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Abstract 

In principal component analysis (PCA), the principal components (PC) are linear 

combinations of the variables that minimize some objective function. In the classical 

setup the objective function is the variance of the PC's. The variance of the PC's can 

be easily upset by outlying observations; hence, Chen and Li (1985) proposed a robust 

alternative for the PC's obtained by replacing the variance with an M-estimate of scale. 

This approach cannot achieve a high breakdown point (BP) and efficiency at the same 

time. To obtain both high BP and efficiency, we propose to use M M - and r-estimates in 

place of the M-estimate. Although outliers may cause bias in both the direction and the 

size of the PC's, Chen and Li looked at the scale bias only, whereas we consider both. 

Al l proposed robust methods are based on the minimization of a non-convex objective 

function; hence, a good initial starting point is required. With this in mind, we propose 

an orthogonal version of the least median of squares (Rousseeuw and Leroy, 1987) and 

a new method that is orthogonal equivariant, robust and easy to compute. Extensive 

Monte Carlo study shows promising results for the proposed method. Orthogonal re­

gression and detection of multivariate outliers are discussed as possible applications of 

PCA. 
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1 Introduction 

This thesis discusses robust alternatives to principal component analysis (PCA) and 

orthogonal regression (OR). Classical methods and key robustness concepts are briefly 

discussed, existing robust procedures are described and new robust approaches are intro­

duced. Several examples are included to illustrate the properties of the classical versus 

robust methods. Our goal is to extend the work of Chen and Li (1985) to M M - and 

r-estimates of PC's and to discuss the breakdown properties not only of the scale of the 

PC's (Chen and Li only considered the properties of the scale of the PC's) but also of 

their direction. 

The word robust is derived from the Latin word "robus" meaning strength. In 

different disciplines, it takes on different meanings. In statistics, robustness has usully 

been associated with methods and procedures that do not suffer greatly when a fraction 

of the data does not follow the model assumptions, i.e. outlying observations may be 

present. To expand on this, we say that estimator is robust whenever its value does not 

change appreciably after a number of aberrant observations has been introduced. This 

notion of robustness is very loose and can be made rigorous, yet it gives us a flavour of 

what is involved when we say that an estimator is robust. 

Statistical inference is only in part based upon observations. Equally important 

are the explicit and implicit assumptions one makes about the underlying situation. 

In regression, whether classical or orthogonal, one generally assumes that observations 

are independent and errors are normally distributed with mean zero and some common 

variance. The presence of outliers in the data certainly violates this assumption and 

inference based on classical methods that are sensitive to even minor departures from 

these assumptions would be suspect. Robust alternatives have been proposed to deal 

with the inherent susceptibility of classical methods to 'disruptions'. 
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In 1964 Huber, in his milestone paper on robust location estimation, laid the foun­

dation for modern robust statistical analysis. Since then robust methods have been 

developed for a variety of statistical procedures including orthogonal regression and the 

estimation of principal components, both of which constitute the focus of this paper. 

Scatter matrices and their principal components are at the heart of multivariate 

data analysis. Unfortunately, the classical estimator - the sample covariance matrix 

and its eigenvalues and eigenvectors - are highly nonrobust. One outlying observation 

can distort or completely upset the classical estimator. An observation is considered an 

outlier if it does not follow the same model as the rest of the data. An observation is 

considered a leverage point if its relocation causes major changes in the parameters to 

be estimated. 

A major problem with the detection of such cases in higher dimensional space is 

that an observation may not be extreme with respect to any of the original variables, 

but it can still be an outlier because it does not conform with the correlation structure 

of the remainder of the data. This type of outlier, called a structural outlier, will most 

likely distort the direction, an eigenvector, whereas a gross error outlier will most likely 

distort the scale, an eigenvalue. It may be possible to identify gross error outliers as 

they will stand out from the rest of the data but it is very difficult to detect structural 

outliers by looking solely at the original variables one at a time, or even two at a time. 

Most classical diagnostic procedures can identify a single outlying or high leverage 

observation. However, they are rendered helpless in the presence of multiple contami­

nants especially when these outliers are grouped and have a high leverage. Often the 

physical process that generates these outliers causes them to cluster in a particular lo­

cation. This phenomenon creates a 'masking effect', i.e., the removal of one observation 

from this cluster will not have a discernible effect on the estimated parameters. The 
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Table 1: Fire Claims in Belgium from 1976 to 1980. 

Year Number of Fires 

x{ Vi 

76 16694 

77 12271 

78 12904 

79 14036 

80 13874 

remaining contaminants will 'mask' any change that would be detected if the cluster 

contained only one outlying observation. 

To deal with this problem, we employ robust procedures. They provide an objective 

analytic tool for identifying observations that do not conform with the structure of the 

rest of the data. 

To illustrate the problems connected with the use of classical methods when model 

assumptions have been violated, we consider a simple data set (Rousseeuw, Leroy 1987) 

comprising the number of reported claims by Belgian fire-insurance companies in the 

five years from 1976 to 1980. 

If one disregards the number of fire claims reported in 1976, it is clear that there is an 

annual upward trend. This is reflected in the estimates from the method of least median 

of absolute orthogonal deviations (ORLM), ft> = -28872.7 and ft = 534.3. ORLM is one 

of the many robust alternatives to orthogonal regression which will be discussed later. 

OR fits the data with a decreasing trend yielding ft = 244547.7 and ft — -2956.3. 

These results give one the false impression that the number of fire claims is going down 
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Figure 1: Plot of Fire Claims in Belgium from 1976 to 1980 

while it is in fact going up. Although this example, with only one explanatory variable, 

is simple and the outlying observation can be easily identified because it is detached from 

the rest of the data, it illustrates how classical methods can lead to wrong conclusions in 

the presence of aberrant observations. Locating outliers in higher dimensions is usually 

more complicated and hence more reliable methods are needed. 

The rest of the thesis is organized as follows. In section 2 we discuss some basic 

robustness concepts that are used to classify the performance of estimators. In section 

3 we describe some robust estimates in the simple case of location and scale estimation. 

We focus our attention only on those estimates that are referred to in later sections. 

In section 4 we discuss classical PCA and the robust alternatives. We mainly focus on 

extending the work of Chen and Li (1985) beyond S-estimates of the scale of the PC's. 

We introduce M M - and T-estimates of the direction and scale of the PC's. In section 5 

we compute the lower bound for the maximum asymprotic direction bias and show that 

the BP of the scale is not inherited by the direction and that the BP of the direction 
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depends on the ratio of the adjacent eigenvalues. In section 6 we propose a robust 

estimate of the direction and the scale of the PC's and discuss its properties. We show 

that the proposed estimate is orthogonal equivariant, Fisher consistent and robust. In 

the last two sections we include Monte Carlo results to show the bias characterictics of 

different estimates and mention possible applications of robust PCA. 

5 



2 Basic Robustness Concepts 

Here, we introduce several concepts and definitions aimed at assessing the performance 

of estimators. Some stem from robustness while others are universally applicable. 

2.1 Influence Function 

The influence function (IF) measures the sensivity of an estimator to infinitesimal per­

turbations. The IF of an estimator T at a point x and a distribution F is given by 

J F(x ; r,f) = l i m r « 1 - e ' f + / ^ - r ( f ) (1) 

for those points x of the sample space where the limit exists. (Here, 8X is the point-mass 

distribution at x.). We define the gross error sensitivity (GES) as 

GES = sup \\IF(T,x)\\ . (2) 
X 

Observe that for e near zero, 

||r((l - e)F + e8x) - T(F)\\ » e\\IF(x; T, F)\\ . 

This implies that 

sup ||T((1 - e)F + e6x) - T(F)\\ » e GES , 
X 

where sup r ||T((1 — e)F + eSx) — T(F)\\ is the maximum bias induced in an estimator 

by a fraction e of contamination. The restriction to point mass contamination implies 

no loss of generality (see Martin, Yohai and Zamar, 1990). 

2.2 Maximum Bias Curve and Breakdown Point 

An important notion of robustness of an estimator is the breakdown point (BP). It 

measures the extent to which an estimator is able to cope with contamination. It is 
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often helpful in understanding the robustness properties of the estimator and can also 

be used to classify its performance. There are several definitions of the breakdown point 

of an estimator. For simplicity, only the finite sample version due to Donoho and Huber 

(1983) w i l l be introduced here. To define the breakdown point, let us suppose we have 

a data set 

X — { X x , X n } = { ( x n , X\2i •••) ^ l p ) 5 (xni, Xn2, Xnp)} . 

T ( X ) is the value of an estimator at the sample X . Consider a l l corrupted samples X' 

obtained by replacing any fraction e £ (0,1) of the original data points by arbitrary 

values. T(X') is the value of an estimator at the contaminated sample X'. First , we 

define the maximum bias as 

B(e;T,X) = sv?\\T(X')-T{X)\\ , (3) 

where the supremum is taken over a l l e-contaminated samples. P lo t t ing the function 

B versus the fraction of contamination t produces the maximum bias curve which 

is a carrier of both the local and global robustness properties of the estimate. The 

breakdown point is the value of e where the asymptote to the maximum bias curve 

crosses the x-axis. It is defined as 

e*(T, X) = inf {e : B(e; T, X) = co} , (4) 

i.e., e*(T,X) is the smallest fraction of contamination that can cause T(X') to take 

values arbitrarily far from T ( X ) . Asymptotic counterparts of e* and B have been defined 

(Hampel, 1986, for example). Under certain regularity conditions, the G E S is the value 

of the derivative of the maximum asymptotic bias curve at zero, that is, 

GES = B'(0) 

and therefore can be used to give a linear approximation for B(t) for t near zero. 
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2.3 Equi variance 

Equivariance is a concept that reaches beyond robustness as it pertains to a property 

that in one form or another is desired of all estimators. We shall distinguish between 

four types of equivariance: location, scale, orthogonal and affine. In the context of 

orthogonal regression and principal component analysis, the first three are a natural 

requirement for any estimator. 

2.3.1 Definitions 

Suppose we have a collection of vectors x l 5 x n in Rp. An estimator T is said to be 

1. location equivariant if T(xx + v , x n + v) = T ( x i , x n ) + v, where v is any 

vector in RP. 

2. scale equivariant if T ( c x l 5 c x n ) = | c |T(x x , x n ) , where c £ R. 

3. affine equivariant if T(Axj + v , A x „ + v) = A T ( x 1 , x n ) + v, where A 

is any nonsingular matrix and v is any vector in Rp. 

4. orthogonal equivariant if T(Txi -f v, ...,I7xn + v) = rT (x 1 , x n ) + v, where 

r is an orthogonal matrix and v is any vector in Rp. 

For a scatter matrix C, affine equivariance is defined as 

C(Axi + v , A x „ + v) = A C ( x i , x n ) A r , 

where A and v are as above. This means that if a point cloud is rotated or rescaled, 

then any measurement of its orientation will rotate and any measurement of its size will 

scale correspondingly. Orthogonal equivariance of a scatter matrix is defined similarly 

with A replaced by I\ 
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3 Robust Estimators - An overview 

There exists several different families of robust estimators. However here we w i l l focus 

our attention only on those estimators that are referred to in later sections. They are 

the M - , S- and r - estimators. Each is briefly described for the simple case of location 

and scale estimation. 

3.1 M - estimates 

Suppose we have a set {x,-},-=i,..,7i of independent identically distributed observations 

from Fgi<r. The maximum likelihood estimators for location and scale at the Gaussian 

model are defined as the solutions to 

where ty(x) — x, x(x) = x 2 a n d 6 = 1 . Bo th $ and x favour "large" observations. To 

reduce the influence of these observations on the estimated location parameter, we can 

use a function ^ satisfying 

C l . ^ is odd, bounded, wi th at most a finite number of discontinuities. 

Examples of such ^ 's are the Huber's function 

c sgn(x) if |x | > c, c £ (0, oo) 

if la;I < c 

or the Tukey's biweight function 

for Ice 1 < c 

for \x\ > c, c £ (0, oo) . 
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To robustify the scale estimate, we often choose a x that meets the following conditions: 

C 2 . x is symmetric, differentiable almost everywhere and x(0) — 0 • 

C 3 . x l s s tr ict ly increasing on [0,c) and constant on [c,oo) . 

A n example of a function that satisfies C2 and C3 is the Huber's ^-function defined 

as 

xf 
- T for \x\ < c 

1 for \x\ > c, c G (0, co) . 

Using general \I> and x functions, we define the generalized max imum likelihood esti­

mates (M-estimates) t and s of location and scale as the solutions to 

i t . ( 2 f - > o (., 

where b is usually taken to be the Ex{Z) and Z is the standard normal random variable. 

Huber (1964) defined M-estimates of location and described some of their asymptotic 

properties. These include y/n convergence rate to a normal distribution and a fairly high 

efficiency. 

3.2 S - estimates 

Let i be a tentative location of the center of a set of numbers, {x^},•=!,..,„. Consider 

the residuals, r,-(t) = X{ — t. The corresponding M-estimate of scale, s(t), is implici t ly 

defined by 

where x a n d b are as above. The S-estimate of location is then defined as 

T = argmint s(t) . 

10 



Notice that s(T) = s is a robust estimate of scale. In fact, it can be shown that for x 

satisfying C2 and C3, the BP of s is min{^^j, 1 —^^y}. (see Huber, 1981, for instance). 

It is clear from their definition in (5), that M-estimates of location are sensitive to 

the choice of s. To obtain good robustness properties for the M-estimate, we need to 

use a measure of dispersion of the residuals r,(i) that has the most bias resistance, i.e. a 

BP of 1/2. This criterion is met by s. This approach produces a new type of estimator 

called the M M estimator. It combines the efficiency of M-estimates with the robustness 

of S-estimates. 

3.3 r - estimates 

Introduced in 1988 by Yohai and Zamar, the r-estimates combine efficiency with good 

breakdown properties. They are defined by 

T = argmint r2(t) , 

where 

n i = i V
 5 W J 

s(t) is implicitly defined by 

and x i a n d X2 satisfy conditions C2 and C3. The corresponding "tuning constants" 

(explained below) for Xi a n -d X2 a r e c i = 1-548 to yield a high BP for the scale s(t) and 

c2 = 6.08 to yield 95% efficiency for the location t. 

Suppose that is small and X2 is quadratic near zero. Then 

2 

Hence for non-contaminated samples, the T estimators of location and scale reduce to 

the sample mean and variance respectively. This property gives the r estimator its high 

11 



Xj — t 

s{t) efficiency. If on the other hand, the absolute residual 

the tuning constant, C 2 , its influence is diminished because 

, is large, i.e, greater than 

X2 
Xi — t 

1 

This property gives the estimator its high B P . 
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4 Principal Component Analysis 

The objective of Pr inc ipa l Component Analysis ( P C A ) is to reduce the dimensionality 

of a data set containing a large number of correlated variables while retaining as much 

as possible of the variabili ty present in the data. This is done by transforming to a new 

set of variables, the principal components, which are uncorrelated. 

Suppose x is a vector of p random variables with mean u and covariance S. Unless 

p is small or the covariance structure is very simple, not much insight can be obtained 

from looking at the p variances and \p(p — 1) covariances. A n alternative approach is 

to look for a few "principal components" that retain most of the information contained 

in the variance-covariance structure. 

The first step is to look for a linear combination of the components of x , aTx, 

that has max imum variance; i.e, maxa var(ctTx) — aTHc(. It is clear that without 

a suitable constraint the max imum wil l not be achieved for finite a. The conventional 

constraint here is aTa — 1. The problem then becomes 

maximize aTHa subject to aTa = 1 

To obtain a solution, we can use the method of Lagrange multipliers (see for example 

Jolliffe, 1986) and maximize 

J\(ct, A) = aTHa — A ( a T a — 1) , 

where A is a Lagrange multiplier. Differentiating Ji(a, A) wi th respect to cti and setting 

the derivative to zero yields 

d 
— J i ( a , A) = £ a - A a = 0 . 
da 

B y premultiplying both sides of the equation by aT and using the constraint ctTa — 1, 

we get 

aTEct = A . 

13 



Therefore, the solution to the constrained maximization problem is the eigenvector a i 

associated wi th the largest eigenvalue A x of S . The linear function a f x is the first 

principal component. 

Next, we look for a linear combination of the elements of x, ct Tx, that has maximum 

variance and satisfies the constraints (i) a Ta = 1 and (ii) a T ctx = 0. The solution can 

be obtained, again by using the method of Lagrange multipliers, by maximizing 

J 2(o:, A, <f) = a T S c v — A ( a T a — 1) — cf>aTcti , 

where A and <f> are Lagrange multipliers. Differentiating J2(a,\,<j>) wi th respect to a 

and setting the derivative to zero yields 

d 
— J2(a, A, <j>) = aTT,a- Xa - <ba = 0 . (8) 
da 

Premul t ip ly ing both sides of the equation by a f wi l l result in 

aTHa — Xafa — cj>aTa.i = 0 . 

B y noticing that (i) a?cx\ = 1 and (ii) a f S = \a[ we have <f> = 0. Substituting for <f> 

in (8) and premultiplying by a results in 

a r S a = A . 

Therefore, the solution to the doubly constrained maximization problem is the eigen­

vector a-2 associated wi th the second largest eigenvalue A 2 of S . The linear function 

a^x is the second principal component. 

This process is repeated unti l all principal components are computed. It can be 

shown that cti,ct2, ...,ap are the eigenvectors of S corresponding to A i , A 2 , A p , re­

spectively, where the Aj's are in decreasing order. It can also be shown that 

var(ajx) = A,- for i = 1 , 2 , p . 

14 



Note that in the classical PCA, proceeding from either minimizing or maximizing the 

variance of a linear combination of the elements of x yields the same principal compo­

nents. As we will show later, this is not the case in the the robust setting. 

4.1 Robust P C A 

PCA is an important tool used in many fields where there is a need for reducing the 

dimensionality of a data set. It has been a popular technique with psychologists who 

routinely collect a multitude of information on their patients and then try to construct 

a few "indices" to explain their behavior. It is important that such indices should be as 

reliable as possible to prevent misdiagnoses; however, because the classical approach is 

unable to cope with aberrant observations, its reliability can be questioned. 

As we have seen, principal components are obtained via successive constrained maxi-

mizations of the variance of a linear function of elements of x. One extreme observation 

may inflate the variance enough to upset the order of the principal components. To 

illustrate the weaknesses of the classical PCA, we have generated a hundred point, two 

variable sample. The first variable y is distributed as N(0,1), the second variable x is 

90% distributed as N(0,0.1) and 10% as 

1. N(0,0.1) 

2. N(3,0.1) 

3. N(4,0.1) 

We have computed the first PC for each of the sampling situations. It is clear from 

the accompanying plot that contamination can adversely affect the direction of a PC. 

In this example the size and location of the outliers are not severe yet the direction of 

the first PC is completely upset. In the two-dimensional case we can surely identify the 
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Figure 2: Plot of the First PC's 

outliers from looking at an x — y plot. In higher dimensions we may not be able to do 

so. 

To make the PCA contamination resistant, statisticians have adopted one of two 

possible approaches. One is to obtain a robust estimate of the scatter matrix and then 

proceed with an eigenvalue-eigenvector decomposition (Boente, 1987) to compute the 

principal components. The second approach is to replace the variance in the maxi­

mization by some robust estimate of scale, s, and then proceed as above (Chen and 

Li , 1985). Note that, classically, we obtain the same principal components whether we 

begin by maximizing the variance or by minimizing it. This is generally not the case 

when var(aTx) is replaced by 3(a Tx). In the robust setup, the minimization approach 

is more attractive in view of the many minimization algorithms developed for classical 

and orthogonal regression that can be used as building blocks. 

16 



4.1.1 Robust PCA via the Robustification of Scatter Matrices 

A natural way to obtain robust estimates of location and scatter is to extend the 

definition of one-dimensional M-estimators of location and scale to the multivariate 

setup. Maronna (1976) proposed such M-estimators, defined as solutions of a system of 

equations of the form 

-_>i[{(x.- - tyv-̂ x,- - 1 ) } 1 ' 2 ] ^ -1) = o 
n 1=1 

-X>2[(xt- - t)'V-i X t. _ t)](x4- - t)(xt- - t)' = V, 
n i=i 

where n x and u 2 are functions satisfying a set of general assumptions (see Maronna, 

1976). Boente (1987) studied the asymptotic distribution of the eigenvalues and eigen­

vectors of the above M-estimator of scatter. She has shown that they are consistent 

and asymptotically normal at the usual rate, y/n. However, it can be shown that that 

M-estimates of scatter attain a B P of at most 1/p (Maronna, 1976), where p is the 

number of variables. This makes them of limited use when p is large. Also, it is not 

clear whether the B P of the covariance matrix estimate is inherited by the direction of 

the PC's . 

Some other techniques for computing robust scatter matrices include convex peeling 

(Barnett, 1976, Bebbington, 1978), ellipsoidal peeling (Titterington , 1978, Helbling, 

1983), iterative trimming (Gnanadesikan and Kettenring, 1972, Devlin et al., 1975) and 

depth trimming based on the concept of depth (Tukey, 1974). Unfortunately, they all 

possess a breakdown point of at most l / (p+l) (Donoho, 1982). 

The first affine equivariant estimator with high B P was constructed independently by 

Stahel (1981) and Donoho (1982). It measures the "outlyingness" of a point x relative 

to some center location. For each observation x,-, one looks for the one-dimensional 
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projection leaving it most exposed: 

C i ~ MEDk\v?xk - MED,lvTXj)\ ' V G R ' 

where MED is the median. Now consider a weight function Wi — w(d), where w : 

[0,oo) —> [0,oo) is decreasing with sup j|C (̂011 < 0 0 • A robust covariance estimator 

based on the tw,-'s can be computed then as 

EF=1 u;?(x,- - t)(x; - t ) r 

where the multivariate estimate of location, t, is defined to be 

t _ E?=i w i * i 

E"=i«;,-
The estimators obtained this way combine high B P wi th affine equivariance (Donoho, 

1982). However, for each random vector xt-, we have to solve a nontrivial maximization 

problem. This would be computationally prohibitive even for the computers aboard the 

Enterprise. 

Rousseeuw (1983, 1987) proposed another estimator, the min imum volume ellipsoid 

( M V E ) , that combines the properties of affine equivariance and high B P . Define an 

ellipsoid Ectfi by 

Ec,» = {x: ( x - A i f C - ^ x - ^ l } 

and the set C by 

C = {(C,n): #(£C,M n data) > [n/2] + 1} . 

The M V E is ( C , / / ) = a rgmin |C | , where | C | is the determinant of C . In most cases it 

is not feasible to consider a l l "halves" of the data and to compute the volume of the 

smallest ellipsoid that surrounds them. Hence to compute the M V E , we use a method 

similar to the bootstrap. 
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Given a set of random vectors {x}n in Rp

: we draw repeatedly a subsample of p + 1 

different observations. The number of subsamples, m, drawn must be large enough so 

that the probability of a subsample containing only "good" data points is high. For 

large data sets with many variables, we limit the number of subsamples to whatever is 

computationally feasible (this is usually in the range of 100 to 3000 depending on p). 

We find the mean xk and the covariance matrix for the kth subsample. Denote 

by 

Ek = {x : (x - x,) TC^ 1(x - x,) < 1} 

the ellipsoid corresponding to Ck and x̂ . It contains the observations x, that are within 

a Ck unit distance from x̂ . The volume of this ellipsoid is related to |Cfc|, that is, 

vol {x : (x - x,) TC^(x - xfc) < 1} = kp\Ck\^2 , 

where 

and T(x) is the gamma function evaluated at x (see for example Johnson and Wichern, 

1988). To envelop [n/2] + 1 points, the ellipsoid Ek has to be inflated or deflated by 

being multiplied by some correction factor, the median Mahalanobis distance (MMD) 

MMDk = mediani=i]...jn(xI- - xyt)/C^1(x1- - 5ck) . 

Observe that the resulting ellipsoid 

E'k = {x : (x - X f c f C ^ x - xfc) < MMDk) 

contains exactly 50% of the observations. The volume of E'k is 

vol(E'k) = vol {x : (x - x A) TC; 1(x - 5ck) < MMDk} 

= vol{x : (x - xk)T(CkMMDk)-l(x - x,) < 1} 

= kp\MMDkC\1/2 

= kpMMDl/2\C\^2 . 
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Hence the volume of the ellipsoid E'k is proportional to 

MMDp

k

/2\Ck\^2 . (9) 

Suppose that MMDj^ 2 | C f c * | a / 2 minimizes (9) over a l l subsamples k = l , . . , m . Then the 

M V E covariance estimator is expressed as 

Ck.MMDk.{xlo.sV , 

where Xp;o.s * s the median of a chi distribution with p degrees of freedom; it is used 

as a correction factor to obtain consistency at the multivariate normal model. In the 

univariate case the M V E reduces to the S H O R T H . Given a set of numbers {a:;} t_i,.., n , it 

is the length of the shortest line segment that contains at least [n/2] + l such numbers. It 

can be shown (Mar t in and Zamar, 1989) that the S H O R T H is the most resistant measure 

of dispersion wi th respect to minimizing the maximum bias among al l M-estimates of 

scale. 

Davies (1989) showed that the M V E converges weakly at rate of to a l imit ing dis­

tr ibut ion that is nonnormal. To improve the rate of convergence, Rousseeuw (1983) also 

proposed the m i n i m u m covariance determinant ( M C D ) . The M C D covariance matrix 

estimate is the sample variance of the observations contained in the min imum volume 

elipsoid, the M C D multivariate location estimate is their sample mean. But ler and Juhn 

(1988) showed that the M C D is asymptotically normal at the rate yfn. 

Estimators analogous to S-estimates, MM-estimates and r-estimates of location and 

scale in the univariate have been extended to the multivariate setup by Lopuhaa, (1990) 

who discusses their properties at length in his P h . D . thesis. 

The above estimators have one characteristic in common; they, are affine equivariant. 

To attain affine equivariance and a high B P , we must sacrifice computational efficiency. 

In the P C A , the principal components of a covariance matr ix define an orthogonal 
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basis in the factor space. Hence, we need only consider estimators that are orthogonal 

equivariant, i.e., preserve the basis. Weakening the assumption of affine equivariance 

allows us to develop a new PCA estimator that is robust, yet easy to compute. A brief 

description of the estimator follows while its properties are discussed in section 6. 

Suppose we have a sample {x}J=1 with some initial robust estimate of covariance 

So(x). We propose to use an iterative procedure for computing weighted estimates of 

multivariate location and scatter with weights based on the principal components of 

St*,, the estimate of the covariance matrix at the kth iteration. Note that Maronna's 

M-estimate is also a reweighted covariance matrix, but the weights are based on the 

Mahalanobis distance (this is the reason for the low BP of the Maronna's estimate). 

Let a.j be the eigenvector of Ŝ  associated with the ] t h largest eigenvalue. Then the 

\ t h principal component of X; is PCij = ajx,-. Next, we consider a weight function, 

W{j = w(PCij), where w: [0,oo) —• [0,oo) is decreasing with sup ||PC,-j w(PCij)\\ < oo. 

The weighted estimators of multivariate location and scatter are 

_ Er=i v r ? * 

and 
s _ ££ g l(x ,--t f c + 1)(x ,--t f c + 1 ) r (w;*) 2 

where Wjf is the product of w^s computed at step k. The Wjs satisfy the following 

condition 

f if Wj1 < W*~l 

I W*~x otherwise . 

The weights Wk are forced to decrease at each iteration. The lower bound for the weights 

will be zero by the assumptions on the weight generating function w(*). This ensures 

convergence of the method. We will show in section 6 that at least p + 1 weights will 

be larger than zero for observations that do not lie in a lower dimensional hyperplane. 
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This will prevent the scatter estimate from being singular. Aside from being easy to 

compute, the estimators are orthogonal equivariant, consistent and have a BP of 1/2 as 

will be shown in section 6. 

4.1.2 Robust P C A via Projection Pursuit 

Classical P C A is a type of projection pursuit method. Consider a set of random 

vectors {x},=li...)n. In this method, one searches Rp for a direction in which the variance 

of a linear function, aTx, of the elements of x attains a critical value. The BP of 

variance, as classically defined, tends to zero with increasing sample size and even a 

tiny fraction of contamination may cause it explode (blow up to o o ) . To make the P C A 

more resistant, a robust scale estimate S of aTx is used in place of the variance. The 

unmodified problem is as follows: 

where x 1S a nondecreasing even function that limits the influence of outlying or influ­

ential observations, b is usually taken to be E{x(Z)}, where Z is the standard normal 

random variable. To make the minimization feasible, one can employ a method first 

introduced by Chen and Li (1985). It consists of three steps: reparametrization, mini­

mization and projection. 

First, we note that a (p+l)-dimensional unit vector a 0 can be reparametrized as 

min 5(a0) subject to 

1 
(l,-f3)T , where 8 £ RP . 

The purpose of the reparametrization is to eliminate the constraint ||a0|| = 1 and make 

the computations simpler by doing so. The problem thus becomes 

min S(/3) subject to (10) 
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where /3 E Rp. Denote by /3 € Rp the minimizer of S(f3). Next, we notice that the 

solution to 

min S(a) 
| |a| |=l ,a?ao=0 

lies in the nullspace, Af, of a 0, where a 0 = ^ ^ r ^ ^ ' ~@fT• ^ e P r o J e c t our data onto 

this nullspace and proceed as above, i.e obtain a solution to an unconstrained problem 

of one less dimension by means of reparametrization. Let a.i, . . ,a p be the orthonormal 

basis of Af. Then any ax G Af can be expressed by 
p 

fc=l 

where a € Rp and aTa = 1. Let yj = ( a ^ X j , a j X j ) r be the projection of the 

(p + l)-dimensional vector of observations Xj onto Af. Observe that the y;'s have one 

less dimension than the x,-'s. Now we minimize the scale Sfa^ over all unit vectors in 

Af, that is, 

min 5(a x ) subject to (TTTV) = ~J2x (STY) = H • l|ai||=i n^r{ \S (a x ) / n^r{ \S(ct) j 

By reparameterizing a as 

a = , 1 (1, - B ) T , where R e RV~X , 

the above minimization problem becomes 

1=1 

By solving the above equation we obtain 

p 
» i = _ a.-aj , 

A = l 

where a = .., ap)T is given by 
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$ £ i ? p _ 1 is the minirnizer of S(/3). We continue this process until the dimension of 

the nullspace of the existing vectors is reduced to 0. Vectors obtained in this fashion 

will be the robust eigenvectors and the square of the scale estimates will be the robust 

eigenvalues. The robust scatter matrix can then be reconstructed as 

The beauty of this method lies in the fact that the three steps described above reduce 

a problem in (p+1) dimensions to the same problem in one less dimension. The robust 

scale estimate S used in equation (10) is a nonlinear function with several minima. To 

minimize it, one requires a good initial starting point. 

In the linear regression setup, one uses a particular S-estimate of regression, the 

least median of squares (LMS). Essentially, one computes the regression estimates by 

minimizing the median of the absolute residuals. Analytically, the solution to this 

problem can be written as 

min S(/?) subject to i £ X a ^ ~ ^ X ' J = 1/2, (11) 

where x is defined as 

0 if | ar | < a 
Xa(x) - < 

1 if \x\ > a , a £ R . 

X is referred to as the jump function. Minimizing (11) is computationally very difficult 

given the discontinuous nature of Xa-

In practice, the computation of the LMS estimate involves a technique similar to 

the bootstrap. Given a set of observations {xt} : i=l,..,n in Rp+l, we begin by drawing 

subsamples of (p+1) points. Again, note that a large enough number of subsamples 

must be drawn to increase the probability that a particular subsample contains only 

"good" data. For very large data sets with multiple variables, the optimal number of 
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subsamples considered is limited to whatever is computationally feasible (usually 100 to 

3000 depending on p). 

We apply the method of least squares (LS) to each subsample k to obtain the re-

observations. The LMS estimate is the set of coefficients that minimizes the median of 

the squared residuals. 

The method of LMS is CPU intensive and its rate of convergence has been shown 

to be only -f/n. This is because for each sample k we find the median absolute residual, 

a quantity that is not uniquely defined for even number of observations. The median 

absolute residual is an M-estimate of scale based on a jump function x- The nature of 

the function causes slower than usual convergence rate. 

To improve the speed of convergence to the usual rate, we can use a smoothed version 

of the function x (Tukey's x-> f ° r example). The M-scale equation will now have a unique 

solution; however, the computation of the minimum M-scale remains nontrivial. 

To compute it, we can use the resampling scheme described above. However, this 

requires us to solve an equation of the robust residual scale similar to (7) m times. 

This can be extremely time consuming especially for large p. To improve computational 

efficiency, we make use of Yohai's suggestion (Yohai and Zamar, 1990). We solve (7) 

only when it becomes necessary. 

Observe that 

if s(f3) is overestimated. To initialize the procedure, we compute an M-estimate of scale 

for the first set of residuals to obtain Si(/?). Subsequently to minimize s(B), we only 

solve for s(8) if (12) is satisfied (the scale used in (12) is the minimum M-scale computed 

thus far). Implementing this suggestion will reduce the number of equations that we 

gression coefficients ft. Then we compute the LS residuals corresponding to ft for all 

(12) 
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have to solve from m , the number of subsamples drawn, to ln(m). 

In the context of projection pursuit, we propose an analog of L M S , the least me­

dian of absolute orthogonal errors ( O R L M ) . This method differs from L M S only in the 

computation of errors. In L M S , an error is defined as the vertical distance between the 

observed response and the fitted response. In O R L M , it is defined as the Euclidean 

distance of the observed response from the fitted regression line. 

B o t h methods, L M S and O R L M , although bias robust, have a rate of convergence 

of tfn. This results in low efficiency even if the errors are really normally distributed. 

To improve the speed of convergence, one uses a smoothed-out version of the O R L M 

obtained by replacing the jump function X with a continuous x, for instance Huber's 

x2 

Xc{x) = m i n { l , — } 

or Tukey's 

x) = m m { l , - ( : r - _ + _ ) } . 

c is called the tuning constant. The S-estimate of scale in a regression context based 

on either x function is asymptotically normal at the usual rate. Tukey's x is usually 

preferred because it has continuous first and second derivatives and hence equation (11) 

can be more easily minimized by Newton-Raphson type of methods. A disadvantage of 

S-estimates is their inabil i ty to achieve efficiency wi th high B P at the same time. There 

has always been a trade-off between the two. 

If an S-estimate is to achieve maximal B P , a low tuning constant c is used. For 

Tukey's x, c = 1-548. This wi l l cause some non-outlying observations to be viewed 

as outliers and penalized accordingly; any observation wi th the standardized robust 

residual larger than 1.548 wi l l be considered an outlier since from that point on all 

observations wi l l have the same value at the function x)- This wi l l in turn increase 

the asymptotic variance of the estimated parameters caused by the loss of information. 
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This results in a reduction in efficiency (it can be shown that efficiency is an increasing 

function of c). It turns out, from extensive Monte Carlo simulation runs, that minimizing 

the robust scale estimate of the orthogonal errors gives rise to regression estimates that 

are about six times less efficient than the MLE at the Gaussian model. 

Estimators, M M and r, that combine maximal BP with efficiency have been proposed -

in the linear regression setup. Both can be made 95% efficient at the Gaussian model and 

their maximum asymptotic bias characteristics are comparable to those of the maximal 

BP S-estimates. 

In the orthogonal regression setup we propose estimators analogous to the M M -

estimates and r-estimates of classical regression. In the computation" of the MM-

estimates, we use a fixed S-estimate of scale, say S n , of the orthogonal residuals that 

has a BP of 1/2 and solve for 8, the regression parameter. This allows us to increase 

the tuning constant c to gain efficiency (c = 4.7 for 95% efficiency at the normal model) 

by drawing closer to the quadratic x °f the Gaussian model. 

The first estimator we define is the orthogonal regression M M estimator (ORMM). 

It is the solution of the minimization problem 

where x is Tukey's x with c = 4.7 and Sn is as above. 

The second estimator is the orthogonal regression r estimator (OR-r) which is de­

fined as the solution to 

where S(8) is implicitly defined by 

27 



The tuning constant c\ = 1.548 for Xi 1S chosen so that the maximal BP is achieved, 

the tuning constant c2 = 6.08 for X2 1S chosen so that 95% efficiency is achieved at the 

Gaussian model. The r estimator is an adaptive combination of a high efficiency M-

estimate with a maximal BP M-estimate. If data are contaminated with a large fraction 

of outliers, the robust M-estimate dominates. If there are no outliers in the data or only 

a small fraction, the efficient M-estimate dominates. Hence the r estimator combines 

both bias robustness and efficiency. 

We have seen that robust OR can be used as a building block in robust PCA. This 

approach was pioneered by Chen and Li (1985). In their paper they considered the bias 

properties of an S-estimate of the scale of the principal components. However, they 

ignored the breakdown properties of the direction in which this scale is minimized. 

We have extended Chen and Li's method to efficient robust M M and r estimators 

that attain maximal BP with respect to the size of the PC's. We have also considered 

the direction bias and we will show that the breakdown properties of the scale are not 

inherited by the direction. We further show that the S-estimate of the direction of the 

PC's cannot be made robust and efficient at the same time. On the other hand, the 

M M and r estimates can be made 95% efficient while retaining a high level of robustness 

which, as we will show in the next section, depends on the ratio of adjacent eigenvalues. 

The larger the ratio the higher the BP. As this ratio approaches oo the BP tends toward 

1/2. 

28 



5 Direction Bias Computation 

The claims made in this section without formal proof are intuitively clear and can be 

rigorously established along the lines of Zamar (1989). 

Classical methods are usually derived under Gaussian assumptions and are optimal 

when the data follow these assumptions. Gross-error-models of the form 

F = (1 - e)F0 + eH , 

where F0 is a multivariate normal with mean a (we take a = 0, for simplicity and without 

loss of generality) and some covariance matrix £ , are used to describe situations in which 

a certain fraction e of the data do not follow the central Gaussian model. 

Let S 0 = ~£>{FQ) be the covariance matrix at FQ. We denote by A 0 < \ \ < .. < A p 

the eigenvalues of I] 0 and by a0, ax,.., a p the associated eigenvectors. 

The treatment of the direction bias is asymptotic. We denote by sa(F) the estimating 

direction functional at F. It can be shown that the direction functionals are Fisher 

consistent, that is, a,-(i*o) = a;- The bias of the direction a,- at F is then defined (Zamar 

,1989) as 

Bi(F) = 1 - \aj(F)&i(F0)\ = 1 - |a?(F)a,| . 

Note that Bi(F) lies between zero, no bias, and one, complete breakdown of the direction 

a,-. The maximum direction biases I?,-(e) are then 

Bi(e) = sup Bi(F) . 
F 

The breakdown point of a-i(F) is then (Zamar, 1989) 

BPi = sup {e : B,(e) < 1} . 
£6(0,1) 

The breakdown point of B.{(F) is achieved when a-i(F) becomes orthogonal to a;. 

Given a pair of adjacent PC's, this occurs when an outlying observation inflates the scale 



of the smaller P C enough to make it larger than the scale of the larger P C . Intuitively, 

this can be done most easily when the variances of the adjacent P C ' s are similar in size. 

We can find a lower bound 6t-(e) for the B,(e). The lower bound 6,-(e) depends on 

the fraction of contamination e and on the ratio of two adjacent eigenvalues A t + 1 and 

A;. We denote the square root of the ratio A 1 + 1 / A , - by r,-. The larger the r,-, the smaller 

the lower bound 6,(e). It can be shown that the lower bound 60(e) is sharp, that is, 

60(e) = B0(e) . 

We conjecture that 64(e) = -B,(e) for i = 1, as well; however, we are unable to prove 

it . 

To find the lower bound 6,(e), we should, in principle, consider a l l directions a.(F) 

that are generated by introducing outliers at different locations in the (p+l)-dimensional 

space. However, it can be shown, as in Zamar (1989), that the largest deviation from 

the true direction a,- = a t-(F0) is obtained by moving toward a I + 1 ( i r

0 ) which is the path 

of the least resistance. 

Hence it is enough to consider a biased direction a(7) of the form 

a( 7) = (1 - 7)at- + v / l - ( l - 7 ) 2 a,-+1 , 

where 7 denotes the lower bound for the asymptotic direction bias. We also define the 

direction a( 7) that is orthogonal to a(7) by 

a( 7) = ^ / l - ( l - 7 ) 2 a,- - (1 - 7 ) a i + 1 . 

It turns out that the point mass contamination at 

y = / c a . ( 7 ) , K —* 0 0 

results in the most pessimistic scenario. The gross error model associated wi th a point 

mass at y, 6y, is denoted by 

F°° = (1 - e)F0 + eSy . 
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It is enough to consider JP°° alone because being the most pessimistic contamination 

model it induces the largest lower bound. 

5.1 r - estimate 

The asymptotic version a(_F0) of the r-estimate is 

a(F) = arg m i n M a | | = 1 r 2 (F , a ) , 

where 

The estimate of scale s(F, a) is implic i t ly defined by 

G £ j ) = 1 / 2 ' 
We assume without loss of generality that x(°°) = 1- We also define the function g(t) 

as 

g(t) = Ex(ViZ) , where Z ~ N(0,1) . 

To compute 6,-(e), we consider two situations (to simplify notation we assume i = 0). 

Firs t we calculate the value of the r-scale when the contamination is ignored, that is, 

when a = a.o(Fo) = a0. In this case the distribution of ajx under F°° is 

(1 - e)N{0, A 0 ) + e^co . 

Second we compute the value of the r-scale when the contamination is fitted exactly, 

that is, when a = a0(i?) = a(7). In this case the distribution of ajf^x is 

(1 - e)JV(0, (1 - 7 ) 2 A 0 + A 2 A 0 + e80 , 

where A 2 = [1 - (1 - 7 ) 2 ] . We can show that T(F°°, a(7)) > T(F°°, a0) implies k(F°°) = 

a0. O n the other hand, T(F°°, a(7)) < T(F°°, a0) implies that a.(F°°) = a(7). The lower 
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bound for the max imum bias is thus obtained by equating 

r 2 ( F ~ a 0 ) = r 2 ( F - a(7)) • 

We accomodate the contamination as long as the resulting scale is smaller than the scale 

we obtain by ignoring the contamination. 

Consider the two modelling situations: 

1. Contaminat ion is ignored (F°°,a.0). 

The defining equation for the r-scale can be written as 

T2(*~,ao) = * 2 ( F ~ a 0 ) [ ( l " *)EFoX (jT^T^) + e] > 

or in terms of g(t) 

r 2 ( ^ , a 0 ) = s2(F°°, a 0 ) [ ( l - e)g2 ( ^ / j ^ ) + 4 • (13) 

s(F°°,a0) satisfies the following equation 

( 1 - « > * ( ? ( j £ ^ ) ) + ' = 1 / 2 ' 

hence 

2 / P O O _ \ _ 

Substi tuting for S2(F°°,&Q) into (13) yields 

T 2 ( F ~ a0) = ( l - 6 ) 
Ao _! f0.5-e\ , A 0 

*<* ( — ) ) + ' ^ y -
- 1 / 0.5-eA 

2. Contaminat ion is fitted exactly (F00,a(i))• 

The equation for the r-scale expressed in terms of g(t) is 

AF~,a(7)) = ,'(*"»,a(7))(l - efe , ( 1 4 ) 
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where s(F°°, a(7)) satisfies the following equation 

( i - e)gi ( 
( 1 - 7 ) 2 A 0 + A 2 A 1  

a
2 ( F ~ a(7)) 

= 1 / 2 . 

Solving for s(F°°, we obtain 

( 1 - 7 ) 
2 A 0 + A 2 A ! 

9i 

W e then substitute for s(F°°,a(i)) into (14) to obtain 

r 2(^,a(7)) = ( l - e ) ( 1 - 7 ) 
2 A 0 + A 2 A X 

Equat ing T2(F°°, a(7)) and T2(F°°, a(7)) and solving for 7, we obtain the equation 

for the lower bound for the maximum direction bias as a function of the fraction 

of contamination e and the eigenvalue ratio A J / A Q , that is, 

5.2 S - estimate 

The derivation of the lower bound for the maximum asymptotic direction bias for the 

S-estimate is performed in a way similar to that of the r-estimate. We again consider 

two cases, first where the outlier is fitted exactly and second where the outlier is ignored. 

The lower bound is then obtained by equating the scale estimates of the smallest P C 

computed in the two cases. 

The defining equation for 5(i ? c o,a 0) is the following 

A i / A 0 - / ( 6 ) 

A 1 / A 0 - I 
(15) 

where 

(16) 
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Solving it for s(F°°,a.0) yields 

Ar 

^ (fe) 
Following the same steps as above we find the expression for s(F°°, a(7)) 

s2(F co, a(7)) 
, 2 ™ (1 - 7) 2A 0 + A 2 A X 

Equating s2(Foc', a(7)) and s 2( JP c o, a(7)) and solving for 7 that denotes the lower bound 

for the maximum asymptotic direction bias, we get 

bs(e) = 1 

where 

V A 0 - /(e) 
Ai/A„ - 1 ' 

f ( £ ) 
( & ) 

Notice that if the function <jr2 = <?i, then -Epx (^f j ) = 1/2 and minimizing r 2 (F, a) 

becomes equivalent to minimizing S2(JF, a) and the r-estimate of direction will be equal 

to the S-estimate of direction. Equation (16) reduces to equation (17) resulting in 

bT(e) = bs(e). 

5.3 M M - estimate 

To compute the MM-estimate of direction, we minimize the criterion 

J(F,a;s(F)) = EFX 

T 
a x 
s(F)J ' 

where s(F) is an S-estimate of scale with the maximal BP, that is, s(F) = s(F,a.(F)). 

We assume that the direction bias 70 of this robust S-estimate is smaller than the 

direction bias 7 of the 95% efficient MM-estimate. Notice that for 7 > 70, 

5 (F o o , a (7 ) )> 5 (F o o , a 0 ) 
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and hence the robust S-estimate of direction wi l l be equal to a 0 . Hence, for al l 7 > 70 , 

A g a i n consider the two modelling situations: 

1. Contaminat ion is ignored (F°°,a.0). 

In terms of the function g, the criterion J(F°°, a 0 ; s) can be written as 

J ( F ~ ao;3) = ( l - e ) ^ ^ + £ . (18) 

Substi tuting for s in (18) we get 

J(F°°, a 0 ; s) = (1 - eMg? ( Y T r ) ) + e • 

2. Contaminat ion is fitted exactly ( i* 1 0 0 , a(7)). 

The criterion J(F°°, a (7 ) ; s) can be writen as 

J(*-,.(7); *) = (!- «)* ((1-7)2t + A'A') • (19) 

We then substitute for J into (19) to obtain 

[(1 - 7 ) 2 A o + A2X1]g? ( ^ = 1 ) 1 
• / ( i^ .a f r ) ; s).= (l-e)g2 

Ao 

Again , the achievable bias occurs when fitting the outliers is better (from the criterion 

point of view) than ignoring them, that is, when 

J ( F ~ , a 0 ; i ) > J(JP°°,a(7); s) . 

The lower bound for the maximum asymptotic direction bias, 6 A / M ( C ) J is attained when 

we equate J(F°°, a 0 ; 5) to J(Fco, a( 7); 5) and solve for 7. Doing so we obtain 

W ( e ) ~ 1 " \] A . / A o - l ' ( 2 0 ) 
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where 
9;1 [ M 1 fe) + ^ (21) 

In Figure 3, we plot the lower bound for the asymptotic direction bias as a function 

of the fraction of contamination e for the 95% efficient S-estimate, the maximum BP S-

estimate, the MM-estimate and the r-estimate when the ratio r,- is equal to ten. The plot 

gives a global picture of the performance of the four estimates. First we notice that the 

S-estimate cannot achieve robustness and efficiency at the same time. The S-estimate of 

direction based on the 50% BP scale estimate gives the greatest bias protection but it is 

very inefficient (eff=28%) at the Gaussian model. On the other hand, the 95% efficient 

S-estimate is not bias robust and breaks down at about 11% of contamination when the 

ratio r,- = y A i / A 0 = 10 (see Figure 3a) and around 7% of contamination when r,- = 2 

(see Figure 3b). 

Second we observe that the BP of the S-estimate of direction depends on the r,- and 

falls short of the BP of the corresponding scale estimate which is 50% for the robust and 

12% for the efficient scales, respectively. The BP of the robust S-estimate of direction 

is about 40% when r,- = 10 and about 23% when r» = 2. The corresponding breakdown 

points of the efficient S-estimates are 11% and 8%, respectively. From Figure 4, we 

notice that as r,- —•* 0 0 , the BP of the direction approaches that of the corresponding 

scale estimate. 

Also notice that the biggest increase in the BP occurs when 1 < r < 5; the BP 

curves remain fairly flat (although increasing toward the scale BP) for r > 5. Finally, 

we notice (see Figure 4) that as r approaches one, the BP tends to zero. However, when 

r ~ 1, switching the order of adjacent principal components will not seriously harm the 

analysis of the data. 

Figure 3b is a plot of the lower bound of the direction bias as a function of the 
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fraction of contamination e for an r,- of two. This ratio has been used in the Monte 

Carlo study that was carried out to assess the finite sample performance of the four 

estimates. 

As we expected, the M M - and r-estimates of direction can combine efficiency and 

robustness. F rom the accompanying pictures we notice that the bias performance of the 

95% efficient M M - and r-estimates is much better than that of the efficient S-estimate. 

Al though the bias behaviour of the M M - and r-estimates is in general worse than that of 

the robust S-estimate, the performance gap quickly narrows for increasing r-,-. From (15) 

and (20) we notice that the B P of the M M - and r-estimates occurs when /(e) (defined 

by (16) and (21)) is equal to A i / A o , that is, 

S P = r 1(A 1VA 0) . 

Hence, / - 1 ( A i / A 0 ) —> 1/2 as AX/AQ —• oo. 

Final ly , notice that the r-estimate has visibly better bias characteristics than the 

MM-est imate for fractions of contamination larger than 0.27. This is to be expected 

because the r-estimate, being of an adaptive nature, should accomodate better a large 

percentage of outliers than the fixed scale MM-estimate. For smaller e, the MM-est imate 

is marginally better than the r-estimate. 
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epsilon 

Figure 3a: Plot of Direction Bias vs Fraction of Contamination (y A i / A 0 = 10). 

o 
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epsilon 

Figure 3b: Plot of Direction Bias vs Fraction of Contamination (\JXI/\Q = 2) 
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Figure 4: P lo t of Fraction of Contamination versus Xi/XQ. 

6 Proposed Estimator 

Although there are a number of robust scatter matrix estimators in existence, they 

are computed via the minimization of a nonconvex function with multiple minima. This 

is both time consuming and difficult to achieve. Also, to increase the probability of 

convergence to a global minimum, a "good" ini t ia l starting value for the function must 

be provided. The method proposed here is quick and easy to compute. A Monte Carlo 

study wi l l show that it compares favourably wi th other robust methods. It can also 

serve as an in i t ia l estimate for other, more complicated procedures. 

A m o n g the properties of the proposed estimator are high breakdown point and or­

thogonal equivariance. Usually, one requires an estimator to have a somewhat stronger 

type of equivariance, affine equivariance. However, P C A is based upon successive mini­

mizations of the variance of a linear combination of the elements of x. This combination 

is given by a particular eigenvector of the scatter matrix. The set of such eigenvectors 

forms an orthogonal basis in the factor space that is to be preserved under transforma-

i 1 1 : 1 1 1— 
0 20 40 60 80 100 

S/N ratio 
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tion. An orthogonal equivariant estimator satisfies such a requirement. 

Here we describe in detail the procedure used to compute the proposed estimate. 

The algorithm has three steps: 

1. Center the data. 

First we robustly center the data. In order to achieve orthogonal equivariance 

and a high BP for the estimate of scatter, we want to center the data by a mul­

tivariate location estimate that is orthogonal equivariant, robust, independent of 

the estimate of the scatter matrix and easy to compute. These requirements are 

satisfied by the Li estimate of location defined (see for example Lopuhaa, 1990) 

as the solution to the minimization problem 

The asymptotic BP of this location estimate is 1 /2. Once T„ is computed, it is sub­

tracted from the data so that we obtain a new centered data set {x1?.., x n), X ; = 

X i — T n . For simplicity, the tilde will be dropped from the notation. 

2. Compute the initial estimate of scatter, S 0 . 

To initialize the procedure, we compute a robust weighted estimate of scatter. 

The weights used are generated by the function u(r) that is deacreasing on [0,oo) 

and such that u(r) is equal to zero when its argument exceeds some previously 

specified constant. Let s be the robust scale imlicitly defined by 

Xa is defined as before and a = $(3/4). The above maximal BP M-estimate of 

scale is known as the median absolute deviation from the median, MAD. The 

n 

m i n X J x i - T . 
± n t=i 

n II 
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initial estimate of scatter So is 

SQ(XI, .., x n) 
V s j 

3. Compute Sk+\ given Sfc 

Let a1;..,ap be the eigenvalues of , the current estimate. Then the [k + l)th 

estimate of the scatter matrix is of the form 

1 2 
S * + 1 ( X i , . . , X n ) = J2XiXJWik 

^i=l vyik j'=l 

The WikS are defined as the product of weights that are based on the standardized 

absolute principal components, that is, 

The weight generating function w(r) is decreasing on [0,oo) and such that w(r) 

is zero whenever its argument exceeds a previously specified constant. The scales 

Sj , j=l,..,p are the MAD, that is, 

I E * (^0=1/2. 

Termination criterion: 

We repeat the third step until the maximum difference between the current weights 

and the weights obtained at the previous step is less than some S (in the Monte 

Carlo study 8 was taken to be 0.001) or until the maximum number of iterations 

(user specified) is reached. 

1 Some Properties of Proposed Estimate 

n this section, we will discuss the properties of the proposed estimates of the direction 

d size of the principal components (PC). These estimates are based on a reweighted 
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scatter matrix which, at convergence, is of the form 

S(x l 5 . . ,x n ) = ^ - l ^ f ^ t x i ) (22) 

where W{ is the weight assigned to observation X j . The weight generating function, 

w, is even, decreasing on [0,oo) and such that |w(r)r| is bounded. We will show that 

S(xi , . . ,x n ) is orthogonal equivariant and Fisher consistent. This will in turn imply 

that the estimates of the directions of the PC's are orthogonal equivariant and Fisher 

consistent and that the estimates of the size of the PC's are Fisher consistent. We will 

also show that the BP of S(xi, . . ,x n ) tends to 1/2 as the sample size approaches co. 

The BP is inherited by the estimate of the size of the PC's; however, the BP of the 

direction may be smaller as this was indeed the case for the S-, M M - and r-estimates. 

However, as we will see in the next section, simulation results suggest that the BP of the 

direction of the PC's based on the proposed method is higher than that of the robust 

S-scale. Further study is required to investigate finite sample properties of the proposed 

estimate. 

Theorem 1 Let {xx,..,x n} be a p- dimensional sample of size n. Suppose the weight 

functions u(t) and w(t) are even, decreasing on [0,oo) and such that \w(t)t\ and \u(t)t\ 

are bounded. Then the estimate Sn given by (22) is orthogonal_ equivariant, that is, 

S n (QX) = Q S n ( X ) Q r , 

where Q is any orthogonal matrix. 

Proof: First of all we notice that the data can be robustly centered by using, for 

example, the L\ estimate of multivariate location (Lopuhaa, 1990) which is clearly 

orthogonal equivariant and has breakdown point 1/2. Hence we can assume without 

loss of generality that the location estimate T(x!, . . ,x n ) is equal to zero. Let y, = 



QXj- (i=l,..,n). Recall that the initial weights u(||x,-||) are based on the Euclidean norms. 

Since ||x,-|| = ||Qx,|| = ||y,-||, the initial estimate of scatter S 1 (x 1 , . . ,x n ) is orthogonal 

equivariant, that is, 

l l y i ' " ' y n j " E?=1^(||yt||) 

£2= i« 2(IWI) 

= Q S 1 ( x 1 , . . , x n ) Q r . 

The proof is now completed by induction. Suppose that S m (x i , . . , x n ) is orthogonal 

equivariant. Let Xi < A2 < ... < Xp and ai, a 2 , a p be the eigenvalues and eigenvectors 

of S m (x i , . . , x„). Let hi, b 2, . . ,b p be the eigenvectors of S m ( y i , . . ,y n ) . Then 

ST O(x 1,.., x n )a = Aa . 

Premultiplying the above by Q, we get 

QS m (x i , . . , x n ) a = AQa . 

By using the fact Q r Q = I, we have 

[QSm(x 1 , . . ,x n)Q T][Qa] = [Sm( y i,..,y n)][Qa] = A[Qa] . 

Hence Qa is an eigenvector of Sm(yi,.., y n) corresponding to A. Therefore b, = Qa,. 

Let 

sxj = Median,-(|ajx,|) = Median^ |bjy,-|) = syj (23) 

and 

^ = lW^) = lW^ W»< • (24) 
j=l \ AXJ / i = l \ &yj J 
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Then, by (23) and (24), S m + i ( x i , . . , x n ) is orthogonal equivariant, that is, 

E i = i y«y« Sm +l(yi, Yn) — 

E ? = 1 ( Q x O ( Q x O r ^ 

i t j 
T Q S m + 1 ( x 1 , . . , x n ) Q - / . 

This concludes the proof. 

Theorem 2 LetFsfe) be an elliptical distribution with location parameter u and scatter 

parameter's. The corresponding density is /s(x) = |X|-1/2<7(||(x — / i)S~ 1 / , 2 | | ) . Suppose 

the weight functions u(t) and w(t) satisfy the assumptions of Theorem 1. Then the 

estimating functional S(.FE) is Fisher consistent, that is, 

S( FE) = S . 

Proof: Let Ax < A2 < ... < A p be the eigenvalues of £ and ai ,a 2 , . . . ,a p be the corre­

sponding eigenvectors. By Theorem 1, we can assume without loss of generality that 

{a 0, a 1 ; a p } = {e0, e 1 ? e p } , 

where et = (Oi, 0 2,.., 0 t-_ l 51,0,+ 1,.., 0) T. Therefore, 

£ = diag(\\,Ap) . 

and the corresponding density function is 

Asymptotically, convergence occurs in one step; however, the proof is done in two steps 

to allow the reader to follow the natural course of our argument. First we show that 
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the initial estimating functional So(i7s) (using the weight function u(||x||)) is diagonal. 

To see that S0(-Fs) is diagonal, notice that by symmetry we obtain 

/

co /-co ' i 
•••/ XiXkfs(^)u(Jxl -\ x2

p)dxi • • • dxp = 0 for i^k . 
-oo J—oo 

Recall that the weight function used after the initial step is based on the principal 

components. Hence the weights we use in the second step are based on the natural 

coordinates of x, that is, the projections ê x (j=l,..p). Again we have to show that the 

cross-product vanishes to ensure that S(Fj^) remains diagonal. To see that this is the 

case, notice that by symmetry 

E[xiXk w (^ij] = f ••• I XiXkfe(x) JJ w ( ^ - j dxx • • • dxp = 0 for i^k . 

j=i \sj J J-°° J-°° j=i \sj J 
Next we show that the diagonal elements of Si(i*s), A i , . . , A p , satisfy 

\i = K(Fi)\i i=l,..,p, 

where K(F\) is a known constant. Notice that in such a case S(Fj^) = S^JFE), that is, 

convergence occurs in one step. To show that A,- = XiK(Fj), we have to evaluate 

„ r co roo P / X I 
A , - = / • • • / x]Mx)T[w \-)dx1---dxp, (25) 

By noticing that ij (the median absolute deviation, MAD, was used) is Fisher consistent, 

i.e. Sj = \jx~j, we can write (25) as 

A,. = - r i = r.... r xUiC^+• • • $ fi w dXl... dxp. 

Finally, we make a change of variables x,- = x\Jy/\l to obtain 

^ roo roo _P 
A, = A,- / • • • / x2Ji(x\ + • • • x2) w(xj)dx1 •••dxp = XiK(Fi) . 

J — C O J—OO • i 

This results in Fisher consistency for the direction of the principal components. To 

obtain Fisher consistency for the size of the principal components, the scale estimate A,-

must be divided by the known constant K(F\). 
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Theorem 3 At any p-dimensional sample { x i , . . , x n } in general position, that is, there 

are no more than p points in any (p — l)-dimensional hyperplane, the breakdown point 

of the proposed estimate equals 

which converges to 1/2 as n —> oo. 

Proof: Notice that the weight function w is positive for some constant c1 greater than 

one and zero for some finite constant c2 that is larger than c\. Consider any sample 

{ y i , . . , y n } obtained by replacing at most [n/2] — p o i n t s in { x i , . . , x „ } by arbitrary 

values. For any unit vector a in the p-dimensional space we have 

s ( a T y 1 ; a T y 2 , ...,a r y n ) < s ( | | y i | | , | | y 2 | | , | | y „ | | ) < | | y | | ( [ n / 2 ] + P ) = d < oo . 

Notice that we can write any observation y,- as a linear combination of orthonormal unit 

vectors, { a l 5 a 2 , a p } , that span the p-dimensional space, that is, 

p 

y ^ ^ y czji&j , 

where the a.j's are non-negative. Hence | | y , | | 2 = £ j = i ct2-. Suppose that a large outlier, 

say y t , has a norm | | y A - | | 2 > p(c2d) 2. Then at least one ctjh > c2d, say a l f c . The weight 

wlk for the observation y ^ is 

We define the weight Wk assigned to the k t h observation as the product of the individ­

ual weights, Wjk, obtained for the projections a j y ^ for i=l,..p associated with the k t h  

observation. Hence, Wk — I lj = i wjk = 0; an observation that is large with respect to the 

"good" data is assigned a weight of zero. This will bound the largest scale away from 

oo. 
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To show that the smallest scale does collapse to zero, consider the most pessimistic 

direction, say a0, in which all outliers have a null projection and p observations lie in 

a (p — 1)-dimensional hyperplane. Hence, we will have a sequence of absolute ordered 

projections 

(0(1), 0(2), ...,0([n/2]_(p+l)),0([n/2]-p), ...,0([n/2]-l),^([n/2]),-.,^([n/2]+p), •••,&(«)} , 

where A;/ > 0 for l=([n/2]),..,(n). The corresponding scale of is the ([n/2]+p)t/l absolute 

projection, that is, 

s(a0) = fc([n/2]+p) • 

Hence there will be at least p+1 "good" points of {yi, ..,y n} that will have standardized 

absolute projections less than or equal to one. From the definition of the weight function, 

these points will have nonzero weights. Since these points are in a general position, 

they determine a convex hull with nonzero volume and the corresponding matrix is 

nonsingular. 
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7 Tables - Simulation Results 

The core model (contamination-free) used in the Monte Carlo study carried out to 

assess the finite sample performance of the estimates was the following 

yi = /3Xi + Vi 

x,- = Xj + ut- . 

Vi and u t are normal random errors. The errors are assumed to be uncorrelated with 

mean zero and variance cr2 and a^I. We considered two situations, p = 1 (x is one-

dimensional) and p = 4 (x is four-dimensional). 

In the one-dimensional case we considered sample sizes of twenty and sixty observa­

tions. The parameter 3 was set to 0, 1, 5 and 10. The X^s were distributed as N(0,1), 

Vi ~N(0,0.25) and ut- ~N(0,0.25) (\f\\/\o — 2). The fraction of contamination e was set 

to 0 (Gaussian model), 0.05, 0.10, 0.15, 0.20 and 0.25 with contamination-generating 

distributions N(3,0.25), N(5,0.25), N(10,0.25), N(15,0.25), N(20,0.25) and N(25,0.25). 

The outliers were generated in either y or x (more complicated contamination models 

were not considered due to the high cost of simulation and time constraint). Each sam­

pling situation was replicated two hundred times. The following was used to assess the 

performance of the estimates 
200 

where Bi is the direction bias of the estimate at the iih replicate. The estimate of the 

direction a is defined as 

BT was computed for each sampling situation. 

Notice that Bj ranges from 0 (no direction bias has been induced) to 200 (maximum 

lower bound for the direction bias was reached at every replicate). The lower the value 

of Br the better the bias behaviour of the estimate. 
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In the four-dimensional case we considered sample sizes of forty and seventy five. 

The parameter B is now a vector of parameters and in the Monte Carlo study it was 

taken to be one of 0,1, 5 and 10. The vector Xj was distributed as N(0,1I). The error 

structure was as above with U j being N(0, 0.251). The fraction of contamination was 

as above with contamination-generating distributions N(5,0.25), N(10,0.25), N(15,0.25), 

N(20,0.25) and N(30,0.25). The outliers were generated in either y or x\. Each sampling 

situation was replicated a hundred times. Bj was again used to compare the bias 

behaviour of the estimates. 

The random number generator used in the Monte carlo study was adapted from an 

article by Schrage (1979). Eigenvalue-eigenvector decomposition was done using the QR 

algorithm. 

The estimates considered in the Monte Carlo were the following: 

1. Orthogonal regression. 

2. Orthogonal regression analog of LMS based on Tukey's Xc (c=1.548). 

3. 95% efficient S-estimate using Tukey's Xc (c=4.70). 

4. S-estimate (BP=l/2) using Tukey's Xc (c=1.548). 

5. MM-estimate using Tukey's Xc (c=4.70). 

6. r-estimate using Tukey's Xc (c=6.08). 

7. Proposed estimate with u(r) equal to one for r less than 2.50. The weight function 

w(r) is defined as follows 

w(r) 

1 if \r\ < 1 

pr if 1 < Irl < 2.5 
| r | I I — 

0 otherwise 
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To improve the performance of the proposed estimate, we considered a slightly 

different initial estimate S 0 . To compute it, we have adopted an approach that 

is conceptually closely related to the Donoho-Stahel estimate. However, instead 

of looking at all one-dimensional projections that leave an observation x,- most 

exposed, we limit our search to a set of randomly generated orthonormal bases 

(including the canonical basis). The X; 's are projected onto the basis vectors. We 

define a projection index 7; as 

_ |vTx,- — medianj(v TXj)| 
7' vi^basis medianfc|vTxfc - median j(v rXj)| 

The weights ^(7,) are assigned to each observation, X j , according to the weight 

function w(») defined as above. The resulting multivariate estimates of location 

and scatter are 
; _ E"=i Wi^i 

E,-=i wi 

A _ Eti(x,--to)(x,--t. 0) Tu; 2 

This estimate is relatively easy to compute and has a breakdown point of 1/2. 

8. One-step reweighted estimate with zero-one type of weights based on the proposed 

estimate. An observation is assigned a weight of zero when the corresponding 

proposed method weight is zero, otherwise the weight is equal to one. 

The following tables summarize simulation results for the seven robust estimates con­

sidered, ORLM, 95% efficient S-estimate, S-estimate with BP of 1/2, MM-estimate, r-

estimate, one-step reweighted OR with weights based on the proposed method (WOR) 

and the proposed method estimate (MPP) together with classical orthogonal regression 

for comparison. We only include tables that show clearly the merits of using the robust 

estimates in place of classical estimates when the data are contaminated by outlying 

observations. 
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Table 2: Contamination in Y, N(3,0.25), 8=0, n=20, m=200. 

e 

OR ORLM S(95%) S(BP=0.5) M M r WOR MPP 

0.00 1.729 6.849 2.893 7.065 3.058 3.027 2.160 7.997 

0.05 16.128 7.343 3.850 7.368 3.568 5.844 5.125 5.780 

0.10 56.041 8.518 29.662 9.530 10.789 12.254 13.938 8.836 

0.15 93.977 18.839 86.486 17.807 26.621 33.595 24.401 9.535 

0.20 113.490 20.039 119.962 18.549 58.561 55.115 39.843 15.937 

0.25 137.259 31.845 146.006 35.817 110.012 99.240 48.995 18.023 

Table 3: Contamination in Y, N(3,0.25), 8= 0, n=60, m=200. 

6 

OR ORLM S(95%) S(BP=0.5) M M r WOR MPP 

0.00 0.520 1.985 0.540 1.960 0.546 0.571 0.520 1.418 

0.05 5.489 2.142 0.916 1.757 0.863 1.203 1.130 1.486 

0.10 43.451 1.916 7.440 2.137 1.191 2.462 1.588 1.315 

0.15 105.231 3.451 90.313 2.659 6.754 11.586 4.707 1.791 

0.20 138.850 2.585 145.655 2.960 65.327 51.431 10.920 1.567 

0.25 157.160 5.416 167.097 5.958 155.097 131.435 23.000 3.232 
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Table 4: Contamination in Y, N(5,0.25), 3=0, n=20, m=200. 

e 

OR ORLM S(95%) S(BP=0.5) M M r WOR MPP 

0.00 1.729 6.849 2.893 7.065 3.058 3.027 2.160 7.997 

0.05 99.114 7.070 6.737 8.468 5.548 7.403 5.488 9.534 

0.10 156.263 11.718 63.213 11.867 9.269 10.800 7.134 9.049 

0.15 171.012 15.320 178.990 17.221 14.268 19.381 9.104 10.145 

0.20 175.600 17.266 182.988 20.762 32.522 35.111 5.428 6.867 

0.25 176.412 29.579 182.560 37.020 94.562 92.341 10.439 11.378 

Table 5: Contamination in Y, N(5,0.25), 8= 0, n=60, m=200. 

e 

OR ORLM S(95%) S(BP=0.5) M M r WOR MPP 

0.00 0.520 1.985 0.540 1.960 0.546 0.571 0.520 1.418 

0.05 106.260 1.879 0.500 1.838 0.523 0.843 0.483 1.291 

0.10 174.419 1.616 49.046 1.672 0.673 1.180 0.641 1.384 

0.15 181.852 1.570 187.940 1.817 0.845 2.285 0.729 1.273 

0.20 184.547 1.356 189.764 2.831 11.795 16.112 0.778 1.501 

0.25 186.338 3.379 192.827 4.844 81.398 79.776 1.554 1.786 
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Table 6: Contamination in X, N(20,0.25), 8=5, n=20, m=200. 

e 

OR O R L M S(95%) S(BP=0.5) M M T W O R MPP 

0.00 0.0648 0.2405 0.0669 0.2208 0.0724 0.1150 0.0648 0.2764 

0.05 35.9934 0.2109 0.0837 0.2317 0.0985 0.1550 0.0718 0.2356 

0.10 105.4132 0.2694 0.0753 0.2834 0.0821 0.1848 0.0967 0.2536 

0.15 130.9318 0.1580 111.8115 0.2381 0.0934 0.1866 0.0694 0.1480 

0.20 143.1987 0.1580 131.8617 0.2966 0.1183 0.2603 0.0840 0.3040 

0.25 144.1752 0.1986 141.6511 0.4552 0.1949 0.4162 0.1064 0.2136 

Table 7: Contamination in X, N(20,0.25), 8=5, n=60, m=200. 

6 

OR O R L M S(95%) S(BP=0.5) M M r W O R MPP 

0.00 0.0153 0.0653 0.0164 0.0627 0.0168 0.0169 0.0153 0.0595 

0.05 18.8693 0.0610 0.0193 0.0565 0.0201 0.0284 0.0185 0.0608 

0.10 105.5620 0.0607 0.0224 0.0615 0.0238 0.0415 0.0202 0.0587 

0.15 131.1035 0.0523 131.7244 0.0573 0.0247 0.0449 0.0213 0.0411 

0.20 144.2054 0.0445 147.7639 0.1046 0.0368 0.0873 0.0223 0.0489 

0.25 143.9072 0.0528 150.3505 0.1888 0.0682 0.1701 0.0261 0.0409 
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Table 8: Contamination in Y (dim=5), N(10,0.25), 3=0, n=40, m=100. 

e 

OR ORLM S(95%) S(BP=0.5) M M T WOR MPP 

0.00 1.794 8.972 1.895 8.183 2.181 2.425 1.800 7.076 

0.05 92.399 10.130 4.316 9.940 4.713 7.021 3.280 7.191 

0.10 94.399 16.350 16.796 17.030 13.129 15.472 6.825 11.372 

0.15 96.311 18.532 97.659 22.511 16.425 25.028 1.918 8.824 

0.20 96.393 37.183 97.190 45.574 45.832 51.641 6.040 11.085 

0.25 96.985 56.955 97.529 73.062 89.264 91.446 6.806 12.250 

Table 9: Contamination in XI (dim=5), N(10,0.25), 3=5, n =40, m= =100. 

e 

OR ORLM S(95%) S(BP=0.5) M M r WOR MPP 

0.00 1.393 5.328 1.422 4.944 1.636 2.461 1.446 9.401 

0.05 12.663 9.130 5.544 8.795 4.724 7.204 3.167 6.726 

0.10 15.156 11.331 16.162 11.099 8.948 11.027 3.144 7.648 

0.15 15.607 15.550 15.781 15.953 14.629 15.708 4.772 9.468 

0.20 15.591 17.365 16.977 19.181 17.749 18.091 5.070 6.022 

0.25 15.278 19.201 16.556 20.420 16.711 17.622 6.016 8.205 
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An extensive simulation was done to assess the breakdown properties of different 

robust orthogonal regression estimates. Given that the upper bound for the maximum 

direction bias is one, we assume here that an estimate has broken down if the 95 t h  

quantile of the direction bias is larger than 0.90. Using this criterion, the empirical BP's 

for the direction are 

Table 10: Empirical BP's of the estimates. 
OR ORLM S(95%) S(BP=0.5) M M T WOR MPP 

e* 0.00 > 0.25 « 0.10 > 0.25 « 0.20 « 0.20 > 0.25 > 0.25 

The empirical BP's are slightly higher than what is expected theoretically (note 

that the ratio \Jx~iJ\~o used in the simulations was two). This is probably because the 

simulations do not reflect the most damaging type of contamination. 

The Monte Carlo study only confirms what has been theorized. The efficient S-

estimate performs well at the Gaussian model and for small fractions of contamination. 

However, it breaks down early. The maximal BP S-estimate does not break down until 

about 25% of contamination but its performance at the Gaussian model is unsatisfactory. 

The same applies to the ORLM. The MM- and r- estimates perform well at the Gaussian 

model and, for larger fractions of contamination, attain nearly the same level of bias 

robustness as the maximal BP S-estimate. 

The proposed estimate appears to have better bias characteristics than the robust 

S-estimate throughout the e-range; however, it is quite inefficient at the Gaussian model. 

To improve efficiency while retaining a high BP, we considered a one-step reweighted 

estimate with weights based on the proposed estimate. It is evident from the tables 

above that this approach yields superior results. The one-step estimate is more efficient 

than the M M - and r-estimates at the Gaussian model and its bias performance over the 

e-range is exemplary. Although the proposed estimate and the one-step estimate give 
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good results, further study of their properties is required. 
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8 Applications of P C A 

8.1 Orthogonal Regression 

Orthogonal regression (OR) is the maximum likelihood procedure at the Gaussian 

error-in-variables (EV) model. In classical regression, the response variable consists of 

a deterministic part (assumed known) / ? T X and a random part e where e is assumed to 

be normally distributed with mean zero and covariance equal to some multiple of the 

identity matrix. The X,'s can also be random but they are assumed to be observed 

without error. In OR, the X,-'s are either random independent identically distributed 

vectors ( structural E V model) or they are non-random but unknown (functional EV 

model). 

Let 
Vi = ct + 3TXi + Vi 

(26) 
Xj = Xj' + l l j , 

where a is the intercept, 8 is the vector of regression parameters and u and v are errors 

with zero mean and some variance, possibly different, u and v are uncorrelated. Then 

the OR estimates are the solution of the following minimization problem 

. » (yj-a-8Txt\ mm > x / 

In the classical setup x(x) = x2- To make the OR method robust, the function X

 1 S 

chosen to reduce the influence of outlying observations. 

The above orthogonal regression problem can be restated as follows. Let xz = X,- + u,-

be a set of random vectors satisfying the condition a0X,- = 60, where â ao = 1 and b0 is 

some constant. Then the vector a and the number b are found by minimizing 

i t ( a T X i - 6 ) 2 . 
7 1 i=i 
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Figure 5: Plot of Classical versus Robust PCA 

(aTXj- — b)2 is the square of the orthogonal distance from x; to the hyperplane H(a, b) = 

{x : a Tx = b} (Zamar, 1989). It can be shown that a is the principal component of 

the sample covariance matrix corresponding to the smallest eigenvalue. Thus orthogonal 

regression reduces to finding the the direction of the smallest principal component (PC). 

To obtain robust orthogonal regression estimates we find the direction of the smallest 

robust PC. 

8.2 Outlier Detection using P C A 

Robust PCA can also be used for detecting outliers in higher dimensional spaces. 

This can be done by identifying observations that give rise to unusually large principal 

components. To emphasize why classical PCA is not well suited to this purpose, let us 

consider the artificial data set in Zamar (1989). It consists of twenty three-dimensional 

vectors four of which have been made outlying, observations 1, 2, 19, 20 (marked with 

a $ sign). We have plotted all pairwise combinations of the PC's for the classical and 
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robust PCA. In the classical PCA, we do not have a clear indication that some of the 

observations may be outliers. It is possible that an experienced data analyst could 

identify the outliers from the PC1-PC3 plot (not shown). However, his conclusions 

would be subjective, based on his or her experience. 

To make outlier detection objective, we use robust methods. In this example we 

have used the proposed estimator. From the robust PC2-PC3 plot it appears that 

observations 1, 2, 19 and 20 are unusually large in the third PC. This indicates that 

they may be possible candidates for outliers as these observations do not conform with 

the structure of the rest of the data. These points have been purposely designed to 

be outliers with the intention of upsetting the classical estimates. The classical PCA 

failed to identify these observations because they inflated the scale of the third PC so 

that outliers would not be detectable; in fact, the classical scale was almost ten times 

larger than its robust counterpart. On the other hand, the proposed estimator clearly 

distinguished between "good" data and "bad" data. 

The example illustrates the dangers of relying on classical methods for outlier detec­

tion and how robust methods can provide a better picture of the situation by identifying 

aberrant observations and remaining stable in their presence. 
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