
VIEW INTEGRATION IN DATABASE DESIGN

by C h r i s t i a n Wagner

Diplom-Ingenieur, Technical University B e r l i n , 1984

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

i n

THE FACULTY OF GRADUATE STUDIES
Faculty of Commerce and Business Administration

We accept t h i s thesis as conforming
to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA
A p r i l 1989

(c) C h r i s t i a n Wagner, 1989

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission. '

F a c u l t y
^O^Sftrn'e'n't of Commerce and B u s i n e s s A d m i n i s t r a t i o n

The University of British Columbia
Vancouver, Canada

_ t A p r i l 24, 1989 Date

DE-6 (2/88)

ABSTRACT

The purpose of t h i s research i s the formalization

o f a method o f bottom up database design known as view

integration.

View integration i s one of the main steps of an acknowledged

database design procedure, the New Orleans Database Design

Workshop procedure. This procedure develops a global database

(global schema) for an organization from small p a r t i a l databases

(user views) . Individual user views are representations of

the data relevant to the users' organizational tasks. Views

w i l l overlap since users w i l l share data to some extent. View

i n t e g r a t i o n has t o merge views without d u p l i c a t i n g the

information presented i n multiple views. The task of merging

views without d u p l i c a t i o n i s complicated by the fac t that

users have d i f f e r e n t perceptions of the world which lead them

to represent the same data d i f f e r e n t l y , the most simple form

of d i f f e r e n t perceptions being naming c o n f l i c t s such as the

occurrence of synonyms.

Within the l a s t 13 years a v a r i e t y of approaches to solve the

i n t e g r a t i o n task has been reported. Many of the approaches

have ne g l e c t e d the problem of c o n f l i c t i n g views altogether,

l e a v i n g i t s s o l u t i o n to the database designer. Integration

methods t h a t performed c o n f l i c t r e s o l u t i o n d i d i t i n an

unsystematic and incomplete f a s h i o n . Often these methods

dealt with c o n f l i c t s i t u a t i o n s only i f information f o r t h e i r

r e s o l u t i o n was conveniently a v a i l a b l e .

This research f i l l s that gap. A c o n f l i c t analysis procedure

i s o u t l i n e d which considers a l l possible c o n f l i c t conditions

and transforms them i n t o c o n d i t i o n s that can be merged by

means of previously developed techniques. The research proceeds

i n two steps. F i r s t , a c o n f l i c t analysis procedure i s developed

that ignores the information requirements problem by assuming

complete i n f o r m a t i o n . T h i s s i m p l i f i c a t i o n allows the

concentration on completeness of the procedure, since one does

not have t o be concerned with the d i f f i c u l t i e s involved i n

gathering the required information. The second step relaxes

the assumption of complete information. D i f f i c u l t information

requirements are i d e n t i f i e d and replaced by more e a s i l y s a t i s f i e d

ones.

Main contributions to knowledge are (1) a complete understanding

of the factors causing c o n f l i c t s between views, (2) detection

of substitutes for d i f f i c u l t information requirements. Other

c o n t r i b u t i o n s are (3) suggestions for the development of a

semantic data dictionary, (4) an a l t e r n a t i v e method for the

design of knowledge based systems, and (5) suggestions for

e f f i c i e n t bottom up systems design strategies.

i i i

TABLE OF CONTENTS

ABSTRACT i i

TABLE OF CONTENTS i v

LIST OF FIGURES v i i i

ACKNOWLEDGMENT ix

1. OVERVIEW 1

2. VIEW INTEGRATION 3

2.1. Database Design Philosophies-

Top Down vs. Bottom Up 3

2.2. Database Design based on the

New Orleans Database Design

Workshop Procedure 5

2.2.1. Syntactic Approaches 12

2.2.1.2. ̂ M a r t i n 1 s C a n o n i c a l

Synthesis 21

2.2.1.3. Casanova's and Vidal's

Method 25

2.2.1.4. F u n c t i o n a l Data Model

Based Integration 30

i v

2.2.2. Semantic View I n t e g r a t i o n

Approaches Based on the E-R

Model 34

2.2.2.1. Navathe's and Elmasri's

Approach 3 6

2.2.2.2. Ba t i n i ' s Approach 39

2.3. View Integration Cases 43

2.4. Conclusion 45

3. SYSTEM FOR VIEW INTEGRATION ''53

3.1. R e s e a r c h Q u e s t i o n a n d

Contribution to Knowledge 53

3.2. Approach to the Problem 60

3.2.1. Overview 60

3.2.2. Outline of the Problem with

Available Information 61

3.2.3. Changes i n the Integration

M e t h o d when N e c e s s a r y

Information i s not D i r e c t l y

Available 75

3.2.4. View I n t e g r a t i o n C o n f l i c t

Cases 79

3.3. Expert System Methodology 83

4. RESULTS 90

4.1. Rules Guiding View Integration 90

v

4.2. Diagnosis Procedure 134

4.3. C o n f l i c t Therapy 151

4.4. The Impact of Heu r i s t i c s 167

4.5. Generalization Hierarchy f o r

Database Objects 178

4.6. Assessment of the Method 184

5. IMPLEMENTATION - THE AVIS

PROGRAM 197

5.1. Overview 197

5.2. F u n c t i o n and S t r u c t u r e of

the AVIS Program 197

5.3. Knowledge Representation 203

5.3.1. Representation of views 203

5.3.2. R e p r e s e n t a t i o n o f View

Integration Knowledge 206

5.4. The Impact of Domain Knowledge 210

6. SUMMARY AND EXTENSIONS 214

7. REFERENCES 219

APPENDIX 224

Appendix 1: C o n f l i c t Cases 224

Appendix 2: C o n f l i c t Solutions 231

v i

Appendix 3 : View I n t e g r a t i o n S e s s i o n

with AVIS

v i i

LIST OF FIGURES

Figure T i t l e Page

1 Object Comparison Matrix 65

2 Case Transformations during View Integration 72

3 Ordering of View Integration Steps 74

4 C o n f l i c t Recognition Procedure (abbreviated) 75

5 Decision Table I l l u s t r a t i o n 85

6 Test for Object Identity, Procedure without

Heu r i s t i c s 138

7 Test for Identity with H e u r i s t i c 143

8 Test for Relatedness of Objects 147

9 Relationship becomes an En t i t y 152

10 Relationship At t r i b u t e Becomes an E n t i t y 153

11 E n t i t y Attribute Becomes an E n t i t y -

Relationship Construct 155

12 Association of an Entit y to a Relationship 156

13 Relationship Relocation 158

14 Representation of Containment 159

15 Representation of Common Role 160

16 Representation of Common Superset without

Common Subset 162

17 Representation of Common Superset and

Common Subset 163

18 Sources of Evidence for Meaning Identity 173

19 Construct Mismatches Shown as Graph

v i i i

Contraction 186

20 Ide n t i c a l Meaning Query i n Prolog Graph

Notation 188

21 AVIS Program Structure 199

22 Representation of Views i n AVIS 203

23 AVIS Hypotheses 206

24 AVIS "make agenda" Rule 2 07

25 F i l t e r i n g Rule i n AVIS 208

26 AVIS Object Assertion Rule 209

27 AVIS Meaning Identity Indicators 2i2

28 View Integration Sample Problem 239

ix

ACKNOWLEDGMENT

I thank my supervisor, Professor Robert C. Goldstein, f o r h i s
guidance as well as f o r h i s ongoing encouragement. My thanks
go to Professor Yair Wand for h i s often very c r i t i c a l and always
very stimulating comments. To Professor Wolfgang Bibel I am
gr a t e f u l f o r providing many new perspectives on the nature of
t h i s research.

I also wish to acknowledge the funding given f o r t h i s research
by the World U n i v e r s i t y S e r v i c e of Canada, dem Deutschen
Akademischen Austauschdienst, and the University of B r i t i s h
Columbia.

F i n a l l y , I thank my parents, Helmuth and I r i s Wagner, fo r t h e i r
love and support.

x

1. OVERVIEW

The database designer's task, c o n v e r t i n g users'

c a s u a l data d e s c r i p t i o n s i n t o a database design i s time

consuming, e r r o r prone, and requires substantial expertise.

T h i s argument i s s t i l l v a l i d , even though the separation of

l o g i c a l and physical design considerations has s i m p l i f i e d the

design e f f o r t (Curtice and Jones, 1982). Consequently, there

e x i s t s s t r o n g i n t e r e s t i n the development of techniques to

improve the database design process, p a r t i c u l a r l y the hardware

independent l o g i c a l database design process.

One approach t h a t has been taken i s the further

decomposition of the design process. Frequently, database

designers begin with a graphical representation of the database

to be b u i l t , i . e . an e n t i t y - r e l a t i o n s h i p model or Brown diagrams

(Brown, 1982) , before they design the actual database r e l a t i o n s

or record and set types. As DeMarco (1979) mentions i n the

context of structured analysis, graphical representations are

a t o o l t h a t provides a c o n c i s e representation, allows easy

consistency checking and i s very maintainable. Another form

of design composition focuses on the development of i n d i v i d u a l

user views for small task domains and subsequent integration

of user views into a complete schema. The ra t i o n a l e for t h i s

approach i s s i m p l i f i c a t i o n due to a more narrow focus, as well

1

as improved v a l i d i t y of the views. I f every user describes

only the data of her task domain—the data she i s most f a m i l i a r

w i t h — t h e r e s u l t i n g representation promises to be more correct

than one that i s done by a person only remotely f a m i l i a r with

the domain. However, s i n c e each each view describes data

structures as perceived by the i n d i v i d u a l users, differences

i n user p e r c e p t i o n s — c o n f l i c t s between user v i e w s — a r e to be

expected. These c o n f l i c t s have to be s e t t l e d , before views

can be aggregated to form a global database structure. The

purpose of t h i s research i s the formalization and solution of

the c o n f l i c t r e s o l u t i o n problem. Even though a v a r i e t y of

i n t e g r a t i o n methods are p r e s e n t l y avai l a b l e , e x i s t i n g view

integ r a t i o n methods are incomplete, freguently neglecting the

c o n f l i c t r e s o l u t i o n problem (Batini et a l . , 1986, p. 348).

C o n f l i c t s a r i s e when d i f f e r e n t users model the same r e a l world

c o n c e p t s d i f f e r e n t l y , or d i f f e r e n t r e a l w o r l d o b j e c t s

i d e n t i c a l l y .

T h i s r e s e a r c h b r i d g e s the gap by developing a c o n f l i c t

c l a s s i f i c a t i o n and resolution scheme, and based on t h i s scheme

a computer program t h a t integrates user views, grounded i n

rules and h e u r i s t i c s of database design.

2

2. VIEW INTEGRATION

2.1. Database Design P h i l o s o p h i e s - Top Down vs.

Bottom Up

Independent of any p a r t i c u l a r database design approach

t h e r e e x i s t s the question whether database design, l i k e any

other form of systems design, should proceed top down or

bottom up. Bottom up and top down repre s e n t the extreme

points i n a spectrum of design a l t e r n a t i v e s .

In general, top down design has the advantage over bottom up

design that i t i s oriented towards o v e r a l l goals and that i t

allows stepwise refinement of those general goals. Bottom up

design r e q u i r e s i n t e g r a t i o n of the elements of the o v e r a l l

system and w i l l almost c e r t a i n l y r e s u l t i n c o n f l i c t s between

the elements and i n the n e c e s s i t y f o r the r e d e f i n i t i o n of

system elements. Despite t h i s disadvantage, bottom up approaches

are frequently used (Martin, 1984, McFadden and Hoffer, 1988).

Their major advantage i s that they do not demand the existence

of an o v e r a l l design before the design of p a r t i c u l a r elements

can take place. Thus, no o v e r a l l understanding of the system

i s required, or at lea s t not to the extent necessary for the

top down approach. In addition, bottom up design f a c i l i t a t e s

3

the use of e x i s t i n g information from previous designs and thus

i s a better approach for incremental development.

Given that both approaches have advantages and disadvantages,

designers w i l l t y p i c a l l y apply both design approaches, namely

u s i n g a top down focus for the i n i t i a l design, to p a r t i t i o n

the system into manageable subsystems which are c o n f l i c t - f r e e .

Thereafter, they w i l l apply a bottom up approach i n the detailed

design of these subsystems, t a k i n g i n t o consideration the

necessity f o r c o n f l i c t resolution and trading i t f o r ease of

design.

The major database design techniques described i n t h i s paper,

those u s i n g view i n t e g r a t i o n , w i l l appear to be bottom up

approaches, since the integration process i s based on in d i v i d u a l

user views. However, the procedure l a i d out at the New Orleans

Database Design Workshop (New Orleans, 1979) which presents a

framework for view integration approaches, recommends a database

design procedure that introduces organizational goals and high

l e v e l information requirements by means of Enterprise Modelling

i n the step preceding view integration. In other words, t h i s

widely accepted design strategy also applies a mixed top down

and bottom up approach.

4

2.2. Database Design based on the New Orleans Database

Design Workshop Procedure

In t h i s s e c t i o n the focus w i l l be on the common

elements of a l l view integration procedures as well as on t h e i r

d i f f e r e n t i a t i n g c h a r a c t e r i s t i c s . In short, a l l integration

approaches can be perceived as procedures for view aggregation

and schema optimization. One feature of a l l (comprehensive)

approaches w i l l be the a b i l i t y to resolve differences between

views. To permit t h i s , the methods' data models w i l l have to

be able to represent objects and object associations. D i s s i m i l ­

a r i t i e s among view integration procedures w i l l a r i s e primarily

from the differences i n procedure, the differences i n a b i l i t i e s

to deal with c o n f l i c t i n g information, v a r i a t i o n s i n information

requirements, and on the r e s t r i c t i o n s placed on the i n i t i a l

schema.

View i n t e g r a t i o n i s an element of any bottom up database

design strategy. This strategy, whose i n i t i a l input are user

r e q u i r e m e n t s and whose f i n a l outcome i s the implemented

(p h y s i c a l) database, has been segmented by various authors

(New Orleans, 1979, Teory and Fry, 1982) into the following

steps:

1. Requirements Analysis

to obtain information from users on information and

p r o c e s s i n g r e q u i r e m e n t s , and to analyze t h i s

5

i n f o r m a t i o n i n order to r e s o l v e c o n f l i c t s and

i n c o n s i s t e n c i e s with the e n t e r p r i s e view. The

a n a l y s i s and i n c o r p o r a t i o n of (global) business

constraints adds a top down focus to t h i s otherwise

bottom up oriented technique.

2. View Modelling and Modification

to generate application views and information access

requirements.

3. View Integration

to merge i n d i v i d u a l views into a global schema.

4 . Implementation Design

to handle issues of i n t e g r i t y , consistency, recovery,

security and e f f i c i e n c y .

5 . Physical Design

to ensure functioning and e f f i c i e n c y of the database

with a p a r t i c u l a r database/file system.

In other words, view integration takes as i t s inputs i n d i v i d u a l

user views (and p o s s i b l y processing/query requirements) and

produces as i t s output a global database schema.

The most t r i v i a l form of view integration i s an aggregation of

a l l i n d i v i d u a l views without a l t e r a t i o n of any of them.

However, i n s t e a d of generating a system of interconnected

database objects, t h i s method creates merely a lump of i n d i v i d u a l

views. View integration has to go beyond aggregation, i t has

6

to i n c l u d e the r e o r g a n i z a t i o n (optimization) of the global

schema. The task i s to eliminate redundancies and in c o n s i s t ­

encies that r e s u l t from combining overlapping views of users

who a l l may have d i f f e r e n t conceptual models.

Reorganization of the global schema i s intended to increase the

des c r i p t i v e adequacy of the global schema 1 . In addition, i t

may include the consideration of query requirements which has

been a concern i n some e a r l i e r studies, e s p e c i a l l y i n non­

r e l a t i o n a l database environments (for example B a t i n i et a l .

(1984a) or Yao et a l . (1982, 1985)) . For network or h i e r a r c h i c a l

databases, c o n s i d e r a t i o n of p r o c e s s i n g requirements might

r e s u l t i n a trade-off that introduces d u p l i c a t i o n of database

objects to improve processing e f f i c i e n c y .

Even though a v a r i e t y of researchers choose the same approach

to database design, namely view integration, differences e x i s t

i n the data modelling language used to carry out the integration

process. T i g h t l y connected to the data model i s the "integration

philosophy", a l t e r n a t i v e s of which have been pointed out by Yao

et a l . (1982) as (1) view i n t e g r a t i o n based on item l e v e l

s y n t h e s i s u s i n g frequency information, (2) synthesis using

functional dependencies among items and (3) merging of object

l e v e l structures.

1 Descriptive adequacy i s understood as the pr e c i s i o n with
which the data model describes the world i t attempts to model.

7

The f i r s t category i s a form of " s t a t i s t i c a l " view integration,

i n which frequency i n f o r m a t i o n serves as a substitute for

cohesion or functional dependency of data items (Dyba, 1977,

Sheppard, 1977).

The second category builds database objects, i . e . r e l a t i o n a l

data structures, based on information on functional dependencies.

Proponents of t h i s category can be found f o r i n s t a n c e i n

Bernstein (1976), Raver and Hubbard (1977), Yao et a l . (1982),

Casanova and V i d a l (1983), and Biskup and Convent (1986,

19 85) . Most of these approaches attempt to b u i l d databases

p u r e l y based on functional dependencies (and possibly other

forms of dependencies) and t r y to avoid the consideration of

the meaning of d a t a o b j e c t s as much as p o s s i b l e during

integration. Later, these approaches w i l l be referred to as

synta c t i c approaches.

The t h i r d group of approaches i s probably best represented by

B a t i n i et a l . (for instance B a t i n i and Lenzerini, 1984) and

Navathe et a l . (for instance Navathe and Elmasri, 1986). Both

t e c h n i q u e s are based on the E-R model, enhanced by some

a d d i t i o n a l information (g e n e r a l i z a t i o n / s p e c i a l i z a t i o n) . The

fact that these techniques operate on an object l e v e l does not

imply that functional relationships are not relevant for them.

8

However, i n E-R models, dependencies are represented i n the

association of a t t r i b u t e s to e n t i t i e s or r e l a t i o n s .

Since the l a t e seventies, the l i t e r a t u r e has moved away from

s t a t i s t i c a l approaches to view integration. The main problem

of s t a t i s t i c a l approaches i s t h a t they attempt to capture

dependency information between data items by means of r e l a t i v e

frequency of common use i n applications or coexistence i n the

same f i l e structure. This substitute may often be correct,

since experienced f i l e designers w i l l have a good understanding

of which data items should belong together (see f o r instance

Weber, 1986 on " i n t u i t i v e " normalization), but the technique

i s i n f e r i o r to ones t h a t concentrate on the a c t u a l data

dependencies. Thus, within t h i s research, the focus w i l l be

on the l a t t e r two groups of integration methods only. For

these two groups, prototypical integration methods (together

with t h e i r data models) are presented i n the following l i s t .

SYNTACTIC (at t r i b u t e - l e v e l) INTEGRATION

Based on Functional Dependencies only

* Martin (1983) - "Bubble Charting"

* Bernstein (1976) - Relational Model

* Yao et a l . (1982) - Functional Data Model

* Raver and Hubbard (1977) - "Bubble Charting"

9

* Al-Fedaghi and Scheuenrtan (1981) - Relational Model

Based on FDs and other Dependencies

* Casanova and V i d a l (1983) - Relational Model

* Biskup and Convent (1986) - Relational Model

SEMANTIC (object-level) INTEGRATION

* B a t i n i et a l . (1983) - Entity-Relationship Model

* Navathe e t a l . (1986) 1 - E n t i t y - C a t e g o r y -

Relationship Model

* Mannino and E f f e l s b e r g (1984) - Generalization

Assertions

* Teory and Fry (1982) - Semantic H i e r a r c h i c a l Data

M.

Not a l l of these techniques s h a l l be discussed i n d e t a i l since

there e x i s t s considerable overlap among them. The following

techniques w i l l be discussed: Martin, Bernstein, Yao et a l . ,

Casanova and V i d a l , Navathe et a l . , B a t i n i et a l . Martin

1 The method put forward by Navathe and others has gone
through various stages and has involved various researchers.
An e a r l i e r method i s described by Navathe and Gadgil (1978) or
Navathe and Schkolnick (1978). Other versions include Navathe,
Elmasri, and Larson (1986). The method referenced here i s the
l a t e s t p u b l i s h e d form. I t has been extended into database
integration by Elmasri et a l . (1986) .

10

contributes a not p a r t i c u l a r l y detailed, yet popular integration

method. Bernstein presents the f i r s t algorithmic and purely

s y n t a c t i c a l view synthesis method. Casanova and V i d a l introduce

the f i r s t s y ntactic integration method that includes a r i c h e r

s e t of dependencies. Navathe et a l . put forward a semantic

i n t e g r a t i o n method with a l a r g e s e t of i n t e g r a t i o n cases.

F i n a l l y , B a t i n i et a l . present the (semantic) integration

method that best deals with c o n f l i c t i n g views.

11

2.2.1. Syntactic Approaches

S y n t a c t i c approaches are design methods i n which

the view integration procedure does not r e l y on a designer's

understanding of the data during the integration process (nor

on "understanding" by the algorithm) 1 . Instead, the algorithms

r e o r g a n i z e the i n i t i a l schema i n a purely s t r u c t u r a l manner

independent of the meaning of objects or a t t r i b u t e s involved,

once c e r t a i n i n f o r m a t i o n requirements about f u n c t i o n a l

dependencies are s a t i s f i e d . These information requirements are

assumed to be s a t i s f i e d at the outset of the i n t e g r a t i o n

procedure. They are not part of the technique.

The s y n t a c t i c approaches introduced below, give a complete

a l g o r i t h m f o r view i n t e g r a t i o n and show the " o p t i m a l i t y 1 1

(author's terminology) of the r e s u l t i n g design. Optimality

(Casanova and Vidal) i s not a p a r t i c u l a r l y well chosen term,

s i n c e the design i s not optimal i n a l l c r i t e r i a a database

designer might think of. "Optimal" i s meant as "achieving the

goals set f o r the design at the s t a r t of the integration process"

which i n p a r t i c u l a r means the generation of a v a l i d database,

i . e . one that s a t i s f i e s a l l previously established i n t e g r i t y

1 I d e a l l y the techniques do not r e l y at a l l on the
designer's understanding. However, at l e a s t one method (Biskup
and Convent) c o n s u l t s the designer, when the i n t e g r a t i o n
algorithm i s i n a deadlock. Other methods (e.g., Yao et al.)
r e q u i r e designer understanding for more complex integration
cases, such as removal of redundant functions.

12

constraints and i s free of undesirable data dependencies. We

w i l l c a l l the r e s u l t i n g designs from now on " f e a s i b l e " rather

than "optimal". Three main proponents of d i f f e r e n t syntactic

approaches are Bernstein (1976), Casanova and V i d a l (1983), and

Biskup and Convent (198 6). Two additional s y n t a c t i c approach

s h a l l also be mentioned i n t h i s context, although they d i f f e r

from the above three i n not being as purely synthetic, not

providing a complete algorithm, and i n using other data models

("bubble charts" (Martin) and the Functional Data Model (Yao et

al.)). A l l approaches, other than Biskup's and Convent's, w i l l

be discussed. Biskup and Convent's technique i s rather s i m i l a r

to Casanova's and Vi d a l s . Hence, a separate discussion w i l l not

be necessary.

B e r n s t e i n ' s approach does not p a r t i c u l a r l y address the view

integration problem, but instead the problem of synthesizing a

minimal number of 3NF r e l a t i o n s from a set of f u n c t i o n a l

dependencies. Nevertheless, i t s approach i s applicable to view

integration, since the algorithm does not mind whether the schema

descriptions used for r e l a t i o n synthesis stem from one view or

from many views. However, the procedure has obviously no means

to unify c o n f l i c t i n g perceptions of the same data. Contrary to

more rece n t i n t e g r a t i o n approaches such as Casanova's and

V i d a l ' s , B e r n s t e i n ' s method r e l i e s o n l y on f u n c t i o n a l

dependencies to carry out the r e l a t i o n synthesis procedure.

13

Martin's approach, Canonical Synthesis, attempts to develop a

"canonical data representation" 1 . This method, l i k e Bernstein's,

has no formal means for dealing with c o n f l i c t s between views,

not even f o r naming c o n f l i c t s . In addition i t i s much less

d e t a i l e d and much less algorithmic than Bernstein's.

Casanova's and Vidal's technique assumes the existence of user

views and complete knowledge of dependencies (i n t e g r i t y

c o n s t r a i n t s) f o r the c o l l e c t i o n of user views. I t can be

summarized by the following integration plan. Given a set of

user views and a set of i n t e g r i t y constraints, define as a v a l i d

("proper") database scheme (= global schema) one that s a t i s f i e s

a l l desirable i n t e g r i t y constraints. Then apply an algorithm

that reorganizes the c o l l e c t i o n of user views into a v a l i d schema

by removing a l l undesirable data dependencies through changes

i n r e l a t i o n schemes.

Yao et a l . require f o r t h e i r approach complete information on

e n t i t i e s (" e n t i t y nodes"), functional r e l a t i o n s h i p s between

e n t i t y nodes, plus assertions describing true facts about the

data model which are not represented i n form of e n t i t y nodes or

re l a t i o n s h i p s . A l l views are combined i n one representation

1 The notion of a canonical representation i n data models
has been put forward by Raver and Hubbard (1977) and i s used to
d e s c r i b e schemata which are redundancy-free (no nonessential
associations), complete, and correct. Thus a canonical synthesis
technique not only integrates user views, but can also extend
them to add necessary further d e t a i l s .

14

which i s thereafter subject to removal of redundant functions

and redundant nodes. A proof of correctness of the integration

r e s u l t i s not given for t h i s approach.

One major l i m i t a t i o n of the syntactic strategies, e s p e c i a l l y of

Casanova's and V i d a l ' s , i s t h e i r e x t e n s i v e i n f o r m a t i o n

r e q u i r e m e n t s . They assume at l e a s t the a v a i l a b i l i t y of

i n f o r m a t i o n on f u n c t i o n a l , i f not also on union functional

dependencies, i n c l u s i o n and exclusion dependencies. I t has to

be questioned whether i t i s f e a s i b l e to generate t h i s information

d u r i n g the view i n t e g r a t i o n process, and how r e l i a b l e the

information w i l l be. With respect to the amount of information,

one has to keep i n mind that not only intra-view but also i n t e r ­

view c o n s t r a i n t s have to be defined. This requirement can

increase the number of constraints s u b s t a n t i a l l y , i t also demands

from the designer the comparison of each r e l a t i o n scheme from

each view against a l l other r e l a t i o n schemes, to detect those

dependencies. Any incorrect assessment by the designer w i l l

p o t e n t i a l l y r e s u l t i n an incorrect global schema.

A second l i m i t a t i o n of these approaches i s the r e s t r i c t i o n s they

place on the i n i t i a l views to make the integration a computat­

i o n a l l y solvable problem (i . e . only functional dependencies on

the key for the i n i t i a l c o l l e c t i o n of views).

15

A t h i r d l i m i t a t i o n i s caused by the purely syntactic treatment

of data dependencies. The procedures cannot d i f f e r e n t i a t e

between dependencies that are of the same type and involve the

same a t t r i b u t e s , even i f t h e i r meanings are d i f f e r e n t . For

example, the functional dependency Employee# -> Department!

might i n f a c t represent two d i f f e r e n t r e l a t i o n s h i p s , f i r s t ,

every employee works for one p a r t i c u l a r department, and second,

every employee i s located i n one p a r t i c u l a r department. Thus,

while f o r example employee 6750 works f o r the information

systems department, he resides i n the o f f i c e s of the accounting

department. This difference i n roles (here, roles of department)

has to be incorporated into the a t t r i b u t e names, to allow the

synt a c t i c approaches d i f f e r e n t i a t e between the two r e l a t i o n s h i p s .

I . e . , t h e r e has t o e x i s t a L o c a t e d _ i n _ D e p t and a

Employed_by_Dept.

16

2.2.1.1. Bernstein's Relation Synthesis

This method i s described i n Bernstein (1976). An

implementation of Bernstein's algorithm can be found i n Ceri and

Gottlob (1986).

The goal of Bernstein's method i s the creation of a schema

containing the smallest number of 3NF r e l a t i o n s for a given set

of functional dependencies. Since the procedure does not concern

i t s e l f with the o r i g i n of the functional dependencies, i t does

not object to the fact that the set of dependencies i s taken from

more than one schema. Therefore the method can be considered

a view integration procedure. The method not only provides a

s y n t h e s i s algorithm, but a l s o demonstrates that the set of

r e s u l t i n g r e l a t i o n s i s minimal and probably i n 3NF. The creation

of 3NF r e l a t i o n s i s t y p i c a l l y the goal and f i n a l outcome of a

decomposition process i n which larger tables are s p l i t into

smaller redundance-free components (for example, Ullman, 1980

or Date, 1981). Bernstein, i n contrast, generates 3NF r e l a t i o n s

by means of composition. This makes Bernstein's approach a view

integration technique.

The goal of Bernstein's integration procedure i s to f i n d the

17

smallest set of 3NF r e l a t i o n s that incorporates a l l pre-defined

functional dependencies that have been defined.

The a l g o r i t h m developed by Bernstein consists of three main

parts. The f i r s t part (involving steps 1 and 2 of "Algorithm

2", see below), has the purpose to generate a new set of

functional dependencies (FDs) from an a r b i t r a r y set of functional

dependencies characterizing the data r e l a t i o n s h i p s . These new

dependencies form the input to the synthesis part. Synthesis

(steps 3 and 4 i n Algorithm 2) f i r s t p a r t i t i o n s the set of FDs

into groups with i d e n t i c a l l e f t sides 1 and then merges the FDs

i n these groups. The l a s t part of the procedure (steps 5 and

6 i n A l g o r i t h m 2) c o n s t r u c t s r e l a t i o n s which are free of

t r a n s i t i v e dependencies, based on the FDs synthesized i n the

previous steps.

Algorithm 2:

(1) E l i m i n a t i o n of extraneous a t t r i b u t e s to produce a

set F 1 of functional dependencies.

(2) Finding of a non-redundant covering C for the set

F' of functional dependencies.

1 "Left side" means the set of determining a t t r i b u t e s . In
contrast, the "right side" consists of the determined a t t r i b u t e s .

18

(3) P a r t i t i o n i n g of the c o v e r i n g C i n t o groups of

functional dependencies with i d e n t i c a l l e f t sides.

(4) Merging of equivalent keys.

(5) Elimination of t r a n s i t i v e dependencies.

(6) Construction of r e l a t i o n s .

Bernstein's approach does not d i f f e r e n t i a t e among d i f f e r e n t cases

of integration, based on d i f f e r e n t dependencies within the data

at hand. A l l functional dependencies are treated by the same

integration procedure. This i s a p o s i t i v e feature of Bernstein's

approach, since i t s i m p l i f i e s the procedure. In addition, t h i s

approach has les s information requirements than the two following

ones, which a l s o r e q u i r e i n f o r m a t i o n on other forms of

dependencies.

One major problem of the technique, pointed out by Bernstein

himself, i s the purely syntactic character of the approach which

i s the source f o r the "uniqueness assumption". The uniqueness

assumption says that only one functional dependency can ex i s t

between any two i d e n t i c a l sets of a t t r i b u t e s . In other words,

i f two FDs existed, because of a difference i n roles of either

set of a t t r i b u t e s , the technique were not able to pick up the

differ e n c e . In order to allow the technique to d i f f e r e n t i a t e

among d i f f e r e n t r o l e s , r o l e names have to be introduced as

at t r i b u t e names.

19

This point leads to another shortcoming of the technique, namely

the s i g n i f i c a n c e of names. The purely syntactic technique

operates on a t t r i b u t e names, being therefore subject to a l l

problems caused by a t t r i b u t e name synonymy and homonymy.

However, the technique was not conceived as a view integration

technique, which j u s t i f i e s t h i s weakness to some extent.

Furthermore, B e r n s t e i n ' s approach does not r u l e out the

development of a pre-integration procedure which could take care

of such c o n f l i c t s and then supply the integration procedure with

c o n f l i c t - f r e e views.

20

2.2.1.2. Martin's Canonical Synthesis

See for example Martin (1983).

Canonical Synthesis i s Martin's approach to view integration.

M a r t i n i n t e g r a t e s views by f i r s t d e p i c t i n g a l l functional

dependencies between data elements (a t t r i b u t e s) and then

overlaying any two views to generate a t h i r d new one. The main

focus of h i s approach i s on the e l i m i n a t i o n of t r a n s i t i v e

dependencies generated by the integration process. Martin

s t r e s s e s the use of bubble c h a r t s , showing data items

(attributes) and t h e i r functional dependencies.

The procedure integrates views pairwise and consists of seven

integration steps for the l o g i c a l database design.

1. The designer i s asked to eliminate any duplicate

functional dependencies between any two data items.

2. The designer has to i d e n t i f y candidate keys.

3. A l l t r a n s i t i v e dependencies have t o be removed.

The purpose of t h i s step i s to f i n d and to remove

any hidden primary keys, and f i n a l l y to achieve a

3NF data structure.

21

4 . I n t r o d u c e s o c a l l e d " c o n c a t e n a t e d k e y s " . T h e

p u r p o s e o f t h i s s t e p i s t o e x t e n d t h e d a t a m o d e l t o

a l l o w t h e r e p r e s e n t a t i o n o f d a t a i t e m s t h a t a r e

d e p e n d e n t o n t h e k e y o f m o r e t h a n o n e a l r e a d y

e x i s t i n g d a t a s t r u c t u r e , i . e . P r i c e i s d e p e n d e n t o n

S u p p l i e r # a n d P a r t # .

5. A l l o c a t e i n t e r s e c t i o n d a t a t o d a t a i t e m s . T h i s

s t e p d e a l s w i t h r e l a t i o n s h i p s t h a t h a v e a t t r i b u t e s .

I f r e l a t i o n s h i p s h a v e a t t r i b u t e s , t h e y a r e t r a n s f o r m e d

i n t o r e c o r d s t r u c t u r e s 1 .

6 . Remove M : N r e l a t i o n s h i p s 2 .

7 . T h e t e c h n i q u e t r a n s f o r m s s t r u c t u r e s i n w h i c h one

a t t r i b u t e i s owned b y two o r m o r e p r i m a r y k e y s . I f

s u c h a n " i n t e r s e c t i n g " a t t r i b u t e e x i s t s , t h e d a t a

s t r u c t u r e i s c h a n g e d t o g i v e t h e a t t r i b u t e a s i m p l e

o w n e r .

M a r t i n ' s m e t h o d h a s t h r e e m a j o r l i m i t a t i o n s . F i r s t , t h e m e t h o d

i s n o t c o n c e r n e d w i t h t h e r e m o v a l o f c o n f l i c t s b e t w e e n v i e w s ,

1 T h e s e r e c o r d s t r u c t u r e s a r e s i m i l a r t o e n t i t i e s . Y e t
M a r t i n d o e s n o t u s e t h e t e r m s e n t i t y o r r e l a t i o n s h i p t o d e s c r i b e
d a t a c o n s t r u c t s .

2 M a r t i n s u g g e s t s t h a t M : N r e l a t i o n s h i p s i n d a t a b a s e ,
a s i d e f r o m b e i n g s u p p o r t e d b y o n l y few DBMSs , a r e a n u n s t a b l e
d a t a c o n s t r u c t , o n e t h a t i s t y p i c a l l y r e p l a c e d b y two 1 : M
s t r u c t u r e s a s p a r t o f t h e d e s i g n o r i m p l e m e n t a t i o n p r o c e s s .
H i s t e c h n i q u e t h e r e f o r e d i s i n t e g r a t e s a n y M : N s t r u c t u r e i n t o
1 : M s t r u c t u r e s .

2 2

and second, i t uses att r i b u t e s as the atomic b u i l d i n g blocks

of the global schema. Third, the "algorithm" presented i s

not precise and thus does no, contrary to Martin's statement,

allow immediate automation of the process.

C o n f l i c t r e s o l u t i o n i s mentioned only b r i e f l y

(Martin, 1983, p. 265) r e f e r r i n g to the problem of homonyms.

A l l other view c o n f l i c t p o s s i b i l i t i e s are ignored. For example,

Martin i s not concerned about relationships or e n t i t i e s modelled

i n c o r r e c t l y as a t t r i b u t e s . A consequence of neglecting c o n f l i c t

r e s o l u t i o n i s t h a t Martin's approach cannot be automated,

g i v e n t h a t c o n f l i c t s have to be expected i n r e a l world

a p p l i c a t i o n s . Martin has to assume that a l l c o n f l i c t s were

eliminated by the database designer p r i o r to the integration

process. Thus, l i k e Bernstein's method, t h i s one i s a view

merging procedure, but not a c o n f l i c t r e s o lution procedure.

The use of a t t r i b u t e s as the atomic b u i l d i n g blocks

generate at l e a s t two problems. F i r s t , the modeling process

based on a t t r i b u t e s operates at a very high l e v e l of d e t a i l .

In fact, i t might be viewed s t r i c t l y as a bottom-up approach

to database design. The d e t a i l i n view descriptions creates

l a r g e amounts of i n f o r m a t i o n the designer has to process.

Even with a small number of views, an evaluation of the r e s u l t i n g

schema becomes very complex and very d i f f i c u l t i n terms of

redundancies (t r a n s i t i v e dependencies) . The e n t i t y - r e l a t i o n s h i p

23

approach, i n comparison, allows to hide part of t h i s information,

namely associations between an e n t i t y and i t s a t t r i b u t e s . In

the E-R model, only e n t i t i e s or r e l a t i o n s h i p s are able to form

re l a t i o n s h i p s to other e n t i t i e s or r e l a t i o n s h i p s . In Martin's

model, every a t t r i b u t e can be related to any other a t t r i b u t e ,

p r i o r to redundancy elimination. Secondly, the synthesis of

a t t r i b u t e s to higher l e v e l objects i s not based on the user's

semantic objects (objects meaningful to the user), but instead

on f u n c t i o n a l dependency. The r e s u l t i n g higher l e v e l data

s t r u c t u r e s (records, segments, or relations) are therefore

expected to have less meaning for the user than data structures

based on objects the user chooses to describe h i s data world

(e.g. e n t i t y MANAGER). In other words, the r e s u l t s of canonical

synthesis may lose some of i t s d e s c r i p t i v e adequacy of r e a l world

objects and associations.

This comment i s not meant to imply that database design based

on functional dependencies i s wrong. Yet, the aggregates should

represent the r e a l world view as f a i t h f u l l y as possible. There

ex i s t s more than one possible way to describe a r e a l world object

i n the data model, c a n o n i c a l s y n t h e s i s might not allow a

representative of t h i s object i n the form the user would prefer

(i . e . , semantic r e l a t i v i s m , Brodie, 1984).

F i n a l l y , due to i t s lack of p r e c i s i o n , t h i s technique should only

24

be viewed as a guideline to integration. I t s t i l l w i l l require

substantial designer i n t e r a c t i o n and designer i n s i g h t .

2.2.1.3. Casanova's and Vidal's Method

See Casanova and V i d a l (1983) fo r a d e s c r i p t i o n of

the method, as w e l l as Bishop and Convent (1986, 1985) for

extensions.

Casanova's view integration method i s a formal approach to view

integration based on four types of dependencies existent i n a

global database schema. Goal of the integration process i s the

generation of an "optimised" (feasible) schema, optimised with

respect to elimination of redundant information and reduction

i n s i z e , as measured by number of r e l a t i o n s 1 i n the global

schema.

The four types of dependencies (also referred to as i n t e g r i t y

constraints) i n t h i s approach are: functional dependencies (FDs) ,

1 In Casanova's language, which i s based on Ullman (1980,
p. 75) , a " r e l a t i o n scheme" r e f e r s to the s t r u c t u r e of a
r e l a t i o n a l database object, while a r e l a t i o n i s an instance of
that structure, that i s the actual data. Ullman defines relation
scheme as the l i s t of a t t r i b u t e s for a r e l a t i o n .

25

i n c l u s i o n dependencies (INDs), exclusion dependencies (EXDs),

and union functional dependencies (UFDs).

A functional dependency fd, expressed as R:X->Y, i s v a l i d i f f

for any t,u e r, i f t[X]=u[X] then t[Y]=u[Y] For example,

i n a r e l a t i o n scheme STUDENT[Stud#,Name], i f t[X] and u[X] are

i d e n t i c a l student numbers, they both have to i d e n t i f y the exact

same student name.

An inclusion dependency ind i s expressed as R1[X] c R2[Y],

with X and Y being sequences of a t t r i b u t e s of equal length. This

dependency i s v a l i d i f f r l [X] i s a subset of r2[Y]. For example,

UNDERGRAD[Stud#] c STUDENT[Stud#] , means t h a t the set of

undergrad students i s a subset of the set of a l l students.

An exclusion dependency exd i s expressed as R1[X] | R2[Y], X and

Y again being sequences of a t t r i b u t e s of same length. This

dependency i s v a l i d , i f f r l [X] and r2[Y] are d i s j o i n t . For

example, the set of graduate students and the set of undergrad

students would be such d i s j o i n t sets of students.

A union functional dependency i s a f u n c t i o n a l dependency

stretc h i n g over the boundaries of one r e l a t i o n . I t i s expressed

1 R r e f e r s to a r e l a t i o n scheme, r i s an instance of that
r e l a t i o n scheme, X and Y are sets of one or more a t t r i b u t e s , and
t and u are tuples.

26

i n the form <Ril:Xl->Yl, ... , Rim:Xm->Ym>, as a s e t of

functional dependencies over r e l a t i o n schemes Ri, where a l l X

and Y are sequences of attri b u t e s of same length. A UFD i s

v a l i d , i f f a FD that holds i n one r e l a t i o n holds i n a l l r e l a t i o n s

included i n the UFD. For example, a UFD <STUDENT:Stud#->Name,

UNDERGRAD:Stud#->Uname> means that a student number '83959818'

occurring i n STUDENT w i l l i d e n t i f y the same student name 'Jones'

as the student number '83959818' i n UNDERGRAD.

The l a s t example gives some i n d i c a t i o n of the purpose of the

above dependencies. They w i l l be used to i d e n t i f y and eliminate

sources of redundancies. Given complete information on the above

dependencies, a procedure i s defined that w i l l transform the

combination of a l l views into an integrated global schema.

Complete i n f o r m a t i o n on dependencies necessitates complete

information on a l l a t t r i b u t e s i n a l l r e l a t i o n s of a l l views, plus

complete i n f o r m a t i o n on domains of at t r i b u t e s . Given t h i s

information, the problem of homonymy or synonymy does not ar i s e ,

because the names of r e l a t i o n s or a t t r i b u t e s are almost

i r r e l e v a n t . A l l the above i n f o r m a t i o n i s assumed to be

unambiguous. In other words, there' w i l l be f o r instance no

di s p u t e s between d i f f e r e n t views concerning dependencies or

domains of a t t r i b u t e s . Hence, c o n f l i c t s are ruled out by

d e f i n i t i o n .

27

A view i n t e g r a t i o n based on Casanova's and Vidal's method

involves the following steps. F i r s t , for every view, define the

above d e s c r i b e d dependencies. Second, combine the views by

lumping them together and by defining additional constraints of

the above types, to d e s c r i b e the r e l a t i o n s h i p s between the

elements (r e l a t i o n s) of d i f f e r e n t views. Third, integrate

("optimize") t h i s schema by removing redundancies i n the

combination of views.

The f i r s t major problem of t h i s integration method, as stated

by the authors, i s t h a t i t i s computationally hard. The

problem i s PSPACE complete (i t f i t s i n t o f i n i t e computer

memory space, but can run i n d e f i n i t e l y) . Casanova points out

t h a t the optimization problem may not be decidable, even i f

nothing but FDs and INDs are considered (see also Casanova and

Fagin, 1982).

Another major problem concerns the information requirements of

t h i s t echnique. The approach r e q u i r e s l a r g e amounts of

ambiguity-free information. Since i t cannot deal with p a r t i a l l y

i n correct user views (wrong perceptions of data), i t cannot be

used t o r e s o l v e c o n f l i c t s caused by inconsistencies i n user

views.

A further l i m i t a t i o n on Casanova's and Vidal's approach r e s u l t s

28

from i t s a p p l i c a b i l i t y to only so c a l l e d " r e s t r i c t e d " schemas.

The f o l l o w i n g r e s t r i c t i o n s apply to the input of the view

integration procedure.

(1) A l l f u n c t i o n a l dependencies apply only to the

(s i n g l e) key. Thus, t h e r e are no t r a n s i t i v e

dependencies e x i s t i n g .

(2) Any in c l u s i o n dependency applies only to the key

attr i b u t e s of the re l a t i o n s involved.

(3) Any union functional dependency must apply to the key

a t t r i b u t e s (as the l e f t argument of the dependency)

for a l l r e l a t i o n s involved and can only describe a

dependency of a single a t t r i b u t e on the key (" ...

i f

<Ril:XI:->Y1, ... ,Rim:Xm->Ym> i s i n C, then

Xl=...=Xm=Kil=...Kim and |Yj|=l, je[l,m]").

(4) Any at t r i b u t e of any r e l a t i o n can appear i n at most

one union functional dependency (" ... for any Ries

and any at t r i b u t e A of Ri, A occurs i n at most one

UFD i n C"). Note that t h i s r e s t r i c t i o n i s v i o l a t e d

i n Casanova's example. The r e s t r i c t i o n may only

r e f e r to dependent at t r i b u t e s , not to key a t t r i b u t e s .

(5) A l l e x c l u s i o n d e p e n d e n c i e s apply to only key

at t r i b u t e s .

29

E s p e c i a l l y r e s t r i c t i o n (4) seems l i k e a s i g n i f i c a n t l i m i t a t i o n

to the integration problem. Real world databases w i l l have to

serve as an i n d i c a t o r of how strong t h i s l i m i t a t i o n i s .

2.2.1.4. Functional Data Model Based Integration

For references to the method, see Yao, Waddle and

Housel (1985, 1982).

In contrast to many other syntactic integration methods, Yao et

a l . present a view integration approach based on Shipman's (1979)

Functional Data Model. Within the Functional Data Model (FDM),

data can be d e s c r i b e d i n form of two constructs, nodes (to

represent e n t i t i e s and value sets) and functional r e l a t i o n s h i p s .

Nodes can be e i t h e r simple nodes (value s e t s) , or tuple nodes

(cartesian product of n>l value s e t s) . Functions, mappings from

a domain into a range, can be functional (n : l) , one-to-one, or

i d e n t i t y (1:1 mapping into i d e n t i c a l value) and can be p a r t i a l

30

(lower degree 0), or t o t a l (lower degree 1). Assertions are

added as a further means for describing data, to increase the

d e s c r i p t i v e power of the model. Assertions describe true facts

about data, i . e . that one set of data i s the subset of another.

Views are depicted i n form of nodes and r e l a t i o n s h i p constructs

(in a graphical representation) . Therefore, complete information

on e n t i t i e s and a t t r i b u t e s , t h e i r domains and t h e i r r e lationships

has to be a v a i l a b l e . Aside from t h i s information, the approach

also compiles information on the queries to be issued on the

database. Database transactions, represented by means of a

Transaction Specification Language (TASL) are kept together with

the views and are updated whenever view updates require query

modifications. One further piece of information i s c o l l e c t e d ,

namely information describing the physical data i n terms of

quantities of members of a set, i . e . the number of students,

p r o f e s s o r s , courses i n a u n i v e r s i t y database. Quantity

information i s l a t e r used i n h e u r i s t i c s to i d e n t i f y non-redundant

f u n c t i o n s i n the model. The treatment of transaction and

q u a n t i t y i n f o r m a t i o n w i l l not be s u b j e c t of the following

discussion.

The technique incorporates two integration operations: the

removal of redundant nodes, and the removal of redundant

31

f u n c t i o n s . According to B a t i n i et a l . (1986, p. 343), Yao's

technique performs view integration on a l l views i n p a r a l l e l

("one-shot n-ary"). However, t h i s i s true f o r the integration

of redundant functions only. Integration of nodes i s performed

on a singl e p a i r of nodes at any point i n time.

A node i s redundant i f i t represents the "same set of values"

as some other node. Note that the "same set of values" (Yao

et a l . , 1985, p. 338) does not mean the two sets are i n fact

i d e n t i c a l . I t i s s u f f i c i e n t that one i s a subset of the other

or that they are overlapping. I f two nodes represent the same

set of values, they w i l l be merged. The integration can only

be performed i f any e x i s t i n g functions between the two nodes

are i d e n t i t y functions. Nodes A and B are merged by creating

a new node C which i s the union of A and B. A l l functions

that had A or B as domain or range w i l l be redefined to have C

as domain or range.

In addition, i f A and B are not i d e n t i c a l , a separation node

SEP w i l l be created that stores information to d i f f e r e n t i a t e

between the two o r i g i n a l nodes, given the new node C. I f a

s e p a r a t i o n node has to be created, a l s o a new f u n c t i o n a l

dependency w i l l be created with C as i t s domain and SEP as i t s

range. A separation node can be viewed as a set of indices

that indicates, by means of pointers to the new combined set

C, the o r i g i n of each value i n the new set.

32

The second integration operation removes redundant functions.

The goal i s to remove a functional r e l a t i o n s h i p A->C, i f i t can

be replaced by other functions, i . e . the two functions A->B and

B->C.

The authors point out that the redundancy of a function can only

be decided upon analysis of data semantics. In other words, the

meaning of functional relationships has to be known to decide

on i t s redundancy. T h i s i s one o f the c r i t e r i a which

d i f f e r e n t i a t e s Yao's et a l . ' s technique from the previously

discussed completely syntactic approaches.

The method proposed by Yao et a l . has a number of l i m i t a t i o n s .

F i r s t , the method i s incomplete. View integration i s r e s t r i c t e d

to only three cases of node integration and one case of function

integration. Hence, the technique w i l l not be able to adequately

represent a l l possible types of set relationships between view

objects (for example, two nodes are not overlapping but have a

common superset).

A second weakness concerns the i n t e g r a t i o n procedure. The

procedure i s not defined exactly. For example, does function

removal always precede node removal? Does the procedure perform

33

node merges always on single pairs of nodes, or on an a r b i t r a r y

number of nodes at the same time.

Third l y , the technique does not show the transformation from FDM

into database objects, i . e . r e l a t i o n s , or more l i k e l y , network

constructs.

F o u r t h l y , use of p h y s i c a l database i n f o r m a t i o n i n l o g i c a l

database design i s not p a r t i c u l a r l y u s e f u l (i . e . , r e c o r d

q u a n t i t i e s) .

F i n a l l y , the method has no means for dealing with c o n f l i c t i n g

information, i . e . with naming c o n f l i c t s or with type c o n f l i c t s .

2.2.2. Semantic View Integration Approaches Based on the

E-R Model

Semantic approaches use data o b j e c t s t h a t are

meaningful to the user. Since they require a higher l e v e l of

understanding of the meaning of objects,.these approaches are

34

t y p i c a l l y i n t e r a c t i v e , that i s , they demand designer intervention

during the integration process. Designer intervention i s for

instance necessary to s e t t l e c e r t a i n naming or type c o n f l i c t s ,

and even more important, to i n t e r p r e t the meaning of data

objects or object r e l a t i o n s h i p s .

Since semantic integration approaches focus more on the meaning

of the data objects than on only s t r u c t u r a l information, the data

models used to represent views have to be able to capture data

semantics. In t h i s section, integration techniques based on the

Entity-Relationship (E-R) model, w i l l be introduced. The E-R

model i t s e l f i s not p a r t i c u l a r l y r i c h i n i t s a b i l i t y to represent

data semantics. Therefore, the methods discussed below (both

Navathe et a l . and B a t i n i et al.) use an extended E-R model which

for instance provides the c a p a b i l i t y to model categories which

are generalizations of e n t i t i e s 1 .

Interactive approaches take advantage of having access to the

database designer during the integration process f o r c o n f l i c t

settlement or information c l a r i f i c a t i o n . In consequence, they

permit the integration of less r e s t r i c t e d data models and to

perform a larger portion of the integration process i . e . include

c o n f l i c t analysis. On the other hand, the reported i n t e r a c t i v e

approaches t y p i c a l l y do not include a complete

1 Not a l l integration methods representing data semantics
have to be based on the E-R model. For example, Teory and Fry
(1982) developed a method based on a semantic h i e r a r c h i c a l model.

35

a l g o r i t h m f o r the i n t e g r a t i o n process and do not e x a c t l y

s p e c i f y the r e s t r i c t i o n s placed on the data model (such as

consistency).

2.2.2.1. Navathe's and Elmasri's Approach

Description of various aspects of t h i s method can

be found i n Navathe, Elmasri, Larson (IEEE 1986), Navathe and

Elmasri (IEEE 1984), Elmasri and Navathe (1986), Elmasri et a l .

(1987).

Navathe's and Elmasri's approach concentrates on the idea of

object class integration. The e n t i t y - r e l a t i o n s h i p model i s

extended to an e n t i t y - c a t e g o r y - r e l a t i o n s h i p model where a

category r e f e r s to a class or an object type (common ro l e or

subclass). The atomic elements of t h i s approach are e n t i t i e s ,

categories, relationships, and a t t r i b u t e s .

Two types of categories are used, common r o l e categories and

sub c l a s s c a t e g o r i e s . A common r o l e category i s one that

represents a common property of two or more otherwise d i f f e r e n t

s e t s , i . e . the category OWNER represents a common ro l e for

both PERSON and COMPANY, who may both be owners of a vehicle.

36

A subclass i s a s p e c i a l i z a t i o n of an e n t i t y set, i . e . the VEHICLE

e n t i t y s e t has s u b c l a s s e s CAR and TRUCK. Common ro l e and

s p e c i a l i z a t i o n w i l l have an impact on inheritance of a t t r i b u t e s .

The procedure consists of three steps: pre-integration, object

integration and r e l a t i o n s h i p integration.

Within pre-integration three tasks are performed. F i r s t , naming

correspondences are established, resolving the problem of i n t e r ­

view homonymy and synonymy. Synonymy and homonymy r e f e r to the

problem of d i f f e r e n t names designating the same r e a l world object

or i d e n t i c a l names designating d i f f e r e n t r e a l world objects

(concepts 1) . The second task i s the i d e n t i f i c a t i o n of candidate

keys fo r object classes. The t h i r d task i s the d e f i n i t i o n of

domains fo r object classes. Domains play an important r o l e i n

Navathe's technique. The purpose of defining them within the

pre-integration step i s to gather information for the recognition

of i d e n t i c a l or r e l a t e d r e a l world o b j e c t s . I.e. i f two

objects have the same domain, i t may be suspected that these

objects are i d e n t i c a l .

Integration of objects (e n t i t i e s or categories) i s the second

phase of Navathe's scheme. In t h i s phase, information on

1 Navathe uses the term "concept" to r e f e r to a r e a l world
object, while B a t i n i uses the term "concept" for a data model
element such as an e n t i t y , a t t r i b u t e or r e l a t i o n s h i p .

37

domains i s used to determine s i m i l a r i t i e s or d i s s i m i l a r i t i e s

among view o b j e c t s . Navathe analyses the following cases:

i d e n t i c a l domains, contained domains, overlapping domains,and

d i s j o i n t domains.

INTEGRATION OF OBJECTS

The integration of relationships follows the object integration

step. Navathe points out that f o r r e l a t i o n s h i p integration

both s t r u c t u r a l and semantic considerations are important.

R e l a t i o n s h i p s are c l a s s i f i e d a c c o r d i n g t o thre e c r i t e r i a :

degree (which i s not the mapping r a t i o but the number of

o b j e c t s i n v o l v e d i n the view (construct)), r o l e s of object

classes involved i n the relati o n s h i p , and s t r u c t u r a l constraints,

such as mapping r a t i o s .

The r e l a t i o n s h i p i n t e g r a t i o n process evaluates the above

information i n the following sequence of importance: degree

i n f o r m a t i o n (s a m e / d i f f e r e n t d e g r e e) , r o l e i n f o r m a t i o n

(same/different r o l e s) , and s t r u c t u r a l vs. domain constraints

r e s u l t i n g i n 8 integration cases.

The main points to be learnt from Navathe • s approach are the

st r e n g t h of domain information and category information for

view i n t e g r a t i o n , the p o s s i b i l i t y of simultaneous n-object

integration (in some instances), and the relevance of p a r t i c u l a r

38

p i e c e s of i n f o r m a t i o n during the r e l a t i o n s h i p i n t e g r a t i o n

phase.

2.2.2.2. Ba t i n i ' s Approach

For references see for instance B a t i n i et a l . (1984a,

1983), or B a t i n i and Lenzerini (1983).

B a t i n i ' s approach performs integration on the atomic elements

of the e n t i t y - r e l a t i o n s h i p model, e n t i t i e s , r e l a t i o n s h i p s , and

a t t r i b u t e s . View i n t e g r a t i o n i s presented as an i t e r a t i v e

process which aggregates views pairwise. Whenever c o n f l i c t s

a r i s e between the two views, a c o n f l i c t r e s o l u t i o n process i s

invoked and c a r r i e d out i n t e r a c t i v e l y with a database designer.

The t e c h n i q u e s t a r t s out with a name c o n f l i c t a n a l y s i s ,

i d e n t i f y i n g i n t r a - v i e w homonyms and synonyms and removing

them. These can be naming c o n f l i c t s for the same concepts

(e.g. e n t i t y) or f o r d i f f e r e n t concepts (e.g. e n t i t y vs.

r e l a t i o n s h i p) . T h i s step i s followed by a type c o n f l i c t

a n a l y s i s which r e s u l t s i n the same r e a l world object being

represented by the same concept i n d i f f e r e n t views (e.g.

MARRIAGE always an entity) and i n an adjustment of c a r d i n a l i t i e s

(mapping r a t i o s) and o p t i o n a l i t i e s of a t t r i b u t e s and

r e l a t i o n s h i p s i n d i f f e r e n t views to make them i d e n t i c a l .

39

F i n a l l y , merging and redundancy a n a l y s i s superimposes the

adjusted views and removes redundancies such as redundant

c y c l e s 1 .

B a t i n i ' s method builds a global schema i t e r a t i v e l y , integrating

two views into a temporary global schema and adding additional

views to t h i s schema u n t i l a l l views have been consolidated.

The two main elements of the technique are C o n f l i c t Analysis

(together with merging) and Redundancy Analysis, with the main

focus on C o n f l i c t A n a l y s i s . U n l i k e other authors such as

Martin, B a t i n i et a l . address the problem of inconsistencies

between d i f f e r e n t users 1 perceptions of the world and d i f f e r e n t

naming conventions systematically (but not completely).

The goal of C o n f l i c t Analysis i s to detect and solve a l l e x i s t i n g

c o n f l i c t s between two representations (views) of the same classes

of objects. Two types of c o n f l i c t s are tackled, naming c o n f l i c t s

and type c o n f l i c t s . Naming c o n f l i c t s a r i s e i f the same data

model concept (entity, a t t r i b u t e or relationship) i s l a b e l l e d

d i f f e r e n t l y (synonyms) , or i f d i f f e r e n t concepts are l a b e l l e d

with the same name (homonyms) . Type c o n f l i c t analysis determines

whether objects have compatible concepts (types) and adjusts them

i f necessary.

1 The technique also includes quantitative and procedural
aspects to a r r i v e at a procedurally more adequate schema where
frequent database operations can be c a r r i e d out more e f f i c i e n t ­
l y .

4 0

To define homonymy and synonymy, B a t i n i et a l . r e f e r to the view

representation of r e a l world objects. I f a view SI represents

two d i f f e r e n t r e a l world objects with the same concept (name),

t h i s i s c a l l e d an intra-view homonym 1 . Accordingly, synonymy

ref e r s to the same r e a l world object being represented by two

d i f f e r e n t c o n c e p t s w i t h i n one view. Given these view

inconsistencies, B a t i n i i d e n t i f i e s a number of possible scenarios

and s o l u t i o n a l t e r n a t i v e s . Interesting i n Ba t i n i ' s procedure

i s the focus on only intra-view inconsistencies. Inter-view

inconsistencies are, at lea s t i n t h i s step, ignored.

A second step i n the naming c o n f l i c t analysis i s the so c a l l e d

analysis of concept likeness or unlikeness. The attempt i n t h i s

step i s to f i n d out whether a concept that has the same name i n

two d i f f e r e n t views possesses d i f f e r e n t "neighbor properties"

(concept unlikeness), or whether concepts have d i f f e r e n t names

but some common neighbor properties (concept l i k e n e s s) .

The next step i n B a t i n i ' s approach i s the Type C o n f l i c t s

A n a l y s i s . I t s purpose i s to a s s i g n the same concepts to

i d e n t i c a l r e a l world o b j e c t s i n d i f f e r e n t views. I.e. i f

MARRIAGE were a re l a t i o n s h i p i n one view, but an e n t i t y i n the

1 Usually one would expect inter-view homonymy to be the
more important issue, two views supplying the same name to two
d i f f e r e n t r e a l world objects.

41

other one, at l e a s t one of these representations would be

change t o l e t MARRIAGE be represented by only one concept.

The conversion of concepts i s r e s t r i c t e d to only atomic concepts

(e n t i t y , a t t r i b u t e relation) and r e s u l t s i n two views using

same names and same concepts to describe r e a l world objects.

The second p a r t of type c o n f l i c t analysis i s compatibility

checking, a process which analyzes, among the now quite s i m i l a r

views, whether c a r d i n a l i t i e s (mapping ratios) are i d e n t i c a l .

C o m p a t i b i l i t y checking a l s o d i s c o v e r s d i f f e r e n c e s i n the

o p t i o n a l i t y of a t t r i b u t e s and r e l a t i o n s h i p s . According to

B a t i n i et a l . , differences i n c a r d i n a l i t i e s point to errors i n

one of the views, or a l t e r n a t i v e l y to a containment r e l a t i o n s h i p .

Once a l l c o n f l i c t s have been resolved, Merging and Redundancy

A n a l y s i s f o l l o w . In merging, the c o n f l i c t - f r e e views are

superimposed. Redundancy analysis removes redundant alternate

paths between objects. Redundancies can occur because multiple

paths are semantically equivalent.

B a t i n i ' s technique concludes with an update of the i n d i v i d u a l

views to make them consistent with the newly generated global

schema and with an a l t e r a t i o n of the global schema to include

procedural and quantitative aspects.

4 2

B a t i n i ' s approach provides a procedure f o r the integration

process together with some exact c o n f l i c t r e s olution algorithms,

yet, based on i t s description i n the l i t e r a t u r e , i t cannot be

automated. The method does not c l a r i f y when a p a r t i c u l a r

integration r u l e has to be applied, or which information has

to be av a i l a b l e (Navathe i s more exact i n t h i s matter, basing

h i s r e s o l u t i o n scheme on information on cl a s s membership).

2.3. View Integration Cases

The i n v e s t i g a t i o n of the above view integration techniques found

considerable overlap among techniques with respect to t h e i r

integration c a p a b i l i t i e s . When techniques d i f f e r , they t y p i c a l l y

deviate i n t h e i r c o n f l i c t resolution c a p a b i l i t i e s and i n aspects

of the integration method related to t h e i r i n d i v i d u a l data

models. The more recent techniques t y p i c a l l y provide a r i c h e r

set of cases for c o n f l i c t resolution. Consensus e x i s t s with

respect to the integration cases for sets (of e n t i t i e s or

relationships) whose connection to each other i s known, as

represented i n the following eight cases.

43

Object Class Integration:

(1) I d e n t i c a l object classes

(2) Contained object class

(3) Overlapping object classes with a common superset

(4) D i s j o i n t object classes with a common superset

Relationship Integration:

(5) Relationship i d e n t i t y

(6) Relationship containment

(7) Relationship overlap with a common superset

r e l a t i o n s h i p

(8) D i s j o i n t relationships with a common superset

r e l a t i o n s h i p

The table below depicts which of the above cases are supported

by the techniques presented i n the chapter ('y' indicates the

technique's a b i l i t y to deal with the case, a blank indicates that

no reference has been made to how t h i s case would be solved).

Cases
Technique 1 2 3 4 5 6 7 8
Martin cases do not apply
Bernstein cases do not apply
Casanova and v i d a l y y y y y y y y
Yao et a l . y y y
Navathe e t a l . y y y y y y y y
Ba t i n i et a l . y y y

44

2.4. Conclusion

T h i s s e c t i o n s h a l l p o i n t out the comparative strengths and

weaknesses of syntactic and semantic integration approaches.

Syntactic approaches

Restricted Data Models

Syntactic approaches place considerable r e s t r i c t i o n s on the data

model with which views are represented. For example, Biskup's

and Convent' s model i s r e s t r i c t e d to only proper database schemes

which impose r e s t r i c t i o n s on the f i e l d s to which constraints can

apply. T y p i c a l l y , a l l dependencies have to involve the key or

a key a t t r i b u t e . Bernstein r e f e r s i n h i s technique to the

uniqueness assumption which dictates that only one functional

dependency may e x i s t between any p a i r of f i e l d s . He also points

out t h a t t h i s r e s t r i c t i o n may lead to the necessity to bury

semantics i n data item names1 .

1 For instance that two f i e l d s Emp# and Dept# may be
r e l a t e d by the functional dependency "employee i s located i n
department" or by another dependency "employee i s employed by
department". Syntactic models require a renaming of at l e a s t
one of the Dept# f i e l d s i n t h i s case.

45

No C o n f l i c t Analysis

The sy n t a c t i c approaches operate under the assumption that the

da t a r e q u i r e d f o r i n t e g r a t i o n i s complete and c o r r e c t .

T h e refore, c o n f l i c t analysis i s not part of the techniques.

The techniques can deal with simple c o n f l i c t s , f or instance

w i t h synonymy, i f i d e n t i t y i s e s t a b l i s h e d by means of

constraints.

No A b i l i t y to Deal with Incomplete or Inconsistent Data

Again, the a b i l i t y t o deal with incomplete or inconsistent

data i s outside the scope of syntactic integration techniques.

At l e a s t one technique, Biskup's and Convent's, w i l l , when an

unresolvable problem i s encountered, i n t e r a c t with the designer

to resolve the problem i n order to allow a continuation of the

integration process. However, t h i s form of exception handling

i s not a planned form of c o n f l i c t analysis, but a measure to

l e t the technique continue when none of the integration cases

i s considered performable by the technique.

Extensive Information Requirements

The major information requirement of syntactic approaches i s

knowledge of dependencies between data items. Since a l l

dependencies are defined on the a t t r i b u t e l e v e l , t h i s information

requirement exceeds that of semantic approaches which represent

dependencies on the e n t i t y l e v e l only. Furthermore, the

46

requirement to also define inter-view constraints can lead to

an exponential explosion of constraint d e f i n i t i o n s .

Computationally Hard

Casanova and V i d a l and Biskup and Convent p o i n t out the

computational requirements of t h e i r techniques.

Provide Integration Algorithm

One major advantage of syntactic approaches i s the completeness

of procedures. The approaches, i n s t e a d of o u t l i n i n g only

p a r t i c u l a r i n t e g r a t i o n cases, t y p i c a l l y present a procedure

t h a t upon t e r m i n a t i o n has produced an i n t e g r a t e d database

schema.

Show Optimality (F e a s i b i l i t y) of Design

Another major advantage of syntactic approaches i s t h e i r ex-

ante s p e c i f i c a t i o n of design objectives and t h e i r proof of

achievement of these design objectives.

Semantic approaches

Require Designer Interaction

Based on the f a c t that semantic approaches operate on objects

meaningful to users but often not meaningful to the integration

mechanism, these approaches require designer i n t e r a c t i o n for

i n t e r p r e t a t i o n of objects and for c o n f l i c t analysis.

Cover Larger Portion of the Integration Process

In addition to the operations contained i n syntactic approaches,

semantic approaches include also c o n f l i c t analysis procedures,

and pre-integration procedures (see B a t i n i et a l . , 1986) which

are concerned, among other factors, with data gathering.

State/Solve More Integration Cases

Semantic techniques i d e n t i f y and solve more integration cases

s i n c e they include not only the simple eight cases based on

s e t i n t e r - r e l a t i o n s h i p s as explained above, but also cases

involving c o n f l i c t s .

Allow Less Restricted Data Models (i . e . , non-similar keys)

Semantic methods perform integration based on the meaning of

o b j e c t s , not (exclusively) based on s t r u c t u r a l s i m i l a r i t i e s .

T h e r efore, a semantic approach can p o s s i b l y integrate two

o b j e c t c l a s s e s i n which one i s a subset of the other, even

when the object classes have d i f f e r e n t keys.

Less Complex

48

Semantic approaches simplify the integration process i n two

ways. F i r s t , the amount of d e t a i l i s much less than that of

s y n t a c t i c approaches, s i n c e the focus i s on e n t i t y - l e v e l

items. Second, semantic data items are more meaningful to

humans than a r b i t r a r y c o l l e c t i o n s of f i e l d s held together only

by dependencies.

Deal with Database Objects Meaningful to Designers and Users

The outcome of the design process also i s more profound for

the database user, since the database objects are meaningful

to database users. A syntactic integration, based purely on

dependencies, may derive database objects that are not suggestive

to the user. One of B a t i n i et a l . 's (1986) c r i t e r i a f or

goodness of a design i s understandability.

Do not Provide Complete Procedures

One of the major weaknesses of the semantic approaches i s the

l i m i t e d d e s c r i p t i o n of complete procedures f o r integration.

Even though a va r i e t y of integration cases i s outlined, the

des c r i p t i o n of sequences of integration steps and possible re­

i t e r a t i o n s i s , i f not missing, at lea s t very terse. In addition,

when dealing with c o n f l i c t analysis, semantic approaches are

not complete i n t h e i r analysis, nor do they show the missing

elements of the analysis.

Do not Present Proof of Optimality of the Design

49

A consequence of the incompleteness of semantic integration

procedures i s t h e i r i n a b i l i t y to demonstrate the optimality of

the f i n a l design. No semantic procedure states a point at

which the procedure terminates and has achieved a f i n a l design.

Also, the objectives of semantic approaches involve the c r i t e r i o n

of u n d e r s t a n d a b i l i t y which cannot be measured as e a s i l y as,

f o r instance, adherence to normal forms. Yet, even for the

c r i t e r i a t h a t can be shown more e a s i l y , semantic approaches

t y p i c a l l y do not provide any proof of optimality or f e a s i b i l i t y .

O verall, c o n f l i c t analysis and resolution i s the common weak

p o i n t i n a l l i n t e g r a t i o n techniques. Three causes of t h i s

d e ficiency are:

(1) s y n t a c t i c techniques cannot d e a l with c o n f l i c t

analysis at a l l . They ignore c o n f l i c t s i n general.

(2) i f c o n f l i c t a n a l y s i s i s done, i t i s o f t e n done

unsystematically. B a t i n i et a l . (1983) perform the

most thorough analysis by separating naming c o n f l i c t s

from t y p e c o n f l i c t s and t h e n a n a l y z i n g them

separately. This analysis i s s t i l l not s u f f i c i e n t

to i d e n t i f y , l e t alone solve, a l l possible causes of

c o n f l i c t s .

(3) c o n f l i c t a n a l y s i s i s b i a s e d by i n f o r m a t i o n

r e q u i r e m e n t s c o n s i d e r a t i o n s . Only cases are

considered for which information i s e a s i l y available

(i . e . mapping ratios) , which are most prominent (i . e .

50

synonyms), or which are of p a r t i c u l a r concern due to

the data model chosen (i . e . semantic r e l a t i v i s m , or

mapping r a t i o s) . In contrast, a more systematic

procedure should be aware of a l l possible c o n f l i c t

cases and then should determine the information

requirements t o s o l v e them. Thus, even i f the

technique i s not able to resolve a l l c o n f l i c t s due

to lack of information, i t i s at l e a s t aware of the

p o s s i b i l i t y of existence of a c e r t a i n c o n f l i c t , and

thus of i t s own l i m i t a t i o n s !

B a t i n i e t a l . (198 6) summarize the lack of research i n the

area of c o n f l i c t analysis as follows:

... Simple renaming operations are used

f o r s o l v i n g naming c o n f l i c t s by most

methodologies. With regard to other

types of c o n f l i c t s , the methodologies do

not s p e l l out formally how the r e s o l u t i o n

p r o c e s s i s c a r r i e d out; however, an

i n d i c a t i o n i s given i n several of them

as to how one should proceed. ... (p. 348)

And further:

... I t i s i n t e r e s t i n g to note that among

the methodologies surveyed, none provide

an analysis or proof of the completeness

of the schema transformation operations

51

from the standpoint of being able t o

r e s o l v e any type of c o n f l i c t that can

a r i s e (ibid.)

The s o l u t i o n to these problems w i l l therefore form the core of

t h i s research project.

52

3. SYSTEM FOR VIEW INTEGRATION

3.1. Research Question and Contribution to Knowledge

Research question 1:

1.1 Can a view i n t e g r a t i o n p r o c e s s be

formalized which transforms any c o l l e c t i o n

of c o n f l i c t i n g views into a complete and

consistent global schema?

1.2 Which c o n f l i c t cases have to be solved

i n the process?

The purpose of t h i s research question i s to solve the c o n f l i c t

analysis problem, i n i t i a l l y neglecting information requirements.

Assuming s u f f i c i e n t information, a mechanism i s to be developed

that allows the detection and s o l u t i o n of a l l view c o n f l i c t s .

The view i n t e g r a t i o n mechanism s h a l l be able to convert a

c o l l e c t i o n of views i n t o a complete and consistent global

schema, u s i n g the p r e v i o u s l y i n t r o d u c e d group of 8 simple

i n t e g r a t i o n cases f o r set-subset r e l a t i o n s h i p s , as well as

others to be defined l a t e r .

Based on the s u f f i c i e n t information assumption, c o n f l i c t cases

can be described and solved without concern for the d i f f i c u l t y

53

of data g a t h e r i n g . Instead of mixing the c o n f l i c t problem

with the information requirements problem, question 1 deals

only with the former one.

The f i r s t step i n answering t h i s research question w i l l be the

i d e n t i f i c a t i o n and s o l u t i o n of a complete set of c o n f l i c t

cases. The second step w i l l focus on the development of a

procedure to carry out the integration, based on the set of

cases.

Research question 2 :

2.1 What i n f o r m a t i o n can be used f o r the

integration of user views into a global

d a t a b a s e schema when the n e c e s s a r y

information i s not e x p l i c i t l y available?

2.2 How can t h i s information be gathered i n

a p r o c e s s t h a t l i m i t s d e s i g n e r

interrogation to a fe a s i b l e l e v e l ?

The basis for the second question i s the assumption that i n a l l

p r a c t i c a l s i t u a t i o n s the necessary information about views i s

not unavailable, or too d i f f i c u l t or too c o s t l y to gather.

Therefore, even though the answer to question 1 reveals which

information i s necessary to perform view integration, a l l t h i s

information cannot be expected to be present. Hence, substitutes

54

have to be found for the missing information; substitutes that

can be ei t h e r known by the program (program's knowledge base)

or which can be e a s i l y gathered through a minimum of in t e r a c t i o n

with the database designer.

The term "substitutes" may be better phrased as "operationaliz-

ations" of information on some database concept. For example,

given s u f f i c i e n t information, the system w i l l know that two

r e l a t i o n s h i p s have i d e n t i c a l meaning, even i f t h e i r names

d i f f e r . A system with i n s u f f i c i e n t information has to r e l y on

o p e r a t i o n a l i z a t i o n s of the "meaning" concept to assess the

i d e n t i t y of such r e l a t i o n s h i p s . Domain i d e n t i t y and i d e n t i t y

of neighbour e n t i t i e s may be such operationalizations.

The intention behind the second question i s not to f i n d " t r i c k s "

to s o l v e the l i m i t e d i n f o r m a t i o n problem, but to i d e n t i f y

s u b s t i t u t e i n f o r m a t i o n ; i n f o r m a t i o n items t h a t allow the

assessment of concepts such as "meaning", which are d i f f i c u l t

to grasp by a computer. The knowledge of these substitutes

w i l l teach us also about al t e r n a t i v e information requirements

of data modelling techniques.

Even though a v a i l a b i l i t y of i n t e g r a t i o n information i s an

important concern, the apparent lack of substitute information

should not l i m i t the comprehensiveness of the integration

mechanism. C o n f l i c t analysis, at l e a s t i n p r i n c i p l e , should

55

not be based on the convenience with which relevant information

items can be produced. On the contrary, question 2 should

i d e a l l y attempt to f i n d information sources f o r a l l requirements

r a i s e d i n question 1. In other words, question 1 aims at

s t a t i n g and s o l v i n g the integration problem i n a s u f f i c i e n t

i n f o r m a t i o n environment, question 2 aims at s o l v i n g t h a t

integration problem i n a li m i t e d information environment.

In order to decide on the best information substitute i n the

l i m i t e d information environment, questions have to be raised

on the s u i t a b i l i t y of c e r t a i n p i e c e s of information. The

following l i s t gives suggestions the s e l e c t i o n should be based

on. The term "concept" refers to the information concept to

be used as a substitute:

1. how well does the concept represent the

underlying information that i s necessary

for database design?
2. when does the concept f a i l as a surrogate

for the underlying information?

3 . can the user/database designer provide

the information, or can i t be gathered

from some other source?

4 . how easy can the information be gathered

during the integration process?

56

The l a s t point brings up the issue of developing a process for

view integration which requires the l e a s t amount of i n t e r a c t i o n

by u s i n g as much i n f e r r e d i n f o r m a t i o n as possible. Given

s u f f i c i e n t information, designer i n t e r a c t i o n i s i d e a l l y not

necessary 1 . Given l i m i t e d information, designer i n t e r a c t i o n

w i l l be necessary. Therefore, a process developed to answer

re s e a r c h question 1 may r e q u i r e r e d e s i g n to i n c r e a s e i t s

usefulness. For example, a useful design change would be a

m o d i f i c a t i o n t h a t enabled the technique to apply previously

gathered information to l a t e r stages of the integration process.

One has to keep i n mind that a program w i l l quickly lose i t s

appeal as a productivity t o o l , i f i t repeately asks the designer

t r i v i a l questions. Such redesign does not change the integration

cases, but the sequence of the analysis, as w i l l be demonstrated

l a t e r i n the context of h e u r i s t i c s .

So, while the primary i n t e r e s t within t h i s research i s the

discovery of an exhaustive set of c o n f l i c t cases and resolution

p r i n c i p l e s , the secondary i n t e r e s t i s the development of an

e f f i c i e n t integration procedure through choice of surrogates for

c e r t a i n pieces of information and through choice of a

1 The integration mechanism which assumes information
a v a i l a b i l i t y i s implemented i n form of a programmed procedure
that d i r e c t s a l l questions concerning information requirements
back to the designer (user of the mechanism).

57

sequence that allows to make inferences from the data already

gathered.

Contribution to Knowledge:

A main r e s u l t of the study i s p r e s c r i p t i v e knowledge, knowledge

on how view integration should be c a r r i e d out. The s t a r t i n g

p o i n t f o r t h i s knowledge i s the set of i n t e g r a t i o n cases

i d e n t i f i e d by the consensus of previous integration approaches.

This research develops a systematic framework which encompasses

the a v a i l a b l e integration knowledge (see chapter 2) as well as

a set of addit i o n a l cases for c o n f l i c t i n g views. The research

also demonstrates the framework's completeness.

Another r e s u l t of the study i s a set of h e u r i s t i c s f o r e f f i c i e n t

execution of the integration process with l i m i t e d information.

The assumptions underlying these h e u r i s t i c s w i l l be c l e a r l y

s t a t e d . For example, suppose, the f o l l o w i n g h e u r i s t i c i s

implemented. "IF object A i s i d e n t i c a l to object B and object

A w i l l have the same c o n s t r u c t (i . e . , be both e n t i t i e s) .

H e u r i s t i c s are accompanied by explanations concerning t h e i r

g e n e r a l i z a b i l i t y and e f f e c t s of t h e i r f a i l u r e .

P r e s c r i p t i v e knowledge encompasses knowledge on integration

laws and integration process rules while d e s c r i p t i v e knowledge

58

encompasses process and information s u b s t i t u t i o n r u l e s . At

the end, t h i s research presents a set of information requirements

and a set of integration rules which together are s u f f i c i e n t

to perform the integration process including c o n f l i c t resolution

as well as an e f f i c i e n t integration process.

Another c o n t r i b u t i o n t o knowledge can be derived from t h i s

r e s e a r c h . I t i s an extension of the r e l a t i o n a l data model

regarding data semantics. I t i s well known that the r e l a t i o n a l

data model i n i t s current form i s not well suited f o r capturing

data semantics. One step towards capturing data semantics i s

the data di c t i o n a r y which keeps information on database items,

e i t h e r i n computer or human interpretable form, i . e . on data

types, or the meaning of the data i n the r e l a t i o n tuples. A

large amount of the dictionary information can be generated,

v i r t u a l l y e f f o r t - f r e e , as part of the design process. Thus,

the outcome of the design process may not only be set of

r e l a t i o n s , but also a data dictionary. The view integration

approach suggests information that should be captured i n data

d i c t i o n a r i e s but has not been captured yet. This information

may include data concerning the meaning of database objects.

Future database management systems could have f a c i l i t i e s to

i n t e r p r e t t h i s data i n order to support the users and the

system i t s e l f , for instance to improve the i n t e g r i t y of the

database (f u l l y integrated semantic dictionary) or at l e a s t to

improve user understanding of database data. For example, the

5 9

database c o u l d e x p l a i n t o the user t h a t MANUFACTURER i s a

subclass of SUPPLIER which supplies parts and also manufactures

these parts or that SUPPLIER i s a person or organization that

i n the present i s su p p l y i n g p a r t s or i n the past has been

supplying parts.

3.2. Approach to the Problem

3.2.1. Overview

The problem solving approach chosen f o r t h i s research

i s d e t e r m i n e d by the i l l - s t r u c t u r e d nature of the view

i n t e g r a t i o n process and the previous research i n the area.

Previous r e s e a r c h has i d e n t i f i e d several c o n f l i c t cases and

t h e i r solutions without assuring us that the problem has been

solved i n i t s e n t i r e t y . With the f i r s t research question, the

attempt i s made to develop a complete c o n f l i c t resolution

method. This task i s s i m p l i f i e d by the information a v a i l a b i l i t y

assumption. To answer t h i s research question, an a n a l y t i c a l

problem solving approach was chosen. This approach i d e n t i f i e s

6 0

a l l p o s s i b l e c o n f l i c t cases f o r any p a i r of objects 1 from

d i f f e r e n t views and shows that the l i s t of c o n f l i c t cases i s

complete. The l i s t contains 17 general c o n f l i c t cases with

various subcases.

Completeness has to be shown for t h i s l i s t . The demonstration

of completeness rests on the assumption that a l l c r i t e r i a which

d i f f e r e n t i a t e any two views or parts thereof (i . e . d i f f e r e n t

names fo r the same object type, d i f f e r e n t meaning of two object

types) have been i d e n t i f i e d here. Once a l l c r i t e r i a are known

by which objects can be distinguished, a l l possible combinations

of c r i t e r i a can be e a s i l y generated. The l a t t e r part of the

argument has to j u s t i f y why some of the possible combinations

are i r r e l e v a n t or why they are s i m i l a r to other, already

i d e n t i f i e d ones.

3.2.2. Outline of the Problem with Available Information

Even though some of the p r e v i o u s i n t e g r a t i o n

approaches have d e a l t with the c o n f l i c t analysis (c o n f l i c t

r e c o g n i t i o n) problem i n a systematic manner, t h e i r c o n f l i c t

1 Pairwise integration has been the procedural choice for
most previous integration methods (see B a t i n i et a l . , 1986).
Only recently, some researchers (i . e . , Navathe) have demonstrated
p a r a l l e l i n t e g r a t i o n techniques f o r more than two views,
applicable i n c e r t a i n c o n f l i c t s i t u a t i o n s .

61

c l a s s i f i c a t i o n schemes were not suitable to i d e n t i f y a l l possible

combinations of object differences. Consequently, they have

f a i l e d t o i d e n t i f y some c o n f l i c t cases. In t h i s section, a

categorization i s presented which overcomes t h i s weakness.

The cases d i s c u s s e d below represent an exhaustive l i s t of

p o s s i b l e c o n f l i c t s between any two o b j e c t s from d i f f e r e n t

views. I t w i l l be argued that any possible c o n f l i c t case i s

covered by the technique and that a f t e r resolution of c o n f l i c t s ,

views are i n a form i n which they can merged. I t w i l l also be

argued t h a t there exists a "causal ordering" (compare Simon

and Ando, 1963) of c o n f l i c t resolution cases which determines

the sequence of steps within the integration process. Hence,

an i n t e g r a t i o n procedure f o l l o w i n g t h i s o r d e r i n g w i l l be

outlined.

Object comparison

Object comparison focuses on the detection of any i d e n t i t y or

difference between two objects from d i f f e r e n t views. Objects

may be of type en t i t y , r e l a t i o n s h i p , a t t r i b u t e . For example,

a designer a r b i t r a r i l y picks one object from each of two view

and wants to determine t h e i r i d e n t i t y or difference. To do

t h i s , he should choose four general c r i t e r i a by which to

evaluate objects:

62

(1) Name - are the objects' names i d e n t i c a l ?

(2) Construct - are both objects represented by the same

construct?

(3) Meaning - do the objects have the same meaning?

(4) Context - are the objects associated with the same

neighbor objects i n both views?

The name c r i t e r i o n i s a straightforward one and well described

with i n the l i t e r a t u r e . In short, i d e n t i c a l objects should

have the same name, d i f f e r e n t objects should have d i f f e r e n t

names. Otherwise, the object pairs are synonyms or homonyms.

Construct r e f e r s to the object type, i . e . , e n t i t y . Identical

objects should have the same construct, to allow t h e i r merging.

Previous research has given many examples of construct mismatches

and t h e i r r e solution.

Meaning i s the most d i f f i c u l t c r i t e r i o n . Instead of a lengthy

d i s c u s s i o n about the i n t e r p r e t a t i o n of "meaning", at t h i s

p o i n t the f o l l o w i n g working d e f i n i t i o n w i l l be used: two

objects have the same meaning i f they both represent the same

r e a l world object. Database design i s a form of modelling.

Real world objects are represented by database items. I f two

database items are both models the same r e a l world object,

they have the same meaning. In previous research, meaning has

not been e x p l i c i t l y d i s c u s s e d as di s c r i m i n a t i n g c r i t e r i o n ,

6 3

p o s s i b l y because the meaning c r i t e r i o n i s very d i f f i c u l t to

assess. For instance Navathe and Elmasri (for example, 1986)

have frequently used domains or mapping r a t i o s as discriminating

c r i t e r i a i n s t e a d . We may t h i n k of domain information and

mapping r a t i o s as operationalizations capturing part of the

meaning concept. E x p l i c i t r e p r e s e n t a t i o n of the meaning

dimension w i l l r e s u l t i n a simple and c l e a r d i s t i n c t i o n of

c o n f l i c t cases 1.

Context ref e r s to the objects that are immediate neighbors of

an object. By d e f i n i t i o n , an e n t i t y w i l l always have an empty

c o n t e x t 2 . A r e l a t i o n s h i p ' s context are a l l e n t i t i e s i t i s

a s s o c i a t e d with. An a t t r i b u t e ' s context i s the e n t i t y or

r e l a t i o n s h i p i t belongs to. Context also has not been e x p l i c i t l y

r e p r e s e n t e d i n p r e v i o u s r e s e a r c h , even though pre v i o u s

researchers were aware of the importance of context, as t h e i r

c o n f l i c t recognition and resolution examples show.

Based on the four c r i t e r i a and two states of each c r i t e r i o n

(i d e n t i t y or di f f e r e n c e) , a 2 x 2 x 2 x 2 matrix with 16

1 The main d i f f i c u l t i e s of meaning representation are
completeness of the r e p r e s e n t a t i o n and differences i n user
p e r s p e c t i v e . For example, when asked about the meaning of
" l i o n " , most people may reply "dangereous animal", while a l i o n
tamer would probably r e p l y " l i v e l i h o o d " . These are two
d i f f e r e n t , incomplete interpretations which are both acceptable.
For a discussion of the meaning concept consult Russell (1946).

2 Even though e n t i t i e s have no context by d e f i n i t i o n , i t
may be u s e f u l l a t e r to think of an en t i t y ' s context as the
rela t i o n s h i p s i t i s involved i n .

64

general cases of i d e n t i t y and difference of object p a i r s can

be c o n s t r u c t e d . To exemplify the p r i n c i p l e s of c o n f l i c t

r e c o g n i t i o n and r e s o l u t i o n , only the f i r s t three c r i t e r i a ,

name, construct, and meaning, w i l l be discussed i n more d e t a i l

and represented graphically i n t h i s section (see Figure 1) .

For now, the c o n f l i c t problem can be s i m p l i f i e d by assuming

that whenever two objects have i d e n t i c a l meaning, t h e i r contexts

w i l l be i d e n t i c a l . Whenever t h e i r meanings are d i f f e r e n t ,

t h e i r contexts may be d i f f e r e n t or i d e n t i c a l . The subsequent

sections w i l l deal with the f u l l integration problem, allowing

v a r i a t i o n s i n context, even i f meaning i s i d e n t i c a l .

seme —>
different

CONSTRUCT

Same dif leient

1. Idenltcal

\

2. Synonym

5. Homonym 6. Dllterenl
Objects

7. Homonym *
DIM. C o n s .

8. D i l l . Obj. *
DIM. Cons-

3. Construct Mismatch 4 Construct Mismatch •
Homonym

Figure 1: Object Comparison Matrix

Each of the cases depicted i n Figure 1 w i l l be b r i e f l y presented

below. The focus of t h i s discussion s h a l l be on the cases,

65

not on t h e i r d e t a i l e d s o l u t i o n . Unless solutions are simple

or necessary f o r the d i s c u s s i o n , they w i l l be postponed to

subsequent chapters. Note that not a l l cases below describe

c o n f l i c t s . For instance, i f two objects are i d e n t i c a l (Case

1) , they can be merged without modifications. Other cases,

such as synonymy (Case 2) require an object change.

Case 1; [Name:same; Meaning:same; Construct:same]

T h i s c o n d i t i o n corresponds to cases 1 and 5 from previous

research (see chapter 2) . Two objects are i d e n t i c a l i n a l l

factors.

Example:

View 1: CUSTOMER (entity)

View 2: CUSTOMER (entity)

both describing the same customer object type.

The notion of i d e n t i t y i s not only meaningful f o r e n t i t i e s , as

e x e m p l i f i e d , but a l s o f o r i d e n t i c a l r e l a t i o n s h i p s l i n k i n g

i d e n t i c a l e n t i t i e s , and for i d e n t i c a l a t t r i b u t e s of i d e n t i c a l

e n t i t i e s (i d e n t i c a l context).

Case 2: [Name:different; Meaning:same; Construct:same]

This i s the case of a synonym. Both objects are i d e n t i c a l but

carry d i f f e r e n t names. Note that both objects have the same

construct (i . e . , e n t i t y) .

Example:

VI: CUSTOMER (entity)

6 6

V2: BUYER (entity)

both describing the same r e a l world customer object type.

Case 3; [Name:same; Meaning:same; Construct:different]

T h i s case d e s c r i b e s a s i t u a t i o n where the same o b j e c t i s

represented by d i f f e r e n t modelling constructs. This case w i l l

be referred to as construct mismatch. Brodie (1984) refers to

t h i s difference i n construct as "semantic r e l a t i v i s m " , e.g.,

when the same object i s represented as an e n t i t y i n one view

and as a r e l a t i o n s h i p i n another view.

Example:

VI: MARRIAGE (entity)

V2: Marriage (relationship)

Both views describe marriage objects. Both views use the same

name, but a d i f f e r e n t construct. For view 1, a marriage i s an

en t i t y (probably with husband and wife a t t r i b u t e s) , f o r view

2, a marriage i s a re l a t i o n s h i p (probably l i n k i n g two person

e n t i t i e s) . The solution to t h i s case i s a change i n one of

the c o n s t r u c t s , e i t h e r making the e n t i t y a r e l a t i o n s h i p or

vi c e versa. At the end, each object should be represented by

the same construct i n a l l views.

T h i s example d e s c r i b e s only one of many possible construct

mismatch scenarios.

67

Case 4: [Name:different; Meaning:same; Construct:different]

This case i s c l o s e l y related to the previous one. Again, both

o b j e c t s have the same meaning, but t h i s time they not only

have d i f f e r e n t constructs, but also d i f f e r e n t names. Therefore,

i d e n t i t y of o b j e c t s i s d i s g u i s e d even f u r t h e r , by name

differences on top of construct differences.

Example:

VI: MARRIAGE (entity)

V 2 : Married_to (relationship)

While both views use almost s i m i l a r names, to a syntactic

processor, the names w i l l be d i f f e r e n t .

Case 5 : [Name:same; Meaning:different; Construct:same]

Th i s case marks homonyms. The objects carry the same name,

but have d i f f e r e n t meaning. The objects have the same construct

(i . e . , e n t i t y) .

Example:

VI: SUPPLIER (entity)

V 2 : SUPPLIER (entity)

Here the same name SUPPLIER i s used for both suppliers (currently

supplying the product) and for manufacturers (who manufacture

the product and may be po t e n t i a l s u p p l i e r s) .

Case 6: [Name:different; Meaning:different; Construct:same]

This case may r e f e r to a t r i v i a l s i t u a t i o n i n which two objects

are d i f f e r e n t i n meaning and name, but have the same construct.

68

On the other hand, i t may r e f e r to a number of more complex

si t u a t i o n s of non-identical but related (i . e . , superset-subset

relationship) objects.

Example 1: t r i v i a l s i t u a t i o n

VI: EMPLOYEE (entity)

V2: DEPARTMENT (entity)

Example 2: related objects

VI: STUDENT (entity)

V2: UNDERGRAD (entity)

The e n t i t i e s i n the f i r s t example r e f e r to two d i f f e r e n t r e a l

world objects which are not related 1 . The objects represented

i n the second example are related, namely through a superset-

subset r e l a t i o n s h i p . Whenever there e x i s t s such a connection

between two items they cannot be treated as independent. The

eight cases extracted from previous research provide solutions

for such non-identical but related sets.

Case 7: [Name:same; Meaning:different; Construct:different]

This case captures homonyms. Again, the name of two objects i s

the same, but they d i f f e r both i n meaning and i n construct

used. Note that t h i s case may also contain objects that have

d i f f e r e n t meaning but are related to each other (as i n Case

6). Example:

VI: SUPPLIER (entity)

1 "Related" i s used here to express that two object classes
are e i t h e r overlapping or are contained by a common object c l a s s .

69

V2: Supplier (attribute)

The name s u p p l i e r i s used f o r both an e n t i t y and f o r an

at t r i b u t e , and the a t t r i b u t e does not r e f e r to the same supplier

object (i . e . , r e f e r s to a manufacturer object).

Case 8: [Name:different; Meaning:different; Construct:different]

T h i s case d e s c r i b e s o b j e c t s which are d i f f e r e n t i n every

respect, meaning, name and construct.

Example:

VI: SUPPLIER (entity)

V2: Department (attribute)

Supplier and department are d i f f e r e n t objects altogether, with

no s i m i l a r i t i e s between them. Again, t h i s exemplifies the

t r i v i a l form of the case. But again, o b j e c t s may a l s o be

related.

The above eight cases f a l l into 2 main groups: objects that

w i l l be ultimately completely i d e n t i c a l and objects that are

d i f f e r e n t . Whether an o b j e c t belongs to the f i r s t or the

second group i s determined by t h e i r meaning dimension. The

f i r s t group consists of cases 1,2,3, and 4. The second group

i s represented by cases 5,6,7,and 8. In eithe r group, c e r t a i n

cases describe stable states. In the f i r s t group for example,

case 3 (semantic r e l a t i v i s m) becomes a case 1 (i d e n t i c a l

items), once d i f f e r e n t c o n s t r u c t s are eliminated. Case 4

becomes a case 3, once objects are renamed. Within the group

70

of d i f f e r e n t objects there e x i s t two stable states. I f objects

are r e l a t e d (i . e . , one i s a subset of the other), they w i l l

u ltimately belong to case 6, i . e . , a f t e r renaming from case 5.

I f they are unrelated, they w i l l belong to case 8 or case 6 1 .

The complete pattern of transformations into stable states i s

shown i n Figure 2. The figure shows depicts comparison cases

and t r a n s f o r m a t i o n s from one case i n t o a n o t h e r . The

t r a n s f o r m a t i o n arrows show the d i r e c t i o n of transformation

during the integration process.

2 -> 1 convert true synonyms into i d e n t i c a l items through

renaming.

3 -> 1 convert c o n s t r u c t mismatch i n t o i d e n t i c a l items

through change of d i f f e r e n t constructs.

4 -> 3 convert c o n s t r u c t mismatch and synonym into j u s t

semantic r e l a t i v i s m through renaming, or

4 -> 2 convert construct mismatch and synonym into synonym

through construct change.

5 -> 6 convert homonyms i n t o d i f f e r e n t items (possibly

related) through renaming.

8 -> 6 convert d i f f e r e n t items with d i f f e r e n t constructs into

d i f f e r e n t items with same constructs (only i f items

are d i f f e r e n t but related) through construct changes.

7 -> 5 convert homonymy with d i f f e r e n t construct into

1 I f the objects are unrelated, case 8 i s a stable state,
requring no changes during c o n f l i c t resolution. I f objects are
r e l a t e d , u l t i m a t e l y , the o b j e c t s w i l l be transformed into
state 6.

71

homonymy through name change (only i f objects are

rel a t e d) .

7 -> 8 c o n v e r t homonyms i n t o d i f f e r e n t items through

renaming.

NAME

s a m e d i f f e r e n t

MEANING

s a m e — •
d i f l e r e n t

C O N S T R U C T

di I l e ren t

1. I d e n t i c a l

5. H o m o n y m

7. H o m o n y m -
D i l f . C o n s .

3. C o n s t r u c t M i s m a t c h

2. S y n o n y m

6. D i f fe rent
O b j e c t s

8. Dif f . Obj . •>
Diff . C o n s .

4. C o n s t r u c t M i s m a t c h
H o m o n y m

Figure 2; Case Transformations during View Integration

The transformation sequences have three end points, Case 1,

Case 6, and Case 8. Case 1 i s the end point f o r a l l objects

with same meaning. I t i s captured by cases 1 and 5 extracted

from previous research. Case 8 i s the end point f o r a l l items

which are d i f f e r e n t i n a l l aspects and not r e l a t e d . I t s

s o l u t i o n i s t r i v i a l . A l l these non-identical items w i l l be

included i n the global schema. Case 6 i s the end point for

n o n - i d e n t i c a l , unrelated items with same construct (t r i v i a l

solution) and for d i f f e r e n t but related objects. I f objects

are related, cases 2 to 4 and 6 to 8 from previous research

(chapter 2) w i l l apply.

The case transformations (Figure 2) are free of c i r c u l a r i t i e s .

T h i s makes i t possible to postulate an ordering of c o n f l i c t

recognition and resolution. Figure 3 i l l u s t r a t e s one possible

ordering. The operations to be ca r r i e d out f i r s t are construct

changes (4->2, 3->l, 7->5, 8->6) for i d e n t i c a l and f o r related

objects. This i s followed by the change of names f o r synonyms

(2->l) , and homonyms (5->6 f o r r e l a t e d o b j e c t s , 7->8 f o r

unrelated objects). The termination points of the procedure

are cases 1, 6, and 8. The other p o s s i b l e ordering would

attend to name changes p r i o r to construct changes. For now,

both sequences are equally good, even though the f i r s t one i s

preferable, as w i l l be explained l a t e r .

73

C a s e 4 C a s e 3 C a s e 7

Construct Change

C a s e 2

C a s e 1

Stable

Construct Change

C a s e 5

Name Change

Construct Change

C a s e 8

Stable Stable

Figure 3: Ordering of View Integration Steps

74

3.2.3. Changes i n the I n t e g r a t i o n Method when Necessary

Information i s not D i r e c t l y Available

The i n t e g r a t i o n method d i s c u s s e d so f a r i s based on the

a s sumption t h a t n e c e s s a r y i n f o r m a t i o n to c a r r y out the

integration process i s d i r e c t l y a v a i l a b l e . For the required

information to be available, i t e i t h e r has to be s p e c i f i e d ex-

ante, or has to be e l i c i t e d during the view integration process.

Since information s p e c i f i c a t i o n requires designer e f f o r t and

r e p r e s e n t s a c o s t , i t i s d e s i r a b l e to reduce i n f o r m a t i o n

s p e c i f i c a t i o n requirements for the database designers. Hence,

while p r e v i o u s l y the focus was on the design of a complete

method f o r i n t e g r a t i o n , the focus w i l l now be on a human-

oriented complete method for view integration.

The new goal w i l l be to dtermine object i d e n t i t y , difference

and relatedness with a small number of i n t e l l i g e n t (i . e . , non-

redundant) questions. Obviously, the method should base

f u t u r e questions on answers to previous ones. T h i s i s a

minimum requirement. The following l i s t of questions outlines

other areas i n which the procedure can be improved.

1. How many ob j e c t s s h a l l be included i n the object

comparison?

75

2. Which objects should be compared?

3. What i s the sequence of c o n f l i c t d i a g n o s i s and

therapy?

4. How s h a l l i d e n t i t y or difference be decided?

How many objects?

The p r e v i o u s l y o u t l i n e d procedure always compared o b j e c t

p a i r s , i . e . , " i s e n t i t y E l i d e n t i c a l i n meaning to en t i t y E2?"

T h i s type of qu e s t i o n can always be answered with "yes" or

"no", but f o r n objects i n view 2 t h i s form of questioning

requires n questions . By asking, " i s E l i d e n t i c a l to one of

{E2, E3, Em}", the number of questions can be reduced to

1. The que s t i o n can be answered e i t h e r with the object's

i d e n t i f i e r , or with "no". This form of questioning d r a s t i c a l l y

reduces the questioning e f f o r t . The questioning format w i l l

always be l : n instead of 1:1. An m:n format w i l l not be used,

since the answers become awkward (a l i s t of tuples of i d e n t i c a l

objects).

Which objects?

The procedure would not behave i n t e l l i g e n t l y , i f i t included

o b j e c t s i n the comparison that should not be included. For

instance, i f E21 from view V2 was found to be i d e n t i c a l to E l l

from view VI, the procedure should never again inquire whether

E21 i s i d e n t i c a l any other object from VI. Other rules which

are d e s c r i b e d i n the r e s u l t s chapter, reduce the group of

76

r e l e v a n t o b j e c t s even more. Furthermore, h e u r i s t i c s (also

r u l e s , but not always true) were found to reduce the group of

o b j e c t s even f u r t h e r . For example, once two e n t i t i e s are

found to be i d e n t i c a l , and both p a r t i c i p a t e i n re l a t i o n s h i p s ,

one may expect to f i n d i d e n t i c a l pairs of r e l a t i o n s h i p s within

these smaller groups.

Which sequence?

So f a r , sequences of object modifications have been outlined

which r e s u l t e d i n s t a b l e s t a t e cases, (Case 1) i d e n t i c a l

objects, (Case 6) d i f f e r e n t , but related objects, and (Case 8)

d i f f e r e n t and u n r e l a t e d o b j e c t s . For instance, a case of

construct mismatch (Case 3) was transformed into Case 1 through

a construct change. The question i s whether the method should

operate by searching a c t i v e l y for c o n f l i c t cases such as Case

3 or Case 4? The answer i s "no". A human-oriented integration

procedure w i l l a l t e r the sequence of t e s t s . Following the

assumption that i n absence of information to the contrary, two

views are assumed to be i d e n t i c a l , the procedure w i l l always

attempt f i r s t to f i n d matching objects, not object mismatches.

For example, t y p i c a l l y the assumption at the outset of the object

comparison w i l l be t h a t f o r an object Ol i n view VI there

e x i s t s an object 02 i n view V2 with an i d e n t i c a l construct,

i . e . , both are r e l a t i o n s h i p s . Figure 4 b r i e f l y outlines the

basic sequence of t e s t s .

77

NAME

Figure 4 : C o n f l i c t Recognition Procedure (abbreviated)

For any object 01 from view VI and any set of objects {02} from

view V2, the f i r s t t e s t i s a t e s t f o r i d e n t i t y of meaning. I f

i t f a i l s , a t e s t for construct mismatch follows. I f there i s

no construct mismatch, an object i s assumed to be missing. Note

that name and context difference or i d e n t i t y are ignored

7 8

at f i r s t . The t e s t f o r r e l a t e d n e s s which begins with the

assumption of r e l a t e d n e s s i s separated from the t e s t f o r

i d e n t i t y of o b j e c t s . Tests f o r r e l a t e d n e s s are postponed

u n t i l a l l t e s t s for i d e n t i t y are c a r r i e d out.

How to decide on i d e n t i t y or difference?

For a l l object c h a r a c t e r i s t i c s , i d e n t i t y or difference have to

be asserted. While t h i s i s simple for construct and name, i t

i s not f o r meaning and context. Only people can ultimately

judge whether two o b j e c t s have the same meaning, but an

i n t e l l i g e n t i n t e g r a t i o n procedure should help as much as

p o s s i b l e i n making t h i s decision. In short, the procedure

w i l l help by f i l t e r i n g out objects that are not i d e n t i c a l to

the o b j e c t i n qu e s t i o n . Rules to f i l t e r out these non-

corresponding objects are defined.

3.2.4. View Integration C o n f l i c t Cases

Previously, only 8 of the 16 general types of cases

were discussed, when context was held constant. The case l i s t

below describes a l l possible cases for the comparison of two

a r b i t r a r y objects from d i f f e r e n t views. Cases are i d e n t i f i e d

by name (N), c o n s t r u c t (object type T) , meaning (M) , and

context (C) <N,T,M,C> of the involved objects. Object 01 i s

79

denoted through <N1,T1,M1,C1>, object 02 through <N2;T2,M2,C2>.

For every case the equality or non-equality of parameters i s

stated.

The overview t a b l e below shows f o r each case i d e n t i t y or

d i f f e r e n c e along the four dimensions. For example, a

under N means that both objects have i d e n t i c a l names, an 1 x'

means they are d i f f e r e n t . For the meaning dimension, 'r'

means the meanings are d i f f e r e n t but related .

Case N T M C
1 = = = = I d e n t i c a l objects
2 — = = X Identical objects with d i f f e r e n t context
3 X = — — Synonym
4 X = — X Synonym with d i f f e r e n t context
5 = X — X Construct mismatch (semantic relativism)
6 X X — X Construct mismatch and synonym

7 X X =/x Different and unrelated objects
8 — = X =/x Homonym
9 X X X X D i f f e r e n t o b j e c t s w i t h d i f f e r e n t

constructs
10 = X X X D i f f e r e n t o b j e c t s w i t h d i f f e r e n t

constructs, but homonyms

11 X — r d i f f e r e n t but related objects
12 = r = d i f f e r e n t but related homonyms
13 X — r X d i f f e r e n t but r e l a t e d o b j e c t s with

d i f f e r e n t context
14 = = r X d i f f e r e n t but r e l a t e d homonyms with

d i f f e r e n t context
15 X X r X d i f f e r e n t but related objects of d i f f e r e n t

type
16 — X r X d i f f e r e n t but r e l a t e d homonyms o f

d i f f e r e n t type

17 - - - - missing object 02

80

Note that i f two objects are of d i f f e r e n t type, t h e i r context

w i l l be d i f f e r e n t , due to the d e f i n i t i o n of context. Note

also that i d e n t i t y or difference of context i s i r r e l e v a n t for

objects with d i f f e r e n t meaning.

A more d e t a i l e d l i s t of view c o n f l i c t s can be found i n the

Appendix. The l i s t i n the appendix breaks each general case

down into subcases based on d i f f e r e n t i a t i o n according to the

constructs of p a r t i c i p a t i n g objects. I.e., a construct mismatch

exis t s between an e n t i t y and a re l a t i o n s h i p as well as between

an e n t i t y and an at t r i b u t e . The extended l i s t has been l e f t

out here f o r the purpose of r e a d a b i l i t y . The Appendix also

p r o v i d e s a b r i e f d e s c r i p t i o n of the s o l u t i o n f or a l l case

s c e n a r i o s . The general c o n f l i c t resolution r u l e f or object

i d e n t i t y and difference i s to have a l l other dimensions follow

the meaning dimension. I f two objects have i d e n t i c a l meaning,

a l l other dimensions w i l l have to be made i d e n t i c a l . I f two

o b j e c t s have d i f f e r e n t meaning, the name dimension has to

r e f l e c t t h i s . Cases of object relatedness are solved through

representation of the superset subset r e l a t i o n s h i p s .

Omitted from t h i s solution description i s the technique for

r e - a l l o c a t i o n of att r i b u t e s when relatedness i s detected. The

gener a l r u l e i s to al l o c a t e those a t t r i b u t e s that belong to

both the superset and the subset to the superset, and to

81

a l l o c a t e to the subset only the a t t r i b u t e s that are unique to

i t (see f o r instance Navathe and Elmasri (1986)).

82

3.3. Expert System Methodology

An implemented s o l u t i o n for the view integration

problem requires an adequate problem representation and solution

mechanism. So far, cases of p o t e n t i a l integration problems

and a procedure have been i d e n t i f i e d , yet no implementation

mechanism has been suggested. Before any further discussion

of an adequate mechanism, here a short reminder of the problem

s i t u a t i o n .

Correcting the c o n f l i c t s i n a set of user views i s c l e a r l y a

problem solving task. Within t h i s research, view integration

i s treated as a diagnosis and therapy task (note that Hayes-

Roth et a l . mention diagnosis and therapy ("repair") as generic

tasks of knowledge engineering applications) . C h a r a c t e r i s t i c

of a t y p i c a l diagnosis task i s the goal to f i n d out "what's

wrong" i n the actual state. Thus, the purpose of the diagnosis

part of view integration i s the i d e n t i f i c a t i o n of the discrepancy

or mismatch between a p a i r of views. Once the c o n f l i c t case

has been i d e n t i f i e d , the therapy or " f i x i n g " phase w i l l adjust

one or both views to remove an e x i s t i n g c o n f l i c t . Therapy

c r e a t e s the new, desired structure. Diagnosis and therapy

tasks are p r o t o t y p i c a l tasks f o r expert systems or knowledge

based systems. The integration method discussed here was not

b u i l t by e x t r a c t i n g diagnosis and therapy rules from expert

designers. Hence i t i s not t r u l y an expert system. However,

83

i t w i l l represent c o n f l i c t recognition and c o n f l i c t resolution

knowledge.

Database design rules for c o n f l i c t recognition and resolution

can be e a s i l y formulated as s e t s of production r u l e s . In

s i m p l i f i e d form, one may want to think of each production rule

as describing one of the cases. For each object comparison,

the r u l e matching the c o n f l i c t s i t u a t i o n would f i r e and

transform the case into another one, u n t i l one of the stable

state cases were reached (for a description of the production

system reasoning mechanism see for instance Barr and Feigenbaum,

1981).

The most appealing property of the production system mechanism

i s the m o d u l a r i t y of the r e s u l t i n g systems. Rules can be

added, d e l e t e d or changed without d i r e c t l y a f f e c t i n g other

r u l e s . Figure 5 i l l u s t r a t e s t h i s f a c t . Figure 5 (taken from

Vessey and Weber, 1986) depicts a decision table with cooking

i n s t r u c t i o n s f o r vegetables to exemplify the convenience of

r u l e e d i t i n g . Each i n s t r u c t i o n (column) corresponding to one

p r o d u c t i o n r u l e . The l i s t can be e a s i l y expanded through

addition of new columns. By the same token, the deletion of a

column does not a f f e c t any other column (or r u l e) i n the

t a b l e . Furthermore, each column can be changed, thereby

a f f e c t i n g only the instructions for one p a r t i c u l a r dish. The

cause f o r t h i s s i m p l i c i t y of the rule based system l i e s i n the

84

design of the condition l i s t . Each condition stub i s s p e c i f i e d

with the utmost d e t a i l , not r e f e r r i n g to conditions which are

aggregates of more than one f a c t . I.e., the decision table

does not c r e a t e intermediate r e s u l t s (aggregates of truth

values) such as " j u i c y and cr i s p y and le a f y but not t a l l " ,

which could appear l a t e r as a single condition i n the condition

l i s t f o r both " f r y " and "steam". In other words, condition

items are decoupled as much as possible. Consequently also

the r u l e s (i . e . , the dishes) are decoupled.

Juicy Y Y Y Y Y Y N
Tall Y N N N N N —
Crispy — Y Y Y N N —
Leafy — Y Y N — — —
Red — Y N — — — —
Hard — .— . — — Y N —

Fry X
Steam X
Grill X
Peel X X
Boil X
Chop X X
Roast X

Figure 5: Decision Table I l l u s t r a t i o n

85

The modularity of production rules makes t h e i r implementation

very f o r g i v i n g . I f a case i s l e f t out i n the beginning, or i s

s p e c i f i e d incompletely at f i r s t , additions can be made with

very l i t t l e e f f e c t on the already e x i s t i n g rules.

One disadvantage i s the i n e f f i c i e n c y of the production system

approach, due to duplication of i d e n t i c a l condition elements.

T h i s r e s u l t i s the c o s t induced by complete decoupling of

conditions. Every condition l i s t has to be created and tested

i n d e t a i l without being able to make use of e s t a b l i s h e d

intermediate r e s u l t s . A more sensible design approach should

compromise between complete decoupling of c o n d i t i o n s and

processing e f f i c i e n c y . A h e u r i s t i c for aggregating conditions

would group those conditions together that form a meaningful

unit (are highly cohesive). Meaningful stands i n contrast to

purely accidental coincidence of conditions. I.e., " j u i c y and

cr i s p y and leafy, but not t a l l " i s not a p a r t i c u l a r l y meaningful

grouping, because i t does not i d e n t i f y a c e r t a i n well-known

group of food items. Therefore, t h i s aggregate should not be

chosen as a grouping, even though i t could s i m p l i f y the decision

table i n the example.

A second disadvantage of production systems i s the fac t that

they disguise the control flow. I t i s d i f f i c u l t f o r a designer

to understand the control flow i n the production system. In

86

so c a l l e d "procedural" programming languages, i . e . Pascal or

Fortran, the control flow i s determined by the ordering of the

language statements, i f branching statements are neglected for

the moment. In production systems, the sequence of rules has

much l e s s importance. I.e., the "chop" r u l e w i l l not be

applied f i r s t even though i t i s the f i r s t rule i n the decision

t a b l e i n F i g u r e 5 , unless i t s conditions are true. I f the

l a s t r u l e i n the system i s the one whose conditions become

true f i r s t , i t w i l l be the f i r s t to f i r e . Hence, production

systems i n general require substantial re-thinking by systems

designers who are used to procedural languages. In a Prolog

implementation t h i s problem i s a l l e v i a t e d to some extent since

the language's interpreter interprets rules s t i l l i n sequential

order.

In c o n c l u s i o n , even though i t has some disadvantages, a

production system seems to be a suitable representation mechanism

for the implementation of t h i s research. The case des c r i p t i o n

already provides many guidelines f o r the d e f i n i t i o n of c o n f l i c t

r e s o l u t i o n r u l e s . A l s o , the m a i n t a i n a b i l i t y advantage of

production systems becomes important when subsequently h e u r i s t i c s

have t o be added to the i n t e g r a t i o n method to improve i t s

operation with i n s u f f i c i e n t information.

A d i f f e r e n t , apparently more elegant approach to view integration

c o u l d perform the i n t e g r a t i o n process as a theorem proving

87

task. Similar to other theorem proving tasks (see for instance

Nilsson, 1980) the program would be given a set of views and

the question "does there e x i s t a c o n f l i c t free global schema

which contains a l l the information of the i n d i v i d u a l c o n f l i c t i n g

views"? I f the answer to that question were "yes", the global

schema would be produced as a "by-product". Using Robinson's

r e s o l u t i o n p r i n c i p l e (1965), the program would s o l v e the

problem by creating a new goal "there e x i s t s no global schema"

and by f a l s i f y i n g t h i s statement through a counter example.

This approach i s elegant because i t i s based on a very general

problem s o l v i n g mechanism, the theorem p r o v i n g mechanism.

However, d e f i n i t i o n of the integration rules, e s p e c i a l l y the

p r o c e d u r a l r u l e s of c o n f l i c t recognition and resolution i s

more d i f f i c u l t than i n the production system approach.

Two other reasonable representations for the task are frames and

semantic networks (Waterman, 1986) . They w i l l be discussed

below.

Frames (Minsky, 1975) are complex data structures containing both

fa c t u a l and procedural knowledge. Frames have s l o t s which can

contain data concerning frame properties. Related to s l o t s can

be procedures which are invoked when a s l o t i s f i l l e d . Slots

that are not f i l l e d can take i n i t i a l l y defined default values.

This default c a p a b i l i t y i s one of the advantageous features of

frame based knowledge representations.

88

Mylopoulos and Levesque (1984) for instance stress t h e i r ease

of dealing with incomplete knowledge. Frames have been used

as knowledge representations i n a v a r i e t y of expert systems

(see Waterman, 1986 or Hayes-Roth et a l . , 1983). Barr and

Feigenbaum (1981) state that frames "have problems", yet do

not mention where these problems l i e .

Semantic nets represent knowledge i n a network i n which

properties are inherited from other objects along the arcs of

the network. Waterman states that semantic nets have algo

been used i n expert systems, i n fa c t he argues that semantic

nets and frames are s i m i l a r . Mylopoulos and Levesque (1984)

emphasize as q u a l i t i e s of semantic nets t h e i r data organization

and the provision of good access methods. As a disadvantage

they state the lack of formal semantics and standard terminology.

The problem of formal semantics becomes c l e a r , when the

in t e r p r e t a t i o n mechanism for semantic nets i s investigated.

A l l approaches are f e a s i b l e . However, for i t s forgivingness

i n the maintenance of the knowledge base, the p r o d u c t i o n

system approach has been chosen f o r t h i s r e s e a r c h . The

integration method has been implemented i n Prolog. The program

i s c a l l e d AVIS, for Automatic View Integration System.

89

4 . RESULTS

4 . 1 . Rules Guiding View Integration

View i n t e g r a t i o n as a problem s o l v i n g t a sk i s

guided by a set of r u l e s which allow the problem solver to

define the problem environment, i d e n t i f y the p a r t i c u l a r problems

(c o n f l i c t s) and to solve them. In t h i s section, the general

r u l e s u n d e r l y i n g the process are presented, exemplified and

j u s t i f i e d . The rules can be divided into two major groups:

base r u l e s and h e u r i s t i c s . Base r u l e s are believed to be

always t r u e . H e u r i s t i c s are support r u l e s . The b e l i e f s

expressed i n them are known to be wrong sometimes but are

expected to be true i n most cases.

E s p e c i a l l y i n i t s c o n f l i c t r e c o g n i t i o n p a r t , t h i s view

i n t e g r a t i o n method r e l i e s to a l a r g e extent on asking the

r i g h t questions. I f the method can ask the r i g h t questions,

i t can perform a large segment of the integration without user

i n t e r a c t i o n . When user i n t e r a c t i o n cannot be avoided, a

s e l e c t i o n of the r i g h t questions can s i m p l i f y the user's

answering task. Furthermore, the method w i l l not appear to be

stupid, i f i t can avoid asking t r i v i a l or redundant questions.

To help i n the question formulation process, h e u r i s t i c s were

included which f o r instance change the content and sequence of

questions.

90

Base rules are separated into four groups of r u l e s . The f i r s t

t h ree groups are s t a t i c modelling rules. The fourth group

contains process r u l e s :

1. General Modelling Rules
2. Rules of the Modelling Language
3. Rules of Database Design/View Integration

3.1 General Database Design Rules
3.2 Rules Concerning the Test f o r Identity of

O b j e c t s (C o n f l i c t R e c o g n i t i o n and
Rec o n c i l i a t i o n Rules)

3.3 Rules Concerning the Relatedness 1 of Objects
(R u l e s f o r R e c o g n i t i o n and M o d e l l i n g of
Inter-Schema Relationships)

4. Process Rules
4.1 Process Rules f o r C o n f l i c t Recognition and

Reconciliation
4 .2 Process Rules for the Recognition and Modelling

of Inter-Schema Relationships

General modelling rules are v a l i d not only i n the database

context. For example, "each relevant r e a l world object 2 s h a l l

be represented by exactly one object i n the model" i s such a

r u l e . Rules of the modelling language, here the E-R modelling

language, describe true statements about the E-R language that

are relevant to the view integration task. Rules of database

1 The term "relatedness" i s used to s i g n i f y superset-subset
r e l a t i o n s h i p s such as a l l managers are employees, MANAGER—
Isa—EMPLOYEE. The term "relationship", unless occurring i n
the form "subset/superset/containment r e l a t i o n s h i p " , i s used
to denote associations between e n t i t i e s .

2 Throughout the chapter, the terms object and object type
w i l l be used i n t e r c h a n g e a b l y t o d e s c r i b e o b j e c t types.
P a r t i c u l a r instances are referred to as object instance or object
occurrence.

91

design are separated into rules to guide the database designer's

(or the method's) t e s t for the i d e n t i t y of objects and rules

to guide the uncovering of inter-schema (superset-subset)

r e l a t i o n s h i p s . Process rules describe the sequence i n which

t e s t s (i . e . , c o n f l i c t r e c o g n i t i o n) and c o r r e c t i v e measures

(i . e . , c o n f l i c t resolution) s h a l l be c a r r i e d out.

The discussion w i l l begin with a d e s c r i p t i o n and explanation

of the base rules, followed by an analysis of the h e u r i s t i c s .

Base Rules

General Modelling Rules:

1. Each r e l e v a n t r e a l world o b j e c t type s h a l l be

represented by exactly one object type i n the model

(redundancy-free representation).

A l l model b u i l d i n g t r i e s to create a representation of the

r e a l world that contains a l l relevant information i n the most

concise form. Not a l l the information of the r e a l world can

be represented. Most of the d e t a i l may not even be required

f o r the tasks at hand. Hence, some r e a l world object types

92

w i l l not f i n d t h e i r way i n t o the model. I f a r e a l world

object type i s represented more than once i n the data world,

update anomalies can occur. Each new object instance of the

r e a l world has to be inserted more than once into the data

model. Should the r e a l world o b j e c t type i t s e l f cease to

ex i s t , more than one data model object type has to be removed.

Th i s c r e a t e s extra processing e f f o r t and the p o s s i b i l i t y of

inconsistency. One of the purposes of database design i s to

avoid exactly these problems.

2. An integration of multiple models s h a l l not r e s u l t

i n the loss of information from any of the models.

Any bottom-up modelling approach attempts to b u i l d a large

global model through the combination of smaller models. Each

of the small models represents the r e a l world facts that one

model-builder perceives as relevant. Omission of any of these

f a c t s out i n the global model would r e s u l t i n an incomplete

g l o b a l model. Hence, the rule demands that a l l i n d i v i d u a l

models are c o r r e c t and that the c o l l e c t i o n of models i s i n

i t s e l f consistent (Biskup and Convent, 1986).

Rules of the Modelling Language:

93

3 . Every object i n a view i s represented with exactly

one o f f o l l o w i n g t h r e e c o n s t r u c t s : E n t i t y ,

Relationship, A t t r i b u t e .

The view integration method models databases based on Chen's

Entity-Relationship model i n which only E n t i t i e s , Relationships

and A t t r i b u t e s e x i s t . Categories which are represented i n

some extended forms of the E-R model w i l l be d e p i c t e d as

sp e c i a l (Is-a) r e l a t i o n s h i p s .

4 . E n t i t i e s are autonomous objects. They can ex i s t

without the existence of Relationships and without

the d e f i n i t i o n of Attributes.

E n t i t i e s are things or in d i v i d u a l s . As things or ind i v i d u a l s

can e x i s t even i f they have no associations with other things

or i n d i v i d u a l s , so can e n t i t i e s . For example, an e n t i t y

SUPPLIER can e x i s t without an association to another ent i t y ,

such as BUYER.

5. A Relationship cannot e x i s t without the existence
of at lea s t one En t i t y .

R e l a t i o n s h i p s represent associations between e n t i t i e s . They

map instances of one e n t i t y to instances of some other e n t i t y .

94

In the most r e s t r i c t e d case, one e n t i t y i s associated with

i t s e l f . For example, the e n t i t y PERSON i s associated with

i t s e l f through a Supervisor or a Parent r e l a t i o n s h i p . T y p i c a l l y ,

more than one e n t i t y w i l l be involved i n a r e l a t i o n s h i p , but

never le s s than one.

6 . An A t t r i b u t e cannot e x i s t without the existence of

the E n t i t y or Relationship i t belongs to.

A t t r i b u t e s r e p r e s e n t a s s o c i a t i o n s between an e n t i t y and a

value set, or a r e l a t i o n s h i p and a value set. For example,

the Person_name a t t r i b u t e associates the PERSON e n t i t y with a

value set of names which i t s e l f i s a set of s t r i n g s containing

v a l i d person names. The a t t r i b u t e cannot e x i s t without the

e x i s t e n c e of the e n t i t y or r e l a t i o n s h i p i t r e f e r s to (value

sets are not part of the E-R model).

General Database Design Rules:

7 . Two types of Attributes e x i s t . "Property" Attributes

which describe the object (Entity or Relationship)

i n more d e t a i l (i . e . , c o l o r , name) and

" I n t e r c o n n e c t i o n " A t t r i b u t e s which describe the

95

association of the object (Entity or Relationship)

to some other object (Entity or Relationship).

A t t r i b u t e s a r e always a s s o c i a t i o n s between e n t i t i e s or

r e l a t i o n s h i p s and value sets. However, sometimes attr i b u t e s

are not used to describe an innate property of the e n t i t y or

r e l a t i o n s h i p they belong t o , but i n s t e a d , t o d e s c r i b e an

association between the e n t i t y or r e l a t i o n s h i p and some other

o b j e c t . For example, the a t t r i b u t e Person_name describes a

property of a PERSON enti t y , t h e i r name. PERSON could also

have an a t t r i b u t e Savings_acct_no. This a t t r i b u t e even though

a s s o c i a t e d with PERSON, i s not a property of a person. In

f a c t , the a t t r i b u t e i m p l i c i t l y s t a t e s t h a t t h i n g s c a l l e d

savings accounts e x i s t and that a person i s or may be related

to such a savings account. Thus, the a t t r i b u t e describes not

a property, but an association. PERSON possesses SAVINGS_ACCT

(PERSON is_associated_with SAVINGS_ACCT). While i n the example

t h e d i f f e r e n c e b etween a p r o p e r t y a t t r i b u t e and an

i n t e r c o n n e c t i o n a t t r i b u t e was d i s t i n c t , i t w i l l not be as

cl e a r i n a l l cases.

8. Interconnection Attributes are shortened forms of

E n t i t i e s (i f the A i s a Relationship-Attribute), or

96

of Entity-Relationship constructs (i f the A i s an

E n t i t y - A t t r i b u t e) .

In the above example, PERSON had a Savings_acct_no a t t r i b u t e

which indicated the existence of savings accounts and a person's

p o s s e s s i o n of such an account. Obviously, savings_account

could become an enti t y , since i t i s a thing i n the r e a l world.

In that case, a re l a t i o n s h i p such as Has_account would represent

a person's p o s s e s s i o n of such an account. Also, being an

Ent i t y , a savings account could have a t t r i b u t e s i t s e l f , such

as Account_balance, or Date_opened. The model buil d e r may not

need a l l t h i s e x t r a i n f o r m a t i o n . I f the account number

i n f o r m a t i o n i s s u f f i c i e n t , there i s no reason to describe

savings accounts, or other r e a l world objects, i n more d e t a i l .

A f t e r a l l , a model should contain only the relevant information

about the system i t i s modelling.

In the example, an e n t i t y a t t r i b u t e (Savings_acct_no) which

was an association between an en t i t y (PERSON) and a value set

(of a c c o u n t numbers) took the r o l e of a r e l a t i o n s h i p

(Has_account) between PERSON and another e n t i t y SAVINGS_ACCT.

The a t t r i b u t e thus represented both a r e l a t i o n s h i p (Has_account)

and an e n t i t y (SAVINGS_ACCT) through the account number value.

A l l a t t r i b u t e s of SAVING_ACCT other than i t s number, as well

as any p o t e n t i a l non-key a t t r i b u t e s of Has_account are not

97

represented. Hence, interconnection a t t r i b u t e s are a compressed

form of information representation.

This compression has the undesirable side e f f e c t s of deletion

and i n s e r t i o n anomalies. I.e., savings accounts do not ex i s t ,

u n t i l people e x i s t that possess the accounts. Accounts also

cease to e x i s t with the person owning them.

9. I f A t t r i b u t e s a r e m u 1 t i - v a 1 u e d , t h e y a r e

interconnection Attributes.

This r u l e helps i n the detection of interconnection a t t r i b u t e s .

I f a multi-valued a t t r i b u t e i s found, i t i s considered to be a

interconnection a t t r i b u t e . For example, i f the Address a t t r i b u t e

of an EMPLOYEE requires multiple entries i t should better be

represented by a new e n t i t y RESIDENCE, related to EMPLOYEE

through a r e l a t i o n s h i p such as Resi d e s _ a t . Storey (1988)

deals with multi-valued a t t r i b u t e s i n t h i s manner during view

creation.

10. A Relationship i s a less fundamental object than an
En t i t y .

Since r e l a t i o n s h i p s cannot e x i s t without the existence of at

lea s t one en t i t y , t h e i r continuing existence i s based on two

98

factors. F i r s t , i t i s based on the existence of the objects

underlying the e n t i t i e s , and second, on the existence of the

association between those r e a l world objects? Should either

one not ex i s t , then the re l a t i o n s h i p has to be removed. For

e n t i t i e s , on the con t r a r y , i t i s unimportant whether any

formerly e x i s t i n g association between them i s s t i l l i n place.

They w i l l only disappear once the r e a l world objects underlying

them disappear. The same i s true for e n t i t y and re l a t i o n s h i p

instances. For example, i f a database contains the e n t i t i e s

EMPLOYEE and DEPARTMENT as well as the r e l a t i o n s h i p Employed_by,

i n d i v i d u a l i n s t a n c e s of Employed_by, such as [1005,

Manufacturing] are only meaningful i f employee 1005 s t i l l

e x i s t s , the manufacturing department e x i s t s , and the employee

i n f a c t s t i l l works for the manufacturing department (r e f e r e n t i a l

i n t e g r i t y) .

11. Each o b j e c t has four r e l e v a n t dimensions: Name,

Construct (Entity/Relationship/Attribute), Meaning,

and Context.

One of the basic assumptions underlying t h i s view integration

method i s that there e x i s t only four relevant d i f f e r e n t i a t i o n

c r i t e r i a f or objects i n a view: name which i s the name of an

ob j e c t , such as SUPPLIER, construct or object type, such as

r e l a t i o n s h i p , meaning, and context. Meaning encompasses a l l

the relevant knowledge conveyed by the object. For example,

meaning includes a l l the information that i s known, once i t i s

known that a p a r t i c u l a r e n t i t y i s a SUPPLIER. I.e., supplies

parts, w i l l be paid for parts. Meaning i s the most important

of a l l four dimensions. I t w i l l have absolute precedence over

the other dimensions. I f two objects have the same meaning,

they r e f e r t o the same r e a l world object and therefore a l l

other dimensions w i l l have to be adjusted accordingly. Context

i d e n t i f i e s the set of objects an object i s associated with.

An a t t r i b u t e ' s context i s the e n t i t y or r e l a t i o n s h i p i t belongs

to. A re l a t i o n s h i p ' s context are the e n t i t i e s associated by

i t . E n t i t i e s are defined as having no context. E n t i t i e s are

the only objects able to e x i s t without any other type of objects.

12. Along each dimension, any two objects can be eithe r

"same" or " d i f f e r e n t " , i . e . same name, same construct.

Another major assumption of the view integration method refers

to the v a r i a t i o n s i n each dimension. I t i s more important to

f i n d out whether two objects are i d e n t i c a l (same) or d i f f e r e n t

i n each of the relevant dimensions rather than to f i n d out the

a c t u a l v a l u e s f o r each dimension. In order to merge two

o b j e c t s , they have to match, they have t o be completely

i d e n t i c a l . I f they are even s l i g h t l y d i f f e r e n t a change i s

r e q u i r e d . The magnitude of d i s s i m i l a r i t y does not matter,

100

s i n c e a change i s required nevertheless. For example, the

en t i t y names SUPPLIER and SUPPLIERS are only s l i g h t l y d i f f e r e n t .

N e v e r t h e l e s s , they are d i f f e r e n t and w i l l r e q u i r e a name

change i f the e n t i t i e s are to be merged. The same i s true for

the other dimensions. Two relationships may have "almost" the
i

same context, that i s , most of the e n t i t i e s associated by them

are the same. Despite t h i s fact, these r e l a t i o n s h i p s have a

d i f f e r e n t context and cannot be merged unless the context of

one or both of them i s changed.

13. Two objects with d i f f e r e n t meanings can be related

i n meaning.

Meaning i s the only dimension where i d e n t i t y or difference are

not the only two relevant values. For example, the e n t i t i e s

EMPLOYEE and PART_TIME_EMPLOYEE have o b v i o u s l y d i f f e r e n t

meaning, yet they are not completely independent. EMPLOYEE

r e f e r s t o a type of i n d i v i d u a l s which includes the type of

i n d i v i d u a l s r e f e r r e d to by PART_TIME_EMPLOYEE. Hence, when

two o b j e c t s are d i f f e r e n t i n meaning, any superset-subset

r e l a t i o n s h i p s between them are nevertheless relevant. Objects

with such re l a t i o n s h i p s w i l l be c a l l e d related i n meaning.

101

14. Two related objects 01 and 02 w i l l display one of the

following set relationships between them:

1. 01 and 02 have a common subset (yes/no); and

2. 01 and 02 have a common superset (yes/no);

r e s u l t i n g i n the following possible combinations:

(a) one object contains the other object;
(b) b o t h o b j e c t s have a (meaningful) common

superset and a common subset, yet the superset
i s not one of 01 or 02;

(c) both o b j e c t s have a common superset, but
they do not overlap;

(d) both objects have no common superset and do
not i n t e r s e c t ; v i r t u a l l y no relatedness, no
need for representation i n a database.

Set r e l a t i o n s h i p s and t h e i r treatment within view integration

have been discussed at d i f f e r e n t l e v e l s of completeness by a l l

previously reviewed integration techniques, most completely by

Navathe and colleagues, Elmasri and Navathe (1984), Navathe

and Elmasri (1983).

This r u l e l i s t s a l l relevant r e l a t i o n s h i p s between two sets.

The q u a l i f i e r "meaningful" for supersets or subsets implies

t h a t any such superset or subset has to be a cohesive group

from the point of the users. For example, the e n t i t i e s EMPLOYEE

and CUSTOMER have a common superset requiring implementation,

the e n t i t y PERSON. Consequently, both EMPLOYEE and CUSTOMER

would i n h e r i t the at t r i b u t e s of PERSON and a l l instances of

EMPLOYEE and CUSTOMER would be instances of PERSON. Another,

les s meaningful superset would be an e n t i t y EMPLOYEESCUSTOMER.

The c h o i c e o f an a p p r o p r i a t e common s u p e r s e t , i . e . ,

102

EMPLOYEES CUSTOMER vs. PERSON, has to remain with the user 1 .

While there are no fixed rules to what constitutes a "good"

e n t i t y , t h e r e are i n d i c a t o r s for less good e n t i t y choices.

For instance, i f the user cannot provide a good name for the

object, i t may not be a (good) e n t i t y . I.e., EMPLOYEE&CUSTOMER

i s not a good object name. Hence, the object i s not expected

to be very meaningful. Or, i f the objects a t t r i b u t e s are

i d e n t i c a l t o an already e x i s t i n g o b j e c t ' s a t t r i b u t e s , the

object may not be a (good) e n t i t y .

Examples fo r the forms of relatedness are:

(a) EMPLOYEE contains PART_TIME_EMPLOYEE;

(b) PRODUCT_TEAM_MEMBER and PROJECT_TEAM_MEMBER are

both s u b s e t s of EMPLOYEE, t h e i r i n t e r s e c t i s

PRODUCT&PROJECT_TEAM_MEMBER;

(c) PART_TIME_EMPLOYEE and FULL_TIME_EMPLOYEE are both

subsets of EMPLOYEE, but they do not overlap;

(d) CUSTOMER and DEPARTMENT do not in t e r s e c t .

The relatedness i n (d) i s so weak that i t s h a l l be ignored. Even

though i t represents some extra knowledge about the world, the

knowledge i s negative knowledge. Since negative

1 Throughout the text, the term "user" ref e r s to a database
designer who employs the integration method. This "designer
user" represents the inte r e s t s of the end users of the database.
The end users are assumed to have provided the o r i g i n a l views.

103

knowledge i s so much more abundant than p o s i t i v e knowledge,

i t s representation t y p i c a l l y becomes i n f e a s i b l e .

15. Two unrelated objects 01 and 02 may share a common

ro l e .

Two e n t i t i e s , f or example PERSON and COMPANY can be d i f f e r e n t

and unrelated, but they s t i l l can have a common r o l e such as

the r o l e of shareholder. Neither view may contain a shareholder

object, even though both may contain a STOCK e n t i t y . Goldstein

and Storey (1988) discuss unrelated objects sharing a common

ro l e ("W-relationship") and the proper representation of t h i s

s i t u a t i o n i n a generalization l a t t i c e .

16. Two objects are i d e n t i c a l , i f they are i d e n t i c a l i n

a l l dimensions.

Only the previously discussed four dimensions are relevant to

judge whether objects are i d e n t i c a l . Objects have to correspond

i n a l l dimensions. For example, an e n t i t y EMPLOYEE and an

e n t i t y WORKER are known to mean the same. Thus they are

i d e n t i c a l i n meaning, construct (e n t i t y) , and context (empty).

Nevertheless, the objects are i d e n t i c a l only a f t e r t h e i r names

have been made i d e n t i c a l too.

104

17. Each object i s related to i t s e l f (contains i t s e l f and

i s contained by i t s e l f) . This relatedness s h a l l not

be represented i n any view.

T h i s r u l e guides and l i m i t s the search for between-view set

r e l a t i o n s h i p s . For example, i f an e n t i t y EMPLOYEE has been

found to be i d e n t i c a l to another object EMPLOYEE from some

other view, each of the e n t i t i e s i s also a superset of the

other one. They also share a common subset, the e n t i t y set

i t s e l f . The r e p r e s e n t a t i o n of t h i s f i n d i n g bears no extra

information. I t would also r e s u l t i n an i n f i n i t e expansion of

the g l o b a l database, s i n c e i f every o b j e c t i s r e l a t e d to

i t s e l f , also the object expressing t h i s relatedness i s related

to i t s e l f which has to be expressed through yet another object,

and so on.

18. An object can be related to between 0 and n other

objects.

I t i s important to remember that one object can be related to

more than one other object. The search f o r rel a t e d objects

from another view i s not completed a f t e r one rel a t e d object

has been found. However, i t i s also possible that no related

objects can be found i n another view.

105

19. Each object i n one view can have a maximum of one

i d e n t i c a l object i n another view (c a l l t h i s object

also the "corresponding" object).

This r u l e follows from the general r u l e of modelling that no

r e a l world o b j e c t s h a l l be represented more than once i n a

model. A view i s a model. Hence, i f two objects of one view

are i d e n t i c a l to another e n t i t y from some other view, the two

objects must be i d e n t i c a l . This rule implies that once a p a i r

of i d e n t i c a l o b j e c t s has been found, there i s no need to

search f o r further i d e n t i c a l objects.

20. Two views are the same, i f a l l t h e i r objects are

i d e n t i c a l .

The goal of the c o n f l i c t recognition and r e s o l u t i o n procedure

i s to correct omissions and c o n f l i c t s so that at the end two

p r e v i o u s l y d i f f e r e n t views are i d e n t i c a l . Then they do not

have to be merged, one of them can be removed, since a l l i t s

information i s also contained i n the other view. This rule

states when the i d e n t i t y condition i s achieved.

106

21. Each i n d i v i d u a l view i s complete and consistent and

minimal.

A view i s complete i f i t represents a l l the i n d i v i d u a l s ,

things, and associations between them, relevant to the user.

A view i s consistent i f none of the facts stated concerning

the r e l a t e d n e s s of s e t s are c o n t r a d i c t e d by others i n the

view. F o r example, i f the view s t a t e s t h a t the e n t i t y

PART_TIME_EMPLOYEE i s a subset of the e n t i t y EMPLOYEE, no

other f a c t i n the view may present contrary information, such

as PART_TIME_EMPLOYEE and EMPLOYEE have no members i n common,

(see Casanova and Vi d a l (1982), Biskup and Convent (1983)).

M i n i m a l i t y of a view e n t a i l s that each r e a l world object i s

only represented once i n a view. For example, i f one view

co n t a i n s two e n t i t i e s , SUPPLIER and DEALER, these e n t i t i e s

have to be d i f f e r e n t ; they have to r e f e r to d i f f e r e n t objects

i n the r e a l world.

The completeness assumption c l a r i f i e s the ro l e of the integration

method as a method that finds omissions or c o n f l i c t s i n views

based not on within-view (intra-view) analysis but based on

between view (inter-view) comparison.

107

2 2 . The c o l l e c t i o n of views before i n t e g r a t i o n i s

consistent.

The view i n t e g r a t i o n method assumes t h a t not only views

i n d i v i d u a l l y are consistent, but also that the c o l l e c t i o n of

views i s consistent as a whole. In other words, facts stated

concerning relatedness of sets i n one view cannot contradict

facts stated i n another view.

T h i s r u l e c l a r i f i e s the purpose of the c o n f l i c t recognition

and r e s o l u t i o n method as a method that corrects omissions and

c o n f l i c t s (i . e . , differences i n opinion on name, context) but

not contradictions. For instance, i f view VI states that a l l

managers have to be f u l l - t i m e employees, while view V2 states

t h a t a l s o part-time employees can be managers, the views

contradict. Both statements cannot be true at the same time.

The method assumes that such contradictions do not e x i s t .

Rules Concerning the Test for Identity of Objects:

(C o n f l i c t Recognition and Resolution Rules)

108

23. I f f or an object 01 from view VI an i d e n t i c a l object

02 cannot be found i n view V2, then 02 i s either

missing or represented through an object that has

the same meaning but i s d i f f e r e n t along i t s other

dimensions.

Ideally, an i d e n t i c a l object 02 from V2 e x i s t s f o r each object

01 from VI. Both objects are i d e n t i c a l i f they are i d e n t i c a l

i n a l l r e l e v a n t dimensions: name, c o n s t r u c t , meaning, and

context. The most c r u c i a l dimension i s the meaning dimension.

I f two objects have the same meaning, they r e f e r to the same

ob j e c t i n the r e a l world. Hence, i f an object 02 with the

same meaning as 01 ex i s t s , there may remain a name, construct

or context c o n f l i c t between Ol and 02 to be taken care o f f ,

but 02 i s not missing. I f no 02 exi s t s that r e f e r s to the

same r e a l world object as 01 does, then that 02 i s t r u l y missing.

24. No change of a view during integration s h a l l r e s u l t

This r u l e provides a guideline to the d i r e c t i o n of change i n

cases of construct mismatch as described by one of the following

a l t e r n a t i v e s :

i n the loss of information.

Object i n view 1: Object i n view 2:
En t i t y
E n t i t y
Relationship

Relationship
A t t r i b u t e
A t t r i b u t e

109

Mismatches between an a t t r i b u t e on one hand and an e n t i t y or

r e l a t i o n s h i p on the other hand w i l l r e s u l t i n a change of the

o b j e c t with the a t t r i b u t e construct. This adjustment rule

follows from the rule on interconnection a t t r i b u t e s .

A mismatch between an e n t i t y and a r e l a t i o n s h i p , r e s u l t s i n a

change of the object with the r e l a t i o n s h i p construct, based on

the r u l e concerning object permanence. Relationships are less

fundamental than e n t i t i e s . Relationship instances cease to e x i s t

when the e n t i t y i n s t a n c e s they r e f e r t o cease to e x i s t

(r e f e r e n t i a l i n t e g r i t y) , as i l l u s t r a t e d below:

View 1: SUPPLIER—Sup_con—CONTRACT—Cus_con—CUSTOMER

View 2: SUPPLIER—Contract—CUSTOMER

Both views have suppliers i n a contract s i t u a t i o n with customers,

yet i n view 1, the contract i t s e l f i s an e n t i t y , i n view 2 i t

i s a r e l a t i o n s h i p . In view 2, a disappearing customer (instance)

destroys a l l records of a contractual agreement between him and

the supplier. No h i s t o r i c data remains. In view 1, contracts

have a l i f e of t h e i r own and survive the disappearance of a

customer instance. Hence, the less permanent character of a

r e l a t i o n s h i p p o t e n t i a l l y leads to information loss i n the

database extension. Consequently, a construct mismatch between

110

an e n t i t y and a re l a t i o n s h i p should r e s u l t i n a change of the

re l a t i o n s h i p construct into an e n t i t y construct.

25. I f two unrelated objects share a common ro l e , the

common ro l e object and s p e c i f i c r o l e objects have to

be represented as well as Isa rel a t i o n s h i p s between

the o r i g i n a l objects and the s p e c i f i c r o l e and between

the s p e c i f i c roles and the common r o l e .

This r u l e i s based on Goldstein and Storey (1988). For example,

i n :

VI: PERSON—Holds—STOCK

V2: COMPANY—Holds—STOCK

PERSON and COMPANY have the same r o l e . Therefore, a common

ro l e object SHAREHOLDER i s needed to describe the s i t u a t i o n .

Furthermore, s p e c i f i c r o l e o b j e c t s , PERSON_SHAREHOLDER and

COMPANY_SHAREHOLDER are needed. Then, PERSON_SHAREHOLDER i s a

PERSON as well as a SHAREHOLDER. SHAREHOLDER here w i l l be the

object associated with STOCK through the Holds r e l a t i o n s h i p .

Rules Concerning the Test f o r Relatedness of Objects:

(Recognition and Modelling of Inter-Schema Relationships)

111

26. Any Object 01 from VI which i s not an e n t i t y and which

i s related to an object 02 from V2 s h a l l become an

e n t i t y .

Any object 01 that i s not an e n t i t y i s e i t h e r a r e l a t i o n s h i p

or an a t t r i b u t e . Neither of the two may be associated with

other o b j e c t s by means of a r e l a t i o n s h i p . R e l a t i o n s h i p s

i n v o l v e d i n r e l a t i o n s h i p s a r e not p e r m i t t e d , nor are

r e l a t i o n s h i p s involving a t t r i b u t e s . However, i f two objects

a r e r e l a t e d , t h e y w i l l have t o be connected by an Isa

r e l a t i o n s h i p . Thus, t h i s construct change i s necessary. For

example, an a t t r i b u t e Supplier belonging to e n t i t y PART i n

view 1 i s r e l a t e d to e n t i t y DEALER from view 2. The relatedness

i s such that a l l suppliers are dealers but not a l l dealers are

s u p p l i e r s . In t h i s case, the Supplier a t t r i b u t e i n view 1

w i l l become an e n t i t y , which w i l l be associated with part

through a Supplies r e l a t i o n s h i p . Supplier i n view 1 was an

i n t e r c o n n e c t i o n a t t r i b u t e which i s now more adequately

represented through an e n t i t y . For a more de t a i l e d i l l u s t r a t i o n

of construct changes compare section 4.3 on c o n f l i c t therapy.

27. I f an object 01 contains an object 02, the containment

s h a l l be represented by an Isa r e l a t i o n s h i p . I f the

Isa r e l a t i o n s h i p does not e x i s t , i t must be added.

112

The contained object w i l l possess a l l a t t r i b u t e s of

the containing object.

T h i s r u l e on the E-R representation of containment i s taken

from Elmasri and Navathe (1984).

For example, i f EMPLOYEE contained PART_TIME_EMPLOYEE, the

connection between the two would have to be represented by an

Isa r e l a t i o n s h i p , s t a t i n g that PART_TIME_EMPLOYEE i s an EMPLOYEE.

PART_TIME_EMPLOYEE would i n h e r i t a l l a t t r i b u t e s of EMPLOYEE.

28. I f two objects 01 and 02 overlap, and neither object

contains the other, the overlap s h a l l be represented

by an overlap object 03. I f the overlap object does

not e x i s t , i t must be added. The overlap object 03

w i l l i n h e r i t the union of the a t t r i b u t e s of 01 and

02. The connections 01-03 and 02-03 s h a l l be

r e p r e s e n t e d by one Isa r e l a t i o n s h i p each. I f

either of the Isa rela t i o n s h i p s does not ex i s t , i t

must be added.

T h i s r u l e s t a t e s how the method handles relatedness of the

form common subset (o v e r l a p) . The f o l l o w i n g example w i l l

i l l u s t r a t e the ru l e :

View 1: PROJECT_EMPLOYEE[Emp#,Proj#,Yrs_experience,Title]

View 2: PRODUCT_EMPLOYEE[Emp#,Prodname,Function,Title]

113

t h e common s u b s e t PROJECT&PRODUCT_EMPLOYEE i n h e r i t s the

a t t r i b u t e s Emp#, Proj#, Yrs_experience, Prodname, Function,

T i t l e and c o n t a i n s a l l i n s t a n c e s of employee contained i n

PROJECT_EMPLOYEE and i n PRODUCT_EMPLOYEE (i n t e r s e c t) .

Furthermore, the following re l a t i o n s h i p s are added:

PROJECT&PRODUCT_EMPLOYEE—Isa—PROJECT_EMPLOYEE

PROJECT&PRODUCT_EMPLOYEE—Isa—PRODUCT_EMPLOYEE

The creation of overlap objects i s explained i n d e t a i l i n Yao

et a l . (1982).

29. I f two objects 01 and 02 have a common superset, and

neither object contains the other, the superset s h a l l

be represented by a superset object 03. I f the

superset object does not e x i s t , i t must be added.

The superset object 03 w i l l possess the int e r s e c t

of the at t r i b u t e s of 01 and 02. I f they are not

i d e n t i f i e r a t t r i b u t e s , these a t t r i b u t e s w i l l have

to be removed from 01 and 02. The connections O l -

03 and 02-03 s h a l l be represented by one Isa

rel a t i o n s h i p each. I f either of the Isa relationships

does not ex i s t , i t must be added.

T h i s r u l e s t a t e s how the method handles relatedness of the

form common superset. The following example w i l l i l l u s t r a t e

the r u l e :

114

View 1: PROJECT_EMPLOYEE[Emp#,Proj#,Yrs_experience,Title]

View 2: PRODUCT_EMPLOYEE[Emp#,Prodname,Function,Title]

the common superset EMPLOYEE receives the a t t r i b u t e s Emp#,Title.

The non-key a t t r i b u t e T i t l e are removed from PROJECT_EMPLOYEE

and from PRODUCT_EMPLOYEE:

EMPLOYEE[Emp#,Title]

PROJECT_EMPLOYEE[Emp#,Proj #,Yrs_experience]

PRODUCT_EMPLOYEE[Emp#,Prodname,Function]

EMPLOYEE cont a i n s a l l i n s t a n c e s of employees i n c l u d e d i n

PROJECT_EMPLOYEE or i n PRODUCT_EMPLOYEE (union). Furthermore,

the following r e l a t i o n s h i p s are added:

PRODUCTJEMPLOYEE—Isa—EMPLOYEE

PROJECT_EMPLOYEE—Isa—EMPLOYEE

The c r e a t i o n of overlap objects and a t t r i b u t e r e l o c a t i o n i s

explained f o r instance i n Navathe et a l . (1986).

30. I f two objects exclude each other, the exclusion s h a l l

be represented through an i n t e g r i t y constraint.

No new objects are added i n the case of an exclusion. However,

an i n t e g r i t y c o n s t r a i n t can be added to prevent any object

i n s t a n c e from a c c i d e n t a l i n s e r t i o n into the non-overlapping

sets. For example:

View 1: FULLTIME EMPLOYEE

115

View 2: PARTTIME_EMPLOYEE

d e s c r i b e two non-overlapping sets. An i n t e g r i t y constraint

c o u l d be formulated to permit i n s e r t i o n of instances into

e i t h e r o b j e c t only i f a f t e r the i n s e r t i o n a j o i n of both

objects s t i l l returns the empty set.

If the model (and the DBMS) can support i n t e g r i t y constraints,

t h i s r e s t r i c t i o n can improve the d a t a q u a l i t y . The

representation of exclusion i n t e g r i t y constraints i s suggested

by [Casanova and V i d a l , 1983] and [Biskup and Convent, 1986].

31. Containment i s t r a n s i t i v e . I f A contains B and B

contains C, then A contains C. The t r a n s i t i v i t y s h a l l

not be e x p l i c i t l y represented i n any view. An Isa

rel a t i o n s h i p between A and C i s assumed to ex i s t , i f

an Isa r e l a t i o n s h i p exists between A and B and between

B and C.

T h i s r u l e p r e v e n t s the generation of new redundant Isa

r e l a t i o n s h i p s i n m u l t i - l e v e l h i e r a r c h i e s . I f f o r example,

PERSON, EMPLOYEE, and PART_TIME_EMPLOYEE e n t i t i e s e x i s t i n a

view, and EMPLOYEE—Isa—PERSON, as well as PART_TIME_EMPLOYEE-

-Isa—EMPLOYEE has been expressed, there i s no need to also

express PART_TIME_EMPLOYEE—Isa—PERSON.

116

32. I f an Isa re l a t i o n s h i p hierarchy implies another Isa

re l a t i o n s h i p hierarchy because of t r a n s i t i v i t y , the

implied Isa re l a t i o n s h i p s h a l l be removed.

Thi s r u l e assures the removal of already e x i s t i n g redundant

Isa r e l a t i o n s h i p s i n m u l t i - l e v e l hierarchies. I f for example

view 1 s t a t e s t h a t PART_TIME_EMPLOYEE—Isa—EMPLOYEE—Isa—

PERSON, while view 2 expresses that PART_TIME_EMPLOYEE—Isa—

PERSON, expressed, the t r a n s i t i v e Isa i n view 2 contains both

Isa's i n view 1 and i s redundant. I t has to be removed.

33. C r e a t i o n of a new superset or subset object w i l l

r e s u l t i n r e l o c a t i o n of r e l a t i o n s h i p s i f these

rela t i o n s h i p s were previously linked to e n t i t i e s at

an incorrect l e v e l of generalization.

Whenever a new superset-subset r e l a t i o n s h i p i s introduced into

a view, the p o s s i b i l i t y e x i s t s that e x i s t i n g r e l a t i o n s h i p s may

have to be relocated. Consider the following example:

VI: DEPARTMENT—Employs—FULLTIME_EMPLOYEE,

V2: FULLTIME_EMPLOYEE—Isa—EMPLOYEE.

In VI, Employs refers to FULLTIME_EMPLOYEE, because no more

general EMPLOYEE object e x i s t s . Once the new EMPLOYEE becomes

117

p a r t of VI, the Employs r e l a t i o n s h i p w i l l be relocated to

associate DEPARTMENT with EMPLOYEE.

V1/V2: DEPARTMENT—Employs—EMPLOYEE—Isa—FULLTIME_EMPLOYEE.

Process Rules:

34. In view integration, the t e s t f o r i d e n t i t y (c o n f l i c t

recognition and r e c o n c i l i a t i o n) s h a l l precede the tes t

f o r relatedness.

The t e s t f o r i d e n t i t y and the t e s t for relatedness are two

independent phases of view integration. The t e s t for i d e n t i t y

detects or creates i d e n t i c a l pairs of objects i n the involved

views so that f i n a l l y f o r each object i n view VI exactly one

i d e n t i c a l object e x i s t s i n view V2. The t e s t f o r relatedness

has the purpose to detect currently missing forms of relatedness

(set r e l a t i o n s h i p s) between views. I t s purpose i s not to

de t e c t within-view relatedness. A l l occurrences of within-

view relatedness are supposed to be already represented i n the

i n d i v i d u a l views (completeness assumption). An example may

i l l u s t r a t e t h i s f a c t . VI has employees working i n departments,

V2 assigns employees to projects.

View 1: EMPLOYEE—Works_in—DEPARTMENT

View 2: EMPLOYEE—Assigned_to—PROJECT

118

The completeness assumption p o s t u l a t e s t h a t no forms of

relatedness e x i s t within either of the views, because none are

e x p l i c i t l y s t a t e d (no knowledge i s interpreted as negative

knowledge). For example, i t i s known that EMPLOYEE i s not a

subset of DEPARTMENT. Consequently, the search f o r inter-view

relatedness has to focus only on those objects that o r i g i n a l l y

e x i s t i n one view but not i n the other. I.e., i f EMPLOYEE

were i d e n t i c a l to EMPLOYEE, Works_in i d e n t i c a l to Assigned_to,

and DEPARTMENT i d e n t i c a l to PROJECT, then no undetected i n t e r ­

view relatedness could e x i s t . In order to know which views

o r i g i n a l l y existed only i n one view but not i n the other, the

t e s t f o r i d e n t i t y has to be c a r r i e d out f i r s t . Thus, the

sequence of the two independent view comparisons, for i d e n t i t y

and f o r relatedness, i s determined by the fac t that a previous

t e s t f o r i d e n t i t y can reduce the number of comparisons for

relatedness.

Process Rules for C o n f l i c t Recognition and Rec o n c i l i a t i o n :

35. For each o b j e c t 01 from view VI, t r y to f i n d an

i d e n t i c a l object 02 i n view V2.

119

The purpose of the method i s to either f i n d that two views are

i d e n t i c a l , or to make them i d e n t i c a l . Once two views are

i d e n t i c a l , one of them can be e l i m i n a t e d because a l l i t s

information i s represented i n the remaining view. As defined

e a r l i e r , two views are i d e n t i c a l , i f a l l t h e i r objects are

i d e n t i c a l . Hence, the t e s t f or i d e n t i t y begins with an attempt

to f i n d an i d e n t i c a l object 02 i n V2 for each object 01 from VI.

36. I f no i d e n t i c a l object 02 from V2 can be found for

01 from VI, t r y to f i n d an object that has the same

meaning as 01 and change the d i s s i m i l a r dimensions

of 01 and 02 so that they become i d e n t i c a l .

E a r l i e r , complete i d e n t i t y of objects was defined. This rule

d e s c r i b e s the a c t i o n to be taken i f two o b j e c t s are only

p a r t i a l l y i d e n t i c a l , i f they have the same meaning. The

meaning dimension as the most important dimension determines

the d i r e c t i o n of change. I f the e n t i t y SUPPLIER i n view 1 has

the same meaning — r e f e r s to the same r e a l world o b j e c t — as

the a t t r i b u t e Dealer_no i n view 2, both objects f i n a l l y have

the same name and the same construct.

120

37. I f no object 02 with same meaning can be found, add

a new object 02 to V2 where 02 i s i d e n t i c a l to Ol from

VI.

I f no object 02 with same meaning as 01's can be found, then

01 has no corresponding object i n V2. Hence an object i d e n t i c a l

to 01 has to be added to V2.

38. For each object 02 from V2 which i s d i f f e r e n t i n

meaning to 01 from VI but has the same name, change

the name so that no two objects with d i f f e r e n t meaning

carry the same name.

This r u l e forbids the existence of homonyms i n the database.

I f a homonym i s found, a name change i s required based on t h i s

r u l e . Again, name follows the more important dimension meaning.

I f meanings are d i f f e r e n t , names have to be d i f f e r e n t . The

other dimensions, construct and context can remain as they are.

39. For each 02 i n V2 that remains without an i d e n t i c a l

object from VI, a f t e r a l l objects i n VI have been

matched with an i d e n t i c a l object i n V2, add a new

object 01 to VI which i s i d e n t i c a l to 02.

121

View V2 may contain objects that are not part of VI. Hence,

a f t e r a l l of V l ' s o b j e c t s have been assigned an i d e n t i c a l

object i n V2, some of the objects i n V2 may be l e f t without an

i d e n t i c a l object i n VI. Consequently, these objects have to

be added to VI.

Process Rules f o r the R e c o g n i t i o n and Modelling of Inter-

Schema Relationships:

40. Compare each object 01 from VI which was o r i g i n a l l y

unique to VI (before addition of missing objects

during i d e n t i t y t e s t) a g a i n s t a l l o b j e c t s {02}

formerly unique to V2, to f i n d out whether 01 contains

02, or 02 contains 01. Represent each i d e n t i f i e d

containment.

Purpose of the analysis i s only the addition of missing i n t e r ­

view superset-subset rel a t i o n s h i p s . Therefore, the contain­

ment t e s t applies only to objects that were o r i g i n a l l y unique

to one of the two views. For example:

View 1: PART—Last_ordered_from—SUPPLIER

View 2: PART—Carried_by—DEALER

122

Here PART i s the same i n both views and t h e r e f o r e i s not

unique. Hence, only Carried_by, Last_ordered_from, DEALER,

and SUPPLIER, are p o t e n t i a l l y r e l a t e d to objects from the

other view. I.e., DEALER could be related to Last_ordered_from

or to SUPPLIER, Last_ordered_from could be rela t e d to DEALER

or to Carried_by. I f , for instance a l l SUPPLIERS are DEALERS

but not a l l DEALERS are SUPPLIERS, then DEALER contains SUPPLIER.

Consequently, an Isa re l a t i o n s h i p between SUPPLIER and DEALER

would have to be created.

The comparison summarized i n t h i s rule i s the f i r s t t e s t for

relatedness, because i t the most spe c i a l case of relatedness

and r e q u i r e s the l e a s t change i n the e x i s t i n g views. The

comparison A contains B i s a spe c i a l case of common containment

(A contains A and A contains B), as well as a s p e c i a l case of

common subset (B i s a subset of A and B i s a subset of B). In

t h i s s p e c i a l case, only an Isa re l a t i o n s h i p i s added to the

views. In the general case, the common superset and the

common subset have to be added too. Thus, i f t h i s t e s t i s the

f i r s t one, the subsequent steps are s i m p l i f i e d .

41. For a l l pairs of o r i g i n a l l y unique objects 01, 02 i n

which neither object contains the other, investigate

whether 01 and 02 are contained by a common object

123

d i f f e r e n t from 01 and 02. Represent the common

containment.

T h i s r u l e summarizes the procedure for a common containment

where the containing object i s d i f f e r e n t from 01 or 02. Only

those objects are compared that were o r i g i n a l l y represented i n

one view only. A l l object pairs i n which one object contains

the other are not considered.

42. For a l l p airs of o r i g i n a l l y unique objects 01, 02 i n

which neither object contains the other and which have

a common superset, also investigate whether 01 and

02 int e r s e c t . Represent any e x i s t i n g common subsets.

Represent the lack of a common subset through an

i n t e g r i t y constraint.

This r u l e summarizes the procedure for a common subset where

the i n t e r s e c t object i s d i f f e r e n t from 01 or 02. Only those

objects are compared that were o r i g i n a l l y represented i n one

view only. A l s o , only objects that have a common superset

(d i f f e r e n t from OI and 02) are compared. Objects without a

meaningful common superset cannot have a meaningful common

subset.

124

43. For a l l object p a i r s 01, 02 o r i g i n a l l y unique to one

view, investigate the existence of a W-relationship

(common r o l e) . R e p r e s e n t any e x i s t i n g W-

r e l a t i o n s h i p s .

Even though the t e s t f o r r e l a t e d objects may not f i n d any

relatedness among the objects themselves, objects can have a

common ro l e , which requires the addition of objects to represent

the common r o l e and the objects 1 s p e c i a l r o l e . I.e., both a

company and a person can be car owners. Even though company

and person are not related (i . e . , have no meaningful common

superset i n the database), t h e i r common r o l e car owner requires

r e p r e s e n t a t i o n , as do t h e i r s p e c i a l roles person-car-owner

and company-car-owner.

Heu r i s t i c s

H e u r i s t i c s are rules that are generally true, but not true i n

a l l cases. The use of these rules during the view integration

process w i l l s i m p l i f y the process for the user i n cases where

the h e u r i s t i c s are t r u e and w i l l s l i g h t l y inconvenience or

p r o l o n g the process when the h e u r i s t i c f a i l s . The use of

i n c o r r e c t h e u r i s t i c s w i l l not r e s u l t i n an incorrect database

design, but i t may prolong the database design process.

125

H e u r i s t i c s improve the integration process by helping the user

to f i n d objects with s i m i l a r or related meaning. I f object 01

i s compared to a set of objects {02} from view 2 and that set

i s large and diverse (large number of objects including e n t i t i e s ,

r e l a t i o n s h i p s and attributes) , the s e l e c t i o n problem may be

d i f f i c u l t f o r the user. I f the set {02} i s small, the sel e c t i o n

problem becomes simple or even t r i v i a l . H e u r i s t i c s help to

si m p l i f y the s e l e c t i o n problem by including only those objects

i n the set that are l i k e l y to be i d e n t i c a l or rel a t e d to the

object 01.

The l i s t below shows only some h e u r i s t i c s , i t cannot be complete.

I t i s always p o s s i b l e to formulate f u r t h e r assumptions to

s i m p l i f y the search procedure. Furthermore, some of the

h e u r i s t i c s shown may be too stringent for a p a r t i c u l a r design,

others may be too loose. H e u r i s t i c s that are too stringent

are a p a r t i c u l a r problem, since they can r e s u l t i n decision

errors which require lengthy recovery procedures. This problem

i s e x e m p l i f i e d i n the next sec t i o n which shows al t e r n a t i v e

view integration procedures, one without any h e u r i s t i c s , one

with only one h e u r i s t i c implemented.

The following h e u r i s t i c s have been i d e n t i f i e d :

1. Two objects with i d e n t i c a l or related meaning w i l l

have some common context.

126

This r u l e says that i d e n t i c a l or related objects w i l l be found

i n the v i c i n i t y of i d e n t i c a l objects. For example, i f i t has

been found that there exists an en t i t y EMPLOYEE i n views VI

and V2, and EMPLOYEE i n VI p a r t i c i p a t e s i n a re l a t i o n s h i p

Employment, then i t i s reasonable to assume that EMPLOYEE w i l l

p a r t i c i p a t e i n a s i m i l a r association i n V2, even though that

association may not be c a l l e d Employment i n V2 and even though

i t may not be a re l a t i o n s h i p .

The h e u r i s t i c i s based on the assumption that people describing

the same environment w i l l have the same perception of the

environment. Since both views have common elements, both views

describe at l e a s t p a r t i a l l y the same r e a l world environment.

In the absence of i n f o r m a t i o n to the contrary, the method

t h e r e f o r e that a l l users regard the same r e a l world objects

and associations as relevant.

In the example, the h e u r i s t i c f a i l s i f the Employment association

i s not relevant i n V2 and therefore missing. Note however, that

the Employment a s s o c i a t i o n may not be missing, but be more

d i f f i c u l t t o f i n d , i f i n V2 i t i s not represented as a

re l a t i o n s h i p , but as an e n t i t y a t t r i b u t e or as an e n t i t y .

127

Even though e n t i t i e s are d e f i n e d to have no context i t i s

u s e f u l t o t r e a t the r e l a t i o n s h i p s they are involved i n as

t h e i r context, t o permit the a p p l i c a t i o n of t h i s valuable

h e u r i s t i c .

2. Two objects with i d e n t i c a l or re l a t e d meaning w i l l

have the same construct.

T h i s r u l e s t a t e s t h a t even before c o n f l i c t r esolution, two

object with i d e n t i c a l or related meaning w i l l be of the same

type. Thus, the rule leads the integration method to look for

a matching object only among those with the same construct.

I f EMPLOYEE i s an e n t i t y i n VI, the matching object i n V2 w i l l

also be an en t i t y .

This h e u r i s t i c i s based on the assumption that i f two people

describe the same object or association from the r e a l world,

they w i l l agree i n t h e i r assessment of the construct that the

object or association should be represented with. Depending

on the r e a l world item, t h i s assumption i s more or l e s s

reasonable. One would assume that almost anyone considers an

employee or a customer to be an i n d i v i d u a l , but a customer's

order may be perceived as a thing (entity) , or as an association

(relationship) between a customer and a company.

128

The h e u r i s t i c f a i l s i n a l l cases of construct mismatch (semantic

r e l a t i v i s m) , i . e . , where one r e a l world object i s represented

as an e n t i t y i n one view and as a re l a t i o n s h i p i n the other

view. For cases i n which the r u l e f a i l s , the integration

procedure has to backtrack and look at objects with d i f f e r e n t

constructs to f i n d a match.

3. I f no two objects with i d e n t i c a l or rela t e d meaning

and i d e n t i c a l construct can be found, the construct

mismatch w i l l be of the following type:

- I f 01 i s an e n t i t y or a r e l a t i o n s h i p , then 02

w i l l be an en t i t y a t t r i b u t e .

This h e u r i s t i c suggests which construct mismatch to investigate

f i r s t . Storey (1988) found that a very common error i n database

design was the representation of an e n t i t y - r e l a t i o n s h i p construct

as an interconnection a t t r i b u t e . Since t h i s "mistake" i s very

frequently made, checking f o r i t s occurrence when an i d e n t i c a l

o b j e c t was not found i s u s e f u l . In combination with the

common context h e u r i s t i c , t h i s h e u r i s t i c i s expected to reduce

the set {02} to a manageable s i z e .

Some at t r i b u t e s can under no circumstance be interconnection

a t t r i b u t e s , while others are more l i k e l y to be interconnection

129

a t t r i b u t e s . Two support r u l e s help i n i d e n t i f y i n g these

groups:

a s i n g l e a t t r i b u t e o b j e c t key cannot be an

interconnection a t t r i b u t e .

a t t r i b u t e s i n a m u l t i - a t t r i b u t e object key (composite

key) are assumed to be interconnection a t t r i b u t e s .

For example, Employee# i s the s i n g l e a t t r i b u t e key of an

employee. I t does not represent the r e l a t i o n s h i p between

EMPLOYEE and some other object. In contrast, the key of an

ORDER e n t i t y , Customerid+Product# i d e n t i f i e s l i n k s to two

other objects, a customer object and a product object. Both

are p o t e n t i a l interconnection a t t r i b u t e s .

Since more forms of mismatches other than the interconnection

a t t r i b u t e s e x i s t , the h e u r i s t i c can f a i l . To recover from

t h i s f a i l u r e , the system w i l l then search according to the

following r u l e s :

- I f 01 i s an e n t i t y and 02 i s not an e n t i t y a t t r i b u t e

then 02 w i l l be a r e l a t i o n s h i p a t t r i b u t e .

- I f 01 i s a r e l a t i o n s h i p and 02 i s not an e n t i t y

a t t r i b u t e then 02 w i l l be an e n t i t y .

These are the only other alte r n a t i v e s for construct mismatch,

aside from the interconnection a t t r i b u t e assumption. However,

any of these rules may f a i l too, i f an object i s missing.

130

4 . Objects with i d e n t i c a l meaning w i l l have i d e n t i c a l

names (consider a name i n singular i d e n t i c a l with

i t s p l u r a l) .

T h i s h e u r i s t i c assumes that a p a r t i c u l a r a p p l i c a t i o n uses a

st a n d a r d i z e d language to la b e l i t s objects. In absence of

information to the contrary, members of the same organization

are expected to use terms to l a b e l the same objects. For

instance, terms such as "department" or "job c l a s s i f i c a t i o n "

or "account" are expected to be used consistently. I f t h i s

were true, synonyms and homonyms would not e x i s t . Hence, t h i s

assumption i s expected to have very l i m i t e d r e l i a b i l i t y .

Nevertheless, i t provides a good s t a r t i n g point i n the search

fo r matching pa i r s of objects at the outset of the integration

procedure.

When t h i s h e u r i s t i c i s applied, two objects are treated as

having the same name even i f one i s i n singular form while the

other one i n the p l u r a l (i . e . , employee vs. employees).

I f the h e u r i s t i c f a i l s , the search for a matching object has

to continue among a l l objects with d i f f e r e n t names.

131

5 . Objects with related meaning w i l l have names with

i d e n t i c a l word stems.

In the search f o r related objects, the word stem can be a very

s t r o n g f i l t e r to i d e n t i f y those o b j e c t s t h a t are l i k e l y

unrelated. For example, FULLTIME_EMPLOYEE and EMPLOYEE have

t h e same s t e m e m p l o y e e , GRADUATE_STUDENT and

UNDERGRADUATE_STUDENT have the same student stem. Thus, they

are l i k e l y to be related. An even stronger i n t e r p r e t a t i o n of

the word stem phenomenon may conclude that i f one object's

name i s the word stem, i t w i l l be the superset of the other

object, while two object with d i f f e r e n t prefixes have a common

superset.

Again, s i n c e synonyms and homonyms are frequent, t h i s rule

w i l l be of only l i m i t e d use. Nevertheless, i n a computerized

procedure, i t r e q u i r e s no user e f f o r t and i s t h e r e f o r e a

desirable feature, even i f i t s benefits may be marginal.

6 . Two objects with i d e n t i c a l or related meaning w i l l

have some a t t r i b u t e s with i d e n t i c a l names (f o r

e n t i t i e s and relationships only).

E s p e c i a l l y i n the search for i d e n t i c a l objects, t h i s r u l e can

be used to e l i m i n a t e those o b j e c t s t h a t are very u n l i k e l y

candidates for i d e n t i t y . Two d i f f e r e n t views describing the

132

same EMPLOYEE e n t i t y are expected to use at le a s t some i d e n t i c a l

a t t r i b u t e s to s p e c i f y employee properties. In p a r t i c u l a r ,

i d e n t i c a l or related objects are assumed to have the same key

at t r i b u t e s (with the same key a t t r i b u t e names).

Obviously, homonymy i s a problem i n t h i s context. Attributes

may be i d e n t i c a l , but a t t r i b u t e names may be not.

7 . Objects with i d e n t i c a l or r e l a t e d meaning w i l l

belong to the same pre-defined meaning category.

In a subsequent section, a hierarchy of object categories w i l l

be introduced which provides a structure for the categorization

of database objects according to t h e i r meaning, i . e . , as an

"animate object". I f each object's meaning i s pre-defined, i n

terms of the category i t belongs to, then two objects from

d i f f e r e n t categories cannot be i d e n t i c a l . Again, t h i s h e u r i s t i c

provides a f i l t e r to eliminate non-identical objects.

133

4.2. Diagnosis Procedure

The c o n f l i c t and omission recognition procedure consists of

two p a r t s : the t e s t for i d e n t i t y of objects (object types),

and the t e s t for relatedness of objects. The t e s t f o r i d e n t i t y

i s concerned with the i d e n t i f i c a t i o n of i d e n t i c a l objects i n

the observed views; the t e s t for relatedness i s concerned with

t h e d e t e c t i o n of i n t e r - v i e w s e t r e l a t i o n s h i p s (object

relatedness).

Even though an o b j e c t from one view can have at most one

corresponding object i n any other view, more than one object

of another view can be related to i t . Relatedness means that

there e x i s t s a s e t r e l a t i o n s h i p between the objects. The

relatedness question has to be approached independently. I t

i s impossible to conclude the relatedness or non-relatedness

of objects from the existence of a p a i r of i d e n t i c a l objects,

or v i c e versa.

The f i r s t question w i l l r e f e r to the i d e n t i t y of objects. In

order to r e s t r i c t the t e s t for relatedness only to inter-view

r e l a t e d n e s s , the relatedness t e s t has to be preceded by the

t e s t f o r i d e n t i t y . Inter-view r e l a t i o n s h i p s can only ex i s t

between objects that are o r i g i n a l l y unique to one view. To

f i n d out, which objects have no corresponding objects i n the

134

other view, the t e s t for object i d e n t i t y has to be performed 1 .

Test f o r Identity of Objects

The purpose of t h i s t e s t i s to answer the question "does there

e x i s t an object 02 i n V2 which i s i d e n t i c a l to 01 from VI?", i . e .

i f view 1 contains an e n t i t y SUPPLIER, does view 2 also contain

an e n t i t y with same name and same meaning. Again, "same meaning"

can be interpreted as "both objects r e f e r to the same object i n

the r e a l world". Obviously, finding a perfect match w i l l be the

exception. I t i s more l i k e l y that objects w i l l be found that

are somewhat s i m i l a r , but not i d e n t i c a l . In such cases,

adjustments have t o be made. The general r u l e i s to make

o b j e c t s completely i d e n t i c a l i f they r e f e r to the same r e a l

world objects (have same meaning). In such cases, possible

mismatches i n name, construct or context w i l l be adjusted. I f

objects r e f e r to d i f f e r e n t r e a l world objects, then a possible,

but u n d e s i r a b l e , match i n t h e i r names (homonym) has to be

corrected.

The t e s t f o r i d e n t i t y i s c a r r i e d out incrementally, with a

comparison of the involved objects along one dimension at a

time. A l l t e s t s compare one object from view 1 to a set of

1 The t e s t procedures w i l l frequently mention therapy
procedures to r e s o l v e c o n f l i c t s or to r e f l e c t i n t e r - v i e w
r e l a t i o n s h i p s , without going into much d e t a i l . Detailed solution
descriptions w i l l be given i n the subsequent section.

135

objects from view 2, to f i n d the ones that f u l f i l l the condition

of the t e s t . Objects are i d e n t i c a l i f t h e i r four dimensions

are i d e n t i c a l . Since the meaning dimension i s the most important

one—other dimensions are adjusted a c c o r d i n g l y — i t presents a

good s t a r t i n g point for the analysis. The main problem with

t h i s approach i s that an object 01 from view VI i s compared to

a l l objects 02 from V2, independent of t h e i r name, construct

or context, even though only one object from V2 can be i d e n t i c a l

to 01. This may require that the user check a long l i s t of

i r r e l e v a n t objects. The h e u r i s t i c s introduced i n the previous

s e c t i o n can be used to a l l e v i a t e the problem. Therefore, a

second procedure w i l l be shown which includes the h e u r i s t i c

"objects with i d e n t i c a l meaning w i l l have i d e n t i c a l constructs",

to exemplify the e f f e c t of h e u r i s t i c s . This second procedure

begins with a search for objects with constructs i d e n t i c a l to

that of Ol.

While i t i s important to begin with the meaning dimension i n

the f i r s t procedure, the analysis sequence fo r other dimensions

may vary. The order chosen here i s : construct, context, name.

Construct a n a l y s i s has to precede context analysis, because

every t e s t for i d e n t i t y may r e s u l t i n a change i n that dimension.

For example, a t e s t f o r i d e n t i t y of construct w i l l cause a

c o n s t r u c t change, i f c o n s t r u c t s are not i d e n t i c a l . But a

c o n s t r u c t change w i l l also r e s u l t i n a context change. In

contrast, context changes do not a f f e c t the construct. Thus,

136

no t e s t f o r i d e n t i t y of context should be executed u n t i l

c o n s t r u c t s have become i d e n t i c a l . Name i d e n t i t y analysis

should follow construct analysis, because the user may decide

to g i v e o b j e c t s d i f f e r e n t names, which are based on t h e i r

c o n s t r u c t . The complete procedure i s depicted i n flowchart

form i n Figure 6 (with abbreviated notation).

To i l l u s t r a t e the whole procedure with an example, i t w i l l be

assumed that an object 01 from view VI i s selected at random,

i . e . , the e n t i t y type SUPPLIER which denotes the set of current

s u p p l i e r s of a company. With t h i s object held fixed, the

following t e s t s are c a r r i e d out:

The procedure begins with the goal to f i n d an object 02 with

i d e n t i c a l meaning to 01. To f i n d the object, the procedure

generates the hypothesis HI "there e x i s t s an object 02 from V2

such that 02 i s i d e n t i c a l i n meaning to 01". Directed towards

the user, i t r e s u l t s i n the question "which object from view

VI i s i d e n t i c a l i n meaning to 01?" The use can then either

i d e n t i f y an object, or reply with a "none". For example, view

V2 may contain an e n t i t y MANUFACTURER which i s used i n V2 to

d e s c r i b e a l l suppliers. I f a matching object i s found, the

system state s'=sl i s reached. I f not, s'=s5. In contrast to

the subsequent hypotheses H2-H4, t h i s t e s t compares 01 to a

set {02} from view V2 rather than to a single object. {02}

contains a l l objects from V2 which so far have not been

137

s-sO

S'"S4

Pick next
object 01

Figure 6 : T e s t f o r O b j e c t I d e n t i t y , P r o c e d u r e w i t h o u t

He u r i s t i c s

138

matched up with an object from VI. As a r e s u l t of HI, either

one of these objects w i l l f i n d a matching object i n VI, while

the remaining n-1 objects w i l l be i n state s5, or a l l objects

from {02} w i l l be i n state s5. In other words, fo r most, i f

not a l l objects from V2, the r e s u l t of t h i s t e s t w i l l be state

s5. Thus, i n the flowchart i n Figure 6, for most i f not a l l

o b j e c t s i n {02}, the outcome of HI w i l l be the "no" path,

while at most one object w i l l follow the "yes" path.

I f a matching o b j e c t i s found, the method continues with

hypothesis H2 which states that 01 and 02 w i l l have the same

c o n s t r u c t , i . e . , that both are e n t i t i e s . The method issues

the question, "do 01 and 02 have the same construct?" In a

computerized view integration system, the integration procedure

w i l l look up the information to answer t h i s question from the

view d e f i n i t i o n s . Should both objects have d i f f e r e n t constructs

(s'=s6), a c o n s t r u c t change would have to occur. I f the

c o n s t r u c t s are i d e n t i c a l , s t a t e s'=s2 i s reached. In the

example, SUPPLIER and MANUFACTURER are both e n t i t i e s and thus

have i d e n t i c a l constructs.

Subsequent t o s2, the system checks for i d e n t i c a l context.

Are Ol and 02 associated with i d e n t i c a l objects? For e n t i t i e s ,

the answer to t h i s question i s always p o s i t i v e , since t h e i r

context i s an empty set. I f 01 and 02 are r e l a t i o n s h i p s or

a t t r i b u t e s and not a l l t h e i r context objects have been matched

139

to objects i n the other view yet, then the i d e n t i t y t e s t f or

01 and 02 i s suspended, u n t i l the context objects are matched

to objects i n the other view. I f the r e s u l t of the context

t e s t i s that 01 and 02 have d i f f e r e n t contexts (s'=s7), the

contexts have to be made i d e n t i c a l (s'=s3). In the example,

both object are e n t i t i e s . Thus, both have i d e n t i c a l (empty)

contexts.

I f state s3 has been reached, the remaining t e s t i s the tes t

for name i d e n t i t y of the objects. The method's hypothesis i s

that both objects have i d e n t i c a l names. I f they do not share

the same name (s'=s8), t h e i r names are made i d e n t i c a l (s'=s4)

through a change of at lea s t one of the names. The new name

w i l l have to be d i f f e r e n t from the names of a l l other objects

i n VI and V2 to avoid homonymy. In the example, at le a s t one

of the e n t i t i e s would require a name change. The name chosen

should be such that i t i s not i d e n t i c a l to the name of another

obj ect.

Once the p a i r of objects i s i d e n t i c a l i n a l l four dimensions,

the i d e n t i t y t e s t i s completed f o r t h i s p a i r . The method

continues by s e l e c t i n g a new o b j e c t 01 from view VI, and

subjecting i t to the same analysis. The procedure terminates

when a l l objects have a matching object i n the other view.

140

The set of a l l objects {02} from V2 that, as a r e s u l t of HI,

are known to be d i f f e r e n t i n meaning from 01 (s'=s5) i s subject

to further analysis. H5 tests whether a l l of the objects have

names d i f f e r e n t from 01's name. A l l objects with same names

(slO) require renaming to make t h e i r names unique (s9). In

addition, i f none of the objects {02} was i d e n t i c a l i n meaning

to 01, a new object 02, completely i d e n t i c a l to 01, has to be

added to achieve the state s4.

The use of h e u r i s t i c s r e s u l t s i n changes to the view integration

procedure. To exemplify such changes, a procedure w i l l be

d i s c u s s e d below t h a t i n c l u d e s only one h e u r i s t i c : "objects

with i d e n t i c a l meaning w i l l have i d e n t i c a l constructs." This

h e u r i s t i c i s i n fac t one of the h e u r i s t i c s implemented i n the

view integration program AVIS. Again, the procedure begins by

picking one object 01 from view VI. I t again w i l l attempt to

f i n d an object i n view V2 that i s i d e n t i c a l to Ol.

The procedure (see Figure 7) begins with the goal " f i n d the

set of objects {02} from V2 that have the same construct as

object 01". Since the procedure assumes that a l l objects with

same meaning have the same c o n s t r u c t , i t decides t o only

c o n s i d e r those objects 02 for further i d e n t i t y t e s t i n g that

have the same construct as 01. A number of objects from V2

w i l l q u a l i f y and thus be i n state sO, while the objects of

141

d i f f e r e n t type w i l l be i n s t a t e s5. Since i n the example

SUPPLIER i s an enti t y , a l l e n t i t i e s from V2 would be considered

f o r further i d e n t i t y t e s t i n g . One may want to think of the

use of construct as a " f i l t e r " which can reduce the number of

objects to be considered, hopefully without being too stringent

a condition.

For those o b j e c t s with same c o n s t r u c t , the procedure then

investigates whether there e x i s t s an object 02 which has the

same meaning as 01 from VI. I.e., i t i s looking f o r an e n t i t y

i n V2 i d e n t i c a l i n meaning to SUPPLIER. Again, at most one

ob j e c t of V2 i s allowed to f u l f i l l t h i s c o n d i t i o n . That

object w i l l be i n state s i . A l l objects with d i f f e r e n t meaning

w i l l be i n state s6. I f an object with same meaning i s found,

the procedure continues with the context (H3) and name (H4)

te s t s , s i m i l a r to the te s t s above. However, i f no object i n

V2 i s found to have the same meaning as 01, the procedure

c o n t i n u e s d i f f e r e n t l y , t o v e r i f y one o f two p o s s i b l e

i n t e r p r e t a t i o n s of the s i t u a t i o n . The f i r s t p o s s i b i l i t y i s

th a t the h e u r i s t i c i s wrong. Thus, an object 02 with same

meaning but d i f f e r e n t c o n s t r u c t e x i s t s i n V2. The second

p o s s i b i l i t y i s that no object with i d e n t i c a l meaning exists i n

V2, regardless of construct. The procedure has to f i n d out

which a l t e r n a t i v e i s true, to avoid the creation of a non-

minimal global schema.

142

F i g u r e 7 : T e s t f o r I d e n t i t y w i t h H e u r i s t i c

143

Thus, a f t e r t a k i n g care of homonyms (H5), the procedure

continues with a t e s t to i d e n t i f y those objects with constructs

d i f f e r e n t from Ol's construct. In the figure, t h i s t e s t i s

shown i n a b b r e v i a t e d n o t a t i o n as c 2 o c l . I t s c o r r e c t

i n t e r p r e t a t i o n i s "are there any objects i n V2 that have a

d i f f e r e n t construct?" This question may appear redundant for

the o b j e c t s i n s5, because they f a i l e d the "same context"

t e s t . However, the s e t of objects i n state s5 may be the

empty set. Thus, they would q u a l i f y f o r the answer "no" to

question H6 (s l 3) , requiring the addition of a new object.

I f t h e r e are o b j e c t s i n V2 with c o n s t r u c t s d i f f e r e n t from

Ol's, the procedure checks whether any of them have the same

meaning as Ol (H7).. I f an object with same meaning i s found

(s l l) , i t s c o n s t r u c t has to be changed. I f no such object

e x i s t s (s l 4) , a t e s t for homonymy follows (H8), r e s u l t i n g i n a

name change f o r a l l homonyms. Subsequently, the missing

object i s added.

In t h i s procedure v a r i a n t , the main e f f e c t i s a sequence

change with r e s p e c t to the t e s t s f o r meaning i d e n t i t y and

c o n s t r u c t i d e n t i t y . I t r e s u l t s i n a p r o l o n g a t i o n of the

procedure i f the h e u r i s t i c i s wrong.

144

The procedure co u l d be v a r i e d f u r t h e r , f o r i n s t a n c e by a

switch i n the sequence of meaning i d e n t i t y and context i d e n t i t y

t e s t . Therefore, the t e s t for meaning i d e n t i t y would follow

the t e s t f o r construct and context i d e n t i t y . Consequently,

only those objects with same construct and same context would

i n i t i a l l y be considered for the meaning i d e n t i t y t e s t . This

procedure change would r e f l e c t the h e u r i s t i c " i d e n t i c a l objects

are i n the v i c i n i t y of i d e n t i c a l o b j e c t s . " The procedure

would look i n the neighborhood of matching objects to fi n d

f u r t h e r matching o b j e c t s . T h i s h e u r i s t i c i s , i n modified

form, also implemented i n AVIS. AVIS requires only part of

the context to be i d e n t i c a l .

The t e s t f o r meaning i d e n t i t y could even be moved past the

te s t for name i d e n t i t y to r e f l e c t the h e u r i s t i c that objects

with same meaning w i l l have same names. Since t h i s h e u r i s t i c

i s expected to be frequently wrong, i t has not been implemented

i n AVIS.

Test f o r Relatedness of Objects

The purpose of t h i s t e s t i s to f i n d out whether aside from

being i d e n t i c a l , objects from one view are related to objects

from another view through set rel a t i o n s h i p s . I.e., an en t i t y

145

(type) SUPPLIER i n VI i s a subset of an e n t i t y DEALER i n V2.

Such a case would e x i s t i n a s i t u a t i o n where SUPPLIER referred

to a l l current suppliers of the company, while DEALER refers

to a l l present and a l l p o t e n t i a l suppliers of the company. I f

those r e l a t i o n s h i p s are not made e x p l i c i t , anomalies can

occur. I.e., i f a member i s dropped from the e n t i t y set

DEALER, i t should a l s o be a u t o m a t i c a l l y dropped from the

e n t i t y set SUPPLIER. Furthermore, a t t r i b u t e inheritance can

be derived from set rel a t i o n s h i p s .

The procedure described below i s a generic procedure without

the use of h e u r i s t i c s (see Figure 8) . I t begins with a t e s t

for containment (HI and H2) . Subject of the t e s t i s whether

one of the o b j e c t s i s contained by the other object, i . e . ,

SUPPLIER i s contained by DEALER. The procedure f i r s t determines

the set {02} of objects contained by 01, and then, f o r those

objects not contained by 01, the set {02'} containing 01. The

way the question i s raised to the user i s "Which of the objects

(i n V2) are contained by 01", and v i c e versa "which of the

objects (in V2) contain 01?" I t i s possible that 01 contains

some o b j e c t s i n V2 while being i t s e l f contained by others.

I.e., SUPPLIER (VI) i s contained by DEALER (V2) but may contain

another object SMALL_QTY_SUPPLIER from V2. In such a s i t u a t i o n

an Isa r e l a t i o n s h i p between DEALER and SMALL_QTY_SUPPLIER

would have existed which now would have to be removed because

i t i s a t r a n s i t i v e Isa.

146

c 04

)4 c Ov M c 02 "

Change construct

•My. yc2-cK
* ' • « 16

Change construct

Re present relatlon-ah Ip
Represent relatI on -ship

no x -

Change ;o n at ruct

Rep resent relat lon-shlp

The containment t e s t i s the f i r s t one issued, because i t i s

the most s p e c i a l i z e d form of common containment and common

superset, r e q u i r i n g the l e a s t amount of a d d i t i o n s to the

ex i s t i n g views. Only one Isa r e l a t i o n s h i p has to be established

between the o b j e c t s . The i n s e r t i o n of an Isa between the

objects requires, however, that both objects are e n t i t i e s . I f

they are not, a l l of them which are not e n t i t i e s have to be

converted into e n t i t i e s . The t e s t H6.1 i s executed to determine

whether both objects are e n t i t i e s .

The e n t i t y t e s t (H6) i s issued for each p a i r of objects a f t e r

t h e i r relatedness has been discovered. There i s no need to

t e s t f o r object type e a r l i e r , since only related objects that

are not e n t i t i e s w i l l require construct changes. Unrelated

objects w i l l keep t h e i r o r i g i n a l constructs. Since the object

type t e s t (H6) i s i d e n t i c a l for a l l forms of relatedness (H6.1

- H6.4), i t w i l l not be discussed further i n the procedure.

Should neither object contain the other one (s8), the procedure

inquires whether both objects have a common superset (H3). I f

they do, the procedure f u r t h e r i n q u i r e s whether a common

subset e x i s t s between them (H4). The common superset question

precedes the common subset question, because objects that have

a (meaningful) common subset and are themselves meaningful

sets have to have a (meaningful) common superset. Although i t

148

i s p o s s i b l e to construct sets such as the set of " a l l green

things" and the set of " a l l edible things" which have a common

subset i n the set of " a l l green edible things", while having

no meaningful superset other than " a l l things", the rule i s

nevertheless v a l i d when only meaningful sets are considered.

In the example, e s p e c i a l l y the set "green things" i s not a

meaningful set as i t has no c l e a r l y defined a t t r i b u t e s (rather

than green color) which we expect for an e n t i t y or re l a t i o n s h i p

type.

I f objects have both a common superset and subset (slO), two

new objects w i l l be created to represent the superset and the

subset. Also, new Isa relationships w i l l be created to represent

the relatedness. I f the objects have a common superset but

no common subset (s l 4) , only a common superset e n t i t y and the

corresponding Isa relationships w i l l be added. In addition,

an i n t e g r i t y constraint may be defined to i d e n t i f y that the

objects are not overlapping.

Objects without a common superset (sl3) are tested f o r the

ex i s t e n c e of a W-relationship (Goldstein and Storey, 1988) .

I f no common superset e x i s t s , the objects are i n fact not

r e l a t e d . Yet the objects may s t i l l require the creation of

inter-view r e l a t i o n s h i p s i f they have a common r o l e . I f the

objects have a common ro l e , i . e . , both a PERSON and a COMPANY

en t i t y may be car-owners, a new object describing the common

149

r o l e (CAR_OWNER) , plus objects describing the spe c i a l roles

(PERSON_CAR_OWNER, COMPANY_CAR_OWNER) have to be created.

Furthermore, Isa relationships have to be added to represent

the associations between the objects.

I f not even a W-relationship e x i s t s between the objects, they

are unrelated and require no addition of inter-view r e l a t i o n s h i p

objects.

1 5 0

4 . 3 . C o n f l i c t Therapy

As soon as a c o n f l i c t i s detected by the diagnosis procedure,

the integration method w i l l correct the problem. Thus, while

t h e r e e x i s t s a d i a g n o s i s procedure to recognize c o n f l i c t s ,

there e x i s t s no therapy procedure per se. Instead, for each

c o n f l i c t case, a case solution i s defined. A l l case solutions

are based on a set of 11 elementary solu t i o n operations which

were formulated e a r l i e r as rules guiding view integration:

1. Relationship becomes an e n t i t y .

2 . Relationship a t t r i b u t e becomes an e n t i t y .

3. E n t i t y a t t r i b u t e becomes an E-R construct.

4. Association of an en t i t y to a r e l a t i o n s h i p .

5 . Relocation of a re l a t i o n s h i p a f t e r creation of new

superset or subset classes.

6 . Representation of containment.

7. Representation of a common ro l e (W-relationship).

8 . Representation of common superset without overlap.

9 . Representation of common superset with overlap.

10. Renaming of homonyms and synonyms.

11. Addition of missing objects.

One or more of these elementary therapy measures may have to

be c a r r i e d out during c o n f l i c t r e c o n c i l i a t i o n . Each of them

w i l l be d e s c r i b e d i n d e t a i l . Appendix 2 w i l l show which

groups of elementary s o l u t i o n s w i l l be applied to s p e c i f i c

c o n f l i c t cases and t h e i r sub-cases.

Relationship becomes an e n t i t y (SI)

Whenever necessary, a r e l a t i o n s h i p i s transformed into an

e n t i t y . I f a r e l a t i o n s h i p becomes an e n t i t y , the linkages

between the r e l a t i o n s h i p and the e n t i t i e s i t associated become

re l a t i o n s h i p s themselves (see Figure 9).

C U S T O M E R

Figure 9: Relationship Becomes an E n t i t y

152

The e n t i t y construct i s the more fundamental one. Furthermore,

an e n t i t y can be associated to other e n t i t i e s by means of a

r e l a t i o n s h i p , i . e . an Isa r e l a t i o n s h i p . Consequently, fo r the

newly created e n t i t y set r e l a t i o n s h i p s to other objects can be

represented within the E-R modelling language. In the example

i n the f i g u r e , the r e l a t i o n s h i p Contract between DEALER and

CUSTOMER becomes an e n t i t y i t s e l f and two new r e l a t i o n s h i p s ,

Dealer_contract and Customer-contract are created i n addition.

Relationship a t t r i b u t e becomes an e n t i t y fS2)

When necessary, r e l a t i o n s h i p a t t r i b u t e s are converted into

e n t i t i e s and a linkage i s expressed between the r e l a t i o n s h i p

and the newly created e n t i t y (see Figure 10).

Figure 10: Relationship A t t r i b u t e Becomes an E n t i t y

153

R e l a t i o n s h i p a t t r i b u t e s t h a t have t o be transformed i n t o

e n t i t i e s are i n t e r c o n n e c t i o n a t t r i b u t e s . Interconnection

a t t r i b u t e s represent e n t i t i e s (or E-R constructs) i n shortened

form. I f the database requires that an interconnection a t t r i b u t e

be associated with another object, i t f i r s t has to be converted

i n t o an e n t i t y (or an E-R construct) . In the i l l u s t r a t i o n ,

SUPPLIER i s associated with PART through the Supply r e l a t i o n s h i p

which has an at t r i b u t e Project. This a t t r i b u t e subsequently

becomes an e n t i t y .

E n t i t y a t t r i b u t e becomes an E-R construct (S3)

Similar to r e l a t i o n s h i p a t t r i b u t e s , e n t i t y a t t r i b u t e s may have

to be transformed, i f they r e q u i r e a s s o c i a t i o n with other

objects, or i f another view represents them d i f f e r e n t l y . An

e n t i t y a t t r i b u t e which i s an interconnection a t t r i b u t e represents

an e n t i t y - r e l a t i o n s h i p construct i n shortened form. Therefore,

i t w i l l be converted i n t o an e n t i t y - r e l a t i o n s h i p structure

(see Figure 11).

T y p i c a l l y , the newly created e n t i t y w i l l r e f e r to the same

r e a l world o b j e c t t h a t the o r i g i n a l a t t r i b u t e referred to.

However, the user may think of the newly created r e l a t i o n s h i p

as the object that corresponds to the o r i g i n a l a t t r i b u t e . In

154

f a c t , the a t t r i b u t e corresponds to both the e n t i t y and the

re l a t i o n s h i p . In the example, the PART e n t i t y has an at t r i b u t e

Supplier which i n fact represents a Supply r e l a t i o n s h i p and a

SUPPLIER e n t i t y i n shortened form.

Figure 11; E n t i t y A t t r i b u t e Becomes an E n t i t y - R e l a t i o n s h i p

Construct

155

Association of an e n t i t y to a r e l a t i o n s h i p (S4)

A c o n f l i c t s i t u a t i o n may require the association of an already

e x i s t i n g e n t i t y with an already e x i s t i n g r e l a t i o n s h i p . The

new element added to the view i s the association l i n k (role)

between the e n t i t y and the r e l a t i o n s h i p (see Figure 12).

View 1

View 2 S U P P L I E R

P R O J E C T

PART

Global
Schema

Figure 12: Association of an E n t i t y to a Relationship

156

Such a s i t u a t i o n arises when two rela t i o n s h i p s are s i m i l a r ,

even though one invol v e s only a subset of the e n t i t y types

a s s o c i a t e d by the other r e l a t i o n s h i p , i . e . one i s a binary,

the other a ternary r e l a t i o n s h i p . The figure shows a Supply

r e l a t i o n s h i p , i n v o l v i n g only the SUPPLIER and PART i n the

f i r s t r e l a t i o n s h i p . Subsequently, the PROJECT e n t i t y i s also

t i e d into the re l a t i o n s h i p .

Relocation of a re l a t i o n s h i p a f t e r creation of new superset or

subset classes (S5)

Whenever a new superset-subset r e l a t i o n s h i p i s introduced into

a view, the p o s s i b i l i t y exists that e x i s t i n g r e l a t i o n s h i p s may

have to be relocated. Figure 13 shows such a case. In view

VI DEPARTMENT Employs FULLTIME_EMPLOYEE, while view V2 reveals

that every FULLTIME_EMPLOYEE i s an EMPLOYEE. Once the views

are combined, i t becomes evident that the Employs r e l a t i o n s h i p

should a s s o c i a t e DEPARTMENT with EMPLOYEE rather than with

FULLTIME_EMPLOYEE. Hence, the Employs r e l a t i o n s h i p i s relocated.

Relocation becomes necessary whenever the o r i g i n a l r e l a t i o n s h i p ,

i . e . Employs, should have referred to eithe r a more general

o b j e c t , i . e . EMPLOYEE instead of FULLTIME_EMPLOYEE, or to a

more s p e c i f i c object.

157

View 1 F U L L T I M E -
E M P L O Y E E

View 2 FULLT IME-
E M P L O Y E E

Isa E M P L O Y E E

Figure 13: Relationship Relocation

Representation of containment (S6)

Whenever one object (class) represents the superset of another

object and t h i s superset-subset r e l a t i o n s h i p i s meaningful for

158

the database, i t has to be represented by an Isa re l a t i o n s h i p

between the two objects (see Figure 14).

View 1 F U L L T I M E .
E M P L O Y E E

View 2 E M P L O Y E E

Figure 14: Representation of Containment

The i l l u s t r a t i o n i n the figure shows the creation of an Isa

r e l a t i o n s h i p between an EMPLOYEE and a FULLTIME_EMPLOYEE

en t i t y .

159

Representation of a common r o l e (W-relationship) (S7)

Two objects can be unrelated but nevertheless have some a f f i n i t y

to each other, i f they assume a common r o l e . Goldstein and

Storey (1988) i d e n t i f y t h i s a f f i n i t y as a W-relationship.

Figure 15 depicts two e n t i t i e s , COMPANY and PERSON, as unrelated

but both assuming the r o l e of a car owner. Both people and

companies can be car owners.

G L O B A L S C H E M A

160

In such a s i t u a t i o n , new objects have to be created to represent

the common ro l e , i . e . STOCKHOLDER, as well as to represent the

s p e c i f i c r o l e s , i . e . , COMPANY_STOCKHOLDER and PERSON_STOCKHOLDER.

Each object representing a s p e c i f i c r o l e w i l l be contained by

one of the o r i g i n a l objects, i . e . COMPANY or PERSON, as well

as by the ob j e c t representing the common r o l e . Whenever a

common r o l e i s represented, r e l o c a t i o n of rel a t i o n s h i p s may

have to take place.

Representation of common superset without overlap (S8)

A Superset but no overlap describes objects that exclude each

o t h e r , such as FULLTIME_EMPLOYEE and PARTTIME_EMPLOYEE.

Figure 16 i l l u s t r a t e s such a scenario and shows the creation

of a new superset object EMPLOYEE, connected to the o r i g i n a l

objects through two Isa rel a t i o n s h i p s .

The example i n Figure 16 i s based on the assumption that the

EMPLOYEE e n t i t y has not previously existed i n ei t h e r of the

view. Whenever a common superset i s represented, relocation

of r e l a t i o n s h i p s may have to occur.

161

View 1 F U L L T I M E .
E M P L O Y E E

View 2 PARTT IME.

E M P L O Y E E

G L O B A L S C H E M A

F U L L T I M E .
E M P L O Y E E

P A R T T I M E .

E M P L O Y E E

Figure 16: Representation of a Common Superset without Common

Subset

162

Representation of common superset with overlap (S9)

In s i t u a t i o n s where two objects not only have a common superset

but also a common subset (overlap) both the superset and the

subset have to be represented by additional objects and Isa

r e l a t i o n s h i p s between the o r i g i n a l objects and the superset

and subset objects (see Figure 17).

View 1

View 2

P R O D U C T .
T E A M -

MEMBER

P R O J E C T .
T E A M -

MEMBER

G L O B A L S C H E M A

P R O D U C T -
T E A M -

M E M B E R

P R O J E C T - S -
P R O D U C T .

T E A M -
MEMBER

P R O J E C T .
T E A M -

M E M B E R

P R O J E C T .
T E A M -

M E M B E R

Figure 17: Representation of Common Superset and Common Subset

163

Figure 17 depicts PROJECT_TEAM_MEMBER and PRODUCT_TEAM_MEMBER

e n t i t i e s . Both have the common superset EMPLOYEE and the

common subset PROJECT&PRODUCT_TEAM_MEMBER. The Isa relationships

r e p r e s e n t t h a t a l l team members are employees and that the

members of the project&product team belong to both the project

and the product team. Again, any previously e x i s t i n g superset,

subset or Isa relationships w i l l not be reduplicated. Whenever

a common superset or a common subset i s represented, r e l o c a t i o n

of r e l a t i o n s h i p s may have to occur.

Renaming of homonyms and synonyms (S10)

Renaming becomes necessary when otherwise i d e n t i c a l objects

c a r r y d i f f e r e n t names (synonym), or when d i f f e r e n t objects

carry the same name (homonym). Once synonyms are treated, the

objects should have the same name. That name should also be

d i f f e r e n t from the name of any other object i n ei t h e r view.

Once homonyms are treated, the involved objects should carry

names t h a t are d i f f e r e n t from each other and d i f f e r e n t from

a l l objects they are not known to be i d e n t i c a l to.

164

Addition of missing objects (S l l)

Objects can be missing. Most views w i l l overlap only p a r t i a l l y .

Hence, fo r any two views, a l l objects that e x i s t i n one view

but not i n the other have to be added to the other view i n

order to make the views i d e n t i c a l . The addition of missing

objects i s part of the "view completion" strategy used i n t h i s

i ntegration method. During integration, both views that take

part i n the integration process are altered u n t i l f i n a l l y they

are i d e n t i c a l . T h i s strategy i s d i f f e r e n t from those that

create a t h i r d "integrated" view during the c o n f l i c t resolution

process.

Many c o n f l i c t cases require the combination of several elementary

therapy procedures to correct a c o n f l i c t . For instance, a

case of c o n s t r u c t mismatch p a i r e d with synonymy (Case 6) ,

requires a name change and a construct change, therapies S10

and one of SI, S2, or S3. Appendix 2 presents the c o n f l i c t

cases and a p p l i c a b l e therapy procedures. Case 6 i s shown

below fo r i l l u s t r a t i o n .

CONSTRUCT MISMATCH AND SYNONYM

Nl <> N2; T l <> T2; Ml = M2; CI <> C2;

6.1 E n t i t y i s Relationship.
Solution: S10 and SI.

6.2 E n t i t y A t t r i b u t e i s E n t i t y - R e l a t i o n s h i p
construct.

Solution: S10 and S3.

165

6.2.1. Attribute i s En t i t y .
6.2.2. Attr i b u t e i s Relationship.

6.3. Relationship A t t r i b u t e i s E n t i t y .
Solution: S10 and S2.

166

4 . 4 . The Impact of Heu r i s t i c s

The main goal of t h i s research i s the development of a complete

view integration method. The secondary goal i s an adaptation

of t h i s method to operate with i n s u f f i c i e n t information.

The integration method i n the form described so f a r does not

take into account the source of i t s information requirements.

For example, i f the method has to know whether EMPLOYEE i n

view 1 and DEALER i n view 2 are of the same o b j e c t type

(construct) , the method expects t h i s information to be ava i l a b l e .

The source of the information i s of no concern. Among the

four r e l e v a n t dimensions f o r each object, name, construct,

meaning, and context, name and construct are the ones most

e a s i l y assessed. Does EMPLOYEE have the same name as DEALER?

Obviously not. Also the object type i s observable, because

object types are e x p l i c i t l y stated i n E-R models. The assessment

of meaning i d e n t i t y , and therefore also context i d e n t i t y , i s a

much more d i f f i c u l t problem. The question i s whether two view

objects r e f e r to the same r e a l world object.

Recognition or inter p r e t a t i o n of r e a l world objects i s a task

beyond most computer systems and not a concern of t h i s research.

Nevertheless, recognition of meaning i d e n t i t y or difference i s

the most c r u c i a l recognition task, since the other dimensions

follow the meaning dimension. I.e., i f two objects have the

same meaning, t h e i r names w i l l ultimately be the same, i f they

have d i f f e r e n t meaning, t h e i r names w i l l ultimately be d i f f e r e n t .

The f o l l o w i n g a l t e r n a t i v e s e x i s t to s a t i s f y the meaning

information requirement:

1. user interrogation;

2. advance meaning s p e c i f i c a t i o n ;

3. method "guesses".

The f i r s t a l t e r n a t i v e to s a t i s f y the meaning i n f o r m a t i o n

requirement i s through user interrogation. Every time two

objects are compared, the system could ask the user "are these

two o b j e c t s i d e n t i c a l i n meaning?". This form of operation

demands a s u b s t a n t i a l amount of question answering by the

user, e s p e c i a l l y since for any object 01 i n view 1 at most one

object 02 i n view 2 with the same meaning i s allowed to e x i s t .

Advance meaning s p e c i f i c a t i o n requires an ex-ante d e f i n i t i o n

of the meaning of each object i n a form that allows the method

to compare i t to other objects and to decide on i d e n t i t y or

d i f f e r e n c e . This requirement r e s u l t s i n two main problems.

F i r s t , meaning descriptions may have to be very d e t a i l e d to

d i f f e r e n t i a t e between objects that are quite s i m i l a r , yet not

168

completely i d e n t i c a l . Thus the up-front e f f o r t required i s

very high. Secondly, meaning d e f i n i t i o n s have to be formulated

i n such a form that there can be no misinterpretations. The

terms used to define meaning have to be consistent over a l l

object d e f i n i t i o n s . These two problems v i r t u a l l y r u l e out a

p r i o r complete d e f i n i t i o n of each object's meaning.

Method "guesses" r e q u i r e t h a t the i n t e g r a t i o n method has

strong evidence on which i t can base i t s guesses. "Guessing"

i m p l i e s t h a t whenever the method compares two objects, i t

makes a d e c i s i o n whether to b e l i e v e t h a t the o b j e c t s are

i d e n t i c a l or not. This i s the way i n which humans operate.

When we say "I know", we mean that we believe, based on evidence

for the fac t and no or l i t t l e evidence against the f a c t " . I f

evidence i s not available, the method i s bound to make mistakes.

U n f o r t u n a t e l y , ample opportunity for mistakes e x i s t s , since

the amount of p o s i t i v e information — a n y Ol i s i d e n t i c a l to at

most one 0 2 — i s so much smaller than the amount of negative

i n f o r m a t i o n . Hence, reliance on guesses i s not a desirable

a l t e r n a t i v e .

Apparently, none of the a l t e r n a t i v e s by i t s e l f provides a

reasonable s o l u t i o n to the information requirement problem.

The f i r s t a l t e r n a t i v e , interrogation, provides the information,

yet at high c o s t t o the user. The second a l t e r n a t i v e , up­

f r o n t d e f i n i t i o n , does not n e c e s s a r i l y p r o v i d e a l l the

169

information and i t requires a l o t of user e f f o r t i n addition

to an unambiguous r e p r e s e n t a t i o n . The t h i r d a l t e r n a t i v e

r e q u i r e s no user e f f o r t but does not guarantee t h a t the

information requirements are s a t i s f i e d c o r r e c t l y . Consequently,

the best strategy to s a t i s f y the requirements, i s to combine

the good aspects of the discussed a l t e r n a t i v e s .

User i n t e r r o g a t i o n i s the only method t h a t s a t i s f i e s the

information requirements, therefore i t i s the dominant approach

(i f the user says that i n h i s world two objects are i d e n t i c a l ,

they are i d e n t i c a l , unless t h i s fact c o n f l i c t s with a previous

statement). The other two a l t e r n a t i v e approaches can be used

t o overcome or at a l l e v i a t e the weakness of d i r e c t user

i n t e r r o g a t i o n , because they can l i m i t and p r i o r i t i z e the

questions to be asked.

Most of the questions of the type " i s object 01 i d e n t i c a l to

..." w i l l r e s u l t i n the answer "no" or the w i l l demand the

comparison to a vast number of other objects at once. I f 01

i s compared to a l l objects i n 02 i n one comparison, the user

has to deal with a large amount of information which may make

i t d i f f i c u l t to answer c o r r e c t l y . Consequently, an improved

method should reduce the number of objects OI has to be compared

to. I f object i d e n t i t y i s the goal, only such 02s should be

compared to 01 which could p o t e n t i a l l y be i d e n t i c a l to 01. In

other words, a f i l t e r would be used to reduce the number of

170

o b j e c t s i n the comparison. Ex-ante meaning d e f i n i t i o n s of

objects, i f i n unambiguous form, can be used i n such a manner.

I f the purpose of ex-ante meaning d e f i n i t i o n s i n t h i s approach

i s t o allow an automatic assessment of difference, meaning

d e f i n i t i o n s can become much shorter. For example, the meaning

d e f i n i t i o n of each o b j e c t could contain j u s t one fact, i t s

v a l u e being e i t h e r "animate object", "inanimate object" to

separate a l l E-R model o b j e c t s describing l i v i n g creatures

from those describing things. I f a l l database objects were

c o r r e c t l y c l a s s i f i e d , the method could automatically decide

that EMPLOYEE and DEPARTMENT are d i f f e r e n t , because the former

one i s a l i v i n g object, the l a t t e r one not. A few general

categories can be chosen which can allow s u f f i c i e n t s p e c i f i c a t i o n

and d i f f e r e n t i a t i o n of meaning without the need for an excessive

up-front d e f i n i t i o n e f f o r t . Ein-Dor (1987) discusses the use

of such "common sense knowledge" i n reasoning. Grounded on

such a common sense knowledge based c l a s s i f i c a t i o n , the

i n t e g r a t i o n method could quickly eliminate those objects 02

that are not i d e n t i c a l to object 01. The user would only have

to decide among the remaining objects.

A further reduction i n the number of objects involved i n the

comparison can be i n i t i a t e d through the use of other available

i n f o r m a t i o n , i n combination with the use of h e u r i s t i c s , as

discussed previously. Instead of guessing which objects are

171

i d e n t i c a l , the method cou l d use any additional evidence to

further reduce the number of objects under consideration. The

following two views s h a l l exemplify t h i s approach which u t i l i z e s

context information:

View 1: EMPLOYEE—Employed_by—DEPARTMENT

View 2: EMPLOYEE—Works_in—XYZ—Engaged_in—PROJECT

Suppose, i t i s alrea d y known t h a t EMPLOYEE i n view 1 and

EMPLOYEE i n view 2 are i d e n t i c a l . Now, the next task would be

to f i n d out whether the re l a t i o n s h i p Employed_by i s i d e n t i c a l

i n meaning to any object i n view 2. One reasonable assumption

would be t o expect t h a t an object i d e n t i c a l to Employed_by

would also be a r e l a t i o n s h i p i n view 2. This does not have to

be the case but i s quite l i k e l y (hence, a h e u r i s t i c) . This

simple assumption reduces the number of contenders i n view 2

to the objects, Works_in and Engaged_in. Another reasonable

assumption would be to expect that the object sought i n view 2

i s also associated with that view's EMPLOYEE e n t i t y . Again,

t h i s does not n e c e s s a r i l y have to be the case, information

could be missing i n view 2, yet i t i s an assumption l i k e l y to

be t r u e . The second assumption leaves only Works_in as a

p o t e n t i a l candidate to have the same meaning as Employed_by.

Consequently, instead of asking the user " i s the r e l a t i o n s h i p

Employed_by i d e n t i c a l i n meaning to one of the following:

Works_in, XYZ, Engaged_in, PROJECT?", i t can more i n t e l l i g e n t l y

ask, " i s the r e l a t i o n s h i p Employed_by i d e n t i c a l i n meaning to

172

the r e l a t i o n s h i p W o r k s i n ? " , thus s i m p l i f y i n g the decision

task f o r the user.

Not only context and construct can be used to make assumptions

about the i d e n t i t y of objects. Other avai l a b l e information,

such as names can be used too. Figure 18 provides an overview

of p o t e n t i a l sources of evidence for meaning i d e n t i t y . The

f i r s t aspect, meaning representation, has already been discussed.

MEANING

Figure 18: Sources of Evidence for Meaning Identity

173

The second aspect, context, i s broken down into three observable

f a c t s : r e l a t e d objects, c a r d i n a l i t i e s , and roles of e n t i t i e s

i n a r e l a t i o n s h i p . "Related o b j e c t s " denotes the general

d e f i n i t i o n of context. C a r d i n a l i t i e s r e f e r s to the context of

re l a t i o n s h i p s . I f two relationships do not only associate the

same e n t i t i e s , but a l s o with the same mapping r a t i o s , the

evidence f o r the r e l a t i o n s h i p s 1 i d e n t i t y i s even stronger.

When a view contains multiple relationships associating the

same set of e n t i t i e s , a d i f f e r e n t i a t i o n by c a r d i n a l i t i e s can

be u s e f u l . The use of r o l e s a p p l i e s only when r o l e s are

defined. I f names are given to the associating l i n k between

an e n t i t y and a r e l a t i o n s h i p , then these r o l e names can be

used for comparison.

Third, a t t r i b u t e s can serve as an indicator for i d e n t i t y . The

problem i s t h a t a t t r i b u t e s are o b j e c t s i n themselves and

t h e r e f o r e s u b j e c t to the same d i f f i c u l t i e s with respect to

i d e n t i t y assessment. One aspect of at t r i b u t e s , however, i s

e a s i l y found out, t h e i r names. Thus, two o b j e c t s may be

speculated to be i d e n t i c a l , i f t h e i r a t t r i b u t e s have i d e n t i c a l

names. As f o r a l l previous indicators, there has to be room

f o r i n t e r p r e t a t i o n . The requirement should not be that a l l

a t t r i b u t e s have t o be i d e n t i c a l , y e t a t l e a s t some.

A l t e r n a t i v e l y , the key a t t r i b u t e (s) c o u l d be the focus of

174

attention. I d e n t i c a l objects are l i k e l y to have i d e n t i c a l key

at t r i b u t e s .

Fourth, i d e n t i c a l domains can be an in d i c a t o r f o r i d e n t i c a l

meaning, i f domains can be d e f i n e d unambiguously. For

at t r i b u t e s , domains are the value sets from which the a t t r i b u t e

values are drawn, i . e . "Social Security Number". For other

o b j e c t s , an o b j e c t ' s superset d e f i n e s i t s domain. I.e.,

EMPLOYEE — Isa—PERSON s p e c i f i e s the domain of EMPLOYEE as

being a person. I f the other view contains also the PERSON

e n t i t y , then the EMPLOYEE e n t i t y could e x i s t only among i t s

subsets.

F i n a l l y , the name of an object as an ind i c a t o r f o r i t s meaning

can be another relevant piece of evidence. E s p e c i a l l y i f name

i d e n t i t y i s not defined as s t r i c t i d e n t i t y of the character

s t r i n g s , b u t i f i t a l s o a l l o w s f o r s i n g u l a r / p l u r a l

d i f f e r e n t i a t i o n , as i n EMPLOYEE vs. EMPLOYEES. Both objects

could be expected to be the same, even though t h e i r names are,

s t r i c t l y interpreted, d i f f e r e n t . For the analysis of relatedness

of objects, t h i s i n t e r p r e t a t i o n f l e x i b i l i t y could be widened,

allowing f o r comparison of objects that only d i f f e r i n t h e i r

names' p r e f i x e s . For example PART_TIME_EMPLOYEE, EMPLOYEE,

and FULL_TIME_EMPLOYEE could be expected to be i d e n t i c a l or at

l e a s t r e l a t e d , s i n c e they a l l t h e i r names contain the root

word employee.

175

I t i s u n l i k e l y , that for any given object a l l these aspects

p o i n t i n t o the same d i r e c t i o n , t h a t i s , i d e n t i f y the same

o b j e c t . Often, i t may not be known what the context of a

p a r t i c u l a r o b j e c t i s , naming pre f e r e n c e s w i l l d i f f e r , and

d i f f e r e n t tasks may require d i f f e r e n t object a t t r i b u t e s . The

approach to be taken i s to use these indicators as a f i l t e r of

v a r i a b l e density. At f i r s t , the f i l t e r should be t i g h t , to

suggest only the most l i k e l y candidate(s) f o r a meaning match,

i . e . , only the objects of the same type with same context and

of the same meaning category. Should t h i s f i l t e r be too wide

s t i l l , i . e . , for a database with many e n t i t i e s of the people

category, p a r t i a l overlap of a t t r i b u t e names, or i d e n t i t y of

key a t t r i b u t e names can be used to r e s t r i c t the number of

objects. Upon f a i l u r e , i . e . , i f none of the suggested objects

resulted i n a proper match, the technique could remove one or

more of the e a r l i e r applied r e s t r i c t i o n s , i . e . , look for a l l

o b j e c t s of the same meaning category, regardless of object

type and context.

There e x i s t s no single best rule for the app l i c a t i o n of meaning

ind i c a t o r s . The only indicator which i s always applicable and

correct i n i t s prediction, should the information be available,

i s the meaning category indicator. By d e f i n i t i o n two objects

cannot be i d e n t i c a l i n meaning unless t h e i r meanings belong to

the same category of meaning. I.e., EMPLOYEE and DEPARTMENT

176

cannot have the same meaning because one i s an animate object,

the other one an inanimate object. Hence, t h i s i n d i c a t o r i s

the only one that can eliminate objects with c e r t a i n t y . The

other i n d i c a t o r s can only suggest t h a t an object may have

d i f f e r e n t (or same) meaning.

Only e m p i r i c a l data generated under a v a r i e t y of conditions

can provide stronger evidence on which meaning indicators work

better than others. For instance, i f the same systems analyst

produces a l l views (based on d i f f e r e n t u s e r s ' information

r e q u i r e m e n t s) , one may expect t h a t o b j e c t type may be a

r e a s o n a b l e i n d i c a t o r (f i l t e r) f o r meaning i d e n t i t y ; the

u n d e r l y i n g assumption being that a single database designer

w i l l be more consistent i n what he models as a re l a t i o n s h i p

vs. an e n t i t y or a t t r i b u t e than a m u l t i p l i c i t y of designers.

I f a l l views s p e c i f i c a t i o n s and designs are done by the same

person (user d e s i g n e r) , one should expect names to be used

co n s i s t e n t l y throughout the views. Hence, names could provide

a good basis to judge meaning i d e n t i t y .

177

4.5. Generalization Hierarchy for Database Objects

The previous section introduced the idea of ex-ante

meaning d e f i n i t i o n s according to predefined meaning categories.

Here, the concept of a g e n e r a l i z a t i o n h i e r a r c h y s h a l l be

introduced to f a c i l i t a t e the categorization.

The d i f f i c u l t y i n developing such a c l a s s i f i c a t i o n scheme i s

the f a c t that i t has to be acceptable to a l l people involved

i n the database design process. In order to f u l f i l l t h i s

goal, the generalization hierarchy should be:

1. complete;

2. consistent;

3. discriminative;

4. concise.

C r i t e r i a 1 and 2 are minimum c r i t e r i a . F i r s t , a c l a s s i f i c a t i o n

scheme that does not allow the user to c l a s s i f y a l l h i s objects

i n accordance with i t i s i n s u f f i c i e n t to capture that user's

knowledge. Second, i f the scheme induces the user to c l a s s i f y

the same o b j e c t under d i f f e r e n t categories, i t v i o l a t e s the

purpose of the scheme, namely to i d e n t i f y s i m i l a r i t y or

differ e n c e of object meanings.

178

C r i t e r i a 3 and 4 are based on Leibniz's Minimality P r i n c i p l e

(Leibniz, 1956, pp. 198-199). This p r i n c i p l e postulates that

a representation i s superior to another one, i f i t requires a

s h o r t e r e x p l a n a t i o n t o e x p l a i n t h e same phenomena.

C o r r e s p o n d i n g l y , a g e n e r a l i z a t i o n h i e r a r c h y t h a t can

d i f f e r e n t i a t e among a l a r g e r number of object classes than

another one with the same number of d i f f e r e n t i a t i o n c r i t e r i a

i s superior. What i s undesirable i s a c l a s s i f i c a t i o n scheme

that i s very fine-grained for a subset of object classes but

very coarse f o r the remainder of object classes. Similar to

an unbalanced binary tree, the too fine/too coarse generalization

hierarchy would waste too many l e v e l s of s p e c i a l i z a t i o n on too

few phenomena.

Unfortunately, choice of the " r i g h t " generalization hierarchy

w i l l consequently depend on the knowledge domain and on the

way i n which the person who c l a s s i f i e s objects d i f f e r e n t i a t e s

among them. For example, a generalization hierarchy which

co n t a i n s only one c l a s s f o r a l l "people objects" w i l l deal

p o o r l y with a database that stores only data for d i f f e r e n t

people r o l e s (i . e . , employee, investor, saver, tax payer).

Consequently, v a l i d a t i o n of the q u a l i t y of a generalization

hierarchy i s possible only within the context of a p a r t i c u l a r

knowledge domain and a s p e c i f i c person who c l a s s i f i e s objects.

Hence i t i s necessary to i n c l u d e the c r e a t i o n of such a

generalization hierarchy i n the requirements analysis e f f o r t .

179

The database designer has to develop a hierarchy which can

represent the app l i c a t i o n domain and has the above mentioned

desirable properties.

I f no such s p e c i a l i z e d c a t e g o r i z a t i o n h i e r a r c h y e x i s t s , a

domain-independent c a t e g o r i z a t i o n hierarchy could be used.

The hierarchy created as part of t h i s project, i s rather f l a t ,

incorporating only few l e v e l s of s p e c i a l i z a t i o n .

A f l a t generalization hierarchy has the obvious disadvantage

o f l i m i t e d d i s c r i m i n a t i v e a b i l i t y . However, o b j e c t

c l a s s i f i c a t i o n s are used to i d e n t i f y difference i n meaning,

not meaning i d e n t i t y . Object c l a s s i f i c a t i o n i s only one of

the i d e n t i f i e r s used by the integration method, and the method

w i l l always i n t e r r o g a t e the user, i f i n doubt. Since the

focus i s on difference i n meaning, even a f l a t generalization

hierarchy has reasonable discriminative a b i l i t y , as the following

example may i l l u s t r a t e .

Consider a g e n e r a l i z a t i o n h i e r a r c h y that can d i f f e r e n t i a t e

among 20 c l a s s e s , such as Person, Animal, O r g a n i z a t i o n .

Object EMPLOYEE i s c l a s s i f i e d as a Person. The question to be

answered i s " i s object XYZ d i f f e r e n t i n meaning from object

EMPLOYEE?". Without f u r t h e r knowledge about XYZ, XYZ has

equal p r o b a b i l i t i e s to belong into e i t h e r c l a s s , and thus a

.05 chance of belonging into the class Person. Thus there

180

e x i s t s a .05 chance for the c l a s s i f i c a t i o n mechanism to suggest

that EMPLOYEE and XYZ are not d i f f e r e n t i n meaning. In t h i s

s i t u a t i o n (1 out of 20 cases) , the user would have to be

con s u l t e d , i f not other indicators were able to answer the

question. An increase of the number of classes to 40 would

reduce the p r o b a b i l i t y to .025, an increase to 200 classes

would r e s u l t i n a .005 pr o b a b i l i t y , requiring user interrogation

only i n 1 out of 2 00 cases. The reductions i n p r o b a b i l i t y

have to be weighed against the c l a s s i f i c a t i o n e f f o r t which i s

an ex-ante investment.

A g e n e r a l i z a t i o n hierarchy for the categorization of object

c l a s s e s shows s i m i l a r i t i e s with the attempts to represent

common sense knowledge i n a r t i f i c i a l i n t e l l i g e n c e . The

c l a s s i f i c a t i o n h i e r a r c h y d i s c u s s e d here i s , however, less

ambitious, s i n c e the task, judging whether two objects are

d i f f e r e n t i n meaning, i s simpler than the task presented i n

the a r t i f i c i a l i n t e l l i g e n c e applications (i . e . , Schank's and

Rieger's r e s t a u r a n t s c r i p t s (1974) or Hayes' naive physics

(1979)). Ein-Dor suggests concept c l u s t e r s f o r common knowledge

i n the business environment (1987). His categories are:

1. exchange,
2. time,
3. location,
4. measurement,
5. media of exchange,
6. obligations and commitments,
7. types of businesses,
8. behaviors,
9. naive economics,

181

10.
11.

employment,
people who engage i n business.

This c l a s s i f i c a t i o n c l a r i f i e s the difference between a common

knowledge representation and a generalization hierarchy. E i n -

Dor's c l a s s e s are not mutually exclusive. For example, the

employment s i t u a t i o n can be c l a s s i f i e d as group 10 as well as

group 6. These c l a s s e s represent areas i n which a common

sense computer program should have knowledge i n .

The c a t e g o r i z a t i o n that can be used i n absence of any more

domain oriented hierarchies, i s structured as follows:

1. Objects
1.1. L i v i n g objects (even i f now dead)
1.1.1. Plants (flora)
1.1.2. Animals (fauna)
1.1.3. Persons
1.1.3.1. Person (generic, not person roles)
1.1.3.2. Person roles
1.1.3.2.1. Person r o l e s i n person-person i n t e r a c t i o n (i . e . ,

parent)
1.1.3.2.2. Person roles i n person-thing association (i . e . , car

owner)
1.1.3.2.3. Person r o l e s i n person-person-thing interactions

(i . e . , manager)
1.2. Inanimate objects
1.2.1. Abstract objects
1.2.1.1. Abstract objects that are organized (have structure)
1.2.1.1.1. Hierarchies (i . e . , a business company)
1.2.1.2.2. Markets (i . e . , the r e a l estate market)
1.2.1.1.1. Other Structures
1.2.1.2. Heaps, lumps and atomic abstract objects (i . e . , a

dream, a theory)
1.2.2. Concrete objects ("things")
2. Object c h a r a c t e r i s t i c s (i . e . , color, size)

According to t h i s categorization scheme, each view object can

have a meaning l i s t c o n t a i n i n g up to 5 elements, such as

[object,living,person,role,person-thing] for category 1.1.3.2.3.

182

Objects c l a s s i f i e d as belonging to d i f f e r e n t categories cannot

be i d e n t i c a l i n meaning. I f the meaning l i s t f o r an object i s

in c o m p l e t e l y s p e c i f i e d , i . e . , category 1.1.3. i t may not be

d i f f e r e n t from an object c l a s s i f i e d as 1.1.3.2.3. and therefore

user i n t e r r o g a t i o n may be necessary. Objects belonging to

d i f f e r e n t categories but belonging to the same higher category

may be rel a t e d i n meaning. More domain s p e c i f i c categorization

schemes w i l l have more and better f i t t i n g categories but w i l l

use the same reasoning mechanism to int e r p r e t the r e s u l t s of

categorization.

183

4 . 6 . Assessment of the Method

In an e a r l i e r chapter, the strengths and weaknesses

of p r e v i o u s i n t e g r a t i o n methods were assessed. The same

e v a l u a t i o n c r i t e r i a w i l l now be used t o h i g h l i g h t the

c a p a b i l i t i e s and l i m i t a t i o n s of the method presented here.

S i m i l a r to p r e v i o u s semantic i n t e g r a t i o n methods, the one

i n t r o d u c e d i n t h i s r e s e a r c h r e q u i r e s d e s i g n e r i n t e r a c t i o n

during the integration process. The designer has to be consulted

to s e t t l e questions concerning i d e n t i t y or d i f f e r e n c e i n

meaning. However, the method employs h e u r i s t i c s to reduce the

number of questions that must be asked.

View integration, as discussed here, covers a larger part of

the integration problem than most other techniques. I t performs

c o n f l i c t r e s o l u t i o n , view merging and addition of i n t e r - s e t

r e l a t i o n s h i p s . B a t i n i et a l . (1983) cover add i t i o n a l aspects

of the conceptual design process, including correctness and

completeness t e s t s for i n d i v i d u a l views before the integration

process (pre-integration). These te s t s , however, are not an

e s s e n t i a l p a r t of the integration process; rather, they are

elements of the view creation task.

This research exceeds a l l preceding approaches i n the number

of c o n f l i c t cases covered. Less important than the number of

184

cases, however, i s the fact that the c o n f l i c t l i s t i s exhaustive,

based on a l l relevant object d i f f e r e n t i a t i o n c r i t e r i a .

S i m i l a r t o other semantic methods, t h i s one reduces the

complexity of the integration task by focussing on high l e v e l

objects e n t i t i e s and r e l a t i o n s h i p s . The method also separates

the t e s t f o r relatedness from the t e s t for i d e n t i t y . H euristics

further reduce the task complexity. The question " i s object

01 i d e n t i c a l i n meaning to one of the objects {02}?" can be

s i m p l i f i e d through r e d u c t i o n of the s i z e of the set {02}.

H e u r i s t i c s are used to eliminate u n l i k e l y candidates from {02}.

This research also investigated whether the integration problem

could be described by an even smaller set of c o n f l i c t categories

than the 17 general cases i d e n t i f i e d i n s e c t i o n 4.1. To

s i m p l i f y the d e s c r i p t i o n of c o n f l i c t s , a graph notation was

chosen which r e p r e s e n t s e v e r y o b j e c t , whether e n t i t y ,

r e l a t i o n s h i p , or a t t r i b u t e , as a node, and every association

between o b j e c t s (e n t i t y r o l e , a t t r i b u t e association) as an

edge. Based on t h i s notation, view c o n f l i c t s take the form of

missing nodes or edges, or inconsistently l a b e l l e d nodes (name

mismatch). A mismatch between types of nodes, i . e . e n t i t y -

a t t r i b u t e v s . e n t i t y - r e l a t i o n s h i p c o n s t r u c t , can be

characterized as a graph contraction. A graph contraction i s

the removal of an edge which r e s u l t s i n the merging of the two

objects linked by the edge into one new object. I.e., an E-R

185

construct i s merged into one new object, an e n t i t y a t t r i b u t e .

S i m i l a r l y , a r e l a t i o n s h i p r e p l a c e s a r e l a t i o n s h i p - e n t i t y -

r e l a t i o n s h i p structure, when two edges are contracted i n the

l a t t e r one. Both types of contraction are depicted i n Figure

19.

Ent i ty attr ibute is E-R cons t ruc t

Relat ionship represents E - R - E cons t ruc t

Figure 19: Construct Mismatch Shown as Graph Contraction

The examples i l l u s t r a t e that the graph notation i s able to

describe the construct mismatch c o n f l i c t , i n addition to the

mi s s i n g o b j e c t c o n f l i c t and the context mismatch c o n f l i c t ,

based on only two c r i t e r i a : missing nodes and missing edges.

A m i s s i n g o b j e c t t r a n s l a t e s i n t o a missing node, context

mismatch t r a n s l a t e s i n t o missing edges (plus p o t e n t i a l l y

186

missing nodes), and construct mismatch translates into missing

edges and graph contraction. Since the notation can describe

the same c o n f l i c t phenomena as the E-R model u s i n g fewer

mechanisms, i t i s a more powerful description t o o l .

The AVIS view integration program developed as part of t h i s

r e s e a r c h employs the graph approach. In AVIS, views are

d e s c r i b e d i n the form of nodes and edges. Nodes represent

objects, and edges, r o l e s . Each object (node) i s defined by

the same set of p r o p e r t i e s : type (i . e . , a t t r i b u t e) , view,

object i d e n t i f i e r , object name, and object meaning (plus one

more property not relevant for t h i s explanation) . Each r o l e

(edge) c o n t a i n s the i d e n t i f i e r s of the two o b j e c t s i t i s

connecting. Both are explained i n more d e t a i l i n the subsequent

chapter.

Even though the graph notation i s more powerful as a description

t o o l than the E-R model, integration cases have been discussed

w i t h i n t h i s r e s e a rch using E-R concepts. The E-R model i s

widely used as a conceptual modelling language i n database

design, while the above graph notation i s not. Thus, c o n f l i c t

cases and solutions described by means of the E-R model are

more e a s i l y understood and thus presumably more useful to the

database designer than ones based on a graph notation. The

differences between the i n t e r n a l graph representation i n AVIS

and the external E-R representation require that AVIS frequently

187

t r a n s l a t e between these two representation forms. Nevertheless

the i n t e r n a l representation i n the form of graphs i s very useful

because i t allows the system to e a s i l y compare objects of

d i f f e r e n t t y p e s a l o n g t h e i r r e l e v a n t dimensions. For

instance,the question "do object OI and object 02 have i d e n t i c a l

meaning?" can be e a s i l y phrased i n the graph notation, shown i n

F i g u r e 20 i n i t s P r o l o g e q u i v a l e n t . T h i s simple example

i l l u s t r a t e s that the integration method can compare objects of

any type i n the same manner. I.e., T l may be " a t t r i b u t e " , while

T2 i s " e n t i t y " 1 .

identical_meaning(01,02) :-
obj ect(Tl,VI,01,Nl,M),
obj ect(T2,V2,02,N2,M).

Figure 20: I d e n t i c a l Meaning Query i n Prolog Graph Notation

An a d d i t i o n a l strength of the method discussed i n t h i s research

i s the use of meaningful data objects. The E-R model allows the

d e s c r i p t i o n of objects that are meaningful to database users.

The integration method further allows the representation of some

data semantics.

1 However, the example i n the figure shows an over
s i m p l i f i c a t i o n of the meaning comparison problem. AVIS does not
use Prolog's pattern matching mechanism i n t h i s simple form to
assess meaning i d e n t i t y . Meaning comparison i s described i n more
d e t a i l i n the subsequent implementation chapter.

188

Unlike other semantic integration methods, t h i s one includes

an algorithm for the i d e n t i t y and for the relatedness t e s t s ,

which e x p l i c i t l y s p e c i f i e s the steps of the procedure. For

example, the i d e n t i t y t e s t without h e u r i s t i c s contains a four-

step procedure i n which i d e n t i t y or difference of the four

r e l e v a n t o b j e c t c r i t e r i a i s assessed. Due to the form i n

which meaning i d e n t i t y and relatedness questions are stated,

namely as a 1:N comparison ("Is object 01 i d e n t i c a l to one of

{02}?"), the computational e f f o r t grows l i n e a r l y with the

number of objects. The procedure terminates when the i n i t i a l l y

d i f f e r e n t views have become i d e n t i c a l . To be i d e n t i c a l , both

views have to contain the same objects. Objects are i d e n t i c a l

i f they are i d e n t i c a l i n a l l four relevant dimensions (meaning,

context, construct, and name).

To judge the value of the method, the questions of correctness

and completeness of the r e s u l t i n g views have to be addressed.

(The working prototype only demonstrates the workability of

the method for s p e c i f i c cases.) Based on the e a r l i e r description

of the integration algorithm, i t i s known that the procedure

always terminates i f the i n i t i a l views contain a f i n i t e number

of o b j e c t s . The procedure performs the i n t e g r a t i o n task

through an adjustment of both i n i t i a l l y d i f f e r e n t views. When

the procedure terminates, f o r each object i n one view, an

i d e n t i c a l o b j e c t e x i s t s i n the other view. Hence, the

completeness question depends on whether objects can be " l o s t "

189

during integration so that the f i n a l views do not contain a l l

o b j e c t s from the i n i t i a l views. The correctness question

concerns whether objects from the i n i t i a l views may be mis­

represented i n the f i n a l view. Furthermore, i t has to address

whether the order i n which views are integrated and/or the

sequence i n which objects within a view are considered have

any impact on the outcome of the integration process.

In t h i s i n t e g r a t i o n method, objects cannot be l o s t . Every

object represented i n at lea s t one i n i t i a l view w i l l also be

represented i n the global schema. This does not imply that

each o b j e c t w i l l appear i n i t s o r i g i n a l form. The object

meaning w i l l be preserved, but the object representation i n

name, construct and context may change. A r e l a t i o n s h i p may be

relocated, a name may be changed, or an object's construct may

be changed. After a construct change, an object w i l l i n most

cases be represented through more than one new object, i . e . , a

r e l a t i o n s h i p w i l l become a r e l a t i o n s h i p - e n t i t y - r e l a t i o n s h i p

group. The only exception i s the change of a r e l a t i o n s h i p

a t t r i b u t e into an entity, where the construct change replaces

one o l d o b j e c t by one new object. Due to the d i r e c t i o n of

change i n cases of construct mismatch, an old object i s always

replaced by at lea s t one new object. Hence, objects cannot be

l o s t during the integration process.

190

Although objects cannot be l o s t , the r e s u l t i n g view may s t i l l

be i n c o r r e c t , i f objects are mis-represented or objects are

added a r b i t r a r i l y . An object i s mis-represented i f the knowledge

represented i n i t s post-integration form contradicts with the

knowledge representation i n the pre-integration form. This

includes name changes that r e s u l t i n names which do not convey

the meaning of the object, construct changes which compress

the i n f o r m a t i o n content of an object, meaning changes which

r e s u l t i n incorrect meaning descriptions, and context changes

which connect objects to objects they should not be connected

t o . The i n t e g r a t i o n method performs none of these i n v a l i d

operations, nor does i t add objects a r b i t r a r i l y .

Objects are only added i f t h i s addition i s suggested by one of

the views, that i s i f at lea s t one of the views contains an

object that i s not part of other views. Name changes occur

only when synonyms or homonyms are detected. The choice of

sui t a b l e names to overcome these c o n f l i c t s i s a task f o r the

designer who uses the method. Construct changes never r e s u l t

i n the l o s s of in f o r m a t i o n , s i n c e the construct chosen i s

always the one which i s able to convey the most information.

Meaning changes are never made by the system (database designer) .

Meaning i s s p e c i f i e d by the users of the system and can only

be changed by the users of the system. Context changes occur

f o r three reasons. F i r s t , construct changes cause context

changes, as d e p i c t e d i n Figu r e 10 i n the c o n f l i c t therapy

191

section. Second, an association of an e n t i t y to a rel a t i o n s h i p

r e s u l t s i n a context change (e x e m p l i f i e d i n F i g u r e 12).

T h i r d , r e l a t i o n s h i p r e l o c a t i o n r e s u l t s i n context change

(shown i n F i g u r e 13) . A l l of t h e s e changes make the

representation of data object i n one view compatible with that

of another view. In the f i r s t two of these cases, an object

01 w i l l only be connected to an object 02, i f at l e a s t one

view states that the two objects should be connected. I f a l l

views are correct p r i o r to integration, t h i s operation cannot

r e s u l t i n i n c o r r e c t context. Relationship r e l o c a t i o n takes

p l a c e only i f during the i n t e g r a t i o n process, the database

designer i d e n t i f i e s that the re l a t i o n s h i p i s applicable to the

superset object rather than to the subset object (Figure 13).

F i n a l l y , we must consider whether the same outcome, that i s ,

the same global structure, w i l l be achieved independent of the

sequence i n which views are i n t e g r a t e d . In a two-view

i n t e g r a t i o n problem, sequence refe r s to the order i n which

objects compared. For example, i s 01 from VI compared to a l l

o b j e c t s from V2 f i r s t , f ollowed by 07 from VI, or does 07

precede 01? In a multi-view integration problem, sequence also

addresses the order i n which views are compared. I.e., i f

three views, VI, V2, and V3 have to be integrated, w i l l VI be

integrated f i r s t with V2 and the r e s u l t of t h i s integration be

integrated with V3, or w i l l the integration begin with V2 and

V3?

192

In both the two-view and the multi-view integration problems,

the f o l l o w i n g operations are performed: objects e x i s t i n g i n

a l l views become part of the global schema, objects e x i s t i n g

i n at l e a s t one view become part of the global schema, objects

represented d i f f e r e n t l y i n d i f f e r e n t views are adjusted and

become p a r t of the g l o b a l schema. In addition, inter-view

r e l a t i o n s h i p s are added to the global schema. Objects that

e x i s t i n a l l views w i l l not be affected by the sequence of the

integration process. They w i l l appear i n the same form i n the

global schema. Objects that o r i g i n a l l y did not e x i s t i n a l l

views w i l l also be added to the global schema, independent of

the i n t e g r a t i o n sequence. Inter-view set rel a t i o n s h i p s are

s i m i l a r l y missing objects, however missing i n a l l views. They

a l s o w i l l be added, independent of sequence. In fact, they

are added a f t e r a l l tests for i d e n t i t y of objects are completed.

The c r i t i c a l element for t h i s assessment of the view integration

procedure i s the adjustment of views when c o n f l i c t s are detected.

In the two-view s i t u a t i o n , the sequence i n which objects are

compared may vary. Does t h i s change a f f e c t the outcome of the

i n t e g r a t i o n ? T h i s question t r a n s l a t e s i n t o two more basic

q u e s t i o n s , namely f i r s t , does the sequence i n which objects

are compared r e s u l t i n differences i n the diagnosis of c o n f l i c t s ,

and second, does a p o t e n t i a l l y d i f f e r e n t diagnosis r e s u l t i n a

d i f f e r e n t global schema?

193

The c o n f l i c t diagnosis procedure uses as i t s most important

c r i t e r i o n the meaning dimension. Once objects with i d e n t i c a l

meaning are found, c o n f l i c t s are detected based on differences

i n the remaining dimensions, name, construct, and context.

For each object i n each of the views, at most one object with

i d e n t i c a l meaning can e x i s t i n the other view. This i s true,

independent of the sequence i n which o b j e c t are compared.

Furthermore, with the exception of name changes f o r homonyms,

the remaining dimensions of an object are not changed before

meaning i d e n t i t y with another object has been established.

T h e refore, f o r any two o b j e c t s from d i f f e r e n t views, the

object comparison w i l l y i e l d the same r e s u l t , independent of

the sequence of comparisons, u n l e s s the database designer

u s i n g the method i s i n c o n s i s t e n t i n renaming objects when

homonyms are found.

One other p o t e n t i a l source of error e x i s t s , but i t i s also i n

the domain of the database designer. The designer may f i n d i t

d i f f i c u l t i n ce r t a i n s i t u a t i o n s to decide whether two objects

are i d e n t i c a l i n meaning. Therefore, i f both objects 01 and

02 from view VI appear to the designer as i f they could match

the meaning of object 03 from V2, then the order of comparison

may bias the designer to decide for 01 i n one s i t u a t i o n and

for 02 i n some other s i t u a t i o n . This i s a p a r t i c u l a r problem

i n cases of construct mismatch, where, for instance, an ent i t y

194

a t t r i b u t e i n one view corresponds to an e n t i t y - r e l a t i o n s h i p

construct i n the other view (see Figure 11). In t h i s example,

the database designer has to decide whether the a t t r i b u t e

S u p p l i e r c o r r e s p o n d s t o the e n t i t y S u p p l i e r or to the

r e l a t i o n s h i p Supply. But even though the designer may have

some d i s c r e t i o n i n deciding which of the objects i s the matching

one (entity or r e l a t i o n s h i p) , the c o n f l i c t w i l l be resolved i n

exactly the same way. The a t t r i b u t e w i l l be replaced by an E-

R construct. The same i s true for other forms of construct

mismatch.

In summary, as long as the designer i s c o n s i s t e n t i n his

assessment of meaning i d e n t i t y of objects, the diagnosis w i l l

always be the same, independent of sequence. I f the designer

i s i n c o n s i s t e n t i n h i s assessment of meaning i d e n t i t y , the

procedure w i l l s t i l l produce i d e n t i c a l outcomes for cases of

construct mismatch.

In the multi-view s i t u a t i o n , invariance of the outcome (global

schema) to changes i n the order of view comparisons i s the

concern. Can objects end up i n the global schema with d i f f e r e n t

names, d i f f e r e n t constructs, or d i f f e r e n t contexts, based on

the order i n which views are processed. Again, t h i s i s not

the case. The integration method prevents those v a r i a t i o n s

f o r a l l but naming d e c i s i o n s which are i n the designer's

domain. For construct changes, there i s only one d i r e c t i o n of

195

change, to avoid loss of information. For example, i f out of

n views, n-1 represent an object as a r e l a t i o n s h i p a t t r i b u t e

and only one view represents i t as an ent i t y , the object w i l l

s t i l l become an e n t i t y i n the global structure. In a l l cases,

the most information r i c h object representation w i l l be the

one chosen f o r the g l o b a l s t r u c t u r e . Context changes are

dealt with i n a s i m i l a r manner. For example, i f a r e l a t i o n s h i p

R i n view VI has as i t s context the set of e n t i t i e s {El}, i n

view V2 the set {El, E3}, and i n view V3 the context {El, E2},

the g l o b a l schema w i l l show {El, E2, E3} as R's context,

independent of the sequence i n which the views were integrated.

The same i s true for a t t r i b u t e s . E n t i t i e s and relationships

i n the global view have a t t r i b u t e sets which are the union of

the a t t r i b u t e s e t s of the corresponding o b j e c t s from the

o r i g i n a l views (except, of course, when an a t t r i b u t e i s converted

to another construct).

In conclusion, even i n a multi-view s i t u a t i o n , the method w i l l

produce the same global schema, independent of sequence, i f

the designer i s consistent i n h i s decisions on meaning i d e n t i t y .

196

5. IMPLEMENTATION - THE AVIS PROGRAM

5.1. Overview

An implementation of the view integration method i s available

i n form of the AVIS (Automatic View Integration System) program.

AVIS i s written i n Prolog.

The purpose of the program i s not to show correctness of the

c o n f l i c t r e s o lution method. Correctness of the method should

be judged based on i t s u n d e r l y i n g assumptions, the r u l e s

guiding view integration, and the conclusion drawn from them

concerning the diagnosis and therapy procedure. The program

can only serve as a testbed to show mistakes or omissions i n

d e t a i l s of the resolution procedure. Furthermore, i t can show

the f e a s i b i l i t y of an automated view integration procedure.

Appendix 3 contains the screen displays of a view integration

s e s s i o n with AVIS to i l l u s t r a t e the operation of the system

and i t s r o l e as a testbed.

5.2. Function and Structure of the AVIS Program

To f u l f i l l i t s purpose as a t e s t b e d and an i n d i c a t o r for

f e a s i b i l i t y , the program i s an implementation of the diagnosis

and therapy procedure o u t l i n e d i n e a r l i e r s e c t i o n s . The

197

program always operates on a set of two views which are to be

integrated. Such a set of two views has to be loaded into the

system at the outset of the integration session. The program

proceeds by checking c o n f l i c t hypotheses. For each hypothesis

that i s checked, one e l i g i b l e object from view 1 i s chosen and

compared to a l l e l i g i b l e o b j e c t s from view 2. Hypothesis

t e s t s are c a r r i e d out i n the sequence e s t a b l i s h e d by the

integration rules and h e u r i s t i c s . Depending on the outcome of

a t e s t , an appropriate therapy a c t i v i t y i s performed, followed

by another t e s t . A therapy can be "do nothing" i f objects do

not have to be changed, or any of the other therapy actions

discussed previously. The program terminates when both views

have become i d e n t i c a l . The program structure which achieves

t h i s function i s depicted i n Figure 21.

Following the t y p i c a l architecture of knowledge-based systems,

the program i s designed i n highly decoupled form. For instance,

the sequence i n which hypotheses are t e s t e d i s not f i x e d

(programmed) , but determined by the sequence i n which they

occur on the OBJECT COMPARISON AGENDA (box 8 i n the f i g u r e) .

T h e r efore, an "urgent" hypothesis t e s t (t y p i c a l l y performed

during a therapy operation consisting of more than one therapy

action) can pre-empt tests that would normally have occurred

next. Another form of decoupling separates the step which

recognizes that an object i s missing (box 4) , from the step

that a c t u a l l y adds the object to the view (box 5).

198

H
VO

H -
Q C
fl>

%
H
CO

O
vQ

0)
3
w r+ f-j c o rt
C

O b j e c t C o m p a r i s o n
A g e n d a i te m

Integrate

<J=Tl

O b j e c t
C o m p a r i s o n

A g e n d a

V
P i c k n e x t 2

O b j e c t C o m p a r i s o n
A g e n d a i t e m

Test Hypothesis

A d d i t e m s to 4
O b j e c t A s s e r t i o n

A g e n d a

S2

V V

A s s e r t o b j e c t s

A d d i t e m s to
O b j e c t C o m p a r i s o n

A g e n d a

O b j e c t
A s s e r t i o n

A g e n d a

Hence, i f the program r e a l i z e s that an object i s missing, i t

reports t h i s f i n d i n g i n the OBJECT ASSERTION AGENDA (box 7) .

Then, i n an independent step, the program w i l l t r y to assert

(add) the object. I f t h i s i s not yet possible, due to the

f a c t t h a t some other pre-conditions are not f u l f i l l e d , the

m i s s i n g o b j e c t w i l l simply remain i n the OBJECT ASSERTION

AGENDA u n t i l those preconditions are s a t i s f i e d .

Overall, the program operates as follows. I t repeatedly c a l l s

t he p r e d i c a t e INTEGRATE (box 1), which i n i t i a t e s o b j e c t

comparisons. Object comparisons are c a r r i e d out as s p e c i f i e d

by the e n t r i e s i n the OBJECT COMPARISON AGENDA. Every such

entry w i l l consist of the (generic) hypothesis to be tested,

f o r i n s t a n c e SIMILAR ENTITY (same meaning) , and the objects

i n v o l v e d i n the t e s t , i . e . , SUPPLIER for view 1 and DEALER,

BUYER, INVENTORY for view 2. The generic hypothesis together

with the o b j e c t s to be t e s t e d form a s p e c i f i c hypothesis.

This hypothesis i s then tested. The program w i l l attempt to

f i n d an answer t o the hypothesis f i r s t on i t s own, before

asking the user.

To f i n d an answer without user i n t e r a c t i o n , the program w i l l

f i r s t check whether r e s u l t s of p r e v i o u s t e s t s can help i n

deciding the question. For example, i f a l l e n t i t i e s i n view 2

a l r e a d y had corresponding e n t i t i e s i n view 1, the program

could answer the question with "no", because each object can

200

have only one matching object i n the other view. I f previous

t e s t s cannot help i n d e c i d i n g , s t r u c t u r a l information may

help. For example, a necessary condition for two relationships

to be rel a t e d i s to have at lea s t two common e n t i t i e s . I f no

two common e n t i t i e s e x i s t , the program can assert that the

r e l a t i o n s h i p s i n que s t i o n are not r e l a t e d . I f s t r u c t u r a l

knowledge cannot help, the program may be able to use any

semantic knowledge i t possesses concerning the application

domain. Currently t h i s option i s not implemented i n a form

where t h e program i s able to make such i n f e r e n c e s (the

i n f o r m a t i o n i s only p a s s i v e l y a v a i l a b l e) . I f the program

cannot decide by i t s e l f whether a hypothesis i s true or f a l s e ,

i t w i l l ask the user.

Following the hypothesis t e s t , the program w i l l place an entry

into the OBJECT ASSERTION AGENDA, i f objects have to be added

as a consequence of the t e s t . In a next step, objects are

added t o a view i f a l l preconditions for t h e i r creation are

f u l f i l l e d (box 5). F i n a l l y , and also based on the outcome of

the hypothesis t e s t , new s p e c i f i c hypotheses may be placed on

the OBJECT COMPARISON AGENDA (boxes 6 and 8).

At points during the integration procedure, the OBJECT COMPARISON

AGENDA may be empty, even though the integration has not been

completed. Such a point occurs f o r instance at the outset of

the i n t e g r a t i o n process. To "boot-strap" i t s e l f i n these

201

s i t u a t i o n s , the program w i l l activate the SEED predicate (box

9), which places a f i r s t entry on the agenda. The integration

process ultimately terminates, i f the agenda i s empty and no

more seeds can be generated.

202

5.3. Knowledge Representation

5.3.1. Representation of views

To allow the operation on a r b i t r a r y views, the program stores

views separate from the procedural knowledge. A set of two small

views i s shown i n Figure 22.

objec t (" e n t i t y " , 1 , 3 , " d e a l e r " , [" s e l l s " , " s u p p l i e s "] , [])
obj ect (" e n t i t y " ,1,4, "branch", ["alternate_location", " s u b s i d i ­
ary"], [])
object("entity",2,1003,"dealer",["sells","supplies"],[])
object("entity",2,1004,"customer",["buys","pays","orders"], [])
obj ect ("entity" ,2,1005, "contract", ["agreement"];'[])
object("relationship",1,502,"supply",["delivery","goods_trans-
fer»],[])
obj e c t ("relationship",2,1502,"dealer_contract",["dealer_cont-
ract»],[])
obj ect ("relationship", 2,1503, "customer_contract", ["customer_cont-
ract»],[])
obj e c t (" a t t r 1 ",1,600,"contract",["identifier"],[])
role(502,3)
role(502,4)
role(1502,1003)
role(1502,1005)
role(1503,1004)
role(1503,1005)
role(600,3)

Figure 22: Representation of Views i n AVIS

Each object i s stored as an atom of the form object(Type,View#,

Object#,Name,Meaninglist,Replacelist). Type i s one of ent i t y ,

r e l a t i o n s h i p , or a t t r (i b u t e) . View numbers are a r b i t r a r y , but

1 " a t t r " i s used instead of a t t r i b u t e because a t t r i b u t e
i s a r e s t r i c t e d term i n the programming language.

203

o b j e c t s from the same view c a r r y the same view number and

o b j e c t s from d i f f e r e n t views carry d i f f e r e n t view numbers.

Object numbers are unique i d e n t i f i e r s f o r objects within the

view they belong to. The object name i s the user defined name

f o r the object. Meaninglist i s a l i s t of s t r i n g s that give

some i n d i c a t i o n o f the nature of the r e a l world o b j e c t

represented by the database object. R e p l a c e l i s t i s a l i s t of

o b j e c t numbers f o r o b j e c t s t h a t have been replaced by the

o b j e c t at hand. For example, i f a r e l a t i o n s h i p a t t r i b u t e

becomes an e n t i t y , the new e n t i t y r e t r a i n s a reference to the

former r e l a t i o n s h i p a t t r i b u t e through the number i n the

R e p l a c e l i s t .

One way to think of the meaning l i s t i s to view i t as a l i s t

of thesaurus terms for the object name. Each of the terms i n

the l i s t may d e s c r i b e some f a c e t s of the objects meaning,

through s l i g h t l y d i f f e r e n t l a b e l l i n g of the o b j e c t . The

meaning l i s t can also be used to i d e n t i f y the categories an

object belongs to i n a generalization hierarchy. This l i s t of

c a t e g o r i e s does not have to be a central pool of base sets

from which a l l o b j e c t sets have to be d e f i n e d , i t may be

simply a s e t of category terms which capture the language

terms used i n the organization under study. In eith e r form,

the meaning l i s t helps to s i m p l i f y the i d e n t i f i c a t i o n of

d i s s i m i l a r (or even of ide n t i c a l) objects.

204

The context of an object i s stored by means of role(Object!,

Object#) atoms. The f i r s t object number indicates the object,

the second one the object i t i s associated with. By d e f i n i t i o n ,

only a t t r i b u t e s and relationships have a non-empty context.

Thus, roles e x i s t only for these two object types.

205

5.3.2. Representation of View Integration Knowledge

The knowledge contained i n the program c o n s i s t s mostly of

hypotheses, rules for the s e l e c t i o n of objects f o r subsequent

t e s t s , r u l e s f o r the e l i m i n a t i o n of i r r e l e v a n t t e s t s or

i r r e l e v a n t t e s t objects, and rules for the therapy of c o n f l i c t

cases. Hypothesis atoms serve mainly to control the sequence

of the integration procedure. Selected hypotheses are depicted

i n Figure 23.

h y p o t h e s i s (3 , ["n",«n"] , [4,1] , [12,701,24,5]," S i m i l a r
E n t i t y " , "saiae_meaning", " d i f f erent_meaning")

hypothesis(4,["o","o"],[],[],"Synonym","synonym","same")

hypothesis(12,["o","o"],[],[],"Homonyms","homonyms","nothomo-
nyms")

hypothesis(701,["n","n"],[8],[24] , " E n t i t y i s R e l a t i o n s h i p
A t t r i b u t e " , "relationship_attribute", "not_relationship_attribute")

Figure 23: AVIS Hypotheses

Hypothesis 3 formulates the t e s t for "Similar E n t i t y " . This t e s t

investigates whether for an e n t i t y i n view 1 there e x i s t s an

e n t i t y i n view 2 with the same meaning but possibly with a

d i f f e r e n t name. The l i s t s of integers which are part of the

hypothesis atom (i . e . , [4,1]) indicate subsequent a c t i v i t i e s

depending on the outcome of the t e s t . For instance, i f a s i m i l a r

e n t i t y i s found, the next hypothesis to be tested i s hypothesis

4, which t e s t s whether both e n t i t i e s have same names.

Thereafter, hypothesis 1 would follow. I f the t e s t

206

r e s u l t were negative, a number of other hypotheses would be

invoked, i . e . , 12, 701, 24, and 5. Each hypothesis shows also

which knowledge w i l l be added to the knowledge base as a

consequence of the t e s t outcome. For instance, i f hypothesis

3 becomes t r u e , the i n v o l v e d o b j e c t s w i l l be memorized as

having same meaning. I f the t e s t outcome i s negative, they

w i l l be stored as having d i f f e r e n t meaning.

Rules t h a t s e l e c t o b j e c t s f o r subsequent t e s t s are "make

agenda" ru l e s . One example i s shown i n Figure 24.

m_a(3,_,[01],[02],H):-
H = 1,!,
f i n d _ r (0 1 , R l l) ,
find_r(02,R12),
filter(H,R12,R12n),
m_a(0,b,Rll,R12n,H),!.

Figure 24: AVIS "make agenda" Rule

The "make agenda" r u l e shown i n the f i g u r e prepares a new

hypothesis t e s t , a f t e r the t e s t for s i m i l a r e n t i t y succeeded.

Once two i d e n t i c a l e n t i t i e s have been found, AVIS searches

l o c a l l y , i n the v i c i n i t y of these e n t i t i e s , to f i n d i d e n t i c a l

r e l a t i o n s h i p s . The rule finds a l l r e l a t i o n s h i p s e n t i t y 01 i s

associated with, as well as a l l r e l a t i o n s h i p s 02 i s associated

w i t h . I t then f i l t e r s out r e l a t i o n s h i p s t h a t have been

p r e v i o u s l y investigated, and formulates a t e s t i n which a l l

r e l a t i o n s h i p s R l l w i l l be compared to a l l r e l a t i o n s h i p s R12n,

207

t o f i n d m a t c h i n g p a i r s . I f R l l c o n t a i n s more than one

r e l a t i o n s h i p , the agenda item w i l l l a t e r be decomposed into as

many items as there are elements i n l i s t R l l . This i s necessary,

s i n c e a l l t e s t s are c a r r i e d out i n a l : n mode, where one

object of view 1 i s compared to n objects of view 2.

Rules to f i l t e r out i r r e l e v a n t t e s t s or i r r e l e v a n t t e s t objects

are exemplified i n Figure 25.

/* the a t t r i b u t e 01 i s a key */
test_hypo([01],012,H,_,012):-

H = 14,
is_key([01],[01]),
make_agenda(H,t,[01],012,HN),
do_ao(H,Ol,0,'n'),!.

Figure 25: F i l t e r i n g Rule i n AVIS

The r u l e depicted i n Figure 25 refers to the t e s t of hypothesis

14. Hypothesis 14 s t a t e s the p o s s i b i l i t y t h a t an e n t i t y

a t t r i b u t e may correspond to an e n t i t y - r e l a t i o n s h i p construct.

The test_hypo ru l e shown here states that i f the e n t i t y a t t r i b u t e

01 i s a key (i d e n t i f i e r) a t t r i b u t e of the e n t i t y i t belongs

t o , then i t cannot correspond to the e n t i t y - r e l a t i o n s h i p

c o n s t r u c t 012. E n t i t y a t t r i b u t e s can only correspond to

e n t i t y - r e l a t i o n s h i p c o n s t r u c t s i f they are interconnection

a t t r i b u t e s , i . e . the Supplier a t t r i b u t e of a PART e n t i t y . I f

the a t t r i b u t e i s a singular i d e n t i f i e r (not part of a compound

key) , i t r e f e r s to the object i t s e l f , i . e . Part# refe r s to

PART i t s e l f . Such objects can be excluded from the t e s t . By

208

using f i l t e r i n g rules, the AVIS program can reduce information

requests from the user.

Rules for the therapy of c o n f l i c t cases t y p i c a l l y become rules

to create new objects. Figure 2 6 i l l u s t r a t e s such an "assert

object" r u l e .

asso(H,01,02,'y',New):-
H = 14,
object(relationship,_,02,_,_,_),
find_e(02,El2),
object(attr,VI,01,_,_,_),
r o l e (0 1 , E l) ,
fct(same,El,E2),
member(E2,El2,Elr),
single(same_meaning,Elr,Els),
dup(H,Els,Vl,Elsl),
dup(H,[02],Vl,01n),
append(Elsl,01n,New),
retract(object(attr,VI,01,_,_,_)),
r e t r a c t (r o l e (0 1 , E l)) , I .

Figure 26: AVIS Object Assertion Rule

The f i g u r e shows one of the rules dealing with the s i t u a t i o n

where an e n t i t y a t t r i b u t e i n one view corresponds to an e n t i t y -

r e l a t i o n s h i p construct i n the other view. This r u l e replaces

the a t t r i b u t e 01 with a r e l a t i o n s h i p Oln, by simply duplicating

the r e l a t i o n s h i p 02 from view 2 and subsequently eliminating

the a t t r i b u t e from view 1. Furthermore, from a l l e n t i t i e s

(E12) i n view 2 that are associated by the r e l a t i o n s h i p 02,

those that have no corresponding objects i n view 1 are i d e n t i f i e d

(Els) and duplicated i n view 1.

209

5.4. The Impact of Domain Knowledge

One of the biggest problems for knowledge based systems i s the

requirement to c o n t a i n knowledge about a wide v a r i e t y of

problem domains. "Deep" knowledge i s much easier implemented

than "wide" knowledge. This i s s i m i l a r l y true f o r the view

integration program which already has to contain deep knowledge

on diagnosis and therapy. This weakness l i m i t s the necessary

a b i l i t y to assess i d e n t i t y of o b j e c t meanings. How can . a

program judge that two objects are i d e n t i c a l i n meaning i f i t

contains no domain knowledge?

I f the "true" meaning of an object cannot be assessed, then at

l e a s t a number of indicators e x i s t to help i n the assessment

of true meaning (see Figure 18, previous chapter). Obviously,

each o b j e c t could carry with i t a meaning representation, a

l i s t of symbols describing the meaning of the objects. Meaning

comparison would then involve the comparison of such l i s t s .

Problems c o u l d a r i s e from homonyms and synonyms i n these

l i s t s . A second indicator could be object context. I f two

objects are s i m i l a r t h e i r immediate neighbors are l i k e l y to be

s i m i l a r too. Thus, the f i n d i n g of s i m i l a r neighbors would

provide some evidence for the assumption that two objects are

s i m i l a r . Other forms of context comparison involve the analysis

of r e l a t i o n s h i p c a r d i n a l i t i e s and, i f defined, r o l e s of e n t i t i e s

210

i n a r e l a t i o n s h i p . Similar roles and s i m i l a r c a r d i n a l i t i e s are

evidence f o r object s i m i l a r i t y . Third, s i m i l a r a t t r i b u t e s (or

at l e a s t s i m i l a r a t t r i b u t e names or s i m i l a r key attributes)

can be another i n d i c a t o r for s i m i l a r i t y . Fourth, i f value

sets have been defined, these can be compared. F i n a l l y , the

name of an o b j e c t i t s e l f can be an i n d i c a t o r f o r meaning

s i m i l a r i t y .

Most of the above mentioned indicators are plagued by the problem

of ambiguous r e p r e s e n t a t i o n . I f names of objects, due to

homonymy and synonymy problems, are not a r e l i a b l e i n d i c a t o r for

s i m i l a r i t y , the same w i l l be true for other indicators such as

at t r i b u t e names or meaning l i s t s . The use of context may be

viewed merely as a recursive restatement of the problem. For

example, to know whether e n t i t i e s E l and E2 are i d e n t i c a l , one

has to know whether t h e i r context Rl and R2 i s i d e n t i c a l 1 . To

f i n d out whether Rl and R2 are i d e n t i c a l one has to f i n d out

whether the context of R l and R2 i s i d e n t i c a l , and so on.

Nevertheless, comparisons are possible. For instance, p a r t i a l

overlap of meaning representations can be indicated, or p a r t i a l

context s i m i l a r i t y , can be indicated. The AVIS program operates

i n t h i s manner, however i n passive form. The program never

decides whether two objects are i d e n t i c a l . Yet the user can ask

the program f o r the values of s i m i l a r i t y i n d i c a t o r s . So

1 Note that the AVIS program recognizes context also for
e n t i t i e s i n order to make use of l o c a l search f o r i d e n t i c a l
objects.

f a r , only the i n d i c a t o r s meaning representation (comparing

meaning l i s t s) , context (comparing immediate neighbors) and

name are implemented. Figure 27 shows the systems response to

a user inquiry on the value of the meaning in d i c a t o r s .

T e s t i n g f o r h y p o t h e s i s : SIMILAR ENTITY,
I n v o l v i n g the e n t i t y DEALER (3) and one of the f o l l o w i n g o b j e c t s ;

Meaning Match
Match between e n t i t y DEALER (3) [" s e l l s " , " s u p p l l e s "]
and o b j e c t s below:
ID NAME Match o f : NAME MEANING CONTEXT
1003 d e a l e r y y unknown
1004 customer n n unknown
1005 c o n t r a c t n n unknown

— — R e s p o n s e -
Press <spacebar> to continue

Figure 27: AVIS Meaning Identity Indicators

212

A more advanced form of meaning indicators, i s based on the

meaning r e p r e s e n t a t i o n (meaning c a t e g o r i z a t i o n) f e a t u r e .

While c u r r e n t l y meaning l i s t s f o r o b j e c t s have no form

r e s t r i c t i o n s , t h e r e f o r e a l l o w i n g the use of any symbol to

define the meaning of an object; future meaning l i s t s w i l l be

more r e s t r i c t e d i n the choice of terms. Terms w i l l have to be

elements of a categorization hierarchy and w i l l be therefore

unambiguous.

213

6. SUMMARY AND EXTENSIONS

The main contribution of t h i s research i s the development of a

complete view integration procedure. The research went beyond

the problem of inter-view constraint representation (relatedness

of objects) . I t systematically categorized inter-view c o n f l i c t s

i n t o c o n f l i c t types, based on an analysis of the sources of

c o n f l i c t s . The source of a l l c o n f l i c t s i s mismatches between

the meaning dimension on one hand and a l l other r e l e v a n t

object dimensions, name, construct, and context, on the other

hand. Whenever two objects are i d e n t i c a l i n meaning, they

also have to be i d e n t i c a l i n t h e i r other dimensions. I f not,

a c o n f l i c t a r i s e s . S i m i l a r l y , i f two objects have d i f f e r e n t

meanings they also have to d i f f e r i n the name dimension to be

c o n f l i c t - f r e e . The method presented i n t h i s research can

diagnose a l l p o s s i b l e combinations of mismatches and has

therapy rules for a l l of them.

In addition to rules for recognition and resolution of c o n f l i c t s ,

an algorithmic view integration procedure was described. I t

s p e c i f i e s the sequence of tests f o r object i d e n t i t y and object

relatedness. At the termination of t h i s procedure, two i n i t i a l l y

d i f f e r e n t views become i d e n t i c a l and represent a l l relevant

inter-view constraints. Thus, eith e r of the views has become

a g l o b a l schema c o n t a i n i n g the two o r i g i n a l views. The

i n t e g r a t i o n procedure developed here begins with a t e s t for

object i d e n t i t y . At the end of t h i s step, both views contain

214

the same objects. The subsequent t e s t for relatedness determines

a l l inter-view constraints for a l l o r i g i n a l l y unique objects

(e x i s t i n g i n only one view) . The t e s t for relatedness may

r e s u l t i n the addition of e n t i t i e s to represent superset and

subset objects and i n the addition of Isa re l a t i o n s h i p s .

Furthermore, the research provided h e u r i s t i c s to simp l i f y the

integration problem for the user. H e u r i s t i c s were developed

to ease the user's task of i d e n t i f y i n g o b j e c t p a i r s with

i d e n t i c a l meaning. Assumptions such as " (i n absence of

i n f o r m a t i o n to the contrary,) two o b j e c t s with i d e n t i c a l

meaning w i l l have i d e n t i c a l constructs", reduce the number of

objects among which the user has to look for a matching object.

In case of information to the contrary, i . e . , i f no p a i r of

o b j e c t s with same meaning were found, the h e u r i s t i c would

f a i l and would require a more painstaking search f o r a match.

The r e s e a r c h exemplified how the introduction of h e u r i s t i c s

a l t e r s the integration procedure.

The method was designed for use as a view integration t o o l ,

through implementation as a knowledge based system (i . e . , the

AVIS system). Implementation i n the form of a computer program

assures adherence to the sequence of c o n f l i c t analysis and

r e s o l u t i o n s t e p s . I t a l s o eases as much as p o s s i b l e the

designer's task. Nevertheless, the c o n f l i c t recognition and

reso l u t i o n rules which form the core of the research are v a l i d

215

independent of any implementation. The rules have been developed

based on rules of modelling, based on the E-R model and based

on database design p r i n c i p l e s , rather than through t r a c i n g of

database design expert behavior.

Future extensions to the research w i l l focus on at l e a s t two

areas. F i r s t , more h e u r i s t i c s w i l l be developed. This w i l l

not only s i m p l i f y the user's task further, i t w i l l also shed

more l i g h t on the question of how we can assess when two

objects are i d e n t i c a l i n meaning. The assessment of meaning

i d e n t i t y i s the most d i f f i c u l t part of the integration process.

C u r r e n t l y , the i n t e g r a t i o n method does not decide on the

i d e n t i t y of two objects without user consultation. I t would

be d e s i r a b l e to have the method decide, at l e a s t i n some

cases, whether two objects have the same meaning. One possible

a p p r o a c h t o extend the method i n t h i s d i r e c t i o n i s the

development of c a t e g o r i z a t i o n h i e r a r c h i e s f o r p a r t i c u l a r

a p p l i c a t i o n a r e a s . In t h i s r e s e a r c h , a v e r y c o a r s e

c a t e g o r i z a t i o n h i e r a r c h y has been introduced, one which

f a c i l i t a t e s deciding whether two objects have d i f f e r e n t meanings.

More elaborate, as well as more domain s p e c i f i c hierarchies

would allow a sharper d i s t i n c t i o n between concepts and thus

allow for better judgment on i d e n t i t y or difference i n meaning.

T h i s measure would r e q u i r e t h a t users be very precise and

e x p l i c i t i n t h e i r choice of names for e n t i t i e s , r e lationships,

and a t t r i b u t e s i n the pre-integration stage. Hence, use of a

216

categorization hierarchy may be one good source of evidence,

but may not be s u f f i c i e n t . Ultimately a procedure w i l l have

to use more sources of evidence and w i l l have to be tolerant

of user s p e c i f i c a t i o n errors, i n order to make judgments on

meaning i d e n t i t y that are as good as human judgments.

A second area of extension to focus on i s the detection of errors

i n user views. The i n t e g r a t i o n method i n i t s current form

assumes that views are complete (a l l relevant objects included),

consistent (no c o n f l i c t i n g knowledge), and minimal (each object

only represented once) 1. I f views are incorrect, inconsistent

or not minimal, the global schema w i l l be incorrect, inconsistent

or not minimal. For example, i f one view stated (incorrectly)

that " a l l EMPLOYEES are FULLTIME_EMPLOYEEs", while another view

stated (correctly) that "every FULLTIME_EMPLOYEE i s an EMPLOYEE",

the method would represent both constraints i n the global schema

(inconsistency) , not recognizing that the only l o g i c a l l y correct

i n t e r p r e t a t i o n of these two statements would require EMPLOYEE

and FULLTIME_EMPLOYEE to be i d e n t i c a l . Mistakes l i k e t h i s one

could be detected and corrected during the integration process.

To permit recognition

1 The constraints on input views may seem rather stringent.
However, we can expect views to be i n consistent and minimal
form, i f they have been created with a view creation system such
as Storey's (1988). Completeness has to be assumed, unless
evidence to the contrary e x i s t s .

A l l p reviously discussed integration approaches make s i m i l a r
demands on the inputs to t h e i r integration methods.

217

of such errors, a set of error scenarios and correction rules

would have to be developed.

Another possible extension that goes s u b s t a n t i a l l y beyond the

scope of t h i s research i s the t r a n s l a t i o n of the findings for

database i n t e g r a t i o n to knowledge base integration. While

databases c o n t a i n f a c t s , knowledge bases contain facts and

r u l e s and are t h e r e f o r e much more d i f f i c u l t to integrate.

Nevertheless, with the increase i n the development of knowledge

based systems and corresponding e f f o r t s to improve the knowledge

a c q u i s i t i o n e f f o r t such a project may become a f r u i t f u l endeavour

for the future.

218

7. REFERENCES

Al-Fedaghi, S. and P. Scheuermann. Mapping Considerations i n
the Design of Schemas for the Relational Model. IEEE Trans.
Software Engineering, SE-7, No. 1, 1981.

Armstrong, W.W. Dependency Structures of Database Relation­
s h i p s . Proc. 1974 IFIP Congress, Amsterdam: North Holland,
pp. 580-583.

A t z i n i , P., C. B a t i n i , M. L e n z e r i n i , and F. V i l l a n e l l i .
INCOD: System for Conceptual Design of Data and Transactions
i n the Entity-Relationship Model. Proceedings of the Second
Int'l Conference on the Entity-Relationship Approach, Washington,
D.C., October 1981, pp. 379-414.

Bachman, Charles W. and Manilal Daya. The Role Concept i n
Data Models. VLDB 77, pp. 464-476.

B a r r A. and E. Feigenbaum. The Handbook of Artifical
Intelligence. London: Pitman, 1981.

Ba t i n i , C , M. Lenzerini, S.B. Navathe. A Comparative Analysis
of Methodologies for Database Schema Integration. ACM Computing
Surveys, Vol. 18, No. 4, 1986, pp. 323-364.

B a t i n i , C. , V. De A n t o n e l l i s , A. Di Leva. Database Design
A c t i v i t i e s within the DATAID Project. Quarterly Bulletin of
the IEEE Computer Society Technical Committee on Database
Engineering, Vol. 7, No. 4, 1984, pp. 16-21. (1984a)

B a t i n i , C., B. Demo, A. Di Leva. A Methodology f o r Conceptual
Design of O f f i c e Databases. Information Systems, Vol. 9, No.
4, 1984. (1984b)

B a t i n i , C , M. Talamo, and R. Tamassia. Computer Aided Layout
of E n t i t y R e l a t i o n s h i p Diagrams. Journal of Software and
Systems, 1984. (1984c)

B a t i n i , C. , M. L e n z e r i n i . A Methodology f o r Data Schema
Integration i n the Ent i t y Relationship Model. IEEE Transactions
on Software Engineering, Vol. 10, No. 6, 1984, pp. 650-663.

B a t i n i , C , M. Lenzerini, M. Moscarini. Views Integration. In:
Methodology and Tools for Data Base Design by S. Ceri (ed.).
Amsterdam: North-Holland, 1983.

Ba t i n i , C. and M. Lenzerini. A Conceptual Foundation for View
Integration. Proceedings of IFIP Working Conference, Budapest,
Hungary, May 1983.

219

B a t i n i . C. , M. L e n z e r i n i , and G. Santucci. Computer-Aided
Methodology for Conceptual Database Design. Information Systems,
Volume 7, No. 3, 1982, pp. 265-280.

Beeri, C. and P.A. Bernstein. Computational Problems Related
to the Design of Third Normal Form Schemas. ACM TODS, Vol. 4,
No. 1, 1979, pp. 30-59.

B e r n s t e i n , P. Synthesizing Third Normal Form Relations from
Functional Dependencies. ACM Transactions on Database Systems,
Volume 1, No. 4, December 1976, pp. 277-298.

Bernstein, P h i l i p A., J.R. Swenson, and D.C. T s i c h r i t z i s . A
U n i f i e d Approach t o F u n c t i o n a l Dependencies and Relations.
Proc. ACM 1975 SIGMOD Conf. , San Jose, C a l i f o r n i a , pp. 237-
245.

Biskup, Joachim and Bernhard Convent. A Formal View Integration
Method. Int'l ACM SIGMOD Conf. 1986, pp. 398-407.

Biskup, Joachim and Bernhard Convent. A Formal View Integration
Method. Forschungsbericht 208, U n i v e r s i t a t Dortmund, 1985.

Brodie, Michael. On the Development of Data Models. In On
Conceptual Modelling by Michael Brodie, John Mylopoulos,
Joachim Schmidt (eds.). New York: Springer, 1984.

Brown, Robert. Logical Database Design Techniques. Mountain
View, CA: The Database Design Group, 1982.

Casanova, Marco. Theory of Data Dependencies over Relational
E x p r e s s i o n s . Proc. ACM SIGACT/SIGMOD Symp. on DB Systems,
1982, pp. 189-198.

Casanova, Marco and Ronald Fagin. Inclusion Dependencies and
t h e i r I n t e r a c t i o n with F u n c t i o n a l Dependencies. Proc. ACM
SIGACT/SIGMOD Symp. on DB Systems, 1982, pp. 171-176.

Casanova, M. and V. V i d a l . A Sound Approach to View Integration.
Proceedings of the ACM Conference on Principles of Database
Systems, March 1983, pp. 36-47.

C e r i , S. and G. G o t t l o b . N o r m a l i z a t i o n of R e l a t i o n s and
Prolog. Communications of the ACM, Vol. 29, No. 1, 1986, pp.
524-544.

Chen, Peter. The Entity-Relationship Model: Towards a Unified
View of Data. ACM TODS, Volume 1, No. 1, 1976, pp. 9-36.

C u r t i c e , Robert M. and Paul E. Jones, J r . Logical Database
Design. New York: an Nostrand Reinhold Co., 1982.

220

Date, Chris. An Introduction to Database Systems. Reading:
Addison-Wesley, 1981.

DeMarco, Tom. Structured Analysis and Systems S p e c i f i c a t i o n .
Englewood C l i f f s : Prentice-Hall, 1979.

Dyba, E. P r i n c i p l e s of Data Element I d e n t i f i c a t i o n . AuerJbach
Data Base Management Services, P o r t f o l i o No. 23-01-03, 1977.

Ein-Dor, P h i l l i p . Commonsense Business Knowledge Representation
A Research Proposal. Working Paper, T e l - A v i v University,
February, 1987.

E l m a s r i , R. , J . Larson and S. Navathe. Schema Integration
Algorithms for Federated Databases and Logical Database Design.
Technical Report, Honeywell Corporate Research Center, 1987.

Elmasri, Ramez and Sham Navathe. Object Integration i n Logical
Database Design. IEEE International Conference on Data
Engineering, Los Angeles, 1984, pp.42 6-433.

E l m a s r i , Ramez, A. Hevner, and J . Weeldreyer. The Category
Concept; An Extension to the Entity-Relationship Model. Data
and Knowledge Engineering, Volume 1, No. 1, June 1985, pp. 75-
116.

Elmasri, Ramez, James A. Larson, Sham Navathe, and T. Sashidar.
To o l s f o r View Integration. Quarterly Bulletin of the IEEE
Computer Society Technical Committee on Database Engineering,
Vol. 7, No. 4. 1984.

Elmasri, Ramez and G. Wiederhold. Properties of Relationships
and t h e i r Representations. Proceedings of the National Computer
Conference, AFIPS, Volume 49, 1980, pp. 319-326.

Fagin, R. The Decomposition versus the Synthetic Approach to
R e l a t i o n a l Database Design. Proceedings of the 3rd VLDB,
1977, pp. 441-446.

Goldstein, Robert C. and Veda Storey. Unravelling Is-A Networks
i n Database Design. Working Paper, U n i v e r s i t y of B r i t i s h
Columbia, November, 1988.

Hayes, P a t r i c k . The Naive Physics Manifesto. In Expert
Systems in the Micro Electronic Age by Donald Michie (ed.).
Edinburgh: Edinburgh University Press, 1979, pp. 242-270.

Hayes-Roth, Frederick, Donald Waterman, Douglas Lenat. Building
Expert Systems. Reading: Addison-Wesley, 1983.

Housel, Barron C , Vance E. Waddle, and S. Bing Yao. The

221

Functional Model for Logical Database Design. Proceedings of
the 5th VLDB, 1979, pp. 194-203.

Hubbard, G. and N. Raver. Automating Logical F i l e Design.
Proceedings 1st VLDB, 1975, pp.227-253.

Leibniz, G o t t f r i e d Wilhelm. Philosophical Letters and Papers,
V o l . 1 (e n g l i s h t r a n s l a t i o n) . Chicago: The University of
Chicago Press, 1956.

Mannino, M. and W. Effelsberg. Matching Techniques i n Global
Schema Design. Proceedings IEEE COMPDEC, Los Angeles, 1984,
pp. 418-425.

Martin, James. Managing the Database Environment. Englewood
C l i f f s : Prentice H a l l , 1983.

McFadden, Fred and J e f f r e y H o f f e r . Data Base Management.
Menlo Park: Benjamin Cummings, 1988.

Minsky, Marvin. A Framework for Representing Knowledge. In
The Psychology of Computer Vision by P. Winston (Ed.). New
York: McGraw-Hill, 1975.

Mylopoulos, J . and H. Levesque. An Overview of Knowledge
Representation. In On Conceptual Modelling by Brodie, Mylopoulos
and Schmidt (Eds.). New York: Springer, 1984, pp. 3-17.

Navathe, Shamkant, Ramez Elmasri, James Larson. Integrating
User Views i n Database Design. IEEE Computer, 1986, pp. 50-62.

Navathe S, S. Gadgil. A Methodology for View Integration i n
Logical Database Design, i n Proc. ACM SIGMOD, Austin, 1978.

Navathe, Shamkant, and Mario Schkolnick. View Representation
i n L o g i c a l Database Design. Proceedings Int'l ACM SIGMOD
Conference, 1978, pp. 144-156.

New Orleans Database Design Workshop Report (Summary), VLDB,
Rio(1979).

Nilsson, N i l s . Principles of Artificial Intelligence. Palo
Al t o : Tioga Press, 1980.

Raver, N. and G.U. Hubbard. Automated Logical Database Design
Methodology and Techniques. IBM Systems Journal, Vol. 16, No.
3, 1977.

Robinson, J . A Machine-oriented Logic Based on the Resolution
P r i n c i p l e . JACM, Volume 12, No. 1, 1965, pp. 23-41.

222

Russell, Bertrand. A History of Western Philosophy. London:
George A l l e n & Unwin, 1946.

Schank, Roger and Charles Rieger. Inference and the Computer
Understanding of Natural Language. Artificial Intelligence,
Volume 5, No. 4, 1974, pp. 373-412.

Sheppard, D. P r i n c i p l e s of Data Structure Design. AuerJbach
Data Base Management Series, P o r t f o l i o No. 23-01-04, 1977.

Shipman,D. The Functional Data Model and Data Language DAPLEX.
ACM TODS, Vol. 6, No. 1, March 1980, pp. 140-173.

Simon, Herbert and A. Ando. Aggregation of V a r i a b l e s i n
Dynamic Systems. In Essays on the Structure of Social Science
Models by Ando, F i s h e r , and Simon. Cambridge: MIT Press,
1963.

Storey, Veda. View Creation: An Expert System for Database
Design. Washington: ICIT Press, 1988.

Teory, T . J . and J.P. Fry. Design of Database Structures.
Englewood C l i f f s : Prentice H a l l , 1982.

Ullman, J e f f r e y . Principles of Database Systems. Stanford:
Computer Science Press, 1980.

Vessey, I r i s and Ron Weber. Structure Tools and Conditional
Logic: An Empirical Investigation. Communications of the ACM,
Vol. 29, No. 1, January 1986, pp. 48-57.

Vetter, M. Database Design by Implied Data Synthesis. VLDB
77, pp. 428-440.

Waterman, Donald A. A Guide to Expert Systems. Reading:
Addison-Wesley, 1986.

Weber, Ron. Data Models Research i n Accounting: An Evaluation
of Wholesale D i s t r i b u t i o n Software. The Accounting Review,
Vol. 61, No. 3, July 1986, pp. 498-518.

Yao, S. Bing, Vance E. Waddle, Barron C. Housel. View Modeling
and I n t e g r a t i o n U s i n g t h e F u n c t i o n a l Data Model, IEEE
Transactions on Software Engineering, Volume SE-8, November
1982, pp. 544-553.

Yao, S. Bing, Vance E. Waddle, Barron C. Housel. An Interactive
System for Database Design and Integration. In Principles of
Database Design, Vol. 1, S. Bing Yao (ed.), Englewood C l i f f s ,
N.J.: Prentice H a l l , 1985.

223

APPENDIX

Appendix 1: C o n f l i c t Cases

1. IDENTICAL OBJECTS
Nl = N2; T l = T2; Ml = M2; CI = C2;

Solution: do nothing.

1.1. E n t i t y i s En t i t y .
1.2. Relationship i s Relationship.
1.3. Att r i b u t e i s At t r i b u t e .

2. IDENTICAL OBJECTS WITH DIFFERENT CONTEXT
Nl = N2; T l = T2; Ml = M2; CI <> C2;

2.1. R e l a t i o n s h i p i s R e l a t i o n s h i p of d i f f e r e n t
degree or associating d i f f e r e n t e n t i t i e s .

S o l u t i o n : t i e not yet a s s o c i a t e d e n t i t i e s to
r e l a t i o n s h i p (s) . I f e n t i t i e s cannot be found, t e s t
f o r construct mismatch (5.2.1. or 6.2.1) and missing
e n t i t y (17.1.).

2.2. Att r i b u t e i s Att r i b u t e of a d i f f e r e n t e n t i t y
o r r e l a t i o n s h i p (both a re p o s s e s s i o n
a t t r i b u t e s) .

S o l u t i o n : c o n v e r t b o t h a t t r i b u t e s i n t o E-R
constructs or e n t i t i e s , s i m i l a r to 6.2. or 6.3.

3. TRUE SYNONYMS (SAME OBJECT TYPE)
Nl <> N2; T l = T2; Ml = M2; CI = C2;

Solution: rename at le a s t one object so that Nl = N2.

3.1. E n t i t y / E n t i t y .
3.2. Relationship/Relationship.
3.3. Att r i b u t e / A t t r i b u t e .

4. TRUE SYNONYMS WITH DIFFERENT CONTEXT
Nl <> N2; T l = T2; Ml = M2; CI <> C2;

Solution: rename and make contexts i d e n t i c a l (combine
solutions 3. and 2.).

4.1. Relationship/Relationship.
4.2. At t r i b u t e / A t t r i b u t e .

224

5. CONSTRUCT MISMATCH
Nl = N2; T l <> T2; Ml = M2; CI <> C2;

5.1. E n t i t y i s Relationship.
Solution: convert the re l a t i o n s h i p into an en t i t y .
Create new relationships to associate the new en t i t y
with the e n t i t i e s i t associated as a re l a t i o n s h i p .

5.2. E n t i t y A t t r i b u t e i s E n t i t y - R e l a t i o n s h i p
construct.

S o l u t i o n : c o n v e r t the a t t r i b u t e i n t o an E-R
construct (entity and r e l a t i o n s h i p) .
5.2.1. Attribute i s En t i t y .
5.2.2. Attribute i s Relationship.

5.3. Relationship A t t r i b u t e i s E n t i t y .
Solution: convert the at t r i b u t e into an en t i t y .

6. CONSTRUCT MISMATCH AND SYNONYM
Nl <> 2; T l <> T2; Ml = M2; CI <> C2;

S o l u t i o n : rename objects to make names i d e n t i c a l
and deal with construct mismatches as i n 5.

6.1. E n t i t y i s Relationship.
6.2. E n t i t y A t t r i b u t e i s E n t i t y - R e l a t i o n s h i p

construct.
6.2.1. Attribute i s En t i t y .
6.2.2. Attr i b u t e i s Relationship.

6.3. Relationship A t t r i b u t e i s E n t i t y .

7. DIFFERENT AND UNRELATED OBJECTS
Nl <> N2; T l = T2; Ml <> M2; not (related(Ml,M2)) ; CI = C2
or CI <> C2;

7.1. Objects are d i f f e r e n t , unrelated and have no
common r o l e .

Solution: do nothing.
7.1.1. E n t i t y / E n t i t y .
7.1.2. Relationship/Relationship.
7.1.3. At t r i b u t e / A t t r i b u t e .

7.2. O b j e c t 1 and Object 2 i n same r o l e (W-
re l a t i o n s h i p) .

Solution: create a common ro l e object, s p e c i a l role
o b j e c t s , and Isa relat i o n s h i p s between the role
objects and objects OI and 02. I f objects are not
e n t i t i e s , transform them into e n t i t i e s f i r s t .
7.2.1. E n t i t y / E n t i t y .
7.2.3. Relationship/Relationship.
7.2.3. At t r i b u t e / A t t r i b u t e .

225

8. TRUE HOMONYM
Nl = N2; T l = T2; Ml <> M2; CI = C2 or CI <> C2;

Solution: rename at lea s t one object, giving i t a
name t h a t i s not assigned to any other object i n
the view. Thereafter t r e a t common r o l e occurrences
s i m i l a r to 7.

8.1. Objects are d i f f e r e n t , unrelated and have no
common ro l e .

8.1.1. E n t i t y / E n t i t y .
8.1.2. Relationship/Relationship.
8.1.3. At t r i b u t e / A t t r i b u t e .

8.2. O b j e c t 1 and Object 2 i n same r o l e (W-
re l a t i o n s h i p) .

8.2.1. E n t i t y / E n t i t y .
8.2.2. Relationship/Relationship.
8.2.3. Att r i b u t e / A t t r i b u t e .

9. DIFFERENT OBJECTS WITH DIFFERENT CONSTRUCTS
Nl <> N2; T l <> T2; Ml <> M2; CI <> C2;

9.1. Objects are d i f f e r e n t , unrelated and have no
common r o l e .

Solution: do nothing.
9.1.1. Entity/Relationship.
9.1.2. Relationship/Attribute.
9.1.3. En t i t y / A t t r i b u t e .

9.2. O b j e c t 1 and Object 2 i n same r o l e (W-
re l a t i o n s h i p) .

Solution: create a common rol e object, s p e c i a l role
o b j e c t s , and Isa rela t i o n s h i p s between the role
objects and objects 01 and 02. I f objects are not
e n t i t i e s , transform them into e n t i t i e s f i r s t .
9.2.1. Entity/Relationship.
9.2.2. Relationship/Attribute.
9.2.3. En t i t y / A t t r i b u t e .

10. DIFFERENT OBJECTS WITH DIFFERENT CONSTRUCTS. BUT HOMONYMS
Nl = N2; T l <> T2; Ml <> M2; CI <> C2;

Solution: t r e a t objects l i k e true homonyms. Change
the name of at leas t one object to make i t d i f f e r e n t
from a l l other o b j e c t names i n the same view.
Treat common rol e objects as i n 9.

226

10.1. Objects are d i f f e r e n t , unrelated and have no
common r o l e .

10.1.1. Entity/Relationship
10.1.2. Relationship/Attribute
10.1.3. E n t i t y / A t t r i b u t e

10.2. O b j e c t 1 and Object 2 i n same r o l e (W-
re l a t i o n s h i p) .

10.2.1. Entity/Relationship.
10.2.2. Relationship/Attribute.
10.2.3. E n t i t y / A t t r i b u t e .

11. DIFFERENT BUT RELATED OBJECTS
Nl <> N2; T l = T2; Ml <> M2; related(Ml,M2); CI - C2;

11.1. One o b j e c t c o n t a i n s the other (Object 1
contains Object 2 or vic e versa).
Solution: create an Isa r e l a t i o n s h i p between
the two objects.

11.1.1. E n t i t y / E n t i t y .
11.1.2. Relationship/Relationship.
11.1.3. Att r i b u t e / A t t r i b u t e .

Solution: before creating an Isa r e l a t i o n ­
ship, convert a t t r i b u t e s into e n t i t i e s
(f o r r e l a t i o n s h i p attributes) or into
E-R constructs (for e n t i t y a t t r i b u t e s) .

11.2. Object 1 and Object 2 have a common superset
(but do not overlap).
S o l u t i o n : create a superset object and Isa
relationships from objects 01 and 02 to the
superset object.

11.2.1. E n t i t y / E n t i t y .
11.2.2. Relationship/Relationship.
11.2.3. At t r i b u t e / A t t r i b u t e .

S o l u t i o n : precede general s o l u t i o n by
t r a n s f o r m a t i o n i n t o e n t i t i e s or E^R
constructs.

11.3. Object 1 and Object 2 have a common superset
and overlap
Solution: combine solutions for 11.2. and 11.3.

11.3.1. E n t i t y / E n t i t y .
11.3.2. Relationship/Relationship.
11.3.3. At t r i b u t e / A t t r i b u t e .

12. DIFFERENT BUT RELATED HOMONYMS
Nl = N2; T l = T2; Ml <> M2; related(Ml,M2); CI = C2;
Solution: rename and solve s i m i l a r to 11.

12.1. One o b j e c t c o n t a i n s the other (Object 1
contains Object 2 or vic e versa).

12.1.1. E n t i t y / E n t i t y .
12.1.2. Relationship/Relationship.
12.1.3. At t r i b u t e / A t t r i b u t e .

12.2. Object 1 and Object 2 have a common superset
(but do not overlap).

12.2.1. E n t i t y / E n t i t y .
12 . 2 . 2 . Relationship/Relationship.
12.2.3. At t r i b u t e / A t t r i b u t e .

12.3. Object 1 and Object 2 have a common superset
and overlap.

12.3.1. E n t i t y / E n t i t y .
12.3 .2. Relationship/Relationship.
12.3.3. At t r i b u t e / A t t r i b u t e .

13. DIFFERENT BUT RELATED OBJECTS WITH DIFFERENT CONTEXT
Nl <> N2; T l = T2; Ml <> M2; related(Ml,M2); CI <> C2;

13.1. En t i t y A t t r i b u t e related to E n t i t y Attribute
of a d i f f e r e n t e n t i t y .
S o l u t i o n : transform a t t r i b u t e s i n t o E-R
constructs and solve relatedness as i n case
11.

13.1.1. Att r i b u t e 1 contains A t t r i b u t e 2 (or v i c e
versa).

13.1.2. Common superset.
13.1.3. Common subset and superset.

13.2. E n t i t y A t t r i b u t e r e l a t e d t o R e l a t i o n s h i p
A t t r i b u t e
Solution: transform e n t i t y a t t r i b u t e into E-
R c o n s t r u c t , r e l a t i o n s h i p a t t r i b u t e i n t o
e n t i t y and solve relatedness as i n 11.

13.2.1. Attribute 1 contains At t r i b u t e 2 (or vice
versa).

13.2.2. Common superset.
13.2.3. Common subset and superset.

13.3. Relationship Attribute related to Relationship
A t t r i b u t e
Solution: transform a t t r i b u t e s into e n t i t i e s
and solve relatedness as i n 11.

13.3.1. Attribute 1 contains A t t r i b u t e 2 (or vice
versa).

13.3.2. Common superset.
13.3.3. Common subset and superset.

13.4. Relationship related to Relationship
Solution: transform re l a t i o n s h i p s into entities
and solve relatedness as i n 11.

13.4.1. Relationship 1 contains Relationship 2
(or v i c e versa).

13.4.2. Common superset.

228

13.4.3. Common subset and superset.

14. DIFFERENT BUT RELATED HOMONYMS WITH DIFFERENT CONTEXT
Nl = N2; T l = T2; Ml <> M2; related(Ml,M2); CI <> C2;

Solution: rename to avoid homonym and solve s i m i l a r
to 13.

14.1. En t i t y A t t r i b u t e related to E n t i t y Attribute
of a d i f f e r e n t e n t i t y .

14.1.1. Attribute 1 contains A t t r i b u t e 2 (or vice
versa).

14.1.2. Common superset.
14.1.3. Common subset and superset.

14.2. E n t i t y A t t r i b u t e r e l a t e d t o R e l a t i o n s h i p
At t r i b u t e .

14.2.1. Att r i b u t e 1 contains A t t r i b u t e 2 (or vice
versa) . <>

14.2.2. Common superset.
14.2.3. Common subset and superset.

14.3. Relationship Attribute r e l a t e d to Relationship
A t t r i b u t e .

14.3.1. Att r i b u t e 1 contains A t t r i b u t e 2 (or vice
versa).

14.3.2.. Common superset.
14.3.3. Common subset and superset.

14.4. Relationship related to Relationship
14.4.1. Relationship 1 contains Relationship 2

(or v i c e versa).
14.4.2. Common superset.
14.4.3. Common subset and superset.

15. DIFFERENT BUT RELATED OBJECTS OF DIFFERENT TYPE
Nl <> N2; T l <> T2; Ml <> M2; related(Ml,M2); CI <> C2;

15.1. En t i t y A t t r i b u t e related to Entity-Relationship
construct.
Solution: transform e n t i t y a t t r i b u t e into E-
R construct and solve relatedness s i m i l a r to
11.

15.1.1. En t i t y A ttribute related to En t i t y .
15.1.1.1. One object contains the other.
15.1.1.2. Common s u p e r s e t .
15.1.1.3. Common subset and superset.

15.1.2. En t i t y A t t r i b u t e related to Relationship.
15.1.2.1. One object contains the other.
15.1.2.2. Common superset.
15.1.2.3. Common subset and superset.

15.2. Relationship A t t r i b u t e related to En t i t y .
15.2.1. One object contains the other.

229

15.2.2. Common superset.
15.2.3. Common subset and superset.

15.3. E n t i t y related to Relationship.
15.3.1. One object contains the other.
15.3.2. . Common superset.
15.3.3. Common subset and superset.

16. DIFFERENT BUT RELATED HOMONYMS OF DIFFERENT TYPE
Nl = N2; T l <> T2; Ml <> M2; related(Ml,M2); CI <> C2;

S o l u t i o n : rename at l e a s t one o b j e c t to avoid
homonym and solve s i m i l a r to 15.

16.1. En t i t y A t t r i b u t e related to Entity-Relationship
construct

16.1.1. En t i t y A ttribute r e l a t e d to En t i t y .
16.1.1.1. One object contains the other.
16.1.1.2. Common superset.
16.1.1.3. Common subset and superset.

16.1.2. En t i t y A ttribute related to Relationship.
16.1.2.1. One object contains the other.
16.1.2.2. Common superset.
16.1.2.3. Common subset and superset.

16.2. Relationship A t t r i b u t e related to En t i t y .
16.2.1. One object contains the other.
16.2.2. Common superset.
16.2.3. Common subset and superset.

16.3. E n t i t y related to Relationship.
16.3.1 One object contains the other.
16.3.2. Common superset.
16.3.3. Common subset and superset.

17. MISSING OBJECT
Object 2 does not e x i s t .

Solution: add missing object.

17.1
17.2
17.3

Ent i t y missing.
Relationship missing.
At t r i b u t e missing.

230

Appendix 2: C o n f l i c t Solutions

1. IDENTICAL OBJECTS
Nl = N2; T l = T2; Ml = M2; CI = C2;

Solution: do nothing.

1.1. E n t i t y i s E n t i t y .
1.2. Relationship i s Relationship.
1.3. Att r i b u t e i s At t r i b u t e .

2. IDENTICAL OBJECTS WITH DIFFERENT CONTEXT
Nl = N2; T l = T2; Ml = M2; CI <> C2;

2.1. R e l a t i o n s h i p i s R e l a t i o n s h i p of d i f f e r e n t
degree or associating d i f f e r e n t e n t i t i e s .

Solution: S4, possibly SI or S2 or Sll.
2.2. Att r i b u t e i s At t r i b u t e of a d i f f e r e n t e n t i t y

o r r e l a t i o n s h i p (both a r e p o s s e s s i o n
a t t r i b u t e s) .

Solution: S2 or S3.

3. TRUE SYNONYMS (SAME OBJECT TYPE)
Nl <> N2; T l = T2; Ml = M2; CI = C2;

Solution: S10.

3.1. E n t i t y / E n t i t y .
3.2. Relationship/Relationship.
3.3. At t r i b u t e / A t t r i b u t e .

4. TRUE SYNONYMS WITH DIFFERENT CONTEXT
Nl <> N2; T l = T2; Ml = M2; CI <> C2;

4.1. Relationship/Relationship.
Solution: S10 and S4, possibly SI, or S2, or Sll.

4.2. At t r i b u t e / A t t r i b u t e .
Solution: 520 and S2 or S3.

5. CONSTRUCT MISMATCH
Nl = N2; T l <> T2; Ml = M2; CI <> C2;

5.1. E n t i t y i s Relationship.
Solution: SI.

5.2. E n t i t y A t t r i b u t e i s E n t i t y - R e l a t i o n s h i p
construct.

Solution: S3.
5.2.1. Att r i b u t e i s E n t i t y .
5.2.2. Att r i b u t e i s Relationship.

5.3. Relationship A t t r i b u t e i s E n t i t y .

231

Solution: S2.

6. CONSTRUCT MISMATCH AND SYNONYM
Nl <> 2; T l <> T2; Ml = M2; CI <> C2;

6.1. E n t i t y i s Relationship.
Solution: S10 and SI.

6.2. E n t i t y A t t r i b u t e i s E n t i t y - R e l a t i o n s h i p
construct.

Solution: S10 and S3.
6.2.1. Att r i b u t e i s En t i t y .
6.2.2. Att r i b u t e i s Relationship.

6.3. Relationship A t t r i b u t e i s E n t i t y .
Solution: 10 and S2.

7. DIFFERENT AND UNRELATED OBJECTS
Nl <> N2; T l = T2; Ml <> M2; not (related(Ml,M2)) ; CI = C2
or CI <> C2;

7.1. Objects are d i f f e r e n t , unrelated and have no
common r o l e .

Solution: do nothing.
7.1.1. E n t i t y / E n t i t y .
7.1.2. Relationship/Relationship.
7.1.3. At t r i b u t e / A t t r i b u t e .

7.2. O b j e c t 1 and Object 2 i n same r o l e (W-
r e l a t i o n s h i p) .

7.2.1. E n t i t y / E n t i t y .
Solution: S7.

7.2.2. Relationship/Relationship.
Solution: SI and S7.

7.2.3. At t r i b u t e / A t t r i b u t e .
Solution: S2 or S3 followed by S7.

8. TRUE HOMONYM
Nl = N2; T l = T2; Ml <> M2; CI = C2 or CI <> C2;

8.1. Objects are d i f f e r e n t , unrelated and have no
common r o l e .

Solution: S10.
8.1.1. E n t i t y / E n t i t y .
8.1.2. Relationship/Relationship.
8.1.3. At t r i b u t e / A t t r i b u t e .

8.2. O b j e c t 1 and Object 2 i n same r o l e (W-
r e l a t i o n s h i p) .

8.2.1. E n t i t y / E n t i t y .
Solution: S10 followed by S7.

8.2.2. Relationship/Relationship.

232

Solution: S10 and SI followed by S7.
8.2.3. At t r i b u t e / A t t r i b u t e .

Solution: S10 and S2 or S3 followed by
S7.

9. DIFFERENT OBJECTS WITH DIFFERENT CONSTRUCTS
Nl <> N2; T l <> T2; Ml <> M2; CI <> C2;

9.1. Objects are d i f f e r e n t , unrelated and have no
common ro l e .

Solution: do nothing.
9.1.1. Entity/Relationship.
9.1.2. Relationship/Attribute.
9.1.3. E n t i t y / A t t r i b u t e .

9.2. O b j e c t 1 and Object 2 i n same r o l e (W-
r e l a t i o n s h i p) .

9.2.1. Entity/Relationship.
Solution: SI followed by S7.

9.2.2. Relationship/Attribute.
Solution: SI and S2 or S3 followed by
S7.

9.2.3. E n t i t y / A t t r i b u t e .
Solution: S2 or S3 followed by S7.

10. DIFFERENT OBJECTS WITH DIFFERENT CONSTRUCTS. BUT HOMONYMS
Nl = N2; T l <> T2; Ml <> M2; CI <> C2;

10.1. Objects are d i f f e r e n t , unrelated and have no
common ro l e .
Solution: S10.

10.1.1. Entity/Relationship.
10.1.2. Relationship/Attribute.
10.1.3. E n t i t y / A t t r i b u t e .

10.2. O b j e c t 1 and Object 2 i n same r o l e (W-
r e l a t i o n s h i p) .

10.2.1. Entity/Relationship.
Solution: S10 and SI followed by S7.

10.2.2. Relationship/Attribute.
Solution: S10, SI and S2 or S3, followed
by S7.

10.2.3. E n t i t y / A t t r i b u t e .
Solution: S10 and S2 or S3, followed by
S7.

11. DIFFERENT BUT RELATED OBJECTS
Nl <> N2; T l = T2; Ml <> M2; related(Ml,M2); CI = C2;

233

11.1. One o b j e c t c o n t a i n s the other (Object 1
contains Object 2 or v i c e versa).

11.1.1. E n t i t y / E n t i t y .
Solution: S6.

11.1.2. Relationship/Relationship.
Solution: SI and S6.

11.1.3. At t r i b u t e / A t t r i b u t e .
Solution: S2 or S3, followed by S6.

11.2. Object 1 and Object 2 have a common superset
(but do not overlap).

11.2.1. E n t i t y / E n t i t y .
Solution: S8.

11.2.2. Relationship/Relationship.
Solution: SI and S8.

11.2.3. At t r i b u t e / A t t r i b u t e .
Solution: S2 or S3, followed by S8.

11.3. Object 1 and Object 2 have a common superset
and overlap

11.3.1. E n t i t y / E n t i t y .
Solution: S9.

11.3.2. Relationship/Relationship.
Solution: SI and S9.

11.3.3. At t r i b u t e / A t t r i b u t e .
Solution: S2 or S3, followed by S9.

12. DIFFERENT BUT RELATED HOMONYMS
Nl = N2; T l = T2; Ml <> M2; related(Ml,M2); CI = C2;

12.1. One o b j e c t c o n t a i n s the other (Object 1
contains Object 2 or vic e versa).

12.1.1. E n t i t y / E n t i t y .
Solution: S10 and S6.

12.1.2. Relationship/Relationship.
Solution: S10 and SI and S6.

12.1.3. At t r i b u t e / A t t r i b u t e .
Solution: S10 and S2 or S3, followed by
S6.

12.2. Object 1 and Object 2 have a common superset
(but do not overlap).

12.2.1. E n t i t y / E n t i t y .
Solution: S10 and S8.

12.2.2. Relationship/Relationship.
Solution: S10 and SI and SB.

12.2.3. At t r i b u t e / A t t r i b u t e .
Solution: S10 and S2 or S3, followed by
S8.

234

12.3. Object 1 and Object 2 have a common superset
and overlap.

12.3.1. E n t i t y / E n t i t y .
Solution: S10 and S9.

12.3.2. Relationship/Relationship.
Solution: S10 and SI and S9.

12.3.3. At t r i b u t e / A t t r i b u t e .
Solution: S10 and S2 or S3, followed by
S9.

13. DIFFERENT BUT RELATED OBJECTS WITH DIFFERENT CONTEXT
Nl <> N2; T l = T2; Ml <> M2; related(Ml,M2); CI <> C2;

13.1. E n t i t y A t t r i b u t e related to E n t i t y Attribute
of a d i f f e r e n t e n t i t y .

13.1.1. Att r i b u t e 1 contains A t t r i b u t e 2 (or v i c e
versa).
Solution: S3 and S6.

13.1.2. Common superset.
Solution: S3 and S8.

13.1.3. Common subset and superset.
Solution: S3 and S9.

13.2. E n t i t y A t t r i b u t e r e l a t e d to R e l a t i o n s h i p
A t t r i b u t e

13.2.1. Attribute 1 contains A t t r i b u t e 2 (or v i c e
versa).
Solution: S2 and S3 and S6.

13.2.2. Common superset.
Solution: S2 and S3 and S8.

13.2.3. Common subset and superset.
Solution: S2 and S3 and S9.

13.3. Relationship Attribute related to Relationship
A t t r i b u t e

13.3.1. Att r i b u t e 1 contains A t t r i b u t e 2 (or vice
versa).
Solution: S2 and S6.

13.3.2. Common superset.
Solution: S2 and S8.

13.3.3. Common subset and superset.
Solution: S2 and S9.

13.4. Relationship related to Relationship
13.4.1. Relationship 1 contains Relationship 2

(or v i c e versa).
Solution: SI and S6.

13.4.2. Common superset.
Solution: SI and S8.

13.4.3. Common subset and superset.
Solution: SI and S9.

235

14. DIFFERENT BUT RELATED HOMONYMS WITH DIFFERENT CONTEXT
Nl = N2; T l = T2; Ml <> M2; related(Ml,M2); CI <> C2;

14.1. En t i t y A t t r i b u t e related to E n t i t y Attribute
of a d i f f e r e n t e n t i t y .

14.1.1. Attribute 1 contains A t t r i b u t e 2 (or vice
versa).
Solution: S10 and S3 and S6.

14.1.2. Common superset.
Solution: S10 and S3 and S8.

14.1.3. Common subset and superset.
Solution: S10 and S3 and S9.

14.2. E n t i t y A t t r i b u t e r e l a t e d t o R e l a t i o n s h i p
A t t r i b u t e .

14.2.1. Attribute 1 contains A t t r i b u t e 2 (or vice
versa).
Solution: S10 and S2 and S3 and S6.

14.2.2. Common superset.
Solution: S10 and S2 and S3 and S8.

14.2.3. Common subset and superset.
Solution: S10 and S2 and S3 and S9.

14.3. Relationship Attribute related to Relationship
Attribute.

14.3.1. Att r i b u t e 1 contains A t t r i b u t e 2 (or vice
versa).
Solution: S10 and S2 and S6.

14.3.2. Common superset.
Solution: S10 and S2 and S8.

14.3.3. Common subset and superset.
Solution: S10 and S2 and S9.

14.4. Relationship related to Relationship
14.4.1. Relationship 1 contains Relationship 2

(or v i c e versa).
Solution: S10 and SI and S6.

14.4.2. Common superset.
Solution: S10 and SI and S8.

14.4.3. Common subset and superset.
Solution: S10 and SI and S9.

15. DIFFERENT BUT RELATED OBJECTS OF DIFFERENT TYPE
Nl <> N2; T l <> T2; Ml <> M2; related(Ml,M2); CI <> C2;

15.1. E n t i t y A t t r i b u t e related to Entity-Relationship
construct.

15.1.1. E n t i t y A t t r i b u t e related to En t i t y .
15.1.1.1. One object contains the other.

Solution: S3 and S6.
15.1.1.2. Common superset.

Solution: S3 and S8.
15.1.1.3. Common subset and superset.

Solution: S3 and S9.

236

15.1.2. E n t i t y A t t r i b u t e related to Relationship.
15.1.2.1. One object contains the other.

Solution: S3 and S6.
15.1.2.2. Common superset.

Solution: S3 and S8.
15.1.2.3. Common subset and superset.

Solution: S3 and S9.
15.2. Relationship A t t r i b u t e related to En t i t y .

15.2.1. One object contains the other.
Solution: S2 and S6.

15.2.2. Common superset.
Solution: S2 and S8.

15.2.3. Common subset and superset.
Solution: S2 and S9.

15.3. E n t i t y related to Relationship.
15.3.1. One object contains the other.

Solution: SI and S6.
15.3.2. Common superset.

Solution: SI and S8.
15.3.3. Common subset and superset.

Solution: SI and S9.

16. DIFFERENT BUT RELATED HOMONYMS OF DIFFERENT TYPE
Nl = N2; T l <> T2; Ml <> M2; related(Ml,M2); CI <> C2;

16.1. En t i t y Attribute related to Entity-Relationship
construct

16.1.1. Enti t y A t t r i b u t e r e l a t e d to En t i t y .
16.1.1.1. One object contains the other.

Solution: S10 and S3 and S6.
16.1.1.2. Common superset.

Solution: S10 and S3 and S8.
16.1.1.3. Common subset and superset.

Solution: S10 and S3 and S9.
16.1.2. En t i t y A t t r i b u t e related to Relationship.

16.1.2.1. One object contains the other.
Solution: S10 and S3 and S6.

16.1.2.2. Common superset.
Solution: S10 and S3 and S8.

16.1.2.3. Common subset and superset.
Solution: S10 and S3 and S9.

16.2. Relationship A t t r i b u t e r e l a t e d to En t i t y .
16.2.1. One object contains the other.

Solution: S10 and S2 and S6.
16.2.2. Common superset.

Solution: S10 and S2 and S8.
16.2.3. Common subset and superset.

Solution: S10 and S2 and S9.
16.3. En t i t y related to Relationship.

237

16.3.1. One object contains the other.
Solution: S10 and SI and S6.

16.3.2. Common superset.
Solution: S10 and SI and S8.

16.3.3. Common subset and superset.
Solution: S10 and SI and S9.

17. MISSING OBJECT
Object 2 does not e x i s t .

Solution: Sll.

17.1. E n t i t y missing.
17.2. Relationship missing.
17.3. Att r i b u t e missing.

238

Appendix 3: View Integration Session with AVIS

A view integration session with AVIS i s i l l u s t r a t e d
through a set of 22 screen displays. The problem "c34" consists
of two s mall views which have to be integrated. Figure 28
depicts the structure of the views.

View 1:

BRANCH

Contract

View 2:

DEALER CONTRACT

Figure 28: View Integration Sample Problem

The screens shown below exemplify questions asked by the AVIS
system as w e l l as AVIS' support f u n c t i o n s . These support
f u n c t i o n s f o r i n s t a n c e i n d i c a t e to the d e s i g n e r what the
program a l r e a d y knows or what the current contents of each
view are. Example screens which display system questions to
the user w i l l not d e p i c t user r e p l i e s . The short summary
d e s c r i p t i o n of each screen shown below, however, states the
user answers and documents the purpose of each screen.

Screen Purpose
1 AVIS t i t l e screen, asks user to choose a problem

f i l e . Chosen here: "c34".
2 F i r s t system question. User answers "1003".

The following screens 3 - 8 exemplify support functions which
can be a c t i v a t e d at any time during the integration session
when the system i s ready to accept input. Some of the screens
may i n i t i a l l y have no or l i t t l e content, i . e . , screen 4. They
are shown here to demonstrate the system status at the beginning
of an integration session and to allow a comparison with l a t e r
system s t a t i . Screens 3 - 8 show the system status before the

239

user's answer "1003". The user gave hi s answer a f t e r seeing
screen 8.

3 Shows "Agenda", consisting of present and future object
comparison tasks (preview).

4 Shows "Old Agenda", consisting of current and previous
object comparison tasks (history l o g) .

5 & 6 Show the contents of views 1 and 2 (at the outset of
the integration session).

7 Shows l i s t of " f a c t s " , knowledge about the set of views
based on previous object comparisons. Here the l i s t i s
s t i l l empty.

8 Meaning comparison screen. Shows what the system knows
about the match between objects. Here, best match i s
with "1003 - dealer".

9 System question 2. User answers "n".
10 System question 3. User answers "n", but not u n t i l

seeing screen 11.
11 "Old Agenda" now shows the p r e v i o u s f o u r system

questions. Note that the system never asked the user
f o r Synonym (agenda item 2) because i t can assess
without user help whether objects carry d i f f e r e n t names
(simple s t r i n g comparison).

12 System question 4. User answers "0", but not u n t i l
seeing screen 14.

13 "Meaning match" support function suggests no s i m i l a r i t y .
14 Fact l i s t shows the knowledge asserted at t h i s point i n

time. I.e., objects 3 and 1003 are i d e n t i c a l (same).
15 System question 5. User answers "0".
16 System question 6. User answers "1005". Note that the

system reports i n the lower r i g h t window that i n the
mean time, a new object, 2013 - branch, has been added.

17 System question 7. User answers "n". The number 18 on
the upper r i g h t hand corner of the screen shows that
the system has i n t e r n a l l y created 18 questions, but has
asked the user only 7. The remaining ones were answered
by the system.

18 "THE AGENDA IS EMPTY". The system has created two
i d e n t i c a l views, without f u r t h e r questions t o the
user. Note the i n t e r n a l count of 30 questions (upper
r i g h t corner).

19 The "Old Agenda" shows the l a s t 12 questions, answered
by the system without user i n t e r a c t i o n .

20 F i r s t part of the Fact l i s t .
21 & 22 The adjusted views 1 and 2. A l l newly created objects

can be i d e n t i f i e d by t h e i r object i d e n t i f i e r s (>2000).

240

SCREEN 1

A V I S

AAA
AA AA

AA AA

VV
vv
VV

vv
vv

vv
AA AA VV VV

AA AA VV VV
AA AAAAAAA AA VVV

AA AA V
AA AA

ssssssssss
ss
ss

ssssssss
ss
ss

sssssssss

AA AA AA AA AA AA AA AA AA AA AA AA AA AA AAA

- Automated View Integration Systems -

by C h r i s t i a n Wagner, 1988.

Response
What Is the name of the f i l e containing the
views? (TEST.PRO)
c34

SCREEN 2

Testing for hypothesis: SIMILAR ENTITY,
involving the e n t i t y DEALER (3) and one of the following objects;

1003 --
1004 --
1005 --

dealer
customer
contract

Make Agenda

Hypo Test

New Objects

-Response-
Please type in the number of the applicable
object (or 0 i f none).

Assert Objects

241

SCREEN 3

Testing for hypothesis: SIMILAR ENTITY,
Involving the e n t i t y DEALER (3) and one of the following objects;

Agenda
Current Agenda Item
H: 3 Similar E n t i t y - (31(1003,1004,1005)

Response-
Press <spacebar> to continue

SCREEN 4
A V I S

Testing for hypothesis: SIMILAR ENTITY,
Involving the e n t i t y DEALER (3) and one of the following objects;

Old Agenda
-l-> 3 - Similar E n t i t y - (3111003,1004,1005]

Reaponse-
Press <spacebar> to continue

242

SCREEN 5
Objects

VIEW 1 - RELATIONSHIPS

502 - supplyl"dealer","branch")

VIEW 1 - ENTITIES

3 - dealer I"contract"1
4 - branch!"branch_no"J

Response-
Press <spacebar> to continue

SCREEN 6
Objects —

VIEW 2 - RELATIONSHIPS

1502 - dealer_contract("dealer","contract"1
1503 - customer_contractI"customer","contract"1

VIEW 2 - ENTITIES

1003 - dealer I"dealer_no")
1004 - customer("customer_no"I
1005 - contract("contract no")

. Response-
Press (spacebar) to continue

243

SCREEN 7

Testing foe hypothesis: SIMILAR ENTITY,
involving the e n t i t y DEALER (3) and one of the following objects:

1003 -
1004 -
1005 -

dealer
customer
contract

Make Agenda

Hypo Test

Pacts

Response-
Press <spacebar> to continue

SCREEN 8

Testing for hypothesis: SIMILAR ENTITY,
involving the e n t i t y DEALER (3) and one of the following objects:

Meaning Match
I " s e l l s " , " s u p p l i e s "] Match between e n t i t y DEALER (3)

and objects below:
ID NAME Match of: NAME MEANING CONTEXT
1003 dealer y y unknown
1004 customer n n unknown
1005 contract n n unknown

Response-
Press <spacebar> to continue

244

S C R E E N 9

Testing for hypothesis: SIMILAR RELATIONSHIP,
involving r e l a t i o n s h i p SUPPLY (502) and r e l a t i o n s h i p DEALER_CONTRACT (1502)

Make Agenda

3 -> agenda(similar_meanlng,I 3),(1003))

Hypo Test -
TO BE EXECUTED:
simllar_meanlng((502),(15021)

New Objects

Response
Please answer with y or n to indicate whether
the hypothesis i s true or f a l s e .

Assert Objects
ao(4,3,1003,n)

- t e 3 t_hypo(7)

S C R E E N 10

Testing for hypothesis: RELATED RELATIONSHIP,
involving r e l a t i o n s h i p SUPPLY (502) and r e l a t i o n s h i p DEALER_CONTRACT (1502)

Make Agenda

1 -> agenda(homonyms,(502),(1502))

Hypo Test
TO BE EXECUTED:
related((502),(15021)

New Objects

— Response
Please answer with y or n to indicate whether
the hypothesis Is true or f a l s e .

Assert Objects
ao(l,502,1502,n)

test_hypo(7)

245

SCREEN 11

Testing for hypothesis: RELATED RELATIONSHIP,
involving r e l a t i o n s h i p SUPPLY (502) and r e l a t i o n s h i p DEALER_CONTRACT (1502)

Old Agenda
1: -l-> 3
2: 3-> 4
3: o-> 1
4: l-> 13

Similar E n t i t y - [31(1003,1004,1005]
Synonym - (31(1003)
Similar Relationship - (5021(1502)

Response-
Press <spacebar> to continue

test_hypo(7)

SCREEN 12

Testing for hypothesis: ENTITY ATTRIBUTE IS RELATIONSHIP CONSTRUCT,
involving the a t t r DEALER_NO (2001) and one of the following objects:

4 — branch
502 -- supply

Make Agenda

13 -> agenda(ea_ls_rc, (5021, (1502))

Hypo Test
TO BE EXECUTED:
ea_is_rc([20011,(4, 5021)

New Objects

— Response
Please type In the number of the applicable
object (or 0 i f none).

Assert Objects
ao(13,502,1502,n)

- test_hypo(7)

246

S C R E E N 13

Testing for hypothesis: ENTITY ATTRIBUTE IS RELATIONSHIP CONSTRUCT,
Involving the a t t r DEALER_NO (2001) and one of the following objects:

Meaning Match
Match between a t t r DEALER_NO (2001) I"key"!
and objects below:
ID NAME Match of:
4 branch
502 supply

NAME MEANING-
n n
n n

-CONTEXT
none
none

Response-
Press <spacebar> to continue

test_hypo(7)

S C R E E N 14

Testing for hypothesis: ENTITY ATTRIBUTE IS RELATIONSHIP CONSTRUCT,
Involving the a t t r DEALER_NO (2001) and one of the following objects:

4 — branch
502 — supply

Make Agenda

13 -> agenda(ea_ls_rc, (502), 11502))

Hypo Test
TO BE EXECUTED:
ea_is_rc((20011, (4,502))

Facts
sinllar_meanlng(3,1003)
same(3,1003)
dlsslallar_meanlng(502,1502)
unrelated(502,1502)

Response-
Press <spacebar> to continue

- test_hypo(7)

247

S C R E E N 1 5

Testing for hypothesis: SIMILAR ENTITY,
Involving the e n t i t y BRANCH (4) and one of the following objects:

1004
1005 -

customer
contract

Make Agenda

Hypo Test

New Objects

Response
Please type In the number of the applicable
object (or 0 l f none).

Assert Objects

S C R E E N 1 6

Testing for hypothesis: ENTITY ATTRIBUTE IS RELATIONSHIP CONSTRUCT,
involving the a t t r CONTRACT (600) and one of the following objects:

1005 -
1502 -

contract
dealer contract

Make Agenda

Hypo Test
TO BE EXECUTED:
ea_ls_rc((600), (1005,1502))

New Objects
H-slmllar_meanlng

added objects:
2013 — branch

-Response-
Please type In the number of the applicable
object (or 0 l f none).

Assert Objects
ao(301,4,0,n)

- test_hypo(7)

248

S C R E E N 17
18

Testing for hypothesis: ENTITY ATTRIBUTE IS RELATIONSHIP CONSTRUCT,
involving a t t r DEALERNO (2001) and r e l a t i o n s h i p SUPPLY (502)

Make Agenda

13 -> agenda(ea_ls_rc,(15021,(502))

Hypo Test
TO BE EXECUTED:
ea_is_rc((20011, (5021)

New Objects
H-Biiss ing

added objects:
2023 customer contract

-Response-
Please answer with y or n to indicate whether
the hypothesis is true or f a l s e .

Assert Objects
ao(13,1502, 502,n)

- test_hypo(7)

S C R E E N 18

A V I S
30

Make Agenda

13 -> agenda(ea_ls_rc, (2027], (20171)

PRECONDITION FAILED:
related*(2027),[2017])

Hypo Test

Response
THE AGENDA IS EMPTY

New Objects
H-mlss ing

added objects:
2027 -- supply

Assert Objects
ao(13,2027,2017,n)

- asso(1301)

249

S C R E E N 19

A V I S
30

Old Agenda
19: 0 -> 19 - H i s s i n g R e l a t i o n s h i p - 150211]
20: -5 -> 1 - S i m i l a r R e l a t i o n s h i p - 120231(1503 ,1502]
21: - 5 -> 1 - S i m i l a r R e l a t i o n s h i p - (5021(2027)
22: -5 -> 1 - S i m i l a r R e l a t i o n s h i p - (20171(20271
23: -6 -> 1 - S i m i l a r R e l a t i o n s h i p - (15021(2023)
24: -6 -> 1 - S i m i l a r R e l a t i o n s h i p - (15031(20231
25: -6 -> 1 - S i m i l a r R e l a t i o n s h i p - (20271(2017 ,5021
26: -7 -> 13 - R e l a t e d R e l a t i o n s h i p - (20171(2027)
27: -7 -> 13 - R e l a t e d R e l a t i o n s h i p - 120231(1502]
28: -8 -> 13 - R e l a t e d R e l a t i o n s h i p - (15021(20231
29: -8 -> 13 - R e l a t e d R e l a t i o n s h i p - 115031(2017)
30: -8 -> 13 - R e l a t e d R e l a t i o n s h i p - (20271(20171

R e s p o n s e -
P r e s s <spacebar> t o c o n t i n u e

a s s o (1 3 0 1)

S C R E E N 20

A V I S
30

Hake Agenda

13 -> a g e n d a (e a _ l s _ r c , 1 2 0 2 7] , (2 0 1 7])

PRECONDITION FAILED:
related((2027),I 2017))

Hypo Test

F a c t s
s l a l l a r _ m e a n i n g (3 , 1 0 0 3)
same(3 ,1003)
d 1 s s l m l l a r _ a e a n i n g (5 0 2 , 1 5 0 2)
u n r e l a t e d ! . 502 ,1502)
e a _ i s _ n o t _ r c (2 0 0 1 , 4)
e a _ l s _ n o t _ r c (2 0 0 1 , 5 0 2)
d l s s l m i l a r _ m e a n l n g (4 , 1 0 0 4)
d l s s i m i l a r _ m e a n l n g (4 , 1 0 0 5)
s i m l l a r _ m e a n i n g (4 , 2 0 1 3)
same(4 ,2013)
d u p (4 , 2 0 1 3)

. . . more >

R e s p o n s e
THE AGENDA IS EMPTY -

a s s o (1 3 0 1)

250

S C R E E N 21

Objects — — 1
VIEW 1 - RELATIONSHIPS

502 - supply!"dealer","branch"1
2017 - dealer_contract!"dealer","contract" I
2023 - customer_contract!"customer","contract")

VIEW 1 - ENTITIES

3 - dealer("contract" 1
4 - branch!"branch_no")

2015 - contract("contract_no"I
2021 - customer("customer no"I

Response-
Press <spacebar> to continue

asso(1301)

S C R E E N 22

Objects —
VIEW 2 - RELATIONSHIPS

1502 - dealer_contractI"dealer","contract"]
1503 - customer_contractI"customer","contract")
2027 - supply!"dealer","branch"J

VIEW 2 - ENTITIES

1003 - dealer I"dealer_no"I
1004 - customer I"customer_no"I
1005 - contract I"contract_no"J
2013 - branch!"branch_no"1

Response-
Press <spacebar> to continue

asso(1301)

251

