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Abstract 

An important measure of the performance of error detecting codes is the 

probability of undetected error. Extensive study on the subject has yielded 

results which allow for the computation of the probability of undetected error 

for many codes on the binary symmetric channel (BSC). However, little is 

known about code performance in more complicated channel models. The 

Gilbert channel is a two-state, three-parameter model with memory which simu

lates the effects of burst noise. In this thesis, we investigate methods to compute 

the probability of undetected error of binary linear block codes on this channel. 

We examine an approach to approximate code performance based on the 

P(m,n) distribution which is the probability of m errors in a block of n bits and 

the weight distribution of the code. For the Gilbert channel, P(m,n) can in prin

ciple be calculated from the channel parameters. In practice however, existing 

methodologies suffer from rather excessive computational requirements, particu

larly when n is larger than one thousand or so. We have developed an efficient 

method to calculate P(m,n) for reasonable channel parameters. This allows the 

probability of undetected error for many codes to be readily estimated. 

For certain channel and code parameters, the approximation method 

described above may not be sufficiently accurate. Exact analytical results are 

difficult to obtain, however; because unlike the BSC, the probability of a 

particular error pattern on the Gilbert channel depends not just on the number of 

i's in the pattern. Nevertheless, by appropriately exploiting certain symmetries 

present on the Gilbert channel, we can acquire some useful results. We have 

derived the probability of undetected error for the single parity check code. We 
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have also obtained a formula for summing over a cyclic class of vectors and 

shown that reciprocal generator polynomials generate cyclic codes which have 

the same probability of undetected error on the Gilbert channel. 

The Monte Carlo simulation technique is often used when exact analysis 

is difficult. In a simulation study of CRC codes, we are able to observe several 

interesting qualitative results with just a reasonable amount of computational 

effort. We find that as on the BSC, on the Gilbert channel the probability of 

undetected error does not always increase with worsening channel conditions. 

Also, the CRC-CCITT code appears to maintain its superiority in terms of error 

detection performance over the CRC-ANSI code on the Gilbert channel, and 

perhaps most significantly, for some ranges of channel parameters, the 

probability of undetected error estimated using BSC results with the effective bit 

error rate can be quite inaccurate. 
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1. Introduction 

The ability to exchange or retrieve information accurately and efficiently 

is of paramount importance in everyday life. The speed and accessibility 

requirements of today have led to complex communications architectures, 

enough so that it is customary to consider a layered structure where each layer 

serves as a virtual communications link. At the most basic level (the "physical 

layer"), the link is physically real and consists of a data source, an encoder, a 

channel over which the data is transferred, a decoder, and the final output as the 

receiver's interpretation of the original message. Clearly, correct and efficient 

operation at this level is essential and ultimately related to the performance of a 

complex hierarchical system. The physical communications channel may be 

thought of as being described by the medium over which data is transmitted or 

stored and the method by which such data is represented (modulation). The 

problem is that in general, due to various imperfections, the channel distorts the 

original message. It is the purpose of coding to add redundancy in a well 

defined manner to the source data in order that discrepancies from the original 

message may be detected and/or corrected by the receiver. 

Coding is a mathematical scheme which maps each possible message con

sisting of a sequence of symbols into a distinct sequence of symbols known as a 

codeword [1-3]. In practice, the sets of message and codeword symbols, that is, 

the message and codeword alphabets, are often identical. Naturally, the most 

common alphabets used for digital communications consist of powers of two 

symbols so the binary alphabet {0,1} is one of particular significance. In a block 

code, the number of symbols in a message or codeword is fixed. If the messages 
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7. Introduction 2 

are of length k and the alphabet is of size s, there are sk k-tuples representing all 

possible messages. The k-tuples spanning the space are mapped one to one 

into the space of n-tuples V n . A linear mapping (with respect to addition and 

multiplication in the finite field GF(s)) is particularly simple to visualize and 

implement as it can be accomplished by matrix multiplication. A linear block 

code C(n,k) is then defined to be a k-dimensional linear subspace of V n . For a 

message m (k-dimensional row vector), the corresponding codeword c (n-

dimensional row vector) is given by c=mG where G (kxn matrix with rank k) is 

known as the generator matrix. The extra n-k symbols are called parity symbols. 

It is often convenient to represent a codeword by a polynomial. That is, we 

identify the coordinate representation (co,Ci,...,cn.i) of a codeword c with the 

polynomial c(x)=c0+Cix+...+c11.1xn"1. One particular class of linear block code 

which has been much studied and often used in practice is the class of cyclic 

codes. A cyclic code has the property that if a given vector is a codeword, then 

so are all vectors which arise from cyclic permutations of this vector. A cyclic 

code can be characterized by a generating polynomial g(x) of degree n-k. The 

codewords of a cyclic code are then given by the set of all polynomials (g(x)d(x)} 

where d(x) is a polynomial with degree at most k-1. 

Let cGC(n,k) be a transmitted codeword. The received vector v € V n may 

be written as v=c+e where e G V n is the error vector representing the distortions 

or noise introduced by the channel. Hence, the ith component of e is a 0 or 1 

depending on whether the ith bit transmission is error free or in error 

respectively. In general, e^O and v£C(n ,k ) ; this being the case the receiver has 

several recourses. If the code is used for error detection, v is discarded and a 

retransmission is requested (the procedure by which this occurs is the function 
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of the second layer in the comrnunications hierarchy, the "data link layer", with 

which we will not be concerned here). It is also possible that the received vector 

v £ C ( n , k ) but v^c in which case the code has failed to detect the error. The 

probability of undetected error is then a measure of reliability of an error-

detecting code. If the code is used for error correction, an estimate c' 6 C(n,k) is 

found based on v and the maximum likelihood principle. An error in decoding 

results if the estimate is incorrect, that is if cVc . Thus the probability of 

decoding error is a measure of the ability of an error-correcting code to identify 

correctly a codeword that is corrupted by noise. A code can also be used for 

simultaneous error detection and correction, that is to decode received vectors 

which are reasonably similar to corresponding codewords and reject those 

which are too dissimilar. In general, error correction is much more difficult to 

analyze and implement than error detection. In the following we consider only 

binary linear block codes used for error detection. 

One of the simplest noise models is the binary symmetric channel (BSC). 

In this channel, two possible symbols, 0 and 1, or bits in this case, are transmit

ted and received. There is a probability e that a transmitted bit will be received 

incorrectly. Successive errors are independent. The bit error rate e is assumed to 

be constant and representative of the overall channel conditions. For a linear 

code, the probability of undetected error is independent of the particular code

word transmitted and is just the probability that the error vector is itself a code

word. The Hamming weight (or simply weight) of a vector v, denoted wt(v), is 

the number of l's that it contains. If the number of codewords with Hamming 

weight i is Aj (i=0,...,n), the Hamming weight enumerator is the polynomial 

defined by 
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A(z)= I Aiz1 . (1.1) 
i=0 

For the BSC, all error vectors of weight i have probability e^l-e)11'1 so that 

knowledge of the weight distribution of a code is sufficient for computing its 

probability of undectected error since 

P u = prob(e*0, eeC(n,k)) 

= I AieKl-e)11-1 

i=l 

= (l-e)n[A(e/(l-e))- 1] . (1.2) 

There is a large body of literature describing many results and techniques used 

in the study of weight enumerators [1-3]. Regarding P u itself, an important 

characteristic is whether it is monotonic with respect to e. A code where P u is 

monotonically increasing with e is called proper. Properness and other aspects 

of P u are discussed for various codes on the BSC in [4-11]. 

While the BSC is useful for describing channels afflicted by random or 

shot noise errors, its memoryless nature renders it inappropriate for channels 

where errors tend to occur in clusters or bursts. Burst noise effects are typically 

associated with multipath fading in radio channels, switching transients and 

crosstalk on wired channels, and surface defects and foreign particles on mag

netic storage media. The Gilbert channel, illustrated in Fig. 1.1, is a model 

devised to simulate such burst effects [12]. The channel consists of two states, a 

"good" state G where transmission is completely error-free and a "bad" state B 

where the probability of correct transmission is h; a state transition from G to B 

occurs with probability P and from B to G with probability p. It is convenient to 

define Q=l-P, q=l-p, and h'=l-h so Q is the probability of remaining in state G, 



7. Introduction 5 

P 

Figure 1.1 The Gilbert channel 
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q is the probability of remaining in state B, and h ' is the bit error rate while in 

state B . As well, we denote the average or unconditional probability of the 

system being in state B by PB=P/(P+P), the corresponding probability for state G 

by p G = p / ( P + p ) , and the effective bit error rate of the channel by e e f f = p R h ' . For 

suitable (small) values of P and p, the model produces the type of burst error 

statistics that are of interest. The idea is that most of the time the channel is in 

the good state but occasionally, due to a change in the transmission 

characteristics, the channel lapses into the bad state which tends to persist. As 

an example, Gilbert found an adequate fit using h=0.84, P=0.003, p=0.034 for 

Call #1296 which was over a 500-mile radio path with loaded cables at the ends 

from the telephone circuit measurements of Alexander, Gryb, and Nast [13]. An 

extension to the Gilbert channel where G is not completely error-free but has a 

probability of correct transmission g ( g >h ) was considered by Elliott [14] and 

hence is known as the Gilbert-Elliott channel. 

As the Gilbert channel is a system with memory, the probability of the 

next error vector bit being 0 or 1 depends on the current state of the channel and 

therefore on the past history of bits. However, this dependence can extend back 

only as far as when the last 1 was received since that pins down the system in 

the B state at that instant. Alternatively, the conditional independence can be 

expressed by prob(e I ...20i)=prob(e 110) where e=0,l and the superscript 

j=0,l,... denotes the number of repetitions. If w{j)=prob($i), v(j)=prob(0>2 11), 

and u(j)=prob($ 11), then the probability of a particular error vector e can be 

decomposed [14] as 

l e l - l 
prob(e) = w(a) j [~[ v(bO \ u(c) (1.3) 

i=l 
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where a is the number of O's before the first 1, b\ is the number of O's between the 

ith and (i+l)th 1, and c is the number of O's following the last 1 in e. The above 

"building block" probabilities in the Gilbert channel can be drawn directly from 

the study of recurrent events in probability theory [15]. The results are 

u(j) = [(J+p-Q)Jj - (L+p-Q)U] 

v(j) = j £ [(qJ+p-Q)JJ - (qL+p-Q)U] 

w(j) = pBu(j) (1.4) 

where 

J = |{Q+hqW(Q+hq)2+4h(p-Q)} 

L = |{Q+hq-V(Q+hq)2+4h(p-Q)} (1.5) 

are the roots of the quadratic D(t)=t2-(Q+hq)t-h(p-Q). 

Generally, in order to find the probability of undetected error of a C(n,k) 

code in the Gilbert channel, we need to sum over 2 k -l expressions of the form 

given in (1.3). Consider the computational effort required for such an exhaus

tive evaluation technique. To generate a codeword e (using matrix multiplica

tion) requires 2nk additions and multiplications. Assuming that the u(-), v(-), 

and w(-) are precomputed, to compute prob(e) requires wt(e)+l multiplications. 

Then overall, at least approximately ( l + 2 n k + n / 2 ) 2 k « n k 2 k + 1 arithmetic 

operations are required to obtain P u for each set of parameters P, p, h. We see 

that the number of such operations and therefore the computational complexity 

grows rapidly with k. For even a modest size code, say the Hamming (31,26) 

code, the actual computation using a Sun SPARC® station 1 workstation takes 

approximately 4 days. As a matter of comparison, the MATLAB® benchmark 
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tests rate the SPARC® station 1 at 1.4 Mflops (millions floating point instructions 

per second) and the Cray XMP® supercomputer at 33 Mflops. The codewords 

themselves can be precomputed and stored to effect a small savings of factor 4k, 

but storing all codewords requires 2kn bits of media space which for the above 

example of the Hamming (31,26) code is approximately 260 Mbyte. Clearly, 

determining P u by exhaustive computation for all but the shortest codes is 

impossible even with the most powerful computing facilities that are currently 

available. The main difficulty is the exponential increase in the number of 

codewords with k. For the BSC, the situation is alleviated by the natural divi

sion of the codewords into n weight classes since all codewords with a given 

weight have the same probability and that is why the weight distributions of 

block codes have been studied extensively. For the Gilbert channel however, 

knowledge of a code's weight distribution is of no direct value; the general prob

lem of determining P u is much more difficult. Nevertheless, we have already 

alluded to the importance of coding and the fact that channel conditions are 

often not representable by the BSC alone so this problem deserves investigation. 

Our objective here will be to find viable means of computing P u. 

Two binary linear block codes are said to be equivalent to each other if the 

generator matrix of one can be obtained by a column (coordinate label) permuta

tion of any generator matrix of the other [3]. Evidently, this definition is 

motivated by the fact that, on a BSC, equivalent codes have identical error 

detecting (and error correcting) properties since they have exactly the same 

weight enumerators. In general, the average probability of undetected error 

E[PU(C)] over all equivalent codes of a given code C(n,k) depends only on the 

weights Ai and the probability P(m,n) of m errors in a block of n bits. E[PJ may 
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be considered an approximation to PU(C) [14]. This approach appears feasible 

for the Gilbert channel as P(m,n) may be obtained from recursion relations given 

by Elliott [14,16] or a closed form expression given by Cuperman [17]. In 

practice, however, the computation is problematical, especially if n is larger than 

one thousand or so. We address these problems in Chapter 2 by developing a 

technique that computes P(m,n) efficiently for reasonable channel parameters. 

As well, we make some observations regarding the validity of the E[PJ 

approximation and the performance of some short cyclic codes of the BCH 

(Bose-Chaudhuri-Hocquenghem) type relative to their equivalents. There has 

also been an approach to approximating P u using the burst length distribution 

Q(l,n) where 1 is the burst length defined as the number of bit positions from the 

first to last error inclusive although it does not appear to be applicable for many 

realistic channel conditions [18]. 

In general, it is difficult to find exact analytical expressions for P u . In fact, 

no nontrivial result of this type is known. A single parity check code is one of 

the simplest linear block codes; an extra bit which is the modulo 2 sum of the 

message bits is appended to the original message to form a codeword. Chapter 3 

consists primarily of the derivation of P u for the single parity check code. We 

also give there an expression for the probability of a given vector and its cyclic 

permutations which may be useful in determining P u for cyclic codes as well as 

an identity regarding the P u of cyclic codes which have generator polynomials 

satisfying a particular relationship. 

A commonly used technique for determining error rates in communica

tions systems is the Monte Carlo Simulation [19]. Random noise effects are com

puter generated according to some fixed distribution corresponding to system 
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parameters and error events are tabulated. The average number of such events 

over a large number of samples can then be taken as an estimate of the actual 

physical error rate. As an application of the Monte Carlo technique, we study 

the performance of two CRC (Cyclic Redundancy Check) codes in the Gilbert 

Channel. A CRC codeword consists of the message bits plus a number of parity 

bits which corresponds to the remainder of a modulo 2 division of the message 

expressed as a polynomial and a predetermined polynomial known as the CRC 

generator polynomial. A judiciously chosen generator polynomial endows the 

CRC code with some desirable error detection characteristics. In particular, CRC 

codes are known for their strength in detecting burst errors. Hence, it is 

reasonable and useful to examine CRC codes under burst channel conditions in 

order to compare with and augment the conventional BSC results. 

In Chapter 5, we give a summary of our findings and discuss topics which 

may deserve further study. Two appendices give some necessary details for the 

computations in Chapter 2. A third appendix contains the source code listings 

for the programs used in the numerical computations and simulations. 

Maple is a registered trademark of Waterloo Software Systems. 

M A T L A B is a registered trademark of The Math Works, Inc. 

Sun SPARC is a registered trademark of Sun Microsystems. 

Cray XMP is a registered trademark of Cray Research, Inc. 



2. Approximation By Averaging 

2.1 Using P(m,n) to Approximate Pu 

If P(m,n) is the probability of m 2's in an error vector of length n bits, then 

the average probability of a weight m error vector is P(m,n)/cm where 

cm=n!/[m!(n-m)!] is the binomial coefficient. Hence an approximation to the 

probability of undetected error of a C(n,k) code is given by 

The idea is that even though codewords within the same weight class may in 

general have rather different probabilities, collectively these differences tend to 

cancel so if A m is quite large, we can expect the total probability of all weight m 

codewords to be reasonably approximated by A m times the average probability 

of a weight m vector. 

Let TC be a permutation of n indices. Denote the equivalent code resulting 

from the application of K to the vectors of C(n,k) by 7tC(n,k). Then as noted by 

Elliott [14], 

'm 
(2.1) 

m=l 

11 
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E[PJ = ^ I Pu(7tO 
7t 

= T7 £ E prob(x) 
* rt x^OxercC 

= ~7 E E prob(Trx) 
* X ^ O x S C TC 

= 37 E [wt(x)]![n-wt(x)]!P(wt(x),n) 
" x ? i O x € C 

= £ (Ai/c?)P(i,n) (2.2) 
i=l 

so the approximation for P u in (2.1) is in fact also the exact average over equiva

lent codes. 

Unfortunately, there is no a priori way of determining the effectiveness of 

the approximation (2.1). We can obtain some empirical results only by 

experimentation. However, because of the connection set forth by (2.2), at least 

we also get information regarding the relative performance of codes as com

pared to their equivalents. That is, if the exact P u for a code were known, 

comparison with (2.1) or (2.2) in the first context gives a measure of the accuracy 

of the approximation and in the second context a measure of how well the code 

performs in error detection relative to its equivalent codes. From a practical 

viewpoint though, we must first be able to compute P(m,n) efficiently. The 

P(m,n) distribution, also known as the counting distribution, has been studied 

for a variety of channel models [20] and is often parametrized by experimentally 

measured statistical quantities. For the Gilbert channel however, it can be 

expressed directly in terms of the fundamental channel parameters. 
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2.2 A Series Expansion for P(m,n) 

A renewal process is a process where the occurrence of an event resets the 

state of the system, or in our present terminology, one where an error deter

mines the state of the channel. The P(m,n) distribution for a renewal process is 

given quite generally by the recursion relations [16] 

P(0,n) = 1 - E w(i) 
i=l 

n-m+1 

P(m,n)= E Piu(i-l)R(m,n-i+l); l < m < n (2.3) 
i=l 

where 

R(l,n) = u(n-1) 
n-m+1 

R(m,n)= E v(i-l)R(m-l,n-i); 2<m<n , (2.4) 
i=l 

u(-), v(-), and w(-) have the same meaning as the definitions given before (1.4), 

and pi is the unconditional bit error rate (eeff for the Gilbert channel). 

Computing P(m,n) this way requires a number of summations increasing as n 4 . 

The main difficulty however is the amount of memory required to store R(m,n) 

in a typical computational algorithm. For instance, a 1000x1000 array of 

numbers of type double in the C programming language (providing 

approximately 15 decimal place accuracy) requires about 8 Mbyte. Hence, in 

practice it would be awkward to handle n much larger than 1000 or so. 

Moreover, it is difficult to infer directly any relationship between P(m,n) and the 

channel parameters using this recursive technique. This would be a 

disadvantage, for instance, in the reverse problem where channel parameters 
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must be extracted from experimental distributions for then an analytic form is 

almost certainly preferred. 

A set of recursion relations for computing P(m,n) specific to the Gilbert 

channel requiring order n 2 summations is given in [14]. See (3.3), (3.4). 

However, the memory requirement is double that of the general recursive 

technique. Also, for n small, the computational time is not much different and is 

in fact inferior to that of the method which we will propose. Hence we do not 

discuss the latter recursion method further in this chapter. 

A nonrecursive approach to computing P(m,n) for the Gilbert channel 

was given by Cuperman [17]. If P0(m,n) is the probability that the system is in 

the B state m times out of n, then P(m,n) is just 

P(m,n) = (l-h)m £ cih^PoG,!!) (2.5) 

It can be shown that 

Po(m,n) = <j 

P + p Q n l ; m=0 

p m - l 2 

B T r Z I Vm+tC? q n > J - l Q n - m . j . t ( p _ q ) i + t . l < M < N . 1 
r ~ t * 1 j=0 t=0 

p 
q n l ; m=n . 

P+p 

(2.6) 

See Appendix A for details concerning the derivation of (2.6). The second 

equation has been written in a slightly more compact form than the 

corresponding equation in [17]. However, note in particular that its range of 

validity is actually l<m<n- l rather than l<m<n/2 as stated in [17]. On the 

surface, (2.5) and (2.6) appear to provide quite an efficient means of computing 
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P(m,n) with order n 3 summations. This is not so however as the evaluation of 

P0(m,n) is actually quite problematical. The difficulty is in the amount of 

numerical accuracy required. The data in Table 2.1 illustrates the point. We 

have tabulated there each of the m terms, s(j) for j=0,...,m-l, in the summation 

for P0(m,n), calculated using double precision C language routines. The state 

transition probabilities are fixed at P=.001, p=0.1 and m=20 is taken. Note that 

for ease of reading, only 7 significant digits are displayed; the actual 

computations in C are performed to the full 15 digits accuracy. The sums of s(j) 

over j are compared with the results obtained using the infinite precision 

computation of Maple®. For n=30, agreement is quite precise. For n=40, the 

deviation is slight. For n=50, however, the C program generated result is a 

nonsensical one. The problem is that in general, each term s(j) in the summation 

for P0(m,n) is large (absolute value much greater than one) but such large 

numbers must add together to give a small (positive) number (much less than 

one). In the above case n=50, the largest s(j) are of the order 101 3 while the 

actual P0(m,n) is of the order 10"4 so a posteriori, it is evident that at least 17 

decimal digits accuracy is required for proper computation. Similarly, for the 

case n=40, we see that only 2 or so digits of accuracy can be expected with C 

routines. With n=500 say, hundreds of digits of accuracy are typically required. 

This order of numerical accuracy is supported by specialized computing 

packages such as Maple® though the drawback is extremely long execution time. 

Using a SPARC® station 1, the computation for a single P0(m,n) when n « 5 0 0 

can take up to one hour. 

Here we develop a method to circumvent the problems that are encoun

tered by the previous methods. For most channel conditions which the Gilbert 
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P=0 .001 , p=0.1 

j 
s(j) 

j 
n=30 n=40 n=50 

0 1.924937e+04 5.373783e+07 1.270440e+10 
1 -1 .293079e+05 -5 .322397e+08 - 1 . 4 9 4 8 8 7 e + l l 
2 3.840047e+05 2.436174e+09 8 . 2 2 5 3 2 3 e + l l 
3 -6 .627478e+05 -6 .835843e+09 -2 .811022e+12 
4 7.347007e+05 1.315219e+10 6.684053e+12 
5 -5 .453716e+05 -1 .838674e+10 -1 .173890e+13 
6 2.737843e+05 1.930997e+10 1.577618e+13 
7 -9 .148801e+04 -1 .553482e+10 -1 .658501e+13 
8 1.940020e+04 9.675176e+09 1.382414e+13 
9 -2 .346285e+03 -4 .683027e+09 -9 .204888e+12 

10 1.221875e+02 1.758559e+09 4.909311e+12 
11 -0 .000000e+00 -5 .086999e+08 -2 .093842e+12 
12 0.000000e+00 1.119024e+08 7 . 0 9 9 2 2 9 e + l l 
13 -0 .000000e+00 -1 .835178e+07 - 1 . 8 9 2 8 7 5 e + l l 
14 0.000000e+00 2.179734e+06 3.902036e+10 
15 -0 .000000e+00 -1 .797807e+05 -6 .061153e+09 
16 0.000000e+00 9.669907e+03 6.820174e+08 
17 -0 .000000e+00 -3.070471e+02 -5 .213714e+07 
18 0.000000e+00 4.822956e+00 2.405282e+06 
19 -0 .000000e+00 - 2 . 5 1 1 7 9 4 e - 0 2 -5 .013373e+04 

E s(j) 3 .934083e-04 5 .258999e-04 - 2 . 9 1 0 6 6 2 e - 0 3 

Actual P(20,n) 3 .934082e-04 5 .302741e-04 6 .672299e -04 

Table 2.1 Computation of P0(20,n) using (2.6) and double 
precision C language routines. 
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channel is designed to reasonably simulate, P^O .01 and P/p^0.1. That is, P is 

nominally a small parameter so we can express (2.6) as a power series in P. 

Then P(m,n) can be computed from (2.5) using an approximation for P0(m,n) 

that is its truncated power series, the number of terms taken corresponding to 

the accuracy desired. The point is that successive terms in the expansion get 

progressively smaller so that severe numerical precision is not required. 

In order to derive a compact expression for the order r contribution to 

Pn(m,n), it is simpler to start from an alternate form of (2.6). Since 

P0(m,n)(P,p) = prob(system in state B m times out of n) 

= prob(system in state G n-m times out of n) 

= prob(system in state B n-m times out of n with 
state transition probabilities reversed) 

= P0(n-m,n)(p,P) , (2.7) 

the second line in (2.6) can be written 

n-m-l 2 P0(m,n) = P G £ £ cnT_1 cm-̂  °t Q^V^ P - q ) 1 

i+t 
j=0 t=0 

2 n-m-1 = P c q m £ cK-lf £ c-F1 (-1)* 
t=0 j=0 j+t n-m-j-1 • L E o>£Ĉ Y1 (-P) a +v (2.8) 

a=0 0=0 

Denote the coefficient of the P r term in (2.8) by Pn(m,n;r), that is, write 

n-m+1 P0(m,n) = p G I P0(m,n;r) P r , (2.9) 
r=0 

then 
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n-m-l 

P0(m,n;r) = (-l)rqm-r £ c2(-l)1 £ c ^ f 1 c m ^ (-1)1 £ cj+t c n-m-j - i q P 

= (-D rqm- r £ q p t CtC-D4 

P = o t = o 

n-m-l 

Vj ( . ^ c n ^ l c n - t ^ t c n - m - j - l 

I j=0 
(2.10) 

The last expression can be simplified using the results in Appendix B. For t=2, 

the factor in braces is 

n-m-l 
£ ( - l ^ C n - m - l ^ ^ c n - m - j - l 

j=0 

— 1 (n-2-,j)! (i+2)(i+l) 
(m-2-j)!(n-m) (r-p)![j+2-(r-P)]! p!(n-m-j-l-(3)! 

j = o 

^ n-m-l , . 

- (n-m)R!(r-P)! 1 i y [n-(n-m)-2-j]![j-(r-P-2)]![(n-m)-P-j-l]! 
j = o 

. {[j-(r-P-2)]|j-(r-P-l)] + 2(r-P)[j-(r-P-2)] 

+ (r-P)(r-P-l)} 

= (n-m)PKr-P)! (U(n,n-m,2,r-p\P) + 2(r-P)U(n,n-m,2,r-P-l,P) 

+ (r-p)(r-p-l)U(n,n-m,2,r-p-2,p)} . (2.11) 

where the function U(-,•,-,-,•) is as defined in (B.l). Similarly, for t=l and t=0, 

we have 

n-m-l 

Vj ( . l y c n - m - l c n - ^ ^ l c n - m - j - l 

j=0 

= (n-m)p!(r-P)! {U(n+l,n-m,2,r-P,P) 

+ (r-P)U(n+l,n-m,2,r-p-l,P)} . (2.12) 

and 
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g \ . 1 ) i c n - m - l c ^ C r J p C n . r n - j - l 

j = 0 

= (n-m)p!(r-P)! {U(n+2,n-m,2,r-p,p)} (2.13) 

respectively. Hence, summing over t in (2.10) gives 

P o ( m ' n ' r ) = (- 1 ) r^ r

p? 0^(n-m)p!(r-P)! 

. {[U(n+2,n-m,2,r-p,p) - 2U(n+l,n-m,2,r-p,P) 

+ U(n,n-m,2,r-p,P)] 

+ 2(r-p)[-U(n+l,n-m,2,r-P-l,P) + U(n,n-m,2,r-p-l,P)] 

+ (r-P)(r-P-l)U(n,n-m,2,r-P-2,P)} . (2.14) 

The fourth argument of the U(v>V>') function must be nonnegative in order to 

use the results of Appendix B so the summand in the last equation has to be 

treated in three parts. Using (B.5), (B.10), (B.ll), (2.14) becomes after some 

algebra 

P0(m,n;r) = ( - l ) r q m r 7 ^ ) 
rA2 „ (n-m-p+l)(n-m-p) 

* ] pV"q ^ ( n + P> n - m ' 2 > r - 2 > 
-r(n-m-r+2)  

+ ^ ( m + r . i X r - l ) ! V(n+r,n-m,2,r-l) 

L,n-m,2,r) j + ( " q ) r m(mtr)r! V(n+r+l,n-m,2,r) \ (2.15) 

for r>2 where the function V(v>v) is defined in (B.2). For r=l, the same ex

pression holds except that the sum should be ignored. For r=0, only the last 

term inside the braces is present. Thus 
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Po(m,n;0) = 0 

P0(m,n;l) = q 1 ^ 1 ^ {(n-m+l)V(n+l,n-m,2,0) + ^V(n+2,n-m,2,l)} 

P0(m,n;r) = ( - I W T ^ ) 

£ „ (n-m-B+l)(n-m-B) 
£ ( ^ ) P ^RMRi t LV(n+P,n-m,2,r-2) • ; r > 2 . (r-B)!B! 

(2.16) 

Evaluating V(-,•,-,-) by means of (B.9), the three equations can in fact be 

rewritten as one. For consistency, we also write the first and third equations of 

(2.6) as series expansions. The final result is 

P0(0,n;r) = (-l) rcn;1 

1 v» (n-m-B+l)(n-m-B) 
Po(m,n;r) = q™ — c ™ L m ^ 

P0(n,n;r) = q*"1 p 1 5r>0 

c^cm

r

+P(-q)P ; l < m < n - l 

(2.17) 

where 5r/0 equals 1 if r=0 and 0 otherwise. 

To summarize, what we have accomplished thus far is to give a means of 

calculating P0(m,n) through the use of (2.9) and (2.17). However, the 

summation in r can be extended only as far as necessary depending on the 

precision required (and the available computational resources). That is, we can 

truncate (2.9) and take the partial sums as successively better approximations: 

P0(m,n) = p G t P0(m,n;r)Pr = P0

(R)(m,n) (2.18) 
r=0 

The subsequent computation of P(m,n), the quantity which we are ultimately 

interested in, is straightforward as (2.5) involves a relatively small (average n/2) 
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number of positive terms so that great numerical accuracy is not required. The 

number of summations required when determining P(m,n) this way is of order 

n 2 r 2 . Clearly, if the P0(m,n) are known to within a certain percentage accuracy, 

P(m,n) computed from (2.5) can be no worse. 

The efficiency of our technique is summarized in Table 2.2. The entries in 

the table represent the number of terms in the expansion required in order to 

compute P0(m,n) to within 0.1% of the exact value. As expected, the method 

works best for small P since P is the expansion parameter. Also, the number of 

terms required increases with p and n." This dependence can be explained as 

follows. Keeping only terms up to order R in P corresponds approximately to 

discarding processes with more than R G-»B state transitions. A flip-flopping of 

states involves the factor pP so when p is large, processes with relatively large 

numbers of G-»B transitions can less likely be ignored. Similary, if n is large, 

there is more opportunity for the system to make a G-*B transition. 

Some remarks concerning how the table is compiled are in order. The 

ratios IP0(m,n;r+l)Pr + 1 l/lP0

( r )(m,n)I are computed for all m for successive 

values of r. When for a particular value of r=R, the ratio becomes less than 0.1% 

for all m, the computation is stopped and R is entered into the table. We have 

checked extensively using the recursion techique (2.3) for n< 511 and selectively 

using the exact Maple® calculation (2.6) for n>511 that indeed 

{I P0(m,n)-P0

(R)(m,n) l/P0(m,n)} £0 .1%. This justifies our choice of 0.1% both as 

a reasonable level of accuracy and as a "convergence" criterion. However, one 

caveat on the use of our method is pointed to by parenthesized entries in Table 

2.2. For those entries, greater than 15 digits precision is required to compute the 

individual terms P0(m,n;r) for r close to R so that Maple® must be used. 
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n 
P=.00001 

n 
p=.0001 p=.001 p=.01 P=.l D=.3 

7 1 1 1 1 1 
15 1 1 1 1 1 
31 , 1 1 1 1 1 
63 1 1 1 1 2 

127 2 2 2 2 2 
255 2 2 2 2 2 
511 2 2 2 2 3 

1023 2 2 2 3 4 
2047 2 2 2 4 6 
4095 2 2 3 6 10 

n 
P=.0001 

n 
p=.001 p=.01 P=.l p=.3 

7 1 1 1 1 
15 2 2 2 2 
31 2 2 2 2 
63 2 2 2 2 

127 2 2 2 3 
255 2 2 3 4 
511 3 3 4 5 

1023 3 3 5 8 
2047 4 4 8 13 
4095 5 6 (13) (21) 

n 
P=.001 P=.01 

n 
p=.01 p=.l p=.3 P=.l p=.3 

7 2 2 2 2 2 
15 2 2 2 3 3 
31 2 2 2 4 4 
63 3 3 3 6 6 

127 3 3 4 8 8 
255 4 4 7 13 13 
511 5 6 10 (22) (22) 

1023 7 10 17 (40) (41) 
2047 ( ID (17) (30) >50 >50 
4095 (19) (29) >50 >50 >50 

Table 2.2 Efficiency of series expansion technique for computing P0(m,n). 
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From (2.17), we can see that once again the problem is the appearance of large 

numbers with alternating signs in the sum. The dominant factor in the 

summand is cm+p which for large m will give rise to r+1 large numbers unless r 

is quite small. For example, with n=2047, m=1023, p=.01, and r=l l , the 

summand ranges from 3.2xl0 2 8 to 1.4xl031 in absolute value. Note however 

that the problem may not arise for certain combinations of parameters. In 

particular, if P is small enough, PrP0(m,n;r) may in fact be negligibly small for 

large r. Also, if the accuracy requirement is made somewhat less stringent, then 

fewer terms will be needed in the expansion so that the numerical problem can 

be delayed from occurring. Hence, the resummation of (2.6) leading to our 

present formalism has accomplished what we expected in that the terms in the 

expansion (2.9) do indeed become small rapidly for reasonable channel 

parameters although the numerical accuracy problem has not entirely 

disappeared. 

We should also mention that since pG=( 1+P/p)"1, one might think that a 

more consistent technique would also take into account the expansion of this 

factor in (2.8) and (2.9). In fact, we find that doing this results in no 

improvement, neither in accuracy nor efficiency. Rather, it just serves to 

complicate matters as the sum in (2.18) becomes a double sum, and the 

expansion corresponding to (2.9) becomes infinite. 
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2.3 Comparison with Other Methods of Computing P(m,n) 

Cuperman gives the following approximations based on (2.6) together 

with their claimed ranges of validity [17], 

P0(m,n) & Pqm-1Qn-2m[(n-m-l)p+2] ; m P « l , P « p , q 

P(m,n) & P(l-h)m t h imq i l[(n-i-l)p+2] ; n P « l , P « p , q . (2.19) 
i=m 

Both expressions are meant to be used for l<m<n/2. The ad hoc manner in 

which (2.19) is derived does not allow for consistent interpretation or 

improvement. Table 2.3 gives a comparison of approximations for P0(m,n) using 

the first equation in (2.19) and our series expansion method with (2.9) and 

(2.17). For n=256, P=.0001, and p=.3, we take R=4 to give us the 

approximation P0

(4 )(m,n) which is within 0.1% of the exact P0(m,n). As can be 

seen from the table, Cuperman's approximation deviates by as much as 28%. 

Even for m=50 so that mP=.005, the disagreement is still 19%. Generally, the 

second equation in (2.19) is even more inaccurate. With channel parameters 

P=.0001, p=.l, h=.7, even with a block length as small as n=16 (so nP=.0016), 

Cuperman's approximation is off by as much as 55% as Table 2.4 shows. There, 

P (2)(m,n) is the series expansion approximation calculated from (2.5) using 

Po(2)(m,n) and is again within 0.1% of the exact value of P(m,n). Note that only 

two terms in the expansion for P0(m,n) are required to reach that level of 

accuracy. 

The computation of P(m,n) by the recursion relations of (2.3) and (2.4) is 

in general reasonably efficient for n £ 1000. We have already mentioned the 
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11=256, P=.0001, p=.3 

m P0(m,n) 
(Cuperman) 

Po(4)(m,n) % difference 

1 7 .62e -03 7 .62e -03 0 .0 
5 1 .80e-03 1.84e-03 2 . 1 

10 2 . 9 8 e - 0 4 3 .12e -04 4 . 6 
15 4 . 9 1 e - 0 5 5 .27e -05 6 .9 
20 8 .09e -06 8 .89e -06 9 . 0 
25 1 .33e-06 1 .50e-06 1 1 . 0 
30 2 . 1 9 e - 0 7 2 . 5 2 e - 0 7 12 .8 
35 3 .61e -08 4 . 2 2 e - 0 8 1 4 . 5 
40 5 .94e -09 7 . 0 8 e - 0 9 16 . 0 
45 9 . 7 7 e - 1 0 1 .18e-09 1 7 . 5 
50 1 .61e-10 1 .98e-10 18 .8 
55 2 . 6 4 e - l l 3 . 3 0 e - l l 2 0 . 0 
60 4 . 3 3 e - 1 2 5 .49e -12 2 1 . 1 
65 7 .11e -13 9 .13e -13 2 2 . 1 
70 1 .17e-13 1.51e-13 23 .1 
75 1.91e-14 2 .51e -14 2 3 . 9 
80 3 . 1 3 e - 1 5 4 . 1 5 e - 1 5 2 4 . 6 
85 5 .11e -16 6 .85e -16 2 5 . 3 
90 8 .36e -17 1 .13e-16 2 5 . 9 
95 1 .37e-17 1 .86e-17 2 6 . 4 

100 2 . 2 3 e - 1 8 3 .05e -18 2 6 . 8 
105 3 .63e -19 4 . 9 9 e - 1 9 2 7 . 2 
110 5 .92e -20 8 .16e -20 2 7 . 5 
115 9 . 6 3 e - 2 1 1 .33e-20 2 7 . 7 
120 1 .56e-21 2 . 1 7 e - 2 1 2 7 . 9 
125 2 . 5 4 e - 2 2 3 .52e -22 2 7 . 9 
128 8 .52e -23 1 .18e-22 2 7 . 9 

Table 2.3 Comparison with Cuperman's expression for Po(m, 
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n=16, P=.0001, p=.l h=.7 

m P(m,n) 
(Cuperman) 

P<2)(m,n) % difference 

1 6 .69e -04 6 .72e -04 0 .4 
2 4 . 4 0 e - 0 4 4 .52e -04 2 . 6 
3 2 .80e -04 3 .05e -04 7 . 9 
4 1 .68e-04 2 .02e -04 1 6 . 8 
5 9 . 2 0 e - 0 5 1.27e-04 2 7 . 5 
6 4 . 4 6 e - 0 5 7 . 2 1 e - 0 5 3 8 . 1 
7 1 .88e-05 3 .56e -05 47 . 3 
8 6 .68e -06 1 .48e-05 5 4 . 8 

Table 2.4 Comparison with Cuperman's expression for P(m,n). 
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excessive memory requirement, however. Note that reducing the precision in 

order to conserve memory in this method is risky because of the large number of 

terms involved. Consider Table 2.5 which is a fairly representative example 

comparing the times required to compute all P(m,n) for n=1000 with P=0.0001, 

p=0.1, h=0.5 using the recursion and series expansion methods on a SPARC® 

station 2. When the series expansion computations can be handled by C 

language programs, the improvement in computational time is substantial. Even 

when Maple programming must be used, times to compute the P0(m,n) are 

comparable to that of the recursion technique in computing P(m,n) (see remark 

below), especially when we take only r=5, which will nonetheless produce 

results to within 0.1% accuracy. An additional practical advantage in favor of 

the series expansion that is not reflected in the results in Table 2.5 is that once 

P0(m,n) has been computed, only a little further computational effort is required 

to obtain P(m,n) using (2.5) for as many values of h as desired. With the 

recursion method, the entire computation must be repeated for each set of 

parmeters P, p, h. 

In summary, by using the series expansion in P, we can approximate 

P(m,n) in a consistent and efficient manner where accuracy may be traded off 

for computational effort if necessary. For most channel parameters, only a few 

terms in the expansion are required in order to obtain good accuracy; typically 

such computations are at least an order of magnitude faster than when using the 

recursion method to obtain the exact result. For large values of n and P, 

efficiency suffers due to the requirement for greater numerical accuracy but at 

least excessive amounts of memory are not required. 
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n=1000 P=.0001, p=.l, h=.5 

Method Time to compute all 

P(m,n) 

recursion 8 min. 

series expansion 

(C program) 

r=5 10 sec. 

r=10 15 sec. 

r=20 33 sec. 

series expansion 

(Maple program) 

Time to compute all 

P0(m,n) 

r=5 3 min. 

r=10 5 min. 

r=20 45 min. 

Table 2.5 Computational times of P(m,n) for the recursion 
series expansion methods. 
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2.4 Some Observations on Short BCH Codes 

For codes with k<20, it is feasible to compute their P u exhaustively by 

using the code generator matrices to generate all codewords and summing over 

their probabilities as given by (1.3). By comparing with the results from 

applying (2.1) or (2.2), we can study the validity of the approximation (2.1), and 

at the same time, the relative performance of a given code and its equivalent 

codes over the Gilbert channel. 

We will consider in particular the (primitive, cyclic) BCH codes [1-3] with 

n<31 and k<16 as they are quite common in usage and have well known 

weight distributions. In addition, BCH codes are not unique in the sense 

described below; this property will also be interesting when considering P u in 

the Gilbert channel. A BCH code of length 2 m - l corresponds to a certain 

primitive polynomial of degree m. A primitive polynomial p(x) of degree m is 

an irreducible polynomial (one not divisible by any polynomial of degree less 

than m but greater than 0) such that the smallest integer n for which it divides 

x n+l is n=2m-l. Since there may be more than one primitive polynomial of 

degree m, BCH codes with identical n and k are in general not identical. They 

do however have the same weight distributions and so on the BSC have the same 

error detection performance. Hence, it should be interesting to see whether a 

similar situation holds in the Gilbert channel. The problem is similar in nature 

to that of the relative performance of equivalent codes that we have already 

mentioned. However, in this case, there is one reduction that we can make 

immediately because of the time-reversal symmetry of the error bits produced in 

the Gilbert channel. 
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It turns out that primitive polynomials come in pairs. If p(x) is a primitive 

polynomial, then so too must be its reciprocal polynomial 

p*(x) = xmp(l/x) . (2.20) 

(It is possible that p*(x)=p(x).) It follows that the generator polynomials 

defining the BCH codes of given (n,k) come in such reciprocal pairs [2]. Later in 

Chapter 3, we show that reciprocal generators give rise to cyclic codes with the 

same P u on the Gilbert Channel. Hence, we need to be concerned with only half 

of the possible number of BCH codes. 

We consider 7 BCH codes of different (n,k). The channel parameters 

taken are p={0.01,0.1,0.3}, h={0.5,0.7,0.9} and P={10-6,10-5-5,...,10-25,10-2}. 

Results are summarized below. 

1. Harnming (7,4) code 

A Hamming code is a special case of a BCH code with k=2m-m-l. For m=3, 

there is only the primitive polynomial x3+x+l and its reciprocal. By the 

discussion above, it suffices to study just one of them in the Gilbert channel. The 

code appears well behaved with P u monotonically increasing with P, decreasing 

with p and h. The actual P u is always less than the approximate Pu, which we 

henceforth denote by E[PJ, implying that the Hamming code is superior in 

error detection performance than the average of its equivalent codes. The 

percentage difference is only mildly sensitive to and decreases with P, but 

increases with p and decreases with h. For p=.3, h=.5, the difference is 18%. 

Generally, P u rises linearly with P for P £ 10'3. 
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2. Hamming (15,11) code 

For m=4, there is also just one primitive polynomial x4+x+l and its reciprocal. 

The qualitative behavior is the same as for the Hamming (7,4) code. The 

maximum difference between the exact and approximate P u reaches a maximum 

of 51%. 

3. B C H (15,7) code 

Again, P u is monotonic with increasing P and decreasing p and h. Generally, 

the exact P u lies below EtPJ with a maximum difference of 140% when p=.3, 

h=.5. At h=.9, p=.01,.l the difference is actually negative (i.e. the approximate 

P u is larger than the exact one). However, the maximum difference is only -.5%. 

4. B C H (15,5) code 

The qualitative properties are very similar to those of the Hamming codes. The 

maximum difference between the exact and approximate P u reaches 90% at 

P=.3, h=.5. 

5. B C H (31,16) code 

For m=5, there are three primitive polynomials: (i) x5+x2+l, (ii) x5+x4+x3+x2+l, 

and (iii) x5+x4+x2+x+l and their respective reciprocals. We will call the codes 

corresponding to these polynomials by the same numbers. Qualitatively, the P u 

of the three different codes behave the same as that of the Hamming codes. The 

largest deviation between the exact Pu's and the approximate EtPJ occurs at 

p=.3, h=.5 and is about 950%. At h=.5, the differences between the three codes 

appear indistinguishable. The differences begin at emerge at low Pu, i.e., small 

P, large p, h, however; then code (i) has consistently lower P u than code (ii) 

which in turn has consistently lower P u than code (iii). At P=10"6, p=.3, h=.9, 
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Pu(code (i))=4.0 x IO"15, Pu(code(ii))=6.1 x IO"15, and Pu(code(iii))=9.6 x IO"15. The 

differences with the approximate P u are 176%, 47%, and 18% espectively. 

6. B C H (31,1D code 

The P u of these three codes behave similarly to that of the B C H (15,7) code. 

Maximum difference between exact and approximate P u is 540% at p=.3, h=.5. 

At h=.9, p=.01,.l the difference is negative with a maximum difference of only 

-1% for code (i), -.1% for code (ii), and -.2% for code (iii). There is a slight 

difference in P u of 5% to 10% in regions of low P u. 

7. B C H (31,6) code 

The three codes here have identical P u. See Chapter 4, Part 3. Qualitatively, they 

are similar to the Hamming codes. The maximum difference between the exact 

P u and E[PJ is 400% at p=.3, h=.5. 

We can make some general comments based on the observations above. 

All the BCH codes appear to have proper behaviour in that P u increases 

monotonically with P and decreases monotonically with p and h. This is 

probably not surprising as the Hamming codes, double error correcting BCH 

codes like the B C H (15,7) code, the BCH (15,5) and triple error correcting codes 

with odd m such as the B C H (31,16) code are known to be proper [4,11]. The 

percentage difference between exact and approximate P u is only mildly 

dependent on P and usually decreases with P. This is related to the linearity of 

P u with respect to P as the exact and approximate P u have almost parallel 

trajectories. The reason for this is that for small enough P, the pervasive PB 

factor present in all probabilities (as given by (1.3) and (1.4)) contains the 

dominant linear contribution to P u from P. The maximum difference between 
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exact and approximate P u always occurs at the largest p and the smallest h 

values we considered, namely at p=.3 and h=.5. The exact P u is practically 

upper bounded by EtPJ. When the exact P u is observed to be greater, the 

difference is slight and always at low P u. The differences between codes with 

the same (n,k) become most noticeable also at low P u . 

It should be mentioned that a similar study of some 35 codes with lengths 

less than 25 was originally reported by Elliott [14]. However, no names of codes 

or details were given other than the comment that in general P u and E[PJ 

agreed within an order of magnitude except for extreme cases. 



3. Some Exact Results 

3.1 No Coding 

For later use, we record here the probability of obtaining the zero error 

vector. Since the event not 0n is the union of the mutually exclusive events 

lf01,.,0^1 [14], 

n-l 

prob(0n) = 1 - E probC^i) 
i=0 

n-l 
= 1 - I W(i) 

i=0 

= i . p B ( i . h ) i ; « ^ 
i=0 

pB(l-h) [ 1-Jn 1-Ln1 
= i - J X ~ (j+p-Q)-Tg--(L+p-Q)-n; • (3.D 

If no coding is used, any nonzero error vector results in an undetected error so 

the probability of undetected error is 

P U = £ ^ M ( J + p . Q ) l ^ . ( L + p . Q ) k ^ ( 3 2 ) 

3.2 Single Parity Check Encoding 

Let G(m,n) and B(m,n) be the probability of m errors in a block of length 

n given that the channel is initially in state G and state B respectively. The cor-

34 
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responding unconditioned probability is just the counting distribution of Chap

ter 2 and can be decomposed as 

P(m,n) = pGG(m,n) + pBB(m,n) . (3.3) 

The conditioned probabilities may be found recursively from [14] 

G(0,1) = 1, G(1,1) = 0, B(0,l) = h , B(l,l) = h.' 

G(m,n) = QG(m,n-l) + PB(m,n-l) 

B(m,n) = hqB(m,n-l) + h'qB(m-l,n-l) + hpG(m,n-l) + h'pG(m-l,n-l) 

(3.4) 

where of course G(m,n) and B(m,n) are zero if m<0 or m>n. Observe that the 

last equation gives a relationship between the probabilities of odd and even 

numbers of errors. By exploiting this fact, we will derive an analytic expression 

for the probability of undetected error for a single parity check code. 

A codeword in a single parity check code of length n consists of n-l mes

sage bits and a parity check bit which is 1 or 0 depending on whether the mes

sage contains an odd or even number of 2's. Hence a single parity check code 

consists of all possible even weight vectors and no odd weight vector. From the 

standpoint of probability of undetected error, it does not matter where the parity 

bit is inserted (or whether the original message bits are rearranged). Ultimately, 

what we are interested in is 

P u = I P(m,n) . (3.5) 
meven 
m^O 

Note that what we considered above is the even parity version of the single 

parity check code. For the odd parity version of the code, the parity check bit is 
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instead the complement of that for the even parity case so the codewords are all 

the odd weight vectors. The odd parity version is not a linear block code since it 

does not contain a zero vector. However, since an odd/even weight vector 

added to an odd weight vector results in an even/odd weight vector, an 

undetected error results if and only if the error vector has even weight. That is, 

the odd parity and even parity codes have in fact the same performance as given 

by (3.5). 

While we may think of using (2.6) in (3.5), it is immediately seen that the 

resulting summations are not easily tractable. The idea is to use (3.3) and (3.4) 

to effectively divide the summation into two parts and then solve for each by 

more elementary means. To this end, define 

G„(n) = E G(m,n) 
modd 

Ge(n) = E G(m,n) 
m even 

B0(n) = E B(m,n) 
m odd 

Be(n) = E B(m,n) (3.6) 
m even 

where necessarily 

G0(n) + Ge(n) = 1 

B0(n) + Be(n) = 1 . (3.7) 

Summing over the recursion relations (3.4) gives 

G0(n) = E QG(m,n-l)+PB(m,n-l) 
modd 

= QG 0(n-l) + PB0(n-l) 
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B0(n) = E hqB(m,n-l) + h'qB(m-l,n-l) + hpG(m,n-l) + h'pG(m-l,n-l) 
m odd 

= h qB 0(n-l) + h'qBe(n-l) + hpG0(n-l) + h'pGe(n-l) 

= (h-h')qB0(n-l) + (h-h')pG0(n-l) + h' . (3.8) 

The last equations do not quite allow us to solve for B0(n) and G0(n) because of 

the different arguments on the right hand side. 

It is convenient at this point to introduce the formalism of generating 

functions. For a random variable over the nonnegative integers X(n), its generat

ing function is given by the formal sum 

OO 

x(t) = E X(n)tn . (3.9) 

n=0 

For sufficiently well behaved X(n), x(t) will be well defined for some range of t. 

The individual probability X(n) is then the coefficient of t n in a power series 

expansion of x(t). 

Applying the definition (3.9), if g0(t) and b0(t) are the generating func

tions for G0(n) and B0(n) respectively, then 

go(t) = go(t)-G o ( l)t-G o(0) 

= E G0(n)tn 

n=2 
OO 00 

= Q E G 0(n-l)tn + P E B0(n-l)tn 

n=2 n=2 
= Qtg0(t) + Ptbo(t) 
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bo(t) = b o (t)-B o (l)t-B o (0) + h ,t 
oo 

= £ B0(n)tn + h*t 
n=2 

= (h-h')q E B0(n-l)tn + (h-h')p E G0(n-l)tn + h' E tn 

n=2 n=2 n = l 

= (h-h')qtbo(t) + (h-h')ptgo(t) + • (3.10) 

Gathering similar terms gives 

( l - Q t ) g o ( t ) - Ptbo(t) = 0 

-(h-h')ptg0(t) + [l-(h-h')qt]b0(t) = ̂ | . (3.11) 

The solution of the simultaneous equations is 

g 0 ( t ) = h'Pt2 i.[(h-h,)q+Q]t-(h-h,)(l-q-Q)t2  

h'Pt2 

"(l-tXl-JitXl-Lxt) 

b 0 ( t ) = ^ g „ ( t ) (3.12) 

where 

J i = J i ( Q , g , h ) = J(Q,q,h-h') = J(Q,q,2h-l) 

L i = Lx(Q,g,h) = L(Q,q,h-h') = L(Q,q,2h-l) . (3.13) 

Now if P0(n) is the unconditioned probability of obtaining an odd number of 

errors in a block of length n, its generating function is just 

Po(t) = PGgo(t) + pnbo(t) 

= p^(p-Q+Y)go(t) • (3.14) 
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Expanding g„(t) by partial fractions and the result by power series gives 

p0(t) = h'pBt2 (p-Q+|) 

f J i 2 1 W 1 
* [(Jx-LxXJi-1) l-Jit + ax-JiKLx-l) 1-L; - L i t T ( J r l X L i - l ) 1-tJ 

= h'pBt+ ^ | { l + p ( ^ ^ [ ( J i + P - Q ) J i n ( L i - l H L 1 + p - Q ) L i « 1 ( J 1 - l ) ] t n 

n=2 

(3.15) 

The last expression allows us to recover P„(n) as the coefficient of the tn term in 

the power series expansion, that is 

Po(l) = h'pB 

P 0 ( n ) = | j l + p ( 3 ^ [ ( ^ ; n>2 . 

(3.16) 

The probability of undetected error for a single parity check code is therefore 

P u = 1 - P0(n) - prob(On) 

= - \ {l+ p ( j P

x ! L l ) [(Ji+p-Q)Jin(L1-l)-(L1+p-Q)L1

n(J1-l)]} 

+ ^ ( W + U ) ^ - ( L + P - Q ) ^ 1 . (3-17) 

As a check of this expression, we can consider for instance its large n limit. First, 

note that the quantity under the radical sign in the definition for J and L (1.5) 

can be written [(Q-hp)-h]2+4h(l-h)p>0 and a straight forward application of 

Descarte's Rule of Signs shows that for p>Q, 1>J>0, 0>L>-1 and for p<Q, 

1 > J ,L > 0. That is, IJI, ILI, IJXI, I L x I < 1. Hence all the exponentiated terms 

in (3.17) vanish for large n. The remaining terms combine to give Pu=l/2, 

expectedly the same result as for the BSC. 
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Figures 3.1 to 3.12 are plots showing P u as a function of P and p for fixed 

values of h and n. We see graphically that P u is monotonically increasing with P 

and decreasing with p and h. Hence for the single parity check code in the 

Gilbert channel, as channel conditions worsen, the probability of undetected 

error increases. This type of behaviour corresponds to that of a proper code in 

the BSC, that is a code for which P u increases monotonically up to (l/2)n"k with 

the bit error rate [4]. The P u also increases quite sharply with n for all channel 

parameter values, similar to the BSC case, as the single parity check code is quite 

limited in its error detection capabilities since it detects no even number of 

errors. 

3.3 Probability of a Vector and its Cyclic Shifts 

According to (1.3) and (1.4), the probability of an error pattern e is 

prob(e) = pBu(a) • 
wt(e>l 

MvCbi) 
i=l 

u(c) (3.18) 

where a is the number of 0's before the first 1, bi is the number of 0's between the 

ith and (i+l)th 1, and c is the number of 0's following the last 1 in e. Denote a 

right cyclic shift of s places by 7ts. A negative s will correspond to a left cyclic 

shift. Then the probability of e and its next c right cyclic shifts and a left cyclic 

shifts is 

£ prob(7tse) = p B 

wt(e)-l 

n v ( b i ) i=l 

bo 

£ u(s)u(b0-s) (3.19) 
s=0 



Figure 3.1 P u for single parity check code, n=8, h=.5 



Figure 3.2 P u for single parity check code, n=8, h=.7 



Figure 3.3 P u for single parity check code, n=8, h=.9 
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Figure 3.4 P u for single parity check code, n=16, h=.5 



Figure 3.5 P u for single parity check code, n=16, h=.7 
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Figure 3.6 P u for single parity check code, n=16, h=.9 



Exact Results 

Figure 3.7 
purorsingl 
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Figure 3.8 P u for single parity check code, n=32, h=.7 



Figure 3.9 Pu for single parity check code, n=32, h=.9 
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Pu 

n=64, h=.5 

Figure 3,0 P . i - P * * « * " " ^ 



Figure 3.11 P u for single parity check code, n=64, h=.7 
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Figure 3.12 P u for single parity check code, n=64, h=.9 
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where for convenience we have put b0=a+c. The sum 

d 
u2(d) = E u(s)u(d-s) (3.20) 

s=0 

is easily handled using generating function methods. From [12], the generating 

function for u(-) is 

l +(p-Q)tj_J___L_j 
u w _ J-L J 1-Jt 1-Ltj 

Since u 2 is the self convolution of u, the generating function for u 2 is 

(3.21) 

U2(t) = U(t)2 

l+2(p-Q)t+(p-Q)2t2 

(J-L)2 

J 2 2JL 
(1-Jt)2" J-L 1-Jt 1-Lt 

L 1 L 2 1 
1-LtJ + (1-Lt)2| • ( 3 , 2 2 ) 

By expanding U2(t) as a power series in t, it follows that 

u2(k) = {(k+l)(Jk+2-rLk+2)+2k(p-Q)(Jk+1+Lk+1)+(k-l)(p-Q)2(Jk+Lk)} 

2 JL 
- TJT^i {(Jk+1+Lk+1)+2(p-Q)(Jk+Lk)+(p-Q)2(Jk-1+Lk-1)} . (3.23) 

Putting b=(b0 v..,bw t(e)-i), the total probability of e and all n of its cyclic shifts is 

therefore 

n-l wt(e>l 

X prob(7tse) = £ u2((7ttb)o)v((7rtb)1)...v((7ctb)wt(e)-i) • (3.24) 
s=0 t=0 

The last equation is invariant with respect to e-*Jtse as it must be since it is the 

probability of a cyclic shift class of vectors of which e is but one member. 

As an example, consider the dual Hamming codes. (A dual code of a lin

ear block code C(n,k) is a linear block code C*(n,n-k) consisting of all vectors 
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which have vanishing inner product with the codewords of C(n,k) [1-3].) The 

dual Hamming (2m-l,m) code consists only of the zero vector and a single cyclic 

class of vectors of weight 2m'1 generated by the reciprocal of the parity 

polynomial h(x)=(xn+l)/g(x) where g(x) is the generating polynomial of the 

Hamming (2m-l,2m-m-l) code. For m=3 and g(x)=l+x+x3, h*(x)=l+x2+x3+x4 so 

the probability of undetected error is the probability of the cyclic class generated 

by the codeword pattern (101110 0), that is 

P u= u2(2)v(l)v(0)v(0) + u2(l)v(0)v(0)v(2) + u2(0)v(0)v(2)v(l) 
+ u2(0)v(2)v(l)v(0) 

= v(0){u2(2)v(l)v(0)+u2(l)v(0)v(2)+2u2(0)v(2)v(l)} . (3.25) 

Of course, in this simple case, one could just as well have summed the 7 

codeword patterns explicitly and obtained the same result. 

As another example, consider the BCH (31,6) code encountered in 

Chapter 2. The distinct generator polynomials (not counting reciprocals) are 

known to be 

(i) . l+x+x2+x5+x9+xu+x13+x14+x15+x16+x18+x19+x21+x24+x25 , 

(ii) . l+x4+x5+x6+x8+x10+x13+x15+x16+x17+x18+x21+x22+x24+x25 , 

(iii) . l+x+x2+x3+x6+x7+x9+xn+x14+x15+x16+x17+x21+x22+x25 . 

A BCH code always contains the all i's vector since the generator polynomial 

never contains the (x+1) factor. The weights of the codewords corresponding to 

the generator polynomials are all 15, so the B C H (31,6) code must just consist of 

two cyclic classes of 31 codewords each, with respective weights 15 and 16 in 

addition to the all 0's and all l's codewords. Writing out the components of the 

b vector as defined after (3.23) corresponding to the above code polynomials, we 

get 
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(i) . (5,0,0,2,3,1,1,0,0,0,1,0,1,2,0) 

(ii) . (5,3,0,0,1,1,2,1,0,0,0,2,0,1,0) 

(iii) . (5,1,0,0,1,0,1,1,2,0,0,0,3,0,2) 

which clearly give rise to the same probabilities for the respective cyclic classes 

according to (3.24). The situation is the same with the weight 16 codewords 

which are just the complements of the weight 15 codewords. Hence without 

doing much work, we have shown that all the B C H (31,6) codes have the same 

P u in the Gilbert channel. 

Similarly, an explicit expression for P u can be written using the rule (3.23) 

for other simple codes which have but a few readily identifiable cyclic classes of 

codewords such as the Hamming (7,4) code, etc. However, that is not the point 

of the exercise. 

Rather, what we want to point out to conclude this section is the 

following. In a general channel, all 2k codewords can conceivably have different 

probabilities. If there is no way to analytically relate the codewords, the exact 

determination of P u (for large k) is surely an intractable problem. For the BSC, 

the codewords are divided into weight classes, each characterized by a certain 

probability. For the Gilbert channel, we know this tactic will not be immediately 

applicable. However, due to the underlying symmetry of the Gilbert channel, 

we see from the above that n vectors which are cyclic permutations of each other 

can be grouped together and have a total probability dependent on only a single 

pattern. The cyclic codes appear to fit naturally into this scheme. As there are 

no other obvious channel and code symmetries that can be identified this way, 

the cyclic codes probably are the best candidates for exact analysis. The 

problems are to first identify or enumerate the various cyclic classes and then 
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provide summation rules between them. Of the latter, we would expect to apply 

techniques similar to that which has been given here for summing over 

collections of u2(-) and v(-)-

3. 4 Reciprocal Generator Polynomials 

Here we derive an interesting fact regarding the cyclic code generated by 

the reciprocal of the generator polynomial of a given cyclic code. If g(x) is a 

generator polynomial of a cyclic code, it necessarily divides x n+l. It follows that 

the reciprocal polynomial g*(x) must also divide x n+l and therefore it also 

generates a cyclic code of the same length [1-3]. Denote the degree of g(x) (and 

g*(x)) by q. A code polynomial in the cyclic code generated by g(x) may be 

written c(x)=g(x)s(x) where s(x) is of degree at most n-q-1. Write 

s(x)=(xa+...+l)xb (where a+b<n-q-l) so that c(x)=g(x)(xa+...+l)xb. Now in the 

code generated by g*(x), there is a codeword given by d(x)=g*(x)(xa+...+l)*xb. 

Suppose first for simplicity that b=0, then d(x)=c*(x). In coordinate form, the 

first q+a+1 bits of the vectors c and d will be mirror image patterns of each other 

with the 1st and (q+a+l)th bits l's. The remaining n-q-a-1 bits are 0's. From 

(1.3) and (1.4), it is clear that mirror image patterns have the same probability. 

The 0's following the last 1 just contribute a factor u(n-q-a-l) to the net 

probability of the codeword in both cases. Hence prob(c)=prob(d). Now if b ̂  0, 

then the vectors c and d will both have b 0's at one end (contributing a factor 

w(b) to the net probability) and n-q-a-b-1 0's at the other end (contributing a 

factor u(n-q-a-b-l) to the net probability) with mirror image patterns of length 
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q+a+1 delimited by i's in the middle. Therefore, again prob(c)=prob(d). 

Clearly, the c(x) and d(x) above define a one to one correspondence between 

codewords in the cyclic codes generated by g(x) and g*(x) respectively. Hence 

cyclic codes generated by reciprocal generator polynomial pairs have identical 

P u on the Gilbert channel. 



4. Monte Carlo Simulation 

4.1 The Monte Carlo Method 

When analytical methods are unavailable, a common technique used to 

study the performance of communication systems is computer simulation. 

Usually, the formalism is phrased in terms of that for bit-error rate estimation 

[19] so first we will rewrite the terminology so that it is appropriate for our case. 

The probability of undetected error of a code with block length n can be 

written 

P u = I H(v)prob(v) (4.1) 
v € V n 

where 
j 1 v e C , v * 0 . . . . 

H ( v ) = 0 otherwise ( 4 - 2 ) 

is the error detector. In other words, P u is the expectation value of the error 

detector. A natural estimator of the expectation is just the sample mean 

P\, = ̂ l H ( v i ) (4.3) 
i=l 

where v; is the ith of a total of N blocks sent through the channel. Hence a suit

able basis for estimating the error rate is by the observation of errors; this defines 

the Monte Carlo method. As N-*oo, the estimate $ u converges to P u . For finite 

N, the reliability of the estimator is quantified in terms of a confidence level a 

5 8 
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and its associated confidence limits, y+(F\i) and y.(P\0 defined through the rela

tion 

prob(y+<Pu<y.)= 1-a . (4.4) 

P\j is binomially distributed. By applying the normal approximation to the 

binomial distribution, it can be shown that 

1+ 
d „ 2 

2NPU . 1±A i+-
4NP\, 

da 2 
(4.5) 

where d a satisfies 

da 

dt e-t2/2 = 1- a (4.6) 

-da 

For our purposes, we always take a=.01, then da=2.575829, and the corre

sponding confidence limits define a 99% confidence interval. 

4.2 Simulation Study of CRC-16 Codes 

A CRC code is defined by a qth degree generator polynomial 

g(x)=gqxq+gq.iXq"1+...+go. Denote the polynomial representing the message by 

s(x)=Sk-ixk"1+Sk.2Xk"2+...-rSo. A codeword is formed by appending to the message 

bits certain parity bits corresponding to the so called CRC polynomial 

r(x)=remainder[xqs(x)/g(x)]. The polynomial representation of the codeword is 

then c(x)=s(x)xq+r(x)=Sk.ixq+k-1+sk.2x<i+k-2+.. .+s0xq+rq.1xq-1+rq.2xq-2+.. .+r0. CRC 

codes are often used in practical error control as the encoding (modulo-2 
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polynomial division) is particularly simple to implement by feedback shift regis

ter circuitry. If the generator polynomial is formed from the product of (x+1) 

and a primitive polynomial of degree q-1 (and the block length n is less than 

21-1), it can be shown that the resulting CRC code detects all double errors, all 

odd numbers of errors, and all bursts (including end-around) of length q or less 

[21]. There are two commonly used standard CRC codes with q=16, both have 

the required form discussed above. Their generator polynomials are 

X i 6 + X i 5 + X 2 + L for CRC-ANSI , 

x16+x12+x5+l, forCRC-CCITT . 

The performance of these CRC codes have been studied in the BSC by Witzke 

and Leung [9]. Both codes are not proper for all values of k. The probability of 

undetected error as a function of the error rate e reaches a maximum before 

decreasing to the asymptotic value of (1/2)"* at e=l/2. The CRC-CCITT code 

performs better (in terms of probability of undetected error) than the CRC-ANSI 

code for all values of e. 

In view of the connection with burst detection and the previous study, we 

have chosen the CRC-ANSI and CRC-CCITT codes as the subject for Monte 

Carlo simulation study. While we are mainly interested in questions of practical 

concern such as whether the superiority of CRC-CCITT over CRC-ANSI persists 

over a Gilbert channel and how the results compare with those of the BSC, the 

study will also give some general idea of the size of problem that can be tackled 

in a practical implementation of the Monte Carlo technique on the Gilbert 

channel. We take k=25,50. 

The simulation program is written in the C language, using the library 

function rand() for random number generation. Random bit-vectors 
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v=(i> 0 ,Ui, . . . , i>n-i) are generated according to the distribution implied by Figure 

1.1. That is, before the first bit is generated, the state of the channel is set ran

domly to the G or B state according to the ratio PG/PB- At each successive bit, if 

the channel is in the G state, a 0 is generated and a transition to the B state 

occurs randomly with probability P. If the channel is in the B state, a 0 or 1 bit 

is generated according to the ratio h/h' and a transition to the G state occurs ran

domly with probability p. The procedure ends after n bits corresponding to an 

entire vector are generated. The probability of any vector so produced will be in 

accordance with (1.3) and (1.4). The vector is checked to determine whether it is 

a codeword using shift register arithmetic. If so, the error counter is 

incremented as indicated by (4.2). This procedure of vector generation and 

checking is repeated N times. The estimated probability of error and the 99% 

confidence levels are then computed using (4.3) and (4.5). 

Running the simulation on the SPARC® station 1, we have found that for 

N=107 and k=25, a single run (corresponding to one set of parameters P,p,h) 

requires on the average of approximately 2.5 hours. For k=50, the average time 

required is approximately 4.0 hours. It is clear from the nature of this simulation 

that the computational time increases linearly with n. The parameter values 

which we have considered are P={10-4,10-3-5,10-3,10-2-5,10-2

>10-L5,10-1,10-5,l}, 

p={0.01,0.1,0.3}, h={0.5,0.7,0.9}; therefore, 81 "data points" $ n in all. 

The results of our simulation are plotted in Figures 4.1 to 4.9. For clarity, 

we do not draw lines through the simulation data points. The error bars around 

these points bound the 99% confidence intervals. The lines on the plots are the 

P u of the CRC codes for the BSC at the corresponding 6eff. We have chosen to 

display the plots with P along the x-axis and fixed values of p and h. This is 
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Figure 4.1 S imula t ion of CRC-16 codes, 
p = .01, h=.5 
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Figure 4.2 Simulation of CRC-16 codes, 
p = .01, h = .7 



Monte Carlo Simulation 

Figure 4.3 Simulation of CRC-16 codes, 
p = .01, h=.9 
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Figure 4.4 Simulation of CRC-16 codes, 
p = . l , h = .5 
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Figure 4.5 Simulation of CRC-16 codes, 
p=.l, h=.7 



Monte Carlo Simulation 

Figure 4.6 Simulation of CRC-16 codes, 
p=.l, h=.9 
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Figure 4.7 Simulation of CRC-16 codes, 
p=.3, h=.5 
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Figure 4.8 Simulation of CRC-16 codes, 
p = .3, h = .7 
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Figure 4.9 Simulation of CRC-16 codes, 
p = .3, h=.9 
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reasonable since P is the quantity most like the bit error rate in the BSC, that is, it 

is usually the small quantity. It is evident from the plots (and even before hand) 

that the minimum P u we can hope to simulate reasonably with our sample size is 

^10/N=10"6. This corresponds to the range 1 0 " 4 £ P £ 1 0 " 2 depending on the 

values of p and h. In spite of the limitations, a number of features in the plots 

are evident. Firstly, CRC-CCITT appears to maintain its superiority over CRC-

ANSI over all parameter values. The difference between them is small for 

p=0.01, h=.5, but that difference increases to more than an order of magnitude 

difference in P u with increasing p and h. This is reasonable since for small p, the 

tendency is for the channel to stay in the B state if it gets there, and if h=.5, 

which is the random vector limit where all bit strings are equally likely, the two 

codes have the same probability of undetected error 1/216. Secondly, the 

qualitative behaviour of both codes for k=25 is similar to k=50. Quantatively, 

the k=50 codes reach the plateau at 1/216 for smaller values of P which is just as 

expected. Thirdly, the general behaviour of both CRC-ANSI and CRC-CCITT 

are most like their BSC effective counterparts when p=.3 where a maximum at 

approximately 10"4 is also evident. This is expected since for large p, the mean 

time that the system stays in the B state is short so the correlation between errors 

is small. Finally, note that there are ranges of parameter values where the 

Gilbert channel P u are quite different (order of magnitude or more) from the BSC 

effective values. For instance, when p=.01 and h=.5 and 10"4<P<10"2, P u is 

consistently overestimated by the BSC effective values; and perhaps more 

significantly, the opposite is true for the region p=.01, h=.9, and P< IO 3 . These 

observations point out that while some of the properties of CRC codes on the 

BSC may persist over the Gilbert channel, there are certain parameter value 



4. Monte Carlo Simulation 72 

ranges where interpolation is not possible, presumably because of fundamental 

differences between the channels. 



5. Conclusions 

We have examined in this thesis the general problem of computing the 

probability of undetected error for binary linear block codes on the Gilbert 

channel. Little on the subject is known to date so we have tried different 

approaches. 

The accuracy of the code evaluation technique using the P(m,n) distribu

tion is difficult to predict as we have seen even in limited observations on short 

BCH codes. Certainly, precise numerical results are not possible. The fact that 

equivalent codes, and in the case of cyclic codes, codes which have different 

generator polynomials but same weight distribution, give rise to different P u is 

an additional albeit interesting complication. Perhaps the role of this approxi

mation technique should be that of preliminary or cursory investigation. In that 

case, the efficient computation of P(m,n) which we have developed can be uti

lized most advantageously. 

Even though exact analysis in the Gilbert channel is quite difficult in gen

eral, it is probably one of the few channel models other than the BSC where there 

is a realistic chance to obtain analytical results. We have made some exploratory 

attempts in this direction and have obtained a closed form expression for the 

single parity check code. The identification of the channel's underlying symme

tries also allowed us to derive two results on cyclic codes which can be used to 

facilitate the computation of P u . 

The results of our simulation of CRC codes give us impetus for further 

study. For example, it is clear that the P u for a code on a Gilbert Channel can be 

quite different from that on a BSC. In addition, we have observed some proper-
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ties of CRC codes which are themselves of practical and theoretical interest, esp

ecially in comparison with the corresponding BSC results. On the subject of the 

simulation itself, the standard Monte Carlo technique which we used is the most 

rudimentary, and therefore not very efficient computationally. Other techniques 

for simulation can make use of partial analytical information and involve more 

specific details than standard Monte Carlo [19]. Perhaps one of these alternate 

methods can be adapted for use on the Gilbert channel. 

Finally, though we have not considered it here, it should be worthwhile to 

examine the related problem of error correction [2]. On the Gilbert channel, 

neighbouring codewords which are the same Hamming distance away from a 

given vector can have different a posteriori probabilities. Therefore, it would be 

interesting to examine for instance, the effectivness of the nearest neighbour 

decoding rule (which is optimal on the BSC) or the modification of this rule to 

improve performance. 
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Appendix A 

The derivation of (2.6) is presented here for more than just the sake of 

completeness as there is apparent confusion regarding the range of m for which 

the equation is valid in [17]. 

The generating function (see (3.9)) of the P0(m,n) distribution relative to n 

for m> 1 is given by [16,17] 

£ P0(m,n) z n = p^T z m [q-^q-P)]-1 (l-zQ)--"1 [l-z(q-P)]2 . (A.l) 

Expanding the binomials and then gathering factors of z gives 

p oo m-1 2 

I P0(m,n) z n = ̂ — I I I c ^ c ^ c 2 qm* 1Q i(P-q) l + t z i + J + t + m . (A.2) 
n=m r + P i=0 j=0 t=0 

The coefficient of z n on the right hand side is just P0(m,n), hence 

P0(m,n) = p ^ I c ^ ^ c ^ c 2 q-HQ^-HP-q)*^ . (A3) 

0<t<2 
j+t<n-m 

There are three cases to consider depending on the value of n-m. For n-m=0, 

(A.3) reduces to 

P0(n,n) = p ^ q n - 1 (A.4) 

For n-m=l, (A.3) reads 

P0(m,n) = p^" I C ^ C ^ C ? q m-j- lQn.m.j - t ( p. q ) i + t ( A > g ) 

^ O^j^m-l 
Ost<2 
j+t<l 
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but n-m-j-t=l-j-t<0 if j+t > 1 while n-j-t=m+l-j-t>0 so the cn.n^;|.t factor in the 

summand is zero for j+t > 1 hence (A. 5) is the same as 

m-l 2 

P0(m,n) = p — E E CJV+KC? qm-J-lQn-m-j-t (p.q ) j +t ( A g ) 
r + P j=0 t=0 

For n-m>2, (A.3) becomes 

p 2 rnin(m-l,n-m-t) 
P0(m,n) = p T T E E C ^ 1 ^ . t C ? qm-J-lQn-m-j-t ( p_ q ) i +t ( A ? ) 

r + P t=0 j=0 

and there are three subcases to consider. If m-l<n-m-2, the upper limit of the 

summation over j is m-l so (A.7) becomes identical to the expression in (A.6). If 

m-l >n-m, however 

p 2 n-m-t 

P0(m,n) = E Eq c ^ X ^ t C 2 q^MQ^J-KP-q)"*1 

p 2 I m-t m-l I 
= pTT E E - E C ^ X ^ j - t C 2

 q m-J-lQn-m-j-t ( p . q ) j + t ( A g ) 

^ v t=0 L j=0 j=n-m-t+lJ 

The second sum inside the braces (which should be ignored for m-l=n-m, t=0) is 

zero since n-j-t-m<n-(n-m-t+l)-t-m=-l and n-j-t>n-(m-l)-t=(n-m)+l-t>3-t> 1 

means that c^j.,. is zero in the summand. Hence (A.8) is also the same as (A.6). 

Finally, if m-l=n-m-l, from (A.7) 

p 2 min(m-l,m-t) 

>o(m,n) = p̂ p" EQ EO tf^C^C? qm-J-lQn-m-j-t (p.q ) j +t 

' c n j " l c n n # t c 2 q^J^Q^-KP-q) 1 

p 1 m-l 2 m-2 

^ I E + E E 
L T ^ 11=0 j=0 t=2 j=0 

P 

2 m-l 

= p— E E tf^c^c? q-^Q—J-t(P-q)i 
T^ 1.1=0 j=0 

+t r.m-1 
-1 (A.9) 
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so that (A.6) is again obtained since c^^O. 

Consider now m=0. Po(0,n) is just the probability of being in state G for 

all n transmission intervals. For this to occur, the system must be initially in 

state G (with probability pG) and remain there (with probability Q) for the next 

n-l intervals hence 

Summarizing for the various cases considered above, we have the result 

given in (2.6), namely 

Po(0,n) = R (A. 10) P+p 

R 
Q ; m=0 P+p 

P m-l 2 
P0(m,n) = < 

P+p I I c^-1cnPnJ;jitc2qm-J-1Qn-m-J-t(P-q)i+t ; l < m < n - l 
j=0 t=0 

(A.11) 
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Here we evaluate the sums required for the computation of P0(m,n;r) in 

Chapter 2. We assume in the below that a>b+l and b> 1 so the following are 

certainly well defined: 

b-l 
U(a,b,c,d,e) = 

(-l)i(a-i-2)! 

j=0 
(a-b-c-j)!(j-d)!(b-e-l-j)! 

V( 

W( 

b-l 

a,b,c,d)= Y I 
(-l)Ka-j-2)! 

j = o 

b-l 

a-b-c-j)!(j-d)!(b-j-D! 

(-l)i(a-i-2)! 
a,b,cj- ^ ( a . b . c . j ) ! j ! ( b . j . 1 ) ! • 

j=0 

(B.l) 

(B.2) 

(B.3) 

By shifting the range of the summation variable, we can obtain relationships 

between the above quantities. Thus 

U(a,b,c,d,e) 
b-l (-DKa-j-2)! 

j = o 
(a-b-c-j)!(j-d)![b-l-(j+e)]! 

b+e-l 

so that 

U(a,b,c,d,e) = 

(-l)i[(a+e)-,i-2]! 
[(a+e)-b-c-j]![j-(d+e)]!(b-l-j)! 

j=e {b-l e-1 

I - I 
j=0 j=0 

(-l)i[(a+e),i-2] 
[(a+e)-b-c-j]!|j-(d+e)]!(b-l-j)! 

-l)eU(a+e,b,c,d+e,0) if d>0 

-l) e U(a+e,b,c,d+e,0) ; d>0, e>0 

-l) e V(a+e,b,c,d+e). 

if e > l 

(B.4) 

(B.5) 
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Also 

vr K . i w itf ̂  (-l)»[(a-dH-2]! 
vta,b,c,al-t-i; ^ [(a-d)-(b-d)-(c+d)-j]!j![(b-d)-j-l]! 

j=-d 

— < 

0 ; d>0,b-d<0 

("1)d2^ [(a-d)-(b-d)-(c+d)-j]!j![(b-d)-j-l]! ; d ^ 0 ' * 5 ' ^ 1 

j=0 

(-l)i[(a-d)-i-2]! 

[0 ; d>0,b-d<0 
[(-l)dW(a-d,b-d,c+d) ; d>0,b-d>l (B.6) 

From standard references, for instance on pp. 62 of [15], 

W(a,b,c)=7^f](a-b-j)(b-l+j) ; a>2,b>l ,c>2 (B.7) 

We can apply (B.7) to the last line in (B.6) if a-d>2, b-d> 1, c+d>2. The first 

condition is redundant since we always take a>b+l. Hence for b-d> 1, c+d>2, 

d>0, 
i c+d-l 

V(a,b,c,d) = (-l)d

 (c+d-1), n (a-b-j)(b-d-l+j) • (B.8) 

However, note that in fact (B.8) holds even for b-d<0 if c > l since then 

b-d-l+l=b-d<0 and b-d-l+(c+d-l)=b+c-2>0 so one of the factors (b-d-l+j) 

must be zero. That is, we have 

I c+d-l 

V(a,b,c,d)= (-l)d

 (c+d.1), fi (a-b-j)(b-d-l+j) 

; a>b+l, b > l , c> l , d>0, c+d>2 

= (-l)d(c+d-l)!cc^.1

1cc
b
+1:1 . (B.9) 
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We require two further identities regarding V(a,b,c,d). Using the explicit form 

on the right hand side of (B.9), it is simple to verify that 

V(a+l,b,c,d) = a . b

a

c " . d + l V ( a > b > c > d ) ( B 1 0 ) 

and 
\T, v J i \ -(a-b-c-d)Qb-d-l) 
V(a,b,c,d+U = ^ V(a,b,c,d) . (B.ll) 



Appendix C 

The following pages contain the source code listings for the C and Maple® 

programs used in the numerical computations and simulation. A brief descrip

tion of the purpose of each program follows. The parameters to be entered at 

runtime and any include files required are specified by comments at the 

beginning of each listing. 

1. pOmn_c.c - C program that computes P0(m,n) from the closed form 
summation expression (2.6). 

2. pmn_r.c - C program that computes P(m,n) from the recursion relations 
(2.3) and (2.4). 

3. pmn_s.c - C program that computes P0

(r)(m,n) and P^dn.n) from (2.5), 
(2.17), and (2.18). 

4. pu.c - C program that computes Pu(C(n,k)) by exhaustive computation 
using explicit codeword generation and (1.3), E[PJ using (2.2) and the 
series expansion method of computing P(m,n), and their difference in 
percentage. 

5. mc_crc.c - C program that generates a Monte Carlo simulation for 
CRC codes according to the procedure in Chapter 4. 

6. pmn_c.map - Maple program that computes P0(m,n) from the closed form 
summation expression (2.6) and then P(m,n) from (2.5). 

7. pmn_s.map - Maple program that computes P0

(r)(m,n) and P^Xnijn) from 
(2.5), (2.17), and (2.18). 
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pOmn_c.c 
/ * p0mn_c.c * / 
/* Computes each term of P0(m,n) and the total using a closed form summation 

expression given by Cuperman. */ 

/ * parameters prompted for at runtime: 
n = block length 
m = number of errors in block 
P = G to B transition probability 
p = B to G transition probability 
h = B state bit error rate */ 

•include <stdio.h> 
Jinclude <math.h> 

/ * factorial function */ 
double fact(n) 
int n; 
< 

int i ; 
double x=1.0; 
for (i=l; i<=n; i++) 

x = x * i ; 
return x; 

) 
/ * inverse factorial function */ 
double invfact(n) 
int n; 
( 

i f (n<0) 
return 0.0; 

else 
return 1.0/fact(n); 

) 
/ * function A(j) = (n-m-j)p+mQ */ 
double a(m,n,pg,pb,j) 
int m, n, j ; 
double pg, pb; 
( 

return (n-m-j)*pb + m*(l-pg); 
) 
/* jth term in summation expression for P0(m,n) * / 
double pO(m,n,pg,pb,j) 
int m, n, j ; 
double pg, pb; 
( 

return (pg/ (pg+pb)) *fact (n- j-2) *invfact (j) *invf act (m-j-1) *invfact (n-m-j) 
*pow(l-pb,(double)(m-j-1))*pow(pg+pb-1,(double)(j)) 
*pow(l-pg,(double)(n-m-j-2)) 
* (a(m, n,pg,pb, j) *a (m,n,pg,pb, j) - pb*a (m,n,pg,pb, j) 

- m*(1-pg-pb)*(1-pg)) / m; 
) 

void main() 
{ 

int m, n, j ; 
double pg, pb, x, y; 

printf("n = "); 
scanf("%d", in); 
printf Cm = "); 
scanf("*d", tm) ; 
printf("P = "); 
scanf("%lf", Spg); 
printf("p = "); 
scanf("%lf", Spb); 
pr int fP j p0(m,n, j)\n"); 
printf (" \n"); 
x = 0.0; 
for (j=0; j<=m-l; j++) 
( 

y = p0(m,n,pg,pb, j) ; 
x = x + y; 
printf("%5d %13e\n", j , y); 

) 
printf("total %13e\n", x); 
return; 



pmnr.c 
/* pmn_r.c */ 
/* Conputes P(m,n) for a l l m exactly using recurrence relations. */ 

•include <stdio.h> 
•include <math.h> 

•define N 1000 /* Define the value of N to be the block length. */ 

void main() 
( 

i n t i , m, n; 
double x; 
double pg, pb, h; 
double u[N+l), v[N+l), p[N+l); 
double r[N+l][N+ll; 

p r i n t f ( " P = " ) ; 
scanf("»lf", Spg); 
p r i n t f ( " p = " ) ; 
s c a n f ( " % l f " , spb); 
p r i n t f ( " h = " ) ; 
s c a n f ( " % l f " , Sh); 

u[0] = 1.0; 
u[l] = h + (l-h)*pb; 
for (i=2; i<=N; i++) 
{ 

u [ i ] = <l-pg+h*(l-pb))*u[i-l] + h*(pg+pb-1)*u[i-2]; 

) 
v[0] = ( l - h ) * ( l - p b ) ; 
v [ l ] = (l-h)*(pb*pg+h*(l-pb)*(l-pb)); 
for (i=2; i<=N; i++) 
( 

v [ i ] = (1-pg+h*(1-pb))*v[i-l] + h*(pg+pb-1)*v[i-2]; 

) 
for (n=l; n<=N; n++) 
( 

r [ l ] [n) = u[n - U ; 
for (m=2; nK=n; m++) 
( 
x = 0.0; 
for (i=l; i<=n-nrt-l; i++) 

x = x + v [ i - l ] * r [ m - l ] [ n - i ) ; 
r[m)[n] = x; 

) 
) 
for (m=l; nK=N; m++) 
( 
x = 0.0; 
for (i=l; i<=N-m+l; i++) 

x = x + (pg/(pg+pb))* (l-h)*u[i-l]*r[m)[N-i+ 1 ] ; 
ptm) = x; 

) 
%d\n' printf("N 

p r i n t f ( " "> 
p r i n t f ( " 
for ( n F = l ; m<=N, 

pri n t f ( " % 4 . d 

N); 
P(m,N)\n"); 

\n"); 
m++) 

%e\n", m, p[m]); 

return; 

(D 

Q. 

O 

CO 
Cn 



pmn_s.c 
/ * pmn_s.c * / 
/ * C a l c u l a t e s PO(m, n) approximately by series expansion i n P and then 

the P(m,n) d i s t r i b u t i o n for a l l m i n the G i l b e r t channel. 

/ * parameters prompted for at runtime: 
P = G to B t r a n s i t i o n p r o b a b i l i t y 
p = B to G t r a n s i t i o n p r o b a b i l i t y 
h = B s tate b i t e r r o r rate 
n = b l o c k length 
r = number of terms taken i n expansion * / 

•include <stdio.h> 
Iinclude <math.h> 

•define N 4095 / * Set N to at least n * / 
•define D 4.0 / * Set D to f i x overflow p o s s i b i l i t y i n p(m,n,h,vector) 

/ * (-1)A1 for integer 1. * / 
int parity(1) 
int 1; 
( 

if (<l /2)*2-l=0) 
return 1; 

else 
return - 1 ; 

) 

/* Binomial coefficients. */ 
double binom(m, n) 
int m, n; 
{ 

int i ; 
double x=1.0; 
i f (n>=0 SS m>=0) 
I 

i f (n<m) 
return 0.0; 

else 
( 

for (i=0; i<=m-l; i++) 
x = x * (double)(n-i)/(double)(m-i); 

return x; 
) 
) 
i f (n>=0 SS m<0) 

return 0.0; 
i f (n<0 ii m>=0) 
( 

for (i=0; i<=m-l; i++) 
x = x * (double)(m-n-l-i)/(double)(m-i); 

return parity(m)*x; 
) 
i f (n<0 SS m<0) 
( 

if (n<m) 

return 0.0; 
e l s e 
< 

for (i=0; i<=n-m-l; i++) 
x = x * (double) ( -m- l - i ) / (double) (n-m-i ) ; 

return parity(n-m)*x; 
) 

) ) 
/ * The r t h term i n the expansion of P0(m,n)/pG i n P. * / 
double pOr(m, n ,pg,pb,r ) 
i n t m, n, r ; 
double pg, pb; 

( 
i n t b , c; 
double x=0.0; 
i f (r=0) 
{ 

i f (m=0) 
return 1.0; 

e l s e 
return 0.0; 

) 
else i f (r==l) 

( 
i f <m=0) 

return (1-n) *pg; 
i f (m>0 SS nxn) 

return 2*pg*pow(l-pb,(double)(m-1))*(1+((n-m-1)/2.0)*pb); 
i f (III—n) 

return p g * p o » ( l - p b , ( d o u b l e ) ( n - l ) ) / p b ; ) 
else 
( 

i f (m=0) 
( 

return parity(r)*pow(pg, (double) ( r ) ) *binom(r ,n- l ) ; 

) 
i f (m>0 16 m<n) 
( 

for (b=0; tK=r; b++) 
x = x + (n-m-b+l)*(n-m-b) 

*binom(b,r)*binom(r-l ,m+b-l)*pow(pb-l , (double)(b)) ; 
return pow(pg, (double)(r))*pow(1-pb,(double)(m-r)) 

*binom(r- l , n-m)*x/(r*(n-m)); 

) 
i f (III—n) 

return 0.0; 
) 

) 
/ * P0(m,n) accurate to order r i n P. * / 
double p0(m,n,pg,pb,r) 
i n t m, n; 
double pg, pb; 
( 

i n t 1; 
double x=0.0; 
for (1=0; K = r ; 1++) 



x = x + pOr(m,n,pg,pb,l) ; 
return (pb/(pg+pb))*x; 

) 
I* Sum of (l-h)*m*h*(i-m)*C(m,i)*vector[il over i=m..n. */ 
double p(m,n,h,vector) 
i n t m, n; 
double h; 
double vector[ ]; 
< 

i n t i ; 
double x=0.0, y=1.0; 

for (i=m; i<=n; i++) 
( 

x = x + y * v e c t o r [ i ] ; 
y = (y*h*(i+l)) / (i+l-m) ; 

) 
return pow( (pow (x,l/D) *pow(l-h,m/D)) ,D); 

v o i d main() 
( 

i n t m, n, r; 
double pg, pb, h; 
double pO_o[N+l]; 

p r i n t f ( " P = " ) ; 
s c a n f ( " % l f " , Spg); 
p r i n t f ( " p = " ) ; 
s c a n f ( " * l f " , *pb); 
p r i n t f ( " h = " ) ; 
s c a n f ( " * l f " , i h ) ; 
p r i n t f ( " n = " ) ; 
scanf("%d", Sn); 
p r i n t f ( " r = " ) ; 
scanf("%d", t r ) ; 
p r i n t f (" m P0(m, n)\n"); 
p r i n t f (" \n"); 
for (m=0; m<=n; m++) 
pO_o[m) = pO(m,n,pg,pb,r) ; 

for (m=0; m<=n; nrt-+) 
( 

p r i n t f ( " % 5 d m); 
printf ( " % . 4 e \ n " , pO_o[m]); 

) 
p r i n t f ( " \ n " ) ; 
p r i n t f (" m P(m,n)\n"); 
p r i n t f (" \n"); 
for (m=0; m<=n; n»++) 
( 

p r i n t f ( " % 5 d ", m); 
printf("%.4e\n", p(m,n,h,p0_o)) ; 

) 
return; 

) ' 
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pu.c 
/* pu.c */ 
/* Calculates occurrence probability of a l l nonzero codewords of a code 

by exhaustive computation, the average of a l l equivalents to that 
code using the P(m,n) (approximate) di s t r i b u t i o n , and the i r percentage 
difference i n the G i l b e r t channel. */ 

/* include f i l e required: 
"codegen" - see below for format 

/* parameters prompted for at runtime: 
P = G to B t r a n s i t i o n probability 
p = B to G t r a n s i t i o n probability 
h = B state b i t error rate 
r ~ number of terms taken i n expansion */ 

/* Sample "codegen" Code Specification F i l e 

•define N 7 
•define K 4 
•define M 16 

const char codename[] = "Hamming (7,4), c y c l i c , l+z+z*3"; 

const i n t gen[K] [N] = ( 1, 1, 0, 1, 0, 0, 0, 
0, 1, 1, 0, 1, 0, 0, 
0, 0, 1, 1, 0, 1, 0, 
0, 0, 0, 1, 1, 0, 1 ); 

const i n t wt[N+l) = ( 1, 0, 0, 7, 7, 0, 0, 1 ); */ 

•include <stdio.h> 
•include <math.n> 
•include "codegen" 

double ul[N+l], vl[N+l], wl[N+l); 

/* Binomial c o e f f i c i e n t s . */ 
double binom(m,n) 
i n t m, n; 
( 

i n t i ; 
double x=1.0; 
i f (n>=0 SS m>=0) 
( 

i f (n<m) 
return 0.0; 

e l s e 
( 

for (i=0; i<=m-l; i++) 
x = x * (double)(n-i)/(double)(m-i) ; 

return x; 
) 

) 
i f (n>=0 SS m<0) 

return 0.0; 
i f (n<0 SS m>=0) 
< 

for (i=0; i<=m-l; i++) 
x = x * (double)(m-n-l-i)/(double)(m-i); 

return parity(m)*x; 
) 
i f (n<0 SS m<0) 
( 

i f <n<m) 
return 0.0; 

else 
( 

for (i=0; i<=n-m-l; i++) 
x = x * (double)(-m-l-i)/(double)(n-m-

return parity(n-m)*x; ) ) 
) 
/* Binary addition routine. */ 
in t x o r ( i , j ) 
i n t i , j ; 
( 

i f (i = j) 
return 0; 

else 
return 1; 

) 
/* ( - l ) ' l for integer 1. */ 
int parity(1) 
i n t 1; 
( 

i f ((l/2)*2-l=0) 
return 1; 

else 
return -1; 

) 
/* F i r s t root of x*2-(Q+h*q)*x+h*(Q-p)=0. */ 
double jp(pg,pb,h) 
double pg, pb, h; 
( 

double b, c; 
b = -(1-pg+h*(1-pb)); 
c = h*(1-pg-pb); 
return (-b+sqrt(b*b-4*c))/2; 

) 
/* Second root of xA2-(Q+h*q)*x+h*(Q-p)=0. */ 
double jm(pg,pb,h) 
double pg, pb, h; 
( 

double b, c; 
b = -(1-pg+h*(1-pb)); 
c = h*(1-pg-pb); 
return (-b-sqrt(b*b-4*c))/2; 

I 



/* P r o b a b i l i t y of k O'a following a 1. * / 
double u(k,pg,pb,h) 
i n t k; 
double pg, pb, h; 
( 

return ( (jp(pg,pb,h)+pg+pb-l)*pow(jp(pg,pb,h),(double)(k)) 
-(jm(pg,pb,h)+pg+pb-l)*pow(jm(pg,pb,h), (double) (k)) ) 

/ (JP (pg,pb,h) - jm(pg,pb,h)) ; ) 
/* P r o b a b i l i t y of k O'a between l ' s . */ 
double v(k,pg,pb,h) 
i n t k; 
double pg, pb, h; 
( 

return ( ((1-pb)*jp (pg,pb,h)+pg+pb-l)*pow(jp(pg,pb,h),(double)(k)) 
- ((1-pb)* jm(pg,pb,h)+pg+pb-1) *pow(jm(pg,pb,h),(double)(k)) 

*(1-h)/(jp(pg,pb,h)-jm(pg,pb,h)); 
) 

/* P r o b a b i l i t y of k O'a preceding a 1. * / 
double w(k,pg,pb,h) 
i n t k; 
double pg, pb, h; 
( 

return ( (jp(pg,pb,h)+pg+pb-l)*pow(jp(pg,pb,h), (double)(k)) 
-(jm(pg,pb,h)+pg+pb-l)*pow(jm(pg,pb,h), (double) (k)) ) 

* (Pg/ (pg+pb)) * (1-h) / (jp (pg, pb, h) - jm (pg, pb, h)) ; 

/* P r o b a b i l i t y of b i t pattern s. */ 
double prob(s) 
i n t a [ ) ; 
( 

i n t i ; 
i n t c=0; 
char firat_one='Y'; 
double x=1.0; 
for (i=0; i<N; i++) 
( 

i f (a[i] = 0) 
C++; 

el s e 
( 

i f (firat_one = 'Y') 
( 
x = x*wl[c); 
fi r s t _ o n e = 'N'; 

) 
e l s e 
{ 
x = x * v l [ c ] ; 

) 
c = 0; 

) 
) 
x = x * u l [ c ] ; 
return x; 

/* The rth term i n the expanaion of P0(m,n)/pG i n P. */ 
double pOr(m,n,pg,pb,r) 
i n t m, n, r; 
double pg, pb; 
( 

int b, c; 
double x=0.0; 
i f (r=0) 
( 

i f (m=0) 
return 1.0; 

else 
return 0.0; 

} 
else i f (r=l> 

I 
i f (ro=0) 

return (l-n)*pg; 
i f (m>0 SS nxn) 

return 2*pg*pow(l-pb, (double)(m-1))*(1+((n-m-1)12.0)*pb); 
i f (III—n) 

return pg*pow(l-pb, (double)(n-l))/pb; 
) 
else 
{ 

i f (m=0) 
{ 

return parity(r)*pow(pg, (double)(r))*binom(r,n-l); 

) 
i f (m>0 tS nKn) 
( 

for (b=0; b<=r; b++) 
x = x + (n-m-b+1)*(n-m-b) 

*binom(b,r)*binom(r-l,m+b-l)*pow(pb-l,(double) (b)); 
return pow(pg, (double) (r)) *pow(l-pb, (double) (m-r)) 

*binom(r-l,n-m)*x/(r*(n-m)); 
I 
i f (m—n) 

return 0.0; ) 
) 
/ * P0(m,n) accurate to order r i n P. */ 
double pO(m,n,pg,pb,r) 
in t m, n; 
double pg, pb; 
( 

i n t 1; 
double x=0.0; 
for (1=0; K=r; 1++) 
x = x + p0r(m,n,pg,pb,l); 

return (pb/(pg+pb))*x; 
) 
/* Sum of (l-h) Am*h A(i-m)*C(m,i)*vector[i) over i=m..n. */ 
double p(m,n,h, vector) 
i n t m, n; 
double h; 
double vector[] ; 
( 



i n t i ; 
double x=0.0; 
f o r (i=m; i<=n; i++) 
x = x + binom(m,i)*pow(h, (double) (i-m))*vector[i]; 

return (((<x*pow(l-h,m/4.0))*pow(l-h,m/4.0))*pow(l-h,m/4.0))*pow(l-h,m/4.0)) 

v o i d main() 
( 

char carry; 
i n t b, c, i , m, r; 
i n t k=0, n=0; 
i n t mes[K], cw[N]; 
double pg, pb, h; 
double total=0.0 , totala=0.0; 
double pO_o[N+l]; 

p r i n t f ( " % s \ n " , codename); 
p r i n t f C P = " ) ; 
s c a n f ( " % l f " , i p g ) ; 
p r i n t f ( " p = " ) ; 
s c a n f ( " % l f " , Spb); 
p r i n t f ( " h = " ) ; 
s c a n f ( " % l f " , *h); 
p r i n t f ( " r = " ) ; 
scanf("%d", t r ) ; 
for (m=0; m<=N; ro++) ( 

ul[m] = u(m,pg,pb,h); 
vl[m] = v (m,pg,pb,h) ; 
wl[m] = (pg/(pg+pb))*(l-h)*ul[m]; ) 

for (k=0; k<K; k++) 
mes[kl = 0; 

for (b=l; b<M; b++) 
( 

carry = 'X'; 
for (k=0; k<K t t carry='Y'; k++) 
( 

i f ((mes[k]=xor(mes[k],l)) = 1) 
carry = 'N'; 

) 
for (n=0; n<N; n++) 
( 

c = 0; 
for (k=0; k<K; k++) 

c = xor(c,mes[k]*gen[k][n]); 
cw[n] = c; 

) 
t o t a l = t o t a l + prob(cw); 

) 
for (m=0; m<=N; m++) 

p0_o(m] = pO (m,N,pg,pb,r) ; 
for ( i=l; i<=N; i++) 

t o t a l a = t o t a l a + (wt[i)/binom(i,N))*p(i,N,h ,p0_o); 
p r i n t f ( " P u = %.4e ", t o t a l ) ; 
printf("Pua = %.4e ", total a ) ; 
p r i n t f ( " % % d i f f . = %.4e\n", 1 0 0 *(totala-total)/total); 

return; 
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( 
i f (randl) > h*MAXINT) mc_crc.c ( 
i f (randl) > h*MAXINT) 

/* mc_crc.c */ 
( 

z [ i ] = 1; 
/* Computes the approximate probability of undetected error for CRC codes fl a g = 1; 

i n the G i l b e r t channel by Monte Carlo simulation and the 99% confidence ) 
l i m i t s . */ else 

z t i ] = 0; 
/* include f i l e required: i f (randO > (1-pb)*MAXMT) 

"codepar" - see below for format state = 'G'; 
/* parameters prompted for at runtime: ) 

P - G to B t r a n s i t i o n probability ) 
p = B to G t r a n s i t i o n probability 1 
h = B state b i t error rate 
N = number of samples */ /* Binary addition routine. */ 

i n t xor(i,j) 
int i , j ; 

/* Sample "codepar" Code Specification F i l e ( 
•define N 21 i f ( i = j) 
•define P 16 return 0; 

else 
const char codename[] = "CRC-16, l+z*2+z A15+z A16"; return 1; 

const i n t g[P+l) = (1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,1,1); */ 
) 

/* Check to see i f vector z[N] i s a non-zero codeword. */ 
i n t check() 

•include <stdio.h> ( 
•include <math.h> in t i , j , q; 
•include <values.h> int sr[P); 
•include "codepar" 

i f (flag = 0) 
return 0; 

const seed[4] = (1, 2, 3, 4) ; /» random number seed values */ for (i=0; i<P; i++) 
const double d99 = 2.575829; s r [ P - l - i ) = z [ i ] ; 

for (i=P; i<N; i++) 
i n t z[N]; ( 
i n t f l a g ; q = s r [ P - l ] ; 

for (j=P-l; j>0; j — ) 
s r [ j ) = x o r ( s r [ j - l ] , g [ j ] * q ) ; 

/* Generate a random vector z[N), set f l a g to 1 i f i t ' s nonzero. */ sr[0]=xor(z[i],g[0]*q); 
) void generate (pg,pb,h) 

sr[0]=xor(z[i],g[0]*q); 
) 

double pg,pb,h; 
i 

for (i=0; i<P; i++) 
t 

char state; i f (sr[i] != 0) 
i n t i ; return 0; 

f l a g = 0; } 
return 1; 

i f (rand() > (pb/(pg+pb))*MAXINT) 1 
state = 'B'; 

e l s e 
state = ' G' ; void main() 

for (i=0; i<N; i++) { 
< int sample, fseed, a, t ; 

i f (state == 'G') int m=0; 
( double pg, pb, h, p; 

z[i]=0; double ym99, yp99; 
i f (randO > (1-pg)*MAXINT) 

state = 'B'; p r i n t f ( " % s \ n " , codename); 
) p r i n t f ( " k = %d\n", N-16); 
e l s e printf("P = " ) ; 



scanf("%1£", Ipg); 
p r i n t f ( " p = " ) ; 
s c a n f ( " % l f " , Spb); 
p r i n t f ( " h = " ) ; 
s c a n f ( " % l f " , Sh); 
p r i n t f ( " N = " ) ; 
scanf("%d", Ssample); 
for (t=0; t<4; t++) 
( 

srand(seed[t]); 
for (s=0; s<sample/4; s++) 
{ 

generate(pg,pb,h); 
i f (check () = 1) 
m = m + 1; 

) 
1 
p = ((double)(m)) / sample; 
ym99 = p * (1+((d99*d99)/(2*p*sample))*(1-sqrt((4*p*sample)/(d99*d99)+l))); 
yp99 = p * (l+((d99*d99)/(2*p»sample))*(l+sqrt((4»p*sample)/(d99*d99)+l))); 
pr i n t f ( " P u = %e\n", p); 
printf("lower error for 99%* confidence = %e\n", p-ym99); 
printf("upper error for 99%* confidence = %e\n", yp99-p); 
return; 



pmnc.map 
# pmn_c.map 
t C a l c u l a t e s PO(m,n) u s i n g t h e e x a c t c l o s e d fo rm e x p r e s s i o n g i v e n by 
# Cuperman and t h e n P ( m , n ) . 

t p r o c e d u r e s : 
# s - computes a t e r m i n t h e sum f o r PO (m, n) 
# s a i l - computes a l l t e r m s i n t h e sum f o r P0(m,n) 
i pOc - computes P0(m,n) 
# p O c a l l - computes P0(m,n) f o r a l l m 
# p c - computes P(m, n) 
# p c a l l - computes P(m,n) f o r a l l m 

a := p r o c ( m , n , p g , p b , j ) 
(n-m-j )*pb+m*(1-pg) e n d ; 

s := p r o c ( m , n , p g , p b , j ) 
( p g / ( p g + p b ) ) * ( ( 1 - p b ) * (m- j - 1 ) ) * ( ( 1 - p g ) A ( n - m - j - 2 ) ) * ( ( p g + p b - 1 ) A j ) 
* ( a ( m , n , p g , p b , j ) A 2 - p b * a ( m , n , p g , p b , j ) - m * ( 1 - p g - p b ) * ( 1 - p g ) ) 
* ( n - j - 2 ) ! / ( m * j ! * ( m - j - l ) ! * ( n - m - j ) !) e n d ; 

s a i l := p r o c ( m , n , p g , p b ) 
f o r j f rom 0 t o m-1 do 
p r i n t ( j , s ( m , n , p g , p b , j ) ) ; 
o d ; 
e n d ; 

pOc := p r o c ( m , n , p g , p b ) 
i f m=0 t h e n ( p b / ( p g + p b ) ) * ( ( 1 - p g ) A ( n - l ) ) 
e l i f n x n t h e n s u m ( ' s ( m , n , p g , p b , j ) ' , ' j ' = 0 . .min (m-1 ,n -m) ) 
e l s e ( p g / ( p g + p b ) ) * ( ( l - p b ) A ( m - 1 ) ) f i e n d ; 

f i l l a r r a y := p r o c ( n , p g , p b ) 
p O c a r r : = a r r a y ( 0 . . n ) ; 
f o r m f rom 0 t o n do 
p O c a r r [m] :=pOc (m,n ,pg ,pb) ; 
o d ; 
e n d ; 

p O c a l l := p r o c ( n , p g , p b ) 
f i l l a r r a y ( n , p g , p b ) ; 
f o r m f r o m 0 t o n do 
p r i n t (m, p O c a r r [m]) ; 
o d ; 
e n d ; 

p c := p r o c ( m , n , p g , p b , h ) 
f i l l a r r a y ( n , p g , p b ) ; 
y := 0 . 0 ; 
f o r i f rom m t o n do 
y := y + b i n o m i a l ( i , m ) * ( h A ( i - m ) ) * p 0 c a r r [ i ] ; 
o d ; 
y * ( ( l - h ) ' m ) ; 
e n d ; 

p e l := p r o c ( m , n , p g , p b , h ) 
y := 0 . 0 ; 

p c a l l 

f o r i f rom m t o n do 
y := y + b i n o m i a l ( i , m ) * ( h A ( i - m ) ) * p 0 c a r r [ i ] ; 
o d ; 
y * ( ( 1 - h ) A m ) ; 
end ; 

:= p r o c ( n , p g , p b , h ) 
f i l l a r r a y ( n , p g , p b ) ; 
f o r m from 0 t o n do 
p r i n t ( m , p c l ( m , n , p g , p b , h ) ) ; 
o d ; 
end; 
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od; od; 
pmn_s.map end; 

# pmn s.map p := proc(m,n,pg,pb,h,r) 
• Compute P0(m, n) by series expansion in P and then P(m,n). fillarray(n,pg,pb,r); 

y := 0.0; 

1 procedures: 
for i from m to n do 

• pOr - computes rth term of series expansion for P0(m,n) y := y + binomial(i,m)*(h*(i-m))*p0arr[i); 
* pOrall - computes a l l terms of series expansion for P0(m,n) up to r od; 
• pO - computes P0(m,n) up to order r accuracy y*((l-h)-m); 

1 pOall - computes P0(m,n) up to order r accuracy for a l l m 
end; 

• p - computes P(m,n) to order r accuracy 
t pal l - computes P(m, n) to order r accuracy for a l l m pi := proc(m,n,pg,pb,h, r) 

y := 0.0; 
for i from m to n do 

pOr : = proc(m,n,pg,pb,r) y := y + binomial(i,m)*(h*(i-m))*p0arr[i]; 
i f r=0 then od; 

i f m=0 then 1 y*((l-h)*m); 
else 0 end; 
f i 

e l i f r=l then pall := proc(n,pg,pb,h,r) 
i f m=0 then (l-n)*pg fillarray(n,pg,pb,r); 
e l i f m=n then (pg/pb)*(1-pb)*(n-l) for m from 0 to n do 
else 2*pg*(1+(n-m-l)*pb/2)*(1-pb)A(m-l) print (m, p i (m,n,pg,pb,h, r)) ; 
f i od; 

else end; 
i f m=0 then ((-pg)*r)"binomial(n-l,r) 
e l i f m=n then 0 
else ((pg"r)*((l-pb)A(m-r))"binomial(n-m, r-1)/(r*(n-m))) 

*sum(' (n-m-b+1)*(n-m-b)'binomial(r,b)'binomial(m+b-1,r-1) 
*(pb-l)'b','b'=0..r) 

f i 
f i 
end; 

pOrall := proc(m,n,pg,pb,r) 
for j from 0 to r do 
print (pOr (m,n,pg,pb, j)) ; 
od; 
end; 

pO := proc(m,n,pg,pb,r) 
x := 0.0; 
for 1 from 0 to r do 
x := x + pOr(m,n,pg,pb,l) ; 
od; 
x*(pb/(pg+pb)) ; 
end; 

f i l larray := proc(n,pg,pb,r) 
pOarr:=array(0..n); 
for m from 0 to n do 
pOarr [m] :=p0 (m, n,pg, pb, r); 
od; 
end; 

pOall := proc(n,pg,pb,r) 
fillarray(n.pg.pb, r); 
for m from 0 to n do 
print (m, pOarr [m]) ; 


