
H I E R A R C H I C A L T A S K D E C O M P O S I T I O N A N D E X E C U T I O N F O R

R O B O T M A N I P U L A T I O N T A S K USING A WRIST F O R C E SENSOR

By

Shmuel Kotzev

B.Sc. T ECHION, Haifa, Israel

A T H E S I S S U B M I T T E D I N P A R T I A L F U L F I L L M E N T O F

T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F

M A S T E R O F A P P L I E D S C I E N C E

in

T H E F A C U L T Y O F G R A D U A T E S T U D I E S

M E C H A N I C A L E N G I N E E R I N G

We accept this thesis as conforming

to the required standard

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

September 1990

© Shmuel Kotzev, 1990

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. 1 further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

Department

The University of British Columbia
Vancouver, Canada

DE-6 (2/88)

Abstract

The research developed force-motion strategies and subsequent force and position control

algorithms, using a PUMA 560 robot arm and its original controller. A task decompo

sition methodology has been developed that enables a mechanical assembly task to be

subdivided into a series of executable subtasks. By applying this methodology to the

assembly of a hydraulic gear pump, a library of special purpose, task oriented, subtask

programs were created. Most of these programs, though derived for a pump assembly

task, are applicable (when used with appropriate parameters) to other assembly tasks.

Most of the algorithms require force/torque sensory information that is supplied by a

JR3 wrist force sensor. The force control algorithms use that data and system compliance

in order to produce new position instructions that are transferred to the controller of the

arm. The logic of the control law and system behaviour when contacting the environment,

were checked, using the dynamics and compliance of a simplified structure of a robotic

arm and its wrist sensor.

A demonstration of the pump assembly task, using the arm, force sensor, controller

and the derived library algorithms is an integral part of the thesis.

ii

Acknowledgements

I would like to thank my supervisor, Professor Dale B. Cherchas for the support, guidance

and encouragement he provided in the development of this work.

I would also like to thank Doug Latornell, for fruitful discussions and support that

eased both my introduction and experimental work in robotics. Also, I would like to

thank Alan Steeves and Gerry Rohling for their good advice, patience and support in

the use of the department computer system.

Technical assistance was provided by the mechanical and electrical workshops, and

especially by Dave Camp and Don Bysouth. I thank them for their assistance in both

parts manufacturing and technical support.

The robot arm and force sensor were purchased with financial support from the Nat

ural Sciences and Engineering Research Council of Canada (NSERC). The VAXSta-

tion 3200 computer system was provided through an equipment grant from the British

Columbia Advanced Systems Institute (ASI).

iii

Nomenclature

A - a (n x 6) sensor coupling matrix.

At - bolt tensile stress area.

c - clearance ratio (^jp)-

d - nominal diameter of the thread.

F_ - desired force (control algorithm).

F e - force error signal in the control loop (F e = F_ — F,).

Fj - desired preload.

Fn— - vector of nominal measured signals.

F , - force sensed by the sensor.

Fe - applied forces.

Fz - insertion force.

G , - compliance matrix.

J - the Jacobian of the manipulator.

Kjd - vector of proportional gains of the switching controller.

K_ - programmable damping matrix.

K p - programmable stiffness matrix (desired elastic behaviour).

K , - stiffness matrix.

K_ - lateral spring constant.

K.g - angular spring constant.

/ - insertion depth.

L - lead of the screw.

M - moment applied by the support.

iv

q a - a c t u a l j o i n t d i s p l a c e m e n t .

- d e s i r e d j o i n t d i s p l a c e m e n t ,

q - e r r o r i n j o i n t d i s p l a c e m e n t (q = — q a) .

r - r a d i u s o f t h e p e g .

R - r a d i u s o f t h e h o l e .

5 - s i g n a l v e c t o r o f t h e f o r c e s e n s o r .

S M O A ! - m a x . m e a s u r i n g s i g n a l s v e c t o r .

Sp - b o l t p r o f f s t r e n g t h v a l u e .

Tj - t o r q u e r e q u i r e d t o p r o d u c e a g i v e n p r e l o a d .

U - l a t e r a l e r r o r o f t h e c o m p l i a n c e c e n t e r .

V a a. - a x i a l s p e e d o f t h e s c r e w .

w - w i d t h o f t h e c h a m f e r .

x 0 - a c t u a l t a s k s p a c e d i s p l a c e m e n t v e c t o r .

X j - d e s i r e d t a s k s p a c e d i s p l a c e m e n t v e c t o r .

x - d i s p l a c e m e n t e r r o r (x = x<j — x n).

6 - r o t a t i o n a l e r r o r o f t h e c o m p l i a n c e c e n t e r .

Lg - d i s t a n c e f r o m c o m p l i a n c e c e n t e r .

Sx - a m o u n t o f d e f l e c t i o n a t t h e t o o l ' s t i p .

e 0 - i n i t i a l l a t e r a l e r r o r .

\ t - t i m e i n t e r v a l o f t h e d i s c r e t e s y s t e m .

fi - c o e f f i c i e n t o f f r i c t i o n .

A0 - r o t a t i o n a l a n g l e .

Ax - a x i a l t r a n s l a t i o n .

r - j o i n t t o r q u e s .

Table of Contents

Abstract ii

Acknowledgements iii

Nomenclature iv

1 INTRODUCTION 1

2 SYSTEM DESCRIPTION 4

2.1 PUMA 560 ROBOT 4

2.1.1 Arm Structure: 5

2.1.2 Controller and Interfaces: 6

2.1.3 VAL-II Language: 8

2.2 JR3 FORCE / TORQUE SENSOR 10

2.2.1 Introduction: 10

2.2.2 JR3 Force Sensor: 12

2.3 COMPLIANCE DEVICES 13

2.3.1 Remote Center of Compliance (RCC): 13

2.3.2 Linear Compliance Device: 14

3 TASK DECOMPOSITION 19

3.1 INTRODUCTION 19

3.2 LITERATURE REVIEW 20

3.3 ASSEMBLY STRATEGY AND ALGORITHM STRUCTURE 23

vi

3.4 PUMP ASSEMBLY DEMONSTRATION 29

4 FORCE/MOTION SYNTHESIS FOR ASSEMBLY TASK 37

4.1 FORCE CONTROL REVIEW 37

4.1.1 Introduction: . . . 37

4.1.2 Impedance Control: 40

4.1.3 Hybrid Control: 42

4.1.4 Force Control for Assembly Task: 43

4.2 DYNAMIC MODEL ANALYSIS 47

4.3 CONCLUSIONS 51

5 ASSEMBLY SUBTASKS 57

5.1 SUBTASK PICK 58

5.2 SUBTASK PLACE 59

5.3 SUBTASK INSERT 60

5.3.1 Part Mating Analysis 62

5.3.2 Jamming and Wedging Analysis: 65

5.3.3 Strategy and Control: 68

5.4 SUBTASK SCREW 70

5.4.1 Feeding the Bolts: 70

5.4.2 Screwing and Preloading: 71

5.4.3 Tooling: 72

6 ASSEMBLY SUBROUTINES 78

6.1 SUBROUTINE MOVE 81

6.2 SUBROUTINE APPROACH 82

6.3 SUBROUTINE GRASP 84

vii

6.3.1 Grasp Planning: 84

6.3.2 Gripper's Configuration: 85

6.4 SUBROUTINE SEARCH 86

6.4.1 Search strategy: 87

6.4.2 Rotation strategy: 90

6.5 SUBROUTINE COMPLY 91

6.6 SUBROUTINE ROTATE 92

6.7 SUBROUTINE CLEAR 93

7 S E R V I C E P R O G R A M S 103

7.1 PROGRAM PCstop 103

7.2 PROGRAM Nuil.sensor 103

7.3 OVERLOAD CHECKING 104

7.4 FORCE INFORMATION 105

7.4.1 Force/Torque data in tool coordinate frame: 107

7.4.2 Force data using world coordinate frame: 109

7.5 PROCESS CONTROL PROGRAMS I l l

7.6 INITIALIZATION and PARAMETRIC FILES 114

7.7 PROGRAM WEIGHT 115

7.8 PROGRAM REPEAT 116

8 F O R C E C O N T R O L S I M U L A T I O N 119

8.1 SYSTEM DESCRIPTION 120

8.1.1 Applied Force Control: 120

8.1.2 Arm Stiffness: 121

8.1.3 Reduced Parameters: 123

8.1.4 Impact: 125

viii

8.2 MODEL DESCRIPTION 126

8.3 CONCLUSIONS 128

Bibliography 134

A MAIN TASK and SUBTASKS: 140

A . l main program PUMP: 140

A.2 subtask INSERT: 140

A.3 subtask PICK: 141

A.4 subtask PLACE: 141

A. 5 subtask SCREW: 141

B SUBROUTINES and SERVICE PROGRAMS: 142

B. l program APPROACH: 142

B.2 program CLEAR: 145

B.3 program COMPLY: 146

B.4 program COMSCREW: 149

B.5 GEAR1, GEAR2 parameters: 150

B.6 program GRASP: 153

B.7 program JR3.DAT: 155

B.8 program MOVE: 157

B.9 program NULL.SENSOR: 158

B.10 program OVERLOAD: 158

B . l l program PCSTOP: 158

B.12 program REPEAT.BOLT: 159

B.13 program REPEAT.SCREW: 159

B . H program ROTATE: . 161

ix

B.15 SCREW parameters: 162

B.16 program SEARCH: 164

B.17 program SHOW.FM: 168

B.18 program TIP: 168

B.19 TOOL parameters: 169

B.20 TOP parameters: 171

B.21 program WEIGHT: 172

x

Chapter 1

I N T R O D U C T I O N

An assembly task i6 an operation of collecting, mating and aligning (in a specified way)

two or more three dimensional objects. Performing a mechanical assembly task is a ge

ometric position problem usually solved by highly sophisticated human operation. In

order to accomplish the same assembly tasks by a robotic arm (manipulator), the follow

ing parameters should be part of the system:

• both gross and fine motion ability of the arm's tip (end effector).

• high speed, high capacity computer hardware utilizing a high level language. The

software library must include sophisticated programs that control the manipulator

movements, using mostly, a translation of human experience to program instruc

tions (feedback control).

• variety of sensors including force/torque or tactile sensors, a vision system etc.

These devices enable the system to verify task completeness, to close control loops

and, in very advanced systems - to assist in task decomposition.

In order to actually execute an assembly task, the theory and algorithms were derived

for the robotic system and equipment located in the U.B.C. Department of Mechanical

Engineering CAMROL Laboratory. A full description of laboratory facilities and equip

ment is given in chapter 2. As an example, a Pump Assembly Task was performed, using

the CAMROL equipment.

1

Chapter 1. INTRODUCTION 2

The system's control is realized hierarchically in several levels. Every control level

solves its specific tasks, using special algorithms and hardware. According to Vukobra-

tovic [41] the control hierarchy can be realized in three levels: Strategical control, tactical

control and executive control. In order to properly control those levels while executing

an assembly task, it has to be decomposed according to the laboratory equipment, the

mechanical knowledge (movements, forces etc.), the execution strategy and the descrip

tion of the task (Fig. 1.1). Task decomposition can be done automatically by a task

planner computer algorithm or manually by a human designer. Chapter 3 deals with the

ways to manually decompose a task into smaller programs that can easily be executed

and controlled. At the end of chapter 3, there is an example of how a decomposition is

implemented on a Pump Assembly Task.

Another major objective of the research was to develop a library of necessary force-

motion strategies and subsequent force and position control algorithms. Assuming that

a library of such programs is stored in the computer memory, the designer can call any

desired program in any order to perform a larger overall assembly task. The force control

algorithm is part of the execution strategy of the assembly task. Chapter 4 begins with

force control review and ends with the description of the algorithms used in this thesis.

The main task - the assembly of a pump, is decomposed to use subtasks (chapter

5), subroutines (chapter 6) and service programs (chapter 7). These are VAL-II, high

level programs, based on force information data, received from the JR3 force sensor.

The programs are task level programming: describing the assembly task as a sequence of

positional goals of the object. The control of the assembly tasks is based on fine motion

strategies applicable (where possible) to the global assembly tasks.

One of the main 6 u b j e c t i v e s of the thesis was to create the programs, based on the

description of Pump Assembly Task. Task assembly strategy is the basis of the de

composition and force motion relations and every program is described according to its

Chapter 1. INTRODUCTION 3

function. It is important to understand that although the programs (subtasks, subrou

tines and service programs) were derived from the description of pump assembly, they

are not oriented to that specific task and can be used in any other assemblies. The

structure of every algorithm is based firstly on initialization of parameters that are task

oriented. Those parameters are received from a special file (initialization file) written

by the operator. Using these initialization parameters, the operator can command the

algorithm to execute a subtask according to his specifications.

In order to predict the dynamics of simple force-controlled robot system and to un

derstand it's reactions, a force control simulation was created. A description of the

simulation and its results is given in chapter 8.

Mechanical
knowledge

Laboratory
equipment

Assembly
strategy

Task
description
(pump example)

Task
decomposition

Library of assembly programs
Task main 1
program 1

Task main 1
program 1

Desired goals (assembly)

Figure 1.1: Task execution structure.

Chapter 2

SYSTEM DESCRIPTION

The system is built around a PUMA 560 robot arm, its controller, a JR3 force sensor

and a workspace. The chapter gives a basic background about the major devices and

parameters of the system (Fig. 2.1), used to accomplished both the experimental and

analytical parts of the thesis.

2.1 P U M A 560 ROBOT

Unimation PUMA 560 arms are an advanced computer controlled, widely used class of

industrial manipulators. The PUMA robot system is designed to adapt to a wide range

of applications. The robot is capable of applying a max. static force of 58 [N] at the tool

point and to move with this load in max. tool velocity of 1.0 [m/s] and max. acceleration

of 1.0 [g]. The robot arm operating envelope is approx. a radius of 0.9 [m].

Fig. 2.2 shows the basic unit plus the peripherals in use in CAMROL. The robot

system includes the following units: the robot arm, controller, software (memory and

floppy disk), teach pendant and I/O module. The robot arm executes the instructions

transmitted to it by the controller. The user controls the controller manually, by the teach

pendant or by running user programs (developed at VAL-II language). The programs can

be executed on the local LSI-11/02 microcomputer (located in the controller) or on an

external supervisor computer. In all these cases, the controller transmits the instructions

from the computer memory to the motors located in the links of the arm. Position data

obtained from incremental encoders and potentiometers (located in the robot joints) are

4

Chapter 2. SYSTEM DESCRIPTION 5

transmitted back to the controller to provide closed-loop control of the arm's motions.

The high-level programming language is VAL-II. Generally, VAL-II software and pro

grams are stored in the computer memory which is located in the controller. Programs

may also be stored in a floppy disk or an external computer. This interface may be car

ried out by matching the Unimation floppy disk drive protocol, using the existing serial

communication line of the floppy drive.

Additionally, programs can be executed to implement an interface between the robot

and its environment. A peripheral device with a panel switch board, enables the transfer

of external input and output signals. Use of these signals in the program enables the

programmer to halt a program or branch to another program or subroutine. Communi

cation with sensors or host computers is done through serial ports (RS-232C interface),

DMA port or the panel switch board.

2 . 1 . 1 Arm Structure:

The arm is a revolute, 6 degrees of freedom (d.o.f) type manipulator (Fig. 2.3) consisting

of a trunk (link 0), a shoulder (link 1), an upper arm (Hnk 2), a forearm (link 3), a wrist

(hnk 4) and a gripper (links 5 and 6). Each one of the 6 joints is driven by a geared,

permanent-magnet D.C. servo motor, activated by a power amplifier board, mounted in

the controller box. The motor systems contains the following devices:

• Integral brakes: a safety feature which is installed in the major axes (joint 1, 2

and 3). When power is removed from the motors, the electromagnetic brakes are

activated and lock the joint at the current position. This prevents the arm from

collapsing or movements due to accidental (or deliberate) power removal.

• A geared potentiometer is a part of the motor assembly. It supplies low resolution,

absolute joint position data. This information, combined with the index signal of

Chapter 2. SYSTEM DESCRIPTION 6

an encoder, is used to initialize joint position during calibration process of every

power-on of the arm.

• An incremental optical encoder is connected to the motor shaft. It supplies high

resolution rotation data, as well as the direction and absolute angular position of

the motor shaft (index signal every 360 degrees). Approximately every 0.875 [msec],

the encoder's outputs are compared with the calculated position, and any necessary

corrections are generated allowing overall rated repeatability of ±0.1 [mm].

The PUMA at CAMROL is equipped with an optional pneumatic (710 KPa), com

puter controlled gripper. The two-way solenoid valve enables full pneumatic force in both

the open and the closed positions. Special purpose jaws can be mounted onto the gripper

according to the desired task.

2.1.2 Controller and Interfaces:

The controller is the master component of the electrical system. All signals to and from

the robot pass through the controller and are used by it to perform real time calculations

to control arm movement and position. Ref. [13] gives an essential summary, while Ref.

[38] gives a full description of the subject. The controller box is used for:

• Location, protection and connection of the electronics boards and power devices.

• Operation and control panel equipped with operating switches and indicators. This

enables the user to switch on/off the unit, the arm, the breaks and the execution

of the program.

• Connector base which connects the robot arm, terminal, floppy disk drive and the

I/O modules.

Chapter 2. SYSTEM DESCRIPTION 7

Programming is often simplified by constructing the program hierarchically. For manip

ulator programming, the lowest level usually provides the interface with the manipulator

sensors and actuators. In the PUMA, the control scheme of the robot arm is a propor

tional plus integral plus derivative (PID) controller. It is realized, in the controller box,

by two computers hierarchically arranged:

A) . The LSI-11/02 supervisory microcomputer performs two major functions. The user

interface enables on line, bidirectional interaction so interpreting, debugging, scheduling

and executing of movement commands and coordinates transformations can be easily

done. The second function is the joint controller interface that coordinates the con

trollers of the six joints.

B) . Six 6503 microprocessors, joint controllers, are at the lower level of the hierarchy.

Each joint is controlled and activated separately by its two servo loops and joint mo

tor. The feedback loops control the position and the velocity variables. Both servo loop

gains are constant, a property that limits the flexible dynamic response of the system to

varying speeds and payloads.

The system's control is realized hierarchically in several levels. Every control level

solves its specific tasks, using special algorithms and hardware. Fig. 2.4 shows the current

structure of the robotic control system at CAMROL. According to Vukobratovic (Ref.

[41]) the control hierarchy can be realized in three levels (explained in section 3.2):

• Strategical control level.

• Tactical control level.

• Executive control level.

Chapter 2. SYSTEM DESCRIPTION 8

2.1.3 VAL-II Language:

A computer-based system provides an easy definition of a task a robot is to perform. Us

ing a computer-based system for programming and controlling industrial robots provides

the following:

a) , ability to respond to sensory information.

b) . improved performance in terms of trajectory generation.

c) . allows operation in unpredictable situations or moving frames of reference.

Several languages have been developed in order to manipulate robot arms in complex

tasks. Some of the major languages are: AL, written in Stanford University, PasRo -

Pascal and C for Robots, AML and AUTOPASS by IBM, HELP by General Electric,

MCL by McDonnell Douglas, JARS by Jet Propulsion Laboratory and VAL-II - a product

of Unimation.

VAL-II is a computer-based control system and language designed specifically for use

with Unimation Inc. industrial robots (PUMA series). It is a high level, BASIC based,

interpreter programming language. VAL-II enables driving the arm by frames manipu

lation or by motion and speed commands directed to the joints. The executed program

can activate other programs through call function and run process control (pc) parallel

program at the same time. As a real time system, continuous trajectory computation

by VAL-II permits complex motions to be executed quickly, with efficient use of system

memory and reduction in overall system complexity. The VAL-II system continuously

generates robot control commands and can simultaneously interact with a human oper

ator, permitting on-line program generation and modification.

VAL-II contains the capability of communicating with external systems, using a rig

orous communication protocol to ensure the integrity of information transferred between

the VAL-II system and the external systems. The communication is possible at three

Chapter 2. SYSTEM DESCRIPTION 9

levels:

• supervisory communication provides a facility for controlling VAL-II system re

motely. Any activity which can be performed at the system terminal can alterna

tively be performed by a remote supervisory system. A standard RS-232C serial

line is used for the interface, with a DDCMP protocol.

• program level communication sending output and receiving input from the system

terminal, floppy disk and other external devices which communicate serial data.

• real time trajectory modification can be done using data supplied by an external

device such as a sensor. This data can be processed 36 times per second while

VAL-II continuously informs the external system where the robot tool is located

and the status of communication.

In addition to the program level serial communication, VAL-II provides up to sixteen

single ended analog input channels and two channels of analog output with hardware

option. The following advantages may be gained using those computer interfaces:

• an external system can completely supervise the operation of the VAL-II system

(even during program execution).

• sensory generated data may modify the path of the robot while moving (a real-time

path control).

• ability to control directly the robot or to create programs in off line and down-line

loads (by matching the terminal protocol in the external computer).

• more external data storage capacity (by matching the mini-floppy disk drive pro

tocol in the external computer).

Chapter 2. SYSTEM DESCRIPTION 10

In CAMROL, we used some of these features of VAL-II. The external computer is the

VAX Station 3200 which serves as a terminal and a supervisor controller to the PUMA.

2.2 JR3 FORCE / TORQUE SENSOR

2.2.1 Introduction:

Force/torque sensors, used with robots, are devices used to measure the forces and mo

ments developed between the robot gripper and the environment due to contact. Typical

applications are assembly (Ref. [39] and contour tracking (Ref. [12]). Industrial applica

tions involving the use of force sensors for feedback force control are quite rare. This is

mostly because force sensor data influences the dynamics of the joint servo loops. Most

available controllers (including the PUMA 560 controller) do not allow such low level

interaction with the robot. Another reason can be found in the force sensor itself that is

a fragile instrument and thus very prone to overloading. Mechanical overload protection

is a must, but it is very difficult to achieve it properly.

The following are the optional locations to place force sensors (Ref. [39]):

• in the joint actuators - measures torque/force of the actuator and used mainly by

master/slave manipulators.

• in the interface between the last joint and the gripper. A multi component force

wrist sensor.

• on the gripper fingers, mainly by means of strain gauges applied to the fingers.

• in the contact area - tactile sensors (artificial skin sensors) placed between the

fingers and the grasped object.

• in the robot environment - in the table or the mounting fixture.

Chapter 2. SYSTEM DESCRIPTION 11

The Puma robot has a wrist force sensor plus electronic system from JR3 company.

A wrist force sensor is an elastic (metallic) structure that deforms under applied forces.

The structure is usually mapped with strain gauges that have proven to be the smallest,

simplest, cheapest and reliable transducers for use in robot force sensors. The produced

output voltage is proportional to the strain in the structure (assuming operation within

its elastic range). "The raw analog signals of the strain gauge bridges are transferred to

the electronics system where they are amplified and processed. Additional processing

of the output data is made in the robot controller including calibration, decoupling and

coordinate transformations.

The correlation between the input force vector (to the sensor) F , (3 force and 3 torque

variables) and the inner signal vector of the sensor S, is the output of n different strains

measurements output and is given by:

S = A F « (2.1)

where A is a (n x 6) sensor coupling matrix. For n = 6 the force vector can be resolved

by the decoupling matrix A - 1 :

F . = A " 1 • S (2.2)

If the 6ensor is mechanically decoupled (A - 1 is diagonal) then every measuring com

ponent is proportional to only one force component. Thus the quality of the force sensor

is reflected by the form of its decoupling matrix (a perfect diagonal A matrix can't be

obtained in practice). The presence of nonzero diagonal elements cause the cross sensi

tivity of the sensor. Other important features of the sensor are:

a) the measuring signals are to reach their max. value Smam when all force components

reach their nominal values simultaneously:

e
(2.3)

3=1

Chapter 2. SYSTEM DESCRIPTION 12

b) to receive the same measuring accuracy on all components, each force component

should contribute equally to the measuring signal i.e.

0>i\F\n = ̂ Esn = ••• = O-ieFsn = g^in (2-4)

2.2.2 JR3 Force Sensor:

The force-moment sensor used with the Puma robot is a standard JR3 Universal Force-

Moment Sensor System consisting of:

• JR3 monolithic six-degree-of-freedom force sensor.

• JR.3 Intelligent Support System That contains:

1. signal conditioning board.

2. data acquisition board.

3. processor board.

Due to forces/torques acting on the sensor the strain gauges change their response,

producing small variations (milivolts) in the measured voltage of the system. The raw

analog signals are transferred to the electronics box, where they are amplified, filtered,

digitized (12 bit A/D) and processed (digital filtering, load envelope monitoring, etc.).

Onboard shunt resistors combined with calibration software offer automatic drift compen

sation. Output can be received as discrete I/O, high-speed parallel interface or through

two serial ports.

Chapter 2. SYSTEM DESCRIPTION 13

2.3 COMPLIANCE DEVICES

2.3.1 Remote Center of Compliance (RCC):

The RCC is a mechanical multi axis passive compliant device. While executing assembly

tasks in the CAMROL laboratory, the RCC is mounted between the force sensor (or

the linear compliant device) and the gripper as can be seen in Fig. 2.5. The RCC was

designed to ease assembly of closefitting objects in spite of lateral or angular misalign

ment by correcting position and angular errors. Typical applications are rivets assembly,

screwing bolts, bearing installation etc.. The RCC is widely used in industry due to its

price, simplicity of installation and its repeatability and reliable response.

The construction of the RCC is a combination of two mechanical parts: translational

and rotational. The translational part allows lateral motion while the rotational part

allows angular movement of the end-effector. The flexibility of the LORD RCC Series

devices is provided by laminated elements made up of elastomer and steel shims. In

compression these elements are much stiffer than in shear. This design enables the

laminated element to respond correctly to lateral forces or moments.

The preferable working point for accurate assembly tasks while using RCC, is at its

center of compliance or elastic center. It is a specific projected point along the tool axis

(its exact location is a function of the structure of the RCC). For part mating, it is ideal

if the stiffness matrix (of the part and the structure supporting it) becomes diagonal at

the tip of the part. At that point, force/deflection behaviour of the structure becomes

decoupled i.e. pure rotation will occur due to applied moments and pure translation will

occur due to lateral contact forces.

The major advantage of the RCC is that it absorbs both lateral and angular errors

plus twist errors about the insertion axis. Its disadvantages are its limited operating

range (suitable only for end-effector/part combination of a single length) and its limited

Chapter 2. SYSTEM DESCRIPTION 14

operating speeds. The IRCC is a combination of a force/torque multi degree of freedom

sensor, built into the mechanical compliant structure of the RCC. The RCC in CAMROL

is from the LORD company.

2.3.2 Linear Compliance Device:

For a stiff manipulator and stiff environment, part mating introduces high level forces

when a position error occurs (the forces are function of the size of the error and the

stiffness of the mating parts). Position errors can be introduced by both the tool and

the mating object. Tool position error is introduced due to matrix manipulation resid

uals (locations and inverse kinematics), encoders resolution, tool/gripper misalignment

(changing in the relative position due to external forces) etc.. The location of the mating

surface is imprecise because of bad positioning in the part location area and unprecise

manufacturing.

Special perpose precise parts are partial solution but are impractical. Practical ways

to overcome the problem are fine arm motion and/or low compliance.

a) The ability to use fine motion is part of the robot performance and it is activated

using process control program with small gains (a pc program runs parallel to the main

program and can altered the arm's trajectory - in this case, according to force data).

These gains are used whenever the tool is in the neighborhood of another part.

b) The contact forces are function of the dynamic parameters and of the compliance of

the arm, sensor and the environment. Decreasing the stiffness of the end effector (or the

assembly base) enables the use of higher dynamic parameters (velocity, acceleration) of

the arm, without increasing the contact forces. The RCC gives compliance to the system

in the (X — Y) plane, while an additional compliant linear device used in the Z direction

completes the e-e compliance behaviour. This structure reduces the band width of the

system, but in an assembly task, the important parameters are low contact forces and

Chapter 2. SYSTEM DESCRIPTION 15

flexible operation, and after it comes high speed operation.

The added device (schematically represented in Fig. 2.5) was based on 3 linear bear

ings and a soft spring. The RCC can comply to torques about X, Y and Z axis and to

forces in the X — Y plane. The linear device completes the compliance of the system in

the Z direction, but was found not to be necessary for the demonstration (Sec 3.4) for

slow execution.

Figure 2.1: System structure and workspace.

Chapter 2. SYSTEM DESCRIPTION 16

Chapter 2. SYSTEM DESCRIPTION 17

TASK
SPECFCATIONB

CONTROL

theory >
LEVELS

o»*.

DESIGNER

T
A
C
T
I
C
A
L

TERMINAL

CPU

—r
DRV-11

A
R
M

I
N
T
E
R
F
A
C
E

RAM

TASK DECOMPOSER

AUTO TASK PLANNING

[3200 SENSOR(S)

Accessory
Manual

box
Floppy
disk

1

1
VAL EPROM DLV-11J

Q - B U S

1 / S503 mp D/A AMP. MOTOR S503 mp D/A AMP. MOTOR

ENCODER

6503 mp CVA AMP. MOTOR

ENCODER

Figure 2.4: Structure and hierarchy of the CAMROL robot system.

Chapter 2. SYSTEM DESCRIPTION 18

COMPLIANCE
with LINEAR
BEARINGS

REMOTE
CENTER of
COMPLIANCE

GRIPPER

PEG

WORKPIECE

XT
O
O
O
O
O

FORCE S E N S O R

-T3T

O
o
O
O
O
O

Figure 2.5: Structure of the end effector for assembly task.

Chapter 3

T A S K D E C O M P O S I T I O N

3.1 I N T R O D U C T I O N

One of the objectives of the research was to develop the force-motion strategies and

force/position control algorithms for selected assembly subtasks. Those programs are

part of a software library that can be used to construct many other assembly tasks, using

a manipulator equipped with force sensor. The programs from the library are activated

according to the order received by decomposing the main assembly task. This chapter

describes the logic behind the decomposition of an assembly task into a set of programs

that enables the actual assembly by the arm. The chapter begins with literature review

and describes the decomposition hierarchical structure and the way it functions.

A specific task, i.e. Pump assembly, was chosen to be in the background for the

library of assembly subtasks. The programs derived in the thesis are those that are

needed to execute this assembly task. The next sections describe the way the main task

is decomposed using subtasks, subroutines and service programs. Here, task planning

and the way it can be executed, is based on CAMROL's facilities, on the mechanical

structure of the pump and on assembly logic. It is important to emphasize that the

library structure developed and described in the following chapters is not exclusively

for the Pump Assembly. The subtasks are part of a general library and can be used

to generate any special purpose assembly task. The only part that is task oriented is

the program P U M P and its related Initialization files. In the future, for other new

19

Chapter 3. TASK DECOMPOSITION 20

assembly tasks, it is likely, that some new programs (subtasks, subroutines and service

programs) may be needed. Building those new programs in the same structure logic that

is developed in this thesis, will allow the designer to use the other programs of the library

together with the new programs.

The execution of an assembly program involves contacts between the end effector and

the environment. The surface in contact introduces kinematic constraints that modify the

motion of the manipulator. The use of force sensory information and force/position con

trol, enables the constrained manipulator to regulate force and torque reactions between

the end effector and the environment while simultaneously moving the arm to the desired

position and orientation. Force control and force/position relations are the heart of the

assembly algorithms therefor, a review and development of the subject is presented in the

next chapter. Based on both subjects: task decomposition and force control algorithms,

the following chapters describe the way pump assembly task is implemented.

3.2 LITERATURE REVIEW

Sophisticated, intelligent tasks can be executed by means of hierarchically intelligent

control systems. Manipulators like Telerobots are designed to be controlled both directly

by a computer and remotely by a human. This supervisory control, allows the operator

to apply his intelligence to the task without having to maintain continuous control. The

use of Hierarchically Intelligent Control can be applied (Ref. [35]) based on the following

principle: increasing intelligence (additional sensors, suphisticated software) enables the

decreasing of the precision (arm, workspace). It can also lower human activity in the

manipulator operation. In this chapter, Task Decomposition control level is discussed.

It performs real time planning and task monitoring as well as task decomposition of high

level goals into low level actions.

Chapter 3. TASK DECOMPOSITION 21

According to Vukobratovic (Ref. [41]) the control hierarchy can be realized in several

levels, so each control level solves its specific task. The one usually adopted for robotic

control system can be realized in the following three levels (Fig. 2.4):

• Strategical control level defines mostly trajectories and system actions by using

pre-defined (off line) information. In advanced systems, this level uses sensory

information to solve problems in real time using high level programing languages.

• Tactical control level is mostly implemented by inverse kinematics solutions that use

desired position and orientation of the end-effector plus joint and link parameters

of the robot in order to calculate the corresponding desired joint angles.

• Executive control level has to realize the positions of the robot joints which are

imposed by the higher, tactical control level. This level in the PUMA control

system has both position and velocity servo loops which critically damp each joint

according to the program's specified speeds.

In Ref. [35] (Saridis), a three level hierarchical structure is presented: including the

models of the upper two. The three levels are:

1. The upper level is the organization level that performs general knowledge processing

tasks with little or no precision. This level performs five sequential functions:

machine reasoning, machine planning, decision making, feedback and long-term

memory. It formulates complete and compatible plans and decides about the best

possible plan to execute the user requested job.

2. The coordination level performs specific knowledge processing tasks, by using spe

cific coordinators, each performing its own pre-specified functions. Its purposes are

to coordinate the individual tasks, to assign penalty functions and to optimize the

performance of the overall plan.

Chapter 3. TASK DECOMPOSITION 22

3. The execution level is composed of specific execution devices associated with each

coordinator.

Ref. [2] (Albus), describes three legged hierarchical architectures that are executed

in parallel and have some levels that are function of the desired task. In this case,

the decomposition module is not the upper level, instead, each of its levels is executed

in parallel to the two other modules: world modeling and sensory processing. In each

operational level, the task decomposition module is using world modeling information

that is continuously updated by the third module. This is a dynamic way to activate the

manipulator in an environment that is changed during operation or in an unpredicted

environment.

In each level, the task decomposition module consists of the following functions:

1. job assignment manager ie responsible for partitioning the task into distinct jobs to

be performed by the planner and the executor mechanisms. At some upper levels

it may also assign physical resources against task elements.

2. one or more planners that are responsible for decomposing the jobs into sequence

of planned subtasks. The planner hypothesizes some action or series of actions,

and the world model predicts the results of the action(s).

3. one or more executors that are responsible for successfully executing the action

prepared by the planner.

The disadvantage of the architectural models presented in [41] and [35] is that they do

not consider the possibility of unpredictable events during plan(s) execution. While in

the structure presented in [2], the last three inner parts of the decomposition module

are arranged in that hierarchical structure, but they are embedded in another structure

Chapter 3. TASK DECOMPOSITION 23

that is updated using real time sensory information. It can concluded that the overall

structure in the last case is more developed to act in less predicted workspaces.

3.3 ASSEMBLY STRATEGY AND ALGORITHM STRUCTURE

An assembly task is introduced to the system by its specifications. In order to execute

it successfully using the robotic system, the specification has to be decomposed to the

level of robot instructions. Task decomposition can be done by automatic task planning

that is based on artificial intelligence or manually by the designer. Operational programs

which are derived on the basis of this decomposition, are built from instructions that

can be understood by the arm's controller. This thesis deals with manual decomposition

which can be implemented for automatic multi task planning by adding the necessary AI

modules.

While decomposing an assembly task the designer has to consider the following steps:

• Task description: Tasks are generally specified in terms of the desired motions and

contact forces of the end-effector. The planner has to create the best strategy for

those parameters taking the following into account: assembly goals, environment

(workpiece structure and locations of target points and obstacles), end-effector

structure and equipment, forces/motions relations and position/velocity states.

• Control and Stability: The best ratio between speed and accuracy and the best

error handling that can be achieved by applying correct control. The type of

sensor, the dynamic (arm, load and environment) and the kinematics of the system

must be considered in choosing the control strategy. For example, in dealing with an

environmental sensor (touch) a feasible control strategy will be based on constraints.

An assembly task is a process of mating two workpieces. One workpiece i6 fixed in

the workspace while the other is manipulated by the robot end effector. In fact, the

Chapter 3. TASK DECOMPOSITION 24

motions of the arm are constrained due to contact with other surfaces. The natural

constraints are the result of the particular mechanical and geometric characteristics of

the task configuration (natural position or force constraints). They arise naturally from

a particular contacting situation and have nothing to do with the task planning. While

the natural constraints avoid movement of the end-effector, the artificial constraints

specify the desired motion or force application. The artificial constraints will produce

the desired goal trajectory if, and only if, the goal trajectory is the unique solution of the

combined artificial plus natural constraints. Returning to assembly strategy, the planner

can describe the desired procedure for the task in a sequence of artificial constraints. In

general, for many solutions, a set of artificial constraints which are orthogonal to the

natural constraints will be chosen. This may be denned thus:

1. a generalized surface is defined by position constraints along its normals and force

constraints along its tangents. The position and force constraints are the compo

nents of the natural constraints. They are sometimes declared as "velocity equals

zero" and "force/torque" constraints.

2. a constraint frame is a frame in which its origin is located according to the way

the planner controls the execution of the task. The frame may be fixed in the

environment or may move with the end-effector.

The desired motion in a specific subtask can be defined by specifying a list of constraints

as the basis of the control algorithm.

The structure of an assembly task program has to be simple to understand and easy

to operate. This, and the limited memory space in the control box of the robot compel

an hierarchical structure. Fig. 3.2 schematically represents this structure, derived here

for the example task, shown in Fig. 3.1. The following is an explanation of the hierarchy

levels (from lowest to highest) of the programs in the library:

Chapter 3. TASK DECOMPOSITION 25

• SERVICE PROGRAMS: at the lowest level of the pyramid there is a group of

special purpose programs. They are used for tasks like communication (controller

to force sensor electronic box or controller to I/O box), display of information, force

and tool transformation, overload checking, signals activating and resetting etc.

• SUBROUTINES: there are limited number of basic operations that are the building

blocks of a special purpose assembly task. Using a fixed structure subroutine, with

appropriate parameters derived from task description, enables actual movement

of the arm in the desired trajectories. Assembly subroutines whose controller is

based on force information, extensively use Process Control (pc) programs. In

this program structure the main subroutine controls arm movements according to

position control while, running in parallel, the pc program controls forces by real

time alteration of arm movement.

• SUBTASKS: under this title there are repeatable operation oriented programs that

enable easy understanding and decomposition of the main task. Each subtask is

responsible for a series of movements from one target point to another. All the

intermediate points are related to those two points. During the execution of a

subtask, the end effector configuration can be changed only once. Every subtask

contains an initialization file that assigns desired values to a list of execution sub

routines (called by that subtask). The subtask calls the subroutines according to

the logic flow of the task, using the structured constructs supplied by VAL-II.

• MAIN TASK: every assembly task has one main task that controls its flow from

the beginning to its end. This program is broken into initialization programs and

subtasks based on task specifications. Into the main task the designer can add

check points, decision points and alternative subtasks.

Chapter 3. TASK DECOMPOSITION 26

The decomposition of any assembly task should follow the same hierarchy as described

above.

Task decomposition is the way mechanical knowledge, laboratory equipment and as

sembly strategy are applied to a task description in order to achieve the desired goals.

The output of the decompositions are two task oriented programs: the initialization file

and the main program that activates the library programs (described in the following

chapters). In the library, VAL-II instructions are grouped together to form programs

that follow the logic of the assembly strategy. The programs are constrained by VAL-II

instructions and limitations, by the special structure of the library and by the memory

limitations of the controller. During execution, the memory contains all the declared

parameters to be transferred from one program to another. The last values will be used

unless they are updated. This can cause unexpected problems (eq. null parameters for

locations). A solution (a good programing habit) is to give values to each parameter at

the beginning of each program. Fig. (3.3) shows the way it is done in the thesis: each

subroutine has a parametric file that contains basic values for all the parameters used

in that program. Each initialization file calls other Parametric files (according to the

required subtask). This loads a set of parameters with certain values. If for a specific

task some values have to be changed, those changes are introducing to the system after

calling the parametric file and this last declaration remains during program execution.

In this way all the parameters are listed and declared before running the programs and

the initialization files are relatively small (contains only the changes)

For example, a better understanding of this programing structure can be achieved by

carrying out the simple example illustrated in figure 3.1. In this assembly task, the robot

manipulator has to screw four bolts into the block located on a table. Task description

includes locations of the block's threads, bolt pick up point, bolt dimensions and weight,

maximum tightening torque for each bolt and gripper's dimensions and weight.

Chapter 3. TASK DECOMPOSITION 27

The basic gross operations that an assembly operator (human or robot) has to do

is to Pick up a bolt from the feeder and to Screw it into one of the threads located

on the block. Then, to Pick another bolt, change its target point and Screw it into

another thread and so on. These two operations (subtasks) are repeated 4 times. The

Pick subtask is always the same while in the Screw subtask the target point and the

location of the threads change. Fig. 3.2 shows the block diagram for this operation. The

main task is decomposed and executed by a series of initialization files and subtasks. In

the first initialization file - Pinl.inil all the parameters for the first Pick subtask are

included, the same with Pinl.ini2 file that holds the parameters for Screw subtask. If

the pick up locations of all the bolts in the feeder are the same, no new initialization is

needed before subroutine Pick is executed. But, as on the block, there are four different

thread locations, an initialization file has to be included before execution of the Screw

subroutines. In this structure, checking or decision points are not included in the main

task, they are presented in the lower subroutine level.

Entering the subtask level in the algorithm structure (Fig. 3.2), every subtasks is built

from subroutines that describe a lower operational level. The following is the operational

description of subroutine sequence within Pick and Screw subtasks:

1. Subtask Pick - from any location of the end effector

(a) Move the arm to a point above the screw (both bolt location and the height

above it were received from initialization file).

(b) Approach rapidly in gross movement towards the bolt and near the contact

point, change the approaching motion to fine motion, force control approach.

(c) Grasp the bolt and weight it to verify that the grasp operation were suc

cessfully completed. If the grasping failed the program will run Pick subtask

again.

Chapter 3. TASK DECOMPOSITION 28

(d) clear the area to a point above the feeder.

2. Screw - from any location of the end-effector

(a) Move the arm (and the screw) to a point above the desired thread location

on the block (both thread location, the height above it and bolt size were

received from initialization file).

(b) A p p r o a c h subroutine is executed to receive low impact contact between the

tip of the bolt and the block surface.

(c) Search program is executed to verify that the bolt is located within the thread

borders (indicated by high normal forces from the thread's edges). If not,

Search will move the gripper in a search pattern (while increasing size of the

square ribs) until the thread will be located.

(d) R o t a t e program will rotate the screw until the desired torque will be reached

while complying gripper position and orientation to forces/torques reactions.

The subroutine level makes U6e of the service programs. The A p p r o a c h subroutine, for

example, approaches the surface using location transformation of the tool and gripper

sizes and is terminated when desired normal forces are reached. The information needed

is available using service programs like J R 3 . D A T to receive force information or T i p

for location transformations.

It can be seen that in the same main task - subtasks, subroutines and service programs

are executed again and again. It can be done because of the use in the initialization files

and the ability to change parameters during program flow. The structure logic, the

programs and the way their parameters are derived are a major element in this research

and will be discussed in the following chapters.

Chapter 3. TASK DECOMPOSITION 29

3.4 PUMP ASSEMBLY DEMONSTRATION

Pump assembly was chosen as applicable to represent and demonstrate robot perfor

mance, using force sensory information. This task is a common industrial task with all

the basic subtasks that can be found in many other mechanical structures. The external

hydraulic gear pump type is a common pump, and the one used as an example in this

thesis, is shown schematically in Fig. 3.5. During demonstration, the following parts are

manipulated by the arm: Gearl (2), Gear2 (3), Top (4) and 4 Bolts (5). The subtasks

in the thesis, are derived in order to assembly those parts. In the figure, like in the

workspace, the pump is mounted on a base, with two pins to prevent its movement.

The working space that lies inside the operating envelope (ref. [38]) of the arm is

divided into an assembly area (workspace) and parts location (feeder). The base of the

pump is mounted on an aluminum base in front of the robot. It simulates the part that

is moved to its position by a mechanical feeder or a belt conveyer. The parts to be

assembled are fed to a nearby location by another feeder. After the assembly of the last

part by the arm, the conveyer is moved with the assembled pump and new empty pump

base is moved in front the robot to repeat the process. In the laboratory both the base

of the pump and the parts are installed on aluminum bases that are located on a wooden

(compliant) table. All the parts are located with relatively fixed positions, so no Search

pattern is used to locate their position and orientation.

The arm i6 equipped as described in chapter 2. The opening range of the gripper was

adjusted so it can move all the parts. The devices mounted on the e-e were measured and

their relative position from the base of the force sensor is used as an input for position

and force transformations (see chapter 6).

The following table summarizes arm movements and check points and shows the

basic logic behind the main assembly decomposition. Every operation is described and

Chapter 3. TASK DECOMPOSITION 30

its relating subtask program and initialization file are enclosed. Each subtask begins or

ends with an arm movement (with or without a tool or a part). The pattern of movement

includes a horizontal movement that is always made in a safe place (free space) located

above the assembly area. Approach and Clear (depart) horizontal movements connect

between the free space and the workspace (or the parts location).

Pump Ass. Subtasks Description: Subtasks:

1. G E A R 1 : S

1.1 Move to gearl, grasp it and check 1.1.1 GEAR1.INI1 S E

the grasping. 1.1.2 PICK U R

1.2 Insert gearl into its place in the 1.2.1 GEAR1.INI2 B V

base. 1.2.2 INSERT R I

2. G E A R 2 : O C

2.1 Move to gear2, grasp it and check 2.1.1 GEAR2.INI2 U E

the grasping. 2.1.2 PICK T

2.2 Insert gear2 into its place in the 2.2.1 GEAR2.INI2 I P

base. 2.2.2 INSERT N R

3. P U M P T O P (COVER): E O

3.1 Move to Cover, grasp it and check 3.1.1 TOP.INI1 S G

the grasping. 3.1.2 PICK •

3.2 Place the cover on the gears (two pins 3.2.1 TOP.INI2

insertion) and twist to verify location. 3.2.2 INSERT

Chapter 3. TASK DECOMPOSITION 31

PUMP Ass. Subtasks Description: Subtasks:

4. PLACING SCREW1:
4.1 Move to Screwl, grasp it and check 4.1.1 SCREW1.INI1

the grasping. 4.1.2 PICK S

4.2 Move to the desired hole, place it 4.2.1 SCREW1.INI2 E

and make 3 turns. ' 4.2.2 PLACE R

5. PLACING SCREW 2: V

5.1 Move to Screw2, grasp it and check 5.1.1 SCREW2.INI1 S I

the grasping. 5.1.2 PICK U C

5.2 Move to the desired hole, place it 5.2.1 SCREW2.INI2 B E

and make 3 turns. 5.2.2 PLACE R
6. PLACING SCREW 3: O

6.1 Move to Screw3, grasp it and check 6.1.1 SCREW3.INI1 U P

the grasping. 6.1.2 PICK T R
6.2 Move to the desired hole, place it 6.2.1 SCREW3.INI2 I O
and make 3 turns. 6.2.2 PLACE N G

7. PLACING SCREW 4: E R

7.1 Move to Screw4, grasp it and check 7.1.1 SCREW4.INI1 S A

the grasping. 7.1.2 PICK M

7.2 Move to the desired hole, place it 7.2.1 SCREW4.INI2 E

and make 3 turns. 7.2.2 PLACE S

8. PICK TOOL:
8.1 Move to Tooll, grasp it and check 8.1.1 TOOL.INI1

the grasping. 8.1.2 PICK

Chapter 3. TASK DECOMPOSITION

PUMP Ass. Subtasks Description: Subtasks:

9. SCREW 1:

9.1 Move to Screwl, grasp it and turn 9.1.1 SCREW1.INI3

4 turns (controlled torque). 9.1.2 ROTATE

10. SCREW 2: s

12.1 Move to Screw2, grasp it and turn 10.1.1 SCREW2.INI3 E

4 turns (controlled torque). 10.1.2 ROTATE R

11. SCREW 3: S V

11.1 Move to Screw3, grasp it and turn 11.1.1 SRCEW3.INI3 U I

4 turns (controlled torque). 11.1.2 ROTATE B C

12. SCREW 4: R E

12.1 Move to Screw4, grasp it and turn 12.1.1 SCREW4.INI3 O

4 turns (controlled torque). 12.1.2 ROTATE U

13. APPLY TORQUE: T P

13.1 Move to Screwl, Screw2, Screw3 and 13.1.1 REPEAT.INI1 I R

Screw4 and tighten them to the 13.1.2 ROTATE N O

desired torque as indicated in E G

REPEAT.INI1. S R

14. REMOVE ASSEMBLY: A

14.1 Move to the assembly, grasp and 14.1.1 ASSEMB.INI1 M

check the grasping. 14.1.2 PICK S

14.2 Move to desired place and place 14.2.1 ASSEMB.INI2

the assembled pump. 14.2.2 PLACE

Chapter 3. TASK DECOMPOSITION 33

Fig. 3.4 shows the beginning of the structure that is used in order to execute the Pump

Assembly Task. Th e main program calls the initialization files and the subroutines

Pick and Place for Base positioning and Pick and Insert for G e a r l insertion. If Insert

subtask is taken as example from the table, it is used to insert both G e a r l and Gear2.

The insertion of G e a r l is relatively simple: the shaft of the gear is inserted to its bearing

in a "peg in a hole" routine, while considering possible interaction between the pump's

walls and the tooth of the gear. Inserting the second gear is a little different because

while the shaft is inserted and the walls interfere, the teeth have to match during the

linear movement. A relative rotation is added to the insertion program to overcome the

problem. Those and other details are not included in the table - chapter 5 covers the

subtasks in details.

Every subtask contains a list of subroutines, part of them are being executed by

triggering a software switch in the initialization program. The following table summarizes

all the programs contained in the assembly library which allow successful execution of

Pump Assembly Task:

Main Task Subtasks Subroutines Service Programs

Pump- Pick Approach PCstop

Assembly Place Grasp Force information

Insert Search Process control programs

Screw Comply Initialization and

Check Clear Parametric files

Place Overload checking

Move Weight

er 3. TASK DECOMPOSITION

Figure 3.1: Execution of Block assembly by a robot.

MAIN
TASK

SUB-
TASK

SUB
ROUTINE

MOVE 4
SERVICE
PROG.

J .

GRASP

BLOCK
A S S E M .

CLEAR

WEIGHT

JR3.DAT

APPROACH

APPROACH.PC

JR3.DAT

SEARCH

— ~r
i

r
i

pfo1.M1 | pm1Jnl2 | p i n i l n H | pin2.ln!2 |

P I C K 1 S C R E W 1 P I C K I S C R E W 1

SEARCH.PC

JRS .DAT

TIP

1
COMPLY

OOMPLYJ»C

JR3.DAT

Figure 3.2: Algorithm structure using Block Assembly example.

Chapter 3. TASK DECOMPOSITION 35

subtask PICK

APPRMCHfttR

INITIALIZATION

TOOL conftguntion

c*l MOVE.PAR
update peramstem

OU APPROACH.PAR
updatejptrenwtera

caB GRASP.PAR
update pant meters

cad CLEAR PAR
update paramcttre

subroutine
MOVE

subroutine
APPROACH

subroutine
GRASP

subroutine
CLEAR

APPROACH.PC

Figure 3.3: Decomposition of subtask Pick.

BASE. INH

PICK

P
U
M
P

A
S
S
E
M
B
L
Y

a
E
A
R
2,

BASE. INS

P L A C E

GEAR1.INI1

PICK

GEAR1.INI2

INSERT

i l-r

i H

M O V E

G R A S P

A P P R O A C H

I C L E A R

S E A R C H

C O M P L Y

WEIGHT

JR3.DAT

APPROACH.PC

JR3.DAT

— 6EARCH.PC
_ JR3.DAT

TIP

COMPLY. PC

JR3.DAT

Figure 3.4: Beginning of Pump Assembly Task.

Chapter 3. TASK DECOMPOSITION 36

Figure 3.5: Pump assembly parts.

Chapter 4

FORCE/MOTION SYNTHESIS FOR ASSEMBLY TASK

4.1 FORCE CONTROL REVIEW

4.1.1 Introduction:

One of the important problems in executing an assembly task is the kinematic constraint

imposed on the motion of the manipulator through contact with the environment. The

objective of trajectory control of a constrained manipulator is to regulate force and

torque reactions between the end effector (e-e) and the environment while simultaneously

regulating desired position and orientation coordinates of the e-e.

The basic control of most of the industrial robots is via position/velocity instructions

received from its operator. Robot response depends on forces and torques applied by

its actuators and by the contacting environment. In cases like part assembly, a slight

misalignment (position error) between the tool's tip and the environment usually causes

large damaging forces. This is a classical case for using force control algorithms: the

contact forces are used as a source of information on the actual position of the end-effector

of the robot relative to the environment. Force feedback offers an important means to

enlarge the allowed region of uncertainty, thus avoiding more severe requirements on the

positioning accuracy of the robot and peripheral equipment. The problem in practical

applications of force controlled (on-the-shelf) robots (Ref. [40]) is that the force controller

must always be used in conjunction with a position controller. Most commonly, one wants

to specify force control only along selected Cartesian degrees of freedom (D . O . F) while

37

Chapter 4. FORCE/MOTION SYNTHESIS FOR ASSEMBLY TASK 38

the remainder are controlled according to a position trajectory (Ref. [21]).

Force feedback strategy is based on information received from a compliant device

that deflects due to contact forces that are the result of previous motions. Thus the

strategy is governed (Ref. [45]) by the magnitude of the compliances - arm, device and

environment, by the dynamic responsiveness of the arm's actuators and by the control

computer. Using a stiffness matrix in the forces control algorithms, the force control

is reduced to a position control and the accuracy is reduced to the resolution of the

position encoders. Ref. [18] concluded that the capability of the robotic system to

perform advanced assembly tasks in unstructured and imprecise environment is strongly

dependent on its ability to simultaneously control end-effector movements and active

forces.

Controlling the movement of the robot arm, while executing an assembly task, has

two distinct control phases:

1. gross motion control - an open-loop movement of the arm from its initial location

to a (desired) target position/orientation point, along a planned trajectory. In this

stage the manipulator performs free (usually high speed) motion without reference

environmental contact.

2. fine motion control - a closed-loop motion in which the end-effector interacts with

the environment. It is a constrained movement that is carried out using force sensor

data.

Robot force control research began in the 1950s, mostlly in the areas of remote manip

ulators and artificial arm control. In the last decade, work on force control was done at

Stanford by Salisbury, Craig and Khatib. Other works were published by Whitney, Ma

son, Paul, Hogan and many other researchers (like most of the references in this thesis).

In Ref. [47], Whitney describes several different block diagrams of force feedback control

Chapter 4. FORCE/MOTION SYNTHESIS FOR ASSEMBLY TASK 39

algorithms. Fig. 4.1 shows a basic structure for the major part of the force feedback sys

tems. According to this scheme, the robot is controlled by position or velocity commands

(input). The desired trajectory is modified by two feedback loops. A position/velocity

loop and a force/torque loop.

The common factor to all the force control algorithms (except implicit force feedback)

is the use of processed force sensor information in their feedback loops. Algorithms like

stiffness control and implicit force feedback use position input, velocity is the input

for damping control, while position plus velocity are the inputs for impedance control.

Explicit force control use force input while hybrid control uses force plus position/velocity

inputs.

Using sensory information (position and force), the robot has to be treated a6 a sam

pled data control system. Position trajectory set points are received and acknowledged

every 28 (msec), the current position of the internal loops (encoders of the joints) are

sampled every 0.875 (msec) and the force sensor information (read by PC program) is

received every 28 (msec). The control algorithm must consider the sampling time and

the time to process this information to points transformation in order to receive smooth,

desired trajectory.

Compliant motion control is concerned with the control of a robot in contact with

the environment. There are some approaches to Compliant control, among them:

Impedance control - deals with the desired dynamic relationships between forces and

positions. It is simple and robust to parameters uncertainty but, is restricted to fairly

slow motions. And Hybrid control - the dynamics of the manipulator is calculated in

terms of the operational coordinates and then controlling position, force, or mechanical

impedance along each axis of the compliance frame.

Both algorithms are discussed in the following sections.

Chapter 4. FORCE/MOTION SYNTHESIS FOR ASSEMBLY TASK 40

4.1.2 Impedance Control:

Compliant motion of the manipulator occurs when the manipulator position is con

strained by the task geometry (contact with the environment). According to Ref. [1],

compliance may be derived from the following:

1. Passive Compliance: when force is applied at a point along the manipulator

arm, the structure between that point and the base will deflect. Usually the force is

applied along the tool held by the gripper, so the deflecting structure includes the tool,

the gripper, the sensor and the following elements of the arm: arm links, supporting

elements (bearings, guide ways), transmission elements (gears, shafts) and servo drive

systems (loop gains in the feedback system). . When the environment is not stiff (related

to the other parameters), its stiffness must be added. Due to the fact that nonmetallic

materials are involved, the compliance of the arm (plus the other objects) is nonhnear.

The nonlinear compliance and the presence of disturbance forces causes inaccuracies of

the end effector position.

Oscillations of the arm are deviations of its motion from the programmed motion.

The fundamental natural resonance frequencies of bending compliance (only the arm

- links and joints) are relatively low (2 to 30 Hz). It mainly effects the performance of

high-speed-high-acceleration manipulators. In this work, we will ignore that phenomenon

unless it interferes.

Passive mechanical compliance devices like RCC (Remote Center of Compliance) are

designed for special-purpose applications (usually in task assembly). Their specifica

tions are known and controlled. They are capable of quick response and are relatively

inexpensive (section 2.3.1).

2. Active Compliance: is a programmable device (software algorithm) that enables

the operator to modify the end effector's elastic behavior according to different phases of

Chapter 4. FORCE/MOTION SYNTHESIS FOR ASSEMBLY TASK 41

an assembly task. In a scheme, suggested in Ref. [34], the position gains in a joint based

servo system are modified in such a way that the end-effector appears to have a certain

stiffness along the Cartesian frame. Describing the stiffness matrix K p as the desired

elastic behavior needed to generate the force F due to small displacements Sx at the end

effector:

F = KpSx (4.1)

The parameters F, K p and 6x are expressed in task space coordinate. K p is generally

chosen to be diagonal with low values along directions which stiffness is controlled and

high values along the other directions. Transferring task space forces into joint torques,

using the manipulator Jacobian Sx = J£q (expressed in task space), we obtain:

T = J r F

= (J r K p J)£q (4.2)

this is an expression for joint torques, necessary to make the hand behave as a six

dimensional spring in cartesian (or task) space. The term J r K p J is a non diagonal joint

stiffness matrix. This means that position errors in one joint will affect the commanded

torque in all the other joints (the joint stiffness are highly coupled with each other). Eq.

4.2 is a relation between the desired six degrees of freedoms, Cartesian spring stiffness and

the controlled joint torques that enables to realize it. Here, through use of the Jacobian,

a Cartesian stiffness has been transformed to joint-space stiffness.

Position control in the joint space can be achieved (in the absence of friction) by:

r = K p q + K , q - g(q) (4.3)

where q = q^ — q a - the error or the difference between the desired and the actual joint

displacement, g(q) is the estimated gravitational torque and the matrices K p and K j

(programmable damping) are any symmetric matrices.

Chapter 4. FORCE/MOTION SYNTHESIS FOR ASSEMBLY TASK 42

The impedance control is derived using the above development to large task space disc

placements. In this case, joints displacements are replaced with task space displacements

vectors (x = xj — x„) to receive the control law:

r = J T [K p x + K,x]-g(q) (4.4)

here, by expressing J T , K P and Kj directly in task space coordinates and give desired

values to the "stiffness" and "damping" matrices, the task space force [K px + K^x] is

transformed into joint torque vector.

4.1.3 Hybrid Control:

In most of the assembly programs (Subroutines and Service Programs), the arm is con

strained by the task geometry. Those programs can be described by using a generalized

surface that is defined by position constraints along its normals and force constraints

along its tangents (section 3.1). The assembly goals or the desired trajectories can be

specified by the operator as another set of artificial constraints, described as position or

force constraints. The Hybrid Force/Position Control algorithm was designed to deal

with the two different criteria (Ref. [30]) related to the two different types of constraints.

The hybrid controller allows the use of force control algorithms along certain degrees of

freedom (d.o.f.) while allowing the use of position or damping control algorithms along

the remaining d.o.f..

The actuators activate the manipulator's links around their joints while task descrip

tion and task constraint are declared in the workspace, usually in Cartesian coordinate

frame. As in other robot arm control algorithms, significant work has been done by

researchers to translate workspace description to joint space. In Ref. [30] both joint

positions, compliance, control separation and force were specified in the cartesian coor

dinate frame. Position errors due to compliance or force received in the cartesian frame

Chapter 4. FORCE/MOTION SYNTHESIS FOR ASSEMBLY TASK 43

were then translated back to joint coordinate frame using the inverse Jacobian.

A step farther was done (Ref. [28]) by Khatib who resolved the manipulator joint

inertia into an effective cartesian inertia. Using the hybrid control scheme, a PID con

troller was implemented to receive forces (from cartesian accelerations and inertia) and

transfer them back into desired torques at the joints. In Ref. [48] the authors modified

the hybrid control method by showing that a reduction in the computation loads can

be achieved simply by transferring the control from the cartesian frame to joint space.

The stability problems of the hybrid control is related to its structure, including both

stability problems of the force and the position control algorithms in addition to the

implementation of the transitions between them.

Fig. 4.2 shows a typical hybrid force position diagram. The inputs are the desired

forces and positions multiplied by the diagonal matrices S and I — S. The output of

this multiplication is the partition of the forces and positions to the desired six d.o.f.

expressed in the cartesian space. Parameters that are received in the cartesian space are

transferred to joint space using the Jacobian transpose for forces and inverse Jacobian

for positions and velocity.

4.1.4 Force Control for Assembly Task:

The control algorithms described previously can be applied to a robotic arm, by its

manufacturer, as part of the software of its controller. Most of the commercial robots

can only be activated by using position instructions. In order to apply advanced control

algorithms to the arm, researchers like D.G. Bhim (Ref. [3]) designed a new "Universal

Six-Joint Controller", capable of driving a robot manipulator equipped with D.C. joint

motors and position optical encoders. Such design can directly control the torque of

the joints while using the D.C. power amplifiers of a PUMA controller and bypassing

completely Unimation controller.

Chapter 4. FORCE/MOTION SYNTHESIS FOR ASSEMBLY TASK 44

Using built-in functions like SLAVE (Unimation feature that enables the user to

control the arm controller by a supervisor computer), can increase the computation ability

of the PUMA 560, but it doe6 not allow direct torque control of the joints. Another way

to apply force control to a commercial arm is by using the compliance of the arm, while

moving the tool in controlled position steps. In this solution, used in this thesis, both

position and force control algorithms are used. Activating the arm in an assembly tasks,

the same logic as in hybrid control is applied, but here force data is converted to position

instructions. So both forces and positions are implemented by using the internal PID

control algorithm of Unimation controller.

Every assembly task is divided into the desired position and force controlled d.o.f..

The position control is implemented by using directly the movement instructions of the

robot. While in contact with the environment, forces and torques (in the desired d.o.f.)

are received through incremental movements. If force i6 to be increased then a desired,

incremental, calculated movement instruction is the output of the force algorithm. The

new target point is located in a small segment under the contacting surface (in other

words, the robot is instructed to move into the environment). The robot controller

responds by calculating (inverse kinematic) some set points. Those are target points used

by the inner control loops of the joints to control their movements, using PID control

algorithms. A 6 a result, joint actuators will cause the arm (or the environment) to bend

until the position error will nullify (joint encoders reaching the desired angles). The

result of such pseudo movements will increase forces and torques reactions. Decreasing

reactions can be done by entering a target point away from the contacting point.

When the use of the robot includes fast movements, structural dynamic characteristics

of the manipulator including stiffness, inertia, damping and natural frequencies are to be

considered. Using the arm while moving in contact with the environment involves only

fine movements, so part of the dynamic characteristics can be ignored. In this case, force

Chapter 4. FORCE/MOTION SYNTHESIS FOR ASSEMBLY TASK 45

and torque reactions between the arm and the environment are a function of the step

sire and the stiffness of the contacting parts. Stiffness parameters that have to be taken

into consideration are arm stiffness, stiffness combination of the sensor, gripper and the

tool (held by the gripper) and the stiffness of the environment.

Achieving forceB/torques and controlling them through the compliance parameter of

the system's components can result in high forces, instability and possible damage to e-e

components or to the environment. To avoid that problem and to successively control

small forces of a stiff arm and environment, the algorithm must instruct the system

to move in small steps, resulting slow arm reactions, an impractical way to execute an

assembly task. Lowering assembly or arm stiffness by using the RCC and the Linear

Compliance Device is the solution that was selected for this problem. In this way, the

basic position control of t h e manipulator (the inner PID algorithm) will still be the high

stiffness controlled links required to minimize response to disturbances.

Fig. 4.3 shows the block diagram of the controller activated during assembly task

using the following parameters:

1. task planning: this is a part of the strategical control level that makes use of task

decomposition. Every program, according to its nature, is divided into force and

position d.o.f. with t h e i r desired velocity parameters. Positions and their associated

velocity parameters are transferred directly to the robot controller while the desired

forces are calculated using a special control law.

2. control law: a force error (F e) signal is received by subtraction of the sensed force

(F ,) from the desired force (F j) . The force error is then processed using the control

law shown in Fig. 4.4. The switching control law has a proportional gain (K / j) ,

a dead zone around the desired forces (F e = 0) and its outputs are bounded to

prevent large movements and to receive less nervous control. Usually, the force

Chapter 4. FORCE/MOTION SYNTHESIS FOR ASSEMBLY TASK 46

part of the control algorithm, is activated using a pc program. The parameters

of the control algorithms are derived from the task profile and its nature, except

for the dead zone which is usually fixed and receives values that are ±20% of the

desired force. For some tasks, when a movement is not needed, increasing of the

dead zone is equal to the cancellation of the movement.

3. robot controller: the input to the manipulator controller is received directly from

the task program (usually a Subroutine) with additional real time trajectory alter

ation from a pc program (usually a Service Program). The new desired location is

transferred from a' current cartesian or tool frame to joint frame (6 angles) using

inner inverse kinematics calculations. Six joints controllers using joint encoders

output, close their internal PID control algorithm loops. The resultant movement

(AX) of the e-e in one time interval is:

A X =
X a r m • St for > X a r m - St

(4-5)
X r f for Xd < X o r m • 6t

when

St - time interval of the system.

X a r m - arm velocity (controlled parameter).

X j - desired position of the end effector.

In this scheme the robot controller includes the dynamic parameters of both the

arm, controller and the electro mechanical subsystems like motors, gears and their

amplifiers board.

4. process and sensor: the actual forces, locations and velocities of the e-e are function

of task specifications, e-e and its equipment and the surroundings environment lo

cation and stiffness. The assembly task deals with known parameters (the unknown

Chapter 4. FORCE/MOTION SYNTHESIS FOR ASSEMBLY TASK 47

are the tolerances of those parameters) so they can be precalculated and feed into

the task planner. Actual sensor data is transformed to the desired coordinate frame

and feed back to the control law.

Actual implementation of the block diagram and the parameters discussed above are

imbedded in the simulation described in chapter 8 and in the programs that executing

the assembly task.

4.2 D Y N A M I C M O D E L ANALYSIS

In ref. [11] the authors are looking to model a robot arm and its sensor in order to

receive the conditions for unstable behavior while in contact with the environment. A

continuous proportional force controller is introduced in the dynamic description to model

an overall behaviour of a position servo system. Fig. 4.6 shows the basic model and the

block diagram of its controller. Here, the two mass model includes a rigid robot with

mass (mP) damped to the ground by a damper (dV). The sensor has stiffness (kt) and a

damper (bt). The environment adds to the dynamic description, its mass (m e n) , stiffness

(ken) and damping (ben). The model dynamic equations are:

(K + b.) -b.

-K (K + Kn)

k, kg

- fc, (fc ,-ffc e n)

using the Laplace transformation, the equations can be manipulated to receive the

open-loop transfer functions:

Xr{») + (bm + b.)s + (km + k.)

mr 0
< +

0 TTlen
+

(4.6)

F(a)

X e n (a)

F(*)

P(s)
b,s + k,

(4.7)

Chapter 4. FORCE/MOTION SYNTHESIS FOR ASSEMBLY TASK 48

when

P{a) = [m r« s + (6r + b,)a + *,] x

[m^a* + (6, + bm)a + (k. + *„,)] - [6,a + *,r] 8 "

these equations give the relationships between the movements and the forces subjected

to the system by the motors of the arm. The force information (system's feedback) sensed

by the force sensor is:

F . = * . (* r - X e n) (4.8)

using the proportional control law of the form:

F = kjd(Fd - F,) (4.9)

The root locus for this simple modeling was calculated and ploted using MATLAB soft

ware. Some of the parameters (of the arm) were measured and calculated (chapter 8)

and some were estimated (those of the environment). The proportional software gain of

the system (Kj) was changed from low values (0.001) to high values (100,000) and the

result is ploted in Fig. 4.6. It can be seen that the system is unconditionally stable for

any software gain as well as for any stiffness value of the either the sensor or arm.

A more complex structure for the robot arm (that ignors the dynamics of the environ

ment), consist of two masses that represents both rigid body and first vibratory model.

The equations for this model are:

nt\ 0

0 m 2

fc2 —k3

-fc, (fcj + fc,)

x2

(6X + b3) -b2

-h (bi + b.)
+

Chapter 4. FORCE/MOTION SYNTHESIS FOR ASSEMBLY TASK 49

Once again the Laplace transform is used to obtain the open-loop transfer functions

of the equations:

X ^ g) m,*2 + (b. + b7)s + (fc, -I- fe2)

X 2 (s) b3s + fc2

(4.11)

where

P(s) = [rms* + (&i + 6,)* + fc2] x

[m2aJ + (62 -(- b.)s 4- (fcs + fc.)] - [62* + **] 2

The contact force is given by

F , = fc,x2 (4.12)

and the proportional control law is

F = fc/(J(Fd-F,) (4.13)

In this case, compared with the previous one, it can be seen that the dynamics are the

same. The cases only differ in the relative position between the force sensor and the

activated force. The root locus output of this case is shown in Fig. 4.8. Once again

the parameters were either measured or estimated. It can be seen that in this case the

system is only conditionally stable. The actual gain values that cause the instability are

not plotted because they depend on the parameters of the system. It can be concluded

that when structural compliance is presented between the sensor and the actuator - the

controller will attempt to regulate contact forces through the dynamic system and using

a certain gains can cause system instability.

In order to investigate the behaviour of the robotic arm while in contact with the

environment, a change has to be made in the approach to the system dynamics. Firstly,

Chapter 4. FORCE/MOTION SYNTHESIS FOR ASSEMBLY TASK 50

the analog controller has to be changed so that a discrete control system can be analyzed

(discussed in the following paragraph). Secondly, a simulation has to be implemented

nsing the basic structure of the arm as previously introduced, adding arm stiffness to the

dynamic model. This part is included in chapter 8.

In replacing the analog controller by a digital one, a sampler is added between the

summing point and the digital controller and a hold (sample and hold) circuit between

the digital controller and the plant. This structure produces a time lag (phase lag) that

reduces the stability margin of the closed loop system. The transfer function of a zero

order hold (see Ref. [17]), may be approximated by:

G * « = ! ^ T < 4 1 4)

Introducing this hold approximation to a continuous time control system, modifies it to

the time lag. The modified analog controller can be discretized and the system can be

transferred and analyzed in the z Domain. But, in order to continue the previous analysis,

the system h a 6 to remain in the s domain. Fig. 4.7 shows the model of the basic,

two mass model with first order hold approximation (that model was unconditionally

stable using an analog controller). Fig. 4.8 shows the root locus representation of that

model. The parameters of the system are the same as in the first, stable case (Fig. 4.5).

The root locus shows that the continuous, unconditionally stable system changed to be

conditionally stable discrete system.

The scheme that was introduced in this chapter is the basis of the strategy and control

algorithms imbedded in the programs that are described in the following chapters. In

chapter 8 some reduced parameters of the robot will be added to this model. Using ACSL

to simulate the system, the desired spring stiffness (sensor stiffness - K f) (or software

stiffness) will be chosen to achive a guarded move.

Chapter 4. FORCE/MOTION SYNTHESIS FOR ASSEMBLY TASK 51

4.3 C O N C L U S I O N S

1. closed loop force control algorithms using stiffness matrix and structured according

to Fig. 4.7 are subject to possible stability problems due to time "delays or the

dynamic response characteristics of the manipulator.

2. applying a discrete controller even to the simple case of the two mass model shows

conditional stability. That means that the robot, sensor and environment parame

ters have to be modeled and simulated. Using the output of that model some parts

(stiffness, dampers) have to be designed taking into account model parameters and

desired performance.

3. using the measured stiffness of the arm, sampling time of the controller (0.028 [sec]),

estimated damping values and low software gains (K/^ < 1) in the control law -

the robot model is stable (further work on this part is included in chapter 8).

4. both Roberts (Ref. [32]) and Maples (Ref. [21]) come to the conclusion that

a mechanically compliant wrist sensor (or compliant environment) permits larger

control gains. It has some advantages, due to smaller impact forces (while meeting)

and lower contact forces at equilibrium for given approach velocities.

Chapter 4. FORCE/MOTION SYNTHESIS FOR ASSEMBLY TASK 5 2

0RK3MAL

MOTION

BMRCHMENT
posmoN

COMMAND rCH

NEW

MOTION

COORD
CONV

JOINT

SERVOS

TOOL
POSITION H O

DEFORM.

STIFFNESS

REACTION

COMMANDS

STRATEGY
COORDINATE
CONVERTON

SENSOR

FORCE

Figure 4.1: Basic force control architecture.

Figure 4.2: Hybrid control block diagram.

Chapter 4. FORCE/MOTION SYNTHESIS FOR ASSEMBLY TASK 53

Figure 4.4: Proportional control law.

Chapter 4. FORCE/MOTION SYNTHESIS FOR ASSEMBLY TASK

F
m ,

AA
r

m ,

L
b ,

L
b .

x,

rVWVj

b .

^0 KJ

Fc(s)

Figure 4.5: Two mass model structure and block diagram.

2000

1500

1000

500

o

-500

-1000

-1500

-2000

Kf-1000
• j

! ! ! 1 i) i i i
i i ! i t : i

i t
i 1

i ' I
: i i

-0.001
t y

! ! ' i : : : : t : : t
" 1 K f

1 H 1
-0.001
t y

• ; : j ! t
i—*0 i

£ j j
i j—«*o

t i

i 1 ! '
i |

i t i
! ! !

t i i i
i i

• i t
i ! i
i i i .

(|
: t

• 16 -14 -12 -10 -8

Real

-2

Figure 4.6: Root locus to the model in figure 4.5.

Chapter 4. FORCE/MOTION SYNTHESIS FOR ASSEMBLY TASK 55

Fd(s)

FWVVI

bs
x2

*i(u

) Kf X2(a) Ks)
Kf

F(8)
Ks

FC(6)

Figure 4.7: Rigid and fir6t vibratory model structure and block diagram.

400

300

200

100

I 0

-100

-200

-300

-400 -3

i

! ^ J i

! I
i i

j Kf-0.001^ •—" i i ! ! 1 > i
7 • " I t j t j |

| i j j t i

» 1 • ,w..... i i

i i r j i
! I ^
1 j

— j i ! i

-2 0
Real

Figure 4.8: Root I O C U B to the model in figure 4.7.

er 4. FORCE/MOTION SYNTHESIS FOR ASSEMBLY TASK 56

Figure 4.9: Adding zero order hold to two mass model.

200

150

100

50

o

-50

-100

-150

Kf-0.01

j Kf-0.01
Kf-1000

Kf-1000

-200 -80 -70 -60 -50 -40 •30
Real

-20 -10 10 20

Figure 4.10: Root locus to the discrete model (figure 4.9).

Chapter 5

A S S E M B L Y S U B T A S K S

An assembly subtask can be a relative operation between the e-e and a tool or a part, such

subtasks are Pick and Place. Another group of subtasks are those that the operation

is between the tool or the part and between the environment (workpiece), such subtasks

are Insert and Screw. All subtasks are repeatable operations - they are not oriented to

any specific case. In fact, each subtask program contains call instructions that activate

subroutines and service programs. According to the logic structure of the assembly

library, the main program calls an initialization file before running the desired 6ubta6k.

Those values of the parameters stay in the robot memory until replaced by new values.

So those parameters whose values need no change (during the execution of the main

task), can be declared just once in order to save memory space. On the other hand,

every subtask has its constant structure including that of the initialization file. It is both

easy to program and reduce possible system failure keeping this structure - this is the

way chosen for the library programs.

Taking Fig. 5.1 as an example, Pick initialization file initializes four subroutines.

The parameters of each subroutine are discussed widely in the next chapter, but the fact

that all subtasks are using the same subroutines enforced the presence of a list of needed

parameters at the end of each subtask section. Those parameters are to be included in

the initialization file of each subtask.

As mentioned before, obstacle avoidance and trajectory optimization is not part of this

thesis. Thi6 problem is avoided simply by declaring a "Free Space" above the workspace

57

Chapter 5. ASSEMBLY SUBTASKS 58

where the e-e .with its tool can move freely in the horizontal directions. The straight

movement to and from that free space is done by Approach and Clear subroutines.

Every subtask begins and ends in that Free Space.

The subtasks described in the following sections are derived for the special main task

- Pump Assembly. Naturally, the library can be used in any other assembly task as

well. Thus, it is very likely, that in other assembly tasks, new subtask,subroutines and

service programs will be needed. Building those programs, in the logic described here,

will increase the library power and flexibility.

5.1 SUBTASK PICK

Subtask Pick is designed to pick up a tool or a part from a known target point. Pick

structure is based on activating four subroutines (Fig. 5.1): Move, Approach, Grasp

and Clear. Move brings the e-e to a point above the target point. This movement

is done in the free space above the workspace to avoid obstacle collision. Subroutine

Approach brings the e-e to contact with the part while Grasp subroutine is responsible

to grasp it and to confirm the presence of the grasped object - the confirmation is done

if a software switch in the initialization file is set to on. Without a vision system, the

only way to confirm the grasp is by using the force sensor and weight the object. Clear

subroutine moves the e-e holding the part back to the free space, ready to make another

horizontal movement.

The output of Pick subtask is the e-e equipped with a part or a tool. The rela

tive position between the parts is important because forces and moments are activating

between them. If it is possible, the designer should avoid to relate on friction as the

transformation media for forces and moments. More is given about the subject - in the

Grasp section.

Chapter 5. ASSEMBLY SUBTASKS 59

As shown in the algorithm's structure, the Pick initialization file has to initialize four

subroutines. The following are the desired parameters that are to be added to the system

through every Pick initialization file:

1. free space basic height.

2. target point location.

3. movement speeds.

4. end effector configuration (for tool transformation).

5. part 6 izes from grasping point to tip (tool/force transformation after the grasp).

6. forces to terminate Approach subroutine.

7. the followings are special case inputs:

• max forces to stop Grasp subroutine

• weight and weight trigger=on in cases that grasp verification (by weight) is

needed.

5.2 S U B T A S K P L A C E

Place subtask was created in order to satisfy a very basic movement of a part or a

tool from the free space to the target point, using simple position instructions. In some

cases, when the target point is not an accurate point, a position plus basic force control

algorithms is used in order to verify contact. This option is activated by a software

switch.

As all other subtasks, Place is built from a list of subroutines, activated by an

initialization file. Place algorithm structure includes the following subroutines: Move,

Chapter 5. ASSEMBLY SUBTASKS 60

Approach and Clear (Fig. 5.2). The e-e moves horizontally in the free space to a point

above the target point, Approachs with (or without) force control to the target point,

opens the gripper and Clears back to the free space.

The following are the desired parameters that are to be added to the system through

every Place initialization file:

1. free space basic height.

2. target point location.

3. movement speeds.

4. end effector configuration (for tool transformation).

5. part sizes from grasping point to tip (for tool and force transformation after the

grasp).

6. forces to terminate Approach.

5.3 S U B T A S K INSERT

Most assembly tasks commonly use a precise insertion process. Basic examples are tasks

such as inserting a pin into a hole or a shaft into a bearing. The insertion task begins while

the peg is normal to the hole plane, localized between the hole's boundaries. Execution

of insertion tasks is taking place a6 far as the peg is sliding in the direction of assembly

while maintaining the contacts. After the first contact between the mating parts, the

insertion task is relatively slow, with small movements. For these reasons, the dynamic

parameters of the robot and its loads are ignored.

The usual term for insertion task in the literature is 'peg in hole'. Its repeated

use is the reason for receiving fairly large attention in research (mathematical models)

Chapter 5. ASSEMBLY SUBTASKS 61

and implementation. Two primary methods were developed for executing these tasks:

passive mechanical compliance device and active compliance, implemented in software

control loops.

The RCC and the HI-T-HAND are special purpose, passive accommodation devices,

designed and built for the peg in hole problem. The basic concepts and the U6e of

the Remote Center of Compliance (RCC) is described in chapter 2. The HI-T-HAND

Expert-1 was developed at Hitachi Ltd., Japan (see [14]). It is a tactile controlled robot

with flexible wrist and delicate touch which can insert a peg in to a hole with clearance

of approximately 20/im. The construction is based on a flexible wrist, equipped with a

plate spring. The plate is capable of detecting relative displacements in the cartesian

coordinate frame due to the attached strain gauges. The insert operation is performed

by correcting and controlling each position and direction, using the sensors data and the

flexible wrist.

Active compliance can be implemented using software to change hardware perfor

mance. For example, the compliant controlled wrist in reference [7] enables the fine

motion of the end-effector. Generally, however, the implementation of active compliance

is used as feedback algorithm to control forces and motions of the arm. In controlling a

task like peg in hole, both passive control (RCC) and force feedback algorithms are used.

In the following sections, the cylindrical peg in hole insertion will be developed

through both a geometrical and force equilibrium viewpoint. The discussion is divided

into: part mating analysis and jamming and wedging analysis. Both sections yield the

following results:

• understanding the process in order to derive successful algorithm.

• mathematical representation of the forces and moments involved so constraints and

control can be applied to the task.

Chapter 5. ASSEMBLY SUBTASKS 62

The last part of the analysis is a summary of the information which leads to insertion

strategy and control for successful insertion task.

5.3.1 Part Mating Analysis

The first stage in the insertion process is the mating of the peg and the hole. There are

different ways to carry out this process:

a) Reference [39] recommends that during the Approach process, the peg has to be

subjected to a certain angular rotation while bringing its lowest point between the hole

boundaries. After contact with one flank, the peg is moved to its original orientation

and new aligned position. The difficulty of the method is the synchronization between

the axes. vanBrussel's experimental system included a wrist, capable of rotation and a

jig mounted on an X — Y table (planar demonstration).

b) Reference [46] recommends the use of chamfered holes and summarizes the allowed

lateral and angular errors. This basic method is well developed to robot wrist equipped

with RCC, while the mating part is mounted on stable jig.

For an assembly process, with manipulator equipped with compliance device, the

second method is more efficient (time consuming) and simple. The following subsections

gives the forces and moments equations that are to be calculated in order to have force

limits and decision points.

The peg is a rigid body, supported by a compliant structure (wrist with or without

RCC, robot arm and sometimes the jig of the mating object). The compliance matrix

is diagonal at a certain coordinate frame. Placing the compliance center (cc.) at that

specific origin point, simplifies the analyzing and eases the control of the insertion process.

In t h i 6 way the compliant support may be represented as lateral spring constant K e and

angular spring constant Kg. The tip's peg is located a distance LB from the cc. (Fig.

5.3). To analyze the forces and moments applied by the support, they are re-expressed

Chapter 5. ASSEMBLY SUBTASKS 63

in peg tip coordinates in terms of Fm, F x and M (reference [33]).

During insertion the following phenomena usually occur:

• chamfer crossing.

• one point contact.

• two point contact.

For each phenomenon, the basic information required i 6 the geometric description of the

peg and the hole. In order to achieve the successful task, the allowable position errors

and extreme forces must be calculated.

The following variables are described as a function of the object's geometry and the

compliant of the support:

• U - lateral error of the compliance center.

• 6 - rotational error of the compliance center.

• Ft - insertion force.

By controlling the arm via force information from the wrist force sensor and the end-

effector movements, all variables are projected to that point.

The section describes the geometric analysis of those phenomena. This information will

be combined with the force analysis to achieve a complete description of the insertion

task.

Chamfer crossing:

The first part of insertion is the contact between the peg's tip and the face of the chamfer.

This part ends when the peg's tip leaves the chamfer and one point contact begins. Fig.

5.4 shows the geometry and forces acting during chamfer crossing.

Chapter 5. ASSEMBLY SUBTASKS 64

let: p = coefficient of friction

A — coact + painct

B =ainct — pcoact

The expressions of the lateral and angular errors which lead to the desired insertion force

are:
Tj-rj | Ke{z/tana)B
U ~ U o + (KmL\ + K9)B - KxL,rA (5 1)

Km{z/tana){LaB-rA
6 - 9 o + {KmL\ + * *)S - (5 2)

F KmKeA(z/tana)
1 {KmL\ + K6)B - KmLgrA K }

It must be emphasized that in order to begin the insertion: occur:

M < w (5.4)

Where e0 is the initial lateral error and w is the width of the chamber.

One point contact:

Fig. 5.5a shows the geometry and forces acting during one point contact, let

A = K.(Lg -l-ur) (5.5)

where / is the insertion depth and is zero when the peg's tip reaches the bottom of the

chamfer. The expressions of the lateral and angular errors which lead to the desired

insertion force are:

TT - JT K ' (E ° ~ R + R + W °) {.
U - U o ~ C(L,-l) + K0) (5 6)

a C(e0 -R-rr + Lg90) + K86Q

9 = C(La -l) + Ke (5 7)

_ pKmK,{eo-R + r + W0)
F ' ~ C{L, -l) + K9 (5 8)

Chapter 5. ASSEMBLY SUBTASKS 65

Two point contact:

Fig. 5.5b shows the geometry and forces acting during two point contact.

Ft = -f [D(90 - cD/l) + E] + 4- ftd/l)[F(e0 - cD/l) - E/Lg] (5.9)

where

D = KmL\ + Ke (5.10)

E = KtLB{e0 + cR) (5.11)

F= -KtLg (5.12)

Differentiating F r with respect to /, in addition to some reasonable geometrical assump

tions yield to a certain point /* during insertion, where the insertion force F r and the

contact forces are maximum.

5.3.2 Jamming and Wedging Analysis:

During insertion, two phenomena are acting to prevent the successful completion of the

task: jamming and wedging (see [33] and [45]). Jamming is a condition in which the

insertion does not proceed in the direction of assembly when a particular force is applied

to the peg. It is due to wrong proportions of the forces and moments acting on it. In

wedging, no motion is possible in the direction of assembly. This problem occurs due to

geometric conditions.

The chapter analyses these two phenomena in order to receive the force restrictions for

successful insertion task.

(4D + 2Fnd)cD
(5.13)

2D90 + E(l - ftd/Lg) + F(eotid - cD)

Chapter 5. ASSEMBLY SUBTASKS 66

Jamming Analysis:

There are six possible contact patterns between a peg and the edges of a hole (Fig. 5.6).

The equilibrium equations which describe the shding of the peg developed, assuming that

the insertion angles are small enough to be ignored.

Combining the equilibrium equations for a peg in two point contact (Fig. 5.5b) and

defining A = l/2ru, force description becomes:

^ = ± A - ^ (A + 1) (5.14)

Fig. 5.5a describes equilibrium position for the peg's flank in contact with the hole (one

point contact). Force description in this case is:

^ = - A - ^ f (l + A) (5.15)

Deriving the other possible contact patterns between a peg and a hole are described

in the jamming diagram (Fig. 5.6). All the points He on the two lines:

^ = - A - ^ f (A + 1) (5.16)

The jamming parallelogram is defined for certain material combination and lubrication

(fi) and for certain geometrical conditions (r,l). The relations between F e , F t and M

defined a point on the diagram. The parallelogram area and boundaries represents sliding-

in situation.

The diagram emphasizes the following:

• fi ie a parameter that can drastically expand the parallelogram's edge6 and thou

ease the insertion task.

Chapter 5. ASSEMBLY SUBTASKS 67

• in order to avoid jamming, the relation between the forces and the moment must

be a point within the parallelogram borders. So, the following equations must exist:

if; i< \ - <5-">

and

l ^ + ^ f (A+l) |<A (5.18)

Wedging Analysis:

Wedging is a phenomenon dependent on the geometrical relation of the mating parts and

on the material combination and lubrication condition (u). To understand the two point

contact phenomenon let us declare:

• at least one of the mating parts is elastic, though still stiff compared with Kx and

Ke.

• the item I is as large as possible, but still allows wedging.

• a cone angle is generated by rotating a line, with angle 9 = tan-1p, to the normal

force. A 6 long as the line of action of the applied force F z lies within thi6 cone,

there will be no relative motion. This is so, regardless of the magnitude of Ft.

Fig. 5.6b shows a possible position for wedging. The force f3 at the right side is within

the friction cone so there is no relative movement. The reaction force f\ at the left side

points along the lower extreme of the friction cone, indicating that this side is attempting

to move out of the hole.

Let lw be the largest depth at which wedging could still occur, assuming 9 and c

(c = 1 — r/R) are small variables (Fig. 5.3)

19 = CD

Chapter 5. ASSEMBLY SUBTASKS 68

lw = fid (5.19)

assuming d « D to receive the smallest angle at which wedging could occur

c 6* = - (5.20)

In order to avoid wedging, the peg's angle must obey

c \8w\ < - (5.21)

or, using the angle description for two point contact

0O + J e 0 < ± - (5.22) fi

where

*=irn^ (5-23)

The plot of the geometry constraints on lateral and angular error (while crossing the

chamfer) is a parallelogram, received by combining the two restrictions. The allowed

errors are those whose solutions are between the boundaries of the parallelogram.

5.3.3 Strategy and Control:

The analysis presented in the last two subsections was carried out in order to achieve tools

to ensure successful insertion assembly. The first tool is a correct algorithm based on

the understanding of the insertion process. The second tool is the constraints which can

be built and controlled between calculated extremes. The following gives the relations

between the applied forces, moments and the geometry of the mating parts:

Chapter 5. ASSEMBLY SUBTASKS 69

Chamfer crossing: the lateral error of the pin's edge (e0) must be smaller than the width

of the chamfer:

H < w (5.24)

Jamming avoidance:

l ^ + ^ f (A + l) l<A (5.25)

and

The following are the major parameters that are to be added to the system through

every Insert initialization file:

1. target point location.

2. movement speeds.

3. end effector configuration (for tool transformation).

4. part sizes from grasping point to tip (for tool and force transformation after the

grasp).

5. forces to terminate Approach.

6. forces, torques, gains, boundary parameters (forces, torques and positions) to con

trol Comply.

7. rotation switch on, during the insertion of Gear2 and Top.

Chapter 5. ASSEMBLY SUBTASKS 70

5.4 S U B T A S K S C R E W

An important, typical assembly task is the use of fastening (joining) parts, using bolts,

nut, cap screws etc.. In the Pump, four U.N.F., 3/8 hexagonal head, machine screws,

fasten the Cover of the pump to its Base. Some design parameters and logic are to be

considered while moving those screws from their initial location to their final location on

the pump:

• feeding the bolts to their target locations.

• screwing and preloading parameters and the ways to control it.

• tooling.

Subtask Screw deals with these parameters for the spacial case of the pump. As usual,

it can be expended to any other case by modifying both task parameters and part of the

subroutines.

5.4.1 Feeding the Bolts:

For a commercial use, it is efficient to design and operate an automatic screw feeder,

that feeds successive bolts to exactly the same loading position. Such a design cancels

any position computation, frees memory space and enables the use of the same program

to load all the bolts, however in this thesis, to simplify mechanical structures the bolts

were placed in an array with equal distances between them. Pick subtask is used to

pick all the b o l t 6 , using relative transformations (from first bolt location) to define the

successive shifted location of all the other screws.

One of the solutions for automatic interface between a bolt and its target thread can

either be a guidance structure in the screw (shoulders) or a bore before the thread, in

the threaded part. It allows guidance of the screw to the beginning of the thread and

Chapter 5. ASSEMBLY SUBTASKS 71

an alignment of the center line of the screw with the center line of the thread. In the

pump, the threads are located in the base, and the cover has through holes that serves

as guidance to the beginning of the thread. Using the holes in the cover, it is easy to

solve location problems using Approach and Search subroutine. At the end of Pick

subtask, the end effector lives the bolt in the hole, the center lines are quit aligned and

it is relatively easy to begin rotating (screwing) the part. The logic applied here to put

the bolts in their target location (before the actual screw operation), can be used to the

opposite task - to unscrew the bolt and move them back to the parts location.

5.4.2 Screwing and Preloading:

When a body moves in a rotation movement, combined with translation along the same

axis, it has an helical motion. When screwing a bolt, the screw, the tool and its driver

(in our case - the end effector) has to make an helical motion of rotation and, at the same

time, translation along the axis of rotation. The relation between the rotational angle

A0 and the axial translation Ax of a screw with a lead L is

A0

A - - a £ (5.27)

the relation between the axial speed of the screw = 4f that is rotated in angular
speed iv = 4j is

At

_ . ie
At

V M = ^ ~ (5.28)

A possible way to control screw movement is to follow these equations, using both

position and velocity instructions. In this case one can calculate the number of turns,

required to turn the bolt, to the snug tight condition. From this position, all additional

turning develops the useful tension (preloading) in the bolt. For hexagonal structural

bolts, like those used in the pump, the turn of the nut (or the screw) should be 180

minimum from the snug tight point, under optimum conditions.

Ch&pter5. ASSEMBLY SUBTASKS 72

A better approach can be applied to the rotating procedure, using the information

received from the force sensor. By studying the behaviour of the torques and forces

between the tool and the rotating screw, end effector locations and orientations can

be monitored to received just the desired rotating torque. This torque is derived and

simplified in reference [36] to be

Ti = 0.20F<<f (5.29)

where

Tt- - the torque required to produce a given preload (F,).

0.20 - an average value to the torque coefficient (for fi = 0.15).

d - nominal size or basic major diameter of thread.

Fi - desired preload: F< = 0.90SpAt.

Sp - proof strength.

A t - tensile stress area.

Using those equations and the parameters of the 3/8" bolts of the pump, the calcu

lated desired torque is 65[iVm]. This is the basic, minimum torque to receive preload

while ignoring environment influences (fatigue). Such torques cannot be handled directly

by the arm or by a tool installed in the gripper (and transfers the torques to the arm).

For high torques a special arrangement must be added to the arm, in the thesis, lower

torques were used in order to show the ability of the robot to handle complicated tasks.

In the next chapter, the description of Rotate Subroutine shows the actual way the arm

moves using force information to control the screw action.

5.4.3 Tooling:

For the tasks described before, one has to consider how to move the bolts in the workpiece

and how to tighten them, using the desired, calculated torques. The fact that the bolts

Chapter 5. ASSEMBLY SUBTASKS 73

in the Pump Assembly have hexagonal heads made the first task easy. The pneumatic

gripper, with 90 groves in its jaws, can grasp the hexagonal head and move the bolts in

the workpiece.

As for applying low torques, a square bar, welded to a 3/8" socket, is used to rotate

the screws. The bar fits the grooved jaws, and the clearance between the socket and the

head of the bolts, lower coupling forces while rotating. A possible problem lays in the

fact that while rotating, the contact forces between the square bar and the groves of the

gripper tend to open the jaws. For relatively high torques, a small locking, passive device

can be added to the square rod that while mounted, enables only small opening of the

jaws.

For full preloading, torques must be transferred to the environment. This can be

done by using a tool that has a rotary part that rotates the screw and a stationary part,

aligned with the environment. In this case, the robot part in the task is to move the

tool to its desired locations and activate it through its I/O Module. The positioning of

the tool must be done in a spacial way because it has to locate both the screw and the

desired location in the environment (double insertion etc.). The following are the major

parameters that are to be added to the system through every Screw initialization file:

1. target point location and free space location.

2. movement speeds.

3. end effector configuration (for tool transformation).

4. part sizes from grasping point to tip.

5. forces to terminate Approach.

6. force and torque, gains and boundary parameters around Z axis.

Chapter 5. ASSEMBLY SUBTASKS 74

INITIALIZATION

MOVE paramatara

subtask PICK

MOVE

APPROACH

GRASP

CLEAR

Figure 5.1: Algorithm •trncture of subtask Pick.

INITIALIZATION

MOVE parameters

APPROACH parameters

CLEAR paramates

subtask PLACE

MOVE

APPROACH

OPEN

CLEAR

Figure 5.2: Algorithm structure of subtask P lace.

Chapter 5. ASSEMBLY SUBTASKS

Figure 5.4: Chamfer crossing.

Chapter 5. ASSEMBLY SUBTASKS 76

Figure 5.5: One (a) and two (b) point contact.

ONE-POINT
CONTACTS

ONE-POINT
CONTACTS

Figure 5.6: The jamming diagram (a) and geometry of wedging condition.

Chapter 5. ASSEMBLY SUBTASKS

INITIALIZATION

Move par.

Approach par.

Search par.

Comply par.

Clear par.

subtask INSERT

1. Move

2. Approach

3. Search

4. Comply

5. Clear

Figure 5.7: Algorithm structure of subtask Insert.

INITIALIZATION

Move par.

Approach par.

Search par.

Comply in par.

Software switch

Comply screw par.

Clear par.

subtask S C R E W

o 1. Move F
2. Approach

e 3. Search

° 4. Comply (In)

<» 5. Comply (sw)

•o 6. C l e a r

Figure 5.8: Algorithm structure of subtask Screw.

Chapter 6

A S S E M B L Y S U B R O U T I N E S

During the execution of an assembly task, the subtasks are calling (using call instruction)

subroutines that are the repeatable active part in the execution of an assembly task. This

chapter describes the principal ways in which those subroutines are carried out, their basic

logic structure and the way control algorithms and errors handling are being used. The

following subroutines are described in this chapter:

• Subroutine MOVE: is used to move the end effector from its current position, to

another point, located above the target point, while rotating the tool to a desired

orientation.

• Subroutine APPROACH: the vertical movement to contact can be done towards

a tool or a part in order to grasp them, or, the movement can be done with a

tool or a part, in order to contact the environment. Both can be achieved using

Approach subroutine with its two stages of movements: 1) rapidly, from a clear

point above the workspace to certain height above the contact point. 2) slow, fine

motion approach controlled by force feedback loop information.

• Subroutine GRASP: to execute an assembly task, parts and took m u 6 t be moved

from one place to another after being grasped by the gripper of the end effector.

Reducing assembly time depends on the flexibility of the gripper and its suitability

to task applications. The gripper structure is designed according to the nature of

78

Chapter 6. ASSEMBLY SUBROUTINES 79

the task and the configuration of the grasped objects using three principal consid

erations: safety, reachability and stability.

• subroutine SEARCH: after the first contact, the end-effector must obtain a certain

angle with the object's plane. Applying a desired search pattern while moving

maintains certain contact force (guarded movement).

• subroutine COMPLY: causes the tool to react to force information by setting them

to the desired values. Forces cause lateral movement and torques cause rota

tional movements. A force sensor with Comply subroutine, acts like an improved

(changeable parameters) RCC.

• subroutine ROTATE: during screw or unscrew of a bolt, this s subroutine causes

the rotation of the tool, while maintaining a constant normal force between the

tool and the head of the screw.

• subroutines CLEAR: moves the arm back to a point above the workspace or the

part location.

Using VAL-II to control the PUMA 560 robot through it's original controller, the only

controllable parameters are position and speed of the end effector (or any other point

that is declared through "Tool" parameters). Robot locations are used to specify the

destinations of robot motions. Two types of locations (both position and orientation)

representations are available within VAL-II:

• precision point: robot location is represented by the exact position of the individual

robot joints. For the PUMA 560, it is defined by the value of angles of the six joints.

• transformations: robot location is defined in terms of a cartesian (X,Y,Z) reference

frame that is fixed to the base of the robot. The position of the tip of the tool is

Chapter 6. ASSEMBLY SUBROUTINES 80

defined by X, Y, and Z coordinate and its orientation is denned by three angles

measured from those coordinate axis.

Arm movement to a desired location can be executed either by joint interpolated

motion or by a movement along a straight hne. Real time path control can be imple

mented only for straight line movements. In this thesis, desired and planned movements

are usually activated by subroutines while path modifications are carried out by service

programs using real time control algorithms. Those process control programs are acti

vated, and deleted by receiving internal software signals from an appropriate subroutine.

Other information is transferred between the pc program and the subroutine using both

signals and variable names. This chapter deals with subroutines that were created for

the Pump assembly task and the next chapter describes their associated pc programs.

However, for most of the subroutines, pc programs are unseparated modules that are

executing parallel to the subroutine. For this reason, any specific functions related to a

specific related to a specific subroutine, is described in the following sections.

Every subroutine is executed from a list of subroutines that is the main part of each

Subtask. Each subtask is one point oriented and it manipulate all its subroutines around

its specific target point. It is very important that tool transformation (the location of the

gripper or the tip of the equipment mounted to the end effector) will be properly introduce

to the system before the subroutines are executed. If the tool has one setting while using

the "teaching mode" to define the target point transformation, and arm movements are

done with another tool setting, correction transformation has to be entered to the system

or catastrophic results may occur.

Chapter 6. ASSEMBLY SUBROUTINES 81

6.1 S U B R O U T I N E M O V E

The way in which the end effector (with or without a tool or a part) moves, approaches

and depart from the assembly area (workspace) or from the part location, can be achieved

in many ways. Most of the advanced strategies are based on a model which describes

the geometric and physical properties of the robot, the objects and their locations in the

workspace. The manipulator trajectory can then be planned according to that model.

For this thesis, a free space was located above both the assembly area and the parts

location. This volume is used to move the arm freely in horizontal directions using

Move subroutine. Vertical movements between the free space and the workspace (or

the parts area) is done using vertical movements controlled by Approach and Clear

subroutines.

Fig. 6.1 shows the flow chart of subroutine Move. The subroutine controls the

horizontal movements of the end effector within the free space. It calculates the transfor

mation from the current location to a point above the target point and move the tip of

the tool to that new position using certain speed. In order to receive correct movement

pattern, the difference between the current Z position (height) and the target Z positions

is calculated. If the target location is higher, a vertical movement to that height is exe

cuted before the horizontal movement. If the target location is lower, the first movement

is in the horizontal plane, followed by the vertical movement towards the target point.

Using this pattern, horizontal movements are always done in the safe part, defined by

the higher point.

If a certain software switch (rotate=l) is active, the movement to the target point is

followed by a rotation to a certain angle. The movement to screw a bolt is an example

to the need of a such starting position.

Chapter 6. ASSEMBLY SUBROUTINES 82

Subroutine Move (like subroutine Clear) is executed when there is no contact be

tween the end effector and the environment. So, no force information is needed and no pc

program is activated, the program is carried out, using only the built in position control.

6.2 SUBROUTINE APPROACH

Subroutine Approach starting point is when the tool is aligned (perpendicular to the

workspace) and its tip is located in the free space a specified distance above the target

point. There are two modes in which Approach is activated. The first is when the

arm approaches (open gripper) a tool or a part in order to grasp it. The second is the

approaching with the tool or the part towards contact with another part located in the

work area. Every execution of Approach subroutine is done towards a pre defined target

point. That point can be the grasp point of a tool (part) located in the parts area or it

can be on the desired contact point on the mating part located in the workspace.

Approaching to grasp: this movement will be usually executed towards a point located

in the parts location in order to grasp a part or a tool. When open.grip = 1 and

weight.ex = 1 are declared in the initialization program, Weight service program will

weight the end effector configuration before it start to move. The gripper is then opened

and a rapid motion begins towards the shift point (previously calculated using the target

point as reference). The rapid motion is not force controlled because system reactions

to overloads are faster then those of the arm due to force control so if something does

happen, arm power will shout down. The movement from the shift point to the target

point is done slowly and the program is terminated when it reaches the target point.

Approaching to contact: this approach mode is activated when the gripper is equipped

with a part or a tool and the movement is towards the contact with an assembly part

or towards the parts location, to return a tool. As before, the first movement towards

Chapter 6. ASSEMBLY SUBROUTINES 83

the shifting point is done rapidly (close gripper, no weighting). At the shift point,

Approach.pc is activated and real force information is transferred to the main program.

Here, no path modifications are needed and a pc program was activated in order to

quick program response. The movement towards the target point is done while checking

force data to confirm contact. The movement can be terminated (control return to the

subtask) either by reaching a certain maximum force or certain lower position. If those

contact forces are detected before the tip of the tool reaches target point location, the

program will be terminated. If movement continues (maximum force are not detected)

until the tool reaches certain lower point beyond the target point (min.z), the program

is terminated and a software switch will indicate that Search subroutine should not be

executed (search.ex=0).

For some applications, its is reasonable (according to task description) that the end

effector will face forces before the desired point is reached. The contact between the

tool and the bolt's head is an example when a special small rotation is activated during

the approaching pattern (activated by a software switch). This enables contact forces

to end the approach movement, according to force information received from a contact

that occurs while the screw's head is inside the tool (desired location) and not outside it

(possible first contact).

Approach subroutine and its pc program Approach.pc flow charts are shown in Fig.

6.2. A l l the parameters needed to properly execute those programs (tool transformation,

locations, speeds and force limitations) are basically defined in Approach.par and are

to be properly changed in the appropriate initialization file.

Chapter 6. ASSEMBLY SUBROUTINES 84

6.3 S U B R O U T I N E G R A S P

6.3.1 Grasp Planning:

In order to execute an assembly task, the target object (parts or tools to be grasped)

must be grasped and moved to a certain point, in a certain path. The movement and the

proceeding operations are deeply influenced by the shapes of the gripper and the target

object and by the choices made during grasping. In Ref. [22] the authors designed a

multi-functional gripper that can handle all the actions desired during task execution.

Based on coasts calculation and productivity, they concluded that for minimum assembly

time (and costs), in complex applications, the gripper requires the greatest attention.

Grasp configuration is usually based on the following:

• Reachability: the robot must be able to reach the object without interference. Then,

to move to its target point in a collision free path, while holding the target object.

• Safety: during approaching (with or without the object) and moving procedures,

the robot must be safe.

• Stability: the grasp should be stable due to forces acting on the target object during

transfer motions and parts mating operations.

A n important issue in controlling the grasp operation is the verification that the target

object was grasped correctly. This means that the target object was successfully grasped

between the gripper's jaws and its position and orientation are as planned. Checking

this information can be done easily by using a vision system or a tactile gripper. A

force sensor (like the one in C A M R O L) can be used to weight the object after grasping

(Weight subroutine). Using this subroutine can verify that the object is held by the

gripper's jaws, but it tells nothing about how it is being held, that is an important input

for the following steps.

Chapter 6. ASSEMBLY SUBROUTINES 85

In order to by pass this problem, a servo-controlled gripper can be used along with

the force sensor. Alternatively, by working with the force sensor alone, the movement has

to consider the part, the gripper and the workspace. A n example can be taken from the

way the gears are being grasp in Pump assembly task. Approach movement is ended

in a point along the gear's shaft, Grasp continues this movement in a guarded move

and apply sliding motion on the shaft until the gripper hits the structure of the tooth.

This ensures fixed relative position between the tip of the gear and the tool's coordinate

frame. For other parts, other logic is applied - all in order to align the grasped part with

the pre-defined location of its tip.

If there is no possibility to verify the relative location of the grasped object during

the grasp action, the object can be moved to contact (force controlled) with the edges

of a cube. Using force information, compliance data of the arm and the grasped object

and the relative location of the cube's edges, the location of the tip of the object can be

calculated.

6.3.2 Gripper's Configuration:

One of the dominant principles in grasp planning is the interaction of the gripper's

shape and that of the target object. In planning the assembly task, the designer must

choose a gripper's shape that will match the target objects and its function in the whole

task. Another constraint on the configuration of the gripper is its interaction with the

environment. According to [4], the candidate grasp configurations are those having the

gripping surfaces in contact with the target object while avoiding collisions between the

manipulator and other objects. Current proposals for grasp planning assume a limited

class of object models: polyhedra and cylinders. The popular, simple type of gripper is

a parallel-jaw gripper. A parallel-jaw gripper, pneumatic actuated, is used in C A M R O L .

Many of the target objects are screws, pins, screw driver heads (alien keys) etc.

Chapter 6. ASSEMBLY SUBROUTINES 86

While grasping those objects the gripper must align their Z axis with its own Z axis.

The designer of the gripper should take the following problems into consideration:

parallelism of the jaws: usually,,parallel tracks at the base of the gripper cause the parallel

movement of the jaws. Extensively used jaws which were subjected to high forces and

moments may no longer be parallel and cannot align with the target tool while grasping

it. Using short jaws with 3 designed contact points (2 in one jaw and 1 in the other) can

improve the problem considerably.

relative position along the Z axis: moving in guarded motion or while parts mating occurs,

the tangential forces acting up on the target object from the environment are restricted

by UNIMATION to 58 [N]. Assuming static friction coefficient of 0.5, the normal forces

supplied by the jaws must be 116 [N]. However, with the current system this cannot be

achieved, unless a mechanical stopper is placed in an aligned position or, the tip of the

gripper is pressed to a groove in the part.

torque transmission: applying torques on bolts heads or any other shape that is not

rounded, applies normal opening forces on the gripper's jaws. For application that the

forces are higher than the jaws's closing force, either the tool (screwdriver), or the gripper,

must have mechanical stopers that prevent the opening of the jaws while rotating.

Grasp subroutine and its pc program Grasp.pc flow charts are shown in Fig. 6.3. All

the parameters needed to execute properly those programs (software switches, tool trans

formation, locations, speeds and force limitations) are basically denned in Grasp.par.

6.4 S U B R O U T I N E S E A R C H

One of the modes of subroutine Approach is the approaching to contact. The gripper

is equipped with a part or tool that is moved towards the environment for first part

mating. The last movement is done slowly to a pre denned contact point. At this last

Chapter 6. ASSEMBLY SUBROUTINES 87

stage, either the normal forces will increased, indicating that part mating had occurred

or, force information will not changed. If the forces are not changing while the tool's

tip passes certain location, either the desired point was not found (the assembly part is

not in its place) or, an insertion process has began. If subroutine Approach is ended

because normal forces were detected (in a point near the location of the target point),

then the active Insert subtask will call subroutine Search to locate the desired insertion

point.

6.4.1 Search strategy:

Search subroutine was created in order to detect points that cause change in the force

information when contacting the tip of the tool. Such points are hole edges, part borders,

walls etc.. T he actual pattern can be divided into two basic movements:

• full square search pattern, when the movements are in the X - Y plane, along the

X and Y coordinate frame. This pattern is usually used when the desired location

was not found and it is assumed that the location of the hole is near the tip of the

tool.

• a search pattern along one axis in the X - Y plane. Usually this search is the com

plementary task to the full square search, when one edge was located the search

continue in one direction in order to find the second edge.

Fig. 6.4 shows the square pattern of the search movements in the X - Y plane. Every

second change in the direction of the movement, increases the size of square's ribs. The

movement along each rib is done by using an internal do loop that breaks the movement

into a series of small steps. After each step, force signals from the pc program are

checked, so the main program can easily react and stop the movement at that certain

point, where the possible edge was found. The square search pattern is then changes into

Chapter 6. ASSEMBLY SUBROUTINES 88

a movement, perpendicular to the detected force. This axis search pattern uses the point

where the force was detected as a new Ref. point, and the steps are around that point.

The program ends when a desired force in the second axis is detected.

During program execution, it is important to have certain points that are related

to the workspace. The beginning point of the program is the denned, target point of

subroutine Approach. That point i6 used to calculate temporary target points, located

at the end of each rib during arm movement in the square pattern. Arm movements

around that point can be done easily, using SHIFT instruction while the number of steps

is increased and the sign (movement direction) is changed. However, it was found, that

when a lot of successive transformations are executed (one related to the other), the arm

will not reach the location target. It may be a result of a cumulative error, created by

the controller while calculating a large amount of transformations of small numbers. The

error causes relatively high arbitrary shift in arm location from the desired, designed

trajectory and target points.

From the structure of the square search pattern, it can be seen that in order to

continue four full movements, x and y are moved twice to a position located —Sx and

—Sy from the starting point (ini.pnt). After another full movement the final position is

located in a distance that is —2 * deltax and —2 * Sy from ini.pnt and so on. Around

those locations, the algorithm moves the end effector, using small, force controlled steps.

In this way, even if there is a shift while the arm is moved (using relative transformation)

in any rib of the square, it will recover due the use of a known location in the followed

step.

During the movement, directions are changed (sign of the movement), the number of

cycles are increased and so are the number of steps used to reached the end of each rib.

Fig. 6.5 shows the parameters and the way they are used to achieved a complete search

pattern (using VAL-II instructions). When the square pattern is changed to a one axis

Chapter 6. ASSEMBLY SUBROUTINES 89

movement, those parameters are null, and the movement in the direction of the detected

force is canceled. The movement if the direction, perpendicular to the detected force, is

executed using same scheme as was used for the square pattern.

While the main program uses position control to moves the arm in the X-Y plane,

the pc program (Search.pc) is used to maintain contact with the surface, using force

control algorithm that alters the movement in the Z direction. Search.pc is also used

to send forces signals to the main program, indicating edges and contact forces. This

kind of movement that follows the shape of the part in contact is called - guarded move.

There are two ways to control the contact forces with the environment:

• to use high gains between the force information and the movement in the Z direction

so the arm will response quickly to any change in the environment location (can

not be implemented without addition compliance device).

• to use sensory information about the contact forces. If they do not remain between

desired boundaries, the movements in the X-Y direction is stopped, a movement

from or toward the environment is performed until the contact forces receive their

desired values. Only then the X-Y movement continue.

the first mode is quicker, sensitive and nervous. Small jumps will happen if the guarded

move follows a sloped contour. The second way is smooth but slow, it will be used for

very small motions, while working with closed fitted parts, both modes can be used with

the basic algorithm, for the pump - the first mode is used.

In some special cases, a successive insertion has to be performed after the first inser

tion. In this case, a certain region of the part has to perform search pattern, while another

region is constrained and can not be moved in the X-Y plane. Using the constrained re

gion as rotating plane, the search pattern is performed using rotational movement instead

of the lateral movements described before. This procedure make use of rotation around X

Chapter 6. ASSEMBLY SUBROUTINES 90

and around Y while the pc program enables guarded move, using tool coordinate frame.

Fig. 6.6 shows a possible situation that occurs while inserting the gears to their locations

in the pump.

Subroutine Search (Fig. 6.7) is a good example where a compliant device, installed in

the Z direction, can make the program and the process simple, reliable and much quicker.

With the high stiffness of the arm, only small steps can be used to move the arm into

the environment and slow movement must be used in the X-Y directions. Otherwise,

when small tolerances are presented, movements in the Z direction will not be able to

constantly trace the surface, and the part will miss the edges of the hole (this part is

discussed and checked in chapter 8 by simulating a guarded move).

6.4.2 Rotation strategy:

There are many cases (Ref. [40]) where an easy detection of the hole can be done after

subjecting the tool (part) to an angular rotation.

• rotate the tool to a certain angle (usually 70) with the X-Y plane.

• bring the front edge of the tool between the hole's boundaries. This is done by

pointing with the tip of the edge to the direction of the target point.

• apply full search pattern until edges forces are received (that means that there is

contact between the edge of the tool and the edge of the hole.

• while maintaining contact, rotate the tool back to be perpendicular to the surface

of the environment.

To use this mode, tool parameters has to be carefully define and the rotation must

be done using tool coordinate frame. In the thesis, the rotation part was used in the

assembly of the Top of the pump.

Chapters. ASSEMBLY SUBROUTINES 91

6.5 SUBROUTINE COMPLY

All the program that are using the force sensor data are built to react to feedback

information by analysing it and moving the arm according to the program logic and the

control law. In many cases where the arm has to follow a contour (even an insert task

is done by sensing, reacting and in a way, following the hole's contour), good results

may be achieved by complying tool movements to the forces and torques acting on the

contact point. In this case, the robot will react to forces and torques that exceed certain

envelope, by moving to certain directions that will drive the forces and torques values to

be inside the desired envelope.

The next chapter deals with the ways to transfer force data to any desired location in

any angle. This allow the program to resolve force information to its components and to

rotate it to the same coordinate frame that is used to control the movement of the arm.

Force information is translated to the contact point location (approximately known),

using tool transformation and arm movements are controlled according to that point. By

manipulating forces and torques to the same location and coordinate frame that i6 used

to control the movement of the tool, each degree of freedom can be handled alone. It is

important particularly when arm control is applied by putting special constraints on one

(or more) d.o.f. and it is also ease task programing and assembly debugging.

In a way, all the control programs in the thesis are acting on the same base. For

example: Approach subroutine moves the arm to contact and reacts to small forces

by continue the movement in the Z direction towards contact. Once a contact was

reached, the program is terminated. Usually, Comply is activated using all the six

degrees of freedom. Each d.o.f. has the same force/position control structure and the

same proportional force control law. But each d.o.f. has other initial conditions that

defines the borders of its force envelope, direction of movements and gains.

Chapter 6. ASSEMBLY SUBROUTINES 92

Comply subroutine and its pc program Comply.pc flow charts are shown in Fig.

6.8. All the parameters needed to execute properly those programs (control low borders

and gains, tool transformation, locations and force limitations) are basically defined in

Comply.par.

6.6 SUBROUTINE ROTATE

Subroutine Rotate is the actual part in subtask Screw that rotates the screw in either

clockwise or counter clockwise directions. The very original designed structure of rotating

the screw was to use Comply subroutine with the certain set point that will cause arm

rotation around the sixth d.o.f. (rotation about Z axis). This can be done by using a

DELAY instruction in the main program. Delay instructs the robot to move to nowhere

and enables the pc program to alter and rotate the arm according to force information.

Here, instead of complying all the six d.o.f., the tool is rotated until certain, desired

torque is reached.

Here again, as in Search subroutine, using the pc program to rotate the end effector

causes the calculation of large number of transformations. This is done with one trans

formation follows the previous one and the result is a shift in the tool's location and

instead of pure rotation, an arbitrary movement is executed that causes undesired forces

and torques between the tool and the screw.

Using the structure showed in Fig. 6.9, the rotation is done in the main program,

using the starting point as reference location. The pc program (Rotate.pc) detect the

torque and if it reach certain level, an inner signal causes the end of the program. The

pc program alters arm's movement only in the Z direction when a constant normal force

is needed. As in the other cases, Rotate parameters are listed in the file Rotate.par.

Rotate subroutine shows the way and the ability of the end effector, but actually,

Chapter 6. ASSEMBLY SUBROUTINES 93

the screw is not rotated to the d e B i r e d torques, calculated according to the equations

derived in chapter 5. For a 3/8" bolt, the minimum desired torque to receive preload is

65[JVm] (ignoring fatigue loading calculations). Such torques cannot be handled directly

by the arm and so, are not applied using this subroutine.

6.7 S U B R O U T I N E C L E A R

Arm movements is done using locations and speeds combined with Move instructions.

Subroutine C lear makes the opposite movements of subroutine A p p r o a c h , it moves

the arm from contact point to a point located in the free space. The subroutine is

used to depart with or without a tool or a part. This information is received from the

initialization file using a software switch.

Fig. 6.10 shows the flow chart of subroutine Clear . The subroutine controls arm

movement using locations and speed, combined with MOVE instructions.

Chapter 6. ASSEMBLY SUBROUTINES 94

START MOVE

CALLPCSTOP
reset system

Z below

target point?

no

MOVE to a point

above the target

MOVE down to the
desired height

MOVE i

desirec

jp to the

1 height

1
MOVEt
abovetf

o a point
ie target

BREAK

ZERO.POSITION==1 ?
no

I
ROTATE JOINT #6

RETURN

Figure 6.1: Subroutine Move flow chart.

Ch*pta6. ASSEMBLY SUBROUTINES

START APPROACH
reset system

I
CALLPCSTOP

I
DECOMPOSE target

point location

CALCULATE shift
point location

EXE. APPROACH.PC

MOVE rapidly
to shift point

MOVE a discrete
step in Z direction

CALLPCSTOP
and RETURN

YES
REACHED Z.MIN? > - i

START APPROACH.PC

CALL TIP
in tool frame

CONTINUE

RETURN

START WEIGHT

RETURN

Figure 6.2: Subroutine Approach flow chart.

Chapter 6. ASSEMBLY SUBROUTINES 96

START GRASP

1
CALL PCSTOP

reset system

CLOSE gripper

CALLJR3.DAT

I
APPROACH env.

DEPART, WAIT
I

WRITE:
error - failour..

WRITE:
grasped the tool

1
RETURN RETURN

Figure 6.3: Subroutine Grasp flow chart.

Chapter 6. ASSEMBLY SUBROUTINES 97

Figure 6.4: Search pattern.

Counter

Sign

Cycle*

No. of
steps

Mov. In X
direction

P

Mov. in Y
direction |~

Figure 6.5: Search parameters.

Chapter 6. ASSEMBLY SUBROUTINES 98

Figure 6.6: Successive insertion.

Chapter 6. ASSEMBLY SUBRO UTINES

STARTSEARCH

CALLPCSTOP
iratsystvn

MOVEinYdrctan

CHANGE SIGN and
STEP SEE

CALLPCSTOP
and RETURN

SRARTSEARCHK

CALL TF tow.
in vorid frw

SWTTCHNGLAW:
monitor iorcM
in Z drecbon

RETURN

Figure 6.7: Subroutine Search flow chart.

Chapter 6. ASSEMBLY SUBROUTINES 100

START COMPLY

CALLP
resets

CSTOP
system

___ STARTCOMPLY.PC

CALL PCSTOP
and RETURN

check and cal.
forces and torques

using co
cal. desired

ntrol law
movement

MOVES the arm to
new position/orientation

RETURN

Figure 6.8: Subroutine C o m p l y flow chart.

Chapter 6. ASSEMBLY SUBROUTINES

START ROTATE

CALLPCSTOP

reset system

EXE ROTATE.PC

ROTATE TOOL
DELTA.ANGLE

CALLJR3.DAT

CALLPCSTOP

and RETURN

SWITCHING LAW:

monlor forces

in Z direction

RETURN

Figure 6.9: Subroutine Rotate flow chart.

Chapter 6. ASSEMBLY SUBROUTINES

START SEARCH

CALL F

reset

'CSTOP

system

CHANGE SIGN and

STEP SIZE

CALLPCSTOP

and RETURN

CALL TIP forces
in world fram

SWITCHING LAW:

monitor forces

in Z direction

RETURN

Figure 6.10: Subroutine Clear flow chart.

Chapter 7

S E R V I C E P R O G R A M S

7.1 P R O G R A M PCstop

PCstop program was created in order to reset parameters that are repeatedly used by the

programs of the library. Executing the program helps to avoid problems like moving the

arm while an undesired pc program is still active or receiving interrupts from unexpected

signals sources. While examining the robot, it is good practice to call PCstop at the

beginning and at the end of every subroutine. While running a debugged task, the call

instruction can be used only at the beginning. PCstop includes the following functions:

1. NOALTER - terminate real-time control of robot motion (the pc program may still

running but without an effect on arm movement).

2. PCEND - signals the process control program to stop at the end of its current

execution cycle.

3. SIGNALS - turns some specific internal software signals on and off. All those signals

are used for communications between subroutines and their related pc programs.

7.2 P R O G R A M Null.sensor

There are some tasks where force information is required as a relative to the previous

data and in other task a absolute force information is required. Using Grasp subroutine

for example, in order to know whether the part was grasped by the arm, the end effector

103

Chapter 7. SERVICE PROGRAMS 104

weight can be measured before and after the grasp action. In this case, it is quicker to

null the output of the sensor before the grasp, and to compare the absolute measured

weight with the actual weight, stored in the initialization file. Another important use of

the null function lies in the fact that there iB a drift in the force information during use.

Although there is an automatic gain drift compensation, software controlled through the

serial port, this option can not be realized in real time, using VAL-II instructions.

To reset all force signals, the program sends an external signal, that activates the first

relay of the I/O Module. The relay (using the digital ground - pin 24) transfers high

bit to the Reset offsets pin (pin no. 5) of the discrete I/O connector located on the JR3

electronic support system. This action executes a soft reset routine that clears error and

trips point flags and loads envelope latched status byte and by this, reset force vector.

7.3 O V E R L O A D C H E C K I N G

Both the robot controller and the force sensor data translator (JR3 .DAT) have built in

functions that react whenever overload occurs. The robot controller reacts by removing

the electric power of the arm. The force sensor reacts by sending bad data envelope or,

for less severe cases, by printing an error massage on the monitor screen.

For some delicate tasks, maximum forces have to be carefully controlled. Those forces

are much lower than those of the system and for practical reasons, built in overload

protections are not to be changed. Upon request, the program Over load simply check

the received force information and compare it with the another list of maximum forces. If

a bigger force is detected, a signal is transferred to the calling program and an immediate

termination can be executed.

Chapter 7. SERVICE PROGRAMS 105

7.4 FORCE INFORMATION

Applying a synchronous, real time, on hne trajectory changes (path control) to the PUMA

560 using VAL-II, can only be done by using Process Control program. This feature of

VAL-II is extensively used while task specifications are a function of the data generated

by a sensor. In our case, pc programs are used to modify the robot desired locations

(while it is moving), using force data information. In this mode, the main program is

responsible to move the arm according to the desired task positions and to activate or

terminate the pc program. The pc program is responsible for receiving force information,

comparing it with the desired forces and subjecting the force errors to the desired control

law (as above). The set of new desired locations, that represent force errors in the force

controlled axes, is used to alter arm movement (in all axes) that is currently controlled

by the main program (using position control).

A pc program is very powerful primarily because it uses real time path control, ex

ecutes in parallel and synchronized with the main program. ALTOUT is the VAL-II

instruction that generates path modification (while the robot is moving) by sending 6

parameters corresponding to the X, Y and Z displacement data and Xr, Yr and ZT rota

tional data. The input data words (2 bits) specify the amount by which VAL-II modifies

the nominal tool-tip trajectory using scale factors. The scale factors yield a 16 bit words

and their values are 32 for distances (using [mm]) and 182 for rotations (using [deg.]).

For the translation components the trajectory is modified by adding the ALTOUT values

to the nominal robot location. For large rotations in noncumulative mode, the change in

tool tip orientation is computed by first rotating about the X axis, then the Y axis and

finally the Z axis by the specified amounts.

Force information is translated to position instructions using the control law as de

scribed previously. This section describes the way force data, received in the wrist sensor,

Chapter 7. SERVICE PROGRAMS 106

is manipulated and transformed to the desired coordinate frame and location. Two co

ordinate frames are being used in the library to control arm movement:

1. TOOL coordinate frame - is used for applications where the trajectory is altered

by the process control program and no location data is needed for other programs.

Complying the arm to the orientation of the hole during inserting task is a good

example because this information used by the pc program and no other users needs

it.

2. WORLD coordinate frame - is used when force information has effect on the fol

lowing programs and is easy to understand, calculate and manipulate the arm

according to this information. Searching program or Edge Follower are programs

that are easy to control using world coordinate frame.

Force/torque information, received by the sensor, is the sensor's reactions to forces

and torques mostly acting on the tip of the tool of the part being held in the gripper.

This information i6 amplified, filtered, digitized, processed and sent via both serial and

parallel communication lines. The robot, on his communication side, has to receive,

check and process that data. JR3 company supplied with the force sensor an interface

program called GETDATA. The program provides the necessary VAL-II code to retrieve

forces and torques data from JR3 force sensor system's DMA communication link. The

program was changed to a new program (JR3.DAT) that has the following features:

• checking received data vector for control words (start word and trailer word) and

checking words (checksum and maskword). This is a check that the data received

by the robot is the same as the data that was sent by the sensor. The checking

part includes repeat operations and messages to the operator.

Chapter 7. SERVICE PROGRAMS 107

• checking overload for the force sensor (or other parts - using the desired transfor

mations).

• using the dimensions of the part held by the gripper (tool, peg, screw etc.) the

program uses the Jacobian to transform force information from the sensor's coor

dinate frame to the tool's coordinate frame. The data i 6 stored in a force/torque

array (f.m[l]...f.m[6j). This part is described in the following subsections).

7.4.1 Force/Torque data in tool coordinate frame:

The relative position between the force sensor location and an arbitrary point of interest

i 6 shown in Fig. 7.1. Typically, the point will be the contact point between the tool

and the environment. The relative position can either be measured (assuming rigid body

construction between the gripper and the object) or it can be calculated using forces and

stiffness data.

Assuming two sets of generalized, independent coordinate frames q = [qlfqn]T

and p = [pi, ...,pm]T and their corresponding forces and torques Q = [Qi,...,# n] r and

P = [Pi,P m] T . In order to transfer forces and torques from one coordinate system

to the other, a virtual displacement Ap is considered to take place at the contact point.

Considering a complete set of generalized coordinates Aq at the sensor, the mapping is

function is a m x n Jacobian matrix related with the coordinate transformation:

Ap = JAq (7.1)

Infinitesimal translations and rotations of the rigid body are represented by a six dimen

sional vector:

dq = [dx, dy, dz, d<f>m, d<f>y, d<f>z]T with respect to the tip's coordinate frame O — uvw

and by the vector:

Chapter 7. SERVICE PROGRAMS 108

dp = [du, dv, dw, d<f>u, d<j>v, d<j>w]T with respect to the sensor coordinate frame O' — xyz.

In matrix form, the transformation from dq to dp is given by

du 1 0 0 0 rz ~rv dx

dv 0 1 0 -rt 0 r* dy

dw 0 0 1 rv -rm
0 dz

d<f>u 0 0 0 1 1 1 d<p*

d<j>v 0 0 0 0 1 0 d<py

d(f>w 0 0 0 0 0 1 d<t>*

(7.2)

Force/torque processed data vector is received from the sensor by a program called

GET.DATA, supplied by JR3 company. In order to receive a force/torque vector at

the contact point (usually at the tool's tip), the program was modified. The generalized

forces P, measured by the sensor, are transformed to the generalized forces Q at the

tool's tip by

Q = J r P (7.3)

or, in matrix notation

/.m[l] 1 0 0 0 0 0 Fu

/.m[2] 0 1 0 0 0 0 Fv

/.m[3] 0 0 1 0 0 0 Fw

/.m[4] 0 -rz
rv 1 0 0 Mu

/.m[5] rz
0 -rx 0 1 0 Mv

/.m[6] ~rv r« 0 0 0 1 Mw

(7.4)

JR3.DAT is a modified program. The geometric specifications of the tool:

r = (rm,ry,rz)T must be added in order to receive the transformed force/torque vector.

The program S H O W . F M enables to see on the monitor force information received

Chapter 7. SERVICE PROGRAMS 109

from JR3.DAT (or any other force transformation program). This program was cre

ated mostly for checking and calibrating the force sensor and for checking force data

transformations.

7.4.2 Force data using world coordinate frame:

For some applications, it is convenient to control arm movement using world coordinate

frame (Fig. 7.2). Mostly, the relevant force information is located at the tip of the tool.

So, force data must be transformed from the wrist sensor to the contact point, and there

to be transformed to world coordinate frame.

The end effector location (or the tool's location - if its parameters are specified) is

expressed in VAL-II using the following parameters: X ,Y ,Z positions in right hand world

coordinate frame and 3 Euler angles Orientation, Altitude and Tool (O.A.T.). This set

of angles (used by UNIMATION) corresponds to the following sequence of rotation (refer

to Fig. 7.3):

1. a rotation of 0 angle about the OZ axis (Rz,o) •

2. a rotation of A angle about the rotated OV axis (RV,A) •

3. a rotation of T angle about the rotated 0W axis (RW,T) •

The initial alignment of tool coordinate frame n,s,a relative to XYZ is: the hand

points (a axis) to the negative yo axis and s axis points to the positive x0 axis. The

transformation that describes the orientation of n,s,a with respect to base coordinate

frame Xo, yo> *o is received by rotating around Zo axis and then around yo axis:

0 1 0 0 1 0 0 1 0

Rzo ,9=-BO-Rvo,4>=»0 — -1 0 0 -1 0 0 = 0 0 -1 (7.5)

0 0 1 0 0 1 -1 0 0

Chapter 7. SERVICE PROGRAMS 110

Matrix T is a 4 x 4 homogeneous transformation matrix that maps a vector expressed

in OUVW coordinates system to OXYZ coordinate system

XYZ = T P uvw (7.6)

using tool notation

T =

nm ax am pa

ny sy ay py

nr sz ax pz

0 0 0 1

R

P*

Pv

Pz

0 0 0 1

(7.7)

the rotational part R can be defined using the Euler angles that are resolved from the

PUMA controller:

R = fly CLy = Rz,0

0 1 0

0 0 - 1

- 1 0 0

cA 0 sA

0 1 0

-sA 0 cA

R;ARa,T =

cO -sO 0 0 1 0

sO cO 0 0 0 -1

0 0 1 - 1 0 0

-sOsAcT + cOsT sOsAsT + cOcT aOcA

cOsAcT + sOsT -cOaAsT + sOcT -cOcA

-cAcT cAaT -aA

cT -aT 0

aT cT 0

0 0 1

(7.8)

Using J R 3 . D A T transfers both forces and torques from force sensor location to the

desired contact point. In order to change this data into world coordinate frame, the

program W O R L D . D A T has to use just the rotating part (R) of the homogeneous

matrix T. The following matrix describe the rotation transformation of the e-e (or tool's

Chapter 7. SERVICE PROGRAMS 111

tip) of the Puma into world coordinate frame:

du a* 0 0 0 dx

dv n y Sy 0 0 0 dy

dw n z *z 0>z 0 0 0 dz

d<f>u 0 0 0 a* d<f>*

d<j>v 0 0 0 fly Sy d<f>y

d<f>w 0 0 0 nx Sz
az d<j>z

(7.9)

In the first part of WORLD.DAT, the vector /.m[1...6] (received from JR3.DAT) is

labeled as a new vector (£emp[1...6]). After rotational transformation, the name of the

output vector has the same name as the output vector of JR3.DAT. In this way, the

following programs can be operated with either programs without any changes.

Once again, the transposed Jacobian is applied to the translated forces and torques

at the contact point, in order to resolve it into world coordinate frame:

/.m[l] nx
Tly nz 0 0 0 temp[l]

/.m[2] 8V 8 Z
0 0 0 temp[2]

/.m[3] Cty az 0 0 0
i

temp[3]

/.m[4] 0 0 0 n* Tly nz temp[4]

/.m[5] 0 0 0 *V »z temp[5]

/.m[6] 0 0 0 a* ay O-z temp[6]

(7.10)

the notation parameters (n„...a,) are defined by equation 7.8.

7.5 P R O C E S S C O N T R O L P R O G R A M S

In the previous chapter, subroutines were described. The relations between subroutines

and pc program in controlling arm movement lays in the fact that pc programs modify

Chapter 7. SERVICE PROGRAMS 112

arm path that was assigned by subroutines. This real time path modification is achieved

by applying force data to an appropriate control algorithm. Every pc program contains

call instructions that call for force data in tool or world coordinate frame. The position

control movements of the arm are altered by real time path modifications that are cal

culated using proportional control law and appropriate parameters (received from the

initialization file).

In chapter 4 the basics of the control law were discussed. In this section, a discrete

time analysis is performed, in order to get the best relations between the stiffness of the

parts taking part in the assembly process (arm structure, sensor, tool and environment

- K ,) and the software gains. Referring to Fig. 4.3, the contact forces across the sensor

(F,) are the output variable of the closed loop system (F a)

F a = K . X , (7.11)

Implementing a proportional control law in the system, the feedback gain Kjd multi

plies the difference between the desired force Fd and the actual force F 0 . The parameter

Kfd serves as gain that changes force errors into position errors.

X e = KfJ(Fd - F„) (7.12)

Using a discrete time relation between the current and the previous positions

X,(fc +i) = X,(fc) + Kfd(Fd - F 0) (7.13)

and changing arm stiffness parameter into a serial of springs (indicate serial connec

tions of some stiffness like arm, sensor, compliance device etc.)

X , (f c) = F o (f c) (^ - + i -) (7.14)

Chapter 7. SERVICE PROGRAMS 113

X,(fc +i) = F 0 (f c + i) (— + —)

using equation 7.14 yields

+ J ~) = Fk(~ + ^~) + K,dFd - KjdFa (7.15)

or

F o (f c + 1) = F « . , (l -) + F (, (r T ^ T 1) (7.16)

The following can be concluded:

1. between the wrist force sensor and the environment in contact, there is the mass of

the sensor, end effector and a part (or a toll). Transient motions of those masses

are received by the force sensor as reaction forces. The above discussion ignores

this input and is implemented just to relatively slow, in contact tasks.

2. the net added force is a function of the gain and the serial stiffness. Smooth

movements can be achieved by either low gain or by a compliance device. When

a compliance device is not added to the system and there is no contact with the

environment, the software gain (Kfd) has to receive high values so that the system

can response quickly (Approach Subroutine).

3. decreasing time interval between cycles (every cycle includes sampling, calculations

and actual movement) can improve drastically the reactions of the system, using

low software gains without a compliance device.

When the proportional control algorithm is used in a pc program like Comply.pc, it

is applied to the six degrees of freedom at the same time. It means that there is coupling

between the movements and the designer has to consider parameters like friction when

calculating the input parameters of each control low. The parameters are: desired force

Chapter 7. SERVICE PROGRAMS 114

(Fj), proportional gain (K/j), dead zone around the desired force (DZ) and the bounded

forces (F m o a t ,F m , n) .

7.6 INITIALIZATION a n d PARAMETRIC FILES

Every subroutine and part of the service programs, use a list of parameters during their

execution. In the library those parameters are stored using two categories: Parametric

and Initialization files. Parametric files are program oriented and include all the parame

ters the program is using during its execution (actually it is part of the program that was

changed into a file). Initialization files are task oriented and contain only those parame

ters that are to be change before a specific task is executed. As described earlier, the first

part of task execution is to call to the Initialization files. Each file is divided according

to the subroutines of that specific task. For each subroutine, the appropriate Parametric

file is called, followed by a list of task oriented changes. Fig. 3.4 shows a block diagram

of programs relations while Fig. 7.4 includes the beginning of an initialization file.

This structure is not the simplest but it is modular and relatively low memory con

suming. It allows the designer to define all the basic and the desired parameters before

the actual execution of every subtask. Building the library in this structure means that

there are not stand alone programs. Using a subroutine without activating properly

its parametric files can cause problems because the manipulator controller will use the

last declarations that remains in its memory. It means risky movements to unexpected

locations with unexpected speeds.

Every Initialization program begins with part configuration that serves as input for

force manipulation (previously discussed) and Tool transformation. Every subtask has

its own tool or part being held and activating by the arm. Mostly, While executing a

program, the interested part of the arm is the tool's tip and it has to be declared in

Chapter 7. SERVICE PROGRAMS 115

a TOOL transformation. This relative tool transformation is automatically taken into

consideration each time the location of the robot is requested, when a command is issued

to move the robot to a location defined by a transformation. If no transformation value is

specified, the tool transformation is set equal to "null tool". This transformation has its

center at the surface of the mounting flange of the sixth joint. Tool transformation must

take into consideration the sizes of the force sensor, RCC, gripper and any other devices

attached to the last joint. If "teach" mode is used to record points locations to the robot

memory, it must be done using the same Tool transformation as in actual execution.

Once again, risky location may be reached using improper Tool transformation.

7.7 PROGRAM WEIGHT

A simple and quick way to check whether a Grasp task succeeded is by checking the

weight of the part hanged on the force sensor and to compare it with the data received

before the Grasp action. If the program Null.sensor was used before the Grasp action,

the net weight of the grasped part is received from the program. The weighted data

is then compared with the actual weight of the part (must be located in the active

initialization file). If the result is lays between the boundaries, specified by the program

- Grasp operation is confirmed and control may advanced to the next step. If the force

information is lower then the expect value - another Grasp attempt is activated. Two

unsuccessful grasps attempts transfer control either to Search pattern or terminate task

execution.

One of the problems with weighting the part was arm acceleration or deceleration and

its influence on the accuracy of the results, it is very important to avoid a next try to

grasp the part because the it is already held by the end effector and a new approach will

cause hand opening and possible damage to the part and environment when it fall down.

Chapter 7. SERVICE PROGRAMS 116

To avoid arm movements during the actual force measurements (Jr3.dat), a BREAK

and WAIT (1 [sec]) instructions are executed.

In order to receive accurate data, the force sensor is sampled 25 times (can be changed

in the initialization file). The information is averaged and only those inputs that their

values are in the region of ±20% are used for a new set of averaging. The waiting and

averaging make the program time consuming, and it is a good examples how the use of

a vision system, instead of force sensor, can drastically save time and increase reliability.

7 . 8 P R O G R A M R E P E A T

For repeating operations like inserting the four screws in their holes in the top of the

pump, a repeat procedure can save memory space and ease programing and debugging.

Repeat, like an initialization file, is a special purpose program that is created for special

task and has certain, fixed structure. The program has an extension according to the task

that is repeated and in this way several programs can be located in the same subtask.

The program will be located after the initialization tasks and the subroutines that

are used to perform the repeated task, so this program will execute the second and the

following repetitions. The program uses a do-loop to call the initialization programs,

after updating the desired information the desired subroutine is called until the task is

completed.

Figure 7.2: Force/torque rotation into world coordinate frame.

apter7. SERVICE PROGRAMS 1 1 8

Figure 7.3: Orientation, Altitude and Tool (O.A.T.) angles.

I ; GEAR1 .INI2 (May. 24 /Kotzev)
2 ;
3 ; TOOL configuration:
4 z.sensor - 31
5 z.rcc - 43
6 z.gripper -112
7 TOOL TRANS(0.0,z.sensor+z.rcc+z.gripper,90,-90,45)
8 mass-0.18
9 ds[1]-8
10 ds[2]-8
II z.tool - 57
12 d[3] - z.rcc+z.gripper+z.tool
13 ; MOVE parameters:
14 CALL move.par
15 SET tool.pnt - gearl .pnt2
16 safe.z-300
17; APPROACH parameters:
18 CALL approach.par
19 weight.ex « 1

Figure 7.4: An Initialization file structure example.

Chapter 8

F O R C E C O N T R O L S I M U L A T I O N

Most of the algorithms that solved the dynamics of robotic arms are derived for an open

kinematic chain configuration. In a case that refers to any manipulation task in which the

gripper is not allowed to move freely but its motion is subject to some constraints resulting

from the interaction with the environment - a closed kinematics (and dynamics) chain is

to be solved. Ref. [41] and [42] consider that problem including analysis of manipulator

with constraints on gripper motion.

In order to predict the dynamics of simple force-controlled robot system and to un

derstand it's stability, the authors of Ref. [11] developed a series of lumped-parameter

models that included effects of robot structural dynamics, sensor compliance and work-

piece dynamics. Checking some models that included combinations of the robot dynamics

and the dynamics of its workpiece, an instability has been shown to exist for robot mod

els which include representation of a first resonant mode of the arm. The mode modeled

could be attributed to either drive train or structural compliance (or both). The insta

bility is present because the sensor is located at the point remote from the actuator. The

controller then attempts to regulate contact force through a dynamic system.

In order to have a better understanding in the force and position control of the arm,

a numerical simulation was coded. The model simulates the end effector, the discrete

controller of the robot, the control law, the sensor and the environment. A guarded

move task was chosen, because it is used frequently in assembly tasks and is a classic

case to apply both position and force control algorithms to a robot manipulator. In the

119

Chapter 8. FORCE CONTROL SIMULATION 120

simulation, parameters like arm compliance, B e n s o r stiffness, environment position etc.

can be changed and it's influence on task performance can be calculated. Running a

subtask like plane searching (for hole, edge etc.) causes the tool to move in a square

pattern, perpendicular to the plane, while increasing the rib's dimensions. The force

sensor is used to sense normal and tangential force acting on the tool's tip. Under

position control, the tool is moved in its X — Y plane to a desired location and under

force control the tool remains in contact (desired force) with the environment. Increasing

in the plane (tangential) forces indicates an edge, an obstacle or a simple increasing of

the friction forces that cause strategy changes according to the program's logic.

8.1 S Y S T E M D E S C R I P T I O N

8.1.1 Applied Force Control:

Using the P U M A 560 with its original controller and V A L - I I language, a force control

algorithm can be implemented through position commands. There are primarily two

ways to receive and apply force information to the arm movement:

R o b o t c o n t r o l program: according to task specifications, the designer can build two

control algorithms in the main program. Some axes (designate in world or tool coordinate

frame) are controlled via force data, while the others are position controlled. While

running the program, force information is received by calling J R 3 . D A T and then (if

needed) the program calls T I P to transform force/torque information to the desired

location. In the axes that are controlled via force information, the force data is compared

to the desired forces. Subjecting the force errors to the task's control law, force errors are

represented by new desired positions that can be understood and executed by the robot

control box. After this stage all the axes (both position and force control), has motion

representation. The robot controller can derive an inverse kinematic solution and move

Chapter 8. FORCE CONTROL SIMULATION 121

the arm to the new desired location.

Process Control program: as described in the previous chapter, a pc program is very

powerful primarily because it is a real time path control, parallel and synchronized with

the main program. A L T O U T is the V A L - I I instruction that generates path modification

by sending 6 parameters corresponding to the X, Y and Z displacement data and XTt

Yr and Zr rotational data. The input data words (2 bits) specify the amount by which

V A L - I I modifies the nominal tool-tip trajectory using scale factors. The scale factors

yield 16 bit words and their values are 32 for distances (using [mm]) and 182 for rotations

(using [deg.]). For the translation components the trajectory is modified by adding the

A L T O U T values to the nominal robot location. For large rotations in noncumulative

mode, the change in tool tip orientation is computed by first rotating about the X axis,

then the Y axis and finally the Z axis by the specified amounts.

Timing Considerations: according to Ref. [38], using internal alter (the altering mode

of pc program), V A L - I I expects an A L T O U T program instruction to be executed every

28 [msec] to pass control data to the robot motion controller. Because of computation

time required by V A L - I I to perform the transitions between motion segments, there is a

limit on how closely spaced commanded locations can be. When locations are too close

together, there is not enough time for V A L - I I to compute and perform the transition

from one motion to the next, causing a break in the continues path motion. This means

that the robot stops instantaneously at intermediate locations. To prevent this, straight

line motions can be used if the motion segment take more than about 140 [msec] or about

60 [msec] for joint interpolated motions.

8.1.2 Arm Stiffness:

As described previously, applying force control algorithm to the robot is done by in

troducing small movements to the end-effector while in contact with the environment.

Chapter 8. FORCE CONTROL SIMULATION 122

W h e n the desired set point is located a small segment into the surface, the controller will

try to move the arm to that point. The joint motors will cause the arm to bend until the

position error will null (joint encoders reaching the desired angles). The result of such

pseudo movement will increase force/torque reactions. Decreasing force/torque reactions

is done by moving the end-effector to the opposite direction.

W h e n the use of the robot includes fast movements, structural dynamic characteristics

of the manipulator including stiffness, inertia, damping and natural frequencies are to

be considered. Using the arm while moving in contact with the environment involves

fine movements so part of the dynamic characteristics can be ignored. In this case,

force/torque reactions between the arm and the environment are a function of the step

size and the stiffness of the contacting parts. Stiffness parameters that have to be taken

into consideration are arm stiffness (K o r m) , stiffness combination of the sensor, gripper

and the tool (held by the gripper) (K # e n) and the stiffness of the environment (Ke„ v) .

In order to be able to simulate an assembly task, parts stiffness parameters have

to be calculated or measured. When working against a stable environment (the usual

case while performing an assembly task), the stiffness values of both the sensor and

gripper/tool combination can be measured or calculated, because they are linear and

contact orientation is known. The robot arm, on the other hand, has many optional

contact positions and orientations, so the nonlinear stiffness values are not constant.

This problem can be solved in the following ways:

• stiffness envelope: for a particular robot a measurement stiffness envelope can

be derived and applied according to the end effector locations and force/torque

direction (assuming it is working at a known point). Using interpolation between

known point can give good estimation to arm stiffness. A measurement of some

principal points was done on the P u m a in the C A M R O L Lab. and is shown in Fig.

Chapter 8. FORCE CONTROL SIMULATION 123

8.1.

• stiffness calculations: using reduced parameters equations (described in the fol

lowing subsection) and approximated linear terms, arm Stiffness can be derived

according to its position and orientation.

The assembled parts of the pump are very stiff, it cause the force control algorithm

to move the arm using small steps. Dealing with tracking high sloped environment

contours, small steps movement is relatively slow. One of the possible ways to improve

system performance, is by introducing a compliance device (like linear spring) to the

system. It has to be compliant relatively to the other components of the system, so their

stiffness can be ignored. The compliant device can be located in places like the basis of

the assembled structure or to the base of the robot. The simplest and easiest to install

location is the manipulator wrist (shown schematically in Fig. 2.5).

8.1.3 Reduced Parameters:

A complex mechanical system like robot arm has many compliant components, inertia

and energy dissipating unit6 (dampers). Reflecting the values of all those components to a

selected point (or part), enables to reduce the complexity of the system without affecting

neither natural frequencies nor modes of vibration. The overall stiffness (or compliance)

of a reduced model would be the same value received by the ratio of the applied force

(or torque) to the resulting deflection (ref. [31]). Fig. 8.2 shows the arm (maximum

outstretched) in rotation around a horizontal axis. The arm components compliance can

be reduced to torsional compliance around the shoulder axis

Chapter 8. FORCE CONTROL SIMULATION 124

where

- angular compliance (^)-

$ - angular deflection of the beam.

I - distance between load operation point to pivot.

using linear parameters, the linear compliance ey is a function of the linear displacement

yj caused by the force F at the force application point (mostly the end effector):

y ~ F ~F ~F~~ * (8 }

The linear compliance can be transformed (and 60 it can be reduced) to any intermediate

point at a distance o from the center

The overall reduced torsional compliance ep of the robot in a considered mode, at a

specific point p (like the end-effector) can be written

* = * ? = (j|+ £ + • • • (8 . 4)

where e 0 , e l r . . are compliant parameters of the system and / 0 , / i , . . . are their distance

from the pivot axis.

Calculation of a stretched PUMA 560 arm shows that its approximate compliance is

about 10_B [rad/Nm] or, using arm length of about 830 [mm], the approximate stiffness

is 120 [N/mm]. Fig. 8.1 shows the data received from measurements of the arm in the

lab. The measured data shows uniform force/displacement line. This stiffness is half the

calculated stiffness, a reasonable result regarding the approximation in the calculation

and the age of the robot (wear, backlash etc.). In the simulation the measured data is

being used.

Chapter 8. FORCE CONTROL SIMULATION 125

Using the same logic, mass reduction can be perform (Fig. 8-2) based on the expres

sions of the kinetic energy for the masses before and after reduction.

mp = (m0ll + m1l2

1-r ... + mfl})^ (8.5)
p

where T n 0 , m j , . . . are the initial masses, / i , / 2 > " a r e their distance from the pivot point

and mp is the reduced mass. Calculation of the reduced structural mass at the end

effector must be based on estimations of joint masses and their locations (there is no

information on that subject in Ref. [38]). Using those estimations and verifying the

result by Ref. [31], 3.5 [Kg] was used in the simulation as the effective structural mass

at the end effector.

Fig. 8.3 represents a linear model of the robot arm moving towards the environment.

In this model both the arm structure, the sensor (plus a tool) and the environment are

compliant and has some damping capabilities.

8.1.4 Impact:

An impact problem is denned to be the collision of two bodies with known energy loss

and a contact force with defined direction. An impact between the tip of the tool and

the environment is an essential part in Approach subroutine (part matting) and in the

guarded move task. In this case we assume a central impact - the line of action of the

contact forces passes through the mass center of each body so there is no rotation of

either body. In the simulation, the movements of the contacting parts (sensor/tool and

environment), were based considering the following:

a) Conservation of linear momentum (collinear case):

mx(Vi - V l) = -m 2 (V 2 - v2) (8.6)

where m^mj are the masses of the bodies and vi)V2,v'ltv'i are their velocities before and

after the collision.

Chapter 8. FORCE CONTROL SIMULATION 126

b) Conservation of energy:

\ m i v l + \ m 2 v l = \ m i V i + \ m 2 v l + E (8-7)

where E is the energy loss during impact (known). Using the coefficient of restitution

[e = (V2 — Vi)/(vi — V2)], the following equations give the velocity of each body following

the collision:

mjui + m2v2 — em2(vi — v2)
rrix + m2

m^vx + m2v2 + emx(vx - v2)
V2 = (8.8)

TTIJ -+- m2

For a spacial case of collision between small mass and relatively big mass, (like the case

of fixed environment), the change in the velocity of the big mass is negligible and the

relative velocity becomes:

V1 = -evx (8.9)
For steel (balls) the coefficient of restitution was found to be e = 0.55 and this value is

used in the simulation.

8.2 M O D E L D E S C R I P T I O N

The force control algorithm applied' in the simulation is according to the force control

block diagram explained in chapter 4. The environment was derived so that hard tracking

topography can be checked. In the simulation, movement in the X direction begins from

the moment the arm begins with the approaching towards the environment. This gives a

better orientation and timing while studying the results. Like in the Search subroutine,

there is no coupling between the movement in the X and Z direction, i.e. using the arm

in actual tracking a contour, if forces exceeded high values or normal forces becomes zero

(no contact) - the actual movement is the sum of the force controlled movement in Z

direction and the continuous, position controlled movement in X direction.

Chapter 8. FORCE CONTROL SIMULATION 127

At time T = t0, the arm begins a rapid movement towards a target point located

10 [mm] above the environment. The movement is achieved by using a discrete (AT =

0.028[aec]) simulation and control low that add to the dynamic equations, the desired

location and velocity. The time interval and the restricted desired steps of the arm

prevent high forces due to high velocities and damping (without actual contact). After

the first approach to the desired location, the vertical velocity is lowered to approx.

16 [mm/sec]. For fixed environment, the dynamic equations of the arm and the sensor

(without the input from the control low) are:

(8.10)

when

subscript r - arm parameters,

subscript a - sensor (or tip of the tool),

the equation for arm motion is:

mrzr = -irbr + (z„ - zr)bt - zTK + (z, - zr)k. (8.11)

the control algorithm is added by adding the desired position (%*) and desired velocity

(id) as input to the contact point (Fig. 7.3) of the spring and damper of the arm. The

equation that simulate arm movements (in the simulation) is

m r z r = (id - zT)br + (z. - zr)b. + (zd - *r)K + (z, - zT)k, (8.12)

The second mass (sensor + tool) is moving according to the Eq. 8.10.

In the simulation, contact position is indicated by comparing the sensor's location to

that of the environment. If at the end of a certain step, the sensor is located Sz, under the

Chapter 8. FORCE CONTROL SIMULATION 128

environment, then the time it moves after impact (till next step) is St = y*. Using the

velocity after impact (£o = — e z «) , part of the kinetic energy (after collision) is transferred

to potential energy stored in the springs of the system. Using the conservation of energy

and movement time, the velocity at the end of the integration step is calculated and the

new location of the arm (above the environment) is found. The new position and velocity

is then fed to the control low and to the integration routine. Other parameters that are

being checked and updated are the maximum and minimum distances between the sensor

and the arm that indicate true spring limitations. Figures 8.4 to 8.8 are selected outputs

of the simulation, discussed in the next section.

8.3 C O N C L U S I O N S

A) While moving the arm in search pattern, for practical reasons, the velocity should be

the maximum that still can locate desired locations. Figures 8.4 and 8.5 shows the same

arm configuration with other plan velocities. For the surface shown, the higher speed (5

[mm/sec], causes the loss of much information.

B) Using a high stiffness configuration causes jittery movements of the arm and unstable

contact with the environment (Fig. 8.5 and 8.7). The contact forces in the stiff arm

are relatively high (Figures 8.6 - 8.8). This increases the friction forces in the X — Y

plan and sometimes can cause distractive contact with the environment. Complicated

software has to be used in order to relate forces in the Z direction and the plane forces

and to filter the friction forces (interference with the direction of edge information).

C) Another important advantage that is added by the compliance of the sensor, is its fast

reactions to the opposite direction of the preload (faster then the reaction of the force

control). When searching for a hole, the location of the hole is found by force information

due to contact with the edges of the hole. For movements in the X — Y plan in velocity of

Chapter 8. FORCE CONTROL SIMULATION 129

2 [mm/sec], in extreme cases, when the tolerances between the peg and the hole are less

then 0.056 [mm], there is good possibility that the force controller will not react at all.

For other cases, with wider tolerances, the reaction (inserting the peg) can be too small

for "good" contact that will alter and stop the search program due to force information.

So, although compliance device reduces the bandwidth of the system, it is useful for most

force controlled, assembly tasks.

Chapter 8. FORCE CONTROL SIMULATION 130

Force [Nt]

0.4 0.6 0.8
def lec. [mm]

1.2

Figure 8.1: PUMA 560 measured arm stiffness.
F

I mp

/77T7777 ////////

Figure 8.2: Reduction of translational compliance and mass to different location.

Chapter 8. FORCE CONTROL SIMULATION

Figure 8.3: Linear model of the robot arm.

F O R C E G A U R D E D M O U E O F ARM (K - 5 5 N /MM)

^ A N D S E N S O R (K - 5 N / M M) .

c ° U E L O C I T Y IN X D I R . - 5 (M M / S E C)

D i s t a n c e i n X d i r . (*100 o n) .

Figure 8.4: low stiffness sensor spring, high velocity.

Chapter 8. FORCE CONTROL SIMULATION 132

FORCE GAURDED MOUE OF ARM (K - 5 5 N/MM:
AND SENSOR (K - 5 N/MM).

o
5 o-

o o

UELOCITY IN X D I R . - 2 (MM/SEC)

0.00 0.32 0.64 0.96

Distance l n X d i r . (*100 am)
LP

1.28 1.60

Chapter 8. FORCE CONTROL SIMULATION 133

o o

FORCE GAURDED MQUE OF ARM (K-55 N/MM:
AND SENSOR (K-55 N/MM).
UELOCITY IN X DIR.-2 (MM/SEC)

i . o o
•
*»

8
o

o o

(1

Iiiii l i l i llllllll.. M (POT TI Tjl'

^0.00 D.32 0.64 0.96
D i a t a n c a In X d i r . (*100 D I)

1.28 1.60

0.00 1.28 0.32 0.64 0.96

Siatanea i n X d i r . <»100 mm).

Figure 8.6: High stiffness sensor spring, low velocity.

1.60

Bibliography

[1] Asada H., Slotine J.J.E. 1986 by John Wiley & Sons, Inc.

Robot Analysis and Control.

[2] Albus J.S., Lumia R. and McCain H. Hierarchical Control of Intelligent Machines

Applied to Space Station Telerobots. JPL Publication 87-13, Vol. II, July, 1987.

[3] Bihn D.G., Hsia T.C., July 1987. A Universal Six-Joint Robot Controller. JPL Pub

lication 87-13, Vol. II.

[4] Brady M., Hollerbach J.M., Johnson T.L., Lozano-Perez T., Mason M.T. by The

MIT Press (Series in Artificial Inteligence).

Robot Motion: Planning and Control. 1982, pp 567-585.

[5] Cherchas D.B., Boucher D.C. Close Loop End Piece Control of Servo Controlled

Manipulator.

[6] Coiffet Phillip, Interaction With the environment. Robot Technology, Volume 2.

1983, pp 229-235.

[7] Cutkosly M.R., 1985 by Kluwer Academic Publishers.

Robotic Grasping and Fine Manipulation.

[8] deSilva C W . Control Sensors and Actuators. Prentice Hall, Englewood Cliffs, New

Jersey, 1989.

[9] Drake S., Watson P., Simunovic S., 1977. High Speed Robot Assembly of Precision

134

Bibliography 135

Parts Using Compliance Instead of Sensory Feedback. Proc. 7th Int. Symp. on In

dustrial Robots.

[10] De Fazio T.L., Seltzer D.S., Whiteny D.E. The IRCC Instrumented Remote Centre

Compliance. The Charles Stark Draper Lab. Inc., USA. Robot Sensor Vol. II. Tactile

& Non-Vision. Edited by: Alan Pugh. IFS (Publications) Ltd. U.K., Springer Verlag,

Berlin Heidelberg New York London Paris Tokyo 1986, pp 33-44.

[11] Eppinger D. Steven, Seering P. Warren, 1986 IEEE. On Dynamic Models of Robot

Force Control. Artificial Intelligence Laboratory, Massachusetts Institute of Tech

nology.

[12] Feldmann K. and Classe D., Sensor Aided Robot Programming. Universitat Eriangen

Nurnberg, West Gremany. Robot Vision and Sensory Control. October 1985.

[13] Fu K.S., Gonzalez R.C., Lee C.S.G. Robotics Control, Sensing, Vision and Intelli

gence. McGraw-Hill, Inc. 1987.

[14] Goto T., Inoyama T., Takeyasu K. Pricise Insert Operation by Tectile Controlled

Robot. Proc. 2nd Confe. on Industrial Robot Technology. IFS (Publication) Ltd,

Bedford, U.K., March 1974.

[15] Hunt K.H., Kinnematic Geometry of Mechanisms. Oxford University Press. 1978.

[16] Inoue H., Force Feedback in Precise Assembly Tasks. Memo No. 308, MIT Artificial

Intelligence Lab., Cambridge, MA, USA.

[17] Katsuhiko 0, Discrete-Time Control Systems. Prentice-Hall, INC., Englewood Cliffs,

New Jersey 1987.

Bibliography 136

[18] Khatib 0., Burdick J., Motion and Force Control of Robot Manipulators. Proceeding

of the IEEE International conference on Robotics and Automation. April 1986.

[19] Lee T.T., and Shieh T.R., Analysis and Compliance Control of a Multiple Inser

tion Assembly. National Chiao Tung University, Taiwan. Robot Vision and Sensory

Controls. October 1985.

[20] Lozano-Perez T., Mason M. T., Talor R. H., spring 1984. Automatic Synthesis of

Fine-Motion Strategies for Robots. The International Journal of Robotics Reseearch.

Vol. 3. No. 1.

[21] Maples J.A., Becker J.J., Experiments in Force Control of Robotic Manipulators.

IEEE International conference on Robotics and Automation, Vol. 2, 1986.

[22] Martensson N., Johanson C , Subassembly Of a Gearshaft By Industrial Robot. Proc.

10th International Symp. on Industrial Robots. March 1980, Milan, Italy.

[23] Mason M. T., Compliance and Force Control for Computer Controlled Manipulators.

IEEE transactions on System, Man and Cybernetics SMC-11, 6. June 1981.

[24] Mason M.T., Salisbury J.K., Robot Hand and the Mechanics of Manipulatin. The

MIT Press series in artificial intelligence. 1985.

[25] Nevis J.L., Whiteny D.E.,77ie Force Vector Assembly Concept. Proc. 1st CISM

Symp. Vol. II. Udine, Italy. 1975.

[26] O'Hara D.D., Multiprocessor Robot Control For Assembly: A Demonstration With

Tactile Feedback For Prismatic Shape Block Insertion. Proc. Int. Conf. Robot and

Sensory Controls, February 1988.

Bibliography 137

[27] Ohwovoriole M.S., Hill J.W., Roth B., On the Theory of Single and Multiple Inser

tions in Industrial assemblies. Proc. 10th International Symp. on Industrial Robots.

March 1980, Milan, Italy.

[28] Paul R.P., Problems and Research Issues Associated With the Hhbrid Control of

Force and Displacement. JPL Publication, Vol. II, July 1987.

[29] Paul R.P., Shimano B., Compliance and Control. Proceedings of the 1976 Joint

Automatic Control Conference.

[30] Raibert M.H., Craig J.J., Hybrid Position/Force Control of Manipulators. Trans.

ASME Journal of Dynamics, Systems, Measurements, and Control, Vol. 102, June

1981.

[31] Rivin. E.I. Mechanical Design of Robots. McGraw-Hill Inc., 1988.

[32] Roberts R.K., Paul R.P., Hillberry B.M., The Effect of Wrist Force Sensor Stiff

ness on the Control of Robot Manipulators. Proceeding of the IEEE International

Conference on Robotics and Automation. April 1985.

[33] Simunovic S., 1975. Force Information in Assembly Proccesses. Proc. 5th Int. Symp.

on Industrial Robots.

[34] Salisbury J.K., Active Stiffness Control of a Manipulator in Cartesian Coordinates.

Proc. 19th IEEE Conf. on Deci. and Contr., 1980, pp. 95-100.

[35] Saridis G.N. and Valavanis K.P., Software and Hardware for Intelligent Robots. JPL

Publication 87-13, Vol. II, July, 1987.

[36] Shigley J.E., Mechanical Engineering Design. McGraw-Hill Inc., 1977.

Bibliography 138

[37] Stepien T.M. et al. Control of Tool/Workpiece Contact Forces With Application to

Robotic Deburing. Proc. IEEE Conf. on Robotic and Automation. St. Louis Mo.,

1985.

[38] Unimation Incorporated , A Westinghouse Company.

Unimate Puma Robot Manual (S98H). August 1984.

500 Series Equipment Manual for VAL II and VAL PLUS Operating Systems

(S98U1). March 1985.

Programing Manual User's Guide to VAL II (S98T1). August 1984.

[39] vanBrussel H., Simons 3.,Automatic Assemblly By Active Force Feedback Accommo

dation. Robot Sensor Vol. II. Tactile & Non-Vision. Edited by: Alan Rugh. IFS

(Publications) Ltd. U.K., 1986.

[40] vanBrussel H., Belien H. and Thielemans H., Force Sensing for Advanced Robot Con

trol. Katholieke Universiteit Leuven, Belgium. Robot Vision and Sensory Control.

October 1985.

[41] Vukobratovic M., Introduction to Robotics. Springer Verlag Berlin Heidelberg

New York London Paris Tokyo 1989.

[42] Vukobratovic M., Potkonjak V., Applied Dynamics and CAD of Manipulation

Robots. Scientific Fundamentals of Robotics 6. Springer-Verlag Berlin Heidelberg

New York London Paris Tokyo 1989.

[43] Waston P.C., A Multidimensional System Analysis of the Assembly Process as Per

formed by a Manipulator. 1st North Amer. Robot Conf. Chicago, 1976.

[44] West H., Asada H., A Method for the Design of Hybrid Position/Force Controller

foe Manipulators Constraind by Contact With the Environment. Proc. 1985 IEEE

Bibliography 139

Conf. Robotics and Automation 251-259.

[45] Whitney E.D., June 1977. Force Feedback Control of Manipulator Fine Motions.

Jurnal of Dynamic Systems, Mesurement, and Control.

[46] Whiteny E.D., March 1982. Quasi-Static Assembly of Compliantly Supported Rigid

Parts. Trans. ASME Journal of Dynamics, Systems, Measurement, and Control.

March 1982.

[47] Whiteny E.D., 1987. Historical perspective and State of the Art in Robot Force Con

trol. The International Journal of Robotics Research. Vol. 6. No. 1.

[48] Zhang H., Paul R.P., Hybrid Control of Robot Manipulators. 1985 IEEE.

Appendix A

MAIN TASK and SUBTASKS:

A . l main program PUMP:

1 ; main t a B k PUMP (May. 24 /Kotzev)
2 ;
3 ATTACH
4 CALL g e a r l . i n i l
5 CALL pick
6 CALL gearl.ini2
7 CALL insert
8 CALL gear2.inil
9 CALL pick
10 CALL gear2.ini2
11 CALL insert
12 CALL t o p . i n i l
13 CALL pick
14 CALL top.ini2
15 CALL insert
16 CALL screwl.inil
17 CALL pick
18 CALL screwl.ini2
19 CALL place
20 CALL repeat.bolt
21 CALL t o o l . i n i l
22 CALL pick
23 CALL tool.ini2
24 CALL Bcrev
25 CALL repeat.screw
26 CALL tool.i n i 3
27 CALL place
28 CALL pcstop

A.2 subtask INSERT:

1 ; subtask INSERT (May 25 / Kotzev)
2 ;
3 TYPE »***••*** INSERT started "

140

Appendix A. MAIN TASK and SUBTASKS:

4 CALL move
5 CALL approach
6 IF search.pc 1 GOTO 10
7 CALL search
8 10 CALL comply
9 CALL clear
10 TYPE "******** INSERT ended "
11 RETURN

A .3 subtask PICK:

1 ; subtask PICK (Jan.12 /Kotzev)
2 ;
3 TYPE "******** PICK started "
4 CALL move
5 CALL approach
6 CALL grasp
7 CALL clear
8 TYPE ********* PICK ended "
9 RETURN

A.4 subtask PLACE:

1 ; subtask PLACE (June 6 - Kotzev)
2 ;
3 TYPE "******** PLACE started
4 CALL move
5 CALL approach
6 OPEN
7 CALL clear
8 TYPE "******** PLACE ended "
9 RETURN

A .5 subtask SCREW:

1 ; subtask SCREW (June 18 - Kotzev)
2 ;
3 TYPE "******** SCREW started
4 CALL move
5 CALL approach
6 CALL rotate
7 CALL clear
8 TYPE "******** SCREW ended "
9 RETURN

Appendix B

SUBROUTINES and SERVICE PROGRAMS:

B.l program APPROACH:

1 ; subroutine APPROACH (June 21 - Kotzev)
2 CALL pcstop
3 TYPE " ++++++++ APPROACH started"
4 ; Weight the end effector equipment:
5 IF weight.ex -• 1 THEN
6 CLOSEI
7 TIMER (1) = 0
8 WAIT TIMER(l) > 1
9 IF null.ex -= 1 THEN
10 CALL null.sensor
11 IF n u l l . f a i l =» 1 GOTO 5
12 GOTO 25
13 END
14 mass.before = weight
15 25 TYPE "- f .m[3j = ", /F6.2, mass .before, "[Kg]"
16 END
17 IF open.grip =«= 1 THEN
18 OPENI
19 END
20 ; Move in X Y plane and on Z axis to temp.pnt (shifting point):
21 SPEED speed.high ALWAYS
22 SET temp.pnt « SHIFT(HERE BY shift.x, B h i f t . y , 0)
23 MOVES temp.pnt
24 DECOMPOSE a[] - tool.pnt
25 sx » a[0]+shift.x
26 sy «= a[l]+®hift.y
27 sz «* a[2]+shift.z
28 SET temp.pnt » TRANS(sx, sy, BZ, a[3], a[4], a[5])
29 MOVES temp.pnt
30 BREAK
31 IF open.grip == 1 THEN
32 SPEED speed.appro ALWAYS
33 MOVES tool.pnt
34 GOTO 100
35 END

142

Appendix B. SUBROUTINES and SERVICE PROGRAMS: 143

36 ; Move from the shift point to contact:
37 TYPE " APPROACH.PC started "
38 PCEXECUTE approach.pc, -1, 0
39 ALTER (-1, 18, , 1)
40 SPEED speed.appro ALWAYS
41 IF shift.x > 0 THEN
42 delta.x = delta.shift
43 END
44 IF shift.y > 0 THEN
45 delta.y • delta.shift
46 END
47 IF shift.z > 0 THEN
48 delta.z = delta.shift
49 END
50 10 SET point.appro = SHIFT(HERE BY -delta.x, -delta.y, -delta.z)
51 count = count+1
52 shift.max a shift.x+shift.y+shift.z+shift.over
53 IF (count*delta.shift) > (shift.max) THEN
54 IF position.appro 1 THEN
55 search.pc • 1
56 GOTO 15
57 END
58 END
59 MOVES point.appro
60 BREAK
61 IF SIG(2025) THEN
62 IF force.appro •= 1 THEN
63 IF rot.appro «• 1 THEN
64 count.rot = count.rot+1
65 TYPE count.rot
66 IF count.rot > 5 GOTO 15
67 SIGNAL -2025
68 HERE temp.pnt
69 DECOMPOSE a[] = temp.pnt
70 r[5] = 6*count.rot
71 SET temp.pnt - TRANS(a[0], a[l], a[2], a[3], a[4], 5)
72 MOVES temp.pnt
73 GOTO 600
74 END
75 GOTO 15
76 END
77 END
78 500 GOTO 10
79 ;
80 15 CALL pestop

Appendix B. SUBROUTINES and SERVICE PROGRAMS:

81 TYPE " «=-«»™ f [3] = ", /F6.2, f [3] , "
82 100 TYPE " ++++++++ APPROACH finished "
83 RETURN

1 ; APPROACH.PAR (June 5 - Kotzev)
2 ;
3 second = 0
4 count = 0
5 count.rot = 0
6 rot.appro = 0
7 search.pc • 0
8 weight. ex = 1
9 null.ex » 1
10 search.pc = 0
11 open.grip • 1
12 force.appro • 1
13 position.appro • 1
14 shift.x = 0
15 shift.y = 0
16 shift.z = 5
17 delta.shift =0.3
18 shift.over * 5
19 delta.x = 0
20 delta.y • 0
21 delta.z = 0
22 speed.high = 50
23 speed.appro = 10
24 appro.max[1] • 2; Forces during approach
25 appro.max[2] s 2
26 appro, max[3] =2.75

1 ; program APPROACH.PC (June 5 - Kotzev)
2 ;
3 IF SIG(2020) — 0 THEN
4 TYPE " APPROACH. PC ended
5 HALT
6 END
7 ;
8 ; Check forces in X, Y and Z directions:
9 CALL jr3.dat
10 FOR pc = 1 TO 3
11 IF ABS(f.m[pc]) > appro.max[pc] THEN
12 SIGNAL 2025

Appendix B. SUBROUTINES and SERVICE PROGRAMS: 145

13 END
14 END
15 ALTOUT 0, 0, 0, 0, 0, 0, 0

B.2 program C L E A R :

1 ; subroutine CLEAR (June 21 - Kotzev)
2 ;
3 CALL pcstop
4 TYPE " ++++++++ CLEAR started "
5 SPEED speed.clear ALWAYS
6 IF clear.grip == 1 THEN
7 OPEN
8 TIMER (1) - 0
9 WAIT TIMER(l) > 0
10 END
11 IF second — 1 THEN
12 SET temp.pnt « SHIFT(HERE BY clear.x, clear.y, clear.z)
13 MOVES temp.pnt
14 BREAK
15 END
16 DECOMPOSE b[] - tool.pnt
17 HERE temp.pnt
18 DECOMPOSE a[] - temp.pnt
19 MOVES TRANS(a[0], a[l], b[2]+safe.z, a[3], a[4], a[5])
20 BREAK
21 IF clear.rotate « 1 THEN
22 SPEED speed.rotate ALWAYS
23 HERE #temp.pnt
24 DECOMPOSE a[] = #temp.pnt
25 MOVE #PP0INT(a[0] , a[l] , a[2] , a[3] , a[4] , dear [5])
26 BREAK
27 END
28 TYPE " ++++++++ CLEAR ended "
29 RETURN

1 ; CLEAR.PAR (July 21 - Kotzev)
2 ;
3 Bpeed.clear • 100
4 clear.rotate • 0
5 clear[5] • -260
6 clear.grip = 0
7 clear.x =0
8 clear.y E 0

Appendix B. SUBROUTINES and SERVICE PROGRAMS:

9 clear.z • 0
10 RETURN

B . 3 program C O M P L Y :

1 ; subroutine COMPLY (August 29 - Kotzev)
2 ;
3 CALL pcstop
4 TYPE " ++++++++ COMPLY started "
5 ; t[] was decomposed to be the target point (done by the
6 ; initialization program) .
7 TYPE " COMPLY.PC started "
8 PCEXECUTE comply.pc, -1, 1
9 ALTER (-1, 17, ,1)
10 ; Rotate i f rotate==l:
11 10 DELAY delaytime
12 IF SIG(2025) THEN
13 IF comply.force « 1 THEN
14 HERE temp.pnt
15 DECOMPOSE aa[] • temp.pnt
16 IF ABS(aa[2]-t[2]) > delcomply.z GOTO 20
17 END
18 END
19 HERE temp.pnt
20 DECOMPOSE aa[] = temp.pnt
21 IF ABS(aa[2]-t[2]) > (lower.pnt-3) GOTO 20
22 GOTO 10
23 ;
24 20 CALL pcstop
25 TYPE " ++++++++ COMPLY ended "
26 RETURN

1 ;COMPLY.PAR (August 28 - Kotzev)
2 ;
3 delaytime = 1
4 rotate • 0
5 comply.force = 0
6 mid.pnt •= 60
7 delcomply.z » 50
8 lower.pnt • 100
9 f.max[l] • 10; information to stop comply.
10 f .max[2] - 10
11 f.max[3] - 3
12 f.max[4] * 1000^

Appendix B. SUBROUTINES and SERVICE PROGRAMS:

13 f.max[5] - 1000
14 f.max[6] = 250
15 comax[l] = 0.5
16 comin[l] = -0.5
17 comax[2] =0.5
18 comin[2] • -0.5
19 comax[3] = 0.5
20 comin[3] = -0.5
21 comax[4] = 30
22 comin[4] = -30
23 comax[5] • 30
24 comin[5] « -30
25 comax[6] = 30
26 comin[6] = -30
27 gain[l] = 10
28 gain[2] • 10
29 gain[3] • 10
30 gain[4] • 0.5
31 gain[5] • 0.5
32 gain[6] = 1
33 del.max[1] • 30
34 del.max[2] - 30
35 del.max[3] » 30
36 del.max[4] = 20
37 del.max[5] • 20
38 del.max[6] • 50

1 ; COMPLY.PC (Aug. 3 - Kotzev)
2 ;
3 IF SIG(2020) — 0 THEN
4 TYPE " COMPLY.PC ended
5 HALT
6 END
7 HERE temp.pnt
8 DECOMPOSE a[] • temp.pnt
9 IF ABS(b[2]-a[2]) > lower.pnt THEN
10 SIGNAL 2026
11 END
12 CALL jr3.dat
13 ; Monitor forces to stop the program:
14 IF ABS(f.m[3]) > ABS(f.max[3]) THEN
15 SIGNAL 2025
16 END
17 ; Initilate f sign[] :

Appendix B. SUBROUTINES and SERVICE PROGRAMS:

18 FOR pc - 1 TO 6
19 fsign[pc] » 0
20 END
21 ; Monitor forces in X dir.:
22 IF f .m[l] > comaxCl] THEN
23 fsign[l] - -ABS(f .m[l] -comax[l])
24 END
25 IF f.m[l] < comin [1] THEN
26 fsign[l] = ABS(f .m[l] -comin[l])
27 END
28 ; Monitor forces in Y dir.:
29 IF f .m[2] > comax[2] THEN
30 fsign[2] - -ABS(f.m[2]-comax[2])
31 END
32 IF f.m[2] < comin[2] THEN
33 f sign [2] - ABS(f .m[2]-comin[2])
34 END
35 ; Monitor forces in Z dir.:
36 IF f .m[3] > comax[3] THEN
37 f sign[3] « ABS(f .m[3] -comax[3])
38 END
39 IF f.m[3] < comin[3] THEN
40 fsign[3] - -ABS(f .m[3]-comin[3])
41 END
42 ;Monitor torques around X:
43 IF f .m[4] > comax[4] THEN
44 fsign[4] - -ABS(f.m[4]-comax[4])
45 END
46 IF f.m[4] < comin[4] THEN
47 fsign[4] - ABS(f.m[4]-comin[4])
48 END
49 ; Monitor torques around Y:
50 IF f.m[5] > comax[5] THEN
51 fsign[5] = -ABS(f.m[5]-comax[5])
52 END
53 IF f.m[5] < comin[5] THEN
54 fsign[5] - ABS(f.m[5]-comin[5])
55 END
56 ; Monitor torque around Z:
57 IF f.m[6] > comax[6] THEN
58 fsign[6] • ABS(f.m[6]-comax[6])
69 END
60 IF f.m[6] < comin[6] THEN
61 fsign[6] • -ABS(f.m[6]-comin[6])
62 END

Appendix B. SUBROUTINES and SERVICE PROGRAMS:

63 ;
64 FOR pc - 1 TO 6
65 del[pc] = f 8ign[pc]*gain[pc]
66 IF ABS(del[pc]) > del.max[pc] THEN
67 del[pc] = del. max [pc]*f sign [pc]/ABS(f sign [pc])
68 END
69 END
70 ALTOUT 0, del[l], del [2], del [3], del [4], del [5], del [6]

B.4 program C O M S C R E W :

1 ; subroutine COMPLY.SCREW (June 21 - Kotzev)
2 ;
3 CALL pestop
4 TYPE " ++++++++ COMSCREW started "
5 TYPE " COMPLY.PC started "
6 50 PCEXECUTE comply.pc, -1, 1
7 ALTER (-1, 17, , 1)
8 HERE #temp.pnt
9 DECOMPOSE b[] = #temp.pnt
10 10 HERE #temp.pnt
11 DECOMPOSE a[] - #temp.pnt
12 IF a[5] > 0 GOTO 20
13 IF ABS(b[5])-ABS(a[5]) > 60 THEN
14 CALL pestop
15 GOTO 50
16 END
17 DELAY delaytime
18 IF SIG(2025) GOTO 20
19 TYPE del[l], del [2], del [3], del [4], del [5], del [6]
20 GOTO 10
21 ;
22 20 CALL pestop
23 TYPE " ++++++++ COMPLY ended "
24 RETURN

1 ; COMSCREW.PAR (July 21 - Kotzev)
2 ;
3 comply.force = 1
4 comax[3] • -0.6
5 comin[3] • -0.5
6 comax[6] «= -250
7 comin[6] = -240
8 del.max[l] • 0

Appendix B. SUBROUTINES and SERVICE PROGRAMS:

9 del.max[2] - 0
10 del.max[3] » 3
11 del.max[4] • 0
12 del.max[5] = 0
13 del.max[6] - 250

B.5 GEAR1, GEAR2 parameters:

1 ; program GEAR1.INI1 (May. 24 /Kotzev)
2 ;
3 CALL p c B t o p

4 TYPE " "
5 TYPE " GEAR1 ASSEMBLY "
6 TYPE " "
7 ; CONFIGURATION:
8 z.sensor = 31
9 z.rcc = 43
10 z.gripper • 112
11 TOOL TRANS(0, 0, z.sensor+z.rcc+z.gripper, 90, -90, 45)
12 mass • 0.17
13 dB[l] - 8
14 ds[2] - 8
15 z.tool • 57
16 ds[3] = z.rcc+z.gripper+z.tool
17 ; MOVE parameters:
18 SET tool.pnt = gearl.pntl
19 safe.z = 300
20 speed.move = 100
21 zero.position = 0
22 ; APPROACH parameters:
23 CALL approach.par
24 ; GRASP parameters:
25 temp.force » 10
26 speed.grasp • 10
27 weight.z • 30
28 ; CLEAR parameters:
29 CALL clear.par

1 ; program GEAR1.INI2 (Aug. 3 - Kotzev)
2 ;
3 CALL pestop
4 ; CONFIGURATION:
5 z.tool = 57
6 TOOL TRANS(0, 0, z.sensor+z.rcc+z.gripper+z.tool, 90, -90

Appendix B. SUBROUTINES and SERVICE PROGRAMS: 151

7 mass =0.17
8 ds[l] = 8
9 ds[2] - 8
10 ds[3] • z.rcc+z.gripper+z.tool
11 ; MOVE parameters:
12 SET tool.pnt = gearl.pnt2
13 safe.z • 300
14 speed.move = 100
15 ; APPROACH parameters:
16 CALL approach.par
17 weight.ex = 0
18 open.grip • 0
19 shift.over • 10
20 ; SEARCH parameters:
21 CALL search.par
22 Bpeed.xy • 2
23 delx =0.3
24 dely =0.3
25 delsearch.z = 3
26 ; COMPLY parameters:
27 CALL comply.par
28 comply.force = 1
29 f.max [2] =2.5
30 delcomply.z = 10
31 lower.pnt = 31
32 speed.comply = 5
33 comax[3] = -0.6
34 comin[3] = -0.5
35 ; CLEAR parameters:
36 CALL clear.par
37 clear.grip = 1

1 ; GEAR2.INI1 (August 28 - Kotzev)
2 ;
3 CALL pcstop
4 TYPE " "
5 TYPE 11 GEAR2 ASSEMBLY "
6 TYPE " "
7 ; CONFIGURATION:
8 DECOMPOSE t[] • gearl.pntl
9 SET gear2.pntl - TRANS(t [0] , t[l]+43, t [2] , t [3] , t[4], t[5])
10 z.sensor = 31
11 z.rcc = 43
12 z.gripper = 112

Appendix B. SUBROUTINES and SERVICE PROGRAMS: 152

13 TOOL TRANS(0, 0, z.sensor+z.rcc+z.gripper, 90, -90, 45)
14 mass = 0.17
15 ds[lj » 8
16 ds[2] - 8
17 z.tool » 97
18 ds[3] • z.rcc+z.gripper+z.tool
19 ; MOVE parameters:
20 SET tool.pnt = gear2.pntl
21 safe.z • 300
22 speed.move • 100
23 zero.position = 0
24 ; APPROACH parameters:
25 CALL approach.par
26 ; GRASP parameters:
27 temp.force • 10
28 speed.grasp • 10
29 weight.z = 70
30 ; CLEAR parameters:
31 CALL clear.par

1 ; GEAR2.INI2 (August 28 - Kotzev)
2 ;
3 CALL pcstop
4 ; CONFIGURATION:
5 DECOMPOSE t[] - gearl.pnt2
6 SET gear2.pnt2 = TRANS(t[0], t[l]+30, t[2], t[3], t[4], t [5])
7 z.tool » 97
8 TOOL TRANS(0, 0, z.sensor+z.rcc+z.gripper+z.tool, 90, -90, 45)
9 mass = 0.17
10 ds[l] - 8
11 ds[2] - 8
12 ds[3] = z.rcc+z.gripper+z.tool
13 ; MOVE parameters:
14 SET tool.pnt = gear2.pnt2
15 safe.z = 300
16 speed.move • 100
17 ; APPROACH parameters:
18 CALL approach.par
19 weight.ex =0
20 open.grip » 0
21 shift.over « 10
22 position.appro • 1
23 ; SEARCH parameters:
24 CALL search.par

Appendix B. SUBROUTINES and SERVICE PROGRAMS:

25 ; COMPLY parameters:
26 CALL comply.par
27 comply.force = 1
28 lower.pnt = 63
29 delcomply.z = 63
30 comax[3] = -1.2
31 comin[3] =-1.1
32 comax[6] • 25
33 comin[6] • 20
34 gain[3] - 10
35 del.max [3] = 62
36 ; CLEAR parameters:
37 CALL clear.par
38 • clear.grip = 1

B.6 program GRASP:

1 ; program GRASP (Feb.5 /Kotzev)
2 CALL pestop
3 TYPE " ++++++++ GRASP started "
4 IF open.grip == 1 THEN
5 CLOSE
6 END
7 IF temp.force > 0 THEN
8 DO
9 CALL jr3.dat
10 APPRO HERE, -0.5
11 UNTIL ABS(f.m[3]) > temp.force
12 END
13 IF weight.ex -- 1 THEN
14 SPEED speed.grasp ALWAYS
15 DEPARTS weight.z
16 BREAK
17 TIMER (1) = 0
18 WAIT TIMER(l) > 2
19 CALL weight
20 mass.after = weight
21 TYPE " f.m[3] = ", /F6.2, mass.after
22 temp.mass = ABS(mass.after-mass.before)
23 IF ABS(temp.mass) < 0.7*mass THEN
24 TYPE " ERROR - failure to grasp the tool '
25 ELSE
26 TYPE " grasped the tool "
27 END
28 END

Appendix B. SUBROUTINES and SERVICE PROGRAMS:

29 TYPE " ++++++++ GRASP ended "
30 RETURN

1 ; program GRASP.SUB
2 . Last modification 28 - 9 - 5
3 ; PARameters: CLOSE.GAP = to face the peg's sholders.
4 ;
5 PCEND
6 close.gap »= -2
7 TYPE " GRASP.SUB started "
8 SPEED speed.grasp.sub ALWAYS
9 DECOMPOSE t[] = work.point
10 SET temp « TRANS (t [0] , t [l] , t[2]+30, t [3] , t [4] , t [5])
11 MOVE temp
12 BREAK
13 SIGNAL 1
14 TIMER (1) = 0
15 WAIT TIMER(l) > 1
16 CALL weight
17 m a 8 8 t o o l l . O = weight
18 TYPE " f.m[3] - ", /F6.2, masstooll.O, "[Kg]'1

19 OPEN
20 MOVE work.point
21 BREAK
22 CLOSE
23 TIMER (1) = 0
24 WAIT TIMER(l) > 1
25 APPRO work.point, close.gap
26 BREAK
27 TIMER (1) = 0
28 WAIT TIMER(l) > 1
29 MOVE temp
30 BREAK
31 CALL weight
32 masstooll.l «= weight
33 TYPE " f.m[3] = ", /F6.2, masstooll.l, "[Kg]"
34 tooll.mass = masstooll.1-masstooll.0
35 IF ABS(tooll.mass) < 0.1 THEN
36 TYPE " Error - failure to grasp the tool "
37 OPEN
38 MOVE SHIFT(HERE BY 0, 0, 0.1)
39 flag.tooll • 0
40 ELSE
41 TYPE " grasped the tool"

Appendix B. SUBROUTINES and SERVICE PROGRAMS:

42 flag.tooll • 1
43 END
44 TYPE " GRASP.SUB ended "
45 RETURN

B.7 program JR3 .DAT:

1 ; program JR3.DAT (Jan.10 /Kotzev)
2 ;
3 ; The program is based on GET.DATA to recieve force/moment
4 ; information at the tool's tip in [Kg] and [Kg*mm] units.
5 ; in order to receive the correct data, TOOL trans, must be
6 ; included in the prog, i.e: TOOL TRANS(rx, ry, rz, 0, -90, 0)
7 ; This includes the 90 degees shift in the JR3 force sensor.
8 ;
9 8tart.err = 0
10 mask.err «= 0
11 sat.err = 0
12 check.err • 0
13 trailer.err = 0
14 ;
15 fmax[l] = 25
16 fmax[2] • 25
17 fmax[3] - 50
18 fmax[4] • 75
19 fmax [5] «= 75
20 fmax[6] « 75
21 ;
22 ;CHECKING THE "START" WORD:
23 1 start = I0GET(-1028)
24 IF start <> 0 THEN
25 start.err = start.err+1
26 IF start.err > 10 THEN
27 TYPE " JR3 error - problems with the START word"
28 GOTO 500
29 END
30 WAIT
31 GOTO 1
32 END
33 ;
34 ;CHECKING THE "MASK" WORD:
35 2 mask - I0GET(-1028)
36 IF mask BAND "40377 <> "356 THEN
37 IF mask BAND "377 <> "356 THEN
38 mask.err • mask.err+1

Appendix B. SUBROUTINES and SERVICE PROGRAMS: 156

39 IF mask.err > 10 THEN
40 TYPE " JR3 error - problems with the MASK word"
41 GOTO 500
42 END
43 GOTO 1
44 END
45 IF mask BAND '40000 THEN
46 sat.err * sat.err+1
47 IF sat.err > 10 THEN
48 TYPE " JR3 error - SATURATION error"
49 GOTO 500
50 END
51 GOTO 1
52 END
53 END
54 ;
55 z.dl = I0GET(-1028)
66 z.d2 - I0GET(-1028)
57 z.d3 - I0GET(-1028)
58 z.d4 « I0GET(-1028)
59 z.d5 - I0GET(-1028)
60 z.d6 - I0GET(-1028)
61 ;
62 ; Cheking the CHECK word (check-sum) :
63 3 check - I0GET(-1028)
64 IF (z.dl+z.d2+z.d3+z.d4+z.d5+z.d6+check) <> 0 THEN
65 check.err • check.err+1
66 IF check.err > 10 THEN
67 TYPE " JR3 error - CHECK word incorrect"
68 GOTO 500
69 END
70 GOTO 1
71 END
72 ;
73 ; Checking the TRAILER word:
74 4 trailer • IOGET(-1028)
75 IF trailer <> "100000 THEN
76 trailer.err • trailer.err+1
77 IF trailer.err > 10 THEN
78 TYPE " JR3 error - TRAILER word incorrect"
79 GOTO 500
80 END
81 GOTO 1
82 END
83 ; Forces in [lb] and torques in [lb-in]:

Appendix B. SUBROUTINES and SERVICE PROGRAMS: 157

84 f[l] - z.dl*.122E-01
85 f[2] = -z.d2*.122E-01
86 f[3] = z.d3*.244E-01
87 f[4j = z.d4*.336E-01
88 f[5] - -z.d5*.336E-01
89 f[6] = z.d6*.336E-01
90 ;
91 FOR j r - 1 TO 6
92 IF ABS(f [jr]) > fmax[jr] THEN
93 TYPE "JR3 error - OVERLOAD"
94 END
95 END
96 ; Forces in [Kg] and Torques in [Kg-mm] :
97 f.m[l] - 0.445*f[l]
98 f .m[2] - 0.445*f[2]
99 f.m[3] - 0.445*f[3]
100 f.m[4] » 11.3*f [4]+ds[3]*f .m[2]-ds [2] *f .m[3]
101 f.m[5] - 11.3*f[5]-ds[3]*f.m[l]+ds [1] *f .m[3]
102 f.m[6] « 11.3*f[6]+ds[2]*f.m[l]-ds [1] *f .m[2]
103 500 RETURN

B.8 program MOVE:
1 ; subroutine MOVE (June 22 - Kotzev)
2 ;
3 CALL pestop
4 TYPE " ++++++++ MOVE started "
5 SPEED speed.move ALWAYS
6 DECOMPOSE b[] = tool.pnt
7 HERE temp.pnt
8 DECOMPOSE a[] » temp.pnt
9 IF a[2]-safe.z > b[2] THEN
10 MOVES TRANS(b[0] , b[l], a[2] , b[3] , b[4] , b[5])
11 BREAK
12 MOVES TRANS(b[0] , b[l] , b[2]+safe.z, b[3] , b[4] , b[5])
13 BREAK
14 ELSE
15 MOVES TRANS (a [0] , a[l] , b[2]+safe.z, a[3] , a[4] , a[5])
16 BREAK
17 MOVES TRANS(b[0], b[l] , b[2]+safe.z, b[3] , b[4] , b[5])
18 BREAK
19 END
20 IF zero.position 1 THEN
21 HERE #temp.pnt
22 DECOMPOSE a[] - #temp.pnt

Appendix B. SUBROUTINES and SERVICE PROGRAMS: 158

23 MOVE #PP0INT(a[0] , a[l] , a[2] , a[3] , a[4] , start [5])
24 BREAK
25 END
26 TYPE " ++++++++ MOVE ended "
27 RETURN

B.9 program N U L L . S E N S O R :

1 ; Null.sensor (June 17 - Kotzev)
2 ;
3 count = 0
4 n u l l . f a i l • 0
5 10 SIGNAL 1
6 count • count+1
7 IF count > 10 THEN
8 n u l l . f a i l - 1
9 TYPE " can't reset force data! "
10 GOTO 20
11 END
12 CALL jr3.dat
13 IF ABS(f.m[3]) > 0.1 GOTO 10
14 mass.before • f.m[3]
15 20 SIGNAL -1
16 RETURN

B.10 program O V E R L O A D :

1 ; program OVERLOAD (31.10.89 Kotzev)
2 '
3 ; checking for overloads
4 CALL jr3.dat
5 FOR over = 1 TO 6
6 fabs[over] • ABS(f.m[over])
7 IF fabs[over] > 3*pcmax[over] THEN
8 SIGNAL 2030
9 END
10 END
11 RETURN

B . l l program P C S T O P :

1 ; program PCSTOP (Jan.12 /Kotzev)
2 ;
3 NOALTER

Appendix B. SUBROUTINES and SERVICE PROGRAMS:

4 SIGNAL -2020
5 TIMER (1) * 0
6 WAIT TIMER(l) > 1
7 PCEND
8 SIGNAL -2010, -2011, -2012, -2013, -2014, -2015, -2016
9 SIGNAL -2017, -2018, -2019, 2020, -2025
10 RETURN

B.12 program R E P E A T . B O L T :

1 ; REPEAT.BOLT (June 18 - Kotzev)
2 ;
3 FOR repeat • 2 TO 4
4 CALL screwl.inil
6 IF repeat « 2 THEN
6 SET tool.pnt - SHIFT(screwl.pntl BY -25, 0, 0)
7 END
8 IF repeat »«= 3 THEN
9 CALL screwl.inil
10 SET tool.pnt - SHIFT(screwl.pntl BY -50, 0, 0)
11 END
12 IF repeat -- 4 THEN
13 SET tool.pnt • SHIFT(screwl.pntl BY -75, 0, 0)
14 END
15 CALL pick
16 CALL screwl.ini2
17 IF repeat 2 THEN
18 SET tool.pnt - SHIFT(screwl.pnt2 BY 60, -60, 0)
19 END
20 IF repeat — 3 THEN
21 SET tool.pnt » SHIFT(screwl.pnt2 BY 0, -60, 0)
22 END
23 IF repeat «== 4 THEN
24 SET tool.pnt - SHIFT(screwl.pnt2 BY 60, 0, 0)
25 END
26 CALL place
27 END
28 RETURN

B.13 program R E P E A T . S C R E W :

1 ; REPEAT.SCREW (Sep. 10 - Kotzev)
2 ;
3 screwl = 10
4 screw2 • 10

Appendix B. SUBROUTINES and SERVICE PROGRAMS:

5 screw3 «= 1
6 screw4 = 1
7 SIGNAL -2001
8 FOR i - 1 TO 20
9 com.z = 15*i; Movement due to screw pitch

10 FOR repeat = 1 TO 4
11 FOR same.screw = 1 TO 3
12 CALL tool.ini2
13 IF repeat 1 THEN
14 IF screwl - • 10 GOTO 50
15 SET tool.pnt - SHIFT(tool.pnt2 BY 0, 0, 0)
16 END
17 IF repeat ~ 2 THEN
18 IF screw2 10 GOTO 50
19 SET tool.pnt • SHIFT(tool.pnt2 BY 60, -60,
20 END
21 IF repeat 3 THEN
22 IF screw3 • - 10 GOTO 50
23 SET tool.pnt - SHIFT(tool.pnt2 BY 0, -60, 0
24 END
25 IF repeat «== 4 THEN
26 IF screw4 10 GOTO 50
27 SET tool.pnt - SHIFT(tool.pnt2 BY 60, 0, 0)
28 END
29 CALL screw
30 50 IF SIG(2001) THEN
31 IF repeat - - 1 THEN
32 screwl • 10
33 END
34 IF repeat 2 THEN
35 screw2 = 10
36 END
37 IF repeat 3 THEN
38 screw3 «= 10
39 END
40 IF repeat » 4 THEN
41 screw4 • 10
42 END
43 SIGNAL -2001
44 END
45 END
46 END
47 END
48 RETURN

Appendix B. SUBROUTINES and SERVICE PROGRAMS: 161

B.14 program ROTATE:

1 ; subroutine ROTATE (June 21 - Kotzev)
2 ;
3 CALL pestop
4 TYPE " ++++++++ ROTATE started "
5 SPEED speed.rotate ALWAYS
6 ; IF zero.position == 1 THEN
7 ; HERE #temp.pnt
8 ; DECOMPOSE a[] = #temp.pnt
9 ; MOVE #PP0INT(a[0], a[l], a[2], a[3], a[4], start[5])
10 ; BREAK
11 ; GOTO 100
12 ; END
13 TYPE " ROTATE.PC started "
14 ; PCEXECUTE rotate.pc, -1, 1
15 ; ALTER (-1, 17, , 1)
16 FOR rotate «= 1 TO rot.steps
17 HERE temp.pnt
18 DECOMPOSE a[] « temp.pnt
19 r[5] • a[5]+rot.dir*delta.o
20 SET temp.pnt « TRANS(a[0], a[l], a[2], a[3], a[4], r[5])
21 MOVES temp.pnt
22 BREAK
23 IF SIG(2015) GOTO 100
24 END
25 100 CALL pestop
26 TYPE " ++++++++ ROTATE ended "
27 RETURN

1 ; ROTATE.PAR (June 21 - Kotzev)
2 ;
3 speed.rotate 81 100
4 rot.dir • -1
5 delta.o = 10
6 rot.steps • 30
7 torque[5] • 300
8 rotmax[3] = -0.7
9 rotmin[3] = -1
10 del.rotmax[3] • 5
11 RETURN

1 ; ROTATE.PC (June 19 - Kotzev)

Appendix B. SUBROUTINES and SERVICE PROGRAMS:

2 ;
3 ; halting PC program when SIGNAL changes:
4 IF SIG(2020) == 0 THEN
5 TYPE " ROTATE.PC ended "
6 HALT
7 END
8 ;
9 CALL jr3.dat
10 ;force calculation and overload checking:
11 FOR pc = 1 TO 3
12 fabs[pc] - ABS(f .m[pc])
13 IF fabs[pc] > flimit[pc] THEN
14 SIGNAL 2013
15 END
16 END
17 ; Check torques around Z axis:
18 IF ABS(f.m[6]) > torque[5] THEN
19 SIGNAL 2015
20 END
21 ; Monitor forces in the Z direction:
22 fsign[3] = 0
23 IF f.m[3] > rotmax[3] THEN; above the env.
24 f sign[3] «* -ABS (f .m[3]-rotmax[3])*gain.in[3]
25 END
26 IF f.m[3] < rotmin[3] THEN
27 fsign[3] - ABS(f.m[3]-rotmin[3])*gain.out[3]
28 END
29 del[3] = fsign[3]
30 IF ABS(fsign[3]) > del.rotmax[3] THEN
31 IF fsign[3] == 0 GOTO 15
32 del[3] = del.rotmax[3]*fsign[3]/ABS(fsign[3])
33 15 END
34 ALTOUT 0, 0, 0, del[3], 0, 0, 0

B . 1 5 S C R E W p a r a m e t e r s :

1 ; program SCREW1.INI1 (June 6 - Kotzev)
2 ;
3 CALL pcstop
4 ; CONFIGURATION:
5 z.Bensor = 31
6 z.rcc • 43
7 z.gripper • 112
8 TOOL TRANS(0, 0, z.Bensor+z.rcc+z.gripper, 90, -90,
9 mass = 0.17

Appendix B. SUBROUTINES and SERVICE PROGRAMS: 163

10 ds[l] - 8
11 ds[2] = 8
12 z.tool • 40
13 d[3] = z.rcc+z.gripper+z.tool
14 ; MOVE parameters:
15 SET tool.pnt • B c r e w l . p n t l
16 safe.z • 300
17 speed.move • 100
18 ; APPROACH parameters:
19 CALL approach.par
20 ; GRASP parameters:
21 temp.force • 10
22 speed.grasp = 10
23 weight.z = 50
24 ; CLEAR parameters:
25 CALL clear.par
26 RETURN

1 ; SCREW1.INI2 (June 6 - Kotzev)
2 ;
3 CALL pestop
4 ; CONFIGURATION:
5 z.tool «= 40
6 TOOL TRANS(0, 0, z.sensor+z.rcc+z.gripper+z.tool, 90, -90, 45)
7 ma 8s = 0.17
8 ds[l] - 8
9 ds[2] - 8
10 d[3] • z.rcc+z.gripper+z.tool
11 ; MOVE parameters:
12 SET tool.pnt = screwl.pnt2
13 safe.z • 300
14 speed.move = 100
15 ; APPROACH parameters:
16 CALL approach.par
17 weight.ex • 0
18 open.grip • 0
19 shift.z - 15
20 speed.appro = 20
21 delta.shift = 1
22 ; CLEAR parameters:
23 CALL clear.par
24 clear.rotate • 1
25 RETURN

Appendix B. SUBROUTINES and SERVICE PROGRAMS: 164

B.16 program S E A R C H :

1 ; subroutine SEARCH (June 17 - Kotzev)
2 ;
3 CALL pestop
4 TYPE " ++++++++ SEARCH started "
5 TYPE " SEARCH.PC started "
6 PCEXECUTE search.pc, -1, 1
7 ALTER (-1, 19, , 1)
8 ; If rotate==l, rotate the part:
9 IF rotate == 1 THEN
10 FOR search - 1 TO 10
11 r3 « r[3]+rot[3]
12 r4 = r[4]+rot[4]
13 r5 - r[5J+rot[5]
14 SET temp.pnt « TRANS(r[0], r [l] , r[2], r3, r4, r5)
15 MOVES HERE:temp.pnt
16 BREAK
17 END
18 END
19 SPEED speed.xy ALWAYS
20 ; Reset parameters for f i r s t force signal:
21 60 cycle « 0
22 count.search • 0
23 nstep = 0
24 ; Check i f movement exceeded delsearch.z:
25 HERE ini.pnt
26 DECOMPOSE b[] = ini.pnt
27 50 HERE temp.pnt
28 DECOMPOSE a[] » temp.pnt
29 IF ABS(b[2]-a[2]) > delsearch.z THEN
30 TYPE " reached min. location "
31 GOTO 100
32 END
33 ; Movement parameters:
34 stepx • 0
35 stepy • 0
36 5 IF count.search •» 0 THEN
37 cycle • cycle+1
38 nstep = nstep+1
39 count.search * 1
40 IF SIG(2010) GOTO 15
41 stepx • (ABS(b[0]-a[0])+delx*cycle)/nstep
42 IF SIG(2011) GOTO 20
43 GOTO 10

Appendix B. SUBROUTINES and SERVICE PROGRAMS: 165

44 END
45 15 IF count.search •« 1 THEN
46 count.search • 2
47 IF SIG(2011) GOTO 25
48 stepy « (ABS(b[l]-a[l])+dely*cycle)/nstep
49 IF SIG(2010) GOTO 30
50 GOTO 10
51 END
52 25 IF count.search «« 2 THEN
53 nstep = nstep+l
54 count. search «= 3
55 IF SIG(2010) GOTO 35
56 stepx = -(ABS(b[0]-a[0])+delx*cycle)/nstep
57 IF SIG(2011) GOTO 20
58 GOTO 10
59 END
60 35 IF count.search «= 3 THEN
61 count.search • 0
62 IF SIG(2011) THEN
63 IF SIG(2010) GOTO 100
64 GOTO 5
65 END
66 stepy = -(ABS(b[l]-a[l])+dely*cycle)/nstep
67 IF SIG(2010) GOTO 30
68 GOTO 10
69 END
70 10 FOR search • 1 TO nstep
71 SET temp.pnt - SHIFT(HERE BY stepx, stepy, 0)
72 MOVES temp.pnt
73 BREAK
74 IF SIG(2010) GOTO 60
75 IF SIG(2011) GOTO 60
76 END
77 GOTO 50
78 20 FOR search = 1 TO nstep
79 SET temp.pnt - SHIFT(HERE BY stepx, 0, 0)
80 MOVES temp.pnt
81 BREAK
82 IF SIG(2010) GOTO 100
83 END
84 GOTO 50
85 30 FOR search « 1 TO nstep
86 SET temp.pnt » SHIFT(HERE BY 0, stepy, 0)
87 MOVES temp.pnt
88 BREAK

Appendix B. SUBROUTINES and SERVICE PROGRAMS: 166

89 IF SIG(2011) GOTO 100
90 END
91 GOTO 50
92 ; Search movements ended, rotate the part:
93 100 IF rotate 1 THEN
94 FOR search « 1 TO 10
95 r3 - r[3]-rot[3]
96 r4 - r[4]-rot[4]
97 r5 - r[5]-rot[5]
98 SET temp.pnt - TRANS(r[0], r [l] , r[2], r3, r4, r5)
99 MOVES HERE:temp.pnt
100 BREAK
101 END
102 END
103 CALL pcstop
104 TYPE " ++++++++ SEARCH finished "
105 RETURN

1 ; SEARCH.PAR (May 26 /Kotzev)
2 ;
3 rotate = 0; ROTATE par.
4 r[0] - 0
5 r[l] - 0
6 r[2] = 0
7 r[3] = 0
8 r[4] = -90
9 r[5] - 90
10 rot[3] - 0
11 rot[4] - 0
12 rot[5] - 0
13 ;
14 count .max *= 50
15 delx =0.5
16 dely =0.5
17 search.gain[3] = 10
18 speed.xy = 5
19 speed.rotate • .1E-01
20 semax[l] = 1
21 semin[l] = -1
22 semax[2] = 1
23 8emin[2] = -1
24 semax[3] = -0.7
25 8emin[3] = -1

Appendix B. SUBROUTINES and SERVICE PROGRAMS:

26 del. Bemax [3] = 5
27 gain.in[3] =1.5
28 gain.out[3] =0.2
29 flimit [1] = 3
30 flimit[2] = 3
31 flimit[3] • 5
32 delsearch.z = 5
33 RETURN

1 ; SEARCH.PC (June 6 - Kotzev)
2 ;
3 ; halting PC program when SIGNAL changes:
4 IF SIG(2020) — 0 THEN
5 TYPE " SEARCH.PC ended "
6 HALT
7 END
8 ;
9 CALL jr3.dat
10 ;force calculation and overload checking:
11 FOR pc = 1 TO 3
12 fabsLpc] = ABS(f .m[pc])
13 IF fabsLpc] > flimit[pc] THEN
14 SIGNAL 2013
15 END
16 END
17 ; Check force in the X direction:
18 IF fabs[l] > semax[l] THEN
19 SIGNAL 2010
20 END
21 ; Check force in the Y direction:
22 IF fabs[2] > semax[2] THEN
23 SIGNAL 2011
24 END
25 ; Monitor forces in the Z direction:
26 fsign[3] = 0
27 IF f.m[3] > semax[3] THEN; above the env.
28 fsign[3] • -ABS(f.m[3]-semax[3])*gain.in[3]
29 END
30 IF f.m[3] < semin[3] THEN
31 fsign[3] = ABS(f.m[3]-semin[3])*gain.out[3]
32 END
33 del[3] = fsign[3]
34 IF ABS(fsign[3]) > del.Bemax[3] THEN
35 IF fsign[3] == 0 GOTO 15
36 del[3] = del.Bemax[3]*fsign[3]/ABS(fsign[3])

Appendix B. SUBROUTINES and SERVICE PROGRAMS: 168

37 15 END
38 ALTOUT 0, 0, 0, del[3], 0, 0, 0

B . 1 7 program SHOW.FM:

1
2
3
4
5
6

8
9
10
11
12
13
14

program SHOW.FM (Feb. 26. 90 Kotzev)

DO
CALL jr3.dat
TYPE "Fx [Kg] ='

/F6.2, f.m[2],
TYPE "Mx [Kg-t-mm]"1

/F7.2, f.m[5],

Fy [Kg] -"
/F6.2, f.m[3]
My [Kg*mm]=",

/F7.2, f.m[6]

/F6.2, f.m[l],
Fz [Kg] ='

/F7.2, f.m[4],
Mz [Kg*mm]=".

weight - SQRT(f .m[l]*f .m[l] +f .m[2]*f .m[2] +f .m[3]*f .m[3])
TYPE "Weight- ", weight
TYPE "press REC botton on teach pendant to stop"
TYPE " "
TIMER (1) - 0
WAIT TIMER(l) > 5

UNTIL (PENDANT(1) BAND 1) <> 0

B.18 program TIP:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21

; program TIP (Jan.10 /Kotzev)

CALL jr3.dat
fmax[4] = 75

f [1] - z.dl*.122E-01
f[2] = z.d2*.122E-01
f [3] - z.d3*.244E-01
f[4] = z.d4*.336E-01
f[5] - z.d5*.336E-01
f[6] - z.d6*0

FOR j r = 1 TO 6
IF ABS(f[jr]) > fmax[jr] THEN
TYPE "JR3 error - OVERLOAD"
END
END

f.m[l] - 0.445*f[l]
f.m[2] - 0.445*1 [2]

Appendix B. SUBROUTINES and SERVICE PROGRAMS:

22 f.m[3] = -0.445*f[3]
23 f .m[4] - l l * f [4]-ds[3]*f .m[2]+di» [2] *f .m[3]
24 f.m[5] - 11.3*f[5]+d8[3]*f.m[l]-ds[1]*f.m[3]
25 f.m[6] « -11.3*f [6]-ds[2]*f .m[l]+ds[l]*f .m[2]
26 HERE point
27 DECOMPOSE a[] - point
28 nx - -SIN(a[3])*SIN(a[4])*C0S(a[5])+C0S(a[3])*SIN(a[5])
29 ny - C0S(a[3])*SIN(a[4])*C0S(a[5])+SIN(a[3])*SIN(a[5])
30 nz - -C0S(a[4])*C0S(a[5])
31 B X • SIN(a[3])*SIN(a[4])*SIN(a[5])+C0S(a[3])*C0S(a[5j)
32 ay = -C0S(a[3])*SIN(a[4])*SIN(a[5])+SIN(a[3])*C0S(a[5])
33 sz - C0S(a[4])*SIN(a[5])
34 ax - SIN(a[3])*C0S(a[4])
35 ay - -COS(a[3])*C0S(a[4])
36 az = -SIN(a[4])
37 f [1] * nx*f .m[l]+Bx*f .m[2]+ax*f .m[3]
38 f [2] = ny*f .m[l]+sy*f .m[2j+ay*f .m[3]
39 f [3] = nz*f .m[l]+8z*f .m[2]+az*f .m[3]
40 f [4] = f .m[4]
41 f [5] = f.m[5]
42 f [6] - f .m[6]
43 500 RETURN

B.19 TOOL parameters:

1 ; program T00L.INI1 (June 17 - Kotzev)
2 ;
3 CALL pcstop
4 ; CONFIGURATION:
5 z.sensor = 31
6 z.rcc = 43
7 z.gripper = 112
8 TOOL TRANS(0, 0, z.sensor+z.rcc+z.gripper, 90, -90, 45)
9 ma8s • 0.17
10 ds[l] - 8
11 ds[2] = 8
12 z.tool • 40
13 ds[3] • z.rcc+z.gripper+z.tool
14 ; MOVE parameters:
15 SET tool.pnt = tool.pntl
16 safe.z • 300
17 speed.move = 100
18 ; APPROACH parameters:
19 CALL approach.par
20 ; GRASP parameters:

Appendix B. SUBROUTINES and SERVICE PROGRAMS: 170

21 temp.force • 10
22 speed.grasp » 10
23 weight.z » 50
24 ; CLEAR parameters:
25 CALL clear.par
26 clear.rotate • 1
27 clear[5] - -260
28 RETURN

1 ; T00L.INI2 (June 21 - Kotzev)
2 ;
3 CALL pestop
4 ; CONFIGURATION:
5 z.tool = 31
6 TOOL TRANS(0, 0, z.sensor+z.rcc+z.gripper+z.tool, 90, -90, 45)
7 mass = 0.17
8 ds[l] = 10
9 ds[2] - 10
10 d[3] • z.rcc+z.gripper+z.tool
11 ; MOVE parameters:
12 SET tool.pnt « tool.pnt2
13 safe.z = 25
14 speed.move = 100
15 ; APPROACH parameters:
16 CALL approach.par
17 speed.high = 5
18 speed.appro • 5
19 weight.ex = 0
20 open.grip = 0
21 rot.appro a 1
22 shift.z • 4
23 shift.over =15
24 speed.appro • 10
25 delta.shift » 1
26 ; COMSCREW parameters:
27 CALL cornscrew.par
28 lower.pnt • 20
29 ; CLEAR parameters:
30 CALL clear.par
31 speed.clear = 20
32 clear.rotate = 1
33 Bpeed.rotat • 100
34 RETURN

Appendix B. SUBROUTINES and SERVICE PROGRAMS:

B.20 TOP parameters:

1 ; T0P.INI1 (June 5 - Kotzev)
2 ;
3 CALL pestop
4 TYPE " "
5 TYPE " TOP ASSEMBLY "
6 TYPE " "
7 ; CONFIGURATION:
8 z.sensor * 31
9 z.rcc • 43
10 z.gripper =112
11 TOOL TRANS(0, 0, z.sensor+z.rcc+z.gripper, 90, -90, 45)
12 mass =0.17
13 ds[l] = 8
14 ds[2] = 8
15 z.tool = 20
16 d[3] •• z.rcc+z.gripper+z.tool
17 ; MOVE parameters:
18 SET tool.pnt • top.pntl
19 safe.z = 300
20 speed.move * 100
21 ; APPROACH parameters:
22 CALL approach.par
23 shift.x = 25
24 delta.y = 0
25 delta.z = 0
26 ; GRASP parameters:
27 temp.force = 1
28 speed.grasp = 10
29 veight.z = 30
30 ; CLEAR parameters:
31 CALL clear.par

1 ; T0P.INI2 (June 5 - Kotzev)
2 ;
3 CALL pestop
4 ; CONFIGURATION:
5 z.tool • 0; rotation axis
6 TOOL TRANS(0, 0, z.sensor+z.rcc+z.gripper+z.tool, 90, -90
7 mass =0.5
8 ds[l] » 80
9 ds[2] = 20
10 d[3] • z.rcc+z.gripper+z.tool

Appendix B. SUBROUTINES and SERVICE PROGRAMS:

11 ; MOVE parameters:
12 SET tool.pnt = top.pnt2
13 safe.z = 300
14 speed.move = 100
16 ; APPROACH parameters:
16 CALL approach.par
17 weight. ex = 0
18 open.grip = 0
19 shift.z = 0
20 shift.over • 0
21 position.appro = 0
22 appro.max[3] >= 0.2 ; no contact during approach
23 ; SEARCH parameters:
24 CALL search.par
25 rotate = 1
26 rot[4] =2.5; multiply 10 times
27 pc[l] - 0.5
28 pc[2] • 0.5
29 pc[3] - 0.5
30 delsearch.z = 10
31 gain.in[3] =0.3
32 gain.out[3] =0.1
33 delx - 1
34 dely = 1
35 ; COMPLY parameters:
36 CALL comply.par
37 lower.pnt • 25
38 speed.comply = 4
39 comax[3] = -1.5
40 comin[3] = -1.4
41 comin[5] = -250
42 comaz[5] = -200
43 gain[4] » 0
44 gain[6] = 0
45 ; CLEAR parameters:
46 CALL clear.par
47 clear.grip = 1
48 clear.y • 15

B .21 program WEIGHT:

1 ; WEIGHT (June 16 - Kotzev)
2 ;
3 PCEND
4 sigmal • 0

Appendix B. SUBROUTINES and SERVICE PROGRAMS: 173

5 s a m p l e s «= 25
6 FOR i » 1 TO B a m p l e s

7 [i] = f .m[3]
9 sigmal • sigmal+force[i]
10 END
11 s i g a v e r a g e «= s i g m a l / s a m p l e s

12 sigdel = ABS (s igaverage*0.1)
13 sigma2 • 0
14 t e m p c o u n t = 0
15 FOR i • 1 TO samples
16 IF ABS(ABS(force [i])-ABS (s igaverage)) > B i g d e l THEN
17 sigma2 • sigma2+force[i]
18 t e m p c o u n t • t e m p c o u n t+1
19 END
20 END
21 IF t e m p c o u n t > 0 THEN
22 w e i g h t = sigma2 / tempcount

23 ELSE
24 w e i g h t = s i g a v e r a g e

25 END
26 w e i g h t = ABS (we igh t)

27 RETURN

