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Abstract

In principal component analysis (PCA), the principal components (PC) are linear
combinations of the variables that minimize some objective function. In the classical
setup the objective function is the variance of the PC’s. The variance of the PC’s can
be easily upset by outlying observations; hence, Chen and Li (1985) proposed a robust
alternative for the PC’s obtained by replacing the variance with an M-estimate of scale.
This approach cannot achieve a high breakdown point (BP) and efficiency at the same
time. To obtain both high BP and efficiency, we propose to use MM- and 7-estimates in
place of the M-estimate. Although outliers may cause bias in both the direction and the
size of the PC’s, Chen and Li looked at the scale bias only, whereas we consider both.

All proposed robust methods are based on the minimization of a non-convex objective
function; hence, a good initial starting point is required. With this in mind, we propose
an orthogonal version of the least median of squares (Rousseeuw and Leroy, 1987) and
a new method that is orthogonal equivariant, robust and easy to compute. Extensive
Monte Carlo study shows promising results for the proposed method. Orthogonal re-

gression and detection of multivariate outliers are discussed as possible applications of

PCA.
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1 Introduction

This thesis discusses robust alternatives to principal component analysis (PCA) and
orthogonal regression (OR). Classical methods and key robustness concepts are briefly
discussed, existing robust procedures are described and new robust approaches are intro-
duced. Several examples are included to illustrate the properties of the classical versus
robust methods. Our goal is to éxtend the work of Chen and Li (1985) to MM- and
T-estimates of PC’s and to discuss the breakdown properties not only of the scale of the
PC’s (Chen and Li only considered the properties of the scale of the PC’s) but also of
their direction.

The word robust is derived from the Latin word ”robus” meaning strength. In
different disciplines, it takes on different meanings. In statistics, robustness has usully
been associated with methods and procedures that do not suffer greatly when a fraction
of the data does not follow the model assumptions, i.e. outlying observations may be
present. To expand on this, we say that estimator is robust whenever its value does not
change appreciably after a number of aberrant observations has been introduced. This
notion of robustness is very loose and can be made rigorous, yet it gives us a flavour of
what is involved when we say that an estimator is robust.

Statistical inference is only in part based upon observations. Equally important
are the explicit and implicit assumptions one makes about the underlying situation.
In regression, whether classical or orthogonal, one generally assumes that observations
are independent and errors are normally distributed with mean zero and some common
variance. The presence of outliers in the data certainly violates this assumption and
inference based on classical methods that are sensitive to even minor departures from
these assumptions would be suspeét. Robust alternatives have been proposed to deal

with the inherent susceptibility of classical methods to ‘disruptions’.



In 1964 Huber, in his milestone paper on robust location estimation, laid the foun-
dation for modern robust statistical analysis. Since then robust methods have been
developed for a variety of statistical procedures including orthogonal regression and the
estimation of principal components, both of which constitute the focus of this paper.

Scatter matrices and their principal components are at the heart of multivariate
data analysis. Unfortunately, the classical estimator - the sample covariance matrix
and its eigenvalues and eigenvectors - are highly nonrobust. One outlying observation
can distort or completely upset the classical estimator. An observation is considered an
outlrer if it does not follow the same model as the rest of the data. An observation is
considered a leverage point if its relocation causes major changes in the parameters to
be estimated.

| A major problem with the detection of such cases in higher dimensional space is
that an observation may not be extreme with respect to any of the original variables,
but it can still be an outlier because it does not conform with the correlation structure
of the remainder of the data. This type of outlier, called a structural outlier, will most
likely distort the direction, an eigenvector, whereas a gross error outlier will most likely
distort the scale, an eigenvalue. It may be possible to identify gross error outliers as
they will stand out from the rest of the data but it is very difficult to detect structural
outliers by looking solely at the original variables one at a time, or even two at a time.

Most classical diagnostic procedures can identify a single outlying or high leverage
observation. However, they are rendered helpless in the presence of multiple contami-
nants especially when these outliers are grouped and have a high leverage. Often the
physical process that generates these outliers causes them to cluster in a particular lo-
cation. This phenomenon creates a ‘masking effect’, i.e., the removal of one observation

from this cluster will not have a discernible effect on the estimated parameters. The



Table 1: Fire Claims in Belgium from 1976 to 1980.

Year Number of Fires
Ti Yi

76 16694

7 12271

78 12904

79 14036

80 13874

remaining contaminants will ‘mask’ any change that would bé detected if the cluster
contained only one outlying observation.

To deal with this problem, we employ robust procedures. They provide an objective
analytic tool for identifying observations that do not conform with the structure of the
rest of the data. |

To illustrate the problems connected with the use of classical methods when model
assumptions have been violated, we consider a simple data set (Rousseeuw, Leroy 1987)
comprising the number of reported claims by Belgian fire-insurance companies in the

five years from 1976 to 1980.

If one disregards the number of fire claims reported in 1976, it is clear that there is an
annual upward trend. This is reflected in the estimates from the method of least median
of absolute orthogonal deviations (ORLM), By = -28872.7 and ; = 534.3. ORLM is one
of the many robust alternatives to orthogonal regression which will be discussed later.

OR fits the data with a decreasing trend yielding 8y = 244547.7 and 8, = -2956.3.

These results give one the false impression that the number of fire claims is going down
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Figure 1: Plot of Fire Claims in Belgium from 1976 to 1980

while it is'in fact going up. Although this example, with only one explanatory variable,
is simple and the outlying observation can be easily identified because it is detached from
the rest of the data, it illustrates how classical methods can lead to wrong conclusions in
the presence of aberrant observations. Locating outliers in higher dimensions is usually
more complicated and hence more reliable methods are needed.

The rest of the thesis is organized as follows. In section 2 we discuss some basic
robustness concepts that are used to classify the performance of estimators. In section
3 we describe some robust estimates in the simple case of location and scale estimation.
We focus our attention only on those estimates that are referred to in later sections.
In section 4 we discuss classical PCA and the robust alternatives. We mainly focus on
extending the work of Chen and Li (1985) beyond S-estimates of the scale of the PC’s.
We introduce MM- and 7-estimates of the direction and scale of the PC’s. In section 5
we compute the lower bound for the maximum asymprotic direction bias and show that

the BP of the scale is not inherited by the direction and that the BP of the direction



depends on the ratio of the adjacent eigenvalues. In section 6 we propose a robust
estimate of the direction and the scale of the PC’s and discuss its properties. We show
that the proposed estimate is orthogonal equivariant, Fisher consistent and robust. In
the last two sections we include Monte Carlo results to show the bias characterictics of

different estimates and mention possible applications of robust PCA.



2 Basic Robustness Concepts

Here, we introduce several concepts and definitions aimed at assessing the performance

of estimators. Some stem from robustness while others are universally applicable.

2.1 Influence Function

The influence function (IF) measures the sensivity of an estimator to infinitesimal per-

turbations. The IF of an estimator T at a point z and a distribution F is given by

T((1 = €)F + €6,) — T(F)

IF(.’I);T,F)=HI‘% (1)

for those points x of the sample space where the limit exists. (Here, é, is the point-mass

distribution at z.). We define the gross error sensitivity (GES) as
GES =sup [IF(T, )| - (2)
Observe that for € near zero,
IT((1 = F + ¢b:) = T(F)|| = €| IF(a; T, F)| .

This implies that
sup ||T((1 — €)F + €6,) — T(F)|| =~ ¢ GES ,

where sup, ||T((1 — €)F + €6,) — T(F)|| is the maximum bias induced in an estimator
by a fraction ¢ of contamination. The restriction to point mass contamination implies

no loss of generality (see Martin, Yohai and Zamar, 1990).

2.2 Maximum Bias Curve and Breakdown Point

An important notion of robustness of an estimator is the breakdown point (BP). It

measures the extent to which an estimator is able to cope with contamination. It is

6



often helpful in understanding the robustness properties of the estimator and can also
be used to classify its performance. There are several definitions of the breakdown point
of an estimator. For simplicity, only the finite sample version due to Donoho and Huber
(1983) will be introduced here. To define the breakdown point, let us suppose we have

a data set

X ={x1, ., %5} = {(211, Z12y -1y T1p); eoe, (Tl Tnzy voey Tup) } -

T(X) is the value of an estimator at the sample X. Consider all corrupted samples X’
obtained by replacing any fraction € € (0,1) of the original data points by arbitrary
values. T(X') is the value of an estimator at the contaminated sample X’. First, we

define the mazimum bias as
B(T, X) =sup || T(X') - T(X)| , (3)

where the supremum is taken over all e-contaminated samples. Plotting the function
B versus the fraction of contamination ¢ produces the mazimum bias curve which
is a carrier of both the local and global robustness properties of the estimate. The
breakdown point is the value of ¢ where the asymptote to the maximum bias curve

crosses the x-axis. It is defined as
(T, X) =inf{e: B(¢;T,X) = o0}, (4)

le, €(T,X) is the smallest fraction of contamination that can cause T(X’) to take
values arbitrarily far from T(X). Asymptotic counterparts of ¢* and B have been defined
(Hampel, 1986, for example). Under certain regularity conditions, the GES is the value

of the derivative of the maximum asymptotic bias curve at zero, that is,
GES = B'(0)

and therefore can be used to give a linear approximation for B(¢) for € near zero.

7



2.3 Equivariance

Equivariance is a concept that reaches beyond robustness as it ﬁertains to a property
that in one form or another is desired of all estimators. We shall distinguish between
four types of equivariance: location, scale, orthogonal and affine. In the context of
orthogonal regression and principal component analysis, the first three are a natural

requirement for any estimator.

2.3.1 Definitions

Suppose we have a collection of vectors Xy, ..., X, in R?. An estimator T is said to be

1. location equivariant if T(x; + v,...;X, + V) = T(Xy, ..., X, ) + v, where v is any

vector in RP.
2. scale equivariant if T(cxy,...,cX,) = |¢|T(X1, ..., X,,), where ¢ € R.

3. affine equivariant if T(Ax; + Vv,...,Ax, + V) = AT(Xy,...,X,) + Vv, where A

is any nonsingular matrix and v is any vector in RP”.

| 4. orthogonal equivariant if T(I'xy + v,...,I'x, +v) = I'T(xy, ..., X,) + v, where

I' 1s an orthogonal matrix and v is any vector in RP.

For a scatter matrix C, af fine equivariance is defined as
C(AX; + V,..., AX, + V) = AC(xq, ..., x,)AT |

where A and v are as above. This means that if a point cloud is rotated or rescaled,
then any measurement of its orientation will rotate and any measurement of its size will
scale correspondingly. Orthogonal equivariance of a scatter matrix is defined similarly

with A replaced by T



3 Robust Estimators - An overview

There exists several different families of robust estimators. However here we will focus
our attention only on those estimators that are referred to in later sections. They are
the M-, S- and 7 - estimators. Each is briefly described for the simple case of location

and scale estimation.

3.1 M - estimates

Suppose we have a set {z;};=1, . of independent identically distributed observations
from Fy,. The maximum likelihood estimators for location and scale at the Gaussian

model are defined as the solutions to

1 & .’I,'i—(9 _
S ()=,

where U(z) = z, x(z) = 2% and b = 1. Both ¥ and x favour “large” observations. To
reduce the influence of these observations on the estimated location parameter, we can

use a function ¥ satisfying
Cl. V¥ is odd, bounded, with at most a finite number of discontinuities.

Examples of such ¥’s are the Huber’s function

i T | if |z] <e¢
Vi (z) =
c sgn(z) if |z| > ¢, c€ (0,00)

or the Tukey’s biweight function

T <1 - (-f—)2>2 for |z] < ¢

0 for |z| > ¢, ¢ € (0,00)

vl =



To robustify the scale estimate, we often choose a x that meets the following conditions:

C2. x is symmetric, differentiable almost everywhere and x(0) =0 .

C3. x is strictly increasing on [0,c) and constant on [c,00)

An example of a function that satisfies C2 and C3 is the Huber’s x-function defined

as

f;— for |z| < ¢

=T 1 for|z| >¢, c€(0,00)
Using general ¥ and x functions, we define the generalized maximum likelihood esti-
mates (M-estimates) £ and § of location and scale as the solutions to -
1
n

Y (E) =0 )

S

n
,i_

=1

I§X<xi—t):b’ (6)

n s
where b is usually taken to be the Ex(Z) and Z is the standard normal random variable.
Huber (1964) defined M-estimates of location and described some of their asymptotic
properties. These include y/n convergence rate to a normal distribution and a fairly high

efficiency.

3.2 S - estimates

Let t be a tentative location of the center of a set of numbers, {z;};~; ,. Consider
the residuals, r;(t) = z; — t. The corresponding M-estimate of scale, s(t), is implicitly

defined by

() <

n

where x and b are as above. The S-estimate of location is then defined as

~

T = argmin; s(t) .

10



Notice that s(T") = § is a robust estimate of scale. In fact, it can be shown that for x
satisfying C2 and C3, the BP of 5 is rnin{x—(gT), 1— X(—boo)-} (see Huber, 1981, for instance).

It is clear from their definition in (5), that M-estimates of location are sensitive to
the choice of 8. To obtain good robustness properties for the M-estimate, we need to
use a measure of dispersion of the residuals r;(¢) that has the most bias resistance, i.e. a
BP of 1/2. This criterion is met by §. This approach produces a new type of estimator

called the MM estimator. It combines the efficiency of M-estimates with the robustness

of S-estimates.

3.3 71 - estimates

Introduced in 1988 by Yohai and Zamar, the 7-estimates combine efficiency with good

breakdown properties. They are defined by
T = argmin, 7%(t) ,

where

ﬁm==1ﬂo§m(“‘ﬂ,

n s(t)
s(t) is implicitly defined by

1 & T, — 1

2 (5) -
and x; and . satisfy conditions C2 and C3. The corresponding “tuning constants”
(explained below) for x; and x, are ¢; = 1.548 to yield a high BP for the scale s(¢) and
ca = 6.08 to yield 95% efficiency for the location ¢.

Suppose that ‘53'(;—)‘5’ is small and x; is quadratic near zero. Then

ﬁmm<i@g::§w<i@jzz(““”‘

Hence for non-contaminated samples, the 7 estimators of location and scale reduce to

the sample mean and variance respectively. This property gives the 7 estimator its high

11



Ti—t

%3] s large, ie, greater than

efﬁciency.' If on the other hand, the absolute residual,

the tuning constant, ¢,, its influence is diminished because

This property gives the estimator its high BP.

12



4 Principal Component Analysis

The objective of Principal Component Analysis (PCA) is to reduce the dimensionality
of a data set containing a large number of correlated variables while retaining as much
as possible of the variability present in the data. This is done by transforming to a new
set of variables, the principal components, which are uncorrelated.

Suppose x is a vector of p random variables with mean p and covariance ¥. Unless
p is small or the covariance structure is very simple, not much insight can be obtained
from looking at the p variances and p(p — 1) covariances. An alternative approach is
to look for a few “principal components” that retain most of the information contained
in the variance-covariance structure.

The first step is to look for a linear combination of the components of x , aTx,
that has maximum variance; i.e, maz, var(a’x) = ofZa. It is clear that without
a suitable constraint the maximum will not be achieved for finite . The conventional

T

constraint here is &” a« = 1. The problem then becomes

T

maximize af¥a subject to ofa =1

To obtain a solution, we can use the method of Lagrange multipliers (see for example

Jolliffe, 1986) and maximize
Ji(e,A) = aT8a — AMaTa—-1) ,

where A is a Lagrange multiplier. Differentiating J;(a, A) with respect to a; and setting

“the derivative to zero yields

d
2 ~Sa—Aa=0.
5a Ji(a, A) a—Aa=0

By premultiplying both sides of the equation by o and using the constraint oo = 1,
we get

afla = ).

13



Therefore, the solution to the constrained maximization problem is the eigenvector oy
associated with the largest eigenvalue \; of . The linear function afx is the first
principal component.

Next, we look for a linear combination of the elements of x, a”x, that has maximum
y

T T

variance and satisfies the constraints (i) «

a =1 and (ii) @’ oy = 0. The solution can

be obtained, again by using the method of Lagrange multipliers, by maximizing
Sl ), ) = aTZa - AaTa—1) — ¢aTay

where A and ¢ are Lagrange multipliers. Differentiating J2(a, A, ¢) with respect to «

and setting the derivative to zero yields

G,
— A o) =alSa—da—¢a=0.
e oo, M, 9) =a" Ba— da—¢a=0 (8)

Premultiplying both sides of the equation by af will result in
oI¥a — Aofa ~ pafe; = 0.

By noticing that (i) efe; = 1 and (ii) of & = AaT we have ¢ = 0. Substituting for ¢
in (8) and premultiplying by o results in

aTYa = ).
)

Therefore, the solution to the doubly constrained maximization problem is the eigen-
vector a; associated with the second largest eigenvalue A\; of 3. The linear function
ofx is the second principal component.

This process is repeated until all principal components are computed. It can be

shown that ay,as,...,a, are the eigenvectors of ¥ corresponding to Ay, Ag, ..., Ap, re-

spectively, where the A;’s are in decreasing order. It can also be shown that

var(afx) = X\ fori=1,2,..,p.

1

14



Note that in the classical PCA, proceeding from either minimizing or maximizing the
variance of a linear combination of the elements of x yields the same principal compo-

nents. As we will show later, this is not the case in the the robust setting.

4.1 Robust PCA

PCA is an important tool used in many fields where there is a need for reducing the
dimensionality of a data set. It has been a popular technique with psychologists who
routinely collect a multitude of information on their patients and then try to construct
a few “indices” to explain their behavior. It is important that such indices should be as
reliable as possible to prevent misdiagnoses; however, because the classical approach is
unable to cope with aberrant observations, its reliability can be questioned.

As we have seen, principal components are obtained via successive constrained maxi-
mizations of the variance of a linear function of elements of x. One extreme observation
may inflate the variance enough to upset the order of the principal components. To
illustrate the weaknesses of the classical PCA, we have generated a hundred point, two
variable sample. The first variable y is distributed as N(0,1), the second variable z is

90% distributed as N(0,0.1) and 10% as
1. N(0,0.1)
2. N(3,0.1)
3. N(4,0.1)

We have computed the first PC for each of the sampling situations. It is clear from
the accompanying plot that contamination can adversely affect the direction of a PC.
In this example the size and location of the outliers are not severe yet the direction of

the first PC is completely upset. In the two-dimensional case we can surely identify the

15
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Figure 2: Plot of the First PC’s

outliers from looking at an z — y plot. In higher dimensions we may not be able to do
so.

To make the PCA contamination resistant, statisticians have adopted one of two
possible approaches. One is to obtain a robust estimate of the scatter matrix and then
proceed with an eigenvalue-eigenvector decomposition (Boente, 1987) to compute the
principal components. The second approach is to replace the variance in the maxi-
mization by some robust estimate of scale, s, and then proceed as above (Chen and
Li, 1985). Note that, classically, we obtain the same principal components whether we
begin by maximizing the variance or by minimizing it. This is generally not the case
when var(aTx) is replaced by s(ax). In the robust setup, the minimization approach

is more attractive in view of the many minimization algorithms developed for classical

and orthogonal regression that can be used as building blocks.

16



4.1.1 Robust PCA via the Robustification of Scatter Matrices

A natural way to obtain robust estimates of location and scatter is to extend the
definition of one-dimensional M-estimators of location and scale to the multivariate
setup. Maronna (1976) proposed such M-estimators, defined as solutions of a system of

equations of the form

T2 wl{(n = 'V = 0] 1) =0

}-i uQ[(X,~ - t)’V‘lxi — t)](X,' — t)(x,- — t)l =V,

=1

where u; and u, are functions satisfying a set of general assumptions (see Maronna,
1976). Boente (1987) studied the asymptotic distribution of the eigenvalues and eigen-
vectors of the above M-estimator of scatter. She has shown that they are consistent
and asymptotically normal at the usual rate, v/n. However, it can be shown that that
M-estimates of scatter attain a BP of at most 1/p (Maronna, 1976), where p is the
number of variables. This makes them of limited use when p is large. Also, it is not
clear whether the BP of the covariance matrix estimate is inherited by the direction of
the PC’s.

Some other techniques for computing robust scatter matrices include convex peeling
(Barnett, 1976, Bebbington, 1978), ellipsoidal peeling (Titterington , 1978, Helbling,
1983), iterative trimming (Gnanadesikan and Kettenring, 1972, Devlin et al., 1975) and
depth trimming based on the coﬁcept of depth (Tukey, 1974). Unfortunately, they all
possess a breakdown point of at most 1/(p+1) (Donoho, 1982).

The first affine equivariant estimator with high BP was constructed independently by

Stahel (1981) and Donoho (1982). It measures the “outlyingness” of a point x relative

to some center location. For each observation x;, one looks for the one-dimensional

17



projection leaving it most exposed:

— lV X; = MED( )‘ ,

where M ED is the median. Now consider a weight function w; = w({;), where w :
[0,00) — [0,00) is decreasing with sup ||¢ w({)|| < co. A robust covariance estimator

based on the w;’s can be computed then as

C= i WX — t)(xi — t)T

where the multivariate estimate of location, t, is defined to be

21—1 w‘lxl

b= S e
The estimators obtained this way combine high BP with affine equivariance (Donoho,
1982). However, for each random vector x;, we have to solve a nontrivial maximization
problem. This would be computationally prohibitive even for the computers aboard the
Enterprise.

Rousseeuw (1983, 1987) proposed another estimator, the minimum volume ellipsoid
(MVE), that combines the properties of affine equivariance and high BP. Define an
ellipsoid F¢ , by

Fo, = {x: (x—p)TC(x—p) < 1)

and the set C by
C={(C,n): #(Ec,Ndata) >[n/2]+1}.

The MVE is (C, u) = argmin|C|, where |C| is the determinant of C. In most cases it
is not feasible to consider all “halves” of the data and to compute the volume of the
smallest ellipsoid that surrounds them. Hence to compute the MVE, we use a method

similar to the bootstrap.

18



Given a set of random vectors {x}, in RP?, we draw repeatedly a subsample of p + 1
different observations. The number of subsamples, m, drawn must be large enough so
that the probability of a subsample containing only “good” data points is high. For
large data sets with many variables, we limit the number of subsamples to whatever is
computationally feasible (this is usually in the range of 100 to 3000 depending on p).

We find the mean %X, and the covariance matrix C; for the k£** subsample. Denote
by

E, = {X : (X — )_(k)TCI:I(X — )_Ck) < 1}

the ellipsoid corresponding to Cj and X;. It contains the observations x; that are within

a Cy unit distance from X;. The volume of this ellipsoid is related to |Cg|, that is,
vol {x: (x — %)TC (x — %) < 1} = k,|Ci'/?,

where

o P/?

" pr(®)
and I'(z) is the gamma function evaluated at = (see for example Johnson and Wichern,
1988). To envelop [n/2] 4+ 1 points, the ellipsoid Ej has to be inflated or deflated by

béing multiplied by some correction factor, the median Mahalanobis distance (M M D)

Observe that the resulting ellipsoid
Ep = {x: (x~%)TC: (x — %) < MMD;}
contains exactly 50% of the observations. The volume of E}, is
vol(E}) = vol {x: (x — %x)TC; (x — %) < MM Dy}
= vol{x: (x — Xx)T(CeMMD;) ' (x — %) < 1}
= k,|M M D, C|*/?

= k,MMD™*|C|/? .
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Hence the volume of the ellipsoid E is proportional to
MMDE??|C |2 . (9)

Suppose that MMDZ{2

Ci+|*? minimizes (9) over all subsamples & = 1,..,m. Then the

MVE covariance estimator is expressed as
2 -1
CreMMDi(Xp05)"

where X2, is the median of a chi distribution with p degrees of freedom; it is used
as a correction factor to obtain consistency at the multivariate normal model. In the
univariate case the MVE reduces to the SHORTH. Given a set of numbers {z;};=1 _n, it
is the length of the shortest line segment that contains at least [n/2]4+1 such numbers. It
can be shown (Martin and Zamar, 1989) that the SHORTH is the most resistant measure
of dispersion with respect to minimizing the maximum bias among all M-estimates of
scale.

Davies (1989) showed that the MVE converges weakly at rate of &/n to a limiting dis-
tribution that is nonnormal. To improve the rate of convergence, Rousseeuw (1983) also
pfoposed the minimum covariance determinant (MCD). The MCD covariance matrix
estimate is the sample variance of the observations contained in the minimum volume
elipsoid, the MCD multivariate location estimate is their sample mean. Butler and Juhn
(1988) showed that the MCD is asymptotically normal at the rate /7.

Estimators analogous to S-estimates, MM-estimates and 7-estimates of location and
scale in the univariate have been extended to the multivariate setup by Lopuhad (1990)
who discusses their properties at length in his Ph.D. thesis.

The above estimators have one characteristic in common; they are affine equivariant.
To attain affine equivariance and a high BP, we must sacrifice computational efficiency.

In the PCA, the principal components of a covariance matrix define an orthogonal
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basis in the factor space. Hence, we need only consider estimators that are orthogonal
equivariant, i.e., preserve the basis. Weakening the assumption of affine equivariance
allows us to develop a new PCA estimator that is robust, yet easy to compute. A brief
description of the estimator follows while its properties are discussed in section 6.
Suppose we have a sample {x};=;  , with some initial robust estimate of covariance
So(x). We propose to use an iterative procedure for computing weighted estimates of
multivariate location and scatter with weights based on the principal components of
Si, the estimate of the covariance matrix at the k™ iteration. Note that Maronna’s
M-estimate is also a reweighted covariance matrix, but the weights are based on the
Mahalanobis distance (this is the reason for the low BP of the Maronna’s estimate).
Let a; be the eigenvector of S, associated with the jt* largest eigenvalue. Then the
j*» principal component of x; is PC;; = afx;. Next, we consider a weight function,
w;; = w(PC;j), where w: [0,00) — [0,00) is decreasing with sup || PCi; w(PCy;)|| < co.

The weighted estimators of multivariate location and scatter are

Z?:l Wikxi
Bt = T WE
and
S,.. — Py (3 — b1 (30 — by ) T(WF)?
b ?:1(Wik)2 ’

where W is the product of w;;’s computed at step k. The WF satisfy the following

7 k3

condition '
wE i WF< W
Wk =
Wkl otherwise .
The weights W are forced to decrease at each iteration. The lower bound for the weights
will be zero by the assumptions on the weight generating function w(e). This ensures

convergence of the method. We will show in section 6 that at least p + 1 weights will

be larger than zero for observations that do not lie in a lower dimensional hyperplane.
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This will prevent the scatter estimate from being singular. Aside from being easy to
compute, the estimators are orthogonal equivariant, consistent and have a BP of 1/2 as

will be shown in section 6.

4.1.2 Robust PCA via Projection Pursuit

Classical PCA is a type of projection pursuit method. Consider a set of random
vectors {X};—1,.. n. In this method, one searches R? for a direction in which the variance
of a linear function, ax, of the elements of x attains a critical value. The BP of
variance, as classically defined, tends to zero with increasing sample size and even a
tiny fraction of contamination may cause it explode (blow up to co). To make the PCA

more resistant, a robust scale estimate S of aTx is used in place of the variance. The

,~>:b’

12 alx
in S bject to = 0
min  S(ag) subject to ~ ;X (S(ao)

unmodified problem is as follows:

[|aol|=1

where x 1s a nondecreasing even function that limits the influence of outlying or influ-
ential observations. b is usually taken to be E{x(Z)}, where Z is the standard normal
rz;mdom variable. To make the minimization feasible, one can employ a method first
introduced by Chen and Li (1985). It consists of three steps: reparametrization, mini-
mization and projection.

First, we note that a (p+1)-dimensional unit vector ag can be reparametrized as

1
ag = ——===(1,—B)7 , where € RP.
V1+BT8
The purpose of the reparametrization is to eliminate the constraint ||ag)| = 1 and make

the computations simpler by doing so. The problem thus becomes

mﬂin S(8) subject to %ZX (m — fizii — ... — ﬂpmpi) b, (10)
1=1

1+ 8T8 S(B)
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where § € RP. Denote by B € R the minimizer of S(B). Next, we notice that the

solution to
min S(a)
|laj]=1,aTao=0

lies in the nullspace, A, of &g, where 4 = \/ﬁ?T_E(l’ —B)T. We project our data onto

this nullspace and proceed as above, i.e obtain a solution to an unconstrained problem
of one less dimension by means of reparametrization. Let &,,..,a, be the orthonormal

basis of A/. Then any a; € N can be expressed by
| P
a; = Z Qrag ,
k=1
where & € RP and oTa = 1. Let y; = (élij,...,égx]-)T be the projection of the

(p + 1)-dimensional vector of observations x; onto A/. Observe that the y;’s have one

less dimension than the x;’s. Now we minimize the scale S(a;) over all unit vectors in

N, that is,

. : Los (aix) _1¢n (ol
min S(a;) subject to ;ZX (5(31)) = ;ZX (S(a) =b.

llas]l=1 i=1
By reparameterizing « as

o= —L——(l, —-B)T, where B e RF!,

V1+BT8
the above minimization problem becomes
1i (yli_ Bryai — - —:Bp-—lypi> _
— X _— -
(= V1+B878 5(8)

By solving the above equation we obtain

P
4, = Z&iéi >

A A A T . .
where & = (&, .., &,)" is given by



B € RP! is the minimizer of 5(8). We continue this process until the dimension of
the nullspace of the existing vectors is reduced to 0. Vectors obtained in this fashion
will be the robust eigenvectors and the square of the scale estimates will be the robust

eigenvalues. The robust scatter matrix can then be reconstructed as

The beauty of this method lies in the fact that the three steps described above reduce
a problem in (p+1) dimensions to the same problem in one less dimension. The robust
scale estimate S used in equation (10) is a nonlinear function with several minima. To
minimize it, one requires a good initial starting point.

In the linear regression setup, one uses a particular S-estimate of regression, the
least median of squares (LMS). Essentially, one computes the regression estimates by
minimizing the median of the absolute residuals. Analytically, the solution to this

problem can be written as
min S(B) subject to - Xn: yi— B 1/2 (11)
u — al ™ &S/ = 3
o : Nz * 5(

where x is defined as

0 if|z|<a
Xa(z) =

1 if|z|>a , a€R .
x is referred to as the jump function. Minimizing (11) is computationally very difficult
given the discontinuous nature of y,.

In practice, the computation of the LMS estimate involves a technique similar to

the bootstrap. Given a set of observations {x;} : i=1,..,n in RP*!) we begin by drawing
subsamples of (p+1) points. Again, note that a large enough number of subsamples

must be drawn to increase the probability that a particular subsample contains only

“good” data. For very large data sets with multiple variables, the optimal number of
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subsamples considered is limited to whatever is computationally feasible (usually 100 to
3000 depending on p).

We apply the method of least squares (LS) to each subsample k to obtain the re-
gression coeflicients Bk- Then we compute the LS residuals corresponding to By for all
observations. The LMS estimate is the set of coefficients that minimizes the median of
the squared residuals.

The method of LMS is CPU intensive and its rate of convergence has been shown
to be only </n. This is because for each sample k¥ we find the median absolute residual,
a quantity that is not uniquely defined for even number of observations. The median
absolute residual is an M-estimate of scale based on a jump function y. The nature of
the function causes slower than usual convergence rate.

To improve the speed of convergence to the usual rate, we can use a smoothed version
of the function x (Tukey’s x, for example). The M-scale equation will now have a unique
solution; however, the computation of the minimum M-scale remains nontrivial.

To compute it, we can use the resampling scheme described above. However, this
r(_aquires us to solve an equation of the robust residual scale similar to (7) m times.
This can be extremely time consuming especially for large p. To improve computational
efficiency, we make use of Yohai’s suggestion (Yohai and Zamar, 1990). We solve (7)
only when it becomes necessary.

Observe that

Ly~ (y_-xT_ﬂ> 1 12)

n s(f) 2 ,
if s(f) is overestimated. To initialize the procedure, we compute an M-estimate of scale
for the first set of residuals to obtain s;(#). Subsequently to minimize s(f), we only

solve for s(f3) if (12) is satisfied (the scale used in (12) is the minimum M-scale computed

thus far). Implementing this suggestion will reduce the number of equations that we
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have to solve from m, the number of subsamples drawn, to In(m).

In the context of projection pursuit, we propose an analog of LMS, the least me-
dian of absolute orthogonal errors (ORLM). This method differs from LMS only in the
computation of errors. In LMS, an error is defined as the vertical distance between the
observed response and the fitted response. In ORLM, it is defined as the Euclidean
distance of the observed response from the fitted regression line.

Both methods, LMS and ORLM, although bias robust, have a rate of convergence
of /n. This results in low efficiency even if the errors are really normally distributed.
To improve the speed of convergence, one uses a smoothed-out version of the ORLM
obtained by replacing the jump function x with a continuous x, for instance Huber’s

$2

x:(e) = min{1, 5}

or Tukey’s

z* 2z

.3,
Xo(z) = min{l, 5(z" = =+ o=

)}

¢ is called the tuning constant. The S-estimate of scale in a regression context based
on either x function is asymptotically normal at the usual rate. Tukey’s x is usually
preferred because it has continuous first and second derivatives and hence equation (11)
can be more easily minimized by Newton-Raphson type of methods. A disadvantage of
S-estimates is their inability to achieve efficiency with high BP at the same time. There
has always been a trade-off between the two.

If an S-estimate is to achieve maximal BP, a low tuning constant ¢ is used. For
Tukey’s x, ¢ = 1.548. This will cause some non-outlying observations to be viewed
as outliers and penalized accordingly; any observation with the standardized robust
residual larger than 1.548 will be considered an outlier since from that point on all

observations will have the same value at the function x). This will in turn increase

the asymptotic variance of the estimated parameters caused by the loss of information.
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This results in a reduction in efficiency (it can be shown thatlefﬁciency is an increasing
function of ¢). It turns out, from extensive Monte Carlo simulation runs, that minimizing
the robust scale estimate of the orthogonal errors gives rise to regression estimates that
are about six times less efficient than the MLE at the Gaussian model.

Estimators, MM and 7, that combine maximal BP with efficiency have been proposed -
in the linear regression setup. Both can be made 95% efficient at the Gaussian model and
their maximum asymptotic bias characteristics are comparable to those of the maximal
BP S-estimates.

In the orthogonal regression setup we propose estimators analogous to the MM-
estimates and T-estimates of classical regression. In the computation’ of the MM-
estimates, we use a fixed S-estimate of scale, say S, of the orthogonal residuals that
has a BP of 1/2 and solve for 3, the regression parameter. This allows us to increase
the tuning constant ¢ to gain efficiency (¢ = 4.7 for 95% efficiency at the normal model)
by drawing closer to the quadratic x of the Gaussian model.

The first estimator we define is the orthogonal regression MM estimator (ORMM).

It is the solution of the minimization problem

min iX v - B x
perr 5 \\J1+ 678 5(8))
where x is Tukey’s x with ¢ = 4.7 and S,, is as above.

The second estimator is the orthogonal regression 7 estimator (OR-7) which is de-

fined as the solution to

min 7'2(5) = Sz(ﬁ)i)@( v = B ) ;

perp =1 V1+ 8T8 S(8)

where S(f) is implicitly defined by

li\(( yi — BT ):1/9
nis ™ \V1+ 878 5(8) '
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The tuning constant ¢; = 1.548 for x; is chosen so that the maximal BP is achieved,
the tuning constant ¢; = 6.08 for x, is chosen so that 95% efficiency is achieved at the
Gaussian model. The 7 estimator is an adaptive combination of a high efficiency M-
estimate with a maximal BP M-estimate. If data are contaminated with a large fraction
of outliers, the robust M-estimate dominates. If there are no outliers in the data or only
a small fraction, the efficient M-estimate dominates. Hence the 7 estimator combines
both bias robustness and efficiency.

We have seen that robust OR can be used as a building block in robust PCA. This
approach was pioneered by Chen and Li (1985). In their paper they considered the bias
properties of an S-estimate of the scale of the principal components. However, they
ignored the breakdown properties of the direction in which this scale is minimized.

We have extended Chen and Li’s method to efficient robust MM and 7 estimators
that attain maximal BP with respect to the size of the PC’s. We have also considered
the direction bias and we will show that the breakdown properties of the scale are not
inherited by the direction. We further show that the S-estimate of the direction of the
PC’s cannot be made robust and efficient at the same time. On the other hand, the
MM and 7 estimates can be made 95% efficient while retaining a high level of robustness
which, as we will show in the next section, depends on the ratio of adjacent eigenvalues.
The larger the ratio the higher the BP. As this ratio approaches co the BP tends toward

1/2.
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5 Direction Bias Computation

The claims made in this section without formal proof are intuitively clear and can be
rigorously established along the lines of Zamar (1989).
Classical methods are usually derived under Gaussian assumptions and are optimal

when the data follow these assumptions. Gross-error-models of the form
F=(Q1-¢Fy+¢eH,

where Fj is a multivariate normal with mean p (we take g = 0, for simplicity and without
loss of generality) and some covariance matrix 3, are used to describe situations in which
a certain fraction € of the data do not follow the central Gaussian model.

Let X9 = 3(Fjy) be the covariance matrix at Fy. We denote by Ao < Ay < .. < A,
the eigenvalues of 3y and by ag, a;, .., a, the associated eigenvectors.

The treatment of the direction bias is asymptotic. We denote by &;(F') the estimating
direction functional at F. It can be shown that the direction functionals are Fisher
consistent, that is, &;(Fp) = a;. The bias of the direction &; at F is then defined (Zamar
,1989) as

Bi(F) =1~ |a] (F)a(Fo)| = 1 — |&] (F)ai| .
Note that B;(F) lies between zero, no bias, and one, complete breakdown of the direction

;. The maximum direction biases B;(¢) are then
Bi(e) = sup By(F) .
F
The breakdown point of &;(F') is then (Zamar, 1989)

BP; = sup {e: Bi(e) < 1} .

€€(0,1)
The breakdown point of &;(F) is achieved when &;(F) becomes orthogonal to a,.

Given a pair of adjacent PC’s, this occurs when an outlying observation inflates the scale
p , ying
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of the smaller PC enough to make it larger than the scale of the larger PC. Intuitively,
this can be done most easily when the variances of the adjacent PC’s are similar in size.

We can find a lower bound b;(¢) for the B;(€). The lower bound b;(¢) depends on
the fraction of contamination € and on the ratio of two adjacent eigenvalues A;;; and
A;. We denote the square root of the ratio A;;1/XA; by r;. The larger the r;, the smaller

the lower bound b;(¢). It can be shown that the lower bound bg(¢) is sharp, that is,

We conjectufe that b;(€) = B;(¢) for 1 = 1, .., p, as well; however, we are unable to prove
it.

To find the lower bound b;(¢), we should, in principle, consider all directions a(F’)
that are generated by introducing outliers at different locations in the (p+1)-dimensional
space. However, it can be shown, as in Zamar (1989), that the largest deviation from
the true direction a; = &;(F}) is obtained by moving toward &;,,(Fy) which is the path
of the least resistance.

Hence it is enough to consider a biased direction a(y) of the form

a(7)=(1-7va+y1-(1-7)?%ay,

where « denotes the lower bound for the asymptotic direction bias. We also define the

e

direction a(«y) that is orthogonal to a(y) by
A7) =y/1- (=7 A= (1= aus -
It turns out that the point mass contamination at
y=£a(y), K — 00

results in the most pessimistic scenario. The gross error model associated with a point

mass at y, 6y, is denoted by
F* =(1—-¢€)Fy+€by, .
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It is enough to consider F™ alone because being the most pessimistic contamination

model it induces the largest lower bound.

5.1 71 - estimate

The asymptotic version a(Fy) of the 7-estimate is

a(F) = arg ming -, 7°(F,a)

where

m(F,2) = 5*(F,2)Brx (5?;%) |

The estimate of scale s(F, a) is implicitly defined by

aTx
Brx (F‘T) =1/

We assume without loss of generality that y(co) = 1. We also define the function g(¢)

as

9(t) = Ex(v/tZ) ,where Z ~ N(0,1) .

To compute b;(¢€), we consider two situations (to simplify notation we assume 7 = 0).
First we calculate the value of the 7-scale when the contamination is ignored, that is,

when a = d4(Fp) = a. In this case the distribution of alx under F* is
(1 —€)N(0, Xo) + €beo -

Second we compute the value of the 7-scale when the contamination is fitted exactly,

that is, when a = 4o(F) = a(7). In this case the distribution of al(y)x is
(1= €e)N(0, (1 — 7)Ao+ A%Xy) + €bo

where A? = [1 — (1 —+)?]. We can show that 7(F*,a(y)) > 7(F*,ao) implies 4(F*°) =

ag. On the other hand, 7(F*°,a(y)) < 7(F*°,ag) implies that a(#*°) = a(y). The lower
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bound for the maximum bias is thus obtained by equating
T3 (F*,a0) = 72(F*,a(v)) .

We accomodate the contamination as long as the resulting scale is smaller than the scale
we obtain by ignoring the contamination.

Consider the two modelling situations:

1. Contamination is ignored (F*, ay).

The defining equation for the T-scale can be written as

aTX
(= a0) = (F=, 201~ I Brax () 44l

or in terms of g(¢)

P(F*, a0) = (P, an)(1 - g (ﬁ%—)) +d. (13

s(F'*°, ag) satisfles the following equation

1 (o) e

hence

Substituting for s?(F>, ag) into (13) yields

1 1-—¢

Ao 1 /0.5 —¢ Ao
7_2 Foo7a0 —_ — € — 2 11 € .
( ) (1 ) [9_1 (0.5—5)} g (g < 1 —e¢ >) + -1 (O.5—e>

o

Contamination is fitted exactly (F*,a(v)). -

The equation for the T-scale expressed in terms of g(t) is

P2(F,a(7)) = 8*(F°, a(1))(1 - g (“ )+ Ml) |

s?(Fe,a(7))
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where s(F'*, a(v)) satisfies the following equation

1 — 7)%\o + A2\
i) 1):1/2.

a-an (RN

Solving for s(F*°,a(y)) we obtain

) = I

)\ 1—¢

We then substitute for s(F*°,a(y)) into (14) to obtain

2(F°,a()) = (1 - &)\

1—7)%h+ A%) (61 ( 0.5 >)
= 209 |\
g1 1 (i%) l1—c¢

Equating 72(F*°, a(v)) and 72(F*, a(y)) and solving for y, we obtain the equation

for the lower bound for the maximum direction bias as a function of the fraction

of contamination € and the eigenvalue ratio A;/Aq, that is,

Na—1 (15)

where

(16)

5.2 S - estimate

The derivation of the lower bound for the maximum asymptotic direction bias for the

S-estimate is performed in a way similar to that of the T-estimate. We again consider

two cases, first where the outlier is fitted exactly and second where the outlier is ignored.

The lower bound is then obtained by equating the scale estimates of the smallest PC

computed in the two cases.

The defining equation for s(F'*, ag) is the following

=90 (g ) o=t
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Solving it for s(F'*, ag) yields
Ao
e

Following the same steps as above we find the expression for s(F*,a(y))

52(F007 ag) =

1—7)%k + A%X
(5=, a(y) = Lo e B
g (r)
Equating s2(F*, a(y)) and s*(F°°, a(v)) and solving for v that denotes the lower bound

for the maximum asymptotic direction bias, we get

. ' A1/Ao = f(e)
bs(ﬁ) =1 ——“)\1//\0 _'1 >

s (&)
fle) = —F—%- (17)
e

1—e¢

where

aTx

Notice that if the function g, = ¢y, then Eryx <m> = 1/2 and minimizing 73(F,a)
becomes equivalent to minimizing s*(F,a) and the T-estimate of direction will be equal

to the S-estimate of direction. Equation (16) reduces to equation (17) resulting in

5.3 MM - estimate

To compute the MM-estimate of direction, we minimize the criterion

J(F,a;3(F)) = Epy (j—Fx)) ,

where §(F) is an S-estimate of scale with the maximal BP, that is, $(F) = s(F,a(F)).
We assume that the direction bias 4o of this robust S-estimate is smaller than the

direction bias v of the 95% efficient MM-estimate. Notice that for v > o,

s(F*,a(v)) > s(F*,ao)
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and hence the robust S-estimate of direction will be equal to ag. Hence, for all v > o,

Again consider the two modelling situations:

1. Contamination is ignored (F'*, ay).

In terms of the function g, the criterion J(F°, ag; §) can be written as

J(F>®,a0;8) = (1 — €)g, (A—O) te. (18)

8
Substituting for § in (18) we get

I(F=,a08) = (1 = aalor () +e.

2. Contamination is fitted exactly (F'*°, a(v)).

The criterion J(F*°, a(y); §) can be writen as

(P>, a(7);3) = (1 — ga ((1 1) *A”l) |

S

We then substitute for § into (19) to obtain

1—7)2Xo+ AN gt (%=
J(F“,a(v);ﬁ):(l—-e)gz{[( ) +A0 lg ( )}

Again, the achievable bias occurs when fitting the outliers is better (from the criterion

point of view) than ignoring them, that is, when
J(F*, a0;8) > J(F*,a(y); §) .
The lower bound for the maximum asymptotic direction bias, barar(€), is attained when

we equate J(F'*, ag; §) to J(F*°, a(y); §) and solve for 4. Doing so we obtain

M/Ao — f(¢)

{)
M/Ag—=1 " (20)

bM]y[(G) =1-
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where

PR [gZ(Qi ((;)) =il o

1 l1-e¢

In Figure 3, we plot the lower bound for the asymptotic direction bias as a function
of the fraction of contamination € for the 95% efficient S-estimate, the maximum BP S-
estimate, the MM-estimate and the 7-estimate when the ratio r; is equal to ten. The plot
gives a global picture of the performance of the four estimates. First we notice that the
S-estimate cannot achieve robustness and efficiency at the same time. The S-estimate of
direction based on the 50% BP scale estimate gives the greatest bias protection but it is
very inefficient (eff=28%) at the Gaussian model. On the other hand, the 95% efficient
S-estimate is not bias robust and breaks down at about 11% of contamination when the
ratio r; = {/A1/Ao = 10 (see Figure 3a) and around 7% of contamination when r; = 2
(see Figure 3b).

Second we observe that the BP of the S-estimate of direction depends on the r; and
falls short of the BP of the corresponding scale estimate which is 50% for the robust and
12% for the efficient scales, respectively. The BP of the robust S-estimate of direction
is about 40% when r; = 10 and about 23% when r; = 2. The corresponding breakdown
points of the efficient S-estimates are 11% and 8%, respectively. From Figure 4, we
notice that as r; — oo, the BP of the direction approaches that of the corresponding
scale estimate.

Also notice that the biggest increase in the BP occurs when 1 < 7 < 5; the BP
curves remain fairly flat (although increasing toward the scale BP) for r > 5. Finally,
we notice (see Figure 4) that as r approaches one, the BP tends to zero. However, when
r =~ 1, switching the order of adjacent principal components will not seriously harm the
anélysis of the data.

Figure 3b is a plot of the lower bound of the direction bias as a function of the
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fraction of contamination e for an r; of two. This ratio has been used in the Monte
Carlo study that was carried out to assess the finite sample performance of the four
estimates.

As we expected, the MM- and 7-estimates of direction can combine efficiency and
robustness. From the accompanying pictures we notice that the bias performance of the
95% efficient MM- and 7-estimates is much better than that of the efficient S-esfimate.
Although the bias behaviour of the MM- and 7-estimates is in general worse than that of
the robust S-estimate, the performance gap quickly narrows for increasing ;. From (15)
and (20) we notice that the BP of the MM- and 7-estimates occurs when f(¢) (defined

by (16) and (21)) is equal to A1/Aq, that is,
BP = f71(A/Ao) -

Hence, f~1(A/Xo) = 1/2 as A\ /Ao — 0.

Finally, notice that the 7-estimate has visibly better bias characteristics than the
MM-estimate for fractions of contamination larger than 0.27. This is to be expected
because the T-estimate, being of an adaptive nature, should accomodate better a large
percentage of outliers than the fixed scale MM-estimate. For smaller ¢, the MM-estimate

is marginally better than the 7-estimate.
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Figure 3a: Plot of Direction Bias vs Fraction of Contamination (V’ A1/ = 10).
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6 Proposed Estimator

Although there are a number of robust scatter matrix estimators in existence, they
are computed via the minimization of a nonconvex function with multiple minima. This
is both time consuming and difficult to achieve. Also, to increase the probability of
convergence to a global minimum, a “good” initial starting value for the function must
be provided. The method proposed here is quick and easy to compute. A Monte Carlo
study will show that it compares favourably with other robust methods. It can also
serve as an initial estimate for other, more complicated procedures.

Among the properties of the proposed estimator are high breakdown point and or-
thogonal equivariance. Usually, one requires an estimator to have a somewhat stronger
type of equivariance, affine equivariance. However, PCA is based upon successive mini-
mizations of the variance of a linear combination of the elements of x. This combination
is given by a particular eigenvector of the scatter matrix. The set of such eigenvectors

forms an orthogonal basis in the factor space that is to be preserved under transforma-
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tion. An orthogonal equivariant estimator satisfies such a requirement.
Here we describe in detail the procedure used to compute the proposed estimate.

The algorithm has three steps:

1. Center the data.

First we robustly center the data. In order to achieve orthogonal equivariance
and a high BP for the estimate of scatter, we want to center the data by a mul-
tivariate location estimate that is orthogonal equivariant, robust, independent of
the estimate of the scatter matrix and easy to compute. These requirements are
satisfied by the L, estimate of location defined (see for example Lopuhad, 1990)
as the solution to the minimization problem
r%in; [Ix: = Tall -
The asymptotic BP of this location estimate is 1/2. Once T, is computed, it is sub-

tracted from the data so that we obtain a new centered data set {X;,..,%,}, X; =

x; — T,. For simplicity, the tilde will be dropped from the notation.

2. Compute the initial estimate of scatter, So.

To initialize the procedure, we compute a robust weighted estimate of scatter.
The weights used are generated by the function u(r) that is deacreasing on [0,00)
and such that u(r) is equal to zero when its argument exceeds some previously

specified constant. Let § be the robust scale imlicitly defined by

li:xa (Hxill - rnediarlj(lllel)> =1/2.

n s(lI[1)

Xa is defined as before and a = ®(3/4). The above maximal BP M-estimate of

=1

scale is known as the median absolute deviation from the median, MAD. The
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initial estimate of scatter S is

go(xl,..,xn)z Z’-‘ - (MS

3. Compute Sk+1 given Sk

Let aj,..,a, be the eigenvalues of Sy, the current estimate. Then the (k + 1)t

estimate of the scatter matrix is of the form

Slc~)-1(xl7 "’X'n) Zn 2 le
=1

1k =1

The W;'s are defined as the product of weights that are based on the standardized

absolute principal components, that is,

P AT .
‘/{/ik _ H'w ( akle) )
7=1 Sj

The weight generating function w(r) is decreasing on [0,00) and such that w(r)

is zero whenever its argument exceeds a previously specified constant. The scales

)

3; , j=1,..,p are the MAD, that is,

—Zxa<

=1

Termination criterion:

Werepeat the third step until the maximum difference between the current weights
and the weights obtained at the previous step is less than some § (in the Monte
Carlo study 6 was taken to be 0.001) or until the maximum number of iterations

(user specified) is reached.

6.1 Some Properties of Proposed Estimate

In this section, we will discuss the properties of the proposed estimates of the direction

and size of the principal components (PC). These estimates are based on a reweighted
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scatter matrix which, at convergence, is of the form

A 1

S(x1; -, Xn) 2 XX Wi (x) (22)

CIL W) =
where W, is the weight assigned to observation x;. The weight generating function,
w, is even, decreasing on [0,00) and such that |w(r)r| is bounded. We will show that
S(xl, ..;Xn) is orthogonal equivariant and Fisher consistent. This will in turn imply
that the estimates of the directions of the PC’s are orthogonal equivariant and Fisher
consistent and that the estimates of the size of the PC’s are Fisher consistent. We will
also show that the BP of g(xl, .,X,) tends to 1/2 as the sample size approaches oo.
The BP is inherited by the estimate of the size of the PC’s; however, the BP of the
direction may be smaller as this was indeed the case for the S-, MM- and 7-estimates.
However, as we will see in the next section, simulation results suggest that the BP of the
direction of the PC’s based on the proposed method is higher than that of the robust
S-scale. Further study is required to investigate finite sample properties of the proposed

estimate.

Theorem 1 Let {x3,..,X,} be a p-dimensional sample of size n. Suppose the weight
functions u(t) and w(t) are even, decreasing on [0,00) and such that |w(t)t| and |u(t)t]

are bounded. Then the estimate S, given by (22) is orthogonal equivariant, that is,
5.(QX) = Q5.(X)Q7,
where Q is any orthogonal matriz.

Proof: First of all we notice that the data can be robustly centered by using, for
example, the L, estimate of multivariate location (Lopuhad, 1990) which is clearly
orthogonal equivariant and has breakdown point 1/2. Hence we can assume without

loss of generality that the location estimate T'(xy,..,X,) is equal to zero. Let y; =
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Qx; (i=1,..,n). Recall that the initial weights u(]|x;||) are based on the Euclidean norms.
Since [|x]| = ||Qx:|| = ||yill, the initial estimate of scatter S;(xy,..,X,) is orthogonal

equivariant, that is,

. vyl
Si1(¥1,-¥n) = 1'n. w2([ly: D

=1

n L (Qx) (Qu) T (i)
=L w(lel)
z:f=1xz-x,-u2<||xi||>} .
{ sl ©
= QSi(x4,.,%.)Q7 .

I
O

~

The proof is now completed by induction. Suppose that S,,(xi,..,%,) is orthogonal
equivariant. Let A; < A, < ... < A, and ay, a9, ..., a, be the eigenvalues and eigenvectors

of Sm(xl, ..y Xp). Let by, by, .'.,bp be the eigenvectors of Sm(yl, »¥n). Then

~

Sim(X1, ., Xn)a = Aa .

Premultiplying the above by Q, we get

A

QS (x1,-,X,)a=AQa .
By using the fact QTQ = I, we have
[QSm(x1, - %:)QTN[Qal = [Sm(y1, -, ¥»)][Qa] = A[Qa] -

Hence Qa is an eigenvector of ém(yl, ..y¥n) corresponding to A. Therefore b; = Qa;.
Let

Szj = Mediani(|ajrxi|) = Medianﬂb?y,-]) = Syj (23)

and

p T . p bTv.
Wzi:Hw(asz>:Hw( JYZ>:WW_. (24)
] =1

Syj



A

Then, by (23) and (24), S;my1(x1, .., X,) is orthogonal equivariant, that is,

?:1 Wyzl
?:1(Qxi)(Qxi)TWz2i
Z?:l W:L2“l
i Xix?Wzi
Q { 1n WZ QT

i=1 zt

- Q§m+1(xly *ey Xn)QT .

Sm‘-i-l(}’la (X yn)

This concludes the proof.

Theorem 2 Let Fx;(x) be an elliptical distribution with location parameter u and scatter
parameter . The corresponding density is fx(x) = |X|7/2g(||(x — p)T~12|]). Suppose
the weight functions u(t) and w(t) satisfy the assumptions of Theorem 1. Then the

estimating functional S(Fg) is Fisher consistent, that is,
S(Fg)=13.

Proof: Let Ay < A; < ... < A, be the eigenvalues of ¥ and aj, a,,...,a, be the corre-

sponding eigenvectors. By Theorem 1, we can assume without loss of generality that
{ag,a1,...,a,} = {eg,e1,...,e,},
where e; = (01,0, ..,0;-1,1,0;11, ..,0)T. Therefore,
3 =diag(A, .., Ap) -

and the corresponding density function is
1 P [x?
X) = ——— —=1].
pot9 = el ()
=1 """t -
Asymptotically, convergence occurs in one step; however, the proof is done in two steps

to allow the reader to follow the natural course of our argument. First we show that
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the initial estimating functional So(Fs) (using the weight function u(||x||)) is diagonal.

To see that go(FE) is diagonal, notice that by symmetry we obtain

Elz;zru(l|x|])] = /_o:o . /_o:o :c;xkfg(x)u(\/x% +---22)dzy - -dr, =0 for ik .

Recall that the weight function used after the initial step 1s based on the principal
components. Hence the weights we use in the second step are based on the nétural
coordinates of x, that is, the projections e;x (j=1,..p). Again we have to show that the
cross-product vanishes to ensure that S(Fx) remains diagonal. To see that this is the

case, notice that by symmetry

EmmkHw(XJ> / / Tz fr(x ﬁ ( )da:l ~dz, =0 fori#k.

Next we show that the diagonal elements of S;(Fs), Ay, .., Ay, satisfy
Ai = K(F1))\; i=1,.p,

where K (F}) is a known constant. Notice that in such a case S(Fg) = §;(Fx), that is,

convergence occurs in one step. To show that :\i = MK (F1), we have to evaluate

/ / 2f2x)nw( )dzl dz,, (25)

By noticing that §; (the median absolute deviation, MAD, was used) is Fisher consistent,

i.e. §; = /A;, we can write (25) as

b= [ e e (o

Finally, we make a change of variables z; = :1:,/\//\_z to obtain

A=\ /°° / I:I )iy - dE, = NK(FY) .

This results in Fisher consistency for the direction of the principal components. To

obtain Fisher consistency for the size of the principal components, the scale estimate X

must be divided by the known constant K(Fy).
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Theorem 3 At any p-dimensional sample {xy,..,X,} in general position, that is, there
are no more than p points in any (p — 1)-dimensional hyperplane, the breakdown point

of the proposed estimate equals
. n
(T, X) = (3]~ p)/n
which converges to 1/2 as n — co.

Proof: Notice that the weight function w is positive for some constant ¢; greater than
one and zero for some finite constant c; that is larger than ¢;. Consider any sample
{¥1,--, ¥n} obtained by replacing at most [n/2]—(p+1) points in {x;, .., X, } by arbitrary

values. For any unit vector a in the p-dimensional space we have

S(aTyh aTy2a "'aaTyn) S 3(”}’1”, ||Y2“,, HYnH) _<_ ”}’”([n/2]+p) = d < 0.

Notice that we can write any observation y; as a linear combination of orthonormal unit

vectors, {ay, as, ..., a,}, that span the p-dimensional space, that is,

P
y. = Z Qa5 ,
i=1
where the ¢;’s are non-negative. Hence ||yi||* = 5., a%. Suppose that a large outlier,

say Yk, has a norm ||yg||* > p(c.d)?. Then at least one o > c,d, say ;. The weight

wy for the observation yy is

e () 0 (3) 2u(3) woio

We define the weight W}, assigned to the k** observation as the product of the individ-

ual weights, wj, obtained for the projections aJTy;c for i=1,..p associated with the k*
observation. Hence, W = [Tf_,; w;-k = 0; an observation that is large with respect to the
“good” data is assigned a weight of zero. This will bound the largest scale away from

0.

46



To show that the smallest scale does collapse to zero, consider the most pessimistic
direction, say ap, in which all outliers have a null projection and p observations lie in
a (p — 1)-dimensional hyperplane. Hence, we will have a sequence of absolute ordered

projections

{0(1)5 02)s ++s O(tns21-(p+1))5 O(n/21=p) s -+ Oln/21-1)s K(ln/2D)s s K((n/2140)s s K(m) }

where k; > 0 for 1=([n/2]),..,(n). The corresponding scale of is the ([r/2]+p)* absolute
projection, that is,

s(a0) = K(in/2)4p) -
Hence there will be at least p+1 “good” points of {y, .., y.} that will have standardized
absolute projections less than or equal to one. From the definition of the weight function,
these points will have nonzero weights. Since these points are in a general position,

they determine a convex hull with nonzero volume and the corresponding matrix is

nonsingular.
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7 Tables - Simulation Results

The core model (contamination-free) used in the Monte Carlo study carried out to
assess the finite sample performance of the estimates was the following
yi = PX;+ v
x; = X;+u;.
v; and u; are normal random errors. The errors are assumed to be uncorrelated with
mean zero and variance o2 and o3l. We considered two situations, p = 1 (z is one-
dimensional) and p = 4 (x is four-dimensional).
~ In the one-dimensional case we considered sample sizes of twenty and sixty observa-
tions. The parameter § was set to 0, 1, 5 and 10. The X,’s were distributed as N(0,1),
v; ~N(0,0.25)‘and u; ~N(0,0.25) (\/m = 2). The fraction of contamination € was set
to 0 (Gaussian model), 0.05, 0.10, 0.15, 0.20 and 0.25 with contamination-generating
distributions N(3,0.25), N(5,0.25), N(10,0.25), N(15,0.25), N(20,0.25) and N(25,0.25).
The outliers were generated in either y or z (more complicated contamination models
were not considered due to the high cost of simulation and time constraint). Each sam-
pling situation was replicated two hundred times. The following was used to assess the

performance of the estimates

200
BTZZB£7

=1
where B; is the direction bias of the estimate at the i* replicate. The estimate of the
direction a is defined as

a=—1 _(1,-p)T.

Vi+ 875
Br was computed for each sampling situation.
Notice that Br ranges from 0 (no direction bias has been induced) to 200 (maximum

lower bound for the direction bias was reached at every replicate). The lower the value

of Bt the better the bias behaviour of the estimate.
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In the four-dimensional case we considered sample sizes of forty and seventy five.
The parameter § is now a vector of parameters and in the Monte Carlo study it was
taken ‘to be one of 0,1,5 and 10. The vector X; was distributed as N(0,1I). The error
structure was as above with u; being N(0, 0.25I). The fraction of contamination was
.as above with contamination-generating distributions N(5,0.25), N(10,0.25), N(15,0.25),
N(20,0.25) and N(30,0.25). The outliers were generated in either y or z;. Each sampling
situation was replicated a hundred times. Br was again used to compare the bias
behaviour of the estimates.

The random number generator used in the Monte carlo study was adapted from an
article by Schrage (1979). Eigenvalue-eigenvector decomposition was done using the QR
algorithm.

The estimates considered in the Monte Carlo were the following:

1. Orthogonal regression.

2. Orthogonal regression analog of LMS based on Tukey’s x. (c'=1.548).
3. 95% eflicient S-estimate using Tukey’s x. (c=4.70).

4. S-estimate (BP=1/2) using Tukey’s x. (c=1.548).

5. MM-estimate using Tukey’s x, (c=4.70).

6. 7-estimate using Tukey’s x. (c=6.08).

7. Proposed estimate with u(r) equal to one for r less than 2.50. The weight function

w(r) is defined as follows
1 ifjr|<1
w(r)=9§ & fl<|r|<25

0 otherwise
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‘To improve the performance of the proposed estimate, we considered a slightly
different initial estimate So,. To compute it, we have adopted an approach that
is conceptually closely related to the Donoho-Stahel estimate. However, instead
of looking af all one-dimensional projections that leave an observation x; most
exposed, we limit our search to a set of randomly generated orthonormal bases
(including the canonical basis). The x;’s are projected onto the basis vectors. We
define a projection index ~; as

|vTx; — median;(vTx;)|

P = su . .
T ve bevis mediang|vIx, — median;(vTx;)|

The weights w(~;) are assigned to each observation, x;, according to the weight
function w(e) defined as above. The resulting multivariate estimates of location

and scatter are

%0 _ Z?:l WX, ,
Do W
§, = iz (Xi = to) (i — o) Tw}
S, Wi

This estimate is relatively easy to compute and has a breakdown point of 1/2.

. One-step reweighted estimate with zero-one type of weights based on the proposed
estimate. An observation is assigned a weight of zero when the corresponding

proposed method weight is zero, otherwise the weight is equal to one.

The following tables summarize simulation results for the seven robust estimates con-

sidered, ORLM, 95% efficient S-estimate, S-estimate with BP of 1/2, MM-estimate, 7-

estimate, one-step reweighted OR with weights based on the proposed method (WOR)

and the proposed method estimate (MPP) together with classical orthogonal regression

for comparison. We only include tables that show clearly the merits of using the robust

estimates in place of classical estimates when the data are contaminated by outlying

observations.
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Table 2: Contamination in Y, N(3,0.25), #=0, n=20, m=200.

OR | ORLM | S(95%) | S(BP=0.5) MM r| WOR | MPP
€
0.00 1.729 6.849 2.893 7.065 3.058 | 3.027 ) 2.160 %} T7.997
0.05 | 16.128 7.343 3.850 7.368 3.568 5.3844 5.125 | 5.780
0.10 | 56.041 8.518 | 29.662 9.530 | 10.789 | 12.254 | 13.938 | 8.836
0.15 | 93.977 | 18.839 | 86.486 17.807 | 26.621 | 33.595 | 24.401 9.535
0.20 | 113.490 | 20.039 | 119.962 18.549 | 58.561 | 55.115 | 39.843 | 15.937
0.25 | 137.259 | 31.845 | 146.006 35.817 | 110.012 | 99.240 | 48.995 | 18.023
Table 3: Contamination in Y, N(3,0.25), =0, n=60, m=200.
OR [ ORLM | S(95%) | S(BP=0.5) MM 7 | WOR | MPP
€
0.00 0.520 1.985 0.540 1.960 0.546 0.571 0.520 | 1.418
0.05 5.489 2.142 0.916 1.757 0.863 1.203 | 1.130 | 1.486
0.10 | 43.451 1.916 7.440 2.137 1.191 2.462 1.588 | 1.315
0.15 105.231 3.451 { 90.313 2.659 6.754 1 11.586 | 4.707 | 1.791
0.20 | 138.850 2.585 | 145.655 2.960 | 65.327 | 51.431 | 10.920 | 1.567
0.25 157.160 5.416 | 167.097 5.958 | 155.097 | 131.435 | 23.000 | 3.232
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Table 4: Contamination in Y, N(5,0.25), 8=0, n=20, m=200.

OR | ORLM | S(95%) | S(BP=0.5) MM 7| WOR | MPP
6 .
0.00 1.729 6.849 2.893 7.065 3.058 | 3.027 | 2.160 | 7.997
0.05 | 99.114 7.070 6.737 8.468 | 5.548 | T7.403 | 5.488 | 9.534
0.10 | 156.263 | 11.718 | 63.213 11.867 | 9.269 | 10.800 | 7.134 | 9.049
0.15 | 171.012 | 15.320 | 178.990 17.221 | 14.268 | 19.381 | 9.104 | 10.145
0.20 { 175.600 | 17.266 | 182.988 20.762 | 32.522 | 35.111 | 5.428 | 6.867
0.25 | 176.412 | 29.579 | 182.560 37.020 | 94.562 | 92.341 | 10.439 | 11.378
Table 5: Contamination in Y, N(5,0.25), =0, n=60, m=200.
OR | ORLM | S(95%) | S(BP=0.5) MM 7 | WOR | MPP
€
0.00 0.520 1.985 0.540 1.960 | 0.546 | 0.571 | 0.520 | 1.418
0.05 | 106.260 1.879 0.500 1.838 | 0.523 | 0.843 | 0.483 | 1.291
0.10 | 174.419 1.616 | 49.046 1.672 | 0.673 1.180 | 0.641 | 1.384
0.15 | 181.852 1.570 [ 187.940 1.817 | 0.845 | 2.285 | 0.729 | 1.273
0.20 | 184.547 1.356 | 189.764 2.831 | 11.795 | 16.112 | 0.778 | 1.501
0.25 | 186.338 3.379 | 192.827 4.844 [ 81.398 | 79.776 | 1.554 | 1.786
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Table 6: Contamination in X, N(20,0.25), =5, n=20, m=200.

OR | ORLM | S(95%) | S(BP=0.5) MM 7| WOR | MPP
€
0.00 0.0648 | 0.2405 0.0669 0.2208 | 0.0724 [ 0.1150 | 0.0648 | 0.2764
0.05 | 35.9934 | 0.2109 0.0837 0.2317 | 0.0985 { 0.1550 | 0.0718 | 0.2356
0.10 | 105.4132 | 0.2694 0.0753 0.2834 | 0.0821 [ 0.1848 | 0.0967 | 0.2536
0.15 | 130.9318 | 0.1580 | 111.8115 0.2381 | 0.0934 | 0.1866 | 0.0694 | 0.1480
0.20 | 143.1987 | 0.1580 | 131.8617 0.2966 | 0.1183 | 0.2603 | 0.0840 | 0.3040
0.25 | 144.1752 | 0.1986 | 141.6511 0.4552 | 0.1949 | 0.4162 | 0.1064 | 0.2136
Table 7: Contamination in X, N(20,0.25), f=5, n=60, m=200.
OR | ORLM | S(95%) | S(BP=0.5) MM | WOR | MPP
€
0.00 0.0153 | 0.0653 0.0164 0.0627 | 0.0168 | 0.0169 | 0.0153 | 0.0595
0.05 | 18.8693 | 0.0610 0.0193 0.0565 | 0.0201 | 0.0284 | 0.0185 | 0.0608
0.10 | 105.5620 | 0.0607 0.0224 0.0615 | 0.0238 0;0415 0.02'02 0.0587
0.15 | 131.1035 | 0.0523 | 131.7244 0.0573 | 0.0247 | 0.0449 | 0.0213 | 0.0411
0.20 | 144.2054 | 0.0445 [ 147.7639 0.1046 | 0.0368 | 0.0873 | 0.0223 | 0.0489
0.25 | 143.9072 | 0.0528 | 150.3505 0.1888 | 0.0682 | 0.1701 | 0.0261 | 0.0409
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Table 8: Contamination in Y (dim=5), N(10,0.25), $=0, n=40, m=100.

OR | ORLM | S(95%) | S(BP=0.5) | MM r | WOR | MPP
€
0.00 1.794 8.972 1.895 8.183 | 2.181 | 2.425 | 1.800 | 7.076
0.05 | 92.399 | 10.130 4.316 9.940 | 4.713| 7.021 ] 3.280 | 7.191
0.10 1 94.399 | 16.350 | 16.796 17.030 | 13.129 | 15.472 | 6.825 | 11.372
0.15 | 96.311 | 18.532 | 97.659 22.511 | 16.425 | 25.028 | 1.918 | 8.824
0.20 | 96.393 | 37.183 | 97.190 45.574 1 45.832 | 51.641 | 6.040 | 11.085
0.25 [ 96.985 | 56.955 | 97.529 73.062 | 89.264 | 91.446 | 6.806 | 12.250
Table 9: Contamination in X1 (dim=5), N(10,0.25), 8=5, n=40, m=100.
OR | ORLM | S(95%) | S(BP=0.5) MM 7 | WOR | MPP
€
0.00 1.393 5.328 1.422 4.944 | 1.636 | 2.461 | 1.446 | 9.401
0.05 | 12.663 9.130 5.544 8.795 | 4.724 | 7.204 | 3.167 | 6.726
0.10 ] 15.156 | 11.331 | 16.162 11.099 | 8.948 | 11.027 | 3.144 | 7.648
0.15 } 15.607 | 15.550 | 15.781 15.953 [ 14.629 | 15.708 | 4.772 | 9.468
0.20 | 15.591 | 17.365 | 16.977 19.181 | 17.749 | 18.091 | 5.070 | 6.022
0.25 | 15.278 | 19.201 | 16.556 20.420 | 16.711 [ 17.622 | 6.016 | 8.205
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An extensive simulation was done to assess the breakdown properties of different
robust orthogonal regression estimates. Given that the uppér bound for the maximum
direction bias is one, we assume here that an estimate has broken down if the 95%
quantile of the direction bias is larger than 0.90. Using this criterion, the empirical BP’s

for the direction are

Table 10: Empirical BP’s of the estimates.
OR | ORLM | S(95%) | S(BP=0.5) MM 7| WOR | MPP

€ [0.00 [ >025] =~ 0.10 > 025 |~020 |=~020]>025>0.25

The empirical BP’s are slightly higher than what is expected theoretically (note
that the ratio \/m used in the simulations was two). This is probably because the
simulations do not reflect the most damaging type of contamination.

The Monte Carlo study only confirms what has been theorized. The efficient S-
estimate performs well at the Gaussian model and for small fractions of contamination.
However, it breaks down early. The maximal BP S-estimate does not break down until
about 25% of contamination but its performance at the Gaussian model is unsatisfactory.
The same applies to the ORLM. The MM- and 7- estimates perform well at the Gaussian
model and, for larger fractions of contamination, attain nearly the same level of bias
robustness as the maximal BP S-estimate.

The proposed estimate appears to have better bias characteristics than the robust
S-estimate throughout the e-range; however, it is quite inefficient at the Gaussian model.
To improve efficiency while retaining a high BP, we considered a one-step reweighted
estimate with weights based on the proposed estimate. It is evident from the tables
above that this approach yields superior results. The one-step estimate is more efficient
than the MM- and 7-estimates at the Gaussian model and its bias performance over the

e-range is exemplary. Although the proposed estimate and the one-step estimate give
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good results, further study of their properties is required.
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8 Applications of PCA

8.1 Orthogonal Regression

Orthogonal regression (OR) is the maximum likelihood procedure at the Gaussian
error-in-variables (EV) model. In classical regression, the response variable consists of
a deterministic part (assumed known) ATX and a random part e where e is assumed to
be normally distributed with mean zero and covariance equal to some multiple of the
identity matrix. The X;’s can also be random but they are assumed to be observed
without error. In OR, the X,’s are either random independent identically distributed
vectors ( structural EV model) or they are non-random but unknown (functional EV
model).

Let
yi=a+BTX;+ v
(26)
xi=Xi+u;,
where « is the intercept, f is the vector of regression parameters and u and v are errors
with zero mean and some variance, possibly different. u and v are uncorrelated. Then
the OR estimates are the solution of the following minimization problem
M e
min X|—/———] .
CHES /1 + pT3
In the classical setup x(z) = z2. To make the OR method robust, the function x is
chosen to reduce the influence of outlying observations.

The above orthogonal regression problem can be restated as follows. Let x7 = X;+u;
be a set of random vectors satisfying the condition a,X; = by, where atag = 1 and by is
some constant. Then the vector 4 and the number b are found by minimizing

n

S > (aTx; = b)? .

n =1
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Figure 5: Plot of Classical versus Robust PCA

(aTx; — b)? is the square of the orthogonal distance from x; to the hyperplane H(a, b) =
{x : aTx = b} (Zamar, 1989). It can be shown that & is the principal component of
the sample covariance matrix corresponding to the smallest eigenvalue. Thus orthogonal
regression reduces to finding the the direction of the smallest principal component (PC).

To obtain robust orthogonal regression estimates we find the direction of the smallest

robust PC.

8.2 Outlier Detection using PCA

Robust PCA can also be used for detecting outliers in higher dimensional spaces.
This can be done by identifying observations that give rise to unusually large principal
components. To emphasize why classical PCA 1s not well suited to this purpose, let us
consider the artificial data set in Zamar (1989). It consists of twenty three-dimensional
vectors four of which have been made outlying, observations 1, 2, 19, 20 (marked with

a § sign). We have plotted all pairwise combinations of the PC’s for the classical and
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robust PCA. In the classical PCA, we do not have a clear indication that some of the
observations may be outliers. It is possible that an experienced data aﬁalyst could
identify the outliers from the PC1-PC3 plot (not shown). However, his conclusions
would be subjective, based on his or her experience.

To make outlier detection objective, we use robust methods. In this example we
have used the proposed estimator. From the robust PC2-PC3 plot it appears that
observations 1, 2, 19 and 20 are unusually large in the third PC. This indicates that
they may be possible candidates for outliers as these observations do not conform with
the structure of the rest of the data. These points have been purposely designed to
be outliers with the intention of upsetting the classical estimates. The classical PCA
failed to identify these observations because they inflated the scale of the third PC so
that outliers would not be detectable; in fact, the classical scale was almost ten times
larger than its robust counterpart. On the other hand, the proposed estimator clearly
distinguished between “good” data and “bad” data.

The example illustrates the dangers of relying on classical methods for outlier detec-
tion and how robust methods can provide a better picture of the situation by identifying

aberrant observations and remaining stable in their presence.
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