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ABSTRACT 

With the advantages of s i m p l i c i t y and a we11-understood anatomy, 

development and genome, C.elegans may be an e f f e c t i v e model of the 

r o l e of the genome i n the e f f e c t s of aging on l e a r n i n g and memory. 

The purpose of t h i s t h e s i s i s to begin t h i s r e s e a r c h by d e s c r i b i n g 

the e f f e c t s of aging i n C.elegans on a simple form of l e a r n i n g , 

h a b i t u a t i o n , i n the tap withdrawal r e f l e x . 

F i r s t , t h e e f f e c t s of aging on the spontaneous locomotor behavior 

and simple r e f l e x i v e behavior of C.elegans were examined. Worms 

were t e s t e d at 4, 7 and 12 days post-hatching. The average 

l i f e - s p a n of worms r a i s e d i n the c o n d i t i o n s of t h i s l a b o r a t o r y 
o 

( s o l i d medium, 21 C) was 14 to 16 days. The amount of 

spontaneous a c t i v i t y d i d not change with age, but the nature of 

t h a t a c t i v i t y d i d change. Worms moved more slowly and both 

spontaneous and r e f l e x i v e r e v e r s a l s decreased i n magnitude at day 

12. Worms at a l l ages e x h i b i t e d graded responses t o taps of 

d i f f e r e n t i n t e n s i t i e s . 

The e f f e c t s of aging on h a b i t u a t i o n and d i s h a b i t u a t i o n were then 

examined. There appeared t o be a d i s s o c i a t i o n of response 

frequency and magnitude: a l l ages t e s t e d (4, 7 and 12 days 

post-hatching) showed s i m i l a r changes i n magnitude of r e v e r s a l s 

due t o h a b i t u a t i o n and d i s h a b i t u a t i o n . However at day 7 the 

p r o p o r t i o n of worms r e v e r s i n g d i d not decrease d u r i n g h a b i t u a t i o n 

t r a i n i n g as i t d i d at the other ages (days 4 and 12) t e s t e d . 

There was a l s o an age-related change i n the recovery from 

h a b i t u a t i o n ; day 12 worms d i d not recover w i t h i n 30 min of the 
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l a s t h a b i t u a t i o n stimulus, u n l i k e worms t e s t e d a t day 4 and 7 

which recovered back t o b a s e l i n e l e v e l s by 30 min. 

F i n a l l y the e f f e c t s of t a i l - t o u c h h a b i t u a t i o n t r a i n i n g on 

i n h i b i t i o n of the r e v e r s a l response t o tap was examined at the 

three t e s t ages. At a l l ages t a i l - t o u c h h a b i t u a t i o n t r a i n i n g 

decreased the i n h i b i t i o n of r e v e r s a l t o tap by t a i l - t o u c h . 

C l e a r l y , even day 12 worms are capable of h a b i t u a t i o n independent 

of f a t i g u e e f f e c t s . The age-related changes seen may be produced 

by 

From these experiments i t i s c l e a r that although the behavior of 

C. elegans does change with age, aged worms are capable of the 

simple form of l e a r n i n g , h a b i t u a t i o n . Further b e h a v i o r a l t e s t s 

with normal and mutant worms may help e l u c i d a t e the nature of the 

ag e - r e l a t e d changes i n l e a r n i n g and memory i n C.elegans and the 

ge n e t i c mechanisms which u n d e r l i e them. 
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I n t r o d u c t i o n 

T h e l o s s o f l e a r n i n g a n d memory a b i l i t i e s w i t h a d v a n c e d age has 

b e e n t h e s u b j e c t o f s t u d y i n many s p e c i e s . The o b j e c t i v e o f t h i s 

r e s e a r c h i s t o u n d e r s t a n d t h e e f f e c t s o f a g i n g i n one s p e c i e s a t 

b e h a v i o r a l , n e u r a l and g e n e t i c l e v e l s . C h a n g e s i n b e h a v i o r a s an 

o r g a n i s m ages must r e f l e c t c h a n g e s i n c e l l p h y s i o l o g y . Much 

r e s e a r c h t o t h i s p o i n t has b e e n c o n c e r n e d w i t h t h e l i n k b e t w e e n 

c h a n g e s i n s p e c i f i c b e h a v i o r s and t h e c h a n g e s i n n e u r o n a l f u n c t i o n 

w h i c h may p r o d u c e t h e m . However , a s work i n m o l e c u l a r b i o l o g y has 

i n d i c a t e d , c h a n g e s i n t h e f u n c t i o n o f c e l l s s u c h as n e u r o n s must 

i n t u r n r e f l e c t c h a n g e s i n gene e x p r e s s i o n . T h u s a m o d e l o f t h e 

e f f e c t s o f a g i n g o n l e a r n i n g and memory i n w h i c h as many o f t h e s e 

l e v e l s may be a p p r o a c h e d a t o n c e i s d e s i r a b l e . 

T h e c o m p l e x i t y o f t h e mammalian n e r v o u s s y s t e m , c o n t a i n i n g many 

m i l l i o n s o f n e u r o n s , makes i t d i f f i c u l t t o u n d e r s t a n d t h e e f f e c t s 

o f a g i n g a t a n e u r o n a l l e v e l . One s o l u t i o n t o t h i s p r o b l e m o f 

n e r v o u s s y s t e m c o m p l e x i t y i s t o u s e a m o d e l s y s t e m . T h e k e y t o 

t h i s t y p e o f r e s e a r c h i s i n v e s t i g a t i n g t h e r e l a t i o n s h i p b e t w e e n 

b e h a v i o r a n d i d e n t i f i e d n e u r o n s i n an o r g a n i s m w i t h a s i m p l e 

n e r v o u s s y s t e m . A n example o f t h i s a p p r o a c h i s t h e m a r i n e m o l l u s c 

Aplysia californica, i n w h i c h t h e n e u r o p h y s i o l o g i c a l f u n c t i o n o f 

i d e n t i f i e d n e u r o n s i n c i r c u i t s c o n t r o l l i n g t h e b e h a v i o r s o f g i l l 

a n d s i p h o n w i t h d r a w a l a r e known. S t u d i e s on a g i n g i n Aplysia 

h a v e f o u n d l o s s e s i n l e a r n i n g a n d memory. R a t t a n a n d P e r e t z 

(1981) showed t h a t t h e t h r e s h o l d f o r b e h a v i o r a l r e s p o n s e t o g i l l 
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s t i m u l a t i o n was s i g n i f i c a n t l y higher i n o l d Aplysia than i n young, 

mature animals. Furthermore they found t h a t o l d Aplysia 

habituated more r a p i d l y than the younger animals. In a d d i t i o n , 

these o l d animals d i d not e x h i b i t d i s h a b i t u a t i o n when a neuron 

(L7) i d e n t i f i e d as one that produces d i s h a b i t u a t i o n i n younger 

animals was stimulated. Based on these r e s u l t s , Peretz (1989) 

suggested t h a t i n d i v i d u a l neurons age d i f f e r e n t i a l l y , a f f e c t i n g 

the behaviors they u n d e r l i e i n d i f f e r e n t ways. Thus he proposed 

t h a t some b e h a v i o r a l processes/might be expected t o change with 

age and others not. v 

The s t u d i e s with Aplysia have advanced our understanding of some 

of the p h y s i o l o g i c a l processes underlying aging. However, i f we 

are t o understand how aging i s c o n t r o l l e d at the l e v e l of the 

genome we must use models' i n which the genetics can be understood 

as i n as much d e t a i l as p o s s i b l e . 

Caenorhabditis elegans, a small f r e e - l i v i n g ( n o n - p a r a s i t i c ) 

nematode has been widely used as a genetic model i n the study of 

anatomy, development and behavior. Because the neuroanatomy of C. 

elegans i s simple, c o n t a i n i n g only 302 neurons, the r e l a t i o n s h i p 

between gene and neuron f u n c t i o n may be narrowly determined. The 

neuroanatomical map of t h i s nematode has been d e s c r i b e d completely 

(White, Southgate, Thompson, & Brenner, 1986; G h a l f i e , 1984). 

Furthermore, the functions of neural c i r c u i t s u n d e r l y i n g c e r t a i n 

behaviors such as the touch withdrawal c i r c u i t have been 

demonstrated, e s t a b l i s h i n g the l i n k between behavior and anatomy 

( C h a l f i e , S u lston, White, Thompson, Southgate, & Brenner, 1985; 
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C h a l f i e & Au, 1989). 

C. elegans i s a very simple m u l t i c e l l u l a r organism: at 

maturation, about 3 days a f t e r hatching, the worm has 

approximately 1000 somatic c e l l s . The complete developmental 

l i n e a g e of each somatic c e l l has been mapped us i n g Nomarski 

microscopy on l i v i n g worms (Sulston, Schierenberg, White, & 

Thompson, 1983). In a d d i t i o n , the genetics of t h i s nematode are 

r e l a t i v e l y simple, with only 8 x 10? n u c l e o t i d e p a i r s 

(approximately h a l f the s i z e of the genome of Drosophila) i n s i x 

h a p l o i d chromosomes (Sulston & Brenner, 1974; Nigon, 1949). The 

combined e f f o r t s of many l a b o r a t o r i e s using a v a r i e t y of c l a s s i c a l 

and molecular genetic techniques have produced a map of over 95% 

of the C. elegans genome (Coulson, Sulston, Brenner, & Karn, 

1986; Hodgkin, Edgley, Riddle, & A l b e r t s o n , 1988). C. elegans 

e x i s t s p r i m a r i l y as a hermaphrodite, producing both eggs and sperm 

and.reproducing by s e l f - f e r t i l i z a t i o n . This mode of r e p r o d u c t i o n 

allows t r u e breeding of mutants. However, mutants with o n l y male 

r e p r o d u c t i v e systems occur at a low r a t e (Hodgkin, H o r v i t z , & 

Brenner, 1979; Rose & B a i l l i e , 1979); these males mate with the 

hermaphrodites and f e r t i l i z e the hermaphrodites' eggs. Thus both 

homozygous and heterozygous o f f s p r i n g can be produced. Many 

mutants have been i s o l a t e d . These mutant l i n e s are preserved by 

f r e e z i n g the l a r v a i n l i q u i d n i t r o g e n . C h a r a c t e r i z e d mutant worms 

are a v a i l a b l e from a c e n t r a l l i b r a r y of mutants i n the 

Caenorhabditis Genetics Center at the U n i v e r s i t y of M i s s o u r i , 

Columbia (Hodgkin, Edgley, Riddle, & A l b e r t s o n , 1988). 
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T h i s b o d y o f b a c k g r o u n d knowledge o n t h e a n a t o m y , d e v e l o p m e n t 

a n d g e n e t i c s o f C . elegans make i t an e x c e l l e n t c a n d i d a t e m o d e l 

s y s t e m f o r t h e s t u d y o f b i o l o g i c a l mechani sms u n d e r l y i n g a n y 

p r o c e s s . H o w e v e r , i f C. elegans i s t o be u s e d as a m o d e l s y s t e m 

f o r t h e s t u d y o f a g e - r e l a t e d d e f i c i t s i n l e a r n i n g a n d memory, 

t h e r e must be e v i d e n c e t h a t C. elegans e x p r e s s e s a v a r i e t y o f 

o b s e r v a b l e b e h a v i o r s a n d l e a r n i n g p r o c e s s e s . 

L i k e i t s a n a t o m y , t h e b e h a v i o r o f C . elegans i s s i m p l e y e t , 

v a r i e d e n o u g h t o p r o v i d e a b r o a d r a n g e o f p o s s i b l e a r e a s o f s t u d y . 

C. elegans l o c o m o t e s b y p r o d u c i n g r h y t h m i c c o o r d i n a t e d 

c o n t r a c t i o n s o f t h e v e n t r a l a n d d o r s a l m u s c l e s . T h e s e 

c o n t r a c t i o n s c a u s e u n d u l a t o r y movements down t h e l e n g t h o f t h e 

b o d y i n t h e d o r s o v e n t r a l p l a n e . When m o v i n g o n a f i r m s u r f a c e 

s u c h as a g a r , t h e worms l i e o n t h e i r s i d e s . T h e y c a n move t h e i r 

h e a d s l a t e r a l l y and d o r s o v e n t r a l l y a n d c a n r o t a t e t h e i r b o d i e s 

o v e r 180 d e g r e e s . The worm r e s p o n d s t o a number o f s t i m u l i 

i n c l u d i n g t o u c h a n d v i b r a t i o n by c h a n g i n g d i r e c t i o n a n d swimming 

b a c k w a r d f o r some d i s t a n c e ( S u l s t o n e t a l . , 1975; C h a l f i e & 

S u l s t o n , 1981; R a n k i n , B e c k , & C h i b a , 1 9 9 0 ) . C. elegans c a n a l s o 

move up o r down g r a d i e n t s o f c h e m i c a l c o n c e n t r a t i o n , o s m o l a r i t y , 

a n d t e m p e r a t u r e (Ward , 1973; H e d g e c o c k & R u s s e l , 1 9 7 5 ) . M a t u r e 

worms o f e a c h s e x have s p e c i f i c s e x u a l b e h a v i o r s : t h e 

h e r m a p h r o d i t e s l a y eggs ( a l r e a d y f e r t i l i z e d w i t h t h e i r own s p e r m ) , 

w h e r e a s t h e m a l e s ( w h i c h p r o d u c e o n l y sperm) e n g a g e i n a c o m p l e x 

s e t o f m a t i n g b e h a v i o r s when t h e y come i n c o n t a c t w i t h a n a d u l t 

h e r m a p h r o d i t e (Wood, 1 9 8 8 ) . 

I 
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Sensory-motor behaviors i n C. elegans mediated by the touch 

withdrawal r e f l e x c i r c u i t are p a r t i c u l a r l y w e l l understood 

(Sulston e t a l . , 1975; C h a l f i e & Sulston, 1981). When touched on 

the t a i l w ith a small h a i r , the worm responds by moving forward; 

to a l i g h t touch across the head, i t moves backward. On the bas i s 

of e l e c t r o n microscopic r e c o n s t r u c t i o n s and the a n a l y s i s of l a s e r 

a b l a t i o n s and nervous system mutants, C h a l f i e and co l l e a g u e s 

(1985) proposed a simple r e f l e x model f o r t a i l touch induced 

forward locomotion and f o r head touch induced backward locomotion. 

They determined that the touch c i r c u i t s c o n s i s t of touch receptors 

connecting t o interneurons which i n tu r n connect t o motorneurons. 

Recent work on the behavioral p l a s t i c i t y expressed by t h i s 

organism has confirmed t h a t C. elegans has a r i c h r e p e r t o i r e of 

l e a r n i n g processes (Rankin & Chiba, 1988; Rankin, Beck, & Chiba, 

1990; Kumar, Williams, C u l o t t i , & van der Kooy, 1989). Rankin, 

Beck and Chiba (1990) showed that the tap withdrawal r e f l e x i n C. 

elegans e x h i b i t s the major forms of no n - a s s o c i a t i v e l e a r n i n g : 

h a b i t u a t i o n , d i s h a b i t u a t i o n , and s e n s i t i z a t i o n . The advantage of 

working with the tap withdrawal r e f l e x i s that the touch 

withdrawal c i r c u i t , d efined by C h a l f i e and colleagues (1985), has 

been shown t o be re s p o n s i b l e f o r the tap withdrawal r e f l e x as w e l l 

(Rankin & C h a l f i e , 1989). With repeated p r e s e n t a t i o n s of a s i n g l e 

t a c t i l e stimulus such as a s i n g l e tap or t r a i n of taps, the 

r e v e r s a l response habituates. A f t e r h a b i t u a t i o n t r a i n i n g , the 

r e v e r s a l response recovers over about 20 t o 30 min t o b a s e l i n e 

l e v e l s (Rankin & Broster, 1990). The p r e s e n t a t i o n of a novel or 



noxious stimulus such as a 60 V shock immediately a f t e r the 

h a b i t u a t i o n of the r e v e r s a l response produces d i s h a b i t u a t i o n or a 

p a r t i a l recovery t o approximately 50% of the b a s e l i n e response 

r a t e (Rankin, Beck, & Chiba, 1990; Rankin & B r o s t e r , i n p r e s s ) . 

In a naive worm, pres e n t a t i o n of a strong stimulus (a t r a i n of 

taps) produces a higher than b a s e l i n e reponse t o a s i n g l e tap; the 

response t o tap i s s e n s i t i z e d (Rankin, Beck, & Chiba, 1990). 

F i n a l l y , memory f o r extensive h a b i t u a t i o n t r a i n i n g l a s t s f o r at 

l e a s t 24 h, showing that C. elegans i s capable of long-term memory 

(Rankin, Beck, & Chiba, 1990). Work by van der Kooy and h i s 

col l e a g u e s (Kumar et a l . , 1989) i n d i c a t e s t h a t C. elegans may be 

capable o f a s s o c i a t i v e l e a r n i n g i n a taste-approach/avoidance 

paradigm. However, the neural c i r c u i t u n d e r l y i n g t a s t e - r e l a t e d 

behaviors has not yet been defined. 

Thus i t i s c l e a r t h a t C. elegans possesses a range of l e a r n i n g 

and memory c a p a b i l i t i e s , making i t a promising candidate f o r the 

i n v e s t i g a t i o n of the b i o l o g i c a l mechanisms u n d e r l y i n g a g e - r e l a t e d 

d e f i c i t s i n l e a r n i n g and memory. 

The f i r s t step i n the beh a v i o r a l a n a l y s i s of aging i n C. elegans 

i s t o determine the normal e f f e c t s of aging on the simple 

n o n - a s s o c i a t i v e forms of l e a r n i n g already d e s c r i b e d i n C. elegans. 

Thus, the purpose of the experiments de s c r i b e d here was t o d e f i n e 

the e f f e c t s of age f i r s t , on b a s e l i n e a c t i v i t y l e v e l s , second, on 

the tap withdrawal r e f l e x and f i n a l l y , on two forms of 

no n - a s s o c i a t i v e l e a r n i n g , h a b i t u a t i o n and d i s h a b i t u a t i o n , 

expressed by the tap withdrawal r e f l e x . In studying h a b i t u a t i o n 
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and d i s h a b i t u a t i o n , I attempted t o i s o l a t e the a g e - r e l a t e d changes 

by approaching the question of the e f f e c t s of h a b i t u a t i o n t r a i n i n g 

from s e v e r a l d i f f e r e n t p e r s p e c t i v e s . F i r s t , I examined the 

dynamics of h a b i t u a t i o n i t s e l f , and the appearance and extent of 

d i s h a b i t u a t i o n . Next, I examined how recovery from h a b i t u a t i o n 

changes duri n g aging. F i n a l l y , I examined how aging a f f e c t s the 

way t h a t h a b i t u a t i o n t r a i n i n g i n t e r a c t s with response competition 

or i n h i b i t i o n . 

General Methods 

Subjects 

Mature hermaphroditic C. elegans ( s t r a i n N2 from B r i s t o l , 

England) were used throughout these s t u d i e s . When grown i n l i q u i d 

c u l t u r e at 20° C, the l i f e - c y c l e of C. elegans i s approximately 21 

days (Woods, 1988); however, i n the c o n d i t i o n s maintained d u r i n g 

these experiments ( s o l i d medium, 20° C) the average l i f e s p a n was 

14 t o 16 days. Tests of behavior were performed at 4, 7 and 12 

days post-hatching. At 4 days post-hatching worms are at the peak 

of egg-laying, at 7 days egg-laying i s complete, and by 12 days 

post-hatching worms are w e l l i n t o the p o s t - r e p r o d u c t i v e p e r i o d . 

M a t e r i a l s 

Worms were maintained on Nematode Growth Medium (NGM) 

a g a r - f i l l e d P e t r i p l a t e s (5 cm diameter) and fed Escherichia coli 

( s t r a i n OP50) which was streaked or spotted on the s u r f a c e of the 

agar. Subjects were maintained and t e s t e d with the methods and 

apparatus used i n previous b e h a v i o r a l s t u d i e s (Rankin, Beck, & 
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Chiba, 1990). Behavioral observations were made through a 

stereomicroscope with attached vi d e o r e c o r d i n g equipment. 

Mechanical and e l e c t r i c a l s t i m u l a t i o n were c o n t r o l l e d by a Grass 

S88 s t i m u l a t o r . V i b r a t i o n a l s t i m u l i were produced by a mechanical 

tapper c o n t r o l l e d by an electromagnetic r e l a y ; the mechanical 

tapper tapped the side of the P e t r i p l a t e h o l d i n g the worm. 

E l e c t r i c a l shocks were produced using a spanning e l e c t r o d e ; the 

two wires were placed on e i t h e r s i d e of the animal on the su r f a c e 

of the agar approximately 2 mm apart. Each shock stimulus 

c o n s i s t e d of a t r a i n of shocks (each shock was 10 ms i n duration) 

d e l i v e r e d over 600 ms at a frequency of 10.Hz. 

Procedure 

The hermaphroditic C. elegans t h a t were used i n these s t u d i e s 

were hatched synchronously. To ensure synchrony, mature 

eg g - l a y i n g worms were s e l e c t e d from the general p o p u l a t i o n and 

were p l a c e d on an agar p l a t e streaked with E. coli. These worms 

were permitted t o l a y eggs f o r 3 to 4 h and were then removed from 

the p l a t e . The eggs hatched i n 9 t o 11 h. At 3 days 

post-hatching (72 to 84 hours) the maturing worms were placed 

i n d i v i d u a l l y on numbered agar p l a t e s spotted with E. coli. In 

experiments where i n d i v i d u a l worms were followed throughout 

p o s t - r e p r o d u c t i v e development, the worms were t e s t e d a t three 

chosen ages: 4, 7 and 12 days. Tests were performed on p l a t e s 

without food. A f t e r each t e s t , the worms were i n d i v i d u a l l y p l a c e d 

on new p l a t e s with f r e s h E. coli to ensure a c o n s i s t e n t food 

source and t o prevent confusing the subjects with t h e i r o f f s p r i n g . 
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In experiments where worms were t e s t e d at only one of the t e s t 

ages, worms were p l a t e d i n d i v i d u a l l y and r a i s e d t o t h a t t e s t age. 

Worms were r e p l a t e d approximately every 2 days t o maintain 

i s o l a t i o n . 

B e h a v i o r a l responses were scored i n s e v e r a l ways depending on 

the experiment. The r e v e r s a l response (swimming backward) t o 

v i b r a t i o n a l s t i m u l i (taps) was the c h i e f dependent measure i n 

these experiments. In order to have been considered a r e v e r s a l t o 

tap, the response must have occurred w i t h i n 1 s of the stimulus. 

Any v i s i b l e backward movement (>. .02 mm) was considered a r e v e r s a l 

and was scored. Both the frequency and the magnitude of these 

r e v e r s a l s were scored. The magnitude of the r e v e r s a l responses 

were q u a n t i f i e d by t r a c i n g the r e v e r s a l paths on t o acetate 

sheets. These t r a c i n g s were then d i g i t i z e d u s ing a B i t Pad Plus 

d i g i t i z i n g t a b l e t , and the d i g i t i z e d tracings.were measured using 

MacMeasure software on a Macintosh SE personal computer. 

S t a t i s t i c a l a n a l y s i s of p r o p o r t i o n data was performed w i t h a 

Cochran Q t e s t when the design i n v o l v e d repeated measures; 

otherwise p r o p o r t i o n data were analyzed with chi-squared t e s t s . 

Magnitude data were analyzed using ANOVAs with F i s h e r ' s post-hoc 

comparisons when s t a t i s t i c a l s i g n i f i c a n c e was achieved. The l e v e l 

of s i g n i f i c a n c e was set at alpha = .05 unless the performance of 

m u l t i p l e t e s t s made i t necessary to adjust the alpha l e v e l 

downward. 
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Experiment I. Spontaneous locomotor a c t i v i t y 

In order t o determine whether there were changes i n the b a s e l i n e 

a c t i v i t y during aging that might a f f e c t the expression of 

p l a s t i c i t y by the tap withdrawal r e f l e x , the l e v e l of spontaneous 

locomotor a c t i v i t y of the worms during l a t e (post-reproductive) 

development was measured. The measures of spontaneous locomotor 

a c t i v i t y were 1) time spent a c t i v e (any forward or backward 

swimming movement was considered a c t i v i t y ) over a 10 min 

o b s e r v a t i o n p e r i o d 2) the v e l o c i t y of spontaneous swimming and 3) 

the number and magnitude of spontaneous r e v e r s a l s w i t h i n the 

10-min observa t i o n p e r i o d . 

Subjects 

The same 21 hermaphroditic worms were t e s t e d f o r spontaneous 

a c t i v i t y three times, once at each of the t e s t ages: 4, 7 and 12 

days a f t e r hatching. As the average l i f e - s p a n of the s u b j e c t s was 

roughly 14 to 16 days under these c o n d i t i o n s and many worms d i e 

before t h i s age, 45 worms had t o be t e s t e d at day 4 (35 a t day 7) 

t o o b t a i n data f o r 21 animals on day 12. These data allowed an 

i n v e s t i g a t i o n of behavioral d i f f e r e n c e s between worms t h a t d i e d 

young (between day 4 and day 7 or between day 7 and day 12) and 

those t h a t s u r v i v e d 12 days. 

Procedure 

Spontaneous locomotor a c t i v i t y was observed over a 10 min 

p e r i o d ; the time a c t i v e was determined by measuring the amount of 

time the worm spent swimming (any v i s i b l e forward or backward 

movement). The v e l o c i t y of movement, measured as the d i s t a n c e 
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t r a v e l l e d over a s p e c i f i c 10-s i n t e r v a l (from 5 min 0 s t o 5 min 

10 s i n each observation period) was a l s o c a l c u l a t e d . The number 

of spontaneous r e v e r s a l s (swimming backward i n the absence of an 

obvious e x t e r n a l stimulus) was scored over the same p e r i o d . The 

magnitude of these spontaneous r e v e r s a l s was determined by video 

stop-frame a n a l y s i s and computer-aided d i g i t i z i n g of r e v e r s a l 

l e n g t h . 

R e s u l t s and D i s c u s s i o n 

A measure of worm length at each t e s t age was made by t r a c i n g 

the worms' magnified image (50 X) from the video screen (see 

F i g u r e 1). A repeated-measures ANOVA with post-hoc comparisons 

showed t h a t the length of the worms s i g n i f i c a n t l y i n c r e a s e d 

between day 4 and day 7 but not between day 7 and 12 (F(2,40) = 

12.062, E = .0001). Because of t h i s age-dependent change i n s i z e , 

the r e v e r s a l magnitudes were standardized by d i v i d i n g them by the 

worm's own length at that age so that responses by worms at 

d i f f e r e n t ages c o u l d be d i r e c t l y compared (Chiba & Rankin, 1990). 

The spontaneous v e l o c i t y and the mean magnitude of spontaneous 

r e v e r s a l s were found t o change with age. However, time a c t i v e and 

the number of spontaneous r e v e r s a l s d i d not change with age (see 

Figures 2A and B). The time spent a c t i v e , measured over a 10-min 

p e r i o d f o r each worm at each t e s t age, was analyzed with a 

repeated-measures ANOVA; no s i g n i f i c a n t d i f f e r e n c e was found among 

the t e s t ages (F(2,40) = 2.675, £) = .0812). However, spontaneous 

v e l o c i t y , or the speed with which the. worms moved, d i d change with 

age. Spontaneous v e l o c i t y was measured as the t o t a l d i s t a n c e 
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F i g . 1. Worm length +/- SEM (n = 21) magnified 5Ox and measured 

from a video screen at 4 days, 7 days and 12 days post-hatching. 
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F i g . 2A. The percent time spent a c t i v e +/- SEM measured over a 10 

min o b s e r v a t i o n p e r i o d at each of the three t e s t ages, 4, 7 and 12 

days of age (n = 21). 

B. The v e l o c i t y of spontaneous movement (iran/s) +/- SEM was 

measured as the d i s t a n c e t r a v e l l e d both backward and forward 

d u r i n g 10 s i n the 10 min observation p e r i o d at each of the three 

t e s t ages, 4, 7 and 12 days post-hatching (n = 21). 
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Fig. 3A. The number of spontaneous reversals (swimming backward in 
the absence of any obvious external stimuli) during the 10 min 
observation period at each of the three test ages, 4, 7 and 12 
days post-hatching. 
B. Mean spontaneous reversal magnitude was calculated for each 
worm at each age by taking the mean of the magnitude of a l l the 
spontaneous reversals that worm exhibited during the 10 min 
observation period and dividing i t by the worm's body length. 
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t r a v e l l e d i n a s p e c i f i c 10 s peri o d (from 5 min 0 s t o 5 min 10 s) 

duri n g the 10 min observation p e r i o d . V e l o c i t y i s expressed as 

d i s t a n c e t r a v e l l e d (mm) / time ( s ) . I t was found t h a t a t day 12 

worms swam s i g n i f i c a n t l y more slowly than at day 4 or 7 (F(2,40) = 

23.158; rj = .0001) . 

Spontaneous r e v e r s a l s were analyzed both i n terms of the number 

of spontaneous r e v e r s a l s each worm expressed and the mean 

magnitude of the r e v e r s a l s each worm expressed (see F i g u r e s 3A and 

B). The number of spontaneous r e v e r s a l s during the 10 min 

o b s e r v a t i o n p e r i o d d i d not change with age (F(2,40) = 1.634, rj = 

.2037). However, the mean magnitude of spontaneous r e v e r s a l s at 

day 12 were s i g n i f i c a n t l y smaller than at day 4 or 7 (F(2,40) = 

16.407, E = .0001). 

Thus there was a decrease i n the v e l o c i t y of spontaneous 

movement and i n the magnitude of spontaneous r e v e r s a l s with age. 

The p o s s i b i l i t y t h a t these changes i n spontaneous movement are 

a l s o r e f l e c t e d i n the r e v e r s a l response to v i b r a t i o n a l s t i m u l a t i o n 

w i l l be examined i n the next experiment. 

Experiment 2. Response to tap and head touch. 

In a d d i t i o n t o the spontaneous r e v e r s a l s d e s c r i b e d above, worms 

a l s o show r e f l e x i v e r e v e r s a l s i n response to a v a r i e t y of s t i m u l i . 

In previous experiments we have shown that i n 4 day o l d a d u l t s , a 

tap t o the d i s h e l i c i t s a withdrawal response of swimming backward 

c a l l e d a r e v e r s a l (Rankin, Beck, & Chiba, 1990). In t h i s 

experiment, a g e - r e l a t e d changes i n the tap withdrawal r e f l e x were 
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examined. The pr o p o r t i o n and magnitude of the r e v e r s a l responses 

t o tap were measured; i n a d d i t i o n the frequencies of other types 

of response t o tap ( a c c e l e r a t i o n s and pauses) were scored. 

F i n a l l y each worm's response t o a l i g h t touch t o the head with a 

h a i r was t e s t e d . In t h i s context, the head-touch t e s t was 

administered a f t e r the tap t e s t t o determine whether the worm was 

capable of a normal r e v e r s a l , as a l l healthy worms reverse t o 

head-touch ( C h a l f i e e t a l . , 1985). Thus, i f a worm d i d not 

respond t o a head-touch with a r e v e r s a l , i t was assumed t o be 

i n c a p a c i t a t e d and was not included i n the r e s u l t s . Although the 

magnitude of the r e v e r s a l t o head-touch might a l s o change with age 

i t was not scored because the strength of the head-touch c o u l d not 

be c o n t r o l l e d because the stimulus was hand-delivered w i t h a f i n e 

h a i r . 

Subjects 

At 4, 7 and 12 days post-hatching, f o l l o w i n g the r e c o r d i n g of 

spontaneous a c t i v i t y , worms were t e s t e d f o r t h e i r response t o tap 

and head-touch. 

Procedure 

The s i n g l e tap and the head-touch were administered immediately 

f o l l o w i n g the observation p e r i o d f o r spontaneous a c t i v i t y w i t h a 3 

min i n t e r v a l between tap and head touch. Head-touch was 

administered with a f i n e h a i r t o the head (the r e g i o n o f the 

pharynx) of the worm. Enough pressure was exerted t o bend the 

h a i r as i t touched the subject's head; pressure from the h a i r d i d 

not damage the worms. 



R e s u l t s and D i s c u s s i o n 

Both the frequency and the magnitude of the r e v e r s a l response to 

tap were scored (see Figures 4A and B). When the frequency of 

r e v e r s a l response was analyzed with a Cochran Q t e s t , no change 

with age was evident (2(2) = 2.8, rj > .05). However, the 

magnitude of r e v e r s a l responses to tap, standardized by each 

worm's le n g t h , was s i g n i f i c a n t l y smaller at day 12 than at day 4 

(there was no s i g n i f i c a n t d i f f e r e n c e between day 7 and e i t h e r day 

4 or 12; F(2,38) = 9.923, p> = .0003). 

The o b s e r v a t i o n that r e v e r s a l s t o tap were s m a l l e r at day 12 

than at day 4 i s s i m i l a r t o the f i n d i n g i n Experiment 1 t h a t 

spontaneous r e v e r s a l s were smaller at day 12 than a t day 4. In 

both cases the magnitude of the r e v e r s a l s changed while the 

frequency of r e v e r s a l s d i d not. The decrease i n v e l o c i t y of 

spontaneous movement, i n magnitude of spontaneous and r e f l e x i v e 

r e v e r s a l at day 12 may have been r e l a t e d t o these worms' 

approaching deaths. A number of worms d i e d d u r i n g these 

experiments (22% d i e d between day 4 and 7; 31% d i e d between day 7 

and 12). By comparing the behavior of worms which d i e d e a r l i e r t o 

those t h a t s u r v i v e d t o the day 12 t e s t , we may t e s t t h i s 

hypothesis. 

To determine whether d e t e r i o r a t i o n r e l a t e d t o an i n d i v i d u a l ' s 

l i f e - s p a n a f f e c t e d the spontaneous and r e f l e x i v e a c t i v i t y of the 

worms, the behavior at day 4 of worms that s u r v i v e d t o 12 days was 

compared with the behavior of those that d i e d between day 4 and 7 

and with the behavior of those that died between day 7 and 12. 
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F i g . 4A. The number of worms responding t o tap with a r e v e r s a l at 

4, 7 and 12 days post-hatching (n = 21). 

B. The magnitude of r e v e r s a l s t o tap ( i n c l u d i n g only those worms 

t h a t responded with a r e v e r s a l ) d i v i d e d by each worm's body 

le n g t h . 
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In a d d i t i o n , the behavior at day 7 of worms th a t s u r v i v e d t o 12 

days was compared with the behavior of those t h a t d i e d between day 

7 and 12. Only those behaviors that changed with age (the 

spontaneous v e l o c i t y of movement, see Figure 5A; the mean 

magnitude of spontaneous r e v e r s a l s , see Figure 5B; and the 

magnitude of the r e v e r s a l response to tap, see F i g u r e 5C) were 

examined. 

At day 7, worms that d i e d before day 12 moved more slo w l y than 

worms t h a t s u r v i v e d t o day 12 (day 7: t(32) = -3.399, rj = .0019). 

There was no apparent r e l a t i o n s h i p between spontaneous v e l o c i t y 

and l i f e - s p a n at the day 4 t e s t (day 4: F(2,42) = 1.269, r> = 

.2917). N e i t h e r the mean magnitude of spontaneous r e v e r s a l s (day 

4: F(2,42) = .355, £ = .703; day 7: t(33) = 1.656, rj = .1072), nor 

the magnitude of r e v e r s a l response to tap was r e l a t e d t o time of 

death at e i t h e r day 4 or day 7 (day 4: F(2,42) = .355, p. = .703; 

day 7: t(33) = 1.656, p. = .1072). Whether the change i n 

spontaneous v e l o c i t y occurred because of approaching death i s not 

c l e a r ; however t h i s p o s s i b i l i t y must be considered. 

One p o s s i b l e explanation f o r the decrease i n response magnitude 

i n 12 day o l d worms i s that there might be a change i n sensory 

a b i l i t y w ith age; a lower s e n s i t i v i t y i n o l d e r worms c o u l d produce 

a decrease i n the s i z e of the responses to t a c t i l e s t i m u l a t i o n . 

An examination of the r e v e r s a l r e f l e x i n response t o a s e r i e s of 

taps graded i n i n t e n s i t y (beginning with a very weak stimulus) at 

each of the three t e s t ages might help t o c l a r i f y t h i s i s s u e . 
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F i g . 5. The performance of worms that s u r v i v e d u n t i l day 12 ( > 

D12; n = 21) compared with the performance of worms t h a t d i e d 

between day 4 and day 7 (4D - 7D; n = 10) and day 7 and day 12 (7D 

- 12D; n = 14). D4 TEST = performance at day 4; D7 TEST = 

performance at day 7. 

A. Spontaneous v e l o c i t y +/- SEM shown comparing worms with 

d i f f e r e n t l i f e - s p a n s . 

B. Mean magnitude of spontaneous r e v e r s a l s +/- SEM ( d i v i d e d by 

worm length) shown comparing worms with d i f f e r e n t l i f e - s p a n s . 

C. Magnitude of r e v e r s a l response t o tap +/- SEM ( d i v i d e d by worm 

length) shown comparing worms with d i f f e r e n t l i f e - s p a n s . 
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Experiment 3. Graded response. 

In t h i s experiment, the e f f e c t s of aging on the responses t o 

taps of d i f f e r e n t i n t e n s i t i e s were examined. The tap i n t e n s i t i e s 

chosen were ones which, during p i l o t s t u d i e s , induced r e v e r s a l s of 

d i f f e r e n t magnitudes i n 4 day o l d worms. 

Subjects 

Twenty naive worms were t e s t e d at each age f o r a t o t a l of 60 

worms. 

Procedure 

Worms were placed i n d i v i d u a l l y on t e s t p l a t e s with a smal l 

amount of E.coli ( s t r a i n OP50) 24 h before t e s t i n g . Tap i n t e n s i t y 

was a l t e r e d by changing the voltage from the Grass S-88 s t i m u l a t o r 

t o the electromagnetic r e l a y which c o n t r o l l e d the tapper. The 

o b j e c t i v e i n s e l e c t i n g the s t i m u l i i n t e n s i t i e s was t o choose ones 

t h a t c o n s i s t e n t l y evoked r e v e r s a l s , yet covered a range of 

i n t e n s i t i e s from the strong tap used i n other experiments i n t h i s 

t h e s i s t o much weaker taps that might evoke sma l l e r r e v e r s a l 

responses. The lowest i n t e n s i t y voltage (38 V) produced a b a r e l y 

perceptable tap, while the highest i n t e n s i t y v o l t a g e (60 V) 

produced a strong tap and was the i n t e n s i t y used i n the other 

experiments i n t h i s t h e s i s . An intermediate v o l t a g e of 40 V 

produced a tap of intermediate i n t e n s i t y . The taps were 

administered i n d i v i d u a l l y t o worms at 10 min i n t e r v a l s . In 

s t u d i e s of recovery from h a b i t u a t i o n , Rankin and B r o s t e r ( i n 

press) showed t h a t taps administered at 10 min i n t e r v a l s d i d not 

produce s i g n i f i c a n t response decrement i n worms t h a t were 4 days 
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o l d . Of the 20 worms t e s t e d at each age (4, 7 and 12 days 

po s t - h a t c h i n g ) , 10 worms re c e i v e d the s t i m u l i i n ascending order 

of i n t e n s i t y (38, 40 and 60 V) and 10 worms r e c e i v e d the s t i m u l i 

i n descending order of i n t e n s i t y (60, 40 and 38 V ) . I n t e n s i t y of 

s t i m u l a t i o n , not order of prese n t a t i o n , was the manipulation of 

i n t e r e s t here; t h e r e f o r e i f p o s s i b l e i t would be app r o p r i a t e t o 

pool the data across order of pr e s e n t a t i o n w i t h i n each age. 

However, i f the order of pre s e n t a t i o n (ascending or descending) 

had an e f f e c t on the responses, that would i n d i c a t e t h a t the data 

from the ascending and descending orders of p r e s e n t a t i o n should be 

cons i d e r e d s e p a r a t e l y . At each age, the r e v e r s a l responses were 

compared with a two-factor (Order x I n t e n s i t y ) repeated-measures 

ANOVA t o t e s t f o r an e f f e c t of the order of p r e s e n t a t i o n or an 

i n t e r a c t i o n between the order of p r e s e n t a t i o n and stimulus 

i n t e n s i t y . At the ages at which there was no e f f e c t of the order 

of p r e s e n t a t i o n and no i n t e r a c t i o n between order and i n t e n s i t y , 

the data from the ascending and descending orders of p r e s e n t a t i o n 

were pooled. 

The magnitude of the r e v e r s a l s at each age f o r d i f f e r e n t 

i n t e n s i t i e s were analyzed with a repeated-measures ANOVA. Only 

those r e s p o n s e s i t h a t were r e v e r s a l s were i n c l u d e d i n the a n a l y s i s 

of magnitude because the o b j e c t i v e of t h i s experiment was 

s p e f i c a l l y t o r e v e a l the e f f e c t of i n t e n s i t y on the magnitude of 

r e v e r s a l response. Non-reversals (pauses, a c c e l e r a t i o n s , no 

change i n behavior or no response: approximately 5% of a l l 

responses) were replaced with the mean of the group f o r the 
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purposes of the s t a t i s t i c a l a n a l y s i s . At each t e s t age, 4, 7 and 

12 days post-hatching, the numbers of r e v e r s a l s t o taps of 

d i f f e r e n t i n t e n s i t i e s was analyzed with a Cochran Q t e s t . 

R e s u l t s and D i s c u s s i o n 

To determine whether the data from the groups which r e c e i v e d the 

s t i m u l i i n ascending and descending orders c o u l d be pooled 

together, the response magnitudes from worms t h a t r e c e i v e d the 

s t i m u l i i n ascending order were compared with the response 

magnitudes from those worms that r e c e i v e d the s t i m u l i i n 

descending order across the three stimulus i n t e n s i t i e s at each 

t e s t age (4, 7 and 12 days post-hatching). To c o n t r o l 

experiment-wise e r r o r r a t e , the alpha l e v e l (.05) was d i v i d e d by 

the number of t e s t s t h at might be performed on the data from each 

age (3 t e s t s : one i n i t i a l comparison of the orders of s t i m u l a t i o n , 

and p o s s i b l y two follow-up t e s t s , one f o r each o r d e r ) ; .05 / 3 = 

.016. At day 4 and day 7, there was an e f f e c t of stimulus 

i n t e n s i t y , but no e f f e c t of stimulus order nor any i n t e r a c t i o n 

between stimulus order and i n t e n s i t y (day 4: Order: F(l,18) = 

1.855, rj < .19; I n t e n s i t y : F(2,36) = 5.725, p. = .0069; Order x 

I n t e n s i t y : F(2,36) = .65, rj = .5283; day 7: Order: F(l,18) = .922, 

p. = .3497; I n t e n s i t y : F(2,36) = 5.511, p_ = .0082; Order x 

I n t e n s i t y : F(2,36) = .367, p. = .6955). However, at 12 days the 

order of s t i m u l a t i o n a f f e c t e d the response of the worms t o 

s t i m u l i of d i f f e r e n t i n t e n s i t i e s i n a d d i t i o n t o a s i g n i f i c a n t 

e f f e c t of i n t e n s i f y (day 12: Order: F(l,18) = 7.152, p_ = .0155; 

I n t e n s i t y : F(2,36) = 11.601, p_ = .0001; Order x I n t e n s i t y : 
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.0004). Therefore, while data from ascending and descending 

orders of p r e s e n t a t i o n from day 4 and 7 worms were pooled w i t h i n 

each age, the data from day 12 were not. At day 12, the data from 

ascending and descending orders of p r e s e n t a t i o n were analyzed 

s e p a r a t e l y . 

Response Frequency. As seen i n Figures 6A and B, at days 4 and 

7 no change was evident i n number of worms responding w i t h 

d i f f e r e n t stimulus i n t e n s i t i e s (day 7: 0.(2) =2.4; JJ > .05). At 

day 12, the data from worms th a t r e c e i v e d the s t i m u l i i n ascending 

and descending orders were considered s e p a r a t e l y (see F i g u r e 6C). 

No change i n the number of worms responding was seen i n e i t h e r 

group (ascending: 0.(2) = 1.2, JD > .05; descending: 0.(2) = 2.0, p_ 

> .05). Since these s t i m u l i were s e l e c t e d because they a l l 

c o n s i s t e n t l y produced r e v e r s a l responses, i t i s not s u r p r i s i n g 

t h a t no change i n frequency of response with i n t e n s i t y was 

observed. I t i s p o s s i b l e that with the a d d i t i o n of lower 

i n t e n s i t y s t i m u l i nearer t o the sensory t h r e s h o l d , more of a 

decrease i n the frequency of r e v e r s a l responses would be seen at 

a l l ages. 

Response Magnitude. At day 4 (see Figure 7A), worms responded 

w i t h s i g n i f i c a n t l y smaller r e v e r s a l s t o a 38 V tap than t o e i t h e r 

a 40 or 60 V tap (F(2,38) = 5.833, rj = .0062). At day 7 (see 

Fig u r e 7B), worms responded with s i g n i f i c a n t l y l a r g e r r e v e r s a l s t o 

a 60 V tap than e i t h e r a 40 or 38, V tap (F(2,38) = 7.791, r> = 

.0015). At day 12, the data from worms th a t r e c e i v e d the s t i m u l i 

i n ascending and descending orders were considered s e p a r a t e l y . 



F i g . 6. The number of worms that responded t o taps of d i f f e r e n t 

i n t e n s i t i e s with r e v e r s a l s at 4, 7 and 12 days post-hatching (n = 

20 at each age). At days 4 and 7, the data from worms t h a t 

r e c e i v e d the s t i m u l i i n d i f f e r e n t orders were pooled, while at 

day 12 the data from worms that r e c e i v e d the s t i m u l i i n ascending 

order (ASCENDING; n = 10) and the data from worms t h a t r e c e i v e d 

the s t i m u l i i n descending order (DESCENDING; n = 10) are shown 

s e p a r a t e l y . 
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F i g . 7. The magnitude of r e v e r s a l responses +/- SEM t o taps of 

d i f f e r e n t i n t e n s i t i e s at 4, 7 and 12 days post-hatching (n = 20 at 

each age). The magnitude of r e v e r s a l s was d i v i d e d by each worm's 

body l e n g t h . Only those responses t h a t were r e v e r s a l s were 

i n c l u d e d i n the a n a l y s i s . At days 4 and 7, the data from worms 

t h a t r e c e i v e d the s t i m u l i i n d i f f e r e n t orders were,pooled, while 

at day 12 the data from worms that r e c e i v e d the s t i m u l i i n 

ascending order (ASCENDING; n = 10) and the data from worms th a t 

r e c e i v e d the s t i m u l i i n descending order (DESCENDING; n = 10) are 

shown s e p a r a t e l y . "* 
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Day 12 worms (see Figure 7C) that r e c e i v e d s t i m u l a t i o n i n 

ascending order (38, 40 and 60 V) d i d not show a graded response 

t o s t i m u l i of d i f f e r e n t i n t e n s i t i e s (F(2,18) = 1.77, p_ = .1986). 

However, day 12 worms that r e c e i v e d the s t i m u l i i n descending 

order (60, 40 and 38 V) d i d respond with s i g n i f i c a n t l y l a r g e r 

r e v e r s a l s t o the 60 V tap than t o e i t h e r the 38 or 40 V taps 

(F(2,18) = 17.713, p. = .0004). This f i n d i n g suggests t h a t day 12 

worms, l i k e day 4 and 7 worms, are capable of responding t o 

s t i m u l i of d i f f e r e n t i n t e n s i t i e s with graded responses, but t h a t 

the e f f e c t of repeated s t i m u l a t i o n may mask t h e . e f f e c t of stimulus 

i n t e n s i t y even when the s t i m u l i are administered at 10-min 

i n t e r v a l s . This response decrement was evident o n l y i n the 

ascending order of s t i m u l a t i o n , p o s s i b l y because the response 

magnitude t o the l a s t stimulus of the descending order (38 V tap) 

was alre a d y so small that any response decrement was l o s t i n a 

f l o o r e f f e c t . 

I t may be th a t o l d e r worms are more s u s c e p t i b l e t o 

h a b i t u a t i o n t r a i n i n g than younger worms. I f so, day 12 worms 

might be expected t o e x h i b i t a f a s t e r r a t e of response decrement 

du r i n g h a b i t u a t i o n t r a i n i n g . 

Experiment 4. Habituation and d i s h a b i t u a t i o n . 

The e f f e c t s of aging on h a b i t u a t i o n and d i s h a b i t u a t i o n i n C. 

elegans were examined at each of the three t e s t ages, 4 days, 7 

days and 12 days post-hatching. 
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Subjects 

20 naive worms were used at each of the three t e s t ages (4, 7 

and 12 days) f o r a t o t a l of 60 worms. 

Procedure 

T r a i n s of taps (1 t r a i n = 6 taps at a frequency of 10 Hz) were 

the s t i m u l i used i n both the h a b i t u a t i o n / d i s h a b i t u a t i o n experiment 

and the recovery from h a b i t u a t i o n experiment because t h i s stimulus 

was found t o produce l a r g e r responses than the s i n g l e tap (Chiba & 

Rankin, 1990) and thus a f f o r d e d a l a r g e response range i n which 

changes i n p l a s t i c i t y might be observed. In the present study, at 

day 4 the mean r e v e r s a l response to tap was 1.275 ± .141 ( i SEM) 

w h ile the mean response to a t r a i n of taps was 2.005 t .157. 

T r a i n s of taps have been used i n our other s t u d i e s of 

n o n - a s s o c i a t i v e l e a r n i n g (Rankin, Beck, & Chiba, 1990; Rankin & 

B r o s t e r , i n p r e s s ) . 

In t h i s experiment, 60 t r a i n s of taps were administered a t a 10 

s i n t e r s t i m u l u s i n t e r v a l ( I S I ) . Ten seconds a f t e r the l a s t 

h a b i t u a t i n g stimulus, a 60 V t r a i n of shocks (a stimulus t h a t 

produces d i s h a b i t u a t i o n i n 4 day o l d s ; Rankin, Beck, & Chiba, 

1990) was administered. Within 20 s a f t e r the d i s h a b i t u a t i n g 

stimulus, 12 more t r a i n s of taps was administered at a 10 s ISI t o 

t e s t f o r d i s h a b i t u a t i o n . 

R e s u l t s and D i s c u s s i o n 

The a n a l y s i s of the frequency and the magnitude of the r e v e r s a l 

response during h a b i t u a t i o n and d i s h a b i t u a t i o n showed d i f f e r e n t 

p a t t e r n s of r e s u l t s across ages. 
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Response frequency. The frequency of r e v e r s a l s , scored as the 

p r o p o r t i o n of worms responding t o each stimulus with a r e v e r s a l , 

showed t h a t both h a b i t u a t i o n and d i s h a b i t u a t i o n were evident at 4, 

7 and 12 days of age (see Figure 8 and 10A) . A c c e l e r a t i o n s 

(approximately 3% of the responses) were omitted from the a n a l y s i s 

and t r e a t e d as missing data. Cochran Q t e s t s at each age (4, 7 

and 12 days of age) confirmed that at each age there were 

s i g n i f i c a n t changes across the i n i t i a l response, h a b i t u a t i o n ( l a s t 

response of the h a b i t u a t i o n t r a i n i n g ) and d i s h a b i t u a t i o n ( f i r s t 

response a f t e r the d i s h a b i t u a t i n g stimulus) (day 4: 0.(2) = 10.64, 

p_ < .02; day 7: 0.(2) = 7.625, p_ < .05; day 12: 0.(2) = 21.375, p_ < 

.001). However, as seen i n Figure 8, the p a t t e r n of responding 

d u r i n g h a b i t u a t i o n t r a i n i n g d i d appear d i f f e r e n t at day 7. At 4 

and 12 days of age, the number of worms responding decreased e a r l y 

i n the h a b i t u a t i o n t r a i n i n g and remained low throughout. At 7 

days of age, the worms appeared t o stop responding e a r l y i n 

h a b i t u a t i o n t r a i n i n g then begin responding again as the 

h a b i t u a t i o n t r a i n i n g continued. This f i n d i n g was r e f l e c t e d i n a 

change i n the frequency of response averaged across a l l 60 

h a b i t u a t i o n t r i a l s with age; the mean frequency of response was 

s i g n i f i c a n t l y greater at day 7 than at day 4 or day 12 (day 4: X = 

.265 t .026 ; day 7: .606 t .032; day 12: .329 ± .034; F(2,57) = 

33.667, p. = .0001) . 

Response magnitude. In order t o compare response magnitude 

across ages the r e v e r s a l magnitudes were standardized by 

expr e s s i n g each response as a percent of the i n i t i a l r e v e r s a l 
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F i g . 8. The p r o p o r t i o n of worms responding to s t i m u l i with 

r e v e r s a l s during h a b i t u a t i o n t r a i n i n g t o t r a i n s of taps (10 s ISI, 

60 stim; n = 20 at each age). 
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F i g . 9. The magnitude of r e v e r s a l responses +/- SEM d u r i n g 

h a b i t u a t i o n t r a i n i n g with t r a i n s of taps (10 s ISI, 60 s t i m u l i ) . 

The magnitude of r e v e r s a l responses was expressed as a percent of 

each worm's response t o the i n i t i a l stimulus i n h a b i t u a t i o n 

t r a i n i n g . 
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F i g . 10. Reversal responses before and a f t e r h a b i t u a t i o n t r a i n i n g 

with t r a i n s of taps (10 s ISI, 60 s t i m u l i ) and a f t e r 

d i s h a b i t u a t i o n with e l e c t r i c shock at 4, 7 and 12 days 

post-hatching (n = 20 at each age). INIT = i n i t i a l response of 

the h a b i t u a t i o n t r a i n i n g ; HAB = f i n a l response o f the h a b i t u a t i o n 

t r a i n i n g ; DIS = f i r s t response a f t e r the d i s h a b i t u a t i n g stimulus. 

A. P r o p o r t i o n of worms responding t o s t i m u l i with r e v e r s a l s before 

and a f t e r h a b i t u a t i o n t r a i n i n g and f o l l o w i n g the d i s h a b i t u a t i n g 

s t i m u l u s . 

B. Magnitude of the r e v e r s a l response +/- SEM before and a f t e r 

h a b i t u a t i o n t r a i n i n g and f o l l o w i n g the d i s h a b i t u a t i n g s t i m u l u s . 

Magnitude of r e v e r s a l responses was expressed as a percent of each 

worm's r e v e r s a l response t o the i n i t i a l stimulus i n h a b i t u a t i o n 

t r a i n i n g . 
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response (which was set at 100%) f o r each worm (see Figures 9A, B 

and C ). A c c e l e r a t i o n responses were not i n c l u d e d i n the a n a l y s i s 

because they represent d i s c r e t e motor responses t h a t cannot be 

compared t o r e v e r s a l s ; however, the absence of a response or a 

pause were i n c l u d e d as scores of zero (Rankin, Beck, & Chiba, 

1990). M i s s i n g data points (approximately 3% of the responses) i n 

repeated measures analyses were replaced by the group and 

c o n d i t i o n mean (Glass & Hopkins, 1984). 

Worms at a l l ages showed s i g n i f i c a n t h a b i t u a t i o n (see Fi g u r e 9A, 

B and C) and d i s h a b i t u a t i o n (see Figure 10B) i n the magnitude of 

r e v e r s a l response. Repeated measures ANOVA's were performed on 

each of the three ages. To c o n t r o l family-wise e r r o r r a t e , the 

alpha l e v e l was reduced from .05 to .05/3 = .016 (Glass and 

Hopkins, 1984). As seen i n Figure 10B, at a l l ages the i n i t i a l 

response was s i g n i f i c a n t l y greater than the habituated response 

and the d i s h a b i t u a t e d response, and the d i s h a b i t u a t e d response was 

s i g n i f i c a n t l y g r e a t e r than the habituated response (4 days: 

F(2,38) = 134.358, p_ < .0001; 7 days: F(2,38) = 280.389, rj < 

.0001; 12 days: F(2,38) = 786.631, E < .0001). I t was not p o s s i b l e 

t o compare the degree of ha b i t u a t i o n or d i s h a b i t u a t i o n across the 

ages t e s t e d because the habituated response of worms at a l l ages 

were small enough that the c h a r a c t e r i s t i c s of any change measured 

ag a i n s t t h a t low l e v e l of responding may have been l o s t i n a 

f l o o r e f f e c t . 

The r a t e of response decrement during h a b i t u a t i o n t r a i n i n g was 

analyzed by c a l c u l a t i n g the slope of the r e g r e s s i o n l i n e s f o r 
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r e v e r s a l responses t o the f i r s t f i v e s t i m u l i i n the h a b i t u a t i o n 

t r a i n i n g f o r each worm and then t a k i n g the mean of these slopes 

f o r each age (day 4 X = -22.125 t 2.375; day 7 X = -25.512 t 

1.695; day 12 X = -19.721 £ 2.317). A comparison of the slopes 

showed t h a t there was no s i g n i f i c a n t change i n the r a t e of 

h a b i t u a t i o n as a f u n c t i o n of age (F(2,56) = 1.786, rj = .177). 

While the f i n d i n g s from t h i s experiment seemed t o i n d i c a t e t h a t 

t h e r e was no change with age i n the r e v e r s a l response magnitude i n 

h a b i t u a t i o n and d i s h a b i t u a t i o n , there was a change with age i n 

response vfrequency during h a b i t u a t i o n . A d i s s o c i a t i o n of the 

response magnitude and response frequency was apparent at day 7, 

where worms continued t o respond t o s t i m u l i d u r i n g h a b i t u a t i o n 

t r a i n i n g but responded with small r e v e r s a l s . T h i s d i s s o c i a t i o n may 

r e f l e c t some change i n the underlying memory mechanisms at th a t 

age. 

Experiment 5. Recovery from h a b i t u a t i o n 

Recovery from h a b i t u a t i o n may be thought of a form of short-term 

memory; the stronger the memory, the slower the recovery from 

h a b i t u a t i o n might be. Thus, i f short-term memory changes with 

age, the r a t e of recovery from h a b i t u a t i o n might a l s o change with 

age. 

Subjects 

Twenty worms were t e s t e d at each of the t e s t ages 4, 7 and 12 

days post-hatching f o r a t o t a l of 60 worms. 



45 

Subjects 

Twenty worms were t e s t e d at each of the t e s t ages 4, 7 and 12 

days post-hatching f o r a t o t a l of 60 worms. 

Procedure 

H a b i t u a t i o n was e s t a b l i s h e d by d e l i v e r i n g 60 t r a i n s of taps a t a 

10 s ISI; at the end of ha b i t u a t i o n t r a i n i n g , s i n g l e t r a i n s o f 

taps at 30 s, 10 min, 20 min and 30 min were d e l i v e r e d t o t e s t f o r 

recovery from h a b i t u a t i o n . This procedure has been used t o 

demontrate recovery from h a b i t u a t i o n 20 t o 30 min a f t e r the l a s t 

h a b i t u a t i n g stimulus i n 4 day o l d worms (Rankin & B r o s t e r , 1990, 

i n p r e s s ) . 

R e s u l t s and D i s c u s s i o n 

In the a n a l y s i s of the recovery of the magnitude of the r e v e r s a l 

response a f t e r h a b i t u a t i o n t r a i n i n g , r e v e r s a l magnitude was 

stan d a r d i z e d as percent i n i t i a l response as i n the previous 

experiment. Only the frequency and magnitude data from the 30 min 

recovery t e s t were s t a t i s t i c a l l y analyzed because the v a r i a n c e i n 

the intermediate t e s t s (at 30 s, 10 min and 20 min) was too great 

to be u s e f u l l y i n c l u d e d . The data from a l l t e s t s are d e p i c t e d i n 

Fig u r e s 11 and 12A, B and C. 

Response frequency. The frequency of r e v e r s a l s , scored as the 

p r o p o r t i o n of worms responding t o each stimulus with a r e v e r s a l , 

showed t h a t both h a b i t u a t i o n and recovery from h a b i t u a t i o n were 

evident a t 4, 7 and 12 days of age (see Figure 11). Cochran Q 

t e s t s a t each age comparing the i n i t i a l , h abituated and recovered 

(30 min post-habituation)'response frequency confirmed t h a t a t 
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F i g . 11. P r o p o r t i o n of worms responding with r e v e r s a l s d u r i n g 

recovery from response decrement from h a b i t u a t i o n t r a i n i n g (10 s 

IS I , 60 s t i m u l i ; n = 20 at each age). Tests of recovery were given 

30 s, 10 min, 20 min, and 30 min p o s t - h a b i t u a t i o n . INIT = the 

response t o the f i r s t h a b i t u a t i o n stimulus; HAB = the response t o 

the l a s t h a b i t u a t i o n stimulus. 
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F i g . 12. The magnitude of r e v e r s a l responses +/- SEM d u r i n g 

recovery from h a b i t u a t i o n (n = 20 at each age). The data are 

expressed as percent i n i t i a l response which f o r each worm was set 

at 100%. The s o l i d h o r i z o n t a l l i n e at 100% represents t h i s 

i n i t i a l response during h a b i t u a t i o n t r a i n i n g . HAB = the r e v e r s a l 

response t o the l a s t h a b i t u a t i o n stimulus i n the t r a i n i n g . 

Recovery was t e s t e d at 30 s, 10 min, 20 min and 30 min 

p o s t - h a b i t u a t i o n . 
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each age there were s i g n i f i c a n t changes with the treatments (day 

4: 2(2) = 17.231, rj < .001; day 7: 0,(2) = 13.0, rj < .01; day 12: 

0.(2) = 19.0, p_ < .001) . 

Response magnitude. A d i f f e r e n t p a t t e r n i s seen i n the a n a l y s i s 

of the magnitude of r e v e r s a l responses (see Figures 12A, B and C). 

A l l ages showed s i g n i f i c a n t h a b i t u a t i o n (day 4: F(2,38) = 23.563, 

E < .0001; day 7: F(2,38) = 16.953, £ < .0001; day 12: F(2,38) = 

3.426, E < .0001). By 30 minutes a f t e r h a b i t u a t i o n t r a i n i n g , 4 day 

and 7 day worms showed s i g n i f i c a n t recovery of response magnitude 

over habituated l e v e l s . However, worms t e s t e d a t 12 days 

post-hatching d i d not show recovery over habituated l e v e l s . 

The e f f e c t s of recovery on the response magnitude were f u r t h e r 

examined by comparing the d i f f e r e n c e between habituated response 

l e v e l s and 30 min po s t - h a b i t u a t i o n response l e v e l s across ages. 

Experiment 6. I n h i b i t i o n 

As a f i n a l t e s t of the e f f e c t s of aging on behavior, the 

i n h i b i t i o n of one a n t a g o n i s t i c r e f l e x by another as d e s c r i b e d by 

Rankin ( i n press) was examined. F i r s t , the response t o tap alone 

was t e s t e d . Second, the i n h i b i t i o n of the r e v e r s a l withdrawal i n 

response t o tap by t a i l - t o u c h was examined. T h i r d , the i n h i b i t i n g 

stimulus, t a i l - t o u c h , was habituated and the i n t e r a c t i o n between 

the r e f l e x e s was examined again. The e f f e c t of h a b i t u a t i o n 

t r a i n i n g on response competition was then compared at the three 

t e s t ages. 
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Subjects 

Twenty worms at each age (4, 7 and 12 days) were t e s t e d f o r a 

t o t a l of 60 worms. 

Procedure 

There were three treatments i n t h i s procedure. A l l animals 

r e c e i v e d a tap alone, a tap preceded w i t h i n 1 s by a t a i l - t o u c h , 

and t a i l - t o u c h h a b i t u a t i o n t r a i n i n g (2 s ISI; 50 s t i m u l i ) 

immediately followed by a tap preceded w i t h i n 1 s by a t a i l - t o u c h . 

The treatments were given i n the same order f o r a l l worms so that 

the h a b i t u a t i o n t o t a i l - t o u c h d i d not i n t e r f e r e with the other 

responses. There was a 20 to 30 min i n t e r v a l between a l l t e s t s . 

In order t o determine the e f f e c t s of the t a i l - t o u c h on the 

r e v e r s a l t o tap,'worms that d i d not respond t o the s i n g l e tap with 

a r e v e r s a l were e l i m i n a t e d from the experiment (approximately 10% 

of worms t e s t e d ) . The r e v e r s a l responses t o the tap were t r a c e d 

and d i g i t i z e d f o r a l l groups. 

R e s u l t s and Di s c u s s i o n 

Response frequency. At each age there was a marked i n h i b i t i o n 

of the frequency of the r e v e r s a l response t o tap when tap was 

preceded by t a i l - t o u c h and a decrease i n the i n h i b i t i o n of the 

frequency of response from t h a t l e v e l when the t a i l - t o u c h was 

preceded by h a b i t u a t i o n t r a i n i n g with t a i l - t o u c h (see F i g u r e 13A). 

Response magnitude. The magnitude of r e v e r s a l responses were 

sta n d a r d i z e d by expressing them as a percent of each worm's 

r e v e r s a l response t o the s i n g l e tap which was s e t a t 100%. In 

measuring the e f f e c t s of t a i l - t o u c h and t a i l - t o u c h h a b i t u a t i o n on 
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F i g . 13. The e f f e c t of h a b i t u a t i o n t r a i n i n g on i n h i b i t i o n of the 

r e v e r s a l response t o tap by t a i l - t o u c h (n = 20 at each age). 

A. The number of worms r e v e r s i n g t o tap alone (TAP), t a i l - t o u c h 

f o l l o wed w i t h i n 1 s by tap (TT), and t a i l - t o u c h h a b i t u a t i o n 

t r a i n i n g ( 2 s ISI, 50 s t i m u l i ) followed w i t h i n 2s by 

t a i l - t o u c h / t a p . 

B. The magnitude of r e v e r s a l s +/- SEM to tap alone (TAP), 

t a i l - t o u c h followed w i t h i n 1 s by tap (TT), and t a i l - t o u c h 

h a b i t u a t i o n t r a i n i n g (2 s ISI, 50 s t i m u l i ) followed w i t h i n 2 s by 

t a i l - t o u c h / t a p . The magnitude of the r e v e r s a l s t h a t occurred were 

expressed as a percent of each worm's response t o the tap alone 

which was s e t at 100%. 
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the magnitude of r e v e r s a l s (see Figure 13B), o n l y animals t h a t 

reversed under these c o n d i t i o n s were i n c l u d e d i n the a n a l y s i s . 

Repeated measures ANOVAs at each age showed t h a t the r e v e r s a l 

magnitude was s i g n i f i c a n t l y lower i n the t a i l - t o u c h / t a p c o n d i t i o n 

than the tap alone c o n d i t i o n and s i g n i f i c a n t l y higher i n the 

h a b i t u a t e d t a i l - t o u c h / t a p c o n d i t i o n than i n the t a i l - t o u c h / t a p 

c o n d i t i o n (day 4: F(2,38) = 48.679, £ = .0001; day 7: F(2,38) = 

11.027, p_ = .0002;,day 12: F(2,38) = 19.618, p_ = .0001). 

C l e a r l y , t a i l - t o u c h i n h i b i t e d both the frequency of r e v e r s a l 

response and the magnitude of the r e v e r s a l response. H a b i t u a t i o n 

t r a i n i n g with the t a i l - t o u c h diminished the amount of i n h i b i t i o n ; 

thus t h e r e was an increase i n both the frequency and the magnitude 

of the r e v e r s a l response to tap. The observation that worms 

showed r e v e r s a l s to tap f o l l o w i n g t a i l - t o u c h h a b i t u a t i o n suggests 

t h a t the h a b i t u a t i o n d i d not simply produce f a t i g u e . From the 

r e s u l t s of t h i s experiment, one can conclude t h a t even aged worms 

are capable of h a b i t u a t i o n independent of f a t i g u e e f f e c t s . 

General Dis c u s s i o n 

These experiments have demonstrated t h a t i n C. elegans the 

e f f e c t s of aging may be seen i n spontaneous and r e f l e x i v e 

behaviors, and more importantly i n changes i n l e a r n i n g and memory. 

V e l o c i t y of spontaneous movement diminished with age, as d i d the 

magnitude of spontaneous r e v e r s a l s and the r e v e r s a l response to 

tap. In a d d i t i o n spontaneous v e l o c i t y of locomotion t e s t e d a t 7 
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days of age was lower i n worms that d i e d before the day 12 t e s t 

than worms t h a t s u r v i v e d u n t i l day 12. However, the mean 

magnitude of spontaneous r e v e r s a l s and the magnitude of response 

t o s i n g l e taps was not r e l a t e d t o time of death. C l e a r l y aging 

d i d have an e f f e c t on the spontaneous and r e f l e x i v e behaviors. 

These changes must be kept i n mind when c o n s i d e r i n g the e f f e c t s of 

aging i n b e h a v i o r a l p l a s t i c i t y . 

To t e s t the s e n s i t i v i t y t o t a c t i l e s t i m u l i of the aged worms, 

s t i m u l i of d i f f e r e n t i n t e n s i t i e s were administered. Worms a t a l l 

ages t e s t e d showed graded responses t o taps of d i f f e r e n t 

i n t e n s i t i e s . I n t e r e s t i n g l y , the response magnitude of day 12 worms 

appeared t o decrease during the a d m i n i s t r a t i o n of the three 

s t i m u l i given at a 10 min ISI. Rankin and B r o s t e r ( i n press) 

found no evidence of h a b i t u a t i o n when they administered taps at a 

10 min ISI t o day 4 worms. I t may be that o l d e r worms are 

p a r t i c u l a r l y v u l n e r a b l e t o h a b i t u a t i o n . 

H a b i t u a t i o n t o repeated s t i m u l a t i o n at a 10 s ISI and 

d i s h a b i t u a t i o n t o 60 V shock were present i n worms at a l l ages and 

d i d not appear t o change g r e a t l y during p o s t - r e p r o d u c t i v e 

development. However, at day 7 there appeared t o be a 

d i s s o c i a t i o n of the p r o b a b i l i t y of response and the magnitude of 

response. At day 4 and day 12 these measures appeared t o f o l l o w 

the same p a t t e r n , however i n day 7 worms the p r o b a b i l i t y of 

response stayed high while response magnitude diminished. I t i s 

not c l e a r why t h i s change with age i n response frequency d u r i n g 

h a b i t u a t i o n t r a i n i n g occurred; however a c l o s e r examination of the 



56 

behavior of worms between the ages t e s t e d (4, 7 and 12 days 

post-hatching) might provide f u r t h e r information on t h i s 

phenomenon. 

The r a t e of h a b i t u a t i o n t o s t i m u l a t i o n at a 10 s ISI d i d not 

appear t o change with age. This f i n d i n g does not support the 

suggestion a r i s i n g from Experiment 4 (Graded response) t h a t day 12 

worms may be p a r t i c u l a r l y v u l n e r a b l e t o h a b i t u a t i o n . However i t 

may be t h a t the i n t e r s t i m u l u s i n t e r v a l used i n the h a b i t u a t i o n 

t r a i n i n g (10 s ISI) was short enough that worms of a l l ages 

habi t u a t e d q u i c k l y , masking any d i f f e r e n c e i n r a t e of h a b i t u a t i o n . -

During the l a t e r part of h a b i t u a t i o n t r a i n i n g ( t r i a l s 50 through 

60), the r e v e r s a l magnitude t o v i b r a t i o n a l s t i m u l i when e x h i b i t e d 

appears t o be grea t e r than the r e v e r s a l magnitude t o the low 

i n t e n s i t y tap (38 V) whether the low i n t e n s i t y tap was given f i r s t 

or l a s t (day 12 h a b i t u a t i o n of r e v e r s a l magnitude from t r i a l s 50 

t o 60: X = .339 - .073; day 12 r e v e r s a l magnitude t o 38 V tap X = 

.096 £ .036); thus i t may be that l i t t l e f u r t h e r h a b i t u a t i o n of 

r e v e r s a l magnitude could be e x h i b i t e d . An examination o f the 

e f f e c t s of aging on the rate of h a b i t u a t i o n t o longer ISI's might 

be help c l a r i f y t h i s question. 

Worms t e s t e d at 4 and 7 days of age showed recovery from 

h a b i t u a t i o n of both the frequency and response magnitude 30 min 

p o s t - h a b i t u a t i o n t r a i n i n g , but worms t e s t e d at 12 days d i d not. 

Thi s d e f i c i t i n recovery might r e f l e c t a p e r s i s t e n c e of 

h a b i t u a t i o n i n the o l d e r worms. This p e r s i s t e n c e i s u n l i k e l y t o 

be e x p l a i n e d by a f a c t o r such as more r a p i d exhaustion s i n c e day 
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12 worms with the same ha b i t u a t i o n t r a i n i n g showed d i s h a b i t u a t i o n 

( f a c i l i t a t i o n of the habituated response) immediately a f t e r a m i l d 

e l e c t r i c shock. In a d d i t i o n , h a b i t u a t i o n of t a i l - t o u c h p r i o r t o 

t e s t s of i n h i b i t i o n helped e s t a b l i s h that h a b i t u a t i o n can be 

d i s t i n g u i s h e d from simple f a t i g u e e f f e c t s i n worms of a l l ages. 

Because h a b i t u a t i o n t r a i n i n g t o t a i l - t o u c h i n c r e a s e d the r e v e r s a l 

response t o tap by r e l e a s i n g i t from t a i l - t o u c h i n h i b i t i o n at each 

t e s t age, c l e a r l y even aged worms are capable of h a b i t u a t i o n 

independent of f a t i g u e or response diminishment r e l a t e d t o age. 

Furthe r s t u d i e s on the dynamics of h a b i t u a t i o n and recovery from 

h a b i t u a t i o n and on long-term memory i n aged worms may help the 

understanding of mechanisms underlying the a g e - r e l a t e d changes i n 

h a b i t u a t i o n . 

, An assumption un d e r l y i n g the use of simple-system models of 

l e a r n i n g and memory i s that these simple forms of l e a r n i n g , 

h a b i t u a t i o n and d i s h a b i t u a t i o n , seen i n so many s p e c i e s , must 

share some common b i o l o g i c a l mechanisms. I f the u n d e r l y i n g 

mechanisms are conserved across species, i t may be p o s s i b l e t o 

make v i a b l e p r e d i c t i o n s about the patterns of l e a r n i n g i n one 

species based on the patterns of l e a r n i n g i n another. Work i n 

other species on the e f f e c t s of aging on h a b i t u a t i o n has not been 

extensive and f i n d i n g s have been mixed. E i s e n s t e i n and colleagues 

(1990) found t h a t i n human males the ga l v a n i c s k i n response 

hab i t u a t e d more q u i c k l y i n younger subjects ( e a r l y 20's) than i n 

o l d e r ones ( l a t e 20's). They r e l a t e d t h i s d e f i c i t with the l o s s 

of dopamine receptors i n the caudate nucleus observed i n PET 
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s t u d i e s between age 20 and 30. F r a l e y and Springer (1981) found 

t h a t middle-aged and o l d e r mice (12 to 24 mo) d i d not r e t a i n 

h a b i t u a t i o n t r a i n i n g f o r as long as 2 month o l d mice. Parsons, 

Fagan and Spear (1973) found no change i n short-term r e t e n t i o n of 

h a b i t u a t i o n t r a i n i n g i n o l d age i n r a t s . As d i s c u s s e d e a r l i e r , 

Rattan and Peretz (1987) found more r a p i d h a b i t u a t i o n i n o l d e r 

Aplysia and an absence of d i s h a b i t u a t i o n . 

The r e s u l t s from the present experiments o f f e r l i t t l e support 

f o r any g e n e r a l i t i e s t h a t might be drawn from the above s t u d i e s . 

I t i s p o s s i b l e t h a t aged C. elegans habituate more r a p i d l y than 

younger a d u l t s ; however t h i s suggestion has not y e t been 

confirmed. Aged C. elegans showed d i s h a b i t u a t i o n a f t e r e l e c t r i c 

shock; t h i s f i n d i n g does not support the a s s e r t i o n of Rattan and 

Peretz (1987) t h a t d i s h a b i t u a t i o n i s s p e c i f i c a l l y d i s a b l e d i n 

o l d e r organisms (although a recent personal communication from 

Peretz ( A p r i l , 1991) i n d i c a t e d that b e h a v i o r a l experiments on 

Aplysia have shown t h a t d i s h a b i t u a t i o n may be e x h i b i t e d by o l d e r 

Aplysia; the d e f i c i t seen formerly appears t o have been dependent 

on the s p e c i f i c h a b i t u a t i o n t r a i n i n g procedure used). From 

Experiment 6 (Recovery from/habituation) there i s evidence of a 

longer r e t e n t i o n of h a b i t u a t i o n which seems t o c o n t r a d i c t the 

f i n d i n g s of F r a l e y and Springer (1981) t h a t middle-aged and aged 

mice showed s h o r t e r r e t e n t i o n of h a b i t u a t i o n t r a i n i n g than young 

mature a d u l t s . C l e a r l y there i s as yet no s i n g l e d e s c r i p t i o n of 

the e f f e c t s of aging on h a b i t u a t i o n . One of the d i f f i c u l t i e s 

w i t h comparing these studies i s that methodologies used are 
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d i v e r s e and f u l l parametric examinations of the l e a r n i n g phenomena 

s t u d i e d have not been done. Further development of a model f o r 

the e f f e c t s of aging on simple forms of l e a r n i n g such as 

h a b i t u a t i o n i n C. elegans may help to c l a r i f y the r o l e of aging 

e f f e c t s i n other s p e c i e s . 

The s t u d i e s d e s c r i b e d here provide a groundwork f o r f u r t h e r 

r e s e a r c h on the e f f e c t s of aging on l e a r n i n g and memory i n C. 

elegans. There are s e v e r a l d i r e c t i o n s i n which t h i s r e s e a r c h 

c o u l d continue. F i r s t , the mechanisms u n d e r l y i n g the a g e - r e l a t e d 

changes observed i n h a b i t u a t i o n and recovery from h a b i t u a t i o n 

might be i n v e s t i g a t e d with s t u d i e s f o c u s s i n g on the parameters of 

those changes. Second, known mutant s t r a i n s with e f f e c t s on 

c e r t a i n types of l e a r n i n g or responses might be examined. For 

example the use of a s t r a i n of worms which i s incapable of 

locomotion yet s t i l l feeds may a i d i n the development of 

a l t e r n a t i v e response measures that may be used i n s t u d i e s of 

l e a r n i n g such as pharyngeal bulb pumping. F i n a l l y g e n e t i s t s 

i n t e r e s t e d i n i n v e s t i g a t i n g the b i o l o g i c a l mechanisms of aging 

have begun work on the genetic c o n t r o l s of aging mechanisms i n C. 

elegans. Johnson and h i s colleagues (Johnson, Friedman, F o l t z , 

F i t z p a t r i c k , & Shoemaker,1989) chose t o focus on s e a r c h i n g f o r a 

mutant with an extended l i f e span, with the l o g i c t h a t there are 

many reasons why a mutant may have a shortened l i f e span, but a 

mutation producing an extended l i f e span i s more l i k e l y t o be 

d i r e c t l y r e l a t e d t o the mechanisms underlying aging. Johnson and 

h i s c o l l e a g u e s (1989) i s o l a t e d and mapped a s i n g l e gene mutation 
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t h a t produces a 60-110% increase i n l i f e span; attempts are 

underway t o clone t h i s gene. In t h i s s t r a i n of worms, the 

extended l i f e span i s not due to the extension of any e a r l y 

developmental stage, but to a lengthening of the p o s t - r e p r o d u c t i v e 

l i f e span. A s e r i e s of recombinant mutation experiments f o c u s s i n g 

on genes t h a t modify development have shown t h a t e a r l y 

development, reproduction and l i f e span are a l l under independent 

g e n e t i c c o n t r o l (Johnson, 1987). However, i n a l l s t r a i n s , 

decreased motor a c t i v i t y c o r r e l a t e s with l i f e span; longer l i v e d 

s t r a i n s undergo slower motor a c t i v i t y decay than wild-type 

s t r a i n s . Thus i t may be that aging and motor a c t i v i t y decay share 

a common genetic mechanism. F i n a l l y m i l d food d e p r i v a t i o n causes 

an i n c r e a s e i n the l i f e s p a n with a decrease i n f e r t i l i t y . T h i s 

e f f e c t i s seen i n both wild-type and mutant s t r a i n s of C. elegans. 

Thus, the e f f e c t of food d e p r i v a t i o n on l i f e - s p a n seems t o be 

independent of the extended l i f e span produced by the aging 

mutation (Johnson, 1987). The work of Johnson and h i s colleagues 

not o n l y gives us candidate aging mechanisms, but a l s o a means of 

t e s t i n g the proposed mechanisms b e h a v i o r a l l y . By comparing aging 

i n normal and mutant worms i t may be p o s s i b l e t o d e f i n e some of 

the mechanisms underlying l e a r n i n g and memory d e f i c i t s r e s u l t i n g 

from the aging process. 

C l e a r l y a model of aging e f f e c t s on l e a r n i n g and memory i n C. 

elegans provides a r i c h set of p o s s i b l e research d i r e c t i o n s . By 

e s t a b l i s h i n g i n t h i s set of experiments the pa t t e r n s of change 

wit h aging i n these simple forms of l e a r n i n g , h a b i t u a t i o n and 



d i s h a b i t u a t i o n , we may begin t o develop a simple-systems model of 

the aging e f f e c t s on l e a r n i n g and memory. Using C. elegans, such 

a model may provide us with a unique opportunity t o i n v e s t i g a t e 

the g e n e t i c c o n t r o l of changes i n l e a r n i n g and memory i n 

senescence. 
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