the higher the number of upgrades and the higher the apparent 

full fare demand. Other arguments can be put forward for the existence of dependencies, 

both positive and negative, in special cases. 

Belobaba [13, ppl43-150] discussed the possible impact of demand dependencies on 

booking limits and showed that, in a three fare class problem, the booking limit for the 

lowest fare class is reduced as the correlation between demands for the two upper fare 

classes increases. This is a simple consequence of the increase in the variance of the 

total demand for the two higher fare classes that results from increasing correlation. He 

did not examine the problem of determining the booking limit between two dependent 

classes (the problem examined here). Belobaba also proposed a seat allocation formula 

for the case that demand dependency arises because of upgrades. A formal proof of the 

correctness of that result is provided here. A similar result using different methods has 

been obtained by Pfeifer [106, (1989)]. 

Before proceeding with a detailed analysis of the dependent demand case, we offer 

the following brief intuitive argument. Recall that Littlewood's rule for two independent 
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fare classes, if approximated by an equation, specifies that an optimal booking limit l" 

for the discount fare class satisfies 

f2 = flT>i[Xl>C-t). 

The case considered here is much the same as that considered in deriving Littlewood's 

rule except that, here, the full fare demand distribution must be modified as each dis­

count demand occurs because of the dependency between the demands. That is, after 

observing X2 > t the full fare demand distribution becomes Pr[X x > C — I \ X2 > £]. It 

seems reasonable to conjecture that the optimal booking limit can be obtained simply by 

replacing the probability in Littlewood's formula with this conditional probability. It is 

shown here that this conjecture is valid as long as the discount and full fare demands are 

rnonotonically associated. This condition is precisely defined later, but loosely speaking, 

it implies that demand distributions must be such that the full fare spill rate increases 

as more seats are sold to discount customers. 

This chapter is organized as follows. Section 3.1 describes a general seat allocation 

model that forms the basis for later analyses. In Section 3.2 the allocation model is 

used to derive a generalization of Littlewood's rule for the dependent demand case. It 

is shown that a variant of the rule is valid when the discount and full fare demands are 

rnonotonically associated. A numerical example is provided in Section 3.2.2. In Section 

3.2.4 a minor adjustment to the same model accommodates the goodwill costs incurred 

when a full fare passenger is unable to obtain a reservation on his or her preferred flight. 

Section 3.2.5 deals with the case that the dependency (between full and discount fare 

demands) arises because of the tendency for a proportion of discount fare customers to 

upgrade to full fare if no more discount seats are available. The general model is used to 

prove optimality of a seat allocation formula that incorporates upgrades. In Section 3.3 

it is proven that the monotonic association condition is satisfied when demands follow 
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a bivariate normal distribution with positive correlation. It is also proven that the op­

timal full fare protection level increases as the correlation increases. Finally, section 3.4 

summarizes the main results of this chapter. 

3.1 A Generic Seat Allocation Model with Dependent Demands 

This section presents a general model for the seat allocation problem that serves as a 

basis for the specific analyses of later sections. As with the independent demand model 

of Chapter 2, it is similar in structure to optimal stopping models described in Chow et 

al. [27, (1971)], and Derman and Sacks [37, (I960)], and this correspondence is once again 

used to characterize instances of the problem for which a simple rule yields an optimal 

solution — the class of monotone optimal stopping problems. 

The notational conventions of Chapter 2 are maintained here except that since only 

two fare classes are under consideration, subscripts are dispensed with, and the highest 

fare demand is denoted Y and the discount demand, X. The corresponding average fares 

are fY and f x respectively. It is more convenient in the two fare class case to consider 

the booking limit for the discount fare class to be the decision variable instead of the 

protection level used previously. This limit is denoted I, and the corresponding full fare 

protection level is (C — I). 

As with the multiple fare class problem, the present problem can be handled either 

with the assumption of discrete decision variables or continuous ones. With only two fare 

classes and one decision variable to consider, neither approach is particularly favoured 

over the other. Since the application considered here is in fact discrete, the analysis in 

this chapter assumes discrete quantities. The gain function defined below takes the place 

of the left derivative used previously. 

In the general model, the revenue resulting from the policy of booking (X Ai) discount 
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passengers is fx(X A £). Define F(£) to be the seats remaining after discount bookings 

are closed, so that F(£) = C — (£ A X). It is assumed that there is now an additional 

demand for a total of Y(£) full fare seats. Note that the distribution of the full fare 

demand might depend on the decision variable £, as is the case when a proportion of 

customers denied discount bookings elect to upgrade to full fare bookings. Moreover, it 

is not assumed that X and Y(£) are independent. 

By satisfying as much of the demand Y(£) as possible, an additional revenue of fY(Y/\ 

F(£)) is generated. In the case that a goodwill cost or penalty is incurred for turning 

away full fare demands, the unsatisfied portion of this demand will incur a total cost of 

fc(Y — F(£))+. Combining the above revenues and costs gives the net revenue function 

R(£) = fx(XA£) + fY(Y(£)AF(£))-fG[Y(£)-F(£)} + , (3.1) 

whose expectation is to be maximized as a function of £. Since it is not possible to 

allocate more than the available capacity, R(£) is only denned for £ such that 

0 < £ < C. (3.2) 

Now suppose £ — 1 requests have been satisfied from the discount demand, and an 

additional discount request is received; (i.e. X > £). If bookings stop at £ — 1, then the 

expected revenue is E[R(£ — 1) | X > i)].1 If the additional request is satisfied, expected 

revenue is E[R(£)\X > £)}. It is useful to write the expected incremental gain, G(£), of 

satisfying an additional request. 

G{£) = E \R{£) \X>£]-E [R(£ - 1) | X > £} 

•"•The optimality rule being sought can depend on the amount of discount fare demand that has been 
observed up to the stopping time. Thus the expected revenue function must be maximized conditional 
on the event {X > £ } . 
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It follows from (3.1) that 

G{t) = fx 

+fYE [Y(£) A (C - I) - Y(£ - 1) A (C - £ + 1) | X > £] (3.3) 

+fGE \(Y(£) -(C- £))+ - (Y(£ -i)-(C-£+ 1))+ \X>i], 

provided Pr[X > £] > 0 so that the conditional expectations are defined. If X is less 

than £ then the decision as to whether the ^-th request should be satisfied can never arise 

and G(£) is not defined. The domain of G is also limited to that of R(£), as specified by 

condition (3.2). 

The gain function G(£) is just the first difference of the expected revenue function 

conditional on the information that X > t. Clearly, a booking limit of t is preferred to 

£ — 1 whenever G(£) is positive. Furthermore, if G{£) is nonnegative for all £ up to some 

£', and nonpositive thereafter, then £" is optimal. 

The following sections of the chapter will consider applications of the above model to 

specific allocation problems which are monotone in the sense defined in Chapter 2. 

3.2 Specific Seat Allocation Problems 

This section specializes the above general model to three variants of the seat allocation 

problem with dependent demands. In the first variant, it is assumed that there are 

no penalties for refused bookings and that full fare demand is not influenced by the 

discount booking level £. The second considers the loss of goodwill associated with full 

fare passenger spillage by introducing a penalty for refused bookings. The third deals 

with the upgrades case in which ultimate full fare demand is influenced by the discount 

booking level. 
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3.2.1 A Simple Seat Allocation Model with Dependent Demands 

The model analyzed here is the usual seat allocation model [14, 18, 95, 108, 136] except 

that the demands of the two fare classes, Y and X are allowed to be stochastically 

dependent. 

It is assumed that the full fare demand is not influenced by the booking limit assigned 

to discount fares, so that Y(£) = Y, for £ = 1, . . . , C. Note that since demand is integer, 

Y > C - £ is the same as Y > C - £ + 1. 

Using these properties, the gain associated with increasing the booking limit from 

£ — 1 to £, given by (3.3), can be simpified to 

G(£) = fx+fYE[(YA(C-£))-

(Y A(C -£ + l))\Y > C -£,X >£]Pr[y > C -£\X >£} (3-4) 

= fx ~ fy P r ^ > C - £ | X > £}. 

This expression has a simple intuitive interpretation: when an additional seat is sold to a 

discount customer, there is a certain gain of one discount fare, and if the full fare demand 

exceeds the new lower protection level, there is a loss of one full fare. 

The expected gain is positive whenever G(£) > 0, or equivalently whenever 

Pr[y > C-£\X >£} < (3.5) 
fy 

If it is the case that 

Pr[y > C - £ | X > £] is nondecreasing in £, (3.6) 

then G(£) is nonincreasing in £, and the problem is monotone. 

Henceforth, property (3.6) is referred to as the monotonic association property. Loosely 

speaking, this property specifies that as the discount booking limit increases, the full fare 
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spill rate tends to increase. (Recall that this is always true when demands are indepen­

dent.) It is not easy to imagine realistic demand distributions for which this property 

would not hold if X and Y demands are positively associated. ( For example, as is shown 

later, the property holds if discount and full fare demands follow a bivariate normal dis­

tribution with nonnegative correlation.) However, if for some reason the demands are 

negatively associated, the property might well fail to hold. 

A suitable £ to satisfy the definition of an optimal solution in a monotone problem is 

t = max{^ : G(£) > 0} 
, (3-7) 

= max{0 < £ < C : Pr[y > C -£\X > £] < 

f -
where we will adopt the convention that £" — 0 if Prfy > C] > so that the maximum 

JY 

is over the empty set. (Recall that the domain of G consists of those £ between 0 and 

C such that Pr[A" > £] > 0.) It is thus optimal to sell at most £" seats to customers 

requesting discount fares. 

The probability PT[Y > C — £ \ X > £] can be interpreted as the maximal flight spill 

rate as was the corresponding term in Littlewood's rule (2.1). But then (3.7) is just a 

generalization of the fact that this rate should be just less than the discount/full fare 

ratio. The optimality rule can also be expressed as follows: The discount booking limit 

should be set sufficiently high that, when discount seats sell out, full fare seats also sell 

out roughly ( / x / / y ) x 100% of the time. 

If the demands are independent, then (3.6) clearly holds, and the optimality condition 

becomes 

t •= max{0 < £ < C : P r [r >C - £] < ^ } . (3.8) 
JY 

Figure 3.1 illustrates a possible expected revenue function. Note that in this case there is not a unique £" which is optimal. The £" defined by 

(3.7) is the smallest. The largest optimal discount booking limit is obtained by permitting 
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ER(£ \X>£) 

t t~~ 

Figure 3.1: Expected Revenue Function 

equality in (3.7): 

t* = max{0 < £ < C : Pr[F > C - £ \ X > £} < ^ } . (3.9) 

JY 

This is just Littlewood's rule (2.1) except that now dependency between discount and 

full fare demands is allowed, subject to the monotonic association property (3.6). The 

following section illustrates the effect of such dependency. 

3.2.2 Example: Seat Allocation with Dependent Demands 

Table 3.1 on page 47 presents an example of optimal discount seat booking limits for a 

range of cabin capacities and for both independent and dependent demands. For this 

example, the discount fare was fixed at 60% of the full fare, and discrete approximations 

to bivariate normal distributions were used to model the discount/full joint probability 

functions. The mean combined demand was 100 seats in all calculations. In the depen­

dent demand cases, correlations of g = 0.5 and g = 0.9 between discount and full fare 

demands were used. 
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Table 3.1: Effect of Demand Dependency on Discount Seat Booking Limits 

46 60 
cabin 
80 

capacity 
100 120 140 

discount booking limit: £(g = 0)a 

full fare protection: C — £ 

19 33 53 73 93 113 discount booking limit: £(g = 0)a 

full fare protection: C — £ 27 27 27 27 27 27 

discount booking limit (g = 0.5) 

full fare protection 

19 32 51 68 86 103 discount booking limit (g = 0.5) 

full fare protection .27 28 29 32 34 37 

% revenue increaseb 0% 0.04% 0.15% 0.30% 0.32% 0.18% 

discount booking limit (g = 0.9) 

full fare protection 

19 32 49 65 81 97 discount booking limit (g = 0.9) 

full fare protection 27 28 31 35 39 43 

% revenue increase 0% 0.08% 0.54% 1.25% 1.27% 0.71% 

"independent: correlation=0. For all calculations, mean demands were 70 discount and 30 full, and 
standard deviations were nominally 26.5 discount and 11.5 full. The standard deviations varied slightly 
between cases because of the discretization procedure. 

6revenue increase achieved by allowing for dependency 
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With reference to Table 3.1, note that in the independent demand case, the discount 

seat booking limits correspond to a fixed protection level of 27 seats for full fare passengers 

at all cabin capacities. In this case (equation (3.8)), the protection level (C — £) is 

determined solely by the discount/full fare ratio, which is held constant in this example. 

Viewed another way, the discount booking limits are increased as capacity increases in 

order to keep the maximum flight spill rate for full fares in balance with the discount/full 

fare ratio, as discussed earlier. Since the mean demands are being held constant for 

all cabin capacities, it appears that increased capacity is being allocated exclusively 

to discount demands. Recall, however, that unsold discount seats can be sold to full 

fare passengers. In the capacity=140 case, for example, the majority of flights will have 

discount demands of less than 113 seats, and full fare seating capacity will be accordingly 

larger than 27 seats most of the time. It is only when discount demands reach 113 seats 

that the marginal revenue considerations expressed by equation (3.8) dictate closing down 

discount sales. 

In these examples, the optimal full fare protection level increases with capacity when 

discount and full fare demands are dependent (the g — 0.5 and g = 0.9 cases). The 

same spill rate balancing considerations are acting here; however, because of the positive 

correlation between demands, the discount booking limits are not increased as much as 

in the independent case. (The information that discount demand has exceeded some 

value should imply an increased probability of higher full fare demand and should lead to 

higher protection levels for full fare seats.) It is shown later that with bivariate normal 

demand distributions the optimal booking limit never increases as correlation increases. 

With small cabin capacities relative to demand (capacities of 46 seats or fewer), the 

booking limits in the dependent cases are the same as the those in the independent case, 

as there is no revenue benefit from taking dependency into account. This is because 

with small capacities the discount demand is almost certain to exceed the discount seat 
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booking limit, and so Pr[V > C —I \ X > £] = Pr[Y" > C —£]. For large capacities relative 

to demand (e.g. above 140 seats in the above example), the optimal discount booking 

limit in the independent case will be substantially lower than that in the dependent case; 

however, the corresponding revenue benefits are small as there is ample space for both 

fare classes under most realizations of the demand process. 

3.2.3 Implementation of Dependent Demand Booking 

The optimal booking rule for the dependent demand case (3.7) is simple to implement 

as a planning tool if some joint distribution such as the bivariate normal is assumed 

to hold for the demands. In this case it is straightforward to calculate the conditional 

distribution ~Pi[Y > C — £ \ X > £] for enough values of £ to solve the optimality condition. 

It is then possible to study the impact of hypothesized shifts in the demand distribution 

or in other parameters in much the same way as in the example above. 

Implementation of the dependent demand booking rule as a control tool in a reser­

vations system is also possible, but less straightforward. Estimation of the conditional 

demand distributions can be done, as above, by using a joint demand distribution. In this 

case, however the parameters of the distribution must be obtained by fitting to historical 

data and, possibly, by adusting for anticipated market conditions. This fitting process 

is not straightforward since 1) demand data from a history of previous nights will be 

censored whenever demand reaches a booking limit or the capacity of the aircraft, and 

2) the parameters of the demand distribution depend on external factors like fares, com­

petition and time of year. The same problems are present in the independent demand 

case, but the estimation is simpler since correlation between demand classes need not be 

considered. This estimation problem is dealt with in chapter 5. 

As mentioned in the previous chapter, the spill rate interpretation of the optimal 

allocation rules suggests a second implementation scheme. The optimal allocation rule 
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in either the independent or dependent demand cases specifies that the observed maximal 

spill rate should be as close as possible to, without exceeding, the discount/full fare ratio. 

If the observed proportion is too high, the booking limit should be adjusted downward; if 

it is too low, it should be adjusted upward. This approach has two significant advantages. 

First, there is no requirement for modeling the demand distribution; and second, there 

is little computational difference between the independent and dependent demand cases. 

To see the second point note that the observed maximal spill rate in the independent 

case is the proportion of flights on which the full fare demand exceeded the protection 

level (C — t). In the dependent case, it is the proportion of those flights on which 

the discount booking limit was reached for which the full fare protection level was also 

exceeded. This type of adaptive control strategy has the disadvantage that it is based 

entirely on aggregate historical data, not on forecasts of future demand for individual 

nights; however, it provides an easily implemented way of monitoring past performance 

relative to theoretically optimal booking limits. 

3.2.4 Full Fare Passenger Goodwill and Spill Rates 

Airlines are justifiably concerned about the impact of discount seat allocation policies 

on the proportion of full fare reservations requests that must be turned away. This 

proportion, expressed as a percentage, is often referred to as the passenger spill rate, 

or simply spill rate. A related concept is the proportion of nights on which one or 

more reservations requests are turned away, or the flight spill rate discussed earlier. 

The following' section examines these two spill rates in more detail and gives a simple 

relationship connecting the two rates when discount demand can be assumed to be high; 

i.e., Vi[X >l]fal. 
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Flight and Passenger Spill Rates 

Let Z denote the number of full fare booking requests spilled given full fare and discount 

fare demands Y and X respectively, discount fare booking limit £, and capacity C. That 

is, 

[Y - (C - £)}+ if X > £ 
1 V n (3.10) 

[Y — (C — X)]+ if X <£. 

The flight spill rate has been defined above as the proportion of flights on which at 

least one full fare passenger is refused a booking. The expected value of this proportion 

is simply the probability that full fare demand exceeds the number of seats remaining 

after discount sales have stopped. Let rp denote the flight spill rate. Then 

rF = ?i[Y > C - £ | X > £} PT[X >£} + PT[X < £ n X + Y > C). (3.11) 

The passenger spill rate can be viewed as the long-run proportion of full fare requests 

that are turned away; that is, the total number of refused requests in a long series of 

flights divided by the total number of requests. Let rp denote the passenger spill rate. 

With the demand distribution and parameters as defined above, this quantity can be 

written 

rp - W y (3-12) 

Let F(-) be the cumulative distribution function for X-demand and define the pro­

tection level p = (C — £)• Then 

E[Z] = E{[Y-p)+\X > £}Pi[X > £}+ / E{[Y-{C-x)}+\X = x}dF{x) 
Jo 

= E[Y\Y > PnX > £}Pr[Y > PHX > £}-PPT{Y > pf)X > £} (3.13) 
£ 

+ f E{[Y - (C - x)}+ | X = x} dF{x). 
Jo 

If (XX) are adequately represented as bivariate normal random variables, then both rp 

and rp can be calculated for any particular set of distribution parameters. The calculation 
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of E[Z] can be accomplished numerically with the aid of expansions for the conditional 

expectations in equation (3.13) that are given in the appendix (equation (A.33) ) and in 

chapter 5 (equation (5.24) ). 

For rnonotonically associated demands, the full fare spill rate is most severe when 

discount fare demand is high. In the extreme case that Pr[A" > £] % 1, the spill rates 

become (approximately) 

rF ^ Pr[F > p) (3.14) 

and 

rP « (1/E[Y}){(E[Y\Y >P}-P)PT[Y >p]}. (3.15) 

With a bivariate normal distribution for (X,Y), the calculation of the spill rates becomes 

essentially equivalent to that for a single fare class with cabin capacity p and normal de­

mand distribution given by the marginal distribution for Y. Harmer [62, (1976)] derived 

a simple relationship between the flight and passenger spill rate for a single fare class 

with normally distributed demand. It is straightforward to obtain this result using some 

of the properties of the normal distribution given in the appendix. Denote the mean 

and standard deviation of the marginal Y distribution by p,y and cry respectively. From 

appendix equation (A.8), 

E[F | Y > p] = fly + ay{4>{zP)l Pr[F > p))-

where zp — (p — fj,y)/o~y. Then, from (3.14) and (3.15), 

rP = (l//i y)[/x yr F + o-y(f>(zp) - prF] 

= ( < V / * y ) ( ^ p ) - W ) . (3-16) 
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A n Example 

In the following example, it is assumed for simplicity that discount fare demand is suf­

ficiently high that the discount booking limit is always reached. If an optimal seat 

allocation rule is used (in either the independent or dependent demand case), the flight 

spill rate is close to the discount/full fare ratio. For example, consider the independent 

demand case with a plane capacity of 100 seats in Table 3.1. If mean low fare demand is 

significantly higher than 70 seats so that the discount booking limit of 73 seats is reached 

most of the time, and full fare mean demand remains at 30 seats, then the flight spill 

rate is approximately 60%, since f x l fy = 0.60. In this example, the full fare passengers 

are essentially being booked into a fixed allocation of 27 seats. From equation (3.16), the 

corresponding passenger spill rate is 21%. 

It is difficult to obtain reliable data on actual airline passenger spill rates, but it is 

hard to imagine that airline managers would tolerate turning away 21% of their best 

customers, even given the high demand for discount fares assumed in the example.2 

Goodwill Premiums 

There thus appears to be a substantial discrepancy between spill rates corresponding to 

optimal booking limits and the spill rates that would be tolerated by airlines. Possible 

explanations for this discrepancy include: 

1. Optimal allocation rules may simply not be used by many airlines. 

2. The airlines may be compensating for demand dependencies, either deliberately or 

on a trial-and-error basis, by lowering discount booking limits below those specified 

by the simple allotment rule. 
2In the Boeing report cited above, all sample calculations were presented with flight spill rates of 5% 

or lower. 
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3. The discount and full fare demands may overlap in time to a sufficient degree, that 

the observed full fare demand can be used to adjust the discount booking limit. 

4. Voluntary 'bumping' of discount passengers may be used to permit high overbook­

ing levels for full fare passengers, thus reducing the effective full fare spill rate. 

5. The discount booking limits may be adjusted downward in an ad hoc fashion to 

compensate for the perceived extra value of full fare passengers above and beyond 

their higher fares. (Full fare passengers are predominantly composed of business 

travellers who can be expected to travel more frequently than the discount, predom­

inantly leisure, travellers. Low spill rates can be seen then as a way of promoting 

future earnings from these customers by maintaining passenger goodwill.) 

The latter case, which recognizes the goodwill benefits associated with serving the 

full fare passenger, is now examined. 

The effect of not being able to accommodate a full fare passenger can be viewed in 

two ways. First, a premium of fG can be included in the full fare. Alternatively, the 

revenue derived from a full fare can be kept at fY, and a loss of fG can be incurred for 

each full fare customer not accommodated. The argument used in section 3.2.1 can be 

applied to this version of the revenue model to derive the optimality condition 

I" = max{/ > 0 : G(l) > 0} 
(3.17) 

= max{0 < I < C : Pr[F > C - t\X > I] < - T ^ T - } . 

JY+JG 

It is clear from equation (3.7) with fY replaced by fY + fG, and from (3.17), that the 

optimal allocation is identical with either interpretation of goodwill. In either case, the 

incorporation of goodwill considerations will increase the full fare protection level and 

reduce the full fare spill rate. To illustrate one implication of the optimality condition, 

consider an airline that wishes to limit its passenger spill rate to 3%. From formula 
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(3.16), using the same assumptions as the example given above, a passenger spill rate of 

3% corresponds to a flight spill rate of 15%, and this in turn corresponds to a goodwill 

premium of fG « 3 / y (that is, the solution to: 0.15 = 0.6/(1 + x)). Thus a goodwill 

premium of three times the full fare would be required to justify restricting the passenger 

spill rate to 3%. It is not clear whether such a high premium is justified. Such a 

justification would depend upon an airline's assessment of the proportion of their full 

fare customers who might be lost permanently to competitors after failing to obtain a 

booking. 3 Perhaps one of the chief uses of equation (3.17) would be, as in this example, 

to impute the goodwill premium implied by a particular spill rate policy. 

3.2.5 Upgrades 

We now examine the case in which the dependency between discount and full fare de­

mands arises because of a tendency for some discount fare customers to upgrade to full 

fares if denied a discount reservation. In this context, it is assumed that the upgrading 

tendency is the only source of dependency and that the initial X and Y demands (i.e. 

before upgrading) are independent. Under these circumstances, the ultimate Y demand 

will depend both on the X demand and on the booking limit set for the X demand. It 

is this dependency on the booking limit that necessitates an analysis separate from and 

more involved than that for the dependent demand case discussed in section 3.2.1. Note 

that the optimality condition derived here was previously proposed without formal proof 

by Belobaba [13, page 130, equation 5.53] and that a similar result has been obtained 

independently by Pfiefer [106, (1989)] using different methods. The purpose here is to 

provide a formal proof of the result within the context of a general model for the seat 
3Goodwill premiums can be justified, in part, by the pattern of airline demands. For example, 

Tretheway [141] finds that frequent flyers represent only 3% of the travelling public but account for over 
40% of airline revenues. One anonymous referee for a paper based on the present chapter suggests on 
the basis of experience with carriers that goodwill premiums in the range 10% to 20% are used. 
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allocation problem. 

To model the upgrading, define 

Di = { 
1 if the i-th customer would upgrade if denied a discount fare, 

(3.18) 
0 otherwise. 

Assume that {Di,D2,...} are independent and identically distributed with ED{ = 7 

being the probability that a customer denied a discount fare will upgrade. Also assume 

independence of the process {Di,D2,...} of upgrades, the demand X for discount fares, 

and the demand Y for full fares exclusive of the upgrades. Let U(£) denote the total 

number of upgrades when the discount booking limit is £\ that is, 

U(£) = *ff Dt. (3.19) 
i=l+i 

This quantity is, of course, zero if X < I. Identification of this model with the general 

revenue model (3.1) is the same as in section 3.2.1 except that now 

Y(£) = Y + U{£) (3.20) 

is the sum of the full fare demand and any upgrades. 

To motivate the optimality condition, marginal analysis can be used as in Belob-

aba [13, page 130, equation 5.53]. If a discount fare customer is booked, then the revenue 

is fx. If a discount fare customer cannot be booked, then with probability 7 there is an 

upgrade generating revenue fY, and with probability 1 — 7 there is no upgrade. In the 

latter case, the booking decision will have no impact on revenue if X < £. However, if 

X > £, then additional revenue fY is obtained if the seat being considered is used either 

by some other upgrade or by a full fare customer. This analysis leads one to conjecture 

that it is optimal to book a discount fare customer if 

fx > ifv + (1 - 7) Pr[(y + U(t)) > C - £ IX > £}. (3.21) 
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To verify this optimality condition, compute G(£) from (3.3). Let H(£) = [Y(£) A 

(C — £)] — [Y(£ — 1) A (C — £ + 1)]. To evaluate H consider two cases. First suppose 

that Y(£) > C -£. Then Y(£ - 1) > C - £ + 1 and H(£) = -1. Second, suppose that 

Y{£) < C - £. Then Y{£ - 1) < C - £ + 1 and f/(^) = F(^) - Y(£ - 1) = -7J^. Thus 

the equation for the gain (3.3) reduces to 

G{£) = fx - fY Pr[F(£) > C -£\X >£}-

fYVx\Y{£)<C -£\X>£]E[D£} (3-22) 

= fx - (1 - 7)/y ?r[Y(£) > C - £ | X > £] - 7 / y , 

where the assumption that D£ is independent of X and of Y" is used to obtain the first 

equation. 

It remains to be shown that the problem is monotone by estabHshing that G{£) is 
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nonincreasing in £. Using the fact that D{ < 1 gives 

Pr[F(^ -1)> C -£ + l\X >£-l] 

= Pr[(V + E ' l / Di) > C - £ + 11 X > £ - 1] 
(3.23) 

< Vr[{Y+ Y?rB

i+lDi)> C-£\X>£-1) 

= Vr[Y(£)> C-£\X >£-!}. 

By conditioning on whether X = £ — 1 or X > £, and manipulating the conditional 

probabilities, Pr[Y'(^) > C — £ \ X > £ — 1] can be rewritten as 

Pr[Y"(^) >C-£\X>£] 

+ PT[X = £ - 11 X > £ - 1] { Pr[F(^) >C-£\X=£-\] (3.24) 

- Pr[F(£) > C -£\X >£}}. 

The difference in the last term cannot be positive since 

Pr[Y(£) >C -£\X>£] > Prfy > C - £ \ X > £} 
(3.25) 

= Pr[F(^) > C - £ | X = £ - 1], 

where the assumption that Y and X are independent and the observation that U(£) = 0 

if X = £ — 1 are used to obtain the last equation. Replacing the difference in (3.25) by 

0, and using the inequality (3.23), shows that 

Pr[F(^ - l ) > C - ^ + l | X > ^ - l ] < Pr[y(*) >C - £ | X > £], (3.26) 

and so G(£) is nonincreasing. Then, from (3.19) and (3.22), G(£) is positive as long as 

Pr[(r + U{£)) > C - £ | X > £} < *X ~ 7//, (3.27) 

which is equivalent to (3.21). Define £* to be the largest £ (0 < £ < C) satisfying 

(3.27). As with optimality condition (3.7), set £' = 0 if no £ can satisfy (3.27). This 
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is the case, for example, when 7 is sufficiently large that the right hand side of (3.7) 

is nonpositive. This t satisfies the condition in the definition of a monotone problem 

and I Y(£) — Y(£ — 1) | < 1. Hence the problem is monotone and it is optimal to book 

discount fares up to £". 
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Implementation of Upgrades Formula 

The comments made earlier regarding implementation of the dependent demand solution 

apply again here. In the present case estimation of the joint distribution of Y + U{£) 

and X is somewhat easier since Y and X can be estimated independently and then Y 

adjusted by the binomial distribution U(£) for each £. Alternatively, the spill rate control 

approach could be applied with no change except for adjustment of the discount /full fare 

ratio as indicated in (3.27). 

A numerical example of the use of the upgrades formula is provided in Belobaba [13, 

ppl38-139]. 

3.2.6 Overbooking 

A final application of the general dependent demand model is in calculation of optimal 

overbooking levels in a single fare class. Discussion of that application will be deferred 

until the next chapter. 

3.3 Monotonic Association Between Bivariate Normal Random Variables 

This section establishes properties claimed above that hold when demands follow a bi­

variate normal distribution. Specifically, it is shown that if the demands X and Y have a 

joint bivariate normal distribution with correlation p, then: 1) the monotonic association 

condition will be satisfied if p > 0, and 2) the discount booking limit given by equation 

(3.7) decreases as p increases, for — 1 < p < 1. In order to establish these properties 

we must first present some basic results on bivariate association found in Lehmann [84, 

(1955)], Lehmann [85, (1966)], Slepian [129, (1962)], Esary and Proschan [49, (1972)], 

and Tong [138, (1980)]. 
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3.3.1 Some Basic Results in Bivariate Association 

We start with some definitions and abbreviations for properties of association between 

random variables X and Y(not necessarily normally distributed): 

positive regression dependency (PRD) Y is positive regression dependent on X if 

Pr[l" > y | X = x] is nondecreasing in x for every y. (3.28) 

right tail increasing (RTI) Y is right tail increasing with respect to X if 

Pr[i'~ > y | X > x] is nondecreasing in x for every y. (3.29) 

Connections among these properties as well as some other properties not mentioned 

here are delineated in a theorem in Tong[138, Theorem 5.1.1]. Theorem 3.3.1 below 

presents the section of that result relevant to the monotonic association condition. 

Theorem 3.3.1 For any random variables X and Y for which the covariance Cov(X,Y) 

exists, the following sequence of implications holds: 

PRD RTI => [Cov(X, Y) > 0] (3.30) 

The following corollary is relevant to the monotonic association condition. 

Corollary 3.3.2 If(X,Y) are bivariate normal, Y is RTI with respect to X if and only 

if[Cov(X,Y) > 0]. 

Proof: From Theorem 3.3.1, we need only point out that for normally distributed random 

variables [Cov(X, Y) > 0] => PRD, which is a standard result in regression analysis. • 

A second useful result concerns the behaviour of joint tail probabilities as correlation 

increases. 
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Theorem 3.3.3 (Slepian, 1962) Let ZR and TIT be multivariate normal random vec­

tors of the same dimension with correlation matrices R and T, respectively, and with 

zero mean vectors. Let a be any constant vector of the same dimension. Then 

[R > T] => Pr[Zij > a] > Pr[Z r > a]. (3.31) 

Furthermore,if R and T are positive definite, the inequality is strict. 

The following corollary is a direct consequence of the theorem for bivariate normal 

(X,Y). 

Corollary 3.3.4 If(X,Y) are bivariate normal with correlation —l<p<l, and k and 

x are constants, then Px[Y > l ; - i n l > i ] increases as p increases. 

3.3.2 Application to Seat Allocation 

We are now in a position to establish the properties mentioned above relating to mono­

tonic association and the optimal allocation £'. 

Theorem 3.3.5 If X and Y are bivariate normal with nonnegative correlation p then 

X and Y are monotonically associated. 

Proof: From corollary 3.3.2, nonnegative correlation implies that 

Pr[y > y | X > £} is nondecreasing in £ for every y. Choose any £ and £ > £. Then 

Pr[F > C -£\X >£}< P r [r > C - t\X >£]< Pr[Y >C-£\X>£}; 

that is, Pr[F > C — £ \ X > £] is nondecreasing in £. m 

Theorem 3.3.6 If discount and full fare demands, X andY are drawn from the bivari­

ate normal family of distributions, then the optimal discount booking limit £' decreases 

as the correlation of the demands increases. 
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Proof: For ease of reference we repeat the optimality condition for £' given in equa­

tion (3.7): 

r = max{0 < £ < C : Pr[F >C - £\X > £) < ^ } . (3.32) 
JY 

The theorem is proved if it can be established that Pi[Y > C — £ | X > £] is increasing 

in p, since then the maximum in condition (3.7) is attained at decreasing values of £ as 

p increases. But this follows immediately from Corollary 3.3.4 since 

Pr[Y~ > C - £ | X > £} = Pr[Y > C - £nX >£] Pr[X > £}. 

u 

3.4 Summary — Dependent Demands Case 

This chapter has presented a simple resource allocation model and applied it to seat 

allocation problems. For ease of reference, the main results are summarized below: 

1. When discount and full fare demands are bivariate normal with arbitrary correla­

tion, the optimal discount booking limit will decrease as the correlation increases. 

In particular, if the correlation is positive, the optimal booking limit is less than 

that specified by Littlewood's rule (independent demand). 

2. With rnonotonically associated discount and full fare demands X and Y, respec­

tively, cabin capacity C, discount fare fx, full fare fY, and full fare goodwill 

premium fG; it is optimal to limit discount fare bookings to V seats, where: 

£' = max{0 < £ < C : Px[Y > C -£\X >£}< *x }. (3.33) 

JY + / G 

In particular, this optimality condition will hold when demands are positively corre­

lated bivariate normal random variables. Again, this will result in a lower discount 

seat booking limit. 
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3. When the discount and initial full fare demands are independent but the presence 

of upgrades creates a dependency between discount and ultimate full fare demand, 

results (3.17) and (3.27) can be combined to obtain the following optimal discount 

seat allocation: 

r = max{0 < £ < C : 

Pr[Y + U{£) > C - £ \ X > £ } < {l^ltfc)h 

where 7 is the upgrade probability, and U(£) is the total number of upgrades given 

discount allocation £. Once again, this implies lower discount seat booking limits. 

4. If demands are monotonically associated then, regardless of the actual demand 

distributions, booking limits should be controlled so that, in a long series of flights, 

(fxlfy) x 100% of the times that discount seats sell out, the full fare seats should 

also sell out. 

It has been shown that these conditions are optimal among all policies that use only 

the information X > £. Given stable fares, the only possible justification for changing an 

optimal booking limit is a perceived shift in the joint demand distribution for discount 

and full fares. Thus, for example, the occurrence of a sudden 'flurry' of discount demand 

at some point in the booking process cannot in itself justify a change in the booking limit 

unless it can be validly associated with a change in the joint demand distribution. If it is 

decided that such a change has occurred, a reasonable response is to simply recalculate 

the optimal booking limit on the basis of the new joint demand distribution and the seat 

capacity remaining for the flight. More sophisticated dynamic modelling is required to 

optimally account for the possibility of periodic revision of the joint demand distribution 

on the basis of more information than X > £. 

The three variants of optimal booking conditions given above all suggest lower dis­

count booking limits than those implied by Littlewood's rule for independent demands. 
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This is important since these results are more easily reconciled with reasonable full fare 

passenger spill rates. Numerical examples suggest that the revenue gains from applica­

tion of these conditions may be modest (e.g. 0.32% in the 0.5 correlation case in Table 

3.1). However, given the largely fixed cost, low margin nature of airline operations in 

competitive markets, such revenue gains represent almost pure profit and thus are greatly 

magnified in terms of profit impact. 



Chapter 4 

A Simple Overbooking Model 

This chapter examines a basic version of the problem that has received the most attention 

from airline researchers over the years — that of determining suitable overbooking levels 

in a one or more fare classes. This analysis was motivated by the recognition that the 

seat allocation problem for two dependent fare classes and the overbooking problem for a 

single fare class had very similar structures. Section 4.1, below, exploits this similarity in 

developing a simple model for the overbooking problem. In section 4.2, specification of the 

passenger confirmation process as a Bernoulli process leads to a simple condition for an 

optimal overbooking level that is very similar to Littlewood's rule for the seat allocation 

problem. This condition is further simplified through the use of the normal approximation 

to the binomial distribution, and it is shown that under certain circumstances the simple 

ratio of cabin capacity to the confirmation probability gives a good estimate of the 

optimal overbooking level. Section 4.3 shows that the simple overbooking model can 

be easily modified to handle the case that bookings occur in groups. Section 4.4 shows 

the connection between the optimality condition derived here and that of Shlifer and 

Vardi [123, (1975)] and presents a numerical comparison of results from the various 

models. Implementation is discussed in section 4.5, and a summary and conclusions are 

provided in the final section. 

66 
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4.1 The Dependent Demand Model and Overbooking in One Fare Class 

This section applies the generic model for two dependent demand classes to the problem 

of determining an optimal overbooking level for a single fare class. One of the interesting 

features of this simple overbooking model is that it has virtually the same structure as 

the simple seat allocation model discussed in section 3.1. The initial demand for seats in 

the overbooking model can be identified with discount fare demand in the seat allocation 

model, and the number of customers who show up at flight time can be identified with 

full fare demand. The differences lie in the assessment of the average revenues from each 

of these 'fare classes' and in the calculation of the demand distributions. 

The published work most relevant to the simple overbooking problem considered here 

is that of Beckmann [11, (1958)], and of Shlifer and Vardi [123, (1975)]. Both of these 

analyses start with a model of the aggregate cancellations for a flight. In contrast, the 

work described here starts'at the level of individual passenger cancellations. Beckmann's 

analysis assumes that the booking level will not be much larger than the capacity of the 

airplane (an assumption that was reasonable given the tight restrictions on overbooking 

that prevailed at the time of his article). 

For ease of reference, the net revenue model for the dependent demand seat allocation 

case, equation (3.1), is repeated here: 

R(£) = fx(XM) + fY(Y(£)AF(£))-fG[Y(£)-F(l)}+, (4.1) 

It will now be shown that with a suitable re-interpretation of the components, this same 

model is applicable to the one fare class overbooking problem. 

In the simple overbooking model, there are C seats available for one fare class. Denote 

the demand for bookings in this fare class by X, and identify this demand with discount 

demand in the generic model.1 Once a customer has booked a seat, he or she will either 
1This identification relates only to the fact that the discount demand arrives first in the generic model 
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show up at flight time (henceforth, confirm) or fail to show up (henceforth, cancel). 

Cancellations which occur early enough in the booking process for the seats to be sold to 

different passengers will not be considered2. That is, the demand for bookings X occurs 

first, then the cancellation process occurs. 

To model this process, associate with the i-th customer booked a random variable 

Bi = { 

1 if the customer confirms, 
(4.2) 

0 if the customer cancels. 
p 

If £ seats are booked, then N(£) = $3i=i B{ seats are confirmed. 

Now identify the number of confirmations given bookings of £ with the second period 

demand in the generic model; that is, let Y(£) = N(£). The limits (3.2) become 0 < £ 

with no upper bound on £. Booking a customer is assumed to generate no revenue until 

that customer confirms so that fx = 0. The revenue from a confirmed booking is fY, 

and the penalty for "bumping" a confirmed customer for whom no seat is available is 
fo = / G -

The revenue as a function of the number of seats booked, £, is thus 

m = fY[N(£)AC}-f0[N(£)-C}+. 

or 

R(£) = fYN(£)-(fY + f0)[N(£)-C]+. (4.3) 

The expected revenue function conditional on the booking level, £, being reached is 

E[R(£)\X >t]= fYE[N{£)} - (fY + f0)E[(N{l) - C)+}. (4.4) 
and not to the fare class. In fact, it is more meaningful to consider the fare class under consideration to 
be the full fare class since full fare passengers generally exhibit the highest cancellation rates. 

2For a dynamic programming treatment which- allows for early cancellations, see Rothstein [117, 
1968]. 
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%£ = < 

As before, the optimal booking level can be determined from the gain or incremental 

revenue from an additional booking. If the booking level has been reached (i.e. X > £), 

then 

R(£)-R(£-l) = fY(N(£)-N(£-l))-

UY + fo) W(£) - CY - (N(£ - 1) - (4-5) 

= fyBjl - (fy + fo)Z£i 

where 

' B£ HN{1- 1) > C, 

0 iiN(l- 1) < C. 

Now the gain in expected revenue associated with an increase in booking limit from £ — 1 

to £ can be computed, as follows: 

G(£) = fYE[B£] - (fY + f0)E[B£\N(£ - 1) > C] Pv[N(£ - 1) > C). (4.6) 

To make further progress in the analysis and ensure that the problem is monotone, the 

cancellation process must be made more explicit. This is done in the following section. 

4.2 A Bernoulli Cancellation Process 

The simplest model of passenger cancellations is obtained by assuming that cancellations 

occur according to a Bernoulli process. That is, assume that {Bi,B2, • • •} are independent 

and identically distributed and that EB{ = a is the probability that a customer confirms. 

If £ seats are booked, then N(£) = ]C;=i Bi seats are confirmed and the distribution of 

N(£) is binomial. 

The possibility of a variable confirmation probability will be considered at the end of 

this section. The independence of customer confirmations is a reasonable assumption as 

long as bookings do not occur in groups. The next section will extend the analysis to 
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group bookings, which will allow for the distribution of the total number of confirmations 

to have more variance and fit a broader range of data. 

To derive the optimality condition, evaluate the incremental revenue function (4.6), 

which simplifies to 

G{£) = fya - (fy + f0)a PT[N(£ - 1) > C). (4.7) 

This gain is clearly decreasing in I (strictly decreasing if a > 0), so that the problem 

is monotone. Thus, additional customers should be booked as long as G(£) is positive. 

That is, define 

l"(C) = max{f > 0 : G(t) > 0} 
(4.8) 

= max{l : Vi[N(£ - 1) > C] < ffy }• 

and book up to £'(C). For a random X-class demand with C seats available, it is optimal 

to book X A £~(C) seats. 

The solution to (4.8) is particularly easy if: 1) there is a 100 percent overbooking 

penalty so that fY — fQ, and 2) the confirmation rate is 50 percent so that a = 0.5. 

In this case, £'(C) = C/a — 1, or £"(C) = C/a. This might seem to be only of inci­

dental interest since the confirmation rate is so extreme; however, the following analysis 

shows that C/a is a robust approximation to the optimal policy over a wide range of 

confirmation probabilities as long as the overbooking penalty and fare are approximately 

equal. 

To examine the error in this approximation, note that N(C) is approximately normal 

with mean Ca and variance Ca(l — a) for values of C and a that are reasonable in many 

situations3. The normal approximation to the tail of a binomial is quite good as long 
3The standard conditions for normal approximations of the binomial distribution are: C > 50, 

Ca > 5, and C(l - a) > 5. 
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as the tail being evaluated is not too extreme. Since in our case, we are evaluating the 

/ y / ( / y + /o)"t n percentile, the approximation should be very accurate. 

Note that Pr[N(£-l) > C] = Pr[JV(*-l) > C-l}. For convenience, define £' = 1-1 

and C' = C — 1. Let z be defined by 

Pr[Z>z] = 1 J l - r , (4.9) 
JY "r JO 

where Z is distributed as a standard normal random variable. Since 

(N(£') — I'ct)j\JI'OL(1 — a) is approximately standard normal, (4.8) can be 

approximated by 

£"(C) = max{^ > 0 : Pi[Z > C ' ~ t a ] < / y }, (4.10) 
y T a ( l - a ) JY+JO 

Using the definition of z at (4.9) and the fact that Z is a continuous random variable, 

£'(C} is approximately the solution to 

C - I'a 

y/t'a{l-a) 

This quadratic equation can be easily solved for £ to obtain 

i + £ + £-V̂  + £)2-(£)2
 z-f&fB^' 

(4.11) 

(4.12) 

where 
2 2 l - a 

£ = y — . (4.13) 2 a 

The appropriate sign for the radical was determined by noting that £' > C'/a if / y / ( / y + 

fo) > 1/2 and r < C'/a if / y / ( / y + fQ) < 1/2. 
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For many realistic values of the parameters, £ is negligible compared with Cjot, and 

in this case, the approximation in (4.12) simplifies to t = ^ + 1 — ^ . Finally, since 

0 < 1 - £ < 1 for 1 > a > .5, we have: 

t = C/a. (4.14) 

For example, this approximation will be very good whenever fY — /o> and the conditions 

mentioned above for normal approximations of the binomial distribution apply. 

Shlifer and Vardi [123, page 102] note that "the cancellation probability varies from 

0.8 for reservations on record a few months in advance to 0.3 when on record one to 

two weeks before take-off.". This variation of the cancellation probability can easily be 

modelled in our setting. Let EB{ = a±. The analysis leading to (4.8) is still valid, 

although now the distribution of N(£) is rather complicated. However, as long as the a's 

do not differ by too much and £ is reasonably large, N(£) will be approximately normal 
£ • f with mean Yli ai and variance JZi a i ( l —  a i ) -

4.3 Group Cancellations 

Shlifer and Vardi [123, (1975)] cite a study by the El-Al airline company which indicates 

that the number of confirmations N(£) behaves as though customers cancelled in groups 

of two. The above analysis is still appropriate for groups of a fixed size, say two, if the 

model is simply reinterpreted in terms of groups instead of individuals. So B{ = 1 if 

the i-th group confirms and B; = 0 otherwise, fY and f0 are the revenue and penalty 

associated with a group of two, and N(£) is the number of groups which confirm if £ 

groups are booked. The capacity of the plane C is the number of groups which it can 

hold. 

If the variance of the number of individuals confirming in the Bernoulli (group of 

one) case and the group of two case are compared, it will be noticed that the variance 
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for the group of two is twice that for the group of one. A more general analysis of the 

gain function (4.6) can be carried out in the spirit of Shlifer and Vardi by assuming that 

the group sizes are small relative to £ and that the confirmations are independent among 

groups. With these assumptions, the event N(£ — 1) > C provides little information 

about the value of B^. In this case, 

E[Bt\N(l- 1) > C] =5 E[B£] = a, (4.15) 

and the optimality condition (4.8) is still approximately correct. As Shlifer and Vardi 

point out, N(£) will still be approximately normal and the mean and variance of N(£) 

should be proportional to £. Let a and 8 be, respectively, the constants of proportionality. 

The analysis of the Bernoulli case based on the normal approximation can now be applied 

and (4.12) is still valid except with 

z2 82 

< = T £ . (4.16) 

4.4 A Comparison with the Shlifer and Vardi Model 

It is interesting to compare the optimality condition (4.8) with the condition proposed by 

Shlifer and Vardi [123, (1975)]. They approximate the passsenger show-up distribution 

with a normal distribution with mean let and variance £8, where a is the confirmation 

probability, as before, and 8 is an adjustment for the variance. The parameter 8 can 

either be determined by fitting the normal distribution to historical data or derived by 

assuming, as we do, that the passenger confirmation process is Bernoulli. As mentioned 

in the previous section, Shlifer and Vardi reported that airline data examined by them 

was consistent with a Bernoulli process in which bookings and cancellations occur in 

groups of two. It is easy to show that in this case 8 = 2a(1 — a). This expression for 8 

is used in the numerical example given below. 
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Shlifer and Vardi use the normal approximation to derive the following expression (in 

our notation) for D(£), the expected number of passengers denied boarding given £ seats 

booked: 

D{£) = E[(N(£) - C)+] = yjlj3{z(l)*[z{l)] + flz(/)]), (4.17) 

where 
£a - C 

and $[•] and </>[•] denote the cumulative standard normal distribution and its density, 

respectively. They then derive a condition equivalent to the following for the optimal 

booking level, £' : 

£ ' ( 0 = 7 ^ V , (4-18) 
JY + JO 

where D'(-) denotes the first derivative of D(£) with respect to £. They point out that 

a solution to this equation is obtainable numerically (presumably by approximating the 

derivative for a range of £'s and then choosing the value closest to the right hand side 

ratio), and provide a table of typical solutions for various values of the fare and bumping 

penalty. 

Note that by carrying out the derivative in (4.18) one obtains the more basic expres­

sion: 

• M O l + & « < 0 1 = f£j-o, (4-19) 

where 

Condition (4.19) is a continuous version of the normal approximation (4.10) with the 

addition of the second term on the left hand side. This term arises because Shlifer and 

Vardi employ the normal approximation before optimizing while we employ it after. In 

practice, it has a small effect for realistic values of the parameters. Table 4.1 provides a 
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Table 4.1: Overbooking Levels for 200 Seat Capacity 

fo/fy 3 1 1/3 

a 0.5 0.9 0.5 0.9 0.5 0.9 

C/a 400 222 400 222 400 222 

binomial0 380 218 400 222 420 226 

normal approx.6 382 218 400 222 420 228 

Shlifer & Vardic 380 218 399 222 419 227 

"our optimality condition (4.8) 
fcour normal approximation(4.12) 
cShlifer and Vardi, our equation (4.18) 

comparison of optimal booking levels calculated with our optimality condition (4.8), the 

approximations (4.12) and (4.14), and Shlifer and Vardi's condition (4.18). Note that, as 

expected, the approximation C/a is very good for a = 0.5 when f0 — fy and that the 

other approximations are all in close agreement for all parameter values. Note also that 

it is computationally much easier to calculate booking levels with (4.8) than with (4.18). 

4.5 Implementation 

The term 'simple' overbooking model has been used repeatedly throughout this chapter 

for good reason. The actual problem faced by airlines is considerably more complex 

than that described here. Overbooking must be done over multiple fare classes, and 

overbooking penalties vary between classes. The existence of various types of 'voluntary 

bumping' schemes in which passengers on an oversold flight are offered varying levels 

of compensation to accept a delay to a later flight further complicate the assessment 

of overbooking penalties. Cancellations occur throughout the booking period so that, 

ideally, overbooking levels should be adjusted dynamically as the time of flight departure 
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approaches. As discussed in the literature review of chapter 1, some of these complications 

have been addressed by others (e.g. Alstrup et al. [3, (1986)], Rothstein [117, (1968)]), but 

the resulting formulations were rather unwieldy dynamic programs. Heuristic approaches 

to the multiple fare overbooking problem such as that of Belobaba [13, (1987)] are easily 

implemented but of uncertain accuracy. 

Notwithstanding these considerations, the results of this chapter can be useful in two 

ways: 

1. The optimality condition is very simple to solve and can be used to provide a good 

estimate of an optimal overbooking level in those instances when only one fare 

class is being dealt with; e.g., small aircraft serving remote areas or the first class 

cabin in larger aircraft. As always, an approximate method for dealing with the 

dynamics of the booking and cancellation process is to periodically recalculate the 

overbooking level as the time of flight departure approaches. 

2. For airlines lacking sophisticated facilities for setting and monitoring overbooking 

levels, the approximation C/a gives a simple rule of thumb for setting a nominal 

total overbooking level for a flight. If the average overbooking penalty and aver­

age fare are approximately equal, the nominal overbooking level should be close to 

C/a; if the average penalty is less than the average fare, the limit should be higher 

than the ratio, and so on. This heuristic suffers from the same "uncertain accu­

racy" mentioned above with regard to Belobaba's multiple fare class overbooking 

heuristic, but it provides a useful reference figure that can be adjusted in an ad hoc 

fashion as the booking process proceeds. 
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4.6 Summary and Conclusions - Simple Overbooking Model 

This chapter has shown that a variant of the general model for determining optimal seat 

allocations for two dependent fare classes can be applied to the problem of obtaining an 

overbooking level for a single fare class. Assumption of a Bernoulli process for confirma­

tions leads to an optimality condition requiring only the calculation of quantiles of the 

binomial probability distribution. This condition is further simplified to one requiring 

only quantiles of the standard normal distribution, and the connection between this ap­

proximation and that of Shlifer and Vardi [123, (1975)] is demonstrated. It is shown that 

in the event that the overbooking penalty and fare are equal, the simple ratio of capacity 

to confirmation probability yields a very good approximation to the optimal overbooking 

level. Extension of the overbooking model to allow for group bookings is also discussed. 

The problem of determining an approach to overbooking that accounts for the usual 

complexities of the process, is feasible to implement, and has known accuracy remains a 

difficult open problem. 



Chapter 5 

Estimation of Dependent Demands from Jointly Censored Data 

5.1 Introduction 

Chapter 3 has shown that it is possible to determine optimal discount booking limits when 

discount and full fare demands are stochastically dependent. To do so requires estimates 

for conditional probabilities of the form Pr[V > C — £ \ X > £] for a sufficient number 

of values of £ that the optimality condition (3.7) can be solved. If the joint distribution 

of the demands can be estimated, the calculation of these conditional probabilities is 

straightforward. This chapter develops a methodology for estimating the parameters of 

the joint demand distribution on the basis of past observations of demand and other, 

related variables. 

It is assumed that the joint distribution of the demands is bivariate normal1, so the 

estimation problem reduces to that of estimating the means, variances and correlation 

of the two classes of demand. This would be a routine statistical exercise were it not 

for two complications: 1) the joint demand distribution is sensitive to numerous external 

economic and other factors, and 2) demand cannot be observed once booking limits have 

been reached. Specifically: 

external factors: Airline demands can be highly sensitive to such factors as prevailing 

economic conditions, fare structures, promotional activities, season, day of week, 
1As mentioned earlier, there is evidence [13, 123] that the normal distribution provides a good ap­

proximation for the marginal distributions of demand. Normality of marginal distributions does not 
guarantee normality of the joint distribution; however, this is a reasonable assumption in the present 
context. 

78 
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and time of day. Such factors and their effect on passenger choice behaviour have 

been discussed at some length by Belobaba [13, (1987)]. Overall estimates of the 

means and variances of demand can be based on aggregate data without regard for 

these externalities; however, such estimates will have little use in estimating the 

demand distribution that might be expected to prevail in some particular series 

of future flights. In particular, it is likely that spurious correlations between two 

demand classes will be found since demands for all classes can be expected to move 

together under the influence of most of the factors listed above2 

censored data: In current airline reservations systems there is no way of capturing the 

information that a customer has requested a booking on a flight but has been turned 

away. In a record of total bookings for past flights, the number of flights on which 

demand reached a booking limit can be determined but not the amount by which 

the limit was exceeded. Data obtained under such circumstances are described as 

censored in the statistical literature. Figure 5.1 depicts a number of observations of 

demand for a discount fare class X and a full fare class Y that have been booked 

in a nested fashion. There is an upper limit of tz on A'-demand and a maximum 

capacity limit of C for both demands. Any capacity remaining after A'-demand has 

been satisfied or has reached i can be applied to Y-demand. Demand occurring 

after the capacity limits have been reached is not recorded, so in such cases it is 

known that capacity was exceeded but not by how much. In practice, both the 
2It can be argued that some factors might operate in such a way as to produce negative correlation 

between classes. For example, a general improvement in the economy might increase the number of 
passengers willing to pay more to avoid the restrictions of discount fare reservations. This might have 
the effect of increasing full fare demand while reducing discount fare demand. However, it seems likely 
that the very real increase in both types of traffic experienced between different days of the week and 
between seasons would overwhelm such an effect. 

3In this context, I refers either to a limit on the number of discount seats that could be sold or to 
the number of discount seats that had been sold before the time limit for bookings in the fare class was 
reached. 
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C-l 

Y : full fare demand 
X : discount fare demand 
C: capacity 
£: discount class booking limit 

• : denotes observations 
o : denotes censored observations (mapped onto observations as shown) 

A: {i : Xi < £ and y{ < C - £} 
B : {* : Xi > £ and y{ < C - £} 
C : {» : Xi < £ and y{ > C - £} 
V : {i : x{ > £ and y{ > C - £} 

Figure 5.1: Censored Demand With Nested Fare Classes 

booking limit and plane capacity may vary from flight to flight; however, this in no 

way interferes with the analysis described here. No generality is lost by assuming 

that both parameters are constant. 

The approach taken here to the estimation problem is to account for the effects of 

the external factors with a bivariate multiple regression model in which the two demand 

classes are dependent variables and the external factors are regressors. The censorship 

of the dependent variables is handled by an adaption of the so-called E M method of 
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Dempster, Laird and Rubin [36, (1977)], to be described later. 

This chapter is organized as follows. The next section discusses two examples of prior 

approaches to analysis of censored airline demand data, and very briefly surveys the 

extensive literature on censored data analysis in other areas. Subsection 5.2.1 provides 

a summary of censored regression analysis and the E M method that forms the basis 

of the subsequent analysis. Section 5.3 shows that the EM method can be applied to 

the particular problem presented by airline demand data. The final section presents the 

results of numerical trials of the method on simulated airline demand data4. 

5.2 Background: Estimation from Censored Data 

The simplest approaches to estimation with censored data are 1) to simply ignore the 

censorship and perform the estimation on the data as is, or 2) to discard any censored 

observations and perform the estimation on the remaining data (this is equivalent to 

estimating on the basis of a sample from a truncated distribution). Neither of these 

strategies are particularly desirable. Approach 1) will lead to badly biased estimates 

when more than a small proportion of observations are censored, and approach 2) is even 

worse since no information at all is retained about data beyond the censoring limits. As 

will be shown later, there are far better approaches to analysis of censored data 

Two Examples of Airline Demand Estimation 

Two examples of previous work on the estimation of airline demands are discussed here. 

The first, described in a technical report by D. L. Harmer of the Boeing Company [62, 

(1976)], dealt with the problem of estimating a single, stable normal demand distribution 

on the basis of censored data. The second, which appeared in Belobaba's 1987 Ph.D. 
4The author was unable to obtain actual airline data in time for these numerical trials. 
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dissertation [13, (1987)], addressed the problem of detection of correlation among four 

fare classes. 

In the Boeing report, Harmer [62, (1976)] discussed the problem of dealing with 

censored data in estimation of the mean and variance of a univariate normal demand dis­

tribution. The underlying demand distribution was assumed to be stable, so complication 

1), above, was not a problem. He performed a least-squares fit of the observed demands 

against their percentiles (on normal probability paper) and estimated the mean as the 

'predicted value' for the 0.50 quantile. He estimated the standard deviation by subtract­

ing the estimated mean from the the predicted value for the 0.8413 quantile. To avoid 

biasing the least squares fit by the observations clustered around the censorship point, he 

discarded those observations. This approach bears some resemblance to linear unbiased 

estimation in the statistical literature (see, for example, Nelson and Schmee [103, (1979)] 

or Sarhan and Greenberg [121, (1956)]). The discarding of censored data in this case 

is not as serious as it is in the direct estimation case because some of the information 

contained in the censored data is reflected in the quantiles assigned to the uncensored 

data points. This approach is apparently still in use (see Belobaba [15, (1989)]). 

Belobaba [13, ppl47-150,(1987)] described empirical tests for correlations among de­

mands in four fare classes on flights of Western Airlines occurring in a six month period. 

To avoid complication 1) above, he restricted sampling to nights that could be regarded as 

homogeneous with regard to the external factors that might influence demand. To handle 

the problem of censored observations, he restricted sampling to flights occurring during 

a low-demand season and discarded any observations in which one or other demand was 

censored. Belobaba found no compelling evidence of correlation between discount and 

full fare demands. 

Discarding censored observations in this way corresponds to truncation of data. It 

is known that the correlation coefficient of the truncated bivariate normal distributed 
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underestimates the correlation coefficient of the underlying population (see Johnson and 

Kotz [71, page 112ff,(1972)]). Belobaba does not report the number of observations that 

were discarded, so it is not clear whether this bias was significant. Assuming that the 

bias is not significant, an appropriate conclusion from that study is that there is little 

evidence of correlation between discount and full fare demands when market conditions 

are such that both demands are low. 

Analysis of Censored Data in Other Areas 

There has been a great deal of work done on censored data problems in the areas of 

reliability testing, lifetime estimation, biomedical statistics, and econometrics. This type 

of problem arises, for example, in reliability or lifetime testing when it is necessary to 

terminate an experiment before all test items have failed. In econometric modelling, it is 

often the case that values of one or more dependent variables cannot occur or cannot be 

observed outside of a particular range, and this must be taken into account when fitting 

a model to the data. 

The literature in these areas is extensive. For good surveys of related results in 

the lifetime and reliability area, see the books by Lawless [83, (1982)] and Nelson [101, 

(1982)]. For a brief general survey of the statistical literature on censored data analysis, 

see the article by McCool in Kotz and Johnson [96, (1982)]. For an overview of work on 

censored data in the econometric area, see the book by Maddala [92, (1983),Chapters 6 

and 7]. A survey article by Amemiya [5, (1984)] deals exclusively with regression analysis 

on censored data in Tobit models of econometrics and contains a good bibliography. 

The particular problem encountered with airline data is called Type I censorship in 

the statistical literature because the number of censored obsevations is not determined 

in advance. (Type II censorship occurs chiefly in lifetime testing when it is decided in 

advance that an experiment will be terminated when a fixed number of test items have 
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failed.) 

5.2.1 Censored Regression Analysis and the E M Method 

This section briefly describes the censored regression problem in a general setting, places 

the problem of airline demand estimation in that context, reviews some of the methods 

available for analysis, and introduces the method chosen for the present analysis — 

the EM method. Most of the general discussion here is based on the survey article by 

Amemiya [5, (1984)]. 

The earliest discussion of the censored regression problem in the econometric litera­

ture is that of Tobin [137, (1958)] who examined a model of the ratio of durable-goods 

expenditures to disposable incomes by households as a function of age of the head of 

household and the ratio of liquid assets to disposable income. The data on the depen­

dent variable (expenditures) were censored from below by the lowest available price of 

a durable good; that is, there were observations made of households whose disposable 

incomes were below the minimum price, so no expenditures were made. Tobin described 

a regression model that accounted for the censorship and worked out the details of a 

maximum likelihood procedure for estimating the parameters of the model. The type of 

model dealt with by Tobin eventually came to be known as the Tobit model (an amalgam 

of Tobin and Probit). 

There have been many subsequent studies describing variants of the Tobit model. 

Amemiya [5, (1984)] classifies the reported work into five categories depending upon the 

number of dependent variables and the nature of the censorship. Each of the categories 

involves from one to three dependent variables, and in every case the censorship on all 

dependent variables is determined by one of the dependent variables. That is, the de­

pendent variables were censored or not censored accordingly as variable 1 was censored 

or not censored. The problem considered here does not fit into any of these categories 
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since censorship of either of the two demand variables in airline data can occur indepen­

dently of censorship of the other variable5. As a consequence, the likelihood function for 

the airline data is more complex than that of any of the five categories of Tobit models 

discussed by Amemiya. Notwithstanding this distinction, the general options available 

for analysis of airline demand data are the same as those for the Tobit models. 

There are a number of options available for estimating censored regressions, including 

direct maximization of the likelihood function using Newton or Quasi-Newton optimiza­

tion techniques, a 'two-step' procedure due to Heckman [66, (1976)], and an iterative 

approach to missing data problems proposed by Hartley [65, (1958)] and others, and 

generalized as the EM method of Demster, Laird and Rubin [36, (1977)]. Direct maxi­

mization is rejected as an option here because of the complexity of the likelihood function 

(to be described later). The E M method was chosen in preference to the Heckman proce­

dure because of its greater generality; that is, in the initial stages of the work described 

here the EM method seemed to offer greater potential adaptability to the peculiarities of 

the problem. It is possible that the Heckman procedure could be used on this problem, 

but that possibility was not explored. 

The E M Method for General Incomplete Data Problems 

For purposes of illustration, this summary will assume that the parameters of some 

univariate distribution are to be estimated. The basic principles of the method apply 

without change to the bivariate airline demand case discussed later. 

In its most general form, the EM method deals with situations in which there is a 

vector x of observed incomplete data (wholly or partially censored demands in our case) 

corresponding to a vector x of unobserved complete data from some sample space (true 
5In an earlier article cite[1974]amemiya74, Amemiya dealt with a bivariate simultaneous equations 

model with censorship similar to that considered here. However, he was able to exploit special structure 
to transform the model to one with simpler censorship. 
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demands in our case). The same x could arise from many different x vectors, and we know 

how the x are mapped onto incomplete data points. (In the airline demand problem, the 

booking limits that are causing the censorship are known.) Realizations in the sample 

space occur according to some probability function /(x|#), where the parameter vector 

0 is to be estimated. This determines a probability function g(-\0) for the observed data 

through 

g(i\0) = jsf(x\0)dx; (5.1) 

where S is the subset of the sample space that maps onto the observation x. 

The objective is to estimate the parameters 0 by maximizing the log likelihood func­

tion £(0 |x) = log<7(x|6?) with respect to 0 . This function will often be difficult to 

maximize because of its complex form. The log likelihood function for the unobserved 

data x is £(0 |x) = logf(x|#), and this function often has a much more tractable form 

for maximization with respect to 0 . However, in the absence of exact knowledge of x, 

£(#|X) is a random variable over the sample space. 

Now suppose some prior estimate 0° of the parameters is available, and the incomplete 

data x have been observed. Then it is possible, in principle, to calculate the expected 

value of the random likelihood function, conditional on 0° and x. That is, it is possible 

to calculate 

£(0|0°) = E[£(0|X)|x,0°]. (5.2) 

This is the expectation step of the E M method — the 'E ' in EM. The maximization, or 

' M ' step, involves maximizing the expectation in (5.2), thereby obtaining a new estimate 

for 0 . A complete execution of the E M method involves finding an initial estimate for 

0 and then iterating between the E and M steps until convergence is achieved to some 

value of 0 . 

Application of the EM method to any particular problem involves finding a convenient 
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way of computing the expectation of the E-step and of carrying out the maximization. 

Generally, for the method to be practical, it is required that the expectation be expressed 

in some convenient functional form and that there exist some efficient way of maximizing 

that function. 

It is not at all obvious that this process will lead to the maximization of the original 

log likelihood function C(6); however, Dempster et al. demonstrate that C(0) is nonde­

creasing over the sequence of parameter estimates generated by the EM algorithm. Thus, 

if the likelihood is bounded, the algorithm is guaranteed to converge to some fixed value 

C". In general, however, there is no guarantee that £~ will be a local maximum or even a 

stationary point of C(9). Thus convergence properties of the method must be checked for 

each application. Discussion of convergence properties of the EM method with censored 

airline data will be deferred until after the details of this application have been presented 

in the next section. 

5.3 A Jointly Censored Bivariate Multiple Regression Model 

Let A' and Y denote random demands which are jointly related to a set of r variables 

w\,.. .wr. It is assumed that a set of n demand pairs {(Xi, Yi) : i — 1 , . . . ,n} satisfies 

the linear system 

where for each i, = (1, wn,... , Wir)' is a column vector of regressors, and a = 

(a0,cti,... , c t r ) and (3 = (/5 0,/3i, • • • ,/3 r)
 are row vectors of regression coefficients. For 

every i, the errors 8{ and e; are assumed to be jointly distributed according to a bivariate 

normal distribution with zero means, variances a 2 and r 2 respectively, and correlation 

(5.3) 

(5.4) 
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Under the normality assumption, each value of the vector W determines a joint 

density function for X and Y through (5.3) and (5.4). This joint density can be written: 

f(x,y)= ^ r v T ^ T 5 ] " 1 exp[-Q((x - a W ) , ( y - /3W))], (5.5) 

where 

Q(u,v) = [2(1 - p 2 ) ] - ( (1) u> - (^) uv + (1) ) . (5.6) 

Let 0 denote the vector of Ir + 5 parameters (a 0 , . . . , ctr; 30, ... ,{3r;o~,T, p) in (5.5). The 

objective is to estimate 0 on the basis of data x = (xi,... ,xn)',y — (yi, ... ,yn)' and 

W i , . . . , W n . In the absence of censorship of the data, the maximum likelihood estimator 

(MLE) for 0 is easily obtained. This calculation is summarized here for later reference. 

From (5.5), the data have the log likelihood function 

£(0 |x ,y) = -n\og(2T<rry/T^p) - £ Q((x{ - a W ; ) , (Vi - f3W{)). (5.7) 

t = i 

It is well known7 that the MLE's for ex and /3 are the least squares estimators (LSE's) 

d = ( W ' W ^ W ' X and (3 = ( W ' W ^ W ' Y , where X = (X1,...,Xn)' and Y -

(Yi,..., Yn)', and W is the n by r + 1 matrix with ith row W^. Once d and /3 have been 

obtained, maximum likelihood estimates for the remaining parameters can be calculated 

from 

(x2 = ( l / n ) X > i - « W , ) 2 , (5.8) 
I 

r2 = (lHECw-ZSWO', (5.9) 
i 

6Constant variance is a strong assumption, as in all regression work. Belobaba [13, (1987),pl43—144] 
gives full fare demand statistics for 21 flight/day-of-week combinations that show quite stable standard 
deviations when allowance is made for experimental variation. Problems with non-constant variance can 
be handled with weighted'least squares methods, but.that possibility will not be discussed further here. 

?See,for example, Johnson and Wichern [73, (1982), p324]. 
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and 

p = (l/n&T)J2(xi-aWi)(yi-PWi)- (5-10) 
l 

It is important to note here that the maximization of £(0|x, y) can be done first over 

(a,/3) and then, separately, over (cr,r,p). That is, the log likelihood is separable with 

respect to these two groups of parameters. 

Now suppose that the data are censored in the manner depicted in Figure 5.1. A 

description of this type of censorship was given earlier [page 80]. As mentioned there, 

both C and I may be different for each observation without affecting the validity of the 

following analysis. They are kept constant here to avoid unnecessary subscripts. 

Given demands X and Y, the observed demands X and Y will be 

X = " (5.11) 

Y = { _ ~ _ (5.12) 

With censorship of the data in this manner, the log likelihood function corresponding 

to the data x, y and W is now: 

£(?;*>y) = £ log/.(*.•, 2/«) 
ieA 

roo + Elo§ L - fi(ii,v)dv 

roo roo 

+ £ l o s J£ Jc_£ fi (u>v)du dv> 

(5.13) 
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where denotes the density given by (5.5) corresponding to data points ii,yiy and 

W;; and A,... ,T> are the index sets described in Figure 5.1. 

The MLE for 0 can be obtained, in principle, by direct maximization of £(•) with 

respect to the parameters. However, the presence of the integral expressions in the last 

three terms of (5.13) make it impossible to derive tractable first order conditions for 

the maximum. Thus it is necessary to resort to numerical methods. (Note that, even 

in simpler censored regressions where first order conditions can be obtained, it is still 

necessary to use numerical methods to solve the first order conditions.) 

5.3.1 Maximization of the Likelihood Function with the E M Method 

A variety of methods have been devised for obtaining MLE's for the parameters in cen­

sored regressions (see, for example, Amemiya [5, (1984)] and Maddala [92, (1983)]). All 

of the practical methods involve iterative refinement of estimates starting from an initial 

set. This section describes an application of the E M method to the bivariate censored 

regression described above. 

The log likelihood function for the actual (uncensored) demands is given in (5.7), but 

this function is not available because some of the data have been censored. However, if 

some prior estimate 0° = (a°; j3°; <r0, r0, p0) is available for the parameters, it is possible to 

calculate the expected value of the log likelihood conditional upon the observed (censored) 

demands x and y. That is, it is possible to calculate 

S(0\0o) = E[/Z(0;X,Y)\Sc,y,0°}. (5.14) 

This calculation corresponds to the expectation step of the EM method, and the maxi­

mization step involves maximizing E(0\0°) over 0 . 

To avoid cumbersome expressions in what follows, a tilde, ~ , over an operator (e.g. 

E, Var and Cov) will denote conditioning on the observations x and y given the prior 
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parameter estimate 6°. Thus, for example, 

E[Xi|x,y ,0°] 

for i e A, C 

for i e B 

for i £ V, 

Vax[Xi] 

and 

(hvlXuYil 

= < E[Xi\Xi> L,Yi = y,0°} 

E[Xi\Xi > LtYi> C - L,0C 

0 for i e A, C 

E[(Xi - E{Xi]f] for i£B,V, 

0 {oii(=A,B,C 

E[(Xi - E[Xi])(Yi - E[Yi])] for i e V. 

From (5.7) and (5.14) 

E(O\0°) = - n l o g ( 2 7 r « r r v T ^ ) - J E[Q((X< - aW t), (V; - /3W;))]. (5.15) 
t' = l 

Expansion of the E[(5(-, •)] terms in (5.15) requires conditional expectations of sums 

of squares and cross products of the deviations (Xi — aW;) and (Yi — /3W,). These can 

be decomposed as follows: 

E[(Xi - Q W ; ) 2 ] = E p ' i - a W , - ) 2 ! * , ^ 0 ] 

= (E[Ar

{] - Q W ; ) 2 + VarfXj],' (5.16) 

E[(Yi-f3Wi)2} = (E[Yi\-f3Wif + V^T[Y], (5.17) 

and 

E[(Xi - aWi)(Yi - (3Wi)} = {E[Xi\- «W i)(E[F i] - /3W\) + OovfX;, Y f]. (5.18) 
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Calculation of the conditional moments in the right-hand sides of these expressions is 

discussed in the next section. 

Now from (5.6) and (5.15) through (5.18), 

l m _ p ^ ± ( Y ^ + p c ^ ) + j ^ g ) <5-19> 

The maximizer 0 of S(0\6°) can be obtained by direct calculation, but it is simpler,8 

instead, to exploit the similarities between the expressions for S(0\9°) given above and 

the log likelihood for uncensored data given in (5.7). The key similarity is that E{0\0°) 

is also separable with respect to (c*, /3) and (<r,r,p). 

First, note that the final summation term in (5.19) is independent of a and / 3 . Aside 

from this term, (5.7) and (5.19) are identical except that in (5.19) expected values are 

substituted for censored observations. But then S(0\0°) will be maximized with respect 

to a and (3 by replacing all censored observations with their expected values and finding 

the LSE's cx and / 3 , as was done with (5.7). 

Now compare (5.7) with (5.15), above. The two expressions are identical except 

that in (5.15) the sums of squares and cross products of deviations are replaced with 

their expected values. Furthermore, because of the separability property, the optimal 

expected values are calculated with d and f3. Then, from (5.8),(5.9) and (5.10), E(0\0°) 

is maximized with respect to a, r and p by 

<r2 = - ^ E K X - d W i ) 2 ] (5.20) 
7 1 i=i 

f 2 = - £ E[(X - / 3 W 0 2 ] (5.21) 
n i=i 

and 
8This argument parallels that for the univariate multiple regression case. 

See, for example, [5, pp21-23]. 
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p = 4 T E E [ ( X i - d W i ) ( F I - / 9 W 1 ) ] ; (5.22) no~r • . 

where the E[-] terms are obtained by substituting a and (3 in (5.16),(5.17) and (5.18). 

Thus one iteration of the EM method applied to the present problem involves the 

following steps: 

1. Use the prior parameter estimate 0° = (a°; 3°; crD, rD, P o ) and the observations 

( i ^ y j to calculate the expected values E[X,-] and E[Yi] for all censored obser­

vations. 

2. Replace the censored observations with their expected values and perform a least 

squares analysis on the resulting data. This will yield the new regression coefficient 

vectors a and (3 as well as the sums of squares and cross products: 

Ti=1(nXi] - Q W , ) 2 , E?= 1(E[y-] - / 3 W 0 2 and Z?=1(E[Xi) - «W l-)(E[F i] - (3W{). 

3. Use a,(3, o~0, ra and pD to calculate the variance terms VarfX";], Var[Fi] and CovjXi, Yi] 

for each censored observation. Then use these values together with the sums of 

squares and cross products from step 2 to obtain new variance and correlation esti­

mates <r2,f2 and p using equations (5.20),(5.21) and (5.22) along with (5.16), (5.17) 

and (5.18). 

4. Replace 6° with the new estimates and return to step 1. 

It remains to provide formulae for the conditional expectations, variances and covari-

ance E[A^], E[F;], Var[A'i], Var[Y*i] and CovfA^Y;]. 

5.3.2 Conditional Expectations, Variances and Covariance 

A complete derivation of conditional moments for truncated multivariate normal random 

variables is provided in Appendix (A). Determination of expressions for the conditional 
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moments required here can be accomplished by substitution into the expressions pro­

vided in the appendix. For brevity, expansions will be given only for E[Xi], Var[Xj] and 

C ^ X ^ ] . 

Note first that the appropriate expansion for an observation depends on the censor­

ship region in which the observation falls. Thus, for example, for an observation falling 

in regions A or C (see Figure 5.1), the X-demand is not censored, so E[Xj] = X{. For 

an observation falling in region B, the Xr-demand is censored but not the Y~-demand, so 

the appropriate expansion for E[Xj] is an expectation based on a truncated conditional 

distribution from the bivariate normal distribution (Appendices A.1.2 and A.2.1). Fi­

nally, for an observation falling in region T>, both X and Y-demands are censored, so 

the appropriate expansion is a conditional expectation from a truncated bivariate normal 

distribution (Appendix A.2.3). Thus, 

Xi for i € A,C 

E[Xi] = | E[Xi\Xi > L,Y = yi] ioiieB (5.23) 

E[Xi\Xi > L, Yi > C - L) for i G V 

Now from Appendix A.1.2, equation (A.9) and Appendix A.2.1, equations (A.17) and 

(A.18), we have 

E[Xi\Xi >L,Yi= = EiXiIyi} + a 0 J T ^ 0 E [ ^ B k M , (5.24) 
V Voyjl-Pl J 

where E[X;|y,-] = d W ; + (p 0 <To / r 0 ) (^ i — ̂ 3W,), and H(z) = (/>(z)/$(—z) is the hazard rate 

of the univariate normal distribution evaluated at z. (The standard univariate normal 

density and distribution are denoted <̂>(-) and $(•), respectively.) 

The expressions for observations falling in region V are cumbersome, so the following 

abbreviations will be employed: 

xL = {L-aWi)/<r0 
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{C-L-pVNi)lr0 

</>(xL)$\ 

PoVh - XL 

<t> =• (f>{xL,VL) 

$ = ${-xL,-yL), 

where </>(•,•) and $(•,•) denote the bivariate normal joint density and distribution for 

standardized variables with correlation pD. 

From Appendix A.2.3, equations (A.28), (A.29) and (A.33), we have 

E[Xi\Xi > L, Yi >C-L} = d W , + cr0 ($" Y° $ y) • 

The expansion for E[Yi] is similar. 

The conditional variance for X is given by 

Var[X{] = (5.25) 
0 for t e A, c 

V*x[Xi\Xi > L,Yi = iovizB 

Var[Xi|Xi > L,Yi > C - L] for * € V. 

Then, using Appendix A.1.2, equation (A.11) and Appendix A.2.1, equation (A.17), we 

have 

V a r f X , ^ > L,Y{ = y{] = cr2

0(l - p2

a) 1 - H ,(L-E[Xi\U 

where H'(-) denotes the first derivative of the hazard rate evaluated at (•). From Appendix 

A.2.3, equations (A.28), (A.29) and (A.35), we have 

Vax[Xi\Xi > L,Y{>C-L} 

1 + — +Po{l - Po) 
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Finally, the conditional covariance is given by 

Cov[Ari] = 
0 for i G A, B,C 

(5.26) 
Cov[Xi, Yi\Xi > L, Yi > C -L] for i E V. 

Then, from Appendix A.2.3, equations (A.37) (A.28) and (A.29) we have 

Cov[A';,y;i*i > L,Y{ > C - L] = 

+ (i - PI) $ $ 2 

These expressions are daunting in appearance but are easy to evaluate with the aid 

of a computer. Standard routines are available for calculating the univariate normal 

probabilities $(•) and the bivariate tail probability $(•,•). 

5.3.3 Convergence Properties 

As mentioned previously, the E M method always converges to some fixed value of the 

likelihood function. There is, however, no guarantee that the fixed value will be a local 

maximum or even a stationary point of the likelihood, or that the sequence of parameter 

estimates will converge. These properties must be checked in each particular application 

of the method. 

Let C* be the limit of the censored log likelihood function over the sequence of iterates 

of the EM method. Wu [151, (1983)] gives conditions for: 1) C' to be a stationary point 

of C ( 0 ) , and 2) the sequence of estimates of 0 to converge. A sufficient condition for 

property 1) to hold is that £{0\O°) is continuous in both 6 and 6°. This is true here over 

the parameter space defined by a G 3? r+1,/3 € 3? r + 1 ,<T > 0,r > 0,p2 < 1, thus the EM 

method will converge to a stationary point of the likelihood function (5.13). (Convergence 

to any of the boundary points a = 0, r = 0, or p2 = 1 indicates mis-specification of the 

model.) 



Chapter 5. Estimation of Dependent Demands from Jointly Censored Data 97 

An example given by Murray [97, (1977)] shows that the EM method may converge 

to a saddle point of the likelihood for incomplete data from a bivariate normal distribu­

tion. The censored regression described above involves estimation from censored bivariate 

normal data, so it is conceivable that the same condition arise here. It is also conceiv­

able, though very unlikely, that the sequence of parameter estimates 'cycle' through a 

set of separate stationary points all having the same value of the likelihood. Wu [151, 

(1983),pl02] points out that convergence to a stationary value, local maximum or global 

maximum depends on the choice of starting points and recommends that several EM 

iterations be tried with different starting points that are representive of the parameter 

space. 

These concerns are primarily of a technical nature. From a practical standpoint, 

convergence problems become less and less likely as sample size increases. In the case 

of estimation of airline demands, sample sizes can be expected to be large and, given a 

correctly specified model, convergence of the EM method to the MLE of the parameters 

can be anticipated in most cases. If the sample size is small or if censorship of the data 

is extreme, care should be taken to try several starting points for the algorithm and, 

ideally, to check the properties of the likelihood function in the vicinity of the solution. 

In the unlikely event that cycling of the parameter estimates occurs, this will become 

immediately evident during execution of the algorithm. 

5.3.4 Problems with More than Two Dependent Variables 

The expressions for the moments of the truncated multivariate normal distribution that 

are provided in the appendix apply to distributions of arbitrary dimension. Also the 

development of the E M algorithm for the bivariate censored regression can be generalized 

to regressions with arbitrary numbers of dependent variables with no new conceptual 

framework required. Thus it is possible to apply these methods to the analysis of airline 
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data from more than two fare classes. 

The number of censorship regions that must be allowed for is 2fc, where k is the number 

of dependent variables. (The number of different types of censorship is k + 1.) Thus the 

analysis required to implement the method does become more complex as the number 

of dependent variables increases. Furthermore, each added variable increases by one 

the highest dimension of the integrals of the multivariate normal distribution that must 

be computed. Since the computational complexity of these integrals can be expected 

to rise exponentially with dimension, it can be conjectured that the running times of 

multivariate censored regressions will rise exponentially with the number of dependent 

variables. There is thus a definite practical limit to the number of dependent variables 

that can be analyzed. The implication for modeling of airline demands is that, subject 

to experimental verification, it may be feasible to consider dealing with as many as eight 

fare classes in a single model, but not many more than this. 

5.4 Numerical Example 

This section describes a computer implementation of the EM algorithm for censored 

bivariate regressions and summarizes the results of a series of test runs on simulated 

airline demand data. 

5.4.1 The Bivariate Censored Regression Program 

The algorithm described in section 5.2.1 was implemented as a program in the 

FORTRAN77 computer language. The main operations of the program are: 

1. I N P U T : Read in the data and initial values for the standard deviations and corre­

lation cr, r and p (supplied by user). 
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2. INITIALIZE: Perform univariate regressions on all data points that were not cen­

sored in the A-direction (regions A and B in Figure 5.1), to establish an initial 

value for ex. Similarly compute an initial estimate for /3 on the basis of data falling 

in regions A and C. 

3. EXPECTATION: Use the current estimates of a, r and p to compute the condi­

tional expected values, variances and covariance of all censored observations with 

the methods provided in section 5.3.2. 

4. REGRESS: Perform a bivariate regression on the uncensored (X, Y) data along with 

the expected values of the censored (X,Y) data obtained in step 3. This produces 

new estimates for a and (3 as well as the sum of squares and cross-products (SSCP) 

matrix based on expected values of the censored observations. 

5. ESTIMATE MOMENTS: Combine the SSCP matrix obtained in step 4 with the 

conditional variances and covariance obtained in step 3 to obtain new estimates 

for <T, r and p using equations (5.16) through (5.18) and equations (5.20) through 

(5.22). 

6. TEST: Compare the new and old parameter estimates. If one or more have changed 

by more than a pre-set tolerance, then return to the EXPECTATION step; other­

wise, stop. 

A number of the basic statistical functions were accomplished through calls to subrou­

tines and functions in the Integrated Mathematical Subroutine Library (IMSL) supplied 

by IMSL, Inc.. Among these were the routines 1) RGIVN for multivariate regression, 

2) DMILLR for Mill's ratio (the univariate hazard rate), 3) DBNRDF for the bivariate 

normal distribution function, and 4) DNORDF for the univariate normal distributon 
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function. The program, including comments and reporting routines, is approximately 

800 lines long. 

No extra efforts were made to optimize the performance of this program, the main 

objective being to test the viability of the EM method for this application. Despite this, 

the performance was generally quite good, as will be seen in the next section. One obvious 

area for possible improvement is in finding initial values for the regression parameters 

(INITIALIZE step). Here, it might be better to perform univariate censored regressions 

based on more of the data so as to obtain initial values that are likely to be closer to the 

MLE's. Note however, that estimates at least as good as these will be available after one 

execution of the REGRESS step in any case. 

5.4.2 Test Runs 

This section summarizes the results of a series of test runs done on simulated airline 

demand data.9 The objectives of these runs were 1) to determine whether the EM method 

was viable for this application, 2) examine the effect of sample size on the efficiency of 

the method, 3) examine the effect of the degree of censorship on both accuracy and 

efficiency, and 4) determine the effects of the underlying correlation on accuracy and 

efficiency. These runs focussed on the following performance measures: 1) accuracy of 

the estimates, 2) number of iterations (henceforth, steps) required, and 3) cpu running 

time. 

An initial series of trials was conducted to establish sensible ranges for sample size 

and degreees of censorship for the test runs. General conclusions from these trials were: 
9In the present case, the lack of actual airline data is not a serious drawback. Regression analysis is 

already an accepted adjunct to the forecasting process in modern airlines. If it can be shown that the 
present method produces accurate regression estimates in reasonable time on problems of realistic size, 
then the method will be no less relevant than standard regression analysis. In fact, it will be probably be 
a great deal more relevant since it handles the censorship problem encountered in most airline demand 
data. 
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1. For small models (under six independent variables), the running time of the pro­

gram is relatively insensitive to the number of independent variables in the model. 

This was expected since the number of independent variables effects mainly the 

time for each execution of the REGRESS step in the program. Since this step 

involves a routine bivariate regression with highly optimized code (the IMSL sub­

routine) it was anticipated that it would execute quickly relative to other parts of 

the program for any reasonable number of variables. 

2. Running time is quite sensitive to the sample size. This also was expected since 

each censored sample point requires calculation of conditional moments which in 

turn require either univariate or bivariate integrals of normal distributions. 

3. For sample sizes of 100, the program performed well on data in which roughly 30% 

of the observations were censored in one or both directions. Occasional problems 

with slow convergence occurred when censoring exceeded 70%. These two values 

were selected as representative of 'low' and 'high' censorship. (Note that these 

values are rough indicators only — 70% censoring of a sample of size 50 is far more 

severe from the point of view of accuracy than the same percentage in a sample of 

size 500.) 

4. With two independent variables, performance is unreliable with sample sizes of 50 

or less when censoring is high. If we take as a rough estimate that one degree of free­

dom is lost for each censored observation (a 'rule of thumb' often used in censored 

data situations), 70% censorship implies loss of all but 12 degrees of freedom; i.e., 

50 — 35(censored) — 3(vector parameters). This is actually an overly conservative 

estimate in the bivariate regression case since in a portion of the censored observa­

tions one or other variable is not censored. Also, if p is nonzero, an observation of 

one variable conveys information about the other. 
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5. A convergence tolerance of 0.1% is adequate to ensure convergence of the program. 

That is, in all test runs the program exhibited stable behaviour once the maximum 

change in any parameter estimate from one step to the next was 0.1% or less. 

On the basis of conclusion 1, above, it was decided to carry out the remaining runs 

with a small model (two independent variables) and to focus on other factors that might 

influence performance. Sample sizes of 50, 100, and 500 were selected as adequate for 

purposes of measuring the impact of sample size. Correlations of 0 and 0.8 were selected 

for examining the effect of correlation. The 0.1% convergence tolerance was used for all 

subsequent trials. This is a fairly coarse criterion since it only guarantees stability to 

the third significant figure in all estimates, but it minimized the time and expense of the 

trials. (In practice, most estimates exhibited stability to the fourth significant figure.) 

The following model was used in all test runs: 

X = 100 - lOOwi + 10w2 + 8 

Y = 1 + 100wi + lw2 + e; 

where 8 and e were sampled from a bivariate normal distribution with mean vector o, 
and standard deviations 60 and 20 respectively. The correlation was set to 0 in half of 

the runs, and to 0.80 in the other half. Values for variables w\ and w2 were sampled from 

uniform distributions on the intervals [0.2,0.6] and [4.0,14.0] respectively. The parameters 

in the model and in the uniform distributions could have been chosen arbitrarily — any 

reasonable sets of parameters would have served for testing the algorithm — however, 

these particular values were chosen so that the simulated values of X and Y would be 

representative of airline demand data. (The overall mean values of X and Y based on 

this model are 150 and 50 repectively, and there is a low probability of negative values 

of either variable.) 

Given a set of randomly generated values of X and Y from this model, a plane 
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capacity C and an Ar-dernand booking limit £, censorship of the data was accomplished 

in the manner described in equations (5.11) and (5.12). To achieve a specified degree 

of censorship it was necessary to do a few trial-and-error runs with different values for 

C and £. It was found that low (30%) censoring could be achieved with C = 245 and 

£ = 200, and high (70%) censoring with C = 145 and £ = 116. These parameters were 

kept constant in all test runs. Consequently, the 30% and 70% censorship figures are 

nominal — different random data sets produced different degrees of censorship. For 

example, in 40 repeated runs on data with correlation 0 and sample size 50, the average 

'low' and 'high' degrees of censorship were 27% and 79%, respectively. 

A typical test run was conducted as follows: 

1. n pairs of values of A and Y were generated from the model above. The uniform 

variates were generated with the IMSL routine RNUNF, and the bivariate nor­

mal variates with IMSL CHFAC (Cholesky factorization of the desired correlation 

matrix) in combination with RNMVN (bivariate normal random variates). 

2. A bivariate regression was run on the data to determine the LSE's for the param­

eters with 0% censorship. 

3. Approximately 30% of the data was censored as described above and the censored 

regression program was run on it. 

4. Step 3 was repeated with 70% censorship. 

5. Steps 1 through 4 were repeated if required. 

Results of the test runs are summarized in tables 5.1, 5.2 and 5.3. These tables will 

be described briefly below, and comments and conclusions based on the test runs will 

follow. 
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Table 5.1 gives the results of single runs that typify the estimates obtained for each 

sample size, correlation and degree of censorship. Its purpose is to illustrate the kind of 

accuracy that can be expected under the different conditions. For purposes of assessing 

accuracy, the appropriate reference values are the parameter estimates with 0% censoring 

rather than the base model parameter values. To improve readability, the number of 

significant figures displayed in the tables is between one and three. Recall that the 

convergence criterion used in the test runs guaranteed stability to the third significant 

figure. 

Table 5.2 gives typical running times for each of the test conditions. These, of course, 

are highly dependent on the particular computer used, the coarseness of the convergence 

criterion, and the degree of optimization of the censored regression program. This set of 

running times was obtained on a VAX 11/785 minicomputer running at approximately 

1.5 MIPS (million instructions per second) under the VMS operating system at the 

University of Denver. 

Finally, Table 5.3 presents the means and standard errors of parameter estimates for 

forty replications of the sample size 50 case. Its purpose is to indicate the variability that 

can be experienced when the sample size is small. 

Conclusions from Test Runs 

The test runs described above were limited in scope; however, some general conclusions 

can be drawn relating to the original objectives of the numerical trials. 

1. The E M method is an effective and practical technique for censored bivariate re­

gression as long as the sample size is reasonable and the censorship is not too 

severe. In the full series of test runs, the method performed well in many cases in 

which the censorship was over 80%. (Average high censorship was 79% in the forty 
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Table 5.1: Typical Parameter Estimates for Selected Sample Sizes, Correlations and 
Degrees of Censorship 

base model parameters0 

60 20 100 -100 10 1 100 1 
n P %cen steps P tr T o20 a"i Bo k (% 

0% -0.03 62 19 143 -166 9 -10 76 3 
50 0 low 10 -0.06 61 19 134 -142 8 -11 79 3 

high 40 -0.11 52 23 128 -66 4 -12 77 4 
0% 0.75 60 18 114 -101 9 13 73 1 

50 0.8 low 11 0.79 59 19 119 -118 9 15 73 1 
high 41 0.54 56 14 63 -53 12 10 53 1 
0% 0.10 56 16 85 -66 10 -7 103 2 

100 0 low 7 0.10 51 17 81 -57 10 -6 105 2 
high 64 0.01 47 12 66 -18 9 2 72 2 
0% 0.80 65 19 94 -92 10 1 106 1 

100 0.8 low 14 0.78 61 17 98 -85 9 2 107 0 
high 52 0.68 62 15 119 -103 8 3 102 0 
0% -0.06 59 20 75 -58 11 2 89 1 

500 0 low 10 -0.08 59 20 69 -48 11 2 89 1 
high 37 -0.09 55 19 74 -55 11 6 83 1 
0% 0.81 62 20 115 -132 10 9 83 1 

500 0.8 low 14 0.80 63 21 114 -136 10 10 79 1 
high 48 0.78 59 20 122 -132 8 11 69 1 

"Base Model: E[A'] = Q 0 + Q i ^ i + a2w2, E[F] = p\ + fowi. + /32w2 

Table 5.2: Typical Computer Run Times 
Table entries: cpu time in seconds 

p = 0 p = 0.8 

sample size low% high % low% high % 

50° 2 14 3 17 

100 6 67 11 52 

500 34 188 50 243 

"times for sample size 50 are averages from 40 runs. 
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Table 5.3: Average Results for 40 Runs with Sample Size 50 
Table entries: mean 

(standard error0) 

base model parameters6 

60 20 100 -100 10 1 100 1 

p %cen steps P f do Po $i ft 

0% 0.03 60 19 102 -106 10 2 98 1 
(0.03) (1) (0.3) (6.5) (11) (0.4) (2) (4) (0-2) 

0 low 10 0.03 60 20 102 -102 10 1 100 1 
(0.3) (0.03) (1) (0.4) (7.1) (12) (0.4 (3) (5) (0.2) 

high 59 0.05 68 21 105 -130 12 -0.1 101 1 
(4) (0.04) (3) (0.5) (9.9) (17) (0.8) (3) (6) (0.3) 

0% 0.79 59 20 104 -107 10 2 100 0.9 
(0.01) (1) (0.3) (7) (15) (0-4) (2) (5) (0-2) 

0.8 low 14 0.79 59 20 103 -111 10 2 98 0.9 
(1) (0.01) (1) (0.4) (7) (15) (0.5) (2) (5) (0.2) 

high 71 0.79 64 20 109 -123 11 4 96 1 
(8) (0.02) (2) (0.8) (11) (21) (0.8) (3) (7) (0.3) 

"standard error: S/where S is the sample standard deviation of the 40 observations. 
6Base Model: E[X] = ct0 + aiwx + a2w2, E[Y] = /30 + ftiui + I32w2 
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replications at sample size 50.) 

2. The effect of sample size on the performance of the algorithm was as expected. 

Samples of size 50 produced usable but highly variable estimates — virtually all 

estimates had the correct order of magnitude and the correct sign, and samples of 

100 or 500 produced generally good estimates with low variability. A rough guide 

based on these trials is that usable estimates will be obtained if the number of 

uncensored observations is at least two or three times the number of parameters 

being estimated. Running times increased roughly linearly with sample size, again 

as expected, since the most time-consuming computation was in calculating the 

expected value of a censored observation, and this had to be done for each censored 

observation. 

3. Increasing the degree of censorship from approximately 30% to approximately 70% 

increases the standard error of the estimated regression coefficients by as much as 

1.5 to 2 times (see Table 5.3), increases the number of iterations required by roughly 

five times, and increases running time by 5 to 10 times. 

4. The size of the correlation (0 or 0.8) of the error terms in the underlying model 

had no obvious effects on the performance of the algorithm. It had been expected 

that higher correlation would lead to greater accuracy and efficiency because of the 

greater 'information content' of the partially censored observations. A tentative 

explanation for the absence of this effect is that it was counterbalanced by the 

tendency for more observations to fall in the doubly censored region when the 

correlation was high. 
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5.5 Inferences and Regression Diagnostics 

This section deals with ways in which inferences can be made from the estimated regres­

sion coefficients and discusses the detection of departures from the assumptions of the 

regression model. 

Inferences on the Regression Coefficients 

One drawback of the EM method when compared with direct maximization of the likeli­

hood function is that an estimate of the covariance matrix for the regression coefficients 

is not readily available on each iteration. In the case of direct maximization, such an esti­

mate can be obtained at any time by evaluating the negative inverse of the Hessian matrix 

of the log likelihood function at the current estimates of the regression parameters.10 This 

assumes that the particular direct maximization method being used is already calculating 

and using the second derivatives in some way; e.g. Newton or Quasi-Newton methods. 

With the censored regression method described here, the Hessian matrix can be cal­

culated to an arbitrary degree of accuracy by using finite second differences of the log 

likelihood function. (In fact, this is the way most direct maximization methods work 

in the absence of closed form expressions for the second derivatives.) Thus an estimate 

of the covariance matrix of the coefficients can be obtained through a side calculation 

whenever required. It is not easy to determine the exact sampling distribution of the 

regression coefficient estimators because, as noted previously, the censored regression 

procedure can, in theory, converge to a saddle point or cycle among several stationary 

points. In practice, however, with reasonable sample sizes and degree of censorship the 
1 0 For readers unfamiliar with this connection between second order derivatives of the log likelihood 

and the variance of the parameter estimates, consider the estimation of a single parameter with the ML 
estimation method. In this case, the Hessian is just the second derivative of the likelihood function, and 
this will be increasingly negative the 'sharper' the curvature of the likelihood function at the current 
parameter estimate. In the general case, the negative inverse Hessian is an asymptotically unbiased 
estimator of the true covariance matrix. 
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method will converge to the MLE, and the sampling distribution of the estimators will 

be approximately normal. The availability of the covariance matrix and the knowledge 

of the approximate sampling distribution can then permit tests of the significance of the 

regression coefficients and other inferential procedures to be carried out. 

Regression Diagnostics 

Like any regression method, the censored regression described here is vulnerable to such 

problems as mis-specification of the model, non-constant error variances, correlated er­

rors, multicollinearity, and so on. With uncensored regressions, methods such as analysis 

of residual plots, weighted least squares and ridge regression methods are available for 

detecting and dealing with these problems when they arise. In the censored regression 

case, a simple approach is to apply the same methods to the estimated uncensored data 

obtained in the EXPECTATION step of the algorithm. The fact that this estimated 

uncensored data is obtained through a normality assumption will tend to mask prob­

lems with the data, but the approach should work well with large sample sizes and/or 

moderate censorship. Also, because of the masking, if a diagnostic procedure indicates 

a significant problem with the estimated data, this can be taken as strong evidence of a 

problem with the underlying data or model. 

5.6 Summary — Censored Regression Analysis 

This chapter has developed a method for carrying out bivariate regression analysis on 

data that has been censored in the manner of airline demands. It has been shown that 

the EM method can be adapted to this problem and produces an algorithm that is both 

effective and efficient when consideration is given to the complexity of the estimation 

problem. Specific conclusions are: 
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1. Usable estimates of nine parameters can be obtained on the basis of as few as 50 

observations when 80% or more of the observations have been partially or totally 

censored. 

2. In particular, it is feasible to test for correlation between two demand classes (the 

problem that originally motivated this work) with data that has been censored 

by booking limits and collected under widely varying circumstances (e.g. different 

routes, seasons, days of week), as long as a reasonable model can be formulated for 

the effects of the various factors. 

3. With a sample of size 500, a run of the algorithm on highly censored data may 

require as much as 4 cpu minutes on a minicomputer. However, with more highly 

optimized code, it is expected that this figure could be reduced by as much as a 

factor of ten. It is entirely reasonable to expect that the method could be run 

efficiently on a modern microcomputer. 

4. The number of independent variables that can be included in the analysis is limited 

more by the capability of the underlying (uncensored) regression subroutine than by 

the censored regression algorithm. For a fixed sample size, the effect of the censored 

data analysis on the running time is simply to multiply the time to execute one 

uncensored regression on the data by the number of iterations required in the EM 

algorithm. Thus, if a particular model can be run with uncensored data, it should 

generally be possible to run it with censored data. 

5. It is feasible to develop an algorithm for more than two dependent variables (fare 

classes), but the complexity of the calculations and the running times can be ex­

pected to rise exponentially with the number of classes. 



Chapter 6 

Summary and Conclusions 

The objectives of this chapter are to draw together the principal results of this thesis 

and to discuss areas for future work. Section 6.1 briefly summarizes the contents of 

each of the preceding chapters and highlights the connections among them. The last 

section discusses directions for future analytical work in airline seat inventory control 

and concludes the thesis. 

6.1 Principal Results 

The general approach taken in this thesis was to examine restricted versions of problems 

of airline seat allocation with the objective of obtaining insights into the nature of opti­

mal allocation rules. The emphasis was on finding concise, rigorously derived optimality 

conditions and structural solutions rather than complex mathematical programming for­

mulations. 

The problem examined in chapter 2 was that of determining optimal seat allocations 

among multiple, nested fare classes when the demands for those classes were stochastically 

independent. Optimality conditions were derived, and these were compared numerically 

with the EMSRa approximations of Belobaba [13, 1987]. In chapter 3, the same problem 

was studied for two fare classes when the independence assumption was removed. A 

general model for dependent demands was developed, and it was shown that a condition 

similar to Littlewood's simple seat allotment rule [89, (1972)] was optimal as long as the 

demands for the two fare classes were monotonically associated. Optimality conditions 

111 
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were also derived that incorporated passenger goodwill and passenger upgrades. The 

interpretation and use of full fare passenger spill rates in the seat allocation context 

were discussed. The chapter closed with an examination of conditions under which the 

monotonic association condition holds and of the effect of increasing correlation on the 

protection level for full fare seats. 

Both the independent demand (Chapter 2) and dependent demand (Chapter 3) op­

timality conditions can be implemented • if adequate estimates of demand probability 

distributions are available. If the demand distributions are relatively stable over the 

booking period prior to a flight, the fixed optimal protection levels determined by the 

optimality conditions cannot be improved upon by any ad hoc adjustment of levels based 

on observed demands. In the more common case that demand distributions are revised 

as the time of flight departure approaches, a simple approximate implementation scheme 

is to recalculate protection levels after each revision of demand forecasts. Note that in 

the case of the dependent demand model, the shift in the conditional high fare demand 

distribution that can be predicted on the basis of observed low fare demands has already 

been accounted for in the optimality condition. Any revision of demand distributions 

should be based on other, external forecasting procedures that indicate a shift in the 

parameters of the joint discount fare /full fare demand distribution. 

A simple application of the optimality conditions that requires no estimation of de­

mand distributions is that of monitoring historical maximal flight spill rates. Severe 

departures of historical spill rates from those specified by the optimality conditions will 

signal suboptimal allocation decisions. 

Chapter 4 presented an application of the dependent demand model to the problem 

of determining an optimal overbooking level in a single fare class. It was shown that 

when passenger confirmations occur according to a Bernoulli process, the optimality 

rule was similar in structure to Littlewood's rule. Simple approximation formulas for 
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the optimality rule were derived, and it was demonstrated that when the overbooking 

penalty and fare are equal, the simple ratio of capacity to confirmation probability yields 

a good approximation to the optimal overbooking level. 

The analysis of seat allocation between dependent demands in chapter 3 assumed 

knowledge of the joint probability distribution of the demands. Chapter 5 dealt with 

the problem of estimating that distribution on the basis of historical demand data that 

was subject to the influence of external factors and censored by the presence of booking 

limits. It was shown that a bivariate multiple regression model could account for the 

influence of the external factors and that EM method could deal with the censoring of 

the data. The results of numerical trials of the method demonstrated both its accuracy 

and its practicality on data sets in which 80% or more of the observations were censored. 

6.2 Directions for Future Work 

As discussed in chapter 1, the seat inventory control problem faced by modern airlines 

is substantially more complex than any of the subproblems examined in this thesis. The 

dynamics of the reservations and cancellation process, the interactions of different flight 

legs, the consideration of passenger itineraries, and the need to consider overbookings 

in multiple fare classes are all elements that have not been addressed here. A general 

prescription for future work, then, is to incorporate any or all of these factors into anal­

yses of the seat allocation and overbooking problems. However, as mentioned earlier, 

such comprehensive treatments tend to lead to mathematical programs that obscure the 

nature and qualitative behaviour of optimal solutions. Also, the dimensionality of the 

fully specified seat allocation problem is so great that it is unlikely that any practical 

mathematical programming approach will be able to encompass all of the complexities. 

It appears that the hope for progress in the area is in linking together separate programs 
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and heuristics in such a way that seat management decisions can be enhanced, if not 

optimized. It is in this linking that an understanding of the nature of optimal solutions 

in isolated subproblems can play a role. With this in mind, then, the discussion of future 

directions given below will focus on areas that are in the same vein as this thesis; that 

is, on areas which may be amenable to analytical rather than computational treatment 

and which may yield simple structural rules or approximations. 

6.2.1 Multiclass Allocation when Demands are Independent 

A drawback of the analysis of the multiple independent fare class allocation problem given 

here is the restriction to a single flight leg. Such leg-based planning fails to account for the 

difference in expected revenues between a passenger booking a single leg and one booking 

several different legs as part of an itinerary. One approximate way of accounting for this 

factor, discussed in Belobaba [13, (1987)], is to attribute the whole fare to each leg of a 

passenger's itinerary, in effect introducing a new fare class for each passenger itinerary. 

This method, however, has the effect of exaggerating the revenue impact of an itinerary 

and could lead to an excessive rate of refusal of single leg bookings. An important area 

for further reasearch, then, is in generalizing the multiple allocation problem to more 

than a single flight leg. 

The numerical comparison of the optimal solution versus EMSRa approximation given 

in chapter 2 encompassed three fare classes and a fixed set of demand distributions. Fur­

ther numerical trials are required to investigate the relative performance of the methods 

with more fare classes and with varying demand distributions. It was demonstrated that 

the EMSRa method would either underestimate or overestimate optimal protection levels 

depending on the parameters of demand distribution in the case that demands followed 

an exponential distribution. It is an open question whether or not the same behaviour 

can occur with more realistic, normally distributed demands. 
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6.2.2 Allocation Between Two Classes when Demands are Dependent 

An obvious direction for future work on the dependent demand problem is in extending 

the analysis to three or more fare classes. This work was not undertaken here partly 

because of time constraints and partly because the problem presented no new concep­

tual difficulties — the characterization of the problem as an optimal stopping problem 

remains valid, and optimality conditions similar to that obtained for the two-fare case 

can be expected. The one difficulty in this generalization would he in extending the 

monotonic association condition to more fare classes and relating the new condition to 

easily interpreted properties of realistic demand distributions. 

It was shown in chapter 3 that positive correlation of normally distributed demands 

was a sufficient condition for monotonic association. The case that demands are neg­

atively correlated was not dealt with explicitly. It seems reasonable to conjecture that 

full fare protection levels will drop with increasingly negative correlation, and that there 

will exist a value of the correlation below which no seats should be protected, but this 

remains an area for further work. 

The use of observed flight spill rates1 from past flight data as a method of monitor­

ing seat allocation performance was proposed in chapters 2 and 3. The appeal of this 

approach was that no estimation of demand distributions was required. An interest­

ing question is whether or not such an approach could be integrated with forecasting 

techniques in an adaptive-control framework for seat management. 
1 Recall that the only information required to estimate the flight spill rate for a fare class is the 

proportion of flights on which that fare class reached its booking limit. It is not necessary to know the 
number of rejected reservations requests. 
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6.2.3 A Simple Overbooking Model 

An immediate question prompted by the analysis of the single fare class overbooking 

problem is whether or not similar simple optimality conditions exist for multiple fare 

classes. An analysis of this problem should allow for the different penalties associated 

with refusing boarding to passengers in different fare classes and/or for the options airlines 

have for resolving oversold flight situations when they arise. Preliminary work with two 

fare classes has indicated that there may exist relatively simple conditions that provide 

upper and lower bounds on optimal overbooking levels; however, much work remains to 

be done on this problem. 

It should be noted that the multiple fare class overbooking problem actually subsumes 

the multiple fare class allocation problem. There is no need in principle to first determine 

seat allocations and then determine overbooking limits based on those allocations. (This 

is the way the problem tends to be viewed in the industry for both practical and historical 

reasons.) 

6.2.4 Estimation of Dependent Demands from Jointly Censored Data 

It was pointed out in the conclusion of chapter 5 that the censored regression method 

can be extended to more than two dependent variables. This is a relatively routine 

exercise given the expressions for the moments of truncated multinormal distributions 

provided in the appendix and the general approach of chapter 5. The calculations will, 

however, be complex when more than a few fare classes are involved because of the 

multiplicity of the censorship regions. There is room for further analytical work to 

systematize these calculations; for example, to permit easy evaluation of such quantities 

as E[A 3 | X-i — xx,X2 > x2,X3 > x3}. 

The numerical trials of the censored regression algorithm demonstrated that it was 



Chapter 6. Summary and Conclusions 117 

a viable method for accomodating censorship in airline demand data. The method thus 

substantially expands the usefulness of regression analysis in estimating the parameters 

of airline demand distributions. From the standpoint of assessing the usefulness of the 

censored regression method, this is sufficient, since regression analysis is an accepted 

technique for airline demand modeling. Nonetheless, an application of the method to 

actual airline data is of considerable interest since there is the possibility of answering 

an open empirical question regarding the degree of correlation between demands for full 

and discount fare classes. 

6.2.5 Dynamic Modeling 

A final area in which analytical work might be fruitful and which applies to all of the 

above problems is in incorporating the dynamics of the reservations process. Given 

the simple fixed protection level policies that are optimal when demand distributions 

are assumed to be stable, there is reason to be optimistic that some form of dynamic 

control-limit policies will be optimal in the more general dynamic case. In fact, results 

along these lines have already been obtained in the hotel/motel overbooking setting by 

Liberman and Yechiali [88, (1978)] and in a more general context by Gerchak, Parlar 

and Yee [56, (1985)]. There is thus hope that cumbersome direct dynamic programming 

methods might be replaced with more practical methods involving control limit policies 

conditional on current demand forecasts. 

6.2.6 Conclusion 

It can be seen from the foregoing discussion that there is more work to be done in the 

area of airline seat management than has been done to date. The author hopes that this 

thesis contributes in some measure to ongoing efforts in the area. 
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Appendix A 

Some Properties of Normal Probability Distributions 

The normal probability distribution provides a good approximation to airline demand 

distributions under many circumstances, and this fact is exploited throughout this thesis. 

This appendix presents a number of well-known basic properties of univariate and mul­

tivariate normal probability distributions that are used either explicitly or implicitly at 

many points. Also included are some less well-known properties of truncated normal and 

multinormal distributions that are needed for the calculations relating to spill rates and, 

more importantly, in the censored regression analysis of chapter 5. Most of these results 

have been reported elsewhere; however, it is believed that the connection between the 

first and second moments of the truncated multinormal distribution and the multivariate 

hazard gradient, given in section A.2.2, is reported here for the first time. 

A . l Properties of the Univariate Normal Distribution 

In what follows, X denotes a normally distributed random variable with mean / i and 

variance a 2; that is, the density and distribution functions for X are given by 

The standard normal density and distribution, </>(•;0,1) and $(-;0,l), are abbreviated 

simply >̂(-) and $(•) respectively. 

2' 

and 

129 
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A.1.1 Simple Properties of the Univariate Normal Distribution 

A list of well known basic properties of the univariate normal distribution is provided 

below. Standardized values of X and x will be denoted Zx = (X — fi)/cr and zx = 

(x — fi)/o~ respectively. 

Property 1 (standardization of the density) 

<j>{x-n)a2) = {llcr)4>{zx) (A.l) 

Property 2 (standardization of the distribution) 

$(x]fi,cr2) = $(zx) (A.2) 

Property 3 (symmetry of the density about the mean) 

<p(li - x;u,a2) = (f>(u + x;u,cr2) (A.3) 

Property 4 (tail probabilities) 

Px[Zx >zx] = l- $(zx) = $ ( - 2 x ) -.(A.4) 

Property 5 (derivatives) 

—<j)(w(x)) = — w{x)<p(w{x))—w(x) (A. 5) 
dx dx 

In particular, 

-^(j)(x;fi,a2) = -(l/cr)zx(j>(zx). (A.6) 

A.1.2 Mean and Variance for the Truncated Normal Distribution 

Let Y have the distribution of a normal random variable truncated on the left at a and 

let za = (a — (i)/cr. Then Y has the density 

f(y) = 
' for x > a 

(A.7) 
0 otherwise. 
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Expressions for the mean and variance of Y are well known (see, for example, Johnson 

and Kotz [70, (1970)] ). These moments will henceforth be referred to as the truncated 

mean and truncated variance respectively. The truncated mean is given by 

E[X\X > a] = fx + cr 

or 

E[X\X>a] = n + *h(za), (A.9) 

where h(za) is the hazard rate of the distribution evaluated at the standardized point of 

truncation. The truncated variance is 

V[X\X > a] = *2{l + zah{za)-h2{za)}. (A.10) 

It is worth noting for later reference that the variance can be written more compactly as: 

V[X\X>a} = a2[l-^(za)}, (A. l l ) 

where ^(za) denotes the first derivative of the hazard rate evaluated at za. 

A.2 Properties of the Multivariate Normal Distribution 

The joint density of a multivariate normal random variable X = ( A 1 ? . . . , Xn)' with mean 

vector /x = (/x 1 ;..., fin)' and variance-covariance matrix E will be denoted ^>(X;/x,S). 

Then 

<£(x;//,E) = Cexp{-|(x - a ^ ' S ^ x - /*)}, 

where C = [(27r)ny'2|E|ly'2] ' 1 , and E is a positive definite symmetric matrix with di­

agonal elements trf and off-diagonal elememts pijO~iO~j. Let $(x;/i, E) denote the joint 

distribution function for X; that is, 

/

E l « n 
••• / 4>(u;n,Jl}dun...du1, 

-oo J — oo 

<K*a) (A.8) 
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or 

where ( —oo,x] = (—oo,xi} x (—00,22] x • • • x (—00,xn], and du — dur ... dun. 

In the event that each of the elements of X is a standardized random variable with 

zero mean and unit variance, then the variance-covariance matrix will be R, a correlation 

matrix, and the notation </>(•; R) and $(-;R) will be used for the density and distribution 

respectively. 

Let Vx denote the gradient operator (d/dxj,... ,d/dxn)', so that V x / ( x ) and 

V x V x / ( x ) are the gradient and Hessian matrix respectively for any real-valued function 

/(x). The abbreviation 0 2 will be used for 00 ' , where 0 is any vector or vector operator. 

For a vector-valued transformation w(x), V[w(x)]' is the matrix of first partial derivatives 

of the elements of w with ijth element dwj/dxi. Where necessary, a subscript will be 

used to indicate a change in the variable of differentiation, as in Vw/(w(x)). The "chain 

rule" can thus be written 

and the "product rule" for the product of a real-valued function and a vector-valued 

function is written 

V x / (w(x)) = Vx[w(x)]'V w/(w(x)), 

V x[/(x)w(x)] = /(x)V x[w(x)] + w(x)[V x/(x)]'. 

For a constant vector a, V/(a) denotes the gradient of /(x) evaluated at a. 

A.2.1 Simple Properties of the Multivariate Normal Distribution 

Property 1 (standardization of the density) 

^(x; / i ,S) = | S | - V ( S - 1 ( x - / x ) ; R ) , (A.12) 



Appendix A. Some Properties of Normal Probability Distributions 133 

where S = d iag ( < 7 { ) , the diagonal matrix of standard deviations of the components 

of X . 

Property 2 (standardization of the distribution) 

$(x; / x i S) = $ ( S - 1 ( x - / / ) ; R ) (A.13) 

Property 3 (symmetry of the density) 

#( /x-x ; j i ,E) = ^(/i + x ; / i , E ) (A.14) 

Property 4 (tail probabilities) For Z = S _ 1 (x — /z) 

P r [ Z > a ] = / (j>(u;R)du = $ ( -a ;R) (A.15) 
j(a,co) 

Property 5 (marginal distributions) 

Xi has density <fi(xi]Ui, af) for i — 1,... ,n. (A.16) 

Property 6 (conditional distribution for a bivariate normal random vector) For a bivariate 

normal random vector X = (X1,X2), the conditional distribution of A'i given 

X2 = x is normal with mean 

E[Xi\X2=x] = fi\ + (po~i/o~2)(x — fi2) (A.17) 

an'd variance 

Var[A 1 |A 2 = x] = (1 - p2)a\. (A.18) 

Property 7 (derivatives) 

Vx</>(w(x);R) = -R-iw(x)Vw(x)^(w(x);R) (A.19) 
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A.2.2 First and Second Moments for the Truncated Multivariate Normal 

Distribution 

Calculations of the moments of the multinormal distribution under various forms of trun­

cation and/or censorship have been reported in many places [20, 47, 54, 60, 75, 100, 110, 

128, 146]. These calculations have been done either by direct integration (suitable only 

for low-dimensional multinormal distributions because of the complexity), or with the 

use of rather complicated recurrence relations. It is shown below that it is not diffi­

cult to calculate the moment generating function (MGF) for the truncated multinormal 

distribution and, from that, to obtain a very compact expression for the moments of 

order one and two of truncated multinormals of arbitrary dimension. The MGF has 

been previously obtained by Tallis [132, (1961)], and the cumulant generating function 

(\og(MGF)), by Finney [52, (1962)]. The expressions obtained by Finney for the first 

and second cumulants are similar to those given here for the first and second moments. 

The connection to the multivariate hazard rate is identified here for the first time.1 

The MGF of the Multinormal Distribution 

Now suppose that Z has the distribution of a standardized multivariate random variable 

with each element truncated on the left by values in the vector a = (a\,... ,an)'. Denote 

We proceed to find the gradient and Hessian matrix of the MGF given in (A.20) 
1The idea of the multivariate hazard rate was first introduced in the 1970's, ten years after the articles 

by Tallis and Finney. 

by M(t) the joint MGF of Z, where t = (tu .. .,*„)'. That is, 

M(t) = E[exp(t'Z)] 

(A.20) 
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and use these to find expressions for the first and second moments of the truncated 

distribution. To improve readability, the abbreviation $(•) = $(-;R) is used. We have 

VtM{t)=RtM{t).+ [$(-a)]- 1 [Rexp(i t 'Rt)V i l t-a$(Rt-a)] 

and 

V2M(t) = Vt[VtM(t)]' 

= M{t)K' + V tA4(t)[Rt]' 

+[$(-a)]~1 { Rexp[ | t 'Rt]V 2

? t _ Q $(Rt - a)R 

+ Rt exp[ | t 'Rt][V a _ a $(Rt - a)]'R. } 

Then 

E[Z|Z > a] = VtM(0) = R 

anc 
E[ZZ'|Z > a] = Vf

2A4(0) = R + R 

V$( -a ) 
" i P a Y 

V 2 $ ( - a ) 
L * ( - » ) J 

R. 

Finally, 

Var[Z|Z > a] = R + R 
V 2 $ ( - a ) (V$(-a.y 

R. 

(A.21) 

(A.22) 
$(-a) V *(~ a ) 

By analogy with the univariate hazard rate occurring in (A.9), define the multivariate 

hazard rate2: 
V $ ( - Z ) 

H(Z) = 
* ( - Z ) 

(A.23) 

2 This vector quantity, sometimes called the hazard gradient, has been discussed by others in the 
context of multivariate generalizations of monotone hazard rate properties of distributions. See, for ex­
ample, Block [21, (1973)], Harris [63, (1970)], Johnson and Kotz [72, (1975)] and Marshall [93, (1975)]. 
Its occurrence in the present context lends support to the argument that it is the appropriate generaliza­
tion of the univariate hazard rate. (There have been some competing definitions; e.g. Basu [10, (1971)], 
Brindley and Thompson [23, (1972)], Goodman and Kotz [58, (1980)], Puri and Rubin [107, (1974)]). 
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Then (A.21) and (A.22) can be expressed succinctly as 

E[Z|Z>a] = RH(a) '. (A.24) 

and 

Var[Z|Z>a] = R — RV[H(a)]'R. (A.25) 

For a multivariate normal random vector X with mean vector fi and variance-covariance 

matrix X , the corresponding results are: 

E [ X | X > a ] = /x + SRH(S- 1 (a - /x ) ) (A.26) 

and 

Var[X|X>a] = S - SRV[H(S- 1 (a - ^))]'RS. (A.27) 

A.2.3 Moments of the Truncated Bivariate Normal Distribution 

In this section equations (A.26) and (A.27) are used to obtain expansions for the first 

and second moments about the mean of a truncated bivariate normal random vector 

in terms of the univariate standard normal density and distribution, a bivariate normal 

density, and the upper right 'tail' of a bivariate normal distribution. The existence of 

these expansions greatly facilitates computation of the moments. 

Let Z = (X,Y)' be a bivariate normal random vector with mean vector // = (ux,uy) 

( al paxay ^ 

In what follows the univariate normal densities and distributions can be distinguished 

from their bivariate counterparts by the number of arguments. Let the first, second and 

cross partial derivatives of the bivariate distribution be indicated with subscripts. For 
example, $x(x,y) = -^$(x,y). Then 

8x 

y - px 
#.(x,y) = # z ) $ ( ^ = % ) , (A.28) 
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$yy{x,y) 

and 

-(p(j)(x,y) + x$x(x,y)), 

-(p4>(x,y) + y$y(x,y)), 

= <K*,y)-

(A.29) 

(A.30) 

(A.31) 

(A.32) 

Let a and b be arbitrary real constants and let za — (a — fix)/crx and zb = {b — fiy)j ay. 

Furthermore, for brevity, let 4>2 = 4>(~z

a, ~zb) a n < i $2 = za, — zj,). 

From (A.26) we have 

E 
X 

> 
( 

Then, using (A.28) and (A.29), 

E[X\X > a,Y > b] = 

' ^x 

"*2 

I 0~x P&x 
( 

$x(-Za, ~Zb) 

\ $y(-Za,-Zb) 

flx + 
^ ) $ (

v ^ f ) + M z b ) $ ( v T ^ f ) 

and 

(A.33) 

E[Y\X >a,Y >b] 

P-y + 

From (A.27) we have 

$ 5 

Var 

+ 
\ P ^ y ° V 

$ 2 

> 

$ x x <l>2 

K P°~X<Ty 

1 f * x $ x $ y 

V 2̂ $yy I 
$2 2 \ $ $ $ 2 

(A.34) 

V ? ° " x 0"y / 
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Upon applying equations (A.30),(A.31) and (A.32) and simplifying, the following 

expressions for the variance and covariance terms are obtained. 

Vax[X\X > a,Y > b] = 
za$x+p2zb$y 2 J>2 f$x+p$y\2 

1 + (A.35) 

anc 

Var[Y|X > a,Y > b] = 

$ 5 

P$* + % 

$ 2 

2 1 
(A.36) 

Cov[XY\X > a,Y >b} = 
Za$x + Z ^ 

P + P- (A.37) 

A final expansion in terms of </>2 and $ 2 and the univariate </>(•) and <£(•) can then be 

done using (A.28) and (A.29). 


