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ABSTRACT 

The purpose of t h i s research i s the formalization 

o f a method o f bottom up database design known as view 

integration. 

View integration i s one of the main steps of an acknowledged 

database design procedure, the New Orleans Database Design 

Workshop procedure. This procedure develops a global database 

(global schema) for an organization from small p a r t i a l databases 

(user views) . Individual user views are representations of 

the data relevant to the users' organizational tasks. Views 

w i l l overlap since users w i l l share data to some extent. View 

i n t e g r a t i o n has t o merge views without d u p l i c a t i n g the 

information presented i n multiple views. The task of merging 

views without d u p l i c a t i o n i s complicated by the fac t that 

users have d i f f e r e n t perceptions of the world which lead them 

to represent the same data d i f f e r e n t l y , the most simple form 

of d i f f e r e n t perceptions being naming c o n f l i c t s such as the 

occurrence of synonyms. 

Within the l a s t 13 years a v a r i e t y of approaches to solve the 

i n t e g r a t i o n task has been reported. Many of the approaches 

have ne g l e c t e d the problem of c o n f l i c t i n g views altogether, 

l e a v i n g i t s s o l u t i o n to the database designer. Integration 

methods t h a t performed c o n f l i c t r e s o l u t i o n d i d i t i n an 



unsystematic and incomplete f a s h i o n . Often these methods 

dealt with c o n f l i c t s i t u a t i o n s only i f information f o r t h e i r 

r e s o l u t i o n was conveniently a v a i l a b l e . 

This research f i l l s that gap. A c o n f l i c t analysis procedure 

i s o u t l i n e d which considers a l l possible c o n f l i c t conditions 

and transforms them i n t o c o n d i t i o n s that can be merged by 

means of previously developed techniques. The research proceeds 

i n two steps. F i r s t , a c o n f l i c t analysis procedure i s developed 

that ignores the information requirements problem by assuming 

complete i n f o r m a t i o n . T h i s s i m p l i f i c a t i o n allows the 

concentration on completeness of the procedure, since one does 

not have t o be concerned with the d i f f i c u l t i e s involved i n 

gathering the required information. The second step relaxes 

the assumption of complete information. D i f f i c u l t information 

requirements are i d e n t i f i e d and replaced by more e a s i l y s a t i s f i e d 

ones. 

Main contributions to knowledge are (1) a complete understanding 

of the factors causing c o n f l i c t s between views, (2) detection 

of substitutes for d i f f i c u l t information requirements. Other 

c o n t r i b u t i o n s are (3) suggestions for the development of a 

semantic data dictionary, (4) an a l t e r n a t i v e method for the 

design of knowledge based systems, and (5) suggestions for 

e f f i c i e n t bottom up systems design strategies. 

i i i 
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1. OVERVIEW 

The database designer's task, c o n v e r t i n g users' 

c a s u a l data d e s c r i p t i o n s i n t o a database design i s time 

consuming, e r r o r prone, and requires substantial expertise. 

T h i s argument i s s t i l l v a l i d , even though the separation of 

l o g i c a l and physical design considerations has s i m p l i f i e d the 

design e f f o r t (Curtice and Jones, 1982). Consequently, there 

e x i s t s s t r o n g i n t e r e s t i n the development of techniques to 

improve the database design process, p a r t i c u l a r l y the hardware 

independent l o g i c a l database design process. 

One approach t h a t has been taken i s the further 

decomposition of the design process. Frequently, database 

designers begin with a graphical representation of the database 

to be b u i l t , i . e . an e n t i t y - r e l a t i o n s h i p model or Brown diagrams 

(Brown, 1982) , before they design the actual database r e l a t i o n s 

or record and set types. As DeMarco (1979) mentions i n the 

context of structured analysis, graphical representations are 

a t o o l t h a t provides a c o n c i s e representation, allows easy 

consistency checking and i s very maintainable. Another form 

of design composition focuses on the development of i n d i v i d u a l 

user views for small task domains and subsequent integration 

of user views into a complete schema. The ra t i o n a l e for t h i s 

approach i s s i m p l i f i c a t i o n due to a more narrow focus, as well 
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as improved v a l i d i t y of the views. I f every user describes 

only the data of her task domain—the data she i s most f a m i l i a r 

w i t h — t h e r e s u l t i n g representation promises to be more correct 

than one that i s done by a person only remotely f a m i l i a r with 

the domain. However, s i n c e each each view describes data 

structures as perceived by the i n d i v i d u a l users, differences 

i n user p e r c e p t i o n s — c o n f l i c t s between user v i e w s — a r e to be 

expected. These c o n f l i c t s have to be s e t t l e d , before views 

can be aggregated to form a global database structure. The 

purpose of t h i s research i s the formalization and solution of 

the c o n f l i c t r e s o l u t i o n problem. Even though a v a r i e t y of 

i n t e g r a t i o n methods are p r e s e n t l y avai l a b l e , e x i s t i n g view 

integ r a t i o n methods are incomplete, freguently neglecting the 

c o n f l i c t r e s o l u t i o n problem (Batini et a l . , 1986, p. 348). 

C o n f l i c t s a r i s e when d i f f e r e n t users model the same r e a l world 

c o n c e p t s d i f f e r e n t l y , or d i f f e r e n t r e a l w o r l d o b j e c t s 

i d e n t i c a l l y . 

T h i s r e s e a r c h b r i d g e s the gap by developing a c o n f l i c t 

c l a s s i f i c a t i o n and resolution scheme, and based on t h i s scheme 

a computer program t h a t integrates user views, grounded i n 

rules and h e u r i s t i c s of database design. 

2 



2. VIEW INTEGRATION 

2.1. Database Design P h i l o s o p h i e s - Top Down vs. 

Bottom Up 

Independent of any p a r t i c u l a r database design approach 

t h e r e e x i s t s the question whether database design, l i k e any 

other form of systems design, should proceed top down or 

bottom up. Bottom up and top down repre s e n t the extreme 

points i n a spectrum of design a l t e r n a t i v e s . 

In general, top down design has the advantage over bottom up 

design that i t i s oriented towards o v e r a l l goals and that i t 

allows stepwise refinement of those general goals. Bottom up 

design r e q u i r e s i n t e g r a t i o n of the elements of the o v e r a l l 

system and w i l l almost c e r t a i n l y r e s u l t i n c o n f l i c t s between 

the elements and i n the n e c e s s i t y f o r the r e d e f i n i t i o n of 

system elements. Despite t h i s disadvantage, bottom up approaches 

are frequently used (Martin, 1984, McFadden and Hoffer, 1988). 

Their major advantage i s that they do not demand the existence 

of an o v e r a l l design before the design of p a r t i c u l a r elements 

can take place. Thus, no o v e r a l l understanding of the system 

i s required, or at lea s t not to the extent necessary for the 

top down approach. In addition, bottom up design f a c i l i t a t e s 

3 



the use of e x i s t i n g information from previous designs and thus 

i s a better approach for incremental development. 

Given that both approaches have advantages and disadvantages, 

designers w i l l t y p i c a l l y apply both design approaches, namely 

u s i n g a top down focus for the i n i t i a l design, to p a r t i t i o n 

the system into manageable subsystems which are c o n f l i c t - f r e e . 

Thereafter, they w i l l apply a bottom up approach i n the detailed 

design of these subsystems, t a k i n g i n t o consideration the 

necessity f o r c o n f l i c t resolution and trading i t f o r ease of 

design. 

The major database design techniques described i n t h i s paper, 

those u s i n g view i n t e g r a t i o n , w i l l appear to be bottom up 

approaches, since the integration process i s based on in d i v i d u a l 

user views. However, the procedure l a i d out at the New Orleans 

Database Design Workshop (New Orleans, 1979) which presents a 

framework for view integration approaches, recommends a database 

design procedure that introduces organizational goals and high 

l e v e l information requirements by means of Enterprise Modelling 

i n the step preceding view integration. In other words, t h i s 

widely accepted design strategy also applies a mixed top down 

and bottom up approach. 
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2.2. Database Design based on the New Orleans Database 

Design Workshop Procedure 

In t h i s s e c t i o n the focus w i l l be on the common 

elements of a l l view integration procedures as well as on t h e i r 

d i f f e r e n t i a t i n g c h a r a c t e r i s t i c s . In short, a l l integration 

approaches can be perceived as procedures for view aggregation 

and schema optimization. One feature of a l l (comprehensive) 

approaches w i l l be the a b i l i t y to resolve differences between 

views. To permit t h i s , the methods' data models w i l l have to 

be able to represent objects and object associations. D i s s i m i l ­

a r i t i e s among view integration procedures w i l l a r i s e primarily 

from the differences i n procedure, the differences i n a b i l i t i e s 

to deal with c o n f l i c t i n g information, v a r i a t i o n s i n information 

requirements, and on the r e s t r i c t i o n s placed on the i n i t i a l 

schema. 

View i n t e g r a t i o n i s an element of any bottom up database 

design strategy. This strategy, whose i n i t i a l input are user 

r e q u i r e m e n t s and whose f i n a l outcome i s the implemented 

( p h y s i c a l ) database, has been segmented by various authors 

(New Orleans, 1979, Teory and Fry, 1982) into the following 

steps: 

1. Requirements Analysis 

to obtain information from users on information and 

p r o c e s s i n g r e q u i r e m e n t s , and to analyze t h i s 
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i n f o r m a t i o n i n order to r e s o l v e c o n f l i c t s and 

i n c o n s i s t e n c i e s with the e n t e r p r i s e view. The 

a n a l y s i s and i n c o r p o r a t i o n of (global) business 

constraints adds a top down focus to t h i s otherwise 

bottom up oriented technique. 

2. View Modelling and Modification 

to generate application views and information access 

requirements. 

3. View Integration 

to merge i n d i v i d u a l views into a global schema. 

4 . Implementation Design 

to handle issues of i n t e g r i t y , consistency, recovery, 

security and e f f i c i e n c y . 

5 . Physical Design 

to ensure functioning and e f f i c i e n c y of the database 

with a p a r t i c u l a r database/file system. 

In other words, view integration takes as i t s inputs i n d i v i d u a l 

user views (and p o s s i b l y processing/query requirements) and 

produces as i t s output a global database schema. 

The most t r i v i a l form of view integration i s an aggregation of 

a l l i n d i v i d u a l views without a l t e r a t i o n of any of them. 

However, i n s t e a d of generating a system of interconnected 

database objects, t h i s method creates merely a lump of i n d i v i d u a l 

views. View integration has to go beyond aggregation, i t has 
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to i n c l u d e the r e o r g a n i z a t i o n (optimization) of the global 

schema. The task i s to eliminate redundancies and in c o n s i s t ­

encies that r e s u l t from combining overlapping views of users 

who a l l may have d i f f e r e n t conceptual models. 

Reorganization of the global schema i s intended to increase the 

des c r i p t i v e adequacy of the global schema 1 . In addition, i t 

may include the consideration of query requirements which has 

been a concern i n some e a r l i e r studies, e s p e c i a l l y i n non­

r e l a t i o n a l database environments (for example B a t i n i et a l . 

(1984a) or Yao et a l . (1982, 1985)) . For network or h i e r a r c h i c a l 

databases, c o n s i d e r a t i o n of p r o c e s s i n g requirements might 

r e s u l t i n a trade-off that introduces d u p l i c a t i o n of database 

objects to improve processing e f f i c i e n c y . 

Even though a v a r i e t y of researchers choose the same approach 

to database design, namely view integration, differences e x i s t 

i n the data modelling language used to carry out the integration 

process. T i g h t l y connected to the data model i s the "integration 

philosophy", a l t e r n a t i v e s of which have been pointed out by Yao 

et a l . (1982) as (1) view i n t e g r a t i o n based on item l e v e l 

s y n t h e s i s u s i n g frequency information, (2) synthesis using 

functional dependencies among items and (3) merging of object 

l e v e l structures. 

1 Descriptive adequacy i s understood as the pr e c i s i o n with 
which the data model describes the world i t attempts to model. 
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The f i r s t category i s a form of " s t a t i s t i c a l " view integration, 

i n which frequency i n f o r m a t i o n serves as a substitute for 

cohesion or functional dependency of data items (Dyba, 1977, 

Sheppard, 1977). 

The second category builds database objects, i . e . r e l a t i o n a l 

data structures, based on information on functional dependencies. 

Proponents of t h i s category can be found f o r i n s t a n c e i n 

Bernstein (1976), Raver and Hubbard (1977), Yao et a l . (1982), 

Casanova and V i d a l (1983), and Biskup and Convent (1986, 

19 85) . Most of these approaches attempt to b u i l d databases 

p u r e l y based on functional dependencies (and possibly other 

forms of dependencies) and t r y to avoid the consideration of 

the meaning of d a t a o b j e c t s as much as p o s s i b l e during 

integration. Later, these approaches w i l l be referred to as 

synta c t i c approaches. 

The t h i r d group of approaches i s probably best represented by 

B a t i n i et a l . (for instance B a t i n i and Lenzerini, 1984) and 

Navathe et a l . (for instance Navathe and Elmasri, 1986). Both 

t e c h n i q u e s are based on the E-R model, enhanced by some 

a d d i t i o n a l information ( g e n e r a l i z a t i o n / s p e c i a l i z a t i o n ) . The 

fact that these techniques operate on an object l e v e l does not 

imply that functional relationships are not relevant for them. 
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However, i n E-R models, dependencies are represented i n the 

association of a t t r i b u t e s to e n t i t i e s or r e l a t i o n s . 

Since the l a t e seventies, the l i t e r a t u r e has moved away from 

s t a t i s t i c a l approaches to view integration. The main problem 

of s t a t i s t i c a l approaches i s t h a t they attempt to capture 

dependency information between data items by means of r e l a t i v e 

frequency of common use i n applications or coexistence i n the 

same f i l e structure. This substitute may often be correct, 

since experienced f i l e designers w i l l have a good understanding 

of which data items should belong together (see f o r instance 

Weber, 1986 on " i n t u i t i v e " normalization), but the technique 

i s i n f e r i o r to ones t h a t concentrate on the a c t u a l data 

dependencies. Thus, within t h i s research, the focus w i l l be 

on the l a t t e r two groups of integration methods only. For 

these two groups, prototypical integration methods (together 

with t h e i r data models) are presented i n the following l i s t . 

SYNTACTIC (at t r i b u t e - l e v e l ) INTEGRATION 

Based on Functional Dependencies only 

* Martin (1983) - "Bubble Charting" 

* Bernstein (1976) - Relational Model 

* Yao et a l . (1982) - Functional Data Model 

* Raver and Hubbard (1977) - "Bubble Charting" 

9 



* Al-Fedaghi and Scheuenrtan (1981) - Relational Model 

Based on FDs and other Dependencies 

* Casanova and V i d a l (1983) - Relational Model 

* Biskup and Convent (1986) - Relational Model 

SEMANTIC (object-level) INTEGRATION 

* B a t i n i et a l . (1983) - Entity-Relationship Model 

* Navathe e t a l . (1986) 1 - E n t i t y - C a t e g o r y -

Relationship Model 

* Mannino and E f f e l s b e r g (1984) - Generalization 

Assertions 

* Teory and Fry (1982) - Semantic H i e r a r c h i c a l Data 

M. 

Not a l l of these techniques s h a l l be discussed i n d e t a i l since 

there e x i s t s considerable overlap among them. The following 

techniques w i l l be discussed: Martin, Bernstein, Yao et a l . , 

Casanova and V i d a l , Navathe et a l . , B a t i n i et a l . Martin 

1 The method put forward by Navathe and others has gone 
through various stages and has involved various researchers. 
An e a r l i e r method i s described by Navathe and Gadgil (1978) or 
Navathe and Schkolnick (1978). Other versions include Navathe, 
Elmasri, and Larson (1986). The method referenced here i s the 
l a t e s t p u b l i s h e d form. I t has been extended into database 
integration by Elmasri et a l . (1986) . 
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contributes a not p a r t i c u l a r l y detailed, yet popular integration 

method. Bernstein presents the f i r s t algorithmic and purely 

s y n t a c t i c a l view synthesis method. Casanova and V i d a l introduce 

the f i r s t s y ntactic integration method that includes a r i c h e r 

s e t of dependencies. Navathe et a l . put forward a semantic 

i n t e g r a t i o n method with a l a r g e s e t of i n t e g r a t i o n cases. 

F i n a l l y , B a t i n i et a l . present the (semantic) integration 

method that best deals with c o n f l i c t i n g views. 
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2.2.1. Syntactic Approaches 

S y n t a c t i c approaches are design methods i n which 

the view integration procedure does not r e l y on a designer's 

understanding of the data during the integration process (nor 

on "understanding" by the algorithm) 1 . Instead, the algorithms 

r e o r g a n i z e the i n i t i a l schema i n a purely s t r u c t u r a l manner 

independent of the meaning of objects or a t t r i b u t e s involved, 

once c e r t a i n i n f o r m a t i o n requirements about f u n c t i o n a l 

dependencies are s a t i s f i e d . These information requirements are 

assumed to be s a t i s f i e d at the outset of the i n t e g r a t i o n 

procedure. They are not part of the technique. 

The s y n t a c t i c approaches introduced below, give a complete 

a l g o r i t h m f o r view i n t e g r a t i o n and show the " o p t i m a l i t y 1 1 

(author's terminology) of the r e s u l t i n g design. Optimality 

(Casanova and Vidal) i s not a p a r t i c u l a r l y well chosen term, 

s i n c e the design i s not optimal i n a l l c r i t e r i a a database 

designer might think of. "Optimal" i s meant as "achieving the 

goals set f o r the design at the s t a r t of the integration process" 

which i n p a r t i c u l a r means the generation of a v a l i d database, 

i . e . one that s a t i s f i e s a l l previously established i n t e g r i t y 

1 I d e a l l y the techniques do not r e l y at a l l on the 
designer's understanding. However, at l e a s t one method (Biskup 
and Convent) c o n s u l t s the designer, when the i n t e g r a t i o n 
algorithm i s i n a deadlock. Other methods (e.g., Yao et al.) 
r e q u i r e designer understanding for more complex integration 
cases, such as removal of redundant functions. 
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constraints and i s free of undesirable data dependencies. We 

w i l l c a l l the r e s u l t i n g designs from now on " f e a s i b l e " rather 

than "optimal". Three main proponents of d i f f e r e n t syntactic 

approaches are Bernstein (1976), Casanova and V i d a l (1983), and 

Biskup and Convent (198 6). Two additional s y n t a c t i c approach 

s h a l l also be mentioned i n t h i s context, although they d i f f e r 

from the above three i n not being as purely synthetic, not 

providing a complete algorithm, and i n using other data models 

("bubble charts" (Martin) and the Functional Data Model (Yao et 

al.)). A l l approaches, other than Biskup's and Convent's, w i l l 

be discussed. Biskup and Convent's technique i s rather s i m i l a r 

to Casanova's and Vi d a l s . Hence, a separate discussion w i l l not 

be necessary. 

B e r n s t e i n ' s approach does not p a r t i c u l a r l y address the view 

integration problem, but instead the problem of synthesizing a 

minimal number of 3NF r e l a t i o n s from a set of f u n c t i o n a l 

dependencies. Nevertheless, i t s approach i s applicable to view 

integration, since the algorithm does not mind whether the schema 

descriptions used for r e l a t i o n synthesis stem from one view or 

from many views. However, the procedure has obviously no means 

to unify c o n f l i c t i n g perceptions of the same data. Contrary to 

more rece n t i n t e g r a t i o n approaches such as Casanova's and 

V i d a l ' s , B e r n s t e i n ' s method r e l i e s o n l y on f u n c t i o n a l 

dependencies to carry out the r e l a t i o n synthesis procedure. 
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Martin's approach, Canonical Synthesis, attempts to develop a 

"canonical data representation" 1 . This method, l i k e Bernstein's, 

has no formal means for dealing with c o n f l i c t s between views, 

not even f o r naming c o n f l i c t s . In addition i t i s much less 

d e t a i l e d and much less algorithmic than Bernstein's. 

Casanova's and Vidal's technique assumes the existence of user 

views and complete knowledge of dependencies ( i n t e g r i t y 

c o n s t r a i n t s ) f o r the c o l l e c t i o n of user views. I t can be 

summarized by the following integration plan. Given a set of 

user views and a set of i n t e g r i t y constraints, define as a v a l i d 

("proper") database scheme ( = global schema) one that s a t i s f i e s 

a l l desirable i n t e g r i t y constraints. Then apply an algorithm 

that reorganizes the c o l l e c t i o n of user views into a v a l i d schema 

by removing a l l undesirable data dependencies through changes 

i n r e l a t i o n schemes. 

Yao et a l . require f o r t h e i r approach complete information on 

e n t i t i e s ( " e n t i t y nodes"), functional r e l a t i o n s h i p s between 

e n t i t y nodes, plus assertions describing true facts about the 

data model which are not represented i n form of e n t i t y nodes or 

re l a t i o n s h i p s . A l l views are combined i n one representation 

1 The notion of a canonical representation i n data models 
has been put forward by Raver and Hubbard (1977) and i s used to 
d e s c r i b e schemata which are redundancy-free (no nonessential 
associations), complete, and correct. Thus a canonical synthesis 
technique not only integrates user views, but can also extend 
them to add necessary further d e t a i l s . 
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which i s thereafter subject to removal of redundant functions 

and redundant nodes. A proof of correctness of the integration 

r e s u l t i s not given for t h i s approach. 

One major l i m i t a t i o n of the syntactic strategies, e s p e c i a l l y of 

Casanova's and V i d a l ' s , i s t h e i r e x t e n s i v e i n f o r m a t i o n 

r e q u i r e m e n t s . They assume at l e a s t the a v a i l a b i l i t y of 

i n f o r m a t i o n on f u n c t i o n a l , i f not also on union functional 

dependencies, i n c l u s i o n and exclusion dependencies. I t has to 

be questioned whether i t i s f e a s i b l e to generate t h i s information 

d u r i n g the view i n t e g r a t i o n process, and how r e l i a b l e the 

information w i l l be. With respect to the amount of information, 

one has to keep i n mind that not only intra-view but also i n t e r ­

view c o n s t r a i n t s have to be defined. This requirement can 

increase the number of constraints s u b s t a n t i a l l y , i t also demands 

from the designer the comparison of each r e l a t i o n scheme from 

each view against a l l other r e l a t i o n schemes, to detect those 

dependencies. Any incorrect assessment by the designer w i l l 

p o t e n t i a l l y r e s u l t i n an incorrect global schema. 

A second l i m i t a t i o n of these approaches i s the r e s t r i c t i o n s they 

place on the i n i t i a l views to make the integration a computat­

i o n a l l y solvable problem ( i . e . only functional dependencies on 

the key for the i n i t i a l c o l l e c t i o n of views). 
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A t h i r d l i m i t a t i o n i s caused by the purely syntactic treatment 

of data dependencies. The procedures cannot d i f f e r e n t i a t e 

between dependencies that are of the same type and involve the 

same a t t r i b u t e s , even i f t h e i r meanings are d i f f e r e n t . For 

example, the functional dependency Employee# -> Department! 

might i n f a c t represent two d i f f e r e n t r e l a t i o n s h i p s , f i r s t , 

every employee works for one p a r t i c u l a r department, and second, 

every employee i s located i n one p a r t i c u l a r department. Thus, 

while f o r example employee 6750 works f o r the information 

systems department, he resides i n the o f f i c e s of the accounting 

department. This difference i n roles (here, roles of department) 

has to be incorporated into the a t t r i b u t e names, to allow the 

synt a c t i c approaches d i f f e r e n t i a t e between the two r e l a t i o n s h i p s . 

I . e . , t h e r e has t o e x i s t a L o c a t e d _ i n _ D e p t and a 

Employed_by_Dept. 
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2.2.1.1. Bernstein's Relation Synthesis 

This method i s described i n Bernstein (1976). An 

implementation of Bernstein's algorithm can be found i n Ceri and 

Gottlob (1986). 

The goal of Bernstein's method i s the creation of a schema 

containing the smallest number of 3NF r e l a t i o n s for a given set 

of functional dependencies. Since the procedure does not concern 

i t s e l f with the o r i g i n of the functional dependencies, i t does 

not object to the fact that the set of dependencies i s taken from 

more than one schema. Therefore the method can be considered 

a view integration procedure. The method not only provides a 

s y n t h e s i s algorithm, but a l s o demonstrates that the set of 

r e s u l t i n g r e l a t i o n s i s minimal and probably i n 3NF. The creation 

of 3NF r e l a t i o n s i s t y p i c a l l y the goal and f i n a l outcome of a 

decomposition process i n which larger tables are s p l i t into 

smaller redundance-free components (for example, Ullman, 1980 

or Date, 1981). Bernstein, i n contrast, generates 3NF r e l a t i o n s 

by means of composition. This makes Bernstein's approach a view 

integration technique. 

The goal of Bernstein's integration procedure i s to f i n d the 
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smallest set of 3NF r e l a t i o n s that incorporates a l l pre-defined 

functional dependencies that have been defined. 

The a l g o r i t h m developed by Bernstein consists of three main 

parts. The f i r s t part (involving steps 1 and 2 of "Algorithm 

2", see below), has the purpose to generate a new set of 

functional dependencies (FDs) from an a r b i t r a r y set of functional 

dependencies characterizing the data r e l a t i o n s h i p s . These new 

dependencies form the input to the synthesis part. Synthesis 

(steps 3 and 4 i n Algorithm 2) f i r s t p a r t i t i o n s the set of FDs 

into groups with i d e n t i c a l l e f t sides 1 and then merges the FDs 

i n these groups. The l a s t part of the procedure (steps 5 and 

6 i n A l g o r i t h m 2) c o n s t r u c t s r e l a t i o n s which are free of 

t r a n s i t i v e dependencies, based on the FDs synthesized i n the 

previous steps. 

Algorithm 2: 

(1) E l i m i n a t i o n of extraneous a t t r i b u t e s to produce a 

set F 1 of functional dependencies. 

(2) Finding of a non-redundant covering C for the set 

F' of functional dependencies. 

1 "Left side" means the set of determining a t t r i b u t e s . In 
contrast, the "right side" consists of the determined a t t r i b u t e s . 
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( 3 ) P a r t i t i o n i n g of the c o v e r i n g C i n t o groups of 

functional dependencies with i d e n t i c a l l e f t sides. 

( 4 ) Merging of equivalent keys. 

( 5 ) Elimination of t r a n s i t i v e dependencies. 

(6) Construction of r e l a t i o n s . 

Bernstein's approach does not d i f f e r e n t i a t e among d i f f e r e n t cases 

of integration, based on d i f f e r e n t dependencies within the data 

at hand. A l l functional dependencies are treated by the same 

integration procedure. This i s a p o s i t i v e feature of Bernstein's 

approach, since i t s i m p l i f i e s the procedure. In addition, t h i s 

approach has les s information requirements than the two following 

ones, which a l s o r e q u i r e i n f o r m a t i o n on other forms of 

dependencies. 

One major problem of the technique, pointed out by Bernstein 

himself, i s the purely syntactic character of the approach which 

i s the source f o r the "uniqueness assumption". The uniqueness 

assumption says that only one functional dependency can ex i s t 

between any two i d e n t i c a l sets of a t t r i b u t e s . In other words, 

i f two FDs existed, because of a difference i n roles of either 

set of a t t r i b u t e s , the technique were not able to pick up the 

differ e n c e . In order to allow the technique to d i f f e r e n t i a t e 

among d i f f e r e n t r o l e s , r o l e names have to be introduced as 

at t r i b u t e names. 
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This point leads to another shortcoming of the technique, namely 

the s i g n i f i c a n c e of names. The purely syntactic technique 

operates on a t t r i b u t e names, being therefore subject to a l l 

problems caused by a t t r i b u t e name synonymy and homonymy. 

However, the technique was not conceived as a view integration 

technique, which j u s t i f i e s t h i s weakness to some extent. 

Furthermore, B e r n s t e i n ' s approach does not r u l e out the 

development of a pre-integration procedure which could take care 

of such c o n f l i c t s and then supply the integration procedure with 

c o n f l i c t - f r e e views. 
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2.2.1.2. Martin's Canonical Synthesis 

See for example Martin (1983). 

Canonical Synthesis i s Martin's approach to view integration. 

M a r t i n i n t e g r a t e s views by f i r s t d e p i c t i n g a l l functional 

dependencies between data elements ( a t t r i b u t e s ) and then 

overlaying any two views to generate a t h i r d new one. The main 

focus of h i s approach i s on the e l i m i n a t i o n of t r a n s i t i v e 

dependencies generated by the integration process. Martin 

s t r e s s e s the use of bubble c h a r t s , showing data items 

(attributes) and t h e i r functional dependencies. 

The procedure integrates views pairwise and consists of seven 

integration steps for the l o g i c a l database design. 

1. The designer i s asked to eliminate any duplicate 

functional dependencies between any two data items. 

2. The designer has to i d e n t i f y candidate keys. 

3. A l l t r a n s i t i v e dependencies have t o be removed. 

The purpose of t h i s step i s to f i n d and to remove 

any hidden primary keys, and f i n a l l y to achieve a 

3NF data structure. 
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4 . I n t r o d u c e s o c a l l e d " c o n c a t e n a t e d k e y s " . T h e 

p u r p o s e o f t h i s s t e p i s t o e x t e n d t h e d a t a m o d e l t o 

a l l o w t h e r e p r e s e n t a t i o n o f d a t a i t e m s t h a t a r e 

d e p e n d e n t o n t h e k e y o f m o r e t h a n o n e a l r e a d y 

e x i s t i n g d a t a s t r u c t u r e , i . e . P r i c e i s d e p e n d e n t o n 

S u p p l i e r # a n d P a r t # . 

5. A l l o c a t e i n t e r s e c t i o n d a t a t o d a t a i t e m s . T h i s 

s t e p d e a l s w i t h r e l a t i o n s h i p s t h a t h a v e a t t r i b u t e s . 

I f r e l a t i o n s h i p s h a v e a t t r i b u t e s , t h e y a r e t r a n s f o r m e d 

i n t o r e c o r d s t r u c t u r e s 1 . 

6 . Remove M : N r e l a t i o n s h i p s 2 . 

7 . T h e t e c h n i q u e t r a n s f o r m s s t r u c t u r e s i n w h i c h one 

a t t r i b u t e i s owned b y two o r m o r e p r i m a r y k e y s . I f 

s u c h a n " i n t e r s e c t i n g " a t t r i b u t e e x i s t s , t h e d a t a 

s t r u c t u r e i s c h a n g e d t o g i v e t h e a t t r i b u t e a s i m p l e 

o w n e r . 

M a r t i n ' s m e t h o d h a s t h r e e m a j o r l i m i t a t i o n s . F i r s t , t h e m e t h o d 

i s n o t c o n c e r n e d w i t h t h e r e m o v a l o f c o n f l i c t s b e t w e e n v i e w s , 

1 T h e s e r e c o r d s t r u c t u r e s a r e s i m i l a r t o e n t i t i e s . Y e t 
M a r t i n d o e s n o t u s e t h e t e r m s e n t i t y o r r e l a t i o n s h i p t o d e s c r i b e 
d a t a c o n s t r u c t s . 

2 M a r t i n s u g g e s t s t h a t M : N r e l a t i o n s h i p s i n d a t a b a s e , 
a s i d e f r o m b e i n g s u p p o r t e d b y o n l y few DBMSs , a r e a n u n s t a b l e 
d a t a c o n s t r u c t , o n e t h a t i s t y p i c a l l y r e p l a c e d b y two 1 : M 
s t r u c t u r e s a s p a r t o f t h e d e s i g n o r i m p l e m e n t a t i o n p r o c e s s . 
H i s t e c h n i q u e t h e r e f o r e d i s i n t e g r a t e s a n y M : N s t r u c t u r e i n t o 
1 : M s t r u c t u r e s . 
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and second, i t uses att r i b u t e s as the atomic b u i l d i n g blocks 

of the global schema. Third, the "algorithm" presented i s 

not precise and thus does no, contrary to Martin's statement, 

allow immediate automation of the process. 

C o n f l i c t r e s o l u t i o n i s mentioned only b r i e f l y 

(Martin, 1983, p. 265) r e f e r r i n g to the problem of homonyms. 

A l l other view c o n f l i c t p o s s i b i l i t i e s are ignored. For example, 

Martin i s not concerned about relationships or e n t i t i e s modelled 

i n c o r r e c t l y as a t t r i b u t e s . A consequence of neglecting c o n f l i c t 

r e s o l u t i o n i s t h a t Martin's approach cannot be automated, 

g i v e n t h a t c o n f l i c t s have to be expected i n r e a l world 

a p p l i c a t i o n s . Martin has to assume that a l l c o n f l i c t s were 

eliminated by the database designer p r i o r to the integration 

process. Thus, l i k e Bernstein's method, t h i s one i s a view 

merging procedure, but not a c o n f l i c t r e s o lution procedure. 

The use of a t t r i b u t e s as the atomic b u i l d i n g blocks 

generate at l e a s t two problems. F i r s t , the modeling process 

based on a t t r i b u t e s operates at a very high l e v e l of d e t a i l . 

In fact, i t might be viewed s t r i c t l y as a bottom-up approach 

to database design. The d e t a i l i n view descriptions creates 

l a r g e amounts of i n f o r m a t i o n the designer has to process. 

Even with a small number of views, an evaluation of the r e s u l t i n g 

schema becomes very complex and very d i f f i c u l t i n terms of 

redundancies ( t r a n s i t i v e dependencies) . The e n t i t y - r e l a t i o n s h i p 
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approach, i n comparison, allows to hide part of t h i s information, 

namely associations between an e n t i t y and i t s a t t r i b u t e s . In 

the E-R model, only e n t i t i e s or r e l a t i o n s h i p s are able to form 

re l a t i o n s h i p s to other e n t i t i e s or r e l a t i o n s h i p s . In Martin's 

model, every a t t r i b u t e can be related to any other a t t r i b u t e , 

p r i o r to redundancy elimination. Secondly, the synthesis of 

a t t r i b u t e s to higher l e v e l objects i s not based on the user's 

semantic objects (objects meaningful to the user), but instead 

on f u n c t i o n a l dependency. The r e s u l t i n g higher l e v e l data 

s t r u c t u r e s (records, segments, or relations) are therefore 

expected to have less meaning for the user than data structures 

based on objects the user chooses to describe h i s data world 

(e.g. e n t i t y MANAGER). In other words, the r e s u l t s of canonical 

synthesis may lose some of i t s d e s c r i p t i v e adequacy of r e a l world 

objects and associations. 

This comment i s not meant to imply that database design based 

on functional dependencies i s wrong. Yet, the aggregates should 

represent the r e a l world view as f a i t h f u l l y as possible. There 

ex i s t s more than one possible way to describe a r e a l world object 

i n the data model, c a n o n i c a l s y n t h e s i s might not allow a 

representative of t h i s object i n the form the user would prefer 

( i . e . , semantic r e l a t i v i s m , Brodie, 1984). 

F i n a l l y , due to i t s lack of p r e c i s i o n , t h i s technique should only 
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be viewed as a guideline to integration. I t s t i l l w i l l require 

substantial designer i n t e r a c t i o n and designer i n s i g h t . 

2.2.1.3. Casanova's and Vidal's Method 

See Casanova and V i d a l (1983) fo r a d e s c r i p t i o n of 

the method, as w e l l as Bishop and Convent (1986, 1985) for 

extensions. 

Casanova's view integration method i s a formal approach to view 

integration based on four types of dependencies existent i n a 

global database schema. Goal of the integration process i s the 

generation of an "optimised" (feasible) schema, optimised with 

respect to elimination of redundant information and reduction 

i n s i z e , as measured by number of r e l a t i o n s 1 i n the global 

schema. 

The four types of dependencies (also referred to as i n t e g r i t y 

constraints) i n t h i s approach are: functional dependencies (FDs) , 

1 In Casanova's language, which i s based on Ullman (1980, 
p. 75) , a " r e l a t i o n scheme" r e f e r s to the s t r u c t u r e of a 
r e l a t i o n a l database object, while a r e l a t i o n i s an instance of 
that structure, that i s the actual data. Ullman defines relation 
scheme as the l i s t of a t t r i b u t e s for a r e l a t i o n . 
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i n c l u s i o n dependencies (INDs), exclusion dependencies (EXDs), 

and union functional dependencies (UFDs). 

A functional dependency fd, expressed as R:X->Y, i s v a l i d i f f 

for any t,u e r, i f t[X]=u[X] then t[Y]=u[Y] For example, 

i n a r e l a t i o n scheme STUDENT[Stud#,Name], i f t[X] and u[X] are 

i d e n t i c a l student numbers, they both have to i d e n t i f y the exact 

same student name. 

An inclusion dependency ind i s expressed as R1[X] c R2[Y], 

with X and Y being sequences of a t t r i b u t e s of equal length. This 

dependency i s v a l i d i f f r l [ X ] i s a subset of r2[Y]. For example, 

UNDERGRAD[Stud#] c STUDENT[Stud#] , means t h a t the set of 

undergrad students i s a subset of the set of a l l students. 

An exclusion dependency exd i s expressed as R1[X] | R2[Y], X and 

Y again being sequences of a t t r i b u t e s of same length. This 

dependency i s v a l i d , i f f r l [ X ] and r2[Y] are d i s j o i n t . For 

example, the set of graduate students and the set of undergrad 

students would be such d i s j o i n t sets of students. 

A union functional dependency i s a f u n c t i o n a l dependency 

stretc h i n g over the boundaries of one r e l a t i o n . I t i s expressed 

1 R r e f e r s to a r e l a t i o n scheme, r i s an instance of that 
r e l a t i o n scheme, X and Y are sets of one or more a t t r i b u t e s , and 
t and u are tuples. 
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i n the form <Ril:Xl->Yl, ... , Rim:Xm->Ym>, as a s e t of 

functional dependencies over r e l a t i o n schemes Ri, where a l l X 

and Y are sequences of attri b u t e s of same length. A UFD i s 

v a l i d , i f f a FD that holds i n one r e l a t i o n holds i n a l l r e l a t i o n s 

included i n the UFD. For example, a UFD <STUDENT:Stud#->Name, 

UNDERGRAD:Stud#->Uname> means that a student number '83959818' 

occurring i n STUDENT w i l l i d e n t i f y the same student name 'Jones' 

as the student number '83959818' i n UNDERGRAD. 

The l a s t example gives some i n d i c a t i o n of the purpose of the 

above dependencies. They w i l l be used to i d e n t i f y and eliminate 

sources of redundancies. Given complete information on the above 

dependencies, a procedure i s defined that w i l l transform the 

combination of a l l views into an integrated global schema. 

Complete i n f o r m a t i o n on dependencies necessitates complete 

information on a l l a t t r i b u t e s i n a l l r e l a t i o n s of a l l views, plus 

complete i n f o r m a t i o n on domains of at t r i b u t e s . Given t h i s 

information, the problem of homonymy or synonymy does not ar i s e , 

because the names of r e l a t i o n s or a t t r i b u t e s are almost 

i r r e l e v a n t . A l l the above i n f o r m a t i o n i s assumed to be 

unambiguous. In other words, there' w i l l be f o r instance no 

di s p u t e s between d i f f e r e n t views concerning dependencies or 

domains of a t t r i b u t e s . Hence, c o n f l i c t s are ruled out by 

d e f i n i t i o n . 
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A view i n t e g r a t i o n based on Casanova's and Vidal's method 

involves the following steps. F i r s t , for every view, define the 

above d e s c r i b e d dependencies. Second, combine the views by 

lumping them together and by defining additional constraints of 

the above types, to d e s c r i b e the r e l a t i o n s h i p s between the 

elements ( r e l a t i o n s ) of d i f f e r e n t views. Third, integrate 

("optimize") t h i s schema by removing redundancies i n the 

combination of views. 

The f i r s t major problem of t h i s integration method, as stated 

by the authors, i s t h a t i t i s computationally hard. The 

problem i s PSPACE complete ( i t f i t s i n t o f i n i t e computer 

memory space, but can run i n d e f i n i t e l y ) . Casanova points out 

t h a t the optimization problem may not be decidable, even i f 

nothing but FDs and INDs are considered (see also Casanova and 

Fagin, 1982). 

Another major problem concerns the information requirements of 

t h i s t echnique. The approach r e q u i r e s l a r g e amounts of 

ambiguity-free information. Since i t cannot deal with p a r t i a l l y 

i n correct user views (wrong perceptions of data), i t cannot be 

used t o r e s o l v e c o n f l i c t s caused by inconsistencies i n user 

views. 

A further l i m i t a t i o n on Casanova's and Vidal's approach r e s u l t s 
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from i t s a p p l i c a b i l i t y to only so c a l l e d " r e s t r i c t e d " schemas. 

The f o l l o w i n g r e s t r i c t i o n s apply to the input of the view 

integration procedure. 

(1) A l l f u n c t i o n a l dependencies apply only to the 

( s i n g l e ) key. Thus, t h e r e are no t r a n s i t i v e 

dependencies e x i s t i n g . 

(2) Any in c l u s i o n dependency applies only to the key 

attr i b u t e s of the re l a t i o n s involved. 

(3) Any union functional dependency must apply to the key 

a t t r i b u t e s (as the l e f t argument of the dependency) 

for a l l r e l a t i o n s involved and can only describe a 

dependency of a single a t t r i b u t e on the key (" ... 

i f 

<Ril:XI:->Y1, ... ,Rim:Xm->Ym> i s i n C, then 

Xl=...=Xm=Kil=...Kim and |Yj|=l, je[l,m]"). 

(4) Any at t r i b u t e of any r e l a t i o n can appear i n at most 

one union functional dependency (" ... for any Ries 

and any at t r i b u t e A of Ri, A occurs i n at most one 

UFD i n C"). Note that t h i s r e s t r i c t i o n i s v i o l a t e d 

i n Casanova's example. The r e s t r i c t i o n may only 

r e f e r to dependent at t r i b u t e s , not to key a t t r i b u t e s . 

(5) A l l e x c l u s i o n d e p e n d e n c i e s apply to only key 

at t r i b u t e s . 
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E s p e c i a l l y r e s t r i c t i o n (4) seems l i k e a s i g n i f i c a n t l i m i t a t i o n 

to the integration problem. Real world databases w i l l have to 

serve as an i n d i c a t o r of how strong t h i s l i m i t a t i o n i s . 

2.2.1.4. Functional Data Model Based Integration 

For references to the method, see Yao, Waddle and 

Housel (1985, 1982). 

In contrast to many other syntactic integration methods, Yao et 

a l . present a view integration approach based on Shipman's (1979) 

Functional Data Model. Within the Functional Data Model (FDM), 

data can be d e s c r i b e d i n form of two constructs, nodes (to 

represent e n t i t i e s and value sets) and functional r e l a t i o n s h i p s . 

Nodes can be e i t h e r simple nodes (value s e t s ) , or tuple nodes 

(cartesian product of n>l value s e t s ) . Functions, mappings from 

a domain into a range, can be functional ( n : l ) , one-to-one, or 

i d e n t i t y (1:1 mapping into i d e n t i c a l value) and can be p a r t i a l 
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(lower degree 0), or t o t a l (lower degree 1). Assertions are 

added as a further means for describing data, to increase the 

d e s c r i p t i v e power of the model. Assertions describe true facts 

about data, i . e . that one set of data i s the subset of another. 

Views are depicted i n form of nodes and r e l a t i o n s h i p constructs 

(in a graphical representation) . Therefore, complete information 

on e n t i t i e s and a t t r i b u t e s , t h e i r domains and t h e i r r e lationships 

has to be a v a i l a b l e . Aside from t h i s information, the approach 

also compiles information on the queries to be issued on the 

database. Database transactions, represented by means of a 

Transaction Specification Language (TASL) are kept together with 

the views and are updated whenever view updates require query 

modifications. One further piece of information i s c o l l e c t e d , 

namely information describing the physical data i n terms of 

quantities of members of a set, i . e . the number of students, 

p r o f e s s o r s , courses i n a u n i v e r s i t y database. Quantity 

information i s l a t e r used i n h e u r i s t i c s to i d e n t i f y non-redundant 

f u n c t i o n s i n the model. The treatment of transaction and 

q u a n t i t y i n f o r m a t i o n w i l l not be s u b j e c t of the following 

discussion. 

The technique incorporates two integration operations: the 

removal of redundant nodes, and the removal of redundant 
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f u n c t i o n s . According to B a t i n i et a l . (1986, p. 343), Yao's 

technique performs view integration on a l l views i n p a r a l l e l 

("one-shot n-ary"). However, t h i s i s true f o r the integration 

of redundant functions only. Integration of nodes i s performed 

on a singl e p a i r of nodes at any point i n time. 

A node i s redundant i f i t represents the "same set of values" 

as some other node. Note that the "same set of values" (Yao 

et a l . , 1985, p. 338) does not mean the two sets are i n fact 

i d e n t i c a l . I t i s s u f f i c i e n t that one i s a subset of the other 

or that they are overlapping. I f two nodes represent the same 

set of values, they w i l l be merged. The integration can only 

be performed i f any e x i s t i n g functions between the two nodes 

are i d e n t i t y functions. Nodes A and B are merged by creating 

a new node C which i s the union of A and B. A l l functions 

that had A or B as domain or range w i l l be redefined to have C 

as domain or range. 

In addition, i f A and B are not i d e n t i c a l , a separation node 

SEP w i l l be created that stores information to d i f f e r e n t i a t e 

between the two o r i g i n a l nodes, given the new node C. I f a 

s e p a r a t i o n node has to be created, a l s o a new f u n c t i o n a l 

dependency w i l l be created with C as i t s domain and SEP as i t s 

range. A separation node can be viewed as a set of indices 

that indicates, by means of pointers to the new combined set 

C, the o r i g i n of each value i n the new set. 
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The second integration operation removes redundant functions. 

The goal i s to remove a functional r e l a t i o n s h i p A->C, i f i t can 

be replaced by other functions, i . e . the two functions A->B and 

B->C. 

The authors point out that the redundancy of a function can only 

be decided upon analysis of data semantics. In other words, the 

meaning of functional relationships has to be known to decide 

on i t s redundancy. T h i s i s one o f the c r i t e r i a which 

d i f f e r e n t i a t e s Yao's et a l . ' s technique from the previously 

discussed completely syntactic approaches. 

The method proposed by Yao et a l . has a number of l i m i t a t i o n s . 

F i r s t , the method i s incomplete. View integration i s r e s t r i c t e d 

to only three cases of node integration and one case of function 

integration. Hence, the technique w i l l not be able to adequately 

represent a l l possible types of set relationships between view 

objects (for example, two nodes are not overlapping but have a 

common superset). 

A second weakness concerns the i n t e g r a t i o n procedure. The 

procedure i s not defined exactly. For example, does function 

removal always precede node removal? Does the procedure perform 
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node merges always on single pairs of nodes, or on an a r b i t r a r y 

number of nodes at the same time. 

Third l y , the technique does not show the transformation from FDM 

into database objects, i . e . r e l a t i o n s , or more l i k e l y , network 

constructs. 

F o u r t h l y , use of p h y s i c a l database i n f o r m a t i o n i n l o g i c a l 

database design i s not p a r t i c u l a r l y u s e f u l ( i . e . , r e c o r d 

q u a n t i t i e s ) . 

F i n a l l y , the method has no means for dealing with c o n f l i c t i n g 

information, i . e . with naming c o n f l i c t s or with type c o n f l i c t s . 

2.2.2. Semantic View Integration Approaches Based on the 

E-R Model 

Semantic approaches use data o b j e c t s t h a t are 

meaningful to the user. Since they require a higher l e v e l of 

understanding of the meaning of objects,.these approaches are 
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t y p i c a l l y i n t e r a c t i v e , that i s , they demand designer intervention 

during the integration process. Designer intervention i s for 

instance necessary to s e t t l e c e r t a i n naming or type c o n f l i c t s , 

and even more important, to i n t e r p r e t the meaning of data 

objects or object r e l a t i o n s h i p s . 

Since semantic integration approaches focus more on the meaning 

of the data objects than on only s t r u c t u r a l information, the data 

models used to represent views have to be able to capture data 

semantics. In t h i s section, integration techniques based on the 

Entity-Relationship (E-R) model, w i l l be introduced. The E-R 

model i t s e l f i s not p a r t i c u l a r l y r i c h i n i t s a b i l i t y to represent 

data semantics. Therefore, the methods discussed below (both 

Navathe et a l . and B a t i n i et al.) use an extended E-R model which 

for instance provides the c a p a b i l i t y to model categories which 

are generalizations of e n t i t i e s 1 . 

Interactive approaches take advantage of having access to the 

database designer during the integration process f o r c o n f l i c t 

settlement or information c l a r i f i c a t i o n . In consequence, they 

permit the integration of less r e s t r i c t e d data models and to 

perform a larger portion of the integration process i . e . include 

c o n f l i c t analysis. On the other hand, the reported i n t e r a c t i v e 

approaches t y p i c a l l y do not include a complete 

1 Not a l l integration methods representing data semantics 
have to be based on the E-R model. For example, Teory and Fry 
(1982) developed a method based on a semantic h i e r a r c h i c a l model. 
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a l g o r i t h m f o r the i n t e g r a t i o n process and do not e x a c t l y 

s p e c i f y the r e s t r i c t i o n s placed on the data model (such as 

consistency). 

2.2.2.1. Navathe's and Elmasri's Approach 

Description of various aspects of t h i s method can 

be found i n Navathe, Elmasri, Larson (IEEE 1986), Navathe and 

Elmasri (IEEE 1984), Elmasri and Navathe (1986), Elmasri et a l . 

(1987). 

Navathe's and Elmasri's approach concentrates on the idea of 

object class integration. The e n t i t y - r e l a t i o n s h i p model i s 

extended to an e n t i t y - c a t e g o r y - r e l a t i o n s h i p model where a 

category r e f e r s to a class or an object type (common ro l e or 

subclass). The atomic elements of t h i s approach are e n t i t i e s , 

categories, relationships, and a t t r i b u t e s . 

Two types of categories are used, common r o l e categories and 

sub c l a s s c a t e g o r i e s . A common r o l e category i s one that 

represents a common property of two or more otherwise d i f f e r e n t 

s e t s , i . e . the category OWNER represents a common ro l e for 

both PERSON and COMPANY, who may both be owners of a vehicle. 
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A subclass i s a s p e c i a l i z a t i o n of an e n t i t y set, i . e . the VEHICLE 

e n t i t y s e t has s u b c l a s s e s CAR and TRUCK. Common ro l e and 

s p e c i a l i z a t i o n w i l l have an impact on inheritance of a t t r i b u t e s . 

The procedure consists of three steps: pre-integration, object 

integration and r e l a t i o n s h i p integration. 

Within pre-integration three tasks are performed. F i r s t , naming 

correspondences are established, resolving the problem of i n t e r ­

view homonymy and synonymy. Synonymy and homonymy r e f e r to the 

problem of d i f f e r e n t names designating the same r e a l world object 

or i d e n t i c a l names designating d i f f e r e n t r e a l world objects 

(concepts 1 ) . The second task i s the i d e n t i f i c a t i o n of candidate 

keys fo r object classes. The t h i r d task i s the d e f i n i t i o n of 

domains fo r object classes. Domains play an important r o l e i n 

Navathe's technique. The purpose of defining them within the 

pre-integration step i s to gather information for the recognition 

of i d e n t i c a l or r e l a t e d r e a l world o b j e c t s . I.e. i f two 

objects have the same domain, i t may be suspected that these 

objects are i d e n t i c a l . 

Integration of objects ( e n t i t i e s or categories) i s the second 

phase of Navathe's scheme. In t h i s phase, information on 

1 Navathe uses the term "concept" to r e f e r to a r e a l world 
object, while B a t i n i uses the term "concept" for a data model 
element such as an e n t i t y , a t t r i b u t e or r e l a t i o n s h i p . 

37 



domains i s used to determine s i m i l a r i t i e s or d i s s i m i l a r i t i e s 

among view o b j e c t s . Navathe analyses the following cases: 

i d e n t i c a l domains, contained domains, overlapping domains,and 

d i s j o i n t domains. 

INTEGRATION OF OBJECTS 

The integration of relationships follows the object integration 

step. Navathe points out that f o r r e l a t i o n s h i p integration 

both s t r u c t u r a l and semantic considerations are important. 

R e l a t i o n s h i p s are c l a s s i f i e d a c c o r d i n g t o thre e c r i t e r i a : 

degree (which i s not the mapping r a t i o but the number of 

o b j e c t s i n v o l v e d i n the view (construct)), r o l e s of object 

classes involved i n the relati o n s h i p , and s t r u c t u r a l constraints, 

such as mapping r a t i o s . 

The r e l a t i o n s h i p i n t e g r a t i o n process evaluates the above 

information i n the following sequence of importance: degree 

i n f o r m a t i o n ( s a m e / d i f f e r e n t d e g r e e ) , r o l e i n f o r m a t i o n 

(same/different r o l e s ) , and s t r u c t u r a l vs. domain constraints 

r e s u l t i n g i n 8 integration cases. 

The main points to be learnt from Navathe • s approach are the 

st r e n g t h of domain information and category information for 

view i n t e g r a t i o n , the p o s s i b i l i t y of simultaneous n-object 

integration (in some instances), and the relevance of p a r t i c u l a r 
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p i e c e s of i n f o r m a t i o n during the r e l a t i o n s h i p i n t e g r a t i o n 

phase. 

2.2.2.2. Ba t i n i ' s Approach 

For references see for instance B a t i n i et a l . (1984a, 

1983), or B a t i n i and Lenzerini (1983). 

B a t i n i ' s approach performs integration on the atomic elements 

of the e n t i t y - r e l a t i o n s h i p model, e n t i t i e s , r e l a t i o n s h i p s , and 

a t t r i b u t e s . View i n t e g r a t i o n i s presented as an i t e r a t i v e 

process which aggregates views pairwise. Whenever c o n f l i c t s 

a r i s e between the two views, a c o n f l i c t r e s o l u t i o n process i s 

invoked and c a r r i e d out i n t e r a c t i v e l y with a database designer. 

The t e c h n i q u e s t a r t s out with a name c o n f l i c t a n a l y s i s , 

i d e n t i f y i n g i n t r a - v i e w homonyms and synonyms and removing 

them. These can be naming c o n f l i c t s for the same concepts 

(e.g. e n t i t y ) or f o r d i f f e r e n t concepts (e.g. e n t i t y vs. 

r e l a t i o n s h i p ) . T h i s step i s followed by a type c o n f l i c t 

a n a l y s i s which r e s u l t s i n the same r e a l world object being 

represented by the same concept i n d i f f e r e n t views (e.g. 

MARRIAGE always an entity) and i n an adjustment of c a r d i n a l i t i e s 

(mapping r a t i o s ) and o p t i o n a l i t i e s of a t t r i b u t e s and 

r e l a t i o n s h i p s i n d i f f e r e n t views to make them i d e n t i c a l . 
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F i n a l l y , merging and redundancy a n a l y s i s superimposes the 

adjusted views and removes redundancies such as redundant 

c y c l e s 1 . 

B a t i n i ' s method builds a global schema i t e r a t i v e l y , integrating 

two views into a temporary global schema and adding additional 

views to t h i s schema u n t i l a l l views have been consolidated. 

The two main elements of the technique are C o n f l i c t Analysis 

(together with merging) and Redundancy Analysis, with the main 

focus on C o n f l i c t A n a l y s i s . U n l i k e other authors such as 

Martin, B a t i n i et a l . address the problem of inconsistencies 

between d i f f e r e n t users 1 perceptions of the world and d i f f e r e n t 

naming conventions systematically (but not completely). 

The goal of C o n f l i c t Analysis i s to detect and solve a l l e x i s t i n g 

c o n f l i c t s between two representations (views) of the same classes 

of objects. Two types of c o n f l i c t s are tackled, naming c o n f l i c t s 

and type c o n f l i c t s . Naming c o n f l i c t s a r i s e i f the same data 

model concept (entity, a t t r i b u t e or relationship) i s l a b e l l e d 

d i f f e r e n t l y (synonyms) , or i f d i f f e r e n t concepts are l a b e l l e d 

with the same name (homonyms) . Type c o n f l i c t analysis determines 

whether objects have compatible concepts (types) and adjusts them 

i f necessary. 

1 The technique also includes quantitative and procedural 
aspects to a r r i v e at a procedurally more adequate schema where 
frequent database operations can be c a r r i e d out more e f f i c i e n t ­
l y . 
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To define homonymy and synonymy, B a t i n i et a l . r e f e r to the view 

representation of r e a l world objects. I f a view SI represents 

two d i f f e r e n t r e a l world objects with the same concept (name), 

t h i s i s c a l l e d an intra-view homonym 1 . Accordingly, synonymy 

ref e r s to the same r e a l world object being represented by two 

d i f f e r e n t c o n c e p t s w i t h i n one view. Given these view 

inconsistencies, B a t i n i i d e n t i f i e s a number of possible scenarios 

and s o l u t i o n a l t e r n a t i v e s . Interesting i n Ba t i n i ' s procedure 

i s the focus on only intra-view inconsistencies. Inter-view 

inconsistencies are, at lea s t i n t h i s step, ignored. 

A second step i n the naming c o n f l i c t analysis i s the so c a l l e d 

analysis of concept likeness or unlikeness. The attempt i n t h i s 

step i s to f i n d out whether a concept that has the same name i n 

two d i f f e r e n t views possesses d i f f e r e n t "neighbor properties" 

(concept unlikeness), or whether concepts have d i f f e r e n t names 

but some common neighbor properties (concept l i k e n e s s ) . 

The next step i n B a t i n i ' s approach i s the Type C o n f l i c t s 

A n a l y s i s . I t s purpose i s to a s s i g n the same concepts to 

i d e n t i c a l r e a l world o b j e c t s i n d i f f e r e n t views. I.e. i f 

MARRIAGE were a re l a t i o n s h i p i n one view, but an e n t i t y i n the 

1 Usually one would expect inter-view homonymy to be the 
more important issue, two views supplying the same name to two 
d i f f e r e n t r e a l world objects. 
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other one, at l e a s t one of these representations would be 

change t o l e t MARRIAGE be represented by only one concept. 

The conversion of concepts i s r e s t r i c t e d to only atomic concepts 

( e n t i t y , a t t r i b u t e relation) and r e s u l t s i n two views using 

same names and same concepts to describe r e a l world objects. 

The second p a r t of type c o n f l i c t analysis i s compatibility 

checking, a process which analyzes, among the now quite s i m i l a r 

views, whether c a r d i n a l i t i e s (mapping ratios) are i d e n t i c a l . 

C o m p a t i b i l i t y checking a l s o d i s c o v e r s d i f f e r e n c e s i n the 

o p t i o n a l i t y of a t t r i b u t e s and r e l a t i o n s h i p s . According to 

B a t i n i et a l . , differences i n c a r d i n a l i t i e s point to errors i n 

one of the views, or a l t e r n a t i v e l y to a containment r e l a t i o n s h i p . 

Once a l l c o n f l i c t s have been resolved, Merging and Redundancy 

A n a l y s i s f o l l o w . In merging, the c o n f l i c t - f r e e views are 

superimposed. Redundancy analysis removes redundant alternate 

paths between objects. Redundancies can occur because multiple 

paths are semantically equivalent. 

B a t i n i ' s technique concludes with an update of the i n d i v i d u a l 

views to make them consistent with the newly generated global 

schema and with an a l t e r a t i o n of the global schema to include 

procedural and quantitative aspects. 
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B a t i n i ' s approach provides a procedure f o r the integration 

process together with some exact c o n f l i c t r e s olution algorithms, 

yet, based on i t s description i n the l i t e r a t u r e , i t cannot be 

automated. The method does not c l a r i f y when a p a r t i c u l a r 

integration r u l e has to be applied, or which information has 

to be av a i l a b l e (Navathe i s more exact i n t h i s matter, basing 

h i s r e s o l u t i o n scheme on information on cl a s s membership). 

2.3. View Integration Cases 

The i n v e s t i g a t i o n of the above view integration techniques found 

considerable overlap among techniques with respect to t h e i r 

integration c a p a b i l i t i e s . When techniques d i f f e r , they t y p i c a l l y 

deviate i n t h e i r c o n f l i c t resolution c a p a b i l i t i e s and i n aspects 

of the integration method related to t h e i r i n d i v i d u a l data 

models. The more recent techniques t y p i c a l l y provide a r i c h e r 

set of cases for c o n f l i c t resolution. Consensus e x i s t s with 

respect to the integration cases for sets (of e n t i t i e s or 

relationships) whose connection to each other i s known, as 

represented i n the following eight cases. 
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Object Class Integration: 

(1) I d e n t i c a l object classes 

(2) Contained object class 

(3) Overlapping object classes with a common superset 

(4) D i s j o i n t object classes with a common superset 

Relationship Integration: 

(5) Relationship i d e n t i t y 

(6) Relationship containment 

(7) Relationship overlap with a common superset 

r e l a t i o n s h i p 

(8) D i s j o i n t relationships with a common superset 

r e l a t i o n s h i p 

The table below depicts which of the above cases are supported 

by the techniques presented i n the chapter ('y' indicates the 

technique's a b i l i t y to deal with the case, a blank indicates that 

no reference has been made to how t h i s case would be solved). 

Cases 
Technique 1 2 3 4 5 6 7 8 
Martin cases do not apply 
Bernstein cases do not apply 
Casanova and v i d a l y y y y y y y y 
Yao et a l . y y y 
Navathe e t a l . y y y y y y y y 
Ba t i n i et a l . y y y 
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2.4. Conclusion 

T h i s s e c t i o n s h a l l p o i n t out the comparative strengths and 

weaknesses of syntactic and semantic integration approaches. 

Syntactic approaches 

Restricted Data Models 

Syntactic approaches place considerable r e s t r i c t i o n s on the data 

model with which views are represented. For example, Biskup's 

and Convent' s model i s r e s t r i c t e d to only proper database schemes 

which impose r e s t r i c t i o n s on the f i e l d s to which constraints can 

apply. T y p i c a l l y , a l l dependencies have to involve the key or 

a key a t t r i b u t e . Bernstein r e f e r s i n h i s technique to the 

uniqueness assumption which dictates that only one functional 

dependency may e x i s t between any p a i r of f i e l d s . He also points 

out t h a t t h i s r e s t r i c t i o n may lead to the necessity to bury 

semantics i n data item names1 . 

1 For instance that two f i e l d s Emp# and Dept# may be 
r e l a t e d by the functional dependency "employee i s located i n 
department" or by another dependency "employee i s employed by 
department". Syntactic models require a renaming of at l e a s t 
one of the Dept# f i e l d s i n t h i s case. 
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No C o n f l i c t Analysis 

The sy n t a c t i c approaches operate under the assumption that the 

da t a r e q u i r e d f o r i n t e g r a t i o n i s complete and c o r r e c t . 

T h e refore, c o n f l i c t analysis i s not part of the techniques. 

The techniques can deal with simple c o n f l i c t s , f or instance 

w i t h synonymy, i f i d e n t i t y i s e s t a b l i s h e d by means of 

constraints. 

No A b i l i t y to Deal with Incomplete or Inconsistent Data 

Again, the a b i l i t y t o deal with incomplete or inconsistent 

data i s outside the scope of syntactic integration techniques. 

At l e a s t one technique, Biskup's and Convent's, w i l l , when an 

unresolvable problem i s encountered, i n t e r a c t with the designer 

to resolve the problem i n order to allow a continuation of the 

integration process. However, t h i s form of exception handling 

i s not a planned form of c o n f l i c t analysis, but a measure to 

l e t the technique continue when none of the integration cases 

i s considered performable by the technique. 

Extensive Information Requirements 

The major information requirement of syntactic approaches i s 

knowledge of dependencies between data items. Since a l l 

dependencies are defined on the a t t r i b u t e l e v e l , t h i s information 

requirement exceeds that of semantic approaches which represent 

dependencies on the e n t i t y l e v e l only. Furthermore, the 
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requirement to also define inter-view constraints can lead to 

an exponential explosion of constraint d e f i n i t i o n s . 

Computationally Hard 

Casanova and V i d a l and Biskup and Convent p o i n t out the 

computational requirements of t h e i r techniques. 

Provide Integration Algorithm 

One major advantage of syntactic approaches i s the completeness 

of procedures. The approaches, i n s t e a d of o u t l i n i n g only 

p a r t i c u l a r i n t e g r a t i o n cases, t y p i c a l l y present a procedure 

t h a t upon t e r m i n a t i o n has produced an i n t e g r a t e d database 

schema. 

Show Optimality ( F e a s i b i l i t y ) of Design 

Another major advantage of syntactic approaches i s t h e i r ex-

ante s p e c i f i c a t i o n of design objectives and t h e i r proof of 

achievement of these design objectives. 

Semantic approaches 

Require Designer Interaction 



Based on the f a c t that semantic approaches operate on objects 

meaningful to users but often not meaningful to the integration 

mechanism, these approaches require designer i n t e r a c t i o n for 

i n t e r p r e t a t i o n of objects and for c o n f l i c t analysis. 

Cover Larger Portion of the Integration Process 

In addition to the operations contained i n syntactic approaches, 

semantic approaches include also c o n f l i c t analysis procedures, 

and pre-integration procedures (see B a t i n i et a l . , 1986) which 

are concerned, among other factors, with data gathering. 

State/Solve More Integration Cases 

Semantic techniques i d e n t i f y and solve more integration cases 

s i n c e they include not only the simple eight cases based on 

s e t i n t e r - r e l a t i o n s h i p s as explained above, but also cases 

involving c o n f l i c t s . 

Allow Less Restricted Data Models ( i . e . , non-similar keys) 

Semantic methods perform integration based on the meaning of 

o b j e c t s , not (exclusively) based on s t r u c t u r a l s i m i l a r i t i e s . 

T h e r efore, a semantic approach can p o s s i b l y integrate two 

o b j e c t c l a s s e s i n which one i s a subset of the other, even 

when the object classes have d i f f e r e n t keys. 

Less Complex 
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Semantic approaches simplify the integration process i n two 

ways. F i r s t , the amount of d e t a i l i s much less than that of 

s y n t a c t i c approaches, s i n c e the focus i s on e n t i t y - l e v e l 

items. Second, semantic data items are more meaningful to 

humans than a r b i t r a r y c o l l e c t i o n s of f i e l d s held together only 

by dependencies. 

Deal with Database Objects Meaningful to Designers and Users 

The outcome of the design process also i s more profound for 

the database user, since the database objects are meaningful 

to database users. A syntactic integration, based purely on 

dependencies, may derive database objects that are not suggestive 

to the user. One of B a t i n i et a l . 's (1986) c r i t e r i a f or 

goodness of a design i s understandability. 

Do not Provide Complete Procedures 

One of the major weaknesses of the semantic approaches i s the 

l i m i t e d d e s c r i p t i o n of complete procedures f o r integration. 

Even though a va r i e t y of integration cases i s outlined, the 

des c r i p t i o n of sequences of integration steps and possible re­

i t e r a t i o n s i s , i f not missing, at lea s t very terse. In addition, 

when dealing with c o n f l i c t analysis, semantic approaches are 

not complete i n t h e i r analysis, nor do they show the missing 

elements of the analysis. 

Do not Present Proof of Optimality of the Design 

49 



A consequence of the incompleteness of semantic integration 

procedures i s t h e i r i n a b i l i t y to demonstrate the optimality of 

the f i n a l design. No semantic procedure states a point at 

which the procedure terminates and has achieved a f i n a l design. 

Also, the objectives of semantic approaches involve the c r i t e r i o n 

of u n d e r s t a n d a b i l i t y which cannot be measured as e a s i l y as, 

f o r instance, adherence to normal forms. Yet, even for the 

c r i t e r i a t h a t can be shown more e a s i l y , semantic approaches 

t y p i c a l l y do not provide any proof of optimality or f e a s i b i l i t y . 

O verall, c o n f l i c t analysis and resolution i s the common weak 

p o i n t i n a l l i n t e g r a t i o n techniques. Three causes of t h i s 

d e ficiency are: 

(1) s y n t a c t i c techniques cannot d e a l with c o n f l i c t 

analysis at a l l . They ignore c o n f l i c t s i n general. 

(2) i f c o n f l i c t a n a l y s i s i s done, i t i s o f t e n done 

unsystematically. B a t i n i et a l . (1983) perform the 

most thorough analysis by separating naming c o n f l i c t s 

from t y p e c o n f l i c t s and t h e n a n a l y z i n g them 

separately. This analysis i s s t i l l not s u f f i c i e n t 

to i d e n t i f y , l e t alone solve, a l l possible causes of 

c o n f l i c t s . 

(3) c o n f l i c t a n a l y s i s i s b i a s e d by i n f o r m a t i o n 

r e q u i r e m e n t s c o n s i d e r a t i o n s . Only cases are 

considered for which information i s e a s i l y available 

( i . e . mapping ratios) , which are most prominent ( i . e . 

50 



synonyms), or which are of p a r t i c u l a r concern due to 

the data model chosen ( i . e . semantic r e l a t i v i s m , or 

mapping r a t i o s ) . In contrast, a more systematic 

procedure should be aware of a l l possible c o n f l i c t 

cases and then should determine the information 

requirements t o s o l v e them. Thus, even i f the 

technique i s not able to resolve a l l c o n f l i c t s due 

to lack of information, i t i s at l e a s t aware of the 

p o s s i b i l i t y of existence of a c e r t a i n c o n f l i c t , and 

thus of i t s own l i m i t a t i o n s ! 

B a t i n i e t a l . (198 6) summarize the lack of research i n the 

area of c o n f l i c t analysis as follows: 

... Simple renaming operations are used 

f o r s o l v i n g naming c o n f l i c t s by most 

methodologies. With regard to other 

types of c o n f l i c t s , the methodologies do 

not s p e l l out formally how the r e s o l u t i o n 

p r o c e s s i s c a r r i e d out; however, an 

i n d i c a t i o n i s given i n several of them 

as to how one should proceed. ... (p. 348) 

And further: 

... I t i s i n t e r e s t i n g to note that among 

the methodologies surveyed, none provide 

an analysis or proof of the completeness 

of the schema transformation operations 
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from the standpoint of being able t o 

r e s o l v e any type of c o n f l i c t that can 

a r i s e . ... (ibid.) 

The s o l u t i o n to these problems w i l l therefore form the core of 

t h i s research project. 
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3. SYSTEM FOR VIEW INTEGRATION 

3.1. Research Question and Contribution to Knowledge 

Research question 1: 

1.1 Can a view i n t e g r a t i o n p r o c e s s be 

formalized which transforms any c o l l e c t i o n 

of c o n f l i c t i n g views into a complete and 

consistent global schema? 

1.2 Which c o n f l i c t cases have to be solved 

i n the process? 

The purpose of t h i s research question i s to solve the c o n f l i c t 

analysis problem, i n i t i a l l y neglecting information requirements. 

Assuming s u f f i c i e n t information, a mechanism i s to be developed 

that allows the detection and s o l u t i o n of a l l view c o n f l i c t s . 

The view i n t e g r a t i o n mechanism s h a l l be able to convert a 

c o l l e c t i o n of views i n t o a complete and consistent global 

schema, u s i n g the p r e v i o u s l y i n t r o d u c e d group of 8 simple 

i n t e g r a t i o n cases f o r set-subset r e l a t i o n s h i p s , as well as 

others to be defined l a t e r . 

Based on the s u f f i c i e n t information assumption, c o n f l i c t cases 

can be described and solved without concern for the d i f f i c u l t y 

53 



of data g a t h e r i n g . Instead of mixing the c o n f l i c t problem 

with the information requirements problem, question 1 deals 

only with the former one. 

The f i r s t step i n answering t h i s research question w i l l be the 

i d e n t i f i c a t i o n and s o l u t i o n of a complete set of c o n f l i c t  

cases. The second step w i l l focus on the development of a 

procedure to carry out the integration, based on the set of 

cases. 

Research question 2 : 

2.1 What i n f o r m a t i o n can be used f o r the 

integration of user views into a global 

d a t a b a s e schema when the n e c e s s a r y 

information i s not e x p l i c i t l y available? 

2.2 How can t h i s information be gathered i n 

a p r o c e s s t h a t l i m i t s d e s i g n e r 

interrogation to a fe a s i b l e l e v e l ? 

The basis for the second question i s the assumption that i n a l l 

p r a c t i c a l s i t u a t i o n s the necessary information about views i s 

not unavailable, or too d i f f i c u l t or too c o s t l y to gather. 

Therefore, even though the answer to question 1 reveals which 

information i s necessary to perform view integration, a l l t h i s 

information cannot be expected to be present. Hence, substitutes 
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have to be found for the missing information; substitutes that 

can be ei t h e r known by the program (program's knowledge base) 

or which can be e a s i l y gathered through a minimum of in t e r a c t i o n 

with the database designer. 

The term "substitutes" may be better phrased as "operationaliz-

ations" of information on some database concept. For example, 

given s u f f i c i e n t information, the system w i l l know that two 

r e l a t i o n s h i p s have i d e n t i c a l meaning, even i f t h e i r names 

d i f f e r . A system with i n s u f f i c i e n t information has to r e l y on 

o p e r a t i o n a l i z a t i o n s of the "meaning" concept to assess the 

i d e n t i t y of such r e l a t i o n s h i p s . Domain i d e n t i t y and i d e n t i t y 

of neighbour e n t i t i e s may be such operationalizations. 

The intention behind the second question i s not to f i n d " t r i c k s " 

to s o l v e the l i m i t e d i n f o r m a t i o n problem, but to i d e n t i f y 

s u b s t i t u t e i n f o r m a t i o n ; i n f o r m a t i o n items t h a t allow the 

assessment of concepts such as "meaning", which are d i f f i c u l t 

to grasp by a computer. The knowledge of these substitutes 

w i l l teach us also about al t e r n a t i v e information requirements 

of data modelling techniques. 

Even though a v a i l a b i l i t y of i n t e g r a t i o n information i s an 

important concern, the apparent lack of substitute information 

should not l i m i t the comprehensiveness of the integration 

mechanism. C o n f l i c t analysis, at l e a s t i n p r i n c i p l e , should 
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not be based on the convenience with which relevant information 

items can be produced. On the contrary, question 2 should 

i d e a l l y attempt to f i n d information sources f o r a l l requirements 

r a i s e d i n question 1. In other words, question 1 aims at 

s t a t i n g and s o l v i n g the integration problem i n a s u f f i c i e n t 

i n f o r m a t i o n environment, question 2 aims at s o l v i n g t h a t 

integration problem i n a li m i t e d information environment. 

In order to decide on the best information substitute i n the 

l i m i t e d information environment, questions have to be raised 

on the s u i t a b i l i t y of c e r t a i n p i e c e s of information. The 

following l i s t gives suggestions the s e l e c t i o n should be based 

on. The term "concept" refers to the information concept to 

be used as a substitute: 

1. how well does the concept represent the 

underlying information that i s necessary 

for database design? 
2. when does the concept f a i l as a surrogate 

for the underlying information? 

3 . can the user/database designer provide 

the information, or can i t be gathered 

from some other source? 

4 . how easy can the information be gathered 

during the integration process? 
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The l a s t point brings up the issue of developing a process for 

view integration which requires the l e a s t amount of i n t e r a c t i o n 

by u s i n g as much i n f e r r e d i n f o r m a t i o n as possible. Given 

s u f f i c i e n t information, designer i n t e r a c t i o n i s i d e a l l y not 

necessary 1 . Given l i m i t e d information, designer i n t e r a c t i o n 

w i l l be necessary. Therefore, a process developed to answer 

re s e a r c h question 1 may r e q u i r e r e d e s i g n to i n c r e a s e i t s 

usefulness. For example, a useful design change would be a 

m o d i f i c a t i o n t h a t enabled the technique to apply previously 

gathered information to l a t e r stages of the integration process. 

One has to keep i n mind that a program w i l l quickly lose i t s 

appeal as a productivity t o o l , i f i t repeately asks the designer 

t r i v i a l questions. Such redesign does not change the integration 

cases, but the sequence of the analysis, as w i l l be demonstrated 

l a t e r i n the context of h e u r i s t i c s . 

So, while the primary i n t e r e s t within t h i s research i s the 

discovery of an exhaustive set of c o n f l i c t cases and resolution 

p r i n c i p l e s , the secondary i n t e r e s t i s the development of an 

e f f i c i e n t integration procedure through choice of surrogates for 

c e r t a i n pieces of information and through choice of a 

1 The integration mechanism which assumes information 
a v a i l a b i l i t y i s implemented i n form of a programmed procedure 
that d i r e c t s a l l questions concerning information requirements 
back to the designer (user of the mechanism). 
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sequence that allows to make inferences from the data already 

gathered. 

Contribution to Knowledge: 

A main r e s u l t of the study i s p r e s c r i p t i v e knowledge, knowledge 

on how view integration should be c a r r i e d out. The s t a r t i n g 

p o i n t f o r t h i s knowledge i s the set of i n t e g r a t i o n cases 

i d e n t i f i e d by the consensus of previous integration approaches. 

This research develops a systematic framework which encompasses 

the a v a i l a b l e integration knowledge (see chapter 2) as well as 

a set of addit i o n a l cases for c o n f l i c t i n g views. The research 

also demonstrates the framework's completeness. 

Another r e s u l t of the study i s a set of h e u r i s t i c s f o r e f f i c i e n t 

execution of the integration process with l i m i t e d information. 

The assumptions underlying these h e u r i s t i c s w i l l be c l e a r l y 

s t a t e d . For example, suppose, the f o l l o w i n g h e u r i s t i c i s 

implemented. "IF object A i s i d e n t i c a l to object B and object 

A w i l l have the same c o n s t r u c t ( i . e . , be both e n t i t i e s ) . 

H e u r i s t i c s are accompanied by explanations concerning t h e i r 

g e n e r a l i z a b i l i t y and e f f e c t s of t h e i r f a i l u r e . 

P r e s c r i p t i v e knowledge encompasses knowledge on integration 

laws and integration process rules while d e s c r i p t i v e knowledge 
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encompasses process and information s u b s t i t u t i o n r u l e s . At 

the end, t h i s research presents a set of information requirements 

and a set of integration rules which together are s u f f i c i e n t 

to perform the integration process including c o n f l i c t resolution 

as well as an e f f i c i e n t integration process. 

Another c o n t r i b u t i o n t o knowledge can be derived from t h i s 

r e s e a r c h . I t i s an extension of the r e l a t i o n a l data model 

regarding data semantics. I t i s well known that the r e l a t i o n a l 

data model i n i t s current form i s not well suited f o r capturing 

data semantics. One step towards capturing data semantics i s 

the data di c t i o n a r y which keeps information on database items, 

e i t h e r i n computer or human interpretable form, i . e . on data 

types, or the meaning of the data i n the r e l a t i o n tuples. A 

large amount of the dictionary information can be generated, 

v i r t u a l l y e f f o r t - f r e e , as part of the design process. Thus, 

the outcome of the design process may not only be set of 

r e l a t i o n s , but also a data dictionary. The view integration 

approach suggests information that should be captured i n data 

d i c t i o n a r i e s but has not been captured yet. This information 

may include data concerning the meaning of database objects. 

Future database management systems could have f a c i l i t i e s to 

i n t e r p r e t t h i s data i n order to support the users and the 

system i t s e l f , for instance to improve the i n t e g r i t y of the 

database ( f u l l y integrated semantic dictionary) or at l e a s t to 

improve user understanding of database data. For example, the 
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database c o u l d e x p l a i n t o the user t h a t MANUFACTURER i s a 

subclass of SUPPLIER which supplies parts and also manufactures 

these parts or that SUPPLIER i s a person or organization that 

i n the present i s su p p l y i n g p a r t s or i n the past has been 

supplying parts. 

3.2. Approach to the Problem 

3.2.1. Overview 

The problem solving approach chosen f o r t h i s research 

i s d e t e r m i n e d by the i l l - s t r u c t u r e d nature of the view 

i n t e g r a t i o n process and the previous research i n the area. 

Previous r e s e a r c h has i d e n t i f i e d several c o n f l i c t cases and 

t h e i r solutions without assuring us that the problem has been 

solved i n i t s e n t i r e t y . With the f i r s t research question, the 

attempt i s made to develop a complete c o n f l i c t resolution 

method. This task i s s i m p l i f i e d by the information a v a i l a b i l i t y 

assumption. To answer t h i s research question, an a n a l y t i c a l 

problem solving approach was chosen. This approach i d e n t i f i e s 
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a l l p o s s i b l e c o n f l i c t cases f o r any p a i r of objects 1 from 

d i f f e r e n t views and shows that the l i s t of c o n f l i c t cases i s 

complete. The l i s t contains 17 general c o n f l i c t cases with 

various subcases. 

Completeness has to be shown for t h i s l i s t . The demonstration 

of completeness rests on the assumption that a l l c r i t e r i a which 

d i f f e r e n t i a t e any two views or parts thereof ( i . e . d i f f e r e n t 

names fo r the same object type, d i f f e r e n t meaning of two object 

types) have been i d e n t i f i e d here. Once a l l c r i t e r i a are known 

by which objects can be distinguished, a l l possible combinations 

of c r i t e r i a can be e a s i l y generated. The l a t t e r part of the 

argument has to j u s t i f y why some of the possible combinations 

are i r r e l e v a n t or why they are s i m i l a r to other, already 

i d e n t i f i e d ones. 

3.2.2. Outline of the Problem with Available Information 

Even though some of the p r e v i o u s i n t e g r a t i o n 

approaches have d e a l t with the c o n f l i c t analysis ( c o n f l i c t 

r e c o g n i t i o n ) problem i n a systematic manner, t h e i r c o n f l i c t 

1 Pairwise integration has been the procedural choice for 
most previous integration methods (see B a t i n i et a l . , 1986). 
Only recently, some researchers ( i . e . , Navathe) have demonstrated 
p a r a l l e l i n t e g r a t i o n techniques f o r more than two views, 
applicable i n c e r t a i n c o n f l i c t s i t u a t i o n s . 
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c l a s s i f i c a t i o n schemes were not suitable to i d e n t i f y a l l possible 

combinations of object differences. Consequently, they have 

f a i l e d t o i d e n t i f y some c o n f l i c t cases. In t h i s section, a 

categorization i s presented which overcomes t h i s weakness. 

The cases d i s c u s s e d below represent an exhaustive l i s t of 

p o s s i b l e c o n f l i c t s between any two o b j e c t s from d i f f e r e n t 

views. I t w i l l be argued that any possible c o n f l i c t case i s 

covered by the technique and that a f t e r resolution of c o n f l i c t s , 

views are i n a form i n which they can merged. I t w i l l also be 

argued t h a t there exists a "causal ordering" (compare Simon 

and Ando, 1963) of c o n f l i c t resolution cases which determines 

the sequence of steps within the integration process. Hence, 

an i n t e g r a t i o n procedure f o l l o w i n g t h i s o r d e r i n g w i l l be 

outlined. 

Object comparison 

Object comparison focuses on the detection of any i d e n t i t y or 

difference between two objects from d i f f e r e n t views. Objects 

may be of type en t i t y , r e l a t i o n s h i p , a t t r i b u t e . For example, 

a designer a r b i t r a r i l y picks one object from each of two view 

and wants to determine t h e i r i d e n t i t y or difference. To do 

t h i s , he should choose four general c r i t e r i a by which to 

evaluate objects: 
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(1) Name - are the objects' names i d e n t i c a l ? 

(2) Construct - are both objects represented by the same 

construct? 

( 3 ) Meaning - do the objects have the same meaning? 

( 4 ) Context - are the objects associated with the same 

neighbor objects i n both views? 

The name c r i t e r i o n i s a straightforward one and well described 

with i n the l i t e r a t u r e . In short, i d e n t i c a l objects should 

have the same name, d i f f e r e n t objects should have d i f f e r e n t 

names. Otherwise, the object pairs are synonyms or homonyms. 

Construct r e f e r s to the object type, i . e . , e n t i t y . Identical 

objects should have the same construct, to allow t h e i r merging. 

Previous research has given many examples of construct mismatches 

and t h e i r r e solution. 

Meaning i s the most d i f f i c u l t c r i t e r i o n . Instead of a lengthy 

d i s c u s s i o n about the i n t e r p r e t a t i o n of "meaning", at t h i s 

p o i n t the f o l l o w i n g working d e f i n i t i o n w i l l be used: two 

objects have the same meaning i f they both represent the same 

r e a l world object. Database design i s a form of modelling. 

Real world objects are represented by database items. I f two 

database items are both models the same r e a l world object, 

they have the same meaning. In previous research, meaning has 

not been e x p l i c i t l y d i s c u s s e d as di s c r i m i n a t i n g c r i t e r i o n , 
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p o s s i b l y because the meaning c r i t e r i o n i s very d i f f i c u l t to 

assess. For instance Navathe and Elmasri (for example, 1986) 

have frequently used domains or mapping r a t i o s as discriminating 

c r i t e r i a i n s t e a d . We may t h i n k of domain information and 

mapping r a t i o s as operationalizations capturing part of the 

meaning concept. E x p l i c i t r e p r e s e n t a t i o n of the meaning 

dimension w i l l r e s u l t i n a simple and c l e a r d i s t i n c t i o n of 

c o n f l i c t cases 1. 

Context ref e r s to the objects that are immediate neighbors of 

an object. By d e f i n i t i o n , an e n t i t y w i l l always have an empty 

c o n t e x t 2 . A r e l a t i o n s h i p ' s context are a l l e n t i t i e s i t i s 

a s s o c i a t e d with. An a t t r i b u t e ' s context i s the e n t i t y or 

r e l a t i o n s h i p i t belongs to. Context also has not been e x p l i c i t l y 

r e p r e s e n t e d i n p r e v i o u s r e s e a r c h , even though pre v i o u s 

researchers were aware of the importance of context, as t h e i r 

c o n f l i c t recognition and resolution examples show. 

Based on the four c r i t e r i a and two states of each c r i t e r i o n 

( i d e n t i t y or di f f e r e n c e ) , a 2 x 2 x 2 x 2 matrix with 16 

1 The main d i f f i c u l t i e s of meaning representation are 
completeness of the r e p r e s e n t a t i o n and differences i n user 
p e r s p e c t i v e . For example, when asked about the meaning of 
" l i o n " , most people may reply "dangereous animal", while a l i o n 
tamer would probably r e p l y " l i v e l i h o o d " . These are two 
d i f f e r e n t , incomplete interpretations which are both acceptable. 
For a discussion of the meaning concept consult Russell (1946). 

2 Even though e n t i t i e s have no context by d e f i n i t i o n , i t 
may be u s e f u l l a t e r to think of an en t i t y ' s context as the 
rela t i o n s h i p s i t i s involved i n . 
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general cases of i d e n t i t y and difference of object p a i r s can 

be c o n s t r u c t e d . To exemplify the p r i n c i p l e s of c o n f l i c t 

r e c o g n i t i o n and r e s o l u t i o n , only the f i r s t three c r i t e r i a , 

name, construct, and meaning, w i l l be discussed i n more d e t a i l 

and represented graphically i n t h i s section (see Figure 1) . 

For now, the c o n f l i c t problem can be s i m p l i f i e d by assuming 

that whenever two objects have i d e n t i c a l meaning, t h e i r contexts 

w i l l be i d e n t i c a l . Whenever t h e i r meanings are d i f f e r e n t , 

t h e i r contexts may be d i f f e r e n t or i d e n t i c a l . The subsequent 

sections w i l l deal with the f u l l integration problem, allowing 

v a r i a t i o n s i n context, even i f meaning i s i d e n t i c a l . 

seme —> 
different 

CONSTRUCT 

Same dif leient 

1. Idenltcal 

\ 

2. Synonym 

5. Homonym 6. Dllterenl 
Objects 

7. Homonym * 
DIM. C o n s . 

8. D i l l . Obj. * 
DIM. Cons-

3. Construct Mismatch 4 Construct Mismatch • 
Homonym 

Figure 1: Object Comparison Matrix 

Each of the cases depicted i n Figure 1 w i l l be b r i e f l y presented 

below. The focus of t h i s discussion s h a l l be on the cases, 
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not on t h e i r d e t a i l e d s o l u t i o n . Unless solutions are simple 

or necessary f o r the d i s c u s s i o n , they w i l l be postponed to 

subsequent chapters. Note that not a l l cases below describe 

c o n f l i c t s . For instance, i f two objects are i d e n t i c a l (Case 

1) , they can be merged without modifications. Other cases, 

such as synonymy (Case 2) require an object change. 

Case 1; [Name:same; Meaning:same; Construct:same] 

T h i s c o n d i t i o n corresponds to cases 1 and 5 from previous 

research (see chapter 2) . Two objects are i d e n t i c a l i n a l l 

factors. 

Example: 

View 1: CUSTOMER (entity) 

View 2: CUSTOMER (entity) 

both describing the same customer object type. 

The notion of i d e n t i t y i s not only meaningful f o r e n t i t i e s , as 

e x e m p l i f i e d , but a l s o f o r i d e n t i c a l r e l a t i o n s h i p s l i n k i n g 

i d e n t i c a l e n t i t i e s , and for i d e n t i c a l a t t r i b u t e s of i d e n t i c a l 

e n t i t i e s ( i d e n t i c a l context). 

Case 2: [Name:different; Meaning:same; Construct:same] 

This i s the case of a synonym. Both objects are i d e n t i c a l but 

carry d i f f e r e n t names. Note that both objects have the same 

construct ( i . e . , e n t i t y ) . 

Example: 

VI: CUSTOMER (entity) 
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V2: BUYER (entity) 

both describing the same r e a l world customer object type. 

Case 3; [Name:same; Meaning:same; Construct:different] 

T h i s case d e s c r i b e s a s i t u a t i o n where the same o b j e c t i s 

represented by d i f f e r e n t modelling constructs. This case w i l l 

be referred to as construct mismatch. Brodie (1984) refers to 

t h i s difference i n construct as "semantic r e l a t i v i s m " , e.g., 

when the same object i s represented as an e n t i t y i n one view 

and as a r e l a t i o n s h i p i n another view. 

Example: 

VI: MARRIAGE (entity) 

V2: Marriage (relationship) 

Both views describe marriage objects. Both views use the same 

name, but a d i f f e r e n t construct. For view 1, a marriage i s an 

en t i t y (probably with husband and wife a t t r i b u t e s ) , f o r view 

2, a marriage i s a re l a t i o n s h i p (probably l i n k i n g two person 

e n t i t i e s ) . The solution to t h i s case i s a change i n one of 

the c o n s t r u c t s , e i t h e r making the e n t i t y a r e l a t i o n s h i p or 

vi c e versa. At the end, each object should be represented by 

the same construct i n a l l views. 

T h i s example d e s c r i b e s only one of many possible construct 

mismatch scenarios. 
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Case 4: [Name:different; Meaning:same; Construct:different] 

This case i s c l o s e l y related to the previous one. Again, both 

o b j e c t s have the same meaning, but t h i s time they not only 

have d i f f e r e n t constructs, but also d i f f e r e n t names. Therefore, 

i d e n t i t y of o b j e c t s i s d i s g u i s e d even f u r t h e r , by name 

differences on top of construct differences. 

Example: 

VI: MARRIAGE (entity) 

V 2 : Married_to (relationship) 

While both views use almost s i m i l a r names, to a syntactic 

processor, the names w i l l be d i f f e r e n t . 

Case 5 : [Name:same; Meaning:different; Construct:same] 

Th i s case marks homonyms. The objects carry the same name, 

but have d i f f e r e n t meaning. The objects have the same construct 

( i . e . , e n t i t y ) . 

Example: 

VI: SUPPLIER (entity) 

V 2 : SUPPLIER (entity) 

Here the same name SUPPLIER i s used for both suppliers (currently 

supplying the product) and for manufacturers (who manufacture 

the product and may be po t e n t i a l s u p p l i e r s ) . 

Case 6: [Name:different; Meaning:different; Construct:same] 

This case may r e f e r to a t r i v i a l s i t u a t i o n i n which two objects 

are d i f f e r e n t i n meaning and name, but have the same construct. 
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On the other hand, i t may r e f e r to a number of more complex 

si t u a t i o n s of non-identical but related ( i . e . , superset-subset 

relationship) objects. 

Example 1: t r i v i a l s i t u a t i o n 

VI: EMPLOYEE (entity) 

V2: DEPARTMENT (entity) 

Example 2: related objects 

VI: STUDENT (entity) 

V2: UNDERGRAD (entity) 

The e n t i t i e s i n the f i r s t example r e f e r to two d i f f e r e n t r e a l 

world objects which are not related 1 . The objects represented 

i n the second example are related, namely through a superset-

subset r e l a t i o n s h i p . Whenever there e x i s t s such a connection 

between two items they cannot be treated as independent. The 

eight cases extracted from previous research provide solutions 

for such non-identical but related sets. 

Case 7: [Name:same; Meaning:different; Construct:different] 

This case captures homonyms. Again, the name of two objects i s 

the same, but they d i f f e r both i n meaning and i n construct 

used. Note that t h i s case may also contain objects that have 

d i f f e r e n t meaning but are related to each other (as i n Case 

6). Example: 

VI: SUPPLIER (entity) 

1 "Related" i s used here to express that two object classes 
are e i t h e r overlapping or are contained by a common object c l a s s . 
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V2: Supplier (attribute) 

The name s u p p l i e r i s used f o r both an e n t i t y and f o r an 

at t r i b u t e , and the a t t r i b u t e does not r e f e r to the same supplier 

object ( i . e . , r e f e r s to a manufacturer object). 

Case 8: [Name:different; Meaning:different; Construct:different] 

T h i s case d e s c r i b e s o b j e c t s which are d i f f e r e n t i n every 

respect, meaning, name and construct. 

Example: 

VI: SUPPLIER (entity) 

V2: Department (attribute) 

Supplier and department are d i f f e r e n t objects altogether, with 

no s i m i l a r i t i e s between them. Again, t h i s exemplifies the 

t r i v i a l form of the case. But again, o b j e c t s may a l s o be 

related. 

The above eight cases f a l l into 2 main groups: objects that 

w i l l be ultimately completely i d e n t i c a l and objects that are 

d i f f e r e n t . Whether an o b j e c t belongs to the f i r s t or the 

second group i s determined by t h e i r meaning dimension. The 

f i r s t group consists of cases 1,2,3, and 4. The second group 

i s represented by cases 5,6,7,and 8. In eithe r group, c e r t a i n 

cases describe stable states. In the f i r s t group for example, 

case 3 (semantic r e l a t i v i s m ) becomes a case 1 ( i d e n t i c a l 

items), once d i f f e r e n t c o n s t r u c t s are eliminated. Case 4 

becomes a case 3, once objects are renamed. Within the group 
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of d i f f e r e n t objects there e x i s t two stable states. I f objects 

are r e l a t e d ( i . e . , one i s a subset of the other), they w i l l 

u ltimately belong to case 6, i . e . , a f t e r renaming from case 5. 

I f they are unrelated, they w i l l belong to case 8 or case 6 1 . 

The complete pattern of transformations into stable states i s 

shown i n Figure 2. The figure shows depicts comparison cases 

and t r a n s f o r m a t i o n s from one case i n t o a n o t h e r . The 

t r a n s f o r m a t i o n arrows show the d i r e c t i o n of transformation 

during the integration process. 

2 -> 1 convert true synonyms into i d e n t i c a l items through 

renaming. 

3 -> 1 convert c o n s t r u c t mismatch i n t o i d e n t i c a l items 

through change of d i f f e r e n t constructs. 

4 -> 3 convert c o n s t r u c t mismatch and synonym into j u s t 

semantic r e l a t i v i s m through renaming, or 

4 -> 2 convert construct mismatch and synonym into synonym 

through construct change. 

5 -> 6 convert homonyms i n t o d i f f e r e n t items (possibly 

related) through renaming. 

8 -> 6 convert d i f f e r e n t items with d i f f e r e n t constructs into 

d i f f e r e n t items with same constructs (only i f items 

are d i f f e r e n t but related) through construct changes. 

7 -> 5 convert homonymy with d i f f e r e n t construct into 

1 I f the objects are unrelated, case 8 i s a stable state, 
requring no changes during c o n f l i c t resolution. I f objects are 
r e l a t e d , u l t i m a t e l y , the o b j e c t s w i l l be transformed into 
state 6. 

71 



homonymy through name change (only i f objects are 

rel a t e d ) . 

7 -> 8 c o n v e r t homonyms i n t o d i f f e r e n t items through 

renaming. 

NAME 

s a m e d i f f e r e n t 

MEANING 

s a m e — • 
d i f l e r e n t 

C O N S T R U C T 

di I l e ren t 

1. I d e n t i c a l 

5. H o m o n y m 

7. H o m o n y m -
D i l f . C o n s . 

3. C o n s t r u c t M i s m a t c h 

2. S y n o n y m 

6. D i f fe rent 
O b j e c t s 

8. Dif f . Obj . •> 
Diff . C o n s . 

4. C o n s t r u c t M i s m a t c h 
H o m o n y m 

Figure 2; Case Transformations during View Integration 

The transformation sequences have three end points, Case 1, 

Case 6, and Case 8. Case 1 i s the end point f o r a l l objects 

with same meaning. I t i s captured by cases 1 and 5 extracted 

from previous research. Case 8 i s the end point f o r a l l items 



which are d i f f e r e n t i n a l l aspects and not r e l a t e d . I t s 

s o l u t i o n i s t r i v i a l . A l l these non-identical items w i l l be 

included i n the global schema. Case 6 i s the end point for 

n o n - i d e n t i c a l , unrelated items with same construct ( t r i v i a l 

solution) and for d i f f e r e n t but related objects. I f objects 

are related, cases 2 to 4 and 6 to 8 from previous research 

(chapter 2) w i l l apply. 

The case transformations (Figure 2) are free of c i r c u l a r i t i e s . 

T h i s makes i t possible to postulate an ordering of c o n f l i c t 

recognition and resolution. Figure 3 i l l u s t r a t e s one possible 

ordering. The operations to be ca r r i e d out f i r s t are construct 

changes (4->2, 3->l, 7->5, 8->6) for i d e n t i c a l and f o r related 

objects. This i s followed by the change of names f o r synonyms 

(2->l) , and homonyms (5->6 f o r r e l a t e d o b j e c t s , 7->8 f o r 

unrelated objects). The termination points of the procedure 

are cases 1, 6, and 8. The other p o s s i b l e ordering would 

attend to name changes p r i o r to construct changes. For now, 

both sequences are equally good, even though the f i r s t one i s 

preferable, as w i l l be explained l a t e r . 
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C a s e 4 C a s e 3 C a s e 7 

Construct Change 

C a s e 2 

C a s e 1 

Stable 

Construct Change 

C a s e 5 

Name Change 

Construct Change 

C a s e 8 

Stable Stable 

Figure 3: Ordering of View Integration Steps 
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3.2.3. Changes i n the I n t e g r a t i o n Method when Necessary 

Information i s not D i r e c t l y Available 

The i n t e g r a t i o n method d i s c u s s e d so f a r i s based on the 

a s sumption t h a t n e c e s s a r y i n f o r m a t i o n to c a r r y out the 

integration process i s d i r e c t l y a v a i l a b l e . For the required 

information to be available, i t e i t h e r has to be s p e c i f i e d ex-

ante, or has to be e l i c i t e d during the view integration process. 

Since information s p e c i f i c a t i o n requires designer e f f o r t and 

r e p r e s e n t s a c o s t , i t i s d e s i r a b l e to reduce i n f o r m a t i o n 

s p e c i f i c a t i o n requirements for the database designers. Hence, 

while p r e v i o u s l y the focus was on the design of a complete 

method f o r i n t e g r a t i o n , the focus w i l l now be on a human- 

oriented complete method for view integration. 

The new goal w i l l be to dtermine object i d e n t i t y , difference 

and relatedness with a small number of i n t e l l i g e n t ( i . e . , non-

redundant) questions. Obviously, the method should base 

f u t u r e questions on answers to previous ones. T h i s i s a 

minimum requirement. The following l i s t of questions outlines 

other areas i n which the procedure can be improved. 

1. How many ob j e c t s s h a l l be included i n the object 

comparison? 
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2. Which objects should be compared? 

3. What i s the sequence of c o n f l i c t d i a g n o s i s and 

therapy? 

4. How s h a l l i d e n t i t y or difference be decided? 

How many objects? 

The p r e v i o u s l y o u t l i n e d procedure always compared o b j e c t 

p a i r s , i . e . , " i s e n t i t y E l i d e n t i c a l i n meaning to en t i t y E2?" 

T h i s type of qu e s t i o n can always be answered with "yes" or 

"no", but f o r n objects i n view 2 t h i s form of questioning 

requires n questions . By asking, " i s E l i d e n t i c a l to one of 

{E2, E3, Em}", the number of questions can be reduced to 

1. The que s t i o n can be answered e i t h e r with the object's 

i d e n t i f i e r , or with "no". This form of questioning d r a s t i c a l l y 

reduces the questioning e f f o r t . The questioning format w i l l 

always be l : n instead of 1:1. An m:n format w i l l not be used, 

since the answers become awkward (a l i s t of tuples of i d e n t i c a l 

objects). 

Which objects? 

The procedure would not behave i n t e l l i g e n t l y , i f i t included 

o b j e c t s i n the comparison that should not be included. For 

instance, i f E21 from view V2 was found to be i d e n t i c a l to E l l 

from view VI, the procedure should never again inquire whether 

E21 i s i d e n t i c a l any other object from VI. Other rules which 

are d e s c r i b e d i n the r e s u l t s chapter, reduce the group of 
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r e l e v a n t o b j e c t s even more. Furthermore, h e u r i s t i c s (also 

r u l e s , but not always true) were found to reduce the group of 

o b j e c t s even f u r t h e r . For example, once two e n t i t i e s are 

found to be i d e n t i c a l , and both p a r t i c i p a t e i n re l a t i o n s h i p s , 

one may expect to f i n d i d e n t i c a l pairs of r e l a t i o n s h i p s within 

these smaller groups. 

Which sequence? 

So f a r , sequences of object modifications have been outlined 

which r e s u l t e d i n s t a b l e s t a t e cases, (Case 1) i d e n t i c a l 

objects, (Case 6) d i f f e r e n t , but related objects, and (Case 8) 

d i f f e r e n t and u n r e l a t e d o b j e c t s . For instance, a case of 

construct mismatch (Case 3) was transformed into Case 1 through 

a construct change. The question i s whether the method should 

operate by searching a c t i v e l y for c o n f l i c t cases such as Case 

3 or Case 4? The answer i s "no". A human-oriented integration 

procedure w i l l a l t e r the sequence of t e s t s . Following the 

assumption that i n absence of information to the contrary, two 

views are assumed to be i d e n t i c a l , the procedure w i l l always 

attempt f i r s t to f i n d matching objects, not object mismatches. 

For example, t y p i c a l l y the assumption at the outset of the object 

comparison w i l l be t h a t f o r an object Ol i n view VI there 

e x i s t s an object 02 i n view V2 with an i d e n t i c a l construct, 

i . e . , both are r e l a t i o n s h i p s . Figure 4 b r i e f l y outlines the 

basic sequence of t e s t s . 
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NAME 

Figure 4 : C o n f l i c t Recognition Procedure (abbreviated) 

For any object 01 from view VI and any set of objects {02} from 

view V2, the f i r s t t e s t i s a t e s t f o r i d e n t i t y of meaning. I f 

i t f a i l s , a t e s t for construct mismatch follows. I f there i s 

no construct mismatch, an object i s assumed to be missing. Note 

that name and context difference or i d e n t i t y are ignored 
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at f i r s t . The t e s t f o r r e l a t e d n e s s which begins with the 

assumption of r e l a t e d n e s s i s separated from the t e s t f o r 

i d e n t i t y of o b j e c t s . Tests f o r r e l a t e d n e s s are postponed 

u n t i l a l l t e s t s for i d e n t i t y are c a r r i e d out. 

How to decide on i d e n t i t y or difference? 

For a l l object c h a r a c t e r i s t i c s , i d e n t i t y or difference have to 

be asserted. While t h i s i s simple for construct and name, i t 

i s not f o r meaning and context. Only people can ultimately 

judge whether two o b j e c t s have the same meaning, but an 

i n t e l l i g e n t i n t e g r a t i o n procedure should help as much as 

p o s s i b l e i n making t h i s decision. In short, the procedure 

w i l l help by f i l t e r i n g out objects that are not i d e n t i c a l to 

the o b j e c t i n qu e s t i o n . Rules to f i l t e r out these non-

corresponding objects are defined. 

3.2.4. View Integration C o n f l i c t Cases 

Previously, only 8 of the 16 general types of cases 

were discussed, when context was held constant. The case l i s t 

below describes a l l possible cases for the comparison of two 

a r b i t r a r y objects from d i f f e r e n t views. Cases are i d e n t i f i e d 

by name (N), c o n s t r u c t (object type T ) , meaning (M) , and 

context (C) <N,T,M,C> of the involved objects. Object 01 i s 
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denoted through <N1,T1,M1,C1>, object 02 through <N2;T2,M2,C2>. 

For every case the equality or non-equality of parameters i s 

stated. 

The overview t a b l e below shows f o r each case i d e n t i t y or 

d i f f e r e n c e along the four dimensions. For example, a 

under N means that both objects have i d e n t i c a l names, an 1 x' 

means they are d i f f e r e n t . For the meaning dimension, 'r' 

means the meanings are d i f f e r e n t but related . 

Case N T M C 
1 = = = = I d e n t i c a l objects 
2 — = = X Identical objects with d i f f e r e n t context 
3 X = — — Synonym 
4 X = — X Synonym with d i f f e r e n t context 
5 = X — X Construct mismatch (semantic relativism) 
6 X X — X Construct mismatch and synonym 

7 X X =/x Different and unrelated objects 
8 — = X =/x Homonym 
9 X X X X D i f f e r e n t o b j e c t s w i t h d i f f e r e n t 

constructs 
10 = X X X D i f f e r e n t o b j e c t s w i t h d i f f e r e n t 

constructs, but homonyms 

11 X — r d i f f e r e n t but related objects 
12 = r = d i f f e r e n t but related homonyms 
13 X — r X d i f f e r e n t but r e l a t e d o b j e c t s with 

d i f f e r e n t context 
14 = = r X d i f f e r e n t but r e l a t e d homonyms with 

d i f f e r e n t context 
15 X X r X d i f f e r e n t but related objects of d i f f e r e n t 

type 
16 — X r X d i f f e r e n t but r e l a t e d homonyms o f 

d i f f e r e n t type 

17 - - - - missing object 02 
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Note that i f two objects are of d i f f e r e n t type, t h e i r context 

w i l l be d i f f e r e n t , due to the d e f i n i t i o n of context. Note 

also that i d e n t i t y or difference of context i s i r r e l e v a n t for 

objects with d i f f e r e n t meaning. 

A more d e t a i l e d l i s t of view c o n f l i c t s can be found i n the 

Appendix. The l i s t i n the appendix breaks each general case 

down into subcases based on d i f f e r e n t i a t i o n according to the 

constructs of p a r t i c i p a t i n g objects. I.e., a construct mismatch 

exis t s between an e n t i t y and a re l a t i o n s h i p as well as between 

an e n t i t y and an at t r i b u t e . The extended l i s t has been l e f t 

out here f o r the purpose of r e a d a b i l i t y . The Appendix also 

p r o v i d e s a b r i e f d e s c r i p t i o n of the s o l u t i o n f or a l l case 

s c e n a r i o s . The general c o n f l i c t resolution r u l e f or object 

i d e n t i t y and difference i s to have a l l other dimensions follow 

the meaning dimension. I f two objects have i d e n t i c a l meaning, 

a l l other dimensions w i l l have to be made i d e n t i c a l . I f two 

o b j e c t s have d i f f e r e n t meaning, the name dimension has to 

r e f l e c t t h i s . Cases of object relatedness are solved through 

representation of the superset subset r e l a t i o n s h i p s . 

Omitted from t h i s solution description i s the technique for 

r e - a l l o c a t i o n of att r i b u t e s when relatedness i s detected. The 

gener a l r u l e i s to al l o c a t e those a t t r i b u t e s that belong to 

both the superset and the subset to the superset, and to 
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a l l o c a t e to the subset only the a t t r i b u t e s that are unique to 

i t (see f o r instance Navathe and Elmasri (1986)). 
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3.3. Expert System Methodology 

An implemented s o l u t i o n for the view integration 

problem requires an adequate problem representation and solution 

mechanism. So far, cases of p o t e n t i a l integration problems 

and a procedure have been i d e n t i f i e d , yet no implementation 

mechanism has been suggested. Before any further discussion 

of an adequate mechanism, here a short reminder of the problem 

s i t u a t i o n . 

Correcting the c o n f l i c t s i n a set of user views i s c l e a r l y a 

problem solving task. Within t h i s research, view integration 

i s treated as a diagnosis and therapy task (note that Hayes-

Roth et a l . mention diagnosis and therapy ("repair") as generic 

tasks of knowledge engineering applications) . C h a r a c t e r i s t i c 

of a t y p i c a l diagnosis task i s the goal to f i n d out "what's 

wrong" i n the actual state. Thus, the purpose of the diagnosis 

part of view integration i s the i d e n t i f i c a t i o n of the discrepancy 

or mismatch between a p a i r of views. Once the c o n f l i c t case 

has been i d e n t i f i e d , the therapy or " f i x i n g " phase w i l l adjust 

one or both views to remove an e x i s t i n g c o n f l i c t . Therapy 

c r e a t e s the new, desired structure. Diagnosis and therapy 

tasks are p r o t o t y p i c a l tasks f o r expert systems or knowledge 

based systems. The integration method discussed here was not 

b u i l t by e x t r a c t i n g diagnosis and therapy rules from expert 

designers. Hence i t i s not t r u l y an expert system. However, 
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i t w i l l represent c o n f l i c t recognition and c o n f l i c t resolution 

knowledge. 

Database design rules for c o n f l i c t recognition and resolution 

can be e a s i l y formulated as s e t s of production r u l e s . In 

s i m p l i f i e d form, one may want to think of each production rule 

as describing one of the cases. For each object comparison, 

the r u l e matching the c o n f l i c t s i t u a t i o n would f i r e and 

transform the case into another one, u n t i l one of the stable 

state cases were reached (for a description of the production 

system reasoning mechanism see for instance Barr and Feigenbaum, 

1981). 

The most appealing property of the production system mechanism 

i s the m o d u l a r i t y of the r e s u l t i n g systems. Rules can be 

added, d e l e t e d or changed without d i r e c t l y a f f e c t i n g other 

r u l e s . Figure 5 i l l u s t r a t e s t h i s f a c t . Figure 5 (taken from 

Vessey and Weber, 1986) depicts a decision table with cooking 

i n s t r u c t i o n s f o r vegetables to exemplify the convenience of 

r u l e e d i t i n g . Each i n s t r u c t i o n (column) corresponding to one 

p r o d u c t i o n r u l e . The l i s t can be e a s i l y expanded through 

addition of new columns. By the same token, the deletion of a 

column does not a f f e c t any other column (or r u l e ) i n the 

t a b l e . Furthermore, each column can be changed, thereby 

a f f e c t i n g only the instructions for one p a r t i c u l a r dish. The 

cause f o r t h i s s i m p l i c i t y of the rule based system l i e s i n the 
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design of the condition l i s t . Each condition stub i s s p e c i f i e d 

with the utmost d e t a i l , not r e f e r r i n g to conditions which are 

aggregates of more than one f a c t . I.e., the decision table 

does not c r e a t e intermediate r e s u l t s (aggregates of truth 

values) such as " j u i c y and cr i s p y and le a f y but not t a l l " , 

which could appear l a t e r as a single condition i n the condition 

l i s t f o r both " f r y " and "steam". In other words, condition 

items are decoupled as much as possible. Consequently also 

the r u l e s ( i . e . , the dishes) are decoupled. 

Juicy Y Y Y Y Y Y N 
Tall Y N N N N N — 
Crispy — Y Y Y N N — 
Leafy — Y Y N — — — 
Red — Y N — — — — 
Hard — .— . — — Y N — 

Fry X 
Steam X 
Grill X 
Peel X X 
Boil X 
Chop X X 
Roast X 

Figure 5: Decision Table I l l u s t r a t i o n 
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The modularity of production rules makes t h e i r implementation 

very f o r g i v i n g . I f a case i s l e f t out i n the beginning, or i s 

s p e c i f i e d incompletely at f i r s t , additions can be made with 

very l i t t l e e f f e c t on the already e x i s t i n g rules. 

One disadvantage i s the i n e f f i c i e n c y of the production system 

approach, due to duplication of i d e n t i c a l condition elements. 

T h i s r e s u l t i s the c o s t induced by complete decoupling of 

conditions. Every condition l i s t has to be created and tested 

i n d e t a i l without being able to make use of e s t a b l i s h e d 

intermediate r e s u l t s . A more sensible design approach should 

compromise between complete decoupling of c o n d i t i o n s and 

processing e f f i c i e n c y . A h e u r i s t i c for aggregating conditions 

would group those conditions together that form a meaningful 

unit (are highly cohesive). Meaningful stands i n contrast to 

purely accidental coincidence of conditions. I.e., " j u i c y and 

cr i s p y and leafy, but not t a l l " i s not a p a r t i c u l a r l y meaningful 

grouping, because i t does not i d e n t i f y a c e r t a i n well-known 

group of food items. Therefore, t h i s aggregate should not be 

chosen as a grouping, even though i t could s i m p l i f y the decision 

table i n the example. 

A second disadvantage of production systems i s the fac t that 

they disguise the control flow. I t i s d i f f i c u l t f o r a designer 

to understand the control flow i n the production system. In 
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so c a l l e d "procedural" programming languages, i . e . Pascal or 

Fortran, the control flow i s determined by the ordering of the 

language statements, i f branching statements are neglected for 

the moment. In production systems, the sequence of rules has 

much l e s s importance. I.e., the "chop" r u l e w i l l not be 

applied f i r s t even though i t i s the f i r s t rule i n the decision 

t a b l e i n F i g u r e 5 , unless i t s conditions are true. I f the 

l a s t r u l e i n the system i s the one whose conditions become 

true f i r s t , i t w i l l be the f i r s t to f i r e . Hence, production 

systems i n general require substantial re-thinking by systems 

designers who are used to procedural languages. In a Prolog 

implementation t h i s problem i s a l l e v i a t e d to some extent since 

the language's interpreter interprets rules s t i l l i n sequential 

order. 

In c o n c l u s i o n , even though i t has some disadvantages, a 

production system seems to be a suitable representation mechanism 

for the implementation of t h i s research. The case des c r i p t i o n 

already provides many guidelines f o r the d e f i n i t i o n of c o n f l i c t 

r e s o l u t i o n r u l e s . A l s o , the m a i n t a i n a b i l i t y advantage of 

production systems becomes important when subsequently h e u r i s t i c s 

have t o be added to the i n t e g r a t i o n method to improve i t s 

operation with i n s u f f i c i e n t information. 

A d i f f e r e n t , apparently more elegant approach to view integration 

c o u l d perform the i n t e g r a t i o n process as a theorem proving 
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task. Similar to other theorem proving tasks (see for instance 

Nilsson, 1980) the program would be given a set of views and 

the question "does there e x i s t a c o n f l i c t free global schema 

which contains a l l the information of the i n d i v i d u a l c o n f l i c t i n g 

views"? I f the answer to that question were "yes", the global 

schema would be produced as a "by-product". Using Robinson's 

r e s o l u t i o n p r i n c i p l e (1965), the program would s o l v e the 

problem by creating a new goal "there e x i s t s no global schema" 

and by f a l s i f y i n g t h i s statement through a counter example. 

This approach i s elegant because i t i s based on a very general 

problem s o l v i n g mechanism, the theorem p r o v i n g mechanism. 

However, d e f i n i t i o n of the integration rules, e s p e c i a l l y the 

p r o c e d u r a l r u l e s of c o n f l i c t recognition and resolution i s 

more d i f f i c u l t than i n the production system approach. 

Two other reasonable representations for the task are frames and 

semantic networks (Waterman, 1986) . They w i l l be discussed 

below. 

Frames (Minsky, 1975) are complex data structures containing both 

fa c t u a l and procedural knowledge. Frames have s l o t s which can 

contain data concerning frame properties. Related to s l o t s can 

be procedures which are invoked when a s l o t i s f i l l e d . Slots 

that are not f i l l e d can take i n i t i a l l y defined default values. 

This default c a p a b i l i t y i s one of the advantageous features of 

frame based knowledge representations. 
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Mylopoulos and Levesque (1984) for instance stress t h e i r ease 

of dealing with incomplete knowledge. Frames have been used 

as knowledge representations i n a v a r i e t y of expert systems 

(see Waterman, 1986 or Hayes-Roth et a l . , 1983). Barr and 

Feigenbaum (1981) state that frames "have problems", yet do 

not mention where these problems l i e . 

Semantic nets represent knowledge i n a network i n which 

properties are inherited from other objects along the arcs of 

the network. Waterman states that semantic nets have algo 

been used i n expert systems, i n fa c t he argues that semantic 

nets and frames are s i m i l a r . Mylopoulos and Levesque (1984) 

emphasize as q u a l i t i e s of semantic nets t h e i r data organization 

and the provision of good access methods. As a disadvantage 

they state the lack of formal semantics and standard terminology. 

The problem of formal semantics becomes c l e a r , when the 

in t e r p r e t a t i o n mechanism for semantic nets i s investigated. 

A l l approaches are f e a s i b l e . However, for i t s forgivingness 

i n the maintenance of the knowledge base, the p r o d u c t i o n 

system approach has been chosen f o r t h i s r e s e a r c h . The 

integration method has been implemented i n Prolog. The program 

i s c a l l e d AVIS, for Automatic View Integration System. 
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4 . RESULTS 

4 . 1 . Rules Guiding View Integration 

View i n t e g r a t i o n as a problem s o l v i n g t a sk i s 

guided by a set of r u l e s which allow the problem solver to 

define the problem environment, i d e n t i f y the p a r t i c u l a r problems 

( c o n f l i c t s ) and to solve them. In t h i s section, the general 

r u l e s u n d e r l y i n g the process are presented, exemplified and 

j u s t i f i e d . The rules can be divided into two major groups: 

base r u l e s and h e u r i s t i c s . Base r u l e s are believed to be 

always t r u e . H e u r i s t i c s are support r u l e s . The b e l i e f s 

expressed i n them are known to be wrong sometimes but are 

expected to be true i n most cases. 

E s p e c i a l l y i n i t s c o n f l i c t r e c o g n i t i o n p a r t , t h i s view 

i n t e g r a t i o n method r e l i e s to a l a r g e extent on asking the 

r i g h t questions. I f the method can ask the r i g h t questions, 

i t can perform a large segment of the integration without user 

i n t e r a c t i o n . When user i n t e r a c t i o n cannot be avoided, a 

s e l e c t i o n of the r i g h t questions can s i m p l i f y the user's 

answering task. Furthermore, the method w i l l not appear to be 

stupid, i f i t can avoid asking t r i v i a l or redundant questions. 

To help i n the question formulation process, h e u r i s t i c s were 

included which f o r instance change the content and sequence of 

questions. 
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Base rules are separated into four groups of r u l e s . The f i r s t 

t h ree groups are s t a t i c modelling rules. The fourth group 

contains process r u l e s : 

1. General Modelling Rules 
2. Rules of the Modelling Language 
3. Rules of Database Design/View Integration 

3.1 General Database Design Rules 
3.2 Rules Concerning the Test f o r Identity of 

O b j e c t s ( C o n f l i c t R e c o g n i t i o n and 
Rec o n c i l i a t i o n Rules) 

3.3 Rules Concerning the Relatedness 1 of Objects 
( R u l e s f o r R e c o g n i t i o n and M o d e l l i n g of 
Inter-Schema Relationships) 

4. Process Rules 
4.1 Process Rules f o r C o n f l i c t Recognition and 

Reconciliation 
4 .2 Process Rules for the Recognition and Modelling 

of Inter-Schema Relationships 

General modelling rules are v a l i d not only i n the database 

context. For example, "each relevant r e a l world object 2 s h a l l 

be represented by exactly one object i n the model" i s such a 

r u l e . Rules of the modelling language, here the E-R modelling 

language, describe true statements about the E-R language that 

are relevant to the view integration task. Rules of database 

1 The term "relatedness" i s used to s i g n i f y superset-subset 
r e l a t i o n s h i p s such as a l l managers are employees, MANAGER— 
Isa—EMPLOYEE. The term "relationship", unless occurring i n 
the form "subset/superset/containment r e l a t i o n s h i p " , i s used 
to denote associations between e n t i t i e s . 

2 Throughout the chapter, the terms object and object type 
w i l l be used i n t e r c h a n g e a b l y t o d e s c r i b e o b j e c t types. 
P a r t i c u l a r instances are referred to as object instance or object 
occurrence. 
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design are separated into rules to guide the database designer's 

(or the method's) t e s t for the i d e n t i t y of objects and rules 

to guide the uncovering of inter-schema (superset-subset) 

r e l a t i o n s h i p s . Process rules describe the sequence i n which 

t e s t s ( i . e . , c o n f l i c t r e c o g n i t i o n ) and c o r r e c t i v e measures 

( i . e . , c o n f l i c t resolution) s h a l l be c a r r i e d out. 

The discussion w i l l begin with a d e s c r i p t i o n and explanation 

of the base rules, followed by an analysis of the h e u r i s t i c s . 

Base Rules 

General Modelling Rules: 

1. Each r e l e v a n t r e a l world o b j e c t type s h a l l be 

represented by exactly one object type i n the model 

(redundancy-free representation). 

A l l model b u i l d i n g t r i e s to create a representation of the 

r e a l world that contains a l l relevant information i n the most 

concise form. Not a l l the information of the r e a l world can 

be represented. Most of the d e t a i l may not even be required 

f o r the tasks at hand. Hence, some r e a l world object types 
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w i l l not f i n d t h e i r way i n t o the model. I f a r e a l world 

object type i s represented more than once i n the data world, 

update anomalies can occur. Each new object instance of the 

r e a l world has to be inserted more than once into the data 

model. Should the r e a l world o b j e c t type i t s e l f cease to 

ex i s t , more than one data model object type has to be removed. 

Th i s c r e a t e s extra processing e f f o r t and the p o s s i b i l i t y of 

inconsistency. One of the purposes of database design i s to 

avoid exactly these problems. 

2. An integration of multiple models s h a l l not r e s u l t 

i n the loss of information from any of the models. 

Any bottom-up modelling approach attempts to b u i l d a large 

global model through the combination of smaller models. Each 

of the small models represents the r e a l world facts that one 

model-builder perceives as relevant. Omission of any of these 

f a c t s out i n the global model would r e s u l t i n an incomplete 

g l o b a l model. Hence, the rule demands that a l l i n d i v i d u a l 

models are c o r r e c t and that the c o l l e c t i o n of models i s i n 

i t s e l f consistent (Biskup and Convent, 1986). 

Rules of the Modelling Language: 
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3 . Every object i n a view i s represented with exactly 

one o f f o l l o w i n g t h r e e c o n s t r u c t s : E n t i t y , 

Relationship, A t t r i b u t e . 

The view integration method models databases based on Chen's 

Entity-Relationship model i n which only E n t i t i e s , Relationships 

and A t t r i b u t e s e x i s t . Categories which are represented i n 

some extended forms of the E-R model w i l l be d e p i c t e d as 

sp e c i a l (Is-a) r e l a t i o n s h i p s . 

4 . E n t i t i e s are autonomous objects. They can ex i s t 

without the existence of Relationships and without 

the d e f i n i t i o n of Attributes. 

E n t i t i e s are things or in d i v i d u a l s . As things or ind i v i d u a l s 

can e x i s t even i f they have no associations with other things 

or i n d i v i d u a l s , so can e n t i t i e s . For example, an e n t i t y 

SUPPLIER can e x i s t without an association to another ent i t y , 

such as BUYER. 

5. A Relationship cannot e x i s t without the existence 
of at lea s t one En t i t y . 

R e l a t i o n s h i p s represent associations between e n t i t i e s . They 

map instances of one e n t i t y to instances of some other e n t i t y . 
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In the most r e s t r i c t e d case, one e n t i t y i s associated with 

i t s e l f . For example, the e n t i t y PERSON i s associated with 

i t s e l f through a Supervisor or a Parent r e l a t i o n s h i p . T y p i c a l l y , 

more than one e n t i t y w i l l be involved i n a r e l a t i o n s h i p , but 

never le s s than one. 

6 . An A t t r i b u t e cannot e x i s t without the existence of 

the E n t i t y or Relationship i t belongs to. 

A t t r i b u t e s r e p r e s e n t a s s o c i a t i o n s between an e n t i t y and a 

value set, or a r e l a t i o n s h i p and a value set. For example, 

the Person_name a t t r i b u t e associates the PERSON e n t i t y with a 

value set of names which i t s e l f i s a set of s t r i n g s containing 

v a l i d person names. The a t t r i b u t e cannot e x i s t without the 

e x i s t e n c e of the e n t i t y or r e l a t i o n s h i p i t r e f e r s to (value 

sets are not part of the E-R model). 

General Database Design Rules: 

7 . Two types of Attributes e x i s t . "Property" Attributes 

which describe the object (Entity or Relationship) 

i n more d e t a i l ( i . e . , c o l o r , name) and 

" I n t e r c o n n e c t i o n " A t t r i b u t e s which describe the 
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association of the object (Entity or Relationship) 

to some other object (Entity or Relationship). 

A t t r i b u t e s a r e always a s s o c i a t i o n s between e n t i t i e s or 

r e l a t i o n s h i p s and value sets. However, sometimes attr i b u t e s 

are not used to describe an innate property of the e n t i t y or 

r e l a t i o n s h i p they belong t o , but i n s t e a d , t o d e s c r i b e an 

association between the e n t i t y or r e l a t i o n s h i p and some other 

o b j e c t . For example, the a t t r i b u t e Person_name describes a 

property of a PERSON enti t y , t h e i r name. PERSON could also 

have an a t t r i b u t e Savings_acct_no. This a t t r i b u t e even though 

a s s o c i a t e d with PERSON, i s not a property of a person. In 

f a c t , the a t t r i b u t e i m p l i c i t l y s t a t e s t h a t t h i n g s c a l l e d 

savings accounts e x i s t and that a person i s or may be related 

to such a savings account. Thus, the a t t r i b u t e describes not 

a property, but an association. PERSON possesses SAVINGS_ACCT 

(PERSON is_associated_with SAVINGS_ACCT). While i n the example 

t h e d i f f e r e n c e b etween a p r o p e r t y a t t r i b u t e and an 

i n t e r c o n n e c t i o n a t t r i b u t e was d i s t i n c t , i t w i l l not be as 

cl e a r i n a l l cases. 

8. Interconnection Attributes are shortened forms of 

E n t i t i e s ( i f the A i s a Relationship-Attribute), or 
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of Entity-Relationship constructs ( i f the A i s an 

E n t i t y - A t t r i b u t e ) . 

In the above example, PERSON had a Savings_acct_no a t t r i b u t e 

which indicated the existence of savings accounts and a person's 

p o s s e s s i o n of such an account. Obviously, savings_account 

could become an enti t y , since i t i s a thing i n the r e a l world. 

In that case, a re l a t i o n s h i p such as Has_account would represent 

a person's p o s s e s s i o n of such an account. Also, being an 

Ent i t y , a savings account could have a t t r i b u t e s i t s e l f , such 

as Account_balance, or Date_opened. The model buil d e r may not 

need a l l t h i s e x t r a i n f o r m a t i o n . I f the account number 

i n f o r m a t i o n i s s u f f i c i e n t , there i s no reason to describe 

savings accounts, or other r e a l world objects, i n more d e t a i l . 

A f t e r a l l , a model should contain only the relevant information 

about the system i t i s modelling. 

In the example, an e n t i t y a t t r i b u t e (Savings_acct_no) which 

was an association between an en t i t y (PERSON) and a value set 

(of a c c o u n t numbers) took the r o l e of a r e l a t i o n s h i p 

(Has_account) between PERSON and another e n t i t y SAVINGS_ACCT. 

The a t t r i b u t e thus represented both a r e l a t i o n s h i p (Has_account) 

and an e n t i t y (SAVINGS_ACCT) through the account number value. 

A l l a t t r i b u t e s of SAVING_ACCT other than i t s number, as well 

as any p o t e n t i a l non-key a t t r i b u t e s of Has_account are not 
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represented. Hence, interconnection a t t r i b u t e s are a compressed 

form of information representation. 

This compression has the undesirable side e f f e c t s of deletion 

and i n s e r t i o n anomalies. I.e., savings accounts do not ex i s t , 

u n t i l people e x i s t that possess the accounts. Accounts also 

cease to e x i s t with the person owning them. 

9. I f A t t r i b u t e s a r e m u 1 t i - v a 1 u e d , t h e y a r e 

interconnection Attributes. 

This r u l e helps i n the detection of interconnection a t t r i b u t e s . 

I f a multi-valued a t t r i b u t e i s found, i t i s considered to be a 

interconnection a t t r i b u t e . For example, i f the Address a t t r i b u t e 

of an EMPLOYEE requires multiple entries i t should better be 

represented by a new e n t i t y RESIDENCE, related to EMPLOYEE 

through a r e l a t i o n s h i p such as Resi d e s _ a t . Storey (1988) 

deals with multi-valued a t t r i b u t e s i n t h i s manner during view 

creation. 

10. A Relationship i s a less fundamental object than an 
En t i t y . 

Since r e l a t i o n s h i p s cannot e x i s t without the existence of at 

lea s t one en t i t y , t h e i r continuing existence i s based on two 
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factors. F i r s t , i t i s based on the existence of the objects 

underlying the e n t i t i e s , and second, on the existence of the 

association between those r e a l world objects? Should either 

one not ex i s t , then the re l a t i o n s h i p has to be removed. For 

e n t i t i e s , on the con t r a r y , i t i s unimportant whether any 

formerly e x i s t i n g association between them i s s t i l l i n place. 

They w i l l only disappear once the r e a l world objects underlying 

them disappear. The same i s true for e n t i t y and re l a t i o n s h i p 

instances. For example, i f a database contains the e n t i t i e s 

EMPLOYEE and DEPARTMENT as well as the r e l a t i o n s h i p Employed_by, 

i n d i v i d u a l i n s t a n c e s of Employed_by, such as [1005, 

Manufacturing] are only meaningful i f employee 1005 s t i l l 

e x i s t s , the manufacturing department e x i s t s , and the employee 

i n f a c t s t i l l works for the manufacturing department ( r e f e r e n t i a l 

i n t e g r i t y ) . 

11. Each o b j e c t has four r e l e v a n t dimensions: Name, 

Construct (Entity/Relationship/Attribute), Meaning, 

and Context. 

One of the basic assumptions underlying t h i s view integration 

method i s that there e x i s t only four relevant d i f f e r e n t i a t i o n 

c r i t e r i a f or objects i n a view: name which i s the name of an 

ob j e c t , such as SUPPLIER, construct or object type, such as 

r e l a t i o n s h i p , meaning, and context. Meaning encompasses a l l 



the relevant knowledge conveyed by the object. For example, 

meaning includes a l l the information that i s known, once i t i s 

known that a p a r t i c u l a r e n t i t y i s a SUPPLIER. I.e., supplies 

parts, w i l l be paid for parts. Meaning i s the most important 

of a l l four dimensions. I t w i l l have absolute precedence over 

the other dimensions. I f two objects have the same meaning,  

they r e f e r t o the same r e a l world object and therefore a l l  

other dimensions w i l l have to be adjusted accordingly. Context 

i d e n t i f i e s the set of objects an object i s associated with. 

An a t t r i b u t e ' s context i s the e n t i t y or r e l a t i o n s h i p i t belongs 

to. A re l a t i o n s h i p ' s context are the e n t i t i e s associated by 

i t . E n t i t i e s are defined as having no context. E n t i t i e s are 

the only objects able to e x i s t without any other type of objects. 

12. Along each dimension, any two objects can be eithe r 

"same" or " d i f f e r e n t " , i . e . same name, same construct. 

Another major assumption of the view integration method refers 

to the v a r i a t i o n s i n each dimension. I t i s more important to 

f i n d out whether two objects are i d e n t i c a l (same) or d i f f e r e n t 

i n each of the relevant dimensions rather than to f i n d out the 

a c t u a l v a l u e s f o r each dimension. In order to merge two 

o b j e c t s , they have to match, they have t o be completely 

i d e n t i c a l . I f they are even s l i g h t l y d i f f e r e n t a change i s 

r e q u i r e d . The magnitude of d i s s i m i l a r i t y does not matter, 
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s i n c e a change i s required nevertheless. For example, the 

en t i t y names SUPPLIER and SUPPLIERS are only s l i g h t l y d i f f e r e n t . 

N e v e r t h e l e s s , they are d i f f e r e n t and w i l l r e q u i r e a name 

change i f the e n t i t i e s are to be merged. The same i s true for 

the other dimensions. Two relationships may have "almost" the 
i 

same context, that i s , most of the e n t i t i e s associated by them 

are the same. Despite t h i s fact, these r e l a t i o n s h i p s have a 

d i f f e r e n t context and cannot be merged unless the context of 

one or both of them i s changed. 

13. Two objects with d i f f e r e n t meanings can be related 

i n meaning. 

Meaning i s the only dimension where i d e n t i t y or difference are 

not the only two relevant values. For example, the e n t i t i e s 

EMPLOYEE and PART_TIME_EMPLOYEE have o b v i o u s l y d i f f e r e n t 

meaning, yet they are not completely independent. EMPLOYEE 

r e f e r s t o a type of i n d i v i d u a l s which includes the type of 

i n d i v i d u a l s r e f e r r e d to by PART_TIME_EMPLOYEE. Hence, when 

two o b j e c t s are d i f f e r e n t i n meaning, any superset-subset 

r e l a t i o n s h i p s between them are nevertheless relevant. Objects 

with such re l a t i o n s h i p s w i l l be c a l l e d related i n meaning. 
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14. Two related objects 01 and 02 w i l l display one of the 

following set relationships between them: 

1. 01 and 02 have a common subset (yes/no); and 

2. 01 and 02 have a common superset (yes/no); 

r e s u l t i n g i n the following possible combinations: 

(a) one object contains the other object; 
(b) b o t h o b j e c t s have a (meaningful) common 

superset and a common subset, yet the superset 
i s not one of 01 or 02; 

(c) both o b j e c t s have a common superset, but 
they do not overlap; 

(d) both objects have no common superset and do 
not i n t e r s e c t ; v i r t u a l l y no relatedness, no 
need for representation i n a database. 

Set r e l a t i o n s h i p s and t h e i r treatment within view integration 

have been discussed at d i f f e r e n t l e v e l s of completeness by a l l 

previously reviewed integration techniques, most completely by 

Navathe and colleagues, Elmasri and Navathe (1984), Navathe 

and Elmasri (1983). 

This r u l e l i s t s a l l relevant r e l a t i o n s h i p s between two sets. 

The q u a l i f i e r "meaningful" for supersets or subsets implies 

t h a t any such superset or subset has to be a cohesive group 

from the point of the users. For example, the e n t i t i e s EMPLOYEE 

and CUSTOMER have a common superset requiring implementation, 

the e n t i t y PERSON. Consequently, both EMPLOYEE and CUSTOMER 

would i n h e r i t the at t r i b u t e s of PERSON and a l l instances of 

EMPLOYEE and CUSTOMER would be instances of PERSON. Another, 

les s meaningful superset would be an e n t i t y EMPLOYEESCUSTOMER. 

The c h o i c e o f an a p p r o p r i a t e common s u p e r s e t , i . e . , 
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EMPLOYEES CUSTOMER vs. PERSON, has to remain with the user 1 . 

While there are no fixed rules to what constitutes a "good" 

e n t i t y , t h e r e are i n d i c a t o r s for less good e n t i t y choices. 

For instance, i f the user cannot provide a good name for the 

object, i t may not be a (good) e n t i t y . I.e., EMPLOYEE&CUSTOMER 

i s not a good object name. Hence, the object i s not expected 

to be very meaningful. Or, i f the objects a t t r i b u t e s are 

i d e n t i c a l t o an already e x i s t i n g o b j e c t ' s a t t r i b u t e s , the 

object may not be a (good) e n t i t y . 

Examples fo r the forms of relatedness are: 

(a) EMPLOYEE contains PART_TIME_EMPLOYEE; 

(b) PRODUCT_TEAM_MEMBER and PROJECT_TEAM_MEMBER are 

both s u b s e t s of EMPLOYEE, t h e i r i n t e r s e c t i s 

PRODUCT&PROJECT_TEAM_MEMBER; 

(c) PART_TIME_EMPLOYEE and FULL_TIME_EMPLOYEE are both 

subsets of EMPLOYEE, but they do not overlap; 

(d) CUSTOMER and DEPARTMENT do not in t e r s e c t . 

The relatedness i n (d) i s so weak that i t s h a l l be ignored. Even 

though i t represents some extra knowledge about the world, the 

knowledge i s negative knowledge. Since negative 

1 Throughout the text, the term "user" ref e r s to a database 
designer who employs the integration method. This "designer 
user" represents the inte r e s t s of the end users of the database. 
The end users are assumed to have provided the o r i g i n a l views. 
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knowledge i s so much more abundant than p o s i t i v e knowledge, 

i t s representation t y p i c a l l y becomes i n f e a s i b l e . 

15. Two unrelated objects 01 and 02 may share a common 

ro l e . 

Two e n t i t i e s , f or example PERSON and COMPANY can be d i f f e r e n t 

and unrelated, but they s t i l l can have a common r o l e such as 

the r o l e of shareholder. Neither view may contain a shareholder 

object, even though both may contain a STOCK e n t i t y . Goldstein 

and Storey (1988) discuss unrelated objects sharing a common 

ro l e ("W-relationship") and the proper representation of t h i s 

s i t u a t i o n i n a generalization l a t t i c e . 

16. Two objects are i d e n t i c a l , i f they are i d e n t i c a l i n 

a l l dimensions. 

Only the previously discussed four dimensions are relevant to 

judge whether objects are i d e n t i c a l . Objects have to correspond 

i n a l l dimensions. For example, an e n t i t y EMPLOYEE and an 

e n t i t y WORKER are known to mean the same. Thus they are 

i d e n t i c a l i n meaning, construct ( e n t i t y ) , and context (empty). 

Nevertheless, the objects are i d e n t i c a l only a f t e r t h e i r names 

have been made i d e n t i c a l too. 
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17. Each object i s related to i t s e l f (contains i t s e l f and 

i s contained by i t s e l f ) . This relatedness s h a l l not 

be represented i n any view. 

T h i s r u l e guides and l i m i t s the search for between-view set 

r e l a t i o n s h i p s . For example, i f an e n t i t y EMPLOYEE has been 

found to be i d e n t i c a l to another object EMPLOYEE from some 

other view, each of the e n t i t i e s i s also a superset of the 

other one. They also share a common subset, the e n t i t y set 

i t s e l f . The r e p r e s e n t a t i o n of t h i s f i n d i n g bears no extra 

information. I t would also r e s u l t i n an i n f i n i t e expansion of 

the g l o b a l database, s i n c e i f every o b j e c t i s r e l a t e d to 

i t s e l f , also the object expressing t h i s relatedness i s related 

to i t s e l f which has to be expressed through yet another object, 

and so on. 

18. An object can be related to between 0 and n other 

objects. 

I t i s important to remember that one object can be related to 

more than one other object. The search f o r rel a t e d objects 

from another view i s not completed a f t e r one rel a t e d object 

has been found. However, i t i s also possible that no related 

objects can be found i n another view. 
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19. Each object i n one view can have a maximum of one 

i d e n t i c a l object i n another view ( c a l l t h i s object 

also the "corresponding" object). 

This r u l e follows from the general r u l e of modelling that no 

r e a l world o b j e c t s h a l l be represented more than once i n a 

model. A view i s a model. Hence, i f two objects of one view 

are i d e n t i c a l to another e n t i t y from some other view, the two 

objects must be i d e n t i c a l . This rule implies that once a p a i r 

of i d e n t i c a l o b j e c t s has been found, there i s no need to 

search f o r further i d e n t i c a l objects. 

20. Two views are the same, i f a l l t h e i r objects are 

i d e n t i c a l . 

The goal of the c o n f l i c t recognition and r e s o l u t i o n procedure 

i s to correct omissions and c o n f l i c t s so that at the end two 

p r e v i o u s l y d i f f e r e n t views are i d e n t i c a l . Then they do not 

have to be merged, one of them can be removed, since a l l i t s 

information i s also contained i n the other view. This rule 

states when the i d e n t i t y condition i s achieved. 
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21. Each i n d i v i d u a l view i s complete and consistent and 

minimal. 

A view i s complete i f i t represents a l l the i n d i v i d u a l s , 

things, and associations between them, relevant to the user. 

A view i s consistent i f none of the facts stated concerning 

the r e l a t e d n e s s of s e t s are c o n t r a d i c t e d by others i n the 

view. F o r example, i f the view s t a t e s t h a t the e n t i t y 

PART_TIME_EMPLOYEE i s a subset of the e n t i t y EMPLOYEE, no 

other f a c t i n the view may present contrary information, such 

as PART_TIME_EMPLOYEE and EMPLOYEE have no members i n common, 

(see Casanova and Vi d a l (1982), Biskup and Convent (1983)). 

M i n i m a l i t y of a view e n t a i l s that each r e a l world object i s 

only represented once i n a view. For example, i f one view 

co n t a i n s two e n t i t i e s , SUPPLIER and DEALER, these e n t i t i e s 

have to be d i f f e r e n t ; they have to r e f e r to d i f f e r e n t objects 

i n the r e a l world. 

The completeness assumption c l a r i f i e s the ro l e of the integration 

method as a method that finds omissions or c o n f l i c t s i n views 

based not on within-view (intra-view) analysis but based on 

between view (inter-view) comparison. 
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2 2 . The c o l l e c t i o n of views before i n t e g r a t i o n i s 

consistent. 

The view i n t e g r a t i o n method assumes t h a t not only views 

i n d i v i d u a l l y are consistent, but also that the c o l l e c t i o n of 

views i s consistent as a whole. In other words, facts stated 

concerning relatedness of sets i n one view cannot contradict 

facts stated i n another view. 

T h i s r u l e c l a r i f i e s the purpose of the c o n f l i c t recognition 

and r e s o l u t i o n method as a method that corrects omissions and 

c o n f l i c t s ( i . e . , differences i n opinion on name, context) but 

not contradictions. For instance, i f view VI states that a l l 

managers have to be f u l l - t i m e employees, while view V2 states 

t h a t a l s o part-time employees can be managers, the views 

contradict. Both statements cannot be true at the same time. 

The method assumes that such contradictions do not e x i s t . 

Rules Concerning the Test for Identity of Objects: 

( C o n f l i c t Recognition and Resolution Rules) 
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23. I f f or an object 01 from view VI an i d e n t i c a l object 

02 cannot be found i n view V2, then 02 i s either 

missing or represented through an object that has 

the same meaning but i s d i f f e r e n t along i t s other 

dimensions. 

Ideally, an i d e n t i c a l object 02 from V2 e x i s t s f o r each object 

01 from VI. Both objects are i d e n t i c a l i f they are i d e n t i c a l 

i n a l l r e l e v a n t dimensions: name, c o n s t r u c t , meaning, and 

context. The most c r u c i a l dimension i s the meaning dimension. 

I f two objects have the same meaning, they r e f e r to the same 

ob j e c t i n the r e a l world. Hence, i f an object 02 with the 

same meaning as 01 ex i s t s , there may remain a name, construct 

or context c o n f l i c t between Ol and 02 to be taken care o f f , 

but 02 i s not missing. I f no 02 exi s t s that r e f e r s to the 

same r e a l world object as 01 does, then that 02 i s t r u l y missing. 

24. No change of a view during integration s h a l l r e s u l t 

This r u l e provides a guideline to the d i r e c t i o n of change i n 

cases of construct mismatch as described by one of the following 

a l t e r n a t i v e s : 

i n the loss of information. 

Object i n view 1: Object i n view 2: 
En t i t y 
E n t i t y 
Relationship 

Relationship 
A t t r i b u t e 
A t t r i b u t e 

109 



Mismatches between an a t t r i b u t e on one hand and an e n t i t y or 

r e l a t i o n s h i p on the other hand w i l l r e s u l t i n a change of the 

o b j e c t with the a t t r i b u t e construct. This adjustment rule 

follows from the rule on interconnection a t t r i b u t e s . 

A mismatch between an e n t i t y and a r e l a t i o n s h i p , r e s u l t s i n a 

change of the object with the r e l a t i o n s h i p construct, based on 

the r u l e concerning object permanence. Relationships are less 

fundamental than e n t i t i e s . Relationship instances cease to e x i s t 

when the e n t i t y i n s t a n c e s they r e f e r t o cease to e x i s t 

( r e f e r e n t i a l i n t e g r i t y ) , as i l l u s t r a t e d below: 

View 1: SUPPLIER—Sup_con—CONTRACT—Cus_con—CUSTOMER 

View 2: SUPPLIER—Contract—CUSTOMER 

Both views have suppliers i n a contract s i t u a t i o n with customers, 

yet i n view 1, the contract i t s e l f i s an e n t i t y , i n view 2 i t 

i s a r e l a t i o n s h i p . In view 2, a disappearing customer (instance) 

destroys a l l records of a contractual agreement between him and 

the supplier. No h i s t o r i c data remains. In view 1, contracts 

have a l i f e of t h e i r own and survive the disappearance of a 

customer instance. Hence, the less permanent character of a 

r e l a t i o n s h i p p o t e n t i a l l y leads to information loss i n the 

database extension. Consequently, a construct mismatch between 
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an e n t i t y and a re l a t i o n s h i p should r e s u l t i n a change of the 

re l a t i o n s h i p construct into an e n t i t y construct. 

25. I f two unrelated objects share a common ro l e , the 

common ro l e object and s p e c i f i c r o l e objects have to 

be represented as well as Isa rel a t i o n s h i p s between 

the o r i g i n a l objects and the s p e c i f i c r o l e and between 

the s p e c i f i c roles and the common r o l e . 

This r u l e i s based on Goldstein and Storey (1988). For example, 

i n : 

VI: PERSON—Holds—STOCK 

V2: COMPANY—Holds—STOCK 

PERSON and COMPANY have the same r o l e . Therefore, a common 

ro l e object SHAREHOLDER i s needed to describe the s i t u a t i o n . 

Furthermore, s p e c i f i c r o l e o b j e c t s , PERSON_SHAREHOLDER and 

COMPANY_SHAREHOLDER are needed. Then, PERSON_SHAREHOLDER i s a 

PERSON as well as a SHAREHOLDER. SHAREHOLDER here w i l l be the 

object associated with STOCK through the Holds r e l a t i o n s h i p . 

Rules Concerning the Test f o r Relatedness of Objects: 

(Recognition and Modelling of Inter-Schema Relationships) 
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26. Any Object 01 from VI which i s not an e n t i t y and which 

i s related to an object 02 from V2 s h a l l become an 

e n t i t y . 

Any object 01 that i s not an e n t i t y i s e i t h e r a r e l a t i o n s h i p 

or an a t t r i b u t e . Neither of the two may be associated with 

other o b j e c t s by means of a r e l a t i o n s h i p . R e l a t i o n s h i p s 

i n v o l v e d i n r e l a t i o n s h i p s a r e not p e r m i t t e d , nor are 

r e l a t i o n s h i p s involving a t t r i b u t e s . However, i f two objects 

a r e r e l a t e d , t h e y w i l l have t o be connected by an Isa 

r e l a t i o n s h i p . Thus, t h i s construct change i s necessary. For 

example, an a t t r i b u t e Supplier belonging to e n t i t y PART i n 

view 1 i s r e l a t e d to e n t i t y DEALER from view 2. The relatedness 

i s such that a l l suppliers are dealers but not a l l dealers are 

s u p p l i e r s . In t h i s case, the Supplier a t t r i b u t e i n view 1 

w i l l become an e n t i t y , which w i l l be associated with part 

through a Supplies r e l a t i o n s h i p . Supplier i n view 1 was an 

i n t e r c o n n e c t i o n a t t r i b u t e which i s now more adequately 

represented through an e n t i t y . For a more de t a i l e d i l l u s t r a t i o n 

of construct changes compare section 4.3 on c o n f l i c t therapy. 

27. I f an object 01 contains an object 02, the containment 

s h a l l be represented by an Isa r e l a t i o n s h i p . I f the 

Isa r e l a t i o n s h i p does not e x i s t , i t must be added. 
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The contained object w i l l possess a l l a t t r i b u t e s of 

the containing object. 

T h i s r u l e on the E-R representation of containment i s taken 

from Elmasri and Navathe (1984). 

For example, i f EMPLOYEE contained PART_TIME_EMPLOYEE, the 

connection between the two would have to be represented by an 

Isa r e l a t i o n s h i p , s t a t i n g that PART_TIME_EMPLOYEE i s an EMPLOYEE. 

PART_TIME_EMPLOYEE would i n h e r i t a l l a t t r i b u t e s of EMPLOYEE. 

28. I f two objects 01 and 02 overlap, and neither object 

contains the other, the overlap s h a l l be represented 

by an overlap object 03. I f the overlap object does 

not e x i s t , i t must be added. The overlap object 03 

w i l l i n h e r i t the union of the a t t r i b u t e s of 01 and 

02. The connections 01-03 and 02-03 s h a l l be 

r e p r e s e n t e d by one Isa r e l a t i o n s h i p each. I f 

either of the Isa rela t i o n s h i p s does not ex i s t , i t 

must be added. 

T h i s r u l e s t a t e s how the method handles relatedness of the 

form common subset ( o v e r l a p ) . The f o l l o w i n g example w i l l 

i l l u s t r a t e the ru l e : 

View 1: PROJECT_EMPLOYEE[Emp#,Proj#,Yrs_experience,Title] 

View 2: PRODUCT_EMPLOYEE[Emp#,Prodname,Function,Title] 
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t h e common s u b s e t PROJECT&PRODUCT_EMPLOYEE i n h e r i t s the 

a t t r i b u t e s Emp#, Proj#, Yrs_experience, Prodname, Function, 

T i t l e and c o n t a i n s a l l i n s t a n c e s of employee contained i n 

PROJECT_EMPLOYEE and i n PRODUCT_EMPLOYEE ( i n t e r s e c t ) . 

Furthermore, the following re l a t i o n s h i p s are added: 

PROJECT&PRODUCT_EMPLOYEE—Isa—PROJECT_EMPLOYEE 

PROJECT&PRODUCT_EMPLOYEE—Isa—PRODUCT_EMPLOYEE 

The creation of overlap objects i s explained i n d e t a i l i n Yao 

et a l . (1982). 

29. I f two objects 01 and 02 have a common superset, and 

neither object contains the other, the superset s h a l l 

be represented by a superset object 03. I f the 

superset object does not e x i s t , i t must be added. 

The superset object 03 w i l l possess the int e r s e c t 

of the at t r i b u t e s of 01 and 02. I f they are not 

i d e n t i f i e r a t t r i b u t e s , these a t t r i b u t e s w i l l have 

to be removed from 01 and 02. The connections O l -

03 and 02-03 s h a l l be represented by one Isa 

rel a t i o n s h i p each. I f either of the Isa relationships 

does not ex i s t , i t must be added. 

T h i s r u l e s t a t e s how the method handles relatedness of the 

form common superset. The following example w i l l i l l u s t r a t e 

the r u l e : 
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View 1: PROJECT_EMPLOYEE[Emp#,Proj#,Yrs_experience,Title] 

View 2: PRODUCT_EMPLOYEE[Emp#,Prodname,Function,Title] 

the common superset EMPLOYEE receives the a t t r i b u t e s Emp#,Title. 

The non-key a t t r i b u t e T i t l e are removed from PROJECT_EMPLOYEE 

and from PRODUCT_EMPLOYEE: 

EMPLOYEE[Emp#,Title] 

PROJECT_EMPLOYEE[Emp#,Proj #,Yrs_experience] 

PRODUCT_EMPLOYEE[Emp#,Prodname,Function] 

EMPLOYEE cont a i n s a l l i n s t a n c e s of employees i n c l u d e d i n 

PROJECT_EMPLOYEE or i n PRODUCT_EMPLOYEE (union). Furthermore, 

the following r e l a t i o n s h i p s are added: 

PRODUCTJEMPLOYEE—Isa—EMPLOYEE 

PROJECT_EMPLOYEE—Isa—EMPLOYEE 

The c r e a t i o n of overlap objects and a t t r i b u t e r e l o c a t i o n i s 

explained f o r instance i n Navathe et a l . (1986). 

30. I f two objects exclude each other, the exclusion s h a l l 

be represented through an i n t e g r i t y constraint. 

No new objects are added i n the case of an exclusion. However, 

an i n t e g r i t y c o n s t r a i n t can be added to prevent any object 

i n s t a n c e from a c c i d e n t a l i n s e r t i o n into the non-overlapping 

sets. For example: 

View 1: FULLTIME EMPLOYEE 
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View 2: PARTTIME_EMPLOYEE 

d e s c r i b e two non-overlapping sets. An i n t e g r i t y constraint 

c o u l d be formulated to permit i n s e r t i o n of instances into 

e i t h e r o b j e c t only i f a f t e r the i n s e r t i o n a j o i n of both 

objects s t i l l returns the empty set. 

If the model (and the DBMS) can support i n t e g r i t y constraints, 

t h i s r e s t r i c t i o n can improve the d a t a q u a l i t y . The 

representation of exclusion i n t e g r i t y constraints i s suggested 

by [Casanova and V i d a l , 1983] and [Biskup and Convent, 1986]. 

31. Containment i s t r a n s i t i v e . I f A contains B and B 

contains C, then A contains C. The t r a n s i t i v i t y s h a l l 

not be e x p l i c i t l y represented i n any view. An Isa 

rel a t i o n s h i p between A and C i s assumed to ex i s t , i f 

an Isa r e l a t i o n s h i p exists between A and B and between 

B and C. 

T h i s r u l e p r e v e n t s the generation of new redundant Isa 

r e l a t i o n s h i p s i n m u l t i - l e v e l h i e r a r c h i e s . I f f o r example, 

PERSON, EMPLOYEE, and PART_TIME_EMPLOYEE e n t i t i e s e x i s t i n a 

view, and EMPLOYEE—Isa—PERSON, as well as PART_TIME_EMPLOYEE-

-Isa—EMPLOYEE has been expressed, there i s no need to also 

express PART_TIME_EMPLOYEE—Isa—PERSON. 
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32. I f an Isa re l a t i o n s h i p hierarchy implies another Isa 

re l a t i o n s h i p hierarchy because of t r a n s i t i v i t y , the 

implied Isa re l a t i o n s h i p s h a l l be removed. 

Thi s r u l e assures the removal of already e x i s t i n g redundant 

Isa r e l a t i o n s h i p s i n m u l t i - l e v e l hierarchies. I f for example 

view 1 s t a t e s t h a t PART_TIME_EMPLOYEE—Isa—EMPLOYEE—Isa— 

PERSON, while view 2 expresses that PART_TIME_EMPLOYEE—Isa— 

PERSON, expressed, the t r a n s i t i v e Isa i n view 2 contains both 

Isa's i n view 1 and i s redundant. I t has to be removed. 

33. C r e a t i o n of a new superset or subset object w i l l 

r e s u l t i n r e l o c a t i o n of r e l a t i o n s h i p s i f these 

rela t i o n s h i p s were previously linked to e n t i t i e s at 

an incorrect l e v e l of generalization. 

Whenever a new superset-subset r e l a t i o n s h i p i s introduced into 

a view, the p o s s i b i l i t y e x i s t s that e x i s t i n g r e l a t i o n s h i p s may 

have to be relocated. Consider the following example: 

VI: DEPARTMENT—Employs—FULLTIME_EMPLOYEE, 

V2: FULLTIME_EMPLOYEE—Isa—EMPLOYEE. 

In VI, Employs refers to FULLTIME_EMPLOYEE, because no more 

general EMPLOYEE object e x i s t s . Once the new EMPLOYEE becomes 
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p a r t of VI, the Employs r e l a t i o n s h i p w i l l be relocated to 

associate DEPARTMENT with EMPLOYEE. 

V1/V2: DEPARTMENT—Employs—EMPLOYEE—Isa—FULLTIME_EMPLOYEE. 

Process Rules: 

34. In view integration, the t e s t f o r i d e n t i t y ( c o n f l i c t 

recognition and r e c o n c i l i a t i o n ) s h a l l precede the tes t 

f o r relatedness. 

The t e s t f o r i d e n t i t y and the t e s t for relatedness are two 

independent phases of view integration. The t e s t for i d e n t i t y 

detects or creates i d e n t i c a l pairs of objects i n the involved 

views so that f i n a l l y f o r each object i n view VI exactly one 

i d e n t i c a l object e x i s t s i n view V2. The t e s t f o r relatedness 

has the purpose to detect currently missing forms of relatedness 

(set r e l a t i o n s h i p s ) between views. I t s purpose i s not to 

de t e c t within-view relatedness. A l l occurrences of within-

view relatedness are supposed to be already represented i n the 

i n d i v i d u a l views (completeness assumption). An example may 

i l l u s t r a t e t h i s f a c t . VI has employees working i n departments, 

V2 assigns employees to projects. 

View 1: EMPLOYEE—Works_in—DEPARTMENT 

View 2: EMPLOYEE—Assigned_to—PROJECT 
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The completeness assumption p o s t u l a t e s t h a t no forms of 

relatedness e x i s t within either of the views, because none are 

e x p l i c i t l y s t a t e d (no knowledge i s interpreted as negative 

knowledge). For example, i t i s known that EMPLOYEE i s not a 

subset of DEPARTMENT. Consequently, the search f o r inter-view 

relatedness has to focus only on those objects that o r i g i n a l l y 

e x i s t i n one view but not i n the other. I.e., i f EMPLOYEE 

were i d e n t i c a l to EMPLOYEE, Works_in i d e n t i c a l to Assigned_to, 

and DEPARTMENT i d e n t i c a l to PROJECT, then no undetected i n t e r ­

view relatedness could e x i s t . In order to know which views 

o r i g i n a l l y existed only i n one view but not i n the other, the 

t e s t f o r i d e n t i t y has to be c a r r i e d out f i r s t . Thus, the 

sequence of the two independent view comparisons, for i d e n t i t y 

and f o r relatedness, i s determined by the fac t that a previous 

t e s t f o r i d e n t i t y can reduce the number of comparisons for 

relatedness. 

Process Rules for C o n f l i c t Recognition and Rec o n c i l i a t i o n : 

35. For each o b j e c t 01 from view VI, t r y to f i n d an 

i d e n t i c a l object 02 i n view V2. 
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The purpose of the method i s to either f i n d that two views are 

i d e n t i c a l , or to make them i d e n t i c a l . Once two views are 

i d e n t i c a l , one of them can be e l i m i n a t e d because a l l i t s 

information i s represented i n the remaining view. As defined 

e a r l i e r , two views are i d e n t i c a l , i f a l l t h e i r objects are 

i d e n t i c a l . Hence, the t e s t f or i d e n t i t y begins with an attempt 

to f i n d an i d e n t i c a l object 02 i n V2 for each object 01 from VI. 

36. I f no i d e n t i c a l object 02 from V2 can be found for 

01 from VI, t r y to f i n d an object that has the same 

meaning as 01 and change the d i s s i m i l a r dimensions 

of 01 and 02 so that they become i d e n t i c a l . 

E a r l i e r , complete i d e n t i t y of objects was defined. This rule 

d e s c r i b e s the a c t i o n to be taken i f two o b j e c t s are only 

p a r t i a l l y i d e n t i c a l , i f they have the same meaning. The 

meaning dimension as the most important dimension determines 

the d i r e c t i o n of change. I f the e n t i t y SUPPLIER i n view 1 has 

the same meaning — r e f e r s to the same r e a l world o b j e c t — as 

the a t t r i b u t e Dealer_no i n view 2, both objects f i n a l l y have 

the same name and the same construct. 
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37. I f no object 02 with same meaning can be found, add 

a new object 02 to V2 where 02 i s i d e n t i c a l to Ol from 

VI. 

I f no object 02 with same meaning as 01's can be found, then 

01 has no corresponding object i n V2. Hence an object i d e n t i c a l 

to 01 has to be added to V2. 

38. For each object 02 from V2 which i s d i f f e r e n t i n 

meaning to 01 from VI but has the same name, change 

the name so that no two objects with d i f f e r e n t meaning 

carry the same name. 

This r u l e forbids the existence of homonyms i n the database. 

I f a homonym i s found, a name change i s required based on t h i s 

r u l e . Again, name follows the more important dimension meaning. 

I f meanings are d i f f e r e n t , names have to be d i f f e r e n t . The 

other dimensions, construct and context can remain as they are. 

39. For each 02 i n V2 that remains without an i d e n t i c a l 

object from VI, a f t e r a l l objects i n VI have been 

matched with an i d e n t i c a l object i n V2, add a new 

object 01 to VI which i s i d e n t i c a l to 02. 
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View V2 may contain objects that are not part of VI. Hence, 

a f t e r a l l of V l ' s o b j e c t s have been assigned an i d e n t i c a l 

object i n V2, some of the objects i n V2 may be l e f t without an 

i d e n t i c a l object i n VI. Consequently, these objects have to 

be added to VI. 

Process Rules f o r the R e c o g n i t i o n and Modelling of Inter-

Schema Relationships: 

40. Compare each object 01 from VI which was o r i g i n a l l y 

unique to VI (before addition of missing objects 

during i d e n t i t y t e s t ) a g a i n s t a l l o b j e c t s {02} 

formerly unique to V2, to f i n d out whether 01 contains 

02, or 02 contains 01. Represent each i d e n t i f i e d 

containment. 

Purpose of the analysis i s only the addition of missing i n t e r ­ 

view superset-subset rel a t i o n s h i p s . Therefore, the contain­

ment t e s t applies only to objects that were o r i g i n a l l y unique 

to one of the two views. For example: 

View 1: PART—Last_ordered_from—SUPPLIER 

View 2: PART—Carried_by—DEALER 
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Here PART i s the same i n both views and t h e r e f o r e i s not 

unique. Hence, only Carried_by, Last_ordered_from, DEALER, 

and SUPPLIER, are p o t e n t i a l l y r e l a t e d to objects from the 

other view. I.e., DEALER could be related to Last_ordered_from 

or to SUPPLIER, Last_ordered_from could be rela t e d to DEALER 

or to Carried_by. I f , for instance a l l SUPPLIERS are DEALERS 

but not a l l DEALERS are SUPPLIERS, then DEALER contains SUPPLIER. 

Consequently, an Isa re l a t i o n s h i p between SUPPLIER and DEALER 

would have to be created. 

The comparison summarized i n t h i s rule i s the f i r s t t e s t for 

relatedness, because i t the most spe c i a l case of relatedness 

and r e q u i r e s the l e a s t change i n the e x i s t i n g views. The 

comparison A contains B i s a spe c i a l case of common containment 

(A contains A and A contains B), as well as a s p e c i a l case of 

common subset (B i s a subset of A and B i s a subset of B). In 

t h i s s p e c i a l case, only an Isa re l a t i o n s h i p i s added to the 

views. In the general case, the common superset and the 

common subset have to be added too. Thus, i f t h i s t e s t i s the 

f i r s t one, the subsequent steps are s i m p l i f i e d . 

41. For a l l pairs of o r i g i n a l l y unique objects 01, 02 i n 

which neither object contains the other, investigate 

whether 01 and 02 are contained by a common object 
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d i f f e r e n t from 01 and 02. Represent the common 

containment. 

T h i s r u l e summarizes the procedure for a common containment 

where the containing object i s d i f f e r e n t from 01 or 02. Only 

those objects are compared that were o r i g i n a l l y represented i n 

one view only. A l l object pairs i n which one object contains 

the other are not considered. 

42. For a l l p airs of o r i g i n a l l y unique objects 01, 02 i n 

which neither object contains the other and which have 

a common superset, also investigate whether 01 and 

02 int e r s e c t . Represent any e x i s t i n g common subsets. 

Represent the lack of a common subset through an 

i n t e g r i t y constraint. 

This r u l e summarizes the procedure for a common subset where 

the i n t e r s e c t object i s d i f f e r e n t from 01 or 02. Only those 

objects are compared that were o r i g i n a l l y represented i n one 

view only. A l s o , only objects that have a common superset 

( d i f f e r e n t from OI and 02) are compared. Objects without a 

meaningful common superset cannot have a meaningful common 

subset. 
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43. For a l l object p a i r s 01, 02 o r i g i n a l l y unique to one 

view, investigate the existence of a W-relationship 

(common r o l e ) . R e p r e s e n t any e x i s t i n g W-

r e l a t i o n s h i p s . 

Even though the t e s t f o r r e l a t e d objects may not f i n d any 

relatedness among the objects themselves, objects can have a 

common ro l e , which requires the addition of objects to represent 

the common r o l e and the objects 1 s p e c i a l r o l e . I.e., both a 

company and a person can be car owners. Even though company 

and person are not related ( i . e . , have no meaningful common 

superset i n the database), t h e i r common r o l e car owner requires 

r e p r e s e n t a t i o n , as do t h e i r s p e c i a l roles person-car-owner 

and company-car-owner. 

Heu r i s t i c s 

H e u r i s t i c s are rules that are generally true, but not true i n 

a l l cases. The use of these rules during the view integration 

process w i l l s i m p l i f y the process for the user i n cases where 

the h e u r i s t i c s are t r u e and w i l l s l i g h t l y inconvenience or 

p r o l o n g the process when the h e u r i s t i c f a i l s . The use of 

i n c o r r e c t h e u r i s t i c s w i l l not r e s u l t i n an incorrect database 

design, but i t may prolong the database design process. 
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H e u r i s t i c s improve the integration process by helping the user 

to f i n d objects with s i m i l a r or related meaning. I f object 01 

i s compared to a set of objects {02} from view 2 and that set 

i s large and diverse (large number of objects including e n t i t i e s , 

r e l a t i o n s h i p s and attributes) , the s e l e c t i o n problem may be 

d i f f i c u l t f o r the user. I f the set {02} i s small, the sel e c t i o n 

problem becomes simple or even t r i v i a l . H e u r i s t i c s help to 

si m p l i f y the s e l e c t i o n problem by including only those objects 

i n the set that are l i k e l y to be i d e n t i c a l or rel a t e d to the 

object 01. 

The l i s t below shows only some h e u r i s t i c s , i t cannot be complete. 

I t i s always p o s s i b l e to formulate f u r t h e r assumptions to 

s i m p l i f y the search procedure. Furthermore, some of the 

h e u r i s t i c s shown may be too stringent for a p a r t i c u l a r design, 

others may be too loose. H e u r i s t i c s that are too stringent 

are a p a r t i c u l a r problem, since they can r e s u l t i n decision 

errors which require lengthy recovery procedures. This problem 

i s e x e m p l i f i e d i n the next sec t i o n which shows al t e r n a t i v e 

view integration procedures, one without any h e u r i s t i c s , one 

with only one h e u r i s t i c implemented. 

The following h e u r i s t i c s have been i d e n t i f i e d : 

1. Two objects with i d e n t i c a l or related meaning w i l l 

have some common context. 
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This r u l e says that i d e n t i c a l or related objects w i l l be found 

i n the v i c i n i t y of i d e n t i c a l objects. For example, i f i t has 

been found that there exists an en t i t y EMPLOYEE i n views VI 

and V2, and EMPLOYEE i n VI p a r t i c i p a t e s i n a re l a t i o n s h i p 

Employment, then i t i s reasonable to assume that EMPLOYEE w i l l 

p a r t i c i p a t e i n a s i m i l a r association i n V2, even though that 

association may not be c a l l e d Employment i n V2 and even though 

i t may not be a re l a t i o n s h i p . 

The h e u r i s t i c i s based on the assumption that people describing 

the same environment w i l l have the same perception of the 

environment. Since both views have common elements, both views 

describe at l e a s t p a r t i a l l y the same r e a l world environment. 

In the absence of i n f o r m a t i o n to the contrary, the method 

t h e r e f o r e that a l l users regard the same r e a l world objects 

and associations as relevant. 

In the example, the h e u r i s t i c f a i l s i f the Employment association 

i s not relevant i n V2 and therefore missing. Note however, that 

the Employment a s s o c i a t i o n may not be missing, but be more 

d i f f i c u l t t o f i n d , i f i n V2 i t i s not represented as a 

re l a t i o n s h i p , but as an e n t i t y a t t r i b u t e or as an e n t i t y . 
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Even though e n t i t i e s are d e f i n e d to have no context i t i s 

u s e f u l t o t r e a t the r e l a t i o n s h i p s they are involved i n as 

t h e i r context, t o permit the a p p l i c a t i o n of t h i s valuable 

h e u r i s t i c . 

2. Two objects with i d e n t i c a l or re l a t e d meaning w i l l 

have the same construct. 

T h i s r u l e s t a t e s t h a t even before c o n f l i c t r esolution, two 

object with i d e n t i c a l or related meaning w i l l be of the same 

type. Thus, the rule leads the integration method to look for 

a matching object only among those with the same construct. 

I f EMPLOYEE i s an e n t i t y i n VI, the matching object i n V2 w i l l 

also be an en t i t y . 

This h e u r i s t i c i s based on the assumption that i f two people 

describe the same object or association from the r e a l world, 

they w i l l agree i n t h e i r assessment of the construct that the 

object or association should be represented with. Depending 

on the r e a l world item, t h i s assumption i s more or l e s s 

reasonable. One would assume that almost anyone considers an 

employee or a customer to be an i n d i v i d u a l , but a customer's 

order may be perceived as a thing (entity) , or as an association 

(relationship) between a customer and a company. 
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The h e u r i s t i c f a i l s i n a l l cases of construct mismatch (semantic 

r e l a t i v i s m ) , i . e . , where one r e a l world object i s represented 

as an e n t i t y i n one view and as a re l a t i o n s h i p i n the other 

view. For cases i n which the r u l e f a i l s , the integration 

procedure has to backtrack and look at objects with d i f f e r e n t 

constructs to f i n d a match. 

3. I f no two objects with i d e n t i c a l or rela t e d meaning 

and i d e n t i c a l construct can be found, the construct 

mismatch w i l l be of the following type: 

- I f 01 i s an e n t i t y or a r e l a t i o n s h i p , then 02 

w i l l be an en t i t y a t t r i b u t e . 

This h e u r i s t i c suggests which construct mismatch to investigate 

f i r s t . Storey (1988) found that a very common error i n database 

design was the representation of an e n t i t y - r e l a t i o n s h i p construct 

as an interconnection a t t r i b u t e . Since t h i s "mistake" i s very 

frequently made, checking f o r i t s occurrence when an i d e n t i c a l 

o b j e c t was not found i s u s e f u l . In combination with the 

common context h e u r i s t i c , t h i s h e u r i s t i c i s expected to reduce 

the set {02} to a manageable s i z e . 

Some at t r i b u t e s can under no circumstance be interconnection 

a t t r i b u t e s , while others are more l i k e l y to be interconnection 
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a t t r i b u t e s . Two support r u l e s help i n i d e n t i f y i n g these 

groups: 

a s i n g l e a t t r i b u t e o b j e c t key cannot be an 

interconnection a t t r i b u t e . 

a t t r i b u t e s i n a m u l t i - a t t r i b u t e object key (composite 

key) are assumed to be interconnection a t t r i b u t e s . 

For example, Employee# i s the s i n g l e a t t r i b u t e key of an 

employee. I t does not represent the r e l a t i o n s h i p between 

EMPLOYEE and some other object. In contrast, the key of an 

ORDER e n t i t y , Customerid+Product# i d e n t i f i e s l i n k s to two 

other objects, a customer object and a product object. Both 

are p o t e n t i a l interconnection a t t r i b u t e s . 

Since more forms of mismatches other than the interconnection 

a t t r i b u t e s e x i s t , the h e u r i s t i c can f a i l . To recover from 

t h i s f a i l u r e , the system w i l l then search according to the 

following r u l e s : 

- I f 01 i s an e n t i t y and 02 i s not an e n t i t y a t t r i b u t e 

then 02 w i l l be a r e l a t i o n s h i p a t t r i b u t e . 

- I f 01 i s a r e l a t i o n s h i p and 02 i s not an e n t i t y 

a t t r i b u t e then 02 w i l l be an e n t i t y . 

These are the only other alte r n a t i v e s for construct mismatch, 

aside from the interconnection a t t r i b u t e assumption. However, 

any of these rules may f a i l too, i f an object i s missing. 
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4 . Objects with i d e n t i c a l meaning w i l l have i d e n t i c a l 

names (consider a name i n singular i d e n t i c a l with 

i t s p l u r a l ) . 

T h i s h e u r i s t i c assumes that a p a r t i c u l a r a p p l i c a t i o n uses a 

st a n d a r d i z e d language to la b e l i t s objects. In absence of 

information to the contrary, members of the same organization 

are expected to use terms to l a b e l the same objects. For 

instance, terms such as "department" or "job c l a s s i f i c a t i o n " 

or "account" are expected to be used consistently. I f t h i s 

were true, synonyms and homonyms would not e x i s t . Hence, t h i s 

assumption i s expected to have very l i m i t e d r e l i a b i l i t y . 

Nevertheless, i t provides a good s t a r t i n g point i n the search 

fo r matching pa i r s of objects at the outset of the integration 

procedure. 

When t h i s h e u r i s t i c i s applied, two objects are treated as 

having the same name even i f one i s i n singular form while the 

other one i n the p l u r a l ( i . e . , employee vs. employees). 

I f the h e u r i s t i c f a i l s , the search for a matching object has 

to continue among a l l objects with d i f f e r e n t names. 
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5 . Objects with related meaning w i l l have names with 

i d e n t i c a l word stems. 

In the search f o r related objects, the word stem can be a very 

s t r o n g f i l t e r to i d e n t i f y those o b j e c t s t h a t are l i k e l y 

unrelated. For example, FULLTIME_EMPLOYEE and EMPLOYEE have 

t h e same s t e m e m p l o y e e , GRADUATE_STUDENT and 

UNDERGRADUATE_STUDENT have the same student stem. Thus, they 

are l i k e l y to be related. An even stronger i n t e r p r e t a t i o n of 

the word stem phenomenon may conclude that i f one object's 

name i s the word stem, i t w i l l be the superset of the other 

object, while two object with d i f f e r e n t prefixes have a common 

superset. 

Again, s i n c e synonyms and homonyms are frequent, t h i s rule 

w i l l be of only l i m i t e d use. Nevertheless, i n a computerized 

procedure, i t r e q u i r e s no user e f f o r t and i s t h e r e f o r e a 

desirable feature, even i f i t s benefits may be marginal. 

6 . Two objects with i d e n t i c a l or related meaning w i l l 

have some a t t r i b u t e s with i d e n t i c a l names ( f o r 

e n t i t i e s and relationships only). 

E s p e c i a l l y i n the search for i d e n t i c a l objects, t h i s r u l e can 

be used to e l i m i n a t e those o b j e c t s t h a t are very u n l i k e l y 

candidates for i d e n t i t y . Two d i f f e r e n t views describing the 
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same EMPLOYEE e n t i t y are expected to use at le a s t some i d e n t i c a l 

a t t r i b u t e s to s p e c i f y employee properties. In p a r t i c u l a r , 

i d e n t i c a l or related objects are assumed to have the same key 

at t r i b u t e s (with the same key a t t r i b u t e names). 

Obviously, homonymy i s a problem i n t h i s context. Attributes 

may be i d e n t i c a l , but a t t r i b u t e names may be not. 

7 . Objects with i d e n t i c a l or r e l a t e d meaning w i l l 

belong to the same pre-defined meaning category. 

In a subsequent section, a hierarchy of object categories w i l l 

be introduced which provides a structure for the categorization 

of database objects according to t h e i r meaning, i . e . , as an 

"animate object". I f each object's meaning i s pre-defined, i n 

terms of the category i t belongs to, then two objects from 

d i f f e r e n t categories cannot be i d e n t i c a l . Again, t h i s h e u r i s t i c 

provides a f i l t e r to eliminate non-identical objects. 
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4.2. Diagnosis Procedure 

The c o n f l i c t and omission recognition procedure consists of 

two p a r t s : the t e s t for i d e n t i t y of objects (object types), 

and the t e s t for relatedness of objects. The t e s t f o r i d e n t i t y 

i s concerned with the i d e n t i f i c a t i o n of i d e n t i c a l objects i n 

the observed views; the t e s t for relatedness i s concerned with 

t h e d e t e c t i o n of i n t e r - v i e w s e t r e l a t i o n s h i p s (object 

relatedness). 

Even though an o b j e c t from one view can have at most one 

corresponding object i n any other view, more than one object 

of another view can be related to i t . Relatedness means that 

there e x i s t s a s e t r e l a t i o n s h i p between the objects. The 

relatedness question has to be approached independently. I t 

i s impossible to conclude the relatedness or non-relatedness 

of objects from the existence of a p a i r of i d e n t i c a l objects, 

or v i c e versa. 

The f i r s t question w i l l r e f e r to the i d e n t i t y of objects. In 

order to r e s t r i c t the t e s t for relatedness only to inter-view 

r e l a t e d n e s s , the relatedness t e s t has to be preceded by the 

t e s t f o r i d e n t i t y . Inter-view r e l a t i o n s h i p s can only ex i s t 

between objects that are o r i g i n a l l y unique to one view. To 

f i n d out, which objects have no corresponding objects i n the 

134 



other view, the t e s t for object i d e n t i t y has to be performed 1 . 

Test f o r Identity of Objects 

The purpose of t h i s t e s t i s to answer the question "does there 

e x i s t an object 02 i n V2 which i s i d e n t i c a l to 01 from VI?", i . e . 

i f view 1 contains an e n t i t y SUPPLIER, does view 2 also contain 

an e n t i t y with same name and same meaning. Again, "same meaning" 

can be interpreted as "both objects r e f e r to the same object i n 

the r e a l world". Obviously, finding a perfect match w i l l be the 

exception. I t i s more l i k e l y that objects w i l l be found that 

are somewhat s i m i l a r , but not i d e n t i c a l . In such cases, 

adjustments have t o be made. The general r u l e i s to make 

o b j e c t s completely i d e n t i c a l i f they r e f e r to the same r e a l 

world objects (have same meaning). In such cases, possible 

mismatches i n name, construct or context w i l l be adjusted. I f 

objects r e f e r to d i f f e r e n t r e a l world objects, then a possible, 

but u n d e s i r a b l e , match i n t h e i r names (homonym) has to be 

corrected. 

The t e s t f o r i d e n t i t y i s c a r r i e d out incrementally, with a 

comparison of the involved objects along one dimension at a 

time. A l l t e s t s compare one object from view 1 to a set of 

1 The t e s t procedures w i l l frequently mention therapy 
procedures to r e s o l v e c o n f l i c t s or to r e f l e c t i n t e r - v i e w 
r e l a t i o n s h i p s , without going into much d e t a i l . Detailed solution 
descriptions w i l l be given i n the subsequent section. 
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objects from view 2, to f i n d the ones that f u l f i l l the condition 

of the t e s t . Objects are i d e n t i c a l i f t h e i r four dimensions 

are i d e n t i c a l . Since the meaning dimension i s the most important 

one—other dimensions are adjusted a c c o r d i n g l y — i t presents a 

good s t a r t i n g point for the analysis. The main problem with 

t h i s approach i s that an object 01 from view VI i s compared to 

a l l objects 02 from V2, independent of t h e i r name, construct 

or context, even though only one object from V2 can be i d e n t i c a l 

to 01. This may require that the user check a long l i s t of 

i r r e l e v a n t objects. The h e u r i s t i c s introduced i n the previous 

s e c t i o n can be used to a l l e v i a t e the problem. Therefore, a 

second procedure w i l l be shown which includes the h e u r i s t i c 

"objects with i d e n t i c a l meaning w i l l have i d e n t i c a l constructs", 

to exemplify the e f f e c t of h e u r i s t i c s . This second procedure 

begins with a search for objects with constructs i d e n t i c a l to 

that of Ol. 

While i t i s important to begin with the meaning dimension i n 

the f i r s t procedure, the analysis sequence fo r other dimensions 

may vary. The order chosen here i s : construct, context, name. 

Construct a n a l y s i s has to precede context analysis, because 

every t e s t for i d e n t i t y may r e s u l t i n a change i n that dimension. 

For example, a t e s t f o r i d e n t i t y of construct w i l l cause a 

c o n s t r u c t change, i f c o n s t r u c t s are not i d e n t i c a l . But a 

c o n s t r u c t change w i l l also r e s u l t i n a context change. In 

contrast, context changes do not a f f e c t the construct. Thus, 
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no t e s t f o r i d e n t i t y of context should be executed u n t i l 

c o n s t r u c t s have become i d e n t i c a l . Name i d e n t i t y analysis 

should follow construct analysis, because the user may decide 

to g i v e o b j e c t s d i f f e r e n t names, which are based on t h e i r 

c o n s t r u c t . The complete procedure i s depicted i n flowchart 

form i n Figure 6 (with abbreviated notation). 

To i l l u s t r a t e the whole procedure with an example, i t w i l l be 

assumed that an object 01 from view VI i s selected at random, 

i . e . , the e n t i t y type SUPPLIER which denotes the set of current 

s u p p l i e r s of a company. With t h i s object held fixed, the 

following t e s t s are c a r r i e d out: 

The procedure begins with the goal to f i n d an object 02 with 

i d e n t i c a l meaning to 01. To f i n d the object, the procedure 

generates the hypothesis HI "there e x i s t s an object 02 from V2 

such that 02 i s i d e n t i c a l i n meaning to 01". Directed towards 

the user, i t r e s u l t s i n the question "which object from view 

VI i s i d e n t i c a l i n meaning to 01?" The use can then either 

i d e n t i f y an object, or reply with a "none". For example, view 

V2 may contain an e n t i t y MANUFACTURER which i s used i n V2 to 

d e s c r i b e a l l suppliers. I f a matching object i s found, the 

system state s'=sl i s reached. I f not, s'=s5. In contrast to 

the subsequent hypotheses H2-H4, t h i s t e s t compares 01 to a 

set {02} from view V2 rather than to a single object. {02} 

contains a l l objects from V2 which so far have not been 
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Figure 6 : T e s t f o r O b j e c t I d e n t i t y , P r o c e d u r e w i t h o u t 

He u r i s t i c s 
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matched up with an object from VI. As a r e s u l t of HI, either 

one of these objects w i l l f i n d a matching object i n VI, while 

the remaining n-1 objects w i l l be i n state s5, or a l l objects 

from {02} w i l l be i n state s5. In other words, fo r most, i f 

not a l l objects from V2, the r e s u l t of t h i s t e s t w i l l be state 

s5. Thus, i n the flowchart i n Figure 6, for most i f not a l l 

o b j e c t s i n {02}, the outcome of HI w i l l be the "no" path, 

while at most one object w i l l follow the "yes" path. 

I f a matching o b j e c t i s found, the method continues with 

hypothesis H2 which states that 01 and 02 w i l l have the same 

c o n s t r u c t , i . e . , that both are e n t i t i e s . The method issues 

the question, "do 01 and 02 have the same construct?" In a 

computerized view integration system, the integration procedure 

w i l l look up the information to answer t h i s question from the 

view d e f i n i t i o n s . Should both objects have d i f f e r e n t constructs 

(s'=s6), a c o n s t r u c t change would have to occur. I f the 

c o n s t r u c t s are i d e n t i c a l , s t a t e s'=s2 i s reached. In the 

example, SUPPLIER and MANUFACTURER are both e n t i t i e s and thus 

have i d e n t i c a l constructs. 

Subsequent t o s2, the system checks for i d e n t i c a l context. 

Are Ol and 02 associated with i d e n t i c a l objects? For e n t i t i e s , 

the answer to t h i s question i s always p o s i t i v e , since t h e i r 

context i s an empty set. I f 01 and 02 are r e l a t i o n s h i p s or 

a t t r i b u t e s and not a l l t h e i r context objects have been matched 
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to objects i n the other view yet, then the i d e n t i t y t e s t f or 

01 and 02 i s suspended, u n t i l the context objects are matched 

to objects i n the other view. I f the r e s u l t of the context 

t e s t i s that 01 and 02 have d i f f e r e n t contexts (s'=s7), the 

contexts have to be made i d e n t i c a l (s'=s3). In the example, 

both object are e n t i t i e s . Thus, both have i d e n t i c a l (empty) 

contexts. 

I f state s3 has been reached, the remaining t e s t i s the tes t 

for name i d e n t i t y of the objects. The method's hypothesis i s 

that both objects have i d e n t i c a l names. I f they do not share 

the same name (s'=s8), t h e i r names are made i d e n t i c a l (s'=s4) 

through a change of at lea s t one of the names. The new name 

w i l l have to be d i f f e r e n t from the names of a l l other objects 

i n VI and V2 to avoid homonymy. In the example, at le a s t one 

of the e n t i t i e s would require a name change. The name chosen 

should be such that i t i s not i d e n t i c a l to the name of another 

obj ect. 

Once the p a i r of objects i s i d e n t i c a l i n a l l four dimensions, 

the i d e n t i t y t e s t i s completed f o r t h i s p a i r . The method 

continues by s e l e c t i n g a new o b j e c t 01 from view VI, and 

subjecting i t to the same analysis. The procedure terminates 

when a l l objects have a matching object i n the other view. 
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The set of a l l objects {02} from V2 that, as a r e s u l t of HI, 

are known to be d i f f e r e n t i n meaning from 01 (s'=s5) i s subject 

to further analysis. H5 tests whether a l l of the objects have 

names d i f f e r e n t from 01's name. A l l objects with same names 

(slO) require renaming to make t h e i r names unique (s9). In 

addition, i f none of the objects {02} was i d e n t i c a l i n meaning 

to 01, a new object 02, completely i d e n t i c a l to 01, has to be 

added to achieve the state s4. 

The use of h e u r i s t i c s r e s u l t s i n changes to the view integration 

procedure. To exemplify such changes, a procedure w i l l be 

d i s c u s s e d below t h a t i n c l u d e s only one h e u r i s t i c : "objects 

with i d e n t i c a l meaning w i l l have i d e n t i c a l constructs." This 

h e u r i s t i c i s i n fac t one of the h e u r i s t i c s implemented i n the 

view integration program AVIS. Again, the procedure begins by 

picking one object 01 from view VI. I t again w i l l attempt to 

f i n d an object i n view V2 that i s i d e n t i c a l to Ol. 

The procedure (see Figure 7) begins with the goal " f i n d the 

set of objects {02} from V2 that have the same construct as 

object 01". Since the procedure assumes that a l l objects with 

same meaning have the same c o n s t r u c t , i t decides t o only 

c o n s i d e r those objects 02 for further i d e n t i t y t e s t i n g that 

have the same construct as 01. A number of objects from V2 

w i l l q u a l i f y and thus be i n state sO, while the objects of 
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d i f f e r e n t type w i l l be i n s t a t e s5. Since i n the example 

SUPPLIER i s an enti t y , a l l e n t i t i e s from V2 would be considered 

f o r further i d e n t i t y t e s t i n g . One may want to think of the 

use of construct as a " f i l t e r " which can reduce the number of 

objects to be considered, hopefully without being too stringent 

a condition. 

For those o b j e c t s with same c o n s t r u c t , the procedure then 

investigates whether there e x i s t s an object 02 which has the 

same meaning as 01 from VI. I.e., i t i s looking f o r an e n t i t y 

i n V2 i d e n t i c a l i n meaning to SUPPLIER. Again, at most one 

ob j e c t of V2 i s allowed to f u l f i l l t h i s c o n d i t i o n . That 

object w i l l be i n state s i . A l l objects with d i f f e r e n t meaning 

w i l l be i n state s6. I f an object with same meaning i s found, 

the procedure continues with the context (H3) and name (H4) 

te s t s , s i m i l a r to the te s t s above. However, i f no object i n 

V2 i s found to have the same meaning as 01, the procedure 

c o n t i n u e s d i f f e r e n t l y , t o v e r i f y one o f two p o s s i b l e 

i n t e r p r e t a t i o n s of the s i t u a t i o n . The f i r s t p o s s i b i l i t y i s 

th a t the h e u r i s t i c i s wrong. Thus, an object 02 with same 

meaning but d i f f e r e n t c o n s t r u c t e x i s t s i n V2. The second 

p o s s i b i l i t y i s that no object with i d e n t i c a l meaning exists i n 

V2, regardless of construct. The procedure has to f i n d out 

which a l t e r n a t i v e i s true, to avoid the creation of a non-

minimal global schema. 
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F i g u r e 7 : T e s t f o r I d e n t i t y w i t h H e u r i s t i c 
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Thus, a f t e r t a k i n g care of homonyms (H5), the procedure 

continues with a t e s t to i d e n t i f y those objects with constructs 

d i f f e r e n t from Ol's construct. In the figure, t h i s t e s t i s 

shown i n a b b r e v i a t e d n o t a t i o n as c 2 o c l . I t s c o r r e c t 

i n t e r p r e t a t i o n i s "are there any objects i n V2 that have a 

d i f f e r e n t construct?" This question may appear redundant for 

the o b j e c t s i n s5, because they f a i l e d the "same context" 

t e s t . However, the s e t of objects i n state s5 may be the 

empty set. Thus, they would q u a l i f y f o r the answer "no" to 

question H6 (s l 3 ) , requiring the addition of a new object. 

I f t h e r e are o b j e c t s i n V2 with c o n s t r u c t s d i f f e r e n t from 

Ol's, the procedure checks whether any of them have the same 

meaning as Ol (H7).. I f an object with same meaning i s found 

( s l l ) , i t s c o n s t r u c t has to be changed. I f no such object 

e x i s t s ( s l 4 ) , a t e s t for homonymy follows (H8), r e s u l t i n g i n a 

name change f o r a l l homonyms. Subsequently, the missing 

object i s added. 

In t h i s procedure v a r i a n t , the main e f f e c t i s a sequence 

change with r e s p e c t to the t e s t s f o r meaning i d e n t i t y and 

c o n s t r u c t i d e n t i t y . I t r e s u l t s i n a p r o l o n g a t i o n of the 

procedure i f the h e u r i s t i c i s wrong. 
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The procedure co u l d be v a r i e d f u r t h e r , f o r i n s t a n c e by a 

switch i n the sequence of meaning i d e n t i t y and context i d e n t i t y 

t e s t . Therefore, the t e s t for meaning i d e n t i t y would follow 

the t e s t f o r construct and context i d e n t i t y . Consequently, 

only those objects with same construct and same context would 

i n i t i a l l y be considered for the meaning i d e n t i t y t e s t . This 

procedure change would r e f l e c t the h e u r i s t i c " i d e n t i c a l objects 

are i n the v i c i n i t y of i d e n t i c a l o b j e c t s . " The procedure 

would look i n the neighborhood of matching objects to fi n d 

f u r t h e r matching o b j e c t s . T h i s h e u r i s t i c i s , i n modified 

form, also implemented i n AVIS. AVIS requires only part of 

the context to be i d e n t i c a l . 

The t e s t f o r meaning i d e n t i t y could even be moved past the 

te s t for name i d e n t i t y to r e f l e c t the h e u r i s t i c that objects 

with same meaning w i l l have same names. Since t h i s h e u r i s t i c 

i s expected to be frequently wrong, i t has not been implemented 

i n AVIS. 

Test f o r Relatedness of Objects 

The purpose of t h i s t e s t i s to f i n d out whether aside from 

being i d e n t i c a l , objects from one view are related to objects 

from another view through set rel a t i o n s h i p s . I.e., an en t i t y 
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(type) SUPPLIER i n VI i s a subset of an e n t i t y DEALER i n V2. 

Such a case would e x i s t i n a s i t u a t i o n where SUPPLIER referred 

to a l l current suppliers of the company, while DEALER refers 

to a l l present and a l l p o t e n t i a l suppliers of the company. I f 

those r e l a t i o n s h i p s are not made e x p l i c i t , anomalies can 

occur. I.e., i f a member i s dropped from the e n t i t y set 

DEALER, i t should a l s o be a u t o m a t i c a l l y dropped from the 

e n t i t y set SUPPLIER. Furthermore, a t t r i b u t e inheritance can 

be derived from set rel a t i o n s h i p s . 

The procedure described below i s a generic procedure without 

the use of h e u r i s t i c s (see Figure 8) . I t begins with a t e s t 

for containment (HI and H2) . Subject of the t e s t i s whether 

one of the o b j e c t s i s contained by the other object, i . e . , 

SUPPLIER i s contained by DEALER. The procedure f i r s t determines 

the set {02} of objects contained by 01, and then, f o r those 

objects not contained by 01, the set {02'} containing 01. The 

way the question i s raised to the user i s "Which of the objects 

( i n V2) are contained by 01", and v i c e versa "which of the 

objects (in V2) contain 01?" I t i s possible that 01 contains 

some o b j e c t s i n V2 while being i t s e l f contained by others. 

I.e., SUPPLIER (VI) i s contained by DEALER (V2) but may contain 

another object SMALL_QTY_SUPPLIER from V2. In such a s i t u a t i o n 

an Isa r e l a t i o n s h i p between DEALER and SMALL_QTY_SUPPLIER 

would have existed which now would have to be removed because 

i t i s a t r a n s i t i v e Isa. 
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The containment t e s t i s the f i r s t one issued, because i t i s 

the most s p e c i a l i z e d form of common containment and common 

superset, r e q u i r i n g the l e a s t amount of a d d i t i o n s to the 

ex i s t i n g views. Only one Isa r e l a t i o n s h i p has to be established 

between the o b j e c t s . The i n s e r t i o n of an Isa between the 

objects requires, however, that both objects are e n t i t i e s . I f 

they are not, a l l of them which are not e n t i t i e s have to be 

converted into e n t i t i e s . The t e s t H6.1 i s executed to determine 

whether both objects are e n t i t i e s . 

The e n t i t y t e s t (H6) i s issued for each p a i r of objects a f t e r 

t h e i r relatedness has been discovered. There i s no need to 

t e s t f o r object type e a r l i e r , since only related objects that 

are not e n t i t i e s w i l l require construct changes. Unrelated 

objects w i l l keep t h e i r o r i g i n a l constructs. Since the object 

type t e s t (H6) i s i d e n t i c a l for a l l forms of relatedness (H6.1 

- H6.4), i t w i l l not be discussed further i n the procedure. 

Should neither object contain the other one (s8), the procedure 

inquires whether both objects have a common superset (H3). I f 

they do, the procedure f u r t h e r i n q u i r e s whether a common 

subset e x i s t s between them (H4). The common superset question 

precedes the common subset question, because objects that have 

a (meaningful) common subset and are themselves meaningful 

sets have to have a (meaningful) common superset. Although i t 
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i s p o s s i b l e to construct sets such as the set of " a l l green 

things" and the set of " a l l edible things" which have a common 

subset i n the set of " a l l green edible things", while having 

no meaningful superset other than " a l l things", the rule i s 

nevertheless v a l i d when only meaningful sets are considered. 

In the example, e s p e c i a l l y the set "green things" i s not a 

meaningful set as i t has no c l e a r l y defined a t t r i b u t e s (rather 

than green color) which we expect for an e n t i t y or re l a t i o n s h i p 

type. 

I f objects have both a common superset and subset (slO), two 

new objects w i l l be created to represent the superset and the 

subset. Also, new Isa relationships w i l l be created to represent 

the relatedness. I f the objects have a common superset but 

no common subset (s l 4 ) , only a common superset e n t i t y and the 

corresponding Isa relationships w i l l be added. In addition, 

an i n t e g r i t y constraint may be defined to i d e n t i f y that the 

objects are not overlapping. 

Objects without a common superset (sl3) are tested f o r the 

ex i s t e n c e of a W-relationship (Goldstein and Storey, 1988) . 

I f no common superset e x i s t s , the objects are i n fact not 

r e l a t e d . Yet the objects may s t i l l require the creation of 

inter-view r e l a t i o n s h i p s i f they have a common r o l e . I f the 

objects have a common ro l e , i . e . , both a PERSON and a COMPANY 

en t i t y may be car-owners, a new object describing the common 
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r o l e (CAR_OWNER) , plus objects describing the spe c i a l roles 

(PERSON_CAR_OWNER, COMPANY_CAR_OWNER) have to be created. 

Furthermore, Isa relationships have to be added to represent 

the associations between the objects. 

I f not even a W-relationship e x i s t s between the objects, they 

are unrelated and require no addition of inter-view r e l a t i o n s h i p 

objects. 
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4 . 3 . C o n f l i c t Therapy 

As soon as a c o n f l i c t i s detected by the diagnosis procedure, 

the integration method w i l l correct the problem. Thus, while 

t h e r e e x i s t s a d i a g n o s i s procedure to recognize c o n f l i c t s , 

there e x i s t s no therapy procedure per se. Instead, for each 

c o n f l i c t case, a case solution i s defined. A l l case solutions 

are based on a set of 11 elementary solu t i o n operations which 

were formulated e a r l i e r as rules guiding view integration: 

1. Relationship becomes an e n t i t y . 

2 . Relationship a t t r i b u t e becomes an e n t i t y . 

3. E n t i t y a t t r i b u t e becomes an E-R construct. 

4. Association of an en t i t y to a r e l a t i o n s h i p . 

5 . Relocation of a re l a t i o n s h i p a f t e r creation of new 

superset or subset classes. 

6 . Representation of containment. 

7. Representation of a common ro l e (W-relationship). 

8 . Representation of common superset without overlap. 

9 . Representation of common superset with overlap. 

10. Renaming of homonyms and synonyms. 

11. Addition of missing objects. 

One or more of these elementary therapy measures may have to 

be c a r r i e d out during c o n f l i c t r e c o n c i l i a t i o n . Each of them 



w i l l be d e s c r i b e d i n d e t a i l . Appendix 2 w i l l show which 

groups of elementary s o l u t i o n s w i l l be applied to s p e c i f i c 

c o n f l i c t cases and t h e i r sub-cases. 

Relationship becomes an e n t i t y (SI) 

Whenever necessary, a r e l a t i o n s h i p i s transformed into an 

e n t i t y . I f a r e l a t i o n s h i p becomes an e n t i t y , the linkages 

between the r e l a t i o n s h i p and the e n t i t i e s i t associated become 

re l a t i o n s h i p s themselves (see Figure 9). 

C U S T O M E R 

Figure 9: Relationship Becomes an E n t i t y 
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The e n t i t y construct i s the more fundamental one. Furthermore, 

an e n t i t y can be associated to other e n t i t i e s by means of a 

r e l a t i o n s h i p , i . e . an Isa r e l a t i o n s h i p . Consequently, fo r the 

newly created e n t i t y set r e l a t i o n s h i p s to other objects can be 

represented within the E-R modelling language. In the example 

i n the f i g u r e , the r e l a t i o n s h i p Contract between DEALER and 

CUSTOMER becomes an e n t i t y i t s e l f and two new r e l a t i o n s h i p s , 

Dealer_contract and Customer-contract are created i n addition. 

Relationship a t t r i b u t e becomes an e n t i t y fS2) 

When necessary, r e l a t i o n s h i p a t t r i b u t e s are converted into 

e n t i t i e s and a linkage i s expressed between the r e l a t i o n s h i p 

and the newly created e n t i t y (see Figure 10). 

Figure 10: Relationship A t t r i b u t e Becomes an E n t i t y 
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R e l a t i o n s h i p a t t r i b u t e s t h a t have t o be transformed i n t o 

e n t i t i e s are i n t e r c o n n e c t i o n a t t r i b u t e s . Interconnection 

a t t r i b u t e s represent e n t i t i e s (or E-R constructs) i n shortened 

form. I f the database requires that an interconnection a t t r i b u t e 

be associated with another object, i t f i r s t has to be converted 

i n t o an e n t i t y (or an E-R construct) . In the i l l u s t r a t i o n , 

SUPPLIER i s associated with PART through the Supply r e l a t i o n s h i p 

which has an at t r i b u t e Project. This a t t r i b u t e subsequently 

becomes an e n t i t y . 

E n t i t y a t t r i b u t e becomes an E-R construct (S3) 

Similar to r e l a t i o n s h i p a t t r i b u t e s , e n t i t y a t t r i b u t e s may have 

to be transformed, i f they r e q u i r e a s s o c i a t i o n with other 

objects, or i f another view represents them d i f f e r e n t l y . An 

e n t i t y a t t r i b u t e which i s an interconnection a t t r i b u t e represents 

an e n t i t y - r e l a t i o n s h i p construct i n shortened form. Therefore, 

i t w i l l be converted i n t o an e n t i t y - r e l a t i o n s h i p structure 

(see Figure 11). 

T y p i c a l l y , the newly created e n t i t y w i l l r e f e r to the same 

r e a l world o b j e c t t h a t the o r i g i n a l a t t r i b u t e referred to. 

However, the user may think of the newly created r e l a t i o n s h i p 

as the object that corresponds to the o r i g i n a l a t t r i b u t e . In 
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f a c t , the a t t r i b u t e corresponds to both the e n t i t y and the 

re l a t i o n s h i p . In the example, the PART e n t i t y has an at t r i b u t e 

Supplier which i n fact represents a Supply r e l a t i o n s h i p and a 

SUPPLIER e n t i t y i n shortened form. 

Figure 11; E n t i t y A t t r i b u t e Becomes an E n t i t y - R e l a t i o n s h i p 

Construct 
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Association of an e n t i t y to a r e l a t i o n s h i p (S4) 

A c o n f l i c t s i t u a t i o n may require the association of an already 

e x i s t i n g e n t i t y with an already e x i s t i n g r e l a t i o n s h i p . The 

new element added to the view i s the association l i n k (role) 

between the e n t i t y and the r e l a t i o n s h i p (see Figure 12). 

View 1 

View 2 S U P P L I E R 

P R O J E C T 

PART 

Global 
Schema 

Figure 12: Association of an E n t i t y to a Relationship 

156 



Such a s i t u a t i o n arises when two rela t i o n s h i p s are s i m i l a r , 

even though one invol v e s only a subset of the e n t i t y types 

a s s o c i a t e d by the other r e l a t i o n s h i p , i . e . one i s a binary, 

the other a ternary r e l a t i o n s h i p . The figure shows a Supply 

r e l a t i o n s h i p , i n v o l v i n g only the SUPPLIER and PART i n the 

f i r s t r e l a t i o n s h i p . Subsequently, the PROJECT e n t i t y i s also 

t i e d into the re l a t i o n s h i p . 

Relocation of a re l a t i o n s h i p a f t e r creation of new superset or  

subset classes (S5) 

Whenever a new superset-subset r e l a t i o n s h i p i s introduced into 

a view, the p o s s i b i l i t y exists that e x i s t i n g r e l a t i o n s h i p s may 

have to be relocated. Figure 13 shows such a case. In view 

VI DEPARTMENT Employs FULLTIME_EMPLOYEE, while view V2 reveals 

that every FULLTIME_EMPLOYEE i s an EMPLOYEE. Once the views 

are combined, i t becomes evident that the Employs r e l a t i o n s h i p 

should a s s o c i a t e DEPARTMENT with EMPLOYEE rather than with 

FULLTIME_EMPLOYEE. Hence, the Employs r e l a t i o n s h i p i s relocated. 

Relocation becomes necessary whenever the o r i g i n a l r e l a t i o n s h i p , 

i . e . Employs, should have referred to eithe r a more general 

o b j e c t , i . e . EMPLOYEE instead of FULLTIME_EMPLOYEE, or to a 

more s p e c i f i c object. 
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View 1 F U L L T I M E -
E M P L O Y E E 

View 2 FULLT IME-
E M P L O Y E E 

Isa E M P L O Y E E 

Figure 13: Relationship Relocation 

Representation of containment (S6) 

Whenever one object (class) represents the superset of another 

object and t h i s superset-subset r e l a t i o n s h i p i s meaningful for 
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the database, i t has to be represented by an Isa re l a t i o n s h i p 

between the two objects (see Figure 14). 

View 1 F U L L T I M E . 
E M P L O Y E E 

View 2 E M P L O Y E E 

Figure 14: Representation of Containment 

The i l l u s t r a t i o n i n the figure shows the creation of an Isa 

r e l a t i o n s h i p between an EMPLOYEE and a FULLTIME_EMPLOYEE 

en t i t y . 
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Representation of a common r o l e (W-relationship) (S7) 

Two objects can be unrelated but nevertheless have some a f f i n i t y 

to each other, i f they assume a common r o l e . Goldstein and 

Storey (1988) i d e n t i f y t h i s a f f i n i t y as a W-relationship. 

Figure 15 depicts two e n t i t i e s , COMPANY and PERSON, as unrelated 

but both assuming the r o l e of a car owner. Both people and 

companies can be car owners. 

G L O B A L S C H E M A 
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In such a s i t u a t i o n , new objects have to be created to represent 

the common ro l e , i . e . STOCKHOLDER, as well as to represent the 

s p e c i f i c r o l e s , i . e . , COMPANY_STOCKHOLDER and PERSON_STOCKHOLDER. 

Each object representing a s p e c i f i c r o l e w i l l be contained by 

one of the o r i g i n a l objects, i . e . COMPANY or PERSON, as well 

as by the ob j e c t representing the common r o l e . Whenever a 

common r o l e i s represented, r e l o c a t i o n of rel a t i o n s h i p s may 

have to take place. 

Representation of common superset without overlap (S8) 

A Superset but no overlap describes objects that exclude each 

o t h e r , such as FULLTIME_EMPLOYEE and PARTTIME_EMPLOYEE. 

Figure 16 i l l u s t r a t e s such a scenario and shows the creation 

of a new superset object EMPLOYEE, connected to the o r i g i n a l 

objects through two Isa rel a t i o n s h i p s . 

The example i n Figure 16 i s based on the assumption that the 

EMPLOYEE e n t i t y has not previously existed i n ei t h e r of the 

view. Whenever a common superset i s represented, relocation 

of r e l a t i o n s h i p s may have to occur. 
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View 1 F U L L T I M E . 
E M P L O Y E E 

View 2 PARTT IME. 

E M P L O Y E E 

G L O B A L S C H E M A 

F U L L T I M E . 
E M P L O Y E E 

P A R T T I M E . 

E M P L O Y E E 

Figure 16: Representation of a Common Superset without Common 

Subset 
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Representation of common superset with overlap (S9) 

In s i t u a t i o n s where two objects not only have a common superset 

but also a common subset (overlap) both the superset and the 

subset have to be represented by additional objects and Isa 

r e l a t i o n s h i p s between the o r i g i n a l objects and the superset 

and subset objects (see Figure 17). 

View 1 

View 2 

P R O D U C T . 
T E A M -

MEMBER 

P R O J E C T . 
T E A M -

MEMBER 

G L O B A L S C H E M A 

P R O D U C T -
T E A M -

M E M B E R 

P R O J E C T - S -
P R O D U C T . 

T E A M -
MEMBER 

P R O J E C T . 
T E A M -

M E M B E R 

P R O J E C T . 
T E A M -

M E M B E R 

Figure 17: Representation of Common Superset and Common Subset 
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Figure 17 depicts PROJECT_TEAM_MEMBER and PRODUCT_TEAM_MEMBER 

e n t i t i e s . Both have the common superset EMPLOYEE and the 

common subset PROJECT&PRODUCT_TEAM_MEMBER. The Isa relationships 

r e p r e s e n t t h a t a l l team members are employees and that the 

members of the project&product team belong to both the project 

and the product team. Again, any previously e x i s t i n g superset, 

subset or Isa relationships w i l l not be reduplicated. Whenever 

a common superset or a common subset i s represented, r e l o c a t i o n 

of r e l a t i o n s h i p s may have to occur. 

Renaming of homonyms and synonyms (S10) 

Renaming becomes necessary when otherwise i d e n t i c a l objects 

c a r r y d i f f e r e n t names (synonym), or when d i f f e r e n t objects 

carry the same name (homonym). Once synonyms are treated, the 

objects should have the same name. That name should also be 

d i f f e r e n t from the name of any other object i n ei t h e r view. 

Once homonyms are treated, the involved objects should carry 

names t h a t are d i f f e r e n t from each other and d i f f e r e n t from 

a l l objects they are not known to be i d e n t i c a l to. 
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Addition of missing objects ( S l l ) 

Objects can be missing. Most views w i l l overlap only p a r t i a l l y . 

Hence, fo r any two views, a l l objects that e x i s t i n one view 

but not i n the other have to be added to the other view i n 

order to make the views i d e n t i c a l . The addition of missing 

objects i s part of the "view completion" strategy used i n t h i s 

i ntegration method. During integration, both views that take 

part i n the integration process are altered u n t i l f i n a l l y they 

are i d e n t i c a l . T h i s strategy i s d i f f e r e n t from those that 

create a t h i r d "integrated" view during the c o n f l i c t resolution 

process. 

Many c o n f l i c t cases require the combination of several elementary 

therapy procedures to correct a c o n f l i c t . For instance, a 

case of c o n s t r u c t mismatch p a i r e d with synonymy (Case 6) , 

requires a name change and a construct change, therapies S10 

and one of SI, S2, or S3. Appendix 2 presents the c o n f l i c t 

cases and a p p l i c a b l e therapy procedures. Case 6 i s shown 

below fo r i l l u s t r a t i o n . 

CONSTRUCT MISMATCH AND SYNONYM 

Nl <> N2; T l <> T2; Ml = M2; CI <> C2; 

6.1 E n t i t y i s Relationship. 
Solution: S10 and SI. 

6.2 E n t i t y A t t r i b u t e i s E n t i t y - R e l a t i o n s h i p 
construct. 

Solution: S10 and S3. 
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6.2.1. Attribute i s En t i t y . 
6.2.2. Attr i b u t e i s Relationship. 

6.3. Relationship A t t r i b u t e i s E n t i t y . 
Solution: S10 and S2. 
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4 . 4 . The Impact of Heu r i s t i c s 

The main goal of t h i s research i s the development of a complete 

view integration method. The secondary goal i s an adaptation 

of t h i s method to operate with i n s u f f i c i e n t information. 

The integration method i n the form described so f a r does not 

take into account the source of i t s information requirements. 

For example, i f the method has to know whether EMPLOYEE i n 

view 1 and DEALER i n view 2 are of the same o b j e c t type 

(construct) , the method expects t h i s information to be ava i l a b l e . 

The source of the information i s of no concern. Among the 

four r e l e v a n t dimensions f o r each object, name, construct, 

meaning, and context, name and construct are the ones most 

e a s i l y assessed. Does EMPLOYEE have the same name as DEALER? 

Obviously not. Also the object type i s observable, because 

object types are e x p l i c i t l y stated i n E-R models. The assessment 

of meaning i d e n t i t y , and therefore also context i d e n t i t y , i s a 

much more d i f f i c u l t problem. The question i s whether two view 

objects r e f e r to the same r e a l world object. 

Recognition or inter p r e t a t i o n of r e a l world objects i s a task 

beyond most computer systems and not a concern of t h i s research. 

Nevertheless, recognition of meaning i d e n t i t y or difference i s 

the most c r u c i a l recognition task, since the other dimensions 



follow the meaning dimension. I.e., i f two objects have the 

same meaning, t h e i r names w i l l ultimately be the same, i f they 

have d i f f e r e n t meaning, t h e i r names w i l l ultimately be d i f f e r e n t . 

The f o l l o w i n g a l t e r n a t i v e s e x i s t to s a t i s f y the meaning 

information requirement: 

1. user interrogation; 

2. advance meaning s p e c i f i c a t i o n ; 

3. method "guesses". 

The f i r s t a l t e r n a t i v e to s a t i s f y the meaning i n f o r m a t i o n 

requirement i s through user interrogation. Every time two 

objects are compared, the system could ask the user "are these 

two o b j e c t s i d e n t i c a l i n meaning?". This form of operation 

demands a s u b s t a n t i a l amount of question answering by the 

user, e s p e c i a l l y since for any object 01 i n view 1 at most one 

object 02 i n view 2 with the same meaning i s allowed to e x i s t . 

Advance meaning s p e c i f i c a t i o n requires an ex-ante d e f i n i t i o n 

of the meaning of each object i n a form that allows the method 

to compare i t to other objects and to decide on i d e n t i t y or 

d i f f e r e n c e . This requirement r e s u l t s i n two main problems. 

F i r s t , meaning descriptions may have to be very d e t a i l e d to 

d i f f e r e n t i a t e between objects that are quite s i m i l a r , yet not 
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completely i d e n t i c a l . Thus the up-front e f f o r t required i s 

very high. Secondly, meaning d e f i n i t i o n s have to be formulated 

i n such a form that there can be no misinterpretations. The 

terms used to define meaning have to be consistent over a l l 

object d e f i n i t i o n s . These two problems v i r t u a l l y r u l e out a 

p r i o r complete d e f i n i t i o n of each object's meaning. 

Method "guesses" r e q u i r e t h a t the i n t e g r a t i o n method has 

strong evidence on which i t can base i t s guesses. "Guessing" 

i m p l i e s t h a t whenever the method compares two objects, i t 

makes a d e c i s i o n whether to b e l i e v e t h a t the o b j e c t s are 

i d e n t i c a l or not. This i s the way i n which humans operate. 

When we say "I know", we mean that we believe, based on evidence 

for the fac t and no or l i t t l e evidence against the f a c t " . I f 

evidence i s not available, the method i s bound to make mistakes. 

U n f o r t u n a t e l y , ample opportunity for mistakes e x i s t s , since 

the amount of p o s i t i v e information — a n y Ol i s i d e n t i c a l to at 

most one 0 2 — i s so much smaller than the amount of negative 

i n f o r m a t i o n . Hence, reliance on guesses i s not a desirable 

a l t e r n a t i v e . 

Apparently, none of the a l t e r n a t i v e s by i t s e l f provides a 

reasonable s o l u t i o n to the information requirement problem. 

The f i r s t a l t e r n a t i v e , interrogation, provides the information, 

yet at high c o s t t o the user. The second a l t e r n a t i v e , up­

f r o n t d e f i n i t i o n , does not n e c e s s a r i l y p r o v i d e a l l the 
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information and i t requires a l o t of user e f f o r t i n addition 

to an unambiguous r e p r e s e n t a t i o n . The t h i r d a l t e r n a t i v e 

r e q u i r e s no user e f f o r t but does not guarantee t h a t the 

information requirements are s a t i s f i e d c o r r e c t l y . Consequently, 

the best strategy to s a t i s f y the requirements, i s to combine 

the good aspects of the discussed a l t e r n a t i v e s . 

User i n t e r r o g a t i o n i s the only method t h a t s a t i s f i e s the 

information requirements, therefore i t i s the dominant approach 

( i f the user says that i n h i s world two objects are i d e n t i c a l , 

they are i d e n t i c a l , unless t h i s fact c o n f l i c t s with a previous 

statement). The other two a l t e r n a t i v e approaches can be used 

t o overcome or at a l l e v i a t e the weakness of d i r e c t user 

i n t e r r o g a t i o n , because they can l i m i t and p r i o r i t i z e the 

questions to be asked. 

Most of the questions of the type " i s object 01 i d e n t i c a l to 

..." w i l l r e s u l t i n the answer "no" or the w i l l demand the 

comparison to a vast number of other objects at once. I f 01 

i s compared to a l l objects i n 02 i n one comparison, the user 

has to deal with a large amount of information which may make 

i t d i f f i c u l t to answer c o r r e c t l y . Consequently, an improved 

method should reduce the number of objects OI has to be compared 

to. I f object i d e n t i t y i s the goal, only such 02s should be 

compared to 01 which could p o t e n t i a l l y be i d e n t i c a l to 01. In 

other words, a f i l t e r would be used to reduce the number of 
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o b j e c t s i n the comparison. Ex-ante meaning d e f i n i t i o n s of 

objects, i f i n unambiguous form, can be used i n such a manner. 

I f the purpose of ex-ante meaning d e f i n i t i o n s i n t h i s approach 

i s t o allow an automatic assessment of difference, meaning 

d e f i n i t i o n s can become much shorter. For example, the meaning 

d e f i n i t i o n of each o b j e c t could contain j u s t one fact, i t s 

v a l u e being e i t h e r "animate object", "inanimate object" to 

separate a l l E-R model o b j e c t s describing l i v i n g creatures 

from those describing things. I f a l l database objects were 

c o r r e c t l y c l a s s i f i e d , the method could automatically decide 

that EMPLOYEE and DEPARTMENT are d i f f e r e n t , because the former 

one i s a l i v i n g object, the l a t t e r one not. A few general 

categories can be chosen which can allow s u f f i c i e n t s p e c i f i c a t i o n 

and d i f f e r e n t i a t i o n of meaning without the need for an excessive 

up-front d e f i n i t i o n e f f o r t . Ein-Dor (1987) discusses the use 

of such "common sense knowledge" i n reasoning. Grounded on 

such a common sense knowledge based c l a s s i f i c a t i o n , the 

i n t e g r a t i o n method could quickly eliminate those objects 02 

that are not i d e n t i c a l to object 01. The user would only have 

to decide among the remaining objects. 

A further reduction i n the number of objects involved i n the 

comparison can be i n i t i a t e d through the use of other available 

i n f o r m a t i o n , i n combination with the use of h e u r i s t i c s , as 

discussed previously. Instead of guessing which objects are 
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i d e n t i c a l , the method cou l d use any additional evidence to 

further reduce the number of objects under consideration. The 

following two views s h a l l exemplify t h i s approach which u t i l i z e s 

context information: 

View 1: EMPLOYEE—Employed_by—DEPARTMENT 

View 2: EMPLOYEE—Works_in—XYZ—Engaged_in—PROJECT 

Suppose, i t i s alrea d y known t h a t EMPLOYEE i n view 1 and 

EMPLOYEE i n view 2 are i d e n t i c a l . Now, the next task would be 

to f i n d out whether the re l a t i o n s h i p Employed_by i s i d e n t i c a l 

i n meaning to any object i n view 2. One reasonable assumption 

would be t o expect t h a t an object i d e n t i c a l to Employed_by 

would also be a r e l a t i o n s h i p i n view 2. This does not have to 

be the case but i s quite l i k e l y (hence, a h e u r i s t i c ) . This 

simple assumption reduces the number of contenders i n view 2 

to the objects, Works_in and Engaged_in. Another reasonable 

assumption would be to expect that the object sought i n view 2 

i s also associated with that view's EMPLOYEE e n t i t y . Again, 

t h i s does not n e c e s s a r i l y have to be the case, information 

could be missing i n view 2, yet i t i s an assumption l i k e l y to 

be t r u e . The second assumption leaves only Works_in as a 

p o t e n t i a l candidate to have the same meaning as Employed_by. 

Consequently, instead of asking the user " i s the r e l a t i o n s h i p 

Employed_by i d e n t i c a l i n meaning to one of the following: 

Works_in, XYZ, Engaged_in, PROJECT?", i t can more i n t e l l i g e n t l y 

ask, " i s the r e l a t i o n s h i p Employed_by i d e n t i c a l i n meaning to 
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the r e l a t i o n s h i p W o r k s i n ? " , thus s i m p l i f y i n g the decision 

task f o r the user. 

Not only context and construct can be used to make assumptions 

about the i d e n t i t y of objects. Other avai l a b l e information, 

such as names can be used too. Figure 18 provides an overview 

of p o t e n t i a l sources of evidence for meaning i d e n t i t y . The 

f i r s t aspect, meaning representation, has already been discussed. 

MEANING 

Figure 18: Sources of Evidence for Meaning Identity 
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The second aspect, context, i s broken down into three observable 

f a c t s : r e l a t e d objects, c a r d i n a l i t i e s , and roles of e n t i t i e s 

i n a r e l a t i o n s h i p . "Related o b j e c t s " denotes the general 

d e f i n i t i o n of context. C a r d i n a l i t i e s r e f e r s to the context of 

re l a t i o n s h i p s . I f two relationships do not only associate the 

same e n t i t i e s , but a l s o with the same mapping r a t i o s , the 

evidence f o r the r e l a t i o n s h i p s 1 i d e n t i t y i s even stronger. 

When a view contains multiple relationships associating the 

same set of e n t i t i e s , a d i f f e r e n t i a t i o n by c a r d i n a l i t i e s can 

be u s e f u l . The use of r o l e s a p p l i e s only when r o l e s are 

defined. I f names are given to the associating l i n k between 

an e n t i t y and a r e l a t i o n s h i p , then these r o l e names can be 

used for comparison. 

Third, a t t r i b u t e s can serve as an indicator for i d e n t i t y . The 

problem i s t h a t a t t r i b u t e s are o b j e c t s i n themselves and 

t h e r e f o r e s u b j e c t to the same d i f f i c u l t i e s with respect to 

i d e n t i t y assessment. One aspect of at t r i b u t e s , however, i s 

e a s i l y found out, t h e i r names. Thus, two o b j e c t s may be 

speculated to be i d e n t i c a l , i f t h e i r a t t r i b u t e s have i d e n t i c a l 

names. As f o r a l l previous indicators, there has to be room 

f o r i n t e r p r e t a t i o n . The requirement should not be that a l l 

a t t r i b u t e s have t o be i d e n t i c a l , y e t a t l e a s t some. 

A l t e r n a t i v e l y , the key a t t r i b u t e ( s ) c o u l d be the focus of 
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attention. I d e n t i c a l objects are l i k e l y to have i d e n t i c a l key 

at t r i b u t e s . 

Fourth, i d e n t i c a l domains can be an in d i c a t o r f o r i d e n t i c a l 

meaning, i f domains can be d e f i n e d unambiguously. For 

at t r i b u t e s , domains are the value sets from which the a t t r i b u t e 

values are drawn, i . e . "Social Security Number". For other 

o b j e c t s , an o b j e c t ' s superset d e f i n e s i t s domain. I.e., 

EMPLOYEE — Isa—PERSON s p e c i f i e s the domain of EMPLOYEE as 

being a person. I f the other view contains also the PERSON 

e n t i t y , then the EMPLOYEE e n t i t y could e x i s t only among i t s 

subsets. 

F i n a l l y , the name of an object as an ind i c a t o r f o r i t s meaning 

can be another relevant piece of evidence. E s p e c i a l l y i f name 

i d e n t i t y i s not defined as s t r i c t i d e n t i t y of the character 

s t r i n g s , b u t i f i t a l s o a l l o w s f o r s i n g u l a r / p l u r a l 

d i f f e r e n t i a t i o n , as i n EMPLOYEE vs. EMPLOYEES. Both objects 

could be expected to be the same, even though t h e i r names are, 

s t r i c t l y interpreted, d i f f e r e n t . For the analysis of relatedness 

of objects, t h i s i n t e r p r e t a t i o n f l e x i b i l i t y could be widened, 

allowing f o r comparison of objects that only d i f f e r i n t h e i r 

names' p r e f i x e s . For example PART_TIME_EMPLOYEE, EMPLOYEE, 

and FULL_TIME_EMPLOYEE could be expected to be i d e n t i c a l or at 

l e a s t r e l a t e d , s i n c e they a l l t h e i r names contain the root 

word employee. 
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I t i s u n l i k e l y , that for any given object a l l these aspects 

p o i n t i n t o the same d i r e c t i o n , t h a t i s , i d e n t i f y the same 

o b j e c t . Often, i t may not be known what the context of a 

p a r t i c u l a r o b j e c t i s , naming pre f e r e n c e s w i l l d i f f e r , and 

d i f f e r e n t tasks may require d i f f e r e n t object a t t r i b u t e s . The 

approach to be taken i s to use these indicators as a f i l t e r of 

v a r i a b l e density. At f i r s t , the f i l t e r should be t i g h t , to 

suggest only the most l i k e l y candidate(s) f o r a meaning match, 

i . e . , only the objects of the same type with same context and 

of the same meaning category. Should t h i s f i l t e r be too wide 

s t i l l , i . e . , for a database with many e n t i t i e s of the people 

category, p a r t i a l overlap of a t t r i b u t e names, or i d e n t i t y of 

key a t t r i b u t e names can be used to r e s t r i c t the number of 

objects. Upon f a i l u r e , i . e . , i f none of the suggested objects 

resulted i n a proper match, the technique could remove one or 

more of the e a r l i e r applied r e s t r i c t i o n s , i . e . , look for a l l 

o b j e c t s of the same meaning category, regardless of object 

type and context. 

There e x i s t s no single best rule for the app l i c a t i o n of meaning 

ind i c a t o r s . The only indicator which i s always applicable and 

correct i n i t s prediction, should the information be available, 

i s the meaning category indicator. By d e f i n i t i o n two objects 

cannot be i d e n t i c a l i n meaning unless t h e i r meanings belong to 

the same category of meaning. I.e., EMPLOYEE and DEPARTMENT 
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cannot have the same meaning because one i s an animate object, 

the other one an inanimate object. Hence, t h i s i n d i c a t o r i s 

the only one that can eliminate objects with c e r t a i n t y . The 

other i n d i c a t o r s can only suggest t h a t an object may have 

d i f f e r e n t (or same) meaning. 

Only e m p i r i c a l data generated under a v a r i e t y of conditions 

can provide stronger evidence on which meaning indicators work 

better than others. For instance, i f the same systems analyst 

produces a l l views (based on d i f f e r e n t u s e r s ' information 

r e q u i r e m e n t s ) , one may expect t h a t o b j e c t type may be a 

r e a s o n a b l e i n d i c a t o r ( f i l t e r ) f o r meaning i d e n t i t y ; the 

u n d e r l y i n g assumption being that a single database designer 

w i l l be more consistent i n what he models as a re l a t i o n s h i p 

vs. an e n t i t y or a t t r i b u t e than a m u l t i p l i c i t y of designers. 

I f a l l views s p e c i f i c a t i o n s and designs are done by the same 

person (user d e s i g n e r ) , one should expect names to be used 

co n s i s t e n t l y throughout the views. Hence, names could provide 

a good basis to judge meaning i d e n t i t y . 
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4.5. Generalization Hierarchy for Database Objects 

The previous section introduced the idea of ex-ante 

meaning d e f i n i t i o n s according to predefined meaning categories. 

Here, the concept of a g e n e r a l i z a t i o n h i e r a r c h y s h a l l be 

introduced to f a c i l i t a t e the categorization. 

The d i f f i c u l t y i n developing such a c l a s s i f i c a t i o n scheme i s 

the f a c t that i t has to be acceptable to a l l people involved 

i n the database design process. In order to f u l f i l l t h i s 

goal, the generalization hierarchy should be: 

1. complete; 

2. consistent; 

3. discriminative; 

4. concise. 

C r i t e r i a 1 and 2 are minimum c r i t e r i a . F i r s t , a c l a s s i f i c a t i o n 

scheme that does not allow the user to c l a s s i f y a l l h i s objects 

i n accordance with i t i s i n s u f f i c i e n t to capture that user's 

knowledge. Second, i f the scheme induces the user to c l a s s i f y 

the same o b j e c t under d i f f e r e n t categories, i t v i o l a t e s the 

purpose of the scheme, namely to i d e n t i f y s i m i l a r i t y or 

differ e n c e of object meanings. 

178 



C r i t e r i a 3 and 4 are based on Leibniz's Minimality P r i n c i p l e 

(Leibniz, 1956, pp. 198-199). This p r i n c i p l e postulates that 

a representation i s superior to another one, i f i t requires a 

s h o r t e r e x p l a n a t i o n t o e x p l a i n t h e same phenomena. 

C o r r e s p o n d i n g l y , a g e n e r a l i z a t i o n h i e r a r c h y t h a t can 

d i f f e r e n t i a t e among a l a r g e r number of object classes than 

another one with the same number of d i f f e r e n t i a t i o n c r i t e r i a 

i s superior. What i s undesirable i s a c l a s s i f i c a t i o n scheme 

that i s very fine-grained for a subset of object classes but 

very coarse f o r the remainder of object classes. Similar to 

an unbalanced binary tree, the too fine/too coarse generalization 

hierarchy would waste too many l e v e l s of s p e c i a l i z a t i o n on too 

few phenomena. 

Unfortunately, choice of the " r i g h t " generalization hierarchy 

w i l l consequently depend on the knowledge domain and on the 

way i n which the person who c l a s s i f i e s objects d i f f e r e n t i a t e s 

among them. For example, a generalization hierarchy which 

co n t a i n s only one c l a s s f o r a l l "people objects" w i l l deal 

p o o r l y with a database that stores only data for d i f f e r e n t 

people r o l e s ( i . e . , employee, investor, saver, tax payer). 

Consequently, v a l i d a t i o n of the q u a l i t y of a generalization 

hierarchy i s possible only within the context of a p a r t i c u l a r 

knowledge domain and a s p e c i f i c person who c l a s s i f i e s objects. 

Hence i t i s necessary to i n c l u d e the c r e a t i o n of such a 

generalization hierarchy i n the requirements analysis e f f o r t . 

179 



The database designer has to develop a hierarchy which can 

represent the app l i c a t i o n domain and has the above mentioned 

desirable properties. 

I f no such s p e c i a l i z e d c a t e g o r i z a t i o n h i e r a r c h y e x i s t s , a 

domain-independent c a t e g o r i z a t i o n hierarchy could be used. 

The hierarchy created as part of t h i s project, i s rather f l a t , 

incorporating only few l e v e l s of s p e c i a l i z a t i o n . 

A f l a t generalization hierarchy has the obvious disadvantage 

o f l i m i t e d d i s c r i m i n a t i v e a b i l i t y . However, o b j e c t 

c l a s s i f i c a t i o n s are used to i d e n t i f y difference i n meaning, 

not meaning i d e n t i t y . Object c l a s s i f i c a t i o n i s only one of 

the i d e n t i f i e r s used by the integration method, and the method 

w i l l always i n t e r r o g a t e the user, i f i n doubt. Since the 

focus i s on difference i n meaning, even a f l a t generalization 

hierarchy has reasonable discriminative a b i l i t y , as the following 

example may i l l u s t r a t e . 

Consider a g e n e r a l i z a t i o n h i e r a r c h y that can d i f f e r e n t i a t e 

among 20 c l a s s e s , such as Person, Animal, O r g a n i z a t i o n . 

Object EMPLOYEE i s c l a s s i f i e d as a Person. The question to be 

answered i s " i s object XYZ d i f f e r e n t i n meaning from object 

EMPLOYEE?". Without f u r t h e r knowledge about XYZ, XYZ has 

equal p r o b a b i l i t i e s to belong into e i t h e r c l a s s , and thus a 

.05 chance of belonging into the class Person. Thus there 
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e x i s t s a .05 chance for the c l a s s i f i c a t i o n mechanism to suggest 

that EMPLOYEE and XYZ are not d i f f e r e n t i n meaning. In t h i s 

s i t u a t i o n (1 out of 20 cases) , the user would have to be 

con s u l t e d , i f not other indicators were able to answer the 

question. An increase of the number of classes to 40 would 

reduce the p r o b a b i l i t y to .025, an increase to 200 classes 

would r e s u l t i n a .005 pr o b a b i l i t y , requiring user interrogation 

only i n 1 out of 2 00 cases. The reductions i n p r o b a b i l i t y 

have to be weighed against the c l a s s i f i c a t i o n e f f o r t which i s 

an ex-ante investment. 

A g e n e r a l i z a t i o n hierarchy for the categorization of object 

c l a s s e s shows s i m i l a r i t i e s with the attempts to represent 

common sense knowledge i n a r t i f i c i a l i n t e l l i g e n c e . The 

c l a s s i f i c a t i o n h i e r a r c h y d i s c u s s e d here i s , however, less 

ambitious, s i n c e the task, judging whether two objects are 

d i f f e r e n t i n meaning, i s simpler than the task presented i n 

the a r t i f i c i a l i n t e l l i g e n c e applications ( i . e . , Schank's and 

Rieger's r e s t a u r a n t s c r i p t s (1974) or Hayes' naive physics 

(1979)). Ein-Dor suggests concept c l u s t e r s f o r common knowledge 

i n the business environment (1987). His categories are: 

1. exchange, 
2. time, 
3. location, 
4. measurement, 
5. media of exchange, 
6. obligations and commitments, 
7. types of businesses, 
8. behaviors, 
9. naive economics, 
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10. 
11. 

employment, 
people who engage i n business. 

This c l a s s i f i c a t i o n c l a r i f i e s the difference between a common 

knowledge representation and a generalization hierarchy. E i n -

Dor's c l a s s e s are not mutually exclusive. For example, the 

employment s i t u a t i o n can be c l a s s i f i e d as group 10 as well as 

group 6. These c l a s s e s represent areas i n which a common 

sense computer program should have knowledge i n . 

The c a t e g o r i z a t i o n that can be used i n absence of any more 

domain oriented hierarchies, i s structured as follows: 

1. Objects 
1.1. L i v i n g objects (even i f now dead) 
1.1.1. Plants (flora) 
1.1.2. Animals (fauna) 
1.1.3. Persons 
1.1.3.1. Person (generic, not person roles) 
1.1.3.2. Person roles 
1.1.3.2.1. Person r o l e s i n person-person i n t e r a c t i o n ( i . e . , 

parent) 
1.1.3.2.2. Person roles i n person-thing association ( i . e . , car 

owner) 
1.1.3.2.3. Person r o l e s i n person-person-thing interactions 

( i . e . , manager) 
1.2. Inanimate objects 
1.2.1. Abstract objects 
1.2.1.1. Abstract objects that are organized (have structure) 
1.2.1.1.1. Hierarchies ( i . e . , a business company) 
1.2.1.2.2. Markets ( i . e . , the r e a l estate market) 
1.2.1.1.1. Other Structures 
1.2.1.2. Heaps, lumps and atomic abstract objects ( i . e . , a 

dream, a theory) 
1.2.2. Concrete objects ("things") 
2. Object c h a r a c t e r i s t i c s ( i . e . , color, size) 

According to t h i s categorization scheme, each view object can 

have a meaning l i s t c o n t a i n i n g up to 5 elements, such as 

[object,living,person,role,person-thing] for category 1.1.3.2.3. 
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Objects c l a s s i f i e d as belonging to d i f f e r e n t categories cannot 

be i d e n t i c a l i n meaning. I f the meaning l i s t f o r an object i s 

in c o m p l e t e l y s p e c i f i e d , i . e . , category 1.1.3. i t may not be 

d i f f e r e n t from an object c l a s s i f i e d as 1.1.3.2.3. and therefore 

user i n t e r r o g a t i o n may be necessary. Objects belonging to 

d i f f e r e n t categories but belonging to the same higher category 

may be rel a t e d i n meaning. More domain s p e c i f i c categorization 

schemes w i l l have more and better f i t t i n g categories but w i l l 

use the same reasoning mechanism to int e r p r e t the r e s u l t s of 

categorization. 
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4 . 6 . Assessment of the Method 

In an e a r l i e r chapter, the strengths and weaknesses 

of p r e v i o u s i n t e g r a t i o n methods were assessed. The same 

e v a l u a t i o n c r i t e r i a w i l l now be used t o h i g h l i g h t the 

c a p a b i l i t i e s and l i m i t a t i o n s of the method presented here. 

S i m i l a r to p r e v i o u s semantic i n t e g r a t i o n methods, the one 

i n t r o d u c e d i n t h i s r e s e a r c h r e q u i r e s d e s i g n e r i n t e r a c t i o n 

during the integration process. The designer has to be consulted 

to s e t t l e questions concerning i d e n t i t y or d i f f e r e n c e i n 

meaning. However, the method employs h e u r i s t i c s to reduce the 

number of questions that must be asked. 

View integration, as discussed here, covers a larger part of 

the integration problem than most other techniques. I t performs 

c o n f l i c t r e s o l u t i o n , view merging and addition of i n t e r - s e t 

r e l a t i o n s h i p s . B a t i n i et a l . (1983) cover add i t i o n a l aspects 

of the conceptual design process, including correctness and 

completeness t e s t s for i n d i v i d u a l views before the integration 

process (pre-integration). These te s t s , however, are not an 

e s s e n t i a l p a r t of the integration process; rather, they are 

elements of the view creation task. 

This research exceeds a l l preceding approaches i n the number 

of c o n f l i c t cases covered. Less important than the number of 
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cases, however, i s the fact that the c o n f l i c t l i s t i s exhaustive, 

based on a l l relevant object d i f f e r e n t i a t i o n c r i t e r i a . 

S i m i l a r t o other semantic methods, t h i s one reduces the 

complexity of the integration task by focussing on high l e v e l 

objects e n t i t i e s and r e l a t i o n s h i p s . The method also separates 

the t e s t f o r relatedness from the t e s t for i d e n t i t y . H euristics 

further reduce the task complexity. The question " i s object 

01 i d e n t i c a l i n meaning to one of the objects {02}?" can be 

s i m p l i f i e d through r e d u c t i o n of the s i z e of the set {02}. 

H e u r i s t i c s are used to eliminate u n l i k e l y candidates from {02}. 

This research also investigated whether the integration problem 

could be described by an even smaller set of c o n f l i c t categories 

than the 17 general cases i d e n t i f i e d i n s e c t i o n 4.1. To 

s i m p l i f y the d e s c r i p t i o n of c o n f l i c t s , a graph notation was 

chosen which r e p r e s e n t s e v e r y o b j e c t , whether e n t i t y , 

r e l a t i o n s h i p , or a t t r i b u t e , as a node, and every association 

between o b j e c t s ( e n t i t y r o l e , a t t r i b u t e association) as an 

edge. Based on t h i s notation, view c o n f l i c t s take the form of 

missing nodes or edges, or inconsistently l a b e l l e d nodes (name 

mismatch). A mismatch between types of nodes, i . e . e n t i t y -

a t t r i b u t e v s . e n t i t y - r e l a t i o n s h i p c o n s t r u c t , can be 

characterized as a graph contraction. A graph contraction i s 

the removal of an edge which r e s u l t s i n the merging of the two 

objects linked by the edge into one new object. I.e., an E-R 
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construct i s merged into one new object, an e n t i t y a t t r i b u t e . 

S i m i l a r l y , a r e l a t i o n s h i p r e p l a c e s a r e l a t i o n s h i p - e n t i t y -

r e l a t i o n s h i p structure, when two edges are contracted i n the 

l a t t e r one. Both types of contraction are depicted i n Figure 

19. 

Ent i ty attr ibute is E-R cons t ruc t 

Relat ionship represents E - R - E cons t ruc t 

Figure 19: Construct Mismatch Shown as Graph Contraction 

The examples i l l u s t r a t e that the graph notation i s able to 

describe the construct mismatch c o n f l i c t , i n addition to the 

mi s s i n g o b j e c t c o n f l i c t and the context mismatch c o n f l i c t , 

based on only two c r i t e r i a : missing nodes and missing edges. 

A m i s s i n g o b j e c t t r a n s l a t e s i n t o a missing node, context 

mismatch t r a n s l a t e s i n t o missing edges (plus p o t e n t i a l l y 
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missing nodes), and construct mismatch translates into missing 

edges and graph contraction. Since the notation can describe 

the same c o n f l i c t phenomena as the E-R model u s i n g fewer 

mechanisms, i t i s a more powerful description t o o l . 

The AVIS view integration program developed as part of t h i s 

r e s e a r c h employs the graph approach. In AVIS, views are 

d e s c r i b e d i n the form of nodes and edges. Nodes represent 

objects, and edges, r o l e s . Each object (node) i s defined by 

the same set of p r o p e r t i e s : type ( i . e . , a t t r i b u t e ) , view, 

object i d e n t i f i e r , object name, and object meaning (plus one 

more property not relevant for t h i s explanation) . Each r o l e 

(edge) c o n t a i n s the i d e n t i f i e r s of the two o b j e c t s i t i s 

connecting. Both are explained i n more d e t a i l i n the subsequent 

chapter. 

Even though the graph notation i s more powerful as a description 

t o o l than the E-R model, integration cases have been discussed 

w i t h i n t h i s r e s e a rch using E-R concepts. The E-R model i s 

widely used as a conceptual modelling language i n database 

design, while the above graph notation i s not. Thus, c o n f l i c t 

cases and solutions described by means of the E-R model are 

more e a s i l y understood and thus presumably more useful to the 

database designer than ones based on a graph notation. The 

differences between the i n t e r n a l graph representation i n AVIS 

and the external E-R representation require that AVIS frequently 
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t r a n s l a t e between these two representation forms. Nevertheless 

the i n t e r n a l representation i n the form of graphs i s very useful 

because i t allows the system to e a s i l y compare objects of 

d i f f e r e n t t y p e s a l o n g t h e i r r e l e v a n t dimensions. For 

instance,the question "do object OI and object 02 have i d e n t i c a l 

meaning?" can be e a s i l y phrased i n the graph notation, shown i n 

F i g u r e 20 i n i t s P r o l o g e q u i v a l e n t . T h i s simple example 

i l l u s t r a t e s that the integration method can compare objects of 

any type i n the same manner. I.e., T l may be " a t t r i b u t e " , while 

T2 i s " e n t i t y " 1 . 

identical_meaning(01,02) :-
obj ect(Tl,VI,01,Nl,M), 
obj ect(T2,V2,02,N2,M). 

Figure 20: I d e n t i c a l Meaning Query i n Prolog Graph Notation 

An a d d i t i o n a l strength of the method discussed i n t h i s research 

i s the use of meaningful data objects. The E-R model allows the 

d e s c r i p t i o n of objects that are meaningful to database users. 

The integration method further allows the representation of some 

data semantics. 

1 However, the example i n the figure shows an over 
s i m p l i f i c a t i o n of the meaning comparison problem. AVIS does not 
use Prolog's pattern matching mechanism i n t h i s simple form to 
assess meaning i d e n t i t y . Meaning comparison i s described i n more 
d e t a i l i n the subsequent implementation chapter. 
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Unlike other semantic integration methods, t h i s one includes 

an algorithm for the i d e n t i t y and for the relatedness t e s t s , 

which e x p l i c i t l y s p e c i f i e s the steps of the procedure. For 

example, the i d e n t i t y t e s t without h e u r i s t i c s contains a four-

step procedure i n which i d e n t i t y or difference of the four 

r e l e v a n t o b j e c t c r i t e r i a i s assessed. Due to the form i n 

which meaning i d e n t i t y and relatedness questions are stated, 

namely as a 1:N comparison ("Is object 01 i d e n t i c a l to one of 

{02}?"), the computational e f f o r t grows l i n e a r l y with the 

number of objects. The procedure terminates when the i n i t i a l l y 

d i f f e r e n t views have become i d e n t i c a l . To be i d e n t i c a l , both 

views have to contain the same objects. Objects are i d e n t i c a l 

i f they are i d e n t i c a l i n a l l four relevant dimensions (meaning, 

context, construct, and name). 

To judge the value of the method, the questions of correctness 

and completeness of the r e s u l t i n g views have to be addressed. 

(The working prototype only demonstrates the workability of 

the method for s p e c i f i c cases.) Based on the e a r l i e r description 

of the integration algorithm, i t i s known that the procedure 

always terminates i f the i n i t i a l views contain a f i n i t e number 

of o b j e c t s . The procedure performs the i n t e g r a t i o n task 

through an adjustment of both i n i t i a l l y d i f f e r e n t views. When 

the procedure terminates, f o r each object i n one view, an 

i d e n t i c a l o b j e c t e x i s t s i n the other view. Hence, the 

completeness question depends on whether objects can be " l o s t " 
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during integration so that the f i n a l views do not contain a l l 

o b j e c t s from the i n i t i a l views. The correctness question 

concerns whether objects from the i n i t i a l views may be mis­

represented i n the f i n a l view. Furthermore, i t has to address 

whether the order i n which views are integrated and/or the 

sequence i n which objects within a view are considered have 

any impact on the outcome of the integration process. 

In t h i s i n t e g r a t i o n method, objects cannot be l o s t . Every 

object represented i n at lea s t one i n i t i a l view w i l l also be 

represented i n the global schema. This does not imply that 

each o b j e c t w i l l appear i n i t s o r i g i n a l form. The object 

meaning w i l l be preserved, but the object representation i n 

name, construct and context may change. A r e l a t i o n s h i p may be 

relocated, a name may be changed, or an object's construct may 

be changed. After a construct change, an object w i l l i n most 

cases be represented through more than one new object, i . e . , a 

r e l a t i o n s h i p w i l l become a r e l a t i o n s h i p - e n t i t y - r e l a t i o n s h i p 

group. The only exception i s the change of a r e l a t i o n s h i p 

a t t r i b u t e into an entity, where the construct change replaces 

one o l d o b j e c t by one new object. Due to the d i r e c t i o n of 

change i n cases of construct mismatch, an old object i s always 

replaced by at lea s t one new object. Hence, objects cannot be 

l o s t during the integration process. 
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Although objects cannot be l o s t , the r e s u l t i n g view may s t i l l 

be i n c o r r e c t , i f objects are mis-represented or objects are 

added a r b i t r a r i l y . An object i s mis-represented i f the knowledge 

represented i n i t s post-integration form contradicts with the 

knowledge representation i n the pre-integration form. This 

includes name changes that r e s u l t i n names which do not convey 

the meaning of the object, construct changes which compress 

the i n f o r m a t i o n content of an object, meaning changes which 

r e s u l t i n incorrect meaning descriptions, and context changes 

which connect objects to objects they should not be connected 

t o . The i n t e g r a t i o n method performs none of these i n v a l i d 

operations, nor does i t add objects a r b i t r a r i l y . 

Objects are only added i f t h i s addition i s suggested by one of 

the views, that i s i f at lea s t one of the views contains an 

object that i s not part of other views. Name changes occur 

only when synonyms or homonyms are detected. The choice of 

sui t a b l e names to overcome these c o n f l i c t s i s a task f o r the 

designer who uses the method. Construct changes never r e s u l t 

i n the l o s s of in f o r m a t i o n , s i n c e the construct chosen i s 

always the one which i s able to convey the most information. 

Meaning changes are never made by the system (database designer) . 

Meaning i s s p e c i f i e d by the users of the system and can only 

be changed by the users of the system. Context changes occur 

f o r three reasons. F i r s t , construct changes cause context 

changes, as d e p i c t e d i n Figu r e 10 i n the c o n f l i c t therapy 
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section. Second, an association of an e n t i t y to a rel a t i o n s h i p 

r e s u l t s i n a context change ( e x e m p l i f i e d i n F i g u r e 12). 

T h i r d , r e l a t i o n s h i p r e l o c a t i o n r e s u l t s i n context change 

(shown i n F i g u r e 13) . A l l of t h e s e changes make the 

representation of data object i n one view compatible with that 

of another view. In the f i r s t two of these cases, an object 

01 w i l l only be connected to an object 02, i f at l e a s t one 

view states that the two objects should be connected. I f a l l 

views are correct p r i o r to integration, t h i s operation cannot 

r e s u l t i n i n c o r r e c t context. Relationship r e l o c a t i o n takes 

p l a c e only i f during the i n t e g r a t i o n process, the database 

designer i d e n t i f i e s that the re l a t i o n s h i p i s applicable to the 

superset object rather than to the subset object (Figure 13). 

F i n a l l y , we must consider whether the same outcome, that i s , 

the same global structure, w i l l be achieved independent of the 

sequence i n which views are i n t e g r a t e d . In a two-view 

i n t e g r a t i o n problem, sequence refe r s to the order i n which 

objects compared. For example, i s 01 from VI compared to a l l 

o b j e c t s from V2 f i r s t , f ollowed by 07 from VI, or does 07 

precede 01? In a multi-view integration problem, sequence also 

addresses the order i n which views are compared. I.e., i f 

three views, VI, V2, and V3 have to be integrated, w i l l VI be 

integrated f i r s t with V2 and the r e s u l t of t h i s integration be 

integrated with V3, or w i l l the integration begin with V2 and 

V3? 
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In both the two-view and the multi-view integration problems, 

the f o l l o w i n g operations are performed: objects e x i s t i n g i n 

a l l views become part of the global schema, objects e x i s t i n g 

i n at l e a s t one view become part of the global schema, objects 

represented d i f f e r e n t l y i n d i f f e r e n t views are adjusted and 

become p a r t of the g l o b a l schema. In addition, inter-view 

r e l a t i o n s h i p s are added to the global schema. Objects that 

e x i s t i n a l l views w i l l not be affected by the sequence of the 

integration process. They w i l l appear i n the same form i n the 

global schema. Objects that o r i g i n a l l y did not e x i s t i n a l l 

views w i l l also be added to the global schema, independent of 

the i n t e g r a t i o n sequence. Inter-view set rel a t i o n s h i p s are 

s i m i l a r l y missing objects, however missing i n a l l views. They 

a l s o w i l l be added, independent of sequence. In fact, they 

are added a f t e r a l l tests for i d e n t i t y of objects are completed. 

The c r i t i c a l element for t h i s assessment of the view integration 

procedure i s the adjustment of views when c o n f l i c t s are detected. 

In the two-view s i t u a t i o n , the sequence i n which objects are 

compared may vary. Does t h i s change a f f e c t the outcome of the 

i n t e g r a t i o n ? T h i s question t r a n s l a t e s i n t o two more basic 

q u e s t i o n s , namely f i r s t , does the sequence i n which objects 

are compared r e s u l t i n differences i n the diagnosis of c o n f l i c t s , 

and second, does a p o t e n t i a l l y d i f f e r e n t diagnosis r e s u l t i n a 

d i f f e r e n t global schema? 

193 



The c o n f l i c t diagnosis procedure uses as i t s most important 

c r i t e r i o n the meaning dimension. Once objects with i d e n t i c a l 

meaning are found, c o n f l i c t s are detected based on differences 

i n the remaining dimensions, name, construct, and context. 

For each object i n each of the views, at most one object with 

i d e n t i c a l meaning can e x i s t i n the other view. This i s true, 

independent of the sequence i n which o b j e c t are compared. 

Furthermore, with the exception of name changes f o r homonyms, 

the remaining dimensions of an object are not changed before 

meaning i d e n t i t y with another object has been established. 

T h e refore, f o r any two o b j e c t s from d i f f e r e n t views, the 

object comparison w i l l y i e l d the same r e s u l t , independent of 

the sequence of comparisons, u n l e s s the database designer 

u s i n g the method i s i n c o n s i s t e n t i n renaming objects when 

homonyms are found. 

One other p o t e n t i a l source of error e x i s t s , but i t i s also i n 

the domain of the database designer. The designer may f i n d i t 

d i f f i c u l t i n ce r t a i n s i t u a t i o n s to decide whether two objects 

are i d e n t i c a l i n meaning. Therefore, i f both objects 01 and 

02 from view VI appear to the designer as i f they could match 

the meaning of object 03 from V2, then the order of comparison 

may bias the designer to decide for 01 i n one s i t u a t i o n and 

for 02 i n some other s i t u a t i o n . This i s a p a r t i c u l a r problem 

i n cases of construct mismatch, where, for instance, an ent i t y 
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a t t r i b u t e i n one view corresponds to an e n t i t y - r e l a t i o n s h i p 

construct i n the other view (see Figure 11). In t h i s example, 

the database designer has to decide whether the a t t r i b u t e 

S u p p l i e r c o r r e s p o n d s t o the e n t i t y S u p p l i e r or to the 

r e l a t i o n s h i p Supply. But even though the designer may have 

some d i s c r e t i o n i n deciding which of the objects i s the matching 

one (entity or r e l a t i o n s h i p ) , the c o n f l i c t w i l l be resolved i n 

exactly the same way. The a t t r i b u t e w i l l be replaced by an E-

R construct. The same i s true for other forms of construct 

mismatch. 

In summary, as long as the designer i s c o n s i s t e n t i n his 

assessment of meaning i d e n t i t y of objects, the diagnosis w i l l 

always be the same, independent of sequence. I f the designer 

i s i n c o n s i s t e n t i n h i s assessment of meaning i d e n t i t y , the 

procedure w i l l s t i l l produce i d e n t i c a l outcomes for cases of 

construct mismatch. 

In the multi-view s i t u a t i o n , invariance of the outcome (global 

schema) to changes i n the order of view comparisons i s the 

concern. Can objects end up i n the global schema with d i f f e r e n t 

names, d i f f e r e n t constructs, or d i f f e r e n t contexts, based on 

the order i n which views are processed. Again, t h i s i s not 

the case. The integration method prevents those v a r i a t i o n s 

f o r a l l but naming d e c i s i o n s which are i n the designer's 

domain. For construct changes, there i s only one d i r e c t i o n of 
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change, to avoid loss of information. For example, i f out of 

n views, n-1 represent an object as a r e l a t i o n s h i p a t t r i b u t e 

and only one view represents i t as an ent i t y , the object w i l l 

s t i l l become an e n t i t y i n the global structure. In a l l cases, 

the most information r i c h object representation w i l l be the 

one chosen f o r the g l o b a l s t r u c t u r e . Context changes are 

dealt with i n a s i m i l a r manner. For example, i f a r e l a t i o n s h i p 

R i n view VI has as i t s context the set of e n t i t i e s {El}, i n 

view V2 the set {El, E3}, and i n view V3 the context {El, E2}, 

the g l o b a l schema w i l l show {El, E2, E3} as R's context, 

independent of the sequence i n which the views were integrated. 

The same i s true for a t t r i b u t e s . E n t i t i e s and relationships 

i n the global view have a t t r i b u t e sets which are the union of 

the a t t r i b u t e s e t s of the corresponding o b j e c t s from the 

o r i g i n a l views (except, of course, when an a t t r i b u t e i s converted 

to another construct). 

In conclusion, even i n a multi-view s i t u a t i o n , the method w i l l 

produce the same global schema, independent of sequence, i f 

the designer i s consistent i n h i s decisions on meaning i d e n t i t y . 
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5. IMPLEMENTATION - THE AVIS PROGRAM 

5.1. Overview 

An implementation of the view integration method i s available 

i n form of the AVIS (Automatic View Integration System) program. 

AVIS i s written i n Prolog. 

The purpose of the program i s not to show correctness of the 

c o n f l i c t r e s o lution method. Correctness of the method should 

be judged based on i t s u n d e r l y i n g assumptions, the r u l e s 

guiding view integration, and the conclusion drawn from them 

concerning the diagnosis and therapy procedure. The program 

can only serve as a testbed to show mistakes or omissions i n 

d e t a i l s of the resolution procedure. Furthermore, i t can show 

the f e a s i b i l i t y of an automated view integration procedure. 

Appendix 3 contains the screen displays of a view integration 

s e s s i o n with AVIS to i l l u s t r a t e the operation of the system 

and i t s r o l e as a testbed. 

5.2. Function and Structure of the AVIS Program 

To f u l f i l l i t s purpose as a t e s t b e d and an i n d i c a t o r for 

f e a s i b i l i t y , the program i s an implementation of the diagnosis 

and therapy procedure o u t l i n e d i n e a r l i e r s e c t i o n s . The 
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program always operates on a set of two views which are to be 

integrated. Such a set of two views has to be loaded into the 

system at the outset of the integration session. The program 

proceeds by checking c o n f l i c t hypotheses. For each hypothesis 

that i s checked, one e l i g i b l e object from view 1 i s chosen and 

compared to a l l e l i g i b l e o b j e c t s from view 2. Hypothesis 

t e s t s are c a r r i e d out i n the sequence e s t a b l i s h e d by the 

integration rules and h e u r i s t i c s . Depending on the outcome of 

a t e s t , an appropriate therapy a c t i v i t y i s performed, followed 

by another t e s t . A therapy can be "do nothing" i f objects do 

not have to be changed, or any of the other therapy actions 

discussed previously. The program terminates when both views 

have become i d e n t i c a l . The program structure which achieves 

t h i s function i s depicted i n Figure 21. 

Following the t y p i c a l architecture of knowledge-based systems, 

the program i s designed i n highly decoupled form. For instance, 

the sequence i n which hypotheses are t e s t e d i s not f i x e d 

(programmed) , but determined by the sequence i n which they 

occur on the OBJECT COMPARISON AGENDA (box 8 i n the f i g u r e ) . 

T h e r efore, an "urgent" hypothesis t e s t ( t y p i c a l l y performed 

during a therapy operation consisting of more than one therapy 

action) can pre-empt tests that would normally have occurred 

next. Another form of decoupling separates the step which 

recognizes that an object i s missing (box 4) , from the step 

that a c t u a l l y adds the object to the view (box 5). 
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Hence, i f the program r e a l i z e s that an object i s missing, i t 

reports t h i s f i n d i n g i n the OBJECT ASSERTION AGENDA (box 7) . 

Then, i n an independent step, the program w i l l t r y to assert 

(add) the object. I f t h i s i s not yet possible, due to the 

f a c t t h a t some other pre-conditions are not f u l f i l l e d , the 

m i s s i n g o b j e c t w i l l simply remain i n the OBJECT ASSERTION 

AGENDA u n t i l those preconditions are s a t i s f i e d . 

Overall, the program operates as follows. I t repeatedly c a l l s 

t he p r e d i c a t e INTEGRATE (box 1), which i n i t i a t e s o b j e c t 

comparisons. Object comparisons are c a r r i e d out as s p e c i f i e d 

by the e n t r i e s i n the OBJECT COMPARISON AGENDA. Every such 

entry w i l l consist of the (generic) hypothesis to be tested, 

f o r i n s t a n c e SIMILAR ENTITY (same meaning) , and the objects 

i n v o l v e d i n the t e s t , i . e . , SUPPLIER for view 1 and DEALER, 

BUYER, INVENTORY for view 2. The generic hypothesis together 

with the o b j e c t s to be t e s t e d form a s p e c i f i c hypothesis. 

This hypothesis i s then tested. The program w i l l attempt to 

f i n d an answer t o the hypothesis f i r s t on i t s own, before 

asking the user. 

To f i n d an answer without user i n t e r a c t i o n , the program w i l l 

f i r s t check whether r e s u l t s of p r e v i o u s t e s t s can help i n 

deciding the question. For example, i f a l l e n t i t i e s i n view 2 

a l r e a d y had corresponding e n t i t i e s i n view 1, the program 

could answer the question with "no", because each object can 
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have only one matching object i n the other view. I f previous 

t e s t s cannot help i n d e c i d i n g , s t r u c t u r a l information may 

help. For example, a necessary condition for two relationships 

to be rel a t e d i s to have at lea s t two common e n t i t i e s . I f no 

two common e n t i t i e s e x i s t , the program can assert that the 

r e l a t i o n s h i p s i n que s t i o n are not r e l a t e d . I f s t r u c t u r a l 

knowledge cannot help, the program may be able to use any 

semantic knowledge i t possesses concerning the application 

domain. Currently t h i s option i s not implemented i n a form 

where t h e program i s able to make such i n f e r e n c e s (the 

i n f o r m a t i o n i s only p a s s i v e l y a v a i l a b l e ) . I f the program 

cannot decide by i t s e l f whether a hypothesis i s true or f a l s e , 

i t w i l l ask the user. 

Following the hypothesis t e s t , the program w i l l place an entry 

into the OBJECT ASSERTION AGENDA, i f objects have to be added 

as a consequence of the t e s t . In a next step, objects are 

added t o a view i f a l l preconditions for t h e i r creation are 

f u l f i l l e d (box 5). F i n a l l y , and also based on the outcome of 

the hypothesis t e s t , new s p e c i f i c hypotheses may be placed on 

the OBJECT COMPARISON AGENDA (boxes 6 and 8). 

At points during the integration procedure, the OBJECT COMPARISON 

AGENDA may be empty, even though the integration has not been 

completed. Such a point occurs f o r instance at the outset of 

the i n t e g r a t i o n process. To "boot-strap" i t s e l f i n these 
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s i t u a t i o n s , the program w i l l activate the SEED predicate (box 

9), which places a f i r s t entry on the agenda. The integration 

process ultimately terminates, i f the agenda i s empty and no 

more seeds can be generated. 
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5.3. Knowledge Representation 

5.3.1. Representation of views 

To allow the operation on a r b i t r a r y views, the program stores 

views separate from the procedural knowledge. A set of two small 

views i s shown i n Figure 22. 

objec t ( " e n t i t y " , 1 , 3 , " d e a l e r " , [ " s e l l s " , " s u p p l i e s " ] , [ ] ) 
obj ect ( " e n t i t y " ,1,4, "branch", [ "alternate_location", " s u b s i d i ­
ary"], []) 
object("entity",2,1003,"dealer",["sells","supplies"],[]) 
object("entity",2,1004,"customer",["buys","pays","orders"], []) 
obj ect ("entity" ,2,1005, "contract", [ "agreement" ];'[]) 
object("relationship",1,502,"supply",["delivery","goods_trans-
fer»],[]) 
obj e c t ("relationship",2,1502,"dealer_contract",["dealer_cont-
ract»],[]) 
obj ect ("relationship", 2,1503, "customer_contract", [ "customer_cont-
ract»],[]) 
obj e c t ( " a t t r 1 ",1,600,"contract",["identifier"],[]) 
role(502,3) 
role(502,4) 
role(1502,1003) 
role(1502,1005) 
role(1503,1004) 
role(1503,1005) 
role(600,3) 

Figure 22: Representation of Views i n AVIS 

Each object i s stored as an atom of the form object(Type,View#, 

Object#,Name,Meaninglist,Replacelist). Type i s one of ent i t y , 

r e l a t i o n s h i p , or a t t r ( i b u t e ) . View numbers are a r b i t r a r y , but 

1 " a t t r " i s used instead of a t t r i b u t e because a t t r i b u t e 
i s a r e s t r i c t e d term i n the programming language. 
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o b j e c t s from the same view c a r r y the same view number and 

o b j e c t s from d i f f e r e n t views carry d i f f e r e n t view numbers. 

Object numbers are unique i d e n t i f i e r s f o r objects within the 

view they belong to. The object name i s the user defined name 

f o r the object. Meaninglist i s a l i s t of s t r i n g s that give 

some i n d i c a t i o n o f the nature of the r e a l world o b j e c t 

represented by the database object. R e p l a c e l i s t i s a l i s t of 

o b j e c t numbers f o r o b j e c t s t h a t have been replaced by the 

o b j e c t at hand. For example, i f a r e l a t i o n s h i p a t t r i b u t e 

becomes an e n t i t y , the new e n t i t y r e t r a i n s a reference to the 

former r e l a t i o n s h i p a t t r i b u t e through the number i n the 

R e p l a c e l i s t . 

One way to think of the meaning l i s t i s to view i t as a l i s t 

of thesaurus terms for the object name. Each of the terms i n 

the l i s t may d e s c r i b e some f a c e t s of the objects meaning, 

through s l i g h t l y d i f f e r e n t l a b e l l i n g of the o b j e c t . The 

meaning l i s t can also be used to i d e n t i f y the categories an 

object belongs to i n a generalization hierarchy. This l i s t of 

c a t e g o r i e s does not have to be a central pool of base sets 

from which a l l o b j e c t sets have to be d e f i n e d , i t may be 

simply a s e t of category terms which capture the language 

terms used i n the organization under study. In eith e r form, 

the meaning l i s t helps to s i m p l i f y the i d e n t i f i c a t i o n of 

d i s s i m i l a r (or even of ide n t i c a l ) objects. 
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The context of an object i s stored by means of role(Object!, 

Object#) atoms. The f i r s t object number indicates the object, 

the second one the object i t i s associated with. By d e f i n i t i o n , 

only a t t r i b u t e s and relationships have a non-empty context. 

Thus, roles e x i s t only for these two object types. 
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5.3.2. Representation of View Integration Knowledge 

The knowledge contained i n the program c o n s i s t s mostly of 

hypotheses, rules for the s e l e c t i o n of objects f o r subsequent 

t e s t s , r u l e s f o r the e l i m i n a t i o n of i r r e l e v a n t t e s t s or 

i r r e l e v a n t t e s t objects, and rules for the therapy of c o n f l i c t 

cases. Hypothesis atoms serve mainly to control the sequence 

of the integration procedure. Selected hypotheses are depicted 

i n Figure 23. 

h y p o t h e s i s ( 3 , ["n",«n"] , [4,1] , [12,701,24,5]," S i m i l a r 
E n t i t y " , "saiae_meaning", " d i f f erent_meaning") 

hypothesis(4,["o","o"],[],[],"Synonym","synonym","same") 

hypothesis(12,["o","o"],[],[],"Homonyms","homonyms","nothomo-
nyms") 

hypothesis(701,["n","n"],[8],[24] , " E n t i t y i s R e l a t i o n s h i p 
A t t r i b u t e " , "relationship_attribute", "not_relationship_attribute") 

Figure 23: AVIS Hypotheses 

Hypothesis 3 formulates the t e s t for "Similar E n t i t y " . This t e s t 

investigates whether for an e n t i t y i n view 1 there e x i s t s an 

e n t i t y i n view 2 with the same meaning but possibly with a 

d i f f e r e n t name. The l i s t s of integers which are part of the 

hypothesis atom ( i . e . , [4,1]) indicate subsequent a c t i v i t i e s 

depending on the outcome of the t e s t . For instance, i f a s i m i l a r 

e n t i t y i s found, the next hypothesis to be tested i s hypothesis 

4, which t e s t s whether both e n t i t i e s have same names. 

Thereafter, hypothesis 1 would follow. I f the t e s t 
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r e s u l t were negative, a number of other hypotheses would be 

invoked, i . e . , 12, 701, 24, and 5. Each hypothesis shows also 

which knowledge w i l l be added to the knowledge base as a 

consequence of the t e s t outcome. For instance, i f hypothesis 

3 becomes t r u e , the i n v o l v e d o b j e c t s w i l l be memorized as 

having same meaning. I f the t e s t outcome i s negative, they 

w i l l be stored as having d i f f e r e n t meaning. 

Rules t h a t s e l e c t o b j e c t s f o r subsequent t e s t s are "make 

agenda" ru l e s . One example i s shown i n Figure 24. 

m_a(3,_,[01],[02],H):-
H = 1,!, 
f i n d _ r ( 0 1 , R l l ) , 
find_r(02,R12), 
filter(H,R12,R12n), 
m_a(0,b,Rll,R12n,H),!. 

Figure 24: AVIS "make agenda" Rule 

The "make agenda" r u l e shown i n the f i g u r e prepares a new 

hypothesis t e s t , a f t e r the t e s t for s i m i l a r e n t i t y succeeded. 

Once two i d e n t i c a l e n t i t i e s have been found, AVIS searches 

l o c a l l y , i n the v i c i n i t y of these e n t i t i e s , to f i n d i d e n t i c a l 

r e l a t i o n s h i p s . The rule finds a l l r e l a t i o n s h i p s e n t i t y 01 i s 

associated with, as well as a l l r e l a t i o n s h i p s 02 i s associated 

w i t h . I t then f i l t e r s out r e l a t i o n s h i p s t h a t have been 

p r e v i o u s l y investigated, and formulates a t e s t i n which a l l 

r e l a t i o n s h i p s R l l w i l l be compared to a l l r e l a t i o n s h i p s R12n, 
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t o f i n d m a t c h i n g p a i r s . I f R l l c o n t a i n s more than one 

r e l a t i o n s h i p , the agenda item w i l l l a t e r be decomposed into as 

many items as there are elements i n l i s t R l l . This i s necessary, 

s i n c e a l l t e s t s are c a r r i e d out i n a l : n mode, where one 

object of view 1 i s compared to n objects of view 2. 

Rules to f i l t e r out i r r e l e v a n t t e s t s or i r r e l e v a n t t e s t objects 

are exemplified i n Figure 25. 

/* the a t t r i b u t e 01 i s a key */ 
test_hypo([01],012,H,_,012):-

H = 14, 
is_key([01],[01]), 
make_agenda(H,t,[01],012,HN), 
do_ao(H,Ol,0,'n'),!. 

Figure 25: F i l t e r i n g Rule i n AVIS 

The r u l e depicted i n Figure 25 refers to the t e s t of hypothesis 

14. Hypothesis 14 s t a t e s the p o s s i b i l i t y t h a t an e n t i t y 

a t t r i b u t e may correspond to an e n t i t y - r e l a t i o n s h i p construct. 

The test_hypo ru l e shown here states that i f the e n t i t y a t t r i b u t e 

01 i s a key ( i d e n t i f i e r ) a t t r i b u t e of the e n t i t y i t belongs 

t o , then i t cannot correspond to the e n t i t y - r e l a t i o n s h i p 

c o n s t r u c t 012. E n t i t y a t t r i b u t e s can only correspond to 

e n t i t y - r e l a t i o n s h i p c o n s t r u c t s i f they are interconnection 

a t t r i b u t e s , i . e . the Supplier a t t r i b u t e of a PART e n t i t y . I f 

the a t t r i b u t e i s a singular i d e n t i f i e r (not part of a compound 

key) , i t r e f e r s to the object i t s e l f , i . e . Part# refe r s to 

PART i t s e l f . Such objects can be excluded from the t e s t . By 
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using f i l t e r i n g rules, the AVIS program can reduce information 

requests from the user. 

Rules for the therapy of c o n f l i c t cases t y p i c a l l y become rules 

to create new objects. Figure 2 6 i l l u s t r a t e s such an "assert 

object" r u l e . 

asso(H,01,02,'y',New):-
H = 14, 
object(relationship,_,02,_,_,_), 
find_e(02,El2), 
object(attr,VI,01,_,_,_), 
r o l e ( 0 1 , E l ) , 
fct(same,El,E2), 
member(E2,El2,Elr), 
single(same_meaning,Elr,Els), 
dup(H,Els,Vl,Elsl), 
dup(H,[02],Vl,01n), 
append(Elsl,01n,New), 
retract(object(attr,VI,01,_,_,_)), 
r e t r a c t ( r o l e ( 0 1 , E l ) ) , I . 

Figure 26: AVIS Object Assertion Rule 

The f i g u r e shows one of the rules dealing with the s i t u a t i o n 

where an e n t i t y a t t r i b u t e i n one view corresponds to an e n t i t y -

r e l a t i o n s h i p construct i n the other view. This r u l e replaces 

the a t t r i b u t e 01 with a r e l a t i o n s h i p Oln, by simply duplicating 

the r e l a t i o n s h i p 02 from view 2 and subsequently eliminating 

the a t t r i b u t e from view 1. Furthermore, from a l l e n t i t i e s 

(E12) i n view 2 that are associated by the r e l a t i o n s h i p 02, 

those that have no corresponding objects i n view 1 are i d e n t i f i e d 

(Els) and duplicated i n view 1. 
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5.4. The Impact of Domain Knowledge 

One of the biggest problems for knowledge based systems i s the 

requirement to c o n t a i n knowledge about a wide v a r i e t y of 

problem domains. "Deep" knowledge i s much easier implemented 

than "wide" knowledge. This i s s i m i l a r l y true f o r the view 

integration program which already has to contain deep knowledge 

on diagnosis and therapy. This weakness l i m i t s the necessary 

a b i l i t y to assess i d e n t i t y of o b j e c t meanings. How can . a 

program judge that two objects are i d e n t i c a l i n meaning i f i t 

contains no domain knowledge? 

I f the "true" meaning of an object cannot be assessed, then at 

l e a s t a number of indicators e x i s t to help i n the assessment 

of true meaning (see Figure 18, previous chapter). Obviously, 

each o b j e c t could carry with i t a meaning representation, a 

l i s t of symbols describing the meaning of the objects. Meaning 

comparison would then involve the comparison of such l i s t s . 

Problems c o u l d a r i s e from homonyms and synonyms i n these 

l i s t s . A second indicator could be object context. I f two 

objects are s i m i l a r t h e i r immediate neighbors are l i k e l y to be 

s i m i l a r too. Thus, the f i n d i n g of s i m i l a r neighbors would 

provide some evidence for the assumption that two objects are 

s i m i l a r . Other forms of context comparison involve the analysis 

of r e l a t i o n s h i p c a r d i n a l i t i e s and, i f defined, r o l e s of e n t i t i e s 
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i n a r e l a t i o n s h i p . Similar roles and s i m i l a r c a r d i n a l i t i e s are 

evidence f o r object s i m i l a r i t y . Third, s i m i l a r a t t r i b u t e s (or 

at l e a s t s i m i l a r a t t r i b u t e names or s i m i l a r key attributes) 

can be another i n d i c a t o r for s i m i l a r i t y . Fourth, i f value 

sets have been defined, these can be compared. F i n a l l y , the 

name of an o b j e c t i t s e l f can be an i n d i c a t o r f o r meaning 

s i m i l a r i t y . 

Most of the above mentioned indicators are plagued by the problem 

of ambiguous r e p r e s e n t a t i o n . I f names of objects, due to 

homonymy and synonymy problems, are not a r e l i a b l e i n d i c a t o r for 

s i m i l a r i t y , the same w i l l be true for other indicators such as 

at t r i b u t e names or meaning l i s t s . The use of context may be 

viewed merely as a recursive restatement of the problem. For 

example, to know whether e n t i t i e s E l and E2 are i d e n t i c a l , one 

has to know whether t h e i r context Rl and R2 i s i d e n t i c a l 1 . To 

f i n d out whether Rl and R2 are i d e n t i c a l one has to f i n d out 

whether the context of R l and R2 i s i d e n t i c a l , and so on. 

Nevertheless, comparisons are possible. For instance, p a r t i a l 

overlap of meaning representations can be indicated, or p a r t i a l 

context s i m i l a r i t y , can be indicated. The AVIS program operates 

i n t h i s manner, however i n passive form. The program never 

decides whether two objects are i d e n t i c a l . Yet the user can ask 

the program f o r the values of s i m i l a r i t y i n d i c a t o r s . So 

1 Note that the AVIS program recognizes context also for 
e n t i t i e s i n order to make use of l o c a l search f o r i d e n t i c a l 
objects. 



f a r , only the i n d i c a t o r s meaning representation (comparing 

meaning l i s t s ) , context (comparing immediate neighbors) and 

name are implemented. Figure 27 shows the systems response to 

a user inquiry on the value of the meaning in d i c a t o r s . 

T e s t i n g f o r h y p o t h e s i s : SIMILAR ENTITY, 
I n v o l v i n g the e n t i t y DEALER (3) and one of the f o l l o w i n g o b j e c t s ; 

Meaning Match 
Match between e n t i t y DEALER (3 ) [ " s e l l s " , " s u p p l l e s " ] 
and o b j e c t s below: 
ID NAME Match o f : NAME MEANING CONTEXT 
1003 d e a l e r y y unknown 
1004 customer n n unknown 
1005 c o n t r a c t n n unknown 

— — R e s p o n s e -
Press <spacebar> to continue 

Figure 27: AVIS Meaning Identity Indicators 
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A more advanced form of meaning indicators, i s based on the 

meaning r e p r e s e n t a t i o n (meaning c a t e g o r i z a t i o n ) f e a t u r e . 

While c u r r e n t l y meaning l i s t s f o r o b j e c t s have no form 

r e s t r i c t i o n s , t h e r e f o r e a l l o w i n g the use of any symbol to 

define the meaning of an object; future meaning l i s t s w i l l be 

more r e s t r i c t e d i n the choice of terms. Terms w i l l have to be 

elements of a categorization hierarchy and w i l l be therefore 

unambiguous. 
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6. SUMMARY AND EXTENSIONS 

The main contribution of t h i s research i s the development of a 

complete view integration procedure. The research went beyond 

the problem of inter-view constraint representation (relatedness 

of objects) . I t systematically categorized inter-view c o n f l i c t s 

i n t o c o n f l i c t types, based on an analysis of the sources of 

c o n f l i c t s . The source of a l l c o n f l i c t s i s mismatches between 

the meaning dimension on one hand and a l l other r e l e v a n t 

object dimensions, name, construct, and context, on the other 

hand. Whenever two objects are i d e n t i c a l i n meaning, they 

also have to be i d e n t i c a l i n t h e i r other dimensions. I f not, 

a c o n f l i c t a r i s e s . S i m i l a r l y , i f two objects have d i f f e r e n t 

meanings they also have to d i f f e r i n the name dimension to be 

c o n f l i c t - f r e e . The method presented i n t h i s research can 

diagnose a l l p o s s i b l e combinations of mismatches and has 

therapy rules for a l l of them. 

In addition to rules for recognition and resolution of c o n f l i c t s , 

an algorithmic view integration procedure was described. I t 

s p e c i f i e s the sequence of tests f o r object i d e n t i t y and object 

relatedness. At the termination of t h i s procedure, two i n i t i a l l y 

d i f f e r e n t views become i d e n t i c a l and represent a l l relevant 

inter-view constraints. Thus, eith e r of the views has become 

a g l o b a l schema c o n t a i n i n g the two o r i g i n a l views. The 

i n t e g r a t i o n procedure developed here begins with a t e s t for 

object i d e n t i t y . At the end of t h i s step, both views contain 
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the same objects. The subsequent t e s t for relatedness determines 

a l l inter-view constraints for a l l o r i g i n a l l y unique objects 

( e x i s t i n g i n only one view) . The t e s t for relatedness may 

r e s u l t i n the addition of e n t i t i e s to represent superset and 

subset objects and i n the addition of Isa re l a t i o n s h i p s . 

Furthermore, the research provided h e u r i s t i c s to simp l i f y the 

integration problem for the user. H e u r i s t i c s were developed 

to ease the user's task of i d e n t i f y i n g o b j e c t p a i r s with 

i d e n t i c a l meaning. Assumptions such as " ( i n absence of 

i n f o r m a t i o n to the contrary,) two o b j e c t s with i d e n t i c a l 

meaning w i l l have i d e n t i c a l constructs", reduce the number of 

objects among which the user has to look for a matching object. 

In case of information to the contrary, i . e . , i f no p a i r of 

o b j e c t s with same meaning were found, the h e u r i s t i c would 

f a i l and would require a more painstaking search f o r a match. 

The r e s e a r c h exemplified how the introduction of h e u r i s t i c s 

a l t e r s the integration procedure. 

The method was designed for use as a view integration t o o l , 

through implementation as a knowledge based system ( i . e . , the 

AVIS system). Implementation i n the form of a computer program 

assures adherence to the sequence of c o n f l i c t analysis and 

r e s o l u t i o n s t e p s . I t a l s o eases as much as p o s s i b l e the 

designer's task. Nevertheless, the c o n f l i c t recognition and 

reso l u t i o n rules which form the core of the research are v a l i d 
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independent of any implementation. The rules have been developed 

based on rules of modelling, based on the E-R model and based 

on database design p r i n c i p l e s , rather than through t r a c i n g of 

database design expert behavior. 

Future extensions to the research w i l l focus on at l e a s t two 

areas. F i r s t , more h e u r i s t i c s w i l l be developed. This w i l l 

not only s i m p l i f y the user's task further, i t w i l l also shed 

more l i g h t on the question of how we can assess when two 

objects are i d e n t i c a l i n meaning. The assessment of meaning 

i d e n t i t y i s the most d i f f i c u l t part of the integration process. 

C u r r e n t l y , the i n t e g r a t i o n method does not decide on the 

i d e n t i t y of two objects without user consultation. I t would 

be d e s i r a b l e to have the method decide, at l e a s t i n some 

cases, whether two objects have the same meaning. One possible 

a p p r o a c h t o extend the method i n t h i s d i r e c t i o n i s the 

development of c a t e g o r i z a t i o n h i e r a r c h i e s f o r p a r t i c u l a r 

a p p l i c a t i o n a r e a s . In t h i s r e s e a r c h , a v e r y c o a r s e 

c a t e g o r i z a t i o n h i e r a r c h y has been introduced, one which 

f a c i l i t a t e s deciding whether two objects have d i f f e r e n t meanings. 

More elaborate, as well as more domain s p e c i f i c hierarchies 

would allow a sharper d i s t i n c t i o n between concepts and thus 

allow for better judgment on i d e n t i t y or difference i n meaning. 

T h i s measure would r e q u i r e t h a t users be very precise and 

e x p l i c i t i n t h e i r choice of names for e n t i t i e s , r e lationships, 

and a t t r i b u t e s i n the pre-integration stage. Hence, use of a 
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categorization hierarchy may be one good source of evidence, 

but may not be s u f f i c i e n t . Ultimately a procedure w i l l have 

to use more sources of evidence and w i l l have to be tolerant 

of user s p e c i f i c a t i o n errors, i n order to make judgments on 

meaning i d e n t i t y that are as good as human judgments. 

A second area of extension to focus on i s the detection of errors 

i n user views. The i n t e g r a t i o n method i n i t s current form 

assumes that views are complete ( a l l relevant objects included), 

consistent (no c o n f l i c t i n g knowledge), and minimal (each object 

only represented once) 1. I f views are incorrect, inconsistent 

or not minimal, the global schema w i l l be incorrect, inconsistent 

or not minimal. For example, i f one view stated (incorrectly) 

that " a l l EMPLOYEES are FULLTIME_EMPLOYEEs", while another view 

stated (correctly) that "every FULLTIME_EMPLOYEE i s an EMPLOYEE", 

the method would represent both constraints i n the global schema 

(inconsistency) , not recognizing that the only l o g i c a l l y correct 

i n t e r p r e t a t i o n of these two statements would require EMPLOYEE 

and FULLTIME_EMPLOYEE to be i d e n t i c a l . Mistakes l i k e t h i s one 

could be detected and corrected during the integration process. 

To permit recognition 

1 The constraints on input views may seem rather stringent. 
However, we can expect views to be i n consistent and minimal 
form, i f they have been created with a view creation system such 
as Storey's (1988). Completeness has to be assumed, unless 
evidence to the contrary e x i s t s . 

A l l p reviously discussed integration approaches make s i m i l a r 
demands on the inputs to t h e i r integration methods. 
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of such errors, a set of error scenarios and correction rules 

would have to be developed. 

Another possible extension that goes s u b s t a n t i a l l y beyond the 

scope of t h i s research i s the t r a n s l a t i o n of the findings for 

database i n t e g r a t i o n to knowledge base integration. While 

databases c o n t a i n f a c t s , knowledge bases contain facts and 

r u l e s and are t h e r e f o r e much more d i f f i c u l t to integrate. 

Nevertheless, with the increase i n the development of knowledge 

based systems and corresponding e f f o r t s to improve the knowledge 

a c q u i s i t i o n e f f o r t such a project may become a f r u i t f u l endeavour 

for the future. 
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APPENDIX 

Appendix 1: C o n f l i c t Cases 

1. IDENTICAL OBJECTS 
Nl = N2; T l = T2; Ml = M2; CI = C2; 

Solution: do nothing. 

1.1. E n t i t y i s En t i t y . 
1.2. Relationship i s Relationship. 
1.3. Att r i b u t e i s At t r i b u t e . 

2. IDENTICAL OBJECTS WITH DIFFERENT CONTEXT 
Nl = N2; T l = T2; Ml = M2; CI <> C2; 

2.1. R e l a t i o n s h i p i s R e l a t i o n s h i p of d i f f e r e n t 
degree or associating d i f f e r e n t e n t i t i e s . 

S o l u t i o n : t i e not yet a s s o c i a t e d e n t i t i e s to 
r e l a t i o n s h i p ( s ) . I f e n t i t i e s cannot be found, t e s t 
f o r construct mismatch (5.2.1. or 6.2.1) and missing 
e n t i t y (17.1.). 

2.2. Att r i b u t e i s Att r i b u t e of a d i f f e r e n t e n t i t y 
o r r e l a t i o n s h i p (both a re p o s s e s s i o n 
a t t r i b u t e s ) . 

S o l u t i o n : c o n v e r t b o t h a t t r i b u t e s i n t o E-R 
constructs or e n t i t i e s , s i m i l a r to 6.2. or 6.3. 

3. TRUE SYNONYMS (SAME OBJECT TYPE) 
Nl <> N2; T l = T2; Ml = M2; CI = C2; 

Solution: rename at le a s t one object so that Nl = N2. 

3.1. E n t i t y / E n t i t y . 
3.2. Relationship/Relationship. 
3.3. Att r i b u t e / A t t r i b u t e . 

4. TRUE SYNONYMS WITH DIFFERENT CONTEXT 
Nl <> N2; T l = T2; Ml = M2; CI <> C2; 

Solution: rename and make contexts i d e n t i c a l (combine 
solutions 3. and 2.). 

4.1. Relationship/Relationship. 
4.2. At t r i b u t e / A t t r i b u t e . 
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5. CONSTRUCT MISMATCH 
Nl = N2; T l <> T2; Ml = M2; CI <> C2; 

5.1. E n t i t y i s Relationship. 
Solution: convert the re l a t i o n s h i p into an en t i t y . 
Create new relationships to associate the new en t i t y 
with the e n t i t i e s i t associated as a re l a t i o n s h i p . 

5.2. E n t i t y A t t r i b u t e i s E n t i t y - R e l a t i o n s h i p 
construct. 

S o l u t i o n : c o n v e r t the a t t r i b u t e i n t o an E-R 
construct (entity and r e l a t i o n s h i p ) . 
5.2.1. Attribute i s En t i t y . 
5.2.2. Attribute i s Relationship. 

5.3. Relationship A t t r i b u t e i s E n t i t y . 
Solution: convert the at t r i b u t e into an en t i t y . 

6. CONSTRUCT MISMATCH AND SYNONYM 
Nl <> 2; T l <> T2; Ml = M2; CI <> C2; 

S o l u t i o n : rename objects to make names i d e n t i c a l 
and deal with construct mismatches as i n 5. 

6.1. E n t i t y i s Relationship. 
6.2. E n t i t y A t t r i b u t e i s E n t i t y - R e l a t i o n s h i p 

construct. 
6.2.1. Attribute i s En t i t y . 
6.2.2. Attr i b u t e i s Relationship. 

6.3. Relationship A t t r i b u t e i s E n t i t y . 

7. DIFFERENT AND UNRELATED OBJECTS 
Nl <> N2; T l = T2; Ml <> M2; not (related(Ml,M2)) ; CI = C2 
or CI <> C2; 

7.1. Objects are d i f f e r e n t , unrelated and have no 
common r o l e . 

Solution: do nothing. 
7.1.1. E n t i t y / E n t i t y . 
7.1.2. Relationship/Relationship. 
7.1.3. At t r i b u t e / A t t r i b u t e . 

7.2. O b j e c t 1 and Object 2 i n same r o l e (W-
re l a t i o n s h i p ) . 

Solution: create a common ro l e object, s p e c i a l role 
o b j e c t s , and Isa relat i o n s h i p s between the role 
objects and objects OI and 02. I f objects are not 
e n t i t i e s , transform them into e n t i t i e s f i r s t . 
7.2.1. E n t i t y / E n t i t y . 
7.2.3. Relationship/Relationship. 
7.2.3. At t r i b u t e / A t t r i b u t e . 
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8. TRUE HOMONYM 
Nl = N2; T l = T2; Ml <> M2; CI = C2 or CI <> C2; 

Solution: rename at lea s t one object, giving i t a 
name t h a t i s not assigned to any other object i n 
the view. Thereafter t r e a t common r o l e occurrences 
s i m i l a r to 7. 

8.1. Objects are d i f f e r e n t , unrelated and have no 
common ro l e . 

8.1.1. E n t i t y / E n t i t y . 
8.1.2. Relationship/Relationship. 
8.1.3. At t r i b u t e / A t t r i b u t e . 

8.2. O b j e c t 1 and Object 2 i n same r o l e (W-
re l a t i o n s h i p ) . 

8.2.1. E n t i t y / E n t i t y . 
8.2.2. Relationship/Relationship. 
8.2.3. Att r i b u t e / A t t r i b u t e . 

9. DIFFERENT OBJECTS WITH DIFFERENT CONSTRUCTS 
Nl <> N2; T l <> T2; Ml <> M2; CI <> C2; 

9.1. Objects are d i f f e r e n t , unrelated and have no 
common r o l e . 

Solution: do nothing. 
9.1.1. Entity/Relationship. 
9.1.2. Relationship/Attribute. 
9.1.3. En t i t y / A t t r i b u t e . 

9.2. O b j e c t 1 and Object 2 i n same r o l e (W-
re l a t i o n s h i p ) . 

Solution: create a common rol e object, s p e c i a l role 
o b j e c t s , and Isa rela t i o n s h i p s between the role 
objects and objects 01 and 02. I f objects are not 
e n t i t i e s , transform them into e n t i t i e s f i r s t . 
9.2.1. Entity/Relationship. 
9.2.2. Relationship/Attribute. 
9.2.3. En t i t y / A t t r i b u t e . 

10. DIFFERENT OBJECTS WITH DIFFERENT CONSTRUCTS. BUT HOMONYMS 
Nl = N2; T l <> T2; Ml <> M2; CI <> C2; 

Solution: t r e a t objects l i k e true homonyms. Change 
the name of at leas t one object to make i t d i f f e r e n t 
from a l l other o b j e c t names i n the same view. 
Treat common rol e objects as i n 9. 
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10.1. Objects are d i f f e r e n t , unrelated and have no 
common r o l e . 

10.1.1. Entity/Relationship 
10.1.2. Relationship/Attribute 
10.1.3. E n t i t y / A t t r i b u t e 

10.2. O b j e c t 1 and Object 2 i n same r o l e (W-
re l a t i o n s h i p ) . 

10.2.1. Entity/Relationship. 
10.2.2. Relationship/Attribute. 
10.2.3. E n t i t y / A t t r i b u t e . 

11. DIFFERENT BUT RELATED OBJECTS 
Nl <> N2; T l = T2; Ml <> M2; related(Ml,M2); CI - C2; 

11.1. One o b j e c t c o n t a i n s the other (Object 1 
contains Object 2 or vic e versa). 
Solution: create an Isa r e l a t i o n s h i p between 
the two objects. 

11.1.1. E n t i t y / E n t i t y . 
11.1.2. Relationship/Relationship. 
11.1.3. Att r i b u t e / A t t r i b u t e . 

Solution: before creating an Isa r e l a t i o n ­
ship, convert a t t r i b u t e s into e n t i t i e s 
( f o r r e l a t i o n s h i p attributes) or into 
E-R constructs (for e n t i t y a t t r i b u t e s ) . 

11.2. Object 1 and Object 2 have a common superset 
(but do not overlap). 
S o l u t i o n : create a superset object and Isa 
relationships from objects 01 and 02 to the 
superset object. 

11.2.1. E n t i t y / E n t i t y . 
11.2.2. Relationship/Relationship. 
11.2.3. At t r i b u t e / A t t r i b u t e . 

S o l u t i o n : precede general s o l u t i o n by 
t r a n s f o r m a t i o n i n t o e n t i t i e s or E^R 
constructs. 

11.3. Object 1 and Object 2 have a common superset 
and overlap 
Solution: combine solutions for 11.2. and 11.3. 

11.3.1. E n t i t y / E n t i t y . 
11.3.2. Relationship/Relationship. 
11.3.3. At t r i b u t e / A t t r i b u t e . 

12. DIFFERENT BUT RELATED HOMONYMS 
Nl = N2; T l = T2; Ml <> M2; related(Ml,M2); CI = C2; 
Solution: rename and solve s i m i l a r to 11. 



12.1. One o b j e c t c o n t a i n s the other (Object 1 
contains Object 2 or vic e versa). 

12.1.1. E n t i t y / E n t i t y . 
12.1.2. Relationship/Relationship. 
12.1.3. At t r i b u t e / A t t r i b u t e . 

12.2. Object 1 and Object 2 have a common superset 
(but do not overlap). 

12.2.1. E n t i t y / E n t i t y . 
12 . 2 . 2 . Relationship/Relationship. 
12.2.3. At t r i b u t e / A t t r i b u t e . 

12.3. Object 1 and Object 2 have a common superset 
and overlap. 

12.3.1. E n t i t y / E n t i t y . 
12.3 .2. Relationship/Relationship. 
12.3.3. At t r i b u t e / A t t r i b u t e . 

13. DIFFERENT BUT RELATED OBJECTS WITH DIFFERENT CONTEXT 
Nl <> N2; T l = T2; Ml <> M2; related(Ml,M2); CI <> C2; 

13.1. En t i t y A t t r i b u t e related to E n t i t y Attribute 
of a d i f f e r e n t e n t i t y . 
S o l u t i o n : transform a t t r i b u t e s i n t o E-R 
constructs and solve relatedness as i n case 
11. 

13.1.1. Att r i b u t e 1 contains A t t r i b u t e 2 (or v i c e 
versa). 

13.1.2. Common superset. 
13.1.3. Common subset and superset. 

13.2. E n t i t y A t t r i b u t e r e l a t e d t o R e l a t i o n s h i p 
A t t r i b u t e 
Solution: transform e n t i t y a t t r i b u t e into E-
R c o n s t r u c t , r e l a t i o n s h i p a t t r i b u t e i n t o 
e n t i t y and solve relatedness as i n 11. 

13.2.1. Attribute 1 contains At t r i b u t e 2 (or vice 
versa). 

13.2.2. Common superset. 
13.2.3. Common subset and superset. 

13.3. Relationship Attribute related to Relationship 
A t t r i b u t e 
Solution: transform a t t r i b u t e s into e n t i t i e s 
and solve relatedness as i n 11. 

13.3.1. Attribute 1 contains A t t r i b u t e 2 (or vice 
versa). 

13.3.2. Common superset. 
13.3.3. Common subset and superset. 

13.4. Relationship related to Relationship 
Solution: transform re l a t i o n s h i p s into entities 
and solve relatedness as i n 11. 

13.4.1. Relationship 1 contains Relationship 2 
(or v i c e versa). 

13.4.2. Common superset. 
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13.4.3. Common subset and superset. 

14. DIFFERENT BUT RELATED HOMONYMS WITH DIFFERENT CONTEXT 
Nl = N2; T l = T2; Ml <> M2; related(Ml,M2); CI <> C2; 

Solution: rename to avoid homonym and solve s i m i l a r 
to 13. 

14.1. En t i t y A t t r i b u t e related to E n t i t y Attribute 
of a d i f f e r e n t e n t i t y . 

14.1.1. Attribute 1 contains A t t r i b u t e 2 (or vice 
versa). 

14.1.2. Common superset. 
14.1.3. Common subset and superset. 

14.2. E n t i t y A t t r i b u t e r e l a t e d t o R e l a t i o n s h i p 
At t r i b u t e . 

14.2.1. Att r i b u t e 1 contains A t t r i b u t e 2 (or vice 
versa) . <> 

14.2.2. Common superset. 
14.2.3. Common subset and superset. 

14.3. Relationship Attribute r e l a t e d to Relationship 
A t t r i b u t e . 

14.3.1. Att r i b u t e 1 contains A t t r i b u t e 2 (or vice 
versa). 

14.3.2.. Common superset. 
14.3.3. Common subset and superset. 

14.4. Relationship related to Relationship 
14.4.1. Relationship 1 contains Relationship 2 

(or v i c e versa). 
14.4.2. Common superset. 
14.4.3. Common subset and superset. 

15. DIFFERENT BUT RELATED OBJECTS OF DIFFERENT TYPE 
Nl <> N2; T l <> T2; Ml <> M2; related(Ml,M2); CI <> C2; 

15.1. En t i t y A t t r i b u t e related to Entity-Relationship 
construct. 
Solution: transform e n t i t y a t t r i b u t e into E-
R construct and solve relatedness s i m i l a r to 
11. 

15.1.1. En t i t y A ttribute related to En t i t y . 
15.1.1.1. One object contains the other. 
15.1.1.2. Common s u p e r s e t . 
15.1.1.3. Common subset and superset. 

15.1.2. En t i t y A t t r i b u t e related to Relationship. 
15.1.2.1. One object contains the other. 
15.1.2.2. Common superset. 
15.1.2.3. Common subset and superset. 

15.2. Relationship A t t r i b u t e related to En t i t y . 
15.2.1. One object contains the other. 
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15.2.2. Common superset. 
15.2.3. Common subset and superset. 

15.3. E n t i t y related to Relationship. 
15.3.1. One object contains the other. 
15.3.2. . Common superset. 
15.3.3. Common subset and superset. 

16. DIFFERENT BUT RELATED HOMONYMS OF DIFFERENT TYPE 
Nl = N2; T l <> T2; Ml <> M2; related(Ml,M2); CI <> C2; 

S o l u t i o n : rename at l e a s t one o b j e c t to avoid 
homonym and solve s i m i l a r to 15. 

16.1. En t i t y A t t r i b u t e related to Entity-Relationship 
construct 

16.1.1. En t i t y A ttribute r e l a t e d to En t i t y . 
16.1.1.1. One object contains the other. 
16.1.1.2. Common superset. 
16.1.1.3. Common subset and superset. 

16.1.2. En t i t y A ttribute related to Relationship. 
16.1.2.1. One object contains the other. 
16.1.2.2. Common superset. 
16.1.2.3. Common subset and superset. 

16.2. Relationship A t t r i b u t e related to En t i t y . 
16.2.1. One object contains the other. 
16.2.2. Common superset. 
16.2.3. Common subset and superset. 

16.3. E n t i t y related to Relationship. 
16.3.1 One object contains the other. 
16.3.2. Common superset. 
16.3.3. Common subset and superset. 

17. MISSING OBJECT 
Object 2 does not e x i s t . 

Solution: add missing object. 

17.1 
17.2 
17.3 

Ent i t y missing. 
Relationship missing. 
At t r i b u t e missing. 
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Appendix 2: C o n f l i c t Solutions 

1. IDENTICAL OBJECTS 
Nl = N2; T l = T2; Ml = M2; CI = C2; 

Solution: do nothing. 

1.1. E n t i t y i s E n t i t y . 
1.2. Relationship i s Relationship. 
1.3. Att r i b u t e i s At t r i b u t e . 

2. IDENTICAL OBJECTS WITH DIFFERENT CONTEXT 
Nl = N2; T l = T2; Ml = M2; CI <> C2; 

2.1. R e l a t i o n s h i p i s R e l a t i o n s h i p of d i f f e r e n t 
degree or associating d i f f e r e n t e n t i t i e s . 

Solution: S4, possibly SI or S2 or Sll. 
2.2. Att r i b u t e i s At t r i b u t e of a d i f f e r e n t e n t i t y 

o r r e l a t i o n s h i p (both a r e p o s s e s s i o n 
a t t r i b u t e s ) . 

Solution: S2 or S3. 

3. TRUE SYNONYMS (SAME OBJECT TYPE) 
Nl <> N2; T l = T2; Ml = M2; CI = C2; 

Solution: S10. 

3.1. E n t i t y / E n t i t y . 
3.2. Relationship/Relationship. 
3.3. At t r i b u t e / A t t r i b u t e . 

4. TRUE SYNONYMS WITH DIFFERENT CONTEXT 
Nl <> N2; T l = T2; Ml = M2; CI <> C2; 

4.1. Relationship/Relationship. 
Solution: S10 and S4, possibly SI, or S2, or Sll. 

4.2. At t r i b u t e / A t t r i b u t e . 
Solution: 520 and S2 or S3. 

5. CONSTRUCT MISMATCH 
Nl = N2; T l <> T2; Ml = M2; CI <> C2; 

5.1. E n t i t y i s Relationship. 
Solution: SI. 

5.2. E n t i t y A t t r i b u t e i s E n t i t y - R e l a t i o n s h i p 
construct. 

Solution: S3. 
5.2.1. Att r i b u t e i s E n t i t y . 
5.2.2. Att r i b u t e i s Relationship. 

5.3. Relationship A t t r i b u t e i s E n t i t y . 
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Solution: S2. 

6. CONSTRUCT MISMATCH AND SYNONYM 
Nl <> 2; T l <> T2; Ml = M2; CI <> C2; 

6.1. E n t i t y i s Relationship. 
Solution: S10 and SI. 

6.2. E n t i t y A t t r i b u t e i s E n t i t y - R e l a t i o n s h i p 
construct. 

Solution: S10 and S3. 
6.2.1. Att r i b u t e i s En t i t y . 
6.2.2. Att r i b u t e i s Relationship. 

6.3. Relationship A t t r i b u t e i s E n t i t y . 
Solution: 10 and S2. 

7. DIFFERENT AND UNRELATED OBJECTS 
Nl <> N2; T l = T2; Ml <> M2; not (related(Ml,M2) ) ; CI = C2 
or CI <> C2; 

7.1. Objects are d i f f e r e n t , unrelated and have no 
common r o l e . 

Solution: do nothing. 
7.1.1. E n t i t y / E n t i t y . 
7.1.2. Relationship/Relationship. 
7.1.3. At t r i b u t e / A t t r i b u t e . 

7.2. O b j e c t 1 and Object 2 i n same r o l e (W-
r e l a t i o n s h i p ) . 

7.2.1. E n t i t y / E n t i t y . 
Solution: S7. 

7.2.2. Relationship/Relationship. 
Solution: SI and S7. 

7.2.3. At t r i b u t e / A t t r i b u t e . 
Solution: S2 or S3 followed by S7. 

8. TRUE HOMONYM 
Nl = N2; T l = T2; Ml <> M2; CI = C2 or CI <> C2; 

8.1. Objects are d i f f e r e n t , unrelated and have no 
common r o l e . 

Solution: S10. 
8.1.1. E n t i t y / E n t i t y . 
8.1.2. Relationship/Relationship. 
8.1.3. At t r i b u t e / A t t r i b u t e . 

8.2. O b j e c t 1 and Object 2 i n same r o l e (W-
r e l a t i o n s h i p ) . 

8.2.1. E n t i t y / E n t i t y . 
Solution: S10 followed by S7. 

8.2.2. Relationship/Relationship. 
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Solution: S10 and SI followed by S7. 
8.2.3. At t r i b u t e / A t t r i b u t e . 

Solution: S10 and S2 or S3 followed by 
S7. 

9. DIFFERENT OBJECTS WITH DIFFERENT CONSTRUCTS 
Nl <> N2; T l <> T2; Ml <> M2; CI <> C2; 

9.1. Objects are d i f f e r e n t , unrelated and have no 
common ro l e . 

Solution: do nothing. 
9.1.1. Entity/Relationship. 
9.1.2. Relationship/Attribute. 
9.1.3. E n t i t y / A t t r i b u t e . 

9.2. O b j e c t 1 and Object 2 i n same r o l e (W-
r e l a t i o n s h i p ) . 

9.2.1. Entity/Relationship. 
Solution: SI followed by S7. 

9.2.2. Relationship/Attribute. 
Solution: SI and S2 or S3 followed by 
S7. 

9.2.3. E n t i t y / A t t r i b u t e . 
Solution: S2 or S3 followed by S7. 

10. DIFFERENT OBJECTS WITH DIFFERENT CONSTRUCTS. BUT HOMONYMS 
Nl = N2; T l <> T2; Ml <> M2; CI <> C2; 

10.1. Objects are d i f f e r e n t , unrelated and have no 
common ro l e . 
Solution: S10. 

10.1.1. Entity/Relationship. 
10.1.2. Relationship/Attribute. 
10.1.3. E n t i t y / A t t r i b u t e . 

10.2. O b j e c t 1 and Object 2 i n same r o l e (W-
r e l a t i o n s h i p ) . 

10.2.1. Entity/Relationship. 
Solution: S10 and SI followed by S7. 

10.2.2. Relationship/Attribute. 
Solution: S10, SI and S2 or S3, followed 
by S7. 

10.2.3. E n t i t y / A t t r i b u t e . 
Solution: S10 and S2 or S3, followed by 
S7. 

11. DIFFERENT BUT RELATED OBJECTS 
Nl <> N2; T l = T2; Ml <> M2; related(Ml,M2); CI = C2; 
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11.1. One o b j e c t c o n t a i n s the other (Object 1 
contains Object 2 or v i c e versa). 

11.1.1. E n t i t y / E n t i t y . 
Solution: S6. 

11.1.2. Relationship/Relationship. 
Solution: SI and S6. 

11.1.3. At t r i b u t e / A t t r i b u t e . 
Solution: S2 or S3, followed by S6. 

11.2. Object 1 and Object 2 have a common superset 
(but do not overlap). 

11.2.1. E n t i t y / E n t i t y . 
Solution: S8. 

11.2.2. Relationship/Relationship. 
Solution: SI and S8. 

11.2.3. At t r i b u t e / A t t r i b u t e . 
Solution: S2 or S3, followed by S8. 

11.3. Object 1 and Object 2 have a common superset 
and overlap 

11.3.1. E n t i t y / E n t i t y . 
Solution: S9. 

11.3.2. Relationship/Relationship. 
Solution: SI and S9. 

11.3.3. At t r i b u t e / A t t r i b u t e . 
Solution: S2 or S3, followed by S9. 

12. DIFFERENT BUT RELATED HOMONYMS 
Nl = N2; T l = T2; Ml <> M2; related(Ml,M2); CI = C2; 

12.1. One o b j e c t c o n t a i n s the other (Object 1 
contains Object 2 or vic e versa). 

12.1.1. E n t i t y / E n t i t y . 
Solution: S10 and S6. 

12.1.2. Relationship/Relationship. 
Solution: S10 and SI and S6. 

12.1.3. At t r i b u t e / A t t r i b u t e . 
Solution: S10 and S2 or S3, followed by 
S6. 

12.2. Object 1 and Object 2 have a common superset 
(but do not overlap). 

12.2.1. E n t i t y / E n t i t y . 
Solution: S10 and S8. 

12.2.2. Relationship/Relationship. 
Solution: S10 and SI and SB. 

12.2.3. At t r i b u t e / A t t r i b u t e . 
Solution: S10 and S2 or S3, followed by 
S8. 
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12.3. Object 1 and Object 2 have a common superset 
and overlap. 

12.3.1. E n t i t y / E n t i t y . 
Solution: S10 and S9. 

12.3.2. Relationship/Relationship. 
Solution: S10 and SI and S9. 

12.3.3. At t r i b u t e / A t t r i b u t e . 
Solution: S10 and S2 or S3, followed by 
S9. 

13. DIFFERENT BUT RELATED OBJECTS WITH DIFFERENT CONTEXT 
Nl <> N2; T l = T2; Ml <> M2; related(Ml,M2); CI <> C2; 

13.1. E n t i t y A t t r i b u t e related to E n t i t y Attribute 
of a d i f f e r e n t e n t i t y . 

13.1.1. Att r i b u t e 1 contains A t t r i b u t e 2 (or v i c e 
versa). 
Solution: S3 and S6. 

13.1.2. Common superset. 
Solution: S3 and S8. 

13.1.3. Common subset and superset. 
Solution: S3 and S9. 

13.2. E n t i t y A t t r i b u t e r e l a t e d to R e l a t i o n s h i p 
A t t r i b u t e 

13.2.1. Attribute 1 contains A t t r i b u t e 2 (or v i c e 
versa). 
Solution: S2 and S3 and S6. 

13.2.2. Common superset. 
Solution: S2 and S3 and S8. 

13.2.3. Common subset and superset. 
Solution: S2 and S3 and S9. 

13.3. Relationship Attribute related to Relationship 
A t t r i b u t e 

13.3.1. Att r i b u t e 1 contains A t t r i b u t e 2 (or vice 
versa). 
Solution: S2 and S6. 

13.3.2. Common superset. 
Solution: S2 and S8. 

13.3.3. Common subset and superset. 
Solution: S2 and S9. 

13.4. Relationship related to Relationship 
13.4.1. Relationship 1 contains Relationship 2 

(or v i c e versa). 
Solution: SI and S6. 

13.4.2. Common superset. 
Solution: SI and S8. 

13.4.3. Common subset and superset. 
Solution: SI and S9. 
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14. DIFFERENT BUT RELATED HOMONYMS WITH DIFFERENT CONTEXT 
Nl = N2; T l = T2; Ml <> M2; related(Ml,M2); CI <> C2; 

14.1. En t i t y A t t r i b u t e related to E n t i t y Attribute 
of a d i f f e r e n t e n t i t y . 

14.1.1. Attribute 1 contains A t t r i b u t e 2 (or vice 
versa). 
Solution: S10 and S3 and S6. 

14.1.2. Common superset. 
Solution: S10 and S3 and S8. 

14.1.3. Common subset and superset. 
Solution: S10 and S3 and S9. 

14.2. E n t i t y A t t r i b u t e r e l a t e d t o R e l a t i o n s h i p 
A t t r i b u t e . 

14.2.1. Attribute 1 contains A t t r i b u t e 2 (or vice 
versa). 
Solution: S10 and S2 and S3 and S6. 

14.2.2. Common superset. 
Solution: S10 and S2 and S3 and S8. 

14.2.3. Common subset and superset. 
Solution: S10 and S2 and S3 and S9. 

14.3. Relationship Attribute related to Relationship 
Attribute. 

14.3.1. Att r i b u t e 1 contains A t t r i b u t e 2 (or vice 
versa). 
Solution: S10 and S2 and S6. 

14.3.2. Common superset. 
Solution: S10 and S2 and S8. 

14.3.3. Common subset and superset. 
Solution: S10 and S2 and S9. 

14.4. Relationship related to Relationship 
14.4.1. Relationship 1 contains Relationship 2 

(or v i c e versa). 
Solution: S10 and SI and S6. 

14.4.2. Common superset. 
Solution: S10 and SI and S8. 

14.4.3. Common subset and superset. 
Solution: S10 and SI and S9. 

15. DIFFERENT BUT RELATED OBJECTS OF DIFFERENT TYPE 
Nl <> N2; T l <> T2; Ml <> M2; related(Ml,M2); CI <> C2; 

15.1. E n t i t y A t t r i b u t e related to Entity-Relationship 
construct. 

15.1.1. E n t i t y A t t r i b u t e related to En t i t y . 
15.1.1.1. One object contains the other. 

Solution: S3 and S6. 
15.1.1.2. Common superset. 

Solution: S3 and S8. 
15.1.1.3. Common subset and superset. 

Solution: S3 and S9. 
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15.1.2. E n t i t y A t t r i b u t e related to Relationship. 
15.1.2.1. One object contains the other. 

Solution: S3 and S6. 
15.1.2.2. Common superset. 

Solution: S3 and S8. 
15.1.2.3. Common subset and superset. 

Solution: S3 and S9. 
15.2. Relationship A t t r i b u t e related to En t i t y . 

15.2.1. One object contains the other. 
Solution: S2 and S6. 

15.2.2. Common superset. 
Solution: S2 and S8. 

15.2.3. Common subset and superset. 
Solution: S2 and S9. 

15.3. E n t i t y related to Relationship. 
15.3.1. One object contains the other. 

Solution: SI and S6. 
15.3.2. Common superset. 

Solution: SI and S8. 
15.3.3. Common subset and superset. 

Solution: SI and S9. 

16. DIFFERENT BUT RELATED HOMONYMS OF DIFFERENT TYPE 
Nl = N2; T l <> T2; Ml <> M2; related(Ml,M2); CI <> C2; 

16.1. En t i t y Attribute related to Entity-Relationship 
construct 

16.1.1. Enti t y A t t r i b u t e r e l a t e d to En t i t y . 
16.1.1.1. One object contains the other. 

Solution: S10 and S3 and S6. 
16.1.1.2. Common superset. 

Solution: S10 and S3 and S8. 
16.1.1.3. Common subset and superset. 

Solution: S10 and S3 and S9. 
16.1.2. En t i t y A t t r i b u t e related to Relationship. 

16.1.2.1. One object contains the other. 
Solution: S10 and S3 and S6. 

16.1.2.2. Common superset. 
Solution: S10 and S3 and S8. 

16.1.2.3. Common subset and superset. 
Solution: S10 and S3 and S9. 

16.2. Relationship A t t r i b u t e r e l a t e d to En t i t y . 
16.2.1. One object contains the other. 

Solution: S10 and S2 and S6. 
16.2.2. Common superset. 

Solution: S10 and S2 and S8. 
16.2.3. Common subset and superset. 

Solution: S10 and S2 and S9. 
16.3. En t i t y related to Relationship. 
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16.3.1. One object contains the other. 
Solution: S10 and SI and S6. 

16.3.2. Common superset. 
Solution: S10 and SI and S8. 

16.3.3. Common subset and superset. 
Solution: S10 and SI and S9. 

17. MISSING OBJECT 
Object 2 does not e x i s t . 

Solution: Sll. 

17.1. E n t i t y missing. 
17.2. Relationship missing. 
17.3. Att r i b u t e missing. 
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Appendix 3: View Integration Session with AVIS 

A view integration session with AVIS i s i l l u s t r a t e d 
through a set of 22 screen displays. The problem "c34" consists 
of two s mall views which have to be integrated. Figure 28 
depicts the structure of the views. 

View 1: 

BRANCH 

Contract 

View 2: 

DEALER CONTRACT 

Figure 28: View Integration Sample Problem 

The screens shown below exemplify questions asked by the AVIS 
system as w e l l as AVIS' support f u n c t i o n s . These support 
f u n c t i o n s f o r i n s t a n c e i n d i c a t e to the d e s i g n e r what the 
program a l r e a d y knows or what the current contents of each 
view are. Example screens which display system questions to 
the user w i l l not d e p i c t user r e p l i e s . The short summary 
d e s c r i p t i o n of each screen shown below, however, states the 
user answers and documents the purpose of each screen. 

Screen Purpose 
1 AVIS t i t l e screen, asks user to choose a problem 

f i l e . Chosen here: "c34". 
2 F i r s t system question. User answers "1003". 

The following screens 3 - 8 exemplify support functions which 
can be a c t i v a t e d at any time during the integration session 
when the system i s ready to accept input. Some of the screens 
may i n i t i a l l y have no or l i t t l e content, i . e . , screen 4. They 
are shown here to demonstrate the system status at the beginning 
of an integration session and to allow a comparison with l a t e r 
system s t a t i . Screens 3 - 8 show the system status before the 

239 



user's answer "1003". The user gave hi s answer a f t e r seeing 
screen 8. 

3 Shows "Agenda", consisting of present and future object 
comparison tasks (preview). 

4 Shows "Old Agenda", consisting of current and previous 
object comparison tasks (history l o g ) . 

5 & 6 Show the contents of views 1 and 2 (at the outset of 
the integration session). 

7 Shows l i s t of " f a c t s " , knowledge about the set of views 
based on previous object comparisons. Here the l i s t i s 
s t i l l empty. 

8 Meaning comparison screen. Shows what the system knows 
about the match between objects. Here, best match i s 
with "1003 - dealer". 

9 System question 2. User answers "n". 
10 System question 3. User answers "n", but not u n t i l 

seeing screen 11. 
11 "Old Agenda" now shows the p r e v i o u s f o u r system 

questions. Note that the system never asked the user 
f o r Synonym (agenda item 2) because i t can assess 
without user help whether objects carry d i f f e r e n t names 
(simple s t r i n g comparison). 

12 System question 4. User answers "0", but not u n t i l 
seeing screen 14. 

13 "Meaning match" support function suggests no s i m i l a r i t y . 
14 Fact l i s t shows the knowledge asserted at t h i s point i n 

time. I.e., objects 3 and 1003 are i d e n t i c a l (same). 
15 System question 5. User answers "0". 
16 System question 6. User answers "1005". Note that the 

system reports i n the lower r i g h t window that i n the 
mean time, a new object, 2013 - branch, has been added. 

17 System question 7. User answers "n". The number 18 on 
the upper r i g h t hand corner of the screen shows that 
the system has i n t e r n a l l y created 18 questions, but has 
asked the user only 7. The remaining ones were answered 
by the system. 

18 "THE AGENDA IS EMPTY". The system has created two 
i d e n t i c a l views, without f u r t h e r questions t o the 
user. Note the i n t e r n a l count of 30 questions (upper 
r i g h t corner). 

19 The "Old Agenda" shows the l a s t 12 questions, answered 
by the system without user i n t e r a c t i o n . 

20 F i r s t part of the Fact l i s t . 
21 & 22 The adjusted views 1 and 2. A l l newly created objects 

can be i d e n t i f i e d by t h e i r object i d e n t i f i e r s (>2000). 
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SCREEN 1 

A V I S 

AAA 
AA AA 

AA AA 

VV 
vv 
VV 

vv 
vv 

vv 
AA AA VV VV 

AA AA VV VV 
AA AAAAAAA AA VVV 

AA AA V 
AA AA 

ssssssssss 
ss 
ss 

ssssssss 
ss 
ss 

sssssssss 

AA AA AA AA AA AA AA AA AA AA AA AA AA AA AAA 

- Automated View Integration Systems -

by C h r i s t i a n Wagner, 1988. 

Response 
What Is the name of the f i l e containing the 
views? (TEST.PRO) 
c34 

SCREEN 2 

Testing for hypothesis: SIMILAR ENTITY, 
involving the e n t i t y DEALER (3) and one of the following objects; 

1003 --
1004 --
1005 --

dealer 
customer 
contract 

Make Agenda 

Hypo Test 

New Objects 

-Response-
Please type in the number of the applicable 
object (or 0 i f none). 

Assert Objects 
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SCREEN 3 

Testing for hypothesis: SIMILAR ENTITY, 
Involving the e n t i t y DEALER (3) and one of the following objects; 

Agenda 
Current Agenda Item 
H: 3 Similar E n t i t y - (31(1003,1004,1005) 

Response-
Press <spacebar> to continue 

SCREEN 4 
A V I S 

Testing for hypothesis: SIMILAR ENTITY, 
Involving the e n t i t y DEALER (3) and one of the following objects; 

Old Agenda 
-l-> 3 - Similar E n t i t y - (3111003,1004,1005] 

Reaponse-
Press <spacebar> to continue 
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SCREEN 5 
Objects 

VIEW 1 - RELATIONSHIPS 

502 - supplyl"dealer","branch") 

VIEW 1 - ENTITIES 

3 - dealer I"contract"1 
4 - branch!"branch_no"J 

Response-
Press <spacebar> to continue 

SCREEN 6 
Objects — 

VIEW 2 - RELATIONSHIPS 

1502 - dealer_contract("dealer","contract"1 
1503 - customer_contractI"customer","contract"1 

VIEW 2 - ENTITIES 

1003 - dealer I"dealer_no") 
1004 - customer("customer_no"I 
1005 - contract("contract no") 

. Response-
Press (spacebar) to continue 
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SCREEN 7 

Testing foe hypothesis: SIMILAR ENTITY, 
involving the e n t i t y DEALER (3) and one of the following objects: 

1003 -
1004 -
1005 -

dealer 
customer 
contract 

Make Agenda 

Hypo Test 

Pacts 

Response-
Press <spacebar> to continue 

SCREEN 8 

Testing for hypothesis: SIMILAR ENTITY, 
involving the e n t i t y DEALER (3) and one of the following objects: 

Meaning Match 
I " s e l l s " , " s u p p l i e s " ] Match between e n t i t y DEALER (3) 

and objects below: 
ID NAME Match of: NAME MEANING CONTEXT 
1003 dealer y y unknown 
1004 customer n n unknown 
1005 contract n n unknown 

Response-
Press <spacebar> to continue 
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S C R E E N 9 

Testing for hypothesis: SIMILAR RELATIONSHIP, 
involving r e l a t i o n s h i p SUPPLY (502) and r e l a t i o n s h i p DEALER_CONTRACT (1502) 

Make Agenda 

3 -> agenda(similar_meanlng,I 3),(1003)) 

Hypo Test -
TO BE EXECUTED: 
simllar_meanlng((502),(15021) 

New Objects 

Response 
Please answer with y or n to indicate whether 
the hypothesis i s true or f a l s e . 

Assert Objects 
ao(4,3,1003,n) 

- t e 3 t_hypo(7) 

S C R E E N 10 

Testing for hypothesis: RELATED RELATIONSHIP, 
involving r e l a t i o n s h i p SUPPLY (502) and r e l a t i o n s h i p DEALER_CONTRACT (1502) 

Make Agenda 

1 -> agenda(homonyms,(502),(1502)) 

Hypo Test 
TO BE EXECUTED: 
related((502),(15021) 

New Objects 

— Response 
Please answer with y or n to indicate whether 
the hypothesis Is true or f a l s e . 

Assert Objects 
ao(l,502,1502,n) 

test_hypo(7) 
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SCREEN 11 

Testing for hypothesis: RELATED RELATIONSHIP, 
involving r e l a t i o n s h i p SUPPLY (502) and r e l a t i o n s h i p DEALER_CONTRACT (1502) 

Old Agenda 
1: -l-> 3 
2: 3-> 4 
3: o-> 1 
4: l-> 13 

Similar E n t i t y - [31(1003,1004,1005] 
Synonym - (31(1003) 
Similar Relationship - (5021(1502) 

Response-
Press <spacebar> to continue 

test_hypo(7) 

SCREEN 12 

Testing for hypothesis: ENTITY ATTRIBUTE IS RELATIONSHIP CONSTRUCT, 
involving the a t t r DEALER_NO (2001) and one of the following objects: 

4 — branch 
502 -- supply 

Make Agenda 

13 -> agenda(ea_ls_rc, (5021, (1502)) 

Hypo Test 
TO BE EXECUTED: 
ea_is_rc([20011,(4, 5021 ) 

New Objects 

— Response 
Please type In the number of the applicable 
object (or 0 i f none). 

Assert Objects 
ao(13,502,1502,n) 

- test_hypo(7) 
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S C R E E N 13 

Testing for hypothesis: ENTITY ATTRIBUTE IS RELATIONSHIP CONSTRUCT, 
Involving the a t t r DEALER_NO (2001) and one of the following objects: 

Meaning Match 
Match between a t t r DEALER_NO (2001) I"key"! 
and objects below: 
ID NAME Match of: 
4 branch 
502 supply 

NAME MEANING-
n n 
n n 

-CONTEXT 
none 
none 

Response-
Press <spacebar> to continue 

test_hypo(7) 

S C R E E N 14 

Testing for hypothesis: ENTITY ATTRIBUTE IS RELATIONSHIP CONSTRUCT, 
Involving the a t t r DEALER_NO (2001) and one of the following objects: 

4 — branch 
502 — supply 

Make Agenda 

13 -> agenda(ea_ls_rc, (502), 11502)) 

Hypo Test 
TO BE EXECUTED: 
ea_is_rc((20011, ( 4,502)) 

Facts 
sinllar_meanlng(3,1003) 
same(3,1003) 
dlsslallar_meanlng(502,1502) 
unrelated(502,1502) 

Response-
Press <spacebar> to continue 

- test_hypo(7) 
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S C R E E N 1 5 

Testing for hypothesis: SIMILAR ENTITY, 
Involving the e n t i t y BRANCH (4) and one of the following objects: 

1004 
1005 -

customer 
contract 

Make Agenda 

Hypo Test 

New Objects 

Response 
Please type In the number of the applicable 
object (or 0 l f none). 

Assert Objects 

S C R E E N 1 6 

Testing for hypothesis: ENTITY ATTRIBUTE IS RELATIONSHIP CONSTRUCT, 
involving the a t t r CONTRACT (600) and one of the following objects: 

1005 -
1502 -

contract 
dealer contract 

Make Agenda 

Hypo Test 
TO BE EXECUTED: 
ea_ls_rc((600), (1005,1502)) 

New Objects 
H-slmllar_meanlng 

added objects: 
2013 — branch 

-Response-
Please type In the number of the applicable 
object (or 0 l f none). 

Assert Objects 
ao(301,4,0,n) 

- test_hypo(7) 
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S C R E E N 17 
18 

Testing for hypothesis: ENTITY ATTRIBUTE IS RELATIONSHIP CONSTRUCT, 
involving a t t r DEALERNO (2001) and r e l a t i o n s h i p SUPPLY (502) 

Make Agenda 

13 -> agenda(ea_ls_rc,(15021,(502)) 

Hypo Test 
TO BE EXECUTED: 
ea_is_rc((20011, (5021 ) 

New Objects 
H-Biiss ing 

added objects: 
2023 customer contract 

-Response-
Please answer with y or n to indicate whether 
the hypothesis is true or f a l s e . 

Assert Objects 
ao(13,1502, 502,n) 

- test_hypo(7) 

S C R E E N 18 

A V I S 
30 

Make Agenda 

13 -> agenda(ea_ls_rc, (2027], (20171) 

PRECONDITION FAILED: 
related*(2027),[2017]) 

Hypo Test 

Response 
THE AGENDA IS EMPTY 

New Objects 
H-mlss ing 

added objects: 
2027 -- supply 

Assert Objects 
ao(13,2027,2017,n) 

- asso(1301) 
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S C R E E N 19 

A V I S 
30 

Old Agenda 
19: 0 -> 19 - H i s s i n g R e l a t i o n s h i p - 150211] 
20: -5 -> 1 - S i m i l a r R e l a t i o n s h i p - 120231(1503 ,1502] 
21: - 5 -> 1 - S i m i l a r R e l a t i o n s h i p - (5021(2027) 
22: -5 -> 1 - S i m i l a r R e l a t i o n s h i p - (20171(20271 
23: -6 -> 1 - S i m i l a r R e l a t i o n s h i p - (15021(2023) 
24: -6 -> 1 - S i m i l a r R e l a t i o n s h i p - (15031(20231 
25: -6 -> 1 - S i m i l a r R e l a t i o n s h i p - (20271(2017 ,5021 
26: -7 -> 13 - R e l a t e d R e l a t i o n s h i p - (20171(2027) 
27: -7 -> 13 - R e l a t e d R e l a t i o n s h i p - 120231(1502] 
28: -8 -> 13 - R e l a t e d R e l a t i o n s h i p - (15021(20231 
29: -8 -> 13 - R e l a t e d R e l a t i o n s h i p - 115031(2017) 
30: -8 -> 13 - R e l a t e d R e l a t i o n s h i p - (20271(20171 

R e s p o n s e -
P r e s s <spacebar> t o c o n t i n u e 

a s s o ( 1 3 0 1 ) 

S C R E E N 20 

A V I S 
30 

Hake Agenda 

13 -> a g e n d a ( e a _ l s _ r c , 1 2 0 2 7 ] , ( 2 0 1 7 ] ) 

PRECONDITION FAILED: 
related((2027),I 2017)) 

Hypo Test 

F a c t s 
s l a l l a r _ m e a n i n g ( 3 , 1 0 0 3 ) 
same(3 ,1003) 
d 1 s s l m l l a r _ a e a n i n g ( 5 0 2 , 1 5 0 2 ) 
u n r e l a t e d ! . 502 ,1502 ) 
e a _ i s _ n o t _ r c ( 2 0 0 1 , 4 ) 
e a _ l s _ n o t _ r c ( 2 0 0 1 , 5 0 2) 
d l s s l m i l a r _ m e a n l n g ( 4 , 1 0 0 4 ) 
d l s s i m i l a r _ m e a n l n g ( 4 , 1 0 0 5 ) 
s i m l l a r _ m e a n i n g ( 4 , 2 0 1 3 ) 
same(4 ,2013) 
d u p ( 4 , 2 0 1 3 ) 

. . . more > 

R e s p o n s e 
THE AGENDA IS EMPTY -

a s s o ( 1 3 0 1 ) 

250 



S C R E E N 21 

Objects — — 1 
VIEW 1 - RELATIONSHIPS 

502 - supply!"dealer","branch"1 
2017 - dealer_contract!"dealer","contract" I 
2023 - customer_contract!"customer","contract" ) 

VIEW 1 - ENTITIES 

3 - dealer("contract" 1 
4 - branch!"branch_no") 

2015 - contract("contract_no"I 
2021 - customer("customer no"I 

Response-
Press <spacebar> to continue 

asso(1301) 

S C R E E N 22 

Objects — 
VIEW 2 - RELATIONSHIPS 

1502 - dealer_contractI"dealer","contract"] 
1503 - customer_contractI"customer","contract") 
2027 - supply!"dealer","branch"J 

VIEW 2 - ENTITIES 

1003 - dealer I"dealer_no"I 
1004 - customer I"customer_no"I 
1005 - contract I"contract_no"J 
2013 - branch!"branch_no"1 

Response-
Press <spacebar> to continue 

asso(1301) 
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