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Abstract

Current manufacturing research aims at increasing productivity by optimal selection of
process parameters. This is accomplished by understanding the fundamental physics of
individual manufacturing processes.

In this thesis, peripheral milling of very flexible cantilevered plates is studied. The
static and dynamic deflections of the plate under periodic milling forces are modelled.
A new dynamic cutting force model is developed which considers five discrete zones of
relative motion between the tool and the workpiece. The kinematics of both milling and
vibratory motions are modelled, which is an original research contribution in this area.
It is shown that the penetration of the tool into the workpiece during vibratory cutting
has a strong influence on the damping and stiffness characteristics of the milling process.

A structural model of a discontinuous cantilevered plate is determined using the
finite element method. A reduced order structural model at the tool-workpiece contact
zone is implemented for discrete time response analysi‘s of the plate under cutting force
excitations during milling. The closed loop dynamic behaviour of the system is modelled
and taken into account in the analysis. Simulations of plate xﬁachining are compared with
experimental results. A model of the surface finish generation mechanism is deduced from
the analysis and experimental results.

Applications of this research include peripheral milling of integral jet engine impellers,

computer disk drives and other flexible mechanical components.
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Nomenclature

a :axial depth of cut (milling) or width of cut (general)
A; : ploughing model shearing contact area

Aj;: ploughing model normal contact area

¢ : feed per tooth

¢;: damping of a SDOF dynamic system at node ¢
C: damping matrix of a MDOF dynamic system

f: feedrate

fn: natural frequency

frct vibration frequency during cutting

fs : shearing force from ploughing model

fn : normal force from ploughing model

ft : tangential dynamic cutting force

~ fr : radial dynamic cutting force

F;(t): excitation force at node ¢ as a function of time
F(t): excitation force vector as a function of time

F, : resultant cutting force in x direction on a tooth
F,: resultant cutting force in y direction on a tooth
Fx : resultant cutting force in x direction on the tool
Fy: resultant cutting force in y direction on the tool
F}: tangential cutting force |
F,: radial cutting force

G: transfer function



|G|: magnitude of transfer function

h: uncut chip thickness

he: cut chip thickness

hy: height of feed marks on workpiece surface

hm: mean uncut chip thickness

h* : equivalent flank component of uncut chip thickness
k;: stiffness of a SDOF dynamic system at node ¢

K: stifiness matrix of a MDOF dynamic system

K,: specific cutting pressure

l;: ploughing model shearing contact length

l3: ploughing model normal contact length

m;: mass of a SDOF dynamic system at node ¢

M: mass matrix of a MDOF dynamic system

N : washboarding multiplication factor

Po: workpiece yield pressure

P: modal displacement matrix

gi(t):generalized displacement at node ¢ as a function of time
q(t): generalized displacement vector as a function of time
r: washboarding period ratio

r1: cutting force ratio

r9: edge force ratio

re: cutting force ratio

R: resultant cutting force

R: tool’s nominal radius

R, : distance of surface point from spindle center



R;: tooth radius from spindle center

t: time

T: time step used in simulations

T,: aliasing or washboarding period

T.: cutting period

T,: vibration period

Zc, Yoi T,y coordinates of tool center

Tp,Yp: T,y coordinates of point on workpiece
Ty, Yp: T,y coordinates of tooth

z : feeding direction coordinate axis

y : normal direction coordinate axis

z : axial direction coordinate axis

Zo, Yo, 2o: Previous z,y, z values

Z : number of flutes on the cutter

Agz: change in z position of workpiece

Ay: change in y position of workpiece
SURF(i,j,k): surface array of the workpiece
U : oriented velocity of tool relative to the workpiece during ploughing
U, : velocity of tool center

Up : velocity of vibrating workpiece

¥y : velocity of tooth on the cutter
yp:velocity of tooth relative to the workpiece
a: tool’s rake angle

B: oriented direction of tool travel relative to the workpiece

~: tool’s clearance angle



(: structural damping ratio

n: effective angle of the clearance face to the horizontal axis
6: process immersion angle

n: direction of tool travel relative to the workpiece

A: surface finish wavelength

p: coefficient of friction

v: Poisson’s ratio

7: shear stress on the cutting shear plane

¢: shear angle of cutting

¢: phase angle of a transfer function

¢;: mode shape for mode number 7

¥: instantaneous immersion angle of the tool in the workpiece
w: circular frequency

wy: natural circular frequency

wq: damped circular frequency

®: modal matrix

Q: angular speed of the tool
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Chapter 1

Introduction

Current manufacturing research is mostly aimed at increasing productivity and develop-
ing unmanned operations. This is accomplished by taking one of two basic approaches.
The first approach is development and improvement of manufacturing systems such as
sensors and control schemes. The second approach is more fundamental and attempts
to investigate the physics of individual processes. The second approach is taken here to
- investigate milling of flexible workpieces.

Milling is a common machining operation used to profile prismatic and sculptured
parts. The versatility of the end milling process has resulted in widespread use of this
operation by industry. Current milling machines and machining centres utilize sophis-
ticated computer numerical control (CNC) technologies and require limited operator
presence.

One application of end milling is the manufacture of flexible workpieces such as jet
engine impellers, microwave guideway systems and aircraft structural components. The
periodic forces of milling result in both static and dynamic deflections of the workpiece
and corresponding surface errors. Current industrial practice uses conservative speeds
and feeds to reduce the surface errors of the finished workpiece. This is an unacceptable
solution because of the coiresponding loss in productivity. It is the purpose of this
research to investigate and model the physics of machining flexible workpieces and to
determine methods of improving on current practice.

Chapter 2 is the Literature Review, and provides a theoretical base for the remainder
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of this thesis. Topics from metal cutting, milling geometry, friction theory, vibrations,
machine-tool chatter and machining flexible workpieces are discussed.

Chapter 3 presents the geometric modelling of dynamic milling and the metal cutting
theory used in this thesis. Simulation and experimental results, along with analytical
explanations, are given for both static and dynamic milling.

In Chapter 4 the dynamic characteristics of a stepped cantilevered plate are discussed
and modelled using the finite element method. Experimental verification of this model
is given. |

Chapter 5 discusses the machining of flexible workpieces. This work integrates the
results of Chapters 2, 3 and 4. Simulation and experimental results are presented for
four cases of plate maching. Some recommendations for future work are presented.

The thesis is concluded with a short summary of the main results.z



Chapter 2

Literature Review

2.1 Introduction

The nature of manufacturing research is highly interdisciplinary. When considering a
complex manufacturing process from an engineering perspective, there are several con-
siderations to be made. In the body of this report the subjects introduced in this chapter
are integ_ra,ted to analyze the problem of peripheral milling of flexible structures. In
this chapter topics from the following subjects are reviewed: metal cutting, geometry of
milling, friction theory, vibrations, machine-tool chatter and machining of flexible work-
pieces. The purpose of reviewing these topics is to provide a theoretical base for the
remainder of this work and also to present approaches taken by other authors of similar

projects.

2.2 Metal Cutting Process

In this section the metal cutting process is defined and its physics are discussed. A
general definition of metal cutting includes, “operations in which a thin layer of metal,
the chip or swarf, is removed by a wedge-shaped tool from a larger body” [46]. The
resultant machined surface should have a desired shape and surface finish, and measure

within required tolerances.
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Although metal cutting operations are performed by a wide configuration of machine-
tools, the basic mechanics of most of these cutting processes may be idealized by con-
sidering the orthogonal cutting process, see Fig.2.1. Orthogonal cutting is defined as,
“cutting with the cutting edge perpendicular to the relative velocity between tool and
work”[32].

A tool, with rake angle (@) and clearance angle (), moves along the workpiece
surface at an uncut chip thickness (h). The workpiece material shears along plane (AB)
and forms a chip. The deformed chip is of thickness (h.) and the cutting ratio is defined
as[32): |

re = h/h. (2.1)
The shear angle (@) is given as a function of the cutting ratio and the rake angle
by([32]:

T'¢ COS

¢ = arctan (2.2)

1-resine
This cutting geometry is not valid for oblique cutting where the tool cutting edge is
not orthogonal to the cutting velocity. Oblique cutting is thoroughly explained in [2].
Forces encountered in metal cutting depend on several factors: geometric orientation
of the tool, cutting speed, workpiece material and the lubricant used [2]. The various
forces are shown in Fig.2.2. The resultant force acting on the tool is (R). It is useful to
consider two fundamental sets of forces equivalent to the resultant force. (Fy,) and (V)
are the friction and normal forces respectively acting on the tool rake face. (F,) and (F},)
are the shearing and normal forces respectively acting on the shear plane (AB). (F})
and (F,) are the tangential and radial and components of (R). The relationship between

these forces is apparent from the geometry of Fig.2.2, [2]:
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Fy, = Fysina+ F, cosa (2.3)

N = F,cosa — F,sin«

F,=F,cos¢— F,sin¢ (2.4)
F, = F;sin¢ + F, cos ¢

Merchant [25] developed a thin zone model for analytically predicting the cutting
forces on the tool. A minimum energy condition was used to show that the forces could

be given by:

F, = 2hat cot ¢ (2.5)
F, = har(cot’ ¢ — 1)

where,

1

¢=Z—§(ﬁ—a) (2.6)

and (7), (¢) and (B) are the shear stress on the shear plane, the shear angle and the
angle between the resultant force and the normal to the rake face respectively. This model
is rather simple and based on assumptions which are “open to considerable doubt”[2].
Results of experiments [2] show that the above equations don’t accurately represent the
physics of actual cutting. Different models have been presented by other authors [2] but
none have proved to be very accurate, and for this reason empirical models of the cutting
force are used most frequently.

Assumptions inherent to the orthogonal cutting model include[2],[16]:

e a truly planar shear plane
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e process independence of thermal effects

e a rigid tool-workpiece system

o a perfectly sharp tool

o uniformly distributed stresses on the shear plane
¢ homogeneous workpiece material

o continuous chip formation

e constant cutting speed

¢ two dimensional deformation.

Although the orthogonal cutting model is not exact the analysis “qualitatively de-
scribes the cutting process satisfactorily” [2].

(Ft) and (F,) can usually be measured with a dynamometer for given cutting condi-
tions. For a specific cutter-workpiece pair an empirical formulation for (F;) and (F,) can
be derived if sufficient cutting tests are carried out. One commonly used linear model

for the cutting forces is [37):

F, = K,ah (2.7)
F,- = rlK,,ah

where the épeciﬁc cutting pressure (K,), and the cutting force ratio (r;) are both
experimentally determined parameters which may or may not vary with the cutting
conditions. Here the cutting force is assumed to be proportional to the width of cut
(¢) and to the instantaneous uncut chip thickness (k). This model neglects the effect of

cutting speed which is often a good approximation [37).
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Another linear model for the cutting forces is[1]:

Ft = Kaa(h + h*) (28)
F, = K,a(r1h + rah™)

where (K,), (r1), (r2) and (h*) are all experimentally determined parameters. In this
case the cutting force is proportional to the uncut chip thickness plus some constant (h*)
which represents the effect of the so called edge-cutting forces due to rubbing at the edge
and flank of the tool. It should be noted that other, perhaps nonlinear, models could be
developed to fit experimental data if required.

This section has thus far considered only static cutting (when there is no relative
- vibration between the tool and the workpiece). The effects of cutting under dynamic
conditions will be considered next.

During metal cutting operations the structural properties of the machine-tool or the
workpiece (discussed later) may give rise to vibrations which cause changes in the in-
stantaneous uncut chip thickness (k). The cutting force will also be variable since it has
been shown to be roughly proportional to (k). The nature of how the cutting force varies
with instantaneous changes of the cutting conditions is reviewed.

The most obvious method of analysing dynamic cutting is to use the simple orthogonal
cutting model. In this case the cutting forces would vary as the uncut chip thickness.
This solution would be sufficient if the amplitude and frequency of vibration were small
enough such that other effects could be neglected.

When the amplitude and frequency of vibration become significant more detailed
models must be used to obtain a high level of confidence in theoretical predictions. The
reasons for vibrations becoming large during cutting are not obvious and are discussed

in Section 2.6. Assuming that a dynamic cutting model is required there are several
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methods of force prediction available. This area has been the topic of several research
projects and three theories are briefly reviewed here.

The first theory considers Dynamic Cutting Force Coefficients (DCFC). The process
of dynva,nu’c cutting is shown in Fig.2.3. As noted by Tlusty [37] “The tool is removing
a chip from an undulated surface which was generated during the previous pass when
the tool vibrated with an amplitude (2,). Simultaneously the tool is vibrating with an
amplitude (z).” By decomposing the dynamic cutting process into wave removing and

wave generating the dynamic components (f; and f,) of the cutting forces are given by

[37):

fi = a(Kuz + Keo2,) (2.9)
fr = a(KdiZ + I{dozo)

The DCFC’s (K4i,K4o,K:i and K,,) are considered to be complex numbers. Sub-
script (d) represents direct coefficients because (f,) is the cutting force in the direction
of vibration (z). Subscript (c) represents cross coefficients because (f;) is the cutting
force perpendicular to (z). Subscripts (¢) and (o) represent inner and outer modulations
respectively.

Under extreme conditions of vibration Tlusty [40] has noted that the cutting tool
may “jump out” of the workpiece. Under this condition there is no contact between the
tool and the workpiece and the cutting force is therefore zero.

The DCFC’s are measured by harmonically exciting the tool during orthogonal cutting
and comparing the tool vibration and the cutting forces during the process. “The whole
equipment is very sophisticated, it needs considerable maintenance and calibration effort
and, of course, contains many potential error sources” [40]. A m;xjor result of DCFC

measurements indicate that, “modes of vibration with direction close to the normal to
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the cut are affected by the damping in the cutting process much more than the modes in
other directions” [37]. This model requires specialized test equipment but gives insight
into the dynamics of cutting from the results obtained for various changes in the cutting
conditions.

The second approach to the dynamic cutting process discussed here considers an
elastic plastic deformation zone located at the tool tip and on the clearance face. As
shown in Fig.2.4 [50], the workpiece material passes both above and below the tool.
Point A is known as the separation point. The material passing above point A forms a
chip a.ﬁd is removed from the workpiece in the usual manner. The material passing below
point A is compressed in an elastic plastic deformation process and remains as part of
the workpiece.

The cutting force on the rake face is calculated using ort_hogonal cutting theory. The
forces on the clearance face are determined using a ploughing theory which assumes the
force is proportional to the volume of material displaced by the tool motion. This theory
assumes small vibrations of the tool. The ploughing forces (f; and f, are components of

the overall cutting force due to ploughing, see Fig.2.4) are given as [50]:

.ft = fspv (2'10)
fr=pV

where (f,p) is the specific ploughing force, (p.) is the mean friction coefficient on the
contact surface and (V) is the volume of material displaced. The model neglects side
spread of workpiece material and permanent plastic deformation of the ploughed surface.
The nose AB is neglected from the ploughing calculation because the force is said to be
constant on this part of the tool. The results are verified experimentally for a sinusoidally

varying case [50].
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The third theory for the dynamic cutting process considers the effects of varying
both the feedrate and the cutting speed. Tobias notes that [45]: “it is quite sufficient
to determine how the cutting force changes when small variations in these factors take
place.”

The variation of the cutting force is defined in terms of the variation of three param-
eters: the instantaneous uncut chip thickness (), the cutting speed (v) and the rate of

penetration (r). The variation of the cutting force is given as [45]:

dF = kydh + kydr + ksdv (2.11)

These dynamic coeflicients require a significant amount of work to obtain but are
simple in terms of physical understanding, as explained by Tobias [45].

The descrif)tions of the metal cutting process given in this section have all made
physical assumptions of reality. A brief introduction to some of the phenomena which
have not yet been discussed, but are important in the field of metal cutting, will be
reviewed here.

Tool wear occurs fn all metal cutting operations. As noted by Armérego and Brown
(2):

“Cutting tools are subjected to an extremely severe rubbing process. They are in
metﬂ-to-metal contact with the chip and workpiece under conditions of very high stress
at high temperature. The situation is further aggrivated by the existence of extreme
stress and temperature gradients near the surface of the tool.”

Rubbing and diffusion cause the tool to form craters on the rake face and wear lands
on the clearance face. Chipping off of small particles may also occur on the cutting edge.
The results of a worn tool are changes in both the static and dynamic cutting forces and

variations in the tool geometry (which may affect the dimensions and surface quality of
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the finished workpiece).

The previous analyses have all assumed the formation of a continuous chip under static
cutting conditions. It should be noted that for certain workpiece materials and cutting
conditions the formation of a built up edge or cutting with a discontinuous chip due to
vibrations may occur. Brittle materials tend to form discontinuous chips while ductile
materials are more likely to form a built up edge [2]. Built up edge and discontinuous
chips produced by vibrations result in a deteriorated surface quality and “if surface finish
is an important requirement, the cutf.ing conditions will have to be adjusted to avoid these
features” [2].

In industrial machining operations cutting fluids are often used to lubricate the chip
tool contact area in order to reduce the friction. The decreased cutting friction results
in lower cutting forces and increased tool life. Other benifits of using a cutting fluid
include an improved surface finish and reduced distortion due to temperature rise in the
workpiece. The use of a cutting fluid strongly affects the metal cutting process and this

must be accounted for in any analysis where a cutting fluid is used.

2.3 Geometry of Milling

A physical description of the milling process is given by Martellotti [22]: “a process of
removing the excess material from the workpiece in the form of small individual chips.
These chips are formed by the intermittent engagement with the workpiece of a plurality
of cutting edges or teeth integral with or inserted in a cylindrical body known as the
milling cutter. This intermittent engagement is produced by feeding the workpiece into
the field dominated by the rotating cutter.” A wide variety of machining operations
are possible on a milling machine. These operations can mostly be defined as either

peripheral or face milling. In peripheral milling the surface being generated is parallel
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to the axis of the tool. In face milling operations the working surface is perpendicular to
the axis of the tool. A typical end mill is shown and geometrically defined in Fig.2.5 [2].
Martellotti [22] gives a precise mathematical formulation for the geometry of the
milling process. He derives relationships for the looped trochoidal path generated by a
milling cutter tooth, the uncut chip thickness, amplitude of the tooth marks, the angle
of approach of teeth and the relative velocity along the tooth path.
The equation for amplitude of the tooth marks is used in a later section and is

therefore repeated here [22]:

__R c
T 8‘R&tr

where (hy) is the height of the tooth mark above its lowest level, (R) is the radius of

hy % (2.12)

the cutter, (r) is the feed per revolution divided by (27) and (c) is the feed per tooth.
The (+) sign represents up milling and the (—) sign represents down milling.

The equations given by Martellotti are correct only for a completely rigid system.
If vibrations occur they must be added to the path of the tool to accurately model its
motion. The dynamic motion of milling is shown in Fig.2.6.

When the feed per tooth (c) is small the trochoidal path of the tool may simply be

approximated as a circle [22]. In this case the uncut chip thickness is given by:

h = csin ‘ (2.13)
where (1) is the immersion angle of the tooth in cut.
2.4 Friction Theory

Due to the nature of the metal cutting process a great deal of frictional resistance is

generated in various regions of the cutting zone. This is especially true during dynamic
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cutting when the clearance face rubs and ploughs into the workpiece: A general definition
of friction is [12]: “the resistance to motion which is experienced whenever one solid
body slides over another.” Frictional resistance of contacting metals is primarily due
to the processes of adhesion and material displacement [12]. Theories of adhesion and
ploughing (a particular case of material displacement) will be briefly discussed here.
The dynamic coefficient of friction (x) is defined as the ratio of the frictional to the
normal fofce acting on contacting bodies in relative motion. Bowden and Tabor [12]

define the coefficient of friction due to adhesion in their simple theory as:

Ha = Sa/po (214)

where (s,) and (p,) are the critical shear stress and the yield pressure respectively.
The frictional force is calculated by multiplying the coeflicient of friction by the normal
force on the surface. The theory ignores work hardening and the effect of any contaminant
layer which might be present.

Ploughing is the result of “asperities on a hard metal penetrating into a softer metal
and ‘ploughing’ out a groove by plastic flow in the softer metal”[12]. The coefficient of
friction due to ploughing is given by [12]:

fp = Ao/241 (2.15)

where (A,) and (Aj) are the vertically and horizontally projected areas of contact for

a given asperity. The normal (N) and shearing (F,) forces are given by:

N = Appo ) (2.16)

Fs = Avpo



Chapter 2. Literature Review 14

The total frictional forces are calculated by combining those due to adhesion and

ploughing.

2.5 Vibration Theory

A large variety of methods for the analysis of dynamic systems is available. Topics
reviewed in this section include: free vibration, forced vibration, self excited vibration,
modal testing and identiﬁczition, the finite element method and system reduction.

Free vibration of linear discrete systems is defined by one or more ordinary differential
equations representing one or more degrees of freedom (dof) of motion. During free
vibration there are no external forces applied to the structure and its motion is determined
by its inertial, damping and restoring forces. The equation of motion of a linear, damped,

non-gyroscopic, coupled dynamic system is given in general by [24]:

Mg(t)+Cq4(t) + Kq(t) =0 | (2.17)

where (g(t)) is the generalized displacement n-vector and is of the form:

q(t) = [a1(t) @2(2) . - - ga(®))T (2.18)

(M), (C) and (K) are the n x n matrices of the systems mass, damping and stiffness
respectively. Eq. 2.17 is usually determined using either Newton’s formulatibn (equating
forces) or Lagrange’s formulation (energy method). Experimental methods may also be
used to obtain the equation of motion in an indirect manner. The eigenvalue problem
for Eq. 2.17 can be solved for the mode shapes and modal frequencies of the system [24]
if proportional damping is assumed. The characteristics of the system are determined
by performing modal analysis on the equations of motion. This leads to n uncoupled

linear ordinary differential equations each corresponding to a mode shape and frequency
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of the system. This process is explained in most mechanical vibration textbooks [47).
The modal solution gives insight into how the system will respond to various external
excitations.

When external forces are applied to a dynamical system the problem becomes one
of forced vibration. The applied forces must balance with the inertial, damping and

restoring forces which leads to a forced equation of motion [24]:

Mit)+ Ci(t) + Ka() = F(t) (2.19)

where (F') is the generalized excitation force and is of the form:

| F(t) = [Fy(t) Fy(t)... Fa(t)]F (2.20)

(F3) is the force or moment applied to dof-:.

The response of a system to a given excitation may be considered as a function of
either time or frequency. The time domain solution is considered first. Since all linear
multiple degree of freedom (MDOF) systems of the form of Eq. 2.19 can be reduced to
sets of linear single degree of freedom (SDOF) systems by modal analysis, the response
of a SDOF system will be considered here.

Consider the system shown in Fig.2.7. The general equation of motion of such a

SDOF system can be given by:

mi(t) + ci(t) + kz(t) = f(t) (2.21)

The exact solution for such a system, provided that (f(¢)) is known, is found in many
textbooks [47]. The solution gives a continuous time equation for (¢(¢)). Eq. 2.21 can
also be solved in the discrete time domain and this is the approach taken here. Taking

the Laplace transform of Eq. 2.21 gives:
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ms?z(s) + csz(s) + kz(s) = f(s) (2.22)
2(s) = ﬁ% (2.23)

where (s) is the Laplacian operator. The discrete time equivalent of the Laplacian
operator may be approximated using the bilinear transformation method as [29):
_2,1-21

s = 2 (7o) (2.24)

where (z) is the Z-transform operator and (T') is the time step. By substituting

Eq.2.24 into Eq.2.23 and carrying out the z-operator reductions it can be shown that:

7o = fi+2fica + ficg — Azi_1 — Bz

3 = (2.25)
where,
8
4 2
4 2

and the subscript denotes the time step of the parameter when () is the current value.
For the solution of Eq.2.25 (f(t)) is not required as a closed form function. Such a
discrete time equation is ideal for computation on a digital computer. The accuracy of

the result can be increased by reducing the size of the time step (T'). Eq. 2.25 is the
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solution for only one mode of a MDOF problem. It is usually only required to solve a
few of the modal responses in a desired range of frequencies, choosing (T') accordingly.
The principle of superposition [24] allows the modal solutions to be added to obtain the
complete system response.

The frequency domain transfer function of Eq.2.21 is found by substituting (s = iw)
into Eq. 2.23 to obtain:

X(w) 1
F(w) —wm+iwc+k

Gw) = (2.26)

The response may be considered in terms of the magnitude and phase of the transfer

function. These are given as:

1

IG| = (2.27)
V(k — wm)? + (we)?
—wc
¢ = arctank ot

Physical interpretations of the magnitude (|G|) and the phase (¢) of the transfer
function are simple. For a sinusoidally varying input force of constant amplitude and
frequency, (|G|) represents the ratio of the amplitude of the response to the amplitude
of the input and (¢) is the phase angle between the response and the input.

Both time domain and frequency domain solutions give important insight into the
behaviour of dynamical systems.

‘The next topic of discussion is self excited vibration. Self excited vibrations occur
when [6]: “The external forces applied to the system are now determined by the motion
of the system. But the internal forces governing free vibration are also of this sort, so
it is now as if the external forces augment the inertia-, the damping- and the stiffness-
forces.” This differs from forced vibration where the motion and excitation forces are

independent. The other criterion for self excited vibration to occur is that there must
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be some source of energy for the vibration to “tap” and the motion must be such that
the energy can be extracted [6]. Some examples of self excited systems are: machine
tool chatter (discussed later in detail), stick-slip friction and flutter of aircraft wings. If
the vibration extracts energy from the source, the response may grow until it is limited
by some nonlinearity. In each case of self excited vibration the physical process of self
excitation is slightly different.

There are two fundamentally different ways to obtain the dynamic characteristics
(M,C and K) of mechanical systems. Either theoretical calculations or experimental
testing may be used as the first step in identifying these parameters. Theoretical results
generally determine (M), and (K) directly. Experimental methods usually measure the
system response to a known input and manipulate this data to further obtain (M), (C)
and (K). Experimental modal testing will be reviewed next with the finite element
method being briefly discussed later on.

Modal testing is defined as [10]:“the processes involved in testing components or
structures with the objective of obtaining a mathematical description of their dynamic
or vibration behaviour.” The testing procedure and the mathematical description of the
data may vary considerably from test to test. The process generally consists of physical
excitation of the system and measurement of both the input and the response. The ex-
citation is usually accomplished with one or more shakers or an impact hammer. The
response is measured with one or more accelerometers, velocity transducers or proximity
sensors located at various points on the structure. Modern frequency analysis equipment
can transform the measured data into useful transfer functions (by use of Fourier analy-
sis) in the frequency domain. From these transfer functions one can “work backwards”
(with respect to to the analytical methods of vibration analysis) to obtain the dynamic
characteristics of the system.

A brief review of modal testing for SDOF systems is given here. This is useful because
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linear MDOF systems are just a linear combination of a number of SDOF systems. Most
of the discussion follows directly from [10] which covers the entire scope of the subject.
The generalized equation of motion for a SDOF system was given by Eq. 2.21 which is

repedted here:

ma(t) + ci(t) + ka(t) = £(2) (2.28)

Some well known equations relating the parameters of Eq.2.28 are:

wa = k/m (2.29)

(== | (2.30)

i F

wg = wny/1—(2 (2.31)

where (wy), ({), (¢), (wq), (m) and (k) are the natural frequency, damping ratio,
damping factor, damped natural frequency, mass and stiffness respectively of the system.

The receptance frequency response function (FRF) was given by Eq. 2.26:

_ X)) _ 1
© Fw) (k- mw?) +icw

Other forms of the FRF are the mobility (X(w)/F(w)=1wG(w)) and the accelerance
(X (w)/F(w)=—w?G(w)). Graphical display of FRF data may be presented in three

G(w) (2.32)

common forms [10]:

e modulus (of FRF) vs frequency, and phase vs frequency

e real part (of FRF) vs frequency, and imaginary part vs frequency
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e real part vs imaginary part

Typical FRF response curves for a SDOF system are shown in Fig.2.8. The vari-
ous.parameters which can be obtained from the curves are noted on the figures. For
SDOF systems the above curves give a complete physical description of the dynamic
characteristics.

Analytical tools may also be used to compute the dynamic characteristics of vibratory
systems. “The finite element method is a numerical procedure for solving a continuum
mechanics problem with an accuracy acceptable to engineers” [9]. It is beyond the scope of
this work to give any quantitative details of the method and interested readers are referred
to standard textbooks on the subject [9], [51]. A finite element model defines a continuum
by first dividing it into small parts or finite elements. Each element has several nodal
points which are either restricted by continuity requirements of neighbouring elements
or constrained by the boundary conditions of the system. Trial functions are found
to describe the behaviour of the system for each element by minimizing some energy
condition of the continuum.

The equations of motion obtained from a finite element analysis of a dynamic system
are often of a very large dimension. Several reduction methods are available to reduce
the size of the model at various stages of the analysis. The purpose of these methods
is usually to “minimize computer time/cost or to deal with a reduced model for forced
response studies” [28]. The method considered here is known as the system equivalent
reduction expansion process (SEREP) and is presented by O’Callahan et al [28]. Some
of the unique qualities of SEREP are[28]:

o the arbitrary selection of modes that are to be preserved in the reduced system

model
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e the quality of the reduced model is not dependent upon the location of the selected

active dof

o the frequencies and mode shapes of the reduced system are exactly equal to the

frequencies and mode shapes (for the selected modes) of the full system model.

Assume the equation of motion of an npg-dof undamped dynamic system, determined

by finite elements (F'E) or some other method, is given by Eq.2.33:

Mrgire + Krezre = Fri (2.33)

The finite element solution is assumed to give a (npr) mode solution. The generalized

coordinates are defined as:

TFE = q)FEP . (2.34)

where (P) is the nps X 1 modal coordinate vector, and (®rg) is the npg X nas eigen-
vector matrix of the finite element equations of motion. One or more dof’s is kept from
Eq.2.33 which are usually points where forces are applied or deflections are required. The

equation relating the reduced (R) dof’s and the modal coordinates is:

zp = BRP (2.35)

where (®g) is the ng X npr eigenvector matrix of the reduced system. The modal

coordinates are found explicitly by:

P = &%zp (2.36)

where (%) is the generalized inverse of (®r) and, if ng < npg, is given by [28]:
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8%, = (8L8R)10% (2.37)

It can be easily determined from Eq’s. 2.34 and 2.36 that:

TFE = @FE@%QIR = T:cR . (2.38)

where (T') is the global mapping transformation matrix. The ng-dof reduced system

equation of motion is given by:

Mpip+ Kpzp = Fr (2.39)
where,
Mg = T"MpgT " (2.40)
Kp=TTKpgT (2.41)
Frp =TT Fpg | (2.42)

A computer program has been written to compute the SEREP reduction of large

dynamic models [27].

2.6 Machine Tool Vibrations

During a machining operation various disturbances may act independantly or combine to
result in some form of vibration of the machine tool or workpiece. Some of these causes
are [2]: impact or shock, unbalance of rotating parts, discontinuous chip formation and

self induced vibration of the dynamic cutting process.
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Vibration of a machine tool during a cutting operatioh can have a wide range of
effects. If the vibration amplitude is small and of a transient nature, the consequences
may be negligable. On the other hand if the vibration grows to a large amplitude the
result may be damage to the workpiece, damage to the machine tool or premature failure
of the tool.

In this section only vibrations due to the cutting process itself are considered. These
fall broadly into two categories: forced vibrations and self excited vibrations (chatter).

By definition forced vibrations can only occur in open loop systems, that is when the
excitation and response are independent. For this reason the analysis of forced vibrations
of machine tools is a relatively easy matter. If the input force from the cutting process
is known, the response can always be determined assuming correct knowledge of the
dynamic characteristics of the machine tool. |

Even the simple orthogonal cutting model of the metal removal process shows that the
cutting force is dependent on the deflection of the tool. It is obvious that the deflection of
the tool is also dependent on the cutting force. Thus all machining processes should most
properly be considered as closed loop dynamic systems. The importance of the feedback
loop is a function of the process parameters. Analysis of machine tool vibrations as a
closed loop system considers the process to be a self excited vibration problem. The type
of self excited vibration encountered during machining operations is known as chatter. As
noted by Tobias [45], “The most important characteristic property of chatter vibration is
that it is not induced by external periodic forces, but rather that the forces which bring
it into being aﬁd maintain it are generated in the vibratory process itself.”

The general theory of chatter outlined here makes several assumptions [39] following

the analysis given by Tlusty [16]:

¢ the vibratory system is linear
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{

¢ the direction of the variable component of the cutting force is constant

e the variable component of the cutting force depends only on vibration in the direc-

tion of the normal to the cut surface

o the value of the variable component of the cutting force varies proportionately and

instantaneously with the vibrational displacement

e the frequency of the vibration and the mutual phase shift of undulations in subse-
quent overlapping cuts are not influenced by the relationship of wavelength to the

length of cut.

It is generally accepted that two mechanisms of chatter exist; mode coupling and
" regeneration.

“Mode coupling is a mechanism of self-excitation that can only be associated with
situations where the relative vibration between the tool and the workpiece can exist si-
multaneously in at least two directions in the plane of the orthogonal cut”[16]. Consider
the cutting process shown in Fig.2.9 with two perpendicular modes of vibration. Assume
that the two modes vibrate simultaneously in the elliptical pattern shown. Since the
cutting force is assumed to be proportional to the uncut chip thickness (&), it will be
greater from B — A than from A — B. “Periodically there is a surplus of energy sus-
taining the vibrations against damping losses”[16]. Under certain conditions the process
may become unstable which is discussed later on.

Regeneration is a mechanism of self excitation that occurs only when “the tool removes
the chip from a surface which was produced by the tool in the preceding pass” [16]. If
during the preceding pass the tool was vibrating, the surface removed during the current

pass will be wavy, see Fig.2.10. This results in a periodically varying cutting force. As for
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the case of mode coupling chatter, regenerative chatter may be either stable or unstable
depending on the process parameters.

Consider again the system shown in Fig.2.9. The cutting forces may be defined as:

F, = —F,sinf + F, cos (2.43)
Fy=F,cos0 + F,siné

where,

F, = K,ah = K,a(hy — 2) (2.44)

F. =rK,a(hy, — 2)

z=ysinf + zcos b (2.45)

where (h,,) is the mean uncut chip thickness and (z) is the time dependent normal
deflection of the tool. The equation of motion for the system of Fig.2.9 can be reduced

to:

mqzZ + ¢ & + kzz = Kya(hm — ysind — z cos 0)(—sin 8 + r, cos 6) (2.46)

my§ + ¢,y + kyy = K,a(hym — ysin 6 + z cos 8)(cos 6 + 7 sin 6)

IS [T e b T

k, + K;cos8 K,sinf z A
K;cosb ky + K;ysind Y

or alternatively,
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where,

K, = K,a(—sin8 + ry cos )

K, = K,a(cos 8 + 71 5in §)

From Eq.2.47 it is apparent that the motion of the two modes will be coupled, thus
the name “mode coupling” type chatter. Tlusty[16] notes that “for the limit of stability
the open-loop transfer function is equal to -1”. The limiting factor for mode coupling

chatter is the axial depth of cut (bjim,m) and is given as [16]:

Btimme = —1/ Ky Re[(G)min] (2.48)

If regeneration is considered, the uncut chip thickness contains a phase lag term and

is given by [16):

h=hn—2+2 (2.49)

where (2,) is the (z) position of the previous tooth which accounts for regeneration

in the cutting process. The equation of motion 1s given by:

mgy O z ¢z 0 z ’
+ + (2.50)
0 my i 0 ¢ Y
ky + Kqcosf Kisin# T
K, cosd ky + Kysin 8 Y

Kicosf K;sin# To "
Ky;cosf K,sinf Yo
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where (K1) and (K3) are the same as before.

The limit of stability for regenerative chatter has been given by Tlusty [16] as:

blim,regen = —1/2K,R8[(G)m,‘n] (251)

‘Comparing Eq’s. 2.48 and 2.51, it can be seen that the limit of stability for regener-
ative type chatter is half of that for mode coupling chatter. For this reason regenerative
chatter is usually dominant in most practical machining operations. Still there are some
special cases, milling with alternating helix tools or thread cutting in turning, where
regenerative chatter is suppressed and mode coupling becomes dominant.

The previous analyses assumed that the cutting force can be modelled using the
simple orthogonal cutting model presented earlier. A more realistic approach would use
a dynamic cutting f.nod.el aééounti#g for ﬂank faée iﬁt"éffé.réﬁvcé.and the possibility of the

tool “jumping out” of the workpiece material.

2.7 Machining of Flexible Structures

The theories presented in earlier sections of this chapter can be applied in various degrees
to the application of machining flexible structures. In machining operations, a flexible
structure may be defined as a workpiece whose static or dynamic flexibilities are signif-
icant when compared to similar parameters of the machine tool itself. Such structures
find application in the aerospace and communication industries as ribbed structural com-
ponents, turbine blades and microwave guideways. Few works have been carried out on
the topic of machining flexible structures. Two research projects are discussed here.
Tlusty has experimentally investigated the use of steadies to reduce chatter when
machining thin blades on a milling machine. The steadies used were constructed of

either rubber or stainless steel and were said to decrease the severity of chatter vibrations.
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This result was explained by an argument that the steadies increased the static stiffness
and increased damping of the higher vibrational modes. The use of steadies to reduce
chatter vibrations has two drawbacks: first, the dynamics of the coupled workpiece-steady
system are difficult to model and second, this method cannot be used on components
with very complex geometry such as jet engine impellers. In this study the workpiece
vibration was assumed to be closely represented by the cutting forces measured on a
dyndmometer. The validity of this assumption depends strongly on which vibrational
modes are active and where the displacement of the workpiece is of interest relative to
the nodal lines of each mode. It was observed that the machined surface did not exhibit
the chatter wavelengths which are regenerated on the arc of the cut. This was explained
graphically as the machined surface is only being generated during a small fraction of the
cutting period. Reasons for reducing the severity of chatter during such an operation are
decreased tool wear and to lessen the deep tight grooves left on the surface by chatter
vibrations.

Kline [18] developed and experimentally verified an analytical approach to modelling
the machining of flexible structural components used in the aircraft industry. The process
considered was machining of a CCCF plate with a flexible end mill. Deflections of both
the workpiece and the tool were considered. The tool was modelled using beam theory
and the plate was modelled using both finife differences and the finite element method.
The problem was considered to be static with the author arguing that the excitation
frequency was an order of magnitt’lde less than the lowest natural frequency of either
the plate or the end mill. This is ivalid only if chatter is not present in the particular
machining operation and thus limits the range of validity of the work. Runout was
modelled and experimentally verified for the rigid machining process. Kline notes that
[18]: “The effects of runout are most severe for cuts with long lengths of engagement

between flutes and workpiece and light feeds.” This is the case investigated in Kline’s
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research and is justification for impllementation of a runout model when considering such
low feed systems. The cutting forces were defined as deflection independent functions
of the cutting conditions. This a,pp:roach will introduce errors into the predicted cutting
forces and the resultant deflections of the tool and workpiece. Surface profiles were
predicted by adding deflections of both the tool and the workpiece. The approach taken

by Kline is valid only if dynamic effects are not significant to the machining operation.
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Figure 2.1: Orthogonal cutting process geometry.

Figure 2.2: Forces in the orthogonal cutting process.
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Figure 2.3: Dynamic cutting process geometry.
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Figure 2.4: Cutting process detail.

31



Chapter 2. Literature Review

Figure 2.5: End mill geometry.
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Figure 2.6: Vibratory motion of the milling process.
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Figure 2.7: Single degree of freedom forced dynamical system.

34



Chapter 2. Literature Review

no

100
80
80
70 —
80 -
50

0

a0 -

RECEPTANCE (THOU/LB)

1/k

20

10 —~

fo

4 T T L E—— T
(o] 02 04 00

T T T T T

T
08 1 12 14
(a) Magnitude FREQUENCY (kHz)

=10 -
-20 -

—30
.«,J 1/k
-50
-60 -
70 -|
by

tm [RECEPTANCE! (THOU/LB)

=100 — w
=no -
=120 -

=130 T T T T T T T T T T T T T T T
=100 -80 -80 -40 =20 (o] 20 40 00 a0 100

(b) Nyquist plot Re IRECEPTANCE] (THOU/LB)
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Chapter 3

Mechanism of the Dynamic Milling Process

3.1 Introduction

The milling process is widely used in industry for the manufacturing of mechanical com-
ponents. The process can be as simple as face milling the top of a flat surface with a rigid
cutter, or very complex such as peripheral milling of flexible aircraft engine impellers on
five axis CNC machining centers. Although the dynamics of milling has been addressed
By several aufhors, thé i)rocess is rather complex and more research is required for a
thorough understanding of its phys:ics.

Past research has been concentrated mostly in the mechanistic modelling of cutting
forces. Martellotti [22], Tlusty et al. [43] and DeVor et al. [17,11] have contributed
to the understanding of the geometry and mechanistic modelling of cutting forces. In
these studies, the workpiece and tool system were assumed rigid, hence the influence
of structural vibrations on cutting forces (called vibratory cutting here) were not con-
sidered. Early work in vibratory cutting was confined to orthogonal cutting where the
directions of the cutting forces and the structural dynamics of the tool workpiece system
were assumed constant. Tobias [45] and Tlusty [39], proposed stability theories which an-
alytically predict chatter free cutting conditions when the cutting stiffness, cutting force
direction and the transfer function of the tool-workpiece structure in the same direction
are known. However, milling has a complex geometry with varying cutting force direc-

tion and cutting stiffness. Tlusty has contributed a significant amount of knowledge in

38
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modelling the physics of dynamic cutting. Time domain simulations of a vibrating end
mill were developed to illustrate chatter growth and the loss of contact between the tooth
and fhe workpiece by Tlusty et al. [40] and by Sutherland [35,34]. Recently, Lin, Devor
and Kapoor [20] presented results of experiments where cha,tter’growth was avoided by
varying the spindle speed.

This chapter presents a comprehensive simulation model of dynamic milling where
the tool geometry and the vibrations of both workpiece and tool in any direction are
included. The model has been developed primarily to analyze the stability of peripheral
milling of very flexible workpieces, see Fig.3.1. However, the analysis is valid for milling
with rigid tool-rigid workpiece, rigid workpiece-flexible tool, flexible workpiece-rigid tool
or flexible workpiece-flexible tool systems. The model predicts the topology of finished
workpiece surfaces, cutting forces in the feeding and normal directions and vibrations of
both the tool and workpiece simultaneously. The cutting model developed differs from
the previous approaches in several aspects as shown in the following sections.

In what follbws, geométric modelling of the vibratory tool and workpiece system is
given. Calculation of the dynamic uncut chip thickness for force calculation and finished
surface prediction is presented. A lma,teria.l removal model, which separates the cutting
zones into five distinct regions, is introduced in section 3.3. The model verification with
simulation and experimental studies is given in section 3.4. The chapter is concluded by

summarizing the contributions.

3.2 Models of the Vibrating Tool and Workpiece Geometries

Geometric models are developed to represent the tool and workpiece for a general milling
process. These models are used to calculate cutting forces, represent the kinematics of

motion and construct the finished workpiece geometry.



Chapter 3. Mechanism of the Dynamic Milling Process 40

3.2.1 The Geometry of Tool Motion

A detailed drawing of one milling cutter tooth is shown in Fig. 3.2. The tool geometry
is defined by the radius of each tooth (R), the rake angle (a; negative as shown), the
clearance angle (v; positive as shown) and the number of teeth on the cutter (Z). Tool
center vibrations. are defined as the position (z¢,y.) and velocity (v¢) of the tool centre
relative to the stationar); spindle axis. These vibrations are calculated from the structural
dynamic model of the end mill. The spindle speed () is assumed to be constant and
unaffected by the process. The instantaneous velocity of the cutting edge (v:) can be
calculated as the vectorial sum of the velocity of the tool center (U;) and the cutting

speed (R$)). The following analysis refers to a single tooth of an end mill.

—

17; = Uc + R (3.52)

The instantaneous position of the cutting edge can be calculated if the position of the

tool center (z.,y.) and the angle of edge rotation () are known.

z; = Rsinvy + z. } (3.53)

Yy = Rcos+y.
The effective angle of the clearance face with respect to the horizontal axis ({) may

be calculated as:

(=7—-19¢ (3.54)

All of the parameters of Eqs. 3.52, 3.53 and 3.54 are time varying, with the exception

of (R) and () which are constant. The calculated parameters accurately define the
geometry and state of the tool cutting edge with respect to the spindle or coordinate

center.
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The inclusion of more complex cutting geometries, such as runout or taper and helix
angles, is considered here. These complexities require consideration of the tool’s axial
variations. For this purpose the tool is divided into several equally spaced axial slices.
The geometry of each flute is assumed to vary continuously in the axial direction.

Runout is assumed to be constant along the tool axis. This geometry is accounted
for by simply adding a different constant value to the radius of each tooth on the cutting
tool. This simplistic approach is only considered here for tools with zero helix angle.
More complex models can be divised, if appropriate, for particular applications.

A helix angle can be included in the tool geometry by varying the starting angle of a
flute as a function of its axial position. For a mill with helix angle (6") the immersion

angle is given by:

¥ =4 + (2tan6¥)/R (3.55)

where (z) is the axial distance along the tool. This modified value of the initial
rotation angle is used to calculate the instantaneous rotatioﬁ angle for tools with nonzero
helix angles.

A taper angle (67) is included with the tool geometry by varying the tool radius as a

function of its axial position. The modified tool radius (RT) is given by:

RT = R — ztan 6T (3.56)

This value is substituted into the previous equations for the tool radius (R) when a

nonzero taper angle is used.
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3.2.2 The Geometry of Workpiece Motion

The workpiece geometry is digitized by a number of points on the surface, and is stored
as an array in Cartesian coordinates. The kinematics of the workpiece are independent of
the tool motion. The centre of the coordinate system is selected as the stationary spindle
center, see Fig.3.3. Each tooth gen;era,tes a surface which is used in the force calculation
for the next tooth to come along. The process is discretized in time, and the time
increment (T') is selected at least 14 times smaller than the period of the highest vibration
mode of the tool-workpiece system. A tooth generates a new point on the surface every
time step when it is cutting. The surface array is stored as “SURF (3, j, k)mr”, where
(mT) is the time at the m’th integration step. Dimension (¢) indicates the tooth which
has generated the surface and is of size (Z), where (Z) is the number of teeth. Dimension
(7) indicates whether the value is for the (z) or (y) coordinate (1 = z, 2 = y), and is
of size 2. Dimension (k) indicates the discrete position of the point within the surface
vector. The size of dimension k = (8)/(QT), where (8) is the immersion angle of the
cutter in the workpiece.

As an example; “SURF(3,1,256)” is the z-coordinate of the 256’th point on the
surface generated by tooth number 3 (see Fig.3.3).

Initial conditions of SURF'(3,, k) are set to represent the workpiece geometry. The
points on the surface are equally spaced at angular positions with radii corresponding to
the tool’s nominal radius.

For each integration time step (T'), three modifications are made to update the surface
vector. First, the feeding motion of the workpiece is added to every point of the surface
vector. In this work it is assumed that feeding occurs in the z-direction only. This is not a
necessary assumption but is made here to reduce the complexity of the surface modelling

procedure. Second, the dynamic motion of the workpiece is added to both the (z) and
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(y) surface vectors at every point. The dynamic motion can be determined by calculating
the structural response of the workpiece. The dynamic response of a cantilevered plate
workpiece is discussed in Chapter 4. In this chapter it is assumed that the dynamic
motion of the workpiece is known. Third, the cutting action of the tool is accounted for
on the surface vector. If the tooth is cutting then the instantaneous location of the tool
is used to update the surface. If the tool isn’t cutting, due to excessive vibrations, the
surface generated by the previous tooth is used to update the surface.

The coordinate of the surface in the feeding direction is updated by translating the

surface a distance (—f - T + Az), where (f) is the feeding velocity:

SURF(i, 1, k)msnyr = SURF(i,1, k)mr — fT + Az (3.57)

The coordinate in the normal direction is updated as:

SURF (5,2, k)ms1)r = SURF (3,2, k)mr + Ay (3.58)

where (Az) and (Ay) are changes in the surface which are calculated from the dynamic
response of the workpiece.
The metal removal process is accounted for in two ways when a tooth is in the cutting

zone. If the tooth is cutting then the surface is updated as:

SURF(i,1,k) = a1 } 5:59)

SURF (3,2, k) = ys

If the tooth is out of cut, due to excessive vibration, the surface is updated as:

SURF(i,1,k) = SURF(i — 1,1,k*) } (3.60)

SURF(i,2,k) = SURF(i — 1,2, k*)
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where (k*) represents a point on the surface generated by the tooth (i —1) at the angular
position of the tooth (¢). These three modifications to the surface vector completely

define any possible motion of the workpiece.

3.3 Cutting Mechanics Model

In vibratory cutting, the tool having an elliptical motion, the cutting edge may travel in
five distinct regions as shown in Fig.3.4. The cutting region is determined depending on
the edge geometry (i.e. rake and clearance angles) and the relative motion between the
tool and the workpiece. The tool rake () and clearance (v) angles are shown in Fig.3.5.

The velocity of a tooth relative to the workpiece (%}/,) is calculated as:

Ty =B — 3, (3.61)

where (7;) is shown in Fig.3.5 and (@) is the absolute vibration velocity of the workpiece.

The angular orientation of this relative velocity is given by (7):

1= m/2 — arctan [(6t/p)y/("7t/p)w] (3.62)

In order to orient this direction with the geometry of Fig.3.5, angle (8) (0 < 8 < 27)

is defined as:

B=n—1 (3.63)

(B), (a) and (7) are used to determine the current cutting region. Conditions which

determine the cutting region are:
Region 1: 7/2—y< <71+«

Region 2: T+ a< < 3r/2 —«
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Region 3: 3r/2< f or B L
Region 4: a< f<7/2 -7«
Region 5: 37/2 -y < < 3n/2

Region 1: A previously verified cutting force model is used in this shearing zone.
From [1], it is shown that the tangential cutting force (F}) can be expressed as a function
of the uncut chip thickness (k) and a flank component (h*). The radial force (F,) on the

edge of the tool is proportional to the tangential cutting force component, see Fig.3.6.

F, = K,a(h+hv) } .64

F, = K,a(rih + rah*)

(K,), (h*), (r1) and (r;) are experimentally determined cutting force constants for
a cutter-workpiece pair. Full immersion fly cutting (single tooth) of 7075-T6 aluminum
with a rigid end mill was used to determine the cutting model parameters. The tool used
was a 50.8 mm diameter carbide tipped face mill. A single insert was used to eliminate
runout effects. The axial depth of cut was 5.1 mm and the spindle speed was 128 rpm.
Several feedrates were used to var); the mean uncut chip thickness. Cutting forces were
measured with a Kistler 9275A dynamometer. The forces were recorded using a PC based
data aquisition system with a Data Translation DT2801 board and internally developed
software. The system was trigerred by a 64 slot external encoder mounted to the milling
machine spindle.

The average force is defined as the mean value applied to the tool in a given direction
during one tooth period. The average experimental cutting forces in the (z) and (y)
directions, (F,,) and (F,,) respectively, are plotted against the feedrate in Fig.3.7. The
results are linear except at very low feeds, and are fit to Eqns. 3.65 and 3.66 using linear

regression.



Chapter 3. Mechanism of the Dynamic Milling Process 46

Faa: = clzc + <2z (365)

Fay = Quyc+ Gy (3.66)

(c) is the feed per tooth. Values obtained for the constants are:

C1e = 637

2z = 103

Gy = 1500
Coy = 20

From [1] it is shown that the cutting parameters can be calculated as:

K, = 4(1!,/(12
.7'1 = 4(1;,/K,GZ
h* = w(ay/[4C1y

re = 7T7‘1C2x/4h*<:1z

From the above results, for the experimental case considered here, the following values

of the cutting parameters are obtained:
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K, = 1185(N/mm?)
r = 0.437
h* = 0.0105(mm)

To = 5.1

These parameters are used throughout this chapter.

Previous researchers have approximated the uncut chip thickness as:
h = csin (¥)

where (c) is the feed per tooth and (¢) is the instantaneous immersion angle. Although
the approximation does not produce significant errors in general milling analyses, it
does not represent the tool motion accurately enough for precision surface prediction
under vibratory conditions. The chip thickness is calculated in discrete time from the
instantaneous positions of the tool edge and the workpiece surface where the edge is in

contact. The radial position (R;) of the tooth is found from Eq. 3.53.

Ry = [z} +y} (3.67)

The surface coordinates of the workpiece in discrete time are given by:

s, = SURF(,1,k) } 55)

v, = SURF(i,2,k)
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The radial position of the workpiece (R,) relative to the spindle center is,

R, = ez +y (3.69)

The uncut chip thickness is measured as the distance between the outer surface of

the workpiece and the edge-workpiéce contact point,

h~R,—R, (3.70)

Since the discretization error of the surface can be made very small by decreasing the
integration time step, the approximation of Eq.3.70 can also be reduced to an insignificant
level. Note that the cutting force is zero when there is no tool-workpiece contact (i.e.
F, = F, = 0 « R; < R,). Thus, the nonlinearity in chatter is taken into account [40].

The cutting forces contributed by each tooth in Region 1 are:

F;i = Ficost; + Fysiny;
Fyi = —Fysiny; + Ficos;

Region 2: The tool edge looses its contact with the workpiece in this region,

(3.71)

therefore the cutting forces are taken as zero.

Region 3: In this region the tool flank face tries to penetrate into the workpiece.
Contact between the tool and workpiece is occuring on the flank face only. The clearance
face may interfere with the workpiece when the flank is worn (i.e. creating zero clearance
angle), or when vibratory cutting is present which is the case considered here. Due to
the elliptical motion of the tool during chatter vibrations, the clearance face may rub
into the workpiece material in regions 3 and 4. The possibility of motion in this region
has been either neglected in previous metal cutting models, or approximated by dynamic
cutting force coefficients [37]. A recent paper written by Wu [50] proposes a ploughing

model which is based on a previous friction analysis done by Bailey (3] in machining.
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A different ploughing model, from friction analysis [12], is used to estimate the forces
here. The ploughing analysis is an approximation and requires further investigation.
The geometry of motion is given in Fig.3.8, the tool travels from point 1 to point 2 in
direction (%;/,). The material in area 1-2-3 is displaced by the tool flank face. The length
of contact projected in direction (%y,), when the tool is at point 2, is (I;). The length
of contact projected perpendicular to direction (%;/,), when the tool is at point 2, is (I2).

When the axial depth of cut is (a), the corresponding areas of contact are given by :

A =1
1= e (3.72)
A2 = 12a

The coordinates of the edge at points 1 and 2 (Fig.3.8) are calculated from Eq. 3.53

as (241, ye1) and (242, y2). The distances (I;) and (I3) are found from the geometry as:

R, = \/(?/tz —yu)? + (T2 — Ta1)?

L = Rmc.os'Bcos('y—ﬂ)
sin

Iy, = Rmc,osﬂsin('y—-ﬂ)
sin 7y

From ploughing analysis [12] the shearing and normal forces, (F,) and (F,) respec-

tively; are approximated as:

F, = poA
P 1} (3.73)

F. = DpoA:
where (po) is the workpiece yield pressure. The cutting forces contributed by plough-

ing when the edge is in Region 3 are:

F::i — _F,,-sinn.' + Fm'COS??s‘ } (3 74)

F,; = —Fcosn; — Fpisiny;
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Region 4: The rake face and the flank face are both in contact with the workpiece
here. The model of region 1 is used on the rake face. The model of region 3 is used on
the flank face. The forces from both models are calculated and added vectorially to find
the force on the tooth.

Region 5: The force model used in this region is ploughing. If no contact is present

the forces are taken as zero.

The forces contributed by all teeth are summed at discrete time intervals to find the

instantaneous cutting forces on the cutter and the workpiece.

Fx = 2.-Z=1(Fm-)} (3.75)

Fy = ZZ,(Fy)

3.4 Cutting Model Verification

The proposed cutting model has been coded in FORTRAN for simulation. The input
data to the program is the tool geometry, workpice dimensions, difference equations which
represent the tool and workpiece dynamics, spindle speed, feeding velocity, axial depth
of cut, immersion angles, cutting force constants (K, 71,72, h*), workpiece yield pressure
and the duration in time of the simulation. The integration time interval is chosen to
capture the highest vibration frequency. The program iterates through time calculating
cutting forces and updating the finished surface geometry. Output from the simulation
includes: cutting forces, workpiece and tool deflections and an (zy) profile of the cut
surface. Since each tooth of the cutter is defined by its radial length from the spindle
center, the radial run-outs on the teeth are automatically accounted for.

As a first test, milling with a rigid tool-rigid workpiece system has been considered.

Since the exact motion of the cutter is modelled, the feed marks obtained from the



Chapter 3. Mechanism of the Dynamic Milling Process 51

simulation are expected to match the analytical result presented by Martellotti [22] as:

c?

" = SR+ o2/ (3.76)
The surface finish obtained from cutting with a four tooth cutter is shown in Fig. 3.9.
A feedmark wave amplitude of 0.0127mm was obtained from the simulation which is
comparable to the 0.0116 mm value given by Eq. 3.76.

In order to further verify the model, two controlled cutting experiments have been
carried out on an in house retrofitted vertical CNC milling machine. Full immersion
cutting experiments were carried out using a rigid 50.8mm diameter double positive
face milling cutter with one insert. The radial rake and the clearance angles of the
tool are 5 and 3 degrees respectively. The workpiece material was 7075 — T'6 aluminum
alloy with a yield pressﬁr‘endf p‘o‘ = 500MPa. The éuttiﬂg constants were identified
(K, = 1183N/mm? h* = 0.0105mm,r; = 0.437,r; = 5.09) from a series of cutting
experiments as explained éa.rlier. A spindle speed of 2.3 rev/s and a feeding velocity
of 0.8125mm/s (0.352mm/tooth) were used. The axial depth of cut was a = 5.08mm.
The workpiece was rigidly clamped onto a table dynamometer.and the feeding (Fx) and
normal (Fy) cutting forces were sampled at 1ms intervals, see Fig.3.10. The four slotted
spindle encoder signal is recorded to syncronise the simulation with the experiments.

The first milling experiment was carried out to test cutting with a rigid tool and
rigid workpiece system. The simulation cutting forces are shown in Fig.3.11 and the
corresponding experimentally measured forces are shown in Fig.3.12. A more detailed
view of the cutting forces is given in Fig.3.13 for a single tooth“ period. The forces
are in very close agreement. One difference is the high frequency component of the
experimentally obtained forces which is due to the neglected tool-workpiece dynamics
for this case. From these results it can be said that the uncut chip thickness calculation

and the cutting force model of region 1 are satisfactory, and that the experimentally
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determined cutting force parameters are also acceptable.

The second experiment was carried out under the same cutting conditions as the first
one except that the y — axis is vibrating. The vibration was produced by feeding a func-
tion generator’s sinusoidal output signal to the dc servo motor amplifier of the y — axis
feed drive, see Fig.3.14. The bandwidth of the feed drive servo is about 65H2 and the
table is vibrated at 18 Hz. The limitation of the equipment to impose higher frequency
oscillations is unfortunate, since the experiment will not verify the model’s capability
of handling pldughing during high frequency dynamic cutting. However, the controlled
workpiece vibration allows verification of the proposed kinematics of chip thickness varia-
tion, force generation and surface generation. If these mechanisms are verified the results
obtained for machining with the presence of actual structural vibrations can be relied
upon. The imposed vibration in the (y) direction corresponds to the following normal

displacement of the workpiece which is used in Eqn.3.58 for tracking the finished surface.

yp(t) = 0.109sin(112.3t) (3.77)

Vibratory cutting was experimented and simulated. The simulation cutting forces
are shown in Fig.3.15 and the corresponding experimentally measured forces are shown
in Fig.3.16. A more detailed view of the cutting forces for a single revolution is given
in Fig.3.17. The milled surface was measured on a Talysurf instrumented with a PC
based data acquisition system. A three dimensional view of the wavy finished surface
segment is shown in Fig.3.18 (a) for 3mm wide and 2mm deep. The remaining part of
the surface finish is similar. The (z), (y) and (z) axes represent the feeding direction,
the surface normal and the axial direction respectively. Since the helix angle is zero, the
vibratory surface has the same profile along the axial depth of cut or z—axis. A 1.8mm

long zy—plane view of the simulated and experimentally measured workpiece surface is
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shown in Fig.3;18 (b). The results indicate that the milling model accurately simulates
both the cutting forces and the finished surface geometry.

The result obtained for the surface finish is rather interesting. The dominant marks
left on the surface are of a frequency which is significantly smaller than that which would
be expected by either of the cutting or vibration motions separately. This phenomena
will be termed washboarding in this thesis. As shown in Fig.3.19 (a) for a rigid tool
the path of a single tooth is circular. In (b) the y — azis vibration of the workpiece
and the y-coordinate of the cutting edge are shown. As was noted by Smith and Tlusty
[33], the surface finish is being generated only when the tooth is at point A. This results
in a flat surface finish (by simulation) when the rotational and vibrational frequencies
are equal [33], or infact when they may be divided without any fractional remainder,
with the vibration frequency being faster. In the case of Fig.3.19 , the frequencies don’t
divide evenly and the resultant surface generated in time is given in (c). The physical
surface finish is shown in (d). The spindle (or tooth) period is T, = 0.433 s and the
period of workpiece vibration is T,, = 0.0559 s. The workpiece is moving at a feedrate of
f = 0.813 mm/s. Since from Fig.3.18 the washboarding wavelength () is 1.45mm, the
washboarding period is T\,p = A/vw = 1.78 sec which is greater than both of (T:) and
(T,). The ratio of process periods is r = T,/T, = 7.75. That is there are 7.75 vibration
oscillations in a single tooth period. The aliasing period is T, = N T, where:

N = [frac(r)]™' frac(r) <0.5 }
N = [1- frac(r)]™! frac(r) > 0.5

where (frac(r)) is the fractional component of (r). In our case N = 4.0 and the aliasing

(3.78)

period is T, = NT. = 1.73sec. This is in good agreement with the washboarding period
obtained from the simulation.
Notice that if (frac(r)) is exactly zero then the aliasing perion will be infinite. This

implies that if the rotational period is an integer multiple of the vibration period there
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will be a theoretically smooth surface finish on the workpiece even though it is vibrating.

3.5 Conclusions

A comprehensive dynamic milling model, which gives accurate prediction of cutting forces
and the finished surface of the workpiece, has been déveloped. The model considers the
mechanics of cutting in the normal shearing and ploughing zones. The uncut chip thick-
ness is found by accurate modelling of cutter and workpiece geometry and kinematics.
Vibrations of both the workpiece and the milling cutter are incorporated.

The experimental and simulation results show that the model is able to simulate low
frequency dynamic milling correctly. Surface generation in milling as a function of tooth
passing and vibration frequencies is simulated, experimentally verified and analytically
explained. The results should help in selecting spindle speeds to obtain a smoother

surface finish when the dominant vibration frequencies are known.
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-7 FLEXIBLE WORKPIECE

Figure 3.1: Peripheral milling of a flexible workpiece.
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Figure 3.2: The geometry of tool motion.
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Figure 3.3: The geometry of workpiece motion.
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Figure 3.4: Five zone metal cutting model.
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Figure 3.5: Geometry of the relative motion between the tool and the workpiece.



Chapter 3. Mechanism of the Dynamic Milling Process 59

AVERAGE FORCE (N)

AY WORKPIECE

TOOL CENTRE _

Q

Figure 3.6: The geometry of shearing motion in region 1.
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Figure 3.7: Average cutting force vs. feed per tooth in milling.
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Figure 3.8: Georzxetry of ploughing motion.
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Figure 3.9: Simulation result for feed marks in milling with a rigid system.
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Figure 3.10: Experimental workpiece setup for milling force measurement.
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Figure 3.11: Simulation cutting forces for a rigid tool-workpiece system.
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Figure 3.12: Experimental cutting forces for a rigid tool-workpiece system.
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Figure 3.13: Detailed cutting forces for a rigid tool-workpiece system.
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Figure 3.14: Experimental set-up for vibratory milling experiment.
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Figure 3.16: Measured cutting forces for a vibrating tool-workpiece system.
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Figure 3.17: Detailed cutting forces for a vibrating tool-workpiece system.
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Figure 3.18: Microscopic surface finish machined during vibratory milling.
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Chapter 4

Plate Dynamics

4.1 Introduction

The workpiece considered in this research is a square cantilevered-free-free- free (CFFF)
plate as shown in Fig.4.1. The workpiece is referred to as a plate although it does not
satisfy the formal definition of a plate due to its discontinuity in thickness. The material

used is 7075-T6 aluminum with the following mechanical properties:

E = elastic modulus = 70[kN/mm?]

o v = density = 0.277(10)"3[Ns%/mm?]

§ v = Poisson’s ratio = 0.33

o, = yield strength = 490[M Pa]

The following discussion considers the physics of the plate from a structural dynamic
perspective. The cutting tool and machine structure are assumed to be rigid as compared
to the plate. The discontinuity in thickness of the plate requires that the structure be
considered as a three dimensional object, at least in the region of the discontinuity. This
discontinuity is a result of the metal removal process and indicatéé the position of the

cutting tool. Factors in the dynamic analysis of the plate which are considered here are:

¢ loading conditions and response

e finite element modelling and reduction
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e experimental modal analysis

o forced response of the plate

4.2 Loading Conditions and Response

The.milling process generates metal removal forces in the cutting zone as shown in
Fig.4.2. Forces may be applied to the plate anywhere in the cutting zone but not out
of the cutting zone. Since chip removal, regeneration of waviness and surface finish
generation are occurring in the cutting zone only, the response of the entire plate is not
required to model the machining of such a workpiece. Only the dynamics of the plate in
the cutting zone therefore are of interest in this analysis. The plate is considered first as
a static structure and second as a dynamic structure.

From a static approach the plate flexibility is greatest in the out of plane direction.
The following results are derived in Appendix A. Consider the constant thickness plate
as loaded in Fig.4.3. Each load acts independently and results in some static deflection
of the plate. The maximum deflection resulting from F, = 1 (N) is calculated using
beam bending theory as 3/E (m) in the (z) direction at the point of application. The
maximum deflection resulting from M = F,(¢/2) = .0013 (Nm) is calculated as 77/FE
(m) in the (y) direction at the extreme edge of the plate (ie. away from the cutting
zone). The maximum deflection resulting from F,, = 1 (N) calculated for a CCCF plate
is 3600/E (m) in the (y) direction at the point of aplication. This result is conservative
since a CCCF plate is much more rigid than a CFFF plate of equivalent dimensions.
Clearly from these results the plate can be considered as rigid to in plane loads (in the
static case) unless they are extremely large.

Approximate dynamic characteristics of the plate can be obtained by studying con-

stant thickness cantilevered plates. The natural frequencies are determined using the
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following equation [13]:
_ 1 P9y
wﬂi - Kt[’)’tl4]
where,

Et

D=ma=w

and (v), (7), (9) and (K;) are Poisson’s ratio, the weight density, the acceleration due
to gravity (¢ = 9.81 m/s?) and a modal scaling factor respectively (K; = 3.5, 8.5, 21, 27
and 31 for the first five modes).

The first five natural frequencies of a 2.5x2.5x0.05 (in.) (63.5x63.5x1.27 mm) CFFF
7075-T6 aluminum plate are: 135, 330, 828, 1069 and 1204 (Hz). The first five natural
frequencies of a 2.5x2.5x0.1 (in.) (63.5x63.5x2.54 mm) CFFF 7075-T6 aluminum plate
are: 540, 1319, 3313, 4275 and 4817 (Hz). The frequencies increase with the square of the
plate thickness. The first five mode shapes are: first horizo.nta.l bending, first torsional,
second horizontal bending, first vertical bending and the second torsional mode.

For a plate of variable thickness there is no simple relationship to obtain the modal
characteristics of the structure. The overall mass and stiffness properties will vary de-
pending on where the material has been removed. This will also vary for different modes
of the system. Material removed from locations of large deflection will mostly decrease
the mass, while material removed from locations of high strain will mostly decrease the
stiffness. The dynamic characteristics of the plate will be considered more thoroughly in
Sections 4.3 and 4.4.

Another consideration is that the plate dynamics will be varying continuously while
the machining operation is taking place. That is, since metal is being removed from the

plate its mass and stiffness must be changing. Since the material is being removed slowly
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the dynamics should also be changing slowly. This factor is neglected in this work and

only one location of the cutting zone is considered.

4.3 Finite Element Analysis of the Stepped Plate

A dynamic finite element (FE) model has been developed for the plate considered in
Section 4.1, see Fig.4.1. The undeformed FE grid is shown in Fig.4.4. The software
used to generate the model was the Vibration and Strength Analysis Program (VAST)
[48] used by the Defence Research Establishment Atlantic in Canada. The plate was
modelled using 20 node brick elements with three translational dof per node, see Fig.4.5.
The total model size was 1594 dof. Material properties used in the analysis are the same
as those given in Section 3.1 for 7075-T6 aluminum. The computations were carried out
on a Vax 11/750 computer.

Output from VAST includes global mass and stiffness matrices with mode shapes
and natural frequencies for the first five vibrational modes. The modal characteristics
are shown graphically in Fig.4.6. The first five natural frequencies calculated for the
stepped plate are: 476, 1058, 2499, 2933 and 3687 (Hz). These values predicted by
VAST are within the theoretically expected range for flat plates calculated earlier, see
Fig.4.7. In this figure VAST was used to generate the frequer;cies for the stepped plate,
and the theory of Section 4.2 was used to determine the frequencies of the flat (50 and
100 THOU) plates. The mode shapes are also of the same type for each of the first five
modes as those predicted for flat plates of similar dimensions.

- The purpose of modelling the plate with the finite element method is to obtain an
analytical solution for the response of the plate to forces acting in the cutting zone. Since
the response is only required over a small percentage of the plates surface the FE model

is reduced using the system equivalent reduction expansion process (SEREP) outlined in
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the Literature Survey of this work. Using this process the 1594 dof FE model is reduced
to a 27 dof SEREP model of the plate dynamics in the cutting zone, see Fig.4.8. The
SEREP process extracts points from the FE model on the surface of the plate in the
cutting zone. The reduced model is more suitable for forced response analyses such as
machining of flexible structures.

Several computer programs are listed in Appendix B which are used in the model re-
duction process and to verify the model. Functions carried out by the computer programs

include :

¢ Reading VAST mass, stiffness and eigensolution files and rewriting them into for-

matted files for further processing (Courtesy of James Yang).

o Perform SEREP reduction process on FEA files for specified dof. SEREP is outlined
in Chapter 2 as Eqs.2.33 to 2.42. The algorithm is general and can be used with

any specified dofs.

o Calculate the point receptance frequency response function (FRF) of the reduced
dynamic model at a specified dof. This is accomplished by first reducing the 27 dof
' SEREP equation of motion (see Eq.4.79) to five modal equations of motion (see
Eqs.4.80 to 4.84). The FRF is determined for each mode using Eq.2.27. Each of
the modal FRF’s are added to obtain the local FRF of the plate at any specified
node. The eigenvectors must be normalized to the desired dof before this procedure

is done.

e Calculate a forced response of the reduced dynamic model by numerical integration.
This is accomplished by first reducing the 27 dof SEREP equation of motion (see
Eq.4.79) to five modal equations of motion (see Eqs.4.80 to 4.84). The response

of each modal equation of motion is calculated using Eq.2.25. Each of the modal
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responses is transformed to the local coordinate system using Eq.4.85. The total
response of the plate is determined by adding the individual modal responses in

the local coordinates.

¢ Determine the frequency content of output data files using the Fast Fourier Trans-

form method. This program uses a standard procedure [30].

The modal properties of the reduced dynamic model of the stepped plate are presented
in Table 4.1. Using experimentally determined values for the viscous damping coefficient
of each mode (see Section 4.4), receptance FRF plots for three points in the cutting zone
are presented in Fig.4.9. The plots show that the first mode is dominant at the top of
the plate while the contributions of other modes become more significant towards the
cantilevered edge of the plate.- Also the plate is much more rigid at its base than near
its tip as expected. Detailed study of the mode shapes obtained directly from VAST has
shown that in-plane values of the modes are small relative to the values in the y-direction.
The appearance of antiresonances between resonance peaks is required and can be seen
on the plots. The model of the plate seems reasonable and is expected to match well

with experimental results.

4.4 Experimental Modal Testing of Stepped Plate

The purpose of this section is to experimentally determine some of the dynamic char-
acteristics of the plate in order to verify the results of the finite element analysis and
reduction process presented in the previous section. An impact hammer is used to ex-
cite the plate with the deflection being measured by a proximitor probe. The process
consisted of impacting the plate several times with the hammer at several locations and
recording the frequency response on a dual spectrum analyzer. The setup is shown in

Fig.4.10. Equipment used in the experiments included: Bruel & Kjaer dual spectrum
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analyzer, Nicolet oscilliscope, analog filters, Bruel & Kjaer charge amplifiers, impact
haminer, PC based data aquisition system, Bentley Nevada proximitor and probe and
the plate mounting bracket.

Several FRF data plots were recorded to give a good indication of the plate’s dynamic
characteristics in the cutting zone. The plots are presented as Fig.4.11 and are discussed
here.

Plot a) is a direct receptance FRF measured at node 5 of the plate. Plot b) shows
the low frequency detail of plot a). The static flexibility is taken directly from plot b)
as 3 (THOU/LB) . Plot c) is the coherence of the measurements taken to produce plot
b). The determined coherence value close to unity gives a high level of confidence in
the measurements taken. The value of the coherence is very low near 60 (Hz) due to
the line frequency of the instrumentation power supply. This phenomenon is seen on
other graphs and should be recognized and neglected. Plot a) shows a clear resoﬁance
at 494 (Hz) with no other modes being easily detected. Several comparisons can be
drawn between the measured and estimated (see Fig.4.9) FRF’s. The static flexibilities
are equal at 3 (THOU/LB). The magnitude of the 494 (Hz) resonant peak is also very
close for both plots. The higher modes are not apparent on the measured FRF because
the impact hammer cannot excite very high frequencies when used with such a flexible
structure. Also the second mode is dominated by the mass of the first mode as seen on
the theoretical plot and results in poor definition of the second mode on the experimental
FRF.

Plot d) is a direct receptance FRF measured at point 14 on the plate. Two resonant
frequencies were detected at 494 and 1056 (Hz) corresponding to the first bending and
torsional modes respectively. Frequencies above 2000 (Hz) were not excited by the impact

hammer and useful results could not be obtained in this range. The theoretical and

measured static flexibilities are both 0.6 (THOU/LB). The magnitude of the first mode
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is consistent between theory and experiment but the magnitude of the second mode is
off by a factor of two. This is probably due to the the closeness of the excitation point
to a nodal line of this mode. ”

Plot e) is a direct receptance FRF measured at point 23 on the plate. The first five
vibrational modes are clearly seen at 487, 1056, 2495, 2915, and 3639 (Hz). These values
corréspond well with the theoretically predicted values using the finite element method
(see Fig.4.6). The measured static flexibility is 0.04 (THOU/LB) and the predicted value
is 0.004 (THOU/LB), so there is an order of magnitude discrepancy. This is probably
due to two separate factors. First the location of the measurement is close to nodal lines
for all of the modes and therefore the stiffness gradient is large so that experimental
errors could become significant. Second the experimental setup consists of a clamping
mechanism which may introduce some added flexibility to the plate which wouldn’t have
been noticeable away from the base of the plate. The peak amplitudes of each mode
are consistent with the predicted values considering the experimental errors previously
discussed. Other modes at higher frequenciés may also be significant. These higher
modes are not included in the analytical model and will be assumed to be unimportant
for the remainder of this work. The expected antiresonances between modes are not
present for most cases which probably indicates [10] “poor measurement quality because
of inadequate vibration levels resulting in poor definition of the antiresonance regions.”

Plots f) to j) are detailed direct receptance FRF’s of each resonance taken at point
23 on the plate. These plots are used to estimate the viscous damping ratios used to
generate the theoretical model of the plate whose FRF’s are given in Fig.4.9. The half
power (bandwith) method [8] is used to obtain the following modal damping ratios:

¢1 = 0.001
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(3 = 0.001
¢4 = 0.0003
(s = 0.0004

Point 23 was chosen as the location for taking the measurements used to obtain the
damping ratios because the impact hammer was able to excite all five modes there. Errors

involved with estimation of the damping ratios include:

e noisy signals at higher modes resulting in difficulty finding the bandwidth at the
half power points

o effect of nonliniearities (ie. mounting assembly)

¢ influence of other modes (this is probably small due to the relatively large distance

between the modes)

Plots k), 1) and m) are the magnitude, real and imaginary parts respectively of the
FRF for the first vibrational mode taken at point 14. The damping ratio obtained from
these plots is {; = 0.001 which is equal to those obtained from the bandwidth method.
This result gives further confidence in the damping ratios obtained for the other modes.

Time domain plots are also presented for the force and deflection of the plate during
free vibration, see Fig.4.12. The plate vibration is measured at node 14. These graphs
may be used to obtain an estima,té of the effect of vibration on forces transmitted to the
dynamometer during cutting experiments. The amplitude of the transmitted forces is 20

(N) and the vibration amplitude is 0.06 (mm). The equivalent stiffness of the plate from
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Fig.4.12 c) is ke; =310 (N/mm), and the vibration frequency of the plate is 488(Hz).
The equivalent mass of the plate at node 14 is then me, = key/47%w? = 0.033 (kg). The
transmitted force measured here is large enough to significantly affect measured cutting
forces if the vibration of the plate is large.

The experimental results presented in this section compare favourably with those
obtained from the finite element modelling process. Several possible error sources have
been indicated which could result in those discrepancies which have been encountered.

Other sources of error are:

o The glue and steel reflectors mounted on the plate would affect the plate dynamic

characteristics
o Geometric differences in the physical plate and the FE model
¢ Statistical variations in the level and location of the impact.

The effects of these factors are difficult to quantify and it will suffice here to simply
note that they exist. The result of these experiments is that the reduced analytical
model of the plate can be used without modification to simulate the plate dynamics in

the peripheral milling of flexible structures.

4.5 Dynamic Solution of Reduced Plate Model

The plate dynamic response to a known disturbance is considered here. The reduced

dynamic model results in a 27 dof equation of motion :

Mi+Ci+Kz=F (4.79)

where: (M[27,27]), (C[27,27)), (K[27,27]), (F[27]) and (z[27]) are the mass, damp-

ing, stiffness, applied force and displacement of the system in local coordinates. The
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eigenvalues ();) and eigenvectors (¢;[27,1]) of the reduced system are also known for the
first five modes. Eq.4.79 is uncoupled using the modal analysis procedure where mode ¢

is represented by:

miZ; + i + kizi = fi (4.80)
where,
m; = ¢T M¢; o (4.81)
ci=¢/Chi (4.82)
| ‘k,- _ @,TK¢,~ - (4.83)
fi=¢FF o (4.84)
T = diz; (4.85)

If the input force (F) is known then the modal forces (f;[1,1]) can be calculated using
Eq.4.84. (mi[1,1]), (ci[1,1]) and (ki[1,1]) are the modal mass, damping and stiffness
respectively and are constants. The modal responses (z;[1,1]) can be determined using
a discrete-time solution of a SDOF system (see Eq.2.25). The response of the plate in
local coordinates, including the first n modes, is calculated as: z = 1, ¢;iz;.

The response of the plate to a unit step input applied at node 23 is given in Fig.4.13.
The damping factors used are those from the experimental modal testing of the previ-
ous section. The result is consistent with a multiple degree of freedom lightly damped

dynamic structure.
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The distribution of cutting forces on the grid points is an important factor in carrying
out a forced response of the plate. Consider the simple grid shown in Fig.4.14. with forces
applied as shown. In plane loads and applied moments are not considered here. Three

rules are used to distribute the forces onto the grid:

1. The total force applied to the structure is equal to the sum of the forces applied to
the individual nodes.

2. Forces are applied only to those nodes directly neighbouring the point of force
application.

3. The fraction of an applied force which is distributed onto a particular node is

inversely proportional to its distance from that node.

For the example of Fig.4.14 the following force distributions would apply:

FA F,=F4
FB F1=(b_bl”1)FB
Fy=FB-F
FC Fl _ (a —C'lel)(b—blyl)FC
— g, b—1
Py = (=)~ 2)FC
— I3, ,0—1
B = (——2)(~52)FC
— g, 01
Fy = (22—

- 3 YFC
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a—l,4

FD Fy=( )FD

a
F4=FD—F3

This example considers all possibilities which might be encountered in a more complex
problem, and may be applied directly to in plane forces if required.

A general solution for calculating the force applied at node ¢ is:

b

Fi= (A2 (4.86)

where: (F), (F;), (a), (b), (Iz) and (I,;) are the applied force, nodal force due to (F),
x-coordinate grid width, y-coordinate grid width, distance from node (z) to the applied
force in the x-direction and the distance from node (i) to the applied force in the y-

direction. Eq.4.86 is used for each applied force according to the three aforementioned

rules.

4,6 Conclusions

In this section the dynamic characteristics of the stepped plate have been thoroughly
investigated. Since the largest deflections are expected to occur at the top of the plate in
the out of plane directions any in plane loads and moments can be safely neglected from
the analysis. Use of the 27 dof SEREP reduced model of the plate has been successfully
used to model the forced response and frequency response of the pla_te. This implies that
the finite element model used can be modified to model the dynamics of the plate at
other locations of the cutting zone in future studies. This same model will be used to
simulate the plate response‘ to cutting forces during the dynamic milling process in the

following chapter.
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1
NODE #
1 0.89
2 0.87
3 0.86
4 0.74
5 0.72
6 0.71
7 0.59
8 0.57
9 0.56
10 0.44
11 0.43
12 0.42
13 0.30
14 0.30
15 0.29
16 0.18
17 0.17
18 0.17
19 8.31E-02
20 8.35E-02
21 8.36E-02
22 2.00E-02
23 2,08E-02
24 2.16E-02
25 0.00
26 0.00
27 0.00
476

MODE No.

MODE SHAPES

0.15
4.93E-02
-4.33E-02
0.17
8.17E-02
«4.43E-03
0.18
9.97E-02
2.34E-02
0.17
0.10
3.90E-02
0.14
9.25E-02
4.32E-02
0.10
7.04E-02
3.71E-02
5.97E-02
4.16E-02
2,39E~02
1.80E-02
1.34E-02
8.30E-03
0.00
0.00
0.00

-0.61 -0.27
-0.53 -0.28
=-0.45 -0.25
-0.34 -0.25
~0.29 -0.26
=-0.25 -0.23

-7.68E-02 =-0.26

-7.38e~-02 -0.25
~5.83E-02 =-0.22
0.13 -0.26
0.10 -0.25
9.00E-02 =-0.21
0.24 =-0.24
0.19 -0.22
0.16 -0.19
0.24 -0.19
0.19 -0.17
0.16 -0.14
0.15 -0,11
0.12 -0.10
0.10 -8.67E-02

4.79E-02 =-3.61E-02
4.02E-02 -3,23E-02
3.45E-02 -2.7S5E-02

0.00
0.00
0.00

0.00
0.00
.00

FREQUENCIES (Hz)

1058

2499

2933

-0.24
-0.37
-0.47
-3.18E-02
-0.10
-0.17
0.12
0.10
8.75E-02
0.21
0.24
0.26
0.23
0.29
0.32
0.18
0.24
0.28
0.10
0.14
0.17
2.79E~-02
4.24E-02
S.41E-02
0.00
0.00
0.00

3687

Table 4.1: Modal Data for the Stepped Plate
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Figure 4.1: Stepped, square cantilevered plate.
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Figure 4.5: 20-node, 60-dof brick element.
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MODE No. 5

Figure 4.6: First five mode shapes for the stepped plate.
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Figure 4.7: Natural frequency variation for various cutting zone locations.
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Chapter 5

Results of Plate Machining

5.1 Introduction

Machining of flat plates is analogous to many important industrial processes. The man-
ufacture of jet engine impellers, microwave guideway systems, large turbine blades and
many aircraft structural components are included in this classification. During machin-
ing operations these relatively flexible workpieces are subjected to periodically varying
cutting forces of the milling process. These forces may result in both static and dynamic
deflections of the workpiece and the machine tool. The relative motion between the
workpiece and the tool also affect the cutting forces, making the process a closed loop
dynamic system. An example of plate machining is given in Fig.5.1 which also shows
the dynamic interaction between the tool and the workpiece. To model the machining
of plates correctly several aspects of the process must be considered: kinematics and
dynamics of the workpiece, cutter and machine tool, kinematics of milling and dynamic
chip removal. These considerations have been discussed previously and are combined in
this chapter. Simulation and experimental results for some cases of plate machining are

presented. Recomendations for future work are given.

5.2 Simulation of Plate Machining

The previous two chapters have introduced discrete time methods for simulating dynamic

milling and calculating the response of a stepped plate to known dynamic forces. To
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model the machining of a flexible workpiece, both of these methods must be combined
into a single integrated closed loop simulation approach. This is accomplished here by
using the cutting forces to calculate the plates response which is then used to reevaluate
the cutting forces in the following time step.

When applying this procedure to flexible workpiece machining several characteristics
of the entire process must be considered. The kinematic, dynamic and metal cutting
models must describe their respective systems accurately without causing problems else-
where in the global simulation.

First consider the discretized system kinematics described in Chapter 3. It has been
shown that the method used for describing the geometry of the tool and the workpiece
can accurately define the chip removal and surface generation of low frequency dynamic
" milling. When machining flexible structures the discretization time step must be chosen
small enough to capture any dynamic modes, to give a clear view of microscopic surface
finish details and to accurately define any system changes due to nonlinearities of the
cutting process. All of these conditions are quite complex. In considering the plate
dynamic modes, it must also be noted that the cutting process stiffness and damping
will influence the vibration frequencies encountered. Generally these frequencies will
be increased but it is difficult to predict by how much. This makes the choice of the
simulation time step difficult. In order to capture details of the microscopic surface
finish it is necessary to know the maximum relative velocity between the plate and the
tool, which is also difficult without first carrying out experiments or simulations. Finally
in vibratory milling the initial cutting force (due possibly to both chip removal and
ploughing) can be overestimated, thus setting up unrealistic transient vibrations, if the
time step is too large. The time step must be chosen small enough so that these factors
don’t significantly affect the results.

Next consider the ability of the proposed dynamic model, presented in Chapter 4, to
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accurately describe the motion of the workpiece. This model considers five vibrational
modes and twenty-seven active degrees of freedom. The plate itself has an infinite number
of both modes and degrees of freedom. A discrete method is used to model the plate
because this would be the only realistic approach to the more complex geometry of jet
engine impellers. The size of the discrete model was chosen as a compromise between
computation time and satisfactory model definition.

Other considerations of the dynamic model are introduced due to the machining pro-
cess. These include: continuously changing dynamics due to material removal, dynamic
coupling of the tool and workpiece, the effect of a lubricant applied at the cutting zone,
steadies placed behind the plate and the effective dynamic changes due to the cutting
process stiffness and damping. Changes in the plate dynamics due to material removal
are neglected here for simplicity. A possible #pproach to this problem is considered in
Section 5.5. It is an assumption of this work that the plate is flexible and the tool is
perfectly rigid. This assumption is made to simplify the current problem and could be
overcome without difficulty if the tool dynamics were modelled. One problem which may
occur if two frequencies of the coupled dynamic system are close is nonlinear behaviour
which would be relatively difficult to model. A lubricant is used in many commercial
machining operations. Because the plate mass is small, the effect of pouring a lubricant
onto the cutting zone may significantly affect the dynamics of the plate. This would be
difficult to quantify analytically and is neglected in this work, where no lubricant is used.
Steadies placed behind the plate might be used to reduce vibrations. For the approach
to be used most effectively the result of the steadies on the dynamics of the plate must
be known. Modelling the ineraction between steadies and the plate is beyond the scope
of this work, but is discussed briefly in Section 5.5. Process stiffness and damping are
due to the nature of dynamic cutting. The result of these characteristics on the plate

motion is similar to their structural counterparts. The process dynamics are inherently
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defined in the metal removal model and are independent of the structural dynamics of
the plate.

Finally consider the dynamic cutting process itself. The static cutting model was
verified in Chapter 3, but estimation of the dynamic cutting forces due to flank inter-
ference and loss of contact between the tool and workpiece has not been tested. This is
unfortunate because it increases the difficulty in comparing simulation and experimental
results of plate machining. This limitation is necessary however, since there has not
been an acceptable model for dynamic cutting presented to date in the literature. The
model used here is sensitive to the time step used in the simulation. If the time step
is too large the cutting forces can be grossly overestimated, depending on the relative
veloci_ﬁy between the tool and the workpiece. Also if edge cutting forces are included
in the cutting model (ie. A* # 0 and ry # 0) unrealistic step inputs are applied to the
plate’s structural model. This results in false transient vibrations and therefore edge
cutting forces are neglected in the following simulations. The cutting force calculation
is strongly dependent on the accuracy of the kinematic representation of the tool and
workpiece. Any approximations in‘ the kinematics of the cutting process will be mirrored
by errors in the calculated cutting forces.

Simulation results are presented in Section 5.4. The parameters considered are the
resultant forces due to the cutting process, plate deflections and the generated surface

finish. The effect of runout is neglected in all of the simulations.

5.3 Experimental Plate Machining

Results of four cases of plate machining are presented in Section 5.4. The process is
represented in Fig.5.1 (a). The experiments were performed on a 3-axis vertical CNC

milling machine. Measured data includes plate displacement and force transmitted to
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the table dynamometer. Surface finish profiles were measured using dial gauges with end
diameters of 0.4 mm. The plate material used was 7075-T6 aluminum and its geometry
is given in Fig.5.2. Up milling was investigated in all cases. Several difficulties were
encountered during the experimental phase of this work and these are discussed next.

Initial work included: choice of a plate material and geometry, design of a mounting
bracket to fasten the plate onto the table dynamometer and fabrication of several plate
specimens.

To facilitate experimental work a readily available and easily machined material was
required. 7075-T6 aluminum satisfies these conditions. One overlooked difficulty with
this choice was that the proximitor probe used to measure the plate displacement is
insensitive to aluminum. This problem was overcome by glueing thin steel shims to the
plate at sensor locations.

The size of the plate chosen for the experiments was 2.5 x 2.5 x 0.10 (in.) machined
to 2.5 x 2.5 x 0.05 (in.) with a single pass of an end mill. These dimensions were chosen
due to several considerations. The plate must have physical dimensions which can be
easily mounted onto the table dynamometer. A square plate simplifies any analytical
work. The plate must have regions where its stiffness is negligeble relative to the stiffness
of the end mill so that the tool can be assumed to be rigid. The fundamental frequency
of the plate should be as small as possible. Finally, in order to test the full capabilities of
the simulation work, a process was desired where “unstable cutting” would be present.

A mounting bracket was designed to fasten the plate onto the dynamometer. De-
sign requirements of the mounting bracket assembly included adequate stiffness, minimal
influence on the plate dynamic response as measured on the table dynamometer, remove-
able from the dynamometer and the flexibility to hold many different plate sizes. The
final design is shown in Fig.5.3 and satisfies the above requirements satisfactorily.

Several plate specimens were prepared for the experimental work. The stock material
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used was 1/4 (in.) plate. The stock was machined to the shape shown in Fig.5.2. The
ramp shown in Fig.5.2 was included for two reasons. The first reason was to reduce
machining errors, and therefore errors in the plate dynamic model, prior to taking any
measurements. The second reason is to eliminate the possibility of “catching” at the edge
of the plate when the tool starts to cut at point B. This usually results in the destruction
of the workpiece by plastic deformation. If the tool starts to cut at point A of Fig.5.2,
the transition from non-cutting to cutting is smooth and catching doesn’t occur.

With the workpiece setup established specifications of the end mill geometry, cutting
conditions and data sampling frequency are required. Each of these specifications are
given with the experimental cases. Two end mills, one with straight flutes and one with
helical flutes, are used in the experiments. Some parameters considered in the choice of
the end mills were: size, stiffnes"s,.d.vailtdbilvity, cost and cuttmg .angles. Cuttmg conditions
considered here are the feed per tooth and the spindle speed. The feed per tooth is chosen
to give a desired maximum cutting force. Neglecting any deflections of the plate or tool,

the cutting force can be estimated by:
F ~ K,ah

Errors in this approximation due to plate deflections away from the tool will be
conservative and overestimate the cutting force. The spindle speed is chosen to give a
practical cutting speed and to decrease the overall experimental time. The sampling
frequency is chosen to be as fast as possible in order to observe the maximum resolution
of any high frequency activity.

Experimental results for four cases of plate machining are presented in the next sec-
tion. Measured parameters considered are the transmitted force to the table dynamome-

ter, plate deflections and the generated surface finish.
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5.4 Discussion of Results

Results of four cases of plate machining are presented in this section. Both experimental
and simulation results are considered and compared. The parameters for each case are

sumarized in Table 5.1. A suinma.ry of the main results is given in Appencix C.

5.4.1 Case No.l

This case considers up milling with a 3/4 (in.) diameter, four fluted zero helix end mill.
The spindle speed is 1500 (RPM) and the feedrate is 0.015 (in./s). The axial depth of
cut is 2.5 (in.). Simulation cutting paraméters used are K, = 1185 (MPa) and r = 1;
ploughing and edge cutting forces are neglected. All of the first five vibrational modes are
included in the plate dynamic model. Structural damping is approximated as { = 0.05
for all modes. The time step of the simulation is 10 (x s). The simulation results are
discussed first. Graphs showing simulated results for this case are shown in Figs. 5.4 to
5.10.

Fig. 5.4 shows the displacement of the plate at node 14 (near the middle of the plate)
for the first 100 (ms) of the simulation. There are three characteristics to notice about this
result. First, the response is growing, which indicates an unstable machining operation.
Second, the frequency content of the displacement includes the tooth passing frequency
(100 Hz), the first natural frequency of the plate (477 Hz) and some higher frequency
signals. Third, the transient vibration between teeth is of a significant magnitude at the
beginning of each cutting cycle. Fig.5.5 shows the displacement at node 14 after 800
(ms) and Fig.5.6 shows details of the deflection at nodes 5, 14 and 23 for a single tooth
pass. ‘

Figs.5.7 and 5.8 show the simulated cutting forces in the (x) and (y) directions re-

spectively. Figs.5.9 and 5.10 show details of these cutting forces for a single tooth pass.
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These forces are composed of a low frequency tooth passing component and a very high
frequency (about 5 kHz) paft present only during the cutting cycles. This would indicate
that the plate is “bouncing” on the tool at a high frequency and that little “cutting” is
taking place.

Comparing'Figs.S.G and 5.10 reveals an interesting result. The displacement due
to cutting begins at 0.81 (s) while the cutting force doesn’t become visible until about
0.8107 (s). Thus the displacement appears to lead the cutting force by 0.7 (ms). This
isn’t really the case. Since the top of the plate is extremely flexible (approximately 0.022
mm/N) virtually no metal cutting takes place there. For this reason the tool contacts the
unmachined top of the plate first during each tooth pass. Since the plate is so flexible
very little force is required to cause the initial displacement. This force isn’t visible
on the graph but it is present and as would be expected the force actually leads the
displacement.

The experimental results for Case 1 are discussed next. Graphs showing experimental
results for this case are shown in Figs.5.11 to 5.14.

Fig.5.11 shows the plate displacement measured at node 14. The corresponding plot
from simulation studies is shown in Fig.5.5. The out of cut vibration frequency of the
plate is high (=~ 2 kHz) which may be due to excitation of one of the higher modes,
or because the steel shim glued to the back of the plate became loose. The in cut
vibration frequency is 900 (Hz) and corresponds well with the first mode component of
the simulation results. The magnitude of in cut deflections correspond well.

The measured forces transmitted to the table dynamometer in the (x) and (y) direc-
tions are presented in Figs.5.12 and 5.13 respectively. The sign of the measured force in
the (y) direction is opposite to that used in the simulation studies, this is a result of the
measurement setup and is not an error. The corresponding simulation results are shown

in Figs.5.7 and 5.8. First it should be noted that the measured force and the actual
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cutting force are different. Inertial forces due to plate vibrations are also transmitted
to the dynamometer and can contribute a significant amount to the measured results.
Similarly to the simulation results, the measured forces have a strong component of a
high frequency signal. Also the magnitudes of the measured and simulated forces are
close.

A portion of the measured surface finish is shown in Fig.5.14. The mechanism of
surfac_é generation is explained in Section 5.4.3, and is a result of the plate vibration
frequency and the cutting speed. The wavelength observed on the surface is 2.8 (mm).

Theoretically, the resultant wavelength is (RQ/ fne) = 1.7 (mm).

5.4.2 Case No.2

This case considers up milling with a 3/4 (in.) diameter, four fluted zero helix end mill.
The spindle speed is 1157 (RPM) and the feedrate is 0.02 (in./s). The axial depth of
cut is 2.5 (in.). Simulation cutting parameters used are K, = 1185 (MPa) and r = 1;
ploughing and edge cutting forces are neglected. All of the first five vibrational modes are
included in the plate dynamic model. Three cases of structural damping are considered:
¢ = 0.005, { = 0.05 and ¢ = 0.5 for all modes. The purpose of varying the damping
ratio is to investigate the effect of process damping on plate machining. The time step
of the simulation is 10 (u s). The simulation results are discussed first. Graphs showing
simulated results for this case are shown in Figs. 5.15 to 5.28.

¢ = 0.005

Fig.5.15 shows the plate displacement at node 14 when ¢ = 0.005. Fig.5.16 shows the
corresponding cutting force in the (y) direction. The process is strongly unstable and

plate vibrations increase rapidly.
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¢ =0.05

Fig.5.17 shows the initial displacement of the plate at node 5 and Fig.5.18 shows the
corresponding vibration at node 14. There is a greater content of high frequency motion
in the response at node 14. This is because the higher frequency modes are stronger at
node 14 than at node 5.

Fig.5.19 shows the simulated displacement at node 14 from 800 to 900 (ms). A de-
tailed view of the displacement for a single tooth pass is shown in "Fig.5.20 for nodes 5,
14 and 23. Again, the higher frequency components are more visible at nodes 14 and 23.
Considering the displacement at node 5 the fundamental vibration frequency is greater
during cutting than during free vibrations. This is a result of the process stiffness increas-
ing the equivalent structural stiffness and therefore increasing the vibration frequency.
This is considered in more detail for simulation Case 3.

Cutting forces in the (x) and (y) directions are shown in Figs.5.21 and 5.22 respec-
tively. Details of these cutting forces, for a single tooth pass, are given in Figs.5.23 and
5.24. These forces are composed of a low frequency tooth passing component and a véry

high frequency component present only during the cutting cycle.

(=05

Fig.5.25 shows the displacement of the plate at node 14 for the first 100 (ms) of the
simulation. This result can be compared with Fig.5.18, where { = 0.05. The rate of
growth of the displacement when ¢ = 0.5 is much slower than the rate of growth when
¢ = 0.05. When { = 0.5 the transient vibrations during non cutting are completely
damped out between consecutive teeth. Also very little high frequency content is visible
in Fig.5.25.

Fig.5.26 shows the plate displacement at node 14 after 800 (ms) and Fig.5.27 gives a
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detailed view of the displacement for a single tooth pass at nodes 5, 14 and 23. Again
the dominant vibration frequency is increased in cut, and the higher frequency modes
are more visible at nodes 14 and 23.

Cutting forces in the (x) and (y) directions are given in Figs.5.28 and 5.29 respectively.
Details of these forces are shown in Figs.5.9 and 5.10 for a single tooth pass. As before,
the cutting forces consist primarily of the tooth passing frequency and some very high
vibration frequency. The relative contribution of the high frequency forces indicates that
most of the cutting is occuring at the bottom of the plate where the high frequency
modes are more active.

From the three simulations of Case 2, an important result is that the stability increases
as the structural damping ratio is increased.

‘Experimental results are considered next. Graphs showing experimental results for
this case are shown in Figs.5.32 to 5.35.

Fig.5.32 shows the plate displacement measured at node 14. The corresponding sim-
ulation results are given in Figs.5.15, 5.19 and 5.26. The magnitudes of the simulated
displacements don’t predict the measured displacements accurately. The observed in
cut vibration frequency is 860 (Hz) which corresponds well with the simulated value of
890 (Hz) measured from Fig.5.20. The experimental result has a sharp displacement
between each of the tooth passes, which is the result of inadequate clearance behind the
teeth. This is analogous to having short teeth with large negative rake angles between
the cutting edges. This problem is eliminated for the experiments of Case 3.

Measured forces are given in Figs.5.33 and 5.34 for the (x) and (y) directions respec-
tively. As with the simulated forces, a frequency component higher than the measured
vibration frequéncy is strong. This is present because most of the cutting force is gen-
erated near the bottom of the plate where higher frequency modes are dominant. The

static cutting force is larger for the measured forces than for the simulated forces. This
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is because of an inadequate cutting force model. The inclusion of ploughing forces in the
simulation is expected to reduce this discrepancy. This will be discussed in Case No. 3.

A portion of the measured surface finish is shown in Fig.5.35. The wavelength
observed on the surface is about 2 (mm). Theoretically, the resultant wavelength is

(RQY/ foc) = 1.3 (mm).

5.4.3 Case No.3

This case considers up milling with a 3 /4 (in.) diameter, four fluted zero helix end mill.
The tool clearance angle is 10 deg with a primary land of 0.5 (mm) and the rake angle is
5deg. The spindle speed is 1157 (RPM) and the feedrate is 0.394 (in./s). The axial depth
of cut is 2.5 (in.). Simulation cutting parameters used are K, = 1185 (MPa) and r = 1;
edge cutting forces are neglected. Results of two simulations are presented. Ploughing
forces are included in the second simulation where the yield strength is estimated as 496
(MPa). Only the first bending mode is included in the plate dynamic model. The purpose
of this simplification in the dynamic model is to determine whether the higher frequency
modes contribute significantly to the simulation results. A single mode approach also
simplifies the plate motion which makes the surface generation mechanism easier to
analyze. Structural damping is { = 0.5. The time step of the simulation is 10 (4 s).

Graphs showing simulated results for this case are shown in Figs. 5.36 to 5.44.

a) Zero Ploughing Forces

The first simulation doesn’t consider ploughing forces on the tool flank face. Fig.5.36
shows the displacement of the plate at node 14 during steady state conditions. Four
important characferistics of this graph should be noted.

First, none of the very high frequency (= 5 kHz) vibrations are present which were

seen in both of the previous two simulation cases. This is due to not including the four
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higher vibratiohal modes in this simulation case.

Second, although the theoretical immersion angle is only 30 deg, the plate is deflected
for about 66% of the time for each tooth pass. This is because the top of the plate isn’t
stiff enough to allow material to be removed from it. This results in the tool starting to
cut at an immersion angle of —30deg and finishing the cut at +30deg. This accounts
for 60deg of tool-workpiece contact which corresponds to 66% of the cycle time. The
inability to model this phenomenon is a limitation of other dynamic milling simulation
methods.

Third, the vibration frequency during cutting (=~ 1.3 kHz) is faster than the natural
frequency of the plate (477 Hz). This is due to the influence of the process stiffness and
process damping. A simplified analytical estimation of the effect of process stiffness on
the cutting vibration frequency is as follows. '

Assume that the plate is a SDOF dynamic structure with equivalent system param-
eters as calculated in Chapter 4 for node 14: m = 0.033 (kg), £ = 310 (N/mm) and
wn, = 3056 (RAD/s). A schematic representation of this simplified dynamic cutting

process is given in Fig.5.37. The equation of motion for this system is:
mj + ky = K,a(hm — y)
or,
mj + (k + K,a)y = K,ah,
The cutting vibration frequency is given simply as
e = 5= l(k + Koa)m]}
2m

If K, = 1185 (MPa) and ¢ = 63.5 (mm) then the cutting vibration frequency is

f. = 7.6 (kHz). This is a very simplified analysis and is not intended to give an accurate
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estimate of (f;). Factors neglected here are: process damping, regeneration, and the
three dimensional geometry of both the plate and the milling process.

The fourth item to notice about Fig.5.36 is that the transient plate vibrations are
very small at the start of each cutting cycle.

Figs.5.38 and 5.39 show the cutting forces in the (x) and (y) directions respectively.
The high frequency component of the cutting force corresponds closely to the vibration
frequency of the plate. This is because only one mode is present and the entire plate
vibrates in phase at the same frequency. The static component of the cutting forces is
more significant in this case due to the greatly increased feedrate.

| The microscopic surface finish, generated by simulation, of the machined plate is
shown in Fig.5.40. The graph shows how the surface varies in both the feed and axial
directions. Three zones are identified on Fig.5.40. Zone 1 is a transient region dependent
on the initial specifications of the plate geometry. Zone 2 is the steady state finished
surface. Zone 3 shows the geometry of the workpiece material being fed into the tool.
Several comments can be made about this surface profile.

In zone 2, surface errors are present which vary in both the feeding and axial direc-
tions. Variations in the feeding direction are present in the form of surface waves. The
amplitude and static offset of these waves vary in the axial direction but the wavelength .
remains constant.

The wavelength is 1.6 (mm) measured from Fig.5.40. Two possible sources of these
surface waves are invéstiga,ted. First the washboarding phenomenon presented in Chapter
3 is considered. The tooth period is Tc = (60/sZ) = 13 (ms) and the period of workpiece
vibration is T, = (1/fac) = 0.77 (ms) where f,. = 1.3 (kHz) is the plate vibration

frequency during cutting. Following the analysis of Chapter 3 gives:

r =T./T, = 16.854
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N =(1-0.854)"1=6.85

T, = NT, = 89(ms)

This aliasing period (T,) gives a surface wavelength of (fT,) = 0.89 (mm) which cor-
responds to the simulated value of 1.6 (mm). This approach however is not satisfactory
due to the uncertainty in estimating the parameter (r). Since the plate frequency in cut
and out of cut are different, and only the in cut value was used in the calculations, some
error must result. But it should also be noted that since the plate vibration between
subsequent teeth is negligeble the out of cut vibration shoﬁldn’t have any effect on the
cutting vibrations. Therefore since the tool has been seen to impact the workpiece at
(—30deg) immersion angle during each tooth pass, which initiates plate vibrations, the
phase variation between the tooth motion and the workpiece vibration will be constant
for subsequent teeth. This implies an infinite aliasing period, or a theoretically smooth
surface. Since the workpiece surface is not smooth another mechanism must be responsi-
ble for generating the surface waves. This mechanism is the plate vibration superimposed
onto the tool cutting motion. The cutting speed is (R?) = 1154 (mm/s) and the plate
vibration frequency is fn,. = 1300 (Hz). The resultant wavelength when the plate and
tool motions are combined is (RQ/ fyc) = 0.9 (mm) which corresponds to the simulated
value of 1.6 (mm). Clearly there isn’t a close match between the theoretical and sim-
ulated frequencies. This is primarily due to the difficulty of estimating (f,.) from the
plate deflection.

Since the first bending mode only is used to estimate the plate motion, displacements
will always increase towards the tip of the plate. For this reason both the static surface

error and the amplitude of the waves increases towards the tip of the plate. This isn’t
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the case above the horizontal level where no cutting occurs, because the surface is flat

there.

b) Ploughing Included

This simulation considers ploughing forces. Fig.5.41 shows the displacement of the plate
at node 14. The result is similar to the displacement obtained when ploughing was
vneglected except that the in cut vibrations have been greatly reduced in amplitude. This
is a result of increased process stiffness and damping. The in cut vibration frequency has
risen to 1.5 (kHz) due to the increased process stiffness.

Figs.5.42 and 5.43 show the cutting forces in the (x) and (y) directions respec-
tively.The dynamic component of the cutting forces has been decreased relative to the
static component, in comparison with the cutting forces when ploughing was neglected.

The microscopic surface finish (of the machined plate) generated by simulation is
shown in Fig.5.44. Three characteristics of the surface finish are discussed. The surface
marks have a wavelength of 0.9 (mm) which is significantly less than the wavelength of
the surface marks generated when ploughing forces were neglected. Theoretically, the
resultant wavelength when the plate and tool motions are combined is (RQ/ f..) = 0.77
(mm) which is close to the simulated value. The amplitude of the surface waves has
decreased due to the corresponding decrease in plate vibrations. The static component
of the surface error is close to that of the example which neglected ploughing.

Experimental results for Case 3 are presented next. Graphs showing the experimental
results for this case are shown in Figs.5.45 to 5.48.

Fig.5.45 shows the plate displacement measured at node 14. Unfortunately the peaks
of the curve were out of the range of the data aquisitién system and are not shown in
the figure. The measured displacement is comparable to both of the simulation results

presented in Figs.5.36 and 5.41.
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Figs.5.46 and 5.47 show the (x) and (y) measured forces respectively. The effect of
tool runout can be clearly seen in these figures, where one tooth is dominant. The static
component of the cutting force is strong in this case because of the increased feedrate
used. The simulation results without ploughing (see Figs.5.38 and 5.39) overestimate the
dynamic component of the cutting force. This is substantially improved when ploughing
is included in the simulation (see Figs.5.42 and 5.43).

The measured surface finish is shown in Fig.5.48. The wavelength from this graph
is 2 (mm). This is the same value of wavelength that was obtained in Case 2. This
is expected since the cutting speeds and vibration frequencies are close for these two
cases. The wavelength obtained for Case 1 was 2.8 (mm) which is larger corresponding
to a faster cutting speed. This reinforces the proposed mechanism responsible for surface
waviness. Fig.5.48 corresponds to zone 2 of Figs.5.40 and 5.44 whose wavelengths are 1.6
(mm) and 0.9 (mm) for the non-ploughing and ploughing simulations respectively. In
the experimental case surface waves are present at the bottom of the plate which are 180
degrees out of phase with the waves elsewhere on the surface. This indicates that tool
vibrations are significant and 180 degrees out of phase with the plate motion.

Two trends which are predicted correctly by the simulation results are that no cutting
occurs at the top of the plate, and that surface waves are generated. These trends are
significant and indicate the possibility of more accurate results with a refined simulation

model.

5.4.4 Case No.4

This case considers up milling with a 1 (in.) diameter four fluted end mill with a 30deg
helix angle. The clearance angle is 5deg with a primary land of 0.5 (mm) and the rake
angle is 3deg. The spindle speed is 1157 (RPM) and the feedrate is 0.394 (in./s). The
axial depth of cut is 2.5 (in.). Simulation cutting parameters used are K, = 1185 (MPa)
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and r = 1; edge cutting forces are neglected. Ploughing forces are included where the
yield strength is estimated as 496 (MPa). Only the first bending mode is included in the
plate’s dynamic model. Structural damping is { = 0.5. The time step of the simulation
is 10 (¢ s). The simulation results are considered first. Graphs showing simulated results
for this case are shown in Figs. 5.49 to 5.53.

Fig.5.49 shows the development of the plate motion at node 14 over one second. Both
static and dynamic deflections are increasing with time. The graph clearly shows that
chatter vibrations are strong for this machining operation. A high pitched loud noise was
present during the cutting experiment. The steady state deflection is shown in Fig.5.50.
The vibration frequency is about 1.35 (kHz) from the plot, which is less than 1.5 (kHz)
which was the value when a zero helix tool was used. This is likely because of the reduced
process stiffness from the helical tool geometry. The process stiffness is reduced because
the instantaneous axial depth of cut is smaller when a helical tool is used.

Cutting forces in the (x) and (y) directions are given in Figs.5.51 and 5.52 respectively.
These forces consist primarily of spikes corresponding to the plate‘vibra,tion. The high
frequency component is stronger in this case than in the previous cases when a zero helix
tool was used.

The trend of the surface profile is shown in Fig.5.53. As for previous cases, the plate
is not cut at its top and the amount of material increases towards the root of the plate.
Only a few points are shown on the figure which make it difficult to discuss this result.

Experimental results for Case 4 are presented next. Graphs of the experimental
results for this case are shown in Figs.5.54 to 5.57.

Fig.5.54 shows the plate displacement measured at point 14. The effect of runout is
strong in this graph. Although the simulated result (see Fig.5.50) has a similar shape, the
magnitude of the cutting forces is overpredicted. This error is the result of two seperate

mechanisms. Since only a single mode solution is used in the dynamic modelling of the
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plate, the deﬂéction will be overpredicted near its top. The cutting mechanism is an
oblique process when a helical tool is used, this may result in significant errors of the
force prediction.

Measured forces in the (x) and (y) directions are shown in Fig.5.55 and 5.56 respec-
tively. The forces have a strong dynamic component. The simulation overpredicts the
magnitude of the cutting forces. This may be a result of inadequate modelling of the
cutting process or excitation of the plate due to the discretization of the helix angle.
Also since the dynamic model considers only a single mode, the deflection errors will be
reflected in the cutting forces.

The measured surface profile in the axial direction is given in Fig.5.57. The trend
of the simulated result (see Fig.5.53) is correct but significant errors are present due
to inaccurate prediction of the plate displacement. The surface generation mechanism
is significantly different when a helical tool is used. In this case the cutting edge first
contacts the workpiece at its root rather than at its tip. Thus the transient vibrations
resulting from the straight tooth impacting the tip of the plate are not present here. This
is evident by the minimal variations of the plate surface in the feeding direction when
a helical tool is used. More work must be done to achieve a clear understanding of the

surface generation mechanism for plate machining with helical tools.

5.5 Future Work

It is clear from the results presented that some additional work must be carried out to
fully model the milling of flexible workpieces. Considerations of several aspects of this

work are discussed in this section.
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5.5.1 Cutting Process

The method used to model the cutting process in this work is mostly the application of
known procedures to a slightly different problem. Metal removal by the chip formation
process has complex physics involving large plastic deformations, shearing, ploughing,
adhesion, and significant heat flows. Due to this complexity the traditional approach
in most practical studies has been to simplify the process and model it with a set of
empirical rules. In the case of machining flexible structures considered here, the chip
width is necessarily large with a correspondingly small chip thickness. The resultant
chip shape is unusual and the physics which govern the removal of it are different from
those for the removal of a more usually shaped chip. Also the influence of the bottom
edges of the end mill will be less significant as the axial depth of cut is increased.

Since the metal cutting physics are different from those used to develép the current
methods of force prediction, the introduction of a new cutting force model would be
appropriate. This is a difficult task. For example, since the model would be used for
applications with small feedrates, the edge cutting forces will be more significant than
usual. Because these forces are strongly dependent on the geometry of the cutting edge
some account of the tool wear may be required to obtain accurate results. Amnother
difficulty arises due to ploughing encountered during the relatively large deflections. The
plastic flow involved is very complex and any model of this mechanism should also account

for changes in the cutting edge geometry.

5.5.2 Kinematics and Surface Generation

The kinematics of dynamic milling have been accurately modelled in this work. The
purpose of this model is to generate chip loads and to produce detailed surface finishes.

The approach taken here, as outlined in Chapter 3, is different from the method used by
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other authors. Justification for taking this approach is to obtain accurate surface finish
results and to model applications with relatively large workpiece deflections.

Although this model has proven adequate for the current application, four possible
areas of investigation are given. The tool geometric parameters can be expanded to
include a ball end and an improved runout model. Multi-axis machining geometry should
be considered for milling parts with more complex shapes. Inefficient algorithms can be
revised to decrease the time required for each simulation. Also the kinematics of surface

generation for cutting plates with helical tools must be further investigated.

5.5.3 Dynamic Modelling of the Plate and Tool

In Chapter 4 the stepped plate was modelled satisfactorilly using the finite element
method. It would also be advantageous to model the end mill dynamics in a similar
manner. An alternative approach to modelling the dynamics of both the plate and the
tool is by modal testing techniques and model construction from the measured frequency
response functions. This method may be easier and more efficient if parts of more complex
geometry are considered.

The effect of material removal on the dynamics of the workpiece should also be con-
sidered. If the workpiece is discretized into several cutting zone locations its dynamic
model can be obtained for each location. When the cutting zone is between two of these
models the workpiece dynamics can be interpolated to provide an accurate representation
of its structural characteristics.

If steadies are used to reduce vibration when machining flexible workpieces, their

interaction with the workpiece dynamics should be modelled.
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5.5.4 Experimental Work

One difficulty with the experimental measurements taken while machining flexible plates
in this work was the measurement of plate deflections. The deflections were large and
of a high frequency. This resulted in several steel shims becoming loose and falling off
the aluminum plates. For this reason it might be advantageous to machine steel plates if
experiments such as these are attempted again. Also a more rigid plate should be used

if deflection measurements are desired at the top of the plate.

5.5.5 Practical Solutions

Two solutions for reducing machining errors of flexible workpieces are presented. These
methods are only intended to reduce the static errors and won’t reduce the waves present
on the machined surface.

The first solution involves machining a plate with the desired process parameters and
measuring the surface errors. A new part is machined with the tool offset toward the
workpiece an amount equal to the measured error. This ﬂxethod is itterative since the
dynamics of the workpiece will change depending on machining errors.

The second method reqﬁires modelling the dynamics of the workpiece at several dis-
crete cutting zones. The local stiffness of the plate is then used to determine the required
offset of the tool. This method is more accurate and would be expected to give good

results on the first attempt.

5.6 Conclusions

Four cases of machining flat plates have been examined in this chapter by both simula-
tion and experimental studies. Although perfect matching between these results wasn’t

obtained, several important trends were predicted by simulation which were realized in
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the experiment's. These included: prediction of waves on the finished workpiece surface,
lack of material removal at the top of the plate, an increased vibration frequency during
cutting, high frequency components present in the cutting forces as a result of higher
" mode activity near the root of the plate and the reduction of dynamic cutting force am-
plitudes by the introduction of a ploughing force model. These trends suggest that highly
realistic results could be obtained if a more accurate cutting force model is implemented.
The tool dynamic response could also be included to improve the correlation between

experimental and simulation results.
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Conditions of Simulatlion and Experiments for Milling of Plates

Plate dimensions: 2.5 x 2.5 x 0.1 (in.) to 2.5 x 2.5 x 0.05 (in.)

63.5 x 63.5 x 2,54 (mm) to 63.5 x 63.5 x 1.27 (mm)
Common parameters for each case are:
Axial depth of cut (2.5 in,)
Number of flutes on the cutter (4)
Specific cutting pressure (1185 MPa)
Cutting force ratio (1)
Yield pressure (496 MPa)
Specific parameters for each case are:

CASE #1 CASE #2 CASE #3 CASE #4
Tool Diameter (in.) 0.75 0.75 0.75 1
Helix Angle {deg) 0 0 0 30
Rake Angle (deg) S 5 S 3
Clearance Angle (deg) 10 10 10 5
Spindle Speed  (rpm) 1500 1157 1157 1157
Feed {in./s) 0.015 0.02 0.4 0.4
Ploughing no no a) no yes
b) yes

Table 5.1: Parameters for Four Cases of Plate Machining.
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Figure 5.32: CASE 2: Experimental displacement at node 14.
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Figure 5.34: CASE 2: Experimental y-cutting force.
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Figure 5.36: CASE 3: Simulated displacement at node 14 (no ploughing).
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Figure 5.37: Simple case of dynamic cutting.
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Figure 5.41: CASE 3: Simulated displacement at node 14 (ploughing incl.).
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Figure 5.44: CASE 3: Simulated microscopic surface finish (ploughing incl.).
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Chapter 6

Concluding Remarks

The mechanisms of chip removal and surface generation have been studied in this the-
sis. An improved model of uncut chip thickness determination has been developed by
employing the actual kinematics of milling. To the best knowledgé of the author, this
is an original approach to discrete modelling of the milling process. The use of an ac-
curate model for the kinematics of tooth motion in milling is particularly important in
machining workpieces with narrow chip thickness and large axial depths of cut. Errors
introduced by earlier assumptions of circular tool motion may be significant for accurate
defermination of the uncut chip thickness.

It is shown in this thesis that the cutting edge of the milling tool may travel in several
zones during its vibratory motion as a result of the dynamic interaction between the
flexible structures of the tool and workpiece. The cutting force mechanism is governed
by a different physical mechanism in each region. Previous dynamic milling models
have used either generalized metal shearing laws or emperical cutting force coefficients,
representing the process stiffness and damping, to estimate the cutting forces. In this
study force contributions of shearing, tool flank-workpiece interaction and disengagement
of the tool and workpiece are included separately and superimposed in a discrete time
model of the process. Tool flank interference has been modelled as a simple ploughing
mechanism.

The closed loop behaviour of the cutting process under structural vibrations has been

modelled by employing the kinematics of milling, relative motion between the tool and
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workpiece, the cutting force mechanism and surface finish generation. A discrete time
simulation program has been developed to implement these mechanisms. The simulation
has the versatility to incorporate dynamic models for both the tool and the workpiece.
Two mechanisms, washboarding and vibration reproduction, have been identified in gen-
erating waves on the workpiece surface under different conditions of dynamic milling.
Peripheral milling of a very flexible workpiece (plate) has been investigated in this
thesis. The time varying mass and stiffness of the workpiece have been reduced to a
few degrees of freedom at the cutting zone where milling occurs. The workpiece was
modelled using the finite element method and reduced by the system equivalent reduc-
tion expansion process. Four cases of machining flat plates have been examined by both
simulation and experimental studies. Several important trends have been predicted by
simulation which were realized in the experiments. These included: prediction of waves
on the finished workpiece surface, lack of material removal at the top of the plate, an
increased vibration frequency during cutting, high frequency components present in the
cutting forces as a result of higher mode activity near the root of the plate and the reduc-
tion of dynamic cutting force amplitudes by the introduction of a ploughing force model.
Although these trends qualitatively define milling of flexible workpieces the accuracy of
many numerical results has been poor and future work is required to impréve the model.
There are several problems remaining to be investigated in this research. These
include inadequate cutting force prediction, limited tool geometries available and the
inability to model the continuously changing dynamics of the plate. Therefore, future
work should include the development of more appropriate static and dynamic cutting
force models, implementation of more complex tool geometries (tool runout and ball
end) and the investigation of changing workpiece dynamics during cutting. Also, the tool
offset method should be verified as an acceptable first improvement to milling flexible

workpieces by both experimental and simulation investiga,tions..
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Appendix A

Static Deflection Calculations

The following static deflections are calculated with reference to the loaded plate of Fig.
4.3.

Deflection due to Fj:

From beam bending theory the deflection of the plate at its tip due to the
applied force (F,) is given by [36]:

_ PP

8= 3E7

1(.0635)°

6= 3E[1.27(10)-3(.0635)3/12]

_ 3a0°

°="%

Deflection due to M:
For a shaft of rectangular cross section, with the dimensions of the plate

of Fig.4.2, the angular twist per unit length is given by [36]:

3M

b= 1rc

where,
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M = F,t/2
and,
E
G= 2(1+v)

If the displacement at the corner of the plate is estimated as:

_a

) 5 |
then the calculated maximum deflection of the plate due to applied (M)

for a plate with v = 0.3 is:

5 3(.00127/2)(2)(1.3)(.0635)
= T 2(.0635)(.00127°E

77(10)3

§=—t

E
Deflection due to Fy:‘
The deflection of the plate due to force (F,) is given by [36]:

5= (.168) P12
- D
where,
E¢
b= 12(1 — v?)

P (.168)(1)(.0635)2(12)(1 — .32)
h E(.00127)3

_3600(10)°

6 E



Appendix B

Listing of Programs

o File transfers from VAST to formatted data.

SEREP dynamic system reduction program.

Point receptance FRF calculation for reduced dynamic systems.

Forced response calculation for reduced dynamic systems.

FFT analysis for a range of data.

e Simulation of dynamic milling with workpiece vibrations.

The programs listed above can be found in Report **** 1990 from UBC'’s
Computer Aided Manufacturing and Robotics Library (CAMROL).
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Appendix C

Summary of Plate Machining Results

PLATE: free - free - free - cantilevered (see Fig. 4.1)
2.5x 2.5x 0.1 (in.) to 2.5 x 2.5 x 0.05 (in.)
63.5 x 63.5 x 2.54 (mm) to 63.5 x 63.5 x 1.27 (mm)

Yield Pressure = 496 MPa

TABLE OF PARAMETERS USED FOR FOUR CASES:

PARAMETER CASE #1 CASE #2 CASE #3
Operation ( -) up mill up mill up mill
Toocl diameter (in.) 3/4 3/4 3/4
Rake angle (deg) 5 5 5
Clearance angle (deg) 10 10 10
Primary land (in.) NA NA 0.02
Flutes on cutter ¢ -) 4 4 4
Spec. cutting press. (MPa) 1185 1185 1185
Cutting force ratio ( - ) 1 1 1
Axial depth of cut (in.) 2.5 2.5 2.5
Spindle speed (RPM) 1500 1157 1157
Feedrate (in./s) 0.015 0.02 0.4
Feed per tooth (thou) 0.15 0.26 5.2
Immersion angle (deg) 30 30 30
Max. uncut chip (thou) 0.08 0.13 2.6
Sim. damping ratio ( -) 0.05 a) 0.005 0.5
b) 0.05
c) 0.5

Modes incl. ( -) 1-5 1-5 1
Sim. time step (micro sec) 10 10 10
Ploughing Incl. « -) no no a) no

b) yes
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SUMMARY OF RESULTS FOR FOUR CASES:

CASE NO. 1:
Figures:
Displacement:
Forces:
Surface:

Simulation

Experiment

Simulation

Experiment

Experiment

5.4-5.14

First mode dominant and strong out of cut.
Higher modes stronger towards root of plate.
Unstable machining operation.

172

In cut frequency higher than out of cut frequency.

Poor correlation with simulation.
In cut frequency (900 Hz) close to sim. value.

Very strong AC component.
Very high frequency (5 kHz) variation during cut.
Significant AC and DC components are visible.

Magnitude is close to simulation.

Wavelength = 2.8 mm, Amplitude = 0.2 mm.
Theoretical wavelength is 1.7 mm.



CASE NO. 2:
Figures:
Displacement:
Forces:
Surface:

Simulation

Experiment

Simulation

Experiment

Experiment

5.15-5.35

a) Strongly unstable, simulation crashes.

b) Unstable machining process.
Strong first mode transients in cut.
Higher frequency vibration in cut (890 Hz).

c) Unstable machining process.
Little transient vibration between cuts.

In cut vibration frequency is about (890 Hz).

Overall poor correlation with simulation.
In cut frequency (860 Hz) close to sim. value.

a) Strongly unstable, simulation crashes.

b) Very strong AC component.

Very high frequency (5 kHz) variation in cut.

c) Slightly more DC component than case b).
Very high frequency (5kHz) variation in cut.

Significant AC and DC components are visible.
Peak magnitude is close to simulation.

Wavelength = 2 mm, Amplitude = 0.1 mm.
Theoretical wavelength is 1.3 mm.
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CASE NO. 3:
Figures:
Displacement:
Forces:
Surface:

Simulation

Experiment

Simulation

Experiment

Simulation

Experiment

5.36-5.48

a) Strong AC (1.3 kHz) and DC components in cut.

In cut frequency higher than fundamental freq.

b) Strong DC component.
Reduced AC (1.5 kHz) magnitude wrt. case a).

Poor results obtained, tops clipped off.
Comparable with both simulation results.

a) Strong AC component on a small DC sig.

b) Greatly reduced AC component wrt. case a).
Similar DC wrt. case a).

Strong DC component due to increased feedrate.
Significant runout visible.
Magnitude 1s close to simulation case b).

a) Wavelength = 1.6 mm, Amplitude (#14) = 0.4 mm.

No cutting at top of plate.

b) Wavelength = 0.9 mm, Amplitude (#14) = 0.1 mm.

No cutting at top of plate.

Wavelength = 2 mm, Amplitude (#14) = 0.15 mm.
No cutting at top of plate.
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CASE NO. 4:
Figures:
Displacement:
Forces:
Surface:

Simulation

Experiment

Simulation

Experiment

Simulation

Experiment

5.49-5.57

Unstable machining operation.
Strong DC and AC (1.35 kHz) components.
Visible variation at tooth passing frequency.

Poor quantitative correlation with simulation.

In cut frequency (700 Hz) not close to sim. value.

Similar trend (ie. shape) with simulation.

Very strong AC component.
Very high frequency variation during cut.

Significant AC and DC components are visible.
Magnitude is not close to simulation.
Runout is clearly visible.

No cutting at top of the plate.
More material removed towards root of the plate.

More detail required for further comments.

Similar trend with simulation result.
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