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Abstract 

Research into the analysis of polarimetric synthetic aperture radar (SAR) data continues to reveal 

new applications and data extraction techniques. The objective of this thesis is to examine the 

information content of a quad-polarization SAR, and determine which polarimetric variables are 

most useful for classification purposes. 

The four complex polarimetric radar channels (HH, HV, VH, and W) are expressed as nine 

scattering matrix cross-product "features" (with the loss of only absolute phase), and the relative 

utility of each for terrain classification is examined. Feature utility is examined in two ways — by 

measuring how each feature separates classes of terrain in an image, and by measuring how well a 

classifier performs with and without each feature. The features are then ranked in order of utility to 

the classifier, or in order of information content. 

A sharp distinction is found between those features that provide information useful to the 

classifier, and those that do not. It is found that those features that are defined as the product 

of a co-polarized and a cross-polarized term can be relatively safely ignored, with little loss of 

classification accuracy. This would be useful for reducing data transmission, storage, and processing 

requirements, and for designing future simplified radar systems. There is qualitative evidence that 

classification performance can actually be improved when these features are ignored. 

Of three simplified radar systems considered, the co-polarized design (returning only the complex 

HH and W channels) in general produced classifications closest to that of a fully polarimetric SAR. 
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Chapter 1: Properties of Polarimetric Radar Data 

Chapter 1 

Properties of Polarimetric Radar Data 

Polarimetric Synthetic Aperture Radar (SAR) differs from conventional SAR in that backscatter 

returns are recorded from more than one combination of transmit and receive polarizations. 

Whereas conventional SARs have a fixed transmit and receive polarization (eg. horizontal 

transmit horizontal receive, or HH), polarimetric SARs measure other polarization combinations 

as well. A fully polarimetric SAR records both the amplitude and phase of four combinations, that 

is horizontal transmit horizontal receive (HH), horizontal transmit vertical receive (HV), vertical 

transmit horizontal receive (VH), and vertical transmit vertical receive (VV). Knowledge of these 

four combinations enables the calculation of backscattered power for any combination of transmit 

and receive antenna polarizations. 

1.1 General Properties 

A general introduction to polarimetric SAR follows. The coordinate system is outlined, followed 

by a description of various representational forms of elliptically polarized electromagnetic waves. 

1.1.1 Coordinate System 

The horizontal (H) and vertical (V) basis vectors are shown in figure 1.1. Antenna boresight (the 

direction of propagation) is along the vector N. The plane of incidence is defined as containing both 

N and the surface normal at the point of incidence [63, p. 819]. V is defined as perpendicular to N 

within the plane of incidence and H is parallel to the horizon. The axes are mutually orthogonal: 

B_=VxE (1) 
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Chapter 1: Properties of Polarimetric Radar Data 

SAR 
Antenna 

Figure 1.1: Coordinate System 

1.1.2 Polarization of Electromagnetic Waves 

Electromagnetic waves are denned in terms of their electric and magnetic field vectors. The 

orientation of the electric field vector defines the polarization of a plane harmonic wave (physicists 

use the magnetic field vector in their definition) [47, p. 3-2]. 

The electric field vector can be separated into horizontally and vertically polarized components. 

The path traced out by the electric field vector is then defined (after [29, p. 247]) by: 

(EH{z,t)\ 

\Ev(z,t)J (2) 
= hexpJT 

with T = u>t — kz the variable part of the phase factor (z being the distance along the direction of 

propagation N, w the angular frequency, k the wavenumber of the radiating wave). The complex 

2 



Chapter 1: Properties of Polarimetric Radar Data 

vector h represents the polarization of the plane wave, and is time-invariant: 

H A (hff\ /anexpjS"\ 
\hv) \avexpjSvJ ( 3 ) 

= ( " ) expJ'5" 
\ ay expJC / 

with e = 6y — f>H die phase difference between the EH and Ey components. Note that when the 

antenna radiates a field defined by equation (3) then the vector h defines the antenna's polarization 

[29, p. 248]. 

The electric field vector may also be stated [4] as: 
E_ = E-H + Kv 

(4) 
= an cos (r + 8H)2L + «v cos (r + 6H + c)V * 

where H and V are the unit vectors in the H and V directions, and an and ay the magnitudes of the 
horizontal and vertical components respectively (from [4, p. 24], [47, p. 3-2]). 

Expanding the second cosine term: 

cos (r + 6fj + e) = cos (r + 6H) cos e — sin (r + sin e (5) 

Substituting | £ = cos (r + fa) and = cos (r + % + e) 

into (5) yields: 

cost — \\\— [ J sine (6) 
ay ajj 

Rearranging terms and squaring both sides leads to: 
2 / i p \ 2 

( * V + ( « E V cos*. - 2 ^ c o 5 £ = 1 - (SL)) sin* £ (7) 
\ av) \ aH) aHav \ \aH) J 

Simplifying results in: 
(Ey\2 . (EH\2 EjjEy . 2 / o \ 

— + - 2 cos e = sin € (8) 
V ay) \aH J aHay This is the equation of a conic. Investigating the determinant [4, p. 25] 

1 cos t 

det 
cose 1 

> 0 
sin2 e 

(9) 

a\a2
H 

shows that it is always positive, implying that (8) is the equation of an ellipse. The electric field 

vector therefore traces out an ellipse as the wave propagates forward along N. 

3 
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1.1.3 Elliptical Polarization 

The section above introduced the interpretation of the polarization state as an ellipse like that 

seen in figure 1.2. The ellipse can be specified by its ellipticity angle x (measuring the "roundness" of 

the wave), and its orientation angle tp (measuring the angular deviation from horizontal polarization 

of its semi-major axis). The wave's amplitude is represented by the length of the semimajor axis 

of the ellipse. 

Waves receding from the observer whose electric field vector rotates clockwise (negative x) ®K 

denoted as right-handed. Those whose electric field vector rotates counter-clockwise (positive x) 

are left-handed. 

The ellipticity and orientation angles are related to the amplitudes and phase difference as follows 

V 

*• H 

Figure 1.2: Polarization Ellipse 

[4, p. 27]: 

sin(2x) = 2a#ay sine 
(10) 

tan (2*) = 2anay cos e (11) 

Linear polarizations correspond to x=0o> *=0° or 180° being horizontal, and $=90° being 

vertical. For circular polarizations x=45° Geft handed) or -45° (right handed). 

4 



Chapter 1: Properties of Polarimetric Radar Data 

Note that -45° < x ̂  45° and 0° < * < 180° are sufficient for the representation of all 

polarizations. 

1.1.4 Poincare Sphere 

Z 

*- Y 

Figure 1.3: The Poincard Sphere 
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+45 

X 

Left Handed Circular 

Linear 

Right Handed Circular 
0 180 

¥ 
Figure 1.4: The Unwrapped Poincani Sphere 

There is a one-to-one mapping [4, p. 31] between any possible polarization state and a 

corresponding point P o n a Poincare sphere of radius So, with 2\ and 2ip being the spherical angular 

coordinates of the point. Points in the northern hemisphere are left handed, while points in the 

southern hemisphere are right handed. Linear polarizations lie on the equator (Sj=0) while circular 

polarizations lie at the poles. 

The sphere may also be "unwrapped" and displayed as a two dimensional rectangle, much in the 

same way as one sees with world maps (see figure 1.4). Linear polarizations run along the equator 

through the center of the rectangle. 

1.1.5 Stokes' Vectors 

The Stokes' vector of a plane monochromatic wave (after [4, p. 30] and [29]) is defined as: 
/S0\ /\hH\2 + \hv\2\ 

S = 
Si 

s2 

\s3J 

\h„\2-\hy\2 

2$t(h*Hhv) 

( *H + a2v \ 

aH ~ aV 

2anav cos e 
(12) 

V 2^s(h*Hhv) ' \2a#aysine/ 

So is proportional to the wave's intensity [4, p. 30]. The other three parameters are functions 

of the ellipticity and orientation angles: 
Si = So cos 2x cos 2V> 
•S-j = So cos 2x sin 2V> 
53 = S0 sin 2% 

(13) 

6 



Chapter 1: Properties of Polarimetric Radar Data 

Only three of the Stokes' vector elements (Stokes' parameters) are independent. For polarized waves 

they are related by: 

50

2 > S 2 + Si + S3

2 (14) 

with the equality holding for fully polarized waves. The three parameters Si, S2 and S3 define the 

Cartesian coordinates of the polarization state on the Poincare" sphere. So is the radius of the sphere. 

For partially polarized waves the point falls within the sphere while fully polarized waves lie on 

the surface. 

1.1.6 Partially Polarized Waves 
The Stokes' vector of a partially polarized wave can be decomposed [29] into a fully polarized 

component and an unpolarized component: 
/{S0)\ /S0-(S0)\ 

Si 

S2 
V s3 ) \ 

0 
0 
0 

(15) 

with (So)p = yjS\ + S\ + S% ranging between zero and one indicating the portion of the wave that 

is fully polarized. 

The degree of polarization p of the wave is defined [29, p. 249] as: 

(S0)p _ y/S'j + SI + Sj 
(16) 

So So 

representing the ratio of the intensity of the polarized component of the wave.to the wave's total 

intensity. 

1.1.7 Scattering Matrix 
Each scatterer on the ground produces a scattered wave with a polarization different from that 

of the original incident wave. The relationship between the incident and scattered waves is codified 

in the scattering matrix, which is stated as: 

( Shh S^v \ 

s s <17) 

1 



Chapter I: Properties of Polarimetric Radar Data 

with Sij denoting the relation between the i transmit and j receive polarizations. The relationship 

between the transmitted (incident) and scattered electric field vectors is then: 

Ea = SEt (18) 

where Es and Et are the scattered and transmitted electric field vectors respectively. 

Each of the four parameters in the scattering matrix is complex, requiring eight floating point 

elements for storage. However, the absolute phase does not influence the received power and 

may be neglected, resulting in only seven independent parameters. Additionally, in the monostatic 

case (transmitter and receiver co-located) reciprocity dictates that Shv = S v / i . resulting in only five 

independent parameters. 

1.1.8 Voltage at Antenna 

Each of the four recorded echoes (HH, HV, VH, VV) that make up the measured scattering matrix 

is a complex quantity, containing both amplitude and phase information. The voltage measurement 

V at the antenna for each resolution element can be stated [29, p. 249] as: 

V = CjSCt (19) 

with S the scattering matrix, and Ct and Cr complex vectors defined similarly to h denoting the 

polarization states of the antenna at transmission and reception respectively: 

C, = ( £ ) (20, 

Note that Ct,h is a phasor representing [74, p. 685] "the complex (amplitude and phase) wave 

amplitude" in the H direction when "a unit voltage signal is applied to the antenna feed line". A 

similar definition holds for Cr,h-

Expanding equation (19) yields: 

V = CTthShhCt,h. + CT>h.ShvCtiV + Cr,vSvh.Ct,h + CriVSvvCtiV (21) 

The resulting received power P is then: 

P = VV* (22) 

Note that for an HH radar system, Cf = (1 0) and CJ = (1 0), only the first term of equation 

(21) contributes [74, p. 688], and Shh is easily extracted. 
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1.1.9 Antenna Stokes' Vectors 

The polarization states of the transmit and receive antennas can also be represented by their 

Stokes' vectors, denned as follows [74, p. 685]: 

(\Ct,h\2 + \Ct,v\\ 

\CUH\2 - \Ci,v\2 

2»(C«lfcC7tW) 
V 23(CaQ)„) / 

(23) 

and 

G r 

/\Cr,h\2 + \CTtV\2\ 

\Cr,h\ ~ \Gr,v\ 

\ 2%{cr,hc;tV) ) 

(24) 

where Gt and Gr are the transmit and receive antenna Stokes' vectors respectively. 

1.1.10 Stokes' Matrix 

A 4x4 real matrix analogous to the scattering matrix can be derived [35, p. 362], [47, p. 3-10], 

[64, p. 532], [63, pp. 819-820], that relates the Stokes' parameters of the transmitted pulse to those 

of the received pulse. This 4x4 real matrix is known as the Stokes' matrix. This section derives 

the elements of the Stokes' matrix from the scattering matrix, and then notes some of the advantages 

and disadvantages of the Stokes' matrix representation. 

9 
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1.1.10.1 Derivation 

Substituting equation (21) in equation (22) the received power can be expressed as: 
P ={cT,hc*th) 

(Cr,vC*h 

(cr,vc*v 

(cr,vc*h 

(shhS*.h){Ct,hCth) + (Cr,hC*yh)(ShhShv)(Ct,hClv) + 

(Shh.S*h)(CtihC*h) + (CTthC*tV)(ShhSyV)(Ct<hClv) + 

(ShvS*h)(Ct>vClh) + {Cr,hC?,h,)(shhS*.k)(ct,hClh)-\-

(5'/,„5*/l)(Ct)l,C*^) + (Cr,hC*tV)(ShvSyV)(Ct,vC*tV) + 

(SvhSlh)(Ct,hCtth) + (Cr,vC*h){SvhSlv){Ct,hC*iV) + 

(SvhSvh){Ct,hC*h) + (Cr,vC*v)(SvhS*v)(CtthC*v) + 

{SvvS^h)(Ct,vC*ih) + (CT,vC*h)(SvvShv)(Ct,vC*tV) + 

(SvvS*h)(Ct,vC*h) + {Cr,vC*tV)(SvvS*v)(CttVC*v) 

(25) 

Rearranging into matrix form, the expression simplifies to: 

P = 

(Cr,h.C*%h\ 

\ Cr,vC*h I 

= YT

TWYt 

(shhSlh shvsiv shhsiv ShvS*hh\ /Ct,hC*h\ 

SvhSyh. SVySvv Svh,Svv SvvSvfl 

G O * G C * G C* C G* 
'Jhh'Jyh J h v > - > v v

 J h h J

V v Jhv<Jvfl 

SvvS^v Svh,S^v SvvS^h/ \Ct,vC*h I 

(26) 

Yr describes the polarization state of the receive antenna while Yt describes the polarization state of 

the transmit antenna. The matrix W is independent of the polarization state of either antenna, and is 

descriptive only of the properties of the surface scatterer. 

We wish to obtain an equation relating the received power to the Stokes' vectors of the antennas 

and a 4x4 real matrix, otherwise known as the Stokes' matrix. 

We can write the antenna Stokes' vectors Gr and G, in terms of Yr and Yt (after [35, p. 362]): 
Gr — KYr 

(27) 
Gt = RYt 

where 

/ l l 0 0\ 
1 - 1 0 0 

0 0 1 1 

VO 0 -j jJ 

(28) 

10 
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Solving for YT and Yt: 

Yt = R~ Gt = ~ 

Yr — R 1 Gr — — 

where 

I 0 ° \ /\ctM 2 + \Ct,v\ 2\ 

1 1 - l 0 0 \ct,h\2 - \ctiV\2  

2 0 0 1 3 

l o 0 1 -j) \ - 2 9 ( c a q g / 

1 0 o \ /ic r iAr+ic r i„i a\ 
1 1 - 1 0 0 \Cr,h\2 - \Cr,v\2 

2 0 0 1 3 

Vo 0 1 -j) V -2%{cr,hc;<v) / 

Z 1 1 0 

1 - 1 0 0 

0 0 1 j 

Vo o i -j/ 

and 

(R-'f = (RTyl = \ 

(29) 

(30) 

(31) 

(32) 

(33) 

/ l 1 0 0 \ 

1 - 1 0 0 

0 0 1 1 

\0 0 j -jJ 

Substituting equations (29) and (30) in (26) produces: 

P = k(R-1Gr)TW{R-lGt) 

= kGJiR-^WR^Gt 

where k is a scalar constant. Combining the three 4x4 matrices (R'^WR-1 into a single 4x4 

matrix creates the real Stokes' matrix M: 

M = (R-ifWRT1 

/ l 1 0 0 \ /ShhS£ h Sh.vSlv ShhSlv Sh,vSlh\ / l 

SvhSyh SVVSVV Svh,Svv SvvSvfl 

ShhSyh Shv^vv Shh,S*v ^hvS*^ 

\SvhShh Svv Slv SvhSlv 

1 

0 

Vo 

- 1 0 0 

0 1 1 

o j -j I 

1 0 0 \ 

1 - 1 0 0 

0 0 1 j 

V0 0 1 -j I 

(34) 
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One can then calculate the power simply as the product of a constant, the receive antenna Stokes' 
vector, the Stokes' matrix and the transmit antenna Stokes' vector [14, p. 299]: 

P = kGjMGt (35) 

with M the Stokes' matrix, G> the receive antenna Stokes' vector, and G, the transmit antenna 
Stokes' vector. 

The Stokes' vector of the scattered wave S5' is related [14, p. 299] to the Stokes' vector of 
the incident wave S'r via: 

Ssc = RRTMStr (36) 

In the bistatic case, the scattering matrix S has only seven independent parameters, implying that 
there are nine relations between the M's sixteen elements (see [64, pp. 532-533]). In the monostatic 
case, both S and M are symmetric, S has five independent parameters, and M nine. 

1.1.10.2 Advantages/Disadvantages 

The Stokes' matrix direcdy relates the antenna Stokes* vectors to the received power. The 
principal advantage of the Stokes' matrix over the scattering matrix representation is that a set of 
resolution elements' Stokes' matrices may be averaged [63, p. 533] to produce a Stokes' matrix 
representative of a coarser resolution element. Such an operation is valid for a scatterer composed 
of several incoherent scattering centers. For N waves with no bias in their phase relationship 
(incoherendy related), their superposition can be represented by the sum of their Stokes' vectors: 

/(So)i\ 

1 N 
S A V ~ JV ^ 

1=1 (SO,-
(37) 

No analogous "average" scattering matrix exists. When Stokes' matrix averaging is done, the 
one-to-one relationship between the Stokes' matrix and a corresponding 2x2 scattering matrix is lost. 
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A reverse transformation to a scattering matrix representation from an averaged Stokes' matrix Sav 

would be invalid. An averaged Stokes' matrix must be stored as a set of nine (not seven) independent 

parameters for the monostatic case (sixteen for the bistatic case). 

1.1.10.3 Relation to Scattering Matrix 

From equation (34) one can derive that the elements of the Stokes' matrix M are related [73, p. 

252] to the scattering matrix cross-products via the following equations: 

= -^.Shh • S^h + • Syy + 2SfiV • S^y] 

Mi ) 2 = ~^[Shh ' Sfrh — Svv ' Svv] 

Mx ,3 = -R[Shh • Sly] -T ^[Shv • Syy] 

MiA 

M2<2 -- — ̂ S[Shh ' Sfrh + Syy • Syy — 2Shv ' S^y 

M2,3 = ̂ [Shh • S^] - ^[Shv • Syy] 

M2,A = - ^ [ s h h - s i v ] + ^[shy-s:v] 

= -Shv • Sly -T - R[Shh • Syy] 

-•^[Shh • Syy] 

M4,4 = —Shv ' S^y ~ 2^-^llfl' ^vv^ 

The other Stokes' matrix elements are known from symmetry in the monostatic case. 

1.2 Properties of JPL AIRSAR Data 

1.2.1 Introduction to JPL AIRSAR 

The Jet Propulsion Laboratory in Pasadena, California operates a fully polarimetric SAR aboard 

a DC-8 aircraft. Known as the AIRSAR, the system collects data simultaneously at the C (5.3 cm), 

L (24 cm), and P-band (67 cm) wavelengths. The radar is a test-bed for the SIR-C space shuttle 

mission scheduled for 1993 [61, p. 337] and for the Earth Observing System (EOS) SAR mission 

[17], [66] planned for launch in the late 1990's. 
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The NASA/JPL DC-8 radar transmits alternately at H and V polarizations, and receives the H 

and V components of each echo simultaneously. Figure 1.5 shows a transmit/receive timing diagram. 

Horizontal Transmit Event I I I I I 1 1 

Vertical Transmit Event I | | | | | | 

HH Echo r\ r> r\ r> d o CX. 
HV Echo r>, r\ r\ r~\ 
VH Echo r~\ r\ r\ r-\  
W Echo Q dk Q Q Ch Q 

Figure 1.5: Transmit/Receive Timing Diagram [74, p. 685] 

A complete synthetic aperture consists of approximately 1500 echoes. The interpulse period is 

approximately 1.3 milliseconds [74, p. 685]. 

1.2.2 Stokes' Matrix Compression 

A polarimetric radar returns a veritable flood of data. In the future, JPL plans [62] on collecting 

the following amount of data for every data take: 

Data Volume = (#Az.pixels) X (#Range pixels) x (#Matrix Elem.) 

X (#Bytes/Complex Number) x (^Frequencies) 
(39) 

= 16384 x 1200 x 4 x 8 X 3 

« 1800 Megabytes 

This is well beyond the current data processing abilities of affordable computers. Currently only a 

subset of the data acquired is ever processed and analysed. To maximize the size of that subset it 

is desirable to compress the data returned into a more manageable size. A compression algorithm 

[10] is used by JPL to reduce the original single look scattering matrix data into four look Stokes' 

matrix data. A compression factor of 12.8 is achieved. Single look (hi res) data is also available in 

a compressed scattering matrix format [62], at a compression factor of 3.2. 
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1.2.2.1 Compression 

For a Stokes' matrix M, the compression operation used by JPL proceeds as follows [73, p. 

251]. First a scale factor is stored: 

/ / M \ \ ( 4 0 ) 

6y«e(2) = / » < ( 2 5 4 ^ ^ _ - 1 . 5 J j 

To minimize quantization errors during normalization, a factor x approximately equal to M i , i 

is introduced. 

X = ( ^ + 1 . 5 ) . 2 * « M (41) 

The remaining elements are then stored as: 

byte(3) = 127-Mia/x 

(42) 

byte(4) = 127 • sign(Mlfl/x) • y/\M1<3/x\ 

byte(5) = 127 • sign(M1A/x) • ^\MiA/x\ 

byte{6) = 127 • sign(M2,3/x) • y/\M2,3/x\ 

byte(7) = 127 • sign(M2A/x) • ^\M2A/x\ 

byte(8) = 127 • M3,3/x 

byte(9) = 127 -M3A/x 

byte(\0) = 127-M4A/x 

where Int( ) is the integer part of the operand, sign(a) returns +1 for positive a, 0 for a=0, and -1 

for negative a. Note that nine independent parameters are stored, as noted in section 1.1.10.2. 

1.2.2.2 Decompression 

Data stored in JPL's 4-look format [10] is decompressed via the following equations [73, p. 
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251]: 

*.x = ( ^ + 1.5)-2**> 

= byte{Z) • ^ 

M1>3 = sign(byte(4)) • ( ^ ^ ) • M M 

M M = «*n(&yte(5)) • {^^f • M u 

M 2 , 3 = «*n(6yte(6)) • (^9) 2 ' M M ( 4 3 ) 

M 2 ) 4 = sign(byte(7)) • [ J L ^ r

L ) • Mh 

M3,3 = byte(8)-^ 

M 3 , 4 = W 9 ) ~ 

M4A = byte(10)-^ 

M 2 , 2 = Mhi - M 3 , 3 - M 4 , 4 

Note that there are nine independent matrix elements recovered. A tenth is a linear combination of 

three of the nine, while the other elements of M are known from symmetry. 

1.3 Polarimetric Features 

1.3.1 General Observations 
In general, heavily vegetated areas will have a strong cross polarized (HV) return, while water 

surfaces have their strongest return at VV polarization. This suggests a method for the viewing of 

polarimetric radar data whereby the HH return is fed to the red gun of the video display, the HV to 

the green, and the VV to the blue. Vegetation then appears green and water blue. 

For a Stokes' matrix Af: 

"Mi,! Mi, 2 Ml ,3 M a , 4 -

M 2 ,i M 2 , 2 M 2 , 3 
M 2 , 4 

M3,i M3,2 M 3 , 3 M 3 ) 4 

-M 4 , i M 4 ) 2 M 4 , 3 M 4 , 4 . 

(44) 
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this section investigates the physical significance of some of the matrix elements and describes some 

quantities that can be derived from them. 

1.3.2 Total Power 

The first Stokes* matrix element M\Y\ is known as the total power, or span. It represents the 

backscattered power when the incident (transmitted) pulse is completely unpolarized, containing equal 

amounts of all polarizations, (ie. SL = ( SQ 0 0 0 ) r ) . 

From equation (38) one can see that the span is the sum of the HH, HV, VH, and V V returns. 

Being a combination of multiple channels, a span image has less speckle (and contrast) than any 

individual channel. 

1.3.3 Number of Bounces During Scattering 

Different scattering mechanisms result in different polarization signatures. Reflections from a flat 

surface will have a single bounce, while buildings, being dihedral corner reflectors, exhibit a strong 

double-bounce scattering return. Reflections from forests typically undergo multiple bounces in the 

canopy before reaching the radar receive antenna. Figure 3.7 illustrates each of these scattering 

mechanisms. 

The use of simple scattering models such as these removes the need for training for some 

classifications, and leads to an unsupervised classification algorithm [60]. 

1.3.4 Polarization Phase Difference 

1.3.4.1 Definition 

The polarization phase difference (PPD) is defined as the phase difference between the HH and 

VV signals. For signals: 

SHH = AHH exp*'*" 
(45) 

the polarization phase difference is then: 

PPD = A<fi = 4>hh - <f>vv (46) 
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The PPD can be calculated by evaluating ShhS^v and extracting the phase term. 

1.3.4.2 Use as Discriminator 

Ulaby [57] and Boerner [2] have reported that the radar backscatter from some types of vegetation 

has different path lengths depending on the polarization, suggesting that the PPD can be used to 

discriminate between different types of ground cover. 

1.3.4.3 Relation to Stokes' Matrix 

The PPD is the phase of ShhSyV. The real and imaginary parts of this quantity can be extracted 

from the Stokes' matrix via: 

K(ShhS:v) = M 3 i 3 - M4,4 (47) 

and 

3(S f c f cS;„) = - 2 M 3 i 4 (48) 

The PPD is therefore calculated as; 

PPD = A<fi = arctan ( ~ 2 M \ \ ) (49) 
\Af 3,3 - M 4 ) 4 / 

1.3.5 Scattering Matrix Cross Products 

The scattering matrix cross products are often computed as the inputs to a classifier. The cross 

products and the manner in which they can be computed from the scattering matrix are shown below: 

1. ShhS*hh = Mltl + M2t2 + 2 M i l 2 (HH image) 

2. SVVS*VV = + M2>2 - 2Mh2 (VV image) 

3. ShvS*hv = Mi,i - M 2 , 2 (HV image) 

4. U(SkhS:v) = M 3 ) 3 - M 4 , 4 

5. %{ShhS:v) = - 2 M 3 ) 4 

6. ®(ShvS*vv) = M l i 3 - M2i3 
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7. $s(ShvS;v) = M2A - M M 

8. K(ShhS*hv) = M 1 ) 3 + M 2 ) 3 

9. %(ShhS*hv) = -(Mi,4 + M2A) 

1.3.6 Polarization Signature 

Given a Stokes' matrix representation of a ground resolution element, from equation (35) one 

can calculate the received power P over a wide range of transmit and receive antenna polarizations. 

The received power for each combination of antenna polarizations can then be mapped over the two 

dimensional grid (x=-45°..45°, ^=0°..180°) known as the unwrapped Poincare sphere and displayed 

as a surface plot, as in figure 1.6. Such a representation is known as a polarization signature and is 

useful for the visual comparison of scattering properties. Figure 1.6 shows the polarization signature 

of a trihedral corner reflector. 

The case where one sets the transmit and receive polarizations equal: 

Xr = Xt 
(50) 

is known as a co-polarized antenna. A cross-polarized antenna results when the receive polarization 

is equal to the transmit polarization shifted by 90° in the orientation angle: 

(51) 
= (V>t + 90°) mod 180° 
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Figure 1.6: Polarization Signature 

The quantities Pmin and Pmax can be computed as the minimum and maximum received power 

respectively over all polarization states (x.VO- This allows the calculation of two additional quantities: 

the coefficient of variation and the fractional polarization. 

1.3.6.1 Coefficient of Variation 

The coefficient of variation is the ratio of minimum to maximum received power [63, p. 540]: 

CoV = (52) 

M H O I 

One can see that the smaller the coefficient of variation, the more pronounced is the effect of varying 

the polarization of the antennas, and the more information that is likely to be found in the polarization 

signature. A coefficient of variation close to unity indicates that changing the polarizations of the 

antennas will have minimal effect on the backscattered power, and that there is little useful information 

content in the polarization-specific data. 
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1.3.6.2 Fractional Polarization 

The fractional polarization is defined [74, p. 696] by: 

P - P 
r t •*• 771 a x -* 771171 f ^ 1 \ 

= P +P~ C ' 
•* max i J mm 

One can see that a high fractional polarization shows a high degree of polarized return from the 

scatterer, and indicates that varying the antenna polarizations will strongly influence the received 

power. The fractional polarization is therefore useful as an indicator of the polarization "purity" of 

the backscatter return, and of the possibilities for enhancing the contrast between a given target and 

other parts of the image. 
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Chapter 2 
Data Calibration 

2.1 Background 

Calibration of polarimetric radar data is a necessary first step if one wishes to avoid coming to 

false conclusions about the nature of scatterers on the ground. 

There are four steps [61, p. 342] in the calibration of a polarimetric SAR image: 

1. Relative Phase Calibration 

2. Cross-Talk Calibration 

3. Co-Polarized Channel Imbalance Calibration 

4. Radiometric Calibration 

The needs and resources of each user determine his or her required degree of calibration. The 

first two steps can be performed on any image, with no ground truth devices required in the scene at 

the time of data acquisition. Steps three and four can not be performed without auxiliary ground truth 

data. Returns from trihedral corner reflectors and/or polarimetric active radar calibrator (PARCs) in 

the scene allow one to perform the last two steps, enabling the complete calibration of the data set. 

2.2 Radar System Model 

The scattering matrix measured by the radar is distorted by the transmit and receive subsystems 

within the radar. Data calibration aims to remove the distortions from the data, by first devising a 

model that explains how the corrupted measured scattering matrix is derived from the true scattering 

matrix, and then inverting the model to arrive at the best estimate of the true scattering matrix given 

the measurement. 

The radar system architecture can be modelled by the following formula (after [61, 49, 74]): 

(54) 
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where A is an absolute amplitude factor, <f> the absolute phase (dependent on slant range from radar 

to target), R and T are the receive and transmit system distortion matrices, S is the true scattering 

matrix, and N the noise in each channel. The object of Data Calibration is the determination of the 

values of A, R, T, and N. Since <j> has no effect on the received power, it can safely be ignored. 

Requiring only the four calibration steps listed above results in the following system model: 

Z = A exp* RTST 

= w r H)(SHH ^ v 1 h) < 5 5 ) 

V 1̂ A / V Svh svv J V 84 h ) 

where, for the receive system,/; is the co-polarized channel imbalance in both amplitude and phase, 

while bi is the cross talk when vertically polarized waves are received and 82 is the cross-talk when 

horizontally polarized waves are received. Similar definitions hold for the parameters of the transmit 

system (fc, 83, and 84). 
Alternatively, the model can be stated in Kronecker delta format as: 

( 1 &t 82 8284 \ /Shh\ 

83 h 8283 84 j2 

#1 #1#4 f l 84 f l 

\8183 81 f 2 83 j1 / 1 / 2 / 

Shv 

Svh 

\SvvS 

(56) 

From equation (55) one should note that the cross-talk and channel imbalance calibrations can 

be performed independendy, as: 

/ 1 83 \ (1 0 \ 

and similarly, 

T = 
1 * 3 

.84 h ) Vo h)\hlf2 1 
— TCTX 

(57) 

R 
' 1 62 T 0 1 

Vo /1/W/1 1 
— RQRX 

(58) 

where TC and RC describe the co-polarized channel imbalance in the transmitting and receiving systems 

and TX and RX express the cross talk. 
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Substituting equations (57) and (58) in (55) results in: 

Z = A expJ> Rx RCSTCTX (59) 

Note that this implies that the cross-talk and co-polarized channel imbalances may be performed 

separately. This is important, as the cross-talk calibration can be done on all data, whereas the co-

polarized channel imbalance calibration requires the presence of in-scene trihedral corner reflectors 

or PARCs. 

Neglecting absolute amplitude and phase, we can rewrite the above in the form: 

Z = RXWTX (60) 

where W is known as the intermediate scattering matrix [61, p. 338]: 
(Whh Whv\ 

W = I = Aextf+RcSTc 
V W«« / (61) 

., / Sh.h hShv \ 

\f\Shv hh 

Both the relative phase calibration and the cross-talk calibration (determination of Tx and Rx) can 

be performed without the use of external calibration devices. In the case of no corner reflectors or 

PARCs, W is then the best possible estimate of 5. 

2.3 Phase Calibration 

Phase calibration is important, since if it is not performed, improper conclusions may be made 

about the nature of the scatterers being imaged. Phase calibration corrects for the initial ignorance of 

the lengths of the phase paths of the different channels (HH, HV, VH, VV) in the radar. This section 

describes the theoretical basis of the phase calibration operation. Literature on the phase calibration 

of polarimetric SARs can be found in [25], [27], [49], [73], and [74]. 

2.3.1 Measured Scattering Matrix 
The measured scattering matrix R is related to the true scattering matrix S (neglecting noise for 

the moment) by the unknown transmit and receive phase paths (after [73, p. 247] and [74, p. 694]): 
(Rhh Rhv\ /SfcfcexpW'.»+*-'> Shv expW«"+*-*) \ 

R = [ = (62) 
\Rvh RwJ \Svhexp^+^ Svv expW'.'+*") / 
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where the phase factor <j>t,h denotes the phase distance travelled by horizontally polarized signals 

within the radar system (from the transmit amplifier to the antenna) and the other phase factors fcj 

are defined similarly. 

For simplification we introduce: 

<t>t = 4>t,h - <t>t,v 
(63) 

<t>r = <t>T,h ~ <I>T,V 

resulting in: 

R = exp J ^ < - + *-" ) (64) 

V S^exp*' Svv J 

The leading phase term (dependent on the slant range from the target to the aircraft) in the above 

equation can be ignored, as only the relative phase terms between the polarimetric channels affect 

the received power. 

2.3.2 Symmetrization of Scattering Matrix 

During the transformation from scattering matrix to Stokes* matrix representation, the first step 

is the symmetrization of the scattering matrix. This section describes that operation. 

Neglecting the absolute phase, a symmetrized measured scattering matrix Z is formed by applying 

a phase shift of -(<j}t — <t>r) to the SVA element [24, p. 774]. 

From equation (64): 

Z = (65) 
V Svh exp*' Svv j 

This eliminates the hv-vh phase difference. The off diagonal elements of Z are then in phase and 

may be averaged [73, p. 248]: 

w = ±(z + zT) 
/ Shh expJ'(0l+*') 5ft"+s"" exp*- \ (66) 

V s i > " + s " h exp*' Svv J 

Note that: 

Wvh = \ (Zhv + Zvh exp-**'-*')) (67) 
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Once the measured scattering matrix R is transformed into a symmetric scattering matrix W, it is next 

converted to a Stokes' matrix via equation (34). 

The cross products of the symmetric scattering matrix W are related to those of the true scattering 

matrix 5 via: 

whhw*hh - ShhShh 

w w* 
''VV '' VV 

— c c* 
— I J v v k J v v 

whvw*hv — Shv^hv 

whhw*vv 

whhw*hv = ShhS*hvexp>*< 

= SvhSvv expJ^>'' 

2.3.3 Solving for the Phase Distortions 
Two equations are required to solve for the 4>t and <f>r of equation (63). They can be supplied by: 

1. Assuming reciprocity (Shv = Svh) 

2. Selecting a "known" target or point in the image where the polarimetric phase difference (PPD) 
is known 

2.3.3.1 Equation 1: Reciprocity 

Reciprocity dictates that ShV=Svh- Neglecting the absolute phase, from equation (64) we can 

therefore take the average value of R*hvRvh = SlvSvh exp-7^1-^-) over the entire image to estimate 

<t>dif j = 4>t-4>r = arg {{RlvRvh)) (69) 

for (R*hvRvh) coherently averaged over the entire scene [74, p. 694]. 

For images stored in the Stokes' matrix format [10], this calculation must be done before 

conversion and stored in the image header for later use during calibration. 
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2.3.3.2 Equation 2: "Known" target 

If one can predict the phase difference between the hh and vv signals (PPD) at one or more 

parts of a scene, then from equation (64) one may observe that RhhR*v = ShhS*v exp J '^ , +*') and 

form an estimate of 4>t + <j>r via: 

<f>sum = <t>t + <t>r = Kg(RhhKv) ~ &I^(ShhS*v) 
(70) 

= a,Ig(Rhh.Rlv) - PPDexpected 

for RhhR*v in the "known" regions [74, p. 694]. Only one point is required but the use of more 

points will decrease the effect of noise on the estimate. 

The quantity <f>t + <f>r is most easily estimated by examining the polarization phase difference 

(PPD) via equation (49) of an area in the uncalibrated image where the theoretical scattering phase 

difference is near zero (eg. open water). For such a case, the above simplifies to: 

<f>t + 4>r = ™g(RhhR*vv) (71) 

2.3.4 Phase Corrected Measurements 

Solving the two equations (69) and (70) in two unknowns gives us estimates for the relative 

phases <j>t and <pr. 

Inverting equation (64) and omitting the leading phase term lets us estimate 5 from R via: 

S = 

V Rvh exp-*' Rvv 

to a relative phase. This estimate of the scattering matrix has had the effects of the phase path 

lengths in the receive and transmit systems of the radar removed. Once translated into Stokes' matrix 
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form, this becomes: 

shhs*hh = whhw*hh 

Uvv^vv — ,,vv'rvv 

ShhS*vv = WhhW:vexp-^+^ 

ShhS*hv = WhhW*hvexp-i*< 

svhs:v = wvhw:vexP-^ 

representative of a Stokes' matrix M that has been properly phase calibrated. 

(73) 

2.3.5 Kronecker Delta Form 

The phase calibration operation can neglect absolute amplitude, absolute phase, cross-talk, and 

channel amplitude imbalance distortions. This results in a simplified radar system model: 

R = 
1 0 

: ° h 

Shh 

( Shh Shv 

hShv \ 

1 0 

,0 h (74) 

where /} and h are pure phase terms (no amplitude imbalance), R the measured scattering matrix, 

and 5 the true scattering matrix. Note that the scattering matrix is in standard format, unlike that 

seen in [24, p. 774]. In Kronecker delta format equation (74) can be restated as: 

/l 0 0 0 \ /Shh\ 

R = 
0 f2 0 0 

0 0 / i 0 

Vo 0 0 hhl 

Shv 

Svh 

V Svv ' 

= DS (75) 

This can be compared to the representation of equation (64) (derived from [73]) which becomes 

the following after normalizing to the absolute phase of Shh' 

Shh Shv exp-**' \ 
R = Aexp j ( ^ k + < ^ h ) 

.S^exp"^ Svvexp~^'+^) 
(76) 
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with <f>, and <f>r as defined in equation (63). In Kronecker delta format we have: 

0 \ (Shh\ 

R 

0 0 

0 e x p - * ' 0 

0 0 e x p " * -

Vo 0 0 

0 

0 

Shv 

Svh 

V Svv ' 

= DS 

Comparing equations (74) and (76), we conclude: 

/ i = e x p - * ' 

h = e x p " * ' 

(77) 

(78) 

During the symmetrization operation that precedes the conversion to Stokes' matrix format, the 

cross-polarized element is calculated as: 

Zhv = \(Rhv + fl^exp-^'-*')) (79) 

Assuming that Shv — Svh we can modify equation (77) to model the phase distortion equivalendy 

as: 
/ i 0 

z! = 0 I {h + fi e x p " 

Vo 0 
0 o \ 

- 0 e x p " * ' 0 

Vo 0 e x p " -j(<t>t+<t>r) J 

/Shh\ 

D'S' 

(80) 

This suggests a phase calibration step of. 

/ I 

S = 

0 0 \ 
0 e x p J ^ ' 0 

VO 0 expW«+*')/ 

(Z'hh\ 

Jhv (81) 

Kz'vvJ 

Note that this phase calibration step conflicts with that seen in Freeman [24, p. 774]. The discrepancy 

may be due to a failure by Freeman to normalize in terms of Shh (as in equation (76)) rather than 

Svv (as in equation (64)). 
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2.4 Cross-Talk Calibration 

Cross-talk calibration consists of the determination of the matrices Tx and Rx (see equation (60)). 

This can be done without comer reflectors or PARCs in the scene. 

The method is outlined in Van Zyl [61, pp. 339-342]. 

2.4.1 Assumptions 
Assuming that the system is reasonably well isolated (6\62 ^ 0), and that the co- and cross-

polarized components of S are uncorrelated ((S^S^) = 0 and {S*vShv) = 0), one can expand 

equation (60) to show that: 

{ZhhZ*hh) » (WhhW*hh) (82) 

(ZVVZ*VV) « (WVVW:V) (83) 

{ZvvZ*hh) « {WvvW*hh) (84) 

{ZhvZ*hh) - (WkvW*hh) *h{WhhWh\) 

+ S2/f(WvvW*hh) (85) 

+ 2(62/fT{WhvW*hv) 

(zhvz*vv) - (whvw;v) *h{whhw;v) 

+ S2/f{WvvW:v) (86) 

+ 26*{WhvW*hv) 

2.4.2 Parameters 
With the above assumptions, one can combine the above equations to solve for the cross-talk 

parameters: 
S &P + 2P*(WhvWZv)(ZvvZ*hh) 

- 4(WhvW*J2(ZvvZ*hh){ZhhZ*vv) 
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and 

where 

s if = &Q + 2Q*(whvw*hv)(zhhz:v) m 
2 A* - 4(WhvW*hv)2(ZvvZ*hh)(ZhhZ*vv) 

A = (ZhhZ*hh)(ZvvZ:v) - (ZvvZU)(ZhhZ:v) - (WhvW*hvY (89) 

P = (ZhvZ*hh){ZvvZ:v) - (ZvvZih)(ZhvZ;v) - (WhvW*hv)(ZvvZ*hv) (90) 

Q = (ZhhZ*hh)(ZhvZ;v) - {ZhvZlh)(ZhhZlv) - {WhvW*hv)(ZhhZ*hv) <91) 

Note that we require knowledge of {WhvW^v) when it is W in fact that we are attempting to 

calculate. The solution is to iterate. However, first the calibration process will be explained. 

2.4.3 Cross-Talk Correction 

The cross-talk calibration is performed by inverting equation (60): 

W = R-1ZT~1 (92) 

to produce the following estimates of the intermediate scattering matrix cross products: 

(WhhW*hh) « {ZhhZlh) (93) 

(WVVW:V) * {ZVVZ*VV) (94) 

(WhhW:v) « (ZhhZ:v) (95) 

{WhhW*hv) *(ZhvZ*hh) - h(ZhhZlh) 

- (62/f){ZvvZ*hh) - 26l(ZhvZtv) 

31 

(96) 



Chapter 2: Data Calibration 

(whvw:v) *{ZvvZ*hv) - t>l{ZvvZ*hh) 
(97) 

- {hin(zvvz*m 
) - 2(62/f)(ZhvZ*hv) 

(WhvW*hv) *(ZhvZt ,v 

+ \61\2(ZhhZih) + \62/f\2(ZvvZ:, VV 

- 8i(ZhhZlv) - 6\(ZlhZhv) (98) 

-(62/f)(ZvvZ*hv)-(62/f)'(Z:vZhv) 

+ h(62/fr{ZhhZ:v) + 6l{62/f){ZthZvv) 

2.4.4 Iteration 

Equation (98) allows one to form an estimate of (W/i«W£„) given an initial guess of say 6j=0 

and #2//=0. The estimate of {WhvW^v) can then be used to iteratively improve the estimates of 

6i and 62/f via equations (87) and (88). The iteration process is complete once all three estimates 

(WhvW^), 6j, and 62/f reach stable solutions. 

The inclusion of noise in the radar system model complicates the estimation process further. Van 

Zyl's paper [61], from which the preceding explanations are derived, extends the process to cover 

the case of noise in the system. 

2.5 Co-polarized Channel Imbalance 

The amplitude portion of the channel imbalance results from the differing treatments of horizon

tally and vertically polarized waves within the radar. The internal gain factors for each polarization 

are different, resulting in system bias. The extent of the imbalance cannot be determined without 

at least one corner reflector in the scene. It is therefore not dealt with in detail here. See [61, p. 

341] for more information. 

2.6 Radiometric Calibration 

The absolute amplitude factor .4 can be determined by comparing the absolute radar cross section 

measured from a trihedral corner reflector in the scene with what is theoretically expected from a 
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corner reflector of that size and then performing the appropriate relative amplitude scaling to the rest 

of the image. Note that an in-scene corner reflector is required. Radiometric calibration is therefore 

not investigated in detail here. For further information, see [61, p. 342]. 
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Chapter 3 
Classification 

3.1 Introduction 

One important aim of SAR polarimetry is improved accuracy in SAR-based classification of 

land cover. Rather than returning just a single scalar radar backscatter quantity, as with conventional 

SARs, polarimetric SARs return the complete scattering matrix (see equation (17)). The additional 

information can be used to improve classification accuracy. The sections that follow describe the 

theoretical basis for some classification algorithms, and discuss their effectiveness. 

There are two broad categories of classification. Unsupervised classification is the classification 

of land cover into types without any a-priori information required from the operator. Supervised 

classification requires the investigator to select training areas that are then used as class prototypes 

by the computer in the classification of the land cover outside the training areas. 

Both types of classification take as input a set of features for each pixel upon which the 

classification decisions are based. The features input to a classifier could be [47, p. 3-18] for 

example: 

1. The Stokes' matrix elements 

2. Three amplitude (HH, HV, VV) and two phase difference images 

3. The scattering matrix cross-products 

4. Specially defined combinations of Stokes' matrix elements 

The following sections describe both the supervised and unsupervised classification algorithms 

as they apply to polarimetric SAR images. 
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3.2 Unsupervised Classification 

3.2.1 Introduction 

Van Zyl's unsupervised classification algorithm [60] assigns each pixel to a class based on its 

polarization properties. It prescribes three scattering classes, namely: 

1. Odd number of reflections (eg. ocean, clear-cut logged area) 

2. Even number of reflections (eg. building) 

3. Diffuse scattering (eg. forest) 
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4 2 2 2 3 1 

Forested 
Areas 

Figure 3.7: Scattering Mechanisms [60, p. 39] (a) Slightly rough surface (odd bounce) (b) 
dihedral comer reflector (even bounce) (c) Forested area (diffuse) [1: direct canopy backscatter; 

2: double bounce scattering; 3: direct ground backscatter; 4: direct tree trunk backscatter] 

See figure 3.7 for a physical interpretation of the scattering mechanisms of each of the three 

classes. 
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Heavily vegetated areas are found to exhibit a mixture of the properties of all three scattering 

classes, with the diffuse component increasing at high incidence angles due to greater interaction 

with the canopy. 

3.2.2 Algorithm 

This section describes the Van Zyl unsupervised classification algorithm. The theoretical basis of 

the algorithm is explained, its operation outlined, and its utility for classifying forest scenes explored. 

3.2.2.1 Importance 

An unsupervised classification algorithm requires no a-priori knowledge of the study area, and 

is therefore simpler to operate than supervised techniques. 

Van Zyl's unsupervised classification algorithm by no means exhausts the information content 

of the Stokes' matrices. Supervised classifiers, or even unsupervised classifiers using more detailed 

models of the scattering mechanisms at work in a scene will produce more complete and more \ 

informative classifications. 

Van Zyl's algorithm does however provide a quick glimpse of the scattering mechanisms in a 

scene that may later be expanded upon by the investigator. 

3.2.2.2 Algorithm Overview 

The unsupervised classification algorithm of Van Zyl [60, p. 37] works in the following way. 

From the Stokes' matrix data for each pixel, simulations (or experiments) of various transmit and 

receive polarizations are conducted: 

1. Linear polarizations of varying orientation angles are transmitted and the orientation of the 

received (scattered) pulse is observed. 

2. Circularly polarized pulses are transmitted, and the handedness of the received (scattered) wave 

is compared to that of the transmitted pulse. 
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The results from these two experiments are used to determine the classification of each pixel. 

Handedness is defined here from the point of view of the wave receding from the observer [64, 

p. 531). 

3.2.2.3 Scatterer Signature 

The scattering mechanisms of the three classes chosen by Van Zyl are developed in [60, pp. 

37-38] to produce the following decision rules: 

Odd Number of Bounces 

1. The orientation angle ip of the scattered wave increases as the orientation angle of the transmitted 

wave increases. 

2. The handedness of the scattered wave is the opposite of the transmitted wave. 

Even Number of Bounces 

1. The orientation angle tp of the scattered wave increases as the orientation angle of the transmitted 

wave decreases. 

2. The handedness of the scattered wave is the same as the transmitted wave. 

Diffuse Scattering 

1. The orientation angle ip of the scattered wave increases as the orientation angle of the transmitted 

wave increases. 

2. The handedness of the scattered wave is the same as the transmitted wave. 

3.2.2.4 Consistency 

To counter the effects of noise, each experiment is checked for consistency. 

The average behaviour of the scattered wave in the first experiment Oinear polarizations) is 

checked for the ranges of transmitted wave orientation angles 0° < ip < 90° and 90° < ip < 180°. 
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If the scattered wave's orientation angle does not consistendy either increase or decrease for both 

cases, then the pixel is set aside as unclassified. 

Also, in the second experiment (circular polarizations) first a left-circular transmitted pulse is 

simulated and the handedness of the scattered wave is noted. Then a right-circular transmitted pulse 

is simulated and the handedness of the scattered wave is noted. If the handedness of the scattered 

wave does not have the same relation to that of the transmitted wave for both cases, then the pixel 

is set aside as unclassified. 

The decision process, including consistency checks, for the unsupervised classification algorithm 

is summarized in table 3.1. 

Effect on scattered wave orientation 

angle when transmitted wave 

orientation angle increases between 

0° < V < 90° 90° < V < 180° 

Handedness of scattered wave when 

transmitted wave is 

Right Handed Left Handed Classification 
++ ++ Left Handed Right Handed Odd 

Right Handed Left Handed Even 

++ ++ Right Handed Left Handed Diffuse 

++ XX XX not classified 

++ XX XX not classified 

XX XX Right Handed Right Handed not classified 

XX XX Left Handed Left Handed not classified 

xx don't care ++ increases — decreases 

Table 3.1 Decision Process [60, p. 39] for Van Zyl's Unsupervised Classification Algorithm 
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3.2.2.5 Forest Scattering 

Literature on the classification of forest scenes based on polarimetric radar data may be found 

in [14], [15], [21, p. 784], and [60, p. 40]. 

The unsupervised classification method of Van Zyl does not unambiguously classify forest, as 

demonstrated in table 3.2. 

Model Classification 
Very sparse forest Odd 

Sparse forest Even 

Moderately thick forest Diffuse 

Very thick forest Odd 

Table 3.2 Results of Unsupervised Classification of Forests [60, p. 40] 

The seemingly chaotic results can be explained by the scattering models developed in [15]. Trees 

are modelled as large vertical dielectric cylinders (the trunk) oriented statistically about the surface 

normal, with smaller cylinders (branches) radiating at random orientations governed by a probability 

density function (pdf)- Leaves can be ignored, as they do not have a large effect on backscatter 

except at short radar wavelengths. 

A very sparse forest is essentially an open plain, producing an odd-bounce classification. In 

a sparse forest, double bounce return off the tree trunk/ground dominates, yielding an even-bounce 

classification. In a moderately thick forest, volume scattering within the canopy dominates, and a 

diffuse classification results. In a very thick forest the canopy is closed, and scattering off the tops 

of the trees dominates, producing an odd-bounce classification. 

The transition points between the scattering mechanisms shown in table 3.2 are a function of 

radar frequency, forest density, and forest water content (which influences the dielectric constant of 

the cylinders) [60, p. 40], and are the subject of current research. 

40 



Chapter 3: Classification 

3.2.3 Implementation 

Van Zyl's unsupervised classification algorithm was implemented by the author in C within the 

Sunview/Xview graphic user interface as a program called "POLVIEW". This section describes the 

verification of the implementation, the effect of calibration on classification results, and discusses 

the utility of the algorithm for the classification of a scene acquired over the Weeks Lake region of 

Vancouver Island, Canada. 

Results are presented in the form of tables and gray-scale classification maps. All four types 

of unclassified pixels are represented by a single gray tone in the images to increase the contrast 

between the odd, even, and diffuse classifications. 

3.2.3.1 Verification 

The software implementation of the algorithm was first verified by testing it on data of San 

Francisco acquired by the original JPL CV-990 SAR in the summer of 1985. Van Zyl reported 

averaging his data before running it through the classifier, so this step was necessary within POLVIEW 

as well. Averaging is necessary to reduce statistical variations, but if one selects too large an area 

then the target area's scattering properties lose homogeneity. Van Zyl reported that averaging 36 

samples yielded the best compromise between these two considerations [60, p. 42]. 

Although Van Zyl indicated that he used an average of 36 resolution elements in obtaining his 

results, he did not report the form of resolution elements (whether they were in single look [62] or 

four look [10] format). From table 3.3 we see that Van Zyl's reported results match those obtained 

from POLVIEW when 3x3 averaging is used. Noting that the data supplied to POLVIEW is 4-look, 

this implies that Van Zyl used single look data, as the POLVIEW 9-element averaging produces the 

same results as Van Zyl 36-element averaging. 
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Illustration 1 Unsupervised Classification of 3 x 3 Averaged San Francisco L-band Data 
(white=odd-bounce, light-gray=even-bounce, dark-gray=diffuse scatterer, black=unclassified) 

The unsupervised classification results for 3x3 averaged San Francisco data are shown in 

Illustration 1. The results are very similar to those reported by Van Zyl [60, p. 41]. 

Source Avg Odd Even Diffuse 
Unclassified 

Source Avg Odd Even Diffuse 
11 w Both O Both O 

POLVIEW l x l 50.6 22.8 1.5 10.8 6.9 3.8 3.3 

POLVIEW 2x2 48.9 21.7 6.4 8.7 5.7 4.4 3.9 

POLVIEW 3x3 47.7 22.2 10.1 7.3 5.4 3.6 3.3 

POLVIEW 6x6 46.1 25.0 13.3 5.8 6.0 1.6 1.9 

Van Zyl 36 47.7 22.3 10.1 6.0 5.5 4.6 3.8 

Table 3.3 Percentages from Van Zyl Unsupervised Classification of San Francisco L-Band Data 
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For additional certainty, the POLVEEW implementation was then tested on JPL CV-990 data 

acquired from a forested area near Traverse City, Michigan. The results, in comparison with those 

reported by Van Zyl [60, p. 43] are listed in table 3.4. 

Source Avg Odd Even Diffuse 
Unclassified 

Source Avg Odd Even Diffuse 
11 w Both O Both O 

POLVIEW l x l 36.2 12.6 3.5 22.1 9.2 8.9 7.2 

POLVIEW 2x2 36.8 3.7 17.5 13.2 3.2 14.6 10.5 

POLVIEW 3x3 35.3 1.5 28.9 5.9 1.0 16.4 10.6 

POLVIEW 6x6 30.5 0.7 41.4 0.8 0.2 17.0 8.9 

Van Zyl 36 35.4 1.5 28.8 5.1 1.1 17.1 10.9 

Table 3.4 Percentages from Van Zyl Unsupervised Classification of Traverse City L-Band Data 

There is considerable agreement here as well. The POLVIEW classified images of both the San 

Francisco and Traverse City scenes appear similar to those published by Van Zyl [60], indicating 

that the implementation appears to be sound. 

3.2.3.2 Calibration 

Calibration is necessary for the accurate estimation of the scattered wave's polarization from 

the incident (transmitted) wave's polarization. Uncalibrated Stokes' matrices will introduce errors 

into the estimation of the scattered wave's polarization, and diminish the success of the unsupervised 

classification algorithm. 

Having verified the POLVIEW implementation of Van Zyl's unsupervised classification algo

rithm, POLVIEW was then used to classify the Weeks Lake L-band data. The data were classified 

both before and after calibration with POLTOOL v6.3 [31]. Note that POLTOOL can perform only 

phase calibration and no cross-talk calibration. However, this is not a serious deficiency, as the JPL 

radar exhibited good cross-talk isolation [25] during the season that the data was acquired. 

Further calibration would not have been possible, as no external calibration devices were deployed 

in the scene at the time of imaging. Absolute radiometric calibration was therefore not available, but 
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would not have improved the algorithm's accuracy in any case, as only the handedness and orientation 

angle of the scattered wave, and not its amplitude, are used by the algorithm. However, the lack 

of external calibration devices also made a co-polarized channel imbalance calibration impossible, a 

deficiency that might affect classification accuracy. 

3.2.3.3 Results 

The unsupervised classification results from the Weeks Lake L-band scene, both for uncalibrated 

and POLTOOL phase calibrated data, are reported in table 3.5. The most important results are those 

from three-by-three averaging (the Weeks Lake data, as with the San Francisco data, is in 4-look 

averaged Stokes' matrix format). Classification results using other averaging box sizes are, however, 

included for comparison. 

Data Set Avg Odd Even Diffuse 
Unclassified 

Data Set Avg Odd Even Diffuse 
11 j r Both O Both O 

Uncalibrated l x l 24.6 10.1 2.7 33.8 11.0 14.7 2.7 

Uncalibrated 2x2 19.7 1.7 10.0 30.8 3.5 32.3 1.8 
Uncalibrated 3x3 15.2 0.3 13.2 24.3 0.8 45.0 0.8 

Uncalibrated 6x6 9.3 0.0 14.1 11.8 0.1 64.2 0.1 

Phase Calibrated l x l 35.5 7.1 2.2 31.5 8.2 8.9 6.2 

Phase Calibrated 2x2 39.1 0.7 8.6 24.9 1.5 15.4 9.3 
Phase Calibrated 3x3 41.4 0.1 12.2 18.2 0.3 17.5 9.9 

Phase Calibrated 6x6 44.5 0.0 14.3 12.6 0.1 18.8 9.3 

Table 3.5 Percentages from Van Zyl Unsupervised Classification of Weeks Lake L-Band Data 

44 



Chapter 3: Classification 

3.2.3.4 Discussion 

Data Set Avg Odd Even Diffuse 
Unclassified 

Data Set Avg Odd Even Diffuse 
11 \\ Both 0 Both 0 

Uncalibrated 3x3 10.4 0.4 16.2 22.8 0.9 48.4 0.9 
Phase Calibrated 3x3 47.8 0.2 15.0 8.3 0.3 21.9 6.6 

Table 3.6 Percentages from Van Zyl Unsupervised Classification of 
Calibrated and Uncalibrated Weeks Lake L-Band Data (near range excluded) 

Illustration 2 Unsupervised Classification of 2x2 Averaged Phase Calibrated Weeks Lake L-band 
Data (mid-gray=odd-bounce, white=even-bounce, black=diffuse scatterer, dark-gray=unclassified) 

Visual inspection of the classified Weeks Lake image (Illustration 2) indicates that most of the 

unclassified pixels occur in the extreme near-range. More informative tabular results might therefore 

be obtained by omitting the extreme near-range from the study area. Excluding the nearest range 150 
pixels (of 750) in the Weeks Lake scene yields the results seen in table 3.6. 

The classified calibrated Weeks Lake image (Illustration 2) shows that, in general, the odd-

bounce class corresponds to open water or clear cuts (identified from aerial photos), while the diffuse 

scattering class corresponds to forested areas. 
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Table 3.6 shows that the clear cut (odd bounce) areas are not properly identified unless the data 

is calibrated. Attempting classification based on uncalibrated data leads to wrong classifications, as 

well as many more unclassified pixels than when calibrated data is used. 

3.3 Supervised Classification 

Supervised classification requires the investigator to specify a training set made up of areas with 

known ground cover types. Class prototypes are then computed from the training set 

Other pixels in the image are then compared to these class prototypes and, using a minimum 

euclidean distance (MED) or minimum intra-class distance (MICD, which scales the distance by the 

measured intra-class standard deviation) metric, are assigned to one of the given classes. The class 

features used in the determination of class distance could be any of those listed in section 3.1. The 

supervised classification algorithms described here use the features listed in section 1.3.5 as the basis 

for classification. 

This section describes the theory behind supervised classification, an implementation of the 

algorithm in C as the program "POLVIEW", and results obtained from classifications of the JPL San 

Francisco and Weeks Lake L-band SAR datasets. 

3.3.1 Theory 

This section describes the theory of the supervised classification algorithm. The main task is 

the determination of the "distance" between the feature set of the pixel that we wish to classify and 

the feature set of each class prototype. 
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3.3.1.1 Introduction 

As noted in section 1.3.5, each feature set can be specified by a feature vector of the form: 

/ / o \ ( ShhS*hh \ / a n + a 2 2 + 2a i 2 \ 

fx c c* « 1 1 + 2̂2 _ 2 d i 2 

h « 1 1 - «22 

h 

k = - 2 a 3 4 

h «13 - 0 2 3 

h «24 - « 1 4 

h a i 3 + a23 

\ h ) \ - ( a i 4 + a 2 4 ) / 

(99) 

where A is the Stokes' matrix of the resolution element being considered, and fo ... fg are the 

scattering matrix cross-products. 

The class C,- can then be represented by the mean of all feature vectors X that are its members: 

Ui = E X 

where XeCi. The class mean is best estimated by: 

(100) 

(101) 

where there are N, members of class C,-. 

3.3.1.2 Euclidean Distance 

The Euclidean distance between a feature vector X and the class prototype rhi of class C; is 

defined as: 

= yj'(x - mi)T (X - rfti) 
(102) 

Qassifiers based on this distance metric are known as Minimum Euclidean Distance (MED). 
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This distance is easily calculated but does not take into account the variance within each class. 

Some classes have compact feature spaces while others are more spread out. Comparing Euclidean 

distances to the means of (a) a compact class, and (b) a distributed class may therefore lead to 

suboptimal classifications. By computing the covariance matrix of each class, the within-class 

variability can become a part of the algorithm. 

3.3.1.3 Intra-Class Distance 

If in addition to the mean, one makes use of the covariance matrix of each class, a more useful 

distance metric results. The covariance matrix of class C; is defined as: 

X 
S,- = E 

= E 

(x - [x - /?,•) 

XXT] - fctf 
(103) 

Its estimate is then: 

* = i:E(*-i*)(*-'*)3 

(104) 

The intra-class distance between a feature vector X and a feature vector TO,- is defined as: 

dMiCD (X, mi) ^ [W (X - mt) ] w(x-fh^ 

= (X- rhlfwTw(x - rhi) (105) 

= (X - rhi)TS-'(X - mi) 

where 

(106) 

wTw = (A-*$T) (A-*$T) 

= ($A$T)_1 

W represents the orthonormal whitening transformation, and 5, the measured co-variance matrix of 

class Ci. The transformation W operates by first removing correlations through a rotation of the 
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feature vectors onto orthogonal axes (via the eigenvector matrix $), and then scaling each feature to 

a unit variance (using the diagonal matrix A). 

Note that: 

= $A (107) 

In summary, the orthonormal whitening transformation enables the Minimum Intra-Class Distance 

(MICD) metric to measure distance in standard deviation units along uncorrelated feature axes. 

3.3.1.4 MAP Classifier 

The a-posteriori probability of class C, given the observed feature vector X is p(Ci\x). The 

maximum a-posteriori (MAP) classifier is then: 

P^dlX^P^CAx) (108) 
3 

where the most probable class of C, and Cj is chosen given the observation X. Using Baye's 

theorem we have: 

P^XlC^PiCi^pfxicijPiCj) (109) 
j 

with P(Ci) the a-priori class probability of class C, and p(^X\C,the class-conditional PDF for X. 

For the JPL SAR images under study, we cannot assume one class more probable than another, 

so we set P(C\) = P(C2) = • • • = P(C,) = • • • = P(Cm) = ± where there are m classes. This 

leaves: 
i 

pfxic^p^xiCj) (110) 
j 

as our classifier. 
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3.3.1.5 Multivariate Gaussian Classes 

For multivariate Gaussian classes, the class-conditional PDF for X is 

p(x\d)= l -—exp-i( ; ? -' r 0 T sr 1 (^-«0 (111) 

where there are n classes, pi is the true (not measured) mean of class C,-, and £,• is the true (not 

measured) covariance matrix of class C«. Taking logarithms and substituting in classifier (110) 

results in a classifier of the form: 

(x-lTj) £- 1(x-M;)+21n|£ j|>(x-/r i) S f 1 (x - #) + 21n|£; | 
j 

(X - rifL? (X - £•) -(it- / i - ) r s r

1 (X - £•) >21n^j 

(112) 

If we lack knowledge of the true class means and variances £,, we can substitute our estimates 

of those quantities (m, and Si). The resulting maximum likelihood (ML) classifier is: 

t 
(x - nij)1S-1 (x - rnj) + 2ln\Sj\*(x~ ™ . ) T S t

_ 1 (x - m\) + 2In|5,| (113) 
i 

Defining the maximum likelihood distance as: 

dML(X,m\) = (*- n ^ S - 1 (X - m t) + 2In \S{\ (114) 

the class chosen as best corresponding to feature vector X is then C,- where 

dML (x, m) < dML (x, rnj) Vi / j 

(X - m l ) r S i - 1 (x - Mi) + 21n\Si\ < (x - m ^ S " 1 (x - rnj) + 21n Vi ^ j 
(115) 

3.3.1.6 MED vs. ML 

In summary, although the MED classifier is simpler (and consequently operates much more 

quickly), the M L classifier uses more information to describe each class, and should therefore be 

more accurate. 
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3.3.1.7 Hybrid 

This section describes a classification algorithm that compromises between the speed of MED 

classifier and the accuracy of the ML classifier. The algorithm avoids the computational price of 

orthonormalization, but has many of the advantages of the maximum likelihood classifier. 

For a given class C,-, the standard deviation of each feature j can be calculated from the training 

set: 

\ 
ml, (116) 

where there are Ni members in the training set of class C,. 

The average standard deviation of each feature over all classes is then: 

i N 

'3 = N Vi = JrY,0-i,J (117) 

where there are N classes. 

Once the above quantity has been computed from the training sets for each feature, a distance 

metric can be formed from the following simple computation: 

dH(x,rnt)=^X<-mi^ (118) 

where / denotes the feature currendy being summed, and there are Nf features. This hybrid 

classification technique is used in chapter 4, mainly for speed. 

3.4 Supervised vs. Unsupervised 

This section describes the pros and cons of the supervised and unsupervised classification 

techniques. 

An unsupervised classifier does not require a-priori knowledge of the ground cover within a 

scene, while supervised classifiers require the investigator to specify a training set. Unsupervised 

classifiers are therefore, other considerations being equal, preferable, as they are simpler to operate, 

needing no instruction prior to application. 
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For JPL AIRSAR data, a supervised classifier using an in-scene training set is less sensitive 

to poor calibration than Van Zyl's unsupervised classifier. An explanation for this follows. The 

supervised classifier bases its decisions on distance measures between pixels within the scene and 

class prototypes derived from training sets (also assumed to be within the scene). The training sets 

are themselves miscalibrated in the same way as the other pixels, so distance measures between 

them are not as affected. Van Zyl's unsupervised classifier relies on estimates of the scattered 

wave's polarization. The estimate is less accurate in a poorly calibrated image, resulting in incorrect 

classifications. Both classifiers should however be more equally subject to poor calibration if the 

supervised classifier is restricted to training data from outside the scene. 

Supervised classifiers can have their accuracy improved by adding more detailed training areas. 

Improvements in the accuracy of unsupervised classifiers are more complex. Supervised classifiers 

also have the advantage that each class corresponds direcdy to a ground cover type. In an unsupervised 

classifier, each class need not have a corresponding ground cover type. Although a class may 

correspond to a particular behaviour in a scattering model (as with Van Zyl's algorithm) or to a cluster 

in feature space (as with an unsupervised classifier consisting of a clustering algorithm followed by 

the normal distance-based classification) there need not be a ground cover analog to each class. 
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Chapter 4 
Class Separation by Feature 

This chapter explores the relative utility of each of the polarimetric features when attempting to 

discriminate between various terrain classes using a JPL AIRSAR image. 

4.1 Motivation 

Knowledge of the utility of each feature in discriminating between different ground cover types 

is a necessary first step in the construction of knowledge-based classifiers. For polarimetric AIRSAR 

images, a model of the scattering mechanism can be used to explain and/or derive a feature's utility 

for a given set of tasks. The model can then be integrated into a classifier. 

Knowledge of feature utility is also vital when choosing (a) the best partially polarimetric radar 

for a given task or (b) those features that must be preserved and those that might be dropped in a 

data compression operation. 

4.2 Feature Definitions 

The following section describes features that can be calculated from polarimetric SAR data. The 

feature set described here is used as the basis for classifications later in this chapter. 

4.2.1 Feature Vector 

Given the scattering matrix S, defined as: 

(119) 

and the Stokes' matrix A: 

/an Oi2 ai3 « i 4 \ 

a21 «22 a23 a 2 4 

A = (120) 
«31 «32 a33 «34 
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the cross products (e.g. ShhSlh) are the product of the complex return from one channel with the 

complex conjugate of the return from another channel. The cross products themselves are generally 

complex, unless the two channels are the same, in which case their cross product is real. 

As a short explanation of the nomenclature used in the following sections, Shh and Svv are 

in amplitude units, and are complex numbers. ShhS*v is unnormalized, and is in power units. 

HH VV* = SkhSyv/an is normalized, and is a power ratio. 

The polarimetric feature set F was selected to be the span plus the nine normalized cross 

products: 

/FQ\ / span \ / -su x an \ 

* i HH HH* [2(a u + a12) - (a 3 3 + a 4 4 ) ] /a n 

F2 VV VV* [2(ou - a12) - (a 3 3 + a 4 4 ) ] /o n 

F3 HV HV* (a 3 3 + a 4 4 ) / « n 

F4 U{HH VV*} (a 3 3 - a 4 4 ) /an 

F5 %{HH VV*} - 2 a 3 4 / a n 

Fe ${HV VV*} (a 1 3 - o 2 3 ) / o n 

F7 %{HV VV*} (a 2 4 - a i 4 ) / a u 

Fs ${HH HV*} (ai3 + a 2 3 ) /an 

\FJ \%{HH HV*} ) V -(«24 + Ol4)/Oll / 

Note that span is unnormalized, and is in power units. su is a weighting constant used to bring the 

span into a range comparable with the normalized scattering matrix cross products. 

Note that the span is the only unnormalized member of the feature set. Al l of the normalized 

cross products represent information unavailable to conventional non-polarimetric radars, while the 

span feature is representative of the brightness collected by conventional SARs. The span is affected 

by the roughness of the objects illuminated relative to the radar wavelength and can therefore be 

used to discriminate between terrains of different roughnesses. The normalized cross products are 

affected by the structure of the scatterers, and can sometimes discriminate between terrain types that 

have similar backscatter strength. 
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4.2.2 Polarization Ratio 

The polarization ratio p is denned as the ratio of the HH cross section to the V V cross section, 

and is affected by the shape and orientation of the scatterers. 

P = f * f k (122) 

Durden [13] notes that this feature decreases with increasing frequency in a forested area, as 

branches are thin cylinders at P-band (strong polarization dependence) while at higher frequencies 

the branches are effectively thicker cylinders, with a return influenced less by the branch orientation 

and microwave polarization. 

4.2.3 Linear Depolarization Ratio 

The linear depolarization ratio LDR, often used in radar meteorology, is defined as the ratio of 

the cross-polarized HV cross section to the like-polarized VV cross section. 

LDR = (123) 

In forested scenes, high values of LDR indicate canopy scattering, while lower values indicate 

surface and tree-surface scattering [13]. 

4.2.4 Polarization Phase Difference 

The polarization phase difference was defined previously as the difference between the HH and 

V V phase terms: 

PPD 4 tan"1 (111̂ 14) (124) 

Ulaby [57] and Boemer [2] have reported that the radar backscatter from some types of vegetation 

has different path lengths depending on the polarization, suggesting that the PPD can be used to 

discriminate between different types of ground cover. 
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4.3 Feature Distributions 

4.3.1 Training Set Definitions 

This chapter considers eleven polarimetric SAR scenes. Two were collected by the first JPL fully 

polarimetric L-band SAR (San Francisco, CA and Traverse City, MI), and have been reported on 

extensively in the literature [64]. The remainder were acquired with the current JPL DC-8 AIRSAR. 

The AIRSAR has a multifrequency capability to simultaneously acquire P, L, and C-band data. 

Within the eleven scenes, the similar class-types were often used for training: many scenes 

contained large odd-bounce areas, many had multipath scattering areas (usually forest), and some 

contained small even-bounce areas dispersed about the scene. These class-types were prototyped 

using training areas selected based on the results of a van Zyl [60] unsupervised classification. 

The Pisgah, Mt. Shasta, and Weeks Lake scenes contain no sizeable even-bounce scatterers; 

alternate class-types were improvised. Results from these alternate training sets provide a basis for 

judging the impact of the class-dependence on the general conclusions. The Pisgah, Mt. Shasta, and 

Weeks Lake scenes are differentiated from the others during some totals in this chapter. Where such 

differentiation is performed, these three scenes are referred to as non-EDO (Even/Diffuse/Odd). 

For the record, the locations of the training sets used in the following sections are listed in 

Table 4.7. A l l coordinates reference the top-left pixel of a 20x20 bounding box. The 4-look JPL 

compressed file format coordinate system is used, with 1,1 being the coordinate of the first pixel in 

the file (top left corner). The acquistion date, tape ID, and frequencies (P, L, and/or C) analysed 

are also listed for each dataset. 

Scene Location 
Tape ID, 

Acquisition Date 
Class y 

Bonanza Creek, 

Alaska 

CC0117L, 

88.03.13 

1 Even 660 493 
Bonanza Creek, 

Alaska 

CC0117L, 

88.03.13 
2 Diffuse 852 501 

Bonanza Creek, 

Alaska 

CC0117L, 

88.03.13 
3 Odd 808 399 

Table 4.7 20x 20 Training Set Locations (Continued . . . ) 
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Scene Location 
Tape ID, 

Acquisition Date 
Class X y 

Bonanza Creek, 

Alaska 

CC0045L, 

88.03.20 

1 Even 564 534 
Bonanza Creek, 

Alaska 

CC0045L, 

88.03.20 
2 Diffuse 764 535 

Bonanza Creek, 

Alaska 

CC0045L, 

88.03.20 
3 Odd 718 437 

Fairbanks, 

Alaska 

CC0181L, 

88.03.13 

1 Even 554 634 
Fairbanks, 

Alaska 

CC0181L, 

88.03.13 
2 Diffuse 132 274 

Fairbanks, 

Alaska 

CC0181L, 

88.03.13 
3 Odd 592 524 

Fairbanks, 

Alaska 

CC1252L, 

88.03.20 

1 Even 674 682 
Fairbanks, 

Alaska 

CC1252L, 

88.03.20 
2 Diffuse 258 336 

Fairbanks, 

Alaska 

CC1252L, 

88.03.20 
3 Odd 710 576 

1 Even 688 662 
Flevoland, The CC1267PLC, 2 Diffuse 968 622 

Netherlands 89.08.16 3 Odd (Ocean) 960 66 

4 Odd (Field) 262 294 

1 Phase I Lava 303 375 

Pisgah Lava 

Flow, California 

CC0089PLC, 

88.06.02 

2 Phase II Lava 4 89 
Pisgah Lava 

Flow, California 

CC0089PLC, 

88.06.02 
3 Phase III Lava 80 235 

Pisgah Lava 

Flow, California 

CC0089PLC, 

88.06.02 
4 Alluvial Surface 629 664 

5 Dry Lakebed 289 604 

Punta Cacao, 

Costa Rica 

CC1213PLC, 

90.03.15 

1 Even 434 1068 
Punta Cacao, 

Costa Rica 

CC1213PLC, 

90.03.15 
2 Diffuse 784 790 

Punta Cacao, 

Costa Rica 

CC1213PLC, 

90.03.15 
3 Odd 580 474 

San Francisco, 

California 

?L, 

85.05.21 

1 Even (City) 366 454 
San Francisco, 

California 

?L, 

85.05.21 
2 Diffuse (Park) 424 346 

San Francisco, 

California 

?L, 

85.05.21 
3 Odd (Ocean) 288 324 

Mt. Shasta, 

California 

CC1199PLC, 

89.08.06 

1 Clear Cut 879 234 
Mt. Shasta, 

California 

CC1199PLC, 

89.08.06 
2 Tree 1 746 481 

Mt. Shasta, 

California 

CC1199PLC, 

89.08.06 
3 Tree 2 788 118 

Table 4.7 20 x 20 Training Set Locations (Continued . . . ) 
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Scene Location 
Tape ID, 

Acquisition Date 
Class X y 

1 Even (Dead Trees) 750 644 
Traverse City, ?L, 2 Diffuse (Forest) 796 580 

Michigan 85.07.10 3 Odd (Lake) 840 548 

4 Odd (Field) 660 790 

. Weeks Lake, 

British Columbia 

CM1234PLC, 

88.03.23 

1 Clear Cut 910 401 
. Weeks Lake, 

British Columbia 

CM1234PLC, 

88.03.23 
2 Forest 316 425 

. Weeks Lake, 

British Columbia 

CM1234PLC, 

88.03.23 
3 Lake 356 352 

Table 4.7 20x20 Training Set Locations 

4.3.2 Distributions 
A graphical representation of the feature distributions within the training areas of the Weeks 

Lake L-band scene is shown as an example in Figure 4.8. Each bar is centered on the feature's mean 

value with a length twice its standard deviation. If the class bars are well separated for a certain 

feature, then that feature helps in discrimination between those classes. For instance, it can be seen 

from Figure 4.8 that both the span and HV features discriminate well between lake and forest. 

4.4 Class Separation 

4.4.1 Introduction 
If two terrain classes A and B are considered, a large difference between a feature's mean values 

in the two classes relative to its standard deviations in A and B indicates that the feature is useful for 

discriminating between them. In Figure 4.8, when the class bars of a feature have a distinct range 

of values (are separate), then the feature is a useful discriminator. The concept is formalized in the 

class separability [13] and [71], defined as the ratio of the difference in the feature's mean values 

to the sum of its standard deviations. For feature vectors A and B as defined in equation (121), the 

class separation is defined as: 

^'^--i&rfk  ( , 2 5 )  
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Value Weeks Lake - L-band 

2.50 

2.00 — 

Clear Cut 
Forest 
Lake 

1.50 -

1.00 

Feature 
Span HH W HV Re Im Re Im Re Im 

HHVV* HVVV* HHHV* 

Figure 4.8: Feature Distribution in Weeks Lake L-band scene 

where A, is the mean value of feature i in class A, and (Ai)a is the standard deviation, with similar 

definitions holding for class B. The standard deviations are calculated for 2 x 2 averaged pixels and 

all classifications discussed in this chapter are based on such averaging. The single pixel variation 

was found to be too large for reliable classification. 

The definition of class separability shown in equation (125) is different than the inter-class 

distance measures used by Singhal [51, p. 85] and Heal [32, p. 91], as the training areas used in 

these studies are uniformly large enough (20x20) that the second order statistics of each feature for 

each training area can be collected. 
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A class separability above unity indicates that the feature is useful for discrimination; above 2, 

the feature provides close to perfect discrimination on its own. 

Other definitions of class separation consider the influence of "third party" classes on the 

separation of class pairs. For example, the difference in class means can be scaled by the mean 

standard deviation over all classes in the scene, rather than by the sum of the standard deviations of the 

class pair being considered. Under such definitions, the "separation" between two classes is influenced 

by the presence or absence of other classes. Classifiers must operate in such an environment, so the 

approach has some merit. However it is not clear that the modified definitions of class separability 

accurately model the effect of "other" classes on class pair discrimination. For simplicity, the class 

separation definition shown in equation (125) is used throughout this chapter. 

4.4.2 Results 

The following sections consider the class separation results for the class pairs within each scene. 

Each scene is introduced with the classification map resulting from a classification using the ten 

L-band features of equation (121). Look direction is always to the bottom of the page. The training 

areas are demarcated and labelled. For each scene, the feature distributions are illustrated for each 

feature at all available frequencies. Numerical values of the feature means and standard deviations, 

and the class-pair separations are available in Appendix A. 

Note that a quantity called the span scale (su) is listed with the class separation results for each 

scene that required a normalization. This is the quantity used to scale the span to put it in a range 

comparable with the normalized cross products. 

Four different scene-types were studied. Most were forestry scenes (9 datasets), with single 

agricultural, urban, and geological scenes also included for comparison. 

4.4.2.1 Forestry 

A variety of forest scenes were studied, ranging from tropical (Costa Rica) to subarctic (Alaska). 

Even-bounce, odd-bounce, diffuse, clear-cut, water, and different tree-type classes were investigated. 
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Bonanza Creek - L-band (2 Scenes) This scene was acquired during a campaign in Alaska to 

study the effect of changing environmental conditions on microwave signatures. Preliminary analysis 

of the data was reported in [67]. 

The training areas for the Bonanza Creek scene were chosen as the best homogenous 20x20 

representatives of the even-bounce, diffuse, and odd-bounce scattering classes (from the Van Zyl [60] 

unsupervised classification algorithm). Scenes from two different dates (one with a temperature above 

freezing, one below) are considered. Although the two sets of data are not co-registered, the same 

patches of river/forest were used for training in each dataset. Note that both datasets are L-band only. 

Even-bounce scattering is predominandy found along the edges of river banks opposite the 

aircraft's track. An even-bounce scattering geometry is formed by the flat water against the vertical 

trunks of trees along the river bank. There are also a few tree stands away from river banks that 

exhibit even-bounce scattering behaviour. Such stands must have a relatively stronger ground-trunk 

interaction term in their backscatter, possibly caused by dead branches or the loss of branch needles. 

Either would reduce multipath backscatter, and the ground-trunk even-bounce scatter would dominate. 

Illustration 3 Supervised Classification of 2x2 Averaged 13 March 1988 Bonanza Creek 
L-band Data (black=odd-bounce, light-gray=diffuse, white=even-bounce, dark-gray=unclassified) 

61 



Chapter 4: Class Separation by Feature 

Illustration 4 Supervised Classification of 2x2 Averaged 20 March 1988 
Bonanza Creek L-band Data (black=odd-bounce, gray=diffuse, white=even-bounce) 

Bonanza Creek - L-band - 13 March 1988 
T 

2.00 \ -

1.50h 

T Even 
Diffuse 
Odd"'" 

Spin HH Re bn 

H H W * 

Re Im 

H V W » 

Re Im 

HHHV* 

Figure 4.9: Feature Distribution in Bonanza Creek L-band scene (13 March 1988) 

The Bonanza Creek results suggest the following comments: 
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V a l u e B o n a n z a C r e e k - L - b a n d - 20 M a r c h 1988 

2J0 

Spin HH W HV Rc 1m Rc Im Re toi 

H H W - H V W » HHHV* 

Figure 4.10: Feature Distribution in Bonanza Creek L-band scene (20 March 1988) 

1. The span does well at discriminating the odd-bounce (river) scatterer from the diffuse and even-

bounce terrain, due to the low specular backscatter from a relatively flat surface (for incidence 

angles above 20° [16, p. 25]). 

2. The %1{HH VV*} normalized cross-product performs the even/odd separation well in both 

datasets, due to its characteristically high positive return from odd-bounce scatterers. 

3. The W normalized cross product discriminates the odd-bounce (river) terrain from the even-

bounce scatterers on both days, and is helpful in distinguishing the diffuse (forest) scatterers 

from the odd-bounce targets on the frozen day. 

4. The HV normalized cross product distinguishes odd-bounce (river) from diffuse (forest) on both 

days, as vegetation has a strong depolarizing effect while water has a much weaker one. 

5. The last five normalized cross products have standard deviations that are very large compared 

to the difference between their mean values in each class, and therefore provide poor class 

separation. 
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Fairbanks - L-band (2 Scenes) The training areas for the Fairbanks scene were chosen as 

the best homogenous 20x20 representatives of the even-bounce, diffuse, and odd-bounce scattering 

classes. Scenes from two different dates are considered. Although the two sets of data are not 

co-registered, the same areas of river/forest were used for training in each dataset. Note that both 

datasets are L-band only. 

Illustration 5 Supervised Classification of 2x2 Averaged 13 March 1988 Fairbanks L-band Data 
(black=odd-bounce, light-gray=diffuse, white=even-bounce, dark-gray=unclassified (very litde in this scene)) 

As can be seen from the mean values of span in Figure 4.11 (and Table A.20), the even-bounce 

scatterer (man-made structure) is much brighter in the 20 March 1988 data set This may have been 

caused by the aircraft's track aligning itself with the building more closely. 

It should also be noted that in the areas that overlap in the two datasets the data was collected 

at a higher incidence angle on 20 March 1988. 
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Illustration 6 Supervised Classification of 2x2 Averaged 20 March 1988 
Fairbanks L-band Data (black=odd-bounce, gray=diffuse, white=even-bounce) 

Much the same pattern of discrimination is observed in the data from both dates, with the largest 

difference being an improvement in the performance of the HV feature in the 20 March 1988 data. 

The results from the Fairbanks scene suggest the following comments: 

1. The span discriminates well between all three classes, with the even-bounce being extremely 

bright, the odd-bounce very dark, and the diffuse scatterers in between. The low class separations 

for class pairs including the even-bounce class are due to the extremely bright even-bounce returns 

(and standard deviations) observed in this scene. Despite the low class separabilities and poor 

prima facie results evident in Figures 4.11 and 4.12, the classes are well separated, as setting a 

high threshold on span easily identifies the even-bounce scatterers. For the span, the assumption 

of a Gaussian distribution within the even-bounce class appears not to hold. 
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F a i r b a n k s - L - b a n d - 13 M a r c h 1988 

3.00 

1.50-

0.50 -

-0.50 — 

Span HH W HV Re Im Re Im 

H H W * H V W 

Re Im 

HHHV* 

Figure 4.11: Feature Distribution in Fairbanks L-band scene (13 March 1988) 

vdue F a i r b a n k s - L - b a n d - 20 M a r c h 1988 

1.50-

Figure 4.12: Feature Distribution in Fairbanks L-band scene (20 March 1988) 
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2. The U{HH VV*} feature shows its strength in discriminating odd-bounce (river/runway) from 

even-bounce (buildings) and diffuse (forest) targets. Even-bounce targets produce a negative 

normalized U{HH VV*} return, while odd-bounce targets produce a high positive normalized 

${HH VV*} return. 

3. The HV feature distinguishes diffuse (forest) from odd-bounce (river/runway), as vegetation has 

a strong depolarizing effect while water/smooth surfaces have almost none. 

4. The five last normalized cross products have standard deviations that are very large compared to 

the difference between their mean values, and therefore provide poor class separation. 
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Punta Cacao - P, L , and C bands There are three distinct classes within this scene. Although 

the area boundaries differ slighdy with frequency, at L-band, three areas are distinct after a van Zyl 

unsupervised EDO classification. 

It is noted that the scattering mechanism of the even-bounce terrain class in the Punta Cacao 

scene is presendy unknown to the author. It is worthy of note however, that the area is atypical of 

most even-bounce scatterers, in that it returns very little backscatter (less than even the odd-bounce 

clear-cut areas), though it is significandy brighter at C-band than in P and L-bands (see Figures 4.13, 

4.14, and 4.15). 

The results from the Punta Cacao scene suggest the following comments: 

1. The $t{HH VV*} feature shows its strength in discriminating odd-bounce (clear-cut) from 

even-bounce (unknown ground terrain) targets. It does best in P-band, but succeeds almost as 

well in L and C bands. The feature's characteristic high positive value for odd-bounce targets 

and negative value for even-bounce targets are evident in Figures 4.13, 4.14, and 4.15. 

2. In P and L bands, the HV normalized cross product distinguishes diffuse (forest) from odd-

bounce (clear-cut), as vegetation has a strong depolarizing effect while flat land is a less powerful 

depolarizer. As can be seen in Figure 4.15 however, the HV return from the clear cut is larger 

at C-band, decreasing the effective class separation. This effect is probably due to increased 

multipath backscatter due to a higher effective surface roughness at the shorter wavelength. 

3. The effect noted for HV above is also evident in the W normalized cross products, as P and 

L-band returns are able to distinguish the forest (diffuse scatterer) from both the even and odd 

scattering terrain, while at C-band their returns are almost indistinguishable. 

4. The four last normalized cross products have standard deviations that are large compared to the 

difference between their mean values. They therefore provide poor class separation. 

5. In general, of the three frequencies studied, P-band features provide the best discrimination 

between forest (diffuse) and clear-cut (odd-bounce). 

6. The polarization phase difference (PPD) succeeds in providing useful discrimination between the 

three terrain classes. In all three bands it does very well at discriminating even-bounce targets 

(PPD near 180°) from odd-bounce scatterers (PPD near 0°). 
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Illustration 7 Supervised Classification of 2x2 Averaged Punta Cacao L-band Data 
(black=odd-bounce, light-gray=diffuse, white=even-bounce, dark-gray=unclassified) 
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Punta Cacao - P-band 

Span HH W HV Re Im Re Im Re Im 

H H W » H V W * HHHV* 

Figure 4.13: Feature Distribution in Punta Cacao P-band scene 

v«iue Punta Cacao - L-band 
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Figure 4.14: Feature Distribution in Punta Cacao L-band scene 
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P u n t a C a c a o - C - b a n d 

Span HH W HV Re lm Re Im Re Im 

H H W » H V W * HHHV* 

Figure 4.15: Feature Distribution in Punta Cacao C-band scene 

Mt. Shasta - P, L, and C bands This scene is of a forested area in northern California near 

ML Shasta collected by the AIRSAR in September 1989. The area contains coniferous tree stands 

dominated by ponderosa pine and white fir [13], and clear cuts. A van Zyl unsupervised classification 

revealed no even-bounce scatterers, so the most homogenous 20x20 boxes representative of three 

classes visible in an HV image were selected as training areas. 

No normalized L-band cross products discriminate well between the classes within this scene. 

The clear cut class is an odd-bounce scattering class while both tree classes are diffuse scattering 

classes, although the Treel class is "purer" in this respect than the Tree2 class. Lack of ground truth 

prevents a more detailed description of each of the three training areas. 

The L-band results suggest the following comments: 

1. The $1{HH VV*} normalized cross product distinguishes well between clear cut and the first 

tree type. The clear-cut area is an odd-bounce scatterer resulting in a high positive value for 

$1{HH VV*} while the tree is a diffuse scatterer, resulting in a lower Qjut still positive) value 

for the cross product. 
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Illustration 8 Supervised Classification of 2x2 Averaged Mt. Shasta L-band 
Data (black=Tree2, light-gray=Treel, white=Clear-Cut, dark-gray=unclassified) 

2. The HV normalized cross product provides some discrimination between the clear-cut (poor 

depolarizer) and the first tree type (relatively strong depolarizer). 

3. The span discriminates well between the clear cut and "tree 1" terrain types, and also between 

the two tree types. The clear cut is dark Cow backscatter due to specular reflection), while the 

"tree 1" terrain class is relatively bright. The "tree 2" terrain class has an intermediate brightness 

at P and L-bands, and is comparable to the clear cut at C-band. 

A multifrequency comparison of the class separations seen in Figures 4.16,4.17, and 4.18 reveals 

that in P-band the span discriminates between all three classes, in L-band less well between two out of 

three class pairs, and in C-band less well between the same two class pairs. Also, for discriminating 

the 'Treel" terrain class from "Clear Cut", in P-band the U{HH VV*}, HV, and W features all 
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Figure 4.16: Feature Distribution in Mt. Shasta P-band scene 
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Figure 4.17: Feature Distribution in Mt. Shasta L-band scene 
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M t . Shasta - C - b a n d 
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Figure 4.18: Feature Distribution in Mt. Shasta C-band scene 

provide a class separation above unity, while in L-band only the ${HH VV*} and HV features 

discriminate so well, and in C-band only the R{HH VV*} feature. 

P-band is revealed to be the best wavelength for Forest/Clear Cut discrimination. This finding 

is consistent with the results from the Punta Cacao scene. 
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Traverse City - L-band The Traverse City scene is not completely calibrated, and was acquired 

with the original JPL airborne polarimetric SAR over central Michigan. 

Illustration 9 Supervised Classification of 2x2 Averaged Traverse City L-band Data 
(black=odd-bounce, light-gray=diffuse, white=even-bounce, dark-gray=unclassified) 

The following comments are notable after considering the Traverse City scene. 

1. The U{HH VV*} feature discriminates well between odd-bounce (lake, field) and even-bounce 

(dead trees) terrain, but not between odd-bounce classes (lake and field). 

2. The W feature again works well in distinguishing water from land, due to water's Bragg 

scattering. Notably, the W feature provides good separation even when both land and water 

classes are odd-bounce (eg. lake and field). 
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Traverse City - L-band 
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Figure 4.19: Feature Distribution in Traverse City L-band scene 

3. The HV feature is good for discriminating forest (strong depolarizer) from lake (extremely weak 

depolarizer), but not much else. 
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Weeks Lake - P, L, and C bands The Weeks Lake scene was acquired by the AIRSAR over 

a forested area northwest of Victoria, British Columbia, Canada. The area is hilly forest timberland, 

with predominantly fir, and some hemlock mixed in places. Open clear-cuts recendy pared by forest 

companies fill about half of the scene. Tree stands range in age up to eighty years. 

The L-band scene was phase-calibrated using the lake as a zero PPD reference. At P and C 

bands, the histogram of PPD values within the Lake training area was uniform, and no calibration 

could be done. 

»\ •- '. -v-
..... \J 

$%\ 

Illustration 10 Supervised Classification of 2x2 Averaged Weeks Lake L-band 
Data (black=lake, light-gray=forest, white=clear-cut, dark-gray=unclassified) 

The Weeks Lake scene results shown in Figures 4.20, 4.21, and 4.22 (as well as Tables A.34 

and A.35) suggest the following comments: 

1. In L and C bands, the W feature does well in distinguishing water from land classes, due to 

the water's Bragg scattering. At P-band, no such effect is evident, and the lake's normalized W 
return is actually less than that from the Clear-cut and Forest classes. Bragg scattering appears 

to drop off markedly between L-band (24cm) and P-band (68cm) wavelengths, probably due 

to light winds in the tree-protected small lake. Light winds imply water waves with a small 

period, and little Bragg scattering at low frequencies (eg. P-band). In the Flevoland scene, 
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Figure 4.20: Feature Distribution in Weeks Lake P-band scene 
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Figure 4.21: Feature Distribution in Weeks Lake L-band scene 
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Figure 4.22: Feature Distribution in Weeks Lake C-band scene 

stronger winds would be expected on the more open ocean, causing longer period waves. Bragg 

scattering is strong at P-band in that scene (see the normalized W return in Figures 4.23, 4.24, 

and 4.25, and Table A.22). 

The HV feature distinguishes forest (strong depolarizer) from lake (extremely weak depolarizer) 

well in L and C bands. At P-band however, the HV normalized cross product varies little between 

the three terrain classes. The forest's lower HV return at P-band may be a result of less multipath 

scattering at the longer wavelength. This effect is also noticable in the Punta Cacao data. 

The Weeks Lake L-band data was only phase calibrated, and did not undergo cross-talk, channel 

gain balance, or absolute amplitude calibration. The P and C-band data was not even phase 

calibrated, as the histogram of polarization phase difference values within the lake training 

area had a near-uniform distribution. The lack of calibration may explain the abnormally high 

values of U{HV VV*} and $s{HV VV*} in the Lake class, and their higher than usual class 

separations. This may be caused by an SNR problem due to the very low return from the Lake. 
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4.4.2.2 Agricultural 

Flevoland - P, L, and C bands The Flevoland scene was collected by the AIRSAR in 1989 

over an agricultural area close to the ocean in the Netherlands. 

The training areas in the Flevoland scene were selected as the most homogenous 20x20 

representatives of the diffuse, odd and even-bounce scattering classes (from the Van Zyl [60] 

unsupervised classification algorithm). 

Illustration 11 Supervised Classification of 2x2 Averaged Flevoland L-band Data 
(black=odd-bounce, light-gray=diffuse, white=even-bounce, dark-gray=unclassified) 

The results from the Flevoland scene suggest the following comments: 

1. At L and C bands the span provides discrimination of odd-bounce terrain from both diffuse 

and even-bounce scatterers, due to the low specular return from flat areas (for incidence angles 
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Value Flevoland - P-band 
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Figure 4.23: Feature Distribution in Flevoland P-band scene 
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Figure 4.24: Feature Distribution in Flevoland L-band scene 
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Figure 4.25: Feature Distribution in Flevoland C-band scene 

above 20°). At P-band, the return is relatively higher from the odd-bounce (ocean) training 

area. Bragg scattering is also notably higher (visible in the greater normalized W return). The 

higher Bragg scattering return at P-band (due to the ocean wave size) is largely responsible 

for the overall higher span of the odd-bounce training area at P-band, and the subsequent poor 

separation between the odd and even-bounce classes provided by the span at that frequency. 

For all three frequencies, Bragg scattering produces a higher normalized W return in the odd-

bounce (ocean) class than in the other classes. The variance of normalized W return is also low, 

especially at P and C-bands (see Figures 4.23 and 4.25). This result stands in contrast to the low 

P-band normalized W return in the lake in the Weeks Lake scene. The low Bragg scattering 

seen at P-band in that scene is most likely explained by a much lower level of wind on the 

tree-protected small lake than on the open ocean of Flevoland. 

The U{HH VV*} feature also shows its strength in discriminating odd-bounce (ocean, field) 

from diffuse (vegetation with multipath scatter) and even-bounce (vegetation with strong ground-

trunk interaction term and man-made structures). The feature's characteristic high positive value 
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for odd-bounce targets and negative value for even-bounce targets is evident in Figures 4.23 and 

4.25. The mean value of the feature is not negative in the even-bounce training area at P and C 

bands, as a different scattering mechanism seems to dominate at these frequencies. 

4. As expected from the %1{HH VV*} results at L-band, the PPD does well in distinguishing even 

from odd-bounce targets. At L-band the mean PPD is close to 0° for odd-bounce scatterers, but 

closer to 180° for even-bounce terrain. 

5. At P and C bands, the odd-bounce HV normalized cross product is distinctive from the diffuse 

and even-bounce returns due to the extremely low depolarization occuring bn the ocean. At 

L-band the normalized HV return is distinctively high for the diffuse class (due to the multipath 

backscatter), allowing it to be discriminated from the odd and even-bounce classes. The relatively 

lower normalized HV return at L-band is currently unexplained. 

6. The linear depolarization ratio (LDR, HVIW) discriminates even or diffuse terrain from odd-

bounce pixels in P and L bands, due to the very low HV return from flat odd-bounce scatterers. 

One might conclude from this that the even-bounce area has a lot of multipatning. 
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4.4.2.3 Urban 

San Francisco - L-band This scene was one of the first to be acquired by the original JPL fully 

polarimetric SAR, and has been extensively studied [64]. 

Illustration 12 Supervised Classification of 2x2 Averaged San Francisco L-band Data 
(black=odd-bounce, light-gray=diffuse, white=even-bounce, dark-gray=unclassified) 

The results from the San Francisco scene suggest the following comments: 

1. The U{HH VV*} feature shows its strength in discriminating odd-bounce (ocean) versus 

even-bounce (city) targets. 
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Figure 4.26: Feature Distribution in San Francisco L-band scene 

2. The W feature discriminates water from land well, due to water's relatively high W to power 

ratio, attributable to Bragg scattering [64, p. 538]. 

3. The HV feature distinguishes park (diffuse) from ocean (odd-bounce), as vegetation has a strong 

depolarizing effect while water has almost none. 

4. The five last normalized cross products normally have standard deviations that are very large 

compared to their mean values. One deviates from this pattern in the San Francisco scene. The 

city (even-bounce) $t{HH HV*} cross product takes on a mean value larger than the sum of 

its standard deviation and that of either of the other classes, which leads to high class separation 

values. One proposed explanation for this behaviour (unseen in other scenes) is that it may be 

due to rows of streets with significant relief angled at 45° to azimuth. This hypothesis has yet 

to be fully investigated. 
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4.4.2.4 Geological 

Pisgah - P, L, and C bands The Pisgah dataset was acquired over the Pisgah lava flow in 

California, and has been reported on previously in [21], and [56]. 

The Pisgah scene was affected by ground interference in both P and L-bands [56]. The L-band 

interference is of unknown origin, but interference at P-band is more common. Since it is at such 

a longer wavelength (68cm), it is susceptible to ground-based UHF interference [25, p. 14, p. 37] 

in populated areas. 

Illustration 13 Supervised Classification of 2x2 Averaged Pisgah L-band Data; black(I)=Phase 
I Lava, dark gray(III)=Phase III Lava, medium gray(II)=Phase II Lava, light gray(A)=Alluvial 
Surface, white(LB)=Lakebed (Playa), gray(seen in rectangular interference regions)=unclassified 
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Figure 4.27: Feature Distribution in Pisgah P-band scene 
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Figure 4.28: Feature Distribution in Pisgah L-band scene 
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Figure 4.29: Feature Distribution in Pisgah C-band scene 

Class 
Span 

Class 
P-band L-band C-band 

Phase I Lava .259 .238 .524 

Phase II Lava 1.75 1.06 1.13 

Phase III Lava .571 .442 .622 

Alluvial Surface .021 .016 .069 

Dry Lakebed (Playa) .026 .0084 .042 

P: s„=5xl0 7 ; L: s„=2xl0 6 ; C:su=\.0 

Table 4.8 Span of Classes in Pisgah Scene for P, L, and C-bands 

The L-band results from the Pisgah scene suggest the following comments: 

1. The L-band V V normalized cross-product was able to discriminate dry lakebed from phase II 

or III lava (with a class separation above one). 
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2. The L-band HV normalized cross-product could also distinguish dry lakebed from phase II lava, 

due to the low depolarizing effect of the smooth lakebed contrasted with the stronger depolarizing 

effect of the relatively rougher phase II lava terrain. 

3. No other L-band normalized cross products provided class separations above unity for any of the 

other class pairs in this scene. Unnormalized feature vectors are reported to have more success 

in this scene [56, p. 351]. 

4. The L-band span provides good discrimination (class separabilities were approximately 2.8) of 

phase II lava from dry lakebed and alluvial surfaces. The dry lakebed and alluvial surface are 

both relatively smooth flat surfaces, resulting in specular scattering and negligible backscatter 

(for incidence angles above 20° [16, p. 25]). The phase II lava in contrast is relatively rough 

(for L-band), resulting in approximately 100 times as much backscatter. 

For this scene, the C-band span was approximately six orders of magnitude brighter than the 

return in either L or P bands (see Table 4.8). Such a large difference in brightness cannot be due 

to relative roughness changes, but might have been caused by a miscalibration or misprocessing of 

one or more of the images. 

Class 
HH W 

Class 
Mean S.D. Mean S.D. 

Phase I Lava 1.74 .36 2.12 .37 

Phase II Lava .57 .15 3.32 .17 

Phase III Lava 1.22 .22 2.70 .23 

Alluvial Surface 2.55 .27 1.22 .24 

Dry Lakebed (Playa) 2.63 .41 1.10 .39 

Table 4.9 Mean and Standard Deviation of P-band Normalized 
HH and VV Cross Products for Classes in Pisgah Scene 

The P-band HH and W normalized cross products discriminate well between almost all five 

classes (class separations above two). The other normalized cross products (at all three frequencies) 

fail to provide separabilities greater than unity (with the exception of R{HH VV*} discriminating 

phase II from phase III lava). 
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The means and standard deviations of the P-band HH and W normalized cross-products are 

shown in Table 4.9. The smooth areas (alluvial surface and dry lakebed) have a relatively strong 

normalized HH return, while the the rougher areas (lavas) have a relatively strong normalized V V 

return. The normalized HH and W cross products are therefore able to discriminate between all 

class pairs except alluvial surface vs. playa and phase I lava vs. phase III lava, which are too alike 

in roughness to be distinguished from one another. 

4.4.3 Summary of Feature Performance 

Class separations for each scene were computed between all classes shown in Table 4.7. The 

class separations were averaged over class pairs and scenes for each feature, to give a measure of 

the overall separation ability of each feature. The class separation averages are displayed in Figure 

4.30 and Table 4.10. 

Note that class separabilities vary considerably from scene-type to scene-type, and from class-set 

definition to class-set definition. This variation will be discussed later. 

The following sections discuss the results shown in Table 4.10 and Figure 4.30. 

3ft{HH V V * } For the scenes studied, the U{HH VV*} feature is the best discriminator overall. 

Its success is based on the fact that its sign can be used to distinguish between odd and even bounce 

scattering mechanisms. Odd-bounce terrain classes have a PPD of near zero [64], from equation 

(124) we see that the sign of U{HH VV*} must then be positive. Even-bounce targets have a PPD 

near 180°; the sign of $t{HH VV*} is therefore negative. 

Span The span also works well on average, notably better than in the scenes studied in [8]. In 

the Pisgah and Mt. Shasta scenes, we see that an unnormalized feature set may be more appropriate 

[56], as the span offers the best discrimination. 

HH, HV, VV The normalized radar channel amplitudes (HH, HV, and W) are also good discrim

inators, while the remaining features are generally not useful, with rare exceptions. The exceptions 

are discussed in the sections dealing with each individual scene. 
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Separation Average Class Separation 

2.50 

2.00 

1.50 

1.00 

0.50 

0.00 

Bonanza Creek 13.03 
bonanza Creek 20.03 
Fairbanks i3.03 
Fairbanks 20.03 
Flevoland 
Punta Cacao 
San Francisco 
Traverse City 
ML Shasta 
Weeks Lake 

; i : 

Span VV HV Re Im 

HHVV* 

Re Im 

H V W * 

Re Im 

HHHV* 

Feature 

Figure 4.30: Average Class Separations for L-band Scenes 

HV The normalized HV cross product is often able to discriminate between water and vegetation, 

as the vegetation's multipath backscatter has a strong depolarizing effect, while water is an extremely 

weak depolarizer. 

VV The normalized W cross product can often distinguish land terrain from water. Water produces 

a relatively high normalized W return, due to Bragg scattering [64, p. 538]. The theoretical WIHH 

ratio for pure Bragg scattering [16, pp. 14-15] is: 

cos( 

O~HH 
= (e(l + sin20) - s i n 2 0 ) -

50+ y/t - sin29 

e cos 9 + y/e — sin2 9 
(126) 

where e is the water's dielectric constant at the frequency of interest, and 9 is the incidence angle. 
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Scene 

Feature 

Scene 
span HH W HV 

HH W* HVW* HHHV* Scene 
span HH W HV 

ft & 
Bonanza Creek1 1.74 .50 .76 1.49 1.90 .19 .12 .10 .14 .31 

Bonanza Creek2 1.55 .72 1.23 1.03 1.77 .67 .16 .06 .02 .05 

Fairbanks1 .74 .74 .72 .95 1.41 .28 .13 .19 .26 .07 

Fairbanks2 .64 .92 .69 1.25 1.43 .43 .14 .13 .26 .01 

Punta Cacao 1.39 .86 1.53 1.20 1.92 .89 .13 .38 .40 .33 

M L Shasta* 1.38 .14 .40 .76 .95 .20 .03 .06 .11 .05 

Traverse City 1.62 1.25 1.37 1.01 1.06 .41 .14 .31 .33 .18 

Weeks Lake* 1.74 .85 1.88 1.28 1.56 .20 .66 .59 .19 .13 

Mean Forested 1.42 .69 1.04 .97 1.27 .35 .25 .26 .24 .14 

Flevoland 1.07 1.47 1.99 1.59 2.70 .46 .12 .30 .17 .20 

Pisgah* 1.43 .49 .65 .44 .32 .22 .12 .08 .08 .09 

San Francisco .83 1.48 2.09 1.62 2.24 .19 .50 .32 .98 .29 

Mean EDO 1.20 .99 1.30 1.27 1.80 .44 .18 .23 .32 .18 

Mean non-EDO 1.51 .49 .98 .83 .94 .21 .27 .24 .13 .09 

Mean AU 1.28 .86 1.21 1.15 1.57 .38 .20 .23 .27 .16 

! 1 3 March 1988; 2 2 0 March 1988; *Non Even/Diffuse/Odd (EDO) Training Set 

Table 4.10 Average Class Separations of L-band Features (All Scenes) 

Frequency In general, P-band features appear to provide the best discrimination between forest 

(diffuse) and clear-cut (odd-bounce) terrain. This was confirmed in the Punta Cacao, and Mt. Shasta, 

and Weeks Lake scenes. The reason for P-band's better performance is probably that the clear-

cut is smooth compared to that wavelength, while it is rougher (and hence more similar to diffuse 

multipath scatterers) at L and C bands. P-band HH and W normalized cross-products were also 

able to discriminate many of the classes in the geological Pisgah scene where features from all other 

frequencies failed. 

The class separations calculated from the C-band data are often the worst of the three frequencies 

available. This may be partially due to the band's poorer calibration [25], but the principal cause is 

probably that many terrain surfaces in the scenes have roughnesses greater than 6.3 cm (the C-band 
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wavelength), resulting in poorer contrast than in P or L bands, where a greater variety of relative 

roughnesses manifest themselves. The C-band radar also had by far the lowest SNR. 

The following exceptions were noted. In the Pisgah scene, the C-band span discriminates between 

the five classes better than the span from P or L-band (see Table 4.8) due to a better relevant roughness 

sensitivity. In the Weeks Lake scene, the C-band span discriminates better between lake and clear-cut 

or forest. In these cases, C-band's advantage is due to the higher backscatter from the clear-cut class, 

and the lower variation in brightness within the forest class. 
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Chapter 5 

Feature Utility in Classification 

5.1 Introduction 

Although class separation measures are useful for determining the ability of single features 

to discriminate between classes, they ignore the covariance between features. The amount of new 

information that a feature adds to that already provided by the others can be more important than what 

it supplies in isolation. This section introduces a measure of the information that each feature adds. 

If one assumes that a classification performed with the full feature set is "correct", then counting 

the number of pixels that change classification between that "reference" run and one using an 

incomplete feature set gives an indication of the importance (for the purposes of classification) of 

the features missing in the incomplete feature set. 

5.1.1 Confusion Matrix 

A confusion matrix is constructed by counting the number of pixels that are class Cj in the 

reference run, and class Ci in the run using an incomplete feature set. Totals are computed for all 

d and Cj and arranged in a square matrix with the row indicating the classification in the reference 

run, and the column the classification in the run using the limited feature set. The diagonal elements 

contain the number of pixels that do not change classifications between runs. 

5.1.2 Relative Confusion 

The total confusion is computed by adding the non-diagonal elements, with the exception of 

transitions to and from the unclassified "class". The relative confusion is then the total confusion 

expressed as a percentage of the total number of pixels considered. 
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5.2 Results 

5.2.1 One Feature Ignored 

The relative confusion resulting from removal of a single feature from the full feature set was 

computed for each feature in each scene. The results are shown in Figure 5.31 and Table 5.11. Two 

by two averaging was used throughout. 

Average Relative Confusion - Single Feature Ignored 
RC 
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Figure 5.31: Average Relative Confusion for Single Feature 
Ignored (Reference is L-band Full Feature Set Classification) 
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Scene 

Relative Confusion when Single Feature Ignored 

Scene 
span HH VV HV 

HH W HVW HHHV Scene 
span HH VV HV 

ft ft ft 

Bonanza Creek1 15.1 5.4 3.7 11.0 13.1 1.2 .4 .5 .7 1.0 

Bonanza Creek2 10.9 3.1 7.0 7.3 12.2 3.6 1.1 .4 .1 .3 

Fairbanks1 .9 4.2 4.6 10.8 13.5 2.0 1.5 1.1 1.6 .6 

Fairbanks2 .5 4.3 4.3 10.8 12.5 1.9 .4 .9 1.5 .2 

Punta Cacao 8.6 1.4 2.8 5.3 4.0 1.1 .0 1.1 .8 .4 

Mt Shasta* 36.6 1.2 3.1 6.4 10.5 1.4 .4 1.0 1.2 .9 

Traverse City 5.7 6.9 5.5 9.5 13.3 4.1 1.1 1.2 2.3 1.8 

Weeks Lake* 23.2 1.9 5.6 9.1 9.5 2.4 1.0 2.7 2.0 1.9 

Mean Forested 12.7 3.6 4.6 8.8 11.1 2.2 .74 1.1 1.3 .89 

Flevoland 2.1 2.1 7.6 11.7 14.6 1.6 .3 1.0 .6 .3 

Pisgah* 34.2 12.2 13.8 9.6 12.2 11.9 7.4 3.3 2.7 2.8 

San Francisco 1.6 3.1 1.2 6.2 8.5 .1 2.2 .5 5.6 1.3 

Mean EDO 5.7 3.8 4.6 9.1 11.5 2.0 .9 .8 1.7 .7 

Mean non-EDO 31.3 5.1 7.5 8.4 10.7 5.2 2.9 2.3 2.0 1.9 

Mean AU 12.7 4.2 5.4 8.9 113 2.8 1.4 1.2 1.7 1.0 

x\3 March 1988; 220 March 1988; *Non Even/Diffuse/Odd (EDO) Training Set 

Table 5.11 Relative Confusion for Single Normalized 
Cross-Products Ignored with L-band Full Feature Set as Reference 

Note how the presence or absence of HV HV", $1{HH VV*}, or the span can strongly influence 

classification decisions. Knowledge of only the sign of the U{HH VV*} normalized cross product 

is often enough (for non volume scatterers) to determine that the polarization phase difference (PPD) 

is either in the neighbourhood of 0° or 180°, indicating odd or even-bounce scatterers respectively. 

Features that produce a low RC in Table 5.11 relative to a high class separation (in Table 4.10) 

are correlated with other features. They do discriminate between different classes, but add little 

information useful for improving the classifier to the sum of information already provided by other 

features. 
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Scene 

Relative Confusion when Single Feature Ignored 

Scene 
span HH VV HV 

HH W HVW HHHV Scene 
span HH VV HV 

» » 
Flevoland 8.6 6.8 7.9 8.9 16.9 4.9 .6 1.2 .6 1.0 

Pisgah* 30.2 12.9 13.9 5.5 7.3 2.7 1.7 1.1 1.6 1.9 

Punta Cacao 2.7 .5 .7 2.3 1.9 .3 .1 .2 .2 .2 

M L Shasta* 29.5 1.0 2.0 4.1 6.3 .6 .8 .8 .7 .6 

Weeks Lake* 30.2 2.5 3.4 4.2 4.5 1.6 1.0 2.5 1.6 .9 

Mean Forested 20.8 1.3 2.0 3.5 4.2 .83 .63 1.2 .83 .57 

Mean EDO 5.7 3.7 4.3 5.6 9.4 2.6 .4 .7 .4 .6 

Mean non-EDO 30.0 5.5 6.4 4.6 6.0 1.6 1.2 1.5 1.3 1.1 

Mean AU 20.2 4.7 5.6 5.0 7.4 2.0 .8 1.2 .9 .9 

*Non Even/Diffuse/Odd (EDO) Training Set 

Table 5.12 Relative Confusion for Single Normalized Cross-Products 
Ignored with P, L , and C-band Full Feature Set as Reference 

Table 5.12 shows the relative confusion results when the reference scene is a classification using 

the full P, L, and C-band feature set, rather than just the L-band features. The full feature set 

classification uses all 30 features, while each "single feature ignored" run uses 27, as the single 

feature is ignored at all three frequencies simultaneously. The three-frequency reference might be 

judged to be a more "correct" classification, as its decisions are less "noisy" [56], and make use of 

more information. One should keep in mind that in this case, the relative confusion results apply to 

each feature averaged across three frequencies. 

5.2.2 One Feature Used 

In order to evaluate how much relevant classification information each feature alone possessed, 

the relative confusion resulting from the comparison of a classification using the full feature set with 

a classification using only a single feature was computed. Table 5.13 shows the relative confusion 

of each single-feature classification when compared against a baseline classification that used all 

ten L-band features. Note that RC values are often very high, as single feature classification is 
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frequently unable to distinguish between terrain classes. The table illustrates the percentage of the 

scene's pixels that change classification when 9 of the feature vector's components are ignored and 

only one is retained. 

Scene 

Relative Confusion when Single Feature Used 

Scene 
span HH VV HV 

HH W HVW HHHV Scene 
span HH VV HV 

ft ft ft 

Bonanza Creek1 34.0 47.4 45.5 37.6 26.5 67.7 67.0 53.2 66.7 62.2 

Bonanza Creek2 38.0 49.8 31.1 45.9 23.1 52.4 52.1 51.8 50.5 72.6 

Fairbanks1 52.3 42.9 46.1 37.0 21.4 65.9 65.1 65.3 62.9 48.0 

Fairbanks2 32.9 37.2 50.1 25.3 19.1 46.2 49.4 77.0 71.1 41.8 

Punta Cacao 14.9 46.1 20.1 15.9 23.1 43.3 70.3 41.4 42.3 53.9 

M L Shasta* 19.8 62.1 48.9 45.0 39.2 70.3 51.6 49.2 62.2 49.0 

Traverse City 54.0 42.3 30.5 22.4 39.5 40.2 40.4 38.2 59.4 43.5 

Weeks Lake* 37.8 49.4 33.6 33.9 33.7 46.1 58.8 55.7 53.0 46.4 

Mean Forested 35.5 47.2 38.2 32.9 28.2 54.0 56.8 54.0 58.5 52.2 

Pisgah* 50.3 67.9 60.3 63.8 67.8 73.1 71.3 73.1 72.7 80.0 

Flevoland 44.8 43.4 31.9 59.5 22.0 51.1 72.8 68.1 73.1 71.1 

San Francisco 40.1 38.8 26.9 21.7 16.7 48.5 47.2 45.7 44.7 49.3 

Mean EDO 38.9 43.5 35.3 33.2 23.9 51.9 58.0 55.1 58.8 55.3 

Mean non-EDO 36.0 59.8 47.6 47.6 46.9 63.2 60.6 59.3 62.6 58.5 

Mean AU 38.1 47.9 38.6 37.1 30.2 55.0 58.7 56.2 59.9 56.2 

'13 March 1988; 220 March 1988; *Non Even/Diffuse/Odd (EDO) Training Set 

Table 5.13 Relative Confusion for Single Normalized 
Cross-Products Used with Full L-band Feature Set as Reference 

As the accuracy of a classification using only a single feature is not high, these results should not 

be taken too seriously. They serve only to illustrate that the $t{HH VV*} and HV features provide 

better discrimination than the other single features. 
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The following observations are listed for the record: 

1. Results are impressive for the U{HH VV*} feature in the Fairbanks, Bonanza Creek, Flevoland, 

Punta Cacao, and San Francisco datasets, with only approximately 20% of the pixels changing 

classification. These three scenes have even, odd, and diffuse scattering class definitions. The 

poor results in the Pisgah scene are due to the fact that all five classes in that scene are odd-bounce 

scatterers, reducing the effectiveness of the U{HH VV*} feature's capability to differentiate 

odd-bounce from non-odd-bounce scatterers. 

2. The HV feature does well in the Punta Cacao, Traverse City, and San Francisco scenes. In San 

Francisco and Traverse City, the water class has a distintively low HV return, while the diffuse 

(park/forest) class has a distinctively high one, and the even-bounce (city/dead trees) class is in 

between. All have sufficiendy low standard deviations that the HV feature can do reasonable 

discrimination on its own. 

3. The span feature exhibits excellent maintenance of the "correct" classification in the Punta Cacao 

and Mt. Shasta scenes. In the Mt. Shasta scene, the classes were chosen based on HV brightness 

so it is not surprising that a brightness measure discriminates the three classes well. In the Punta 

Cacao scene, the forest is bright, the odd-bounce dark, and the even-bounce mysteriously darker 

still, allowing the span to discriminate between the three on its own. 

4. The W feature maintains a close-to-"correct" classification single-handedly in the Punta Cacao, 

and San Francisco scenes, for reasons similar to those oudined above. 

As with the "single feature ignored" relative confusion runs, multifrequency "single feature 

used" relative confusion results were also computed. Results are less noisy, but apply to each feature 

"averaged across the three frequencies". 

With reference to Table 5.14: 

1. In the Punta Cacao scene, the span, as well as the VV VV*, HV HV*, and U{HH VV*} 

normalized cross products are extremely good at maintaining the "correct" combined PLC full 

feature set reference classification when used in isolation. 
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2. In the ML Shasta scene, the span also does a good job of maintaining the reference PLC full 

feature classification. 

Scene 

Relative Confusion when Single Feature Used 

Scene 
span HH V V HV 

HH W HVW HHHV Scene 
span HH V V HV » & 

Flevoland 64.2 37.1 28.3 45.7 23.8 49.1 65.7 65.0 70.5 63.5 

Pisgah 55.6 45.2 37.3 59.6 69.7 73.4 75.2 79.6 74.9 75.3 

Punta Cacao 9.5 40.9 10.8 6.7 10.6 38.2 52.7 49.0 47.3 64.8 

Mt. Shasta 14.7 54.7 39.2 36.2 32.3 60.4 63.0 53.3 56.0 57.8 

Weeks Lake 31.8 41.6 35.7 39.2 35.4 58.4 49.8 46.3 48.2 58.1 

Mean Forested 18.7 45.7 28.6 27.4 26.1 52.3 55.2 49.5 50.5 60.2 

Mean EDO 36.9 39.0 20.0 26.2 17.2 43.7 59.2 57.0 58.9 64.2 

Mean non-EDO 34.0 47.2 37.4 45.0 45.8 64.1 62.7 59.7 59.7 63.7 

Mean All 35.2 43.9 30.3 37.5 34.4 55.9 61.3 58.6 59.4 63.9 

Table 5.14 Relative Confusion for Single Normalized Cross-Products 
Used with Full P, L , and C-band Feature Set as Reference 

5.2.3 Features Dropped in Reverse Rank Order 

In order to determine whether or not the classification differences resulting when sets of features 

were dropped were due to classification mistakes or noise, the following study was performed. 

Increasing numbers of features were dropped from the classifier, and the resulting classification 

maps were compared to a full feature set classification to determine if the classification changes 

were (a) randomly distributed, indicating that the changes were predominandy due to noise, or (b) 

systematically distributed, indicating that real classification mistakes were occurring. Comparisons 

were done both visually (contrasting the classification maps), and via the relative confusion resulting 

from each feature subset. 

An example of the classifications resulting as increasing numbers of features are dropped is shown 

in Illustration 14. Red pixels are classified as clear-cut, green as forest, and blue as water. Black 

pixels are assigned to the "unclassified" class. The intensity of each classified pixel is proportional 

to the magnitude of the HH return within its resolution element. 
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Illustration 14 Sequence of Features Dropped (9 colour images) in Weeks Lake, BC Scene (23 March 1988). 

Features were dropped in reverse rank order of Table 5.15. The last feature not dropped labels each image. 



Chapter 5: Feature Utility in Classification 



Chapter 5: Feature Utility in Classification 

The feature labelling each classification image denotes the lowest ranked feature present in the 

feature subset responsible for the given classification map. Note that no systematic changes are 

apparent until the the W feature is dropped; the lower-ranked features do not appear to have a 

systematic influence on classification results for the chosen classes in this scene. 

A qualitative visual comparison of Illustrations 14 and 15 provides some evidence that dropping 

the four bottom-ranked features may actually improve classification accuracy. 

Figure 5.32 illustrates the relative confusion results for classifiers using progressively fewer 

features. For a classification using j features, RCorig was computed with respect to the full 10 feature 

set. Figure 5.32 shows the upward trend in RCorig as more features are dropped. Features were 

dropped in the feature utility rank order shown in Table 5.15. The features labelled on the abcissa 

of Figure 5.32 refer to the feature dropped in that run. 

Calibrated EDO Scenes The results indicate that, for calibrated EDO scenes, no sizeable (>5%) 

changes in pixel classifications occurred until the sixth feature (HH) was dropped. That is, the set 

of features {span, &{HH VV*}, HV HV*, VV VV*, HH HH*} manage to reproduce the full-

feature classification with at least 95% accuracy. In general, RC increases monotonically as more 

features are dropped, indicating that no feature is significantly more important for classification than 

those with higher rank. 

All Scenes Results from incompletely calibrated or non-EDO scenes vary more widely, as can 

be seen in Figure 5.33. 

An examination of Figure 5.33 reveals the following: 

1. Figures 5.32 and 5.33 show that the results from all scenes but Pisgah and Traverse City indicate 

that the [${HH VV*}, HV HV*, VV VV*, span] feature subset is enough to closely 

approximate a full-feature classification. 

2. The generally high relative confusion in the Pisgah scene is probably due to the higher number 

of classes used (5 rather than 3) and the poor performance of normalized features in the scene. 
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Relat ive Confus ion — Sequence of Features D r o p p e d 

Bonanza Creek 13.03 
Bonanza Creek 20.03 
Fairbaiikl'l3"03 
Fairbanks 20.03 
Flevoland 
Punta Cacao 
San Francisco 
Traverse City 

Feature 
Ihhhv Dwvv Rhvvv Rhhhv ihhvv H H H V Rhhw 

Figure 5.32: Relative Confusion when Features Dropped in 
Rank Order in EDO Class Scenes - Full Feature Reference 

In the incompletely calibrated Traverse City scene, relative confusion is actually higher for 

the three-member {%t{HH VV*}, HV HV*, span} feature subset than for the two-member 

[?fc{HH VV*}, HV HV*} subset. The addition of span decreases the classification accuracy. 

This is the only case where such non-monotonic behaviour is observed. 

In the incompletely calibrated San Francisco scene, the loss of the $t{HH HV*} feature, with 

its relatively high class separation for this scene, significantly increases relative confusion The 

feature is relatively unimportant in the other scenes (ranking fourth from the bottom). 
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Relat ive Con fus ion — Sequence of Features D r o p p e d 
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Figure 5.33: Relative Confusion when Features Dropped in Rank Order - Full Feature Reference 

5.3 Feature Ranking 

5.3.1 Introduction 

Based on the overall class separation results, together with the relative confusion experiments 

in the previous sections, the ten features were "ranked" in a feature utility order. As the "single 

feature ignored" experiment revealed the impact of each feature on classification accuracy, features 

were ranked based on the relative confusion caused when the feature was removed from a full (10 

feature) classification, close ties being broken by the class separation. For consistency, only L-band 

data was used. 

1 0 5 

Bonanza Creek 13.03 
Bonanza Creek 20?03 
Fairbanks 13"03 
Fairbanks 20.03 
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A ranking of the ten feature vector elements based on the above criterion is shown in Table 5.15 

for the average of all scenes. The average L-band "single feature ignored" relative confusion results 

are shown together with the average class separations for each feature. The averages were applied 

over all scenes with EDO (even/diffuse/odd) training sets. 

The following points should be kept in mind: 

1. The rank of the span is not important when evaluating the utility of the normalized polarimetric 

features, although it useful when evaluating the relative advantage over conventional radars that 

the extra features returned by a polarimetric radar provide. Al l polarimetric radars provide 

brightness measurement for classification purposes. The feature utility ranking is important 

insofar as it (a) illustrates the order in which features may be dropped (during data compression), 

and (b) calls attention to those information-laden features that will be useful in constructing 

improved classifiers. 

2. The polarimetric data should be well calibrated for the ranking to be valid. For example, if the 

data is not phase calibrated, some information will migrate from the %t{HH VV*} feature to 

the %{HH VV*} feature. 

Rank Feature 
Mean 

RC 

Mean Class 

Separation 

1 span 12.7 1.28 

2 ?&{HH VV*} 11.3 1.57 

3 HV 8.9 1.15 

4 W 5.4 1.21 

5 HH 4.2 .86 

6 %{HH VV*} 2.8 .38 

7 &{HH HV*} 1.7 .27 

8 ft{HV VV*} 1.4 .20 

9 %{HV VV*} 1.2 .23 

10 %{HH HV*} 1.0 .16 

Table 5.15 Basis for Feature Utility Ranking 
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5.3.2 Varying Scene-types 

Different scene-types produce slighdy different rankings, as can be seen in Table 5.16. The 

table shows that for a variety of scene-types, the discriminatory information resides mainly in the 

{&{HH VV*}, HV HV*, span, VV VV*, HH HH*} feature subset Investigation of partially 

polarimetric radars that acquire most of that set might therefore be warranted. Three such radars are 

investigated in the next chapter. 

Rank All EDO non-EDO Forest Agricultural 
(Flevoland) Comments 

1 span %t{HH VV*} span span $t{HH VV*} Most 
distinctive 2 %t{HH VV*} HV •$t{HH VV*} %{HH VV*} HV 

Most 
distinctive 

3 HV span HV HV W Provide some 
useful 

separation 
4 W W W W span 

Provide some 
useful 

separation 5 HH HH HH HH HH 

Provide some 
useful 

separation 

6 3{HH VV*} Q{HH VV*} ^{HH VV*} %{HH VV*} %{HH VV*} 

Mainly 
noise 

7 $t{HH HV*} ${HH HV*} $t{HV VV*} $t{HH HV*} Q{HV VV*} 
Mainly 
noise 8 tH{HV VV*} %{HV VV*} Q{HV VV*} %{HV VV*} $t{HH HV*} 

Mainly 
noise 

9 ${HV VV*} $t{HV VV*} $t{HH HV*} %{HH HV*} ^{HV VV*} 

Mainly 
noise 

10 %{HH HV*} %{HH HV*} %{HH HV*} $t{HV VV*} %{HH HV*} 

Mainly 
noise 

Table 5.16 Feature Utility Rankings for various scene types 

Calibrated EDO vs. Uncalibrated EDO In comparison with the uncalibrated San Francisco 

and Traverse City, the calibrated EDO scenes behave more uniformly. The following differences 

are apparent. 

1. Many of the calibrated EDO scenes attribute greater importance to the span. 

2. For the two uncalibrated scenes, the results of this study do not differ widely from those of [8] 

(although a different definition of class separation, different scaling, and smaller training areas 

were used). The extra eleven scenes (nine forestry, one agricultural, and one geological) show 

the low value of span evident in the San Francisco scene to be the anomaly that it is. 
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Chapter 6 

Simplified Radar Systems 

Polarimetric radars are different than conventional single-channel radars in many ways [8]. A 

polarimetric radar requires more complex hardware, including waveguide switches, improved timing 

control, extra power, a dual polarized antenna, and a second receiver. Calibration is also more difficult, 

and data collection, transmission, processing, and archiving all require more resources. This chapter 

studies the classification accuracy attained using simplified radar systems to gauge how many of the 

advantages of fully polarimetric radars can be obtained from simplified partially-polarimetric radars. 

6.1 Introduction 

Fully polarimetric radars pay a price in complexity and data storage/processing requirements for 

the extra radar channels that they make available. Fully polarimetric radars return four channels (HH, 

HV, VH, W), while conventional single-channel radars return only one. 

Dual-channel radars are intermediate between conventional single-channel and fully polarimetric 

radars. Only one of the two most distinctive features ($t{HH VV} and HV HV*) can be included 

in a two-channel radar simultaneously, as three channels are required to obtain both. 

A copolarized radar is the simplest radar that can acquire the U{HH VV} feature, and the 

single transmit radar is the simplest one that includes the HV HV* feature. The following sections 

study these dual-channel radars, together with a three-channel amplitude-only radar. 

6.1.1 Copolarized Radar 

A CO-POL radar returns only the HH and W channels. Only one receiver is required, and less 

transmitted power is needed for a given SNR, as the comparatively weak HV channel is omitted. The 

data transmission, processing, and storage requirements are halved compared to the fully polarimetric 

radar. 

In comparison to a fully polarimetric SAR (see equation (121)), a CO-POL radar returns the 

following features: 
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/F0\ 
/ span' \ 

FT 
HH HH* 

F2 
= VV VV* 

FA ${HH VV*} 

\FJ \%{HH VV*} J 

(127) 

The following points should be noted: 

1. The definition of span is modified in this case to half the sum of the unnormalized HH and W 

channels recognizing that the HV HV* feature is not available. 

2. The polarization phase difference (PPD) is preserved, as it can be computed from the 

tft{HH VV*} and %{HH VV*} features. 

6.1.2 Amplitude Radar 

An ampltitude (AMPL) radar measures the amplitude of the HH, HV, VH, and W channels, but 

not the phase. No inter-channel phase calibration, and less storage are its principal advantages. Such 

a radar collects the following features: 

Fi 

F2 

\F3J 

I span \ 

HH HH* 

VV VV* 

\HV HV* J 

(128) 

Note that the important HV HV* feature is present, but that the $1{HH VV*} feature is missing. 

6.1.3 Single Transmit Radars 

Single transmit radars transmit on only a single polarization, but receive on two polarizations. 

They require no high-speed, high-power waveguide switch, less transmit power and less complex 

timing control than a fully polarimetric radar. Two receivers are needed, but there is no receive-

path waveguide switch, and the receive data does not need to be de-multiplexed. Transmission, 

processing, and archive storage requirements are halved. 
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A horizontal transmit radar returns the following features: 

/F0\ / span" \ 

Fi HH HH* 

F3 = HV HV* 

Fs ${HH HV*} 

\%{HH HV*} ) 

while a vertical transmit radar returns: 

( F ° \ 

F2 

F3 

Fe 

\Fr/ 

The following points should be noted: 

/ span'" \ 

VV VV* 

HV HV* 

${HV VV*} 

\%{HV VV*} ) 

(129) 

(130) 

1. The definition of span in both equations is modified to use only those of the HH, HV, VH, and 

W features that are available. 

2. Compared to the CO-POL radar, the HV HV* feature is available, but the co-polarized phase 

&{HH VV*} and %{HH VV*}) and one of the [VV VV*, HH HH*) features are not. 

6.2 Results 

For simplified radars, features involving HV have a higher standard deviation than they would 

coming from fully polarimetric radars, as only one cross-pol channel is available to average. The 

analysis here ignores this difference, although it does take account of the modified definition of span 

necessary for each simplified radar. 

The classifications that result from three of the simplified radar subsets are visually juxtaposed 

in Illustration 16. Red pixels are classified as even-bounce, green as forest (diffuse), blue as ocean, 

and yellow as field. White pixels are unclassified (note that they are not speckle). The intensity 
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of each pixel (with the exception of those not classified) is governed by the HH return within each 

resolution element. Structural differences between the classification resulting from a full feature set 

and that from each subset are minimal. 

6.2.1 Relative Confusion 

Relative confusion statistics were calculated between the the fully polarimetric classification 

reference, and the classifications resulting from the simplified radar datasets. 

Figure 6.34 shows the relative confusion (in comparison to fully polarimetric-based classifica

tions) computed from classifications based on the subsets of the data that would be returned from 

four different simplified radars. 

Figure 6.35 shows the relative confusion results for the EDO scenes, grouped by radar system. 

The CO-POL radar performs best in most cases. 

6.2.2 Discussion 

Of the four simplified radars considered, the CO-POL performed the best on average. Of 

the simplified radars, it alone returns the $t{HH VV*} and $s{HH VV*} features, and hence 

provides the polarization phase difference (PPD) for analysis. The distinctiveness of the PPD has 

been discussed in earlier chapters and by other authors as well [2], [18], [60], [57]. 

For the EDO scenes, the CO-POL radar always performed best. Two of the EDO scenes were 

studied with four classes (even, diffuse, odd (water), odd (field)). In both cases, the CO-POL radar 

remained the best choice (see Table 6.17), due to it having both the U{HH VV*} and W features. 

Within two of the non-EDO scenes, (Weeks Lake and Mt. Shasta), the AMPL radar performed 

better, due to its use of the HV HV* feature. However, in these non-EDO scenes where classification 

is dominated by span, the better performance of the AMPL radar might also be due to its unchanged 

definition of span. 

There is no question that the fully polarimetric radar enables the best classifications. If this is 

the top priority, then the extra complexity, data volume, and cost associated with fully polarimetric 
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RC Simple Radars — Relative Confusion 

30.00 

25.00 

20.00 

15.00 — 

10.00 

5.00 

0.00 

13.03 20.03 13.03 20.03 Flevoland Pisgah Punta San Mt. Traverse Weeks 
Cacao Francisco Shasta City Lake 

Bonanza Creek Fairbanks 

Figure 6.34: Relative Confusion of Simple Radars in All L-band Scenes 

radars is well justified. Especially in a research environment, it is beneficial to have the full feature 

set available for analysis. 

However, if bandwidth is at a premium, and simplicity, reliability, and economy are important, 

then simplified radar systems offer an alternative. Their classification performance is much better 
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Simple Radars — Relative Confusion 

Radar SjiUra 

Figure 6.35: Relative Confusion of Simple Radars in L-band EDO Scenes 

Flevoland Traverse City 

CO-POL 15.4 10.6 

AMPL 16.0 13.3 

H Transmit 19.4 14.1 

V Transmit 18.2 12.9 

Table 6.17 Relative Confusion of Simplified Radars for Four-Class Scenes 

than that of single-channel radars, yet they are simpler and cheaper than fully polarimetric radars. 

Of the four simplified radar systems considered, the CO-POL option performs the best on most 

of the forestry datasets, although, for other applications, the AMPL radar might be more suitable. 
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Chapter 7 
Conclusions 

Motivated by the desire to reduce the data transmission, recording, and processing requirements 

attendant with polarimetric data, the information content of polarimetric SAR features has been 

analysed. A sharp distinction has been found between those features that carry information useful 

for classification and those that do not. 

Classification performance is good (and may be improved) when only 50 to 70% of the image 

data is used. Data reduction is possible, particularly if classification is the main use of the data. The 

U{ShvS;v}, %{ShvS:v}, ${ShkS*hv}, and Z{ShhS*hv} features may be dropped with little change 

to the resulting classification (the given four features were only significant in the Pisgah Ojeological) 

and San Francisco (urban) scenes). 

Of the simplified partially polarimetric SAR systems explored, the CO-POL radar (with only the 

HH and W channels) was found to give the best classification performance, often nearly equal to that 

of a fully polarimetric radar. The classification performance of the simplified radars was in general 

not degraded substantially between fully polarimetric and simplified radar systems; in all cases it was 

much better than that of single-channel radars. 

7.1 Possible Areas for Future Work 

Many interesting avenues await new research into polarimetric SAR information content. The 

following is a list of topics worthy of future research: 

1. Obtain more ground truth and select classes based on third-party training area choices. 

2. Test conclusions in more detail at frequencies other than L-band. 

3. Convert classification images to ground range, geocode, and given a "perfect" ground truth 

classification map, note which feature subset produces the best classification. 

4. Develop a hierarchical classifier based on the utility of different features (at all available 

frequencies) for identifying specific terrain classes. 
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5. Develop a fuzzy-set based classifier, allowing a pixel to maintain partial membership in more 

than one class, therefore not reducing the classification operation to an all-or-nothing decision. 

Through the concept of fractional membership in say, the "clear-cut" and "forest" classes, second 

growth forests of different ages might be discriminated. 

6. Form a ranking of feature utility by first dropping the feature with the lowest relative confusion, 

then choosing the feature that produces the lowest relative confusion when it is added to the list 

of dropped features, dropping it, and continuing until only one feature remains. A ranking could 

be produced for each scene, and compared across scene-types and class-definitions. 
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Appendix A Tabular Feature Statistics and Class Separabilities 

A.l Bonanza Creek 

Class 
Span HH W HV ®{HH VV*} 

Class 
Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. 

L 1 

Even 2.05 .70 2.13 .44 1.11 .33 .38 .13 -.13 .39 

L 1 Diffuse 1.51 .44 1.54 .41 1.32 .39 .57 .15 .29 .33 L 1 

Odd .22 .087 1.91 .32 1.90 .34 .096 .058 1.52 .19 

L 2 

Even 1.60 .60 2.59 .49 .88 .39 .27 .12 .015 .38 

L 2 Diffuse .84 .22 2.04 .39 1.18 .30 .39 .13 .52 .33 L 2 

Odd .24 .12 1.75 .27 2.06 .29 .098 .054 1.52 .19 

113 March 1988 (T=2°C) (su = 1.0); 220 March 1988 (frozen, T=-15°C) (su = 1.0) 
Table A.18 Values for span, and HH, VV, HV and Rhhvv 
Normalized Cross Products (Bonanza Creek L-band data). 

Class Pair 

Feature 

Class Pair 
span HH W HV 

HH W* HVW* HHHV* Class Pair 
span HH W HV 

ft ft ft 

L 1 

Even / Diffuse .48 .69 .29 .67 .57 .12 .00 .02 .05 .02 

L 1 
Even/Odd 2.33 .29 1.18 1.51 2.80 .28 .19 .15 .22 .46 

L 1 

Diffuse / Odd 2.44 .51 .80 2.29 2.33 .16 .17 .15 .17 .44 
L 1 

Mean 1.75 .50 .76 1.49 1.90 .19 .12 .10 .14 .31 

L 2 

Even / Diffuse .93 .62 .44 .49 .71 .32 .05 .01 .01 .01 

L 2 
Even / Odd 1.92 1.11 1.76 .97 2.65 1.03 .21 .10 .02 .09 

L 2 

Diffuse / Odd 1.79 .44 1.50 1.63 1.94 .66 .21 .09 .03 .07 
L 2 

Mean 1.55 .72 1.23 1.03 1.77 .67 .16 .06 .02 .05 

113 March 1988 (T=2°C); 220 March 1988 (frozen, T=-15°C) 

Table A.19 Class Separations for Normalized Cross Products (Bonanza Creek L-band data). 
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A.2 Fairbanks 

Class 
Span HH W HV U{HH VV*} 

Class 
Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. 

L 1 

Even .24 .69 2.59 .56 1.13 .48 .14 .138 -.24 .51 

L 1 Diffuse .12 .070 1.61 .40 1.48 .39 .46 .18 .46 .41 L 1 

Odd .0018 .0008 1.83 .30 1.98 .31 .095 .042 1.44 .30 

L 2 

Even .24 .88 2.64 .59 1.17 .49 .093 .10 -.29 .60 

L 2 Diffuse .0092 .0065 1.44 .39 1.53 .42 .52 .16 .37 .37 L 2 

Odd .0001 .00004 1.80 .29 1.98 .28 .11 .050 1.45 .29 

113 March 1988, 5„=.05; 220 March 1988, su=.Q\ 
Table A.20 Values for span, and HH, VV, HV and Rhhvv Normalized Cross Products O âirbanks L-band data) 

Class Pair 

Feature 

Class Pair 
span HH W HV 

HH W* HVW* HHHV* Class Pair 
span HH W HV 

ft ft ft 

L 1 

Even / Diffuse .16 1.02 .40 .99 .75 .40 .18 .13 .32 .01 

L 1 
Even / Odd .35 .88 1.07 .24 2.08 .28 .06 .33 .44 .10 

L 1 

Diffuse / Odd 1.71 .32 .70 1.61 1.39 .16 .15 .11 .03 .10 
L 1 

Mean .74 .74 .72 .95 1.41 .28 .13 .19 .26 .07 

L 2 

Even / Diffuse .26 1.24 .40 1.66 .69 .62 .17 .19 .33 .01 

L 2 
Even / Odd .27 .97 1.04 .13 1.96 .67 .26 .11 .30 .01 

L 2 

Diffuse / Odd 1.40 .54 .64 1.96 1.65 .01 .00 .10 .14 .02 
L 2 

Mean .64 .92 .69 1.25 1.43 .43 .14 .13 .26 .01 

*13 March 1988; 220 March 1988 

Table A.21 Class Separations for Normalized Cross Products O'airbanks L-band data). 
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A.3 Flevoland 

Class 
Span HH W HV U{HH VV*} 

Class 
Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. 

p 

Even .519 .275 .66 .26 2.65 .41 .35 .14 .22 .28 

p Diffuse 1.46 .622 1.25 .42 2.09 .55 .33 .15 .16 .40 p 

Odd .572 .211 .95 .092 3.00 .099 .027 .014 1.55 .067 

L 

Even 1.99 1.82 3.11 .63 .71 .54 .091 .083 -.31 .41 

L Diffuse .468 .183 1.39 .37 1.65 .40 .48 .17 .29 .38 L 

Odd .120 .043 1.28 .12 2.68 .12 .022 .016 1.74 .08 

C 

Even .186 .056 1.98 .44 1.19 .37 .42 .15 .44 .33 

C Diffuse .200 .061 1.49 .38 1.68 .40 .41 .14 .57 .31 C 

Odd .012 .014 1.72 .25 2.01 .35 .14 .12 1.41 .40 

su=5 

Table A.22 Values for span, and HH, VV, HV and Rhhvv 
Normalized Cross Products (Flevoland P, L , and C-band data). 

Feature 

Class Pair 
span HH W HV 

HH W* HVW* HHHV* 
span HH W HV 

& ft 

Even / Diffuse 1.05 .86 .58 .05 .08 .71 .14 .20 .06 .01 

p Even / Odd .11 .82 .70 2.11 3.90 .53 .19 .18 .37 .45 

Diffuse / Odd 1.07 .58 1.40 1.89 2.99 1.38 .04 .13 .21 .30 

Even / Diffuse .76 1.72 1.01 1.56 .76 .39 .05 .32 .05 .18 
L Even / Odd 1.00 2.45 2.98 .70 4.16 .72 .24 .43 .33 .40 

Diffuse / Odd 1.54 .24 1.97 2.52 3.18 .26 .05 .14 .15 .02 

Even / Diffuse .12 .60 .64 .01 .20 .05 .01 .14 .03 .14 

C Even / Odd 2.48 .37 1.13 1.03 1.32 .28 .00 .16 .03 .04 

Diffuse / Odd 2.51 .36 .43 1.09 1.18 .22 .02 .03 .01 .13 

Table A.23 Class Separations for Normalized Cross Products (Flevoland P, L, and C-band data). 
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A.4 Pisgah 

Class 
Span HH VV HV tt{HH VV*} 

Class 
Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. 

Lava (I) .259 .405 1.74 .355 2.12 .371 .069 .035 1.41 .255 

Lava (II) 1.75 .685 .57 .150 3.32 .166 .056 .027 1.04 .164 

Lava (III) .57 .546 1.22 .222 2.70 .231 .043 .028 1.46 .200 
P Alluvial 

Surface 

.021 .0078 2.54 .267 1.22 .244 .117 .063 1.31 .209 

Playa .026 .018 2.63 .410 1.10 .390 .135 .081 .935 .378 

Lava (I) .238 .197 1.77 .343 1.95 .415 .138 .079 1.37 .268 

Lava (II) 1.06 .364 2.10 .311 1.50 .082 .199 .082 1.27 .238 

Lava Gil) .442 .306 2.06 .307 1.68 .064 .127 .064 1.44 .217 
L Alluvial 

Surface 

.016 .0054 1.66 .322 2.04 .069 .151 .069 1.32 .227 

Playa .0084 .0041 1.56 .263 2.31 .047 .067 .047 1.57 .210 

Lava (I) .524 .214 1.85 .344 1.88 .376 .137 .069 1.13 .308 

Lava (II) 1.13 .384 1.73 .300 1.93 .306 .170 .084 1.06 .354 

Lava (III) .622 .236 1.84 .338 1.93 .349 .117 .060 1.28 .301 
C Alluvial 

Surface 

.069 .019 1.64 .353 2.07 .353 .144 .073 .986 .280 

Playa .042 .015 1.37 .263 2.44 .274 .093 .037 1.36 .217 

P: 5 u=5xl0 7, L: s u=2xl0 6 , C: su=5 

T a b l e A . 2 4 Values for span, and HH, VV, HV and Rhhvv 
Normalized Cross Products O'isgah P, L, and C-band data). 
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Feature 

Class Pair 
span HH W HV 

HH W* HVW* HHHV* 
span HH W HV 

ft ft ft 

II / III .96 1.75 1.58 .24 1.14 .09 .08 .06 .08 .04 

I I / I 1.37 2.33 2.24 .20 .88 .02 .04 .17 .00 .13 

II / Alluvial 2.50 4.75 5.12 .66 .73 .10 .04 .26 .06 .26 

II / Playa 2.45 3.69 4.00 .73 .20 .04 .09 .27 .19 .43 

p 
III / I .33 .91 .96 .40 .10 .09 .03 .13 .05 .15 

p 
III / Alluvial .99 2.71 3.11 .80 .35 .17 .14 .23 .01 .27 

III / Playa .97 2.23 2.57 .84 .90 .04 .02 .23 .22 .43 

I / Alluvial .58 1.29 1.46 .49 .21 .07 .09 .09 .05 .13 

I / Playa .55 1.16 1.34 .57 .75 .04 .04 .10 .15 .27 

Alluvial / Playa .18 .12 .19 .13 .64 .11 .15 .02 .17 .12 

II / III .92 .05 .32 .49 .38 .13 .14 .04 .15 .09 

I I / I 1.46 .50 .64 .38 .21 .44 .02 .04 .09 .14 

II / Alluvial 2.82 .69 .86 .32 .11 .22 .24 .00 .15 .09 

II / Playa 2.85 .94 1.43 1.02 .69 .04 .11 .12 .11 .21 

L 
III / I .41 .45 .40 .07 .14 .32 .11 .09 .06 .06 

L 
III / Alluvial 1.37 .64 .59 .18 .27 .10 .11 .03 .01 .00 

III / Playa 1.40 .89 1.14 .54 .31 .10 .04 .10 .06 .12 

I / Alluvial 1.10 .17 .11 .09 .10 .23 .21 .04 .07 .06 

I / Playa 1.14 .35 .51 .56 .42 .43 .08 .18 .01 .05 

Alluvial / Playa .78 .18 .44 .72 .58 .20 .15 .11 .07 .12 

Table A.25 Class Separations for Normalized Cross Products 
O'isgah P, L, and C-band data). (Continued . . . ) 
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Feature 

Class Pair 
span HH W HV 

HH W* HVW* HHHV* 
span HH W HV 

ft ft ft 

II / III .83 .17 .00 .38 .33 .19 .03 .05 .03 .11 

I I / I 1.02 .19 .08 .22 .10 .23 .03 .01 .03 .04 

II / Alluvial 2.64 .13 .21 .17 .12 .41 .02 .02 .01 .01 

II / Playa 2.74 .63 .88 .63 .53 .36 .02 .01 .03 .15 

c 
III /I .22 .02 .07 .16 .25 .05 .07 .07 .01 .08 

c 
HI/Alluvial 2.17 .29 .20 .21 .50 .24 .02 .07 .02 .13 

III / Playa 2.31 .77 .82 .24 .16 .18 .02 .04 .01 .01 

I / Alluvial 1.96 .30 .27 .05 .24 .18 .05 .01 .02 .06 

I / Playa 2.11 .78 .87 .41 .44 .11 .05 .03 .02 .10 

Alluvial / Playa .76 .43 .59 .46 .75 .08 .00 .04 .01 .17 

Table A.25 Class Separations for Normalized Cross Products O'isgah P, L , and C-band data). 

A.5 Punta Cacao 

Class 
Span HH W HV R{HH VV*} 

Class 
Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. 

Even .022 .0070 .91 .31 2.73 .38 .18 .067 -.56 .31 
p Diffuse 1.32 .63 1.80 .40 1.49 .45 .36 .15 .11 .37 

Odd .10 .048 .90 .23 2.89 .27 .11 .052 1.11 .24 

Even .091 .031 1.03 .32 2.73 .33 .12 .065 -.69 .32 

L Diffuse 1.03 .48 1.93 .44 1.08 .43 .50 .15 .16 .32 

Odd .22 .10 1.41 .27 2.24 .29 .17 .066 1.09 .29 

Even .63 .16 2.00 .44 1.43 .47 .29 .10 -.24 .40 

C Diffuse .90 .49 1.71 .47 1.42 .41 .43 .15 .50 .32 

Odd .65 .28 1.80 .29 1.69 .29 .26 .11 1.17 .23 

N.B. s„=200 
Table A.26 Values for span, and HH, VV, HV and Rhhvv 

Normalized Cross Products Q̂ unta Cacao P, L, and C-band data). 
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Feature 

Class Pair 
span HH W HV 

HH W* HVW* HHHV* 
span HH W HV 

ft ft ft 

Even / Diffuse 2.06 1.25 1.49 .81 .99 .41 .18 .49 .41 .26 
p Even / Odd 1.41 .01 .24 .62 3.04 .05 .30 .45 .33 .04 

Diffuse / Odd 1.82 1.41 1.91 1.25 1.63 .45 .08 .11 .24 .30 

Even / Diffuse 1.83 1.19 2.16 1.73 1.32 .79 .18 .18 .60 .42 

L Even / Odd .94 .66 .78 .38 2.93 1.33 .20 .39 .17 .44 

Diffuse / Odd 1.40 .73 1.63 1.49 1.51 .54 .00 .55 .43 .14 

Even / Diffuse .42 .31 .01 .58 1.03 .90 .63 .13 .08 .39 

C Even / Odd .05 .28 .33 .13 2.21 1.14 .43 .16 .28 .47 

Diffuse / Odd .33 .10 .38 .67 1.21 .04 .23 .01 .18 .07 

N.B. su = 200 

Table A.27 Class Separations for Normalized Cross Products fl?unta Cacao P, L , and C-band data). 

A.6 San Francisco 

Class 
Span HH W HV &{HH VV*} 

Class 
Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. 

City .39 .58 1.91 .38 1.62 .39 .23 .083 -.35 .46 

L Park .082 .042 1.52 .34 1.66 .34 .41 .14 .46 .33 

Ocean .015 .0069 .82 .099 3.09 .10 .047 .021 1.48 .094 

Table A.28 Values for span, and HH, VV, HV and Rhhvv 
Normalized Cross Products (San Francisco L-band data) 

123 



Class Pair 

Feature 

Class Pair 
span HH W HV 

HH W* HVW* HHHV* Class Pair 
span HH W HV 

ft ft ft 

City / Park .49 .54 .05 .78 1.02 .01 .58 .11 41.04 .30 

City / Ocean .63 2.30 22.97 1.81 !3.30 .27 .87 .38 41.86 .54 

Park / Ocean 1.38 1.60 23.26 32.26 2.40 .29 .06 .47 .04 .02 

Mean .84 1.48 2.09 1.62 2.24 .19 .50 .32 .98 .29 

Table A.29 Class Separations for Normalized Cross Products (San Francisco L-band data). 

A.7 Mt. Shasta 

Class 
Span HH W HV &{HH VV*} 

Class 
Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. 

Clear-Cut .12 .055 1.72 .37 1.88 .37 .20 .077 1.00 .31 
P Treel .91 .27 1.87 .44 1.08 .36 .52 .18 .025 .33 

Tree2 .35 .15 1.96 .39 1.38 .39 .33 .13 .60 .37 

Clear-Cut .24 .10 1.76 .34 1.78 .35 .23 .11 1.14 .29 

L Treel 1.57 .53 1.61 .43 1.32 .42 .54 .17 .25 .33 
Tree2 .60 .31 1.67 .34 1.51 .36 .41 .13 .69 .32 

Clear-Cut .34 .11 1.73 .30 1.78 .32 .24 .11 1.16 .26 

C Treel .78 .32 1.51 .36 1.59 .37 .45 .15 .37 .35 
Tree2 .33 .10 1.65 .34 1.61 .37 .37 .15 .71 .35 

N.B. su = 500 

Table A.30 Values for Span, HH, VV, HV and Rhhvv 
Normalized Cross Products (ML Shasta P, L, and C-band data). 
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Feature 

Class Pair 
span HH W HV 

HH VV* HVW* HHHV* 
span HH W HV 

ft ft ft 

Clear Cut / Treel 2.43 .19 1.09 1.26 1.53 .25 .02 .10 .03 .10 
p Clear Cut / Tree2 1.10 .32 .66 .62 .59 .18 .21 .13 .10 .14 

Treel / Tree2 1.33 .11 .40 .63 .82 .07 .18 .20 .04 .03 

Clear Cut / Treel 2.12 .21 .59 1.11 1.44 .23 .02 .05 .17 .01 
L Clear Cut / Tree2 .86 .13 .37 .75 .74 .29 .02 .05 .06 .07 

Treel / Tree2 1.16 .09 .24 .44 .67 .06 .04 .09 .09 .07 

Clear Cut / Treel 1.01 .34 .27 .83 1.31 .01 .02 .05 .09 .08 

C Clear Cut / Tree2 .08 .13 .25 .52 .75 .02 .07 .04 .09 .09 

Treel /Tree2 1.05 .20 .02 .27 .49 .00 .04 .01 .16 .16 

N.B. su = 500 

Table A.31 Class Separations for Normalized Cross Products (Mt. Shasta P, L, and C-band data). 

A.8 Traverse City 

Class 
Span HH W HV U{HH VV} 

Class 
Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. 

Even 1.01 .68 1.45 .42 2.16 .45 .20 .12 -.39 .43 

L Diffuse 1.13 .30 1.06 .32 2.02 .42 .46 .16 .25 .31 

Odd .050 .022 .40 .15 3.35 .21 .12 .044 .60 .19 

Table A.32 Values for span, and HH, VV, HV and Rhhvv 
Normalized Cross Products (Traverse City L-band data) 
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Class Pair 

Feature 

Class Pair 
span HH W HV 

HHW* HVW* HHHV* Class Pair 
span HH W HV 

ft ft ft 

Even / Diffuse .13 .52 .16 .92 .87 .54 .14 .08 .29 .20 
Even / Odd 1.35 1.84 1.83 .46 1.62 .68 .06 .44 .59 .04 

Diffuse / Odd 3.35 1.38 2.12 1.63 .69 .01 .21 .42 .11 .31 
Mean 1.61 1.25 1.37 1.01 1.06 .41 .14 .31 .33 .18 

Table A.33 Class Separations for Normalized Cross Products (Traverse City L-band data). 

A.9 Weeks Lake 

Class 
Span HH W HV ®{HH VV*} 

Class 
Mean S.D. Mean S.D. Mean S.D. Mean S.D. Mean S.D. 

p 
Clear-Cut .42 .19 2.02 .27 .65 .24 .66 .10 .027 .29 

p Forest 1.39 .57 1.77 .86 .69 .11 .69 .11 -.11 .34 p 

Lake .042 .020 2.45 .18 .22 .12 .66 .074 .048 .16 

L 
Clear-Cut .66 .32 1.88 .33 1.32 .30 .40 .13 .84 .30 

L Forest 1.38 .46 1.78 .35 1.01 .30 .61 .17 .36 .34 L 

Lake .087 .030 1.23 .16 2.38 .18 .20 .044 1.49 .13 

C 

Clear-Cut 1.01 .32 2.80 .37 .60 .20 .30 .13 .60 .22 

C Forest .98 .32 2.66 .32 .69 .19 .33 .12 .55 .29 C 

Lake .051 .019 2.57 22 1.29 .22 .069 .044 1.32 .20 

Table A.34 Values for Span, HH, VV, HV and Rhhvv 
Normalized Cross Products (Weeks Lake P, L, and C-band data). 
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Feature 

Gass Pair 
span HH VV HV 

HH VV* HVW* HHHV* 
span HH VV HV 

ft ft ft 

Clear Cut / Forest 1.27 .45 .38 .11 .22 .14 .18 .46 .39 .05 

p Clear Cut / Lake 1.81 .94 1.19 .01 .05 .03 .87 .63 .69 .17 

Forest / Lake 2.28 1.45 1.53 .12 .32 .15 1.05 1.18 1.03 .11 

Clear Cut / Forest .92 .15 .52 .69 .74 .27 .97 .26 .16 .16 

L Clear Cut / Lake 1.64 1.32 2.24 1.22 1.51 .22 .94 .61 .35 .03 

Forest / Lake 2.66 1.07 2.89 1.92 2.43 .10 .98 .91 .08 .20 

Clear Cut / Forest .05 .21 .23 .10 .09 .22 .02 .01 .05 .04 

C Clear Cut / Lake 2.79 .39 1.67 1.32 1.75 .98 .53 .09 .23 .26 

Forest / Lake 2.74 .16 1.46 1.63 1.58 1.12 .59 .11 .16 .34 

Table A.35 Class Separations for Normalized Cross Products (Weeks Lake P, L and C-band data). 
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