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Abstract 
Some parts of the systems analysis and design process are not well 

structured and r e l y h e avily on human judgement and experience. This i s 
p a r t i c u l a r l y true for decomposition and the v a l i d a t i o n of system s p e c i f i c a t i o n s . 
Decomposition has long been considered a fundamental part of systems analysis 
and design. However, ensuring that a decomposition i s optimal i s nearly 
impossible. 

Ensuring that a system s p e c i f i c a t i o n i s complete and consistent i s an 
inherently d i f f i c u l t task. Most e x i s t i n g systems analysis and design 
methodologies allow only the use of techniques such as code walk-throughs and 
post-implementation t e s t i n g . Analysis errors discovered at such l a t e stages can 
be quite expensive to correct. E x i s t i n g methodologies cannot support automated 
completeness and consistency t e s t i n g because they lack the degree of formalism 
required to allow automation. 

The primary objective of t h i s research was to increase understanding of 
system decomposition. To a i d i n achieving t h i s objective a formalism for 
representing a system s p e c i f i c a t i o n , and a set of computer-based s p e c i f i c a t i o n s 
analysis tools were developed. The tools support decomposition and provide 
completeness and consistency t e s t i n g of a system s p e c i f i c a t i o n . 

An e x i s t i n g system modelling formalism was extended to provide the basis 
for the s p e c i f i c a t i o n formalism. This extended formalism w i l l allow an analyst 
to describe a system with the degree of p r e c i s i o n necessary f o r automated t e s t i n g 
and decomposition. The a b i l i t y to create a complete and consistent system model 
f a c i l i t a t e d the development of a general theory of system decomposition. A 
system model created using the s p e c i f i c a t i o n s analysis tools can be analyzed 
using a decomposition algorithm based on t h i s theory. The algorithm incorporates 
a number of commonsense software design rules and decomposition h e u r i s t i c s drawn 
from the l i t e r a t u r e , and has been included i n the s p e c i f i c a t i o n s analysis t o o l s . 
Experience has shown that the s p e c i f i c a t i o n s analysis tools may suggest system 
decompositions not previously considered by the analyst. A l t e r n a t i v e 
decompositions may a r i s e i n two s i t u a t i o n s : 
1. The system has a v a l i d a l t e r n a t i v e structure which may not have been 
considered by the analyst. This a l t e r n a t i v e structure may be superior to the 
o r i g i n a l structure envisioned by the analyst when the system model was 
constructed. 



2 . The system s p e c i f i c a t i o n does not contain enough information to rule out 
c e r t a i n unreasonable decompositions. The missing information should be 
e x p l i c i t l y included i n the s p e c i f i c a t i o n to avoid problems of i n t e r p r e t a t i o n 
l a t e r i n the system development l i f e cycle. 

Analysis of several t e s t systems (including the IFIP Working Conference 
system often used as a standard problem i n the systems analysis l i t e r a t u r e ) using 
the s p e c i f i c a t i o n s analysis tools has proven the f e a s i b i l i t y of automated 
consistency and completeness t e s t i n g and decomposition. Further research i s 
required i n two areas: 
1. Enhancement of the s p e c i f i c a t i o n s analysis t o o l s . The tools are not user 
f r i e n d l y . An analyst w i l l require extensive t r a i n i n g to use them e f f e c t i v e l y . 
As w e l l , the computational speed of the tools must be improved. Automated 
decomposition i s too slow to allow easy i n t e r a c t i o n between the analyst and the 
t o o l s . 
2 . A h i e r a r c h i c a l analysis technique must be developed to support a p p l i c a t i o n 
of the s p e c i f i c a t i o n formalism and the theory of decomposition to larger systems. 
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Chapter 1 : Introduction 

1.1. General 

The notion of decomposition i s ce n t r a l to most methodologies f o r systems 
analysis and design. For example, Structured Analysis (DeMarco, 1978), 
Warnier-Orr Diagrams (Warnier, 1974; Orr, 1977), JSD 1 (Jackson, 1983), and HOS2 

(Hamilton and Zeldin, 1976) a l l require the analyst to construct a h i e r a r c h i c a l 
structure f o r a proposed computer-based system. Courtois (1985) notes the 
importance of decomposition: 

"Decomposition has long been recognized as a powerful 
t o o l f o r the analysis of large and complex systems. The 
technique of decomposing a system, studying the 
components, and then studying the int e r a c t i o n s of those 
components has been su c c e s s f u l l y used i n many areas of 
engineering and science." 

Despite t h i s , there e x i s t s no theory to guide the process of system 
decomposition. Decomposition has always been considered a h e u r i s t i c a c t i v i t y . 

An important objective of the research i s to increase our understanding 
of system decomposition. In order to achieve t h i s objective a formalism has 
been developed f o r representing an information system based on the states and 
laws system model developed by Wand and Weber (1988, 1989). Not only does t h i s 
formalism provide a basis f o r the development of a theory of system 
decomposition, but i t includes operational d e f i n i t i o n s f o r completeness and 
consistency of system s p e c i f i c a t i o n s . Tangible r e s u l t s of the research include 
a set of Prolog-based s p e c i f i c a t i o n analysis t o o l s . These tools can support 
formal d e s c r i p t i o n of a system model and suggest possible decompositions for 
that system. The decompositions w i l l reveal the inherent structure of a system 
s p e c i f i c a t i o n and can be used to i d e n t i f y d e f i c i e n c i e s i n the model 3. 

1 Jackson System Development 

2 Higher Order Software 

3 In t h i s research, a system model i s considered to be part of a f u l l 
system s p e c i f i c a t i o n . System models give the parts of the r e a l world to be 
represented i n the implemented information system and t h e i r r e l a t i o n s h i p s . 
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I t i s generally assumed that the structure and behaviour of an implemented 
system should c l o s e l y mirror that of the s p e c i f i c a t i o n . In the Structured 
Design l i t e r a t u r e , Myers (1978) states 

"...the program structure should c l o s e l y model the problem 
structure." (p. 73) 

JSD (Jackson, 1983, p. 5) defines system modelling to c o n s i s t of two a c t i v i t i e s : 

a. f i r s t , making an abstract d e s c r i p t i o n of the r e a l world, and 
b. second, making a r e a l i z a t i o n , i n the computer, of that abstract 

d e s c r i p t i o n . 

Therefore, i t seems reasonable to assume that the structure of the s p e c i f i c a t i o n 
can provide a basis f o r the further design of a system implementation. A 
suggested decomposition w i l l be "good" i n the sense that i t w i l l support modular 
construction and r e s t r i c t the e f f e c t s of system maintenance to e a s i l y 
i d e n t i f i a b l e segments of the o v e r a l l system. Since the decompositions suggested 
by the tools describe the structure of the s p e c i f i c a t i o n , they w i l l a i d i n both 
the understanding of a complex r e a l system and i n system design. 

The contributions of t h i s research include the following: 

a. Integration of e x i s t i n g decomposition h e u r i s t i c s . 
b. Development of a theory-based modelling technique for system s p e c i f i c a t i o n 

and decomposition. 
c. Development and implementation of a set of computerized tools for 

constructing a complete and consistent model of a system. 
d. A formal theory of system decomposition. 
e. Development and implementation of an algorithm capable of decomposing a 

system without human p a r t i c i p a t i o n . 

This chapter presents the r e s u l t s of a l i t e r a t u r e search f o r material 
r e l a t e d to decomposition i n the f i e l d s of general system theory and computer 
science. The second chapter presents a system modelling formalism su i t a b l e for 

System s p e c i f i c a t i o n s may also include requirements such as minimum response 
times, required throughput, cost, etc.. 
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use as the basis f or a general theory of system decomposition. This formalism 
i s an extension of the works of Bunge (1977, 1979) and Wand and Weber (1988, 
1989), and supports automated t e s t i n g of completeness and consistency. The 
theory of decomposition i s developed i n Chapter 3 and l a t e r extended i n Chapter 
5. Chapter 4 includes a discussion of various measures of system complexity. 
One of these measures i s shown to be u s e f u l f or d i s c r i m i n a t i n g between competing 
decompositions of a given system, and i s adopted f o r use i n t h i s research. To 
i l l u s t r a t e t h e i r usefulness, the system modelling formalism and techniques 
stemming from the theory of decomposition are applied to the IFIP Working 
Conference problem (Olle, 1982, pp. 8-9) i n Chapter 6. D e f i n i t i o n s f or some 
terms of general importance to systems analysis and design are suggested i n 
Chapter 7, p r i o r to a presentation of the conclusions reached i n t h i s research. 

The next section describes previous research on system decomposition. 
Ideas from both system theory and software design are considered. The 
decomposition rules of Myers (1978), Yourdon and Constantine (1979), Hamilton 
and Zel d i n (1976), and M i l i et a l . (1986) are described i n d e t a i l . 

1.2. Background 

1.2.1. System Theory 

Outside the systems analysis and design l i t e r a t u r e , the concept of system 
decomposition i s viewed from two d i f f e r e n t , but complementary, perspectives. 
Simon and Ando (1961) and Courtois (1985) suggest the use of decomposition as 
an a i d i n analyzing an e x i s t i n g system. Alexander (1967) and Simon (1981) argue 
that a s u i t a b l e decomposition could provide the basis f or design of a new 
system. 

From a systems analysis perspective, Simon and Ando consider the 
aggregation of v a r i a b l e s i n dynamic systems where short-run dynamics are 
separable from long-run dynamics. Their necessary c r i t e r i a f o r a system to be 
decomposable are as follows (from Courtois, 1985): 

a. In a short-term period, as a r e s u l t of stronger i n t e r n a l bonds, subsystems 
tend to reach an i n t e r n a l equilibrium "approximately" independently of one 
another. 
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b. In a long-term period, when a whole structure evolves toward a global 
equilibrium state under the influence of weak in t e r a c t i o n s among 
subsystems, the i n t e r n a l equilibriums reached at the end of the short-term 
period are approximately maintained i n r e l a t i v e value. 

Simon and Ando i l l u s t r a t e these rules by considering thermal equilibrium i n an 
o f f i c e b u i l d i n g (p. 117). The b u i l d i n g i s divided into a number of rooms. The 
rooms are separated from each other by walls which are good, but not perfect, 
i n s u l a t o r s . The rooms are further divided into o f f i c e s by poorly i n s u l a t i n g 
p a r t i t i o n s . Suppose that i n i t i a l l y there i s a large v a r i a t i o n i n the 
temperatures of the o f f i c e s . A f t e r a r e l a t i v e l y short time, the temperatures 
of each o f f i c e i n a p a r t i c u l a r room w i l l be approximately equal. A f t e r a much 
longer time, the temperatures of each room w i l l approach some common value. The 
thermal behaviour of i n d i v i d u a l rooms i s a r e l a t i v e l y short-term phenomenon. 
The rooms may be treated as independent subsystems with respect to this 
behaviour. The problem of how d i f f e r e n t short-term and long-term periods need 
be was addressed by Courtois (1985) . He presented i n t u i t i v e l y derived 
mathematical c r i t e r i a f o r the decomposition of queuing networks. In Chapter 3, 

i t w i l l be suggested that Simon and Ando's c r i t e r i a approximate more general 
rules governing "good" decomposition. 

From a system design perspective, Alexander suggests that a good 
decomposition w i l l lead to a design which exhibits a "good f i t " with i t s 
environment. His examples are a r c h i t e c t u r a l , but most of h i s arguments are 
applicable to system design i n general. He also defines a mathematical method 
for c l u s t e r i n g system variables such that information trans f e r i s minimized 
between c l u s t e r s of modules. 

Simon argues that a large proportion of n a t u r a l l y occurring systems i n the 
world e x h i b i t h i e r a r c h i c a l structures, and that "On t h e o r e t i c a l grounds we could 
expect complex systems to be hierar c h i e s i n a world i n which complexity had to 
evolve from s i m p l i c i t y " (Simon, 1981, p. 229). Thus, a h i e r a r c h i c a l structure 
i s seen not only as a useful t o o l , but as a fundamental feature of the 
universe. Simon uses a parable of two watchmakers, named Hora and Tempus, to 
i l l u s t r a t e t h i s point. Both men constructed watches c o n s i s t i n g of 1,000 parts. 
Tempus constructed h i s watches i n such a way that i f he was interrupted and had 
to put i t down, i t immediately f e l l to pieces and assembly had to begin again. 
Hora's watches performed p r e c i s e l y the same functions as Tempus', but he 
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designed h i s to have stable subassemblies of 10 parts each. Ten of these 
subassemblies could be put together i n another stable assembly, and ten of these 
f i n a l assemblies could be put together to form a completed watch. I f Hora was 
interrupted, previously completed subassemblies would not be aff e c t e d . I f the 
p r o b a b i l i t y of being interrupted while adding a part to a watch i s 0.01, a 
simple c a l c u l a t i o n (see Appendix A) shows that i t w i l l take Tempus on average 
4000 times as long to complete a watch as Hora. 

1.2.2. Computer Software 

A decomposed or "modular" computer program i s seen to be superior to a 
monolithic program. Yourdon (1975, p. 97) outlines the arguments i n favour of 
modularity as follows 4: 

a. A modular program i s easier to write and debug. Functional components can 
be w r i t t e n and debugged separately. 

b. A modular program i s easier to maintain and change. Functional components 
can be changed, rewritten, or replaced without a f f e c t i n g other parts of 
the, program. 

c. A modular program i s easier f o r a manager to c o n t r o l . For example, more 
d i f f i c u l t modules can be given to the better programmers. 

Most authors advocate the use of decompositions which e x h i b i t high 
cohesion within modules and low coupling between modules. Methodologies for 
achieving t h i s goal vary greatly i n both scope and degree of r i g o r . Several 
authors suggest "rules of thumb" for decomposing computer programs (Stevens, 
Myers and Constantine, 1974; Myers, 1978; Yourdon and Constantine, 1979) and 
some define rules f o r ensuring that a given decomposition i s consistent 
(Hamilton and Zeldin, 1976). Since a computer program i s a system, some 

Yourdon (pp. 97-99) also describes some performance r e l a t e d arguments 
against the use of modular programs. Subroutine c a l l s consume CPU time. Working 
storage a l l o c a t i o n s f o r each module may cause a modular program to require more 
space than an equivalent monolithic program. In v i r t u a l memory systems where 
only some modules may be i n phys i c a l memory at one time, some time may be wasted 
while waiting f o r the operating system to r e t r i e v e required modules from disk. 
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i n s i g h t s into a general theory of system decomposition might be gained through 
a close examination of t h i s body of knowledge. 

1.2.2.1. C h a r a c t e r i s t i c s of Good Decomposition 

I t i s generally acknowledged that large computer software systems tend to 
be d i f f i c u l t to maintain or change 5 (Bubenko, 1986, p. 292). Parnas (1972, p. 
1058) writes that when designing a program "one begins with a l i s t of . . . design 
decisions which are l i k e l y to change". Myers (1975) suggests examining the 
impact of future maintenance i n order to determine the "best" structure for 
software. This impact i s determined by the number of r e l a t e d changes to the 
system made necessary by coupling between i t s modules. However, modules must 
be defined before such an analysis can be performed. Myers' search for the best 
decomposition i s conducted by t r i a l and error. The r e l a t i o n s h i p between 
decomposition and software maintenance i s examined i n the l i g h t of a general 
theory of decomposition i n Chapter 4. 

Several suggested properties of good computer program decompositions w i l l 
be d i scussed i n t h i s section. Techniques f o r producing decompositions which 
possess these properties w i l l be described i n the next section. 

1.2.2.1.1. Myers 

Myers (1975) appears to have been the f i r s t to propose a framework for 
analyzing coupling and cohesion within an e x i s t i n g program. He i d e n t i f i e s f i v e 
forms of coupling and seven forms of cohesion. They are defined i n order of 
decreasing d e s i r a b i l i t y and have been included as Appendix B. The ranking i s 
Myers' and was derived from experience. 

"Measurement" of coupling and cohesion i s l a r g e l y a r b i t r a r y . Myers (1975) 
develops a quantitative measure of the independence of two modules based on the 
type of coupling between them. This measure of decomposition q u a l i t y depends 
on a subjective assignment of weights to the various forms of coupling and 
cohesion. He uses a matrix of p r o b a b i l i t i e s to express the o v e r a l l modular 
independence of a decomposition. These p r o b a b i l i t i e s represent the l i k e l i h o o d 
of a change to one module f o r c i n g a change to another module. The matrix could 

The term "maintenance" s h a l l r e f e r to both the c o r r e c t i o n of 
implementation errors and the modification or enhancement of software. 
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be used to generate scores permitting quantitative comparison of two 
decompositions. A designer could use these scores to guide system decomposition 
i n a post-hoc manner. Ideally, a design methodology should force the f i r s t 
design of a system to be correct. Of course, t h i s would require a d e f i n i t i o n 
of decomposition correctness. 

The l e v e l s of coupling and cohesion within a program are r e l a t e d . Page-
Jones (1980) claims that lower coupling tends to r e s u l t i n higher cohesion 
within modules. 

1.2.2.1.2. Parnas 

Parnas (1972, p. 1056) introduces the concept of information hiding. 
Ensuring that h i g h e r - l e v e l modules do not have unnecessary knowledge about the 
i n t e r n a l workings of lower-level modules i s an important step i n the reduction 
of coupling. He also compares a l t e r n a t i v e decompositions by examining the 
impact of future modifications. "Good" decomposition r e s u l t s from minimizing 
t h i s impact. 

1.2.2.1.3. Yourdon and Constantine 

Yourdon and Constantine (1979, chapter 9) suggest a number of 
decomposition h e u r i s t i c s . Rules a f f e c t i n g module s i z e , span of c o n t r o l , fan-
i n , scope of e f f e c t , and scope of control are suggested as a basis f o r judging 
the q u a l i t y of a decomposition. A l l of these are described below. 

Module Size 

Module s i z e has been discussed extensively i n the l i t e r a t u r e . One early 
suggestion f o r module siz e comes from Baker (1972). He suggested that modules 
should be no longer than 50 statements, so that they could be shown on a single 
page of a p r i n t e r l i s t i n g . Weinberg (1970) showed that programmer comprehension 
of a module i s reduced i f the siz e exceeds about 30 l i n e s . Yourdon (1975, 
pp. 94-95) mentions a number of other module s i z e recommendations proposed by 

other researchers and p r a c t i t i o n e r s . Many of these recommendations are 
incompatible. 
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a. Modules should f i t into 4096 bytes, or 512 words, or 1024 words, or 2048 
words of memory, etc. 

b. Modules are anything that can be written and debugged by one programmer 
i n one month. 

c. Modules should be no more than 100-200 statements i n length. (This 
suggestion i s .attributed to Larry L. Constantine.) 

d. Modules should consist of no more than 20 h i g h - l e v e l language statements. 

e. Modules should be no longer than 500 COBOL statements. 

When discussing the construction of h i e r a r c h i c a l program structures, 
Steward (1987, p. 98) suggests that no limb have more than 5 to 7 branches o f f 
of i t 6 . The lowest l e v e l of Steward's structures correspond to program code. 
Therefore, he i s suggesting a maximum module length of 5 to 7 statements. He 
c i t e s M i l l e r ' s P r i n c i p l e ( M i l l e r , 1956) which asserts an upper l i m i t to the 
number of concepts a human being may consider simultaneously. However, i t is 

not immediately obvious why a programmer should be expected to consider a l l the 
statements of a module simultaneously. 

Steward also claims that high cohesion i s indic a t e d "by whether what is 

done within the module can be given a short d e s c r i p t i o n " (p. 98). Myers (1978) 
defines a module which has functional cohesion (his most desirable form of 
cohesion) as a module which performs a single s p e c i f i c function. S i m i l a r l y , a 
common rul e f o r module siz e suggests that a module should c o n s i s t of a single 
f u n c t i o n a l idea. Unfortunately, the phrase "single f u n c t i o n a l idea" is 

d i f f i c u l t to define. While t h i s rule i s superior to any of the s i z e maximums 
mentioned e a r l i e r , i t s t i l l contains an undesirable degree of a r b i t r a r i n e s s . 
Any module s i z e rule based on function i s bound to be language dependent. 
Alexander (1967, p. 205) suggests a module to deal with the ac o u s t i c a l 
requirements of a system to i l l u s t r a t e t h i s problem. I t could be argued that 
the term acoustics " i s not a r b i t r a r y but corresponds to a c l e a r l y objective 
c o l l e c t i o n of requirements -- namely those which deal with auditory phenomena. 

Steward exempts CASE structures from t h i s r u l e . 
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But t h i s only serves to emphasize i t s a r b i t r a r i n e s s . A f t e r a l l , what has the 
fac t that we happen to have ears got to do with the problem's causal 
structure?". 

I f anything i s c l e a r from the above suggestions i t must be that there i s 
no consensus as to e i t h e r the optimal or maximal siz e of a module. 

Span of Control 

Span of co n t r o l r e f e r s to the number of immediate subordinates 7 to a 
module. Yourdon suggests that spans of control of two or le s s or more than ten 
should be c a r e f u l l y reconsidered. He claims that abnormally small or large 
spans of c o n t r o l are usually indicators of poor design. Small spans of control 
correspond to e i t h e r i n s u f f i c i e n t decomposition at the subordinate l e v e l or too 
much decomposition at the superordinate l e v e l . Large spans of control are 
u s u a l l y the r e s u l t of a f a i l u r e to define intermediate l e v e l s i n the 
decomposition. No theory or empirical evidence i s presented to support t h i s 
h e u r i s t i c . 

Fan-in 

Fan-in r e f e r s to the use of modules at more than one point of the 
program's structure. The use of these common modules reduces the amount of 
programming e f f o r t required. There i s c l e a r l y a trade-off between module 
s i m p l i c i t y and generality. For example, consider a point of sale (POS) 
inventory system. A si n g l e module could be written to handle a l l forms of input 
to the system. This module could be c a l l e d from any point i n the o v e r a l l 
structure. However, some designers might argue that such a module would be 
unnecessarily complicated. Input from a POS terminal and keyboard input from, 
say, the r e c e i v i n g dock could be s u f f i c i e n t l y d i f f e r e n t to warrant separate 
modules. 

7 A module X i s subordinate to module Y i f Y controls the a c t i v a t i o n of X. 
A c t i v a t i o n may be accomplished by a subroutine CALL statement, for example. 
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Scope of E f f e c t and Scope of Control 

Scope of e f f e c t r e f e r s to the l o c a t i o n of d e c i s i o n events i n the program's 
structure. The scope of e f f e c t of a module i s the c o l l e c t i o n of a l l modules 
containing any processing that i s c o n d i t i o n a l upon the processing i n that 
module. The scope of control of a module i s the module i t s e l f and a l l of i t s 
subordinates. Yourdon and Constantine (1979, p. 178) state "for any given 
decision, the scope of e f f e c t should be a subset of the scope of c o n t r o l of the 
module i n which the decision i s located". In other words, any modules that are 
a f f e c t e d by a d e c i s i o n should be subordinate to the module which makes that 
decision. Again, no theory or empirical evidence i s presented to support t h i s 
h e u r i s t i c . 

1.2.2.1.4. Cluster Analysis 

Hutchens and B a s i l i (1985) have proposed the use of c l u s t e r analysis to 
analyze the structure of an e x i s t i n g computer program. A l l c l u s t e r analysis 
algorithms require the d e f i n i t i o n of a s i m i l a r i t y or d i f f e r e n c e measure. This 
measure represents the "distance" between modules and i s the basis for decisions 
to group modules together. Hutchens and B a s i l i suggest several such measures 
based on data bindings 8. There i s no t h e o r e t i c a l reason for the s e l e c t i o n of 
one measure over another. Clustering algorithms are also s e n s i t i v e to the 
"black hole" e f f e c t . As more and more modules are combined into a single 
c l u s t e r , the number of linkages to other not yet c l u s t e r e d modules increases. 
This means that modules and small c l u s t e r s are more l i k e l y to be grouped with 
growing super-clusters than with each other. The f i n e structure of the system 
may be obscured. Weighting schemes can be used to reduce t h i s e f f e c t , but a 
s u i t a b l e assignment of weights must usually be found by t r i a l and error. I t i s 
also i n t e r e s t i n g to note that, i n order to perform c l u s t e r analysis, i t i s 
necessary to remove common modules as they cause disparate subroutines to 
c l u s t e r at low l e v e l s i n the hierarchy. 

A data binding e x i s t s when two modules reference the same v a r i a b l e . 
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1.2.2.2. Decomposition Techniques 

Several computer program decomposition techniques have been proposed. The 
Structured Design (Myers, 1975, 1979; Yourdon and Constantine, 1979) l i t e r a t u r e 
describes several decomposition h e u r i s t i c s . Myers defines source/transform/sink 
(STS) decomposition, transactional decomposition, and f u n c t i o n a l decomposition. 
Yourdon and Constantine define transform analysis and transaction analysis. 
Hamilton and Z e l d i n (1976) have developed a methodology based on an analysis of 
the inputs and outputs of a module. Their decomposition rules are embodied i n 
constructs c a l l e d JOIN, INCLUDE and OR. These constructs are r e f e r r e d to as 
"primitive c o n t r o l structures". In addition, M i l i , Desharnais, and Gagne (1986) 
have formally defined the process of program decomposition as performed by 
programmers. 

1.2.2.2.1. Structured Design Decomposition Techniques 

1.2.2.2.1.1. STS Decomposition and Transform Analysis 

STS decomposition i s Myers p r i n c i p a l decomposition technique. Transform 
analysis, as defined by Yourdon and Constantine (1979) i s e s s e n t i a l l y 
i d e n t i c a l 9 . The steps f or applying STS decomposition to a h i g h - l e v e l module are 
as follows: 

a. Outline the structure of a module. 

b. In t h i s module structure, i d e n t i f y the major stream of input data and the 
major stream of output data. 

c. I d e n t i f y the point i n the module structure where the input data stream 
l a s t e x i s t s as a l o g i c a l e n t i t y and the point where the output data stream 
f i r s t e x i s t s as a l o g i c a l e n t i t y . 

9 This decomposition technique was f i r s t o u t l i n e d i n Stevens, Myers and 
Constantine (1974). 
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d. Using these points as the d i v i d i n g points i n the module structure, 
describe each d i v i s i o n of the problem as a sing l e function. These become 
the functions of the immediate subordinate modules. 
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For example, consider a module 
which accepts a request to 
search an abstracts database 
by keyword and then displays 
selected abstracts. The 
structure of the module might 
be as i l l u s t r a t e d i n 
Figure 1. The major (and 
only) input stream consists of 
user requests "a". The major 
(and only) output stream 
consists of the r e t r i e v a l 
r e s u l t s " f " . Point "c" i s the 
l a s t point where the input 
stream e x i s t s as a d i s t i n c t 
e n t i t y . At point "d" there 
e x i s t s a l i s t of abstract 

Figure 1: A program structure f o r i l l u s t r a t i n g t i t l e s r e t r i e v e d from the 
Myers' STS decomposition. 

keyword database. There i s a 
one-to-one correspondence between the f i n a l r e t r i e v a l r e s u l t s and t h i s l i s t of 
t i t l e s . Therefore, Myers claims that point "d" i s where the output stream f i r s t 
e x i s t s as a d i s t i n c t e n t i t y . The module would then be broken into three 
submodules. The "source" submodule would read a request and form the search 
query. The "transform" submodule would search the keyword database. The "sink" 
submodule would obtain and display the selected abstracts. Yourdon and 
Constantine's transform analysis appears to be i d e n t i c a l to STS decomposition. 
They r e f e r to l o c a t i n g point "c" as i d e n t i f y i n g the "afferent data elements" and 
lo c a t i n g point "d" as i d e n t i f y i n g the "efferent data elements". Afferent data 
elements are defined as follows: 
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Afferent data elements are those h i g h - l e v e l elements of 
data that are furthest removed from p h y s i c a l input, yet 
s t i l l c onstitute inputs to the system. 

Efferent data elements are s i m i l a r l y defined, but for outputs. C l e a r l y , the 
points at which the o r i g i n a l module i s to be s p l i t are subject to some degree 
of ambiguity. For example, an argument could be made f o r s p l i t t i n g the above 
example at points "c" and "e" as i t i s only at point "e" that the f i n a l r e s u l t 
i s c l e a r l y seen. Yourdon and Constantine (1979, p. 194) are aware of t h i s 
problem, but claim that experienced designers w i l l not d i f f e r by more than one 
or two transforms ( i . e . functions) when i d e n t i f y i n g a f f e r e n t and e f f e r e n t data 
elements. 

I t should be noted that a l l decomposition techniques discussed i n t h i s 
section, including STS decomposition, are intended to be applied r e c u r s i v e l y to 
the newly created submodules. This recursion i s to be c a r r i e d out u n t i l the 
lowest-level modules may be e a s i l y converted into code. 

1.2.2.2.1.2. Transactional Decomposition and Transaction Analysis 

Myers' tra n s a c t i o n a l decomposition i s applied when a module takes the form 
of a s e l e c t i o n process. I f a module receives d i f f e r e n t types of transactions, 
and the processing which follows i s dependent on the type of transaction 
received, the module i s a candidate for t r a n s a c t i o n a l decomposition. For 
example, a module whose purpose i s to process a merchandise transaction might 
be decomposed as shown i n Figure 2. 

Transactional decomposition i s s i m i l a r to Yourdon and Constantine's 
t r a n s a c t i o n a l a n alysis. However, they introduce the concept of a "transaction 
center". A transaction center must be able to 

a. obtain transactions i n raw form, 

b. analyze each transaction to determine i t s type, 

c. dispatch each type of transaction, and 

d. complete the processing of each transaction. 
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A p p l y s a l e s t r a n s a c t i o n 
to f i l e 

A p p l y r e t u r n t r a n s a c t i o n 
to f i l e 

A p p l y merchandise 
t r a n s a c t i o n to f i l e A p p l y new i t e m t r a n s a c t i o n 

to f i l e 

A p p l y d i s c o n t i n u a n c e 
t r a n s a c t i o n to f i l e 

Figure 2: An example of Myers' tran s a c t i o n a l decomposition. 

Myers would apply STS decomposition p r i o r to t r a n s a c t i o n a l decomposition 
i n order to i d e n t i f y the modules concerned with getting the transaction and 
determining i t s type. 

Yourdon and Constantine also provide an operational d e f i n i t i o n of a 
transaction. 

A transaction i s any element of data, c o n t r o l , s i g n a l , 
event, or change of state that causes, t r i g g e r s , or 
indicates some action or sequence of actions. 

This d e f i n i t i o n makes i t apparent that t r a n s a c t i o n a l decomposition may be 
applied i n cases where there i s no " t r a d i t i o n a l " t ransaction evident as there 
was i n the above example. 

1.2.2.2.1.3. Functional Decomposition 

Myers describes functional decomposition as "an ad hoc process of p u l l i n g 
s i n g l e subfunctions from a module to achieve c e r t a i n purposes". He suggests two 
poss i b l e purposes: 
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a. I s o l a t i n g common functions, and 

b. I s o l a t i n g functions within informational cohesion modules, 

B e f o r e 

calculate average 
and 

write results to screen 

A f t e r : 

calculate standard deviation 
and 

write results to screen 

calculate average calculate standard deviation 

write to screen 
Figure 3: Myer's fu n c t i o n a l decomposition: I s o l a t i n g common functions. 

The f i r s t purpose r e f l e c t s the d e s i r a b i l i t y of removing a subfunction which i s 
contained i n a number of larger modules, and making i t into a separate module 
referenced by each. For example, the modules shown i n the "before" part 
of Figure 3 might be restructured as shown. 

The second purpose refe r s to s p l i t t i n g a function which references a number 
of data structures into modules which reference only one data structure each. 
An informational cohesion module i s one that hides "some concept, data structure, 
or resource" (Myers, 1978, p. 37). Modules with informational cohesion are 
considered as desirable as ones with f u n c t i o n a l cohesion. Myers' provides the 
following example of a s i t u a t i o n where t h i s s p l i t t i n g i s desir a b l e . Suppose 
there e x i s t s a module whose function i s " b u i l d table of underpaid employees". 
The module sequentially examines the personnel f i l e , and i f an employee meets 
the underpaid c r i t e r i a , i t places the employee's name i n the table. The 
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structure of the module might be as shown i n the "before" part of Figure 4. 

Myers would not have applied STS decomposition to t h i s module "because i t s l o g i c 
i s e a s i l y v i s u a l i z e d " . Easy v i s u a l i z a t i o n i s Myers' decomposition stopping 
c r i t e r i a . The f i r s t and the l a s t subfunctions r e f e r to separate data structures: 
the personnel f i l e and the output table. Functional decomposition of the above 
would lead to structure shown i n the " a f t e r " part of Figure 4 . The two newly 
created modules could be combined with other modules referencing the data 
structures, thus ei t h e r adding to or creating informational cohesion modules. 

Testing to determine whether a given 
employee i s underpaid would be 
performed i n the "Bui l d table of 
underpaid employees" module. 
Yourdon and Constantine do not re f e r 

to any decomposition method which i s 
analogous to Myers' functional 
decomposition. 

1.2.2.2.2. HOS Decomposition • 

The HOS design methodology developed 
by Hamilton and Z e l d i n (1976) i s 
capable of generating computer 
code through the use of "mathematically 
provable constructs". S p e c i f i c a l l y , 
three p r i m i t i v e c o n t r o l structures are 
i d e n t i f i e d : JOIN, INCLUDE, and OR. 
The HOS methodology does not provide 
s p e c i f i c techniques f o r a c t u a l l y 
performing system decomposition. The 

methodology provides formal tools f o r ensuring that a given decomposition i s 
consistent with c e r t a i n axioms governing the r e l a t i o n s h i p s between modules. 
Therefore, the HOS methodology can provide some in s i g h t s into the nature of 
"good" decomposition, but cannot add to the decomposition h e u r i s t i c s found i n 
the Structured Design l i t e r a t u r e . 

JOIN i s used to support the decomposition of a function into two 
sequ e n t i a l l y executed subfunctions. The outputs of one module must be inputs 

c 
16 

before: 

get next personnel record 

extract salary fields 

compute this employee's 
lowest valid salary 

if underpaid, add to table 

A f t e r ' I 
build table of 

underpaid employees 

obtain salary data add entry to 
for next employee underpaid table 

Figure 4 : M y e r s ' f u n c t i o n a l 
decomposition: Creating 
i n f o r m a t i o n a l s t r e n g t h 
modules. 



to the other. For example, i f the function of the o r i g i n a l module was "make a 
s t o o l " , i t might be decomposed to "make parts" and "assemble parts". HOS uses 
a f u n c t i o n a l notation combined with a binary tree to represent decompositions 
as shown i n Figure 5a. Inputs to the system are TOPWOOD and LEGWOOD and the 
system's output i s STOOL. The output from the f i r s t , or r i g h t most, module i s 
TOP and LEGS. TOP and LEGS form, the inputs to the second module. JOIN i s 
analogous to STS decomposition when no transform module i s i d e n t i f i e d . The 
o r i g i n a l module w i l l be broken into only two submodules. 

I f some set of desired outputs can be obtained i n more than one way, OR 
i s used to separate the methods. For example, i f LEGS can be constructed from 
e i t h e r HARD wood by turning or SOFT wood by carving, a "make legs" function could 
be decomposed as shown i n Figure 5b. OR i s s i m i l a r to tran s a c t i o n a l 
decomposition. Its use implies that one and only one of the i d e n t i f i e d 
subsystems may be activated by a singl e transaction. 

INCLUDE i s used to separate independent subfunctions. For example i f the 
functions "make legs" and "make top" were independent of one another, the 
function "make parts" could be decomposed as shown i n Figure 5c. This sort of 
decomposition i s neither STS nor tra n s a c t i o n a l . Nor does i t f a l l under either 
of the circumstances Myers suggests for fu n c t i o n a l decomposition. Perhaps, Myers 
and Yourdon and Constantine considered t h i s form of decomposition too obvious 
to mention. That i s , i f a module consists of subfunctions which do not i n t e r a c t 
with each other i n any way, separate them. 

The HOS methodology has been l u c i d l y described by Martin (1985) . He claims 
that 

"The technique has been automated so that bug-free systems can be 
designed by persons with no knowledge of ei t h e r mathematics or 
programming. The software automatically generates bug-free program 
code. whereas most mathematical techniques have been applied only 
to small programs. Hamilton and Zeldin's technique has been used 
s u c c e s s f u l l y with highly complex systems. The technique i s used not 
only f o r program design but, perhaps more important, f o r h i g h - l e v e l 
s p e c i f i c a t i o n of systems. The design i s extended a l l the way from 
the h i g h e s t - l e v e l statement of system functions down to the 
automatic generation of code." (pp. 39-40) 
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a) HOS JOIN 
Stool = r i a ) c e - A - S t o o l ( T o p ¥ o o d , L e g ¥ o o d ) 

Stool = Assemr)le-Parts(Top,Legs) Top,Legs = Malce -Part s (Top¥ood ,LegVood) 

b ) HOS OR 
Legs = Make-Legs (Leg¥ood) 

Lgg¥oofl i s HARD LegVood i s SOFT 

Legs = Turn(LegVood) Legs = C a r v e ( L e g ¥ o o d ) 

c) HOS INCLUDE: 
Top,Legs = MaXe-Parts (Top¥ood,LegWood) 

Top = Ma);e-Top(Top¥ood) Legs = Ma)ce-Legs(Leg¥ood) 



Although Martin i s c l e a r l y concerned with " s e l l i n g " HOS, there i s no doubt that 
i t represents a major departure from the r e l a t i v e l y informal methodologies of 
Structured Design. 

1.2.2.2.3. Formal Models of Computer Programming 

M i l i , Desharnais, and Gagne (1986) describe three formal models of the 
process of computer programming. They present three formalisms f o r program 
s p e c i f i c a t i o n s : 

a. As a p a i r of assertions (p,q), where p, the input assertion, defines the 
set of admissible input states and q, the output assertion, defines the 
set of correct output states. 

b. As a function mapping admissible input states into c o r r e c t f i n a l states. 

c. As a r e l a t i o n containing a l l the p a i r s (input/output state) considered to 
be correct by the s p e c i f i e r . 

The t h i r d formalism, and i t s associated r e l a t i o n a l decomposition, i s quite 
s i m i l a r to the one developed i n the remainder of t h i s document. M i l i et 
a l . define a r e l a t i o n R as a subset of S X S, where S i s the set of a l l possible 
states of a program 1 0. That i s , R i s a subset of a l l possible p a i r s (s,s' ) where 
the input state s and the output state s' are elements of S. A program 
s p e c i f i c a t i o n can be described by a r e l a t i o n where each tuple consists of a 
input/output state p a i r . Three rules for program decomposition are defined. 
These rules ensure that an o r i g i n a l r e l a t i o n can be reconstructed from a set of 
simpler 1 1 r e l a t i o n s . I t i s the programmer's r e s p o n s i b i l i t y to f i n d the simpler 
r e l a t i o n s . No procedure for obtaining these simpler r e l a t i o n s i s described. 

Program states r e f l e c t the values of the program's v a r i a b l e s . For 
example, i f a program contains three variables "a", "b" and "c", a state s of 
the program could be represented by a t r i p l e t of values <a(s),b(s),c(s)> where 
a(s) i s the value of v a r i a b l e "a" when the system i s i n state s, etcetera. I f 
"a" i s an integer v a r i a b l e and "b" and "c" are r e a l , p ossible states of the 
program might include <3 ,2 .1 ,3 .1> , <1 ,0 .1 ,0 .2> , and <0 ,0 .1 ,0 .2> . 

1 1 That i s , l e s s complex code i s required for implementation. 
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Exp lana t ions o f the decomposi t ion r u l e s are r e l a t i v e l y i n v o l v e d and have been 

i n c l u d e d as Appendix C. The r u l e s are d e s c r i b e d b r i e f l y , and i n f o r m a l l y , below. 

Sequence Statement Rule 

A r e l a t i o n R may be decomposed i n t o two r e l a t i o n s R x and R 2 where: 

1) The inpu t s t a t e s o f R x are the same as the inpu t s t a t e s o f R. 

2) The output s t a t e s o f R are the same as the output s t a t e s o f R 2 . 

3) The output s t a t e s o f Rj are the same as the inpu t s t a t e s o f R 2 . 

A l t e r n a t i o n Statement Rule 

A r e l a t i o n R may be s p l i t i n t o two sma l l e r r e l a t i o n s R x and R 2 where R x c o n s i s t s 

o f those s t a t e s o f R which s a t i s f y some c o n d i t i o n , and R 2 c o n s i s t s o f those 

s t a t e s o f R which do no t . 

The I t e r a t i o n Statement Rule 

Decomposi t ion by i t e r a t i o n i n v o l v e s f i n d i n g a r e l a t i o n which , when a p p l i e d to 

i t s e l f r e c u r s i v e l y u s i n g the sequence statement r u l e , w i l l y i e l d the o r i g i n a l 

r e l a t i o n . 

I t i s d i f f i c u l t to see how the i t e r a t i o n r u l e q u a l i f i e s as a form of 

decompos i t ion . The r u l e i s p r i m a r i l y in tended to a v o i d cod ing a l a r g e number 

o f i n p u t / o u t p u t p a i r s , by a p p l y i n g a s m a l l e r amount o f code i t e r a t i v e l y . 

I t e r a t i o n can be viewed as a programming t o o l used to save source code space and 

programmer t y p i n g t ime. Decomposi t ion u s i n g the i t e r a t i o n r u l e need not produce 

programs which are more e a s i l y v i s u a l i z e d than a program implementing the 

o r i g i n a l r e l a t i o n R. I n f a c t , the o p e r a t i o n o f i t e r a t i v e programs can be much 

harder to grasp than e q u i v a l e n t , but l onge r , " l i n e a r " programs. 

1.3. Conelus ions 

Decomposi t ion i s r ecogn ized i n the genera l systems theory l i t e r a t u r e as 

an impor tant t o o l f o r both systems a n a l y s i s and d e s i g n . Systems e x h i b i t i n g 

"good" decomposi t ions are seen to be more s t a b l e than m o n o l i t h i c systems. 
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However, Simon and Ando's short-run and long-run dynamic c r i t e r i a appear to be 
the only c l e a r contributions to an understanding of what constitutes "good" 
decomposition. On the other hand, computer program decomposition has long been 
a major problem i n software engineering, and as a r e s u l t some p r a c t i c a l solutions 
have been devised. 

There are three basic types of computer program decomposition. STS 
decomposition, transform analysis, HOS JOIN, and the sequence statement rule 
r e f e r to the separation of sequentially a c t i v a t e d functions into separate 
modules. These techniques could be re f e r r e d to as "sequential decomposition". 
Transactional decomposition, transaction analysis, HOS OR and the a l t e r n a t i o n 
statement rule are used to decompose a set of functions that are activated 
c o n d i t i o n a l l y . These techniques could be r e f e r r e d to as "conditional 
decomposition". The HOS INCLUDE can be used to separate functions that are 
independent of each other. This technique could be r e f e r r e d to as " p a r a l l e l 
decomposition" . 

The Structured Design methodologies of Myers and Yourdon and Constantine, 
are derived from experience and require human i n t e l l i g e n c e f o r t h e i r 
a p p l i c a t i o n . They place some structure on the process of f i n d i n g the lower-
l e v e l modules, but t h e i r precise d e f i n i t i o n i s l e f t to the program designer. 
The dictum s t a t i n g that a module should contain at most one f u n c t i o n a l idea i s 
both hi g h l y subjective and language dependent. Myers' framework of coupling and 
cohesion along with h i s measure of a decomposition's q u a l i t y i s only u s e f u l 
a f t e r the system has been coded. 

The HOS methodology does not consider how a module i s to be decomposed. 
Rather, i t i s concerned with ensuring that the decomposition i s good with respect 
to the HOS axioms, namely, i t can be represented using p r i m i t i v e control 
structures. 

The decomposition rules of M i l i et a l . can be used to ensure that given 
modules can be combined to form the o r i g i n a l program. They do not provide an 
algorithm f o r f i n d i n g the modules. 

The next chapter describes a system modelling formalism which w i l l support 
both automated decomposition and completeness and consistency v e r i f i c a t i o n . 
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Chapter 2: System Modelling 

2.1. Introduction 

Bubenko (1986, p. 289) notes that the p r a c t i c e of information systems 
analysis and design i s characterized by hundreds of d i f f e r e n t methodologies. 
Yet there i s general agreement that most large information systems are d i f f i c u l t 
to maintain and change, and that assessing t h e i r correctness and completeness 
i s u s u a l l y impossible (p. 292). Several undesirable c h a r a c t e r i s t i c s possessed 
by many methodologies are i d e n t i f i e d (p. 298). These include the following: 

a. Fuzzy Concepts 
Many of the concepts advocated i n analysis and design methodologies 

are not well defined. I t i s d i f f i c u l t to know which ones to use, and how 
to use them i n varying, n o n - t r i v i a l design s i t u a t i o n s . 

b. No V e r i f i c a t i o n 
There i s u s u a l l y no way to v e r i f y the correctness, completeness, and 

consistency of conceptual s p e c i f i c a t i o n s . 

Examples of poorly-defined concepts include: system, decomposition, 
subsystem, s t a t i c s , and dynamics. I t i s impossible to develop a theory of system 
decomposition without exact d e f i n i t i o n s of these concepts. The main purpose of 
t h i s chapter i s to present a formalization of the modelling constructs deemed 
necessary for the automation of system decomposition. These constructs have been 
implemented i n the form of computer-based s p e c i f i c a t i o n s analysis t o o l s . The 
tools are described and t h e i r use w i l l be demonstrated using two rather simple 
examples i n l a t e r sections of t h i s chapter. A more complicated " r e a l " system 
w i l l be examined i n Chapter 6. 

There are no generally accepted d e f i n i t i o n s f or correctness, completeness, 
and consistency with respect to system models. Roman (1985) claims that "a 
requirements s p e c i f i c a t i o n i s complete i f some relevant aspect has not been l e f t 
out and i s consistent i f the parts of the s p e c i f i c a t i o n do not contradict each 
other. Both completeness and consistency require the existence of c r i t e r i a 
against which one may evaluate the model. Completeness and consistency 
checks...presuppose the a n a l y z a b i l i t y of the requirements by mechanical or other 
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means. The higher the degree of formality the more l i k e l y i t i s that 
requirements may be analyzed by mechanical means." (p. 16) . I t i s not s u r p r i s i n g 
that few methodologies provide for any form of v e r i f i c a t i o n since few produce 
formal requirement s p e c i f i c a t i o n s . D e f i n i t i o n s of completeness, consistency and 
correctness w i l l be suggested i n t h i s chapter. These d e f i n i t i o n s are 
s u f f i c i e n t l y formal to allow computerized analysis. Tests f o r completeness and 
consistency have been included i n the s p e c i f i c a t i o n s analysis t o o l s . 

Bubenko (1986, p. 298) also notes that there appears to be an underlying 
assumption, among the various analysis and design methodologies, that " i n the 
e a r l y stages, conceptual s p e c i f i c a t i o n and analysis of the behaviour (dynamics) 
of the information system i s less important (for the purpose of understanding) 
than the d e s c r i p t i o n of i t s 'structure'". I t i s not c l e a r how any analysis of 
structure can be performed without some knowledge of behaviour. Part of a 
system's structure consists of a c o l l e c t i o n of o b j e c t s 1 2 . In the object-oriented 
programming l i t e r a t u r e , Nierstrasz (1987) notes that "perhaps the most d i f f i c u l t 
task i s deciding how to n a t u r a l l y decompose a problem into objects" (p. 11-12). 
In order to separate two objects i n a system, the analyst must be aware of a 
circumstance i n which the objects behave independently. For example, consider 
an employee's f i r s t and l a s t names i n a personnel system. I f a d e c i s i o n i s made 
to represent them as separate objects, the analyst must know that they could be 
separated. The analyst must know of some process which does not require both 
parts of an employee's name. This knowledge could come from h i s or her 
understanding of the system's operation or previous experience. In Chapter 4, 
i t w i l l be argued that previous experience i s not a s u f f i c i e n t basis for good 
design decisions. The formalism presented here e x p l i c i t l y models system 
dynamics, and decomposition decisions (as described i n the next chapter) are 
based s o l e l y on the c h a r a c t e r i s t i c s of the system as described by the analyst. 

"Objects" as used i n t h i s research are r e l a t e d to the objects of object-
oriented programming, but they are not i d e n t i c a l . The r e l a t i o n s h i p s h a l l be 
discussed i n Chapters 3 and 6. 
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2.2. The Formalism 

2.2.1. General 

The process of systems analysis and design can be viewed as a three-stage 
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Figure 6: The system analysis and design process (adapter from Wand and Weber, 
1988) . 

transformation as shown i n Figure 6. To i l l u s t r a t e these stages, consider an 
analogy with the design and construction of an o f f i c e b u i l d i n g . An a r c h i t e c t 
creates a set of drawings and s p e c i f i c a t i o n s which r e f l e c t the desires of h i s 
or her c l i e n t . An engineer translates these into a d e t a i l e d plan f o r the 
construction of the b u i l d i n g . F i n a l l y , a contractor constructs the o f f i c e 
b u i l d i n g i t s e l f . In t h i s example, the " r e a l system" consists of the c l i e n t ' s 
desires. The a c t i v i t i e s of the a r c h i t e c t are c a l l e d "analysis". The a r c h i t e c t ' s 
drawings and s p e c i f i c a t i o n s are a "model of the r e a l system". The a c t i v i t i e s 
of the engineer are c a l l e d "design". The set of d e t a i l e d construction drawings 
forms a model of the o f f i c e b u i l d i n g and i s analogous to a "model of the 
information system". The a c t i v i t i e s of the contractor are c a l l e d 
"implementation" and the o f f i c e b u i l d i n g i t s e l f i s analogous to an "implemented 
information system". 

This research i s p r i m a r i l y concerned with the transformations from the 
" r e a l system" to the "model of the r e a l system", and from the "model of the r e a l 
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system" to the "model of the information system", that i s , with both the 
"analysis" and "design" transformations. System decomposition i s the process 
by which an analyst i d e n t i f i e s the parts of the r e a l system which should be 
r e f l e c t e d i n h i s model. These parts, and t h e i r r e l a t i o n s h i p s with each other, 
have a d i r e c t influence on the structure of the information system. 

2.2.2. Systems 

In order to support automated system decomposition a modelling formalism 
must be able to represent the following: 

a. The parts of the system 1 3, 

b. The allowed states of the system, and 

c. The manner i n which these states may change. 

The f i r s t requirement ref e r s to system s t a t i c s ; the l a s t two r e f e r to system 
dynamics. Most e x i s t i n g analysis and design methodologies meet these 
requirements at l e a s t i m p l i c i t l y . However, the basic constructs of most 
methodologies (with the notable exception of HOS) are not c l e a r . An important 
premise of t h i s research i s that understanding of system properties, i n 
p a r t i c u l a r decomposability, w i l l be greatly f a c i l i t a t e d by c a r e f u l l y defining 
what we are studying. That i s : What exactly i s a system and what governs i t s 
behaviour? 

2.2.3. An I n t u i t i v e Beginning 

The system modelling formalism used i n t h i s research i s l a r g e l y based on 
the works of Bunge (1978, 1979) and Wand and Weber (1988, 1989). The system 

The modelling formalism selected f o r use i n t h i s research does not deal 
d i r e c t l y with the "parts" or things belonging to a system. As w i l l be shown, 
only knowledge of the properties which are used to describe the things i s 
required to s p e c i f y a system. However, at t h i s stage i t may be more convenient 
to v i s u a l i z e a system based on a c o l l e c t i o n of things, rather than a set of 
properties. 
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modelling approach based on the formalism w i l l be c a l l e d SELMA (for States, 
Events, and Laws Modelling Approach) 1 4. 

One of the goals of system decomposition i s the i d e n t i f i c a t i o n of the 
objects comprising a system. As s h a l l be i l l u s t r a t e d i n the next chapter, there 
i s no unique set of objects describing most i n t e r e s t i n g systems. In general, 
l a b e l l i n g of the objects from which a system i s constructed depends upon the 
analyst's point of view. Von Bertalanffy (1974) notes that i d e n t i f i c a t i o n of 
objects i n the r e a l world i s not a t r i v i a l task. "The s p a t i a l boundaries of even 
what appears to be an obvious object or 'thing' a c t u a l l y are i n d i s t i n c t . From 
a c r y s t a l c o n s i s t i n g of molecules, valences s t i c k out, as i t were, into the 
surrounding space; the s p a t i a l boundaries of a c e l l or an organism are equally 
vague because i t maintains i t s e l f i n a flow of molecules entering and leaving, 
and i t i s d i f f i c u l t to t e l l j u s t what belongs to the ' l i v i n g system' and what 
does not. Ultimately a l l boundaries are dynamic rather than s p a t i a l . " (p. 22). 
There i s a r e a l danger that an analyst may be tempted to decompose a system on 
the basis of s p a t i a l r e l a t i o n s h i p s ( i . e . r e l a t i v e p o s i t i o n s i n space). As w i l l 
be further discussed i n the next chapter, i f component objects discovered i n t h i s 
way are used to form the structure of the information system, i t i s l i k e l y that 
a l t e r n a t i v e , and possibly superior, structures w i l l not be considered. S p a t i a l 
r e l a t i o n s h i p s are p r i m a r i l y s t a t i c i n nature. The theory of decomposition 
presented i n the next chapter i s based on an analysis of both system s t a t i c s and 
dynamics. 

There i s no generally accepted d e f i n i t i o n f o r the term "system" and i t w i l l 
not be r i g o r o u s l y defined here. In the modelling formalism, and i n the theory 
of decomposition presented i n the next chapter, "the system" s h a l l mean whatever 
c o l l e c t i o n of objects and processes the analyst chooses to consider. A system 
i s described by p r o p e r t i e s 1 5 and r e l a t i o n s between these properties. Of course, 
a system may i t s e l f be considered to be an object, and as such suf f e r s from the 
same i d e n t i f i c a t i o n problems discussed above. I t i s assumed that the system i s 

Just as a point of i n t e r e s t , "selma" i s derived from the Arabic word for 
"secure" and i s the short form of "anselma" which i s Old Norse for " d i v i n e l y 
protected" (Browder, 1987, p. 185). Given that automation of consistency and 
completeness t e s t i n g i s one of the major advantages of SELMA over other modelling 
schemes, these are not e n t i r e l y inappropriate meanings. 

1 5 These properties w i l l also describe the things from which the system i s 
composed. However, the modelling formalism i s not concerned with i d e n t i f i c a t i o n 
of the component things of a system. 
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described by a well defined set of properties, and that a l l relevant 
i n t e r a c t i o n s between the system and the r e s t of the universe ( i . e . i t s 
environment) are known. 

I t should be noted that Bunge (1979, p. 6) defines a system as an object 
c o n s i s t i n g of at l e a s t two d i f f e r e n t connected 1 7 things. This d e f i n i t i o n was 
found to be too r e s t r i c t i v e . For the purposes of system modelling, i t i s 
s u f f i c i e n t to accept as a system anything which the analyst claims i s a system. 
As f a r as t h i s research i s concerned, i t does not matter whether each component 
of the system i s connected d i r e c t l y , or i n d i r e c t l y , to any other component of 
the system. For example, consider a system c o n s i s t i n g of two independent subsets 
of things, but where the things i n each subset are interconnected 1 8. As we s h a l l 
see, the decomposition algorithm (described i n the next chapter) w i l l f i n d that 
the system consists of two independent subsystems 1 9. The stance taken here i s 
that analysts know what systems are and that too d e t a i l e d a d e f i n i t i o n w i l l only 
confuse matters. 

Relevant to the purpose of the analysis e f f o r t . 

1 7 Bunge also defines the term "connected". Unfortunately, any discussion 
of connection or i n t e r a c t i o n degenerates into a discussion of c a u s a l i t y . Such 
a disc u s s i o n i s not appropriate here. 

1 8 Normally there should be some reason to consider independent subsets as 
parts of the same system. Perhaps the independent subsets describe are parts 
of another subsystem defined at a higher l e v e l of abstraction. That i s , using 
the terminology to be introduced i n the next chapter, the two subsets may each 
contribute input state variables to a subsystem which determines the value of 
some emergent state v a r i a b l e at a higher l e v e l . 

1 9 Note that i n r e a l i t y the subsystems may not be independent. I t could 
be argued that i n some sense a l l parts of the universe are interconnected. 
However, i t i s possible f o r two subsystems to be independent with respect to a 
p a r t i c u l a r model. The model i s a man-made abstraction of some aspects of the 
r e a l world. Not a l l int e r a c t i o n s w i l l be described. 
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2.2.4. D e f i n i t i o n s 

2.2.4.1. The Basics 

D e f i n i t i o n : System State 

At a given time, the values attained by the properties of a system a comprise 
a STATE s of a. 

D e f i n i t i o n : State Variable and Value 

State v a r i a b l e s are the properties required to describe some part of the r e a l 
world for some given purpose 2 0. A system a i s that part of the r e a l world 
described by the set of STATE VARIABLES {vx v n) selected by an a n a l y s t 2 1 . A 
state v a r i a b l e i s a function mapping the set of a l l system states into the set 
of VALUES. That i s , the value of state v a r i a b l e v A at time t i s v ^ t ) . For 
example, a state v a r i a b l e c a l l e d "employee-type", describing some part of a 
personnel system, might have values of " f u l l - t i m e " or "part-time". A system 
state s can be represented by a vector of state v a r i a b l e values. 

s - [ V i ( t ) , . . . , v n ( t ) ] 

D e f i n i t i o n : Possible State Space 

The POSSIBLE STATE SPACE S of a system a i s the Cartesian product of the sets 
of a l l possible values of each state v a r i a b l e of a. Bunge (1979, p. 20) c a l l s 
t h i s space the "conceivable state space of a". For example, consider a system 
which can be described by three state v a r i a b l e s , "a", "b" and "c". A state s 
of t h i s system could be described by the vector [ a ( t ) , b ( t ) , c ( t ) ] , where a ( t ) , 
b ( t ) , and c ( t ) are functions returning the values of state v a r i a b l e s a, b, and 

This implies an appropriate choice of l e v e l of abstraction. That i s , 
i t i s not necessary to include a l l properties of the part of the r e a l world being 
modelled. For example, when modelling a company's p a y r o l l system, the analyst 
may choose not to include a state v a r i a b l e describing the s i z e of an employee's 
desk. 

2 1 The concept of "system" i s discussed further i n Chapter 7. 
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c at time t r e s p e c t i v e l y . I f each state v a r i a b l e could have values of 0 and 1, 
the possible state space of the system would consist of [0,0,0], [0,0,1], 
[0,1,0], [0,1,1], [1,0,0], [1,0,1], [1,1,0], and [1,1,1]. 

D e f i n i t i o n : System Law 

The i n t e r a c t i o n s between the properties of a system a comprise the SYSTEM LAW 
L of a (Wand and Weber, 1989). Given any state s of a, L i s a f u n c t i o n 2 2 such 
that 

s' = L(s) 

where 
L(s) = s i f the system may remain i n d e f i n i t e l y i n s, and 
L(s) s i f the system state must change, and s' w i l l be the next state of 

the system where s' = L(s' ) ( i . e . the law does not change the next 
s t a t e ) . 

Every system has one and only one system law. This law completely defines the 
behaviour of the system. F u l l knowledge of a system law i s generally impossible 
or a l e a s t very d i f f i c u l t to o b t a i n 2 3 . The concept of a system law i s seen as 
u s e f u l t o o l f o r theory b u i l d i n g , but p r a c t i c a l problems w i l l require more 
operational d e f i n i t i o n s . These w i l l be developed l a t e r i n t h i s section. 

D e f i n i t i o n : Stable and Unstable System States 

Given a state s of a system with system law L: 

I f s = L(s) then s i s s a i d to be STABLE with respect to L. 
I f s ^ L(s) then s i s s a i d to be UNSTABLE with respect to L. 

This research deals only with deterministic system. That i s , each 
i n i t i a l system state transforms into one and only one f i n a l state. 

2 3 For example consider the p h y s i c a l universe. One could think of the 
universe as being governed by a si n g l e all-encompassing p h y s i c a l law, which 
mankind i s s t r u g g l i n g to understand through science. We c u r r e n t l y have only a 
p a r t i a l understanding of t h i s law. This p a r t i a l understanding i s expressed by 
our chemical, b i o l o g i c a l and mathematical p r i n c i p l e s and laws of physics. 
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For example, consider a s i m p l i f i e d accounting system described by state 
v a r i a b l e s representing "account balance" and "value of assets". Assume the 
system law simply states that the values of the two state v a r i a b l e s should be 
equal, and i f they are not, the value of "account balance" must be set equal to 
the value of "value of assets". That i s , i f the values of "account balance" and 
"value of assets" are not equal, the system law would a l t e r the system state by 
s e t t i n g the value of "account balance" equal to the value of "value of assets". 
This means the system was i n an unstable state with respect to the system law, 
because the law maps the o r i g i n a l state into a d i f f e r e n t state. On the other 
hand, when the values of "account balance" and "value of assets" are equal, the 
system i s i n a stable state because the law i s f u l f i l l e d . 

D e f i n i t i o n : Stable State Space 

The set of a l l stable states of a system a i s c a l l e d the STABLE STATE SPACE of 
a. 

D e f i n i t i o n : External Event 

The environment 2* acts on a system i n the form of EXTERNAL EVENTS. An external 
event e occurs when the environment acts to set the value of some state variables 
within the system. This change of value might move the system into another 
stable state, an unstable state, or the system might remain i n the same state. 
In other words, i f s i s a system state and S i s the possible state space of the 
system, e i s a f u n c t i o n 2 5 of the following form. 

e: {s such that s = L ( s ) , s e S } -->{s such that s e S) 

I f the state i s stable, no further state changes occur. However, i f the new 
state i s unstable, the system must respond so as to return to a stable state. 
These system state changes i n response to external events define the system's 

The environment of a system i s described by a l l properties of the r e a l 
world which are not properties of the system. 

2 5 I t i s assumed that external events can only occur when the system i s i n 
a stable state ( i e . L(s) = s) . 
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dynamics. For example, a system i n i t i a l l y i n a stable state "stable!! 1 1 may be 
moved to an unstable state "unstable-,/' by an external event e. The system w i l l 
respond by moving to another stable 
state " s t a b l e f l " . This i s shown 
gr a p h i c a l l y i n Figure 7a. I t i s also 
possible that the same event may move 
the system from a stable state 
" s t a b l e i 2 " to another stable state 
" s t a b l e f 2 " d i r e c t l y , as shown i n 
Figure 7b. 

An analyst may f i n d i t d i f f i c u l t 
to s p e c i f y a monolithic system law 
which describes the o v e r a l l behaviour 
of a l l state v a r i a b l e s . Fortunately, 
a system law may be decomposed into 
smaller SUBLAWS, and perhaps more 
importantly, a system law may be 
synthesized from a number of sublaws. 

D e f i n i t i o n : Sublaw 

A SUBLAW 1 i s a function defined on a subset of the state v a r i a b l e s describing 
a system, such that f o r any stable state s of the system a with system law L, 
s = l ( s ) and for any unstable state s of the system, s ^ l ( s ) . That i s , 

s = l ( s ) i f s = L(s) 
and 
s * l ( s ) i f s ^ L(s) 

Notice that i f s i s unstable, a sublaw need not map s into the same stable state 
as the system law. That i s , 

s' = l ( s ) and s * s' and s" = L(s) does not imply s' = s". 

Also notice that there are two parts to any system law or sublaw: 

a) 
e 

\ 
X 

s t a b l e ^ E> unstable! &- s t a b l e f l 

1 e 

s t a b l e r - o s t a b l e £ 2 

Figure 7: The a c t i o n of external 
event "e" on a system. 

a) The event moves the system into an 
unstable state. 

b) The event moves the system into a 
stable state. 
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a. S t a b i l i t y Conditions 
This part applies when a state s i s stable ( i . e . s = L(s) or s = 

l ( s ) ) . The condition s p e c i f i e s the system states allowed by the sublaw. 

b. Corrective Actions 
This part applies when a state s i s unstable ( i . e . s ^ L ( s ) or s ^ 

l ( s ) ) . The a c t i o n s p e c i f i e s how the values of the state v a r i a b l e must 
change should the system enter an unstable state. 

Before an example of a sublaw i s provided, one more d e f i n i t i o n i s required. 

D e f i n i t i o n : Rule 

A sublaw may be expressed as a set of RULES. Each r u l e s p e c i f i e s a s i n g l e stable 
condition or c o r r e c t i v e action. 

For example, a d e s c r i p t i o n of a very simple accounting system (with r e a l 
time asset change posting) might include the following r u l e s . 

1. The value of the "account balance" state v a r i a b l e must equal the value of 
the "value of assets" state v a r i a b l e . 

2. The " l a s t change status" state v a r i a b l e must indicate that the l a s t change 
to asset value has been posted ( i . e . the value of the l a s t change to the 
value of the assets has been added to or subtracted from the account 
balance). 

3. I f the value of the "account balance" state v a r i a b l e i s not equal to the 
"value of assets" state v a r i a b l e ( i . e . the system i s out of balance), then 
adjust the value of the "account balance" state v a r i a b l e to equal the value 
of the "value of assets" state v a r i a b l e , and set the value of the " l a s t 
change status" state v a r i a b l e to indicate that the l a s t change has been 
posted. 

The above rules constitute a sublaw. There may be other sublaws describing other 
parts of the system. The f i r s t two rules s p e c i f y s t a b i l i t y conditions and the 
l a s t s p e c i f i e s a c o r r e c t i v e action. Notice that t h i s sublaw assumes that the 
only way the system can become out of balance i s by a l t e r i n g the value of the 
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assets. That i s , the sublaw could not handle a s i t u a t i o n where the account 
balance was changed d i r e c t l y , e i t h e r by accident or deliberate tampering. In 
other words, the above rules have been formulated with a s p e c i f i c set of external 
events i n mind. The system modelling tools, described l a t e r i n t h i s chapter, 
require e x p l i c i t i d e n t i f i c a t i o n of external events so that d e f i c i e n c i e s i n the 
rules can be immediately i d e n t i f i e d . 

T r a d i t i o n a l l y , the behaviour of o f f i c e information systems has been 
described i n terms of procedures. In SELMA, the behaviour of systems i s e n t i r e l y 
defined i n terms of sublaws. Sublaws are not equivalent to procedures. Panko 
(1984, p. 227) defines a procedure as a program " i n which there i s a 
predetermined flow of work involving many steps, whether the flow consists of 
the same steps each time or involves a more complex l o g i c flow". In a study 
in v o l v i n g the creation of computerized systems to support executive work, Panko 
notes that none of the executives interviewed "could a r t i c u l a t e d e f i n i t e 
processes, much less well-defined procedures, to describe how t h e i r goals were 
achieved" (p. 228). The order of a c t i v a t i o n of sublaws i s not predetermined. 
I t i s hypothesized that i n many cases i t may be easier to discover the sublaws 
under which an executive operates, than to determine a l l the procedures he or 
she may choose to follow. However, empirical t e s t i n g of t h i s hypothesis i s 
beyond the scope of t h i s research. 

Before formal d e f i n i t i o n s of correctness, completeness, and consistency 
can be given, one more basic d e f i n i t i o n i s required. 

D e f i n i t i o n : Response Path and Response Function 

Let Q be the set of sublaws describing the behaviour of some system. An ordered 
l i s t of sublaws [ l i , . . . , ^ ] where { l i , . . . , ^ } c Q i s c a l l e d a RESPONSE PATH and 
the composition of those sublaws 2 6 

P Q ( S ) = l j ( . . . l ^ l ^ s ) ) . . .) - l j O . . . O ^ o l ' ^ s ) 

i s c a l l e d a RESPONSE FUNCTION defined on Q. 

The symbol o i s used to denote the composition of functions. 
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2.2.4.2. Completeness, Consistency and Correctness of Sublaws 

Brooks (1987) notes that "the hardest part of the software task i s a r r i v i n g 
at a complete and consistent s p e c i f i c a t i o n . . . " (p. 16). SELMA supports formal 
d e f i n i t i o n of completeness and consistency. As w i l l be demonstrated l a t e r i n 
t h i s chapter, these d e f i n i t i o n s can be computerized to automatically test a 
system model c o n s i s t i n g of state variables and sublaws. Informally, the notions 
of sublaw completeness and consistency can be described as f o l l o w s : 2 7 

Completeness: A l l system states may be transformed to stable states by the 
sublaws ( i . e . no states have been " l e f t out" i n the analysis 
of system dynamics). 

Consistency: Every system state, which may be transformed to a stable state 
by the sublaws, may be changed into one and only one stable 
state ( i . e . the sublaws do not contradict one another). 

In addition, the notion of correctness i s informally described as follows: 

Correctness: Taken together, the sublaws transform the i n i t i a l system states 
to exactly the same f i n a l states as the system law ( i . e . a l l 
the sublaws combined describe the actual behaviour of the 
system). 

Each of these d e f i n i t i o n s depends to some extent on the system law. 
Completeness and consistency require that stable states be i d e n t i f i e d . Stable 
and unstable states were defined i n terms of the system law. Correctness 
requires that the "operation" of the sublaws be the same as the system law. 
Unfortunately, system laws are generally unknowable 2 8. The best an analyst can 
hope f o r i s an approximation to the system law i n terms of sublaws. This does 
not imply that completeness, consistency and correctness are useless notions. 
While correctness i s usually impossible to v e r i f y , two l e v e l s of completeness 
and consistency are formally defined below. At a conceptual l e v e l , global 

2 7 These informal notions are s i m i l a r to those of Roman (1985, p. 16). 

2 8 Olive (1983, p. 73) states " i t i s not possible to formally v e r i f y the 
v a l i d i t y of the conceptual model with respect to the user's ' r e a l ' 
requirements...". 
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completeness, global consistency and correctness are defined i n terms of the 
system law. At an operational l e v e l , l o c a l completeness and l o c a l consistency 
are defined using a more r e s t r i c t e d d e f i n i t i o n of s t a b i l i t y c a l l e d l o c a l 
s t a b i l i t y 2 9 . 

2.2.4.2.1. Conceptual D e f i n i t i o n s f o r Completeness, Consistency and Correctness 

D e f i n i t i o n : Global Completeness of Sublaws 

A set of sublaws Q of system a with system law L completely describes the 
behaviour under L of a with respect to the possible state space S of a, i f for 
every state s i n S there e x i s t s a response function P(s) which maps that state 
into a stable state s' . That i s : 

Q i s g l o b a l l y complete with respect to S i f and only i f 
FOR ALL s such that s e S, 

THERE EXISTS P Q such that s' = P Q(s) and s' = L(s' ) 

Notice that while s' must be stable, i t need not be the same stable state into 
which the system law maps s ( i . e . s' i s not n e c e s s a r i l y equal to L ( s ) ) . 
Equivalence of the sublaws to the system law i s assured by sublaw correctness 
as defined l a t e r . 

D e f i n i t i o n : Global Consistency of Sublaws 

A set of sublaws Q of system a with system law L i s g l o b a l l y consistent with 
respect to the possible state space S of cr, i f a l l response functions which map 
a state s i n S into a stable state, map s into the same stable state. That i s : 

Q i s g l o b a l l y consistent with respect to S i f and only i f 
FOR ALL s, PQ, P'Q 

such that s e S and L(P Q(s)) = P Q(s) and L(P' Q(s)) = P' Q(s), 

PQ(S) = P'q(s) 

Conceptual and operational l e v e l s are concerned with aspects of the 
" r e a l system" and the "model of the information system" (as defined e a r l i e r i n 
t h i s chapter), r e s p e c t i v e l y . 
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Again, notice that while the f i n a l states P Q(s) and P' Q(s) must be stable and 
equal, they need not be equal to the state into which the system law would have 
mapped s. 

D e f i n i t i o n : Correctness of Sublaws 

A set of sublaws Q of system a with system law L c o r r e c t l y describes the 
behaviour under L of a with respect to the possible state space S of <r, i f for 
every state s i n S every response function P Q(s) , which maps s into a stable 
state, maps s into the same state that L maps s. That i s : 

Q i s g l o b a l l y correct with respect to S i f and only i f 
FOR ALL s, P Q such that s € S and L(P Q(s)) = P Q(s) , 
P Q(s) = L(s) 

Global completeness and consistency are p r e r e q u i s i t e s f o r correctness. 
That i s , the d e f i n i t i o n of correctness implies that every state can be mapped 
into one and only one stable state. However, notice that global completeness 
and consistency do not imply correctness. That i s , the d e f i n i t i o n s of global 
completeness and consistency do not ensure that the mappings provided by the 
sublaws and the system law are the same. This observation may be expressed by 
the following c o r o l l a r y . 

C o r o l l a r y : I f a set of sublaws Q i s correct with respect to a possible state 
space S, then Q i s g l o b a l l y consistent and g l o b a l l y complete with 
respect to S. 

2.2.4.2.2. Operational D e f i n i t i o n s of Completeness and Consistency 

Knowledge of the system law i s required to t e s t a set of sublaws for global 
completeness, global consistency, and correctness. In p r a c t i c e , the system law 
governing the behaviour of most r e a l systems i s approximated by the sublaws 
themselves. Notice that the global completeness and global consistency 
conditions require only knowledge of whether a system state i s stable. While 
knowledge of the system law i s required to assess s t a b i l i t y ( i . e . s i s stable 
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i f s = L ( s ) ) , i f a weaker d e f i n i t i o n of stable state i s employed, a form of 
completeness and consistency t e s t i n g becomes possible. Consider the following 
d e f i n i t i o n f or LOCALLY STABLE STATE where P i s some response function derived 
from the set of sublaws Q. 

D e f i n i t i o n : L o c a l l y Stable State 

A system state s i s l o c a l l y stable i f and only i f there i s no composition P Q of 
sublaws Q which can map the state into a d i f f e r e n t state. That i s , 

s i s l o c a l l y stable with respect to Q i f and only i f 
THERE DOES NOT EXIST P Q such that s * P Q(s) 

A weaker form of completeness, c a l l e d LOCAL COMPLETENESS, of the sublaws 
could be guaranteed by ensuring that there e x i s t s some response function mapping 
each system state into a l o c a l l y stable state. 

D e f i n i t i o n : Local Completeness of Sublaws 

Let Q be a set of sublaws describing the system a which may enter states S'30, 

then 

Q i s l o c a l l y complete i f and only i f 
FOR ALL s, s e S' 
THERE EXISTS s' = P Q(s) such that s' i s l o c a l l y stable 

A weaker form of consistency, c a l l e d LOCAL CONSISTENCY, of the sublaws 
could be established by ensuring that a l l possible response paths lead to the 
same f i n a l l o c a l l y stable state. 

3 S' may not equal the possible state space S. S' i s the set of states, 
both stable and unstable, which the sublaws and external events included i n the 
model of the system are designed to consider. As w i l l be discussed i n more 
d e t a i l l a t e r , the s t a b i l i t y conditions of the sublaws define the stable states 
of S' and the c o r r e c t i v e actions define the unstable states. 
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D e f i n i t i o n : Local Consistency of Sublaws 

Let Q be a set of sublaws describing the system a which may enter states S' , then 

Q i s l o c a l l y consistent i f and only i f 
FOR ALL s, PQ, P'Q 

such that s e S' and P 0 ( s ) , P' Q(s) are l o c a l l y stable, 
P Q(s) = P' 0(s) 

Tests for l o c a l consistency and completeness are c l e a r l y i n f e r i o r to the 
tests possible i f the system law i s known. However, l o c a l consistency and 
completeness t e s t i n g does ensure that a l l known information i s consistent and 
complete with respect to i t s e l f . 

Olive r e f e r s to l o c a l consistency and completeness as the " l o g i c a l 
consistency of the model" (p. 73). A model i s " l o g i c a l l y consistent" i f the 
outputs of the system are derivable from the inputs. Most systems analysis and 
design methodologies do not provide any way to systematically v e r i f y the l o g i c a l 
consistency of a model. CIAM (Gustafson, et a l . , 1982) and DADES (Olive, 1982) 
are notable exceptions. CIAM refe r s to tests for l o c a l completeness and 
consistency as "checking the s a t i s f i a b i l i t y of information requirements". Each 
output must be expressible i n terms of system inputs or information derived from 
those inputs. DADES refer s to these tests as " d e r i v a b i l i t y a n a l y s i s " (p. 229). 
D e r i v a b i l i t y analysis i s a formal method to show that outputs are derivable from 
inputs. 

2.2.5. A Simple Example 

Consider a hypothetical system c o n s i s t i n g of four interconnected l i g h t s . 
Light "a" i s connected i n series with "b" so that i f "a" i s on then "b" w i l l be 
on and i f "a" i s o f f , "b" w i l l be o f f . I f l i g h t "a" i s o f f then l i g h t "c" w i l l 
be on, and i f "a" i s on, l i g h t "d" w i l l be on. Only the state of l i g h t "a" may 
be set manually. The schematic diagram of a system implementation using d i g i t a l 
l o g i c and l i g h t emitting diodes i s included as Appendix L. 

The system may be described by the following state v a r i a b l e s and states. 
The "on" state of a l i g h t w i l l be represented by the integer 1 and the " o f f " 
state by 0. 
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State Variables States 
a 1 or 0 
b 1 or 0 
c 1 or 0 
d 1 or 0 

One of many possible sets of sublaws, describing the stable states of the system 
and the actions to be taken should the system f i n d i t s e l f i n an unstable state, 
i s given below. The cor r e c t i v e action rules are numbered f o r future reference 
when describing system response paths. 

Sublaws 
1. S t a b i l i t y Conditions: 

a b 
0 0 
1 1 
Corrective Actions: 
Conditions Actions 
a --> b 

Rl : 1 1 
R2: 0 0 

2. S t a b i l i t y Conditions: 
a c 
0 1 
1 0 
1 1 
Corrective Action: 
Conditions Actions 
a - -> c 

R3: 0 1 

3. S t a b i l i t y Conditions: 
a d 
1 1 
0 1 
0 0 
Corrective Action: 
Conditions Actions 
a --> d 

R4: 1 1 

Since only l i g h t "a" may be switched by the environment, there are two possible 
external events. 
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External Events 
1. Set a = 1 
2. Set a = 0 

The s t a b l e 3 1 state space of t h i s system i s shown below. Each state i s l a b e l l e d 
f o r future reference. 

Stable States 
State Variable 

Label a b c d 
A 0 0 1 0 
B 0 0 1 1 
C 1 1 0 1 
D 1 1 1 1 

Response paths are generated by f i r s t applying each event to each stable state, 
thus obtaining a state which might be unstable. Then the sublaws are used to 
tr y to br i n g the system to a f i n a l stable state. For example, a possible 
response path corresponding to the a p p l i c a t i o n of the event "set a = 1" to the 
f i r s t stable state A i s as follows: 

a b c d Label 
I n i t i a l stable state 0 0 1 0 A 
Unstable state a f t e r eventl 1 0 1 0 E 
Unstable state a f t e r rule Rl 1 1 1 0 F 
Stable state a f t e r r u l e R4 1 1 1 1 D 

There may be more than one possible response path associated with each unstable 
state. In the above example, rule R 4 could have been a c t i v a t e d before rule Rl. 
The precise ordering of a c t i v a t i o n of sublaws i s not important so long as each 
response path ends i n the same stable state ( i . e . the sublaws are consistent). 

3 1 For the remainder of t h i s thesis, the terms "stable", "complete" or 
"consistent" s h a l l mean l o c a l l y stable, l o c a l l y complete or l o c a l l y consistent 
with respect to the defined sublaws. 
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Response paths are described using the following notation. 

[ ( i n i t i a l = S t a t e 0 ) , | Event, S t a t e ^ , | Rule x, State 2>, | Rule 2, State 3> 
|Rule n,State n + 1>] 

where State 0 i s the i n i t i a l state to which event Event, i s applied, Rule k i s the 
name of the c o r r e c t i v e action r u l e which moves the system from State k to S t a t e k + 1 , 
and S t a t e n + 1 i s the f i n a l (and therefore stable) state of the system. I f the 
above analysis i s repeated f o r the remaining stable states and events, the 
following unstable states and response paths may be generated. 

Unstable States 
E 1 0 1 0 
F 1 1 1 0 
G 1 0 1 1 
H 0 1 0 1 
I 0 0 0 1 
J 0 1 1 1 

Response Paths 
Path # Event Response Path 
1 a = 1 [ ( i n i t i a l = A ) , |Event 1,E>,|R1,F>,|R4,D>] 
2 a = 1 [ ( i n i t i a l = B ) , |Event 1,G>,|R1,D>] 
3 a = 1 [ ( i n i t i a l = C ) , |Event 1,C>] 
4 a = 1 [ ( i n i t i a l = D ) , |Event 1,D>] 
5 a 0 [ ( i n i t i a l = A ) , |Event 2,A>] 
6 a = 0 [ ( i n i t i a l = B ) , |Event 2,B>] 
7 a = 0 [ ( i n i t i a l = C ) , |Event 2,H>,|R2,I>,|R3,B>] 
8 a = 0 [ ( i n i t i a l = D ) , |Event 2,J>,|R2,B>] 

Every state entered as a r e s u l t of an external event i s transformed into a stable 
state. This means the sublaws are complete. The sublaws are consistent because 
a l l a l t e r n a t i v e response paths lead to the same stable states. 
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2.3. Implementation: The S p e c i f i c a t i o n s Analysis Tools 

A set of Prolog-based s p e c i f i c a t i o n s analysis tools has been created to 
f a c i l i t a t e the construction of a system model based on the system theory concepts 
presented i n the previous section. These tools provide the following functions: 

a. Testing f o r : 
1) s y n t a c t i c errors i n the system model (e.g. misplaced punctuation, 

inconsistent naming, e t c . ) , 
2) stable condition coverage of the state v a r i a b l e s ( i . e . each state 

v a r i a b l e i s referenced i n at l e a s t one rule from the s t a b i l i t y 
conditions of a sublaw), 

3) state v a r i a b l e variance ( i . e . each state v a r i a b l e i s assigned a l l 
of i t s defined values), 

4) c o n f l i c t i n g sublaws, and 
5) l o c a l completeness and l o c a l consistency of the sublaws. 

b. Determination of the stable state space of the system. 

c. Determination of the unstable state space and response paths of the system. 

d. Suggestion of possible decompositions. 

The modelling syntax required by the s p e c i f i c a t i o n s analysis t o o l s , and the 
various tests which can be applied to the model, w i l l be described i n the context 
of the f o u r - l i g h t s example. The tests are further described i n Appendix D. The 
procedures used to f i n d the stable and unstable state spaces as well as the 
response paths of a system are described i n Appendix E. System decomposition 
i s described i n the next chapter. 

2.3.1. Entering a System Model 

The user i s required to create a text f i l e l i s t i n g a l l of the state 
v a r i a b l e s , state v a r i a b l e values, sublaws, and external events to be included 

The tools were implemented using Turbo Prolog (Borland, 1986) running 
on an IBM AT compatible microcomputer. 
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i n the model. The f o u r - l i g h t s example described e a r l i e r would be entered as 
described i n the following subsections. Text enclosed by /*...*/ i s added for 
explanation only and i s ignored by the to o l s . 

2.3.1.1. State Variables 

A simple one-place predicate i s used to inform the tools that c e r t a i n 
v a r i a b l e s are to be included i n the model. A l l state v a r i a b l e s must be declared 
i n t h i s way. No a d d i t i o n a l state v a r i a b l e s may be included i n any further 
d e s c r i p t i o n of the model (e.g. i n the sublaws or events). Predicates declaring 
the state v a r i a b l e s used to describe the f o u r - l i g h t s example would be created 
as follows: 

/* state v a r i a b l e s */ 
st a t e _ v a r i a b l e ( a ) . 
s t a t e _ v a r i a b l e ( b ) . 
s t a t e _ v a r i a b l e ( c ) . 
s t a t e _ v a r i a b l e ( d ) . 

2.3.1.2. Values 

Each state v a r i a b l e may be assigned only a l i m i t e d number of va l u e s 3 3 . A l l 
possible values must be declared using the binary predicate 
"values(StateVariableName.Values)", where StateVariableName i s the name of the 
state v a r i a b l e and Values i s a l i s t of possible values. I f a state v a r i a b l e , 
which was not declared using the " s t a t e _ v a r i a b l e ( ) " predicate, i s used here an 
error message w i l l be generated by the s p e c i f i c a t i o n s analysis t o o l s . Another 
error message w i l l be produced i f a state v a r i a b l e does not assume one of i t s 
defined values during the determination of the system's response paths. This 
l a s t t e s t ensures that the state v a r i a b l e value declarations are consistent with 
the defined dynamics of the system and i s r e f e r r e d to as t e s t i n g "state v a r i a b l e 
variance". Any mismatch would indicate e i t h e r i n s u f f i c i e n t l y defined dynamics 
( i n the form of sublaws) or too many defined values. 

The problem of state variables which may be assigned a large number 
(perhaps i n f i n i t e ) of d i f f e r e n t values i s addressed l a t e r i n t h i s chapter. 
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/* state v a r i a b l e values */ 
values(a,[0,1]). 
values(b,[0,1]) . 
values(c,[0,1]). 
values(d,[0,1]) . 

2.3.1.3. Sublaws 

The two components of sublaws (namely, s t a b i l i t y conditions and corrective 
actions) are defined separately. S t a b i l i t y conditions describe the allowed 
combinations of state v a r i a b l e values i n stable system states, and are used to 
determine the stable state space of the system. Corrective actions specify 
actions to be taken i f the system i s not i n a stable state, and are used to f i n d 
a l l response paths of the system. There i s some d u p l i c a t i o n of information i n 
the two parts of a sublaw. The stable state space of the system could be 
determined by generating a l l possible combinations of state v a r i a b l e values and 
t e s t i n g to see whether some cor r e c t i v e a c t i o n rule could a l t e r each of the 
possible states. I f there i s no c o r r e c t i v e action r u l e which could a l t e r a 
state, that state would be added to the stable state space of the system. Such 

a "generate and t e s t " algorithm becomes computationally i n t r a c t a b l e as the number 
of combinations of state v a r i a b l e values increases. The use of s t a b i l i t y 
conditions as formulated above allows a much more e f f i c i e n t method of determining 
the stable state space of the system. Also, i f there were a large number of 
possible system states, i t would be easy for the analyst to a c c i d e n t a l l y omit 
a c o r r e c t i v e a c t i o n rule required to "correct" an unstable state. Should such 

an error occur, the unstable state would be i n c o r r e c t l y assumed to be stable. 
When separate d e f i n i t i o n s of both s t a b i l i t y conditions and c o r r e c t i v e actions 
are required, tests for l o c a l consistency and completeness can point to 
a c c i d e n t a l l y omitted r u l e s 3 4 . 

E x p l i c i t statement of s t a b i l i t y conditions also allows the system to be 
described by a smaller number of r u l e s . There may be some poss i b l e states which 
the system should never enter. In a natural system, where the system law 
r e f l e c t s fundamental properties of the p h y s i c a l universe, such states could be 

The tests for l o c a l completeness and consistency provide a kind of 
cross-check between the s t a b i l i t y conditions and c o r r e c t i v e actions of the 
sublaws as well as the defined external events. 
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impossible (e.g. i t i s impossible for a mass on the surface of a planet to be 
f a l l i n g up) . However, i n a man-made system where the system law may be 
imperfectly enforced, i t i s possible for the system to enter an unexpected state. 
For example, i n a simple accounting system the value of the assets represented 
by some account may not equal the balance of that account, i f some user manually 
a l t e r e d the balance. Most accounting systems would have controls i n place to 
prevent such a l t e r a t i o n s . However, i f t h i s sort of tampering was not included 
among the defined external events for the system, the model might not include 
any sublaws to deal with the s i t u a t i o n . I t would be extremely d i f f i c u l t , i f not 
impossible, to a n t i c i p a t e a l l such undesirable events. When dealing with man-
made systems, a model can only approximate the operation of the o r i g i n a l system 
since the external events considered comprise only a subset of a l l possible 
external events. 

2.3.1.3.1. S t a b i l i t y Conditions 

S t a b i l i t y conditions are represented using the binary predicate 
"static(LawName,Conditions)", where LawName i s some a r b i t r a r y name f o r the law 
and Conditions i s a l i s t of state v a r i a b l e name and value p a i r s a l l of which must 
occur together i n each stable state of the system. A stable condition may 
consist of more than one r u l e . This i s modelled using several clauses with the 
same LawName parameter. A stable state need s a t i s f y only one of the rules 
forming the s t a b i l i t y conditions of a p a r t i c u l a r sublaw 3 5. That i s , " s t a t i c ( ) n 

clauses with the same name are combined using an i n c l u s i v e OR condition. Clauses 
with d i f f e r e n t LawNames are combined using an AND condition. I f a state v a r i a b l e 
name or value which was not declared with a " s t a t e _ v a r i a b l e ( ) " or "valueQ" 
predicate i s used to define a stable condition r u l e , the s p e c i f i c a t i o n s analysis 
tools w i l l issue an error message. Other tests of the s t a b i l i t y conditions are 
described i n Appendix D. These ensure that every defined state v a r i a b l e i s 
mentioned i n at l e a s t one stable condition rule ( r e f e r r e d to as "stable condition 
coverage"), and that the stable condition rules do not c o n f l i c t with each other. 
The s t a b i l i t y conditions for the f o u r - l i g h t s example are defined as follows: 

The r e l a t i o n s h i p between stable states and s t a b i l i t y conditions i s 
described i n more d e t a i l i n Appendix E. 
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/* s t a b i l i t y conditions */ 
s t a t i c ( " S l " , [ v ( a , " 0 " ) , v ( b , " 0 " ) ] ) . 
s t a t i c ( " S l " , [ v ( a , " 1 " ) , v ( b , " 1 " ) ] ) . 

s t a t i c ( " S 2 " , [ v ( b , " 0 " ) , v ( c , " 1 " ) ] ) . 
s t a t i c ( " S 2 " , [ v ( b , " l " ) , v ( c , " 0 " ) ] ) . 
s t a t i c ( " S 2 " , [ v ( b , " l " ) , v ( c , " 1 " ) ] ) . 

s t a t i c ( " S 3 " , [ v ( b , " l " ) , v ( d , " l " ) ] ) . 
static("S3",[v(b,"0"),v(d,"0")]). 
static("S3",[v(b,"0"),v(d,"1")]). 

2.3.1.3.2. Corrective Actions 

Corrective actions are represented using the ternary predicate 
"dynamic(LawName,Conditions.Actions)". Again, LawName i s some a r b i t r a r y name. 
Conditions i s a l i s t of a c t i v a t i o n conditions, c o n s i s t i n g of state v a r i a b l e name 
and value p a i r s , which must be s a t i s f i e d by an unstable state before the 
cor r e c t i v e a c t i o n r u l e i s allowed to a f f e c t the system state ( i . e . to " f i r e " ) . 
Actions i s a l i s t of state v a r i a b l e name and value p a i r s which s p e c i f y the f i n a l 
values of c e r t a i n state v a r i a b l e s a f t e r the sublaw i s allowed to " f i r e " . For 
example, the co r r e c t i v e a c t i o n rule 

dynamic("D3",[v(a,"l")],[v(d,"1")]). 

means that i f the value of "a" i s "1" then "d" should be set to "1". I f a state 
v a r i a b l e i s not mentioned i n the l i s t of f i n a l values, i t i s assumed to have the 
same state as i t had before the sublaw was f i r e d . A l l c o r r e c t i v e a c t i o n rules, 
whether they have the same name or not, are combined using an OR condition. I f 
a state v a r i a b l e name or value which was not declared with a " s t a t e _ v a r i a b l e ( ) " 
or "value()" predicate i s used to define a c o r r e c t i v e a c t i o n r u l e , the 
s p e c i f i c a t i o n s analysis tools w i l l issue an error message. . The cor r e c t i v e 
actions f o r the f o u r - l i g h t s example are defined as follows: 
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/* c o r r e c t i v e actions */ 
dynamic("Dl",[v(a,"0")],[v(b,"0")]). 
dynamic("Dl",[v(a,"1")],[v(b,"1")]). 

dynamic("D2",. [v(a, " 0 " )],[v(c,"1")]). 

dynamic("D3",[v(a,"l")],[v(d,"1")]). 

2.3.1.4. External Events 

External events are defined using the binary predicate 
"event(EventName.Actions)", where EventName i s some a r b i t r a r y name f o r the event, 
and Actions i s a l i s t of the state v a r i a b l e s a l t e r e d by the external event 
together with t h e i r a l t e r e d values. As i n the case of sublaws, i f a state 
v a r i a b l e name or value which was not declared with a " s t a t e _ v a r i a b l e ( ) " or 
"valueQ" predicate i s used to define an external event, the s p e c i f i c a t i o n s 
analysis tools w i l l issue an error message. The external events a f f e c t i n g the 
f o u r - l i g h t s example are defined as follows: 

/* External Events */ 
event("El",[v(a,"0")]). 
event("E2",[v(a,"1")]). 

The various tests performed by the s p e c i f i c a t i o n s analysis tools are summarized 
i n Table I. 

2.3.2. A More Extended Example 

The above example was s i m p l i f i e d by the f a c t that each state v a r i a b l e had 
a small number of d i s c r e t e values. What happens i f there e x i s t s a state v a r i a b l e 
with a very large or even i n f i n i t e number of possible values? Complete 
e x p l i c a t i o n of sublaws i n the manner described above would be impossible. To 
model systems described by such state variables i t i s necessary to reduce the 
l e v e l of d e t a i l of the sublaws. The s t a t i c s and dynamics must be described 
q u a l i t a t i v e l y where each state v a r i a b l e may take on only a small number of 
values. These state v a r i a b l e values are c a l l e d SUBREGIONS i n keeping with the 
work of De Kleer and Brown (1985). Subregions are bounded by c r i t i c a l values 
of the real-world state v a r i a b l e . For example, i n an inventory management 
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Table I: Tests performed by the s p e c i f i c a t i o n s analysis t o o l s . 

Diagnostic When 
Type I d e n t i f i e d 

How 
I d e n t i f i e d 

Possible Meaning 

syntax when model i s 
loaded into 
Prolog 

naming before 
consistency generation of 

stable state 
space 

i l l e g a l Prolog 
syntax 

name or value i n 
sublaw or event 
does not match 
declarations 

typing errors 

1. s p e l l i n g error 
2. i n s u f f i c i e n t defined 

state v a r i a b l e s 
3. i n s u f f i c i e n t defined 

values 

s t a t i c 
sublaw 
coverage 

s t a t i c 
sublaw 
c o n f l i c t 

state 
v a r i a b l e 
v a r i a t i o n 

before 
generation of 
stable state 
space 

before 
generation of 
stable state 
space 

a f t e r 
generation of 
response paths 

a state v a r i a b l e 
i s not referenced 
i n a s t a t i c sublaw 

see Appendix D 

a state v a r i a b l e 
does not obtain 
a l l of i t s 
defined values 

1. missing s t a t i c sublaw 
2. too many defined 

state v a r i a b l e s 

inconsistent 
s p e c i f i c a t i o n of 
s t a t i c sublaws 

1. too many defined 
values 

2. missing external 
events 

l o c a l 
complete
ness 

during 
generation of 
response paths 

dynamic sublaws 
cannot move system 
to a stable state 
a f t e r a p p l i c a t i o n 
of some event 

1. too many defined 
external events 

2. missing or incor r e c t 
dynamic sublaws 

3. missing or in c o r r e c t 
s t a t i c sublaws 

l o c a l during 
consistency generation of 

response paths 

dynamic sublaws can 
move the system to 
more than one stable 
state following the 
ap p l i c a t i o n of some 
event 

improperly defined 
dynamic sublaws 

48 



system, knowledge of the exact quantity on hand of a p a r t i c u l a r item i s probably 
not important i n order to describe the operation of the system. I t i s l i k e l y 
that c e r t a i n actions w i l l be taken i f the quantity i s e i t h e r above or below a 
c e r t a i n c r i t i c a l value, say the economic order quantity. In t h i s case the state 
v a r i a b l e "quantity_on_hand" might be modelled as having two d i s c r e t e values: 
"under_eoq" and "over_eoq" . Use of state v a r i a b l e s with values that are a c t u a l l y 
subregions i s i l l u s t r a t e d i n the following example adapted from Wand and Weber 
(1989). 

Consider a p a y r o l l system f o r a company36. The company has two types of 
jobs: o f f i c e and sales. An employee may be i n e i t h e r a regular or i n a 
managerial p o s i t i o n . Salaries are comprised of base pay, overtime pay and 
commissions. The way i n which t o t a l salary i s c a l c u l a t e d depends on the job type 
and employee p o s i t i o n . Company p o l i c y i s as follows: 

the o f f i c e s t a f f i s e n t i t l e d to overtime pay but not to commissions. 
the sales s t a f f i s e n t i t l e d to commissions but not to overtime pay. 
managers are not e n t i t l e d to overtime pay nor commissions. 
hours and sales are recorded f o r a l l employees. (This might happen i f 
managers are required to report hours and o f f i c e workers may take a 
telephone order.) 
a l l employees receive b e n e f i t s . 

Also assume that a l l p a y r o l l processing takes place at the end of some period. 

This system would be entered into the s p e c i f i c a t i o n s analysis tools as shown i n 
Appendix F. The only external events modelled a f f e c t the state v a r i a b l e "end". 
Its value changes from "0" to "1" at the end of the period and from "1" to "0" 

at the s t a r t of the next period. Most continuous state v a r i a b l e s are represented 
using two subregions. For example, the "sales" state v a r i a b l e may have values 
of e i t h e r zero or p o s i t i v e ("0" or "nz" i n the model). The state v a r i a b l e for 
"hours worked" i s somewhat more complicated. An employee may work s u f f i c i e n t 
hours to q u a l i f y f o r overtime pay and base pay, a l e s s e r number of hours for 

3 6 This system w i l l be l a t e r r e f e r r e d to as the " i n i t i a l " p a y r o l l system 
to d i s t i n g u i s h i t from a s i m i l a r system to be r e f e r r e d to as the "modified" 
p a y r o l l system. These systems are f a i r l y simple. There i s no i n t e n t i o n to 
suggest that r e a l p a y r o l l systems can be as e a s i l y modelled as these examples. 
A more complicated " r e a l " system w i l l be examined i n Chapter 6. 
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which he w i l l only receive base pay, or no hours at a l l . In the model, the state 
v a r i a b l e representing "hours worked" may take on any of three values. 

hours = ot - s u f f i c i e n t hours to q u a l i f y f o r overtime pay and base pay. 
hours = reg - employee to receive base pay only, 
hours = "0" - no hours worked. 

This system model has ni n e t y - s i x stable states. Forty-eight of these states 
represent the i n i t i a l states of the system when the state v a r i a b l e "end" has a 
value of "0". In these states a l l quantities to be c a l c u l a t e d at the end of the 
period have a value of "0". The other f o r t y - e i g h t states represent the f i n a l 
system states when "end" has a value of "1" and base pay, overtime, be n e f i t s , 
commissions and t o t a l pay have been calculated. 

A l t e r n a t i v e l y , the p a y r o l l system could be modelled without use of the 
state v a r i a b l e "end" as shown i n Appendix G. I t i s a somewhat more abstract 
representation, i n that the concept of end-of-period processing has been 
eliminated. In a sense, the above model i s "batch" and t h i s model i s 
" i n t e r a c t i v e " 3 7 . The model describes the allowable configurations ( i . e . stable 
states) of state v a r i a b l e values a f t e r a l l processing has been completed. 
External events then become those occurrences which can a l t e r these stable 
configurations, as opposed to the massive t r a n s i t i o n represented by end-of-period 
processing. The f i v e events defined f o r t h i s system occur when an employee i s 
reported to have worked a number of hours or made some sales. Also notice that 
the b e n e f i t s state v a r i a b l e has only one possible value: non-zero. This i s 
because i t s value does not depend on the value of any other state v a r i a b l e i n 
the new model. As s h a l l be shown i n the next chapter, the decompositions 
generated automatically by the s p e c i f i c a t i o n s analysis tools are s i m i l a r , but 
not the same, for the model of the batch and i n t e r a c t i v e systems. In p a r t i c u l a r , 
the b e n e f i t s state v a r i a b l e does not appear i n any decomposition of the 
i n t e r a c t i v e system. The reason f o r t h i s w i l l be discussed i n the next chapter. 

3 7 Pick (1986) defines "batch and " i n t e r a c t i v e " as follows. "Batch" 
describes systems where a number of s i m i l a r input items are grouped together for 
processing during the same machine run (p. 622). In the batch example, the 
machine run occurs at the end of the period. " I n t e r a c t i v e " describes systems 
where the user has rapid two-way communication with a computer (p. 670). In the 
i n t e r a c t i v e example, ca l c u l a t e d values are updated without an end of period 
external event. 
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This new model has f o r t y - e i g h t stable states. These states are i d e n t i c a l to the 
stable states of the "batch" system when the state v a r i a b l e "end" has the value 
"1" except that "end" i s not included. I t should be noted that although t h i s 
representation has fewer stable states, i t i s not n e c e s s a r i l y more e f f i c i e n t than 
the "batch" representation. There were only two events defined f o r the f i r s t 
model, whereas t h i s model has f i v e . This means that 192 (96 times 2) response 
paths had to be determined f o r the "batch" model, and 240 (48 times 5) had to 
be found f o r the " i n t e r a c t i v e " model. 

2.4. Conelus i ons 

A formalism f o r the representation of systems has been developed. SELMA 
i s notable f o r i t s focus on laws rather than on procedures. Consistent 
representation of the linkages between the properties of the system, i n the form 
of sublaws, f a c i l i t a t e s tests of both completeness and consistency of the system 
de s c r i p t i o n . Sublaws are seen as a p r a c t i c a l way to formulate a global system 
law. The analyst may focus h i s or her att e n t i o n on small parts of the system, 
and s t i l l ensure that the sublaws form a complete and consistent model of the 
system. 

A basic implementation of a set of Prolog tools to support SELMA has been 
described. While i t s use has been shown to be f e a s i b l e f o r some small problems, 
further t e s t i n g i s required. A larger " r e a l " system needs to be considered. 
I t i s possible that, even with the use of state v a r i a b l e subregions, as the 
number of state v a r i a b l e s increases, there could be an unacceptably rapid 
increase i n the number of stable system states. However, i t should be noted that 
a r e l a t i o n s h i p of the form: 

number of system states = number of values f o r state v a r i a b l e 1 * 
number of values f o r state v a r i a b l e 2 * 

number of values f o r state v a r i a b l e n 

could only occur i f each state v a r i a b l e were "independent" of every other state 
v a r i a b l e . In other words, a very large number of system states i s only expected 
i f f o r every possible value of each state v a r i a b l e every other state v a r i a b l e 
could have each of i t s possible values. This would mean that the s i z e of the 
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stable state space of the system equals the s i z e of i t s possible state space. 
This sort of behaviour i s not expected f o r most i n t e r e s t i n g systems, as i t 
implies no coupling among the state v a r i a b l e s . For example, the simple four-
l i g h t s example has a possible state space with 16 (= 2 4) states, but there are 
only four stable states. Also, the "batch" p a y r o l l system has a possible state 
space with 3072 (= 2 1 0*3) states, but there are only 96 stable states. 

As c u r r e n t l y implemented, the s p e c i f i c a t i o n s analysis tools have a very 
l i m i t e d syntax. In some cases, coding of sublaws could be made more e f f i c i e n t 
i f state v a r i a b l e s could be described as not having a c e r t a i n value, rather than 
s p e c i f y i n g a l l the values i t may have. Also, many systems are l i k e l y to require 
q u a l i t a t i v e a d d i t i o n and m u l t i p l i c a t i o n (e.g. the p a y r o l l system example). The 
formats of the sublaws which represent these operations are well defined. De 
Kleer et a l . (1985) define q u a l i t a t i v e addition and m u l t i p l i c a t i o n as follows: 

Addition M u l t i p l i c a t i o n 

X 

0 

+ 

? 

0 + 
+ + 

0 

+ 

+ 
0 

0 
0 
0 

Ambiguities may a r i s e when adding quantities of d i f f e r e n t sign. However, they 
can probably be avoided through c a r e f u l d e f i n i t i o n of state v a r i a b l e values. 
Avoiding ambiguities then becomes the r e s p o n s i b i l i t y of the analyst and not the 
s p e c i f i c a t i o n s analysis t o o l s . The s p e c i f i c a t i o n s analysis tools could be 
enhanced to support simple rendering of a d d i t i o n and m u l t i p l i c a t i o n operations. 
However, a l i m i t e d syntax i s s u f f i c i e n t to i l l u s t r a t e the f e a s i b i l i t y of SELMA. 
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Chapter 3 : A Theory of Decomposition 

The problem of i d e n t i f y i n g the subsystems from which a system i s composed 
i s not t r i v i a l . This chapter begins with an i n t u i t i v e example i l l u s t r a t i n g the 
d i f f i c u l t y of decomposition. This i s followed by formal d e f i n i t i o n s of several 
concepts r e l a t e d to system decomposition. A number of h e u r i s t i c s and theorems, 
used to l i m i t the search space of possible decompositions, are also presented. 
F i n a l l y , a decomposition algorithm compatible with SELMA i s described and i t s 
use i s demonstrated on several simple systems. 

3.1. General 

Bunge (1979, p. 11) describes system decomposition on the basis of 
i d e n t i f i a b l e things. However, only by observing a system's behaviour can a 
designer hope to discover into what parts the system may be decomposed. The 
behaviours of the p r o p e r t i e s 3 8 describing a system, and not the things from which 
i t i s constructed, are of primary importance to decomposition (Simon and Ando, 
19.61). Consider a s i m p l i f i e d b i c y c l e system. Many people would recognize the 
following things as being parts of a b i c y c l e . 

Things 
front wheel rear wheel pedals frame 
front forks handle bars chain 

Some state v a r i a b l e s representing the properties of the b i c y c l e are l i s t e d 
below. Notice, that only normal operation of a b i c y c l e i s being modelled. That 
i s , we are not concerned with skidding, f a l l i n g over, etcetera. 

3 8 I t could be argued that only things can e x h i b i t behaviour. However 
SELMA does not e x p l i c i t l y model things. For the purposes of t h i s research, i t 
i s s u f f i c i e n t to describe a system's behaviour by the describing the observed 
changes of the properties. 
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State Variables 
front wheel angle 3 9 

front wheel r o t a t i o n a l speed 
rear wheel r o t a t i o n a l speed 
pedal r o t a t i o n a l speed 

front fork angle 
handle bar angle 
frame speed 
chain r o t a t i o n a l speed 

A reasonable decomposition on the basis of things might include the following 
subsystems: 

front end: 
front wheel 
front forks 
handle bars 

rear end: 
rear wheel 
pedals 
chain 

I t i s not c l e a r with which subsystem the frame should be associated as i t spans 
both the fr o n t and rear ends. Also notice that the behaviour of the front wheel 
w i l l be r e l a t e d to the behaviour of the rear wheel. Under normal operating 
conditions the r o t a t i o n a l speed of the two wheels w i l l be the same40. This 
dependency implies that the two subsystems are coupled. In general, coupling 
between two subsystems ex i s t s when the behaviours of the two subsystems are not 
independent. In t h i s case, coupling can be avoided i f the subsystems are 
selected on the basis of steering and forward motion state v a r i a b l e s as shown: 

steering subsystem: forward motion subsystem: 
front wheel angle front wheel r o t a t i o n a l speed 
front fork angle rear wheel r o t a t i o n a l speed 
handle bar angle pedal r o t a t i o n a l speed 

chain r o t a t i o n a l speed 
frame speed 

3 9 Front wheel angle, front fork angle, and handle bar angle are a l l 
ho r i z o n t a l angles measured r e l a t i v e to the frame of the b i c y c l e . 

4 0 Assuming front and rear wheels of the same radius. 

54 



Insofar as these l a s t two subsystems can been given meaningful names, they do 
represent things. However, i t i s argued that the things represented are not 
i n t u i t i v e l y obvious. Many analysts would not consider " s p l i t t i n g " a ph y s i c a l 
object (e.g. the front wheel) between two subsystems. The only "behaviour" 
suggesting the f i r s t decomposition occurs during b i c y c l e assembly. Assembly 
contexts are f a r too tempting a c r i t e r i a f o r decomposition. An analyst needs 
to consider the behaviour of a system i n a l l contexts of i n t e r e s t . In SELMA, 
d i f f e r e n t contexts are represented by d i f f e r e n t external events. 

Analysts who consider only decompositions c o n s i s t i n g of obvious things may 
miss "superior" a l t e r n a t i v e decompositions. I t may happen that the "good" 
subsystems, i d e n t i f i e d by the decomposition methodology presented here, w i l l have 
state v a r i a b l e s corresponding to the properties of an i n t u i t i v e l y obvious thing, 
but t h i s i s by no means c e r t a i n . 

3 . 2 . The Decomposition Formalism 

The meaning of decomposition w i l l be formally defined i n t h i s section, but 
f i r s t some terms for describing system dynamics must be introduced. 

D e f i n i t i o n : Subsystem 

Any subset X of the state variables describing a system a w i l l describe a 
SUBSYSTEM of a. For convenience, X may be r e f e r r e d to as a subsystem 4 1. 

Not a l l subsets of state variables w i l l describe reasonable subsystems. 
For the b i c y c l e example, one possible unreasonable subsystem would be described 
by "front wheel angle" and "pedal r o t a t i o n a l speed". The development of c r i t e r i a 
f o r s e l e c t i n g reasonable subsystems i s the major purpose of t h i s chapter. 

A subsystem consists of more than j u s t a set of d e s c r i p t i v e state 
v a r i a b l e s . There must also be rules f or governing subsystem behaviour. However; 
for purposes of system decomposition, i t i s s u f f i c i e n t to i d e n t i f y a subsystem 
by a set of state v a r i a b l e s . 
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D e f i n i t i o n : Projection of a Subsystem 

The state x of a subsystem X of a system a when a i s i n state s i s c a l l e d the 
PROJECTION of s onto X, x = proj(s.X). 

For example, consider the following state of the b i c y c l e system. 

State Variable Value 
front wheel angle turning l e f t 
f r o nt wheel r o t a t i o n a l speed p o s i t i v e 
rear wheel r o t a t i o n a l speed p o s i t i v e 
front fork angle turning l e f t 
handle bar angle turning l e f t 
pedal r o t a t i o n a l speed zero 
chain r o t a t i o n a l speed zero 
frame speed p o s i t i v e 

That i s , the b i c y c l e i s coasting around a l e f t turn. The p r o j e c t i o n of th i s 
state onto the previously i d e n t i f i e d steering subsystem i s 

State Variable Value 
front wheel angle turning l e f t 
f r o nt fork angle turning l e f t 
handle bar angle turning l e f t 

I t should be noted that there may be many system states having the same 
pro j e c t i o n . The state of the steering subsystem would be the same i f the b i c y c l e 
was pedalled (as opposed to coasted) around a l e f t corner. 

D e f i n i t i o n : Deterministic Subsystem 

Wand and Weber (1988) hypothesize that a l l good decompositions w i l l s a t i s f y the 
following requirement: 
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The behaviour of each subsystem i s determined only by those state 
v a r i a b l e s describing the subsystem. 

This means a decomposition i s good i f each subsystem behaves d e t e r m i n i s t i c a l l y . 
A subsystem behaves d e t e r m i n i s t i c a l l y i f i t s f i n a l state i s f u n c t i o n a l l y 
determined by i t s i n i t i a l state, or i f f o r every i n i t i a l state of the subsystem 
there i s only one possible f i n a l state of the subsystem. This implies that a l l 
the information necessary to determine the f i n a l state of the subsystem i s 
already contained i n the subsystem. I t i s not necessary to consider the states 
of other subsystems i n order to decide how the subsystem w i l l behave. I f the 
state of a subsystem depends on the state of another, the subsystems are 
coupled. Therefore, t h i s requirement w i l l ensure that there i s no coupling 
between the subsystems of a good decomposition. Wand and Weber's requirement 
may be formally expressed as follows: 

Let a be a system with system law L, and l e t R be a set of states of a. 

A subsystem X of cr i s deterministic with respect to R and L, i f and only 
i f a l l system states s i n R, having the same i n i t i a l subsystem state 
proj(s,X), have the same f i n a l subsystem state p r o j ( L ( s ) , X ) . That i s : 

X i s deterministic with respect to R and L i f and only i f 
FOR ALL s l f s 2 

such that s x G R and s 2 G R, and 
such that p r o j C s ^ X ) = pr o j ( s 2 , X ) , 

proj (L(s 1) ,X) = proj (L(s 2) ,X) 

A subsystem i s characterized by a set of d e s c r i p t i v e state v a r i a b l e s . The 
behaviour of a deterministic subsystem can be defined by a function i n v o l v i n g 
only these state v a r i a b l e s . This function may be expressed by a sublaw a f t e r 
considering the subsystem state changes between i n i t i a l and f i n a l states. For 
example, consider a system described by binary state v a r i a b l e s {x,y,z}. Assume 
that the system dynamics are defined by the following unstable state space and 
corresponding f i n a l stable states. 
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Unstable 
States 
x y z 

0 1 0 
0 1 1 
1 1 1 
1 1 0 

Corresponding F i n a l 
Stable States 
X y z 

1 l 1 
1 l 1 
1 0 0 
1 0 0 

We see that {y,z) i s not a deterministic subsystem since the subsystem state 
(1,1} corresponds to f i n a l subsystem states (1,1) and (0,0). However, (x,y) i s 
a deterministic subsystem i n that no i n i t i a l subsystem state corresponds to more 
than one f i n a l state. The state t r a n s i t i o n s f o r the subsystem (x,y) are as 
shown: 

X y > x y 

0 1 1 1 
1 1 1 0 

The c o r r e c t i v e actions of a sublaw describing t h i s behaviour could be expressed 
as follows: 

Corrective Actions: 
Conditions Actions 
X Y --> X Y 
0 1 1 1 
1 1 1 0 

D e f i n i t i o n : INTERNAL EVENT 

External events a l t e r the values of some of the state v a r i a b l e s describing a 

system. The system responds to the external event by further a l t e r i n g the 
values of i t s state variables u n t i l i t enters a stable state. This further 
a l t e r a t i o n of state variables i s accomplished through INTERNAL EVENTS. 

The a c t i o n of a sublaw, as described i n Chapter 2, corresponds to an 
i n t e r n a l event. The actions of external and i n t e r n a l events both r e s u l t i n 
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system state changes. The sequence of state v a r i a b l e value changes as the 
system moves towards a stable state constitutes a response path. Since there may 
e x i s t many system response paths leading to the same stable state, an external 
event need not be followed by a unique sequence of i n t e r n a l events. 

The change of state from an unstable to a stable state can be viewed as 
a sequence of i n t e r n a l events. For example, consider the b i c y c l e system at r e s t 
( i . e . "frame speed" = zero). I f the pedals are made to rotate, the chain, rear 
wheel and front wheel must also begin to rotate. However, the b i c y c l e might be 
modelled such that the chain and rear wheel begin to rotate before the front 
wheel and frame begin to move (e.g. some "play" i n the free wheel mechanism). 
In t h i s case two i n t e r n a l events would follow the external event as shown: 

external event: rotate pedals 
i n t e r n a l event 1: rotate chain and rear wheel 
i n t e r n a l event 2: rotate front wheel and move frame 

The b i c y c l e system can be viewed as entering a number of unstable states a f t e r 
the a c t i o n of an external event before once again achieving a stable state. One 
possible s e r i e s of unstable states leading to a stable state i s shown below. 
Other sequences of i n t e r n a l events are possible, but i f the system i s complete 
and consistent, a l l such sequences w i l l lead to the same stable state. Changes 
to system states are indicated with a "*". 

I n i t i a l Stable State: stopped, with front wheel pointing s t r a i g h t ahead 
State Variable Value 
front wheel angle s t r a i g h t 
front wheel r o t a t i o n a l speed zero 
rear wheel r o t a t i o n a l speed zero 
f r o n t fork angle s t r a i g h t 
handle bar angle s t r a i g h t 
pedal r o t a t i o n a l speed zero 
chain r o t a t i o n a l speed zero 
frame speed zero 

External Event: s t a r t peddling 
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F i r s t Unstable State: 
State Variable Value 
front wheel angle s t r a i g h t 
front wheel r o t a t i o n a l speed zero 
rear wheel r o t a t i o n a l speed zero 
front fork angle s t r a i g h t 
handle bar angle s t r a i g h t 
pedal r o t a t i o n a l speed p o s i t i v e * 
chain r o t a t i o n a l speed zero 
frame speed zero 

F i r s t Internal Event: set values of chain and rear 

Second Unstable State: 
State Variable Value 
front wheel angle s t r a i g h t 
front wheel r o t a t i o n a l speed zero 
rear wheel r o t a t i o n a l speed p o s i t i v e * 
front fork angle s t r a i g h t 
handle bar angle s t r a i g h t 
pedal r o t a t i o n a l speed p o s i t i v e 
chain r o t a t i o n a l speed p o s i t i v e * 
frame speed zero 

Second Internal Event: set values of front wheel 
speed 

F i n a l Stable State: moving s t r a i g h t ahead 
State Variable Value 
front wheel angle s t r a i g h t 
front wheel r o t a t i o n a l speed p o s i t i v e * 
rear wheel r o t a t i o n a l speed p o s i t i v e 
front fork angle s t r a i g h t 
handle bar angle s t r a i g h t 
pedal r o t a t i o n a l speed p o s i t i v e 
chain r o t a t i o n a l speed p o s i t i v e 
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frame speed p o s i t i v e * 

The external event a l t e r e d the value of "pedal r o t a t i o n a l speed". The f i r s t 
i n t e r n a l event changed the values of state v a r i a b l e s "chain r o t a t i o n a l speed" 
and "rear wheel r o t a t i o n a l speed" based on the value of "pedal r o t a t i o n a l 
speed". The second i n t e r n a l event updated the values of state v a r i a b l e s "frame 
speed" and "front wheel r o t a t i o n a l speed". The f i n a l values of any of the 
previously a l t e r e d state v a r i a b l e s could have been used as the basis for t h i s 
second change. For the sake of argument, assume that the f i n a l value of "rear 
wheel r o t a t i o n a l speed" was used. The process of a l t e r i n g the values of state 
v a r i a b l e s through i n t e r n a l events s h a l l be c a l l e d an UPDATE. Updates involve 
sets of state v a r i a b l e s , or subsystems. In the above example, the subsystem 
{pedal r o t a t i o n a l speed, chain r o t a t i o n a l speed, rear wheel r o t a t i o n a l speed) 
was used to update the f i r s t unstable state to the second unstable state. Then 
the subsystem {rear wheel r o t a t i o n a l speed, frame speed, f r o n t wheel r o t a t i o n a l 
speed) was used to update the second unstable state to the f i n a l stable state. 
The notion of system updates can be formalized as follows: 

D e f i n i t i o n : Updating 

Let o be a system with system law L, R be a set of states of a, and U be 
the state variabl e s used to describe a set of subsystems of a k Z . A set of 
states R' i s UPDATED with respect to U and R by s e t t i n g the values of 
those state v a r i a b l e s i n each system state s i n R, which are elements of 
U equal to t h e i r values i n the f i n a l stable state L ( s ) . That i s , i f SV 
i s the set of a l l state variables describing a, then 

R' = {s') such that 
THERE EXISTS s such that s e R and 

FOR ALL v such that v G SV, 
(proj(s',{v}) = proj(L(s),{v)) and v e U) 
or 
(proj (s' , {v)) = proj (s , {v) ) and v <£ U) 

4 2 In the previous example, updates involved s i n g l e subsystems only. In 
general, a set of subsystems may be used to perform an update. 
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The "or" separates two p o s s i b i l i t i e s f o r the value of each state v a r i a b l e i n an 
updated system state. The f i r s t p o s s i b i l i t y occurs when the state v a r i a b l e i s 
found i n the set of subsystems used to update the i n i t i a l system state. In t h i s 
case, the value of the state v a r i a b l e i n the updated system state i s equal to 
i t s value i n the f i n a l stable state of the system. The second p o s s i b i l i t y 
occurs when the state v a r i a b l e i s not used to describe any subsystem used to 
update the i n i t i a l system state. In t h i s case, the value of the state v a r i a b l e 
i s l e f t unchanged. 

As another example, consider a b i c y c l e beginning to move to the l e f t a f t e r 
the r i d e r begins to pedal. A poss i b l e i n i t i a l unstable s t a t e / f i n a l stable 
p a i r f o r t h i s s i t u a t i o n i s shown below. 

I n i t i a l Unstable F i n a l Stable 
State Variable Values Values 
front wheel angle s t r a i g h t turning l e f t 
f r o nt wheel r o t a t i o n a l speed zero p o s i t i v e 
rear wheel r o t a t i o n a l speed zero p o s i t i v e 
front fork angle s t r a i g h t turning l e f t 
handle bar angle turning l e f t turning l e f t 
pedal r o t a t i o n a l speed p o s i t i v e p o s i t i v e 
chain r o t a t i o n a l speed p o s i t i v e p o s i t i v e 
frame speed zero p o s i t i v e 

The i n i t i a l state i s c l e a r l y unstable as the pedals are turning but the wheels 
are not yet spinning. The state could be updated with respect to the forward 
motion subsystem, i d e n t i f i e d e a r l i e r , by s e t t i n g "front wheel r o t a t i o n a l speed" 
and "rear wheel r o t a t i o n a l speed" to " p o s i t i v e " . However, the r e s u l t i n g updated 
system state would s t i l l not be stable, since the handle bars and the wheels are 
not pointing i n the same d i r e c t i o n . I f the system were further updated with 
respect to the steering subsystem, the r e s u l t i n g system state would be stable. 

Updating r e f e r s to a l t e r i n g a set of states to r e f l e c t the completion of 
some a c t i v i t i e s within the system. As s h a l l be shown, i t i s the update which 
r e f l e c t s sequential decomposition. A few more d e f i n i t i o n s w i l l make i t easier 
to discuss updates as they pe r t a i n to system decomposition. 
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D e f i n i t i o n : F i r s t Intermediate State Space and System Relation 

The set of a l l system states which r e s u l t from the a c t i o n of any external event 
i n the set of external events E on a stable state of the system a, i s c a l l e d the 
FIRST INTERMEDIATE STATE SPACE ( F i r s t ISS) of a with respect to E. E w i l l 
always include the NULL EVENT. The n u l l event does not change the value of any 
state v a r i a b l e . The f i r s t ISS and the f i n a l stable system states associated 
with each member state comprise the FIRST SYSTEM RELATION of a with respect to 
E. 

These concepts were used i n Chapter 2. The f i r s t intermediate state space 
i s the set of states f o r which response paths leading to unique stable states 
must be found, i f the system model i s to be complete and consistent. The 
i n i t i a l unstable states and the associated stable states comprise the f i r s t 
system r e l a t i o n . The f i r s t system r e l a t i o n shows to which stable state the 
system w i l l move should i t be i n an unstable state as the d i r e c t r e s u l t of the 
ac t i o n by an external event. 

D e f i n i t i o n : Nth Intermediate State Space and System Relation 

The set of a l l system states, where s r e s u l t s from a given set of N updates 
being applied to each state of the f i r s t intermediate state space of a, i s 
c a l l e d an Nth INTERMEDIATE STATE SPACE (Nth ISS). The Nth ISS and the f i n a l 
stable system states associated with each member state comprise the Nth SYSTEM 
RELATION. 

D e f i n i t i o n : Level 

The set of subsystems used to update an intermediate state space w i l l be c a l l e d 
a LEVEL. 

Decomposition, i t s e l f , may now be formally defined. 
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Definition: Decomposition 

I f a serie s of updates i s begun with the f i r s t ISS of a with respect to external 
events E, and ends when the updated ISS contains only stable states, the 
r e s u l t i n g sequence of l e v e l s i s c a l l e d a DECOMPOSITION of system a with respect 
to external events E. I f only deterministic subsystems (as defined above) are 
used to perform the updates, the r e s u l t i n g sequence of l e v e l s i s c a l l e d a 
DETERMINISTIC DECOMPOSITION. 

Unfortunately, there w i l l be i n general, a very large number of 
deterministic subsystems with respect to any ISS of a system. For example, any 
subset of state v a r i a b l e s whose values do not change between states i n the ISS 

and the corresponding f i n a l stable states w i l l describe deterministic 
subsystems. Consider the following f i r s t system r e l a t i o n f o r a system described 
by four binary state v a r i a b l e s {a,b,c,d}: 

F i r s t Intermediate Corresponding 
State Space F i n a l Stable : States 
a b c d --> a b c d 
0 0 0 0 0 0 1 1 
0 1 0 0 0 1 0 0 
1 0 0 0 1 0 0 0 
1 1 0 0 1 1 1 1 

The subsystems {a}, {b} , {a,b} , {a,b,c}, (a,b,d), and {a,b,c,d} are a l l 
determ i n i s t i c . Any subset of these deterministic subsystems may be used to 
update the f i r s t ISS. Any ISS thus created may be further updated using any 
subsystem that i s deterministic with respect to the new space. This process 
w i l l lead to at l e a s t 2 6! = 1.3X1089 deterministic decompositions 4 3. Most of 
these de t e r m i n i s t i c decompositions w i l l be of no i n t e r e s t to the analyst. 
Several rules f o r avoiding these "useless" decompositions w i l l be discussed 
following the next section of t h i s chapter. 

4 3 I f n i s the number of good subsystems, there are 2 n ways to se l e c t a 
subset of the good subsystems. Each permutation of these subsets w i l l correspond 
to a good decomposition. Therefore, there are at l e a s t 2n! good decompositions 
for a system with n good subsystems. There may be even more good decompositions 
i f subsystems, which are not good with respect to the f i r s t intermediate state 
space, become good as a r e s u l t of an update operation. 
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3 . 3 . Decomposition Syntax 

In t h i s and l a t e r chapters i t w i l l be necessary to discuss, and even 
compare, many decompositions. A consistent representation scheme i s required. 
Two such schemes w i l l be defined i n t h i s section. The f i r s t conveys the most 
information, but i s somewhat d i f f i c u l t to i n t e r p r e t without p r a c t i c e . The 
second i s diagrammatic and emphasizes the linkages between subsystems. Both 
w i l l be used as appropriate. 

Consider the system described by binary state v a r i a b l e s {a,b,c,d) with a 
system r e l a t i o n as shown above. I f the f i r s t ISS i s updated using {a,b,c} and 
{b}, the new or second ISS contains the following states. 

F i r s t Second Corresponding 
ISS ISS F i n a l Stable States 
a b e d --> a b e d --> a b e d 
0 0 0 0 0 0 1 0 0 0 1 1 
0 1 0 0 0 1 0 0 0 1 0 0 
1 0 0 0 1 0 0 0 1 0 0 0 
1 1 0 0 1 1 1 0 1 1 1 1 

The subsystems {a}, {b}, {c}, {a,b}, {a,c}, {b,c), {a,b,d}, and {c,d} are a l l 
deterministic with respect to t h i s second ISS. I f {c,d} i s selected f o r an 
update, the t h i r d ISS becomes 

Second T h i r d Corresponding 
ISS ISS F i n a l Stable States 
a b e d --> a b e d --> a b e d 
0 0 1 0 0 0 1 1 0 0 1 1 
0 1 0 0 0 1 0 0 0 1 0 0 
1 0 0 0 1 0 0 0 1 0 0 0 
1 1 1 0 1 1 1 1 1 1 1 1 

The states of the t h i r d ISS are the same as the corresponding f i n a l stable 
states. Two l e v e l s have been defined: {{a,b,c},{b}} and {(c,d)}. Together they 
form a deterministic decomposition of the system. The decomposition may be 
represented as shown below. State variables with values that change during an 
update are underlined 4*. 

These state variables w i l l be l a t e r defined as OUTPUT state v a r i a b l e s . 
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2: {c,d} 
1: {a,b,c} {b} 

This decomposition has the following associated semantics. 

1. Subsystems {a,b,c} and {b} are deterministic subsystems with respect to 
the f i r s t ISS (or {a,b,c} and {b} are deterministic at l e v e l 1). 

2. Subsystem {c,d} i s a deterministic subsystem with respect to a second ISS 
(or {c,d} i s deterministic at l e v e l 2). This state space i s formed by 
updating the f i r s t ISS using subsystems (a,b,c) and {b}. 

3. The t h i r d ISS formed by updating the second ISS using the subsystems {c,d) 
w i l l contain only stable states. 

Decompositions w i l l sometimes be 
displayed using diagrams s i m i l a r to 
Figure 8 . Subsystems are represented 
by boxes containing sets of state 
v a r i a b l e names. I t i s easier to see 
the linkages, or communication, between 
subsystems i n t h i s sort of diagram. 
Communication ( i f any) between 
subsystems i s shown by l i n e s between 
boxes. The l i n e s are l a b e l l e d with the 
name of the state v a r i a b l e whose value 
i s passed. Values are passed from 
lower to higher subsystems only. Figure 8: 

3.4 . L i m i t i n g the Search Space 
2: {c,d} 
1: (a,b,c) 

3.4.1. General 

A number of rules have been found which can considerably l i m i t the number 
of de t e r m i n i s t i c decompositions which should be considered by the analyst. Some 
of these rules are h e u r i s t i c s , i n that they cannot be formally proved. Others 
follow d i r e c t l y from formal d e f i n i t i o n s and are c a l l e d theorems. Before the 
rules maybe presented, three more d e f i n i t i o n s are required. These d e f i n i t i o n s , 

A n a l t e r n a t i v e 
representation for the 
p a r a l l e l / s e q u e n t i a l 
decomposition: 
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and many of the theorems and h e u r i s t i c s , w i l l be i l l u s t r a t e d using the simple 
system described by state variables {a,b,c,d} as introduced i n the previous 
section. 

D e f i n i t i o n : Output State Variable 

A state v a r i a b l e i s an OUTPUT STATE VARIABLE with respect to some intermediate 
state space R, of a system with law L, i f i t s value i n some system state s i n 
R i s d i f f e r e n t from i t s value i n the f i n a l stable system state L ( s ) . That i s , 
i f v i s a state v a r i a b l e then 

v i s an output state v a r i a b l e with respect to R i f and only i f 
THERE EXISTS s such that s e R and 

proj(s,{v}) * proj(L(s),{v}) 

D e f i n i t i o n : Input State Variable 

The set of state variables whose values are required to p r e d i c t the f i n a l values 
of the output state variable s with respect to some intermediate state space R 
i s c a l l e d the set of INPUT STATE VARIABLES with respect to R45. 

D e f i n i t i o n : Constant State V a r i a b l e 4 6 

Any state v a r i a b l e which i s not an output state v a r i a b l e with respect to some 
intermediate state space R i s CONSTANT STATE VARIABLE with respect to R. 

The sets of input and output state v a r i a b l e s with respect to some 
intermediate state space are not nec e s s a r i l y mutually exclusive. The f i n a l value 
of some output state v a r i a b l e could depend on i t s i n i t i a l value. Such a state 
v a r i a b l e would be both an input and an output. A state v a r i a b l e which i s both 
an input and an output w i l l be named twice i n the set of state variables 
describing a subsystem. For example, {x,y,z,z} indicates that values of "x" and 
"y" and the i n i t i a l value of "z" are a l l required to determine the f i n a l value 
of "z". 

4 6 In many of the examples to be considered i n t h i s and l a t e r chapters, the 
set of input state vari a b l e s w i l l equal the set of constant state v a r i a b l e s . 
The sets only d i f f e r when the i n i t i a l value of an output state v a r i a b l e i s 
required to determine i t s own f i n a l value. 
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C o n s t a n t O u t p u t 

S t a t e V a r i a b l e s S t a t e V a r i a b l e s 

I n p u t 

S t a t e V a r i a b l e s 
Figure 9 : The r e l a t i o n s h i p between output, input, and constant state v a r i a b l e s 

with respect to a given intermediate state space. 

The r e l a t i o n s h i p s between the set of output, input, and constant state 
v a r i a b l e s with respect to a given intermediate state space are diagrammed i n 
Figure 9. 

For example, consider the system described by binary state variables 
{a,b,c,d}. 

F i r s t Intermediate Corresponding 
State Space F i n a l Stable States 
a b c d --> a b c d 
0 0 0 0 0 0 1 1 
0 1 0 0 0 1 0 0 
1 0 0 0 1 '• 0 0 0 
1 1 0 0 1 1 1 1 
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State v a r i a b l e s {a,b} are input and constant state v a r i a b l e s and {c,d} are output 
state v a r i a b l e s with respect to the f i r s t ISS. Now consider the second ISS 
formed by updating the f i r s t ISS using the subsystem (a,b,c}. 

F i r s t Second Corresponding 
ISS ISS F i n a l Stable States 
a b e d --> a b e d --> a b e d 
0 0 0 0 0 0 1 0 0 0 1 1 
0 1 0 0 0 1 0 0 0 1 0 0 
1 0 0 0 1 0 0 0 1 0 0 0 
1 1 0 0 1 1 1 0 1 1 1 1 

State v a r i a b l e s (a,b,c) are a l l inputs with respect to the second ISS. State 
v a r i a b l e "c" i s no longer an output since i t s value does not change i n any 
i n i t i a l / f i n a l state p a i r . Thus output state v a r i a b l e s need not remain output 
state v a r i a b l e s a f t e r an update. 

These d e f i n i t i o n s of "input" and "output" are not the same as those i n 
common use. I t i s more usual to r e f e r to external events as inputs and the 
actions of the system on i t s environment as outputs. 4 7 In SELMA, the state 
v a r i a b l e s a f f e c t e d by external events are constant state v a r i a b l e s . Their values 
do not change between states i n the f i r s t ISS and the corresponding f i n a l stable 
states of the system 4 8. They may also be input state v a r i a b l e s i f they are 
required to determine the f i n a l values of the output state v a r i a b l e s . However, 
there may be other input state variables which are not af f e c t e d by external 
events. The d e f i n i t i o n of output state v a r i a b l e i s also somewhat unusual. 
Outputs are defined for every ISS with the exception of the space containing only 
stable states. Interaction between output state v a r i a b l e s and the environment 
i s not modelled. Any such int e r a c t i o n s would form the external events to another 
system located i n the environment of the system under study, and so are not 
considered. 

The rules f o r l i m i t i n g the number of deterministic decompositions to be 
considered by the analyst may now be presented. 

Bunge (1979, p. 25) defines input and output i n t h i s way. 

4 8 I t i s assumed that the values of state v a r i a b l e s may be set only once 
during the system's response to an external event. This assumption i s discussed, 
i n d e t a i l , l a t e r i n t h i s chapter. 
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3.4.2. H e u r i s t i c s and Theorems 

3.4.2.1. Subsystems should have outputs 

Deterministic subsystems are subsystems whose f i n a l states can be predicted 
knowing only t h e i r i n i t i a l states. By d e f i n i t i o n , constant state v a r i a b l e s do 
not change t h e i r values between the i n i t i a l and f i n a l states of the system. 
Therefore, i t i s a t r i v i a l exercise to p r e d i c t the f i n a l state of a subsystem 
described by only constant state v a r i a b l e s . The following theorem i s suggested 
by t h i s f a c t * 9 . 

Theorem 1: Any subsystem X, described only by constant state v a r i a b l e with 
respect to some intermediate state space R and the corresponding 
f i n a l stable states, w i l l be a deterministic subsystem with respect 
to R. That i s : 

IF FOR ALL s such that s G R, proj(s.X) = proj(L(s),X) 
THEN X i s det e r m i n i s t i c with respect to R and L. 

Such deterministic subsystems are u n l i k e l y to be i n t e r e s t i n g to an analyst 
as they contain no information about the dynamics of the system. A program 
module based on t h i s sort of subsystem would always return the same values i t 
received. This f a c t leads to the f i r s t h e u r i s t i c f o r l i m i t i n g the number of 
deterministic subsystems which may be used to update an ISS. 

H e u r i s t i c 1: A l l deterministic subsystems used to update an intermediate 
state space must be described by at l e a s t one OUTPUT state 
v a r i a b l e . 

For example, H e u r i s t i c 1 w i l l ensure the subsystems {a} and {b} are not 
used to update the f i r s t ISS of the system described by binary state variable s 
{a,b,c,d}. 

Proofs for the theorems included i n t h i s document are straightforward 
and proceed d i r e c t l y from the d e f i n i t i o n s . They have not been included here. 
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3.4.2.2. Subsystems should be small 

Any subsystem formed by adding a constant state v a r i a b l e to a deterministic 
subsystem w i l l be deterministic. The value of a constant state v a r i a b l e does 
not change between i n i t i a l and f i n a l states, and so cannot cause a deterministic 
subsystem to behave non-deterministically. For example, consider the following 
second intermediate, and f i n a l stable, state spaces of the system described by 
binary state v a r i a b l e s {a,b,c,d}. This second ISS was created by updating the 
f i r s t ISS using the subsystem described by state v a r i a b l e s {a,b,c}. 

F i r s t Second Corresponding 
ISS ISS F i n a l Stable States 
a b e d --> a b e d --> a b e d 
0 0 0 0 0 0 1 0 0 0 1 1 
0 1 0 0 0 1 0 0 0 1 0 0 
1 0 0 0 1 0 0 0 1 0 0 0 
1 1 0 0 1 1 1 0 1 1 1 1 

State v a r i a b l e "a", "b", and "c" are constant state v a r i a b l e s with respect to 
th i s ISS, since t h e i r values do not change between the intermediate and 
corresponding f i n a l stable states. The subsystem (a,b,d) i s de t e r m i n i s t i c with 
respect to t h i s ISS, since no i n i t i a l subsystem state leads to two d i f f e r e n t 
f i n a l subsystem states. I f the state v a r i a b l e "c" i s added to {a,b,d}, the 
r e s u l t i n g set of state variables also describes a dete r m i n i s t i c subsystem. This 
r e s u l t i s expressed by the following theorem. 

Theorem 2: Let X be a set of state variables containing output state v a r i a b l e s 
0, and l e t X' be a subset of X also containing 0 . I f X' describes 
a deterministic subsystem, with respect to some intermediate state 
space R and system law L, then X w i l l be a dete r m i n i s t i c subsystem 
with respect to R and L. That i s : 

IF X' i s deterministic with respect to R and L and X' c X and 
FOR ALL o such that o e X and 

proj(s,{o}) * proj(L(s),{o}) and 
s e R, 

o e X' 
THEN X i s a deterministic subsystem with respect to R and L. 
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In the above example, the set of state v a r i a b l e s {a,b,c,d} contained one output 
state v a r i a b l e . I t also contained a subset {a,b,d} which described a 
deterministic subsystem. Since t h i s subset also contained the output state 
v a r i a b l e {d}, the state v a r i a b l e s (a,b,c,d} had to describe a deterministic 
subsystem. Deterministic subsystems formed by adding constant state variables 
to e x i s t i n g deterministic subsystems are probably not i n t e r e s t i n g to an analyst. 
A program module corresponding to such a subsystem would contain a redundant 
v a r i a b l e , since the outputs of the subsystem could have been determined by the 
o r i g i n a l v a r i a b l e s . This f a c t suggests the following h e u r i s t i c . 

H e u r i s t i c 2 : Let X be a set of state v a r i a b l e s containing output state 
variable s 0, and l e t X' be subset of X also containing 0. I f 
X' describes a deterministic subsystem, with respect to some 
intermediate state space R and system law L, then X may not 
be used to update R. 

This r u l e ensures that the subsystems used to update an ISS are described 
by as small a number of input state variables as p o s s i b l e . I t i s required to 
avoid t r i v i a l decompositions formed by adding constant state v a r i a b l e s to 
d e t e r m i n i s t i c subsystems. For example, without t h i s h e u r i s t i c both of the 
following would be considered as possible decompositions of the system described 
by binary state v a r i a b l e s (a,b,c,d). Output state v a r i a b l e s are underlined. 

2: (a,b,d) and 2: {a,b,c,d} 
1: {a,b,c} 1: {a,b,c} 

The second decomposition does not add any information as i t could have been 
deduced from the f i r s t decomposition and Theorem 2. 

Now r e c a l l that the subsystems {a,b,c} and {a,b,d} are both deterministic 
with respect to the f i r s t ISS. So i s the union of the two subsystems. That i s , 
the subsystem {a,b,c,d} i s also deterministic. This r e s u l t i s generalized i n 
the following theorem. 

Theorem 3 : A subsystem described by the union of the state v a r i a b l e s describing 
two deterministic subsystems w i l l be d e t e r m i n i s t i c . 
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Two possible deterministic decompositions of the system are 

1: {a,b,c} {a,b,d} and 1: {a,b,c,d} 

The second decomposition implies that four state v a r i a b l e s are required to 
p r e d i c t the f i n a l state of the subsystem. The f i r s t decomposition contains more 
information than the second. I t t e l l s the analyst that the f i n a l values of "c" 
and 11 d" may be predicted i f the i n i t i a l values of only "a" and "b" are known. 
The second decomposition does not indicate whether the values of "a" and "b" are 
both required to p r e d i c t the f i n a l value of both "c" and "d",.or whether j u s t 
one state v a r i a b l e could serve to predict one of the outputs. Since the second 
decomposition can be deduced from the f i r s t through the use of Theorem 3, the 
following h e u r i s t i c i s suggested. 

H e u r i s t i c 3: Do not generate a l t e r n a t i v e decompositions r e s u l t i n g from the 

Together, H e u r i s t i c s 2 and 3 ensure that the subsystems presented to the 
analyst f o r consideration w i l l be described by as small a number of state 
v a r i a b l e s as possible. 

3.4.2.3. Subsystems should show emergence 

Consider the example system described by binary state v a r i a b l e s {a,b,c,d) . 
The sets of state v a r i a b l e s {a,b,c} and {a,b,d} describe subsystems which are 
deterministic with respect to the f i r s t ISS. An update using these subsystems 
would lead to an ISS containing only stable states. The f i r s t ISS could also 
be updated using only the subsystem {a,b,c}, to obtain the second ISS shown 
below. 

F i r s t Second Corresponding 
ISS ISS F i n a l Stable States 
a b e d --> a b e d --> a b e d 

union of smaller subsystems. 

0 0 0 0 
0 1 0 0 
1 0 0 0 
1 1 0 0 

0 0 1 0 
0 1 0 0 
1 0 0 0 
1 1 1 0 

0 0 1 1 o i o o 
1 0 0 0 
1 1 1 1 o 
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The subsystem {a,b,d} i s s t i l l d eterministic with respect to t h i s ISS. I f t h i s 
second ISS were further updated using {a,b,d}, the r e s u l t i n g ISS would contain 
only stable states. Therefore, the following are both deterministic 
decompositions of the system: 

1: {a,b,c} {a,b,d} and 2: {a,b,d} 
1: {a,b,c} 

The second decomposition does not add to the information provided by the f i r s t , 
and should not have to be considered by the analyst. This observation may be 
generalized with the following theorem. 

Theorem 4 : Let X and Y be deterministic subsystems with respect to an 
intermediate state space R. I f X i s used to update R to obtain 
intermediate state space R' then Y w i l l be d e t e r m i n i s t i c with respect 
to R' . 

This theorem expresses the commutativity of the update. That i s , i f two 
subsystems X and Y are deterministic with respect to some ISS, the f i n a l ISS's 
r e s u l t i n g from updating using X and then Y and using Y and then X w i l l be the 
same. 

Theorem 4 suggests another h e u r i s t i c f or l i m i t i n g the number of 
deterministic decompositions which have to be considered by the analyst. 
However, the following d e f i n i t i o n w i l l make i t s formulation easier. 

D e f i n i t i o n : Emergent State Variable 

Let x be a output state v a r i a b l e used to describe a subsystem at the nth l e v e l 
of some decomposition. I f x i s not used to describe any subsystem at any mth 
l e v e l where m < n, then x i s an EMERGENT STATE VARIABLE at l e v e l n. 

The concept of an emergent state v a r i a b l e i s analogous to the notion of 
a h o l i s t i c property. That i s , h o l i s t i c properties are "those c h a r a c t e r i s t i c s 
of a p a r t i c u l a r system that go beyond the q u a l i t i e s of the i n d i v i d u a l system 
components" (Mattessich, 1978, p. 31). H o l i s t i c properties are a manifestation 
of the f a c t that a system i s more than the sum of i t s parts. 
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For example, consider a p a y r o l l system. "Total pay" might be determined 
by the values of "regular pay" and "overtime". The values of "regular pay" and 
"overtime" might be determined by the values of "hours worked" and "pay rate". 
Such a system could be decomposed as shown: 

2: {regular pay.overtime.total pay) 
1: {hours worked,pay rate.regular pay) 

{hours worked,pay rate.overtime) 

In t h i s case " t o t a l pay" i s an emergent state v a r i a b l e at l e v e l 2. 
Emergent state variables allow the analyst to focus h i s or her attention 

on h i g h e r - l e v e l abstractions of the system under study. The " t o t a l pay" emergent 
state v a r i a b l e could be considered an abstraction of the "hours worked" and "pay 
rate" state v a r i a b l e s . I f the analyst were not i n t e r e s t e d i n the degree of 
d e t a i l provided by these state v a r i a b l e s , " t o t a l pay" may be a p e r f e c t l y adequate 
substitute. Decompositions which show the emergence of state v a r i a b l e s whenever 
possible are assumed to be superior to those that do not. The following 
h e u r i s t i c i s based on t h i s assumption. 

H e u r i s t i c 4a: A l l subsystems used to update an nth intermediate state space 
must by described by at l e a s t one state v a r i a b l e which i s 
emergent at l e v e l n. 

However, t h i s h e u r i s t i c alone i s not enough to avoid redundant a l t e r n a t i v e 
decompositions as discussed above. In the decomposition 

2: {a,b,d} 
1: {a,b,c} 

state v a r i a b l e "d" i s emergent at l e v e l 2. Unfortunately, state v a r i a b l e "d" 
i s not a u s e f u l abstraction of any state v a r i a b l e s found at lower l e v e l s . While 
state v a r i a b l e s "a" and "b" are found at l e v e l 1, they are also found at l e v e l 
2. They are not abstracted out of the view of the system presented to the 
analyst at any l e v e l of the decomposition. Only i f the values of emergent state 
v a r i a b l e s are determined by output state v a r i a b l e s at a lower l e v e l , do they 
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become us e f u l abstractions for the analyst. The following h e u r i s t i c embodies 
t h i s notion. 

H e u r i s t i c 4b: Any deterministic subsystem used to update the nth intermediate 
state space must be described by at l e a s t one state v a r i a b l e 
which i s an output state v a r i a b l e with respect to the n - l t h 
intermediate state space. 

In other words, subsystems used to update an ISS must be described by at 
l e a s t one state v a r i a b l e which was an output state v a r i a b l e with respect to the 
previous ISS. This ensures that outputs from deterministic subsystems at a lower 
l e v e l w i l l be used as inputs at a higher l e v e l whenever po s s i b l e . 

Consider the following decomposition of the example subsystem described 
by state v a r i a b l e (a,b,c,d). 

2: {c,d} 
1: (a,b,c} 

State v a r i a b l e "c" i s an output state v a r i a b l e at l e v e l 1, and i t i s an input 
state v a r i a b l e at l e v e l 2. State v a r i a b l e "d" i s emergent at l e v e l 2. 
Therefore, t h i s decomposition s a t i s f i e s H e u r i s t i c s 4a and 4b. Now consider the 
following decomposition. 

2: (a.b.d) 
1: {a,b,c} 

While state v a r i a b l e "d" i s emergent at l e v e l 2, no output state v a r i a b l e from 
l e v e l 1 appears at l e v e l 2. Therefore, H e u r i s t i c 4b would lead to r e j e c t i o n of 
t h i s decomposition. 

When emergent state variables are used to form abstractions of other state 
v a r i a b l e s , some state variables may be "hidden". The concept of a hidden state 
v a r i a b l e i s analogous to "information hiding" as defined by Parnas (1972, p. 
1056) . Subsystems at higher l e v e l s i n the decomposition do not have to be 
"aware" of a l l state v a r i a b l e s considered by lower-level subsystems. For 
example, consider the p a y r o l l system. 
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2: 
1: 

{regular pay.overtime.total pay) 
{hours worked,pay rate.regular pay) 
{hours worked,pay rate,overtime} 

Here, the state v a r i a b l e s "hours worked" and "pay rate" are hidden with respect 
to " t o t a l pay". This means that an analyst, i n t e r e s t e d only i n the f i n a l value 
of " t o t a l pay", would be concerned with the view of the system shown at the top 
of Figure 10. The arrows between "regular pay" and " t o t a l pay" and between 
"overtime" and " t o t a l pay" indicate value dependencies (e.g. the f i n a l value of 
" t o t a l pay" depends on the value of "regular pay"). On the other hand, i f the 
analyst were interes t e d i n both " t o t a l pay" and "overtime", he or she would 
require the view shown at the bottom of Figure 10. No state v a r i a b l e s are hidden 
i n t h i s view of the system. The formal d e f i n i t i o n of a hidden state v a r i a b l e 
i s somewhat obscure, but i s equivalent to the above " i n t u i t i v e " d e s c r i p t i o n . 

V a n a f j l e ( s ) of i n t e r e s t : TOTAL PAY 

r e g u l a r pay 

o v e r t i m e 
t o t a l pay 

V a r i a b l e ( s ) of I n t e r e s t : TOTAL PAY, OVERTIME 

/ r e g u l a r pay 
t o t a l pay 

pay r a t e 

\ h o u r s worked 
o v e r t i m e 

Figure 10: Two possible views of a hypothetical p a y r o l l system. 
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D e f i n i t i o n : Hidden State Variable 

Let x be an emergent state v a r i a b l e at l e v e l n of a decomposition s a t i s f y i n g 
H e u r i s t i c s 4a and 4b. I f , at l e v e l n, the state v a r i a b l e y i s not used to 
describe any subsystem also described by x, then y i s HIDDEN with respect to x. 

3 . 4 . 2 . 4 . Subsystems should not show redundant dependencies 

The f i n a l value of an output state v a r i a b l e may be f u n c t i o n a l l y determined 
by more than one subsystem that i s deterministic with respect to some ISS. 
Consider the example system described by binary state v a r i a b l e s {a,b,c,d}. The 
second ISS, formed by updating the f i r s t ISS using the subsystem {a,b,c}, i s 
shown below. 

F i r s t Second Corresponding 
ISS ISS F i n a l Stable States 
a b e d --> a b e d --> a b e d 

The f i n a l value of output state v a r i a b l e "d" may be f u n c t i o n a l l y determined by 
e i t h e r {a,b,d) or {c,d}. However, a decomposition of the form 

2: {a.b.d} {c,d} 
1: {a,b,c} 

would not be considered desirable i n that i t indicates redundant updating at 
l e v e l 2. There i s no need to have "d" set by two subsystems. This observation 
leads to the following h e u r i s t i c . 

H e u r i s t i c 5 : The set of deterministic subsystems used to update an 

This i s not meant to imply that an analyst should not be made aware of 
a l t e r n a t i v e methods for c a l c u l a t i n g the f i n a l values of output state v a r i a b l e s . 

0 0 0 0 
0 1 0 0 
1 0 0 0 
1 1 0 0 

0 0 1 0 
0 1 0 0 
1 0 0 0 
1 1 1 0 

0 0 1 1 
0 1 0 0 
1 0 0 0 
1 1 1 1 

intermediate state space may not contain more than one 
subsystem described by a given output state v a r i a b l e . 
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The h e u r i s t i c only forces such a l t e r n a t i v e s to be shown i n d i f f e r e n t candidate 
decompositions of the same system. That i s , 

1: {a,b,c} {a,b,d} and 2: {c,d} 
1: {a,b,c} 

are possible decompositions of the example system. Both would be suggested by 
the s p e c i f i c a t i o n s analysis t o o l s . 

3 . 4 . 2 . 5 . Bad Subsystems 

Theorem 2 s p e c i f i e s a condition under which i t i s not necessary to scan 
the ISS i n order to see i f a subsystem behaves d e t e r m i n i s t i c a l l y . The next 
theorem serves a s i m i l a r function. Both are used by the s p e c i f i c a t i o n s analysis 
tools to speed the search for deterministic subsystems. 

Consider the f i r s t ISS of the example system. 

F i r s t Intermediate Corresponding 
State Space F i n a l Stable States 
a b c d --> a b c d 
0 0 0 0 0 0 1 1 
0 1 0 0 0 1 0 0 
1 0 0 0 1 0 0 0 
1 1 0 0 1 1 1 1 

The subsystem ( b . c . d ) i s not deterministic with respect to t h i s state space. 
Neither i s the subsystem formed by dropping a constant state v a r i a b l e . That i s , 
the subsystem (c.d) i s not deterministic e i t h e r . This r e s u l t may be generalized 
with the following theorem: 

Theorem 5: Let a subsystem X, which i s not deterministic with respect to some 
intermediate state space R, be described by the set of output state 
v a r i a b l e s 0 and constant state v a r i a b l e s C. I f X' i s another 
subsystem described e n t i r e l y by 0 and a subset of C, then X' w i l l 
not be a deterministic subsystem with respect to R. 

This means that a subsystem which i s not d e t e r m i n i s t i c cannot be made 
deter m i n i s t i c by dropping some of i t s constant state v a r i a b l e s . 
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3.4.3. Relationship to the H e u r i s t i c s of Simon and Ando 

The concept of a deterministic subsystem together with the above h e u r i s t i c s 
are r e l a t e d to the i n t u i t i v e notions of Simon and Ando (1961) as presented i n 
Chapter 1. Consider t h e i r o f f i c e b u i l d i n g example f i r s t discussed i n Chapter 
1. Simon and Ando consider each room to be a subsystem of the b u i l d i n g and each 
o f f i c e to be a subsystem of a room. They were concerned with describing the 
thermal equilibrium of the b u i l d i n g . Using the decomposition syntax of t h i s 
chapter, the b u i l d i n g system might be characterized by the following 
decomposition: 

3; t t r l t r N , tfo) 

2: ( t o l l , t o l J , t r l ) ... { t o N 1 , t o N k , t r N ) 

1: {..., ^11} • • • { . . . , t c l j ) • • • { • • • , t o N i ) • • • ( • • • > t o N k ) 

where: 
t b = equilibrium temperature of the o f f i c e b u i l d i n g 
t r i = equilibrium temperature of the i t h room 
t o i j = equilibrium temperature of the j t h o f f i c e of the i t h room 

The " t b " i s an emergent state v a r i a b l e at l e v e l 3 and each " t r " i s emergent at 
l e v e l 2. R e c a l l that Simon and Ando's necessary c r i t e r i a f o r a decomposable 
system were 

a. i n a short-term period, as a r e s u l t of stronger i n t e r n a l bonds, subsystems 
tend to reach an i n t e r n a l equilibrium "approximately" independently of one 
another, and 

b. i n a long-term period, when a whole structure evolves toward a global 
equilibrium state under the influence of weak in t e r a c t i o n s among 
subsystems, the i n t e r n a l equilibriums reached at the end of the short-term 
period are approximately maintained i n r e l a t i v e value. 
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Suppose a bond i s interpreted as a dependency between state v a r i a b l e s . Also 
suppose that bonds are d i r e c t e d . 5 0 I f the subsystems are det e r m i n i s t i c , there 
cannot be bonds between subsystems at the same l e v e l 5 1 , but there may be bonds 
to lower-level subsystems. However, the number of bonds between a subsystem and 
subsystems at other l e v e l s w i l l never be greater than the number of bonds within 
the subsystem. This can be shown as follows: 

1. H e u r i s t i c 1 ensures that each subsystem must be described by at l e a s t one 
output state v a r i a b l e . 

2. H e u r i s t i c 2 ensures that the values of the output state v a r i a b l e s are 
dependent on the values of a l l input state v a r i a b l e s . 

3. 1 and 2 imply that i f there are n state v a r i a b l e s describing the state of 
a subsystem, there must be at l e a s t n-1 bonds between them. 

4. There can never be more bonds to other subsystems than there are input 
state v a r i a b l e s ( i . e . at most n-1). 

5. Therefore, the r a t i o of the number of i n t e r n a l to external bonds must 
always be greater than or equal to 1. 

I f there are stronger l i n k s within a subsystem, than between that subsystem 
and the r e s t of the system, Simon and Ando argue i t i s l i k e l y to reach 
equilibrium f a s t e r than the whole system. I f the number of bonds i s assumed to 
be proportional to the strength of the l i n k , subsystems can never be more 
strongly l i n k e d together that they are i n t e r n a l l y . This s a t i s f i e s Simon and 
Ando's i n t e r a c t i o n strength requirement. Now suppose that a subsystem i s i n 
equilibrium when no d e s c r i p t i v e state v a r i a b l e i s an output state v a r i a b l e . That 
i s , a l l state v a r i a b l e s have attained t h e i r f i n a l values. A subsystem w i l l be 
i n equilibrium a f t e r i t i s used to perform an update. By d e f i n i t i o n , lower-
l e v e l subsystems w i l l always reach equilibrium before the system as a whole. 

5 For example, consider a system where the value of some state v a r i a b l e 
"b" depends on the value of some state v a r i a b l e "a" and not v i c e versa. A bond 
i s assumed to e x i s t between the subsystem which determines the value of "a" and 
the subsystem described by "b", but not the reverse. 

5 1 A bond between subsystems X and Y at the same l e v e l would imply that the 
value of some state v a r i a b l e i n Y i s dependent on the value of some other state 
v a r i a b l e i n X. Therefore, Y could not be a good subsystem, since the behaviour 
of a good subsystem i s predictable knowing only the values of i t s own state 
v a r i a b l e s . 
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This behaviour i s the same as that predicted by Simon and Ando f o r a decomposable 
system. 

3 .5 . Automation of Decomposition 

3.5 .1. An Algorithm f o r Decomposition 

An algorithm 5 2 employing the notions formally defined i n the previous 
sections has been developed. An implementation of t h i s algorithm comprises a 
large part of the computerized s p e c i f i c a t i o n s analysis t o o l s . Operation of the 
algorithm w i l l be i l l u s t r a t e d using a simple system. 

The algorithm requires as input an e x p l i c a t i o n of the system law i n the 
form of i n i t i a l unstable and f i n a l stable state p a i r s . The Decompose() procedure 
i s then c a l l e d r e c u r s i v e l y u n t i l a set of a l t e r n a t i v e decompositions has been 
generated. Each a l t e r n a t i v e w i l l be a deterministic decomposition, and i t w i l l 
s a t i s f y each of the h e u r i s t i c s described e a r l i e r i n t h i s chapter. 

Required functions: 
Outputs(R) 

- returns a l i s t of the output state v a r i a b l e s with respect to the 
intermediate state space R. 

Subsystems(R,Outputs,PreviousOutputs) 
- returns a l i s t of deterministic subsystems with respect to some 
intermediate state space R. Outputs i s a l i s t of output state 
v a r i a b l e s with respect to R. PreviousOutputs i s a l i s t of the 
output state variables describing the subsystems used i n the 
update which produced R. Each deterministic subsystem w i l l be 
described by a set of state v ar ia bl es such that: 
1) As required by H e u r i s t i c 1, the set of state v a r i a b l e s w i l l 

contain an element of the l i s t of state v a r i a b l e s assigned 
to Outputs. 

There i s no i n t e n t i o n to suggest that the algorithm described here 
represents the "best" way to operationalize the theory of decomposition. I t is 
possible that more e f f i c i e n t algorithms e x i s t . This p a r t i c u l a r algorithm is 
described to show that o p e r a t i o n a l i z a t i o n i s possible. The most important 
contributions of t h i s research are to be found i n the construction and analysis 
of system models. 
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2) As required by He u r i s t i c s 2 and 3, the set of state 
v a r i a b l e s w i l l be as small as possi b l e . 

3) As required by H e u r i s t i c 4b, the set of state v a r i a b l e s w i l l 
contain an element of the l i s t of state v a r i a b l e s assigned 
to PreviousOutputs (unless there are no previous outputs, as 
w i l l be the case with the f i r s t ISS). 

Theorem 5 i s used to further reduce the number of subsystems which 
must be tested by scanning the ISS. 

Subsets(Subsystems,Outputs) 
- returns a l i s t of a l l subsets of the set of subsystems assigned 
to Subsystems. Outputs i s a l i s t of the output state v a r i a b l e s 
used to describe the subsystems assigned to Subsystems. As the 
subsets w i l l be used to perform updates on some ISS, care must be 
taken to ensure H e u r i s t i c 5 i s not v i o l a t e d . That i s , no subset 
may contain two subsystems which are described by the same output 
state v a r i a b l e . 

Update(R,U) 
- returns the ISS formed by updating R with respect to the 
subsystems U. 

The body of the algorithm: 

Begin 
{Set R-L equal to the set of i n i t i a l unstable states. R X i s the ISS 
formed by applying each defined external event to each stable state of 
the system. The symbol [] refer s to a l i s t with no members. The f i r s t 
time the Decompose() procedure i s c a l l e d there are no outputs with 
respect to a previous l e v e l and no deterministic subsystems have been 
found.} 

Decompose ( R X , [ ] , [ ] ) ; 

End. 
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The decomposition procedure: 

Procedure: Decompose(R,PreviousOutputs.DecompSoFar) 
Arguments: 

R - an intermediate state space. 
PreviousOutputs - the output state v a r i a b l e s of the subsystems used for 

the update which produced R. 
DecompSoFar - a l i s t of the sets of subsystems used to obtain R from 

f i r s t ISS v i a a s e r i e s of updates. 
Begin 

Step 1: {Find the output state v a r i a b l e s with respect to the ISS.) 
Outputs := Outputs(R); 

Step 2: {If Outputs i s empty a l l the states i n the ISS are stable. 
This means that the sets of subsystems used to perform updates 
defines a deterministic decomposition.} 
I f Outputs i s empty 
Begin 

Output DecompSoFar as a possible decomposition; 
Ex i t ; 

End; 
Step 3 : {Find the deterministic subsystems with respect to the ISS 

subject to c e r t a i n conditions described f or the DetSubsystems() 
function.} 
DetSubsystems := Subsystems(R,Outputs,PreviousOutputs); 

Step 4 : {Find a l l the subsets of the set of dete r m i n i s t i c subsystems 
sui t a b l e f o r updating the ISS. These subsets must meet c e r t a i n 
c r i t e r i a as described f o r the Subsets() function.} 
PossibleUpdates := Subsets(DetSubsystems,Outputs); 

Step 5: {Perform a d e p t h - f i r s t search f o r deterministic 
decompositions. C a l l the Decompose() procedure r e c u r s i v e l y 
f o r each new ISS formed by updating the current ISS using the 
subsets i d e n t i f i e d i n step 4.} 
I f PossibleUpdates i s not empty then 
For each element U of PossibleUpdates do 
Begin 

R' := Update(R.U); 
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NewDecompSoFar := DecompSoFar u U; 
Decompose(R' .Outputs,NewDecompSoFar); 

End; 
End. 

As i l l u s t r a t e d by the following example, the algorithm w i l l f i n d a l l 
de t e r m i n i s t i c decompositions subject only to the rather elementary h e u r i s t i c s 5 3 

described e a r l i e r . The order of discovery of the decompositions does not imply 
any form of ranking. Even moderately complex systems are l i k e l y to have a very 
large number of possible decompositions. Further h e u r i s t i c s are needed to 
present the decompositions i n some meaningful order. 

3 . 5 . 2 . A Simple Example 

R e c a l l the hypothetical system c o n s i s t i n g of four interconnected l i g h t s . 
Light "a" i s connected i n series with "b" so that i f "a" i s on then "b" w i l l be 
on and i f "a" i s o f f , "b" w i l l be o f f . I f l i g h t "a" i s o f f then l i g h t "c" w i l l 
be on, and i f "a" i n on, l i g h t "d" w i l l be on. Only the state of l i g h t "a" may 
be set manually. The "on" state of a l i g h t w i l l be represented by the integer 
1 and the " o f f " state by 0. 

Sublaws describing the stable states of the system and the actions to be 
taken should the system f i n d i t s e l f i n an unstable state, are given below. 

Sublaws 
1. S t a b i l i t y Conditions: 

a b 
0 0 
1 1 
Corrective Actions: 
Conditions Actions 
a --> b 
1 1 
0 0 

2. S t a b i l i t y Conditions: 
a c 
0 1 
1 0 
1 1 

The h e u r i s t i c s are embedded i n the functions Subsystems() and Subsets(). 
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Corrective Action: 
Conditions Actions 
a --> c 
0 1 

3. S t a b i l i t y Conditions: 
a d 
1 1 
0 1 
0 0 
Corrective Action: 
Conditions Actions 
a --> d 
1 1 

There are two external events.. 

External Events 
1. Set a = 1 

2. Set a = 0 

The stable state space of t h i s system i s shown below. 

Stable States 
a b c d 
0 0 1 0 
0 0 1 1 
1 1 0 1 
1 1 1 1 

The f i r s t system r e l a t i o n may be obtained by applying the events "set a=l" 
and "set a=0" to each of the four stable states. This y i e l d s the f i r s t ISS or 
Rx. The f i n a l stable states corresponding to each of the states i n the f i r s t ISS 
are obtained by examining the response paths of the system (these paths follow 
d i r e c t l y from the sublaws and are l i s t e d i n Chapter 2 ) . 

F i r s t Intermediate Corresponding f i n a l 
State Space stable state 
a b c d — > a b c d 
0 0 1 0 0 0 1 0 
0 0 1 1 0 0 1 1 
0 1 0 1 0 0 1 1 
0 1 1 1 0 0 1 1 
1 0 1 0 1 1 1 1 
1 0 1 1 1 1 1 1 
1 1 0 1 1 1 0 1 
1 1 1 1 1 1 1 1 
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Four deterministic decompositions w i l l be suggested when the algorithm i s 
applied to t h i s system. The steps leading to the f i r s t deterministic 
decomposition are shown below. The f u l l s o l u t i o n , showing the generation of a l l 
four decompositions, i s included as Appendix H. Each step i s l a b e l l e d using the 
following convention: 

x(Ay|Lz) 

where 
x = Step number s t a r t i n g with 1 and increasing by 1 u n t i l the algorithm 

f i n i s h e s . 
y = Algorithm step number. 

z = The current l e v e l of recursion with respect to the DecomposeQ procedure. 

START 

1(A1|L1) Find the output state v a r i a b l e s with respect to the current 
ISS. 

The only state v a r i a b l e s which change t h e i r values between the f i r s t ISS and the 
corresponding f i n a l stable states are {b,c,d}. 

2(A2|L1) The set of output state v a r i a b l e s i s not empty. 

3(A3|LI) Find the deterministic subsystems. 

The f i r s t system r e l a t i o n was as follows: 

F i r s t Intermediate Corresponding f i n a l 
State Space stable state 
a b c d ---> a b c d 
0 0 1 0 0 0 1 0 
0 0 1 1 0 0 1 1 
0 1 0 1 0 0 1 1 
0 1 1 1 0 0 1 1 
1 0 1 0 1 1 1 1 
1 0 1 1 1 1 1 1 
1 1 0 1 1 1 0 1 
1 1 1 1 1 1 1 1 
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The smallest deterministic subsystems, with respect the the f i r s t ISS, which are 
described by at l e a s t one output state v a r i a b l e are {a,b}, {a,c,c}, and {a,d,d}. 
Notice that state v a r i a b l e s "c" and "d" are both inputs and outputs i n t h e i r 
respective subsystems. That i s , the f i n a l values of "c" and "d" are dependent 
on t h e i r i n i t i a l values. 

4(A4|L1) Find subsets of the dete r m i n i s t i c subsystems f o r ISS update. 

The subsets of t h i s set of deterministic subsystems are 
{{a,b}} ({a.c.c}} {{a,d,d}} 
{{a,b},{a,c,c}} {{a,b},{a,d,d}} {{a,c,c},(a,d,d)} 
{(a,b),{a.c.c},{a,d,d}} 

5(A5|L1) Update the current ISS using one subset of the set of 
deterministic subsystems, and c a l l the Decompose() procedure. 

The f i r s t ISS w i l l be eventually updated using a l l the sets found i n step 5. 
The f i r s t set selected i s {{a,b}}. The second ISS created by t h i s update i s as 
shown below. 

F i r s t 
ISS 
a b e d --> 
0 0 1 0 
0 0 1 1 
0 1 0 1 
0 1 1 1 
1 0 1 0 
1 1 0 1 
1 1 0 1 
1 1 1 1 

Second 
ISS 
a b e d --> 
0 0 1 0 
0 0 1 1 
0 0 0 1 
0 0 1 1 
1 1 1 0 
1 1 1 1 
1 1 0 1 
1 1 1 1 

Corresponding f i n a l 
stable states 
a b e d 
0 0 1 0 
0 0 1 1 
0 0 1 1 
0 0 1 1 
1 1 1 1 
1 1 1 1 
1 1 0 1 
1 1 1 1 

6(A1|L2) Find the output state v a r i a b l e s with respect to the current 
ISS. 

The only state variables with values which change between the second ISS and the 
corresponding f i n a l stable states are {c,d}. 

7(A2|L2) The set of output state v a r i a b l e s i s not empty. 
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8(A3 |L2) Find the deterministic subsystems with respect to the second 
ISS. 

The only deterministic subsystems described by at l e a s t one output state v a r i a b l e 
and one output state v a r i a b l e from the subsystems used i n the l a s t update, are 
{b,c,c} and {b,d,d}. Notice that while {a,c,c} and {a,d,d} are s t i l l 
d e t e rministic subsystems, they are not described by an output state v a r i a b l e from 
the subsystems used to create the second ISS ( i . e . they are not described by 
state v a r i a b l e b). 

9(A4|L2) Find subsets of the deterministic subsystems f o r ISS update. 

The subsets of t h i s set of deterministic subsystems are 
{{b,c,c},{b,d,d}} {{b,c,c}} {{b,d,d}} 

10(A5|L2) Update the current ISS using one subset of the set of 
deterministic subsystems, and c a l l the Decompose() procedure. 

The second ISS w i l l be eventually updated using a l l the sets found i n step 9. 
The f i r s t set selected i s {{b,c,c),{b,d,d)}. The t h i r d ISS created by th i s 
update i s as shown below. 

Second Th i r d Corresponding f i n a l 
ISS ISS stable states 
a b e d --> a b e d --> a b e d 
0 0 1 0 0 0 1 0 0 0 1 0 
0 0 1 1 0 0 1 1 0 0 1 1 
0 0 0 1 0 0 1 1 0 0 1 1 
0 0 1 1 0 0 1 1 0 0 1 1 
1 1 1 0 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 
1 1 0 1 1 1 0 1 1 1 0 1 
1 1 1 1 1 1 1 1 1 1 1 1 

l l ( A l | L 3 ) Find the outputs with respect to the current ISS. 

There are no output state v a r i a b l e s . 
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12(A2 |L3) Since there are no output state v a r i a b l e s , output a 

deterministic decomposition. 

The sets of subsystems used to transform the f i r s t ISS into a stable states 
defines a decomposition. The second ISS was formed using {a,b}. The t h i r d was 
formed using {b,c,c} and {b,d,d}. Therefore, the f i r s t discovered decomposition 
i s therefore 

2: {b,c,c} {b,d,d} 

1: U.bJ 

This invocation of the Decompose() procedure i s now complete. Execution w i l l 
continue by updating the second ISS using the next subset of the set of 
deterministic subsystems i d e n t i f i e d at Step 9. 

{The example i s completed i n Appendix H.} 

A f u l l l i s t of the decompositions produced by the decomposition algorithm i s 
shown below. 

Decomposition #1 
2: {b,c,c} {b,d,d} 
1: {a,b} 

Decomposition #2 
2: {b,d,d} 
1: {a,b} {a,c,c} 

Decomposition #3 

2: {b,c,c) 
1: {a,b} {a,d,d} 

Decomposition #4 
1: {a,b} {a,c,c} {a,d,d} 
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Each of these decompositions represents a d i f f e r e n t view of the same 
system. The s u i t a b i l i t y of a p a r t i c u l a r decomposition w i l l depend upon such 
considerations as: 

1) Which state variables i s the analyst inte r e s t e d in? ( i . e . What i s the goal 
of the system?), and 

2) What maintenance changes are anticipated? (Maintenance considerations w i l l 
be discussed i n the next chapter.) 

Decomposition . #1 allows state 
v a r i a b l e "a" to be hidden with respect to 
outputs "c" and "d". An analyst 
i n t e r e s t e d i n state v a r i a b l e s "c" and "d" 
need only be concerned with the view of 
the system i l l u s t r a t e d i n f i r s t part of 
Figure 10. The arrows indicate value 
dependencies. For example, the arrow 
between "a" and "c" means that the f i n a l 
value of "c" depends on the value of "a". 

Decompositions //2 and #3 cannot hide 
any information from an analyst interested 
i n "c" and "d". In neither decomposition 
i s "a" hidden with respect to both "c" and 

Figure 11: Three possible views of 
"d". For example, decomposition #2 y i e l d s the four l i g h t s system, 
the view shown i n the centre of Figure 10 
with respect to "c" and "d". 

Decomposition #4 shows that the f i n a l values of state v a r i a b l e s "b", "c", 
and "d" can be ca l c u l a t e d concurrently i f the i n i t i a l values of {a}, {a,c}, and 
{a,d} are known. I t i s also the decompsition inherent i n the sublaws. This 
decomposition y i e l d s the view shown i n the bottom of Figure 10 with respect to 
"c" and "d". In t h i s case, state v a r i a b l e "b" i s hidden with respect to "c" and 
"d". I t i s not immediately c l e a r whether decomposition #1 or #4 i s superior. 

a) Decomposition #1: 

b) Decomposition #2: 

b E> d 

O Decomposition #4: 
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3 . 5 . 3 . Importance o f the E x t e r n a l Event Space 

Proper e x p l i c a t i o n of the events which may act upon the system from the 
environment i s c r u c i a l . For example, consider the following simple example. 
The system i s intended to model the addition of two continuous quantities "a" 
and "b". State v a r i a b l e "c" contains the r e s u l t of the addition. A l l three 
state v a r i a b l e s are modelled as having only two values: zero and p o s i t i v e . 

S t a b i l i t y Conditions: 
a b c 
pos - pos 

pos pos 
0 0 0 
Corrective Actions: 
Conditions Actions 
a b --> c 
pos - pos 

pos pos 
0 0 0 

The only i n t u i t i v e l y reasonable decomposition for t h i s system i s as 
follows: 

1: {a,b,c} 

However, i f only one external event i s defined as 

Set a = pos 

the s p e c i f i c a t i o n s analysis tools w i l l y i e l d the following decomposition: 

1: {a,c,c} 

The defined external event i s not s u f f i c i e n t to force the system to e x h i b i t 
a l l of i t s dynamic properties. As a r e s u l t , knowledge of the i n i t i a l values 
of "a" and "c", as well as the value of "a" a f t e r the a p p l i c a t i o n of the 
external event, i s s u f f i c i e n t to p r e d i c t the f i n a l value of "c". Therefore, 
{a,c,c} i s a deterministic subsystem. Defining external events 
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1. Set a = pos 
2. Set a = 0 

w i l l y i e l d the i n t u i t i v e l y expected decomposition . 
The four l i g h t example exhibits s i m i l a r behaviour. I f the only defined 

external event i s 

Set a = 1 

the s p e c i f i c a t i o n s analysis tools w i l l i d e n t i f y two possible decompositions. 

Decomposition 1: 
1: {a,b} {a,d,d} 

Decomposition 2: 
2: {b,d,d} 
1: U,b} 

The rules whose r e s p o n s i b i l i t y i t i s to set the value of state v a r i a b l e "c" are 
never activated. The value of "c" i s never changed, therefore "c" cannot be 
i d e n t i f i e d as an output state v a r i a b l e . 

To help ensure that the defined external events are s u f f i c i e n t to force 
the system to e x h i b i t a l l behaviour implied by the defined state v a r i a b l e values, 
they should cause the af f e c t e d state variables to assume a l l of t h e i r defined 
values. The s p e c i f i c a t i o n s analysis tools perform a t e s t to ensure that t h i s 
i s so. I f the te s t f a i l s , a warning message i s issued to the analyst. This 
h e u r i s t i c i s based on the assumption that i f an analyst defines several values 
for a state v a r i a b l e a f f e c t e d by an external event, he or she i s interes t e d i n 
seeing that state v a r i a b l e assume each of these values as a r e s u l t of external 
events 5 5. 

Defining further external events to a l t e r the value of state v a r i a b l e 
"b" has no e f f e c t on the generated decomposition. No a d d i t i o n a l decomposition 
information i s provided by such an event. 

5 5 State v a r i a b l e s are not allowed to change t h e i r values twice during any 
response to an external event. Therefore, the values of state v a r i a b l e s affected 
by external events can only be set by external events. The reason f o r t h i s rule 
i s described i n t h i s chapter under the heading "Intermediate State Variables". 
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3 . 4 . 4 . Decomposition of the P a y r o l l System 

The simple " i n t e r a c t i v e " p a y r o l l system described i n the previous chapter 
decomposes as shown below. To save space, v a r i a b l e names have been abbreviated 
as indicated. There are seven possible decompositions 5 6. 

State Variable Abbreviations 

hours = hours worked 
emp_p = employee p o s i t i o n 
sales = sales 
com = commissions 
total_pay = t o t a l pay 

pay_r = pay rate 
emp_t = employee type 
base = base pay 
over = over time pay 

P a y r o l l System Decompositions 

Decomposition #1 

1: {emp_t,emp_p,hours,over} 1emp_t.emp_p.pay_r.hours.sales.total_pav) 
{pay_r.hours.base) {emp_t,emp_p,sales.com) 

Decomposition #2 

2: {emp_t,emp_p,pay_r,hours,com,totalpav) 

1: (emp_t.emp_p.hours.over) {pay_r.hours.base) (emp_t.emp_p.sales.com) 

Decomposition #3 

2: {emp_t,emp_p.hours,sales.base.total_pay) 
1: {emp_t,emp_p,hours,over) (pay_r.hours.base) (emp_t.emp_p.sales.com) 

Decomposition #4 

2: {emp_t,emp_p.hours.base,com.total_pav) 
1: {emp_t,emp_p,hours,over) (pay_r.hours.base) (emp_t.emp_p.sales.com) 

5 6 Careful examination of these decompositions w i l l reveal that #1 through 
#6 may be deduced from #7 by simple substitutions of state v a r i a b l e s . This issue 
w i l l be addressed i n Chapter 4 . 
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Decomposition #5 

2: f emp_t.emp_p.sales.base.over.total_pay) 

1: (emp_t.emp_p.hours.over) (pay_r.hours.base) (emp_t.emp_p.sales.com) 

Decomposition #6 
2: (pavr.hours.over.com.totalpay) 
1: {emp_t.emp_p.hours.over) (pay_r.hours.base) (emp_t.emp_p.sales.com) 

Decomposition #7 

2: (base.over.com.total_pay) 
1: (emp_t.empp.hours.over) (pay_r.hours.base) (emp_t.emp_p.sales.com) 

o v e r 

h o u r s 

emp_p 

emp_t 

over 

t o t a l _ p a y 

com 

o v e r 

b a s e 

base 

b a s e 

h o u r s 

p a y _ r 

com 

com 

s a l e s 

emp_p 

emp_t 

Figure 12: A diagrammatic representation of Decomposition #7 for the 
" i n t e r a c t i v e " p a y r o l l system. This i s the decomposition r e f l e c t e d 
i n the sublaws. 

Although i t i s used i n the system model, the "benefits" state v a r i a b l e 
does not appear i n any of the decompositions of t h i s system. Since i t has only 
one possible value, i t s value cannot change. Therefore, "benefits" i s not an 
output state v a r i a b l e . Also, i t i s not included i n the c a l c u l a t i o n of any other 
state v a r i a b l e included i n the model. Therefore, i t does not appear as an input 
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state v a r i a b l e i n any deterministic subsystem. However, suppose that for some 
reason " t o t a l pay" were to include "benefits". The value of the state v a r i a b l e 
"total_pay" would be dependent on the value of "benefits", and the model would 
have to be modified to r e f l e c t t h i s dependency. For example, i f the "benefits" 
state v a r i a b l e could have values "0" and "nz", the rules describing the 
c a l c u l a t i o n of " t o t a l pay" would have to be modified as shown below. I t a l i c i z e d 
text indicates the changes to the model described i n Appendix 6. 

/* c a l c u l a t e t o t a l pay */ 
dynamic("calculate t o t a l pay", 

[v(base,nz)], 
[v(total_pay,nz)]) . 

dynamic("calculate t o t a l pay", 
[v(over.nz)], 
[v(total_pay,nz)]) . 

dynamic("calculate t o t a l pay", 
[v(com,nz)], 
[v(total_pay,nz)]). 

dynamic("calculate total pay", 

[v(ben,nz)], 

[v(total_pay,nz)]). 

dynamic("calculate t o t a l pay", 
[v(base,"0"),v(over,"0"),v(com,"0"),v(ben,"0")] , 

[v(total_pay,"0")]). 

The s p e c i f i c a t i o n s analysis tools would now suggest decompositions which 
included "benefits" as an input to the " t o t a l pay" subsystem. 

The "batch" p a y r o l l system, described i n the previous chapter, decomposes 
as above. However, the "batch" model gives r i s e to many decompositions which 
are not generated using the " i n t e r a c t i v e " model 5 7. The s p e c i f i c a t i o n s analysis 
tools produce a t o t a l of 168 decompositions. A l l suggested decompositions of 
the "batch" p a y r o l l system have been included as Appendix I. Most are a d i r e c t 
r e s u l t of the batch o r i e n t a t i o n . The state v a r i a b l e "end" i s not the only state 

A "benefits" subsystem i s included i n the "batch" model. As shown i n 
the appendix, t h i s subsystem i s independent of a l l other subsystems and i s not 
responsible f o r the increase i n the number of a l t e r n a t i v e decompositions. 
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v a r i a b l e which may be used to indicate the end of the period. Any output state 
v a r i a b l e which has had i t s value c a l c u l a t e d may be used to t r i g g e r the 
c a l c u l a t i o n of another output state v a r i a b l e . For example, consider the 
following decomposition: 

Decomposition #2 
2: {payrate.hours.benefits.base) 
1: (end.benefits) (end.emp_t.emp_p.sales.com) 

{end,emp_t,emp_p,hours,over} 
{end,emp_t,emp_p,pay_rate.hours,sales.total_pav) 

The c a l c u l a t i o n of a l l output state v a r i a b l e s at l e v e l 1 i s t r i g g e r e d by the 
value of the state v a r i a b l e "end". This f a c t i s ind i c a t e d by the i n c l u s i o n of 
"end" i n each subsystem at that l e v e l . The subsystem at l e v e l 2 indicates, as 
expected, that "base pay" may be c a l c u l a t e d from "pay rate" and "hours worked". 
However, the c a l c u l a t i o n of "base pay" i s triggered by the c a l c u l a t i o n of 
"benefits". As soon as the value of "benefits" becomes non-zero, "base pay" i s 
ca l c u l a t e d . Generation of decompositions of t h i s form i s not considered to be 
an error. 

3 . 5 . 5 . Intermediate State Variables 

Consider a modification of the " i n t e r a c t i v e " p a y r o l l system. Assume the 
company makes some changes i n i t s p a y r o l l p o l i c y (Wand and Weber, 1989). 

1. Both o f f i c e s t a f f and sales employees are e n t i t l e d to both overtime pay 
and sales commissions. 

2. An o f f i c e employee cannot receive more i n commissions than i n overtime. 
3. A sales employee cannot receive more i n overtime than i n commissions. 

An analyst might be tempted to define a system which, a f t e r c a l c u l a t i n g both 
commissions and overtime, modifies these amounts to r e f l e c t the r e s t r i c t i o n s 
r e s u l t i n g from changes 2 and 3. The sublaws could s t i l l pass the tests f or l o c a l 
completeness and consistency. Response paths could be determined and the f i r s t 
ISS could be created. The decomposition algorithm could be applied, but none 
of the r e s u l t i n g decompositions would indicate the c a l c u l a t i o n of the 
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intermediate values f o r "overtime" and "commissions". That i s , no decompositions 
of the following form would be found. (Notice that "overtime" and "commissions" 
are output state variables at two d i f f e r e n t l e v e l s of the decomposition.) 

n+2: {....commissions.overtime.total_pay) 
n+1: {employee_type,commissions,overtime.commissions.overtime) 
n: (....hours.overtime) (....sales.commissions) 

Instead, subsystems at l e v e l s n and n+1 would be combined together as shown: 

m+1: (....commissions.overtime.totalpav) 
m: {....hours,sales,employee_type.commissions.overtime) 

This w i l l happen for the following reason. When an update i s performed on an 
ISS, the state v a r i a b l e s i n each of the updating subsystems are set to t h e i r 
f i n a l values. There i s no way to i d e n t i f y the intermediate values of "overtime" 
and "commissions" which would have been ca l c u l a t e d at l e v e l n. Only by updating 
"commissions" and "overtime" to t h e i r intermediate values could the two-step 
nature of the c a l c u l a t i o n be discovered. Unfortunately, knowledge of these 
intermediate values i s not contained i n the information input to the 
decomposition algorithm. The only information a v a i l a b l e to the algorithm i s the 
f i r s t system r e l a t i o n ( i . e . the l i s t of i n i t i a l unstable states and t h e i r 
corresponding f i n a l stable s t a t e s ) . 

This observation may be stated more generally. 

The s p e c i f i c a t i o n s analysis tools w i l l never suggest a 
decomposition where a state v a r i a b l e i s an output state 
v a r i a b l e at more than one l e v e l of a system. 

I f an analyst wishes to show the "multiple-step" nature of a c a l c u l a t i o n , 
he or she must i d e n t i f y INTERMEDIATE STATE VARIABLES. In the above example, 
such a state v a r i a b l e might be c a l l e d "additional_payments". Suppose "employee 
type", "commissions" and "overtime" are used to c a l c u l a t e " a d d i t i o n a l 
payments". Also suppose "additional payments" i s input to the subsystem 
c a l c u l a t i n g " t o t a l pay". The algorithm would i d e n t i f y a decomposition with the 
following form. 
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n+2: {...,additional_payments.total_pav) 
n+1: {employee_type,commissions,overtime.additionalpayments) 
n: (....hours.overtime) (....sales.commissions) 

total_pay 
base 

add_pay 

base add_pay 

base 
pay_r 
bours 

add_pay 
over 

emp_t 
com 

over 
bours 
emp_p 

com 
sales 
emp_p 

Figure 13: 

The required use of 
intermediate state v a r i a b l e s i s 
not a r e s t r i c t i o n on the 
gene r a l i t y of SELMA. In fac t , 
i t could be argued that the 
commissions and overtime amounts 
be f o r e and a f t e r the 
r e s t r i c t i o n s are applied are 
not the same properties of the 
system. That i s , "commissions 
before r e s t r i c t i o n s " i s not the 
same state v a r i a b l e as 
" c o m m i s s i o n s a f t e r 
r e s t r i c t i o n s " . Perhaps an 
analyst wishing to model them as 
the same state v a r i a b l e i s 
a c t u a l l y making a mistake. This 

mistake might be caused by thinking about the system i n procedural rather than 
sublaw oriented terms. Thus the required use of intermediate state variables 
can be seen as a kind of semantic i n t e g r i t y check. That i s , i f none of the 
decompositions suggested by the tools e x h i b i t the structure i n t u i t i v e l y expected 
by the analyst, some state variables may be serving dual rol e s and a d d i t i o n a l 
state v a r i a b l e s may be required. 

A l i s t i n g of the formal model f or the modified p a y r o l l system has been 
included as Appendix J . A t o t a l of 48 decompositions are suggested by the 
s p e c i f i c a t i o n s analysis t o o l s . These are also included as Appendix K. The 
decomposition matching the structure of the sublaws i s shown i n diagrammatic form 
i n Figure 13. The f a c t that so many decompositions are generated h i g h l i g h t s the 
need f o r a d d i t i o n a l h e u r i s t i c s to reduce the s e l e c t i o n task faced by a designer. 
Some a d d i t i o n a l h e u r i s t i c s w i l l be discussed i n the next chapter. 

A diagrammatic representation 
of Decomposition #27 for the 
modified p a y r o l l system. This 
i s the decomposition r e f l e c t e d 
i n the sublaws. 
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3.6. Conclusions 

System decomposition can be performed by considering the manner i n which 
the values of the state variables describing the system change under the 
influence of external events. A theory of decomposition embodying the concepts 
of emergent and hidden system state v a r i a b l e s has been developed. An algorithm 
for decomposing systems u t i l i z i n g Wand and Weber's requirement f o r deterministic 
decompositions has been described. 

The goal of t h i s theory of decomposition i s quite d i f f e r e n t from the 
formalisms of HOS (Hamilton and Zeldin, 1976) and M i l i et a l . (1986). These 
formalisms focus on ensuring that given subsystems are combined i n a consistent 
manner. They are not concerned with the i d e n t i f i c a t i o n of subsystems. 
Computerized tools implementing t h e i r ideas would be "passive" i n nature. That 
i s , the tools would merely t e s t the consistency of given decompositions. Myers 
(1978) and Yourdon and Constantine (1979) were concerned with developing a 
methodology f o r a c t i v e l y f i n d i n g deterministic subsystems. S i m i l a r l y , the 
s p e c i f i c a t i o n s analysis tools are "active" i n the sense that they can suggest 
decompositions for a system. However, while the techniques of Myers and Yourdon 
and Constantine are informal and depend to a great extent on human judgement, the 
algorithm used by the s p e c i f i c a t i o n s analysis tools i s derived from a theory of 
decomposition and may be completely automated. 

Two of the three basic forms of decomposition i d e n t i f i e d i n Chapter 1 are 
supported by the theory. Wand and Weber's requirement i s used i n conjunction 
with several h e u r i s t i c s to i d e n t i f y subsystems which are candidates for p a r a l l e l 
decomposition. The processes 5 8 associated with the subsystems at any l e v e l of 
a decomposition may be executed i n p a r a l l e l . No subsystem w i l l have an 
associated process which depends on the output of another subsystem at the same 
l e v e l . The update i s the essence of sequential decomposition. The ISS formed 
by an update using c e r t a i n subsystems, represents the states of the system a f t e r 
the processes associated with those subsystems have been completed. P a r a l l e l 
decomposition may be performed following the construction of the f i r s t ISS or 
a f t e r any update. A possible i n t e r p r e t a t i o n of the t h i r d generic form of 
decomposition, namely co n d i t i o n a l decomposition, i s discussed i n the Chapter 5. 

5 8 The r e l a t i o n a l form ( i e . i n i t i a l / f i n a l state p a i r s ) of these processes 
could be obtained d i r e c t l y from the system r e l a t i o n with which the subsystem i s 
associated. 
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The decompositions generated by the s p e c i f i c a t i o n s analysis tools could 
provide a basis for e i t h e r analysis of the system or design of some a r t i f a c t 
intended to represent the system (as i n the case of a computerized information 
system). For analysis, the subsystems i d e n t i f i e d by the s p e c i f i c a t i o n s analysis 
tools w i l l be guaranteed to behave i n a deterministic way. This w i l l reduce 
the cognitive load required to comprehend the operation of the e n t i r e system. 
For design, the decomposition can provide the basis of a hierarchy of program 
modules as required by structured programming. As well, a deterministic 
subsystem i d e n t i f i e d by the s p e c i f i c a t i o n s analysis tools could be e a s i l y 
implemented as an object i n an object-oriented programming system. The state 
v a r i a b l e s describing the subsystem would comprise the state vector of an object 
type. The processes or methods encapsulated with t h i s state vector could be 
described by a sublaw s p e c i f y i n g the r e l a t i o n s h i p s between state v a r i a b l e s . 

The example systems considered i n t h i s section were quite small. I t i s 
l i k e l y that larger systems w i l l give r i s e to even greater numbers of 
d e t e r m i n i s t i c decompositions. The next chapter suggests a "ranking" h e u r i s t i c 
which could be used to present the analyst with the "best" decompositions f i r s t . 
Another h e u r i s t i c for reducing the s i z e of the decomposition search space i s also 
suggested. 
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Chapter 4 : System Complexity. Maintenance, and Goals 

4 . 1 . Genera l 

The l a s t chapter showed how the i n t e r n a l s t r u c t u r e o f a system may be 

d i s c o v e r e d g i v e n o n l y the s t a t e s r e s u l t i n g from the a c t i o n o f e x t e r n a l events . 

Th i s i n t e r n a l s t r u c t u r e i s found through the use o f a decompos i t ion a l g o r i t h m 

based on a number o f h e u r i s t i c s . The h e u r i s t i c s serve to l i m i t the number o f 

" p o s s i b l e " decomposi t ions which must be cons ide red by the a n a l y s t . However, as 

i l l u s t r a t e d by the s imple p a y r o l l system examples, these h e u r i s t i c s s t i l l a l l o w 

a l a r g e number o f decomposi t ions . Some method o f r a n k i n g these decomposi t ions 

i s r e q u i r e d so tha t on ly the bes t need be presented to the a n a l y s t . 

To t h i s p o i n t , a l l subsystems produced by the s p e c i f i c a t i o n s a n a l y s i s t o o l s 

have been cons ide red to be e q u a l l y s u i t a b l e as bases f o r the c o n s t r u c t i o n or 

unders tanding o f a system. For example, the subsystems 

{emp_p ,emp_ t ,hou r s ,pay_ r , s a l e s , t o t a lpay} 

and 

{base ,add_pay. to ta l_pay) 

where hours = hours worked 

emp_p = employee p o s i t i o n 

s a l e s = amount o f s a l e s 

t o t a l _ p a y = t o t a l pay 

pay_r = pay r a t e 

emp_t = employee type 

base = base pay 

add_pay = a d d i t i o n a l payments 

suggested f o r the mod i f i ed p a y r o l l system, are cons ide red to d e s c r i b e e q u a l l y 

s u i t a b l e modules f o r the c a l c u l a t i o n o f t o t a l pay. The f i r s t subsystem suggests 

c a l c u l a t i o n o f t o t a l pay g i v e n on ly the i n i t i a l i npu t s (or the s t a t e v a r i a b l e s 

a f f e c t e d by e x t e r n a l even t s ) , whereas the second suggests making use o f the 

in t e rmed ia t e v a l u e s : base pay and a d d i t i o n a l payments. Most a n a l y s t s would agree 

tha t implementa t ion (or unders tanding) o f the f i r s t subsystem would be more 

d i f f i c u l t than the second. The subsystem c a l c u l a t i n g t o t a l pay from i n i t i a l 

i npu t s would be more compl ica ted than the subsystem u t i l i z i n g the in te rmedia te 

v a l u e s . There fore , the second subsystem l i k e l y desc r ibes a s u p e r i o r subsystem 
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i n that i t s complexity i s less than the f i r s t . Unfortunately, the intermediate 
values of base pay and a d d i t i o n a l payments must be c a l c u l a t e d before the second 
subsystem may begin c a l c u l a t i o n of t o t a l pay. These lower-level subsystems might 
increase the complexity of the system beyond the complexity of a c a l c u l a t i o n from 
i n i t i a l inputs. A quantitative measure of decomposition complexity i s required 
so that d i f f e r e n t candidate decompositions may be compared and ranked. 

This chapter i s p r i m a r i l y concerned with the s e l e c t i o n of such a complexity 
measure. As there i s no general consensus on the meaning of the term 
"complexity", the chapter w i l l begin with a discussion of some necessary 
c h a r a c t e r i s t i c s f or a measure of complexity s u i t a b l e f or use with systems 
modelled using SELMA. The f i n a l s e l e c t i o n w i l l be r a t i o n a l i z e d by t r a c i n g the 
l o g i c a l development of the measure beginning with Ashby's (1956) d e f i n i t i o n of 
system " v a r i e t y " . Variety w i l l be modified to provide some a d d i t i o n a l desirable 
properties. A f t e r a logarithmic transformation, the modified v a r i e t y measure 
i s i d e n t i c a l to "entropy" as defined by Shannon (1948). While entropy w i l l be 
shown to be unsuitable as a measure of complexity, i t s problems can be overcome 
with a simple modification. This modification was f i r s t made by Hellerman 
(1972) . He c a l l e d the r e s u l t i n g measure "computational work" 5 9. Computational 
work has been adopted as the measure of complexity for t h i s research. In 
summary, r a t i o n a l i z a t i o n of the complexity measure s h a l l c o n s i s t of four major 
stages: 

1. Ashby's Va r i e t y 
2. Modified V a r i e t y 
3. Shannon's Entropy 
4. Hellerman's Computational Work 

Hellerman's choice of the l a b e l "computational work" i s i n many ways 
unfortunate. His measure does not r e f l e c t the number of machine operations 
required to perform a c a l c u l a t i o n . This sort of machine work would be highly 
implementation dependent. Hellerman uses a m u l t i p l i c a t i o n subroutine as an 
example. The subroutine could c a l c u l a t e 38 * 73 by adding 73 to i t s e l f 38 times. 
However, there are easier ways to perform m u l t i p l i c a t i o n which require f a r less 
machine work. Hellerman was interested i n f i n d i n g a measure of the d i f f i c u l t y 
of a c a l c u l a t i o n which would be implementation independent. He also notes that, 
i n the Computer Science l i t e r a t u r e , complexity i s a quantity which varies 
d i r e c t l y with work, "and so may be i d e n t i f i e d , loosely, with i t " (Hellerman, 
1972, p. 439). 

103 



A p p l i c a t i o n of the complexity measure w i l l be demonstrated using the 
modified p a y r o l l system example of the previous chapter. The complexity of 
a n t i c i p a t e d future changes to a system (or system maintenance) are expected to 
influence design. These influences w i l l be i l l u s t r a t e d using the modification 
of the p a y r o l l system described i n the previous chapter. The chapter w i l l close 
with the d e f i n i t i o n of another h e u r i s t i c f o r pruning the decomposition search 
tree. This h e u r i s t i c uses the measure of complexity and depends upon knowledge 
of the system's purpose or goal. 

4 . 2 . Complexity 

The Oxford Dictionary defines something as complex i f i t "consists of 
parts". Most people would agree that something i s complex i f i t i s made up of 
many parts. A block of ice i s usually not considered to be a complex object, 
whereas a space shuttle i s very complex. Thus "many-partedness" does seem to 
be an e s s e n t i a l ingredient f or complex things. However, a mountain need not be 
considered to be a complex object even though i t consists of a very large number 
of i n d i v i d u a l pieces of rock, and the block of i c e would be a complex object i f 
the motions of i n d i v i d u a l electrons and n u c l e i were considered. C l e a r l y , 
although many-partedness i s important, i t must be many-partedness at the l e v e l 
of a b s t r a c t i o n where the behaviour of i n t e r e s t i s manifested. That i s , i f we 
are only concerned with the s t a t i c behaviour of mountains, they are indeed simple 
things. However, i f we are interested i n patterns of erosion, such as 
la n d s l i d e s , or even geological u p l i f t , then mountains become f a i r l y complex 
systems of i n t e r a c t i n g s t r a t a and f a u l t s . S i m i l a r l y , i f we are intere s t e d i n 
the gross (or emergent) properties of a block of i c e , the block may be treated 
as a simple thing. But i f we are concerned with "lower-level" properties of i c e , 
such molecular bonding v i a electron sharing, the same block must be regarded as 
a complex system. Therefore, the following necessary c r i t e r i o n f o r a d e f i n i t i o n 
of complexity i s proposed. 

Complexity must be r e l a t e d to the behaviour of a system. 
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Any acceptable d e f i n i t i o n must recognize that complexity i s r e l a t e d to the 
dynamics of the system 6 0. 

4.2.1. Var i e t y 

The f i r s t step i n the r a t i o n a l i z a t i o n of a measure of complexity w i l l be 
v a r i e t y . Ashby (1956) notes that most systems of i n t e r e s t have outputs. He 
defined v a r i e t y to be the number of d i f f e r e n t output states exhibited by a 
system. For example, consider the following two subsystems from the modified 
p a y r o l l system. A table of input and output states f o r each subsystem i s 
provided. 

Subsystem #1: (hours.pay_r.base) 

Base pay w i l l only be non-zero (abbreviated "nz") i f the pay rate i s non
zero and the hours worked i s non-zero ( i . e . Hours worked i s e i t h e r less 
than the l i m i t f o r regular hours "reg", or s u f f i c i e n t f o r overtime pay 
" o t " ) . 

Inputs Output 

hours pay_r base 

0 0 0 
0 nz 0 
reg 0 0 
reg nz nz 
ot 0 0 
ot nz nz 

Notice that t h i s requirement i s somewhat at odds with the common usage 
of the term "complex". Many people would consider an assembly c o n s i s t i n g of two 
parts to be more complex than an assembly c o n s i s t i n g of only one part. Further, 
they might continue to support t h i s ranking even i f the assemblies exhibited no 
behaviour other than simple "existence". The notion of complexity, as presented 
i n t h i s research, i s more r e s t r i c t i v e i n that i t does not address t h i s sort of 
" s t a t i c complexity". I t w i l l be argued that only "dynamic complexity" i s 
important i n assessing the q u a l i t y of a decomposition. 
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Subsystem #2: {emp_p,sales,com) 

Commissions w i l l only be non-zero i f the employee has a regular p o s i t i o n 
(abbreviated "r") as opposed to a management p o s i t i o n (abbreviated "m") 
and some sales have been made. 

Inputs Output 

emp_p sales com 

r 0 0 
r nz nz 
m 0 0 
m nz 0 

The v a r i e t y of both subsystems i s 2 since both base pay and commissions may 

e x h i b i t two d i s t i n c t values. 
V a r i e t y i s at l e a s t s i m i l a r to complexity. I t seems i n t u i t i v e l y 

reasonable to expect a system e x h i b i t i n g a large number of output states to be 
more complex than one which shows only a small number of output states. 
However, complexity appears to be a function of more than j u s t output states. 
Consider the following possible p a r t i a l implementations of the base pay and 
commissions subsystems: 

procedure base_pay(hours,pay_r,base); 
begin 
case pay_r of 
0: base := 0; 
nz : case hours of 

0: base := 0; 
reg: base := nz; 
ot: base := nz; 
endcase; 

endcase; 
end; 

procedure commissions(emp_p,sales,com); 
begin 
case sales of 

106 



0: com := 0; 

nz: case emp_p of 
m: com := 0; 

r: com := nz; 
endcase; 

endcase; 
end; 

The base pay c a l c u l a t i o n procedure i s s l i g h t l y longer than the one for 
commissions because there are more input states to consider. Because there are 
three possible values for hours worked and two for pay rate, the base pay 
subsystem has s i x input states. The commissions subsystem has only four input 
states. This suggests that a measure of complexity which i s not only a function 
of output states, but of input states as well, i s required. Such a measure w i l l 
form the next step i n the development of a measure of system complexity. 

4.2.2. Modified Variety 

Each of a deterministic system's input states w i l l lead to one and only 
one output state. The p r o b a b i l i t y of observing a p a r t i c u l a r output state i s 
equal to the p r o b a b i l i t y of observing any of the input states leading to that 
output state. V a r i e t y can be modified to be a function of the p r o b a b i l i t i e s of 
observing each output state. Thus the modified measure would be a function of 
both input and output states. For systems modelled using SELMA, the p r o b a b i l i t y 
of observing a p a r t i c u l a r output state i s determined by the frequencies of the 
external events. The analyst could be asked to estimate these frequencies. 
They are, a f t e r a l l , l i k e l y required to f a c i l i t a t e implementation-level 
decisions r e l a t i n g to such things as data storage l o c a t i o n or f i l e access 
method. However, f o r purposes of analysis and design, an analyst i s not 
concerned with the p r o b a b i l i t y of an external event, only with understanding or 
designing the system's response to that event. For example, a computer program 
must contain routines to handle a l l a n t i c i p a t e d inputs. The f a c t that a 
p a r t i c u l a r input may occur more often than another does not influence the 
d i f f i c u l t y of the code written to handle that input. Therefore, for purposes 
of analysis, i t s h a l l be assumed that the p r o b a b i l i t y of observing each external 
event i s the same. For subsystems, t h i s i s the same as assuming the 
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p r o b a b i l i t i e s of observing a l l input states are equal. Therefore, for t h i s 
research, the p r o b a b i l i t y p A of observing a given output state 0L w i l l be defined 
as where I± i s the number of input states leading to 0L and I i s the t o t a l 
number of input states. 

P i = I i / I. 

There are many possible ways of incorporating output state p r o b a b i l i t i e s 
into a modified measure of v a r i e t y . 

input States 

11 © 

I 2 

Output States 

© 01 

O ^ O 02 

However, f o r consistency, the modified 
measure should y i e l d the same value as 
Ashby's v a r i e t y when p r o b a b i l i t i e s do 
not matter ( i . e . when they are a l l 
equal). I t should also s a t i s f y a 
somewhat les s i n t u i t i v e requirement. 
By d e f i n i t i o n , i f the p r o b a b i l i t y of 
observing output state 01 i s less than 
that of observing output state 0 2 , 

there are fewer input states leading 
to 0l than to 0 2 . As i l l u s t r a t e d 
below, t h i s means that fewer decisions 
must be made before moving the system 
to state 0X than to 0 2 . Therefore, 
when two systems e x h i b i t the same input 

and output states, the system i n which the output p r o b a b i l i t i e s are most unequal 
w i l l be the l e a s t complicated. That i s , modified v a r i e t y should be a maximum 
when the p r o b a b i l i t i e s of observing each output are the same. Consider two 
simple systems with four input and two output states. 

If P(Ii)=P(j) for a l l i and j 

Then P(01)=2/5 and P(02)=3/5 

Figure 14: P r o b a b i l i t i e s of observing 
output states given equal 
input state p r o b a b i l i t i e s . 

System 1: {a,b,c} P r o b a b i l i t i e s of observing each output state are NOT equal. 

Inputs Output 

a b c 

0 0 0 
0 1 0 
1 0 0 
1 1 1 
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System 2: {d,e,f} P r o b a b i l i t i e s of observing each output state are equal. 

Inputs Output 

d e f 

0 0 1 
0 1 0 
1 0 0 
1 1 1 

Possible implementations for these systems are as follows: 

procedure c(a,b,c); 
begin 

case a of 
0: c := 0; 
1: case b of 

0: c := 0; 
1: c := 1; 
endcase; 

endcase; 
end; 

procedure f ( d , e , f ) ; 
begin 

case d of 
0: case e of 

0: f := 1; 
1: f := 0: 

1: case e of 
0: f := 0; 
1: f := 1; 
endcase; 

endcase; 
end; 
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In the f i r s t system the p r o b a b i l i t i e s of observing outputs of 0 and 1 are 0.75 
and 0.25 re s p e c t i v e l y . In the second system the p r o b a b i l i t i e s are both 0.50. 
The implementation f o r the second system i s s l i g h t l y longer (or more complex) 
than the one f o r the f i r s t . 

One measure e x h i b i t i n g both of the above properties i s as follows: 

n 
Modified V a r i e t y = II ( l / P i ) P i 

i-1 

where 
n i s the number of output states 
Pi i s the p r o b a b i l i t y of observing output i 

and 

P i - I i / I 

where 
It i s the number of input states leading to output i 
I i s the t o t a l number of input states 

I f a l l the I i ' s are the same, a l l the Pi's w i l l be equal to 1/n and 

n 
Modified V a r i e t y = II n 1 / n 

i-1 

- n 

= Variety 

as desired. 
In the base pay subsystem there are 6 d i f f e r e n t input states. Two of these 

states lead to a non-zero output state and 4 lead to output states of zero. 
Therefore the p r o b a b i l i t i e s of observing output states of non-zero and zero are 
0.33 and 0.66 res p e c t i v e l y . Therefore, the modified v a r i e t y of the base pay 
subsystem i s 1.89 (= (1/0. 33) 0- 3 3 + (1/0.66) 0 6 6) . The modified v a r i e t y of the 
commissions subsystem may be s i m i l a r l y c a l c u l a t e d to be 1.76. This implies that 
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the commissions subsystem i s i n some sense les s complex than the base pay 
subsystem, but both are less complex than a subsystem which would produce the 
values "nz" and "0" with equal p r o b a b i l i t y . Because there are two output states, 
the modified v a r i e t y of such a system would be 2.00. 

At t h i s point a digression i s i n order. In the above implementations, the 
only language p r i m i t i v e s assumed were a s e l e c t i o n structure i n the form of "case" 
and an assignment operator i n the form of ":=". D i f f e r e n t languages are l i k e l y 
to have d i f f e r e n t p r i m i t i v e s . For example, most languages have a m u l t i p l i c a t i o n 
operator. Such an operator would greatly s i m p l i f y c a l c u l a t i o n of base pay since 
i t i s merely the product of hours and pay rate. The case structures could be 
eliminated. However, a m u l t i p l i c a t i o n operator would not much s i m p l i f y the 
c a l c u l a t i o n of commissions as a s e l e c t i o n depending on employee p o s i t i o n i s 
required. That i s , no commissions are c a l c u l a t e d f o r management employees. As 
the complexity measure i s to be used to help s e l e c t a decomposition for use as 
a basis f o r system implementation, the p r i m i t i v e s of the implementation language 
are obviously important. I t i s possible to imagine a fourth-generation language 
which provides a p r i m i t i v e f o r the c a l c u l a t i o n of t o t a l pay given the i n i t i a l 
inputs of employee p o s i t i o n , employee type, hours, pay rate and sales. I f t h i s 
language was to be used for implementation of the p a y r o l l system, software 
written using any of the more d e t a i l e d decompositions would l i k e l y be more 
complex than software written f o r the monolithic subsystem. 

Also consider a system with the following inputs and output. 

Inputs Output 

a b c 

1 
1 

1 
2 

2 
3 

This system has a modified v a r i e t y of 2. Now consider another system. 

Inputs Output 

d e f 

1 
1 
2 
2 

1 
2 
1 
2 

2 
3 
3 
4 
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This system has a modified v a r i e t y of 2.83. Yet both systems could be 
implemented i d e n t i c a l l y using a simple ad d i t i o n p r i m i t i v e . But i s addition 
r e a l l y simple? Decimal addition requires the use of a 100 entry look-up table 
(0+0=0,0+1=1. . .9+9=18) and a set of rules f o r "carrying" (or "borrowing" i n the 
case of negative ad d i t i o n or subtraction). Of course, a d d i t i o n i n binary i s 
simpler than add i t i o n i n decimal but i s s t i l l a n o n - t r i v i a l exercise. In the 
case of the base pay subsystem, m u l t i p l i c a t i o n was suggested to be a simple 
operation. In f a c t , not too many years ago some publishers were able to make 
a p r o f i t s e l l i n g large look-up tables of logarithms which could be used i n 
conjunction with the addition look-up table and rules (hopefully contained within 
the user's brain) to si m p l i f y m u l t i p l i c a t i o n . Modified v a r i e t y provides a 
measure of the basic d i f f i c u l t y of a procedure. I t i s independent of whatever 
language p r i m i t i v e s w i l l be av a i l a b l e during implementation. I t i s often argued 
that implementation issues, such as language s e l e c t i o n , should not be considered 
during the early stages of systems analysis. I t i s these e a r l y stages that SELMA 
i s designed to support. In f a c t , mathematical operations such as addi t i o n and 
m u l t i p l i c a t i o n are not l i k e l y to appear i n the early stages of systems analysis 
but are more l i k e l y to be found i n l a t e r stages where the procedures are 
developed to c a l c u l a t e emergent state v a r i a b l e s . The p a y r o l l systems used as 
examples here are quite "low-level" i n t h e i r focus. That i s , the actual 
procedures used to c a l c u l a t e t o t a l pay are l i k e l y to be of i n t e r e s t only i n the 
l a t e r stages of the analysis of an ent i r e personnel and accounting system. This 
i s not to say that SELMA i s not applicable to such a low-level system. Rather, 
i t i s the complexity h e u r i s t i c which i s of questionable use at l e v e l s of analysis 
close to implementation because of the v a r i e t y of d i f f e r e n t implementation 
p r i m i t i v e s a v a i l a b l e . 

Back to the discussion of v a r i e t y . I t would also be nice i f the modified 
v a r i e t y of a system formed by merging two independent subsystems could be found 
by combining the modified v a r i e t i e s of the subsystems i n some simple way. In 
fa c t , as shown i n Appendix M, the modified v a r i e t y of such a system i s simply 
the product of the modified v a r i e t i e s of the subsystems. Consider the system 
formed by merging t h e . t o t a l pay and commissions subsystems: 

{emp_p,hours,pay_r,sales.base.com) 

The input and corresponding output states f o r t h i s system are as follows: 
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Inputs Outputs 

emp_p hours pay_r sales base com 

r 0 0 0 0 0 
r 0 0 nz 0 nz 
r 0 nz 0 0 0 
r 0 nz nz 0 nz 
r reg 0 0 0 0 
r reg 0 nz 0 nz 
r reg nz 0 nz 0 
r reg nz nz nz nz 
r ot 0 0 0 0 
r ot 0 nz 0 nz 
r ot nz 0 nz 0 
r ot nz nz nz nz 
m 0 0 0 0 0 
m 0 0 nz 0 0 
m 0 nz 0 0 0 
m 0 nz nz 0 0 
m reg 0 0 0 0 
m reg 0 nz 0 0 
m reg nz 0 nz 0 
m reg nz nz nz 0 
m ot 0 0 0 0 
m ot 0 nz 0 0 
m ot nz 0 nz 0 
m ot nz nz nz 0 

The v a r i e t y of t h i s combined system i s 

(24/12) 1 2 / 2 4 * (24/4) V24 * (24/6) 6 / 2 4 * (24/2) 2 / 2 4 = 3.32 

which i s also equal to the product of the v a r i e t i e s of the o r i g i n a l subsystems 
(1.89 * 1.76 = 3.33) ignoring some round-off error. This r e s u l t can be e a s i l y 
generalized to systems formed by merging more than two independent subsystems. 

I t was proven that the modified v a r i e t y of a system formed by merging 
independent subsystems could be found by multi p l y i n g the modified v a r i e t i e s of 
the components. However, since m u l t i p l i c a t i o n i s not as e a s i l y v i s u a l i z e d as 
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a d d i t i o n , a logarithmic transformation of the modified v a r i e t y measure i s 
commonly used. This transformed measure i s c a l l e d entropy. 

4.2.3. Entropy 

Shannon (1948) was the f i r s t to propose a d e f i n i t i o n of information 
entropy 6 2 although Ashby d i d not suggest the notion of v a r i e t y u n t i l several 
years l a t e r . Shannon was looking f o r a measure H of the "degree of choice or 
uncertainty" i n the s e l e c t i o n or occurrence of an output state which would be 
a function of the p r o b a b i l i t i e s of observing each output state Pi,p 2.•••.P n- He 
also wanted the measure to have a number of desirable properties (Shannon, 1948, 
pp. 392-393). 

1. H should be continuous i n the >̂t. 
2. I f a l l the Pi's are equal, p A = 1/n, then H should be a monotonically 

increasing function of n. With equally l i k e l y events there i s more choice, 
or uncertainty, when there are more possible events. 

3. I f a choice can be broken down into two successive choices, the o r i g i n a l 
H should be the weighted sum of the i n d i v i d u a l values of H. 

He concluded that the only H s a t i s f y i n g a l l of these conditions i s of the form 6 3. 

n 
H = S P i * l o g d / p j 

i = l 

where again 

I t i s r e l a t i v e l y easy to v i s u a l i z e the r e s u l t of adding two things to 
a c o l l e c t i o n of four. I t i s much harder to v i s u a l i z e two things m u l t i p l i e d by 
three. Many people w i l l v i s u a l i z e the m u l t i p l i c a t i o n as a s e r i e s of additions. 
Addition i s seen to be more i n t u i t i v e than m u l t i p l i c a t i o n . Entropy i s an 
additive measure while modified v a r i e t y i s m u l t i p l i c a t i v e . Therefore, entropy 
i s considered superior. 

6 2 For the remainder of t h i s research, "information entropy" w i l l be 
r e f e r r e d to as simply "entropy". 

6 3 The formula for H may be m u l t i p l i e d by, or added to, a constant and 
s t i l l possess the required properties. 
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n i s the number of output states 
Pi i s the p r o b a b i l i t y of observing output i 

The base of the logarithm determines the units of entropy. The usual base i s 
2, and the u n i t s are b i t s . Logarithms i n t h i s document are always to base 2, 
although the actual units of entropy are i r r e l e v a n t to t h i s research. 

Entropy i s equal to the logarithm of the modified v a r i e t y introduced i n 
the previous section. 

H = log(Modified Variety) 

Since modified v a r i e t y was introduced as a possible measure of system complexity, 
Shannon's "degree of choice", or entropy, of a system i s also a possible measure 
of complexity. 

In Shannon's work the pj/s were given. Here i t i s assumed that the 
p r o b a b i l i t i e s of observing any input state i s the same and that each p A may be 
c a l c u l a t e d as follows: 

P i = I i / I 

where 
I± i s the number of input states leading to output i 
I i s the t o t a l number of input states 

Shannon also noted that H has other properties which make i t a reasonable measure 
of choice (pp. 394-395): 

1. H = 0 i f and only i f a l l the Pi's but one are zero, t h i s one having the 
value 1. That i s , a system with only one output state has zero entropy. 

2. Suppose there are two subsystems A and B with m and n output states 
r e s p e c t i v e l y . Let pLi be the p r o b a b i l i t y of the j o i n t occurrence of i as 
the output of the f i r s t subsystem and j as the output of the second. The 
system C formed by merging the two subsystems i s 
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He = S P i j * l o g ( l / P i j ) 

i . j 

while 

H A S P i j * l o g ( l / S P i j ) 

H B 2 P i J * l o g ( l / S P i j ) 

i . j j 

and i t i s e a s i l y shown that 

He < H A + H B 

Note: The P r e v i o u s exanvples of merged subsystems were for independent 
subsystems where P i J = P i * P j so that H c = H A + HB. 

Unfortunately, as a measure of complexity i n the sense of coding or 
understanding d i f f i c u l t y , entrooy i s flawed. The second P r o p e r t y seems to run 
counter to the h e u r i s t i c i n Cha Pter 3 which suggested that subsystems be kept 
as small as poss i b l e . The entro Py of a merged process can be smaller than the 
sum of the entropies of the component processes. This i s one undesirable 
property of entropy as a measure of system complexity. There i s another. 
Consider the following systems and possible implementations: 

{a,b} 

Input Output 

a b 

1 1 
2 2 

procedure b(a,b); 
begin 

case a of 
1: b := 1; 
2: b := 2; 
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endcase; 
end; 

and 

{c,d} 

Input Output 

c d 

1 1 
2 2 
3 1 
4 2 

procedure d(c,d); 
begin 

case c of 
1: d := 1; 
2: d := 2; 
3: d := 1; 
4: d := 2; 
endcase; 

end; 

The entropy of {a,b} i s 1, but the entropy of {c,d} i s also 1 despite the f a c t 
that i t s implementation i s twice as long. This i s a r e s u l t of the f a c t that 
entropy i s based on the p r o b a b i l i t y of observing a given output. I t i s not 
dependent on the absolute number of input states which give r i s e to those 
outputs, but only on t h e i r r a t i o s . 

Solutions to both of these undesirable properties of entropy were suggested 
by Hellerman (1972). His measure has been selected as the estimate of system 
complexity for t h i s research. 
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4.2.4. Computational Work 

Hellerman (1972) was intere s t e d i n estimating the amount of work done by 
a process independent of i t s implementation. His measure i s equal to the amount 
of information stored i n the look-up table implementation of a process. Look
up tables are a l i s t of input and corresponding output states, and have been used 
to describe the dynamics of the systems discussed i n t h i s chapter. To determine 
the amount of information i n a look-up table, Hellerman suggests performing an 
experiment. F i r s t the table i s implemented i n a computer memory by u t i l i z i n g 
the concept of a DOMAIN CLASS. A domain cla s s i s the set of input states which 
map into a s i n g l e output state. I f there are N output states, there are N domain 
classes. I f there are I input states, the look-up table may be implemented i n 
a computer memory co n s i s t i n g of I locations by p l a c i n g the output value 
corresponding to the j t h input state i n the j t h l o c a t i o n . An a r b i t r a r y memory 
l o c a t i o n may then be selected and i t s contents examined. I f I ± i s the number of 
input states leading to the i t h output state, the p a r t i c u l a r contents found i n 
the selected memory l o c a t i o n occur i n IL l o c a t i o n s . Therefore, i t s p r o b a b i l i t y 
of s e l e c t i o n was I i / I . According to information theory, the s e l e c t i o n provided 
l o g ( I / I i ) b i t s of information. The t o t a l information which may be extracted from 
the memory i s then 

N 
S I ± * l o g d / I i ) 

i = l 

This i s the t o t a l amount of information stored i n the memory or the t o t a l 
information required by the process. Hellerman c a l l e d t h i s quantity the 
computational work (W) and i t i s equal to the number of input states m u l t i p l i e d 
by the entropy of the process. 

N 
W = S I ± * l o g d / I i ) = I*H 

i = l 

He also notes that, i n the computer science l i t e r a t u r e , complexity i s a 
quantity that v a r i e s d i r e c t l y with work and "so may be i d e n t i f i e d , loosely, with 
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i t " (p. 439). In t h i s research, an absolute value f o r the complexity of a 
process i s not required. The measure need only provide r e l a t i v e l e v e l s of 
complexity, and be a d d i t i v e 6 4 . As noted e a r l i e r , the s e l e c t i o n of "computational 
work" as the name f o r t h i s quantity i s perhaps unfortunate as i t s value i s 
independent of any p a r t i c u l a r computer implementation. For the purposes of this 
research, "computational work (W)" s h a l l be renamed "complexity (C)". 

N 
C = S ^ * l o g ( I / I i ) 

i-1 

This formulation of complexity avoids the two problems noted f o r entropy. 
The complexity of a system formed by merging several subsystems w i l l always be 
greater than or equal to the sum of the complexities of the component subsystems. 
That i s , i f A and B are subsystems with complexities C A and C B r e s p e c t i v e l y , and 
D i s the system, with complexity CD, formed by merging A and B, the following 
w i l l be true. 

— + '-'B 

In f a c t , Hellerman notes that i f A and B have no inputs state i n common, the 
complexity of C i s given by 

C D = I B * C A + I A * C B 

where I A and I B are the numbers of input states of subsystems A and B 

r e s p e c t i v e l y (p. 442). Therefore, the h e u r i s t i c c a l l i n g f o r small subsystems 
can be j u s t i f i e d from the standpoint of reducing o v e r a l l complexity. The second 

Therefore, i f A, B and D are processes with complexities CA, CB, and C D 

r e s p e c t i v e l y , and 

C A > C B 

then 

^ A + > C B + C D. 

This property i s possessed by both entropy and computational work. 
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problem, r e l a t i n g to entropy's r e l i a n c e on only the proportions of input states 
leading to each f i n a l state, i s also solved. R e c a l l the two systems {a,b} and 
{c,d} described above. The complexity of {a,b} i s equal to 2 (I = 2, H = 1) . 
The complexity of (c,d) i s twice t h i s amount or 4 (1 = 4, H = 1) . This 
difference i n complexity i s i n t u i t i v e l y reasonable when the possible 
implementations (given e a r l i e r ) are considered. 

4.2.5. States or State Variables? 

In software cost estimation, a common input to module complexity 
c a l c u l a t i o n s i s the number of input v a r i a b l e s (Halstead, 1977; Albrecht, 1979; 
Bailey and B a s i l i , 1981; Rubin, 1983). I f the sort of complexity being estimated 
i n these c a l c u l a t i o n s i s the same as that described i n t h i s chapter, such a 
pr a c t i c e can only be j u s t i f i e d i f the number of v a r i a b l e s i s monotonically 
r e l a t e d to the number of input states. Perhaps, on average, t h i s w i l l be close 
to the truth, but i t i s only correct when a l l input v a r i a b l e s have the same 
degree of interdependence and the same number of possible values. For example, 
i f there are three input variables with 2 possible values each, and i f there i s 
no r e l a t i o n s h i p r e l a t i n g the variables to each other, the number of input state 
i s 2 3 = 8. I f another s i m i l a r v a r i a b l e i s added, the number of states would 
become 16, and so on. However, i f a fourth v a r i a b l e with three possible values 
i s added, the number of input states would become 24. Therefore, the number of 
input states to a module need not be monotonically r e l a t e d to the number of input 
v a r i a b l e s , and a basic assumption of software cost estimation techniques i s shown 
to be questionable. 

4.3. H e u r i s t i c Guided Search 

A measure of system complexity was required so that the decompositions 
generated by the algorithm of Chapter 3 might be presented to the analyst i n a 
meaningful order 6 5. A l t e r n a t i v e decompositions w i l l be presented i n order of 
increasing complexity. The complexity of a decomposition i s defined as being 

As indicated by a footnote i n Chapter 3, there i s no suggestion that the 
algorithm and ranking h e u r i s t i c ( i e . complexity) described here are the "best". 
It i s possible that more e f f i c i e n t algorithms and more appropriate h e u r i s t i c s 
e x i s t . This section i s intended to show that automated decomposition and some 
sort of meaningful ranking of a l t e r n a t i v e s i s poss i b l e . 
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equal to the sum of the complexities of i t s constituent subsystems at a l l l e v e l s 
of the decomposition 6 6. 

The algorithm performs updates on an intermediate state space (ISS) using 
every possible subset of the subsystems which were dete r m i n i s t i c with respect 
to that ISS. The complexity measure can provide the basis f o r a h e u r i s t i c to 
s e l e c t the subset most l i k e l y to lead to a "high q u a l i t y " decomposition, where 
"high q u a l i t y " i s defined as low complexity. For example, suppose the modified 
p a y r o l l system has been updated once producing the p a r t i a l decomposition shown 
below. Complexities of i n d i v i d u a l subsystems are shown following a "|". 

State v a r i a b l e abbreviations: 
hours = hours worked 
pay_r = rate of pay 
emp_p = employee p o s i t i o n 
sales = amount of sales 
com = commission pay 
over = overtime pay 

1: {hours,pay_r,base)|5.51 {emp_p,sales,com)|3.25 (emp_p.hours.over)|3.90 

This i s not a f u l l decomposition i n that the second ISS, formed by the update 
at l e v e l 1, s t i l l contains unstable states. In p a r t i c u l a r , the state v a r i a b l e s 
representing a d d i t i o n a l payments and t o t a l pay have not been updated to r e f l e c t 
t h e i r f i n a l values. The subsystems which are deterministic with respect to the 
second ISS (and which s a t i s f y the other h e u r i s t i c s presented i n Chapter 3) are 

{base.com.empt.over.totalpav)|12.98 
{base,emp_p,emp_t,over,sales.total_pay}|22.04 
{base,com,emp_p,emp_t.hours.total_pay)|29.61 
{com,emp_t,over,add_pay}|8.00 
{emp_p,emp_t,over,sales.addpay)|9.71 

Notice that the sum of the subsystem complexities i s only the lower 
l i m i t to Hellerman's complexity of the system. However, one of the important 
reasons for decomposing a system i s to avoid having to v i s u a l i z e the en t i r e 
system at once. An analyst deals with i n d i v i d u a l subsystems at each l e v e l of 
the decomposition. Therefore, the sum of the subsystem complexities i s a 
reasonable estimate of the o v e r a l l e f f o r t required to understand the system. 

121 



{com,emp_p,empt.hours.addpay)|15.34 

where emp_t = employee type 
total_pay = t o t a l pay 
add_pay = a d d i t i o n a l payments 

A good search h e u r i s t i c should indicate the subset of t h i s set of 
subsystems which i s most l i k e l y to lead to the lowest-complexity decomposition 6 7. 
There are 15 subsets 6 8. For each subset, the s p e c i f i c a t i o n s analysis tools 
determine the minimum and maximum possible decomposition complexities, where that 
subset comprises l e v e l 2. That i s , each possible update has, associated with 
i t , a minimum and a maximum possible decomposition complexity. These minimum 
and maximum complexities are based on information already obtained during the 
search. The minimum possible decomposition complexity i s equal to the sum of 
the subsystem complexities at a l l lower l e v e l s plus the t o t a l complexity of the 
subsystems used f o r update at the current l e v e l . In other words, the minimum 
possible complexity i s determined by assuming that a l l p o t e n t i a l h i g h e r - l e v e l 
subsystems have zero complexity. The maximum possible decomposition complexity 
i s equal to the minimum possible complexity plus the complexities of the le a s t 
complex subsystems known so f a r which can determine the f i n a l values of any 
remaining output state v a r i a b l e s . The next update w i l l be performed using the 
subset with the lowest associated minimum complexity. Minimum and maximum 
complexities can be used together to "prune" the search tree. For example, 
consider an update using the subset 

{{base,com,emp_t,over.totalpav)|12.98,{com,emp_t,over.add_pay)|8.00}. 

The t o t a l complexity of l e v e l 1 i s 12.66 (= 5.51 + 3.25 + 3.90). Therefore, the 
minimum possible complexity of any decomposition a r i s i n g from t h i s update i s 
33.64 (= 12.66 + 8.00 + 12.66). A f t e r t h i s update there w i l l be no remaining 
output state v a r i a b l e s . That i s , i n the t h i r d intermediate state space created 

This sort of h e u r i s t i c search i s sometimes c a l l e d the "best bud" method 
(Sandewall, 1971). 

6 8 R e c a l l that no two deterministic subsystems chosen f o r use i n an update 
operation may contain the same output state v a r i a b l e . Therefore, there are only 
3 * 3 + 6 = 15 possible update subsets. 
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by t h i s update, a l l state v a r i a b l e s w i l l have reached t h e i r f i n a l values. 
Therefore, f o r t h i s update subset, the minimum and maximum possible complexities 
are equal. As another example, consider an update using the subset 

{(com.empt.over.addpay)|8.00} 

The minimum possible complexity of any decomposition a r i s i n g from t h i s update 
i s 20.66 (= 8.00 + 12.66). The state v a r i a b l e "total_pay" w i l l s t i l l be an 
output with respect to the t h i r d intermediate state space created by t h i s update. 
The lowest-complexity deterministic subsystem discovered thus f a r which can 
ca l c u l a t e the f i n a l value of "total_pay" i s 

(base,com,emp_t,over.total_pay)|12.98 

Therefore, the maximum possible complexity a r i s i n g from t h i s update i s 33.64 ,(= 
12.98 + 20.66). Minimum and maximum complexities f o r a l l p o s s i b l e update subsets 
are l i s t e d below. To reduce the size of the table, subsystems are coded as 
follows: 

Subsystem Complexity Code 
(base.com.emp_t.over.totalpay) 12.98 A 
(base.empp.emp_t.over.sales.totalpay) 22.04 B 
(base.com.empp.emp_t.hours.total_pay) 29.61 C 
(com.empt.over.addpay) 8.00 D 
(emp_p.emp_t.over.sales.add_pay) 9.71 E 
{com.emp_p.emp_t.hours.add_pay} 15.34 F 

Update Subset 

(A) 
(B) 
(C) 

Minimum Possible Maximum Possible 
Complexity 

25.63 
34.70 
42.27 

Complexity 6 9 

33.63 
42.70 
50.27 

Minimum and maximum possible decomposition complexities w i l l be the same 
whenever the update subset contains a l l of the remaining output state v a r i a b l e s . 
For example, the subset (A,D) contains both "total_pay" and "add_pay". 
Therefore, the minimum and maximum possible decomposition complexities following 
an update operation using (A,D) are equal (33.64). 
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(D) 20 66 33 64 
{E} 22 37 35 35 
(F) 28 00 40 98 
(A, D) 33 64 33 64 
(A, E) 35 35 35 35 
{A,F} 40 98 40 98 
(B.D) 42 70 42 70 
{B,E} 44 41 44 41 
{B,F} 50 04 50 04 
{C,D} 50 27 50 27 
{C,E} 51 98 51 98 
{C,F} 57 61 57 61 

The update leading to the smallest minimum possible complexity uses the subsystem 
(over.emp_t.sales.add_pav) ( i . e . update subset (D)). I f t h i s update i s 
performed, the p a r t i a l decomposition becomes 

2: (com.emp_t.over.add_pay)|8.00 
1: (hours.payr.base)|5.51 (emp_p.sales.com)|3.25 {emp_p.hours.over)|3.90 

The only subsystems which are deterministic with respect to the t h i r d ISS 
(and s a t i s f i e s the other h e u r i s t i c s of Chapter 3} are 

(base,add_pay,total_pay)|3.25 
and 
{add_pay.hours.pay_r.total_pay)|11.02. 

The minimum and maximum possible complexities associated with an update using 
the f i r s t subsystem are both 23.91. I f the second subsystem i s used, they are 
both 31.68. The f i r s t subsystem i s selected f or the next update. Thus the f i r s t 
decomposition reached, s t a r t i n g from the given l e v e l 1, i s as follows: 

3: {base,add_pay,total_pay)|3.25 
2: (com.empt.over.addpay)|8.00 
1: (hours.pay_r.base)|5.51 (emp_p.sales.com)[3.25 (emp_p.hours.over)|3.90 
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The complexity of t h i s decomposition i s equal to the sum of the 
complexities of the i n d i v i d u a l subsystems or 23.91 (= 5.51 + 3.25 + 3.90 + 8.00 
+ 3.25). This i s , i n fa c t , the lowest-complexity decomposition of the modified 
p a y r o l l system. A l t e r n a t i v e decompositions, with the same subsystems at l e v e l 
1, can be found by performing updates using the other subsets of subsystems which 
were dete r m i n i s t i c with respect to the second and t h i r d intermediate state 
spaces. These a l t e r n a t i v e subsets w i l l be selected i n order of increasing 
minimum possible complexity. 

Using subsystem complexity to guide the search f o r decompositions with low 
complexity i s not quite as straightforward as i t appears. The above example 
st a r t e d from a given set of subsystems at l e v e l 1, or a given second ISS. In 
fa c t , the s p e c i f i c a t i o n s analysis tools, when applied to the modified p a y r o l l 
system suggest a large number of d i f f e r e n t possible l e v e l l ' s . The following 
subsystems are a l l minimal ( i . e . described by as small a number of state 
v a r i a b l e s as possible) and deterministic with respect to the f i r s t ISS: 

1. {hours,pay_r,base} 
2. {emp_p.sales.com) 
3. {emp_p.hours.over) 
4. {hours.emp_p.emp_t.sales.add_pay) 
5. {hours,emp_p,emp_t,pay_r,sales.total pay) 

With these f i v e subsystems there are 31 subsets which might be used to form 
the second ISS. That i s , there are 31 possible sets of l e v e l 1 subsystems, or 
31 possible p a r t i a l decompositions r e s u l t i n g from an analysis of the f i r s t ISS. 
The subset of subsystems, selected f or the f i r s t update i n the above i l l u s t r a t i o n 
was 

{{hours.payr.base),{emp_p,sales.com),{emp_p.hours.over)}. 

Such an update eventually leads to the decomposition with the lowest-complexity, 
but t h i s subset does not have the lowest minimum possible complexity at l e v e l 
1. While decompositions with lower complexities are generally suggested f i r s t , 
there w i l l often be exceptions. 
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I t was mentioned e a r l i e r that maximum and minimum complexity information 
could be used together to "prune" the search t r e e 7 0 . I f the analyst i s able to 
speci f y an upper bound to the complexity of a decomposition he or she i s 
i n t e r e s t e d i n , some possible updates need never be performed. The s p e c i f i c a t i o n s 
analysis tools allow the analyst to input the maximum percentage difference 
between the minimum complexity decomposition and any other suggested 
decompositions. I f the percentage difference between the minimum complexity 
associated with a possible update and the maximum complexity associated with 
the lowest minimum complexity found so f a r i s greater than the s p e c i f i e d maximum 
percentage difference, that update w i l l never be performed 7 1. For example, 
r e c a l l from the above i l l u s t r a t i o n , the possible update using the subsystem 

(addpay.hours.pay_r.total_pay)|11.02 

The minimum possible complexity associated with the above subsystem i s 31.68. 
The smallest minimum, and associated maximum, possible complexity found thus far 
were both 23.91. The percentage difference i s 32% (= [31.68 - 23.91] / 23.91). 
I f the analyst had s p e c i f i e d 20% as the maximum percentage d i f f e r e n c e , t h i s 
p ossible update would never be performed. Of course, should an analyst wish to 
see a l l p ossible decompositions i r r e s p e c t i v e of complexity, he or she can simply 
enter a very large number as the maximum allowed percentage d i f f e r e n c e . 

4.4. Maintenance 

In t h i s research, SYSTEM MAINTENANCE refer s to any changes to a system 
a f t e r implementation 7 2. I t w i l l be shown that when system maintenance i s 

Such pruning cannot r e s u l t i n the loss of the lowest complexity 
decomposition. The algorithm w i l l s t i l l f i n d the "optimal" decomposition of the 
system. 

7 1 This i s a modified form of SSS* minimax search (Charniak and McDermott, 
1985, pp. 286-290). The concept of "maximum allowable percentage difference" 
i s added because the complexity measure i s imperfect and, as w i l l be shown i n 
Chapter 6, other decompositions can help to i d e n t i f y shortcomings of the system 
model. In other words, higher-complexity decompositions can sometimes serve a 
us e f u l purpose. 

7 2 In common usage, the term "maintenance" does not include enhancements 
to a system. The Oxford Dictionary defines "maintenance" as "being maintained", 
and "maintain" as "cause to continue". However, i n keeping with the terminology 
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considered, the optimal (or lowest-complexity) decomposition f o r a system may 
change. I t w i l l be assumed that a l l future changes to a system may be defined 
to the degree of d e t a i l present i n the system model 7 3. This i s a f a i r l y strong 
assumption. In many cases, changes cannot be anticipated. In such cases, the 
best the analyst can do i s s e l e c t a low complexity decomposition for the o r i g i n a l 
system ignoring possible changes. 

Parnas (1972) and Myers (1977) suggest that the q u a l i t y of a decomposition 
may be assessed by observing i t s behaviour i n the face of maintenance changes. 
They assume the best decompositions w i l l l i m i t the e f f e c t s of a change to a small 
number of subsystems. In t h i s section, a framework for c l a s s i f y i n g maintenance 
changes w i l l be developed. A technique f o r assessing the impact of maintenance 
on a given decomposition w i l l also be proposed. I t w i l l be shown that i n some 
cases i t i s best to construct parts of the o r i g i n a l system with maintenance i n 
mind, while i n others i t i s best to ignore maintenance during i n i t i a l 
construction, and to create e n t i r e l y new subsystems when the maintenance must 
be done. 

Because i t i s based on a l i m i t e d number of basic constructs, SELMA provides 
a unique framework for c l a s s i f y i n g possible changes to an e x i s t i n g system. A l l 
possible changes to a system model can be categorized as f o l l o w s 7 4 : 

1. Changes to sublaws 
add a sublaw 
delete a sublaw 

2. Changes to the set of external events 
add an event 
delete an event 

As s h a l l be shown, a change may cause a subsystem i n a given decomposition 
to be no longer deterministic or no longer minimal ( i . e . the subsystem i s now 

i n the f i e l d of information systems, system maintenance s h a l l include any change 
to a system including possible enhancements. 

7 3 That i s , changes to the fu n c t i o n a l r e l a t i o n s h i p s between state 
v a r i a b l e s , defined i n the o r i g i n a l system model, must be known before the 
o r i g i n a l system i s implemented. 

7 4 M o d i f i c a t i o n of a sublaw or an event can be accomplished by de l e t i n g the 
o l d v e r s i o n and adding the new. 
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described by more state variables than are required to p r e d i c t i t s behaviour). 
The above are SIMPLE CHANGES. A r e a l MAINTENANCE OPERATION i s l i k e l y to consist 
of several simple changes. 

4.4.1. Changes to Sublaws 

Consider the sublaw for c a l c u l a t i o n of base pay i n the p a y r o l l system. 

S t a b i l i t y Conditions: 
base hours pay_r 
0 - 0 
0 0 
nz regular nz 
nz overtime nz 

Corrective Actions: 
Conditions Actions 
hours pay_r --> base 
0 - 0 

0 0 
regular nz nz 
overtime nz nz 

where 
0 = zero 
nz = not zero 
regular = less than that required f o r overtime pay 
overtime = s u f f i c i e n t f or overtime pay 

= any value, or "don't care" 

The analyst must specify each l i n e of the above sublaw. During 
maintenance, any change to the sublaw can be represented as a sequence of 
additions and/or deletions of i n d i v i d u a l l i n e s or r u l e s . Therefore, at the 
lowest l e v e l , an analyst does not add and delete sublaws. Rather, he or she adds 
and deletes r u l e s . 

A change to a rule may or may not introduce new state v a r i a b l e s to the 
system. Changes which do not introduce new state v a r i a b l e s w i l l be considered 
f i r s t . With respect to a given decomposition, the state v a r i a b l e s a f f e c t e d by 
such a change w i l l be 

1. contained within a single subsystem, or 
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2. not contained within a single subsystem. 

I f the system a f t e r the change i s s t i l l l o c a l l y complete and consistent, 
the a d d i t i o n of a ru l e where a l l the state v a r i a b l e s covered by the rule are 
included i n a sing l e subsystem w i l l not a f f e c t the decomposition. For example, 
consider the e f f e c t , on the subsystem (hours.payr.base). of adding the following 
rule to the base pay sublaw. 

Corrective Actions: 
Conditions Actions 
hours pay_r --> base 
nz unknown unknown 

The a d d i t i o n of such a rule merely r e s u l t s i n a l t e r i n g the functional 
r e l a t i o n s h i p between the input and output state v a r i a b l e s of the subsystem. 

On the other hand, i f the ru l e i s added which covers state v a r i a b l e s not 
found i n any sing l e subsystem, the subsystem may no longer be deterministic. 
For example, consider the addition the following rule to the base pay sublaw. 

Corrective Actions: . , 
Conditions Actions 
hours e"ip_P P ay_ r - - > base 
overtime management - unknown 

Hours and pay rate are no longer s u f f i c i e n t to determine the value of base pay. 
Knowledge of the employee's p o s i t i o n i s also required. Therefore, the subsystem 
(hours.pay_r.base) would be no longer deterministic. 

Rules may also be deleted from a sublaw. When a rule i s deleted, one or 
more of the subsystems i n a decomposition may no longer be required. For 
example, consider the commissions sublaw from the o r i g i n a l p a y r o l l system as 
shown below. 

S t a b i l i t y Conditions: 
emp_p emp_t com sales 
regular sales nz nz 

0 0 
o f f i c e 0 

management - 0 -
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Corrective Actions 
Conditions Actions 
emp_p emp_t sales --> com 
regular sales nz nz 

0 0 

I f the f i r s t c o r r e c t i v e a c t i o n r u l e were deleted, employee p o s i t i o n and 
employee type would no longer be required to determine the f i n a l value of 
commissions. Therefore, the subsystem (emp_p.emp_t.sales.com) would no longer 
be minimal 7 5. 

When a rule i n a system model i s deleted, the state v a r i a b l e s used i n the 
r u l e may or may not be contained i n a s i n g l e subsystem of the given 
decomposition. That i s , there i s no reason to suppose that the sublaws s p e c i f i e d 
i n the system model w i l l match exactly the sublaws describing the subsystems 
produced by the s p e c i f i c a t i o n s analysis t o o l s . The input to the tools i s simply 
the f i r s t ISS (Intermediate State Space) of the system and the corresponding 
f i n a l stable states ( i . e . the f i r s t system r e l a t i o n ) . The algorithm has no 
d i r e c t "knowledge" of the rules s p e c i f i e d by the analyst. However, the e f f e c t s 
of d e l e t i n g a rule spanning more than one subsystem i n the given decomposition 
w i l l be the same as described above. One or more subsystems may be no longer 
required because some state v a r i a b l e i s no longer an output, or some subsystem 
may no longer be minimal. 

There i s one more way i n which a sublaw may be a l t e r e d . A r u l e may be 
added which contains a state v a r i a b l e not previously used to describe the system. 
This was the case when the a d d i t i o n a l payments state v a r i a b l e was added to form 
the modified p a y r o l l system. The new state v a r i a b l e w i l l be e i t h e r an input 
state v a r i a b l e ( i . e . i t s value does not change between the f i r s t ISS and the 
f i n a l stable states) or an output state v a r i a b l e . I f i t i s an input state 
v a r i a b l e , i t w i l l simply be added to some subsystem or subsystems i n the 
decomposition. For example, decomposition #27 of Appendix K shows "add_pay" 
added as an input state v a r i a b l e to the subsystem responsible for c a l c u l a t i n g 
the value of "total_pay". I f i t i s an output state v a r i a b l e , i t may be added 
as an output to an e x i s t i n g subsystem or a new subsystem may be formed to 

In f a c t , i f the f i r s t c o r r e c t i v e a c t i o n rule i s deleted, the subsystem 
w i l l not only no longer be minimal, i t w i l l no longer be required. A f t e r such 
a maintenance operation, the value of commissions w i l l never change. That i s 
commissions i s no longer an output state v a r i a b l e , and the subsystem whose 
r e s p o n s i b i l i t y i t was to c a l c u l a t e commissions w i l l no longer be required. 
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determine i t s f i n a l value. For example, decomposition #1 of Appendix K shows 
the c r e a t i o n of the subsystem f com.empt.over.addpay) to determine the value 
of "add_pay". In eit h e r case the basic structure of the decomposition w i l l not 
be a l t e r e d . 

4.4.2. Changes to External Events 

The e f f e c t s of changes to external events are s i m i l a r to those of sublaws. 
A f t e r a l l , external events are f u n c t i o n a l l y quite s i m i l a r to sublaws. In f a c t 
external events can be thought of as sublaws with a c t i v a t i o n conditions located 
i n the system's environment (and, therefore, not included i n the system 
s p e c i f i c a t i o n ) and actions a f f e c t i n g state v a r i a b l e s w i t h i n the system. 

I f an external event a f f e c t i n g an e x i s t i n g state v a r i a b l e i s added to a 
system, some new states may be added to the f i r s t ISS (since the f i r s t ISS i s 
e s s e n t i a l l y the cross product of the stable state space of the system and the 
set of external events). As was shown i n Chapter 3 under "Importance of the 
External Event Space", these new states may represent system behaviours which 
were not evident under the smaller set of external events. New subsystems may 
appear (because state variables which were previously constant may become 
outputs) and other subsystems may no longer be dete r m i n i s t i c (because new 
behaviours may be exhibited. 

I f an external event i s deleted from the system, some system behaviours 
may no longer be exhibited. This means that some subsystems of the given 
decomposition may disappear (because some state v a r i a b l e s are no longer outputs) , 
or some systems may no longer be minimal (because fewer input state variables 
are required to determine the f i n a l values of the output state v a r i a b l e s ) . 

P r e d i c t i o n of the e f f e c t of adding an external event which a f f e c t s a state 
v a r i a b l e not previously used to describe the system, i s t r i v i a l . No changes to 
the decomposition are expected. The system can only respond to events through 
the a c t i v a t i o n of r u l e s . Since no rules mentioning the a f f e c t e d state v a r i a b l e 
e x i s t , adding such an event can not a f f e c t system behaviour. Changes i n 
behaviour w i l l only occur i f rules are added to respond to the new state 
v a r i a b l e . The e f f e c t s of such changes were described e a r l i e r . 
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4.4.3. Implications f o r Design 

When a system designer has knowledge of planned maintenance operations, 
he or she must decide whether to construct a system which can support these 
changes, or modify the i n i t i a l system at a l a t e r date. This d e c i s i o n can be 
s i m p l i f i e d by considering the possible e f f e c t s a maintenance operation. The 
possible e f f e c t s of changes to a system model are summarized i n Table I I . 

Table I I : Possible e f f e c t s of simple changes to a system model. 

Change E f f e c t 

Sublaws: 
1. add rule covering change form of sublaw associated with 

one subsystem some subsystem 
2. add ru l e covering more some subsystems may no longer be 

than one subsystem deterministic 
3. add ru l e with new expand e x i s t i n g subsystems or create 

state v a r i a b l e s new ones 
4. delete rule covering some subsystems may no longer be minimal 

one subsystem 
5. delete r u l e covering some subsystems may no longer be minimal 

more than one subsystem 
Events: 
6. add event a f f e c t i n g some subsystems may no longer be deter m i n i s t i c 

e x i s t i n g state v a r i a b l e new subsystem may be added 
7. add event a f f e c t i n g none, unless new rules are added 

new state v a r i a b l e 
8. delete event some subsystems may no longer be minimal 

A maintenance operation which r e s u l t s only i n the removal of some 
subsystems w i l l require very l i t t l e maintenance e f f o r t . However, i f the 
maintenance requires the addition of new subsystems, the i n c l u s i o n of new state 
v a r i a b l e s i n o l d subsystems, or a change i n the r e l a t i o n s h i p between inputs and 
outputs of a subsystem, a great deal of e f f o r t may be required. Notice that the 
serious e f f e c t s a l l occur when a rule or event i s added to a subsystem. The 
problem of maintenance becomes one of i d e n t i f y i n g these serious e f f e c t s when the 
i n i t i a l system i s designed. Merely i d e n t i f y i n g the simple changes involved i n 
a maintenance operation, and looking up t h e i r e f f e c t s i n the above table, i s not 
s u f f i c i e n t to p r e d i c t s p e c i f i c e f f e c t s . No change i s c e r t a i n to have an e f f e c t 
and the extent of e f f e c t s which do occur cannot be e a s i l y determined. There i s , 
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however, a way to i d e n t i f y a l l s p e c i f i c e f f e c t s . The analyst must construct 
models for three systems 7 6: 

1. A model of the i n i t i a l system. 
2. A model of the modified system. 
3. A sin g l e model describing the behaviours of both the i n i t i a l and modified 

systems. This model w i l l include a state v a r i a b l e to d i s t i n g u i s h between 
the two versions of the system for use i n subsystems where c a l c u l a t i o n s 
are performed d i f f e r e n t l y a f t e r the modification. Use of such a state 
v a r i a b l e i s i l l u s t r a t e d i n Appendix N. 

Decompositions produced for the combined system w i l l contain only 
subsystems which behave d e t e r m i n i s t i c a l l y with respect to the behaviours 
exhibited by both the i n i t i a l and modified systems. The analyst must then 
compare decompositions for a l l three models and decide how the i n i t i a l system 
should be implemented. Subsystems which are deterministic with respect to the 
behaviours of both systems could be implemented i n i t i a l l y , or subsystems which 
are only deterministic f o r the f i r s t system could be implemented and then 
reconstructed when the maintenance operation i s a c t u a l l y performed. For example, 
consider the i n i t i a l and modified p a y r o l l systems. The o r i g i n a l p a y r o l l system 
described i n Chapter 2 was modified i n Chapter 3 to r e f l e c t the following changes 
i n company p o l i c y : 

1. Both o f f i c e s t a f f and sales employees are e n t i t l e d to both overtime pay 
and sales commissions. 

2. An o f f i c e employee cannot receive more i n commissions than i n overtime. 
3. A sales employee cannot receive more i n overtime than i n commissions. 

Appendix N contains a model for a system which w i l l e x h i b i t the behaviours 
of both p a y r o l l systems. The following i s the lowest-complexity decomposition 7 7 

f o r the combined system. Complexities are noted beside each subsystem. The 

The actual e f f o r t required to construct the three models i s not l i k e l y 
to be p r o h i b i t i v e . Except when major maintenance changes are expected, the 
models w i l l probably be quite s i m i l a r . 

7 7 The complexity of a decomposition i s equal to the sum of the 
complexities of the i n d i v i d u a l subsystems. 
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Figure 15: Lowest-complexity decomposition for the combined p a y r o l l system, 

decomposition i s shown using the diagrammatic format i n Figure 14. 

Lowest-Complexity Decomposition for the Combined P a y r o l l System: 
2: {add_pay,com,emp_t,over,add_pay}|19.02 

(base.com.empt.over.totalpav)|12.98 
1: (hours,pay_r,base}|5.51 (emp_p,emp_t,sales,sys,com}|11.14 

(emp_p,emp_t.hours,sys.over)|13.05 

where 
emp_t 
emp_p 
hours 
sales 
over 
com 
add_pay 

employee type (sales or o f f i c e ) 
employee p o s i t i o n (management or regular) 
hours worked 
sales 
overtime pay 
commissions 
ad d i t i o n a l payments 
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total_pay = t o t a l pay 

and "sys" i s a state v a r i a b l e representing the vers i o n of the system. This 
state v a r i a b l e i s used to avoid problems which might a r i s e i f rules f o r the two 
versions of the system c o n f l i c t with each other. For example, i n the commissions 
subsystem (emp_p.emp_t.sales.sys.com) there are two d i f f e r e n t ways to cal c u l a t e 
commissions. The value of the "sys" state v a r i a b l e i s used to determine which 
set of rules i s to be activated. Notice that t h i s decomposition i s s t r u c t u r a l l y 
s i m i l a r to the lowest-complexity decomposition f o r the i n i t i a l p a y r o l l system. 

Lowest-Complexity Decomposition f o r the I n i t i a l P a y r o l l System: 
2: (base.com.over.total_pay)|3.90 
1: (hours.pay_r.base)|5.51 (emp_p.emp_t.sales.com)[4.35 

{emp_p,emp_t,hours.over)|4.97 

o v e r 

h o u r s 

emp_p 

emp_t 

over 

t o t a l _ p a y 

com 

o v e r 

b a s e 

base 

b a s e 

h o u r s 

p a y _ r 

com 

com 

s a l e s 

emp_p 

emp_t' 

Figure 16: Lowest-complexity decomposition f o r the i n i t i a l p a y r o l l system. 

This decomposition i s shown using the diagrammatic format i n Figure 16. A 
subsystem f o r a d d i t i o n a l payments has been added and the "sys" state v a r i a b l e 
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i s included i n two subsystems to show that the behaviour of these subsystems 
depends on the vers i o n of the system. The lowest-complexity decomposition for 
the modified p a y r o l l system i s shown below. Figure 17 displays t h i s 
decomposition using the diagrammatic format. 

Lowest-Complexity Decomposition for the Modified P a y r o l l System: 
{base,add_pay.total_pav)|3.25 
(com.over.empt.addpay)|8.00 
{hours,pay_r,base)|5.51 {emp_p,sales,com}|3.25 (emp_p.hours.over)|3.90 

base 
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p a y _ r 
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e m p _ t 
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o v e r 

h o u r s 
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Figure 17: Lowest-complexity decomposition for the modified p a y r o l l system. 

The decomposition of the combined system reveals three s u r p r i s i n g aspects 
of the modification: 
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1. The lowest-complexity decomposition f o r the combined system places 
c a l c u l a t i o n s of a d d i t i o n a l payments and t o t a l pay at the same l e v e l s . That 
i s , a d d i t i o n a l payments does not become an input to the t o t a l pay 
c a l c u l a t i o n as i n the modified system. 

2. The c a l c u l a t i o n of t o t a l pay i n the modified system does not require 
information as to the version of the system. 

3. The c a l c u l a t i o n of a d d i t i o n a l payments i n the combined system i s more 
complex than i n the modified system. 

The f i r s t observation shows that the structure of the i n i t i a l system i s 
i n some sense "dominant". The modification does not require major changes to 
the composition of any subsystem. Indeed, system ver s i o n information i s not even 
required i n order to c a l c u l a t e t o t a l pay. This f a c t r e s u l t s from a r e l a t i o n s h i p 
between the i n i t i a l system's method of c a l c u l a t i n g commissions and overtime pay, 
and the modified system's method of c a l c u l a t i n g a d d i t i o n a l payments and t o t a l 
pay. This r e l a t i o n s h i p was u n l i k e l y to be foreseen i n t u i t i v e l y , and i s described 
i n d e t a i l i n Appendix O78. The c a l c u l a t i o n of a d d i t i o n a l payments i s more 
complex i n the combined system, because the model s p e c i f i c a l l y i n s i s t e d that the 
c a l c u l a t i o n NOT be performed i f the "sys" state v a r i a b l e i n d i c a t e d the i n i t i a l 
system. This a d d i t i o n a l decision increased the complexity. Also notice that 
the "sys" state v a r i a b l e i s not e x p l i c i t l y required by the subsystem. I f the 
incoming value of a d d i t i o n a l payments i s "not c a l c u l a t e d " then the i n i t i a l system 
i s being simulated and the f i n a l value should also be "not c a l c u l a t e d " . The 
a d d i t i o n a l payments state v a r i a b l e i s both an input and an output with respect 
to t h i s subsystem. 

Design decisions must be made subsystem by subsystem. The analyst needs 
to decide whether i t i s more complicated to construct a subsystem which w i l l not 
require changes during maintenance, than i t i s to construct i n i t i a l and modified 
subsystems. That i s , i f C±, C m and C c are the complexities of a subsystem i n the 

B r i e f l y , the input states which would lead to an error i n the i n i t i a l 
system's c a l c u l a t i o n of "total_pay", i f the modified system's method were used, 
simply cannot occur. This allows the combined system to use the same method of 
c a l c u l a t i n g "total_pay" for both versions of the system. 
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i n i t i a l system and the corresponding subsystems i n the modified and combined 
systems, the following decision rule a p p l i e s 7 9 : 

IF C c > CL + C m THEN 
construct a new subsystem during maintenance 

ELSE 
construct the combined subsystem i n i t i a l l y 

A f t e r examining the decompositions of the three systems the following 
design decisions might be made: 

1. The complexities of the commissions and overtime pay subsystems i n the 
combined system are greater than the sums of t h e i r complexities i n the 
i n i t i a l and modified systems (11.14 > 3.25 + 4. 35 and 13 .05 > 3 . 90 + 4. 97) . 
Therefore, i t w i l l be simpler to reconstruct these subsystems when the 
maintenance i s performed than to i n i t i a l l y construct subsystems which w i l l 
not require changes. 

2. Assuming the analyst i s interes t e d i n knowing the value of ad d i t i o n a l 
payments: 
a. A d d i t i o n a l Payments: The subsystem i s simpler i n the modified system 

than i n the combined system (8.00 < 19.02). I t i s also not required 
i n the i n i t i a l system. Therefore, t h i s subsystem should be 
constructed during maintenance. 

b. To t a l Pay: The sum of the complexities of the i n i t i a l subsystem and 
the complexity of the subsystem i n the second decomposition of the 
modified system i s less than the complexity of the subsystem i n the 
combined system (12.98 > 3.90 + 3.25). Therefore, t h i s subsystem 
should be reconstructed during maintenance to take advantage of the 
new a d d i t i o n a l payments state v a r i a b l e . 

Other factors are l i k e l y to be important i n determining the optimal 
maintenance strategy. For example, since the av a i l a b l e implementation language 
p r i m i t i v e s can a f f e c t subsystem implementation d i f f i c u l t y , they may also 
influence the s e l e c t i o n of a maintenance strategy. I d e n t i f i c a t i o n of other such 
factors i s a possible subject f o r future research. The f a c t that other important 
factors undoubtedly e x i s t means that the simple d e c i s i o n r u l e should not be 
automated. Intervention by the system designer must be allowed. 

138 



3. Assuming the analyst i s NOT interested i n knowing the value of a d d i t i o n a l 
payments: 
a. A d d i t i o n a l Payments: This subsystem should never be constructed. 
b. T o t a l Pay: The subsystem i n the combined system i s le s s complex than 

the sum of the i n i t i a l subsystem's complexity and the complexity of 
the t o t a l pay and a d d i t i o n a l payments subsystems i n the modified 
system (12.98 < 3.25 +8.00 + 3.90). Therefore, the combined 
subsystem should be constructed i n i t i a l l y . 

I t should be noted that the above discussion applies to s i n g l e maintenance 
operations only. In r e a l i t y , a system i s l i k e l y to undergo a s e r i e s of such 
operations before i t i s f i n a l l y discarded. This scenario might be diagrammed 
as follows: 

m l m 2 m 3 " " n-l 

° 1 ---> °2 CT3 - - - > . . . ---> CTn 

where am i s the mth v e r s i o n of the system r e s u l t i n g from the m-lth maintenance 
operation. I t i s possible that o3 might be more e a s i l y constructed by modifying 
oi than by modifying CT2. In t h i s case, the design chosen f o r ax would be 
a f f e c t e d by xa1 and m2, but the design f o r az would not be influenced by m2. In 
general, the problem of f i n d i n g an optimal set of system designs and changes 
could be quite complex. 

4.5. The System Goal 

As shown i n Chapter 3, the same system model can have several a l t e r n a t i v e 
decompositions. However, not a l l of them may be equally acceptable to the 
analyst i n that state v a r i a b l e emergence and hiding v a r i e s between a l t e r n a t i v e s . 
In t h i s section, t h i s notion i s formalized through the concept of a SYSTEM GOAL. 

The existence of a goal i s one of the d i s t i n g u i s h i n g features of an 
a r t i f i c i a l system (Simon, 1981, p. 8 ) 8 0 . A system designer creates a system to 
f u l f i l some goal. This i s the raison d'etre for a r t i f i c i a l systems. D e f i n i t i o n 

According to Simon, a r t i f i c i a l 
They are q u a l i t a t i v e l y d i f f e r e n t from 
(eg. b i o l o g i c a l systems formed through 

systems are d e l i b e r a t e l y created by man. 
systems r e s u l t i n g from "natural" forces 
natural s e l e c t i o n ) . 
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of the system goal i s a very important part of systems analysis and design. The 
system's goal, as perceived by the analyst or envisioned by the designer, 
influences l e v e l of abstraction and s e l e c t i o n of boundaries f o r the system 
model 8 1. The notion of a system goal i s r e a d i l y supported by SELMA. When an 
analyst creates a system model, he or she i s l i k e l y to define two d i f f e r e n t kinds 
of state v a r i a b l e s . Some var i a b l e s w i l l be indispensable, others w i l l be 
dispensable. Indispensable state v a r i a b l e s represent the e s s e n t i a l properties 
of the system (e.g. i n the modified p a y r o l l system " t o t a l pay" i s l i k e l y to be 
indispensable). Such state v a r i a b l e s w i l l be examined by the user or by other 
systems which r e f e r to the system being modelled. Dispensable state variables 
are defined by the analyst to s i m p l i f y creation of the system model (e.g. i n the 
modified p a y r o l l system, " a d d i t i o n a l payments" may have been added merely to 
f a c i l i t a t e d e f i n i t i o n of the sublaw describing the computation of " t o t a l pay"). 
The indispensable state variables define the purpose or g o a l 8 2 of the system as 
perceived by the analyst. 

D e f i n i t i o n : Goal State Variable 

Any state v a r i a b l e which the analyst requires to be included i n a 
decomposition i s c a l l e d a GOAL STATE VARIABLE. 

A system model consists of state variables and values, external events, 
and sublaws. The state variables selected for i n c l u s i o n i n a model w i l l be 
determined by the system goal. For example, a model created to analyze or 
describe the f i n a n c i a l e f f i c i e n c y of a point-of-sales terminal system i s u n l i k e l y 
to include state v a r i a b l e s representing the work schedule of the terminal 
operator. These state variables are probably i r r e l e v a n t with respect to the 
stated goal. S i m i l a r l y , state variables describing the operation of the 
i n d i v i d u a l e l e c t r o n i c and mechanical components of the terminal w i l l not be 
included. Thus the system goal influences both the system boundaries and l e v e l 
of a b s t r a c t i o n found i n the system model. 

8 2 An analyst may f i n d i t more convenient to v i s u a l i z e a system as having 
a set of subgoals. However, d e f i n i t i o n of subgoals would imply that some form 
of decomposition has already been performed by the analyst. To avoid p r e j u d i c i n g 
the operation of the s p e c i f i c a t i o n analysis t o o l s , the analyst i s asked to 
provide only the h i g h e s t - l e v e l goal of the system. I f the system has more than 
one h i g h - l e v e l goal, the sets of state v a r i a b l e s describing these goals must be 
merged. 

140 



D e f i n i t i o n : System Goal 

The set of a l l the goal state v a r i a b l e s of a system i s c a l l e d the SYSTEM 
GOAL. 

Notice that, as defined here, a goal i s not an inherent property of a system. 
Rather, a goal i s a function of both a system and the analyst's expectations for 
that system 8 3. 

The d e f i n i t i o n of goal state v a r i a b l e s can influence system decomposition 
and hence system design. Sometimes, i f a state v a r i a b l e i s not part of the 
system goal, subsystems which determine i t s value may be dropped from a 
decomposition. I f a subsystem i s dropped, the complexity of the decomposition 
w i l l be reduced. 

For example, consider the suggested decompositions of the modified p a y r o l l 
system l i s t e d i n Appendix K. There are f o r t y - e i g h t decompositions, a l l 
s a t i s f y i n g the h e u r i s t i c s defined i n Chapter 3. The i n t u i t i v e decomposition i s 
#27. A l l other decompositions are seemingly t r i v i a l transformations of 
decomposition #27. The transformations being simple s u b s t i t u t i o n s . For example, 
consider decompositions #27 and #1 (both are shown i n diagrammatic form i n 
Figure 18). 

Decomposition #27: 
3: (add_pay.base.total_pay) 
2: (com.emp_t.over.addpay) 

1: {hours,pay_r,base} {emp_p.sales.com} (emp_p.hours.over) 

Decomposition #1 

2: {com.empt.over.addpay) (base.com.emp_t.over.total_pay) 
1: {hours.pay_r.base) {emp_p.sales.com) (emp_p.hours.over) 
where 

The s p e c i f i c a t i o n s analysis tools allow the analyst to include a 
predicate of the form: system_goal(SVList) where SVList i s a l i s t of state 
v a r i a b l e s which must be included i n a l l suggested decompositions. I f no goal 
state v a r i a b l e s are defined, i t i s assumed that a l l state v a r i a b l e s are 
indispensable. 
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emp_t = employee type (sales or o f f i c e ) 
emp_p = employee p o s i t i o n (management or regular) 
hours = hours worked 
sales sales 
over • overtime pay 
com = commissions 
add_pay a d d i t i o n a l payments 
total_pay t o t a l pay 

There are two basic differences between these decompositions: 

1. the subsystems responsible for c a l c u l a t i n g the f i n a l value of t o t a l pay 
u t i l i z e d i f f e r e n t input and constant state v a r i a b l e s , and 

2. the output state variable s at the top l e v e l are d i f f e r e n t . 

In the t o t a l pay subsystem of decomposition #1, the a d d i t i o n a l payments state 
v a r i a b l e "add_pay", has been replaced by the state v a r i a b l e s representing the 
values of commissions, employee type and overtime. Since i t i s already known 
from decomposition #27 that (com.emp_t.over.add_pay) i s a deterministic 
subsystem, t h i s would seem to be a t r i v i a l s u b s t i t u t i o n . Moreover, since 
increasing the number of state variables i n a subsystem can never decrease that 
subsystem's complexity, i t would seem to be a useless s u b s t i t u t i o n . However, 
such a s u b s t i t u t i o n does reduce the system's dependence on the emergent state 
v a r i a b l e "add_pay". In decomposition #1, the t o t a l pay subsystem no longer 
requires knowledge of the a d d i t i o n a l payments state v a r i a b l e . I f the subsystem 
responsible for the c a l c u l a t i o n of the f i n a l value of "add_pay" i s dropped from 
the decomposition, t o t a l complexity w i l l be reduced from 33.64 to 25.64. This 
i s s t i l l greater than the 23.91 complexity of decomposition #27. Thus, i n this 
case, the s u b s t i t u t i o n may not be u s e f u l . 

In general, the t o t a l complexity of a decomposition may be reduced i f the 
subsystems responsible for the c a l c u l a t i o n of state v a r i a b l e s removed by 
s u b s t i t u t i o n are dropped. Such a course of a c t i o n may only be j u s t i f i e d i f the 
analyst i s not interested i n knowing the f i n a l values of the removed state 
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Figure 18: Two decompositions of the modified p a y r o l l system. 



v a r i a b l e s . No reduction of complexity i s possible i n the p a y r o l l systems. 
However, the f o u r - l i g h t s system does present such an opportunity. Two of the 
suggested decompositions for t h i s system were as follows: Subsystem complexities 
are as indicated. 

2: {b,c,c}|2.75 {b,d,d}|2.75 
1: {a,b}|2.00 

and 

1: {a,b}|2.00 {a,c,c}|2.75 {a,d,d}|2.75 

The complexity of both of these decompositions i s 7.51 (There i s some round-off 
error i n the complexities of the i n d i v i d u a l subsystems). Therefore, there i s 
no c l e a r advantage i n making substitutions f or "b" i n the subsystems which 
determine the values of "c" and "d". However, i f "b" i s not part of the system 
goal, the decomposition 

1: {a,c,c}|2.75 {a,d,d}|2.75 

with complexity 5.51 becomes a v i a b l e a l t e r n a t i v e decomposition. I f complexity 
had not been reduced, as was the case for the overtime pay s u b s t i t u t i o n i n the 
modified p a y r o l l system, there would have been no need to suggest t h i s 
a l t e r n a t i v e to the analyst. This suggests the following h e u r i s t i c : 

H e u r i s t i c 6: Avoid useless substitutions 

Do not suggest decompositions formed by state v a r i a b l e s u b s t i t u t i o n s unless 

1. the s u b s t i t u t i o n allows the removal of a subsystem where a non-goal 
state v a r i a b l e i s an output, and 

That the analyst may not be intere s t e d i n knowing the f i n a l values of 
a l l state v a r i a b l e s was suggested e a r l i e r . In the previous section, d i f f e r e n t 
system designs were recommended depending on whether he or she was interested 
i n knowing the f i n a l value of a d d i t i o n a l payments. Also, i n Chapter 3, system 
views were found which "hid" d i f f e r e n t state v a r i a b l e s depending on which state 
v a r i a b l e s were of i n t e r e s t to the analyst. 

144 



2. a f t e r removal of the subsystem, the complexity of the decomposition 
has been reduced. 

This means that i n the case of the four l i g h t system, i f "b", "c", and "d" are 
a l l s p e c i f i e d as goal state v a r i a b l e s , only one decomposition w i l l be suggested 
to the analyst. 

Decomposition #1: 
2: {b,c} {b,d} 
1: (a,b) 

I f "b" i s not s p e c i f i e d as a goal state v a r i a b l e an a d d i t i o n a l decomposition w i l l 
be suggested. 

Decomposition #2: 
1: {a,c) {a,d} 

4 . 6 . Conclusions 

This chapter has presented an i n t u i t i v e l y j u s t i f i a b l e measure of 
complexity. R a t i o n a l i z a t i o n of the measure was combined with the examination 
of four possible measures of complexity: 

1. Ashby's Va r i e t y 
2. Modified Variety 
3. Shannon's Entropy 
4. Hellerman's Computational Work 

Hellerman's measure of computational work was f i n a l l y selected f o r use i n th i s 
research. This measure i s p a r t i c u l a r l y well s u i t e d f or use with SELMA. Through 
the use of t h i s measure, the decompositions suggested by the s p e c i f i c a t i o n s 
analysis tools may be presented to the analyst i n a meaningful order. I t should 
be noted that the complexity measure can be used only to guide the search so that 
low-complexity decompositions are found r e l a t i v e l y e a r l y i n the search. That 
i s , the f u l l set of possible decompositions can be found by s p e c i f y i n g a very 
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large maximum allowable percentage difference between the l e a s t and most complex 
decompositions. 

While the measure was f i r s t suggested as a means to guide the search f o r 
decompositions so that they might be presented to the analyst i s some meaningful 
order, i t has proved i t s e l f u s eful i n other ways as we l l . I t s quantitative 
nature has supported the d e t a i l e d analysis of maintenance operations. Use of 
the complexity measure i n conjunction with the decomposition algorithm allows 
a system designer to se l e c t a decomposition which w i l l reduce the t o t a l e f f o r t 
required f o r i n i t i a l implementation and maintenance 8 5. 

I t was noted that the same system model can have several a l t e r n a t i v e 
decompositions, but not a l l of them may be equally acceptable to the analyst. 
A l t e r n a t i v e decompositions w i l l hide d i f f e r e n t state v a r i a b l e s . D e f i n i t i o n of 
the system goal was recognized as an important part of systems analysis and 
design. The goal, as perceived by an analyst, influences both the system 
boundaries and the l e v e l of abstraction of the system model. SELMA allows the 
analyst to e x p l i c i t l y define the system goal, so as to d i s t i n g u i s h between 
indispensable state v a r i a b l e s , which are used to define the goal, and those state 
v a r i a b l e s created merely to f a c i l i t a t e c r e a t i o n of the model by s i m p l i f y i n g the 
s p e c i f i c a t i o n of sublaws. The complexity measure, coupled with system goal 
information, can be used to r e j e c t many a l t e r n a t i v e decompositions which would 
otherwise have been presented to the analyst by the s p e c i f i c a t i o n s analysis 
t o o l s . 

Future maintenance must be predictable, but need only be known to the 
degree of d e t a i l represented i n the system model. 
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Chapter 5: Conditional Decomposition 

5.1. Introduction 

Three basic forms of decomposition were i d e n t i f i e d i n Chapter 1: p a r a l l e l , 
sequential, and c o n d i t i o n a l . Chapter 3 showed how p a r a l l e l and sequential 
decomposition can be automated provided that the system to be decomposed has been 
s p e c i f i e d using SELMA. Automation of con d i t i o n a l decomposition w i l l be described 
i n t h i s chapter. 

R e c a l l that p a r a l l e l decomposition involves i d e n t i f y i n g subsystems which 
behave d e t e r m i n i s t i c a l l y with respect to some intermediate state space. 
Subsystems which are deterministic with respect to a given system r e l a t i o n ( i . e . 
i n i t i a l system states with t h e i r corresponding f i n a l stable states) may perform 
t h e i r functions at the same time (or i n p a r a l l e l 8 6 ) , so long as the system i s i n 
one of the states of the relevant intermediate state space. Sequential 
decomposition, on the other hand, was not so much a matter of i d e n t i f y i n g 
d e t e r m i n i s t i c subsystems, but of arranging the subsystems found by p a r a l l e l 
decomposition into a meaningful sequence of l e v e l s . This sequence had to s a t i s f y 
a number of h e u r i s t i c s and showed how each system r e l a t i o n associated with a 
deter m i n i s t i c subsystem might be created. For example, consider the following 
decomposition of the modified p a y r o l l system. 

3: (addpay.base.total pay) 
2: (com.emp_t.over.add_pay) 
1: (hours.pay_r.base) (emp_p.sales.com) {emp_p,hours,over) 

where hours = hours worked 
emp_p = employee p o s i t i o n 
sales = amount of sales 
com = commissions 
total_pay = t o t a l pay 

pay_r = pay rate 
emp_t = employee type 
base = base pay 
over = over time pay 
add_pay = a d d i t i o n a l payments 

This means that the subsystems {hours,pay_r,base), {emp_p.sales.com). and 
{emp_p.hours.over) at l e v e l 1 behave d e t e r m i n i s t i c a l l y with respect to the f i r s t 

A c t u a l l y , such deterministic subsystems may perform t h e i r functions i n 
any order. Simultaneity i s not required. 
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system r e l a t i o n . The f i r s t system r e l a t i o n r e s u l t s from the act i o n of a l l 
external events on every stable state of the system. Therefore, these subsystems 
are d e t e r m i n i s t i c with respect to a l l a n t i c i p a t e d responses of the system caused 
by i n t e r a c t i o n with i t s environment. The subsystem (com.emp_t.over.add_pay) at 
l e v e l 2 also exhibits deterministic behaviour, but only with respect to the 
system r e l a t i o n created when the subsystems at l e v e l 1 have performed t h e i r 
functions. In the model these functions cause changes i n the values of the 
output state v a r i a b l e s of each subsystem ( i n t h i s case, state v a r i a b l e s "base", 
"com", and "over") i n each i n i t i a l state of the system r e l a t i o n . The end r e s u l t 
of the actions of the subsystems at l e v e l 1 i s the second system r e l a t i o n . The 
second system r e l a t i o n d i f f e r s from the f i r s t system r e l a t i o n only i n the values 
of the output state v a r i a b l e s of the subsystems at l e v e l 1. S i m i l a r observations 
can be made for l e v e l 3. P a r a l l e l decomposition i d e n t i f i e s deterministic 
subsystems at each l e v e l . Sequential decomposition i d e n t i f i e s the l e v e l s 
themselves. 

Before i t may be automated, co n d i t i o n a l decomposition must be c l e a r l y 
defined. The d e f i n i t i o n adopted f o r t h i s research i s e s s e n t i a l l y that of the 
"a l t e r n a t i o n statement r u l e " from M i l i , et a l . (1986). This r u l e i s described 
i n d e t a i l i n Appendix C. B r i e f l y , i t depends on f i n d i n g two r e l a t i o n s Rx and R2 

such that 

a) R = Rx U R2, and 
b) domain(R 1) n domain(R 2) = {} 

where R i s the system r e l a t i o n 8 7 describing the behaviour of the system. The 
a l t e r n a t i o n statement rule i s used to decompose a program s p e c i f i c a t i o n into two 
c o n d i t i o n a l l y executed s p e c i f i c a t i o n s . The programmer i s required to f i n d some 
predicate t(s) , where t(s) i s true when s e domain(R 1) and f a l s e when s € 
domain(R 2), which can be used to s p l i t the o r i g i n a l r e l a t i o n into two non-
i n t e r s e c t i n g parts. Conditional decomposition, therefore, involves p a r t i t i o n i n g 

M i l i et. a l . ' s system r e l a t i o n s are s i m i l a r to the system r e l a t i o n s 
defined i n Chapter 3. The domains of t h e i r r e l a t i o n s c o n s i s t of i n i t i a l states 
of the system. However, the domains of the r e l a t i o n s used i n t h i s research need 
not contain only i n i t i a l states. They may contain system states where the values 
of some state v a r i a b l e s have been changed by the actions of some subsystems. 
That i s , the domains of the system r e l a t i o n s used i n t h i s research may contain 
intermediate states. 
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a system r e l a t i o n into two (or more) parts. The major problem l i e s i n deciding 
where to place the p a r t i t i o n s 8 8 . 

5.2. Conditional Decomposition Basics 

Before entering into an involved 
discussion of the p a r t i t i o n i n g problem, 
i t may be best to consider a simple 
example. The system r e l a t i o n for a system 
described by four state v a r i a b l e s ("a", 
"b", "sw", and "c") i s shown below. The 
state v a r i a b l e sw i s intended to represent 
the p o s i t i o n of an SPDT (single 
pole/double throw) switch which makes a 
connection between "a" and "c" or between 
"b" and "c" as i l l u s t r a t e d i n Figure 19. 

Intermediate 
State Space 

a b sw c > a b 

1 _ 0 1 
0 - 0 - 0 -
- 1 1 - - 1 
- 0 1 - - 0 

a 

f C 
\ ~W 

Figure 19: The SPDT switch used to 
i l l u s t r a t e c o n d i t i o n a l 
decomposition. 

sw c 

0 1 
0 0 
1 1 
1 0 

Corresponding F i n a l 
Stable States 

where "-" means "don't care" or "any value". There i s only one 
p a r a l l e l / s e q u e n t i a l decomposition of t h i s system. 

1: {a,b,sw,c} 

That i s , the system may not be decomposed into smaller subsystems using only 
p a r a l l e l and sequential techniques. However, the system may be c o n d i t i o n a l l y 

I t i s always possible to produce a t r i v i a l p a r t i t i o n i n g of the system 
r e l a t i o n by creating a dummy state v a r i a b l e with value "1" f o r some states and 
"0" f o r the r e s t . However, an analyst i s u n l i k e l y to create such an a r b i t r a r y 
state v a r i a b l e , and the s p e c i f i c a t i o n s analysis tools use only the state 
v a r i a b l e s included i n the system model i n the search for possible c o n d i t i o n a l 
decompositions. 
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decomposed. I f the above r e l a t i o n i s p a r t i t i o n e d using the conditions sw = 0 

and sw = 1, the following two smaller r e l a t i o n s r e s u l t . 

sw = 0: 

Intermediate 
State Space 

Corresponding F i n a l 
Stable States 

1 
0 

sw = 1: 

Intermediate 

sw 

0 
0 

-> a 

1 
0 

sw 

0 
0 

1 
0 

Corresponding F i n a l 
State Space Stable States 

a b sw c > a b sw c 

1 1 _ 1 1 1 
0 1 - 0 1 0 

When the value of "sw" i s 0, one deterministic subsystem s a t i s f y i n g a l l 
the h e u r i s t i c s of the previous chapter i s {a,c}. State v a r i a b l e "b" can be any 
value f o r each value of "c" and state v a r i a b l e "sw" i s a constant providing no 
information, therefore, neither i s required to determine the value of "c". 
S i m i l a r l y , when the value of "sw" i s 1, {b,c} i s a de t e r m i n i s t i c subsystem. 

Conditional decompositions w i l l be expressed using the following syntax: 

[CondSVs = CondValsj^]Subsystems! ... [CondSVs = CondVals]Subsystems-

where 
CondSVs 

CondVals! 

Subsystems! 

the CONDITIONAL STATE VARIABLES, or the set of state 
variables which are tested to p a r t i t i o n the system 
r e l a t i o n . 
a set of sets of values of the c o n d i t i o n a l state 
v a r i a b l e s . 
a set of subsystems 8 9 which are dete r m i n i s t i c with 

8 9 This i s a set of subsystems because p a r t i t i o n i n g of the system r e l a t i o n 
may allow further p a r a l l e l decomposition of the system being decomposed. For 
example, the subsystem ( i . j . k . 1 } might c o n d i t i o n a l l y decompose to 

1: [{i> = {{0}}]{{i,k},{j,l}} [ ( i ) = {{l})]{{j,kJJ} 
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respect to the part of the p a r t i t i o n i d e n t i f i e d by the 
condition CondSVs = CondValSi. Such subsystems w i l l be 
r e f e r r e d to as CONDITIONAL SUBSYSTEMS. 

For example, the con d i t i o n a l decomposition f o r the SPDT switch system may 
be expressed as follows: 

[{sw) = {{0))]{{a,c))|2.00 [{sw) = {{1}}]{{b,c))|2.00 

The complexity of {a,b,sw,c} i s 8.00. As indicated following the |, the 
complexities of {a,c) and (b,c) are both 2.00. Therefore, the complexity of the 
o r i g i n a l system has been reduced (by a fa c t o r of 2) through c o n d i t i o n a l 
decomposition. 

The above syntax requires several layers of bracketing. In order to improve the 
r e a d a b i l i t y of con d i t i o n a l decompositions, brackets w i l l be dropped whenever 
possible so long as the meaning i s preserved. The co n d i t i o n a l decomposition of 
the SPDT switch system can be s i m p l i f i e d to the following: 

[sw = 0]{a,c) [sw = l]{b,c) 

Conditional decompositions may also be presented diagrammatically as shown 
i n Figure 20. 

5.3. H e u r i s t i c s 

Conditional decomposition of the SPDT switch system was t r i v i a l . A glance 
at the system r e l a t i o n s u f f i c e d to i d e n t i f y "sw" as a su i t a b l e c o n d i t i o n a l state 
v a r i a b l e , and discovery of the con d i t i o n a l subsystems quickly followed. In most 
cases things w i l l not be so simple. In fa c t , had the rows of the system r e l a t i o n 
been randomly rearranged, condi t i o n a l decomposition of even t h i s system would 
have required some e f f o r t . While simple, the example d i d i l l u s t r a t e the general 
procedure to be followed when c o n d i t i o n a l l y decomposing a system. 

i n d i c a t i n g that the f i n a l values of the output state v a r i a b l e s need not 
ne c e s s a r i l y be determined together. 
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Conditional Decomposition Procedure: 

1. Perform p a r a l l e l / s e q u e n t i a l 
decomposition. 

2. Select a subsystem 9 0 f o r further 
c o n d i t i o n a l decomposition. 

3. Select a state v a r i a b l e . 
4. P a r t i t i o n the system r e l a t i o n on 

the basis of the values of t h i s 
state v a r i a b l e . 

5. Find the subsystems which behave 
d e t e r m i n i s t i c a l l y with respect 
to each part of the p a r t i t i o n . 

Figure 20: A n a l t e r n a t i v e 
r e p r e s e n t a t i o n f o r 
conditional decomposition. 

As was the case for p a r a l l e l / s e q u e n t i a l decomposition, given only the 
dete r m i n i s t i c subsystem requirement, t h i s procedure could lead to an extremely 
large number of co n d i t i o n a l decompositions. A f t e r a l l , i n the above example, 
when the value of "sw" i s 1, {a}, {sw), {a,sw,c) as well as {a,c} are a l l 
deterministic subsystems. C l e a r l y , some h e u r i s t i c s to l i m i t the search for 
c o n d i t i o n a l decompositions are required. The h e u r i s t i c s of Chapter 3 which dealt 
with i n d i v i d u a l subsystems are applicable here. The others were concerned with 
arranging subsystems i n a l e v e l structure and are not u s e f u l f o r c o n d i t i o n a l 
decompos i t i o n . 

Conditional H e u r i s t i c #1: Outputs Required 

Each c o n d i t i o n a l subsystem must be described by at l e a s t one output state 
v a r i a b l e . 

There i s no fundamental d i s t i n c t i o n between a system and a subsystem. 
A subsystem of a system <JX i s a system a2 where the remainder of a-y i s i n the 
environment of a2- Conditional decomposition may be applied to both systems and 
subsystems i n exactly the same fashion. I f p a r a l l e l / s e q u e n t i a l decomposition 
i s applied to a system which may not be decomposed e i t h e r i n p a r a l l e l or 
sequentially, only one deterministic subsystem w i l l be found (as happened i n the 
case of the SPDT switch system). This subsystem w i l l be equal to the system. 
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The r a t i o n a l e for t h i s h e u r i s t i c i s the same as f o r p a r a l l e l / s e q u e n t i a l 
decomposition. B a s i c a l l y , subsystems without outputs are not very i n t e r e s t i n g . 

Conditional H e u r i s t i c #2: Must be Small 

Each co n d i t i o n a l subsystem must not be described by any state v a r i a b l e 
which i s not required to ensure deterministic behaviour. 

Again, the r a t i o n a l e f o r t h i s h e u r i s t i c i s the same as for p a r a l l e l / s e q u e n t i a l 
decomposition. An analyst i s interested i n knowing the minimal amount of 
information ( i n the form of state v a r i a b l e values) necessary to perform some 
task. 

Conditional H e u r i s t i c #3 : Must be D i f f e r e n t 

The set of state v a r i a b l e s describing c o n d i t i o n a l subsystems must d i f f e r 
by at l e a s t one state v a r i a b l e . 

Consider the following c o n d i t i o n a l decomposition. Some redundant brackets have 
been removed for c l a r i t y . 

[h = 0]{j,k} [h = l ] l j , k ) 

Such a structure does not provide any information beyond the f a c t that {j, k) i s 
deterministic with respect to the e n t i r e f i r s t system r e l a t i o n 9 1 . This could be 
more s u c c i n c t l y represented using the simpler p a r a l l e l / s e q u e n t i a l syntax. 

1: {j,k) 

While i t i s important to know what co n d i t i o n a l decomposition i s , i t i s 
equally important to know what i t i s not. This h e u r i s t i c implies that some 
con d i t i o n a l decompositions, which would be considered by M i l i et a l . using t h e i r 
a l t e r n a t i o n statement r u l e , w i l l not be considered here. Conditional 

The M i l i et. a l . requirement that R = Rx U R2 implies that "h" has no 
values other than "0" and "1". 
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decomposition w i l l not f i n d a l t e r n a t i v e f u n c t i o n a l forms f o r the same subsystem. 
For example, suppose that t o t a l pay (total_pay) i s a function of hours worked 
(hours) and the pay rate (pay_r). Also suppose that the employee receives 1.5 

times h i s or her regular pay for each hour i n excess of 40. Such a s i t u a t i o n 
i s e a s i l y coded using an IF/THEN/ELSE structure. 

IF hours<40 THEN total_pay := hours*pay_r 
ELSE total_pay := pay_r*(l.5*hours-20); 

This use of an IF/THEN/ELSE structure i s not the so r t of co n d i t i o n a l 
decomposition being described here. The subsystem describing both the THEN and 
ELSE parts of the structure i s (hours.pay_r.total_pay). Therefore, a p a r t i t i o n 
of the system r e l a t i o n using hours worked as the co n d i t i o n a l state v a r i a b l e would 
be rejected because of Conditional H e u r i s t i c #3. This i s an important difference 
between the sort of decomposition embodied by M i l i ' s a l t e r n a t i o n statement rule 
and c o n d i t i o n a l decomposition. M i l i et a l . do not e x p l i c i t l y consider state 
v a r i a b l e s i n t h e i r decompositions. They look only at the system r e l a t i o n 
r e s u l t i n g from a p a r t i t i o n . They would see a p a r t i t i o n using the ru l e hours < 
40 as u s e f u l because i t allows d i f f e r e n t program implementations f o r the THEN 
and ELSE portions of the structure, whether a p a r t i t i o n allows d i f f e r e n t program 
implementations i s determined by the pr i m i t i v e s a v a i l a b l e i n a given language. 
I f a language p r i m i t i v e to ca l c u l a t e t o t a l pay d i r e c t l y from any values of hours 
worked and pay rate existed, p a r t i t i o n i n g on the basis of hours worked would not 
lead to d i f f e r e n t implementations, and M i l i et a l . would not consider such a 
p a r t i t i o n u s e f u l . As argued i n the previous chapter, t h i s research i s not 
concerned with a v a i l a b l e language p r i m i t i v e s , and as such i s p r i m a r i l y useful 
at a f a i r l y high l e v e l of analysis. 

Conditional H e u r i s t i c #4 : Same Conditional State Variables 

The c o n d i t i o n a l state v a r i a b les associated with each c o n d i t i o n a l subsystem 
must be the same. 

This h e u r i s t i c helps to ensure that there i s no overlap between the parts of the 
system r e l a t i o n associated with each co n d i t i o n a l subsystem. Consider the 
following: 
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[h = 0]{j,k} [ i = 0]{i,k) 

There i s no reason why such a decomposition should be rejected. As long as " i " 
cannot be 0 when "h" i s 0 and v i c e versa, t h i s decomposition w i l l not v i o l a t e 
the M i l i et a l . condition of non-intersecting domains. However, i n t h i s case 
the decomposition could be replaced by 

[h = 0]{j,k} [h * 0]{i,k}. 

The non-intersecting nature of such a decomposition i s f a r more apparent, and 
i s preferred. 

Conditional H e u r i s t i c #6: Complexity may not Increase 

The t o t a l complexity of the con d i t i o n a l subsystems may not exceed the 
complexity of the subsystem being decomposed. 

There i s no point i n suggesting a co n d i t i o n a l decomposition which i s more 
d i f f i c u l t to understand or b u i l d than the o r i g i n a l system. An example of a 
con d i t i o n a l decomposition which increases the complexity of the system i s given 
near the end of t h i s chapter. 

The next h e u r i s t i c cannot be i n t u i t i v e l y j u s t i f i e d . I t i s introduced 
s o l e l y to keep the problem of con d i t i o n a l decomposition computationally 
tr a c t a b l e . 

Conditional H e u r i s t i c #7: Single Conditional State Variables 

The set of conditi o n a l state v a r i a b l e s used to p a r t i t i o n a system r e l a t i o n 
may have no more than one member. 

This means that c o n d i t i o n a l decompositions such as 

[(x,y) = { { 0 , 0},{l,l))]{j,k} [{x,y) = { { 0,l),{l , 0}}]{i,k} 
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P a r t i t i o n s o f a S e t 

n t h Be I I # = # o f P a r t i t i o n s 

2 0 

Figure 21: Number of p a r t i t i o n s of a set of N things. 

w i l l not be considered. The major computational problem with c o n d i t i o n a l 
decomposition l i e s i n t e s t i n g a l l possible p a r t i t i o n s of the system r e l a t i o n with 
respect to the values of the condit i o n a l state v a r i a b l e s . The number of 
p a r t i t i o n s of a s e t 9 2 increases dramatically as the number of elements i n the set 
increases (see Figure 21). Experience gained during t h i s research has shown that 
most systems may be described using state v a r i a b l e s with between two and f i v e 

9 2 The number of p a r t i t i o n s of a set containing N elements where a l l N 
elements occur i n one and only one part (also c a l l e d a " c l a s s " or "block") i s 
c a l l e d the "Nth B e l l number" . B e l l numbers are given by the following recurrence 
r e l a t i o n (Krishnamurthy, 1986, pp. 16 and 22). 

B(0) - 1 
N 

B(N+1) = E C „ * B(K) 
K - 0 ' • 

where C N K i s the number of combinations of N things taken K at a time. 
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values . A state v a r i a b l e with f i v e values leads to only 52 p a r t i t i o n s of the 
system r e l a t i o n . This number of p a r t i t i o n s can be e a s i l y examined for subsystems 
meeting the other h e u r i s t i c s . On the other hand, i f more than one c o n d i t i o n a l 
state v a r i a b l e i s allowed, the number of p a r t i t i o n s quickly becomes unmanageable. 
As shown below, c o n d i t i o n a l decomposition of a t r i v i a l system described by only 
three state v a r i a b l e s with two values each would require t e s t i n g of 4184 
p a r t i t i o n s . 

State Variable Values 
a 0,1 
b 0,1 
c 0,1 

Conditional P a r t i t i o n i n g Values P a r t i t i o n s 
State Variables to T e s t 9 4 

a 0,1 1 
b 0,1 1 
c 0,1 1 
ab {0,0},{0,1},{1,0},{1,1} 14 
ac {0,0},{0,1},{1,0},{1,1} 14 
be {0,0},{0,1},{1,0},{1,1} 14 
abc {0,0,0},{0,0,1},{0,1,0},{0,1,1}, 

{1,0,0},{1,0,1},{1,1,0),{1,1,1} 4139 

t o t a l p a r t i t i o n s to t e s t : 4184 

note: I f c e r t a i n combinations of state v a r i a b l e values can never occur 
together, the t o t a l number of p a r t i t i o n s to t e s t can be reduced. For 

R e c a l l that continuous real-world v a r i a b l e s are modelled using ranges. 
The system responds to a l l values i n a given range i n s i m i l a r ways. 

9 4 The number of p a r t i t i o n s which must be tested i s one less than the 
number of possible p a r t i t i o n s . The p a r t i t i o n which consists of only one part, 
where that part i s the set to be p a r t i t i o n e d need not be tested. Since the 
system r e l a t i o n would not be s p l i t i n t h i s case, examining such a p a r t i t i o n would 
be equivalent to t e s t i n g whether the o r i g i n a l system i s d e t e r m i n i s t i c . I t i s 
assumed that a l l systems to which condit i o n a l decomposition i s to be applied are 
already known to be deterministic. 
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example, i f the system r e l a t i o n contains no state where a=0 and b=0, the 
t o t a l number of p a r t i t i o n s to t e s t drops to 1+1+1+4+14+14+202 = 237. 
Thus, the number of p a r t i t i o n s shown i n the above table i s an upper 
l i m i t only. 

The e f f e c t of r e s t r i c t i n g p a r t i t i o n s to those i n v o l v i n g only one 
c o n d i t i o n a l state v a r i a b l e i s not as serious as might be f i r s t imagined. The 
analyst can always decide to further c o n d i t i o n a l l y decompose a c o n d i t i o n a l 
subsystem. The e f f e c t of t h i s i s e s s e n t i a l l y the same as p a r t i t i o n i n g with more 
than one c o n d i t i o n a l state v a r i a b l e . For example, suppose the following was 
suggested as a c o n d i t i o n a l decomposition of a system described by state variables 
h, i , j , and k: 

[h = 0 ] l i , j , k ) [h = l ] { i , k ) 

Now suppose the analyst suspects that the f i r s t c o n d i t i o n a l subsystem can 
be further decomposed. The co n d i t i o n a l decomposition procedure can be applied 
again to the subsystem {i,j,k}. This might r e s u l t i n the decomposition 

[ i - 0]{i,j,k} [ i - l ] < j , k ) . 

The two l e v e l s of c o n d i t i o n a l decomposition can be combined as follows: 

[{h,i} = {0,0}]{i,j,k} [{h,i> - {0,l}]{j,k} [h - l]{i,k} 

In t h i s case, f u l l search of a l l possible p a r t i t i o n s has been replaced by 
s e l e c t i v e search guided by the judgement of the analyst. 

5.4. Using Conditional Decomposition to Test a Model 

None of the three major examples developed so f a r (namely the four l i g h t , 
the p a y r o l l and the modified p a y r o l l systems) o f f e r any subsystems which are 
obvious candidates for c o n d i t i o n a l decomposition. However, the co n d i t i o n a l 
decomposition procedure can help to uncover some modelling e r r o r s . This w i l l 
be demonstrated using the modified p a y r o l l system. The error discovered i n the 
modified p a y r o l l system i s symptomatic of one p o t e n t i a l problem with using 
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q u a l i t a t i v e modelling techniques ( i . e . state v a r i a b l e ranges) f o r state variable s 
which represent continuous quantities i n the r e a l world. 

R e c a l l the d e s c r i p t i o n of the modified p a y r o l l system presented i n Chapter 
2: 

1. both o f f i c e s t a f f and sales employees are e n t i t l e d to both overtime pay 
and sales commissions, 

2. an o f f i c e employee cannot receive more i n commissions than i n overtime, 
and 

3. a sales employee cannot receive more i n overtime than i n commissions. 

The s p e c i f i c a t i o n analysis tools i d e n t i f i e d the following subsystem capable 
of determining the value of the a d d i t i o n a l payments state v a r i a b l e . This state 
v a r i a b l e was introduced to represent the t o t a l overtime and commission pay to 
which an employee i s e n t i t l e d a f t e r these rules have been applied. 

2: (com.emp_t.over.add_pay)|8.00 

where com = commissions 
over = overtime pay 
emp_t = employee type (o = o f f i c e worker, s = sales employee) 
add_pay = ad d i t i o n a l payments 

When co n d i t i o n a l decomposition i s applied to t h i s subsystem an unreasonable 
suggestion i s made by the s p e c i f i c a t i o n s analysis t o o l s : 

[emp_t = o1(over.add_pay)|2.00 [emp_t = s1(com.add_pay)|2.00 

In order to ca l c u l a t e a d d i t i o n a l payments, the amount of commissions, 
overtime pay and the type of the employee must be a v a i l a b l e . There i s no way 
that a d d i t i o n a l payments can be cal c u l a t e d given only the employee type and the 
amount of overtime pay. Why then, i s the above c o n d i t i o n a l decomposition 
suggested? The fun c t i o n a l form of t h i s subsystem may be represented by the 
following table: 

159 



com emp_t over > add_pay 

nz o nz nz 
0 o nz nz 
nz s nz nz 
nz s 0 nz 
nz o 0 0 
0 o 0 0 
0 s nz 0 
0 s 0 0 

where 0 = a va lue o f zero 

nz = some non-zero va lue 

N o t i c e tha t the a d d i t i o n a l payments s t a t e v a r i a b l e i s model led w i t h on ly 

two v a l u e s : 0 and non-zero . I t i s p o s s i b l e to p r e d i c t whether a d d i t i o n a l 

payments i s going to be zero or non-zero g i v e n o n l y the employee type and e i t h e r 

the amount o f commissions or overt ime pay. That i s , i f the employee i s an o f f i c e 

worker and h i s or her overt ime pay i s non-zero , then a d d i t i o n a l payments w i l l 

be non-ze ro . On the o ther hand, i f h i s or her over t ime pay i s z e r o , then 

a d d i t i o n a l payments w i l l a l s o be ze ro , s i nce he or she may not make more i n 

commissions than i n over t ime . A s i m i l a r argument a p p l i e s f o r members o f the 

s a l e s s t a f f . The above t ab l e may be r e w r i t t e n to make t h i s r e l a t i o n s h i p obv ious . 

com emp_t over • -> add_pay 

nz 
0 

o 
o 
s 
s 

nz 
0 

nz 
0 
nz 
0 

where " - " any va lue or "don ' t care" 

The problem l i e s i n the cho ice o f va lues f o r the a d d i t i o n a l payments s t a t e 

v a r i a b l e . The r u l e s s p e c i f i e d i n the system model f o r the c a l c u l a t i o n of 

a d d i t i o n a l payments may be represented i n t a b u l a r form as shown: 
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com emp_t over > add_pay 

nz - nz nz 
0 - 0 0 

o nz nz 
o 0 0 

nz s - nz 
0 s - 0 

These r u l e s are not concerned merely w i t h de te rmin ing whether the va lue of 

a d d i t i o n a l payments i s zero or non-zero . The r u l e s s p e c i f y the c o n d i t i o n s under 

which the t o t a l o f commissions and overt ime pay i s to be reduced because o f the 

employee's p o s i t i o n . For example, i f the employee i s p a r t o f the s a l e s s t a f f 

and he or she p o t e n t i a l l y makes more i n over t ime pay than i n commissions, not 

a l l o f the over t ime shou ld a c t u a l l y be p a i d . Th i s concept o f "pay r e d u c t i o n " 

shou ld be made e x p l i c i t i n the va lues o f the a d d i t i o n a l payments s t a t e v a r i a b l e . 

The r u l e s c o u l d be r e w r i t t e n as f o l l o w s : 

com emp_t over > add_pay 

nz - nz nr 
0 - 0 0 
0 o nz nr 
nz o 0 r 
nz s 0 nr 
0 s nz r 

where r = pay has been reduced 

nr = no r e d u c t i o n i n pay 

When p a r a l l e l / s e q u e n t i a l decomposi t ion i s a p p l i e d a f t e r such a change, the 

decomposi t ions are s t r u c t u r a l l y the same as f o r the o r i g i n a l system. The on ly 

d i f f e r e n c e i s tha t the complex i ty o f the a d d i t i o n a l payments subsystems has been 

i n c r e a s e d to 12 .00 . However, when c o n d i t i o n a l decomposi t ion i s a p p l i e d to the 

a d d i t i o n a l payments subsystem, the o f fend ing c o n d i t i o n a l decomposi t ion i s no 

longer suggested. 

The changed subsystem can a l s o be used to i l l u s t r a t e the need f o r the 

c o n d i t i o n a l decomposi t ion h e u r i s t i c , which r e q u i r e d tha t t o t a l complex i ty not 

be i n c r e a s e d by c o n d i t i o n a l decomposi t ion . I f t o t a l complex i ty i s a l l owed to 

i n c r e a s e , the f o l l o w i n g i s suggested by the s p e c i f i c a t i o n s a n a l y s i s t o o l s f o r 

the changed system: 
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[add_pay = {0.nr)]{com.emp_t.over.addpay)|12.00 
[add_pay = {r)1{com.over.add_pay)|6.00 

That i s , i f the system r e l a t i o n i s s p l i t using the i n i t i a l values of the 
a d d i t i o n a l payments state v a r i a b l e , i n a l l cases where the a d d i t i o n a l pay was 
p r e v i o u s l y 9 5 reduced, only knowledge of commissions and overtime i s required to 
determine the new value of a d d i t i o n a l payments. The complexities of these two 
c o n d i t i o n a l l y - a c t i v a t e d subsystems are 12.00 and 6.00 r e s p e c t i v e l y . The 
complexity of the o r i g i n a l a d d i t i o n a l payments subsystem was 12.00. Conditional 
decomposition increased the o v e r a l l complexity of the subsystem. Complexity i s 
increased because the a d d i t i o n a l payments state v a r i a b l e i s now an input to the 
conditionally-decomposed system as well as an output. Since the number of input 
state v a r i a b l e s has increased, so has the number of input states and, therefore, 
so has the complexity. 

Although the above decomposition increases complexity and can, therefore, 
be rejected, i t i s worth examining how i t could even be a p o s s i b i l i t y . How can 
the value of a d d i t i o n a l payments be c a l c u l a t e d without knowing the p o s i t i o n of 
the employee? This decomposition r e s u l t s from the f a c t that each external event 
defined i n the model changes the value of only one state v a r i a b l e . There are 
external events which a l t e r the value of the hours worked state v a r i a b l e s , and 
external events which a l t e r the value of the sales state v a r i a b l e , but there are 
no external events which a l t e r both together. This means that whenever the 
a d d i t i o n a l payments subsystem i s activated, e i t h e r the values of commissions or 
overtime pay i s equal to i t s previous value. This, along with the o l d d o l l a r 
value of a d d i t i o n a l payments and knowledge that pay was previously reduced, i s 
s u f f i c i e n t information to calculate the new value of a d d i t i o n a l payments. For 
example, suppose the o l d values of commissions, overtime pay, and a d d i t i o n a l 
payments were as follows: 

old commissions = $400 
ol d overtime pay = $500 
o l d a d d i t i o n a l payments = $800 and pay reduced 

That i s , before the external event which l e d to a new value for either 
"com" or "over". 
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The employee was obviously a member of the sales s t a f f since a d d i t i o n a l payments 
i s l e s s than the sum of sales commissions and overtime pay, and overtime pay 
exceeds sales commissions. Now suppose, an external event a l t e r s the value of 
s a l e s 9 6 such that commissions are increased to $600. The a d d i t i o n a l payments 
subsystem now has access to the following information: 

new commissions = $600 
ol d overtime pay = $500 
old a d d i t i o n a l payments = $800 and pay reduced 

Since the o l d value of a d d i t i o n a l payments i s less than twice the o l d value of 
overtime pay and pay was reduced, the employee i s a salesperson. Therefore, the 
new value of a d d i t i o n a l payments should be $1,100 with no pay reduction. I f the 
system model i s changed so that both hours worked and amount of sales can change 
at the same time (as would l i k e l y be the case i n a batch processing system, where 
transaction records contained information about both hours and s a l e s ) , t h i s 
c o n d i t i o n a l decomposition w i l l not be suggested. Once again, the s e n s i t i v i t y 
of decomposition to the defined external events i s demonstrated. 

5.5. Conelus ions 

Three basic forms of decomposition were i d e n t i f i e d i n Chapter 1: p a r a l l e l , 
sequential, and c o n d i t i o n a l . P a r a l l e l and sequential decomposition were 
discussed i n Chapter 3. This chapter has investigated the remaining basic form 
of decomposition: c o n d i t i o n a l decomposition. While the basics of c o n d i t i o n a l 
decomposition are adapted from the a l t e r n a t i o n statement r u l e of M i l i et a l . 
(1986) , procedures for a c t u a l l y decomposing a system are o r i g i n a l to t h i s 
research. Two types of condi t i o n a l decomposition were i d e n t i f i e d . One type led 
to d i f f e r e n t f u n c t i o n a l forms f o r a c a l c u l a t i o n using the same state v a r i a b l e s . 
The other found subsystems described by d i f f e r e n t sets of state v a r i a b l e s . The 
f i r s t type was seen to be p r i m a r i l y useful during the implementation phase of 
the system development l i f e c ycle. While M i l i et a l . were concerned with both 
types, the s p e c i f i c a t i o n s analysis tools deal only with the second. 

This might happen, f o r example, i f a c o r r e c t i o n to the amount of sales 
were entered within the same pay period. 
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A number of h e u r i s t i c s to l i m i t the search f o r s u i t a b l e c o n d i t i o n a l 
decompositions have been suggested. Two of these h e u r i s t i c s are derived from 
those suggested f o r p a r a l l e l decomposition, one i s j u s t i f i e d on the basis of 
complexity, and another i s suggested f o r reasons of computational e f f i c i e n c y . 
The remainder follow d i r e c t l y from the meaning of co n d i t i o n a l decomposition. 

The modified p a y r o l l system of Chapter 3 was reexamined, and condit i o n a l 
decomposition was shown to be a useful t o o l f o r f i n d i n g inadequacies i n a system 
model. While the small systems used as examples cannot i l l u s t r a t e useful 
c o n d i t i o n a l decomposition, the IFIP system, analyzed i n the next chapter, can. 
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Chapter 6: SELMA Applied 

6.1. General 

This chapter i s intended to show the f e a s i b i l i t y of applying the SELMA 
formalism and s p e c i f i c a t i o n s analysis tools to a " r e a l " system. The v a l i d i t y 
of the modelling approach w i l l be assessed by comparing the r e s u l t s to those 
obtained by using more established systems analysis and design methodologies. 
In order to do t h i s , each technique must be applied to the same system. 
Fortunately, there e x i s t s a system which has been analyzed by a large number of 
methodologies. This i s the IFIP Working Conference system. 

In 1982, the International Federation f o r Information Processing (IFIP) 
held a conference intended to provide a comparative review of a number of 
information system design methodologies. In order to f a c i l i t a t e comparison, a 
singl e t e s t case was provided. The proponents of each methodology then produced 
a s p e c i f i c a t i o n f o r an information system designed to solve the problem 
presented i n the case. The problem was to design an information system to 
support an IFIP Working Group Conference. The information system was to support 
several a c t i v i t i e s of the Program Committee and the Organizing Committee (Olle, 
1982, pp. 8-9). The case i s described with greater d e t a i l i n Appendix P. 

A c t i v i t i e s of the Program Committee to be supported: 
1. Preparing a l i s t to whom the c a l l f o r papers i s to be sent. 
2. Registering the l e t t e r s of intent received i n response to the c a l l . 
3. Registering the contributed papers on re c e i p t . 
4. D i s t r i b u t i n g the papers among those undertaking the refereeing. 
5. C o l l e c t i n g the referees' reports and s e l e c t i n g the papers f o r i n c l u s i o n 

i n the program. 
6. Grouping selected papers into sessions f o r presentation and s e l e c t i n g a 

chairman f o r each session. 

A c t i v i t i e s of the Organizing Committee to be supported: 
1. Preparing a l i s t of people to i n v i t e to the Conference. 
2. Issuing p r i o r i t y i n v i t a t i o n s to National Representatives, Working Group 

members and members of associated working groups. 
3. Ensuring a l l authors of each selected paper receive an i n v i t a t i o n . 
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4. Ensuring authors of rejected papers receive an i n v i t a t i o n . 
5. Avoiding sending duplicate i n v i t a t i o n s to any i n d i v i d u a l . 
6. Registering acceptance of i n v i t a t i o n s . 
7. Generating a f i n a l l i s t of attendees. 

SELMA has been applied to the IFIP Working Conference system. The 
a p p l i c a t i o n technique i s comprised of f i v e major steps: 

Step 1: State v a r i a b l e i d e n t i f i c a t i o n 
Step 2: External event i d e n t i f i c a t i o n 
Step 3: Sublaw i d e n t i f i c a t i o n 
Step 4: Consistency and completeness t e s t i n g 
Step 5: Decomposition 

F u l l a p p l i c a t i o n of these steps to the IFIP Working Conference system i s 
f a r too lengthy to be demonstrated i n t h i s chapter. The reader would be overcome 
by d e t a i l s . The i d e n t i f i c a t i o n of three state v a r i a b l e s , one external event, 
and one sublaw w i l l be described here. These examples were selected to show some 
i n t e r e s t i n g aspects of SELMA and to suggest the flavour of i t s a p p l i c a t i o n to 
a r e a l system. Construction of the en t i r e model i s described i n Appendices Q, 
R, and S. 

The s p e c i f i c a t i o n s analysis tools were used to v e r i f y the consistency and 
completeness of the r e s u l t i n g system model. Many errors were made during the 
construction of the model; however, only one consistency and one completeness 
error w i l l be described i n d e t a i l . The intent i s to i l l u s t r a t e to the reader 
the process by which a complete and consistent model may be constructed, but not 
to overwhelm him or her with d e t a i l s . The errors also i l l u s t r a t e the usefulness 
of the s p e c i f i c a t i o n s analysis tools f o r ensuring model i n t e g r i t y . 

The s p e c i f i c a t i o n s analysis tools suggest three decompositions for the 
IFIP Working Conference system. As w i l l be discussed l a t e r , the differences 
r e s u l t from the l i m i t e d amount of system information incorporated i n the model. 
One decomposition w i l l be selected f or comparison to the decompositions produced 
by Jackson System Development (JSD) (McNeile, 1982, pp. 225-246) and Active and 
Passive Component Modelling (ACM/PCM) (Brodie and S i l v a , 1982, pp. 41-91). JSD 
and ACM/PCM were selected f or comparison with SELMA for a number of reasons: 
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1. Both JSD and ACM/PCM have been used to solve the Working Conference 
problem. 

2. JSD i s notable f o r i t s e x p l i c i t focus on real-world modelling and 
simulation. In p a r t i c u l a r i t provides some guidelines f o r the s e l e c t i o n 
of s u i t a b l e "communicating sequential processes" or e n t i t i e s . These 
e n t i t i e s are s i m i l a r to the objects of Object-Oriented Programming. As 
w i l l be described l a t e r i n t h i s chapter, SELMA decompositions may be used 
to i d e n t i f y objects. I t w i l l be i n t e r e s t i n g to see how c l o s e l y the objects 
automatically i d e n t i f i e d by the s p e c i f i c a t i o n s analysis tools match those 
i d e n t i f i e d by JSD. 

3. ACM/PCM c a r e f u l l y distinguishes between s t a t i c and dynamic system 
modelling. This separation of s t a t i c and dynamic behaviour, or of data 
and programs, i s common to many methodologies. SELMA makes no such 
d i s t i n c t i o n . I t w i l l be argued that the separation of system s t a t i c s and 
dynamics i s not only unnecessary, but may even lead to s p e c i f i c a t i o n 
e r r o r s . 

4. ACM/PCM i s t y p i c a l of many of the system development techniques which 
depend on object h i e r a r c h i e s representing " i s - a " and "part-of" 
r e l a t i o n s h i p s . 

5. ACM/PCM uses condition and action statements to describe dynamic behaviour. 
These statements are s i m i l a r to sublaws. 

I t should be c l a r i f i e d from the outset that SELMA i s not intended as a 
replacement f o r e i t h e r JSD or ACM/PCM. Both JSD and ACM/PCM support d e t a i l e d 
system design down to the implementation l e v e l . The SELMA methodology does not 
do t h i s . SELMA i s intended f o r use at a r e l a t i v e l y high l e v e l of abstraction 
during the real-world modelling phase of the systems analysis and design process. 
When used with the s p e c i f i c a t i o n s analysis to o l s , SELMA can provide automated 
system v e r i f i c a t i o n and decomposition. In ACM/PCM the system's decomposition 
i s a function of the objects selected f o r i n c l u s i o n i n the s p e c i f i c a t i o n . No 
advice i s given on how to make the se l e c t i o n s . JSD provides a number of rules 
to a i d i n object (or ent i t y ) i d e n t i f i c a t i o n , but they would be very d i f f i c u l t 
to automate. These rules w i l l be examined l a t e r i n t h i s chapter. I t w i l l be 
shown that the subsystems suggested by the s p e c i f i c a t i o n s analysis tools can be 
used to form objects which w i l l s a t i s f y a l l of the JSD ru l e s . Thus SELMA i s 
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seen as a possible a d d i t i o n to e x i s t i n g systems analysis and design 
methodologies, rather than as a methodology i n i t s e l f . 

6.2. Applying SELMA 

The f i v e major steps f o r applying SELMA may be diagrammed as i n Figure 22. 

S t a t e V a r i a b l e 
I d e n t i f i c a t i o n <3-

E x t e r n a l E v e n t 
I d e n t i f i c a t i o n 

5ubla¥ 
I d e n t i f i c a t i o n 

C o m p l e t e n e s s and C o n s i s t e n c y 
T e s t i n g 

D e c o m p o s i t i o n 

Figure 22: Block diagram of the States, Events, and Laws Modelling Approach 
(SELMA). 

Note that these steps need not be performed sequentially. That i s , i t i s quite 
l i k e l y that while an analyst i s i d e n t i f y i n g sublaws, he or she may decide that 
another state v a r i a b l e i s required or that an external event has been missed. 
Also, should the model f a i l the tests f o r l o c a l consistency and completeness, 
changes to state v a r i a b l e s , external events, and/or sublaws w i l l be required. 
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F i n a l l y , as was i l l u s t r a t e d i n the l a s t chapter , i f the decompositions 
suggested by the tools are not considered reasonable by the analyst, changes to 
the model may be required. A b r i e f d e s c r i p t i o n of each step i s provided below. 
Detailed examples of the a c t i v i t i e s performed during each step w i l l follow. 
Construction of the IFIP Working Conference model 9 8 i s described i n f u l l i n 
Appendices Q, R, and S. 

Step 1: State v a r i a b l e i d e n t i f i c a t i o n 
State v a r i a b l e i d e n t i f i c a t i o n i s accomplished through a 

d e t a i l e d examination of the system functions (these correspond to 
the a c t i v i t i e s l i s t e d above and i n Appendix P f o r the IFIP Working 
Conference Problem). The system functions (or requirements) are 
combined with the analyst's knowledge of system behaviour to i d e n t i f y 
those properties which should be represented i n the information 
system 9 9. 

Step 2: External event i d e n t i f i c a t i o n 
External events are found by examining each state v a r i a b l e 

i d e n t i f i e d i n Step 1, and deciding whether i t s value i s determined 
by the system i t s e l f or the environment. External events are defined 
for each state v a r i a b l e d i r e c t l y a f f e c t e d by the environment. 

The s p e c i f i c a t i o n s analysis tools suggested a co n d i t i o n a l decomposition 
of the a d d i t i o n a l payments subsystem of the modified p a y r o l l system which 
c o n f l i c t e d with r e a l i t y . Changes to the sublaw describing the c a l c u l a t i o n of 
ad d i t i o n a l payments were required. 

9 8 In order to i l l u s t r a t e the u t i l i t y of tes t s f o r completeness and 
consistency, the model constructed i n Appendices Q, R, and S contains several 
e r r o r s . 

9 9 S t r i c t l y speaking, SELMA state v a r i a b l e s represent properties of the 
system. They do not have to be t i e d to any p a r t i c u l a r things ( i e . objects or 
e n t i t i e s ) i n the r e a l world. However, i t i s l i k e l y to be d i f f i c u l t f o r most 
analysts to v i s u a l i z e a property of the system, as opposed to a property of some 
thing. There i s no harm i n v i s u a l i z i n g a system as c o n s i s t i n g of some set of 
things before deciding on relevant properties. For example, when analyzing the 
IFIP Working Conference problem, an analyst may wish to v i s u a l i z e people and 
papers before deciding on s p e c i f i c properties such as Group membership or paper 
q u a l i t y . But i t must be remembered that these things are merely a f i r s t 
approximation to a decomposition of the system. The s p e c i f i c a t i o n s analysis 
tools w i l l i d e n t i f y deterministic groups of state v a r i a b l e s ( i e . subsystems) 
which can provide the basis f o r i d e n t i f y i n g a system's things. There i s no 
reason to expect that an analyst's i n i t i a l l i s t of things w i l l always be the same 
as that derived from use of the too l s . 
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Step 3: Sublaw i d e n t i f i c a t i o n 
Every state v a r i a b l e not d i r e c t l y a f f e c t e d by the environment 

w i l l be included i n at l e a s t one sublaw. The analyst consults h i s 
or her knowledge of system dynamics to construct rules describing 
the r e l a t i o n s h i p s between state v a r i a b l e s . 

Step 4 : Consistency and completeness t e s t i n g 
The s p e c i f i c a t i o n s analysis tools are used to automatically 

t e s t the model f o r l o c a l completeness and consistency. Operation 
of the system i s simulated to ensure that each stable state, when 
acted on by an external event, can be transformed to one and only 
one stable state by the defined sublaws. Local completeness and 
consistency were formally defined i n Chapter 2. 

Step 5: Decomposition 
A l l three forms of decomposition are automatically performed 

by the s p e c i f i c a t i o n s analysis t o o l s . P a r a l l e l sequential 
decomposition i s used to f i n d sets of dete r m i n i s t i c subsystems and 
the time ordering of t h e i r a c t i v a t i o n . For example, p a r a l l e l 
sequential decomposition of the modified p a y r o l l system y i e l d e d the 
following: 

3: {base.add_pay.total_pay) 
2: {com,emp_t,over,add_pav} 
1: {hours,pay_r,base} {emp_p,sales,com) {emp_p.hours.over) 

This decomposition indicated, among other things, that c a l c u l a t i o n s 
f o r base pay ("base"), sales commission ("com") and overtime pay 
("over") may be performed i n p a r a l l e l , and that they must be 
performed before t o t a l pay may be determined. Conditional 
decomposition provides a d d i t i o n a l f l e x i b i l i t y i n the time ordering 
of subsystem a c t i v a t i o n s . For example, suppose that a d d i t i o n a l 
payments ("add_pay") were only c a l c u l a t e d f o r o f f i c e employees 
("emp_t" = " o f f i c e " ) . The tools would suggest the following 
c o n d i t i o n a l decomposition of the a d d i t i o n a l payments subsystem. 

[emp_t = office](com.over.addpay) [emp_t = sales 1(add pay) 
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This indicates that, i n the case of sales employees, a d d i t i o n a l 
payments may be c a l c u l a t e d immediately ( i t w i l l be zero). There i s 
no need to wait for sales commission and overtime pay to be 
determined. A l l forms of decomposition w i l l help the analyst to 
i d e n t i f y modelling errors should suggestions c o n f l i c t with h i s or 
her understanding of the system. 

The f i v e steps of the SELMA methodology w i l l now be applied to the IFIP 
Working Conference Problem. 

6.2.1. State Variable I d e n t i f i c a t i o n 

The f i r s t stage i n the process of information systems analysis and design 
involves b u i l d i n g a model of the r e a l world (see Figure 6 ) . Naturally, no 
analyst would attempt to model everything i n the r e a l world. He or she w i l l 
only model those parts which are to be r e f l e c t e d i n the implemented information 
system. To i d e n t i f y these parts, the analyst must determine the f u n c t i o n a l i t y 
of the system. That i s : what i s the information system supposed to provide? 
In SELMA, the p o r t i o n of the r e a l world to be modelled i s delineated by the state 
v a r i a b l e s chosen to represent those properties of the r e a l system required to 
support the functions to be provided by the information system. The IFIP Working 
Conference information system i s required to support a number of a c t i v i t i e s . 
These were l i s t e d e a r l i e r i n t h i s chapter and are repeated i n Appendix P. 
Consider the f i r s t a c t i v i t y of the Programme Committee. 

A c t i v i t y : Preparing a l i s t to whom the c a l l f o r papers i s to be sent. 

This a c t i v i t y suggests that one property of the r e a l world, with which the 
information system w i l l be concerned, should indicate whether a p a r t i c u l a r person 
i s to be i n v i t e d to submit a paper to the Conference. This property, or state 
v a r i a b l e , w i l l be c a l l e d "pap_inv" (for " i n v i t e d paper"). I n v i t a t i o n s to submit 
papers are always sent to National Representatives, Working Group members, and 
members of associated working groups. A state v a r i a b l e i n d i c a t i n g whether a 
person i s i n any of these categories w i l l be c a l l e d "grp_mem" (for "group 
member"). Individuals i n each category are treated the same with respect to a l l 
of the a c t i v i t i e s which the information system i s to support. Therefore, to 
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avoid unnecessary complexity only one state v a r i a b l e i s used. Individuals not 
i n any of the above categories could also be i n v i t e d to submit a paper. The 
state v a r i a b l e "ext_inv" (for "external i n v i t a t i o n " ) w i l l be used to indicate 
whether t h i s i s the case. Each of these state v a r i a b l e s w i l l have two values 
"y" and "n" (for "yes" and "no") to indicate whether a person has been i n v i t e d 
to submit a paper, i s a group member, or w i l l be i n v i t e d to submit a paper 
regardless of group membership. Notice that state v a r i a b l e s describing the l i s t 
i t s e l f are not properly a part of the system being modelled 1 0 0. The l i s t i s an 
a r t i f a c t of the implemented information system and need not be included i n model 
of the r e a l world. 

Many more state v a r i a b l e s were i d e n t i f i e d by examining the other required 
system functions. These are described i n Appendix Q. A l i s t of the IFIP Working 
Conference state v a r i a b l e s w i l l be provided a f t e r the i d e n t i f i c a t i o n of an 
external event i s i l l u s t r a t e d . 

6.2.2. External Event I d e n t i f i c a t i o n 

In SELMA, external events a f f e c t a system by a l t e r i n g the values of state 
v a r i a b l e s . The values of other state v a r i a b l e s may be changed by the system 
i t s e l f i n response to an external event. Such secondary changes are c a l l e d 
i n t e r n a l events. During t h i s step, the analyst i s p r i m a r i l y concerned with 
external events. Internal events are considered when system sublaws are defined. 
Each of the above state variables must be examined to decide whether i t s value 
i s set by an external event. One w i l l be examined here. The others are 
considered i n Appendix R. 

The state v a r i a b l e "del_acc", as i d e n t i f i e d i n Appendix Q, i s used to 
represent whether a delegate has accepted an i n v i t a t i o n to attend the Conference. 
Whether a person accepts an i n v i t a t i o n i s beyond the influence of the system. 
Therefore, acceptance of an i n v i t a t i o n must be modelled using external events. 
However, the state v a r i a b l e "del_acc" was to be used to generate a l i s t of 
conference attendees. This implies that attendance at the Conference i s e n t i r e l y 
decided by factors external to the system. This i s not the case. Mere 
acceptance of an i n v i t a t i o n i s not a s u f f i c i e n t condition f o r r e g i s t r a t i o n at 

For example, state variables describing the l i s t i t s e l f might include 
l i s t currency or length. I f some a c t i v i t i e s of the Committees required these 
properties, they would have to be included i n the model. 
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the Conference. The delegate must also have been i n v i t e d . A state v a r i a b l e , 
i n a d d i t i o n to those i d e n t i f i e d i n Appendix Q, i s required to i n d i c a t e whether 
the delegate has a c t u a l l y been registered. This state v a r i a b l e w i l l be c a l l e d 
"del_reg" (for "registered delegate" and w i l l have the values "y" and "n" (for 
"yes", the delegate i s r e g i s t e r e d and "no", he or she i s not). The value of 
"del_reg" i s not d i r e c t l y a f f e c t e d by external events, but i s determined s o l e l y 
by the values of "inv" and "del_acc". Also note, the a c t i v i t y "generating a 
f i n a l l i s t of attendees" w i l l require the examination of the state v a r i a b l e 
"del_reg", instead of "del_acc" as suggested i n Appendix Q. 

The state v a r i a b l e s i d e n t i f i e d through examination of required system 
functions and determination of external events are l i s t e d below. The defined 
values have the following meanings. 

y = yes 
n — no 
acc = accept 
rej = r e j e c t 
n/a = not applicable 

State Values  
Variable Name 

grp_mem y,n 
ext_inv y,n 

pap_prom y,n 

pap_sub y,n 

r e t _ r e f y,n 

Description 

Whether a person i s a member of the Working Group. 
Whether an i n v i t a t i o n to submit a paper should have 
been issued to a person by the Programme Committee 
regardless of Group membership. 
Whether a person has promised to submit a paper 
to the Working Conference. 
Whether a person has submitted a paper for review 
to the Working Conference. 
Whether a paper has been returned to the Programme 
Committee by the referees. 

1 I t i s conceivable that some person might return an i n v i t a t i o n which was 
not sent to him. Perhaps i t was obtained from a colleague. D e t a i l s l i k e this 
one were not included i n the " f i r s t d r a f t " model of the IFIP Working Conference 
system. They were added i n order to make the model complete and consistent. 
For c l a r i t y , not a l l errors made i n the " f i r s t d r a f t " are described here. 
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s u i t y,n Whether a paper i s s u i t a b l e f o r i n c l u s i o n i n the 
Conference 

chair y,n Whether a chairman has been assigned to a session 
by the Programme Committee. 

del_acc y,n Whether a person has accepted an i n v i t a t i o n from 
the Organizing Committee to attend the Conference. 

pap_inv y,n Whether a person has been i n v i t e d to submit a 

paper to the Programme Committee f o r consideration. 
sent_ref y,n Whether a paper has been sent to the referees by 

the Programme Committee. 
ref_dec acc,rej,n/a The referee's d e c i s i o n as to the s u i t a b i l i t y of 

a paper f o r i n c l u s i o n i n the conference. 
pap_dec acc,rej,n/a The Programme Committee's d e c i s i o n as to the 

s u i t a b i l i t y of a paper f o r i n c l u s i o n i n the 
conference. 

sess_ass y,n Whether a paper has been assigned to a session by 
the Programme Committee, 

inv y,n Whether a person has been i n v i t e d to attend the 
Conference by the Organizing Committee. 

del_reg y,n Whether the person has been r e g i s t e r e d to attend 
the conference. 

6 . 2 . 3 . Sublaw I d e n t i f i c a t i o n 

The ea s i e s t way to define sublaws i s to consider each state v a r i a b l e 
i n d i v i d u a l l y . The sublaws inv o l v i n g a l l of the state v a r i a b l e s l i s t e d above are 
developed i n Appendix S. Only the sublaw governing the d e c i s i o n to i n v i t e a 

person to attend the conference w i l l be considered here. A person w i l l be 
i n v i t e d i f one of the following conditions i s met: 

1. He or she i s a Working Group member. 
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2 . He or she has submitted a paper that has been accepted, rejected, or not 
yet returned by the r e f e r e e s 1 0 2 . 

Furthermore, no person should be i n v i t e d twice and no i n v i t a t i o n should be 
cancelled once issued. This l a s t requirement implies that the s t a b i l i t y 
conditions relevant to the state v a r i a b l e "inv" are not very r e s t r i c t i v e . A 
person w i l l not be i n v i t e d i f h i s or her paper i s not considered by the Programme 
Committee ( i . e . "sent_ref" i s "n") and he or she i s not a Group member. However, 
an i n v i t a t i o n may be (or may have been) sent i n any other s i t u a t i o n . This sublaw 
may be expressed i n tabular form as shown below. State v a r i a b l e s and values are 
as defined e a r l i e r , and "-" means "any value" or don't care". 

Sublaw: "Authors of processed papers and group members are i n v i t e d " 
S t a b i l i t y Conditions: 
sent_ref grp_mem inv 

y 
n n n 

Corrective Actions: 
Conditions Actions 
pap_dec sent_ref grp_mem inv --> inv 

- - y y 
acc n y 
rej - - n y 

y - n y 
y n y 

6.2.4. Consistency and completeness t e s t i n g 

Appendix T contains a l i s t i n g of the IFIP Working Conference system model 
i n the format required by the s p e c i f i c a t i o n s analysis t o o l s . There are some 
differences between t h i s model and the one developed above. The differences 
r e f l e c t changes to the system required to correct errors found during t h i s step. 
The tools also note that some of the rules included i n the model are not required 
to respond to the defined external events. Each of these rules must be examined 
to determine whether they are redundant or whether there i s a d e f i c i e n c y i n the 
model. 

Notice that mere submission of a paper does not guarantee a person an 
i n v i t a t i o n to attend the Conference. This i s an i n v i t e d paper conference. No 
paper w i l l be sent to the referees by the Programme Committee unless i t was 
previously i n v i t e d . 
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The time required for t e s t i n g can be considerably reduced by n o t i c i n g that 
two state v a r i a b l e s appear to be unrelated to the r e s t of the system. The state 
v a r i a b l e s "pap_prom" and "chair" are not mentioned together, or with any other 
state v a r i a b l e s , i n any sublaw. Therefore, they cannot a f f e c t the behaviour of 
any other state v a r i a b l e . While the values of these state v a r i a b l e s are of 
i n t e r e s t to the Programme Committee, they can be handled by subsystems which are 
independent of the r e s t of the system. The system as described above has 352 
stable states. I f "chair" i s removed from the system, there w i l l be 176 stable 
state, and i f "pap_prom" i s also removed, there w i l l be only 88 stable states. 
The number of stable states i s halved i n each case because both state variables 
have two values, and they may assume eit h e r of these values regardless of the 
state of the r e s t of the system. In order to save time t e s t i n g and decomposing 
the system, these two state vari a b l es w i l l be dropped from the model. Subsystems 
to handle promised papers and the assignment of chairmen can be constructed 
independently of the other subsystems which w i l l be suggested by the 
s p e c i f i c a t i o n s analysis t o o l s . 

When the model i s entered, the s p e c i f i c a t i o n s analysis tools w i l l f i n d i t 
to be inconsistent. I f a person who was not a Working Group member and d i d not 
submit a paper to the Programme Committee becomes a member, the system can change 
to two d i f f e r e n t stable states. The relevant state v a r i a b l e s and values are 
shown below. 

State I n i t i a l Stable State A f t e r Event F i n a l Stable States 
Variable 
grp_mem n y y y 
pap_sub n n n n 
ref_dec n/a n/a n/a n/a 
sent_ref n n n n 
pap_dec n/a n/a rej n/a 

There i s an error i n the sublaw which determines the f i n a l value of 
"pap_dec". In Appendix S, i t was assumed that the d e c i s i o n to include a paper 
i n the Conference i s based s o l e l y on the v a l i d i t y of the referees' decision. 
The referees' d e c i s i o n w i l l not be v a l i d i f the paper they judged was not sent 
to them by the Programme Committee or no paper was submitted. The o r i g i n a l 
tabular form of t h i s sublaw i s as follows (as developed i n Appendix S): 
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O r i g i n a l i n c o r r e c t sublaw 
Sublaw: "Papers are accepted nor rejected" 
S t a b i l i t y Conditions: 
ref_dec sent_ref pap_sub pap_dec 

acc y - acc 
rej y - rej 
n/a - - rej 

n n/a ' 
Corrective Actions: 
Conditions Actions 
ref_dec sent_ref pap_sub --> pap_dec 

acc y - acc 
rej y - rej 
n/a - - rej 

n n/a 

. The t h i r d rule i n both the s t a b i l i t y conditions and co r r e c t i v e actions 
sections of the sublaw must be changed as shown below. The corrected sublaw 
r e f l e c t s that f a c t that i f the referees' d e c i s i o n i s not applicable, the 
Programme Committee's de c i s i o n w i l l be neither accept nor r e j e c t . 

S t a b i l i t y Conditions: 
ref_dec sent_ref pap_sub pap_dec 

n/a - - n/a 
Corrective Actions: 
Conditions Actions 
ref_dec sent_ref pap_sub --> pap_dec 

n/a - - n/a 

The model i s incomplete with respect to an external event which sets the 
value of "grp_mem" to "y" ( i . e . the person becomes a Working Group member). 
There i s an error i n the sublaw responsible f o r s e t t i n g the value of "sess_ass". 
A paper may be submitted and neither accepted nor rej e c t e d by the Programme 

Notice that the s t a b i l i t y conditions and the c o r r e c t i v e actions parts 
of t h i s sublaw are nearly i d e n t i c a l . A "pap_dec" conditions column containing 
i n i t i a l values of "pap_dec" could have been added to the c o r r e c t i v e actions, but 
since the f i n a l value of "pap_dec" i s independent of i t s i n i t i a l value, i t i s 
easier to simply leave i t out. 

As i s evident i n Appendix S, the structures of the s t a b i l i t y conditions 
and the c o r r e c t i v e actions are often very s i m i l a r . This i s to be expected since 
the s t a b i l i t y conditions specify the stable combinations of values f o r the state 
v a r i a b l e s and the c o r r e c t i v e actions specify how to a t t a i n those values. While 
t h i s means the analyst must provide seemingly redundant information, the two 
parts of a sublaw are not always the same and neither may be l e f t out. For 
example, the s t a b i l i t y conditions and co r r e c t i v e actions of the sublaw for 
determining the value of "inv" (as described i n the previous section) are quite 
d i f f e r e n t . 
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Committee, e i t h e r because i t was never sent to the referees or was never 
returned. The o r i g i n a l tabular form of t h i s sublaw i s as follows (as developed 
i n Appendix S): 

O r i g i n a l i n c o r r e c t sublaw: 
Sublaw: "Accepted papers are assigned to a session" 
S t a b i l i t y Conditions: 
pap_dec pap_sub sess_ass 

acc - y 
rej - n 

n n 
Corrective Actions: 
Conditions Actions 
pap_dec pap_sub --> sess_ass 

acc - y 
rej - n 

n n 

Rules s p e c i f y i n g the behaviour of the system, when the Programme 
Committee's d e c i s i o n on a paper i s neither accept nor r e j e c t , must be added as 
shown below. These new rules show that papers which are neither accepted nor 
rejected are not assigned to a session. 

S t a b i l i t y Conditions: 
pap_dec pap_sub sess_ass 

n/a - n 

Corrective Actions: 
Conditions Actions 
pap_dec pap_sub --> sess_ass 

n/a - n 

The model i s also incomplete with respect to an external event which sets 
the value of "pap_sub" to "n" ( i . e . no paper i s submitted to the Programme 
Committee). The sublaw responsible for s e t t i n g the value of "ref_dec" does not 
spec i f y the a c t i o n to be taken when a paper i s not submitted (and the value of 
" s u i t " i s therefore "n/a") but i s somehow returned by the r e f e r e e s 1 0 4 . This 
sublaw, and the sublaw sp e c i f y i n g the r e l a t i o n s h i p between paper submission and 
s u i t a b i l i t y , are as follows: 

1 0 4 Perhaps a referee a c c i d e n t a l l y returned a paper destined f o r another 
conference. 
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Sublaw: "Referees e i t h e r accept or r e j e c t " 
S t a b i l i t y Conditions: 
r e t _ r e f s u i t ref_dec 

y y acc 
y n rej 
n - n/a 

Corrective Actions: 
Conditions Actions 
r e t _ r e f s u i t --> ref_dec 

y y acc 
y n r e j 
n - n/a 

Sublaw: "Papers may be suitable of unsuitable" 
S t a b i l i t y Conditions: 
pap_sub s u i t 

y y 
y n 
n n/a 

Rather than a l t e r the referee decision sublaw, i t was decided to drop the 
value of "n/a" f o r the state v a r i a b l e " s u i t " . In r e a l i t y , a paper w i l l be either 
s u i t a b l e or unsuitable regardless of whether i t i s a c t u a l l y submitted to the 
Programme Committee. The sublaw s p e c i f y i n g the r e l a t i o n s h i p between paper 
submission and s u i t a b i l i t y was also dropped from the model. 

I f the above corrections are made, the model w i l l be both l o c a l l y complete 
and l o c a l l y consistent. Appendix T contains a l i s t i n g of the l o c a l l y complete 
and consistent model expressed i n the syntax required by the s p e c i f i c a t i o n s 
analysis t o o l s . Although t h i s model i s complete and consistent, the tools note 
that two rules are not needed to return the system to a stable state a f t e r the 
acti o n of any external event. One of these rules deals with i n v i t a t i o n to the 
Conference, the other with r e g i s t r a t i o n . 

Unnecessary i n v i t a t i o n r u l e : 
Conditions Actions 
grp_mem sent_ref inv --> inv 

y y 

Unnecessary r e g i s t r a t i o n r u l e : 
Conditions Actions 
inv --> del_reg 
n n 

The analyst should confirm that these rules are indeed redundant, and that no 
semantic error has been made. The reason the ru l e which sets the value of "inv" 
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i s never a c t i v a t e d i s t r i v i a l . I t i s not capable of changing the state of the 
system. That i s , the action state v a r i a b l e "inv" must have the same value before 
and a f t e r rule a c t i v a t i o n . This does not indi c a t e an er r o r i n the system model. 
There i s no t h e o r e t i c a l reason why such a r u l e should not be allowed to f i r e . 
The s p e c i f i c a t i o n s analysis tools simply avoid such rules to save time when 
determining system response paths to external events. The r u l e which sets the 
value of "del_reg" i s never activated because state v a r i a b l e "inv" w i l l never 
be assigned a value of "n" during a system response to an external event. 
In v i t a t i o n s are never withdrawn. Because states are stable before the 
a p p l i c a t i o n of the external events, i f "inv" has the value "n" then "del_reg" 
w i l l also have the value "n". Therefore, t h i s r u l e i s never required to regain 
s t a b i l i t y and i s redundant. 

6.2.5. Decomposition 

6.2.5.1. P a r a l l e l / S e q u e n t i a l Decomposition 

P a r a l l e l / s e q u e n t i a l decomposition as performed by the s p e c i f i c a t i o n s 
analysis tools leads to three d i f f e r e n t decompositions for the IFIP Working 
Conference system. None of these decompositions i s exactly the same as the 
decomposition inherent i n the sublaws. The differences between the suggested 
decompositions w i l l be discussed f i r s t . As s h a l l be shown, these differences 
can be a t t r i b u t e d to a d e f i c i e n t system model. One decomposition w i l l be 
selected f o r further analysis and the differences between i t and the 
decomposition inherent i n the sublaws w i l l be explained. These differences 
point to " i n e f f i c i e n t " sublaw d e f i n i t i o n s . 

The three decompositions suggested by the tools are l i s t e d below and shown 
i n diagrammatic form i n Figure 23. They d i f f e r only i n the subsystems 
responsible f or c a l c u l a t i n g the values of "pap_dec" and "sess_ass" ( i . e . the 
subsystems which decide whether a paper i s accepted by the Programme Committee 
for i n c l u s i o n i n the Conference, and whether a paper i s assigned to a session). 
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Decomposition #1 Complexity = 30.84 
4: ( d e l _ a c c . i n v . d e l r e g ) ( r e t _ r e f . s e n t r e f . s e s s a s s . p a p d e c ) 
3: (grp_mem.inv.sent_ref.inv) ( r e f _ d e c . s e n t _ r e f . s e s s a s s ) 
2: (pap_inv.pap_sub.sent_ref) 
1: (ext_inv.grp_mem.pap_inv) ( r e t _ r e f . s u i t . r e f _ d e c ) 

Decomposition #2 Complexity = 31.49 
4: ( d e l a c c . i n v . d e l reg) 
3: (grp_mem.inv.sent_ref.inv) (ref_dec.sent_ref.pap_dec) 

{ref_dec,sent_ref.sessass) 
2: (papinv.papsub.sent_ref) 
1: (ext_inv.grp_mem.pap_inv) ( r e t r e f . s u i t . r e f d e c ) 

Decomposition #3 Complexity = 30.35 
4: (del_acc.inv.del_reg) (pap_dec.sessass) 
3: (grp_mem.inv.sent_ref.inv) (ref_dec.sent_ref.papdec) 
2: (pap_inv.pap_sub.sent_ref) 
1: (ext_inv.grp_mem.pap_inv) ( r e t _ r e f . s u i t . r e f _ d e c ) 

The complexities of a l l three decompositions are roughly the same. The 
f i r s t suggestion i s somewhat s u r p r i s i n g i n that i t shows that "pap_dec" can be 
determined as a function of "sess_ass". (The fun c t i o n a l forms associated with 
t h i s subsystem, and the other subsystems discussed below, are l i s t e d i n Appendix 
U) . While i t would be possible to construct a system which functioned t h i s way 
and s t i l l f u l f i l l e d a l l the requirements, an analyst would probably r e j e c t any 
suggestion that papers be assigned to sessions before they are accepted by the 
Programme Committee. The decomposition would be re j e c t e d because there are 
probably other factors which a f f e c t the Programme Committee's acceptance and 
session assignment decisions i n addition to those included i n the model. For 
example, time and space considerations may d i c t a t e that an otherwise acceptable 
paper cannot be included i n the conference. In other words, the model does not 
embody a l l of the analyst's knowledge per t a i n i n g to the dynamics of the system. 
That there i s some missing information i s also apparent i n the second 
decomposition. I t shows that the values of "pap_dec" and "sess_ass" can be 
determined i n p a r a l l e l using the same input state v a r i a b l e s . In the t h i r d 
decomposition, "sess_ass" i s shown as a function of "pap_dec" only. This i s 
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c l o s e s t to the i n t u i t i v e sequence of actions within the system. The model could 
be enhanced to include more of the factors i n f l u e n c i n g the Programme Committee's 
dec i s i o n to accept a paper and assign i t to a session. The enhanced model could 
then be decomposed again to ensure that the suggested decompositions f u l l y agree 
with the analyst's knowledge of the system dynamics. However, such a d e t a i l e d 
analysis would not be appropriate i n t h i s chapter. The t h i r d decomposition w i l l 
be selected f o r further analysis. 

In the t h i r d decomposition, the subsystems responsible f o r c a l c u l a t i n g the 
values of "pap_inv", "ref_dec", "sent_ref", and "del_reg" are described by the 
same state v a r i a b l e s used to s p e c i f y the relevant sublaws. However, there are  
some differences between the subsystems suggested by the tools and those 
i n t u i t i v e l y obvious from the sublaw s p e c i f i c a t i o n s . As discussed below, these 
differences point to redundant rules or " o v e r - s p e c i f i c a t i o n " i n the model. 

1. The sublaw s p e c i f y i n g the c a l c u l a t i o n of "inv" mentions state v a r i a b l e s 
"pap_dec", "grp_mem", "inv" and "sent_ref", but the subsystem i s not 
described by "pap_dec". The tools recognized that the d e c i s i o n to i n v i t e 
a person to attend the Conference depends only on whether that person i s 
a group member, whether he or she submitted a paper, and whether an 
i n v i t a t i o n was previously issued. The d e c i s i o n to accept or r e j e c t the 
paper i s i r r e l e v a n t as authors of both accepted and r e j e c t e d papers are 
i n v i t e d . 

2. The sublaw s p e c i f y i n g the c a l c u l a t i o n of "pap_dec" mentions state v a r i a b l e s 
"ref_dec", "sent_ref", and "pap_sub". However, the tools recognized that 
the value of "pap_sub" i s not required i n order to determine the value of 
"pap_dec". That i s , i t i s not necessary to know e x p l i c i t l y whether a paper 
was submitted, only whether i t was sent to the referees and whether they 
found i t to be s u i t a b l e . 

3. S i m i l a r l y , the sublaw sp e c i f y i n g the c a l c u l a t i o n of "sess_ass" mentions 
state v a r i a b l e s "pap_dec", and "pap_sub". However, the tools recognized 
that the value of "pap_sub" i s not required i n order to determine the value 
of "sess ass". 
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6.2.5.2. Conditional Decomposition 

The selected decomposition shows the d e c i s i o n to i n v i t e a person to attend 
the Conference (represented by the value of the state v a r i a b l e "inv") being made 
at l e v e l 3. This r e s u l t s from the f a c t that i n order to make the d e c i s i o n under 
a l l p ossible circumstances i t must be known whether a person i s a Working Group 
member (represented by "grp_mem") and whether the paper was accepted f o r further 
consideration (represented by " s e n t _ r e f " ) . Such a subsystem i s l i k e l y to be 
unacceptable to the analyst as i n v i t a t i o n s to Working Group members should be 
sent long before papers are received from e i t h e r Group members or external 
i n v i t e e s . The subsystem {grpmem.inv.sent r e f . i n v ) i s a candidate for 
c o n d i t i o n a l decomposition. When con d i t i o n a l decomposition i s applied to the 
subsystem by the s p e c i f i c a t i o n s analysis tools, three suggestions are made. 

1- [grp_mem = y](inv) [grp_mem = n]{inv,sent_ref,inv) 

This c o n d i t i o n a l decomposition shows that as long as the person i s a Working 
Group member, there i s only one possible value for "inv". An i n v i t a t i o n should 
be sent. However, i f the person i s not a working group member, the i n v i t a t i o n 
d e c i s i o n must be delayed u n t i l a paper i s submitted and i t i s decided whether 
to send the paper to the referees ( i . e . i t i s accepted for consideration by the 
Programme Committee). 

2. [inv = y j ( i n v ) [inv = nl(grp_mem.sent_ref.inv) 

S i m i l a r l y , t h i s c o n d i t i o n a l decomposition shows that i f an i n v i t a t i o n has been 
sent the f i n a l value of "inv" i s known. Since i n v i t a t i o n s are not cancelled, 
the f i n a l value of "inv" w i l l be "y". However, i f no i n v i t a t i o n i s sent, the 
values of both "grp_mem" and "sent_ref" must be considered. 

3. [sent_ref = y1{inv) [sent_ref = n1(grp_mem.inv.inv) 

This c o n d i t i o n a l decomposition shows that i f a paper i s sent to the referees, 
there i s only one possible value for "inv" ( i . e . an i n v i t a t i o n w i l l be sent). 
However, i f the paper i s not sent to the referees, i t i s necessary to know 
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whether the person i s a Working Group member before d e c i d i n g whether to send an 

i n v i t a t i o n . 

When choos ing between the three c o n d i t i o n a l decompos i t ions , an a n a l y s t 

would l i k e l y favour decomposit ions which a l l o w d e c i s i o n s to be made a t a lower 

l e v e l ( i . e . e a r l i e r ) than tha t i n d i c a t e d by the p a r a l l e l / s e q u e n t i a l 

decompos i t ion . For example, the c o n d i t i o n a l decomposi t ions f o r the i n v i t a t i o n 

subsystem a l l o w the p a r a l l e l / s e q u e n t i a l l e v e l s t r u c t u r e to be m o d i f i e d as 

f o l l o w s : 

4: ( d e l _ a c c . i n v . d e l r e g ) ( pap_dec . s e s sa s s ) 

3: [grp_mem=n]{inv,sent_ref , inv} {ref_dec .sent_ref .pap_dec) 

2: ( p a p _ i n v . p a p s u b . s e n t r e f ) 

1: (ext_inv.grp_mem.pap_inv) ( r e t _ r e f . s u i t . r e f d e c ) [grp_mem=y]{inv} 

or 

4: ( d e l _ a c c . i n v . d e l r e g ) (pap_dec.sess_ass) 
3: [ inv=n]{grp_mem,sent_ref , inv) ( re f_dec .sen t_ref .pap_dec) 
2: (pap_inv.pap_sub.sent_ref ) 

1: {ext_inv.grp_mem.pap_inv} ( r e t _ r e f . s u i t . r e f _ d e c ) [ inv=y]{ iny) 

or 

4: ( d e l _ a c c . i n v . d e l r e g ) {pap_dec.sess_ass) 

3: [ sen t_re f=y]{ inv) [sen t_re f=n]{grp_mem, inv . inv){re f_dec , sen t_re f .pap_dec) 

2: (pap_inv.pap_sub.sent_ref ) 

1: (ext_inv.grp_mem.pap_inv) ( r e t _ r e f . s u i t . r e f _ d e c ) 

The f i r s t a l t e r n a t i v e shows tha t under some c i rcumstances the d e c i s i o n to 

i n v i t e a person may be made a t l e v e l 1 ( i . e . i f a person i s a Group member, he 

or she shou ld be i n v i t e d ) . The second merely a f f i rms the f a c t t ha t i n v i t e d 

people w i l l always be i n v i t e d ( i . e . i n v i t a t i o n s are not r evoked) . Th i s 

decomposi t ion does not a l l o w the o r i g i n a l i n v i t a t i o n d e c i s i o n to be made any 

e a r l i e r . The t h i r d does not a l l o w any d e c i s i o n to be advanced i n time s i n c e both 

c o n d i t i o n a l subsystems are s t i l l a t l e v e l 3. Therefore , the f i r s t a l t e r n a t i v e 
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w i l l be adopted f o r purposes of comparison with JSD and ACM/PCM. This 
decomposition i s shown i n diagrammatic form i n Figure 24. 

The complexity of the subsystem {grp_mem,inv.set_ref,inv) i s 4.35. The 
t o t a l complexities of each condi t i o n a l decomposition i s 3 . 25 . Therefore, i n 
addi t i o n to adding f l e x i b i l i t y to the timing of the d e c i s i o n to i n v i t e a person, 
there i s s i g n i f i c a n t complexity reduction through c o n d i t i o n a l decomposition. 

6.3. Jackson System Development (JSD) 

The r e s u l t s of analysis using SELMA can be compared to those of more 
established systems analysis techniques. In t h i s s e c t i o n and the next, the 
objects i d e n t i f i e d by Jackson System Development (JSD) and Active and Passive 
Component Modelling (ACM/PCM) for the IFIP Working Conference system w i l l be 
compared to the hierarchy of subsystems discovered above. 

In JSD, "the r e a l world i s described i n terms of e n t i t i e s , actions they 
perform or s u f f e r , and the orderings of those actions" (Jackson, 1983, p. 23). 
The notion of " e n t i t y " i n JSD a d i f f e r e n t from that used i n most database 
modelling methods. Jackson suggests that i f an analyst were to construct an 
Entity-Relationship Model (Chen, 1976) of the f a c t that "a customer i s located 
i n a c e r t a i n town, each town i n a c e r t a i n county, and each county i n a c e r t a i n 
state", he or she would i d e n t i f y town, country and state as e n t i t i e s . In 
general, JSD would not. Town, country, and state would not be e n t i t i e s unless 
they perform or s u f f e r s i g n i f i c a n t l y time-ordered actions i n the r e a l world. 
JSD e n t i t i e s are also not i d e n t i c a l to the objects of object-oriented 
programming, but they are s i m i l a r enough that f or the purposes of t h i s research 
the terms can be used interchangeably. 

Jackson notes that "some database development methodologies compensate for 
the s t a t i c nature of the database by s p e c i f y i n g updating constraints as part of 
the database d e f i n i t i o n " (Jackson, 1983, p. 19). On the other hand, JSD begins 
"by constructing a dynamic model d i r e c t l y , based on a dynamic d e s c r i p t i o n of the 
r e a l world" (p. 19). 

JSD provides four general rules f or i d e n t i f y i n g e n t i t i e s (Jackson, 1983, 
p. 4 0 ) : 

1. An e n t i t y i s to be included ... i f the system w i l l need to produce or use 
information about i t . 
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2. An e n t i t y must perform or s u f f e r actions, i n a s i g n i f i c a n t time ordering. 
Thus "date" and "age" would not be permissible e n t i t i e s i n any p l a u s i b l e 
system. 

3. An e n t i t y must e x i s t i n the r e a l world outside the system, and must not 
be merely part of the system i t s e l f or a product of the system. Thus 
"error report" would not be a permissible e n t i t y . 

4. An e n t i t y must be capable of being regarded as an i n d i v i d u a l , and, i f 
there i s more than one e n t i t y of a type, of being uniquely named. 

The f i r s t rule corresponds to the f i r s t step i n applying SELMA where state 
v a r i a b l e s are i d e n t i f i e d by considering the functions the implemented information 
system i s to perform. The t h i r d rule i s i d e n t i c a l to the suggestion made when 
de f i n i n g the sublaw governing i n v i t a t i o n s to the IFIP Working Conference, that 
state v a r i a b l e s describing a r t i f a c t s of the implemented information system not 
be included i n a system model 1 0 5. In the SELMA model of the Working Conference 
system, no state v a r i a b l e s describe the various l i s t s to be produced. I t i s 
f a i r l y easy to see whether a p o t e n t i a l e n t i t y s a t i s f i e s rules 1 and 3. I t i s 
considerably more d i f f i c u l t to apply rules 2 and 4. The phrase " s i g n i f i c a n t time 
ordering" and the property "capable of being regarded as an i n d i v i d u a l " are not 
c l e a r l y defined i n JSD. This i s where the decomposition techniques embodied i n 
the s p e c i f i c a t i o n s analysis tools can help. 

In JSD "time ordering" r e f e r s to the sequencing of actions. JSD actions 
correspond to the external and i n t e r n a l events of SELMA. In a SELMA system 
model, no ordering of events i s given. However, the decompositions suggested 
by the tools do impose a " s i g n i f i c a n t " sequence on the events. Namely, the 
subsystems at lower l e v e l s i n the decomposition must determine the values of 
t h e i r output state variables before those v a r i a b l e s are used by h i g h e r - l e v e l 
subsystems. Also, i t seems reasonable to assume that an i n d i v i d u a l should be 
describable by a subsystem s a t i s f y i n g the independence c r i t e r i a suggested by 
Wand and Weber (1988) and described i n Chapter 3. That i s , an i n d i v i d u a l should 
embody a l l the information required i n order to p r e d i c t i t s behaviour i n a given 
s i t u a t i o n or state. Now consider the decomposition of the IFIP Working 
Conference system suggested by the s p e c i f i c a t i o n s analysis t o o l s : 

1 0 5 Unless, of course, the d e s c r i p t i o n of the functions to be provided by 
the information system require such state v a r i a b l e s . 
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4: ( d e l a c c . i n v . d e l _ r e g) ( p a p d e c . s e s s a s s ) 
3'- [grp_mem=n]{inv,sent_ref,inv} (ref_dec.sent_ref.pap_dec) 
2: (pap_inv.pap_sub.sentref) 
1: (ext_inv.grp_mem.pap_inv) ( r e t _ r e f . s u i t . r e f d e c } [grp_mem=n]{inv) 

Figure 24 more c l e a r l y shows the sequence of subsystem a c t i v a t i o n s . 
Any subsystem, or c o l l e c t i o n of subsystems which are a c t i v a t e d i n sequence, 

w i l l meet the JSD c r i t e r i a f o r sui t a b l e e n t i t i e s . For example, e n t i t i e s 
c o n s i s t i n g of the following subsystems could be defined. Interconnections 
between these e n t i t i e s are i l l u s t r a t e d i n Figure 25. I t i s i n no way implied 
that t h i s p a r t i t i o n represents a "good" s e l e c t i o n of e n t i t i e s . 

E n t i t y 1: I n v i t a t i o n and Re g i s t r a t i o n D i v i s i o n 
(del_acc.inv.delreg),[grp_mem=n](inv.sent_ref.inv) 

E n t i t y 2: Paper Requesting and Receiving D i v i s i o n 
(papinv.papsub.sentref),(ext_inv.grp_mem.pap_inv) [grp_mem=y](inv) 

E n t i t y 3: F i n a l Programme Committee A c t i v i t i e s D i v i s i o n 
{ref_dec,sentref.papdec),{pap_dec.sess_ass) 

E n t i t y 4: Referees 
( r e t _ r e f . s u i t . r e f _ d e c ) 

Communication between e n t i t i e s i s i n the form of state v a r i a b l e values. 
Communication i s required where an arrow crosses an e n t i t y boundary i n the above 
Figure 25. There are, of course, several other ways i n which the above 
subsystems could be grouped into e n t i t i e s . 

McNeile (1986) applied JSD to the IFIP Working Conference problem. The 
i d e n t i f i e d e n t i t i e s and associated actions were as follows: 

E n t i t y Description Action Description 
Name Name 

paper submitted paper promise paper i s promised to the Programme 
Committee 
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Figure 25: A possible e n t i t y structure f o r the IFIP Working Conference problem 
based on a decomposition suggested by the s p e c i f i c a t i o n s analysis 
t o o l s . 
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submit submit to the Programme Committee 
sendref send to a referee 
r e t r e f returned from the referee 
r e j e c t Programme Committee r e j e c t s the paper 
accept Programme Committee accepts the paper 
sessdef paper i s a l l o c a t e d to a session 

pot_del p o t e n t i a l 
delegate 

i n v i t e i n v i t e person to the Conference 
r e g i s t e r delegate r e g i s t e r s f o r Conference 
attend delegate attends the Conference 

group_mem Working Group j o i n 
member leave 

j o i n Group 
leave Group 

paper_ref paper/referee sendref 
assignment r e t r e f 

send paper to a referee 
paper i s returned by the referee 

These e n t i t i e s and actions may be combined to form the e n t i t y structure 
diagrams of Figure 26. E n t i t y structure diagrams show the order i n which actions 
are applied to an e n t i t y . They are read from l e f t to r i g h t . For example, the 
"paper" e n t i t y may be promised, must be submitted, must be sent to one or more 
referees, w i l l be e i t h e r rejected or processed following acceptance, and i f 
necessary, t h i s processing w i l l c o n s ist of acceptance followed by assignment to 
a session. The paper/referee .entity i s a s p e c i a l e n t i t y created to model the 
f a c t that a paper can be sent to more than one referee. In the SELMA model, 
papers are sent to referees and returned by them. The actions r e l a t i n g to 
i n d i v i d u a l referees are not modelled. The l i s t of actions corresponds to the 
external and i n t e r n a l events (represented by the c a l c u l a t i o n of output state 
v a r i a b l e s ) i d e n t i f i e d i n the SELMA model. There are a few minor differences 
r e s u l t i n g from d i f f e r e n t i n t e r p r e t a t i o n s of the problem d e s c r i p t i o n . McNeile 
does not model the i n i t i a l c a l l f o r papers. I t appears that any submitted paper 
w i l l be considered by the Programme Committee. In the SELMA model, only i n v i t e d 
papers are considered. McNeile also models actual attendance at the Conference, 
while t h i s i s considered beyond the scope of the SELMA model. This difference 
l i k e l y r e s u l t s from d i f f e r e n t interpretations of the "Generating a f i n a l l i s t 
of attendees" a c t i v i t y of the Organizing Committee. 
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The Paper E n t i t y : 

possess 
promise 

submit 

_ 0 
1 

promise 

paper 
I 

r e f e r e e 

sendref 

0 means se l e c t i o n 
* means i t e r a t i o n 
0 means zero or one occurence 

The P o t e n t i a l Delegate E n t i t y : 

p o t _ d e l 

1 1 
i n v i t e r e g i s t e r a t t e n d 

The f o r k i n g Group Ilemher E n t i t y 

group_mem 

X 
] oin l e a v e 

The Paper /Referee Assignment E n t i t y 

paper_ref 

sendref r e t r e f 

Figure 2 6 : JSD e n t i t y structure diagrams for the IFIP Working Conference 
Problem. 
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McNeile's working group member e n t i t y i s represented by a single state 
v a r i a b l e i n the SELMA model. The state v a r i a b l e "grp_mem" i s used to indicate 
whether a person i s a member of the Working Group. External events are defined 
to model the j o i n i n g and leaving actions. McNeile's remaining two e n t i t i e s 
correspond to the p a r t i t i o n of the subsystems shown i n Figure 27. Notice that 
there i s much less communication ( i n the form of t r a n s f e r r e d state v a r i a b l e 
values) between the e n t i t i e s of t h i s subsystem p a r t i t i o n than between those of 
the a r b i t r a r y p a r t i t i o n suggested e a r l i e r . One could say that there i s less 
coupling and greater cohesion i n t h i s p a r t i t i o n 1 0 6 . The sequence of subsystem 
a c t i v a t i o n s inside each SELMA e n t i t y c l o s e l y resembles the order of the 
sequential actions i n each JSD e n t i t y . The delegate r e g i s t r a t i o n and i n v i t a t i o n 
e n t i t y (comprised of the "del_reg" and "inv" subsystems) shows i n v i t a t i o n 
preceding r e g i s t r a t i o n i n much the same way as i s shown be the JSD "pot_del" 
e n t i t y . McNeile has chosen to model attendance as w e l l . The SELMA paper e n t i t y 
shows paper i n v i t a t i o n ("pap_inv") followed by referee judgement ("sent_ref" 
and "ref_dec") followed by judging ("pap_dec") followed by session assignment 
("sess_ass"). This i s very s i m i l a r to the sequence of actions i n the JSD paper 
e n t i t y . Notice, however, that McNeile has included a paper promising action i n 
h i s paper e n t i t y . The SELMA decomposition has no corresponding subsystem because 
the "pap_prom" state v a r i a b l e was dropped from the model f o r e f f i c i e n c y reasons. 
There were no i n t e r a c t i o n s between the "pap_prom" state v a r i a b l e and any other 
state v a r i a b l e . The single state v a r i a b l e subsystem (pap_prom) could be appended 
to the SELMA paper e n t i t y but i t s a c t i v a t i o n may occur at any time ( i . e . no other 
subsystem requires the value of "pap_prom"). The JSD e n t i t y i n s i s t s that i f a 
paper i s promised at a l l , i t must be promised before i t i s submitted. This i s 
i n t u i t i v e l y reasonable. But what happens i f the paper i s received by the 
Programme Committee before the promise a r r i v e s ? 1 0 7 The JSD e n t i t y , as shown, 
simply cannot handle such a s i t u a t i o n . The SELMA e n t i t y notes that the order 
of these events i s i r r e l e v a n t . 

While the differences between the JSD and SELMA solutions are i n t e r e s t i n g , 
what i s of primary importance i s that the decomposition suggested by the 
s p e c i f i c a t i o n s analysis tools maps e a s i l y into the e n t i t y decomposition produced 

1 0 6 Perhaps e n t i t y i d e n t i f i c a t i o n can be viewed as the decomposition of the 
system of subsystems i d e n t i f i e d by the s p e c i f i c a t i o n s analysis t o o l s . 

1 0 7 Perhaps there was a problem with the mail system. 
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promise 

paper 

submit referee] I ]udge 

- 0 promise 0 sendref * reject? accept0 
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grp_mem 
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sent_ref 
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sent_ref ref_dec 
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pap_inv 

p o t _ d e l 

e n t i t y -
p a p e r 

e n t i t y 

ref_dec 
su i t 
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Figure 27: Mapping the JSD s o l u t i o n into the SELMA s o l u t i o n of the IFIP Working 
Conference problem. 
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by at l e a s t one p r a c t i t i o n e r of JSD. Also note that the s p e c i f i c a t i o n s analysis 
tools were able to perform decomposition automatically. while JSD required 
s u b s t a n t i a l human judgement. 

6.4. Active and Passive Component Modelling (ACM/PCM) 

The real-world modelling aspects of ACM/PCM w i l l be b r i e f l y discussed and 
compared to JSD and SELMA. Brodie and S i l v a ' s (1982) s o l u t i o n to the IFIP 
Working Conference problem w i l l be described. There are considerable differences 
between the ACM/PCM s o l u t i o n and those of JSD and SELMA. The reasons for these 
differences w i l l be explained and the s u p e r i o r i t y of JSD and SELMA for high-
l e v e l , real-world modelling w i l l be demonstrated. 

ACM/PCM i s notable for i t s extensive use of a b s t r a c t i o n 1 0 8 which i s claimed 
to r e s u l t i n "equal emphasis on the i n t e g r i t y of s t r u c t u r a l and behavioural 
properties of an a p p l i c a t i o n . . . Structure r e f e r s to states and s t a t i c 
properties. Behaviour r e f e r s to state t r a n s i t i o n s and dynamic properties" 
(Brodie and S i l v a , 1982, pp. 41). I t i s also claimed that "both s t r u c t u r a l and 
behavioural properties of objects can be designed i n i s o l a t i o n . . . " (p. 41). In 
ACM/PCM, s t r u c t u r a l properties are equivalent to s t a t i c properties, and include 
decomposition. This i s almost the a n t i t h e s i s of both JSD and SELMA. As noted 
e a r l i e r , JSD begins "by constructing a dynamic model d i r e c t l y , based on a dynamic 
d e s c r i p t i o n of the r e a l world" (Jackson, 1983, p. 19). SELMA channels most of 
an analyst's e f f o r t into d e f i n i n g the behavioural properties of a system. I t 
i s these behavioural properties which determine the structure of the system. 
In SELMA, s t a t i c properties consist of only the l i s t of state v a r i a b l e s 1 0 9 

included i n the system model. I t w i l l be i n t e r e s t i n g to see how the objects 
discovered by ACM/PCM compare with those of found i n the previous sections. 

Unfortunately ACM/PCM does not provide much guidance for the i d e n t i f i c a t i o n 
of objects. The f i r s t few steps i n the methodology are described below (Brodie 
and S i l v a , 1982, p. 50). 

1 0 8 Abstraction i s defined as "the suppression of some d e t a i l i n order to 
emphasize more appropriate d e t a i l " (Brodie and S i l v a , 1982, p. 41). 

1 0 9 and t h e i r associated values. 
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CONCEPTUAL MODELLING 
A . l CONCEPTUAL MODELLING OF STRUCTURE 

A.1.1. Structure Design 
A.1.1.1. Object i d e n t i f i c a t i o n 

I d e ntify and name the basic objects to be represented. 
A.1.1.2. Object c l a s s i f i c a t i o n : 

C l a s s i f y each object as e i t h e r permanent or temporary 
and independent or dependent 1 1 0. 

A.1.1.3. Construct i n d i v i d u a l object schemes: 
Considering permanent objects f i r s t , apply the 
aggregation / decomposition, g e n e r a l i z a t i o n / 
s p e c i a l i z a t i o n and as s o c i a t i o n / membership to each 
i d e n t i f i e d object. Consider f i r s t the independent and 
then the dependent objects. This step r e s u l t s i n 
i d e n t i f y i n g the basic objects. 

Aggregation / decomposition, g e n e r a l i z a t i o n / s p e c i a l i z a t i o n , and 
ass o c i a t i o n / membership r e f e r to "part-of", " i s - a " , and "member-of" 
re l a t i o n s h i p s between objects, r e s p e c t i v e l y . No further advice p e r t a i n i n g to 
object i d e n t i f i c a t i o n i s given. As a r e s u l t of performing step A.1.1.1. the 
following objects were i d e n t i f i e d f or the IFIP Working Conference problem (Brodie 
and S i l v a , 1982, pp. 57-58). 

Object Name 
accepted 
as s igned_to_sess ion 

attendee 
author 

Description 
paper accepted for presentation at the Conference 
paper that i s enroled f o r presentation i n one 
session 
a person who w i l l be present at the Conference 
person who submitted a paper 

An object i s "permanent" i f i t cannot be created or destroyed by the 
system, and "independent" i f i t s existence does not depend on the existence of 
some other object. These c l a s s i f i c a t i o n s are not relevant to the discussion here 
and w i l l not be considered further. 

196 



c fp_divulgat i on 

c f p _ i n v i t e e 

conference_invitee 

dropped 

intended_attendee 

l e t t e r _ o f _ i n t e n t 

national_representative 
not_assigned to a session 

oc_chairperson 
oc_member 

paper 

paper_referee_assignment 

pc_chairperson 
pc_member 

referee 
rej ected 

session 

session_chairperson 
subscriber 

technical publisher or a s s o c i a t i o n who w i l l get 
Conference announcements for p u b l i c a t i o n i n t h e i r 
magazines 
a person who w i l l get an i n v i t a t i o n to submit a 
tec h n i c a l paper to the Conference 
person who got an i n v i t a t i o n to attend the 
Conference 
paper withdrawn from the Conference by the author 
person who sent a r e g i s t r a t i o n to attend the 
Conference 

a correspondence that indicates that an i n d i v i d u a l 
or more wishes to present one or more papers at 
thi s Conference 
IFIP national representative 

accepted paper that i s c u r r e n t l y not enroled i n 
any session 
organizing committee chairperson 
person that belongs to the Working Conference 
organizing committee 
a technical report submitted to be presented at 
the Conference 
refe r s to t r a n s f e r r i n g a paper to a referee for 
evaluation, consists of person, comments, date of 
assignment, deadline, date comments received, and 
paper 
program committee chairperson 
person involved i n the Working Conference paper 
s e l e c t i o n 
appointed person to review submitted papers 
te c h n i c a l paper not accepted by the Programme 
Committee 
a t e c h n i c a l meeting where t e c h n i c a l papers are 
presented to people attending the Conference 
i n d i v i d u a l that w i l l be c h a i r i n g the session 
person who sent a l e t t e r showing i n t e r e s t i n 
presenting a paper 
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tc member representative of IFIP member society to a 
Programme Committee 
IFIP Programme Committee 
working group member 

tec h n i c a l committee 
wg_member 
working_conference an IFIP technical conference to discuss and debate 

a s p e c i f i c issue 

Obviously, the ACM/PCM model begins with more d e t a i l and has a broader 
scope than e i t h e r the JSD or SELMA models. The scope i s greater because Brodie 
and S i l v a have dealt with membership of the various committees and advertising. 
Also, the i n c l u s i o n of a working conference object implies the model can handle 
multiple conferences. The s t a t i c r e l a t i o n s h i p s between these objects (and some 
others) are diagrammed i n Figure 28. In Figure 29, the scope of the model has 
been reduced to f a c i l i t a t e comparison with JSD and SELMA. 

The decomposition i l l u s t r a t e d i n Figure 29 i s quite d i f f e r e n t from those 
provided by e i t h e r JSD or SELMA. The two ce n t r a l objects are "person" and 
"paper". "Paper" was included i n the i n i t i a l l i s t of objects. "Person" was 
added because "wg_member", "intended_attendee", etc. are " n a t u r a l l y modelled as 
being categories of an object PERSON, which i s an aggregate of name, address and 
a unique number (system's i n t e r n a l key)" (Brodie and S i l v a , 1982, p. 59). 
Instead of using "author" as a category of "person", the authors decided to 
create an aggregate c a l l e d "authorship" to show that a r e l a t i o n s h i p may e x i s t 
between a person and a paper. Thus, instead of showing that "author" i s - a 
"person", they show that "person" i s part-of an "authorship". I t i s not 
immediately obvious how to compare t h i s object hierarchy with those of JSD and 
SELMA. 

JSD i d e n t i f i e d (and with appropriate p a r t i t i o n i n g of the suggested 
subsystems, SELMA could i d e n t i f y ) two major e n t i t i e s or objects: grp_mem and 
paper. "Paper" i s c e r t a i n l y also i d e n t i f i e d by ACM/PCM, as are many 
subcategories of "paper", namely, rejected papers, accepted papers, papers 
assigned to sessions, and papers not assigned to sessions. In JSD these 
subcategories are represented by the values of some of the a t t r i b u t e s of the 
"paper" e n t i t y . For example, a rejected paper could be represented by a paper 
with the value " r e j e c t " assigned to the a t t r i b u t e "paper_decision". The same 
technique i s used i n SELMA except that a t t r i b u t e s of an e n t i t y are c a l l e d state 
v a r i a b l e s of a subsystem. However, "pot_del" ( i . e . a p o t e n t i a l delegate to the 
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conference) i s more s p e c i f i c than "person". "Person" includes "referee" as a 
subcategory. "Pot_del" does not ne c e s s a r i l y include referees. That i s , the f a c t 
that someone i s a referee i s i r r e l e v a n t to h i s or her p a r t i c i p a t i o n i n the 
conference i t s e l f . Where then, does the object "person" come from, and what 
are the consequences of including i t i n the system model? 

Brodie and S i l v a have used world knowledge. not e x p l i c i t l y given i n the 
d e s c r i p t i o n of the problem, to show a r e l a t i o n s h i p between several d i f f e r e n t 
system objects. Nothing i n the system d e s c r i p t i o n says that referees and Working 
Group members are somehow linked. No defined dynamics of the system ( i . e . 
ACM/PCM actions, JSD actions or SELMA external and i n t e r n a l events) a f f e c t or 
examine group members and referees together 1 1 1. Only the knowledge that Working 
Group members and referees are both human beings allows t h i s l i n k to be made. 
But i s there anything wrong with making such a connection? I f the connection 
could support possible extensions to the system (see footnote), why not include 
i t from the sta r t ? Do JSD and SELMA f a i l to c a p i t a l i z e on an important and 
use f u l source of system information, namely general world knowledge? 

Answering the l a s t question f i r s t , l e t us determine what changes to the 
JSD model would be required i n order to model an a c t i v i t y which l i n k e d referees 
and p o t e n t i a l delegates. Suppose a 
free copy of the proceedings i s given 
to a l l referees who are Working Group 
members. The "pot_del" e n t i t y could 
be modified as shown i n Figure 30. A 
"referee part" concerned with the 
d i s t r i b u t i o n of free copies of the 
proceedings has been added. An 
a t t r i b u t e i n d i c a t i n g whether a delegate 
i s a referee w i l l also be required. 

The new a c t i v i t y ( i . e . 
d i s t r i b u t i o n of proceedings) does not 
require the cre a t i o n of a new object. 

The Potent ia l Delegate E n t i t y : 

pot_del 

register attend Referee 
Part 

E3 free" 
proceedings 

Figure 30: A modified JSD p o t e n t i a l 
delegate e n t i t y for 
modelling the d i s t r i b u t i o n 
of free copies of the 
proceedings. 

However, at the implementation l e v e l , 

I t i s possible to define a dynamic operation which would l i n k Group 
members and referees. The system could be extended to include a r u l e s t a t i n g 
that Group members who are referees are to be treated d i f f e r e n t l y from other 
Group members. Perhaps they could be given a free copy of the proceedings. 
However, no ru l e of t h i s form i s given i n the IFIP Working Conference problem 
d e s c r i p t i o n . 
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using an inheritance scheme whereby both "wg_member" and "referee" objects w i l l 
have some i d e n t i c a l a t t r i b u t e s ensures that the objects can be s u c c e s s f u l l y 
compared (assuming both Group member and referee objects were to be created). 
I f the keys to the "wg_member" and "referee" objects were d i f f e r e n t , determining 
which Group members are also referees could be quite d i f f i c u l t . Such problems 
are implementation issues and, as such, should not be part of the system model. 
But why not? The usual argument against "mixing" l e v e l s of a b s t r a c t i o n involves 
managing complexity 1 1 2. Abstracting implementation issues out of the early 
stages of systems analysis and design w i l l r e s u l t i n fewer concepts which the 
analyst must consider at any one time. Implementation issues could also obscure 
important r e l a t i o n s h i p s between the objects i n a model. This happens i n the 
ACM/PCM model. 

Consider the object "paper_referee_assignment" as diagrammed i n Figure 29. 
This object i s used to show one kind of r e l a t i o n s h i p between a paper and a 
person. However, the actual r e l a t i o n s h i p i s not between a paper and a person 
but between a paper and a referee. The i n c l u s i o n of the "person" object between 
"referee" and "paper_referee_assignment" obscures t h i s f a c t . As drawn, papers 
could be refereed by any "wg_member", "intended_invitee", "conference_attendee" 
or "referee". A s i m i l a r observation can be made f o r the "authorship" object. 
This error i s not d i f f i c u l t to correct. Figure 29 can be changed to appear as 
i n Figure 31. Unfortunately, the error has been propagated throughout the r e s t 
of the ACM/PCM model. The action used to model the sending of a paper to a 
referee i s shown below (Brodie and S i l v a , 1982, p. 77). The syntax "x:y" means 
that "x" i s an instance of the object "y". Several of the objects mentioned i n 
the a c t i o n do not appear i n Figure 29, but are shown i n Figure 28. The IN and 
OUT sections s p e c i f y the inputs and outputs to the action, r e s p e c t i v e l y . The 
LOCAL se c t i o n declares the objects which are l o c a l to the operation of the 
action. These objects are used i n the execution of the DB-OPERATION (database 
operation) associated with the action. The PRE-CONDITIONS and POST-CONDITIONS 
are l i s t s of predicates which must be s a t i s f i e d before the a c t i o n can begin and 
end, r e s p e c t i v e l y . 

ACTION insert_paper_referee_assignment(pe_n, d_a, dine, pa_n) 
IN (pe_n:person_number, d_a:date_assignment, dine:deadline, 

Removal of implementation concerns also allows a s i n g l e conceptual 
model to be used f o r many a l t e r n a t i v e implementations. The analyst i s not 
committed to a p a r t i c u l a r implementation r i g h t from the s t a r t . 
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Figure 31: The corrected ACM/PCM object scheme for the IFIP Working Conference 
problem. 
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pa_n:paper_number) 
OUT (pra:paper_referee_assignment) 
LOCAL (pe:person, pa:paper) 
PRE-CONDITION: 

paper_exist(pa_n)? 
person_exist(pe_n)? 
the_person_is_not_refereeing_the_paper(pe_n, pa_n)? 

POST-CONDITION: true? 
DB-OPERATION: INSERT paper_referee_assignment(pe, d_a, dine, pa) 

The person_exist(X) predicate i s defined to be true i f the "person_number" 
assigned to X corresponds to an instance of the "person" object. This i s not 
the correct pre-condition. The predicate should t e s t whether an instance of the 
"referee" object e x i s t s . This error r e s u l t s from cre a t i n g an action to 
complement the object scheme which shows "person" as part of a 
"paper_referee_assignment". This error would not have occurred i f d e f i n i t i o n 
of the "person" object had been deferred to a l a t e r stage of design. The 
"person" object i s not required to model the behaviour of the IFIP Working 
Conference system, and i t s i n c l u s i o n has led to at l e a s t one error i n the ACM/PCM 
system s p e c i f i c a t i o n . 

The ACM/PCM object scheme can be modified to more c l o s e l y r e f l e c t the 
objects i d e n t i f i e d by JSD and SELMA as shown i n Figure 32. "Person" can be 
replaced by the object "pot_del" (for p o t e n t i a l delegate). The object 
"wg_member" has become a subcategory of "conference_invitee" to show that a l l 
"wg_members" are i n v i t e d . "Referee" i s now part-of the paper object, and i s no 
longer associated with the same objects as "intended_attendee" and 
"conference_invitee". The object " e x t e r n a l _ i n v i t e e " has been added to represent 
those persons i n v i t e d to the Conference who are not Working Group members. 
These people must have submitted a paper to the Programme Committee. This 
requirement i s shown by incl u d i n g "paper" as part-of " e x t e r n a l _ i n v i t e e " . These 
changes to "exter n a l _ i n v i t e e " are probably not required as the r e s u l t of an error 
made by Brodie and S i l v a . They l i k e l y r e s u l t from d i f f e r e n t i n t e r p r e t a t i o n s of 
the IFIP Working Conference Problem. 

6.5. Conclusions 

SELMA has been s u c c e s s f u l l y applied to a " r e a l " system: the IFIP Working 
Conference problem. The focus of states, events, and laws allowed the use of 
automated s p e c i f i c a t i o n s analysis t o o l s . These tools proved to be very useful 
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Figure 32: A modified ACM/PCM object scheme for the IFIP Working Conference 
problem which more c l o s e l y resembles the structures found using J S D 
and SELMA. 
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i n ensuring the system model was both complete and consistent. 
The decompositions suggested by the s p e c i f i c a t i o n s analysis tools exposed 

several problems with the system model as f i r s t proposed. The f a c t that some 
of the decompositions suggested by the tools were i n c o n f l i c t with i n t u i t i v e 
expectations ind i c a t e d that some information was not included i n the model. As 
well, differences between the suggested decompositions and the decomposition 
i m p l i c i t i n the defined sublaws showed that some sublaws included redundant 
information. 

One of the decompositions suggested by the tools was compared to the 
e n t i t i e s and objects i d e n t i f i e d f o r the IFIP Working Conference problem by JSD 
and ACM/PCM. The decompositions produced by a l l three techniques are i l l u s t r a t e d 
i n Figure 33. The e n t i t i e s of JSD are seen to be quite s i m i l a r to one possible 
p a r t i t i o n of the subsystems contained i n the best decomposition. The f a c t that 
there are other p a r t i t i o n s , means that s p e c i f i c a t i o n s analysis tools are capable 
of f i n d i n g a l t e r n a t i v e s to the JSD e n t i t y structure f o r the system. Not only 
can the tools suggest a l t e r n a t i v e s , but they can automatically determine the 
sequence of JSD actions, and the information required f or successful completion 
of these actions, given a system model expressed using the SELMA formalism. 

The decompositions suggested by the s p e c i f i c a t i o n s analysis tools were 
quite d i f f e r e n t from the object c l a s s i f i c a t i o n hierarchy produced using ACM/PCM. 
The differences were a t t r i b u t e d to the use of world knowledge by the analysts 
using ACM/PCM. That i s , they used knowledge not contained i n the IFIP Working 
Conference system d e s c r i p t i o n . When t h i s world knowledge was not modelled, the 
object hierarchy c l o s e l y resembled those of JSD and SELMA. C l a s s i f i c a t i o n 
h i e r a r c h i e s i n v o l v i n g " i s - a " and "part-of" r e l a t i o n s h i p s are commonly used i n 
the f i e l d of a r t i f i c i a l i n t e l l i g e n c e (Borgida, 1981). There they support the 
modelling of how human beings think. Such h i e r a r c h i e s also support a useful 
implementation technique by allowing a t t r i b u t e s and procedures at higher l e v e l s 
to be automatically "i n h e r i t e d " by lower-level objects. This helps to ensure 
consistency of the implementation. However, these h i e r a r c h i e s should not be used 
during the ea r l y stages of the analysis and design of non-reasoning systems. 
There they can overload an analyst with d e t a i l and obscure important 
r e l a t i o n s h i p s within a system. 

SELMA can be used to i d e n t i f y s u i t a b l e objects f o r real-world modelling. 
However, p a r t i t i o n i n g the subsystems suggested by the s p e c i f i c a t i o n s analysis 
tools to create aggregate objects may not be necessary. The subsystems can be 
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Figure 33: The p r i n c i p a l e n t i t i e s and objects i d e n t i f i e d by JSD, ACM/PCM, and 
SELMA. The SELMA decomposition has been p a r t i t i o n e d as e a r l i e r to 
sim p l i f y comparison with JSD and ACM/PCM. 
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used d i r e c t l y to form a basis f o r system design. Some c r i t i c s may argue that 
SELMA requires too much e f f o r t "up front". That i s , state v a r i a b l e s and events 
must be i d e n t i f i e d , and complete and consistent sublaws must be defined. 
However, a l l systems analysis and design methodologies require that t h i s work 
be done i n one form or another. They only d i f f e r i n when i t should be done. 
In p a r t i c u l a r , completeness and consistency t e s t i n g must t y p i c a l l y wait u n t i l 
a f t e r implementation i n most methodologies. Even then, such t e s t i n g i s usually 
done using some sort of t r i a l - a n d - e r r o r t e s t data generation technique. 
Correcting errors a f t e r system implementation i s generally acknowledged to be 
quite expensive. SELMA puts such t e s t i n g where i t belongs: "up fr o n t " . 
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Chapter 7: Conclusions and Future Research 

7.1. Introduction 

This research has described the development of a set of concepts and tools 
to support the process of systems analysis and design. The s p e c i f i c a t i o n s 
a nalysis tools are "reasoning" i n that they incorporate system meta-knowledge 
i n the form of various d e f i n i t i o n s and h e u r i s t i c s (e.g. consistency, 
completeness, decomposition h e u r i s t i c s ) . The tools are q u a l i t a t i v e l y d i f f e r e n t 
from most e x i s t i n g CASE 1 1 3 t o o l s , such as Excelerator (Topper, 1987) and Plexsys 
(Konsynski and Nunamaker, 1982), i n that they can a i d i n the detection of other 
than purely s y n t a c t i c system modelling errors. That i s , the tools can point to 
possible semantic errors such as dual roles f o r a sing l e state v a r i a b l e , and 
missing information i n a model. The tools are also "active" i n that they suggest 
possible decompositions f o r a system. As was i l l u s t r a t e d i n Chapter 6, these 
decompositions can provide the basis of an e n t i t y or object structure which i s 
f i r m l y rooted i n the e x p l i c i t l y - d e f i n e d dynamics of the system. 

In Chapter 2, the "fuzzy" state of many key concepts i n information systems 
analysis and design was decried. While precise d e f i n i t i o n s f o r consistency, 
completeness and correctness, sequential decomposition, p a r a l l e l decomposition, 
c o n d i t i o n a l decomposition, complexity, and many other terms were given i n 
preceding chapters, some important concepts have yet to be reexamined i n the 
l i g h t of the states, events, and laws formalism. These include the concepts of 
"coupling" and "cohesion" (as introduced i n Chapter 1) and of "system", "system 
s t a t i c s " and "system dynamics". This chapter w i l l begin by suggesting 
d e f i n i t i o n s f o r these concepts. The conclusions reached at the end of each of 
the preceding chapters w i l l be b r i e f l y recapped with the intent of reaching some 
sort of synthesis. This w i l l be followed by a d e s c r i p t i o n of three areas 
s u i t a b l e f o r further research and development - namely, further development of 
the s p e c i f i c a t i o n s analysis tools, and further a p p l i c a t i o n of the tools and S E L M A 

to r e a l problems. 

Computer-Aided Systems Engineering 
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7.2. D e f i n i t i o n of some key modelling concepts 

SELMA allows precise d e f i n i t i o n of some of the key concepts i n the f i e l d 
of information systems analysis and design. Many d e f i n i t i o n s were both 
i n t u i t i v e l y and formally expressed i n e a r l i e r chapters. A few others w i l l be 
presented here. 

Many important concepts are defined s o l e l y i n implementation terms. As 
examples, Myers' taxonomy of coupling and cohesion i s l a r g e l y defined i n terms 
of program code 1 1 4, and databases are often equated with system s t a t i c s and 
programs with system dynamics. Such d e f i n i t i o n s are of l i t t l e use during the 
ear l y states of the systems analysis and design cycle. SELMA supports some 
improved d e f i n i t i o n s f or modelling at the conceptual l e v e l . 

7.2.1. Coupling 

There appear to be two basic types of inter-subsystem coupling: BEHAVIOURAL 
COUPLING and INPUT COUPLING. 

D e f i n i t i o n : Behavioural Coupling 

Two subsystems are behaviourally coupled i f the state of one subsystem i s 
dependent on the state of the other. 

D e f i n i t i o n : Input Coupling 

Two subsystems exhibit input coupling i f they share the same input state 
v a r i a b l e . 

For example, consider the following decomposition of the modified p a y r o l l system. 

3: {base.addpay.total_pay) 
2: {com.empt.over.addpay) 
1: (hours.pay_r.base) {emp_p.sales.com) {emp_p,hours,over) 

This i s not a c r i t i c i s m of 
i n gauging the q u a l i t y of computer 
taxonomy i s described i n Appendix B. 

Myers' work. He was p r i m a r i l y interested 
programs, not conceptual models. Myers' 
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where hours = hours worked pay_r = pay rate 
emp_t = employee type 
base = base pay 
add_pay = a d d i t i o n a l payments 

emp_p = employee p o s i t i o n 
sales = amount of sales 
total_pay = t o t a l pay 
over = overtime pay com = sales commissions 

The subsystems (emp_p. sales . com) and f com. emp_t. over. add_pay) e x h i b i t behavioural 
coupling i n that the output state v a r i a b l e "com" of the lower subsystem i s an 
input to the higher subsystem. The state of the higher subsystem w i l l be 
dependent on the state of the lower. Behavioural coupling i s a fundamental 
property of p a r a l l e l / s e q u e n t i a l decomposition. This sort of coupling provides 
the only means of communication between subsystems. Input coupling i s more 
subtle than behavioural coupling. For example, i n the decomposition of the 
modified p a y r o l l system show above, the subsystems {hours,pay_r,base) and 
{emp_p,hours,over) share the state v a r i a b l e "hours". The subsystems are input 
coupled. 

At the conceptual l e v e l , only behavioural coupling i s important. I f new 
sublaws or events are added to the system, the behaviour of some subsystems may 
change. Any subsystem behaviourally coupled to the changed subsystem w i l l have 
to be examined to see i f changes are r e q u i r e d 1 1 5 . Input coupling, on the other 
hand, i s an implementation-level concern. For example, should the format of the 
common input state v a r i a b l e change, the programmer w i l l have to examine both 
subsystems f o r possible corrections. However, i f the subsystems are j o i n e d only 
through input coupling, the behaviour of one subsystem cannot a f f e c t the 
behaviour of the other. Therefore, t h i s form of coupling cannot lead to changes 
i n system behaviour which may require changes i n a decomposition. In the terms 
of the system maintenance taxonomy introduced i n Chapter 3: A l l minimal 
dete r m i n i s t i c subsystems w i l l remain minimal det e r m i n i s t i c subsystems a f t e r an 
implementation change to a state v a r i a b l e . 

Behavioural and input coupling can be mapped into Myers' implementation-
oriented coupling taxonomy as follows: 

As noted i n Chapter 4, the s p e c i f i c a t i o n s analysis tools can help 
i d e n t i f y the subsystems aff e c t e d by maintenance operations. Through the use of 
the system complexity measure, the tools can even help to quantify such e f f e c t s . 
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SELMA Myers 
behavioural coupling data coupling 

control coupling 
content coupling 
common coupling 

input coupling stamp coupling 
common coupling 

Common coupling i s included i n both categories because a program's common 
area can be used to share input data and to exchange c a l c u l a t e d values. By 
construction, the s p e c i f i c a t i o n s analysis tools w i l l never suggest decompositions 
which contain anything l i k e c o n t r o l , content, or common coupling. In Myers' 
terms, the only form of coupling found i n the decompositions suggested by the 
s p e c i f i c a t i o n s analysis tools i s data coupling. Data coupling i s Myers' most 
desirable form of coupling. 

7.2.3. Cohesion 

I f a subsystem cannot be further decomposed, i t i s cohesive. There are 
two degrees of cohesiveness i n SELMA: P a r a l l e l / s e q u e n t i a l cohesiveness and 
con d i t i o n a l cohesiveness. 

D e f i n i t i o n : P a r a l l e l / S e q u e n t i a l Cohesion 

I f a subsystem cannot be further decomposed using p a r a l l e l / s e q u e n t i a l 
decomposition, i t exhibits p a r a l l e l / s e q u e n t i a l cohesion. 

D e f i n i t i o n : Conditional Cohesion 

I f a subsystem cannot be further decomposed using c o n d i t i o n a l 
decomposition, i t exhibits c o n d i t i o n a l cohesion. 

A subsystem exhibits p a r a l l e l / s e q u e n t i a l cohesiveness with respect to an entire 
intermediate state space. This means that i f a l l defined subsystem state 
t r a n s i t i o n s are to be considered, no subset of the state v a r i a b l e s describing 
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the subsystem w i l l behave d e t e r m i n i s t i c a l l y . Conditional cohesion means that 
no such deterministic subsets of state v a r i a b l e s can be found by p a r t i t i o n i n g 
the intermediate state space based on the values of some state v a r i a b l e 1 1 7 . 

Notice that the subsystems suggested by the s p e c i f i c a t i o n s analysis tools 
are cohesive only with respect to a given set of state v a r i a b l e s , events, and 
sublaws. Should the model be changed or the l e v e l of abs t r a c t i o n reduced 1 1 8, 
some subsystems may no longer be cohesive. For example consider the overtime 
pay subsystem of the modified p a y r o l l system {hours,emp_p,over}. Suppose the 
system i s changed to require separate state v a r i a b l e s f o r ordinary and statutory 
holiday overtime. I t i s conceivable that the tools might suggest new subsystems 
of the form: 

{emp_p,ordinary_hours,ordinaryover} 
{emp_p,holiday_hours.holidav_over) 

That i s , the system might be further decomposed so that separate subsystems 
perform the c a l c u l a t i o n s f o r the d i f f e r e n t types of overtime pay. 

7.2.3. System, S t a t i c s and Dynamics 

The concept of "system" was never formally defined i n Chapter 2. I t was 
assumed that the systems analyst knew what a system was. This notion can be 
formally defined as follows: 

D e f i n i t i o n : System 
Some part of the r e a l world described by the set of state v a r i a b l e s 
selected by a systems analyst. 

The subset of state v a r i a b l e s would also have to s a t i s f y the 
p a r a l l e l / s e q u e n t i a l decomposition h e u r i s t i c s described i n Chapter 3. 

1 1 7 P a r a l l e l / s e q u e n t i a l and con d i t i o n a l decomposition are thoroughly 
discussed i n Chapters 3 and 5, res p e c t i v e l y . Further dis c u s s i o n of t h e i r 
differences with respect to p a r t i t i o n s of the intermediate state space i s not 
appropriate here. 

1 1 8 That i s , the number of state v a r i a b l e s , external events, and/or sublaws 
i s increased. 
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This d e f i n i t i o n i s not meant to imply that systems c o n s i s t only of state 
v a r i a b l e s . C e r t a i n l y , r e l a t i o n s h i p s between the d e s c r i p t i v e state v a r i a b l e s are 
an important part of a system. S t i l l , t h i s d e f i n i t i o n i s not l i k e l y to s a t i s f y 
a majority of ontologists. For example, Mattessich (1978, pp. 29-30) defines 
a system as a set s a t i s f y i n g the following c o n d i t i o n s 1 1 9 . 

1. I t contains two or more ELEMENTS with s p e c i f i c PROPERTIES. 
2. I t contains RELATIONS (connecting the elements of the system with each 

other) and q u a l i t i e s of those which i n turn lend STRUCTURE, HOLISTIC 
properties, as well as possible REGULATORS to the system enabling also i t s 
transformation. 

3. I t i s embedded i n an ENVIRONMENT containing a d d i t i o n a l i n t e r - r e l a t e d 
elements. 

4. The boundaries between the system and i t s environment are determined by 
the system's elements and r e l a t i o n s , and are s u f f i c i e n t l y sharp and 
permanent to consider the system as an e n t i t y . 

5. I t contains at l e a s t one r e l a t i o n between an element of the system and an 
element of the environment ( i . e . i t i s an open system). 

6. I t has evolved or been created to tend toward a GOAL. 

Elements correspond to groups of SELMA subsystems, properties to state 
v a r i a b l e s , and r e l a t i o n s and regulators to sublaws. The system's environment 
i s the set of a l l state v a r i a b l e s not included i n the system 1 2 0. As described 
i n Chapter 4, i n SELMA, a system's goal i s represented by a l i s t of required 
state v a r i a b l e s . Structure r e f e r s to a system decomposition, and h o l i s t i c 
properties are functions of a decomposition 1 2 1. SELMA supports the concept of 
a system goal to the extent that some state v a r i a b l e s may be indispensable while 
others may have been included only to f a c i l i t a t e modelling of the system. The 

Mattessich holds that the f i r s t four conditions are "necessary" and the 
l a s t two describe those systems i n which we are mostly l i k e l y to be interested. 

1 2 0 This set i s l i k e l y to be large or even i n f i n i t e . In p r a c t i c e , the 
environment of a system can l i k e l y be r e s t r i c t e d to the parts of the r e a l world 
which can a f f e c t the behaviour of that part of the r e a l world being modelled as 
the system. That i s , that part of the r e a l world responsible f o r the external 
events which may a f f e c t the system. 

1 2 1 In Chapter 3, h o l i s t i c properties were equated with emergent state 
v a r i a b l e s . 
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set of indispensable state variables defines the system goal i n SELMA. Obviously 
SELMA i s not incompatible with more "conventional" concepts of system. The only 
important diffe r e n c e i s that, i n SELMA, systems may be i d e n t i f i e d s o l e l y by sets 
of state v a r i a b l e s . That i s , subsystems ( i . e . elements) are not seen as 
fundamental parts of a system. They r e s u l t from adopting a p a r t i c u l a r system 
decomposition. 

As exemplified by the ACM/PCM methodology, system s t a t i c s are often taken 
to include c l a s s i f i c a t i o n h i e r a r c h i e s 1 2 2 . As a conceptual-level modelling 
technique, SELMA requires a much more r e s t r i c t i v e d e f i n i t i o n of system s t a t i c s . 

D e f i n i t i o n : System S t a t i c s 

The state v a r i a b l e s (and t h e i r possible values) selected to describe a 
system. 

In SELMA, these state variables are selected by considering the f u n c t i o n a l i t y 
of the system. World knowledge, not e x p l i c i t l y included i n the system model, 
i s not used. The exclusion of c l a s s i f i c a t i o n h i e r a r c h i e s means that SELMA cannot 
be used to represent some kinds of knowledge, nor to support implementation-
l e v e l concerns such as a t t r i b u t e inheritance to ensure consistency. But then, 
SELMA was never intended to be a generalized knowledge representation language, 
nor an implementation t o o l . 

In SELMA, the key to understanding or designing a system l i e s i n i t s 
dynamics. 

D e f i n i t i o n : System Dynamics 

The manner i n which a system changes i t s state. 

State changes are governed by the system law. The system law defines which 
states are stable, which states are unstable, and what the system does when i t 
finds i t s e l f i n an unstable state. The state changes which w i l l a c t u a l l y occur 
are determined by the external events which a f f e c t the system. In p r a c t i c e , an 
analyst uses sublaws and a subset of a l l possible external events to define a 

Is-a, part-of and member-of r e l a t i o n s h i p s form the c l a s s i f i c a t i o n 
h i e r a r c h i e s of ACM/PCM. 
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system model. S p e c i f i c a t i o n of system dynamics i s u s u a l l y the most d i f f i c u l t 
part of constructing a system model. 

7.3. Conclusions 

This section i s included to provide a summary of the various observations 
and conclusions found elsewhere i n t h i s document. The reasoning leading to each 
conclusion w i l l not be repeated here. 

As noted e a r l i e r i n t h i s chapter, many key concepts for describing systems 
are vaguely defined. A formal model for describing systems (SELMA) was created 
by expanding the works of Bunge (1977, 1979) and Wand and Weber (1988, 1989). 
Its focus on states, events, and laws, rather than on procedures and data, 
allowed formal d e f i n i t i o n of many of these previously vague terms. 

SELMA also f a c i l i t a t e s automated tests of system s p e c i f i c a t i o n completeness 
and consistency. These tests, as well as many o t h e r s 1 2 3 , have been incorporated 
i n the Prolog-based s p e c i f i c a t i o n s analysis t o o l s . A formal d e f i n i t i o n of 
correctness was also suggested, but ensuring system correctness was seen to be 
generally impossible 1 2''. The "no state v a r i a b l e may change twice" r u l e , as 
introduced i n Chapter 3, helps to ensure semantic i n t e g r i t y by f o r c i n g the 
analyst to define d i f f e r e n t state v a r i a b l e s to represent d i f f e r e n t system 
properties. 

The importance of the defined set of external events was noted i n Chapter 
3. The external events determine which of the defined sublaws w i l l be a c t i v a t e d 
during simulation of the system and c r e a t i o n of the system r e l a t i o n . That i s , 
the behaviours exhibited by the system model are determined by the external 
events. Therefore, because a decomposition of a model i s a function of i t s 
behaviour, changes i n the set of external events may a l t e r the decomposition. 
This observation has implications f o r systems design. That i s , i f the 
decomposition i s to be used as the structure of an implementation, i t may only 
be s u i t a b l e f o r the e x p l i c i t l y - d e f i n e d external events. 

In Chapter 1, i t was noted that there are only three basic types of 
decomposition: sequential, p a r a l l e l , and c o n d i t i o n a l . However, despite t h i s and 

The various tests performed by the s p e c i f i c a t i o n s analysis tools are 
described i n Appendix D. 

1 2 4 Correctness required f u l l knowledge of the system law. Such knowledge 
i s unattainable except f o r purely a n a l y t i c a l systems. 
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the considerable a t t e n t i o n focused on the problem at both the conceptual and 
implementation l e v e l s , there existed no automatable rules f or a c t u a l l y 
decomposing a system. The system modelling aspects of SELMA were supplemented 
by a formal theory describing a l l three basic types of system decomposition. 
As mentioned several times i n t h i s research, t h i s theory has a heavy focus on 
system dynamics. Decomposition i s based on the behaviour of the system under 
defined external events and sublaws. "World knowledge" i s not included. 
Decomposition was observed to be quite s e n s i t i v e to a d d i t i o n and d e l e t i o n of both 
external events and sublaws. The implications of t h i s observation f o r system 
maintenance were explored i n Chapter 4. 

The theory of decomposition included a number of h e u r i s t i c s which allowed 
the development of an algorithm for p a r a l l e l / s e q u e n t i a l and c o n d i t i o n a l 
decomposition. This algorithm has been added to the s p e c i f i c a t i o n analysis 
t o o l s . The tools can not only t e s t a system model, but can SUGGEST possible 
decompositions. Therefore, the tools may be described as ACTIVE rather than 
PASSIVE. Suggested decompositions are su i t a b l e f or use as the subsystem 
structure of an implementation. Differences between suggested decompositions 
and the analyst's i n t u i t i v e expectations can point to errors or missing 
information i n the system model, which were not detected by the tests of 
completeness and c o n s i s t e n c y 1 2 5 . 

An i n t u i t i v e l y - j u s t i f i a b l e measure of system complexity ( i . e . Hellerman's 
Computational Work) was adopted for use with SELMA. The face v a l i d i t y of the 
measure was established by t r a c i n g i t s step-by-step development from a simple 
estimate of complexity (Ashby's v a r i e t y ) , and through the use of numerous 
examples. The measure allowed the s p e c i f i c a t i o n s analysis tools to present 
a l t e r n a t i v e decompositions to the analyst i n some sort of meaningful order. The 
v a l i d i t y of the measure was further enhanced when the simple example p a y r o l l 
systems were analyzed with the to o l s . The i n t u i t i v e decompositions of these 
systems ( i . e . those indicated by the defined sublaws) turned out to have the 
lowest complexities. The measure also allowed the tools to r e j e c t a large number 
of possible decompositions which were derivable from other decompositions through 
simple state v a r i a b l e s u b s t i t u t i o n s . I t was also incorporated i n the c o n d i t i o n a l 
decomposition h e u r i s t i c which prevented decomposition from increasing complexity. 

As shown during the analysis of the IFIP Working Conference problem, 
the mere f a c t that multiple decompositions are suggested by the tools may 
indi c a t e d e f i c i e n c i e s i n the system model. 
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The quantitative evaluation of system maintenance s t r a t e g i e s i s also made 
possible by the complexity measure. When designing an information system, a 
designer must decide whether to include rules i n the i n i t i a l system to handle 
a n t i c i p a t e d changes, or to change the system l a t e r . The measure allows the 
designer to choose the course of a c t i o n with the lowest complexity. 

While the measure of system complexity can be a powerful t o o l f o r systems 
analysis and design, i t must be used with some degree of caution. The measure 
corresponds to a sort of "basic" system complexity. No allowances are made for 
language p r i m i t i v e s or e x i s t i n g implemented program modules. For t h i s reason, 
the tools do not simply inform the analyst of the lowest-complexity decomposition 
nor maintenance strategy. A l l possible decompositions can be presented 1 2 6. They 
are merely ranked by the tools i n order of increasing complexity. An analyst 
must be prepared to override t h i s ranking. S i m i l a r l y , the simple d e c i s i o n rule 
for system maintenance, described i n Chapter 4 , has not been implemented because 
of the possible inaccuracy of the complexity measure. I t may be possible to 
improve the v a l i d i t y of the measure so that the d e c i s i o n r u l e can be automated. 
Such an improvement i s one possible future research project. 

SELMA was applied to the IFIP Working Conference problem. Only a small 
part of the e f f o r t required to construct the model of the Conference system was 
described i n Chapter 6. Detailed discussion was relegated to a s e r i e s of 
appendices. The s p e c i f i c a t i o n s analysis tools were found to be u s e f u l i n 
crea t i n g a complete and consistent system model. As well, differences between 
i n t u i t i v e expectations and those decompositions suggested by the tools served 
to i d e n t i f y real-world information which was missing i n the system model. Some 
re l a t i o n s h i p s ( i . e . sublaws) i n the system model were found to involve more state 
v a r i a b l e s than necessary 1 2 7. The suggested decompositions mapped n i c e l y into the 
se q u e n t i a l - e n t i t y structures produced by the Jackson System Development 
methodology, but d i d not compare well with those produced by some p r a c t i t i o n e r s 
of ACM/PCM. However, c o r r e c t i o n of an error i n the construction of the ACM/PCM 
model and e l i m i n a t i o n of implementation-level information, l e d to a structure 
s i m i l a r to that found by SELMA and JSD. 

How many decompositions are a c t u a l l y presented to the analyst depends 
on the value of the "maximum percentage d i f f e r e n c e " parameter used by the tools 
to l i m i t the search space. Use of t h i s parameter was described i n Chapter 4 . 

1 2 7 That i s , the system model as s p e c i f i e d by the author was not minimal. 
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7 .4 . Future Research 

Possible extensions to the research f a l l into three broad categories: 
enhancement of the t o o l s , further t e s t i n g , and extension of the theory of 
decomposition. Each category i s discussed below. 

7.4.1. Enhancement of the S p e c i f i c a t i o n s Analysis Tools 

As c u r r e n t l y implemented, the s p e c i f i c a t i o n s analysis tools are not 
s u i t a b l e for use by p r a c t i s i n g systems analysts. The tools were p r i m a r i l y 
created as a research t o o l to t e s t various hypotheses r e l a t e d to the use of 
SELMA. There are a number of problems with the tools which can probably be 
reduced or eliminated. 

a) The tools do not consider e x i s t i n g software modules and/or implementation 
language p r i m i t i v e s . 

The complexity measure currently used to rank the suggested decompositions does 
not allow for the f a c t that some subsystems may be very easy to construct. Code 
may already e x i s t or the implementation language may provide an i n s t r u c t i o n which 
can be used to code a complex operation very simply. The tools can l i k e l y be 
enhanced to allow the analyst to include t h i s information i n the system model. 
Use of such information by the tools should increase the v a l i d i t y of a l t e r n a t i v e 
decomposition rankings and decisions r e l a t e d to system maintenance. In Chapter 
4, v a l i d i t y concerns d i c t a t e d that a p p l i c a t i o n of the simple r u l e , for deciding 
whether to include future modification i n the i n i t i a l implementation, be l e f t 
to the system designer. I t may be f e a s i b l e to f u l l y automate some of the 
maintenance-related d e c i s i o n s 1 2 8 . 

b) System decomposition using the s p e c i f i c a t i o n s analysis tools i s slow. 

Of course, other factors besides system complexity and design 
p r i m i t i v e s are l i k e l y to influence these maintenance decisions. For example, 
i f the subsystem's programmer w i l l not be a v a i l a b l e i n the future (he or she may 
have been h i r e d on a temporary b a s i s ) , i t may be more e f f i c i e n t to include the 
modified subsystem's functions i n the f i r s t implementation. 
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While the speed of completeness and consistency t e s t i n g i s acceptable, the speed 
of the decomposition process i s not. The tools required about 3 hours to f i n d 
the lowest-complexity decomposition of the IFIP Working Conference system 1 2 9. 
The prototype tools were implemented using Turbo Prolog. Execution speed can 
be enhanced by coding selected time consuming steps i n e i t h e r Pascal or C. I t 
may also be possible to i d e n t i f y a d d i t i o n a l h e u r i s t i c s which can be used to judge 
the q u a l i t y of a decomposition, or to improve the search algorithm. A measure 
of computational work (Hellerman, 1972), based on Ashby's (1956) measure of 
entropy, i s already used as a measure of subsystem complexity i n an attempt to 
rank the decompositions suggested by the to o l s . A d d i t i o n a l h e u r i s t i c s based 
perhaps on the simple coupling and cohesion measures of Myers (1975) might also 
be incorporated. 

c) The s p e c i f i c a t i o n s analysis tools have a crude user i n t e r f a c e . 

The i n t e r f a c e could be improved to enhance the i n t e r a c t i o n between the analyst 
and the t o o l s . In ad d i t i o n to the c r e a t i o n of a l o g i c a l l y - o r g a n i z e d , menu-driven 
and window-oriented i n t e r f a c e , two s p e c i f i c concerns regarding input requirements 
and t o o l outputs must be addressed. 

1. Preparation of the input to the computerized tools i s tedious. 

The tools c u r r e n t l y require that a system model be expressed using 
a syntax s i m i l a r to Prolog. This syntax i s quite unnatural and requires 
a great deal of redundancy (e.g. repeated clause "names"). A compiler 
could be created to translate d e c i s i o n tables into the clauses required 
i n t e r n a l l y by the to o l s . 

2. The r e a d a b i l i t y of the output from the computerized tools i s poor. 

The computerized tools c u r r e n t l y display possible decompositions i n 
the textual format used throughout t h i s research. This format i s d i f f i c u l t 

The tools were running on an IBM AT clone operating at 7 times the 
speed of an IBM XT. Today's microcomputer technology i s i n a constant state of 
f l u x . The improving technology w i l l impact the performance of the t o o l s . For 
example, use of an IBM Model 70 (21.5 times the speed of an IBM XT) should 
improve the speed of the tools by a f a c t o r of three. 
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to i n t e r p r e t without considerable p r a c t i c e . The r e a d a b i l i t y of the output 
could be greatly improved i f decompositions were displayed i n the more 
conventional graphical form where linkages between subsystems are c l e a r 
and subordinate subsystems are shown below superordinate subsystems. 

7 .4 .2 . A d d i t i o n a l Applications of SELMA 

A p p l i c a t i o n of SELMA and the s p e c i f i c a t i o n s analysis tools has been 
described for several systems. However, most of these systems were quite simple 
and u s e f u l for i l l u s t r a t i o n only. No analyst i s l i k e l y to use the tools to 
create a model as simple as the modified p a y r o l l system. The only " r e a l " test 
of SELMA was the IFIP Working Conference problem. More r e a l applications are 
required to thoroughly t e s t the modelling approach and the t o o l s . 

I t would also be desirable to t e s t the usefulness of the computerized tools 
by having r e a l systems analysts use them to analyze r e a l systems. Such t e s t i n g 
i s l i k e l y to reveal a d d i t i o n a l problems associated with model b u i l d i n g and 
decomposition. One possible problem i s discussed i n the next section. 

7 .4 .3 . Extensions to the Theory of Decomposition 

A l l the systems examined thus f a r could be analyzed using a s i n g l e SELMA 
model. That i s , a l l the systems could be described by fewer than 15 state 
v a r i a b l e s . Large systems w i l l have to be approached using a form of h i e r a r c h i c a l 
a n a l y s i s . The i n i t i a l model of the system would be constructed with a 
s u f f i c i e n t l y high l e v e l of abstraction that only a few state v a r i a b l e s are 
needed. The subsystems i d e n t i f i e d f o r the i n i t i a l model could then be further 
analyzed by constructing more d e t a i l e d sub-models. This procedure could be 
repeated u n t i l the desired degree of d e t a i l i s reached 1 3 0. 

H i e r a r c h i c a l analysis i s a form of decomposition, but i t i s not the same 
as the decomposition addressed by t h i s research. I t seems that there are at 
l e a s t two kinds of decomposition: 

1) E n t i t y Decomposition: i d e n t i f i c a t i o n of "good" system pieces at a single 
l e v e l of abstraction. 

This form of analysis i s s i m i l a r to h i e r a r c h i c a l decomposition using 
data flow diagrams (DeMarco, 1979). 
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2) H i e r a r c h i c a l A n a l y s i s : s u c c e s s i v e l y i n c r e a s i n g the degree o f d e t a i l w i t h 

which the system p ieces are d e s c r i b e d . 

The techniques presented i n t h i s r e sea rch support e n t i t y decompos i t ion . That 

i s , a system model c r ea t ed by the a n a l y s t w i l l be ana lyzed to determine p o s s i b l e 

f u n c t i o n a l p a r t i t i o n s . These f u n c t i o n a l p a r t i t i o n s c o n s i s t o f d e t e r m i n i s t i c 

subsystems which may be used i n d i v i d u a l l y or combined toge ther to form e n t i t i e s . 

They support h i e r a r c h i c a l decomposi t ion o n l y to the ex ten t t ha t they he lp to 

i d e n t i f y the p a r t s o f the system to be examined i n g rea t e r d e t a i l a t the next 

l e v e l o f a b s t r a c t i o n . For example, i n Chapter 6, the s p e c i f i c a t i o n s a n a l y s i s 

t o o l s were shown to suggest a decomposi t ion (or f u n c t i o n a l p a r t i t i o n ) which 

mapped e a s i l y i n t o the e n t i t i e s i d e n t i f i e d u s i n g Jackson System Development 

( JSD) . Presumably, i f the JSD a n a l y s i s had not been performed p r e v i o u s l y , the 

decomposi t ion c o u l d have been used to i d e n t i f y the se t o f e n t i t i e s . These 

e n t i t i e s c o u l d be sub jec ted to f u r t h e r , and more d e t a i l e d , a n a l y s i s and/or 

d e s i g n . More d e t a i l e d examinat ion o f the e n t i t i e s would c o n s t i t u t e an 

a p p l i c a t i o n o f h i e r a r c h i c a l a n a l y s i s . H i e r a r c h i c a l a n a l y s i s c o u l d be c a r r i e d 

out u n t i l the dynamics o f the system be ing model led were d e s c r i b e d w i t h 

s u f f i c i e n t d e t a i l to s a t i s f y the a n a l y s t or to a l l o w easy implementa t ion . 

U n f o r t u n a t e l y , the decomposi t ion theory d e s c r i b e d i n t h i s r e sea rch does 

not e x p l i c i t l y support sub-models a t d i f f e r e n t l e v e l s o f a b s t r a c t i o n . For 

example, there i s c u r r e n t l y no way to ensure tha t sub-models are c o n s i s t e n t w i t h 

each o the r . The theory would have to be extended to ensure tha t a sub-model w i l l 

p r o v i d e the outputs r e q u i r e d a t the next h ighe r l e v e l , and tha t i t w i l l not 

c o n f l i c t w i t h o ther sub-mode l s 1 3 1 . 

One p o s s i b l e form of c o n f l i c t would occur when a l o w e r - l e v e l model 
determines the va lue o f a s t a t e v a r i a b l e found i n a d i f f e r e n t branch o f the 
h i e r a r c h i c a l a n a l y s i s t r e e . 
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Appendix A: The Parable of Hora and Tempus 

(from Simon, 1981, pp. 200-202) 

Both Hora and Tempus constructed watches c o n s i s t i n g of 1,000 parts. Tempus 
constructed h i s watches i n such a way that i f he was interrupted and had to put 
i t down, i t immediately f e l l to pieces and assembly had to begin again. Hora's 
watches performed p r e c i s e l y the same functions as Tempus', but he designed h i s 
to have stable subassemblies of 10 parts each. Ten of these subassemblies could 
be put together i n another stable assembly, and ten of these f i n a l assemblies 
could be put together to form a completed watch. I f Hora was interrupted, 
previously completed subassemblies would not be affected. Now assume that the 
p r o b a b i l i t y of being interrupted while adding a part to a watch i s 0.01. The 
simple c a l c u l a t i o n , described below, shows that i t w i l l take Tempus on average 
4,000 times as long to complete a watch as Hora. 

1. Hora must make 111 times as many complete assemblies as Tempus; but 
2. Tempus w i l l lose on the average 20 times as much work f o r each interrupted 

assembly as Hora (100 parts, on the average, as against 5); and 
3. Tempus w i l l complete an assembly only 44 times per m i l l i o n attempts 

((1-0 . 0 1 ) 1 0 0 0 = 44 X 10" 6), while Hora w i l l complete nine out of ten 
((1-0.01) 1 0 = 9 X 10"1) . Hence Tempus w i l l have to make 20,000 as many 
attempts per completed assembly as Hora (9 X 10"1 / 44 X 10"6 = 2 X 10*). 
M u l t i p l y i n g these three r a t i o s , we get 1/111 * 20 * 20,000 ~ 4,000. 
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Appendix B: Myers' Taxonomy of Coupling and Cohesion 

Coupling 

The f i v e forms of program module coupling are defined i n order of 
decreasing d e s i r a b i l i t y . The ranking i s Myers' and was derived from experience. 

a. Data Coupling - Data Coupling i s the passing of data between two modules 
i n the form of subroutine parameters. This i s the l e a s t undesirable form 
of coupling. 

b. Stamp Coupling - Stamp coupling occurs when e n t i r e records are passed 
between modules as parameters. This form of coupling i s undesirable as 
record formats are subject to change. 

c. Control Coupling - Control coupling occurs when one module uses knowledge 
of the i n t e r n a l operation of another module to c o n t r o l that modules 
execution. A common example of control coupling i s the use of module to 
handle output of a l l error messages to the user. Other modules control 
the execution of the error message module by passing an integer parameter 
which sel e c t s the message to be displayed. The integer parameter used by 
the c a l l i n g module represents knowledge of how the e r r o r message module 
operates. This form of coupling i s best kept to a minimum. 

d. Common Coupling - When modules are l i n k e d through common data structures, 
such a COBOL data d i v i s i o n , the r e l a t i o n s h i p i s known as "common 
coupling". Common coupling should be avoided. 

e. Content Coupling - Content, or p a t h o l o g i c a l , coupling r e f e r s to the 
obviously poor p r a c t i c e of t r a n s f e r r i n g c o n t r o l from one module to the 
i n t e r i o r of a loop or decision structure i n another module. This form of 
coupling must never occur. 
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Myers also defines seven forms of cohesion ranging from strong to weak. 

Functional Cohesion - In a f u n c t i o n a l l y cohesive module each statement 
i s d i r e c t e d at completing one function. This i s the most desirable form 
of cohesion. 

Sequential Cohesion - Sequential cohesion occurs i f the output of each 
task serves as input f o r the next task. 

Communicational Cohesion - I f d i f f e r e n t tasks perform d i f f e r e n t functions 
on the same input or output parameters i t i s r e f e r r e d to as 
"communicational cohesion". Modules with t h i s form of cohesion probably 
should be s p l i t . 

Procedural Cohesion - Procedural cohesion occurs i f one statement i n a 
module follows another but no data i s passed. 

Temporal Cohesion - Temporal cohesion r e f e r s to the i n c l u s i o n of tasks 
wi t h i n a module because they occur at the same time. I n i t i a l i z a t i o n 
modules commonly e x h i b i t temporal cohesion. 

L o g i c a l Cohesion - I f a module includes a se r i e s of actions that are 
r e l a t e d by a non-functional construct i t i s r e f e r r e d to as " l o g i c a l 
cohesion". For example, i f a module c a l c u l a t e d a s e r i e s of unrelated 
employee ben e f i t s i t could be c a l l e d l o g i c a l l y cohesive. 

Coincidental Cohesion - The weakest form of cohesion occurs when a large 
program i s a r b i t r a r i l y cut up into smaller pieces. 
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Appendix C: The Decomposition Rules of M i l i . Desharnais and Gagne. 

(from M i l i , et a l . , 1986, pp. 244-253) 

1. Sequence Statement Rule 

Given the s p e c i f i c a t i o n R on S, f i n d r e l a t i o n s Rx and R2 such that 

a) R = Rx * R2, and 
b) FOR ALL s, s • Rx C domain(R 2) 

where s • Rj i s the image of s by R;, and Rx * R2 i s the composition of Rx and R2 

defined as follows: 

s • R = {s' such that (s,s') G R) 

R * R' = {(s,s') such that 
THERE EXISTS s" where 

(s,s") e R and (s",s') e R') 

The sequence statement rule can be used to decompose a large program 
s p e c i f i c a t i o n into two sequentially activated s p e c i f i c a t i o n s . I t requires the 
programmer to f i n d two r e l a t i o n s where the input states of the f i r s t are the same 
as the input states of the o r i g i n a l s p e c i f i c a t i o n , and the output states of the 
second are the same as the output states of the o r i g i n a l s p e c i f i c a t i o n . The 
output states of the f i r s t r e l a t i o n must also be the input states of the second. 
For example, consider the following r e l a t i o n and set of program states. 

R = {(4,0),(3,0),(2,1),(1,1),(0,0)} 
S = {0,1,2,3,4} 

The in t e n t of t h i s program s p e c i f i c a t i o n i s to c l a s s i f y the sum of a l l p o s i t i v e 
integers l e s s than or equal to a given integer as e i t h e r even or odd (0 for even; 
1 f o r odd). Suppose programs could be found to match the following r e l a t i o n s . 
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Rx = {-(4,10),(3,6),(2,3),(1,1),(0,0)-} 
R2 = {(10,0),(6,0),(3,1),(1,1),(0,0)} 

The f i r s t r e l a t i o n f i n d the sum of a l l smaller p o s i t i v e integers. The second 
decides whether the r e s u l t i s even or odd. Each of these r e l a t i o n s s p e c i f i e s 
a program which would be les s complicated to code than the o r i g i n a l . The f i r s t 
requirement i s met since 

Ri*R 2 = {(4,10),(3,6),(2,3),(1,1),(0,0)} * {(10,0),(6,0),(3,1),(1,1),(0,0)} 
= {(4,0),(3,1),(2,0),(1,1),(0,0)} 
= R 

The second requirement i s also met as the output states of Rx match the input 
states of R2. Notice the state space of Rx and R2 does not have to be the same 
as that of R. 

2. The A l t e r n a t i o n Statement Rule 

Given a program s p e c i f i c a t i o n R on S, f i n d r e l a t i o n s Rx and R2 such that 

a) R = Rx U R2, and 
b) domain(R 1) n domain(R 2) = { } 

The a l t e r n a t i o n statement rule i s used to decompose a program s p e c i f i c a t i o n 
into two c o n d i t i o n a l l y executed s p e c i f i c a t i o n s . The programmer i s required to 
f i n d some predicate t ( s ) , where s e domain(R 1) , which can be used to s p l i t the 
o r i g i n a l r e l a t i o n into two non-intersecting parts. That i s , 

i f R = {(s,s')} 
then R± = {(s,s') such that t(s)} and 

R 2 = {(s,s') such that n o t ( t ( s ) ) } . 

I f p x and p 2 are programs s p e c i f i e d by Rx and R2, a new, and hopefully simpler, 
o v e r a l l program of the following form may be written. 
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i f t then p x else p 2 

Consider the following example. 

S = {-4,-1,0,1,2,4} 
R = {(-4,2),(-1,1),(0,0),(1,1),(4,2)} 

The intent of the r e l a t i o n i s to specify a program which takes the absolute value 
of a number and then f i n d i t s square root. Obviously, negative numbers are 
handled d i f f e r e n t l y than p o s i t i v e numbers. The predicate s<0, where s i s a 
program state, could be defined to s p l i t R into 

These r e l a t i o n s meet both of the above requirements. The program matching R2 

w i l l be simpler than the program matching the o r i g i n a l r e l a t i o n R. 

3. The I t e r a t i o n Rule 

Given a program s p e c i f i c a t i o n R on S, such that domain(R) = S. I f R s a t i s f i e s 
the con d i t i o n of a p p l i c a b i l i t y 

where I(range(R)) = {(s,s) such that s e range(R)}, then f i n d a r e l a t i o n B such 
that 

Ri - {(-4,2),(-1,1)} 
R2 = {(0,0),(1,1),(4,2)} 

I(range(R)) * R = I(range(R)) 

a) domain(B) = S - range(R), and 
B + i s well founded on S, and 
R = B + * I(range(R)) 

b) 
c) 

Where B + i s the t r a n s i t i v e closure of B defined as 

l ( s , s ' ) such that 
FOR ALL i>= 1 (s.s') e B1} 
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and 

B 1 = B and for i > l , B 1 = B1"1 * B 

and where B + i s the r e f l e x i v e t r a n s i t i v e closure of B defined as 

B + = B + U I(S) 

where 

I(S) = {(s,s) such that s e S) 

This r u l e i s somewhat d i f f i c u l t to understand. Consider a program where odd and 
even numbers are mapped into 1 and 0 res p e c t i v e l y . 

S = {4,3,2,1,0} 
R = {(4,0),(3,1),(2,0),(1,1),(0,0)} 

range(R) = {0,1} 
I(range(R)) = {(0,0),(1,1)} 
I(range(R)) * R = {(0,0),(1,1)} * {(4,0),(3,1),(2,0),(1,1),(0,0) } 

= {(0,0),(1,1)} 
= I(range(R)) 

Therefore, the condi t i o n of a p p l i c a b i l i t y f o r the i t e r a t i o n r u l e i s s a t i s f i e d . 
The t r i c k i s to f i n d B. The f i r s t condition gives us the domain of B. 

domain(B) = S - range(R) = {4,3,2} 

The second condition ensures that when B i s i t e r a t i v e l y composed with i t s e l f , 
the r e s u l t w i l l eventually reach the empty set. Try 

B = {(4,2),(3,1),(2,0)}. 
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This r e l a t i o n indicates that each input state i s to be reduced by 2. Choice of 
B i s l a r g e l y a r b i t r a r y . Aside from the rule giving the domain of B, the only 
other r e s t r i c t i o n on B i s that i t "work" . The l a s t two conditions guarantee that 
B "works". Given B, B + can be found as shown: 

B l - B - {(4,2),(3,1),(2,0)} 
B 2 = B l*B = {(4,2),(3,1),(2,0)} * {(4,2),(3,1),(2,0)} 

- ((4,0)} 
B 3 = B^B 1 = {(4,0)} * {(4,0)} 

- l> 

B + = B 1 U B 2 U B 3 = {(4,2),(4,0),(3,1),(2,0)} 

And the r e f l e x i v e t r a n s i t i v e closure of B i s 

B + = B + U I(S) 
= B + U {(4,4),(3,3),(2,2),(1,1),(0,0)} 

= {(4,4),(4,2),(4,0),(3,3),(3,1),(2,2),(2,0),(1,1),(0,0)} 

The l a s t c o n d i t i o n i s also s a t i s f i e d as 

B + * I(range(R)) = ((4,4),(4,2),(4,0),(3,3),(3,1),(2,2),(2,0),(1,1),(0,0)} * 
{(0,0),(1,1)} 

= {(4,0),(3,1),(2,0),(1,1),(0,0)} 
= R 

B + contains a l l the input/output states of the system generated when a l l possible 
input states are i t e r a t i v e l y reduced by 2 u n t i l the input state i s eit h e r 0 or 
1. I f a predicate t ( s ) i s defined as 

t ( ( s ) ) = true i f not(s e {0,1}) 
= f a l s e i f s e {0,1} 

and b i s a program correct with respect to B, then a program, corre c t with 
respect to R, could be written 

while t do b. 
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Appendix D: System S p e c i f i c a t i o n Testing 

The model tests provided by the s p e c i f i c a t i o n s analysis t o o l s , and 
mentioned i n Chapter 2, are described i n d e t a i l i n t h i s appendix. Some f a i l u r e s 
h a l t the further processing of the model. Other, le s s serious, f a i l u r e s r e s u l t 
only i n the generation of a warning message. 

1. Syntax Testing 

Syntax t e s t i n g occurs when the text f i l e created by the user i s read by 
the s p e c i f i c a t i o n analysis t o o l s . The tools ensure that parentheses are matched, 
there i s proper use of c a p i t a l and small l e t t e r s , predicate names are spe l l e d 
c o r r e c t l y , etc. In addition, a simple routine has been wr i t t e n to ensure the 
following: 

a. State v a r i a b l e names used i n the v a l u e s Q , s t a t i c Q , dynamic() and event() 
predicates are the same as are defined i n the st a t e _ v a r i a b l e ( ) predicate. 

b. Values used i n the s t a t i c Q , dynamicQ and event() predicates are the same 
as are defined i n the values() predicate. 

2. S t a b i l i t y Condition Testing 

In order to avoid having to generate a l l possible combinations of values 
f o r the state v a r i a b l e s of a system ( i . e . the possible state space), sublaws 
defined f o r use with the s p e c i f i c a t i o n analysis tools must follow c e r t a i n r u l e s . 

a. A l l state v a r i a b l e s must be re f e r r e d to i n at l e a s t one s t a b i l i t y condition 
r u l e . 

b. I f two state v a r i a b l e s are re f e r r e d to i n one s t a b i l i t y condition r u l e , 
and there e x i s t s other s t a b i l i t y condition r u l e r e f e r r i n g to those state 
v a r i a b l e s , and the value of one state v a r i a b l e i s the same i n both rules, 
then the value of the other state v a r i a b l e must be the same i n both r u l e s . 
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The f i r s t r u l e ensures that the sublaws define the stable state space of 
the e n t i r e system. The s p e c i f i c a t i o n s analysis tools scan the model to ensure 
that each state v a r i a b l e i s mentioned i n at l e a s t s t a b i l i t y c o n d i t i o n r u l e . I f 
t h i s t e s t f a i l s , no stable states can be generated. This r e s u l t s from the 
assumption that no stable state may include a state v a r i a b l e with an undefined 
value. I f the tools are aware of a state v a r i a b l e not mentioned i n any s t a b i l i t y 
c ondition r u l e , that state v a r i a b l e cannot be assigned a value i n any stable 
state. I f t h i s rule i s v i o l a t e d , the s p e c i f i c a t i o n s analysis tools w i l l issue 
an e r r o r message. 

The second rule i s a d i r e c t consequence of the AND and OR combination rules 
f o r s t a b i l i t y condition r u l e s . Clauses with the same or d i f f e r e n t names are 
combined using i n c l u s i v e OR or AND, r e s p e c t i v e l y . For example, s t a b i l i t y 
c ondition clauses of the form 

static("Law 1",[v(a,0),v(b,0)]). 

and 

static("Law 2",[v(....),v(a,0),v(b,1),...]). 

Assuming no other "Law 1" or "Law 2" clauses r e f e r to both "a" and "b", the 
clauses are s a i d to CONFLICT. The f i r s t r ule asserts that whenever "a" has a 
value of "0", "b" w i l l have a value of "0". The second r u l e asserts that there 
i s a circumstance where t h i s i s not so. One of the rules i s i n c o r r e c t . 

3. State Variable V a r i a t i o n 

The model may be tested to ensure that every state v a r i a b l e reaches each 
of i t s defined values i n e i t h e r the stable state space of the system or i n some 
unstable state i n a response path. I f an unused state v a r i a b l e value i s defined 
there i s evidence that e i t h e r the sublaws are incomplete or the defined state 
v a r i a b l e values describe a model which i s r i c h e r than i s required. This test 
i s c a r r i e d out during the generation of the system's response paths. Consider 
the f o u r - l i g h t s example defined i n Chapter 2. Suppose the clause d e c l a r i n g the 
allowed values for state v a r i a b l e "d" included a value of "dummy", as shown 
below: 
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values(d,[0,1,dummy]). 

A f t e r the s p e c i f i c a t i o n analysis tools e s t a b l i s h the system's response paths, 
a warning of the following form w i l l be displayed. 

** Warning ** 
** State v a r i a b l e 'd' i s never assigned the following v a l u e ( s ) : 

["dummy"] 

4 . Local Completeness 

Every unstable state, created by applying an external event to a stable 
state, must transform to a stable state by applying the defined sublaws. I f the 
s p e c i f i c a t i o n s analysis tools f i n d no response path f o r an unstable state, an 
error message i s sent to the user. For example, suppose the l a s t c o r r e c t i v e 
a c t i o n r u l e i n the four l i g h t example of Chapter 2 were entered as follows: 

dynamic("D3",[v(a,l)],[v(d,0)]). 

When the s p e c i f i c a t i o n analysis tools attempt to e s t a b l i s h the system's response 
paths, an erro r message of the following form w i l l be displayed. 

** ERROR ** 
** I n i t i a l state 

[0,0,1,0] 
does not transform to a f i n a l stable state under event ' E l ' . 

5. Local Consistency 

The s p e c i f i c a t i o n s analysis tools w i l l search f o r a l l response paths 
leading to f i n a l stable states f o r every stable state of the system. A l l of 
these f i n a l stable states must be the same or an error message w i l l be sent to 
the user. For example, consider adding the following clause to the l a s t 
c o r r e c t i v e a c t i o n r u l e i n the four l i g h t example of Chapter 2: 
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dynamic("D3",[v(a,"1")],[v(d,"0")]). 

When the s p e c i f i c a t i o n analysis tools attempt to e s t a b l i s h the system's response 
paths, error messages of the following form w i l l be displayed. 

** ERROR ** 
** The system i s not deterministic under event 'E2'. 
** I n i t i a l state 

[1,1,0,1] 
transforms to f i n a l states: 

[0,0,1,0] 
[0,0,1,1] 

** ERROR ** 
** The system i s not deterministic under event 'E2'. 
** I n i t i a l state 

[1,1,1.1] 
transforms to f i n a l states: 

[0,0,1,0] 
[0,0,1,1] 
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Appendix E: The Stable State Space and System Law 

The s p e c i f i c a t i o n s analysis tools examine the s t a b i l i t y condition rules 
to determine a system's stable state space. A l i s t of stable states i s stored 
i n the Prolog database. These states are only " l o c a l l y s t a b l e " i n that the 
"true" system law i s not known. They are stable only with respect to the defined 
sublaws. Any state the system reaches, e i t h e r as a r e s u l t of the actions of an 
external event or a sublaw, which i s not one of these states w i l l be " l o c a l l y 
unstable" or simply "unstable". 

Once the stable state space of the system has been determined, the 
s p e c i f i c a t i o n s analysis tools examine the external events and sublaws to f i n d 
a l l the response paths. Each defined external event i s applied to every stable 
state of the system cre a t i n g a new set 
of states. Some of these states w i l l 
be unstable ( i . e . not s t a b l e ) . The 
co r r e c t i v e a c t i o n rules of the various 
sublaws are used to transform each 
unstable state into a stable state. 
Tests f o r sublaw consistency and 
completeness, as described i n Chapter 
2 and i n Appendix D, are performed 
while response paths leading to stable 
states are found. The search for a l l 
the paths ( i . e . sequences of co r r e c t i v e 
a c t i o n r u l e a c t i v a t i o n s ) leading to 
stable states i s worse than NP-
Complete. The problem of l o c a t i n g a 
sin g l e path leading to a stable state 
i s equivalent to the NP-Complete t r a v e l l i n g salesman problem (Garey and Johnson, 
p. 18-23) . The problem at hand i s worse because a l l paths must be found i n order 
to v e r i f y the consistency of the sublaws. In the worst case, the number of 
intermediate states which must be examined during the search i s 0(N!) where N 
i s the number of c o r r e c t i v e a c t i o n rules i n the model (Figure 34 shows the search 
tree f o r three r u l e s ) . Determination of system response paths (or sequences of 
rul e a c t i v a t i o n s ) i s s i m p l i f i e d by the following assumption: 

R3 R2 • o 0 

H3 Rl R2 Rl 

© 

Number at Nodes = >̂ | | (N-X) 

•)-0 t=0 

vhere N is the number of rules. 

Figure 34: The response path search 
tree f o r a system 
described by three 
c o r r e c t i v e a c t i o n rules 
(Rl, R2, and R3). 
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No c o r r e c t i v e a c t i o n rule may be a c t i v a t e d unless the 
value of one of the state v a r i a b l e s i n i t s conditions 
l i s t has changed as the r e s u l t of e i t h e r an external or 
i n t e r n a l event. 

This might be described as the " c a u s a l i t y assumption". I t ensures that rules 
are not a c t i v a t e d spontaneously. The assumption i s not c r i t i c a l f o r the simple 
examples described thus f a r , but i s quite important f o r the IFIP Working 
Conference example described i n Chapter 6. Without the assumption, 
determination of the system law f o r t h i s larger example would take an 
unacceptably long time. In a d d i t i o n to t h i s r u l e , sublaws are not allowed to 
be a c t i v a t e d twice i n a given response path. This e f f e c t i v e l y eliminates the 
p o s s i b i l i t y of loops and helps to ensure the d e c i d a b i l i t y of the response path 
search problem 1 3 2. These two r e s t r i c t i o n on the form of a response path greatly 
reduce the number of paths which must be examined. There are 25 c o r r e c t i v e 
a c t i o n rules i n the IFIP Working Conference system model described i n Chapter 
6. This means that i n the worst case 4.22 X 10 2 5 states must be examined 1 3 3. In 
f a c t only 1930 are tested for s t a b i l i t y . 

As demonstrated i n Chapter 3, knowledge of the f i n a l stable state 
corresponding to each unstable state, i s of primary importance when automating 
system decomposition. For t h i s reason the s p e c i f i c a t i o n s analysis tools store 
the f i r s t system r e l a t i o n 1 3 4 i n the Prolog database. 

Turing (1936) showed that i t i s impossible to s p e c i f y any algorithm 
which, given an a r b i t r a r y computer program and an a r b i t r a r y input to that 
program, can decide whether that program w i l l eventually h a l t . 

In the worst case any sublaw may be a c t i v a t e d from any state of the 
The number of states W which must be tested f o r s t a b i l i t y i n t h i s case 

N j 
w = X n (N - k) 

j-0 k=0 

25 j 
- I n (25 - k) 

j-0 k=0 

= 4.22 X 10 2 5 

where N i s the number of c o r r e c t i v e a c t i o n r u l e s . 

1 3 4 The f i r s t system r e l a t i o n consists of the set of i n i t i a l unstable 
states, created by the a p p l i c a t i o n of the external events to the stable state 
space, and the corresponding f i n a l stable states. This r e l a t i o n i s the 

133 

system, 
i s 
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Appendix F: A Simple "Batch" P a y r o l l System 

/**************************************************** 

A P a y r o l l System 

*********************************** y 

clauses 

/* Event D e f i n i t i o n s */ 

event("End of Period",[v(end,"1")]). 
event("Beginning of Period",[v(end,"0")]). 

/* State Variable D e f i n i t i o n s */ 

state_variable(end). /* end of period f l a g */ 
state_variable(emp_t). /* employee type */ 
state_variable(emp_p). /* employee p o s i t i o n */ 
state _ v a r i a b l e ( p a y _ r ) . /* pay rate */ 
state_variable(hours). /* hours worked */ 
s t a t e _ v a r i a b l e ( s a l e s ) . /* sales */ 
state_variable(base). /* base pay */ 
st a t e _ v a r i a b l e ( o v e r ) . /* overtime pay */ 
state_variable(com). /* sales commissions */ 
state_variable(ben). /* benefits */ 
s t a t e _ v a r i a b l e ( t o t a l _ p a y ) . /* t o t a l pay */ 

/* State Variable Values */ 

values(end,["0","1"]). /* beginning of period, eop */ 
values(emp_t,[o,s]). /* o f f i c e and sales */ 
values(emp_p,[r,m]). /* regular and management */ 

approximation of the system law used by the s p e c i f i c a t i o n s analysis tools to 
perform decomposition. 

243 



values(hours,["0",reg,ot]) . 
values(pay_r,["0",nz]). 
values(sales,["0",nz]). 
values(base,["O",nz]) . 
values(over,["0",nz]). 
values(com,["0",nz]) . 
values(ben,["0",nz]). 
values(total_pay,["0",nz]). 

/* S t a b i l i t y Conditions */ 

/* Base salary, overtime, commissions and b e n e f i t s are not 
c a l c u l a t e d except at EOP. */ 

static("EOP requirements",[v(end,"0")]). 
static("EOP requirements",[v(end,"1")]). 

/* an employee may be i n a regular or a management p o s i t i o n */ 
static("management or regular",[v(emp_p,r)]). 
static("management or regular",[v(emp_p,m)]). 

/* an employee may have e i t h e r an o f f i c e or a sales job */ 
s t a t i c ( " o f f i c e or sales",[v(emp_t,o)]). 
s t a t i c ( " o f f i c e or sales",[v(emp_t,s)]). 

/* hours may be zero or not zero */ 
s t a t i c ( " h o u r s " , [ v ( h o u r s . o t ) ] ) . 
static("hours",[v(hours,reg)]). 
static("hours",[v(hours,"0")]). 

/* pay rate may be zero or not zero */ 
s t a t i c ( " p a y rate",[v(pay_r,nz)]). 
s t a t i c ( " p a y rate",[v(pay_r,"0")]). 

/* sales may be zero or not zero */ 
s t a t i c ( " s a l e s " , [ v ( s a l e s , n z ) ] ) . 
s t a t i c ( " s a l e s " , [ v ( s a l e s , " 0 " ) ] ) . 
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/* non-management o f f i c e s t a f f i s e n t i t l e d to overtime pay i f 
hours i s not zero */ 

static("non-management o f f i c e s t a f f gets overtime", 
[v(end,"1"),v(emp_t,o),v(emp_p,r),v(hours,ot),v(over,nz)]). 

static("non-management o f f i c e s t a f f gets overtime", 
[v(end,"l"),v(hours,reg),v(over,"0")]). 

static("non-management o f f i c e s t a f f gets overtime", 
[v(end,"1"),v(hours,"0"),v(over,"0")]). 

static("non-management o f f i c e s t a f f gets overtime", 
[v(end,"l"),v(emp_t,s),v(over,"0")]). 

static("non-management o f f i c e s t a f f gets overtime", 
[v(end,"1"),v(emp_p,m),v(over,"0")]). 

static("non-management o f f i c e s t a f f gets overtime", 
[v(end,"0"),v(over,"0")]). 

/* non-management sales s t a f f i s e n t i t l e d to commissions i f 
sales i s not zero */ 

static("non-management sales s t a f f gets commissions", 
[v(end,"1"),v(emp_t,s),v(emp_p,r),v(sales,nz),v(com,nz)]). 

static("non-management sales s t a f f gets commissions", 
[v(end,"1"),v(sales,"0"),v(com,"0")]). 

static("non-management sales s t a f f gets commissions", 
[v(end,"l"),v(emp_t,o),v(com,"0")]). 

static("non-management sales s t a f f gets commissions", 
[v(end,"l"),v(emp_p,m),v(com,"0")]). 

static("non-management sales s t a f f gets commissions", 
[v(end,"0"),v(com,"0")]). 

/* a l l employees are e n t i t l e d to base pay i f hours and pay rate 
are not zero */ 

static("everyone gets base pay", 
[v(end,"1"),v(hours,ot),v(pay_r,nz),v(base,nz)]). 

static("everyone gets base pay", 
[v(end,"1"),v(hours,reg),v(pay_r,nz),v(base,nz)]). 

static("everyone gets base pay", 



[v(end,"1"),v(hours,"0"),v(base,"0")]). 
static("everyone gets base pay", 

[v(end,"1"),v(pay_r,"0"),v(base,"0")]). 
static("everyone gets base pay", 

[v(end,"0"),v(base,"0")]). 

/* be n e f i t s must be c a l c u l a t e d at EOP */ 
static("benefits",[v(end,"1"),v(ben,nz)]). 
static("benefits",[v(end,"0"),v(ben,"0")]). 

/* t o t a l pay must be c a l c u l a t e d at EOP */ 
s t a t i c ( " t o t a l pay",[v(end,"1"),v(base,nz),v(total_pay,nz)]). 
s t a t i c ( " t o t a l pay",[v(end,"1"),v(over,nz),v(total_pay,nz)]). 
s t a t i c ( " t o t a l pay",[v(end,"1"),v(com,nz),v(total_pay,nz)]). 
s t a t i c ( " t o t a l pay",[v(end,"1"),v(base,"0"),v(over,"0"),v(com,"0"), 

v( t o t a l _ p a y , " 0 " ) ] ) . 
s t a t i c ( " t o t a l pay",[v(end,"0"),v(total_pay,"0")]). 

/* Corrective Actions */ 

/* At s t a r t of period a l l c a l c u l a t e d values must be reset to zero.•*/ 
dynamic("SOP",[v(end,"0")], 

[v(over,"0"),v(com,"0"),v(base,"0"),v(ben,"0"), 
v ( t o t a l _ p a y , " 0 " ) ] ) . 

/* c a l c u l a t e base pay at EOP */ 
dynamic("calculate base pay", 

[v(end,"1"),v(hours,ot),v(pay_r,nz)], 
[v(base,nz)]). 

dynamic("calculate base pay", 
[v(end,"1"),v(hours,reg),v(pay_r,nz)], 
[v(base,nz)]). 

dynamic("calculate base pay", 
[v(end,"l"),v(hours,"0")], 
[v(base,"0")]). 

dynamic("calculate base pay", 
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[v(end,"l"),v(pay_r,"0")], 
[v(base,"0")]). 

/* c a l c u l a t e overtime at EOP */ 
dynamic("calculate overtime", 

[v(end,"1"),v(emp_t,o),v(emp_p,r),v(hours,ot)], 
[v(over,nz)]). 

dynamic("calculate overtime", 
[v(end,"1"),v(hours,reg)], 
[v(over,nz)]). 

dynamic("calculate overtime", 
[v(end,"l"),v(hours,"0")], 
[v(over,"0")]). 

/* c a l c u l a t e commissions at EOP */ 
dynamic("calculate commissions", 

[v(end,"1"),v(emp_t,s),v(emp_p,r),v(sales,nz)], 
[v(com,nz)]). 

dynamic("calculate commissions", 
[v(end,"1"),v(sales,"0")], 
[v(com,"0")]). 

/* c a l c u l a t e b e n e f i t s at the EOP */ 
dynamic("calculate b e n e f i t s " , 

[v( e n d , " l " ) ] , 
[v(ben,nz)]). 

/* c a l c u l a t e t o t a l pay */ 
dynamic("calculate t o t a l pay", 

[v(base,nz)], 
[v(total_pay,nz)]). 

dynamic("calculate t o t a l pay", 
[v(over.nz)], 
[v(total_pay,nz)]). 

dynamic("calculate t o t a l pay", 
[v(com,nz)], 

247 



[ v ( t o t a l _ p a y , n z ) ] ) . 

d y n a m i c ( " c a l c u l a t e t o t a l pay" , 

[ v ( b a s e , " 0 " ) , v ( o v e r , " 0 " ) , v ( c o m , " 0 " ) ] , 

[ v ( t o t a l _ p a y , " 0 " ) ] ) . 
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Appendix G: A Simple "In t e r a c t i v e " P a y r o l l System 

/**************************************************** 

A P a y r o l l System 

This v e r s i o n defines several events and does not 
user the state v a r i a b l e "end". 

*************************************** / 

clauses 

/* Event D e f i n i t i o n s */ 

event("work l o t s " , [ v ( h o u r s , o t ) ] ) . 
event("work some",[v(hours,reg)]). 
event("no work",[v(hours, " 0 " ) ] ) . 

e v e n t ( " s a l e s " , [ v ( s a l e s , n z ) ] ) . 
event("no s a l e s " , [ v ( s a l e s , " 0 " ) ] ) . 

/* State Variable D e f i n i t i o n s */ 

state_variable(emp_t). 
state_variable(emp_p). 
stat e _ v a r i a b l e ( p a y _ r ) . 
state_variable(hours). 
s t a t e _ v a r i a b l e ( s a l e s ) . 
state_variable(base). 
s t a t e _ v a r i a b l e ( o v e r ) . 
state_variable(com). 
state_variable(ben). 
s t a t e _ v a r i a b l e ( t o t a l _ p a y ) . 

/* employee type */ 
/* employee p o s i t i o n */ 
/* pay rate */ 
/* hours worked */ 
/* sales */ 
/* base pay */ 
/* overtime pay */ 
/* sales commissions */ 
/* benefits */ 
/* t o t a l pay */ 

/* State Variable Value D e f i n i t i o n s */ 
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v a l u e s ( e m p _ t , [ o , s ] ) . 

va lues (emp_p , [ r ,m] ) . 

v a l u e s ( h o u r s , [ " 0 " , r e g , o t ] ) . 

v a l u e s ( p a y _ r , [ " 0 " , n z ] ) . 

v a l u e s ( s a l e s , [ " 0 " , n z ] ) . 

v a l u e s ( b a s e , [ " 0 " , n z ] ) . 

v a l u e s ( o v e r , [ " 0 " , n z ] ) . 

v a l u e s ( c o m , [ " 0 " , n z ] ) . 

v a l u e s ( b e n , [ n z ] ) . 

v a l u e s ( t o t a l _ p a y , [ " 0 " , n z ] ) . 

/ * S t a b i l i t y C o n d i t i o n s * / 

/ * an employee may be i n a r e g u l a r or a management p o s i t i o n * / 

stat ic("management or r e g u l a r " , [ v ( e m p _ p , r ) ] ) . 

static("management or r egu la r " , [v (emp_p ,m) ] ) . 

/ * an employee may have e i t h e r an o f f i c e or a s a l e s j ob * / 

s t a t i c ( " o f f i c e or s a l e s " , [ v ( e m p _ t , o ) ] ) . 

s t a t i c ( " o f f i c e or s a l e s " , [ v ( e m p _ t , s ) ] ) . 

/ * hours may be zero or not zero * / 

s t a t i c ( " h o u r s " , [ v ( h o u r s , o t ) ] ) . 

s t a t i c ( " h o u r s " , [ v ( h o u r s , r e g ) ] ) . 

s t a t i c ( " h o u r s " , [ v ( h o u r s , " 0 " ) ] ) . 

/ * pay r a t e may be zero or not zero * / 

s t a t i c ( " p a y r a t e " , [ v ( p a y _ r , n z ) ] ) . 

s t a t i c ( " p a y r a t e " , [ v ( p a y _ r , " 0 " ) ] ) . 

/ * s a l e s may be zero or not zero * / 

s t a t i c ( " s a l e s " , [ v ( s a l e s , n z ) ] ) . 

s t a t i c ( " s a l e s " , [ v ( s a l e s , " 0 " ) ] ) . 

/ * b e n e f i t s must be c a l c u l a t e d * / 

s t a t i c ( " b e n e f i t s " , [ v ( b e n , n z ) ] ) . 

/ * o f f i c e and s a l e s * / 

/ * r e g u l a r and management * / 

/ * z e r o , normal or over t ime * / 

/ * zero or p o s i t i v e * / 



/ * non-management o f f i c e s t a f f i s e n t i t l e d to over t ime 

pay i f hours i s not zero * / 

static("non-management o f f i c e s t a f f gets ove r t ime" , 

[ v ( e m p _ t , o ) , v ( e m p _ p , r ) , v ( h o u r s , o t ) , v ( o v e r , n z ) ] ) . 

static("non-management o f f i c e s t a f f gets ove r t ime" , 

[ v ( h o u r s , r e g ) , v ( o v e r , " 0 " ) ] ) . 

static("non-management o f f i c e s t a f f gets over t ime" , 

[ v ( h o u r s , " 0 " ) , v ( o v e r , " 0 " ) ] ) . 

static("non-management o f f i c e s t a f f gets over t ime" , 

[ v ( e m p _ t , s ) , v ( o v e r , " 0 " ) ] ) . 

static("non-management o f f i c e s t a f f gets ove r t ime" , 

[v (emp_p ,m) ,v (ove r , "0" ) ] ) . 

/ * non-management s a l e s s t a f f i s e n t i t l e d to commissions 

s a l e s i s not zero * / 

static("non-management s a l e s s t a f f gets commissions", 

[ v ( e m p _ t , s ) , v ( e m p _ p , r ) , v ( s a l e s , n z ) , v ( c o m , n z ) ] ) . 

static("non-management s a l e s s t a f f gets commissions", 

[ v ( s a l e s , " 0 " ) , v ( c o m , " 0 " ) ] ) . 

static("non-management s a l e s s t a f f gets commissions", 

[ v ( emp_ t , o ) , v ( com,"0" ) ] ) . 

static("non-management s a l e s s t a f f gets commissions", 

[v(emp_p,m),v(com,"0")] ) . 

/ * a l l employees are e n t i t l e d to base pay i f hours and 

pay r a t e are not zero * / 

s t a t i c ( " e v e r y o n e gets base pay", 

[ v ( h o u r s , o t ) , v ( p a y _ r , n z ) , v ( b a s e , n z ) ] ) . 

s t a t i c ( " e v e r y o n e gets base pay", 

[ v ( h o u r s , r e g ) , v ( p a y _ r , n z ) , v ( b a s e , n z ) ] ) . 

s t a t i c ( " e v e r y o n e gets base pay" , 

[ v ( h o u r s , " 0 " ) , v ( b a s e , " 0 " ) ] ) . 

s t a t i c ( " e v e r y o n e gets base pay", 

[ v ( p a y _ r , " 0 " ) , v ( b a s e , " 0 " ) ] ) . 



/* t o t a l pay must be c a l c u l a t e d at EOP */ 
s t a t i c ( " t o t a l pay" , [v(base.nz) ,v(total_pay,nz) ].) . 
s t a t i c ( " t o t a l pay",[v(over,nz),v(total_pay,nz)]). 
s t a t i c ( " t o t a l pay",[v(com,nz),v(total_pay,nz)]). 
s t a t i c ( " t o t a l pay",[v(base, " 0 " ),v(over, " 0 " ),v(com, " 0 " ) , 

v ( t o t a l _ p a y , " 0 " ) ] ) . 

/* Corrective Actions */ 

/* c a l c u l a t e base pay at EOP */ 
dynamic("calculate base pay", 

[v(hours,ot),v(pay_r,nz)], 
[v(base,nz)]). 

dynamic("calculate base pay", 
[v(hours,reg),v(pay_r,nz)], 
[v(base,nz)]). 

dynamic("calculate base pay", 
[ v ( h o u r s , " 0 " ) ] , 

[ v ( b a s e , " 0 " ) ] ) . 

dynamic("calculate base pay", 
[ v ( p a y _ r , " 0 " ) ] , 

[ v ( b a s e , " 0 " ) ] ) . 

/* c a l c u l a t e overtime at EOP */ 
dynamic("calculate overtime", 

[v(emp_t,o),v(emp_p,r),v(hours,ot)], 
[v(over,nz)]). 

dynamic("calculate overtime", 
[v(hours,reg)], 
[ v ( o v e r , " 0 " ) ] ) . 

dynamic("calculate overtime", 
[v(hours, " 0 " ) ] , 

[ v ( o v e r , " 0 " ) ] ) . 

/* c a l c u l a t e commissions at EOP */ 
dynamic("calculate commissions", 
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[ v ( e m p _ t , s ) , v ( e m p _ p , r ) , v ( s a l e s , n z ) ] , 

[ v ( com,nz ) ] ) . 

d y n a m i c ( " c a l c u l a t e commissions", 

[ v ( s a l e s , " 0 " ) ] , 

[ v ( c o m , " 0 " ) ] ) . 

/ * c a l c u l a t e t o t a l pay * / 

d y n a m i c ( " c a l c u l a t e t o t a l pay", 

[ v ( b a s e , n z ) ] , 

[ v ( t o t a l _ p a y , n z ) ] ) . 

d y n a m i c ( " c a l c u l a t e t o t a l pay", 

[ v ( o v e r , n z ) ] , 

[ v ( t o t a l _ p a y , n z ) ] ) . 

d y n a m i c ( " c a l c u l a t e t o t a l pay", 

[ v ( com,nz ) ] , 

[ v ( t o t a l _ p a y , n z ) ] ) . 

d y n a m i c ( " c a l c u l a t e t o t a l pay", 

[ v ( b a s e , " 0 " ) , v ( o v e r , " 0 " ) , v ( c o m , " 0 " ) ] , 

[ v ( t o t a l _ p a y , " 0 " ) ] ) . 
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Appendix H: Decomposition of the Four-Lights System 

The decomposition algorithm i s applied to the f o u r - l i g h t s system described 
i n Chapters 2 and 3. Each step i s l a b e l l e d using the following convention. 

x(Ay|Lz) 

where 
x = Step number s t a r t i n g with 1 and increasing by 1 u n t i l the algorithm 

f i n i s h e s . 
y = Algorithm step number. 

z = The current l e v e l of recursion with respect to the DecomposeQ procedure. 

START 

Given: The f i r s t intermediate state space and corresponding f i n a l stable 
states. 

This information may be obtained by applying the events "set a=l" and "set a=0" 
to each of the four stable states. This y i e l d s the f i r s t intermediate state 
space or Rx. The f i n a l stable states corresponding to each of the states i n the 
f i r s t intermediate state space are obtained by examining the response paths of 
the system (These paths follow d i r e c t l y from the sublaws and are l i s t e d i n 
Chapter 2.). 

F i r s t Intermediate Corresponding f i n a l 
State Space stable state 
a b c d —> a b c d 
0 0 1 0 0 0 1 0 
0 0 1 1 0 0 1 1 
0 1 0 1 0 0 1 1 
0 1 1 1 0 0 1 1 
1 0 1 0 1 1 1 1 
1 0 1 1 1 1 1 1 
1 1 0 1 1 1 0 1 
1 1 1 1 1 1 1 1 

1(A1|L1) Find the output state v a r i a b l e s with respect to the current 
intermediate state space. 
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The only state v a r i a b l e s which change t h e i r values between the f i r s t 
intermediate state space and the corresponding f i n a l stable states are {b,c,d). 

2(A2|L1) The set of output state v a r i a b l e s i s not empty. 

3(A3|LI) Find the good subsystems. 

The smallest good subsystems, with respect to the f i r s t intermediate state 
space, which are described by at l e a s t one output state v a r i a b l e are {a,b}, 
{a,c,c}, and {a,d,d}. 

4(A4|L1) Find subsets of the good subsystems f o r intermediate state 
space update. 

The subsets of t h i s set of good subsystems are 
{{a,bj} {{a,c,c}} {{a,d,d}} 
{{a,b},{a,c,c}} {{a,b},{a,d,d}} {{a,c,c},(a,d,d)} 
{{a,b},{a,c,c},{a,d,d}} 

5(A5|L1) Update the current intermediate state space using one subset 
of the set of good subsystems, and c a l l the Decompose () 
procedure. 

The f i r s t intermediate state space w i l l be eventually updated using a l l the sets 
found i n step 5. The f i r s t set selected i s {{a,b}}. The second intermediate 
state space created by t h i s update i s as shown below. 

F i r s t Second Corresponding f i n a l 
ISS ISS stable states 
a b e d --> a b e d --> a b e d 
0 0 1 0 0 0 1 0 0 0 1 0 
0 0 1 1 0 0 1 1 0 0 1 1 
0 1 0 1 0 0 0 1 0 0 1 1 
0 1 1 1 0 0 1 1 0 0 1 1 
1 0 1 0 1 1 1 0 1 1 1 1 
1 0 1 1 1 1 1 1 1 1 1 1 
1 1 0 1 1 1 0 1 1 1 0 1 
1 1 1 1 1 1 1 1 1 1 1 1 
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6(A1|L2) Find the output state v a r i a b l e s with respect to the current 
intermediate state space. 

The only state v a r i a b l e s with values which change between the second 
intermediate state space and the corresponding f i n a l stable states are {c,d}. 

7(A2|L2) The set of output state v a r i a b l e s i s not empty. 

8(A3|L2) Find the good subsystems with respect to the second 
intermediate state space. 

The only good subsystems described by at l e a s t one output state v a r i a b l e and one 
output state v a r i a b l e from the subsystems used i n the l a s t update, are {b,c,c) 
and (b,d,d). Notice that while {a,c,c} and {a,d,d} are s t i l l good subsystems, 
they are not described by an output state v a r i a b l e from the subsystems used to 
create the second intermediate state space ( i . e . they are not described by state 
v a r i a b l e b ) . 

9(A4|L2) Find subsets of the good subsystems f o r intermediate state 
space update. 

The subsets of t h i s set of good subsystems are 
{{b,c,c},{b,d,d}} {{b,c,c)) {{b,d,d}} 

10(A5|L2) Update the current intermediate state space using one subset 
of the set of good subsystems, and c a l l the Decompose() 
procedure. 

The second intermediate state space w i l l be eventually updated using a l l the 
sets found i n step 9. The f i r s t set selected i s ({b,c,c},{b,d,d}}. The t h i r d 
intermediate state space created by t h i s update i s as shown below. 

Second 
ISS 
a b e d --> 
0 0 1 0 
0 0 1 1 
0 0 0 1 
0 0 1 1 

Third 
ISS 
a b e d --> 
0 0 1 0 
0 0 1 1 
0 0 1 1 
0 0 1 1 

Corresponding f i n a l 
stable states 
a b e d 
0 0 1 0 
0 0 1 1 
0 0 1 1 
0 0 1 1 
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1 1 1 0 
1 1 1 1 
1 1 0 1 
1 1 1 1 

1 1 1 1 
1 1 1 1 
1 1 0 1 
1 1 1 1 

1 1 1 1 
1 1 1 1 
1 1 0 1 
1 1 1 1 

11(A1|L3) Find the outputs with respect to the current intermediate 
state space. 

There are no output state v a r i a b l e s . 

12(A2|L3) Since there are no output state v a r i a b l e s , output a good 
decomposition. 

The sets of subsystems used to transform the f i r s t intermediate state space into 
a stable states defines a decomposition. The second intermediate state space 
was formed using {a,bj. The t h i r d was formed using {b,c,c} and (b,d,d). 
Therefore, the f i r s t discovered decomposition i s therefore 

2: {b,c,c} {b,d,d} 
1: (a.b) 

A f t e r the Decompose() procedure returns from l e v e l 3, execution continues with 
the next s u i t a b l e set of subsystems for update at l e v e l 2. Notice that the 
current intermediate state space i s again the second intermediate state space 
found i n step 5. 

13(A5|L2) Update the current intermediate state space using one subset 

The next set of good subsystems i s described by {{b,c,c}}. The t h i r d 
intermediate state space created by t h i s update i s as shown below. 

of the set of good subsystems, and c a l l the Decompose () 
procedure. 

Second 
ISS 

T h i r d 
ISS 

Corresponding f i n a l 
stable states 

a b e d 
0 0 1 0 
0 0 1 1 
0 0 0 1 
0 0 1 1 

--> a b e d 
0 0 1 0 
0 0 1 1 
0 0 1 1 
0 0 1 1 

--> a b e d 
0 0 1 0 
0 0 1 1 
0 0 1 1 
0 0 1 1 
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1 1 1 0 1 1 1 0 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 
1 1 0 1 1 1 0 1 1 1 0 1 
1 1 1 1 1 1 1 1 1 1 1 1 

14(A1|L3) Find the output state v a r i a b l e s with respect to the current 
intermediate state space. 

The only state v a r i a b l e with values which change between the second intermediate 
state space and the corresponding f i n a l stable states i s {d}. 

15(A2|L3) The set of output state v a r i a b l e s i s not empty. 

16(A3|L3) Find the good subsystems with respect to the current 
intermediate state space. 

There are no good subsystems which meet the c r i t e r i a f o r s e l e c t i o n by the 
GoodSubsystems() function. Notice that although {b,d,d} describes a good 
subsystem, i t i s not include an output state v a r i a b l e from the subsystems used 
to update the second intermediate state space. 

17(A4|L3) Since the are no sui t a b l e good subsystems, there can be no 
suit a b l e sets for updating. 

Execution of the algorithm w i l l continue with the i t e r a t i o n over the sets of 
subsystems s u i t a b l e f o r updating found at l e v e l 2. 

18(A5|L2) Update the current intermediate state space using one subset 
of the set of good subsystems, and c a l l the DecomposeQ 
procedure. 

The next set of subsystems su i t a b l e for updating i s described by {b,d,d}. The 
t h i r d intermediate state space created by t h i s update i s as shown below. 

Second 
ISS 
a b e d 
0 0 1 0 
0 0 1 1 
0 0 0 1 

Third 
ISS 

> a b e d 
0 0 1 0 
0 0 1 1 
0 0 0 1 

Corresponding f i n a l 
stable states 

-> a b e d 
0 0 1 0 
0 0 1 1 
0 0 1 1 
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0 0 1 1 0 0 1 1 0 0 1 1 
1 1 1 0 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 
1 1 0 1 1 1 0 1 1 1 0 1 
1 1 1 1 1 1 1 1 1 1 1 1 

19(Al|L3) Find the output state v a r i a b l e s with respect to the current 
intermediate state space. 

The only state v a r i a b l e with values which change between the second intermediate 
state space and the corresponding f i n a l stable states i s {d}. 

20(A2|L3) The set of output state v a r i a b l e s i s not empty. 

21(A3|L3) Find the good subsystems with respect to the current 
intermediate state space. 

There are no good subsystems which meet the c r i t e r i a f o r s e l e c t i o n by the 
GoodSubsystems() function. Notice that although {b,c,c} describes a good 
subsystem, i t i s not include an output state v a r i a b l e from the subsystems used 
to update the second intermediate state space. 

22(A4|L3) Since the are no s u i t a b l e good subsystems, there can be no 
su i t a b l e sets for updating. 

Since there are no more sets for updating at l e v e l 2, execution of the algorithm 
w i l l continue with the i t e r a t i o n over the sets of subsystems s u i t a b l e for 
updating found at l e v e l 1. 

23(A5|L1) Update the current intermediate state space using one subset 
of the set of good subsystems, and c a l l the Decompose () 
procedure. 

The next set of good subsystems i s described by {{a,c,c}}. The second 
intermediate state space created by t h i s update i s as follows: 
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F i r s t Second Corresponding f i n a l 
ISS ISS stable states 
a b e d --> a b e d --> a b e d 
0 0 1 0 0 0 1 0 0 0 1 0 
0 0 1 1 0 0 1 1 0 0 1 1 
0 1 0 1 0 1 1 1 0 0 1 1 
0 1 1 1 0 1 1 1 0 0 1 1 
1 0 1 0 1 0 1 0 1 1 1 1 
1 0 1 1 1 0 1 1 1 1 1 1 
1 1 0 1 1 1 0 1 1 1 0 1 

24(A1|L2) Find the output state variables with respect to the current 
intermediate state space. 

The only state v a r i a b l e s with values which change between the second 
intermediate state space and the corresponding f i n a l stable states are {b,d,d}. 

25(A2|L2) The set of output state variables i s not empty. 

26(A3|L2) Find the good subsystems with respect to the second 
intermediate state space. 

There are no good subsystems which meet the c r i t e r i a f o r s e l e c t i o n by the 
GoodSubsystems() function. 

27(A4|L3) Since the are no s u i t a b l e good subsystems, there can be no 
s u i t a b l e sets for updating. 

Execution of the algorithm w i l l continue with the i t e r a t i o n over the sets of 
subsystems s u i t a b l e for updating found at l e v e l 1. 

28(A5|Ll) Update the current intermediate state space using one subset 
of the set of good subsystems, and c a l l the DecomposeQ 
procedure. 

The next set of good subsystems i s described by {{a,d,d)). The second 
intermediate state space created by t h i s update i s as shown below. 
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F i r s t Second Corresponding f i n a l 
ISS ISS stable states 
a b e d --> a b e d --> a b e d 
0 0 1 0 0 0 1 0 0 0 1 0 
0 0 1 1 0 0 1 1 0 0 1 1 
0 1 0 1 0 1 0 1 0 0 1 1 
0 1 1 1 0 1 1 1 0 0 1 1 
1 0 1 0 1 0 1 1 1 1 1 1 
1 0 1 1 1 0 1 1 1 1 1 1 
1 1 0 1 1 1 0 1 1 1 0 1 
1 1 1 1 1 1 1 1 1 1 1 1 

29(A1|L2) Find the output state v a r i a b l e s with respect to the current 
intermediate state space. 

The only state v a r i a b l e s with values which change between the second 
intermediate state space and the corresponding f i n a l stable states are {b,c,c}. 

30(A2|L2) The set of output state v a r i a b l e s i s not empty. 

31(A3|L2) Find the good subsystems with respect to the second 
intermediate state space. 

There are no good subsystems which meet the c r i t e r i a f o r s e l e c t i o n by, the 
GoodSubsystemsQ function. 

32(A4|L2) Since the are no suitable good subsystems,,, there can be no 
sui t a b l e sets for updating. 

Execution of the algorithm w i l l continue with the i t e r a t i o n over the sets of 
subsystems s u i t a b l e f o r updating found at l e v e l 1. 

33(A5|L1) There are update p o s s i b i l i t i e s so update the current 
intermediate state space using one subset of the set of good 
subsystems, and c a l l the Decompose() procedure. 

The next set of good subsystems i s described by {{a,b},{a,c,c}} . The second 
intermediate state space created by t h i s update i s as shown below. 
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F i r s t Second Corresponding f i n a l 
ISS ISS stable states 
a b e d --> a b e d --> a b e d 
0 0 1 0 0 0 1 0 0 0 1 0 
0 0 1 1 0 0 1 1 0 0 1 1 
0 1 0 1 0 0 1 1 0 0 1 1 
0 1 1 1 0 0 1 1 0 0 1 1 
1 0 1 0 1 1 1 0 1 1 1 1 
1 0 1 1 1 1 1 1 1 1 1 1 
1 1 0 1 1 1 0 1 1 1 0 1 
1 1 1 1 1 1 1 1 1 1 1 1 

34(A1|L2) Find the output state variables with respect to the current 
intermediate state space. 

The only state v a r i a b l e with a value which changes between the second 
intermediate state space and the corresponding f i n a l stable states i s {d}. 

35(A2|L2) The set of output state v a r i a b l e s i s not empty. 

36(A3|L2) Find the good subsystems with respect to the second 
intermediate state space. 

The only good subsystem described by at l e a s t one output state v a r i a b l e , and one 
output state v a r i a b l e from the subsystems used i n the l a s t update, i s {b,d,d}. 

37(A4|L2) Find subsets of the good subsystems f o r intermediate state 

space update. 

There i s one subset of t h i s set of good subsystems: {{b,d,d}}. 

38(A5|L2) There are update p o s s i b i l i t i e s so update the current 

intermediate state space using one subset of the set of good 
subsystems, and c a l l the Decompose() procedure. 

The t h i r d intermediate state space created by updating with {{b,d,d}} i s as 
shown below. 
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Second T h i r d Corresponding f i n a l 
ISS ISS stable states 
a b e d --> a b e d --> a b e d 
0 0 1 0 0 0 1 0 0 0 1 0 
0 0 1 1 0 0 1 1 0 0 1 1 
0 0 1 1 0 0 1 1 0 0 1 1 
0 0 1 1 0 0 1 1 0 0 1 1 
1 1 1 0 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 
1 1 0 1 1 1 0 1 1 1 0 1 
1 1 1 1 1 1 1 1 1 1 1 1 

39(A1|L3) Find the outputs with respect to the current intermediate 
state space. 

There are no output state v a r i a b l e s . 

40(A2|L3) Since there are no output state v a r i a b l e s , output a good 
decomposition. 

The sets of subsystems used to transform the f i r s t intermediate state space into 
a stable states defines a decomposition. The second discovered decomposition 
i s therefore 

2: {b,d,d} 
1: {a,b} {a,c,c} 

Since there are no more sets for updating at l e v e l 2, execution of the algorithm 
w i l l continue with the i t e r a t i o n over the sets of subsystems s u i t a b l e for 
updating found at l e v e l 1. 

41(A5|L1) There are update p o s s i b i l i t i e s so update the current 
intermediate state space using one subset of the set of good 
subsystems, and c a l l the Decompose() procedure. 

The next set of good subsystems i s described by {(a,b),{a,d,d}}. The second 
intermediate state space created by t h i s update i s as shown below. 
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F i r s t Second Corresponding f i n a l 
ISS ISS stable states 
a b e d --> a b e d --> a b e d 
0 0 1 0 0 0 1 0 0 0 1 0 
0 0 1 1 0 0 1 1 0 0 1 1 
0 1 0 1 0 0 0 1 0 0 1 1 
0 1 1 1 0 0 1 1 0 0 1 1 
1 0 1 0 1 1 1 1 1 1 1 1 
1 0 1 1 1 1 1 1 1 1 1 1 
1 1 0 1 1 1 0 1 1 1 0 1 
1 1 1 1 1 1 1 1 1 1 1 1 

42(A1|L2) Find the output state v a r i a b l e s with respect to the current 
intermediate state space. 

The only state v a r i a b l e with a value which changes between the second 
intermediate state space and the corresponding f i n a l stable states i s {c}. 

43(A2|L2) The set of output state v a r i a b l e s i s not empty. 

44(A3|L2.) Find the good subsystems with respect to the second 
intermediate state space. 

The only good subsystem described by at l e a s t one output state v a r i a b l e , and one 
output state v a r i a b l e from the subsystems used i n the l a s t update, i s {b,c,c}. 

45(A4|L2) Find subsets of the good subsystems f o r intermediate state 
space update. 

There i s one subset of t h i s set of good subsystems: {{b,c,c}}. 

46(A5|L2) There are update p o s s i b i l i t i e s so update the current 
intermediate state space using one subset of the set of good 
subsystems, and c a l l the Decompose() procedure. 

The t h i r d intermediate state space created by updating with {{b,c,c}} i s as 
shown below. 
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Second Th i r d Corresponding 
ISS ISS stable states 
a b e d --> a b c d --> a b e d 
0 0 1 0 0 0 1 0 0 0 1 0 
0 0 1 1 0 0 1 1 0 0 1 1 
0 0 0 1 0 0 1 1 0 0 1 1 
0 0 1 1 0 0 1 1 0 0 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 
1 1 0 1 1 1 0 1 1 1 0 1 
1 1 1 1 1 1 1 1 1 1 1 1 

47(A1|L3) Find the outputs with respect to the current intermediate 

state space. 

There are no output state v a r i a b l e s . 

48(A2|L3) Since there are no output state v a r i a b l e s , output a good 
decomposition. 

The sets of subsystems used to transform the f i r s t intermediate state space into 
a stable states defines a decomposition. The t h i r d discovered decomposition i s 
therefore 

2: (b.c.c) 
1: {a,b} {a,d,d} 

Since there are no more sets f o r updating at l e v e l 2, execution of the algorithm 
w i l l continue with the i t e r a t i o n over the sets of subsystems s u i t a b l e f o r 
updating found at l e v e l 1. 

49(A5|L1) Update the current intermediate state space using one subset 
of the set of good subsystems, and c a l l the Decompose () 
procedure. 

The next set of good subsystems i s described by ({a,c,c},{a,d,d}}. The second 
intermediate state space created by t h i s update i s as shown below. 
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F i r s t 0 ' Second Corresponding f i n a l 
ISS ISS stable states 
a b e d --> a b e d --> a b e d 
0 0 1 0 0 0 1 0 0 0 1 0 
0 0 1 1 0 0 1 1 0 0 1 1 
0 1 0 1 0 1 1 1 0 0 1 1 
0 1 1 1 0 1 1 1 0 0 1 1 
1 0 1 0 1 0 1 1 1 1 1 1 
1 0 1 1 1 0 1 1 1 1 1 1 
1 1 0 1 1 1 0 1 1 1 0 1 
1 1 1 1 1 1 1 1 1 1 1 1 

50(A1|L2) Find the output state v a r i a b l e s with respect to the current 
intermediate state space. 

The only state v a r i a b l e with a value which changes between the second 
intermediate state space and the corresponding f i n a l stable states i s {b}. 

51(A2|L2) The set of output state v a r i a b l e s i s not empty. 

52(A3|L2) Find the good subsystems with respect to the second 
intermediate state space. 

There are no good subsystems which meet the c r i t e r i a f o r s e l e c t i o n by the 
GoodSubsystems() function. 

53(A4|L2) Since the are no suitable good subsystems, there can be no 
sui t a b l e sets for updating. 

Execution of the algorithm w i l l continue with the i t e r a t i o n over the sets of 
subsystems su i t a b l e f o r updating found at l e v e l 1. 

54(A5|L1) There are update p o s s i b i l i t i e s so update the current 
intermediate state space using one subset of the set of good 
subsystems, and c a l l the Decompose() procedure. 

The next set of good subsystems i s described by {{a,b},(a,c,c),{a,d,d}). The 
second intermediate state space created by t h i s update i s as shown below. 
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F i r s t Second Corresponding f i n a l 
ISS ISS stable states 
a b e d --> a b e d --> a b e d 
0 0 1 0 0 0 1 0 0 0 1 0 
0 0 1 1 0 0 1 1 0 0 1 1 
0 1 0 1 0 0 1 1 0 0 1 1 
0 1 1 1 0 0 1 1 0 0 1 1 
1 0 1 0 1 1 1 1 1 1 1 1 
1 0 1 1 1 1 1 1 1 1 1 1 
1 1 0 1 1 1 0 1 1 1 0 1 
1 1 1 1 1 1 1 1 1 1 1 1 

55(Al|L2) Find the outputs with respect to the current intermediate 
state space. 

There are no output state v a r i a b l e s . 

56(A2|L2) Since there are no output state v a r i a b l e s , output a good 
decomposition. 

The sets of subsystems used to transform the f i r s t intermediate state space into 
a stable states defines a decomposition. The t h i r d discovered decomposition i s 
therefore 

1: (a,b) (a,c,c) {a,d,d} 

There are no more sets of subsystems suitable f o r updating at any l e v e l of 
i t e r a t i o n , therefore the algorithm i s f i n i s h e d . 
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Appendix I: Possible Decompositions f o r the "Batch" P a y r o l l Svstem 

This appendix l i s t s a l l of the possible decompositions f o r the "batch" p a y r o l l 
system. The state v a r i a b l e names have been abbreviated to conserve space. 

Abbreviations 

end = end 
pay_r = pay rate 
emp_t = employee type 
base = base pay 
over = over time pay 
ben = ben e f i t s 

Decompositions 

Decomposition #1 
1: {end.pay_r.hours.base) {end,ben) (end.emp_t.emp_p.sales.com) 

{end,emp_t,emp_p,hours,over} 
{end,emp_t,emp_p,pay_r.hours.sales.total_pay) 

Decomposition #2 
2: {pay_r.hours,ben,base) 
1: {end.ben) {end,emp_t,emp_p,sales,com) 

{end,emp_t,emp_p,hours,over} 

{end,emp_t,emp_p,pay_r.hours,sales.total_pay) 

Decomposition #3 
2: {pay_r.hours,total_pay,base) 
1: {end.ben) {end.emp_t.emp_p.sales.com) 

{end,emp_t,emp_p,hours.over) 

{end,emp_t,emp_p,pay_r,hours,sales.totalpay) 

Decomposition #4 
2: {emp_t,emp_p,sales,base,com} 
1: {end.pay_r.hours.base) (end.ben) (end.emp_t.emp_p.hours.over) 

{end,emp_t,emp_p,pay_r.hours,sales.total_pay) 
Decomposition #5 
2: {emp_t,emp_p,sales,total_pay.com) 
1: (end.pav_r.hours.base) {end.ben) 

{end,emp_t,emp_p,hour s,over) 

{end,emp_t,emp_p,pay_r.hours,sales.total_pay) 

Decomposition #6 
2: {pay_r.hours.ben.base) {emp_t,emp_p,sales,ben,com) 
1: {end.ben) (end,emp_t.emp_p.hours.over) 

hours = hours worked 
emp_p = employee p o s i t i o n 
sales = sales 
com = commissions 
total_pay = t o t a l pay 
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{end ,emp_t ,emp_p,pay_r .hours , sa les . to ta l_pav) 

Decomposi t ion #7 
2: {pay_r ,hours ,ben,base} {emp_t,emp_p,sales , total_pay,com} 
1: (end.ben} (end.emp_t.emp_p.hours.over} 

( e n d , e m p _ t , e m p _ p , p a y _ r . h o u r s , s a l e s . t o t a l p a v ) 

Decomposi t ion #8 
2: {pay_r .hours , to ta l_pay ,base} (emp_t,emp_p,sales,ben,com} 
1: (end.ben} (end.emp_t.emp_p.hours.over} 

(end ,emp_t ,emp_p,pay_r .hours , sa les . to ta l_pav) 

Decomposi t ion #9 
2: {pay_r .hours , to ta l_pay ,base} {emp_t ,emp_p,sales , tota l_pay,com) 
1: (end.ben) (end.emp_t.emp_p.hours.over) 

{end ,emp_t ,emp_p,pay_r ,hours , sa les . to ta l_pav) 

Decomposi t ion #10 
2: (emp_t.emp_p.hours.ben.over) 
1: (end .pay_r .hours .base) (end.ben) 1 end.emp_t.emp_p.sales.com) 

{end ,emp_t ,emp_p,pay_r ,hours , sa les . to ta l_pay) 

Decomposi t ion #11 
2: {emp_t ,emp_p,hours , total_pay,over} 
1: (end .pay_r .hours .base) (end.ben) {end,emp_t,emp_p,sales,com} 

{end ,emp_t ,emp_p,pay_r .hours , sa les . to ta l_pav) 

Decomposi t ion #12 
2: (pay_r .hours .ben .base) {emp_t,emp_p.hours,ben,over} 
1: (end.ben) {end,emp_t,emp_p,sales,com) 

{end ,emp_t ,emp_p,pay_r .hours , sa les . to ta l_pav) 

Decomposi t ion #13 
2: (pay_r .hours .ben .base) (emp_t .emp_p.hours . to ta l_pay.over) 
1: (end.ben) (end.emp_t.emp_p.sales.com) 

{end ,emp_t ,emp_p,pay_r .hours , sa les . to ta l_pav) 

Decomposi t ion #14 
2: {pay_r .hours , to ta l_pay ,base} (emp_t.emp_p.hours.ben.over) 
1: {end,ben} (end.emp_t.emp_p.sales.com) 

{end ,emp_t ,emp_p,pay_r ,hours , sa les . to ta l_pay) 

Decomposi t ion #15 
2: , {pay_r .hou r s , t o t a l_pay ,base ) (emp_t .emp_p.hours . to ta l_pay.over) 
1: (end.ben) {end,emp_t,emp_p,sales,com) 

{end ,emp_t ,emp_p,pay_r .hours . sa les . to ta l_pav) 

Decomposi t ion #16 
2: (emp_t.emp_p.sales.ben.com) (emp_t.emp_p.hours.ben.over) 
1: (end .pay_r .hours .base) (end.ben) 

{end ,emp_t ,emp_p,pay_r .hours . sa les . to ta l_pav) 

Decomposi t ion #17 
2: (emp_t.emp_p.sales.ben.com) (emp_t .emp_p.hours . to ta l_pay.over) 
1: (end ,pay_r .hours .base) (end.ben) 



{end ,emp_t ,emp_p,pay_r .hours , sa les . to ta l_pay) 

Decomposi t ion #18 
2: (emp_t .emp_p.sales . to ta l_pay.com) {emp_t,emp_p.hours,ben.over} 
1: (end .pay_r .hours .base) {end.ben) 

{ e n d , e m p _ t , e m p _ p , p a y _ r , h o u r s , s a l e s . t o t a l p a v ) 

Decomposi t ion #19 
2: {emp_t ,emp_p,sales , tota l_pay.com) 

{emp_t ,emp_p.hours , to ta l_pay.over) 
1: {end.pay_r .hours .base) (end.ben) 

{end ,emp_t ,emp_p,pay_r .hours , sa les . to ta l_pay) 

Decomposi t ion #20 
2: (pay_r .hours .ben .base) {emp_t,emp_p,sales,ben,com) 

{emp_t,emp_p,hours,ben.over) 
1: {end.ben) 1 e n d . e m p _ t . e m p _ p . p a y _ r . h o u r s . s a l e s . t o t a l p a v ) 

Decomposi t ion #21 
2: {pay_r .hours .ben.base) {emp_t,emp_p,sales,ben,com) 

{emp_t ,emp_p,hours , to ta l_pay,over) 
1: (end.ben) (end ,emp_t .emp_p.pay_r .hours . sa les . to ta l_pay) 

Decomposi t ion #22 
2: {pay_r .hours .ben.base} (emp_t .emp_p.sales . to ta l_pay.com) 

{emp_t,emp_p,hours,ben,over} 
1: {end.ben) f end .emp_t .emp_p,pay_r .hours . sa les . to ta l_pay) 

Decomposi t ion #23 
2: {pay_r .hours .ben.base) {emp_t ,emp_p,sales , tota l_pay,com) 

{emp_t ,emp_p.hours , total_pay.over} 
1: {end.ben) { e n d . e m p _ t . e m p _ p , p a y _ r . h o u r s . s a l e s . t o t a l p a v ) 

Decomposi t ion #24 
2: {pay_r ,hours , to ta l_pay ,base} {emp_t,emp_p,sales,ben,com) 

{emp_t,emp_p,hours,ben,over} 
1: (end.ben) { e n d . e m p _ t . e m p _ p . p a y _ r . h o u r s . s a l e s . t o t a l p a v ) 

Decomposi t ion #25 
2: ( pay_ r .hou r s . t o t a l_pay .ba se ) {emp_t,emp_p,sales,ben,com) 

{emp_t ,emp_p.hours , total_pay,over} 
1: {end.ben) f e n d . e m p _ t . e m p _ p . p a y _ r . h o u r s . s a l e s . t o t a l p a v ) 

Decomposi t ion #26 
2: ( pay_ r . hou r s . t o t a l_pay .ba se ) (emp_t .emp_p.sales . to ta l_pay.com) 

{emp_t,emp_p.hours.ben.over) 
1: {end.ben) {end,emp_t T emp_p .pay_r .hour s . s a l e s . t o t a l_pay) 

Decomposi t ion #27 
2: {pay_r .hou r s , t o t a l_pay ,base ) {emp_t ,emp_p,sales , tota l_pay,com) 

{emp_t ,emp_p.hours , total_pay,over} 
1: {end.ben) (end ,emp_t ,emp_p,pay_r .hours . sa les . to ta l_pay) 

Decomposi t ion #28 
2: {end ,emp_t ,emp_p,pay_r ,hours ,com, to ta lpav} 

270 



1: (end T pay_r .hours .base] (end.ben) (end,emp_t,emp_p,sales,com) 
{ end,emp_t.emp_p.hours.over) 

Decomposi t ion #29 
2: {end , emp_ t , emp_p .hou r s , s a l e s . ba se . t o t a lpay ) 
1: (end .pay_r .hours .base) (end.ben) {end,emp_t,emp_p,sales.corn) 

{end,emp_t,emp_p,hours,over) 

Decomposi t ion #30 
2: {end,emp_t ,emp_p,hours ,base,com.total_pav) 
1: (end ,pay_r .hours .base) {end.ben) {end,emp_t,emp_p,sales,com) 

{end,emp_t,emp_p,hours,over) 

Decomposi t ion #31 
2: { e n d , e m p _ t , e m p _ p , s a l e s , b a s e , o v e r . t o t a l p a y ) 
1: {end T pay_r .hours .base ) {end.ben) {end,emp_t,emp_p,sales,com) 

{end,emp_t,emp_p,hours,over) 

Decomposi t ion #32 
2: { e m p _ t , e m p _ p , p a y _ r . h o u r s , s a l e s . b e n . t o t a l p a y ) 
1: {end.pay_r .hours .base) {end.ben) {end,emp_t,emp_p,sales,com) 

{end,emp_t,emp_p,hours,over) 

Decomposi t ion #33 
2: {emp_t ,emp_p,pay_r .hours ,com.ben. total_pay) 
1: (end. pay_r . hours .base) 1 end.ben) {end, emp_t, emp_p , s a l e s ,cjom) 

{end,emp_t,emp_p,hours.over) 

Decomposi t ion #34 
2: {emp_ t , emp_p ,hou r s , s a l e s . ba se .ben . t o t a lpay ) 
1: t end .pay_r .hours .base) {end.ben) {end,emp_t,emp_p,sales,com) 

{end,emp_t,emp_p,hours.over) 

Decomposi t ion #35 
2: {emp_t ,emp_p,hours ,base,com.ben. total_pay) 
1: {end.pay_r .hours .base) {end.ben) {end,emp_t,emp_p,sales,com) 

{end,emp_t,emp_p,hours,over) 

Decomposi t ion #36 
2: { e m p _ t , e m p _ p , s a l e s , b a s e , o v e r . b e n . t o t a l p a y ) 
1: {end.pay_r .hours .base) {end.ben) {end,emp_t,emp_p,sales,com) 

{end,emp_t,emp_p,hours,over} 

Decomposi t ion #37 
2: ( end T pay_r .hou r s .ove r . com. to t a l_pay ) 
1: t end .pay_r .hours .base) {end.ben) {end,emp_t,emp_p,sales.com) 

{end,emp_t,emp_p,hours,over} 

Decomposi t ion #38 
2: t p a y _ r T h o u r s t over . com.ben . to ta l_pay) 
1: {end,pay_r ,hours ,base) {end.ben) {end,emp_t,emp_p,sales,com) 

{end,emp_t,emp_p.hours.over) 

Decomposi t ion #39 
2: (base .ove r . com. to ta l_pav) 
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1: {end,pay_r ,hours .base) (end.ben) (end.emp_t.emp_p.sales.com) 
{end,emp_t,emp_p,hours,over) 

Decomposi t ion #40 
2: {pay_r .hours ,ben ,base) 

{end,emp_t ,emp_p,pay_r ,hours ,com.total_pay) 
1: (end.ben) {end,emp_t,emp_p,sales,com) 

{end,emp_t,emp_p.hours.over) 

Decomposi t ion #41 
3: {pay_r .hou r s , t o t a l_pay ,base ) 
2: {end,emp_t ,emp_p,pay_r .hours ,com.total_pav) 
1: {end.ben) {end,emp_t,emp_p,sales,com) 

{end,emp_t,emp_p,hour s ,over ) 

Decomposi t ion #42 
3: {end ,emp_t ,emp_p.hours , sa les .base . to ta l_pav) 
2: {pay_r .hours .ben .base) 
1: (end.ben) {end,emp_t,emp_p,sales,com) 

{end,emp_t,emp_p,hours,over) 

Decomposi t ion #43 
3: {end,emp_t,emp_p,hours,base,com.total_pav) 
2: (pay_r .hours .ben .base) 
1: (end.ben) {end,emp_t,emp_p,sales,com) 

{end,emp_t,emp_p,hours,over) 

Decomposi t ion #44 
3: {end ,emp_t ,emp_p,sa les ,base ,over . to ta l_pay) 
2: {pay_r .hours .ben.base) 
1: {end.ben) {end,emp_t,emp_p,sales,com) 

{end,emp_t,emp_p,hours,over) 

Decomposi t ion #45 
3: {emp_t ,emp_p,hours , sa les ,base .ben . to ta l_pay) 
2: {pay_r .hours .ben .base) 
1: {end.ben) {end,emp_t,emp_p,sales,com) 

1 end.emp_t.emp_p.hours.over) 

Decomposi t ion #46 
3: {emp_t ,emp_p.hours .base,com.ben. total_pav) 
2: tpay_r .hours .ben .base) 
1: (end.ben) (end.emp_t.emp_p.sales.com) 

{end,emp_t,emp_p,hours,over) 

Decomposi t ion #47 
3: {emp_t ,emp_p.sa les ,base ,over .ben . to ta l_pay) 
2: (pay_r .hours .ben .base) 
1: {end.ben) (end.emp_t.emp_p.sales.com) 

{end,emp_t,emp_p,hours,over) 

Decomposi t ion #48 
3: {base .over . com. to ta l_pay) 
2: {pay_r ,hours ,ben ,base) 
1: {end.ben) {end,emp_t,emp_p,sales,com) 
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{end,emp_t,emp_p,hours,over} 

Decomposition #49 
2: (pay_r.hours.ben.base) 

{emp_t,emp_p,pay_r,hours,sales,ben,total_pay} 
1: (end.ben) (end.emp_t.emp_p.sales.com) 

{end,emp_t,emp_p,hours,over} 

Decomposition #50 
3: (pay_r rhours.total_pay.base) 
2: {emp_t,emp_p,pay_r,hours,sales,ben.total_pav) 
1: (end.ben) (end.emp_t.emp_p.sales.com) 

{end,emp_t,emp_p,hours,over} 

Decomposition #51 
2: (pay_r.hours.ben.base) 

{emp_t,emp_p,pay_r,hours,com,ben.totalpav) 
1: (end.ben) {end,emp_t,emp_p,sales,com) 

{end,emp_t,emp_p,hours,over} 

Decomposition #52 
3: (pay_r.hours.total_pay.base) 
2: {emp_t,emp_p,pay_r.hours,com.ben.total pay) 
1: (end.ben) {end,emp_t,emp_p,sales,com) 

{end,emp_t,emp_p,hours,over) 

Decomposition #53 
2: {pay_r.hours.ben.base) (end,pay_r.hours.over.com.totalpav) 
1: {end.ben) {end,emp_t,emp_p,sales,com) 

{end,emp_t,emp_p,hours.over) 

Decomposition #54 
3: (pay_r.hours.total_pay.base) 
2: (end.pay_r.hours.over.com.total_pav) 
1: (end.ben) (end.emp_t.emp_p.sales.com) 

(end,emp_t,emp_p,hours,over) 

Decomposition #55 
2: {pay_r.hours.ben.base) (pay_r.hours.over.com.ben.totalpav) 
1: (end.ben) {end,emp_t,emp_p,sales,com) 

{end,emp_t,emp_p,hours.over) 

Decomposition #56 
3: (pay_r,hours,total_pay,base) 
2: (pay_r,hours,over.com.ben.total_pav) 
1: (end.ben) {end,emp_t,emp_p,sales,com) 

{end,emp_t,emp_p,hour s,over) 

Decomposition #57 
2: {emp_t,emp_p,sales,ben,com) 

(end,emp_t,emp_p.hours,sales.base.total_pav) 
1: (end,pay_r.hours.base) (end,ben) {end,emp_t,emp_p.hours,over) 

Decomposition #58 
3: {emp_t,emp_p,sales,total_pay.com) 
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2 : {end, euip_t, emp_p .hours , s a l e s ,base . t o t a l p a y ) 

1: {end.pay_r .hours .base) {end.ben) {end,emp_t,emp_p.hours,over) 

Decomposi t ion #59 
3: {end,emp_t ,emp_p,pay_r ,hours ,com,tota l pay) 
2: {emp_t.emp_p.sales.ben.com) 

1: {end.pay_r .hours .base) {end.ben) {end,emp_t,emp_p.hours,over} 

Decomposi t ion #60 
3: {end,emp_t,emp_p,hours,base,com,total_pav} 
2: {emp_t,emp_p,sales,ben,com) 

1: {end.pay_r .hours .base] {end.ben) {end,emp_t,emp_p.hours,over) 

Decomposi t ion #61 
3: {emp_t ,emp_p,pay_r ,hours ,com,ben , to ta lpay) 
2: {emp_t,emp_p,sales,ben,com) 

1: {end.pay_r .hours .base) {end.ben) {end,emp_t,emp_p.hours,over) 

Decomposi t ion #62 
3: {emp_t,emp_p,hours,base,com.ben. total_pay) 
2: {emp_t.emp_p.sales.ben.com) 

1: {end.pay_r .hours .base) {end.ben) (end,emp_t.emp_p.hours.over) 

Decomposi t ion #63 
3: {end .pay_r .hours .ove r . com. to ta l_pay) 
2: {emp_t,emp_p,sales,ben,com) 

1: {end.pay_r .hours .base} {end.ben) (end.emp_t.emp_p.hours.over) 

Decomposi t ion #64 
3: {pay_r .hour s .ove r . com.ben . to t a l_pav) 
2: {emp_t.emp_p.sales.ben.com) 
1: (end .pay_r .hours .base) {end.ben) 1 end.emp_t.emp_p.hours.over) 
Decomposi t ion #65 
3: { b a s e . o v e r . c o m . t o t a l p a y ) 
2: {emp_t,emp_p,sales,ben,com) 
1: {end.pay_r .hours .base) (end.ben) (end.emp_t.emp_p.hours.over) 
Decomposi t ion #66 
2: f emp_t.emp_p.sales.ben.com) 

{ e n d , e m p _ t , e m p _ p , s a l e s , b a s e , o v e r . t o t a l p a y ) 
1: (end .pay_r .hours .base) {end.ben) (end.emp_t.emp_p.hours.over) 
Decomposi t ion #67 
3: {emp_t ,emp_p,sales , tota l_pay.com) 
2 : { e n d , e m p _ t , e m p _ p , s a l e s , b a s e , o v e r . t o t a l p a y ) 
1: {end,pay_r ,hours ,base) {end.ben) (end.emp_t.emp_p.hours.over) 
Decomposi t ion #68 
2: {emp_t,emp_p,sales,ben,com) 

{ e m p _ t , e m p _ p , p a y _ r , h o u r s , s a l e s . b e n . t o t a l p a y ) 
1: (end T pay_r .hours .base) (end.ben) {end,emp_t,emp_p.hours,pver) 
Decomposi t ion #69 
3: {emp_t ,emp_p,sales , tota l_pay.com) 



2: ( e m p _ t , e m p _ p , p a y _ r . h o u r s , s a l e s . b e n . t o t a l p a v ] 
1: (end ,pay_r .hours .base) (end.ben) (end.emp_t.emp_p.hours.over) 

Decomposi t ion #70 
2: {emp_t,emp_p,sales,ben,com) 

{emp_t ,emp_p.hours , sa les .base .ben . to ta l_pay) 
1: (end .pay_r .hours .base) {end.ben) (end.emp_t.emp_p.hours.over) 

Decomposi t ion #71 
3: {emp_t ,emp_p,sales , tota l_pay.com) 
2: {emp_t ,emp_p.hours , sa les .base .ben . to ta l_pay) 
1: (end .pay_r .hours .base) {end.ben) (end.emp_t.emp_p.hours.over) 

Decomposi t ion #72 
2: {emp_t,emp_p,sales.ben.com) 

{emp_t ,emp_p,sa les .base ,over .ben . to ta l_pay) 
1: (end .pay_r .hours .base) (end.ben) (end,emp_t,emp_p,hours,over) 

Decomposi t ion #73 
3: (emp_t ,emp_p,sales , to ta l_pay.com) 
2: ( e m p _ t , e m p _ p , s a l e s , b a s e , o v e r . b e n . t o t a l p a v ) 

1: (end .pay_r .hours .base) (end.ben) (end.emp_t.emp_p.hours.over) 

Decomposi t ion #74 
2: (pay_r .hours .ben .base) {emp_t,emp_p,sales,ben,com) 

{emp_t ,emp_p,pay_r ,hours , sa les ,ben , to ta l_pav) 
1: (end.ben) (end.emp_t.emp_p.hours.over) 
Decomposi t ion #75 
3: ( pay_ r .hou r s , t o t a l_pay ,ba se ) 
2: (emp_t,emp_p,sales,ben,com) 

{emp_t ,emp_p,pay_r ,hours , sa les ,ben , to ta l_pav) 
1: (end.ben) {end.emp_t.emp_p.hours.over) 

Decomposi t ion #76 
3: {emp_t ,emp_p.sales , tota l_pay,com) 
2: (pay_r .hours .ben .base) 

{emp_t ,emp_p,pay_r ,hours , sa les .ben . to ta l_pay) 
1: (end.ben) (end.emp_t.emp_p.hours.over) 

Decomposi t ion #77 
3: ( pay_ r . hou r s . t o t a l_pay .ba se ) (emp_t .emp_p.sales . to ta l_pay.com) 
2: (emp_t ,emp_p,pay_r .hours , sa les .ben . to ta l_pav) 
1: (end.ben) (end.emp_t.emp_p.hours.over) 

Decomposi t ion #78 
3: {end,emp_t,emp_p,pay_r,hours,com,total_pay} 
2: (pay_r .hours .ben .base) {emp_t,emp_p,sales,ben,com) 
1: (end.ben) {end,emp_t,emp_p.hours,over) 

Decomposi t ion #79 
3: {end ,emp_t ,emp_p.hours , sa les ,base . to ta l_pay) 
2: (pay_r .hours .ben .base) (emp_t.emp_p.sales.ben.com) 
1: (end.ben) (end T emp_t.emp_p.hours.over) 
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Decomposition #80 
3: {end,emp_t,emp_p.hours,base,com.total_pav) 
2: {pay_r.hours.ben.base) f emp_t.emp_p.sales.ben.com) 
1: {end.ben) (end.emp_t.emp_p.hours.over) 

Decomposition #81 
3: {end,emp_t,emp_p,sales,base,over.total pay) 
2: {payr.hours.ben.base) {emp_t,emp_p,sales,ben,com) 
1: {end.ben) (end.emp_t.emp_p.hours.over) 

Decomposition #82 
3: {emp_t,emp_p,pay_r,hours,com,ben.totalpay) 
2: {pay_r.hours.ben.base) {emp_t,emp_p,sales,ben,com) 
1: {end.ben) {end.emp_t.emp_p.hours.over) 

Decomposition #83 
3: {emp_t,emp_p.hours,sales.base.ben.totalpay) 
2: {pay_r.hours.ben.base) {emp_t,emp_p,sales,ben,com) 
1: (end.ben) {end.emp_t.emp_p.hours.over) 

Decomposition #84 
3: {emp_t,emp_p.hours,base,com.ben.total_pav) 
2: (pay_r.hours.ben.base) (emp_t.emp_p.sales.ben.com) 
1: (end.ben) (end.emp_t.emp_p.hours.over) 

Decomposition #85 
3: {emp_t,emp_p,sales,base,over.ben.totalpay) 
2: (pay_r.hours.ben.base) {emp_t.emp_p.sales.ben.com) 
1: (end.ben) (end.emp_t.emp_p.hours.over) 

Decomposition #86 
3: {end.pay_r.hours.over.com.total_pay) 
2: (pay_r.hours.ben.base) {emp_t,emp_p,sales,ben,com) 
1: (end.ben) (end.emp_t.emp_p.hours.over) 

Decomposition #87 
3: (pay_r.hours.over.com.ben.total_pay) 
2: (pay_r.hours.ben.base) (emp_t.emp_p.sales.ben.com) 
1: (end.ben) (end.emp_t.emp_p.hours.over) 

Decomposition #88 
3: (base.over.com.totalpay) 
2: (pay_r.hours.ben.base) (emp_t.emp_p.sales.ben.com) 
1: (end.ben) (end.emp_t.emp_p.hours.over) 

Decomposition #89 
2: {emp_t.emp_p.hours.ben.over) 

{end,emp_t,emp_p,pay_r,hours,com,totalpay} 
1: (end.pay_r.hours.base) {end.ben) (end.emp_t.emp_p.sales.com) 

Decomposition #90 
3: {emp_t,emp_p.hours,total_pay.over) 
2: {end,emp_t,emp_p,pay_r,hours,com,total pay) 
1: (end.pay_r.hours.base) (end.ben) {end,emp_t,emp_p,sales,com) 
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Decomposition #91 
3: {end,emp_t,emp_p,sales,base,over.total_pay) 
2: f emp_t.emp_p.hours.ben.over) 

1: (end.pay_r.hours.base) ( end.ben) (end.emp_t.emp_p.sales.com) 

Decomposition #92 
3: {emp_t,emp_p,sales,base,over.ben.total_pay) 
2: (emp_t t emp_p.hours.ben.over) 

1: (end.pay_r.hours.base) (end.ben) (end.emp_t.emp_p.sales.com) 

Decomposition #93 
3: (end.pay_r.hours.over.com.totalpav) 
2: (emp_t.emp_p.hours.ben.over) 

1: (end.pay_r.hours.base) (end.ben) (end.emp_t.emp_p.sales.com) 

Decomposition #94 
3: (pay_r Thours.over.com.ben.total_pay) 
2: (emp_t.emp_p.hours.ben.over) 
1: (end.pay_r.hours.base) {end.ben) (end.emp_t.emp_p.sales.com) 
Decomposition #95 
3: (base.over.com.totalpav) 
2: (emp_t.emp_p.hours.ben.over) 
1: (end.pay_r.hours.base) (end.ben) {end,emp_t,emp_p,sales,com) 
Decomposition #96 
2: f emp_t.emp_p.hours.ben.over) 

(end,emp_t,emp_p.hours,sales.base.totalpav) 
1: fend.pay_r.hours.base) (end.ben) (end.emp_t.emp_p.sales.com) 
Decomposition #97 
3: (emp_t,emp_p.hours,total_pay.over) 
2: (end,emp_t,emp_p.hours,sales.base.totalpav) 

1: (end.pay_r.hours.base) (end.ben) (end.emp_t.emp_p.sales.com) 

Decomposition #98 
2: (emp_t.emp_p.hours.ben.over) 

(end,emp_t,emp_p.hours.base,com.total_pav) 
1: (end.pay_r.hours.base) (end.ben) (end.emp_t.emp_p.sales.com) 
Decomposition #99 
3: (emp_t,emp_p.hours,total_pay.over) 
2: (end,emp_t,emp_p.hours.base,com.totalpav) 
1: (end.pay_r.hours.base) (end.ben) {end,emp_t,emp_p,sales.com) 

Decomposition #100 
2: f emp_t.emp_p.hours.ben.over) 

(emp_t,emp_p,pay_r,hour s,sales,ben,total_pav) 
1: (end.pay_r.hours.base) (end.ben) (end.emp_t.emp_p.sales.com) 

Decomposition #101 
3: {emp_t,emp_p.hours,total_pay.over) 
2: {emp_t,emp_p,pay_r.hours,sales.ben.totalpav) 
1: (end.pay_r.hours.base) (end.ben) (end,emp_t.emp_p.sales.com) 
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Decomposi t ion #102 
2: (emp_t T emp_p.hours.ben.over} 

(emp_t ,emp_p ,pay_r .hours , com.ben . to ta lpav) 
1: (end .pay_r .hours .base) (end.ben) {end,emp_t,emp_p,sales,com) 

Decomposi t ion #103 
3: (emp_t ,emp_p.hours , to ta l_pay.over) 
2: {emp_t ,emp_p ,pay_r .hours ,com.ben . to ta lpav) 
1: {end.pay_r .hours .base) (end.ben) (end.emp_t.emp_p.sales.com) 

Decomposi t ion #104 
2: (emp_t.emp_p.hours.ben.over) 

{emp_t ,emp_p,hours , sa les ,base ,ben . to ta l_pav) 
1: (end .pay_r .hours .base) (end.ben) (end,emp_t,emp_p,sales,com) 

Decomposi t ion #105 
3: {emp_t ,emp_p,hours , to ta l_pay.over) 
2: {emp_t ,emp_p.hours , sa les ,base .ben . to ta l_pav) 
1: (end .pay_r .hours .base) (end.ben) (end.emp_t.emp_p.sales.com) 

Decomposi t ion #106 
2: (emp_t.emp_p.hours.ben.over) 

(emp_t ,emp_p.hours .base ,com.ben . to ta lpav) 
1: (end .pay_r .hours .base) (end.ben) (end.emp_t.emp_p.sales.com) 

Decomposi t ion #107 
3: {emp_t ,emp_p.hours , to ta l_pay,over) 
2: ( emp_t ,emp_p.hours .base ,com.ben . to ta lpav) 

1: (end .pay_r .hours .base) (end.ben) {end,emp_t,emp_p,sales.com) 

Decomposi t ion #108 
2: (pay_r .hours .ben .base) {emp_t.emp_p.hours.ben.over) 

{end,emp_t,emp_p,pay_r,hours,com,total_pay} 
1: (end.ben) {end,emp_t,emp_p,sales.com) 
Decomposi t ion #109 
3: ( pay_ r . hou r s , t o t a l_pay ,ba se ) 
2: (emp_t.emp_p.hours.ben.over) 

{end,emp_t ,emp_p,pay_r ,hours ,com,total_pay) 
1: (end.ben) {end,emp_t,emp_p,sales,com) 

Decomposi t ion #110 
3: (emp_t ,emp_p,hours , to ta l_pay,over) 
2: f pay_r .hours .ben .base) 

{end ,emp_t ,emp_p ,pay_r ,hours ,com, to ta lpav) 
1: ( end.ben) (end, emp_t, emp_p , s a l e s .cjom) 

Decomposi t ion #111 
3: 1pay_r .hours . to t a l_pay .base ) 1emp_t .emp_p.hours . to ta l_pay.over) 
2: {end ,emp_t ,emp_p,pay_r ,hours ,com, to ta lpav) 
1: (end.ben) {end,emp_t,emp_p,sales,com) 

Decomposi t ion #112 
3: (end ,emp_t ,emp_p.hours , sa les .base . to ta l_pav) 
2: (pay_r .hours .ben .base) {emp_t,emp_p.hours,ben,over) 
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1: (end.ben) {end,emp_t,emp_p,sales,com) 

Decomposition #113 
3: {end,emp_t,emp_p,hours,base,com.totalpay) 
2: (pay_r.hours.ben.base) (emp_t.emp_p.hours.ben.over) 
1: {end.ben) t end.emp_t.emp_p.sales.com) 

Decomposition #114 
3: {end,emp_t,emp_p,sales,base,over.total_pay) 
2: (pay_r.hours.ben.base) {emp_t.emp_p.hours.ben.over) 
1: {end.ben) {end.emp_t.emp_p.sales.com) 

Decomposition #115 
3: {emp_t,emp_p.hours,sales.base.ben.total_pav) 
2: {pay_r,hours,ben,base) (emp_t.emp_p.hours.ben.over) 
1: {end.ben) {end,emp_t,emp_p,sales,com) 

Decomposition #116 
3: {emp_t,emp_p,hours,base,com.ben.totalpay) 
2: (pay_r.hours.ben.base) (emp_t.emp_p.hours.ben.over) 
1: {end.ben) {end,emp_t,emp_p,sales,com) 

Decomposition #117 
3: {emp_t,emp_p,sales,base,over.ben.total_pay) 
2: (pavr.hours.ben.base) (emp_t.emp_p.hour s.ben.over) 
1: {end.ben) {end,emp_t,emp_p,sales,com) 

Decomposition #118 
3: {end.pay_r.hours.over.com.total_pay) 
2: {pay_r.hours.ben.base) (emp_t.emp_p.hours.ben.over) 
1: (end.ben) {end,emp_t,emp_p,sales,com) 

Decomposition #119 
3: {pay_r.hours.over.com.ben.total_pay) 
2: {pay_r.hours.ben.base) {emp_t.emp_p.hours.ben.over} 
1: {end.ben) [end,emp_t,emp_p,sales,com) 

Decomposition #120 
3: {base.over.com.total_pay) 
2: (pay_r.hours.ben.base) {emp_t,emp_p,hours,ben,over) 
1: (end.ben) (end.emp_t.emp_p.sales.com) 

Decomposition #121 
2: {pay_r.hours.ben.base) {emp_t.emp_p.hours.ben.over) 

{emp_t,emp_p,pay_r.hours,sales.ben.total_pay) 
1: {end.ben) {end,emp_t,emp_p,sales,com) 

Decomposition #122 
3: {pay_r.hours,total_pay,base) 
2: (emp_t.emp_p.hours.ben.over) 

{emp_t,emp_p,pay_r.hours,sales.ben.total_pay) 
1: {end.ben) {end,emp_t,emp_p,sales,com) 

Decomposition #123 
3: {emp_t,emp_p,hours,total_pay,over) 
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2: (pay_r .hours .ben .base) 
{ e m p _ t , e m p _ p , p a y _ r . h o u r s , s a l e s . b e n . t o t a l p a y ) 

1: (end,ben) (end.emp_t.emp_p.sales.com) 

Decomposi t ion #124 
3: ( pay_ r .hou r s . t o t a l_pay .ba se ) (emp_t t emp_p .hours . to ta l_pay .over ) 
2: { e m p _ t , e m p _ p , p a y _ r , h o u r s , s a l e s , b e n , t o t a l p a y ) 
1: (end.ben) {end,emp_t,emp_p,sales,com) 

Decomposi t ion #125 
2: (pay_r .hours .ben .base) {emp_t,emp_p,hours,ben,over) 

{emp_t ,emp_p,pay_r ,hours ,com,ben. to ta l pay) 
1: (end.ben) (end.emp_t.emp_p.sales.com) 

Decomposi t ion #126 
3: {pay_r .hou r s , t o t a l_pay ,base ) 
2: {emp_t.emp_p.hours.ben.over) 

{emp_t ,emp_p,pay_r ,hours ,com,ben , to ta lpay) 
1: {end.ben) {end,emp_t,emp_p,sales.com) 

Decomposi t ion #127 
3: {emp_t ,emp_p.hours , to ta l_pay.over) 
2: (pay_r .hours .ben .base) 

{emp_t ,emp_p,pay_r .hours ,com.ben . to ta lpay) 
1: (end.ben) {end,emp_t,emp_p,sales,com) 

Decomposi t ion #128 
3: {pay_r .hou r s , t o t a l_pay ,base ) (emp_t ,emp_p.hours . to ta l_pay.over) 
2: {emp_t ,emp_p,pay_r ,hours ,com,ben . to ta lpay) 
1: (end.ben) {end,emp_t,emp_p,sales,com) 

Decomposi t ion #129 
2: {emp_t,emp_p,sales,ben,com) f emp_t.emp_p.hours.ben.over) 

{end ,emp_t ,emp_p.hours , sa les .base . to ta l_pay) 
1: {end.pay_r .hours .base) {end.ben) 

Decomposi t ion #130 
3: {emp_t ,emp_p,sales , tota l_pay.com) 
2: {emp_t,emp_p.hours,ben,over) 

{end , emp_ t , emp_p ,hou r s . s a l e s , ba se . t o t a lpay ) 
1: {end,pay_r .hours ,base) (end.ben) 

Decomposi t ion #131 
3: {emp_t ,emp_p.hours , to ta l_pay.over) 
2: (emp_t.emp_p.sales.ben.com) 

{end , emp_ t , emp_p .hou r s . s a l e s . ba se . t o t a lpay ) 
1: (end .pay_r .hours .base) (end.ben) 

Decomposi t ion #132 
3: {emp_t ,emp_p,sales , tota l_pay.com) 

{emp_t ,emp_p.hours , total_pay.over} 
2: (end,emp_t f e m p _ p . h o u r s . s a l e s . b a s e . t o t a l p a y ) 
1: fend .pay_r .hours .base) (end.ben) 

Decomposi t ion #133 
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3: {end,emp_t,erap_p,pay_r,hour s , c o m , t o t a l p a v } 
2: {emp_t,emp_p,sales,ben,com) (emp_t.emp_p.hours.ben.over) 
1: (end .pay_r .hours .base) (end.ben) 

Decomposi t ion #134 
3: {end,emp_t ,emp_p.hours ,base,com.total_pay) 
2: {emp_t.emp_p.sales.ben.com) (emp_t.emp_p.hours.ben.over) 
1: {end.pay_r .hours .base) {end.ben) 

Decomposi t ion #135 
3: {end ,emp_t , emp_p , sa le s ,base ,ove r . to t a l pay) 
2: {emp_t,emp_p,sales,ben,com) (emp_t.emp_p.hours.ben.over) 
1: (end .pay_r .hours .base) (end.ben) 

Decomposi t ion #136 
3: (emp_t ,emp_p,pay_r .hours ,com.ben. total_pay) 
2: (emp_t.emp_p.sales.ben.com) (emp_t.emp_p.hours.ben.over) 
1: (end .pay_r .hours .base) (end.ben) 

Decomposi t ion #137 
3: {emp_t ,emp_p.hours .base,com.ben. total_pav) 
2: {emp_t.emp_p.sales.ben.com) (emp_t.emp_p.hours.ben.over) 
1: (end .pay_r .hours .base) {end.ben) 

Decomposi t ion #138 
3: {emp_t ,emp_p,sa les ,base ,over .ben . to ta l_pay) 
2: {emp_t,emp_p,sales,ben,com) (emp_t.emp_p.hours.ben.over) 
1: (end .pay_r .hours .base) (end.ben) 

Decomposi t ion #139 
3: ( end .pay_r .hou r s .ove r . com. to t a l_pay ) 
2: (emp_t,emp_p,sales,ben,com) (emp_t.emp_p.hours.ben.over) 
1: (end .pay_r .hours .base) (end.ben) 

Decomposi t ion #140 
3: (pay_r .hou r s .ove r . com.ben . to t a l_pay ) 
2: (emp_t,emp_p,sales,ben,com) f emp_t.emp_p.hours.ben.over) 
1: {end.pay_r .hours .base) (end.ben) 

Decomposi t ion #141 
3: (base .ove r . com. to ta l_pay) 
2: (emp_t.emp_p.sales.ben.com) (emp_t.emp_p.hours.ben.over) 
1: (end .pay_r .hours .base) (end.ben) 

Decomposi t ion #142 
2: (emp_t.emp_p.sales.ben.com) (emp_t.emp_p.hours.ben.over) 

{emp_t ,emp_p,pay_r .hours , sa les .ben . to ta l_pay) 
1: (end .pay_r .hours .base) (end.ben) 

Decomposi t ion #143 
3: (emp_t ,emp_p,sales , to ta l_pay.com) 
2: (emp_t.emp_p.hours.ben.over} 

{ e m p _ t , e m p _ p , p a y _ r . h o u r s , s a l e s . b e n . t o t a l p a v ) 
1: (end .pay_r .hours .base) (end.ben) 



Decomposition #144 
3: (emp_t t emp_p t hours.total_pay.over) 
2: (emp_t.emp_p.sales.ben.com) 

{emp_t,emp_p,pay_r,hours,sales.ben.totalpay) 
1: (end.pay_r.hours.base) (end.ben) 

Decomposition #145 
3: (emp_t,emp_p,sales,total_pay.com) 

{emp_t,emp_p,hours,total_pay.over) 
2: {emp_t,emp_p,pay_r,hours,sales,ben.total_pay) 
1: (end.pay_r.hours.base) (end.ben) 

Decomposition #146 
2: (emp_t.emp_p.sales.ben.com) f emp_t.emp_p.hours.ben.over) 

{emp_t,emp_p.hours,sales.base.ben.totalpay) 
1: (end.pay_r.hours.base) (end.ben) 

Decomposition #147 
3: {emp_t,emp_p,sales,total_pay.com) 
2: {emp_t.emp_p.hours.ben.over) 

{emp_t,emp_p.hours,sales.base.ben.totalpay) 
1: (end.pay_r.hours.base) [end.ben) 

Decomposition #148 
3: {emp_t,emp_p.hours,total_pay.over) 
2: (emp_t.emp_p.sales.ben.com) 

(emp_t,emp_p.hours,sales.base.ben.totalpay) 
1: (end.pavr.hours.base) (end.ben) 

Decomposition #149 
3: (emp_t,emp_p.sales,total_pay,com) 

{emp_t,emp_p,hours,total_pay.over) 
2: {emp_t,emp_p.hours,sales.base.ben.totalpay) 
1: (end.pay_r.hours.base) (end.ben) 

Decomposition #150 
2: {pay_r.hours.ben.base) (emp_t.emp_p.sales.ben.com) 

{emp_t,emp_p.hours.ben.over) 
{emp_t,emp_p,pay_r.hours,sales.ben.totalpay) 

1: (end.ben) 

Decomposition #151 
3: {pay_r.hours,total_pay,base) 
2: {emp_t,emp_p,sales,ben,com) {emp_t,emp_p.hours,ben,over) 

{emp_t,emp_p,pay_r.hours,sales.ben.totalpay) 
1: (end.ben) 

Decomposition #152 
3: {emp_t,emp_p,sales,total_pay.com) 
2: (pay_r.hours.ben.base) (emp_t.emp_p.hours.ben.over) 

(emp_t,emp_p,pay_r,hours,sales.ben.totalpay) 
1: (end.ben) 

Decomposition #153 
3: {pay_r.hours,total_pay,base) {emp_t,emp_p,sales,total_pay.com) 
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2: {emp_t,emp_p.hours,ben,over} 
{emp_t,emp_p,pay_r.hours,sales.ben.totalpav) 

1: {end,ben) 

Decomposition #154 
3: {emp_t,emp_p.hours,totalpav.over) 
2: (pay_r.hours.ben.base) {emp_t,emp_p,sales.ben.com) 

{emp_t,emp_p,pay_r.hours,sales.ben.totalpav) 
1: {end.ben) 

Decomposition #155 
3: (pay_r.hours.total_pay.base) (emp_t.empp.hours.total_pav.over) 
2: (emp_t.emp_p.sales.ben.com) 

{emp_t,emp_p,pay_r.hours,sales.ben.total_pav) 
1: {end,ben) 

Decomposition #156 
3: {emp_t,emp_p,sales,total_pay.com) 

{emp_t,emp_p,hours,total_pay.over) 
2: {pay_r.hours.ben.base) 

{emp_t,emp_p,pay_r.hours,sales.ben.totalpav) 
1: {end,ben) 

Decomposition #157 
3: {pay_r.hours,total_pay,base) {emp_t,emp_p,sales,total_pay.com) 

{emp_t,emp_p.hours,totalpav.over) 
2: {emp_t,emp_p,pay_r.hours,sales.ben.totalpav) 
1: (end.ben) 

Decomposition #158 
3: {end,emp_t,emp_p,pay_r.hours,com.total_pav) 
2: (pay_r.hours.ben.base) (emp_t.emp_p.sales.ben.com) 

{emp_t,emp_p,hours,ben,over) 
1: {end.ben) 

Decomposition #159 
3: {end,emp_t,emp_p.hours,sales.base.total_pay) 
2: {pay_r.hours.ben.base) {emp_t,emp_p,sales,ben,com) 

{emp_t,emp_p,hours,ben,over} 
1: {end,ben} 

Decomposition #160 
3: {end,emp_t,emp_p.hours.base,com.total_pav) 
2: {pay_r.hours.ben.base) {emp_t,emp_p,sales,ben,com) 

{emp_t,emp_p,hours,ben,over) 
1: {end,ben) 

Decomposition #161 
3: {end,emp_t,emp_p,sales,base,over.total_pay) 
2: {pay_r.hours.ben.base) {emp_t,emp_p,sales,ben,com) 

{emp_t,emp_p,hours,ben,over) 
1: {end.ben) 

Decomposition #162 
3: {emp_t,emp_p,pay_r,hours,com,ben.total_pay) 
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2: (pay_r.hours,ben,base) (emp_t.emp_p.sales.ben.com) 
{emp_t,emp_p.hours.ben.over) 

1: (end.ben) 

Decomposition #163 
3: {emp_t,emp_p.hours,sales.base.ben.total_pav) 
2: (pay_r.hours.ben.base) (emp_t,emp_p,sales.ben.com) 

(emp_t,emp_p,hours,ben,over) 
1: (end.ben) 

Decomposition #164 
3: (emp_t,emp_p.hours.base,com.ben.totalpav) 
2: (pay_r.hours.ben.base) (emp_t,emp_p,sales,ben,com) 

{emp_t,emp_p,hours,ben,over) 
1: (end.ben) 

Decomposition #165 
3: (emp_t,emp_p,sales,base,over.ben.total_pav) 
2: (pay_r.hours.ben.base) (emp_t.emp_p.sales.ben.com) 

{emp_t,emp_p.hours.ben.over) 
1: (end.ben) 

Decomposition #166 
3: (end.pay_r.hours.over.com.total_pay) 
2: {pay_r.hours.ben.base) (emp_t,emp_p,sales,ben,com) 

{emp_t,emp_p,hours,ben,over) 
1: (end.ben) 

Decomposition #167 
3: (pay_r.hours.over.com.ben.totalpav) 
2: < pay_r.hours.ben.base) {emp_t,emp_p,sales,ben,com) 

(emp_t,emp_p.hours.ben.over) 
1: (end.ben) 

Decomposition #168 
3: (base.over.com.totalpav) 
2: (pay_r.hours.ben.base) (emp_t,emp_p,sales,ben,com) 

{emp_t,emp_p,hours,ben,over} 
1: (end.ben) 
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Appendix J : The Modified P a y r o l l System 

The modified p a y r o l l system as described i n Chapter 3 i s l i s t e d below. 
Note the i n c l u s i o n of an "additional_payments" state v a r i a b l e . 

The Model 

/**************************************************** 

A P a y r o l l System 

Basic system i s from Wand's October 14, 1987 
example to the Wand and Weber "Control and 
Audit" paper. 

This system r e f l e c t s the changes to the system 
described on page 4. 

************************************* y 

clauses 

/* Event D e f i n i t i o n s */ 

event("work l o t s " , [ v ( h o u r s , o t ) ] ) . 
event("work some",[v(hours,reg)]) 
event("no work",[v(hours,"0")]). 
eve n t ( " s a l e s " , [ v ( s a l e s , n z ) ] ) . 
event("no s a l e s " , [ v ( s a l e s , " 0 " ) ] ) . 

/* State Variable D e f i n i t i o n s */ 

state_variable(emp_t). 
state_variable(emp_p). 
st a t e _ v a r i a b l e ( p a y _ r ) . 
state_variable(hours). 

/* employee type */ 
/* employee p o s i t i o n */ 
/* pay rate */ 
/* hours worked */ 
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s t a t e _ v a r i a b l e ( s a l e s ) 

s t a t e _ v a r i a b l e ( b a s e ) . 

s t a t e _ v a r i a b l e ( o v e r ) . 

s t a t e _ v a r i a b l e ( c o m ) . 

/ * s a l e s * / 

/ * base pay * / 

/ * overt ime pay * / 

/ * s a l e s commissions * / 

/ * a d d i t i o n a l payments * / 

/ * t o t a l - p a y * / 

s t a t e _ v a r i a b l e ( a d d _ p a y ) . 

s t a t e _ v a r i a b l e ( t o t a l _ p a y ) 

/ * S ta te V a r i a b l e Value D e f i n i t i o n s * / 

v a l u e s ( e m p _ t , [ o , s ] ) . 

va lues (emp_p , [ r ,m] ) . 

v a l u e s ( h o u r s , [ " 0 " , r e g , o t ] ) . 

v a l u e s ( p a y _ r , [ " 0 " , n z ] ) . 

/ * o f f i c e and sa l e s * / 

/ * r e g u l a r and management * / 

/ * z e r o , normal or over t ime * / 

/ * zero or p o s i t i v e * / 

v a l u e s ( s a l e s , [ " 0 " , n z ] ) . 

v a l u e s ( b a s e , [ " 0 " , n z ] ) . 

v a l u e s ( o v e r , [ " 0 " , n z ] ) . 

v a l u e s ( c o m , [ " 0 " , n z ] ) . 

v a l u e s ( a d d _ p a y , [ " 0 " , n z ] ) . 

v a l u e s ( t o t a l _ p a y , [ " 0 " , n z ] ) . 

/ * S t a b i l i t y Cond i t i ons * / 

/ * an employee may be i n a r e g u l a r or a management p o s i t i o n * / 

stat ic("management or r e g u l a r " , [ v ( e m p _ p , r ) ] ) . 

static("management or r egu la r " , [v (emp_p ,m) ] ) . 

/ * an employee may have e i t h e r an o f f i c e or a s a l e s job * / 

s t a t i c ( " o f f i c e or s a l e s " , [ v ( e m p _ t , o ) ] ) . 

s t a t i c ( " o f f i c e or s a l e s " , [ v ( e m p _ t , s ) ] ) . 

/ * hours may be zero or non zero * / 

s t a t i c ( " h o u r s " , [ v ( h o u r s , o t ) ] ) . 

s t a t i c ( " h o u r s " , [ v ( h o u r s , r e g ) ] ) . 

s t a t i c ( " h o u r s " , [ v ( h o u r s , " 0 " ) ] ) . 

/ * pay r a t e may be zero or not zero * / 
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s t a t i c ( " p a y r a t e " , [ v ( p a y _ r , n z ) ] ) . 

s t a t i c ( " p a y r a t e " , [ v ( p a y _ r , " 0 " ) ] ) . 

/ * s a l e s may be zero or not zero * / 

s t a t i c ( " s a l e s " , [ v ( s a l e s , n z ) ] ) . 

s t a t i c ( " s a l e s " , [ v ( s a l e s , " 0 " ) ] ) . 

/ * non-management s t a f f i s e n t i t l e d to over t ime pay i f hours i s 

not zero * / 

static("non-management s t a f f gets over t ime" , 

[ v ( e m p _ p , r ) , v ( h o u r s , o t ) , v ( o v e r , n z ) ] ) . 

static("non-management s t a f f gets over t ime" , 

[ v ( h o u r s , r e g ) , v ( o v e r , " 0 " ) ] ) . 

static("non-management s t a f f gets over t ime" , 

[ v ( h o u r s , " 0 " ) , v ( o v e r , " 0 " ) ] ) . 

static("non-management s t a f f gets over t ime" , 

[v (emp_p ,m) ,v (ove r , "0" ) ] ) . 

/ * non-management s t a f f i s e n t i t l e d to commissions i f s a l e s i s 

not zero * / 

static("non-management s t a f f gets commissions", 

[ v ( e m p _ p , r ) , v ( s a l e s , n z ) , v ( c o m , n z ) ] ) . 

static("non-management s t a f f gets commissions", 

[ v ( s a l e s , " 0 " ) , v ( c o m , " 0 " ) ] ) . 

static("non-management s t a f f gets commissions", 

[v(emp_p,m),v(com,"0")] ) . 

/ * o f f i c e employees cannot earn more commissions than overt ime 

and v i c e v e r s a f o r s a l e s employees * / 

s t a t i c ( " o f f i c e commissions and s a l e s over t ime are l i m i t e d " , 

[ v ( c o m , n z ) , v ( o v e r , n z ) , v ( a d d _ p a y , n z ) ] ) . 

s t a t i c ( " o f f i c e commissions and sa l e s overt ime are l i m i t e d " , 

[ v ( c o m , " 0 " ) , v ( o v e r , " 0 " ) , v ( a d d _ p a y , " 0 " ) ] ) . 

s t a t i c ( " o f f i c e commissions and sa l e s over t ime are l i m i t e d " , 

[ v ( e m p _ t , o ) , v ( o v e r , n z ) , v ( a d d _ p a y , n z ) ] ) . 

s t a t i c ( " o f f i c e commissions and sa l e s overt ime are l i m i t e d " , 



[ v ( e m p _ t , o ) , v ( o v e r , " 0 " ) , v ( a d d _ p a y , " 0 " ) ] ) . 

s t a t i c ( " o f f i c e commissions and sa l e s over t ime are l i m i t e d " , 

[ v ( emp_ t , s ) , v ( com,nz ) , v ( add_pay ,nz ) ] ) . 

s t a t i c ( " o f f i c e commissions and sa l e s over t ime are l i m i t e d " , 

[ v ( emp_ t , s ) , v ( com,"0" ) , v ( add_pay , "0" ) ] ) . 

/ * a l l employees are e n t i t l e d to base pay i f hours and pay r a t e 

are not zero * / 

s t a t i c ( " e v e r y o n e gets base pay", 

[ v ( h o u r s , o t ) , v ( p a y _ r , n z ) , v ( b a s e , n z ) ] ) . 

s t a t i c ( " e v e r y o n e gets base pay", 

[ v ( h o u r s , r e g ) , v ( p a y _ r , n z ) , v ( b a s e , n z ) ] ) . 

s t a t i c ( " e v e r y o n e gets base pay", 

[ v ( h o u r s , " 0 " ) , v ( b a s e , " 0 " ) ] ) . 

s t a t i c ( " e v e r y o n e gets base pay", 

[ v ( p a y _ r , " 0 " ) , v ( b a s e , " 0 " ) ] ) . 

/ * t o t a l pay must be c a l c u l a t e d a t EOP * / 

s t a t i c ( " t o t a l pay", 

[ v ( b a s e , n z ) , v ( a d d _ p a y , n z ) , v ( t o t a l _ p a y , n z ) ] ) . 

s t a t i c ( " t o t a l pay", 

[ v ( b a s e , n z ) , v ( a d d _ p a y , " 0 " ) , v ( t o t a l _ p a y , n z ) ] ) . 

s t a t i c ( " t o t a l pay" , 

[ v ( b a s e , " 0 " ) , v ( a d d _ p a y , n z ) , v ( t o t a l _ p a y , n z ) ] ) . 

s t a t i c ( " t o t a l pay" , 

[ v ( b a s e , " 0 " ) , v ( a d d _ p a y , " 0 " ) , v ( t o t a l _ p a y , " 0 " ) ] ) . 

/ * C o r r e c t i v e A c t i o n s * / 

/ * c a l c u l a t e base pay a t EOP * / 

d y n a m i c ( " c a l c u l a t e base pay" , 

[ v ( h o u r s , o t ) , v ( p a y _ r , n z ) ] , 

[ v ( b a s e , n z ) ] ) . 

d y n a m i c ( " c a l c u l a t e base pay", 

[ v ( h o u r s , r e g ) , v ( p a y _ r , n z ) ] , 

[ v ( b a s e , n z ) ] ) . 
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d y n a m i c ( " c a l c u l a t e base pay", 

[ v ( h o u r s , " 0 " ) ] , 

[ v ( b a s e , " 0 " ) ] ) . 

d y n a m i c ( " c a l c u l a t e base pay", 

[ v ( p a y _ r , " 0 " ) ] , 

[ v ( b a s e , " 0 " ) ] ) . 

/ * c a l c u l a t e over t ime f o r non-management s t a f f * / 

d y n a m i c ( " c a l c u l a t e over t ime" , 

[ v ( e m p _ p , r ) , v ( h o u r s , o t ) ] , 

f v ( o v e r , n z ) ] ) . 

d y n a m i c ( " c a l c u l a t e ove r t ime" , 

[ v ( h o u r s . r e g ) ] , 

[ v ( o v e r , " 0 " ) ] ) . 

d y n a m i c ( " c a l c u l a t e over t ime" , 

[ v ( h o u r s , " 0 " ) ] , 

[ v ( o v e r , " 0 " ) ] ) . 

d y n a m i c ( " c a l c u l a t e ove r t ime" , 

[v(emp_p,m)], 

[ v ( o v e r , " 0 " ) ] ) . 

/ * c a l c u l a t e commissions f o r non-management s t a f f * / 

d y n a m i c ( " c a l c u l a t e commissions", 

[ v ( e m p _ p , r ) , v ( s a l e s , n z ) ] , 

[ v ( com,nz ) ] ) . 

d y n a m i c ( " c a l c u l a t e commissions", 

[v(emp_p,m)], 

[ v ( c o m , " 0 " ) ] ) . 

d y n a m i c ( " c a l c u l a t e commissions", 

[ v ( s a l e s , " 0 " ) ] , 

[ v ( c o m , " 0 " ) ] ) . 

/ * c a l c u l a t e a d d i t i o n a l payments * / 

d y n a m i c ( " c a l c u l a t e a d d i t i o n a l payments", 

[ v ( c o m , n z ) , v ( o v e r , n z ) ] , 

[v (add_pay ,nz ) ] ) . 
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d y n a m i c ( " c a l c u l a t e a d d i t i o n a l payments 

[ v ( c o m , " 0 " ) , v ( o v e r , " 0 " ) ] , 

[v (add_pay , "0" ) ] ) . 

d y n a m i c ( " c a l c u l a t e a d d i t i o n a l payments 

[ v ( e m p _ t , o ) , v ( o v e r , n z ) ] , 

[ v (add_pay ,nz ) ] ) . 

d y n a m i c ( " c a l c u l a t e a d d i t i o n a l payments 

[ v ( e m p _ t , o ) , v ( o v e r , " 0 " ) ] , 

[ v (add_pay , "0" ) ] ) . 

d y n a m i c ( " c a l c u l a t e a d d i t i o n a l payments 

[ v ( e m p _ t , s ) , v ( c o m , n z ) ] , 

[v (add_pay ,nz ) ] ) . 

d y n a m i c ( " c a l c u l a t e a d d i t i o n a l payments 

[v ( emp_ t , s ) , v ( com,"0" ) ] , 

[v (add_pay , "0" ) ] ) . 

/ * c a l c u l a t e t o t a l pay * / 

d y n a m i c ( " c a l c u l a t e t o t a l pay", 

[ v ( b a s e , n z ) ] , 

[ v ( t o t a l _ p a y , n z ) ] ) . 

d y n a m i c ( " c a l c u l a t e t o t a l pay", 

[v (add_pay ,nz ) ] , 

[ v ( t o t a l _ p a y , n z ) ] ) . 

d y n a m i c ( " c a l c u l a t e t o t a l pay", 

[ v ( b a s e , " 0 " ) , v ( a d d _ p a y , " 0 " ) ] , 

[ v ( t o t a l _ p a y , " 0 " ) ] ) . 



Appendix K: Decompositions of the Modified P a y r o l l System 

This appendix l i s t s a l l of the possible decompositions of the modified 
p a y r o l l system. The state v a r i a b l e names have been abbreviated to conserve 
space. 

Abbreviations 

hours - hours worked 
emp_p = employee p o s i t i o n 
sales = employee sales 
com = commissions 
add_pay = a d d i t i o n a l pay 

Decompositions 

Decomposition #1 
2: (com.emp_t.over.add_pay) (base.com.empt.over.totalpav) 
1: (hours.pay_r.base) (emp_p.sales.com) (emp_p.hours.over) 

Decomposition #2 
2: {empp.emp_t.over.sales.addpay) {base.com.emp_t.over.totalpav) 
1: {hours.pay_r.base) (emp_p.sales.com) (emp_p.hours.over) 

Decomposition #3 
2: (com.emp_p.emp_t.hours.add_pay) (base.com.emp_t.over.total_pay) 
1: (hours.pay_r.base) {emp_p.sales.com) (emp_p.hours.over) 

Decomposition #4 
2: f com.emp_t.over.add_pay) (base.emp_p.emp_t.over.sales.total_pay) 
1: (hours.oay_r.base) (emp_p.sales.com) (emp_p.hours.over) 

Decomposition #5 
2: (empp.empt.over.sales.add pay) 

(base,emp_p,emp_t,over,sales.total_pay) 
1: {hours,pay_r,ba__) {emp_p. sales . com) (emp_p. hours . over) 

Decomposition #6 
3: (base,com,emp_t,hours,total_pay.add_pay) 
2: (base.com.emp_t.over.total pay) 

1: (hours.pay_r.base) (emp_p.sales.com) (emp_p.hours.over) 

Decomposition #7 
2: (com.emp_t.over.addpay) (com.emp_t.hours.over,pay_r.total_pay) 
1: (hours.pay_r.base) {emp_p.sales.com) (emp_p.hours.over) 
Decomposition #8 

pay_r = pay rate 
emp_t = employee type 
base = base pay 
over = over time pay 

t o t a l pay = t o t a l pay 
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3: {com,emp_t,hours,pay_r,totalpay.add_pay) 
2: {base.com.emp_t.over.totalpay) 
1: {hours,pay_r,base) (emp_p.sales.com) (emp_p.hours.over) 

Decomposition #9 
2: {com.emp_p.emp_t.hours.addpay) (base.emp_p.emp_t.over.sales.total_pay) 
1: (hours.pay_r.base) (emp_p.sales.com) {emp_p.hours.over) 

Decomposition #10 
2: (com.emp_t.over.add_pay) (base.com.empp.emp_t.hours.total_pay) 
1: (hours.pay_r.base) (emp_p.sales.com) (emp_p.hours.over) 

Decomposition #11 
2: (empp.emp_t.over.sales.addpay) (com.emp_t.hours.over.pay_r.total_pay) 
1: (hours,pay_r,base) (emp_p.sales.com) {emp_p,hours,over) 

Decomposition #12 
2: {emp_p.emp_t.over.sales.add_pay) (base.com.emp_p.emp_t.hours.total_pay) 
1: (hours.pay_r.base) {emp_p.sales.com) (emp_p.hours.over) 

Decomposition #13 
3: (base,com,emp_t.hours,total_pay.add_pav) 
2: {base,emp_p,emp_t,over,sales.total_pay) 
1: (hours.pay_r.base) (emp_p.sales.com) (emp_p.hours.over) 

Decomposition #14 
2: {com.empp.empt.hours.addpay) (com.empt.hours.over.pay_r.total_pay) 
1: (hours.pay_r.base) (emp_p.sales.com) (emp_p.hours.over) 

Decomposition #15 
2: (com.emp_t.over.add_pay) (com.emp_p.emp_t.hours.pav_r.total_pav) 
1: (hours.pay_r.base) {emp_p.sales.com) (emp_p.hours.over) 

Decomposition #16 
2: {com.emp_p.empt.hours.addpay) (base.com.emp_p.emp_t.hours.total_pay) 
1: (hours.pay_r.base) {emp_p.sales.com) (emp_p.hours.over) 

Decomposition #17 
3: {com,emp_t,hours,pay_r,total_pay.add_pay) 
2: {base,emp_p,emp_t,over,sales.total_pay) 
1: (hours.pay_r.base) (emp_p.sales.com) (emp_p.hours.over) 

Decomposition #18 
2: (empp.emp_t.over.sales.addpay) 

{com,emp_p,emp_t,hours,pay_r,total_pay) 
1: (hours.pay_r.base) (emp_p.sales.com) (emp_p.hours.over) 

Decomposition #19 
3: {base,com,emp_t.hours,totalpay.addpay) 
2: {com,emp_t,hours,over,pay_r.total_pay) 
1: (hours.pay_r.base) (emp_p.sales.com) (emp_p.hours.over) 

Decomposition #20 
2: (com.emp_t.over.add_pay) (base.emp_p.emp_t.hours.sales.total_pav) 
1: (hours.pay_r.base) (emp_p.sales.com) (emp_p.hours.over) 
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Decomposition #21 
{base,com,emp_t.hours,total_pay.add_pav) 
(base,com,emp_p,emp_t.hours.totalpav) 
(hours.pay_r.base) (emp_p.sales.com) (emp_p.hours.over) 

Decomposition #22 
2: (emp_p.emp_t.over.sales.add_pay) 

{base,emp_p,emp_t.hours,sales.total_pav) 
1: (hours.pay_r.base) (emp_p.sales.com) < emp_p.hours.over) 

Decomposition #23 
{com,emp_t,hours,pay_r,total_pay.add_pav) 
{com,emp_t,hours,over,pay_r,total pay) 
(hours.pay_r.base) (emp_p.sales.com) (emp_p.hours.over) 

Decomposition #24 
2: (com.emp_p.emp_t.hours.addpay) (com.emp_p.emp_t.hours.pay_r.total_pav) 
1: (hours.pay_r.base) (emp_p.sales.com) (emp_p.hours.over) 

Decomposition #25 
{com,emp_t.hours,pay_r,total_pay.add_pav) 
{base,com,emp_p,emp_t.hours.total_pay) 
{hours,pay_r,base) (emp_p.sales.com) (emp_p.hours.over) 

Decomposition #26 
2: (com.emp_p.emp_t.hours.addpay) 

{base,emp_p,emp_t.hours,sales.total_pav) 
1: (hours.payr.base) (emp_p.sales.com) (emp_p.hours.over) 

Decomposition #27 
{add_pay,base,total_pav) 
{com,emp_t,over.addpay) 
{hours,pay_r,base) (emp_p.sales.com) (emp_p.hours.over) 

Decomposition #28 
{add_pay,hours,pay_r,totalpav) 
{com,emp_t,over,add_pay) 
(hours.pay_r.base) {emp_p.sales.com) (emp_p.hours.over) 

Decomposition #29 
{base,com,emp_t.hours,total_pay.add_pay) 
{com,emp_p,emp_t,hours,pay_r,totalpav} 
{hours.pay_r.base) {emp_p.sales.com) (emp_p.hours.over) 

Decomposition #30 
{add_pay,base.total_pay) 
{emp_p,emp_t,over,sales.addpay) 
(hours.pay_r.base) {emp_p,sales,com) (emp_p.hours.over] 

Decomposition #31 
{add_pay,hours,pay_r.totalpav) 
{emp_p,emp_t,over.sales.add_pay) 
(hours.pay_r.base) {emp_p.sales.com} (emp_p.hours.over} 
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Decomposition #32 
{com,emp_t.hours,pay_r,total_pay.add_pay) 
{com,emp_p,emp_t.hours.pay_r.totalpay) 
{hours,pay_r,base) {emp_p.sales.com) (emp_p.hours.over) 

Decomposition #33 
{base,com,emp_t.hours,total_pay.addpay) 
{base,emp_p,emp_t.hours,sales.total_pay) 
(hours.pay_r.base) (emp_p.sales.com) (emp_p.hours.over) 

Decomposition #34 
{add_pay.base.total_pay) 
{com,emp_p,emp_t,hours,add_pay) 
{hours,pay_r,base) (emp_p.sales.com) (emp_p.hours.over) 

Decomposition #35 
{add_pay,hours,pay_r,totalpay) 
{com,emp_p,emp_t,hours,add_pay) 
(hours.pay_r.base) (emp_p.sales.com) (emp_p.hours.over) 

Decomposition #36 
3: {com,emp_t,hours,pay_r,total_pay.add_pav) 
2: {base,emp_p,emp_t,hours,sales.totalpay) 
1: {hours,pay_r,base) {emp_p.sales.com) (emp_p.hours.over) 

Decomposition #37 
2: (add_pay.base.total_pay) 
1: (emp_p.emp_t.hours.sales.addpay) {hours,pay_r,base) (emp_p.sales.com) 

{emp_p,hours,over} 

Decomposition #38 
2: (add_pay.hours.pay_r.totalpay) 
1: (emp_p.emp_t.hours.sales.add_pay) (hours.pay_r.base) (emp_p.sales.com) 

{emp_p,hour s,over) 

Decomposition #39 
2: (base.com.emp_t.over.totalpay} 
1: (emp_p.emp_t.hours.sales.add_pay) (hours.pay_r.base) (emp_p.sales.com) 

{emp_p,hours,over) 

Decomposition #40 
2: {base,emp_p,emp_t,over,sales.total_pay) 
1: f emp_p.emp_t.hours.sales.addpay) (hours.pay_r.base) (emp_p.sales.com) 

{emp_p,hours,over} 

Decomposition #41 
2: {com,emp_t.hours,over.pay_r.totalpay) 
1: (emp_p.emp_t.hours.sales.add_pay) (hours.pay_r.base) (emp_p.sales.com) 

1emp_p.hours.over) 

Decomposition #42 
2: {base,com,emp_p,emp_t,hours.totalpay} 
1: Iemp_p.emp_t.hours.sales.addpay) (hours.pay_r.base) {emp_p,sales,com) 

{emp_p,hours,over) 
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Decomposi t ion #43 
2: {com,emp_p,emp_t,hours,pay_r, total_pav} 
1: (emp_p.emp_t .hours . sa les .addpay) fhours .pay_r .base) (emp_p.sa les .com) 

{emp_p.hours.over) 

Decomposi t ion #44 
2: {base ,emp_p,emp_t .hours , sa les . to ta l_pay) 
1: (emp_p.emp_t.hours.sales.add_pay) (hours .pay_r .base) (emp_p.sales.com) 

{emp_p.hours.over) 

Decomposi t ion #45 
2: (com.emp_t .over .addpay) 
1: {hours ,pay_r ,base) (emp_p.sales.com) (emp_p.hours.over) 

{ e m p _ p , e m p _ t . h o u r s , p a y _ r , s a l e s . t o t a l p a v ) 

Decomposi t ion #46 
2: (emp_p.emp_t .over . sa les .addpay) 
1: {hours ,pay_r ,base) {emp_p.sales.com) (emp_p.hours.over) 

{ e m p _ p , e m p _ t . h o u r s , p a y _ r , s a l e s . t o t a l p a v ) 

Decomposi t ion #47 
2: (com.emp_p.emp_t.hours.add_pay) 
1: {hours .pay_r .base) {emp_p.sales.com) (emp_p.hours.over) 

{ e m p _ p , e m p _ t . h o u r s , p a y _ r , s a l e s . t o t a l p a v ) 

Decomposi t ion #48 
1: (emp_p.emp_t .hours . sa les .addpay) {hours ,pay_r ,base) {emp_p.sales .com) 

(emp_p.hours.over) {emp_p,emp_t .hours ,pay_r , sa les . to ta l_pav) 
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Appendix L: A Schematic Diagram of the Four-Lights System 

+Vcc 

The four l i g h t s A, B, C, and D have been implemented as l i g h t emitting 
diodes. When the switch l a b e l l e d "Input" i s closed, diodes A and B w i l l both 
go on. The arrangement of inverters and NAND gates forms a sort of f l i p - f l o p 
arrangement. This i s ensures the f i n a l states of diodes C and D are dependent 
on t h e i r i n i t i a l states as well as on the state of diodes A and B. Switches S x 

and S 2 are used to set the i n i t i a l stated of diodes C and D, r e s p e c t i v e l y . (This 
c i r c u i t was developed by using the stable state and response path information 
described i n Chapter 2 as inputs to the sequential c i r c u i t design techniques of 
Zissos (1979).) 
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Appendix M: Modified Variety and Two Independent Subsystems 

Theorem: 
The modified v a r i e t y V^ of a system S formed by two independent subsystems 

A and B, i s equal to the product of the v a r i e t i e s of the subsystems V A and 

VB-

Proof: 
Let I A = the number of input states to subsystem A. 

I B = the number of input states to subsystem B. 
I A I = the number of input states to subsystem A which lead to output 

state i . 
I B J = the number of input states to subsystem B which lead to output 

state j . 
n = the number of output states of subsystem A. 
m = the number of output states of subsystem B. 

By d e f i n i t i o n , i f A and B are independent, the occurrence of a p a r t i c u l a r input 
state to A i s not influenced by the occurrence of any input state to B. 
Therefore, 

I A * I B = the number of input states to the merged system S . 

I A I * I B j = the number of input states to S where A exh i b i t s output state i and 
B e x h i b i t s output state j . 

and the modified v a r i e t y of S i s given by 

n m I A * I B I M * I B J 

VAB - n n 
1-1 j-1 I A I * I B J I A * I B 

n m I A I A i * l B j I B IAI*IBJ 

n n -- * " • 
i-1 j-1 I A i I A * I B I B J I A * I B 
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n m I A I A I * I B j n m I B I A i * I B j 

- n n * n n 

i - l j - l I A i I A * I B i - l j - l I B J I A * I B 

n m I A I A i I B j n m I B I A i I B j 

= n n . A --- A --- * n n A --- A --

i - l j - i i A i i A i B 1-1 j - i i B j i A i B 

and since 

n I A i m I B j 

n X A = X and II X A X for a l l X, 
i - l I A J = 1 *B 

n I A

 I A I M IB X B J 

V a b - n ---- A --- * n ---- A ---
i - l IAI ! A j - l I B j ^ 

V A * V B 



Appendix N: The Combined P a y r o l l System Model 

This appendix contains a l i s t i n g of a system model which w i l l e x h i b i t 
the behaviours of both the i n i t i a l and modified p a y r o l l systems. Note the use 
of the state v a r i a b l e "sys" to d i s t i n g u i s h between the two ve r s i o n of the 
system where necessary. 

/**************************************************** 

A P a y r o l l System 

Basic system i s from Wand's October 14, 1987 
example to the Wand and Weber "Control and 
Audit" paper. 

This v e r s i o n i s a combined system of both the 
basic and modified systems. 

*************************************** f 

/* Event D e f i n i t i o n s */ 

event("work l o t s " , [ v ( h o u r s , o t ) ] ) . 
event("work some",[v(hours,reg)]). 
event("no work",[v(hours,"0")]). 
eve n t ( " s a l e s " , [ v ( s a l e s , n z ) ] ) . 
event("no s a l e s " , [ v ( s a l e s , " 0 " ) ] ) . 

/* State Variable D e f i n i t i o n s */ 

state_variable(emp_t). /* employee type */ 
state_variable(emp_p). /* employee p o s i t i o n */ 
state_ v a r i a b l e ( p a y _ r ) . /* pay rate */ 
state_variable(hours). /* hours worked */ 
s t a t e _ v a r i a b l e ( s a l e s ) . /* sales */ 
state_variable(base). /* base pay */ 
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s t a t e _ v a r i a b l e ( o v e r ) . / * overt ime pay * / 

s t a t e _ v a r i a b l e ( c o m ) . / * s a l e s commissions * / 

s t a t e _ v a r i a b l e ( b e n ) . / * b e n e f i t s * / 

s t a t e _ v a r i a b l e ( t o t a l _ p a y ) . / * t o t a l pay * / 

s t a t e _ v a r i a b l e ( a d d _ p a y ) . / * a d d i t i o n a l payments * / 

s t a t e _ v a r i a b l e ( s y s ) . / * system i d e n t i f i e r * / 

/ * S ta te V a r i a b l e Value D e f i n i t i o n s */ 

v a l u e s ( e m p _ t , [ o , s ] ) . 

va lues (emp_p , [ r ,m] ) . 

v a l u e s ( h o u r s , [ " 0 " , r e g , o t ] ) . 

v a l u e s ( p a y _ r , [ " 0 " , n z ] ) . 

/* 
/* 
/* 
/* 

o f f i c e and s a l e s * / 

r e g u l a r and management * / 

z e r o , normal or over t ime * / 

zero or p o s i t i v e * / 

v a l u e s ( s a l e s , [ " 0 " , n z ] ) . 

v a l u e s ( b a s e , [ " 0 " , n z ] ) . 

v a l u e s ( o v e r , [ " 0 " , n z ] ) . 

v a l u e s ( c o m , [ " 0 " , n z ] ) . 

v a l u e s ( b e n , [ n z ] ) . 

v a l u e s ( t o t a l _ p a y , [ " 0 " , n z ] ) . 

v a l u e s ( a d d _ p a y , [ " 0 " , n z , n c ] ) . / * ze ro , p o s i t i v e , not c a l c u l a t e d * / 

v a l u e s ( s y s , [ a , b ] ) . / * a=basic, b=modified system * / 

/ * S t a b i l i t y C o n d i t i o n s * / 

/ * an employee may be i n a r e g u l a r or a management p o s i t i o n * / 

stat ic("management or r e g u l a r " , [ v ( e m p _ p , r ) ] ) . 

stat ic("management or r egu la r " , [v (emp_p ,m) ] ) . 

/ * an employee may have e i t h e r an o f f i c e or a s a l e s job * / 

s t a t i c ( " o f f i c e or s a l e s " , [ v ( e m p _ t , o ) ] ) . 

s t a t i c ( " o f f i c e or s a l e s " , [ v ( e m p _ t , s ) ] ) . 

/ * hours may be zero or not zero * / 

s t a t i c ( " h o u r s " , [ v ( h o u r s , o t ) ] ) . 

s t a t i c ( " h o u r s " , [ v ( h o u r s , r e g ) ] ) . 

s t a t i c ( " h o u r s " , [ v ( h o u r s , " 0 " ) ] ) . 



/ * pay r a t e may be zero or not zero * / 

s t a t i c ( " p a y r a t e " , [ v ( p a y _ r , n z ) ] ) . 

s t a t i c ( " p a y r a t e " , [ v ( p a y _ r , " 0 " ) ] ) . 

/ * s a l e s may be zero or not zero * / 

s t a t i c ( " s a l e s " , [ v ( s a l e s , n z ) ] ) . 

s t a t i c ( " s a l e s " , [ v ( s a l e s , " 0 " ) ] ) . 

/ * b e n e f i t s must be c a l c u l a t e d * / 

s t a t i c ( " b e n e f i t s " , [ v ( b e n , n z ) ] ) . 

/ * non-management s t a f f might be e n t i t l e d to over t ime 

pay i f hours i s not zero * / 

static("non-management s t a f f gets over t ime" , 

[ v ( s y s , a ) , v ( e m p _ t , o ) , v ( e m p _ p , r ) , v ( h o u r s , o t ) , v ( o v e r , n z 

static("non-management s t a f f gets over t ime" , 

[ v ( s y s , a ) , v ( e m p _ t , s ) , v ( o v e r , " 0 " ) ] ) . 

static("non-management s t a f f gets over t ime" , 

[ v ( s y s , b ) , v ( e m p _ p , r ) , v ( h o u r s , o t ) , v ( o v e r , n z ) ] ) . 

static("non-management s t a f f gets over t ime" , 

[ v ( h o u r s , r e g ) , v ( o v e r , " 0 " ) ] ) . 

static("non-management s t a f f gets over t ime" , 

[ v ( h o u r s , " 0 " ) , v ( o v e r , " 0 " ) ] ) . 

static("non-management s t a f f gets over t ime" , 

[v (emp_p ,m) ,v (ove r , "0" ) ] ) . 

/ * non-management s t a f f might be e n t i t l e d to commissions 

s a l e s i s not zero * / 

static("non-management s t a f f gets commissions", 

[ v ( s y s , a ) , v ( e m p _ t , s ) , v ( e m p _ p , r ) , v ( s a l e s , n z ) , v ( c o m , n z ) 

static("non-management s t a f f gets commissions", 

[ v ( s y s , a ) , v ( e m p _ t , o ) , v ( c o m , " 0 " ) ] ) . 

static("non-management s t a f f gets commissions", 

[ v ( s y s , b ) , v ( e m p _ p , r ) , v ( s a l e s , n z ) , v ( c o m , n z ) ] ) . 

static("non-management s t a f f gets commissions", 



[ v ( s a l e s , " 0 " ) , v ( c o m , " 0 " ) ] ) . 

static("non-management s t a f f gets commissions", 

[v(emp_p,m),v(com,"0")] ) . 

/ * a l l employees are e n t i t l e d to base pay i f hours and 

pay r a t e are not zero * / 

s t a t i c ( " e v e r y o n e gets base pay", 

[ v ( h o u r s . o t ) , v ( p a y _ r , n z ) , v ( b a s e , n z ) ] ) . 

s t a t i c ( " e v e r y o n e gets base pay", 

[ v ( h o u r s , r e g ) , v ( p a y _ r , n z ) , v ( b a s e , n z ) ] ) . 

s t a t i c ( " e v e r y o n e gets base pay", 

[ v ( h o u r s , " 0 " ) , v ( b a s e , " 0 " ) ] ) . 

s t a t i c ( " e v e r y o n e gets base pay", 

[ v ( p a y _ r , " 0 " ) , v ( b a s e , " 0 " ) ] ) . 

/ * o f f i c e employees cannot earn more commissions than over t ime 

and v i c e v e r s a f o r s a l e s employees * / 

s t a t i c ( " o f f i c e commissions and s a l e s overt ime are l i m i t e d " , 

[ v ( s y s , a ) , v ( a d d _ p a y , n c ) ] ) . 

s t a t i c ( " o f f i c e commissions and sa l e s over t ime are l i m i t e d " , 

[ v ( s y s , b ) , v ( c o m , n z ) , v ( o v e r , n z ) , v ( a d d _ p a y , n z ) ] ) . 

s t a t i c ( " o f f i c e commissions and s a l e s over t ime are l i m i t e d " , 

[ v ( s y s , b ) , v ( c o m , " 0 " ) , v ( o v e r , " 0 " ) , v ( a d d _ p a y , " 0 " ) ] ) . 

s t a t i c ( " o f f i c e commissions and sa l e s over t ime are l i m i t e d " , 

[ v ( s y s , b ) , v ( e m p _ t , o ) , v ( o v e r , n z ) , v ( a d d _ p a y , n z ) ] ) . 

s t a t i c ( " o f f i c e commissions and sa l e s over t ime are l i m i t e d " , 

[ v ( s y s , b ) , v ( e m p _ t , o ) , v ( o v e r , " 0 " ) , v ( a d d _ p a y , " 0 " ) ] ) . 

s t a t i c ( " o f f i c e commissions and s a l e s overt ime are l i m i t e d " , 

[ v ( s y s , b ) , v ( e m p _ t , s ) , v ( c o m , n z ) , v ( a d d _ p a y , n z ) ] ) . 

s t a t i c ( " o f f i c e commissions and s a l e s over t ime are l i m i t e d " , 

[ v ( s y s , b ) , v ( e m p _ t , s ) , v ( c o m , " 0 " ) , v ( a d d _ p a y , " 0 " ) ] ) . 

/ * t o t a l pay must be c a l c u l a t e d a t EOP * / 

s t a t i c ( " t o t a l p a y " , [ v ( b a s e . n z ) , v ( t o t a l _ p a y , n z ) ] ) . 

s t a t i c ( " t o t a l p a y " , f v ( s y s , a ) , v ( o v e r , n z ) , v ( t o t a l _ p a y , n z ) ] ) . 

s t a t i c ( " t o t a l p a y " , [ v ( s y s , a ) , v ( c o m , n z ) , v ( t o t a l _ p a y , n z ) ] ) . 



s t a t i c ( " t o t a l pay",[v(sys,a),v(base,"0"),v(over,"0"),v(com,"0"), 
v ( t o t a l _ p a y , " 0 " ) ] ) . 

s t a t i c ( " t o t a l pay",[v(sys,b),v(add_pay,nz),v(total_pay,nz)]). 
s t a t i c ( " t o t a l pay",[v(sys,b),v(base,"0"),v(add_pay,"0"), 

v ( t o t a l _ p a y , " 0 " ) ] ) . 

/* Corrective Actions */ 

/* c a l c u l a t e base pay at EOP */ 
dynamic("calculate base pay", 

[v(hours,ot),v(pay_r,nz)], 
[v(base,nz)]). 

dynamic("calculate base pay", 
[v(hours,reg),v(pay_r,nz)], 
[v(base,nz)]). 

dynamic("calculate base pay", 
[v(hours,"0")], 
[v(base,"0")]). 

dynamic("calculate base pay", 
[v(pay_r,"0")], 
[v(base,"0")]) . 

/* c a l c u l a t e overtime at EOP */ 
dynamic("calculate overtime", 

[v(sys,a),v(emp_t,o),v(emp_p,r),v(hours,ot)], 
[v(over,nz)]). 

dynamic("calculate overtime", 
[v(sys,b),v(emp_p,r),v(hours,ot)], 
[v(over,nz)]). 

dynamic("calculate overtime", 
[v(hours.reg)], 
[v(over,"0")]) . 

dynamic("calculate overtime", 
[v(hours,"0")], 
[v(over,"0")]). 
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/* c a l c u l a t e commissions at EOP */ 
dynamic("calculate commissions", 

[v(sys,a),v(emp_t,s),v(emp_p,r),v(sales,nz)], 
[v(com,nz)]). 

dynamic("calculate commissions", 
[v(sys,b),v(emp_p,r),v(sales,nz)], 
[v(com,nz)]). 

dynamic("calculate commissions", 
[v(s a l e s , " 0 " ) ] , 
[v(com,"0")]). 

/* c a l c u l a t e a d d i t i o n a l payments */ 
dynamic("calculate a d d i t i o n a l payments", 

[v(sys,b),v(com,nz),v(over,nz)], 
[v(add_pay,nz)]). 

dynamic("calculate a d d i t i o n a l payments", 
[v(sys.b),v(com,"0"),v(over,"0")], 
[v(add_pay,"0")]). 

dynamic("calculate a d d i t i o n a l payments", 
[v(sys,b),v(emp_t,o),v(over,nz)], 
[v(add_pay,nz)]). 

dynamic("calculate a d d i t i o n a l payments", 
[v(sys,b),v(emp_t,o),v(over,"0")], 
[v(add_pay,"0")]). 

dynamic("calculate a d d i t i o n a l payments", 
[v(sys,b),v(emp_t,s),v(com,nz)], 
[v(add_pay,nz)]). 

dynamic("calculate a d d i t i o n a l payments", 
[v(sys,b),v(emp_t,s),v(com,"0")], 
[v(add_pay,"0")]). 

/* c a l c u l a t e t o t a l pay */ 
dynamic("calculate t o t a l pay", 

[v(base,nz)], 
[v(total_pay, n z ) ] ) . 

dynamic("calculate t o t a l pay", 
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[ v ( s y s , a ) , v ( o v e r , n z ) ] , 

[ v ( t o t a l _ p a y , n z ) ] ) . 

d y n a m i c ( " c a l c u l a t e t o t a l pay", 

[ v ( s y s , a ) , v ( c o m , n z ) ] , 

[ v ( t o t a l _ p a y , n z ) ] ) . 

d y n a m i c ( " c a l c u l a t e t o t a l pay", 

[ v ( s y s , a ) , v ( b a s e , " 0 " ) , v ( o v e r , " 0 " ) , v ( c o m , " 0 " ) ] , 

[ v ( t o t a l _ p a y , " 0 " ) ] ) . 

d y n a m i c ( " c a l c u l a t e t o t a l pay", 

[ v ( s y s , b ) , v ( a d d _ p a y , n z ) ] , 

[ v ( t o t a l _ p a y , n z ) ] ) . 

d y n a m i c ( " c a l c u l a t e t o t a l pay", 

[ v ( s y s , b ) , v ( b a s e , " 0 " ) , v ( a d d _ p a y , " 0 " ) ] , 

[ v ( t o t a l _ p a y , " 0 " ) ] ) . 



Appendix 0: C a l c u l a t i o n of To t a l Pay i n the "Combined" P a y r o l l System 

This appendix has been included to explain the rather s u r p r i s i n g r e s u l t 
that the amount of t o t a l pay i n the combined p a y r o l l system can be found without 
any knowledge of the current version of the system. The explanation w i l l proceed 
by r e c a l l i n g the manner i n which t o t a l pay i s c a l c u l a t e d i n both the o r i g i n a l 
and modified versions of the p a y r o l l system. Then the combined system w i l l be 
examined. I t w i l l be shown that, given the correct inputs, c a l c u l a t i o n of t o t a l 
pay may be performed i n exactly the same way i n both system. 

T o t a l pay i s a function of base pay (hours m u l t i p l i e d by pay rate) , 
overtime pay, and commission pay. C a l c u l a t i o n of overtime and commission pay 
depends on the employee's p o s i t i o n ("emp_p") and type ("emp_t"), and i s performed 
d i f f e r e n t l y i n the o r i g i n a l and modified p a y r o l l systems. C a l c u l a t i o n of 
overtime and commission pay i n the o r i g i n a l p a y r o l l system was governed by the 
following r u l e s . 

the o f f i c e s t a f f ("emp_t" = "o" ) i s e n t i t l e d to overtime pay but not to 
commissions. 
the sales s t a f f ("emp_t" = "s") i s e n t i t l e d to commissions but not to 
overtime pay. 
managers ("emp_p" = "m") are not e n t i t l e d to overtime pay or commissions. 

In the o r i g i n a l p a y r o l l system, the employee's p o s i t i o n and type 
information i s used when c a l c u l a t i n g the f i n a l values of overtime and commission 
pay. To t a l pay could then be c a l c u l a t e d knowing only the f i n a l values of base, 
overtime, and commission pay. These r e l a t i o n s h i p s are r e f l e c t e d i n t h i s 
decomposition of the o r i g i n a l p a y r o l l system. 

2: (base.com.over.total_pay) 
1: (hours,pay_r,base} (emp_p.emp_t.hours.over} {emp_p.emp_t.sales.com) 

where "hours" i s the number of hours worked, and "sales" i s the amount of sales. 

In the modified p a y r o l l c a l c u l a t i o n of overtime and commission pay was 
somewhat d i f f e r e n t . 
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1. Both o f f i c e s t a f f and s a l e s employees are e n t i t l e d to both over t ime pay 

and s a l e s commissions. 

2. An o f f i c e employee cannot r e c e i v e more i n commissions than i n over t ime . 

3. A s a l e s employee cannot r e c e i v e more i n over t ime than i n commissions. 

The s t a t e v a r i a b l e "add_pay" ( fo r a d d i t i o n a l payments) was i n t roduced to 

represen t the t o t a l amount o f overt ime and commission pay earned by an employee 

a f t e r these r e s t r i c t i o n s are a p p l i e d . N o t i c e tha t c a l c u l a t i o n o f over t ime and 

commission pay no longer r e q u i r e s knowledge of employee type . The f o l l o w i n g 

decomposi t ion r e f l e c t s these new r e l a t i o n s h i p s . 

3: (base .add_pay. to ta l_pay) 

2: (com.emp_t .over .addpay) 

1: ( h o u r s . p a y r . b a s e ) (emp_p.hours.over) {emp_p.sales.com) 

Now examine the decomposi t ion o f the combined p a y r o l l system suggested by 

the s p e c i f i c a t i o n s a n a l y s i s t o o l s . The s t a t e v a r i a b l e "sys" i s used to 

d i s t i n g u i s h between the two v e r s i o n s o f the p a y r o l l s system ( i . e . o r i g i n a l and 

m o d i f i e d ) . 

2: ( c o m . e m p t . o v e r . a d d p a y ) ( b a s e . c o m . e m p t . o v e r . t o t a l p a y ) 

1: (hours .pay_r .base) (emp_p.emp_t.sales.sys.com) 

{emp_p,emp_t,hours,sys,over} 

As expected, c a l c u l a t i o n o f commission and overt ime pay r e q u i r e s knowledge o f 

the system v e r s i o n . However, n o t i c e tha t i f the a d d i t i o n a l payments s t a t e 

v a r i a b l e i n the mod i f i ed p a y r o l l system t o t a l pay subsystem i s r e p l a c e d by i t s 

i n p u t s , the r e s u l t i n g subsystem i s the same as shown he re . How can such a 

subsystem c o r r e c t l y c a l c u l a t e t o t a l pay f o r the o r i g i n a l subsystem i f the system 

v e r s i o n ( i . e . o r i g i n a l or modif ied) i s not known? I n o ther words, how does the 

subsystem know when to use the employee type i n f o r m a t i o n to l i m i t the amount of 

over t ime and commission pay, and when not to? 

I n f a c t , the l i m i t s on overt ime and commission pay can always be a p p l i e d . 

The l i m i t a t i o n s can on ly a f f e c t the amount o f t o t a l pay i f over t ime exceeds 

commission pay and the employee type i s s a l e s , or commission exceeds overt ime 

pay and the employee type i s o f f i c e . I n the o r i g i n a l p a y r o l l system, these two 
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s i t u a t i o n s cannot occur. In the o r i g i n a l system, sales s t a f f earn no overtime 
and o f f i c e s t a f f earn no commissions. Therefore, the same c a l c u l a t i o n f o r t o t a l 
pay as a function of employee type and base, commission, and overtime pay can 
be used f o r both the o r i g i n a l and modified p a y r o l l systems. 
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Appendix P: The IFIP Working Conference Case 

(from O l l e , 1982, pp. 8-9) 

1. Background 

An IFIP Working Conference i s an i n t e r n a t i o n a l conference intended to bring 
together experts from a l l IFIP countries to discuss some te c h n i c a l topic of 
s p e c i f i c i n t e r e s t to one or more IFIP Working Groups. The usual procedure, and 
that to be considered f o r the present purposes, i s an i n v i t e d conference which 
i s not open to everyone. For such conferences i t i s something of a problem to 
ensure that members of the involved Working Group(s) and Technical Committee(s) 
are i n v i t e d even i f they do not come. Furthermore, i t i s important to ensure 
that s u f f i c i e n t people attend the conference so that the f i n a n c i a l break-even 
point i s reached without exceeding the maximum d i c t a t e d by the f a c i l i t i e s 
a v a i l a b l e . 

IFIP P o l i c y on Working Groups suggest the appointment of a Program Committee to 
deal with the tec h n i c a l content of the conference and an Organizing Committee 
to handle f i n a n c i a l matters, l o c a l arrangements, and i n v i t a t i o n s and/or 
p u b l i c i t y . These committees c l e a r l y need to work together c l o s e l y and have a 
need f or common information and to keep t h e i r recorded information consistent 
and up to date. 

2. Information system to be designed 

The information system which i s to be designed i s that necessary to support the 
a c t i v i t i e s of both a Program Committee and an Organizing Committee involved i n 
arranging an IFIP Working Conference. The involvement of the two committees i s 
seen as analogous to two organizational e n t i t i e s within a corporate structure 
using some common information. 

The following a c t i v i t i e s of the committees should be supported. 
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Program Committee: 

1. Preparing a l i s t to whom the c a l l f o r papers i s to be sent. 
2. Registering the l e t t e r s of intent received i n response to the c a l l . 
3. Registering the contributed papers on re c e i p t . 
4. D i s t r i b u t i n g the papers among those undertaking the refereeing. 
5. C o l l e c t i n g the referees' reports and s e l e c t i n g the papers f o r i n c l u s i o n 

i n the program. 
6. Grouping selected papers into sessions f o r presentation and s e l e c t i n g 

chairman f o r each session. 

Organizing Committee: 
s 

1. Preparing a l i s t of people to i n v i t e to the conference. 
2. Issuing p r i o r i t y i n v i t a t i o n s to National Representatives, Working Group 

members and members of associated working groups. 
3. Ensuring a l l authors of each selected paper receive an i n v i t a t i o n . 
4. Ensuring authors of rejected papers receive an i n v i t a t i o n . 
5. Avoiding sending duplicate i n v i t a t i o n s to any i n d i v i d u a l . 
6. Registering acceptance of i n v i t a t i o n s . 
7. Generating a f i n a l l i s t of attendees. 

3. Boundaries of system 

I t should be noted that budgeting and f i n a n c i a l aspects of the Organizing 
Committee's work, meeting plans of both committees, h o t e l accommodations f or 
attendees and the matter of preparing camera-ready copy of the proceedings have 
been omitted from t h i s exercise, although a submission may include some or a l l 
of these extra aspects i f the authors f e e l so motivated. 
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Appendix Q: State Variable I d e n t i f i c a t i o n f o r the IFIP Working Conference 
Problem 

This appendix described the i d e n t i f i c a t i o n of most of the state v a r i a b l e s 
required to model the IFIP Working Conference system. Each of the Working Group 
Conference a c t i v i t i e s (as presented i n Appendix P) must be examined. The state 
v a r i a b l e s required to model each of these a c t i v i t i e s w i l l provide a s t a r t i n g 
point f o r modelling the underlying real-world system. 

A c t i v i t y : Preparing a l i s t to whom the c a l l f o r papers i s to be sent. 

This a c t i v i t y suggests that one property of the r e a l world, with which the 
information system w i l l be concerned, should indicate whether a p a r t i c u l a r person 
i s to be i n v i t e d to submit a paper to the Conference. This property, or state 
v a r i a b l e , w i l l be c a l l e d "pap_inv" (for " i n v i t e d paper"). I n v i t a t i o n s to submit 
papers are always sent to National Representatives, Working Group members, and 
members of associated working groups. A state v a r i a b l e i n d i c a t i n g whether a 
person i s i n any of these categories w i l l be c a l l e d "grp_mem" (for "group 
member"). Individuals i n each category are treated the same with respect to a l l 
of the a c t i v i t i e s which the information system i s to support. Therefore, to 
avoid unnecessary complexity only one state v a r i a b l e i s used. Individuals not 
i n any of the above categories could also be i n v i t e d to submit a paper. The 
state v a r i a b l e "ext_inv" (for "external i n v i t a t i o n " ) w i l l be used to indicate 
whether t h i s i s the case. Each of these state v a r i a b l e s w i l l have two values 
"y" and "n" (for "yes" and "no") to indicate whether a person has been i n v i t e d 
to submit a paper, i s a group member, or w i l l be i n v i t e d to submit a paper 
regardless of group membership. Notice that state v a r i a b l e s describing the l i s t 
i t s e l f are not properly a part of the system being modelled 1 3 5. The l i s t i s an 
a r t i f a c t of the implemented information system and need not be included i n model 
of the r e a l world. 

A c t i v i t y : Registering the l e t t e r s of intent received i n response to the c a l l . 

For example, state v a r i a b l e s describing the might include l i s t currency 
or length. I f some a c t i v i t i e s of the Committees required these properties, they 
would have to be included i n the model. 
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A state v a r i a b l e to show that a l e t t e r of intent has been received i s required. 
This state v a r i a b l e w i l l be c a l l e d "pap_prom" (for "paper promised") with values 
"y" and "n". 

A c t i v i t y : Registering the contributed papers on r e c e i p t . 

A state v a r i a b l e i n d i c a t i n g whether a paper has been received i s required. This 
state v a r i a b l e w i l l be c a l l e d "pap_sub" (for "submitted paper") with values "y" 
and "n". 

A c t i v i t y : D i s t r i b u t i n g the papers among those undertaking the refereeing. 

A state v a r i a b l e i n d i c a t i n g the whether a paper has been sent to the referees 
i s required. This state v a r i a b l e w i l l be c a l l e d "sent_ref" ( f or "sent to 
referees") with values "y" and "n". 

A c t i v i t y : C o l l e c t i n g the referees' reports and s e l e c t i n g the papers f o r 
i n c l u s i o n i n the program. 

A state v a r i a b l e i s required to indicate whether a paper has been returned by 
the referees. This state v a r i a b l e w i l l be c a l l e d " r e t _ r e f " (for "returned by 
referees") with values "y" and "n" . Another state v a r i a b l e required to represent 
the referees' d e c i s i o n as to the s u i t a b i l i t y of the paper f o r the Conference. 
This state v a r i a b l e w i l l be c a l l e d "ref_dec" ( f or "referees' decision") with 
values "acc" and " r e j " (for "accept" and " r e j e c t " ) . Hopefully, t h i s d e c i s i o n 
w i l l be based s o l e l y on some property of the paper i t s e l f , and not on any other 
external considerations. A "paper s u i t a b i l i t y " state v a r i a b l e w i l l be created 
to represent t h i s property. This state v a r i a b l e w i l l be c a l l e d " s u i t " (for 
"suitable") with values "y" and "n". A suitable paper w i l l be approved by the 
referees. A unsuitable paper w i l l be rejected. 

A c t i v i t y : Grouping selected papers into sessions for presentation and s e l e c t i n g 
chairman f o r each session. 

This a c t i v i t y requires two state v a r i a b l e s . One to indicate whether a paper has 
been included i n a session, and one i n d i c a t i n g whether a session has been 
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assigned a chairman. These state v a r i a b l e s w i l l be c a l l e d "sess_ass" and "chair" 
(for "session assignment" and "chairman", r e s p e c t i v e l y ) . Each of these state 
v a r i a b l e s w i l l have values "y" and "n". Notice that the problem of assigning 
a p a r t i c u l a r paper to a p a r t i c u l a r session based on the contents of the paper 
i s not e x p l i c i t l y addressed here. A state v a r i a b l e with values i n d i c a t i n g the 
topic of the session, and another with values i n d i c a t i n g the topic of the paper 
could be introduced. However, the problem d e s c r i p t i o n does not provide session 
topics, and as s h a l l be seen, such d e t a i l i s not necessary to form an i n i t i a l 
model of the system. 

A c t i v i t y : Preparing a l i s t of people to i n v i t e to the Conference. 
A c t i v i t y : Issuing p r i o r i t y i n v i t a t i o n s to National Representatives, Working 

Group members, and members of associated working groups. 
A c t i v i t y : Ensuring a l l authors of each selected paper receive an i n v i t a t i o n . 
A c t i v i t y : Ensuring authors of rejected papers receive an i n v i t a t i o n . 
A c t i v i t y : Avoiding sending duplicate i n v i t a t i o n s to any i n d i v i d u a l . 

A l l of the above a c t i v i t i e s deal with the is s u i n g of i n v i t a t i o n s . A state 
v a r i a b l e s i s required to indicate whether an i n v i t a t i o n should be sent to an 
i n d i v i d u a l . This state v a r i a b l e w i l l be c a l l e d "inv" (for " i n v i t e " ) with values 
"y" and "n". National Representatives, Working Group Members, and members of 
associate working groups may be i d e n t i f i e d by the already defined state v a r i a b l e 
"grp_mem". Authors of papers may be i d e n t i f i e d by the already defined state 
v a r i a b l e "pap_sub". 

A c t i v i t y : Registering acceptance of i n v i t a t i o n s . 

A state v a r i a b l e i s required to indicate whether an i n d i v i d u a l has accepted an 
i n v i t a t i o n . This state v a r i a b l e w i l l be c a l l e d "del_acc" ( f or "delegate 
accepts") with values "y" and "n". 

A c t i v i t y : Generating a f i n a l l i s t of attendees. 

A f i n a l l i s t of attendees can be generated by examining the "del_acc" state 
v a r i a b l e . 
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Examination of the required system functions i s now complete. The preliminary 
l i s t of state v a r i a b l e s f o r the IFIP Working Group Conference system i s as 
follows: 

State Variable Values Description 

pap_mv 
grp_mem 

ext_inv 

pap_prom 
pap_sub 
sent_ref 
r e t _ r e f 
ref_dec 
s u i t 

sess_ass 
chair 
inv 

del acc 

y,n has the person been i n v i t e d to submit a paper 
y,n i s the person a Group member, National 

Representative, or member of an associated group 
y,n has the person been i n v i t e d to submit a paper 

regardless of Group membership 
y,n has a paper been promised 
y,n has a paper been submitted 
y,n has the paper been sent to the referees 
y,n has the paper been returned by the referees 
acc,rej the referees e i t h e r accept or r e j e c t a paper 
y,n i s the paper su i t a b l e f o r i n c l u s i o n i n the 

Conference 
y,n has the paper been assigned to a session 
y,n has a session been assigned a chairman 
y,n should the person be i n v i t e d to attend the 

Conference 
y,n has the person has accepted an i n v i t a t i o n to 

attend the Conference 

This l i s t of state v a r i a b l e and values i s not complete. Some state 
v a r i a b l e s and values may be added to f a c i l i t a t e the d e f i n i t i o n of external events 
and sublaws. A d d i t i o n a l l y , some state v a r i a b l e s w i l l be dropped f o r reasons of 
computational e f f i c i e n c y . 
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Appendix R: External Event I d e n t i f i c a t i o n f o r the IFIP Working Conference 
Problem 

In SELMA, external events a f f e c t a system by a l t e r i n g the values of state 
v a r i a b l e s . The values of other state v a r i a b l e s may be changed by the system 
i t s e l f i n response to an external event. Such secondary changes are c a l l e d 
i n t e r n a l events. During t h i s step, the analyst i s p r i m a r i l y concerned with 
external events. Internal events are considered when system sublaws are defined. 
Each of the above state v a r i a b l e s must- be examined to decide whether i t s value 
i s set by an external event. Discussions of only a few representative state 
v a r i a b l e s are presented here. 

pap_inv 

The d e c i s i o n to i n v i t e a paper i s dependent on the values of other state 
v a r i a b l e s . The dec i s i o n may not be made d i r e c t l y by forces outside of the 
system. Therefore, there i s no external event a f f e c t i n g t h i s state v a r i a b l e . 

grp_mem 

A person can become a Group member, or he or she can leave the Group. The 
dec i s i o n a f f e c t i n g group membership i s not made within the Conference system 1 3 6. 
Therefore, an external event.affecting the value of t h i s state v a r i a b l e must be 
defined. 

ref_dec 

As explained e a r l i e r , the referees' d e c i s i o n as to the s u i t a b i l i t y of a paper 
i s not an external event. The decision i s being modelled as i f i t were based 
s o l e l y of the properties of the paper i t s e l f (represented here by the state 
v a r i a b l e " s u i t " ) . The e f f e c t s of varying referee biases are not modelled here. 
I t i s l i k e l y that the decision of the referees i s not, by i t s e l f , a s u f f i c i e n t 

Group membership may depend on other factors besides a willingness to 
j o i n . For example, there may be membership requirements which must be met, or 
some form of payment may be required. Such considerations are beyond the scope 
of the Working Conference system. 
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reason for the Programme Committee to accept a paper. Obviously, i f referees 
return a paper that was not sent to them by the Committee, the paper should not 
be accepted. There could be other fa c t o r s , such as Committee member biases or 
paper length, but t h i s sort of information i s not d e t a i l e d i n the problem 
d e s c r i p t i o n . Another state v a r i a b l e i s required to i n d i c a t e acceptance of a 
paper by the Programme Committee. This state v a r i a b l e w i l l be c a l l e d "pap_dec" 
(for " f i n a l paper decision") and w i l l have values "acc" and " r e j " s i m i l a r to the 
state v a r i a b l e "ref_dec". The value of "pap_dec" w i l l be determined s o l e l y by 
the values of other state variable s within the system. Therefore, no external 
event w i l l be defined to d i r e c t l y a f f e c t "pap_dec". 

del acc 

whether a person accepts an i n v i t a t i o n to attend the Conference i s beyond the 
influence of the system. Therefore, acceptance of an i n v i t a t i o n must be modelled 
using external events. However, t h i s implies that r e g i s t r a t i o n for the 
Conference i s e n t i r e l y decided by factors external to the system. This i s not 
the case. Mere acceptance of an i n v i t a t i o n i s not a s u f f i c i e n t condition for 
r e g i s t r a t i o n at the Conference. The delegate must also have been i n v i t e d . 
Another state v a r i a b l e i s required to indicate whether the delegate has a c t u a l l y 
been re g i s t e r e d . This state v a r i a b l e w i l l be c a l l e d "del_reg" (for "registered 
delegate" and w i l l have the values "y" and "n". The value of "del reg" w i l l not 
d i r e c t l y a f f e c t e d by external events, but i s determined s o l e l y by the values of 
"inv" and "del_acc". Also note, the a c t i v i t y "generating a f i n a l l i s t of 
attendees" w i l l require the examination of the state v a r i a b l e "del_reg", instead 
of "del_acc" as suggested i n Appendix Q. 

Similar considerations can c l a s s i f y a l l the state v a r i a b l e s into two 
groups: those d i r e c t l y a f f e c t e d by external events, and those not d i r e c t l y 
a f f e c t e d . 

D i r e c t l y A f f e c t e d Not D i r e c t l y Affected 

grp_mem pap_inv 
ext_inv sent_ref 
pap_prom ref_dec 
pap_sub pap_dec 
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r e t _ r e f 
s u i t 
c h a i r 
del acc 

sess_ass 
inv 
del_reg 



Appendix S: Sublaw I d e n t i f i c a t i o n f o r the IFIP Working Conference System Problem 

This appendix describes the development of sublaws f o r a SELMA model of 
the IFIP Working Conference system. Some deliberate errors have been made. The 
discovery and c o r r e c t i o n of these errors i s described i n Chapter 6. The 
corrected system, expressed using the syntax required by the s p e c i f i c a t i o n s 
analysis t o o l s , i s included as Appendix T. 

Any external event may occur when the system i s i n any stable state. 
Therefore, state v a r i a b l e s which are d i r e c t l y a f f e c t e d by external events may 
have any value i n any s i t u a t i o n . 

Sublaw: "A person may be a group member" 
S t a b i l i t y Conditions: 
grp_mem 

y 
n 

Sublaw: "A paper may be promised" 
S t a b i l i t y Conditions: 
pap_prom 

y 
n 

Sublaw: "Nonmembers may be i n v i t e d to submit a paper" 
S t a b i l i t y Conditions: 
ext_inv 

y 
n 

Sublaw: "A paper may be submitted" 
S t a b i l i t y Conditions: 
pap_sub 

y 
n 

Sublaw: "A paper may be returned by the referees" 
S t a b i l i t y Conditions: 
r e t _ r e f 

y 
n 

Sublaw: "A person may accept an i n v i t a t i o n " 
S t a b i l i t y Conditions: 
del_acc 

y 
n 
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Sublaw: "A chairman may be assigned to a session" 
S t a b i l i t y Conditions: 
chair 

y 
n 

The state v a r i a b l e s "pap_sub" and " s u i t " are r e l a t e d . I f a paper i s not 
submitted to the Programme Committee, i t s s u i t a b i l i t y f o r i n c l u s i o n i n the 
Conference i s i r r e l e v a n t . The following sublaw expresses t h i s r e l a t i o n s h i p . 

Sublaw: "Papers may be suitable of unsuitable" 
S t a b i l i t y Conditions: 
pap_sub s u i t 

y y 
y n 
n n/a 

The value "n/a" (for "not applicable") has been added to show that papers that 
have not yet been submitted are neither s u i t a b l e or unsuitable. 

The following sublaws are defined for state v a r i a b l e s not d i r e c t l y a f f e c t e d 
by external events. 

pap_inv 

A person w i l l be i n v i t e d to submit a paper to the Conference i f e i t h e r of two 
conditions are met. 
1. He or she i s a Working Group member. 
2. The Programme Committee decides to ask the person to submit a paper 

regardless of group membership status. 

Sublaw: "Group members are i n v i t e d to submit a paper" 
S t a b i l i t y Conditions: 
grp_mem ext_inv pap_inv 

y y 
y y 

n n n 
Corrective Actions: 
Conditions Actions 
grp_mem ext_inv --> pap_inv 

y - y 
y y 

n n n 
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Where "-" indicates "any value" or "don't care". Notice, that "grp_mem" and 
"ext_inv" may both have the value "y" at the same time. This corresponds to a 
s i t u a t i o n where the Programme Committee decides to request a paper from a member 
of the Working Group. I t was decided that t h i s would be an acceptable (or 
"stable") s i t u a t i o n , as the Programme Committee may wish to add extra incentive 
for some Working Group members to submit papers. I f t h i s s i t u a t i o n were not 
acceptable, a new state v a r i a b l e would have to be introduced. For example, 
"ext_val" might ind i c a t e the v a l i d i t y of a request f o r an external paper. 
Sublaws would be added and modified as follows: 

Sublaw: "Only nonmembers may be i n v i t e d to submit external papers" 
S t a b i l i t y Conditions: 
ext_Inv grp_mem ext_val 

y n y 
n - n 

Corrective Actions: 
Conditions Actions 
ext_inv grp_mem --> ext_val 

y n y 
n n 

Sublaw: "Group members are i n v i t e d to submit a paper" 
S t a b i l i t y Conditions: 
grp_mem ext_val pap_inv 

y - y 
y y 

n n n 
Corrective Actions: 
Conditions Actions 
grp_mem ext_val --> pap_inv 

y - y 
y y 

n n n 

sent r e f 

Papers are sent to referees only i f the paper was both i n v i t e d and submitted. 

Sublaw: "Referees only get i n v i t e d papers" 
S t a b i l i t y Conditions: 
pap_sub pap_inv sent_ref 

y y y 
n - n 

n n 
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Corrective Actions: 
Conditions Actions 
pap_sub pap_inv --> sent_ref 

y y y 
n n 

n n 

r e f dec 

The referees' d e c i s i o n to accept or r e j e c t a paper i s based s o l e l y on the 
s u i t a b i l i t y of the paper f o r the Working Conference. The system i s only made 
aware of t h e i r d e c i s i o n when the paper i s returned. 

Sublaw: "Referees e i t h e r accept or r e j e c t " 
S t a b i l i t y Conditions 
r e t _ r e f s u i t ref_dec 

y y acc 
y n rej 
n - n/a 

Corrective Actions: 
Conditions Actions 
r e t _ r e f s u i t --> ref_dec 

y y acc 
y n rej 
n - n/a 

A value of "n/a" (for "not applicable") has been added to show that when a paper 
has not been returned by the referees, the value of the state v a r i a b l e 
representing t h e i r d e c i s i o n i s meaningless. 

pap dec 

I t i s assumed that the d e c i s i o n to include a paper i n the Conference i s based 
s o l e l y on the v a l i d i t y of the referees' decision. The referees' d e c i s i o n w i l l 
not be v a l i d i f the paper they judged was not sent to them by the Programme 
Committee or no paper was submitted. This l a s t requirement may seem t r i v i a l , 

321 



but i t i s a necessary "error detection" condition . External events may happen 
when the system i s i n any stable state. This means that the external event 
corresponding to the referees returning a paper could happen when the system i s 
i n a state where the paper had not been sent to the referees. 

Sublaw: "Papers are accepted or rejected" 
S t a b i l i t y Conditions: 
ref_dec sent_ref pap_sub pap_dec 

acc y - acc 
rej y - rej 
n/a - - rej 

n n/a 
Corrective Actions: 
Conditions Actions 
ref_dec sent_ref pap_sub --> pap_dec 

acc y - acc 
rej y - rej 
n/a - - rej 

n n/a 

As f o r the state v a r i a b l e "ref_dec", a value of "n/a" (for "not applicable") has 
been added to "pap_dec" to show that, under some circumstances, the value of the 
state v a r i a b l e representing paper acceptance i s meaningless. 

sess ass 

Papers are assigned to session i f they are accepted f o r i n c l u s i o n i n the 
Conference by the Programme Committee. Naturally papers are not assigned to a 
session i f they are not submitted. 

Sublaw: "Accepted papers are assigned to a session" 
S t a b i l i t y Conditions: 
pap_dec pap_sub sess_ass 

acc - y 
rej - n 

n n 
Corrective Actions: 
Conditions Actions 
pap_dec pap_sub --> sess_ass 

acc - y 
rej - n 

n n 

1 3 7 This sort of error detection i s often r e f e r r e d to as "input 
v a l i d a t i o n " . 
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inv 

A person i s i n v i t e d i f one of the following conditions i s met. 

1. He or she i s a Working Group member. 
2. He or she has submitted a paper that has been accepted, rejected, or not 

yet returned by the r e f e r e e s 1 3 8 . 

Furthermore, no person should be i n v i t e d twice and no i n v i t a t i o n should be 
cancelled once issued. This l a s t requirement implies that the s t a b i l i t y 
conditions relevant to the state v a r i a b l e "inv" are not very r e s t r i c t i v e . A 
person w i l l not be i n v i t e d i f h i s or her paper i s not considered by the Programme 
Committee ( i . e . "sent_ref" i s "n") and he or she i s not a Group member. However, 
an i n v i t a t i o n may be (or may have been) sent i n any other s i t u a t i o n . 

Sublaw: "Authors of processed papers and group members are i n v i t e d " 
S t a b i l i t y Conditions: 
sent_ref grp_mem 

n n 
Corrective Actions: 
Conditions 
pap_dec sent_ref 

acc 
rej 

y 

d e l r e g 

In order for a person to r e g i s t e r f or the Conference, he or she must have been 
i n v i t e d and the i n v i t a t i o n must be accepted. 

inv 
y 
n 

grp_mem inv 
y 
n 
n 
n 
n 

-> 
Actions 
inv 
y 
y 
y 
y 
y 

Notice that mere submission of a paper does not guarantee a person an 
i n v i t a t i o n to attend the Conference. This i s an i n v i t e d paper conference. No 
paper w i l l be sent to the referees by the Programme Committee unless i t was 
previously i n v i t e d . 
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Sublaw: "Delegates must be i n v i t e d to r e g i s t e r " 
S t a b i l i t y Conditions: 
inv del_acc del_reg 
y y y 
n - n 

n n 
Corrective Actions: 
Conditions Actions 
inv del_acc --> del_reg 
y y y 
n - n 

n n 
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Appendix T: The IFIP Working Conference System Model 

This appendix contains a l i s t i n g of the IFIP Working Conference model 
expressed using the syntax required by the s p e c i f i c a t i o n s analysis t o o l s . 

/************************************* 

The IFIP Conference Problem 

************************************ f 

clauses 

event("become group member",[v(grp_mem,y)]). 
event("leave group",[v(grp_mem,n)]). 
event("submit s u i t a b l e paper",[v(pap_sub,y),v(suit,y)]). 
event("submit unsuitable paper",[v(pap_sub,y),v(suit,n)]). 
event("no paper",[v(pap_sub,n)]). 
event("referees return p a p e r " , [ v ( r e t _ r e f , y ) ] ) . 
event("referees do not return p a p e r " , [ v ( r e t _ r e f , n ) ] ) . 
e v e n t ( " i n v i t e external paper",[v(ext_inv,y)]). 
event("do not i n v i t e external paper",[v(ext_inv,n)]). 
event("delegate accepts i n v i t a t i o n " , [ v ( d e l _ a c c , y ) ] ) . 
event("delegate does not accept i n v i t a t i o n " , [ v ( d e l _ a c c , n ) ] ) . 

state_variable(pap_inv). 
s t a t e _ v a r i a b l e ( e x t _ i n v ) . 
state_variable(pap_sub). 
s t a t e _ v a r i a b l e ( s e n t _ r e f ) . 
s t a t e _ v a r i a b l e ( r e t _ r e f ) . 
s t a t e _ v a r i a b l e ( r e f _ d e c ) . 
state_variable(pap_dec). 
s t a t e _ v a r i a b l e ( s e s s _ a s s ) . 
s t a t e _ v a r i a b l e ( d e l _ a c c ) . 
s t a t e _ v a r i a b l e ( d e l _ r e g ) . 
s t a t e _ v a r i a b l e ( i n v ) . 
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state_variable(grp_mem). 
s t a t e _ v a r i a b l e ( s u i t ) . 

values(pap_inv,[y,n]). 
values(ext_inv,[y,n]). 
values(pap_sub,[y,n]). 
v a l u e s ( s u i t , [ y , n ] ) . 
v a l u e s ( s e n t_ ref,[y,n]). 
v a l u e s ( r e t _ r e f , [ y , n ] ) . 
values(ref_dec,[acc,rej,"n/a"]). 
values(pap_dec,[acc,rej,"n/a"]). 
values(sess_ass,[y,n]). 
values(del_acc,[y,n]). 
values(del_acc,[y,n]). 
values(del_reg,[y,n]). 
v a l u e s ( i n v , [ y , n ] ) . 
values(grp_mem,[y,n]). 

s t a t i c ( " a person may be a group member",[v(grp_mem,y)]). 
s t a t i c ( " a person may be a group member",[v(grp_mem,n)]). 

static("nonmember's may be i n v i t e d to submit a paper",[v(ext_inv,y)]). 
static("nonmember's may be i n v i t e d to submit a paper",[v(ext_inv,n)]). 

static("group members are i n v i t e d to submit a paper", 
[v(grp_mem,y),v(pap_inv,y)]). 

static("group members are i n v i t e d to submit a paper", 
[v(ext_inv,y),v(pap_inv,y)]). /* but so might others */ 

static("group members are i n v i t e d to submit a paper", 
[v(grp_mem,n),v(ext_inv,n),v(pap_inv,n)]). 

s t a t i c ( " a paper may be submitted",[v(pap_sub,y)]). 
s t a t i c ( " a paper may be submitted",[v(pap_sub,n)]). 

static("paper s u i t a b i l i t y may be anyth i n g " , [ v ( s u i t , y ) ] ) . 
static("paper s u i t a b i l i t y may be anything",[v(suit,n)]). 
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static("submitted papers may be suitable",[v(pap_sub,y),v(suit,y)]). 
static("submitted papers may be suitable",[v(pap_sub,y),v(suit,n)]). 
static("submitted papers may be suitable",[v(pap_sub,n)]). 

s t a t i c ( " c o n s i d e r e d papers must be 
invited",[v(pap_sub,y),v(pap_inv,y),v(sent_ref,y)]). 
s t a t i c ( " c o n s i d e r e d papers must be invited",[v(pap_sub,n),v(sent_ref,n)]). 
s t a t i c ( " c o n s i d e r e d papers must be invited",[v(pap_inv,n),v(sent_ref,n)]). 

s t a t i c ( " a paper may be returned by the r e f e r e e s " , [ v ( r e t _ r e f , y ) ] ) . 
s t a t i c ( " a paper may be returned by the r e f e r e e s " , [ v ( r e t _ r e f , n ) ] ) . 

s t a t i c ( " r e f e r e e s e i t h e r accept or r e j e c t " , 
[ v ( r e f _ d e c , a c c ) , v ( r e t _ r e f , y ) , v ( s u i t , y ) ] ) . 

s t a t i c ( " r e f e r e e s e i t h e r accept or r e j e c t " , 
[ v ( r e f _ d e c , r e j ) , v ( r e t _ r e f , y ) , v ( s u i t , n ) ] ) . 

s t a t i c ( " r e f e r e e s e i t h e r accept or r e j e c t " , 
[ v ( r e f _ d e c , " n / a " ) , v ( r e t _ r e f , n ) ] ) . 

static("papers are accepted or rejected", 
[v(pap_dec,acc),v(sent_ref,y),v(ref_dec,acc)]). 

static("papers are accepted or rejected", 
[v(pap_dec,rej),v(sent_ref,y),v(ref_dec,rej)]). 

static("papers are accepted or rejected", 
[v(pap_dec,"n/a"),v(sent_ref,n)]). 

static("papers are accepted or rejected", 
[v(pap_dec,"n/a"),v(ref_dec,"n/a")]). 

s t a t i c ( " a c c e p t e d papers are assigned to a session", 
[v(sess_ass,y),v(pap_dec,acc)]). 

s t a t i c ( " a c c e p t e d papers are assigned to a session", 
[v(sess_ass,n),v(pap_dec,rej)]). 

s t a t i c ( " a c c e p t e d papers are assigned to a session", 
[v(sess_ass,n),v(pap_dec,"n/a")]). 

s t a t i c ( " a c c e p t e d papers are assigned to a session", 
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[v(sess_ass,n),v(pap_sub,n)]). 

st a t i c ( " a u t h o r s of processed papers and group members are i n v i t e d 
[ v ( i n v , y ) ] ) . 

s t a t i c ( " a u t h o r s of processed papers and group members are i n v i t e d 
[v(inv,n),v(sent_ref,n),v(grp_mem,n)]). 

s t a t i c ( " d e l e g a t e may submit r e g i s t r a t i o n form",[v(del_acc,y)]). 
s t a t i c ( " d e l e g a t e may submit r e g i s t r a t i o n form",[v(del_acc,n)]). 

s t a t i c ( " d e l e g a t e must be i n v i t e d to r e g i s t e r " , 
[v(del_reg,y),v(del_acc,y),v(inv,y)]). 

s t a t i c ( " d e l e g a t e must be i n v i t e d to r e g i s t e r " , 
[v(del_reg,n),v(del_acc,n)]). 

s t a t i c ( " d e l e g a t e must be i n v i t e d to r e g i s t e r " , 
[v(del_reg,n),v(inv,n)]). 

dynamic("invite group members to submit a paper", 
[v(grp_mem,y)],[v(pap_inv,y)]). 

dynamic("a nonmember i s i n v i t e d to submit a paper", 
[v(ext_inv,y)],[v(pap_inv,y)]). 

dynamic("a nonmember i s not i n v i t e d to submit a paper", 
[v(grp_mem,n),v(ext_inv,n)],[v(pap_inv,n)]). 

dynamic("invited papers are considered", 
[v(pap_sub,y),v(pap_inv,y)],[v(sent_ref,y)]). 

dynamic("no paper -> not considered", 
[v(pap_sub,n)],[v(sent_ref,n)]). 

dynamic("uninvited papers are not considered", 
[v(pap_inv,n)],[v(sent_ref,n)]). 

dynamic("referees l i k e acceptable papers", 
f v ( s u i t . y ) , v ( r e t _ r e f , y ) ] , [ v ( r e f _ d e c , a c c ) ] ) . 

dynamic("referees don't l i k e unacceptable papers", 
[ v ( s u i t , n ) , v ( r e t _ r e f , y ) ] , [ v ( r e f _ d e c , r e j ) ] ) . 

dynamic("no d e c i s i o n on unreturned papers", 



[ v ( r e t _ r e f , n ) ] , [ v ( r e f _ d e c , " n / a " ) ] ) . 

dynamic("accept referee/acc decision i f v a l i d " , 
[v(ref_dec,acc),v(sent_ref,y)],[v(pap_dec,acc)]). 

dynamic("accept referee/rej d e c i s i o n i f v a l i d " , 
[ v ( r e f _ d e c , r e j ) , v ( s e n t _ r e f , y ) ] , [ v ( p a p _ d e c , r e j ) ] ) . 

dynamic("no d e c i s i o n on unreturned papers", 
[v(ref_dec,"n/a")],[v(pap_dec,"n/a")]). 

dynamic("no d e c i s i o n on unconsidered papers", 
[v(sent_ref,n)],[v(pap_dec,"n/a")]). 

dynamic("assign paper to a session", 
[v(pap_dec,acc)],[v(sess_ass,y)]). 

dynamic("do not assign rejected paper to a session", 
[v(pap_dec,rej)],[v(sess_ass,n)]). 

dynamic("do not assign unconsidered papers to a session", 
[v(pap_dec,"n/a")],[v(sess_ass,n)]). 

dynamic("do not assign papers which were not submitted to a session", 
[v(pap_sub,n)],[v(sess_ass,n)]). 

dynamic("invite accepted author", 
[v(pap_dec,acc),v(inv,n)],[v(inv.y)]). 

dynamic("invite rejected author", 
[v(pap_dec,rej),v(inv,n)],[v(inv,y)]). 

dynamic("invite unreturned author", 
[ v ( s e n t _ r e f , y ) , v ( i n v , n ) ] , [ v ( i n v , y ) ] ) . 

dynamic("invite group member", 
[v(grp_mem,y),v(inv,n)],[v(inv,y)]). 

dynamic("do not r e s c i n d an i n v i t a t i o n " , 
[ v ( i n v . y ) ] , [ v ( i n v , y ) ] ) . 

dynamic("those i n v i t e d are registered", 
[v(inv,y),v(del_acc,y)],[v(del_reg,y)]) 

dynamic("those not i n v i t e d are not registered", 
[v(inv,n)],[v(del_reg,n)]). 

dynamic("no form/no r e g i s t r a t i o n " , 
[v(del_acc,n)],[v(del_reg,n)]). 
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Appendix U: Functional Forms of Some IFIP Working Conference Subsystems 

The f u n c t i o n a l forms of the subsystems responsible for the c a l c u l a t i o n of 
state v a r i a b l e "pap_dec" and "sess_ass", i n a l l of the suggested decompositions 
f o r the IFIP Working Conference system, are shown below. 

(r e f _ d e c , s e n t _ r e f . s e s s a s s ) 
Complexity = 3.90 
ref_dec sent_ref — > sess_ass 
acc y y 
n/a y n 
rej y n 
acc n n 
n/a n n 
rej n n 

{ret_ref,sent_ref,sess_ass.pap_dec) 
Complexity = 6.85 
r e t _ r e f sent_ref sess_ass > pap_dec 
y y y acc 
y y n rej 
n y n n/a 
y n n n/a 
n n n n/a 

{ref_dec,sent_ref.papdec) 
Complexity = 7.51 
ref_dec sent_ref > pap_dec 
acc y acc 
rej y r e j 
n/a y n/a 
acc n n/a 
n/a n n/a 
rej n n/a 
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( p a p d e c . s e s s a s s ) 
Complexity = 2.75 
pap_dec > sess_ass 
acc y 
n/a n 
rej n 
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