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Abstract 

In this thesis catastrophe theory is applied to the voltage stability problem in power systems. 

A general model for predicting voltage stability from the system conditions is presented and then 

applied to both a simple 2-bus explanatory power system and to a larger more realistic power system. 

The model is based on the swallowtail catastrophe which with its three control variables is 

able to determine the voltage stability of the system. The model is derived direcdy from the systems 

equations. The voltage stability of the system at each specified system bus is determined by comparing 

the values of the swallowtail catastrophe control variables with those of the unique region of voltage 

stability. The control variables are calculated from the system operating conditions. If the control 

variables specify a point inside the stability region, the system is voltage stable; otherwise it is 

voltage unstable. 
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Chapter 1: Introduction 

Chapter 1 
Introduction 

The blackout problem of electric power systems has traditionally been associated with the steady 

state and transient stability problems. Steady state and transient stability are the phenomena involved 

in connection with the loss of a major portion of a grid due to the inability of certain generators 

to maintain synchronism in the face of small and large disturbances respectively. These types of 

instability are, generally speaking, well understood today. System stability is being preserved to 

a greater extent than ever before by the advent of faster and more effective stabilizers, and more 

reliable protection systems. 

In recent years a category of instability, usually termed voltage instability or collapse, and 

associated with the inability of a power system to maintain bus voltage magnitudes, has been 

responsible for several major blackouts world-wide. Earlier stability problems were concerned with 

the relationship between active power and phase angles of generators. The static voltage stability 

problem is, on the other hand, concerned with the relationship between reactive power and voltage 

magnitudes of generators. As power systems become heavily loaded, there is a possibility that the 

power systems might suffer from a cascading voltage collapse due to lack of reactive power. Also 

there is the dynamic voltage stability problem, which involves frequency as a parameter as well. In 

this thesis, only the static voltage stability problem is considered since the dynamic case is more 

complex and the static problem is currently being researched in greater detail. 

As frequency is a critical parameter in the balance between real (MW) generation and real (MW) 

load throughout the power system, so transmission voltage levels reflect the balance between the 

supply and demand of reactive power. While frequency is uniform throughout the power system, 

voltage levels can vary markedly across a transmission network, which is designed to operate at 

a particular voltage level. As a result, it is generally accepted that the voltage stability problem, 
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Chapter J: Introduction 

which is associated with the inability of a power system to maintain bus voltage magnitudes, is due 

to a deficit of reactive power at certain buses in the network. The actual process of collapse may 

therefore be triggered by some form of disturbance, resulting in significant changes in the reactive 

power balance in the system. 

The operating environment of many present-day power systems substantially increases the 

vulnerability of the system to reactive deficit problems and therefore difficulties in maintaining system 

voltage profiles. Several factors have contributed to this situation. There is increasing difficulty in 

obtaining power plant sites in the vicinity of major power consumers. Also, the exploitation of 

hydro power resources has proceeded spectacularly to a point where remote, large generation plants 

have been developed. As a result, electrical power is often transported through high capacity lines 

over long distances from generators to consumer. Furthermore, the strengthening of transmission 

networks has been curtailed in general by high costs, and in particular cases by the difficulty of 

acquiring right-of-way. This has resulted in increased loading and exploitation of the older circuits 

thus resulting in increasing voltage stability problems. Other factors include the relative decrease 

in the reactive power outputs of generating units, and shifts in power flow patterns associated with 

changing fuel costs and generator availability. 

Numerous approaches to predict voltage collapse have been suggested (see following section). 

A fast alternative method is to apply catastrophe theory to the reactive power equations where an 

unique solution set for the stability exists. If the solution according to the catastrophe theory for 

any particular operating condition falls within this unique set then the system is voltage stable for 

that particular condition. 

In this thesis, the swallowtail catastrophe is applied to the voltage stability problem. In Chapter 

2 a well known simple voltage stability example is modeled and examined. A more general model 

for any interconnected power system is derived in Chapter 3 which is then, in Chapter 4, applied 
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Chapter 1: Introduction 

to a larger more realistic example. 

1.1 Literature Review on Voltage Stability 

One of the first to address the problem of voltage collapse was W.R.Lachs [1]. There the phenomena 

is explained and an example is given which shows how a voltage collapse can occur. The importance 

of reactive compensation is discussed in detail since the reactive compensation on a EHV system 

must provide for both an overall, and a regional, balance and be able to withstand any feasible 

reactive disturbance on the system. 

In [2] a more recent review of the problem was done. Work about voltage stability conditions, 

proximity indicators, control strategies and planning network reinforcement is discussed. Some of 

the points made follow here. 

Some work has been reported on defining and establishing voltage stability criteria, i.e., criteria 

that may be used to determine whether or not an operating condition is stable from a voltage stability 

viewpoint 

It is suggested that an operating condition is stable from the voltage viewpoint if every load 

bus voltage increases when a source voltage increases or when a shunt capacitor is switched in at 

a load bus. 

Transformer taps are a major contributing factor in system voltage collapse and voltage instability 

is characterized in association with the slow tap-changing transformer dynamics. Stability conditions 

are derived in terms of allowable transformer taps settings using eigenvalue analysis. 

One criterion for voltage stability of a given operating condition states that for an operating 

point, voltage stability is ascertained when at mat operating point, an elementary increase of reactive 

demand is met by a finite increase in reactive power generation. Analytical computation of an index, 

which is defined on the basis of this criterion, for the simple two-bus system has been presented. 
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Chapter 1: Introduction 

As noted in [3], a region-wise framework is presented which accounts for several of the 

mechanisms to predict voltage collapse and can serve as a basis for comparing the effectiveness of 

performance indices, to predict, on-line, voltage collapse problems in power systems. The basis of the 

framework is the voltage stability region, which accounts for both static and dynamic mechanisms of 

voltage collapse. Based on this region, static and dynamic performance indices are denned to predict 

the static mechanisms of voltage collapse in the input or injection space and the dynamic mechanism 

in the post-contingency state space, respectively. 

Sekine et al. also studied the dynamic phenomena of voltage collapse [4] by the method of 

dynamic simulation using induction motor models. From the viewpoint of dynamic phenomena, the 

voltage collapse starts locally at the weakest node and spreads out to the other weak nodes. 

In [5] the stability limit problem as a static divergence or bifurcation characterized by the 

disappearance of an equilibrium point was studied. Beyond this point, solutions to the load flow 

equations cannot be obtained. 

In [6] a suggestion on the use of the minimum singular value of the Jacobian matrix of the 

load flow equations as a security index was made, and static control strategies based on this index 

were derived. 

Mori et al. presented a method [7] for estimating critical points on static voltage instability in 

electric power systems. The difficulty of evaluating critical points in y (specified value) space although 

it is easy to find a critical point in x (voltage) space with the conventional method is clarified. This is 

because there exists a set of specified values that provides a singular point in voltage space. Emphasis 

is put on evaluating the singular points in y space that is closest to operating conditions. A nonlinear 

programming technique is utilized to evaluate critical points in voltage and specified value space. 

In [8] a voltage stability index based on the feasibility of solution to the load flow equations 

at each bus was developed. 
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Chapter I: Introduction 

In [9] a security measure to indicate vulnerability to voltage collapse based on an energy function 

for system models that include voltage variation and reactive loads is denned. The system dynamic 

model, the energy function and the security measure are first motivated in a simple radial system. 

Application of the new measure and its computational aspects are then examined in a standard 30-bus 

example (New England System). The new measure captures nonlinear effects such as var limits on 

generators that can influence the vulnerability to collapse. The behavior of the index with respect 

to network load increases is nearly linear over a wide range of load variation, facilitating prediction 

of the onset of collapse. 

One common drawback of all these methods is that the operating constraints on system equipment 

(i.e., MW and MVAR limits of system generating units) are not taken into consideration. Production 

capabilities of generating units are important considerations, more so since voltage collapse is 

considered to be a reactive power problem. 

One suggestion is the use of repeated load flow computations, as power injections are increased, 

to determine the voltage stability limit. Having determined the limit, the margin to collapse is then 

available. However, besides being computationally very demanding, this approach may be inadequate 

due to the unreliable behavior of the Newton-Raphson method of load flow analysis in the vicinity 

of the voltage stability limit. This behavior is linked to the singularity of the Jacobian at the voltage 

stability limit, and the existence of close multiple load flow solutions around that limit. 

Another suggestion is the use of a combination of load flow analysis and sensitivity parameters 

in order to reduce the computation time and circumvent the numerical ill-conditioning known to 

occur as the voltage stability limit is approached. Another possible short-cut to the repeated load 

flow calculations is a quadratic extrapolation method which Borresmans et. al. proposed. These 

methods are inherently approximate. 

The third suggestion is an approximate method to evaluate the condition at the voltage stability 
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Chapter I: Introduction 

limit 

In [10] the problem of voltage collapse is approached by simulation of a power system using a 

slightly modified transient stability program. A sufficiently complex system with 39 buses and 10 

generators is used in simulations. The system is stressed by progressively increasing the system load 

through a multiplier k. A very small change of k (order 1%) is used as collapse-inducing disturbance. 

Total system voltage collapse was observed after the disturbance. Significance of these findings and 

directions for future research are presented and applicability of real-time control discussed. 

Several voltage collapses have had a period of slowly decreasing voltage followed by an 

accelerating collapse in voltage. In [11] this type of voltage collapse based on a centre manifold 

voltage collapse model is analyzed. The essence of this model is that the system dynamics after 

bifurcation are captured by the centre manifold trajectory and it is a computable model that allows 

prediction of voltage collapse. Both physical explanations and computational considerations of this 

model are presented. The use of static and dynamic models to explain voltage collapse are clarified. 

Voltage collapse dynamics are demonstrated on a simple power system model. 

In [12] a method of determining the voltage stability limit of a general multimachine power 

system was presented. In the method, the search for the voltage stabihty limit is formulated as an 

optimization problem of maximizing the system total MVA load. With this formulation, difficulties 

related to singularity of the load flow equations Jacobian matrix, and convergence of the load flow 

solution around the voltage stability limit, are avoided. Voltage dependence of the MVA loads may be 

taken into account in determining the voltage stability limit. The method also accommodates device 

constraints or limitations in system controls (e.g. generator VAR limits and limits on transformer tap 

settings). A security margin is denned which serves as a measure of the security of the system as 

far as voltage collapse is concerned. 
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Chapter 1: Introduction 

12 Literature Review on Applications of Catastrophe Theory 

In [13] M.D. Wvong and A.M. Mining introduce the application of catastrophe theory to transient 

stability assessment of power systems. A derivation is shown for a one-machine infinite-bus power 

system for which a swallowtail catastrophe manifold is derived from the swing equation of the system. 

From this a stability region is defined which is valid for changing load conditions and fault locations 

so that the stability of the system can be easily assessed. Figure 1.1 shows the steady-state stability 

region while Figure 1.2 shows the transient stability regioa 

This method of transient stability assessment has several advantages: 

• The regions of stability obtained by the method are well defined in terms of the control 

variables and the critical clearing time regardless of the state variables. 

• The computation required to define the stability are few and can be done in a very short time. 

• The method may be used for an on-line assessment of transient and steady-state (dynamic) 

stability. 

7 



Chapter I: Introduction 

Figure 1.2: Transient Stability Region 

In [14] A.A. Sallam did similar studies on steady state stability assessment in power systems 

with similar results. 

Catastrophe theory has also been applied to other fields in science with success. Some of the 

work done is described below: 

In [15] catastrophe theory is used to classify caustics and their associated traveltime diagrams. 

These traveltime diagrams are multivalued functions of the position coordinate when caustics are 

present. 

In [16] an experimental and theoretical investigation is presented for the forced vibration of a 

one-degree-of-freedom system with a non-linear restoring force. It is shown that the characteristics 

of these systems can be described by the cusp catastrophe model. 

And in [17] and [18] the rainbow effect in ion channeling is analyzed by the use of the catastrophe 

theory. 
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Chapter 2: A Catastrophe Model for Voltage Stability in a Simple 2-Bus System. 

Chapter 2 
A Catastrophe Model for Voltage Stability in a Simple 2-Bus System. 

2.1 Introduction 

In this chapter we are going to look at the application of catastrophe theory to voltage stability 

problems in a simple power system. This will give us insight into how the catastrophe model is 

developed. In later chapters we will do the same for a more realistic interconnected multi-bus power 

system. 

The simple 2-bus power system is shown in Figure 2.3. The problem is formulated with regard 

to voltage collapse at the load bus (bus 2). 

V1P1.Q1 V2P2.Q2 

Source 

Load 

Figure 23: Simple Power System 

22 Developing the Model 

A catastrophe model for voltage stability is derived from the following system equations: 

Miori + (ViV2/Xi)sin(*1 - S2) = Pi (2.1a) 

-(ViV2/Xi)cos(tf2 - Si) + (l/Xi)V? = Q i (2.1b) 

(V1V2/X1)sin(^2 - Si) = P 2 (2.1c) 

9 



Chapter 2: A Catastrophe Model for Voltage Stability in a Simple 2-Bus System. 

(ViVj/XOcosto - *i) - ((1/Xi) - B)V?. = Q 2 (2.1d) 

Since we are only dealing with static voltage stability our angles do not change, hence 6j = 0. 

In our case bus 2 (the load bus) will be looked at from a voltage stability viewpoint. Therefore 

equation (2.Id) will be the equation that the catastrophe model will be built on. It will be the changes 

in V2 diat will be approximated. But since Vi is also present in equation (2.Id), we need to solve 

for it in terms of V2. This can be done from equation (2.1b) as follows: 

V 2 - V , V 2 cos (<52 -6^- Q J X J = 0 (2.2) 

This is a quadratic equation with the solution: 

Vi = \ (v2 cos(62 -60± v / (V 2
2 cos2 (^ 2 -^) )+4QiX 1 ) (2.3) 

Substitution of equation (2.3) into equation (2.1d) will give 

[(Vl/(2X0)cos2(*2-^) 

+(V 2 / (2X 1 ) )cos(« 2 - ^)^/(V 2
2 cos2(^-^ 1 )-r4Q 1 X 1 )] 

-((1/X,) - B)V2

2 = Q 2 

This can be rearranged as: 

+ V , ( C ° S '>>) ^ V | co.' (h - «,) + 4Q.X, 

where Q 2 is a potential function of the variable V2. 

The catastrophe manifold Ms is the set 

M s = {V a eR: / s (V 3 )=0} 

(2.4) 

(2.5) 

(2.6) 
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Chapter 2: A Catastrophe Model for Voltage Stability in a Simple 2-Bus System. 

where fs is the derivative of our potential function with respect to the state variable V2: 

/ S(V 2) = 2V,[(C 0 S'<*-'•>) - ( J - _ B)] y ^ « r f « i - W + 4Q1X1 

+ 2(C°S(
2^<l))vicoS'(fe-<l)+ (

€ " ( ^ " < l ) ) 4 Q,X,-0 (2.7) 

Now let, 

V 2X i 
x = cos (62 - Si)  

2 2Xi 

Equation (2.7) can then be rewritten as 

(2.8) 

2di V 2 ^ c o s 2 (*2-*1) + 4Q1Xi 

+2C 2V^ cos2 (« 2 - + 4C 2 Q i X 1 = 0 (2.9) 

Now by applying Taylor's series expansion, the voltage at any time can be written as: 

, A 1 , , AV? AVjj AV* 
V 2 = V 2 0 + AV 2 + -7T1 + -jr1 + -KT 1 0 24 (2.10) 

or with x = AV2 

x2 x3 x4 

V 2 = V 2 0 + x + y + - + 2 4 (2.11) 

By substituting this into equation (2.9) and ignoring terms of higher than fourth degree we get 

the following: 

11 



Chapter 2: A Catastrophe Model for Voltage Stability in a Simple 2-Bus System. 

2 C 1 [v 2 0 + x + f + f + ^] 

V 2

0 + 2V20x + (V 2 0 + l)x2 + i + ^ V + ^ ± ^ x 4 ] 

x cos2 (c72 - 61) + 4} 1/ 2 + 4C2Q1X! + 2C2 cos2
 (62 - «i)QiXi 

V 2

2

0 + 2V20x + (V* + l)x2 + + = 0 (2.12) 

The square root in equation (2.12) is going to give us problems in the catastrophe formulation 

which we will need to take care of. One way is to eliminate it by a Taylor series approximation. 

The root can be rewritten as follows: 

4Qi 
cos(tf2 - ^)[(v2

2

0 + cJlfl6l)) + (2V2o)x + (V20 + l)x2 

The corresponding Taylor series would be: 

b6 / 

cos 

K1 
^2\ 3b2 b4 + 

+ V 2 0 5V 2+6V 2o+l , 3V20 + V2, 
12b2 

where 

This can be simplified further as 

4b4 

b = 

+ 2 
20 

b6 

5V|p\x4 
4 b* J 

+ ....] 

4QiXi 
cos (£2 - 6i) 

+ V 2 

20 

(2.13) 

(2.14) 

(2.15) 

cos (62 - Si)[ k0 + kix + k2x2 + k3x3 + L,x4] (2.16) 

By substituting back into equation (2.12) and collecting like terms we have an equation of the 

general form: 
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where 

and 

EL4X4 + aax3 + a2x2 + aix + ao = 0 (2.17) 

ao = + C2V2 0ko 

ai = 2CiV 2 0-rC 2(ko + k1V2o) 

a2 = Ci(V 2 0 + 1) + C 2 + h + k 2 V 2 0 ) 

an = C, ( ^ ) + C 2 ( ^ + I + k2 + knVao) 

(2.18) 

(2.19) 
Ci = 2 c o s(«2 - « i ) C i 

C 2 = 2 cos2 (62 - £ i )C 2 

Now we let x = y + a , where a = -4^ . Then our equation is 

y4 + uy2 + vy + w = 0 (2.20) 

where u,v and w are our control variables, 

If 3 a 2 \ u = — a2 - - — 
84 \ o 84/ 

(2.21) 

Hence we have developed a swallowtail catastrophe model for voltage stability for a simple 2 

bus example. The bifurcation set for this catastrophe is shown in Figure 2.4. 
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W 
A 

Figure 2.4: Bifurcation Set For The Swallowtail Catastrophe 

23 Testing the Model 

Several studies have been done on voltage collapse for our simple 2-bus example. In [12] it was 

shown that for normal stable operation \ZR\ > \Zi\, where ZR is the load impedance and ZL is the 

line impedance. Figure 2.5 shows the variation of VR, the load bus voltage, against MVA demand SR, 

at constant power factor. Point A (where VR = V^LT) represents the critical system state. The upper 

segment (VR > V^,{) is considered the stable operating region, i.e. < 1. It can be seen that in 

the stable region, increasing the sending end voltage increases the receiving end voltage whereas, in 

the unstable region, increasing the sending end voltage actually reduces the receiving end voltage. 

The catastrophe model was compared with the above analysis in the following manner. Two 

voltage points were taken from the graph in Figure 2.5, where one point was in the voltage stable area 

and the other in the unstable area. By feeding the same data used in Figure 2.5 into the catastrophe 

14 
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Figure 2.5: Voltage Versus MVA At Load Bus (pf = 0.9285) 

model it could be determined whether the model agreed with the analysis. All the stable points were 

found to lie above the catastrophe manifold shown highlighted in Figure 2.6, while all the unstable 

points were found to lie beneath it 

The critical point A in the voltage curve shown in Figure 2.5 was found to be close to 

S = 1.576397 p.u. The turning point in the curve according to the Catastrophe model was almost 

the same or close to 5 = 1.576292 p.u. This is the point at which our system shows stability as 

suggested by Figure 2.6. 

For the swallowtail catastrophe shown above there are basically three different cases, with only 

one being stable, that could result from our analysis. These are, above the manifold as shown in 

Figures 2.7 and 2.8, inside the tail as shown in Figure 2.7, and outside the manifold as shown in 

Figures 2.7 and 2.8. 
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V 

Figure 2.6: The Voltage Stability Manifold of the Swallowtail Catastrophe 
W 

Outside Manifold 

Figure 2.7: Manifold for u < 0 

It was found that almost all the points of the voltage curve, stable or unstable, resulted in a 

control variable u > 0. Only the points close to the critical point of the curve resulted in a control 

variable u < 0. As the voltage curve went from unstable to stable (the critical point) it travelled from 

'outside the manifold' to 'inside the tail', the two unstable regions, to 'above the manifold', the stable 

16 
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W 
i 

^ ^ b o v e 1. 
Outside Manifold 

Figure 2.8: Manifold for u > 0 

Regions of the Catastrophe Intervals of S 

(p.u.) 

Intervals of V? 

(p.u.) 

Outside Manifold, u > 0 (Unstable) 0-1.569 0-0.598 

Outside Manifold, u < 0 (Unstable) 1.569-1.573 0.598-0.609 

Inside Tail (Unstable) 1.573-1.576 0.609-0.630 

Above Manifold, u < 0 (Stable) 1.576-1.573 0.630-0.658 

Above Manifold, u> 0 (Stable) 1.573-0 0.658-1.05 

Table 2.1: The Travel of the Voltage Curve through the Catastrophe 

region. Table 2.1 shows the points at which the voltage curve entered each region of the catastrophe. 

Similarly this can be shown as Figure 2.9 illustrates where the points shown are referred to Figure 

2.10, which is a close up of the voltage curve of Figure 2.5 near the critical point. 

It should be noted that since the catastrophe is actually three-dimensional, the curve in Figure 

2.9 is not exact It only serves for explanatory purposes and is not drawn to scale. 
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W 
A 

Figure 2.9: The Travel of the Voltage Curve through the Catastrophe 

Figure 2.10: Voltage Curve near Critical Point 
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Chapter 3 
A General Catastrophe Model for Voltage Stability in Power Systems 

In the previous chapter, voltage stability was studied for a simple 2-bus power system using a 

swallowtail catastrophe model. To apply the method to larger, more realistic, power systems it is 

useful to develop a general model for voltage stability of any power system. 

3.1 General System Equations 

A general swallowtail catastrophe model can be developed for an n-bus power system directly from 

the systems equations. The most generalized way of stating the power flow equations of a power 

system [19] is 

n 
Si = Pi+jQi = ^{YsViVj + M^+jD^} 

j=i 
D 

= E { l V ' l l V iK G « " JBijJetoe-* + MjS] + jDj*j} 
j= i 

= E { l v i l l v i l(G S - JBiiXcos (Si - 6j) + j sin (Si -Ss)] + MjS] + j D ^ 

D 

= E { l v i l l v i lK G » c o s (ft ~ ft) + By sin (4 - Sj)) 

-rj(Gij sin (Si - Sj) - By cos (S{ - Sj))] + MjS] +}DjSi} (3.22) 

Since we are only dealing with static voltage stability our angles do not change, hence Sj 

Now by separating the real and imaginary terms: 

Pi = E l v i l l v j l[G i i c o s (ft - ft) + B « s i n (4 - ft 
D (3.23) 

Qi = E l v i l l v j l [G i i s i n(ft - ft) - B « c o s (ft - ft 
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or since 

we have 

P i = E irSi^cos
 (ft - ft) - x * s i n (ft - ft)] 

j=i Kij + A « 

^ = E i rSi t^ s i »(ft - ft) + xy cos (ft - 6^)] 

(3.25) 

Again since static voltage stability is being modelled, all phase angles remain constant. It is 

only in dynamic voltage stability that changes in phase angles occur. The following constants can 

therefore be denned: 

Rij cos (Si — 6}) — Xij sin (Si - ft)\ 
<8 = 

u y 7 (3.26) 
, _ / Rij sin (ft - ft) + Xij cos (Sj - 6$) 

* = I Ri + Xi , 

Voiiagc stability is synonymous with reactive power stability where voltage is the dynamic 

variable (likewise, the phase angle is the variable in real power stability studies). For this reason 

only the reactive power equations are of interest in this study. Therefore our set of equations is: 

Q i = £ I V M I V ^ (3.27) 

j=i 

3.2 Solving the System 

We now define any bus k as the one to be examined from a voltage stability viewpoint Its equation 

on which the catastrophe model will be built is a single case of the set of equations above or 
D 

Q k = ElVkHVjIVkj (3.28) 
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where Qk is a potential function of the variables VJt,Vj (j = l,2,..,n). But these variables are 

related through the other system equations. Therefore by solving the system equations the variables 

Vj (j = 1,2, ..,n) could be stated in terms of only V*. 

Essentially what we have is a set of n functions of the form: 

Qi = fi(Vi,Vj) (3.29) 

which can be rearranged as 

V i = g i(V J) (3.30) 

if Qi is considered to be constant. However, Q^ is not considered a constant since it is our potential 

function. Al l the reactive powers effectively vary, but for buses other than the bus under study the 

variation is small enough to be neglected. 

Thus by going through the system and solving at each node i for the corresponding voltage Vi and 

substituting into the next equation and so on, our potential function can be written in terms of V% only. 

For a strictly radial system this can be done in a straightforward manner and does not need 

further details. 

On the other hand for a non-radial system (loop or circular connections) problems will arise 

because of the nonlinearities of the equations. Figure 3.11 shows an example of this. Here we have 

four buses which are all interconnected, and have two connections to the rest of the system at buses 

u and z. To be able to solve the whole system we therefore need to be able to solve implicitly 

for the voltages at buses u and z. 
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bus U 

other buses 

Figure 3.11: Non-Radial Power System 

The functions at the four buses upc,y,z will be 

Qx = fx(vx,vu,vy,vz) 

Qy = f y ( V y , V u , V x , V z ) 
(3.31) 

Qu = fu(V u? V x , V y , V z , Vj) 

Qz = fz(V z , V u , V x» Vy,Vj ) 
where K and V, are voltages at other buses connected to buses u and z. This can be rewritten as 

V ^ g ^ V v . V , ) 

Vy = g y ( V u , V „ V x ) 
(3.32) 

V\l = gu(V x , Vy , V z , Vj) 

• V z = g x ( V u , V x , V y , V j ) 

This cannot be solved explicidy for Vu or Vz and therefore voltages V{ and Vj can't be solved either 

and so on. 
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Note, however, if VX has an explicit solution in terms of V u , i.e., 

V x = gx(Vu) (3.33) 

then Vu can be solved as 

V u=g u(V i,V x) = g u(V i,g x(V u)) 

= hu(V0 (3.34) 

where bus i precedes bus u in sequence. The same then goes for Vj etc. 

Therefore we need to write VU and VZ in the same form as shown in equation (3.33), that is 

with an explicit solution of only one variable. Since we are dealing with small changes in voltage 

and since these changes are going to be smaller the further away we are from the specific bus of 

study they can be dismissed as shown below. 

When solving for Vu, then VX and VY can be written as 

where VXQ, Vvo and V2o are the initial voltage values at buses x,y and z. Now we rewrite the equation 

Vx«gxi(V u,V ¥ O,V l 0) = h x(V u) 
(3.35) 

Vy «gyl(V u,V x 0,V z 0) = MVu) 

for Vu as 

V u = g„(V x ,V y ,V„Vi)wg u (g x i (V u ,V y o ,V x o) ,g > - i (V u ,V x 0 ,V ,o) ,V l 0 ,Vi ) 
(3.36) 

or 

V u = hu(Vi,Vxo,Vyo,V zo)=nu(Vi) (3.37) 

since Vro, Vyo and Vzo are constants. 

Similarly when solving for VZ, VX or V̂  can be written as 

V x»6« 2 ( V „ V y o , V u o ) = hx(V,) 
(3.38) 

V y «gy 2(V z ,V xo,V uo) = h y(V z). 
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Again we rewrite the equation for VZ as 

V, = gz(V u,V x,V y,Vj) * gz(V uo,gx2(V z,V uo,V yo),g y 2(V u,V uo,V x 0),V j) 
(3.39) 

or 

V, = h,(Vj, V u 0, Vxo.Vyo) = h,(Vj). (3.40) 

Each of the solutions of equation (3.30) will be a quadratic solution of equation (3.29) which 

can be rewritten as 

Qi = Vi J2 VjV^ + v? £ V2ij 

j=lj#i j=lj# 

where Vj = VJQ when systems are inteconnected as described above. 

E VjVio 
Vf + V i J - ^ Qi 

E V>2ij E V^ij 
= 0 

which will give the solution: 

, E Vî ia 
2 D 

E <h» 
*5 

1 E VjVV 
D 

E V>2« 
+ 

4Q; 
D 

\ 2- va« / E V^ij 

N \ i=ij# / i=to#i 

This will, however, become unsolvable as we go through the system since the degree of the solution 

will increase by one at each step. 

But this problem can be overcome by approximating all voltages at buses far away1 from the 

specific bus as 

(3.41) 

(3.42) 

(3.43) 

Vi = V i 0 + AVi (3.44) 

1 far away = all buses but the ones next to the specific bus. 

24 



Chapter 3: A General Catastrophe Model for Voltage Stability in Power Systems 

by disregarding higher orders of AVj. Now equation (3.41) can be solved simply for AV, or even 

better it can be solved in the same way for Vi = V;o + A V ; . 

Qi^CVio + A V O J2 VjVis + (Vio + A V ; ) 2 E V>2ij 

= (Vi0 + AVi) £ VjVia + (Vi

2

0 + 2Vi0AVi) E V*ii 

(Vio + AVO E VjViij +(2V i 0(V i 0 + AVi)-V2

0) E ^ 
(3.45) 

= (V i 0 + A V i ) E V J ^ S + 2 V i o E ^ -v 2

0 E ^ 

Therefore, 

Qi + v2o E V>2ij 
Vi = V i 0 + A V i = —s J ~ 1 J ? " „ (3.46) 

E VjViij + 2V i 0 E ^ 

However, the solutions of Vj which have previously been solved in terms of V,- could have 

been substituted into equation (3.46) leaving only one unknown voltage variable. We shall call this 

variable, Vj. Now equation (3.46) can be written as 

Vi = r -^-v (3.47) li + mjVi 

where fc;,/,,m, are constants. 

This solution of Vj is then substituted into the remaining system equations to solve for V/ in 

the same way. 

A l l buses, except those near bus k, are solved this way. Since the voltage changes are larger the 

closer to the specific bus (the voltage collapse bus) more accurate voltage solutions are desired. This 

time the precise solutions of equation (3.43) are used for solving these buses next to the specific bus. 

The format of that equation will change somewhat though since all known Vj solutions of equation 
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(3.47) have been substituted in. The solution will be of the following form: 

V i = -^(ai + AVO + ^ ' + A V O ' + l i 

= ~ ( a i + A V k ) + \ JtfVl + 2aiAV k + a? + 7 i (3.48) 

where £ is the specific bus. 

The potential equation at bus it is similar to equation (3.41) or, 

D II 

Qk = Vk £ VjVikj + Vl Y, ^2kj (3.49) 

where all the Vj's have previously been solved so that only one variable is left in the equation, 

namely Vk. 

33 General Swallowtail Catastrophe Modelling 

Since our potential function Qk is of the same form as previously shown for a 2-bus example, the 

steps involved in developing the catastrophe model are basically the same from here on and there is 

no reason for going through them again in detail. 

As said previously, the catastrophe manifold Ms is the set 

Ms = {Vk 6 R : f(Vk) = 0} (3.50) 

where fs is the derivative of our potential function Qf with respect to the state variable Vk 

By applying Taylor's approximations of functions for the changes in voltage, the voltage at any 

time can be written as: 

V 2 = V 2 0 + AV 2 + 
A V | A V | A V J 

2 + 6 + 24 
(3.51) 

or with x = A V 2 as 

_ _ . . X X 
V 2 = V 2 „ 4 - x + _ + - + - (3.52) 
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After approximating the square roots with a 4th order Taylor series and collecting like terms 

we get: 

a4X4 + aax3 + a2x2 + aix + ao = 0 (3.53) 

where 

ao = V k 0 52 TJVikj + V k

2

0 £ V2kj 

D D 
a i = E TjV'ikj+2Vko 52 ^2kj 

j=lj#k j=lj*k 

^ 2 = 2 E T/Vikj + (V k 0 + 1) 52 V>2kj (3.54) 
j=lj#k j=lj/k 

*> = \ E T J W ^ + I) E ^ 

J=U#k v ' j=lj#k 

£r!(! Tj j? the r-th constant in the corresponding taylor series. 

Now by letting, x = y + a , where, a = our equation can be written as: 

y4 + uy2 + vy + w = 0 (3.55) 

where u,v and w are our control variables: 

If 3 a?A 
u = — I a2 ) 

a4 \ 8 a4 / 
If a2 , 1 ai! \ _ v = — a i - — — + - ^ | (3.56) 

&4\ 2 an 8 a| / 
_ ao aj an a2 a2 3 a4  

W ~ a 7 ~ T a | l 6 a i ~ 2 5 6 a i 
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This is precisely the same swallowtail catastrophe model for voltage stability as derived earlier for 

our simple 2-bus example. The bifurcation set for this catastrophe is shown here again in Figure 3.12. 
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Chapter 4 
Examination or the General Model on a Test System 

4.1 Test System 

Even though the catastrophe model had proven to work for a simple 2-bus system, studies needed 

to be done on larger systems for realistic purposes. This realistic system was needed to have the 

following four characteristics and conditions for our purposes: 

• Non-radial system. 

• Losses accounted for. 

• Load flow results available. 

• Generator and load buses. 

The system chosen [20] was a 6-bus single loop system as shown in Figure 4.13. This system has 

line-losses parameters available, a load flow has been computed and it has two generator buses and 

four load buses. Table 4.2 shows the load flow results which are needed for the catastrophe analysis. 

Bus 6 of the system is a slack bus which means that the voltage remains constant and the demand 

of power required would always be met. Thus bus 6 was excluded from our cases of voltage stability 

studies (No voltage change, no voltage collapse). All the other five buses were of course examined 

though as the following sections show. 

This system was then formulated according to the general model described in Chapter 3. 

4.2 Initial System Conditions 

First the system was analyzed using the initial load flow conditions given in Table 4.2. Table 4.3 

shows the results from the catastrophe program at each of the five buses. The stability and the 

unstability regions are identical to the ones shown and discussed in Chapter 2 since we are still 

dealing with the swallowtail catastrophe. 
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0.08+J0.37 p.u. 

0.123+j0.518p.u. 

t=0.974 

•J34.1 p.u. 
_ l 

jO.133 p.u. 
t=0.909 

0.723+j 1.050 p.u. 

jO.3 p.u. 
0.282+J0.64 p.u. 

-J28.5 p.u. 

Figure 4.13: A 6-Bus Power System 

Bus 

Number 

Voltage Magnitude, V 

(p.u.) 

Voltage Angle, 6 (°) Reactive Power, Q (p.u.) 

1. 0.932061 -9.841571 0.218091 

2. 1.003495 -12.770030 0.016298 

3. 1.103648 -3.389008 0.370004 

4. 0.924158 -12.282888 0.179988 

5. 0.922237 -12.182555 0.153299 

6. 1.05 0 0.497890 

Table 4.2: Load Flow Results for 6-Bus Power System 

As expected the system is voltage stable at all buses for the initial conditions but of interest 
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Bus 

Number 

Control 

Variable, u 

Control Variable, 

V 

Control 

Variable, w 

Stability Census 

1. 5.9888 7.9888 11.7420 Stable 

2. 1.1586 2.5105 3.9941 Stable 

3. 5.3547 7.1235 17.1505 Stable 

4. 1.0936 3.3229 3.1817 Stable 

5. 5.1193 6.9659 7.1436 Stable 

Table 4.3: Control Variables for Initial Conditions 

is to find out which bus is the least or most stable and so on. In later sections we will vary some 

of the state variables and then see clearly which buses are more sensitive to voltage collapse. But 

it is possible to predict from the above control variables which buses would be most susceptible to 

voltage instability although such a prediction might not be very accurate. This kind of prediction 

would be based on the proximity to the catastrophe manifold. Each of low control variable u, high v 

and low w by themselves or especially in combination could indicate this proximity. By looking at 

Table 4.3 it can be seen that both buses 2 and 4 have a relatively low control variable u. Similarly 

buses 1 and 3 have a relatively high control variable v and buses 2 and 4 have a low control variable 

w. From this it could be concluded that again buses 2 and 4 would be more vulnerable to voltage 

collapse than buses 1, 3 and 5. This would make sense since both these buses (2 and 4) are the load 

buses furthest away from the two generators. 

43 Voltage Variations 

As previously stated the two state variables for static voltage collapse are voltage and reactive power. 

Lower voltage and/or higher reactive loads would make a power system more vulnerable to voltage 

instability. In this section the effects of strictly voltage variations on voltage collapse are examined 

using the catastrophe model. Voltage values were lowered until the model predicted a voltage collapse 
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Bus 

Number 

Control 

Variable, u 

Control Variable, 

V 

Control 

Variable, w 

Stability Census 

1. 5.9887 7.9887 7.6945 Stable 

2. 0.7667 1.8239 3.9941 Stable 

3. 5.3014 6.9908 12.3260 Stable 

4. -661.50 6940.07 -19200.91 Unstable 

5. 5.2232 7.1251 9.6979 Stable 

Table 4.4: Control Variables with 82.6% Initial Voltage Values. 

at one of the buses. However since a new load flow would effectively be needed for each new voltage 

profile the exact voltage value at which the collapse occurs may not be accurate. But the purpose of 

this test is not to find the exact voltage collapse points for the power system in Figure 4.13 as much 

as it is to prove that the catstrophe model works for voltage collapse predictions. 

The first test was done by varying all the voltage profiles equally. Voltage collapse was found to 

occur at bus 4 at 82.6% of the value of the initial voltages as shown in Table 4.4. The other buses are 

still stable at this point but the whole system would collapse though due to the instability at bus 4. 

Individual voltage variations are also of interest although there are of course infinite combinations 

of the different bus voltages. The tests done here involve varying only one bus voltage value while 

the other voltages remain constant at the initial values. 

Since bus 4 proved to be the weakest one in the uniform voltage variation test above it was of 

particular interest for this examination and as can be seen from the following tables it still has the 

highest bus voltage for which it goes unstable (the weakest bus). 

Studies done on bus 3, a generator bus, found that voltage collapse occurs at a very low voltage 
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Bus 

Number 

Control 

Variable, u 

Control Variable, 

V 

Control 

Variable, w 

Stability Census 

1. 5.9888 7.9888 2.3813 Unstable 

2. 1.1586 2.5105 3.9941 Stable 

3. 5.4484 ' 7.2298 19.5364 Stable 

4. 0.9080 2.8032 2.7308 Stable 

5. 5.1121 6.9491 6.8755 Stable 

Table 4.5: Control Variables with 58% of Voltage Values at Bus 1. 

Bus 

Number 

Control 

Variable, u 

Control Variable, 

V 

Control 

Variable, w 

Stability Census 

1. 5.9886 7.9886 11.7386 Stable 

2. 0.2643 2.7717 1.4320 Unstable 

3. 5.2575 7.0099 15.5127 Stable 

4. 0.8394 2.6126 2.5673 Stable 

5. 5.1188 6.9471 6.7781 Stable 

Table 4.6: Control Variables with 52% of Voltage Values at Bus 2. 

(29%) and the model cannot be used for some of the other buses at this voltage (buses 1 and 5). This 

is not at all unreasonable since there is no way the system would support these voltage conditions. 

Also voltage collapse rarely occurs at generator buses because of greater voltage control. 

4.4 Load Variations 

Now we will examine the effects of reactive load variations with the voltage constant at the initial 

values. This testing was done in a similar way as before, only in this case by increasing the loads 
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Bus 

Number 

Control 

Variable, u 

Control Variable, 

V 

Control 

Variable, w 

Stability Census 

1. - - - -

2. 1.1381 2.4769 3.9709 Stable 

3. 5.0389 6.8004 2.0884 Unstable 

4. 1.0709 3.2673 3.1439 Stable 

5. - - - -

Table 4.7: Control Variables with 29% of Voltage Values at Bus 3. 

Bus 

Number 

Control 

Variable, u 

Control Variable, 

V 

Control 

Variable, w 

Stability Census 

1. 5.9887 7.9887 10.6383 Stable 

2. 1.1536 2.5235 4.0283 Stable 

3. 5.3788 7.1301 17.0745 Stable 

4. 28.7936 131.5285 131.0456 Unstable 

5. 5.1146 6.9520 6.9110 Stable 

Table 4.8: Control Variables with 72% of Voltage Values at Bus 4 . 

until voltage collapse occurred at one of the buses. 

The first test involved increasing all the bus loads uniformly until voltage instability was reached. 

This happened at 5.5 times the initial loads as shown in Table 4.10. Again it was bus 4 which failed 

first. 

The tests for the individual changes of loads at each bus with the other loads constant at the 

initial values provided some interesting results as the following tables show. The model does not 
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Bus 

Number 

Control 

Variable, u 

Control Variable, 

V 

Control 

Variable, w 

Stability Census 

1. 5.9888 7.9888 12.0828 Stable 

2. 1.1018 2.3576 3.8180 Stable 

*> J). 5.4118 7.1429 17.0061 Stable 

4. 1.0936 3.3229 3.1817 Stable 

5. 5.0856 6.9298 2.1775 Unstable 

Table 4.9: Control Variables with 70% of Voltage Values at Bus 5 . 

Bus 

Number 

Control 

Variable, u 

Control Variable, 

V 

Control 

Variable, w 

Stability Census 

1. 5.9893 7.9893 12.2171 Stable 

2. 3.9361 8.6089 10.4715 Stable 

3. 5.6998 7.4385 17.3363 Stable 

4. 15.3072 12.5569 2.3516 Unstable 

5. 5.1128 6.9538 6.9585 Stable 

Table 4.10: Control Variables with 53 times the Initial Reactive Loads. 

provide a stability census at the load change bus simply because the reactive power at that bus is not 

a variable in the catastrophe model. This is because the potential function of the catastrophe model 

is the reactive power equation at the bus in question. This is fully acceptable since for the value of 

the function to change then the variables of the function must change as well. 

As before only the initial load flow data was used, so the data is not accurate, but this is sufficient 

to show that the catastrophe model is valid. This inaccurate data is probably the reason for the high 
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Bus Control Control Variable, Control Stability Census 

Number Variable, u V Variable, w 
2. 5.6703 12.0631 5.4013 Unstable 

3. 5.6220 7.4188 31.6700 Stable 

4. 0.7265 2.4308 2.5738 Stable 

5. 5.1047 6.9267 6.5458 Stable 

Table 4.11: Control Variables with 240 times the Initial Reactive Load at Bus 1. 

Bus Control Control Variable, Control Stability Census 

Number Variable, u V Variable, w 

1. 5.7234 8.2060 9.6336 Stable 

3. -5.9235 -14.7004 -16.2437 Unstable 

4. 0.9568 2.8519 2.6492 Stable 

5. 5.1190 6.9724 7.2764 Stable 

Table 4.12: Control Variables with 465 times the Initial Reactive Load (small) at Bus 2. 

Bus Control Control Variable, Control Stability Census 

Number Variable, u V Variable, w 

1. 5.9901 7.9901 14.5094 Stable 

2. 1.7603 3.1642 1.5576 Stable 

4. 1.2349 3.2494 1.4174 Unstable 

5. 5.1954 7.0921 10.6266 Stable 

Table 4.13: Control Variables with 59 times the Initial Reactive Load at Bus 3. 
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Bus 

Number 

Control 

Variable, u 

Control Variable, 

V 

Control 

Variable, w 

Stability Census 

1. 5.9887 7.9886 11.5493 Stable 

2. 0.9214 1.9520 3.3876 Stable 

3. - - - -

5. 2.6522 .10.5990 -0.4502 Unstable 

Table 4.14: Control Variables with 11.3 times the Initial Reactive Load at Bus 4. 

Bus 

Number 

Control 

Variable, u 

Control Variable, 

V 

Control 

Variable, w 

Stability Census 

1. 5.9888 7.9888 11.6117 Stable 

2. 1.1765 2.5387 4.0117 Stable 

3. 5.2966 7.1363 17.7766 Stable 

4. 16.0800 6.8469 -0.2222 Unstable 

Table 4.15: Control Variables with 8.5 times the Initial Reactive Load at Bus 5. 

load before bus 1 collapses and why in one case a solution is not found for bus 3, a generator bus 

(Table 4.14). 

4.5 Load and Voltage Variations 

Now since the effects of both the state variables have been individually looked at it would be 

interesting to examine how variations of both of them simultaneously would affect the voltage 

stability and the catastrophe model. It is an obvious conclusion from the proceeding sections that 

lower voltage and higher reactive loads bring a system closer to voltage instability. Table 4.16 shows 

how the two state variables can bring the system quickly to collapse if both are changing. The 

higher the load becomes the higher the critical voltage point (the voltage value for which the system 
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Reactive Load Factor Critical Voltage 

Factor for Collapse 

(Bus 4 in All Cases) 

1.0 0.826 

2.0 0.823 

3.0 0.873 

4.0 0.929 

5.0 0.979 

5.5 1.0 

6.0 1.022 

7.0 1.06 

Table 4.16: Effects of both Load and Voltage on Voltage Stability. 

becomes unstable). It should be noted that the factors in Table 4.16 are uniform over all buses and 

collapse occurs at bus 4 (the weakest bus) in all cases. 
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Chapter 5 
Conclusions 

It has been shown i n this thesis that catastrophe theory can be used to predict voltage collapse i n power 

systems. A general swallowtail catastrophe model has been developed and applied to a realistic power 

system. F r o m this model the voltage stability status for any given system condition can be predicted. 

The model is based on finding the control variables of a swallowtail catastrophe based on the 

system equations for a specific bus and determining i f they l ie within a unique stability region i n 

the control space. This is determined for one bus at a time where the single state variable of the 

swallowtail catastrophe is the voltage at the particular bus. Prior to this al l other bus voltages 

are solved i n terms of this voltage. However because of the nonlinearity and the possibility of 

interconnections i n the system some approximations need to be done to obtain this single state 

variable. In some cases the approximations involve using initial voltage values for some of the 

bus voltages far away from the particular bus. But since during voltage collapse, voltage changes 

obviously take place, and although those changes might be minor at buses far away from the point 

o f collapse the effects o f these approximations need to be studied further. 

The model was first tested on a simple 2-bus power system which had some previous voltage 

stability results available. The results from the catastrophe model were compared with the known 

results and when proved to be accurate the model was extended to a more realistic interconnected 

power system. F o r a six-bus test system the model predicted voltage collapse at high loads and/or 

l o w voltages as would be expected. 

N o general methods are available to predict voltage collapse quickly and easily i n this way, so 

the use o f catastrophe theory is novel and very promising. 
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These results are very encouraging for further work using catastrophe theory for voltage stability 

studies especially as a possible online stability tool. More research lies ahead before this will be 

realized because the problem of voltage stability is very complex. Studies need to be done on very 

large power systems where voltage stability data exists. One such system is the so-called New 

England power system which has been designated as a voltage stability study system. Also it is of 

interest to try to formulate dynamic voltage stability as well, but that would include the power angles 

as a state variable and therefore increase the complexity of the system. This would bring us closer 

to a general voltage and power stability solution for power systems. 
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Appendix A 
The Catastrophe Theory and the Swallowtail Catastrophe 

A.1 Introduction 

Catastrophe theory [21] grows where algebra, calculus, and topology meet each other, and is 

concerned with the study of real-valued functions of several real variables. As a part of mathematics, 

catastrophe theory is a theory about singularities. When applied to scientific problems, therefore, 

it deals with the properties of discontinuities directly, without reference to any specific underlying 

mechanism. The theory attempts to study how the qualitative nature of the solutions of equations 

depends on the parameters that appear in the equations. 

Elementary catastrophe theory is the study of how the equilibria ^j{CQ) of V($j\ Ca) change as 

the control parameters Ca change. Catastrophe theory shows that the number of qualitatively different 

configurations of discontinuities that can occur depends upon the number of control variables, which 

are generally few, and not upon the number of state variables, which may generally be many. 

If wc have a family of functions 

V : F x C ^ R (A.56) 

where J 1 is a manifold, usually Rn, and C is another manifold, usually Rr. Rn is the state space and 

RT is the control space. The state space has dimension n and the control space has dimension r. A 

manifold is a term to indicate a high-order surface (hypersurface), e.g., a 1-dimensional (lst-order) 

manifold is a curve, a 2nd-order manifold is a contour, etc. The catastrophe manifold, N, is the 

subset Rn x RT denned by 

V,V c(x) = 0 (A.57) 

where Vc(x) = V(x,c) and x is the state variable. This is the set of all critical points of all the 

potentials Vc in the family V and V x is the partial derivative with respect to x. 
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N o w we find the singularity set, S, which is the subset of the manifold, N, that consists of all 

singular points o f V. These are the points at which 

V xV c(x) = 0 (A.58) 

and 

V 2V c(x) = 0 (A.59) 

The singularity set 5 is then projected down onto the control space RT to obtain the bifurcation set B. 

The bifurcation set is the image o f the catastrophe manifold N i n the control space C. The bifurcation 

set B provides the projection o f the stability region of all possible stable points o f V i n terms o f the 

control variables, which usually represent the system parameters. 

A.2 The Elementary Catastrophes 

F o r systems with less than five control variables, there are seven distinct types o f catastrophes [21] 

and no more than two state variables are involved in any of these. These catastrophes are called 

the elementary catastrophes. 

• r = l , rt=l. The fold catastrophe. 

V F ( u , x ) = U X + i x

3 (A.60) 

• r=2, n=l. The cusp catastrophe. 

V c (u ,x) = u i x + ^u 2 x 2 + ix 4 (A.61) 

• r=3, n = l . The swallowtail catastrophe. 

V s (u ,x) = m x + ^u 2 x 2 + ^ x 3 + Ix* (A.62) 
I o o 
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r=3, n=2. The hyperbolic umbilic catastrophe. 

V D ( U , X ) = UiXi + U 2 X 2 + U3X1X2+X1 + Xj (A.63) 

. r=3, n=2. The elliptic umbilic catastrophe. 

VE(u,x) = uixi + u2x2 + un(x2 + x2)-t-Xj - 3xix2 (A.64) 

• r=4, n=l. The butterfly catastrophe. 

VD(u,x) = uix + l U 2 x 2 + \x* + ±x4 + ̂ x6 (A.65) 
z o 4 0 

• r=4, «=2. The parabolic umbilic catastrophe. 

Vn(u,x) = uixj + u2x2 -(- U3X 2 + U4X 2+x 2x 2 + x2 (A.66) 

The set in Rn x RT where the differential of Vu is zero turns out to be a differential manifold 

for each one of the elementary catastrophes. It is sometimes called the catastrophe manifold, and in 

other contexts the equilibrium set. This set is then projected onto RT. The collection of the critical 

points of the projection is of particular interest. It is sometimes called the catastrophe set. The image 

of the catastrophe set under the projection is the set of all critical values of the projection. It is 

sometimes called the bifurcation set. 

In this thesis, catastrophe theory has been applied to voltage stability analysis in power systems 

for the purpose of finding stable and unstable regions directly from the system equations. The 

elementary catastrophe chosen for the study was the swallowtail. Some reasoning was behind this 

choice. Firstly, our system equations only have one state variable in terms of voltage stability, namely 
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voltage. Therefore the hyperbolic, elliptic and the parabolic umbilics were eliminated since they all 

have two state variables. This left us with a choice of anything from a one-dimensional to a four-

dimensional control space. The fold was immediately thought to be too simple to produce accurate 

enough results. For similar reasons the swallowtail prevailed over the cusp, i.e., without getting to 

complicated it would be more accurate. Finally, the butterfly was considered to be complicated, 

simply for the reason that the control space would be 4-dimensional and hard to visualize. Also 

some previous studies on power systems had been done using the swallowtail catastrophe [13],[14]. 

A3 The Swallowtail Catastrophe 

The derivative of the potential function 

Vs(u,x) = uix + ^u2x2 + ^u3xn + ^x5 (A.67) 
z o o 

with respect to the state variable x is 

/5(u,x) = = 11!+ u2x + uax2 + x4 (A.68) 

The catastrophe manifold Ms is the set 

Ms = {(u,x) € R n x R : /5(u,x) = 0} (A.69) 

The catastrophe set Cs is the set of all points in Ms for which 

d e t ef^x) _ d e t , + 2 ^ + ^ = u 2 + 2 u ^ x + _ 0 ( A > 7 0 ) 

ox v ' 

Cs is therefore the solution set of the system 

ui + u2x + U.-JX2 + x4 = 0 

(A.71) 
u2 + 2u3x + 4xn = 0 

Eliminating the second term in the first equation yields an equivalent system of equations: 

ui - unx2 - 3x4 = 0 
(A.72) 

u 2 + 2u3x + 4x3 = 0 
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From this we obtain 

C s = {(st2 + 3t4, -2st - 4t3, s, t) : (s, t) e R2} (A.73) 

The bifurcation set Bs is the projection of Cs onto it*3: 

B s = {(st2 + 3t4, -2st - 4t3, s, t) : (s, t) G R2} (A.74) 

We can have a closer look at Bs by studying its cross sections with the planes E? x {s}. The 

projection onto B? of the cross section is the image of the real line under the mapping 

As : R —• R2,A8(t) = (st2 + 3t4, -2st - 4t3) (A.75) 

that is, 

BB n (R2 x s) = A6(R) x {s} (A.76) 

Since X"(—t) = (X\(t), — A|(t)) , the image X"(R) is symmetric in theui axis. \"(R) is a curve 

in R?. Its slope can be computed from (Xs)'(t) = 2(s + 6t 2 )(t , - 1 ) . We obtain 

t^O (A 77) 

The curve turns left. The direction of movement along A*(.ft) is given by 

m . W i - 5 f c * ! ! l , 11 (A7S1 
m~wm'^mw(t'-l) <A-78> 
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Figure A.14: The Tail of the Swallow 

If s < 0, s + 6t2 changes sign from positive to negative at t\ = --^/(-s/6) and again from 

negative to positive at t2 = y/(-s/6). At all other points 6 is continuous. We have 

l i m S(t) = 
t - > t r 

/ ( t i , - l ) = - l i m « ( t ) 

S 2 4s / - S 

l i m *(t) = . 1 

(A.79) 
(t 2 ,-l)= - lim S(t) 

t - * t ^ 

s2 4s f-s 

The points A s ( t i ) and A s ( t 2 ) are cusp points. The tail of the swallow can now be seen in Figure A.M. 

If 5 = 0, s + 6t2 = 6f2, hence 6(t) is continuous, except for t = 0. Even there it has a limit: 

lim^(t) = (0,-1). The curve is shown in Figure A.15. 

If s > 0, s + 6t2 > 6t2, hence £(<) is continuous. X3 is an embedding. The curve is a 

one-dimensional submanifold. It is shown in Figure A. 16. 
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s = o 

Figure A.15: Manifold for s 

* * ( R ) _ _ _ _ 

S>0 

Figure A.16: Manifold for s 
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Appendix B 
Program Code: General 6-Bus Case 

The swallowtail catastrophe model for voltage stability was programmed using the C programming 

language [22], The program was mostly built on function prototyping were each parameter and 

variables were calculated in their own function. Data was read from a file and then the program 

found the control variables and determined voltage stability from them. The program is a general 

program for the 6-bus example where any or al l of the buses could be examined for voltage stability. 

A general program for any power system would need to use arrays or pointers to greater extent and 

subprograms would be needed for the system solving prior to the catastrophe manipulation. 

A n example of the datafile read i n to the program follows the program listing. 

/ * G E N E R A L S W A L L O W T A I L C A T A S T R O P H E P R O G R A M F O R A N A L Y S I N G 
V O L T A G E S T A B I L I T Y F O R A S P E C I F I C 6 - B U S E X A M P L E * / 

• i n c l u d e < m a t h . h > 
• i n c l u d e < s t d i o . h > 

/ * G l o b a l V a r i a b l e s D e c l a r a t i o n s * / 

d o u b l e X[6] , R [ 6] , X c l , Xc5, Q [6] , V O [ 6] , t l , t5, d [ 6] , a l [ 6] , b e [ 6] , o m [ 6] , k s i [ 6] , 
j [ 7 ] , k [ 7 ] , l [ 7 ] , m [ 7 ] ; 

d o u b l e X c l , X c 5 , t l , t 5 ; 
i n t c h o s e b u s , c b u s , b u s , n b u s , c a s ; 

/ * M a i n P r o g r a m * / 

m a i n () 
< 

/ * F u n c t i o n D e c l a r a t i o n s * / 
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double Vt () ,Vtlow() ,T() , Tlow (), controlU () , 
controlV (), controlW (), paramAO () 
,paramAl(),paramA2(),paramA3(),paramA4() 
, constantCl () , constantC2 (), constantC3 () 
,constantC4(),constantC5(),constantC6() 
,S0<),S1(),S2(),S3(),S4(),T0(),T1(),T2() 
,T3<),T4(),P0(),P1(),P2(),P3(),P4(),R0() 
, R l ( ) , R 2 ( ) , R 3 ( ) , R 4 ( ) , p l O ( ) , p l l ( ) , p l 2 ( ) 
, p l 3 O , p l 4 ( ) , r l 0 < > , r l l ( ) , r l 2 ( ) , r l 3 ( ) 
, r l 4 0,k4(),14 0,ni4(),k3<),13(),m3 0 
, j2 0,k2 0,12 0 f m 2 ( ) , k l O , l i t ) , ml () 
, alpha5 {) ,beta5 O , omega5 (), ksiS O 
,alpha4 O,beta4 O,omega4 0 ,ksi4() 
,alpha3(),beta3(),omega3(), ksi3{) 
,alpha2 0 ,beta2 0 , omega2 0 , ksi2 () 
, a l p h a l ( ) , b e t a l ( ) , o m e g a l 0 , k s i l 0 ; 

/* V a r i a b l e s */ 

double contv.x; 
i n t i , c ; 

/* Function f o r Input of Data C a l l e d */ 

dataf (); 

/* Function f o r Choosing Voltage Collapse Bus */ 

buschoice(); 

f o r (c = 1; c <= cas; C + + ) 

( 
i f (chosebus == 6) 

{ 
cbus = c; 
) 

e l s e 
{ 
cbus = chosebus; 
i 

/* I n i t i a l i z i n g Arrays */ 

m[0] = 0.0;m[l] = 0.0;m[2] = 0.0;m[3] = 
1[0] = 0.0;1[1] = 0.0;1[2] •= 0.0;1[3] = 
k[0] = 0.0;k[l] = 0.0;k[2] = 0.0;k[3] = 
j[0] = 0 . 0 ; j [ l ] = 0.0;j[2] = 0.0;j[3] = 
k[0] = -V0[0];k[6] •= -V0[0]; 
a l [ l ] = alpha! ();al[2) •= alpha2 () ; a l [3] 

al[ 5 ] = alpha5{);al[0]=0.0; 
b e [ l ] - b e t a l ().-be [2J = beta2 O ;be [3] = 

be[5] = beta5();be[0]=0.0; 
om[l] = omegal () ; om[2] «= omega2 () ;om[3] 

om[5] = omega5();om[0]=0. 0; 
k s i [ l ] = k s i l ( ) ; k s i [ 2 ] = k s i 2 ( ) ; k s i [ 3 ] 

k s i [ 5 ] = k s i 5 ( ) ; k s i [ 0 ] = 0.0; 

/* Control f o r Bus Constants C a l c u l a t i o n s */ 

f o r ( i = 5; i >= cbus + 1; i ~ ) 
< 
bus = i ; 
i f (bus == 5) 

{ 
i f (bus == cbus + 1) 

{ 
k[bus] = k4(); 

/* Loop for Each Bus */ 

/* Case of A l l Buses Examined */ 

/* Case of Single Bus Examined */ 

0.0;m[4] = 0.0;m[5] •= 0.0;m[6]=0.0 
0.0;1[4] = 0.0;1[5] = 0.0;1[6]=0.0 
0.0;k[4] = 0.0;k[5J = 0.0;k[6]=0.0 
0.0;j[4] = 0.0;j[5] = 0.0;j[6)=0.0 

= alpha3 () ; a l [4] •= alpha4 0 ; 

beta3();be[4] = beta-4 O ; 

= omega3 () ;om[4] = omega4(); 

= ksi3 () ; k s i [4] = ksi4 () ; 
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e l s e 

) 

1 [ b u s ] 

m f b u s ] 

) 

f 

k [ b u s ] 

1 [ b u s ] 

m [ b u s ] 

} 

e l s e 

IK); 

k l Oi 
1 1 0 ; 

m l ( ) ; 

{ 
n b u s = b u s 

I f ( b u s == 

( 

k [ b u s ] 

1 [ b u s ] 

m [ b u s ] 

) 

e l s e 

( 
j [ b u s ] 

k [ b u s ] 

1 [ b u s ] 

m [ b u s ] 

) 

+ 1 ; 
c b u s + 1 ) 

k 3 ( ) , 

1 3 0 ; 

m3 O ; 

j 2 ( ) 

k 2 ( ) 

1 2 0 

m 2 ( ) 

C o n s t a n t s o f T y p e F o u r 

C o n s t a n t s o f T y p e O n e 

C o n s t a n t s o f T y p e T h r e e 

C o n s t a n t s o f T y p e T w o 

f o r ( 1 = 1 ; i <= c b u s - 1 ; i + + ) 

1 ) 

b u s = i ; 

i f ( b u s • 

{ 
i f ( b u s == c b u s - 1) 

el se 

k [ b u s ] 

1 [ b u s ] 

m [ b u s ] 

) 

< 

k [ b u s ] 

1 [ b u s ] 

m [ b u s ] 

> 

e l s e 

e l s e 

j [ b u s ) 

k [ b u s ] 

1 [ b u s ] 

m [ b u s ] 

) 

n b u s = b u s 

i f ( b u s == 

( 

k [ b u s ] 

1 [ b u s ] 

m [ b u s ] 

) 

k 4 () 

14 0 

m l 0 

k l O; 
1 1 0 ; 

m l ( ) ; 

- 1 ; 
c b u s -

= k 3 ( ) ; 

= 1 3 0 , 

= n > 3 ( ) , 

j 2 ( ) ; 

k 2 ( ) ; 

1 2 0 ; 
m2 () ; 

1) 

C o n s t a n t s o f T y p e F o u r 

C o n s t a n t s o f T y p e O n e 

C o n s t a n t s o f T y p e T h r e e 

C o n s t a n t s o f T y p e T w o 

) 
T y p e O n e B u s b e s i d e S l a c k B u s 
T y p e T w o G e n e r a l B u s 

T y p e T h r e e B u s b e s i d e V o l t a g e S t u d y B u s 
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Type Four Bus beside Voltage Study Bus and beside Slack Bus 

/* Output of Results */ 

p r i n t f ("\n") ; 
p r i n t f ( " C o l l a p s e at Bus Number %i\n",cbus); 
p r i n t f ( " C o n t r o l V a r i a b l e U: %4. 4f", controlU ( ) ) ; 
p r i n t f ( " ,V: %4 . 4f", controlV () ) ; 
p r i n t f ( " ,W: % 4 . 4 f c o n t r o l W ( ) ) ; 
p r i n t f ("\n") ; 

/* Checking f o r P o s i t i o n i n g With Respect to Manifolds */ 

i f (fabs(Vt()) > f a b s ( c o n t r o l V ( ) ) ) . 
{ 
i f (controlUO > 0.0) 

< 
p r i n t f ( " S y s t e m Point Above Manifold, U > 0"); 
) 

el s e 
( 
i f (controlWO > 0.0 ii controlWO < 5. 0/4 . 0*pow (controlU () , 2. 

< 
pr i n t f ( " S y s t e m Point Inside Manifold"); 
} 

e l s e 
( 
i f (controlWO > 5.0/4 . 0*pow (controlU () , 2. 0) ) 

< 
prin t f ( " S y s t e m Point Above Manifold, U < 0"); 
} 

e l s e 
{ 
i f (fabs(Vtlowl) ) < fabs(controlV() ) ) 

{ 
printf ( " S y s t e m Point Inside Manifold"); 
) 

e l s e 
{ 
p r i n t f ( " S y s t e m Point Below Manifold"); 
) 

)}}) 
e l s e 

< 

p r i n t f ( " S y s t e m Point Outside Manifold"); 
) 

p r i n t f ( " \ n \ n " ) ; 
) 
) 

/* Function f o r Input of Data */ 

dataf () 
{ 

I* V a r i a b l e Declarations */ 

FILE *Y, * fopen () ; 
char junk[8], t ; 
double mV[6],mQ[6], t e s t ; 
f l o a t temp; 
i n t i , a ; 

i f ( (Y « fopen ("input.dat", V ) | == NULL) /* Opening D a t a F i l e */ 
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p r i n t f ( " E r r o r , Data F i l e NOT Found!"); 
) 

e l s e 
< 
fo r ( i = 0; i <= 5; ++i) 

< 
fscanf (Y,"%s %s %f",junk, junk,stemp); 
d [ i l = (double) temp; 
) 

f o r ( i = 0; i <= 5; ++i) 
{ 
fscanf(Y,"%s %s %f",junk,junk,Stemp); 
V C[i] = (double) temp; 
} 

f o r ( i = 0; i <= 5; ++i) 
( 
f s c a n f ( Y , " % s %s %f",junk,junk,stemp); 
Q[i] = (double) temp; 
) 

f o r ( i = 0; i <= 5; ++i) 
( 
fscanf(Y,"%s %s %f",junk,junk,Stemp); 
R[i] = (double) temp; 
) 

f o r ( i = 0; i <= 5; ++i) 
( 
fscanf(Y,"%s %s %f",junk,junk,Stemp); 
X [ i ] = (double) temp; 
) 

fscanf(Y,"%s %s %f",junk,junk,Stemp); 
X c l = (double) temp; 
fs c a n f (Y,"%s %s %f",junk,junk,Stemp); 
Xc5 = (double) temp; 
fsca n f ( Y , " % s %s %f",junk,junk,Stemp); 
t l = (double) temp; 
fsca n f ( Y , " % s %s %f",junk,junk,stemp); 
t5 = (double) temp; 
f o r ( i = 0; i <= 5; ++i) 

( 
f s c a n f ( Y , " % s %s %f",junk,junk,Stemp); 
m V [ i ) = (double) temp; 
V0[i) = V0[i]*mV[i]; 
) 

f o r ( i = 0; i <= 5; ++i) 
< 
fscanf(Y,"%s %s %f",junk,junk,Stemp); 
mQ[i] = (double) temp; 
Q[i] = Q[i]*mQ[i]; 
} 

f c l o s e (Y) ; 
); 

a = 1; 
ret u r n (a) ; 
} 

/* Function f o r Choosing Voltage Collapse Bus 

buschoice () 
< 

i n t a; 
pri n t f ( " W h i c h Bus (1-5), 6 i f a l l buses:"); 
scanf("%i",Schosebus); 
i f (chosebus •== 6) 

< 
cas = 5; /* A l l Buses */ 
) e l s e 

/* Phase Angles */ 

/* Voltages */ 

/* Reactive Loads */ 

/* Line Resistances */ 

/* Line Reactances */ 

/* Capacitor */ 

/* Reactances. */ 

/* Transformer */ 

/* Ratio. */ 

/* Voltage Factors 

/* Load Factors */ 
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< 

cas =1; /* Only One Bus */ 
} 

a = 1; 
r e t u r n (a) ; 
) 

/* Function f o r F i n d i n g Catastrophe Point Vt */ 

/* For the Manifold Comparising, a Swallowtail Manifold Point */ 

double Vt () 
{ 

double v,pow(); 

v = 2.0*controlU()*T() + A . 0*pow (T () , 3. 0) ; 
re t u r n (v) ; 
) 

/* Function f o r F i n d i n g the Catastrophe Point Vtlow */ 

/* For the Manifold Comparising, a Swallowtail Manifold Point */ 

double Vtlow() 
{ 

double v, pow () ; 

v = 2.0*controlU()*Tlow() + A.0*pow(Tlow(),3.0); 
r e t u r n (v) ; 
) 

/* Function f o r F i n d i n g the Catastrophe V a r i a b l e t */ 
/* To Find the Swallowtail Manifold Point Vt */ 

double TO 
( 

double t, sqrt (), pow (); 

i f (controlWO < 0.0 ss controlUO > 0.0) 
( 
t = 0.0; 
) 

e l se 
( 
t = sqrt (-controlUO/6.0 + sqrt (pow (controlU () , 2 . 0)/36. 0 

+ controlW () /3. 0) ) ; 
) 

r e t u r n (t) ; 
) 

/* Function f o r F i n d i n g the Catastrophe V a r i a b l e tlow */ 
/* To Find the Swallowtail Manifold Point Vtlow */ 

double Tlowl) 
( 

double t, sqrt () ,pow () ; 

i f (controlWO < 0.0 it controlUO > 0.0) 
{ 

t = 0.0; 

) 
e l s e 

{ 
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t - sqr t ( - c o n t r o l U ( ) /6 .0 - sqr t (pow (controlU (), 2. 0 ) /36 . 0 
+ c o n t r o l W ( ) / 3 . 0 ) ) ; 

} 

r e t u r n (t) ; 
) 

/ * Func t ion for F i n d i n g C o n t r o l V a r i a b l e U * / 

double contro lU( ) 
{ 

double u; 

u = 1.0/paramA4 () * (paramA2 O - 3.0 4 paramA3 () *paramA3 () / (8.0*paramA4 () ) ) ; 
r e t u r n (u); 

) 

/ * F u n c t i o n f o r F i n d i n g C o n t r o l V a r i a b l e V * / 

double c o n t r o l V O 

double v; 
v = 1.0/paramA4 ()* (paramAl <) - paramA2 () *paramA3 () / (2. 0*paramA4 ()) + 

paramA3 () *paramA3 () *paramA3 () / (8.0*paramA4 () *paramA4 () ) )S 0 ; 
r e t u r n (v); 
) 

/ * F u n c t i o n for F i n d i n g C o n t r o l V a r i a b l e W * / 

double contro lWO 
( 

double w; 
w = paramAO ()/paramA4 () - paramAl () *paramA3 () / (4 . 0*paramA4 () * 

paramA4()) + paramA2()*paramA3()*paramA3()/(16.0*paramA4()* 
paramA4()*paramA4()) - 3.0*paramA3()*paramA3()*paramA3()* 
paramA3 () / (256. 0*paramA4 () *paramA4 () *paramA4 () *paramA4 () ) S () ; 

r e t u r n (w) ; 
) 

/ * F u n c t i o n f or F i n d i n g Catastrophe Parameter Ao * / 

double paramAO () 
( 

double aO; 
aO = c o n s t a n t C l f ) + constantC2 () *V0 [cbus] + 0.5* (POO + ROO) + constantC3() 

*V0[cbus]*V0[cbus]*S0() + constantC40*V0[cbus]*S00 + constantC5() 
*V0[cbus]*V0[cbus]*T0() + cons tantC6( )*V0[cbus ]*T0O; 

r e t u r n (aO) ; 
) 

/ * F u n c t i o n f o r F i n d i n g Catastrophe Parameter A l * / 

double paramAl0 
( 

double a l ; 
a l = constantC2() + 0.5*(P1() + R l () ) + const ant C3 () * (VO [cbus] *V0 [cbus ] *S1 () 

+ 2*V0 [cbus] *S0 () ) + constantC4 ()* (V0[cbus]*Sl () + SO () ) 
+ constantC5 () * (VO [cbus] *V0 [cbus] *T1 () + 2*V0 [cbus] *T0 () ) 
+ constantC6()* (V0[cbus]*Tl () + T O O ) ; 

r e t u r n ( a l ) ; 
) 

/ * F u n c t i o n for F i n d i n g Catastrophe Parameter A2 * / 

double paramA2() 
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double a2; 
a2 = constantC2 ()/2.0 + 0.5MP2O + R2{)) + constantC3 {) * (VO [cbus] 

*V0[cbus]*S2() + 2*V0[cbus]*Sl () + (V0[cbus] + 1.0)*S0()) 
+ constantC4 () * (VO [cbus] *S2 () 
+ S l ( ) + SOO/2.0) + constantC5 () * (VO [cbus] *V0 [cbus] *T2() 
+ 2*V0[cbus]*Tl () + (VOtcbus] + 1.0)*T0()) 
+ constantC6()*(V0[cbus]*T2() + T l () + TOO/2.0); 

ret u r n (a2) ; 
) 

/* Function f o r F i n d i n g Catastrophe Parameter A3 */ 

double paramA3 () 
< 

double a3; 
a3 •= constantC2 O/6.0 + 0.5* (P3() + R3()) + constantC3 () * (VO [cbus] 

*V0[cbus]*S3() + 2*V0[cbus]*S2() + (V0[cbus] + 1.0)*S1() 
+ (V0[cbus]/3.0 + 1.0)*S0O) 
+ constantC4()*(V0[cbus]*S3() + S2 0 + S1O/2.0 + SOO/6.0) 
+ constantC5()*(V0 [cbus] *V0 [cbus] *T3 0 + 2*V0 [cbus] *T2 () 
+ (V0[cbus] + 1.0)*T1() + (VOtcbus] /3.0 + 1.0)*T0O) 
+ constantC6()*(V0[cbus]*T3() + T2 0 + T1O/2.0 + TOO/6.0); 

return(a3); 
1 

/* Function f o r F i n d i n g Catastrophe Parameter A4 */ 

double paramA4() 
{ 

double a4; 
a4 = constantC20/24.0 + O.S*(P4() + R4 () ) + constantC3 () * (VO [cbus] 

*V0[cbus]*S4() + 2*V0[cbus]*S3() + (V0[cbus] + 1.0)*S2() 
+ (V0(cbus]/3.0 + 1.0)*S1() + ((VOtcbus] + 1. 0) /12 . 0) *S0 () ) 
+ constantC4 () * (VOtcbus) *S4 () + S3 0 + S2O/2.0 + S1O/6.0 
+ S0O/24.0) + constantC5 () * (VO [cbus ] *V0 [cbus] *T4 () 
+ 2*V0[cbus]*T3() + (VOtcbus] + 1.0)*T2() + (VO [cbus]/3.0 
+ 1.0)«T1() + ((V0[cbus] + 7.0)/12.0)*T0O) 
4 constantC6 () * (VO [cbus] *T4 () 
+ T3() + T2O/2.0 + T1O/6.0 + TOO/24.0); 

ret u r n (a4) ; 
) 

/* Function f o r F i n d i n g Constant CI */ 
/* A Constant For C o l l e c t i o n of Like 'Terms */ 

double constantCl() 
( 

double CI; 
CI = -1.0/2.0*(k[cbus-l)*al[cbus] + k[cbus+1]*ksi[cbus]); 

re t u r n (CI); 
) 

/* Function f o r F i n d i n g Constant C2 */ 
/* A Constant For C o l l e c t i o n of Like Terms */ 

double constantC2() 
{ 

double C2; 
C2 *= 2.0*om[cbus] + 2.0*be(cbus] - 1 [cbus-1] * a l [cbus] - 1 [cbus+l] * k s i [cbus] 

r e t u r n (C2) ; 
) 

/* Function f o r F i n d i n g Constant C3 */ 
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/ * A Constant For C o l l e c t i o n of L i k e Terms * / 

double constantC3() 
{ 

double C3; 
C3 = ( 1 . 0 / 2 . 0 ) * l [ c b u s - l ] * l [ c b u s - 1 ] ; 

r e t u r n (C3) ; 
) 

/ * F u n c t i o n f o r F i n d i n g Constant C4 * / 
/ * A Constant For C o l l e c t i o n of L i k e Terms * / 

double constantC4 () 
< 

double C4; 
C4 = ( 1 . 0 / 2 . 0 ) * 1 [ c b u s - 1 ] * k [ c b u s - l ] ; 

r e t u r n (C4); 
) 

/ * F u n c t i o n f o r F i n d i n g Constant C5 * / 
/ * A Constant For C o l l e c t i o n of L i k e Terms * / 

double constantC5() 
( 

double C5; 
C5 = ( 1 . 0 / 2 . 0 ) * l [ c b u s + l ] * l [ c b u s + U ; 

r e t u r n (C5) ; 
) 

/ * F u n c t i o n f o r F i n d i n g Constant C6 * / 
/ * A Constant For C o l l e c t i o n of L i k e Terms * / 

double constantC6() 
{ 

double C6; 
C6 = ( 1 . 0 / 2 . 0 ) * k [ c b u s + l ] * l [ c b u s + l ] ; 

return (C6) ; 
j 

/ * F u n c t i o n f o r F i n d i n g Constant SO * / 
/ * Constant from T a y l o r S e r i e s For Square Root * / 

double S0() 
< 

double SO; 
50 = 1 . 0 / s q r t ( p l O ( ) ) ; 

r e t u r n ( S O ) ; 
) 

/ * F u n c t i o n f o r F i n d i n g Constant SI * / 
/ * Constant from T a y l o r S e r i e s For Square Root * / 

double SI () 
{ 

double SI ; 
51 = - ( 1 . 0 / 2 . 0 ) * p l l ( ) / p o w ( p l 0 ( ) , 1 . 5 ) ; 

r e t u r n (SI) ; 
) 

/ * F u n c t i o n for F i n d i n g Constant S2 * / 
/ * Constant from T a y l o r S e r i e s For Square Root * / 
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double S2() 
< 

double S2; 
52 •= (1.0/ (2.0*pow(pl0 ( ) , 0 . 5 ) ) ) * (pow(pll () ,2.0) / (4.0*pow(pl0 0,2.0)) 

- p l 2 0 / p l O ( > ) ; 

return(S2); 
} 

/* Function f o r F i n d i n g Constant S3 */ 
/* Constant from Taylor Series For Square Root */ 

double S3 () 
( 

double S3; 
53 = (1.0/ (2.0*pow (plO () ,0.5) ) ) * (3.0*pll ()*pl2 0 /(2.0*pow (plO () ,2.0) ) 

- p l 3 ( ) / p l 0 ( ) - 5.0*pow(pllO,3.0)/(8.0*pow(plO(),3.0))); 

return(S3); 
> 

/* Function f o r F i n d i n g Constant S4 */ 
/* Constant from Taylor Series For Square Root */ 

double SI () 
< 

double S4,pow(); 
54 = (1.0/ (2.0*pow(pl0 () , 0.5) ) ) * (3.0*pll () *pl3 () / (2 . 0*pow (plO (), 2 . 0) ) 

- p l 4 ( ) / p l 0 ( ) + 3.0*pow(pl2 () ,2.0) / (4.0*pow(pl0 () ,2.0) ) 
- 15.0*pow(pll () ,2.0) *pl2 0 / (8.0*pow(pl0 (), 3.0)) 
+ 35.0*pow ( p l l () , 4.0) / (64.0*pow(pl0() , 4.0) ) ) ; 

return (S4) ; 
) 

/* Function f o r F i n d i n g Constant TO */ 
/* Constant from Taylor Series For Square Root */ 

double TOO 
i 

double TO; 
TO = 1.0/sqrt (rlO () ) ; 

retu r n (TO); 
) 

/* Function f o r F i n d i n g Constant TI */ 
/* Constant from Taylor Series For Square Root */ 

double T I 0 
( 

double TI; 
TI •= - ( 1 . 0 / 2 . 0 ) * r l l ( ) / p o w ( r l 0 ( ) , 1 . 5 ) ; 

r e t u r n ( T I ) ; 
} 

/* Function f o r F i n d i n g Constant T2 */ 
/* Constant from Taylor Series For Square Root */ 

double T2() 
( 

double T2; 
T2 = (1.0/ (2.0*pow (rlO () , 0.5) ) ) * (pow ( r l l 0 , 2. 0) / (4 . 0*pow (rlO () ,2.0) ) 

- r l 2 0 / r l O ( ) ) ; 

r e t u r n (T2); 
) 
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/* Function f o r Fi n d i n g Constant T3 */ 
/* Constant from Taylor Series For Square Root */ 

double T3 () 
( 

double T3; 
T3 = (1.0/ (2.0*pow (rlO () , 0.5) ) ) * <3.0*rll () * r l 2 () / (2. 0*pow (rlO () , 2 . 0) ) 

- r l 3 ( ) / r l 0 ( ) - 5.0*pow(rll () , 3.0) / (8.0*pow(rl0 () ,3.0) ) ) ; 

retu r n (T3); 
} 

/* Function f o r F i n d i n g Constant T4 . */ 
/* Constant from Taylor Series For Square Root */ 

double T4 () 
( 

double T4,pow () ; 
T4 = (1.0/ <2.0*pow (rlO () , 0.5) ) ) * (3. 0 * r l l () * r l 3 () / (2. 0*pow (rlO <) , 2. 0) ) 

- r l 4 ( ) / r l 0 ( ) + 3.0*pow(rl2 () , 2.0) / (4.0*pow (rlO () ,2.0) ) 
- 15.0*pow(rll (),2.0)*rl2() / (8. 0*pow (rlO (), 3.0) ) 
+ 35.0*pow(rll 0,4.0) / (64 . 0*pow (rlO () , 4 . 0) ) ) ; 

retu r n (T4) ; 
) 

/* Function f o r F i n d i n g Constant P0 */ 
/* Constant from Taylor Series For Square Root */ 

double P0() 
< 

double P0,sqrt 0; 
P0 = sqrt (plO () ) ; 

retu r n (P0) ; 
} 

/* Function f o r Fin d i n g Constant PI */ 
/ * C o n s t a n t f r o m Taylor Series For Square Root */ 

double PIO 
< 

double P I , s q r t ( ) ; 
PI = ( 1 . 0 / 2 . 0 ) * p l l ( ) / s q r t ( p l 0 ( ) ) ; 

r e t u r n (PI) ; 
) 

/* Function f o r F i n d i n g Constant P2 */ 
/* Constant from Taylor Series For Square Root */ 

double P2 () 
( 

double P2,pow(); 
P2 = (1.0/2.0)*pow(pl0(),0.5)*(pl2()/pl0() 

- powtpll (),2.0)/ (4.0*pow(pl0 () , 2.0) ) ) ; 

re t u r n (P2) ; 
} 

/* Function f o r F i n d i n g Constant P3 */ 
/* Constant from Taylor Series For Square Root */ 

double P3 () 
{ 

double P3,pow(); 
P3 = (1.0/2.0) *pow(pl0 (), 0.5) * (pl3 O/pl0 () - p l l () *pl2 () / (2. 0*pow (pi 0 () , 2. 0) ) 

+ pow ( p l l (),3.0) / (8. 0*pow(pl0 (),3.0) ) ) ; 
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r e t u r n (P3) ; 
) 

/* Function f o r F i n d i n g Constant P3 */ 
/* Constant from Taylor Series For Square Root */ 

double P4() 
{ 

double P4, pow () ; 
P4 = (1.0/2.0) *pow(plO (), 0.5) * (pl4 0/plO () - p l l0 * p l 3 ( ) / ( 2 . 0 * p o w ( p i 00 , 2 

- pow (pl2 () , 2. 0) / (4 . 0*pow (plO () , 2. 0) ) 
+ 3.0*pow ( p l l () ,2.0) *pl2 () / (8.0*pow(pl0 () , 3.0) ) 
- 5.0*pow(pll () , 4.0) / (64.0*pow (plO () , 4 . 0) ) ) ; 

retu r n (P 4); 
) 

/* Function for F i n d i n g Constant R0 */ 
/* Constant from Taylor Series For Square Root */ 

double R0 () 
< 

double R0,pow(); 
R0 = pow(rl0 () , 0.5) ; 

retu r n (R0) ; 
) 

/* Function f o r Find i n g Constant Rl */ 
/* Constant from Taylor Series For Square Root */ 

double Rl () 
( 

double Rl,pow(); 
Rl = (1.0/2.0) * r l l ()/pow(rl0 () , 0.5) ; 

r e t u r n ( R l ) ; 
) 

/ * F u n c t i o n f o r Fi n d i n g Constant R2 */ 
/* Constant from Taylor Series For Square Root */ 

double R2() 
( 

double R2, pow () ; 
R2 = (1.0/2.0) *pow(rl0 () , 0.5) * (rl2 O / r l O () 

- pow(rll (),2.0)/ (4.0*pow (rlO () , 2. 0) ) ) ; 

return (R2) ; 
} 

/* ' Function f o r F i n d i n g Constant R3 */ 
/* Constant from Taylor Series For Square Root */ 

double R3 () 
( 

double R3,pow () , sqrt () ; 
R3 = (1.0/2.0)*sqrt (rlOO )* ( r l 3 ()/rlO () - r l l 0 * r l 2 O / (2 . 0*pow (rlO () , 2 . 0) 

+ pow ( r l l () ,3.0) / (8.0*pow(rl0 () ,3.0) )) ; 

retu r n (R3) ; 
) 

/* Function f o r F i n d i n g Constant R3 */ 
/* Constant from Taylor Series For Square Root */ 

double R4 () 
f 
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double R4,pow () , sqrt () ; 
R4 = (1.0/2.0) *s q r t (rlD() )* (rl4 ()/rlO () - rl1()*rl3()/(2.0*pow(rlO<),2.0)) 

- pow(rl2 () ,2.0) /(4.0*pow(rl0 () ,2.0) ) 
+ 3.0*pow(rll0,2.0)*rl2()/(8.0*pow(rlO(), 3.0)) 
- 5.0*pow ( r l l () , 4.0) / (64.0*pow (rlO () , 4.0) ) ); 

return(R4); 
) 

/* Function f o r F i n d i n g Constant plO */ 
/* Parameter of C o l l e c t e d Terms Inside Square Root */ 

double plO () 
< 

double p0,pow(); 
pO = pow(1[cbus+1],2.0)*pow(V0[cbus] ,2.0) 

+ 2.0*k[cbus+l]*l[cbus+l]*V0[cbus] + m[cbus+l] + pow(k[cbus+1],2.0); 

return(pO); 
) 

/* Function f o r F i n d i n g Constant p l l */ 
/* Parameter of C o l l e c t e d Terms Inside Square Root */ 

double p l l () 
( 

double p i , pow (); 
p i = 2.0*(pow(l[cbus+l],2.0)*V0[cbus] + k[cbus+1]*1[cbus+1]) ; 

return (pi) ; 
) 

/* Function f o r F i n d i n g Constant pl2 */ 
/* Parameter of C o l l e c t e d Terms Inside Square Root */ 

double pl2() 
< 

double p2,pow(); 
p2 = pow(1[cbus+1],2.0)*(V0[cbus] + 1.0) + k[cbus+1]*1[cbus+1]; 

return (p2) ,-
) 

/* Function f o r F i n d i n g Constant pl3 */ 
/* Parameter of C o l l e c t e d Terms Inside Square Root */ 

double pl3() 
{ 

double p3,pow () ; 
p3 = pow(l[cbus+l],2.0)*(V0[cbus]/3.0 + 1.0) + k[cbus+1]*1[cbus+1]/3.0; 

ret u r n (p3) ; 
) 

/* Function f o r F i n d i n g Constant pl4 */ 
/* Parameter of C o l l e c t e d Terms Inside Square Root */ 

double pi4 () 
{ 

double p4,pow(); 
p4 = pow(1[cbus+1],2.0)*(V0[cbus] + 7.0)/12.0 + k[cbus+1]*1[cbus+1]/12. 0; 

return(p4); 
} 

/* Function f o r F i n d i n g Constant plO */ 
/* Parameter of C o l l e c t e d Terms Inside Square Root */ 
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double rlO() 
< 

double rO,pow(); 
rO = pow(l [cbus-1] ,2.0)*pow(V0[cbus],2.0) 

+ 2.0*k[cbus-1]*1[cbus-1]*V0[cbus] + m[cbus-l] + pow(k[cbus-1],2.0); 

r e t u r n (rO); 
} 

/* Function for F i n d i n g Constant r l l V 
/* Parameter of C o l l e c t e d Terms Inside Square Root */ 

double r l l () 
i 

double rl,pow(); 
r l = 2.0*(pow(l[cbus-l],2.0)*V0[cbus] + lc [cbus-1 J *1 [cbus-1] ); 

re t u r n ( r l ) ; 
) 

/* Function f o r Fin d i n g Constant r l 2 */ 
/* Parameter of C o l l e c t e d Terms Inside Square Root */ 

double r l 2 () 
{ 

double r2,pow (); 
r2 = pow(l[cbus-l],2.0)*(V0[cbus] + 1.0) + k [cbus-1 ] *1 [cbus-1 ] ; 

r e t u r n ( r 2 ) ; 
) 

/* Function f o r F i n d i n g Constant r l 3 */ 
/* Parameter of C o l l e c t e d Terms Inside Square Root */ 

double r l 3 ( ) 
{ 

double r3,pow(); 
r3 = pow(l[cbus-l],2.0)*(V0[cbus]/3.0 + 1.0) + k[cbus-1]*1[cbus-1]/3.0; 

r e t u r n (r3); 
) 

/* Function f o r F i n d i n g Constant r l 4 */ 
/* Parameter of C o l l e c t e d Terms Inside Square Root */ 

double r l 4 () 
i 1 

double r4,pow(); 
r4 = pow(1[cbus-1],2.0)*(V0[cbus] + 7.0J/12.0 + k[cbus-1]*1[cbus-1]/12.0; 

r e t u r n (r 4) ; 
) 

/* Constants for Type 4 */ 

double k4 () 
I 

double k4; 
k4 = al[bus]*V0[0]/(be[bus] + om[bus]); 

r e t u r n (k4) ; 
) 

double 14 0 
( 

double 14; 
14 = k s i [bus] / (befbus] + om[bus]); 
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r e t u r n (14) ; 
) 

double m4() 
{ 

double m4; 
m4 = 4.0*Q[bus]/(be[bus] + omfbus]); 

return(m4); 
) 

,'* Constants f o r Type 3 */ 

double k3 () 
< 

double k3; 
k3 = (al[bus]*j[nbus]/(l[nbus] + m[nbus]*V0[bus]))/(be[bus] + om[bus]); 

re t u r n (k3) ; 
) 

double 13 0 
< 

double 13; 
13 = ksi[bus]/(be[bus] + om[bus]); 

return(13); 
} 

double m3() 
{ 

double m3; 
m3 = (4.0*(Q[bus] - a l [bus] *k [nbus] / (1 [nbus] + m[nbus] *V0 [bus] ) ) ) / (be [bus 

+ om[bu s]) ; 

return(m3); 
) 

/* Constants for Type 2 */ 

double j2() 
( 

double j2; 
j2 = k s i [bus] *m[nbus]*VO [bus] *V0 [bush-
return (j2) ; 
) 

double k2 () 
{ 

double k2; 
k2 = C[bus]*1[nbus] + (2.0*m[nbus)*V0[bus] + 1[nbus])*pow(VO[bus],2.0) 

*(be[bus] + om[bus]); 

re t u r n (k2) ; 
) 

double 12() 
{ 

double 13; 
13 - VO[bus]*(be[bus] + om[bus])*(3.0*m[nbus]*V0[bus] + 2.0*l[nbus)) 

+ al[bus]*k[nbus] 
- m[nbus] *Q[bus] ; 

re t u r n (13) ; 
) 
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d o u b l e m2 () 
{ 

d o u b l e m2; 
m2 = 2 . O ' k s i [ b u s j * m [ n b u s ] * V 0 [ b u s ] + k s i [ b u s ] * 1 [ n b u s ] ; 

r e t u r n ( m 2 ) ; 
> 

/ * C o n s t a n t s f o r T y p e 1 * / 

d o u b l e k l () 

{ 
d o u b l e k l ; 
k l = Q [ b u s ] + (om[bus) + b e [ b u s ] ) * p o w ( V O [ b u s ] , 2 . 0 ) ; 

r e t u r n ( k l ) ; 
) 

d o u b l e 11 ( ) 

{ 
d o u b l e 1 1 ; 
11 = a l [bus]*V0[0] + 2 . 0 * ( o m [ b u s ] + be [bus] ) *V0 [bus ] ; 

r e t u r n (11) ; 
) 

d o u b l e m l ( ) 
{ 

d o u b l e m l ; 
ml = k s i [bus] ; 

r e t u r n ( m l ) ; 
) 

/ * C o n s t a n t s f r o m R e a c t i v e Power E q u a t i o n a t B u s 5 * / 

d o u b l e a l p h a 5 () 
{ 

d r v j V l e a l p h ; 
a l p h = ( X [ 5 ] * c o s ( d [ 5 ) - d [ 0 ] ) + R [5 ] * s i n (d [ 5 ] - d [0] ) ) / (pow (R [5] , 2 . 0) 

+ p o w ( X [ 5 J ,2.0) ) ; 

r e t u r n ( a l p h ) ; 
) 

d o u b l e b e t a 5 ( ) 
( 

d o u b l e b e t ; 
b e t = - X [ 5 ] / ( p o w ( R [ 5 ] , 2 . 0 ) + pow (X [5] , 2 . 0) ) - 1 . 0 / X c 5 ; 

r e t u r n ( b e t ) ; 
) 

d o u b l e o m e g a 5 0 

( 
d o u b l e omeg; 
omeg = 1. 0/(pow ( t 5 , 2 . 0) *X [ 4 ] ) ; 

r e t u r n ( o m e g ) ; 
1 

d o u b l e k s i 5 () 
( 

d o u b l e a l p h ; 
a l p h = - ( c o s ( d [ 5 ] - d [ 4 ] ) ) / ( 2 . 0 ' t 5 * X [ 4 ) ) ; 

r e t u r n ( a l p h ) ; 
) 
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/* Constants from Reactive Power Equation at Bus 4 */ 

double alpha4() 
( 

double alph; 
alph = <X[3]*cos(d[4]-d[3]) + R [ 3] * s i n (d {4 ) -d [3] ) ) / (pow (R [3], 2 . 0) 

+ pow(X[3],2.0)); 

r e t u r n ( a l p h ) ; 
} 

double beta4() 
( 

double bet; 
bet = -X[3] / (pow (R[3) ,2.0) + pow(X[3],2 . 0) ); 

r e t u r n ( b e t ) ; 
} 

double omega4() 
( 

double omeg; 
omeg = -1.0/X[4); 

return(omeg); 
) 

double ksi4 () 
[ 

double k s i ; 
k s i = (cos(d[4]-d[5]))/(2.0*t5*X[4]); 

r e t u r n (ksi) ; 
} 

/* Constants from Reactive Power Equation at Bus 3 */ 

double alpha3() 
( 

double alph; 
alph = -<X[2]*cos(d[3]-d[2]) + R [2] * s i n (d [3]-d [2] ) ) / (pow (R [2] , 2. 0) 

+ pow (X[2] ,2.0) ) ; 

re t u r n (alph) ; 
) 

double beta3 () 
( 

double bet; 
bet = X(2]/(pow(R[2],2.0) + pow (X [2] , 2. 0) ) ; 

r e t u r n ( b e t ) ; 
} 

double omega3() 
{ 

double omeg; 
omeg = X [3] / (pow (R [ 3] , 2. 0) + pow (X [ 3) , 2 . 0) ) ; 

return(omeg); 
} 

double ksi3 () 
< 

double k s i ; 
k s i = -(X[3]*cos(d[3]-d[4J ) + R[3)*sin(d[3]-d[4] ) ) / (pow (R [3] ,2.0) 

+ pow(X[3],2.0)); 
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r e t u r n (ksi) ; 
) 

/* Constants from Reactive Power Equation at Bus 2 */ 

double alpha2() 
( 

double k s i ; 
k s i = c o s ( d [ 2 ] - d [ l ] ) / <tl*X[l] ) ; 

r e t u r n (ksi) ; 
) 

double beta2() 
( 

double bet; 
bet = -1.0/XU); 

r e t u r n ( b e t ) ; 
} 

double omega2() 

double omeg; 
omeg = -X[2)/(pow(R[2),2.0) + pow(X[2],2 . 0) ) ; 

return(omeg); 
) 

double ksi2 () 
{ 

double alph; 
alph = {X[2]*cos(d[2]-d[3]) + R [2] * s i n (d [2]-d [ 3] ) ) / (pow (R [ 2) , 2 . 0) 

+ pow(X[2],2.0)); 

r e t u r n ( a l p h ) ; 
) 

' * r o n r t a n t s f r o m Reactive Power Equation at Bus 1 */ 

double a l p h a l () 
I 

double alph; 
alph = (X[0)*cos(d[l)-d[0)) + R[0]*sin(d[1]-d[0]))/(pow(R[0],2.0 ) 

+ pow(X[0],2.0)); 

r e t u r n ( a l p h ) ; 
} 

double b e t a l ( ) 
( 

double bet; 
bet = -X[0]/(pow(R[0],2.0) + pow(X[0],2.0))-1.0/Xcl; 

r e t u r n (bet) ; 
) 

double omegalO 
i 

double omeg; 
omeg = 1.0/(pow(tl,2.0)*X[1)) ; 

re t u r n (omeg) ; 
) 

double k s i l () 
( 

double k s i ; 
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ksi = -cos(d[l)-d[2])/(tl*X[l]) 

return(ksi); 
) 



FILE FOR SYSTEM DATA 

PHASE ANGLES 

d[0] = 0.0 
d [ l ) = -0.17176782 
d[2) = -0.22287907 
d[3] = -0.05914935 
d[4) = -0.21262570 
d[5) 0.21437684 

INITIAL VOLTAGE VALUES 

V0[0] = 1.05 
V0[1] = 0.932061 
V0[2] = 1.003495 
V0[3] = 1.103648 
V0[4] = 0.922237 
V0[5] = 0.924158 

REACTIVE POWERS 

Q[0] = 0.497890 
Q[l] = 0.218091 
Q[2] = 0.016298 
Q[3] = 0.370004 
Q[4] = 0.153299 
Q[5] = 0.179988 

LINE RESISTANCES 

R[0] = 0.08 
R [ l ] = 0.0 
R[2] = 10.723 
R[3] = 0.282 
R[4] = 0.0 
R[5] = 0.123 

LINE REACTANCES 

X[0] = 0.37 
X [ l ] = 0.133 
X[2] = 10.050 
X[3] = 0.64 
X[4) = 0.3 
X[5) = 0.518 

CAPACITOR REACTANCES 

X c l = 34.1 
Xc5 = 28.5 

TRANSFORMER RATIOS 

t l = 0.909 
t5 = 0.974 

VOLTAGE MULTIPLIERS 

mV[0) = 1.0 
mV[l) = 1.0 
mV[2) = 1.0 
mV[3] = 1.0 
mV[4] = 1.0 
mV[5] = 1.0 

REACTIVE LOAD MULTIPLIERS 



mQ[0] = 1.0 
mQ[l] = 1.0 
mQ[2] = 1.0 
mQ[3] = 1.0 
mQ[4] = 1.0 
mQ[5] = 1.0 
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