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Abstract 
A theoretical model of flock size in migrating birds is developed. Although 

previous models of formation flight in birds show improved flight performance, they 

do not explain flock size variation across bird species or at different times of the 

year for a given bird species. This model captures some of the diversity in flock 

size observed in nature by incorporating energetic costs of flight and energy income 

from foraging. It turns out that within a myriad of possible flock sizes there - is 

one that is optimal for maximizing energetic efficiency (net energetic gain/energy 

expenditure) for a given maximum range speed, which minimizes flying cost per 

unit distance flown, and under certain migration conditions (i.e. flight distance and 

total time to complete the journey). Net energetic gain from foraging equals the rate 

of prey encountered times the time spent foraging. Energy expenditure from flying 

is determined from formation flight theory for a fixed wing aircraft. The benefit 

of formation flight, as derived from an approximation technique, is represented in 

close-form. This expression is a function of flock size and wing-tip spacing (WTS) 

and simplifies flight cost calculations. Under certain WTS, a good approximation to 

the induced drag for a member of a flock of size n is 1/nth of the induced drag of a 

single bird. In addition, optimum flight speed of a flock is (1/n) 1/ 4 of the optimum 

flight speed of a single individual. 

The approach taken here allows the prediction of flock size in migrating birds. 

Model results are discussed in relation to observation of flock size under various 

migration conditions. If migration is constrained by hours of daylight, seasional 

variation in flock size is expected if the start time of the north and southward 

migration are asymmetrical with respect to the summer solstice (June 21). Under 

certain conditions, such as long non-stop migration, solo flight is an optimum 

migratory strategy. 
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Optimum Bird Flock Size in Formation Flight 

Introduction 
A great many birds migrate in flocks. The most characteristic migratory 

formation is a reversed \ / , apex in the direction of flight. "The birds are usually 

ordered in swept lines and they keep so small a span wise distance that the wing-

tips of two adjoining birds lie about one behind the other" (Hummel, 1983). This 

mode of formation flight is typical of geese, ducks, pelicans, cranes, and shore-birds 

(Dorst, 1962). Formation flight, however, is not common to all migratory species. 

Some birds, such as the cuckoos, nitejars, orioles, numerous birds of prey, journey 

alone (Dorst, 1962). The reason why some species of birds adopt formation flight 

and others do not is not clear. Furthermore, the advantage of flying in this fashion 

is also unclear. Numerous explanations have been offered, however. 

Fransiket (1951) purposed that formation flight allows for good optical contact 

and thus decreased risk of collision. It may, on the other hand, function to decrease 

risk of predation, a function similar to that suggested for schooling in fish (Vine, 

1971; Weihs, 1973). Equally, formation flight may allow older birds with previous 

migratory experience to act as navigators for the inexperienced birds of the flock 

(Dorst, 1962). It has been suggested that formation flight may assist navigation 

by averaging the direction preference of individual birds (Heppner, 1974) although 

contradictory information was reported by Keeton (1970). Another possibility is 

that formation flight, as with airplanes, may provide aerodynamic benefit over solo 

flight. Early aviators noted that patrol leaders burned significantly more fuel than 

the other planes in the formation (Dorst, 1962; Houghton & Brock, 1960). 

While many explanations have been put forward for formation flight in birds, 

the aerodynamic hypothesis allows for quantifiable energetic savings. Weiselsberger 

(1914) was the first to give the correct description of the power reduction for 

formation flight. Flight tests with formations of two airplanes show that the 

power reduction was in close agreement with that predicted by aerodynamic theory 

(Hummel & Beukenberg, 1989). The aerodynamic rationale for formation flight 
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Optimum Bird Flock Size in Formation Flight 

is that while each wing creates lift by generating downward momentum within its 

span, an upwash is created beyond the wing. In a vee formation, each bird flys in 

an upwash field generated by all other wings in the formation. This is equivalent 

to flying in an upcurrent and consequently each member of the flock experiences a 

reduction in flight power. The magnitude of the power reduction depends on wing 

tip spacing, and on the number of birds in the flock. 

In a quantitative analysis, Lissaman and Schollenberger (1970) plotted the re

duction in power of formation flight of 3, 9, 25 and an infinite number of birds 

showing that as the flock size increases flight power requirement decreases. Conse

quently, their results imply that in order to minimize flying cost birds should fly in 

a formation of infinite size! Although this is a meaningless statement, the corollary 

which follows is that birds should fly in the largest flock possible. In particular, two 

or more flocks should not fly beside each other but rather join to form a single large 

flock. However, numerous flocks of Snow Geese (Anser caerulescens) were observed 

flying beside each other at the Riefel Island Bird Sanctuary. While individuals may 

sometimes change flock arrangment in mid air, flocks do not merge to form a single 

large flock. More importantly, Lissaman and Schollenberger (1970) results do not 

explain avain flock size varation observed across species. For example, some species 

of birds such as the common heron that nest in large colonies have the opportunity 

to form large flocks often migrate in groups of only a few birds (Dorst, 1962). On 

the other hand, some species of birds migrate in large flocks, even if they are nor

mally solitary (McFarland, 1987). In addition, some migrants, such as wild ducks 

and geese travel in small numbers. Other species such as Short-eared owl (Asio 

flammeus) and Scops Owls (Ofus scops) often fly in large numbers. Black Storks 
1 

migrate in flocks of sixty to seventy, whereas there are often fifty to 100 Brant 

geese (Branta bernicla) and 500 to 1,000 common scoters (Oidemia nigra) in a flock 

(Dorst, 1962). 

The aim of this study is to show that there is an optimal flock size for birds 

during migration. This is done by quantifying the flight energetics of formation 

2 



Optimum Bird Flock Size in Formation Flight 

flight and foraging energetics. Taking the energy expenditure of formation flight 

and energy gain of foraging together, the model shows that optimum flock number 

is a function of morphological parameters of the bird, flight distance, and total time 

available for migration. Since optimum flock size is a function of the three variables 

mentioned above, it is also possible to predict, among other things, under what 

conditions solo flight is more advantageous than formation flight. 

3 
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Aerodynamics of B i rd Flight 
Solo Flight 

Quasi-steady Assumptions 

The aerodynamics of napping bird flight can be based on the quasi-steady 

approach: that the instantaneous aerodynamic forces on a flapping wing are those 

that a wing would experience in steady motion at the same instantaneous speed 

and angel of attack (Ellington, 1984). In other words, it is assumed that averaged 

over the wing-beat cycle, the aerodynamic forces are of the same magnitude as that 

of a fixed wing. The aerodynamic forces may be subdivided into four components, 

profile, parasite and induced drag, plus the drag created by the unsteady motion of 

the wing. The profile and parasite drag is determined by the wetted surface area of 

the wing and by the degree of streamlining of the body, respectively. Collectively 

called the profile drag, it is proportional to the velocity square. Induced drag is 

associated with generation of lift forces and is inversely proportional to the square 

of the velocity. During optimal cruising flight speed, profile and induced drag are of 

equal magnitude (Pennycuick, 1972). However, the fourth term, related to flapping 

motion, is of low magnitude if the reduced frequency, ratio of tip flapping speed to 

the flight speed, is low (Lissaman & Shollenberger, 1970). 

Spedding (1987) studied the structure of a wake behind a kestrel (Falco tinnun-

culas) in flapping flight using stereophotogrammetery of multiple flash photographs 

of the motion of small soap-covered helium bubbles. His findings showed that at 

moderate flight speeds the rate of momentum generated in the wake approximated 

that of the quasi- steady state model. Spedding, concludes that "on occasion where 

an estimate of the induced power requirement at moderate flight speeds is required 

as a component in the calculation of the energy budget of a flying bird, the added 

complexity of a more rigorous and complete aerodynamic model is not justified by 

the small improvement in accuracy in estimating one component of the total aerody

namic power requirement." In the case of a kestrel of mass m = 0.12 kg the reduced 
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frequency was calculated to be « 1. From allometric equations given by Pennycuick 

(1972) and Rayner (1979a) it can be shown that reduced fequency oc l / m 1 / 6 . In 

other words reduced frequecny decreases with mass of the bird. If the wing beat 

kinematics of the kestrel are taken to be representive of birds of similar or lower 

reduced frquency (i.e. greater mass) then the quasi-steady model can be applied 

to estimate bird flight energetics. However, in the flight of small passerines where 

reduced frequency is relatively high, unsteady aerodynamic effects due to flapping 

become important (Kokshaysky, 1979; Ellington, 1984). 

As a first approximation to the energy budget of a flying bird the cyclic 

variation in flapping flight is assumed to be of second order and therefore is ignored. 

In short, the average aerodynamic drag experienced by a bird during flapping flight 

is assumed to be equivalent to drag on a bird with fixed wings in the horizontal 

position. The following analysis applies to fixed wing flight on the basis of classical 

aerodynamic theory (Pennycuick, 1969,1972,1978; Rayner 1979a). 

Analysis of Steady Horizontal Flight 

Aerodynamic drag in steady horizontal flight may be expressed in the form 

D = Dp + Di (1) 

where Dp is the sum of the parasite and profile drag and DT is the induced drag. 

The parasite and profile drag are given by 

Dp = ^pSCD(pro)U2 + ^pApCD(para)U2 (2) 

where p is the air density, U is the flight speed, S is the wing area and Ap is the 

frontal projected area of the body; Cr)(pr0) is the drag coefficient of the body and 

Cr)(pa.ra) x s the drag coefficient of the wings. The induced drag may be written as 
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where L is the lift force generated by the wings; b is the semi-wing span. The total 

* drag on a bird flying at a constant speed U is 

D = \PSCD{pro)U2 + \ P A p C D { p a r a ) U 2 + 2 ^ 7 2 " ( 4 ) 

For the case of horizontal flight the lift force balances the weight of the bird, in 

other words 

L = mg (5) 
i 

where m is the mass of the animal and g is the gravitational acceleration (9.8 m/s2). 

Grouping parameters, equation (4) can be written as 

D = kpU2 + k{U~2 (6) 

where 

H = ^pSCD(Pro) + ^pApCoipara) and k = 2^52 ( 7 ) 

The total aerodynamic force acting on a bird flying at constant speed U is 

given by equation (6). The energy required to fly a distance d is 

Efiy =D-d. (8) 

Flight energy in relation to forward speed follows a U-shaped curve. At higher 

velocities the parasite and profile drag become the dominant terms; while at lower 

velocities the induced drag dominantes. As a result there is a speed at which energy 

expenditure for flight is at a minimum. 

Specifically, the cruising speed, which minimizes flying cost per unit distance 

travelled, is calculated by differentiating (Efiy/d), and setting the first derivative 

equal to zero: 

± EQL = 0 = 2kpU - 2kiU-3. (9) 
du d 

Solving the above equation for U gives 

r f c i 1 / 4 

Umr = T~ (10) 
. P . 
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In migratory flight, cruising speed, which minimizes energy consumption per unit 

distance flown, allows migrants to cover the maximum range on a given energy 

reserve. Speeds from radar studies, collected by Alerstam (1976), show that mean 

air speed (flight speed corrected for influence of wind) of migrants is generally close 

to the predicted cruising speed, Umr- The maximum range speed should be used 

whenever the longest distance should be covered on a given amount of energy. 

Formation Flight 

Flow Field in the Neighborhood of an Airfoil 

In order to quantify the savings obtained in formation flight, it is necessary to 

model the flow close to a airfoil. The most common approach used is the horseshoe 

vortex model. A vortex is a "core" of rotating fluid, around which air flows in 

concentric circles (Houghton &; Brock, 1960). In the model, the airfoil is replaced 

by a bound vortex, and the trailing wake is replaced by two tip vortices. 

Under the right conditions, tip vortices can be seen behind an airfoil. The 

formation of these trailing vortices can be explained as follows. The pressure on the 

upper surface of a wing is smaller than that on the lower surface of a lifting wing. 

A pressure gradient exists between the upper and lower surfaces which equalizes 

beyond the wing tips. The tendency of the air is to equalize any pressure difference; 

as a result, air "leaks" to the top from the bottom of the wing, from the region of 

high pressure to the region of low pressure. This pressure equalization at the wing 

tips causes an inward deflection of the streamlines above the wing and an outward 

deflection below the wing (Figure 1). 

The difference in spanwise velocity will cause air to roll up in into a number of 

small vortices (a vortex sheet), distributed along the wing span. A short distance 

downstream the vortices roll up and combine into two distinct cylindrical vortices. 

These two vortices, referred to as tip vortices, rotate in opposite directions and form 
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Figure 1. Evolution of tip vortices behind a wing of finite span 

(based on Tokaty, 1971). See text for detail. 
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just inboard of the wing-tips. The distance between the two tip vortices is 2a where 

a « jb and b is the semi-wing span (Higdon & Corrsin, 1978). 

Whereas the tip vortices can be easily verified visually, the bound vortex is 

a useful theoretical abstraction to simulate accurately all the properties of a real 

airfoil. In general, lift produced by a wing is explained from the fact that airflow 

is accelerated over the top surface of a wing while that flowing below is decelerated 

relative to the free stream. The difference in speed, by Bernoulli's theorem, results in 

reduced pressure above the wing and increased pressure below it, and this pressure 

difference is what supports the weight of the wing. The difference in speed above 

and below the airfoil can be resolved into a circulatory flow, centered at the wing, 

superimposed on the free-stream. Circulatory flow is created by replacing the airfoil 

by a bound vortex, which causes air to flow in concentric circles outside its core. 

The pictorial equation of figure 2, shows that a free stream flow plus the flow due 

to the bound vortex creates a flow identical to one at an airfoil. The bound vortex 

can be considered as a rigid rotating body (rotating cylinder) (Prandtl & Tietjens, 

1957). The strength of the vortex, T (m2/s), is defined as 

r = 27rftr2, (11) 

where £1 is the angular velocity and r is the radius of the core (Prantdl Sc Tietjens, 

1957). Replacing the airfoil by a vortex, which acts like a rotating cylindrical body, 

not only describes the flow at an airfoil but also allows the calculation of the lift 

force and the induced drag created by the airfoil. 

A "sideways" force associated with a spinning object moving through the air 

has been recognized since ancient times (Houghton& Brock, 1960). It is usually 

referred to as the Magnus effect. In the case of the horseshoe vortex model, the 

spinning cylinder, or the bound vortex, will create a lift force perpendicular to the 

free-stream velocity. The lift force created per unit span, Ii, is 

Ii = pTU. (12) 

10 
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Figure 2. A unique circulatory flow (v = r/27rr) superimposed 
(added) to the free stream flow (U) mimics the flow around a lifting 
wing. 

11 
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This expression is the algebraic form of the Kutta-Zhukovsky Theorem, and is valid 

for any system where circulation is superimposed on a uniform velocity (Houghton 

& Brock, 1960). 

In order to create the same lift as an airfoil of span 26, the bound vortex has to 

be a length 2a, corresponding to the distance between tip vortices. Thus the total 

lift of an airfoil of span 26 is 

L = 2apYU. (1.3) 

It can be shown that the downward velocity (downwash) created by an airfoil iss a 

constant along the span and is given by 

wd = L (14) 

(Houghton & Brock, 1960). The result of applying the Kutta-Zhukovsky theorem 

to the downwash velocity, wd, is a force in the opposite direction of the motion iof 

the airfoil and is referred to as induced drag, DT, (Figure 3) 

Dj = 2apTwd. (15) 

The induce drag can also be written by substituting wd from equation (14) to give 

1 Dr = 1PT*. (16) 

A more common form of the induced drag equation (Equation 3) can be derived by 

substituting in the above equation for T from equation (13) to give 

„ 7T 

pirUb/2\ 2pitbW 
1 2 (17) 

In summary, then, it is possible to represent a wing by a vortex system forming 

three sides of a rectangle (Figure 4): along the y axis a vortex filament of strength 

T of length 2a represent the wing, and along the x axis two trailing vortices of 

the same strength as the bound vortex represent the trailing wake. The system 

of vortices can also be looked upon as a single long vortex bend in the shape of 

horseshoe. 

13 
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Figure 3. Circulation (r) superimposed on forward velocity (17) 

and downwash (wd) to produce lift (L) and induced drag (Di) re

spectively (Houghton & Brock, 1960). 

14 
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Figure 4. Wing with rolled-up vortex sheet (left) and its equiva

lent horseshoe vortex: bound vortex (|||) and tip vortex (=). 

16 
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Upwash Velocity Calculations 

The vector velocity field induced by a line vortex in a shape of a horseshoe and 

strength Y is calculatd by applying the Biot-Savart law (McCormick,1979). The 
i. 

vertical velocity component at a distance Sx, Sy away from center of the wing is 

/x x \ r 1 / Sy + a Sy-a 
wiox.oy) = —— — < —. . 

v »' A<n8x\ y/Sx2 + (Sy + a)2 y/Sx2 + (Sy - a)2 

r i f ! - * \ (is) 
4TT (Sy - a) [ y/8x2 + (Sy - a)2 

r I J\ Sx 

4TT (Sy + a) [ /̂cSx2 + (5y + a)2 J 

(Milne-Thomoson, 1958; Lugt, 1983). 

Figure 5 shows the magnitude of the vertical velocity near a moving airfoil, 

with its center at the origin, and its tip at y = ± 1 . Updraft occurs in front and 

also in the outboard region of the tip vorticies, located on the line y = ± 7 r / 4 . The 

downwash occurs behind the airfoil and between the two tip vortices. While the 

downwash is constant behind the airfoil, the upwash takes its maximum value at 

the tip vortex and then rapidly diminishes with increasing distance from the wing. 

, Induced Drag Reduction 

~-\ Flying performance of a bird is influenced by the upwash created by other birds 

in the flock. The upwash brings about a decrease in the total induced drag of the 

flock. The extent of the reduction in induced drag depends on the wing-tip spacing 

and the number of birds in the flock. A general account of the influence of two birds 

flying in formation is given and then expanded to n birds. 

An isolated wing produces a vertical velocity component, Wd, that is due to 

the wing's own vortex system. The upwash, w, is the vertical velocity induced by 

the vortex system of the second wing. Flying in the influence of each other results 

in a smaller downwash, w<* + w (the sign of the downwash is always positive and 
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Figure 5. Vertical flow in the vicinity of a lifting wing, moving in 

the positive x direction. The wing tips are at points x = 0 and 

y = ±1 . 
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the sign of the up wash is negative). The induced drag of the first wing, by analogy 

with equation (15), is 

D / i = 2apT(wd + w) (19) 

which can be written as 

D n = 2apTwd + 2apTw (20) 

D i 1 = D I 1 1 + D I 1 2 . (21) 

The component D m is called the "self-induced drag" and D m is known as the 

"mutually induced drag"(Reid, 1932). In other words, D m denotes the self-induced 

drag of wing 1, while D m is the mutually induced drag experienced by wing 1 as 

a result of the vertical velocities induced by wing 2. The same argument can be 

made with the influence of the second wing on the first. The induced drag on the 

second wing is 

D n = D m + D I 2 1 . (22) 

The total induced drag of a flock containing 2 birds is 

2?/(2) = D m + D m + D m + D I 2 1 . (23) 

In general, the total induced drag of a flock with n birds (wings) is equal to the 

sum of the self-induced drags of its component wings plus as many mutually drags 

as there are permutations of its wings in pairs (Reid, 1932). Mathematically, the 

total induced drag of a flock of n birds is 

n n 

i = i j=i 

The mutually induced drag for a pair of wings depends on the relative position 

of each wing. The greater the distance between the wings the smaller is the mutual 

induced drag. More accurately, the second term of equation (20) should be written 

as 

Dm = 2apVw(Sx,Sy), (25) 
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where wing 2, whose vortex influences the flow at wing l,is located at the point 

(Sx,dy). Produced by wing 2, the upwash, w(8x,dy), varies along the span of wing 

1. Taking the integral mean value of the upwash over the span a of wing 1 gives 

-D/12 = 2apTw (26) 

(Hummel, 1983). 

I r6y+a 
w(8x,8y) — — / w(8x,T])dr]. 

2 a JSy-a 
(27) 

The average upwash velocity induced by a wing at a point (8x,dy) is 

'Sy+a 

'Sy-

After substituting the result of the above integration into equation (26), the induced 

drag on a wing centered at (8x,8y) (wing 1) due to the presence of a vortex system 

at the origin (wing 2) is given by 

PT2 

DI12 = 
4.TT 

^{ yj8x2 +(ri- a)2 - ^/8x2 + („ + a)2 

-{ l°g(>7 - a) +log 

+ < \og(rj + a) +log 

8x + y/8x2 + (T / - a)2 

(r}-a) 

8x + y/8x2 +(n + a)2 

(v + o) 

(28) 

rr=6y+a 

rf=6y — a 

(Moran, 1984). In the case of calculating the total induced drag of a flock, as 

opposed to the induced drag of each bird with respect to position in a flock, Munks 

Stagger theorem is applied to simplify the calculations. The theorem states that "a 

collection of lifting surfaces (birds) may be translated in the streamwise direction 

(x-axis) without affecting the total induced drag of the system (flock) as long as the 

circulation of every wing (or lift) is unchanged" (Higdon and Corrsin, 1978). For 

example, a flock in line abreast formation will have the same total induced drag as 

one in V formation. Although, staggering in the x direction causes a redistribution 

of the induced drag for each bird, the total of the induced drag of the flock does 

not change. The consequence of this theorem is that the total induced drag of a 

flock depends on the scatter along the y-axis and not on the depth distribution 
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along the x-axis. Since the calculation of the total induced drag is independent of 

the x-axis, 8x in equation (28) is set to zero, which is equivalent to saying that the 

flying formation is unstaggered. The mutually induced drag can now be simplified 

to 

£>/12 = log | rj + a 
77 — a 

r)=Sy+a 

r)=6y — a 

(29) 

which further reduces to 

Dm = ^—log 
47T 

i - i £ 
by 

(30) 

In the case of unstaggered flight formation, it can be shown that the mutually 

induced drag terms between a pair of birds is equal. In other words, 

Dn2 = DT 21 (31) 

(Reid, 1932; Prandtl & Tietjens, 1957). 

Substituting Dm = fpT2 (equation (16)), into equation (30) gives 

Dm = 
2Dn 

7T" 
-log 

dy 
(32) 

the mutually induced drag of a bird that is Sy apart from the second bird. 

In general, the distribution of n birds along the y-axis is a function of the wing-

tip spacing s and the semi-wing span b (Figure 6). If the left most bird in a flock 

is numbered 1, and the next bird numbered 2 and so on to n, the distance between 

bird i and j is given by 

Sya = \i - j\(2b + 3). (33) 

Mutually induced drag of bird i due to presence of bird j can be written as 

2n 
Dnj = —T— log 

T*1 

1- 2a 
| » - j | (26 + *) 

(34) 
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By assuming that all birds are identical, in that they have the same wing span, 

aspect ratio, and weight, the problem of calculating the total induced drag (Equa

tion (24)) reduces considerably. For instance, all terms such as Dm, D /22 • • • Dinn 

are equal and can be replaced by n-Dm. Furthermore, the mutually induced drag 

terms in general can be written as 

DHJ = Diji (35) 

as a result of equation (31). Equivalently, equation (24) can now be written as 

n—1 n 1 

£>/(n) = nDni + 2 ^ X Dlii' 
i=i j=i+i 

Substituting equation (34) for DHJ, equation (36) can be written as 

(36) 

Dl(n) = nDm + ^ l o g 
»=1 j=t-|-l 

1-
2a 

\i-j\(2b + s) 

2n 

(37) 

for n birds in a flock. 

In a flock of size n, the induced drag on a single bird, Di(n), is equal to the 

total induced drag of the flock divided by its size. That is 

Djin) 
Dj(n) = 

n 
(38) 

Substituting equation (37) for Dj(ra) in equation (38), and noting that Dm and 

Di are notationaly equivalent, the above equation can be written as 

2 i 

7r z n —' —' 
1- 2a 

i -j\(2b + s) 
(39) 

Solo term Flock—associated terms 

Essentially, the above equation has the following meaning. The first term, Di, 

represents the induced drag experienced if a bird was to fly solo. The second term 

is the flock associated reduction in induced drag as a result of flying in the upwash 
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Figure 6. Distribution of n = 5 birds and their horseshoe vortex on 

the x-y plane. Starting from the left, each bird is numbered from 1 

to n. The distance, as projected on the i/-axis, between bird number 

i and j is Sytj = \i — j\(2b + s), where b is the semi-wing span 

and s is the distance between adjacent birds perpendicular to the 

flight path. Each bird is of span 2b, represented by a bound vortex 

of length 2a, where a = 7r/46. 
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field created by the other n - 1 birds. Hock-associated reduction is negative. As 

a result, the induced drag for a member of the flock is less than what would be 

experienced if flying solo. Only if the formation is such that each bird flys in the 

flight path of other (in the downwash region, see Figure 5) results in the induced 

drag being higher than that for a single bird. 

The extent of reduction of induced drag by formation flight is dependent on 

wing-tip spacing, s, the distance between wing-tips of adjacent birds perpendicular 

to the flight path and flock size, n. Since the region of the upwash occurs inboard 

of the actual wing-tips, certain overlap of the wing-tips may occur (Figure 5). In 

this case the wing-tip spacing, s, is negative. The ratio Di(n)/Di is used to assess 

the benefit of formation flight vs solo flight. A small ratio implies large savings in 

formation flight. When the ratio is equal to one-both formation and solo flight, in 

terms of induced drag, are equivalent. As the wing-tip spacing as percent of the 

semi-wing span increases for a fixed flock size, say 20 birds, the ratio approaches 

one (Figure 7). Thus a flock with very large wing-tip spacing benefits less than a 

flock that flys in tighter formation. The benefit of formation flight increases with 

flock size; however, there is a limiting value as n —• oo (Lissaman & Schollenberger, 

1976). The induced drag of a single bird in a flock as n becomes-indefinitely large 

is given by 

Um 73/(n) = Di + ^ log 

(see appendix A for derivation). 

Approximation Formula 

In its current form, equation (39) is computationally intensive and mathemat

ically awkward. To calculate the induced drag of a bird in a flock of size n requires 

at least n 2/2 operations. For instance, a flock of size n = 100 requires at least 104/2 

operations to calculate the induced drag. There are two main advantages of the 

approximation formula. Firstly, it is computationally less time-consuming, since 

sin(2a7r/(26 + s)) 
2an/(2b + s) (40) 
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Figure 7. Ratio of induced drag in formation to solo flight, as 

a function of flock size, n, and various wing-tip spacing, s, as a 

percent of the semi-wing span (solid). Curves are shown for s/b = 

+100, +50, +10, 0, -10, -15, and -20%. For the special case when 

the wing-tip spacing is such that the tip vortices of the two adjacent 

birds overlap (s = 2(a — b)) the ratio is given by the dash line. 
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there are considerably less operations. Secondly, it provides a basis for generaliza

tion. The goal of the approximation technique is to eliminate the summation series 

in equation (39) and replace it with an analytic function. 

There are basically two ways to reduce the number of operations in a formula 

containing a summation series. The first method is to truncate the series at some 

arbitrary term and discard the rest of the terms in the series. As a result of this 

method, the calculated value from the truncated series underestimates the true 

value. The second method is to assume that there is an indefinite number of terms in 

the series. In other words, the original series is assumed to be an infinite series. This 

method often leads to representation of the infinite series by an analytic function. 

The degree of overestimation depends on the contribution of the extra terms to the 

sum. 

As the distance between a pair of birds gets large, the corresponding flock-

associated term, in equation (39), gets small. To illustrate, in a flock of 15 birds, 

the percent contribution by the other birds to the total induced drag reduction of 

the left most bird (Bird 1) is shown in figure 8. In the case of flying abreast, with 

a wing-tip spacing of zero (s = 0) and semi-wing span of one (b = 1), the closest 

bird to Bird 1 contributes 65% of the entire induced drag reduction. For other 

birds, percent contribution drops off as the distance from them to Bird 1 increases. 

Incidentally, the smallest contribution to the entire induced drag reduction is by 

the 15th bird, furthest from Bird 1. It follows, then, that the addition of extra birds 

right of the 15th bird, in this case, will not greatly affect the total drag reduction 

of Bird 1. 

The basis of the approximation technique is to assume that in a flock of size n 

there is an indefinite number of birds creating an upwash field when in reality there 

are only n — 1 birds. Figure 9 gives a pictorial representation of the approximation 

technique. Specifically, in a formation of n birds, the left and right most birds 

are assumed to be flanked to either starboard or port respectively, by an infinite 
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Figure 8. Percent contribution to the total induced drag reduction 

of the left most bird (Bird 1) by the neighboring birds numbered 

2 through 15 (bottom x-axis), flying in abreast formation with a 

wing-tip spacing equal to zero (s = 0). The top axis is the distance 

of each bird as measured from Bird 1. Each bird is assumed to be of 

unit semi-span (6 = 1). 
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number of birds (Figure 9(A & C ) ) . However, the remaining birds, each having 

adjacent birds on either side, are assumed to be flanked on the left by an infinite 

number of birds and on the right by an infinite number of birds (Figure 9(B)). 

Following the above assumptions, the induced drag reduction on a bird in a flock 

of size n can be approximated by 

ir* n 

(see appendix B for detail). In the above form, the estimation of induced drag on 

a bird in formation flight is greatly simplified. 

To test the accuracy of this method, the true value as calculated from equation 

(39), is compared to the value from the above approximation equation. The degree 

of accuracy is measured by the relative error, defined as 

(42) 

(Taylor, 1982). The relative error incurred by this approximation technique is 

plotted in figure 10. Evidently, the approximation formula is quite accurate for a 

specific range of wing-tip spacing and of flock size. Relative error is the largest 

for formations with small wing-tip spacing relative to the semi-wing span (s/b). 

In such tight formation, the up'draft created by each bird contributes a significant 

amount of reduction in induced drag on any other bird in a flock. Not surprisingly, 

in a case where each bird has a significant effect, the introduction of an indefinite 

number of birds to a flock results in large overestimation of the drag reduction; 

consequently, the relative error for this case is large. The approximation formula 

for wing-tip spacing relative to semi-wing span of —20% guarantees the relative 

error to be less than 23%. However, as the wing-tip spacing increases, the relative 

error drops quickly. Figure 10, also, shows that the accuracy of the approximation 

formula increases with flock size. For example, the relative error drops from 12 to 

5% for a flock size of 3 and 100 birds, respectively, at zero wing-tip spacing J AS the 

sin(2a7r/(26 + s)) 
2a?r/(26 + s) 

(41) 

Relative Error = 
true — approximated 

true 
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Figure 9. Pictorial representation of the approximation technique 

for n = 6 birds, solid plus one diagonal filled wing. (A & C) The 

left and right most birds in the vee formation ( 1 / / /]) are assumed 

to be flanked on the opposite leg by an infinite number of birds 

(| |...). (B) Each bird inside a flock, for example 1/ / /[, is as

sumed to be flanked by an infinite number of birds on both legs of 

the vee (1 | . . . ) . 

34 





Optimum Bird Flock Size in Formation Flight 

flock size increases the assumption of indefinite number* of birds in a flock becomes 

truer; correspondingly, the relative error becomes smaller. 

Another test for validity is to compare the calculated result of Lissaman and 

Schollenberger (1970, Figure 2) with the above approximation formula. In this case, 

the same order of magnitude of drag reduction turns out as calculated by Lissaman 

and Schollenberger. In other respects the behaviour of the estimate formula is 

similar to the family of curves they obtain. In particular, significant drag saving 

occurs at small wing-tip spacing; and the magnitude of the saving for a formation 

of 25 or more birds is nearly the same as for an infinite number of birds (Figure 

11)-

It should be remarked that equation (39) and consequently equation (41) has 

a singularity at wing-tip spacing s = 2(a — 6), where a.= ^6. In other words, the 

value of the function becomes infinite at the point s = 2(a — b). Physically, this 

wing-tip spacing corresponds to when the tip vortices of adjacent birds overlap. Of 

interest is the total induced drag of a flock in such a flight formation. 

Before generalizing for n birds, an account of the influence of two birds flying in 

formation for this case is given. Figure 12 shows the air flow due to the interaction 

between the two wings at such a spacing. As done previously, each wing in the flock 

is replaced by an equivalent horseshoe vortex. For a single wing of semi-span b, the 

bound vortex is of length 2a; and the distance between the two counter rotating tip 

vortices is 2a (Figure 12 (A)). Due to its position, the lead bird's tip vortex, rotating 

clockwise, cancels the tip vortex, rotating anti-clockwise, of the second bird. The 

resulting flow is another larger horseshoe vortex. The bound vortex is now of length 

4a and the distance between the tip vortices is also 4a. Equivalently, the resulting 

vortex system can be generated by a single wing of semi-span 26 (Figure 12 (B)). 

This follows from the relation that a = ^6. If a, as in this case, is doubled, then 6 

is increased by the same amount. Thus the air flow of two birds, each of semi-span 

6, in this formation is equivalent to the flow produced by a single wing of semi-span 

36 



Optimum Bird Flock Size in Formation Flight 

Figure 10. Effect of flock size and spacing ratio, s/b, on realtive 

error as result of the approximation technique. Curves are shown 

for s/b = -20, -15, -10, 0, +10, +50, and +100%. 
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Figure 11. Induced drag in formation flight, Di(n), relative to 

that in solo flight, Z?j, for n — 2,3,9,25 and infinite number of 

birds. 
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2b. As a result, the induced drag equation of a single wing (Equation 3) can be 

used to calculate the total induced drag of a flock. In particular, substituting b for 

2b and L for 2L in equation (3) gives the total induced drag of a flock containing 

two birds 

D ' < 2 ) " a J w " 5 ^ = D - ( 4 3 ) 

Accordingly, the induced drag for a single bird in this case is 

5(2) = BL. (44) 

In other words, the induced drag of a bird in a flock of size 2 is half the induced 

drag if the bird was to fly solo (-Dj). 

In general, the total induced drag for n birds can be calculated by substituting 

the lift L to be the total lift of all n birds, that is n • L and by substituting the 

semi-wing span 6 to be the total semi-span of all n birds, that is n-6 into the induced 

drag equation for a single wing. Making the above substitutions into equation (3) 

gives the total induced drag of a flock of size n 

Dr(n) = DL (45) 

For any single bird in a flock of size n, the induced drag is 

Dl{n) = ^L. (46) n 

Thus in a formation when the tip vortices of adjacent birds overlap, the induced 

drag of a single bird in a flock of size n is 1/nth the induced drag if it was to 

fly solo. Of all possible wing-tip spacing, maximum reduction in induced drag, as 

demonstrated by the dashed line of figure 7, occurs at wing tip spacing s = 2(a — b), 

corresponding to when the tip vortices overlap. 

In summary, within a range of wing-tip spacings the approximation formula 

(Equation (41)) is quite an accurate measure of induced drag for a member of a 

flock. Due to the nature of the approximation equation, flight formations where 
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Figure 12. Air flow pattern, as represented by a horseshoe vortex, 

of two wings each of semi-span b, located at wing-tip spacing s = 

2(a — 6). Due to the positioning, tip vortex of the lead bird cancels 

the tip vortex of the second bird (A). The resulting flow, as shown 

by the horseshoe vortex in (B), is equivalent to a flow created by a 

single wing of span 26. 
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the wing-tip spacing s = 2(a — b) equation (46) should be used. Interestingly, both 

formulas show that the induced drag of a bird in a flock is inversely related to flock 

size. This result greatly simplifies flight energetic calculations of a bird in different 

sized flocks. 
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Model 

In formulating an optimal behaviour model three details are often considered: 

(1) choosing a currency (2) choosing an appropriate cost-benefit function with the 

appropriate constraints and (3) solving for the optimum (Pyke et al, 1977; Schoener, 

1971). The currency in this case is energy, the cost-benefit function is net energy 

gained per unit energy expended, and the optimum is the flock size which maximizes 

the cost-benefit function, subject to various constraints. Here, energy gain (Ein) 

and energy expenditure (Eout) are the result of foraging and flying, respectively.: 

Energy Expenditure (Hying cost) 

Analogous to solo flight cost equation 8, energy expenditure for a bird in 

formation flight is given by 

E O H t = (DP+DI(n))d.' (47) 

In formation flight, the sum of profile and parasite drag is the same as for a solo 

bird, D p , whereas the induced drag, Z)j(n), is reduced, and it is now a function of 

wing-tip spacing, and flock size. As shown previously, induced drag can be expressed 

by two approximation formulas, depending on the choice of wing-tip spacing. The 

result of substituting equation (41) for Di(n) is shown in appendix C. The case 

when the wing-tip spacing causes the tip vortices to overlap is considered here. In 

such formation Di(n) = Di/n; accordingly, the flight cost equals 

Eout = {DP + ^-)d. (48) n 

Substituting equation (2) and (3) for D p and D j respectively, and grouping terms 

gives the energy expenditure of a bird in a flock of size n flying at a speed U for a 

distance d 

E 0 U t = ( k p U 2 + - U - 2 ) d . (49) 
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The maximum range speed, which minimizes flying cost per unit distance 

travelled, is given by solving the equation 

d_ 
du 

E, out 2kpU-^U-3 = 0. n (50) 

Solving for U gives the maximum range speed of the flock 

1/4 

U m r ( n ) 
Ajp Th 

(51) 

Equation (51) shows that with increasing flock size cruising speed of the flock 

decreases. Relative to the optimum speed of a solo flyer, Umr = (ki/kp)1/4, the 

maximum range speed of the flock decreases as ra-1/4. Due to a lower cruising 

speed, birds in a larger flock will take a longer time to travel the same distance 

than birds in a smaller flock. In effect, the airborne time ta during a migration leg 

of distance d is 

ta = 
d 

U m r ( n ) = d 
ki 

1/4 

n 
1/4 (52) 

Finally, substituting equation (51) for U in equation (49) gives the flying cost 

of a bird in a flock of size n, travelling a distance d at the maximum range speed 

E0ut = 2 u k p • k{ —=. (53) 

Equation (53) shows that flying cost for an individual decreases as the number of 

birds increases in the formation. More specifically, this cost decreases as n - 1 / 2 . 

Energy Gain (feeding) 

It is assumed that birds do not feed during their journey and so any energy 

gain occurs only at a foraging site. The total energetic gain, Ein, will equal the rate 

of prey encountered times the time spent foraging. Assuming that an individual 

forager captures food according to a Poisson process with parameter A (number of 
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prey (net energy equivalent) per unit time) (Mangel h Clark, 1988), then the net 

energy gain for a patch residence time, tp, is 

Fin — \ ' tjj (54) 

The total time spent flying and foraging, T, is given by 

7 — "bp ~\~ ta, (55) 

Substituting for tp into equation (54) gives 

E i n = X(T-ta). (56) 

Equation (56) shows that as the airborne time increases the total energy gain 

decreases. Substituting for ta (Equation (52)) in equation (56) gives 

1/4 

E i n = X ( T - d n 
1/4 (57) 

In effect, net energy gain for an individual decreases with increasing flock size. 

.Ratio of Energy Gain to Energy Expenditure 

Let the ratio of net energy gain/energy expenditure be 

Ein R = 
Eout 

(58) 

(Pyke etal, 1977; Schmid-Herhpel etal, 1985). Substituting equations (53) and (57), 

into the above ratio gives 

R(n) = ^\ \ (59) 

The above equation is maximized when dR(n)/dn = 0. So, R(n) is maximized 

when, 

2dy/kT^k~ \2 
\ T n - " 2 - -d 

1/4 

n - 1 / 4 = 0. (60) 
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Solving the above equation gives nopt, a value of n that maximizes equation 

(59), 

nopt — 
16 ki_ 

(61) 

Finally, substituting U m r = (ki/kp)1/* (Equation (10)) into the above equation 

gives 
r n 4 

Ifi T 

(62) » - 1 6 TT* 
JLopt — umr 

where Umr is the maximum range speed for a solo bird. 

For completeness, it can be shown that equation (59) is a maximum at n = nopt, 

for at this value the second derivative of the function is negative; in particular, 

5 

< 0. (63) 
o?R(n) 

dn2 

n=nopt 

729 kj 

1024 kj 
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Results 
Conditions for Solo Flight 

The model makes predictions on the optimum number of birds in a flock. 

Provided that the value of d, Umr, and T are known a corresponding flock size 

can be calculated. Here, however, value of d, Umr and T that yield a flock size of 

one (solo flight) is examined. In other words, n o p t is set equal to one in equation 

(62): 

d = ^ U m r T . (64) 

The conditions for solo flight depends on the value d, Umr, T such that the above 

equality holds. For instance, in figure 13, for a given Umr, a solid line divides the 

value of d and T pairs that predict solo flight (below the line) from the pairs that 

predict optimum flock size greater than one (above the line). Furthermore, figure 

13 shows that as the value of Umr increase the region for solo flight (below the line) 

also increases. Thus birds with large Umr are more likely to fly solo than birds with 

low Umr. 

Moreover, the condition for solo flight can also be expressed as a ratio of two 

time variables. Substituting d = Umr • ta into equation (64) gives 

which can be also expressed as 

T _ ta+tp _ 3 

ta ~ ta ~ 2' 

Thus the condition for solo flight is when 

(66) 

In other words, under the conditions where time spent feeding is one half the flight 

time birds should fly solo. 
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Figure 13. Condition for solo flight depends on the value of d, Umr 

and T. For a given Umr, a solid line divides the values of d and T 

pairs that predict solo flight (below the line) from d and T pairs 

that predict optimum flock size greater than one (above the line). 

To illustrate, say Umr = 1/2, (T, d) pairs that fall in the grey region 

correspond to solo flight while pairs that fall in the white region 

correspond to formation flight. 
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Optimum Flock Size and Wing-tip Spacing 

Birds in a flock have a choice of whether to fly in tight or loose formation. A 

tight formation is when the wing-tip spacing is small or, when the wing tips overlap, 

negative. As was shown in figure 7, maximum induced drag reduction occurs when 

the wing-tip spacing is such that the tip vortices of adjacent bird cancel each other 

out. The corresponding optimum flock size for such a spacing is given by equation 

(62). However, for other spacings, the optimum flock size is given by 

- lint - B m 

where both A and B are a function of wing tip spacing, s (see appendix C , Equations 

C3 & C4). As shown in figure 14, for the same value of T/ta, the smallest optimum 

flock size results when the wing-tip spacing gives the maximum drag reduction (dash 

line). As the wing-tip separation relative to the semi-wing span (s/b) increases the 

predicted number of birds in a flock also increases. To compensate for a lower 

induced drag reduction which occurs at large wing-tip spacing the number of birds 

in a flock is increased. Finally, figure 14 shows that for any wing-tip spacing, as the 

ratio of T / t a increases so does the predicted optimum flock size. 

Optimum vs Maximum Flock Size 

Although the model predicts an optimum number of birds in a flock, an ex

amination of the cost-benefit function (Equation (59)) shows that a flock may form 

which exceeds the optimum size (Sibly, 1983). Figure 15 shows that the curve spec

ifying individual efficiency, R, as function of flock size is concave downward and 

has a peak at n o p t , the size yielding maximum efficiency. Due to the downward 

concavity of the curve, individual efficiency decreases in the region where flock size 

is larger than nopt. Specifically, at a flock size n*, the curve is at the same level as 

that for a solo flyer. Accordingly, individual birds in a flock of size n* will expe

rience the same benefit as a solo bird. By forming flocks larger than n* results in 
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Figure 14. Optimum flock size is plotted against T/ta. Curves 

correspond to wing-tip spacing, expressed by a non-dimensional 

ratio, s/b (+100, +50, +20, 0, -10, -20%). Smallest flock size occurs 

at wing-tip spacing s = 2(a — b) (dash line), flock configuration for 

maximum induced drag reduction. 
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benefits smaller than that of flying solo. Thus, it follows that the maximum flock 

size is n*. Mathematically, the maximum flock size, n*, satisfies 

R(l)=R(n*). (69) 

Grouping terms (see Appendix D), the following relation can be derived between 

nopt and nm 

(70) 
16 

nJ - 1 

While not directly solving for n», it is shown in appendix D that the upper bound 

of n* is be given by 

n» < ^-rnopt « 5 • nopt. (71) 
lb 

Thus the maximum flock size is no greater than five times the predicted optimum 

flock size. When a flock size exceeds 5'nopt birds, the benefit of solo flight outweigh 

that of group flight. 

Due to decreasing benefit, as the number of birds increases beyond the optimum 

size, a large flock may become unstable. For example, a flock will continue to 

attract individuals until the benefit of group flight equals that of solo flight. For 

this reason no other bird will join a flock that contains the maximum number of 

birds, n*. However, compared to a large single flock, a greater benefit can be 

achieved by breaking up in to smaller flocks, each of size approximately equal to 

nopt. Hence, breaking up of a flock is highly likely once its size has surpassed the 

optimum number. 

Effect of Umr on Optimum Flock Size 

Estimates can be made of flight speed for a particular animal from equation 

(10), provided that at least its weight and wing span are known. Substituting 

morphological relationships for wing characteristics given by Greenwalt (1962) for 

three bird groups : passerforms, shorebirds, and ducks into equation (10) a mass 

specific Umr can be determined for each group. Although this division is based 
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Figure 15. Normalized relative to a solo flyer, equation 59 is plot

ted against different flock sizes, n. The benefit of flying in a flock of 

size n = n* is identical to that of flying solo: R(l) = -R(n*). In this 

example, a member of a flock of size n = n o p t is 60% more efficient 

than a solo flyer. 
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largely on disc loading, and not on taxonomy (Rayner, 1979), maximum range 

speed as a function to body mass for the three groups and all birds combined is 

given in table 1. 

Substituting mass specific Umr into equation (62) results in a mass specific 

optimum flock size. The corresponding flock size for the three groups and across all 

groups is given in column two of table 1. Since members in a group fall within a small 

range of mass, for example, the majority of ducks fall into a narrow range of about 

lkg, Umr does not vary as greatly within a group as across a group. Accordingly, if 

birds within a group migrate similar distances then a small variation in flock size is 

to be expected. The interspecific equation for velocity (table 1) shows that a large 

variation in flock size is expected when comparing across a group then within a 

group. Although morphological relationships give a general trend, a more accurate 

measure of flock size can only be made when the values of T, Umr and d are known 

for a specific species. 

Flock size for various combinations of T, Umr and d, are plotted in figure 16. 

Each panel, from left to right, is for a fixed T, 6, 12, and 18 hrs respectively, and is a 

plot of flock size vs distance, d (km), for three migration speeds. These panel show 

certain trends. First, for any fixed Umr and d, flock size increases with increasing 

T. Second, for any given T and d, flock size increases with increasing Umr. Finally, 

the critical distance at which to fly solo, irrespective of T, increases with higher 

cruising speed of the animal. 

Seasonal Variation and Optimum Flock Size 

Total time available, T, is an important variable in determining optimum flock 

size. On any leg of the migration, T equals the sum of the airborne time, t„ and the 

foraging time, tp. Day length, in some cases, may constrain the total time available 

to complete these two activities. Since day length changes with time of year, the 

optimum flock size at the time of the northward migration may differ from the size 

at the time of the return journey, on the southward migration. In other words, due 
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Table 1. Relation of maximum range speed to body mass, after 

Greenwalt (1962, 1975) and Rayner (1979). Optimum flock size is 

shown divided by [T/d]4. (All quantities in MKS units.) 
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Maximum Optimum flock 
range speed size/[T/d]4 

Interspecific rule 10.04M 0 2 4 2.00 x K F M 0 - 9 6 

Intraspecific rule 
passiforms 7.75 M 0 1 1 0.71 x 1 0 3 M 0 4 4 

shorebirds 8.98 M 0 0 2 1.28 x l O 3 / ^ 0 0 8 

ducks 12.43M 0 0 1 4.71 x lCPAf 0 0 4 
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Figure 16. Effect of T, d and Umr on optimum flock size. Each 

panel, from left to right, is for a fixed T, 6, 12, and 18 hrs respec

tively, and is a plot of flock size vs distance, d (km) for Umr = 18, 

36 and 54 km/hr (1-3 respectively). Solid horizontal line corre

sponds to nopt = 1, solo flight. 
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to seasonal varation in day length there will be a corresponiding change in flock size 

if T equals the number of hours between sunrise and sunset. 

Hours of daylight depends on the solar declination and latitude of the observer 

(Griffiths, 1976). Solar declination, as a first approximation, is given by 

where tj is the Julian date (Jan. 1 = 1,... Dec. 31 = 365) in the year (Oke, 1987). 

Day length, hours between sunrise and sunset, is given by 

o 
H(£, tj) = — arccos(- tan(*) tan(S(tj))), (73) 

lo 

where £ is latitude, in degrees, and H is day length, in hours (Griffiths, 1976). Figure 

17 illustrates the variation in day length with time of year and with latitude. From 

the beginning of the year, day length progressively gets longer, reaching 12-hours at 

the vernal equinox (March 21), and continually increases until the summer solstice 

(June 21), where it then starts to decrease, reaching again a 12-hour length at the 

autumn solstice (September 23). Over a year, this pattern of day length change is 

symmetrical about the summer solstice. In other words, days equidistant from the 

summer solstice have the same number of daylight hours, irrespective of latitude. 

Now that T can be quantified by equation (73) it is interesting to study how it 

affects nopt. Let the beginning of the northward migration be at time tb, number of 

days before the summer solstice and let the return journey be at time t r, number of 

days after the summer solstice. To a first approximation, and disregarding changes 

in hour length during the time of flight, the average number of hours of daylight 

from the start of the migration at latitude £\ at time tj, to the end of the migration 

at latitude £2 can be calculated by 

R^ = i^rT1J^mtj)di (74) 

(Greenspan and Benney, 1973). Substituting tb and tr for tj in the above equation, 

gives the expected day length, H(tb) and H(tr), respectively, and can be assigned tio 
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Figure 17. Contour of day length (hrs) with time of year and 

with latitude (solid lines). The dashed zigzag lines represent move

ment, from 10° N to 50° N, of two hypothetical migratory bird 

species. By flying equidistant number of days before and after the 

summer solstice (top axis), species A (short dash) will experience 

the same hour of day length on both the north and southward mi

gration; consequently, no seasonal variation in flock size is to be ex

pected. If the two phases occur in an asymmetrical pattern, as for 

species B (long dash), the average day length during the northward 

migration will be larger than the day length during the southward 

migration; as a result, seasonal variation in flock size is to be ex

pected. The degree of variation in flock size is plotted in figure 18. 
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variable T in equation (62). Depending on the values of H(tb) and H(tr), optimum 

flock size for a given bird species may differ at time tb from that at time tr. Let Rs 

be the ratio of flock size at the the time of the northward migration to flock size at 

the time of the return journey. That is 

16 Trt H ( * r ) 4 

P _ 81 d* _ B(ir) 
16^4 H(n)* [H(tb)\ 

-, 4 

(75) 

Using equation (74), the above equation can be written as 

r rt: H(£,tr)di 

&H(t,th)dl 
(76) 

The degree of seasonal variation in flock size can be implied from the above 

ratio. Contours of R8 are plotted against tb and tr in figure 18 for a bird species 

that migrates from t\ = 10° N to fe = 50° N. When the start and the return time 

is equidistant with respect to the summer solstice, there is no seasonal variation in 

flock size because the average number of day light hours is the same on both leg of 

the journey. In this case the ratio, Ra, equals one. Birds of similar migratory range, 

but of asymmetrical start and return time with respect of the summer solstice, 

however, should exhibit seasonal variation in flock size. The degree of this variation 

is expressed by the value of R„. For example, if the start time is 30 days before 

and the return time is 120 days after the summer solstice then the flock size on the 

return journey from latitude 50° N to 10° N will be 40% smaller than that during 

the northward migration from 10° N to 50° N (point B, figure 18). 

In conclusion, figure 18 shows that variation in flock size depends on the time 

of the north and southward migration with respect to the summer solstoice. For 

bird species that migrate in a fashion where the north and southward migration 

times are symmetrical about the summer solstice no seasonal variation in flock 

size is expected. It is shown that asymmetrical time of the north and southward 

migration relative to the summer solstice is what causes variation in flock size. The 

degree of variation in flock size at these two times can be calculated from equation 

(76). 
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Figure 18. For migration from 10° N to 50°N, contours of the ra

tio Rs are plotted against tb arid tr. The ratio Ra for bird species 

A and B is determined by the value of (tb,tr) pair which is (30,30) 

and (30,120) days respectively (see Figure 17). Ratio Rs < 1 corre

sponds to flock sizes being smaller during the southward migration 

compared to that during the northward migration. A ratio of one 

implies that flock sizes during the north and south migration are 

identical. 

67 



68 



Optimum Bird Flock Size in Formation Flight 

Discussion 
Aerodynamic Model 

The aerodynamic model of formation flight makes certain predictions on ge

ometry, optimum speed and energy expenditure of a flock. 

In terms of geometry, formation close to a crescent rather than a vee shape 

allows for equal distribution of induced drag reduction. In such a case, the crescent 

shape has approximately a formation angle (angle measured between the two legs 

of the formation) of 109 ° (Lassaman & Schollenberger, 1970). However, in most 

observed flocks the formation angle is much smaller than 109 ° , and the formation 

is in a distinct vee shape (Timothy et al. 1976; Gould & Heppner, 1974). This 

finding would imply that induced drag reduction is not equally distributed among 

members of a flock. Calculations by Hummel (1983) show that among all other 

birds in a formation the lead bird experiences the lowest induced drag reduction, 

while retaining a flying cost lower than a solo flyer. Taking turns leading during 

flight may be one way to assure that work is equally distributed within all members. 

No study as of yet has been done on the dynamics of birds within a flock although 

there are many accounts of birds changing lead position during flight. 

While distribution of induced drag reduction is influenced by formation angle 

the magnitude of this reduction is dependent on wing tip spacing (WTS). Within 

limits, tighter the formation higher the reduction in induced drag. By flying in a vee 

formation, certain overlap in WTS (s < 0) can occur which would be impossible, 

for example, in abreast formation. The limit of the overlap is determined by the 

position of the vortex filament shed from the bird ahead. A wing of semi-span ft 

sheds two trailing vortex a distance a = from the center of the wing (Houghton & 

Brock, 1970; Higdon & Corrsin, 1978). As shown in figure 7 the maximum induced 

drag reduction occurs when the trailing vortex of adjacent birds cancel each other 

out, corresponding to a WTS s = 2(a — b). Observed WTS of Canada Geese 

(Branta canadensis) in two studies report a median WTS of —0.198 m (range —1.28 
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to 2.89 m) and —0.337 m (range —1.2 to 1.41m) (Hainswdr̂ tli, 1987; Hainsworth in 

press). Since in both studies it was assumed the birds were of constant length and 

of semi-wing span of 6 = 0.75 m, the corresponding predicted WTS is calculated to 

be s = —0.36m. Although there is a large range of observed WTS, the latter 

study is in close agreement to the predicted WTS for maximum induced drag 

reduction. Large variation in observed WTS may be due to several factors such as 

local turbulence caused by change in wind direction or due to unpredictable moves 

by birds ahead (Hainsworth, 1988). While accounting for the dynamic nature of 

WTS between birds (see Figure 10, Hainsworth, 1988) the degree of overlap suggests 

that a relatively high reduction in induced drag can occur. 

In order to achieve the best flight performance, all individuals of a flock must 

travel at an optimum speed. This speed, minimizing flying cost per unit distance 

flown, is a function of two variables, flock size, n and WTS, s. In general, optimum 

speed of a flock, L7mr(n), is slower than that of a single bird, Umr (Figure 19). 

Specifically, equation 51 and C6 show that the optimum speed increases to 

the level of a single bird with increasing WTS or with decreasing flock size. In 

other words, the aerodynamic model predicts a negative correlation between speed 

and flock size for a given WTS. However, in three studies, two with Oystercatchers 

(Haematopus ostralegus) (Preuss, 1960; Noer, 1979) and one with Arctic Terns 

(Sterna paraiisata) (Alerstam, 1985), no significant correlation between speed and 

flock size was found. This apparent discrepancy between model and observation 

can be explained by the fact that all three studies failed to measure WTS, which 

affects optimum speed. For example, a 17% reduction in relative speed to a single 

bird is predicted for a flock containing 40 birds and 4 birds, at spacing s/b = 0 and 

s/b = —20% respectively. Not surprisingly then, no significant correlation can be 

established without knowledge of WTS. On the whole, any study to investigate the 

dependence of speed on flock size must measure WTS and other variables, such as 

wind speed and direction, which also effects optimum speed (Pennycuick, 1972). 
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Figure 19. Percent reduction in optimum flight speed relative 

to a single bird ([Umr — (7mr(ro)]/i7mr) at different flock size, n, 

and spacing index, s/b (s is WTS, b is semi-wing span). The solid 

line corresponds to a WTS when trailing vorticies of adjacent bird 

cancel each other out. 
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Finally, the aerodynamic model predicts that formation flight be more ad

vantageous than solitary flight in terms of energy expenditure. Observation on 

white pelicans (Pelecanus erythrorhynchos), commuting between nesting and for

aging area, show lower flying cost for different types of formations if wingbeat is 

considered as an indicator of flying cost (O'Malley & Evans, 1982). The number of 

wingbeats per hour, calculated from wing beat frequency (beats per minute) and 

percent time flapping, was lowest in vee formation and greatest in single birds. It 

was found that birds in a vee formation had an average 6042 wingbeats/h whereas 

single birds flew with an average 7169 wingbeats/h (table 5; O'Malley & Evans, 

1982) suggesting indirectly that formation flight provides aerodynamic advantage 

over solitary flight. 

Optimum Flock Size Model 

Verification of the model requires comparison with appropriate data. Four 
i: 

variables, WTS (s), cruising speed (Umr), flight distance (d), and cumulative feeding 

and flying time (T) are interrelated components of this model. Presently, such 

data is sparse and where it exists it is often incomplete to validate this model. 

For example, many studies, while reporting flock size, are ambiguous about the 

behaviour of the flock. As is already known, there are many other types of behaviour 

that flocking is associated with, such as colonial nesting, communal roosting and 

anti-predator avoidance (McFarland, 1987), in addition to formation flight during 

migration. Clearly, a system to classify flock behaviour should be adapted to include 

behaviour of aerial flocks. For instance, formation flight is not restricted only to 

migration but may occur during local daily movements between nesting and foraging 

site, as in the case of Pelicans. Thus group flight may be associated with many types 

of behaviour. Here, model predicts size of migratory flock since non-migratory flock 

may travel at a speed different than maximum range speed (Pyke, 1981; Norberg 

1981). Because literature information pertaining to this model is often incomplete, 

certain assumptions have to be made in order to determine optimum flock size of 
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migrating birds. Estimates of optimum flock sizes compared to what is observed in 

the field for cranes and Canada geese are considered next. 

Although taking advantage of thermal soaring when meteorological conditions 

allow for it, common cranes' (Grus grus) primary mode of migration is powered 

flight, either in V or J flock formation (Pennycuick et al. 1979). In this species 

observed flock size range f̂rom 2-31 birds during part of spring migration from 

Rugen (54°30'N, 13°30'E), in the southern Baltic Sea, to lake Hornborgasjon 

(57°30'N, 14°02'E), in Sweden, a flight distance of nearly 400 km (Pennycuick 

et al. ,1979). K flying and feeding is restricted between sunrise and sunset, the 

amount of time to complete these two activities during the April migration is 

approximately 13 hrs (Figure 17). Calculated maximum range speed for this species 

using a representative weight of 5.5 kg (Pennycuick et al. , 1979) is 55km/hr (Table 

1). Using field data to estimate flight distance (d = 400 km), general mathematical 

expressions to estimate both flight speed (Umr = 53km/hr) and day length (T == 

13 hrs), and condition for maximum induced drag reduction to estimate WTS 

(s = —0.436), gives an optimum number of 1.72 birds/flock (Equation (62)), a value 

near the lower range of observed size. Not all birds, however, make the journey in 

one day (Alerstam, 1974). Thus, if the journey is broken in two phases, with a 

single stopover 200 km away, the optimum number in this case (d = 200 km) is 

27.6 birds/flock. 

Likewise, using field data to estimate flight distance and speed allows calcu

lations of optimum flock size in Whooping cranes (Grus americana) . By track

ing daily movements of transmitter-tagged cranes along the Central flyway from 

Wood Buffalo National Park (58°30'N, 112°00'W), in Alberta to Aransas National 

Wildlife Refuge (26°30'N, 97°10'W), on the Texas Coast, the average distance be

tween stopover sites was estimated to equal 325 km (Emanuel, 1982). From table 

1, flight speed for this species was calculated at 58km/hr, using an average male 

weight of 7.3 kg (Johnsgard, 1983). During fall migration period, between mid-

October and early November, day length approximately equalled 10 hrs. Setting 
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d = 325 km, Umr = 58km/hr and T = 10 hrs in equation (62), gives an optimum 

number of 2 birds/flock; Central fly way fall migration records report flock size 

ranging from 1 - 9 birds, with an average of 2.6 birds/flock (Table 2, Johnsgard, 

1983). 

Finally, migration timing and distance data on a population of Canada Geese 

(Branta canadensis), which nests at Marshy Point Goose Sanctuary (50°32'N, 

98°07'W), Manitoba and migrate to Silver Lake (44°00'N, 92°20'W) in Rochester, 

Minnesota (Wege & Raveling, 1983), allow the estimation of seasonal variation in 

flock size and the determination of conditions for solo and group flight. The data 

shows that transmitter-tagged geese took on an average 8.3 and 2.3 days during 

the spring (8 - 15 April) and autumn (28 Oct. - 2 Nov.) migrations respectively 

to complete the 855 km journey between Lake Rochester and Marshy Point Goose 

Sanctuary. On the average birds flew 371 km, with some flying non-stop during 

the autumn migration period. In contrast, all the tagged geese interrupted their 

spring migration. In fact because stopover areas in the spring were pastures and 

gain fields, many birds broke the migration to renew fat reserves while advancing 

northward (Elkins, 1988; Wege & Raveling, 1983). As a result, map locations of 

stopover sites were used to estimate flight distance (Fig. 2, Wege & Raveling, 1983). 

On the average birds flew 170 km during the spring migration period, about 50% 

less than on their southward migration. Hours of daylight also differed during the 

two migration periods and was equal to 14 and 11 hrs at the time of the north 

and southward migrations respectively. Figure 20 shows predicted flock size during 

the spring and autumn migration for varying distance between stopover sites. For 

this case, the figure shows two trends: firstly, that there is a seasonal variation 

in flock size, with flocks being largest in the spring and secondly, that flock size 

should decrease as the distance between stopover sites increase, with the possibility 

of flying solo. Data on flock size, while lacking in Wege & Raveling (1983) study, is 

varied. For example, data collected in central Illinois report flock size ranging from 

23 - 300 birds, with an average of 96 birds/flock (Bellrose, 1980). Other studies 
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report for this species an average size of 36.08 (Wing, 1941), 27.02 (Heppiier, 1974) 

and 5 birds/flock (Elder & Elder, 1949). On the whole, it is predicted that Canada 

Geese may migrate in flocks that are highly variable in size, determined, among 

other factors, by distance between stopover sites and time of year. 

It is recognized that a number of assumptions have been made in determining 

optimum flock size. Nevertheless, the estimates of flock size agree with what is 

observed in the field, and supply an understanding, if tentative, basis for interpreting 

flock size in migrating birds. 

Not all birds migrate in flocks. Condition for solo flight admittedly depends 

on the value of Umr, T and d. However, since flock size approaches a value equal 

to one with increasing flight distance, this distance largely determines solo flight 

condition for the case of long non-stop migration. In such cases flight distance 

can be thousands of kilometres, often over uninhabitable regions such as oceans, 

deserts, and glaciers and flight time may range from 20 to 100 hours, depending on 

the energy reserve of the migrant (Alerstam, 1976). To illustrate, geese travel 

long distances non-stop, such as the lesser snow geese (Amer caerulescens) in 

North America which fly from James Bay to the Gulf of Mexico, a distance of 

about 2700 km in 60 h and the Brant geese ( Branta bernicla) which fly about 

4000 km across the Pacific Ocean from the Alaska Peninsula to South California 

coast (Ogilive, 1978). Other bird species such as the European cuckoo fly over 

3000 km from southern Europe to equatorial Africa migrate singly or in small flocks 

(Wyllie, 1981). Likewise, travelling singly or in a small group, Pacific Golden Plover 

fly approximately 4000 km over open ocean from Alaska to Hawaii (Johnston & 

McFarlane, 1967). On the whole, for the case of long non-stop migration, the 

model predicts solo flight as a possible migration strategy. 

The approach taken here allows the determation of aerial flock sizes in migrat

ing birds. However, the model can accommodate more detailed information on a 

variety of issues. Specifically, observation of flocks sizes for different bird species, 
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Figure 20. Predicted optimum flock size during the spring and 

autumn migration for varying distances between stop-over sites (top 

axis) or equivalentley the nubmer of stop-overs required to complete 

the 855 km journey (bottom axis). See text for detail. 
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and under different migration conditions would be rewarding. Further detailed work 

on seasonal time budget of migrating birds and their flight speed is still needed. 

Eventually, this would provide a basis of for comparative study of flock sizes for 

different migrating species and for different times of the year. In addition, several 

aspects of the aerodynamic model such as the optimal adjustment of air speed for 

different flock size and WTS still needs to be explored. 
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Summary 
(i) The aerodynamic of formation flight theory for a fixed wing aircraft has been 

applied to avian formation flight. Two approximation techniques are derived 

which greatly simplify induced drag calculations for a single bird flying in a 

group of n birds at wing-tip spacing s. The approximation formula guarantees 

the relative error to be less than 23% for spacing index greater than s/b = 

—20%. Relative error decreases with increasing n and s. 

(ii) The results show that a striking saving in induced drag can occur during 

formation flight. Typically, a group of 25 birds in tip-to-tip formation (i.e. 

s = 0) has approximately 50% reduction in induced drag than a lone bird. The 

greatest reduction in induced drag occurs in formations where tip vortices of 

adjacent birds overlap. In such formations, induced drag for a member of a 

flock is 1/nth the induced drag of a single bird. 

(iii) Maximum range speed of a flock decreases with flock size. For a group of 25 

birds in tip-to-tip formation there is approximately a 15% reduction in optimal 

speed relative to a single bird. In formations where tip vortices of adjacent birds 

overlap, maximum range speed of a flock is reduced by a factor of (1/n)1/ 4. 

(iv) The optimum flock size model is based on the energetic cost of flight and energy 

income from foraging. Optimum size of a flock is a function of four variables: 

Umr, T and d. 

(v) .If migration is constrained by hours of daylight, no seasonal variation in flock 

size is expected if north and southward migration times are symmetrical with 

respect to the summer solstice. If, however, these two timings are asymmetrical, 

then the variation in flock size is dependent on the ratio of day length during 

the northward migration to that of the southward migration. 

(vi) Under certain conditions, such as long non-stop migration, solo flight is an 

optimum migratory strategy. 
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Appendix A 

Limiting Case as n —» oo 

Induced drag of a bird in a flock of size n is 

n—1 n 

D!{n) = DT + -J2 E DW (A1) 
1=1 J=l+1 

Substituting equation (34) for DHJ, the second term of the above equation can be 

written as 

n—1 n n-1 n 

E E % = * E E 1o« 
t'=l j=i+l i=l j ' = t + l 

2a 
\i - j\(2b + s) 

(A2) 

Applying the logarithm law, 

]og(«i)+log(u2)H hlog(u n ) =log(«iw2 • • • « n ) 

n r n 

J^log[u;] = log JJ t t ; 
i = l i = l 

(A3) 

to the inner summation, gives 

n—l n n-1 

E E D"i 
i=l j=i+l 

Let k = \i — j\ then 

i=l 
n 

.j=i+l 

2a 
\i-j\(2b + s) 

(AA) 

n-1 2Dj ^ 

i=l 
n 
fc=i 

i - ( *» 
\k(2b + s) 

(A5) 

As n —• oo, the upper hmit of product term changes from n to oo, that is 

n-1 

i = l 
n 
,fc=i 

I - 2a 
k(2b + s) 

Given the identity, 
sin(a;) n 

k=i L 

(A6) 

(A7) 
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(Hyslop, 1954) the infinite product term can be written as 

sin(2a7r/(2& + s)) n 
ifc=i 

I X \ 
1 - -r 

\irk J J 2air/(2b + s) 

where, in this case, 

x 
2cnr 

2b+ s 

(A8) 

(A9) 

Now, the double summation can be expressed as 

'sin(2a7r/(26 + s)) n-1 n _ n n - 1 

E E 
i=l j=i+l t=l 

2air/(2b + s) 
(AIO) 

Since the terms in the summation on the r.h.s. are independent of the index i, the 

preceding equation can be written as 

n—1 n 
2D/ 

(n - l)log 
sin(2a7r/(2& + s)) 

2air/(2b + s) 
(AU) 

i=l j=i+l 

Substituting the double summation of equation A l with the above result gives 

'sin(2a7r/(26 + *)) = , x „ 4Dj (n - 1) , 
D/(n) = + ^ — ± log 

2air/(2b + s) 
(A12) 

Consequently, as n —• oo, (n — l)/n—>1. Thus 

ADT 
lim D^n) = £>/ + — - i log 

sin(2a?r/(26 + *)) 
2air/(2b + s) 

(A13) 

Appendix B 

Approximation Technique 

The goal of the approximation technique is to represent the total induced drag 

of a flock of size n (equation Bl) in a close form; in other words, by an analytic 

function. Figure 9 gives a pictorial representation of the approximation technique. 

Specifically, in a formation of n birds, the left and right most birds are assumed 

to be flanked on either the starboard or port, respectively, by an infinite number 

of birds. The remaining birds, having neighbors on both sides, are assumed to be 
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flanked on both the port and starboard by infinite number of birds. Following the 

above assumptions, the total induced drag, 

n—1 n 
D(n) =nDI + 2j2 X Dli'> 

i=l j=i+l 
(Bl) 

can be decomposed into 

n —1 oo 
D(n) « nDi + 2 X j +

 2 X X ^ 
j=2 i=2 j=i+l 

(52) 

Calculation of the first and second summation series gives the total mutual induced 

drag for the two end birds, and for the remaining n — 2 birds within the flock, 

respectively. 

Substituting equation (34), for DHJ the first summation series can be written 

as 

X ^ = ̂ X l o s 1 -
2a 

\l-j\(2b + s) 
3=2 j=2 

with some manipulation (see Appendix A) it can be expressed as 

l^Dnj = — log 
j=2 

n 
U=l 

\-( 
2a 

\k(2b + s) 

Using the identity in Appendix A, the above equation reduces to 

J'=2 

sin(2a7r/(26 + s)) 
2air/(2b + s) 

(B3) 

(BA) 

(B5) 

In a similar fashion, the second summation series 

j'=2 j=i+l i=l 
n 
fc=i 

2a 
k(2b + s) 

can be reduce to (see Appendix A) 

n— 1 oo 

i=2 j=i+l 

n-1 

i=2 

sin(2a7r/(26 + 5 ) ) 
2a7r/(2b + s) 

(B6) 

(B7) 
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Since each term in the above summation is independent of the index i , the above 

equation simplefi.es to 

n— 1 oo 

E E 0 , y = ^ - 2 ) i o g 

i=2 

sn(2<Mr/(26 + s)) 
2an/(2b + s) 

(BB) 

Substituting the first and second summation series of eqaution B2 by the above 

results (equations B5 and B8 respectively) gives 

Dx(n) « n£> 7 + — i l o g 
7T Z 

sin(2a7r/(26 + *)) 
2a7r/(2fe + s) 

• ^ ( n - 2 ) l o g 
I T ' 

an(2a?r/(26 + s)) 
2a7r/(2b + s) 

(B9) 

Grouping terms, gives an approximation function to the total induced drag of a 

flock of size n (equation B l ) 

ADi 
Di(n) w n D j -\ — (n - l ) log 

It* 

sin(2a7r/(26 + s)) 
2air/(2b + s) 

Accordingly, the average induced drag, Z)j = Di(n)/n, is 

"sin(2a7r/(26 + *)) 

n 2air/(2b + s) 

(BIO) 

(511) 

Appendix C 

Optimum Flock Size as a Function of Wing-tip Spacing 

Energy expenditure for a bird in formation flight is given by 

EOUT = (DP + Dj(n))d, (CI) 

where in this case 

and 

5/(n) = Dr(A + B/n) 

A = l + — l o g 
7T^ 

B = - ~ log 
7T^ 

sin(/?) 

P 

sin(/3) 

(C2) 

(C3) 

(CA) 
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Eout = {DP + D^A + B/n))d. (CA) 

Substituting equation (2) and (3) for Dp and Di respectively, and grouping terms 

gives 

Eout = (kpU2 +ki(A + B/n)U~2)d. (Ch) 

The optimum cruising speed is given by 

/ f c \ 1 / 4 

U m r ( n ) = [ ^ - j (A + B/n)1'*. (C6) 

Airborne time to fly a distance d is 

Finally, the flying cost at U = Umr(n) is 

Eout = 2dy/k~k~p^A + B/n. (C8) 

Ein is given by 

Ein = \(T-ta). (C9) 

Substituting equation C7 for ta in the above equation gives 

Ein = \ ( r - d(^j ' (A + S / n ) 1 / 4 ) (CIO) 

The ratio 

= |̂  = VJi- - — L . (Cll) 

Eout 2dyfk^y/A + B/n V ; 

Differentiating the above ratio with respect to n gives 

dR(n) B\(2ky\3/\An + Bf'^T - 3 ^ / 4 r c ) 
d n ~ 8dJbf / 4JbJ / 2n 5 / 4(An + S ) V 4 
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Finally, solving for n gives the optimum flock size as a function of wing-tip spacing, 

B 
nopt(s) = 

81 kp 

16 TT 

(C13) 

since both A and B are a function of s (Equations C3 & C4). Finally, subsituting 

equation (62) in the above equation gives 

nopt(s) — 
B 

l/riopt - A 

Appendix D 

Upper Bound for Maximum Flock Size 

Let the maximum flock size n* be the flock size at which a member of a flock 

has the same benefit as a solo flyer. That is 

R(l) = R(n*), 

X ( T ~ d [ f c ] ( T - d [ £ ] V 4 nV^ (DI) 

2d ^/ kp • rtjj 2d yj kp • k{ 

Solving for n*, 

Vn7= 1 + 
d kp 1 1/4 3/4 

71*' — 
d kp 1/4 

Given that Umr = (ki/kp)1/* the above equation can written as 

d n 3 / 4 d 1 
-y/n7 = 1 + 

T U„ T U„ 

Collecting terms gives 

n 
1/2 d 

The r.h.s of the above equation, in terms nopt is 

3 ! / 4 _ T 
— Tl. 2 o p t ~ d 

(D2) 

(D3) 

(DA) 

(Db) 
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Thus equation D4 can be written as 

n 3 / 4 - 1 

n 
1/2 

_ 0 I/4 

— 7inopt • {DG) 

Solving for n o p t gives 

16 
81 

3/4 

1/2 , nJ - 1 
(D7) 

While it is not possible to solve for n* in the above equation, an upper bound for 

this variable can be calculated since the denominator, n J 2 — 1, is less than n J 2 

16 
n o p t > -

7Z 3/ 4 — 1 
~\ 4 

1/2 (D8) 

Furthermore, n^ 4 4= < n^/4 it follows that 

n o p t > 
16 
81 

1/4 

n 
1/2 

^ 1 6 r 1/4 
< 18 K 

(D9) 

Finally, the upper bound for n* can be written as 

81 
• nopt > (D10) 
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