VIEW INTEGRATION IN DATABASE DESIGN
by Christian Wagner

Diplom~Ingenieur, Technical University Berlin, 1984

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

in

THE FACULTY OF GRADUATE STUDIES
Faculty of Commerce and Business Administration

We accept this thesis as conforming
to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA
April 1989 '
(© christian wagner, 1989



In presenting this thesis in partial fulfilment of the requirements for an advanced
degree at the University of British Columbia, | agree that the Library shall make it
freely available for reference and study. | further agree that permission for extensive
copying of this thesis for scholarly purposes may be granted by the head of my
department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written
permission.

Faculty
Wﬁﬁg?{t of Commerce and Business Administration

The University of British Columbia
Vancouver, Canada

Date April 24, 1989

DE-6 (2/88)



ABSTRACT

The purpose of this research is the formalization
of a method of bottom up database design known as view

integration.

View integration is one of the main steps of an acknowledged
database design procedure, the New Orleans Database Design
Workshop procedure. This procedure develops a global database
(global schema) for an organization from small partial databases
(user views). Individual user views are representations of
the data relevant to the users' organizational tasks. Views
will overlap since users will share data to some extent. View
integration hés to merge views without duplicating the
information presented in multiple views. The task of merging
views without duplication is complicated by the fact that
users have different perceptions of the world which lead them
to represent the same data differently, the most simple form
of different perceptions being naming conflicts such as the

occurrence of synonyns.

Within the last 13 years a variety of approaches to solve the
integration task has been reported. Many of the approaches
have neglected the problem of conflicting views altogether,
leavihg its solution to the database designer. Integration

methods that performed conflict resolution did it in an

ii



unsystematic and incomplete fashion. Often these methods
dealt with conflict situations only if information for their

resolution was conveniently available.

This research fills that gap. A conflict analysis procedure
is outlined which considers all possible conflict conditions
and transforms them into conditions that can be merged by
means of previously developed techniques. The research proceeds
in two steps. First, a conflict analysis procedure is developed
that ignores the information requirements problem by assuming
complete information. This simplification allows the
concentration on completeness of the procedure, since one does
not have to be concerned with the difficulties involved in
gathering the required information. The second step relaxe§
the assumption of complete information. Difficult information
requirements are identified and replaced by more easily satisfied

ones.

Main contributions to knowledge are (1) a complete understanding
of the factors causing conflicts between views, (2) detection
of substitutes for difficult information requirements. Other
contributions are (3) suggestions for the development of a
semantic data dictionary, (4) an alternative method for the

design of knowledge based systems, and (5) suggestions for

efficient bottom up systems design strategies.

iii



TABLE OF CONTENTS

ABSTR-ACT * L] . L] . . L L L] - - L] L] L] . L] - L] L] i i

TABLE OF CONTENTS . « « « « o o o« o o o o o « o 1iv

LIST OF FIGURES . . « + « « o « « s o o « « » viii

ACKNOWLEDGMENT . . + 4« & & & o o o o o o o « « 1ix

1. OVERVIEW . . ¢ ¢ ¢ o o o o o o o 1
2. VIEW INTEGRATION . . ¢« « o o o o« = 3
2.1. Database Design Philosophies-~-

Top Down vs. Bottom Up . . . . . . 3
2.2, Database Design based on the
New Orleans Database Design
Workshop Procedure . . ¢« « ¢ o + o 5
2.2.1. Syntactic Approaches . . . . . . . 12
2.2.1.2. -Martin's Canonical
Synthesis . . . . . « . .+ + . 21
2.2.1.3. Casanova's and Vidal's
Method . . . . . . « ¢« « « « « 25
2.2.1.4. Functional Data Model

Based Integration . . . . . . 30

iv



2.2'2.

Semantic View Integration
Approaches Based on the E-R

MOdel . 0 L] . . . L] . . . . .

2.2.2.1. Navathe's and Elmasri's

Approach . . . . . « . .

2.2.2.2. Batini's Approach . . .

- 3.2.1.,

3.2.2.

3.2.3.

3.2.4.

View Integration Cases . . .

Conclusion . . . . . . .« . .

SYSTEM FOR VIEW INTEGRATION .
Research Question and
Contribution to Knowledge . .
Approach to the Problem . . .
Ovérview e e s e e s 4 s e
outline of the Problem with
Available Information . . . .
Changes in the Integration
Method when Necessary
Information is not Directly
Available . . . + + ¢« &+ o 4 &
View Integration cConflict
Cases . . . .i. e e e e s e s

Expert System Methodology . .

RESULTS . ¢« ¢« ¢ « &« o o o » =«

Rules Guiding View Integration .

34

36

39

43

45

‘53

53

60

60

61

75

79

83

90

90



APPENDIX .
Appendix 1:

‘Appendix 2:

Diagnosis Procedure

Conflict Therapy .

The Impact of Heuristics

Generalization Hierarchy for

Database Objects .

Assessment of the Method

IMPLEMENTATION - THE AVIS

PROGRAM L] . . - L ] .

Overview . . . . .

Function and Structure of

the AVIS Program .

Knowledge Representation

Representation of views .

Representation of View

Integration Knowledge .

The Impact of Domain Knowledge

SUMMARY AND EXTENSIONS

REFERENCES . . . .

Conflict Cases . .

Conflict Solutions

vi

134

151

167

178

184

197

203

203

206

210

214

219

224

224

231



Appendix 3:

with AVIS

View Integration Session

vii



Figure

10

11

12
13
14
15

16

17

18

19

LIST OF FIGURES

Title
Object Comparison Matrix
Case Transformations during View Integration

Ordering of View Integration Steps

" Conflict Recognition Procedure (abbreviated)

Decision Table Illustration

Test for Object Identity, Procedure without
Heuristics

Test for Identity with Heuristic

Test for Relatedness of Objects

Relationship becomes an Entity

Relationship Attribute Becomes an Entity

Entity Attribute Becomes an Entity-
Relationship Construct

Assocliation of an Entity to a Relationship

Relationship Relocation |

Representation of Containment

Representation of Common Role

Representation of Common Superset without
Common Subset

Representation of Common Superset and
Common Subset

Sources of Evidence for Meaning Identity

Construct Mismatches Shown as Graph

viii

Page
65
72
74
75

85

£38
143
147
152

153

155
156
158
159

160

162

163

173



20

21

22

23

24

25

26

27

28

Contraction
Identical Meaning Query in Prolog Graph
Notation

AVIS Program Structure

" Representation of Views in AVIS

AVIS Hypotheses

AVIS "make ageﬂda" Rule
Filtering Rule in AVIS

AVIS Object Assertion Rule

AVIS Meaning Identity Indicators

View Integration Sample Problem

ix

186

188
199
203
206
207
208
209
212

239



ACKNOWLEDGMENT

I thank my supervisor, Professor Robert C. Goldstein, for his
guidance as well as for his ongoing encouragement. My thanks
go to Professor Yair Wand for his often very critical and always
very stimulating comments. To Professor Wolfgang Bibel I am
grateful for providing many new perspectives on the nature of
this research.

I also wish to acknowledge the funding given for this research
by the World University Service of Canada, dem Deutschen
Akademischen Austauschdienst, and the University of British
Columbia.

Finally, I thank my parents, Helmuth and Iris Wagner, for their
love and support.



1. OVERVIEW

The database designer's task, converting users'
casual data descriptions into a database design is time
consuming, error prone, and requires substantial expertise.
This argument is still valid, even though the separation of
logical and physical design considerations has simplified the
design effort (Curtice and Jones, 1982). Consequently, there
exists strong interest in the developmeﬁt of techniques to
improve the database design process, particularly the hardware

independent logical database design process.

One approach that has been taken is the further
decomposition of the design process. Frequently, database
designers begin with a graphical representation of the database
to be built, i.e. an entity-relationship model or Brown diagrams
(Brown, 1982), before they design the actual database relations
or record and set types. As DeMarco (1979) mentions in the
context of structured analysis, graphical representations are
a tool that provides a concise representation, allows easy
consistency checking and is very maintainable. Another form
of design composition focuses on the development of individual
user views for small task domains and subsequent integration
of user views into a complete schema. The rationale for this

approach is simplification due to a more narrow focus, as well



as improved validity of the views. If every user describes
only the data of her task domain--the data she is most familiar
with--the resulting representation promises to be more correct
than one that is done by a person only remotely familiar with
the domain. However, since each each view describes data
structures as perceived by the individual users, differences
in user perceptions--conflicts between user views--are to be
expected. These conflicts have to be settled, before views
can be aggregated to form a global database structure. The
purpose of this research is the formalization and solution of
the conflict resolution problen. Even though a variety of
integration methods are presently available, existing view
integration methods are incomplete, frequently neglecting the
conflict resolution problem (Batini et al., 1986, p. 348).
Conflicts arise when different users model the same real world
concepts differently, or different real world objects

identically.

This research bridges the gap by developing a conflict
classification and resolution scheme, and based on this scheme
a computer program that integrates user views, grounded in

rules and heuristics of database design.



2. VIEW INTEGRATION

2.1. Database Design Philosophies - Top Down vs.

Bottom Up

Independent of any particular database design approach
there exists the question whether database design, like any
other form of systems design, should proceed top down or
bottom up. Bottom up and top down represent the extreme

points in a spectrum of design alternatives.

In general, top down design has the advantage over bottom up
design that it is oriented towards overall §oals and that it
allows stepwise refinement of those general goals. Bottom up
design requires integration of the elements of the overall
system and will almost certainly result in conflicts between
the elements and in the necessity for the redefinition of
system elements. Despite this disadvantage, bottom up approaches
are frequently used (Martin, 1984, McFadden and Hoffer, 1988).
Their major advantage is that they do not demand the existence
of an overall design before the design of particular elements
can take place. Thus, no overall understanding of the system
is required, or at least not to the extent necessary for the

top down approach. In addition, bottom up design facilitates



the use of existing information from previous designs and thus

is a better approach for incremental development.

Given that both approaches have advantages and disadvantages,
designers will typically apply both design approaches, namely
using a top down focus for the initial design, to partition
the system into manageable subsystems which are conflict-free.
Thereafter, they will apply a bottom up approach in the detailed
design of these subsystems, taking into consideration the
necessity for conflict resolution and trading it for ease of

design.

The major database design techniques described in this paper,
those using view integration, will appear to be bottom up
approaches; since the integration process is based on individual
user views. However, the procedure laid out at the New Orleans
Database Design Workshop (New Orleans, 1979) which presents a
framework for view integration approaches, recommends a database
design procedure that introduces organizational goals and high
level information requirements by means of Enterprise Modelling
in the step preceding view integration. In other words, this
Videly accepted design strategy also applies a mixed top down

and bottom up approach.



2.2. Database Design based on the New Orleans Database

Design Workshop Procedure

In this section the focus will be on the common
elements of all view integration procedures as well as on their
differentiating characteristics. In short, all integration
approaches can be perceived as procedures for view aggregation
and schema optimizétion. One feature of all (comprehensive)
approaches will be the ability to resolve differences between
views. To permit this, the methods' data models will have to
be able to represent objects and object associations. Dissimil-
arities among view integration procedures will arise primarily
from the differences in procedure, the differences in abilities
to deal with conflicting information, variations in information
requirements, and on the restrictions placed on the initial

schenma.

Vieﬁ integration is an element of any bottom up database
design strategy. This strategy, whose initial input are user
requirements and whose final outcome is the implemented
(physical) database, has been segmented by various authors
(New Orleans, 1979, Teory and Fry, 1982) into the following
steps:
1. Requirements Analysis

to obtain information from users on information and

processing requirements, and to analyze this



information in order to resolve conflicts and
inconsistencies with the enterprise view. The
analysis and incorporation of (global) business
constraints adds a top down focus to this otherwise
bottom up oriented technique.

2. View Modelling and Modification
to generate application views and information access
requirements.

3. View Integration
to merge individual views into a global schema.

4, Implementation Design
to handle issues of integrity, consistency, recovery,
security and efficiency.

5. Physical Design
to ensure functioning and efficiency of the database

with a particular database/file system.

In other words, view integration takes as its inputs individual
user views (and possibly processing/query requirements) and

produces as its output a gldbal database schemna.

The most trivial form of view integration is an aggregation of
all individual views without alteration of any of them.
However, instead of generating a system of interconnected
database objects, this method creates merely a lump of individual

views. View integration has to go beyond aggregation, it has



to include the reorganization (optimization) of the global
schema. The task is to eliminate redundancies and inconsist-
encies that result from combining overlapping views of users

who all may have different conceptual models.

Reorganization of the global schema is intended to increase the
descriptive adequacy of the global schema '. 1In addition, it
may include the consideration of query requirements which has
been a concern in some earlier studies, especially in non-
relational database environments (for example Batini et al.
(1984a) or Yao et al. (1982, 1985)). For network or hierarchical
databases, consideration of processing requirements might
result in a trade-off that introduces duplication of database
objects to improve processing efficiency.

Even though a variety of researchers choose the same approach
to database design, namely view integration, differences exist
in the data modelling language used to carry out the integration
process. Tightly connected to the data model is the "integration
philosophy", alternatives of which have been pointed out by Yao
et al. (1982) as (1) view integration based on item level
synthesis using frequency information, (2) synthesis using
functional dependencies among items and (3) merging of object

level structures.

! Descriptive adequacy is understood as the precision with
which the data model describes the world it attempts to model.

7



The first category is a form of "statistical" view integration,
in which frequency information serves as a substitute for
cohesion or functional dependency of data items (Dyba, 1977,

Sheppard, 1977).

The second category builds database objects, i.e. relational
data structures, based on information on functional dependencies.
Proponents of this category can be found for instance in
Bernstein (1976), Raver and Hubbard (1977), Yao et al. (1982),
Casanova ahd Vidal (1983), and Biskup and Convent (1986,
1985) . Most of these approaches attempt to build databases
purely based on functional dependencies (and possibly other
forms of dependencies) and try to avoid the consideration of
the meaning of data objects as much as possible during
integration. Later, these approaches will be referred t; as

syntactic approaches.

The third group of approaches is probably best represented by
Batini et al. (for instance Batini and Lenzerini, 1984) and
Navathe et al. (for instance Navathe and Elmasri, 1986) . Both
techniques are based on the E-R model, enhanced by some
additional information (generalization/specialization). The
fact that these techniques operate on an object level does not

-imply that functional relationships are not relevant for them.



However, in E-R models, dependencies are represented in the

association of attributes to entities or relations.

Since the late seventies, the literature has moved away from
statistical approaches to view integration. The main problem
of statistical approaches is that they attempt to capture
dependency information between data items by means of relative
frequency of common use in applications or coexistence in the
same file structure. This substitute may often be correct,
since experienced file designers will have a good understanding
of which data items should belong together (see for instance
Weber, 1986 on "intuitive" normalization), but the technique
is inferior to ones that concentrate on the actual data
dependencies. Thus, within this research, the focus will be
on the latter two groups of integration methods only. For
these two groups, prototypical integration methods (together

with their data models) are presented in the following list.
SYNTACTIC (attribute-level) INTEGRATION
Based on Functional Dependencies only

* Martin (1983) - "Bubble Charting"
* Bernstein (1976) - Relational Model
* Yao et al. (1982) - Functional Data Model

* Raver and Hubbard (1977) - "Bubble Charting"



* Al-Fedaghi and Scheuerman (1981) - Relational Model
Based on FDs and other Dependencies

* Casanova and Vidal (1983) - Relational Model

* Biskup and Convent (1986) - Relational Model

SEMANTIC (object-level) INTEGRATION

* Batini et al. (1983) - Entity-Relationship Model

* Navathe et al. (1986)' - Entity-Category-
Relationship Model

* Mannino and Effelsberg (1984) - Generalization
Assertions

* Teory and Fry (1982) - Semantic Hierarchical Data

M.

Not all of these techniques shall be discussed in detail since
there exists considerable overlap among them. The following
techniques will be discussed: Martin, Bernstein, Yao et al.,

Casanova and Vidal, Navathe et al., Batini et al. Martin

' The method put forward by Navathe and others has gone
through various stages and has involved various researchers.
An earlier method is described by Navathe and Gadgil (1978) or
Navathe and Schkolnick (1978). Other versions include Navathe,
Elmasri, and Larson (1986). The method referenced here is the
latest published fornm. It has been extended into database
integration by Elmasri et al. (1986).

10



contributes a not particularly detailed, yet popular integration
method. Bernstein presents the first algorithmic and purely
syntactical view synthesis method. Casanova and Vidal introduce
the first syntactic integration method that includes a richer
set of dependencies. Navathe et al. put forward a semantic
integration method with a large set.of integration cases.
Finally, Batini et al. present the (semantic) integration

method that best deals with conflicting views.

11



2.2.1. Syntactic Approaches

Syntactic approaches are design methods in which
the view integration procedure does not rely on a designer's
understanding of the data during the integration process (nor
on "understanding” by the algorithm)!. Instead, the algorithms
reorganize the initial schema in a purely structural manner
independent of the meaning of objects or attributes involved,
once certain information regquirements about functional
dependencies are satisfied. These information requirements are
assumed to be satisfied at the outset of the integration

procedure. They are not part of the technique.

The syntactic approaches introduced below, give a complete
algorithm for view integration and show the "optimality"
(author's terminology) of the resulting design. Optimality
(Casanova and Vidal) is not a particularly well chosen term,
since the design is not optimal in all criteria a database
designer might think of. "Optimal" is meant as "achieving the
goals set for the design at the start of the integration process"
which in particular means the generation of a valid database,

i.e. one that satisfies all previously established integrity

' Ideally the techniques do not rely at all on the
designer's understanding. However, at least one method (Biskup
and Convent) consults the designer, when the integration
algorithm is in a deadlock. Other methods (e.g., Yao et al.)
require designer understanding for more complex integration
cases, such as removal of redundant functions.

12



constraints and is free of undesirable data dependencies. We
will call the resulting designs from now on "feasible" rather
than "optimal". Three main proponents of different syntactic
approaches are Bernstein (1976), Casanova and Vidal (1983), and
Biskup and Convent (1986). Two additional syntactic approach
shall also be mentioned in this context, although they differ
from the above three in not being as purely synthetic, not
providing a complete algorithm, and in using other data models
("bubble charts" (Martin) and the Functional Data Model (Yao et
al.)). All approaches, other than Biskup's and Convent's, will
bé discussed. Biskup and Convent's technique is rather similar
to Casanova's and Vidals. Hence, a separate discussion will not

be necessary.

Bernstein's approach does not particularly address the view
integration problem, but instead the problem of synthesizing a
minimal number of 3NF relations from a set of functional
dependencies. Nevertheless, its approach is applicable to view
integration, since the algorithm does not mind whether the schema
descriptions used for relation synthesis stem from one view or
from many views. However, the procedure has obviously no means
to unify conflicting perceptions of the same data. Contrary to
more recent integration approaches such as Casanova's and
Vidal's, Bernstein's method relies only on functional

dependencies to carry out the relation synthesis procedure.

13



Martin's approach, Canonical Synthesis, attempts to develop a
"canonical data representation"!. This method, like Bernstein's,
has no formal means for dealing with conflicts between views,
not even for naming conflicts. In addition it is much less

detailed and much less algorithmic than Bernstein's.

Casanova's and Vidal's technique assumes the existence of user
views and complete knowledge of dependencies (integrity
constraints) for the collection of user views. It can be
summarized by the following integration plan. Given a set of
user views and a set of integrity constraints, define as a valid
("proper") database scheme ( = global schema) one that satisfies
all desirable integrity constraints. Then apply an algorithm
that reorganizes the collection of user views into a valid schema
by removing all undesirable data dependencies through changes

in relation schemes.

Yao et al. require for their approach complete information on
entities ("entity nodes"), functional relationships between
entity nodes, plus assertions describing true facts about the
data model which are not represented in form of entity nodes or

relationships. All views are combined in one representation

' The notion of a canonical representation in data models
has been put forward by Raver and Hubbard (1977) and is used to
describe schemata which are redundancy-free (no nonessential
associations), complete, and correct. Thus a canonical synthesis
technique not only integrates user views, but can also extend
them to add necessary further details.

.14



which is thereafter subject to removal of redundant functions
and redundant nodes. A proof of correctness of the integration

result is not given for this approach.

One major limitation of the syntactic strategies, especially of
Casanova's and Vidal's, is their extensive information
requirements. They assume at least the availability of
information on functional, if not also on union functional
dependencies, inclusion and exclusion dependencies. It has to
be questioned whether it is feasible to generate this information
during the view integration process, and how reliable the
information will be. With respect to the amount of information,
one has to keep in mind that not only intra-view but also inter-
view constraints have to be defined. This requirement can
increase the number of constraints substantially, it also demands
from the designer the comparison of each relation scheme from
each view against all other relation schemes, to detect those
dependencies. Any incorrect assessment by the designer will

potentially result in an incorrect global schema.

A second limitation of these approaches is the restrictions they
place on the initial views to make the integration a computat-
ionally solvable problem (i.e. only functional dependencies on

the key for the initial collection of views).

15



A third limitation is caused by the purely syntactic treatment
of data dependencies. The procedures cannot differentiate
between dependencies that are of the same type and involve the
same attributes, even if their meanings are different. For
example, the functional dependency Employee# -> Department#
might in fact represent two different relationships, first,
every employee works for one particular department, and second,
every employee is located in one particular department. Thus,
while for example employée 6750 works for the information
systems department, he resides in the offices of the accbunting
department. This difference in roles (here, roles of department)
has to be incorporated into the attribute names, to allow the
syntactic approaches differentiate between the two relationships.
I.e., there has to exist a Located_in_Dept and a

Employed by Dept.

16



2.2.1.1. Bernstein's Relation Synthesis

This method is described in Bernstein (1976). An
implementation of Bernstein's algorithm can be found in Ceri and

Gottlob (1986).

The goal of Bernstein's method is the creation of a schema
containing the smallest number of 3NF relations for a given set
of functional dependencies. Since the procedure does not concern
itself with the origin of the functional dependencies, it does
not object to the fact that the set of dependencies is taken from
more than one schema. Therefore the method can be considered
a view integration procedure. The method not only provides a
synthesis algorithm, but also demonstrates that the set of
resulting relations is minimal and probably in 3NF. The creation
of 3NF relations is typically the goal and final outcome of a

decomposition process in which larger tables are split into

smaller redundance-free components (for example, Ullman, 1980
or Date, 1981). Bernstein, in contrast, generates 3NF relations

by means of composition. This makes Bernstein's approach a view

integration technique.

~—

The goal of Bernstein's integration procedure is to find the

17



smallest set of 3NF relations that incorporates all pre-defined

functional dependencies that have been defined.

The algorithm developed by Bernstein consists of three main
parts. The first part (involving steps 1 and 2 of "Algorithm
2", see below), has the purpose to generate a new set of
functional dependencies (FDs) from an arbitrary set of functional
dependencies characterizing the data relationships. These new
dependencies form the input to the synthesis part. Synthesis
(steps 3 and 4 in Algorithm 2) first partitions the set of FDs
into groups with identical left sides ' and then merges the FDs
in these groups. The last part of the procedure (steps 5 and
6 in Algorithm 2) constructs relations which are free of
transitive dependencies, based on the FDs synthesized in the

previous steps.

Algorithm 22

(1) Elimination of extraneous attributes to produce a
set F' of functional dependencies.
(2) Finding of a non-redundant covering C for the set

F' of functional dependencies.

! "Left side" means the set of determining attributes. 1In
contrast, the "right side" consists of the determined attributes.

18



(3) - Partitioning of the covering C_into groups of

functional dependencies with identical left sides.

(4) Merging of equivalent keys.
(5) Elimination of transitive dependendies.
(6) Construction of relations.

Bernstein's approach does not differentiate among different cases
of integration, based on different dependencies within the data
at hand. All functional dependencies are treated by the same
integration procedure. This is a positive feature of Bernstein's
approach, since it simplifies the procedure. In addition, this
approach has less information requirements than the two following
ones, which also require information on other forms of

dependencies.

One major problem of the technique, pointed out by Bernstein
himself, is the purely syntactic character of the approach which
is the source for the "uniqueness assumption”. The uniqueness
assumption says that only one functional dependency can exist
between any two identical sets of attributes. In other words,
if two FDs existed, because of a difference in roles of either
set of attributes, the technique were not able to pick up the
difference. in order to allow the technique to differentiate
among different roles, role names have to be introduced as

attribute names.

19



This point leads to another shortcoming of the technique, namely
the significance of names. The purely syntactic technique
operates on attribute names, being therefore subject to all
problems caused by attribute name synonymy and homonymy.
However, the technique was not conceived as a view integration
technique, which justifies this weakness to some extent.
Furthermore, Bernstein's apprqach does not rule out the
development of a pre-integration procedure which could take care
of such conflicts and then supply the integration procedure with

conflict-free views.

20



2.2.1.2. Martin's Canonical Synthesis
See for example Martin (1983).

Canonical Synthesis is Martin's approach to view integration.
Martin integrates views by first depicting all functional
dependencies between data elements (attributes) and then
overlaying any two views to generate a third new one. The main
focus of his approach is on the elimination of transitive
dependencies generated by the integration process. Martin
stresses the use of bubble charts, showing data items

(attributes) and their functional dependencies.

The procedure integrates views pairwise and consists of seven

integration steps for the logical database design.

1. The designer is asked to eliminate any duplicate

functional dependencies between any two data items.

2. The designer has to identify candidate keys.

3. All transitive dependencies have to be removed.
The purpose of this step is to find and to remove
any hidden primary keys, and finally to achieve a

3NF data structure.

21



4. Introduce so called "“concatenated keys",. The
purpose of this step is to extend the data model to
allow the representation of data items that are
dependent on the key of more than one already
existing data structure, i.e. Price is dependent on
Supplier# and Part#.

5. Allocate intersection data to data items. This
step deals with relationships that have attributes.
If relationships have attributes, they are transformed
into record structures '.

6. Remove M:N relationships?.

7. The technique transforms structures in which one
attribute is owned by two or more primary keys. If
such an "intersecting" attribute exists, the data
structure is changed to give the attribute a simple

owner.

Martin's method has three major limitations. First, the method

is not concerned with the removal of conflicts between views,

! These record structures are similar to entities. Yet
Martin does not use the terms entity or relationship to describe
data constructs.

2 Martin suggests that M:N relationships in database,
aside from being supported by only few DBMSs, are an unstable
data construct, one that is typically replaced by two 1:M
structures as part of the design or implementation process.
His technique therefore disintegrates any M:N structure into
1:M structures.

22



and second, it uses attributes as the atomic building blocks
of the global schema. Third, the "algorithm" presented is
not precise and thus does no, contrary to Martin's statement,

allow immediate automation of the process.

Conflict resolution is mentioned only briefly
(Martin, 1983, p. 265) referring to the problem of homonyms.
All other view conflict possibilities are ignored. For example,
Martin is not concerned about relationships or entities modelled
incorrectly as attributes. A consequence of neglecting conflict
resolution is that Martin's approach cannot be automated,
given that conflicts have to be expected in real world
applications. Martin has to assume that all conflicts were
eliminated by the database designer prior to the integration
process. Thus, like Bernstein's method, this one is a view

merging procedure, but not a conflict resolution procedure.

The use of attributes as the atomic building blocks
generate at least two problems. First, the modeling process
based on attributes operates at a very high level of detail.
In fact, it might be viewed strictly as a bottom-up approach
to database design. The detail in view descriptions creates
large amounts of information the designer has to process.
Even with a small number of views, an evaluation of the resulting
schema becomes very complex and very difficult in terms of

redundancies (transitive dependencies). The entity-relationship

23



approach, in comparison, allows to hide part of this information,
namely associationé between an entity and its attributes. 1In
the E-R model, only entities or relationships are able to form
relationships to other entities or relationships. In Martin's
model, every attribute can be related to any other attribute,
prior to redundancy‘elimination{ Secondly, the synthesis of
attributes to higher level objects is not based on the user's
semantic objects (objects meaningful to the user), but instead
on functional dependency. The resulting higher level data
structures (records, segments,‘or relations) are therefore
expected to have less meaning for the user than data structures
based on objects the user choosés to describe his data world
(e.g. entity MANAGER). In other words, the results of canonical
synthesis may lose some of its»descriptive adequacy of real world

objects and associations.

This comment is not meant to imply that database design based
on functional dependencies is wrong. Yet, the aggregates should
represent the real world view as faithfully as possible. There
exists more than one possible way to describe a real world object
in the data model, canonical synthesis might not allow a
representative of this object in the form the user would prefer

(i.e., semantic relativism, Brodie, 1984).

Finally, due to its lack of precision, this technique should only

24



be viewed as a guideline to integration. It still will require

substantial designer interaction and designer insight.

2.2.1.3. Casanova's and Vidal's Method

See Casanova and Vidal (1983) for a description of
the method, as well as Bishop and Convent (1986, 1985) for

extensions.

Casanova's view integration method is a formal approach to view
integration based on four types of dependencies existent in a
global database schema. Goal of the integration process is the
generation of an "optimised" (feasible) schema, optimised with
respect to elimination of redundant information and reduction
in size, as measured by number of relations ' in the global

schenma.

The four types of dependencies (also referred to as integrity

constraints) in this approach are: functional dependencies (FDs),

' In casanova's language, which is based on Ullman (1980,
p. 75), a “relation scheme" refers to the structure of a
relational database object, while a relation is an instance of
that structure, that is the actual data. Ullman defines relation
scheme as the list of attributes for a relation.

25



inclusion dependencies (INDs), exclusion dependencies (EXDs),

and union functional dependencies (UFDs).

A functional dependency fd, expressed as R:X->Y, is valid iff
for any t,u€ r, if t[X]=u[X] then t[Y]=u[Y]) !'. For example,
in a relation scheme STUDENT[g;QQﬁ,Name],‘if t[X] and u[(X) are
identical student numbers, they both have to identify the exact

same student name.

An inclusion dependency ind is expressed as R1l[X] c R2[fﬁ,
with X and Y being sequences of attributes of equal length. This
dependency is valid iff r1({X] is a subset of r2[Y). For example,
UNDERGRAD[{Stud#] ¢ STUDENT[Stud#], means that the set of

undergrad students is a subset of the set of all students.

An exclusion dependency exd is expressed as R1[X] | R2[Y], X.and
Y again being sequences of attributes of same length. This
dependency 1is valid, iff ril[X] and r2{Y) are disjoint. For
example, the set of graduate students and the set of undergrad

students would be such disjoint sets of students.

A union functional dependency is a functional dependency

stretching over the boundaries of one relation. It is expressed

! R refers to a relation scheme, r is an instance of that
relation scheme, X and Y are sets of one or more attributes, and
t and u are tuples.

26



in the form <Ril:X1—>Y1; ee+« , Rim:Xm->Ym>, as a set of
functional dependencies over relation schemes Ri, where all X
and Y are sequences of attributes of same length. A UFD is
valid, iff a FD that holds in one relation holds in all relations
included in the UFD. For example, a UFD <STUDENT:Stud#->Name,
UNDERGRAD: Stud#->Uname> means that a student number '83959818'
occurring in STUDENT will identify the same student name 'Jones'

as the student number '83959818' in UNDERGRAD.

The last example gives some indication of the purpose of the
above dependencies. They will be used to identify and eliminate
séurces of redundancies. Given complete information on the above
dependencies, a procedure is defined that will transform the
combination of all views intd an integrated global schema.

Complete information on dependencies necessitates complete
information on all attributes in all relations of all views, plus
complete information on domains of attributes. Given this
information, the problem of homonymy or synonymy does not arise,
because the names of relations or attributes are almost
irrelevant. All the above information is assumed to be
unambiguous. In other words, there' will be for instance no
disputes between different views concerning dependencies or
domains of attributes. Hence, conflicts are ruled out by

definition.

27



A view integration based on Casanova's and Vidal's method
involves the following steps. First, for every view, define the
above described dependencies. Second, combine the views by
lumping them together and by defining additional constraints of
the above types, to describe the relationships between the
elements (relations) of different views. Third, integrate
("optimize") this schema by removing redundancies in the.

combination of views.

The first major problem of this integration method, as stated
by the authors, is that it is computationally hard. The
problem is PSPACE complete (it fits into finite computer
memory space, but can run indefinitely). Casanova points out
that the optimization problem may not be decidable, eVen if
nothing but FDs and INDs are considered (see also Casanova and

Fagin, 1982).

Another major broblem concerns the information requirements of
this technique. The approach requires large amounts of
‘ambiguity-free information. Since it cannot deal with partially
incorrect user views (wrong perceptions of data), it cannot be
used to resolve conflicts caused by inconsistencies in user

views.

A further limitation on Casanova's and Vidal's approach results

28



from its applicability to only so called "restricted" schemas.

The following restrictions apply to the input of the view

integration procedure.

(1)

(2)

(3)

(4)

(5)

All functional dependencies apply only to the
(single) key. Thus, there are no transitive
dependencies existing.

Any inclusion dependency applies only to the ﬁey
attributes of the relations involved.

Any union functional dependency must apply to the key
attributes (as the left argument of the dependency) '

for all relations involved and can only describe a

dependency of a single attribute on the key (" ...
if
<Ril:X1:->Y¥1, ... ,Rim:Xm->Ym> is in €, then

X1=...=Xm=Kil=...Kim and |Yj|=1, Je[l,m]").

Any attribute of any relation can appear in at most
one union functional dependency (" ... for any Ries
and any attribute A of Ri, A occurs in at most one
UFD in C"). Note that this restriction is violated
in Casanova's example. The restriction may only
refer to dependent attributes, not to key attributes.
All exclusion dependencies apply to only key

attributes.

29



Especially restriction (4) seems like a significant limitation
to the integration problem. Real world databases will have to

serve as an indicator of how strong this limitation is.

2.2.1.4. Functional Data Model Based Integration

For references to the method, see Yao, Waddle and

Housel (1985, 1982).

In contrast to many other syntactic integration methods, Yao et
al. present.a‘view integration approach based on Shipman's (1979)
Functional Data Model. Within the Functional Data Model (FDM),
data can be described in form of two constructs, nodes (to
represent entities and value sets) and functional relationships.
Nodes can be either simple nodes (value sets), or tuple nodes
(cartesian product of n>1 value sets). Functions, mappings from
a domain into a range, can be functional (n:l), one-to-one, or

identity (1:1 mapping into identical value) and can be partial

30



(lower degree 0), or total (lower degree 1). Assertions are
‘added as a further means for describing data, to increase the
descriptive power of the model. Assertions describe true facts

about data, i.e. that one set of data is the subset of another.

Views are depicted in form of nodes and relationship constructs
(in a graphical representation). Therefore, complete information
on entities and attributes, their domains and their relationships
has to be available. Aside from this information, the approach
also compiles information on the queries to be issued on the
database. Database transactions, represented by means of a
Transaction Specification Language (TASL) are kept together with
the views and are updated whenever view updates require query
modifications. One further piece of information is collected,
namely information describing the physical data in terms of
quantities of members of a set, i.e. the number of students,
professors, courses in a university database. Quantity -
information is later used in heuristics to identify non-redundaht
functions in the model. The treatment of transaction and
quantity information will not be subject of the following

discussion.

The technique incorporates two integration operations: the

removal of redundant nodes, and the removal of redundant

31



functions. According to Batini et al. (1986, p. 343), Yao's
technique performs view integration on all views in parallel
~ (Yone-shot n-ary"). However, this is true for the integration
of redundant functions only. Integration of nodes is performed

on a single pair of nodes at any point in time.

A node is redundant if it represents the "same set of values®
as some other node. Note that the "same set of wvalues" (Yao
et al., 1985, p. 338) does not mean the two sets are in fact
identical. It is sufficient that one is a subset of the other
or that they are overlapping. If two nodes represent the same
set of values, they will be merged. The integration can only
be performed if any existing functions between the two nodes
are identity functions. Nodes A and B are merged by creating
a new node C which is the union of A and B. All functions
that had A or B as domain or range will be redefined to have C

as domain or range.

In addition, if A and B are not identical, a separation node
SEP will be created that stores information to differentiate
between the two original nodes, given the new node C. If a
separation node has to be created; also a new functional
dependency will be created with C as its domain and SEP as its
range. A separation node can be viewed as a set of indices
that indicates, by means of pointers to the new combined set

C, the origin of each value in the new set.

32



The second integration operation removes redundant functions.
The goal is to remove a functional relationship A->C, if it can
be replaced by other functions, i.e. the two functions A->B and

B->C.

The authors point out that the redundancy of a function can only
be decided upon analysis of data semantics.. In other words, the
meaning of functional relationships has to be known to decide
on its redundancy. This is one of the criteria which
differentiates Yao's et al.'s technique from the previously

discussed completely syntactic approaches.

The method proposed by Yao et al. has a number of limitations.
First, the method is incomplete. View integration is restricted
to only three cases of node integration and one case of function
integration. Hence, the technique will not be able to adequately
represent all possible types of set relationships between view
objects (for example, two nodes are not overlapping but have a

common superset).

A second weakness concerns the integration procedure. The
procedure is not defined exactly. For example, does function

removal always precede node removal? Does the procedure perform

33



node merges always on single pairs of nodes, or on an arbitrary

number of nodes at the same time.

Thirdly, the technique does not show the transformation from FDM
into database objects, i.e. relations, or more likely, network

constructs.

Fourthly, use of physical database information in logical
database design is not particularly useful (i.e., record

quantities).

Finally, the method has no means for dealing with conflicting

~information, i.e. with naming conflicts or with type conflicts.

2.2.2. Semantic View Integration Approaches Based on the

E-R Model
Semantic approaches use data objects that are

meaningful to the user. Since they require a higher level of

understanding of the meaning of objects, . these approaches are

34



typically interactive, that is, they demand designer intervention
during the integration process. Designer intervention is for
instance necessary to settle certain naming or type conflicts,
and even more important, to interpret the meaning of data

objects or object relationships.

Since semantic integrétion approaches focus more on the meaning
of the data objects than on only structural information, the data
models used to represent views have to be able to capture data
semantics. In this section, integration techniques based on the
Entity-Relationship (E-R) model, will be introduced. The E-R
model itself is not particularly rich in its ability to represent
data semantics. Therefore, the methods discussed below (both
Navathe et al. and Batini et al.) use an extended E-R model which
for instance provides the capability to model categories which

are generalizations of entities'.

Inﬁeractive approaches take advantage of having access to the
database designer during the integration process for conflict
settlement or information clarification. In consequence, they
permit the integration of less restricted data models and to
perform a larger portion of the integration process i.e. include
conflict analysis. On the other hand, the reported interactive

approaches typically do not include a complete

' Not all integration methods representing data semantics
have to be based on the E-R model. For example, Teory and Fry
(1982) developed a method based on a semantic hierarchical model.

35



algorithm for the integrationvprocess and do not exactly
specify the restrictions placed on the data model (such as

consistency).

2.2.2.1. Navathe's and Elmasri's Approach

Description of various aspects of this method can
be found in Navathe, Elmasri, Larson (IEEE 1986), Navathe and
Elmasri (IEEE 1984), Elmasri and Navathe (1986), Elmasri et al.

(1987).

Navathe's and Elmasri's approach concentrates on the idea of
object class integration. The entity-relationship model is
extended to an éntity—category—relationship model where a
category refers to a class or an object type (common role or
subclass). The atomic elements of this approach are entities,

categories, relationships, and attributes.

Two types of categories are used, common role categories and
subclass categories. A common role category is one that
represents a common property of two or more otherwise different
sets, i.e. the category OWNER represents a common role for

both PERSON and COMPANY, who may both be owners of a vehicle.

36



A subclass is a specialization of an entity set, i.e. the VEHICLE
entity set has subclasses CAR and TRUCK. Common role and

specialization will have an impact on inheritance of attributes.

The procedure consists of three steps: pre-integration, object

integration and relationship integration.

Within pre-integration three tasks are performed. First, naming
correspondences are established, resolving the problem of inter-
view homonymy and synonymy. Synonymy and homonymy refer to the
problem 6f different names designating the same real world object
or identical names designating different real world objects
(concepts '). The second task is the identification of candidate
keys for object classes. The third task is the definition of
domains for object classes. Domains play an important role in
Navathe's technique. The purpose of defining them within the
pre-integration step is to gather information for the recognition
of identical or related real world objects. I.e. if two
objects have the same domain, it may be suspected that these

objects are identical.

Integration of objects (entities or categories) is the second

phase of Navathe's scheme. In this phase, information on

! Navathe uses the term "concept" to refer to a real world
object, while Batini uses the term "concept" for a data model
element such as an entity, attribute or relationship.

37



domains is used to determine similarities or dissimilarities
among view objects. Navathe analyses the following cases:
identical domains, contained domains, overlapping domains,and

disjoint domains.
INTEGRATION OF OBJECTS

The integration of relationships follows the object integration
step. Navathe points out that for relationship integration
both structural and semantic considerations are important.
Relationships are classified according to three criteria:
degree (which is not the mapping ratio but the number of
objects involved in the view (construct)), roles of object
classes involved in the relationship, and structural constraints,

such as mapping ratios.

The relationship integration process evaluates the above
information in the following sequence of importance: degree
information (same/different degree), role information
(same/different roles), and structural vs. domain constraints

resulting in 8 integration cases.

The main points to be learnt from Navathe's approach are the
strength of domain information and category information for
view integration, the possibility of simultaneous n-object

integration (in some instances), and the relevance of particular

38



pieces of information during the relationship integration

phase.

2.2.2,2. Batini's Approach

For references see for instance Batini et al. (1984a,

1983), or Batini and Lenzerini (1983).

Batinit's approach performs integration on the atomic elements
of the entity-relationship model, entities, relationships, and
attributes. View integration is presented as an iterative
process which aggregates views pairwise. Whenever conflicts
arise between the two views, a conflict resolution process is
invoked and carried out interactively with a database designer.
The technique starts out with a name conflict analysis,
identifying intra-view homonyms and synonyms and removing
them. These can be naming conflicts for the same concepts
(e.g. entity) or for different concepts (e.g. entity vs.
relationship). This step is followed by a type conflict
analysis which results in the same real world object being
represented by the same concept in different views (e.g.
MARRIAGE always an entity) and in an adjustment of cardinalities
(mapping ratios) and optionalities of attributes and

relationships in different views to make them identical.

39



Finally, merging and redundancy analysis superimposes the

adjusted views and removes redundancies such as redundant

cycles'.

Batini's method builds a global schema iteratively , integrating
two views into a temporary global schema and adding additional
views to this schema until all views have been consolidated.
The two main elements of the technique are Conflict Analysis
(together with merging) and Redundancy Analysis, with the main
focus on Conflict Analysis. Unlike other authors such as
Martin, Batini et al. address the problem of inconsistencies
between different users' perceptions of the world and different

naming conventions systematically (but not completely).

The goal of Conflict Analysis is to detect and solve all existing
conflicts between two representations (views) of the same classes
of objects. Two types of conflicts are tackled, naming conflicts
and type conflicts. Naming conflicts arise if the same data
model concept (entity, attribute-or relationship) is labelled
differently (synonyms), or if‘different concepts are labelled
with the same name (homonyms). Type conflict analysis determines
whether objects have compatible concepts (typés) and adjusts them

if necessary.

' The technique also includes quantitative and procedural
aspects to arrive at a procedurally more adequate schema. where
frequent database operations can be carried out more efficient-

ly.
40



To define homonymy and synonymy, Batini et al. refer to the view
representation of real world objects. If a view S1 represents
two different real world objects with the same concept (name),
this is called an intra-view homonym '. Accordingly, synonymy
refers to the same real world object being represented by two
different concepts within one view. Given these view
inconsistencies, Batini identifies a number of possible scenarios
and solution alternatives. 1Interesting in Batini's procedure
is the focus on only intra-view inconsistencies. Inter-view

inconsistencies are, at least in this step, ignored.

A second step in the naming conflict analysis is the so called
analysis of concept likeness or unlikeness. The attempt in this
step is to find out whether a concept that has the same name in
two different views possesses different "neighbor properties"
(concept unlikeness), or whether concepts have different names

but some common neighbor properties (concept likeness).

The next step in Batini's approach is the Type Conflicts
Analysis. Its purpose is to assign the same concepts to
identical real world objects in different views. I.e. if

MARRIAGE were a relationship in one view, but an entity in the

' Usually one would expect inter-view homonymy to be the
more important issue, two views supplying the same name to two
different real world objects.

41



other one, at least one of these represéﬁtations would be
change to let MARRIAGE be represented by only one concept.
The conversion of concepts is restricted to only atomic concepts
(entity, attribute relation) and results in two views using

same names and same concepts to describe real world objects.

The second part of type conflict analysis is compatibility
checking, a process which analyzes, among the now quite similar
views, whether cardinalities (mapping ratios) are identical.
Compatibility checking also discovers differences in the
optionality of attributes and relationships. According to
Batini et al., differences in cardinalities point to errors in

one of the views, or alternatively to a containment relationship.

Once all conflicts have been resolved, Merging and Redundaﬁcy
Analysis follow. In merging, the conflict-free views are
superimposed. Redundancy analysis removes redundant alternate
paths between objects. Redundancies can occur because multiple

paths are semantically equivalent.

Batini's technique concludes with an update of the individual
views to make them consistent with the newly generated global
schema and with an alteration of the global schema to include

procedural and quantitative aspects.

42



Batini's approach provides a procedure for the integration
process together with some exact conflict resolution algorithms,
yet, based on its description in the literature, it cannot be
automated. The method does not clarify when a particular
integration rule has to be applied, or which information has

to be available (Navathe is more exact in this matter, basing

his resolution scheme on information on class membership).

2.3. View Integration Cases

The investigation of the above view integration techniques found
considerable overlap among techniques with respect to their;
integration capabilities. When techniques differ, they typically
deviate in their conflict resolution capabilities and in aspects
of the integration method related to their individual data
models. The more recent techniques typically provide a richer
set of cases for conflict resolution. Consensus exists with
respect to the integration cases for sets (of entities or
relationships) whose connection to each other is known, as

represented in the following eight cases.

43



Object Class Integration:

(1) Identical object classes

(2) Contained object class

(3) Overlapping object classes with a common superset
(4) Disjoint object classes with a common superset

Relationship Integration:

(5) Relationship identity

(6) Relationship containment

(7) Relationship overlap with a common superset
relationship

(8) Disjoint relationships with a common superset
relationship

The table below depicts which of the above cases are supportéd
by the techniques presented in the chapter ('y' indicates the
technique's ability to deal with the case, a blank indicates that

no reference has been made to how this case would be solved).

Cases
Technique 1 2 3 4 5 6 7 8
Martin cases do not apply
Bernstein cases do not apply
Casanova and Vvidal Yy Yy Yy 0% Yy Y b4 )'4
Yao et al. Yy Y Y
Navathe et al. Y y Y Yy b Y Yy y
Batini et al. Yy Yy y

44



2.4. Conclusion

This section shall point out the comparative strengths and

weaknesses of syntactic and semantic integration approaches.

syntactic approaches

Restricted Data Models

Syntactic approaches place considerable restrictions on the data
model with which views are represented. For example, Biskup's
and Convent's model is restricted to only proper database schemes
which impose restrictions on the fields to which constraints can
apply. Typically, all dependencies have to involve the key or
a key attribute. Bernstein refers in his technique to the
uniqueness assumption which dictates that only one functional
dependency may exist between any pair of fields. He also points
out that this restriction may lead to the necessity to bury

semantics in data item names’.

! For instance that two fields Emp# and Dept# may be
related by the functional dependency "employee is located in
department" or by another dependency "employee is employed by
department". Syntactic models require a renaming of at least
one of the Dept# fields in this case.

45



No Conflict Analysis

The syntactic approaches operate under the assumption that the
data required for integration is complete and correct.
Therefore, conflict analysis is not part of the techniques.
The techniques can deal with simple conflicts, for instance
with synonymy, if identity is established by means of

constraints.

No Ability to Deal with Incomplete or Inconsistent Data

Again, the ability to deal with incomplete or inconsistent
data is outside the scope of syntactic integration techniques.
At least one.technique, Biskup's and Convent's, will, when an
unresolvable problem is encountered, interact with the designer
to resolve the problem in order to allow a continuation of the
integration process. However, this form of exception handling
is not a planned form of conflict analysis, but a measure to
let the technique continue when none of the integration cases

is considered performable by the technique.

Extensive Information Requirements

The major information requirement of syntactic approaches is
knowledge of dependencies between data items. Since all
dependencies are defined on the attribute level, this information
requirement exceeds that of semantic approaches which represent

dependencies on the entity level only. Furthermore, the

46



requirement to also define inter-view constraints can lead to

an exponential explosion of constraint definitions.

Computationally Hard |
Casanova and Vidal and Biskup and Convent point out the

computational requirements of their techniques.

Provide Integration Algorithm

One major advantage of syntactic approaches is the completeness
of procedures. The approaches, instead of outlining only
particular integration cases, typically present a procedure
that upon termination has produced an integrated database

schema.

Show Optimality (Feasibility) of Design
Another major advantage of syntactic approaches is their ex-
ante specification of design objectives and their proof of

achievement of these design objectives.

Semantic_ approaches

Require Designer Interaction

47



Based on the fact that semantic approaches operate on objects
meaningful to users but often not meaningful to the integration
mechanism, these approaches require designer interaction for

interpretation of objects and for conflict analysis.

Cover Larger Portion of the Integration Process

In addition to the operations contained in syntactic approaches,
semantic approaches include also conflict analysis procedures,
and pre-integration procedures (see Batini et al., 1986) which

are concerned, among other factors, with data gathering.

State/Solve More Integration Cases

Semantic techniques identify and solve more integration cases
since they include not only the simple eight cases based on
set inter-relationships as explained above, but also caseé

involving conflicts.

Allow Less Restricted Data Models (i.e., non~similar keys)

Semantic methods perform integration based on the ﬁeaning of
objects, not (exclusively) based on structural similarities.
Therefore, a semantic approach can possibly integrate two
object classes in which one is a subsetAof‘the other, even

when the object classes have different keys.

Less Complex

48



Semantic approaches simplify the integration process in two
ways. First, the amount of detail is much less than that of
syntactic approaches, since the focus 1s on entity-level
items. Second, semantic data items are more meaningful to
humans than arbitrary collections of fields held together only

by dependencies.

Deal with Database Objects Meaningful to Designers ahd Users

The outcome of the design process also is more profound for
the database user, since the database objects are meaningful
to database users. A syntactic integration, based purely on
dependencies, may derive database objects that are not suggestive
to the user. One of Batini et al.'s (1986) criteria for

goodness of a design is understandability.

Do not Provide Complete Procedures

One of the major weaknesses of the semantic approaches is the
limited description of complete procedures for integration.
Even though a variety of integration cases is outlined, the
description of sequences of integration steps and possible re-
iterations is, if not missing, at least very terse. In addition,
when dealing with conflict analysis, semantic approaches afe
not complete in their analysis, nor do they show the missing

elements of the analysis.

Do not Present Proof of Optimality of the Design

49



A consequence of the incompleteness of semantic integration
procedures is their inability to demonstrate the optimality of
the final design. No semantic procedure states a point at
which the procedure terminates and has achieved a final design.
Also, the objectives of semantic approaches involve the criterion
of understandability which cannot be measured as easily as,
for instance, adherence to normal forms. Yet, even for the
criteria that can be shown more easily, semantic approaches

typically do not provide any proof of optimality or feasibility.

Overall, conflict analysis and resolution is the common weakv

point in all integration techniques. Three causes of this

deficiency are:

(1) syntactic techniques cannot deal with conflict
analysis at all. They ignore conflicts in general.

(2) if conflict analysis is done, it is often done
unsystematically. Batini et al. (1983) perform the
most thorough analysis by separating naming conflicts
from type conflicts and then analyzing them
separately. This analysis is still not sufficient

to identify, let alone solve, all possible causes of

conflicts.
(3) conflict analysis is biased by information
requirements considerations. Only cases are

considered for which information is easily available

(i.e. mapping ratios), which are most prominent (i.e.

50



5ynonyms), or which are of particular concern due to
the data model chosen (i.e. semantic relativism, or
mapping ratios). In contrast, a more systematic
procedure should be aware of all possible conflict
cases and then should determine the information
requirements to solve them. Thus, even if the
technique is not able to resolve all conflicts due
to lack of information, it is at least aware of the
possibility of existence of a certain conflict, and

thus of its own limitations!

Batini et al. (1986) summarize the lack of research in the

area of conflict analysis as follows:
... Simple renaming operations are used
for solving naming conflicts by most
methodologies. With regard to other
types of conflicts, the methodolégies do
not spell out formally how the resolution
process is carried out; however,_an
indication is given in several of them
as to how one should proceed. ... (P. 348)

And further:
... It is interesting to note that among
the methodologies surveyed, none provide
an énalysis or proof of the completeness

of the schema transformation operations

51



from the standpoint of being able to
resolve any type of conflict that can

arise. ... (ibid.)

The solution to these problems will therefore form the core of

this research project.

52



3. SYSTEM FOR VIEW INTEGRATION

3.1. Research Question and Contribution to Knowledge

Research question 1:

1.1 Can a view integration process be
formalized which transforms any collection
of conflicting views into a complete and
consistent global schema?

1.2 Which conflict cases have to be solved .

in the process?

The purpose of this research question is to solve the conflict
analysis problem, initially neglecting information requirements.
Assuming sufficient information, a mechanism is to be developed
that allows the detection and solution of all view conflicts.
The view integration mechanism shall be able to convert a
collection of views into a complete and consistent global
schema, using the previously introduced group of 8 simple
integration cases for set-~subset relationships, as well as

others to be defined later.

Based on the sufficient information assumption, conflict cases

can be described and solved without concern for the difficulty

53



of daﬁa gathering. Instead of mixing the conflict problem
with the information requirements problem, question 1 deals

only with the former one.

The first step in answering this research question will be the

identification and solution of a complete set of conflict

cases. The second step will focus on the development of a
procedure to carry out the integration, based on the set of

cases.
Research question 2:

2.1 What information can be used for the
integration of user views into a global
database schema when the necessary
information is not explicitly available?

2.2 How can this information be gathered in
a process that limits designer

interrogation to a feasible level?

The basis for the second question is the assumption that in all
practical situations the necessary information about views is
not unavailable, or too difficult or too costly to gather.

Therefore, even though the answer to question 1 reveals which
information is necessary to perform view integration, all this

information cannot be expected to be present. Hence, substitutes

54



have to be found for the missing information; substitutes that
can be either known by the program (program's knowledge base)
or which can be easily gathered through a minimum of interaction

with the database designer.

The term "substitutes" may be better phrased as "operationaliz-
ations" bf information on some database concept. For example,
given sufficient information, the system will know that two
relationships have identical meaning, even if their names
differ. A'system with insufficient information has to rely on
operationalizations of the "meaning” concept to assess the
ideﬁtity of such relationships. Domain identity and identity

of neighbour entities may be such operationalizations.

The intention behind the second question is not to find "tricks"
to solve the limited information problem, but to identify
substitute information; information items that allow the
assessment of concepts such as "meaning", which are difficult
to grasp by a computer. The knowledge of these substitutes
will teach us.also about alternative informétion requirements

of data modelling techniques.

Even though availability of integration information is an
important concern, the apparent lack of substitute information
should not limit the comprehensiveness of the integration

mechanism. Conflict analysis, at least in principle, should

55



not be based on the convenience with which relevant information
items can be produced. On the contrary, question 2 should
"ideally attempt to find information sources for all requirements
‘raised in question 1. In other words, question 1 aims at
stating and solving the integration problem in a sufficient
information environment, question 2 aims at solving that

integration problem in a limited information environment.

In order to decide on the best information substitute in the
limited information environment, questions have to be raised
on the suitability of certain pieces of information. The
following list gives suggestions the selection should be based
on. The term "concept" refers to the information concept to

be used as a substitute:

1. how well does the concept represent the
underlying information that is necessary
for database design?

2, when does the concept fail as a surrogate
for the underlying information?

3. can the user/database designer provide
the information, or can it be gathered
from some other source?

4. how easy can the information be gathered

during the integration process?

56



The last point brings up the issue of developing a process for
view integration which requires the least amount of interaction
by using as much inferred information as possible. Given
sufficient information, designer interaction is ideally not
necessary '. Given limited information, designer interaction
will be necessary. Therefore, a process developed to answer
research question 1 may require redesign to increase its
usefulness. For example, a useful design change would be a
modification that enabled the technique to apply previously
gathered information to later stages of the integration process.
One has to keep in mind that a program will quickly lose its
appeal as a productivity tool, if it repeately asks the designer
trivial questions. Such redesign does not change the integration
cases, but the sequence of the analysis, as will be demonstratéd

later in the context of heuristics.

So, while the primary interest within this research is the
discovery of an exhaustive set of conflict cases and resolution
principles, the secondary interest is the development of an
efficient integration procedure through choice of surrogates for

certain pieces of information and through choice of a

' The integration mechanism which assumes information
availability is implemented in form of a programmed procedure
that directs all questions concerning information requirements
back to the designer (user of the mechanism).

57



sequence that allows to make inferences from the data already

gathered.

Contribution to Knowledge:

A main result of the study is prescriptive knowledge, knowledge
on how view integration should be carried out. The starting
point for this knowledge is the set of integration cases
identified by the consensus of previous integration approaches.
This research develops a systematic framework which encompasses
the ayailable integration knowledge (see chapter 2) as well as
a set of additional cases for conflicting views. The research

also demonstrates the framework's completeness.

Another result of the study is a set of heuristics for efficient
execution of the integration process with limited information.
The assumptions underlying these heuristics will be clearly
stated. For example, suppose, the following heuristic is
implemented. "IF object A is identical to object B and object
A will have the same construct (i.e., be both entities).
Heuristics are accompanied by explanations concerning their

generalizability and effects of their failure.

Prescriptive knowledge encompasses knowledge on integration

laws and integration process rules while descriptive knowledge

58



encompasses process and information substitution rules. At
the end, this research presents a set of information requirements
and a set of integration rules which together are sufficient
to perform the integration process including conflict resolution

as well as an efficient integration process.

Another contribution to knowledge can be derived from this
research. It is an extension of the relational data model
regarding data semantics. It is well known that the relational
data model in its current form is not well suited for capturing
data semantics. One step towards capturing data semantics is
the data dictionary which keeps information on database items,
either in computer or human interpretable form, i.e. on data
types, or the meaning of the data in the relation tuples. A
large amount of the dictionary information can be generated,
Virtually effort-free, as part of the design process. Thus,
the outcome of the design process may not‘only be set of
relations, but also a data dictionary. The view integration
approach suggests information that should be captured in data
dictionaries but has not been captured yet. This information
may include data concerning the meaning of database objects.
Future database management systems could have facilities to
interpret this data in order to support the users and the
system itself, for instance to improve the integrity of ﬁhe
database (fully integrated semantic dictionary) or at 1eas£_to

improve user understanding of database data. For example, the

59



database could explain to the user that MANUFACTURER is a
subclass of SUPPLIER which supplies parts and also manufactures
these parts or that SUPPLIER is a person or organization that
in the present is supplying parts or in the past has been

supplying parts.

3.2. Approach to the Problem

3.2.1. Ooverview

The problem solving approach chosen for this research
is determined by the 1ill-structured nature of the view
ihtegration process and the previous research in the area.
Previous research has identified several conflict cases and
their solutions without assuring us that the problem has been
solved in its entirety. With the first research question, the
attempt is made to develop a complete conflict resolution
method. This task is simplified by the information availability
assumption. To answer this research question, an analytical

problem solving approach was chosen. This approach identifies

60



all possible conflict cases for any pair of objects' from
different views and shows that the list of conflict cases is
complete. The list contains 17 general conflict cases with

various subcases.

Completeness has to be shown for this list. The demonstration
of completeness rests on the assumption that all criteria which
differentiate any two views or parts thereof (i.e. different
names for the same object type, different meaning of two object
types) have been identified here. Once all criteria are known
by which objects can be distinguished, all possible combinations
of criteria can be easily generated. The latter part of the
argument has to justify why some of the possible combinations
are irrelevant or why they are similar to other, already

identified ones.

3.2.2. Outline of the Problem with Available Information

Even though some of the previous integration
approaches have dealt with the conflict analysis (conflict

recognition) problem in a systematic manner, their conflict

' Pairwise integration has been the procedural choice for
most previous integration methods (see Batini et al., 1986).
Only recently, some researchers (i.e., Navathe) have demonstrated
parallel integration techniques for more than two views,
applicable in certain conflict situations.

61



classification schemes were not suitable to identify all possible
combinations of object differences. Consequently, they have
failed to identify some conflict cases. In this section, a

categorization is presented which overcomes this weakness.

The cases discussed below represent an exhaustive list of
possible conflicts between any two objects from different
views. It will be argued that any possible conflict case is
covered by the technique and that after resolution of éonflicts,
views are in a form in which they can merged. It will also be
argued that there exists a "causal ordering" (compare Simon
and Ando, 1963) of conflict resolution cases which determines
the sequence of steps within the integration process. Hence,
an integration procedure following this ordering will be

outlined.

Obiject comparison

Object comparison focuses on the detection of any identity or
différence between two objects from different views. Objects
may be of type entity, relationship, attribute. For example,
a designer arbitrarily picks one object from each of two view
and wants to determine their identity or difference. To do
this, he should choose four general criteri; by which to

evaluate objects:

62



(1) Name - are the objects' names identical?

(2) Construct - are both objects represented by the same
construct?

(3) Meaning - do the objects have the same meaning?

(4) Context - are the objects associated with the same

neighbor objects in both views?

The name criterion is a straightforward one and well described
with in the literature. 1In short, identical objects should
have the same name, different objects should have different

names. Otherwise, the object pairs are synonyms or homonyms.

Construct refers to the object type, i.e., entity. 1Identical
objects should have the same construct, to allow their merging.
Previous research has given many examples of construct mismatches

and their resolution.

Meaning is the most difficult criterion. 1Instead of a lengthy
discussion about the interpretation of "meaning", at this
point the following working definition will be used: two
objects have the same meaning if they both represent the same
real world object. Databasé design is a form of hodelling.
Real world objects are represented by database items. If two
database items are both models the same real world object,
they have the same meaning. In previous research, meaning has

not been explicitly discussed as discriminating criterion,

63



possibly because the meaning criterion is very difficult to
assess. For instance Navathe and Elmasri (for example, 1986)
have frequently used domains or mapping ratios as discriminating
criteria instead. We may think of domain information and
mapping ratios as operationalizations capturing part of the
meaning concept. Explicit representation of the meaning
dimension will result in a simple and clear distinction of

conflict cases'.

Context refers to the objects that are immediate neighbors of
an object. By definition, an ehtity will always have an empty
context?. A relationship's context are all entities it is
associated with. An attribute's context is the entity or
relationship it belongs to. Context also has not been explicitly
represented in previous research, even though previous
researchers were aware of the importance of context, as their

conflict recognition and resolution examples show.

Based on the four criteria and two states of each criterion

(identity or difference), a 2 x 2 x 2 x 2 matrix with 16

' The main difficulties of meaning representation are
completeness of the representation and differences in user

perspective. For example, when asked about the meaning of
"lion", most people may reply "dangereous animal", while a lion
tamer would probably reply "livelihood". These are two

different, incomplete interpretations which are both acceptable.
For a discussion of the meaning concept consult Russell (1946).

2 Even though entities have no context by definition, it
may be useful later to think of an entity's context as the
relationships it is involved in.

64



general cases of identity and difference of object pairs can
be constructed. To exemplify the principles of conflict
recognition and resolution, only the first three criteria,
name, construct, and meaning, will be discussed in more detail
and represented graphically in this section (see Figure 1).
For now, the conflict problem can be simplified by assuming
that'whenever two objects have identical meaning, their contexts
will be identical. Whenever their meanings are different,
their contexts may be different or identical. The subsequent
sections will deal with the full integration problem, allowing

variations in context, even if meaning is identical.

NAME

samg ditterant

MEANING 1. Igentical 2. Synonym
s8me
dtfferant

5. Homonym 6. Ditterant
Objects

same

CONSTRUCT

ditterant

7. Homgnym » 8. D
Diit. Cons. 6]

3. Construct Mismatch 4 Construct Mismatch ¢
Homonym

Figure 1: Object Comparison Matrix

Each of the cases depicted in Figure 1 will be briefly presented

below. The focus of this discussion shall be on the cases,

65



not on their detailed solution. Unless solutions are simple

or necessary for the discussion, they will be postponed to

subsequent chapters. Note that not all cases below describe
conflicts. For instance, if two objects are identical (Case
1), they can be merged without modifications. Other cases,

such as synonymy (Case 2) require an object change.

Case 1: [Name:same; Meaning:same; Construct:same]

This condition corresponds to cases 1 and 5 from previous
research (see chapter 2). Two objects are identical in all
factors.

Exanmple:

View 1: CUSTOMER (entity)

View 2: CUSTOMER (entity)

both describing the same customer object type.

The notion of identity is not only meaningful for entities, as
exemplified, but also for identical relationships linking
identical entities, and for identical attributes of identical

entities (identical context).

Case 2: [(Name:different; Meaning:same; Construct:same]

This is the case of a synonym. Both objects are identical but
carry different names. Note that both objects have the same
construct (i.e., entity).

Example: |

V1: CUSTOMER (entity)

66



V2: BUYER (entity)

both describing the same real world customer object type.

Case 3: [Name:same; Meaning:same; Construct:different]

This case describes a situation where the same object is
represented by different modelling constructs. This case will
be referred to as construct mismatch. Brodie (1984) refers to
this difference in construct as "semantic relativism", e.g.,
when the same object is represented as an entity in one view
and as a relationship in another view.

Exanmple: |

V1: MARRIAGE (entity)

V2: Marriage (relationship)

Both views describe marriage objects. Both views use the same
name, but a different construct. For view 1, a marriage is an
entity (probably with husband and wife attributes), for view
2, a marriage is a relationship (probably linking two person
entities). The solution to this case is a change in one of
the constructs, either making the entity a relationship or
vice versa. At the end, each object should be represented by

the same construct in all views.

This example describes only one of many possible construct

mismatch scenarios.

67



Case 4: [Name:different; Meaning:same; Construct:different]
This case is closely related to the previous one. Again, both
objects have the same meaning, but this time they not only
have different constructs, but also different names. Therefore,
identity of objects is disguised even further, by name
differences on top of construct differences.

Exanmple:

V1: MARRIAGE (entity)

V2: Married to (relationship)

While both views use almost similar names, to a syntactic

processor, the names will be different.

Case 5: [Name:same; Meaning:different; Construct:same]

This case marks homonyms. The objects carry the same name,
but have different meaning. The objects have the same cbnstruct
(i.e., entity).

Exanple:

V1l: SUPPLIER (entity)

V2: SUPPLIER (entity)

Here the same name SUPPLIER is used for both suppliers (currently
supplying the product) and for manufacturers (who manufacture

the product and may be potential suppliers).

Case 6: [Name:different; Meaning:different; Construct:same]
This case may refer to a trivial situation in which two objects

are different in meaning and name, but have the same construct.

68



Oon the other hand, it may refer to a number of more complex
situations of non-identical but related (i.e., superset-subset
relationship) objects.

Example 1l: trivial situation

Vl: EMPLOYEE (entity)

V2: DEPARTMENT (entity)

Example 2: related objects

V1: STUDENT (entity)

V2: UNDERGRAD (entity)

The entities in the first example refer to two different real
world objects which are not related '. The objects represented
in the second example are related, namely through a superset-
subset relationship. Whenever there exists such a connection
between two items they cannot be treated as independent. The
eight cases extracted from previous research provide solutions

for such non-identical but related sets.

Case 7: [Name:same; Meaning:different; Construct:different]
This case captures homonyms. Again, the name of two objects is
the same, but they differ both in meaning and in construct
used. Note that this case may also contain obiécts that have
different meaning but are related to each other (as in Case
6). Example:

V1: SUPPLIER (entity)

1 wRelated" is used here to express that two object classes
are either overlapping or are contained by a common object class.

69



V2: Supplier (attribute)
The name supplier is used for both an entity and for an
attribute, and the attribute does not refer to the same supplier

object (i.e., refers to a manufacturer object).

Case 8: [Name:different; Meaning:different; Construct:different)
This case describes objects which are different in every
respect, meaning, name and construct.

Example:

V1: SUPPLIER (entity)

V2: Department (attribute)

Supplier and department are different objects altogether, with
no similarities between them. Again, this exemplifies thé
trivial form of the case. But again, objects may also be

related.

The above eight cases fall into 2 main groups: objects that
will be ultimately completely identical and objects that are
different. Whether an object belongs to the first or the
second group is determined by their meaning dimension. The
first group consists of cases 1,2,3, and 4. The second group
is represented by cases 5,6,7,and 8. In either group, certain
cases describe stable states. In the first group for example,
case 3 (semantic relativism) becomes a case 1 (identical
items), once different constructs are eliminated. Case 4

becomes a case 3, once objects are renamed. Within the group

70



of different objects there exist two stable states. If objects
are related (i.e., one is a subset of the other), they will
ultimately belong to case 6, i.e., after renaming from case 5.
If they are unrelated, they will belong to case 8 or case 6 '.
The complete pattern of transformations into stable states is
shown in Figure 2. The figure shows depicts comparison cases
and transformations from one case into another. The
transformation arrows show the direction of transformation
during the integration process.

2 =-> 1 convert true synonyms into identical items through

renaming.
3 -> 1 convert construct mismatch into identical items

" through change of different coﬁstructs.

4 -> 3 convert construct mismatch and synonym into just
semantic relativism through renaming, or

4 -> 2 convert construct mismatch and synonym into syﬁonym
through construct change.

5 -> 6 convert homonyms into different items (possibly
related) through renaming.

8 -> 6 convert different items with different constructs into
differen£ items with same constructs (only if items
are different but related) through construct changes.

7 -> 5 convert homonymy with different construct into

! If the objects are unrelated, case 8 is a stable state,
requring no changes during conflict resolution. If objects are
related, ultimately, the objects will be transformed into
state 6.

71



homonymy through name change (only if objects are

related).
7 -> 8 convert homonyms into different items through
renaming.
NAME
same diffgrent
MEANING 1. Identical 2. Synonym
same ~\| 5
difterent —
5. Homonym 6. Different
Objects
same e em—y

CONSTRUCT

ditlerent

7. Homonym + 8. Diff.
Dift. Cons. Dif

——

3. Construct Mismalch 4. Consltruct Mismatch +
' Homonym

Figure 2: Case Transformations during View Integration

The transformation sequences have three end points, Case 1,
Case 6, and Case 8., Case 1 is the end point for all objects
with same meaning. It is captured by cases 1 and 5 extracted

from previous research. Case 8 is the end point fpr‘éll items

72



which are different in all aspects and not related. 1Its
solution is trivial. All these non-identical items will be
included in the global schema. Case 6 is the end point for
non-identical, unrelated items with same construct (trivial
solution) and for different but related objects.- If objects
are related, cases 2 to 4 and 6 to 8 from previous research

(chapter 2) will apply.

The case transformations (Figure 2) are free of circularities.
This makes it possible to postulate an ordering of conflict
recognition and resolution. Figure 3 illustrates one possible
ordering. The operations to be carried out first are construct
changes (4->2, 3->1, 7->5, 8->6) for identical and for related
objects. This is followed by the change of names for synonyms
(2->1), and homonyms (5->6 for related objects, 7->8 for
unrelated objects). The termination points of the procedure
are cases 1, 6, and 8. The other possible ordering would
attend to name changes prior to construct changes. For now,
both sequences are equally good, even though the first one is

preferable, as will be explained later.

73



Case 4 ' Case 3 Case 7

Construct Change Construct Change

Case 2 Case §

Name Change

Name Change

Construct Change

C 61 Case 8

Stable Stable Stable

Figure 3: Ordering of View Integration Steps

74



3.2.3. Changes in the Integration Method when Necessary

Information is not Directly Available

The integration method discussed so far is based on the
assumption that necessary information to carry out the
integration process is directly available. For the required
information to be available, it either has to be specified ex-
ante, or has to be elicited during the view integration process.
Since information specification requires designer effort and
represents a cost, it is desirable to reduce information
specification requirements for the database designers. Hence,
while previously the focus was on the design of a complete
method for integration, the focus will now be on a human-

oriented complete method for view integration.

The new goal will be to dtermine object identity, difference
and_relatedness with a small number of intelligent (i.e., non-
redundant) questions. Obviously, the method should base
future gquestions on answers to previous ones. This is a
minimum requirement. The following list of questions outlines

other areas in which the procedure can be improved.

1. How many objects shall be included in the object

comparison?

75



2. Which objects should be compared?

3. What is the sequence of conflict diagnosis and
therapy?
4, How shall identity or difference be decided?

How many objects?

The previously outlined procedure always compared object
pairs, i.e., "is entity El identical in meaning to entity E27?%
This type of question can always be answered with "yes" or
"no", but for n objects in view 2 this form of questioning
requires n questions . By asking, "is El1 identical to one of
(E2, E3, ..., Em}", the number of questions can be reduced to
1. The question can be answered either with the object's
identifier, or with "no". This form of questioning drastically
reduces the questioning effort. The questioning format will
always be 1:n instead of 1:1. An m:n format will not be used,
since the answers become awkward (a list of tuples of identical

objects).

Which objects?

The procedure would not behave intelligently, if it included
objects in the comparison that should not be included. For
instance, if E21 from view V2 was found to be identical to E1l1l
from view V1, the procedure should never again inquire whether
E21 is identical any other object from V1. Other rules which

are described in the results chapter, reduce the group of

76



relevant objects even more. Furthermore, heuristics (also
rhles, but not always true) were found to reduce the group of
objects even further. For example, once two entities are.
found to be identical, and both participate in relationships,
one may expect to find identical pairs of relationships within

these smaller groups.

Which sequence?

So far, sequences of object modifications have been outlined
which resulted in stable state cases, (Case 1) identical
objects, (Case 6) different, but related objects, and (Case 8)
different and unrelated objects. For instance, a case of
construct mismatch (Case 3) was transformed into Case 1 through
a construct change. The question is whether the method should
operate by searching actively for conflict cases such as Case
3 or Case 4? The answer is "no". A human-oriented integration
procedure will alter the sequence of tests. Following the
assumption that in absence of information to the contrary, two
views are assumed to be identical, the procedure will always
attempt first to find matching objects, not object mismatches.
For example, typically the assumption at the outset of the object
comparison Qill be that for an object 01 in view V1 there
exists an object 02 in view V2 with an identical construct,
. i.e., both are relationships. Figure‘4 briefly outlines the

basic sequence of tests.

77



NAME

MEANING Objects with
@ 1Nme meaning

Identical
objects

N

CONSTRUCT

.

3 /Construct
mismatch

@ Missing
object

Figure 4: Conflict Recognition Procedure (abbreviated)

For any object 01 from view V1 and any set of objects (02} from
view V2, the first test is a test for identity of meaning. If
hit fails, a test for construct mismatch follows. If there is.
no construct mismatch, an object is assumed to be missing. Note

that name and context difference or identity are ignored

78



at first. The test for relatedness which begins with the
assumption of relatedness is separated from the test for
identity of objects. Tests for relatedness are postponed

until all tests for identity are carried out.

How to decide on identity or difference?

For all object characteristics, identity or difference have to
be asserted. Wbile this is simple for construct and name, it
is not for meaning and context. Only people can ultimately
judge whether two objects have the same meaning, but an
intelligent integration procedure should help as much as
possible in making this decision. In short, the procedure
will help by filtering out objects that are not identical to
the object in question. Rules to filter out these non-

corresponding objects are defined.

3.2.4. View Integration Conflict Cases

Previously, only 8 of the 16 general types of cases
were discussed, when context was held constant. The case list
below describes all possible cases for the comparison of two
arbitrary objects from different views. Cases are identified
by name (N), construct (object type T), meaning‘(M), and

context (C) <N,T,M,C> of the involved objects. Object 01 is

79



denoted through <N1,T1,M1,Cl>, object 02 through <N2,T2,M2,C2>.
For every case the equality or non-equality of parameters is

stated.

The overview table below shows for each case identity or
difference along the four dimensions. For exaﬁple, a '=!
under N means that both objects have identical names, an 'x!
means they are different. For the meaning dimension, ‘'r!'

means the meanings are different but related.

Q

ase N T M

Identical objects

Identical objects with different context
Synonym

Synonym with different context
Construct mismatch (semantic relativism)
Construct mismatch and synonym

C T I (N |
1 | O 1
XXX X0

XXX HE

7 x = X =/x Different and unrelated objects

8 = = X =/x Homonym

9 x X X X Different objects with different
constructs

10 = X X X Different objects with different
constructs, but homonyms

= different but related objects

= different but related homonyms

X different but related objects with

different context

14 = = r X different but related homonyms with
different context

15 % X r X different but related objects of different
type

16 = X r X different but related homonyms of
different type

17 - - - - missing object 02

80



Noté that if two objects are of different type, their context
will be different, due to the definition of context. Note
also that identity or difference of context is irrelevant for

objects with different meaning.

A more detailed list of view conflicts can be found in the
Appendix. The 1list in the appendix breaks each general case
down into subcases based on differentiation according to the
constructs of participating objects. I.e., a construct mismatch
exists between an entity and a relationship as well as between
an entity and an attribute. The extended list has been left
out here for the purpose of readability. The Appendix also
provides a brief description of the solution for all case
scenarios. The general conflict resolution rule for object
identity and difference is to have all other dimensions follow
the meaning dimension. If two objects have identical meaning,
all other dimensions will have to be made identical. If two
objects have different meaning, the name dimension has to
reflect this. Cases of object relatedness are solved through

representation of the superset subset relationships.

Omitted from this solution description is the technique for
re-allocation of attributes when relatedness is detected. The
general rule is to allocate those attributes that belong to

both the superset and the subset to the superset, and to

81



allocate to the subset only the attributes that are unique to

it (see for instance Navathe and Elmasri (1986)).

82



3.3. Expert System Methodology

An implemented solution for the view integration
problem requires an adequate problem representation and solution
mechanism. So far, cases of potential integration problems
and a procedure have been identified, yet no implementation
mechanism has been suggested. Before any further discussion
of an adequate mechanism, here a short reminder of the problem

situation.

Correcting the conflicts in a set of user views is clearly a
problem solving task. Within this research, view integration
is treated as a diagnosis and therapy task (note that Hayes-
Roth et al. mention diagnosis and therapy ("repair") as generic
tasks of knowledge engineering applications). Characteristic
of a typical diagnosis task is the goal to find out "what's
wrong" in the actual state. Thus, the purpose of the diagnosis
part of view integration is the identification of the discrepancy
or mismatch between a pair of views. Once the conflict case
has been identified, the therapy or "fixing" phase will adjﬁst
one or both views to remove an existing conflict. Thérapy.
creates the new, desired structure. Diagnosis and therapy
tasks afe prototypical tasks for expert systems or knowledge
based systems. The integration method discussed here was not
built by extracting diagnosis and therapy rules from expert

designers. Hence it is not truly an expert system. However,

J

83



it will represent conflict recognition and conflict resolution
knowledge.

Database design rules for conflict recognition and resolution
can be easily formulated as sets of production rules. 1In
simplified form, one may want to think of each production rule
as describing one of the cases. For each object comparison,
the rule matching the conflict situation would fire and
transfofm the case into another one, until one of the stable
state cases were reached (for a description of the production
system reasoning mechanism see for instance Barr and Feigenbaun,

1981).

The most appealing property of the production'system mechanism
is the modularity of the resulting systems. Rules can be
added, deleted or changed without directly affecting other
rules. Figure 5 illustrates this fact. Figure 5 (taken from
Vessey and Weber, 1986) depicts a decision table with cooking
instructions for vegetables to exemplify the convenience of
rule editing. Each instruction (column) corresponding to one
production rule. The list can be easily expanded through
addition of new columns. By the same token, the deletion of a
column does not affect any other column (or‘rule) in the
table. Furthermore, each column can be changed, thereby
affecting only the instructions for one particular dish. The

cause for this simplicity of the rule based system lies in the

84



design of the condition list. Each condition stub is specified
with the utmost detail, not referring to conditions which are
aggregates of more than one fact. I.e., the decision table
does not create intermediate results (aggregates of truth
values) such as "juicy and crispy and leafy but not tall",
whichvcould appear later as a single condition in the condition
list for bdth "fry" and "steam". In other words, condition
items are decoupled as much as possible. Consequently also

the rules (i.e., the dishes) are decoupled.

Juicy Y
Tall Y
Crispy -
Leafy —_—
Red -
Hard —_

| << =<z <
i Z < < Z <
| z <z =<
lzz-<.
| =z =z <

|

Steam X

Grill ) X
Peel

Boil 4

Chop X X

Roast X

>

Figure 5: Decision Table Illustration

85



The modularity of production rules makes their implementation
very forgiving. If a case is left out in the beginning, or is
specified incompletely at first, additions can be made with

very little effect on the already existing rules.

One disadvantage is the inefficiency of the production system
approach, due to duplication of identical condition elements.
This result is the cost induced by complete decoupling of
conditions.A Every condition list has to be created and tested
in detail without being able to make use of established
intermediate results. A more sensible design approach should
compromise between complete decoupling of conditions and
processing efficiency. A heuristic for aggregating conditions
would group those conditions together that form a meaningful
unit (are highly cohesive). Meaningful stands in contrast to
purely accidental coincidence of conditions. I.e., "juicy and
crispy and leafy, but not tall" is not a particularly meaningful
grouping, because it does not identify a certain well-known
group of food items. Therefore, this aggregate shéuld not be
chosen as a grouping, even though it could simplify the decision

table in the example.

A second disadvantage of production systems is the fact that
they disguise the control flow. It is difficult for a designer

to understand the control flow in the production system. 1In

86



so called Yprocedural" programming languages, i.e; Pascal or
Fortran, the control flow is determined by the ordering of the
language statements, if branching statements are neglected for
the moment. In production systems, the sequence of rules has
much less importance. I.e., the "chop" rule will not be
applied first even though it is the first rule in the decision
table in Figure 5, unless its conditions are true. If the
last rule in thevsystem is the one whose conditions become
true first, it will be the first to fire. Hence, production
systems in general require substantial re-thinking by systems
designers who are used to procedural languages. In a Prolog
implementation this problem is alleviated to some extent since
the language's interpreter interprets rules still in sequential

order.

In conclusion, even though it has some disadvantages, a
production system seems to be a suitable répresentation mechanism
for the implementation of this research. The case descfiption
already provides many guidelines for the definition of conflict
resolution rules. Also, the maintainability advantagé of
productionsystemsbecomesimportantwhensubsequentLyheuristics
have to be added to the integration method to improve its

operation with insufficient information.

A different, apparently more elegant approach to view integration

could perform the integration process as a theorem proving

87



task. Similar to other theorem proving tasks (see for instance
Nilsson, 1980) the program would be given a set of views and
the question "does there exist a conflict free global schema
which contains all the information of the individual conflicting
views"? If the answer‘to that question were "yes", the global
schema would be produced as a "by-product". Using Robinson's
resolution principle (1965), the program would solve the
problem by creating a new goal "there exists no global schema"
and by falsifying this statement through a counter example.
This approach is elegant because it is based on a very general
problem solving mechanism, the theorem proving mechanism.
However, definition of the integration rules, especially the
procedural rules of conflict recognition and resolution is

more difficult than in the production system approach.

Two other reasonable representations for the task are frames and
semantic networks (Waterman, 1986). They will be discussed

below.

Frames (Minsky, 1975) are complex data structures containing both
factual and procedural knowledge. Frames have slots which can
contain data concerning frame properties. Related to slots can
be procedures which are invoked when a slot is filled. Slots
that are not filled can take initially defined default values.
This default capability is one of the advantageous features of

frame based knowledge representations.

88



Mylopoulos and Levesque (1984) for instance stress their ease
of dealing with incomplete knowledge. Frames have been used
as knowledge representations in a variety of expert systems
(see Waterman, 1986 or Hayes-Rch et al., 1983). Barr and
Feigenbaum (1981) state that frames "have problems", yet do

not mention where these problems lie.

Semantic nets represent knowledge in a network in which
properties are inherited from other objects along the arcs of
the network. Waterman states that semantic nets have also
been used in expert systems, in fact he argues that semantic
nets and frames are similar. Mylopoulos and Levesque (1984)
emphasize as qualities of semantic nets their data organization
and the provision of good access methods. As a disadvantage
they state the lack of formal semantics and standard terminology.
The problem of formal semantics becomes clear, when the

interpretation mechanism for semantic nets is investigated.

All approaches are feasible. However, for its forgivingness
in the maintenance of the knowledge base, the production
system approach has been chosen for this research. The
integration method has been implemented in Prolog. The program

is called AVIS, for Automatic View Integration System.

89



4. RESULTS
4.1. Rules Guiding View Integration

‘View integration as a problem solving task is
guided by a set of rules which allow the problem solver to
define the problem environment, identify the particular problems
(conflicts) and to solve them. In this section, the general
rules underlying the process are presented, exemplified and
justified. The rules can be divided into two major groups{
base rules and heuristics. Base rules are believed to be
always true. Heuristics are support rules. The beliefs
expressed in them are known to be wrong sometimes but are

expected to be true in most cases.

Especially in its conflict recognition part, this view
integration method relies to a large extent on asking the
right questions. If the method can ask the right questions,
it can perform a large segment of the integration without user
interaction. When user interaction cannot be avoided, a
selection of the right questions can simplify the user's
answering task. Furthermore, the method will not appear to be'
stupid, if it can avoid asking trivial or redundant questions.
To help in the question formulation process, heuristics were
included which for instance change the content and sequence of

questions. -

90



Base rules are separated into four groups of rules. The first
three groups are static modelling rules. The fourth group

contains process rules:

1. General Modelling Rules
2. Rules of the Modelling Language
3. Rules of Database Design/View Integration
3.1 General Database Design Rules
3.2 Rules Concerning the Test for Identity of

Objects (Conflict Recognition and
Reconciliation Rules)

3.3 Rules Concerning the Relatedness ' of Objects
(Rules for Recognition and Modelling of
Inter-Schema Relationships)

4. . Process Rules
4.1 Process Rules for Conflict Recognition and
Reconciliation
4.2 Process Rules for the Recognition and Modelling

of Inter-Schema Relationships

General modelling rules are valid not only in the database
context. For example, "each relevant real world object? shall
be represented by exactly one object in the model" is such é
rule. Rules of the modelling language, here the E-R modelling
language, describe true statements about the E-R language that

are relevant to the view integration task. Rules of database

' The term "relatedness" is used to signify superset-subset
relationships such as all managers are employees, MANAGER--
Isa--EMPLOYEE. The term "relationship", unless occurring in
the form "subset/superset/containment relationship", is used
to denote associations between entities.

2 Throughout the chapter, the terms object and object type
will be used interchangeably to describe object types.
Particular instances are referred to as object instance or object
occurrence.

921



design are separated into rules to guide the database designer's
(or the method's) test for the identity of objects and rules
to guide the uncovering of inter-schema (superset-subset)
relationships. Process rules describe the sequence in which
tests (i.e., conflict recognition) and corrective measures

(i.e., conflict resolution) shall be carried out.

The discussion will begin with a description and explanation

of the base rules, followed by an analysis of the heuristics.

Base Rules

General Modelling Rules:

1. Each relevant real world object type shall be
represented by exactly one object type in the model

(redundancy-free representation).

All model building tries to create a representation of the

real world that contains all relevant information in the most

concise form. Not all the information of the real world can
be represented. Most of the detail may not even be required
for the tasks at hand. Hence, some real world object types

92



will not find their way into the model. If a.real world
object type is represented more than once in the data world,
update anomalies can occur. Each new object instance of the
real world has to be inserted more than once into the data
model. Should the real world object type itself cease to
exist, more than one data model object type has to be removed.
This creates extra processing effort and the possibility of
inconsistency. One of the purposes of database design is to
avoid exactly these problems.

2. An integration of multiple_models shall not result

in the loss of information from any of the models.

Any bottom-up modelling approach attempts to build}a large
global model through the combination of smaller models. Each
of the small models represents the real world facts that one
model-builder perceives as relevant. Omission of any of these
facts out in the global model would result in an incomplete
global model. .Hénce, the rule demands that all individual
models are correct and that the collection of models is in

itself consistent (Biskup and Convent, 1986).

Rules of the Modelling Language:

93



3. Every object in a view is represented with exactly
one of following three constructs: Entity,

Relationship, Attribute.

The view integration method models databases based on Chen's

Entity~Relationship model in which only Entities, Relationships

and Attributes exist. Categories which are represented in

some extended forms of the E-R model will be depicted as

special (Is-a) relationships.

4. Entities are autonomous objects. They can exist
without the existence of Relationships and without

the definition of Attributes.

Entities are things or individuals. As things or individuals
can exist even if they have no associations with other things
or individuals, so can entities. For example, an entity
SUPPLIER can exist without an association to another entity,

such as BUYER.

5. A Relationship cannot exist without the existence

of at least one Entity.

Relationships represent associations between entities. They

map instances of one entity to instances of some other entity.

94



In the most restricted case, one entity is associated with
itself. For example, the entity PERSON is associated with
itself through a Supervisor or a Parent relationship. Typically,
more than one entity will be involved in a relationship, but

never less than one.

6. An Attribute cannot exist without the existence of

the Entity or Relationship it belongs to.

Attributes represent associations between an entity and a
value set, or a relationship and a value set. For example,
the Person_name attribute associates the PERSON entity with a
value set of names which itself is a set of strings containing
valid person names. The attribute cannot exist without the
existence of the entity or relationship it refers to (value

sets are not part of the E-R model).

General Database Design Rules:

7. Two types of Attributes exist. "Property" Attributes
which describe the object (Entity or Relationship)

in more detail (i.e., color, name) and

"Interconnection'" Attributes which describe the

95



"association of the object (Entity or Relationship)

to some other object (Entity or Relationship).

Atfributes are always associations befween entities or
relationships and value sets. However, sometimes attributes
are not used to describe an innate property of the entity or
relationship they belong to, but instead, to describe an
association between the entity or relationship and some other
object. For example, the attribute Person name describes a
property of a PERSON entity, their name. PERSON could also
have an attribute Savings_acct_no. This attribute even though
associated with PERSON, is not a property of a person. 1In
fact, the attribute implicitly states that things called
savings accounts exist and that a person is or may be related
to such a savings account. Thus, the attribute describes not
a property, but an association. PERSON possesses SAVINGS_ACCT
(PERSON is_associated_with SAVINGS_ACCT). While in the example
the difference between a property attribute and ah
interconnection attribute was distinct, it will not be as

clear in all cases.

8. Interconnection Attributes are shortened forms of

Entities (if the A is a Relationship-Attribute), or

96



of Entity-Relationship constructs (if the A is an

Entity-Attribute).

In the above example, PERSON had a Savings_acct_no attribute
which indicated the existence of savings accounts and a'person's
possession of such an account. Obviously, savings_account
could become an entity, since it is a th;ng in the real world.
In that case, a relationship such as Has_account would represent
a person's'possession of such an account. Also, being an
Entity, a éavings account could have attributes itself, such
as Account_balance, or Date opened. The model builder may not
need all this extra information. If the account number
information is sufficient, there is no reason to describe
savings accounts, or other real world objects, in more detail.
After all, a model should contain only the relevant information

about the system it is modelling.

In the.example, an entity attribute (Savings_acct_no) which
was an association between an entity (PERSON) and a value set
(of account numbers) took the role of a relationship
(Has_account) between PERSON and another entity SAVINGS ACCT.
The attribute thus represented both a relationship (Has_account)

and an entity (SAVINGS ACCT) through the account number value.

All attributes of SAVING ACCT other than its number, as well

as any potential non-key attributes of Has_acbount are not

97



represented. Hence, interconnection attributes are a compressed

form of information representation.

This compression has the undesirable side effects of deletion
and insertion anomalies. 1I.e., savings accounts do not exist,
until people exist that possess the accounts. Accounts also

cease to exist with the person owning then.

9. ' If Attributes are multi-valued, they are

interconnection Attributes.

This rule helps in the detection of interconnection attributes.
If a multi-valued attribute is found, it is considered to be a
interconnection attribite. For example, if the Address attribute
of an EMPLOYEE requires multiple entries it should better be
represented by a new entity RESIDENCE, related to EMPLOYEE
through a relationship such as Resides_at. Storey (1988)
deals with multi-valued attributes in this manner during view

creation.

10. A Relationship is a less fundamental object than an

Entity.

Since relationships cannot exist without the existence of at

least one entity, their continuing existence is based on two

98



factors. First, it is based on the existence of the objects
underlying the entities, and second, on the existence of the
association between those real world objects? Should either
one not exist, then the relationship has to be removed. For
entities, on the contrary, it is unimportant whether any
formerly existing association between them is still in place.
They will only disappear once the real world objects underlying
them disappear. The same is true for entity and relationship
instances. For example, if a database contains the entities
EMPLOYEE and DEPARTMENT as well as the relationship Employed by,
individual instances of Employed_ by, such as [1005,
Manufacturing) are only meaningful if employee 1005 still
exists, the manufacturing department exists, and the employee
in fact still works for the manufacturing department (referential

integrity).

11. Each object has four relevant dimensions: Name,
Construct (Entity/Relationship/Attribute), Meaning,

and Context.

One of the basic assumptions underlying this view integfation
method is that there exist only four relevant differentiation
criteria for objects in a view: name which is the name of an
object, such as SUPPLIER, construct or object type, such as

relationship, meaning, and context. Meaning encompasses all

29



the relevant knowledge conveyed by the 6bject. For example,
meaning includes all the information that is known, once it is
known that a particular entity is a SUPPLIER. I.e., supplies
parts, will be paid for parts. Meaning is the most important
of all four dimensions. .It will have absolute precedence over

the other dimensions. If two objects have the same meaning,

they refer to the same real world object and therefore all

other dimensions will have to be adjusted accordingly. Context

identifies the set of objects an object is associated with.
An attribute's context is the entity or relationship it belongs
to. A relationship's context are the entities associated by
it. Entities are defined as having no context. Entities are

the only objects able to exist without any other type of objects.

12. Along each dimension, any two objects can be either

"same" or "different", i.e. same name, same construct.

Another major assumption of the view integration method refers
to the variations in each dimension. It is more important to
find out whether two objects are identical (same) or different
in each of the relevant dimensions rather.than to find out the
actual values for each dimension. In order to merge two
objects, they have to match, they have to be completely
identical. If they are even slightly different a change is

required. The magnitude of dissimilarity does not matter,

100



since a change is required nevertheless. For example, the
entity names SUPPLIER and SUPPLIERS are only slightly different.
Nevertheless, they are different and will require a name
change if the entities are to be merged. The same is true for
the other dimensions. Two relationships may have "almost" the
same context, that is, most of the entities associatéd by them
are the same. Despite this fact, these relationships have a
different context and cannot be merged unless the context of

one or both of them is changed.

13. Two objects with different meanings can be related

in meaning.

Meaning is the only dimension where identity or difference are
not the only two relevant values. For example, the entities
EMPLOYEE and PART_TIME_EMPLOYEE have obviously different
meaning, yet they are not completely indépendent. EMPLOYEE
refers to a type of individuals which includes the type of
individuals referred to by PART_TIME_EMPLOYEE. Hence, when
two objects are different in meahing, any superset-subset
relationships between them are nevertheless relevant. Objects

with such relationships will be called related in meaning.

101



14. | Two related objects Ol and 02 will display one of the
following set relationships between them:
1. Ol and 02 have a common subset (yes/no); and
2. 01 and 02 have a common superset (yes/no);
resulting in the following possible combinations:
(a) one object contains the other object:;
(b) both objects have a (meaningful) common

superset and a common subset, yet the superset
is not one of 01 or 02;

(c) both objects have a common superset, but
they do not overlap:;
(d) both objects have no common superset and do

not intersect; virtually no relatedness, no
need for representation in a database.

Set relationships and their treatment within view integration
have been discussed at different levels of completeness by all
previously reviewed integration techniques, most completely by
Navathe and colleagues, Elmasri and Navathe (1984), Navathe

and Elmasri (1983).

This rule lists all relevant relationships between two sets.
The qualifier "meaningful" for supersets or subsets implies
that any such superset or subset has to be a cohesive group
from the point of the users. For example, the entities EMPLOYEE
and CUSTOMER have a common superset requiring implementation,
the 'entity PERSON. Consequently, both EMPLOYEE and CUSTOMER
would inherit the attributes of PERSON and all instances of
EMPLOYEE and CUSTOMER would be instances of PERSON. Another,
less meaningful superset would be an entity EMPLOYEE&CUSTOMER.

The choice of an appropriate common superset, i.e.,

102



EMPLOYEE&CUSTOMER vs. PERSON, has to remain with the user!.
While there are no fixed rules to what constitutes a "“good"
entity, there are indicators for less good entity choices.
For instance, if the user cannot provide a good name for the
object, it may not be a (good) entity. I.e., EMPLOYEE&CUSTOMER
is not a good object name. Hence, the object is not expected
to be very meaningful. Or, if the objects attributes are
identical to an already existing object's attributes, the

object may not be a (good) entity.

Examples for the forms of relatedness are:

(a) EMPLOYEE contains PART TIME_ EMPLOYEE;

(b) PRODUCT_TEAM_MEMBER and PROJECT_TEAM MEMBER are
both subsets of EMPLOYEE, their intersedt is
PRODUCT&PROJECT_TEAM_MEMBER;

(c) PART_TIME_EMPLOYEE and FULL TIME_ EMPLOYEE are both
subsets of EMPLOYEE, but they do not overlap;

(4) CUSTOMER and DEPARTMENT do not intersect.

The relatedness in (d) is so weak that it shall be ignored. Even

though it represents some extra knowledge about the world, the

knowledge is negative knowledge. Since negative

! Throughout the text, the term "user" refers to a database
designer who employs the integration method. This "designer
user" represents the interests of the end users of the database.
The end users are assumed to have provided the original views.

103



knowledge is so much more abundant than positive knowledge,

its representation typically becomes infeasible.

15. Two unrelated objects 01l and 02 may share a common

role.

Two entities, for example PERSON and COMPANY can be different
and unrelated, but they still can have a common role such as
the role of shareholder. Neither view may contain a shareholder
object, even though both may contain a STOCK entity. Goldstein
and Storey (1988) discuss unrelated objects sharing a common
role ("W-relationship") and the proper representation of this

situation in a generalization lattice.

16. Two objects are identical, if they are identical in

all dimensions.

Only the previously discussed four dimensions are relevant to
judge whether objects are identical. Objects have to correspond
in all dimensions. For example, an entity EMPLOYEE and an
entity WORKER are known to mean the samé. Thus they are
identical in meaning, construct (entity), and context (empty).
Nevertheless, the objectsvare identical only after their names

have been made'identical too.

104



17. Each object is related to itself (contains itself and
is contained by itself). This relatedness shall not

be represented in any view.

This rule guides and limits the search for between-view set
relationships. For example, if an entity EMPLOYEE has been
found to be identical to another object EMPLOYEE from some
other view, each of the entities is also a superset of the
other one. They also share a common subset, the entity set
itself. The representation of this finding bears no extra
information. It would also result in an infinite expansion of
the global database, since if every object is related to
itself, also the object expressing this relatedness is related
to itself which has to be expressed through yet another object,

and so on.

18. An object can be related to between 0 and_nfother

objects.

It is important to-remember that one object can be related to
more than one other object. The search for related objects
from another view is not completed after one related object
has been found. However, it is also possible that no related

objects can be found in another view.

105



19. Each object in one view can have a maximum of one
identical object in another view (call this object

also the "corresponding" object).

This rule follows from the general rule of modelling that no
real world object shall be represented more than once in a
model. A view is a model. Hence, if two objects of one view
are identical to another entity from some other view, the two
objects must be identical. This rule implies that once a pair
of identical objects has been found, there is no need to

search for further identical objects.

20. Two views are the same, if all their objects are

identical.

The goal of the conflict recognition and resolution procedure
is to correct omissions and conflicts so that at the end two
previously different views are identical. Then they do not
have to be merged, one of them can be removed, since all its
information is also contained in the other view. This rule

states when the identity condition is achieved.

106



21. Each individual view is complete and consistent and
minimal.
A view is complete if it represents all the individuals,
things, and associations between them, relevant to the user.
A view is consistent if none of the facts stated concerning
the relatedness of sets are contradicted by others in the
view. For example, if the view states that the entity
PART TIME EMPLOYEE is a subset of the entity EMPLOYEE, no
other fact in fhe view may present contrary information, such
as PART TIME EMPLOYEE and EMPLOYEE have no memberé in common,

(see Casanova and Vidal (1982), Biskup and Convent (1983)).

Minimality of a view entails that each real world object is
only represented once in a view. For examplé, if one view
contains two entities, SUPPLIER and DEALER, these entities
have to be different; they have to refer to different 6bjects

in the real world.

The completeness assumption clarifies the role of the integration
method as a method that finds omissions or conflicts in views
based not on within-view (intra-view) analysis but based on

between view (inter-view) comparison.

107



22. The collection of views before integration is

consistent.

The view integration method assumes that not only views
individually are consistent, but also that the collection of
views is consistent as a whole. 1In other words, facts stated
concerning relatedness of sets in one view cannot contradict

facts stated in another view,

This rule clarifies the purpose of the conflict recognition
and resolution method as a method that corrects omissions and
conflicts (i.e., differences in opinion on name, context) but
not contradictions. For instance, if view V1 states that all
managers have to be full-time employees, while view V2 states
that also part-time employees can be managers, the views
contradict. Both stateﬁents cannot be true at the same time.

The method assumes that such contradictions do not exist.

Rules Concerning the Test for Identity of Objects:

(Conflict Recognition and Resolution Rules)

108



23. If for an object 01 from view V1 an identical object
02 cannot be found in view V2, then 02 is either
missing or represented through an object that has
the same meaning but is different along its other

dimensions.

Ideally, an identical object 02 from V2 exists for each object
01 from V1. Both objects are identical if they are identical
in all relevant dimensions: name, construct, meaning, and
context. The most crucial dimension is the meaning dimension.
If two objects have the same meaning, they refer to the same
object in the real world. Hence, if an object 02 with the
same meaning as Ol exists, there may remain a name, construct
or context'éonflict between 01 and 02 to be taken care off,
but 02 is not missing. If no 02 exists that refers to the

same real world object as Ol does, then that 02 is truly missing.
24, No change of a view during integration shall result
in the loss of information.

This rule provides a guideline to the direction of change in

cases of construct mismatch as described by one of the following

alternatives:

Object in view 1: Object in view 2:
Entity Relationship
Entity Attribute
Relationship Attribute

109



Mismatches between an attribute on one hand and an entity or
relationship on the other hand will result in a change of the
object with the attribute construct. This adjustment rule
follows from the rule on interconnection attributes.

A mismatch between an entity and a relationship, results in a
change of the object with the relationship construct, based on
the rule concérning object permanence. Relationships are less
fundamental than entities. Relationship instances cease to exist
when the entity instances they refer to cease to exist
(referential integrity), as illustrated below:

View 1: SUPPLIER--Sup_con--CONTRACT--Cus_con--CUSTOMER

View 2: SUPPLIER-~-Contract--CUSTOMER

Both views have suppliers in a contract situation with customers,
yet in view 1, the contract itself is an entity, in view 2 it
is a relationship. In view 2, a disappearing customer (instance)
destroys all records of a contractual agreement between him and
the supplier. No historic data remains. 1In view 1, contracts
have a life of their own and survive the disappearance of a
customer instance. Hence, the less permanent character of a
relationship potentially leads to information loss in the

database extension. Consequently, a construct mismatch between

110



an entity and a relationship should result in a change of the

relationship construct into an entity construct.

25. If two unrelated objects share a common role, the
common role object and specific role objects have to
be represented as well as Isa relationships between
the original objects and the specific role and between
the specific roles and the common role.

This rule is based on Goldstein and Storey (1988). For example,

in:

V1l: PERSON--Holds--STOCK

V2: COMPANY--Holds--STOCK

PERSON and COMPANY have the same role. Therefore, a common

role object SHAREHOLDER is needed to describe the situation.

Furthermore, specific role objects, PERSON SHAREHOLDER and

COMPANY SHAREHOLDER are needed. Then, PERSON_SHAREHOLDER is a

PERSON as well as a SHAREHOLDER. SHAREHOLDER here will be the

object associated with STOCK through the Holds relationship.

Rules Concerning the Test for Relatedness of Objects:

(Recognition and Modelling of Inter-Schema Relationships)

111



26. | Any Object 01 from V1 which is not an entity and which
is related to an object 02 from V2 shall become an

entity.

Any object 01 that is not an entity is either a relationship
or an attribute. Neither of the two may be associated with
other objects by means of a relationship. Relationships
involved in relationships are not permitted, nor are
relationships involving attributes. However, if two objects
are related, they will have to be connected by an Isa
relationship. Thus, this construct change is necessary. For
example, an attribute Supplier belonging to entity PART in
view 1 is related to entity DEALER from view 2. The relatedness
is such that all suppliers are dealers but not all dealefs are
suppliers. In this case, the Supplier attribute in view 1
will become an entity, which will be associated with part
through a Supplies relationship. Supplier in view 1 was an
interconnection attribute which is now more adequately
represented through an entity. For a more detailed illustration

of construct changes compare section 4.3 on conflict therapy.

27. If an object Ol contains an object 02, the containment
shall be represented by an Isa relationship. If the

Isa relationship does not exist, it must be added.

112



The contained object will possess all attributes of

the containing object.

This rule on the E-R representation of containment is taken
from Elmasri and Navathe (1984).

For example, if EMPLOYEE contained PART TIME_EMPLOYEE, the
connection between the two would have to be represented by an
Isa relationship, stating that PART_TIME_EMPLOYEE is an EMPLOYEE.

PART TIME EMPLOYEE would inherit all attributes of EMPLOYEE.

28. If two objects 01 and 02 overlap, and neither object
contains the other, the overlap shall be represented
by an overlap object 03. If the overlap object does
not éxist, it must be added. The overlap object 03
will inherit the union of the attributes of 01 and
02. The connections 01-03 and 02-03 shall be
represented by one Isa relationship each. If
either of the Isa relationships does not exist, it

must be added.

This rule states how the method handles relatedness of the
form common subset (overlap). The following example will
illustrate the rule:

View 1: PROJECT EMPLOYEE[Emp#,Proj#,Yrs experience,Title]

View 2: PRODUCT EMPLOYEE[Emp#,Prodname, Function,Title]

113



the common subset PROJECT&PRODUCT_EMPLOYEE inherits the

attributes Emp#, Proj#, Yrs experience, Prodname, Function,

Title and contains all instances of employee contained in

PROJECT EMPLOYEE and in PRODUCT_EMPLOYEE (intersect).

Furthermore, the following relationships are added:

PROJECT&PRODUCT EMPLOYEE-~Isa--PROJECT EMPLOYEE

PROJECT&PRODUCT EMPLOYEE--Isa--PRODUCT_ EMPLOYEE

The creation of overlap objects is explained in detail in Yao

et al.

29,

(1982).

If two objects 01 and 02 have a common superset, and
neither object contains the other, the superset shall
be represented by a superset object 03. If the
superset object does not exist, it must be added.
The superset object 03 will possess the intersect
of the attributes of 01 and 02. If they are not
identifier attributes, these attributes will have
to be removed from Ol and 02. The connections 01-
03 and 02-03 shall be represented by one Isa
relationship each. If either of the Isa relationships

does not exist, it must be added.

This rule states how the method handles relatedness of the

form common superset. The following example will illustrate

the rule:

114



View 1: PROJECT_EMPLOYEE[Emp#,Proj#,Yrs_experience,Title]

View 2: PRODUCT EMPLOYEE[Emp#,Prodname,Function,Title]

the common superset EMPLOYEE receives the attributes Emp#,Title.
The non-key attribute Title are removed from PROJECT EMPLOYEE
and from PRODUCT EMPLOYEE:

EMPLOYEE [Emp#, Title]

PROJECT EMPLOYEE[Emp#,Proj#,Yrs_experience]

PRODUCT_EMPLOYEE[Emp#, Prodname, Function]

EMPLOYEE contains all instances of emﬁloyees included in
PROJECT EMPLOYEE or in PRODUCT EMPLOYEE (union). Furthermore,
the following relationships are added:

PRODUCT EMPLOYEE--Isa--EMPLOYEE

PROJECT EMPLOYEE--Isa--EMPLOYEE

The creation of overlap objects and attribute relocation is

explained for instance in Navathe et al. (1986).

30. If two objects exclude each other, the exclusion shall

be represented through an integrity constraint.

No new objects are added in the case of an exclusion. . However,
an integrity constraint can be added to prevent any objéct
. instance from accidental insertion into the non-overlapping
sets. For example:

View 1: FULLTIME_EMPLOYEE

115



View 2: PARTTIME EMPLOYEE

describe two non-overlapping sets. An integrity constraint
could be formulated to permit insertion of instances into
either object only if after the insertion a join of both

objects still returns the empty set.

If the model (and the DBMS) can support integrity constraints,
this restriction can improve the data quality. The
representation of exclusion integrity constraints is suggested

by [Casanova and Vidal, 1983] and [Biskup and Convent, 1986].

31. Containment is transitive. If A contains B and B
contains C, then A contains C. The transitivity shall
not be explicitly repfesented in any view. An Isa
relationship between A and C is assumed to exist, if
an Isa relationship exists between A and B and between

B and C.

This rule prevents the generation of new redundant Isa
relationships in multi-level hierarchies. If for example,
PERSON, EMPLOYEE, and PART TIME_EMPLOYEE entities exist in a
view, and EMPLOYEE--Isa--PERSON, as well as PART TIME EMPLOYEE-
-Isa--EMPLOYEE has been expressed, there is no need to also

express PART TIME EMPLOYEE--Isa-~PERSON.

116



32, If an Isa relationship hierarchy implies another Isa
relationship hierarchy because of transitivity, the

implied Isa relationship shall be removed.

This rule assures the removal of already existing redundant
Isa relationships in multi-level hierarchies. If for example
view 1 states that PART_TIME_ EMPLOYEE--Isa--EMPLOYEE--Isa--
PERSON, while view 2 expresses that PART TIME EMPLOYEE--Isa--
PERSON, expressed, the transitive Isa in view 2 contains both

Isa's in view 1 and is redundant. It has to be removed.

33. Creation of a new superset or subset object will
result in relocation of'relationships if these
relationships were previously linked to entities at

an incorrect level of generalization.

Whenever a new superset-~subset relationship is introduced into
a view, the possibility exists that existing relationships may
have to be relocated. Consider the following éxample:

V1: DEPARTMENT--Employs--FULLTIME EMPIOYEE,

vV2: FULLTIME EMPLOYEE--Isa--EMPLOYEE.

In V1, Employs refers to FULLTIME_EMPLOYEE,'because no more

general EMPLOYEE object exists. Once the new EMPLOYEE becomes

117



part of V1, the Employs relationship will be relocated to
associate DEPARTMENT with EMPLOYEE.

V1/V2: DEPARTMENT--Employs--EMPLOYEE--Isa--FULLTIME EMPLOYEE.

Process Rules:

34. In view integration, the test for identity (conflict
recognition and reconciliation) shall precede the test

for relatedness.

The test for identity and the test for relatedness are two
independent phases of view integration. The ﬁest for identity
detects or creates identical pairs of objects in the involved
views so that finally for each object in view V1 exactly one
identical object exists in view V2. The test for relatedness
has the purpose to detect currently missing forms of relatedness
(set relationships) between views. Its purpose is not to
detect within-view relatedness. All occurrences of within-
view relatedness are supposed to be already represented in the
individual views (completeness assumption). An example may
illustrate this fact. V1 has employees working in departments,

V2 assigns employees to projects.

View 1: EMPLOYEE--Works in--DEPARTMENT

View 2: EMPLOYEE--Assigned to--PROJECT

118



The completeness assumption postulates that no forms of
relatedness exist within either of the views, because none are
explicitly stated (no knowledge is interpreted as negative
knowledge) . For example, it is known that EMPLOYEE is not a
subset of DEPARTMENT. Consequently, the search for inter-view
relatedness has to focus only on those objects that originally
exist in one view but not in the other. I.e., if EMPLOYEE
were identical to EMPLOYEE, Works_ in identical to Assigned to,
and DEPARTMENT identical to PROJECT, then no undetected inter-
view relatedness could exist. In order to know which views
originally existed only in one view but not in the other, the
test for identity has to be carried out first. Thus, the
sequence of the two independent view comparisons, for identity
and for relatedness, is determined by the fact that a previous
test for identity can reduce tﬁe number of comparisons for

relatednese.

Process Rules for Conflict Recognition and Reconciliation:

35. For each object 01 from view V1, try to find an

identical object 02 in view V2.

119



The purpose of the method is to either find that two views are
identical, or to make them identical. Once two views are
identical, one of them can be eliminated because all its.
information is represented in the remaining view. As defined
earlier, two views are identical, if all their objects are
identical. Hence, the test for identity begins with an attempt

to find an identical object 02 in V2 for each object 01 from V1.

¢

36. If no identical object 02 from V2 can be found for
01 from V1, try to find an object that has the same
meaning as 01 and change the dissimilar dimensions

of 01 and 02 so that they become identical.

Earlief, complete identity of objects wés defined. This rule
describes the action to be taken if two objects are only
partially identical, if they have the same meaning. The
meaning dimension as the most important dimension determines
the direction of change. If the entity SUPPLIER in view 1 has
the same meaning --refers to the same real world object-- as
the attribute Dealer no in view 2, both objécts finally have

the same name and the same construct.

120



37. If no object 02 with same meaning can be found, add

a new object 02 to V2 where 02 is identical to 01 from

V1.

If no object 02 with same meaning as Ol's can be found, then
01 has no corresponding object in V2. Hence an object identical

to 01 has to be added to V2.

38. For each object 02 from V2 which is different in
meaning to 01 from V1 but has the same name, change
the name so that no two objects with different meaning

carry the same name.

This rule forbids the existence of homonyms in the database.
If a homonym is found, a name change is required based on this
rule. Again, name follows the more important dimension meaning.
If meanings are different, names have to be different. The

other dimensions, construct and context can remain as they are.

39. For each 02 in V2 that remains without an identical
object from V1, after all objects in V1 have been
matched with an identical object in V2, add a new

object 01 to V1 which is identical to 02.

121



View V2 may contain objects that are not part of V1. Hence,
aftér all of V1's objects have been assigned an identical
object in V2, some of the objects in V2 may be left without an
identical object in V1. Consequently, these objects have to

be added to V1.

Process Rules for the Recognition and Modelling of Inter-

Schema Relationships:

40. Compare each object 01 from V1 which was originally
unique to V1 (before addition of missing objects

during identity test) against all objects (02)

formerly unique to V2, to find out whether 01 contains

02, or 02 contains 0Ol. Represent each identified

containment.

Purpose of the analysis is only the addition of missing inter-
view superset-subset relationships. Therefore, the contain-
ment test applies only to objects that were originally unique
to one of the two views. For example:

View 1: PART--Last_ordered from--SUPPLIER

View 2: PART--Carried_by--DEALER

122



Here PART is the same in both views and therefore is not
unique. Hence, only Carried by, Last_ordered from, DEALER,
and SUPPLIER, are potentially related to objects from the
other view. TI.e., DEALER could be related to Last_ordered from
or to SUPPLIER, Last_ordered from could be related to DEALER
or to Carried by. 1If, for instance all SUPPLIERs are DEALERs
but not all DEALERs are SUPPLIERs, then DEALER contains SUPPLIER.
Consequently, an Isa relationship between SUPPLIER and DEALER

would have to be created.

The coméarison summarized in this rule is the first test for
relatedness, because it the most special case of relatedness
and reguires the least change in the existing views. The
comparison A contains B is a special case of common containment
(A contains A and A contains B), as well as a special case of
common subset (B is a subset of A and B is a subset of B). 1In
this special case, only an Isa relationship is added to the
views. In the general case, the common superset and the
common subset have to be added too. Thﬁs,lif this test is the

first one, the subsequent steps are simplified.

41. For all pairs of originally unique objects 01, 02 in
which neither object contains the other, investigate

whether 01 and 02 are contained by a common object

123



different from Ol and 02. Represent the common

containment.

This rule summarizes the procedure for a common containment
where the containing object is different frbm 01 or 02. Only
ﬁhose objects are compared that were originally represented in
one view only. All object pairs in which one object contains

the other are not considered.

42, For all pairs of originally unique objects 01, 02 in
which neither object contains the other and which have
a common superset, also investigate whether 0l and
02 intersect. Represent any existing common subsets.
Represent the 1ack of a common subset through an

‘integrity constraint.

This rule summarizes the procedure for a common subset where
thé intersect object is different from Ol or 02. Only those
objects are compared that were originally represented in one
view only. Also, only objects that have a common superset
(different from Ol and 02) are comparéd. Objects without a
meaningful common superset cannot have a meaningful common

subset.

124



43. ' For all object pairs 01, 02 originally unique to one
view, investigate the existence of a W-relationship
(common role). Represent any existing W-

- relationships.

Even though the test for reléted‘objects may not find any
relatedness among the objects themselves, objects can have a
common role, which requires the addition of objects to represent
the common role and the objects' special role. I.e., both a
company and a person can be car owners. Even though company
and person are not related (i.e., have no meaningful common
superset in the database), their common role car owner requires
representation, as do their special roles person-car-owner

and company-car-owner.

Heuristics

Heuristics are rules that are generally true, but not true in
all cases. The use of these rules during the view intégration
process will simplify the prdcess for the user in cases where
the heuristics are true and will slightly inconvenience or
prolong the process when the heuristic fails. The use of
incorrect heuristics will not result in an incorrect database

design, but it may prolong the database design process.

125



Heuristics improve the integration process by helping the user
to find objects with similar or related meaning. If object Ol
is compared to a set of objects {02} from view 2 and’that set
is large and diverse (large number of objects including entities,
relationships and attributes), the selection problem may be
difficult for the user. If the set {02} is small; the selection
problem becomes simple or even trivial. Heuristics help to
simplify the selection problem by including only those ObjeCts
in the Set that are likely to be identical or related to the

object O1.

The list below shows only some heuristics, it cannot be complete.
It is always possible to formulate further assumptions to
simplify the seérch procedure. Furthermore, some of the
heuristics shown may be too stringent for a particular design,
others may be too loose. Heuristics that are too stringent
are a particular problem, since they can result in decision
errors which require lengthy recovery procedures. This problem
is exemplified in the next section which shows alternative
view integration procedures, one without.any heuristics, one

with only one heuristic implemented.
The following heuristics have been identified:

1. Two objects with identical or related meaning will

have some common context.

126



This rule says that identical or related objects will be found
in the vicinity of identical objects. For example, if it has
been foundvthat there exists an entity EMPLOYEE in views V1
and V2, and EMPLOYEE in V1l participates in a relationship
| Employment, then it is reasonable to assume that EMPLOYEE will
participate in a similar association in V2, even though that
association may‘not~be called Employment in V2 and even though

it may not be a relationship.

The heuristic is based on the assumption that people describing
the same environment will have the same perception of the
eﬁvironment. Since both views have common elementé, both views
describe at least partially the same real world environment.
In the absence of information to the contrafy, the method
therefore that all users regard the same real world objects

and associations as relevant.

In the example, the heuristic fails if the Employment association
is not relevant in V2 and therefbre missing. Note however, that
the Employment association may not be‘missing, but be more
difficult to find, if in V2 it is not represented as a

relationship, but as an entity attribute or as an entity.

127



Even though entities are defined to have no context it is
useful to treat the relationships they are involved in as
their context, to permit the application of this valuable

heuristic.

2. Two objects with identical or related meaning will

have the same construct.

This rule states that even before conflict resolution, two
object with identical or related meaning will be of the same
type. Thus, the rule leads the integration method to look for
a matching object only among those with the same construct.
If EMPLOYEE is an entity in V1, the matching object in V2 will

also be an entity.

This heuristic is based on the aséumption that if two people
describe the same object or association from the real world,
they will agree in their assessment of the construct that the
object or association should be represented with. Depending
on the real world item, this assumption is more or less
reasonable. One would assume that almost anyone considers an
employee or a customer to be an individual, but a customer's
order may be perceived as a thing (entity), or as an association

(relationship) between a customer and a company.

128



The heuristic fails in all cases of construct mismatch (semantic
relativism), i.e., where one real world object is represented
as an entity in one view and as a relationship in the other
view. For cases in which the rule fails, the integration
procedure has to backtrack and look at objects with different -

constructs to find a match.

3. If no two objects with identical or related meaning
and identical construct can be found, the construct
mismatch will be of the following type:

- If 01 is an entity or a relationship, then 02

will be an entity attribute.

This heuristic suggests which construct mismatch to investigate
first. Storey (1988) found that a very common error in database
design was the representation of an entity-relationship construct
as an interconnection attribute. Since this "mistake" is very

frequently made, checking for its occurrence when an identical
object was not found is useful. In combination with the
common context heuristic, this heuristic is expected to reduce

the set (02) to a manageable size.

Some attributes can under no circumstance be interconnection

attributes, while others are more likely to be interconnection

129



attributes. Two support rules help in identifying these

groups:

- a single attribute object key cannot be an
interconnection attribute.

- attributes in a multi-attribute object key (composite
key) are assumed to be interconnection attributes.

For example, Employee# is the single attribute key of an

employee. It does not represent the relationship between

EMPLOYEE and some other object. In contrast, the key of an

ORDER entity, Customerid+Product# identifies 1links to two.

other objects, a customer object and a product object. Both

are potential interconnection attributes.

Since more forms of mismatches other than the interconnection
attributes exist, the heuristic can fail. To recover from
this failure, the system will then search accordihg to the
following rules:
- If Ol is an entity and 02 is not an entity attribute
then 02 will be a relationship attribute.
- If 01 is a relationship and 02 is not an entity

attribute then 02 will be an entity.
These are the only other alternatives for construct mismatch,

aside from the interconnection attribute assumption. However,

any of these rules may fail too, if an object is missing.

- 130



4. Objects with identical meaning will have identical
names (consider a name in singular identical with

its plural).

This heuristic assumes that a particular application uses a
standardized language to lébel its objects. 1In absence of
information to the contrary, members of the same organization
are expected to use terms to label the same objects. For
instance, terms such as "department" or "job classification"
or ‘Maccount" are expected to be used consistently. If this
were true, synonyms and homonyms would not exist. Hence, this
assumption is expected to have very limited reliability.
Nevertheless, it provides a good starting point in the search
for matching pairs of objects at the outset of the integration

procedure.
When this heuristic is applied, two objects are treated as
having the same name even if one is in singular form while the

other one in the plural (i.e., employee vs. employees).

If the heuristic fails, the search for a matching object has

to continue among all objects with different names.

131



5. Objects with related meaning will have names with
identical word stems.
In the search fbr related objects, the word stem can be a very
strong filter to identify those objects that are 1likely
unrelated. For example, FULLTIME EMPLOYEE and EMPLOYEE have
the same stem employee, GRADUATE_ _STUDENT and
UNDERGRADUATE_STUDENT have the same student stem. Thus, they
are likeiy to be related. An even stronger interpretation of
the word stem phenomenon may conclude that if one object's
name is the word stem, it will be the superset of the other
object, while two object with different prefixes have a common

superset.

Again, since synonyms and homonyms are frequent, this rule
will be of only limited use. Nevertheless, in a computerized
procedure, it requires no user effort and is therefore a

desirable feature, even if its benefits may be marginal.

6. Two objects with identical or related meaning will
have some attributes with identical names (for

. entities and relationships only).

Especially in the search for identical objects, this rule can
be used to eliminate those objects that are very unlikely

candidates for identity. Two different views describing the

132



same EMPLOYEE entity are expected to use at least some identical
attributes to specify employee properties. In particular,
identical or related objects are assumed to have the same key

attributes (with the same key attribute names).

Obviously, homonymy is a problem in this context. Attributes

may be identical, but attribute names may be not.

7. Objects with identical or related meaning will

belong to the same pre~defined meaning category.

In a subsequent section, a hierarchy of object categories will
be introduced which provides a structure for the categorization
of database objects according to their meaning, i.e., as an
"animate object". If each object's meaning is pre-defined, in
terms of the category it belongs to, then two objects ffom
different categories cannot be identical. Again, this heuristic

provides a filter to eliminate non-identical objects.

133



4.2, Diagnosis Procedure

The conflict and omission recognition procedure consists of
two parts: the test for identity of objects (object types),
and the test for relatedness of'objects. The test for identity
is concerned with the identification of identical objects in
the observed views; the test for relatedness is concerned with
the detection of inter-view set relationships (object

relatedness).

Even though an object from one view can have at most one
corresponding object in any other view, more than one object
of another view can be related to it. Relatedness means that
there exists a set relationship between the objects. The
relatedness question has to be approached independently. It
is impossible to conclude the relatedness or non—felatedness
of objects from the existence of a pair of identical objects,

or vice versa.

The first question will refer to the identity of objects. 1In
order to restrict the test for relatedness only to inter-view
relatedness, thg relatedness test has to be preceded by the
test for identity. 1Inter-view relationships can only exist
between objects that are originally unique to one view. To

find out, which objects have no corresponding objects in the

134



other view, the test for object identity has to be performed!.

Test for Identity of Objects

The purpose of this test is to answer the question "does there
exist an object 02 in V2 which is identical to Ol from V1?", i.e.
if view 1 contains an entity SUPPLIER, does view 2 also contain
an entity with same name and same meaning. Again, "same meaning"
can be interpreted as "both objects refer to the same object in
the real world". Obviously, finding a perfect match will be the
exception. It is more likely that objects will be found that
are somewhat similar, but not identical. In such cases,
adjustments have to be made. The general rule is to make
objects completely identical if they refer to the same real
world objects (have same meaning). In such cases, possible
mismatches in name, construct or context will be adjusted. If
objects refer to different real world objects, then a possible,
but undesirable, match in their names (homonym) has to be

corrected.

The test for identity is carried out incrementally, with a
comparison of the involved objects along one dimension at a

time. All tests compare one object from view 1 to a set of

' The test procedures will frequently mention therapy
procedures to resolve conflicts or to reflect inter-view
relationships, without going into much detail. Detailed solution
descriptions will be given in the subsequent section.

135



objects from view 2, to find the ones that fulfill the condition
of the test. Objects are identical if their four dimensions
are identical. Since the meaning dimension is the most important
one--other dimensions are adjusted accordingly--it presents a
good starting point for the analysis. The main problem with
this approach is that an object 01 from view V1 is compared to
all objects 02 from V2, independent of their name, construct
or context, even though only one object from V2 can be identical
to Ol. This may require that the user check a long list of
irrelevant objects. The heuristics introduced in the previous
section can be used to alleviate the problem. Therefore, a
second procedure will be shown which includes the heuristic
"objects with identical meaning will have identical constructs",
to exemplify the effect of heuristics. This second procedure

begins with a search for objects with constructs identical to

that of 01.

While it is important to begin with the meaning dimension in
the first procedure, the analysis sequence for other dimensions
may vary. The order chosen here is: construct, context, name.
Construct analysis has to precede context analysis; because
every test for identity may result in a change in that dimension.
For example, a test for identity of construct will cause a
construct change, if constructs are not identical. But a
construct change will also result in a context change. In

contrast, context changes do not affect the construct. Thus,

136



no test for identity of context should be executed until
constructs have become identical. Name identity analysis
should follow construct analysis, because the user may decide
to give objects different names, which ére-baéed oh their
construct. The complete procedure is depicted in flowchart

form in Figure 6 (with abbreviated notation).

To illustrate the whole procedure with an example, it will be
assumed that an object 01 from view V1 is selected at random,
i.e., the entity type SUPPLIER which denotes the set of current
suppliers of a company. With this object held fixed, the

following tests are carried out:

The procedure begins with the gocal to find an object 02 with
identical meaning to Ol. To find the object, the procedure
generates the hypothesis H1 "there exists an object 02 from V2
such that 02 is identical in meaning to 01". Directed towards
the user, it results in the question "which object from view
V1l is identical in meaning to 01?" The use can then either
identify an object, or reply with a "none". For example, view
V2 may contain an entity MANUFACTURER which is used in V2 to
describe all suppliers. If a matching object is found, the
system state s'=sl is reached. If not, s'=s5. In contrast to
the subsequent hypotheses H2-H4, this test compares Ol to a
set (02} from view V2 rather than to a single object. {02}

" contains all objects from V2 which so far have not been

137



s=s0

1
§'=8d
@9 '\ §'=510
no

§'=81 n2en
Rename
@ |\ 8'=g6 n2onl
no
c2=¢1 s259 —,
Make
c2=cl
s=s2 | 1] m2em1 >0 Add
object
02s01
@ |\ §'=s7
no
ct2=cti
Make
ct2=cti
IS |
§'ss3
@ I ] s'=s8
@-m 0
/ Make
n2=n1
s'=s4 l
Pick next
object O1

Figure 6: Test for Object Identity, Procedure without

Heuristics

138



matched up with an object from V1. As a result of Hl, either
one of these objects will find a matching object in V1, while
the remaining n-1 objects will be in state s5, or all objects
from {02} will be in state s5. In other words, for most, if
not all objécts from V2, the result of this test will be state
s5. Thus, in the flowchart in Figure 6, for most if not all
objects in (02}, the outcome of Hl1l will be the "no" path,

while at most one object will follow the "yes" path.

If a matching object is found, the method continues with
hypothesis H2 which states that 01 and 02 will have the same
construct, i.e., that both are entities. The method issues
the question, "do 01 and 02 have the same construct?" 1In a
computerized view integration system, the integration procedure
will look up the information to answer this question from the
view definitions. Should both objects have different constructs
(s'=s6), a construct change would have to occur. If the
constructs are identical, state s'=s2 is reached. 1In the
example, SUPPLIER and MANUFACTURER are both entities and thus

have identical constructs.

Subsequent to s2, the system checks for identical context.
Are 01 and 02 associated with identical objects? For entities,
the answer to this question is always positive, since their
context is an empty set. If 01 and 02 are relationships or

attributes and not all their context objects have been matched

139



to objecté in the other view yet, then the identity test for
01 and 02 is suspended, until the context objects are matched
to objects in the other view. If the result of the context
test is that Ol and 02 have different contexts (s'=s7), the
contexts have to be made identical (s'=s3). In the example,
both object are entities. Thus, both have identical (empty)

contexts.

If state s3 has been reached, the remaining test is the test
for name identity of the objects. The method's hypothesis is
that both objects have identical names. If they do not share
the same name (s'=s8), their names are made identical (s'=s4)
through a change of at least one of the names. The new name
will have to be different from the names of all other objects
in V1 and V2 to avoid homonymy. In the example, at least one
of the entities would require a name change. The name chosen
should be such that it is not identical to the name of another

object.

Once the pair of objects is identical in all four dimensions,
the identity test is completed for this pair. The method
continues by selecting a new object 01 from view V1, and
subjecting it to the same analysis. The procedure terminates

when all objects have a matching object in the other view.

140



The set of all objects (02} from V2 that, as a result of Hl,
are known to be different in meaning from 01 (s'=s5) is subject
to further analysis. H5 tests whether all of the objects have
names different from Ol's name. All objects with same names
(s10) require renaming to make their namés unique (s9). 1In
addition, if none of the objects {02} was identical in meaning
to 01, a new object 02, completely identical to 01, has to be

added to achieve the state s4.

The use of heuristics results in changes to the view integration
procedure. To exemplify such changes, a procedure will be
discussed below that includes only one heuristic: "objects
with identical meaning will have identical constructs." This
heuristic is in fact one of the heuristics implemented in the
view integration program AVIS. Again, the procedure begins by
picking one object Ol1 from view V1. It again will attempt to

find an object in view V2 that is identical to O1.

The procedure (see Figure 7) begins with the goal "find the
set of objects (02} from V2 that have the same construct as
object 01". Since the procedure assumes that all objects with
same meaning have the same construct, it decides to only
consider those objects 02 for further identity tésting that
have the same construct as O01l. A number of objects from. V2

will gqualify and thus be in state s0, while the objects of

141



different type will be in state s5. Since in the example
SUPPLIER is an entity, all entities from V2 would be considered
for further identity testing. One may want to think of the
use of construct as a "filter" which can reduce the number of
objects to be considered, hopefully without being too stringent

a condition.

For those objects with same construct, the procedure then
investigates whether there exists an object 02 which has the
same meaning as Ol from V1. TI.e., it is looking for an entity
in v2 identical .in meaning to SUPPLIER. Again, at most one
object of V2 is allowed to fulfill this condition. That
object will be in state sl1l. All objects with different meaning
will be in state s6. If an object with same meaning is found,
the procedure continues with the context (H3) and name (H4)
tests, similar to the tests above. However, if no object in
V2 is found to have the same meaning as 01, the procedure
continues differently, to verify one of two possible
interpretations of the situation. The first possibility is
that the heuristic is wrong. Thus, an object 02 with same
meaning but different construct exists in V2. The second
pbssibility is that no object with identical meaning exists in
V2, regardless of construct. The procedure has to find out
which alternative is true, to avoid the creation of a non-

minimal global schema.

142



8°50

@) no [
c2=c1 8'+8b
8'+81

&2 no

8'-86
8’82
/j\ §'-s5
no
2-ct
gl2-e Make
ct2-ct1
8'+53 -
no 8'+38
n2=n1
Make
a2«ni
8'~54
Pick next]
object O1

nzg';,)- s 812

no

1

8’89

Rename:
n2onl

I

@9

©

no
. Add
@ 3’813 ~lobject 02_
8’~810
no
m2emT>_ | g'ep14
]/ @ ruo s'-a16
s'es n2-n1
< Rename:
Change 1 n2on1
construc ‘.
c2ecl 8'-g16 —

Figqure 7: Test for Identity with Heuristic

143




Thus, after taking care of homonyms (HS), the procedure
continues with a test to identify those objects with constructs
different from 0l's construct. 1In the figure, this test is
shown in abbreviated notation as c2<>cl. Its correct
interpretation is "are there any objects in V2 that have a
different construct?" This question may appear redundant for
the objects in s5, because they failed the "same context"
test. However, the set of objects in state s5 may be the
empty set. Thus, they would qualify for the answer "no" to

question H6 (sl1l3), requiring the addition of a new object.

If there are objects in V2 with constructs different from
Ol's, the procedure checks whether any of them have the same
meaning as Ol (H7).. If an object with same meaning is found
(sll), its construct has to be changed. If no such object
exists (sl4), a test for homonymy follows (H8), resulting in a
name change for all homonyms. Subsequently, the missing

object is added.

In this procedure variant, the main effect is a sequence
change with respect to the tests for meaning identity and
construct identity. It results in a prolongation of the

procedure if the heuristic is wrong.

144



The procedure could be varied further, for instance by a
switch in the sequence of meaning identity and context idehtity
test. Therefore, the test for meaning identity would follow
the test for construct and context identity. Consequently,
only those objects with same construct and same context would
initially be considered for the meaning identity test. This
procedure change would reflect the heuristic "identical objects
afe in the vicinity of identical objects." The procedure
would look in the neighborhood of matching objects to find
further matching objects. This heuristic is, in ﬁodified
form, also implemented in AVIS. AVIS requires only part of

the context to be identical.

The test for meaning identity could even be moved past the

test for name identity to reflect the heuristic that objects

with same meaning will have same names. Since this heuristic
is expected to be frequently wrong, it has not been implemented

in avis.

Test for Relatedness of Obijects

The purpose of this test is to find out whether aside from
being identical, objects from one view are related to objects

from another view through set relationships. 1I.e., an entity

145



(type) SUPPLIER in V1 is a subset of an entity DEALER in V2.
Such a case would exist in a situation where SUPPLIER referred
to all current suppliers of the company, while DEALER refers
to all present and all potential suppliers of the company. If
those relationships are not made explicit, anomalies dan
occur. I.e., if a member is dropped from the entity set
DEALER, it should also be automatically dropped from the
entity set SUPPLIER. Furthermore, attribute inheritance can

be derived from set relationships.

The procedure described below is a generic procedure without
the use of heuristics (see Figure 8). It begins with a test
for containment (H1 and H2). Subject of the test is whether
one of the objects is contained by the other object, i.e.,
SUPPLIER is contained by DEALER. The procedure first determines
the set {(02) of objects contained by 01, and then, for those
objects not contained by 01, the set {02'} containing Ol. The
way the question is raised to the user is "Which of the objects
(in V2) are contained by 01", and vice versa "which of the
objects (in V2) contain 01?" It is possible that Ol contains
some objects in V2 while being itself contained by others.
‘I.e., SUPPLIER (V1) is contained by DEALER (V2) but may contain
another object SMALL_QTY SUPPLIER from V2. In such a situation
an Isa relationship between DEALER and SMALL_QTY_SUPPLIER
would have existed which now would have to be removed because

it is a transitive Isa.

146



LYT
s309(q0 3O sssupeje[dy I0J 3SaL :8 SINDTI

Wl .| @

@ A
1 o3
04

8’89
8'*813
no
4 c 04
4 ¢ 02 no
s'rab a'e810 s'*814 8'*317 82820
© @ L
N NN
c2ecY c2rc .“t2e¢c /c2-c1\)
I no Sontity ne 'Q} I no '\'\"” l no K{M,.',W
3'*83 8’87 3'*812 $'°816 3'=8189
Change Change Change Change Change
constructd constructs construct gconstructs constructs
s'*82 ’ 8'+86 s'estt 8'=816 s'*818
Represent Represent Represant Represent Represent
relation~ relation- relation~ relation- relation=~
ship ship ship ship shi

Next
01



The containment test is the first one issued, because it is
the most specialized form of common containment and common
superset, requiring the least amount of additions to the
existing views. Only one Isa relationship has to be established
between the objects. The insertion of an Isa between the
objects requires, however, that both objects are entities. If
they are not, all of them which are not entities have to be
converted into entities. The test H6.1 is executed to determine

whether both objects are entities. ;

The entity test (H6) is issued for each pair of objects after
their relatedness has been discovered. There is no need to
test for object type earlier, since only related objects that
are not entities will require construct changes. Unrelated
objects will keep their original constructs. Since the object
type test (H6) is identical for all forms of relatedness (H6.1

- H6.4), it will not be discussed further in the procedure.

Should neither object contain the other one (s8), the procedure
inquires whether both objects have a common superset (H3). If
they do, the procedure further inquires whether a common
subset exists between them (H4). The common superset question
precedes the common subset question, because objects that have
a (meaningful) common subset and are themselves meaningful

sets have to have a (meaningful) common superset. Although it

148



is possible to construct sets such as the set of "all green
things" and the set of "all edible things" which have a common
subset in the set of "all green edible things", while having
no meaningful superset other than "all thingé", the rule is
nevertheless valid when only meaningful sets are considered.
In the example, especially the set '"green things" is not a
meaningful set as it has no clearly defined attributes (rather

than green color) which we expect for an entity or relationship

type.

If objects have both a common superset and subset (sl10), two
new objects will be created to represent the superset and the
subset. Also, new Isa relationships will be created to represent
the relatedness. If the objects have a common superset but
no common subset (sl4), only a common supersef entity and the
corresponding Isa relationships will be added. In addition,
an integrity constraint may be defined to identify that‘the

objects are not overlapping.

Objects without a common superset (s13) are tested for the
existence of a W-relationship (Goldstein and Storey, 1988).
If no common superset exists, the objects are in fact not
related. Yet the objects may still require the creation of
inter-view relationships if they have a common role. If the
objects have a common role, i.e., both a PERSON and a COMPANY

entity may be car-owners, a new object describing the common

149



role (CAR _OWNER), plus objects describing the special roles
(PERSON_CAR_OWNER, COMPANY_CAR_OWNER) have to be created.
Furthermore, Isa relationships have to be added to represent

the associations between the objects.
If not even a W-relationship exists between the objects, they

are unrelated and require no addition of inter-view relationship

objects.

150



4.3, Conflict Therapy

As soon as a conflict is detected by the diagnosis procedure,
the integration method will correct the problem. Thus, while
there exists a diagnosis procedure to recognize conflicts,
there exists no therapy procedure per se. Instead, for each
conflict case, a case solution is defined. All case solutions
are based on a set of 11 elementary solution operations which

were formulated earlier as rules gquiding view integration:

1. Relationship becomes an entity.

2. Relationship attribute becomes an entity.

3. Entity attribute becomes an E~R construct.

4. Association of an entity to a relationship.

5. Relocation of a relationship after creation of new

superset or subset classes.

6. Representation of containment.

7. Representation of a common role (W-relationship).
8. Representation of common superset without overiap.
9. Representation of common superset with overlap.
10. ‘ Renaming of homonyms and synonyms.

11. . Addition of missing objects.

One or more of these elementary therapy measurés may have to

be carried out during conflict reconciliation. Each of them

151



will be described in detail. Appendix 2 will show which
groups of elementary solutions will be applied to specific

conflict cases and their sub-cases.

Relationship becomes an entity (S1)

Whenever necessary, a relationship is transformed into an
entity. If a relationship becomes an entity, the linkages
between the relationship and the entities it associated become

relationships themselves (see Figure 9).

DEALER CUSTOMER

>

Dealer-

Customer-
DEALER W CONTRACT CUSTOMER

Figure 9: Relationship Becomes an Entity

152



The entity construct is the more fundamental one. Furthermore,
an entity can be associated to other entities by means of a
relationship, i.e. an Isa relationship. Consequently, for the
newly created entity set relationships to other objects can be
represented within the E-R modelling language. In the example
in the figure, the relationship Contract between DEALER and
CUSTOMER becomes an entity itself and two new relationships,

Dealer contract and Customer_contract are created in addition.

i
<

Relationship attribute becomes an entit S2

When necessary, relationship attributes are converted into
entities and a linkage is expressed between the relationship

and the newly created entity (see Figure 10).

’ SUPPLIER PART

O
Project

/
SUPPLIER | ———" Suppiy PART
AN
l N ’

PROJECT

Figqure 10: Relationship Attribute Becomes an Entity

153



Relationship attributes that have to be transformed into
entities are interconnection attributes. Interconnection
éttributes represent entities (or E-R constructs) in shortened
form. If the database requires that an interconnection attribute
be associated with another object, it first has to be converted
into an entity (or an E-R construct). In the illustration,
SUPPLIER is associated with PART through the Supply relationship
which has an attribute Project. This attribute subséquently

becomes an entity.

Entity attribute becomes an E-R construct (S3)

Similar to relationship attributes, entity attributes may have
to be transformed, if they require association with other
objects, or if another view represents them differently. An
entity attribute which is an interconnection attribute represents
an entity-relationship construct in shortened form. Therefore,
it will be converted into an entity-relationship structure

 (see Figure 11).

Typically, the newly created entity will refer to the same
real world object that the original attribute referred to.

However, the user may think of the newly created relationship

as the object that corresponds to the original attribute. 1In

154



fact, the attribute corresponds to both the entity and the
relationship. In the example, the PART entity has an attribute
Supplier which in fact represents a Supply relationship and a

SUPPLIER entity in shortened form.

PART ——O Suppller

PART Supply SUPPLIER

Fiqure 11: Entity Attribute Becomes an Entity-Relationship

Construct

155



Association of an entity to a relationship (S4)

A conflict situation may require the association of an already
existing éntity with an already existing relationship. The
new element added to the view is the association link (role)

between the entity and the relationship (see Figure 12).

View 1 SUPPLIER ‘®— PROJECT

PART

View 2 SUPPLIER PART

PROJECT

=

Global - -
Schema SUPPLIER upply

PROJECT

Figure 12: Association of an Entity to a Relationship

156



Such a situation arises when two relationships are similar,
even though oné involves only a subset of the entity types
associated by the other relationship, i.e. one is a binary,
the other a ternary relationship. The figure shows a Supply
relationship, involving only the SUPPLIER and PART in the
first relationship. Subsequently, the PROJECT entity is also

tied into the relationship.

Relocatibn'of a relationship after creation of new superset or

subset classes (S5)

Whenever a new superset-subset relationship is introduced into
a view, the possibility exists that existing relationships may
have to be relocated. Figure 13 shows such a case. In view
V1 DEPARTMENT Employs FULLTIME EMPLOYEE, while view V2 reveals
that every FULLTIME_EMPLOYEE is an EMPLOYEE. Once the views
are combined, it becomes evident that the Employs relationship
should associate DEPARTMENT with EMPLOYEE rather than with

FULLTIME_EMPLOYEE. Hence, the Employs relationship is relocated.

Relocation becomes necessary whenever the original relationship,
i.e. Employs, should have referred to either a more general
object, i.e. EMPLOYEE instead of FULLTIME EMPLOYEE, or to a

more specific object.

157



FULLTIME_

i EPARTMENT
View 1 D Empioys EMPLOYEE

i FULLTIME_ EMPLOYEE
View 2 EMPLOYEE

>

FULLTIME_ I1sa EMPLOYEE Employs DEPARTMENT

EMPLOYEE
\\\//

Figure 13: Relationship Relocation

Representation of containment (S6)

Whenever one object (class) represents the superset of another

object and this superset-subset relationship is meaningful for

158



the database, it has to be represented by an Isa relationship

between the two objects (see Figure 14).

View 1 FULLTIME.
EMPLOYEE

(l
View 2 EMPLOYEE

FULLTIME_

isa EMPLOYEE
EMPLOYEE

Figure 14: Representation of Containment
The illustration in the figure shows the creation of an Isa

relationship between an EMPLOYEE and a FULLTIME EMPLOYEE

entity.

159



Representation of a common role (W-relationship) (S7)

Two objects can be unrelated but nevertheless have some affinity
to each other, if they assume a common role. Goldstein and
Storey (1988) identify this affinity as a W-relationship.
Figure 15 depicts two entities, COMPANY and PERSON, as unrelated
but both assuming the role of a car owner. Both people and

companies can be car owners.

View 1
COMPANY CAR
View 2 PERSON o CAR

=

GLOBAL SCHEMA

COMPANY.
COMPANY -—@; CAROWNER laa cmownsa CAR
PERSON. < >
PERS tas
oN CAROWNER

Figure 15: Representation of a Common Role

160



In such a situation, new objects have to be created to represent
the common role, i.e. STOCKHOLDER, as well as to represent the _
specificroles,i.e.,COMPANY_STOCKHOLDERendPERSON_STOCKHOLDER.
Each object representing a specific role will be contained by
one of the original objects, i.e. COMPANY or PERSON, as well
as by the object representing the common role. Whenever a
common role is represented, relocation of relatienships may

have to take place.

Representation of common superset without overlap (S8)

A Superset'but no overlap describes objects that exclude each
other, such as FULLTIME_EMPLOYEE and PARTTIME EMPLOYEE.
Figure 16 illustrates such a scenario and shows the creation
of a new superset object EMPLOYEE, connected to the original

objects through two Isa>re1ationships.

The example in Figure 16 is based on the assumption that the
EMPLOYEE entity has not previously existed in either of the
view. Whehever a common superset is represented, relocation

of relationships may have to occur.

161



VieW 1 FULLTIME.
EMPLOYEE

VieW 2 PARTTIME
EMPLOYEE

=

GLOBAL SCHEMA

FULLTIME. /lsa\ EMPLOYEE PARTTIME.
EMPLOYEE ‘\// EMPLOYEE

Figure 16: Representation of a Common Superset without Common

Subset

162



Representation of common superset with overlap (S9)

In situations where two objects not only have a common superset
but also a common subset (overlap) both the superset and the
subset have to be represented by additional objects and Isa
relationships between the original objects and the superset

and subset objects (see Figure 17).

VieVV 1 ’ PRODUCT.
TEAM_

MEMBER

H . PROJECT.
View 2 e

MEMBER

>

GLOBAL SCHEMA
PRODUCT_
TEAM. EMPLOYEE 1sa | PRoJECT-
MEMBER TEAM-
MEMBER

PROJECT_&_
Isa PRODUCT. o N
TEAM. \\\//////

MEMBER

Figure 17: Representation of Common Superset and Common Subset

163



Figure 17 depicts PROJECT TEAM MEMBER and PRODUCT TEAM MEMBER
entitieé. Both have the common superset EMPLOYEE and the
common subset PROJECT&PRODUCT TEAM MEMBER. The Isa relationships
represent that all team members are employees and that the
members of the project&product team belong to both the project
and the product team. Again, any previously existing superset,
subset or Isa relationships will not be reduplicated. Whenever
a common superset or a common subset is represented, relocation

of relationships may have to occur.

Renaming of homonyms and synonvms (S10)

Renaming becomes necessary when otherwise identical objects
carry different names (synonym), or when different objects
carry the same name (homonym). Once synonyms are treated, the
objects should have the same name. That name should also be
différent from the name of any other object in either view.
Once homonyms are treated, the involved objects should carry
names that are different from each other and different from

all objects they are not known to be identical to.

l64



Addition of missing obijects (S11)

Objects can be missing. Most views will oveflap only partially.
Hence, for any two views, all objects that exist in one view
but not in the other have to be added to the other view in -
order to make the views identical. The addition of missing
objects is part of the "view completion" strategy used in this
integration method. During integration, both views that take
part in the integration process are altered until finally they
are identical. This strategy is different from those that
create a third "integrated" view during the conflict resolution

process.

Many conflict cases require the combination of several elementary
therapy procedures to correct a conflict. For instance, a
case of construct mismatch paired with synonymy (Case 6),
requires a name change and a construct change, therapies S10
and one of Sl1l, S2, or 83. Appendix 2 presents the conflict
cases and applicable therapy procedures. Case 6 is shown

below for illustration.

CONSTRUCT MISMATCH AND SYNONYM

N1l <> N2; T1 <> T2; M1l = M2:; Cl <> C2;

6.1 Entity is Relationship.
Solution: S10 and S1.
6.2 Entity Attribute is Entity-Relationship
construct. ‘

Solution: S10 and S3.

165



6.2.1. Attribute is Entity.

6.2.2, Attribute is Relationship.
6.3. Relationship Attribute is Entity.

Solution: S10 and Ss2.

166



4.4, The Impact of Heuristics

The main goal of this research is the development of a complete
view integration method. The secondary goal is an adaptation

of this method to operate with insufficient information.

The integration method in the form described so far does not
take into account the source of its information requirements.
For example, if the method has to know whether EMPLOYEE in
view 1 and DEALER in view 2 are of the same object type
(construct), the method expects this information to be available.
The source of tbe information is of no concern. Among the
four relevant dimensions for each object, name, construct,
meaning, and context, name and construct are the ones most
easily assessed. Does EMPLOYEE have the same name as DEALER?
Obviously not. Also the object type is observable, because
object types are explicitly stated ih E-R models. The assessment
of meaning identity, and therefore also context identity, is a
much more difficult problem. The question is whether two view

objécts refer to the same real world object.

Recognition or interpretation of real world objects is a task
beyond most computer systems and not a concern of this research.
Nevertheless, recognition of meaning identity or difference is

the most crucial recognition task, since the other dimensions

167



follow the meaning dimension. 1I.e., if two objects have the
same meaning, their names will ultimately be the same, if they

have different meaning, their names will ultimately be different.

The following alternatives exist to satisfy the meaning'

information requirement:

1. '~ user interrogation;

2, advance meaning specification;

3. nmethod "guesses".

The first aiternative to satisfy the meaning information
requirement is through user interrogation. Every time two
objects are compared, the system could ask the user "are these
two objects identical in meaning?". This form of operation
demands a substantial ambunt of question answering by the
" user, especially since for any object 01 in view 1 at most one

object 02 in view 2 with the same meaning is allowed to exist.

Advance meaning specification requires an ex-ante definition
of the meaning of each objeét in a form thaﬁ allows the method
to compare it to other objects and to decide on identity or
difference. This requirement results in two main problemns.
First, meaning descriptions may have to be very detailed to

differentiate between objects that are quite similar, yet not

168



completely identical. Thus the up-front effort required is
very high. Secondly, meaning definitions have to be formulated
in such a form that there can be no misinterpretations. The
terms used to define meaning have to be consistent over all
object definitions. These two problems virtually rule out a

prior complete definition of each object's meaning.

Method "guesses" require that the integration method has
strong evidence oh‘which it can base its guesses. "Guessing"
implies that whenever the method compares two objects, it
makes a decision whether to believe that the objects are
identical or not. This is the way in which humans operate.
When we say "I know", we mean that we believe, based on evidence
for the fact and no or little evidence against the fact". 1If
evidence is not available, the method is bound to make mistakes.
Unfortunately, ample opportunity for mistakes exists, since
the amount of positive information --any 01 is identical'to at
most one 02--is so much smaller than the amount of negative
information. Hence, reliance on guesses is not a desirable

alternative.

Apparently, none of the alternatives by itself provides a
reasonable solution to the information requirement problem.
The first alternative, interrogation, provides the information,
yet at high cost to the user. The second alternative, up-

front definition, does not necessarily provide all the

169



information and it requires a 1lot of user effort in addition
to an unambiguous representation. The third alternative
requires no user effort but does not guarantee that the
information requirements are satisfied correctly. Consequently,
the best strategy to satisfy the requirements, is to combine

the good aspects of the discussed alternatives.

User interrogation is the only method that satisfies the
information requirements, therefore it is the dominant approach
(1f the user says that in his world'twovobjects are identical,
they are identical, unless this fact conflicts with a previous
statement). The other two alternative approaches can be used
to overcome or at alleviaté the weakness of direct user
interrogation, because they can limit and prioritize the

questions to be asked.

Most of the questions‘of the type."is.object 01 identical to
oo will resﬁlt in the answer "no" or the will demand the
comparison to a vast number of other objects at once. If 01
is compared to all objects in 02 in one comparison, the user
has to deal with a large amount of information which may make
it difficult to answer correctly. Conéequently, an improved
method should reduce the number of objects 01l has to be compared
to. If object identity is the goal, only such 02s should be
compared to Ol which could potentially be identical to 01; In

other words, a filter would be used to reduce the number of

170



objects in the comparison. Ex-ante meaning definitions of

objects, if in unambiguous form, can be used in such a manner.

If the purpose of ex-ante meaning definitions in this approach

is to allow an automatic assessment of difference, meaning

definitions can become much shorter. For example, the meaning
definition of each object could contain juSt one fact, its
value being either "animate object", "inanimate object" to
separate all E-R model objects describing living creatures
from those describing things. If all database objects were
correctly classified, the method could automatically decide
that EMPLOYEE and DEPARTMENT are different, because the former
one is a living object, the latter one not. A few general
categories can be chosen which can allow sufficient specification
and differentiation of meaning without the need for an excessive
up-front definition effort. Ein-Dor (1987) discusses the use
of such "common sense knowledge" in reasoning. Grounded on
such a common sense knowledge based_classification; the
integration method could quickly eliminate those objects 02
that are not identical to object 01. The user would only have

to decide among the remaining objects.

A further reduction in the number of objects involved in the
comparison can be initiated through the use of other available
information, in combination with the use of heuristics, as

discussed previously. 1Instead of guessing which objects are

171



identical; the method could use any additional evidence to
further reduce the number of objects under consideration. The
following two views shall exemplify this approach which utilizes
context information: |

View 1: EMPLOYEE--Employed by--DEPARTMENT

View 2: EMPLOYEE--Works in--XYZ--Engaged_in--PROJECT

Suppose, it is already known that EMPLOYEE in view 1 and
EMPLOYEE in view 2 are identical. Now, the next task would be
t§ find out whether the relationship Employed by is identical
in meaning to any object in view 2; One reasonable assumption
would be to ekpect that an object identical to Employed by
would also be a relationship in view 2. This does not have to
be the case but is quite likely (hence, a heuristic). This
simple assumption reduces the number of contenders in view 2
to the objects, Works_in and Engaged_in. Anotherlreasonable
assumption wouid be to expect that the object sought in view 2
is also associated with that view's EMPLOYEE entity. Again,
this does not necessarily have to be the case, information
could be missing in view 2, yet it is an assumption likely to
be true. The second assumption leaves only Works in as a
potential candidate to have the same meaning as Employed by.
Consequently, instead‘of asking the user "is the relationship
Employed by identical in meaning to one of the following:
Works in, XYZ, Engaged_in, PROJECT?", it can more intelligently

ask, "is the relationship Employed by identical in meaning to

172



the relationship Works_in?", thus simplifying the decision

task for the user.

Not only context and construct can be used to make assumptions
about the identity of objects. Other available information,
such as names can be used too. Figure 18 provides an overview
of potential sources of evidence for meaning identity. The

first aspect, meaning representation, has already been discussed.

MEANING

MEANING

REPRESENTATION

CONTEXT

ATTRIBUTES

DOMAIN
( VALUE SET)

NAME

RELATED
OBJECTS

MAPPING
RATIOS
(CARDINALITIES)

ROLFS OF
ENTITIES IN
A RELATIONSHIP

Figqure 18: Sources of Evidence for Meaning Ideﬁtity

173




The second aspect, context, is broken down into three observable
facts: related objects, cardinalities, and roles of entities
in a relationship. "Related objects" denotes the general
definition of context. Cardinalities refers to the context of
relationéhips. If two relationships do not only associate the
same entities, but also with the same mapping ratios, the
evidence for the relationships' identity is even strongér.
When a view contains multiple relationships associating the
same set of entities, a differentiation by cardinalities dan
be useful. The use of roles applies only when roles are
defined. If names are given to the associating link between
an entity and a relationship, then these role names can be

used for comparison.

Third, attributes can serve as an indicator for identity. The
problem is that attributes are objects in themselves and
therefore subject to the same difficulties with respect to
identity assessment. One aspect of attributes, however, is
easily found out, their names. Thus, two objects may be
speculated to be identical, if their attributes have identical
names. As for all previous indicators, there has to be room
for interpretation. The requirement should not be that all
attributes have to be identical, yet at least some.

Alternatively,‘the key attribute(s) could be the focus of

174



attention. Identical objects are likely to have identical key

attributes.

Fourth, identical domains can be an indicator for identical
meaning, if domains can be defined unambiguously. For
attributes, domains are the value sets from which the attribute
values are drawn, i.e. "Social Security Number". For other
objects, an object's superset defines its domain. I.e.,
EMPLOYEE--Isa-~-PERSON specifies the domain of EMPLOYEE as
being a person. If the other view contains also the PERSON
entity, then the EMPLOYEE entity could exist only among its

subsets.

Finally, the name 6f an object as an indicator for its meaning
can be another relevant piece of evidence. Especially if name
identity is not defined as strict identity of the character
strings, but if it also allows for singular/plural
differentiation, as in EMPLOYEE vs. EMPLOYEES. Both objects
could be expected to be the same, even though their names are,
strictly interpreted, different. For the analysis of relatedness
of objects, this interpretation flexibility could be widened,
allowing for comparison of objects that only differ in their
names'! prefixes. For example PART_TIME EMPLOYEE, EMPLOYEE,
and FULL TIME EMPLOYEE could be expected to be identical or at
least related, since they all their names contain the root

word employee.

175



It is unlikely, that for any given object all these aspects
point into_the same direction, that is, identify the same
object. Often, it may not be known what the context of a
particular object 1is, naming preferences will differ, and
different tasks may require different object attributes. The
apprbach to be taken is to use these indicators as a filter of
variable density. At first, the filter should be tight, to
suggest only the most likely candidate(s) for a meaning match,
i.e., only the objects of the same type with same context and
of the same meaning category. Should this filter be too wide
still, i.e., for a database with many entities of the people
category, partial overlap of attribute names, or identity of
key attribute names can be used to restrict the number of
objects. Upon failure, i.e., if none of the suggested objects
resulted in a proper match, the technique could remove one or
more of the earlier applied restrictions, i.e., look for all
objects of the same meaning category, regardless of object

type and context.

There exists no single best rule for the application of meaning
indicators. The only indicator which is always applicable and
correct in its prediction, should the information be available,
is the meaning category indicator. By definition two objects
cannot be identical in meaning unless their meanings belong to

the same category of meaning. I.e., EMPLOYEE and DEPARTMENT

176



cannot have the same meaning because one is an animate object,
the other one an inanimate object. Hence, this indicator is
the only one that can eliminate objects with cértainty. The
other indicators can only suggest that an object may have

different (or same) meaning.

Only empirical data generated under a variety of conditions
can provide stronger evidence on which meaning indicators work
better than others. For instance, if the same systems analyst
produces all views (based on different users' information
requirements), one may expect that object type may be a
reasonable indicator (filter) for meaning identity; the
underlying assumption being that a single database designer
will be more consistent in what he models as a relationship
vs. an entity or attribute than a multiplicity of designers.
If all views specifications and designs are done by the same
person (user designer), one should expect names to be used
consistently throughout the views. Hence, names could provide

a good basis to judge meaning identity.

177



4.5. Generalization Hierarchy for Database Objects

The previous section introduced the idea of ex-ante
meaning definitions according to predefined meaning categories.
Here, the concept of a generalization hierarchy shall be

introduced to facilitate the categorization.

The difficulty in developing such a classification scheme is
the fact ﬁhat it has to be acceptable to all people involved
in the database design process. In order to fulfill this

goal, the generalization hierarchy should be:

1. complete;

2. consistent;

3. discriminative;
4. concise.

Criteria 1 and 2 are minimum criteria. First, a classification
scheme that does not allow the user to classify all his objects
in accordance with it is insufficient to capture that user's
knowledge. Second, if the scheme induces the user to classify
the same object under different categories, it violates the
purpose of the scheme, namely to identify similarity or

difference of object meanings.

178



Criteria 3 and 4 are based on Leibniz's Minimality Principle
(Leibniz, 1956, pp. 198-199). Thié principle postulates that
a representation is superior to another one, if it requires a
shorter explanation to explain the same phenomena.
Correspondingly, a generalization hierarchy that can
differentiate among a larger number of object classes than
another one with the same number of differentiation criteria
is superior. What is undesirable is a classification scheme
that is very fine-grained for a subset of object classes but
very coarse for the remainder of object classes. Similar to
an unbalanced binary tree, the too fine/too coafse generalization
hierarchy would waste too many levels of specialization on too

few phenomena.

Unfortunately, choice of the "“right" generalization hierarchy
will consequently depend on the knowledge domain and on the
way in which the person who classifies objects differentiates
among them. For example, a generalization hierarchy which
contains only one class for all "people objects" will deal
poorly with a database that stores only data for different
people roles (i.e., employee, investor, saver, tax payer).
Consequently, validation of the quality of a generalization
hierarchy is possible only within the context of a particular
knowledge domain and a specific person who classifies objects.
Hence it is necessary to include the creation of such a

generalization hierarchy in the requirements analysis effort.

179



The database designer has to develop a hierarchy which can
represent the application domain and has the above mentioned

desirable properties.

If no such specialized categorization hiefarchy exists, a
domain-independent categorization hierarchy could be used.
The hierarchy created as part of this project, is rather flat,

incorporating only few levels of specialization.

A flat generalization hierarchy has the obvious disadvantage
of limited discriminative ability. However, object
classifications are used to identify difference in meaning,
not meaning identity. Object classification is only one of
the identifiers used by the integration method, and the method
will always interrogate the user, if in doubt. Since the
focus is on difference in meaning, even a flat generalization
hierarchy has reasonable discriminative ability, as the following

example may illustrate.

Consider a generalization hierarchy that can differentiate
among 20 classes, such as Person, Animal, Organization.
Object EMPLOYEE is classified as a Person. The question to be
answered is "is object XYZ different in meaning from object
EMPLOYEE?". Without further knowledge about XYZ, XYZ has
equal probabilities to belong into either class, and thus a

.05 chance of belonging into the class Pérson. Thus there

180



exists a .05 chance for the classificafion mechanism to suggest
that EMPLOYEE and XYZ are not different in meaning. 1In thié
situation (1 out of 20 cases),‘the user would have to be
consulted, if not other indicators were able to answer the
question.. An increase of the number of classes to 40 would
reduce the probability to .025, an increase to 200 classes
would result in a .005 probability, requiring user interrogation
only in 1 out of 200 cases. The reductions in probability
have to be weighed against the classification effort which is

an ex-ante investment.

A generalization hierarchy for the categorization of object
classes shows similarities with the attempts to represent
common sense knowledge in artificial inteliigence. The
classification hierarchy discussed here is, however, less
ambitious; since the task, judging whether two objects are
different in meaning, is simpler than the task preséhted in
the artificial intelligence applications (i.e., Schank's and
Rieger's restaurant scripts (1974) or Hayes; naive physics

(1979)). Ein-Dor suggests concept clusters for common knowledge

in the business environment (1987). His categories are:
1. exchange,

2. time,

3. location,

4. measurement,

5. media of exchange,

6. obligations and commitments,

7. types of businesses,

8. behaviors,

9. naive economics,

181



10. employment, '

1l1. people who engage in business.

This classification clarifies the difference between a common
knowledge representation and a generalization hierarchy. Ein-
Dor's classes are not mutually exclusive. For example, the
employment situation can be classified as group 10 as well as
group 6. These classes represent areas in which a common

sense computer program should have knowledge in.

The categorization that can be used in absence of any more

domain oriented hierarchies, is structured as follows:

1. Objects

1.1. Living objects (even if now dead)

1.1.1. Plants (flora)

1.1.2. Animals (fauna)

1.1.3. Persons

1.1.3.1. Person (generic, not person roles)

l1.1.3.2. Person roles

1.1.3.2.1. Person roles in person-person interaction (i.e.,
parent)

1.1.3.2.2. Person roles in person-thing association (i.e., car
owner) ‘

1.1.3.2.3. Person roles in person-person-thing interactions
(i.e., manager)

1.2. Inanimate objects

1.2.1. Abstract objects

1.2.1.1. Abstract objects that are organized (have structure)

1.2.1.1.1. Hierarchies (i.e., a business company)

l.2.1.2.2. Markets (i.e., the real estate market)

1.2.1.1.1. Other Structures

1.2.1.2. Heaps, lumps and atomic abstract objects (i.e., a
dream, a theory)

l1.2.2. Concrete objects ("things")

2. Object characteristics (i.e., color, size)

According to this categorization scheme, each view object can
have a meaning list containing up to 5 elements, such as
[object,living,person,role,person-thing] for category1.1.3.2.3.

182



Objects classified as belonging to different categories cannot
be identical in meaning. If the meaning list for an object is
incompletely specified, i.e., category 1.1.3. it may not be
different from an object classified as 1.1.3.2.3. and therefore
user interrogation'may be necessary. Objects belonging to
different categories but belonging to the same higher category
may be related in meaning. More domain specific categorization
schemes will have more and better fitting categories but will
use the same reasoning mechanism to interpret the results of

categorization.

183



4.6. Assessment of the Method

In an earlier chapter, the strengths and weaknesses
of previous integration methods were assessed. The same
evaluation criteria will now be used to highlight the

capabilities and limitations of the method presented here.

Similar to previous semantic integration methods, the one
introduced in this research requires designer interaction
during the integration process. The designer has to be consulted
to settle questions concerning identity or difference in
meaning. However, the method employs heuristics to reduce the

number of questions that must be asked.

View integration, és discussed here, covers a larger part of
the integration problem than most other techniques. It performs
conflict resolution, view merging and addition of inter-set
relationships. Batini et al. (1983) cover additional aspects
of the conceptual design process, including correctness and
completeness tests for individual views before the integratibn
process (pre-integration). These tests, however, are not an
eésential part of the integration process;vrather, they are
elements of the view creation task.

This research exceeds all preceding approaches in the number

of conflict cases covered. Less important than the number of

184



cases, howevér, is the fact that the conflict list is exhaustive,

based on all relevant object differentiation criteria.

Similar to other semantic methods, this one reduces the
complexity of the integration task by focussing on high level
objects entities and relationships. The method also separates
the test for relatedness from the test for identity. Heuristics
further reduce the task complexity. The question "is object
01 identical in meaning to one of the objects (02}?" can be
simplified through reduction of the size of the set (02}.

Heuristics are used to eliminate unlikely candidates from {02}.

This research also investigated whether the integration problem
could be described by an even smaller set of conflict categories
than the 17 general cases identified in section 4.1. To
simplify the description of conflicts, a graph notation was
chosen which represents every object, whether entity,
relationship, or éttribute, as a node, and every association
between objects (entity role, attribute association) asAan
edge. Based on this notation, view conflicts take the form of
missing nodes or edges, or inconsistently labelled nodes (name
mismatch). A mismatch between types‘of nodes, i.e. entity-
attribute vs. entity-relationship construct, can be
characterized as a graph contraction. A graph contraction is
the removal of an edge which results in the merging of the two

objects linked by the edge into one new object. I.e., an E-R

185



construct is merged into one new object, an entity attribute.
Similarly, a relationship replaces a relationship-entity--
relationship structure, when two edges are contracted in the
latter one. Both types of contraction are depicted in Figure

19.

Entity attribute is E-R construct

Z

Relationship represents E-R-E construct

(R)
O—®)
’//’

O
O

ole
od

Figure 19: Construct Mismatch Shown as Graph Contraction

The examples illustrate that the graph notation is able to
describe the construct mismatch conflict, in addition to the
missing object conflict and the context mismatch conflictL
based on only two criteria: missing nodes and missing edges.
A missing object translates into ‘a missing node, context

mismatch translates into missing edges (plus potentially

186



missing nodes), and construct mismatch translates into missing
edges and graph contraction. Since the notation can describe
the same conflict phenomena as the E-R model using fewer

mechanisms, it is a more powerful description tool.

The AVIS view integration program developed as part of this
research employs the graph approach. In AVIS, views are
described in the form of nodes and edges. Nodes represent
objects, énd edges, roles. Each object (node) is defined by
the same set of properties: type (i.e., attribute), view,
object identifier, object name, and object meaning (plus one
more property not relevant for this explanation). Each role
(edge) contains the identifiers of the two objects it is
connecting. Both are explained in more detail in the subsequent

chapter.

Even though the graph notation is more powerful as a descriptibn
tool than the E-R model, integration cases have been discussed
within this research using E-R concepts. The E-R model is
widely used as a conceptual modelling language in database
design, while the above graph notation is not. Thus, conflict
cases and solutions described by means of the E-R model are
more easily understood and thus presumably more useful to the
database designer than ones based on a graph notation. The
differences between the internal graph representation in AVIS

and the external E-R representation require that AVIS frequently

187



translate between these two representation forms. Nevertheless
the internal representation in the form of graphs is very useful
because it allows the system to easily compare objects of
different types along their relevant dimensions. Fof
instance,the question "do object 01 and object 02 have identical
meaning?" can be easily phrased in the graph notation, shown in
Figure 20 in its Prolog equivalent. This simple example
illustrates that the integration method can compare objects of
any type in the same manner. I.e., Tl may be "attribute", while

T2 is "entity" 1. ¢

identical meaning(01,02) :-
object(T1,V1,01,N1,M),
object(T2,V2,02,N2,M).

Figure 20: Identical Meaning Query in Prolog Graph Notation

An additional strength of the method discusséd in this research
is the use of meaningful data objects. The E-R model allows the
description of objects that are meaningful to database users.
The integration method further allows the representation of some

data semantics.

' However, the example in the figure shows an over
simplification of the meaning comparison problem. AVIS does not
use Prolog's pattern matching mechanism in this simple form to
assess meaning identity. Meaning comparison is described in more
detail in the subsequent implementation chapter.

188



Unlike other semantic integration methods, this one includes
an algorithm for the identity and for the relatedness tests,
which explicitly specifies the steps of the procedure. For
example, the identity test without heuristics contains a four-
step procedure in which identity or difference of the four
relevant object criteria is assessed. Due to the form in
which meaning identity and relatedness questionslare stated,
namely as a 1l:N comparison ("Is object 01 identical to one of
{02})?"), the computational effort grows linearly with the
number of objects. The procedure terminates when the initially
different views have become identical. To be identical, both
views have to contain the same objects. Objects are identical
if they are identical in all four relevant dimensions (meaning,

context, construct, and name).

To judge the valué of the method, the questions of correctness
and compléteness of the resulting views have to be addressed.
(The working prototype only demonstrates the workability of
the method for specific cases.) Based on the earlier description
of the integration algorithm, it is known that the procedure
always terminates if the initial views contain a finite number
of objects.» The procedure performs the integration task
through an adjustment of both initially different views. When
the procedure terminates, for each object in one view, an
identical object exists in the other view. Hence, the

completeness question depends on whether objects can be "lost"

189



during integration so that the final views do not contain all
objects from the initial views. The correctness quesﬁion
concerns whether objects from the initial views may be mis-
represented in the final view. Furthermore, it has to address
whether the order in which views are integrated and/or the
sequence in which objects within a view are considered have

any impact on the outcome of the integration process.

In this integration method, objects cannot be lost. Every
object represented in at least one initial view will also be
represented in the global schema. This does not imply that
each object will appear in its original form. The object
meaning will be preserved, but the object representation in
name, construct and context may change. A relationship may be
relocated, a name may be changed, or an object's construct may
be changed. After a construct change, an object will in most
cases be represented through more than one new object, i.e., a
relationship will become a relationship-entity-relationship
group. The only exception is the change of a‘relationship
attribute into an entity, where the construct change replaces
one old objectrby one new object. Due to the direction of
change in cases of construct mismatch, an old object ie.always
replaced by at least one new object. Hence, objects cannot be

lost during the integration process.

190



Although objects cannot be 1ost,bthe resulting view may still
be incorrect, if objects are mis-represented or objects are
added arbitrarily. An object is mis-represented if the knowledge
represented in its post-integration form contradicts with the
knowledge representation in the pre-integration form. This
includes name changes that result in names which do not convey
the meaning of the object, construct changes which compress
the information content of an object, meaning changes which
result in incorrect meaning descriptions, and context changes
which connect objects to objects they should not be connected
to. The integration method performs none of these invalid

operations, nor does it add objects arbitrarily.

Objects are only added if this addition is suggested by one of
the views, that is if at least one of the views contains an -
object that is not part of other views. Name changes occur
only when synonyms or homonyms are detected. The choice of
suitable names to overcome these conflicts is a task for the
designer who uses the method. Construct changes never result
in the loss of information, since the construct chosen is
always the one which is abie to convey the most information.
Meaning changes are never made by the system (database designer).

Meaning is specifiea by the users of the system and can only
be changed by the users of the systém. Context changes occur
for three reasons. First, constrﬁct changes cause context

changes, as depicted in Figure 10 in the conflict therapy

191



section. Second, an association of an entity to a relationship
results in a context change (exemplified in Figure 12).
Third, relationship relocation results in context change
(shown in Figure 13). All of these changes make the
representation of data object in one view compatible with that
of another view. 1In the first two of these cases, an object
01 will only be connected to an object 02, if at least one
view states that the two objects should be connected. 1If all
views are correct prior to integration, this operation cannot
result in incorrect context. Relationship relocation takes
place only if during the integration process, the database
designer identifies that the relationship is applicable to the

superset object rather than to the subset object (Figure 13).

Finally, we must consider whether the same outcome, that is,
the same global structure, will be achieved independent of the
sequence in which views are integrated. In a two-view
integration problem, sequence refers to the order in which
objects compared. For example, is Ol from V1 compared to all
objects from V2 first, followed by 07 from V1, or does 07
precede 01? In a multi-view integration problem, sequence also
addresses the order in which views are compared. I.e., if
three views, V1, V2, and V3 have to be integrated, will V1 be
integrated first with V2 and the result of this integration be
integrated with V3, or will the integration begin with V2 and

v3?

192



In both the two-view and fhe multi-view integration problens,
"the following operations are performed: objects existing in
all views become part of the global schema, objects existing
in at least one view become part of the global schema, objects

represented differently in different views are adjusted and
become part of the global schema. In addition, inter-view
relationships are added ﬁo the global schema. Objects that
exist in all views will not be affected by the sequence of the
integratioh process. They will appear in the same form in the
global schema. Objects that originally did not exist in all
views will also be added to the global schema, independent of
the integration sequence. Inter-view set relationships are
similarly missing objects, however missing in all views. They
also will be added, independent of sequence. In fact, they
are added after all tests for identity of objects are completed.
The critical element for this assessment of the view integration

procedure is the adjustment of views when conflicts are detected.

In the two-view situation, the sequence in which objects are
compared may vary. Does this change affect the outcome of the
integration? This question translates into two more basic
guestions, namely first, does the sequence in which objects
are compared result in differences in the diagnosis of conflicts,
and second, does a potentially different diagnosis result in a

different global schema?

193



The conflict diagnosis procedure uses as its most important
criterion the meaning dimension. Once objects with identical
meaning are found, conflicts are detected based on differences
in the remaining dimensions, name, construct, and context.
For each object in each of the views, at most one object with
identical meaning can exist in the other view. This is true,
independent of the sequence in which object are compared.
Furthermore, with the exception of name changes forbhomonyms,
the remaining dimensions of an object are not changed before
meaning identity with another object has been established.
Therefore, for any two objects from different views, the
object comparison will yield the same result, independent of
the sequence of comparisons, unless the database designer
using the method is inconsistent in renaming objects when

homonyms are found.

One other potential soufce of error exists, but it is also in
the domain of the databasé designer. The designer may find it
difficult in certain situations to decide whether two objects
are identical in meaning. Thereforé, if both objects 01 and
02 from view V1 appear to the designer as if they could match
the meaning of object 03 from V2, then the order of comparison
may bias the designer to decide for 01 in one situation and
for 02 in some other situation. This is a particular problem

in cases of construct mismatch, where, for instance, an entity

194



attribute in one view corresponds to an entity-relationship
construct in the other view (see Figure 11). In this example,
the database designer has to decide whether the attribute
Sﬁpplier corresponds to the entity Supplier or to the
relationship Supply. But even though the designer may have
some discretion in deciding which of the objects is the matching
one (entity or relationship), the conflict will be resolved in
exactly the same way. The attribute will be replaced by an E-
R construct. The same is true for other forms of construct

nismatch.

In summary, as long as the designer is consistent in his
assessment of meaning identity of objects, the diagnosis will
always be the same, independent of sequence. If the designer
is inconsistent in his assessment of meaning identity, the
procedure will still produce identical outcomes for cases of

construct mismatch.

In the multi-view situation, invariance of the outcome (global
sehema) to changes in the order of view comparisons is the
concern. Can objects end up in the global schema with different
names, different constructs, or different contexts, based.on
the order in which views are processed. Again, this is not
the case. The integration method prevents those variations
for all but naming decisions which are in the designert's

domain. For construct changes, there is only one direction of

195



change, to avoid loss of information. For example, if out of
n views, n-1 represent.an object as a relationship attribute
and only one view represents it as an entity, the object will
‘still become an entity in the global structure. 1In all cases,
the most information rich object representation will be the
one chosen for the global structure.> Context changes are
dealt with in a similar manner. For example, if a relationship
R in view V1 has as its context the set of entities (El}, in
view V2 the set (El, E3}, and in view V3 the context {(El1l, E2},
the global schema will show (El1, E2, E3) as R's context,
independent of the sequence in which the views were integrated.
The same is true for attributes. Entities and relationships
in the global view have attribute sets which are the union of
the attribute sets of the corresponding objects from the
original views (except, of course, when an attribute is converted

to another construct).
In conclusion, even in a multi-view situation, the method will

produce the same global schema, independent of sequence, if

the designer is consistent in his decisions on meaning identity.

196



5. IMPLEMENTATION - THE AVIS PROGRAM

5.1. Overview

An implementation of the view integration method is available
in form of the AVIS (Automatic View Integration System) program.

AVIS is written in Prolog.

The purpose of the program is not to show correctness of the
conflict resolution method. Correctness of the method should
be judged based on its underlying assumptions, the rules
guiding view integration, and the conclusion drawn from them
concerning the diagnosis and therapy procedure. The program
can only serve as a testbed to show mistakes or omissions in
details of the resolution procedure. Furthermore, it can show
the feasibility of an automated view integration procedure.
Appendix 3 contains the screen displays of a view integration
session with AVIS to illustrate the operation of the system

and its role as a testbed.

5.2. Function and Structure of the AVIS Program

To fulfill its purpose as a testbed and an indicator for
feasibility, the program is an implementation of the diagnosis

and therapy procedure outlined in earlier sections. The

197



program always operates on a set of two views which are to be
integrated. Such a set of two views has to be loaded into the
system at the outset of the integration session. The program
proceeds by checking conflict hypotheses. For each hypothesis
that is checked, one eligible object from view 1 is chosen and
compared to all eligible objects from view 2. Hypothesis
tests are carried out in the sequence established by the
integration rules and heuristics. Depending on the outcome of
a test, an appropriate therapy activity is performed, followed
by another test. A therapy can be "do nothing" if objects do
not have to be changed, or any of the other therapy actions
discussed previously. The program terminates when both views
have become identical. The program structure which.achieves

this function is depicted in Figure 21.

Following the typical architecture of knowledge-based systems,
the program is designed in highly decoupled form. For instance,
the sequence in which hypotheses are tested is not fixed
(programmed), but determined by the sequence in which they
occur on the OBJECT COMPARISON AGENDA (box 8 in the figure).
Therefore, an "urgent" hypothesis test (typically performed
during a therapy operation consisting of more than one therapy
action) can pre-empt tests that would normally have occurred
next. Another form of decoupling separates the step which
recognizes that an object is missing (box 4), from the step

that actually adds the object to the view (box 5).

198



661

aanjonils weaboad SIAV :T¢ o4anbid

Seed ]

Object Comparison
Agenda item

<'L

A

Object 8

1
Integrate

Comparison
Agenda

Pick next 2
Object Comparison
Agenda item

Test Hypothesis

Add items to 6
Object Comparison
Agenda

\¢

AV

!

Add items to 4
Object Assertion
Agenda

5

Assert objects

A

Object 7
Assertion

Agenda




Hence, if the program realizes that an object is missing, it
reports this finding in the OBJECT ASSERTION AGENDA (box 7).
Then, in an independent step, the program will try to assert
(add) the object. If this is not yet possible, due to the
fact that some other pre-conditions are not fulfilled, the
missing object will simply remain in the OBJECT ASSERTION

AGENDA until those preconditions are satisfied.

Overall, the program operates as follows. It repeatedly calls
the predicate INTEGRATE (box 1), which initiates object
comparisons. Object comparisons are carried out as specified
by the entries in the OBJECT COMPARISON AGENDA. Every such
entry will consist of the (generic) hypothesis to be tested,
for instance SIMILAR ENTITY (same meaning), and the objects
involved in the test, i.e., SUPPLIER for view 1 and DEALER,
BUYER, INVENTORY for view 2. The generic hypothesis together
with the objects to be tested form a specific hypothesis.
This hypothesis is then tested. The program will attempt to
find an answer to the hypothesis first on its own, before

asking the user.

To find an answer without user interaction, the program will
first check whether results of previous tests can help in
deciding the question. For example, if all entities in view 2
already had corresponding entities in view 1, the program

could answer the question with "no", because each object can

200



have only one matching object in the other view. If previous
tests cannot help in deciding, structural information may
help. For exémple, a necessary condition for two relationships
to be related is to have at least two common entities. If no
two common entities exist, the program can assert that the
relationships in question are not related. If structural
knowledge cannot help, the program may be able to use any
semantic knowledge it possesses concerning the application
domain. Currently this option is not implemented in a form
where the program is able to make such inferences (the
information is only passively available). If the program
cannot decide by itself whether a hypothesis is true or false,

it will ask the user,.

Following the hypothesis test, the program will place an entry
into the OBJECT ASSERTION AGENDA, if objects have to be added
as a consequence of the test. In a next step, objects are
added to a view if all preconditions for their creation are
fulfilled (box 5). Finally, and also based on the outcome of
the hypothesis test, new specific hypotheses may be placed on

the OBJECT COMPARISON AGENDA (boxes 6 and 8).

At points during the integration procedure, the OBJECT COMPARISON
AGENDA may be empty, even though the integration has not been
completed. Such a point occurs for instance at the outset of

the integration process. To "boot-strap" itself in these

201



situations, the program will activate the SEED predicate (box
9), which places a first entry on the agenda. The integration
process ultimately terminates, if the agenda is empty and no

more seeds can be generated.

202



5.3. Knowledge Representation

5.3.1. Representation of views

To allow the operation on arbitrary views, the program stores
views separate from the procedural knowledge. A set of two small

views is shown in Figure 22.

object ("entity",1,3,"dealer", ["sells","supplies"],[])

object ("entity",1,4,"branch",("alternate location", "subsidi-
ary"1,[1])

object ("entity",2,1003,"dealer", ["sells", "supplies"},[])
object ("entity",2,1004, "customer", ["buys", "pays","orders"], [])
object("entity",z,loos,"contract",["agreement"] (1)
object("relationship",1,502,“supply",["delivery","goods_trans-
fer"],[1)
object("relationship",2,1502,"dealer_contract", ["dealer_ cont-
ract"],[1])

object ("relationship",2,1503,"customer_contract", ["customer cont=
ract"j,[])

object ("attr!'",1,600,"contract", ("identifier"], [])

role(502,3)
role(502,4)
role(1502,1003)
role(1502,1005)
role(1503,1004)
role(1503,1005)
role(600,3)

Fiqure 22: Representation of Views in AVIS
Each object is stored as an atom of the form object (Type,View#,

Object#,Name,Meaninglist,Replacelist). Type is one of entity,

relationship, or attr(ibute). View numbers are arbitrary, but

1 wattr" is used instead of attribute because attribute
is a restricted term in the programming language.

203



objects from the same view carry the same Qiew number and
objects from different views carry different view numbers.
Object numbers are unique identifiers for objects within the
view they belong to. The object name is the user defined name
for the object. Meaninglist is a 1list of strings that give
some indicétion of the nature of the real world object
represented by the database object. Replacelist is a list of
object numbers for objects that have been replaced by the
object at hand. For example, if a relationship attribﬁte
becomes an entity, the new entity retrains a reference to the
former relationship attribute through the number in the

Replacelist.

One way to think of the meaning list is to view it as a list
of thesaurus terms for the object name. Each of the terms in
the list may describe some facets of the objects meaning,
through slightly different labelling of the object. The
meaning list can also be used to identify the categories an
object belongs to in a generalization hierarchy. This list of
categories does not have to be a central pool of base sets
from which all object sets have to be defined, it may be
simply a set of category terms which capture the language
terms used in the organization under study. 1In either fornm,
the meaning list helps to simplify the identification of

dissimilar (or even of identical) objects.

204



The context of an object is stored by means of role(Object#,
Object#) atoms. The first object number indicates the object,
the second one the object it is associated with. By definition,
only attributes and relationships have a non-empty context.

Thus, roles exist only for these two object types.

205



5.3.2. Representation of View Integration Knowledge

The knowledge contained in the program consists mostly of
hypotheses, rules for the selection of objects for subsequent
tests, rules for the elimination of irrelevant tests or
irrelevant test objects, and rules for the therapy of conflict
cases, Hypothesis atoms serve mainly to control the sequence
of the integration procedure. Selected hypotheses are depicted

in Figure 23.

&

hypothesis(3,["n",%n"%),[(4,1),[12,701,24,5),"similar
Entity","same meaning","different meaning")

hypothesis (4, ["o","0"],(],[],"Synonymn", "synonyn", "samne")

hypothesié(lz,["o",“o"],[],[],"Homonyms","homonyms","not_homo-
nyms")

hypothesis (701, [("n","n"],([(8],(24],"Entity is Relationship
Attribute","relationship attribute","not relationship attribute")

Figure 23: AVIS Hypotheses

Hypothesis 3 formulates the test for "Similar Entity". This test
investigates whether for an entity in view 1 there exists an
entity in view 2 with the same meaning but possibly with a
different name. The lists of integers which are part of the
hypothesis atom (i.e., [4,1]) indicate subsequent activities
depending on the outcome of the test. For instance, if a similar
entity is found, the next hypothesis to be tested is hypothesis
4, which tests whether both entities have same names.
Thereafter, hypothesis 1 would follow. If the test

206



result were negative, a number of other hypotheses would be
invoked, i.e., 12, 701, 24, and 5. Each hypothesis shows also
which knowledge will be added to the knowledge base as a
consequence of the test outcome. For instance, if hypothesis
3 becomes true, the involved objects will be memorized as
having same meaning. If the test outcome is negative, they

will be stored as having different meaning.

Rules that select objects for subsequent tests are "make

agenda" rules. One example is shown in Figure 24.

m___a'(3l_l (O01],[02],H):-
H=11!,
find r(01,R11),
find r(02,R12),
filter(H,R12,R12n),
m a(0,b,R11,R12n,H),!.

Figure 24: AVIS "make agenda" Rule

The "make agenda" rule shown in the figure prepares a new
hypothesis test, after the test for similar entity succeeded.
Once two identical entities have been found, AVIS searches
locally, in the vicinity of these entities, to find identical
relationships. The rule finds all relationships entity 01 is
associated with, as well as all relationships 02 is associated
with. It then filters out relationships that have been
previously investigated, and formulates a test in which all

relationships R1l1l will be compared to allhrelationships R12n,

207



to find matching pairs. If R1ll contains more than one
relationship, the agenda item will later be decomposed into as
many items as there are elements in list R11l. This is necessary,
since all tests are carried out in a 1:n mode, where one

object of view 1 is compared to n objects of view 2,

Rules to filter out irrelevant tests or irrelevant test objects
are exemplified in Figure 25.
/* the attribute 01 is a key */
test _hypo([01],012,H, ,012):-
H = 14,
is_key([O1],([01]),

make_agenda(H,t,[01],012,HN),
do_ao(H,01,0,'n'),!.

Figqure 25: Filtering Rule in AVIS

The rule depicted in Figure 25 refers to the test of hypothesis
14. Hypothesis 14 states the possibility that an entity
attribute may correspond to an entity-relationship construct.
The test hypo rule shown here states that if the entity attribute
01 is a key (identifier) attribute of the entity it belongs
to, then it cannot correspond to the entity-relationship
construct 012. ‘Entity attributes can only correspond to
entity-relationship constructs if they are interconnection
attributes, i.e. the Supplier attribute of a PART entity. If
the attribute is a singular identifier (not part of a compound
key), it refers to the object itself, i.e. Part# refers to
PART itself. Such objects can be excluded from the test. By

208



using filtering rules, the AVIS program can reduce information

requests from the user.

Rules for the therapy of conflict cases typically become rules
to create new objects. Figure 26 illustrates such an "assert
object" rule.
asso(H,01,02,'y',New):~

H = 14,

object(relationship, ,02, , , ),

find e(02,E12),

object(attr,v1,01, , , ),

role(01,El1), .

fct(same,El,E2),

member (E2,E12,E1lr),

single(same meaning,Elr,Els),

dup(H,Els,V1l,Elsl),

dup(H, (02],V1,01n),

append (Elsl,01n,New),

retract (object (attr,v1,01, , , )),
retract (role(01,E1)),!.

Fiqure 26: AVIS Object Assertion Rule

The figure shows one of the rules dealing with the situation
where an entity attribute in one view corresponds to an entity-
relationship construct in the other view. This rule replaces
the attribute 01 with a relationship Oln, by simply duplicating
the relationship 02 from view 2 and subsequently eliminating
the attribute from view 1. Furthermore, from all entities
(E12) in view 2 that are associated by the relationship 02,
those that have no corresponding objects in view 1 are identified

(Els) and duplicated in view 1.

209



5.4. The Impact of Domain Knowledge

One of the biggest problems for knowledge based systems is the
requirement to contain knowledge about a wide variety of
problem domains. "Deep" knowledge is much easier implemented
than "wide" knowledge. This is similarly true for the view
integration program which already has to contain deep knowledge
on diagnosis and therapy. This weakness limits the necessary
ability to assess identity of object meanings. How can  a
program judge that two objects are identical in meaning if it

contains no domain knowledge?

If the "true" meaning of an object cannot be assessed, then at
least a number of indicators exist to help in the assessment
of true meaning (see Figure 18, previous chapter). Obviously,
each object could carry with it a meaning representation, a
list of symbols describing the meaning of the objects. Meaning
comparison would then involve the comparison of such lists.
Problems could arise from homonyms and synonyms in these
lists. A second indicator could be object context. If two
objects are similar their immediate neighbors are likely to be
similar too. Thus, the finding of similar neighbors would
provide some evidence for the assumption that two objects are
similar. Other forms of context comparison involve the anélysis

of relationship cardinalities and, if defined, roles of entities

210



in a relationship. Similar roles and similar cardinalities are
evidence for object similarity. Third, similar attributes (or
at least similar attribute names or similar key attributes)
can be another indicator for similarity. Fourth, if value
sets have been defined, these can be compared. Finally, the

name of an object itself can be an indicator for meaning

similarity.

Most of the above mentioned indicators are plagued by the problem
of ambiguous representation. If names of objects, due to
homonymy and synonymy problems, are not a reliable indicator for
similarity, the same will be true for other indicators such as
attribute names or meaning lists. The use of context may be
viewed merely as a recursive restatement of the problem. For
example, to know whether entities E1 and E2 are identical, one
has to know whether their context Rl and R2 is identicall!. To
find out whether Rl and R2 are identical one has to find out
whether the context of Rl and R2 is identical, and so on.
Nevertheless, comparisons are possible. For instance, partial
overlap of meaning representations can be indicated, or partial
context similarity, can be indicated. The AVIS program operates
in this manner, however in passive form. The program never
decides whether two objects are identical. Yet the user can ask

the program for the values of similarity indicators. So

' Note that the AVIS program recognizes context also for
entities in order to make use of local search for identical
objects.

211



far, only the indicators meaning representation (comparing
meaning lists), context (comparing immediate neighbors) and
name are implemented. Figure 27 shows the systems response to

a user inquiry on the value of the meaning indicators.

AV I s
Testing for hypothesis: SIMILAR ENTITY,
involving the entity DEALER (3) and one of the following objects:
- Meaning Match

Match between entity DEALER (3) (["“sells","supplles")
and objects below:
ID NAME Match of: NAME----MEANING----- CONTEXT
1003 dealer Y Y unknown
1004 customer n n unknown
1005 contract n n unknown

Response
Preass <spacebar> to contlinue

Figure 27: AVIS Meaning Identity Indicators

212




A more advanced form of meaning indicators, is based on the
meaning representation (meaning categorization) feature.
While currently meaning lists for objects have no form
restrictions, therefore allowing the use of any symbol to
define the meaning of an object; future meaning lists will be
more restricted in the choice of terms. Terms will have to be
elements of a categorization hierarchy and will be therefore

unambiguous.

213



6. . SUMMARY AND EXTENSIONS

The main contribution of this research is the development of a
complete view integration procedure. The research went beyond
the problem of inter-view constraint representation (relatedness
of objects). It systematically categorized inter-view conflicts
into conflict types, based on an analysis of the sources of
conflicts. The source of all conflicts is mismatches between
the meaning dimension on one hand and all other relevant
object dimensions, name, construct, and context, on the other
hand. Whenever two objects are identical in meaning, they
also have to be identical in their other dimensions. If not,
a conflict arises. Similarly, if two objects have different
meanings they also have to differ in the name dimension to be
conflict-free. The method presented in this research can
diagnose all possible combinations of mismatches and has
therapy rules for all of them.

In addition to rules for recognition and resolution of conflicts,
an algorithmic view integration procedure was described. It
specifies the sequence of tests for object identity and object
relatedness. At the termination of this procedure, two initially
different views become identical and represent all relevant
inter-view constraints. Thus, either of the views has become
a global schema containing the two original views. The
integration procedure developed here begins with a test for

object identity. At the end of this step, both views contain

214



the same objects. The subsequent test for relatedness determines
all inter-view constraints for all originally unique objects
(existing in only one view). The test for relatedness may
result in the addition of entities to represent superset and

subset objects and in the addition of Isa relationships.

Furthermore, the research provided heuristics to simplify the
integration problem for the user. Heuristics were developed
to ease the user's task of identifying object pairs with
identical meaning. Assumptions such as "(in absence of
information to the contrary,) two objects with identical
meaning will have identical constructs", reduce the number of
objects among which the user has to look for a matching object.
In case of information to the contrary, i.e., if no pair of
objects with same meaning were found, the heuristic would
fail and would require a more painstaking search for a match.
The research exemplified how the introduction of heuristics

alters the integration procedure.

The method was designed for use as a view integration tool,
through implementation as a knowledge based system (i.e., the
AVIS system). Implementation in the form of a computer program
assures adherence to the sequence of conflict analysis and
resolution steps. It also eases as much as possible the
designer's task. Nevertheless, the conflict recognition and

resolution rules which form the core of the research are valid

215



independent of any implementation. The rules have been developed
based on rules of modelling, based on the E-R model and based
on database design principles, rather than through tracing of

database design expert behavior.

Future extensions to the research will focus on at least two
areas. First, more heuristics will be developed. This will
not only simplify the user's task further, it will also shed
more light on the question of how we can assess when two
objects are identical in meaning. The assessment of meaning
identity is the most difficult part of the integration process.
Currently, the integration method does not decide on the
identity of two objects without user consultation. It would
be desirable to have the method decide, at least in some
cases, whether two objects have the same meaning. One possible
approach to extend the method in this direction is the
development of categorization ﬁierarchies for particular
.application areas. In this research, a very coarse
categorization hierarchy has been introduced, one which
facilitates deciding whether two objects have different meanings.
More elaborate, as well as more domain specific hierarchies
would allow a sharper distinction between concepts and thus
allow for better judgment on identity or difference in meaning.
This measure would require that users be very precise and
explicit in their choice of names for entities, relationships,

and attributes in the pre-integration stage. Hence, use of a

216



categorization hierarchy may be one good source of evidence,
but may not be sufficient. Ultimately a procedure will have
to use more sources of evidence and will have to be tolerant
of user specification errors, in order to make judgments on

meaning identity that are as good as human judgments.

A second area of extension to focus on is the detection of errors
in user views. The integration method in its current form
assumes that views are complete (all relevant objects included),
consistent (no conflicting knowledge), and minimal (each object
only represented once)!. If views are incorrect, inconsistent
or not minimal, the global schema will be incorrect, inconsistent
or not minimal. For example, if one view stated (incorrectly)
that "all EMPLOYEEs are FULLTIME_EMPLOYEES", while another view
stated (correctly) that "every FULLTIME EMPLOYEE is an EMPLOYEE",
the method would represent both constraints in the global schema
(inconsistency), not recognizing that the only logically correct
interpretation ‘'of these two statements would require EMPLOYEE
and FULLTIME_EMPLOYEE to be identical. Mistakes like this one
could be detected and corrected during the integration process.

To permit recognition

' The constraints on input views may seem rather stringent.
However, we can expect views to be in consistent and minimal
form, if they have been created with a view creation system such
as Storey's (1988). Completeness has to be assumed, unless
evidence to the contrary exists.

All previously discussed integration approaches make similar
demands on the inputs to their integration methods.

217



of such errors, a set of error scenarios and correction rules

would have to be developed.

Another possible extension that goes substantially beyond the
scope of this research is the translation of the findihgs for
database integration to knowledge base integration. While
databases contain facts, knowledge bases contain facts and
rules and are therefore much more difficult to integrate.
Nevertheless, with the increase in the development of knowledge
based systems and corresponding efforts to improve the knowledge
acquisition effort such a project may become a fruitful endeavour

for the future.

218



7. REFERENCES

Al-Fedaghi, 8. and P. Scheuermann. Mapping Considerations in
the Design of Schemas for the Relational Model. IEEE Trans.
Software Engineering, SE-7, No. 1, 1981.

Armstrong, W.W. Dependency Structures of Database Relation-
ships. Proc. 1974 IFIP Congress, Amsterdam: North Holland,
pp. 580-583.

Atzini, P., C. Batini, M. Lenzerini, and F. Villanelli.
INCOD: System for Conceptual Design of Data and Transactions
in the Entity-Relationship Model. Proceedings of the Second
Int'l Conference on the Entity-Relationship Approach, Washington,
D.C., October 1981, pp. 379-414.

Bachman, Charles W. and Manilal Daya. The Role Concept in
Data Models. VLDB 77, pp. 464-476. .

Barr A. and E. Feigenbaum. The Handbook of Artifical
Intelligence. London: Pitman, 1981.

Batini, €., M. Lenzerini, S.B. Navathe. A Comparative Analysis
of Methodologies for Database Schema Integration. ACM Computing
Surveys, Vol. 18, No. 4, 1986, pp. 323-364.

Batini, C., V. De Antonellis, A. Di Leva. Database Design
Activities within the DATAID Project. Quarterly Bulletin of
the IEEE Computer Society Technical Committee on Database
Engineering, Vol. 7, No. 4, 1984, pp. 16-21. (1984a)

Batini, €., B. Demo, A. Di Leva. A Methodology for Conceptual
Design of Office Databases. Information Systems, Vol. 9, No.
4, 1984. (1984Db)

Batini, €., M. Talamo, and R. Tamassia. Computer Aided Layout
of Entity Relationship Diagrams. Journal of Software and
Systems, 1984. (1984c)

Batini, €., M. Lenzerini. A Methodology for Data Schema
Integration in the Entity Relationship Model. IEEE Transactions
on Software Engineering, Vol. 10, No. 6, 1984, pp. 650-663.

Batini, C¢., M. Lenzerini, M. Moscarini. Views Integration. In:
Methodology and Tools for Data Base Design by S. Ceri (ed.).
Amsterdam: North-Holland, 1983.

Batini, C. and M. Lenzerini. A Conceptual Foundation for View

Integration. Proceedings of IFIP Working Conference, Budapest,
Hungary, May 1983,

219



Batini, €., M. Lenzerini, and G. Santucci. Computer-aided
Methodology for Conceptual Database Design. Information Systenms,
Volume 7, No. 3, 1982, pp. 265-280.

Beeri, C. and P.A. Bernstein. Computational Problems Related
to the Design of Third Normal Form Schemas. ACM TODS, Vol. 4,
No. 1, 1979, pp. 30-59.

Bernstein, P. Synthesizing Third Normal Form Relations from
Functional Dependencies. ACM Transactions on Database Systems,
Volume 1, No. 4, December 1976, pp. 277-298.

Bernstein, Philip A., J.R. Swenson, and D.C. Tsichritzis. A
Unified Approach to Functional Dependencies and Relations.
Proc. ACM 1975 SIGMOD Conf., San Jose, California, pp. 237-
245,

Biskup, Joachim and Bernhard Convent. A Formal View Integration
Method. Int'l ACM SIGMOD conf. 1986, pp. 398-407. :

Biskup, Joachim and Bernhard Convent. A Formal View Integration
Method. Forschungsbericht 208, Universitadt Dortmund, 1985.

Brodie, Michael. On the Development of Data Models. In On
Conceptual Modelling by Michael Brodie, John Mylopoulos,
Joachim Schmidt (eds.). New York: Springer, 1984.

Brown, Robert. Logical Database Design Techniques. Mountain
View, CA: The Database Design Group, 1982.

Casanova, Marco. Theory of Data Dependencies over Relational
Expressions. Proc. ACM SIGACT/SIGMOD Symp. on DB Systenms,
1982, pp. 189-198,

Casanova, Marco and Ronald Fagin. Inclusion Dependencies and
their Interaction with Functional Dependencies. Proc. ACM
SIGACT/SIGMOD Symp. on DB Systems, 1982, pp. 171-176.

Casanova, M. and V. Vidal. A Sound Approach to View Integration.
Proceedings of the ACM Conference on Principles of Database
Systems, March 1983, pp. 36-47. .

Ceri, S. and G. Gottlob. ©Normalization of Relations and
Prolog. Communications of the ACM, Vol. 29, No. 1, 1986, pp.
524-544,

Chen, Peter. The Entity-Relationship Model: Towards a Unified
View of Data. ACM TODS, Volume 1, No. 1, 1976, pp. 9-36.

Curtice, Robert M. and Paul E. Jones, Jr. Logical Database
Design. New York: an Nostrand Reinhold Co., 1982.

220



Date, Chris. An Introduction to Database Systems. Reading:
Addison-Wesley, 1981.

DeMarco, Tom. Structured Analysis and Systems Specification.
Englewood Cliffs: Prentice-Hall, 1979.

Dyba, E. Principles of Data Element Identification. Auerbach
Data Base Management Services, Portfolio No. 23-01-03, 1977.

Ein-Dor, Phillip. Commonsense Business Knowledge Representation
A Research Proposal. Working Paper, Tel-Aviv University,
February, 1987. :

Elmasri, R., J. Larson and S. Navathe. Schema Integration
Algorithms for Federated Databases and Logical Database Design.
Technical Report, Honeywell Corporate Research Center, 1987.

Elmasri, Ramez and Sham Navathe. Object Integration in Logical
Database Design. IEEE International Conference on Data
Engineering, Los Angeles, 1984, pp.426-433.

Elmasri, Ramez, A. Hevher, and J. Weeldreyer. The Category
Concept; An Extension to the Entity-Relationship Model. Data
and Knowledge Engineering, Volume 1, No. 1, June 1985, pp. 75-
116.

Elmasri, Ramez, James A. Larson, Sham Navathe, and T. Sashidar.
Tools for View Integration. Quarterly Bulletin of the IEEE
Computer Society Technical Committee on Database Engineering,
Vol. 7, No. 4. 1984. :

Elmasri, Ramez and G. Wiederhold. Properties of Relationships
and their Representations. Proceedings of the National Computer
Conference, AFIPS, Volume 49, 1980, pp. 319-326.

Fagin, R. The Decomposition versus the Synthetic Approach to
Relational Database Design. Proceedings of the 3rd VLDB,
1977, pp. 441-446.

Goldstein, Robert C. and Veda Storey. Unravelling Is-A Networks
in Database Design. Working Paper, University of British
Columbia, November, 1988.

Hayes, Patrick. The Naive Physics Manifesto. In Expert
Systems in the Micro Electronic Age by Donald Michie (ed.).
Edinburgh: Edinburgh University Press, 1979, pp. 242-270.

Hayes-Roth, Frederick, Donald Waterman, Douglas Lenat. Building
Expert Systems. Reading: Addison-Wesley, 1983.

Housel, Barron C., Vance E. Waddle, and S. Bing Yao. The

221



 Functional Model for Logical Database Design. Proceedings of
the Sth VLDB, 1979, pp. 194-203.

Hubbard, G. and N. Raver. Automating Logical File Design.
Proceedings 1st VLDB, 1975, pp.227-253.

Leibniz, Gottfried Wilhelm. Philosophical Letters and Papers,
Vol. 1 (english translation). Chicago: The University of
Chicago Press, 1956,

Mannino, M. and W. Effelsberg. Matching Techniques in Global
Schema Design. Proceedings IEEE COMPDEC, Los Angeles, 1984,
pp. 418-425, -

Martin, James. Managing the Database Environment. Englewood
Cliffs: Prentice Hall, 1983.

McFadden, Fred and Jeffrey Hoffer. Data Base Management.
Menlo Park: Benjamin Cummings, 1988.

Minsky, Marvin. A Framework for Representing Knowledge. 1In
The Psychology of Computer Vision by P. Winston (Ed.). New
York: McGraw-Hill, 1975.

Mylopoulos, J. and H. Levesque. An Overview of Knowledge
Representation. In On Conceptual Modelling by Brodie, Mylopoulos
and Schmidt (Eds.). New York: Springer, 1984, pp. 3-17.

Navathe, Shamkant, Ramez Elmasri, James Larson. Integrating
User Views in Database Design. IEEE Computer, 1986, pp. 50-62.

Navathe S, S. Gadgil. A Methodology for View Integration in
Logical Database Design, in Proc. ACM SIGMOD, Austin, 1978.

Navathe, Shamkant, and Mario Schkolnick. View Representation
in Logical Database Design. Proceedings Int'l ACM SIGMOD
Conference, 1978, pp. 144-156.

New Orleans Database Design Workshop Report (Summary), VLDB,
Rio(1979). :

Nilsson, Nils. Principles of Artificial Intelligence. Palo
Alto: Tioga Press, 1980.

Raver, N. and G.U. Hubbard. Automated Logical Database Design
Methodology and Techniques. IBM Systems Journal, Vol. 16, No.
3, 1977.

Robinson, J. A Machine-oriented Logic Based on the Resolution
Principle. JACM, Volume 12, No. 1, 1965, pp. 23-41.

222



Russell, Bertrand. A History of Western Philosophy. London:
George Allen & Unwin, 1946.

Schank, Roger and Charles Rieger. Inference and the Computer
Understanding of Natural Language. Artificial Intelligence,
Volume 5, No. 4, 1974, pp. 373-412.

Sheppard, D. Principles of Data Structure Design. Auerbach
Data Base Management Series, Portfolio No. 23-01-04, 1977.

Shipman,D. The Functional Data Model and Data Language DAPLEX.
ACM TODS, Vol. 6, No. 1, March 1980, pp. 140-173.

Simon, Herbert and A. Ando. Aggregation of Variables in
Dynamic Systems. 1In Essays on the Structure of Social Science
Models by Ando, Fisher, and Simon. Cambridge: MIT Press,
1963.

Storey, Veda. View Creation: An Expert System for Database
Design. Washington: ICIT Press, 1988.

Teory, T.J. and J.P. Frvy. Desigh of Database Structures.
Englewood Cliffs: Prentice Hall, 1982.

Ullman, Jeffrey. Principles of Database Systems. Stanford:
Computer Science Press, 1980.

Vessey, Iris and Ron Weber. Structure Tools and Conditional
Logic: An Empirical Investigation. Communications of the ACM,
Vol. 29, No. 1, January 1986, pp. 48-57.

Vetter, M. Database Design by Implied Data Synthesis. VLDB
77, pp. 428-440.

Waterman, Donald A. A Guide to Expert Systems. Reading:
Addison-Wesley, 1986.

Weber, Ron. Data Models Research in-Accounting: An Evaluation
of Wholesale Distribution Software. The Accounting Review,
Vol. 61, No. 3, July 1986, pp. 498-518.

Yao, S. Bing, Vance E. Waddle, Barron C. Housel. View Modeling
and Integration Using the Functional Data Model, IEEE
Transactions on Software Engineering, Volume SE-8, November
1982, pp. 544-553.

Yao, S. Bing, Vance E. Waddle, Barron C. Housel. An Interactive
System for Database Design and Integration. In Principles of
Database Design, Vol. 1, S. Bing Yao (ed.), Englewood Cliffs,
N.J.: Prentice Hall, 1985. :

223



APPENDIX

Appendix 1: Conflict Cases

1. IDENTICAL OBJECTS
N1 = N2; Tl = T2; M1l = M2; Cl = C2;

Solution: do nothing.

1.1. Entity is Entity.
1.2, Relationship is Relationship.
1.3. Attribute is Attribute.

2, IDENTICAL OBJECTS WITH DIFFERENT CONTEXT
N1l = N2; Tl = T2; Ml = M2; Cl <> C2;

2.1. Relationship is Relationship of different
degree or associating different entities.
Solution: tie not yet associated entities to
relationship(s). If entities cannot be found, test
for construct mismatch (5.2.1. or 6.2.1) and missing
entity (17.1.).

2.2. Attribute is Attribute of a different entity
or relationship (both are possession
attributes).

Solution: convert both attributes into E-R
constructs or entities, similar to 6.2. or 6.3.

3. TRUE SYNONYMS (SAME OBJECT TYPE)
Nl <> N2; T1 = T2; Ml = M2; Cl = C2;

Solution: rename at least one object so that N1 = N2.

3.1. Entity/Entity.
3.2. Relationship/Relationship.
3.3. Attribute/Attribute.

4. TRUE SYNONYMS WITH DIFFERENT CONTEXT
N1l <> N2; T1 = T2; Ml = M2; Cl <> C2;

Solution: rename and make contexts identical (combine
solutions 3. and 2.).

4.1, Relationship/Relationship.
4.2, Attribute/Attribute.

224



5. CONSTRUCT MISMATCH

Nl = N2; T1 <> T2; M1l

M2; Cl1l <> C2;

5.1. Entity is Relationship.

Solution: convert the relationship into an entity.
Create new relationships to associate the new entity
with the entities it associated as a relationship.

5.2. Entity Attribute is Entity-Relationship

construct.
Solution: convert the attribute into an E-R
construct (entity and relationship).
5.2.1. Attribute is Entity.
5.2.2. Attribute is Relationship.

5.3. Relationship Attribute is Entity.

Solution: convert the attribute into an entity.

6. CONSTRUCT MISMATCH AND SYNONYM

Nl <> 2; T1 <> T2; M1l = M2; Cl <> C2;

Solution: rename objects to make names 1dentical
and deal with construct mismatches as in 5.

6.1. Entity is Relationship.
6.2. Entity Attribute is Entity-Relationship
construct.
6.2.1. Attribute is Entity.

6

2.2, Attribute is Relationship.

6
.3. Relationship Attribute is Entity.

7. DIFFERENT AND UNREIATED OBJECTS

Nl <> N2; T1 = T2; Ml <> M2; not(related(M1,M2)); Cl = C2

or Cl <> C2;

7

7

1. Objects are different, unrelated and have no

common role.
Solution: do nothing.
7.1.1. Entity/Entity.
7.1.2. Relationship/Relationship.
7.1.3. Attribute/Attribute.

.2. Object 1 and Object 2 in same role (W-

relationship).
Solution: create a common role object, special role
objects, and Isa relationships between the role
objects and objects 01 and 02. If objects are not
entities, transform them into entities first.

7.2.1. Entity/Entity.
7.2.3. Relationship/Relationship.
7.2.3. Attribute/Attribute.

225



8. TRUE HOMONYM
Nl = N2; Tl = T2; Ml <> M2; Cl = C2 or Cl <> C2;

Solution: rename at least one object, giving it a
name that is not assigned to any other object in
the view. Thereafter treat common role occurrences
similar to 7.

8.1. Objects are different, unrelated and have no
common role.
8.1.1. Entity/Entity.
8.1.2. Relationship/Relationship.
8.1.3. Attribute/Attribute.
8.2. Object 1 and Object 2 in same role (W-
relationship).
8.2.1. Entity/Entity.
8.2.2. Relationship/Relationship.
8.2.3. Attribute/Attribute.

9. DIFFERENT OBJECTS WITH DIFFERENT CONSTRUCTS
N1l <> N2; Tl <> T2; M1l <> M2; Cl <> C2;

9.1. Objects are different, unrelated and have no
common role,
Solution: do nothing.
‘'9.1.1. Entity/Relationship.
9.1.2. Relationship/Attribute.
9.1.3. Entity/Attribute.
9.2. Object 1 and Object 2 in same role (W-
relationship).
Solution: create a common role object, special role
objects, and Isa relationships between the role
objects and objects 01 and 02. If objects are not
entities, transform them into entities first.

9.2.1. Entity/Relationship.
9.2.2. Relationship/Attribute.
9.2.3. Entity/Attribute.

10. DIFFERENT OBJECTS WITH DIFFERENT CONSTRUCTS, BUT HOMONYMS
N1 = N2; Tl <> T2; M1l <> M2; Cl <> C2;

Solution: treat objects like true homonyms. Change
the name of at least one object to make it different
from all other object names in the same view.
Treat common role objects as in 9.

226



10.1. Objects are different, unrelated and have no
common role.
10.1.1. Entity/Relationship
10.1.2. Relationship/Attribute
. 10.1.3. Entity/Attribute
10.2. Object 1 and Object 2 in same role (W-
relationship). :
10.2:1. Entity/Relationship.
10.2.2. Relationship/Attribute.
10.2.3. Entity/Attribute.

11. DIFFERENT BUT REIATED OBJECTS
N1l <> N2; Tl = T2; M1l <> M2; related(M1,M2); Cl = C2;

11.1. One object contains the other (Object 1
contains Object 2 or vice versa).
Solution: create an Isa relationship between
the two objects.
11.1.1. Entity/Entity.
11.1.2. Relationship/Relationship.
11.1.3. Attribute/Attribute.
Solution: before creating an Isarelation-
ship, convert attributes into entities:
(for relationship attributes) or into
E-R constructs (for entity attributes).
11.2. Object 1 and Object 2 have a common superset
(but do not overlap).
Solution: create a superset object and Isa
relationships from objects Ol and 02 to the
superset object. :
11.2.1. Entity/Entity.
11.2.2. Relationship/Relationship.
11.2.3. Attribute/Attribute.
Solution: precede general solution by
transformation into entities or E-=R
constructs. S
11.3. Object 1 and Object 2 have a common superset
and overlap
Solution: combine solutions for 11.2. and 11.3.
11.3.1. Entity/Entity.
11.3.2. Relationship/Relationship.
11.3.3. Attribute/Attribute.

12. DIFFERENT BUT RELATED HOMONYMS
N1l = N2; T1 = T2; Ml <> M2; related(M1,M2); Cl = C2;

Solution: rename and solve similar to 11.

227



12.1.

One object contains the other (Object 1
contains Object 2 or vice versa).

12.1.1. Entity/Entity.
12.1.2. Relationship/Relationship.
12.1.3. Attribute/Attribute.

12.2.

Object 1 and Object 2 have a common superset

(but do not overlap).

12.2.1. Entity/Entity.
12.2.2. Relationship/Relationship.
12.2.3. Attribute/Attribute.

12.3.

Object 1 and Object 2 have a common superset

and overlap.

12.3.1. Entity/Entity.
12.3.2. Relationship/Relationship.
12.3.3. Attribute/Attribute.

13. DIFFERENT BUT RELATED OBJECTS WITH DIFFERENT CONTEXT
N1 <> N2; T1 = T2; Ml <> M2; related(M1,M2); Cl <> C2; .

13.1.

Entity Attribute related to Entity Attribute
of a different entity.

Solution: transform attributes into E-R
constructs and solve relatedness as in case
11.

13.1.1. Attribute 1 contains Attribute 2 (or vice

versa).
13.1.2. Common superset.
13.1.3. Common subset and superset.

13.2. Entity Attribute related to Relationship
Attribute
Solution: transform entity attribute into E-
R construct, relationship attribute into
entity and solve relatedness as in 11.

13.2.1. Attribute 1 contains Attribute 2 (or vice
versa).

13.2.,2. Common superset.

13.2.3. Common subset and superset.

13.3. Relationship Attribute related to Relationship
Attribute ’
Solution: transform attributes into entities
and solve relatedness as in 11.

13.3.1. Attribute 1 contains Attribute 2 (or vice
versa).

13.3.2. Common superset.

13.3.3. Common subset and superset.

13.4. Relationship related to Relationship

Solution: transformrelationships intoentities
_ and solve relatedness as in 11.
13.4.1. Relationship 1 contains Relationship 2
(or vice versa).
13.4.2. Common superset,

228



13.4.

14. DIFFERENT BUT

3. Common subset and superset.

RELATED HOMONYMS WITH DIFFERENT CONTEXT

N1l = N2; T1 = T2;

M1l <> M2; related(M1l,M2); Cl <> C2;

Solution: rename to avoid homonym and solve similar

to 13.
14.1.
14.1.
14.1.
14.1.
14.2.
14.2.
14.2.
14.2.
14.3,
14.3.
14.3.
14.3.
14.4.
14.4.
14.4.
14.4.

15. DIFFERENT BUT

Entity Attribute related to Entity Attribute
of a different entity.

1. Attribute 1 .contains Attribute 2 (or vice
versa).

2. Common superset.

3. Common subset and superset.

Entity Attribute related to Relationship
Attribute.

1. Attribute 1 contains Attribute 2 (or vice
versa). _ ’ J

2, Common superset.

3. Common subset and superset.

Relationship Attribute related to Relationship
Attribute.

1. Attribute 1 contains Attribute 2 (or vice
versa).

2.. Common superset.

3. Common subset and superset.

Relationship related to Relationship

1. Relationship 1 contains Relationship 2
(or vice versa).

2. Common superset.

3. Common subset and superset.

RETLATED OBJECTS OF DIFFERENT TYPE

N1l <> N2; T1 <> T2; Ml <> M2; related(M1l,M2); Cl <> C2;

15.1.

15.1.

15.1.

15.2.
1502.

Entity Attribute related to Entity-Relationship
construct.

Solution: transform entity attribute into E-
R construct and solve relatedness similar to
11.

1. Entity Attribute related to Entity.
15.1.1.1. One object contains the other.
15.1.1.2. Common superset.

15.1.1.3. Common subset and superset.

2. Entity Attribute related to Relationship.
15.1.2.1. One object contains the other.
15.1.2.2, Common superset.

15.1.2.3. Common subset and superset.
Relationship Attribute related to Entity.

1. One object contains the other.

229



15.2.2. Common superset,

15.2.3. Common subset and superset.
15.3. Entity related to Relationship.

15.3.1. One object contains the other.

15.3.2. . Common superset.

15.3.3. Common subset and superset.

16. DIFFERENT BUT REILATED HOMONYMS OF DIFFERENT TYPE
N1l = N2; Tl <> T2; Ml <> M2; related(Mi,M2); Cl <> C2;

Solution: rename at least one object to avoid
homonym and solve similar to 15.

16.1. EntityAttributerelated to Entity-Relationship
construct
16.1.1. Entity Attribute related to Entity.
16.1.1.1. One object contains the other.
16.1.1.2, Common superset.
16.1.1.3. Common subset and superset.
16.1.2. Entity Attribute related to Relationship.
16.1.2.1. One object contains the other.
16.1.2.2. Common superset.
16.1.2.3. Common subset and superset.
16.2, Relationship Attribute related to Entity.

16.2.1. One object contains the other.

16.2.2. Common superset.

16.2.3. Common subset and superset.
16.3. Entity related to Relationship.

16.3.1 One object contains the other.

16.3.2. Common superset.

16.3.3. Common subset and superset.

17. MISSING OBJECT
Object 2 does not exist.

Solution: add missing object.

17.1 Entity missing.
17.2 Relationship missing.
17.3 Attribute missing.

230



Appendix 2: Conflict Solutions

1. IDENTICAL OBJECTS
Nl = N2; Tl = T2; Ml = M2; Cl = C2;

Solution: do nothing.

1.1, Entity is Entity.
1.2, Relationship is Relationship.
1.3. Attribute is Attribute.

2. IDENTICAL OBJECTS WITH DIFFERENT CONTEXT
Nl = N2; T1 = T2; M1l = M2; Cl <> C2;

2.1. Relationship is Relationship of different

degree or associating different entities.
Solution: S4, possibly S1 or S2 or S11.

2.2, Attribute is Attribute of a different entity
or relationship (both are possession
attributes).

Solution: S2 or S3.

3. TRUE SYNONYMS (SAME OBJECT TYPE)
N1l <> N2; T1 = T2; M1l = M2; Cl = C2;

Solution: s10.

3.1. Entity/Entity.
3.2. Relationship/Relationship.
3.3. Attribute/Attribute.

4. TRUE SYNONYMS WITH DIFFERENT CONTEXT
N1l <> N2; T1 = T2; Ml = M2; Cl <> C2;

4.1. Relationship/Relationship.

Solution: S$10 and sS4, possibly S1, or S2, or S1l1.
4.2, Attribute/Attribute.

Solution: S10 and S2 or S3.

5. CONSTRUCT MISMATCH
Nl = N2; Tl <> T2; M1l = M2; Cl <> C2;

5.1. Entity is Relationship.
Solution: S1.
5.2. Entity Attribute is Entity-Relationship
construct.
Solution: S3.
5.2.1. Attribute is Entity.
5.2.2. Attribute is Relationship.
5.3. Relationship Attribute is Entity.

231



Solution: Ss2.

6. CONSTRUCT MISMATCH AND SYNONYM

N1l <> 2; Tl <> T2; Ml = M2; Cl <> C2;

6.1. Entity is Relationship.

Solution: S10 and Sl1.

6.2. Entity Attribute is Entity-Relationship

construct.
Solution: S10 and S3.
6.2.1. Attribute is Entity.
6.2.2. Attribute is Relationship.

6.3. Relationship Attribute is Entity.

Solution: 10 and S2.

7. DIFFERENT AND UNRELATED OBJECTS

N1 <> N2; T1 = T2; Ml <> M2; not(related(M1,M2)); Cl = C2

or Cl <> C2;

7.1. Objects are different, unrelated and have no

common role.
Solution: do nothing.

7.1.1. Entity/Entity.
7.1.2. Relationship/Relationship.
7.1.3. Attribute/Attribute.
7.2. Object 1 and Object 2 in same role (W-
relationship).
7.2.1. Entity/Entity.
Solution: S7.
7.2.2. Relationship/Relationship.
Solution: S1 and s7.
7.2.3. Attribute/Attribute.

Solution: S2 or S3 followed by S7.

8. TRUE HOMONYM

Nl = N2; T1 = T2; Ml <> M2; Cl = C2 or Cl <> C2;

8.1. Objects are different, unrelated and have no

8

common role.
Solution: S10.

8.1.1. Entity/Entity.
8.1.2. Relationship/Relationship.
8.1.3. Attribute/Attribute.
2. Object 1 and Object 2 in same role (W-
relationship).
8.2.1. Entity/Entity.
Solution: S10 followed by S7.
8.2.2. Relationship/Relationship.

232



Solution: S10 and S1 followed by S7.

8.2.3. Attribute/Attribute.
Solution: S10 and S2 or S3 followed by
S7.

9. DIFFERENT OBJECTS WITH DIFFERENT CONSTRUCTS
Nl <> N2; Tl <> T2; M1l <> M2; Cl <> C2;

9.1. Objects are different, unrelated and have no
common role.
Solution: do nothing.

9.1.1. Entity/Relationship.

9.1.2. Relationship/Attribute.

9.1.3. Entity/Attribute.

9.2. Object 1 and Object 2 in same role (W-
relationship). ;

9.2.1. Entity/Relationship.
Solution: S1 followed by S7.

9.2.2. Relationship/Attribute.
Solution: S1 and S2 or S3 followed by
S7.

9.2.3. Entity/Attribute.

Solution: S2 or S$3 followed by S7.

10. DIFFERENT OBJECTS WITH DIFFERENT CONSTRUCTS, BUT HOMONYMS
Nl = N2; Tl <> T2; Ml <> M2; Cl <> C2;

10.1. Objects are different, unrelated and have no
common role.
. Solution: S1i0.
10.1.1. Entity/Relationship.
10.1.2. Relationship/Attribute.
10.1.3. Entity/Attribute.
10.2. Object 1 and Object 2 in same role (W-
relationship).
10.2.1. Entity/Relationship.
Solution: S10 and S1 followed by S7.
10.2.2. Relationship/Attribute.
Solution: S10, S1 and S2 or S3, followed

by S7.

10.2.3. Entity/Attribute.
Solution: S10 and S2 or S3, followed by
S7. :

11. DIFFERENT BUT REILATED OBJECTS
N1l <> N2; T1 = T2; M1l <> M2; related(M1l,M2); Cl = C2;

233



11.1. One object contains the other (Object 1
contains Object 2 or vice versa).

11.1.1. Entity/Entity.
Solution: s6.

11.1.2. Relationship/Relationship.
Solution: S1 and S6.

11.1.3. Attribute/Attribute.
Solution: S2 or S3, followed by S6.

11.2. Object 1 and Object 2 have a common superset
(but do not overlap).

11.2.1. Entity/Entity.
Solution: s8.

11.2.2. Relationship/Relationship.
Solution: S1 and S8. :

11.2.3. Attribute/Attribute. \
Solution: S2 or S3, followed by S8.

11.3. Object 1 and Object 2 have a common superset
and overlap

11.3.1. Entity/Entity.
Solution: S9.

11.3.2. Relationship/Relationship.
Solution: S1 and s9.
11.3.3. Attribute/Attribute.

Solution: S2 or S3, followed by S9.

12. DIFFERENT BUT RELATED HOMONYMS
Nl = N2; T1 = T2; M1l <> M2; related(M1,M2); Cl = C2;

12.1. One object contains the other (Object 1
contains Object 2 or vice versa).
12.1.1. Entity/Entity.
Solution: S10 and S6.
12.1.2. Relationship/Relationship.
Solution: S10 and S1 and S6.
12.1.3. Attribute/Attribute.
' Solution: S10 and S2 or S3, followed by
Sé6.
12.2. Object 1 and Object 2 have a common superset
(but do not overlap).
12.2.1. Entity/Entity.
Solution: S10 and S8.
12.2.2. Relationship/Relationship.
Solution: S10 and S1 and S8.
12.2.3. Attribute/Attribute.
Solution: S10 and S2 or S3, followed by
S8.

234



12.3. Object 1 and Object 2 have a common superset
and overlap.

12.3.1. Entity/Entity.
Solution: S10 and S9.

12.3.2. Relationship/Relationship.

‘ Solution: S10 and S1 and S9.

12.3.3. Attribute/Attribute.
Solution: S10 and S2 or S3, followed by
S9. :

13. DIFFERENT BUT RELATED OBJECTS WITH DIFFERENT CONTEXT
N1l <> N2; T1 = T2; M1l <> M2; related(M1l,M2); C1l <> C2;

13.1. Entity Attribute related to Entity Attribute
of a different entity.

13.1.1. Attribute 1 contains Attribute 2 (or vic

versa). :
Solution: S3 and Sé6.

13.1.2. Common superset.
Solution: S3 and sS8.

13.1.3. Common subset and superset.

Solution: S3 and S9.
13.2. Entity Attribute related to Relationship

Attribute
13.2.1. Attribute 1 contains Attribute 2 (or vice
versa).
Solution: Ss2 and S3 and S6.
13.2.2. Common superset.
Solution: S2 and S3 and S8.
13.2.3. Common subset and superset.

Solution: S2 and S3 and S9.
13.3. Relationship Attribute related to Relationship

Attribute
13.3.1. Attribute 1 contains Attribute 2 (or vice
versa).

Solution: S2 and S6.

13.3.2. Common superset.
Solution: S2 and S8.

13.3.3. Common subset and superset.
Solution: S2 and S9.

13.4. Relationship related to Relationship

13.4.1. Relationship 1 contains Relationship 2
(or vice versa).
Solution: S1 and Se.

13.4.2. Common superset.
Solution: S1 and S8.
13.4.3. Common subset and superset.

Solution: S1 and S9.

235



14. DIFFERENT BUT RELATED HOMONYMS WITH DIFFERENT CONTEXT
Nl = N2; T1 = T2; M1l <> M2; related(M1l,M2); Cl <> C2;

14.1. Entity Attribute related to Entity Attribute
of a different entity.
14.1.1. Attribute 1 contains Attribute 2 (or vice

versa).
Solution: S10 and S3 and Sé6.
14.1.2. Common superset.

Solution: S10 and S3 and SS8.
14.1.3. Common subset and superset.
Solution: S10 and S3 and S9.

14.2. Entity Attribute related to Relationship

Attribute.
14.2.1. Attribute 1 contains Attribute 2 (or vice
versa) .
Solution: S10 and S2 and S3 and S6.
14.2.2, Common superset.
Solution: S10 and S2 and S3 and S8.
14.2.3. Common subset and superset.

Solution: S10 and S2 and S3 and S9.
14.3. Relationship Attribute related to Relationship

Attribute.
14.3.1. Attribute 1 contains Attribute 2 (or vice
versa).
Solution: S10 and S2 and S6.
14.3.2. Common superset.
Solution: S10 and S2 and S8.
14.3.3. Common subset and superset.

Solution: S10 and S2 and S9.
14.4. Relationship related to Relationship
14.4.1. Relationship 1 contains Relationship 2:
(or vice versa).
Solution: S10 and S1 and Sé.

14.4.2. Common superset.
Solution: S10 and S1 and S8.
14.4.3. Common subset and superset.

Solution: S10 and S1 and S9.

15. DIFFERENT BUT RELATED OBJECTS OF DIFFERENT TYPE
N1l <> N2; T1 <> T2; Ml <> M2; related(M1l,M2); Cl <> C2;

15.1. EntityAttribute related to Entity-Relationship
construct.
15.1.1. Entity Attribute related to Entity.

15.1.1.1. One object contains the other.
Solution: S3 and S6.

15.1.1.2. Common superset.
Solution: S3 and S8.

15.1.1.3. Common subset and superset.
Solution: S3 and S9.

236



15.1.2. Entity Attribute related to Relationship.

15.1.2.1. One object contains the other.
Solution: S3 and Se.

15.1.2.2. Common superset.
Solution: S3 and S8.

15.1.2.3. Common subset and superset.
Solution: S3 and S9.

15.2. Relationship Attribute related to Entity.

15.2.1. One object contains the other.
Solution: S2 and Se6.
15.2.2. Common superset.

Solution: S2 and S8.

15.2.3. Common subset and superset.
Solution: S2 and S9.

15.3. Entity related to Relationship.

15.3.1. One object contains the other.
Solution: S1 and S6.

15.3.2. Common superset.
Solution: S1 and S8.

15.3.3. Common subset and superset.
Solution: S1 and S9.

16. DIFFERENT BUT RELATED HOMONYMS OF DIFFERENT TYPE
Nl = N2; T1 <> T2; Ml <> M2; related(M1,M2); Cl <> C2;

16.1. EntityAttribute related toEntity-Relationship
construct
16.1.1. Entity Attribute related to Entity.
16.1.1.1. One object contains the other.
Solution: S10 and S3 and Seé.
16.1.1.2. Common superset.
Solution: S10 and S3 and S8.
16.1.1.3. Common subset and superset.
Solution: S10 and S3 and S9.
16.1.2. Entity Attribute related to Relationship.
16.1.2.1. One object contains the other.
Solution: S10 and S3 and S6.
16.1.2.2. Common superset.
Solution: S10 and S3 and S8.
16.1.2.3. Common subset and superset.
Solution: S10 and S3 and S9.
16.2. Relationship Attribute related to Entity.

16.2.1. One object contains the other.
’ Solution: S10 and S2 and Sé6.
16.2.2. Common superset.

Solution: S10 and S2 and S8.
16.2.3. Common subset and superset.

Solution: S10 and S2 and S9.
16.3. Entity related to Relationship.

237



16.3.1. One object contains the other.
Solution: S10 and S1 and S6.
16.3.2. Common superset.
~Solution: S10 and S1 and S8.
16.3.3. Common subset and superset.
Solution: S10 and S1 and S9.

17. MISSING OBJECT
Object 2 does not exist.

Solution: S11.
17.1. Entity missing.

17.2. Relationship missing.
17.3. Attribute missing.

238



Appendix 3: View Integration Session with AVIS
A view integration session with AVIS is illustrated
through a set of 22 screen displays. The problem "c34" consists

of two small views which have to be integrated. Figure 28
depicts the structure of the views. ‘

DEALER “Supply BRANCH

Contract

View 1:

View 2:

SN
~ g .

DEALER Deater CONTRACT———~<fE§ﬂﬁt ——ICUSTOMER
P

Figure 28: View Integration Sample Problem

The screens shown below exemplify questions asked by the AVIS
system as well as AVIS' support functions. These support
functions for instance indicate to the designer what the
program already knows or what the current contents of each
view are. Example screens which display system questions to
the user will not depict user replies. The short summary
description of each screen shown below, however, states the
user answers and documents the purpose of each screen.

Screen Purpose :
1 AVIS title screen, asks user to choose a problem
file. Chosen here: "“c34",
2 First system question. User answers "1003".
The following screens 3 - 8 exemplify support functions which

can be activated at any time during the integration session
when the system is ready to accept input. Some of the screens
‘may initially have no or little content, i.e., screen 4. They
are shown here to demonstrate the system status at the beginning
of an integration session and to allow a comparison with later
system stati. Screens 3 - 8 show the system status before the

239



user's answer "1003". The user gave his answer after seeing
screen 8.

11

12

13
14

15
16

17

18

19

20
21 & 22

Shows “"Agenda", consisting of present and future object
comparison tasks (preview).

Shows "01ld Agenda", consisting of current and previous
object comparison tasks (history log).

Show the contents of views 1 and 2 (at the outset of
the integration session).

Shows list of "“facts", knowledge about the set of views
based on previous object comparisons. Here the list is
still empty.

Meaning comparison screen. Shows what the system knows
about the match between objects. Here, best match is
with "1003 - dealer".

System question 2. User answers "n". :
System question 3. User answers "n", but not until
seeing screen 11.

"0ld Agenda" now shows the previous four system
questions. Note that the system never asked the user
for Synonym (agenda item 2) because it can assess
without user help whether objects carry different names
(simple string comparison).

System question 4. User answers "0", but not until
seeing screen 14.

"Meaning match" support function suggests no similarity.
Fact list shows the knowledge asserted at this point in
time. I.e., objects 3 and 1003 are identical (same).
System question 5. User answers "0V,

System question 6. User answers "1005". Note that the
system reports in the lower right window that in the
mean time, a new object, 2013 - branch, has been added.
System question 7. User answers "n"., The number 18 on
the upper right hand corner of the screen shows that
the system has internally created 18 guestions, but has
asked the user only 7. The remaining ones were answered
by the system. .

"THE AGENDA IS EMPTY", The system has created two
identical views, without further questions to the
user. Note the internal count of 30 questions (upper
right corner).

The "0ld Agenda" shows the last 12 questions, answered
by the system without user interaction.

First part of the Fact list.

The adjusted views 1 and 2. All newly created objects
can be identified by their object identifiers (>2000).

240



SCREEN 1

AV I 8
ARA Vv Vv II $5885988ss8
AA AA vv Vv 11 Ss
AA AA Vv Vv 11 S§S
AA AA vv v I1 §88888ss8
Ad AA VvV vv 11 S8
AA AARAAAA RAA vvv 11 s8
AA AA v 1I §585S8888s
AA AR :
AA AM AA AA AMA AA AA ADA AN AR AA AA AA AA AAA

- Automated Viev Integration Systems -

by Christian Wagner, 1988.

Response
What is the name of the flle containing the
views? [(TEST.PRO]}

c34

SCREEN 2

AV I 8

Testing for hypothesis: SIMILAR ENTITY,
involving the entity DEALER (3) and one of the following objects:

1003 -- dealer
1004 -- customer
1005 -- contract

Make Agenda : New Objects

Hypo Test

Assert Objects

Response
Please type in the number of the applicable
object (or 0 if none).

241



SCREEN 3
A V I S8

Testing for hypothesis: SIMILAR ENTITY,
involving the entity DEALER (3) and one of the following objects:

Agenda

Current Agenda Item
H: 3 Similar Entity - (3)11003,1004,1005)

Response
Press <spacebar> to contlinue

SCREEN 4
A vV I s

Testing for hypotheslis: SIMILAR ENTITY,

involving the entity DEALER (3) and one of the following objects:

014 Agenda

1: -1-> 3 - Similar Entity - (3111003,1004,1005)

Response
Press <spacebar> to contlnue

242



SCREEN 5

Objects

VIEW 1 - RELATIONSHIPS

502 - supplyl"dealer™,"branch")

VIEW 1 - ENTITIES

3 - dealer{"contract"]
4 - branchi{"branch_no"}

Response
Press <spacebar> to continue

SCREEN 6

Objects
VIEW 2 - RELATIONSHIPS

1502 - dealer_contract{"dealer","contract"}
1503 - customer_contract{"customer","contract"])

VIEW 2 - ENTITIES

1003 - dealer("dealer_no")
1004 - customer(“"customer_no"]
1005 - contract("contract_no"]

Response
Press <spacebar> to continue

243



SCREEN 7

AV I s

Testing for hypothesis: SIMILAR ENTITY,

fnvolving the entity DEALER (3) and one of the following objects:
1003 -- dealer Facts
1004 -- customerx
1005 ~-- contract
Make Agenda
Hypo Test
Response
Press <spacebar> to continue
SCREEN 8
A V I s
Testing for hypothesis: SIMILAR ENTITY,
involving the entity DEALER (3) and one of the following objects:

Meaning Match

Match between entity DEALER (3)

["sells","supplies")
and objects below:

ID NAME Match of: NAME----MEANING----- CONTEXT

1003 dealer Y Y unknown

1004 customer n n unknown

1005 contract n n unknown
Reaponse

Press <spacebar> to contlnue

244




SCREEN ¢

AV I 8

Testing for hypothesis: SIMILAR RELATIONSHIP,

involving relationshlp SUPPLY (502) and relationship DEALER_CONTRACT (1502)

Make Agenda

3 -> agenda(similar_meaning,{31,1(10031])

Hypo Test
TO BE EXECUTED:
similar_meaning((502),01502])

New Objects

Response
Please answer with y or n to indicate whether
the hypothesis is true or false.

Assert Objects
ao(4,3,1003,n)

- test_hypo(7)

SCREEN 10

A V I 8
Testing for hypothesis: RELATED RELATIONSHIP,

involving relationship SUPPLY (502) and relationship DEALER_CONTRACT (1502)

Make Agenda

1 -> agenda(homonyms,(502],(15021})

Hypo Test
TO BE EXECUTED:
related((502]1,115021))

Nev Objects ——

Response
Please ansver with y or n to indicate whether
the hypothesis is true or false.

Assert Objects
ao(l1,502,1502,n)

- test_hypo(7)

245



SCREEN 11

AV I 3
Testing for hypothesis: RELATED RELATIONSHIP,

involving relationship SUPPLY (502) and relationship DEALER_CONTRACT (1502)

014 Agenda
1;: -1-> 3 -~ Similar Entity - [(31(1003,1004,1005)
2: 3-> 4 - Synonym - {31(1003}
3: 0-> 1 - Similar Relationship - (502)}[1502)
4: 1-> 13 - Related Relationship - (502]1(1502])

Response
Press <spacebar> to continue

- test_hypo(7)

SCREEN 12

AV I 8
Testing for hypothesis: ENTITY ATTRIBUTE 18 RELATIONSHIP CONSTRUCT,
involving the attr DEALER_NO (2001) and one of the following objects:

4 -- Dbranch
502 -- supply

Make Agenda New Objects
13 -> agenda(ea_\is_xc,[(5021,(1502]))

Hypo Test

TO BE EXECUTED:
ea_1is_rc(120011,(4,502)) ———— Assert Objects

ao(13,502,1502,n)

Response
Please type In the number of the applicable
object (oxr 0 i1f none). ~ test_hypo(7)

246




SCREEN 13

AV I 8

Testing for hypothesis: ENTITY ATTRIBUTE IS RELATIONSHIP CONSTRUCT,
involving the attr DEALER_NO (2001) and one of the following objects:

Meaning Match

Match between attr DEALER_NO (2001) ("key"]
and objects below:

1D NAME Match of: NAME----MEANING----~ CONTEXT

4 branch n n none

502 supply n n none
Response

Press <spacebar> to continue
- test_hypol?)

SCREEN 14

AV I 8

Testing for hypotheslis: ENTITY ATTRIBUTE IS8 RELATIONSHIP CONSTRUCT,
involving the attr DEALER_NO (2001) and one of the following objects:

4 -- branch Facts

502 -~ supply similar_meaning(3,1003)
same(3,1003)
dissimilar_meaning(502,1502)
unrelated(502,1502)

Make Agenda

13 -> agenda{ea_\is_rc,[(5021,[1502))

Hypo Test
TO BE EXECUTED:

ea_ls_rc({2001),(4,502])

Response
Press <spacebar> to continue

~ test_hypo(7)

247



SCREEN 1S
AV I 8

Testing for hypothesis: SIMILAR ENTITY,
involving the entity BRANCH (4) and one of the followving objects:

1004 -- customer
1005 -- contract

Make Agenda New ObJjects

Hypo Test

Assert Objects

Response
Please type in the number of the applicable
object {(or 0 {f none).

SCREEN 16
6
AV I 8
Testing for hypothesis: ENTITY ATTRIBUTE IS RELATIONSHIP CONSTRUCT,
involving the attr CONTRACT (600) and one of the following objects:
1005 -- contract
1502 -~ dealer_contract
Make Agenda New Objects
H-simllar_meaning
added obijects:
2013 -~ branch
Hypo Test

TO BE EXECUTED:

ea_is_xc((600],11005,1502])) —— Assert Objects
ao(301,4,0,n)

Response
Please type In the number of the applicable
object (or 0 if none). - test_hypo(7)

248



SCREEN 17

AV I 8

Testing for hypothesis: ENTITY ATTRIBUTE IS RELATIONSHIP CONSTRUCT,
involving attr DEALER_NO (2001) and relationship SUPPLY (502)

18

Make Agenda

13 -> agenda(ea_ls_xc,{1502),(502})

Hypo Test

TO BE EXECUTED:
ea_is_rc((2001),(502]))

New Objects
H-missing

added objects:
2023 -- customer_contract

ao(l13,1502,502,n)

Response
Please ansver with y or n to indicate vhether
the hypothesis is true or false.

Assert Objects

- test_hypo(7)

SCREEN 18

30

Make Agenda

13 -> agenda(ea_is_xc,{(2027),1(2017})

Hypo Test
PRECONDITION FAILED:
related({20271,120171)

New Objects
H-missing
added objects:
2027 -- supply

ao(13,2027,2017,n)

Response
- - - THE AGENDA IS EMPTY - -~ -

Assert Objects —

- asso(1301)

249



SCREEN 19

30
v I 8
014 Agenda
19: 0-> 19 ~ Missing Relationship - (502]()
20: -5-> 1 ~ Similar Relatlonship - (2023){(1503,1502)
21: -5-> 1 - similar Relationship - (502)(2027]
22: -5-> 1 - Similar Relationship - (2017)(2027])
23: -6-> 1 - Similar Relatlonship - (1502}{2023]
24: -6-> 1 - Similar Relationship - (1503)(2023]
25; -6-> 1 - Similar Relationship - [(2027)[2017,502]
26: -7-> 13 Related Relationship - (2017102027}
27: -7-> 13 - Related Relatlonship - (20231(1502)
28: -8-> 13 - Related Relatlionship - (1502112023}
29: -8-> 13 - Related Relationship - [1503}1{2017)
30: -8-> 13 - Related Relationship - (2027}(2017)
Response
Press <spacebar> to continue
- ass0(1301)
SCREEN 20
30
v I 8
Facts

similar_meaning(3,1003)
same(3,1003)
dissinmilar_meaning(502,1502)
unrelated(502,1502)
ea_is_not_rc(2001,4)

Make Agenda

13 -> agenda(ea_1is_xc,{2027),12017))

ea_is_not_rc(2001,502)
dissimilar_meaning(4,1004)
dissimilar_meaning(4,1005)
similar_meaning(4,2013)

PRECONDITION FAILED:

related({2027),120171})

Hypo Test

same(4,2013)
dup(4,2013)
... more >

THE

AGENDA

Response

IS EMPTY

asso(1301)

250




SCREEN 21

Objects

VIEW 1 - RELATIONSHIPS

502 - supplyl{"dealer","branch”]
2017 - dealer_contract("dealer®, "contract”}
2023 - customer_contracti"customer","contract”)

et E E E PP R R I R R R R R P R P P P P R Y Lt

VIEW 1 ~ ENTITIES

3 - dealer("contract"]

4 - branch(®"branch_no")
2015 - contract("contract_no")
2021 - customer("customer_no"]

-Response
Press <spacebar> to continue

- asso(l301)

SCREEN 22

Objects

VIEW 2 - RELATIONSHIPS

1502 - dealer_contract|"dealer®,"contract®]
1503 - customer_contract{"customer®,"contract"}
2027 - supply("dealer®,"branch"]

S SRS S SESS S S 3NESCS IS RS S N E SRSl S S S A= SO S S S S S S S EEE S SRR SEREI SIS ESSESSESRASER

VIEW 2 - ENTITIES

1003 - dealer("dealer_no"]}
1004 - customer{"customer_no”"]
1005 -~ contracti{"contract_no")
2013 -~ branchl"branch_no"]

Response
Press <spacebar> to continue

- asso(1301)

251



