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Abstract 

A numerical analysis of radiative heat transfer in a liquid encapsulant Czochralski gallium 

arsenide crystal puller is developed. The heat transfer and equivilent ambient temper

ature of each surface element axe calculated using the Gebhart radiative model. The 

effective ambient temperature, to which each surface element is radiating, is found to 

vary indicating that assuming a constant ambient temperature for all surfaces (simplified 

radiative model) is incorrect. 

The importance of including the middle and top cylinders of the growth chamber in 

numerical analysis of radiative heat transfer in the system is evaluated in the study. The 

upper section could be replaced by one isothermal surface without significant change of 

the effective ambient temperature distribution. 

Fluid flow and heat transfer in the GaAs melt, crystal and encapsulant are calcu

lated using a three dimensional axisymmetric finite difference code which includes the 

detailed radiative model. The mathematical modelling of the fluid and heat flow de

scribes steady state transport phenomena in a three dimensional solution domain with 

latent heat release at the liquid/solid interface. 

The predicted flow and temperature fields using the detailed radiative model differ 

considerably from the predicted fields using the simplified model. The simplified model 

shows high axial and low radial temperature gradients in the crystal near the encapsulant 

region; the axial gradient decreases and the radial gradient increases with increasing 

distance from the encapsulant top. The detailed model shows a high radial temperature 

gradient in the crystal near the crystal-encapsulant-ambient junction and nearly flat 

isotherms in the top half of the crystal. 
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Nomenclature 

A area, m2 ; optical absorbance 

Ci convective flux from boundary i 

Cp specific heat, J/gmK 

Di diffussive flux from boundary i 

F{j configuration factor from surface i to surface j 

/,' energy fraction emitted at T< below A = 2p.m 

fi length ratio 

Gij Gebhart factor for surface i 

h' height, m 

hconvection convective heat transfer coefficient, W/cm2K 

k thermal conductivity, W/cm.K 

m-i mass flow rate in face i of the control volume 

p pressure, N/m2 

Pe Peclet number 

r radius, m 

Rj, residual of <f> 

S source term 

T temperature, K 

u, v, w x—, T—, 8—direction velocity component, respectively, m/s 

Up crystal pulling velocity, m/s 

V volume, m 3 

a underrelaxation factor; absorption coefficient c m - 1 

8 thermal expansion coefficient, K~l 
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Sx, Sr, 69 x—, r—, 9— direction distance between two adjacent grid points 

Ax, Ar, A0 x—, r—, 8— direction width of the control volume 

e emissivity 

T general diffusion coefficient, kg/(ms) 

7 approximation coefficient 

A wavelength, fim 

fi dynamic viscosity, Ns/m2 

p' density, kg/m3 

p reflectivity 

<f> general dependent variable 

a Planck's constant, 5.729 * lQ-8W/m2K4 

Subscripts 

amb ambient 

c crucible 

co outer wall of crucible 

E neighbour in the positive x-direction, i.e., on the east side 

e control-volume face between P and E; encapsulant 

enc enclosure 

m melt 

mc middle cylinder wall 

mcla middle cylinder lower annulus 

meta middle cylinder top annulus 

N neighbour in the positive r-direction, i.e., on the north side 

n control-volume face between P and N 

P central grid point under consideration 
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s 

8 

St 

tew 

tct 

w 

w 

Superscripts 

* 

neighbour in the negative r-direction, i.e., on the south side 

control-volume face between P and S; crystal 

crystal top 

top cylinder wall 

top cylinder top 

neighbour in the negative x-direction, i.e., on the west side 

control-volume face between P and W 

previous-iteration value of a variable 
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Chapter 1 

INTRODUCTION 

1.1 General 

Gallium arsenide is an electronic material that is emerging, not as a substitute for silicon, 

but as an important complement to it. Gallium arsenide has many properties that are 

useful in electronic equipment. Some of those properties include the following: 

• Speed/power capability that is significantly superior to that of silicon. 

• Higher radiation resistance of its devices when compared with silicon devices. 

• Operation at higher temperatures than silicon. 

• Higher efficiency for solar cells in space applications. 

• Combining the processing of both light and electronic data on a single chip. 

• The possibility of being alloyed with other III-V compounds, such as AlAs, InAs, 

InP and GaP for a broad spectrum of useful properties. 

Gallium arsenide does however have one major disadvantage - COST. The gallium in 

a GaAs wafer costs more than ten times as much as the polysilicon in silicon wafers. 

Therefore, it is imperative to produce crystals with low dislocation densities and point 

defects in order to improve production yield. GaAs is composed of the low melting point 

metal gallium and the volatile metal arsenic. Consequently, it shows a very high arsenic 
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Chapter 1. INTRODUCTION 2 

dissociation pressure (about 0.1 MPa) at the melting point (1238°C). This fact makes it 

hard to grow stable crystals [1]. 

1.2 The Liquid Encapsulant Czochralski Crystal Growth Process 

1.2.1 Process History 

Metz, Miller and Mazelsky [2] first introduced the liquid encapsulant Czochralski (LEC) 

method in the early sixties. They pulled PbTe and PbSe crystals using molten boron 

trioxide (B2O3) as the liquid encapsulant. They chose molten B2O3 because it is less dense 

than the materials pulled and thus it floats on top of the semiconductor melt. In addition, 

it has a low vapour pressure which means that it will not evaporate under atmospheric or 

higher pressures. Also, the liquid metals they used were not soluble in and did not react 

with the molten boron trioxide. One of the other beneficial properties of boron trioxide 

is that it is transparent in the visible region which permits direct observation of the melt 

surface. It is rather viscous and tends to cling to the pulled crystal covering a large 

fraction of its surface, thus preventing arsenic evaporation from the crystal. However, it 

is soluble in hot water and may easily be removed from the finished crystals. B2O3 is 

also used as an encapsulant in the LEC crystal growth of GaAs. 

1.2.2 Process Description 

The LEC growth process is a major means of producing GaAs crystals. The LEC growth 

chamber is shown in figure 1.1. It consists of a cylindrical crucible that holds the melt 

and encapsulant. The crucible is heated from the side. The encapsulant covers the melt; 

its thickness varies depending on (a) the crystal length and diameter, and (b) whether 

high or low pressure is used (1 versus 4 MPa). A typical thickness is 2-cm. The optimum 

thickness has not been determined yet, even though full encapsulation seems to allow 
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Figure 1.1: Schematic showing GaAs liquid encapsulant Czochralski crsytal puller. 
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the growth of least stressed crystals. Full encapsulation implies that the whole crystal is 

covered with the encapsulant material as it grows. A seed that is attached to the pulling 

rod is inserted from the top so that it touches the melt surface. The gas surrounding 

the crystal - nitrogen or argon - is pressurized up to 4-MPa in order to reduce arsenic 

evaporation from the crystal and melt. The crucible and crystal are rotated either in the 

same direction (isorotation) or in opposite directions (counterrotation), at the same or 

at different speeds. The crucible is rotated to minimize the thermal asymmetry of the 

system. The crystal is rotated to create a uniform boundary layer at the solid/liquid 

interface through which heat and mass transfer take place. This boundary layer isolates 

the growth interface from the velocity fluctuations in the bulk of the melt. Crystal 

rotation also helps in shaping a cylindrical crystal. The crucible is raised by movement 

of the pedestal so that the sohdification front remains in a specified region of the heater 

as the melt level drops. The growth process is viewed through a quartz crystal that is 

positioned as shown in figure 1.1. 

Maintaining the same heat transfer conditions throughout the growth of the crystal 

is complicated by imperfections in the heat transfer environment and by instabilities 

thought to be inherent in the Czochralski growth configuration. The process is also 

complicated by the batchwise nature caused by the decreasing depth of the melt in the 

crucible and the changing heat exchange characteristics between the melt, crucible and 

ambient gas. 

The use of B%Oz as an encapsulant introduces the following difficulties: 

1. Crystal diameter control becomes difficult because B2O3 which has a large heat 

capacity, induces a time lag in the temperature control and thereby in the diameter 

control. 
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2. The large temperature gradient of B2O3, which has a small thermal conductiv

ity, causes a high temperature gradient in the crystal which induces high thermal 

stresses leading to an increase in dislocation density. The dislocations in turn alter 

the electrical properties of the GaAs wafers thus degrading device performance. 

(Dislocations are also caused by propagation and multiplication from an imperfect 

seed.) 

3. Reaction between B2O3 and impurities in the gallium arsenide melt affects impurity 

concentration in the grown crystal, although B2O3 rarely reacts with the melt itself. 

Thus, it is important to study the fluid flow and heat transfer in the melt, encapsulant 

and surrounding gas to understand how they affect the growing crystal and to determine 

the best conditions for growing GaAs crystals. Also, the information provides data needed 

for the design of the crystal pullers. 



Chapter 2 

LITERATURE SURVEY 

2.1 Introduction 

The areas of research in the crystal growth field that are of interest here include : 

• Fluid flow analysis of the melt, encapsulant and gas. 

• Thermal flow (heat transfer) in the melt, encapsulant, crystal and furnace environ

ment. 

The literature survey includes both experimental and analytical work. It is found that 

most studies concentrated on fluid or heat transfer analysis in the melt and did not include 

the encapsulant as a part of the system, i.e., the analysis was done on a Czochralski - not 

a liquid encapsulant Czochralski - crystal growth system. However, some recent studies 

did include the encapsulant region. 

2.2 Experimental Studies 

In 1968 Mullin et al [3] used the liquid encapsulation method to pull GaP and InP 

crystals. They designed a high pressure chamber which could have been obtained as a 

standard attachment to commercial versions of the crystal puller available then. Their 

study was aimed at confirming the viability of the technique and assessing the chemical 

purity of crystals grown in silica and vitrious carbon crucibles. 
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They concluded that silica crucibles did contaminate GaP and InP melts. However, 

the vitrious carbon crucibles did not contaminate the melt. They found that the starting 

material was the most likely potential source of carbon. 

Lamprecht et al [4] did experiments to investigate the flow and temperature distri

butions in a Czochralski configuration. The experiments were designed to study the 

importance of buoyacy, thermocapillary and forced convection on the crystal growth. 

They used NaNOa melt in an iridium crucible. They reported qualitative agreement be

tween their experimental results and numerical results obtained by Langlois in [5, 6, 7]. 

The agreement showed the importance of thermocapillary forces when considering the 

problem of fluid flow transition leading to interface transitions. They also emphasized 

the importance of buoyancy and thermocapillary forces for heat dissipation from the melt 

surface as well as mass transport through the melt surface. 

Terashima and Fukuda [8] designed a new magnetic field LEC pulling apparatus. 

They concluded from their experiments that the higher the magnetic field applied, the 

lower the temperature fluctuation in the melt and encapsulant. Also, higher pressure in 

the chamber which caused a large temperature gradient in the melt and encapsulant and 

increased thermal convection, required a higher magnetic field to suppress the melt and 

encapsulant temperature fluctuation. 

Osaka et al [9] grew GaAs crystals using the LEC method in a growth apparatus 

designed for the study which used a two-heater configuration and controled the main 

heater power by a computer. They monitored the crystal diameter using a load cell that 

measured crystal weight during growth. In order to reduce the temperature gradient in 

the encapsulant, they used a thick layer of boron trioxide. They reported a gradient 

of 100°C/cm for a 2-cm thick layer and 35°C/cm for an 8-cm thick layer. They con

cluded from their experiments that the yield of single < 100 > oriented crystal reached 

nearly 100% when the solid/liquid interface profile was controlled such that it was convex 



Chapter 2. LITERATURE SURVEY 8 

towards the melt. 

Kohda et al [10] grew dislocation-free and striation-free GaAs crystals using fully 

encapsulated Czochralski method. The crystal diameter was 50-mm. They used a 50-

mm B203 layer which allowed full encapsulation of the pulled crystal.. This method 

reduced stress induced dislocations because arsenic evaporation, which caused surface 

irregularities, was effectively suppressed from the crystal surface. By using two heaters 

that were controlled individually, a temperature gradient of 30 — 50°C/cm was maintained 

along the growth direction in the encapsulant layer. 

Ozawa and Fukuda [11] observed the solid-liquid interface of GaAs grown by the 

LEC method. They reported that the region of stable crystal growth was indicated by a 

meniscus angle 8 in the range of 18° to 45°where 8 is defined as shown in figure 2.2. 

encapsulant 

crystal 

Figure 2.2: Meniscus angle 8 which must be between 18° and 45° for stable crystal 
growth. 

Kakimoto et al [12] observed directly the convection in boron trioxide during GaAs 

crystal growth using x-ray radiography. They studied natural convection in B2O3 with 

and without crystal in order to seperate the effect of forced convection attributed to 
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crystal and crucible rotation. For that case, they estimated the flow velocity to be about 

0.3mm/sec which was two orders of magnitude less than that in the semiconductor melt. 

In the presence of a crystal, the flow velocity was about 0.03-0.05 mm/sec which was 

one order of magnitude smaller than that without a crystal. This reduction in flow 

velocity was attributed to shear viscous flow near the crystal wall. The results of the 

numerical simulation of the flow in B2O3 agreed very well with the experimental results 

(0.1-0.5 mm/sec). Their exercise showed that the flow in the encapsulant was steady and 

axisymmetric. Also, since the flow velocity was two orders of magnitude less than that 

in the semiconductor melt, conduction may be considered to dominate convection in the 

encapsulant B2O3. 

2.3 Theoretical Studies 

Ramachandran and Duduhovic [13] used a detailed radiative heat transfer model (Geb

hart model) when simulating the temperature distribution in crystals grown by the 

Czochralski method. They also used a simplified model (Stefan's model) for the pur

pose of comparison. However, they assumed the melt, exposed crucible wall and the 

enclosing walls to be at uniform temperatures, i.e., they did not divide those surfaces 

to elements in order to take into account each surface's temperature gradient. By doing 

that they reduced the computing time required, however they also lost a more accurate 

representation of the real system. 

Atherton et al [14] studied the effect of diffuse-gray radiation on the parametric sen

sitivity and stability of the Czochralski process for growing silicon. They used a detailed 

radiative model which used the Gebhart method for computing radiative fluxes in diffuse-

gray enclosures. For calculating the view factors, they used the programme FACET which 

was developed at Lawrence Livermore Laboratory to calculate view factors in an arbitrary 
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axisymmetric geometry. They calculated view factors for only four surfaces — crystal, 

crucible, melt and an enclosure that represented the ambient surface which they divided 

to 20 subsurfaces. They concluded that the importance of including detailed radiation 

modelling of the entire growth process was emphasized by the simulations which took 

into account the decreasing melt volume. 

Work by Srivastava et al [15] gave similar results as those given in [11] regarding the 

importance of the meniscus angle. Srivastava et al studied the liquid/solid interface based 

on a conductive model (conduction being the main mode of heat transfer in the melt and 

crystal). They used the Gebhart method for calculating radiative heat transfer in the 

puller. They divided the crystal top, crystal surface and melt surface to Ni elements, 

and assumed one surface for the crucible wall and one for the enclosing wall. They also 

assumed the crystal top to lose heat only to the enclosure wall by radiation. They studied 

the effects of several factors on the interface shape and pulling rate. They found that the 

effect of the meniscus shape on the interface shape was significant; its incorporation in 

the solution resulted in an increased concavity of the interface (concavity on the crystal 

side). The concavity was caused by the reduction in the axial heat transfer from the melt 

to the interface. 

Motakef and Witt [16] studied the effect of liquid encapsulation on the thermal stresses 

induced in the crystal. They found that stresses are strongly effected by the thermal 

transparency of the encapsulant. 

Derby and Brown [17] used a conduction dominated heat transfer model to form a 

simulation of the LEC crystal growth. They considered the extreme cases where the 

encapsulant was treated as either opaque or transparent. However, neither side of that 

treatment represented the actual case, since B2Oz was neither opaque nor fully transpar

ent to the energy transferred from the melt. They found that in the case of a transparent 
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encapsulant the direction of heat transfer in the encapsulant was horizontal (radially in

ward) from the wall to the crystal, while in the opaque case it was vertical - from the melt 

to the ambient (vertical isotherms versus horizontal isotherms). The melt/solid interface 

shape changed from concave into the crystal for a transparent layer to fully convex from 

the crystal for an opaque layer. The results of their work indicated that the optical prop

erties of boron trioxide are of great importance in determining the amount of energy that 

was transmitted from its surface. However, these optical properties were not determind 

in the temperature range of interest until recently and only by one source. It is worth 

mentioning here that even though B2O3 is transparent to radiation in the visible region, 

in the temperature range of interest here, only 1 % of the energy emitted lies within the 

visible region — assuming blackbody radiation at the GaAs melting temperature. 

Hicks [18] studied the fluid motion in the encapsulant assuming a temperature depen

dent viscosity and constant thermal conductivity. He introduced the Steffan-Boltzman 

radiation condition at the encapsulant/ambient interface and assumed a temperature 

distribution on the crystal-encapsulant, crucible-encapsulant and melt-encapsulant in

terface. He concluded from his results that the flow was predominantly in the azimuthal 

direction — caused by crystal and crucible rotation — while the flow in the meridional 

direction was negligible. He also concluded that heat flow was upward and conduction 

predominated convection in the encapsulant and thus the convective effects could be 

negelected. The latter result contradicted what Jordan [19] suggested that heat transfer 

between the crystal and encapsulant was strongly influenced by convective heat transfer 

within the encapsulant. 

Thomas et al [20] extended their thermal capillary model to include a low-pressure 

LEC system for growth of GaAs in an axial magnetic field that was strong enough that 

convective heat transport became unimportant. They assumed the encapsulant layer to 

be semitransparent using the data obtained from Ostrogorsky et al [21] to determine 
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that condition. (Semitransparent means that the layer is transparent to radiation be

low a certain wavelength and opaque to radiation above that wavelength.) They also 

assumed the crystal, crucible, melt and surrounding surfaces to be diffuse gray surfaces 

for radiative heat transfer calculations. They considered the surrounding surfaces to be 

at a constant temperature — one surface only. They used Gebhart's method for diffuse 

gray surfaces to calculate the radiative heat exchange between the surfaces. They found 

that the crystal shape predicted by assuming a semitransparent encapsulant, different 

emissivities for the melt, crystal and encapsulated crystal, and an enhanced encapsulant 

conductivity was the closest to that produced experimentally. 

Schvezov et al [22] calculated the temperature distribution in the crystal using a finite 

element model of the heat flow in the LEC growth system. They compared their results 

with an analytical solution of a simplified similar problem [23] and also with experi

mental results obtained from [24]. They found good agreement between their numerical 

and experimental results with the numerical results underpredicting the temperature 

distribution. They also compared the crystal axial temperature gradient and found the 

measured gradients to be significantly lower than those calculated near the interface, and 

above the calculated values away from the interface. 

Sabhapathy and Salcudean [25] studied numerically the effects of melt height and 

crystal radius on the melt natural convection in LEC growth of GaAs. They also analysed 

the effect of top and bottom crucible heating on the isotherms. They accounted for top 

heating by increasing the ambient temperature to which the system is exposed. They 

used a simplified radiation model in which all surfaces radiate to the same ambient 

temperature. They investigated the effect of melt height and crystal radius on the critical 

crucible temperature Tc(above which the crystal starts melting and below which the 

melt starts freezing at the melt-encapsulant interface). They concluded that by a proper 

combination of top and bottom heating, the crucible wall temperature could be lowered 
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and nearly flat isotherms at the crystal-melt interface could be obtained. 

Salcudean et al [26] studied free and forced convection in GaAs melt during the LEC 

crystal growth. They studied free convection due to melt heating at the crucible wall 

and forced convection due to crystal and crucible rotation. They found the isotherms in 

the forced convection case to be nearly equally spaced concluding that conduction dom

inates forced convection (maximum melt velocity in the vertical plane was O.OOAm/sec). 

However for the free convection case, the isotherms were concentrated near the wall and 

near the crystal where convective effects were the strongest. For the case of combined 

forced and free convection, they found the flow to be significantly different from that of 

the free or forced alone. They concluded that the flow was multicellular with some cells 

rotating faster than the crucible, and that the flow and temperature fields in the melt 

beneath the crystal were oscillatory. 

Sabhapathy and Salcudean [27] studied numerically fluid flow and heat transfer in 

the melt and encapsulant of GaAs LEC crystal puller. They assumed the encapsulant to 

be semitransparent to radiation. They also assumed the melt, crystal and encapsulant 

to be radiating to the same ambient temperature. Thus they used a simplified radiation 

model. They concluded for the crystal and crucible dimensions they used that the flow 

in the melt (when natural and forced convection were included) was often multicellular 

and effects the temperature field significantly. The melt and the encapsulant were much 

cooler than in the pure conduction case for the same heat input. They also reported that 

the isotherms in the melt close to the crystal-melt interface were nearly flat when the 

crystal rotated faster than the crucible. They stated that the flow in the encapsulant 

was similar to a couette flow between two rotating concentric cylinders, and that the 

crystal axial temperature gradient increased strongly with a decrease in the ambient 

temperature. 
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2.4 Scope and Objectives of the Present Work 

It is clear from the literature survey that the radiative exchange during GaAs crystal 

pulling is an important factor that must be included when modelling the process. How

ever, the assumptions and simplifications used by the authors influenced their results. 

The treatment of the encapsulant layer is one area that introduces errors. Another is the 

assumption that all surfaces radiate to an ambient at a constant temperature. 

The main objectives of the present work can be listed as follows: 

• To calculate the radiative exchange including all surfaces. 

• To obtain the best representative values of the material thermophysical properties. 

• To evaluate the importance of including radiative exchange of all surfaces versus 

replacing some of the surfaces by one isothermal surface. 

• To include the radiative model in the programme that calculates convection and 

conduction in the various elements of the crystal puller. 

• To evaluate the difference between the simplified and detailed radiative models in 

the crystal pulling modelling. 

In order to achieve those objectives, the radiative view factors which are needed for 

calculating the Gebhart factors first and heat transfer second, must be calculated. The 

Gebhart method for calculating heat transfer is a detailed one which includes the effect 

of multiple reflections in the calculation of heat transfer. A computer code is developed 

by the author to calculate all the required variables. 

The programme that models fluid flow and heat transfer in the melt and encapsulant 

and heat transfer in the crystal has been developed by Salcudean and Sabhapathy [25, 

26, 27]. The programme solves the mass, momentum and energy equations using a 
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finite-difference control-volume method. The method i6 described fully in the text. The 

author's code is included with Salcudean and Sabhapathy's programme and a comparison 

between the velocity and temperature fields obtained using the simplified radiative model 

and the detailed Gebhart model is presented. 



Chapter 3 

Radiative Heat Exchange in L E C GaAs Crystal Pullers 

3.1 Introduction 

The position and the shape of the crystal/melt interface during the crystal pulling process 

and the temperature distribution in the crystal are important factors determining the 

crystal quality. Also, adverse thermal gradients in the melt may result in solid/liquid 

interface instabilities or in excessive thermal stresses leading to a poor quality crystal. 

Therefore, the melt temperature profile, which is coupled with the flow field due to the 

interaction of natural and forced convection and thermocapillary flow, is an important 

element in the crystal growth. The convection in the melt is also affected by radiation 

from its surface. 

The main objective of this part of the thesis is to determine qualitatively and quan

titatively the radiative heat transfer in the crystal puller. Thus, system geometry and 

radiative properties are of great importance. 

3.2 Crystal Puller Geometry Assumptions 

The real system will be simplified for the purpose of the present study. However, the 

simplifications made will be such that the results can still be representative of the original 

system. The following assumptions are made: 

1. The seed rod and the quartz crystal are not included as part of the system since 

their surface areas are small compared to the middle cylinder area to which they 

16 
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will mostly radiate. The seed rod - and quartz crystal - middle cylinder radii ratios 

are 1:12 and 1:6, respectively. 

2. All surfaces are assumed to be diffuse gray ( emissivity is equal to the absorptivity, 

e = a, and the reflectivity p = 1.0 — a = 1.0 — e). A diffuse gray surface absorbs a 

fixed fraction of incident radiation from any direction and at any wave length. It 

emits radiation that is a fixed fraction of blackbody radiation for all directions and 

wavelengths. 

3. The melt, encapsulant and crystal surfaces are assumed to be flat. This assumption 

is acceptable when calculating radiative view factors and radiative heat transfer. 

4. The crucible and crystal are assumed to be cylindrical in shape of radii Rc and R,, 

respectively. 

3.3 Mathematical Modelling 

3.3.1 Configuration Factor Calculation 

The configuration factor is defined as the fraction of the radiation leaving one surface 

that reaches another surface. The calculations of radiative heat transfer in any system 

require evaluating the configuration factors of all the system surfaces. In the case of a 

GaAs crystal puller, the system is composed of the following surfaces: 

1. Melt (m). 

2. Encapsulant (e). 

3. Crucible wall (c). 

4. Crystal wall (s). 
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5. Middle cylinder wall (mew). 

6. Middle cylinder lower annulus (mcla). 

7. Crucible outer wall (co). 

8. Crystal top (st). 

9. Middle cylinder top annulus (meta). 

10. Top cylinder wall (tew). 

11. Top cylinder top (tct). 

Surfaces 1-8 will have to be divided into elements each at a uniform temperature for the 

purpose of configuration factor and later heat transfer calculations. The reason for that 

is the requirement that configuration factors be calculated between surfaces of uniform 

temperatures. Since it is desirable to simplify the system as much as possible without 

losing the heat transfer characteristics of the actual crystal puller, a comparison will be 

made between the heat transfer calculations obtained before and after simplifying the 

enclosure of the growth chamber (surfaces 5, 6, 9, 10 and 11) down to one surface. 

The equations used for calculating the configuration factors between all surfaces are 

given in appendix A. The reciprocity relationship is UBed for surfaces that are not related 

by direct equations. 

3.3.2 Description of the Analysed Cases 

The following section describes the cases that are considered in the full chamber and 

simplified chamber configurations : 

• System consisting of the melt, encapsulant and upper chamber. Configuration 

factors and heat transfer from the melt surface first and from the encapsulant 
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surface second are calculated . The reason for anlysing this case is to determine 

the radiative heat transfer that is taking place in the system during the seeding 

process which is a very crucial step of the crystal growth process. If too much 

heat is applied then the seed will melt, while not enough heat will cause the melt 

to freeze on the seed at a fast rate without allowing for good diameter control. 

Figure 3.3 shows a schematic of the full chamber including the elemental division 

of the surfaces, while figure 3.4 (a) shows the simplified chamber system. 

• System consisting of the crystal growing at the rate of lcm/hr past the encapsulant 

top taking into account the dropping melt level but without allowing the crucible 

to protrude into the upper chamber. All other surfaces included are as in the 

previous case. For this case, the crystal is growing at the indicated rate and thus 

the configuration factors are calculated for crystal height of 3cm, 4cm, 5cm... until 

the crystal height reaches the crucible edge. Since this growth process is a batch 

process, the melt height decreases thus exposing more of the crucible wall. The 

number of surfaces for this case is increased from the previous case by an amount 

equal to the number of elements on the crystal wall and crystal top. Figure 3.5 

shows a schematic of the system and figure 3.4 (b) shows the simplified system. 

• System consisting of melt, encapsulant, crystal and upper chamber with crystal 

extending above the crucible edge and the crucible protruding through the upper 

chamber. The number of surfaces here is increased from the previous case by 

the number of the elements on the outer surface of the crucible wall. The crucible 

protrudes through the upper chamber so that the centre of the heating goes through 

the centre of the melt. Figure 3.6 shows a schematic of the surfaces and figure 3.4 

(c) shows the simplified chamber. 
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Figure 3.3: Schematic showing the system when there is no crystal (case-I). 
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Figure 3.4: Schematic showing the simplified chamber system: (a)case-I, (b)case-II and 
(c)case-III. 
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Figure 3.5: Schematic showing the surfaces under consideration for crystal height any
where between the encapsulant top and the crucible edge (case-II). 
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The fictitious surfaces 'a', 'b' and'd' shown in figures 3.3 to 3.6 are useful in evaluating 

the configuration factors from some surfaces to others. A description of configuration 

factor calculations for some surfaces is given in appendix A. The summation of the 

configuration factors from each surface to all other surfaces must be equal to one. Any 

deviation from one represents an error. Appendix D gives the results of configuration 

factor calculations for the simplified system described above. 

3.4 Heat Transfer Model 

The Gebhart method of determining radiative exchange between surfaces of an enlosure 

is used here. The method can be used whether heat fluxes or temperature distributions 

are specified. The general form of the heat equation from [43] obtained by a heat balance 

on surface k is : 

Qk = AfcCfccrT/ - X) A&aTfGjk (3.1) 
i=i 

where Gjk is the Gebhart factor which is denned as the fraction of the emission from 

surface Aj that reaches A/, and is absorbed. This includes all the paths for reaching Ak, 

that is, the direct path, paths by means of one reflection, and paths by means of multiple 

reflections. In equation form, Gjk is given by: 

Gjk = Fj-k^k + Fj-ipiG\-k + Fj-2p2G2-k 

+ + Fj-kpkGk-k + •••• + Fj-NpNGN-k (3.2) 

Appendix B gives the derivation of the Gebhart factor equations for the system surfaces. 

It also gives the system of equations in matrix form and the method of solution of the 
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matrices forming the problem. The flow chart of the programme developed to solve the 

matrices and calculate the radiative heat transfer is given in appendix C. 

The net radiation method which was devised by Hottel [40] and later developed by 

Poljak [41, 42] and the Gebhart method are all equivalent and give the same results. 

Gebhart's method was chosen in this thesis. The configuration factor calculations were 

verified by ascertaining that the summation of those factors for each elemental surface is 

equal to 1. 

3.4.1 Diffuse-Gray Surfaces 

This study will assume all surfaces to be diffuse-gray. According to [43], diffuse signifies 

that the emissivity and absorptivity do not depend on direction, and gray signifies that 

the spectral emissivity and spectral absorptivity do not depend on wave length. Thus, a 

diffuse-gray surface is one which absorbs a fixed fraction of the incident radiation from 

any direction and at any wavelength, and it emits a fixed fraction of blackbody radiation 

for all directions and wavelengths. This assumption is in-line with the data available for 

the emissivity of the surfaces, and until more data is available it will have to be used. 

As will be found in the section on material thermophysical properties, the data given is 

of the total normal emissivity of the surfaces as a function of surface temperature. 

3.4.2 Encapsulant Layer Semitransparency 

The absorption of the B2O3 encapsulant layer is very important for the determination of 

radiative heat transfer in the system. Only one source of experimental data is available 

(Ostrogorsky et al [21].) Tables 3.1 and 3.2 give the absorbance and absorption coefficient 

of B2O3 for three layer thicknesses : 1.0cm, 0.4cm and 0.2cm. The absorbance in table 3.1 

is obtained from figure 10 of [21] — shown here in figure 3.7. While the absorption 

coefficient given in table 3.2 is calculated using equation 3.3. Ostrogorsky et al state 
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that the indicated layer thicknesses are approximate because they were computed from 

the removal of weighed quantities of B2O3. They also state that the non-planarity of the 

melt surfaces represents another uncertainty. Also, the loss of radiation intensity due to 

scattering of the radiation at the concave melt surface is increased by the long optical 

path between the sample and detector. Therefore, the uncertainty in this data should be 

taken into account when choosing a cutoff wavelength for the encapsulant (above which 

the encapsulant is opaque and below which it is transparent). 

The absorption coefficient a is calculated by substituting the values of L and A in 

equation-4 of the same reference (repeated here for convenience), 

ABIO, = 0.434ai (3.3) 

where A is the absorbance, a is the absorption coefficient and L is the layer thickness. 

Also, the optical transmittance r is given by : 

T = m = e z p ( _ a a j ) (3-4) 

where a is as defined earlier and x is a position along the path that the radiation is 

travelling. 

An average thickness of the encapsulant layer during the growth of GaAs crystals 

is about 2-cm. However, the data that is given is for a layer that is 1cm thick or 

less. Therefore, extrapolation from the available data is required (another factor of 

uncertainty). The transmittance at A = 2.0 and 2.5fim is calculated using equation 3.4. 

The results are given in table 3.3. It is clear that as the layer thickness increases, r 

decreases. Also, the values of r are lower for A = 2.5fim than they are for A = 2.0fim. 

Thus indicating that for layers thicker than 1cm, and for A greater than 2.5 fim, the 

encapsulant is essentially opaque. 

Ostrogorsky et al concluded from their data the following: 
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Figure 3.7: Absorbance spectra of B203 at 1250°C for L=0.2cm (1), L=0.4cm (2), and 
L=1.0cm (3). From Ostrogorsky et al. 

Table 3.1: B2O3 absorbance for three layer thicknesses obtained from figure-3.7. 

Wave Length 
A(/zm) 

Absorbance 'A' Wave Length 
A(/zm) L = 1.0cm L = 0.4cm L = 0.2cm 

2.0 0.081 0.032 0.00 
2.1 0.10 0.036 0.00 
2.2 0.14 0.064 0.00 
2.3 0.23 0.097 0.00 
2.4 0.48 0.19 0.032 
2.5 2.00 0.71 0.29 
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Table 3.2: The absorption coefficient of B2O3 for three different layer thicknesses. 

Wave Length 
X(fim) 

Absorption Coefficient ' a ' Wave Length 
X(fim) L = 1.0cm L = 0.4cm L = 0.2cm 

2.0 0.19 0.19 0.00 
2.1 0.24 0.20 0.00 
2.2 0.34 0.37 0.00 
2.3 0.52 0.56 0.00 
2.4 1.12 1.12 0.37 
2.5 4.61 4.09 3.34 

• B2O3 is transparent for A < 2pm. 

• B2O3 is either transparent or opaque depending on the layer thickness for 

1.9pm < A < 2.8/xm. 

• B2O3 is opaque for A > 2.8um. 

Since only one source of data is available, and the source describes many areas of uncer

tainty, it seems impractical and unnecessary to divide the wave-spectrum to more than 

two regions, thus the decision to have one cutoff wavelength. For this work, the cutoff 

wavelength will be chosen as 2.0 pm. However, calculations using a cutoff wave length 

of 2.5 pm will be done for comparison. 

The wavelength spectrum is then divided into two regions in order to consider the 

absorption property of the encapsulant. The first region is below 2pm where radiative 

exchange with the melt surface is considered. The second region is above 2pm where 

radiative exchange with the encapsulant surface is considered. Under that assumption, 

the radiative heat flux for any surface segment k will be given by: 

Qk = Akekf'k<rT} - £ A ^ c T J G ^ ^ for A < 2 (3.5) 
i=i 

Qk = Akek(l - fk)oT} - £ A i C j ( l - f^T}G^ue for A > 2 (3.6) 
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where At, is the surface area, e* is the emissivity of the surface, Gjk is the Gebhart factor 

and f'k is the fraction of energy emitted at 7* below 2p.m. 

The heat transfer from each surface is summed up and an effective ambient temper

ature can be calculated as follows : 

ft- = ( T T E Ajejf'jT}G%an^r'nt + f; Ajej(l - f'j)T}G%>ny/A (3-7) 

This effective temperature can be compared to a constant ambient temperature that the 

system would be radiating to if a simplified radiative model is used (Stefan's model). It 

is also used to produce the correct radiative heat flux from the surface when applying the 

radiative boundary condition during a complete analysis of heat transfer in the system 

(including conduction in the encapsulant and crystal, and convection in the melt and 

surrounding gas). 

3.4.3 Materials' Thermophysical Properties 

The thermophysical properties of the semiconductor GaAs, the encapsulant B2O3, the 

surrounding gas Ar, and the other chamber surfaces that form the crystal puller are 

important factors when calculating the fluid flow and heat tranfer in the puller during 

the crystal growth process. Jordan [19, 23, 32] presents detailed studies of the properties 

of GaAs and B2O3. He also gives the convective heat transfer coefficient between the 

encapsulant and crystal, and between the high pressure gas, Ar, and the encapsulant and 

crystal. The radiative heat transfer coefficient from the GaAs surface is also included. 

All equations that describe properties that are available from Jordan are included here 

for the sake of completeness. The equations that describe the heat transfer coefficients 

are also included. 

The temperature dependent equations of GaAs density (p'), specific heat (Cp), con

ductivity (k) and thermal expansion coefficient (B) are listed in table 3.4. The radiative 
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heat transfer coefficient from the melt and crystal surfaces is also given in the table. 

While the temperature dependent density and viscosity of the encapsulant B2O3 which 

are available from [30] and temperature dependent conductivity which is obtained from 

[31] are tabulated in 3.5. The convective heat transfer coefficient between the encapsulant 

and the crystal is also given in the table. 

Table 3.6 gives the properties of high pressure Ar. The data is obtained from [33]. 

M is the molecular weight of argon, and R is the universal gas constant, p represents 

the gas pressure in atmospheres; it is introduced in the convective heat transfer equation 

as a correction factor to take into account the high gas pressure during the Czochralski 

crystal growth. 

Properties Used by Different Modellers 

Table 3.8 presents the physical properties of GaAs (melt and solid), the encapsulant 

and the chamber surfaces as used by various authors. Some of the references chose to 

use constant properties while others chose temperature dependent properties. Many 

references - all not listed in the table, but mentioned in the literature survey - used the 

values given by Jordan in [19, 23]. It is clear from the table that there is a wide range 

of values used for the emissivity of GaAs liquid and solid (0.3, 0.5, 0.55, 0.7 and 0.75). 

The values used for the emissivity of the encapsulant layer also varied from one source 

to another (0, 0.65, 0.75 and 1). 

Surface Emissivities 

Other sources [33, 34, 35] were researched for material properties especially for the 

emissivity of the surfaces. The emissivity is very important when calculating radiative 

heat transfer. Therefore, it is important to use the best representative values. The 
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Table 3.3: Transmittance for wave lengths of 2 and 2.5 pm for each layer thickness L = 
0.2, 0.4 and 1.0cm. 

X(pm) Transmittance V 
L=0.2cm L=0.4cm L=1.0cm 

2.0 1.00 0.93 0.83 
2.5 0.51 0.20 0.01 

Table 3.4: Temperature dependent properties of GaAs. 

PROPERTY EQUATION 
Density 
p'(gm/cms) 

5.32 - 9.91 * 10" 5 r 

Specific Heat 
Cp(J/gm.K) 

0.302 + 8.1 *10" BT 

Conductivity 
k{W/m.K) 

20800T-1-09 

Therm. Exp. Coef 
0{K-*) 

4.68 * 10"6 + 3.82 * 10" 9r 

h-radiation 

(cm-1) 

2 . 2 7 * 1 0 - 1 1 , rr3 
k etIGaA» 

Table 3.5: Temperature dependent properties of the encapsulant B2O3. 

PROPERTY EQUATION 
Density 
p'(gm/cm3) 

2.705 - 2.814 * 10"3T + 2.677 * lO'^T2 

-1.204 * 10"9T3 + 2.102 * i o - 1 3 r 4 

Them. Exp. Coef. 1 8£ 
p> BT 

Dyn. Viscosity 
p(poise) 

logioP = -4.343 + 17040T-1 - 1.696 * 10 7T- 2 

+7.081 * io 9r~ 3 

Conductivity 
k(W/cm.K) 

2.37 *10"3 + 1.1 * i o - 5 r 

Specific Heat 
Cp(J/gm.K) 

1.83 

hconvection 

(cm-1) 
( £ Z ^ ) I / 4 0 . 5 4 8 ^ ( 5 ( - P ' | § ; ^ ) B 3 O 3 ) 1 / 4 
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Table 3.6: Thermophysical properties of high pressure argon as obtained from 
Touloukian. 

PROPERTY EQUATION 
Density 
p'(gm/cm3) 

PATKRTA*) 

Therm. Exp. coef. l/TAr 

Dyn. Viscosity 
p,(poise) 

see table 3.7 

Conductivity 
k(W/cm.K) 

see table 3.7 

Specific Heat 
Cp{J/gm.K) 

0.5204 

hconvection 
(cm-1) 

( 1 ^ ) 1 / 4 » o . 5 4 8 ^ ) 1 / a ( ^ ( & ) * ) 1 / 4 

Table 3.7: Viscosity and conductivity of .Ar ignoring pressure dependence (from 
Touloukian). 

Temp 
(K) (N.sec/m2) 

k 
(W/cm.K) 

Temp 
(K) (N.sec/m2) 

k 
(W/cm.K) 

600 38.2 0.301 * 10"3 760 44.9 0.356 * 10"3 

620 39.1 0.308 780 45.7 0.362 
640 40.0 0.315 800 46.4 0.369 
660 40.9 0.322 820 47.2 0.375 
680 41.7 0.329 840 47.9 0.381 
700 42.5 0.336 860 48.6 0.387 
720 43.3 0.343 . 880 49.4 0.393 
740 44.1 0.349 900 50.1 0.398 
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Table 3.8: Materials' properties as reported in the references cited. 

AUTHOR SURFACE 
PROPERTY 

AUTHOR SURFACE P' 
(gm/cm3) 

fi k 
(W/m.K) 

Cr 
(J/g.k) 

e 

Kakimoto B203 1.51 3 * 10"B 2.0 1.836 N/A 
Hicks ° B203 1.52 N/A 1.8 1.830 0.75 
Motakef 
& Witt c 

B203 N/A N/A see 6 N/A N/A Motakef 
& Witt c GaAs N/A see d see e N/A 0.5 
Derby 
& 
Brown 

GaASmeit 5.71 N/A 14 0.42 0.55 Derby 
& 
Brown 

GaAs,oiid 5.17 — 7 0.42 0.55 
Derby 
& 
Brown B203 1.51 N/A 2 N/A 0 & 1 

Derby 
& 
Brown 

Graphite 1.6 — 0.6 2.1 0.8 

Derby 
& 
Brown 

Si02liner 2.2 — 0.06 1.3 0.35 
Crochet 
et al 

GaAsmeit 5.63 1.89 *10"4 15.15 0.507 N/A Crochet 
et al GaAstoud 5.71 — 15.15 0.507 N/A 
Meduoye 
et al / 

GaAs N/A 1 * 10"B 7.74 N/A N/A 

Thomas 
et al 

GaAsmeit 5.71 N/A 14 0.42 0.3 Thomas 
et al GaAsnoiij 5.17 — 7 0.42 0.55 & 0.7 
Thomas 
et al 

B203 1.51 N/A 2 & 8 N/A N/A, A < 2 
0.65, A > 2 

Dupret 
et al 

Steel N/A — 33 N/A 0.6 Dupret 
et al Graphite N/A — 41.9 N/A 0.81 
Dupret 
et al 

Gr. Felt N/A — 2.5 N/A N/A 
Sabhapathy 
k 
Salcudean 

GaAsmeit 5.71 1.87 * 10"4 17.8 0.434 0.75 Sabhapathy 
k 
Salcudean 

GaAs goud 5.2 — 7 0.42 0.75 
Sabhapathy 
k 
Salcudean B203 1.5 5 * i<r6 1.85 1.83 0.75 

aTcrucible = 1530Ji:,Tomi = 1200JT 
'2.37 * lO" 1 + 1.1* 10- 3 T 
eTAr = 700.R-, T„ o J , = 400*, (Bod#). = 0.5, (Rad#)B,0, = 1.0 
• k ^ S * 10"6 + 3.82 * 10~ 9T 
J208 + T - 1 - 0 9 

* used temperature dependent hconvection that is available from Jordan. 
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emissivity of the melt (liquid GaAs ), the crystal (solid GaAs ), the crucible wall (PBN 

pyrolytic boron nitride), and the chamber walls (stainless steel) are all required. 

Only one source [32] gives data for the emittance of n-type GaAs as a function of 

temperature and the product C<jt, where d is the doping level or impurity concentration 

in c m - 3 and tis the crystal diameter in cm. (see figure 3.8). The data given in figure 3.8 

was obtained by numerical integration of the spectral emittance between the limits 0.5 

and 25 pm in 0.1 pm intervals. It is clear from the figure that the total emittance increases 

as the product dt increases. For the temperature range of interest during crystal growth 

(1000-1500) K, and for a crystal diameter of 8cm and doping level of l*1016cm~3, the total 

emittance et ranges from (0.61-0.66). As the impurity concentration increases for the 

same temperature range, the total emittance varies from (0.65-0.69). With these results 

for the crystal diameter and doping level chosen, it is not necessary to use temperature 

dependent emissivity for GaAsloud. Thus, the calculations presented in this work use 

et = 0.65 for GaAstoud. 

Lemons and Bosch [38] state in their work that the emissivity of molten silicon is 

substantially lower when compared to that of solid silicon. The emissivity of the GaAs 

melt has not been evaluated experimentally but is expected to be different than that 

of the GaAs solid - in line with silicon. Thomas et al [20] used a value of 0.3 for the 

emissivity of molten GaAs. With lack of better information, the same value will be used 

here. 

For p-type GaAs, Braunstein and Kane [39] determined the absorption coefficient 

between 2 and 25 pm. The result of their work states that the absorption coefficient 

increases with wavelength and temperature. Because of the high absorption coefficient, 

the total emittance is related only to the reflectivity. Therefore, the curve for G^t > 

5 * 1017 serves as a reasonable estimate of ej for p-type GaAs. 

Reference [33] gives data for the normal spectral reflectance and transmittance of 
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Figure 3.8: The emissivity of GaAs as function of temperature and doping density (from 
Jordan). 
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GaAs. However, the data is for room temperature only, which means that it is of no 

use for calculations of the crystal growth process. All other books on the thermophysical 

properties of materials surveyed [34, 35] do not provide any information on the emissivity 

of GaAs. 

The emissivity of the encapsulant B20z is not available in any of the references 

researched. Since B20z is basically glass, the emissivity of glass at high temperatures is 

obtained from the Handbook of Chemistry and Physics and from [33]. Both references 

give a value of 0.7 for the emissivity of high temperature glass. Therefore, this study will 

use 0.7 as a representative value of the emissivity of the encapsulant. 

The emittance of stainless steel is available from many sources. Touloukian et al [33] 

present an excellent collection of data for oxidized, polished and cleaned stainless steels 

for a wide range of temperature (320 - 1300)K. The graphs and data are available in 

appendix E. For the crystal puller chamber, cleaned stainless steel is assumed in the 

temperature range (450 - 800)K for which the normal total emittance range is (0.2 -

0.42). 

3.5 Temperature Distribution of the Surfaces 

The temperature distributions that are used to calcualte the heat transfer from each 

surface are based on results obtained from numerical and experimental results [12, 22, 

26, 27, 25]. The values obtained are analysed to produce a temperature gradient across 

the surface which is used to evaluate the temperature of each element that the surface is 

divided to. The temperature equations used are given in table 3.9. The table gives also 

the temperature gradient across each surface. The gradient is the slope of the temperature 

equation. 

0 
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Table 3.9: Temperature distribution of the surfaces obtained from numerical solutions 
for cases I, II and III. 

SURFACE TEMPERATURE DISTRIBUTION (K) 
(radii and heights in m) 

TEMPERATURE 
GRADIENT (K/cm) 

Melt (I) r m ( t ) = 1511 + 656 * (rm(i) + r m ( t - l))/2 7 

Melt (II & III) Tm(i) = 1511 + ' « W - r - W 
*(rm{i) + rm(i-l))/2' _ 

Encapsulant (I) Te(i) = 1320 + 2625 * (r.(») + r e ( t - l))/2 26 

Encapsulant 
(II and III) 

r.(*) = Tc(e) + 2ilfi=2*l 
* ( r e ( » ) + re(i - l))/2 ' 

Crucible 
(I k II) 

re(i) = 1565 - 1312 * (h'e(i) + h'c(i - l))/2 13 

Crucible 
(III) 

Tc[i) = 1530 - 2500 * (h'c(i) + h'c(i - l))/2 25 

Mid Cylinder 
Wall (MCW) 

Tmc(i) = 665 - 671 * (h'mc(i) + h'mc(i - l))/2 7 

MCLA Tia{i) = 1465 - 5249 * (r,a(») + rla{i - l))/2 52 

Crystal T,{i) = 1511 - 3445 * {h',{i) + h't(i - l))/2 34 

Curcible Outer 
Wall 

Teo(i) = 1565 - 2500* 
((K0(i)+Ko(i-W2 + (H'c-H'co)) 

25 

Crystal top Ttt = T.(ns) - 787 * (r,t(i) + r,t{i - l))/2 8 

MCTA Tmcta = 415 0 

TCW Ttcw = 315 0 

TCT Ttct = 315 0 
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3.6 Analysis of Results 

3.6.1 Five Surfaces Enclosure 

The results that are given here are obtained using crystal puller dimensions and melt 

and surface properties that are given in table 3.10. These results are dependent on the 

temperature distributions which are the best possible estimates. However, some general 

conclusions can be made regarding the assumptions that are used when analysing global 

heat transfer in the system. The results of the heat transfer calculations are given in 

tables 3.11 through 3.15. The calculated effective ambient temperatures for each surface 

element are plotted versus element number in figures 3.9 to 3.11. The analysis of these 

results is given next for each case. 

3.6.2 Analysis of the results for case-I 

Table 3.11 gives the heat transfer from each surface to other surfaces in the enclosure. 

It also gives the total heat absorbed and emitted and the net heat transferred from each 

surface. The net exchanged in the system is 4.2kW. The melt, crucible, encapsulant and 

the middle cylinder lower annulus lose heat, while the middle cylinder wall and the other 

three surfaces absorb the heat lost from the other surfaces. 

The following notes describe the exchange of each surface: 

• The melt loses heat mainly to the crucible wall and the middle cylinder wall. It 

absorbs heat from the crucible. 

• The crucible exchanges heat mainly with the encapsulant. It loses six times as 

much heat to the middle cylinder wall as it does to the melt. 

• The middle cylinder wall absorbs heat from the melt, encapsulant, lower annulus 

and its surface at the same order of magnitude. However, it absorbs heat from the 
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Table 3.10: Dimensions and surface properties of the crystal puller. 

DIMENSION 
or PROPERTY 

SURFACE DIMENSION 
or PROPERTY Melt Encap Crucible Crystal MCW MCLA,-TA Top Cyl 
Diameter 
(mm) 
(inch) — — 152.4 

6.0 
76.2 
3.0 

304.8 
12.0 

(DiyD0) 

(Dc,Dmc) 
152.4 
6.0 

Height 
(mm) 
(inch) 

48 
1.9 

20 
0.79 

90-130 
3.5-5.1 

0-203 
0-8.0 

372.5 
.14.67 

— 101.6 
4.0 

e 0.3 0.70 0.5 0.64 0.3 0.3 0.3 

Mass 
(Kg) 5.0 — — — — — — 
Density 
(Kg/m*) 5720 — — 5200 — — — 

Table 3.11: Heat transferred (in Watts) from surface i to surface j for case-I. 

SURFACE j SURFACE i SURFACE j 
Melt Crucible MCW MCLA Encap MCTA TCW TCT 

Melt 13 262 0 2 — 0 0 0 
Crucible 294 2232 17 33 1043 1 0 0 
MCW 144 1652 335 928 800 19 3 1 
MCLA 19 176 70 118 111 2 0 0 
Encapsulant — 1064 26 41 146 1 0 0 
MCTA 25 199 48 115 125 3 0 0 
TCW 12 99 26 74 61 1 3 1 
TCT 7 43 11 33 35 0 1 0 
Emitted (2) 514 5727 533 1344 2321 27 7 2 
Absorbed (1) 277 3620 3882 496 1278 515 277 130 
Net (2)-(l) 237 2107 -3349 848 1043 -488 -270 -127 
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crucible that is one order of magnitude higher than the other surfaces. 

• The lower annulus exchanges heat mainly with the middle cylinder wall. It also 

absorbs, through multiple reflections, heat generating from its surface. 

• The encapsulant radiates mainly to the crucible and the middle cylinder wall. It 

absorbs heat from the crucible and, through multiple reflections, from its surface. 

• The heat exchanged with the middle cylinder top annulus, top cylinder wall and 

top is one to three orders of magnitude less than that exchanged between the other 

surfaces. 

Figure 3.9 shows the effective ambient temperature of the surface elements versus the 

element number. The plot shows clearly that assuming one constant ambient temperature 

for all surfaces - or all elements of a surface - is a poor assumption. The jump in the 

crucible curve at node-4 is due to the exposure at that node to the encapsulant surface 

where a higher radiative exchange between the surfaces takes place. The jump in the 

middle cylinder wall curve is due to the higher exposure of node-2 to the melt and 

encapsulant than node-1. Eventhough the melt surface temperature is higher than the 

encapsulant surface temperature, its effective ambient temperature is lower since only the 

percentage of the heat radiated below 2pm reaches the melt from the crystal, crucible 

and other surfaces. The effective ambient temperature range for this case is (750-1350) 

K. 

3.6.3 Analysis of the results for case—II 

The results obtained for this case are calculated for a crystal height of 61-mm (2.4-in). 

The numerical values of the heat transfer between the surfaces are given in tables 3.12 

and 3.13. The net exchange for this case is 2.7kW. The melt, encapsulant, crucible, 
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Figure 3.9: Effective ambient temperature versus element number for case-I. 
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crystal and the middle cylinder lower annulus lose heat, while the middle cylinder wall 

and the other three surfaces absorb heat. The following notes describe the exchange 

of each surface. (The numbers between brackets represent the percentage of heat lost or 

gained by the surface.) 

• The melt exchanges heat mainly with the crucible and crystal walls (about 72% of 

total heat lost and 92% of total heat gained.) 

• The crucible wall exchanges heat with (loses to and absorbs from) the encapsulant, 

crystal, middle cylinder wall and itself. It loses heat to the middle cylinder wall. 

All quantities lost or absorbed are of the same order of magnitude, however, that 

exchanged with the melt and crystal top are 2 to 10 times lower. 

• The middle cylinder wall absorbs heat from the lower annulus (35%), crucible 

(22%), encapsulant (12%), crystal (6%), and from its surface(13%). 

• The middle cylinder lower annulus loses heat to the middle cylinder wall and top 

annulus. It absorbs heat from the middle cylinder wall and itself (through multiple 

reflections). The quantity that is lost to the middle cylinder wall is nine times 

higher than that lost or absorbed from the other surfaces. 

• The encapsulant exchanges heat with the crucible, crystal and it loses heat to the 

middle cylinder wall . The quantity of heat that is absorbed from the crucible is 

4-10 times higher than that absorbed or lost to the other surfaces. 

• The crystal loses heat to the crucible wall, the encapsulant, the middle cylinder 

wall. It absorbs heat from the crucible and the encapsulant. The amount of heat 

that is exchanged with the crucible wall is 4-6 times higher than that exchanged 

with the other surfaces. 
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Table 3.12: Heat transferred (in Watts) from surface i to surface j for case-II / i represents 
major surfaces. 

SURFACEj SURFACE i SURFACEj 
Melt Crucible MCW MCLA Encapsulant Crystal 

Melt 17 157 0 0 — 58 
Crucible 159 1204 12 23 527 710 
MCW 58 583 334 926 328 153 
MCLA 9 86 70 118 51 23 
Encapsulant — 960 13 18 127 266 
Crystal 82 952 4 8 252 154 
Crystal Top 1 40 8 14 8 6 
MCTA 4 39 47 115 23 10 
TCW 2 22 26 74 13 6 
TCT 1 10 11 33 6 3 
Emitted (2) 333 4054 525 1330 1333 1389 
Absorbed (1) 233 2662 2624 390 1391 1457 
Net (2)-(l) 100 1392 -2099 940 -59 -68 

Table 3.13: Heat transferred (in Watts) from surface i to surface j for case-II / i represents 
minor surfaces. 

SURFACE j SURFACE i SURFACE j 
Crystal Top MCTA TCW TCT 

Melt 1 0 0 0 
Crucible 26 0 0 0 
MCW 219 19 3 1 
MCLA 32 2 1 0 
Encapsulant 7 0 0 0 
Crystal 5 0 0 0 
Crystal top 6 0 0 0 
MCTA 32 3 0 0 
TCW 16 1 3 1 
TCT 9 0 1 0 
Emitted (2) 353 25 8 2 
Absorbed (1) 83 273 164 74 
Net (2)-(l) 270 -248 -156 -72 
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• The crystal top loses heat mainly to the middle cylinder wall (62% of total heat 

lost). 

• The quantities exchanged between the top cylinder wall and top and all other 

surfaces are 1-5 orders of magnitude less than those exchanged between the other 

surfaces. 

Figure 3.10 shows the effective ambient temperature versus the element number for 

the system surfaces. The jump in the crucible wall and crystal curves show the effect of 

higher heat gain due to location above the encapsulant layer. Element 4 on the crystal 

and crucible surfaces is the first one above the encapsulant top. The general shape of 

the melt and encapsulant curves is the same - as expected. However, the encapsulant 

curve is higher than the melt curve - also as expected. Figure 3.10 also shows a jump at 

element 2 on the middle cylinder wall curve which is due to exposure of that element to 

the crucible, crystal and encapsulant more than element 1. The range of the equivilent 

ambient temperature in this case is (650-1400) K. 

3.6.4 Analysis of the results for case-Ill 

Tables 3.14 and 3.15 give the heat transferred between all the surfaces. They also give 

the total heat absorbed and emitted and the net transferred from each surface. The net 

heat exchanged in this case is 3.9kW. The crucible, melt, crystal wall and top and middle 

cylinder lower annulus lose heat. While the encapsulant, middle cylinder wall and top 

annulus, the top cylinder wall and top absorb the heat lost by the other surfaces. The 

crystal height in this case is 20.3-cm (8.0-in). The following notes describe the exchange 

of each surface with the other surfaces. (The percentages in brackets represent percent 

of total heat that is lost or gained by the surface.) 
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Figure 3.10: Effective ambient temperature versus element number for case-II. 
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Table 3.14: Heat transferred (in Watts) from surface i to surface j for case-Ill / i repre
sents major surfaces. 

SURFACEj SURFACE i SURFACEj 
Melt Crucible MCW MCLA Encap Crystal Crucible OW 

Melt 15 136 2 0 — 65 0 
Crucible 184 1970 3 4 728 1827 10 
MCW 7 262 290 593 50 685 1460 
MCLA 1 42 58 82 6 87 486 
Encapsulant — 1078 1 1 133 395 2 
Crystal 94 2441 44 65 446 665 140 
Crucible OW 1 39 63 276 5 78 346 
Crystal Top 0 3 7 7 1 10 13 
MCTA 0 18 32 37 5 56 60 
TCW 0 19 18 50 3 28 51 
TCT 0 7 9 24 1 12 25 
Emitted (2) 304 6016 525 1140 1377 3908 2591 
Absorbed (1) 217 4718 3465 771 1610 3902 814 
Net (2)-(l) 87 1298 -2940 369 -233 • 6 1777 

Table 3.15: Heat transferred (in Watts) from surface i to surface j for case-Ill / i repre
sents minor surfaces. 

SURFACEj SURFACE i 
Crystal Top MCTA TCW TCT 

Melt 0 0 0 0 
Crucible 1 0 0 0 
MCW 99 16 2 1 
MCLA 6 2 0 0 
Encapsulant 0 0 0 0 
Crystal 6 1 0 0 
Crucible OW 5 1 0 0 
Crystal top 2 1 0 0 
MCTA 20 2 0 0 
TCW 10 1 3 1 
TCT 6 0 1 0 
Emitted (2) 155 24 6 2 
Absorbed (1) 44 230 184 87 
Net (2)-(l) 111 -206 -178 -85 
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The melt loses heat mainly to the crucible wall (61%) and the crystal (31%). It 

absorbs heat from the crucible wall (63%). 

The crucible loses heat to the encapsulant, the crystal and itself by an amount that 

is one order of magnitude higher than that to the melt or the middle cylinder wall. 

It absorbs heat from the crystal, the encapsulant and melt. The heat absorbed from 

the crystal is one order of magnitude higher than that absorbed from the melt. 

The middle cylinder wall radiates heat mainly to itself through multiple reflections 

(55%). It absorbes heat from the crucible (50%), the lower annulus and the crystal. 

The middle cylinder lower annulus radiates mainly to the middle cylinder wall 

(52%) and the crucible outer wall (24%). It absorbs heat from the crucible outer 

wall (63%). 

The encapsulant exchanges heat mainly with the crucible and the crystal (about 

85% of heat lost and 82% of heat gained). 

The crystal radiates to the crucible (46%), encapsulant, middle cylinder wall and 

itself - through multiple reflections (44% of total heat lost). It absorbs heat from 

the crucible mainly (63%) and also from the encapsulant. 

The outer wall of the crucible radiates heat mainly to the middle cylinder wall and 

the lower annulus (75% of total heat lost). It absorbs heat from the lower annulus 

(34%) and itself (43%) through multiple reflections. 

The heat exchanged with the crystal top, middle cylinder top annulus, top cylinder 

wall and top is one to three orders of magnitude less than that exchanged between 

the other surfaces. 
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Figure 3.11 shows the effective ambient temperature versus the element number for 

case-Ill. The jumps in the crystal curve at nodes 4 and 18 are due to the increased heat 

exchange with the crucible wall at node-4 and with the middle cylinder wall at node-18. 

The general shape of the crucible, melt and encapsulant curves is the same as in the 

previous cases. The temperature range for these surfaces is (650-1400)K in this case. 

3.6.5 One Surface Enclosure 

The middle cylinder wall, lower and top annuli, and the top cylinder wall and top are 

replaced by one surface that is referred to as the enclosure. Radiative heat transfer 

calculations are then performed for the three cases discussed earlier in order to compare 

the results of the full chamber and the simplified chamber. The numerical values of 

the heat transferred are given in tables 3.16 to 3.18. The plots of the effective ambient 

temperature versus the element number are given in figures 3.12 to 3.14. The following 

is a detailed analysis of each case. 

3.6.6 Analysis of Case-I 

Table 3.16 gives the heat transfer results for case-I. The net heat exchanged in the system 

is 2.6kW. The crucible, melt and encapsulant lose heat to the enclosure which is at 600K. 

The following notes describe the exchange of each surface: 

• The melt loses heat to the crucible wall and the enclosure at the same order of 

magnitude. It absorbs heat from the crucible wall while not absorbing anything 

from the enclosure. 

• The encapsulant exchanges heat with the crucible. It loses heat to the enclosure 

and absorbs heat originating from its surface through multiple reflections. 

• The crucible exchanges comprable quantities with all surfaces (including itself). 
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Figure 3.11: Effective ambient temperature versus element number for case-Ill. 
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• The enclosure being at a lower temperature absorbs heat from all other surfaces. 

Figure 3.12 shows the effective ambient temperature versus element number for this case. 

It is clear that the general shape of the graph is the same as that for the full chamber 

case. However, the numerical values are (3-8) % higher for the simplified case. 

3.6.7 Analysis of Case-II 

Table 3.17 gives the results of the radiative heat transfer calculations for a crystal height 

that is less than the crucible wall height (2.6-in). The net heat exchanged in this case is 

2.1kW. The crucible, melt, crystal and encapsulant lose heat to the enclosure which is 

at 600K. The following notes can also be obtained by further examination of the table : 

• The melt exchanges heat mainly with the crucible and crystal (about 67% of total 

heat lost and 90% of total heat gained). 

• The crucible wall loses heat to the encapsulant, enclosure and crystal wall, and 

absorbs heat from the encapsulant, crystal wall and itself. All those exchanges are 

of the same order of magnitude. 

• The encapsulant loses heat to the crucible (36%), enclosure (30%) and crystal wall 

(16%). It absorbs heat from the crucible wall (65%), the crystal (16%) and itself 

(14% - through multiple reflections). The exchange between the encapsulant and 

the other surfaces is one to two orders of magnitude lower. 

• The crystal wall exchanges heat with the crucible (48% of total heat lost and 64% 

of total heat gained), encapsulant (18% lost and 17% gained) and enclosure (18% 

lost and 11% gained). The exchange with the melt is 4-10 times lower than that 

with the crucible and encapsulant. 
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Table 3.16: Heat transferred (in Watts) from surface i to surface j for case-I with, one 
surface enclosure. 

SURFACE j SURFACE i SURFACE j 
Melt Crucible Encap Enclosure 

Melt 25 317 — 0 
Crucible 361 2870 1305 8 
Encapsulant — 1323 331 6 
Enclosure 145 1675 803 10 
Emitted (2) 531 6185 2439 24 
Absorbed (1) 342 4544 1660 2633 
Net (2)-(l) 189 1641 779 -2609 
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Figure 3.12: Effective ambient temperature versus element number for case-I / one 
surface enclosure. 
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• The crystal top loses heat to the enclosure (60%) and to the crucible wall, it absorbs 

heat from the crucible wall (47%) and the encapsulant (20%). The exchange with 

the other surfaces is 1-2 orders of magnitude lower. 

• The enclosure absorbs heat mainly from the crucible, encapsulant and crystal wall. 

It also absorbs heat from the melt and itself, however that exchange is 5-7 times 

lower. 

The effective ambient temperature versus element number is given in figure 3.13. The 

plot has the same general shape as that for the case of the full chamber. The temper

atures are about (2-7) % higher than those of the full chamber case. The differences 

are expected since the geometry of the two systems is different. However, since the per

centage difference range is low it can be accepted as a tradeoff to lower computing time. 

(The CPU time for this case is reduced by 63% from 628sec to 233sec). The temperature 

range here is (950-1450) K. 

3.6.8 Analysis of Case-Ill 

Table 3.18 gives the numerical results of the heat transfer between the surfaces for case— 

III. The net heat exchanged in the system is 1.6kW. The crucible, melt, encapsulant and 

crystal lose heat to the enclosure which is at 600K. The following is a brief description 

of the exchange of each surface seperately: 

• The melt loses heat to the crucible (46%) and crystal wall (35%). It absorbs heat 

from the crucible wall (60%) and crystal (31%). 

• The encapsulant loses heat to the crucible (39%), crystal wall (33%) and enclosure, 

while it absorbs heat mainly from the crucible (59%) and crystal (28%) walls . It 

also absorbs, through multiple reflections, heat generated from its surface. 
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Table 3.17: Heat transferred (in Watts) from surface i to surface j for case-II with one 
surface enclosure. 

SURFACE j SURFACE i SURFACE j 
Melt Crucible Encap Enclosure Crystal Wall Crystal Top 

Melt 21 169 — 0 58 5 
Crucible 174 1159 604 23 731 89 
Encapsulant — 1072 229 22 271 54 
Enclosure 93 978 495 56 277 327 
Crystal Wall 84 973 263 8 161 28 
Crystal Top 11 142 61 13 35 40 
Emitted (2) 383 4493 1652 122 1533 543 
Absorbed (1) 253 2780 1648 2226 1517 302 
Net (2)-(l) 130 1713 4 -2104 16 241 
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Figure 3.13: Effective ambient temperature versus element number for case-II / one 
surface enclosure. 
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• The crucible exchanges heat mainly with the encapsulant and crystal and itself. It 

also loses heat to the melt and enclosure that is 5-10 times lower than to the other 

surfaces. 

• The enclosure absorbs heat from the crucible, encapsulant and crystal wall — all 

of the same order of magnitude. 

• The crystal wall exchanges heat with the crucible (37% of total heat lost and 49% 

of total heat gained) and encapsulant (11% of lost and 15% of gained). It also 

loses heat to the enclosure (22%) and gains heat originating from its surface (28% 

- through multiple reflections). 

• The crystal top loses heat mainly to the enclosure (46%) and it absorbs heat from 

the crystal wall (49%) through multiple reflections. 

Figure 3.14 shows the effective ambient temperature versus the element number of each 

surface. The general shape of the curves is similar to the full chamber case. The temper

ature range is (900 - 1400) K. The effective ambient temperatures for this case are within 

one percent of those for case-Ill with five surfaces enclosure (except for the crystal top 

10 nodes where the differences are higher, 8%). That is explained by the fact that the 

melt, encapsulant, crystal and crucible walls exchange a higher percentage of heat with 

each other than with the other surfaces. Again, the differences for this case are accepted 

as a trade off to lower computing time ( CPU time is reduced by 63% from 704sec to 

263sec). 

3.7 Results of the simplified Case-Ill with Cutoff Wavelength 2.5 pm 

The results obtained using a transparent/opaque cutoff wave length A = 2.5pm instead 

of A = 2.0pm are given in table 3.19. The effective ambient temperature is plotted 
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Table 3.18: Heat transferred from surface i to surface j for case-Ill with one surface 
enclosure in Watts. 

SURFACE j SURFACE i SURFACE j 
Melt Crucible Encap Enclosure Crystal Wall Crystal Top 

Melt 18 122 — 0 64 0 
Crucible 178 1093 647 15 1463 15 
Encapsulant — 910 176 11 433 10 
Enclosure 49 437 252 27 848 75 
Crytal Wall 133 1754 546 58 1010 55 
Crystal Top 6 54 31 10 106 9 
Emitted (2) 384 4370 1652 121 3924 164 
Absorbed (1) 204 3411 1540 1688 3556 216 
Net (2)-(l) 180 959 112 -1567 368 -52 
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Figure 3.14: Effective ambient temperature versus element number for case-Ill / one 
surface enclosure. 
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versus element number in figure 3.15. It is clear that the effect of increasing the cutoff 

wavelength from 2pm to 2.5pm is the increase of the heat exchange with the melt surface 

and a decrease of exchange with the encapsulant surface. However, the exchange between 

the other surfaces did not change significantly (5-10 % difference only). Comparing 

figures 3.14 and 3.15 that show the effective ambient temperature, indicates that all the 

curves have the same general shape in both cases. However, the melt and encapsulant 

curves are closer in figure 3.15 than they are in figure 3.14 due to the increase (decrease) 

in the melt(encapsulant) heat transfer rate. 

The effective ambient temperature effects the fluid flow in the melt which also effects 

the liquid/solid interface. It is therefore important to obtain the correct cutoff wave 

length for better modelling of the fluid flow and heat transfer in the crystal puller. 

3.8 Comparison of the Results of the Full and Simplified Chambers 

A comparison between the values of the heat transfer and equivilent ambient temper

atures that are obtained for both chambers is done in order to decide the importance 

of including the full chamber. The reported results show that the melt, encapsulant, 

crucible and crystal walls exchange heat between each other by higher percentages than 

they do with the other surfaces. The other surfaces being the middle cylinder wall, top 

and.lower annuli, and the top cylinder wall and top for the full chamber case. While for 

the simplified chamber, the other surfaces are simply the enclosure. 

The comparison between the effective ambient temperatures Tk,a of both chambers 

shows that those of the simplified chamber are generally 5% higher than those of the 

full chamber. The slight difference due to chamber geometry difference is expected and 

accepted. Also, the curves have the same trend as those of the full chamber case. 



Chapter 3. Radiative Heat Exchange in LEC GaAs Crystal Pullers 57 

Table 3.19: Heat transferred from surface i to surface j for case-Ill with one surface 
enclosure in Watts for A = 2.5/zm . 

SURFACE j SURFACE i SURFACE j 
Melt Crucible Encap Enclosure Crystal Wall Crystal Top 

Melt 28 189 — 0 102 0 
Crucible 274 1251 527 16 1551 10 
Encapsulant — 747 138 10 345 6 
Enclosure 76 440 190 27 708 49 
Crytal Wall 209 1883 439 58 952 36 
Crystal Top 10 55 24 10 88 6 
Emitted (2) 597 4565 1318 121 3746 107 
Absorbed (1) 319 3629 1248 1490 3577 193 
Net (2)-(l) 278 936 72 -1369 169 -86 
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Figure 3.15: Effective ambient temperature versus element number for case-Ill / one 
surface enclosure and A = 2.5^m. 
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3.9 Conclusions 

Eventhough the results in this chapter are obtained using temperature distributions from 

previous numerical models, they still show the importance of a detailed radiative heat 

transfer model in GaAs crystal pullers. The effective ambient temperatures obtained 

for the surface elements show that the use of one ambient temperature for all surfaces 

introduces errors in the calculation of radiative heat transfer. The comparison between 

the results of the full and simplified chambers show that it is acceptable to use the 

simplified chamber as representative of the real crystal puller chamber when calculating 

heat transfer and fluid flow in the system. The comparison between the results of two 

cutoff wavelengths A = 2 and 2.5 pm shows that it is important to determine which one 

is a better representative of the encapsulant absorptive property. 



Chapter 4 

Mathematical Modelling of Fluid and Heat Flow 

4.1 Introduction 

The fluid flow and heat transfer during the crystal growth process are governed by the 

conservation of mass, momentum and energy equations. Those equations are solved 

numerically using a control volume method that is described in this chapter. The modes 

of heat transfer that are present during the crystal growth are (a)forced convection due 

to crystal and crucible rotation, (b) natural convection due to heating at the crucible 

wall, (c) conduction, and (d) radiation . This chapter also compares the results obtained 

using the programme developed by Sabhapathy and Salcudean in [25, 26, 27] when a 

simplified radiative model is used (radiation to a uniform temperature ambient) versus 

the detailed radiative model (radiation to effective ambient temperatures) developed in 

the previous chapter. Only the effect of natural convection is considered here since the 

main objective of the exercise is the determination of the effect of the detailed radiative 

model. 

4.2 Assumptions 

The numerical results obtained are dependent on the following assumptions: 

• Axisymmetrical and laminar flow in the melt and encapsulant. 

• Cylindrical crucible and crystal whose axes coincide. 

59 
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• No slip and non-penetration conditions at the crystal and crucible surfaces and 

also at the melt-encapsulant interface. 

• Free slip at the encapsulant-gas interface. 

• Zero radial velocity and zero radial gradient of the temperature at the axis of 

symmetry. 

• Negligible convective heat loss from the encapsulant to the ambient gas and from 

the crystal to the gas. 

• Planar melt surface and planar encapsulant surface. 

• Boussinesq's approximation is used. 

4.3 Governing Equations 

The partial differential equations that govern the fluid flow and heat transfer in GaAs, 

B2O3 and Ar during the crystal growth of GaAs are the mass, momentum and energy 

conservation equations. The equations can be written in general form for an axisymmetric 

flow in cylindrical coordinates as follows : 

where, 

d> is the dependent variable, 

is the exchange coefficient for the variable <f>, 

S(p is the source term. 

Table 4.3 defines the variables <f>, T^> and 5̂  for each equation. The equation that governs 

the heat transfer in the crystal is : 

dT. d2T' 1 d 8T 
Ox ox2 r Or or 
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4.4 Boundary Conditions 

The following boundary conditions are imposed on the system (see figure 4.16 for further 

clarification of the terms) : 

• Bottom of the crucible: 

x = 0, r c > r > 0, 

u = 0, v = 0, w = 0 , § £ = 0 

• Crucible wall upto melt surface: 

hm > x > 0, r - rc , 

% = 0,v = 0,w = 0, ^ = 0 

• Crucible wall between melt surface and encapsulant surface: 

hm + he > x > hm, r = rc, 

u = 0,v = 0,w = 0, Tm = Tc 

• Melt surface between the crystal and crucible : 

x = hm, rc>r > r„ 

u = 0, -km

s-t = e m < C - ra
4

mb) 

• Melt surface at the liquid/solid interface : 

x = hm, r„ > r > 0, 

u = 0, v = 0, w = 0, T = Tmeiting 

• Axis of symmetry upto the melt top : 

hm>x>0, r = 0, 

^ = 0,^ = 0 ,^ = 0, ^ = 0 
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Table 4.20: Definition of the variables in the conservation equations. 

Equation 4> s* 
m a s s 1 0 0 

x - m o m u 

r - m o m V 

8 — mom w V-

Energy T k 0 

hs 

he 

hm 

,CL 

Crystal 

B203 

GaAs • Melt 

he 

rc 

Figure 4.16: Schematic of the calculation domain showing all variables of the system. 
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• Axis of symmetry between melt top and crystal top : 

h m + h, > x > h m , r = 0, 

Br U 

• Encapsulant-crystal interface : 

h m + h e > x > h m , r = ra, 

u = 0 ) V = Q)W = o, -k& + K*£ = *.<T? - r<m6) 

• Encapsulant—ambient interface : 

x = hm + he, re>r> r„ 

u = 0, £ = 0, £ = 0, -ke

e-£ = ^(Tt - TQU) 

• Encapsulant-crucible interface : 

h m + he > x > h m , r = rc, 

u = 0, v = 0, w = 0, Te = Tc 

• Crystal surface that is exposed to the ambient : 

h m + h, > x > he + hm, r — r„, 

u = up,v = 0,w = 0, -k,!£- = etcT(T?-TZmb) 

• Crystal top: x = h, + hm, r, > r > 0, 

u = up, v = 0, w = 0, -k.^f = e.a(T^-T^mb) 

• Release of latent heat at the crystal-melt interface : 

2ro-{-km^ + k.B£)rdr = upr]LPt 

4.5 Solution Procedure 

The partial differential equations introduced earlier are complex and cannot be solved 

analytically. The numerical solution procedure used in this work is based on the control 
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volume method. The control volume method requires that the solution domain be divided 

into a finite number of six-sided control volumes or cells. A grid-point is placed at the 

geometric centre of each control volume. This arrangement has the following advantages: 

• The value of the general variable that is directly available at the centre of the cell 

is a good representation of the average value over the control volume and can be 

used without interpolation to calculate the source terms and physical properties. 

• Discontinuities at the boundaries can be conveniently handled by locating boundary 

cells where discontinuities occur. 

A staggered grid arrangement is used since it solves some of the problems introduced by 

non-staggered grids (like producing non-realistic solutions) [45]. The scalar quantities 

(pressure and temperature) and the velocity component w are calculated at the geometric 

centre of the control volume, while the velocity components (u and v) are calculated at the 

scalar cell surfaces, (see firgure 4.17). In this way, the velocities are directly available for 

the evaluation of convection through the boundaries of the control volume. Figure 4.18 

shows clearly the control volumes used in the analysis. 

4.5.1 Discretization of the Differential Equations 

The finite volume equations are derived by the approximate integration of the general 

transport equation 4.8. The integral form of the differential equation for steady state 

conditions over a typical control volume for a general dependent variable <j> can be written 

as: 

(4.10) 

where 

A and V are the control volume area and volume 
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n is the outward normal unit vector, 

is the diffusion coefficient of the variable <j>. 

The left hand side of equation 4.10 expresses the convective and diffusive inflow/outflow 

through the area A of the scalar cell. It can be rewritten for a cylindrical coordinate 

system as follows (see figure 4.19 for definition of the coordinate system and idealized 

geometry): 

l(p'u4>-T4)Vd>)ndA= fXn(p'v<f>-TArcdx 
JA Jx, Or 

- / " ( A * - TM)..ir (4.11) 

Jrw OX 

The first two terms on the right hand side describe the total transport in the radial 

direction. They can be discretized as follows : 
{pv<t>e-T,t,—— )-(pv<}>w-T4> — ) (4.12) 

where 6r is the grid spacing in the radial direction (see figure 4.17) , and e &; w represent 

the east and west faces of the control volume. 

The variables that are not available at the scalar cells surfaces must be determind by 

linear interpolation between neighbouring cells : 

Pe = feP'p + (1 " f.)p'E (4-13) 

where fe is a special weighting factor defined by : 

/ . = 0 . 5 | i (4.14) 

The total transport through the the east cell boundary consists of convective and diffusive 

fluxes; Ce = (p'v<f>)e and De = (r^|^)e. Due to the staggard grid arrangement, fluxes 
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are calculated at the scalar cell faces. However, the value of the variable <j> is directly 

available only at the nodal points. There are a few possible approximation schemes to 

obtain the fluxes at the scalar cell boundaries. 

The central difference scheme is one that assumes a piecewise-linear profile of the 

variable d> between nodal points. The convective flux can thus be expressed by : 

ft = ( P ' v ) . ^ (4.15) 

This formulation is second order accurate and gives satisfactory results for flows chara-

terized by low Peclet number, Pee — ((p'v)e/-rf ), that is flows dominated by diffusion. 

However, in cases when convection is much larger than diffusion, the central difference 

method leads to numerical instabilities and yields unrealistic results. 

These difficulties can be overcome by using the upwind scheme approximation for 

convection dominated flows. The value of <f> at the scalar cell face is assumed to be the 

same as the value of <f> at the upwind grid point. The convective flux at the east scalar 

cell boundary is evaluated as: 

Ce = (p'v)e<t>P if ve > 0 (4.16) 

Ce = (p'v)ad>E if ve < 0 (4.17) 

The hybrid differencing scheme [45] combines the advantages of central differencing for 

small Peclet numbers \Pe\ < 2 and upwind differencing for large Peclet numbers \Pe\ > 2. 

As a result, the numerical stability and accuracy of the solution are enhanced. 

The discretized term representing convective and diffusive transport across the east 

boundry Ze can be approximated by : 

Ze = me(<t> - | ^ ) e = m e(l - 7 e & + 7e<M (4-18) 
Fe or 

where me = p'u and the coefficient 7 e is defined for hybrid central/upwind differencing 
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scheme as : 

7e = ((1 - /) + max[-(l - f)Pe, fPe, 1]/Pe)e (4.19) 

Assuming a linear dependence between the source term and the dependent variable <p, 

the right hand side of equation 4.10 can be rewritten as follows: 

/ S+dV = /"" r S+rdrdx = S* - SUP (4-20) 
Jv Jx, JTW 

where, 

Sf is the constant part of the linearized source term, 

Sp is the coefficient of <pp. 

The final form of of the discretized transport equation can thus be written as follows: 

me[(l - Ke)<f>E + 1e<t>p] + mw[(l - fw)4>W + lw<t>p\ + 

mn[(l - l n ) < t > N + LN4>P] + m.[(l - i.)<ps + l.M = Sf - SP<I>P (4.21) 

For numerical convenience a compact form of the above equation will be introduced : 

Apcpp = AE<i>E + AW(j>w + AN<f>N + AS(f>s + S* (4.22) 

which can also be written as : 

AP4>p = YJAz<pz-rSi (4.23) 
z 

where the subscript z denotes the neighbouring grid points, that is E, W, N and S, and 

the coefficients Az are defined as follows : 

AE = max[[Ce/2], De] - CJ2 (4.24) 

Aw = max[[Cw/2], Dw] + Cw/2 (4.25) 

AN = max[[Cn/2],Dn] - Cn/2 (4.26) 

As = max[[C./2],D.] + C,/2 (4.27) 

Ap = J2Az + Sp (4.28) 
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4.5.2 Discretization of the Boundary Conditions 

Imposed Temperatures and Velocities 

The values of the variables that are known or assumed can be directly assigned at the 

boundary points. However, in the case of an internal grid point, the given value of any 

variable <f> can be imposed via the source terms Sc and Sp in the following way : 

Sc = <f>Biven * lO 3 0 (4.29) 

SP = - l O 3 0 (4.30) 

Introducing these terms into the discretized governing equation 4.10 makes all other 

terms negligible and the equation simplifies to: 

<f>pSP « -Sc (4.31) 

and this forces the following value to be returned by the numerical procedure: 

<PP = = (frgiven (4-32) 

Free Surfacs 

The free slip condition (zero velocity gradiant) is imposed by cancelling the respective 

flux terms; e.g. for the east boundary : 

A* = 0 (4.33) 

Axis of Symmetry 

The zero radial gradient of the temperature at the axis of symmetry is imposed in the 

same manner as the zero velocity gradient at the free surface. 
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4.5.3 The Solution Algorithm 

The SIMPLE (Semi Implicit for Pressure Linked Equations) algorithm of Patankar and 

Spalding [45] is used to solve the system of nonlinear coupled equations. This algorithm 

uses an iterative solution which involves the following steps : 

1. The fields of dependent variables u, v, w, p, T, are guessed for the first iteration 

loop. 

2. The momentum equations in the r—, 6—, x— directions are solved and the first 

estimates of the velocity field u*, v*, w*, are obtained from the guessed pressure 

field. 

3. A pressure correction equation is solved. 

4. Corrections are made to the velocity components and pressure: 

u = u* + u' (4.34) 

v = v* + v' (4.35) 

w = w" + w' (4.36) 

p=p'+p' (4.37) 

5. The equation for the scalar quatity T is solved. 

6. The results are checked for convergence. If convergence is not attained then the new 

values of the dependent variables are used as the starting values, and the procedure 

from step 2 on is repeated. 
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4.5.4 Solution of the Linear Algebraic Equations 

The general finite volume equation 4.10 can be rewritten using the indices as follows 

+Aiij+1<Piij+1 + Atj.^j-i + S* (4.38) 

Figures 4.20 to 4.22 show control volume faces for the variables u, v and also the scalar 

variables defined at the grid node 'P' (1,3). The figures also show other variables as 

defined in the code. 

It is possible in principle to solve the above system of equations by matrix inversion. 

However, this is a computationally costly operation. An alternative solution procedure 

is to solve the system using an iterative fine by fine method. For the fine of constant i, 

equation 4.38 can be expressed as : 

<t>j = O j ^ i + i + bjd>j-i + Cj (4.39) 

where , 

*i = Aij+i/Aij (4-40) 

^ = Aij.JAij (4.41) 

cj = (Ai+uh+u + Ai-uitu-ij + StyAij (4.42) 

The nonzero coefficients of the set of equations defined by equation 4.38 form a tri-

diagonal matrix. Such a system of equations can be solved by a Gaussian-elimination 

method known as tri-diagonal matrix algorithm (TDMA) or Thomas-algorithm. When 

the values of d> on the fine are found , the same procedure is carried out for all fines in 

the x-direction and can be repeated for the r- direction as well (see figure 4.23). The 

convergence of the above method is fast because the boundary conditions information is 

transmitted at once to the nodal points lying inside the solution domain. 
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4.5.5 N u m e r i c a l C o n s i d e r a t i o n s 

U n d e r r e l a x a t i o n 

In order to handle nonhnearities in the iterative solution of the algebraic equations, it is 

necessary to underrelax or slow down the iteration process. The dependent variable, i.e. 

the temperature T, can be underrelaxed by the introduction of an underrelaxation factor 

a into the general discretized equation : ApTp = JL AZTZ + S^. Thus the discretized 

equation can be written as follows : 

^TP = £ AZTZ + ST

C + (1 - a)^TP (4.43) 
a t a 

where Tp is the value of Tp from the previous iteration. At convergence, Tp = Tp and 

the equation with the underrelaxation factor is identical to the discretized equation. 

In the present work, the following underrelaxation factors are used : a u = 0.25 , 

av = 0.25 , ctu, = 0.25 , a p = 0.50 , CLT = 0.25. The source term can be underrelaxed as 

follows : 

Sc = ctSc + (1 - ct)S*c (4.44) 

where S* is the source term from the previous iteration. 

Another way of controlling convergence is by the use of the transient approach. The 

practice of solving a steady state problem via an unsteady formulation can be regarded 

as a special kind of underrelaxation. 

C o n v e r g e n c e C r i t e r i a 

An iteration procedure is normally converged when further iteration does not produce any 

significant changes in the values of the dependent variables. In addition, it is necessary 

to have a convergence criterion which measures the degree to which a computed solution 
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satisfies the original set of transport equations. In the present work, this is done by using 

the 'residual source' method. The residual Rj, over one cell is denned as : 

Rt = 52Aa<pM + S*-AP<pp (4.45) 
X 

and the sum of the residuals for the whole field is : 

field 

At convergence R% becomes 0. For practical purposes, it is sufficient for the sum of the 

residuals to drop below a specified small number , i.e. : 

(4.47) 

where R™ is the reference value for the variable <f>, and A is the level of convergence for 

all dependent variables (e.g. A = 0.0001 ). The value of R% can be monitored during the 

iteration process and any unexpected behaviour can indicate the source of error in the 

programme. For example, a divergent behaviour could mean errors in the implementation 

of some of the boundary conditions. 

False Source 

In order to ensure convergence and stabilize the numerical behaviour of the solution, one 

may introduce into the finite volume equations the so called 'false source' term Sf defined 

by: 

Sf = Cp(<f>x 1 — 4>x) (4.48) 

where Cp is the mass imbalance for a control volume defined by: 

(4.49) 
z 
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The false source term can be incorporated into the discretized equation as follows : 

(AP + CP)<f>P = £ Az<t>, + S* + Cpfc1 (4.50) 

z 

At convergence, Cp and Sj become 0 and have no effect on the final converged solution. 

The addition of a false source term allows avoiding the singularity problem which may 

arise during the iteration process when Ap takes on the value 0 ( corresponding to zero 

d> transport into the cell). 

False Diffusion 

For high Peclet numbers (\Pe\ > 2), the hybrid scheme reduces to the upwind scheme. 

The upwind scheme, though numerically stable, has the disadvantage of being only first 

order accurate and introduces a discretization error referred to as false diffusion. The 

effect of false diffusion is an artificial increase in the (physical) diffusion coefficients which 

results in smearing of the gradients in the flow field. The errors introduced in the solution 

can be quite important, particularly when the grid fines are inclined with respect to the 

local velocity vectors [46]. False diffusion can be limited by using (a) a fine mesh, (b) 

grid fines that are aligned with the flow direction, (c) discretization schemes accounting 

for the multidimensional nature of the flow and involving more neighbouring cells, and 

(d) a curvilinear coordinate system. 

Numerical Errors and Instabilities 

The most likely sources of numerical errors are : (a) unrealistic initial values and (b) 

grids that are too coarse. Numerical instabilities are often due to (a) inappropriate 

underrelaxation factors (usually too large), (b) too few sweeps in the iterative line-by

line method. The correct evaluation of numerical parameters can be based on previous 

experience or can be achieved through trial and error. 
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The errors in the results are usually caused by mistakes in the implementation of 

boundary conditions or wrong input data (e.g. physical properties or geometry). 

4.6 Simplified Radiative Model Results 

The system is assumed to be radiating to a uniform ambient at 1211.K'. The stream 

functions and isotherms in the melt, encapsulant and crystal are shown in figures 4.24 

and 4.25. 

Figure 4.24 shows the stream lines in the melt and encapsulant. The melt flows 

upwards near the crucible wall due to heating at that surface. It is then cooled by the 

encapsulant and the crystal, falls towards the crucible base and is pushed towards the 

crucible wall. The flow near the crucible wall, base and near the encapsulant and crystal 

is one of the boundary layer type where high velocity and temperature gradients occur 

as can be seen clearly in figures 4.24 and 4.25. The flow velocity at the centre of the melt 

is lower than at the edges. 

The flow in the encapsulant moves upwards near the crucible wall and is pushed 

towards the crystal where it is cooled and sinks downwards near the crystal. The flow 

velocity in the encapsulant is two orders of magnitude lower than that in the melt. Thus, 

conduction dominates convection in the encapsulant. 

The crystal isotherms show a high gradient near the encapsulant region, however, the 

gradient decreases with increasing distance from the encapsulant top. The isotherms are 

curved near the crystal surface where radiative effects are greatest but they flatten out 

towards the centre. 

The encapsulant isotherms are nearly flat except near the crucible wall where it is 

heated. At the encapsulant free surface, there is a high radial gradient of the temperature 

near the crucible wall due to heat gain from the wall and heat loss by radiation to the 



Chapter 4. Mathematical Modelling of Fluid and Heat Flow 75 

ambient. The melt isotherms are highly concentrated near the melt-crystal-encapsulant 

junction and near the crucible wall where the highest rate of heat transfer takes place. 

4.7 Detailed Radiative Model Results 

The results obtained when a detailed radiative model is used are shown in figures 4.26 

and 4.27. The melt flows in a manner similar to that described earlier: upwards near the 

crucible wall and downwards under the crystal. The central region has a lower velocity 

since it is away from the direct effects of heating and cooling. The encapsulant streamlines 

show a circular flow pattern. 

The crystal isotherms show a high radial gradient near the upper half of the encap

sulant region; they also have a steep slope in that region near the crystal surface. The 

temperature of the crystal surface decreases near the encapsulant-crystal interface away 

from the melt surface, however it starts increasing again above the encapsulant top due 

to exposure to a higher ambient temperature (reflected from higher heat absorption from 

the crucible wall and the encapsulant). The isotherms in the top half of the crystal are 

nearly flat. 

The isotherms in the melt show high concentration near the melt-crystal-encapsulant 

junction and near the crucible wall where convective effects are greatest. The encapsulant 

isotherms show the domination of conduction in that layer; they also show a uniform 

gradient at the encapsulant-ambient interface. 

4.8 Comparison between the Radiative Models 

It is clear from the previous two sections that the temperature fields in the melt, encap

sulant and crystal are affected by the introduction of a radiative model that takes into 
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account exchange between all surfaces. The field in the crystal is highly affected espe

cially at the crystal surface where heat gain or loss by radiation occurs. It is also clear 

that the crystal temperature distribution resulting from the detailed model shows higher 

values in the top half (1336-1211)K than the simplified model (1261-1211)K. That is 

due to reduced heat loss to the surroundings shown by radiation to a higher ambient 

temperature. 

The melt surface loses more heat by radiation when the detailed model is used since it 

is radiating to a lower ambient temperature distribution than the constant ambient tem

perature. The effect of that on the temperature distribution is clear where the isotherms 

are not as concentrated near the crystal. (Melt cooling drives the flow faster downwards). 

The temperature distribution of the encapsulant free surface changes significantly from 

one model to the other. In the simplified model, the gradient is high near the crucible 

wall (w 150K/cm) while it decreases drastically to (w 20K/cm) away from the crucible 

wall. When the detailed model is used, the gradient obtained is more uniform across the 

surface (w 45K/cm). That is due to including detailed calculations of heat exchange 

between the encapsulant and the crystal, crucible and ambient. 

Eventhough, the analysis presented here included only the effects of natural convec

tion, the exercise does evaluate the effect of including a detailed radiative model on the 

temperature distribution in the crystal, melt and encapsulant. Therefore, it can be con

cluded that for better representation of heat transfer during the crystal growth process, 

a detailed radiative model be used. 
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Figure 4.17: A finite volume grid in the (x-r)-plane. 
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Figure 4.18: Control volume and notation for (a, 
(c) transport of scalar quantity in ̂ -direction. 

,b) u- and v-momentum analysis, 
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Figure 4.19: The coordinate system and idealized geometry. 

Figure 4.20: Control volume for all scalar varibles denned at the grid-node (I,J) 
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Figure 4.21: Control volume for u-velocity denned at the grid node (I,J) 
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Figure 4.22: Control volume for v-velocity defined at the grid node (I,J) 
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Figure 4.23: Representation of the line-by-line method. 
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0.075 0.000 

ir=i> X 1.0»107, contour spoclng is 5.0 in the melt 
X 1.0*10*, contour spacing is 5.0 in the encapsulant 

Figure 4.24: Stream functions of the melt and encapsulant - simplified radiative model. 
Ambient temperature = 1211K, crucible wall temperature = 1531K. 
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0 0 7 5 0.000 
contour spacing is 2.0K in the melt 

contour spacing is 25.0K in encapsulant and crystal 

Figure 4.25: Melt, crystal and encapsulant isotherms - simplified radiative model. Am
bient temperature = 1211K, crucible wall temperature = 1531K. 
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i>=i> X 1.0*107, contour spacing is 5.0 in the melt 
if=i> X 1.0*10*, contour spacing is 5.0 in the encapsulant 

Figure 4.26: Melt and encapsulant stream functions - detailed radiative model. Crucible 
wall temperature = 1529K. 
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0 0 7 5 0.000 
contour spacing is 2.0K in the melt 

contour spacing is 25.0K in encapsulant and crystal 

Figure 4.27: Melt, encapsulant and crystal isotherms - detailed radiative model. Crucible 
wall temperature = 1529K. 



Chapter 5 

Conclusions and Recommendations 

5.1 Summary 

This thesis presents a description of the LEC crystal growth process of GaAs. It defines 

the modes of heat transfer present in the system but concentrates on evaluating the 

radiative mode through the use of a simplified and a detailed model. It also presents 

an analysis of the effect each model has on the fluid flow and heat transfer in the whole 

system. 

The conclusions drawn from the research and numerical work done are presented in 

the next section. In addition, some recommendations are suggested for better evaluation 

and understanding of the heat transfer that takes place during the crystal growing in 

LEC chambers. 

5.2 Conclusions 

The following points may be concluded from the work given in the previous chapters: 

• Radiation is an important mode of heat transfer that must be included for proper 

modelling of the crystal growth process. 

• The upper part of the growth chamber may be replaced by one isothermal surface for 

the numerical analysis purposes without significant loss of accurate representation 

of the real system. 
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• The use of a simplified radiative model where all surfaces are radiating to one am

bient temperature does not evaluate the radiative heat transfer during the growth 

process correctly. 

• A detailed radiative model changes the melt, encapsulant and crystal isotherms. 

The changes in the crystal isotherms are quite significant especially near the en

capsulant top. 

• The emissivities of GaAs (solid and liquid), the encapsulant (B2O3), the crucible 

material (PBN) and stainless steel which forms the upper chamber surfaces are 

important factors in the determination of radiative heat transfer. 

• Varying the cutoff wavelength of the encapsulant absorptive property from 2/xm to 

2.5[im effects the effective ambient temperature distribution of the melt, encapsu

lant and crystal. 

5.3 Recommendations 

The following recomendations are suggested for future numerical analysis work in the 

field of GaAs crystal pulling : 

• Evaluation of the emissivity of solid and liquid GaAs so that the sources available 

now may be verified. 

• Evaluation of the emissivity of the encapsulant B2O3 which is still not available in 

the literature. 

• Evaluation of the absorptive property of the encapsulant B2O3 in order to verify 

the results available from [21]. 
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• Making temperature measurements in the melt and encapsulant layers as possible, 

and near the crystal surface and crucible wall surface so that better boundary 

conditions can be imposed on the system when performing numerical simulations 

of the growth process. 



A p p e n d i x A 

C o n f i g u r a t i o n F a c t o r s of the S y s t e m 

A . l I n t r o d u c t i o n 

This appendix gives the equations used to calculate configuration factors for the cases 

analysed. Configuration factor will be referred to as CF. The relationships are obtained 

from [44]. 

A.2 C o n f i g u r a t i o n F a c t o r E q u a t i o n s 

The following is a list of the equations used in the programme written to calculate the 

radiative heat transfer in the GaAs crystal puller. 

1. CF from the ring element on tube to ring element on coaxial annular element on 

circular fin. Figure A.28 shows rx, r2, dr and I. With the following definitions : 

L = l/ru 

R = r2/ri, 

Z = 1 + R2 + L2  

a i = Z2-AR2, 

a2 = R2 - L2 - 1 

the equation is 

,2LR,,„2 , N i / 2 2*a2 lt(Z + 2R)(R- 1 ) , 1 / 2

W , W A 

" "J) + -gr , <"-'((2-MQ(fi + i)> 
This equation is used to calculate CF from a crystal element to a melt or encapsulant 

element, or from the crucible outer wall to a middle cylinder lower annulus element. 
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2. CF from the outer surface of cylinder to annular disk at end of cylinder. Figure A.29 

shows the cylinder and disk and the variables R, r and I. With the following defi

nitions : 

A = l2-R2 + r2, 

B = l2 + R2- r2, 

C = l2 + R2+r2 

£ = ( £ " 4 ( ? f ) 1 / 2 , 

E = C 0 5 _ 1 ( s i ) 

the equation defining CF is : 

Fx.2 = ±- * {cos-\^) - {±){D * E + ( £ ) « n - l ( £ ) - ( i r /2 ) (£) ) ) (A.52) 

Surfaces 1 and 2 may be the crystal element #1 and the melt element #1, re

spectively. They may also be the crucible outer wall element #1 and the middle 

cylinder lower annulus element #1, respectively. 

3. CF from an annular ring on a cylinder to an annular disk at the end of the cylinder. 

The variables r, R and x are as shown in figure A.30. Therefore, with the following 

definition of a, b, c, d, and e : 

o = x2 - R2 + r2 

b = x2 + R2-r2 

c = x2 + R2 + R2 

J c 

a — (e»-4(ilr)a)1/» 
e = ra/Rb 
the CF equations is given by : 

Fdl-2 = ^-(cos-^a/b) - -(d * cos-\e) - cos^ir/R))) (A.53) 
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Figure A.30: Schematic showing ring on cylinder and disk connected at end of cylinder. 
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This equation may be used to calculate CF from a crystal element #(2-ns), to the 

melt element #1. It may also be used from a crucible outer wall element #(2-nco) 

to the middle cylinder lower annulus element #1. 

4. CF from the inside surface of right circular cylinder to itself. Section and variables 

are shown in figure A.31. With the following definition : H = h/2r , the CF equation 

is : 

F1.1 = 1 + H - (1 + H2f2 (A.54) 

This equation will be useful in evaluating CF from the crucible wall to itself, from 

the middle cylinder wall to itself and from the top cylinder wall to itself. 

5. CF from the base of a right circular cylinder to inside surface of cylinder. With the 

variable H = h/2r , where h and r are as shown in figure A.32, the equation is : 

= 2tf((1 + H2f'2 - H) (A.55) 

The CF from the crucible wall or the the middle cylinder wall to the fictitious 

surface (see section 3.3.2) may be calculated using the equation. 

6. CF from a disk in cylinder base or top to inside of right circular cylinder. With the 

variables R = r 2/ri and H = h/r1} where Tx, r2 and h are as shown in figure A.33, 

the equation for the CF is : 

Fi_ 2 = (̂1 -R2-H2 + ((1 + R2 + H2)2 - IR2)1'2) (A.56) 

This equation is used to calculate CF from the middle cylinder wall to the crystal 

top. 

7. CF from an annular ring on cylinder base or top to inside of right circular cylinder. 

The section and variables are shown in figure A.34. With the same definition of H 
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Figure A.31: Schematic showing surface-1. 

Figure A.32: Schematic showing surfaces 1 and 2 on a right circular cylinder. 

Figure A.33: Schematic showing surface-1, disk an base of cylinder, and surface-2 
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and R as in the previous point, and the following definition of a, b and c : 

a = R2 - 1 

b = (AR2 + H2)1'2 

c = ((1 + R2 + H2)2 - 4R2)1'2 

the equation for the CF is : 

Fx-2 = i ( l + kH*b-c)) 
l a 

(A.57) 

Surface 1 may be a melt, encapsulant or middle cylinder lower annulus element and 

surface 2 may be the crucible wall or the middle cylinder wall. 

8. CF from the interior of right circular cylinder to finite annular ring in base.The 

variables rj, r 2 , 1 and a are as shown in figure A.35. Therefore, with the following 

definition of R, L and X : 

This equation is used to calculate CF from the crucible wall to a melt or encapsulant 

element, or from the middle cylinder wall to a lower annulus element. 

9. CF from the interior of a finite length right circular coaxial cylinder to itself. With 

the same definition of R and H as in the previous point (section shown in fig

ure A.36), and the following definition of a, b, c, d and e : 

R = r/o, 

L = l/a, 

X = (L4 + 2L2(1 + R2) + (1 - R2)2f'2 

The governing equation is : 

Fx_2 = ±r(X, - X, + (R2)2 - (i2a)2) (A.58) 

2 ( f l 2 - l ) » / 3 

H 

(4fl 2+H 3) 1/ 2 

H 
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Figure A.34: Schematic showing surface-1, annular ring on base of cylinder, and surface-2. 

Figure A.35: Schematic showing a right cylinder and a finite annular ring on its base. 

Figure A.36: Schematic showing surface-1 for which CF is calculated. 
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_ 4(R3-D+{H/R)3(R7-2) 

H 

the equation governing the configuration factor is : 

F^ = 1 - i + * ron_1(o) - ^-(b * sin~l(c) - sin~l(d) + ^ * e)) (A.59) 

Surface 1 may be either the crucible wall or the middle cylinder wall. 

10. CF from the interior of the outer right circular cylinder of finite length to exterior 

of inner right circular coaxial cylinder. The section is shown in figure A.37. With 

the same definition of R and H and the following definition of a, b, c, d and e : 

a = H2 - R2 + 1 

b = H2 + R2 - 1 

c = H2 + R2 + 1 

d = a/b 

e = (c2 - (2J2)2)1/2 

/ = e * cos-l(d/R) 

g = a* 5in-1(l/i2) 

the CF governing equation is : 

This equation may be used to calculate CF from the crucible or middle cylinder 

walls to the crystal wall. 

11. CF from the interior of an outer right circular cylinder of finite length to the 

annular end enclosing space between the coaxial cylinders. The section is as shown 

in figure A.38. With the following definitions of H, R, a through i and kx through 

(A.60) 
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h : 

H — h/r2, R = ri/r2 

a = 1 - R2 - H2 

b = 1 - R2 + H2 

c = l + R2 + H2 

d = 2R2 - 1 

e = (c2 - AR2)1'2 

f = (4 + H2fl2 

g = (1 - fl2)1'2 

i = R* a/b 

h = tan-\glH) - tan^^g/H) 

k2 = sin~1(d) — sin-1(R) 

ks = | + am" 1^) 

k4 = | + sin - 1 ( t ) 

fcs = f + «n"1(fc) 

the governing equation will be : 

FX-2 = -(R *kl + ^-*k2 + ^-*k3--^-*k4 + ^-*k6) (A.61) 
7r 4 4ii 4ii 4 v ' 

This equation is used to calculate CF from the crucible or middle cylinder walls to 

the fictitious surface a,- or the fictitious surface b{. 

12. CF from a differential element on annulus between coaxial cylinders to interior 

of outer cylinder as shown in figure A.39. The equation for this CF will have to 

be integrated over the whole annulus for it to be useful here. With the following 

definition of H, R, a, b, c, d and w : 

H = h/r2 



Appendix A. Configuration Factors of the System 98 

Figure A.37: Schematic showing surfaces 1 and 2 on two coaxial cylinders. 

Figure A.38: Schematic showing annular ring between two coaxial cylinders to which CF 
is calculated. 

Figure A.39: Schematic showing differential element on annulus between two coaxial 
cylinders from which CF is calculated. 
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R = r / r 2 

a = 1 + R2 + H2 

b = l-R 

(v = cos 1(ri/r) + cos 1(ri/ra) 

the equation for the CF can be written as follows : 

l — i —i & —1 —i w Fdi-2 = —tan (b*tan (—)) + c*tan (d*tan (—)) 
7T 

(A.62) 

After integrating this equation, it can be used to calculate CF from a melt or 

encapsulant element to the crucible wall. It can also be used for the configuration 

factor from a lower annulus element to the middle cylinder wall. 

13. CF from the wall of the smaller radius cylinder to the wall of the other coaxial 

cylinder as shown in figure A.40. The variables R, H\,H2, L\ and i 2 are denned as 

follows: 

This equation is used for calculating CF from the top cylinder wall to the middle 

cylinder wall, and from the crucible wall to the middle cylinder wall. 

R = r i / r 2 , 

H2 = h2/ri, 

L\ = R2 -f H2, 

X 2 = R? + H\. 

The configuration factor is denned by : 

(l-L2 + ((l + L2)2-AR2y/2) 
(A.63) 
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14. CF from the interior of a circular cylinder of radius ri to a disk of radius r 2 as 

shown in figure A.41. With the following definition of R,Hi,H2,Xi and X2 : 

R = ri/r 2, 

Hi = hi/r2, 

H2 = h2/r2, 

Xx = HI + R2 + 1, 

X2 = H2 + R2 + 1 

the CF equation is 

X,-X2- (X2 - AR2)1'2 + (X2 - 4R2)1/2  

Fl~2 AR(H2-Hl) ( A ' 6 4 ) 

This equation is used to calculate CF from the middle cylinder wall to the fictitious 

surface Oj at the crucible edge or at the top cylinder edge. 

15. CF from the inside surface of a right cylinder to a coaxial disk of the same diameter 

seperated from the base of the cylinder as shown in figure A.42 . H\, H2, oi, a2, 0 3 

and 0 4 are defined as follows : 

#i = h/r, 

H2 = h2/r, 

a ^ l + ffi/ffj, 

02 = ^ + H\ 

a 3 = (4 + (^1 + ^ 2) 2) 1/ 2 , 

a 4 = (4+ # 2) 1/ 2 

and CF is defined as follows : 

* a 3 - a 2 - a 4 

F i - 2 = (A.65) 

This equation calculates CF from the middle cylinder wall to a fictitious surface aj 

or from the crucible wall to a fictitious surface a; or b{. 
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Figure A.40: Schematic showing two coaxial cylinders, one on top of the other for which 
CF is calculated. 

Figure A.41: Schematic showing surface-1, circular cylinder, and surface-2, disk of smaller 
radius. 

Figure A.42: Schematic showing surfaces 1 and 2 for which CF is calcualted. 
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16. CF between two parallel disks with centers along the same normal as is shown 

in figure A.43. The variables r i , r 2 and h are as defined in the figure. With the 

following definition of Ri, R2 and x : 

This equation may be used to calculate CF from a fictitious surface O j to another 

fictitious surface O j . 

A . 3 Configuration Factor Calculation of Case-I 

The following is a description of the configuration factor calculation for case-I of the 

simplified chamber. This case is chosen to illustrate the solution approach because it is 

the simplest case. All other cases are solved in a similar manner. 

1. Equation A.54 is used to calculate CF from the crucible wall element to itself, 

2. Equation A.55 is used to calculate CF from the fictitious surfaces 'a' and 'b' to the 

crucible elements. The reciprocity relationship is then used to calculate CF from 

the crucible wall elements to the fictitious surfaces. The CF from crucible element 

C j to element C j + i can be calculated by the following equation : 

R2 = r2/h, 

* = ! + (! + R\)IR\ 

the equation of the CF will be defined as : 

Fl.2 = ^(x-(xi-A(r2/r1)2)) (A.66) 

Fa-ci-

Fci-ci+i = Fa (A.67) 
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3. Equations A.57 and A.58 are used to calculate CF from the melt or encapsulant 

elements to the crucible wall elements. The reciprocity relation is then used to 

calculate CF from the crucible wall element to the melt or encapsulant elements. 

4. CF from from each element to all other elements are summed up. The sum is then 

subtracted from one to obtain the CF from the each element to the enclosure. 

Table A.21 gives the summation of CF from surface i to surface j that are obtained using 

the method described above. The total from each surface is equal to 1. All dimensions 

of the puller are as given in the main text (table 3.10). 
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Figure A.43: Schematic showing two disks of different radii for which CF is calcualted. 
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Table A.21t CF summation from surface i to surface j for case-I of the simplified chamber. 

ELEMENT # & 
SURFACE i 

SURFACEj ELEMENT # & 
SURFACE i ENCAPSULANT CRUCIBLE ENCLOSURE 
ENCAPSULANT 
1 — 0.3348 0.6652 
2 — 0.3596 0.6404 
3 — 0.4123 0.5877 
4 — 0.4964 0.5036 
5 — 0.6073 0.3927 
Crucible 
4 0.4756 0.2733 0.2511 
5 0.4294 0.2905 0.2802 
6 0.3868 0.3009 0.3123 
7 0.3478 0.3043 0.3478 
8 0.3868 0.3009 0.3868 
9 0.2802 0.2905 0.4294 
10 0.2511 0.2733 0.4756 
ENCLOSURE 
1 0.1678 0.1655 0.6667 

MELT CRUCIBLE ENCLOSURE 
MELT 
1 — 0.5050 0.4950 
2 — 0.5250 0.4750 
3 — 0.5644 0.4356 
4 — 0.6210 0.3790 
5 — 0.6891 0.3109 
CRUCIBLE 
1 0.4756 0.3438 0.1805 
2 0.4294 0.3691 0.2015 
3 0.3868 0.3883 0.2249 
4 0.3478 0.4011 0.2511 
5 0.3123 0.4075 0.2802 
6 0.2802 0.4075 0.3123 
7 0.2511 0.4011 0.3478 
8 0.2249 0.3883 0.3868 
9 0.2015 0.3691 0.4294 
10 0.1805 0.3438 0.4756 
ENCLOSURE 
1 0.1273 0.2060 0.6667 



Appendix B 

Gebhart Factor Equations Derivation 

B.l Introduction 

The derivation of the Gebhart factor equations of the system surfaces is given in this 

appendix. A detailed derivation is shown for only one surface being the melt. The 

equations of the other surfaces will be written in a similar manner as described in each 

section. 

The genaral form of the Gebhart factor equation is given in the main text and is given 

again here for convenience [43]. 

Gjk = Fj-kCk + Fj-ipiGi-k + Fj-2p2G2-k 

+ + Gj-kpkGk-k + + Fj-Np^Gs-k (B.68) 

B.2 Melt Gebhart factor equations 

The following set of equations are the Gebhart factor equations for the melt surface which 

is divided to nm elements. The variable i goes from 1 to nm in equation B.69 ; from 1 to 

nc for equation B.70 ; from 1 to nmc for equation B.71 ; from 1 to nla for equation B.72 

; from 1 to ns for equation B.77, from 1 to nst for equation B.76 and from 1 to nco for 

equation B.78 for each k. k goes from 1 to nm . These equations include the crystal 

surface elements, the crystal top and the outer surface of the crucible. However, for the 

case which does not include the crystal, the terms involving the crystal and outer crucible 

106 



Appendix B. Gebhart Factor Equations Derivation 107 

will be eliminated. All other terms remain the same. 

Gm-m(l, /c) — fm—m{}} ty^m 

(1|*0 + fm-m(ii2)pmGm-m{2,k) 

+ + fm-m(i,nm)pmGm-m(nm, k) 

+/m_ e(i, l > c G c _ m ( l , k) + fm_e(i, 2 > e G c _ m ( 2 , k) 

+ + fm-c(i,nc)pcGc-m(nc, k) 

+ fm-co{i, l)PcoGco-m(l, k) + /m-co(i, 2)pcoGco-m(2, k) 

+ + fm-co{i,nco)pcoGco-m(nco, k) 

+/«-.(*, l)p,G,-m(l, k) + fm-.(h 2)p,G,-m(2, k) 

+ + fm-.(i, ns)ptG,-m(ns, k) 

4~/m-mc(^> 1 )pmcGmc_m(1, fc) 

+fm-me(i, 2)pmcG 
(2 ,*) 

+ + /m-mc(i) ™ c ) / ' m c G r a c - r a ( i r o C , A) 

—mc/a 
—meJa (*) 2)/JmcZaG!

mcIa-m(2, fc) 

+ + fm-mclaiiynl^PmclaGmcla-minla, k) 

+ fm (i)PmctaGmcta-m(k) 

+fm-tcw(i)ptcwGtcw-m(k) 

+ fTn.-tet(i)ptctGtct-Tn(k) 

+fm-.t(i, l ) p . t G . t - m ( l , *) + / m - r f ( » , 2 ) p . « G r t _ r a ( 2 , fc) 

+ + fm-.t(i, nst)p,tG.t-m{nst, k) (B.69) 
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Gc-m{i,k) = fc-m(i, k)em 

+ / c-m ( i , l)PmG (1, fe) + / e_ m(», 2 > m G m _ m ( 2 , k) 

+ + fc-m{i,nm)pmGm-m(nm, k) 

+fc-e(i, l)pc<7c-m(l, *) + / c - c ( » , 2)p c G c _ r o ( 2 , fe) 
0 

+ + fe-e{i, nc)pcGc-m(nc, k) 

+fe-eo{i, l)PcoG co—m (1, fe) + /»_«,(», 2)/> c oG c o _ m (2 , fe) 

+ + fc-co{i, nco)pcoGco.m(nc, fe) 

+ / « - . ( * , l ) p . G . _ m ( l , fe) + / c - . ( i , 2 ) p # G . _ T O ( 2 , fe) 

+ + fc-*(i, ns)p.G,-m(nc, fe) 
(1 ,*) 

+fc-mc(i, typmcG (2,fe) 

+ + / c-mc(i)7i7nc)p m cG m c_ m(nmc, fe) 

+ / c —mc/o (*> IJPmc/aGmcJo-mCl) fe) 

(i> 2)p,„cIaC7mc/a-m(2, fe) 

+ + fc-mcla(i,nla)pmclaGmcla-Tn(nla, fe) 

+ fc —mcta{i') Pmcta Gmcta—m 

(fe) 

+fc-tcw(i)PtcwGtcw-m{k) 

+fc-tct(i)PtctGtct-m(k) 

+ /e-.t(», l > , t G . t _ m ( l , fe) + / e _ . t ( * , 2>. tG . t _ m ( 2 , fe) 

+ + fc-.t{i, nst)pttGet.m(nc, k) (B.70) 

Gmc-m(i> k) = fmc-m(i) k)em 

4"/mc-m(i> typmGm-m 
(1, fe) + fmc-m(i, 2 > m G m _ m ( 2 , fe) 
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+ + fmc-m{i,nm)pmGm-m(nm, fc) 

+/me-e(», l)PcGc-m(l, k) + fmc-c{h 2)PcGc.m(2, k) 

+ + fmc-c(i,nc)peGc-m(nc, k) 

+ /mc-co(i , l)PcoGeo-m(l, k) + fmc-co(i, 2)pcoG 
(2,*) 

+ + frnc-co(i,nco)pcoGco-m(nco, k) 

+fmc-.(i, l)p.G..m(l, k) + fme-.(i, 2)p.G.-m{2, k) 

+ + fmc-,(i,ns)P,Gt-m(ns,k) 

fmc—mc(^) tyPmcGmc—m 
(1,*) 
(2,k) 

(nmc, k) 

~\~fmc—mcla(i> tyPmdaGmcla—m(l> &) 

~T fmc-mcla{} •> 2)pmclaGmcla—m(2, fc) 

+ + frnc-rncla{hnla)PrnclaGmcla-m{nla, fc) 

(i)pmctaGmcta-m{k) 

+fmc-tcw(i)ptcwGtcw-m(k) 

-rfmc-tct{i)ptctGtct-m{k) 

+ / m e - . t ( » , l ) p . t G . t - ™ ( l , *) + / m c - . « ( » , 2)PttGtt-m{2, k) 

+ + fmc-,t(i, nst)petG,t-m(nst, fc) (B.71) 

C m c l o - m ( ' i^ ) = fmcla—m{}jk)€Tn 

+ fmcla-m(i, ^)pmG (1, k) + fmcla-m(i, 2)pmG (2,fc) 

+ + frncia-rn(i,nrn)pmGrn-rn(nm, fc) 

+ / m d Q - c ( i , l > c G c - m ( l , *0 + / m c i o - c ( i , 2 ) p c G c _ m ( 2 , fc) 



Appendix B. Gebhart Factor Equations Derivation 110 

+ + fmcia-c(i,nc)pcGc-m(nc, fc) 

co—m (1, k) + fmda-cb(i, 2)pcx>G 
(2,*) 

+ + fmcia-co(i, nco)PcoGeo-m(nco) k) 

+ + fmcia-,(i,ns)p,Gt-m(ns, fc) 

~T fmcla—nc('i l)PmcC m c _ m 

(1,*) 
~T fmcla—mc('i 2)pmcGmc—m 

(2,k) 

+ + / m c J a - m c ( i , « " l c ) ^ m c G m c _ r n ( n m C , fc) 

~\~ fmcla—mcla{i"> 1 ̂ Pmcla Gmcla—m 
(1,*) 

—mcio 
(2,fc) 

+ + fmcla-mcla(i, rila)pmciaGmcla-m(nla, fc) 

—mcta (i)Pmcta Gmda-m {k) 

~rfmcla-tcw(i)PtcwGtcw-m(k) 

-rfmcla-tct(i)ptctGtct-m{k) 
+fmcla-tt{i, 1)p»tG,t-m(\, fc) + fmcla-»t{h 2)p,tGBt-m(2, A) 

+ fmcia-,t(i,nst)pttGtt-m(nst,k) (B.72) 

mcta-m^) — Jmcta—m\™)€m 

•rfmcta-m{X)pmG (1, fc) + fmcta-m{2)pmGm-m(2, fc) 

+ + fmcta-m(nm)pmGrn-m(nm, fc) 

+ /mda-c(l)PcGc-m(l,*) + fmcta-c{2)pcGc.m{2,k) 

+ + fmcta-c{nc)PcGc-m(nc, fc) 

"H fmcta - co (1) Pco G c o _ m 

(1, fc) + /mcfa-co(2)/3coGco-m(2, fc) 



Appendix B. Gebhart Factor Equations Derivation 111 

+ + fmcta-co{nCo)pcoGCo-m(nCO, fc) 

+fmcta-»{l)p,G,-m(l,k) 

+fmcta-,(2)p.G,-m(2,k) 

+ + fmcta-.(ns)p,Gt-m(ns, k) 

"f" /mcta—mc(l) PmcGmc—m 
(1,*) 

~\~ fmcta—mc(2)/?Tnc Gmc—m (2,k) 

(nmc, fc) 

~\~fmcta—mclai,]-)PmclaGmcla—m(l,, fc) 

~\~ fmcta—mcla(2)pmciaGmcla—m(2, fc) 

+ + fmcta-mcla(nla)PmclaGmcla-m(nla, fc) 

"T" fmcta—met a —m 
(fc) 

~\~ fmcta-tcw (1) A'tciu Gjciu-m (fc) 

-rfmcta-tct(l)ptctGtct-m(k) 

+ fmcta-»t{l)p,tG,t-m{l, k) + /mcto-«t(2)p,tG,t_m(2, fc) 
+ + fmcta-.t{nst)P.tG.t-m{nst, fc) (B.73) 

Gtcw—m{k) = ftcw-m{k)em 

-rftcw-m (1 )Pm G 
m—m 

{l,k) + ftcw-m(2)pmG 
m—m 

(2,k) 
+ + ftcw-m{nrn)pmGm-m{nrn, fc) 
T / ( » - e ( l ) / » . G e - m ( l ) k) + /tC U,-c(2)^cGc-m(2 ) fc) 
+ + ftcw-c(nc)pcGc-m(nc, fc) 
-\~ftcw-co (1 )Pco Gco-m (1, + /tcu,-co(2)pCOGc0-m(2) fc) 
+ + ftcw-co(nco)pcoGco-m{nco, fc) 

file://-/~ftcw-co
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+ftcW-s{l)p.G.-m{l, fe) + ftcw-.{2)p.G.-m(2, k) 

+ + ftcw-,{ns)p,G,-m(ns, k) 

"T'/tctu-mc(l)PmcG'mc_m(l, fe) 

"T'/tciu-mc(2)pmcGm (._m(2, fe) 

+ + ftcw-mc{nmc)pmcGmC-m(nmc, k) 

~tftcw—mcla (l)PmclaGmcla-m(l, k) 

(2)pmclaGmela-m(2, fe) 

+ + ftcw-mcia(nla)pmciaGmcia-m(nla, fe) 

~T ftew—meta (1 ~)pmcta Gmcta—m(k) 

+ftcw-tcw{l)ptcwGtcw-m(k) 

+ftcw-tct(l)PtctGtct-m(k) 

-\-ftcw-it{l)p»tGst-m (1, k) + ftcw-.t{2)p.tG,t-rn% fe) 

+ + ftcw-,t{nst)p,tGst-m{nst, fe) (B.74) 

Gtct-m(k) = ftct-m{k)em 

+ftct-m{l)pmG 
m—m (l,k) + ftct-m(2)PmG m—m 

+ + ftct-m{nm)pmGm-m{nm, k) 

+ftct-c(l)PcGc-m(l, fe) + ftct-c(2)pcGc-m(2, fe) 

+ + ftct-c{nc)pcGc-m(nc, k) 
-rftct-co{^)pcoGco-m(l, fe) + ftct-co(2)pcoGco~m(2, fe) 

+ + ftct-c0(nco)pcoGco-m(nco, fe) 

+ftct-.(l)p.G,-m(l, fe) + ftct-.(2)p,G,-m(2, fe) 

+ + ftct-.(ns)p,G,-m(ns, fe) 

file://-/-ftcw-
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~\~ ftct—mc (1 )Pmc Gmc—m 
(1,*) 

+ftct-mc('2)pmcGrnc-m(2, k) 

+ + ftct-mc(nmc)pmcGmc-m(nmc, k) 

+/tct {l)PmclaGmcla-m{l, k) 

+ftct —mcla {2)pmclaGmcla-m(2, k) 

+ + /let —mcla 
(nla)pmciaGmcia-m('n'la, k) 

—meta {^)PmctaGmcta —m (k) 

-tftct-tcw (l)Ptctu Gtcw-m (k) 

+ftct-tct (1 )ptct Gjct _ m ( fc ) 

+/*<*-,* ( l )p.tG . t _ m ( l,fc) + /tct-«t(2)p»tC7,f-m(2, A:) 

+ + ftct-.t(nst)p,tG.t-m{nst, k) (B.75) 

G,t-m(i,k) = f,t-m(i,k)er, 

m—m 

+ + f,t-m{i,nm)pmGm-m(nm,k) 

+f.t-c(i, l )p eGc-m ( l , fc) + /.t-e(», 2 )p c G c_ r n(2, fe) 

+ + /«t-c(», n c ) p c G e _ T O ( 7 i c , fe) 

+f.t-co(i, l)pcoGco-m(l, k) + f.t-co(i,2)PcoG 

co—tn 
+ + /,t-co(i, nco)pcoGco-m{nco, k) ' 

+ / * - . ( * , l)PmC?.-m(l, *) + / r t _ . ( t , 2)PmG.-m{2, k) 

+ + /,t-,(i, nm)pmG,-m{nm, k) 

-rf,t-mc{h l)pmcGmc-m 
(1,*) 
(2,*) 
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+ 4- f.t-mc{i,nmc)pmcGmc-m(nmc, fe) 

+f.t —mcla (i, l)PmclaG 
mcla—m 

(1,*) + 
fit—mcla{i) 2)p m c/ 0G T O (Ja-m(2, fe) 

+ + fit—mcla 
(i, nla)pmciaGmcia-m{nla, fe) 

—meta meta Gmcta—m ( k ) 

+fit-tew(i)PtcwGtcw-m(k) 

-rfit-tct(i)PtctGtct-m(k) 
+fit-it{i, l)pmG.t-m(h k) 4 fit-.t(h 2)PmGtt-m(2, fe) 
+ + f.t-it(i, nm)pmGtt-m{nm, fe) (B.76) 

Gs-m(i,k) = ft-m(i,k)em 

+fi-m{i, l ) / 3 m G m _ m ( l , fe) + fi-m{i, 2)pmG 
m—m 

(2,k) 
+ + f.-m{i, nm)pmGm-m(nm, fe) 
+ / . - e ( * \ l > c G c - m ( l , * ) + / . _ c ( » , 2)pcGc-m(2, fe) 

+ 4- f.-c(i,nc)pcGc-m(nc, fe) 

+ / . - « , ( » , l ) p C O G c 0 _ m ( l , fe) + f.-co{i, 2)pcoGco-m(2, fe) 

+ 4 fi-eo(i, nco)pcoGeo-m{nco, fe) 

+/._.(», lKG._ m(l, As) + / . - . ( t , 2)p mG ._ m (2,fe) 

+ + f.-e(i,nm)pmGt-m(nm,k) 

(1,*) 

~V fi—mc('i 2 ) p m c G m c — m 
(2,*) 

4 + f.-mc{i,nrnc)prncGmc-m(nrnc, fe) 

(1,*) 

4"/j—mcio(*> 2 ) p m c f a G m c J a _ m ( 2 , fe) 
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+ + fs-mcia(i,nla)pmciaGmda-m{nla, fc) 

—met a mclo Gmcta—m ( fc ) 

(fc) 

+/ < -trf(Opt ctG t r f_ m(fc) 

+/.-.*(», l K G , . m ( l , fc) + / . _ , t ( i , 2>mt7,_ro(2, fc) 

+ + ft-.t(i,nm)pmGt-m(nm,k) (B.77) 

Gco—m(*j fc) — /co-m(*i fc)em 
m—m m—m 

(2,fc) 

+ + /co-m(i, nm)pmGTn-rn(nm, fc) 

+/eo-c(»\ l ) p e G e _ m ( l , fc) + /eo-c(t, 2)PcGe.m(2, fc) 

+ 4- fco-c(i,nc)pcGc-m(nc,k) 

+/»-»(», l > c o G c o _ m ( l , fc) + /«,-»(*! 2)/)coGr

co_m(2, fc) 

+ + fco-co(i, nco)PcoGco-m(nco, fc) 

+/--.(*, l ) p . G . _ m ( l , fc) 4- /«,_.(<, 2>,G,_m(2, fc) 

+ + fco-,{i,ns)P.G.-m(ns,k) 

4"/eo-me(*> 1 )PmcGmc—m (1, fc) 

+/co-mc(i, 2)pmcG (2,fc) 

+ 4- feo-mc{i, nTnc)PmcGmc-Tn{mnc, fc) 

"("/co—mdo(*'i l)/'mcJoG m c/ 0_ m(l, fc) 

—mcla (*» 2 ) p m c j a G m c i a _ m ( 2 , fc) 
+ 4" /co-mc/a(i,^a)/'mcJaGf

mcia-m(^a, fc) 
4/co —mcto 

(OP 
mcto Gmct a—m ( fc ) 
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•T fco-tcw(i)ptcwGtcw-m(k) 

-rfco-tct{i)ptctGtct-m(k) 

+fco-.t(i,l)p.tG.t-m(l,k) + 
fee—it 

(i,2)p.tG.t-m(2,k) + + feo-.t(i, nst)p$tGtt-m(nst, k) (B.78) 

These equations will be solved simultaneously for the Gebhart factors Gi-j where j repre

sents the melt element k and i represents each other surface. The system that is produced 

by these equations can be written in matrix form as follows: 

where [A] is a square matrix of size N * N where N = nm + nc + nmc + ns + nla + 

nco + nst + 3 if the crystal, crystal top and outer crucible wall are included. If the system 

is solved for the encapsulant instead of the melt, nm will be replaced by ne , and N 

will be reduced by twice times the number of elements of the crystal that are below the 

encapsulant surface. Otherwise, N will be either equal to ( nm + nc+nmc + nla + 3 ) or ( 

nm + nc + nmc + nla + 3 + ns + nst ). (x) is a column matrix of size N * 1 that represents 

the Gebhart factors, and [b] is a column matrix of size N * 1 which represents the right 

hand side of the equation.The matrix is solved using routines available on the VAX-VMS 

system. The matrices [A], (x) and [b] are given next. The matrix [A] is large and will 
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therefore be written as a 8 * 8 matrix where each element represents a matrix. 

Al A2 A3 A4 A5 A6 A7 A8 
Bl B2 B3 B4 B5 B6 B7 B8 
CI C2 C3 C4 C5 C6 C7 C8 
DI D2 D3 D4 D5 D6 D7 D8 
El E2 E3 E4 E5 E6 E7 E8 
Fl F2 F3 F4 F5 F6 F7 F8 
Gl G2 G3 G4 G5 G6 G7 G8 
HI H2 H3 H4 H5 H6 H7 H8 

Bl, B2 ... B8, C1,C2 .. . C8, DI, D2 
E8, Fl, F2 ... F8, Gl, G2 ... G8 and Hi, H2 ... H8 are as follows. 

Al = 

/f»-m(l> l)Pm — 1 /m-m(l,2)pm / m _ m ( l , nm)^ 

/m-m(2, l)pm /m-m(2, 2)/J m — 1 fm-m{2,nm)prl 

^ fm-m(nm, l)Pm fm-m{nm,2)pm fm-m(nm,nm)pm — 1 ̂  

A2 = 

/ m - e ( l , l > e /m-c(l,2> c 

/ m _ e ( 2 , l ) p e / m _ e ( 2 , 2 ) p e 

fm-e(l,nc)pc 

fm-c(2,nc)pc 

K fm-c(nm,l)Pc fm-c(nm,2)pc fm-c(nm,nc)Pe } 
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A3 = 

fm—mc(l) l)Pmc fm—me(l> 2)pn 
/m-mc(2, l)pmc /m-mc(2, 2)p„ 

nmcjp 
n 

fm—mc{2, Tl 

^ fm-mc{nm,l)pmc fm-mc(™rn,2)pmc /m-rac(™, Timc)prnc ^ 

I 

A4 = 

fin—mcla (l,l)pmcla fm-mcla{l,2)Pmcla /m-mcJa(l, nla)pmcla 

/m-mcio(2, l)pmcia /m-mc/a(2, 2)p m c/ a fm—mcla{2, Tll(l)pmcla 

^ fm-mcla{nm, I)pmcla fm-mcla(nm, 2)pmc/a /m-mc/a(""l, nla)pmcla J 

fm—mcta meta /m-fcuj(l)Ptcn) /m-tct(l)Ptct 
/m-mcta(2)pmcto /m-tcu;(2)ptcu; fm-tct (2)ptct 

A5 = 

^ fm-mcta{nm)pmcta fm-tcw(nm)ptcw fm-tct{nm)ptct j 

/ / m _ . ( l , l ) p . /m-.(l,2)p /m-,(l,n 5)p, ^ 
/ m _ , ( 2,l)p, /m_,(2,2)p, / m _,(2,ns)p. 

A6 = 

K fm-.(nm,l)p. fm-.(nm,2)p, fm..(nm,ns)p, J 
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( 

A 7 = 

/ m - c o ( l , l)Pco / m - e o ( l , 2)pc 

/m-co(2, l)pco /m-co(2, 2)p c 

/ m - c o ( l , W C 0 ) / J 
c 

fm-co{'2,nco)p 
c 

y fm-co(nm, l)pco fm-co{nm, 2)pco fm-co{nm,nco)pco 

^ fm-,t{lA)P>t fm-3t{l,2)p.t fm-,t(l,nst)p,t ^ 

fm-.t(2,l)ptt fm-.t{2,2)p,t fm-,t{2,nst)p,t 

A 8 = 

^ fm-,t(nm, l)p,t fm-it(nm,2)p,t fm-,t(nm,nst)p,t ) 

/ c - m ( l , l )Pm / c - m ( l , 2 ) p m / c - m ( l , nm)pm 

fc-m(2,l)pm fc-m(2,2)pm /c_m(2,nm)pm 

Bl = 

^ fc-m(nc, \)pm fc-m(nc,2)pm fc-m(nc, nm)pm J 

' / c _ c ( l , l > c - l / c_ c(l , 2 > c / c _ c ( l , n c > c 

/ c _ c ( 2,l)p c / c_ c(2,2)^-1 / c _ c (2,nc> c 

B 2 = 

^ fc-c(nc,l)pc fc^c(nc,2)pc fe-e(nc,nc)pc - 1 J 
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/ c - m c ( l > l)Pmc / c - m c ( l , 2 ) p m c / c - m e ( l , nmc)pme 

fc-mc{2,l)pmc fe-mc(2, 2)Pme /c-mc(2, nmc)pmc 

B3= 

^ /c-mc(nc, l ) p m c fc-mc(nc, 2)pmc fc-mc{nc,nmc)pmc 

/ c - m c i o ( l ) l)pmcZa /c-mtJo(l) 2 ) /J m c J a fc-Tncla{l-inla)Pmcla 

fc-mcla(2,l)pmcla fc-mcla(2, 2)/9 m c J a /c-mcia(2, nZa)/3 m c j a 

B4= 

^ fc-mcla(nC, l)pmcla fc-mcla(nC,2)Pmcla fc-mcla(nC,nla)pmcla ^ 

Jc—mcta 

mcto fc-tcw{2)ptcw fc-tct{2)ptct 

B5 = 

^ fc-meta(nc)pmcta fc-tcwi^^Ptcw fc-tct(nc)ptct ^ 

( fe-.{l,l)p. fc-s(l,2)ps fc-.(l,ns)p. ^ 

fe-.(2,l)p. /c_,(2,2>, fc-.(2,ns)p. 

B6 = 

^ fc-.(nc, l)p, fc.,(nc,2)p, fc-,(nc,ns)p. ) 
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/c-co(l, l)Pco fc-co(l,2)Pco }c-co{^inco)pco 

fe-co(2,l)pco /c-co(2,2)pco fc-co(2,nco)pco 

B7= 

^ fc-co(nc,l)pco fc-co{nc,2)pco fc-co(nc,nco)pco 

( / c _ , t ( l , l)Plt fc-.t{l,2)p,t fc-.t{L,nst)ptt ^ 

fc-,t{2,l)p.t fc.tt(2,2)pst fc_.t(2,nst)pet 

B 8 = 

^ fc-»t(nc,l)ptt fc-tt(nc,2)ptt fc-$t{nc,nst)p,t j 

/mc-m(l, l)/?m /mc-rn(l, 2)pm fme-m(l, nm)Pm 

fmc-m{2,l)Pm /mc-m(2, 2)pm fmc-m{2, Tim)pm 

CI = 

^ fmc—m ( 
nmc, l)pm fm.c-m(nmc,2)pm / m c - m (nmc, nm)pm J 

( /mc-c(l,l)/»c /mc-c(l ,2)^ c fmc-c(^,nc)pe 

fmc-c(2,l)pc fmc-c(2,2)pc fmc-c(2,Tlc)Pe 

C2 = 

^ fmc-c(nmc, \)pc fmc-c(nmc,2)pc fTnc-c{nmc,nc)pc J 
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/ 

C3 = 

/mC-mc(l, l)Pmc — 1 /mc-mc(l, 2)^mc /mc-mc(l. nmc)P„ 

fmc—mc(2, 1)/Jmc /mc-tnc(2, 2)^Jmc 1 fmc—mc{2)TlTnc)pTl 

^ fmc-mc(nmc)l)pmc fmc-mc(nmc, 2)pmc fmc-me{nmc,nmc)prnc — 1 

fmc—mcla [l>l)Pmcla fmc-mcla(l,2)pmcla /me-mela(l| ttfo)PmeJa | 
fmc—mcla (2,l)pmcla fmc—mcla (2,2)Pmcla fmc—mcla 

C4 = 

^ fmc-mclainmc, l)pmda fmc-mda{nmc,2)pmcla fmc-mda(nmc,nla)pmcla j 

I 

C5 = 

fmc—mcta fmc-tcwiX)ptcw fmc-tct(l)Ptct 
fmc-mcta{2)pmcta fmc-tcw(2)ptcw fmc-tct{2) ptct 

^ fmc-mcta(nmc)pmcta fmc-tcw{nmc)ptcw fmc-tct{nmc)Ptct j 

( 

C6 = 

/ m c - , ( l , l)p, fmc-.{l,2)p, 

fmc-.(2,l)P. fmc-.(2,2)P, 

fmc-,{l,ns)p, 

fmc-.(2,ns)p. 

^ fmc-,(nmc, l)p, fmc-s(nmc,2)p, fmc-t(nmc,ns)pt / 
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i 

C7 = 

/mc-co(l) 1)P c 
/me-eo(2, l ) p c 

fmc-co(l, 2)p 
c 

/me-co(2, 2)p 
c 

c 
c 

nmc, l)pco fmc-eo(nmc,2)pco fmc^co(nmc)nco)pco J 

( 

C8 = 

/mc-«t(l, l)p«t /mc-*t(l ,2)p 4f 
/mc-»t(2, l)p,t /mc-«t(2, 2)p,t 

/mc-«t(l,n5t)/J,t 

fmc-.t{2,nst)p at 

^ fmc-st(nmc,l)p,t fmc-tt{nmc)2)p,t fmc-,t(nmc,nst)p3t ) 

( 

DI = 

/mcia-m(l, l)Pm /mda-m(l, 2)^ 

(2,1> (2,2> /mcia-m(2,nm)/> 
n 

^ fmda-m.(nla, l)pm fmda-m(nla,2)pm fmcla-m(nla,nm)pm j 

I 

D2 = 

/mdo-c(l) l)Pc 
fmcla-c(2, l)pc 

/mcia-c(l, 2)/3 c /mc/o-c(l, nc)pc 

fmcla-c{2,2)pc fmcla-c{2,nc)pc 

^ fmcia-c(nla, \)pc fmcia-c(nla,2)pc fmda-c(nla,nc)pc t 
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D3 = 

n 

/me/a-mc(2, l)p n 

fmcla—mc n 

fmcla—mc n fmcla—mc 
(2,nmc)p 

K fmela-me(nla,l)pme fmda-mc{nlat2)pme fmda-mc(nla,nmc)pmc 

( 

D4 = 

fmcla—mcla 

fmcla—mcla{p"i ̂ )Pmcla fmcla—mcla 
(2,2)pmcia — 1 

^ fmcla-mcla{nla, l)pmcla fmda-mda{'nla,2)prncla 

fmda-mda{^,flla)pmcla 

fmda-mda{2, nla)pmcla 

fmda-mda{nla,nla)pmcla — \j 

fmda-mcta{X)pmcta fmda-tcwiX)Ptcw / m c i a - t c f ( l ) P t e t 

fmda (2)p mcta /mcfa-tcui(2)ptcu> fmda-tct{2) Ptct 

D5 = 

^ fmcla—mcta (nla)pmcta fmda-tcw(nla)ptcw fmcia-tct{nla)ptct J 

^ / m c l o - « ( l , l ) p « / m c / o - » ( l ) 2 ) p , fmda-s{l,ns)P. ^ 

fmcla—M 
(2,2)p, fmda-.(2,ns)p. D6 = 

^ fmda-,(nla,\)p, fmda-,(nla,2)p, fmcia-,{nla,ns)p, ) 



Appendix B. Gebhart Factor Equations Derivation 

( 

D 7 = 

fmcla—co c 

fmcla-co{2, 1)P c 

/mdo-co(l,2)/) c 

/mc/a-co(2, 2)pc 

fmcla—co 
(l,nco)p 

c 
• •• fmcla-co(2,nco)pc 

^ fmcla-co(nla,l)pco fmcla-co{nla,2)pco ••• fmcla-co(nla,nco)pco j 

( 

D 8 = 

fmcla-tt{l, 1)P«1 

/mcio-«t(2, l)p,{ 

/mda-«t(l,2)p,t fmcla->t(l, nst)Pit 

fmcla-tt(2,2)p,t fmcla-tt(2, nst)p,t 

^ fmcla-tt(nla,l)ptt fmcia-,t{nla,2)p,t fmcia-»t(nla,nst)pat ) 

E l = 
fmcta-m{X)pm fmcta-m(2)pm fmcta-m(nm) Pm 

ftcw-m{l)Pm ftcw-m{2)pm ftcw-m{™m)pm 

^ ftct-m(l)pm ftct-m{2)pm ftct-m(™n)pm j 

E2 
fmcta-c(l)pc fmcta—c {2)pc fmcta-c{nc)pc 

ftcw-c(l)Pc ftcw-c(2)pc ftcw-c{nc)pc 

^ ftct-c[X)pc ftct-c{2)pc ftct-c{nc)pc j 

E3 = 
^ fmcta—mc{X)Pn 

ftcw—mc (1 )Pm< 

^ ftct-mc{X)pmc 

fmcta—mc(2)pmc fmcta—mc{nmc)pTnc 

ftcw—mc(2)pmc ftcw—mci, 
nmc)p 

mc I 

ftct-mc{2)pmc ftct-mc{nmc)pmc j 
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E 4 = 

fmcta—mclai^) Pmcla fmcta—mcla[2*)pmda ••• fmcta—mcla(jll&)pmcla 

ftew—mcla(X)P mcla ftew—mcla$)P mcla ftew—mcla 

(nla)pmcia 

^ ftct-mela{l)Pmcla ftct-mcla{2)Pmcla •• ftct-mcla(nla)Pmcla j 

E 5 = 

fmcta—mctaPmcta 1 fmcta—tew P tew fmcta— tctPtct 

ftew—meta Pmcta ftew—tew P tew 1 ftcw—tctPtct 

^ ftct-metapmcta ftct-tcwPtcw ftct-tctptct ~ 1 y 

E 6 = 

' fmcta-i(l)p, fmcta-,{1)pt fmcta-t(ns)p, 

ftcw-t(l)Ps ftcw-,{2)Pe ftcw-»{ns)pt 

^ ftct-.(l)p, ftet-.{2)p, ftct-,{ns)p„ j 

E 7 = 

^ fmcta-coiX)peo fmcta-coitypco fmcta-co{nco)Pco 

/teu>-eo(l)/>co ftcw-co{1)Pco ftew-eo(nco)pco 

\ ftct-co{l)Pco ftct-co(2)Pco ftet-co(nco)p 
CO ) 

E8 = 

( fmcta-3t(l)p,t fmcta-,t{2)p,t fmcta-it{nst)ptt 

ftcw-Mt{l)Pst ftcw-,t(2)p,t ftcw-tt(nst)p,t 

^ ftct-,t{1)pit ftct-,t{2)p.t ftct-,t(nst)p,t j 
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( 

F l = 

/ . _ m ( l , l > m /._ m(l , 2 )^ 

/ . _ m ( 2,l)p m f.-m(2,2)p„ 

/ ,_m(l,nm)/j 

f,-m(2,nm)p 

K f.-m(ns,l)pm /,_m(ns,2)pm f„_m(nsinm)pm J 

F2 = 

/.-c(l,l)Pc /.-c(l ,2)p e 

/.-c(2,l)pe /.-e(2,2)pe 

^ f.-c(ns, l)pe f.-e(ns, 2)Pc 

f.-e(l,nc)pe 

f.-c(2, nc)Pc 

f,-c(ns,nc)pc j 

( 

F3 = 

J i—mc Tl 

J *—me 
(2, l)p m c f.-mc{2,2)pT1 

ft—mc ( 
l,nmc)p 

n 

(2,7imc)p 

^ f.-mc(ns, l)pmc f,-mc(ns,2)pmc f,-mc{ns,nmc)pmc j 

( 

F 4 = 

ft—mcia(l) l)Pmeia /#—mcia(l) 2)pmc/a 
-mcla (2, 2)pmcla 

(US, l)pmcla f,-mcla{nS,2)pmcla 

ft-mcla (1, nla)pmcla 

fs-mcla{2,nla)pmcia 

fi-Tncia{ns,nla)pmcia j 
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ft-mcta{l)Pmcta ft-tcwiX)ptcw fi-tctiX)Ptct 

J i—meta meta f»-tcw(2)ptcw ft-tct(2)ptct 
F5 = 

V ft-mcta(ns)Pmcta ft-tcw(ns)ptcw f,-tct{ns)ptct J 

/ . _ , ( l , l ) p , - l /.-.(l , 2)p. f.-.{\,ns)p, 

/ , - . ( 2,l>. / ,_,(2,2)p,-1 f,.,{2,ns)Pe 

F6 = . . . 

^ fs-t(ns,l)pt ft-t(ns,2)p, f...(ns,ns)p, - 1 J 

/,_co(l, l ) p c o f,-co{^,2)pco f,-co(l,nco)pco 

/«-co(2, l)pco f,-co{2,2)pco f,-co{2,nco)pco 

F 7 = . . 

^ fi-co(ns,l)pco ft-co(ns,2)pco f8-co(ns,nco)pco 

^ l)p . t f,-.t(l,2)p,t f.-.t(l,nst)ptt ^ 

f,-,t(2,l)p,t f,.,t(2,2)p,t f._st(2,nst)p,t 

F8 

^ f.-it{ns,\)p.t fs-tt(ns,2)ptt f.-.t{ns,nst)p,t ) 
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G l = 

/co-m(l» l)pm /co-m(l) 2)p„ 

/co-m(2, l ) p m /co-m(2, 2 ) ^ 
/co-m(l, nm)p 

n 
/co-m(2,nm)/3 

^ fco-m(nCO, l)pm fco-m(nCO, 2)pm fco-m(nCO, Tim)pm 

( 

G2 = 

/co-c(l, l)Pc /co-c(l, 2)/Jc 

/ c o _ c ( 2 , l > c / c o_ c(2,2> c 

/«,-e(l|nc)pc 

/co_c(2,nc)/)c 

^ fco-c(nco, l)pc fco-c(nco,2)pc fco-c(nco,nc)pc ) 

( 

G3 = 

/co—mc(l) l)pVnc fco—mc(1 j 2)pn 
fco—mc(2] l)Pmc fco—mc(2} 2)pr 

fco—mc(l j 
nmc)p 

/co-mc(2,nmc)/9 
fl 

^ fco-mc(nCO, l)pmc fco-mc(nCO, 2)pmc /co-rac(7lCO ,?imc) /3 m c ^ 

/co—mc/a(l> l)Pmc/a /co—mc/a(lj 2)/Jmc/o fco—mcla 

G4 = 
fco—mcla (2, l ) p m C / o fco—mcla 

(2, 2 ) p m c j a 

/co-mda(2, n/o)/?mc/a 

^ fco-mcla{nCO, l)Pmcla fco-mcla(nCO,2)pmcla fco-mcla{nCO,nla)pmcla / 
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( 

G5 = 

/co (1)P meta fco-tcuiiX) Ptcw feo-tetiX)ptct 

fco-mcta(2)pmcta fcc—tcw(2)Ptcw fco-tct(^)Ptet 

^ fco-meta(nco)pmcta fco-tew{nco)ptcw fco-tet{nco)ptet j 

^ feo-.(l,l)ps fco-,{l,2)p, fco.t(l,ns)p, ^ 

/ c o _ . ( 2 , l > . / c o_,(2,2)p, feo-.{2,ns)p. 

G6 = 

v feo-,(nco,l)ps feo-,(nco,2)p, fco-.(nco,ns)pt J 

( 

G 7 = 

/co—co(lj l)Pco 1 /co-co( l , 2)p 
CO 

fco-co{2} l)Pco /co-co(2,2)pco 1 

^ fco-co{nco, l)pco fco-co(nco,2)pco 

fco-eo(l,nC0)p 
c 

fco-co(2,nco)p 
c 

fco-co(nco,nco)pco — 1 j 

/ 

G8 

/co-«t(l, l)Pst /co-*t ( l , 2)/),t 

fco-»t(2, l)ptt fco-,t(2,2)p,t 

^ fco-Mt(nco,l)p,t fco-Mt(nco,2)p,t 

fco-,t{l,nst)p,t 

fco-tt(2,nst)plt 

fco-tt{nco,nst)p,t j 
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HI = 

/ , t _ m ( l , l)pm fat-m(l, 2)p„ 

f.t-m(2,l)pm f,t-m{2,2)pn 

H2 = 

^ f.t-e(nst,l)pc f.t-c(nst,2)pc 

n 

Tl 

^ fst~m{nst,l)pm f,t-m(nst>2)pm f,t-m(nst,nm)pm 

(
 fat-c(l, l)pc /.t-c(l,2)/>c fH_c(l,nc)pc ^ 

f.t-c{2,l)pc f,i-c(2,2)pc fat.c{2,nc)pc 

fst-e(nst,nc)pc ^ 

( 

H3 = 

/«f-mc(l, lJPr 

fst-Tnc{2,l)P Ti 

TI 

ftt-mc(2,2)p 
Tl 

/*f—mc( 
l,nmc)p 

Tl 

/*t-mc(2, nmc)p 
Tl 

^ f>t-mc(nst, \)pmc f,t-Tnc(nst,2)pmc f,t-Tnc{nst,nmc)pmc t 

I 

H4 = 

/«t-mcio(l> l)Pmc/a /*t—mcia(lj 2)p m c Zo 

—mcia (2, l ) p m C/o /»(-mcia(2, 2)/>mcia 

^ ftt-mcla{nst, l)pmcla ftt-mcla(nst,2)pmcla 

/«t-mcio(l> nla)pmcia 

fst-mcia(2, nla)pmcla 

ftt-Tnclainstjnl^Pmcla ) 
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-meta[^)Pmcta ftt-tcwiX)Ptcw f$t-tctiX)Ptct \ 
ftt-mcta{2)pmcta fst-tcw{2)Ptcw ftt-tct{2)ptct 

H5 = 

^ f$t-mcta{nst)pmcta f,t-tcw(nst)ptcw ftt-tct(nst)ptct j 

( /.t_,(l,l>. /.t-.(l,2)p /.t_.(l,nj)p. > 

/„_,(2,1>. /<t.J(2>2)p. /.t-.(2,Tw)p. 
H6 = 

^ f,t-.(nst, l)p. f,t-,{nst,2)p. f.t-s(nst,ns)p, } 

/jt-co(l, l)Pco f$t-co(l,2)pco f,t~a>0-,nco)pco 

ftt-co{2,i)pco ftt-co(2>2)pco ftt-eo(2,nco)pco 

H7 = 

^ ftt-co(nst, l)Pco f,t-co{nst,2)Pco f,t-co{nst,nco)pco j 

/.i-.t(l,l)/0#t - 1 /.t-»t(l,2)p,( f.t-,t{l,nst)p.t ^ 

ftt.,t(2,l)p.t f.t-,t(2,2)p.t - 1 f.t-.t(2,nst)p.t . 

H 8 = 

^ f,t-it(ns,l)ptt ftt-it(ns,2)p,t ftt-tt{nst,nst)p,t - 1 ^ 
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The column matrix (x), as stated earlier, represents the Gebhart factors that must 

be evaluated, (x) will depend on the particular surface under consideration. It will be 

given here for a general case and for one specific case, that being the melt. Therefore, in 

general, (x) will have the form: 

Gk-i,j 

\ Gk'j 1 

For the specific case of the melt (x) will be a long matrix. Therefore, it will be divided 

to 8 smaller column matrices that are as follows : 
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( - ) -

x l 

x2 

x3 

x4 

x5 

x6 

x7 

v x 8 / 
where x l , x2, x8 are as defined below. 

x l = 

^ C7m_m(l, fe) ^ 

Gm-m(2,k) 

"m—m 
(M) 

y Gm-m(nm, k) J 

1 Gc_m(l,fe) ^ 

Gc_m(2,fc) 

,x2 = 

^ Gc.m(nc.fe) j 

(1,*) 1 

Gmc-m(2, fe) 

,x3 = 

^ Gmc-m(nmc, k) J 

x4 = 

Gmcla—jn(11 fe) 

GmcJa-m(2, fe) 

^ Gmcia-m(nla, fe) j 

,x5 = 

"meta—m 
(fe) * 

Gtcu,-m(fe) 
^ Gtct.m{k) J 

,x6 = 

^ ^ ( l . f e ) N 

G,.m(2,k) 

^ G,-m(ns, k) J 
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x7 = 

Gco-m(l) fc) 

G«,-m(2,fe) 

^ Gco-minco,*) j 

,x8 = 

/ G r t _ m ( l , * ) ^ 
G,t-m(2,fc) 

^ G, t _ m (nst,A:) y 

The right hand side [b] is given by: 

b l 

b2 

b3 

b4 

b5 

b6 

b7 

b8 

b l , b2 b8 are defined next for the the melt surface. 

b l = 

/m—m(1 > fc)^n 

/m—m(2, fc)6fi 

b4 = 

fm-m(nm, k)em 

/ m c i a - m ( l ) fc)en 

fmcla—m{2, fc)Cri 

,b2 = 

/ c - m ( l ) fc)en 

/ c_m(2,A:)eT 1 

,b3 = 

fmcla-m(nla, k) 

,b5 

/ c _ m ( n c , fc)en 

fmcta—m ( fc ) 

/tctu-m(fc) em 

/tct-m(fc) c m 

fmc—m (1 > fc ) 

fmc—m(2, fc)6n 

,b6 = 

fmc—m ( 
nrac, A:) 

/ * — m ( l j fc)^m 

/« -m(2 , fc)Cm 

/«-m(n«|fc)Cn 
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/.t -m ( l , k)cm 

f.t-m(2,k)em 

f3t-m{nst,k)em _ 

Since the surface considered here is the melt, then k will vary from 1 to nm. Therefore, 

the system will be solved nm times to determine the Gebhart factors for all melt elements. 

The matrix [A] is the same for the whole system. However, (x) and [b] are not. The fact 

that the matrix [A] is the same for all surfaces reduces the computation time required 

considerably. The method of solution for the other surfaces is similar to that for the melt 

and is described next. 

B.3 Gebhart factor equations for the crucible inner wall 

The equations for the crucible elements will be similar to the melt elements' equations. 

The'm' subscript will be replaced by 'c' in the ' G ; _ m ' variable and in the product of em 

and fi-m- Also, k will vary from 1 to nc, which is the number of elements of the crucible. 

The subscript 'm' in the matrices (x) and [b] will be replaced by 'c\ 

B.4 Gebhart factor equations for the middle cylinder wall 

The'm' subscript in this case will be replaced by 'mc' in lGi-m\ and in the product of 

em and /,_,„. k will vary from 1 to nmc - the number of elements of the middle cylinder. 

The subsript 'm' will be replaced by 'mc' in the matrices (x) and [b]. 

b7 = 

fco—m(l> k)en 

/co-m(2, k^Cf, 
,b8 = 

fco-m(nco, k) 
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B .5 G e b h a r t f a c t o r e q u a t i o n s for t h e c r y s t a l a n d t h e c r y s t a l t o p 

The'm' subscript in this case will be replaced by's' for the crystal case and by 'st' for 

the crystal top case in 'Gi-m\ and in the product of and / , _ m . k will vary from 1 to 

- the number of elements of the crystal, and from 1 to nst - the number of elements 

of the crystal top when calculating the crystal top factors, 'm' will be replaced by's' or 

by 'st' in the matrices (x) and [b]. 

B.6 G e b h a r t f a c t o r e q u a t i o n s for t h e c r u c i b l e o u t e r w a l l 

The'm' subscript in this case will be replaced by 'co' in '(?»_„,' and in the product of tm 

and fi-m- k will vary from 1 to nco - the number of elements of the outer crucible wall. 

The subscript'm' will be replaced by 'nco' in the matrices (x) and [b]. 

B.7 G e b h a r t f a c t o r e q u a t i o n s for t h e m i d d l e c y l i n d e r l o w e r a n n u l u s 

The'm' subscript in this case will be replaced by 'mcla' in '(j;_m' and in the product of 

tm and fi-m- k will vary from 1 to nla - the number of elements of the lower annulus. 

In the matrices (x) and [b], the subscript 'm' will be replaced by 'mcla'. 

B.8 G e b h a r t f a c t o r e q u a t i o n s for t h e m i d d l e c y l i n d e r t o p a n n u l u s , t o p c y l i n 

d e r w a l l , t o p c y l i n d e r t o p 

The 'm' subscript in this case will be replaced by 'mcta', 'tew' and 'tct' in 'C?i_m' and 

in the product of em and / i _ m for the middle cylinder top equations, the top cylinder 

wall equations and the top cylinder top equations, respectively. The variable k will be 

equal to 1 since there is only one element on each surface. For the case of calculating 

the Gebhart factors for the top chamber that is composed of mcta, tew, tct, the subscript 
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'm' in both matrices (x) and [b] will be replaced by 'meta ' when calculating the middle 

cylinder top factors and so on for the other two surfaces. 

B.9 Gebhart factor equations for the encapsulant 

The encapsulant surface is considered for the case when the radiation emitted from the 

melt is at a wave length greater than 2/zm. Since at that wavelength, the encapsulant 

is considered opaque. Therefore, the Gebhart factor equations are written in the same 

manner as those for the melt except that the'm' subscript is replaced by 'e' in all the 

equations and matrices. The subscript'm' in the other surfaces' equations and matrices 

is also replaced by 'e'. The crucible and crystal elements that are below the encapsulant 

surface will not be considered as part of the system. 



Appendix C 

Programme Flow Chart 

C . l General 

This appendix gives the flow chart of the programme that is used in calculating the 

configuration factors and the Gebhart factors. The flow chart is divided tofour sections 

and given in figures C.44 to C.47. Figure C.44 gives the flow chart of the main section of 

the programme in which the case is chosen, the surfaces are divided to elements and then 

the main subroutine is called for encapsulant surface (cases 12, 22 or 32). Depending on 

which case is calculated the main subroutine is called again for melt surface calculations 

(cases 1, 2 or 3). The numbers 1, 2 and 3 refer to the cases described in chapter-3. 

Figures C.45 to C.47 show the flow chart of the main subroutine. 

139 
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START 

Define lease 
12, 22 or 32 

Define 
Ni and Xi 

I 

Initialize heat transfer 
summation to zero 

Call Main Subroutine 

Figure C.45: Main programme flow chart. 
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START 

~ r ~ " 
Enter constants' values 

Calculate surface areas 
temperature and energy fraction 

Calculate H(i-j) 

Calculate Configuration Factor 
Depending on case 

Add Configuration Factor 
for each surface 

rint Configuration Factor 
summation for each surface. 

Figure C.46: Main subroutine flow chart. 
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Begin Gebhart Factor Calculation 
i 

Enter Elements of Matrix 'A' 

Factor Matrix 'A' 
by Gaussian Elimination 

Enter Column Matrix 'b' 

Solve for Gebhart 
Factor of surface V 

Calculate the product 
Xk - eps*Ak*Tk*Gik*fi 

Calculate the Sums 
Yk - Yk •• Xk«sigma 

Zk " Zk • Xk 

Calculate the sum of the 
Gebhart Factors for 

each surface element 

Print Gebhart Factor 
summation of each surfaces 

Figure C.47: Continuation of main subroutine flow chart. 
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.yes 

Calculate Heat Transfer and 
the Equivilent Ambient Temperature 

of Each Surface Element 

I 
*rint: A r e a . "TemPk Equiv. Temp. 
Q (abs), Q (emit) and Q (net) 

of each element 

Calculate the Sums of 
the Heat Transferred 

from and to each surface 

Calculate the Net Heat 
Transfer from the System 

Figure C.48: Continuation of main subroutine flow chart. 



Appendix D 

Configuration and Gebhart Factors Calculations Results 

D.l General 

This appendix gives the results of the configuration factor summation for each element 

calculated for cases II and III for the simplified case of one—surface enclosure. The 

results for case-I are given in appendix A. The Gebhart factor summation is one for all 

elements. 

Tables D.22 and D.23 give the summation for case-II from the melt, crucible, crystal 

and crystal top elements, and the ambient to the melt, crucible, crystal, crystal top and 

ambient surfaces. Tables D.24 and D.25 gives the same information but with replacing 

the melt surface by the encapsulant. 

Tables D.26, D.27 and D.28 give the same information stated in the previous para

graph for case-Ill (exchange with the melt). Tables D.29, D.30 and D.31 fist the data 

for exchange with the encapsulant for case-Ill . 

144 



Appendix D. Configuration and Gebhart Factors Calculations Results 145 

Table D.22: Configuration factor summation from surface j to surface i for case-II (ex
change with the melt). 

SURFACEj SURFACE i 

# Melt Crucible Crystal Wall Crystal Top Enclosure 
Melt 1 — 0.4021 0.1818 — 0.4162 

2 — 0.4668 0.2422 — 0.2910 
3 — 0.5151 0.1915 — 0.2934 
4 — 0.5586 0.1516 — 0.2898 
5 — 0.6950 0.1207 — 0.1843 

Crucible 1 0.4556 0.2050 0.2543 0.0000 0.0851 
2 0.3728 0.2027 0.3251 0.0000 0.0994 
3 0.3020 0.2269 0.3540 0.0000 0.1170 
4 0.2448 0.2477 0.3685 0.0000 0.1390 
5 0.1998 0.2651 0.3685 0.0000 0.1666 
6 0.1646 0.2797 0.3540 0.0000 0.2018 
7 0.1370 0.2911 0.3251 0.0000 0.2468 
8 0.1150 0.3266 0.2543 0.0000 0.3040 
9 0.0974 0.2682 0.2050 0.0164 0.4130 

10 0.0831 0.2740 0.1307 0.0459 0.4663 

Table D.23: Configuration factor summation from surface j to surface i for case-II (ex
change with the melt). 

SURFACEj SURFACE i 
# Melt Crucible Crystal Wall Crystal Top Enclosure 

Crystal 1 0.3198 0.5269 — — 0.1534 Crystal 
2 0.2643 0.6754 — — 0.0603 

Crystal 

3 0.2096 0.7434 — — 0.0470 

Crystal 

4 0.1601 0.7870 — — 0.0528 

Crystal 

5 0.1208 0.8081 — — 0.0711 

Crystal 

6 0.0913 0.8081 — — 0.1006 

Crystal 

7 0.0696 0.7870 — — 0.1434 

Crystal 

8 0.0537 0.7437 — — 0.2029 
Crystal Top 1 — 0.0390 — — 0.9610 Crystal Top 

2 — 0.0414 — • — 0.9586 
Crystal Top 

3 — 0.0469 — — 0.9531 

Crystal Top 

4 — 0.0571 — — 0.9429 
Ambient 1 0.0706 0.1493 0.0277 0.0792 0.6732 
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Table D.24: Configuration factor summation from surface j to surface i for case-II (ex
change with the encapsulant). 

SURFACE j SURFACE i 
# Encapsulant Crucible Crystal Crystal Top Enclosure 

Encapsulant 1 — 0.3153 0.1772 — 0.5075 Encapsulant 
2 — 0.3780 0.2180 — 0.4040 

Encapsulant 

3 — 0.4349 0.1589 — 0.4062 

Encapsulant 

4 — 0.4930 0.1156 — 0.3913 

Encapsulant 

5 — 0.6133 0.0850 — 0.3017 
Crucible 4 0.4556 0.1834 0.2220 — 0.1390 Crucible 

5 0.3728 0.1813 0.2793 — 0.1666 
Crucible 

6 0.3020 0.2068 0.2894 — 0.2018 

Crucible 

7 0.2448 0.2291 0.2793 — 0.2468 

Crucible 

8 0.1998 0.2742 0.2220 — 0.3040 

Crucible 

9 0.1646 0.2240 0.1820 0.0164 0.4130 

Crucible 

10 0.1370 0.2365 0.1142 0.0495 0.4663 

Table D.25: Configuration factor summation from surface j to surface i for case-II (ex
change with the encapsulant). 

SURFACEj SURFACE i 
# Melt Crucible Crystal Wall Crystal Top Enclosure 

Crystal 4 0.3198 0.4940 — — 0.1863 Crystal 
5 0.2643 0.6295 — — 0.1061 

Crystal 

6 0.2096 0.6788 — — 0.1116 

Crystal 

7 0.1601 0.6954 — — 0.1445 

Crystal 

8 0.1208 0.6788 — — 0.2004 
Crystal Top 1 — 0.0390 — — 0.9610 Crystal Top 

2 — 0.0414 — — 0.9586 
Crystal Top 

3 — 0.0469 — — 0.9531 

Crystal Top 

4 — 0.0571 — — 0.9429 
Ambient 1 0.0977 0.1292 0.0249 0.0792 0.6690 
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Table D.26: Configuration factor summation from surface j to surface i for case-Ill 
(exchange with the melt). 

SURFACEj SURFACE i 
# Melt Crucible Crystal Wall Crystal Top Enclosure 

Melt 1 — 0.4937 0.1849 — 0.3213 Melt 
2 — 0.5630 0.2617 — 0.1753 

Melt 

3 — 0.6047 0.2220 — 0.1733 

Melt 

4 — 0.6366 0.1912 — 0.1722 

Melt 

5 — 0.7446 0.1671 — 0.0883 
Crystal Top 1 — — — — 1.0000 

Ambient 1 0.0434 0.1222 0.3274 0.0833 0.4237 

Table D.27: Configuration factor summation from the crucible elements to the other 
surfaces for case-III (exchange with the melt). 

Crucible SURFACE i 
Element # Melt Crucible Crystal Wall Crystal Top Enclosure 

1 0.4556 0.2370 0.2763 — 0.0310 
2 0.3728 0.2382 0.3543 — 0.0347 
3 0.3020 0.2655 0.3935 — 0.0389 
4 0.2448 0.2888 0.4225 — 0.0439 
5 0.1998 0.3074 0.4432 — 0.0496 
6 0.1646 0.3214 0.4576 — 0.0563 
7 0.1370 0.3311 0.4677 — 0.0642 
8 0.1150 0.3368 0.4748 — 0.0734 
9 0.0974 0.3387 0.4798 — 0.0842 
10 0.0831 0.3368 0.4833 — 0.0969 
11 0.0713 0.3311 0.4858 — 0.1119 
12 0.0615 0.3214 0.4874 — 0.1296 
13 0.0534 0.3074 0.4886 — 0.1507 
14 0.0465 0.2888 0.4892 — 0.1755 
15 0.0407 0.2655 0.4894 — 0.2044 
16 0.0358 0.2382 0.4890 — 0.2370 
17 0.0316 0.2370 0.4806 — 0.2508 
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Table D.28: Configuration factor summation from the crystal wall elements to the other 
surfaces for case-Ill (exchange with the melt). 

Crystal SURFACE i 
Element # Melt Crucible Crystal Wall Crystal Top Enclosure 

1 0.3198 0.5475 — — 0.1327 
2 0.2643 0.7025 — — 0.0332 
3 0.2096 0.7795 — — 0.0110 
4 0.1601 0.8358 — — 0.0041 
5 0.1208 0.8749 — — 0.0077 
6 0.0913 0.9009 — — 0.0131 
7 0.0696 0.9173 — — 0.0201 
8 0.0537 0.9262 — — 0.0290 
9 0.0419 0.9291 — — 0.0290 
10 0.0331 0.9262 — — 0.0407 
11 0.0265 0.9173 — — 0.0562 
12 0.0215 0.9009 — — 0.0776 
13 0.0176 0.8749 — — 0.1075 
14 0.0146 0.8358 — — 0.1496 
15 0.0122 0.7795 — — 0.2083 
16 0.0103 0.7025 — — 0.2872 
17 0.0087 0.5475 — — 0.4437 
18 0.0076 0.4439 — — 0.5484 
19 0.0070 0.3060 — — 0.6873 
20 0.0059 0.2319 — — 0.7622 
21 0.0052 0.1740 — — 0.8208 
22 0.0047 0.1304 — — 0.8649 
23 0.0042 0.0982 — — 0.8976 
24 0.0037 0.0747 — — 0.9216 
25 0.0034 0.0575 — — 0.9392 
26 0.0030 0.0447 — — 0.9522 
27 0.0027 0.0352 — — 0.9620 
28 0.0025 0.0281 — — 0.9694 
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Table D.29: Configuration factor summation from surface j to surface i for case-Ill 
(exchange with the encapsulant). 

SURFACE j SURFACE i 

#• Encapsulant Crucible Crystal Crystal Top Enclosure 
Encap 1 — 0.4661 0.1849 — 0.3490 Encap 

2 — 0.5334 0.2611 — 0.2055 
Encap 

3 — 0.5766 0.2210 — 0.2024 

Encap 

4 — 0.6114 0.1898 — 0.1988 

Encap 

5 — 0.6856 0.1653 — 0.1491 
Crystal Top 1 — — — - — 1.0000 
Ambient 1 0.0525 0.1152 0.3266 0.0834 0.4223 

Table D.30: Configuration factor summation from the crucible elements to the other 
surfaces for case-Ill (exchange with the encapsulant). 

SURFACE j SURFACE i 
Element # Encapsulant Crucible Crystal Crystal Top Enclosure 

4 0.4556 0.2245 0.2760 0.0000 0.0439 
5 0.3728 0.2237 0.3539 0.0000 0.0496 
6 0.3020 0.2486 0.3930 0.0000 0.0563 
7 0.2448 0.2691 0.4219 0.0000 0.0642 
8 0.1998 0.2844 0.4425 0.0000 0.0734 
9 0.1646 0.2944 0.4569 0.0000 0.0842 
10 0.1370 0.2993 0.4668 0.0000 0.0969 
11 0.1150 0.2993 0.4738 0.0000 0.1119 
12 0.0974 0.2944 0.4786 0.0000 0.1296 
13 0.0831 0.2844 0.4819 0.0000 0.1507 
14 0.0713 0.2691 0.4841 0.0000 0.1755 
15 0.0615 0.2486 0.4855 0.0000 0.2044 
16 0.0534 0.2237 0.4859 0.0000 0.2370 
17 0.0465 0.2245 0.4781 0.0000 0.2508 
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Table D.31: Configuration factor summation from the crystal elements to the other 
surfaces for case—III (exchange with the encapsulant). 

SURFACE j SURFACE i 
Element # Encapsulant Crucible Crystal Crystal Top Enclosure 

4 0.3198 0.5427 — — 0.1375 
5 0.2643 0.6964 — — 0.0393 
6 0.2096 0.7717 — — 0.0188 
7 0.1601 0.8257 — — 0.0142 
8 0.1208 0.8616 — — 0.0176 
9 0.0913 0.8832 — — 0.0254 
10 0.0696 0.8933 — — 0.0371 
11 0.0537 0.8933 — — 0.0530 
12 0.0419 0.8832 — — 0.0749 
13 0.0331 0.8616 — — 0.1053 
14 0.0265 0.8257 — — 0.1478 
15 0.0215 0.7717 — — 0.2068 
16 0.0176 0.6964 — . — 0.2860 
17 0.0146 0.5427 — — 0.4427 
18 0.0125 0.4399 — — 0.5476 
19 0.0107 0.3027 — — 0.6866 
20 0.0093 0.2292 — — 0.7615 
21 0.0081 0.1717 — — 0.8203 
22 0.0071 0.1284 — • — 0.8645 
23 0.0062 0.0966 — — 0.8972 
24 0.0055 0.0733 — — 0.9212 
25 0.0049 0.0562 — — 0.9389 
26 0.0044 0.0437 — — 0.9520 
27 0.0039 0.0343 — — 0.9618 
28 0.0035 0.0273 — — 0.9692 



Appendix E 

Stainless Steel Emittance 

E.l General 

This appendix presents the emittance of various stainless steels — oxidized, polished and 

cleaned as obtained from [33]. Figures E.48 to E.50 show the analysed grouping of 

the data which give a quick reference range for the emittance of a certain type of steel 

for a temperature or temperature range. Figure E.51 gives the exact curves obtained 

from experimental data. The specification and data tables which are not included here 

for the sake of brevity, describe the specimen condition and exact experimental values of 

the emittance. 
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Figure E.52: Normal total emittance of various stainless steels. 
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