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Abstract 

Current manufacturing research aims at increasing productivity by optimal selection of 

process parameters. This is accomplished by understanding the fundamental physics of 

individual manufacturing processes. 

In this thesis, peripheral milling of very flexible cantilevered plates is studied. The 

static and dynamic deflections of the plate under periodic mining forces are modelled. 

A new dynamic cutting force model is developed which considers five discrete zones of 

relative motion between the tool and the workpiece. The kinematics of both milling and 

vibratory motions are modelled, which is an original research contribution in this area. 

It is shown that the penetration of the tool into the workpiece during vibratory cutting 

has a strong influence on the damping and stiffness characteristics of the milhng process. 

A structural model of a discontinuous cantilevered plate is determined using the 

finite element method. A reduced order structural model at the tool-workpiece contact 

zone is implemented for discrete time response analysis of the plate under cutting force 

excitations during milhng. The closed loop dynamic behaviour of the system is modelled 

and taken into account in the analysis. Simulations of plate machining are compared with 

experimental results. A model of the surface finish generation mechanism is deduced from 

the analysis and experimental results. 

Applications of this research include peripheral milling of integral jet engine impellers, 

computer disk drives and other flexible mechanical components. 
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Chapter 1 

Introduction 

Current manufacturing research is mostly aimed at increasing productivity and develop

ing unmanned operations. This is accomplished by taking one of two basic approaches. 

The first approach is development and improvement of manufacturing systems such as 

sensors and control schemes. The second approach is more fundamental and attempts 

to investigate the physics of individual processes. The second approach is taken here to 

investigate milling of flexible workpieces. 

Milling is a common machining operation used to profile prismatic and sculptured 

parts. The versatility of the end milling process has resulted in widespread use of this 

operation by industry. Current milling machines and machining centres utilize sophis

ticated computer numerical control (CNC) technologies and require limited operator 

presence. 

One application of end milling is the manufacture of flexible workpieces such as jet 

engine impellers, microwave guideway systems and aircraft structural components. The 

periodic forces of milling result in both static and dynamic deflections of the workpiece 

and corresponding surface errors. Current industrial practice uses conservative speeds 

and feeds to reduce the surface errors of the finished workpiece. This is an unacceptable 

solution because of the corresponding loss in productivity. It is the purpose of this 

research to investigate and model the physics of machining flexible workpieces and to 

determine methods of improving on current practice. 

Chapter 2 is the Literature Review, and provides a theoretical base for the remainder 
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Chapter 1. Introduction 2 

of this thesis. Topics from metal cutting, milhng geometry, friction theory, vibrations, 

machine-tool chatter and machining flexible workpieces are discussed. 

Chapter 3 presents the geometric modelling of dynamic milling and the metal cutting 

theory used in this thesis. Simulation and experimental results, along with analytical 

explanations, are given for both static and dynamic milhng. 

In Chapter 4 the dynamic characteristics of a stepped cantilevered plate are discussed 

and modelled using the finite element method. Experimental verification of this model 

is given. 

Chapter 5 discusses the machining of flexible workpieces. This work integrates the 

results of Chapters 2, 3 and 4. Simulation and experimental results are presented for 

four cases of plate maching. Some recommendations for future work are presented. 

The thesis is concluded with a short summary of the main results.ae 



Chapter 2 

Literature Review 

2.1 Introduction 

The nature of manufacturing research is highly interdisciplinary. When considering a 

complex manufacturing process from an engineering perspective, there are several con

siderations to be made. In the body of this report the subjects introduced in this chapter 

are integrated to analyze the problem of peripheral milling of flexible structures. In 

this chapter topics from the following subjects are reviewed: metal cutting, geometry of 

milhng, friction theory, vibrations, machine-tool chatter and machining of flexible work-

pieces. The purpose of reviewing these topics is to provide a theoretical base for the 

remainder of this work and also to present approaches taken by other authors of similar 

projects. 

2.2 Metal Cutting Process 

In this section the metal cutting process is defined and its physics are discussed. A 

general definition of metal cutting includes, "operations in which a thin layer of metal, 

the chip or swarf, is removed by a wedge-shaped tool from a larger body" [46]. The 

resultant machined surface should have a desired shape and surface finish, and measure 

within required tolerances. 

3 



Chapter 2. Literature Review 4 

Although metal cutting operations are performed by a wide configuration of machine-

tools, the basic mechanics of most of these cutting processes may be idealized by con

sidering the orthogonal cutting process, see Fig.2.1. Orthogonal cutting is defined as, 

"cutting with the cutting edge perpendicular to the relative velocity between tool and 

work" [32]. 

A tool, with rake angle (a) and clearance angle (7), moves along the workpiece 

surface at an uncut chip thickness (h). The workpiece material shears along plane (AB) 

and forms a chip. The deformed chip is of thickness (hc) and the cutting ratio is defined 

as [32]: 

r c = h/he (2.1) 

The shear angle (<j>) is given as a function of the cutting ratio and the rake angle 

by[32]: 

, rc cos a . . <p = arctan : (2.2) 1 — rc sin a 

This cutting geometry is not valid for oblique cutting where the tool cutting edge is 

not orthogonal to the cutting velocity. Oblique cutting is thoroughly explained in [2]. 

Forces encountered in metal cutting depend on several factors: geometric orientation 

of the tool, cutting speed, workpiece material and the lubricant used [2]. The various 

forces are shown in Fig.2.2. The resultant force acting on the tool is (R). It is useful to 

consider two fundamental sets of forces equivalent to the resultant force. (Ffr) and (N) 

are the friction and normal forces respectively acting on the tool rake face. (Fs) and (F„) 

are the shearing and normal forces respectively acting on the shear plane (AB). (Ft) 

and (Fr) are the tangential and radial and components of (R). The relationship between 

these forces is apparent from the geometry of Fig.2.2, [2]: 
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Ft sin a + Fr cos a (2.3) 

N = Ft cos a - F r sin a 

F s = F t cos <j> — Fr sin <f> (2.4) 

.F„ = F t sin <j> + Fr cos </5 

Merchant [25] developed a thin zone model for analytically predicting the cutting 

forces on the tool. A minimum energy condition was used to show that the forces could 

be given by: 

and (r), ((f>) and (/3) are the shear stress on the shear plane, the shear angle and the 

angle between the resultant force and the normal to the rake face respectively. This model 

is rather simple and based on assumptions which are "open to considerable doubt" [2]. 

Results of experiments [2] show that the above equations don't accurately represent the 

physics of actual cutting. Different models have been presented by other authors [2] but 

none have proved to be very accurate, and for this reason empirical models of the cutting 

force are used most frequently. 

Assumptions inherent to the orthogonal cutting model include[2],[16]: 

• a truly planar shear plane 

Ft = 2har cot <j> (2.5) 

Fr = har(cot2 <j>-l) 

where, 

(2.6) 
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• process independence of thermal effects 

• a rigid tool-workpiece system 

• a perfectly sharp tool 

• uniformly distributed stresses on the shear plane 

• homogeneous workpiece material 

• continuous chip formation 

• constant cutting speed 

• two dimensional deformation. 

Although the orthogonal cutting model is not exact the analysis "qualitatively de

scribes the cutting process satisfactorily" [2]. 

(Ft) and (Fr) can usually be measured with a dynamometer for given cutting condi

tions. For a specific cutter-workpiece pair an empirical formulation for (Ft) and (Fr) can 

be derived if sufficient cutting tests are carried out. One commonly used linear model 

for the cutting forces is [37]: 

Ft = K.ah (2.7) 

Fr = riK~8ah 

where the specific cutting pressure (Ks), and the cutting force ratio (ri) are both 

experimentally determined parameters which may or may not vary with the cutting 

conditions. Here the cutting force is assumed to be proportional to the width of cut 

(a) and to the instantaneous uncut chip thickness (h). This model neglects the effect of 

cutting speed which is often a good approximation [37]. 
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Another linear model for the cutting forces is[l]: 

Ft = K8a(h + h*) (2.8) 

Fr = Kaa(nh + r2h*) 

where (K~s), (ri), (r^) and (h*) are all experimentally determined parameters. In this 

case the cutting force is proportional to the uncut chip thickness plus some constant (h*) 

which represents the effect of the so called edge-cutting forces due to rubbing at the edge 

and flank of the tool. It should be noted that other, perhaps nonlinear, models could be 

developed to fit experimental data if required. 

This section has thus far considered only static cutting (when there is no relative 

vibration between the tool and the workpiece). The effects of cutting under dynamic 

conditions will be considered next. 

During metal cutting operations the structural properties of the machine-tool or the 

workpiece (discussed later) may give rise to vibrations which cause changes in the in

stantaneous uncut chip thickness (h). The cutting force will also be variable since it has 

been shown to be roughly proportional to (h). The nature of how the cutting force varies 

with instantaneous changes of the cutting conditions is reviewed. 

The most obvious method of analysing dynamic cutting is to use the simple orthogonal 

cutting model. In this case the cutting forces would vary as the uncut chip thickness. 

This solution would be sufficient if the amplitude and frequency of vibration were small 

enough such that other effects could be neglected. 

When the amplitude and frequency of vibration become significant more detailed 

models must be used to obtain a high level of confidence in theoretical predictions. The 

reasons for vibrations becoming large during cutting are not obvious and are discussed 

in Section 2.6. Assuming that a dynamic cutting model is required there are several 
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methods of force prediction available. This area has been the topic of several research 

projects and three theories are briefly reviewed here. 

The first theory considers Dynamic Cutting Force Coefficients (DCFC) . The process 

of dynamic cutting is shown in Fig.2.3. As noted by Tlusty [37] "The tool is removing 

a chip from an undulated surface which was generated during the previous pass when 

the tool vibrated with an amplitude (z0). Simultaneously the tool is vibrating with an 

amplitude (z)." By decomposing the dynamic cutting process into wave removing and 

wave generating the dynamic components (ft and fr) of the cutting forces are given by 

[37]: 

/, = a(Kciz + KooZo) (2.9) 

fr = a(KdiZ + Kdoz0) 

The DCFC' s (Kdi,Kdo,Kci and Kco) are considered to be complex numbers. Sub

script (d) represents direct coefficients because (/ r) is the cutting force in the direction 

of vibration (z). Subscript (c) represents cross coefficients because (ft) is the cutting 

force perpendicular to (z). Subscripts (i) and (o) represent inner and outer modulations 

respectively. 

Under extreme conditions of vibration Tlusty [40] has noted that the cutting tool 

may "jump out" of the workpiece. Under this condition there is no contact between the 

tool and the workpiece and the cutting force is therefore zero. 

The DCFC' s are measured by harmonically exciting the tool during orthogonal cutting 

and comparing the tool vibration and the cutting forces during the process. "The whole 

equipment is very sophisticated, it needs considerable maintenance and calibration effort 

and, of course, contains many potential error sources" [40]. A major result of D C F C 

measurements indicate that, "modes of vibration with direction close to the normal to 



Chapter 2. Literature Review 9 

the cut are affected by the damping in the cutting process much more than the modes in 

other directions" [37]. This model requires specialized test equipment but gives insight 

into the dynamics of cutting from the results obtained for various changes in the cutting 

conditions. 

The second approach to the dynamic cutting process discussed here considers an 

elastic plastic deformation zone located at the tool tip and on the clearance face. As 

shown in Fig.2.4 [50], the workpiece material passes both above and below the tool. 

Point A is known as the separation point. The material passing above point A forms a 

chip and is removed from the workpiece in the usual manner. The material passing below 

point A is compressed in an elastic plastic deformation process and remains as part of 

the workpiece. 

The cutting force on the rake face is calculated using orthogonal cutting theory. The 

forces on the clearance face are determined using a ploughing theory which assumes the 

force is proportional to the volume of material displaced by the tool motion. This theory 

assumes small vibrations of the tool. The ploughing forces (ft and fr are components of 

the overall cutting force due to ploughing, see Fig.2.4) are given as [50]: 

ft = fsPV (2.10) 

fr = VcV 

where (fap) is the specific ploughing force, (fic) is the mean friction coefficient on the 

contact surface and (V) is the volume of material displaced. The model neglects side 

spread of workpiece material and permanent plastic deformation of the ploughed surface. 

The nose AB is neglected from the ploughing calculation because the force is said to be 

constant on this part of the tool. The results are verified experimentally for a sinusoidally 

varying case [50]. 
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The third theory for the dynamic cutting process considers the effects of varying 

both the feedrate and the cutting speed. Tobias notes that [45]: "it is quite sufficient 

to determine how the cutting force changes when small variations in these factors take 

place." 

The variation of the cutting force is defined in terms of the variation of three param

eters: the instantaneous uncut chip thickness (h), the cutting speed (v) and the rate of 

penetration (r). The variation of the cutting force is given as [45]: 

dF = ktdh + k2dr + k3dv (2.11) 

These dynamic coefficients require a significant amount of work to obtain but are 

simple in terms of physical understanding, as explained by Tobias [45]. 

The descriptions of the metal cutting process given in this section have all made 

physical assumptions of reality. A brief introduction to some of the phenomena which 

have not yet been discussed, but are important in the field of metal cutting, will be 

reviewed here. 

Tool wear occurs in all metal cutting operations. As noted by Armarego and Brown 

[2] = 

"Cutting tools are subjected to an extremely severe rubbing process. They are in 

metal-to-metal contact with the chip and workpiece under conditions of very high stress 

at high temperature. The situation is further aggravated by the existence of extreme 

stress and temperature gradients near the surface of the tool." 

Rubbing and diffusion cause the tool to form craters on the rake face and wear lands 

on the clearance face. Chipping off of small particles may also occur on the cutting edge. 

The results of a worn tool are changes in both the static and dynamic cutting forces and 

variations in the tool geometry (which may affect the dimensions and surface quality of 
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the finished workpiece). 

The previous analyses have all assumed the formation of a continuous chip under static 

cutting conditions. It should be noted that for certain workpiece materials and cutting 

conditions the formation of a built up edge or cutting with a discontinuous chip due to 

vibrations may occur. Brittle materials tend to form discontinuous chips while ductile 

materials are more likely to form a built up edge [2]. Built up edge and discontinuous 

chips produced by vibrations result in a deteriorated surface quality and "if surface finish 

is an important requirement, the cutting conditions will have to be adjusted to avoid these 

features" [2]. 

In industrial machining operations cutting fluids are often used to lubricate the chip 

tool contact area in order to reduce the friction. The decreased cutting friction results 

in lower cutting forces and increased tool life. Other benifits of using a cutting fluid 

include an improved surface finish and reduced distortion due to temperature rise in the 

workpiece. The use of a cutting fluid strongly affects the metal cutting process and this 

must be accounted for in any analysis where a cutting fluid is used. 

2.3 Geometry of Milling 

A physical description of the milhng process is given by Martellotti [22]: "a process of 

removing the excess material from the workpiece in the form of small individual chips. 

These chips are formed by the intermittent engagement with the workpiece of a plurality 

of cutting edges or teeth integral with or inserted in a cylindrical body known as the 

milhng cutter. This intermittent engagement is produced by feeding the workpiece into 

the field dominated by the rotating cutter." A wide variety of machining operations 

are possible on a milhng machine. These operations can mostly be defined as either 

peripheral or face milhng. In peripheral milhng the surface being generated is parallel 
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to the axis of the tool. In face milling operations the working surface is perpendicular to 

the axis of the tool. A typical end mill is shown and geometrically defined in Fig.2.5 [2]. 

Martellotti [22] gives a precise mathematical formulation for the geometry of the 

milling process. He derives relationships for the looped trochoidal path generated by a 

milling cutter tooth, the uncut chip thickness, amplitude of the tooth marks, the angle 

of approach of teeth and the relative velocity along the tooth path. 

The equation for amplitude of the tooth marks is used in a later section and is 

therefore repeated here [22]: 

hf = —-(-^r—,—)2 (2.12) 

where (hf) is the height of the tooth mark above its lowest level, (R) is the radius of 

the cutter, (r) is the feed per revolution divided by (27r) and (c) is the feed per tooth. 

The (+) sign represents up milling and the (—) sign represents down milling. 

The equations given by Martellotti are correct only for a completely rigid system. 

If vibrations occur they must be added to the path of the tool to accurately model its 

motion. The dynamic motion of milling is shown in Fig.2.6. 

When the feed per tooth (c) is small the trochoidal path of the tool may simply be 

approximated as a circle [22]. In this case the uncut chip thickness is given by: 

h = csmip (2.13) 

where (V>) is the immersion angle of the tooth in cut. 

2.4 Friction Theory 

Due to the nature of the metal cutting process a great deal of frictional resistance is 

generated in various regions of the cutting zone. This is especially true during dynamic 
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cutting when the clearance face rubs and ploughs into the workpiece. A general definition 

of friction is [12]: "the resistance to motion which is experienced whenever one solid 

body slides over another." Frictional resistance of contacting metals is primarily due 

to the processes of adhesion and material displacement [12]. Theories of adhesion and 

ploughing (a particular case of material displacement) will be briefly discussed here. 

The dynamic coefficient of friction (//) is defined as the ratio of the frictional to the 

normal force acting on contacting bodies in relative motion. Bowden and Tabor [12] 

define the coefficient of friction due to adhesion in their simple theory as: 

where (sQ) and (pQ) are the critical shear stress and the yield pressure respectively. 

The frictional force is calculated by multiplying the coefficient of friction by the normal 

force on the surface. The theory ignores work hardening and the effect of any contaminant 

layer which might be present. 

Ploughing is the result of "asperities on a hard metal penetrating into a softer metal 

and 'ploughing' out a groove by plastic flow in the softer metal" [12]. The coefficient of 

friction due to ploughing is given by [12]: 

(2.14) 

pp = Av/2Ah (2.15) 

where (Av) and (Ah) are the vertically and horizontally projected areas of contact for 

a given asperity. The normal (N) and shearing (Fs) forces are given by: 

N = Ahp0 (2.16) 

Fs = Avp0 
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The total frictional forces are calculated by combining those due to adhesion and 

ploughing. 

2.5 Vibration Theory 

A large variety of methods for the analysis of dynamic systems is available. Topics 

reviewed in this section include: free vibration, forced vibration, self excited vibration, 

modal testing and identification, the finite element method and system reduction. 

Free vibration of linear discrete systems is defined by one or more ordinary differential 

equations representing one or more degrees of freedom (dof) of motion. During free 

vibration there are no external forces applied to the structure and its motion is determined 

by its inertial, damping and restoring forces. The equation of motion of a hnear, damped, 

non-gyroscopic, coupled dynamic system is given in general by [24]: 

Mq(t) + Cq(t) + Kq{t) = 0 (2.17) 

where (q(t)) is the generalized displacement n-vector and is of the form: 

«(*) = M 0 f t ( 0 - - . « n ( * ) ] T (2-18) 

(M), (C) and (K) are the n x n matrices of the systems mass, damping and stiffness 

respectively. Eq. 2.17 is usually determined using either Newton's formulation (equating 

forces) or Lagrange's formulation (energy method). Experimental methods may also be 

used to obtain the equation of motion in an indirect manner. The eigenvalue problem 

for Eq. 2.17 can be solved for the mode shapes and modal frequencies of the system [24] 

if proportional damping is assumed. The characteristics of the system are determined 

by performing modal analysis on the equations of motion. This leads to n uncoupled 

linear ordinary differential equations each corresponding to a mode shape and frequency 
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of the system. This process is explained in most mechanical vibration textbooks [47]. 

The modal solution gives insight into how the system will respond to various external 

excitations. 

When external forces are applied to a dynamical system the problem becomes one 

of forced vibration. The applied forces must balance with the inertial, damping and 

restoring forces which leads to a forced equation of motion [24]: 

Mq(t) + Cq(t) + Kq(t) = F{t) (2.19) 

where (F) is the generalized excitation force and is of the form: 

F(t) = [F1(t)F2(t)...Fn(t)}T (2.20) 

(Fi) is the force or moment applied to dof-i. 

The response of a system to a given excitation may be considered as a function of 

either time or frequency. The time domain solution is considered first. Since all linear 

multiple degree of freedom (MDOF) systems of the form of Eq. 2.19 can be reduced to 

sets of linear single degree of freedom (SDOF) systems by modal analysis, the response 

of a SDOF system will be considered here. 

Consider the system shown in Fig.2.7. The general equation of motion of such a 

SDOF system can be given by: 

mx(t) + cx(t) + kx(t) = f(t) (2.21) 

The exact solution for such a system, provided that (f(t)) is known, is found in many 

textbooks [47]. The solution gives a continuous time equation for (q(t)). Eq. 2.21 can 

also be solved in the discrete time domain and this is the approach taken here. Taking 

the Laplace transform of Eq. 2.21 gives: 
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ms2x(s) + csx(s) + kx(s) = f(s) (2.22) 

or, 

*>" lAru (2-23) 

where (s) is the Laplacian operator. The discrete time equivalent of the Laplacian 

operator may be approximated using the bilinear transformation method as [29]: 

s = (2.24) 

where (z) is the Z-transform operator and (T) is the time step. By substituting 

Eq.2.24 into Eq.2.23 and carrying out the -̂operator reductions it can be shown that: 

_ /,• + 2/,_i + /,_2 - AXJ-X - BXJ-2 l o ot.s 
Xi — — (Z.ZO) 

where, 

A = -•fim + 2 k 

4 2 
B = ^ m - - c + k 

4 2 
C = j^m + f C + k 

and the subscript denotes the time step of the parameter when (i) is the current value. 

For the solution of Eq.2.25 (/(£)) is not required as a closed form function. Such a 

discrete time equation is ideal for computation on a digital computer. The accuracy of 

the result can be increased by reducing the size of the time step (T). Eq. 2.25 is the 
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solution for only one mode of a M D O F problem. It is usually only required to solve a 

few of the modal responses in a desired range of frequencies, choosing (T) accordingly. 

The principle of superposition [24] allows the modal solutions to be added to obtain the 

complete system response. 

The frequency domain transfer function of Eq.2.21 is found by substituting (s — iu) 

into Eq. 2.23 to obtain: 

G(u) = X ^ = (2 26) 
V ; F(u) -0J2m + iijJC-rk K ' ' 

The response may be considered in terms of the magnitude and phase of the transfer 

function. These are given as: 

\G\ = (2.27) 
y/(k - w2m)2 + (uc)2 

—uc 
<p = arctan-k — u2m 

Physical interpretations of the magnitude (|G|) and the phase (<p) of the transfer 

function are simple. For a sinusoidally varying input force of constant amplitude and 

frequency, (|CT|) represents the ratio of the amplitude of the response to the amplitude 

of the input and (<p) is the phase angle between the response and the input. 

Both time domain and frequency domain solutions give important insight into the 

behaviour of dynamical systems. 

The next topic of discussion is self excited vibration. Self excited vibrations occur 

when [6]: "The external forces applied to the system are now determined by the motion 

of the system. But the internal forces governing free vibration are also of this sort, so 

it is now as if the external forces augment the inertia-, the damping- and the stiffness-

forces." This differs from forced vibration where the motion and excitation forces are 

independent. The other criterion for self excited vibration to occur is that there must 
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be some source of energy for the vibration to "tap" and the motion must be such that 

the energy can be extracted [6]. Some examples of self excited systems are: machine 

tool chatter (discussed later in detail), stick-slip friction and flutter of aircraft wings. If 

the vibration extracts energy from the source, the response may grow until it is limited 

by some nonlinearity. In each case of self excited vibration the physical process of self 

excitation is slightly different. 

There are two fundamentally different ways to obtain the dynamic characteristics 

( M , C and K) of mechanical systems. Either theoretical calculations or experimental 

testing may be used as the first step in identifying these parameters. Theoretical results 

generally determine (M), and (K) directly. Experimental methods usually measure the 

system response to a known input and manipulate this data to further obtain (M) , (C) 

and (K). Experimental modal testing will be reviewed next with the finite element 

method being briefly discussed later on. 

Modal testing is defined as [10]: "the processes involved in testing components or 

structures with the objective of obtaining a mathematical description of their dynamic 

or vibration behaviour." The testing procedure and the mathematical description of the 

data may vary considerably from test to test. The process generally consists of physical 

excitation of the system and measurement of both the input and the response. The ex

citation is usually accomplished with one or more shakers or an impact hammer. The 

response is measured with one or more accelerometers, velocity transducers or proximity 

sensors located at various points on the structure. Modern frequency analysis equipment 

can transform the measured data into useful transfer functions (by use of Fourier analy

sis) in the frequency domain. From these transfer functions one can "work backwards" 

(with respect to to the analytical methods of vibration analysis) to obtain the dynamic 

characteristics of the system. 

A brief review of modal testing for SDOF systems is given here. This is useful because 
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linear M D O F systems are just a linear combination of a number of SDOF systems. Most 

of the discussion follows directly from [10] which covers the entire scope of the subject. 

The generalized equation of motion for a SDOF system was given by Eq. 2.21 which is 

repeated here: 

mx(t) + cx(t) + kx(t) = f(t) (2.28) 

Some well known equations relating the parameters of Eq.2.28 are: 

u>„ = yJk/m (2.29) 

< = wS (2-30) 

= uny/l - C2 (2.31) 

where (u>„), ( £ ) , (c), (u>d), (rra) and (k) are the natural frequency, damping ratio, 

damping factor, damped natural frequency, mass and stiffness respectively of the system. 

The receptance frequency response function (FRF) was given by Eq. 2.26: 

G(CL>) = = I (2.32) 
{ } F(u) (k-mu^ + icw K ' 

Other forms of the F R F are the mobility (X(uj)/F(uj)=iuG(uj)) and the accelerance 

(X(OJ)IF(u)=—uj2G(uj)). Graphical display of F R F data may be presented in three 

common forms [10]: 

• modulus (of F R F ) vs frequency, and phase vs frequency 

• real part (of F R F ) vs frequency, and imaginary part vs frequency 
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• real part vs imaginary part 

Typical F R F response curves for a SDOF system are shown in Fig.2.8. The vari

ous parameters which can be obtained from the curves are noted on the figures. For 

SDOF systems the above curves give a complete physical description of the dynamic 

characteristics. 

Analytical tools may also be used to compute the dynamic characteristics of vibratory 

systems. "The finite element method is a numerical procedure for solving a continuum 

mechanics problem with an accuracy acceptable to engineers" [9]. It is beyond the scope of 

this work to give any quantitative details of the method and interested readers are referred 

to standard textbooks on the subject [9], [51]. A finite element model defines a continuum 

by first dividing it into small parts or finite elements. Each element has several nodal 

points which are either restricted by continuity requirements of neighbouring elements 

or constrained by the boundary conditions of the system. Trial functions are found 

to describe the behaviour of the system for each element by minimizing some energy 

condition of the continuum. 

The equations of motion obtained from a finite element analysis of a dynamic system 

are often of a very large dimension. Several reduction methods are available to reduce 

the size of the model at various stages of the analysis. The purpose of these methods 

is usually to "minimize computer time/cost or to deal with a reduced model for forced 

response studies" [28]. The method considered here is known as the system equivalent 

reduction expansion process (SEREP) and is presented by 0'Callahan et al [28]. Some 

of the unique qualities of SEREP are[28]: 

• the arbitrary selection of modes that are to be preserved in the reduced system 

model 
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• the quality of the reduced model is not dependent upon the location of the selected 

active dof 

• the frequencies and mode shapes of the reduced system are exactly equal to the 

frequencies and mode shapes (for the selected modes) of the full system model. 

Assume the equation of motion of an n ^ - d o f undamped dynamic system, determined 

by finite elements (FE) or some other method, is given by Eq.2.33: 

MFEXFE + KFEXFE = FFE (2.33) 

The finite element solution is assumed to give a (TIM) mode solution. The generalized 

coordinates are defined as: 

XFE = $FEP (2.34) 

where (P) is the UM X 1 modal coordinate vector, and ($FE) is the UFE X N M eigen

vector matrix of the finite element equations of motion. One or more dof's is kept from 

Eq.2.33 which are usually points where forces are appHed or deflections are required. The 

equation relating the reduced (R) dof's and the modal coordinates is: 

XR = (2.35) 

where ($R) is the UR X UM eigenvector matrix of the reduced system. The modal 

coordinates are found explicitly by: 

P = $RXR (2.36) 

where ($ 9

R) is the generalized inverse of ($R) and, if UR < npEi is given by [28]: 
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= ( t & R ) - 1 ^ (2-37) 

It can be easily determined from Eq's. 2.34 and 2.36 that: 

XFE = QFE&RXR = TxR (2.38) 

where (T) is the global mapping transformation matrix. The riR-doi reduced system 

equation of motion is given by: 

MRXR + KRXR = FR (2.39) 

where, 

MR = TTMFET (2.40) 

KR = T T K F E T (2.41) 

FR = T T F F E (2.42) 

A computer program has been written to compute the SEREP reduction of large 

dynamic models [27]. 

2.6 Machine Tool Vibrations 

During a machining operation various disturbances may act independantly or combine to 

result in some form of vibration of the machine tool or workpiece. Some of these causes 

are [2]: impact or shock, unbalance of rotating parts, discontinuous chip formation and 

self induced vibration of the dynamic cutting process. 
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Vibration of a machine tool during a cutting operation can have a wide range of 

effects. If the vibration amplitude is small and of a transient nature, the consequences 

may be negligable. On the other hand if the vibration grows to a large amplitude the 

result may be damage to the workpiece, damage to the machine tool or premature failure 

of the tool. 

In this section only vibrations due to the cutting process itself are considered. These 

fall broadly into two categories: forced vibrations and self excited vibrations (chatter). 

By definition forced vibrations can only occur in open loop systems, that is when the 

excitation and response are independent. For this reason the analysis of forced vibrations 

of machine tools is a relatively easy matter. If the input force from the cutting process 

is known, the response can always be determined assuming correct knowledge of the 

dynamic characteristics of the machine tool. 

Even the simple orthogonal cutting model of the metal removal process shows that the 

cutting force is dependent on the deflection of the tool. It is obvious that the deflection of 

the tool is also dependent on the cutting force. Thus all machining processes should most 

properly be considered as closed loop dynamic systems. The importance of the feedback 

loop is a function of the process parameters. Analysis of machine tool vibrations as a 

closed loop system considers the process to be a self excited vibration problem. The type 

of self excited vibration encountered during machining operations is known as chatter. As 

noted by Tobias [45], "The most important characteristic property of chatter vibration is 

that it is not induced by external periodic forces, but rather that the forces which bring 

it into being and maintain it are generated in the vibratory process itself." 

The general theory of chatter outlined here makes several assumptions [39] following 

the analysis given by Tlusty [16]: 

• the vibratory system is linear 
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• the direction of the variable component of the cutting force is constant 

• the variable component of the cutting force depends only on vibration in the direc

tion of the normal to the cut surface 

• the value of the variable component of the cutting force varies proportionately and 

instantaneously with the vibrational displacement 

• the frequency of the vibration and the mutual phase shift of undulations in subse

quent overlapping cuts are not influenced by the relationship of wavelength to the 

length of cut. 

It is generally accepted that two mechanisms of chatter exist; mode coupling and 

regeneration. 

"Mode coupling is a mechanism of self-excitation that can only be associated with 

situations where the relative vibration between the tool and the workpiece can exist si

multaneously in at least two directions in the plane of the orthogonal cut" [16]. Consider 

the cutting process shown in Fig.2.9 with two perpendicular modes of vibration. Assume 

that the two modes vibrate simultaneously in the elliptical pattern shown. Since the 

cutting force is assumed to be proportional to the uncut chip thickness (h), it will be 

greater from B —+ A than from A —* B. "Periodically there is a surplus of energy sus

taining the vibrations against damping losses" [16]. Under certain conditions the process 

may become unstable which is discussed later on. 

Regeneration is a mechanism of self excitation that occurs only when "the tool removes 

the chip from a surface which was produced by the tool in the preceding pass" [16]. If 

during the preceding pass the tool was vibrating, the surface removed during the current 

pass will be wavy, see Fig.2.10. This results in a periodically varying cutting force. As for 
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the case of mode coupling chatter, regenerative chatter may be either stable or unstable 

depending on the process parameters. 

Consider again the system shown in Fig.2.9. The cutting forces may be defined as: 

Fx = -Ft sin 9 + Fr cos 9 (2.43) 

Fy = Ft cos 0 + F r sin 0 

where, 

Ft = Kaah = K8a(hm - z) (2.44) 

Fr = rxKsa(hm - z) 

z = ysiixd 4- xcosO (2-45) 

where (hm) is the mean uncut chip thickness and (z) is the time dependent normal 

deflection of the tool. The equation of motion for the system of Fig.2.9 can be reduced 

to: 

mxx + cxx + kxx = K8a(hm — y sin.9 — xcos9)(— sin9 + r i cos 9) (2.46) 

myy + cyy + kyy = Ksa(hm — y sin 9 + x cos #)(cos 9 + r\ sin 9) 

or alternatively, 

• 

mx 0 
< 

X 
> + 

c x 0 
< 

0 my . y . 0 cy y J 
kx 4- K\ cos 9 

R~2 cos 9 

lb sin 6 

ky + K2 sin 9 
4 

X 

. y J 

(2.47) 
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where, 

Ki = K8a(— sin 9 + r*i cos 9) 

K2 = Ksa(cos 9 + r i sin #) 

From Eq.2.47 it is apparent that the motion of the two modes will be coupled, thus 

the name "mode coupling" type chatter. Tlusty[16] notes that "for the limit of stability 

the open-loop transfer function is equal to -1". The limiting factor for mode coupling 

chatter is the axial depth of cut (6/im,mc) and is given as [16]: 

bum,mc = -l/KsRe[(G)min] (2.48) 

If regeneration is considered, the uncut chip thickness contains a phase lag term and 

is given by [16]: 

h = h m - z + za (2.49) 

where (zQ) is the (z) position of the previous tooth which accounts for regeneration 

in the cutting process. The equation of motion is given by: 

mx 0 
< 

X 
> + 

Ox 0 
< 

X 

0 my . y . 0 Cy . . y . 

kx + K\ cos 9 Kism9 
' 1 

X 
< 

K2 cos 9 ky + K2 sin 9 > y . 

Ki cos 9 Kxsm9 I x0 

- = hm 

' Ki ' 
\ - = hm 

K2 cos 9 K2 sin 9 [ y0 . 
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where (K~i) and (K2) are the same as before. 

The limit of stability for regenerative chatter has been given by Tlusty [16] as: 

-l/2KaRe[(G)min] (2.51) 

Comparing Eq's. 2.48 and 2.51, it can be seen that the limit of stability for regener

ative type chatter is half of that for mode coupling chatter. For this reason regenerative 

chatter is usually dominant in most practical machining operations. Still there are some 

special cases, milling with alternating helix tools or thread cutting in turning, where 

regenerative chatter is suppressed and mode coupling becomes dominant. 

The previous analyses assumed that the cutting force can be modelled using the 

simple orthogonal cutting model presented earlier. A more realistic approach would use 

a dynamic cutting model accounting for flank face interference and the possibility of the 

tool "jumping out" of the workpiece material. 

2.7 Machining of Flexible Structures 

The theories presented in earlier sections of this chapter can be applied in various degrees 

to the application of machining flexible structures. In machining operations, a flexible 

structure may be defined as a workpiece whose static or dynamic flexibilities are signif

icant when compared to similar parameters of the machine tool itself. Such structures 

find application in the aerospace and communication industries as ribbed structural com

ponents, turbine blades and microwave guideways. Few works have been carried out on 

the topic of machining flexible structures. Two research projects are discussed here. 

Tlusty has experimentally investigated the use of steadies to reduce chatter when 

machining thin blades on a milling machine. The steadies used were constructed of 

either rubber or stainless steel and were said to decrease the severity of chatter vibrations. 
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This result was explained by an argument that the steadies increased the static stiffness 

and increased damping of the higher vibrational modes. The use of steadies to reduce 

chatter vibrations has two drawbacks: first, the dynamics of the coupled workpiece-steady 

system are difficult to model and second, this method cannot be used on components 

with very complex geometry such as jet engine impellers. In this study the workpiece 

vibration was assumed to be closely represented by the cutting forces measured on a 

dynamometer. The validity of this assumption depends strongly on which vibrational 

modes are active and where the displacement of the workpiece is of interest relative to 

the nodal lines of each mode. It was observed that the machined surface did not exhibit 

the chatter wavelengths which are regenerated on the arc of the cut. This was explained 

graphically as the machined surface is only being generated during a small fraction of the 

cutting period. Reasons for reducing the severity of chatter during such an operation are 

decreased tool wear and to lessen the deep tight grooves left on the surface by chatter 

vibrations. 

Kline [18] developed and experimentally verified an analytical approach to modelling 

the machining of flexible structural components used in the aircraft industry. The process 

considered was machining of a C C C F plate with a flexible end mill. Deflections of both 

the workpiece and the tool were considered. The tool was modelled using beam theory 

and the plate was modelled using both finrte differences and the finite element method. 

The problem was considered to be static with the author arguing that the excitation 

frequency was an order of magnitude less than the lowest natural frequency of either 

the plate or the end mill. This is valid only if chatter is not present in the particular 

machining operation and thus limits the range of validity of the work. Runout was 

modelled and experimentally verified for the rigid machining process. Kline notes that 

[18]: "The effects of runout are most severe for cuts with long lengths of engagement 

between flutes and workpiece and light feeds." This is the case investigated in Kline's 
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research and is justification for implementation of a runout model when considering such 

low feed systems. The cutting forces were defined as deflection independent functions 

of the cutting conditions. This approach will introduce errors into the predicted cutting 

forces and the resultant deflections of the tool and workpiece. Surface profiles were 

predicted by adding deflections of both the tool and the workpiece. The approach taken 

by Kline is valid only if dynamic effects are not significant to the machining operation. 
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Figure 2.1: Orthogonal cutting process geometry. 

Figure 2.2: Forces in the orthogonal cutting process. 
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h 

Figure 2.3: Dynamic cutting process geometry. 

Figure 2.4: Cutting process detail. 
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Figure 2.5: End mill geometry. 
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yt 

(c) Vibratory milling. -j 

Figure 2.6: Vibratory motion of the milhng process. 
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/(*) 

F i g u r e 2.7: Single degree of f reedom forced d y n a m i c a l sys tem. 
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Figure 2.8: Frequency domain characteristic curves for a SDOF dynamic system. 
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Figure 2.8: Frequency domain characteristic curves for a SDOF dynamic system. 
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Chapter 3 

Mechanism of the Dynamic Milling Process 

3.1 Introduction 

The milling process is widely used in industry for the manufacturing of mechanical com

ponents. The process can be as simple as face milling the top of a flat surface with a rigid 

cutter, or very complex such as peripheral milhng of flexible aircraft engine impellers on 

five axis C N C machining centers. Although the dynamics of milhng has been addressed 

by several authors, the process is rather complex and more research is required for a 

thorough understanding of its physics. 

Past research has been concentrated mostly in the mechanistic modelling of cutting 

forces. Martellotti [22], Tlusty et al. [43] and DeVor et al. [17,11] have contributed 

to the understanding of the geometry and mechanistic modelling of cutting forces. In 

these studies, the workpiece and tool system were assumed rigid, hence the influence 

of structural vibrations on cutting forces (called vibratory cutting here) were not con

sidered. Early work in vibratory cutting was confined to orthogonal cutting where the 

directions of the cutting forces and the structural dynamics of the tool workpiece system 

were assumed constant. Tobias [45] and Tlusty [39] proposed stabihty theories which an

alytically predict chatter free cutting conditions when the cutting stiffness, cutting force 

direction and the transfer function of the tool-workpiece structure in the same direction 

are known. However, milhng has a complex geometry with varying cutting force direc

tion and cutting stiffness. Tlusty has contributed a significant amount of knowledge in 

38 
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modelling the physics of dynamic cutting. Time domain simulations of a vibrating end 

mill were developed to illustrate chatter growth and the loss of contact between the tooth 

and the workpiece by Tlusty et al. [40] and by Sutherland [35,34]. Recently, Lin , Devor 

and Kapoor [20] presented results of experiments where chatter growth was avoided by 

varying the spindle speed. 

This chapter presents a comprehensive simulation model of dynamic milhng where 

the tool geometry and the vibrations of both workpiece and tool in any direction are 

included. The model has been developed primarily to analyze the stability of peripheral 

milhng of very flexible workpieces, see Fig.3.1. However, the analysis is valid for milling 

with rigid tool-rigid workpiece, rigid workpiece-flexible tool, flexible workpiece-rigid tool 

or flexible workpiece-flexible tool systems. The model predicts the topology of finished 

workpiece surfaces, cutting forces in the feeding and normal directions and vibrations of 

both the tool and workpiece simultaneously. The cutting model developed differs from 

the previous approaches in several aspects as shown in the following sections. 

In what follows, geometric modelling of the vibratory tool and workpiece system is 

given. Calculation of the dynamic uncut chip thickness for force calculation and finished 

surface prediction is presented. A material removal model, which separates the cutting 

zones into five distinct regions, is introduced in section 3.3. The model verification with 

simulation and experimental studies is given in section 3.4. The chapter is concluded by 

summarizing the contributions. 

3.2 Models of the Vibrating Tool and Workpiece Geometries 

Geometric models are developed to represent the tool and workpiece for a general milling 

process. These models are used to calculate cutting forces, represent the kinematics of 

motion and construct the finished workpiece geometry. 
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3.2.1 The Geometry of Tool Motion 

A detailed drawing of one milhng cutter tooth is shown in Fig. 3.2. The tool geometry 

is denned by the radius of each tooth (R), the rake angle (a; negative as shown), the 

clearance angle (7; positive as shown) and the number of teeth on the cutter (Z). Tool 

center vibrations are defined as the position (xc, yc) and velocity (vc) of the tool centre 

relative to the stationary spindle axis. These vibrations are calculated from the structural 

dynamic model of the end mill. The spindle speed (fi) is assumed to be constant and 

unaffected by the process. The instantaneous velocity of the cutting edge (vt) can be 

calculated as the vectorial sum of the velocity of the tool center (vc) and the cutting 

speed (RTl). The following analysis refers to a single tooth of an end mill. 

vt = vc + Rh (3.52) 

The instantaneous position of the cutting edge can be calculated if the position of the 

tool center (x c , yc) and the angle of edge rotation (tp) are known. 

(3.53) 
xt = R sin tp + xc 

yt = Rcosip + yc 

The effective angle of the clearance face with respect to the horizontal axis (£) may 

be calculated as: 

C = 7 " 0 (3-54) 

A l l of the parameters of Eqs. 3.52, 3.53 and 3.54 are time varying, with the exception 

of (R) and (7) which are constant. The calculated parameters accurately define the 

geometry and state of the tool cutting edge with respect to the spindle or coordinate 

center. 
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The inclusion of more complex cutting geometries, such as runout or taper and helix 

angles, is considered here. These complexities require consideration of the tool's axial 

variations. For this purpose the tool is divided into several equally spaced axial slices. 

The geometry of each flute is assumed to vary continuously in the axial direction. 

Runout is assumed to be constant along the tool axis. This geometry is accounted 

for by simply adding a different constant value to the radius of each tooth on the cutting 

tool. This simplistic approach is only considered here for tools with zero helix angle. 

More complex models can be divised, if appropriate, for particular applications. 

A helix angle can be included in the tool geometry by varying the starting angle of a 

flute as a function of its axial position. For a mill with helix angle (9H) the immersion 

angle is given by: 

where (z) is the axial distance along the tool. This modified value of the initial 

rotation angle is used to calculate the instantaneous rotation angle for tools with nonzero 

helix angles. 

A taper angle (6T) is included with the tool geometry by varying the tool radius as a 

function of its axial position. The modified tool radius (RT) is given by: 

%j>H = ip + (z tan 9H )/R (3.55) 

RT = R- ztan6T (3.56) 

This value is substituted into the previous equations for the tool radius (R) when a 

nonzero taper angle is used. 
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3.2.2 The Geometry of Workpiece Motion 

The workpiece geometry is digitized by a number of points on the surface, and is stored 

as an array in Cartesian coordinates. The kinematics of the workpiece are independent of 

the tool motion. The centre of the coordinate system is selected as the stationary spindle 

center, see Fig.3.3. Each tooth generates a surface which is used in the force calculation 

for the next tooth to come along. The process is discretized in time, and the time 

increment (T) is selected at least 14 times smaller than the period of the highest vibration 

mode of the tool-workpiece system. A tooth generates a new point on the surface every 

time step when it is cutting. The surface array is stored as uSURF(i,j,k)mT", where 

(mT) is the time at the m'th integration step. Dimension (i) indicates the tooth which 

has generated the surface and is of size (Z), where (Z) is the number of teeth. Dimension 

(j) indicates whether the value is for the (x) or (y) coordinate (1 = x, 2 = y), and is 

of size 2. Dimension (k) indicates the discrete position of the point within the surface 

vector. The size of dimension k = (9)/(QT), where (9) is the immersion angle of the 

cutter in the workpiece. 

As an example; "SURF(3,1,256)" is the x-coordinate of the 256'th point on the 

surface generated by tooth number 3 (see Fig.3.3). 

Initial conditions of SURF(i,j,k) are set to represent the workpiece geometry. The 

points on the surface are equally spaced at angular positions with radii corresponding to 

the tool's nominal radius. 

For each integration time step (T), three modifications are made to update the surface 

vector. First, the feeding motion of the workpiece is added to every point of the surface 

vector. In this work it is assumed that feeding occurs in the x-direction only. This is not a 

necessary assumption but is made here to reduce the complexity of the surface modelling 

procedure. Second, the dynamic motion of the workpiece is added to both the (x) and 
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(y) surface vectors at every point. The dynamic motion can be determined by calculating 

the structural response of the workpiece. The dynamic response of a cantilevered plate 

workpiece is discussed in Chapter 4. In this chapter it is assumed that the dynamic 

motion of the workpiece is known. Third, the cutting action of the tool is accounted for 

on the surface vector. If the tooth is cutting then the instantaneous location of the tool 

is used to update the surface. If the tool isn't cutting, due to excessive vibrations, the 

surface generated by the previous tooth is used to update the surface. 

The coordinate of the surface in the feeding direction is updated by translating the 

surface a distance (—/ • T + Ax), where (/) is the feeding velocity: 

where (Ax) and (Ay) are changes in the surface which are calculated from the dynamic 

response of the workpiece. 

The metal removal process is accounted for in two ways when a tooth is in the cutting 

zone. If the tooth is cutting then the surface is updated as: 

SURF(i, 1, fc)(m+i)r = SURF(i, 1, k)mT - fT + A x (3.57) 

The coordinate in the normal direction is updated as: 

SURF(i, 2, k){m+1)T = SURF(i, 2, k)mT + Ay (3.58) 

SURF(i, 1, k) = xtli 

SURF(i,2,k) = ytti t 

(3.59) 

If the tooth is out of cut, due to excessive vibration, the surface is updated as: 

SURF(i, 1, Jb) = SURF(i - 1,1, k*) 

SURF{i,2,k) = SURF(i- 1,2, k*) 
> (3.60) 
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where (k*) represents a point on the surface generated by the tooth (i — 1) at the angular 

position of the tooth (i). These three modifications to the surface vector completely 

define any possible motion of the workpiece. 

3.3 C u t t i n g Mechanics M o d e l 

In vibratory cutting, the tool having an elliptical motion, the cutting edge may travel in 

five distinct regions as shown in Fig.3.4. The cutting region is determined depending on 

the edge geometry (i.e. rake and clearance angles) and the relative motion between the 

tool and the workpiece. The tool rake (a) and clearance (7) angles are shown in Fig.3.5. 

The velocity of a tooth relative to the workpiece (vt/p) is calculated as: 

vt/p = vt-vp (3.61) 

where (vt) is shown in Fig.3.5 and (vp) is the absolute vibration velocity of the workpiece. 

The angular orientation of this relative velocity is given by (rj): 

77 = 7r/2 - arctan [(vt/P)y/(vt/P)x\ (3.62) 

In order to orient this direction with the geometry of Fig.3.5, angle (/?) (0 < (3 < 2TT) 

is defined as: 

/3 = n-ip (3.63) 

(/?), (a) and (7) are used to determine the current cutting region. Conditions which 

determine the cutting region are: 

Region 1: 7r/2 — 7 < /? < 7r + a 

Region 2: TT + a < (3 < 3TT/2 - 7 
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Region 3: Zw/2 < 8 or 8 < a 

Region 4: a < 8 < n/2 — 7 

Region 5: 3TT/2 - 7 < 8 < 3TT/2 

Region 1: A previously verified cutting force model is used in this shearing zone. 

From [1], it is shown that the tangential cutting force (Ft) can be expressed as a function 

of the uncut chip thickness (h) and a flank component (h*). The radial force (Fr) on the 

edge of the tool is proportional to the tangential cutting force component, see Fig.3.6. 

Fr = K8a(rih + r2h*) J 

(Ks), (h*), (ri) and (r2) are experimentally determined cutting force constants for 

a cutter-workpiece pair. Full immersion fly cutting (single tooth) of 7075-T6 aluminum 

with a rigid end mill was used to determine the cutting model parameters. The tool used 

was a 50.8 mm diameter carbide tipped face mill. A single insert was used to eliminate 

runout effects. The axial depth of cut was 5.1 mm and the spindle speed was 128 rpm. 

Several feedrates were used to vary the mean uncut chip thickness. Cutting forces were 

measured with a Kistler 9275A dynamometer. The forces were recorded using a P C based 

data aquisition system with a Data Translation DT2801 board and internally developed 

software. The system was trigerred by a 64 slot external encoder mounted to the milhng 

machine spindle. 

The average force is defined as the mean value applied to the tool in a given direction 

during one tooth period. The average experimental cutting forces in the (x) and (y) 

directions, (Fax) and (Fay) respectively, are plotted against the feedrate in Fig.3.7. The 

results are linear except at very low feeds, and are fit to Eqns. 3.65 and 3.66 using linear 

regression. 
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Fox = C i x c + C2* (3.65) 

Fav = Cl»C+C2y (3.66) 

(c) is the feed per tooth. Values obtained for the constants are: 

C i * = 657 

C2x = 103 

Ci„ = 1500 

C a w = 20 

From [1] it is shown that the cutting parameters can be calculated as: 

K„ = A^y/aZ 

r\ = ACix/KsaZ 

r2 = TrriC2x/Ah*Cix 

From the above results, for the experimental case considered here, the following values 

of the cutting parameters are obtained: 
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K8 = 1185(iV/mm2) 

r x = 0.437 

h* = 0.0105(mm) 

r 2 = 5.1 

These parameters are used throughout this chapter. 

Previous researchers have approximated the uncut chip thickness as: 

h = csin (tp) 

where (c) is the feed per tooth and (tp) is the instantaneous immersion angle. Although 

the approximation does not produce significant errors in general milling analyses, it 

does not represent the tool motion accurately enough for precision surface prediction 

under vibratory conditions. The chip thickness is calculated in discrete time from the 

instantaneous positions of the tool edge and the workpiece surface where the edge is in 

contact. The radial position (Rt) of the tooth is found from Eq. 3.53. 

Rt = \lx2 + yl 

The surface coordinates of the workpiece in discrete time are given by: 

xp = SURF(i,l,k) 

yp = SURF(i,2,k) 

(3.67) 

(3.68) 
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The radial position of the workpiece (Rp) relative to the spindle center is, 

RP = v7̂  + vl (3-69) 

The uncut chip thickness is measured as the distance between the outer surface of 

the workpiece and the edge-workpiece contact point, 

h*t Rt-Rp (3.70) 

Since the discretization error of the surface can be made very small by decreasing the 

integration time step, the approximation of Eq.3.70 can also be reduced to an insignificant 

» level. Note that the cutting force is zero when there is no tool-workpiece contact (i.e. 

Ft = Fr — 0 <— Rt < Rp). Thus, the nonlinearity in chatter is taken into account [40]. 

The cutting forces contributed by each tooth in Region 1 are: 

Fxi = Fti cos fa + Fri sin fa 

Fyi = —Fti sin fa + Fri cos fa 

Region 2: The tool edge looses its contact with the workpiece in this region, 

therefore the cutting forces are taken as zero. 

Region 3: In this region the tool flank face tries to penetrate into the workpiece. 

Contact between the tool and workpiece is occuring on the flank face only. The clearance 

face may interfere with the workpiece when the flank is worn (i.e. creating zero clearance 

angle), or when vibratory cutting is present which is the case considered here. Due to 

the elliptical motion of the tool during chatter vibrations, the clearance face may rub 

into the workpiece material in regions 3 and 4. The possibility of motion in this region 

has been either neglected in previous metal cutting models, or approximated by dynamic 

cutting force coefficients [37]. A recent paper written by Wu [50] proposes a ploughing 

model which is based on a previous friction analysis done by Bailey [3] in machining. 

(3.71 
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A different ploughing model, from friction analysis [12], is used to estimate the forces 

here. The ploughing analysis is an approximation and requires further investigation. 

The geometry of motion is given in Fig.3.8, the tool travels from point 1 to point 2 in 

direction (vt/p). The material in area 1-2-3 is displaced by the tool flank face. The length 

of contact projected in direction (vtjp), when the tool is at point 2, is (h)- The length 

of contact projected perpendicular to direction (vt/p), when the tool is at point 2, is (J2). 

When the axial depth of cut is (a), the corresponding areas of contact are given by : 

(3.72) 
Ai = ha 

A2 = ha 

The coordinates of the edge at points 1 and 2 (Fig.3.8) are calculated from Eq. 3.53 

as (xti,ya) and (xt2,yt2)- The distances (h) and (l2) are found from the geometry as: 

Rm = yj(yt2 - yn)2 + (xt2 - xtx)2 

cos/3 
h = Rn 

sin 7 
cos (7 — /3) 

, _ cos/3 . . . 
h Rm- smtf-B) sin 7 

From ploughing analysis [12] the shearing and normal forces, (Fa) and (Fn) respec

tively, are approximated as: 

(3.73) 
F8 = p0Ai 

Fn = p0A2 d 

where (po) is the workpiece yield pressure. The cutting forces contributed by plough

ing when the edge is in Region 3 are: 

Fxi = -F8isinr]i + Fnicosrji 

Fyi = -Fgicosni - Fnisinrji 
(3.74) 
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Region 4: The rake face and the flank face are both in contact with the workpiece 

here. The model of region 1 is used on the rake face. The model of region 3 is used on 

the flank face. The forces from both models are calculated and added vectorially to find 

the force on the tooth. 

Region 5: The force model used in this region is ploughing. If no contact is present 

the forces are taken as zero. 

The forces contributed by all teeth are summed at discrete time intervals to find the 

instantaneous cutting forces on the cutter and the workpiece. 

FX = Xf=1(Fxi) 

FY = Sf = 1 (F y . ) 

3.4 Cutting Model Verification 

The proposed cutting model has been coded in F O R T R A N for simulation. The input 

data to the program is the tool geometry, workpice dimensions, difference equations which 

represent the tool and workpiece dynamics, spindle speed, feeding velocity, axial depth 

of cut, immersion angles, cutting force constants (Ks, r%, r2, h*), workpiece yield pressure 

and the duration in time of the simulation. The integration time interval is chosen to 

capture the highest vibration frequency. The program iterates through time calculating 

cutting forces and updating the finished surface geometry. Output from the simulation 

includes: cutting forces, workpiece and tool deflections and an (xy) profile of the cut 

surface. Since each tooth of the cutter is defined by its radial length from the spindle 

center, the radial run-outs on the teeth are automatically accounted for. 

As a first test, milhng with a rigid tool-rigid workpiece system has been considered. 

Since the exact motion of the cutter is modelled, the feed marks obtained from the 

(3.75) 
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simulation are expected to match the analytical result presented by Martellotti [22] as: 

h> - m^zH <3-76) 

The surface finish obtained from cutting with a four tooth cutter is shown in Fig. 3.9. 

A feedmark wave amplitude of 0.0127mm was obtained from the simulation which is 

comparable to the 0.0116 mm value given by Eq. 3.76. 

In order to further verify the model, two controlled cutting experiments have been 

carried out on an in house retrofitted vertical C N C milling machine. Full immersion 

cutting experiments were carried out using a rigid 50.8mm diameter double positive 

face milling cutter with one insert. The radial rake and the clearance angles of the 

tool are 5 and 3 degrees respectively. The workpiece material was 7075 — T6 aluminum 

alloy with a yield pressure of pQ = 500MPa. The cutting constants were identified 

(Ks = 1185N/mm2,h* = 0.0105mm,rx = 0.437,r2 = 5.09) from a series of cutting 

experiments as explained earlier. A spindle speed of 2.3 rev/s and a feeding velocity 

of 0.8125mm/s (0.352mm/tooth) were used. The axial depth of cut was a = 5.08mm. 

The workpiece was rigidly clamped onto a table dynamometer.and the feeding (Fx) and 

normal (Fy) cutting forces were sampled at 1ms intervals, see Fig.3.10. The four slotted 

spindle encoder signal is recorded to syncronise the simulation with the experiments. 

The first milhng experiment was carried out to test cutting with a rigid tool and 

rigid workpiece system. The simulation cutting forces are shown in Fig.3.11 and the 

corresponding experimentally measured forces are shown in Fig.3.12. A more detailed 

view of the cutting forces is given in Fig.3.13 for a single tooth period. The forces 

are in very close agreement. One difference is the high frequency component of the 

experimentally obtained forces which is due to the neglected tool-workpiece dynamics 

for this case. From these results it can be said that the uncut chip thickness calculation 

and the cutting force model of region 1 are satisfactory, and that the experimentally 
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determined cutting force parameters are also acceptable. 

The second experiment was carried out under the same cutting conditions as the first 

one except that the y — axis is vibrating. The vibration was produced by feeding a func

tion generator's sinusoidal output signal to the dc servo motor amplifier of the y — axis 

feed drive, see Fig.3.14. The bandwidth of the feed drive servo is about 65Hz and the 

table is vibrated at 18Hz. The h'mitation of the equipment to impose higher frequency 

oscillations is unfortunate, since the experiment will not verify the model's capability 

of handling ploughing during high frequency dynamic cutting. However, the controlled 

workpiece vibration allows verification of the proposed kinematics of chip thickness varia

tion, force generation and surface generation. If these mechanisms are verified the results 

obtained for machining with the presence of actual structural vibrations can be relied 

upon. The imposed vibration in the (y) direction corresponds to the following normal 

displacement of the workpiece which is used in Eqn.3.58 for tracking the finished surface. 

yp(t) = 0.109 sin(112.3i) (3.77) 

Vibratory cutting was experimented and simulated. The simulation cutting forces 

are shown in Fig.3.15 and the corresponding experimentally measured forces are shown 

in Fig.3.16. A more detailed view of the cutting forces for a single revolution is given 

in Fig.3.17. The milled surface was measured on a Talysurf instrumented with a P C 

based data acquisition system. A three dimensional view of the wavy finished surface 

segment is shown in Fig.3.18 (a) for 3mm wide and 2mm deep. The remaining part of 

the surface finish is similar. The (x), (y) and (z) axes represent the feeding direction, 

the surface normal and the axial direction respectively. Since the helix angle is zero, the 

vibratory surface has the same profile along the axial depth of cut or z—axis. A 1.8mm 

long xy—plane view of the simulated and experimentally measured workpiece surface is 
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shown in Fig.3.18 (b). The results indicate that the milling model accurately simulates 

both the cutting forces and the finished surface geometry. 

The result obtained for the surface finish is rather interesting. The dominant marks 

left on the surface are of a frequency which is significantly smaller than that which would 

be expected by either of the cutting or vibration motions separately. This phenomena 

will be termed washboarding in this thesis. As shown in Fig.3.19 (a) for a rigid tool 

the path of a single tooth is circular. In (b) the y — axis vibration of the workpiece 

and the y-coordinate of the cutting edge are shown. As was noted by Smith and Tlusty 

[33], the surface finish is being generated only when the tooth is at point A . This results 

in a flat surface finish (by simulation) when the rotational and vibrational frequencies 

are equal [33], or infact when they may be divided without any fractional remainder, 

with the vibration frequency being faster. In the case of Fig.3.19 , the frequencies don't 

divide evenly and the resultant surface generated in time is given in (c). The physical 

surface finish is shown in (d). The spindle (or tooth) period is Tc = 0.433 s and the 

period of workpiece vibration is Tv = 0.05595. The workpiece is moving at a feedrate of 

/ = 0.813 mm/s. Since from Fig.3.18 the washboarding wavelength (A) is 1.45mm, the 

washboarding period is Twb = X/vw = 1.78 sec which is greater than both of (T c) and 

(Tv). The ratio of process periods is r = Tc/Tv = 7.75. That is there are 7.75 vibration 

oscillations in a single tooth period. The aliasing period is Ta = NTC where: 

where (frac(r)) is the fractional component of (r). In our case N = 4.0 and the aliasing 

period is Ta = NTC = 1.73 sec. This is in good agreement with the washboarding period 

obtained from the simulation. 

Notice that if (frac(r)) is exactly zero then the aliasing perion will be infinite. This 

implies that if the rotational period is an integer multiple of the vibration period there 

N = [fracir)]-1 frac(r) < 0.5 

N = [1 - frac(r)]~l frac(r) > 0.5 
> (3.78) 
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will be a theoretically smooth surface finish on the workpiece even though it is vibrating. 

3.5 Conclusions 

A comprehensive dynamic milhng model, which gives accurate prediction of cutting forces 

and the finished surface of the workpiece, has been developed. The model considers the 

mechanics of cutting in the normal shearing and ploughing zones. The uncut chip thick

ness is found by accurate modelling of cutter and workpiece geometry and kinematics. 

Vibrations of both the workpiece and the milling cutter are incorporated. 

The experimental and simulation results show that the model is able to simulate low 

frequency dynamic milhng correctly. Surface generation in milling as a function of tooth 

passing and vibration frequencies is simulated, experimentally verified and analytically 

explained. The results should help in selecting spindle speeds to obtain a smoother 

surface finish when the dominant vibration frequencies are known. 
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F i g u r e 3.1: P e r i p h e r a l m i l l i ng of a flexible workp iece . 
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T O O L C E N T R E 
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Figure 3.2: The geometry of tool motion. 
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Figure 3.3: The geometry of workpiece motion. 
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Figure 3.4: Five zone metal cutting model. 
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F i g u r e 3.5: G e o m e t r y of the re la t ive m o t i o n between the too l a n d the workp iece . 
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Figure 3.7: Average cutting force vs. feed per tooth in milhng. 
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Figure 3.9: Simulation result for feed marks in milling with a rigid system. 
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Figure 3.10: Experimental workpiece setup for milling force measurement. 



Chapter 3. Mechanism of the Dynamic Milhng Process 
62 

Figure 3.11: Simulation cutting forces for a rigid tool-workpiece system. 
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Figure 3.13: Detailed cutting forces for a rigid tool-workpiece system. 
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Figure 3.14: Experimental set-up for vibratory milling experiment. 
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Figure 3.15: Simulation cutting forces for a vibrating tool-workpiece syste 
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Figure 3.16: Measured cutting forces for a vibrating tool-workpiece system. 
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Figure 3.17: Detailed cutting forces for a vibrating tool-workpiece system. 
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Figure 3.18: Microscopic surface finish machined during vibratory millr 
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Figure 3.19: Illustration of surface finish generation in vibratory mining. 



Chapter 4 

Plate Dynamics 

4.1 Introduction 

The workpiece considered in this research is a square cantilevered-free-free- free (CFFF) 

plate as shown in Fig.4.1. The workpiece is referred to as a plate although it does not 

satisfy the formal definition of a plate due to its discontinuity in thickness. The material 

used is 7075-T6 aluminum with the following mechanical properties: 

• E = elastic modulus = 70 [kN/mm2] 

• 7 = density = 0.277(10)"8 [Ns2/mm4] 

• v = Poisson's ratio = 0.33 

• a0 = yield strength = 490[MPa] 

The following discussion considers the physics of the plate from a structural dynamic 

perspective. The cutting tool and machine structure are assumed to be rigid as compared 

to the plate. The discontinuity in thickness of the plate requires that the structure be 

considered as a three dimensional object, at least in the region of the discontinuity. This 

discontinuity is a result of the metal removal process and indicates the position of the 

cutting tool. Factors in the dynamic analysis of the plate which are considered here are: 

• loading conditions and response 

• finite element modelling and reduction 

71 
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• experimental modal analysis 

• forced response of the plate 

4.2 Loading Conditions and Response 

The milling process generates metal removal forces in the cutting zone as shown in 

Fig.4.2. Forces may be applied to the plate anywhere in the cutting zone but not out 

of the cutting zone. Since chip removal, regeneration of waviness and surface finish 

generation are occurring in the cutting zone only, the response of the entire plate is not 

required to model the machining of such a workpiece. Only the dynamics of the plate in 

the cutting zone therefore are of interest in this analysis. The plate is considered first as 

a static structure and second as a dynamic structure. 

From a static approach the plate flexibility is greatest in the out of plane direction. 

The following results are derived in Appendix A . Consider the constant thickness plate 

as loaded in Fig.4.3. Each load acts independently and results in some static deflection 

of the plate. The maximum deflection resulting from Fx — 1 (N) is calculated using 

beam bending theory as 3/E (m) in the (x) direction at the point of application. The 

maximum deflection resulting from M = Fx(t/2) = .0013 (Nm) is calculated as 77/E 

(m) in the (y) direction at the extreme edge of the plate (ie. away from the cutting 

zone). The maximum deflection resulting from Fy = 1 (N) calculated for a C C C F plate 

is 3600/12 (m) in the (y) direction at the point of aplication. This result is conservative 

since a C C C F plate is much more rigid than a C F F F plate of equivalent dimensions. 

Clearly from these results the plate can be considered as rigid to in plane loads (in the 

static case) unless they are extremely large. 

Approximate dynamic characteristics of the plate can be obtained by studying con

stant thickness cantilevered plates. The natural frequencies are determined using the 
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following equation [13]: 

uni = K~i[ 
D9 n/2 

where, 

D = 
Et3 

12(1 - v2) 

and (v), (7), (</) and (Ki) are Poisson's ratio, the weight density, the acceleration due 

to gravity (g = 9.81 m/s2) and a modal scaling factor respectively (Ki = 3.5, 8.5, 21, 27 

and 31 for the first five modes). 

The first five natural frequencies of a 2.5x2.5x0.05 (in.) (63.5x63.5x1.27 mm) CFFF 

7075-T6 aluminum plate are: 135, 330, 828, 1069 and 1204 (Hz). The first five natural 

frequencies of a 2.5x2.5x0.1 (in.) (63.5x63.5x2.54 mm) CFFF 7075-T6 aluminum plate 

are: 540, 1319, 3313, 4275 and 4817 (Hz). The frequencies increase with the square of the 

plate thickness. The first five mode shapes are: first horizontal bending, first torsional, 

second horizontal bending, first vertical bending and the second torsional mode. 

For a plate of variable thickness there is no simple relationship to obtain the modal 

characteristics of the structure. The overall mass and stiffness properties will vary de

pending on where the material has been removed. This will also vary for different modes 

of the system. Material removed from locations of large deflection will mostly decrease 

the mass, while material removed from locations of high strain will mostly decrease the 

stiffness. The dynamic characteristics of the plate will be considered more thoroughly in 

Sections 4.3 and 4.4. 

Another consideration is that the plate dynamics will be varying continuously while 

the machining operation is taking place. That is, since metal is being removed from the 

plate its mass and stiffness must be changing. Since the material is being removed slowly 
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the dynamics should also be changing slowly. This factor is neglected in this work and 

only one location of the cutting zone is considered. 

4.3 Finite Element Analysis of the Stepped Plate 

A dynamic finite element (FE) model has been developed for the plate considered in 

Section 4.1, see Fig.4.1. The undeformed FE grid is shown in Fig.4.4. The software 

used to generate the model was the Vibration and Strength Analysis Program (VAST) 

[48] used by the Defence Research Establishment Atlantic in Canada. The plate was 

modelled using 20 node brick elements with three translational dof per node, see Fig.4.5. 

The total model size was 1594 dof. Material properties used in the analysis are the same 

as those given in Section 3.1 for 7075-T6 aluminum. The computations were carried out 

on a Vax 11/750 computer. 

Output from VAST includes global mass and stiffness matrices with mode shapes 

and natural frequencies for the first five vibrational modes. The modal characteristics 

are shown graphically in Fig.4.6. The first five natural frequencies calculated for the 

stepped plate are: 476, 1058, 2499, 2933 and 3687 (Hz). These values predicted by 

VAST are within the theoretically expected range for flat plates calculated earlier, see 

Fig.4.7. In this figure VAST was used to generate the frequencies for the stepped plate, 

and the theory of Section 4.2 was used to determine the frequencies of the flat (50 and 

100 THOU) plates. The mode shapes are also of the same type for each of the first five 

modes as those predicted for flat plates of similar dimensions. 

The purpose of modelling the plate with the finite element method is to obtain an 

analytical solution for the response of the plate to forces acting in the cutting zone. Since 

the response is only required over a small percentage of the plates surface the FE model 

is reduced using the system equivalent reduction expansion process (SEREP) outlined in 
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the Literature Survey of this work. Using this process the 1594 dof FE model is reduced 

to a 27 dof SEREP model of the plate dynamics in the cutting zone, see Fig.4.8. The 

SEREP process extracts points from the FE model on the surface of the plate in the 

cutting zone. The reduced model is more suitable for forced response analyses such as 

machining of flexible structures. 

Several computer programs are listed in Appendix B which are used in the model re

duction process and to verify the model. Functions carried out by the computer programs 

include : 

• Reading VAST mass, stiffness and eigensolution files and rewriting them into for

matted files for further processing (Courtesy of James Yang). 

• Perform SEREP reduction process on FEA files for specified dof. SEREP is outlined 

in Chapter 2 as Eqs.2.33 to 2.42. The algorithm is general and can be used with 

any specified dofs. 

• Calculate the point receptance frequency response function (FRF) of the reduced 

dynamic model at a specified dof. This is accomplished by first reducing the 27 dof 

SEREP equation of motion (see Eq.4.79) to five modal equations of motion (see 

Eqs.4.80 to 4.84). The FRF is determined for each mode using Eq.2.27. Each of 

the modal FRF's are added to obtain the local FRF of the plate at any specified 

node. The eigenvectors must be normalized to the desired dof before this procedure 

is done. 

• Calculate a forced response of the reduced dynamic model by numerical integration. 

This is accomplished by first reducing the 27 dof SEREP equation of motion (see 

Eq.4.79) to five modal equations of motion (see Eqs.4.80 to 4.84). The response 

of each modal equation of motion is calculated using Eq.2.25. Each of the modal 
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responses is transformed to the local coordinate system using Eq.4.85. The total 

response of the plate is determined by adding the individual modal responses in 

the local coordinates. 

• Determine the frequency content of output data files using the Fast Fourier Trans

form method. This program uses a standard procedure [30]. 

The modal properties of the reduced dynamic model of the stepped plate are presented 

in Table 4.1. Using experimentally determined values for the viscous damping coefficient 

of each mode (see Section 4.4), receptance F R F plots for three points in the cutting zone 

are presented in Fig.4.9. The plots show that the first mode is dominant at the top of 

the plate while the contributions of other modes become more significant towards the 

cantilevered edge of the plate. Also the plate is much more rigid at its base than near 

its tip as expected. Detailed study of the mode shapes obtained directly from V A S T has 

shown that in-plane values of the modes are small relative to the values in the y-direction. 

The appearance of antiresonances between resonance peaks is required and can be seen 

on the plots. The model of the plate seems reasonable and is expected to match well 

with experimental results. 

4.4 Experimental Modal Testing of Stepped Plate 

The purpose of this section is to experimentally determine some of the dynamic char

acteristics of the plate in order to verify the results of the finite element analysis and 

reduction process presented in the previous section. A n impact hammer is used to ex

cite the plate with the deflection being measured by a proximitor probe. The process 

consisted of impacting the plate several times with the hammer at several locations and 

recording the frequency response on a dual spectrum analyzer. The setup is shown in 

Fig.4.10. Equipment used in the experiments included: Bruel & Kjaer dual spectrum 
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analyzer, Nicolet oscilliscope, analog filters, Bruel & Kjaer charge amplifiers, impact 

hammer, PC based data aquisition system, Bentley Nevada proximitor and probe and 

the plate mounting bracket. 

Several FRF data plots were recorded to give a good indication of the plate's dynamic 

characteristics in the cutting zone. The plots are presented as Fig.4.11 and are discussed 

here. 

Plot a) is a direct receptance FRF measured at node 5 of the plate. Plot b) shows 

the low frequency detail of plot a). The static flexibility is taken directly from plot b) 

as 3 (THOU/LB) . Plot c) is the coherence of the measurements taken to produce plot 

b). The determined coherence value close to unity gives a high level of confidence in 

the measurements taken. The value of the coherence is very low near 60 (Hz) due to 

the line frequency of the instrumentation power supply. This phenomenon is seen on 

other graphs and should be recognized and neglected. Plot a) shows a clear resonance 

at 494 (Hz) with no other modes being easily detected. Several comparisons can be 

drawn between the measured and estimated (see Fig.4.9) FRF's. The static flexibilities 

are equal at 3 (THOU/LB). The magnitude of the 494 (Hz) resonant peak is also very 

close for both plots. The higher modes are not apparent on the measured FRF because 

the impact hammer cannot excite very high frequencies when used with such a flexible 

structure. Also the second mode is dominated by the mass of the first mode as seen on 

the theoretical plot and results in poor definition of the second mode on the experimental 

FRF. 

Plot d) is a direct receptance FRF measured at point 14 on the plate. Two resonant 

frequencies were detected at 494 and 1056 (Hz) corresponding to the first bending and 

torsional modes respectively. Frequencies above 2000 (Hz) were not excited by the impact 

hammer and useful results could not be obtained in this range. The theoretical and 

measured static flexibilities are both 0.6 (THOU/LB). The magnitude of the first mode 
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is consistent between theory and experiment but the magnitude of the second mode is 

off by a factor of two. This is probably due to the the closeness of the excitation point 

to a nodal line of this mode. 

Plot e) is a direct receptance FRF measured at point 23 on the plate. The first five 

vibrational modes are clearly seen at 487, 1056, 2495, 2915, and 3639 (Hz). These values 

correspond well with the theoretically predicted values using the finite element method 

(see Fig.4.6). The measured static flexibility is 0.04 (THOU/LB) and the predicted value 

is 0.004 (THOU/LB), so there is an order of magnitude discrepancy. This is probably 

due to two separate factors. First the location of the measurement is close to nodal lines 

for all of the modes and therefore the stiffness gradient is large so that experimental 

errors could become significant. Second the experimental setup consists of a clamping 

mechanism which may introduce some added flexibility to the plate which wouldn't have 

been noticeable away from the base of the plate. The peak amplitudes of each mode 

are consistent with the predicted values considering the experimental errors previously 

discussed. Other modes at higher frequencies may also be significant. These higher 

modes are not included in the analytical model and will be assumed to be unimportant 

for the remainder of this work. The expected antiresonances between modes are not 

present for most cases which probably indicates [10] "poor measurement quality because 

of inadequate vibration levels resulting in poor definition of the antiresonance regions." 

Plots f) to j) are detailed direct receptance FRF's of each resonance taken at point 

23 on the plate. These plots are used to estimate the viscous damping ratios used to 

generate the theoretical model of the plate whose FRF's are given in Fig.4.9. The half 

power (bandwith) method [8] is used to obtain the following modal damping ratios: 

d = 0.001 

C2 = o.ooi 
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C3 = 0.001 

C4 = 0.0003 

C5 = 0.0004 

Point 23 was chosen as the location for taking the measurements used to obtain the 

damping ratios because the impact hammer was able to excite all five modes there. Errors 

involved with estimation of the damping ratios include: 

• noisy signals at higher modes resulting in difficulty finding the bandwidth at the 

half power points 

• effect of nonliniearities (ie. mounting assembly) 

• influence of other modes (this is probably small due to the relatively large distance 

between the modes) 

Plots k), 1) and m) are the magnitude, real and imaginary parts respectively of the 

F R F for the first vibrational mode taken at point 14. The damping ratio obtained from 

these plots is Ci = 0.001 which is equal to those obtained from the bandwidth method. 

This result gives further confidence in the damping ratios obtained for the other modes. 

Time domain plots are also presented for the force and deflection of the plate during 

free vibration, see Fig.4.12. The plate vibration is measured at node 14. These graphs 

may be used to obtain an estimate of the effect of vibration on forces transmitted to the 

dynamometer during cutting experiments. The amplitude of the transmitted forces is 20 

(N) and the vibration amplitude is 0.06 (mm). The equivalent stiffness of the plate from 
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Fig.4.12 c) is keq =310 (N/mm), and the vibration frequency of the plate is 488(Hz). 

The equivalent mass of the plate at node 14 is then meq = keq/4ir2u)2 — 0.033 (kg). The 

transmitted force measured here is large enough to significantly affect measured cutting 

forces if the vibration of the plate is large. 

The experimental results presented in this section compare favourably with those 

obtained from the finite element modelling process. Several possible error sources have 

been indicated which could result in those discrepancies which have been encountered. 

Other sources of error are: 

• The glue and steel reflectors mounted on the plate would affect the plate dynamic 

characteristics 

• Geometric differences in the physical plate and the F E model 

• Statistical variations in the level and location of the impact. 

The effects of these factors are difficult to quantify and it will suffice here to simply 

note that they exist. The result of these experiments is that the reduced analytical 

model of the plate can be used without modification to simulate the plate dynamics in 

the peripheral milhng of flexible structures. 

4.5 Dynamic Solution of Reduced Plate Model 

The plate dynamic response to a known disturbance is considered here. The reduced 

dynamic model results in a 27 dof equation of motion : 

Mx + Cx + Kx = F (4.79) 

where: (M[27,27]), (C[27,27]), (#[27,27]), (F[27)) and (x[27]) are the mass, damp

ing, stiffness, applied force and displacement of the system in local coordinates. The 
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eigenvalues (A,) and eigenvectors (<̂ ,[27,1]) of the reduced system are also known for the 

first five modes. Eq.4.79 is uncoupled using the modal analysis procedure where mode i 

is represented by: 

rn-iXi + C(Xi + k{Xi = /,• (4.80) 

where, 

m, = (4.81) 

d = fiCh (4.82) 

ki = tfKfr (4.83) 

fi = 4>fF (4.84) 

x = <piXi (4.85) 

If the input force (F) is known then the modal forces (/;[1,1]) can be calculated using 

Eq.4.84. (m,[l, 1]), (c,[l, 1]) and (&,[1, 1]) are the modal mass, damping and stiffness 

respectively and are constants. The modal responses (x,[l, 1]) can be determined using 

a discrete-time solution of a SDOF system (see Eq.2.25). The response of the plate in 

local coordinates, including the first n modes, is calculated as: x = J2?=i <t>ixi-

The response of the plate to a unit step input applied at node 23 is given in Fig.4.13. 

The damping factors used are those from the experimental modal testing of the previ

ous section. The result is consistent with a multiple degree of freedom lightly damped 

dynamic structure. 
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The distribution of cutting forces on the grid points is an important factor in carrying 

out a forced response of the plate. Consider the simple grid shown in Fig.4.14. with forces 

applied as shown. In plane loads and applied moments are not considered here. Three 

rules are used to distribute the forces onto the grid: 

1. The total force applied to the structure is equal to the sum of the forces applied to 

the individual nodes. 

2. Forces are applied only to those nodes directly neighbouring the point of force 

application. 

3. The fraction of an appHed force which is distributed onto a particular node is 

inversely proportional to its distance from that node. 

For the example of Fig.4.14 the following force distributions would apply: 

FA F i = FA 

FB Fx = (^—^)FB 
b 

FA = FB — Fi 

FC Fx = <* 
— ' x i ^ b 
a 

~b

lyl)FC 

F2 = <* 
~ 1x2 ^b 
a 

~b

ly2)FC 

F3 = (* 
— 1x3 ^b 
a 

~b

ly3)FC 

Fi -(" 
— Ix4^b 

a 
~h

lyA)FC 
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FD F3 = {^—^±)FD 
a 

F4 = FD- F3 

This example considers all possibilities which might be encountered in a more complex 

problem, and may be applied directly to in plane forces if required. 

A general solution for calculating the force applied at node i is: 

Ft = ( i ^ ) ( ! = - i i ) F (4.86) 
a o 

where: (F), (Fi), (a), (b), (/Xl) and (/„,•) are the applied force, nodal force due to (F), 

x-coordinate grid width, y-coordinate grid width, distance from node (i) to the applied 

force in the x-direction and the distance from node (i) to the applied force in the y-

direction. Eq.4.86 is used for each applied force according to the three aforementioned 

rules. 

4.6 Conclusions 

In this section the dynamic characteristics of the stepped plate have been thoroughly 

investigated. Since the largest deflections are expected to occur at the top of the plate in 

the out of plane directions any in plane loads and moments can be safely neglected from 

the analysis. Use of the 27 dof SEREP reduced model of the plate has been successfully 

used to model the forced response and frequency response of the plate. This implies that 

the finite element model used can be modified to model the dynamics of the plate at 

other locations of the cutting zone in future studies. This same model will be used to 

simulate the plate response to cutting forces during the dynamic milhng process in the 

following chapter. 
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MODE No. 

1 2 3 4 5 

NODE # MODE SHAPES 

1 0 . 8 9 0 . 1 5 - 0 . 6 1 - 0 . 2 7 - 0 . 2 4 
2 0 . 8 7 4 . 9 3 E - 0 2 - 0 . 5 3 - 0 . 2 8 - 0 . 3 7 
3 0 . 8 6 - 4 . 3 3 E - 0 2 - 0 . 4 5 - 0 . 2 5 - 0 . 4 7 
4 0 . 7 4 0 . 1 7 - 0 . 3 4 - 0 . 2 5 - 3 . 1 8 E - - 0 2 
5 0 . 7 2 8 . 1 7 E - 0 2 - 0 . 2 9 - 0 . 2 6 - 0 . 1 0 
6 0 . 7 1 - 4 . 4 3 E - 0 3 - 0 . 2 5 - 0 . 2 3 - 0 . 1 7 
7 0 . 5 9 0 . 1 8 - 7 . 6 8 E - 0 2 - 0 . 2 6 0 . 1 2 
8 0 . 5 7 9 . 9 7 E - 0 2 - 7 . 3 8 E - 0 2 - 0 . 2 5 0 . 1 0 
9 0 . 5 6 2 . 3 4 E - 0 2 - 5 . 8 3 E - 0 2 - 0 . 2 2 8 . 7 5 E - - 0 2 

10 0 . 4 4 0 . 1 7 0 . 1 3 - 0 . 2 6 0 . 2 1 
11 0 . 4 3 0 . 1 0 0 . 1 0 - 0 . 2 5 0 . 2 4 
12 0 . 4 2 3 . 9 0 E - 0 2 9 . 0 0 E - 0 2 - 0 . 2 1 0 . 2 6 
1 3 0 . 3 0 0 . 1 4 0 . 2 4 - 0 . 2 4 0 . 2 3 
14 0 . 3 0 9 . 2 5 E - 0 2 0 . 1 9 - 0 . 2 2 0 . 2 9 
15 0 . 2 9 4 . 3 2 E - 0 2 0 . 1 6 - 0 . 1 9 0 . 3 2 
1 6 0 . 1 8 0 . 1 0 0 . 2 4 - 0 . 1 9 0 . 1 8 
17 0 . 1 7 7 . 0 4 E - 0 2 0 . 1 9 - 0 . 1 7 0 . 2 4 
18 0 . 1 7 3 . 7 1 E - 0 2 0 . 1 6 - 0 . 1 4 0 . 2 8 
1 9 8 . 3 1 E - 02 5 . 9 7 E - 0 2 0 . 1 5 - 0 . 1 1 0 . 1 0 
2 0 8 . 3 5 E - 02 4 . 1 6 E - 0 2 0 . 1 2 - 0 . 1 0 0 . 1 4 
2 1 8 . 3 6 E - 02 2 . 3 9 E - 0 2 0 . 1 0 - 8 . 6 7 E - 02 0 . 1 7 
2 2 2 . 0 0 E - 02 1 . 8 0 E - 0 2 4 . 7 9 E - 0 2 - 3 . 6 1 E - 0 2 2 . 7 9 E - - 0 2 
2 3 2 . 0 8 E - 02 1 . 3 4 E - 0 2 4 . 0 2 E - 0 2 - 3 . 2 3 E - 0 2 4 . 2 4 E - - 0 2 
24 2 . 1 6 E - 02 8 . 3 0 E - 0 3 3 . 4 5 E - 0 2 - 2 . 7 5 E - 02 5 . 4 1 E - - 0 2 
2 5 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 
26 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 
27 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 

FREQUENCIES (Hz) 

4 7 6 1 0 5 8 2 4 9 9 2 9 3 3 3 6 8 7 

Table 4.1: Modal Data for the Stepped Plate 
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Figure 4.1: Stepped, square cantilevered plate. 



F i g u r e 4.2: P l a t e m a c h i n i n g forces and cu t t i ng zone. 
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Figure 4.3: Static loads on a cantilever plate. 



F i g u r e 4.5: 20-node, 60-dof b r i ck e lement . 
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Figure 4.6: First 

MODE No. 2 

five mode shapes for the stepped plate. 
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MODE No. 4 

Figure 4.6: First five mode shapes for the stepped plate. 
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MODE No. 5 

Figure 4.6: First five mode shapes for the stepped plate. 
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Figure 4.7: Natural frequency variation for various cutting zone locations. 
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Figure 4.8: Reduced 27-dof SEREP model of the stepped plate. 
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Figure 4.9: Reduced model receptance FRF plots. 



Chapter 4. Plate Dynamics 94 

IMPACT HAMMER 

ROXIMITOR PROBE 

MEASURED SIGNALS 

TO DATA ACQUISITION SYSTEM 
AND FFT ANALYZER 

DYNAMOMETER 

Figure 4.10: Experimental set-up for determining modal characteristics of the stepped 
plate. 
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Figure 4.11: Experimentally measured receptance FRF plots. 
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Figure 4.11: Experimentally measured receptance F R F plots. 
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Figure 4.11: Experimentally measured receptance F R F plots. 



Chapter 4. Plate Dynamics 98 

500m 

n 

O 

w 
300m 

w 
Q 

O 
<! 

A = Z H z 

! R E S O N A N C E #2 
l! I 

l . O J K i.OZH 1 . 0 3 k l . r - l K 1 . C 5 H L O O K 1 . 0 7 k 1 . O B k 1 . 0 Q K i . l O K l . l l h 

(g) F R E Q U E N C Y (Hz) 

BOOfB 

o 

K "-^ 

Q 

O 

2. 40k 

R E S O N A N C E #3 

4 ~ k 2 . S O K 

00 

K -; ? . i J K 2 .60k 

F R E Q U E N C Y (Hz) 

Figure 4.11: Experimentally measured receptance F R F plots. 
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Figure 4.11: Experimentally measured receptance FRF plots. 
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Figure 4.12: Experimental plate response, free vibration. 
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Figure 4.12: Experimental plate response, free vibration. 
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Figure 4.13: Simulated plate response to a unit step input. 
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Figure 4.14: Example of forces distributed on a simple grid. 



Chapter 5 

Results of Plate Machining 

5.1 Introduction 

Machining of flat plates is analogous to many important industrial processes. The man

ufacture of jet engine impellers, microwave guideway systems, large turbine blades and 

many aircraft structural components are included in this classification. During machin

ing operations these relatively flexible workpieces are subjected to periodically varying 

cutting forces of the milhng process. These forces may result in both static and dynamic 

deflections of the workpiece and the machine tool. The relative motion between the 

workpiece and the tool also affect the cutting forces, making the process a closed loop 

dynamic system. An example of plate machining is given in Fig.5.1 which also shows 

the dynamic interaction between the tool and the workpiece. To model the machining 

of plates correctly several aspects of the process must be considered: kinematics and 

dynamics of the workpiece, cutter and machine tool, kinematics of milhng and dynamic 

chip removal. These considerations have been discussed previously and are combined in 

this chapter. Simulation and experimental results for some cases of plate machining are 

presented. Recomendations for future work are given. 

5.2 Simulation of Plate Machining 

The previous two chapters have introduced discrete time methods for simulating dynamic 

milhng and calculating the response of a stepped plate to known dynamic forces. To 

105 
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model the machining of a flexible workpiece, both of these methods must be combined 

into a single integrated closed loop simulation approach. This is accomplished here by 

using the cutting forces to calculate the plates response which is then used to reevaluate 

the cutting forces in the following time step. 

When applying this procedure to flexible workpiece machining several characteristics 

of the entire process must be considered. The kinematic, dynamic and metal cutting 

models must describe their respective systems accurately without causing problems else

where in the global simulation. 

First consider the discretized system kinematics described in Chapter 3. It has been 

shown that the method used for describing the geometry of the tool and the workpiece 

can accurately define the chip removal and surface generation of low frequency dynamic 

milhng. When machining flexible structures the discretization time step must be chosen 

small enough to capture any dynamic modes, to give a clear view of microscopic surface 

finish details and to accurately define any system changes due to nonlinearities of the 

cutting process. All of these conditions are quite complex. In considering the plate 

dynamic modes, it must also be noted that the cutting process stiffness and damping 

will influence the vibration frequencies encountered. Generally these frequencies will 

be increased but it is difficult to predict by how much. This makes the choice of the 

simulation time step difficult. In order to capture details of the microscopic surface 

finish it is necessary to know the maximum relative velocity between the plate and the 

tool, which is also difficult without first carrying out experiments or simulations. Finally 

in vibratory milhng the initial cutting force (due possibly to both chip removal and 

ploughing) can be overestimated, thus setting up unrealistic transient vibrations, if the 

time step is too large. The time step must be chosen small enough so that these factors 

don't significantly affect the results. 

Next consider the ability of the proposed dynamic model, presented in Chapter 4, to 
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accurately describe the motion of the workpiece. This model considers five vibrational 

modes and twenty-seven active degrees of freedom. The plate itself has an infinite number 

of both modes and degrees of freedom. A discrete method is used to model the plate 

because this would be the only realistic approach to the more complex geometry of jet 

engine impellers. The size of the discrete model was chosen as a compromise between 

computation time and satisfactory model definition. 

Other considerations of the dynamic model are introduced due to the machining pro

cess. These include: continuously changing dynamics due to material removal, dynamic 

coupling of the tool and workpiece, the effect of a lubricant applied at the cutting zone, 

steadies placed behind the plate and the effective dynamic changes due to the cutting 

process stiffness and damping. Changes in the plate dynamics due to material removal 

are neglected here for simplicity. A possible approach to this problem is considered in 

Section 5.5. It is an assumption of this work that the plate is flexible and the tool is 

perfectly rigid. This assumption is made to simplify the current problem and could be 

overcome without difficulty if the tool dynamics were modelled. One problem which may 

occur if two frequencies of the coupled dynamic system are close is nonlinear behaviour 

which would be relatively difficult to model. A lubricant is used in many commercial 

machining operations. Because the plate mass is small, the effect of pouring a lubricant 

onto the cutting zone may significantly affect the dynamics of the plate. This would be 

difficult to quantify analytically and is neglected in this work, where no lubricant is used. 

Steadies placed behind the plate might be used to reduce vibrations. For the approach 

to be used most effectively the result of the steadies on the dynamics of the plate must 

be known. Modelling the ineraction between steadies and the plate is beyond the scope 

of this work, but is discussed briefly in Section 5.5. Process stiffness and damping are 

due to the nature of dynamic cutting. The result of these characteristics on the plate 

motion is similar to their structural counterparts. The process dynamics are inherently 
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defined in the metal removal model and are independent of the structural dynamics of 

the plate. 

Finally consider the dynamic cutting process itself. The static cutting model was 

verified in Chapter 3, but estimation of the dynamic cutting forces due to flank inter

ference and loss of contact between the tool and workpiece has not been tested. This is 

unfortunate because it increases the difficulty in comparing simulation and experimental 

results of plate machining. This limitation is necessary however, since there has not 

been an acceptable model for dynamic cutting presented to date in the literature. The 

model used here is sensitive to the time step used in the simulation. If the time step 

is too large the cutting forces can be grossly overestimated, depending on the relative 

velocity between the tool and the workpiece. Also if edge cutting forces are included 

in the cutting model (ie. h* ^ 0 and r 2 ^ 0) unrealistic step inputs are applied to the 

plate's structural model. This results in false transient vibrations and therefore edge 

cutting forces are neglected in the following simulations. The cutting force calculation 

is strongly dependent on the accuracy of the kinematic representation of the tool and 

workpiece. Any approximations in the kinematics of the cutting process will be mirrored 

by errors in the calculated cutting forces. 

Simulation results are presented in Section 5.4. The parameters considered axe the 

resultant forces due to the cutting process, plate deflections and the generated surface 

finish. The effect of runout is neglected in all of the simulations. 

5.3 E x p e r i m e n t a l P l a t e M a c h i n i n g 

Results of four cases of plate machining are presented in Section 5.4. The process is 

represented in Fig.5.1 (a). The experiments were performed on a 3-axis vertical C N C 

milhng machine. Measured data includes plate displacement and force transmitted to 
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the table dynamometer. Surface finish profiles were measured using dial gauges with end 

diameters of 0.4 mm. The plate material used was 7075-T6 aluminum and its geometry 

is given in Fig.5.2. Up milhng was investigated in all cases. Several difficulties were 

encountered during the experimental phase of this work and these are discussed next. 

Initial work included: choice of a plate material and geometry, design of a mounting 

bracket to fasten the plate onto the table dynamometer and fabrication of several plate 

specimens. 

To facilitate experimental work a readily available and easily machined material was 

required. 7075-T6 aluminum satisfies these conditions. One overlooked difficulty with 

this choice was that the proximitor probe used to measure the plate displacement is 

insensitive to aluminum. This problem was overcome by glueing thin steel shims to the 

plate at sensor locations. 

The size of the plate chosen for the experiments was 2.5 x 2.5 x 0.10 (in.) machined 

to 2.5 x 2.5 x 0.05 (in.) with a single pass of an end mill. These dimensions were chosen 

due to several considerations. The plate must have physical dimensions which can be 

easily mounted onto the table dynamometer. A square plate simplifies any analytical 

work. The plate must have regions where its stiffness is negligeble relative to the stiffness 

of the end mill so that the tool can be assumed to be rigid. The fundamental frequency 

of the plate should be as small as possible. Finally, in order to test the full capabilities of 

the simulation work, a process was desired where "unstable cutting" would be present. 

A mounting bracket was designed to fasten the plate onto the dynamometer. De

sign requirements of the mounting bracket assembly included adequate stiffness, minimal 

influence on the plate dynamic response as measured on the table dynamometer, remove-

able from the dynamometer and the flexibility to hold many different plate sizes. The 

final design is shown in Fig.5.3 and satisfies the above requirements satisfactorily. 

Several plate specimens were prepared for the experimental work. The stock material 
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used was 1/4 (in.) plate. The stock was machined to the shape shown in Fig.5.2. The 

ramp shown in Fig.5.2 was included for two reasons. The first reason was to reduce 

machining errors, and therefore errors in the plate dynamic model, prior to taking any 

measurements. The second reason is to eliminate the possibility of "catching" at the edge 

of the plate when the tool starts to cut at point B. This usually results in the destruction 

of the workpiece by plastic deformation. If the tool starts to cut at point A of Fig.5.2, 

the transition from non-cutting to cutting is smooth and catching doesn't occur. 

With the workpiece setup estabhshed specifications of the end mill geometry, cutting 

conditions and data sampling frequency are required. Each of these specifications are 

given with the experimental cases. Two end mills, one with straight flutes and one with 

helical flutes, are used in the experiments. Some parameters considered in the choice of 

the end mills were: size, stiffness, availability, cost and cutting angles. Cutting conditions 

considered here are the feed per tooth and the spindle speed. The feed per tooth is chosen 

to give a desired maximum cutting force. Neglecting any deflections of the plate or tool, 

the cutting force can be estimated by: 

F « K~aah 

Errors in this approximation due to plate deflections away from the tool will be 

conservative and overestimate the cutting force. The spindle speed is chosen to give a 

practical cutting speed and to decrease the overall experimental time. The sampling 

frequency is chosen to be as fast as possible in order to observe the maximum resolution 

of any high frequency activity. 

Experimental results for four cases of plate machining are presented in the next sec

tion. Measured parameters considered are the transmitted force to the table dynamome

ter, plate deflections and the generated surface finish. 
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5.4 Discussion of Results 

Results of four cases of plate machining are presented in this section. Both experimental 

and simulation results are considered and compared. The parameters for each case are 

sumarized in Table 5.1. A summary of the main results is given in Appencix C. 

5.4.1 Case No.l 

This case considers up milling with a 3/4 (in.) diameter, four fluted zero helix end mill. 

The spindle speed is 1500 (RPM) and the feedrate is 0.015 (in./s). The axial depth of 

cut is 2.5 (in.). Simulation cutting parameters used are Ks = 1185 (MPa) and r = 1; 

ploughing and edge cutting forces are neglected. All of the first five vibrational modes are 

included in the plate dynamic model. Structural damping is approximated as £ = 0.05 

for all modes. The time step of the simulation is 10 (p s). The simulation results are 

discussed first. Graphs showing simulated results for this case are shown in Figs. 5.4 to 

5.10. 

Fig. 5.4 shows the displacement of the plate at node 14 (near the middle of the plate) 

for the first 100 (ms) of the simulation. There are three characteristics to notice about this 

result. First, the response is growing, which indicates an unstable machining operation. 

Second, the frequency content of the displacement includes the tooth passing frequency 

(100 Hz), the first natural frequency of the plate (477 Hz) and some higher frequency 

signals. Third, the transient vibration between teeth is of a significant magnitude at the 

beginning of each cutting cycle. Fig.5.5 shows the displacement at node 14 after 800 

(ms) and Fig.5.6 shows details of the deflection at nodes 5, 14 and 23 for a single tooth 

pass. 

Figs.5.7 and 5.8 show the simulated cutting forces in the (x) and (y) directions re

spectively. Figs.5.9 and 5.10 show details of these cutting forces for a single tooth pass. 
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These forces are composed of a low frequency tooth passing component and a very high 

frequency (about 5 kHz) part present only during the cutting cycles. This would indicate 

that the plate is "bouncing" on the tool at a high frequency and that little "cutting" is 

taking place. 

Comparing Figs.5.6 and 5.10 reveals an interesting result. The displacement due 

to cutting begins at 0.81 (s) while the cutting force doesn't become visible until about 

0.8107 (s). Thus the displacement appears to lead the cutting force by 0.7 (ms). This 

isn't really the case. Since the top of the plate is extremely flexible (approximately 0.022 

mm/N) virtually no metal cutting takes place there. For this reason the tool contacts the 

unmachined top of the plate first during each tooth pass. Since the plate is so flexible 

very little force is required to cause the initial displacement. This force isn't visible 

on the graph but it is present and as would be expected the force actually leads the 

displacement. 

The experimental results for Case 1 are discussed next. Graphs showing experimental 

results for this case are shown in Figs.5.11 to 5.14. 

Fig.5.11 shows the plate displacement measured at node 14. The corresponding plot 

from simulation studies is shown in Fig.5.5. The out of cut vibration frequency of the 

plate is high (« 2 kHz) which may be due to excitation of one of the higher modes, 

or because the steel shim glued to the back of the plate became loose. The in cut 

vibration frequency is 900 (Hz) and corresponds well with the first mode component of 

the simulation results. The magnitude of in cut deflections correspond well. 

The measured forces transmitted to the table dynamometer in the (x) and (y) direc

tions are presented in Figs.5.12 and 5.13 respectively. The sign of the measured force in 

the (y) direction is opposite to that used in the simulation studies, this is a result of the 

measurement setup and is not an error. The corresponding simulation results are shown 

in Figs.5.7 and 5.8. First it should be noted that the measured force and the actual 
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cutting force are different. Inertial forces due to plate vibrations are also transmitted 

to the dynamometer and can contribute a significant amount to the measured results. 

Similarly to the simulation results, the measured forces have a strong component of a 

high frequency signal. Also the magnitudes of the measured and simulated forces are 

close. 

A portion of the measured surface finish is shown in Fig.5.14. The mechanism of 

surface generation is explained in Section 5.4.3, and is a result of the plate vibration 

frequency and the cutting speed. The wavelength observed on the surface is 2.8 (mm). 

Theoretically, the resultant wavelength is (R$l/fnc) = 1.7 (mm). 

5.4.2 Case No.2 

This case considers up milhng with a 3/4 (in.) diameter, four fluted zero helix end mill. 

The spindle speed is 1157 (RPM) and the feedrate is 0.02 (in./s). The axial depth of 

cut is 2.5 (in.). Simulation cutting parameters used are K~a = 1185 (MPa) and r = 1; 

ploughing and edge cutting forces are neglected. All of the first five vibrational modes are 

included in the plate dynamic model. Three cases of structural damping are considered: 

£ = 0.005, C = 0.05 and ( = 0.5 for all modes. The purpose of varying the damping 

ratio is to investigate the effect of process damping on plate machining. The time step 

of the simulation is 10 (p s). The simulation results are discussed first. Graphs showing 

simulated results for this case are shown in Figs. 5.15 to 5.28. 

C = 0.005 

Fig.5.15 shows the plate displacement at node 14 when £ = 0.005. Fig.5.16 shows the 

corresponding cutting force in the (y) direction. The process is strongly unstable and 

plate vibrations increase rapidly. 
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C = 0.05 

Fig.5.17 shows the initial displacement of the plate at node 5 and Fig.5.18 shows the 

corresponding vibration at node 14. There is a greater content of high frequency motion 

in the response at node 14. This is because the higher frequency modes are stronger at 

node 14 than at node 5. 

Fig.5.19 shows the simulated displacement at node 14 from 800 to 900 (ms). A de

tailed view of the displacement for a single tooth pass is shown in Fig.5.20 for nodes 5, 

14 and 23. Again, the higher frequency components are more visible at nodes 14 and 23. 

Considering the displacement at node 5 the fundamental vibration frequency is greater 

during cutting than during free vibrations. This is a result of the process stiffness increas

ing the equivalent structural stiffness and therefore increasing the vibration frequency. 

This is considered in more detail for simulation Case 3. 

Cutting forces in the (x) and (y) directions are shown in Figs.5.21 and 5.22 respec

tively. Details of these cutting forces, for a single tooth pass, are given in Figs.5.23 and 

5.24. These forces are composed of a low frequency tooth passing component and a very 

high frequency component present only during the cutting cycle. 

C = 0.5 

Fig.5.25 shows the displacement of the plate at node 14 for the first 100 (ms) of the 

simulation. This result can be compared with Fig.5.18, where £ = 0.05. The rate of 

growth of the displacement when ( = 0.5 is much slower than the rate of growth when 

C = 0.05. When £ = 0.5 the transient vibrations during non cutting are completely 

damped out between consecutive teeth. Also very little high frequency content is visible 

in Fig.5.25. 

Fig.5.26 shows the plate displacement at node 14 after 800 (ms) and Fig.5.27 gives a 
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detailed view of the displacement for a single tooth pass at nodes 5, 14 and 23. Again 

the dominant vibration frequency is increased in cut, and the higher frequency modes 

are more visible at nodes 14 and 23. 

Cutting forces in the (x) and (y) directions are given in Figs.5.28 and 5.29 respectively. 

Details of these forces are shown in Figs.5.9 and 5.10 for a single tooth pass. As before, 

the cutting forces consist primarily of the tooth passing frequency and some very high 

vibration frequency. The relative contribution of the high frequency forces indicates that 

most of the cutting is occuring at the bottom of the plate where the high frequency 

modes are more active. 

From the three simulations of Case 2, an important result is that the stability increases 

as the structural damping ratio is increased. 

Experimental results are considered next. Graphs showing experimental results for 

this case are shown in Figs.5.32 to 5.35. 

Fig.5.32 shows the plate displacement measured at node 14. The corresponding sim

ulation results are given in Figs.5.15, 5.19 and 5.26. The magnitudes of the simulated 

displacements don't predict the measured displacements accurately. The observed in 

cut vibration frequency is 860 (Hz) which corresponds well with the simulated value of 

890 (Hz) measured from Fig.5.20. The experimental result has a sharp displacement 

between each of the tooth passes, which is the result of inadequate clearance behind the 

teeth. This is analogous to having short teeth with large negative rake angles between 

the cutting edges. This problem is eliminated for the experiments of Case 3. 

Measured forces are given in Figs.5.33 and 5.34 for the (x) and (y) directions respec

tively. As with the simulated forces, a frequency component higher than the measured 

vibration frequency is strong. This is present because most of the cutting force is gen

erated near the bottom of the plate where higher frequency modes are dominant. The 

static cutting force is larger for the measured forces than for the simulated forces. This 
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is because of an inadequate cutting force model. The inclusion of ploughing forces in the 

simulation is expected to reduce this discrepancy. This will be discussed in Case No. 3. 

A portion of the measured surface finish is shown in Fig.5.35. The wavelength 

observed on the surface is about 2 (mm). Theoretically, the resultant wavelength is 

(JKV/nc) = 1.3 (mm). 

5.4.3 Case No.3 

This case considers up milhng with a 3/4 (in.) diameter, four fluted zero helix end mill. 

The tool clearance angle is 10 deg with a primary land of 0.5 (mm) and the rake angle is 

5 deg. The spindle speed is 1157 (RPM) and the feedrate is 0.394 (in./s). The axial depth 

of cut is 2.5 (in.). Simulation cutting parameters used are K~8 = 1185 (MPa) and r = 1; 

edge cutting forces are neglected. Results of two simulations are presented. Ploughing 

forces are included in the second simulation where the yield strength is estimated as 496 

(MPa). Only the first bending mode is included in the plate dynamic model. The purpose 

of this simplification in the dynamic model is to determine whether the higher frequency 

modes contribute significantly to the simulation results. A single mode approach also 

simplifies the plate motion which makes the surface generation mechanism easier to 

analyze. Structural damping is £ = 0.5. The time step of the simulation is 10 (fi s). 

Graphs showing simulated results for this case are shown in Figs. 5.36 to 5.44. 

a) Zero Ploughing Forces 

The first simulation doesn't consider ploughing forces on the tool flank face. Fig.5.36 

shows the displacement of the plate at node 14 during steady state conditions. Four 

important characteristics of this graph should be noted. 

First, none of the very high frequency (w 5 kHz) vibrations are present which were 

seen in both of the previous two simulation cases. This is due to not including the four 
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higher vibrational modes in this simulation case. 

Second, although the theoretical immersion angle is only 30 deg, the plate is deflected 

for about 66% of the time for each tooth pass. This is because the top of the plate isn't 

stiff enough to allow material to be removed from it. This results in the tool starting to 

cut at an immersion angle of —30 deg and finishing the cut at +30 deg. This accounts 

for 60 deg of tool-workpiece contact which corresponds to 66% of the cycle time. The 

inability to model this phenomenon is a limitation of other dynamic milhng simulation 

methods. 

Third, the vibration frequency during cutting (w 1.3 kHz) is faster than the natural 

frequency of the plate (477 Hz). This is due to the influence of the process stiffness and 

process damping. A simplified analytical estimation of the effect of process stiffness on 

the cutting vibration frequency is as follows. 

Assume that the plate is a SDOF dynamic structure with equivalent system param

eters as calculated in Chapter 4 for node 14: m = 0.033 (kg), k = 310 (N/mm) and 

u)n = 3056 (RAD/s). A schematic representation of this simplified dynamic cutting 

process is given in Fig.5.37. The equation of motion for this system is: 

my + ky = Ksa(hm - y) 

or, 

my + (k + Ksa)y = K8ahm 

The cutting vibration frequency is given simply as 

fnc = ^[(k + Ksa)/mf2 

If Kg = 1185 (MPa) and a = 63.5 (mm) then the cutting vibration frequency is 

fc = 7.6 (kHz). This is a very simplified analysis and is not intended to give an accurate 
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estimate of (/c). Factors neglected here are: process damping, regeneration, and the 

three dimensional geometry of both the plate and the milling process. 

The fourth item to notice about Fig.5.36 is that the transient plate vibrations are 

very small at the start of each cutting cycle. 

Figs.5.38 and 5.39 show the cutting forces in the (x) and (y) directions respectively. 

The high frequency component of the cutting force corresponds closely to the vibration 

frequency of the plate. This is because only one mode is present and the entire plate 

vibrates in phase at the same frequency. The static component of the cutting forces is 

more significant in this case due to the greatly increased feedrate. 

The microscopic surface finish, generated by simulation, of the machined plate is 

shown in Fig.5.40. The graph shows how the surface varies in both the feed and axial 

directions. Three zones are identified on Fig.5.40. Zone 1 is a transient region dependent 

on the initial specifications of the plate geometry. Zone 2 is the steady state finished 

surface. Zone 3 shows the geometry of the workpiece material being fed into the tool. 

Several comments can be made about this surface profile. 

In zone 2, surface errors are present which vary in both the feeding and axial direc

tions. Variations in the feeding direction are present in the form of surface waves. The 

amplitude and static offset of these waves vary in the axial direction but the wavelength 

remains constant. 

The wavelength is 1.6 (mm) measured from Fig.5.40. Two possible sources of these 

surface waves are investigated. First the washboarding phenomenon presented in Chapter 

3 is considered. The tooth period is Tc = (60/sZ) = 13 (ms) and the period of workpiece 

vibration is Tv = (l//nc) = 0.77 (ms) where fnc = 1.3 (kHz) is the plate vibration 

frequency during cutting. Following the analysis of Chapter 3 gives: 

r = Tc/Tv = 16.854 
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JV = (1 - 0.854)"1 = 6.85 

Ta = NTC = 89(ms) 

This aliasing period (Ta) gives a surface wavelength of (fTa) = 0.89 (mm) which cor

responds to the simulated value of 1.6 (mm). This approach however is not satisfactory 

due to the uncertainty in estimating the parameter (r). Since the plate frequency in cut 

and out of cut are different, and only the in cut value was used in the calculations, some 

error must result. But it should also be noted that since the plate vibration between 

subsequent teeth is negligeble the out of cut vibration shouldn't have any effect on the 

cutting vibrations. Therefore since the tool has been seen to impact the workpiece at 

(—30 deg) immersion angle during each tooth pass, which initiates plate vibrations, the 

phase variation between the tooth motion and the workpiece vibration will be constant 

for subsequent teeth. This implies an infinite aliasing period, or a theoretically smooth 

surface. Since the workpiece surface is not smooth another mechanism must be responsi

ble for generating the surface waves. This mechanism is the plate vibration superimposed 

onto the tool cutting motion. The cutting speed is (i?0) = 1154 (mm/s) and the plate 

vibration frequency is fnc = 1300 (Hz). The resultant wavelength when the plate and 

tool motions are combined is (RCl/ fnc) = 0.9 (mm) which corresponds to the simulated 

value of 1.6 (mm). Clearly there isn't a close match between the theoretical and sim

ulated frequencies. This is primarily due to the difficulty of estimating (/nc) from the 

plate deflection. 

Since the first bending mode only is used to estimate the plate motion, displacements 

will always increase towards the tip of the plate. For this reason both the static surface 

error and the amplitude of the waves increases towards the tip of the plate. This isn't 
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the case above the horizontal level where no cutting occurs, because the surface is flat 

there. 

b) Ploughing Included 

This simulation considers ploughing forces. Fig.5.41 shows the displacement of the plate 

at node 14. The result is similar to the displacement obtained when ploughing was 

neglected except that the in cut vibrations have been greatly reduced in amplitude. This 

is a result of increased process stiffness and damping. The in cut vibration frequency has 

risen to 1.5 (kHz) due to the increased process stiffness. 

Figs.5.42 and 5.43 show the cutting forces in the (x) and (y) directions respec

tively. The dynamic component of the cutting forces has been decreased relative to the 

static component, in comparison with the cutting forces when ploughing was neglected. 

The microscopic surface finish (of the machined plate) generated by simulation is 

shown in Fig.5.44. Three characteristics of the surface finish are discussed. The surface 

marks have a wavelength of 0.9 (mm) which is significantly less than the wavelength of 

the surface marks generated when ploughing forces were neglected. Theoretically, the 

resultant wavelength when the plate and tool motions are combined is (i2f2//nc) = 0.77 

(mm) which is close to the simulated value. The amplitude of the surface waves has 

decreased due to the corresponding decrease in plate vibrations. The static component 

of the surface error is close to that of the example which neglected ploughing. 

Experimental results for Case 3 are presented next. Graphs showing the experimental 

results for this case are shown in Figs.5.45 to 5.48. 

Fig.5.45 shows the plate displacement measured at node 14. Unfortunately the peaks 

of the curve were out of the range of the data aquisition system and are not shown in 

the figure. The measured displacement is comparable to both of the simulation results 

presented in Figs.5.36 and 5.41. 
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Figs.5.46 and 5.47 show the (x) and (y) measured forces respectively. The effect of 

tool runout can be clearly seen in these figures, where one tooth is dominant. The static 

component of the cutting force is strong in this case because of the increased feedrate 

used. The simulation results without ploughing (see Figs.5.38 and 5.39) overestimate the 

dynamic component of the cutting force. This is substantially improved when ploughing 

is included in the simulation (see Figs.5.42 and 5.43). 

The measured surface finish is shown in Fig.5.48. The wavelength from this graph 

is 2 (mm). This is the same value of wavelength that was obtained in Case 2. This 

is expected since the cutting speeds and vibration frequencies are close for these two 

cases. The wavelength obtained for Case 1 was 2.8 (mm) which is larger corresponding 

to a faster cutting speed. This reinforces the proposed mechanism responsible for surface 

waviness. Fig.5.48 corresponds to zone 2 of Figs.5.40 and 5.44 whose wavelengths are 1.6 

(mm) and 0.9 (mm) for the non-ploughing and ploughing simulations respectively. In 

the experimental case surface waves are present at the bottom of the plate which are 180 

degrees out of phase with the waves elsewhere on the surface. This indicates that tool 

vibrations are significant and 180 degrees out of phase with the plate motion. 

Two trends which are predicted correctly by the simulation results are that no cutting 

occurs at the top of the plate, and that surface waves are generated. These trends are 

significant and indicate the possibility of more accurate results with a refined simulation 

model. 

5.4.4 Case No.4 

This case considers up milhng with a 1 (in.) diameter four fluted end mill with a 30 deg 

helix angle. The clearance angle is 5 deg with a primary land of 0.5 (mm) and the rake 

angle is 3 deg. The spindle speed is 1157 (RPM) and the feedrate is 0.394 (in./s). The 

axial depth of cut is 2.5 (in.). Simulation cutting parameters used are K8 = 1185 (MPa) 
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and r = 1; edge cutting forces are neglected. Ploughing forces are included where the 

yield strength is estimated as 496 (MPa). Only the first bending mode is included in the 

plate's dynamic model. Structural damping is £ = 0.5. The time step of the simulation 

is 10 (p s). The simulation results are considered first. Graphs showing simulated results 

for this case are shown in Figs. 5.49 to 5.53. 

Fig.5.49 shows the development of the plate motion at node 14 over one second. Both 

static and dynamic deflections are increasing with time. The graph clearly shows that 

chatter vibrations are strong for this machining operation. A high pitched loud noise was 

present during the cutting experiment. The steady state deflection is shown in Fig.5.50. 

The vibration frequency is about 1.35 (kHz) from the plot, which is less than 1.5 (kHz) 

which was the value when a zero helix tool was used. This is likely because of the reduced 

process stiffness from the helical tool geometry. The process stiffness is reduced because 

the instantaneous axial depth of cut is smaller when a helical tool is used. 

Cutting forces in the (x) and (y) directions are given in Figs.5.51 and 5.52 respectively. 

These forces consist primarily of spikes corresponding to the plate vibration. The high 

frequency component is stronger in this case than in the previous cases when a zero helix 

tool was used. 

The trend of the surface profile is shown in Fig.5.53. As for previous cases, the plate 

is not cut at its top and the amount of material increases towards the root of the plate. 

Only a few points are shown on the figure which make it difficult to discuss this result. 

Experimental results for Case 4 are presented next. Graphs of the experimental 

results for this case are shown in Figs.5.54 to 5.57. 

Fig.5.54 shows the plate displacement measured at point 14. The effect of runout is 

strong in this graph. Although the simulated result (see Fig.5.50) has a similar shape, the 

magnitude of the cutting forces is overpredicted. This error is the result of two seperate 

mechanisms. Since only a single mode solution is used in the dynamic modelling of the 
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plate, the deflection will be overpredicted near its top. The cutting mechanism is an 

oblique process when a helical tool is used, this may result in significant errors of the 

force prediction. 

Measured forces in the (x) and (y) directions are shown in Fig.5.55 and 5.56 respec

tively. The forces have a strong dynamic component. The simulation overpredicts the 

magnitude of the cutting forces. This may be a result of inadequate modelling of the 

cutting process or excitation of the plate due to the discretization of the helix angle. 

Also since the dynamic model considers only a single mode, the deflection errors will be 

reflected in the cutting forces. 

The measured surface profile in the axial direction is given in Fig.5.57. The trend 

of the simulated result (see Fig.5.53) is correct but significant errors are present due 

to inaccurate prediction of the plate displacement. The surface generation mechanism 

is significantly different when a helical tool is used. In this case the cutting edge first 

contacts the workpiece at its root rather than at its tip. Thus the transient vibrations 

resulting from the straight tooth impacting the tip of the plate are not present here. This 

is evident by the minimal variations of the plate surface in the feeding direction when 

a helical tool is used. More work must be done to achieve a clear understanding of the 

surface generation mechanism for plate machining with helical tools. 

5.5 Future Work 

It is clear from the results presented that some additional work must be carried out to 

fully model the milhng of flexible workpieces. Considerations of several aspects of this 

work are discussed in this section. 
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5.5.1 Cutting Process 

The method used to model the cutting process in this work is mostly the application of 

known procedures to a slightly different problem. Metal removal by the chip formation 

process has complex physics involving large plastic deformations, shearing, ploughing, 

adhesion, and significant heat flows. Due to this complexity the traditional approach 

in most practical studies has been to simplify the process and model it with a set of 

empirical rules. In the case of machining flexible structures considered here, the chip 

width is necessarily large with a correspondingly small chip thickness. The resultant 

chip shape is unusual and the physics which govern the removal of it are different from 

those for the removal of a more usually shaped chip. Also the influence of the bottom 

edges of the end mill will be less significant as the axial depth of cut is increased. 

Since the metal cutting physics are different from those used to develop the current 

methods of force prediction, the introduction of a new cutting force model would be 

appropriate. This is a difficult task. For example, since the model would be used for 

applications with small feedrates, the edge cutting forces will be more significant than 

usual. Because these forces are strongly dependent on the geometry of the cutting edge 

some account of the tool wear may be required to obtain accurate results. Another 

difficulty arises due to ploughing encountered during the relatively large deflections. The 

plastic flow involved is very complex and any model of this mechanism should also account 

for changes in the cutting edge geometry. 

5.5.2 Kinematics and Surface Generation 

The kinematics of dynamic milhng have been accurately modelled in this work. The 

purpose of this model is to generate chip loads and to produce detailed surface finishes. 

The approach taken here, as outlined in Chapter 3, is different from the method used by 
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other authors. Justification for taking this approach is to obtain accurate surface finish 

results and to model applications with relatively large workpiece deflections. 

Although this model has proven adequate for the current application, four possible 

areas of investigation are given. The tool geometric parameters can be expanded to 

include a ball end and an improved runout model. Multi-axis machining geometry should 

be considered for milhng parts with more complex shapes. Inefficient algorithms can be 

revised to decrease the time required for each simulation. Also the kinematics of surface 

generation for cutting plates with helical tools must be further investigated. 

5.5.3 D y n a m i c M o d e l l i n g of the P l a t e and T o o l 

In Chapter 4 the stepped plate was modelled satisfactorilly using the finite element 

method. It would also be advantageous to model the end mill dynamics in a similar 

manner. A n alternative approach to modelling the dynamics of both the plate and the 

tool is by modal testing techniques and model construction from the measured frequency 

response functions. This method may be easier and more efficient if parts of more complex 

geometry are considered. 

The effect of material removal on the dynamics of the workpiece should also be con

sidered. If the workpiece is discretized into several cutting zone locations its dynamic 

model can be obtained for each location. When the cutting zone is between two of these 

models the workpiece dynamics can be interpolated to provide an accurate representation 

of its structural characteristics. 

If steadies are used to reduce vibration when machining flexible workpieces, their 

interaction with the workpiece dynamics should be modelled. 
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5.5.4 Experimental Work 

One difficulty with the experimental measurements taken while machining flexible plates 

in this work was the measurement of plate deflections. The deflections were large and 

of a high frequency. This resulted in several steel shims becoming loose and falling off 

the aluminum plates. For this reason it might be advantageous to machine steel plates if 

experiments such as these are attempted again. Also a more rigid plate should be used 

if deflection measurements are desired at the top of the plate. 

5.5.5 Practical Solutions 

Two solutions for reducing machining errors of flexible workpieces are presented. These 

methods are only intended to reduce the static errors and won't reduce the waves present 

on the machined surface. 

The first solution involves machining a plate with the desired process parameters and 

measuring the surface errors. A new part is machined with the tool offset toward the 

workpiece an amount equal to the measured error. This method is itterative since the 

dynamics of the workpiece will change depending on machining errors. 

The second method requires modelling the dynamics of the workpiece at several dis

crete cutting zones. The local stiffness of the plate is then used to determine the required 

offset of the tool. This method is more accurate and would be expected to give good 

results on the first attempt. 

5.6 Conclusions 

Four cases of machining flat plates have been examined in this chapter by both simula

tion and experimental studies. Although perfect matching between these results wasn't 

obtained, several important trends were predicted by simulation which were realized in 
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the experiments. These included: prediction of waves on the finished workpiece surface, 

lack of material removal at the top of the plate, an increased vibration frequency during 

cutting, high frequency components present in the cutting forces as a result of higher 

mode activity near the root of the plate and the reduction of dynamic cutting force am

plitudes by the introduction of a ploughing force model. These trends suggest that highly 

realistic results could be obtained if a more accurate cutting force model is implemented. 

The tool dynamic response could also be included to improve the correlation between 

experimental and simulation results. 
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C o n d i t i o n s o f S i m u l a t i o n a n d E x p e r i m e n t s f o r M i l l i n g o f P l a t e s 

P l a t e d i m e n s i o n s : 2 . 5 x 2 . 5 x 0 . 1 ( i n . ) t o 2 . 5 x 2 . 5 x 0 . . 0 5 ( i n . ) 
6 3 . 5 x 6 3 . 5 x 2 . 5 4 (mm) t o 6 3 . 5 x 6 3 . 5 x 1 . . 2 7 (mm) 

Common p a r a m e t e r s f o r e a c h c a s e a r e : 

A x i a l d e p t h o f c u t ( 2 . 5 i n . ) 
N u m b e r o f f l u t e s o n t h e c u t t e r (4) 
S p e c i f i c c u t t i n g p r e s s u r e ( 1 1 8 5 MPa) 
C u t t i n g f o r c e r a t i o (1) 
Y i e l d p r e s s u r e ( 4 9 6 MPa) 

S p e c i f i c p a r a m e t e r s f o r e a c h c a s e a r e : 

C A S E f l C A S E <2 C A S E #3 C A S E •< 

T o o l D i a m e t e r ( i n . ) 0 . 7 5 0 . 7 5 0 . 7 5 1 

H e l i x A n g l e ( d e g ) 0 0 0 30 

R a k e A n g l e ( d e g ) 5 5 5 3 

C l e a r a n c e A n g l e ( d e g ) 10 10 10 5 

S p i n d l e S p e e d (rpm) 1 5 0 0 1 1 5 7 1 1 5 7 1 1 5 7 

F e e d ( i n . / s ) 0 . 0 1 5 0 . 0 2 0 . 4 0 . 4 

P l o u g h i n g no n o a ) n o y e s 
b ) y e s 

Table 5.1: Parameters for Four Cases of Plate Machining. 



Figure 5.1: (a) Machining of a flexible workpiece and (b) Interaction between the tool 
and the workpiece. 
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Figure 5.2: Shop drawing of plate for experimental work. 
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Figure 5.3: Mounting bracket for experimental plate machining. 
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Figure 5.5: CASE 1: Simulated plate response at node 14. 
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Figure 5.7: CASE 1: Simulated x-cutting force. 
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Figure 5.8: CASE 1: Simulated y-cutting force. 
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Figure 5.9: CASE 1: Simulated detailed x-cutting force. 
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Figure 5.11: CASE 1: Experimental displacement at node 14. 
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Figure 5.12: CASE 1: Experimental x-cutting force. 
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Figure 5.13: CASE 1: Experimental y-cutting force. 
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Figure 5.15: CASE 2: Simulated plate response at node 14 (£ = 0.005). 
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Figure 5.17: CASE 2: Simulated plate response at node 5 (C = 0.05). 
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Figure 5.19: CASE 2: Simulated plate response at node 14 (( = 0.05) 
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Figure 5.21: CASE 2: Simulated x-cutting force (( = 0.05). 
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OJ 

Figure 5.23: CASE 2: Simulated detailed x-cutting force (C = 0.05). 
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Figure 5.24: CASE 2: Simulated detailed y-cutting force (£ = 0.05). 
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Figure 5.25: CASE 2: Simulated plate response at node 14 (£ = 0.5). 
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Figure 5.26: CASE 2: Simulated plate response at node 14 (( = 0.5). 
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Figure 5.28: CASE 2: Simulated x-cutting force (( = 0.5). 
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Figure 5.29: CASE 2: Simulated y-cutting force (( = 0.5). 
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Figure 5.30: CASE 2: Simulated detailed x-cutting force ({ = 0.5). 
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Figure 5.31: CASE 2: Simulated detailed y-cutting force (C = 0.5). 
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Figure 5.32: CASE 2: Experimental displacement at node 14. 
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Figure 5.33: CASE 2: Experimental x-cutting force. 
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Figure 5.35: CASE 2: Experimentally measured surface finish at node 
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Figure 5.36: CASE 3: Simulated displacement at node 14 (no ploughing). 
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Figure 5.37: Simple case of dynamic cutting. 



Chapter 5. Results of Plate Machining 150 

t 
I 

TIUE (fc) 
Figure 5.38: CASE 3: Simulated x-cutting force (no ploughing). 
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Figure 5.39: CASE 3: Simulated y-cutting force (no ploughing). 
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Figure 5.40: CASE 3: Simulated microscopic surface finish (no ploughing). 
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Figure 5.41: CASE 3: Simulated displacement at node 14 (ploughing inch). 
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Figure 5.42: CASE 3: Simulated x-cutting force (ploughing inch). 
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Figure 5.43: CASE 3: Simulated y-cutting force (ploughing inch). 
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Figure 5.45: CASE 3: Experimental displacement at node 14. 
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Figure 5.46: CASE 3: Experimental x-cutting force. 

I 

-OJ 

TIUC (MCJ 

Figure 5.47: CASE 3: Experimental y-cutting force. 
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Figure 5.48: CASE 3: Experimentally measured surface finish at node 14. 
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Figure 5.49: CASE 4: Simulated displacement at node 14 showing unstable cutting. 
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Figure 5.51: CASE 4: Simulated x-cutting force. 
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Figure 5.53: CASE 4: Simulated surface profile. 
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Figure 5.57: CASE 4: Experimentally measured surface profile. 



Chapter 6 

Concluding Remarks 

The mechanisms of chip removal and surface generation have been studied in this the

sis. A n improved model of uncut chip thickness determination has been developed by 

employing the actual kinematics of milhng. To the best knowledge of the author, this 

is an original approach to discrete modelling of the milhng process. The use of an ac

curate model for the kinematics of tooth motion in milhng is particularly important in 

machining workpieces with narrow chip thickness and large axial depths of cut. Errors 

introduced by earlier assumptions of circular tool motion may be significant for accurate 

determination of the uncut chip thickness. 

It is shown in this thesis that the cutting edge of the milling tool may travel in several 

zones during its vibratory motion as a result of the dynamic interaction between the 

flexible structures of the tool and workpiece. The cutting force mechanism is governed 

by a different physical mechanism in each region. Previous dynamic milhng models 

have used either generalized metal shearing laws or emperical cutting force coefficients, 

representing the process stiffness and damping, to estimate the cutting forces. In this 

study force contributions of shearing, tool flank-workpiece interaction and disengagement 

of the tool and workpiece are included separately and superimposed in a discrete time 

model of the process. Tool flank interference has been modelled as a simple ploughing 

mechanism. 

The closed loop behaviour of the cutting process under structural vibrations has been 

modelled by employing the kinematics of milhng, relative motion between the tool and 

160 
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workpiece, the cutting force mechanism and surface finish generation. A discrete time 

simulation program has been developed to implement these mechanisms. The simulation 

has the versatility to incorporate dynamic models for both the tool and the workpiece. 

Two mechanisms, washboarding and vibration reproduction, have been identified in gen

erating waves on the workpiece surface under different conditions of dynamic milhng. 

Peripheral milhng of a very flexible workpiece (plate) has been investigated in this 

thesis. The time varying mass and stiffness of the workpiece have been reduced to a 

few degrees of freedom at the cutting zone where milling occurs. The workpiece was 

modelled using the finite element method and reduced by the system equivalent reduc

tion expansion process. Four cases of machining flat plates have been examined by both 

simulation and experimental studies. Several important trends have been predicted by 

simulation which were realized in the experiments. These included: prediction of waves 

on the finished workpiece surface, lack of material removal at the top of the plate, an 

increased vibration frequency during cutting, high frequency components present in the 

cutting forces as a result of higher mode activity near the root of the plate and the reduc

tion of dynamic cutting force amplitudes by the introduction of a ploughing force model. 

Although these trends qualitatively define milhng of flexible workpieces the accuracy of 

many numerical results has been poor and future work is required to improve the model. 

There are several problems remaining to be investigated in this research. These 

include inadequate cutting force prediction, hmited tool geometries available and the 

inability to model the continuously changing dynamics of the plate. Therefore, future 

work should include the development of more appropriate static and dynamic cutting 

force models, implementation of more complex tool geometries (tool runout and ball 

end) and the investigation of changing workpiece dynamics during cutting. Also, the tool 

offset method should be verified as an acceptable first improvement to milling flexible 

workpieces by both experimental and simulation investigations. 
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Appendix A 

Static Deflection Calculations 

The following static deflections are calculated with reference to the loaded plate of Fig. 

4.3. 

Deflection due to Fx: 

From beam bending theory the deflection of the plate at its tip due to the 

applied force (Fx) is given by [36]: 

PP 
~ 3EI 

1(.0635)3 

6 = 
3£[1.27(10)-3(.0635)3/12] 

3(10)3  

8 = - E -

Deflection due to M: 

For a shaft of rectangular cross section, with the dimensions of the plate 

of Fig.4.2, the angular twist per unit length is given by [36]: 

3M 

where, 
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M = Fxt/2 

and, 

G= E 

2(1 + v) 

If the displacement at the corner of the plate is estimated as: 

then the calculated maximum deflection of the plate due to applied (M) 

for a plate with v = 0.3 is: 

3(.00127/2)(2)(1.3)(.0635) 
8 = 2(.0635)(.00127)3£ 

77(10)3 

8 = 
E 

Deflection due to Fy: 

The deflection of the plate due to force (Fy) is given by [36]: 

(.168)P/2 

8 = 
D 

where, 

D= E t 3 

8 = 

12(l-i/ 2) 

(.168)(1)(.0635)2(12)(1 - ,32) 
E(.00127)3 

3600(10)3 

8 = 
E 



Appendix B 

Listing of Programs 

• File transfers from V A S T to formatted data. 

• SEREP dynamic system reduction program. 

• Point receptance F R F calculation for reduced dynamic systems. 

• Forced response calculation for reduced dynamic systems. 

• F F T analysis for a range of data. 

• Simulation of dynamic milling with workpiece vibrations. 

The programs listed above can be found in Report ***• , 1990 from UBC's 

Computer Aided Manufacturing and Robotics Library (CAMROL). 
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Appendix C 

Summary of Plate Machining Results 

PLATE: free - free - free - cantilevered (see F i g . 4.1) 
2.5 x 2.5 x 0.1 ( in . ) to 2.5 x 2 . 5 x 0 . 0 5 ( in. ) 

63.5 x 63.5 x 2.54 (mm) to 63.5 x 63.5 x 1.27 (mm) 

Y i e l d Pressure - 496 MPa 

TABLE OF PARAMETERS USED FOR FOUR CASES: 

PARAMETER CASE #1 CASE #2 CASE #3 CASE #4 

Operation ( - ) up m i l l up m i l l up m i l l up m i l l 

Tool diameter ( in . ) 3/4 3/4 3/4 1 

Rake angle (deg) 5 5 5 3 

Clearance angle (deg) 10 10 10 5 

Primary land ( in . ) NA NA 0.02 0.02 

Flutes on cutter ( - ) 4 4 4 4 

Spec, cutting press • (MPa) 1185 1185 1185 1185 

Cutting force rat io ( - ) 1 1 1 1 

Axial depth of cut ( in. ) 2.5 2.5 2.5 2.5 

Spindle speed (RPM) 1500 1157 1157 1157 

Feedrate ( in . / s ) 0.015 0.02 0.4 0.4 

Feed per tooth (thou) 0.15 0.26 5.2 5.2 

Immersion angle (deg) 30 30 30 18 

Max. uncut chip (thou) 0.08 0.13 2.6 1.6 

Sim. damping rat io ( - ) 0.05 a) 
b) 
c) 

0.005 
0.05 
0.5 

0.5 0.5 

Modes i n c l . ( - ) 1-5 1-5 1 1 

Sim. time step (micro sec) 10 10 10 10 

Ploughing Inc l . ( - ) no no a) no no 
b) yes 
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SUMMARY OF RESULTS FOR FOUR CASES: 

CASE NO. 1: 

Figures: 5.4-5.14 

Displacement: Simulation F i r s t mode dominant and strong out of cut. 
Higher modes stronger towards root of plate . 
Unstable machining operation. 
In cut frequency higher than out of cut frequency. 

Experiment Poor correlat ion with simulation. 
In cut frequency (900 H z ) close to sim. value. 

Forces: Simulation Very strong AC component. 
Very high frequency (5 k H z ) variat ion during cut. 

Experiment Significant AC and DC components are v i s i b l e . 
Magnitude is close to simulation. 

Surface: Experiment Wavelength - 2.8 mm, Amplitude - 0.2 mm. 
Theoretical wavelength is 1.7 mm. 



CASE NO. 2: 

Figures: 5.15-5.35 

Displacement: Simulation a) Strongly unstable, simulation crashes. 

b) Unstable machining process. 
Strong f i r s t mode transients in cut. 
Higher frequency vibrat ion in cut (890 Hz). 

c) Unstable machining process. 
L i t t l e transient v ibrat ion between cuts. 
In cut vibrat ion frequency is about (890 Hz) 

Experiment Overall poor correlat ion with simulation. 
In cut frequency (860 Hz) close to sim. value. 

Forces: Simulation a) Strongly unstable, simulation crashes. 

b) Very strong AC component. 
Very high frequency (5 kHz) var iat ion in cut 

c) S l ight ly more DC component than case b) . 
Very high frequency (5kHz) variat ion in cut. 

Experiment Signif icant AC and DC components are v i s i b l e . 
Peak magnitude is close to simulation. 

Surface: Experiment Wavelength - 2 mm, Amplitude - 0.1 mm. 
Theoretical wavelength is 1.3 mm. 



CASE NO. 3: 

Figures: 

Displacement: Simulation 

Experiment 

Forces: Simulation 

Experiment 

Surface: Simulation 

Experiment 

5.36-5.48 

a) Strong AC (1.3 kHz) and DC components in cut. 
In cut frequency higher than fundamental freq. 

b) Strong DC component. 
Reduced AC (1.5 kHz) magnitude wrt. case a). 

Poor results obtained, tops clipped off. 
Comparable with both simulation results . 

a) Strong AC component on a small DC s ig . 

b) Greatly reduced AC component wrt. case a). 
Similar DC wrt. case a). 

Strong DC component due to increased feedrate. 
Signif icant runout v i s i b l e . 
Magnitude is close to simulation case b) . 

a) Wavelength - 1.6 mm, Amplitude (#14) - 0.4 mm. 
No cutting at top of plate. 

b) Wavelength - 0.9 mm, Amplitude (#14) - 0.1 mm. 
No cutting at top of plate. 

Wavelength - 2 mm, Amplitude (#14) - 0.15 mm. 
No cutting at top of plate. 



CASE NO. 4: 

Figures: 

Displacement 

Forces: 

Surface: 

5.49-5.57 

S i m u l a t i o n Unstable machining ope r a t i o n . 
Strong DC and AC (1.35 kHz) components. 
V i s i b l e v a r i a t i o n at tooth p a s s i n g frequency. 

Experiment Poor q u a n t i t a t i v e c o r r e l a t i o n with s i m u l a t i o n . 
In cut frequency (700 Hz) not c l o s e to sim. value. 
S i m i l a r trend ( i e . shape) with s i m u l a t i o n . 

Simulation Very strong AC component. 
Very high frequency v a r i a t i o n during cut. 

Experiment S i g n i f i c a n t AC and DC components are v i s i b l e . 
Magnitude i s not c l o s e to s i m u l a t i o n . 
Runout i s c l e a r l y v i s i b l e . 

S i m u l a t i o n No c u t t i n g at top of the p l a t e . 
More m a t e r i a l removed towards root of the p l a t e . 
More d e t a i l r e q u i r e d f o r f u r t h e r comments. 

Experiment S i m i l a r trend with s i m u l a t i o n r e s u l t . 


