KNOWLEDGE REPRESENTATION AND PROBLEM SOLVING FOR
AN INTELLIGENT TUTORING SYSTEM
By
Vincent Li

B. A. Sc. (Engineering Physics) University of British Columbia

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER’S IN APPLIED SCIENCE

in
THE FACULTY OF GRADUATE STUDIES

ELECTRICAL ENGINEERING

We accept this thesis as conforming

to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

June 1990

© Vincent Li, 1990

R

In presenting this thesis in partial fulfilment of thé requirements for an advanced
degree at the University of British Columbia, | agree that the Library shall make it
freely available for reference and study. | further agree that permission for extensive
copying of this thesis for scholarly purposes may be granted by the head of my
department or by his or her representatives. It is understood that copying or
publication of this thesis for financial gain shall not be allowed without my written

permission.

Department of Eigcthichr lysnz ER1JG,

The University of British Columbia
Vancouver, Canada

Date ’,C‘,\L 7,, (G4 ©

DE-6 (2/88)

Abstract

As part of an effort to develop an intelligent tutoring system, a set of knowledge rep-
resentation frameworks was proposed to represent expert domain knowledge. A general
representation of time points and temporal relations was developed to facilitate temporal
concept deductions as well as facilitating explanation capabilities vital in an intelligent
"advisor system. Conventional representations of time use a single-referenced timeline and
assigns a single unique value to the time of occurrence of an event. They fail to capture
the notion of events, such as changes in signal states in microcomputer systems, which do
not occur at precise points in time, but rather over a range of time with some probability
distribution. Time is, fundamentally, a relative quantity. In conventional representa-
tions, this relative relation is implicitly defined with a fixed reference, “time-zero”, on
the timeline. This definition is insufficient if an explanation of the temporal relations
is to be constructed. The proposed representation of time solves these two problems by
representing a time point as a time-range and making the reference point explicit.

An architecture of the system was also proposed to provide a means of integrating
various modules as the system evolves, as well as a modular development approach. A
production rule EXPERT based on the rule framework used in the Graphic Interactive
LISP tutor (GIL) [44, 45], an intelligent tutor for LISP programming, was implemented
to demonstrate the inference process using this time point representation. The EXPERT
is goal-driven and is intended to be an integral part of a complete intelligent tutoring

system.

il

Table of Contents

Abstract

List of Tables
List of Figures
Acknowledgement
1 Introduction

2 Background

3 Problem Domain

3.1 ELEC464 i it e e e e
3.2 AssignmentOne.t it
33 Analogywith GIL. i,
34 Timing Problems

4 Architecture
4.1 Architecture of Qur Advisor . . . v v ¢ 4 b i v it e e e e e e e e e e .

5 Knowledge Representation

5.1 Circuit Representation
5.2 Signal Representation.
5.3 Time Representation e e e e e e e e

iii

i

10
11

13
13

6 The Expert
6.1 Production Rules it
6.2 TheBlackboard i i i it it e e
7 Solving Problems
7.1 Equivalent Goals
7.2 Determining Time oo
7.3 Determining Reference o o e
7.3.1 Common References Exists,
7.3.2 No Common Reference
7.4 Determining tprcr: An Example
7.4.1 Determining When Data Bus Valid
7.4.2 Determining When CS Asserted . . e
7.4.3 Determining the Valueoftpjer e e e e e .
7.5 The Human Solution ittt
8 Implementation Results
8.1 TheExpert o i i it i et e et
81.1 Simulation i e e
812 RuleExecution ¢
813 Tidying Up o v i i i i e i e
8.2 Solving Goalso e e
83 Discussionof Results i,
‘ 8.3.1 Interface e e e e e e

9 Conclusions

9.1 Future Directions & Recommendations

iv

26
26
29

32
32
34
36
37
38
40
40
41
42
43

44
44
45
45
47
48
49
50

52

Appendices
A Assignment 1
B Production Rules

C The Solution Database

Bibliography

54

54

60

85

108

List of Tables

List of Figures

4.1 Architecture e e e e e e e 14
5.2 4Events i e e e e e e e e e e 22
53 OR-gateTiming o« o v vttt it ettt e e et e e e 23
6.4 ProductionRule. e 28
75 TimeRange o o i i i it e e 35
76 RAMBRead i i i i i it i i e et i 36
7.7 Calculating Timeot il 39
A8 Assignment Ome. i e 54
A9 Read Cycle i v i i it ittt ettt 58
A0 (2b) Solution 59

vii

Acknowledgement

I would like to express my appreciation for my supervisor, Dr. Kai P. Lam, of the Elec-
trical Engineering department for his guidance and support in this project. In particular,
for the directions to various reference sources and both the hardware and software that
made this project possible. I would also like to thank Dr. C. S. Phan for his suggestions
in the project.

Also, I would like to thank the ELEC464 studen.ts who provided valuable feedback

on this project.

Chapter 1

Introduction

University students, engineering students in particular in our case, are given tutorial
problem sets to be solved regularly, which are handed in, and marked. The idea behind
these problem sets is to reinforce concepts taught in lectures, to provide feedback to the
student on his or her strengths and weaknesses in the course, and to develop his or her
problem solving skills. There are two main drawbacks to this conventional procedure.
First, these assignments are often viewed as chores that are required to pass a course
rather than an opportunity to acquire some basic problem solving skills and correct any
misconceptions the student may have on the subject. Second, when an error is made, the
student often has to figure out for herself why there is an error by comparing her solution
with an “ideal” solution. However, the ideal solution often lacks explicit explanation of
the lines of reasoning taken to solve the problems. The student often cannot deduce how
a solution was arrived at, thus cannot learn from her mistakes. Third, there is a delay
between the time the student does a problem and when he gets his marked assignments
back. The problems and problem solving processes are no longer fresh in his mind, and
attempts to determine the difference between how she arrived at the wrong solution and
how the expert (the tutor or professor) produced the ideal solution are thus made more
difficult and tedious. Often the student must go to the tutor in person to gain further
ﬁnderstanding or, if a tutor is not available, just give up in the attempt, defeating the
purpose of the problem sets.

Ideally, an expert tutor should be monitoring the student as he solves the problems.

Chapter 1. Introduction 2

When the student deviates or seems to deviate from the solution path, the tutor can ask
the student why he is doing what he is doing, and possibly correct his misconceptions and
give suggestions to bring him back on the solution path. Clearly, to have a private tutor
for each and every student is not possible in practice. The next best situation would
be to have a simulation, or model, of the expert available while the student solves the
problems. This intelligent tutoring system (ITS) would guide the student, providing hints
to lead the student toward the solution. ITS is a system “that can make inferences about
student knowledge and can interact intelligently with students based upon individual
representations of what those students know” [33][preface, p. vi}.

We are interested in developing such an intelligent tutoring system to advise students
on problem solving in tutorial problems, in effect helping them to organize their thoughts,
yet not restricting them to any one predetermined solution path. The domain selected is
ELEC464, a fourth year electrical engineering course in mini-/micro-computer systems
design.

As a first step toward developing a full scale intelligent advisory system, we need to
first understand how the expert solves the problem. In this work, we have established a
representation scheme for the expert knowledge and developed an ezpert model which is
able to solve a given problem.

Important knowledge elements in the selected domain are time and temporal rela-
tions. Signals within a system change over time and these changes must meet certain
constraints in order for the system to function properly. Furthermore, these constraints
are sp.eciﬁed as time range maximums and minimums relative to different reference points
in time. A knowledge representation framework is proposed to tackle these problems by
making the reference explicit, and representing the time range as a set of values bounded
by its maximum and minimum. The details of the representation framework are dis-

cussed in Chapter 5. The EXPERT module is a goal-oriented production system with its

Chapter 1. Introduction 3

roots founded in the GIL system developed at Princeton University {44, 45]. A modular
architecture is also established to facilitate relatively independent development of the
different modules required in a full scale system.

In the following chapters, we will first give a brief summary of developments in the area
of ITS, followed by a brief description of our problem domain. We will then proceed to
describe the overall architecture of our system, followed by a description of the knowledge
representation framework and our approach to the implementation of the expert module.
Finally, some of the initial results and an outline of the direction of future research is

presented.

Chapter 2

Background

In the past decade, a great deal of research has been carried out in developing an
intelligent tutoring system (ITS) which would act as a personalized tutor to a stu-
dent [21, 35, 41, 42, 43, 44, 50, 58]. Previous researches have been implemented in a vari-
ety of domains such as subtraction [8, 10}, geometry [4], high school algebra [34, 48, 49],
symbolic integration [30], electronic troubleshooting [9, 55], medical diagnosis [13), in-
formal game environments [11, 25], and computer programming [35, 38, 43, 44], among
others.

These systems have demonstrated that, where there is a lack of individual attention,
using an ITS is more effective than conventional classroom teaching. We have focused
our attention on a couple of recent projects in particular as the basis for our research.

John Anderson’s group at Carnegie-Mellon University (CMU) produced two intelli-
gent tutoring systems based on Anderson’s theory of cognition known as ACT (Adaptive
Control of Thought), and a later version ACT* [2]. One is the GEOMETRY tutor [4],
and the other a LISP tutor [4, 43]. The LISP tutor will be discussed further here, being
better documented in the literatures.

The CMU LISP tutor is comprised of a set of goal-restricted production rules, each
production rule representing a unit of knowledge to be taught to the student. These
rules are organized by goals. The tutor initially contained 325 correct rules as well as
475 mal-rules, “buggy” variants of the ideal model [4]. The rules are modelled after

cognitive processes and encoded at different levels of problem solving protocols. Advance

Chapter 2. Background 5

rules are turned off when novice students are being tutored to avoid presenting them with
information beyond their level, as well as confining the tutor’s search space in interpreting
the students’ steps.

The CMU LISP tutor and similar rule based systems [13, 48] have proven to be suc-
cessful in analyzing student behaviour, but once the analysis is done, explanations must
be constructed separately, using knowledge outside the production rules used in the anal-
ysis. These systems have their roots in conventional expert systems, where explanation
requirements are much less demanding than those required in a tutoring environment.
Clancey’s GUIDON [13, 14], a tutorial system for the MYCIN expert system, is an-
other such system. In building GUIDON, Clancey found the justification for the expert’s
action inadequate, and additional knowledge is required to give acceptable tutorial expla-
nations. Also, in the CMU LISP tutor, a set of mal-rules must be constructed beforehand.
If unanticipated student action is encountered in which no production rule’s conditions
are matched, problems may arise. Some sort of approach has to be developed to han-
dle the situation where no rule can be fired. Reiser et al. attempted to address some
of these shortcomings in the CMU LISP tutor in the Graphic Interactive LISP tutor
(GIL) [44, 45].

In Reiser’s work with GIL, the rules used by the expert to solve problems are also
used to generate the explanations. GIL is a goal-oriented system which allows forward
reasoning, from the given of a problem, as well as backward reasoning, from the desired
goal decomposed into smaller subgoals. The rules used by GIL contain explicitly the
properties of the input and output data objects as well as the conditions required for a
tule to execute, or fire. Thus, if the student’s action matches a given rule in any two
of its three components (input, output, and conditions), then an explanation can be
generated for the component where the error was made. This system leads to a fairly

robust explanation system.

Chapter 2. Background 6

We have adopted the goal-driven production system used in GIL. We propose two
major modifications in the structure. First, in the implementation of the production
rules, the condition side of the rule is separated into a goal part and a condition part
only. The input and output statements are absorbed by the condition to allow for a more
uniform and flexible production structure. The goal aspect of the rule structure offers
“why” a rule was fired, a feature lacking in many conventional expert systems. Absorbing
the inbut and output into a single conditions list does not affect the explanation capability
of our system. In fact, the explanation is enhanced, as all failed conditions are kept track
of. The production rule structure is discussed in more detail in Chapter 6.

Second, GIL’s domain does not deal with temporal elements explicitly. Each step
of the program is shown as one event following another. However, the exact time of
their occurrence is unimportant. This is not the case in the domain of microprocessor
system design. In fact, temporal values are an essential part of problem solving in this
domain. This reason has led us to develop a general time point representation system
from which we can constructing explanations. There are two major classes of formalism
in representing time and temporal concepts [46, 47], namely the McDermott formalism
and Allen formalism. Both of these systems attempt to provide a logical representation of
time by a tuple of temporal and an atemporal elements. In McDermott’s formalism [37],
the primitive temporal objects are time points. Time intervals are represented by the
two end points of the interval. The building blocks of the atemporal concepts are di-
vided into facts and events types. In Allen’s formalism [1], the temporal objects are the
intervals themselves. Allen classified the atemporal elements into properties that hold
true over a time interval, events that occur over a time interval, and processes that are
occuring over a time interval. As pointed out by Shoham in [46], there are weaknesses
in both of these formalisms and Shoham proposed a compromised logical representation.

Shoham’s proposal requires the primitive time elements to be time points and bears a

Chapter 2. Background 7

strong resemblence to McDermott’s representation, as time point is a more concise and
intuitive a representation than intervals. Time point is also less awkward in practical
implementations. We have thus chosen a representation framework for time based on
Shoham’s logic. We have further expanded the time point to incorporate a time range
representation for imprecise event occurrence. This framework may be used in other
domains dealing with temporal concepts and is further detailed in Chapter 5.

Although not a major focus in this work, an overall architecture of the ITS is required
to provide a means of integrating the various modules of the advisor system as the
system evolves. Barbara Hayes-Roth [28, 29] has been involved in the study of artificial
intelligence applications of the blackboard architecture and has successfully applied it in
a task planning application. The essence of a blackboard architecture is to provide a
common database, the blackboard, as a means of communication between several expert
knowledge sources [20]. Elements of a problem’s solution are placed on the blackboard,
and different experts will augment the solution when enough information is present on
the blackboard. This architecture is an efficient way of integrating several expert systems
together and allows a highly modular development approach. The McCalla ITS research
team at the University of Saskatchewan has adopted this approach to their ITS project,
called SCENT [35].

In our present work, we have also adopted a blackboard type architecture, mainly for
its modular development approach. This architecture allows the separate development
of the expert, advisor, and interface modules. Details of the system architecture are
discussed in Chapter 4. We shall first discuss in more detail the problems in the selected

tlomain.

Chapter 3

Problem Domain

Our problem domain is based on the ELEC464 course, a fourth year electrical engineering
course dealing with mini-/micro-computer systems design. First a brief outline of the
course, and then the details of the actual problem sets we would like the ITS to be able

to handle are presented.

3.1 ELEC464

ELEC464 is based on the text, Microprocessor Systems Design, .by Alan Clements [15].
This is a one term course dealing mainly with design of mini- and micro-computer sys-
tems based on the Motorola MC680007¥ microprocessor. The course deals with top-
ics in microprocessor-memory interfacing, designing with static and dynamic memory
components, interrupt handling, multitasking designs, direct memory access techniques,
synchronous peripheral interfaces, and standard bus interfaces. The students are given
problem sets once every two to three weeks, to reinforce the concepts presented in class
and to show the students how these concepts are applied in practice. ELEC464 is a dif-
ficult course involving many concepts. It was decided to concentrate only on assignment
one of the fall 1989 session initially. This assignment deals with address decoding and
timing diagrams of CPU-memory systems. In this assignment alone, we have found the

amount of basic knowledge required to solve the entire problem set to be overwhelming,

as will be shown.

Chapter 3. Problem Domain 9

3.2 Assignment One

A copy of Assignment One is shown in Appendix A. This assignment consists of three
questions, and is typical of problems given in the course. The questions may be classified

into three major categories:

1. Analysis problems, in which, typically, the schematic of a circuit is given. The
student would be asked questions concerning the function(s) of the circuit. For
example, in question (la) of Assignment One, the student is given an address
decoding circuit for a microprocessor-memory system and is asked to identify what
type of decoding strategies are used and what the logical address ranges of the

memory are.

2. Modification problems, in which the student is asked to modify a given circuit
to satisfy a set of constraints or specifications. In assignment one, for example,
question (2b) asks the student how to modify the given circuit to integrate the unit

into another circuit.

3. Synthesis problems. This type of question is of the essence in problem solving in
the engineering domain. The student is given a set of specifications and constraints,
and is asked to design a circuit satisfying these givens. For example, in question
(3) of the assignment, the student is asked to design an address decoding circuit to

satisfy a given memory map configuration.

These three types of problems require different problem solving skills and different

«

levels of understanding of the concepts ! required. Analysis questions require the student

1The term concept is used in this work to denote a unit of knowledge, which may be of variable
grain size. A concept may stand alone at one level of understanding while it may consist of numerous
sub-concepts at a lower level.

Chapter 3. Problem Domain v 10

to understand the concepts that have been taught explicitly in class. Solutions may be
arrived at with precisely definable rules and definitions. For this reason, the solutions to
this type of question are often unique, and only one or a few solution paths exist. This
type of problem is used to reinforce concepts taught in class explicitly.

Modification problems are slightly more difficult. This type of problem requires the
student to have a thorough understanding of how some given circuit works. The solution
to this type of problem is not necessarily unique. As long as the modification meets
the desired goal, it is a solution. Of course, some solutions are more elegant or optimal
while some may be completely impractical. Even if practicality is used to constrain the
type of acceptable solutions, often there is still a fair number of choices. For example,
Figure A.10 shows two possible solutions for question (2b). Different solution paths may
be drawn to arrive at the solutions. This type of problem is used to show students how
concepts taught in class are applied and reinforces the concepts implicitly.

Synthesis problems are the most difficult to solve. Many students have the most
difficulty with this type of problem. In our domain, for example, the students are asked
to design a circuit given the purpose and constraints on the devices. The solution to this
type of problem is far from unique and the number of solution paths is large. This type
of problem requires the student to have a thorough understanding of the concepts taught

in class and how and when to apply them.

3.3 Analogy with GIL

We have based our approach on GIL because we feel that there are some parallels between
the problems in our domain of microprocessor system design and that of LISP program-
ming in GIL. In the synthesis problems, we have found that we can draw a very good

analogy between the two domains. The environment in GIL is to tutor program creation

Chapter 3. Problem Domain 11

in LISP. The goal is for the student to create a LISP program to perform a specific task.
In our domain, the student is asked to create a system or circuit that would perform
a specific task in synthesis problems. The basic operators in GIL are LISP commands.
Each command operates on an input and produces an output. The inputs and outputs
are lists and atoms. Similarly, we may consider the basic operators in our domain to
range from digital components such as logic gates at the lowest levels, to entire blocks in
a block diagram at a higher levels of abstraction. These components operate on a set of
input signals, producing a set of output signals. Since the production rules in the GIL
framework encode the LISP operators, we can thus, in principle, use a similar framework
to encode the components.

We still have to deal with analysis and modification problems. We can look at mod-
ification problems as a combination of analysis and synthesis problems, understanding
what has been given and then generating the desired result from what has been given.
Thus, we can concentrate on the analysis problem. We can, of course, encode separate
production rules to deal with these type of problems. However, in GIL’s production rule
framework, the purpose of the operator is also encoded as a goal, which is what we want
in most analysis problems. That is, given the circuit, the student sees a number of com-
ponents and how they are interconnected. From this schematic, the student is expected
to deduce how the circuit would function and the purpose of the components and con-
nections. Thus, given the input, output, and component, the same rules describing the

components can be used to discover their purpose — why a device or parameter is used.

3.4 Timing Problems

One factor that GIL does not deal with, but is of critical importance in our domain, is

time. In a program, when an operator operates on the inputs and produces the output,

Chapter 3. Problem Domain 12

time is not a critical issue. This is not the case in microprocessor system design. In
fact, the timing relation between component signals is one of the most important parts
of the analysis. A signal changes, or a signal is required to change to a given state
within some constraint specified by the device. The changes are propagated through the
circuit, but the time of change is not precisely known. This work has concentrated on the
representation and propagation of this imprecision in time, and an attempt to develop an
expert that is able to use this representation to determine if a given timing constraint is
met. A subproblem of question (1b) in assignment one has been chosen to demonstrate
the reasoning process involved.

We will now give an overview of the overall architecture of the proposed advisor sys-
tem, and then deal more in depth with the knowledge representation and implementation

of the expert in the following chapters.

Chapter 4

Architecture

A typical intelligent tutoring system architecture consists of four parts: an expert solver,
a student model, a tutor module and an interface [41, 50].

The expert solver, or the expert model, contains the procedural and heuristic knowl-
edge used by experts to solve problems within a domain. This solver is essentially an
expert system. However,in a tutoring environment, conventional expert systems are usu-
ally inadequate since they are unable to explain and justify their actions. The student
model contains information about the student. It represents the state of the student
knowledge about the chosen domain, and is used in various ways by other ITS modules
such as offering advice, generating problems, or producing adaptive explanations [56).
The tutor or advisor module evaluates the difference between the steps suggested by
the expert and those taken by the student, from which the sources of any student error
are inferred and appropriate corrective actions will be effected. It contains the tutorial
strategies and teaching methods used by the system. The interface translates the stu-
dent’s direct input into a form the expert and tutor can understand and manipulate. The

interface also provides a user friendly environment for the student to work in.

4.1 Architecture of Our Adviso:_-

The architecture we have developed for our system is shown in Figure 4.1.
It is a modified blackboard type architecture [20]. A conventional expert system archi-

tecture consists of a knowledge base, an inference engine that uses the knowledge base,

13

Chapter 4. Architecture 14

Blackboard

Solution

Conflict
Set

Problem

Domain
Knowledge

Student
Model

Interface

Student

Eigure 4.1: The system architecture is made up of the ezpert, advisor, interface, and the
student model. Communications between the modules are done via common databases,
collectively called the blackboard. The circles indicate active components while rectangles
indicate passive databases. Solid arrows indicate actual data flow and dashed arrows
indicate command flow.

Chapter 4. Architecture 15

and a working memory onto which inputs and results are written. This system has two
inherent weaknesses. The control is implicitly embedded in the knowledge base, and the
knowledge representation is fixed by the inference engine [20]. In a blackboard system,
related knowledge bases are grouped together, each having their own inference engine.
Together, these “mini-experts”, known as knowledge sources, communicate their part of
the solution to each other via a common global database called the blackboard. Prob-
lem solving is thus opportunistic; that is, the knowledge source will add its part of the
solution to the blackboard whenever it has enough data to do so. The control of such a
‘system is made explicit.

An example of the application of the blackboard architecture is the SCENT project, a
Lisp tutor being developed at the University of Saskatchewan [35]. The expert, advisor,
student model, and interface are highly interdependent because they must communi-
cate their results to each other. A blackboard type architecture enables the separation of
these highly dependent modules via the blackboard, which is eflectively a communication
database. Thus, the introduction of this modularity allows a more independent develop-
ment of the different units of the system and simple integration of these units. This is
the reason why we have selected this type of architecture. In our case, the knowledge
bases are shared by the various modules in order that explanation and justification of
the solution steps may be facilitated from the same knowledge that solves the problem.
The databases and modules are briefly described below:

o Expert - The purpose of the expert module, when invoked, is to suggest what may
be done next for a given problem state. It is a production control system that selects
a number of possible next steps, that is, all the domain knowledge production rules
that apply to the current problem state. It is responsible for solving the problem,

and contains the knowledge of how to manipulate the domain knowledge.

Chapter 4. Architecture ' 16

o Advisor - The purpose of the advisor is to compare the student’s step with those
suggested by the expert. If the student’s step matches a suggested step (a produc-
tion rule) from the expert, then the advisor remains silent, adding the production
rule to the student model. The results of applying the production rule are added
to the solution state. If a match cannot be found, the advisor then proceeds to
select a possible next step from the set of possibilities suggested b); the expert.
When a relevant production rule is found, the advisor then passes the rule to the
interface to translate the representation into an explanation for the student. The
corresponding student model is also updated. It is also responsible for selecting the
appropriate next step to suggest to the student when the student explicitly asks

for suggestions.

e Interface - The interface module simply translate the information on the solution
blackboard into a representation the human user can understand. The output may

be natural language sentences, diagrams, or animations.

e Student Model - The student model contains the past history of the student.
It is a representation of the student’s knowledge state and is used to select the

appropriate next step to suggest to the student.

e Blackboard - The blackboard is the global database which acts as the “memory”
and communication interface of the system. It is partitioned into several sub-

blackboards for organizational purposes as follows:

« — Domain Knowledge ~ All the domain knowledge is stored in this database.
It contains the facts used in the domain. The elements in this database do

not change over the course of the tutorial session.

Chapter 4. Architecture 17

— Problem - The problems are defined here as a set of given elements and
goal elements. This database does not change over the course of the problem

solving.

— Solution — This is the work space where all the solution elements are recorded.
A solution element is simply a statement of facts that are true for a given
solution state. They are affected by the productions executed. The elements
in this database may be asserted and retracted over the course of the problem
solving process. The contents of this database are always cleared before the

beginning of each problem.

o Conflict Set — The conflict set holds the set of rules that may be applied at a
given solution state. The term “conflict set” holds a slightly different connotation
than its conventional use in production expert systems. Here, it merely denotes a
set of productions that was selected. Actual conflicts between the rules are resolved

by a filtering process explained in more detail in Chapter 6.

We shall now examine the representation of the domain knowledge and solution ele-

ments in detail.

Chapter 5

Knowledge Representation

In any intelligent system, one of the key questions that needs to be answered is how to
represent knowledge. In our domain, the use of schematic diagrams to represent electronic
circuits and timing diagrams to represent signal relations is extensive. Thus, it is logical -
to encode these graphical representations in some manner, and the following sections

details the convention implemented.

8.1 Circuit Representation

‘The schematics can be represented by the interconnections among the nodes, or pins of

devices, hence:

connected (node_1,node_2,Reason). % node_1 and node_2 are connected because

of Reason

where node_i is a unique point in a circuit, and can be represented by three pieces of

information as:
node = [device_name, device_number, name_of_node]

The device_name and name_of-node are particular to a device. For example, an OR-gate
may have two-inputs in! and in2 and output out. A generic OR-gate output may then
be labelled as [or,N,out], say, for the N** OR-gate. Device_number defines the specific

device being dealt with in a circuit.

18

Chapter 5. Knowledge Representation 19

The implicit assumption made is the commonality principle. Under this principle,
if node 1 is connected to node 2, and node 2 is connected to node 3, then node 1 is
connected to node 3 as well. A separate statement of the connection between node 1
and node 3 in the above example would be recorded along with the reason that node 1
and node 3 are connected, namely because node 1 and node 2 are connected. Thus, if
node 1 and node 2 are disconnected, node 1 and node 3 must also be disconnected. This
commonality principle is implicit in the sense that the fact that node 1 and node 3 are

connected is stated automatically, whenever the above situation occurs.

5.2 Signal Representation

Next, we need to consider the status or state of the signals from the nodes. The state

of a node in state S is represented as:
state(node,S). % the state of node is S

where S={high|low|float|valid|invalid|asserted negated|unknown} 2. These states can
be divided into two groups: functional states and logical states. The functional states
are more useful in explaining what a node or signal is doing while the logical state is
the actual electrical characteristics assumed. The logical states are chosen from the set
{high|low|unknown}. The functional states are defined to be

{float|valid|invalid|asserted|negatedjunknown}. States valid and invalid are used with
bus type signals (a group of nodes) such as the address bus and data bus, while asserted
and negated are used with control signa.ls;. Only asserted and negated can be converted

to an equivalent known logical signal of high or low, depending on whether the node is

1The notation {choicel|choice?} is used to indicate either choice I or choice 2 is selected.

2The CPU clock signal is the only exception. The clk signal state is defined as S0, S1, S2, etc. for
the bus cycle and W1, W2, W3, etc. for any wait states inserted, as defined in the M68000 user’s
manual [39]. The logical state is inferred from the definition of these states.

Chapter 5. Knowledge Representation 20

active high or active low.

Of great interest in our domain is when a node assumes a particular state and how
these states change over time. We define an event to be a condition, in this case the
state of the signals, which occurs at a point in time, T. The events of interest in our

domain are when a node changes state, represented by:
event (T,state(N,S)). % the state of node N goes to S at time T

That is, the state of node N goes to state S at time T. The assumption is that before T, N
may assume any state other than S. A collection of these event statements will completely
define the changes in the signals of interest. This forms the encoded representation of
the timing diagram, the graphical method used by human experts to represent changes
in states and to solve timing problems in this domain. A key question that needs to be

answered at this point is how time T should be represented.

5.3 Time Representation

Conventionally, T is represented as a single value, say an integer, with an implicit reference
“time 0” on the timeline. This system allows different times to be simply compared, but
the time point when an event occurs must be precisely known. This is not the case in
many practical situations, as in our domain of CPU-memory systems, where the timing
parameters are not and cannot be precisely specified. Rather, a range of constraint values
are given. Also, timing constraint parameters is given relative to some reference which is
different for different parameters. Converting all the parameters to a single time reference
a priori may be difficult and very inefficient. For example, for the 68000 memory read
cycle, the parameter t y sz, time from address valid to AS low is the time when the
overlineAS signal asserts relative to when the address bus is valid. But the parameter

tcmst, clock high to AS low, also gives the time when AS asserts. In this case, if both

Chapter 5. Knowledge Representation 21

parameters are converted to the same reference, say when clock is low, they should be
identical and choice of either would be arbitrary. Then it does not make sense to have
two parameters referring to the same event, AS asserts. However, suppose some system
configuration requires the address bus valid to AS assert meets some constraint. Then,
to convert this constraint to a new time reference is obviously more work than simply
comparing it with the {4y s, parameter. In any case, this practice is not desirable. A
more dynamic derivation would be more robust and flexible.

Time is fundamentally a relative quantity. Human beings talk about time in relative
terms. For example, when we say “3:00 p.m. tomorrow”, we are really saying “3 hours
from noon tomorrow relative to today”. Terms such as tomorrow, yesterday, and last
week are all relative terms, where the time reference is understood. Such knowledge must
be made explicit to the machine in order for it to understand time and produce sensible
explanations. Hence we propose to make the reference an explicit and integral part of
the time point representation itself. Therefore, a given time point ¢ is represented by
a pair of values t = [< 8,y >,< t,q >], where time t is the point in time ¢, after
reference s,.s. Making the reference point explicit allows us to use a multiple-referenced
timeline instead of a single-reference timeline. The advantage of this system is that now
we can talk about a time relative to a local reference instead of some possibly distant
and implicit time in the past or future, facilitating more sensible explanations. If only a
single s,.; is used, then the representation is collapsed back into the conventional single
reference system. Thus, the proposed representation is a superset of the existing system.

In our implementation, ¢, is a single parameter name (e.g. tDICL), and s,.s is a
single or several conjunctive reference conditions or states. Hence
event (T,state(N,S)) = event([sREF,tREL],state(N,S))
is interpreted as: “The event of node N changes to state S at time tREL after the time

when all the conditions sREF are satisfied”. For example, the statement

Chapter 5. Knowledge Representation ' 22

event ([state([cpu,0,clk],s2),tCHSL],state([cpu,0,as_],asserted)

means that A5 of CPU zero is asserted tcgsy after the CPU clock enters bus cycle state

S2. For time at £00, we may use t=[X,"inf’] and ¢t=[X,'in{’} to represent them, X being

any reference. That is, infinity is the same point in time relative to any reference.
Different time points can be compared by first finding a common reference between

them, then evaluating the resulting value ranges.

—__\,. t, j/___.
SO Sl .

)5

Figure 5.2: A typical timing diagram with of 4 state changes. State S, occurs at ¢, after
state change to Sp and S3 occurs at ¢; + ¢3 after So.

For example, Figure 5.2 shows a typical timing diagram consisting of four events, and

is described by the following sequence of statements:
e event([So,t],51).
o event([So,t2},52)-

® event([Sg ,t3] ,53).

Chapter 5. Knowledge Representation 23

In order to determine the relation between S; and Si, say, to determine which event
happens first, we first need to find a common reference between the time of the events,
namely Sp. Graphically, we can see immediately that the parameters we wish to compare
are t; and ¢, +t3. We can discover these relations from the the event statements also. By
tracing back, we find that S; occurs at ; relative to Sp and S; occurs at £3 relative to S,
but S; occurs at ¢, relative to Sp. Thus, the event of S5 occurs at time t; + ¢, relative to
So. We have derived the parameter equations that are required for the comparison, and
need only substitute the quantitative values of these parameters for a simple comparison.
When S, occurs is of no concern to us because this is our reference. Two questions
arise here: What happens when the reference is made up of more than one states change

occurring at once, and what are the values of the relative times ¢;?

OR,
in!

OR,
in?

S

!ﬂ; tdelay
\

ut
0 S;

Figure 5.3: Timing relation of a typical 2-input OR-gate. S;, output low, occurs when
both S, input 1 is low, and S,, input 2 is low.

In the case of more than one event referenced in conjunction, we can reduce the con-

junction to a single equivalent event. This equivalent would be the last of the conjunctive

Chapter 5. Knowledge Representation 24

events to occur. For example, consider the timing relation of a two-input OR-gate as
shown in Figure 5.3. The relation can be described by:
event([[S1, 52 tdelay],53),
event S3, the OR-gate output is low, occurs tg..,, propagation delay, after both inputs
are low, i.e. state changes S; and S,. For Figure 5.3, we can restate the relation as:
event([S2,tdetay),S3)
as S, occurs later than S;. Similarly, the reference would be S; if it is to occui‘ after S,.
If both events occur at the same time, we may select either event, either arbitrarily or
by some preferred choice rules.

The quantitative value the relative times t; are parameters that may have certain

constraint requirements. The constraint is represented as:
constraint ([sREF,ti], [tMin,tMax]).

where ¢; assumes the minimum and maximum values tMin and tMax respectively, relative
to reference sREF. The constraint value does not change from circuit to circuit, but is

dictated by the device. The actual value, however, may change and is represented as:
value([sREF,ti], [tMin,tMax]).

Thus, the value of a given parameter is found by determining what the value of the
parameter is relative to the given reference.

When given two arbitrary time points, their common reference is not known, or even
if a common reference exists at all. How then can one find the common reference? The
answer is derived from the timing diagram as represented by the collection of events.
These event statements together with value and constraint are used by the expert to
determine the common reference timing in the problem solving process. We will now

first take a closer look at the expert, then discuss how the expert and the proposed

Chapter 5. Knowledge Representation 25

knowledge representations work together to find the common time reference and solve

problems in Chapter 7.

Chapter 6

The Expert

The EXPERT is invoked by the ADVISOR to provide information about the correctness of a
student’s action or to solve a given problem. It is a goal-oriented production rule expert
system. Each rule will satisfy a single goal or may create a number of subgoals when
executed, or fired. The EXPERT performs a simulation on a given circuit by a simple
recognize-act loop. All productions that can be fired at a given time are placed in a
conﬂict set. These rules are then filtered. All the rules that remain will be acted upon,
as opposed to the case in conventional systems, where only one of the rules is fired. The
reason for firing all the rules is that several goals may be satisfied at the same time by
different rules, which may all be present in the conflict set. Also, more than one rule may
satisfy the same goal, each representing different solution paths. The loop will terminate
when no more rules can be fired for a given solution state. The expert’s action is further
detailed in the next chapter.

The structure of the rules will now be discussed further.

6.1 Production Rules

The general knowledge representation scheme is adopted from the production framework

in GIL [44]. The implementation is in a Prolog style rule: *

concept (Concept_Name,Concept_number,Rule_Info_List) :-

1The representations are presented in the Prolog programming language style and readers are referred
to [16] and [53] for details on the syntax.

26

Chapter 6. The Expert 27

(current_goal(Goal),
conditions(ConditionsList)

) >

(properties(Propertieslist),

new_goals(NewGoalList)).

Each production is uniquely identified by its Concept_Name and Concept_number.
The Rule_Info_List provides various information about the rule that may be used by
the advisor to formulate its explanations, such as the direction of reasoning of the rule.
The left-hand, or condition, side (LHS) of the rule consists of current_goaland conditions.
The right-hand, or action, side (RHS) of the rule consists of properties and new_goals.
A rule is added to the conflict_set database when all its left-hand side conditions are
satisfied. The LHS is satisfied by matching the pattern of the rule with solution elements
in the solution database. When the conflict set is completed, this set is filtered, or
resolved, to remove some of the rules in the set by some criteria. For example, a rule that
was fired previously should not be fired again for satisfying exactly the same conditions,
since this action contributes no progress toward a solution. After filtering, the remaining
rules in the conflict set are fired. When a rule is fired, the properties and new goals are
added to the solution database as new solution elements.

The EXPERT is a goal-oriented production system. When solving a problem, the
expert attempts to solve a certain set of goals, or objectives, in the solution database.
These objectives are marked as either active or solved. Only active goals will trigger the
fules. The ConditionsList describes the properties that must be satisfied in order for
fhe rule to be considered for execution. This is a list of terms that are in the solution

database, are obtainable from another database (in which case the term would be added

Chapter 6. The Expert ' 28

to the solution database), or is a provable % goal. The properties describes the properties
of the output as a result of firing the rule, and is also a list of terms that are either -
provable or added to the solution database. The new_goals sets up the subproblems and
new objectives to be solved next. This is a list of active objectives that are added to the

solution.

concept (tCLAV,1, [direction(forward),object (mc68000)]) :-
(current_goal([determine,when, [cpu,N,addressbus([A1,A2])],valid]),
conditions([' _
=(Addressbus, [cpu,N,addressbus([A1,A2])]),
=(T, [state([cpu,N,clk],s1),tCLAV]),
frequency(8)
D
)y =
(properties ([
solves([determine,when, [cpu,N,addressbus([A1,A2])],valid]),
event (T,state(Addressbus,valid)),
constraint (T, [undefined,62]),
value(T, [undefined, 62])
D,
new_goals([[propagate,event (T,state(Addressbus,valid))1])).

Figure 6.4: Example of a definition rule on the timing parameter tcp v, clock low (S1)
to address valid.

Figure 6.4 shows an example of a production rule about the timing parameter tcrav,
which is the time from clock enters bus cycle state S1 (clock low) to address bus valid.
The =/2° predicate is used to bind the variables for a cleaner looking rule. The goal is of

the form: [determine,when,Node,State], determining when a Node assumes a particular

2 Provablein the sense that it may be evaluated as true or false. In the case of Prolog implementation,
the term is the head of a Prolog clause.

3The /2 means the predicate takes 2 arguments. In Prolog notation, /n indicates predicates with n
arguments. For more details, the reader is referred to [16] and [53].

Chapter 6. The Expert 29

State. The conditions required are that the clock frequency is 8MHz, and that given time
T and address bus Addressbus, this rule will be satisfied. When executed, the expert will
place the event, constraint, and value elements into the solution database. The properties
also indicates that this rule solves the goal. The solves predicate is a provable goal that
explicitly modifies the current goal to the solved status, so that the goal will no longer
be considered. New_goals sets up the new goal to propagate the event to all the nodes
connected with the CPU address bus.

The production rules used are listed in Appendix B.

6.2 The Blackboard

The blackboard is the set of common databases via which the various modules com-
municate with each other and with the student. The blackboard is divided into three
sub-databases: domain knowledge, problem definition, and solution.

Domain knowledge contains all the facts and production rules about the domain. In
our case, it would contain information about the MC68000 processor, memory compo-
nents, discrete SSI and MSI components, etc. This information may exist in the memory
of the computer while the advisor system is running or as a single or multiple file(s)
residing on disks. |

The problem definition contains all the information given in the problem and what
the objective of the problem is (i.e. the set of goals to solve). It is the encoded form
of the problems on the assignment sheets. The selected problem would put the relevant
information in the solution database, from which the problem may be solved. In Prolog
i‘mplementation, this is achieved by a series of assertions. A simple example is shown
in Appendix C, where the file problem.pro, the problem definition file, is shown. In our

example, the problem is not loaded into the problem definition, but is defined directly

Chapter 6. The Expert 30

from the file.
The solution database is where all the work is done and recorded. It is made up of
solution elements that may be created, modified, or destroyed by the expert and advisor.

Each solution element is a triplet in the format:
element (<tag>,<element>,<reason>).

The < tag > is simply an integer label to identify the elements. The < element >
is the solution element itself, represented in our implementation in Prolog predicate
logic. This is the part which is used to match the LHS of the production rules, and the
products produced bybthe RHS of the productions that are fired. The < reason > is
the justification for the existence of < element >. There are three major reasons for the

existence of an element:
1. An < element > may be given by the problem definition, or

2. It may be a domain fact that can be looked up, represented as domain(Origin) for

a fact coming for the domain or subdomain, Origin, or

3. The < element > is deduced from a production rule, identified as

rule(concept (rule_name,rule_number,rule_info)), which uniquely identifies

the rule effected.

The rules that are executed are recorded in the solution as well in the format:

element (<tag>,rule(Name,Number, Info_List),Element_List).

«

where Element_List is a list of the tags of the elements in the solution database that
contributed to satisfying the LHS of the rule. The tags provide the reason why the rule

was fired in the first place. Appendix C shows the content of the solution database at

Chapter 6. The Expert 31

various stages of solving the problem of determining the parameter tpsc for the circuit
in assignment one.

In addition, there is a conflict_set database, which contains the set of .rules that the
expert deems appropriate and may be used for a given solution state. Two predicates
exist in this database: size and rule. size simply indicates the number of rules in the
conflict set. The rule predicate contains all the information about a rule selected by the

expert. Its format is:
rule(RuleHead,RHS,TTs,FailedlLHS).

RuleHead uniquely identifies the rule that was selected. RHS is the right-hand side of
the production that is to be executed if the rule fires. The RHS is recorded to save the
expert from having to look up the rule again if the rule is to be fired. TTs is a list of
the solution element tags which identifies the solution elements that satisfies the LHS
of the production. FailedLHS is a list of the LHS of the production not satisfied. This
information is used to create an explanation and justification for the expert’s actions.
Next, we will examine how the EXPERT performs problem solving with the knowledge

representation presented earlier.

Chapter 7

Solving Problems

When asked to solve a problem given a set of initial objectives, the EXPERT would create
a conflict set containing all the rules that can be fired at a given solution state. These
rules are then filtered or resolved by the expert and the remaining rules are executed. By
executihg the rules, new goals are added to the solution which must be satisfied. This
process then repeats until the size of the conflict set is zero, that is, no more rules known
to the expert can be fired. At this point, two conditions may exist: Either there are
still active objectives in the solution database, or the problem has been solved, (i.e. all
objectives were solved). The expert will return a failure in the former case and a success

in the latter, indicating whether the given problem was solved or not.

7.1 Equivalent Goals

For each loop, after the rules have been fired, the solution database is cleaned up by
removing duplicate active goals that may be generated as well as propagating the results
of solved goals. A given goal may assume several forms in the solution database at once,
each of which is equivalent. Consider the circuit in Appendix A for problem one. Consider
the CS node of the RAM. The goal determine when CS asserts is equivalent to determine
when CS low because CS is an active low signal. Furthermore, since CS is connected to

E as well as the output of the or gate, the following goals are all equivalent:

o determine when OF asserted.

32

Chapter 7. Solving Problems 33

e determine when OF low.
e determine when [or,1,0ut] asserted.
e determine when [or,1,0ut] low.

Note that rules cannot be written to satisfy a goal such as determine when [or,N,out]
asserted (determine when the output of the N** or gate is asserted), since the state of
.asserted is not defined for logical devices such as an or-gate. Whereas, although one can
define a rule with the goal determine when CS low, in terms of conceptual explanation,
one would prefer instead to define a rule for the goal determine when CS asserted. By
noting that all these goals are equivalent, when any rule that solves one of these goals
has all the other conditions satisfied, the rule can fire to solve that goal, and all the
equivalent goals will also be solved at the same time. This allows us to create rules about
a device that can be used in any circuit configuration. For a human expert solver, the
equivalence of these goals is implicitly expressed, graphically, with timing diagrams. This
equivalence needs to be stated explicitly by the expert model.

After a set of rules has been selected to create a conflict set, these rules need to be
filtered. The rule filtering that is done by the expert is done primarily to prevent infinite
loops. Suppose a rule had been fired, but the elements triggering it are still in the solution
database. If the expert is asked to suggest a new set of rules that can be executed, the
same rule will be selected for the same elements (i.e. the same reasons). If this is the
only rule in the database, clearly the loop will not terminate. Furthermore, firing this
rule again will not be profitable, since it does not contribute toward the solution. Hence,
;t should be eliminated from the conflict set. Elimination is easily accomplished, as we

have a record of the rules fired and the reasons for firing them in the solution database.

So, a rule will not be fired twice for the same reasons.

Chapter 7. Solving Problems ’ 34

7.2 Determining Time

The problems solved in our domain are concerned with the timing of signals. The con-
straint of when a signal assumes a certain state must be satisfied in order for a given
circuit to work properly. We have already examined how time is represented, and quan-
tified with constraint and value. We will now examine how these predicates are used in
conjunction with the collection of events to solve the timing problem.

For ¢, a point in time, repre/sented by t = [s;,T;], where s; is the set of conjunctive
references S, S;, etc. Then, event is of the form:
event(t;,S;) = event([s;,T;),S;) = event([[Si, Sa,...,S.],T3),5:).

Each event represents a change of state of a node in our domain. Qur objective is to
determine the value of T}, the timing parameter of a given circuit, in order to determine
if it satisfies the required constraint. First we note that for references s; for state S;, the
reference may be reduced to a single equivalent state reference S;, which is the latest of
the set of conjunctive reference states s;. For example, if
s; = [state([ram,N,cs_],asserted),state([ram,N, oe_],asserted)),
that for the N** RAM device, both the nodes CS and OF are asserted. If C3 is asserted
before OF, then we can say s; is equivalent to the state S;, OF is asserted, and vice-
versa. Once the equivalent single event is established, we may write the same event as:
event([S;,T;],S;) (see Figure 7.5).

Hence, to find the value of T; relative to event S;, we simply look for a common

reference, Si, of the two events such that:
o event([Sk,T/},S:), and
o event([Sy, T}},S;).

From Figure 7.5, we can see that in order to to find the value of T;, we simply find the

Chapter 7. Solving Problems 35

Tl

imax

T’

\ - imin -
\ Y e
Se |

T T

'

T fmin Tlmu
Figure 7.5: Timing diagram of events that occur over a range of time.
Timin = T},min - T;mau’ and T'."'“ = Tl!ma- - T.?I.m-'n'

difference of the values of T; and T;. That is, in the implementation, we look for:

o value([E, T!),|T! ,T¢ 1)

Ymin ? tmae
b Valu_e([Ek) T;{]’[];{min ? T;ﬁ‘ld!])
from which we can evaluate:

o value([E;, Ti),[Tipmins Timee)), Where

min?

N, T

T',M." = Linin TJmn: , and
] Y o), o

T‘"‘" T Timas ijin

Note that the exact time of occurrence of S is irrelevant.

Chapter 7. Solving Problems | 36

7.3 Determining Reference

Next, how the four required items — two events and two values — are evaluated must be
determined. For the event requirements, we simply look for the set of times 7; whose
members are ¢; such that event(t;, S;) is satisfied. Similarly, define the set 7; for which
event(t;, S;) is satisfied. The intersection of the reference events for the sets of times

7; and 7; will be the set of common reference events, say p.

Address
Bus
Sy
tu
-t
tu:s .
CcS
S,
Data Bus //
\&
SS

Figure 7.6: A simplified timing diagram of a typical static RAM read cycle. Data bus is
valid at most t44 after address bus valid and t,cs after CS valid.

For example, consider Figure 7.6, a simplified timing diagram of a memory read of a

static RAM. The three events described are:

e S; = state([ram,N,addressbus],valid)

Chapter 7. Solving Problems 37

e S, = state([ram,N,cs_],asserted)
e S; = state([ram,N,databus],valid)).

For the event E; =event(t3,53), the set of ¢; that satisfies the condition is t3=[S1,%44]
and t3 = [S;,tscs]. Let this set be 7;. The reference events in the set of times 7; are
then S, and S,. Suppose for another event, E;, with event(t;,S;) giving the set 7; =
{[S1,tavsc]}, say, then the common event between the two sets of time 7; and 7; is then
p={51}, or state([fram,N,addressbus],valid). Note that we are interested in the reference
only. The parameters will give us the quantitative values, which is not important at the
moment.

There are two situations to consider for the set p, namely for p = (), an empty set,

and p # 0.

7.3.1 Common References Exists

First, consider the case p # . This means a potential common reference exists. We
may then proceed to determine the quantitative value of the times of with common
reference. That is, determine the times for which value is defined for both events, say E;
and E;. In the previous example, then, we would be looking for value([Si,t44],v1) and
value([S},tavsL],v2), where v; are the time range of the respective parameters.

If the value of the time is defined for only one of the two events of interest, the subgoal
of determining the value of the other event is added to the solution. When this subgoal is
satisfied, the goal of determining the value of T; can also be satisfied, given T; is defined
as event([S;, T;],S;) as before. If value is not defined for any of the common events, then
two subgoals are generated to determine the value relative to an event selected from p.
Domain dependent heuristics may be employed here to determine which of the common

events to pursue in case where there are more than one common events. For example,

Chapter 7. Solving Problems 38

suppose p = {state([cpu,l,clk],s0), state([cpu,l,addressbus],valid)}, then we may choose
to use the clk (clock) signal instead of the the address bus signal. The clk signal might
be chosen over the address bus signal because the clk is a well defined, periodic signal.
This rule is heuristical because cases may exist where either reference event can be used,
but the address bus will yield a more optimal solution, using fewer parameters (i.e. a

shorter solution path).

7.3.2 No Common Reference

In the case p = 0, one of the sets of time 7; or 7;, will be selected and pursued. Note
first that for a given set, say 7;, all the times in the set are equal. Each element ¢; of the
set 7; satisfies event(t;, S;). S; occurs at only one point on the timeline. Hence, pursuing
any one time t; in the set 7; will establish the actual quantitative time value of S;; that
is, the time when S; occurs, relative to some reference Sk, where t; = [Si, T]. Suppose
we select a time ¢} = [Sk,Tk] from the set 7; to pursue. Now, the problem is reduced to
finding a common reference between S; and S; instead of S; and S;. This has now been
reduced to the original problem. This line of reasoning is illustrated by the following
example.

Consider, for example, Figure 7.7. Suppose we wish to determine the value of the
time ¢4, or equivalently, value([Ss,4],v4), defining the event event([Ss,%4),51). Then,
the two states of interest are S3 and S4. The events defined are event([Sy,t],51) and
event([S2,t3],93). The set 7 = {[So,t:]} and 7, = {[S:,%3]}. Then, the set of the
intersection of reference events p =). If we then choose [S;, 3] from 7;, we have reduced
the problem to finding a common reference between S, and S,, since we know we can
get the value for Sj relative to S;. Between S; and S, we are able, in this example, to
find the common reference Sy, as shown in Figure 7.7.

Why is the time [S;,t3] is selected, or in fact, why is the set 7, selected instead of,

Chapter 7. Solving Problems 39

____\A t, - /‘

S, A3

Figure 7.7: A typical timing diagram with of 4 events. The timing parameter ¢, is
equivalent to ¢, + t3 + ¢4.

say, 7y in the above example? The decision may be arbitrary in general, or, more likely,
based on some domain dependent heuristicé. These heuristics are the same sets of rules
an expert might use to solve problems in the domain, and are an integral part of the
expert knowledge. In our domain, for example, the CPU clock is a key reference signal.
If the S;, say, is a clock signal state while S; is another signal state, then we would use
the set 7; since S; is a well defined state.

These heuristic rules might also be an interpretation of the representation to allow the
machine to “see” what is obvious. For example, a human expert (or any human being,
for that matter), can see immediately that the common reference between S; and S; is
So in Figure 7.7. This fact is not “obvious” to a machine expert. The line of reasoning
may be: S, is a control signal that triggers Sy, and S) a signal generated by the CPU,
say. Then, base on either fact (or both), the expert may conclude that there is likely to
be a definition of S, relative to S;, but not the other way around. Human deduction is

aided by a visual interpretation not available to the machine expert.

Chapter 7. Solving Problems ' 40

The following example will demonstrate the issues outlined above more clearly.

7.4 Determining tpicr: An Example

To give an example from Assignment One shown in Appendix A, one of the subproblems
the student must solve is to determine that the data-in set up time, tpjcr, of a memory
read cycle. The data-in set up time is defined in the timing diagram in Figure A.9 in
Appendix A. The tp;cr parameter is established by the statement:
event([state([cpu,1,databus([D0,D1])]!,valid),tDICL],state([cpu,1,clk],s7)).
‘That is, the CPU clock enters bus cycle state S7 tpjoy after the data bus is valid. The
two events of interest are thus: state([cpu,1,clk],s7), when the clock of the CPU en-
ters bus cycle state S7; and state([cpu,1,databus],valid), when the data bus of the
CPU is valid. The event state([cpu,1,clk],s7) is a clock signal event. It is defined
with respect to itself and does not need to be pursued any further to find a reference.
We need only find when data bus is valid with respect to a clock state and the problem

is solved.

7.4.1 Determining When Data Bus Valid

Since the data is input to the CPU, the event state([cpu,1,databus],valid) can-
not be determined directly, but can only be determined indirectly, via the CPU’s con-
nections. By the connection definitions of the circuit, the CPU data bus and the
RAM data bus signals are identical, hence, the events state([cpu,1,databus],valid)
.and state([ram,1,databus],valid) are equal. Then, the objective determine when

€

[epu,1,databus] valid is equivalent to determine when [ram,1,databus] valid. Production

1For buses, an argument is used to indicate the range of the lines that are involved. This involves
the address bus and data bus only. The argument will be left out in the rest of this work for the sake of
brevity.

Chapter 7. Solving Problems 41

rules exist to solve the latter goal. There are three timing parameters given for the
pPD43256 static RAM, the RAM used in the circuit, concerning when the data bus is
valid, namely: t cs, chip select asserted to data bus valid; t44, address bus valid to
data bus valid; and tpg, output enable asserted to data bus valid. There are no direct
common reference events between any of the data bus valid times and clock low at S7.
Since the clock event is a “regular” event as stated above, the data bus valid times are
pursued. To select which one of the three timing parameters to pursue, it is necessary
to invoke the fact that the CS signal controls both the address decoder and OF signals
going into the RAM array for the device being used. This fact implies that C'S must be
asserted for the device to begin working. Hence, these timing parameters are actually
referenced as conjunctive events with the CS signal, rather than as a single event, say
address bus valid for £44. The rule to resolve which parameter to use is thus determined
by when the address bus, CS, and OF is valid or asserted. In this example, we find CS

is asserted after the address bus is valid, thus, the parameter to use is t4¢s.

7.4.2 Determining When CS Asserted

Going backwards through the circuit, we can establish that the output of the OR-gate ?
connected to CS must be asserted. This assertion implies that the OR-gate output goes
low, since CS is an active low signal. This in turn implies that all the inputs of the OR-
gate must also be low. This is a conjunct of two events for a two input OR-gate, in which
we must establish the value of each in order to select the l#test event. A propagation
delay of the logic gate may be introduced here without affecting the reasoning process.
bontimﬁng the backtracking, we can establish that the DS signal and one of the OR-gate
inputs are equal by connection, and the 'LS138 line decoder output is equal to the other
OR-gate input. The DS signal timing is a well defined CPU parameter and requires

2By DeMorgan’s rule, the AND-gate with negated inputs and outputs can be replaced by an OR-gate.

Chapter 7. Solving Problems 42

no further pursuit. The line decoder output reﬁuires that the device be activated. The
'LS138 is activated by satisfying the conjunctive event of having all of its three enable
inputs in the enable state, namely, €0 and eI at logical I§W and €2 at logical high. el
is connected to ground and e2 is connected to power, so these will always assume the
enabling state. The third enable, €0, is connected to AS of the CPU, which is also a
well defined CPU signal. Hence, we can now propagate this information back down the

chain, and establish the value of the t4¢s for this circuit.

7.4.3 Determining the Value of tp;c;

Both the AS and DS signals assert at the same time, tcgsz from bus cycle state S2, and
have value value([state([cpu,1,clk],s2),tCHSL], [3,60]) 3. By introducing a prop-
agation delay of value([_,tgate_delay],[0,10]) % the 'LS138 output will be active
in the time range < 3,70 > ns from state S2. The OR-gate will introduce a second prop-
agation delay, and the output goes low in < 3,80 > ns after S2. This is the time when the
RAM CS signal asserts. Using value([state([ram,1,cs_],tACS], [undefined,100]) %,
the data bus valid event can be established at time < undefined,180 > ns. Note that
whenever an undefined value enters a calculation, the result is also undefined, since we do
not know the value. The value of the other event of interest, state([cpu,1,clk],s7),
with respect to state([cpu,1,clk],s2), can easily be established to be < 312.5,625 >
ns at a frequency of SMHz. Then, the tp;cr, valueis thus < 312.5—180,625—undefined >,
or < 132.5,undefined > ns. Comparing this with the constraint on tprcr < 10,undefined >,

the constraint is satisfied with a large margin.

3All values are in nanoseconds (ns).

4The “” is a variable that can be bind to any atoms in Prolog implementation. Here, it can be
interpreted as the reference event is unimportant.

50nly the maximum for ¢4¢s is given on this RAM’s data sheet, as the minimum is not important
as a constraint.

Chapter 7. Solving Problems 43

7.5 The Human Solution

The expert model is an attempt to emulate the problem solving process of the human
expert. In solving the example problem, the human expert is able to do so by “simply”
reading off the relevant parameters on a timing diagram. However, when constructing
the timing diagram, the human expert must first discover the relations between the
signals through the connections in the circuit. The reasoning process of following the
connections and then producing the timing diagram is similar to the process used by the
expert model proposed. While the human expert produces the timing diagram, the expert
model dynamically constructs the collection of event statements used in the solution as

it traces through the circuit.

Chapter 8

Implementation Results

8.1 The Expert

Following the approach outlined in previous chapters, we have implemented a simple
expert using the time-range representation and demonstrated how the reasoning process
works with the example given in the previous chapter.

The expert was implemented in Advance A.I. Systems’ PrologT™ in the Edinburgh
syntax. The expert is invoked to solve the timing problem via the command simulate/0,
which performs a simulation of the circuit. Before simulate/0 is issued, the user must
set up the problem in the solution database. The problem is defined primarily by the
goals the problem is attempting to solve and the circuit involved. Appendix C shows
the file that sets up the solution database for the example of finding the value of the
parameter tprcr described in the previous chapter. The circuit is defined by a series
of connections between nodes in the circuits as outlined in Chapter 5. The goals are
initialized as active to let the expert use them with the production rules. Note that goals
are solved concurrently, a task made possible by the use of the blackboard architecture.
Goals that depend on the solutions of other goals in the database will maintain their
dependence. These parent goals will not have enough solution elements in the database

to execute their productions until their subgoals have been solved.

44

Chapter 8. Implementation Results 45

8.1.1 Simulation

The simulation cycle consists of three parts: suggestion of productions that may be
executed, execution of the conflict set productions, and elimination of duplicate elements
on the database.

When asked to suggest productions to execute, the expert proceeds to attempt to
match the rules’ goals and conditions with active goals and solution elements in the
databases. The head of the rule concept(Name,ID,Info), the RHS of the rule, and the
solution element tags that satisfy the LHS are put in the conflict set database when the
LHS of the rule is completely satisfied as stated in Chapter 6. Each production rule’s
LHS pattern is matched against all available solution elements until the solution elements
are exhausted. When all the productions in the database have been processed, the expert
then proceeds to filter the conflict set.

Filtering the conflict set means reducing the size of the conflict set, eliminating some
of the rules in the conflict set that may be redundant or do not contribute to the problem
solution. Currently, the expert will remove any rules that had been fired for the same
reasons to prevent futile production executions and infinite loops. Additional criteria
can be added by simply replacing the filter program. Some additional criteria commonly
used in conventional expert systems include recency and specificity filtering [12]. Recency
filtering removes rules that are selected using older solution elements (i.e. solutions
elements added at an earlier time to the solution). Specificity filtering simply states that

rules that have more specific conditions are preferred over those that are less specific.

5.1.2 Rule Execution

After the conflict set has been filtered, all the rules remaining will be executed. There

are two reasons why all the rules are fired instead of only a single rule, as in the case in

Chapter 8. Implementation Results ' 46

conventional expert systems. First, goals in the solution database are solved concurrently.
Firing a single rule can only solve a single objective. Second, more than one rule solving a
single goal may be true at the same time, these constituting different solution paths that
may be taken. The presence of the various paths in the database enables the advisor to
compare the student’s solution with the expert’s more effectively. This implementation
is not without its drawbacks, however. Interactions between rules can become a major
problem. We have approached this problem by not eliminating any unique solution
elements in the solution database once they were put there. In a blackboard system,
each production rule is independent of every other production rule. Rules interact solely
via the blackboard. Their actions will interfere with each other only when one rule
eliminates an element from the blackboard that satisfies a condition in another rule.
When the former rule is executed, the advisor will not be able to trace back and explain
why the latter rule was executed, since one of its condition elements was erased from
the blackboard. Hence, we decided not to allow any rule to erase any elements from the
blackboard, and only a limited amount of modification is allowed. We do not believe this
is a great hindrance in the construction of the rules. Any element that is in the solution
database should be a true fact to begin with. Additional rules may be introduced to
resolve ambiguous facts. For example, there is a set of rules in the current database
which determines, for the uPD43256 static memory, whether the address bus is valid
before the chip select is asserted (see Appendix B). This fact is used to determine which
parameter will be used in the timing calculations. For this implementation, only the
selected parameter has its value added to the database.

Assumptions can be incorporated by stating them explicitly as solution elements.
Solution deductions may continue with a set of assumptions, and the resulting solution
elements that are proven inconsistent at the end need only be labelled so. The advisor

can then say a fact is inconsistent with the given because certain assumptions were made

Chapter 8. Implementation Results 47

which led to the conclusion.

The RHS has two components that need to be executed when the rule is fired: New
properties that were deduced and new subgoals that need to be solved. The properties are
Prolog statements that can either be proven as a Prolog program, or facts that are put in
the solution blackboard. An important note in the properties is a solves(Goal) statement
which must be present to indicate that the rule solves the current goal. The RHS of a rule
being satisfied and executed does not automatically imply that the current goal is solved.

-Several subgoals may first need to be solved before the current goal can be solved. Thus, a
rule that solves a goal is made explicit as part of the rule’s properties. This information
may also be carried in the information list in the rule’s header, but we have adopted
the former approach to simplify the implementation. In fact, the information list which
appears as the third argument in the rule header is not used by the expert at all in the
current version of implcxﬁentation. The new goals are added to the solution blackboard
as active objectives. These goals will be attempted to be matched in the following cycle

of the simulation.

8.1.3 Tidying Up

Finally, after all the rules have been executed, duplicate new goals may appear on the
solution blackboard as well as goals that has already been solved. These redundant goals
are erased from the blackboard. This action does not affects the solution in any way.
There is no point in solving the same goals more than once.

The simulation cycle continues until the suggested conflict set size is zero — that is,
no more productions can be executed. This condition can only occur in two instances.
First, when all the active objectives are solved, then the problem is solved, and no more
productions need to be executed. In this case, the simulation is successful. In the second

case, there are still one or more active goals in the database. In this case, the production

Chapter 8. Implementation Results 48

set is insufficient to solve the problem posed and the simulation will return a failure.

8.2 Solving Goals

When a goal is put in the database, no productions may satisfy that goal. However, we
may find an equivalent goal for which there is a production rule that can be satisfied. For
example, for the circuit in Appendix A, one of the subgoals encountered in solving the
timing problem is to determine when one of the inputs to the OR-gate is low, determine
when [or,1,in1] low. In general, no production would exist for this goal, since there are no
specifications on inputs of devices. However, we note that the node {or,1,in1] is connected

to [cpu,l,lds_], the LDS of the CPU. Thus, this goal is equivalent to solving the goal

determine when [cpu,1,lds_] low. To continue, although we may specify a rule for when
LDS is low, it is more appropriate in an explanatory system to specify when LDS is
asserted and note that LZDS is an active low signal. Note that we require LDS to be
asserted regardless of whether LDS is an active high or an active low signal. If we specify
a rule to solve for when LDS is low, a different rule needs to be specified if DS is active
high. Furthermore, we can now say that the output is low because the signal is active
low. Hence, because LDS is active low, the goal determine when [cpu,1,lds_] asserted is
equivalent to our original goal of determine when [or,1,in1] low also. The equivalence
of all these goals is noted in the database. Now, rules exist to solve the goal determine
when [cpu,1,lds_] asserted, namely, the parameter rules tcgsy and t4ysr . When these
rules solve the determine when [cpu,1,lds_] asserted goal, they also solve the other two
goals in the database. Thus, all these goals are marked as solved. The solves predicate

will take a goal, mark it as solved, and trace and mark as solved all goals equivalent to

1Actually, the rules in the rule set does not distinguish between the lower and upper data strobe
of the 68000, the LDS and UDS signals respectively. They are collectively referred to as DS. See
Appendix B

Chapter 8. Implementation Results 49

it which are still active.

8.3 Discussion of Results

The expert currently implemented uses a database of approximately 40 production rules.
The rules are shown in Appendix B. These rules are made up of several subsets of rules,
including a set of rules for the 68000 microprocessor timing parameters as well as for the
pPD43256 static RAM. A number of control rules were defined to set up equivalent goals
on the blackboard and to propagate events. Parts of some of the rules were written as
provable Prolog clauses for efficiency. An example is the rule to propagate an established
event. The state of a node is propagated to all other nodes connected to it and all
equivalent objectives are set to solved. The implementation of the time comparison was
also written entirely in Prolog code. The decision as to whether to encode a rule as a set
of productions or as Prolog codes depended on an assumption of the user’s basic level of
understanding as well as efficiency. The user’s level of understanding means simply what
type of information should the user know already before using the system. For example,
if an explanation says “event E, is before E,”, the meaning of the statement would be
obvious to the human user. There is no need to explain what is meant by before. The
term before, however, must be precisely defined for various conditions for the machine
expert.

To solve the problem of determining tprcr, approximately 55 solution elements were
put on the blackboard initially. These elements are shown in Appendix C. Most of
the elements simply defines the circuit connections and the clock signal relations. The
;ina.l solution state contains over 380 solution elements and is shown in Appendix C as
well. The simulation took about 15 iterations and up to 30 minutes to complete. This

is unacceptably slow from a practical point of view. The major inefficiency is caused by

Chapter 8. Implementation Results 50

the expert having to match all the LHS elements of all the rules in the database. An
exhaustive matching is required when an explanation of why a rule or set of rules do or
do not apply in a given solution state. This matching allows the generation of a list of
goals that have failed. However, when the expert is simply solving a problem, it may be
more efficient for the expert to give no further consideration to a rule when the goal of
the rule is not active. The current version of the expert, however, uses the same matching
program for both modes of operation. Furthermore, as the number of elements in the
solution database increases, so does the time required per iteration since the expert has
to test all the elements for each iteration. Improvements can be made in the expert by

adopting a faster production rule matching algorithm.

8.83.1 Interface

We have not dealt with other parts of the ITS in this project in any depth due to the lack
of time and resources, as this is still an infant project. Some preliminary experiments were
done at the beginning of the project regarding the interface module and its integration
with the rest of the system at the beginning of the project.

A simple CAI (computer assisted instruction) style system was set up using a hyper-
text system [27, 52] HyperbaseT™. Hypertext, or more generally referred as hypermedia,
systems are made up of a number of nodes and links. Each node is made up of a single
page that can be presented on the screen and the links provides association between the
nodes. Students from ELEC464 were asked to use and compare solutions for assignment
one presented in hypertext with conventional posted solutions. The reaction were mixed.
Generally, the “flashcard-style” presentation of the hypertext system was weH received,
but there were a number of complaints that the layout of the screen was confusing. After
an exchange with some of these students, we concluded that the problems were mainly

caused by our inexperience in designing the system rather than any intrinsic problem

Chapter 8. Implementation Results 51

with the hypertext itself. Work in this area was continued by two fourth year students

using the HyperCard™ [26] implementation of hypertext on the Apple Macintosh IT™™,

Chapter 9

Conclusions

A general time point representation using a multiple-referenced timeline and imprecise
time range values has been developed to facilitate temporal concept deductions and ex-
planations. This representation framework was incorporated into an intelligent advisor
system being developed to facilitate instruction to students in tutorial problem solu-
tions. A prototype expert module of the system was implemented to demonstrate the
effectiveness of this knowledge representation framework. The expert was implemented
as a goal-oriented production rule system, and demonstrated its problem solving tech-
niques in a CPU-memory timing subproblem. The production rule set currently contains
approximately 40 production rules.

The expert is by no means problem free, however. The production rules, although
written in the form of Prolog clauses, are not being “proved” as normal Prolog clauses
ar_e.. The expert actually finds the rule, takes it apart, and attempts to unify its compo-
nents individually. The reason for not using the built-in inference engine directly is to
allow the expert to keep track of the components of the LHS of the production which
failed. Furthermore, this prototype expert is also relatively slow in performing a complete

simulation.

«

9.1 Future Directions & Recommendations

With the knowledge representation established and the system architecture specified,

other components of the system can now begin to be developed.

52

Chapter 9. Conclusions 53

The expert itself requires some improvement. The production rule matching algorithm
employed at the moment is far too slow in problem solving. A quicker, more efficient
algorithm or approach needs to be developed for practical applications. The use of off-
the-shelf expert system shells, such as CLIPS, should also be considered in the short term
for the project. Integration of these off-the-shelf expert systems with the ITS is a major
technical problem that must be resolved. Expansion and completion of the production
rule set is also required in the near future.

An associated project in developing the interface module was done by two graduating
students with HyperCard™ [26] on the Macintosh II”™ microcomputer. Hypermedia
provides an excellent environment for user and machine interaction {27, 52]. Rapid pro-
totypiﬁg of the interface module is possible. Integration between the interface and the
expert module should be one of the next major steps in this project to provide a func-
tioning prototype system.

We have not addressed any issues concerning the tutor or tutoring approach in this
work. These issues should form an important part of the system’s development and

requires attention in the near future also.

Appendix A

Assignment 1

Figure A.8: Assignment one of ELEC464 from the fall 1989 session. (next page)

54

Appendix A. Assignment 1

University of British Columbia
Department of Electrical Engineering
ELEC 464 (Fall 1988): Assignment 1

The due date for this assignment is September 29, 1988 (Thursday). Please submit your
solutions to the EE464 box outside the Systems Lab (room 332) on or before the due date.

Problem 1:

The uPD43256 is a family of 32K x 8 CMOS static RAMs which have an access time

ranging from 100 ns to 150 ns. Consider the following circuit in which two 43256 are
connected to a 68000 CPU running at 8 MHz.

€800

giaeK —————<_]
74138 1 —
" 3 v _ DgDus
AS ?bﬁl W
+v—1E, b WE
eV —1E, sk L) A
r— “‘ ’
A= ap 4 |eazse ’
o b RAM 1 /
e §p /
7 /
— [
d .t&
7
:- el o f LA :r YO~ Lad
7 il
. ¥Og .
w ﬁ 4
]
a3258
RAM 2
O 4 - .
. Nl
s K 4!
D 2

(a) Which type of address decoding strategy (or strategies) is being used in this cir-
' cuit? Give your reasons. What are the memory address ranges (in hexidecimal)
for RAM1 and RAM2?

(b) Draw the read cycle and write cycle timing diagrams for the 68000-uPD43256-
10L combination and determine whether any timing restrictions have been vio-
lated.

55

Appendix A. Assignment 1

(c) If the clock frequency of the 68000 is changed to 12.5 MHz and two uPD43256-
15L are used for RAMI1 and RAM2, will the given circuit still work? Give your

reasons.

Problem 2:
Figures 4.21a and b of your textbook give the ciruit diagrams of two typical DTACK
generators.

(a) Draw suitable timing diagrams to illustrate the operation of these DTACK gen-
erators.

(b) Show how you would integrate the DT AC K generator with the circuit shown in
Fig. 4.11 of your textbook.

(c) For each DTACK generator, estimate the number of wait states inserted in a
read bus cycle.

Problem 3:
The memory map for a small system is to be set up as follow:

ROM1S 00 0000 - 00 3FFF supervisor ROM
ROM1U 00 0000 - 00 3FFF user ROM
ROM2 00 4000 - 00 7FFF

RAMIS 01 0000 - 03 FFFF supervisor RAM
RAM1U 01 0000 - 03 FFFF user RAM
PERI1 04 0000 - 04 OOFF

PERI2 04 0100 - 04 O1FF

The supervisor memory is accessible only when the CPU is in supervisor mode, and
the user memory is accessible only in the user mode. ROM2, PERI1, and PERI2 are
accessible in either mode. You may assume that 32K x 1 RAMs and 8K x 1 ROMs
are available as well as discrete logic components. Design an address decoder strobed
with AS using:

(a) m-line to n-line decoders.

(b) 16 x 48 x 8 FPLA. Show all fused links and list all product and sum terms. You
should try to minimize the parts count in both (a) and (b).

(c¢) What are the advantages and disadvantages of each decoder?

(Hint: consider FCO-FC2)

Appendix A. Assignment 1 | 57

CLK

SO | St | s2 | S3 |S4 | S5 | s6 S7|

25 * to.

tcxs L

tdelay

ST

\
- Yacs){_ tua -

XX

\

Figure A.9: A simplified timing diagram for problem one of assignment one.

Appendix A. Assignment 1 58

LD ——(
—0

g, (4 —CQ
ws — 9

I

v
™

\
5l

P = = s e -3
: ‘V‘-‘- Vcc l
| !
! ‘ I
!
{ A B Vee |
I I
cLK I I
(8 MHY) : e Qe GAD |
| =
—— | -
DTACK T | i— |
[sC t
b e e e o e e ——— - A
e -7
[Vec Vec !
] |
! |
[A B8 v, !
l cLR (X4 l
P !
* gy | ‘ '
(8MH f
{ Vec Ge 6ND :
]
NS ¥ iy
] : 1
o/
[S r
— e — —— e, e —— e v o -

Figure A.10: Two solutions that satisfy question (2b) from assignment 1, integration of
a shift register DTACK generator.

Appendix B

Production Rules

The following are the files containing the production rules. These files are not totally com-
plete, but serves to prove the framework. The files are 68000.rul, upd43256.rul, time.rul,
control.pro, and logic.pro. 68000.rul contains rules and facts about the MC68000 proces-
sor parameters. UPD/3256.rul contains rules and facts about the NEC pPD43256 static
- RAM. Time.rul contains rules to deal with time determination. Control.pro contains

rules to resolve equivalent goals. Logic.pro contains rules about logic gates and small

scale integrated (SSI) devices.

59

http://rj5000.ru/contains

Appendix B. Production Rules 60

WURRAA LIRS IIIAAAARLRRRIAY 68000 . Tul WAUAAANAAAAA LD RDRIAARAIADA DDA
WAL IAAAAIAAY domain knowledge: facts about MCE8000 %AAAALLAANALLLY
active([cpu,as_],low).
active([cpu,ds_],1low).
active([cpu,lds_],low).
active([cpu,uds_],1low).

active([cpu,dtack_],low).

% bus cycle state definition (clock)

% Note: S7 and SO of the previous and next bus cycle are different states
ps_store(_,event([state([cpu,N,clk],s7p),tCYC],state([cpu,N,clk],s1)),given),
ps_store(_,event([state([cpu,N,clk],s0),tCYC],state([cpu,N,clk],s2)),given),
ps_store(_,event ([state([cpu,N,clk],s1),tCYC],state([cpu,N,clk],s3)),given),
ps_store(_,event ([state([cpu,N,clk],s2),tCYC],state([cpu,N,clk],s4)),given),
ps_store(_,event ([state([cpu,N,clk],s3),tCYC],state([cpu,N,clk]},s5)),given),
ps_store(_,event ([state([cpu,N,clk],s4),tCYC],state([cpu,N,clk],s6)),given),
ps_store(_,event ([state({cpu,N,clk],s5),tCYC],state({cpu,N,clk],s7)),given),
ps_store(_,event ([state([cpu,N,clk],s6),tCYC],state([cpu,N,clk],sOn)),given),
% half cycle times have to be given explicitly
ps_store(_,gvent([state([cpu,N,clk],s7p),’0.5*tCYC’],state([cpu,N,clk],sO)),
given),
%s_store(_,event([state([cpu,N;clk],sO),’O.S*tCYC’],state([cpu,N,clk],si)),
given),
ps_store(_,event([state([cpu,N,clk],sl);’O.S*tCYC’],state([cpu,N,clk],52)),

given),

Appendix B. Production Rules 61

ps_store(_,event([state([cpu,N,clk],52),’O.S*tCYC’],state([cpu,N,clk],sS)),
given),
ps_store(_,event([state([cpu,N,clk],sS),’O.S*tCYC’],state([cpu,N,clk],s4)),
given),

ps_store(_,event ([state([cpu,N,clk],s4),’0.5*tCYC’],state([cpu,N,clk],s5)),
given),

ps_store(_,event ([state([cpu,N,clk],s5),’0.5%tCYC’],state([cpu,N,clk],s6)),
given),
ps_store(_,event([state([cpu,N,clk],56),’O.S*tCYC’],state([cpu,N,clk],s7)),
given),
ps_store(_,event([state([cpu,N,clk],s7),’0.5%tCYC’],state([cpu,N,clk],s0n)),

given).

concept(clk,1, [object (m68000)]) :-
(current_goal([set,clock]),
conditions([frequency(8)])

)y -

properties([

solves([set,clock]),
constraint([_,tCYC], [125,250]),

value([_,tCYC], [125,250]),

value([_,’0.56*tCYC’], [62.5,125]1)]).

concept (clk, 2, [object (m68000)]) :-
(current_goal([set,clock]),
conditions([frequency(12.5)])

)y >

Appendix B. Production Rules 62

properties([

solves([set,clock]),

constraint ([_,tCYC], [80,250]),

value([_,tCYC], [80,250]),value([_,’0.5+tCYC’], [40,1251)]).

% read cycle

% timing parameters: cpu generate & device constraint signals
% cpu generates
concept (tCLAV, 1, [object (mc68000)]) :-
(current_goal([determine,when, [cpu,N,addressbus([A1,A2])],valid]),
conditions([
=(Addressbus, [cpu,N,addressbus([A1,A2])]),
=(T, [state([cpu,N,clk],s1),tCLAV]),
frequency(8)
D

y->

(properties([

solves([determine,when, [cpu,N,addressbus([A1,A2])],valid]),
event (T,state(Addressbus,valid)),
constraint (T, [undefined,62]),
value(T, [undefined, 62])

D,

new_goals([[propagate,event (T,state(Addressbus,valid))]]1)).

concept (tCHSL, 1, [object (mc68000)]) :-

Appendix B. Production Rules ' 63

(current_goal ([determine,when, [cpu,N,as_],asserted]),
conditions([
=(T, [state([cpu,N,clk],s2),tCHSL]),
frequency(8)
ip
)->
(properties([
solves([determine,when, [cpu,N,as_],asserted]),
event (T,state([cpu,N,as_],asserted)),
constraint(T, [3,60]),
value(T, [3,60]1)1),
new_goals ([[propagate,event (T,state([cpu,N,as_],asserted))]])).
concept (tCHSL, 2, [object (mc68000)]) :-
(current_goal([determine,when, [cpu,N,ds_] ,asserted]),
conditions([
=(T, [state([cpu,N,clk],s2),tCHSL]),
frequency(8) ,buscycle(read)
1D)
)->
(properties([
solves([determine,when, [cpu,N,ds_],asserted]),
event (T,state([cpu,N,1ds_],asserted)),
< event(T,state([cpu,N,uds_],asserted)),
constraint(T, [3,60]),
value(T, [3,60])]),

nevw_goals([[propagate,event (T,state([cpu,N,1ds_],asserted))],

Appendix B. Production Rules \ 64

[propagate,event (T,state([cpu,N,uds_],asserted))]])).
concept (tCHSL, 3, [object (mc68000)]) :-
(current_goal([determine,when, [cpu,N,ds_],asserted]),

conditions([

=(T, [state([cpu,N,clk],s4),tCHSL]),

frequency(8) ,buscycle(write)

D

)->

(properties([

solves([determine,when,[cpu,N,as_],asserted]),
event(T,state([cpu,N,1ds_],asserted)),
event(T,state([cpu,N,uds_],asserted)),
constraint (T, [3,60]1)],
value(T, [3,601)),

new_goals([[propagate,event (T,state([cpu,N,1lds_],asserted))],

[propagate,event(T,state([cpu,N,uds_],asserted))]1)).

concept (tAVSL, 1, [object (mc68000)]) :-
(current_goal([determine,when, [cpu,N,as_],asserted]),
conditions([
=(Addressbus, [cpu,N,addressbus([A1,A2])]),
=(T, [state(Addressbus,valid) ,tAVSL]),

frequency(8)
D

) =

(properties([

Appendix B. Production Rules 65

solves ([determine,when, [cpu,N,as_],asserted]),
event(T,state([cpu,N,as_],asserted)),
constraint (T, [30,undefined]),
value(T, [30,undefined])]),
new_goals([[determine,when,Addressbus,valid],
[propagate,event (T,state([cpu,N,as_],asserted))]])).
concept (tAVSL, 2, [object (mc68000)]) :-
(current_goal([determine,when, [cpu,N,ds_],asserted]),
conditions([
=(Addressbus, [cpu,N, addressbus([A1,A2])]),
=(T, [state(Addressbus,valid) ,tAVSL]),
frequency(8)
D
) =>
(properties([
solves([determine,when, [cpu,N,ds_],asserted]),
event (T,state([cpu,N,1ds_],asserted)),
event (T,state([cpu,N,uds_],asserted)),
constraint(T, [30,undefined]),
value(T, [30,undefined])]),
new_goals([[determine,when, Addressbus,valid],
[propagate,event (T,state([cpu,N,1ds_],asserted))],

* [propagate, event (T,state([cpu,N,uds_],asserted))]1)).

% contraint

concept (tDICL, 1, [object (mc68000)]) :-

Appendix B. Production Rules

(current_goal([check,setup,time,of,[épu,N,databus([D1,D2])]]),
conditions([
=(Databus, [cpu,N,databus([D1,D2])]),
=(T, [state(Databus,valid),tDICL]),
buscycle(read)
D
) =>
(properties ([
solves([check, setup,time,of, [cpu,N,databus([D1,D2])]]),
event (T,state([cpu,N,clk],s7)),
constraint (T, [10,undefined])
D,
new_goals([[determine,when,Databus,valid],

[determine,value,of,T]1)).

66

Appendix B. Production Rules 67

WARRIRIAAANIII LSS LSRAAAAR LSS UPDA3256 . Tul AN AR ARSI SRR LI AAA LN
WARIILIAALAAY, definition of NEC uPD43256 32K x 8 static ram YAAAAAULAA%LY
active([_,cs_],low).
active([_,oe_],low).

active([_,we_],1low).

% timing parameters
% read cycle
% property definitions
concept (tAA,1, [object(static_ram)]) :-
current_goal ([determine,when, [ram,N,databus([D1,D2])],valid]),
conditions([
=(Databus, [ram,N,databus([D1,D2]1)]),
=(Addressbus,[ram,N,aadressbus([Ai,A2])]),
=(T, [state(Addressbus,valid) ,tAA]),
buscycle(read) ,device([ram,N], 'uPD43256-10L")
D -
(properties([
solves([determine,when, [ram,N,databus([D1,D2])],valid]),
event (T,state(Databus,valid)),
constraint (T, [undefined,100])]),
new_goals ([
“ [propagate,event (T,state([ram,N,databus([D1,D2])],valid))],
[determine,when,Addressbus,valid],
[determine,when, [ram,N,cs_],asserted],

[determine,ealier,of, [state(Addressbus,valid),

Appendix B. Production Rules

state([ram,N,cs_],asserted)]]
D
).
concept (tACS,1,[object (static_ram)]) :-
current_goal ([determine,when, [ram,N,databus([D1,D2])],validl),
conditions([
=(Databus, [ram,N,databus([D1,D2])]),
=(T, [state([ram,N,cs_] ,asserted),tACS]),
buscycle(read) ,device([ram,N], 'uPD43256-10L’)
D -
(properties([
solves ([determine,when, [ram,N,databus([D1,D2])],valid]l),
event (T,state(Databus,valid)),
constraint (T, [undefined,100])]),
new_goals ([
[propagate,event (T,state([ram,N,databus([D1,D2])],valid))],
[determine,when, [ram,N,cs_],asserted],
[determine,ealier,of, [state(Addressbus,valid),
state([ram,N,cs_] ,asserted)]]
.
concept (t0E, 1, [object (static_ram)]) :-
current_goal ([determine,when, [ram,N,databus([D1,D2])],valid]),
conditions([
=(Databus, [ram,N,databus([D1,D2])]),
=(T,[state([rém,N,oe_],asserted),tOE]),

buscycle(read) ,device([ram,N], >uPD43256-10L’)

Appendix B. Production Rules

N -

(properties([

solves([determine,when, [ram,N,databus([D1,D2])],valid]),
event (T,state(Databus,valid)),
constraint (T, [undefined,50])]),

new_goals([
[propagate,event (T,state([ram,N,databus([D1,D2])],valid))],
[determine,when, [ram,N,oce_],asserted]

D

).

% rules determining whether tACS or tAA is used
concept(resolve,1,[]1) :-
current_goal([determine,ealier,of,
[state(Addressbus,valid),state(CS_,asserted)1]),
conditions([
event(T1,state(Addressbus,S1)),functional _state([Addressbus,S1]},valid),
event (T2,state(CS_,S2)) ,functional_state([CS_,S2],asserted),
before(T1,T2),
constraint([state(CS_,asserted),T],V)
D -
(properties([
solves([determine,ealier,of,
[state(Addressbus,valid),state(CS_,asserted)]]),
equivalent([state(Addressbus,valid),state(CS_,asserted)],

state(CS_,asserted)),

69

Appendix B. Production Rules

value([state(CS_,asserted),T],V)]),
new_goals([])
).
concept(resolve,2,[]) :-
current_goal ([determine,ealier,of,
[state(Addressbus,valid),state(CS_,asserted)]]),
conditions([
event (T1,state(Addressbus,S1)),functional_state([Addressbus,S1],valid),
event (T2,state(CS_,S2)),functional_state([CS_,S2],asserted),
before(T2,T1),
constraint ([state(Addressbus,valid),T],V)
-
(properties([
solves([determine,ealier,of,
[state(Addressbus,valid),state(CS_,asserted)1]),
equivalent ([state(Addressbus,valid),state(CS_,asserted)],
state(CS_,asserted)),
value([state(Addressbus,valid),T],V)]),
new_goals([])
).

70

Appendix B. Production Rules

WRLAIIANAAAAARALLRIARAAAY time . xul BRARAAARRORRDAIARRDL DL LA AL D

% value exists with single common event

concept (determine_value,1,[]) :-

(current_goal ([determine,value,of,[E2,T]]),

conditions([

event ([E2,T],E1),

event([Er,Tr2] ,E2),value([Er,Tr2], [T2min,T2max]),
event ([Er,Tri],E1),value([Er,Tri], (Timin,Timax]),
sub_val(Timax,T2min, Tmax) ,sub_val (Timin,T2max,Tmin)])
) =

(properties([

solves([determine,value,of, [E2,T]]),
value([E2,T], [Tmin, Tmax])

D,

new_goals([1)).

concept (determine_value,2,[]) :-
(current_goal([determine,value,of, [E2,T]]),

conditions([

event ([E2,T],E1),common_ref ([E1,E2] ,Er),

eval_val (Er,E1, [Timin,Timax]),eval_val (Er,E2, [T2min,T2max]),
sub_val(Timin, T2max, Tmin),sub_val (Timax,T2min,Tmax)])
) =
“(properties({

solves([determine,value,of, [E2,T]]),
value([E2,T], [Tmin, Tmax])
D,

71

Appendix B. Production Rules 72

new_goals([])).

concept (determine_value,3,[]) :-

(current_goal([determine,value,of,[E2,T]]),

conditions([
event([E2,T],E1) ,event ([Er1,Tr1],El1),event ([Er2,Tr2],E2),
==(Er1,Er2)])

) >

(properties([1),

new_goals([[find, common,reference,of ,E1,E21])).

% finding common reference
concept (common_ref,1,[]) :-
(current_goal([find, common,reference,of ,E1,E2]),
conditions([=(E1,state([cpu,N,clk],S1)),=(E2,state([cpu,N,clk],S2)),
event (T1,El),event(T2,E2),
before(T1,T2)])
) =
(properties([solves([find,common,reference,of ,E1,E2]),
common_ref ([E1,E2],E1)]),
new_goals([])).
concept (common_ref,2,[]) :-
(current_goal([find, common,reference,of ,E1,E2]),
« conditions([=(E1,state([cpu,N,clk],S1)),=(E2,state([cpu,N,clk],S2)),
event (T1,E1),event(T2,E2),
before(T2,T1)])

Yy ->

Appendix B. Production Rules

(properties([solves([find,common,reference,of ,E1,E2]),
common_ref ([E1,E2],E2)]),

new_goals([])).

% heuristic, use clock as reference if possible

concept (common_ref,3,[]) :-

(current_goal([find,common,reference,of ,E1,E2]),
conditions([=(E1,state([cpu,N,clk],S1)),\==(E2,state([cpu,N,clk],_)),
track(E1,E2,state([cpu,N,clk],S0))])

) >

(properties ([

solves([find,common,reference,of ,E1,E2]),

common_ref ([E1,E2],state([cpu,N,clk],S0))]),

new_goals([])).

concept(cdmmon_ref,4,[]) t-

(current_goal([find,common,reference,of ,E1,E2]),
conditions([\==(E1,state([cpu,N,clk],_)),=(E2,state([cpu,N,clk],S2)),
track(El,E2,state([cpu,N,clk],S0))])

) >

(properties([solves([find,common,reference,of ,E1,E2]),

common_ref ([E1,E2],state([cpu,N,clk],S0))1),

new_goals([]1)).

73

Appendix B. Production Rules

WRRRRRARRIBRRAARRAALLALNY control . xul WARUNALLAARLLRARLDLLLANAN Y,
WRIIRRIIRBNAARARLIRLAAAA control rules %%%%%%%%%%%%%%%%%%%%%%%%%
% create equivalent goals for connected nodes
concept(equivalent_goal,1, [object (device)]) :-
(current_goal([determine,when,Node,State]),

conditions([

=(Goal, [determine,when,Node,State]),

setof (N,R~connected (Node,N,R) ,Nodes),

equiv_goals(Goal,Nodes,3,NewGoalList)

»
) ->
(properties ([
equiv_goals(Goal,NewGoalList)]),

new_goals(NewGoalList)) .

AN A AN SN A AN NN N A N AR NN AR AR A NN AR AR A
% create a list of goals because Nodes are connected

% Prolog program to improve efficienc
g prog p y

equiv_goals(_,[],_,[]) - !.
equiv_goals(Goal, [NINList], I, [NewGoal|NewGoalList]) :-
substitute(N,Goal,I,NewGoal),

£quiv_goals(Goal,NList,I,NewGoalList).

% asserts the property Goal & NewGoallist goals are equivalent

equiv_goals(_,[]) :- !.

Appendix B. Production Rules

equiv_goals(Goal, [GIGList]) :-

(ps_recorded(_,equivalent (Goal,G),_);
(ps_recorded(_,equivalent (G,Goal),_);
ps_store(_,equivalent(Goal,G),

concept(equivalent_goal,1, [object(device)]))

)

) ,equiv_goals(Goal,GList).

AN NN YN NN NSNS AN NSNS YN Y Y Y YN AANAAANAAAA A YA
% create equivalent goals for similar states
concept (equivalent_goal,2, [object (device)]) :-
(current_goal([determine,when,Node,State]),
conditions([
functional_state(State),
logical_state([Node,State],S),\==(S,unknown)])
) =
(properties([
equivalent([determine,when,Node,State],
[determine,when,Node,S])
1,
new_goals([[determine,when,Node,S]])).
concept (equivalent_goal,3, [object (device)]) :-
«(current_goal([determine,when,Node,State]),
conditions([
logical_state(State),

functional_state([Node,State],S),\==(S,unknown)])

75

Appendix B. Production Rules

) ->

(properties ([
equivalent([determine,when,Node,State],
[determine,when,Node,S])

n,

new_goals([[determine,when,Node,S]])).

% use ds* instead of lds*/uds*
concept(equivalent_goal,4, [object (mc68000)]) :-
(current_goal([determine,when, [cpu,N,1ds_],S]),
conditions([])

)y ->

(properties([

equivalent([determine,when, [cpu,N,1ds_],S],
[determine,when, [cpu,N,ds_],S8])]),
new_goals([[determine,when, [cpu,N,ds_1,8]1)).
concept (equivalent_goal,5, [object (mc68000)]) :-
(current_goal([determine,when, [cpu,N,uds_],5]),
conditions([])

) ->

(properties([

equivalent ([determine,when, [cpu,N,uds_],State],

[determine,when, [cpu,N,ds_1,S1)1),

new_goals([[determine,when, [cpu,N,ds_1,511)).

% event propagation

76

Appendix B. Production Rules

(current_goal([propagate,event (T,state(Node,S))]),
conditions([])
) =
(properties([
solves([propagate,event (T,state(Node,S))]),
propagate(T,Node,S)1),
new_goals([])).

concept(solved_goal,1, [type(achieve)]) :-
(current_goal([determine,when,Node,S]),
conditions([event (T,state(Node,S))])

) ->

(properties([

solves([determine,when,Node,S])]),

new_goals([])).

-

concept (propagate, 1, [type(achieve),object (mc68000)]) :

77

Appendix B. Production Rules ' " 78

WRRRIRIRRLRRRAAIAAALLRAIAA Logic.xud LARRAAAAIAIARIAN AL LD AAA AN,

:- ps_store(_,value([_,tgate_delay], [0,10]),’propagation delay’).

concept (power,1, [object (power)]) :-
(current_goal ([power,on]),
conditions([])
) =>
(properties([solves([power,on]),propagate_power]),

new_goals([])).

Wl L L LRSI LI RIS AL SIS LR LSRR DN,

% initialize nodes connected to vcc and gnd

propagate_power :-

bagof (N, I"R"~connected([power,I,vcc],N,R),NHi), set_state_high(NHi),
bagof (N, I"R"connected([power,I,gnd],N,R),NLo),set_state_low(NLo).
set_state_high([]) :- !.

set_state_high([NINs]) :-

ps_store(_,event ([[],’-inf’],state(N,high)), connected([power, _,vcc],N)),
set_state_high(Ns).

set_state_low([]) :- !.

set_state_low([N|Ns]) :-

ps_store(_,event ([[],’-inf’],state(N,low)) ,connected([power,_,gnd] ,N)),

set_state_low(Ns).

AN AN AN A A AR AN AR A A A AR KA R A AR AR A

% 2-input OR-gate definitions

Appendix B. Production Rules

concept (or_gate,1, [object (logic_gate)]) :-
(current_goal([determine,when, [or,N,out],high]),
conditions([

logical_state(T, [or,1,in1],high),

=(T1, [state([or,1,in1] ,high) ,tgate_delay])

D

) =>

(properties([
solves([determine,when, [or,N,out] ,high]),
event(T1,state([or,N,out],high)),
propagate(T1, [or,N,out],high)]),
new_goals([])). ,
concept(or_gate,2, [object(logic_gate)]) :-
(current_goal([determine,when, [or,N,out] ,highl),
conditions([

logical_state(T, [or,1,in2],high),

=(T1, [state([or,1,in2],high) ,tgate_delay])
D

) =>

(properties([
solves([determine,when, [or,N,out] ,highl),

event (T1,state([or,N,out],high)),

. propagate(T1,[or,N,out],high)l),
new_goals([])).

concept (or_gate,3, [object (logic_gate)]) :-

(current_goal([determine,when, [or,N,outl,low]),

79

Appendix B. Production Rules

conditions([
logical_state(T, [or,1,in1],1low),
logical_state(T, [or,1,in2],1low),
=(T1, [state([or,1,in1],low),tgate_delay])
D
) =
(properties([
solves([determine,when, [or,N,out],low]),
event (T1,state([or,N,out],low)),
propagate(T1, [or,N,out],low)]),
new_goals([])).

concept (or_gate,4, [object (logic_gate)]) :-

(current_goal([determine,when, [or,N,outl,low]),

conditions([
logical_state(T, [or,1,in2],1low),
logical_state(T, [or,1,inl],1low),
=(T1, [state([or,1,in2],low),tgate_delay])
D
) =>
(properties([
solves([determine,when, [or,N,out],low]),
event(T1,state([or,N,outl,low)),
° propagate(T1, [or,N,out],low)]),
new_goals([])).

concept (or_gate,5, [object (logic_gate)]) :-

80

 Appendix B. Production Rules

(current_goal([determine,when, [or,N,out],low]),
conditions([])
) ->
(properties([1),
new_goals([[determine,when, [or,N,in1],low],
[determine,when, [or,N,in2],1ow]])).
concept (or_gate,6, [object (logic_gate)]) :-
(current_goal([determine,when, [or,N,out],high]),
conditions([])
) =>
(proRerties([]),
ne;_goals([[determine,when,[or,N,inl],high]])).
concept (or_gate,7, [object (logic_gate)]) :-
(current_goal([determine,when, [or,N,out],highl),
conditions([])
)y =
(properties([1),

new_goals([[determine,when, [or,N,in2],high]])).

WARRIIARIRIRLRIIIIRALIIANL LS138 AU NAAIA R RAAAR LR ARA LRSI ANN
active([1s138,y0_],1low).
active([1s138,y1_],1low).
active([1s138,y2_],1o0w).
active([1s138,y3_],1low).
active([1s138,y4_],1ow).
active([1s138,y5_],1low).

81

Appendix B. Production Rules 82

active([1s138,y6_],1low).
active([1s138,y7_],1low).
active([1s138,e0_],1low).
active([1s138,e1_],1low).

active([1s138,e2],high).

concept(1s138,1, [object (device)]) :-
(current_goal([determine,when, [1s138,N,y1_],asserted]),
conditions([
logical_state(T, [1s138,N,e0_],1low),
| logical_state(T, [1s138,N,el_],1low),
logical_state(T, [1s138,N,e2],high),
=(T1, [state([1s138,N,e0_],1low),tgate_delay])])
) =
(properties([
solves([determine,when, [15s138,N,y1_],asserted]),
event(T1,state([1s138,N,yi_],asserted)),
propagate(T1,[1s138,N,y1_],asserted)
1,
new_goals([]1)).
concept (15138,2, [object(device)]) :-
(current_goal([determine,when, [1s138,N,y1_],asserted]),
conditions([])
3 N
(properties([]),

new_goals([

Appendix B. Production Rules

[determine,when, [1s138,N,e0_],1low],
[determine,when, [15138,N,el_],1low],
[determine,when, [15138,N,e2] ,high]
1D)

83

Appendix C

The Solution Database

The following is the file that sets up the example problem and snapshot of the solution

database at various stages of problem solving.

84

Appendix C. The Solution Database 85

$ETTIILIHIIEILEE453333%% file: problem.pro $33333H3H¥ITHIIHIBIT9%%
% defines example problem to find tDICL

% define problem givens
% define circuit
circuit :~
connect((cpu,1,as_],[1s138,1,e0_]),
connect ([power,1,gnd], [1s138,1,el_]),
connect ([power,1,vcc], [1s138,1,e2]),
connect ([{cpu, 1,addressbus(ail6)]),[1s138,1,a]}),
connect([cpu,1l,addressbus(al7)],[1ls138,1,b]),
connect ({cpu, l,addressbus(al8)j,[1s138,1,c]),
connect((cpu,1l,uds_],(or,1,1inl1}),
connect((cpu,1,1ds_],[or,2,inl])
connect((1ls138,1,y1], (or,1,in2
connect([1s138,1,y1], [or,2,in2
connect([1s138,1,y0_],(and,1,in

1)

1)

1]

connect([1ls138,1,y1],(and,1,in2)
)

!
!
)
)
connect([or,1,out}, (ram,1,cs_])
connect([or,1,out],(ram,1,0e_])
connect([or,2,out}, {ram,2,cs_J])
connect([or,2,out}, (ram,2,0e_])
connect({cpu,l,rw_],(ram,1,we_]),
connect((cpu,l,rw_],[ram,2,we_]),
connect([cpu,1,databus((d0,d7})],[ram,1,databus([(d0,d7])]),
connect ([cpu,1,databus([d0,d7])],[ram,2,databus({d0,d7])1]),
connect({cpu,1,addressbus((al,al5))], [ram,1,addressbus([a0,al4])]),
connect({cpu,1l,addressbus([al,al5})]}, [(ram,2,addressbus([a0,al4d])]).
% set up objectives to solve & housekeeping elements
:- ps_init([], [problem],solution),

ps_store(_,objective(active, [power,on}),given),

ps_store(_,objective(active, [set,clock]}),given),

ps_store(_,

objective(active, [check, setup,time,of, [cpu,l,databus([d0,d7])]]),

given),

ps_store(_,frequency(8) ,given),

ps_store(_,buscycle(read), given),

ps_store(_,device(({ram,1], 'uPD43256-10L') ,given),

ps_store(_,device([ram,2],'uPD43256-10L"),given),circuit.

Appendix C. The Solution Database . ' 86

$%%% state of solution database at beginning of problem solving %%%%
$% ** highlights objective elements, >> highlights rule elements %%

time_tag(55).
% element(1l,objective(active, [power,on}),given).
** element(2,objective(active, [set,clock]),given).
** element (3,objective(active, {check,setup,time,of, {cpu,1l,databus({d0,d7])]11),
given).
element (4, frequency(8) ,given).
element (5, buscycle(read) ,given).
element (6,device((ram,1),uPD43256-10L) ,given).
element(7,device([ram,2),uPD43256-10L) ,given).
element(8,connected(({cpu,l,as_]},(1s138,1,e0_]),given).
element (9, connected((power,1,gnd}, {1s138,1,el_]),given).
element (10, connected([power,1,vcc]), [1s138,1,e2]),given).
element (11,connected([cpu,1,addressbus(al6)],[1s138,1,a}),given).
element (12, connected([cpu,1,addressbus(al7)),[1s138,1,b]),given).
element (13,connected({cpu,l,addressbus(als8)],{1s138,1,c]),given).
element (14,connected([cpu,1l,uds_], [or,1,1inl]),given).
element (15, connected([cpu,1,1ds_], [or,2,1inl])),given).
element(16,connected((1s138,1,y1 },(or,1,in2}),given).
element (17, connected([1s138,1,y1], [or,2,in2]),given).
element (18,connected((or,2,in2),(or,1,in2]),
connected(([1ls138,1,y1], (or,2,in2))).
element(19,connected([1s138,1,y0_],(and,1,inl1]),given).
element (20,connected([1s138,1,y1 _],(and,1,in2}),given).
element(21,connected([and,1,in2]},{or,1,in2}),
connected([1s138,1,yl1],(and,1,1in2})).
element(22,connected({and,1,in2]}, [or,2,1in2}),
connected([or,1,in2),[and,1,in2])).
element (23,connected((or,1,o0ut],[ram,1,cs_]) ,given).
element (24,connected([or,1,0ut], [ram,1,0e_]),given).
element (25,connected([ram,1,0e_],(ram,1,cs_]),
connected({or,1,out],(ram,1,0e_1])).
element (26,connected((or,2,0ut}, (ram,2,cs_]),given).
element (27,connected((or,2,0ut}, (ram,2,0e_]) ,given).
element(28,connected((ram,2,0e_]},(ram,2,cs_j),
connected([or,2,0ut], [ram,2,0e_1])).
element (29,connected(([cpu,1,rw_],[ram,1,we_]),given).
element (30,connected([cpu,1,rw_],[ram,2,we_]),given).
element (31, connected([(ram,2,we_],(ram,1,we_]),
connected((cpu,1l,rw_],[(ram,2,we_])).
element (32, connected([cpu,l,databus([d0,d7])]),(ram,1,databus([d0,d7])]),
given).
element (33,connected([cpuy,1,databus({do,d7])), (ram,2,databus([d0,d7])1}),
given).
element (34, connected((ram,2,databus((do,d7])], [ram,1,databus({d0,d7])]),
connected([cpu,1l,databus([d0,d7]))], [ranm,2,databus([d0,d47])1])).
element (35, connected([cpu, 1,addressbus([al,al5])],
(ram,1,addressbus((a0,al4])]),given).
element (36, connected([cpu,1l,addressbus([al,al5]})}],
(ram,2,addressbus([a0,a14])]),given).
element (37,connected({ram, 2,addressbus({a0,al4j)],
[ram,1,addressbus([a0,al4])]),
connected([cpu, 1,addressbus([al,al5])],
[ram,2,addressbus([a0,al4])])).
element (38, event([state([cpu,_20,clk],s7p),tC¥C],state([cpu,_20,clk],sl)),
given).
element (39,event([state([cpu,_20,clk]),s0),tCyC),state((cpu,_20,clk]},s2)),

Appendix C. The Solution Database 87

given).
element (40,event ((state([cpu,_20,clk],sl),tCY¥C]}, state([cpu,_20,clk],s3)),
"given).
element (41,event([state([cpu,_20,clk],s2),tC¥C],state((cpu,_20,clk],s4d)),
given).
element (42,event([state((cpu,_20,clk],s3),tCYC),state([cpu,_20,clk],s5)),
given). ;
element (43,event([state((cpu,_20,clk]),s4),tCYC],state([cpu,_20,clk],s6)),
given).
element (44,event([state([cpu,_20,clk],s5),tCYC],state([cpu,_20,clk],s7)),
given). :
element (45,event ({state((cpu,_20,clk]},s6),tC¥C]),state([cpu,_20,clk]},sOn)),
given).
element (46,event((state([cpu,_ 20,clk],s7p),0.5*%tCYC],
state({cpu,_20,clk],s0)),given).
element (47,event ({state([cpu,_20,clk],s0),0.5*tCYC],
' state([cpu,_20,clk]),sl)),given). .
element (48,event([state({cpu,_20,clk},sl),0.5*tCYC],
state((cpu,_20,clk],s2)),given).
element (49 ,event([state([cpu,_20,clk],s2),0.5*tCYC],
state(([cpu,_20,clk]},s3)),given).
element (50,event((state([cpu,_20,clk],s3),0.5*tCYC],
state((cpu,_20,clk],s4)),given).
element (51,event({state([cpu,_ 20,clk]),s4),0.5*%tCYC],
state([cpu,_20,clk],s5)),given).
element (52,event ((state((cpu,_20,clk],s5),0.5*%tC¥YC],
state((cpu,_20,clk],s6)),given).
element (53,event ({state([cpu,_20,clk],s6),0.5*tCYC],
state([cpu,_20,clk),s7)),given).
element (54,event([(state({cpu,_ 20,clk],s7),0.5*%tC¥YC],
state((cpu,_20,clk]},sOn)),given).
element (55,value([_20,tgate_delay],[(0,10)),propagation delay).

Appendix C. The Solution Database 88

$%%%%5%33%% state of solution database after 3 iterations $%%%%%%3%%%%

%%

** highlights objective elements, >> highlights rule elements %%

time_tag(110).

* &k
* %k
* %

LY

element(1,objective(solved, {power,on]),given).
element (2,objective(solved, [set,clock]),given).
element (3,objective(solved, [check, setup,time,of,{cpu,1,databus([d0,d7])]]),
given).
element (4, frequency(8) ,given).
element (5,buscycle(read) ,given).
element (6,device([ram,1},uPD43256-10L),given).
element(7,device([ram,2),uPD43256-10L) ,given).
element (8,connected((cpu,1,as_],(1s138,1,e0_]),given).
element (9,connected([power,1,gnd]), [1s138,1,e1_])),given).
element (10, connected([power,1,vcc), [1s138,1,e2]) ,given).
element (11, connected([cpu,1,addressbus(al6)],[1s138,1,a])),given).
element (12, connected({cpu,1,addressbus(al7)},(1s138,1,b]),given).
element (13, connected([cpu,1l,addressbus(als8)],[1s138,1,c]),given).
element (14,connected((cpu,1,uds_], (or,1,inl])),given).
element (15,connected([cpu,1,1ds_],[or,2,1inl1)),given).
element(lG,connected([15138,1,y1_],[or,l,in2]),given).
element(17,connected([1s138,1,y1], [or,2,in2)),given).
element (18,connected([or,2,1in2],(or,1,in2)),
connected((1s138,1,y1],{or,2,in2))).
element (19,connected([1s138,1,y0_],[and,1,inl}),given).
element (20,connected(({1s138,1,y1 },(and,1,in2}),given).
element (21, connected({and,1,in2),{or,1,in2])),
connected(([1s138,1,y1],[and,1,in2])).
element (22, connected(({and,1,in2}, (or,2,1in2}),
connected(({or,1,in2}),{and,1,in2})).
element (23,connected((or,1,0ut}, [ram,1,cs_]),given).
element (24,connected((or,1,0ut], (ram,1,0e_]),given).
element (25, connected((ram,1,0e_],(ram,1,cs_]),
connected({or,1,out}, (ram,1,0e_})).
element (26,connected((or,2,0ut], [ram,2,cs_]),given).
element(27,connected((or,2,0ut], [ram,2,0e_]),given).
element (28,connected((ram,2,0e_],(ram,2,cs_]),
connected((or,2,0ut),(ram,2,0e_])).
element (29,connected((cpu,1,rw_],[(ram,1,we_]),given).
element (30, connected((cpu,1,rw_],[ram,2,we_]),given).
element(31,connected((ram,2,we_],(ram,1,we_]),
connected((cpu,l,rw_]},(ram,2,we_])).
element (32,connected([cpu, 1,databus([d0,d7]))], [ram,1,databus([d0,d7])1]),
given).
element (33, connected(([cpu, 1,databus([d0,d7])],(ram,2,databus((d0,d7])]),
given).
element (34, connected({ram, 2,databus({d0,d7))]),[ram,1,databus([(d0,d47])]),
connected((cpu,1,databus([d0,d7]))], [ram,2,databus([d0,d7])])).
element (35, connected({cpu,1,addressbus([al,al5])],
(ram,1l,addressbus((a0,a14})]),given).
element (36,connected([cpu, 1,addressbus([al,al5])],
[ram,2,addressbus({a0,al4))]),given).
element (37,connected({ram,2,addressbus({a0,al4])]
(ram,1,addressbus({a0,al4})]),
connected({cpu,1l,addressbus({al,al5])])
(ram,2,addressbus([a0,al14])])) .
element (38,event([state([cpu,_20,clk]},s7p),tCY¥C]},state([cpu,_20,clk],sl)),
given).
element (39,event([state([cpu,_20,clk},s0),tCcyC]},state([(cpu,_20,clk],s2)),

)
)

>>

>>
* %

* %k

>>

>>

* %

Appendix C. The Solution Database

given).

element (40,event ([state({cpu,
given).

element (41,event ({state([cpu,
given).

element (42, event ([state([cpu,
given).

element (43,event ([state([cpu,
given).

element (44,event ([state([cpu,
given).

element (45,event ([state([cpu,
given).

element (46,event ([state([cpu,

state([cpu,

element (47,event ([state([cpu,

state([cpu,

element (48,event({state([cpu,

state([cpuy,

element (49,event ([state((cpu,

state([cpu,

element (50, event ([state([cpu,

state({cpu,

element (51,event ({state([cpu,

state(([cpu,

element (52, event ([state((cpu,

state([cpu,

element (53,event([state({cpu,

state([cpu,

element (54,event ([state([cpu,

state([cpu,

_20,clk]),s1),tCyYC],state((cpu,
_20,clk]),s2),tCcyC],state([cpu,
_20,clk]),s3),tcyYc),state([cpu,
_20,clk},s4),tCYC],state([cpu,
_20,clk},s5),tCYC]},state([cpu,
_20,clk},s6) ,tCYC],state([cpu,

_20,clk],s7p),0.5%tCyYC],
_20,clk},s0)),given).

20,clk],s0),0.5%tCyYC],

_20,clk],s1)),given).
20,clk],s1),0.5%tCYC],

20,clk]),s2)),given).

_20,clk],s2),0.5%tCYC],
_20,clk]),s3)),given).
~20,clk],s3),0.5%tCYC],
_20,clk]},s4)),given).
—20,clk]),s4),0.5%tCYC),

20,clk],s5)),given).

~20,clk],s5),0.5%tcyc],
_20,clk},s6)),given).
_20,clk},s6),0.5*tCYC]),
_20,clk],s7)),given).
"20,clk],s7),0.5%tCYC],
_20,clk],s0n)) ,given).

89

_20,clk],s3)),
_20,clk]),s4)),
_20,clk],s5)),
_20,clk]},s6)),
_20,clk]),s7)),

_20,clk],s0n)),

element (55,value({_20,tgate_delay],(0,10]),propagation delay).
element (56, rule(concept(clk, 1, ([object (m68000)])),elements((4,2])).
element (57,constraint ([_4444,tCYC]), [125,250]),
concept(clk,1, [object (m68000)])) .
element (58,value([_4444,tCYC),[125,250])),concept(clk,1, [object(méE8000)])).
element (59,value([_4444,0.5*tCYC], [62.500000,125]),
concept (clk,1, (object(msaooo)]))
element (60, rule(concept(tDICL 1, [object (mc68000)]))),elements([5,3])).
element(61,objective(active,[determine,value,of,
[state({cpu,1,databus([d0,d7])],valid),tDICL]]),
concept (tDICL, 1, [object (mc68000) 1)) .
element(62 objective(solved, [determlne when,
[cpu,l,databus([(d0,d7))],valid)),
concept(tDICL,l,[object(mc68000)])).
element (63,event ([state([(cpu,1,databus([d0,d7])],valid), tDICL],

state([cpu,

concept (tDICL, 1, [object (mc68000)]
element (64 ,constraint([{state({cpu,1,databus([(d0,d7)
[10,undefined)),

-«

1,clk],s7)),
))-
)1

concept (tDICL, 1, ([object (mc68000)])).

element (65, rule(concept (power,1, [object(power)])),elements([1])).

element(66,event([[],~inf),state([(1s138,1,e2],high)),
connected([power,_4444,vcc),[1s138,1,e2])).

element(67,event([([],-inf],state([{1s138,1,el_),low)}),

connected([power,

4444 ,gnd), [15138 1,el 1)),

,valid),tDICL),

element (68, rule(concept(equlvalent goal,l, [object(dev1ce)])),

elements((62])).
element (69,0bjective(solved,

[determine,when, [ram, 2,databus([d0,d7])],valid)),

Appendix C. The Solution Database 90

%* %k

>>
* %

% %

% %

* %

>>
* %

% %

% %

% %

«

concept (equivalent_goal, 1, [object(device)])).
element (70, o0bjective(solved,
[determine,when, [ram,1,databus([d0,d7])]},valid]),
concept(equlvalent goal 1, [object(device)])).
element (71,equivalent([determine, when {cpu,1l,databus((do,d7]))],valid],
{determine,when, (ram,1, databus([do d73)),valid}),
concept(equlvalent goal 1, [object(device)])).
element (72,equivalent ([determine, when (cpu,1l,databus((d0,d7])],valid],
(determine,when, (ran, 2 databus([do d7]))],valid]),
concept(equivalent goal 1, [object(device)]))
element (73, rule(concept (taA,1, [object(statlc ram)])),elements([(6,5,70])).
element (74,0bjective(active,
[{determine,ealier,of,
[state(([ram,1, addressbus([4444,_4445))],valid),
state((ram,1,cs] asserted)]]),
concept (tAA,1, [object(statlc ram)])).
element (75, objectlve(actlve (determine,when, [ram,1,cs _],asserted)]),
concept (tAA, 1, [object(static_ ram)]))
element (76, objectlve(actlve,
[determine,when, [ram,1,addressbus([_4444, 4445))],valid}),
concept (tAA,1l, [object(statlc ram}]l)).
element (77, objectlve(actlve,
[propagate,event(
[state([ram,1,addressbus([_4444,_4445])],valid), taaj,
state((ram,1,databus(({d0,d7]})],valid))}),
concept (taA,1l, [object(statlc ram)})).
element (78, event([state([ram 1, addressbus([4444, 4445])),valid), tAaA)],
state([ram,1 databus([do a731)1], valid)),
concept (tAA,1, ([object(static_ram)])).
element (79, constralnt([state([ram 1, addressbus([4444,_4445])]1,valid),taa)],
{undefined, 100}),
concept (tAA,1, ([object(static_ram)]))).
element (80, rule(concept(tAA 1, [object(statlc ram)])) ,elements([7,5,69])).
element (81,objective(active,
[determine,ealier,of,
[state((ram,2 addressbus([4444, 4445))),valid),
state([ram,2,cs] asserted)]]),
concept (taA,1l, [object(statlc ram)l)).
element (82, objectlve(actlve [determlne when, {ram,2,cs_],asserted]}},
concept (tAA, 1, [object(static_ ram)]))
element (83, objectlve(actlve,

(determine,when, [ram,2,addressbus([_4444,_4445])),valid)),

concept(tAA,l,[object(static_ram)])).

element (84,0bjective(active,

[propagate, event (
[state([ram,2,addressbus([_4444,_4445])],valid),taA],
state((ram,2 databus([do az1) 1, valld))]),

concept (tAA,1, [object(statlc_ram)]))

element(ss,event([state([ram,2,addressbus([_4444,_4445])],valid),tAA],
state([ram,2,databus((d0,d7))],valid)),
concept (tAA, 1, [object(static_ram)])).
element (86,constraint((state([ram,2,addressbus([_4444,_4445))],valid), tAA)],
[undefined, 100]),
concept (tAA,1, [object(static_ram)})).

>> element(87,rule(concept(taCS,1, [object(statlc ram)])),elements([(6,5,70]))).
** element(88,objective(active,

[propagate,event([state([ram,1,cs_],asserted), tACS],

state([ram,1,databus([{d0,d7])], valid))}),

concept (tACS,1, [object(static_ram)])).
element(89,event([state([ram,l,cs_],asserted),tACS],

>>
* &

>>
%%

*x k

>>
* %

L2

>>

>>

Appendix C. The Solution Database 91

state([ram,1,databus([d0,d47])],valid}),
concept (tACS, 1, ([object(static_ram)])).
element(90,constraint([state([ram,l,cs_],asserted),tACS],[undefined,lOO]),
concept (tACS,1, [object(static_ram)})).
element (91, rule(concept(tACS 1, [object(statlc ram)))),elements([7,5,69])).
element (92, objective(active,
[propagate,event ((state((ram,2,cs_],asserted) , tACS]},
state({ram,2,databus([d0,d7})],valid))]),
concept (tACS, 1, ([object(static_ram)])).
element (93,event([state((ram,2,cs_],asserted), tACsS],
state([(ram,2,databus([d0,d7]))],valid)),
concept (tACS,1, [object(static_ram)])).
elenment (94, constralnt([state([ram 2,cs_],asserted),tACS), (undefined, 100]),
concept (tACS,1, (object(statlc ram)]))
element (95, rule(concept(tOE 1, [object(static _ram)])),elements((6,5,70])).
element (96,objective(active, [determlne when, {ram,1,0e_], asserted]),
concept (tOE, 1, [object (static_ ram)]))
element (97, objectlve(actlve,
[propagate,event([state((ram,1,0e_],asserted),tOE],
state([ram,1,databus([{d0,d7])],valid))]),
concept (tOE, 1, ([object(static_ram)])).
element (98,event((state(({ram,1,0e_],asserted),toOE],
state((ram,1,databus({do0,d7]))],valid)),
concept (tOE, 1 [object(static_ram)])).
element (99, constralnt([state([ram 1,0e_}, asserted),tOE), [undefined, 50]),
concept (tOE, 1, [object(statlc ram)])).
element (100, rule(concept(tOE 1, [object(static_ram)]})),elements((7,5,69])).
element (101,0objective(active, [determlne when, {ram,2,0e_], asserted]),
concept (tOE, 1, [object(static_ram)})).
element (102, ob)ectlve(actlve,
(propagate,event([state([ram,2,0e_],asserted), tOE],
state((ram,2,databus([{d0,d7])], valid))]),
concept (tOE, 1 (object(static_ram)})).
element(103,event([state([ram,z,oe_],asserted),tOE],
state({ram,2,databus({do0,d7]})],valid)),
concept (tOE, 1, {object(static_ram)])).
element (104, constralnt([state([ram 2,0e_], asserted),tOE}], (undefined,50}),
concept (tOE, 1, [ob)ect(statlc_ram)]))
element(105,ru1e(concept(equivalent_goal,1,[object(device)])),
elements(([70])).
element(los equivalent([determine,when, [ram,1,databus([d0,d7]))],valid],
[determine,when, [ram,2,databus([d0,d7])],valid]),
concept(equ1va1ent_goa1 1, [object(device)]))). :
element (109, rule(concept (equivalent goal,l,[object(device)])),
elements([69])). .

Appendix C. The Solution Database

$E35333%3%333%5%3%% final state of solution database $%33%%¥%%¥33%5%3%%%3

%%

** highlights objective elements, >> highlights rule elements %%

time_tag(381).

* k
* %
x*

element (1,objective(solved, [power,on]),given).
element (2,objective(solved, [set, clock]),glven)
element(3,objective(solved,

[check,setup,time,of, [cpu,l,databus([d0,d7])]]) ,given).

element (4, frequency(8) ,given).
element (5, buscycle(read) ,given).
element (6,device([ram,1],uPD43256-10L),given).
element (7,device([ram,2],uPD43256-10L) ,given).
element (8, connected((cpu,1,as_]),[1s138,1,e0_]),given).
element (9, connected([power,1,gnd],(1s138,1,el_]),given).
element (10, connected([power,1,vcc],[1s138,1,e2]),given).
element (11, connected({cpu,l,addressbus(al6)],{1s138,1,a]),given).
element (12, connected([cpu,1,addressbus(al7)},(1ls138,1,b]),given).
element (13, connected({cpu,1,addressbus(al8)],{1s138,1,c]),given).
element (14,connected((cpu,1,uds_],[or,1,inl}),given).
element (15,connected({cpu,1,1ds_},[or,2,inl)),given).
element(16,connected((1s138,1,y1_],[or,1,in2]),given).
element(l?,connected([15138,1,y1_],[or,2,in2]),given).
element (18, connected({or,2,in2], (or,1,in2}),
connected([lsl38 1,y1_},(or,2,in2})).
element (19,connected({1s138,1,y0_1, [and 1, 1n1]),g1ven)
element (20, connected([1ls138, 1,y1 },{and,1,in2}),given).
element (21, connected([and 1,in2), (or,1, 1n2]),
connected([lsl38 1, yl 1,[(and,1,1in2])).
element (22, connected((and, 1,in2], [or, 2 in2}),
connected([or,l,inz],[and,l,inz])).
element (23,connected((or,1,0ut], (ram,1,cs_]}),given).
element (24,connected((or,1,0ut], (ram,1,0e_]),given).
element (25, connected([ram,1,0e_},[ram,1,cs_]),
connected([or,1l,o0ut},(ram,1,0e_])).
element (26,connected([or,2,0ut], [ram,2,cs_]}),given).
element (27,connected((or,2,0ut]}, [ram,2,0e_]}),given).
element (28,connected((ram,2,0e_],[ram,2,cs_]),
connected({or,2,out],(ram,2,0e_]1)).
element (29,connected((cpu,l,rw_],(ram,1,we_]),given).
element (30,connected((cpu,l,rw_),[ram,2,we_]),given).
element (31,connected((ram,2,we_], [ram,1,we_}),
connected([cpu,l,rw_],(ram,2,we_])).
element (32, connected([cpu,1,databus([d0,d47]))],
(ram,1,databus([d0,d7])]),g9iven).
element (33, connected((cpu,1,databus({d0,d47})],
[ram,2,databus({d0,d7]})]),given).
element (34, connected([ram,2,databus([(d0,d7])],
[ram,1,databus([d0,d7])]),

* connected((cpu,1l,databus((d0,d7])],

{ram,2,databus([(d0,d7])])).
element (35,connected([cpu,1l,addressbus((al,al5})],
[ram,1l,addressbus([a0,al4)})]),given).
element (36,connected([cpu,1,addressbus((al,al5})],
[ram,2,addressbus([a0,al14]))]),given).
element (37,connected((ram, 2,addressbus((a0,al4)
[ram,1l,addressbus([a0,al4])]
connected({cpu,1l,addressbus(
[ram,2,addressbus({a0,al4])]
element (38,event([state([cpu,_233,clk},s7p),tCY

)«
)1,
).
(al,al15])],
))
€]

.
[

92

>>

>>
% k

%* %

>>

>>
* k

Appendix C. The Solution Database 93

state((cpu,_233,clk]},sl1)),given).
element (39,event ([state([cpu,_ 233,clk],s0),tC¥YC],
state([cpu, 233 clk] s2)),given).
element (40, event ([state([cpu,_ 233 clk] sl), tCYC],
state([cpu,_233 clk],s3)),given).
element(41,event([state([cpu,_233,c1k],sz),tCYC]
,state([cpu, 233,clk]),s4)),given).
element (42,event ({state((cpu,_233,clk],s3),tCYC],
state({cpu,_233,clk],s5)),given).
element (43,event ([state([cpu,_233,clk],s4),tCYC],
state([cpu,_233,clk]),s6)),given).
element (44,event ([state([cpu,_233,clk],s5),tCYC),
state([cpu,_233,clk],s7)),given).
element(45 event ([state([cpu, 233,clk],s6),tCcycC],
state([cpu, 233 ,clk], sOn)),glven)
element (46,event ([state([cpu, _ 233 clk] s7p) ,0.5*tCYC],
state([cpu,_233 clk],s0)),given).
element(47,event([state([cpu,_233,clk],sO),O.S*tCYC],
state([cpu,_233,clk]},sl)),given).
element (48, event ([state([cpu,_233,clk]},sl),0.5*tCYC],
state([cpu,_233,clk],s2)),given).
element (49,event ([state([cpu,_233,clk]},s2),0.5*%tCYC],
state([cpu,_233,clk],s3)),given).
element (50,event ([state((cpu,_233,clk],s3),0.5*tCYC],
state((cpu,_233,clk]),s4)),given).
element (51, event([state([cpu,_233,clk],s4),0.5*tCYC],
state((cpu,_233,clk],s5)),given).
element (52, event ([state([cpu,_233,clk],s5),0.5*tCYC],
state([cpu, 233 ,Clk}, 56)) given).
element (53,event ({state([cpu,_ 233 clk] s6),0.5*%tCYC],
state([cpu,_233 clk}, s7)) given).
element (54,event ([state({cpu,_233,clk],s7),0.5*tCYC],
state((cpu, 233 ,clkl, sOn)) given).
element (55,value([_233,tgate delay] (0,10]) ,propagation delay).
element (56, rule(concept(clk 1, (object (m68000)])),elements([4,2])).
element(S?,constraint([_233,tCYC],[125,250]),
concept(clk,1, [object (m68000)])}).
element (58, value([_233,tCYC),[125,250]),concept(clk,1, [object(m68000)])).
element (59,value([_233,0.5*%tCYC],[62.500000,125]}),
concept (clk,1, [object(m68000)])).
elenent (60, rule(concept (tDICL, 1, [object(mc68000)])),elements({5,31])).
element (61,0bjective(solved,
(determine,value,of, [state([cpu,l,databus([d0,d7})],valid)
,tDICL]}),concept (tDICL,1, {[object (mc68000})])).
element (62,0bjective(solved,
(determine,when, [cpu,1,databus((d0,d7]))],valid]),
concept (tDICL,1, [object (mc68000)])).
element (63,event([state([cpu,1l,databus([d0,d7])],valid),tDICL],
state({cpu,1,clk],s7)),
concept(tDICL 1, [object(mc68000)])).
element(64 constraint({state([cpu, 1 ,databus((d0,d7])],valid),tDICL],
[(10,undefined]), concept(tDICL 1, [object(mc68000)])).
element(65,rule(concept(power,1,[object(power)])),elements([l])).
element (66,event({{],-inf],state([1s138,1,e2],high)),
connected([power,_ 233,vcc],(1s138,1,e2])).
element (67,event({(],~-inf],state([15138,1,el1_],1low)),
connected ({power,_233,gnd], [1s138,1,el_])).
element (68, rule(concept(equlvalent goal,1, [object(dev1ce)])) elements([62])).
element (69,o0bjective(solved,
{determine, when,[ram,2,databus([d0,d7])],valid]),

Appendix C. The Solution Database 94

* %

>

% %

* %

* %

* %

>>
* %k

* %

* %

* %

>>
* %

>>
* %

concept (equivalent_goal, 1, [object (device)])).
element (70,objective(solved,
[determine,when, [ram, 1,databus({d0,d7])],valid]),
concept(equlvalent goal 1, [object (device)])).
element (71, equivalent ({determine, when, [cpu 1,databus([d0,d7])]),valid],
(determine,when, {(ram, 1 databus([do da7])], valld)),
concept(equivalent_goal,1,[object(device)])).
element (72, equivalent([determine,when, (cpu,1,databus([d0,d7])),valid},
{determine,when, [ram,2,databus([{d0,d7])],valid}),
concept (equivalent_goal, 1, [object (device)])).
element (73,rule(concept (tAA,1, {[object(static_ram)])),elements((6,5,70])).
element(74,objective(solved, [determlne ealier,of,
[state((ram,1,addressbus([a0, a14])] valid),
state((ram,1, cs_] asserted) 11),
concept(tAA,l,[object(static_ram)])).
element (75,0bjective(solved, [determine,when, [ram,1,cs_],asserted}),
concept(tAA,l,[object(static_ram)])).
element(76,objective(solved, [determine,when, [ram,1,addressbus((a0,al4])],
valid]),concept (tAA,1, [object(statlc ram)]))
element (77, objectlve(solved [propagate,
event ([state(({ram,1,addressbus((_233,_ 234])],valid),tAA],
state({ram,1 databus([do da7))], valld))]),
concept (tAA,1, [object(static_ram)])).
element (78,event ([state(([ram, 1 addressbus ([_233,_234])],valid),tAA],
state((ram, 1 ,databus([do0, d7])] valid)),
concept (tAA, 1, (object(static_ram)]})).
e1ement(79 constralnt([state((ram 1, addressbus([233,_234))], valid), taa
{undefined, 100]),concept(tAA,1l, [ob]ect(statlc ram)])
element (80, rule(concept (tAA,1l, [object(statlc_ram)])) elements([7,5,69])
element(el,objective(solved,[determine,ealier,of,
[state([ram,2,addressbus([a0,ald])],valid),
state((ram,2,cs_],asserted)]]),
concept (tAA,1, [object(static _ram)])).
element (82,objective(solved, [determine,when, [ram,2,cs_],asserted]),
concept(tAA,l,[object(static_ram)])).
element (83,0bjective(solved, [determine,when, [ram, 2,addressbus([a0,al4])],
valid}),concept(taaA,1l, [object(statlc _ram)})).
element (84, objectlve(solved [propagate,
event ((state((ram,2,addressbus([_233,_234])],valid),tAA}],
state([ram,2,databus([d0,d7])],valid))]),
concept (tAA,1, [object(static_ram)])).
element (85, event ([state((ram,2,addressbus([_233,_234])],valid), tAa],
state({ram,2,databus([do0,d7])]),valid)),
concept (taA, 1, [object(static_ram)])).
element (86, constralnt([state([ram 2,addressbus([_233, 234])] valid), taay,
{undefined, 100)),concept (taA, 1, [object(statlc ram)]))
element (87, rule(concept (tAcCS,1, [ob)ect(statlc_ram)])) elements([{6,5,70])).
element(88,objective(solved,[propagate,event([state((ram,l,cs_],asserted),
tACSs],state([ram,1,databus([d0,d7])],valid)))),
concept (tACS, 1, [ob]ect(statlc ram)})).
element(89 event ([(state([ram,1,cs_]},asserted),tACS],
state([ram, 1 databus([dO, d7])] valid)),
concept (tACS,1, [object(static_ram)})).
element (90,constraint([state([ram,1,cs_],asserted),tACS], (undefined, 100]),
concept (tACS, 1, [ob]ect(statlc ram)])).
element (91, rule(concept (tACS,1, [object(statlc_ram)])) elements([7,5,69])).
element(92,objective(solved,[propagate,event([state([ram,z,cs_],asserted),
tACS),state([ram,2,databus([d40,d7]))],valid))]),
concept (tACS, 1, [object(statlc ram)]))
element (93, event({state((ram,2,cs_],asserted) , tACS],

’

AA]
).
).

>>
* &

* &k

>>
* %

* %k

>>

>>

>>

* &

>>

* %

>>

* %k

Appendix C. The Solution Database 95

state([ram,2,databus([(d0,d7])],valid)),
concept (tACS, 1, [object(static_ram)])).
element (94,constraint([state([ram,2,cs_),asserted),tACS), [undefined,100)}),
concept (tACS, 1, [object(statlc ram)]))
element(95,ru1e(ccncept(t0E,1,[object(static_ram)])),elements([6,5,70])).
element (96,0bjective(solved, [determine,when,[ram,1,0e_],asserted]),
concept (tOE, 1, {object(static_ram)])).
element (97,0bjective(solved, [propagate,event([state({ram,1,0e_],asserted),
tOE),state([ram,1,databus([d0,d7]))],valid))]),
concept (tOE, 1, [object (static_ram)])).
element (98,event ([state([(ram,1,0e_],asserted),tOE],
state([ram,1,databus([d0,d7]))],valid)),
concept (tOE, 1, {[object(static_ram)])).
element (99, constralnt([state([ram 1l,0e_ 1, asserted),tOE], [undefined, 50]),
concept (tOE, 1, [ob)ect(statlc_ram)]))
element(loo,rule(concept(tOE,1,[object(static_ram)])),elements([7,5,69])).
element (101,objective(solved, [determine,when, [ram,2,0e_],asserted]),
concept (tOE, 1, (object(static_ram)])).
element (102,0bjective(solved,
[propagate,event(([state({ram,2,0e_],asserted), tOE],
state((ram,2,databus([d0,d47])],valid))}),
concept (tOE,1, [object(static_ram)])).
element(103,event ((state((ram,2,0e_],asserted),tOE],
state((ram,2 databus((do d7])] valid)),
concept(tOE 1 {object(static_ram)])).
element(104 constralnt([state([ram 2,0e_],asserted),tOE], (undefined,50]),
concept (tOE, 1, [object(statlc_ram)]))
element(105,rule(concept(equivalent goal,l, [object(device)])),
elements([70])).
element (108, equivalent ([determine,when, [ram,1,databus([d0,d7])],valid],
[determine,when, [ram 2 databus([do d71) 1, valld]),
concept(equlvalent goal 1, [object(dev1ce)]))
element (109, rule(concept(equivalent goal l, [ob)ect(dev1ce)])),
elements([69])).
element (111,rule(concept(equivalent_goal,l, ([object(device)])),
elements([101])).
element (112,0bjective(solved, (determine,when, [or,2,0ut],asserted]),
concept (equivalent_goal, 1, [object(device)])).
element (113,equivalent((determine,when, (ram,2,0e_],asserted],
[determine,when, [or,2,0ut]),asserted]),
concept (equivalent_goal,1, [object(device)])).
element (114,equivalent([determine,when, [ram,2,0e_],asserted],
(determine,when, (ram,2,cCs] asserted]),
concept(equlvalent goal 1, [object(dev1ce)]))
element (115, rule(concept (equivalent_ goal,1, [object(deVlce)])),
elements({96])).
element (116,0bjective(solved, ([determine,when, [or,1,0ut]),asserted]),
concept (equivalent_goal, 1, [object (device)])).
element (117,equivalent({determine,when, (ram,1,0e_],asserted],
(determine,when, {or,1,0ut],asserted]),
concept(equivalent_goal, 1, [object(device)])).
element(118,equivalent([determine,when,[ram,l,oe_],asserted],
{determine,when, {ram,1,cs_],asserted]),
concept(equlvalent goal 1, [object(dev1ce)]))
element (119,rule(concept(equivalent_ goal,1, [object(dev1ce)])),
elements({83])).
element(lzo objective (solved, [determine,when, [cpu,1,addressbus((al,als])],
valid]),concept (equivalent_ goal 1, [object(dev1ce)]))
element (121, equlvalent([determlne when, (ram, 2, addressbus([ao ailal)],valid)]
, [determine,when, [Cpu 1, addressbus([al als])],valid}y,

«

Appendix C. The Solution Database _ 96

>>

>>

>>

>>

* %

>>

* Xk

>>

* Kk

>>

* %

>>

>>

concept (equivalent_goal, 1, [object(device)})).
element (122, equivalent([(determine,when, [ram, 2 addressbus([a0,al14])],valid]
: (determine, when, [ram 1, addressbus([ao al4))),validl),
concept(equivalent_goal,1,[object(device)])).
element (123,rule(concept(equivalent_goal,1, [object(device)])),
elements([82])).
element (124,equivalent([(determine,when, (ram,2,cs_],asserted],
{determine,when, [or,2,0ut],asserted}),
concept (equivalent_goal, 1, [object(device)])).
element (125,rule(concept (equivalent_goal, 1, [object(device)])),
elements([76])).
element (126,equivalent([determine,when, [ram,1,addressbus([a0,al14])],valid]
, [determine,when, [cpu,1,addressbus([al,al5])) },valid]),
concept (equivalent_goal, 1, [object(device)])).
element (127,rule(concept (equivalent_goal,1l, [object(device)])),
elements([75])).
element (128,equivalent([{determine,when, (ram,1,cs_]}, ,asserted},
[(determine,when, [or,1,0ut], asserted]),
concept(equlvalent goal 1, [ob]ect(dev1ce)])).
element (129,rule(concept (equivalent_ goal, 2, [object(dev1ce)])),
elements([101])).
element (130,0bjective(solved, (determine,when, [(ram,2,0e_],low]),
concept (equivalent_goal,2, [object(device)])).
element (131, equivalent({determine,when, [ram,2,0e_],asserted],
[determine,when, [ram,2,0e_],low]),
concept (equivalent_goal, 2, [object(device)])).
element (132, rule(concept (equivalent goal,2, [object(device)])),
elements([96]))).
element (133 ,0bjective(solved, [determine,when, [ram, 1 oe_],1low]),
concept (equivalent_goal,2, [object(dev1ce)]))
element (134,equivalent ([determine,when, [ram 1,0e_],asserted],
[determine,when, [ram 1, oe_] low]),
concept(equivalent_goal,2,[object(device)])).
element (135, rule(concept(equivalent goal, 2, {[object(device)})),
elements([(82])).
element (136,objective(solved, (determine,when, (ram,2,cs_J],low]),
concept(equivalent goal, 2, [object(device)})).
element (137, equivalent ([determine,when, (ram,2,cs_],asserted],
(determine,when, [ram,2,cs_],1low]),
concept (equivalent_goal, 2, [object (device)])).
element (138, rule(concept (equivalent_goal,2, [object(device)])),
elements([(75])).
element(139 objective(solved, [determine,when, (ram,1,cs_],low]),
concept (equivalent_goal, 2, [object(dev1ce)]))
element(140,equivalent([determine,when,[ram,l,cs_],asserted],
{determine,when, [ram,1,cs_],1low]}),
concept (equivalent_goal, 2, [object(device)])).
element (141, rule(concept(propagate, 1, (type(achieve) ,object (mc68000)])),
elements([102})).
element(142 event ([state([ram,2,0e_],asserted),tOE],
state((ram,1,databus([do0, d7])] valid)),
connected([ram 1,databus ([d0,d7}1)],
[ram,2,databus([d0,d7])])).
element (143, event([(state([ram,2,0e_],asserted),tOE],
state([cpu,l,databus([d0,d7]})],valid)),
connected((cpu,1l,databus({d0,d47])},
(ram,2,databus([(d40,47])1})).
element (144,rule(concept (propagate, 1, (type(achieve) ,object (mc68000)])),
elements([97]))).
element(145,event((state(([(ram,1,0e_],asserted),tOE],

Appendix C. The Solution Database 97

state([ram,2,databus([d0,d7]))],valid)),
connected([ram, 2,databus((d0,d47]) 1],
{ram,1,databus([d0,d7])])).
element (146, event([state([ram l,0e_],asserted),tOE],
state([cpu,1,databus([{do,d7])],valid)),
connected([cpu 1,databus((d0,d47])],
[ram,l,databus([dO,d?])])).
>> element (147, rule(concept(propagate,l, [type(achieve),object(mc68000)1})),
elements([92])).
element (148,event ([state((ram,2,cs_],asserted), tACs],
state([ram,1,databus({d0,d7]})],valid)),
connected({ram,1,databus([(d40,d47])],
[ram,2 databus([do az71)1)) .
element (149, event([state([ram 2,cs_],asserted),tACs],
state([cpu,1,databus([d0, d7])] valid)),
connected([cpu 1,databus((d0,d7])],
(ram,2 databus([do d7)1)1)) .
>> element (150, rule(concept(propagate 1, {type(achieve) ,object (mc68000)])),
elements([88]))).
element (151, event ((state((ram,1,cs_],asserted),tACS],
state([(ram,2,databus([d0,d7])],valid)),
connected({ram, 2,databus([d40,d7])]),(ram,1,databus([d4d0,d7]))
element (152, event ({state({ram,1,cs] asserted) ,tACSs],
state([cpu,1,databus([d0,d7])],valid)),
connected([cpu 1,databus((d0,d47])],(ram,1,databus([(d0,d7])
>> element(153,rule(concept(propagate,1,[type(achieve),object(mcssooo)])),
elements([84])).
element (154, event ((state([ram,2,addressbus([_233,_234])],valid), taa)],
state({ram,1,databus(({d0,d7])],valid)),
connected({ram,1,databus((d0,d47]))],
[ram,2,databus([{d0,d47])])).
element (155, event([state([ram 2,addressbus({_233,_234]))]),valid), taa},
state({cpu,1,databus([d0, d7])] L valid)),
connected([cpu 1,databus([d0,d47]) 1],
[ram,2,databus([d0,d7])])).
>> element (156, rule(concept (propagate, 1, [type(achieve),object{(mc68000)])),
elements ([{77])).
element (157, event ([{state([ram,1,addressbus([_233,_234])],valid), taa],
state([ram,2,databus([do, d7])] valld)),
connected([ram 2,databus ([{d0,d47]}) 1],
(ram,1 databus([do da731)1)) .
element (158, event([state([ram 1,addressbus([_233,_234])],valid),tAA],
state([cpu,1l,databus{[dO0, d7])] L valid)),
connected([cpu 1,databus ((do, d7])],
[ram,l,databus([dO,d?])])).
>> element (159, rule(concept(tCLAV,1, [object(mc68000)])),elements([4,120))).
** element (160,objective(solved, [propagate,
event ([state({cpu,l,clk},sl),tCLAV],
state({cpu, 1, addressbus([al als})], valld))]),
concept(tCLAV 1, [object(mc68000)]))
element (161, event ([state([cpu,1,clk]},sl),tCLAV],
state([cpu,1,addressbus({al,al5]})],valid)),
concept(tCLAV,l,[object(mc68000)])).
element (162,constraint({state({cpu,1,clk],sl),tCLAV], {undefined, 62]),
concept (tCLAV, 1, [object (mc68000)])) .
element (163 ,value([state([cpu,1,clk},sl),tCLAV], [undefined, 62]),
concept(tCLAV 1, [ob]ect(mc68000)]))
>> element(164 rule(concept(equ1valent_goal 1, [object(device)])),
elements([139])).
** element(165,objective(solved, {determine,when, [or,1,0ut],low]),

>>

* %

>>

>>

>>

>>

>>

>>

>>

>>

>>

>>

* %

>>
* %

Appendix C. The Solution Database

concept (equivalent_goal, 1, [object(device)])).
element (166,equivalent({determine,when, (ram,1,cs_},low],
(determine,when, {or,1,0ut],low]),
concept (equivalent_goal, 1, [object(device)])).
element(167 equivalent ([determine,when, [ram, 1 cs_],1low],
[determine,when, [ram,1,0e] low]),
concept(equlvalent goal 1, [object(dev1ce)]))
element (168,rule(concept(equivalent_goal,1, [object(dev1ce)])),
elements({136])).
element (169,0bjective(solved, [determine,when, [or,2,0ut],low]),
concept (equivalent_goal,1, [object(device)])).
element (170,equivalent ([determine,when, [ram,2,cs_1],low},
{determine,when, [or,2,0ut],low]),
concept (equivalent_goal, 1, [object(device)])).
element (171, equivalent ([determine,when, [ran,2,cs_},1low],
{determine,when, [ram 2,0e] lowl),
concept(equ1va1ent goal 1, [object(dev1ce)]))
element (172, rule(concept (equivalent_ goal,1, [ob]ect(dev1ce)])),
elements([(133])).
element (173,equivalent ([determine, when, [ram 1,0e_],low],
{determine,when, {or,1,0ut], low]),
concept(equlvalent goal 1, [object(dev1ce)]))
element (174,rule(concept (equivalent_goal,1l, [object(dev1ce)])),
elements([130])).
element(175 equivalent ({determine,when, (ram,2,0e_],low],
(determine,when, [or,2,0ut],low]),
concept(equivalent_goal,1,[object(device)])).
element (176, rule(concept (equivalent_goal, 1, [object(device)])),
elements({120})).
element (179, rule(concept (equivalent_goal, 1, [object(device)])),
elements([{116])).
element (180, rule(concept (equivalent_goal,l, [object(device)])),
elements([112])).
element (181, rule(concept (equivalent_goal, 3, [object(device)])),
elements([139])).
element (182,equivalent((determine,when, (ram,1,cs_],low],
[{determine,when, [ram,1,cs_],asserted]),
concept (equivalent_goal, 3, [object(device)])).
element (183, rule(concept(equivalent_goal,3, (object(device)])),
elements([136])).
element(184 equivalent ([determine,when, (ram,2,cs_],1low],
[determine,when, [ram, 2,cs] asserted]),
concept(equlvalent goal 3, [object(dev1ce)]))
element (185, rule(concept(equivalent_ goal, 3, [ob)ect(dev1ce)])),
elements({133]1)).
element (186, equivalent([determine,when, [ram,1,0e_1],low},
{determine,when, [ram l,0e] asserted}),
concept(equlvalent goal 3, [object(dev1ce)]))
element(187 rule(concept(equivalent goal,3, [object(dev1ce)))),
elements([130])).
eIement(lSB,equlvalent([determlne when, [ram,2,0e_],low],
[determine,when, [ram, 2,0e] asserted]),
concept(equ1valent goal 3, [ob)ect(dev1ce)]))

element (189,rule(concept (determine_ value, 3, [])) elements([158,53,63, 61]))

element (190,0bjective(solved,
{£ind,common,reference,of ,state({cpu,l,clk]),s7),
state([cpu,1l,databus([d0,d7])]),valid)]),
concept(determlne value,3,[1)).

element (191, rule(concept (or_gate,5, [ob]ect(loqlc gate)])),elements([169])).

element (192,0bjective(solved, [determlne when, [or,2,1in2]), low]),

98

Appendix C. The Solution Database 99

* %

>>
* %

* %

>>

>

>>

>>

* %

>>

* %

* %

>>

LE g

>>

>>

concept (or_gate,5, [object(logic_ gate)]))
element(193 objective(solved, [determlne when, {or,2,in1],low]),
concept (or_gate,5, [ob)ect(loglc gate)]))
element(194,rule(concept(or_gate 5 [object(loglc_gate)])) elements([165])).
element (195,0bjective (solved, [determlne when, [or,1,1in2]),1low]}),
concept (or_gate, 5, [object(loglc gate)]))
element (196, objective(solved, [determlne when, (or,1,in1],low]),
concept (or_gate,S5, [object(loglc_gate)]))
element(197,rule(concept(equivalent_goal,1,[object(device)])),
elements([169])).
element (198, rule(concept(equivalent_goal,1l, {object(device)])),
elements([165])).
element (199, rule(concept (propagate,l, (type(achieve) ,object (mc68000)])),
elements([160]})).
element (200,event([state({cpu,1,clk],sl),tCLAV],
state([{ram, 2,addressbus([a0,al4]))],valid)),
connected([ram,2,addressbus({a0,al4]})],
{cpu,1,addressbus({al,als5])])).
element (201,event([state([cpu,1l,clk]),sl), tCLAV],
state([ram,1l,addressbus((a0,a14])],valid)),
connected([ram,1,addressbus([a0,al4])], [(cpu,l,addressbus (|
element (202, rule(concept(equivalent_goal, 1, [object(device)])),
elements([{196])).
element (203,0objective(solved, [determine,when, [cpu,1,uds_],low]),
concept (equivalent_goal,l, [object (device)])).
element (204, equivalent((determine,when, (or,1,inl], low],
{determine,when, [cpu,1l,uds_], low]),
concept (equivalent_goal, 1, [object(device)])).
element (205, rule(concept(equivalent_goal,1, {object(device)])),
elements({{195])).
element (206,o0bjective(solved, (determine,when, [1s138,1,y1_],1low]),
concept (equivalent_goal, 1, [object(device)])).
element (207,0bjective(solved, [determine,when, (and,1,in2]),1low]),
concept (equivalent_goal, 1, [object(device)])).
element (208, equivalent ([determine,when, {or,1,1in2), low],
(determine,when, [and,1,in2},low]),
concept(equ1va1ent goal 1, (object(device)])).
element (209, equivalent ([determine,when, [or,1,in2},low],
{determine,when, [lsl38 1,y1],1low]),
concept(equlvalent goal, i, [object(dev1ce)]))
element(ZlO equivalent ([{determine, when, {or,1,in2], low],
[determine,when, [or, 2, 1n2] low]),
concept(equlvalent_goal 1, (object(device)])).
element(211,rule(concept(equivalent_goal,1,[object(device)])),
elements([193])).
element (212,objective(solved, (determine,when, {cpu,1,1ds_],low]),
concept (equivalent_goal, 1, [object(device)])).
element (213, equivalent ([determine,when, [or,2,in1],low],
[determine,when, [cpu,1,1ds_],low]),
concept(equlvalent goal 1, [object(device)])).
element(214,rule(concept(equivalent__ goal,1, [ob]ect(dev1ce)])),
elements((192])).
element (215,equivalent({determine,when, (or,2,1in2},low],
[determine,when, (and,1,in2], low]),
concept(equlvalent goal 1, [object(device)])).
element (216, equivalent([{determine,when, {or,2,in2],low],
(determine,when, [15138 1, yl]l,1low]},
concept(equ1valent goal,l, [object(dev1ce)]))
element(217,ru1e(concept(equ1valent_goa1 1, [ob)ect(dev1ce)])),
elements([212])).

Appendix C. The Solution Database 100

>>

>>

>>

>>

* %

>>

* %

>>

* %

>>

* %

>>

>>
% %

* &

% %

>>

* %

>>

L1

element (218, rule(concept(equivalent_goal, 1, (object(device)])),
elements([{207])).
element (219, equivalent([determine,when, [and,1,in2],low]},
(determine,when, [15138 1,y1 1, low]),
concept(equlvalent goal,l, (object(dev1ce)]))
element (220,rule(concept (equivalent goal 1, [object(dev1ce)])),
elements([206])).
element (221,rule(concept (equivalent_goal, 1, [object(device)])),
elements([203])).
element (222, rule(concept(equivalent_goal, 3, [object(device)])),
elements([212])).
element (223,0bjective(solved, [determine,when, [cpu,1,1lds_],asserted]),
concept (equivalent_goal, 3, [object(device)])).
element(224,equivalent([determine,when,[cpu,l,lds_],low],
{determine,when, [cpu,1,1ds_],asserted]),
: concept(equ1va1ent goal 3, [object(dev1ce)]))
element (225,rule(concept (equivalent goal 3, [ob]ect(dev1ce)])),
elements([206])).
element (226,0bjective(solved, (determine,when, (1s138,1,y1_],asserted]),
concept (equivalent_goal, 3, (object(device)))).
e1ement(227,equivalent([determine,when,[15138,1,y1_],1ow],
[determine,when, [1s138,1,yl_],asserted]),
concept(equlvalent goal, 3, [ob]ect(dev1ce)]))
element (228, rule(concept (equivalent_ goal, 3, [ob)ect(dev1ce)])),
elements([203])).
element (229,0bjective(solved, ([determine,when, [cpu,1,uds_],asserted]),
concept (equivalent_goal, 3, [object(device)])).
element(ZBO,equivalent([determine,when,[cpu,l,uds_],low],
{(determine,when, {cpu,1,uds_],asserted]),
concept(equlvalent goal 3, [object (device)])
element (231, rule(concept(equivalent_ goal, 4, [object(mc68000)]))
elements([212])).
element (232,0bjective(solved, [determine,when, [cpu,1,ds_],low}),
concept (equivalent_goal, 4, [ob)ect(mc68000)]))
element (233, equivalent ({determine,when, [cpu 1,1ds_], low]},
[determine,when, [cpu,l,ds] low]),
concept(equlvalent goal 4, [object (mc68000)]1)).
element (234, rule(concept(equivalent_ goal, s, [object(mc68000)])),
elements({203])).
element(235,equiva1ent([determine,when,[cpu,l,uds_],_233],
(determine,when, [cpu,1,ds_],low]),
concept(equlvalent goal 5, [object (mc68000) 1)) .
element(236 rule(concept(1s138,2, [object(dev1ce)])) elements({226])).
element (237, objective(solved, [determlne when, [1s138,1,e2],high]),
concept(ls138,2,[object(device)])).
element (238,0objective(solved, [determine,when, [1s138,1,el_],low]}),
concept (1s138,2, [object (device)]})).
element (239,objective(solved, (determine,when, [1s138,1,e0_],1low]}),
concept(1s138,2, [object(device)])).
£lement (240, rule(concept (equivalent_goal,1l, [object(device)])),
elements([229}])).
element (241,o0bjective(solved, [determine,when, (or,1,inl],asserted]),
concept (equivalent goal,1l, [object(deVlce)]))
element(242 equivalent ((determine,when, [cpu l,uds_],asserted],
{determine,when, {or,1,inl], asserted]),
concept(equivalent_goal,1,[object(device)])).
element (243, rule(concept (equivalent_goal,1, {[object (device)])),
elements([226])).
element (244,0bjective(solved, [determine,when, {or,2,1in2],asserted}),
concept (equivalent_goal, 1, [object (device)])).

) -

Appendix C. The Solution Database

** element (245,objective(solved, [determine,when, [or,1,in2],asserted]),

concept (equivalent_goal,1l, [object(dev1ce)}))

** element(246,0objective(solved, [determlne when {and,1,in2],asserted}]),

>>

* %

>>

>>

>>

>>

* &

>>

>>

>>

* &

* %

element (247,

element (248,

element (249,

element (250,

element (251,

element (252,

element (253,

element (254,

element (255

element (256,

element (257,

element (258,

element (259
element (260,

element (261,

element(262

element (263,

element (264

element (265,

-

element (266,
element (267,

element (268

concept (equivalent_goal,1l, [ob)ect(dev1ce)]))
equivalent([determine,when,[15138,1,y1_],asserted],
(determine,when, {and,1,in2], asserted]),
concept(equivalent goal 1, [object(dev1ce)])).
equivalent ([(determine,when, [15138 1,yl_]},asserted],
(determine,when, [or,1,in2],asserted}),
concept(equivalent_goal,1,[object(device)])).
equivalent ({determine,when, (1s138,1,yl1],asserted],
(determine,when, [or,2,in2],asserted)),
concept (equivalent_goal,1l, {object(device)])).
rule(concept(equivalent_goal,1l, (object(device)])),
elements([{223))).
objective(solved, [determine,when, [or,2,inl],asserted]),
concept (equivalent_goal,l, [object(dev1ce)]))
equivalent ([(determine,when, [cpu 1,1ds_},asserted],
{determine,when, [or,2,inl1],asserted]}),
concept(equivalent_goal,1,[object(device)])).
rule(concept (equivalent_goal,2, [object(device)])),
elements([{229}])).
equivalent ((determine,when, (cpu,1,uds_],asserted],
{determine,when, (cpu,1l,uds_J,low]),
concept (equivalent_goal, 2, [object(device)])).

,rule(concept(equivalent goal,2, [object(device)])),

elements([226])).
equivalent([determine,when,[1s138,1,y1],asserted],
(determine,when,[1s138,1,y1 },low]),
concept (equivalent_goal, 2, [object(device)])).
rule(concept (equivalent_goal, 2, [object(device)])),
elements([(223))).
equivalent ((determine,when, [cpu,l,1lds_],asserted],
(determine,when, (cpu,1,1ds_],low]}),
concept (equivalent_goal,2, [object(device)])).

,rule(concept (equivalent_goal,3, [object(device)])),

elements([232])).
objective(solved, (determine,when, {cpu,1,ds],asserted}),
concept (equivalent_goal, 3, [ob)ect(dev1ce)]))
equivalent ([determine,when, [cpu 1,ds_],1low],
[determine,when, [cpu 1,ds] asserted]),
concept(equlvalent goal 3, [object(deVlce)])
rule(concept(equivalent_ goal, 4, [object(mcssooo)]))
elements({223})).
equivalent ([determine,when, (cpu,1,1ds_], asserted],
[determine,when, [cpu 1 ds_] asserted]),
concept(equivalent_goal,4,[object(mc68000)])).

).

,rule(concept (equivalent_goal,5, (object(mc68000)1])),

elements({229})).
equivalent ([determine,when, [cpu,1,uds _},_233)],
[determine,when, [cpu 1,ds] asserted}]),
concept(equlvalent goal 5, [ob)ect(mc68000)]))

rule(concept (tCHSL, 2, [object(mc68000)])) elements((5,4,260])).

objective(solved, [propagate,
event ([state([cpu,l,clk],s2),tCHSL],
state([cpu,l,uds_],asserted))]),
concept (tCHSL, 2, [object (mc68000)])) .

;objective(solved, [propagate,

event ([(state(([cpu,l,clk],s2),tCHSL],
state([cpu,1,1ds_],asserted))])),

101

>>
* &

* %

>>

>>

>>

>>

>>

>>

* %

>>

Appendix C. The Solution Database 102
concept (tCHSL, 2, {[object (mc68000) 1)) .
element (269, event ([(state([cpuy,1,clk]},s2),tCHSL],
state([cpu,1,1ds_],asserted)),
concept (tCHSL, 2, [object (mc68000)])) .
element (270, event ([state([cpu,l,clk]),s2),tCHSL],
state([cpu,1l,uds_],asserted)),
concept (tCHSL, 2, [object (mc68000) 1)) .
element (271,constraint([state([cpu,l,clk]},s2),tCHSL]},(3,60]),
concept (tCHSL, 2, [object (mc68000) 1)) .
element (272,value([state([cpu,1l,clk]),s2),tCHSL), [3,60]}),
concept (tCHSL, 2, [object (mc68000)])) .
element (273, rule (concept (tAVSL, 2, [object (mc68000)])) ,elements([4,260])).
element (274,0bjective(solved, [propagate, _
event([state([cpu,1,addressbus([_233,_234])],valid), tAVSL]
,state([cpu,1,uds_],asserted))]),
concept (tAVSL, 2, [object (mc68000) 1)) .
element (275,o0bjective(solved, {propagate,)
event ((state(({cpu,1l,addressbus((_233,_234])],valid), tAvVSL]
,state({cpu,1l,1lds_],asserted))]),
concept (tAVSL, 2, [object (mc68000)})).
element (277,event ([state([cpu,1l,addressbus([_233,_234))],valid), tAvsL],
state([cpu,1,1ds_],asserted)),
concept(tAVSL 2, [object (mc68000)]1)).
element (278, event ([state([cpu,l, addressbus([233, _234))]),valid), tAvsL],
state({cpu,l,uds_], asserted)),
concept(tAVSL,Z,[object(mc68000)])). _
element (279,constraint({state({cpu,1,addressbus({_233,_234})],valid),
tAVSL],[30,undefined)),
concept (tAVSL, 2, [object (mc68000)])).
element (280, value([state([cpu 1, addressbus([233, _234))],valid), tAvsL],
{30,undefined)]),
concept (tAVSL, 2, [object (mc68000) 1)) .
element (281, rule(concept (equivalent_goal,1l, (object(device)])),
elements ([251])).
element (283, rule(concept (equivalent_goal,1, [object(dev1ce)])),
elements([246])).
element(284,equivalent([determine,when, [and,1,in2],asserted]},
[determine,when, [or,1,1in2),asserted}),
concept (equivalent_goal,l, [object(device)])).
element (285, equivalent([determnine,when, (and,1,in2],asserted],
{determine,when, [or,2,in2],asserted]),
concept(equlvalent goal 1, {object(device)])).
element(286 rule(concept(equivalent_ goal 1, [object(dev1ce)])),
elements([245])).
element (287, equivalent([determine,when, [or,1,in2],asserted],
(determine,when, [or,2,in2),asserted)),
concept(equlvalent goal 1, (object (device)])).
element (288, rule(concept (equivalent_ goal,1, [ob]ect(dev1ce)])),
elements([244]))).
element (289, rule(concept(equivalent_goal, 1, {object(device)])),
« ~ elements([241]))).
element (291, rule(concept (equivalent_goal, 1, (object(device)])),
elements((239))).
element (292,objective(solved, [determine,when, [cpu,l,as_],1low]),
concept (equivalent goal, 1, [object(device)])).
element (293,equivalent ([determine,when, [1s138,1,e0_],1low],
[determine,when, (cpu,l,as_],low]),
concept(equlvalent goal 1, [object(device)])).
element (294,rule(concept (equivalent_ goal, 1, [ob)ect(dev1ce)])),
elements([238])).

Appendix C. The Solution Database 103

* %

>>

* %

>>

>>

**

>>

* %

>>

* %

>>
>>
>>

* %

>>

>>

>>

>>

element (295,objective(solved, [determine,when, [power,1,gnd], low]),
concept (equivalent_goal, 1, (object(device)])).
element(296,equivalent([determine,when, [1s138,1,el_],low],
(determine,when, [power,1,gnd]},low]),
concept(equlvalent goal,l, [object(dev1ce)]))
element (297, rule(concept (equivalent_ goal,1, [object(dev1ce)])),
elements({237})).
element (298,objective(solved, [determine,when, [power,1,vcc], high]),
concept (equivalent goal,1l, [object(dev1ce)]))
element (299, equivalent ([{determine,when, [1s138,1,e2],high],
{determine,when, [power 1 vcc] highl),
concept(equlvalent goal, 1 {object (device)])).
element (300, rule(concept (equivalent goal, 2, [ob)ect(dev1ce)])),
elements([{260])).
element (302, equivalent((determine,when, (cpu,1,ds_],asserted],
(determine,when, [cpu,1,ds_], low]),
concept(equlvalent goal 2, [object(dev1ce)]))
element(303,rule(concept(equlvalent_goal 3, [ob)ect(dev1ce)])),
elements([239])).
element (304,0bjective(solved, (determine,when, (1s138,1,e0_],asserted]),
concept (equivalent _goal, 3, [object(device)])).
element (305, equivalent((determine,when, [1s138,1,e0_],low],
[(determine,when, [1s138,1,e0_],asserted])),
concept (equivalent_goal,3, [object (device)])).
element (306, rule(concept (equivalent_goal, 3, [object (device)])),
elements([238])).
element (307,o0bjective(solved, {determine,when, [15138,1,el_],asserted]),
concept (equivalent _goal, 3, [object(device)])).
element(308,equiva1ent([determine,when,[lslBB,l,el_],low],
[determine,when,[1s138,1,el_],asserted]),
concept(equ1va1ent goal, 3 (object (device)])).
element (309, rule(concept(equlvalent goal, 3, [object(dev1ce)])),
elements(([237])).
element (310,0bjective(solved, [determine,when, [1s138,1,e2],asserted]),
concept (equivalent_goal, 3, [object(device)])).
element (311,equivalent([determine,when,[1s138,1,e2]),high],
{determine,when, [1s138,1,e2],asserted]),
concept (equivalent_goal, 3, [object(device)])).

element (312, rule(concept(solved_goal,1,[type(achieve)])),elements([67,238])).
element (313, rule(concept(solved goal,l, [type(achieve)]})),elements([66,237})).

element (314, rule(concept(equlvalent goal 1, [object(dev1ce)])),
elements ([304])).
element (315,objective(solved, ([determine,when, (cpu,1,as_],asserted]),
concept (equivalent_goal,1, [object(dev1ce)]))
element (316,equivalent ([determine,when, [1s138,1,e0 _),asserted],
(determine,when, (cpu,1, as_] asserted]),
concept(equivalent_goal,1,[object(device)])).
element(317,rule(concept (equivalent _goal,l, [object(device)])),
elements([292])).
element (318, rule(concept (equivalent_goal, 2, [object(device)])),
elements({304])).
e1ement(319,equivalent([determine,when,[15138,1,e0_],asserted],
(determine,when, (1s138,1,e0_]},1low}),
concept(equlvalent _goal, 2 [object(dev1ce)]))
element (320,rule(concept(equivalent_goal, 3, (ob]ect(deVlce)])),
elements([292])).
element(321,equiva1ent([determine,when,[cpu,l,as_],low],
[(determine,when, {cpu,1,as_],asserted]),
concept(equ1va1ent goal 3, [object (device)])).
element (322, rule(concept (propagate, 1, [type(achleve) object (mc68000)1})),

Appendix C. The Solution Database ' 104

elements([275])).
element (323,event([state([cpu,l,addressbus([_233, 234])],valid),tAvsL],
state([or,2,1inl],asserted)),
connected([or,2,inl1],{cpu,1,1ds_1})).
element(324 event ((state(([cpu,1 addressbus([233 234])],valid),tAVSL],
state(([or, 2, 1n1] low)),
connected([or 2,in1}),(cpu,1,1ds_1})).
>> element(325,rule(concept(propagate,1,[type(achieve),object(mc68000)])),
elements ([274])).
element (326,event ([state(({cpu,1,addressbus((_233, 234])],valid),tAvsL],
state([or,1,inl],asserted)),
connected((or,1,inl1], {cpu,1l,uds_])).
element (327,event([state([cpu,l, addressbus([233, _234]})},valid),tavsL],
state((or,1, 1n1] low)),
connected([or,l,inl],[cpu,l,uds_])).
>> element(328,rule(concept(propagate,l, (type(achieve),object (mc68000)])),
elements([268])).
element(329,event([state([cpu,l,clk],sZ),tCHSL],
state({or,2,1inl}],asserted)),
connected([or 2,in1],(cpu,1,1ds_1])).
element (330,event ([state((cpu,1, clk] s2), tCHSL] state([or,2,in1],low)),
connected([or,2,in1}, [cpu 1, lds_]))
>> element(331,rule(concept(propagate,1,[type(achieve),object(mcGSOOO)])),
elements([267])).
element (332,event([state([(cpu,1l,clk],s2),tCHSL),
state({or,1,inl),asserted)),
connected((or,1,in1]}, (cpu,1,uds_])).
element (333,event([state({cpu,1l,clk]},s2),tCHSL],state({or,1,inl],low)),
connected([or,1,inl], (cpu,1,uds_])).
>> element (334,rule(concept (tCHSL,1, [object (mc68000)])),elements([4,315])).
** element (335,0bjective(solved, [propagate, -
event ([state((cpu,1,clk],s2),tCHSL],
state((cpu,1l,as_],asserted))]),
concept (tCHSL, 1, [object (mc68000)])).
element (336, event([state([cpu,1,clk],s2),tCHSL],
state({cpu,l,as_],asserted)),
concept (tCHSL, 1, [object (mc68000) 1)) .
>> element (337,rule(concept(tAVSL,1, [object(mc68000)])),elements([4,315])).
** element(338,objective(solved,
(propagate,
event ([state((cpu,1,addressbus(([_233,_234))],valid), tAvVsL]
state([cpu,1l,as_],asserted))]),
concept (tAVSL, 1, [object (mc68000)])). :
element (340,event ([state(([cpu,1,addressbus((_233,_234])],valid), tAvsL],
state([cpu,l,as_],asserted)),
concept (tAVSL, 1, [object (mc68000) 1)) .
>> element(341,rule(concept(equivalent_goal, 1, {object (device)])),
elements([315])).
>> element(343,rule(concept(equivalent_goal, 2, [object(device)])),
- elements([315])).
element(345,equivalent([determine,when,[cpu,l,as_],asserted],
(determine,when, [cpu,1,as_],1low]),
concept(equ1va1ent goal 2, [obgect(devxce)]))
>> element(346,rule(concept (propagate,1, [type(achleve) object (mc68000)])),
elements(({338})).
element(347,event([state([cpu,1,addressbus([_233,_234])]),valid),tAvsL],
state([1s138,1,e0_],asserted)),
connected([lsl38 1,e0 _l.[cpu,l,as_1])).
element (348, event([state([cpu,l, addressbus([_233 234])] valid),tAvsL],
state([lsl38,1,e0_],low)),

-

Appendix C. The Solution Database 105

>>

>>

>>

>>

connected((1s138,1,e0_],(cpu,l,as_1])).
element (349, rule(concept (propagate, 1, [type(achieve),object (mc68000)]}),
elements([(335}])).
element(350,event([state([cpu,1,clk},s2),tCHSL],
state([{1s138,1,e0_],asserted)),
' connected(([1s138,1,e0_),[cpu,1l,as_])).
element (351,event([state([cpu,1l,clk],s2),tCHSL],state({1s138,1,e0_],1ow)),
connected([(1s138,1,e0_),[cpu,l,as_])).
element (352, rule(concept(1s138,1, [object(device)])),elements([226]})).
element (353,event ([state([1s138,1,e0_],low),tgate_delay],
state([1s138,1,y1],asserted)),
concept(1s138,1, ([object(device)])).
element (354,event((state([1s138,1,e0_],1low), tgate_delay],
state((and,1,in2],asserted)),
connected({and,1,in2),({1s138,1,y1_1)).
element (355,event([state([1s138,1,e0_],low),tgate_delay],
state({and,1,in2),1low)),
connected([and,1,in2],{1s138,1,y1_1])).
element (356 ,event([state([1s138,1,e0_],low),tgate_delay],
state([or,2,1in2],asserted)),
connected((or,2,in2],(1s138,1,y1 _1)).
element (357,event ([state([1s138,1,e0_],low),tgate_delay],
state([or,2,1in2),1low)),
connected((or,2,in2],({1s138,1,y1_1)).
element (358, event((state([1s138,1,e0_],low),tgate_delay],
state({or,1,in2],asserted)),
connected((or,1,in2], [1s138,1,y1_1)).
element (359, event ([(state([1s138,1,e0_],low),tgate_delay],
state([or,1,in2),1low)),
connected([or,1,in2],{1s138,1,y1 _1])).
element (360, rule(concept(or_gate, 4, [object(logic_gate)])),elements([169])).
element({361,event({state((or,1,in2},1low), tgate_delay],
state([or,2,0ut},low)),
concept (or_gate, 4, [object(logic_gate)])).
element (362,event([state({or,1,1in2),1low),tgate_delay],
state([ram,2,0e_],low)),
connected((ram,2,0e_],[or,2,0ut])).
element (363,event([state([or,1,1in2],1low) ,tgate_delay],
state([ram,2,0e_],asserted)),
connected(([ram,2,0e_],(or,2,0ut]))).
element (364,event([state([or,1,in2),low), tgate_delay],
state([ram,2,cs_],1low)),
connected((ram,2,cs_],(or,2,0ut])).
element (365,event ([state([or,1,1in2],1low),tgate_delay],
state((ram,2,cs_],asserted)),
connected((ram,2,cs],{or,2,0ut}])).
element(366,ru1e(concept(or_gate,4,[obfect(logic_gate)])),elements([lSS])).
element (367,event ({state([or,1,in2),1low) ,tgate_delay],
state([or,1,o0ut}),low)),
concept (or_gate, 4, [object(logic_gate)])).
element (368, event([state([or,1,in2),1low) ,tgate_delay],
state((ram,1,0e_],low)},
connected((ram,1,0e_],[or,1,0ut})).
element (369,event([state([or,1,in2),low),tgate_delay],
state([ram,1,0e_],asserted)),
connected([ram,1,0e_},(or,1,0ut])).
element (370,event({state([or,1,in2),1low),tgate_delay],
state([ram,1,cs_],1low)),
connected((ram,1,cs_],{or,1,0ut])).
element (371,event({state((or,1,in2],1low),tgate_delay],

Appendix C. The Solution Database 106

state([ram,1,cs_],asserted)),
connected((ram,1,cs_],[or,1,0ut])).
>> element(372,rule(concept(resolve,1,[])),elements([94,365,200,8}])).
element(373,equivalent([state([ram,2,addressbus([a0,al4])]),valid),
state([ram,2,cs_),asserted)],
state((ram,2,cs_],asserted)),
concept (resolve,1,[])). _
element (374,value([state((ram,2,cs_),asserted),tACS], (undefined, 100}),
concept (resolve,1,[])).
>> element(375,rule(concept(resolve,1,[])),elements([90,371,201,7?])).
element(376,equivalent([state([ram,1,addressbus((a0,al4]})],valid),
state((ram,1,cs_],asserted)],
state({ram,1,cs_]j,asserted)),
concept (resolve,1,(})).)
element (377,value([state([ram,1,cs_],asserted),tACS], [undefined, 100]),
concept (resolve,1,(])).
>> element (378, rule(concept (common_ref,3,[])),elements([190])).
element (379, common_ref ([state((cpu,1l,clk},s?),)
- state([cpu,1,databus([d0,d7])]),valid)],
state((cpu,1,clk],s2)),concept{common _ref,3,(]))).
>> element(380,rule(concept(determine_value,2,[])),elemepts([379,63,61]))
element(381,va1ue([state((cpu,1,databus([d0,d7])],valld)ztDICL],
¥ {132.500000,undefined)),concept (determine_value,2,(])).

Bibliography

[1) Allen, James F., “Towards a General Theory of Action and Time”, Artificial Intel-
ligence, vol. 23(2), 1984, pp. 123 - 54.

[2] Anderson, J. R., The Architecture of Cognition, Cambridge, Mass.:Harvard Univer-
sity Press, 1983.

[3] Anderson, John R., “The Expert Module”, in Foundations of Intelligent Tutoring
Systems, Martha C. Polson, J. Jeffrey Richardson (eds), 1989, pp. 21 - 53.

[4] Anderson, J. R., C. F. Boyle, B. J. Reiser, “Intelligent Tutoring Systems”, Science,
vol. 228, Apr. 1985, pp. 456 — 62.

[5] Beetz, Michael, “Specifying Meta-Level Architectures for Rule-Based Systems”,
GWAI-87, 11th German Workshop on Artificial Intelligence, K. Morik (ed.), 1987,
pp.149 — 59.

| [6] Boulet, M.-M., et al, “A Design Task Advisor”, in Proceedings of the 4th Interna-
tional Conference on AI and Education, D. Bierman, J. Brahan, J. Sandberg (eds),
May 1989, pp. 25 - 31.

[7] Brecht, Barbara, Marlene Jones, “Student Models: The Genetic Graph Approach”,
Research Report 88-2, ARIES lab, U. of Saskatchewan, 1988.

-

[8] Brown, John Seely, Kurt VanLehn, “Repair Theory: A Generative Theory of Bugs
in Procedural Skills”, Cognitive Science, vol. 4(4), Oct-Dec 1980, pp. 379 - 426.

107

Bibliography 108

[9] Brown, John Seely, Richard R. Burton, Johan de Kleer, “Pedagogical, Natural Lan-
guage and Knowledge Engineering Techniquesin SOPHIE I, IT and III”, in Intelligent
Tutoring Systems, D. Sleeman & J S. Brown (eds), 1982, pp. 227 — 82.

[10] Burton, Richard R., “Diagnosing Bugs in a Simple Procedural Skill” in Intelligent
Tutoring Systems, D. Sleeman & J S. Brown (eds), 1982, pp.157 - 83.

[11] Burton, Richard R., John Seely Brown, “An Investigation of Computer Coaching
for Informal Learning Activities”, in Intelligent Tutoring Systems, D. Sleeman & J

S. Brown (eds), 1982, pp.79 - 98.

[12] Charniak, Eugene, C. K. Riesbeck, D. V. McDermott, J. R. Meehan, Artificial In-

telligence Programming, (2nd ed.), New Jersey:Lawrence Erlbaum Associates, 1987.

[13] Clancey, William J., “Tutoring Rules For Guiding a Case Method Dialogue”, in
Intelligent Tutoring Systems, D. Sleeman & J S. Brown (eds), 1982, pp.201 - 25.

[14] Clancey, William J., “The Epistemology of a Rule-Based Expert System: A Frame-
work for Explanation”, Artificial Intelligence, vol. 23(2), 1984, pp. 123 - 54.

[15] Clements, Alan, Microprocessor Systems Design, Boston:PWS Publishers, 1987,

[16] Clocksin, William F., Christopher S. Mellish, Programming in Prolog, 3rd ed.,
Berline:Springer-Verlag, 1987.

[17] De Kleer, Johan, “How Circuits Work”, Artiﬁcial Intelligence, vol 24, 1984, pp. 205
- 80.

-

(18] De Kleer, Johan, “Choices Without Backtracking”, Proceedings of the National Con-
ference on Artifical Intelligence, 1984, pp. 79 - 85

Bibliography 109

[19] De Kleer, Johan, John Seely Brown, “A Qualitative Physics Based on Confluences”,
Artificial Intelligence, vol 24, 1984, pp. 7 — 83.

[20] Engelmore, Robert, Tony Morgan (eds), Blackboard Systems, Workingham,
England:Addison-Wesley Publishing Co., 1988.

[21] Fogel, Earl, “Teaching Prolog Using ICAI and a Graphical Trace”, M. Sc Thesis,
University of British Columbia, 1988.

[22] Forbus, Kenneth D., “Qualitative Process Theory”, Artificial Intelligence, vol 24(1),
1984, pp. 85 — 168.

[23] Frederikseﬁ, John R., et al.; “Intelligent Tutoring Systems for Electronic Trou-

bleshooting”, in Intelligent Tutoring Systems: Lessons Learned, 1988, pp.351 — 68.

[24] Genesereth, Michael R., “The Role of Plans in Intelligent Teaching Systems”, in
Intelligent Tutoring Systems, D. Sleeman, & J. S. Brown (eds), 1982, pp. 79 - 98.

[25] Goldstein, Ira P., “The Genetic Graph: a Representation for the Evolution of Proce-

dural Knowledge”, in Intelligent Tutoring Systems, D. Sleeman & J. S. Brown (eds),
1982, pp. 51 - 77.

[26] Goodman,

Danny, Danny Goodman’s HyperCard Developer’s Guide, Toronto:Bantam Books,
1988.

[27] Halasz, Frank G., “Reflictions on Notecards: Seven Issues for the Next Generation
of Hypermedia System”, Communications of the ACM, vol. 31(7), July 1988, pp.
836 — 52.

Bibliography ' 110

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

37]

Hayes-Roth, Barbara, Frederick Hayes-Roth, “A Cognitive Model of Planning”, Cog-
nitive Science, vol 3,1979, pp. 275 - 310.

Hayes-Roth, Barbara, “A Blackboard Architecture for Control”, Artificial Intelli-
gences, vol 26, 1985, pp. 251 — 321.

Kimball, Ralph, “A Self-Improving Tutor for Symbolic Integration”, in Intelligent
Tutoring Systems, D. Sleeman & J. S. Brown (eds), 1982, pp. 283 - 307.

Kuipers, B. ,“Qualitative Simulation”, Artificial Intelligence, vol 29, 1986, pp. 289
- 338.

Kuipers, Benjamin, “Qualitative Simulation As Causal Explanation”, IEEE Trans-
actions on Systems, Man, and Cybernetics, vol SMC-17(3), May/June 1987, pp. 432
- 444,

Mandl, Heinz, Alan Lesgold (eds), Learning Issues for Intelligent Tutoring Systems,
New York:Springer-Verlag, 1988.

Matz, M., “Towards a Process Model for High School Algebra Errors”, in Intelligent
Tutoring Systems, D. Sleeman & J. S. Brown (eds), 1982, pp. 25 - 50.

McCalla, Gordon 1., Jim E. Greer, “Intelligent Advising in Problem Solving Do-
mains: The SCENT-3 Architecture”, Research Report 88-1, ARIES Lab, University
of Saskatchewan, 1988.

McCune, B. P, et al., “RUBRIC : A System for Rule-based Information Retrieval”,
IEEE Transactions on Software Engineering, SE-11(9), 1985, pp. 939 - 45.

McDermott, Drew V., “A Temporal Logic for Reasoning About Processes and
Plans”, Cognitive Science, vol. 6, 1982, pp. 101 - 55.

Bibliography 111

[38] Miller, Mark L., “A Structured Planning and Debugging Environment for Elemen-

tary Programming”, in Intelligent Tutoring Systems, D. Sleeman & J. S. Brown

(eds), 1982, pp. 119 - 35.

[39] M68000 Microprocessors User’s Manual, 6th eds., Englewood Cliffs, N.J.:Prentice
Hall, 1989.

[40] O’Shea, Tim, “A Self-Improving Quadratic Tutor”, in Intelligent Tutoring Systems,
D. Sleeman & J. S. Brown (eds), 1982, pp. 309 — 336.

[41] Polson, Martha C., J. Jeffrey Richardson (eds), Foundations of Intelligent Tutoring

Systems, New Jersey:Lawrence Erlbaum Associates,1988.

[42] Psotka, Joseph, L. Dan Massey, Sharon A. Mutter (eds), Intelligent Tutoring Sys-

tems: Lessons Learned, New Jersey:Lawrence Erlbaum Associates, 1988.

[43] Reiser, B. J., J. R. Anderson, R. G. Farrell, “Dynamic Student Modelling in an
Intelligent Tutor for Lisp Programming”, Proceedings of the Ninth International
Joint Conference on Artificial Intelligence, Los Angeles, CA, 1985, pp. 8 - 14.

[44] Reiser, B. J., et al., “Knowledge Representation and Explanation in GIL, an Intel-
ligent Tutor for Programming”, CSL Report 37, Princeton University, Feb. 1989.

[45] Reiser, B. J., et al., “Facilitating Students’ Reasoning with Causal Explanations and
Visual Representations”, in Proceedings of the 4th International Conference on Al

and Education, D.Bierman, J. Breuker, J. Sandbery (eds), 1989.

[46] Shoham, Yoav, “Temporal Logics in Al: Semantical and Ontological Considera-
tions”, Artificial Intelligence, vol 33(1), Sep. 1987, pp. 89 - 104.

[47) Shoham, Yoav, Reasoning About Change, Cambridge, Mass.:MIT Press, 1988.

Bibliography 112

[48] Sleeman, D., “Assessing Aspects of Competence in Basic Algebra”, in Intelligent
Tutoring Systems, D. Sleeman & J. S. Brown (eds), 1982, pp. 185 - 99.

[49] Sleeman, D., “An Attempt to Understand Students’ Understanding of Basic Alge-
bra”, Cognitive Science, vol 8(4) Oct-Dec 1984, pp.387 — 412.

[50] Sleeman,D., J. S. Brown (eds), Intelligent Tutoring Systems, New York:Academic
Press, 1982.

[61] Sleeman, D., R. J. Hendley, “ACE: A System which Analyses Complex Explana-
tions”, in Intelligent Tutoring Systems, D. Sleeman & J. S. Brown (eds), 1982, pp.
99 - 118.

[52] Smith, John B., Stephen F. Weiss, “Hypertext”, Communications of the ACM, vol.
31(7), July, 1988, pp. 816 - 19.

[53] Sterling, Leon, Ehud Shapiro, The Art of Prolog, Cambridge, Mass.:MIT Press,
1986.

[54] Stevens, Albert, Allan Collins, & Sarah E. Goldin, “Misconceptions in Students’
Understanding”, in Intelligent Tutoring Systems, D. Sleeman & J. S. Brown (eds),
1982, pp. 13 - 24. |

[55] Tenney, Yvette J., “Issues in Developing an Intelligent Tutor for a Real-World
Domain: Training in Radar Mechanics”, in Intelligent Tutoring Systems:Lessons
Learned, Joseph Psotka, L. Dan Massey, Sharon A. Mutter (eds), 1988, pp. 119 -
80.

«

[56] VanLehn, Kurt, “Student Modeling”, in Foundations of Intelligent Tutoring Sys-
tems, Martha C. Polson, J. Jeffrey Richardson (eds), 1989, pp. 55 - 78.

Bibliography 113

[57] Wachsmuth, Ipke, “Modeling the Knowledge Base of Mathematics Learners:
Situation-Specific and Situation-Nonspecific Knowledge”, in Learning Issues in In-

telligent Tutoring Systems, Heinz Mandl, Alan Lesgold (eds), 1988, pp. 63 - 79.

[58] Wenger, Etiene, Artificial Intelligence and Tutoring Systems, Los Altos:Morgan
Kaufmann Publishers, Inc., 1987.

