
S T U D Y OF OSI P R O T O C O L P R O C E S S I N G E N G I N E S

By

Leonard Yasuhiko Takeuchi

B. A. Sc., University of British Columbia, Canada, 1989

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

T H E REQUIREMENTS FOR T H E D E G R E E OF

MASTERS OF APPLIED SCIENCE

in

T H E FACULTY OF GRADUATE STUDIES

(DEPARTMENT OF ELECTRICAL ENGINEERING)

We accept this thesis as conforming

to the required standard

T H E UNIVERSITY OF BRITISH COLUMBIA

July 1991

(c) Leonard Yasuhiko Takeuchi, 1991

In presenting this thesis in partial fulfilment of the requirements for an advanced
degree at the University of British Columbia, I agree that the Library shall make it
freely available for reference and study. I further agree that permission for extensive
copying of this thesis for scholarly purposes may be granted by the head of my
department or by his or her representatives, it is understood that copying or
publication of this thesis for financial gain shall not be allowed without my written
permission.

Department of ĝ T̂%-<<sftL ^W<$//QgggW<S
The University of British Columbia
Vancouver, Canada

Date OcrbJa+r [<£> , ffl (

DE-6 (2/88)

Abstract

The increases in communication bandwidth provided by fiber optics and high-speed

switching technologies have shifted the limiting factor in data throughput from the com­

munication link to the communication processing. The communication processing for

open systems interconnection (OSI) in particular is quite heavy due to the inclusion of

data transfer syntax conversion in order to assure interoperability between different ma­

chine types. In this thesis report, two multiprocessing architectures are considered as

protocol processing engines for OSI communications.

The conventional approach is to have the host computer perform the protocol pro­

cessing especially for the higher layers. However, the protocol processing burden at

communication rates of hundreds or even thousands of million bits per second places

such a heavy processing burden on the host that this becomes undesirable. The protocol

processing engines act as front-end systems performing most of the OSI protocol pro­

cessing, including the transfer syntax conversion, on behalf of the host. A multiprocessor

approach was selected because the required amount of processing power can be supplied

using lower processor technology than for an uniprocessor approach.

The protocol engines were designed based on a processing model in which different

packets are processed at the same time in different processors. The protocol engines are

designed to perform the protocol processing for OSI layers 2 through 6. Results obtained

from simulating the designs indicate that a processing throughput of a hundred megabit

per second is achievable only for packets which contain very simple data structures.

11

Table of Contents

Abstract ii

List of Tables vi

List of Figures viii

Acknowledgement x

1 Introduction 1

2 System Requirements 5

2.1 Open Systems Interconnection Reference Model 5

2.2 Division of Processing Responsibilities 7

2.3 Processing Requirement 9

2.3.1 Data Link Layer 9

2.3.2 Network Layer 10

2.3.3 Transport Layer 10

2.3.4 Session Layer 11

2.3.5 Presentation Layer 12

3 System Design Options 13

3.1 Processing Approach Options 13

3.1.1 Design Based on Fast Uniprocessors 14

3.1.2 Design Based on Custom Integrated Circuits 14

iii

3.1.3 Design Based on Protocols for High-Speed Networks 15

3.1.4 Design Based on Parallel Processing 15

3.2 Parallel Processing Options 16

3.2.1 Processor Per Protocol Layer 16

3.2.2 Processor Per Protocol Function 17

3.2.3 Processor Per Connection 17

3.2.4 Processor Per Protocol Data Unit 18

3.3 Architecture Options 18

3.4 Design Selection 21

4 System Description 22

4.1 Network Interface 22

4.1.1 Network Interface Architecture 22

4.1.2 Network Interface Operation 28

4.2 Host Interface 30

4.2.1 Host Interface Architecture 31

4.2.2 Host Interface Operation 32

4.3 Protocol Engine Core Design 1: Mixed Memory Design 33

4.3.1 Mixed Memory Architecture 34

4.3.2 System Operation 38

4.4 Protocol Engine Core Design 2: Shared Memory Design 46

4.4.1 Shared Memory Architecture 46

4.4.2 System Operation 49

5 System Evaluation and Analysis 50

5.1 Method for Evaluating Performance 50

5.1.1 Simulation of the Hardware Level 51

i v

5.1.2 Simulation of the Software Level 53

5.2 Performance Evaluation 56

5.2.1 Evaluation of the Mixed Memory Design 57

5.2.2 Evaluation of the Shared Memory Design 84

5.3 System Analysis 94

5.3.1 Mixed Memory Design 94

5.3.2 Shared Memory Design 97

5.3.3 General Problem with OSI Protocol Processing 97

6 Conclusion 99

Appendices 102

A Checksum Unit Design 102

B Protocol Statistics Sources 104

C A S N . l Statistic 106

D Simulation Details 109
D.l Mixed Memory Design 109

D.2 Shared Memory Design 113

Bibliography 118

v

List of Tables

5.1 The instruction counts for protocols 55

5.2 Processing throughput for 1 connection 58

5.3 Processing throughput for 2, 5, 10 and 20 connections 63

5.4 Processing throughputs with no ASN.l processing 66

5.5 Throughputs for various ASN.l encoding/decoding complexities 67

5.6 Throughputs for various input data rates 70

5.7 Throughput for modified version for 1 connection 73

5.8 Throughputs for various ASN.l encoding/decoding complexities for the

modified design 77

5.9 Throughputs for'various input data rates for the modified design 79

5.10 Throughputs for various input data ratios between host and network input

for the modified design 80

5.11 Throughput for larger packet size 84

5.12 Processing throughput for 200ns shared memory 86

5.13 Processing throughput for 160ns shared memory 87

5.14 Processing throughput for 120ns shared memory 88

5.15 Processing throughput with entire program in cache 92

D.l Parameters for the 5 MIPS configuration 110

D.2 Parameters for the 10 MIPS configuration I l l

D.3 Parameters for the 15 MIPS configuration 112

D.4 Parameters for the 5 MIPS configuration 114

vi

D.5 Parameters for the 10 MIPS configuration 115

D.6 Parameters for the 15 MIPS configuration 116

vn

List of Figures

2.1 OSI layer interaction 6

2.2 PDU formation in OSI 7

2.3 The layers processed by the protocol engine 8

4.1 General system architecture 23

4.2 Network interface architecture 24

4.3 Communication and buffer memory interface 26

4.4 Host interface architecture 31

4.5 Mixed memory architecture 35

4.6 Communication memory and buffer memory interfacing 36

4.7 Shared memory architecture 47

5.1 Throughput vs. processors for 1 connection 60

5.2 Processor utilization vs. processor for 1 connection 61

5.3 Throughput vs. processors for multiple connections 64

5.4 Processor utilization vs. processors for multiple connections 65

5.5 Throughput for different ASN.l encoding/decoding complexities 68

5.6 Processor utilization for different ASN.l encoding/decoding complexities. 69

5.7 Output data rate vs input data rate 71

5.8 Throughputs for the modified and original versions 75

5.9 The shared bus utilization for the modified version 76

5.10 The throughputs for various ASN.l requirements for the modified design. 78

5.11 The output rate versus the input rate for the modified version 81

viii

5.12 The throughputs for the original packet size and larger packet size. . . . 83

5.13 Processing throughput for 200ns shared memory 89

5.14 Processing throughput for 160ns shared memory 90

5.15 Processing throughput for 120ns shared memory 91

5.16 Processing throughput for entire program in cache 93

A . l Checksum unit and adder configuration for OSI TP4 checksum 103

i x

Acknowledgement

I would like to thank Dr. Mabo Ito, my supervisor, for his guidance throughout the

course of my research.

I extend my appreciation to the high-speed networking group at UBC, in particular

Murray Goldberg and Dr. Gerald Neufeld, for providing the basis for the designs studied

in my research. Special thanks goes to Murray Goldberg for his patience in answering

my many questions on different aspects of protocol processing. I would also like to thank

Mike Sample of the computer science deparment for providing me with statistics on

ASN.l processing.

I also wish to express my gratitude to my family for their support and encouragement

without which my studies could not have been completed.

The work presented was supported by a research grant from the Japan Tobacco

Company.

x

Chapter 1

Introduction

With the increase in communication bandwidth made available by fiber optics and high­

speed switching technologies, the communication processing burden on the end system

has also increased. This is especially true for open system interconnection (OSI), which

provides reliable communication, transfer syntax conversion and aid to application de­

velopment. The processing has become the limiting factor in communication throughput

rather than the communication bandwidth. In most systems, communication processing

is done by the host system. The problem with this approach is that the host system

must spend much of its time doing communication processing rather than actual work,

and most likely, it is not capable of processing at data rates of hundreds of megabits

per second now available. This processing burden can be reduced by having a part of

the communication processing performed by a separate system going between the host

and the network. There have been work done in developing communication processing

systems particularly for the lower layers; however, these systems usually implement no

more than two layers at a time. A communication processing system design to perform

the processing for more layers, including the processing intensive presentation layer, is

required if such a system is to substantially decrease the processing burden on the host.

In this thesis report, two multiprocessor designs are considered for OSI protocol pro­

cessing engines. The systems are designed to handle processing for OSI layers 2 through

6 [2]. The protocol processing for a packet can include such tasks as encoding and de­

coding of the packet header and the actual protocol processing according to the packet

1

Chapter 1. Introduction 2

type and the operation of the protocol in use. The actual protocol processing required

is different for each layer as each layer serves a different function. For OSI processing,

the transfer syntax encoding and decoding required at the presentation layer is the most

processing intensive element. The transfer syntax encoding process turns data specified

in an abstract syntax and represented within a machine in an internal form into a form

used for transfer. The decoding process performs the same operations in the opposite

direction. The decoding and encoding of data requires a significant amount of processing

as each data item must be encoded or decoded. The protocol processing requirements

for the layers concerned were taken into account in the design process. The unit of par­

allelism used is the protocol data unit (PDU) or packet. This means that the processing

for a packet is done by a single processor and that several packets are processed concur­

rently by different processors. This approach is a fairy general purpose one in that the

protocol processing is done in software on a multiprocessor platform. The two designs

considered are similar with the important difference being where packets are stored while

being processed. In the first design, a packet is stored in the local memory of the proces­

sor assigned to process that packet. In the second design, packets are stored in shared

memory.

The performance of both designs were evaluated through software simulation. The

performance of the distributed design, where packets are stored in local memory, was

found to vary with the characteristics of the data transfer. This was mainly the result

of the processor utilization being sensitive to the characteristics of the data transfer as

a result of the serialization effect of the requirement of ordered processing at the higher

layers. The processor utilization and throughput was better for smaller packet sizes since

the packet is the unit of processing and parallelism for the system. As the number of

connections transferring data was increased, the utilization and throughput was found

to improve. This was because the contention for connection state information and the

Chapter 1. Introduction 3

serialization effect of ordered processing was reduced when less packets are received on

a per connection basis. The complexity of the data structure was found to have a di­

rect effect on throughput in that the amount of processing required for transfer syntax

encoding/decoding is dependent on the data complexity. The data complexity also had

an effect of processor utilization in that more complex data required greater amount

of processing on a per packet basis thus resulting in higher processor utilization. The

processing throughput for outgoing data was much greater than for incoming data. The

main factor affecting this was the fact that transfer syntax decoding of data can take as

much as twice the processing or more than for encoding for data which is more complex

than the basic data types. The distributed design was found to scale fairly well. For the

configurations tested, up to about 40 processors could be used without the shared bus

becoming a point of contention which limited the performance for the modified opera­

tion. It was found that processing throughputs of a hundered megabit per second was

achievable only for very simple data types.

The lumped shared memory design was found have similar throughputs as the dis­

tributed design when very few processors were used. The system operation for this design

was essentially the same as for the distributed design and thus this design should have

had similar performance and problems as with the distributed design; however, the effects

of the heavy contention for shared memory overshadowed the system performance.

The rest of this thesis report is organized as follows. Chapter 2 describes the process­

ing requirements for the OSI layers handled by the system. Chapter 3 enumerates the

options available in designing a communication processing system and describes how the

design to be studied were chosen. In chapter 4, the two designs are described in terms

of system architecture and system operation. Chapter 5 describes how these designs

were evaluated. This chapter also provides the performance of the systems as evaluated

Chapter 1. Introduction 4

through software simulations as well as analysis on the results provided by the simula­

tions. Chapter 6 provides concluding remarks.

Chapter 2

System Requirements

The protocol engine is designed to handle processing for OSI protocols for layer 2 to 6.

This chapter first describes the layer and peer interactions in OSI. This is followed by

a description of the division of processing responsibilities between the host system, the

protocol engine and the network adapter. The processing requirements for the layers

handled by the protocol engine is also discussed.

2.1 Open Systems Interconnection Reference Model

Open System Interconnection is the seven layer reference model defined by the Inter­

national Organization for Standardization (ISO) for communication between different

computer systems [2]. The OSI model defines each of the layers through a service defi­

nition and a protocol specification. The service definition specifies the activity between

adjacent layers as service primitives. The protocol specification defines the interaction

between peer entities. Information is passed between adjacent layers as service data units

(SDU) through service access points (SAP). Information is passed between peer entities

as protocol data units (PDU). An (N+l) layer entity passes an (N+l) PDU to its peer

entity by invoicing a (N) service primitive through an (N) SAP. In so doing, the (N+l)

entity passes the (N+l) PDU as an (N) SDU to the (N) layer entity. This interaction is

illustrated in Figure 2.1.

The (N) layer entity creates an (N) PDU by adding protocol control information

(PCI), often referred to as the header, to be used by its peer entity onto the (N) SDU.

5

Chapter 2. System Requirements 6

(N+l) LAYER
(N+1)PDU

(N+l) ENTITY U *f (N+l) ENTITY

(N) service primitive (N)SAP

and (N) SDU

(N) LAYER

(N-l) service primitive

(N)PDU
(N) ENTITY U. «4 (N) ENTITY

(N-l) SAP

and (N-l) SDU

(N-l) LAYER
(N-l)PDU

(N-l) ENTITY W- *4 (N-l) ENTITY

Figure 2.1: OSI layer interaction.

Chapter 2. System Requirements 7

(N+l) PDU (N+l) PDU J
1

\ \
(N) PDU (N) PCI (N) SDU (N) PDU

1
\ t

(N-l)PDU (N-D PCI (N-l) SDU

Figure 2.2: PDU formation in OSI.

It then passes the (N) PDU to the (N-l) layer entity as an (N-l) SDU. This continues

until the physical layer where information is actually transmitted to the peer. This PDU

formation and passage of SDU between layers is depicted in Figure 2.2. On the receiving

side, when an (N) layer entity receives the (N) PDU, it performs action as dictated by

the (N) PCI according the protocol in use. If the PCI dictates that the PDU be passed

on to (N+l) layer, then it is passed as an (N) SDU. In OSI, information passes through

the layers but the actual communication occurs between the peer layers entities.

2.2 Division of Processing Responsibilities

The system design distributes the processing required for the seven layers between the

host system, the protocol engine and the network adapter. The host system is responsible

Chapter 2. System Requirements 8

HOST APPLICATION

HOST INTERFACE

PROTOCOL
ENGINE

NETWORK INTERFACE

NETWORK
ADAPTER

PRESENTATION

SESSION

TRANSPORT

NETWORK

IEEE 802.2 LLC

FDDI MAC
FDD I FDD I

FDDI PHY £ PMD
SMT

Figure 2.3: The layers processed by the protocol engine.

for the application layer processing. The host interface subsystem of the protocol engine

provides the interface between the host system and the protocol engine core. The protocol

engine provides the processing for the presentation layer through to the data link layer.

The network interface provides the interface between the protocol engine and the network

adapter. The network adapter provides the physical layer. This division is illustrated in

Figure 2.3.

Chapter 2. System Requirements 9

2.3 Processing Requirement

There are two components to the processing at each layer. The first component is the

processing required due to the layered organization and peer-to-peer interaction. This

component consists of the inter-layer interface processing and the header processing. The

second component is the actual protocol processing as dictated by the PDU received or

the service request received. This component depends on the functions provided by a

layer.

The inter-layer interface processing depends on how the interface is implemented.

The implementation options include client/server type interface and procedure calls.

The header decoding is done on the receiving side and header encoding is done on the

sending side. The encoding process is the creation of the header with the appropriate

protocol control information. The decoding process is the process of providing pointers

to access the header elements.

In the following sections, the functions of the layers implemented in the protocol

engine and some of the protocol processing elements for the layers are described.

2.3.1 Data Link Layer

The data link layer, layer 2, is responsible management of the transmission of data across

the physical link. For our system, this layer would consist of the Fiber Distributed Data

Interface (FDDI) media access control (MAC) and IEEE 802.2 Logical Link Control

(LLC) Type I. The MAC is commercially available as part of a FDDI chipset. The

processing requirement for the Type I LLC is minimal as it essentially serves the purpose

of providing a uniform interface to the network layer independent of the actual MAC in

use.

Chapter 2. System Requirements 10

2.3.2 Network Layer

The network layer, layer 3, provides the switching and routing functions required for the

data transfer between end systems. In our system, a connectionless network protocol such

as the connectionless-mode network protocol (CLNP) would be utilized. A routing table

may be maintained to determine the route on which a packet is to be sent if the network

is composed of several subnetworks. The reassembly of packets segmented during transit

may also be required.

2.3.3 Transport Layer

The transport layer, layer 4, is responsible for providing a reliable communication chan­

nel for the session layer and above. As such, the transport layer provides end-to-end

error and flow control. A connection-oriented transport protocol such as transport pro­

tocol class 4 (TP4) would be utilized in our system. A connection is a communication

context about which information, called connection state information, on the progress

of the communication over that context is maintained. The progress of data transfer

is monitored through the use of sequence numbers. The transport layer also performs

segmentation of packet on the sending side and reassembly of segments on the receiving

side.

There are a variety of errors which must be detected and corrected. Corrupted packets

are detected through the use of some sort of error detecting code calculated over the

packet. Duplicate and missing packets are detected by checking the sequence number.

These errors are usually recovered from by having the sender maintain a timer for the time

by which an acknowledgement for sent packets should be received. If an acknowledgement

is not receiyed by the sender in time, the sender retransmits the unacknowledged packets.

In order to detect network problems and host failures, the state of the connection is

Chapter 2. System Requirements 11

periodically checked by exchanging special packets.

End-to-end flow control is usually implemented by maintaining a range of sequence

numbers, commonly called a window, for which the sender is allowed to transmit to the

receiver without receiving an acknowledgement or credit. The receiver informs the sender

of the window by acknowledging received packets and informing the sender how much

data it can accept.

The transport layer also provides data blocking functions. This includes segmenta­

tion/reassembly and concatenation/separation. Segmentation is the process of splitting

up a packet to a size acceptable to the network layer. Reassembly is the opposite process

to segmentation on the receiving side. Concatenation is the process of putting together

more than one transport PDU into a single network SDU on the sending side. Separation

is the opposite process to concatenation on the receiving side.

From a processing standpoint, the maintenance of connection state information and

timers, the calculation of data error detection code and the data blocking are some of

the important elements. The connection state information for the connection that a

packet belongs to must be located from the list of all connection state information. The

amount of processing required to maintain timers and to perform basic timer functions

can be significant especially if the time resolution required is small and the number of

timers maintained is high. The calculation of the error detection code is very costly

because processing is required on a per byte or word basis. The processing required for

segmentation and reassembly of packets is significant if copying must be done to perform

reassembly.

2.3.4 Session Layer

The session layer, layer 5, provides services to control the dialogue between applications.

This includes the establishment of a session, between two applications. This layer may

Chapter 2. System Requirements 12

also provide checkpointing and synchronization mechanisms for the resumption of com­

munications after failures. For connection oriented session protocol, the processing for a

packet consists of encoding/decoding of header information, locating the state informa­

tion for the connection the packet belongs to and the processing required according to

the type of packet, the state of the connection, and the functional units of the protocol

in use.

2.3.5 Presentation Layer

The presentation layer, layer 6, provides services related to the representation of the

data being transferred including conversion, encryption and compression. The main

function of the presentation.layer is to convert data specified in an abstract form and

represented in an internal format to the transfer syntax used during the data transfer.

The abstract syntax, which allows for the application to specify the data structure of

the data to be encoded to the presentation layer, and the transfer syntax, which is

used to encode the data into a system independent form, can be selected from available

syntaxes. Currently, the dominant syntax used for data representation is Abstract Syntax

Notation One (ASN.l) and the dominant transfer syntax in use is the Basic Encoding

Rules (BER) for ASN.l. The main processing requirement for this layer is the transfer

syntax encoding/decoding of the data. The amount of processing, which can considerable

since the processing must be done for all data elements being transferred, is dependent

on the complexity of the data being encoded/decoded.

Chapter 3

System Design Options

In designing a front-end system to perform the protocol processing for a host system,

there are several approaches possible. This chapter describes how the design for our

system was selected by considering the different approaches possible. The first part of

this chapter describes these approaches. This is followed by the options available for

the parallel processing approach chosen for our system. The architecture options for the

processing method chosen for our system and the general architecture selected is then

discussed.

3.1 Processing Approach Options

There are several approaches possible for achieving higher communication processing

speed. They include designs based on:

• fast uniprocessors.

• protocols implemented on custom integrated circuits.

• protocols designed for high-speed networks.

• parallel processing.

The advantages and disadvantages of each of the approaches in the context of imple­

menting OSI on a front-end system follows.

13

Chapter 3. System Design Options 14

3.1.1 Design Based on Fast Uniprocessors

A design based on a uniprocessor has the advantage that the designing of uniproces­

sor systems and the implementation of communication protocols on uniprocessors are

well known. This approach has the disadvantage that the increases in the processing

abilities of processors must keep pace with the increases in processing requirements due

to increases communication bandwidth. This approach is not very promising for OSI

processing especially considering the amount of processing required for transfer syntax

encoding/decoding done at the presentation layer and the fact that leading edge processor

technology is usually not used in peripheral devices.

3.1.2 Design Based on Custom Integrated Circuits

Many protocols, especially those for the lower layers have been implemented in custom

integrated circuits [24]. The implementation of protocols in custom integrated circuits

has the advantage of allowing for a more customized implementation than software im­

plementations since any function required can be provided in hardware. These designs

usually exploit parallelism to some degree as some functions can be performed at the

same time. This method also has the advantage of on-chip delays being much less than

delays between chips. The main disadvantage of this approach is that a new integrated

circuit must be created for each new protocol and each protocol revision. The use of this

approach for OSI processing requires several considerations. One consideration is how

the layer interfacing is handled. With each protocol layer implemented on a separate

integrated circuit, the interfaces must be designed carefully to avoid copying of packets

between layers and at the same time minimize contention for the packets. The other

consideration is whether the speed up provided through hardware implementation alone

is enough to make this approach viable for high-speed networks.

Chapter 3. System Design Options 15

3.1.3 Design Based on Protocols for High-Speed Networks

There has been a number of protocols, particularly transport protocols, designed for high­

speed networks [25], [12]. These protocols are designed to provide greater throughput

through more efficient connection establishment methods, and better transmission and

retransmission strategies. Some of these protocols also are designed for more efficient

processing. For example, the XTP protocol has a packet format organized to minimize

misalignment so that copying can be avoided during processing [4]. While the majority of

these protocols are for the transport layer, other layers are also considered. For example,

in [16], a light weight transfer syntax is considered for the presentation layer. These

protocols will either eventually be put into general use or have aspects of their designs

incorporated into more common protocols. The problems with these protocols is that it

usually takes a long time for protocols to be standardized and be accepted for general

usage.

3.1.4 Design Based on Parallel Processing

A parallel processing approach has the advantage that the processing ability of the sys­

tem increases with scale. Software implementation on a multiprocessor platform provides

flexibility and adaptability in the selection and implementation of protocols. The dis­

advantage of this approach is that the implementation of protocols in a multiprocessing

environment is not well known. Most protocols were not designed with parallel processing

in mind, therefore, implementing these protocols in parallel will require some amount of

coordination and communication between processors which will reduce the improvement

attainable through scaling.

This approach was selected for our system because of its potential for processing in­

crease and the flexibility it offers in the selection and implementation of protocols. It is

Chapter 3. System Design Options 16

desirable for a practical reason in that leading-edge processor technology is usually not

used for a peripheral device, such as a network adapter, and this approach could pro­

vide a method of providing the required processing power using more common processor

technology.

3.2 Parallel Processing Options

A parallel processing approach was chosen for our system due to its potential for process­

ing increase with scale. A general multiprocessing approach provides more flexibility than

hardware implementation and it offers processing improvement over uniprocessor imple­

mentations. There are a number of ways in which the OSI processing can be processed

in parallel. The alternatives for the unit of parallelism are:

• protocol layer.

• elements within a protocol layer.

• connection.

• protocol data unit.

The advantages and disadvantages of using each of the above as the unit of parallelism

is discussed in the following sections.

3.2.1 Processor Per Protocol Layer

In this approach, one processor is assigned for each layer. This approach has the advan­

tage of providing clean interfaces between layers. Since the processing for each layer is

handled by a single processor, there are no problems with implementing the protocols.

One disadvantage of this method is that the inter-layer interface must be done through

Chapter 3. System Design Options 17

interprocessor communication which is usually much slower than communication within a

processor. Another disadvantage is that packets must either be shared between processors

or else they must be copied between processors as the packets are passed between layers.

There is also a limitation on the parallelism to the number of layers being implemented.

3.2.2 Processor Per Protocol Function

In this approach, the different processing functions within a protocol are assigned to

different processors. This method has the advantage of speeding up the processing of each

packet. In [33], a method of processing different functions on the send and receive sides

for a protocol in parallel was studied, yielding some promising results for conventional

speed networks. The main disadvantage of this approach is that there is a significant

amount of coordination required in processing different aspects of a protocol. There

would also be contention for header information access between processors performing

different functions. The amount of parallelism available is also limited to the number

of functions within a protocol in general and those function which can be performed

in parallel in particular. For example, the header decoding and the connection state

information retrieval must be done before any actual protocol processing can take place.

This approach would be more suited for implementation using custom integrated circuits

since the implementation of the coordination and the actual functions required can be

done more efficiently on a custom design than for a general architecture.

3.2.3 Processor Per Connection

In this approach, the processing required for a data connection is assigned to a proces­

sor. Each processor would be responsible for processing the packets for a number of

connections. One advantage of this approach is that the processing of packets for differ­

ent connection can be carried out independently so that a design based on this approach

Chapter 3. System Design Options 18

should scale well. Another advantage is that the inter-layer interaction takes place within

a processor. The disadvantage of this approach is that at most one processor works on

the processing of packets for a connection. As such, the processing improvement obtained

by this system depends on the number of connections receiving and sending packets.

3.2.4 Processor Per Protocol Data Unit

In this approach, a PDU is assigned to a processor which performs the processing for

all layers concerned. An advantage of this approach is that the processing of PDUs can

be carried out independently of each other except for the the need to access the state

information for some of the layers. Another advantage is that the inter-layer interaction

takes place within a processor. The main disadvantage of this approach is the need to

share state information between processors. Some coordination between processors is

also required to assure that the ordered processing of packets for the higher layers is

preserved. In [18], this approach was studied for the transport layer and the results

indicate that this approach may be suitable for high-speed networks.

This approach was chosen for our system because processing can be carried out more

independently than the more fine-grain approach of processing different functions of a

protocol in parallel, and this approach offers better possibility of processing improve­

ment on a per connection basis than the approach of assigning processors to different

connections.

3.3 Architecture Options

A general multiprocessing approach with the processing of different packets in parallel

was chosen for our system due to its potential for processing increase and its flexibility in

the selection and implementation of protocols. The inter-connection method and memory

Chapter 3. System Design Options 19

organization for our system will be considered in this section.

In order to select the inter-connection method and memory organization for our sys­

tem, the information which must be stored in the system and the information transferred

in and out of the system, and within the system were considered. The three main types

of information which must be considered are:

• connection state information.

• protocol data units.

• synchronization information.

Each of these will be considered in turn in terms of storage and transfer. In the design de­

cisions, the more basic approaches were favoured based on the belief that a more complex

approaches should be attempted only if a basic approach is found to be inadequate.

All processors must be able to access the connection state information for the trans­

port, session and presentation layers since all processors are responsible for the processing

for a packet for all layers concerned. A locking mechanism is required to ensure that the

state information is accessed and updated by only one processor at a time. One way in

which state information can be maintained is to have a processor act as a server con­

trolling accesses to the state information. Processors needing to access state information

would send a message to the server to obtain exclusive access and to obtain any required

information. The server would reply to the processor indicating exclusive access has been

obtained or with the requested information. The advantage of this approach is that a

processor needing to lock state information does not continually have to keep checking

the status of the lock until it is unlocked. The disadvantage of this method is that the

server could become the bottleneck in accessing the state information. Another way in

which state information can be maintained is to have the state information stored in

Chapter 3. System Design Options 20

shared memory and to provide a mechanism of checking and setting a lock in a single

step. The second method was selected because this method is simpler to implement than

the first and the number of accesses to check lock state can be controlled by an appro­

priate choice of lock checking interval. The state information for all layers will be kept

in a single shared memory connected to the processors by a single bus. There are other

methods available which provide for more independent access but they are much more

complicated to implement and should be used only if access to state is identified as a

bottleneck in our system.

The packets must be stored in our system while being processed and they must be

transferred in and out of the system from the network and host. In order to transfer

packets in and out of our system, a high-speed burst access type bus will be used. The

one major decision which must be made is whether to store the packets in shared memory

or local memory of the processor processing the packet. The main advantage of keeping

packets in local memory is that there is no contention for accessing packets while they

are being processed. From a processing standpoint, this is the better method since the

processing of a packet is independent from the processing of other packets except for

the access to the state information. One disadvantage of this method is that copying of

packets between processors would be required on the reassembly of segmented packets.

Another disadvantage is that the processor which is assigned a packet must process it,

unless copying is done, and this may result in some processors being idle while other

processors have many jobs. One advantage of keeping packets in shared memory is

that copying of packets is not required on reassembly of segmented packets. Another

advantage is that any processor can process any packet. This is advantageous in that

there can be a central job queue from which processors can obtain packets for processing.

The disadvantage of this approach is that packet accesses become shared memory accesses

even though packets do not need to be shared while being processed. Since there are

Chapter 3. System Design Options 21

significant advantages and disadvantages to each of these alternatives, both approaches

will be studied.

Some synchronization between processors is necessary to ensure that packets are

processed in sequence at the transport layer and above. The synchronization can be done

using a message passing approach or through shared memory. The latter was selected

since the bus used for the accessing state information is available for this purpose.

3.4 Design Selection

The processing method and the basic system design were selected as described in this

chapter. Although many factors were considered, the design selection was done fairly

arbitrarily. There are significant advantages to all of the approaches considered in this

chapter and this design was selected since it has some significant advantages and is worthy

of study. In the next chapter the architecture and the system operation are described in

detail.

Chapter 4

System Description

In this chapter the system architecture and system operation of the two designs under

consideration are described. The general design of the system is depicted in Figure 4.1.

The host interface is responsible for the coordinating packet transfers between the host

and the protocol engine processors. The network interface has the same function for the

network side. Packet transfers are done through the packet bus (PBUS), a high-speed,

burst access bus. The coordination of transfers are done through shared memory using the

share bus (SBUS). The first part of this chapter describes the host and network interface

components which are common to both designs. This is followed by the description of

the two protocol engine cores: the mixed memory design and the lumped shared memory

design.

4.1 Network Interface

The network interface provides the components necessary to interface the network adapter

to the protocol engine core. The network interface transfers packets received from the

network to the protocol engine and vice versa.

4.1.1 Network Interface Architecture

The network interface is composed of the processing unit, local memory, communication

memory, buffer memory, checksum unit and the network chipset. The design is depicted

in Figure 4.2.

22

Chapter 4. System Description

GENERAL SHARED BUS

HOST _̂
SYSTEM

HOST
INTERFACE

PROTOCOL
ENGINE
CORE

NETWORK
INTERFACE

NETWORK
ADAPTER

PACKET TRANSFER BUS

PROTOCOL ENGINE

Figure 4.1: General system architecture.

Chapter 4. System Description

NETWORK INTERFACE

SBUS AH 1

CM

LM

CSUM

- BM

DMA

FDDI
CHIPSET

NETWORK

PBUS

LEGEND
CPU - processing u n i t

LM - l o c a l memory

CM - communication
memory

BM - b u f f e r memory
DMA - d i r e c t memory

access c o n t r o l l e r
CSUM - checksum uni t

AH - a r b i t r a t i o n
hardware

Figure 4.2: Network interface architecture.

Chapter 4. System Description 25

This design is for fiber distributed data interface (FDDI) networks and is based on

the FDDI chipset manufactured by National Semiconductors [21]. The local memory is

for processor's code and data. The communication memory is shared memory used for

communication between the network interface and the processors in the protocol engine.

The buffer memory is used to temporarily buffer packets coming in from the network and

going out to the network. Part of the buffer memory is used to communicate between the

processor and the FDDI chipset. The checksum unit is used to calculate the transport

layer checksum during the packet transfer from the protocol engine core to the network

interface. Descriptions of the communication memory, the buffer memory, the checksum

unit, and the FDDI chipset follow.

Communication Memory

The communication memory is the memory shared between the network interface and

the processors in the protocol engine used for communication purposes. It is composed

of random access memory connected to the SBUS and the network interface local bus

through external, two-way arbitration hardware. The arbitration should give priority to

external processor accesses as these accesses occupy the SBUS, a shared resource. The

interfacing of the communication memory is depicted in Figure 4.3.

Buffer Memory

The buffer memory is used to temporarily buffer packets when transferring packets be­

tween the protocol engine and the network and vice versa. A part of the buffer memory

is used as shared memory between the processor and the FDDI chipset to facilitate com­

munication between the two. Packet buffering is required for two reasons. The first

reason is to provide latency time to set up the data transfer between the network inter­

face and protocol engine. The second reason is to adjust for differences in data transfer

Chapter 4. System Description

TO
SBUS

SBUS
MASTER
INTERFACE

PROCESSOR BUS

SBUS
SLAVE

INTERFACE
CONTROL
LOGIC

SWITCH

CONTROL
LOGIC

COMMUNICATION
MEMORY

SWITCH

FDDI
CHIPSET

RANDOM A C C E S S

PORT

BUFFER
MEMORY

S E Q U E N T I A L

A C C E S S PORT

TO PBUS

Figure 4.3: Communication and buffer memory interface.

Chapter 4. System Description 27

rates between the network and the PBUS since the PBUS is capable of transferring data

at a faster rate that the data rate of the network. The buffer memory is composed of

dual-ported video type memory which has a sequential access port and a random access

port. In this type of memory, a shift register built into the memory chip supplies the

serial access capability. Any row of the random access portion of the memory can be

transferred to/from the shift register. The only access conflict between the ports occurs

when a row of memory must be transferred to/from the shift register. The serial access

port is attached to the PBUS to facilitate the transfer of packets between the network

interface and the protocol engine core. The random access port is attached to the local

bus and the FDDI chipset using two-way arbitration hardware. This is depicted in Figure

4.3.

Checksum Unit

The checksum unit calculates the transport checksum for a packet as it is received from

the external processors. It accesses the packet data through the local extension of the

PBUS and receives control information from the local processor. A specific configuration

of adders, or possibly other hardware for different types of error detection codes, is

required for the particular transport protocol supported. The checksum is calculated

in hardware despite the loss of flexibility for two reasons. The first reason is that the

checksum can be calculated while packets are being transferred on the PBUS. The other

reason is that checksum calculation can require a number of instruction per byte of

data. For example, the checksum recommended for OSI transport protocol class 4 (TP4),

requires two sums to be calculated per byte of data. Considering that at FDDI rate (100

megabits per second), one instruction per byte requires 12.5 million instructions per

second (MIPS) to perform in real time, some loss of flexibility as a result of a hardware

implementation is justified. The OSI checksum unit can be implemented very simply as

Chapter 4. System Description 28

illustrated in Appendix A. The checksum unit can be made into a module so that the

module required for a specific protocol can be inserted.

F D D I Chipset

The FDDI chipset by National Semiconductor provides the FDDI media access control

(MAC) function. The FDDI BMAC System Interface chip provides the FDDI chipset

the ability to interface to system receiving or sending the data [22]. The system interface

chip communicates with the user system through specific data structures using shared

memory. To send data, the user system specifies the locations of parts of the packet

to be sent in the data structure expected by the system interface chip. The system

interface chip has the ability to gather these parts before the actual transmission of the

data. To receive data, the user system specifies the locations of free areas of memory to

the system interface chip in the data structure it expects. Upon receiving a packet, the

system interface chip scatters the packet data to fit the free areas of memory as specified

by the user. It then informs the user system of the locations in which the data are stored

through a specific data structure. In our case, the buffer memory provides the memory

for the packets as well as the memory for the queues storing the data structures holding

transfer information.

4.1.2 Network Interface Operation

The network interface processor coordinates the transfer of packets and control informa­

tion from the network to the protocol engine core and vice versa. It also provides the

station management function required for FDDI operation. The FDDI chipset residing

within the network interface provides the FDDI media access control (MAC) layer.

The transfer of packets and control information from the protocol engine to the net­

work takes place as follows. A processor in the protocol engine informs the network

Chapter 4. System Description 29

interface that a packet is to be sent out to the network by placing information about

the packet including its location, into a queue located in the communication memory

of the network interface through the SBUS. If checksum is to be calculated during the

transfer, the bytes to be summed and where to place the checksum are also specified.

The network interface processor sets up the transfer by appropriately programming the

direct memory access (DMA) controller to transfer the packet over the PBUS from the

protocol engine to the network interface. If checksum is to be calculated, the checksum

unit is activated while the bytes concerned are transferred, and once done, the checksum

bytes are written into the specified location in the packet by the processor through the

random access port of the buffer memory. The processor then informs the FDDI chipset

about the packet through a portion of the buffer memory reserved for this purpose using

the data structure required by the FDDI system interface chip. The FDDI chipset then

carries out the task of sending the packet over the network.

The transfer of packets and control information from the network to the protocol en­

gine takes place as follows. The processor keeps the FDDI system interface chip informed

about the location of free areas of buffer memory by specifying this information in the

required data structure in the area of buffer memory reserved for this purpose. Upon

reception of a packet from the network, the FDDI chipset places the packet in the free

memory and informs the processor about its location. The processor, who jointly man­

ages the packet storage area in the protocol engine with the protocol engine processors,

allocates sufficient memory for the packet in the protocol engine. The processor then

sets up the DMA controller with the information required to transfer the packet to the

protocol engine. The processor informs the protocol engine about the packet by adding

information about the packet including its location in the protocol engine's job queue

located in a part of the protocol engine's memory shared with the network interface. It

Chapter 4. System Description 30

would be possible to calculate the checksum of packets during the transfer in this direc­

tion as well but two factors affect the usability of the checksum result. The first factor

is the lack of knowledge of where exactly the transport protocol data unit (TPDU) is

located within the packet, which is in fact the datalink protocol data unit. This means

that some of the checksumming must be undone for the parts of the packet which is not

part of the TPDU. The amount of processing required by the processor in the protocol

engine assigned to process the packet to undo the checksumming for the unnecessary

parts is high for OSI TP4 checksum because for the second checksum byte, the calcula­

tion of the sum is weighted inversely with the position of the byte in the. packet. The

second factor is that if the original TPDU was segmented at the network level during

transit, the checksums calculated for each segment would have to combined. This would

be difficult for OSI TP4 checksum due to the weighting of the checksumming inversely

with position.

The network interface processor provides the FDDI station management function.

The station management function include the administration of addressing, allocation of

network bandwidth and network control and configuration. If some of the management

information is generated by the host system, this information can be passed from the

host to the network interface through the protocol engine.

4.2 Host Interface

The host interface provides the components necessary to interface the the protocol engine

core to the host system. The host interface transfers packets from the host to the protocol

engine and vice versa.

Chapter 4. System Description 31

HOSTINTERFACE

SBUS

PBUS
LEGEND

HOST

CPU

LM

CM

BM

DMA

AH

- processing u n i t

- l o c a l memory

- communication
memory

- b u f f e r memory

- d i r e c t memory
access c o n t r o l l e r

- a r b i t r a t i o n
hardware

Figure 4.4: Host interface architecture.

4.2.1 Host Interface Architecture

The host interface is composed of the processing unit, the local memory, the communi­

cation memory and the buffer memory. The design is depicted in Figure 4.4. The local

memory is used for the processor's code and data. The communication memory is used

to coordinate transfers between the host and the host interface. The buffer memory is

used to buffer packets at the host interface during transfers between the host and the

protocol engine.

Communication Memory

The communication memory is memory shared between the host interface and the proces­

sors of the protocol engine used for communication purposes. It is composed of random

Chapter 4. System Description 32

access memory connected to the SBUS and the host interface local bus through external,

two-way arbitration hardware. The arbitration should give priority to external processor

accesses as these accesses occupy the SBUS, a shared resource.

Buffer Memory

The buffer memory is used to temporarily buffer packets when transferring packets be­

tween the protocol engine and the host and vice versa. A part of the buffer memory is

used as shared memory between the processor and the host facilitate communication be­

tween the two. The main reason for buffering the packets is to adjust for any differences

in the data transfer rates between the PBUS and the host. The PBUS transfers data

faster than the host since the host transfers data using its direct memory access channel

during periods when the processor is not using its bus. The buffer memory is composed

of dual-ported video type memory which has a sequential access port and a random ac­

cess port. The serial access port is attached to the PBUS to facilitate the transfer of

packets between the network interface and the protocol engine core. The random access

port is attached to the host interface processor and the host using two-way arbitration

hardware.

4.2.2 Host Interface Operation

The host interface processor coordinates the transfer of packets and control information

from the host to the protocol engine core and vice versa.

The transfer of packets and control information from the protocol engine to the host

takes place as follows. A processor in the protocol engine informs the host interface

that a packet is ready to be picked up by the host by placing information about the

packet including its location, into a queue located in the communication memory of the

host interface through the SBUS. The host interface processor sets up the transfer by

Chapter 4. System Description 33

appropriately programming the direct memory access (DMA) controller to transfer the

packet over the PBUS from the protocol engine to the host interface. The processor then

informs the host about the packet by placing information about the packet including its

location and the service primitive with which the packet is associated in the portion of

buffer memory reserved for this purpose. The host interface then indicates to the host

that a packet is ready for transfer through one of the host's interrupt channels. The host

then transfers the packet using one of its DMA channels. The host interface does not

necessarily have to transfer the entire packet to the buffer memory. It just has to transfer

sufficient data to the buffer memory to stay ahead of the host.

The transfer of packets and control information from the host to the protocol engine

takes place as follows. The host specifies the the service primitive associated with packet

in the portion of the host interface's buffer memory reserved for this purpose. The host

then transfers the packet to the host interface buffer memory using one of its DMA

channels. The buffer memory is organized as a buffer ring and it is the responsibility

of the host interface to transfer packets to the protocol engine before the ring gets full.

The host interface transfers the packet to the protocol engine through the PBUS by

programming its DMA controller. The host interface manages the packet buffer along

with the processors in the protocol engine. Once the packet is transferred, the host

interface processor informs the protocol engine about the packet by placing information

about the packet including its location and the service primitive associated with the

packet in the protocol engine job queue located in the protocol engine.

4.3 Protocol Engine Core Design 1: Mixed Memory Design

The protocol engine core carries out the protocol processing for OSI layers 2 through

6. A packet received from the network interface or host interface are assigned to one of

Chapter 4. System Description 34

the processors in the protocol engine core. The processor then performs the processing

required for the packet for the layers concerned as far possible. When the processing

for a packet is completed, it is passed on to the network interface or host interface as

appropriate.

The first design is a mixed memory design in that the state information is stored in

memory shared by all processors while the packets are stored in memory local to the

processor responsible for a packet. The program code and data for each processors are

also stored locally. Some aspects of the system architecture and the operation are similar

to the system in [18]. Descriptions of the architecture and system operation of this design

follows.

4.3.1 Mixed Memory Architecture

In the mixed memory design each processing node is connected to all other processors

and the host and network interfaces through the SBUS and the PBUS. Shared memory

is accessed by all processing nodes through the SBUS. Each processing node has its own

local memory for its program code and data and its own buffer memory for storing data

packets. Each processing node also has communication memory, which can be accessed

by external processors through the SBUS, for communicating with other processors and

the host and network interfaces. A checksum unit to calculate the transport protocol

checksum is also located within each processing node. This design is depicted in Figure

4.5. A more detailed description of the communication memory, buffer memory, checksum

unit, shared bus and packet bus follows.

Communication Memory

The communication memory is shared memory used for communication between the local

processor and external processors including the network and host interface processors.

Chapter 4. System Description

HOST SYSTEM

GLOBAL
SHARED
MEMORY

CO
g CO

CO

g

CO

HOST INTERFACE

PROCESSING NODE

PROCESSING NODE

NETWORK INTERFACE

CO

g
CO
g

CM

PROTOCOL ENGINE'
NETWORK ADAPTER

SUBS

PBUS

PROCESSING NODE

LEGEND
CPU - processing u n i t

LM - l o c a l memory

CM - communication
memory

BM - b u f f e r memory

DMA - d i r e c t memory
access c o n t r o l l e r

AH - a r b i t r a t i o n
hardware

CSUM - checksum device

Figure 4.5: Mixed memory architecture.

Chapter 4. System Description 36

TO
SBUS

SBUS
MASTER
INTERFACE

PROCESSOR BUS

SBUS
SLAVE

INTERFACE
CONTROL
LOGIC

SWITCH

COMMUNICATION
MEMORY

CONTROL
LOGIC

SWITCH

RANDOM A C C E S S

PORT

BUFFER
MEMORY

1 S E Q U E N T I A L

A C C E S S PORT

*"TO PBUS

Figure 4.6: Communication memory and buffer memory interfacing.

The memory used is random access memory with the arbitration between local processor

access and external SBUS accesses being done using external hardware. The arbitration

should give priority to external SBUS accesses since a shared resource is being used. How

the communication memory is connected to the local processor and the SBUS is depicted

in Figure 4.6.

Buffer Memory

The buffer memory is used to store packets while being processed. It is composed of

dual-ported video type memory which has a sequential access port and a random access

port. In this type of memory, a shift register built into the memory chip supplies the

serial access capability. Any row of the random access portion of the memory can be

Chapter 4. System Description 37

transferred to/from the shift register. The only access conflict between the ports occurs

when a row of memory must be transferred to/from the shift register. The serial access

port is attached to the PBUS to facilitate the transfer of packets between the network

and host interfaces and the protocol engine core. The random access port is accessed

by both the local processor and external processors. The arbitration between the two is

done externally. This is depicted in Figure 4.6.

Checksum Unit

The checksum unit is exactly like the checksum unit in the network interface. There is a

slight difference in operation as this device is used for calculating the transport protocol

checksum locally for packets received from the network. The buffer memory's ability to

cycle sequential data quickly is utilized in the calculation the checksum. To perform the

calculation, the local processor programs the direct memory access (DMA) controller to

cycle the required bytes through the sequential access port of the buffer memory and

activates the checksum device.

Shared Bus (SBUS)

The shared bus is used by the processing nodes and the host and network interfaces to

communicate with each other. It is also used by the processing nodes to access the global

shared memory.

The shared bus is a general multiple master bus. The bus design is dependent to a

large degree on the processor chosen. One of the standard busses should be adequate.

The choice of a standard bus over a proprietary design has the advantage that bus devices

for standard busses are usually commercially available. There is also the possibility of

implementing only a subset of the functions of a standard bus as long as requirements

are satisfied.

Chapter 4. System Description 38

It should be noted that any device connected to the SBUS bus needs to have the

bus interface unit for the bus selected. A master type bus interface is required for active

devices which take control of the bus. A slave type bus interface is required for passive

devices such as memory devices. In our design, the processing nodes and the host and

network interfaces require both master and slave type interfaces. The global shared

memory only needs slave type bus interface.

Packet Bus(PBUS)

The packet bus is used for packet transfers between the network and host interfaces and

the processing nodes. It is also used to transfer packets between processing nodes. The

PBUS is a burst access bus in that the owner of the bus can hold on to the bus for more

than one access cycle. Allowing this leads to greater transfer rates.

The packet buffer memories of the network and host interfaces and the processing

nodes are composed of dual port memory with one random access port and one sequential

access port. By allowing the owner of the bus to hold on to the bus long enough to transfer

a complete row of memory, the coordination of transfers is simplified because partially

cycled shift-registers, which drive the sequential ports, do not have to be maintained.

The standard multiple master busses usually have burst access modes. For the PBUS,

only this mode needs to be implemented. As with the SBUS, all devices connected to

the bus needs to have appropriate interfaces. In our design, the processing nodes and

the network and the host and network interfaces require both master and slave type

interfaces.

4.3.2 System Operation

The general processing method of the system is as follows. The network interface or

host interface receives a packet for processing from the network or host. The packet is

Chapter 4. System Description 39
copied to one of the processors through the PBUS. The processor performs the protocol

processing for OSI layers 2 through 6. Once done, the processor informs the host or

network interface to pass the packet onto the host or network. The system-oriented issues

of locking shared data, inter-layer interfacing, memory management, job management and

timer management are first discussed. The method for referencing packet data, shared

by all layers, is then discussed. This is followed by a description of how the processing is

carried out at each of the layers.

Data Locking

The are many shared data structures in the system, including the connection state infor­

mation, which must be accessed by only one processor at a time. In order to assure this,

a method of locking a data structure is required. In our system this is done through locks

which indicate the access status of the data structure. An entity wanting to access the

data structure must check the lock status and if it is allowed to access the data structure

it changes the lock to the new status. This checking and changing of the lock status must

be done indivisibly. This is done using an instruction provided by many processors which

allows a value to be read and written without being interrupted. Any entity trying to ac­

cess a data structure will have to keep checking the status if the data structure is locked.

The interval between checking must be set carefully to avoid ineffective contention for

the resource in which the lock is kept.

Inter-layer Interfacing

In our system, the inter-layer interface takes the form of procedure calls. The only cost

incurred in going from layer to layer is the cost of a procedure call. The parameters to the

procedure call include the location of the packet, the service primitive being used, and

the service access point through which the packet is being passed. Some care must be

Chapter 4. System Description 40

taken in the implementation of the layers in order to assure proper operation. One of the

precautions is that any processing requiring manipulation of the state information must

be completed before a call to another layer is made. The layer procedures themselves

must be reentrant, ie the procedures themselves must not have states. The problems

associated with this approach and methods to assure proper operation can be found in

[8].

Memory Management

There are four types of memory for which management must be considered. These

are the local, communication, shared and buffer memory. For the local memory and

communication memory, which contains the job queue, the method of allocating exactly

fitting blocks from a list of linked free blocks can be used. The shared memory contains

the connection state information for the layers. As such, there are only a few sizes of

blocks which have to be allocated. A method of dividing up the memory into regions in

which fixed sized blocks are allocated can be used to reduce memory fragmentation and

time required to find a free block. The buffer memory, which is used to store packets, will

be organized into fixed sized blocks since the serial access port of the dual-port memory

does not provide much flexibility in accessing the memory. The block size should be at

least as large as the size of the row, which is the size of the shift register which drives

the sequential access port of the memory. Memory blocks are chained together to meet

allocation requests which are larger than a block size.

Job Management

One issue related to job management is how the jobs, ie packets, are allocated by the host

and network interfaces. In our system, a round-robin method is used for allocating the

jobs. The simplicity of this approach comes at the cost of possibly having some processors

Chapter 4. System Description 41

idle while others have more than one job. A more processing intensive, approach of

checking the number of jobs at each processor and allocating it to the processor with the

least number of jobs could be used as an alternative.

Each processor has an active job queue and a suspended job queue. The processing

of a packet may have to be suspended to assure sequencing and for other reasons. These

queues are located in the communication memory of the processing node. The reason

that they are not kept in local memory is that an external processor may be required to

reactivate a suspended job. This is required when a processing of a packet is resumed

when its turn in the sequenced processing arrives. The information kept in the job queue

entry consists of the status of the job, the service primitive with which the job was

associated, the current layer of the processing and the location of the packet.

Timer Management

Many timers must be maintained for each connection especially for the transport layer.

There can be a substantial processing cost as pointed out in [18]. The processing cost is

incurred mainly in either the setting of the timers or the maintaining (counting down)

of the timers depending on the method used. The method of keeping timers in a ordered

list of time remaining before expiry will be used so that the cost of maintaining the timer

can be kept low. This method has the disadvantage of requiring some processing to insert

the timer in the ordered list when setting the timer. The costs of different methods of

implementing timers is discussed in [30].

In our system, the timers are maintained by one of the processors in its local memory.

Other processors must send requests to perform timer functions using the communication

memory of the timer processor. The timer processor notifies processor which set the

timer through that timer's communication memory. The timer processor also generates

an interrupt on that processor.

Chapter 4. System Description 42

Packet Referencing

The data packets are accessed by all layers by reference (use of pointers) to avoid having

to copy packets between layers which is generally acknowledged to be poor protocol

processing practice as mentioned in [27]. A pointer structure for indicating the locations

of the header and data portions of packets for the layers is required. Since buffer memory

is allocated in blocks and will not necessarily be contiguous, the protocols have to be

implemented with consideration of the way in which blocks are chained. Another concern

is the deallocation of the memory blocks which are accessed by more than one layer. A

technique known as reference counting in which the number of references to a block is

maintained can be used. In this method, the reference count is incremented when a block

is referenced and the count is decremented when reference is no longer required. When

the reference reaches 0, the block is deallocated.

Details of the Protocol Processing

The way in which some aspects of the protocol processing for layers 2 through 6 are

handled are described.

Data Link Layer The processing required is for the logical link control (LLC) sublayer

of the data link layer only since the FDDI chipset provides the media access control

sublayer. The connectionless version of LLC is almost a null layer in that its main function

is to provide a uniform interface to the network layer independent of the underlying

network. As a result, very little processing is required layer and no shared memory

access is required.

Network Layer Network layer provides the routing function required for data transfer

between end systems. For a connectionless network protocol, there is no connection state

Chapter 4. System Description 43

information but some shared information may be required. A routing table may be

required if the network forms part of a larger network. A list of fragments received

for a packet segmented during transit must also be shared. A timer has to be used

to detect a lost fragment. If the fragments must be discarded because all fragments

weren't received in time, the processor which received the timeout notice is responsible for

informing all processors holding fragments through the communication memory job queue

that their fragment(s) should be discarded. Only the processor receiving the fragment

which completes the network level packet continues processing. If this processor does

not have the header portion, it will copy the header only from the processor holding the

header using the PBUS. The physical reassembly of fragments is not done at this layer to

avoid the possibility of having to copy parts of a packet more than once because further

reassembly may be required at a higher layer.

Transport Layer The transport layer is responsible for providing reliable communi­

cation channels for the higher layers. Error control and flow control are provided by

this layer. Connection-oriented protocols are used for the transport layer and above. A

description of how the processing proceeds on the sending side and receiving side follows.

On the receiving side, the transport protocol provides error detection, reassembly of

segmented packets, proper sequencing of misordered packets and acknowledgement gener­

ation. One form of error detection is the detection of packets corrupted during transport.

A processor calculates the checksum for a received packet by activating the checksum

unit and programming the direct memory access controller to cycle packet data from the

sequential access port of the buffer memory. In order to detect missing or misordered

data, a list of the packets received for a connection is maintained. Information on the

each packet including the location, service primitive, pointer to a job queue element asso­

ciated with the packet, and the status of the processing are stored in the list. The packet

Chapter 4. System Description 44

with expected sequence number is allowed to continue processing while the processing

of other packets are suspended. The processing of a packet is also suspended if it is a

segment and all segments have not been received. When the processing for a packet is

completed, the list is checked to see if the next packet is waiting to be processed. If so,

that job is moved from the suspended queue to the active queue. When all segments of

a TSDU are received, the processor receiving the completing segment continues process­

ing the TSDU. If this processor does not have the segment containing the header, the

header is copied using the PBUS. The logical reassembly of the segments are performed

but the physical reassembly (copying to the buffer memory of a single processor) takes

place at the session layer because segmentation may also be supported by the session

layer. The acknowledgement and flow control information is also generated using this

list. The processor receiving an acknowledgement is responsible for reactivating all sus­

pended transmission jobs which can proceed due to a change in the sending window. It

must also inform the processors holding packets for retransmission when those packets

have been acknowledged so that the memory for the packets can be deallocated.

In order to assure proper sequence of processing at the session layer and presentation

layer, an internal sequence number is assigned to all packets passed up to the session layer.

This internal sequence number is checked against the next expected sequence number at

the session layer, and later at the presentation layer, to assure that the packets are

being processed in proper sequence. The use of this sequence number is required since a

procedure call type inter-layer interface is used rather than having queues between layers.

On the sending side, the transport protocol is responsible for transmissions of pack­

ets as well as retransmissions of packets as required. A processor is responsible for all

processing for a TSDU passed down from the session layer including segmentation and

the processing of all segments for the lower layers. If a retransmission timer expires, the

processor which set the timer is responsible for setting up the retransmission. This may

Chapter 4. System Description 45

require the processor to inform another processor that retransmission of some of that

processor's packets is required as well. This can be done using the job queue located in

the communication memory of each processor.

To assure proper sequencing for the sending side, an internal sequence numbers are

assigned to packets at the presentation layer so that the session layer and later the

transport layer can check that the packet received is the expected one.

Session Layer The session layer, layer 5, provides services to control the dialogue

between applications. The processing for a packet consists of header encoding/decoding,

connection information retrieval, and the processing according to the type of packet, the

state of the connection, and the functional units of the protocol in use. The processing

is done in order of the internal sequence number for both the upstream and downstream

packets. There are lists of packets received from the presentation and transport layers so

that the processing for out-of-sequence packets which are suspended can be reactivated.

The physical reassembly, copying between processors, of segmented packets are done at

this layer.

Presentation Layer The presentation layer, provides services related to the represen­

tation of the data being transferred including conversion, encryption and compression.

The processing for a packet consists of header encoding/decoding, connection information

retrieval, the processing according to the type of packet and the state of the connection,

and the transfer syntax encoding/decoding of the data. The amount of processing re­

quired for the transfer syntax encoding/decoding depends on the complexity of the data

which is being encoded/decoded. The dominant abstract syntax is abstract notation one

(ASN.l) and the dominant transfer syntax is the basic encoding rules (BER) for ASN.l.

All packets which are received from the application layer are given an internal sequence

Chapter 4. System Description 46

number which is used to assure ordered processing at the session layer and later at the

transport layer. A list of packets received from the host and the session layer maintained

so that the processing for out-of-sequence packets which are suspended can be reactivated.

4.4 Protocol Engine Core Design 2: Shared Memory Design

In the share memory design, all information is stored in globally shared memory. This

includes the state information, packets, and processor code and data. Each processor has

a cache for both instruction and data. The main reason this design is being considered

for study is that this design can be derived from commercially available lumped shared

memory systems with very little modification. The architecture of this design and the

system operation is described in the following sections.

4.4.1 Shared Memory Architecture

In the shared memory design, all processors are connected to the global shared memory

and the shared buffer memory through the shared bus (SBUS). Each processor has its

own instruction and data cache. The shared buffer memory is also attached to the packet

bus (PBUS) which is used for high-speed packet transfers. A checksum unit to calculate

the transport protocol checksum is also connected to the PBUS. This design is depicted

in Figure 4.7.

The caching scheme and the shared bus design depend on the processor selection

and the cache and memory management devices available for the processor chosen. A

write-invalidate type cache writing scheme would be more suited to the type of accesses

in our system rather than a write-through scheme. In a write-through scheme all writes

are written through to the memory. In write-invalidate, a write to a cache invalidates

cache copies held by other processors. When a processor must read an invalidated entry,

Chapter 4. System Description

HOST
SYSTEM

PROTOCOL ENGINE

CPU
I-CACHE

D-CACHE

CPU
I-CACHE

D-CACHE

SHARED
MEMORY

HOST
INTERFACE

CHECKSUM
UNIT

NETWORK
INTERFACE

LEGEND
CPU - processing u n i t
I-CACHE - i n s t r u c t i o n cache
D-CACHE - data cache

to

i

Ol

NETWORK
ADPATER

Figure 4.7: Shared memory architecture.

Chapter 4. System Description 48

the valid copy is supplied by the cache controller of the processor which has performed

the last write. When a processor must write to an invalidated entry, that processor

invalidates all other copies. This method would work well with our system since packets

and state information are accessed only by one processor at a time resulting in few

invalidations. This scheme requires that the cache controllers be able to monitor activities

on the bus to be able to invalidate old cache entries. A study of the performance of

different multiprocessor cache coherency protocols can be found in [13]. Multiple word

caches would be more suitable than single word caches since the transfer of multiple

words at a time improves the efficiency as bus arbitration has to be done less frequently.

Having multiple word caches also allows for faster memory accesses since memory can be

interleaved, ie consecutive words can be put on different memory banks, which effectively

reduces the cycle time of the memory.

The shared buffer memory is composed of dual-ported memory with one random

access port and one sequential access port. The random access port is connected to the

SBUS while the sequential access port is connected to the PBUS.

The PBUS is used for packet transfers between the network and host interfaces and

the processing nodes. The PBUS is a burst access type bus which allows for greater

transfer rates because arbitration occurs less frequently. The standard multiple master

busses usually have burst access modes. For the PBUS, only this mode needs to be

implemented. All devices connected to the bus needs to have either the slave bus interface

or the master bus interface depending on whether the device being connected is passive

or active. In our design, the host and network interfaces require both master and slave

type interfaces while the shared buffer memory only requires a slave interface.

The checksum unit is similar to the checksum unit used by the network interface. The

only difference is that this checksum unit will require a direct memory access controller

to be incorporated into it so that it can fetch the bytes to sum from the shared buffer

Chapter 4. System Description 49

memory through the PBUS.

4.4.2 System Operation

The operation for this design is mostly the same as for the operation of the first design.

One of the main advantages of this design is that copying between processors is not

required on reassembly of segmented packets. The main differences with system operation

are how job allocation is done and how certain events requiring coordination between

processors in the first design, can be done by a single processor.

The job allocation, which was done on a round-robin basis in the first design, is done

by using a shared job queue. All jobs received from the network and host interfaces

are placed in the shared job queue. When a processor becomes free, it obtains the next

job from the shared job queue. This method has the advantage that as long as there

are jobs available, no processors would be idle which can happen with the round-robin

scheme. This method has the disadvantage that the job queue itself becomes a point of

contention.

In the first design, the distribution of packets to local memories required that a

processor communicate with other processors to carry out certain tasks. For example, on

the notification of a retransmission timer expiration, a processor had to possibly notify

other processors that the retransmission of certain packets they held is required. These

types of events can now be handled by a single processors since it has access to all the

packets currently in the system.

Chapter 5

System Evaluation and Analysis

In this chapter, the performance of the two protocol engine designs are evaluated and

the results obtained are analyzed. The method by which the performance of the systems

were evaluated is first discussed. This is followed by the various performance figures

for the two designs under consideration. This is followed by an analysis of the results

obtained.

5.1 Method for Evaluating Performance

The best way to evaluate the performance of a system is to actually implement it and take

performance measurements. The implementation of a system such as those described

in the previous chapter is a major undertaking which could not be done within the

scope of a Masters thesis. The systems were evaluated through software simulation.

The simulation of a system requires simplifications to be made in modelling the system

which inevitably results in performance figures obtained to be approximate; however, this

method allows different system parameters to be varied more freely than when actually

implementing a system. Analysis was not used because there are two levels of operation

which must be considered at the same time: the hardware level and the software level.

Many simplifications would have had to be made to the system to have made the analysis

tractable.

In simulating these systems, there were two levels to simulate. The first level was the

physical level. The simulation of this level dealt with simulating the physical resources of

50

Chapter 5. System Evaluation and Analysis 51

the system including the processing unit, the memories and the busses. The second level

of simulation was the simulation of the protocol software component which utilizes the

resources. The simulations were carried out using the discrete event simulation language

SimScript II.5. The details of the simulation are discussed next.

5.1.1 Simulation of the Hardware Level

The simulation of the hardware level required the main physical elements of the system

to be modelled. Discrete-even simulation languages in general, and SimScript II.5 in

particular, allow different events which begin and end at discrete times to be simulated.

SimScript II.5 has the language construct process with which a thread of control can be

simulated. It also has a resource construct with which a shared entity can be modelled.

The processors, the busses and the memories, of the host and network interface and the

protocol engine core were implemented using the above constructs as follows.

Busses

The busses were simulated using the resource construct. This construct creates a queue

of entities waiting for the resource and grants the resource in the order in which the

requests were received. The cycle time of the memory being accessed through a bus was

used as the amount of simulation time before a bus is relinquished. Bus arbitration time

was simulated by adding the arbitration time into the amount of time for which a bus

was held. The arbitration time to be added was calculated as full arbitration time minus

the amount of time waiting for the bus. This models a bus arbitration scheme in which

the arbitration is done for the next owner while a bus is occupied.

Chapter 5. System Evaluation and Analysis 52

Memories

The memories were simulated using the resource construct. All setup times associated

with accessing memory including the address decoding time was lumped into the memory

cycle time parameter. The dual-ported memory used for the buffer memory was modelled

using two resources.

Processors

The processors for the network interface, host interface and the protocol engine were

modelled using the process construct which represents a thread of control. The direct

memory access controllers were also modelled as processes. The execution of an instruc­

tion is modelled by having the thread of control wait for the amount of simulation time

required to perform the instruction including the simulation time required to obtain bus

and memory resources and the amount of time it takes to access the memory.

Processors for Mixed Memory Design The execution of instructions for the proto­

col engine processors for design 1, and the network and host interface processors for both

designs were simulated as non-caching processors. The actual execution of an instruction

is simulated by the thread of control waiting while simulation time advances the amount

of the execution time parameter for the processor. The instruction execution time is thus

modelled by a flat number. While this is not the case for a real processor, since certain

instructions take quite a bit longer than others, doing this allows us to parameterize the

system in terms of the number of instructions. If memory access is required for data, the

thread of control is made to wait a further amount of simulation time for obtaining any

busses and accessing any memories used.

Chapter 5. System Evaluation and Analysis 53

Processors for Shared Memory Design The processor for design 2 protocol engine

are caching processors. The execution of instructions were simulated as follows. The

cache hit rates for accessing various types information including instruction, header,

packet, and state were made parameters. In executing an instruction, a random number

generator is used to determine if the current access is a hit or a miss based on the

instruction cache hit rate parameter. On a cache hit, the execution of an instruction

is simulated by the thread of control waiting for the instruction execution time of the

processor. On a cache miss, the shared bus resource is obtained and the amount of

time required to read a cache block is added to the execution time. If memory access is

required for data, a random number generator is used to determine whether the access

is a hit or a miss depending on the cache hit rate parameter for that type of data. On

a cache hit, the data access is simulated by having the thread of control wait for the

cache cycle time. On a cache miss, another decision is made using a random number

generator on whether the data must be loaded from shared memory or from another

cache controller. This decides whether the cache cycle time or shared memory cycle time

is used for the amount of time the thread of control is made to wait for data retrieval.

5.1.2 Simulation of the Software Level

The simulation of the software level consisted of simulating the running of the system

software on the hardware level. This consisted of programming the threads of control

representing the processors to access the resources and to execute instructions to simulate

the system operation. There were actually two components which the threads of control

had to simulate. The first of these was the simulation of the accessing of the resources

and the execution of the instructions which modelled the timing aspect. The second

component was the simulation of the operation of the system and the protocols. In

the simulations, only the processing of data, acknowledgement, connect request and

Chapter 5. System Evaluation and Analysis 54

disconnect request packets were considered.

Simulating the Timing Aspect

In order to simulate the timing aspect, the knowledge of the instruction execution counts

for the protocols being simulated was required. This information was obtained mainly by

obtaining sources for protocols and compiling them to assembler level and counting the

number of instructions, and the number of accesses to shared resources. The information

obtained, which was used in the simulations, is given in Table 5.1. The method in which

the figures were obtained is given in Appendix B.

Absent from Table 5.1 is the number of instructions it takes to perform the ASN.l

transfer syntax encoding/decoding. The number of instructions required depends on

the complexity or the number of levels of the data structure being encoded. In [20],

the amount of time required to encode data using their implementation of ASN.l en­

coder/decoder is shown to increase somewhat exponentially with the depth of the data

structure. The amount of time required for decoding is shown to be greater than for

encoding especially for more complex data. In [16], figures on how much time it takes

to encode and decode an array of integers is given. Estimating from the time figures

presented, the encoding and decoding of integers takes about 10 instructions per byte.

A fairly simple structure can take 20 instructions per byte to encode and 40 instructions

per byte to decode (see Appendix C).

Simulating the Operation Aspect

In simulating the operation aspects of OSI processing some simplifications were made.

The emphasis was placed on the data packet processing as opposed to control packet

processing. The main interest was in determining the processing throughput rather than

Chapter 5. System Evaluation and Analysis 55

Type Instructions PDU Accesses State Accesses
(No of Items) (No of Items)

Logical '. jink Control
Data Receive 45 6(6) 0(0)
Data Send 40 6(6) 0(0)

Network Layer
Data Receive 160 14(5) 22 (10)
Data Send 160 16 (6) 20 (10)

Transport Layer
Data Receive 375 62 (15) 65 (20)
Data Send 400 20 (12) 90 (23)
Ack 200 16(4) 65 (22)
Connect 250 20 (12) 60 (20)
Disconnect 250 20 (12) 60 (20)

Session Layer
Data Receive 450 60 (30) 40 (15)
Data Send 400 40 (30) 30 (12)
Connect 400 40 (30) 30 (10)
Disconnect 400 40 (30) 30 (10)

Presentation Layer
Data Receive 400 30 (20) 40 (15)
Data Send 350 30 (20) 30 (12)
Connect 350 30 (20) 30 (10)
Disconnect 350 30 (20) 30 (10)

Table 5.1: The instruction counts for protocols.

Chapter 5. System Evaluation and Analysis 56

the data throughput. As a result, those operational aspects affecting the data throughput

were not simulated to obtain the maximum processing throughput.

The simulations were done on one side only. Packet data, characterized mainly by

length and type of packet, were generated and fed to the network and host interfaces.

For the network and host interfaces, only their interaction with the protocol engine were

simulated.

For the protocol processing on the protocol engine core, only the processing of data,

acknowledgement, connect request and disconnect requests were considered. The con­

nection establishment and disconnect processing is simulated to the extent that memory

is allocated/deallocated for the connection block and the block is inserted/removed from

the list. The simulation of protocol elements and events which reduce the throughput

were not simulated. This includes both error and flow control. Errors were not simulated

and as a result, no retransmissions were simulated. Flow control was not simulated at any

of the layers. This is because the processing throughput is being measured rather than

the data throughput. Simulating error control and flow control would have introduced

protocol dependent elements which would reduce the overall data throughput which in

turn would affect our measurements of the processing throughput. Segmentation and

Reassembly was simulated at the transport layer only.

5.2 Performance Evaluation

The performance of the two designs under considerations were evaluated through simu­

lations as described in the previous section. The results obtained from the simulations

for the two designs are presented in this section. Roughly 500 hours of CPU time was

required to run the simulations for which the results are presented in this section.

Chapter 5. System Evaluation and Analysis 57

5.2.1 Evaluation of the Mixed Memory Design

In evaluating the performance of the mixed memory design, three different configurations

were considered. The main difference between the three were the speed of the processors:

5, 10 and 15 million instructions per second (MIPS). The speed of some of the memories

were set different for the three designs to accommodate the different processor speeds.

The MIPS figure given is for register data case. The actual number of instructions

per second is lower since memory data access is required for some of the instruction

executions. The exact configurations of the three cases are given in Appendix D.

The first set of test runs were done for packet transfers on only one connection. This

is the worst case since all processors must access the same state information. The test

were done with packets coming in from the network at half of the network bandwidth (50

megabits per second (MBPS)) and from the host at half of the network bandwidth (50

MBPS). The packet sizes at the presentation layer level were given a normal distribution

with mean 10,000 bytes and 5000 variance. The maximum network packet size was set

at 4096 bytes. In the simulations, 80% of the packets were data packets, 10% acknowl­

edgements, 5% connection packets, 5% disconnect packets. The number of instructions

for ASN.l processing was randomly chosen for each packet from 5-20 instructions per

byte for encoding and from 5-40 instructions per byte for decoding. This represents a

range of data complexity of something really simple, such as an array of integers, up to a

simple structure type (see Appendix C). The processing throughput for different number

of processors are given in Table 5.2.

The throughput figures given are the peak processing throughputs. The processor

contribution is the amount of throughput contributed by the processors divided by the

throughput of 1 processor. The processor effectiveness is the processor contribution

divided by the processor utilization. A graph of the processing throughput versus the

Chapter 5. System Evaluation and Analysis 58

Number of Throughput Processor SBUS Processor Processor
Processors (MBPS) Utilization Utilization Contribution Effectiveness

5] MIPS
1 1.662 0.999 0.142 1.000 1.000
2 2.786 0.934 0.215 0.838 0.897
5 5.257 0.708 0.260 0.633 0.894

10 8.367 0.633 0.311 0.503 0.795
20 12.007 0.595 0.409 0.361 0.607
30 16.327 0.565 0.506 0.327 0.579
40 15.123 0.528 0.596 0.227 0.431
50 12.176 0.507 0.657 0.147 0.289

10 MIPS
1 3.632 0.999 0.093 1.000 1.000
2 4.750 0.778 0.171 0.654 0.845
5 9.214 0.651 0.194 0.507 0.779

10 12.181 0.617 0.225 0.335 0.544
20 23.148 0.508 0.257 0.319 0.627
30 33.468 0.467 0.307 0.307 0.658
40 40.457 0.439 0.339 0.278 0.634
50 49.816 0.408 0.360 0.274 0.672

15 MIPS
1 5.397 0.999 0.078 1.000 1.000
2 7.137 0.766 0.109 0.661 0.863
5 13.413 0.664 0.156 0.497 0.749

10 24.978 0.638 0.195 0-463„ 0.725
20 33.773 0.496 0.224 0.312 0.631
30 45.144 0.448 0.245 0.279 0.622
40 61.654 0.413 0.264 0.285 0.692
50 79.975 0.391 0.332 0.296 0.758

Table 5.2: Processing throughput for 1 connection.

Chapter 5. System Evaluation and Analysis 59

number of processors is given in Figure 5.1 and a graph of processor utilization versus

the number of processors is given in Figure 5.2.

The throughput per processor for higher number of processors is only about 30% of

the throughput of a single processor. This is mostly the result of low processor utilization

as the throughput per processor while a processor has work to do, which is calculated in

the processor effectiveness, is about 65%. The low utilization was found to be the result

of the sequencing required at the higher layers. The serialization forced by the transport,

session and presentation layers, resulted in packets being queued. On the sending side,

a presentation layer packet would be queued because of sequencing reasons. On the

receiving side, the processing for a packet for the data link and network layers would be

done very quickly due to the little work required at those layers. A packet would reach

the transport layer and would get queue for reassembly reasons or sequencing reasons.

For both cases, a processor would do very little processing for most packets and then

would have to wait for the next packet to be assigned to it. The processor utilization

falls sharply at first then flattens as the number of processors is increased. The curve

flattens out because for the larger number of processors, almost every packet received

winds up getting queued for sequencing reasons after little processing so that even though

each processor is given fewer jobs to process as the number of processors increases, the

utilization does not go down that much. The processor contribution curve mirrors the

processor utilization. The processor effectiveness goes down at first then goes up slightly

as the number of processors is increased. The processor effectiveness initially decreases

because of the decrease in processor contribution. The processor effectiveness then starts

to increase because for the larger number of processors, the processor utilization can be

attributed more to the processing of in-sequence packets rather than the processing of

out-of-sequence packets for the lower layers.

As mentioned, the one connection case is the worst case because the contention for

Chapter 5. System Evaluation and Analysis

100.001

80.00
15 MIPS

CO CL,

g 60.001

§
10 MIPS

.if40.00[
CO

20.00
5 MIPS

0.00

10 20 30
Number of Processors

40 50

Figure 5.1: Throughput vs. processors for 1 connection.

Chapter 5. System Evaluation and Analysis

Chapter 5. System Evaluation and Analysis 62

state information and the restrictions due to sequencing are worst for this case. To see

how much the throughput would improve with the number of connections transferring

packets, simulations were run for 1, 2, 5, 10 and 20 connections for 15 MIPS processors.

The other parameters were exactly the same as for the previous simulation. The results

from these simulations are given in Table 5.3.

As expected, the throughput for these tests were greater than the for the one connec­

tion case. The processing throughput and processor utilization are graphed in Figures

5.3 and 5.4 respectively. For the 2 and 5 connection cases, the processor utilization is

actually lower than for the 1 connection case due to disruption in sequenced processing

as packets for different connections come into the system. This is made up for by the

reduction in the contention for state information. For the high number of connections,

the utilization is higher as the effect of the sequencing problem is reduced as less as

packets are received on a per connection basis.

Thus far, the tests were done using a range of ASN.l processing requirement. To study

the effects of different data structure complexity on throughput, tests were done with dif­

ferent ASN.l processing requirements. The first test done was to see how much processing

power is required to perform the processing without the data encoding/decoding compo­

nent. Table 5.4 depicts the processing throughput for the case when no ASN.l processing

is done.

The results indicate that slightly less than 15 MIPS is required to perform the process­

ing for OSI without the ASN.l encoding/decoding component for the simplified operation

used for the simulation. For the next set of tests, the ASN.l processing requirement was

set at 5, 10, 15 and 20 instructions per byte of data for both encoding and decoding. The

results for these cases are given in Table 5.5.

The processing throughput and processor utilization are graphed in Figures 5.5 and

Chapter 5. System Evaluation and Analysis 63

Number of Throughput Processor SBUS Processor Processor
Processors (MBPS) Utilization Utilization Contribution Effectiveness

2 Connections
1 5.275 0.998 0.069 1.000 1.000
2 7.589 0.788 0.098 0.719 0.913
5 12.349 0.704 0.118 0.468 0.665

10 29.260 0.626 0.168 0.555 0.886
20 34.998 0.505 0.166 0.332 0.657
30 56.523 0.485 0.203 0.357 0.736
40 64.274 0.385 0.220 0.305 0.791
50 69.872 0.358 0.233 0.265 0.740

6 Connections
1 5.032 0.999 0.073 1.000 1.000
2 7.892 0.830 0.101 0.784 0.945
5 14.710 0.611 0.131 0.585 0.957

10 24.751 0.512 0.151 0.492 0.960
20 45.664 0.471 0.184 0.454 0.963
30 57.458 . 0.412 0.203 0.381 0.923
40 62.420 0.353 0.215 0.310 0.879
50 77.244 0.345 0.232 0.307 0.890

10 Connections
1 5.251 0.999 0.076 1.000 1.000
2 8.067 0.794 0.108 0.768 0.967
5 22.006 0.735 0.136 0.734 0.988

10 32.368 0.654 0.162 0.616 0.942
20 50.016 0.531 0.192 0.476 0.897
30 77.626 0.526 0.228 0.492 0.937
40 89.533 0.462 0.239 0.426 0.922
50 91.393 0.389 0.242 0.348 0.895

20 Connections
1 5.989 0.0.997 0.076 1.000 1.000
2 11.297 0.946 0.111 0.943 0.997
5 22.928 0.821 0.134 0.766 0.933

10 34.904 0.662 0.160 0.583 0.880
20 64.531 0.614 0.201 0.538 0.877
30 79.799 0.540 0.219 0.444 0.824
40 94.436 0.470 0.236 0.394 0.839
50 93.233 0.406 0.234 0.311 0.767

Table 5.3: Processing throughput for 2, 5, 10 and 20 connections.

Chapter 5. System Evaluation and Analysis 64

100.00—

90.00

80.00

g 70.00
m

160.00

s
I 50.00
OA • i
| 40.00

I
30.00

20.00

10.00

0.00

20 Connections
• — - — _

•' 10 Connections

Connection

Connections

Connections

10 20 30
Number of Processors

40 50

Figure 5.3: Throughput vs. processors for multiple connections.

Chapter 5. System Evaluation and Analysis 65

Figure 5.4: Processor utilization vs. processors for multiple connections.

Chapter 5. System Evaluation and Analysis 66

Number of Processing Processor SBUS
Processors Throughput (MBPS) Utilization Utilization

5 MIPS
1 51.537 0.999 0.350
2 75.571 0.933 0.499
3 100.000 0.900 0.615

10 MIPS
1 95.901 0.998 0.327
2 100.000 0.638 0.356

15 MIPS
1 100.000 0.803 0.258

Table 5.4: Processing throughputs with no ASN.l processing.

5.6 respectively. As the number of instructions per byte required to perform encod­

ing/decoding increases, the processor utilization increases due to the longer processing

time per packet. This results in the throughputs for the 10, 15 and 20 instructions per

byte being fairly close together especially for the higher number of processors.

The processing throughput figures given were peak throughput. These throughput

were the peak throughput as a result of packets entering our system at the maximum

network rate (100 MBPS). In this set of tests, different input rates were used to see how

well the output would track the input. This in effect gives us a throughput which is

sustainable over a longer period. The throughput for different inpjit data rates for 10,

30, and 50 15 MIPS processors are given in Table 5.6.

A graph of output rate versus input rate is given in Figure 5.7. For the 10 processor

case, the output tracks the input up to about 21 MBPS while the peak rate is 24.5 MBPS.

For the 30 processor case, the output tracks the input up to about 45 MBPS which is

about the same as the peak rate. For the 50 processor case, the output tracks the input

fairly about the 72 MBPS point while the peak output rate is 80 MBPS. The sustainable

rate for the 10, 30 and 50 processor are thus very close to the peak rate.

Chapter 5. System Evaluation and Analysis 67

Number of Throughput Processor SBUS Processor Processor
Processors (MBPS) Utilization Utilization Contribution Effectiveness

5 Instructions per Byte
1 16.275 0.998 0.099 1.000 1.000
2 25.565 0.956 0.154 0.785 0.821
5 37.006 0.810 0.220 0.455 0.561

10 76.540 0.649 0.282 0.470 0.725
20 100.000 0.384 0.292 0.307 0.800
30 100.000 0.287 0.286 0.205 0.714
40 100.000 0.237 0.284 0.154 0.648
50 100.000 0.208 0.281 0.123 0.590

10 Instructions per Byt
1 9.074 0.999 0.084 1.000 1.000
2 12.760 0.803 0.119 0.703 0.876
5 30.262 0.776 0.193 0.667 0.860

10 45.871 0.667 0.224 0.506 0.758
20 80.168 0.545 0.297 0.442 0.810
30 82.445 0.390 0.286 0.302 0.777
40 82.988 0.311 0.282 0.229 0.735
50 87.136 0.277 0.288 0.192 0.693

15 Instructions per Byt
1 6.289 0.999 0.080 1.000 1.000
2 8.588 0.800 0.110 0.347 0.433
5 18.457 0.701 0.163 0.406 0.580

10 33.575 0.671 0.205 0.370 0.551
20 54.502 0.619 0.242 0.300 0.485
30 77.742 0.507 0.296 0.286 0.563
40 79.549 0.409 0.299 0.219 0.536
50 81.226 0.350 0.305 0.179 0.512

20 Instructions per Byte
1 4.662 0.999 0.076 1.000 1.000
2 6.659 0.797 0.108 0.714 0.896
5 14.248 0.709 0.163 0.611 0.862

10 24.347 0.639 0.191 0.522 0.817
20 34.400 0.603 0.207 0.369 0.611
30 44.044 0.566 0.245 0.315 0.556
40 70.750 0.505 0.326 0.379 0.751
50 77.849 0.420 0.304 0.333 0.795

Table 5.5: Throughputs for various ASN.l encoding/decoding complexities.

Chapter 5. System Evaluation and Analysis 68

! 1 1 1 1 1
0 Inst/Byte /

/

_ 5 Inst/Byte /
/

/
1
1

/

10 Inst./Byte

/15 Inst./Byte,
1

1
1

1
I
1

/ 20 Inst/Byte
/

 /

/ /

/ ' '

—

;
/ ,'
/
/
/
/ /
/
/ /
/ /
/ /'

/ /

/ /

. /"
/ —

/
/

// /
t / /

i /
i i / , '

i : / -"
' / / '

1 ' •' /'
f ' / /

—

' / /

! / /

/ /
—

10 20 30
Number of Processors

40 50

Figure 5.5: Throughput for different ASN.l encoding/decoding complexities.

Chapter 5. System Evaluation and Analysis 69

Figure 5.6: Processor utilization for different ASN.l encoding/decoding complexities.

Chapter 5. System Evaluation and Analysis 70

Input Rate Output Rate Processor SBUS
(MBPS) (MBPS) Utilization Utilization

10 Processors
20 19.782 0.426 0.053
40 23.628 0.553 0.124
60 22.931 0.576 0.124
80 24.087 0.595 0.161

100 24.978 0.638 0.195
30 Processors

20 20.000 0.204 0.052
40 40.000 0.317 0.109
60 56.502 0.411 0.187
80 50.933 0.447 0.216

100 45.144 0.448 0.245
50 Processors

20 20.000 0.159 0.052
40 40.000 0.224 0.106
60 56.210 0.285 0.171
80 76.609 0.355 0.268

100 79.975 0.391 0.332

Table 5.6: Throughputs for various input data rates.

Chapter 5. System Evaluation and Analysis 71

100.00 - ' 1

90.00 / —

80.00

/ / 50 Processors
70.00

/ / —\
00

n 60.00 / /

(2 50.00 —
/ / 30 Processors

&
^ 40.00

/ / 30 Processors

30.00 — /
10 Processors

20.00 —

10.00 — / —

0.00 —

0.00 20.00 40.00 60.00 80.00 100.00
Input Rate (MBPS)

Figure 5.7: Output data rate vs input data rate.

Chapter 5. System Evaluation and Analysis 72

From the above results, one of the main problems with our system was found to be

the lack job availability due to jobs getting suspended for sequencing reasons. In order to

improve the processor utilization, a slight modification was made to the processing model.

The change was to allow an idle processor to process the ASN.l encoding/decoding for

a presentation layer packet which was queued for sequencing reasons.

An idle processor would look into its suspended queue for presentation layer jobs for

which ASN.l processing can be done. When one is found, the status of the presentation

layer packet in the state information is changed from suspended to ASN.l processing

proceeding and the processor would perform the ASN.l processing for the packet.

Some test runs were done with this modifications with the exact setup as the very

first simulation runs. The results obtained showed very high processor utilization but

the throughput was no higher or even less than for the original method. The problem

was that the jobs which were moved from the suspended queue to the active queue

when its turn arrived were being forced to wait behind the processing of presentation

layer packets which were having their ASN.l processing done ahead of time. This was

effectively slowing down the system's ability to push the packets through the system.

In order to alleviate this problem, the "early" ASN.l processing was made inter-

ruptible. When a job was moved from the suspended queue to the active queue by an

outside processor, an interrupt would be generated by that processor to indicate that a

resume job was placed in the queue. If the processor receiving the interrupt was per­

forming "early" ASN.l processing, it would discontinue the processing and process those

resumed jobs. This requires that a processor have two process spaces in order to limit

the context switch overhead to saving processor status and registers.

The results of simulation runs with the same parameters as the very first runs were

done with the above modifications in processing. The results of these runs are given in

Table 5.7.

Chapter 5. System Evaluation and Analysis 73

Number of Throughput Processor SBUS Processor Processor
Processors (MBPS) Utilization Utilization Contribution Effectiveness

5] VIIPS
1 1.716 0.999 0.144 1.000 1.000
2 2.237 0.998 0.213 0.652 0.653
5 5.174 0.997 0.312 0.603 0.605

10 6.817 0.987 0.325 0.397 0.402
20 16.169 0.985 0.439 0.471 0.478
30 20.346 0.980 0.539 0.395 0.403
40 17.491 0.999 0.834 0.255 0.255
50 17.849 0.981 0.926 0.208 0.212

10 MIPS
1 3.549 0.999 0.095 1.000 1.000
2 4.523 0.999 0.138 0.637 0.638
5 13.456 0.997 0.177 0.758 0.760

10 24.774 0.996 0.265 0.698 0.701
20 30.288 0.996 0.644 0.421 0.443
30 37.299 0.996 0.943 0.350 0.351
40 44.486 0.996 0.972 0.313 0.315
50 30.379 0.996 0.987 0.171 0.172

15 MIPS
1 5.363 0.999 0.078 1.000 1.000
2 6.620 0.998 0.110 0.617 0.618
5 15.761 0.997 0.147 0.588 0.590

10 29.686 0.997 0.259 0.553 0.555
20 50.643 0.996 0.678 0.472 0.474
30 58.062 0.938 0.890 0.361 0.385
40 67.561 0.905 0.866 0.315 0.348
50 79.091 0.892 0.862 0.295 0.331

Table 5.7: Throughput for modified version for 1 connection.

Chapter 5. System Evaluation and Analysis 74

The throughput for the modified version is graphed along with the result from the

original version in Figure 5.8. The shared bus utilization for the modified design is

graphed in Figure 5.9.

The throughput improvement is best for the middle range of the number of processors.

For small number of processors, the original design had just as high a processor utilization

as the modified design so no improvement was expected there. The improvement does

not extend to higher number of processors due to the very high shared bus utilization.

In the original design, the shared bus utilization was low for even the higher number of

processors because the processor utilization got very low for large number of processors.

In the modified case, the processor utilization is high for even very large number of

processors and this results in the higher shared bus utilization.

The throughputs for the modified design for different ASN.l processing complexities

were obtained next. The results are tabulated in Table 5.8.

The results are graphed in Figure 5.10. Compared with the original design, the highest

throughput is reached with fewer processors; however, there is a fall off of throughput

after the peak throughput is reached when more processors are added due to the shared

bus utilization becoming very high.

In the next set of tests, different inputs rates were used to see how well the output

would track the input for the modified design. This in effect gives us a throughput which

is sustainable over a longer period. The throughput for different input data rates for 10,

30, and 50 15 MIPS processors are given in Table 5.9.

A graph of input rate against output rate is given in Figure 5.11. The results are very

similar to the result for the original case except for the 50 processor case. For 10 and 30

processors, the output tracks the input up to a rate that is pretty close close to the peak

rate. For 10 processors, the sustainable throughput is close to 25 MBPS while the peak

rate is 30 MBPS. For the 30 processors, the sustainable throughput is close to 55 MBPS

Chapter 5. System Evaluation and Analysis 75

100.00

90.00

80.00

Vi
OH

70.00 —

r 6o.oo|
1
I 50.001

15 MIPS Modified

/ \ 5 MIPS Original

<' 10 MIPS Modified-

10 MIPS Original

5 MIPS Modified

5 MIPS Original

20 30
Number of Processors

40 50

Figure 5.8: Throughputs for the modified and original versions.

Chapter 5. System Evaluation and Analysis

Chapter 5. System Evaluation and Analysis 77

Number of Throughput Processor SBUS Processor Processor
Processors (MBPS) Utilization Utilization Contribution Effectiveness

5 Instructions per Byte
1 16.376 0.999 0.100 1.000 1.000
2 23.197 0.999 0.143 0.708 0.709
5 53.922 0.991 0.277 0.659 0.665

10 98.494 0.979 0.700 0.601 0.614
20 100.000 0.937 0.924 0.305 0.326
30 99.366 0.796 0.770 0.202 0.254
40 84.800 0.785 0.783 0.129 0.165
50 45.110 0.862 0.861 0.055 0.064

10 Instruc ions per Byt
1 9.041 0.999 0.086 1.000 1.000
2 12.937 0.998 0.122 0.715 0.717
5 28.020 0.995 0.173 0.620 0.623

10 66.551 0.990 0.348 0.736 0.743
20 91.460 0.989 0.938 0.506 0.511
30 88.994 0.987 0.970 0.328 0.332
40 73.635 0.988 0.978 0.204 0.206
50 43.830 0.989 0.981 0.097 0.098

15 Instructions per Byt
1 6.310 0.999 0.080 1.000 1.000
2 8.836 0.998 0.113 0.700 0.702
5 18.566 0.994 0.150 0.588 0.592

10 41.678 0.988 0.237 0.661 0.668
20 77.352 0.969 0.708 0.612 0.632
30 82.468 0.890 0.809 0.436 0.490
40 77.637 0.647 0.536 0.308 0.476
50 60.903 0.667 0.630 0.193 0.289

20 Instructions per Byte
1 4.758 0.999 0.077 1.000 1.000
2 6.724 0.999 0.109 0.707 0.707
5 14.576 0.995 0.141 0.613 0.616

10 28.659 0.989 0.205 0.602 0.609
20 61.668 0.973 0.455 0.648 0.665
30 71.345 0.970 0.770 0.500 0.515
40 74.655 0.965 0.890 0.392 0.406
50 51.694 0.986 0.958 0.217 0.220

Table 5.8: Throughputs for various ASN.l encoding/decoding complexities for the mod­
ified design.

Chapter 5. System Evaluation and Analysis

100.001

90.00

80.00

70.00

CO

a 60.00
3

•S 50.00

s
w> 40.00
.s
O
| 30.00

20.00

10.00

' 0 Inst./Byte 1 1 1 1 1

5 Inst/Byte / 10 Inst/Byte

(/ ' 15 Inst/Byte _ \
\
\

\
/
/
/
/

20 Inst./Byte - - \ \

/ ,'
/ ,'
/ /

I I
1 1
i !
i 1
1 ':

I !
1 '
i !
i 1
i 1

t
i 1 /
i > /
i ! /
i • 1

~ 1 / 1 ,

/
/ / /

/

/

/

/ /
/

/
/

/
/

\ \ \ \
• \ \ \ \

\ \ \
\ \»
\ \ \
\ \ 4

\ \ ^
\ \ *
\ \ v

\ \
\ \
\ \

i : j i
i ; i
' / / /

/' / / /
' /' / '

/ / /

/ / /

/ /
/ 1

/

~ l i r
10 20 30

Number of Processors
40 50

Figure 5.10: The throughputs for various ASN.l requirements for the modified desig

Chapter 5. System Evaluation and Analysis 79

Input Rate Output Rate Processor SBUS
(MBPS) (MBPS) Utilization Utilization

10 Processors
20 20.000 0.557 0.252
30 25.069 0.941 0.696
40 24.469 0.956 0.705
60 25.193 0.977 0.510
80 31.816 0.983 0.244

100 29.686 0.997 0.696
30 Processors

20 20.000 0.251 0.108
40 40.000 0.778 0.698
60 55.858 0.946 0.905
80 55.223 0.892 0.829

100 58.062 0.938 0.890
50 Processors

20 20.000 0.210 0.109
40 40.000 0.797 0.760
50 50.000 0.866 0.838
60 57.632 0.942 0.925
80 65.048 0.653 0.601

100 79.091 0.892 0.862

Table 5.9: Throughputs for various input data rates for the modified design.

Chapter 5. System Evaluation and Analysis 80

Source/ Input Rate Output Rate Processor SBUS
Destination (MBPS) (MBPS) Utilization Utilization

20 Processors
host 0.000 30.021 0.473 0.268
net 100.000 0.000
total 100.000 30.021
host 25.000 25.886 0.943 0.868
net 75.000 12.750
total 100.000 38.635
host 50.000 23.832 0.996 0.876
net 50.000 26.811
total 100.000 50.643
host 75.000 23.346 0.977 0.641
net 25.000 35.858
total 100.000 59.204
host 100.000 0.000 0.983 0.830
net 0.000 100.000
total 100.000 100.000

Table 5.10: Throughputs for various input data ratios between host and network input
for the modified design.

while the peak rate is 58 MBPS. For the 50 processor case, the output stops tracking at

around 60 MBPS while the peak rate is 79 MBPS. For the low to middle range of the

number of processors, the peak rate is within a few MBPS of the sustainable rate while

for the larger number of processors, the sustainable rate is as much as 20 MBPS lower.

The original design tracked the input better for the 50 processor case because the shared

bus utilization is lower for the original case.

All test done thus far have been with 50% of the input coming in from the network and

50% of the input coming in from the host. In Table 5.10, the throughputs for different

host and network input ratios for 20 15 MIPS processors are depicted.

Output processing is much more efficient than input processing for several reasons.

The first reason is that less processing is required to perform ASN.l encoding than

Chapter 5. System Evaluation and Analysis

100.00

90.00

80.00

70.00

| 60.00

£ 50.00

&
8 40.00

30.00

20.00

10.00

0.00

10 Processors

0.00 20.00 40.00 60.00
Input Rate (MBPS)

80.00 100.00

Figure 5.11: The output rate versus the input rate for the modified version.

Chapter 5. System Evaluation and Analysis 82

decoding. As mentioned, the encoding requirement was set at 5-20 instructions per byte

while decoding was set at 5-40 instructions per byte for these simulations. The second

reason is that the checksum for the sending side is done during transit while the checksum

for the receiving side is done in hardware at the processor node. The third reason is that

reassembly must be done using the PBUS for the receiving side. The fourth reason is

that there are less presentation layer packets for which ASN.l processing can be done for

out-of-sequence packets on the receiving side. This is because as the packets are forced to

go through the transport and session layer in order, which may include suspensions and

resumptions, the packets tend to come in order at a rate lot slower than the original input

rate. For the sending side all packets received from the host which cannot be processed

due to sequencing can have their ASN.l processing done ahead of time. This can be seen

from the processor utilization column of Table 5.10 where the utilization increases with

the increase in the ratio of the packets from the network. In addition, the reassembly

requirement causes the processing of packets to be suspended for the receiving side but

not for the sending side, resulting in a further difference in processor utilization.

The last set of tests dealt with how the system would perform if the packet size is

larger on average. The size distribution was changed to normal distribution with 50000

byte mean and 25000 variance. The result for 15 MIPS processors for the modified version

is presented in Table 5.11.

A graph of the throughputs for the original packet size and the larger packet size for

the modified design is given in Figure 5.12.

The larger packet size results in reduced throughput. This can be attributed to the

lower processor utilization as even with the modification, processor utilization is fairly

low for the larger number of processors. This is expected since in the worst case when

a single large packet is passed to our system, the throughput would not be greater than

that of a single processor.

Chapter 5. .System Evaluation and Analysis 83

90.00

80.00

70.00
C/3 OH

r 60.00
so

I 50.00

«) 40.00

30.00

20.00

10.00

0.00

— —

— Previous Size

— y
Larger Size

s
s

s
• / / / s

yv

10 20 30
Number of Processors

40 50

Figure 5.12: The throughputs for the original packet size and larger packet size.

Chapter 5. System Evaluation and Analysis 84

Number of Throughput Processor SBUS Processor Processor
Processors (MBPS) Utilization Utilization Contribution Effectiveness

5 Instructions per Byte
1 4.335 0.995 0.056 1.000 1.000
2 6.154 0.990 0.074 0.709 0.713
5 6.010 0.951 0.091 0.272 0.292

10 9.983 0.890 0.386 0.230 0.258
20 21.492 0.799 0.644 0.248 0.310
30 37.269 0.763 0.674 0.287 0.376
40 44.152 0.527 0.402 0.255 0.483
50 45.217 0.542 0.452 0.209 0.385

Table 5.11: Throughput for larger packet size.

5.2.2 Evaluation of the Shared Memory Design

In evaluating the performance of the shared memory design, three different configurations

were considered. The main difference between the three were the speed of the processors:

5,10 and 15 million instructions per second (MIPS). The MIPS figure given is for register

data case. The actual number of instructions per second is lower since memory data access

is required some of the instruction executions. The cache block size was set to four words

and the shared memory and buffer memory are interleaved (bank-switched) four ways.

All transfers on the shared bus was done using this block size. The exact configurations

of the three cases are given in Appendix D.

The test runs were done for packets received on only one connection. The test were

done with packets coming in from the network at half of the network bandwidth (50

megabits per second (MBPS)) and from the host at half of the network bandwidth (50

MBPS). The packet size was given a normal distribution with mean 10,000 bytes and 5000

variance. The maximum network packet size was set at 4096 bytes. In the simulations,

80% of the packets were data packets, 10% acknowledgements, 5% connection packets,

Chapter 5. System Evaluation and Analysis 85

5% disconnect packets. The amount of ASN.l processing was randomly chosen for each

packet from 5-20 instructions per byte for encoding and from 5-40 instructions per byte

for decoding. This represents a range of data complexity of something really simple, such

as an array of integers, up to a simple structure type (see Appendix C). The cache hit

rate for the instructions was set at 0.95. This is a high value but if most or all of the

ASN.l code can be kept in the instruction cache, this rate is realistic since most of the

time is spent performing the ASN.l processing. The hit ratio for packet data was set at

0.75 based on the cache block size. The hit ratio for local data was set at 0.9. This figure

is also pretty optimistic but it was set high to compensate for the software model which

is based on half memory data accesses and half register data accesses. For this type of

shared memory architecture, better use of registers through more optimized code would

be expected.

There were three sets of tests run with different shared memory speeds. The speeds

for the three sets of test were 200, 160, and 120 nanosecond cycle times. The effective

cycle time was set at 50, 40, and 30 nanoseconds for four-word transfers. The results

for the three sets are given in Tables 5.12, 5.13 and 5.14 respectively. The throughput

figures given are peak processing throughput rate.

The throughputs for the three cases are shown in Figures 5.13, 5.14 and 5.15. The

dips in the throughput curves for 200ns shared memory for the four processor case can

mainly be attributed to the fact that with four processors, the shared bus utilization

is significantly higher than for two processors. As can be seen from the tables, the

processor utilization is not the problem for this design because of the high shared bus

utilization. The high shared bus utilization for the higher number of processors results

in the throughput curve flattening out. The results show that the shared memory is

definitely a point of contention which severely limits the designs ability to scale.

A set of test runs were done with cache hit rate for instruction fetches set to 1, which

Chapter 5. Syst em Evaluation and Analysis 86

Number of Throughput Processor Shared Bus
Processors (MBPS) Utilization Utilization

5 MIPS
1 2.484 0.999 0.296
2 3.574 0.999 0.377
4 4.147 0.998 0.533
6 5.000 0.997 0.678
8 6.244 0.996 0.711

10 7.069 0.995 0.895
12 7.993 0.988 0.955
14 8.544 0.986 0.986
16 8.020 0.984 0.997
18 7.568 0.983 0.999
20 7.455 0.982 1.000

10 M [IPS
1 5.206 0.999 0.426
2 7.349 0.999 0.547
4 6.625 0.998 0.758
6 8.261 0.997 0.903
8 9.711 0.996 0.978

10 9.959 0.995 0.997
12 10.372 0.989 0.999
14 10.473 0.987 1.000
16 10.320 0.986 1.000
18 10.222 0.985 1.000
20 9.826 0.984 1.000

15 M [IPS
1 6.968 0.999 0.465
2 8.096 0.998 0.617
4 7.948 0.998 0.852
6 10.373 0.997 0.972
8 10.691 0.996 0.997

10 10.586 0.995 0.999
12 10.868 0.988 0.999
14 11.534 0.986 1.000
16 11.897 0.985 1.000
18 11.201 0.984 1.000
20 10.403 0.983 1.000

Table 5.12: Processing throughput for 200ns shared memory.

Chapter 5. Syst em Evaluation and Analysis 87

Number of Throughput Processor Shared Bus
Processors (MBPS) Utilization Utilization

5 M IPS
1 2.491 0.999 0.277
2 3.868 0.999 0.352
4 5.766 0.998 0.495
6 6.440 0.997 0.613
8 6.408 0.996 0.732

10 7.842 0.995 0.831
12 8.924 0.988 0.903
14 8.908 0.985 0.954
16 10.353 0.983 0.984
18 10.669 0.981 0.995
20 11.102 0.980 0.999

10 M [IPS
1 5.385 0.999 0.396
2 7.407 0.999 0.496
4 7.695 0.998 0.686
6 9.345 0.997 0.839
8 10.490 0.996 0.939

10 12.012 0.995 0.985
12 12.321 0.988 0.997
14 11.983 0.986 0.999
16 11.997 0.985 1.000
18 11.764 0.983 1.000
20 11.203 0.981 1.000

15 M [IPS
1 7.186 0.999 0.428
2 8.425 0.999 0.559
4 9.161 0.998 0.782
6 11.481 0.997 0.929
8 12.623 0.996 0.987

10 13.425 0.995 0.999
12 13.204 0.987 0.999
14 12.585 0.985 0.999
16 12.672 0.984 1.000
18 12.201 0.982 1.000
20 13.801 0.979 1.000

Table 5.13: Processing throughput for 160ns shared memory.

Chapter 5. Syst< em Evaluation and Analysis 88

Number of Throughput Processor Shared Bus
Processors (MBPS) Utilization Utilization

5 MIPS
1 2.834 0.999 0.258
2 5.556 0.999 0.318
4 6.006 0.998 0.439
6 7.377 0.997 0.548
8 7.776 0.996 0.648

10 8.155 0.995 0.747
12 9.416 0.987 0.815
14 10.692 0.985 0.894
16 10.986 0.983 0.942
18 11.410 0.980 0.973
20 12.813 0.978 0.987

10 M [IPS
1 5.691 0.999 0.361
2 7.053 0.999 0.444
4 7.955 0.998 0.606
6 10.637 0.997 0.747
8 12.147 0.996 0.862

10 14.552 0.995 0.941
12 14.753 0.987 0.978
14 14.823 0.985 0.995
16 15.392 0.981 0.999
18 15.944 0.980 1.000
20 16.294 0.980 1.000

15 M [IPS
1 9.113 0.999 0.387
2 10.704 0.998 0.496
4 10.929 0.998 0.688
6 13.421 0.997 0.845
8 16.023 0.996 0.946

10 17.489 0.994 0.988
12 17.548 0.987 0.997
14 17.635 0.984 0.999
16 17.800 0.979 0.999
18 17.954 0.978 0.999
20 18.214 0.976 1.000

Table 5.14: Processing throughput for 120ns shared memory.

Chapter 5. System Evaluation and Analysis 89

20.00

15.00
Vi
C M

I
f lo.oô

I
5.00

15 MIPS

10 MIPS

5 MIPS

0.00

10 15
Number of Processors

20

Figure 5.13: Processing throughput for 200ns shared memory.

Chapter 5. System Evaluation and Analysis

20.00h-

15.00H

0.00 \—

1 5 10 15 20
Number of Processors

Figure 5.14: Processing throughput for 160ns shared memory.

Chapter 5. System Evaluation and Analysis

20.00 — 1 1 1

15 MIPS

10 MIPS

_ 15.00 —
/

—

OH / /
/

CO
/

/
/

/
/

5 MIPS

. &
' s

/ s s •a /

S 10.00 — / /
/

/
/

—

p
.9

/
/

/
/

i
u
»«—> / .

5.00

0.00

1 5 10 15 20
Number of Processors

Figure 5.15: Processing throughput for 120ns shared memory.

Chapter 5. System Evaiuation and Analysis 92

Number of Throughput Processor SBUS
Processors (MBPS) Utilization Utilization

15 MIPS
1 8.974 0.999 0.334
2 10.663 0.998 0.395
5 14.922 0.994 0.575

10 25.999 0.988 0.836
20 35.971 0.973 0.998
30 19.947 0.962 1.000
40 5.687 0.957 1.000
50 3.331 0.952 1.000

Table 5.15: Processing throughput with entire program in cache.

is the case where all of the program code fits into the cache. This may be possible since

protocol processing code is usually not very large and because the size of caches are

increasing. The processing throughput for 15 MIPS processors for this case are shown in

Table 5.15 and depicted in Figure 5.16. The figures indicated that this design is much

more effective if only the data has to be shared; however, the shared bus still becomes

the point of contention with a lot fewer processors than with the mixed memory design.

No other tests were done for this design because of the high processor and shared

bus utilizations for this design. The modification made in the first design would not be

effective since the processor utilization is already high. The processor utilization is high

because processors are not idle as long as there are jobs available due to the centralized

job queue and because the high shared bus utilization causes processing to take longer.

There are a number of ways in which this design could be improved. The first way

would be to use separate busses for code and data. An even more effective improvement

would be to use local memory for code and local data. These modifications would improve

the performance; however, it would come at the cost of one of the main advantages

of this design which is that it can derived from commercial lumped shared memory

Chapter 5. System Evaluation and Analysis

50.00

45.00

40.00

35.00
Vi
OH

£,30.00

•a g 25.00

•S 20.00
CO
<U

ft 15.00

10.00

5.00

0.00

10 20 30
Number of Processors

40

Figure 5.16: Processing throughput for entire program in cache.

Chapter 5. System Evaluation and Analysis 94

multiprocessor systems with very little modifications.

5.3 System Analysis

The performance of the mixed memory design and the shared memory designs are an­

alyzed in this section. General conclusions are derived from the performance figures

presented previously. In the final part of this section, general observations are made

about the high-speed processing for the OSI protocol stack.

5.3.1 Mixed Memory Design

The system performance, the system bottleneck areas and the merits and disadvantages

of the mixed memory designs are considered in turn for the mixed memory design.

System Performance

The performance of the system can be analyzed by looking at the ideal case. From Table

5.4, OSI processing can be performed at 100 MBPS using 1 15 MIPS processor when no

ASN.l processing performed for our simplified operation model. The actual MIPS for

a 15 MIPS processor is closer to 11 MIPS with the memory data accesses considered.

In most of the simulation runs, the complexity of the data being encoded or decoded

was chosen to be in a range going from very simple data types up to a simple structure.

The instructions per byte used for the simulations averages 17.5 instructions per byte of

data for 50/50 split of the input data between the host and the network. At 100 MBPS

input rate, 220 MIPS would be required to perform ASN.l processing at 17.5 instructions

per byte. Based on this very simplified analysis, a total of 230 actual MIPS would be

sufficient to perform the OSI processing at this level of data complexity.

The figure of 230 actual MIPS is about 300 MIPS for our system. Any configuration

Chapter 5. System Evaluation and Analysis 95

supplying 300 MIPS should be sufficient to achieve 100 MBPS rate processing for the

selected level of data complexity. The throughput for 30 10 MIPS processors was found

to be 33 MBPS for the original design and 37 MBPS for the modified design. The

throughput for 20 15 MIPS processors was found to be 35 MBPS for the original design

and 50 MBPS for the modified design. For the original design the coordination required

costs about two thirds of the processing power. For the modified design, the cost is

about one half. Furthermore, a throughput of 100 MBPS was not achieved even with

50 processors because of the low utilization of the processors for the original design and

because of high shared bus utilization for the modified design.

Tests done for this design showed how the performance of the system depends on

the availability of jobs which in turn depends on many factors. Factors affecting job

availability include the number of connections involved in data transfer, the complexity

of the ASN.l encoding/decoding, the direction of the data transfer, and the size of the

packets. For larger number of connections, the throughput and utilization increased as

the effects of serialization and the contention for connection state information was re­

duced. The complexity of the ASN.l encoding/decoding has a direct effect on processing

throughput because of its direct relation to the amount of processing required. The

complexity also has an effect on processor utilization as for more complex data types the

encoding/decoding takes longer on a per packet basis and thus the processor utilization is

higher. The processing for the sending side was found to be much more efficient than for

the receiving side. The processor utilization was higher for the sending side because job

suspensions occurred on the receiving side for reassembly reasons, and for other reasons.

The processor utilization was found to depend also on the size distribution of packets as

larger packets resulted in reduced processor utilization and as a result less throughput.

Chapter 5. System Evaluation and Analysis 96

System Bottleneck Areas

In the original design, the sequenced processing of packets required at the higher layers

was found to be the bottleneck. The ordered processing of packets resulted in many

packets being suspended. This resulted in very low processor utilization as processors had

to wait for the next packet to arrive. The serialization forced by the sequenced processing

cannot be removed without modifying the protocols themselves. A modification was

made to allow the ASN.l processing for out-of-sequence packets to be performed by idle

processors. This improved the processor utilization but along with this increase, the

utilization of the shared bus was found to increase and in fact, the shared bus was found

to be a bottleneck area for the particular configurations tested. The throughput improved

for the modified design up to the point where the shared bus became a point of heavy

contention.

Merits and Defficiencies

The merit of this design is that it provides a method of supplying the processing power

required using many processors. This design was found to scale fairly well for the con­

figurations tested. The main disadvantage of this design is that the processing of each

packet is not speeded up. The reliance on processing packets in parallel means that the

system performance is dependent on the availability of packets which can be processed.

This design would not improve the throughput very much compared to a single processor

if a few, very large packets are being transferred. As with any front-end system, there is

a limit on the size of packet which can be handled because the entire contents of a packet

must be transferred to the system.

Chapter 5. System Evaluation and Analysis 97

5.3.2 Shared Memory Design

For the shared memory design, the shared bus was found to be a point of severe con­

tention. Although, this design should have similar problems and advantages as with the

mixed memory design, the problem with the shared bus overshadowed the advantages

and disadvantages. The design was found to scale very poorly due to the shared bus

contention as the throughput curve flattens out after adding relatively few processors

compared with the mixed memory design.

The performance of this design improved when test runs were done based on the

entire program code fitting into the instruction cache. The design was found to scale

much better with this assumption; however, it still did not scale as well as the mixed

memory design.

5.3.3 General Problem with OSI Protocol Processing

The main problem with performing OSI processing at very high speeds is the amount of

processing required for presentation layer encoding and decoding. In [7], it was found

that 97% of the total OSI protocol stack overhead is attributable to the presentation

layer encoding and decoding. To put this into more practical terms, if the amount of

processing required is 10 instructions per byte, 125 million instructions per second of

processing power is required at data coming in at 100 megabits per second. The transfer

syntax encoding/decoding is one of the most important part of OSI in terms providing

assuring interoperability between different systems and is one of the fundamental parts

of OSI.

It is clear that the performance of any system performing OSI processing is basically

dependent on how fast it can.perform the transfer syntax encoding/decoding. It is very

important that the current research in reducing the amount of processing required for

Chapter 5. System Evaluation and Analysis 98

transfer syntax encoding/decoding such as the development of a lighter weight transfer

syntax in [16], and research in faster processing of ASN.l encoding/decoding such as

through parallel processing as in [1] continue in order to allow OSI to be usable for

high-speed networks.

Chapter 6

Conclusion

In this thesis report, two multiprocessing architectures were considered as protocol en­

gines for providing protocol processing for OSI Layers 2 through 6. The processing

method, which was chosen from different alternatives, is to process different packets at

the same time on different processors. The main difference between the two architectures

considered is the memory organization. In the first design, shared information is kept in

shared memory and other information including packet data is kept in local memory. In

the second design, all information is kept in shared memory.

The first design featured a distributed memory architecture in which only connection

state information was placed in shared memory. All other information, including the

protocol data units, was stored local to a processor. In the second design all information

including packet data, was stored in shared memory. The general processing method used

for both designs was to have a processor perform the protocol processing for a packet for

all layers handled by the system. For the distributed design, the assignment of packets to

processors was done on a round-robin basis while for the shared memory design a central

job queue was used.

The performance of both designs were evaluated through software simulations. For

the first design, the system as originally designed was found to have very low processor

utilization for any more than a few processors. This was due to the serialization of

processing caused by having to process the packets in order at the higher layers. A

modification was made in the system operation to allow idle processors to perform the

99

Chapter 6. Conclusion 100

ASN.l encoding/decoding for the presentation layer out of sequence. This improved the

processor utilization and the throughput. The performance of the system was found to

vary with the characteristics of the data transfer. These characteristics included:

• packet size.

• number of connections transferring data.

• complexity of the data structure of packet data.

• ratio of incoming and outgoing packets.

The processor utilization and throughput was better for smaller packet sizes since the

packet is the unit of processing and parallelism for the system. As the number of con­

nections transferring data was increased, the utilization and throughput was found to

improve. This was because the contention for connection state information and the se­

rialization effect of ordered processing was reduced when less packets are received on a

per connection basis. The complexity of the data structure was found to have a direct

effect on throughput in that the amount of processing required for transfer syntax en­

coding/ decoding is dependent on the complexity. The data complexity also had an effect

of processor utilization in that more complex data required greater amount of process­

ing on a per packet basis thus resulting in higher processor utilization. The processing

throughput for outgoing data was much greater than for incoming data. The main factor

affecting this was the fact that transfer syntax decoding of data takes twice as much

processing or more than for encoding especially for anything but the basic data types.

The performance of the distributed design for the particular configurations tested

showed that at least 50% of the processing power was lost to synchronization and com­

munication between processors compared with an ideal processing setup using one pro­

cessor supplying sufficient processing power. The amount of processing power required to

Chapter 6. Conclusion 101

perforin OSI processing at 100 megabit per second data rates without the transfer syntax

encoding/decoding was found to be about 11 million instructions per second based on

the simplified system operation which was used for the simulations; however, processing

throughputs of 100 megabits per second was found to be achievable for only very simple

data types using much more processing power.

The distributed design was found to scale fairly well. For the configurations tested,

up to about 40 processors could be used without the shared bus becoming a point of

contention which limited the performance for the modified operation.

The lumped shared memory design was found have similar throughputs as the dis­

tributed design when very few processors were used. The system operation for this design

was essentially the same as for the distributed design and thus this design should have

had similar performance and problems as with the other design; however, the effects of

heavy contention for the shared memory overshadowed the system performance. With as

few as ten processors, the shared memory became a point of contention which resulted

in the throughput curve flattening out.

The transfer syntax conversion, which is essential for communication between open

systems, is the most problematical part in achieving processing throughputs of 100

megabits per second and higher because of its processing intensiveness. Ways of re­

ducing the amount of processing required for transfer syntax conversion and/or finding

ways of performing the ASN.l processing faster are required to be able to perform OSI

processing at very high speeds.

Appendix A

Checksum Unit Design

The checksum recommended for OSI transport protocol class 4 (TP4), requires two sums

to be calculated per byte of data. For a message of length 'L', the two sums to be

calculated are:

where the additions are done on a per byte basis modulus 255. The checksum function

can be implemented very simply for OSI TP4 from the analysis presented in [9]. The

checksum unit can be implemented using adders and latches as in Figure A . l . A final step

of mapping the value 255 to 0 must be done by the processor. Since data is transferred

bus width at a time, some hardware is required to latch the data and to cycle data

through the adders one byte at a time. Additional hardware is required to interface

the checksum unit to the processor through the local bus. The checksum unit could be

designed as a module so that a different units could be inserted depending the transport

protocol in use.

8 = 0

L - l
cl = ^2(L — i) * msg(i)

i=o

102

Appendix A. Checksum Unit Design

BYTE 0
FROM BYTE 1
BUFFER
MEMORY B Y T E 2

BYTE 3

•ROCÊ SSOR CHECKSUM UNIT

CONTROL

s
% H ADDERS CHECKSUM

DATA

Cin
Ain
Bin

CONTROL

Cin
Ain 8 b i t a d d e r Cout
Bin s o u t

Din
8 b i t l a t c h

Dout

cO

8 b i t a d d e r Cout
Sout

Din
8 b i t l a t c h

Dout
I C l

Figure A. l : Checksum unit and adder configuration for OSI TP4 checksum.

Appendix B

Protocol Statistics Sources

The methods through which the protocol statistics of Table 5.1 were obtained is explained

in this section.

The data link layer instruction count is for IEEE 802.2 logical link control type I

(connectionless service). The figures given are estimates based on the specification [17].

For type I, there is little processing required besides the header processing.

The network layer protocol statistic was obtained for the Internet Protocol from an

implementation in C done for Unix 4.3BSD by the University of California, Berkeley. The

source code was compiled using the Sun C compiler into assembler code for the Motorola

68020. The statistics were obtained from the assembler code. Although an effort was

made to be as accurate as possible, the figures are approximate since it is very difficult

exactly track the execution path. The implementation had very close ties to the Unix

socket mechanism which had to be taken into account when the instructions were being

counted.

The transport layer protocol statistic was obtained for the Transmission Control Pro­

tocol (TCP) for an implementation in C done for Unix 4.3BSD by the University of

California, Berkeley. The statistics were obtained in a similar manner to the network

layer statistics. It should be noted that for TCP a data packet can also carry an acknowl­

edgement. The statistics given in the table give separate statistics for different packet

types. They were obtained by including only the segments in the protocol code dealing

with the aspects of the type of packet.

104

Appendix B. Protocol Statistics Sources 105

The session layer protocol statistic was obtained for the OSI Session Protocol from

the ISODE implementation in C (version 6.0) of the higher layer protocols by Marshall

Rose. Again, the source was compiled to 68020 assembler on the Sun C compiler to

obtain the statistics.

The presentation layer protocol statistic was obtained for the OSI Presentation Proto­

col from the ISODE implementation as well. The implementation was tied closely to the

ASN.l encoder/decoder written using YACC (Yet Another Compiler Compiler). This

made tracking the instructions very difficult resulting in some estimations having to be

done.

It should be noted that a more optimized implementation of the above protocols could

have significantly less instructions. For example, it is reported in [5] that an implemen­

tation of TCP optimizing the processing of data packets takes about 300 instructions.

Appendix C

A S N . l Statistic

The processing required to perform the ASN.l transfer syntax encoding/decoding using

the basic encoding rule (BER) depends on the complexity of the data structure being

encoded. The processing required to perform the encoding and decoding of a specific

data structure is presented.

The statistic obtained is for the following data structure specified in ASN.l copied

from CCITT X.409 1984 Appendix II section 2:

EXAMPLE DEFINITIONS ::=

BEGIN

PersormelRecord ::= [APPLICATION 0] IMPLICIT SET

{

Name,

t i t l e [0] IA5String,
EmployeeNumber,

dateOfHire [1] Date,

nameOfSpouse [2] Name,

ch i l d r en [3] IMPLICIT SEQUENCE OF

Chi ldlnformat ion DEFAULT {}

}

106

Appendix C. ASN.l Statistic 107

Childlnformation ::= SET

{
Name,

dateOfBirth [0] Date

}

Name ::= [APPLICATION 1] IMPLICIT SEQUENCE

{
givenName IA5String,
i n i t i a l IA5String,
familyName IA5String

}

EmployeeNumber ::= [APPLICATION 2] IMPLICIT INTEGER

Date ::= [APPLICATION 3] IMPLICIT IA5String — YYYYMMDD

END

The statistics which follow were obtained from Mike Sample of the computer sci­

ence department here at UBC, who obtained the performance figures by using profiling

software on his own implementation of an ASN.l encoder/decoder.

The numbers quoted are machine cycles for a reduced instruction set computer (RISC)

processor (MIPS R2000). The encoding of data for the above data structure which

resulted in 143 bytes of BER data took 3811 cycles which is 26.65 cycles per byte of

BER data. The decoding took 7196 cycles which is 50.32 cycles per byte of BER data.

Appendix C. ASN.l Statistic 108

A RISC processor can execute most instructions in one cycle. They also have load/store

architectures which means that access to memory is only available using the load/store

instructions. The number of instructions required for a more general purpose (non-RISC)

processor, such as the Motorola 68020, would be roughly 20% less than the cycle figures

or about 20 instructions per byte for encoding and 40 instructions per byte for decoding.

Appendix D

Simulation Details

The section provides the details of the simulation including the parameters used for the

evaluation process for the two designs. The last part of this section provides details on

some of the systematic aspects of the simulation.

D . l Mixed Memory Design

There were three different configurations used for evaluating the mixed memory design.

The main difference between the configurations was the instruction execution time: 5,

10 and 15 million instructions per second.

For the 5 MIPS configuration, the processor speed is set to 5 million instructions per

second for register data instructions. The details for the 5 MIPS configurations are given

in Table D.l.

The cycle times of most of the memories are large enough that dynamic random access

memory (RAM) can be used. As mentioned, dual-ported video type memory is used for

the buffer memory. The global shared memory cycle time of 100 nanoseconds will have

to be met using static RAM but only enough memory to store the state information is

required.

The details for the 10 MIPS configurations are given in Table D.2.

The memory cycle times for the memories of the core processors are quite low so that

it may not be possible to use dynamic RAM. For the processor's local memory, bank-

switching can be used to get the cycle time required using dynamic RAM. The cycle

109

Appendix D. Simulation Details 110

Device Speeds
Device Parameter Time (nanoseconds)

Core Processing Node
instruction execution time 200
local memory cycle time 200
buffer memory cycle time (random) 200
buffer memory cycle time (sequential) 50
communication memory 200

Host Interface
instruction execution time 200
local memory cycle time 200
buffer memory cycle time (random) 200
buffer memory cycle time (sequential) 50
communication memory 200

Network Interface
instruction execution time 200
local memory cycle time 200
buffer memory cycle time (random) 200
buffer memory cycle time (sequential) 50
communication memory 200

General
global share memory cycle time 100
shared bus arbitration time 5
packet bus arbitration time 5

Table D.l: Parameters for the 5 MIPS configuration.

Appendix D. Simulation Details 111

Device Speeds
Device Parameter Time (nanoseconds)

Core Processing Node
instruction execution time 100
local memory cycle time 100
buffer memory cycle time (random) 100
buffer memory cycle time (sequential) 50
communication memory 100

Host Interface
instruction execution time 150
local memory cycle time 150
buffer memory cycle time (random) 200
buffer memory cycle time (sequential) 50
communication memory 150

Network Interface
instruction execution time 150
local memory cycle time 150
buffer memory cycle time (random) 200
buffer memory cycle time (sequential) 50
communication memory 150

General
global share memory cycle time 80
shared bus arbitration time 5
packet bus arbitration time 5

Table D.2: Parameters for the 10 MIPS configuration.

Appendix D. Simulation Details 112

Device Speeds
Device Parameter Time (nanoseconds)

Core Processing Node
instruction execution time 67
local memory cycle time 70
buffer memory cycle time (random) 100
buffer memory cycle time (sequential) 50
communication memory 100

Host Interface
instruction execution time 100
local memory cycle time 100
buffer memory cycle time (random) 200
buffer memory cycle time (sequential) 50
communication memory 100

Network Interface
instruction execution time 100
local memory cycle time 100
buffer memory cycle time (random) 200
buffer memory cycle time (sequential) 50
communication memory 100

General
global share memory cycle time
shared bus arbitration time
packet bus arbitration time

60
5
5

Table D.3: Parameters for the 15 MIPS configuration.

time for the random access port of the buffer memory can be accommodated by taking

advantage of the page mode access. For example, the TMS33C251 dual-port video RAM

can have as low a page mode cycle time as 60 nanoseconds [29]. Most packet accesses

should be within the same row of memory, so for most accesses this mode can be used.

For the communication memory, static memory can be used to accommodate this cycle

time. The global shared memory will also have to utilize static memory.

The details for the 15 MIPS configurations are given in Table D.3.

Appendix D. Simulation Details 113

As with the 10 MIPS configuration, the memory cycle times for the memories are

quite low. For the processor's local memory, bank-switching can be used to get this

type of cycle time using dynamic RAM. The cycle time for the random access port of

the buffer memory can be accommodated by taking advantage of the page mode access.

Most packet accesses should be within the same row of memory, so for most accesses

this mode can be used. For the communication memory, static memory can be used to

accommodate this cycle time. The global shared memory will also have to utilize static

memory.

The block size used for the buffer memory for all three configurations was 1024 bytes.

This is based on the row size of the dual-ported memory being 256 which when organized

with a word width of 4 bytes results in the 1024 byte figure.

D.2 Shared Memory Design

There were three different configurations used for evaluating the shared memory design.

The main difference between the configurations was the instruction execution time: 5,

10 and 15 million instructions per second. A cache block size of 4 32-bit words is used

with cache loading and flushing done 4 words at a time. The shared global memory and

shared buffer memory are interleaved four ways, ie 4 consecutive words are located on 4

separate banks. This allows fairly slow dynamic random access memories to be used for

shared memory and still get a low effective memory access time.

The details for the 5 MIPS configurations are given in Table D.4.

The memory cycle times are large enough such that dynamic random access memory

can be used for all memory. The dual-ported memory is used for the buffer memories.

The details for the 10 MIPS configurations are given in Table D.5.

Again, the memory cycle times are large enough that dynamic RAM can be used.

Appendix D. Simulation Details 114

Device Speeds
Device Parameter Time (nanoseconds)

Core Processors
instruction execution time 200
cache cycle time 200

Host Interface
instruction execution time 200
local memory cycle time 200
buffer memory cycle time (random) 200
buffer memory cycle time (sequential) 50
communication memory 200

Network Interface
instruction execution time 200
local memory cycle time 200
buffer memory cycle time (random) 200
buffer memory cycle time (sequential) 50
communication memory 200

General
global share memory cycle time 120,160,200
buffer memory cycle time (random) 120,160,200
buffer memory cycle time (sequential) 50
shared bus arbitration time 5
packet bus arbitration time 5

Table D.4: Parameters for the 5 MIPS configuration.

Appendix D. Simulation Details 115

Device Speeds
Device Parameter Time (nanoseconds)

Core Processors
instruction execution time 100
cache cycle time 100

Host Interface
instruction execution time 150
local memory cycle time 150
buffer memory cycle time (random) 150
buffer memory cycle time (sequential) 50
communication memory 150

Network Interface
instruction execution time 150
local memory cycle time 150
buffer memory cycle time (random) 150
buffer memory cycle time (sequential) 50
communication memory 150

General
global share memory cycle time 120,160,200
buffer memory cycle time (random) 120,160,200
buffer memory cycle time (sequential) 50
shared bus arbitration time 5
packet bus arbitration time 5

Table D.5: Parameters for the 10 MIPS configuration.

Appendix D. Simulation Details 116

Device Speeds
Device Parameter Time (nanoseconds)

Core Processors
instruction execution time 67
cache cycle time 67

Host Interface
instruction execution time 100
local memory cycle time 100
buffer memory cycle time (random) 150
buffer memory cycle time (sequential) 50
communication memory 100

Network Interface
instruction execution time 100
local memory cycle time 100
buffer memory cycle time (random) 150
buffer memory cycle time (sequential) 50
communication memory 100

General
global share memory cycle time 120,160,200
buffer memory cycle time (random) 120,160,200
buffer memory cycle time (sequential) 50
shared bus arbitration time 5
packet bus arbitration time 5

Table D.6: Parameters for the 15 MIPS configuration.

The details for the 15 MIPS configurations are given in Table D.6.

For the network and host interface local memories, bank-switching can be used with

dynamic RAMs to obtain the required cycle time. For the communication memories of

the network and host interfaces, static RAM can be used to obtain the required cycle

time.

sectionSystematic Aspects of the Simulation

This section discusses some of the systematic aspects of the simulations. What is

discussed here applies to both designs.

Appendix D. Simulation Details 117

To carry out the simulations, the number of instructions accessing memory and the

number of instruction accessing only registers had to be determined. Upon inspection

of the Motorola 68020 assembler code obtained through compilation, about half of the

instructions were found to access memory. This 50/50 ratio was used in the simulations.

It should be noted that this figure is dependent to a certain degree on the compiler and

to a larger degree on the type of processor in use. The number of instructions accessing

shared memory (state information) and buffer memory (packet header) are known. The

remainder of the memory accesses were attributed to be local memory accesses. For

simulating the ASN.l encoding/decoding, the number of accesses to buffer memory was

set to twice the length of data in words. This simulates reading all of the packet data and

writing all of the packet data. The rest of the memory accesses were again attributed to

be local memory accesses.

The amount of time between checking a lock value was set to the amount of time

required to execute 25 instructions. The amount of time was set this high because the

amount of time state information is locked for the transport, session, and presentation

layers is at least 10 times the interval selected.

The timer processing was assigned to one processor, which was not assigned any

packets to process. The number of processors parameter does not include this processor.

The number of instructions required to allocate and deallocate buffer memory and

state memory was set to 25 instructions. This is based on the use of fixed size blocks for

both the buffer and state memory management. The number of instructions required to

search for connection state information was also set to 25 instructions. In [5], a method

for performing the state information search in 25 instructions and techniques for reducing

this further are outlined.

Bibliography

M.Bilgic and B.Sarikaya, "An ASN.l Encoder/Decoder and its Performance", In­
ternational IFIP WG 6.1 Symposium on Protocol Specification, Testing and Verifi­
cation, Ottawa, June 1990, pp. 133-150.

CCITT Recommendation X.200, "Reference Model for Open System Interconnection
for CCITT Applications", 1988.

D.Cheriton and C.Williamson, "VMTP as the Transport Layer for High Performance
Distributed Systems", IEEE Communications Magazine, June 1989, pp.37-44.

G.Chesson, "XTP/PE Design Considerations", Proceedings of the IFIP WG
6.1/WG 6.4 International Workshop on Protocols for High-Speed Networks, Zurich,
Switzerland, May 1989, North-Holland, pp. 27-33.

D.Clark, V.Jacobson, J.Romkey and H.Salwen, "An Analysis of TCP Processing
Overhead", IEEE Communications Magazine, June 1989, pp. 23-29.

D.Clark, M.Lambert and L.Zhang, "NETBLT: A High Throughput Transport Proto­
col", Frontiers in Computer Communication Technology: Proceedings of the ACM-
SIGCOMM 87, Stowe, VT, August 1987, pp. 353-359.

D.Clark and D.Tennenhouse, "Architectural Considerations for a New Generation
of Protocols", Communications Architectures and Protocols: Proceedings of the
ACM-SIGCOMM 90, Philadelphia, PA, September 1990, pp. 200-209.

D.Clark, "The Structuring of Systems Using Upcalls", Proceedings of the 10th ACM
Symposium on Operating System Principles, Oakland, CA, December 1985, pp. 171-
180.

A.Cockburn, "Efficient Implementation of the OSI Transport-Protocol Checksum
Algorithm Using 8/16-Bit Arithmetic", ACM Computer Communications Review,
Vol. 17, No. 3, July/August 1987, pp. 13-20.

D.Comer, Internetworking with TCP/IP Volume I, Englewood Cliffs, NJ: Prentice
Hall, 1991.

G.Delp, A.Sethi and D.Farber, "An Analysis of Memnet: An Experiment in High-
Speed Shared-Memory Local Networking", Communication Architectures and Pro­
tocols: Proceedings of the ACM-SIGCOMM 88, Stanford, CA, August 1988, pp.
165-174.

118

Bibliography 119

[12] W.Doeringer et al, "A Survey of Light-Weight Transport Protocols for High-Speed
Networks", Research Report RZ 1980 (#70152), IBM Research Division Zurich Re­
search Laboratory, May 1990.

[13] S.Eggers and R.Katz, "Evaluating the Performance of Four Cache Coherency Pro­
tocols", ACM SIGARCH Computer Architecture News, Vol. 17, No. 3, June 1989,
pp. 2-15.

[14] D.Giarrizzo, M.Kaiserswerth, T.Wicki and R.Williamson, "High-Speed Parallel Pro­
tocol Implementation", Proceedings of the IFIP WG 6.1/WG 6.4 International
Workshop on Protocols for High-Speed Networks, Zurich, Switzerland, May 1989,
North-Holland, pp. 165-180.

[15] S.Heatley and D.Stokesberry, "Analysis of Transport Measurements Over a Local
Area Network", IEEE Communications Magazine, June 1989, pp. 16-22.

[16] C.Huitema and A.Doghri, "Defining faster transfer syntaxes for the OSI Presentation
Protocol", ACM Computer Communication Review, Vol. 19, No. 5, October 1989,
pp. 44-55.

[17] IEEE Standard 802.2, "IEEE Standards for Local Area Networks: Logical Link
Control", 1985.

[18] N.Jain, M.Schwartz, and T.Bashkow, "Transport Protocol Processing at GBPS
Rates", Communications Architectures and Protocols: Proceedings of the ACM-
SIGCOMM 90, Philadelphia, PA, September 1990, pp. 188-199.

[19] H.Kanakia and D.Cheriton, "The VMP Network Adapter Board (NAB): High-
Performance Network Communication for Multiprocessors", Communication Archi­
tectures and Protocols: Proceedings of the ACM-SIGCOMM 88, Stanford, CA,
August 1988, pp. 165-174.

[20] T.Nakakawaji et al, "Development and Evaluation of APRICOT", Proceedings of
the Second International Symposium on Interoperable Information Systems, Novem­
ber 1988, pp. 55-62.

[21] National Semiconductor Data Book, "Fiber Distributed Data Interface Designer's
Guide", 1990.

[22] National Semiconductor Preliminary Datasheet, "DP83265 FDDI BMAC System
Interface (BSI)", July 1990.

[23] M.Rose, The Open Book A Practical Perspective on OSI, Englewood Cliffs, NJ:
Prentice Hall, 1990.

Bibliography 120

[24] A.Krishnakumar and K.Sabnani, "VLSI Implementations of Communication
Protocols- A Survey", IEEE Journal on Selected Areas in Communications, Vol.
7, No. 7, September 1989, pp. 1082-1090.

[25] K.Sabnani and N.Netravali, "A High-Speed Transport Protocol for Data­
gram/Virtual Circuit Networks", Computer Architecture and Protocols: Proceed­
ings of the ACM-SIGCOMM 89, Austin, TX, September 1990, pp. 146-157.

[26] W.Stallings, Data and Computer Communications, New York: Macmillan Publish­
ing Company, 1988.

[27] L.Svobodova, "Implementing OSI Systems", IEEE Journal on Selected Areas in
Communications, Vol. 7, No. 7, September 1989, pp. 1115-1130.

[28] A.S.Tanenbaum, Computer Networks, Englewood Cliffs, NJ: Prentice Hall, 1988.

[29] Texas Instrument Databook, "MOS Memory Commercial and Military Specifica­
tions", 1989.

[30] G.Varghese and T.Lauck, "Hashed and Hierarchical Timing Wheels: Data Struc­
tures for the Efficient Implementation of a Timer Facility" ^ Proceedings of the 11th
ACM Symposium on Operation System Principles, Austin, TX, November 1987, pp.
25-38.

[31] R.Watson and S.Mamrak, "Gaining Efficiency in Transport Services by Appropriate
Design and Implementation Choices", ACM Transactions on Computer Systems,
Vol. 5, No. 2, May 1987, pp. 97-120.

[32] C.Woodside and R.Franks, "A Comparison of Some Software Architectures for Par­
allel Execution of Protocols", Technical Report SCE-89-21, Department of Systems
and Computer Engineering, Carleton University, Ottawa, Canada, August 1989, pp.
1-27.

[33] M.Zitterbart, "High-Speed Protocol Implementations Based on a Multiprocessor
Architecture", Proceedings of the IFIP WG 6.1/WG 6.4 International Workshop on
Protocols for High-Speed Networks, Zurich, Switzerland, May 1989, North-Holland,
pp. 151-163.

