
R O B U S T A D A P T I V E C O N T R O L 

By 

Fu, Ye 

B . A.Sc. Shanghai Jiao Tong University, P R C , 1984 

A THESIS SUBMITTED IN PARTIAL F U L F I L L M E N T OF 

T H E REQUIREMENTS FOR T H E D E G R E E OF 

D O C T O R OF P H I L O S O P H Y 

in 

T H E F A C U L T Y OF GRADUATE STUDIES 

E L E C T R I C A L ENGINEERING 

We accept this thesis as conforming 

to the required standard 

T H E UNIVERSITY OF BRITISH C O L U M B I A 

December 1989 

© Fu, Ye, 1989 



In presenting this thesis in partial fulfilment of the requirements for an advanced 

degree at the University of British Columbia, I agree that the Library shall make it 

freely available for reference and study. I further agree that permission for extensive 

copying of this thesis for scholarly purposes may be granted by the head of my 

department or by his or her representatives. It is understood that copying or 

publication of this thesis for financial gain shall not be allowed without my written 

permission. 

Department of E l e c t r i c a l Engineering 

The University of British Columbia 
Vancouver, Canada 

Date Jan. 5th, 1990 

DE-6 (2/88) 



Acknowledgement 

Four years ago, when I first stepped into U B C , I had no idea on adaptive control 

theory. In a talk with my thesis advisor, Prof. Guy A . Dumont, a simple problem got 

me interested. This problem is: given a rational minimum phase continuous plant, when 

is the equivalent discrete plant can be non-minimum phase? This problem also brought 

me to a more common question, if the discrete plant is non-minimum phase, how to 

control it using adaptive control? Through frequent talks with Prof. Dumont and 

reading many papers recommended by him, I finally went into the area of robustness of 

adaptive control. Many questions came to my mind, such as the stability of adaptive 

control under model mismatched case, role of filter in adaptive control, chaos in simple 

self-tuning control, predictive adaptive control, etc. Here I would like to express my 

special thanks to Prof. Guy A . Dumont, for guiding my progress throughout this four 

year research and for his continuous supporting help and guidance. 

I also would like to thank Prof. Bohn, Prof. Davies, Prof. Lawrence, Prof. Soudack 

and Prof. Ward, for the courses they give and from which I widened my knowledge 

beyond adaptive control theory. 

I also would like to thank Prof. M a , for his critical but helpful discussion on the 

original version of section 3.4.1. Through this discussion, I benefited a lot and corrected 

some expression mistakes. I also would like to thank Prof. Lam, who patiently went 

through my thesis and gave some good suggestions. 

I also would like to thank many friends studying with me for their time to discuss 

any topic of interest, including many details in this thesis. Among them, I especially 

thank to Dr. Natarajan, Mr . Bond and Mr. Kristinsson, for their constant questions 

ii 



and suggestions. 

I thank all my teachers at U B C , at Shanghai Jiao Tong University, China, and also 

those teachers in my primary schools and middle schools in Shanghai, China. 

Special thanks to Prof. Astrom in Lund Institute of Technology, Sweden, and Prof. 

Shah in University of Alberta, for their advice when they visited U B C . 

The research of this thesis was carried out at the Department of Electrical Engi

neering and at the Pulp and Paper Center with support provided by the Pulp and 

Paper Research Institute of Canada. 



Table of Contents 

Acknowledgement i i 

List of Tables v i i i 

L i s t of Figures ix 

Abstract x i i 

1 Introduction 1 

1.1 Background • • 1 

1.2 The Research Topic 5 

1.2.1 Motivation 5 

1.2.2 Main Contribution of this Thesis 5 

1.2.3 Outline of the Thesis : 6 

2 Mathemat i c a l P r e l i m i n a r y 8 

2.1 Signal Processing Theory 8 

2.1.1 Sampling Process 8 

2.1.2 Frequency Domain Estimation via D F T 10 

2.2 On Conic Sector Stability Theory 13 

2.2.1 Definitions 13 

2.2.2 Stability Problem Definition 17 

2.2.3 Conic Relations and properties 18 

2.2.4 Theorem on Boundedness 21 

iv 



2.3 On Averaging Theory 22 

2.4 On Curve Fitting 24 

3 Adaptive C o n t r o l A l g o r i t h m and Stabil i t y 26 
3.1 Structure of Adaptive Control System 26 

3.2 On Parameter Estimation 26 

3.3 Self-tuning Controller Design 32 

3.3.1 Pole-zero Placement Design 32 

3.3.2 Minimum Variance Control 37 

3.3.3 Other Algorithms 39 

3.4 Stability Condition for Adaptive Control System 40 

3.4.1 Main Stability Theorem 40 

3.4.2 Result from Using Conic Sector Criterion 49 

3.4.3 Using Averaging Method 50 

3.5 Simulations 51 

4 Robust Adaptive Control: Slow Sampling 54 

4.1 Why Use Slow Sampling? 54 

4.2 Choice of Sampling For Model Matched Case Adaptive Control 55 

4.2.1 Definition and Background 55 

4.2.2 Condition For M P Discrete Plant 57 

4.2.3 Obtaining the Critical Sampling by Using a Relay 63 

4.3 Choice of Sampling For Model Mismatched Case Adaptive Control . . . 68 

4.3.1 Uncertainty in sampled system 68 

4.3.2 Stability conditions for adaptive algorithm 75 

4.3.3 Approximate way of choosing sampling 76 

4.4 Simulation on the Effect of Sampling 78 

v 



4.5 Conclusion 83 

5 Robust Adaptive Control: Slow A d a p t a t i o n 89 

5.1 Introduction 89 

5.2 Slow Adaptation Algorithm 91 

5.2.1 Fixed Slow Adaptation Rate 91 

5.2.2 Unfixed Slow adaptation rate 93 

5.2.3 Checking Criterion for the Steady State 95 

5.3 Frequency Domain Estimation 97 

5.4 Filter Design 100 

5.5 Simulation Examples of Robust Adaptive Controlled Design 105 

5.6 Conclusion 109 

6 Robust Adaptive Control: U s i n g Predictive Control 112 

6.1 Predictive Control Algorithm 112 

6.1.1 A simple predictive control algorithm 112 

6.1.2 Generalized Predictive Control 116 

6.2 Robustness of Predictive Control 120 

6.2.1 Illustration examples 120 

6.2.2 Discussion 122 

6.3 Stability Analysis for a simple case 126 

6.4 Simulation Examples 130 

6.5 Conclusion 136 

7 Conc lus ion 140 

7.1 Summary of the work 140 

7.2 Future Research Directions 142 

vi 



7.3 Conclusion 

Bibliography 

A List of Abbreviations 

B List of Terminology 

C Simulation Program 



List of Tables 

3.1 Estimated parameters for different sampling frequency 52 

4.2 Parameters of discrete nominal model under different sampling in exam

ple 4.2 71 

4.3 Estimated a/b for various cases 81 

4.4 Simulation condition in Fig . 4.21 82 

4.5 Simulation condition in Fig . 4.22 82 

5.6 Parameters of discrete plant of Rohrs plant under different sampling . . 98 

5.7 Closed-loop poles of adaptive system under different sampling 98 

6.8 Simulation result for various sampling and extended horizon 121 

6.9 Critical sampling for different horizon 122 

viii 



List of Figures 

2.1 Feedback Structure 18 

3.2 Conventional Adaptive System Structure 27 

3.3 (a). Estimated parameters in persistent excitation case 33 

3.3 (b). Estimated parameters when persistent excitation is not satisfied . . 33 

3.4 Geometric Explanation of r/n 41 

3.5 Error Model 43 

3.6 Nyquist curve of H2 under different sampling 52 

4.7 Nyquist path 61 

4.8 Nyquist curve satisfying (4.71) 62 

4.9 Nyquist curve not satisfying (4.71) 63 

4.10 Closed loop with relay 64 

4.11 Nyquist diagram for limit cycle 65 

4.12 Nyquist curve of G* in example for different sampling intervals T . . . . 66 

4.13 Limit cycle obtained when putting G(s) of the example under relay control 67 

4.14 Model error via sampling periods 71 

4.15 Choice of sampling according to the phase of continuous plant 76 

4.16 Obtain critical sampling for minimum phase discrete plant of Rohrs' 

example by using relay 79 

4.17 Zeros of discrete plant of Rohrs' example via various sampling 80 

4.18 (a). Finding the critical sampling for SPR H2, 84 

4.18 (b). Nyquist curve of H2, under different sampling 84 

IX 



4.19 (a). Nyquist curve of H2 via different sampling frequencies 85 

4.19 (b). Nyquist curve of H2 via different command frequencies 85 

4.20 S T C simulation under different sampling 86 

4.21 S T C simulation under noise or high frequency command 87 

4.22 S T C simulation when persistent excitation not satisfied 88 

5.23 Estimated parameters when simulating Rohrs' plant by using RLS esti

mation where the sampling is T, = 0.2sec, command frequency is 1.0 

rad/sec 90 

5.24 S T C result for fixed rate slow adaptation 96 

5.25 Unfixed rate slow adaptation STC result when the sampling is very fast, 

Ta = 0.05sec. for Rhors' plant 101 

5.26 Closed-loop with filter 102 

5.27 Bode plot of the compensation filter in Example 5.4 103 

5.28 Robust Adaptive Controller Design Flow Diagram 104 

5.29 Adaptive control result in example 5.5, command is cos{t), sampling 

T. = 0.05sec 105 

5.30 Estimation result in example 5.5 107 

5.31 Adaptive control result in example 5.5, command is step level, sampling 

T, = QMsec 109 

5.32 Adaptive control for an eighth order plant(example 5.6) command is step 

level, sampling T, = l.Osec 110 

5.33 Estimation result in example 5.6 I l l 

6.34 Error Model for predictive adaptive control 129 

6.35 Phase plot of H2 for different algorithm 131 

6.36 Simulation result in example 6.6 132 

x 



6.37 Simulation result in example 6.7 134 

6.38 Oscillation obtained by using Relay for a time-varying plant 135 

6.39 Frequency Domain estimation result (Nyquist curve of the discrete plant) 137 

6.40 Parameter estimation and controller parameters in Example 6.8 138 

6.41 Simulation output for predictive adaptive control algorithm to a time-

varying plant, Example 6.8 139 

XI 



Abstract 

This thesis describes discrete robust adaptive control methods based on using slow 

sampling and slow adaptation. For the stability analysis, we consider that the plant 

model order is not exactly known and assume that the estimation model order is lower 

than the plant model order. A stability condition is derived with a given upper limit 

for the adaptation gain which is related to a strictly positive real operator. Discussion 

of the relation between sampling and stability condition is then given. For the robust 

adaptive control design, we study slow adaptation and predictive control. For the slow 

adaptation, the main idea is to use only good estimates and use a compensation filter. 

Some frequency domain information on the plant is necessary for this method. For 

predictive control, we discuss the relationship between the extended control horizon 

and the critical sampling. For a simple case, it is shown that the larger extended 

control horizon brings more robust adaptive control. 

The purpose of this thesis is to provide robust discrete adaptive controller design 

guidelines, especially in such cases as using slow sampling frequency, slow adaptation 

rate. It is true that in practice, for various discrete adaptive control algorithms, slow 

sampling and slow adaptation rate will bring more robustness. The use of slow sampling 

and slow adaptation rate is simple and economic, thus a careful choice of sampling rate 

and adaptation rate is highly recommended. This thesis provides such guidelines for 

choosing proper sampling rate and adaptation rate for robust discrete adaptive control. 

xi i 



Chapter 1 

Introduction 

1.1 Background 

In classical control system designs, the parameters of the system to be controlled are 

assumed known. Usually, the purpose of a control system is to obtain a desired plant 

output. For example, when tracking a given command input signal, the controller is 

designed such that the error between the plant output and command input is minimum. 

When this command input signal is a known constant, the tracking problem becomes 

a regulation problem. There are many methods of classical control system design. 

A l l those controller designs based on known plant parameters are valid only when the 

plant is linear time-invariant and its parameters are known accurately. The output of 

a control system will have large errors or even be unstable if there are errors in the 

representation of the real system. However, in practice, when the plant is not known, 

off-line parameter estimation can be used. Parameter estimation is based on a given 

model structure with unknown parameters. The estimation algorithm will improve the 

parameters of the model along the direction such that the error between the model 

output and real plant output is reduced. 

A n adaptive control system combines on-line parameter estimation with on-line 

feedback control law synthesis, and is thus composed of a plant, a parameter estimator 

and a controller design algorithm. A simple block diagram showing the structure of 

such an adaptive controller can be found in Fig. 3.2, Chapter 3. For the on-line design 
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Chapter 1. Introduction 2 

of the feedback controller, it is assumed that the estimated parameters are the true 

parameters of the plant. This scheme allows the controller to be changed accordingly 

when the process changes. However, the resultant algorithms are complex since the 

feedback laws become non-linear and time-varying. 

Historically, the research of adaptive control started in the 1950s and was motivated 

by the design of autopilots for high-performance aircrafts. Such aircrafts are required to 

operate over a wide range of speeds and altitudes. It was found that classical controller 

design works well only in one operating condition. As the operating condition changes, 

the difficulty arises. Thus a more sophisticated controller which can work well over a 

wide range of operating conditions is needed. This early work on adaptive control can 

be found in [23] and [29]. 

In 1960s, there were many new contributions to control theory. Among them are 

the state-space theory, stability theory, stochastic control theory, etc. There were also 

major developments in system identification and parameter estimation, see [4]. A l l 

those contributions were to be important for the development of adaptive control later. 

Starting from the early '70s, the theory of adaptive control developed rapidly. A 

number of successful applications have also been reported in industry. Those appli

cations cover a wide range of areas such as aerospace, process control, ship steer

ing, robotics, and other industrial control systems ([10], [15], [24], [27]). Research on 

adaptive control has focussed on two different approaches: the Self-Tuning Regulators 

(STR), which originated from a stochastic regulation problem; and Model Reference 

Adaptive Controllers ( M R A C ) , which originated from a deterministic servo problem. 

In spite of their different origins, objectives, and formulations, these two approaches 

are closely related. Both systems have two feedback loops. The inner loop is an ordi

nary feedback loop with a process and regulator. The parameters of the regulator are 

adjusted by an outer loop. However, in M R A C , the regulator parameters are updated 
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directly while in S T C , they are updated indirectly via parameter estimation and (or) 

design calculations. Many studies have been performed to improve the regulator design 

methods and parameter estimation techniques. 

In the late 1970s and early 1980s, proofs for the stability of adaptive systems ap

peared, albeit these proofs are under strict assumption of matched plant order in param

eter estimation, i.e., the order of the plant is not higher than the order of the estimation 

model (see [16], [21]). Various controller design methods have been proposed such as 

minimum variance control ( M V C ) , moving-average control, pole-zero placement, L Q G 

control and predictive control (see [7], [9], [11], [12], [38], [40]), etc. 

According to the stability theory of adaptive control when matched plant order is 

assumed, if there is pole-zero cancellation in the controller design, the plant should 

be minimum phase (in discrete domain) for stable self-tuning control (STC). There 

are two different ways to solve this problem if the plant is non-minimum phase. One 

is to modify the self-tuning controller design by keeping unstable zeros uncancelled 

through a factorization method or using another minimization index such as generalized 

minimum variance algorithm ([8], [11]). In this case, more calculations are generally 

required because the implicit algorithm is not practical. The other way is to use slow 

sampling rate since the zeros of the discrete plant are affected by sampling. In [5], it 

is shown that for a continuous-time plant with stable poles and zeros, if the sampling 

frequency is slow enough, the sampled system is always minimum phase. In this thesis, 

we will develop a way of choosing the critical sampling frequency to ensure a minimum 

phase discrete plant for a given rational, stable and minimum phase discrete plant. If 

the sampling frequency is chosen to be slower than the critical sampling frequency, the 

discrete plant will be minimum phase. 

However, in practice, most plants contain unmodelled high frequency poles and 

zeros. If the estimation model order is lower than the actual plant order, there will 
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be a model mismatch. This model error may be insignificant as far as only open-loop 

behaviour is concerned, but in adaptive control systems, the basic assumption in those 

early stability theorems is violated. 

Later, Rohrs et al. studied the cases when the assumption of matched plant order 

is discarded (see [31], [32]). In Rohrs' work, serious problems were outlined. The 

adaptive control algorithm in presence of unmodelled dynamics and of input or output 

noise is not always stable even if the other conditions of those early stability theorems 

are satisfied. A different explanation for this phenomenon was given later in [2] and the 

appendix of [32]. Although Rohrs et al. did simulations in continuous time domain, the 

problem carries to the discrete time domain. Further, it was also found in [33], [34] that 

if the sampling frequency is slow enough, the mismatch between the estimated plant 

and the real plant in frequency band is very small. In practice, an adaptive control 

algorithm is robust if the sampling is slow enough. 

Now, it is believed that robust adaptive control is possible in model mismatched 

case but extreme care must be taken when implementing the controller. Various design 

methods are available. However, theoretical stability results are available only for 

simple algorithms. 

The stability study of self-tuning control algorithms is difficult because it involves 

a non-linear system with time-varying parameters. Recently, some researchers used 

conic sector stability theory first proposed in [42] for non-linear systems to derive STC 

stability conditions under model mismatch (see [13], [30] and [35]). They successfully 

found sufficient stability conditions for S T C . In [1], averaging analysis is also used to 

obtain similar stability conditions. These two different methods both indicate that 

one very crucial condition for stable STC is that an operator be Strictly Positive Real 

(SPR). Also, in the parameter adaptation algorithms, the adaptation rate is assumed 

sufficiently small although there is no indication of how small it has to be. 
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1.2 The Research Topic 

1.2.1 M o t i v a t i o n 

Currently, it is believed that adaptive control systems can be stabilized and give good 

performance under extreme care. Some robust adaptive control algorithms have been 

reported. For example, filtering the data used for estimation so that the parameter 

updating is improved [39]; using a dead zone to switch the parameter estimation off if 

the input signal is not appropriate [9]; introducing orthonormal series representation 

to model the plant dynamics and design a controller based on this new model [43]; ap

plying predictive control for controller design [12]. However, every method has its own 

limitations and it is also observed that for discrete adaptive control, slower sampling 

will bring more robust results in most algorithms. The relation between sampling fre

quency and stability of discrete STC algorithm has been noticed in [33], [34] and [13]. 

A general explanation for the robustness obtained by using slow sampling is that the 

mismatch between the model and the real plant decreases as the sampling frequency 

decreases. This conclusion has been verified through some simulation results. 

1.2.2 M a i n C o n t r i b u t i o n of this Thesis 

In this thesis, we study various aspects of discrete time robust self-tuning controller 

design, with emphasis on the following: 

• Derivation of a way to choose the critical sampling frequency for a rational, stable 

and inversely stable continuous plant such that the sampled plant is minimum 

phase. 

For the perfect match case, minimum phase behaviour of the discrete plant is 

crucial for some direct algorithms. If the sampling frequency is chosen to be 
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slower than this critical sampling frequency, the discrete plant will be minimum 

phase. A practical way of choosing such a sampling is suggested. This is an 

extension of the study on zeros of sampled systems in [5]. 

• Derivation of a new self-tuning control stability condition under model mismatch. 

Most available STC stability conditions for the model mismatched case require 

the existence of a sufficiently small adaptation gain ([1], [13], [30], etc.). Here we 

will derive an upper limit for this adaptation gain, which is directly related to 

the S P R operator required and the initial estimation error covariance setting. 

• Some robust self-tuning controller design guidelines which include using slow 

sampling, slow adaptation rate, filter and predictive control. Model mismatch is 

assumed. 

The slow adaptation rate and the predictive horizon are studied with respect to 

the sampling frequency for the continuous plant. We explain why practitioners 

attribute more robustness to slow adaptation and predictive control. 

1.2.3 Outline of the Thesis 

In chapter 2, we present some basic mathematical preliminaries in signal processing, 

conic sector stability theory, averaging theory and curve fitting. In chapter 3, we discuss 

some conventional estimation and controller design algorithms. A stability theorem is 

derived and compared with existing results. In chapter 4, we study the effect of slow 

sampling on the stability conditions. Both matched model order and mismatched 

model order cases are included. Also we propose how to choose the critical sampling 

frequency. Chapter 5 discusses the effect of slow adaptation. It can be shown that a 

proper filter will always bring stable self-tuning control algorithm. However, the design 
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of the filter requires the frequency domain knowledge of the plant, thus frequency 

domain estimation can be useful. In chapter 6, predictive control is applied. Here 

the emphasis is on the relation between sampling frequency and prediction horizon. 

Chapter 7 contains conclusions and some future research directions. 



Chapter 2 

Mathematical Preliminary 

2.1 Signal Processing Theory 

2.1.1 Sampling Process 

Suppose G(s) is the continuous transfer function of the plant. Denote Z{G(s)} is the 

Z-transform of G(s), then the discrete transfer function of the sampled plant with 

zero-order hold is: 

J ( r . ) = z { i ^ 0 ( . ) } = ( i - r ' ) z { ^ } . 
Define: 

then: 

^(?- ,) = ( l - 9 - 1 ) Z { G „ W } (2.1) 

H(q~1) represents the sampled plant or discrete plant. Z{G(s)} is the Z-transform 

resulting from G(s), which also depends on sampling period. The following lemma is 

important to understand the sampling process. Similar result can always be found in 

text books of digital control such as [17]. 

Lemma 2.1 

If the sampling interval is T and to, = — , then the sampling process will result in: 

Z{Go(s)} = - Y, G0(s-jnw,) (2.2) 

8 
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[proof] 

Suppose g0{t) is the corresponding impulse response signal of G0(s) in time 

domain. The sampling process can be considered as a modulation process 
+00 

in which the particular pulse train p(t) = 8(t — nT) is multiplied by 
nrr — oo 

the continuous function go(t)-

9*o(t) = p(t)g0(t) (2.3) 

since we can express p(t) by Fourier series as: 
+00 

i<0= E c ^ i n w , t 

where the coefficients: 

Thus: 
j +00 

*o*(0 = 7p E SoO''™"' 

Using Laplace transform: 

r+00 /•+00 
GS(«) - / g*o{t)e-" 

Jo 
r+oo 1 +0° 

= / r E go{t)e*'"te-'ldi 
Jo T n=_co 

1 +00 . + 0 0 

E / goWe-l-^d n= —00 
+00 

= j; E Go(5 - JTWO.) 
n= —00 

Also from (2.3): 

9o(t) = 9o{0)S{t) + g0(T)8(t - T) + g0(2T)S{t - 2T) + 
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G;(s) = €7o(0) + <7o(T)e-sr + g0(2T)e-2'T + • • • = £ So(nT)e — nsT 

n=0 

Let 2 = e*r, then: 

G0(^) = E 5 o ( n r ) z - ' i = z{G'o(5)} (2.4) 
n=0 

Compare the result before, the sampling process is; 

HGo(s)} = - £ G0(s-jnw,) 
n= —oo 

• 

From Lemma 2.1, we can see that in the frequency domain, the high frequency 

components are aliasing to the low frequency part after sampling. 

2.1.2 Frequency Domain Estimation via D F T 

We denote a discrete-time signal by x(n) = x(nT) and xt denotes the sampled continuous-

time signal where t = nT, n is an integer and T is the sampling period. xt-i denotes 

a;[(n —1)T], etc. The Z-transform of x(n) on the unit circle is the Discrete-Time Fourier 

We also define the N-point Discrete Fourier Transform (DFT) of x(n) at N points in 

frequency domain, Wk = kw,/N, fc = 0,1, • • •, TV — 1, where w, = 2ir/T is the sampling 

frequency in (rad/sec). Denote WN = e-W\ D F T is: 

Transform ( D T F T ) and denned as: 

-jnwT (2.5) 

N-l 

XN{wk)= Yx(n)Kn,k = 0,l,---,N - 1 (2.6) 
n=0 
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Further, the inverse N-point discrete Fourier transform of Xw(wk) is: 

*(n) = Jr E XN(wk)W~kn, n = 0,1, • • •, N - 1 

If x(n) is of finite duration, for example, x{n) = 0 when n > N, then the N-point D F T 

of x(n) and D T F T of x(n) are equal at wk: 

XN{wk) = X(ejwT) \w=Wk, k = 0,1, • • •, N - 1 

The following lemma is similar to a result from [26]: 

Lemma 2.2 

Let y(m) = h(m) * u(m), where h(m) is an infinite length, causal, impulse response 

and all poles of Z[/i(m)] are in the open unit disk. We denote the D T F T of h(m) 

by H(e*wT), and N-point D F T s of u(m),y(m) ending with time index n, by U^(wk), 

Yf}(wk), respectively, then: 

Y£(wk) = H{e^T)U^(wk) + E^(wk), k = 0,1, • • •, N - 1 (2.7) 

where the discrete function E^(wk) is given by: 
oo n—N n 

En
N(wk) = EHp)Kp( E « H < - E « ( ™ X m ) 

p=l m=n—N—p+l m=n-p+l 

and k = 0 , l , - - - , i V - 1. 

The definition of Yfi(wk) above is: 

Y£{wk)= £ y(rn)W*r,k = 0,l,---,N-l 
m=n-N+l 

which uses updated y(n). E^(wk), UJ^(wk) are similarly defined, 

[proof] For 
n-N oo 

m = -oo m=n+l 

n-N oo 

H(ej™»T)[ £ u{m)W!T + UZ(wh) + £ u(m)W£»] 
m= — oo m=n+l 
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Thus, 

n-N 

E"N(wk) = H(e^T)[ £ u(m)W*» + £ <rn)Wk
N
m) 

m=-oo m=n+l 
n - N oo 
£ y{m)wjr- E y ( ™ X n 

m = — oo m=n-f-1 

For 

n - N n-N oo 

£ y(m)W*» = E E M p M m - p ) ^ " 1 

m=—oo m= — oo p=0 
oo n—TV 

= E M P ) E «(m-p)W# m-'>W# 
p=0 m= —oo 
oo n — N—p 

= E M P X p E « ( / ) < 
p=0 i=-oo 

= iT(e*" r)[ i f «(m)W#" - " E 
m=—oo m=n—N-p+1 

n - N 

where the term u ( T n ) W ^ m is eliminated when p = 0. Similarly we have, 
m=n—TV—p+1 

oo oo oo n 

E vMwft" = E HP)WN

P[ E «(m)Wj- + E «(m)Wj m] 
m=n+l p=0 m=n+l n-fl — p 

Apply these two equations to the expression of Ejf(wk), the lemma is proved. 

• 

The discrete transfer function of the plant G(s) with zero order holder is: 

which is the D T F T of the sampled impulse response h(n) for z — e J t u T . We will have 

the following remarks concerning H{e^wT): 

R e m a r k 1: 
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The discrete plant H(e3wT) at w — wk, k = 0,1, • • •, N — 1 can be approxi

mated by: 

^ r ) = ffi ( 2' 8 ) 

where Y^(wk),U^(wk) is N-point D F T oiyt,ut, and k = 0,1, • • •, N - 1. 

Remark 2: 

The estimation error in (2.8) can be eliminated if u(nT) — 0,y(nT) = 0 for 

n > N. The error is small if ut,yt are close to finite length signals and N 

is large enough. 

Remark 3: 

For a linear system, if u(t) = Ux(t) + u2(t), y(t) = y^t) + t / 2(*)i }'i(w), 

12(10), C/1(w),C/2(w) are D F T s of yi(t), y2{t),v-i(t),u2(t) respectively, and 

Yi(w) = H{eiwT)U1{w), then Y2(w) = H(e^wT)U2(w). 

In practice, if ui(t), yi(t) are known steady state input and output signals, u2(t) 

is a disturbance and y2(t) is the output result from disturbance, choosing u2(t),y2(t) 

having limited length, then H(ejwT) can be obtained by H(ejx"kT) = Y^k\. 
U2[Wk) 

2.2 On Conic Sector Stability Theory 

2.2.1 Definitions 

Extended Normed Linear Space 

When discussing stability, unstable systems will be involved, thus the function space will 

contain functions which "explode", i.e., which grow without bound as time increases. 

Such functions are not contained in the spaces commonly used in analysis, for example. 
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in the Lp spaces. Thus it is necessary to construct a special space, which will be 

called extanded space and denoted as Xe. Xe will contain both "well-behaved" and 

"exploding" functions, which will be distinguished from each other by assigning finite 

norms to the former and infinite norms to the latter. 

Let T be a given subinterval of the reals, of the type [r.0,oo), or (—00,00). V is a 

given linear space. Followings are some definitions from [42]: 

Definition 

Let x be any function mapping T into V , that is, a; : T —> V; let r be any 

point in T; then the symbol xT denotes the truncated function, xr : T —• V , 

which assumes the values x[ = xt for t < r and x\ = 0 elsewhere. 

Definition 

For a normed linear space X consisting of functions of the type x : T —> V , 

1. IfzeX then xT £ X for all r G T. 

2. If x : r -» V, and if xT € X for all r € T, then: 

(a) | | x r | | is a nondecreasing function of r € T. 

(b) If l im | |x T | | exists, then x € X and the limit equals ||x||. 

Definition: 

The extension of X, denoted by X e , is the space consisting of those functions 

whose truncations lie in X, that is, Xe — {x\x : T —• V", and xT 6 X for 

all r (E T} . A n extended norm, denoted | |x | | e , is assigned to each x £ A ' e as 

follows: [|x||e = ||x|| if x (E A r , and | |s| | e = 00 if x $ X. 

Example 2.1: 

Consider xt = ept which is an function in L2[0,oo] when p < 0 and unbounded when 
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p > 0. Now by using a truncated function x\ and construct a periodic signal xt based 

on x[ beyond [0,r], we can write its Fourier series expansion as: 

oo 

Xt = do + X / t a n cos{nvjt) + bns'm(nwt)] 
n=l 

where w — 2n/T,t 6 [0,r]. The coefficients in the Fourier expansion are 

e p T - 1 
a 0 

= - fTeptdt 
T JO pT 

2 r „t , 2 P ( e p T - 1 ) 
an = - eF cos(nwt)dt = — r - r r 

bn = — ept sin(nwt)dt = — 
T Jo T 

2nw{l - e^) 
-(p2 + n2w2) 

Notice that xt, x\ and xt have the same value in [0,r]. If p < 0, they are in JL 2 [ 0 , T] 

as T goes to infinity. For 

INI* = £l4 + \ ±K + *)]* = - U'[£ + - ±)\ 
thus, 

^mK||' = J ^ | W = - ^ = ||x^ 

which is as expected. Here we have used the equation: ([44], p.526) 

Y 1 - —\^1±1 _ J _ i 
~ n 2 + a 2 ~~ 2a V ™ - 1 ?r J 

If p > 0, xt is not in L 2 [ 0 , T ] but x\ still is for finite r. However, as r goes to oo, 

am bn will go to oo, thus both and will go to oo. 

• 
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Input-Output Relation 

Definition (Relation) 

A relation H on Xe is any subset of the product space Xe x Xe. If (x,y) 

is any pair belonging to H then y will be said to be H—related to x; y will 

also be said to be an image of x under H . 

In other words, a relation is a set of pairs of functions in Xe. It will be convenient 

to refer to the first element in any pair as an input, and to the second element as an 

output. A relation can also be thought of as a mapping, which maps some inputs into 

outputs. 

D e f i n i t i o n (Domain and Range) 

If H is a relation on Xe, then the domain of H denoted J D O ( H ) , and the 

range of H denoted Ra(H) are the sets: 

• Do(H) = {x\x € Xe, and there exists y G Xe such that (x,y) 6 H } . 

• i?a(H) = {y\y £ Xe, and there exists such that '{x,y) G H } . 

If H is a relation on Xe, and if x is a given element of Xe, then the symbol H x 

denotes an image of x under H . 

Definition (Operator) 

A n operator H is a relation on Xe which satisfies two conditions: 1) Do(H) = 

A r

e ; 2) H is single-valued. 

This means that the range of an operator is the whole extended space and the input-

output relation of it is unique. 

Definition 
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J? is the class of those relations H on Xe having the property that the zero 

element, denoted o, lies in Do(H) , and Ho = o. 

If H and K are relations in 3?, and c is a real constant, then the sum ( H + K ) , 

the product c H , and the composition product K H of K following H , are defined in the 

usual way, and are relation in 3?. The inverse of H in 3?, denoted by H _ 1 , always exists. 

The identity operator on Xe is denoted by I. 

2.2.2 S t a b i l i t y P r o b l e m De f i n i t i o n 

In [42], a system is called stable if it is well behaved in two respects: (1). It is bounded, 

i.e., not explosive; (2). It is continuous, i.e., not critically sensitive to noise. 

Definition: 

A subset Y of Xe is bounded if there exists A > 0 such that, for all y € 

Y, \\y\\ < A. A relation H on Xe is bounded if the image under H of 

every bounded subset of Xe is a bounded subset of Xe; A relation H on 

Xe is continuous if H has the following property: Given any x G A", and 

any A > 0, there exists 8 > 0 such that, for all y G X, if ||a; — y|| < 8 

then | |H»—Hy|| < A ; A relation H on Xe is input-output stable if H is 

bounded and continuous. 

Consider a feedback system as shown in Fig.2.1, the feedback equations are: 

et = wt - H2yt 

Vt = Hiet 

where H\,H2 are relations in 3?. Our interest is to find conditions on Hi, H2, which 

ensure the relation E, Y be bounded. Here: E = {(w, e)\(w, e) G Xe x A"e and there 
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-o— Hi 
yt 

H2 

Figure 2.1: Feedback Structure 

exist y, Hie, H2y, all in Xe, such that the above feed back equations fit }. Similarly, Y 

relates y to w. 

2.2.3 Conic Relations and properties 

In this chapter, we will give the definition on conic relations and discuss some properties 

as in [42]. 

Definition 

A relation H in 3? is interior conic if there are real constants r > 0 and c 

for which the inequality 

\\{Hx)t-cxt\\<r\\xt\\ [xEDo{H)]tET] (2.9) 

is satisfied. H is exterior conic if the inequality sign in (2.9) is reversed. 

Here the constant c is called the centre parameter of H , and r is called the 

radius parameter. 

Inequality (2.9) can be expressed in the form | | (Hx) e — cxt\\2 — r||a: t | | 2 < 0. If norms 

are expressed in terms of inner products, then, after factoring, there is an equivalent 

inequality 

((Haj) t - axt,(Hx)t - bxt) < 0 [x (E Do(U):t G T] (2.10) 
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where a = c — r and b = c + r. It will often be desirable to manipulate inequalities such 

as (2.10), thus we define the conic H to be inside the sector {a, 6} , if a < b and (2.10) 

holds; H is outside the sector {a, b} if a < b and (2.10) holds with the inequality sign 

reversed. 

Def in i t ion 

A relation H in is positive if 

A positive relation can be regarded as degenerately conic, with a sector from 0 to oo. 

Example 2.2: 

If a positive relation H is a linear and time-invariant operator, then 

(xt,{Hx)t)>0 {x G Do{H);t e T] 

Re[H(jw)] > 0 Vw 

[proof] 

For a linear and time-invariant operator H, we can express it by using 

a transfer function H(s) where s denotes the derivative operator. Then, 

2TT 

1 

> 0 

or 
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for all xt or X(jw). Thus the necessary and sufficient condition is: 

Re[H(jw)} > 0 Vw 

• 

Some Properties of Conic Relations 

Some simple properties of conic relation are listed. Here, we assume conic relations H , 

H i as: H is inside the sector {a,6}, with b > 0; H i is inside {ai,&i} with bi > 0. 

Suppose k > 0 is a constant, then 

1. I is inside {1,1}. 

2. fcH is inside {fca,kb}; — H is inside {—6,—a, } . 

3. ( H + H i ) is inside {a + a\, b + &i, } . 

4. I N V E R S E R U L E 

- C A S E 1: if a > 0 then H 1 is inside {1 /b, 1/a}. 

- C A S E 2: if a < 0 then H " 1 is outside {1/6,1/a}. 

- C A S E 3: if a = 0 then ( H " 1 - (1/6)1) is positive. 

5. Properties (2), (3), (4) remain valid with the terms "inside" and "outside" 

interchanged throughout. 

6. <7(H) < rrcax(|a|, |6|). Hence if H is in {—r,r} then <7(H) < r. 

Here <7(H) is the gain of relation H which is defined by 

and the supremum is taken over all x in Do(H), all H i in jRa(H), and all t in T for 

which xt ^ 0. 

g(U) = sup 
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2.2.4 Theorem on Boundedness 

Consider the feedback system of Fig.2.1, and suppose that H2 is confined to sector 

{a, b}. It is desirable to find a condition on Hi which will ensure the boundedness of 

the closed loop. The following theorem from [42] is outlined here. The proof of the 

theorem is omitted. 

Theorem 2.1 (Zames, [42]) 

In Fig.2.1, let Hi and H2 be conic relations. Let A and 8 be constants, of which one is 

strictly positive and one is zero. Suppose that 

1. H2 is inside the sector {a + A , 6 — A } where b > 0, and, 

2. Hi satisfies one of the following conditions: 

- C A S E 1: If a > 0 the Hx is outside { - - -6,-\ + 8} 
a b 

- C A S E 2: If a > 0 the Hx is inside {-\+6,--~ 8} 
b a 

- C A S E 3: if a = 0 then Hx + (- — 8)1 is positive; in addition, if A = 0 
b 

then g(Hi) < oo. 

Then relations E , Y are bounded. 

In a special case, when Hi is positive, i.e. 

(Hie,e) > 0 

Then the stability condition of a linear time-invariant H2 is 

Re{H2(jw)} > v 

Here v is a sufficient small positive real. 
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The famous Nyquist stability criterion is a special case of the conic sector stability 

theorem, where H2x — x. Hi is linear time invariant relation representing the open-loop 

transfer function of the plant. 

2.3 On Averaging Theory 

In [1] and [25], stability conditions of adaptive system was discussed by using averaging 

theory. In their analysis, an adaptive algorithm can be expressed by the following time-

varying equation: 

6k+1 = {I- eRk)h (2.11) 

where e is a positive small constant representing the adaptation rate ( See section 

3.4.3 ). Here, we are going to show the stability conditions for this equation by using 

averaging method. 

The variations of 0 in (2.11) are slow if e is sufficient small. In discrete time, the 

sample average is defined as: 

Let the state transition matrices of (2.11) be F(k, j ) , F(j,j) = I and denote F{ := 

F(fc i ,k_ i ) , Oi := 8{ki), then, 

6i = FiFi-i • • • Fi-jdj, j < i; , j, i € Z 

Lemma 2.3: U n i f o r m Contractions 

If Fi is a. sequence of uniform contractions for all i, that is if there exists a 

positive constant a such that: 

l-Fil < e~a, Vi G Z 
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then the system (2.11) is exponentially stable. Conversely, if the system 

(2.11) is exponentially stable, then there exists a sequence of sample inter

vals for which Fi, i € Z , is a sequence of uniform contractions. 

Lemma 2.4: Averaging 

Assume that R(k) is a sequence of bounded n x n matrices and let 

A i k=ki_s 

Then, Fi given by: 

Fi = I- eTiRi + {eTifMi (2.12) 

and, for e satisfying |e|T;/9i < - , | M , | < 2p\. 
2 

[proof] See [1]. 

Using lemma 2.3, and lemma 2.4, we can derive the following theorem: 

Theorem 2.2: St a b i l i t y v i a sample Averages (Anderson et al. [1]) 

Consider (2.11) with R(k) a sequence of bounded n x n matrix. If for a 

sequence of sample averages R\, a constant positive definite matrix P = 

PT > 0 can be found satisfying 

PR{ + RfP > I , Vi 6 Z (2.13) 

then there exists an e* > 0 such that the system (2.11) is exponentially 

stable for all e G (0,e*). 
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The sufficient stability condition of theorem 2.2 is a general signal dependent positivity 

condition, which applies to large classes of system matrices R(k). For more restrictive 

classes of signals, much sharper stability conditions can be obtained. 

Theorem 2.3: S t a b i l i t y (Anderson et al. [1]) 

For periodic R(k), there exists a positive constant e* such that the system 

(2.11) is exponentially stable for all e (E (0, e*) if and only if 

min ReXi(R) < 0 (2.14) 
t 

2.4 O n Curve F i t t i n g 

Given a known form of signal f(k,p,t), where & is a set of known parameters and 

p is a set of unknown, t is time series, the curve fitting problem is to find the set of 

parameters p such that the curve fitted signal is y = f(k,p, t) and an error index J(y,y) 

is minimum for the measured signal yt. 

In practice, almost every signal can be expressed as Fourier series. The unknown 

parameters are usually the amplitude and phase of each Fourier series term. Here, we 

will show how to curve fit a sine wave signal with only single frequency. The multi-

frequency cases are similarly done but the calculation is tedious. 

Now we consider a signal with the known form: yk = Hi sin(u>1fcT — Ax). The error 

index to be minimized is: 
n 

J = E b f c -yk]2 

To find Hi, and A x by using curve fitting, we set dJ/dHi — 0 and dJ/dAi = 0 : 
n 

[yk - Hi sin(a;1 kT - A x ) ] sin(a;1 kT - Aj ) = 0 
k=i 
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n 
J2iVk - # 1 s i n ^ f c r - A j ) ] ^ coBfakT - A a ) = 0 
fc=i 

For large n and nwiT close to an integer, we have 

J2 sin(u>ifcT - Ax) c o s ^ f c T - A i ) = 0 

thus 

k=i 

ErinVifcT-Ax) « 
fc=i 2 

Ez/fcCos^ifcT) 
<anAx = (2.15) 

^2/ f c sin(a; 1 A;r) 
fc=i 

2 n 

J5Ti = — X ) ̂  s i n ( ^ i f c T - A i ) (2.16) 
n fc=i 
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Adaptive C o n t r o l A l g o r i t h m and Sta b i l i t y 

3.1 Structure of Adaptive C o n t r o l System 

The structure of an adaptive control system is as shown in Fig. 3.2. It includes the 

plant, the parameter estimation and the controller. Usually, the plant output yt is 

desired to be as close to the command input wt as possible. Suppose the continuous 

domain transfer function of the plant is G(s), without delay, then the discrete plant 

has the form: 

,( r tHi-r'>.{^)-agf («T, 
where A(q~1), B(q~x) are the polynomials in the shift operator (q~1xt = The 

parameter estimation measures the input-output (ut, yt) and evaluates the parameters 

of the estimation model. The controller uses estimates to produce the control input of 

the plant ut. 

There are various methods of parameter estimation and controller design. In the 

following two sections, we will introduce some of them. The purpose of listing those 

estimation and controller design algorithms is to give a glimpse of the variety of adaptive 

control algorithms. Robust controller design will be discussed in later chapters. 

3.2 On Parameter Estim a t i o n 

In the adaptive control system of Fig. 3.2, the estimation is to find parameters for 

a given model such that the estimated model and the real plant have the best match 

26 



Chapter 3. Adaptive Control Algorithm and Stability 27 

w ZOH - Plant 

-f1 

-*- a. 

Estimation 

Figure 3.2: Conventional Adaptive System Structure 

under the measured input ut and output yt. Here, we shall represent the plant by an 

A R M A model. Other structures can be used are: state space model, transfer function 

model with poles and zeros as parameters, orthonormal series representation model, etc. 

When using an A R M A model, the expression of input-output relation of the sampled 

plant with zero-order holder is: 

Vt = diVt-i + <h7ft-2 + h anyt-n + + b2ut_d_x + • • • + bnut_d_n+1 (3.18) 

where the plant is linear time-invariant with order n and delay d. Let 

A(q 1) = 1 - axq 1 - a2q~ 

B(q-1)=b1 + b2q-1 + ..- + bnq-n+1 

then the transfer function of the discrete plant is: 

usually, we express this input-output relation in the form: 

(3.19) 

yt = ft^e (3.20) 
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where 

<i>t-\ — [yt-i,yt-2, • • • ,yt-n,ut-d,ut-.d_i,- • • ,ut-d-n+\Y 

and 

0 = W\,a2-• • • , < L n , b i , b 2 , - • • , b n ] T  

which represents the true plant. 

Recursive Least Square M e t h o d 

In the estimation process, <f>t-i, yt is measurable. 9 is to be estimated. Let 6t be the 

estimate of 9 at time t, then the recursive least-squares parameter estimation is given 

by: 

9t = et-i + Ktet 

A + <pt_i-Ff_i<Pt-i 

A - i r r Pt-l<f>t-l<f>t-i 1 p 

I \ i j.T 5 7 K t - i 

Where et = yt — <^^_1 t̂_1 represents the prediction error, 90 is pre-specified, P0 is a 

positive definite matrix and 0 < A < 1 is a forgetting factor. In a simple representation, 

we can rewrite (3.21) as: 

9t = $«-i + P t & - i e t 

P~x = XPrA + h-xtf-x (3-22) 

The index to be minimized is £ \l ke\, thus when A < 1, more weights are placed 
fe=i 

on the most recent errors and the estimation algorithm is able to track time-varying 

parameters. 
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The recursive least-squares method works well when the output noise is white. How

ever, in case of coloured noise, an alternative method is required. One such alternative 

method is the Instrumental Variable Method. The recursive form is: 

0t = Bt-r+Ktet 

ft - A 1 - T f t _ i 

Where 

zt = [y*-i,yt-2, • • • ,yt-n,wt_ 1,u t_ 2, • • • , u t _ n ] T 

yt = zfet-i 

By using an instrumental variable method, the estimates under coloured noise can be 

unbiased. Other types of improved least square estimation method include generalized 

least square, extended least squares (see [37]), etc. 

E s t i m a t i o n Based on Gradient A l g o r i t h m 

Some theoretical results on STC stability are based on a constant gain estimation 

algorithm (for example, [1], [14], [30]). The estimation form is: 

where e is a constant representing the adaptation gain. In practice, the use of constant 

gain algorithm is simple but not ideal. The adaptation is slow and inaccurate. Here 

we will use the interlaced version of the standard least-squares algorithm (3.21) with 

a small constant gain to slow down the convergence speed of estimation. The using of 

the interlaced version is necessary when implicit self-tuning control algorithm is used 
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(see example 3.2). The form of the estimator is: 

§t = 6t-d + ePttt-det (3.24) 

A + ez<p{_dFt-d<Pt-d 

where d is the delay in A R M A model (3.18). The convergence speed will be affected 

by the adaptation gain e and the delay d. This form is a gradient algorithm as the 

least-squares method is also a gradient algorithm with faster convergence speed (e = 1). 

Properties of Estimation Algorithm 

Parameter estimation is designed to minimize the error between the estimated model 

and plant model, i.e., prediction error. In case the estimated model and the plant model 

have the same order, the parameters of the plant can be estimated accurately. However, 

in practice, we often have to face the fact that the plant structure is not exactly known. 

This is the model mismatch case. We also say that there exist unmodelled dynamics. 

In case there is model mismatch, the dimension of the estimated parameters 6t is 

lower than that of the true plant 6. The above estimation algorithms have the following 

properties: 

1. The estimation result depends on the frequency component of the command. 

2. If the order of persistent excitation of the input signal is lower than the 

estimated model order, the estimation result will not be unique and could 

be significantly influenced by the presence of noise. 

For property 1, consider a linear discrete plant with transfer function H(q~l), the 

estimated model is H{q~l). It can be shown from the minimization index that the 

estimation algorithm will tend to result in H(e~3W) = H(e~3w) at the frequency w 

where the regression vector (input, output of the plant) (f> is rich in frequency domain. 

Since there is model mismatch, H(q~1) and #(<7_1) are not able to match at every 
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frequency. Only at the frequency where the command is rich enough will the estimated 

model be accurate. 

In property 2, the definition of persistent excitation is as follows: 

Def in i t ion 

Let the regression vector 

<f>t = [Vt-l, • • • ,yt-n,Ut_d, • • • , T i t _ d _ n + 1 ] 

contains 2n inputs, outputs of the plant (3.18). The input ut is said to 

be persistently exciting at order 2rc, if for some positive cti, integer S, and 

every integer j there holds: 

j+s 

J2Ml>aJ (3-25) 
k=j 

A command signal is said to be persistently exciting at order 2n if (3.25) holds 

and ut is excited by this command signal. A non-zero constant command is per

sistently exciting at order 1. A signal with m different frequencies of sine wave 
m 
^2aisin(iUi<), a tsin(u;i<) ^ 0,i — l , - - - , m is exciting at the order 2m. Let the 
i=l 

excitation order of a determinant input signal be n p , the number of the parameters to 

be estimated be n. If n p < n , then the estimated parameters form a vector which is in 

n dimensional space with n — np degree of freedom. In this case the input signal is not 

persistently exciting for the estimation model. 

In case the command signal is not persistently exciting, the noise will increase the 

excitation order. The frequency component of the noise signal is undesired and vary

ing, thus the estimation result is not unique and dominated by the noise in the n — np 

dimensional space. The following example demonstrates this point: 
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Example 3.1: Consider a continuous plant which was given by Rohrs: 

G(s) = 2 229 
(3.26) s + 1 5 2 + 305 + 229 

when sampling it by T, = 0.2sec, the discrete transfer function will be: 

(0.158 + 0.165Q-1 + 0.00708q- 2)g- 1 

1 - 0.910O-1 + 0.0776o-2 - 0.00203a-3 

Now we use first order estimation model, i.e. 

yt = ayt-! + bu t - i 

and all the initial regression vector values are zero. The forgetting factor in the esti

mation is 0.98. 

excitation order 2 which is a case of persistently exciting. We recorded first 500 samples 

as in Fig. 3.3(a), where the converged parameters are 1.63, 0.46, respectively. 

(2). Under the same output noise, we apply step input. The excitation order is 

np = 1. Theoretically, the estimated parameters are not unique because the persistent 

excitation is not satisfied [3]. However, the D C gain of the estimated model is unique.. 

This restricts the parameters d, 6 satisfying: 6 = 2.0(1 — a). The first 500 samples of 

estimation process is as in Fig. 3.3(b), where the estimated parameters are unfixed. 

Thus, the persistent excitation condition is important for useful estimation result 

under model mismatched case. 

3.3 Self-tuning Controller Design 

3.3.1 Pole-zero Placement Design 

Basic A l g o r i t h m 

(1). We apply input ut = cos(f), output noise is JV(0,0.02), the input signal has 
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Figure 3.3: (a). Estimated parameters in persistent excitation case 
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T i m e i n . s e c o n d s 

Figure 3.3: (b). Estimated parameters when persistent excitation is not satisfied 
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For a discrete plant (3.18), the degree of A(q~1) is n, the degree of B(q~1) is n — 1. 

The input, output and command signals of the process are denoted ut, yt, and wt, 

respectively. It is desired to find a controller such that the closed loop is stable and 

that the transfer function from the command wt to yt is given by: 

*-(* » - A . ( r ' ) 
where Am, Bm are coprime and Am is monic. The zeros of Am are assumed to be inside 

unit disk. 

A general linear regulator is given by: 

Riq-^ut = Tiq-^wt - 5 ( . " 1 )y t (3.27) 

The pole-zero placement algorithm is as follows (Astrom and Wittenmark, [7]): 

Step 1: Solve the Diophantine equation: 

ARx + q-dS = AmA„ (3.28) 

with respect to Ri, S. 

Step 2: Let 

R = RiB (3.29) 

T = A0Bm (3.30) 

Where A0 is a polynomial used as an observer and all its zeros are in the restricted 

stability region. Here two conditions concerning the degrees of Am, B,-n, AQ are as 

following: 

deg{Am) - deg{Bm) > deg{A) - deg{B) 

deg{A0) > 2deg(A) - deg{Am) - deg(B) - 1 
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Note that all zeros of A0,B are cancelled in the process, thus, B is required to have 

stable zeros, i.e., the discrete plant must be minimum phase. It will be shown later 

that this is a strict requirement, especially in the case of fast sampling. 

Implicit Algorithm 

(3.28)-(3.30) is an explicit (indirect) algorithm. The controller parameters S, R, T 

are calculated explicitly according to the estimation result and applied into (3.27) to 

obtain the control input ut of the plant. For the implicit algorithm, applying (3.28) to 

the plant, we have 

A0Amyt = Syt-d + Rut_d (3.31) 

(3.31) can be used as estimation model where A0, Am are known, R, S are to be 

estimated. Let R = r0 +r\q~l H (- rn+d_2<l~n~d+2 = r0 + Rq-1, the control law is: 

ut = —(A0Bmwt - Syt - R'ut^) (3.32) 

where the estimated parameters are directly applied. The implicit algorithm is also 

called direct algorithm. 

Stability Conditions for model order matched case 

The pole-zero placement S T C algorithm was proved to be stable under the following 

four assumptions in the early 1980's (see [21]). 

1. The time delay of the discrete plant d is known; 

2. Upper bounds on the plant order are known; 

3. B has all its zeros inside the unit disc; 

4. The sign of &i = r 0 is known. 



Chapter 3. Adaptive Control Algorithm and Stabihty 36 

Example 3.2: Consider the plant 

H { q ]~ A{q~l) (3'33) 

Choose Am = 1, Bm = 1, and A„ — 1. Then the Diophantine equation (3.28) becomes: 

ARi + q~dS = 1 

and (3.30) becomes T = 1. Thus the estimation model is: 

yt = Syt-d + Rut-d (3.34) 

The order of the polynomials R and S are n + d — 2, n — 1 respectively where n ' is 

the assumed model order of the plant ( n < n ). Thus there is a total of 2n + d — 1 

parameters to be estimated. 

Let's express (3.34) as: 

yt = siyt-d + s2yt-d-i H 1- f i^ t -d + r2ut_d_1 + • • • 

Then the explicit control law is: 

ut = -r-iwt+d - hyt W - i ) (3.35) 

fj, S{ are estimated parameters, wt is the command. • 

Factorization i n Pole-zero Placement 

The above pole-zero placement will cancel all the zeros of the discrete plant. When 

the plant is nonminimum phase, this algorithm can not be applied because unstable 

zeros are cancelled. However, we can factorize B into two parts: B+ (the zeros are 

all inside stable region) and B~ (zeros outside the stable region), B = B+B~. Only 

B+ is cancelled. Then Bm has to be in the form: Bm = BmB~. The design algorithm 
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(3.28)-(3.30) become: 

ARi + q-dB~S = AmA0 (3.36) 

R = RXB+ (3.37) 

T = A0B'm (3.38) 

The controller is as the same form as (3.27), but here, we should notice that the degree 

of R\ is higher (d+degB~ — 1). In this case, the implicit algorithm is difficult to design. 

For 

AmA0yt = B~ Syt-d + ARxyt 

= B~ Syt-d + RiB+B~ut_d 

= B-[Syt-d + B+Rxut-d] (3.39) 

The practical difficulties of using implicit algorithm are: (1) The order of B+ is not 

known a priori. (2) B~ is difficult to be factorized from the A R M A model. 

3.3.2 M i n i m u m Variance C o n t r o l 

Basic A l g o r i t h m 

Consider the discrete plant with delay d and white noise e t: 

A{q-X)yt = B(q-l)ut_d + C{q-l)et (3.40) 

The optimal strategy for minimum variance criterion Vt = Eyf is: 

Where F(q~1),G(q~1) are determined from Diophantine equation: 

C{q-') = A{q-x)F{q~x) + G{q-')q-d (3.42) 
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Then the closed-loop transfer function will result in: 

yt = F{q-l)et (3.43) 

When using (3.41), it is necessary that: 

1. B has all its zeros inside the unit disk. Thus the discrete plant should be 

minimum phase. 

2. C has all its zeros inside the unit circle. This is realizable by using the 

spectral factorization theorem, (chapter 6 of [8]) 

Implicit Algorithm 

Apply both sides of (3.42) to yt by using the plant (3.40) and ignore the output noise, 

we obtain: 

Ciq-^yt = F ( g - 1 ) 5 ( g - 1 ) u t _ d + C?(g- 1)y f_ d (3.44) 

We can use (3.44) as estimation model and the estimated parameters are directly used 

in (3.41) for control input calculation. This procedures is similar to the implicit pole-

zero cancellation algorithm. 

Factorization in M V C 

In case B has unstable zeros, let B = B+B~. B+ and B~ are similarly defined. The 

control law is: 

u, = — F(q-i)B+(q-i) 

where the Diophantine equation is: 

yt (3.45) 

C{q-1) = A(q-X)F(q-x) + q-dG{q-l)B-{q-1) 

the degree of F is d + deg(B~) — 1 and which is higher than the degree of F in (3.42). 

The closed-loop has the same form as (3.43) but here it is only a suboptimal strategies, 
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the error variance is larger than the minimum variance in all zeros cancelled case. In 

chapter 5 of [9], this strategy is called moving average control for the controlled output 

is a moving average process of order d + degB~ — 1. 

For the implicit algorithm, we have 

Cyt = FBut.d + GB-yt_d = B~[FB+ut-d + Gyt-d] 

Here B~, FB+, G have to be estimated. Here, we meet the same difficulty as (3.39) in 

pole-placement case. 

3.3.3 Other Algorithms 

For the plant (3.33), let 

zt = P{q-1)yt + q-dQ(q-1)ut 

where P, Q are weighting polynomials. Thus: 

Azt = (PB +QA)ut_d = B'ut_d 

Let the controller be 

wt+d = Sut + Rzt = 4>j0t 

R, S are to be estimated and 

AS* + q-dR*B' = C 

Thus the closed-loop transfer function is: C~lB (see [14]). 

Predictive Control 

This is a robust controller design method. We will introduce the basic algorithm ([12], 

[40]) in Ch.6, and discuss the relation between the control horizon and the sampling 

interval. 
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Dual Control 

This is a more complicated control law which optimally adds caution and probing to the 

certainty equivalence control. It cannot be computed, except for very simple systems 

(see [21]). 

3.4 Stability Condition for Adaptive Control System 

The stability theory of self-tuning control algorithm was first developed in late 1970's 

under the assumption that the estimation model order is not lower than the actual plant 

order. However, in practice, there always could exist model mismatch. In this section, 

we will derive stability conditions of STC under estimation (3.24) and pole-placement 

in example 3.2. We also assume that the estimation order is not necessary to be larger 

than or equal to the plant order. This result is an extension of the theoretical work 

in [1] and [13], thus has similarity in conclusions. However, here by using the signal 

expansion, if an operator H2 is SPR, we are able to find an explicit upper limit of the 

adaptation gain e such that the stable STC is ensured. The work in [1] and [13] will 

also be shown in 3.4.2 and 3.4.3. Compared with those earlier theoretical works, our 

result is the same with the addition of an explicit expression of the upper limit of the 

adaptation gain instead of indicating it is sufficiently small. 

3.4.1 Main Stability Theorem 

Theorem 3.1: 

Considering an adaptive system using the estimation algorithm (3.24) and 

the pole-zero cancellation control algorithm shown in example 3.2. The 
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Figure 3.4: Geometric Explanation of rjn 

delay d of the plant is assumed known, but there may be unmodelled dy

namics (i.e., n < n in example 3.2). Let the persistent excitation condition 

(PE) be satisfied for the estimation model and let C = BS*q~d -f AR" and 

H2 = C~1B, where R*, S* are the polynomials with the same orders of R, 

S. If H2 is Strictly Positive Real (SPR), then for e <E (0,inf ( — ) ] , 

the adaptive system is stable. Here nn is the distance between the Nyquist 

curve of H2 and imaginary axis as shown in Fig . 3.4 and Aj is the maximum 

eigenvalue of the initial error covariance matrix P{ in the estimator (3.24), 

i = -d+ 1, - • - ,0. 

P r o o f of the T h e o r e m 

The proof of the theorem can be divided into four parts. At first, we will establish an 

error model. Then we are going to introduce normalization and discuss the property 
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of estimation. These two steps are similar to [30] and [13]. The third step is to expand 

the truncated regression vector into Fourier series and express the stability condition. 

Finally, we will show that if H2
 ls SPR, an upper limit on e for stable self-tuning control 

algorithm can be obtained. 

1. Error Model 

Considering the plant (3.33), and the expression of the polynomial C , 

Cyt = BS*yt-d + BR*ut_d = B<f>l_d9. 

where </> is the regression vector containing input-output data. #« is the vector contain

ing the coefficients of R*, S*. Define: error et = yt — wt, 9t = 0t — 0*. The implicit 

pole-zero cancellation law is wt = <f>J_d9t_d, thus 

= C-lB[ft_d{-~9t-d + 9t_d)}-wt 

= -H2(j)J_d9t_d + (H2 - l)wt 

Denote ij)t — <f>f_d9t_d, w't = (H2 — l) iw t , we have the error model: 

et = -H2TJ>t + w't (3.46) 

Here, if H2 is stable, and wt is bounded, then w't is bounded. The block diagram is as 

shown in Fig. 3.5. 

2. Normalization in Estimation Algorithm 

As in [30], we use the estimation algorithm (3.24) with normalized regression vector: 

4>t = P71 / 2<f>t (3.47) 
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H2 H2 

Estimation 

Figure 3.5: Error Model 

where the normalization factor: 

pt = p,pt^ +max(\(j)t\2,p) (3.48) 

and p > 0, p. G (0,1). Thus, 

\U = , W ' ., < i 

fipt + max{\<pt\2, p) 

Note, e, P are also normalized by 
-1/2 

e< = p t e t 

7 -1/2 / 

= Pt Vt 

Pt = Ptpt 

Then the estimation algorithm (3.24) becomes: 

0t = + ePt4>t-det (3.49) 

A = P t - d - f ^ f - f - d (3.50) 
1 + z2$[_dPt-d<bt-d 
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We can also rewrite (3.50) as: 

Pr^Pr-d + e'h-dfl-i (3-51) 

thus A m o x ( P t ) < A m a I ( P t - d ) j set A a be the maximum eigenvalue of the initial error 

covariance matrix P,-, i — —d + 1, • • •, 0, which are all positive. Then 

<J>t-dPt-d4>t-d < Ai 

Define: 

vt = efPr'Ot 

= Vt-d + e2$ + 2eTptet + e2[$_dPttt-d}e2 (3.52) 

then 

J2 V i - E Vi = + 2ejet + e2ate2
t) (3.53) 

i=N-d+l i=-d+l t=l 
for any N (N can be oo). Where 

°~t - ¥t-d.Pt$t-d 
_ <K-dPt-d<j>t-d 

l + e34>J_dPt-d$t-d 

o-t € (0,Ai). Thus 

0 N 

~ E Vi<Yy$ + 2e^e t + e 2Aie 2] ViV (3.54) 
i=-d+l t=l 

3. Signal Expansion 

Let ipt be a periodic signal based on tpj in [0,r], similarly as xt based on x[ as in 

example 2.2. Express ij)t by using Fourier series: 

00 00 
tj)t = a 0 4- E ^ n cos(nu/f.) + E s'm(nwt) (3.55) 
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where ifit, ipj, and rpt
 a re equal in [0,r] and r can go to oo. a n , bn are functions of r 

and w = —. 
T 

Notice that here ipt is a discrete-time domain signal, thus in (3.55), high frequency 

component terms in the summation when n = kr, kr + 1, • • •, kr + r — 1 (k = 1,2, • • •) 

will fold over into the terms n = 0,1,2, • • •, r — 1. Thus (3.55) can be rewritten as: 

r - l T - 1 

V"t = Oo + _v o-n cos(nwt) + ] P 6 n sin(niu£) (3.56) 

where 

O-n = «n + an+r + «n+2r H 

&n = K + 6 n + T + bn+2r H 

n = 0,1,2, • • • , r - 1. Denote H2(jnw) = H(nw)ejipn, then 

T-l T-1 
f^V ' t = ijT(0)ao + ]T) H(nw)an cos(nwt + <pn) + £ H(nw)bn sin(nwt + <pn) 

n=l n=l 

To calculate J^V 'e-^V ' t j w e c l a i m : 1 

r 
£ cos(nto< + <pn) = 0 

^or w = 2TC/T, let 

r 
5 n = y~^cos(ntt>f + ipn) 

t=i 

1 27T 27T = cos(y„ + n — ) + cos(y>„ + n—2) + • • • + cos(^ n + n.—r) r r r 
„ . ,n ir 2nx n,7r 2n7r , . .n7t\ . 2mr x . . n n \ i n s i n ( — ) = cos(</>„ H )sin( —) + cos(tpn + n 2)sin( — ) - I (- cos(<pn + r) s i n ( — ) 

l r . . n7T . J N 7 R M l r • / Jn7r . 5U7T = o l ~ s l n ( ^ n + — ) +sin(p n + )J + -[-sin(p„ + ) + sin(y?u + )] 
l T T 2i T T 

l r . . ( 2 r - l W . . , (2r + l)n?r„ 

I r T 

= -[-sin(p„ +—) + sm(y)» + n2w + — ) J = 0 
Z T T 

For n = 1, 2, • • •, r - 1, sin(^) ̂  0, thus, 5„ = 0. 
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and 
T 

E sin{nwt + <pn) = 0 
t=i 

Thus 

t=l t=l t=l n=l 

T T—1 J 

t = l 71=1 Z 

= E {#(0)a 2 + \ J2lH(nw) c o s ( ^ n ) K + 6 2)} 
t=l Z n=l 

and similarly, 
E(V><)2 = X>o + ^ X K + *»)] 
t=l t=l Z n=l 

T-l E W < ) 2 = 5 > ( 0 ) ' « » + 5 £ tf(^)2 cos 2 ( ^ ) ( a 2 + o2)] 

6=1 t=l Z n=l 
Also let w't be a periodic signal based on truncated w't in t 6 [0,r], 

T-l 
tDf = a 0 + E f a n cos(nwt) + ^ n sin( mwf.)] 

71=1 
then 

r T 1 T 

E 1 " ^ = E [ a » a 0 + 9 E ( a " a n + *A] 
t=l t=l Z Tl=l 

We use the normalized version of (3.46), i.e. e t = —H2^t + w[ m extended space and 

•tpt = "4>t — rft, w't = Wj, in r. 6 [0,T]. Define ?7n = H(nw) cos(y n), which is the real part 

of H2(nw). The right side of (3.54) can be written as: 

J2[e2tf+2el,tet + e2\1e2} = 

t=l t=l t=l 
T-l E[(̂ 2 - 26-770 + e'A^aS + \ E(̂ 2 - 2^ n + e2\lV

2
n)(a2

n + b2
n)} + 

T-l 

E[2(e - e2A177o)a0a0 + ]T(e - e 2 A 1 r / n )(a n a^ l + bnb'n)] + 
t = l 71 = 1 

^ E((«o)2 + T E W + (O2)] «=i 2 n = 1 
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where we have used the expression of £ ( ^ e ) 2 > E ^ ' ^ 2 ^ * ' ' ' "> e ^ c - ^ 
t=i t=i 

an = e - 2nn + eAjr,2 (3.57) 

fin = 1-eXiVn (3.58) 

n — 0,1,2, • • •, T — 1, then we have from (3.54): 

o T 1 T _ 1 T 

E < e E [ « o a „ + - E «"(«n + #)] + 2e B / V o a i , + 2 
t=-tf+l f=l n=l t=l 

± E /3n(anal + 6 n 6 j ] + £

2 A X ±{(a'or + \ ̂ ((O2 + (O2)] (3.59) 

4. Stability Condition 

As shown in Fig . 3.5, nn is the real part of H2(nw) which is always positive if H2 is 

SPR. Under the S P R H2 condition, we can choose a positive e such that: 

S < ¥ ( T O ) ^ 

so that in (3.57), an < 0, n = 0,1, • • •, r — 1. Now set 

a = max{a n } 
n 

/3 = max{|/3n|} 

Then from (3.59), we have 

0 r -1 00 

E ~Vi < ea + -z E ( « n + hn)\ 

T -1 CO 
+ 2 e / ? B K a ; i + - L K a n a : + 6 n O | ] 

t=l Z n=l 
T -I O O 

+£
2A1D(02 + ̂ E((0 2 + (02)] 

t=l Z n=l 

= e « i i v ; n i 2 + 2 e / ? ( i^ i , iu* ; i ) + E
2A1||TZ;;ii2 

< 6 a | | ^ | | 2 + 2e/?||^T|||K||+£
2A1||ti};||2 (3.61) 
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Notice that a is negative, e, A a (3 are all positive and w't is bounded. If xjjt is un

bounded, we can always find unbounded as r goes to oo, thus the first term in (3.61) 

is the dominant term and the right side will go to — oo as r goes to oo which cannot 

be true. Thus we have proved that tpj and ipt are bounded. • 

(3.60) can be conservatively written as: 

1 1 * max 

where Aj is given in the initial of the estimation, T7m m and r ] m a x are the minimum and 

maximum distance between the Nyquist curve of H2 and the imaginary axis as shown 

in Fig. 3.4. 

Choosing e 

Define 

f{Vn) = 
1 + A n / ' 

We will show that the maximum e satisfying (3.60) is either / ( r / m i n ) or f(nmax). Since 

so there is only one local maximum in rjn € (0, +oo) at rjn — ——=. We will obtain: 
v Ai 

1. if < — T = , or / ( r / m i n ) > 0, then 
V A l 

™ n [ / ( ) j r a i n),/(7| r a a i)] 

2. if 77min > —]=, or f'{vmin) < 0, then 
V A i 
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Generally, if 

< 1 

then emax = f{Tjmin), otherwise, emax = f{nmax). 

In summary, we list the conditions required for a stable adaptive control system as 

following: 

1. The regression vector satisfies the P E condition. 

2. H2 is SPR. 

3. e is limited by an upper bound (3.60). 

Notice that condition 2 implies H2 is stable. The stability condition derived here is 

sufficient. In practice, even if for an unstable plant, as soon as the SPR H2 condition 

is satisfied and the system with initial controller parameters is stable, the adaptive 

system will remain stable under small adaptation gain derived in the theorem. 

3.4.2 Result from Using Conic Sector Criterion 

In the error model (3.46) (Fig. 3.5), the relation H2 defined as in Theorem 3.1 is a 

linear operator. Suppose the relation between t/'tj ef through parameter estimation is 

denoted by H\, i.e., = Hiet, where Hi is not necessary linear. Assume V 0 = 0, d = 1, 

N —> oo, we have from (3.54): 

oo 

or 

{ijjt - aiet,xpt - biet} > 0 
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where 
- 1 - V I - e\x 

a a = 
e 

, - 1 + v / l - e A j 
»i = 

e 
According to Theorem 2.1, the stability requires H2 in { f , .£ }. 

1 + V l — eAi 1 — v l — eAj 

If e —r 0 is sufficiently small and A x —*• 0 (an additional assumption), it can be concluded 

that for S P R H2, the boundedness condition will be satisfied with e, A x carefully chosen 

to be sufficiently small. In [13], a procedure of choosing e, A x for given H2 is suggested. 

However, no clear expression for e is given there. Values for e, Aj are based on the 

conic condition of H2 and they exist theoretically if H2 is SPR. 

Model Matched Case 

In the model matched case, the order of R* and S* are n — 1. We can choose R* — B, 

S* = q(l — A) such that H2 = 1. In this case, the S P R condition is always satisfied. 

However, cancellation of unstable zeros is not allowed, thus the stability requires B to 

have all its zeros stable, i.e., the discrete plant is minimum phase. This agrees with 

the early stability theory in [16], [21]. 

3.4.3 U s i n g Averaging M e t h o d 

Consider d = 1, apply (3.46) to the estimation (3.24), we can obtain: 

9t - 0 f_i - ePttt-iHitftJt.!] + ePtfa-tw't (3.63) 

If P t = / , i.e. the estimation uses constant gain, and define wt — 0, P*. = <fit_iH2(fif_1 

and e be sufficiently small such that 6t changes much slower than (frt-i, then (3.63) will 

be: 

9t+i = (J - eRt)0t (3.64) 
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which is the same expression as (2.11). If e is sufficiently small, and H2 is SPR, the 

adaptive system will be stable under persistently exciting command. 

3.5 S imula t ions 

Example 3.3 

For the continuous plant, 

2 229 
G(s) = 

s + 1 s2 + 30s + 229 

Assume T is the sampling period. The discrete plant is: 

The coefficients of B, A can be exactly calculated 2. We use (3.21) for parameter esti

mation and only first order model is used. Denote a, b the estimated parameters. 

1. Estimation and S P R Properties 

For sampling period 0.3 sec, 0.24 sec, 0.18 sec, we apply command input cost. This 

is a persistent excitation case. We let the simulation run for 500 sec. The estimated 

parameters are as in Table 3.1. Express H2 approximately by: 

2Suppose, A(q 1 ) = l - o i g 1 - a2q 2 - a3q 3 , B(q~1) = bi + b2q 1 + b3q 2 , then 

a1 = e-T + 2 e - 1 5 T 

a 2 = - 2 e - 1 6 T c o s ( 2 T ) - e - 3 0 T 

„ _ -31T 

a3 — e 

h = 2 - 2 . 2 9 e ~ T -r0.29e- 1 5 T (cos2T+3.5517sin2T) 

b2 - 0.29e"T - 4.29(1 - e - r ) e - 1 5 T cos 2T - 1.03(1 + e - T ) e - 1 5 T sin 2T - 0.29e-3"T 

6 3 = (2.29 - 2 e " T ) e _ 3 0 T - 0.29e~ 1 6 T(cos 2T - 3.5517sin2T) 
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T 0.3 sec. 0.24 sec. 0.18 sec. 
a 
b 

0.792 
0.473 

0.831 
0.388 

0.871 
0.298 

Table 3.1: Estimated parameters for different sampling frequency 

- 0 . 6 0 . 6 l . O 

R e a l A x i s 

Figure 3.6: Nyquist curve of H2 under different sampling 

H2 = 
B 

aBq~l + bA 

the Nyquist curve of H2 obtained via different sampling periods are shown as in Fig. 

3.6, where we can see that as the sampling frequency goes faster, H2 will not be SPR. 

2. Self-tuning Control result 

When pole-zero cancellation is used, the adaptive control results are stable when 
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T = 0.3, 0.24 sec. In Fig. 3.6, when T, = 0.3sec, vmax = 1.260, 77min = 0.165; 

when T„ = 0.24sec, T]max = 1.394, rfmin — 0.029. Here we choose A x = 1.0, thus emax 

according to (3.60) are 0.283, 0.057 respectively. In case of T, — 0.24sec, the adap

tation process is slow. However, this upper limit is only sufficient. We still get stable 

adaptive control output when e = 1.0. However, for T, = 0.18$ec, the adaptive control 

output is unstable. 

In this chapter, we have introduced some adaptive control design methods. The 

main stability theorem is given. Compared with the former proof given in [1], [13], 

[30], an upper limit for adaptation rate is explicitly given. The bound on e is a very 

conservative one. We have not found any examples in simulation where stability could 

only be achieved with the small adaptation gain. 

In [28], an analysis of the relation between the robustness and adaptation gain was 

shown by using small gain theory. Although the adaptation gain derived is sufficient 

for the stability, it has been indicated that to get the maximum robustness, it is not 

necessary to have the smallest e. However, if e is sufficiently small, the robustness will 

be non-zero. 

In summary, for a stable conventional pole-zero adaptive controller, 

• For the model match case, the discrete plant should be minimum phase. 

• In general, there is model mismatch, then an operator H2 has to be SPR. 



Chapter 4 

Robust Adaptive Control: Slow Sampling 

4.1 Why Use Slow Sampling? 

The robustness of adaptive control systems depends on: (1). The difference between 

the discrete plant order and estimation model order; (2). Discrete plant parameters 

(Coefficients of model); (3). Estimation algorithm; (4). Adaptation algorithm. 

The sampling frequency obviously affects the parameters of the discrete plant. In 

[33] and [34], it was shown that with a sufficiantly low sampling frequency, the difference 

between the discrete plant and model is small, thus the adaptive system is robust. 

In general, when sampling a continuous time system, if the sampling frequency is 

high, the discrete system will .be close to the continuous system with a zero order 

holder. However, using slow sampling will ignore the poles and zeros far beyond the 

corresponding Nyquist frequency. In this case, the discrete plant behaves as a low order 

system, thus the error due to model mismatch is small. 

In [5], it is indicated that an inversely unstable discrete system is possible with 

sufficiantly high sampling frequency even if the continuous plant is minimum phase. 

However with low sampling frequency, we can always obtain a minimum phase discrete 

plant provided the continuous plant is rational, stable and inversely stable. In 4.2, we 

will present some results on zeros of sampled plant and propose a method to obtain 

the critical sampling for minimum phase discrete plant. In this section, we will restrict 

the continuous plant to be rational, stable and minimum phase. 

54 
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In chapter 3, it has been shown that an SPR condition is essential for stable adaptive 

control algorithm. We can also show that SPR H2 requires the discrete plant to be 

inversely stable. However it is not a sufficient condition for stable S T C . In 4.3, we will 

give an expression of model error on H2 and show an approximate way of choosing 

critical sampling for SPR H2. A simulation example of those relations is given in 4.4. 

In the adaptive control algorithm used here, we will assume that least-squares es

timation algorithm is used. The controller is a pole-zero cancellation scheme as in 

example 3.2. 

4.2 Choice of Sampling For M o d e l Matched Case Adaptive Control 

4.2.1 De f i n i t i o n and Background 

A stable continuous-time system with a rational transfer function is minimum phase if 

it has only left-half plane zeros. Here, by extension we shall define a stable discrete-time 

system as minimum phase if all its finite zeros are within the unit circle, i.e. inversely 

stable. In many self-tuning control schemes, it is desirable that the plant be minimum 

phase (MP) . A n earlier discussion about zeros of sampled systems shows that if there 

are more than two excess poles in the continuous transfer function of the plant, the 

sampled system will be non-minimum phase(NMP) if the sampling frequency is fast 

enough ([5]). 

Theorem 4.1 (Astrom, Hagander and Sternby, [5]) 

Let G(s) be a rational function, 

G(s) k(s - Z]){s - z2) • • • (s - zm) 
(s - p i ) ( s -p2)---{s -pn) 

(4.65) 
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and H(q) the corresponding pulse transfer function ( m < n ). Then, as the 

sampling period T, goes to 0, m zeros of H(q) go to 1 as eZiT' and remaining 

n — m — 1 zeros of H(q) go to zeros of P t l _ m (g ) , 

where Bk{q) is the numerator polynomial of pulse transfer function of G(s) = s~k. For 

example: 

Numerator polynomial Unstable zeros 

Bx{q) = 1 

B2(q) = q + 1 -1 

B3(q) =q2 + 4q + l -3.73 

•84(g) = g 3 + l l g 2 + l l g + l -1,-9.899 

B5(q) = g 4 + 26g 3 + 66g2 + 26g + 1 -2.332, -23.20 

Be(q) = g 5 + 57g4 + 302g3 + 302g2 + 57g + 1 -1,-4.542,-51.22 

It has also been shown that slow enough sampling will always result in M P discrete 

plant. The following theorem is also proved in [5]. 

T h e o r e m 4.2 

Let G(s) in (4.65) be a strictly proper rational transfer function with G(0) ̂  

0 and Re(pi) < 0. Then all zeros of the pulse transfer function go to 0 as 

the sampling period T, go to infinity. 

Here we will discuss how slow this sampling should be. First, we present the main 

result in [5] as follows: 



Chapter 4. Robust Adaptive Control: Slow Sampling 57 

Theorem 4.3 

Let G(s) as in (4.65) be a strictly proper, rational transfer function with: 

1. Re(pi) < 0; 

2. G(0) ^ 0; 

3. —7r < arg {G(jw)} < 0, for 0 < w < oo. 

then all the zeros of the corresponding pulse transfer function H(q~l) are 

stable. 

Condition 3 of this theorem is sufficient and very strict. It requires the continuous 

plant to have at most two excess poles. Also, the conditions are not sampling frequency 

related. Now we will define the critical sampling frequency wc as follows. 

Definition 

The critical sampling frequency wc of a plant G(s) is the largest frequency 

such that for any sampling frequency w, < wc, the sampled system is M P . 

For adaptive control using pole-zero cancellation under model matched case, if the 

discrete plant is minimum phase, the adaptive system is stable. Thus, the critical 

sampling for minimum phase discrete plant is very useful. 

In the following, we will show that the critical sampling wc satisfies an equation, 

whose solution can be obtained simply by using relay. Thus, the critical sampling 

frequency can be obtained without prior knowledge of the continuous plant. 

4.2.2 C o n d i t i o n For M P Discrete Plant 

Suppose G(s) is the continuous transfer function of a stable, proper, rational plant. A l l 

the poles and zeros of G(s) are in the left half plane. Then the sampled plant is: 
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_•(,->> = ( i - , - ) z { ^ l } 

Define: 

G0(s) = 
G(s) 

s 

then through the transform relation 

(4.66) 

+ 00 1 A 1 - 1 
Z{Go(s)}= D -G0(s + jmw.) t ±CT(s) = ± G ; ( _ ) (4.67) 

where w, is the sampling frequency and T ( T > 0 ) is the sampling period. Thus the 

discrete plant is: 

In the frequency domain, the sampling process results in aliasing of the low frequency 

band by the high frequency component. It is obvious that if (7(0) ^ 0, the term (1 — q~l) 

in (4.68) will be cancelled. Thus the zeros of the sampled system will be the zeros of 

G*(s) through the transformation (4.66). 

Before we propose the main theorem, the following lemmas are introduced: 

L e m m a 4.1: If G(s) is stable, all poles of G"z(q) are stable except one on 

the unit circle. 

Hiq-1) = £ ( 1 - q-l)G:{q) (4.68) 
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[Proof] 

For 

T { s J 

Define $l(x) as the real part of x. It is obvious that after Z-transform, the 

pole of G(s): —pi with 9?(p;) > 0 is transformed to the pole e~PiT with 

| e - P i r | < 2. The pole s = 0 is transformed to the pole z — 1 which is on 

the unit circle. • 

L e m m a 4.2: If G(s) has n poles, then G*(g) has n finite zeros for almost 

all T > 0. 

[Proof] 

After the Z-transform, the discrete plant is: 

^ (o - 1 ) anq~n 

Ii G(s) has no delay, bx ̂  0. For: 

rr/ - I N _ ^ (g - 1 )^ ' 1 _ 1 /-, n-i\n*(„\ 
H { q ]~ A(q->) -T(1~q ) G M ) 

G*( ) =
 T* biq

n-l+b2qn-2 + ... + bn 

M ) q-1 qn- a i f l " - 1 an 

Thus there are n finite zeros in G*(g) = T Z a n t ^ a ^ ^ e a s * o n e 

of them is q — 0.D 

L e m m a 4.3: 

» { C * ( i y ) } = 0 (4.69) 

where w, is the sampling frequency and $s(x) denotes the imaginary part 

of x. 
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[Proof] 

m= —oo 

= g { C o [ i ( 2 m + l ) ^ ] + G 0 [ - j ( 2 m + l ) ^ ] } 
m=0 

For a real coefficient transfer function F(s), 

<5{F(jw) + F(-jw)} = 0 (4.70) 

Recall that Gn(s) is rational and has real coefficients, thus: 

y)} = 0 

• 

This means that if we draw a Nyquist curve of G*(jw)1 with w from 0 to — , the 
2 

Nyquist curve will end at the real axis. It is well known that the Nyquist curve of 

G*(jw) when w is from — ^ to 0 is symmetric related to the real axis and the Nyquist 
w w 

curve of G*(jw) repeats when the frequency is beyond the range [ ]• 
2 2 

Now, we can express our main theorem on the M P discrete plant condition. 

T h e o r e m 4.4: 

Given a continuous, proper, stable and minimum phase rational transfer 

function (?(*), define G*{s) as in (4.67). If for all w G [0, — ] : 
2 

- 90° > arg{(T(ju;)} > -270° (4.71) 

then the sampled plant H{q^) is M P . 
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l m 

f R e 
o 

Figure 4.7: Nyquist path 

[Proof] 

Consider when the Nyquist path is on imaginary axis, w is from —— 
w 

to — e x c l u d i n g the origin on the right side as shown in Fig. 4.7. The 

Nyquist curve which satisfies (4.71) will not encircle the origin as shown in 

Fig . 4.8. 

Now extend the Nyquist path from tu = -oo to +00, i.e. to the whole 

imaginary axis, the corresponding Nyquist curve simply repeats itself and 

does not encircle the origin. So the number of poles and zeros of G"(s) in 

left half plane should be the same. According to Lemma 4.1, there are n 

stable poles of G*(s). Thus from Lemma 4.2, the n finite zeros of G'(s) are 

stable and # ( o - 1 ) is M P . • 

ID 

It is obvious that if H{q~x) is M P , then < 0. Lemma 4.3 has indicated 
w 

that G*(±j-~-) is always on the real axis. If there is one unstable finite zero, the 

Nyquist curve will encircle the origin once as shown in Fig. 4.9, and Gx(j —) will be 

on the positive part of the real axis. It is obvious that for the critical sampling u)c, 
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Figure 4.8: Nyquist curve satisfying (4.71) 

G*(j—-) will be at the origin, thus we have: 

C o r o l l a r y : The critical sampling frequency wc satisfies: 

» { < ? ' 0 y ) } = 0 (4.72) 

For 

m=0 
<?(j»«(m + i ) ) , G{-jwc[m + i)) 

+ jwc(m + |) - ji_ c(m + \) 

Thus (4.72) is equivalent to: 

5 
Lm=0 

G(jwc(m + ±)) , G(-jwc{m + l)) 
+ = o 

Using the property (4.70), we will obtain: 

+<*, G[j(2m + l)^} 

rS, 2m+ 1 
(4.73) 
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I m 

e 

Figure 4.9: Nyquist curve not satisfying (4.71) 

Notice that the critical sampling frequency satisfies (4.73), but not any sampling 

frequency satisfying (4.73) is critical. 

4.2.3 Obtaining the Critical Sampling by Using a Relay 

Consider a relay component in series with the plant as shown in Fig. 4.10, the command 

x(t) is a sine wave with frequency w and amplitude A: 

x(t) = A sm(wt) (4.74) 

Then the input signal of the plant u(t) (which is also the output of relay) is a square 

wave and can be expressed by using a Fourier series: 

u(t) E 
oo sin[(2fc + l)wt] 

2k + 1 
(4.75) 

7T fc=0 

Suppose the continuous transfer function of the plant is G(s), let w = thus by 

defining: 

= \G[j(2k + l)^}\ 
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O u t p u t 
) ) 

R e l a y P l a n t 

Figure 4.10: Closed loop with relay 

w 
62k+1 = arg{G[j(2fc + 1)-^]} 

the output signal is: 

w 
Ad + ° ° #2*4-1 sin[(2A; + l)-^-t + 02fc+i 

y( 0 = - E 2  

27T7V" 
At the specific time tf/v = , then x(t^) = 0, and 

w 

then 

= 7 _ _ a ( a + 1 > (4'76) 

11) 

Thus we can obtain the value of $l{G*(j-^-)} by measuring y(tN) and if the output 

is zero at t^, then the frequency wc = 2io satisfies the equation (4.73). 
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to 

Figure 4.11: Nyquist diagram for limit cycle 

Further, by using a closed-loop structure as in Fig. 4.10, a limit cycle will exist if 

there are more than two excess poles in G(s) (see [6]). This can be viewed by drawing 

the negative reciprocal describing function of the relay and the Nyquist curve of G(s) 

as shown in Fig. 4.11. 

When the oscillation occurs, the input of relay is the negative value of the plant 

output. This means that the input of relay xt and the plant output yt reach zero simul

taneously. Thus ytN = 0 in (4.76) and the oscillation frequency w is half of the critical 
iv 

sampling frequency —- as in the equation (4.73). This oscillation frequency can be 

obtained by measuring the oscillation period, using for example the method described 

in [6]. For a system with no more than two excess poles, there may be no limit cycle, 

in this case, the sampled system is always MP. If there is more than one limit cycle, 

the slowest oscillation frequency is considered. Also in [6], it is mentioned that the 

configuration of Fig. 4.10 can be used to initialize adaptive controllers, in particular 

to obtain an estimate of the time delay. As shown here, this method can also be used 

to select the sampling period for stable, proper, rational minimum-phase continuous 

plants with the guarantee that the discrete plant is minimum phase, i.e. its finite zeros 
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8 o 

-0.5 

-1.5 

Figure 4.12: Nyquist curve of G* in example for different sampling intervals T 

are stable. 

Example 4.1 

Suppose 

G(s) = (s + l)3{S + 2Y 

For this system, the relation between sampling period T and the presence of unstable 

zeros is as follows: 

T > 3.36.sec. inversely stable 

3.36sec. > T > 0.74sec. one unstable zero 

0.74sec. > T two unstable zeros 

Fig. 4.12 shows the Nyquist plot of G*(s) for T = 4 (inversely stable), T = 2 

(unstable zero at -3.0245) and T = 0.5 (two unstable zeros at -13.1968 and -1.3079). 
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l.O I 1 • 1 r 

O 

0 . 2 . 4 . 6 . 8 . l O . 1 2 . 1 4 . 1 6 . 1 8 . 2 0 . 2 2 . 2 4 . 2 6 . 2 8 . 3 0 . 

T i m e i n S e c o n d s 

Figure 4.13: Limit cycle obtained when putting G(s) of the example under relay control 

Fig. 4.13 shows the limit cycle obtained when putting the continuous time plant G(s) 

under relay control. The period of the limit cycle is 6.72, which corresponds to twice 

the critical sampling interval as described before. 

In this section, a condition for minimum phase discrete plant is proposed. It is 

a weaker condition than that in (Astrom et al. 1984 ) and is sampling frequency 

related. The critical sampling frequency can be obtained by measuring the oscillation 

frequency in a closed-loop system with relay. No prior knowledge of the continuous 

plant is required for this method. The sampling frequency for a model matched adaptive 

control system shall be chosen slower than the critical sampling frequency. 
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4.3 Cho ice o f Sampl ing For M o d e l M i s m a t c h e d Case A d a p t i v e C o n t r o l 

This section is a further discussion of the effect of slow sampling on the robustness of 

adaptive control. Model structure mismatch will be considered. In [33], [34], it was 

shown that slow sampling will bring small model structure error. Here we will relate 

the S P R operator H2 to the model error and show that if sampling is slow enough, the 

S P R H2 condition will be satisfied. As in chapter 3, H2 is defined as: 

H 2 ( q ^ = A{q-i)nr{q-i) + B{q-i)S*{q-i)q-' ^ 

where the discrete plant is as (3.33) and R*, S* here denote the converged estimates. 

The converged estimates R*, S* can be obtained by using estimation only in Fig. 3.2 

when the loop is open. In the "Properties of Estimation Algorithm" in section 3.2, 

it has been mentioned that this estimate depends on frequency components of the 

command input. Then, the operator H2 is related to: 

1. The discrete plant — which depends on 

— continuous plant; 

— sampling period. 

2. Converged estimated parameters i?*, 5*, which depend on 

— estimation model order; 

— excited command frequencies. 

Here only the effect of sampling frequency is studied. 

4.3.1 Unce r t a in ty i n sampled system 

We will first introduce the uncertainty in sampled system ([33]) and study how the 

sampling frequency affects this model uncertainty. 
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Consider the plant uncertainty represented by a multiplicative perturbation, 1 -f 

L(jw) with the nominal system Gn(jw), i.e., the plant can be expressed as: 

G(jw) = Gn(jw)[l + L(jw)} (4.78) 

Here L(jw) represents the model structure error of the continuous plant. It is 

assumed that 

\L{jw)\ < l(jw) 

where l(jw) could be known and it increases as w increases. Suppose the sampling 

period is T, the sampled systems of G, Gn are: 

I +oo 
H{jw) = - £ G(jw+jnws) (4.79) 

71= —OO 

I +oo 

Hn{jw) = - J2 Gn(jw+jnws) (4.80) 
n=—oo 

2TT 

where ws = — . If Ld{jw) is a discrete-time multiplicative perturbation, which repre

sents the model structure error of discrete plant, i.e. 

H(jw) = Hn{jw)[l + Ld{jw)\ (4.81) 

we have the following theorem: 

T h e o r e m 4.5 (Rohrs, Stein, Astrom [33]) 

Given the notation defined as in (4.78) - (4.81) and assume that all infinite 

sums converge, then 

-f-oo 
£ + jnw3)\Gn(jw + jnws)} 

1 n— — oo 

£ ( 4 ' 8 2 ) 
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The proof of this theorem can be obtained through direct calculations by applying 

(4.78) - (4.81). The following example illustrates the relationship between sampling 

and uncertainty. 

Example 4.2 

Consider the continuous plant: 

2 229 G(s) 
s + 1 s2 + 30s + 229 

we use a first-order nominal model 

b 
Gn(3) 

s + a 

for parameter estimation. The sampling periods are 0.18 sec, 0.24 sec, 0.3 sec. respec

tively. The command signal is cos(r.). We express the error L(s) according to (4.78) 

as: 

G(s) - G„( . ) . 
£ W = < ? „ ( . ) . 

For continuous plant, since the exciting frequency of the command is w\ = l.Orad/sec, 

we can find a = 0.7673, b = 1.7752 such that Gn(jwi) — G(jioj). 

For the sampled system, the first order discrete nominal model is: 
- l 

Hniq-1) cq 
1 - dq-1 

Note Hn(q~l) is also the sampled system resulting from Gn(s) but the expression of 

Ld(q~l) is complicated. The Table 4.2 shows the parameters of discrete nominal plant 

for exciting frequency of the command 1.0 rad/sec. and different sampling period T. 

The error \Ld(jw)\ for different cases is shown in Fig. 4.14. 

From this example, we can observe: 
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o 

o 

T = 0.18 sec. 

continuous 
case T=0.24 sec. 

T = 0.3 sec. 

o.e 

0 . 3 

F r e q u e n c y : r a d / s e c . 

Figure 4.14: Model error via sampling periods 

• The model structure error is small near the exciting frequency; 

• The model structure error is large at high frequency; 

• When the sampling frequency is low, the model structure error is small and 

\Ld{jw)\ < l-^O' 1 0)! < KJW) a r e ^ r u e f ° r a u t n e cases, here L(jw) is the structure 

error for the continuous nominal model and Ld(jw) is for the discrete nominal 

model. 

c d 
r = 0.18sec. 0.8704 0.2980 
T = 0.24sec. 0.8304 0.3880 
T = 0.30sec. 0.7918 0.4337 

Table 4.2: Parameters of discrete nominal model under different sampling in example 
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In (4.82), l(jw) usually increases with increasing w. Gn(jw) usually has low pass 

characteristics. If an anti-aliasing filter is included in Gn(jw), and if the term n = 0 

is the only significant term in the expression of Hn(jw), then we can clearly see that 

slower sampling will result in smaller model error in (4.82). 

O n smal l uncer ta inty error 

Let the discrete plant be 

and the nominal plant (usually with lower order than the plant) be 

*•<*-'> -1 Su\^d (4'84) 

Ld{q~1) is the multiplicative perturbation represents the model structure error as shown 

in (4.81). By using the discrete plant description, we obtain: 

H M )=AR* + BS*q-* = R* + S*H (4-85) 

Here JFJT2 also represents the closed-loop transfer function which uses the converged 

estimates R*, S* as controller parameters. Let 

H2(q-1) = H2n(q-1){l + M^q-1)} (4.86) 

where 

represents the nominal closed-loop system. Notice that H2n(q~1) contains no unstruc

tured uncertainty. One can from (4.85), (4.86) obtain: 
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thus, 

or 

Hn(l+Ld)q* _ Hnq*  
2 R* + S'Hn{l + Ld) R* + S*Hn

{ ] 

= (l + Ld)(R* + S*Hn) _ 
R* + S*Hn(l + Ld) 

M* 
1 + (1 + LjjfBn 

Here the model structure error M* has the following properties: 

1. As the discrete-time multiplicative perturbation of the plant Ld is smaller, 

then the multiplicative perturbation of the S P R operator M* is smaller. 

Here Ld also represents the model structure uncertainty for the sampled 

plant which is decreasing as the sampling period is longer. 

s* 
2. As the term (1 +—Hn) is larger, M* will be smaller. For the nominal model 

x t * 

# 2 7 1 contains no structured uncertainty, R r2n{<l~1) = 1 or 

5* _ Hnq* 
1 + -R*Hn~-W 

Thus M* also depends on the nominal model. 

M o d e l uncer ta inty and S P R cond i t ion 

In section 3.4, we have shown that for a stable adaptive control algorithm, SPR H2 is 

essential. We will express H2 as a function of the model structure error. Notice the 

expression of H2 in (4.77), from (4.81) we have: 

A - 1-S*q-*{1+Ld) 
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or 

AR*{l + Ld) = B{l-S*q-i) 

thus 

H2(q-1) = 
B 

1 - S*q~d + (1 + Ld)S*q-d 

l + Ld (4.88) 
1 + LdS*q~d 

(4.88) shows the relation between the operator H2 and the model structure error 

Ld. The following results are of interest: 

1. The operator H2 is a function of the model structure error of the discrete 

plant. If the error is small enough, H2(q~1) is SPR. A special case is when 

there is no unstructured uncertainty, i.e., Ld = 0, then H2 = 1 which is 

always SPR. 

2. A sufficient condition for S P R H2 can be derived as: 

(4.89) 

when I I A I O O I U < 1 and WL^S^jw)^ < 1. 

Here S*(jw) depends on the converged estimates of the nominal model. 

[proof of (4.89)]: 

sin 1||I-c/(jt0)jJo o is the maximum phase for [1 + Ld(jw)}. Similarly is the 

term sin~1\\Ld(jw)S*(jw)\\00. As for SPR H2, the phase is limited in 

[-90°,90°], thus (4.89) is sufficient. 
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4.3.2 S tab i l i ty condit ions for adaptive a lgo r i thm 

In theorem 3.1, R*, S* do not have to be the converged estimates. They are in fact 

polynomials of fixed order. 

Here we will simplify the expression of H2 by setting S* = 0, R* — 1. We denote 

the simplified H2 as H2s. If H2, is SPR, the adaptive system is sufficiently stable. In 

the following, we will discuss the choice of sampling frequency to ensure SPR H2,. For 

F a . ( r 1 ) = | = «f f (9- 1 ) = ( 9 - i ) z { ^ l ] 

where -ff(<j_1) is the discrete transfer function of the continuous plant G(s). As 

phase(g - 1) = - + — 

{ 3 ) n=-oo J W + j n W a 

7T + G(jw +jnwt) 
• - + phase 2^ " 
2 „±rL w + nw, 

Thus H2l{q-1) is SPR if 

on" > ?1 + p h a s e g G{jw+jnv,.) > _9Q0 ^ 
2 „ - ™ W + "tO. 

n——oo 1 * 

Here considering that most practical plants have phase lag, so we can only discuss 

the case of: 

wT , I f ? G(jw + jnw.) 
— + phase )T u 7 ^ > -90° 4.91 

71=—OO ' 3 

For a low-pass plant, we can neglect the effect of aliasing of high frequency gain (Or 

use anti-aliasing filter as in [39]). Thus the problem is simplified to finding ws such 

that: 
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F r e q u e n c y a x i s ( r a d / s e c . ) 

Figure 4.15: Choice of sampling according to the phase of continuous plant 

where the sampling interval is: T = —. 

phaseG(jw) > -90° - — Vio G [0, —-
2 2 

2TT 

(4.92) 

4.3.3 Approximate way of choosing sampling 

Fig.4. 15 shows the phase of a continuous plant vs. frequency. When choosing = wi , 
2 

wT w 
the straight line /j represents the phase —90° , w £ [0, —-]. Since the phase plot is 

2 2 

above the line lx, (4.92) is satisfied in tins case. However, as w, is increased to — = w3, 

(4.92) will not be satisfied. 

The procedure for choosing the critical sampling according to the known phase 

response of continuous plant is as follows. 
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1. Plot the phase-frequency relation of the continuous plant G(s), where x-axis 

is the frequency in rad/sec, y-axis is the phase of G(s); 

2. Draw a line starting from w = 0, phase = —90°, which is tangent to the 

phase-frequency plot; 

3. Find the intersection of this tangent line with the horizon line phase = 

—180°, the frequency wc corresponding to the intersection is half of the 

critical frequency required. 

Remark 1: 

The critical frequency found in this way is only an approximate solution 

where the effect of high frequency is neglected. The effect of aliasing of 

high frequency may result in the actual critical sampling frequency being 

lower. Thus a safety margin is necessary if no anti-aliasing filter is used. 

Remark 2: 

The critical sampling for S P R H2„ is always slower than (or equal to) the 

critical sampling for minimum phase discrete plant as defined in section 4.2. 

Thus to ensure H2, SPR, the discrete plant has to be minimum phase. This 

has also been mentioned in [13] for Rohrs' plant, but no analysis was given. 

Here we can conclude that tliis is generally true. 

Remark 3: 

For special cases, no tangent line can be found or the frequency correspond

ing to the tangent point is less than —180°, then we can just draw a straight 

line between starting point and the intersection of —180° horizon line and 
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the phase plot. In those cases, the critical sampling frequency for the non-

minimum phase discrete plant and SPR H2, are the same. 

4.4 S imu la t i on on the Effect of Sampl ing 

We will use a simulation example to show that the adaptive control is robust by using 

slow sampling and show how to choose critical sampling frequency for stable adaptive 

control. 

Example 4.3: (Simulation example of STC) 

Consider the Rohrs' plant with continuous transfer function: 

1. Critical sampling for minimum phase discrete plant 

To find the critical sampling for minimum phase discrete plant, we can apply relay in 

series with the continuous plant as shown in Fig. 4.10. Then we will observe that there 

is oscillation in closed-loop system. We plot this oscillating output as in Fig. 4.16, 

measure 5 periods of the oscillation at the steady state. Denote the oscillation period 

as Tot, then we have: 

G(s) = 2 229 
(4.93) s + 1 s2 + 305 + 229 

5T 0 OS 1.99 

or 

Tot = 0.398 

According to section 4.2, the critical sampling period is: 
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Figure 4.16: Obtain critical sampling for minimum phase discrete plant of Rohrs' 
example by using relay 

Fig. 4.17 shows two zeros of the sampled plant under different sampling periods. 

Here the slow sampling effect and the value of the critical sampling frequency are 

verified. 

2. Critical sampling for S P R H2a 

If we obtain the phase-frequency relation of G(s) as in Fig . 4.18(a), we can draw a 

tangent line from (f> = —90°, w = 0.0 to the phase plot. The intersection of this tangent 

line with the horizon line (f> = —180° is 1 at w — 14.89rad/sec. Thus the approximate 

critical sampling period is: 

T, = 
TV 

14.89 
0.211aec. 

Fig. 4.18(b) are the Nyquist plot of H2,(q l) under several sampling ( T„ — 0.17, 0.20, 

1 This procedure can be programmed. 



Chapter 4. Robust Adaptive Control: Slow Sampling 80 

e 
<L> -t-> CO 
t » 

C O 
X J 

a> 
0 
<d 

C O 

CO 
O 
»-i 
O) 

tsi 

— 1.0 

1 1 1 ~—I 1 > 1 ' 

-

O. . O S . 1 0 . 1 6 . 2 0 . 2 5 . 3 0 . 3 5 .-40 

S a m p l i n g P e r i o d , i n S e c o n d 

Figure 4.17: Zeros of discrete plant of Rohrs' example via various sampling 

0.22, 0.25 sec. ). Note the corresponding straight line connecting (w = 0,<j> = —90°) 

and ( w = w,/2, cf> = - 180° ) in Fig. 4.18(a), if H2, is SPR, there will be no intersection 

of the straight line with the phase plot. 

Now we assume that the operator H2{q~l) uses the converged estimated parameters 

of a first order estimation model, 

G{q~X) = 
bq - l 

1 - aq~l 

and the command frequency is 0, 1.0, 3.0, 8.0 and 16.1 respectively. The converged 

estimates under different samplings and command frequencies are as in Table 4.3: 

We plot the Nyquist curve of II2{q~l) under w = 1.0 rad/sec. for different sam

plings in Fig. 4.19(a) and the Nyquist plot under Ts = 0.25sec. for different command 

frequency in Fig. 4.19(b). 
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frequency 0.0 1.0 3.0 8.0 16.1 
T, = 0.17 0.876 0.877 1.035 22.12 -0.903 

0.248 0.283 0.310 3.868 -0.010 
T, = 0.20 0.859 0.857 1.041 -14.99 -1.007 

0.282 0.329 0.362 -2.507 -0.0005 
r , = 0.22 0.848 0.844 1.045 -7.574 -1.219 

0.304 0.359 0.396 -1.191 -0.019 
T, = 0.25 0.833 0.824 1.051 -4.741 -2.427 

0.334 0.403 0.446 -0.653 -0.213 

Table 4.3: Estimated a/b for various cases 

We notice that the S P R property is not only affected by the sampling, but also 

affected by the command frequency. In general, slow sampling and low command fre

quency will result in SPR Hi. 

3. Self-tuning control under different sampling 

We simulated the self-tuning control under T, =0.25, 0.22, 0.20, 0.17 sec. There is 

no output noise. The command frequency is 1.0 rad/sec. The simulated output is 

as shown in Fig. 4.20. Where we can see that for T, = 0.2,0.17 sec, the adaptive 

control results are unstable. However, for the slower sampling T, = 0.22,0.25sec, the 

bounded-input bounded-output relation is observed. 

4. STC with white noise and high frequency noise 

We simulate the adaptive control algorithm under output noise and the high fre

quency command input. Fig. 4.21(a)-(d) are the simulation result under sampling 

T„ = 0.25sec. The simulation condition is as shown in Table 4.4. 

Here we restricted the adaptation gain in estimation to be low enough (0.2). The 

STC with low adaptation gain needs a long time to converge. We can observe from 
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command frequency 1.0 rad/sec. 8.0 rad/sec. 
no noise Fig. 4.21(a) Fig. 4.21(b) 
output noiseiV(0,0.1) Fig. 4.21(c) Fig. 4.21(d) 

Table 4.4: Simulation condition in Fig. 4.21 

noise type: 0.1sm(16.1t.) 0.1iV(0,l) 
adaptation gain e = 1.0 Fig. 4.22(a) Fig. 4.22(b) 
adaptation gain e = 0.2 Fig. 4.22(c) Fig. 4.22(d) 

Table 4.5: Simulation condition in Fig. 4.22 

the simulation that bounded input and bounded output is ensured. But for the case 

of high command frequency, the output performance is not good enough. Also notice 

that although H2 is not SPR when the command frequency is 8.0 rad/sec, the adaptive 

process is still stable. This is because the SPR condition is sufficient. 

5. Case of persistent excitation not satisfied 

Under the command: 

wt = constant + noise 

a self-tuning control simulation result is shown in Fig. 4.22(a)-(d) under different 

conditions as in table 4.5. The sampling period is T„ = 0.25sec. 

Thus for slow enough sampling frequency, the stability of the adaptive control sys

tem is not critically affected by the presence of a small noise and lack of persistent 

excitation. 

The various simulation examples in this section show that 
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1. Slow sampling will bring robust adaptive control result. For the pole-zero 

cancellation control algorithm and the recursive least square estimation, the 

critical sampling for the stable adaptive algorithm discussed in this chapter 

is verified. 

2. Not only the sampling, but also the command frequency will affect the S P R 

condition. However, the stability condition derived is sufficient. Bounded-

input bounded-output relation can still be obtained even if SPR condition 

is not satisfied in some cases. 

3. Adaptive control systems can still be stable under small noise and the lack 

of persistent excitation. 

4.5 C o n c l u s i o n 

In this chapter, we discussed the effect of slow sampling frequency on the zeros of 

sampled systems and on the S P R condition. It was shown that when the sampling 

frequency is sufficiently low, minimum phase discrete plant and S P R operator H2 will 

be ensured. Expressions for the critical sampling frequencies were derived and the 

practical ways of finding them were also discussed. Note that the minimum phase 

discrete plant is also necessary for S P R H2. Thus the critical sampling frequency 

for S P R 1I2 is usually lower than the critical sampling frequency for minimum phase 

discrete plant. For the model match case, the STC algorithm using simple pole-zero 

cancellation is stable if the discrete plant is minimum phase. In model mismatch case, 

such an STC algorithm is stable if H2 is SPR. 
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Figure 4.18: (b). Nyquist curve of H2a under different sampling 
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Figure 4.19: (b). Nyquist curve of H2 via different command frequencies 
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Figure 4.21: STC simulation under noise or high frequency command 
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Chapter 5 

Robust Adaptive Control: Slow Adaptation 

5.1 Introduction 

In Chapter 4, we discussed the slow sampling effect on the stability condition of an 

adaptive control algorithm. As shown in Fig. 3.2, a general adaptive control structure 

has two loops, one concerned with estimation and one concerned with controller design. 

The conventional adaptive control systems update the estimated parameters of the 

controller at every sampling interval, i.e., the two loops have the same sampling rate. 

For the direct pole-placement adaptive control as in example 3.2, we recall that the 

control law is given by: 

wt+d = R{q~1)yt + Siq'1)^ 

where the coefficients of the polynomials ^(t j - 1 ) are the estimated parameters 

$ t in the estimation algorithm (3.24). Stability is obtained if H2{q~l) is SPR, where: 

ffifa"1) = C-\q-l)B{q-1) 

C{q~l) = Fiq-^Aiq-1) + i T ^ " ^ ^ 1 ) ^ 1 

Here again, we assume S*, R* denote the converged S, R in estimation. SPR H2(q~1) 

implies that C(q~1) has stable zeros but not conversely. In case there is no unmodelled 

dynamics, it has been shown in chapter 4 that if all poles of C(q~1) are stable, then, 

H2{q~1) — 1 a n d stability is ensured. However, when we consider the case of model 

mismatch, H2(q~l) could be non-SPR even though C(q~1) has stable zeros. 

89 
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Figure 5.23: Estimated parameters when simulating Rohrs' plant by using RLS esti
mation where the sampling is T, = 0.2sec, command frequency is 1.0 rad/sec. 

Fig. 5.23 is a parameter estimation result for Rhohr's plant (4.93) where T, — 

0.2sec, the command frequency is 1.0 rad/sec. and a first-order model is used. It has 

been shown in the simulation example in Chapter 4 that for this case, H2(q~l) is not 

S P R although C(q~1) has stable zeros. The simple pole placement adaptive control 

result is unstable. When observing the estimation process, we find that the estimated 

parameters have a large initial overshoot. Let d, b denote the estimated parameters, 
B(q-')at the closed-loop stability of C(q *) simply depends on the gain margin of 

but at the initial stage, — is very large and the gain margin is less than one (unstable). 

A n explanation for the instability is that for higher sampling rate, there exists a large 

model mismatch ( [33], [34] ), the input-output data in the transient process may excite 

high frequencies that mislead the estimation. Use of such bad estimates will continue 
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to excite the high frequency band, thus very likely, resulting in an unstable system. 

However we can expect that the adaptation by only using steady-state estimates can 

bring more robustness. 

In this chapter, we will first discuss the effect of slow adaptation. The main idea 

is to avoid using bad estimation data. It is shown that the SPR Hz{q~l) condition 

could be relaxed if the converged estimates under persistently exciting condition are 

obtained and used at every adaptation. Thus, the only requirement for stability is 

that the polynomial C(q~1) has stable zeros. We will develop a method to check this 

stability condition. Furthermore, we will also discuss how to design filters to improve 

the robustness. Some simulation examples will also be presented. 

5.2 Slow A d a p t a t i o n A l g o r i t h m 

5.2.1 F i x e d Slow A d a p t a t i o n Rate 

In adaptive control, it is not necessary to adapt the controller at the same fast rate as 

the sampling rate for the plant. From Fig. 3.2, we can see that the normal adaptation 

rule (Ta = T ) , i.e.: 

/ S(q-i) = S(q-*) 
(5.94) 

( R{q-*) = %"*) 

at every sampling interval introduces an extra closed-loop in the adaptive system. Here 

5, R represent the controller parameters, R, S represent the estimated parameters. For 

slow adaptation, we can set the adaptation rate Ta much slower than the sampling rate 

T. For example, set: Ta — NT , where N is a large integer, then, the adaptation 

(5.94) is done once only for every NT period. It is assumed that N is large enough for 

the process to reach steady state. We call this case the fixed slow adaptation rate . 
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Algorithm for Fixed Slow Adaptation 

Suppose that the command wk+i is known at t = kT, and the latest adaptation occurred 

at ti = kyT(k\ < k): 

1. Obtain: yk, y^, • • •, uk_u • • •; 

2. Recursively calculate 6k, i.e. jR(g _ 1 ) , S(q~1), by using estimation algorithm; 

3. \i k — kx ̂  N, go to step 5; 

4. If k — ki — N, perform adaptation (5.94) and reset newr kx; 

5. Controller calculation and back to step 1 for the next sampling interval. 

At steady state, Hi operates as H2(e~3UlT) where wx is the dominant frequency. Let 

H(q~1) be the transfer function of the plant and ^ ( g - 1 ) be the estimation model, then 

the estimation will result in: 

H{e^T) = H{ejWiT) (5.95) 

S(g->) _ B{q~x) 
1 -R(q-l)q-l A(q-l) 

at q'1 = e-jUlT, then 

B{q~l) = A(q-x)S(q-x) + B(q-x)R(q-x)q-x 

= C(q-X) 

at q~x = e~iUiT as S,R converge to S*,R*. Thus between two adaptations, under 

the conditions that S, R converge to S*, R* and the new closed-loop characteristic 

polynomial: 

A^Sriq-1) + Biq-^Rriq-^q-1 (5.96) 
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has no unstable zeros, we have 

H2{e-jWlT) = 1 

which is SPR. In equation (5.96), {^.(g- 1)}, {Pc^g" 1)} is a subset of {^(g - 1 )}, {P(g - 1 )} 

andS' r(g~ 1) = 5"(g_1) ,P t r (g _ 1 ) = Pt(g - 1 )only when adaptation occurs, otherwise ST, R\ 

will keep the same value. 

In [1], it is indicated that if the signals in the regressor vector (f> are restricted to 

a class in which the non-SPR transfer function H2 behaves, on average, as an SPR 

transfer function, the S P R condition on the whole frequency band can be relaxed. This 

is known as the average S P R criterion. Here we have shown that by using estimated 

results only in steady state, <f> is restricted to the signals of the same frequency as the 

command in which H2 = 1 is SPR. 

Though the S P R H2 condition is relaxed, an additional condition is that (5.96) has 

all zeros stable. Actually, SPR # 2 is a stricter condition which implies that (5.96) has 

all stable zeros. 

5.2.2 Unfixed Slow adaptation rate 

In some cases, we cannot ensure that the transient process is over within the time 

period NT, or in other words, we do not know how large N should be for a certain 

plant to reach the steady state under certain sampling frequencies. Then a criterion for 

checking steady state is necessary. In this case, the checking is carried out periodically 

at every NT. Only if the process is verified in steady state, will adaptation follow. The 

adaptation algorithm is: 

W, t+i (5.97) 

w here 
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9t if the process is in steady state and 

t = kNT where N is a given integer 

<f>t-i if not 

when <pt = 0t, it means that the adaptation is done and the current estimated param

eters are used in controller since a direct algorithm is used. This case is called the 

unfixed slow adaptation rate since adaptation may not take place every Ta. 

Algorithm for Unfixed Slow Adaptation 

Suppose the command wk+i is known at t = kT, and the latest adaptation occurred at 

h = kiT {ki <k): 

1. Obtain y*, jfc-i, • • •, • • • ; 

2. Recursively calculate 6k, i.e. i?(tj _ 1), S ( g - 1 ) , by using estimation algorithm; 

3. If k — &i ^ N, go to step 6; 

4. If k — ki — N, reset k\ and check if the process is in steady state, if not, 

doing nothing and go to step 6; 

5. If the process is in steady state, perform adaptation (5.94); 

6. Controller calculation and go back to step 1 for the next sampling interval. 

The initial state 5̂o must be such that (5.96) has all stable zeros. This is not difficult 

to realize. For example, if we know that the plant has only stable poles (a common 

situation), we can simply use an open-loop structure in the initial stage: 

^o = [ l , 0 , - - - , 0 ] r 
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The theoretical discussion on stability is the same as in the fixed slow adaptation 

rate case, but here, the assumption that the process has to be in steady state within 

NT is not necessary. 

5.2.3 C h e c k i n g C r i t e r i o n for the Steady State 

In the unfixed slow adaptation rate case, the adaptation is only carried out if we 

measure the steady state input-output data of the plant. The measurement is set at a 

fixed rate of every NT period. It becomes the fixed adaptation rate if the process is 

measured to be in steady state at every measurement. But it is not straight-forward 

to tell if a process is in steady-state right away after we measure the input-output. We 

have to record a certain period of input/output data and compare it with the given 

characteristic of the command. The principal criterion used here is that the steady 

state output/input of the plant has the same frequency component as the command 

input provided that the plant is linear and the noise is insignificant. One method 

is to use curve fitting for the output (or/and input) date according to the mode of 

the command input signal as described in section 2.4. For example, the command is: 

tufc = Asm(u)ikT — <f>i), we can expect that the output in steady state has the form: 

yic — Hi sin(o;1fcr — A i ) in case the closed-loop characteristic equation (5.96) has stable 

zeros. The error index to be minimized is: 

(5.98) 

If J is small compared with the output data {i/fc}, we can consider that the process 

is in steady state. 
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Figure 5.24: STC result for fixed rate slow adaptation 

By using curve fitting, A a , Hi can be obtained through (see section 2.4): 

n 

Y ykcos(uikT) 
— tanAi 

Yvksin{uoikT) 
k=i 

(5,99) 

and 
2 " 

Hi = - > yksin(vikT - Aj) 
nk=i 

(5.100) 

Equations (5.99), (5.100) are used to calculate AlyHi, respectively according to the 

known data yk,wx, and sampling interval T. The steady state is checked by calculating 

J in (5.98). 



Chapter 5. Robust Adaptive Control: Slow Adaptation 97 

Example 5.1 (STC Simulation by using Slow adaptation) 

Consider Rohrs' plant with the transfer function of the continuous plant as (4.93) in 

example 4.3. We use slow adaptation and the sampling frequency is allowed to be 

T, = 0.15sec. The command input has frequency 1.0 rad/sec, and there is a small 

output noise N(0,0.03). First order estimation model and pole-placement control are 

used. Wi th normal adaptation rate, the adaptive control algorithm is unstable. But 

here, Ta = 10TB, i.e., the adaptation rate for controller is much slower than the sampling 

rate of the plant. 

The simulation result is as in Fig. 5.24, where only first 30 seconds are plotted. 

Initially, the plant is open loop. The transient estimation result is not used by the 

controller. The controlled output is stable and follows the command input well. A l 

though the discrete plant for this sampling is non-minimum phase, since the low order 

estimation model is used, there is no unstable zeros cancelled in the real process. In 

Fig. 5.24, the estimated parameters and the controller parameters are also plotted 

where the parameter 1 refers to the estimates of a and the parameter 2 refers to the 

estimates of b in the first order estimation model yt = a y t - i + but-\. 

i 5.3 Frequency Domain Estimation 

Example 5.2: 

For the continuous plant in Example 5.1, the discrete transfer function of the plant has 

the form: 
TT( (&o + + b2q-2)q-1 

1 - (dxq 1 + a2q 2 + a 3q 3 ) 

we use different sampling rates and obtain the parameters of the discrete transfer func

tion a 1 ? a 2 , a 3 , b0, bx, b2, crossover gain Gc of the discrete transfer function, converged 

estimates of a first order model as in Example 5.1 a", b* and gain margin Kf of the 
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Tt = 0.3sec. T, = 0.15sec. T, = 0.05sec. 
0.7592 1.0621 1.8912 

-0.01371 -0.1844 -1,1173 
a3 

0.00009142 0.009561 0.2122 
bo 1.0422 0.6017 0.1312 
bi 0.6445 0.8435 0.3607 
b2 

0.009721 0.05864 0.06042 
Gc 0.1936 0.1599 0.09931 
a* 0.7918 0.8909 0.9580 
b* 0.4734 0.2513 0.0841 

3.09 1.76 0.884 

Table 5.6: Parameters of discrete plant of Rohrs plant under different sampling 

Sampling . poles 
T. = 0.30sec. 0.1253 ±j '0 .5699,-0 .0141 stable 
T, = 0.15sec. 0.3875 ± jO.7130, -0.0328 stable 
T, = 0.05sec. 0.8227 ± J0.5954,0.1734 unstable 

Table 5.7: Closed-loop poles of adaptive system under different sampling 

/ o* \ — x 

closed-loop using a*, b* as controller parameters in Table 5.6 (Kf = (~0~*^c) ^' 

The slow adaptation adaptive control algorithm is stable under sampling intervals: 

0.3 sec, 0.15 sec, but unstable under 0.05 sec. Thus, there is an improvement of 

robustness by using slow adaptation but this improvement is limited as (5.96) can still 

have unstable zeros if the model mismatch is too large (such as when using Ts = 0.05 

sec). Table 5.7 lists the poles of C(q~1) when the converged parameter estimates are 

used for the Rohrs' plant. The command frequency is 1.0 rad/sec. 

However with the information about the frequency response of the plant (in this 

example, cross-over gain), we can predict whether the characteristic equation (5.96) 

will have unstable zeros after adaptation. FFT-based frequency domain estimation can 
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be used to obtain frequency domain information. 

In steady state, assume that the noise is small enough, the energy of the input-

output data is concentrated at several specific points in frequency band. The use of 

F F T directly on these input-output data to obtain frequency domain information will 

not give a good estimate on the other frequencies. Here we suggest that a perturbation 

is necessary to induce a transient so that the input-output data of frequency domain is 

rich in whole frequency band. For example, under steady state, there is an intentional 

perturbation resulting in process transients. Denote the F F T of the input and output 

signals resulting from this perturbation by t7(u>), Y(u>), then the estimated frequency 

response of the plant H(e-jwT) can be approximated by: 

Where u = 0,-^,... ,-^(N - 1), and JV is the number of samples in F F T . The 

resolution of frequency response of the estimated plant is directly dependent on N. 

More details about the frequency domain estimation can be found in [26] or in 

section 2.1.2. Usually, we set the perturbation close to an impulse signal so that the 

estimation error is small. 

It is also found that a perturbation with larger amplitude results in more accurate 

estimates of H(e~3wT), although the process will be more affected. In case there is a 

small white noise, the accuracy will not be affected too much. 

Once the frequency response of the plant is obtained, we can search for the gain 

margin (say Kf) and check the stability for (5.96) before adaptation. If a/(bKf) < 1, 

the adapted system will remain stable. However, if the gain margin Kf is not large 

enough, there will be no adaptation and the performance of the output is not adjusted 

but still stable. 
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Example 5.3 

In self-tuning control algorithm for the Rohrs' plant as in example 5.1, pole placement 

algorithm is used. The estimation model order is 1 and the sampling interval is T, — 

0.05aec We use unfixed slow adaptation rate (checking rate N = 63, i.e. Ta — 3.2sec.) 

and check stability condition based on frequency domain estimation. There will be no 

adaptation if the inverse of the gain margin of the adapted system Kj1 is larger than 

0.9 (larger than 1.0 is unstable). In this simulation, the new closed-loop gain margain 

using new estimates was always found unsatisfactory, thus no adaptation took place. 

The system is not unstable since the initial controller parameters was chosen such that 

the closed-loop system is stable. However, the system's performance is not as desired. 

The command and output are as in Fig. 5.25. 

5.4 F i l t e r Des ign 

To improve the performance of adaptive systems under large model mismatch, a filter 

F(q~1) = j could be introduced as in Fig. 5.26. This filter has the property: 

F{e-'"T)\ I 

y < 1 to ̂  
The phase shift of F(e~jWlT) is desired to be 0. If ux — 0, i.e. the command input is 

a step, then F is a low pass filter. Otherwise, F is a band-pass filter. The robustness 

of such a structure is improved because the gain margin of the closed-loop system is 

increased around the cross-over frequency. 

To view the effect of filter, we can see that the closed-loop characteristic equation 

(5.96) becomes: 

(5.101) 
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Figure 5.25: Unfixed rate slow adaptation STC result when the sampling is very fast, 
T, = 0.05sec. for Rhors' plant 

or 

1 + H(q-')F(q-')Zd^ = i + 
•Mr1) 

Since F(q~1) at w -> w c can be chosen small enough, where u>c is the cross over 

frequency in the Nyquist curve of Gf{q~l), (5.101) can always be stabilized if the 

frequency response of H(q~1) is known. Otherwise, we can only say that the smaller 

\F(eJwT)\ is at high frequency, the more robust the closed-loop is. 

Example 5.4 (Band-pass Filter) 

For a continuous band-pass filter, 
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M B Hi-1) Giq-1) 
yt 

Estimation 

Figure 5.26: Closed-loop with filter 

F(s) 

Wi 

Q' 
W\ 

S + ~ 5 + W, 

the impulse equivalent discrete form is given by: 

b0 + bxq'1 

Diq-1) 1 + a i g - 1 + a2q-

w here 

A W l 

~Q 

bx = -e-aT^[cos{bT) + £ sin(6T)] 
Q o 

ai = - 2 e " a T cos(6T) 

a2 = e 

and 
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l . O i — 

F r e q u e n c y i n r a d / s e c . 

Figure 5.27: Bode plot of the compensation filter in Example 5.4 

a~ 2Q 

For the sampling period T, = 0.05sec. and w\ — l.Orad/sec, the Bode plot of F(q~1) 

is as plotted in Fig. 5.27 where only the logspace(-l,l) is shown. Q is the quality of 

the band-pass filter. In Fig. 5.27, Q = 5.0 is used. For fast sampling frequency, higher 

Q is expected. 

By proper choice of a filter as in example 5.4, the STC system could be very robust. 

But it only works well in the case of known command frequency. If the frequency of 

the command changes, this filter has to be tuned accordingly. 

In summary, the flow diagram of the adaptive control algorithm is as in Fig. 5.28. 

Some simulation examples will be presented in the next section. 
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Figure 5.28: Robust Adaptive Controller Design Flow Diagram 
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Figure 5.29: Adaptive control result in example 5.5, command is cos(t), sampling 
TB = 0.055 ec. 

5.5 S i m u l a t i o n Examples of R o b u s t A d a p t i v e Con t ro l l ed Des ign 

Example 5.5 (Simulation of robust S T C design) 

Consider the Rohrs' plant (4.93) as in example 5.1: First order estimation model and 

pole-placement controller are used. It has been shown that for this conventional adap

tive pole-placement algorithm, the discrete adaptive control system is unstable for 

T, < 0.20-sec. For slow adaptation, example 5.2 shows that when T, = O.OS^ec. the 

fixed rate slow adaptation scheme is unstable. Here, we use a digital band-pass filter 

as shown in example 5.4. The filter parameters are self-adjustable according to the 

estimated gain margin, i.e., if the new gain margin of the adapted system with filter is 

checked as inadequate, increase Q until it is adequate. 
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Fig. 5.29 is the self-tuning control simulation result. In the first 20 seconds, the 

system is in open-loop . The command is a sine wave with amplitude 1 and frequency 

1.0 rad/sec. At t = 20sec, there is a probing signal p(t) added to the command, p(t) = 

2 e - 5 (* - 2 0 0 ) ) t > 20. This probing signal disappears after two seconds (its value is less 

than 1 0 - 4 after t=22 sec). During that transient, input and output data are recorded 

for frequency domain estimation. We use discrete Fourier transform for frequency 

domain estimation. 

In Fig. 5.30(a),(b), we plot the estimated phase and gain, the estimated cross-over 

gain of the plant Gc is 0.101, which is close to the real value in example 5.2. The 

estimated parameters and the controller parameters are as shown in Fig. 5.30(c),(d), 

where the checking rate for steady state is 6.3 sec. (every 126 samples). The first 

adaptation occurs at t = 32.75ec, and the estimated data: d = 0.960, b = 0.088 are 

used. If there is no band pass digital filter, the closed-loop is unstable. However, the 

program can calculate a proper filter parameter Q according to the estimated d, b, 

Kc. By setting an initial value of Q, if the gain margin of the open-loop including the 

estimated Gc of the plant, the controller and the filter is less than one (or desired value), 

Q is increased until the gain margin is large enough. For more detail about the design, 

refer to the simulation program in Appendix C. Here in this example, Q = 10.32 is 

used so that the cross-over gain of compensated system within is 0.8. 

The command input changes its amplitude at t — 76sec, then, changes back every 

50 sec. The adapted output follows the command changes quite well. 

For the same continuous plant, when the command is a step level, a low pass filter 

can be used. Fig . 5.31 is a simulated result under step level command input. The 

control strategy is the same as in the above. In the simulation, there is a small additive 
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Figure 5.30: Estimation result in example 5.5 
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output white noise iV(0,0.05). The form of low pass filter is 

1 

Fig-1) Q 

where the filter parameter in this case is Q = 159. The checking rate for steady state 

is every 80 samples (4 sec). The first adaptation occurs at t — 30.5sec, where the 

estimated parameters d = 0.968, b = 0.066 are used for controller parameters. There is 

a large transient process after the adaptation. The second adaptation is at t = 42.5sec, 

and the estimated parameters are 0.964, 0.075, respectively. After that, the adaptation 

occurs every 4 sec. until at t = 76.6$ec, the step level is changed to 0.5 and a large 

transient occur after that. The adaptive control result is stable and the transient 

process can be improved by choosing a higher value of Q in the compensation filter. 

Example 5.6 (STC of high order plant) 

Give an eighth-order system, the continuous transfer function of which is: 

We use a first-order model to estimate it and use the estimation result to design a pole-

zero cancellation controller. From the Bode phase plot of the plant, we can find that the 

critical sampling pariod for minimum phase discrete plant and the approximate critical 

sampling pariod for S P R H2(q~1) are the same, i.e., Tc = 7.58sec. The conventional 

adaptive pole placement algorithm is unstable if the sampling period Ta is shorter (This 

was checked by simulating the case T„ — 6.5sec). 

Here in simulation, we use T„ — l .Osec The adaptive control output is as shown in 

Fig. 5.32. In the first 300 seconds, we don't apply any control. At t = 300sec, there 

is a probing signal, and the frequency domain estimation is done at this stage. The 
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Figure 5.31: Adaptive control result in example 5.5, command is step level, sampling 
T. = 0.05sec. 

first adaptation occurs at t = 479sec. The checking for steady-state is done every 50 

seconds. The estimation result is as shown in Fig. 5.33. For robust adaptive control, 

a digital low-pass filter with the form as in example 5.5 is used, with the parameter 

Q = 159, which is calculated by the adaptive algorithm since a cross over gain 0.8 is 

chosen (i.e., desired gain margin is 1.25). 

For faster sampling, higher Q is expected. The adaptive control system can be 

stabilized if the frequency domain estimation result is good enough. . 

5.6 C o n c l u s i o n 

In this chapter, we discussed the robust adaptive control algorithm design by using 

slow adaptation rate. It has been shown that when using only converged estimates, 
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Figure 5.32: Adaptive control for an eighth order plant(example 5.6) command is step 
level, sampling Ts = 1.0aec. 

the S P R condition on the operator H2 is relaxed and the adaptive control algorithm 

is more robust. However, slow adaptation rate is not the only condition for stability. 

A closed-loop equation (5.96) has to be stable. It was shown in Example 5.2 that too 

fast a sampling frequency results in an unstable closed-loop system and the adaptive 

control algorithm is unstable. In this case, a compensation filter has to be used, the 

design of which is based on the frequency domain information of the discrete plant. 

The adaptive control algorithm is stable given proper design of the filter. 

-4-> 

o 

a 

cd e 
B 
o 

C_3 

3.5 

3.0 

2.6 

1.5 

l.O 

O.S 

O.O 

-O.S 
O.OO 



Chapter 5. Robust Adaptive Control: Slow Adaptation 111 

( a ) . E s t i m a t e d P a r a m e t e r 1 
4 . 

0 . 0 0 5 0 0 . 1 0 0 0 . 1 6 0 O . S O O O . 

( b ) . E s t i m a t e d P a r a m e t e r 2 
1.6 

1.0 - — — 

0 . 6 

- 0 . 6 

-3 

cci 
g 
CO 

0 . 0 0 6 0 0 . 1 0 0 0 . 1 5 0 0 . 2 0 O 0 . 

T i m e i n S e c o n d s 

( c ) . E s t i m a t e d G a i n 
2 . 6 

— 0 . 5 

0 . 1 6 . 3 2 . 4 6 . 6 4 . 

F r e q u e n c y F r o m 0 t o Ws/2 
( d ) . E s t i m a t e d N y q u i s t C u r v e 

- i . 

R e a l A x i s 

Figure 5.33: Estimation result in example 5.6 



Chapter 6 

Robust Adaptive Control: Using Predictive Control 

Predictive control algorithm is simple to use and through applications has been shown 

to be very robust. It is based on predicting the output of the plant several steps ahead 

given assumptions about future control actions. In practice, it has been shown that 

the predictive control algorithm is superior to many existing algorithms ([12]) although 

no complete theoretical analysis is available so far. In this chapter, we will show some 

simple relations between the sampling interval and predictive control horizon and give 

a design guideline on how to choose them in practice. 

6.1 Predictive Control Algorithm 

6.1.1 A simple predictive control algorithm 

We first describe a simple predictive control algorithm, which is also called receding-

horizon controller, (See [40]). This algorithm is based on an assumed model of the 

process and on an assumed form for the future control signals. The pole-zero placement 

scheme of example 3.2 can be interpreted as a simplest case of this receding-horizon 

controller. 

Consider the discrete process: 

Aiq-^yt = B{q-1)q-iut (6.102) 

Where d is delay of the plant. There is no unstable zeros in A(q~1). The degree of 

112 
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deg(A) — n 

deg(B) - n — 1 

By introducing the identity: 

1 = A ^ F ^ 1 ) + q-V+^Giq-1) (6.103) 

The degree of Fiq'1), G{q~x) in (6.103) is: 

deg(F) = d + h-2 

deg(G) = n — 1 

Here h > 1 is the extended horizon. Set dh = d + h — 1, (dh > d) and apply (6.103) to 

yt, we have: 

yt = A(q-1)F(q-1)yt + G(q~1)yt_dh 

= F(q-1)B(q-1)ut.d + G(q-1)yt^h (6.104) 

Introduce: 

Biq-^Fiq'1) = R^q-1) + q^R^q'1) (6.105) 

where 

deg(Rl) = h - 1 

deg(R2) = rt + ci - 3 

The coefficients of R^q-1) are the first h terms of the pulse response of the open-loop 

system. Indead, 

= R1(q-1)q-d + R2(q-1)q-{d+h) + (6.106) 
A{q l) 
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The degrees of the last two terms are equal to or higher than d + h. Equation (6.104) 

can be rewritten as: 

yt = i2 i (g _ 1 )« t -d + Riiq-^ut-d-h + G{q-l)yt-dh 

or 

y t + d h = i M ^ H + h - i + Rib'1)**-! + Giq-^yt (6.107) 

By choosing: 

ut — u t + i = • • • = ut+h-i (6.108) 

The control law which brings yt+dh to a desired value wt+dh

 i s : 

.... v>t+dh - G(g~1)yt inert 

This control signal is then applied to the process. At the next sampling instant, a new 

measurement is obtained and the control law (6.109) is used again. 

The characteristic polynomial of the closed-loop system using predictive control law 

(6.104) is: 

C(q-X) = ^(g- 1 ) [ J Ri( l ) + g- 1

JR 2(g- 1)] + G( g- 1)5 ( g - 1 ) g - ' i 

= i4(<TWl) + qh-l[B{q~X) - A{q-*)Ri{q-*)) 

Where we have used identity: 

B = B[AF + Gq-(d+h-V] 

= A(BF) + GBq~d~h+1 

= ARX + AR2q-h + GBq-d~f+1 

then 

B-ARi = AR2q~h + GBq-d-h+1 

or 

ARiq'1+ GBq~d = qh~1[B - ARi] 
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Since Ri is the first h terms of ———r, if the discrete plant is stable, i.e., there are no 
Mi' ) 

unstable zeros in A(q~1), then 

Urn C ( ? - 1 ) = A( 9- 1)iZ a(l) 
n—*oo 

This means that for h goes to infinity, the closed-loop system under predictive control 

is always stable. 

Example 6.1 

Let (6.102) represent a third order plant, where: 

A{q~1) = 1 - a i g - 1 - a2q~2 - a3q~3 

B{q~l) = b0 + hq-1 + b2q~2 

Here d — 2, n — 3. Suppose the horizon is h = 2. Then, 

deg(F) = 2 + 2 - 2 = 2 

deg(G) = 3 - 1 = 2 

The Diophantine equation to be solved in this case is: 

1 = (1 - dig-1 - a2q~2 - a3q-3){f0 + f^q'1 + f2q~2) + q-3(g0 + g^'1 + g2q-2) 

Equation (6.104) is expressed as: 

yt = (1 - arq~l - a2q~2 - a3q-3)(f0 + fxq~l + f2q~2)yt + {go + + #2g~ 2 )y t - 3 

= (/o + + f2q~2)(bo + hq'1 + b2q-2)ut-2 + (g0 + giq'1 + g2q-2)yt-:i 

Now in (6.105), we have in this case: 

deg(R\) = 1 

deg{R2) = 2 
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and 

(/o + fiq"1 + /2<r2)(&o + M " 1 + b2q~2) = r10 + r m j - 1 + q~2(r20 + r 2 1 g _ 1 + r22q~2) 

The predictive control law is 

wt+3 — goVt ~ giVt-i — g2Vt-2 — r2oUt-i — r 2 1 u e _ 2 — r22ut-3 
ut = 

rw + rn 

For a special case, h = 1, the simple predictive control algorithm with extended 

horizon becomes a pole-zero cancellation scheme. 

6.1.2 Generalized Predictive C o n t r o l 

A more general version of predictive control is the generalized predictive control in [12]. 

Suppose the process can be described by a C A R I M A model: 

A{q-1)yi.= B(q-1)q-iut + ̂  (6.110) 

Where A = 1 — q'1 is the difference operator. Consider the loss function to be mini

mized: 

( N2 Nu 

(yt+k - wt+k)2 + PY ^ l k - i } . (6.1H) 
k=Ni fe=l 

where: 

Ni is the minimum costing horizon; 

N2 is the maximum costing horizon; 

Nu is control horizon; 

p is a control-weighting. 
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Introduce the identity: 

1 = A^q-^Fiiq-^A + q-'Gtiq'1) (6.112) 

where the degrees of Fi, Gi are I — 1, n — 1 respectively. For I = 1, 2, • • •, N, we can 

obtain JFi, • • •, JFJV; G\, • • •, GN and for every /, we have 

yt+i = FiB Aut+i-d + Gtyt + Ftet+l (6.113) 

Introduce the identity for / = 1, • • •, TV, 

BF^R^ + q-^^R? (6.114) 

where 

Then, 

here, 

deg(R[l)) = l-d 

deg(R2
l)) = n + d - 3 

y{t + l) = R[l)Au{t + I -d) + yt{t) + Fie{t + I) (6.115) 

y,(0 = M!)«t-i + GlVt 

Note that the parameters of Rx \ R2\ Gi are obtained in the same way as Rx, R2, G 

in section 6.1.1 for horizon I. Consider I = N\, Nx + 1, • • •, N2, we will have: 

y = R A u + y + e (6.116) 

where 

y = [y{t + 7V 1),---,y(< + JV 2 )] r 

A u = [Au{t),---,Au(t + N2-d))T 

y = [yjv,(<)>- • • iy~N2{t)}T 

e = \FNle{i + Ni),---,FN2e(t + N2)} T 
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R is a matrix ((N2 - Nx + 1) x (N2 - d + 1)): 

R 

nv,-d ••• r 0 0 ••• 0 

rNi-d+i • • • r x r 0 • • • 0 

0 

The parameters r0, rx, • • •, ri form a polynomial: 

r0 + nq-1 + • • • + riq~l = R^iq-1) 

B 
which has the degree of I and is the first I terms of the pulse response of -f^q~d- The 

term Rx^Au(t + I — d) contains the terms Au(t + I — d), • • •, Au(t). Let us assume 

Au(t + k-l) = 0 

where k > Nu, i.e. the control signal is assumed to be constant after Nu steps. Then 

the matrix R in (6.116) will be {{N2 - Nx + 1) x Nu): 

TNt-d ••• r0 0 • • • 0 

rNt-d+i • • • ri r0 ••• 0 
R = 

0 

rpr2-d fjv2-c£-7v„+i 

and the control signal is: 

Au = [10 • • • 0 ] T ( R r R + piyWfrm - y) 1-DT/ (6.117) 

When choosing Nx = d, the R will be a lower triangular matrix with the size 

(N2 - d + 1) x (N2 - d + 1). In [12] and [9], the case Nx = 1 is discussed. Note that 

r-fc = 0 if k < 0. Thus for the case Nx < d, the first d — Nx rows are zero. 
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Example 6.2 

Consider the case Nx = N2 = d + h-1, Nu = 1 and A = 1 (using C A R M A model). The 

generalized predictive control algorithm is then similar to the simple predictive control 

using extended horizon. Let us consider the case d — 2, h = 2. So N2 = Nx = 3. We 

can rewrite (6.115) as: 

y(t + 3) = R[3)u(t + 1) + y3(t) + F3e{t + 3) 

where 

deg{R[3)) = 3 - 2 = 1 

Suppose: 

R[%~1) = r10 + r11q-1 

then 

y{t + 3) = r10u(t + 1) + r uu(<) + y3(<) + F3e{t + 3) 

Here 

y3(t) = 4'}u(< - 1) + G3y(<) 

It is not difficult to show that: 

ys(0 = £oy(<) + 9iy{t - 1) + y2y(< - 2) + r 2 0u(< - 1) + r2 1u(< - 2) + r22u(t - 3) 

where y,-, v2{ (i = 0,1,2) is derived from the same equations as in the example 6.1. 

Thus the predictive control with the assumption u(t) = u(t + 1) is: 

w{t + 3) - y3{t) ut = 

which is similar to the form obtained in example 6.1. 
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6.2 Robustness of Predictive C o n t r o l 

6.2.1 I l l u s t r a t i o n examples 

Before discussing the robustness, we will show an example of the relation between the 

sampling interval, the extended horizon and the stability. 

Example 6.3: (Simulation on Sampling, extended horizon and stability) 

Consider Rohrs' example which is a third-order continuous plant: 

c ( j ) _ 2 229  
k ' s + 1 s2 +• 30s + 229 

We simulate predictive control by using different extended horizons and sampling in

tervals. The estimation model is first order. Let h denote the horizon, two self-tuning 

predictive control algorithms are considered: 

Algorithm I: (Indirect) 

The estimation model is 

Vt - ayt-i + &tit-i 

where a, b are parameters to be estimated. The predictive control law is: 

wt+h - ahyt 

6(1 + a + ••• + a*-1) 

In this algorithm, there are only two parameters to be estimated. 

Algorithm II: (Direct) 

The estimation model is 

Vt - ayt-h + biut_l + b2ut_2 H 1- bhut_h 

There are h + 1 parameters to be estimated. The direct control law is: 

wt+h - ayt_h 

Ut — : — 

bx + b2 + \-bh 
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h T, = 0.3 T. = 0.2 T, = 0.15 T. = 0.10 T, = 0.06 T, = 0.03 
1 • X X 
2 • * • X 
4 * • 0 X 
8 • • 0 0 

Table 6.8: Simulation result for various sampling and extended horizon 

Table 6.8 includes the simulated stability results of those two self-tuning algorithms 

under different samplings and control horizons. Where h is the control horizon and T, 

is sampling interval. 

• represents both algorithm I, II are stable; 

o represents algorithm I is unstable but algorithm II is stable; 

X represents both algorithm I and II are unstable. 

From Table 6.8, we find that algorithm II is more robust than algorithm I. However, 

if we use slow adaptation rate as in Chapter 5, we will find that algorithm I and 

algorithm II have the same robustness. 

The superior robustness of algorithm II may be explained as follows: Consider the 

first-order estimation model, there always exists some estimation error. Assume for in

stance a 3 % error in estimation, if first ordel model yt = ayt_x + but_x is used, assume 

converged value a = 0.99, then 3 % error in algorithm I will result in a being in the 

range 0.9603 ~ 1.0197. If h = 10, by calculation, ah will be in range 0.6669 ~ 1.2154. 

However, in algorithm II, the estimated d = ah is in range 0.8773 ~ 0.9315. Thus the 

sensitivity of algorithm II is smaller. When using slow adaptation, the estimation error 

is considered to be small enough, thus the robustness is improved. 
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predictive horizon h critical sampling Tc 

8 0.051 sec. 
4 0.105 sec. 
2 0.22 sec. 
1 0.45 sec. 

Table 6.9: Critical sampling for different horizon 

Example 6.4: (Critical Sampling for extended horizon) 

Consider the third-order continuous plant: 

G ^  = (S + 2)2(5 + 10) 

We simulated predictive control using algorithm II. The estimation uses first-order 

model. Table 6.9 gives the critical sampling period for various values of h. If the 

sampling period is shorter than the critical sampling period, the system was found to 

be unstable in simulations. 

From Table 6.9, we can see that 

hTc « constant (6.118) 

This result is very useful. The case h = 1 is just pole-zero cancellation, for which the 

critical sampling was discussed in chapter 4. Then, given a faster sampling, we can 

choose the extended horizon h such that the predictive self-tuning algorithm is stable. 

6.2.2 Discuss ion 

Simplest cases: 

We are going to show that (6.118) is true for the simplest case. Consider the first-order 

continuous plant 

Gc(s) = 
K 

s + p 
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then the discrete description is 

G d { q } ~ 7 1 - e - ' V 1 

where T is the sampling interval. 

Case 1: Predictive horizon h = N, sampling is T, = T 

When using a first-order model: 

Vt = ayt-i + 6u t - i 

== aNyt_N + but^x + abut-2 H (- aN~1but.N 

where 
a = e~pT 

b = f ( l - e ^ ) 

when assuming ut — = • • • — u t + j v - i , the control law is 

Wt+N ~ aNVt teiins 
U t = b{l + a + ... + a«-i) ( 6 ' 1 1 9 ) 

define: 
a = aN = e-*NT 

then (6.119) is 

b = b(l + a + --- + aN-1) 

= f (1 - e-" T)(l + e~pT + ••• + e-p(^-i)r) 

= f ( l - e " ^ ) 

w(t + NT) - ayt ut= K , J U- (6.120) 
b 

Case 2: Predictive horizon h = 1, sampling J 1, = NT 

We have the estimation model: 

yt = a y t - i + but-x (6.121) 



Chapter 6. Robust Adaptive Control: Using Predictive Control 124 

wh ere 
a = aN = e-*NT 

b = f ( l - e - ^ ) 

The control law is simply: 
w(t + NT) - ayt «, = g  

which is the same as in case 1. 

Notice that for different sampling, w(t + NT) has different expressions. In case 1, 

the sampling is T, then wt+w = w(t + NT). However, in case 2, the sampling is NT, 

then wt+i = w{t + NT). Thus we have shown that control laws for case 1 and case 2 

are equivalent. 

Discussion for higher order plant 

For higher-order plant, no complete proof is available yet. However, the following 

remarks are helpful for understanding (6.118). Consider a continuous plant which has 

n poles and m zeros: 

= k(s + Zl)...(s + Zm) 
' (s+Pi)(s+p2)---(s+pn) v > 

The discrete equivalent in A R M A model of (6.122) is: 

yt = am-i + a2yt-2 + h anyt_n + byut_]_ + b2ut_2 + h bnut_n (6.123) 

When using a first-order model (6.121), with predictive control extended horizon h, the 

form used for estimation is: 

yt = a,hyt_h + 6u t_! -\ h ah~xbut_h 

1. For the model above, the static gain is independent of the extended horizon h: 

b + db + •••ah~1b 
D.C. gain = 

1 - ah 

b 
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2. For different horizons ft, the forms of the controller are different. The contribu

tions to the open-loop gain of the controller are also different. As h — 1, this gain is 
a 

simply —. For h > 1, this gain is 
b 

6(1 + a+ ••• + ah~1) 

When the sampling period T„ is small, a will be close to one, and b will be close to zero. 

The open-loop gain of the controller for h = 1 will be very large. This can result in an 

unstable closed-loop system. However, as h increases, the open-loop gain can decrease, 

thus a small TB requires a large h for the stability. 

3. If ft. > 1, the estimation model is 

bq-1 +baq-2 + •• • + bah~lq~h _ bq'1 

1 - ahq~h ~ 1 - aq-1 

Theoretically, there is a cancellation. However, in practice, the cancellation will usually 

not happen. The model under control horizon assumption is: 

h + k + • • • + bh 

1 - ahq~h 

4. If slow adaptation as discussed in Chapter 5 is used and the closed-loop system 

with every new updated estimated parameters is stable, then the adaptive system is 

stable. When using adaptive control algorithm, if the estimation model is first-order 

and the horizon is ft, this closed-loop transfer function is: 

B(£) 
^ ( c j - 1 ) ^ ! + a + • • • + a!*-1) + B{q-l)ahq-h 

It is obvious that as ft increases with \a\ < 1, it will result in an open-loop plant. 

Des ign Guide l ines for choosing ft 

• For the continuous plant, find the critical sampling Tc for the stable self-tuning 
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pole-zero cancellation algorithm, using for instance the relay method of Chapter 

4. 

• For the desired sampling Ts, where T, < Tc, the extended horizon h has to satisfy: 

h > [ | ] + 1 (6.124) 

In practice, for a stable plant, a longer h will bring more robustness. However, the 

process response will be slow. In section 6.4, several simulation examples will be given. 

6.3 S t a b i l i t y Analysis for a simple case 

Now we will use the stability theory in chapter 3 to study the stability condition for a 

simple case of predictive control. Let the discrete plant be: 

Aiq-^yt = B{q-l)ut^ (6.125) 

where A(q~l), B(q~1) can be of any order. If we use a first-order model for parameter 

estimation, suppose the converged parameters are a and b, the first-order model is: 

yt = at/t-i + but-i (6.126) 

= a2yt-2 + a6u t_ 2 + 6uf_i (6.127) 

This is an indirect algorithm (Algorithm I in example 6.3). We use (6.126) as estimation 

model and the controller design is based on (6.127), where the desired output is wt = yt. 

Based on (6.127) and the desired output, we have 

wt+2 = a\yt + atbtut + btut+1 

where d ( , bt are the estimated parameters at time t. We use an extended horizon, 

assuming ut = ut+i, the control law is: 

wt+2 = a\yt + (atbt + bt)ut (6.128) 
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Define 
vt = atyt + btut = $dt 

v* = ayt + but = <f>j6* 

Here a, b are existent converged estimation parameters and 9t = [at,bt}T, 6* = [a,b}T, 

<f>t — [ytiut]T- We also define 

<j>t = [vt,ut]T 

Thus, 

wt+2 = at[atyt + btut] + btut 

== atut + btut 

= 
Let 

C(g - 1 ) = (a6 + 6)^(o- 1) + a 2

J B(g- 1 ) t 7 - 1 (6.129) 

Then 
C t e " 1 ) ^ = (o i + frJ^g-'K-i+a2^-1)^-! 

= B{q-1)[a{ayt_l + &uc_i) + frut_i] 
= B{q-x)\avl_1-rbut_1) 

= B{q~1)[avt-1 + but-i + a(v;_t - uf_i)] 
For: 

v?-i-t;t-i = - (^-i-^F^-i 

where: 

0* = 0 t - ^ 

& = [yt,ut]T 

then 

= -C-1(q-1)B(q^)[§l14>t_1 + ael^ - wt+1) 
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Let: 

</>t-i = <j>t-i + o-4>t-\ 

Then, we have the error model: 

yt = -C-\q-l)B{q-l)$t + C ^ f a " 1 ) * ( < T > « + i (6.130) 

Observing the error expression: 

et = (1 + at-i - at-iq'^yt - wt+1 

= yt + dt_it/t - a t _iy c _i - bt^ut-i - at-iVt-i 

- yt - vt-i + at-i[yt - v t - i ] 

= (1 + at-!)[yt - vt] 

= (1 + a t_i)e t 

Where et is the error in the estimation, 

1 
et = yt~ (at-iyt-i + bt-xUt^i) = — — et (6.131) 

1 + at-i 

The error model is as in Fig. 6.34. 

Following the same procedure of the stability analysis in chapter 3, if the term 

l + at-i is always positive, i.e. d t _i > —1, then the stability condition for the predictive 

adaptive control system is that H2 be SPR. Note that the expression for H2 here is 

different, as we shall now proceed to show. 

Let 

Cr (g _ 1 ) = 1 + df-i - d c - i g - 1 

which is a time varying operator. Define the error as: 

e~t = Cr(q'1)yt - wt+l 

= -CC-'B^ + iCrC-1!! - l ) w t + 1 
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H 2 - l 
1 + Ot. 

Hi 

H2 

Figure 6.34: Error Model for predictive adaptive control 

Thus, 

^ ( g - 1 ) = Criq-^C-^q^Biq-1) (6.132) 

or more specificly, 

Hn = 
(a6 + 6)A(g- 1) + a 2

J B(g- 1 )g- 1 

The condition for the stable adaptive algorithm is that H2 be SPR, i.e., the phase of 

Ihiq-1) is within [-90°,90°]. 

However, the phase of Cr(q~1) is: 

, n ( -i\ * - i as inwT 
phaseC r(g ) = tan — — 

1 + a — a cos wl 

which is in [0,90°] for positive a, where w £ [0,—-]. 

B(q~l) . 
Usually, the phase of is less than zero, thus when considering the effect of 

A{q 1) 
B(q~l) 

C r , it will add a positive amount to the negative value of the phase — - . thus relax 

the requirement on the phase —. A n example is given to illustrate this argument. 
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Example 6.5 

Consider the continuous plant 

2 229 
G(s) 

s + Is2 +305 + 229 

We consider the case of sampling period T, = 0.2sec, the command input frequency is 

l.Orad/sec. We compare the phase of H2 for two different adaptive control algorithms. 

Fig. 6.35(a) is the phase of H2 when only using pole-zero cancellation. As for the 

simplified case, we just need to check if the phase of ^ \ is within (—90°, 90°). Here 
A{q *) 

— is the discrete plant not containing the delay due to the sampling and zero-order 

hold. For stability, the phase of — is restricted to the shadow area in Fig. 6.35(b). 
XT. 

B 
From the figure, we will see that the stability condition for — is not satisfied. 

Fig. 6.35(c) is the phase plot of H2 in case the predictive adaptive control is used. 

Here the estimation result gives the converged estimates a = 0.9104. The phase of 

Cr is positive, which adds to the negative phase value of —. SPR H2 is satisfied for 

this case. Fig. 6.35(d) shows the area of the required phase — for S P R H2. When 

using predictive control, the restricted area is enlarged. Thus the predictive control 

algorithm is more robust. 

6.4 S i m u l a t i o n Examples 

Example 6.6 (Verification of (6.118) for Rohrs' plant) 

Consider the plant used in example 6.3, we simulate the predictive self-tuning control 

for the cases T, = 0.3sec.,h = 1 and Ta = 0.075sec,/i = 4. The command input is a 

step level. There is a. small output noise A^(0,0.01). The simulation results are as in 

Fig. 6.36. 

The estimation uses the first-order model (6.121) and only two parameters are 
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Figure 6.35: Phase plot of H2 for different algorithm 

• Fig . 6.35(a): Phase plot of H2 for conventional pole-zero cancellation adaptive 
control, Rohrs' plant, T, = 0.20<sec, the command input frequency is 1.0 rad/sec. 

• Fig. 6.35(b): Required area for the phase plot of — when pole-zero cancellation 
is used. 

• Fig. 6.35(c): Phase plot of H2 for predictive adaptive control with h = 2, Rohrs' 
plant, Ta = 0.20.sec., the command input frequency is 1.0 rad sec. 

• Fig. 6.35(d): Required area for the phase plot of — when predictive adaptive 

control is used. 
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Figure 6.36: Simulation result in example 6.6 

• F ig . 6.36(a): Simulated output and command for the case T, = 0.3sec, h = 1; 

• F ig . 6.36(b): Estimated parameters for Fig. 6.36(a); 

• F ig . 6.36(c): Simulated output and command 
for the case T, = 0.075sec, h = 4; 

• Fig . 6.36(d): Estimated parameters for Fig. 6.36(c). 
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estimated. However, the adaptation is done every 3.0 seconds. Thus only converged 

estimates are used. For the case Ta = 0.3sec, h = 1, the estimated parameters are 

d = 0.819, b = 0.365. For the case T, = 0.0755ec, Nu — 4, the estimated parameters 

are d = 0.950, b = 0.102. It is also interesting to notice that for the latter case, 

d 4 = 0.813, b{l + d + d 2 + d 3) = 0.378, which is close to the estimated parameters for 

the former case. Thus the control algorithm is virtually the same. 

Example 6.7 (Predictive Control for higher order system) 

Now consider an eighth-order plant: 

As in example 5.6, the critical sampling for pole-placement adaptive control is around 

T, = 7.0sec We use the extended horizon h — 8, and the sampling period T, = l.Osec. 

The estimation uses a first-order model, i.e., by using the predictive control algorithm 

I in example 6.3, only two parameters are to be estimated. The fixed slow adaptation 

rate is set as T 0 = 20.0sec, (20 sampling periods). There is a small output noise 

JV(0,0.01) added to the output of the process. The command input and output are as 

shown in Fig. 6.37(a), the estimated parameters d, b and controller parameters a l s &i 

are as shown in Fig. 6.37(b), Fig. 6.37(c) respectively. And 

ai = a 
6i = 6(l + d + d 2 H t-d7) 

At the end of simulation, we obtain d = 0.919, b = 0.166. The controller parameters 

are the dashed lines in Fig. 6.37(b),(c) where ax = 0.508, bx = 1.003. 

When conventional slow adaptation is used, i.e., Ta = T, or the extended horizon is 

h = 6, we observed unstable output in both cases. 
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Figure 6.37: Simulation result in example 6.7 

• Fig. 6.37(a): Simulated output (dashed line) and command (solid line); 

• Fig. 6.37(b): Estimated parameter d (solid line) and controller parameter ax 

(dashed line); 

• Fig. 6.37(c): Estimated parameter b (solid line) and controller parameter 61 
(dashed line). 
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Figure 6.38: Oscillation obtained by using Relay for a time-varying plant 

Example 6.8(STC of a time-varying plant) 

We consider a fifth-order time-varying continuous plant, with transfer function: 

1 bt G(s) = 
{s + l)3(S + aty 

(6.133) 

w here 

at = 3.5 + Aasin(wat) 

bt = 1.0 + Abs'm(wbt) 

In the simulation, we set Aa =• 1.0, Ab = 0.3, wa = 0.05, wb = 0.02. To control 

this time varying system, we first use relay in closed-loop of the plant to obtain critical 

sampling. The result is as in Fig. 6.38. 
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From Fig. 6.38, the average half period of the oscillation is around 3.0sec. Notice 

that the time-varying system will result in a time-varying oscillation period, thus the 

worst case should be considered if the critical sampling for non-minimum discrete plant 

is to be found. For the frequency domain estimation result, Fig. 6.39 shows the 

estimated Nyquist curve by using 1024 points F F T . We can find that the high-frequency 

band is well estimated. This is generally true if the rate of change of the time-varying 

parameters is very slow. Now we simulate predictive control of the plant with the 

extended horizon h = 10, sampling period T, = l.Osec. The estimation model is a first 

order model, and the adaptation rate is Ta = 5sec. There is a small noise 7V(0,0.01) 

added to the output. The estimated and controller parameters are as in Fig. 6.40, 

where the dashed line denotes the controller parameters. Here for the non-persistent 

excitation case, we use exponential forgetting and resetting algorithm ( E F R A ) , (see 

[36]), in parameter estimation. The estimation form is: 

aPt_x4>tet 

9t+i — Qt + 
1 + tfPt-itt 

1 aPt-^ttfPt^ -

Where the forgetting factor A = 0.9 and constants a = 0.5, (3 — 0.005, £ = 0.005. 

The command and system output are shown in Fig. 6.41. The controlled output 

is desirable but there is a large overshoot when the command has a rapid change. For 

a conventional pole-placement adaptive control algorithm, it is unstable if only first 

order estimation model is used. 

6.5 C o n c l u s i o n 

In this chapter, we have shown that the adajjtive predictive control is in general more 

robust than the adaptive pole-zero cancellation control. When using the simple receding 
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Figure 6.39: Frequency Domain estimation result (Nyquist curve of the discrete plant) 

horizon controller [40], an interesting relationship exists between the critical sampling 

for stable STC and the extended control horizon. This relation is verified for a simple 

case and controller design guidelines is given. Here, the result of critical sampling 

in Chapter 4 is useful in choosing proper extended horizon. Also we have applied the 

S P R stability condition to a simple adaptive control case and shown that the predictive 

adaptive control is more robust when the extended horizon is higher for stable plant. 

Several simulation examples have been presented. 
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Figure 6.40: Parameter estimation and controller parameters in Example 6.8 
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Chapter 7 

Conclusion 

7.1 Summary of the work 

In this thesis, we have discussed various discrete time robust adaptive controller de

sign methods. The sampling frequency plays an important role in the robustness of 

discrete-time adaptive control. For most adaptive control algorithms, slow sampling 

will result in more robustness. This fact is verified either theoretically or through sim

ulations in [33], [34], [13], [43] etc., where different algorithms are used. Here we have 

derived sampling conditions for stable pole-zero cancellation discrete adaptive control 

algorithms. Ways to find critical sampling frequencies are proposed. Further, we also 

studied robust adaptive controller design methods using slow adaptation and predic

tive control algorithm. In those robust adaptive controller design methods, extra efforts 

are necessary to compensate for using faster sampling. A l l results are summarized as 

follows: 

1. A stability condition for conventional adaptive pole-zero cancellation algo

rithm under model mismatch is derived. A n upper limit for adaptation gain 

is given. However, this upper limit is very conservative in practice. (Refer 

to section 3.4). 

2. The critical sampling frequency for the minimum phase discrete plant can 

be found by using relay control. Here we suppose the continuous plant is 

rational, stable and inversely stable. Any sampling frequency lower than 

140 



Chapter 7. Conclusion 141 

the critical sampling frequency will result in minimum phase discrete plant. 

Keeping the discrete plant minimum phase is essential for stable pole-zero 

placement adaptive control in model matched case. It can be shown that if 

there is no unstable poles and zeros in the discrete plant, conventional pole-

zero placement adaptive control algorithms are stable. (Refer to section 

4.2). 

3. However, for the model mismatch case, the minimum-phase discrete plant is 

only a necessary condition. We have also studied the relationships between 

the model error and the sampling frequency, the model error and the SPR 

condition. A n approximate way to find critical sampling for simplified sta

bility condition is proposed. Frequency domain information for continuous 

plant is necessary for using this method. (Refer to section 4.3) 

4. The robustness of discrete-time adaptive control algorithms can be improved 

if the adaptation rate is much slower than the sampling rate. The slow 

adaptation rate should ensure only good estimates are used for controller 

design. For that case, the S P R H2 condition can be relaxed. However, the 

robustness improvement is limited as sampling too fast may still result in 

unstable output. This is because, another condition for stability has to be 

satisfied, i.e. the resulting closed-loop using new estimated parameters must 

be stable. (Refer to section 5.2) 

5. A robust adaptive control algorithm which always ensures stability is possi

ble if we can obtain good frequency domain estimation and design a proper 

filter. A n example of how to use frequency domain estimation by Fourier 

transform and how to design a low-pass or band-pass filter is shown. If the 
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frequency domain information is accurately known or estimated, the param

eters of the filter can be self-adjusted by control algorithm and the stability 

can be ensured. (Refer to section 5.3, 5.4, figure 5.28 and the computer 

program Appendix A) . 

6. Predictive control is a frequently used adaptive control method. We studied 

the relationship between the extended control horizon and the sampling 

frequency for the critically stable adaptive control case. Since the pole-

zero placement algorithm is a special case of predictive control algorithm, 

applying this relation with the known critical sampling for conventional pole-

placement adaptive control algorithm is useful, especially when a desired 

sampling rate is set. However, this relation has not been proved for general 

cases, although simulations show that it seems to hold. (Refer to section 

6.2). 

In [39], it was written, " • • • adaptive control can be useful, but extreme care must 

be taken when implementing the controllers." Here we discussed the effect of slow sam

pling on the robustness of conventional pole-placement algorithm and some methods to 

improve the robustness. Those methods are indeed useful when implementing adaptive 

controllers. 

7.2 Future Research Directions 

Continuing research under this topic can be categorized as theoretical issues and ap

plication issues. 

For theoretical studies, current stability conditions are expressed in the time domain 

and they are usually very conservative. Is it possible to express the stability conditions 
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in the frequency domain (like Bode plot)? Then, the effect of sampling can be inter

preted as the high frequency components aliasing to the low frequency part. Also, for 

predictive control algorithms, there are no good theoretical results on the stability con

ditions for general algorithms so far. For example, given an arbitrary extended horizon, 

how to derive the stability condition? These questions remain to be answered. 

On the application issues, the robust adaptive control design guidelines in this thesis 

can be used in a knowledge-based commissioning and monitoring system. Hardware 

and software can be built for the robust adaptive controller using slow adaptation 

(chapter 5) or predictive control (chapter 6). Also, the principle of slow adaptation 

and slow sampling can be applied to most adaptive control algorithms. 

7.3 C o n c l u s i o n 

It is the theme of this thesis that for a rational, stable and inversely stable continuous 

plant, the pole-placement adaptive controller design algorithm can always be stable if 

the sampling frequency is slow enough. 
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A p p e n d i x A 

Li s t of Abbrev i a t i ons 

A R M A Auto-Regresive and Moving-Average, defined in (3.18), p. 25 

C A R I M A Controlled Auto-Regressive and Integrated Moving-Average 

C A R M A Controlled Auto-Regressive and Moving-Average 

D . C . gain Direct Current gain or zero frequency gain 

D F T Discrete Fourier Transform, defined in (2.6), p. 8 

D T F T Discrete-Time Fourier Transform, defined in (2.5), p. 8 

E F R A Exponential Forgetting and Resetting Algorithm, p. 134 

F F T Fast Fourier Transform 

M P Minimum Phase 

M R A C Model Reference Adaptive Controllers 

M V C Minimum Variance Control 

N M P Non-Minimum Phase 

S P R Strictly Positive Real 

STC Self-Tuning Control 

S T R Self-Tuning Regulator 
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A p p e n d i x B 

L i s t of Terminology-

Averaging 

Diophantine Equation 

Persistently exciting 

Relation 

Rohrs' plant 

Slow adaptation rate 

definition: p. 21 

stability theory: pp. 22-23 

eq. (3.28), p. 32 

definition: p. 29 

definition: p. 14 

conic relation: p. 16 

positive relation: p. 17 

continuous plant eq. (3.26) in p. 30. 

fixed: p. 89 

unfixed: p. 92 
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A p p e n d i x C 

S imula t ion P r o g r a m 

J. The main Program: 

PROGRAM REAL PLANT SIMULATION 
"The plant is: 

2 229 
G(s) = 

" s+1 s*s+30s+229 
"Order of the estimator=l. 
n 

"The direct (pole-zero placement) algorithm is used. 
"(COMMAND) INPUT: AA*cos(wl*t)+DI*cos(w2*t)+NI*GAUSS(0,1) 
" OUTPUT: YY=Y+NO*GAUSS(0,1) +DO*cos(w3*t) 
"Subroutines used are: ASY,FILrSCAL,EST,FFT 
************************************* 

REAL THETA (2) ,X(2) ,K(2) ,PEC (2, 2) , GAIN(1024), PHA (1024) 
REAL YT (2048) , UT(2048) , YF (2048) , UF (2048) ,H(2048) 
INTEGER NPARf I, J, M, NCON, COUN, NCOUf KM, IC, N, NN 
"NOTE: The maximum vaule of N is : 10 " 

INITIAL 
"SIMULATION CONDITION:" 
CONSTANT CINT=0.05, PRT=50.0, TF=199.5, TES=20.0 

"PARAMETERS AND INITIAL VALUE FOR ESTIMATION" 
CONSTANT FORGET=1.0, NPAR=2, PERR=0.1 
CONSTANT THETA(1) =0.0, THETA(2) =1.0 

"INITIAL VALUES OF STATES" 
CONSTANT YM1=0.0, Y=0.0, YY=0.0, Z=0.0, E=0.0 
CONSTANT UM2=0.0, UM1=0.0, U=0.0, RM1=0.0, R=0.0 
CONSTANT W=0.0, ND=0.0 

"INITIAL VALUE FOR CURVE FITTING AND FILTERING" 
CONSTANT VAR=0.05, TAl=1.0, TB1=1.0, KC=0.2, Q=2.0 

"INITIAL VALUE FOR PARAMETERS IN FFT" 
CONSTANT FB=2.0, ALF=0.8, FW=-5.0, NN=7 
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"OTHER INITIAL VALUES" 
CONSTANT AA=1.0,DI=0.0,NI=0.0, DO=0. 0, NO=0.0 
CONSTANT W1=0.0,W2=0.0,W3=0.0,C0F=1.0, TYPE=2.0,F=1.0 

ALGORITHM IALG=5 
MAXTERVAL MAXT=0.001 

"ASSIGNED INITIAL VALUES" 
A1=THETA(1), Bl=THETA (2), NC0N=1, NCOU=Or rN=2*NN 
GAINY=0.0, GAINU=0.0, PHIY=0.0, PHIU=0.0 
TS=TES+(FLOAT(N)-1.0) *CINT 

END $ "INITIAL" 
************************************************ 

"INPUT TYPE,W1,W2,W3" 
READ (5, 20) TYPE, Wl, W2, W3 

20. .FORMAT(4F15. 6) 

"INPUT AA,DIfNI,DO,NO" 
WRITE {6, 30) 

30. . FORMAT (IX, 25HINPUT GAIN:AA,DI,NI,DO,NO) 
READ (5, 35) AA, DI, NI, DO, NO 

35. .FORMAT(5F15. 6) 

IF(TYPE.NE.1.0) GO TO 60 

"IN CASE OF NOADAPTIVE CONTROL, INPUT DESIGN PARAMETERS" 
WRITE (6, 40) 

40..FORMAT(IX,21HINPUT ESTIMATED Al,Bl) 
READ(5,50)A1,B1 

50. .FORMAT(2F12. 6) 

60..CONTINUE 
WRITE (6, 64) 

64..FORMAT(IX,1H ) 

"CALCULATE ACCURATE PARAMETERS" 
CALL CAL(CINT,Wl, TAl, TBI) 

WRITE (6, 65) TAl, TBI 
65..FORMAT(IX,28HTHE CONVERGED PARAMETERS ARE,2F10.4) 

WRITE (6, 66) 
66. .FORMAT(IX, 1H ) 

IF (Wl.EQ.O.O) GO TO 80 
BEI=2.0*3.1415926/(CINT*W1) 
IF (BEI.GT.8.0) GO TO 80 

WRITE (6, 70)BEI 
70..FORMAT(IX, 13HWARNING: ONLY,F5.1,28H POINTS IN ONE SIGNAL PEROID) 
80..CONTINUE 
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"CHOOSE ASYNCHRONOUS SAMPLING PERIOD COEFFICIENT" 
CALL PRINT3(1.0) 
READ(5,90) KM 

90. . FORMAT (16) 

"CALCULATION ASYNCHRONOUS PERIOD" 
IF (Wl.EQ.O.O) GO TO 92 
M=INT (FLOAT (KM) * (0.5+3.1416/ (CINT*W1) ) ) 
GO TO 99 

"IN CASE ZERO FREQUENCY COMMAND, INPUT ASYNCHRONOUS SAMPLING PERIOD" 
92. .WRITE (6, 94) 
94..FORMAT(IX,38HSince wl=0.0, you name the value of N:) 

READ (5, 96) M 
96. .FORMAT(16) 

n rr 

A=l.0/229.0, B=30.0/229.0 

"INITIAL VALUS OF FILTER" 
KK=1.0, FA1=0.0, FA2=0.0, FB1=0.0, FB0=1.0 

"INITIAL VECTOR VALUE IN ESTIMATION" 
DO 105 1=1,2, DO 105 J=l,2, PEC (I, J) =0.0 

105. . CONTINUE 

DO 110 1=1,2, PEC (I, I) =1000.0, K(I)=0.0, X(I)=0.0 
110..CONTINUE 

rr rr 

"LAST CHANCE TO CANCEL THE DESIGN" 
rr rr 

READ (5,120) IC 
120. .FORMAT(16) 

IF(IC.NE.l) GO TO 10 

WRITE (1,130) 
130. .FORMAT(IX,3HB=[) 

WRITE (12,131) 
131. . FORMAT (IX, 3HA=[) 
«*******************************************************************" 

J=0 

"PROCESS AND ESTIMATION" 
"==================== " 
DYNAMIC 

"NOISE AND DISTURBANCE ADDED TO THE OUTPUT" 
YY=Y+NO*GAUSS(0.0,1.0)+DO*COS(W3*T) 

UM2=UM1, UM1=U 

X(2)=UM1, X(1)=YM1 
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NC0U=NC0U+1 
IF(COUNM. NE.COUN) NCOV=0 
COUNM=COUN 

"PARAMETER ESTIMATION" 

CALL SQRTFL (YY, X, PEC, K, THETA, NPAR, PERR, FORGET) 
************************************************* 

YM1=YY, RM1=R 

"CORVER FITTING" 
IF(T.LT.TES) GO TO 302 
IF(T.GT.TES) GO TO 302 
IF(T.NE.TES) GO TO 301 
NCOU=M 
GO TO 302 

301..NCOU=0 
302..CONTINUE 

CALL ASY1 (NCON, NCOU, M, VAR, YY, U, Wl, CINT, KC, GAINY, PHIY, GAINU, PHIU) 

IF(T.LE.TS) GO TO 310 
IF(TYPE.EQ.1.0) GO TO 310 
IF(NCON.NE.O) GO TO 310 

************ 
"ADAPTION" 
n it 

B1=THETA (2) 
A1=THETA(1) 
CALL FIL (FA1, FA2, FBI, FBO, KK, CINT, Q, Wl, F, ALF, GAIN, PHA, A1,B1, KC, N) 
************ 

310..CONTINUE 

"COMMAND INPUT" 
IF(T.LE.TS) GO TO 315 
COUN=INT ( (T-TS) /PRT) 
IF(COUN.EQ.2.0*INT(COUN/2)) COF=1.0 
IF(COUN.NE.2.0*INT(COUN/2)) COF=0.5 

315..CONTINUE 
W=COF* (AA*COS (W1*T)) 
"NOISE AND DISTURBANCE ADDED TO THE COMMAND" 
W=W+DI*COS(W2*T)+NI*GAUSS(0.0,1.0) 

"SMALL PRETUBETION IS ADDED FOR FFT" . 
IF(T.LT.TES) GO TO 319 
IF(T.GT.TS) GO TO 319 
W=W+FB *EXP (FW* (T-TES) ) 

319..CONTINUE 

"CONTROLLER" 
n II 

E=W-A1*YY 
R=E/B1 
U=FA1*UM1-FA2*UM2+kk*FBO*R-kk*FB1*RM1 
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IF(T.LE.TS) U=R 

WRITE (1,320) T, W, YY, theta (1) , theta (2) ,A1,B1 
320. . FORMAT (IX, 7F11. 5) 
331. . CONTINUE 

n rr 

"obtaining steady state" 
IF(T.NE.TES) GO TO 335 
AU=GAINU, AY=GAINY, PU=PHIU, PY=PHIY 

335. .CONTINUE 
"DOING FFT IF REQUIRED" 
IF(T.LT.TES) GO TO 340 
IF(T.GT.TS) GO TO 340 
J=J+1 
YT (2*J-1) =YY-AY*SIN (M*W1 *CINT-PY+W1 * (T-TES)) 
UT (2*J-1) =U-AU*SIN (M*ffl *CINT-PU+Wl * (T-TES+CINT)) 
FUT=AU*SIN(M*W1*CINT-PU+W1 *(T-TES) ) 
FYT=AY*SIN(M*W1*CINT-PY+W1*(T-TES) ) 
write (19,339)yt (2*j-l), ut (2*j-l),FYT, Y,FUT, UM1 

339..format(lx,6fl2.5) 
340..CONTINUE 

IF((1.5*abs(T-TS)).ge.cint) GO TO 390 
"DOING ESTIMATION USING FFT" 
DO 342 1=1,N, YT(2*I)=0.0, UT(2*I)=0.0 

342..CONTINUE 

DO 345 1=1, N, YF(I)=YT(I) , YF (I+N) =YT (I+N) 
UF (I) =UT (I) , UF (I+N) =UT (I+N) 

345. .CONTINUE 

CALL FFT (YF,N, -1) 
CALL FFT(UF,N,-1) 

DO 348 1=1,N 
FA=UF (2*1-1) **2+UF(2*I) **2 
H(2*I-1) = (YF (2*1-1) *UF (2*1-1) +YF(2*I) *UF (2*1)) /FA 
H(2*I) = (YF(2*I) *UF (2*1-1)-YF (2*1-1) *UF (2*1)) /FA 

348. .CONTINUE 

DO 360 1=1,N 
GAIN (I) =SQRT (H (2*1-1) **2+H(2*I) **2) 
IF (H(2*1-1).EQ.O.O) GO TO 350 
PHA (I) =ATAN (H (2*1) /H (2*1-1) ) 
IF(H(2*I-1) .LT.O.O) PHA(I) =PHA(I) -3.1415926 

IF (PHA (I) .GT.O.O) PHA (I) =PHA (I)-6.283185 
GO TO 355 

350. .PHA (I) =-3.1415826/2.0 
355..J=2*I-1 

WRITE (12,356) I, GAIN (I) , PHA (I) ,H(J),H (2*1), YF (J), OF (J) 
356. .FORMAT(IX, 16, 6F12.3) 
360. .CONTINUE 
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"FIND KC" 
n rr 

PHI=2.0 
DO 370 1=2,N 

IF ( (PHA (I) +3.1415926) * (PHA (1-1) +3.1415926) .LE.O.O) GO TO 380 
370..CONTINUE 
380..J-I-l 

CE1=ABS (PHA (J) +3.1415926) 
CE2=ABS (PHA (J+l) +3.1415926) 
CE=CE1+CE2, CE1=CE1/CE, CE2=CE2/CE 

KC=ABS (CE2*GAIN (J) /COS (PHA (J) ) +CE1 *GAIN (J+l) /COS (PHA (J+l) ) ) 

390. .CONTINUE 

"PPROCESS OF THE PLANT" 
rr n 

DERIVATIVE 
Z=REALPL (1. 0r Uf 0. 0) 
Y=2. 0*CMPXPL(A,B,Z,0.0,0.0) 
END $ "DERIVATIVE" 
IT IT 

IF (ABS (Y) . GT. 9999. 9) TF=0. 02 
TERMT(T.GT.TF) 

END $ "DYNAMIC" 

TERMINAL 
WRITE (1, 400) 

400. .FORMAT(IX,2H];) 
WRITE (12, 401) 

401.. FORMAT (IX, 2H];) 
END $ "OF TERMINAL" 

END $ "PROGRAM" 

2. Subroutines in FORTRAN: 

(1). Subroutine to check steady state: 

SUBROUTINE ASY1 (NCON, NCOU, MAX, VAR, YY, UU, Wl, CINT, KC, GAIN, PHI, GAINU, PHIU) 
REAL VAR, YY, Y (500) , UU, U (500) , Wl, CINT, KC, Hi, TELTA1 

DO 100,1=1,499, U (501-1) =U (500-1) 
100 Y(501-1) =Y(500-1) 

U(1)=UU, Y(1)=YY 

IF(Wl.NE.O.O) GO TO 300 
IF(NCOU.LT.MAX) GO TO 190 

ARV=0.0 
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110 
DO 110, J=1,MAX 
ARV=ARV+Y(J) 
AR V=AR V/FLO A T (MAX) 

SUM=0.0 
DO 120, J=1,MAX 

120 SUM=SUM+ (Y (J) -ARV) **2 
SUM=SQRT (SUM/FLOAT (MAX)) 

IF(SVM.GE.abs(VAR*ARV)) GO TO 180 
NCON=0, NCOU=0, GO TO 200 

180 TYPE *,'The process is not in steady state!' 
WRITE (3,185) SUM, ARV 

185 FORMAT(lX,6F12.4) 

NCOU=NCOU-INT(MAX/2) 

190 NC0N=1 
200 RETURN 
c  

300 IF (NCOU.LT.MAX) GO TO 590 

TWl=2*3.1415926535/Wl, PREAL=0.0, PIMAG=0.0 
DO 310 1=1, MAX 
PREAL=PREAL+Y (MAX+1 -I) *COS (FLOAT (I) *W1 *CINT) 
PIMAG=PIMAG+Y (MAX+1 -I) *SIN (FLOAT (I) *Wl *CINT) 

310 CONTINUE 
IF(PIMAG.EQ.O.O) GO TO 315 
PHI=ATAN (-PREAL/PIMAG) 
GO TO 320 

315 PHI=-3.1415926/2.0 
320 CONTINUE 
C 

GAIN=0.0 
DO 325 1=1, MAX 
GAIN=GAIN+Y (MAX+1 -I) *SIN (FLOAT (I) *W1*CINT-PHI) 

325 CONTINUE 
GAIN=GAIN*2.0/FLOAT(MAX) 

IF(GAIN.GT.0.0) GO TO 330 
GAIN=-GAIN, PHI=PHI+3.1415926 

330 CONTINUE 
C 

PREALU=0.0, PIMAGU=0.0 
DO 331 1=1, MAX 
PREALU=PREALU+ U (MAX+1 -I) *COS (FLOAT (I) *W1 *CINT) 
PIMAGU=PIMAGU+U (MAX+1 -I) *SIN (FLOAT (I) *W1 *CINT) 

331 CONTINUE 
IF(PIMAGU.EQ.O.O) GO TO 332 
PHIU=ATAN(-PREALU/PIMAGU) 
GO TO 333 

332 PHIU=-3.1415926/2.0 
333 CONTINUE 
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GAINU=0.0 
DO 334 1=1,MAX 
GAINU=GAINU+U(MAX+1-I)*SIN(FLOAT(I) *W1*CINT-PHIU) 

334 CONTINUE 
GAINU=GAINU*2.0/FLOAT (MAX) 

IF(GAINU.GT.O.O) GO TO 335 

GAINU=-GAINU, PHIU=PHIU+3.1415926 
335 CONTINUE 

HI=GAIN/GAINU 
TELTA1=PHI-PHIU 
IF(TELTAl.LT.O.O) TELTAl=TELTAl+6.28318 
DEX=H1*SIN(Wl *CINT)/SIN(TELTA1-W1*CINT) 

C 
SUM=0.0 
DO 350 1=1,MAX 

350 SUM=SUM+ (Y (MAX+1 -I) -GAIN*SIN (FLOAT (I) *W1 *CINT-PHI)) **2 
SUM=SQRT(SUM/FLOAT(MAX)) 
IF(SUM.GE.VAR*GAIN) GO TO 580 

C IF(KC.GT.DEX) GO TO 570 
400 NCON=0, NCOU=0 

WRITE (2, *)SUM,H1, TELTA1, KC *DEX 
GO TO 600 

570 CONTINUE 

TYPE *,'Basic stability equation does not fit1.' 
GO TO 588 

580 CONTINUE 
TYPE *,/The process is not in steady state!' 

588 WRITE(3,589)SUM,HI,TELTA1,KC*DEX,GAIN,PHI 
589 FORMAT (IX, 6F12. 4) 

NCOU=NCOU-INT (MAX/2) 
590 NC0N=1 
600 RETURN 

END 

(2). Subroutine for f i l t e r design 

SUBROUTINE FIL (Al, A2,Bl,B0,KK, T,Q, Wl,FILTER, ALF, GAIN, PHA, TA, TB,KC,N) 
REAL GAIN (N) , PHA (N) ,PHI (2048) ,G (2048) 
REAL A1,A2,B1,B0, KK, T, Q, Wl, FILTER, ALF, KC 

IF(TA*KC/(TB).LE.1.0) GO TO 900 

10 IF (Wl.EQ.O.O) GO TO 100 
IF (FILTER.NE.1.0) GO TO 100 

C CALCULATION OF BY-PASS FILTER 
C  

KK=T*W1/Q, A=-Wl/(2. 0*Q) , B=0. 5*W1*SQRT (4. 0-1. 0/ (Q**2)) 
A1=2.0*EXP (A*T) *COS (B*T) , A2=EXP (2.0*A*T) 
B1=KK*EXP (A*T) * (COS (B*T) -A*SIN (B*T) /B) , BO=KK 

159 



ZR=(BO-B1*COS (W1*T)) , ZI=B1*SIN (W1*T) 
PR=1. O-Al *COS (Wl *T) +A2*C0S (2. 0*Wl *T) 
PI=A1*SIN(W1*T)-A2*SIN(2.0*W1*T) 
KK=SQRT(PR**2+PI**2)/SQRT(ZR**2+ZI**2) 

GO TO 102 
c  

100 CONTINUE 
C CALCULATION OF LOW PASS FILTER 
c  

A2=0.0, Bl=0.0f Al=1.0-1.0/Q, B0=1.0/Q, KK=1.0 
102 CONTINUE 

WS=3.1415926/T 
DO 120 1=2,N 
W=FL0AT(I-1) *WS/FLOAT (N) 
ZR=kk*(B0-B1*COS(W*T)), ZI=kk*(Bl*SIN(W*T)) 
PR=1.O-Al*COS(W*T)+A2*C0S(2.0*W*T) 
PI=A1*SIN(W*T) -A2*SIN(2.0*W*T) 
G (I) = (GAIN (I) /SQRT (PR**2+PI**2) )*SQRT (ZR**2+ZI**2) 
PH1=ATAN(ZI/ZR) 
IF(ZR.LT.O.O) PHl=PHl-3.1415926 
PH2=ATAN (PI/PR) 
IF (PR.LT.0.0) PH2=PH2+3.1415926 
PHI (I) =PHA (I) +PH1-PH2 

120 CONTINUE 

DO 150 I=lrN-l 
IF( ((PHI(I)+3.1415926)* (phi (i+1)+3.1415926)) .le. 0.0) GO TO 160 

150 CONTINUE 
160 j = i 

cel=abs(3.1415926+phi (j)), ce2=abs (3.1415926+phi (j+1)) 
ce=cel+ce2, cel=cel/ce, ce2=ce2/ce 

FKC=abs (ce2*G (J) /COS (phi (j)) +cel *g(j+1) /cos (phi (j+1))) 
write (6, *) rFILTER PARAMETERS:',fkc, j,Q 
IF(FKC.LT. (tb*alf/ta)) GO TO 200 
0=1.2*Q 
GO TO 10 

200 RETURN 

900 WRITE (6,*)'NO FILTER REQUIRED' 
A1=0.0, A2=0.0, B1=0.0, B0=1.0, KK=1.0 
RETURN 

END 
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(3). This is just a compare subroutine. To show runner the theoretically 
calculated estimated value and compare with the estimated parameters. 
It is not necessary to be included in real controller design. 

C AS, BS are calculated parameters. 
C 
c  

SUBROUTINE CAL (CINT, W1,AS, BS) 
REAL CINT, W1,AS,BS, Al,A2,A3,Bl, B2,B3,PBS,PBC,PAS,PAC 
REAL CT, ST, E1,E15,E30, H, DELTA,ANA,ANB, C1W, C2W, C3N, S1W, S2W, S3W 

C ======= ̂==================================:=:=== 
CT=COS (2. 0 *CINT) , ST=SIN (2. 0 *CINT) 
E1=EXP (-CINT) , E15=EXP(-15.0*CINT) , E30=EXP(-30.0*CINT) 

c  

Al=El+2.0*E15*CT 
A2=-2.0*EXP(-16.0*CINT) *CT-E30 
A3=EXP(-31. 0*CINT) 
Bl=2.0-2.29*El+0.29*E15*(CT+3.5517*ST) 
B2=0.29*El-4.29* (1.0-E1)*E15*CT-1.03*(1.O+El) *E15*ST-0.29*E30 
B3=(2.29-2. 0*E1) *E30-0.29*EXP (-16. 0*CINT) * (CT-3.5517*ST) 

C ^==^^^=^^===^===^^^=^-^=.==^^=^^====;-.;.==^:-:. 
IF(Wl.EQ.O.O) GO TO 19 

C  

C CALCULATION OF GAIN AND PHASE 
C =- ===== = 

C1W=C0S (Wl*CINT) , C2W=C0S (2. 0*W1 *CINT) , C3W=C0S (3. 0*W1 *CINT) 
S1W=SIN(W1*CINT) , S2W=SIN(2.0*W1*CINT) , S3W=SIN (3. 0*W1*CINT) 

c  

PBC=B1+B2*C1 W+B3*C2W, PBS=B2*S1 W+B3*S2W 
PAC=1. O-Al *C1 W-A2*C2W-A3*C3W, PAS=A1 *S1 W+A2*S2W+A3 *S3W 

c _ 

H=SQRT((PBC**2+PBS**2) / (PAC**2+PAS**2)) 
ANB=ATAN (PBS/PBC) 
IF(PBC.LT.0.0) ANB=ANB+3.1415926535 
ANA=ATAN (PAS/PAC) 
IF(PAC.LT.0.0) ANA=ANA+3.1415926535 
DELTA=ANA+ANB 

C ========================================================= 
AS=SIN (DELTA) /SIN (DELTA+W1 *CINT) 
BS=H*SIN (Wl *CINT) /SIN (DELTA+Wl *CINT) 
GO TO 20 

19 H=(Bl+B2+B3)/ (1.O-Al-A2-A3) 
DELTA= (Bl +2.0*B2)/ (Bl +B2+B3) + (Al+2.0*A2+3. 0*A3) /(1. O-Al-A2-A3) 
AS=DELTA/ (1.0+DELTA) , BS=H/ (1. O+DELTA) 

20 CONTINUE 
C +++++++++++++++++++++++++++++++++++++++++ 

RETURN 
END 
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(4). Parameter estimation subroutine. 

C Here is an example of 2-parameter estimation subroutine. For the 
C higher order estimation, just change the definition in the begining. 
C 
Q********************************************************************* 

SUBROUTINE SQRTFL(Y,X,SQRTP,K,THETA,NPAR,PERR,FORGET) 
REAL X (2) , SQRTP (2, 2) ,K(2) , THETA (2) 
REAL F (2) , SIGSQ (3) , SIG (3) , H (2, 2) r SQRTPN (2,2) 
REAL Y,PERR,B 

C 
C 
C Calculation of estimation error 
C = -= 
C 

PERR=Y 
DO 1 1=1,NPAR 

1 PERR=PERR-THETA (I) *X (I) 
C 
C 
C Estimation Calculation 
c =====^=^============ 
C 

DO 100 1=1, NPAR, F(I)=0.0 
DO 100 J=1,I , F(I)=F(I)+SQRTP(J,I)*X(J) 

100 CONTINUE 
C 
c  

C 
SIGSQ(1)=FORGET 
DO 120 1=1,NPAR, 

120 CONTINUE 
N1=NPAR+1 
DO 130 1=1, Nl, 

130 CONTINUE 
c  

B=FORGET 
DO 170 1=1,NPAR 

1 70 B=B+F (I) *F (I) 
DO 190 1=1, NPAR, K(I)=0.0 
DO 180 J=I,NPAR 

180 K(I)=K(I) +SQRTP (I, J) *F (J) /B 
190 CONTINUE 
c  

DO 140 1=1,NPAR 
DO 135 J=1,NPAR 
IF (I.EQ.J) THEN 
H (I, J) =SIG (I) / (SIG (1+1)) 
ELSE IF (I.LT.J) THEN 
H (I, J) =-F (I) *F (J) / (SIG (J) *SIG (J+1)) 
ELSE 
H(I,J)=0.0 
END IF 

135 CONTINUE 
140 CONTINUE 

SIGSQ(1+1)=SIG$Q (I)+F (I) *F(I) 

SIG (I) =SQRT (SIGSQ (I)) 
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DO 150 1=1,NPAR 
DO 145 J=1,NPAR, SQRTPN(I,J)=0.0 
DO 142 KK=1,NPAR 
SQRTPN (I, J) =SQRTPN (I, J) +SQRTP (I, KK) *H (KK, J) 

142 CONTINUE 
145 CONTINUE 
150 CONTINUE 

DO 160 1=1, NPAR 

DO 155 J=1,NPAR 
155 SQRTP (I, J) =SQRTPN (I, J) /SQRT (FORGET) 
160 CONTINUE 
C 
C Calculation of new estimated parameters 
c ===== ===== ===== 
C 

DO 200 1=1,NPAR 
200 THETA (I) =THETA (I) +PERR*K (I) 

RETURN 
END 

(5). FFT subroutine 

SUBROUTINE FFT (DATA, NNr ISIGN) 
DIMENSION DATA (256) 
N=2*NN, J=l 
DO 5 1=1,N,2 
IF (I-J) 1,2,2 

1 TEMPR=DATA (J) , TEMPI=DATA (J+1) 
DATA (J) =DATA (I) , DATA (J+1) =DATA (1+1) 
DATA (I) =TEMPRr DATA (1+1) =TEMPI 

2 M=N/2 
3 IF (J-M) 5, 4, 4 
4 J=J-Mr M=M/2 

IF (M-2) 5, 3, 3 
5 J=J+M, MMAX=2 
6 IF (MMAX-N) 7, 9, 9 
7 ISTEP=2*MMAX 

DO 8 M=1,MMAX,2 
THETA=3.1415926535 *FLOAT (ISIGN* (M-l)) /FLOAT (MMAX) 
WR=COS(THETA), WI=SIN(THETA) 
DO 8 I=M,N,ISTEP 
J=I+MMAX 
TEMPR=NR *DATA (J) -WI*DATA (J+1) 
TEMPI=WR *DATA (J+1) +WI *DATA (J) 
DATA (J) =DATA (I) -TEMPR, DATA (J+1) =DATA (1+1) -TEMPI 
DATA (I) =DATA (I) +TEMPR, DATA (1+1) =DATA (1+1) +TEMPI 

8 CONTINUE 
MMAX=ISTEP 
GO TO 6 

9 RETURN 
END 
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