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Abstract

Some parts of the systems analysis and design process are not well
structured and rely heavily on human judgement and experience. This 1is
particularly true for decomposition and the validation of system specifications.
Decomposition has long been considered a fundamental part of systems analysis
and design. However, ensuring that a decomposition is optimal is nearly
impossible.

Ensuring that a system specification is complete and consistent is an
inherently difficult task. Most existing systems analysis and design
methodologies allow only the use of techniques such as code walk-throughs and
post-implementation testing. Analysis errors discovered at such late stages can
be quite expensive to correct. Existing methodologies cannot support automated
completeness and consistency testing because they lack the degree of formalism
required- to allow automation.

The primary objective of this research was to increase understanding of
system decomposition. To aid in achieving this objective a formalism for
representing a system specification, and a set of computer-based specifications
analysis tools were developed. The tools support decomposition and provide
completeness and consistency testing of a system specification.

An existing system modelling formalism was extended to provide the basis
for the specification formalism. This extended formalism will allow an analyst
to describe a system with the degree of precision necessary for automated testing
and decomposition. The ability to create a complete and consistent system model
facilitated the development of a general theory of system decomposition. A
system model created using the specifications analysis tools can be analyzed
using a decomposition algorithm based on this theory. The algorithm incorporates
a number of commonsense software design rules and decomposition heuristics drawn
from the literature, and has been included in the specifications analysis tools. .
Experience has shown that the specifications analysis tools may suggest system
decompositions mnot previously considered by the analyst. Alternative
decompositions may arise in two situations:

1. The system has a wvalid alternative structure which may not have been
considered by the analyst. This alternative structure may be superior to the
o}iginal structure envisioned by the analyst when the system model was

constructed.



2. The system specification does not contain enough information to rule out
certain unreasonable decompositions. The missing information should be
explicitly included in the specification to avoid problems of interpretation
later in the system development life cycle.

Analysis of several test systems (including the IFIP Working Conference
system often used as a standard problem in the systems ahalysis literature) using
the specifications analysis tools has proven the feasibility of automated
consistency and completeness testing and decomposition. Further research is
required in two areas:

1. Enhancement of the specifications analysis tools. The tools are not user
friendly. An analyst will require extensive training to use them effectively.
As well, the computational speed of the tools must be improved. Automated
decomposition is too slow to allow easy interaction between the analyst and the
tools.

2. A hierarchical analysis technique must be developed to support application

of the specification formalism and the theory of decomposition to larger systems.
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Chapter 1: Introduction

1.1. General

The notion of decompbsition is central to most methodologies for systems
analysis and design. For example, Structured Analysis (DeMarco, 1978),
Warnier-Orr Diagrams (Warnier, 1974; Orr, 1977), JSD! (Jackson,; 1983), and HOS2
(Hamilton and Zeldin, 1976) all require the analyst to construct a hierarchical
structure for a proposed computer-based system. Courtois (1985) notes the

importance of decomposition:

"Decomposition has long been recognized as a powerful
tool for the analysis of large and complex systems. The
technique of decomposing a system, studying the
components, and then studying the interactions of those
componeﬁts has been successfully used in many areas of

engineering and science.”

Despite this, there exists no theory to guide the process of system
decomposition. Decomposition has always been considered a heuristic activity.

An important objective of the research is to increase our understanding
of system decomposition. 1In order to achieve this objective a formalism has
been developed for representing an information system based on the states and
laws system model developed by Wand and Weber (1988, 1989). Not only does this
formalism provide a basis for the development of a theory of system
decomposition, but it includes 6perational definitions for completeness and
consistency of system specifications. Tangible results of the research include
a set of Prolog-based specification analysis tools. These tools can support
formal description of a system model and suggest possible decompositions for
that system. The decompositions will reveal the inherent structure of a system

specification and can be used to identify deficiencies in the model®.

1 Jackson System Development

2 Higher Order Software

3 In this research, a system model is considered to be part of a full
system specification. System models give the parts of the real world to be

represented in the implemented information system and their relationships.

1



It is generally assumed that the structure and behaviour of an implemented
system should closely mirror that of the specification. 1In the Structured

Design literature, Myers (1978) states

"...the program structure should <closely model the problem

structure." (p. 73)

JSD (Jackson, 1983, p. 5) defines system modelling to consist of two activities:

a. first, making an abstract description of the real world, and
b. second, making a realization, in the computer, of that abstract
description.

Therefore, it seems reasonable to assume that the structure of the specification
can provide a basis for the further design of a system implementation. A
suggested decomposition will be "good" in the sense that it will support modular
construction and restrict the effects of system maintenance to easily
identifiable segments of the overall system. Since the decompositions suggested
by the tools describe the structure of the specification, they will aid in both
the understanding of a complex real system and in system design.

The contributions of this research include the following:

Integration of existing decomposition heuristics.
Development of a theory-based modelling technique for system specification
and decomposition.

c. Development and implementation of a set of computerized tools for
constructing a complete and consistent model of a system.

d. A formal theory of system decomposition.

e. Development and implementation of an algorithm capable of decomposing a

system without human participation.

This chapter presents the results of a literature search for material
related to decomposition in the fields of general system theory and computer

science. The second chapter presents a system modelling formalism suitable for

System specifications may also include requirements such as minimum response
times, required throughput, cost, etc..



use as the basis for a general theory of system decomposition., This formalism
is an extension of the works of Bunge (1977, 1979) and Wand and Weber (1988,
1989), and supports automated testing of completeness and consistency. The
theory of decomposition is developed in Chapter 3 and later extended in Chapter
5. Chapter 4 includes a discussion of various measures of system complexity.
One of these measures is shown to be useful for discriminating between competing
decompositions of a given system, and is adopted for use in this research. To
illustrate their usefulness, the system modelling formalism and techniques
stemming from the theory of decomposition are applied to the IFIP Working
Conference problem (Olle, 1982, pp. 8-9) in Chapter 6. Definitions for some
terms of general importance to systems analysis and design are suggested in
Chapter 7, prior to a presentation of the conclusions reached in this research.

The next section describes previous research on system decomposition.
Ideas from both system theory and software design are considered. The
decomposition rules of Myers (1978), Yourdon and Constantine (1979), Hamilton
and Zeldin (1976), and Mili et al. (1986) are described in detail.

1.2. Background

1.2.1. System Theory

Outside the systems analysis and design literature, the concept of system
decomposition is viewed from two different, but complementary, perspectives.
Simon and Ando (1961) and Courtois (1985) suggest the use of decomposition as
an aid in analyzing an existing system. Alexander (1967) and Simon (1981) argue
that a suitable decomposition could provide the basis for design of a new
system.

From a systems analysis perspective, Simon and Ando consider the
aggregation of wvariables in dynamic systems where short-run dynamics are
separable from long-run dynamics. Their necessary criteria for a system to be

decomposable are as follows (from Courtois, 1985):

a. In a short-term period, as a result of stronger internal bonds, subsystems

‘

tend to reach an internal equilibrium "approximately” independently of one

another.



b. In a long-term period, when a whole structure evolves toward a global
equilibrium state wunder the influence of weak interactions among
subsystems, the internal equilibriums reached at the end of the short-term

period are approximately maintained in relative value.

Simon and Ando illustrate these rules by considering thermal equilibrium in an
office building (p. 117). The building is divided into a number of rooms. The
rooms are separated from each other by walls which are good, but not perfect,
insulators. The rooms are further divided into offices by poorly insulating
partitions. Suppose that initially there is a large wvariation in the
temperatures of the offices. After a relatively short time, the temperatures
of each office in a particular room will be approximately equal. After a much
longer time, the temperatures of each room will approach some common value. The
thermal behaviour of individual rooms is a relatively short-term phenomenon.
The rooms may be treated as independent subsystems with respect to this
behaviour. The problem of how different short-term and long-term periods need
be was addressed by Courtois (1985). He presented intuitively derived
mathematical criteria for the decomposition of queuing networks. In Chapter 3,
it will be suggested that Simon and Ando’'s criteria approximate more general
rules governing "good" decomposition.

From a system design perspective, Alexander suggests that a good
decomposition will lead to a design which exhibits a "good fit" with its
environment. His examples are architectural, but most of his arguments are
applicable to system design in general. He also defines a mathematical method
for clustering system variables such that information transfer is minimized
between clusters of modules.

Simon argues that a large proportion of naturally occurring systems in the
world exhibit hierarchical structures, and that "On theoretical grounds we could
expect complex systems to be hierarchies in a world in which complexity had to
evolve from simplicity" (Simon, 1981, p. 229). Thus, a hierarchical structure
is seen not only as a useful tool, but as a fundamental feature of the
universe. Simon uses a parable of two watchmakers, named Hora and Tempus, to
illustrate this point. Both men constructed watches consisting of 1,000 parts.
Tempus constructed his watches in such a way that if he was interrupted and had
to put it down, it immediately fell to pieces and assembly had to begin again.

Hora’'s watches performed precisely the same functions as Tempus’, but he



designed his to have stable subassemblies of 10 parts each. Ten of these
subassemblies could be put together in another stable assembly, and ten of these
final assemblies could be put together to form a completed watch. If Hora was
interrupted, previously completed subassemblies would not be affected. If the
probability of being interrupted while adding a part to a watch is 0.01, a
simple calculation (see Appendix A) shows‘that it will take Tempus on average

4000 times as long to complete a watch as Hora.
1.2.2. Computer Software

A decomposed or "modular" computer program is seen to be superior to a
monolithic program. Yourdon (1975, p. 97) outlines the arguments in favour of

modularity as follows“:

a. A modular program is easier to write and debug. Functional components can

be written and debugged separately.

b. A modular program is easier to maintain and change. Functional components
can be changed, rewritten, or replaced without affecting other parts of

the program.

c. A modular program is easier for a manager to control. For example, more

difficult modules can be given to the better programmers.

Most authors advocate the use of decompositions which exhibit high
cohesion within modules and low coupling between modules. Methodologies for
achieving this goal vary greatly in both scope and degree of rigor. Several
authors suggest "rules of thumb" for decomposing computer programs (Stevens,
Myers and Constantine, 1974; Myers, 1978; Yourdon and Constantine, 1979) and
some define rules for ensuring that a given decomposition is consistent

(Hamilton and Zeldin, 1976). Since a computer program is a system, some

4 Yourdon (pp. 97-99) also describes some performance related arguments

against the use of modular programs. Subroutine calls consume CPU time. Working
storage allocations for each module may cause a modular program to require more
space than an equivalent monolithic program. In virtual memory systems where
only some modules may be in physical memory at one time, some time may be wasted
while waiting for the operating system to retrieve required modules from disk.

5



insights into a general theory of system decomposition might be gained through

a close examination of this body of knowledge.
1.2.2.1. Characteristics of Good Decomposition

It is generally acknowledged that large computer software systems tend to
be difficult to maintain or change5 (Bubenko, 1986, p. 292). Parnas (1972, p.
1058) writes that when designing a program "one begins with a list of ... design
decisions which are likely to change". Myers (1975) suggests examining the
impact of future maintenance in order to determine the "best" structure for
software. This impact is determined by the number of related changes to the
system made necessary by coupling between its modules. However, modules must
be defined before such an analysis can be performed. Myers’ search for the best
decomposition is conducted by trial and error. The relationship between
decomposition and software maintenance is examined in the light of a general
theory of decomposition in Chapter 4.

Several suggested properties of good computer program decompositions will
be discussed in this section. Techniques for producing decompositions which

possess these properties will be described in the next section.

1.2.2.1.1. Myers

Myers (1975) appears to have been the first to propose a framework for
analyzing coupling and cohesion within an existing program. He identifies five
forms of coupling and seven forms of cohesion. They are defined in order of
decreasing desirability and have been included as Appendix B. The ranking is
Myers’ and was derived from experience.

"Measurement" of coupling and cohesion is largely arbitrary. Myers (1975)
develops a quantitative measure of the independence of two modules based on the
type of coupling between them. This measure of decomposition quality depends
on a subjective assignment of weights to the various forms of coupling and
cohesion. He uses a matrix of probabilities to express the overall modular
independence of a decomposition. These probabilities represent the likelihood

of a change to one module forcing a change to another module. The matrix could

5 The term "maintenance" shall refer to both the correction of
implementation errors and the modification or enhancement of software.



be used to generate scores permitting quantitative comparison of two
decompositions. A designer could use these scores to guide system decomposition
in a post-hoc manner. Ideally, a design methodology should force the first
design of a system to be correct. Of course, this would require a definition
of decomposition correctness.

The levels of coupling and cohesion within a program are related. Page-
Jones (1980) claims that lower coupling tends to result in higher cohesion

within modules.
1.2.2.1.2. Parnas

Parnas (1972, p. 1056) introduces the concept of information hiding.
Ensuring that higher-level modules do not have unnecessary knowledge about the
internal workings of lower-level modules is an important step in the reduction
of coupling. He also compares alternative decompositions by examining the
impact of future modifications. "Good" decomposition results from minimizing

this impact.
1.2.2.1.3. Yourdon and Constantine

Yourdon and Constantine (1979, chapter 9) suggest a number of
decomposition heuristics. Rules affecting module size, span of control, fan-
in, scope of effect, and scope of control are suggested as a basis for judging

the quality of a decomposition. All of these are described below.

Module Size

Module size has been discussed extensively in the literature. One early
suggestion for module size comes from Baker (1972). He suggested that modules
should be no longer than 50 statements, so that they could be shown on a single
page of a printer listing. Weinberg (1970) showed that programmer comprehension
of a module is reduced if the size exceeds about 30 lines. Yourdon (1975,
PP. 94-95) mentions a number of other module size recommendations proposed by
other researchers and practitioners. Many of these recommendations are

incompatible.



a. Modules should fit into 4096 bytes, or 512 words, or 1024 words, or 2048

words of memory, etc.

b. Modules are anything that can be written and debugged by one programmer

in one month.

c. Modules should be no more than 100-200 statements in length. (This

suggestion is attributed to Larry L. Constantine.)
d. Modules should consist of no more than 20 high-level language statements.
e. Modules should be no longer than 500 COBOL statements.

When discussing the construction of hierarchical program structures,
Steward (1987, p. 98) suggests that no limb have more than 5 to 7 branches off
of it®. The lowest level of Steward's structures correspond to program code.
Therefore, he is suggesting a maximum module length of 5 to 7 statements. He
cites Miller’s Principle (Miller, 1956) which asserts an upper limit to the
number of concepts a human being may consider simultaneously. However, it is
not immediately obvious why a programmer should be expected to consider all the
statements of a module simultaneously.

Steward also claims that high cohesion is indicated "by whether what is
done within the module can be given a short description" (p. 98). Myers (1978)
defines a module which has functional cohesion (his most desirable form of
cohesion) as a module which performs a single specific function. Similarly, a
common rule for module size suggests that a module should consist of a single
functional idea. Unfortunately, the phrase "single functional idea” 1is
difficult to define. While this rule is superior to any of the size maximums
mentioned earlier, it still contains an undesirable degree of arbitrariness.
Any module size rule based on function is bound to be language dependent.
Alexander (1967, p. 205) suggests a module to deal with the acoustical
requirements of a system to illustrate this problem. It could be argued that
the term acoustics "is not arbitrary but corresponds to a clearly objective

collection of requirements -- namely those which deal with auditory phenomena.

Steward exempts CASE structures from this rule.



But this only serves to emphasize its arbitrariness. After all, what has the
fact that we happen to have ears got to do with the problem’s causal
structure?”.

If anything is clear from the above suggestions it must be that there is

no consensus as to either the optimal or maximal size of a module.
Span of Control

Span of control refers to the number of immediate subordinates’ to a
module. Yourdon suggests that spans of control of two or less or more than ten
should be carefully reconsidered. He claims that abnormally small or large
spans of control are usually indicators of poor design. Small spans of control
correspond to either insufficient decomposition at the subordinate level or too
much decomposition at the superordinate level. Large spans of control are
usually the result of a failure to define intermediate levels in the
decomposition. No theory or empirical evidence is presented to support this

heuristic.
Fan-in

Fan-in refers to the use of modules at more than one point of the

program’s structure. The use of these common modules reduces the amount of
programming effort required. There is clearly a trade-off between module
simplicity and generality. For example, consider a point of sale (POS)

inventory system. A single module could be written to handle all forms of input
to the system. This module could be called from any point in the overall
structure. However, some designers might argue that such a module would be
unnecessarily complicated. Input from a POS terminal and keyboard input from,
say, the receiving dock could be sufficiently different to warrant separate

modules.

7 A module X is subordinate to module Y if Y controls the activation of X.

Activation may be accomplished by a subroutine CALL statement, for example.



Scope of Effect and Scope of Control

Scope of effect refers to the location of decision events in the program'’s
structure. The scope of effect of a module is the collection of all modules
containing any processing that is conditional upon the processing in that
module. The scope of control of a module is the module itself and all of its
subordinates. Yourdon and Constantine (1979, p. 178) state "for any given
decision, the scope of effect should be a subset of the scope of control of the
module in which the decision is located". 1In other words, any modules that are
affected by a decision should be subordinate to the module which makes that
decision. Again, no theory or empirical evidence is presented to support this

heuristic.
1.2.2.1.4. Cluster Analysis

Hutchens and Basili (1985) have proposed the use of cluster analysis to
analyze the structure of an existing computer program. All cluster analysis
algorithms require the definition of a similarity or difference measure. This
measure represents the "distance" between modules and is the basis for decisions
to group modules together. Hutchens and Basili suggest several such measures
based on data bindings®. There‘is no theoretical reason for the selection of
one measure over another. Clustering algorithms are also sensitive to the
"black hole" effect. As more and more modules are combined into a single
cluster, the number of linkages to other not yet clustered modules increases.
This means that modules and small clusters are more likely to be grouped with
growing super-clusters than with each other. The fine structure of the system
may be obscured. Weighting schemes can be used to reduce this effect, but a
suitable assignment of weights must usually be found by trial and error. It is
also interesting to note that, in order to perform cluster analysis, it is
necessary to remove common modules as they cause disparate subroutines to

cluster at low levels in the hierarchy.

8 A data binding exists when two modules reference the same variable.

10



1.2.2.2. Decomposition Techniques

Several computer program decomposition techniques have been proposed. The
Structured Design (Myers, 1975, 1979; Yourdon and Constantine, 1979) literature
describes several decomposition heuristics. Myers defines source/transform/sink
(STS) decomposition, transactional decomposition, and functional decomposition;
Yourdon and Constantine define transform analysis and transaction analysis.
Hamilton and Zeldin (1976) have developed a methodology based on an analysis of
the inputs and outputs of a module. Their decomposition rules are embodied in
constructs called JOIN, INCLUDE and OR. These constructs are referred to as
"primitive control structures". 1In addition, Mili, Desharnais, and Gagné (1986)
have formally defined the process of program decomposition as performed by

programmers.
1.2.2.2.1. Structured Design Decomposition Techniques
1.2.2.2.1.1. STS Decomposition and Transform Analysis

STS decomposition is Myers principal decomposition technique. Transform
analysis, as defined by Yourdon and Constantine (1979) 1is essentially
identical®. The steps for applying STS decomposition to a high-level module are
as follows:

a. Outline the structure of a module.

b. In this module structure, identify the major stream of input data and the

major stream of output data.

c. Identify the point in the module structure where the input data stream
last exists as a logical entity and the point where the output data stream

first exists as a logical entity.

9 This decomposition technique was first outlined in Stevens, Myers and

Constantine (1974).

11



d. Using these points as the dividing points in the module structure,
describe each division of the problem as a single function. These become

the functions of the immediate subordinate modules.

For example, consider a module

- . which accepts a request to
\L ~@——— user's request

a request
| by keyword and then displays

b g—request selected abstracts. The

!

Form a search query

search an abstracts database
Read

Retrieval
Requests

structure of the module might

| be as illustrated in

€ «@3}——— search query . .

¢ Figure 1. The major (and
Search keyword database only) input stream consists of

| ) user requests "a". The major

d  «g——1list of titles

¢ (and only) output stream

Obtain abstracts consists of the retrieval

L <@——abstracts results "f". Point "c" is the

Retrieval.
Results

last point where the input

Display abstracts . .
1 stream exists as a distinct

i £ <s—display of abstracts entity. At point "d" there

exists a 1list of abstract

Figure 1: A program structure for illustrating

: T titles retrieved from the
Myers' STS decomposition.

keyword database. There is a
one-to-one correspondence between the final retrieval results and this list of
titles. Therefore, Myers claims that point "d" is where the output stream first
exists as a distinct entity. The module would then be broken into three
submodules. The "source" submodule would read a request and form the search
query. The "transform” submodule would search the keyword database. The "sink"
submodule would obtain and display the selected abstracts. Yourdon and
Constantine’s transform analysis appears to be identical to STS decomposition.
They refer to locating point "c" as identifying the "afferent data elements" and
locating point "d" as identifying the "efferent data elements". Afferent data

elements are defined as follows:
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Afferent data elements are those high-level elements of
data that are furthest removed from physical input, yet

still constitute inputs to the system.

Efferent data elements are similarly defined, but for outputs. Clearly, the
points at which the original module is to be split are subject to some degree
of ambiguity. For example, an argument could be made for splitting the above
example at points "c¢" and "e" as it is only at point "e" that the final result
is clearly seen. Yourdon and Constantine (1979, p. 194) are aware of this
problem, but claim that experienced designers will not differ by more than one
or two transforms (i.e. functions) when identifying afferent and efferent data
elements.

It should be noted that all decomposition techniques discussed in this
section, including STS decomposition, are intended to be applied recursively to
the newly created submodules. This recursion is to be carried out until the

lowest-level modules may be easily converted into code.
1.2.2.2.1.2. Transactional Decomposition and Transaction Analysis

Myers’' transactional decomposition is applied when a module takes the form
of a selection process. If a module receives different types of transactions,
and the processing which follows is dependent on the type of transaction
received, the module 1is a candidate for transactional decompbsition. For
example, a module whose purpose is to process a merchandise transaction might
be decomposed as shown in Figure 2.

Transactional decomposition is similar to Yourdon and Constantine’s

transactional analysis. However, they introduce the concept of a "transaction

center". A transaction center must be able to

a. obtain transactions in raw form,

b. analyze each transaction to determine its type,
c. dispatch each type of transaction, and

d. complete the processing of each transaction.

13



Apply sales transaction
to file

Apply return transaction

to file
Apply merchandise

transaction to file Apply new 1item transaction

to file

Apply discontinuance
transaction to file

Figure 2: An example of Myers'’ transactional decomposition.

Myers would apply STS decomposition prior to transactional decomposition
in order to identify the modules concerned with getting the transaction and
determining its type.

Yourdon and Constantine also provide an operational definition of a

transaction.

A transaction is any element of data, control, signal,
event, or change of state that causes, triggers, or

indicates some action or sequence of actions.
This definition makes it apparent that transactional decomposition may be
applied in cases where there is no "traditional" transaction evident as there
was in the above example.
1.2.2.2.1.3. Functional Decomposition
Myers describes functional decomposition as "an ad hoc process of pulling

single subfunctions from a module to achieve certain purposes". He suggests two

possible purposes:

14



a. Isolating common functions, and

b. Isolating functions within informational cohesion modules.
Before:
calculate average calculate standard deviation
and and
write results to screen write results to screen
After
calculate average calculate standard deviation
write to screen

Figure 3: Myer’s functional decomposition: Isolating common functions.

The first purpose reflects the desirability of removing a subfunction which is
contained in a number of larger modules, and making it into a separate module
referenced by each. For example, the modules shown in the "before" part
of Figure 3 might be restructured as shown.

The second purpose refers to splitting a function which references a number
of data structures into modules which reference only one data structure each.
An informational cohesion module is one that hides "some concept, data structure,
or resource" (Myers, 1978, p. 37). Modules with informational cohesion are
considered as desirable as ones with functional cohesion. Myers’ provides the
following example of a situation where this splitting is desirable. Suppose
there exists a module whose function is "build table of underpaid employees”.
The module sequentially examines the personnel file, and if an employee meets

the underpaid criteria, it places the employee's name in the table. The
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structure of the module might be as shown in the "before" part of Figure 4.
Myers would not have applied STS decomposition to this module "because its logic
is easily visualized". Easy visualization is Myers’ decomposition stopping
criteria. The first and the last subfunctions refer to separate data structures:
the personnel file and the output table. Functional decomposition of the above
would lead to structure shown in the "after" part of Figure 4. The two newly
created modules could be combined with other modules referencing the data
structures, thus either adding to or creating informational cohesion modules.

Testing to determine whether a given

Before: employee is underpaid would be

é performed in the "Build table of

get next personnel record underpaid employees" module.

) Yourdon and Constantine do not refer
extract salary fields

% to any decomposition method which is
compute this employee's analogous to Myers' functional
lowest valid salary ey
% decomposition.

if underpaid, add to table
% 1.2.2.2.2. HOS Decomposition

The HOS design methodology developed
After | by Hamilton and Zeldin (1976) is
‘ build table of
underpaid employees capable . of generating computer

I code through the use of "mathematically

provable constructs". Specifically,
obtain salary data add entry to ...

_ three primitive control structures are

for next employee underpaid table
Figure 4: Myers' functional identified: JOIN, INCLUDE, and OR.
decomposition: Creating The HOS methodology does not provide

informational strength
modules. specific  techniques for actually

performing system decomposition. The

methodology provides formal tools for ensuring that a given decomposition 1is

consistent with certain axioms goverﬁing the relationships between modules.

Therefore, the HOS methodology can provide some insights into the nature of

"good" decomposition, but cannot add to the decomposition heuristics found in
the Structured Design literature.

JOIN is used to support the decomposition of a function into two

sequentially executed subfunctions. The outputs of one module must be inputs
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to the other. For example, if the function of the original module was "make a
stool", it might be decomposed to "make parts" and "assemble parts". HOS uses
a functional notation combined with a binary tree to represent decompositions
as shown in Figure 5a. Inputs to the system are TOPWOOD and LEGWOOD and the
system’'s output is STOOL. The output from the first, or right most, module is
TOP and LEGS. TOP and LEGS form: the inputs to the second module. JOIN is
analogous to STS decomposition when no transform module is identified. The
original module will be broken into only two submodules.

If some set of desired outputs can be obtained in more than one way, OR
is used to separate the methods. For example, if LEGS can be constructed from
either HARD wood by turning or SOFT wood by carving, a "make legs" function could
be decomposed as shown in Figure 5b. OR is similar to transactional
decomposition. Its use implies that one and only one of the identified
subsystems may be activated by a single transaction.

INCLUDE is used to separate independent subfunctions. For example if the
functions "make legs" and "make top" were independent of one another, the
function "make parts" could be decomposed as shown in Figure 5c. This sort of
decomposition is neither STS nor transactional. Nor does it fall under either
of the circumstances Myers suggests for functional decomposition. Perhaps, Myers
and Yourdon and Constantine considered this form of decompositioh too obvious
to mention. That is, if a module consists of subfunctions which do not interact
with each other in any way, separate them.

The HOS methodology has been lucidly described by Martin (1985). He claims
that

"The technique has been automated so that bug-free systems can be
designed by persons with no knowledge of either mathematics or
programming. The software automatically generates bug-free program
code. Whereas most mathematical techniques have been applied only
to small programs. Hamilton and Zeldin's technique has been used
successfully with highly complex systems. The technique is used not
only for program design but, perhaps more important, for high-level
specification of systems. The design is extended all the way from
the highest-level statement of system functions down to the

automatic generation of code." (pp. 39-40)
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Although Martin is clearly concerned with "selling" HOS, there is no doubt that
it represents a major departure from the relatively informal methodologies of

‘Structured Design.
1.2.2.2.3. Formal Models of Computer Programming
Mili, Desharnais, and Gagné (1986) describe three formal models of the
process of computer programming. They present three formalisms for program
specifications:
a. As a pair of assertions (p,q), where p, the input assertion, defines the
set of admissible input states and q, the output assertion, defines the
set of correct output states.

b. As a function mapping admissible input states into correct final states.

c. As a relation containing all the pairs (input/output state) considered to

be correct by the specifier.

The third formalism, and its associated relational decomposition, is quite

similar to the one developed in the remainder of this document. Mili et
al. define a relation R as a subset of S X S, where S is the set of all possible
states of a program!®. That is, R is a subset of all possible pairs (s,s’) where
the input state s and the output state s’ are elements of S. A program
specification can be described by a relation where each tuple consists of a
input/output state pair. Three rules for program decomposition are defined.
These rules ensure that an original relation can be reconstructed from a set of

simpler?! relations. It is the programmer’s responsibility to find the simpler

relations. No procedure for obtaining these simpler relations is described.

10 Program states reflect the values of the program’s variables. For

example, if a program contains three variables "a", "b" and "c", a state s of
the program could be represented by a triplet of values <a(s),b(s),c(s)> where
a(s) is the value of variable "a" when the system is in state s, etcetera. If
"a" is an integer variable and "b" and "c¢" are real, possible states of the
program might include <3,2.1,3.1>, <1,0.1,0.2>, and <0,0.1,0.2>.

11 That is, less complex code is required for implementation.
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Explanations of the decomposition rules are relatively involved and have been

included as Appendix C. The rules are described briefly, and informally, below.
Sequence Statement Rule

A relation R may be decomposed into two relations R, and R, where:

1) The input states of R, are the same as the input states of R.
2)  The output states of R are the same as the output states of R,.
3) The output states of R, are the same as the input states of R,.

Alternation Statement Rule

A relation R may be split into two smaller relations R; and R, where R; consists
of those states of R which satisfy some condition, and R, consists of those

states of R which do not.

The Iteration Statement Rule

Decomposition by iteration involves finding a relation which, when applied to
itself recursively using the sequence statement rule, will yield the original

relation.

It is difficult to see how the iteration rule qualifies as a form of
decomposition., The rule is primarily intended to avoid coding a large number
of input/output pairs, by applying a smaller amount of code iteratively.
Iteration can be viewed as a programming tool used to save source code space and
programmer typing time. Decomposition using the iteration rule need not produce
programs which are more easily visualized than a program implementing the
original relation R. 1In fact, the operation of iterative programs can be much

harder to grasp than equivalent, but longer, "linear" programs.

1.3. Conclusions
Decomposition is recognized in the general systems theory literature as

an important tool for both systems analysis and design. Systems exhibiting

"good" decompositions are seen to be more stable than monolithic systems.

20



However, Simon and Ando’s short-run and long-run dynamic criteria appear to be
the only clear contributions to an understanding of what constitutes "good"
decomposition. On the other hand, computer program decomposition has long been
a major problem in software engineering, and as a result some practical solutions
have been devised.

There are three basic types of computer program decomposition. STS
decomposition, transform analysis, HOS JOIN, and the sequence statement rule
refer to the separation of sequentially activated functions into separate
modules. These techniques could be referred to as "sequential decomposition".
Transactional decomposition, transaction analysis, HOS OR and the alternation
statement rule are used to decompose a set of functions that are activated
conditionally. These techniques could be referred to as "conditional
decomposition”. The HOS INCLUDE can be used to separate functions that are
independent of each other. This technique could be referred to as "parallel
decomposition”.

The Structured Design methodologies of Myers and Yourdon and Constantine,
are derived from experience and require human 1intelligence for their
application. They place some structure on the process of finding the lower-
level modules, but their precise definition is left to the program designer.
The dictum stating that a module should contain at most one functional idea is
both highly subjective and language dependent. Myers’ framework of coupling and
cohesion along with his measure of a decomposition’s quality is only useful
after the system has been coded.

The HOS methodology does not consider how a module is to be decomposed.
Rather, it is concerned with ensuring that the decomposition is good with respect
to the HOS axioms, namely, it can be represented using primitive control
structures.

The decomposition rules of Mili et al. can be used to ensure that given
modules can be combined to form the original program. They do not provide an
algorithm for finding the modules.

The next chapter describes a system modelling formalism which will support

both automated decomposition and completeness and consistency verification.
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Chapter 2: System Modelling

2.1. Introduction

Bubenko (1986, p. 289) notes that the practice of information systems
analysis and design is characterized by hundreds of different methodologies.
Yet there is general agreement that most large information systems are difficult
to maintain and change, and that assessing their correctness and completeness
is usually impossible (p. 292). Several undesirable characteristics possessed

by many methodologies are identified (p. 298). These include the following:

a. Fuzzy Concepts
Many of the concepts advocated in analysis and design methodologies
are not well defined. It is difficult to know which ones to use, and how

to use them in varying, non-trivial design situations.

b. No Verification
There is usually no way to verify the correctness, completeness, and

consistency of conceptual specifications.

Examples of poorly-defined concepts include: system, decomposition,
subsystem, statics, and dynamics. It is impossible to develop a theory of system
decomposition without exact definitions of these concepts. The main purpose of
this chapter is to present a formalization of the modelling constructs deemed
necessary for the automation of system decomposition. These constructs have been
implemented in the form of computer-based specifications analysis tools. The
tools are described and their use will be demonstrated using two rather simple
examples in later sections of this chapter. A more complicated "real" system
will be examined in Chapter 6.

There are no generally accepted definitions for correctness, completeness,
and consistency with respect to system models. Roman (1985) claims that "a
requirements specification is complete if some relevant aspect has not been left
out and is consistent if the parts of the specification do not contradict each
other. Both completeness and consistency require the existence of criteria
against which one may evaluate the model. Completeness and consistency

checks...presuppose the analyzability of the requirements by mechanical or other
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means. The higher the degree of formality the more likely it is that
requirements may be analyzed by mechanical means." (p. 16). It is not surprising
that few methodologies provide for any form of verification since few produce
formal requirement specifications. Definitions of completeness, consistency and
correctness will be suggested in this chapter. These definitions are
sufficiently formal to allow computerized analysis. Tests for completeness and
consistency have been included in the specifications analysis tools.

Bubenko (1986, p. 298) also notes that there appears to be an underlying
assumption, among the various analysis and design methodologies, that "in the
early stages, conceptual specification and analysis of the behaviour (dynamics)
of the information system is less important (for the purpose of understanding)
than the description of its ‘structure’". It is not clear how any analysis of
structure can be performed without some knowledge of behaviour. Part of a
system’s structure consists of a collection of objects!?. In the object-oriented
programming literature, Nierstrasz (1987) notes that "perhaps the most difficult
task is deciding how to naturally decompose a problem into objects" (p. 11-12).
In order to separate two objects in a system, the analyst must be aware of a
circumstance in which the objects behave independently. For example, consider
an employee’s first and last names in a personnel system. If a decision is made
to represent them as separate objects, the analyst must know that they could be
separated. The analyst must know of some process which does not require both
parts of an employee’s name. This knowledge could come from his or her
understanding of the system’s operation or previous experience. 1In Chapter 4,
it will be argued that previous experience is not a sufficient basis for good
design decisions. The formalism presented here explicitly models system
dynamics, and decomposition decisions (as described in the next'chapter) are

based solely on the characteristics of the system as described by the analyst.

12 ngbjects" as used in this research are related to the objects of object-
oriented programming, but they are not identical. The relationship shall be
discussed in Chapters 3 and 6.
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2.2. The Formalism

2.2.1. General

The process of systems analysis and design can be viewed as a three-stage

Real System Imp lemented
Information System

Real

Conceptual

Analysis

Inplementation

Mode |l of the Model of the
Bl
Real System Design = Information System

Figure 6: The system analysis and design process (adapter from Wand and Weber,
1988).

transformation as shown in Figure 6. To illustrate these stages, consider an

analogy with the design and construction of an office building. An architect

creates a set of drawings and specifications which reflect the desires of his

or her client. An engineer translates these into a detailed plan for the

construction of the building. Finally, a contractor constructs the office

building itself. In this example, the "real system" consists of the client’s

desires. The activities of the architect are called "analysis". The architect’'s
drawings and specifications are a "model of the real system". The activities
of the engineer are called "design". The set of detailed construction drawings

forms a model of the office building and is analogous to a "model of the
information system", The activities of the contractor are called
"implementation" and the office building itself is analogous to an "implemented
information system".

This research is primarily concerned with the transformations from the

"real system" to the "model of the real system", and from the "model of the real
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system" to the "quel of the information system", that 1is, with both the
"analysis" and "design" transformations. System decomposition is the process
by which an analyst identifies the parts of the real system which should be
reflected in his model. These parts, and their relationships with each other,

have a direct influence on the structure of the information system.
2.2.2, Systems

In order to support automated system decomposition a modelling formalism

must be able to represent the following:

a. The parts of the system!®,
b. The allowed states of the system, and
c. - The manner in which these states may change.

The first requirement refers to system statics; the last two refer to system

dynamics. Most existing analysis and design methodologies meet these
‘requirements at least implicitly. However, the basic constructs of most

methodologies (with the notable exception of HOS) are not clear. An important
premise of this research is that understanding of system properties, in
particular decomposability, will be greatly facilitated by carefully defining
what we are studying. That is: What exactly is a system and what governs its

behaviour?

2.2.3. An Intuitive Beginning

The system modelling formalism used in this research is largely based on

the works of Bunge (1978, 1979) and Wand and Weber (1988, 1989). The system

13 The modelling formalism selected for use in this research does not deal
directly with the "parts" or things belonging to a system. As will be shown,
only knowledge of the properties which are used to describe the things is
required to specify a system. However, at this stage it may be more convenient
to visualize a system based on a collection of things, rather than a set of

properties.
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modelling approach based on the formalism will be called SELMA (for States,
Events, and Laws Modelling Approach)l‘.

One of the goals of system decomposition is the identification of the
objects comprising a system. As shall be illustrated in the next chapter, there
is no unique set of objects describing most interesting systems. In general,
labelling of the objects from which a system is constructed depends upon the
analyst’s point of view. Von Bertalanffy (1974) notes that identification of
objects in the real world is not a trivial task. "The spatial boundaries of even
what appears to be an obvious object or ’‘thing’ actually are indistinct. From
a crystal consisting of molecules, valences stick out, as it were, into the
surrounding space; the spatial boundaries of a cell or an organism are equally
vague because it maintains itself in a flow of molecules entering and leaving,
and it is difficult to tell just what belongs to the ‘living system’ and what
does not. Ultimately all boundaries are dynamic rather than spatial." (p. 22).
There is a real danger that an analyst may be tempted to decompose a system on
the basis of spatial relationships (i.e. relative positions in space). As will
be further discussed in the next chapter, if component objects discovered in this
way are used to form the structure of the information system, it is likely that
alternative, and possibly superior, structures will not be considered. Spatial
relationships are primarily static in nature. The theory of decomposition
presented in the next chapter is based on an analysis of both system statics and
dynamics.

There is no generally accepted definition for the term "system" and it will
not be rigorously defined here. In the modelling formalism, and in the theory
of decomposition presented in the next chapter, "the system" shall mean whatever
collection of objects and processes the analyst chooses to consider. A system
is described by properties!® and relations between these properties. Of course,
a system may itself be considered to be an object, and as such suffers from the

same identification problems discussed above. It is assumed that the system is

4 Just as a point of interest, "selma" is derived from the Arabic word for

"secure" and is the short form of "anselma" which is 0ld Norse for "divinely
protected" (Browder, 1987, p. 185). Given that automation of consistency and
completeness testing is one of the major advantages of SELMA over other modelling
schemes, these are not entirely inappropriate meanings.

15 These properties will also describe the things from which the system is
composed. However, the modelling formalism is not concerned with identification
of the component things of a system.
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described by -a well defined set of properties, and that all relevant!®
interactions between the system and the rest of the universe (i.e. its
environment) are known.

It should be noted that Bunge (1979, p. 6) defines a system as an object
consisting of at least two different connected' things. This definition was
found to be too restrictive. For the purposes of system modelling, it is
sufficient to accept as a system anything which the analyst claims is a system,.
As far as this research is concerned, it does not matter whether each component
of the system is connected directly, or indirectly, to any other component of
the system. For example, consider a system consisting of two independent subsets -
of things, but where the things in each subset are interconnected!®. As we shall
see, the decomposition algorithm (described in the next chapter) will find that
the system consists of two independent subsystems!®. The stance taken here is
that analysts know what systems are and that too detailed a definition will only

confuse matters.

16 Relevant to the purpose of the analysis effort.

17 Bunge also defines the term "connected". Unfortunately, any discussion
of connection or interaction degenerates into a discussion of causality. Such
a discussion is not appropriate here.

18 Normally there should be some reason to consider independent subsets as
parts of the same system. Perhaps the independent subsets describe are parts
of another subsystem defined at a higher level of abstraction. That is, using
the terminology to be introduced in the next chapter, the two subsets may each
contribute input state variables to a subsystem which determines the value of
some emergent state variable at a higher level.

19 Note that in reality the subsystems may not be independent. It could
be argued that in some sense all parts of the universe are interconnected.
However, it is possible for two subsystems to be independent with respect to a
particular model. The model is a man-made abstraction of some aspects of the
real world. Not all interactions will be described.
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2.2.4. Definitions
2.2.4.1. The Basics
Definition: System State

At a given time, the values attained by the properties of a system ¢ comprise

a STATE s of o.
Definition: State Variable and Value

State variables are the properties required to describe some part of the real
world for some given purpose?®. A system o is that part of the real world
described by the set of STATE VARIABLES {v,,...,v,) selected by an analyst?!, A
state variable is a function mapping the set of all system states into the set
of VALUES. That is, the value of state variable v; at time t is v;(t). For
example, a state variable called "employee-type", describing some part of a
personnel system, might have values of "full-time" or "part-time". A system

state s can be represented by a vector of state variable values,
s = [Vl(t) yhoee :vn(t)]
Definition: Possible State Space

The POSSIBLE STATE SPACE S of a system o is the Cartesian product of the sets
of all possible values of each state variable of o. Bunge (1979, p. 20) calls
this space the "conceivable state space of ¢". For example, consider a system
which can be described by three state variables, "a", "b" and "c". A state s
of this system could be described by the vector [a(t),b(t),c(t)], where a(t),

b(t), and c(t) are functions returning the values of state variables a, b, and

20 This implies an appropriate choice of level of abstraction. That is,

it is not necessary to include all properties of the part of the real world being
modelled. For example, when modelling a company’s payroll system, the analyst
may choose not to include a state variable describing the size of an employee’s
desk.

21 The concept of "system" is discussed further in Chapter 7.
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c at time t respectively. If each state variable could have values of 0 and 1,
the possible state space of the system would consist of [0,0,0], [0,0,1],
(o,1,0J, fo,1,1J, [1,0,0], [1,0,1], [1,1,0], and [1,1,1].

Definition: System Law

The interactions between the properties of a system o comprise the SYSTEM LAW

L of o (Wand and Weber, 1989). Given any state s of o, L is a function®® such
that

s’ = L(s)

where

L(s) = s if the system may remain indefinitely in s, and

L(s) = s if the system state must change, and s’ will be the next state of

the system where s = L(s’) (i.e. the law does not change the next

state).

Every system has one and 6n1y one system 1a&. This law completely defines the
behaviour of the system. Full knowledge of a system law is generally impossible
or a least very difficult to obtain?®. The concept of a system law is seen as
useful tool for theory building, but practical problems will require more

operational definitions. These will be developed later in this section.
Definition: Stable and Unstable System States
Given a state s of a system with system law L:

If s = L(s) then s is said to be STABLE with respect to L.
If s # L(s) then s is said to be UNSTABLE with respect to L.

22 This research deals only with deterministic system. That is, each

initial system state transforms into one and only one final state.

23 For example consider the physical universe. One could think of the
universe as being governed by a single all-encompassing physical law, which
mankind is struggling to understand through science. We currently have only a
partial understanding of this law. This partial understanding is expressed by
our chemical, biological and mathematical principles and laws of physics.
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For example, consider a simplified accounting system described by state
variables représenting "account balance" and "value of assets”. Assume the
system law simply states that the values of the two state variables should be
equal, and if they are not, the value of "account balance” must be set equal to
the value of "value of assets". That is, if the values of "account balance" and
"value of assets" are not equal, the system law would alter the system state by
setting the value of "account balance" equal to the value of "value of assets".
This means the system was in an unstable state with respect to the system law,
because the law maps the original state into a different state. On the other
hand, when the values of "account balance" and "value of assets" are equal, the

system is in a stable state because the law is fulfilled.

Definition: Stable State Space

The set of all stable states of a system ¢ is called the STABLE STATE SPACE of

ag.
Definition: External Event

The environment?* acts on a system in the form of EXTERNAL EVENTS. An external
event e occurs when the environment acts to set the value of some state variables
within the system. This change of value might move the system into another
stable state, an unstable state, or the system might remain in the same state.
In other words, if s is a system state and S is the possible state space of the

system, e is a function?® of the following form.
e: {s such that s = L(s), s € S} --> {s such that s € S}
If the state is stable, no further state changes occur. However, if the new

state is unstable, the system must respond so as to return to a stable state.

These system state changes in response to external events define the system's

2% The environment of a system is described by all properties of the real

world which are not properties of the system.

25 It is assumed that external events can only occur when the system is in

a stable state (ie. L(s) = s).
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dynamics. For example, a system initially in a stable state "stable;;" may be
moved to an unstable state "unstable," by an external event e. The system will

respond by moving to another stable

state "stableg". This 1is shown a)
graphically in Figure 7a. It is also
possible that the same event may move N
the system from a stable state \\2§
"stable;," to another stable state |[stable,——e unstable,— = stable,,
"stables," directly, as shown in
Figure 7b.

An analyst may find it difficult
to specify a monolithic system law D)
which describes the overall behaviour .
of all state variables. Fortunately, s
a system law may be decomposed into o
smaller SUBLAWS, and perhaps more stable,,————— stabley

importantly, a system law may be Flgure 7: The action of external
event "e" on a system.

a) The event moves the system into an
unstable state.

‘b) The event moves the system into a

stable state.

synthesized from a number of sublaws.

Definition: Sublaw

A SUBLAW 1 is a function defined on a subset of the state variables describing

a system, such that for any stable state s of the system o with system law L,

s = 1(s) and for any unstable state s of the system, s = 1(s). That is,
s = 1(s) if s = L(s)
and

s = 1(s) if s = L(s)

Notice that if s is unstable, a sublaw need not map s into the same stable state

as the system law. That is,

s’ = 1(s) and s % s and s” = L(s) does not imply s’ = s”.

Also notice that there are two parts to any system law or sublaw:
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a. Stability Conditions
This part applies when a state s is stable (i.e. s = L(s) or s =

1(s)). The condition specifies the system states allowed by the sublaw.

b. Corrective Actions
This part applies when a state s is unstable (i.e. s »# L(s) or s =
1(s)). The action specifies how the values of the state variable must

change should the system enter an unstable state.
Before an example of a sublaw is provided, one more definition is required.

Definition: Rule

A sublaw may be expressed as a set of RULES. Each rule specifies a single stable

condition or corrective action.

For example, a description of a very simple accounting system (with real-

time asset change posting) might include the following rules.

1. The value of the "account balance" state variable must equal the value of
the "value of assets" state variable.

2. The "last change status" state variable must indicate that the last change
to asset value has been posted (i.e. the value of the last change to the
value of the assets has been added to or subtracted from the account
balance).

3. If the value of the "account balance" state variable is not equal to the
"value of assets" state variable (i.e. the system is out of balance), then
adjust the value of the "account balance" state variable to equal the value
of the "value of assets" state variable, and set the value of the "last
change status" state variable to indicate that the last change has been

posted.

The above rules constitute a sublaw. There may be other sublaws describing other
parts of the system. The first two rules specify stability conditions and the
last specifies a corrective action. Notice that this sublaw assumes that the

only way the system can become out of balance is by altering the value of the
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assets. That is, the sublaw could not handle a situation where the account
balance was changed directly, either by accident or deliberate tampering. In
other words, the above rules have been formulated with a specific set of external
events in mind. The systemvmodelling tools, described later in this chapter,
require explicit identification of external events so that deficiencies in the
rules can be immediately identified.

Traditionally, the behaviour of office iﬁformation systems has been
described in terms of procedures. In SELMA, the behaviour of systems is entirely
defined in terms of sublaws. Sublaws are not equivalent to procedures. Panko
(1984, p. 227) defines a procedure as a program "in which there is a
predetermined flow of work involving many steps, whether the flow consists of
the same steps each time or involves a more complex logic flow". In a study
involving the creation of computerized systems to support executive work, Panko
notes that none of the executives interviewed "could articulate definite
processes, much less well-defined procedures, to describe how their goals were
achieved" (p. 228). The order of activation of sublaws is not predetermined.
It is hypothesized that in many cases it may be easier to discover the sublaws
under which an executive operates, than to determine all the procedures he or
she may choose to follow. However, empirical testing of this hypothesis is
beyond the scope of this research.

Before formal definitions of correctness, completeness, and consistency

can be given, one more basic definition is required.
Definition: Response Path and Response Function

Let Q be the set of sublaws describing the behaviour of some system. An ordered

list of sublaws [1,,...,1;] where {1,,...,1;} € Q is called a RESPONSE PATH and

the composition of those sublaws?®

Po(s) = 1,(...1,(1,(s))...) = Lljo...0l,01,(s)

is called a RESPONSE FUNCTION defined on Q.

26 The symbol o is used to denote the composition of functions.
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2.2.4.2. Completeness, Consistency and Correctness of Sublaws

Brooks (1987) notes that "the hardest part of the software task is arriving
at a complete and consistent specification..." (p. 16). SELMA supports formal
definition of completeness and consistency. As will be demonstrated later in
this chapter, these definitions can be computerized to automatically test a
system model consisting of state variables and sublaws. Informally, the notions

of sublaw completeness and consistency can be described as follows:?’

Completeness: All system states may be transformed to stable states by the
sublaws (i.e. no states have been "left out" in the analysis
of system dynamics).

Consistency: Every system state, which may be transformed to a stable state
by the sublaws, may be changed into one and only one stable

state (i.e. the sublaws do not contradict one another).
In addition, the notion of correctness is informally described as follows:

Correctness: Taken together, the sublaws transform the initial system states
to exactly the same final states as the system law (i.e. all
the sublaws combined describe the actual behaviour of the

system).

Each of these definitions depends to some extent on the system law.
Completeness and consistency require that stable states be identified. Stable
and unstable states were defined in terms of the system law. Correctness
requires that the "operation" of the sublaws be the same as the system law.
Unfortunately, system laws are generally unknowable?®., The best an analyst can
hope for is an approximation to the system law in terms of sublaws. This does
not imply that completeness, consistency and correctness are useless notiomns.
While correctness is usually impossible to verify, two levels of completeness

and consistency are formally defined below. At a conceptual level, global

27 These informal notions are similar to those of Roman (1985, p. 16).

28 0livé (1983, p. 73) states "it is not possible to formally verify the

validity of the conceptual model with respect to the wuser’s ‘real’
requirements...".
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completeness, global consistency and correctness are defined in terms of the
system law. At an operational level, local completeness and local consistency
are defined using a more restricted definition of stability called 1local
stability?®,

2.2.4.2.1. Conceptual Definitions for Completeness, Consistency and Correctness

Definition: Global Completeness of Sublaws

A set of sublaws Q of system o with system law L completely describes the

behaviour under L of ¢ with respect to the possible state space S of o, if for
every state s in S there exists a response function P(s) which maps that state

into a stable state s’ . That is:

Q is globally complete with respect to S if and only if
FOR ALL s such that s € S,
THERE EXISTS Py such that s’ = Pg(s) and s’ = L(s’)

Notice that while s’ must be stable, it need not be the same stable state into
which the system law maps s (i.e. s’ 1is not necessarily equal to L(s)).
Equivalence of the sublaws to the system law is assured by sublaw correctness

as defined later.
Definition: Global Consistency of Sublaws

A set of sublaws Q of system ¢ with system law L is globally consistent with
respect to the possible state space S of o, if all response functions which map

a state s in S into a stable state, map s into the same stable state. That is:

Q is globally consistent with respect to S if and only if
FOR ALL s, P, P’y
such that s € S and L(Py(s)) = Po(s) and L(P’q(s)) = P"y(s),
Pa(s) = P’ q(s)

2% " Conceptual and operational levels are concerned with aspects of the

"real system" and the "model of the information system" (as defined earlier in
this chapter), respectively.
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Again, notice that while the final states Py(s) and P’4(s) must be stable and
equal, they need not be equal to the state into which the system law would have

mapped s.
Definition: Correctness of Sublaws

A set of sublaws Q of system ¢ with system law L correctly describes the
behaviour under L of ¢ with respect to the possible state space S of o, if for
every state s in S every response function Pg(s), which maps s into a stable

state, maps s into the same state that L maps s. That is:

Q is globally correct with respect to S if and only if
FOR ALL s, Py such that s € § and L(Py(s)) = Po(s),
Po(s) = L(s)

Global completeness and consistency are prerequisites for correctness.
That is, the definition of correctness implies that every state can be mapped
into one and only one stable state. However, notice that global completeness
and consistency do not imply correctness. That is, the definitions of global
completeness and consistency do not ensure that the mappings provided by the
sublaws and the system law are the same. This observation may be expressed by

the following corollary,

Corollary: If a set of sublaws Q is correct with respect to a possible state
space S, then Q is globally consistent and globally complete with

respect to S.
2.2.4.2.2. Operational Definitions of Completeness and Consistency

Knowledge of the system law is required to test a set of sublaws for global
completeness, global consistency, and correctness. In practice, the system law
governing the behaviour of most real systems is approximated by the sublaws
themselves. Notice that the global completeness and global consistency
conditions require only knowledge of whether a system state is stable. While

knowledge of the system law is required to assess stability (i.e. s is stable
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Aif s = L(s)), 1f a weaker definition of stable state is employed, a form of
completeness and consistency testing becomes possible. Consider the following
definition for LOCALLY STABLE STATE where P is some response function derived
from the set of sublaws Q.

Definition: Locally Stable State

A system state s is locally stable if and only if there is no composition Py of

sublaws Q which can map the state into a different state. That is,

s is locally stable with respect to Q if and only if
THERE DOES NOT EXIST P, such that s = Py(s)

A weaker form of completeness, called LOCAL COMPLETENESS, of the sublaws
could be guaranteed by ensuring that there exists some response function mapping

each system state into a locally stable state.
Definition: Local Completeness of Sublaws

Let Q be a set of sublaws describing the system ¢ which may enter states §’°3°,

then

Q is locally complete if and only if
FOR ALL s, s € §
THERE EXISTS s’ = Pp(s) such that s” is locally stable

A weaker form of consistency, called LOCAL CONSISTENCY, of the sublaws
could be established by ensuring that all possible response paths lead to the

same final locally stable state.

30§’ may not equal the possible state space S. S’ is the set of states,

both stable and unstable, which the sublaws and external events included in the
model of the system are designed to consider. As will be discussed in more
detail later, the stability conditions of the sublaws define the stable states
of S’ and the corrective actions define the unstable states.
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Definition: Local Consistency of Sublaws

Let Q be a set of sublaws describing the system o which may enter states $’, then

Q is locally consistent if and only if
FOR ALL s, Py, P'g
such that s € 8’ and Py(s), P’o(s) are locally stable,
Pa(s) = P/ q(s)

Tests for local consistency and completeness are clearly inferior to the
tests possible if the system law is known. However, local consistency and
completeness testing does ensure that all known information is consistent and
complete with respect to itself,

Olivé refers to local consistency and completeness as the "logical
consistency of the model" (p. 73). A model is "logically consistent" if the
outputs of the system are derivable from the inputs. Most systems analysis and
design methodologies do not provide any way to systematically verify the logical
consistency of a model. CIAM (Gustafson, et al., 1982) and DADES (Olivé, 1982)
are mnotable exceptions. CIAM refers to tests for local completeness and
consistency as "checking the satisfiability of information requirements". Each
output must be expressible in terms of system inputs or information derived from
those inputs. DADES refers to these tests as "derivability analysis" (p. 229).
Derivability analysis is a formal method to show that outputs are derivable from

inputs.

2.2.5. A Simple Example

Consider a hypothetical system consisting of four interconnected lights.
Light "a" is connected in series with "b" so that if "a" is on then "b" will be
on and if "a" is off, "b" will be off. If light "a" is off then light "c" will
be on, and if "a" is on, light "d" will be on. Only the state of light "a" may
be set manually. The schematic diagram of a system implementation using digital
logic and light emitting diodes is included as Appendix L.

The system may be described by the following state variables and states.
The "on" state of a light will be represented by the integer 1 and the "off"
state by O.
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State Variables States

a loro
b 1 orO
c 1lor0
d lorO

One of many possible sets of sublaws, describing the stable states of the system

and the actions to be taken should the system find itself in an unstable state,

is given below. The corrective action rules are numbered for future reference

when describing system response paths.

Sublaws

1. Stability Conditions:
a b
0 0
1 1

Corrective Actions:
Conditions Actions

a --> b
R1: 1 1
R2: 0 0
2. Stability Conditions:
a c
0 1
1 0
1 1

Corrective Action:
Conditions Actions

a --> ¢
R3: 0 1
3. Stability Conditions:
a d
1 1
0 1
0 0

Corrective Action:
Conditions Actions
a --> d

R4 1 1

Since only light "a" may be switched by the environment, there are two possible

external events.
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External Events
1. Set a=1
2. Set a =0

The stable®! state space of this system is shown below. Each state is labelled

for future reference.

Stable States

State Variable

State Label a b c d
A 0 0 1 0
B 0 0 1 1
c 1 1 0 1
D 1 1 1 1

/

Response paths are generated by first applying each event to each stable state,
thus obtaining a state which might be unstable. Then the sublaws are used to
try to bring the system to a final stable state. For example, a possible
response path corresponding to the application of the event "set a = 1" to the

first stable state A is as follows:

a b c d Label
Initial stable state 0 0 1 0 A
Unstable state after eventl 1 0 1 0 E
Unstable state after rule RL 1 1 1 0 F
Stable state after rule R4 1 1 1 1 D

There may be more than one possible response path associated with each unstable
state. In the above example, rule R4 could have been activated before rule R1.
The precise ordering of activation of sublaws is not important so long as each

response path ends in the same stable state (i.e. the sublaws are consistent).

31 For the remainder of this thesis, the terms "stable", "complete" or

"consistent" shall mean locally stable, locally complete or locally consistent
with respect to the defined sublaws.
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Response paths are described using the following notation.

[(initial=Statey), |Event,State,;>, |Rule,,State,>, |Rule,,State>, ...,
|Rule,,State ,;>]

where State; is the initial state to which event Event, is applied, Rule, is the
name of the corrective action rule which moves the system from State, to Statey,,
and State,,; is the final (and therefore stable) state of the system. If the
above analysis is repeated for the remaining stable states and events, the

following unstable states and response paths may be generated.

Unstable States

E 1 0 1 0

F 1 1 1 0

G 1 0 1 1

H 0 1 0 1

I 0 0 0 1

J 0 1 1 1

Response Paths

Path # Event Response Path

1 a =1 [(initial=A),|Event 1,E>,|R1l,F>, |R4,D>]
2 a =1 [(initial=B), |Event 1,G>,|R1,D>]

3 a =1 [(initial=C),|Event 1,C>]

4 a =1 [(initial=D), |Event 1,D>]

5 a =0 [(initial=A), |Event 2,A>]

6 a =0 [(initial=B), |Event 2,B>]

7 a =0 [(initial=C), |Event 2,H>,|R2,I>,|R3,B>]
8 a =0 [(initial=D),|Event 2,J>,|R2,B>]

Every state entered as a result of an external event is transformed into a stable
state. This means the sublaws are complete. The sublaws are consistent because

all alternative response paths lead to the same stable states.
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2.3, Tmplementation: The Specifications Analysis Tools

A set of Prolog-based®® specifications analysis tools has been created to
facilitate the construction of a system model based on the system theory concepts

presented in the previous section. These tools provide the following functions:

a. Testing for:

1) syntactic errors in the system model (e.g. misplaced punctuation,
inconsistent naming, etc.),

2) stable condition coverage of the state variables (i.e. each state
variable 1is referenced in at least one rule from the stability
conditions of a sublaw),

3) state variable variance (i.e. each state variable is assigned all

of its defined wvalues),

4) conflicting sublaws, and

5) local completeness and local consistency of the sublaws.
b. Determination of the stable state space of the system.
c. Determination of the unstable state space and response paths of the system.
d. Suggestion of possible decompositions.

The modelling syntax required by the specifications analysis tools, and the
various tests which can be applied to the model, will be described in the context
of the four-lights example. The tests are further described in Appendix D. The
procedures used to find the stable and unstable state spaces as well as the
response paths of a system are described in Appendix E. System decomposition

is described in the next chapter.
2.3.1. Entering a System Model

The user is required to create a text file listing all of the state

variables, state variable values, sublaws, and external events to be included

32 The tools were implemented using Turbo Prolog (Borland, 1986) running

on an IBM AT compatible microcomputer.
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in the model. The four-lights example described earlier would be entered as
described in the following subsections. Text enclosed by /*...*/ is added for

explanation only and is ignored by the tools.
2.3.1.1. State Variables

A simple one-place predicate is used to inform the tools that certain
variables are to be included in the model. All state variables must be declared
in this way. No additional state wvariables may be included in any further
description of the model (e.g. in the sublaws or events). Predicates declaring
the state variables used to describe the four-lights example would be created

as follows:

/* state variables */
state_variable(a).
state_variable(b).
state_variable(c).

state_variable(d).
2.3.1.2. Values

Each state variable may be assigned only a limited number of values®. All
possible values must be declared using the binary predicate
"values(StateVariableName,Values)", where StateVariableName is the name of the
state variable and Values is a list of possible values. If a state variable,
which was not declared using the “state_variable()" predicate, is used here an
error message will be generated by the specifications analysis tools. Another
error message will be produced if a state variable does not assume one of its
defined values during the determination of the system’'s response paths. This
last test ensures that the state variable value declarations are consistent with
the defined dynamics of the system and is referred to as testing "state variable
variance". Any mismatch would indicate either insufficiently defined dynamics

(in the form of sublaws) or too many defined values.

33  The problem of state variables which may be assigned a large number

(perhaps infinite) of different values is addressed later in this chapter.
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/* state variable wvalues */
values(a,[0,1]).
values(b,[0,1]).
values(c, [0,1]).
values(d,[0,1]).

2.3.1.3. Sublaws

The two components of sublaws (namely, stability conditions and corrective
actions) are defined separately. Stability conditions describe the allowed
combinations of state variable values in stable system states, and are used to
determine the stable state space of the system. Corrective actions specify
actions to be taken if the system is not in a stable state, and are used to find
all response paths of the system. There is some duplication of information in
the two parts of a sublaw. The stable state space of the system could be
determined by generating all possible combinations of state variable values and
testing to see whether some corrective action rule could alter each of the
possible states. If there is no corrective action rule which could alter a
state, that state would be added to the stable state space of the system. Such
a "generate and test" algorithm becomes computationally intractable as the number
of combinations of state wvariable wvalues increases. The use of stability
conditions as formulated above allows a much more efficient method of determining
the stable state space of the system. Also, if there were a large number.of
possible system states, it would be easy for the analyst to accidentally omit
a corrective action rule required to "correct" an unstable state. Should such
an error occur, the unstable state would be incorrectly assumed to be stable.
When separate definitions of both stability conditions and corrective actions
are required, tests for local consistency and completeness can point to
accidentally omitted rules®‘.

Explicit statement of stability conditions also allows the system to be
described by a smaller number of rules. There may be some possible states which
the system should never enter. In a natural system, where the system law

reflects fundamental properties of the physical universe, such states could be

3 The tests for local completeness and consistency provide a kind of

cross-check between the stability conditions and corrective actions of the
sublaws as well as the defined external events.
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impossible (e.g. it is impossible for a mass on the surface of a planet to be
falling up). However, in a man-made system where the system law may be
imperfectly enforced, it is possible for the system to enter an unexpected state.
For example, in a simple accounting system the value of the assets represented
by some account may not equal the balance of that account, if some user manually
altered the balance. Most accounting systems would have controls in place to
prevent such alterations. However, if this sort of tampering was not included
among the defined external events for the system, the model might not include
any sublaws to deal with the situation. It would be extremely difficult, if not
impossible, to anticipate all such undesirable events. When dealing with man-
made systems, a model can only approximate the operation of the original system
since the external events considered comprise only a subset of all possible

external events.
2.3.1.3.1. Stability Conditions

Stability conditions are represented wusing the binary predicate
"static(LawName,Conditions)", where LawName is some arbitrary name for the law
and Conditions is a list of state variable name and value pairs all of which must
occur together in each stable state of the system. A stable condition may
consist of more than one rule. This is modelled using several clauses with the
same LawName parameter. A stable state need satisfy only one of the rules
forming the stability conditions of a particular sublaw®. That is, "static()"
clauses with the same name are combined using an inclusive OR condition. Clauses
with different LawNames are combined using an AND condition. If a state variable
name or value which was not declared with a "state_variable()" or "value()"
predicate is used to define a stable condition rule, the specifications analysis
tools will issue an error message. Other tests of the stability conditions are
described in Appendix D. These ensure that every defined state variable is
mentioned in at least one stable condition rule (referred to as "stable condition
coverage"), and that the stable condition rules do not conflict with each other.

The stability conditions for the four-lights example are defined as follows:

35 The relationship between stable states and stability conditions is

described in more detail in Appendix E.
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/* stability conditions */
static("S1",[v(a,"0"),v(b,"0")]).
static("S1",[v(a,"1"),v(b,"1")]).

static("S2", [v(b,"0"),v(c,"1")]).
static("S2",[v(b,"1"),v(c,"0")]).
static("S2",[v(b,"1"),v(c,"1")]).

static("S3" , [V(b,"l") ,V(d,"l")]) .
Static("s3" , [V(b,"o") ,V(d, non) ] ) .
static("S3",[v(b,"0"),v(d,"1")]).

2.3.1.3.2. Corrective Actions

Corrective actions are represented using the ternary predicate
"dynamic(LawName,Conditions,Actions)". Again, LawName is some arbitrary name.
Conditions is a list of activation conditions, consisting of state variable name
and value pairs, which must be satisfied by an unstable state before the
corrective action rule is allowed to affect the system state (i.e. to "fire").
Actions is a list of state variable name and value pairs which specify the final
values of certain state variables after the sublaw is allowed to "fire". For

example, the corrective action rule

dynamic("D3",[v(a,"1")],[v(d,"1")]).

means that if the value of "a" is "1" then "d" should be set to "1". 1If a state
variable is not mentioned in the list of final values, it is assumed to have the
same state as it had before the sublaw was fired. All corrective action rules,
whether they have the same name or not, are combined using an OR condition. If
a state variable name or value which was not declared with a "state_variable()"
or "value()" predicate is used to define a corrective action rule, the
specifications analysis tools will issue an error message.. The corrective

actions for the four-lights example are defined as follows:
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/% corrective actions */
dynamic ("D1", [v(a,"0")],[v(b,"0")]).
dynamic("D1", [v(a,"1")], [v(b,"1")])

dynamic("D2",[v(a,"0")],[v(c,"1")]).

dynamic("D3", [v(a,"1")],[v(d4,"1")]).

2.3.1.4. External Events

External events are defined using the binary predicate
"event (EventName ,Actions)", where EventName is some arbitrary name for the event,
and Actions is a list of the state variables altered by the external event
together with their altered values. As in the casé of sublaws, if a state
variable name or value which was not declared with a "state_variable()" or
"value()" predicate is used to define an external event,Athe specifications
analysis tools will issue an error message. The external events affecting the

four-lights example are defined as follows:

/* External Events */
event("EL1l", [v(a,"0")]).
event("E2",[v(a,"1")]).

The various tests performed by the specifications analysis tools are summarized

in Table I.
2.3.2. A More Extended Example

The above example was simplified by the fact that each state variable had
a small number of discrete values. What happens if there exists a state variable
with a very large or even infinite number of possible wvalues? Complete
explication of sublaws in the manner described above would be impossible. To
model systems described by such state variables it is necessary to reduce the
level of detail of the sublaws. The statics and dynamics must be described
qualitatively where each state variable may take on only a small number of
values. These state variable values are called SUBREGIONS in keeping with the
work of De Kleer and Brown (1985). Subregions are bounded by critical values

of the real-world state variable. For example, in an inventory management
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Table I:

Diagnostic
Type

syntax

naming

consistency

static
sublaw
coverage

static
sublaw
conflict

state
variable
variation

local
complete-
ness

local

consistency

Tests performed by the specifications analysis tools.
0

When
Identified

when model is
loaded into
Prolog

before
generation of
stable state
space

before
generation of
stable state
space

before
generation of
stable state
space

after
generation of
response paths

during
generation of
response paths

during
generation of
response paths

How
Identified

illegal Prolog
syntax

name or value in
sublaw or event
does not match
declarations

a state variable
is not referenced
in a static sublaw

see Appendix D

a state variable
does not obtain
all of its
defined values

dynamic sublaws
cannot move system
to a stable state
after application
of some event.

dynamic sublaws can
move the system to

more than one stable

state following the
application of some
event

Possible Meaning

typing errors

N =

[N

spelling error
insufficient defined
state variables
insufficient defined
values

missing static sublaw
too many defined
state variables

inconsistent
specification of
static sublaws

too many defined
values
missing external
events

too many defined
external events
missing or incorrect
dynamic sublaws
missing or incorrect
static sublaws

improperly defined
dynamic sublaws
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system, knowledge of the exact quantity on hand of a particular item is probably
not important in order to describe the operation of the system. Itris likely
that certain actions will be taken if the quantity is either above or below a
certain critical value, say the economic order quantity. In this case the state
variable "quantity_on_hand" might be modelled as having two discrete values:
"under_eoq" and "over_eoq". Use of state variables with values that are actually
subregions is illustrated in the following example adapted from Wand and Weber
(1989).

Consider a payroll system for a company®®. The company has two types of
jobs: office and sales. An employee may be in either a regular or in a
managerial position. Salaries are comprised of base pay, overtime pay and
commissions. The way in which total salary is calculated depends on the job type

and employee position. Company policy is as follows:

- the office staff is entitled to overtime pay but not to commissions.

- the sales staff is entitled to commissions but not to overtime pay.

- managers are not entitled to overtime pay nor commissions.

- hours and sales are recorded for all employees. (This might happen if
managers are required to report hours and office workers may take a
telephone order.)A

- all employees receive benefits.
Also assume that all payroll processing takes place at the end of some period.

This system would be entered into the specifications analysis tools as shown in
Appendix F. The only external events modelled affect the state variable "end".
Its value changes from "0" to "1" at the end of the period and from "1" to "O"
at the start of the next period. Most continuous state variables are represented
using two subregions. For example, the "sales" state variable may have values
of either zero or positive ("0" or "nz" in the model). The state variable for
"hours worked" is somewhat more complicated. An employee may work sufficient

hours to qualify for overtime pay and base pay, a lesser number of hours for

3% This system will be later referred to as the "initial" payroll system

to distinguish it from a similar system to be referred to as the "modified"
payroll system. These systems are fairly simple. There is no intention to
suggest that real payroll systems can be as easily modelled as these examples.
A more complicated "real" system will be examined in Chapter 6.
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which he will only receive base pay, or no hours at all. In the model, the state

variable representing "hours worked" may take on any of three values.

hours = ot - sufficient hours to qualify for overtime pay and base pay.
hours = reg - employee to receive base pay only.
hours = "0" - no hours worked.

This system model has ninety-six stable states. Forty-eight of these states
represent the initial states of the system when the state variable "end" has a
value of "0". In these states all quantities to be calculated at the end of the
period have a value of "0". The other forty-eight states represent the final
system states when "end" has a value of "1" and base pay, overtime, benefits,
commissions and total pay have been calculated.

Alternatively, the payroll system could be modelled without use of the
state variable "end" as shown in Appendix G. It is a somewhat more abstract
representation, in that the concept of end-of-period processing has been
eliminated. In a sense, the above model is "batch" and this model is

"interactive"?’.

The model describes the allowable configurations (i.e. stable
states) of state variable values after all processing has been completed.
External events then become those occurrences which can alter these stable
configurations, as opposed to the massive transition represented by end-of-period
processing. The five events defined for this system occur when an employee is
reported to have worked a number of hours or made some sales. Also notice that
the benefits state variable has only one possible value: non-zero. This is
because its value does not depend on the value of any other state variable in
the new model. As shall be shown in the next chapter, the decompositions
generated automatically by the specifications analysis tools are similar, but
not the same, for the model of the batch and interactive systems. In particular,

the benefits state variable does not appear in any decomposition of the

interactive system. The reason for this will be discussed in the next chapter.

37 Pick (1986) defines "batch and "interactive" as follows. "Batch"
describes systems where a number of similar input items are grouped together for
processing during the same machine run (p. 622). In the batch example, the
machine run occurs at the end of the period. "Interactive" describes systems
where the user has rapid two-way communication with a computer (p. 670). In the
interactive example, calculated values are updated without an end of period
external event.
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This new model has forty-eight stable states. These states are identical to the
stable states of the "batch" system when the state variable "end" has the value
"1" except that "end" is not included. It should be noted that although this
representation has fewer stable states, it is not necessarily more efficient than
the "batch" representation. There were only two events defined for the first
model, whereas this model has five. This means that 192 (96 times 2) response
paths had to be determined for the "batch" model, and 240 (48 times 5) had to

be found for the "interactive" model.

2.4. Conclusions

A formalism for the representation of systems has been developed. SELMA
is notable for its focus on laws rather than on procedures. Consistent
representation of the linkages between the properties of the system, in the form
of sublaws, facilitates tests of both completeness and consistency of the sysfem
description. Sublaws are seen as a practical way to formulate a global system
law. The analyst may focus his or her attention on small parts of the system,
and still ensure that the sublaws form a complete and consistent model of the
system.

A basic implementation of a set of Prolog tools to support SELMA has been
described. While its use has been shown to be feasible for some small problems,
further testing is required. A larger "real” system needs to be considered.
It is possible that, even with the use of state variable subregions, as the
number of state variables increases, there could be an unacceptably rapid
increase in the number of stable system states. However, it should be noted that

a relationship of the form:

number of system states = number of values for state variable 1 *

number of values for state variable 2 *

number of values for state variable n
could only occur if each state variable were "independent" of every other state
variable. In other words, a very large number of system states is only expected

if for every possible value of each state variable every other state variable

could have each of its possible values. This would mean that the size of the
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stable state space of the system equals the size of its possible state space.
This sort of behaviour is not expected for most interesting systems, as it
implies mo coupling among the state variables. For example, the simple four-
lights example has a possible state space with 16 (= 2%) states, but there are
only four stable states. Also, the "batch" payroll system has a possible state
space with 3072 (= 21%%3) states, but there are only 96 stable states.

As currently implemented, the specifications analysis tools have a very
limited syntax. In some cases, coding of sublaws could be made more efficient
if state variables could be described as not having a certain value, rather than
specifying all the values it may have. Also, many systems are likely to require
qualitative addition and multiplication (e.g. the payroll system example). The
formats of the sublaws which represent these operations are well defined. De

Kleer et al. (1985) define qualitative addition and multiplication as follows:

Addition Multiplication

X - 0 + X - 0 +
Y Y
- - - ? - -
0 - 0 0
+ ? + + - +

Ambiguities may arise when adding quantities of different sign. However, they
can probably be avoided through careful definition of state wvariable values.
Avoiding ambiguities then becomes the responsibility of the analyst and not the
specifications analysis tools. The specifications analysis tools could be
enhanced to support simple rendering of addition and multiplication operations.

However, a limited syntax is sufficient to illustrate the feasibility of SEIMA.
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Chapter 3: A Theory of Decomposition

The problem of identifying the subsystems from which a system is composed
is not trivial. This chapter begins with an intuitive example illustrating the
difficulty of decomposition. This is followed by formal definitions of several
concepts related to system decomposition. A number of heuristics and theorenms,
used to limit the search space of possible decompositions, are also presented.
Finally, a decomposition algorithm compatible with SELMA is described and its

use is demonstrated on several simple systems.
3.1. General

Bunge (1979, p. 11) describes system decomposition on the basis of
identifiable things. However, only by observing a system’s behaviour can a
designer hope to discover into what parts the system may be decomposed. The
behaviours of the properties®® describing a system, and not the things from which
it is constructed, are of primary importance to decomposition (Simon and Ando,
1961). Consider a simplified bicycle system. Many people would recognize the

following things as being parts of a bicycle.

Things
front wheel rear wheel pedals frame
front forks handle bars chain

Some state variables representing the properties of the bicycle are listed
below. Notice, that only normal operation of a bicycle is being modelled. That

is, we are not concerned with skidding, falling over, etcetera.

38 It could be argued that only things can exhibit behaviour. However

SEIMA does not explicitly model things. For the purposes of this research, it
is sufficient to describe a system’s behaviour by the describing the observed
changes of the properties.
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State Variables

front wheel angle3® front fork angle

front wheel rotational speed handle bar angle

rear wheel rotational speed frame speed

pedal rotational speed chain rotational speed

A reasonable decomposition on the basis of things might include the following

subsystems:

front end: rear end:
front wheel rear wheel
front forks pedals
handle bars chain

It is not clear with which subsystem the frame should be associated as it spans
both the front and rear ends. Also notice that the behaviour of the front wheel
will be related to the behaviour of the rear wheel. Under normal operating
conditions the rotational speed of the two wheels will be the same‘®. This
dependency implies that the two subsystems are coupled. 1In general, coupling
between two subsystems exists when the behaviours of the two subsystems are not

independent. In this case, coupling can be avoided if the subsystems are

selected on the basis of steering and forward motion state variables as shown:

steering subsystem: forward motion subsystem:
front wheel angle front wheel rotational speed
front fork angle rear wheel rotational speed
handle bar angle pedal rotational speed

chain rotational speed

frame speed

3% Front wheel angle, front fork angle, and handle bar angle are all

horizontal angles measured relative to the frame of the bicycle.

40 Assuming front and rear wheels of the same radius.
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Insofar as these last two subsystems can been given meaningful names, they do
represent things. However, it is argued that the things represented are not
intuitively obvious. Many analysts would not consider "splitting" a physical
object (e.g. the front wheel) between two subsystems. The only "behaviour"
suggesting the first decomposition occurs during bicycle assembly. Assembly
contexts are far too tempting a criteria for decomposition. An analyst needs
to consider the behaviour of a system in all contexts of interest. In SELMA,
different contexts are represented by different external events.

Analysts who consider only decompositions consisting of obvious things may
miss "superior" alternative decompositions. It may happen that the "good"
subsystems, identified by the decomposition methodology presented here, will have
state variables corresponding to the properties of an intuitively obvious thing,

but this is by no means certain.

3.2. The Decomposition Formalism

The meaning of decomposition will be formally defined in this section, but

first some terms for describing system dynamics must be introduced.
Definition: Subsystem

Any subset X of the state variables describing a system o will describe a

SUBSYSTEM of o. For convenience, X may be referred to as a subsystem‘!.

Not all subsets of state variables will describe reasonable subsystems.
For the bicycle example, one possible unreasonable subsystem would be described
by "front wheel angle" and "pedal rotational speed”. The development of criteria

for selecting reasonable subsystems is the major purpose of this chapter.

“1 A subsystem consists of more than just a set of descriptive state

variables. There must also be rules for governing subsystem behaviour. However,
for purposes of system decomposition, it is sufficient to identify a subsystem
by a set of state variables.
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Definition: Projection of a Subsystem

The state x of a subsystem X of a system ¢ when o is in state s is called the

PROJECTION of s onto X, x = proj(s,X).

For example, consider the following state of the bicycle system.

State Variable Value

front wheel angle turning left
front wheel fotational speed positive
rear wheel rotational speed positive
front fork angle turning left
handle bar angle turning left
pedal rotational speed zero

chain rotational speed zero

frame speed positive

That is, the bicycle is coasting around a left turn. The projection of this

state onto the previously identified steering subsystem is

State Variable Value

front wheel angle turning left
front fork angle turning left
handle bar angle turning left

It should be noted that there may be many system states having the same
projection. The state of the steering subsystem would be the same if the bicycle
was pedalled (as opposed to coasted) around a left corner.

Definition: Deterministic Subsystem

Wand and Weber (1988) hypothesize that all good decompositions will satisfy the

following requirement:
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The behaviour of each subsystem is determined only by those state

variables describing the subsystem.

This means a decomposition is good if each subsystem behaves deterministically.

A subsystem behaves deterministically if its final state is functionally
determined by its initial state, or if for every initial state of the subsystem
there is only one possible final state of the subsystem. This implies that all
the information necessary to determine the final state of the subsystem is
already contained in the subsystem. It is not necessary to consider the states
of other subsystems in order to decide how the subsystem will behave. If the
state of a subsystem depends on the state of another, the subsystems are
coupled. Therefore, this requirement will ensure that there is no coupling
between the subsystems of a good decomposition. Wand and Weber'’s requirement

may be formally expressed as follows:

Let o be a system with system law L, and let R be a set of states of o.
A subsystem X of o is deterministic with respect to R and L, if and only
if all system states s in R, having the same initial subsystem state

proj(s,X), have the same final subsystem state proj(L(s),X). That is:

X is deterministic with respect to R and L if and only if
FOR ALL s,, s,
such that s; € R and s, € R, and
such that proj(s;,X) = proj(s,,X),
proj(L(s,),X) = proj(L(s,),X)

A subsystem is characterized by a set of descriptive state variables. The
behaviour of a deterministic subsystem can be defined by a function involving
only these state variables. This function may be expressed by a sublaw after
considering the subsystem state changes between initial and final states. For
example, consider a system described by binary state variables {x,y,z}. Assume
that the system dynamics are defined by the following unstable state space and

corresponding final stable states.
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Unstable Corresponding Final

States Stable States
b 4 y z —ee> b4 y z
0 1 0 1 1 1
0 1 1 1 1 1
1 1 1 1 0 0
1 1 0 1 0 0

We see that (y,z)} is not a deterministic subsystem since the subsystem state
{1,1) corresponds to final subsystem states {1,1} and {0,0}. However, {x,y} is
a deterministic subsystem in that no initial subsystem state corresponds to more

than one final state. The state transitions for the subsystem ({x,y} are as

shown:

X y -2 X y
0 1

1 1 1 0

The corrective actions of a sublaw describing this behaviour could be expressed

as follows:

Corrective Actions:

Conditions Actions
X Y --> X Y
0 1 1 1
1 1 1 0

Definition: INTERNAL EVENT

External events alter the values of some of the state variables describing a
system. The system responds to the external event by further altering the
values of its state variables until it enters a stable state. This further

alteration of state variables is accomplished throﬁgh INTERNAL EVENTS.

The action of a sublaw, as described in Chapter 2, corresponds to an

internal event. The actions of external and internal events both result in
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system state changes. The sequence of state variable value changes as the
system moves towards a stable state constitutes a response path. Since there may
exist many system response paths leading to the same stable state, an exXternal
event need not be followed by a unique sequence of internal events.

The change of state from an unstable to a stable state can be viewed as
a sequence of internal events. For example, consider the bicycle system at rest
(i.e. "frame speed" = zero). If the pedals are made to rotate, the chain, rear
wheel and front wheel must also begin to rotate. However, the bicycle might be
modelled such that the chain and rear wheel begin to rotate before the front
wheel and frame begin to move (e.g. some "play" in the free wheel mechanism).

In this case two internal events would follow the external event as shown:

external event: rotate pedals
internal event 1: rotate chain and rear wheel

internal event 2: rotate front wheel and move frame

The bicycle system can be viewed as entering a number of unstable states after
the action of an external event before once again achieving a stable state. One
possible series of unstable states leading to a stable state is shown below,
Other sequences of internal events are possible, but if the system is complete
and consistent, all such sequences will lead to the same stable state. Changes

to system states are indicated with a "*".

Initial Stable State: stopped, with front wheel pointing straight ahead

State Variable Value
front wheel angle straight
front wheel rotational speed zero
rear wheel rotational speed zero
front fork angle straight
handle bar angle straight
pedal rotationai speed zero
chain rotational speed zero
frame speed zero

External Event: start peddling
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First Unstable State:

State Variable

front wheel angle

front wheel rotational speed
rear wheel rotational speed
front fork angle

handle bar angle

pedal rotational speed

chain rotational speed

frame speed

Value
straight
zero
zero
straight
straight
positive
zero

Zero

First Internal Event: set values of chain and rear wheel rotational speed

Second Unstable State:

State Variable

front wheel angle

front wheel rotational speed
rear wheel rotational speed
front fork angle

handle bar angle

pedal rotational speed
chain rotational speed

frame speed

Value
straight
zero
positive
straight
strajight
positive
positive

zero

Second Internal Event: set values of front wheel rotational speed and frame

speed

Final Stable State: moving straight ahead

State Variable

front wheel angle

front wheel rotational speed
rear wheel rotational speed
front fork angle

handle bar angle

pedal rotational speed

chain rotational speed

Value

straight
positive
positive
straight
straight
positive

positive

5
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frame speed positive *

The external event altered the value of "pedal rotational speed". The first
internal event changed the values of state variables "chain rotational speed"
‘and "rear wheel rotational speed" based on the value of "pedal rotational
speed". The second internal event updated the values of state variables "frame
speed" and "front wheel rotational speed". The final values of any of the
previously altered state variables could have been used as the basis for this
second change. For the sake of argument, assume that the final value of "rear
wheel rotational speed” was used. The process of altering the values of state
variables through internal events shall be called an UPDATE. Updates involve
sets of state variables, or subsystems. In the above example, the subsystem
{pedal rotational speed, chain rotational speed, rear wheel rotational speed)
was used to update the first unstable state to the second unstable state. Then
the subsystem (rear wheel rotational speed, frame speed, front wheel rotational
speed} was used to update the second unstable state to the final stable state.

The notion of system updates can be formalized as follows:
Definition: Updating

Let o be a system with system law L, R be a set of states of o, and U be
the state variables used to describe a set of subsystems of ¢*?. A set of
states R’ 1is UPDATED with respect to U and R by setting the values of
those state variables in each system state s in R, which are elements of
U equal to their values in the final stable state L(s). That is, if SV

is the set of all state variables describing o, then

R’ = {s’) such that
THERE EXISTS s such that s € R and
FOR ALL v such that v € SV,
(proj(s’ ,{v}) = proj(L(s),{v}) and v € U)

or

(proj (s’ ,{v}) proj(s,{v})) and v & U)

%2 In the previous example, updates involved single subsystems only. In

general, a set of subsystems may be used to perform an update.
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The "or" separates two possibilities for the value of each state variable in an
updated system state. The first possibility occurs when the state variable is
found in the set of subsystems used to update the initial system state. In this
case, the value of the state variable in the updated system state is equal to
its value in the final stable state of the system. The second possibility
occurs when the state variable is not used to describe any subsystem used to
update the initial system state. In this case, the value of the state variable
is left unchanged.

As another example, consider a bicycle beginning to move to the left after
the rider begins to pedal. A possible initial unstable state/final stable state

pair for this situation is shown below.

Initial Unstable Final Stable
State_ Variable Values Values
front wheel angle straight turning left
front wheel rotational speed zero positive
rear wheel rotational speed zero positive
front fork angle straight turning left
handle bar angle turning left turning left
pedal rotational speed positive positive
chain rotational speed positive positive
frame speed zero positive

The initial state isiclearly unstable as the pedals are turning but the wheels
are not yet spinning. The state could be updated with respect to the forward
motion subsystem, identified earlier, by setting "front wheel rotational speed"
and "rear wheel rotational speed" to "positive". However, the resulting updated
system state would still not be stable, since the handle bars and the wheels are
not pointing in the same direction. If the system were further updated with
respect to the steering subsystem, the resulting system state would be stable.

Updating refers to altering a set of states to reflect the completion of
some activities within the system. As shall be shown, it is the update which
reflects sequential decomposition. A few more definitions will make it easier

to discuss updates as they pertain to system decomposition.
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Définition: First Intermediate State Space and System Relation
o

The set of all system states which result from the action of any external event
in the set of external events E on a stable state of the system o, is called the
FIRST INTERMEDIATE STATE SPACE (First ISS) of o with respect to E. E will
always include the NULL EVENT. The null event does not change the value of any
state variable. The first ISS and the final stable system states associated
with each member state comprise the FIRST SYSTEM RELATION of o with respect to
E.

These concepts were used in Chapter 2. The first intermediate state space
is the set of states for which response paths leading to unique stable states
must be found, if the system model is to be complete and consistent. The
initial unstable states and the associated stable states comprise the first
system relation. The first system relation shows to which stable state the
system will move should it be in an unstable state as the direct result of the

action by an external event.

Definition: Nth Intermediate State Space and System Relation

The set of all system states, where s results from a given set of N updates
being applied to each state of the first intermediate state space. of o, is
called an Nth INTERMEDIATE STATE SPACE (Nth ISS). The Nth ISS and the final
stable system states associated with each member state comprise the Nth SYSTEM
RELATION.

Definition: Level

The set of subsystems used to update an intermediate state space will be called

a LEVEL.

Decomposition, itself, may now be formally defined.
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Definition: Decomposition

If a series of updates is begun with the first ISS of o with respect to external
events E, and ends when the updated ISS contains only stable states, the
resulting sequence of levels is called a DECOMPOSITION of system ¢ with respect
to external events E. If only deterministic subsystems (as defined above) are
used to perform the updates, the resulting sequence of levels is called a

DETERMINISTIC DECOMPOSITION.

Unfortunately, there will be in general, a very large number of
deterministic subsystems with respect to any ISS of a system. For example, any
subset of state variables whose values do not change between states in the ISS
and the corresponding final stable states will describe deterministic
subsystems. Consider the following first system relation for a system described

by four binary state variables {a,b,c,d}:

First Intermediate Corresponding

State Space Final Stable States
a b c d -=> a b c d
0 0 0 0 0 0 1 1
0 1 0 0 0 1 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 1 1

The subsystems {a}, (b}, (a,b}, {(a,b,c}, (a,b,d}, and {a,b,c,d} are all
deterministic. Any subset of these deterministic subsystems may be used to
update the first ISS. Any ISS thus created may be further updated using any
subsystem that is deterministic with respect to the new space. This process
will lead to at least 25! = 1.3X10%° deterministic decompositions*®. Most of
these deterministic decompositions will be of no interest to the analyst.

Several rules for avoiding these "useless" decompositions will be discussed

following the next section of this chapter.

 If n is the number of good subsystems, there are 2" ways to select a
subset of the good subsystems. Each permutation of these subsets will correspond
to a good decomposition. Therefore, there are at least 2"! good decompositions
for a system with n good subsystems. There may be even more good decompositions
if subsystems, which are not good with respect to the first intermediate state

space, become good as a result of an update operation.

64



3.3. Decomposition Syntax

In this and later chapters it will be necessary to discuss, and even
compare, many decompositions. A consistent representation scheme is required.
Two such schemes will be defined in this section. The first conveys the most
information, but is somewhat difficult to interpret without practice. The
second is diagrammatic and emphasizes the linkages between subsystems. Both
will be used as appropriate.

Consider the system described by binary state variables (a,b,c,d} with a
system relation as shown above. If the first ISS is updated using (a,b,c) and

{b}), the new or second ISS contains the following states.

First Second Corresponding

ISS 1SS Final Stable States
abcd -=> abcd --> abcd

0000 0010 0011

0100 0100 0100

1000 1000 1000

1100 1110 1111

The subsystems {a}), {b}, (¢}, {a,b}, {a,c}, (b,c}, {a,b,d}), and {c,d} are all
deterministic with respect to this second ISS. TIf {c¢,d} is selected for an

update, the third ISS becomes

Second Third Corresponding
1SS ISS Final Stable States
abcd --> abcd --> abcd
0010 0011 0011
0100 0100 0100
1000 1000 1000
1110 1111 1111

The states of the third ISS are the same as the corresponding final stable
states. Two levels have been defined: {{a,b,c),{b}) and {{c,d})). Together they
form a deterministic decomposition of the system. The decomposition may be
represented as shown below. State variables with values that change during an

update are underlined‘.

%  fThese state variables will be later defined as OUTPUT state variables.
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2: {c,d)
1: {a,b,c} (b}

This decomposition has the following associated semantics.

1. Subsystems (a,b,c} and (b} are deterministic subsystems with respect to
the first ISS (or {a,b,c} and {b) are deterministic at level 1).

2. Subsystem {c,d} is a deterministic subsystem with respect to a second ISS
(or {c,d} is deterministic at level 2). This state space is formed by
updating the first ISS using subsystems (a,b,c} and (b}.

3. The third ISS formed by updating the second ISS using the subsystems (c,d)

will contain only stable states.

Decompositions will sometimes be

displayed using diagrams similar to d
Figure 8. Subsystems are represented

by boxes containing sets of state

variable names. It is easier to see
the linkages, or communication, between C

subsystems in this sort of diagram.

Communication (if any) between C

subsystems is shown by lines between

boxes. The lines are labelled with the :D

name of the state variable whose value

is passed. Values are passed from

lower to higher subsystems only. Figure 8: An alternative
representation for the
parallel/sequential

3.4. Limiting the Search Space decomposition:

2: {c,d}
1: (a,b,c}) (b}
3.4.1. General

A number of rules have been found which can considerably limit the number
of deterministic decompositions which should be considered by the analyst. Some
of these rules are heuristics, in that they cannot be formally proved. Others
follow directly from formal definitions and are called theorems. Before the

rules may be presented, three more definitions are required. These definitions,
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and many of the theorems and heuristics, will be illustrated using the simple
system described by state variables {(a,b,c,d} as introduced in the previous

section.
Definition: Output State Variable

A state variable is an OUTPUT STATE VARIABLE with respect to some intermediate
state space R, of a system with law L, if its value in some system state s in
R is different from its value in the final stable system state L(s). That is,

if v is a state wvariable then

v 1s an output state variable with respect to R if and only if

THERE EXISTS s such that s € R and
proj(s,{v}) = proj(L(s),{v})

Definition: Input State Variable

The set of state variables whose values are required to predict the final values
of the output state variables with respect to some intermediate state space R
is called the set of INPUT STATE VARIABLES with respect to R*°.

Definition: Constant State Variable'S

Any state variable which is not an output state variable with respect to some

intermediate state space R is CONSTANT STATE VARIABLE with respect to R.

45 The sets of input and output state variables with respect to some

intermediate state space are not necessarily mutually exclusive. The final value
of some output state variable could depend on its initial wvalue. Such a state
variable would be both an input and an output. A state variable which is both
an input and an output will be named twice in the set of state wvariables
describing a subsystem. For example, (x,y,z,z} indicates that values of "x" and
"y" and the initial value of "z" are all required to determine the final value
of Ilzll

% In many of the examples to be considered in this and later chapters, the
set of input state variables will equal the set of constant state variables.
The sets only differ when the initial value of an output state variable is
required to determine its own final value.
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Constant
State Variables

Output

State Variables

Input

State Variables

Figure 9:

The relationship between output, input, and constant state variables
with respect to a given intermediate state space.

The relationships between the set of output, input, and constant state

variables with respect to a given intermediate state space are diagrammed in

Figure 9.

For example,

{a,b,c,d}.

First Intermediate

State Space

a b
0 0
0 1
1 0
1 1

QOO On

OO OO A

consider the system described by binary state wvariables

Corresponding

Final Stable States
a b c d
0 0 1 1
0 1 0 0
1 0 0 0
1 1 1 1
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State variables {a,b) are input and constant state variables and {c,d} are output
state variables with respect to the first ISS. Now consider the second ISS

formed by updating the first ISS using the subsystem {a,b,c}.

First Second Corresponding

ISS ISS Final Stable States
abcd --> abcd --> abcecd

0000 0010 0011

0100 0100 0100

1000 1000 1000

1100 1110 1111

State variables {a,b,c) are all inputs with respect to the second ISS. State
variable "c" is no longer an output since its value does not change in any
initial/final state pair. Thus output state variables need not remain output
state variables after an update,

These definitions of "input" and "output" are not the same as those in
common use. It is more usual to refer to external events as inputs and the
actions of the system on its environment as outputs.®’ In SEIMA, the state
variables affected by external events are constant state variables. Their values
do not change between states in the first ISS and the corresponding final stable
states of the system®., They may also be input state variables if they are
required to determine the final values of the output state variables. However,
there may be other input state variables which are not affected by external
events. The definition of output state wvariable is also somewﬁat unusual.
Outputs are defined for every 1SS with the exception of the space containing only
stable states. Interaction between output state variables and the environment
is not modelled. Any such interactions would form the external events to another
system located in the environment of the system under study, and so are not

considered.

The rules for limiting the number of deterministic decompositions to be
considered by the analyst may now be presented.

[

47 Bunge (1979, p. 25) defines input and output in this way.

% Tt is assumed that the values of state variables may be set only once
during the system’s response to an external event. This assumption is discussed,

in detail, later in this chapter.
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3.4.2. Heuristics and Theorems

3.4.2.1.  Subsystems should have outputs

Deterministic subsystems are subsystems whose final states can be predicted
knowing only their initial states. By definition, constant state variables do
not change their values between the initial and final states of the system,
Therefore, it is a trivial exercise to predict the final state of a subsystem
described by only constant state variables. The following theorem is suggested

by this fact®S,

Theorem 1: Any subsystem X, described only by constant state variable with
respect to some intermediate state space R and the corresponding
final stable states, will be a deterministic subsystem with respect

-

to R. That is:

IF FOR ALL s such that s € R, proj(s,X) = proj(L(s),X)

THEN X is deterministic with respect to R and L.

Such deterministic subsystems are unlikely to be interesting to an analyst
as they contain no information about the dynamics of the system. A program
module based on this sort of subsystem would always return the same values it
received. This fact leads to the first heuristic for limiting the number of

deterministic subsystems which may be used to update an ISS.

Heuristic 1: All deterministic subsystems used to update an intermediate
state space must be described by at least one OUTPUT state

variable.

For example, Heuristic 1 will ensure the subsystems {a} and (b} are not
used to update the first ISS of the system described by binary state variables
{a,b,c,d}.

“8  Proofs for the theorems included in this document are straightforward

and proceed directly from the definitions. They have not been included here.
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3.4.2.2. Subsystems should be small

Any subsystem formed by adding a constant state variable to a deterministic
subsystem will be deterministic. The value of a constant state variable does
not change between initial and final states, and so cannot cause a deterministic
subsystem to behave non-deterministically. For example, consider the following
second intermediate, and final stable, state spaces of the system described by
binary state variables {a,b,c,d}. This second ISS was created by updating the

first ISS using the subsystem described by state variables (a,b,c).

First Second Corresponding

ISS ISS Final Stable States

abcd -=> abececd --=> abcd

0000 0010 0011

0100 0100 0100

1000 1000 1000

1100 1110 1111

State variable "a", "b", and "c" are constant state variables with respect to

this ISS, since their values do mnot change between the intermediate and
corresponding final stable states. The subsystem {a,b,d) is deterministic with
respect to this ISS, since no initial subsystem state leads to two different
final subsystem states. If the state wvariable "c¢" is added to {a,b,d}, the
resulting set of state variables also describes a deterministic subsystem. This

result is expressed by the following theorem.

Theorem 2: Let X be a set of state variables containing output state variables
0, and let X’ be a subset of X also containing 0. If X’ describes
a deterministic subsystem, with respect to some intermediate state
space R and system law L, then X will be a deterministic subsystem

with respect to R and L. That is:

IF X’ is deterministic with respect to R and L and X* € X and
FOR ALL o such that o € X and
proj(s,{o}) = proj(L(s),(o}) and
s € R,
o €X

THEN X is a deterministic subsystem with respect to R and L.
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In the above example, the set of state variables (a,b,c,d} contained one output
state wvariable. It also contained a subset {a,b,d} which described a
deterministic subsystem. Since this subset also contained the output state
variable {d}, the state variables (a,b,c,d} had to describe a deterministic
subsystem. Deterministic subsystems formed by adding constant state variables
to existing deterministic subsystems are probably not interesting to an analyst.
A program module corresponding to such a subsystem would contain a redundant
variable, since the outputs of the subsystem could have been determined by the

original variables. This fact suggests the following heuristic.

Heuristic 2: Let X be a set of state variables containing output state
variables O, and let X’ be subset of X also containing 0. If
X’ describes a deterministic subsystem, with respect to some
intermediate state space R and system law L, then X may not

be used to update R.

This rule ensures that the subsystems used to update an ISS are described
by as small a number of input state variables as possible. It is required to
avoid trivial decompositions formed by adding constant state variables to
deterministic subsystems. For example, without this heuristic both of the
following would be considered as possible decompositions of the system described

by binary state variables (a,b,c,d}. Output state variables are underlined.

2: {a,b,d) and 2: {a,b,c,d)
1: {a,b,c} 1: {a,b,c}

The second decomposition does not add any information as it could have been
deduced from the first decomposition and Theorem 2.

Now recall that the subsystems (a,b,c) and (a,b,d)} are both deterministic
with respect to the first ISS. So is the union of the two subsystems. That is,
the subsystem {a,b,c,d} is also deterministic. This result is generalized in

the following theorem.

Theorem 3: A subsystem described by the union of the state variables describing

two deterministic subsystems will be deterministic.

72



Two possible deterministic decompositions of the system are

1: {a,b,c¢} {a,b,d} and 1: {a,b,c,d}

The second decomposition implies that four state variables are required to
predict the final state of the subsystem. The first decomposition contains more
information than the second. It tells the analyst that the final values of "c"
and "d" may be predicted if the initial values of only "a" and "b" are known.
The second decomposition does not indicate whether the values of "a" and "b" are
both required to predict the final value of both "c¢" and "d",, or whether just
one state variable could serve to predict one of the outputs. Since the second
decomposition can be deduced from the first through the use of Theorem 3, the

following heuristic is suggested.

Heuristic 3: Do not generate alternative decompositions resulting from the

union of smaller subsystems.

Together, Heuristics 2 and 3 ensure that the subsystems presented to the
analyst for consideration will be described by as small a number of state

variables as possible.
3.4.2.3. Subsystems should show emergence

Consider the examplé system described by binary state variables {a,b,c,d)}.
The sets of state variables (a,b,c} and {a,b,d} describe subsystems which are
deterministic with respect to the first ISS. An update using these subsystems
would lead to an ISS containing only stable states. The first ISS could also

be updated using only the subsystem {a,b,c)}, to obtain the second ISS shown

below.

First Second Corresponding

1SS ISS Final Stable States
abcd --> abed --> abcd

00O00O0 0010 0011

0100 0100 0100

1000 1000 1000

1100 1110 1111 °
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The subsystem {a,b,d} is still deterministic with respect to this ISS. If this
second ISS were further updated using (a,b,d}, the resulting ISS would contain
only stable states. Therefore, the following are both deterministic

decompositions of the system:

1: {a,b,c¢) (a,b,d} and 2: {a,b,d}
1: {a,b,c)

The second decomposition does not add to the information provided by the first,
and should not have to be considered by the analyst. This observation may be

generalized with the following theorem.

Theorem 4: Let X and Y be deterministic subsystems with respect to an
intermediate state space R. If X is used to update R to obtain
intermediate state space R” then Y will be deterministic with respect

to R’.

This theorem expresses the commutativity of the update. That is, if two
subsystems X and Y are deterministic with respect to some ISS, the final ISS's
resulting from updating using X and then Y and using Y and then X will be the
same.

Theorem 4 suggests another heuristic for 1limiting the number of
deterministic decompositions which have to be considered by the analyst.

However, the following definition will make its formulation easier.

Definition: Emergent State Variable

Let x be a output state variable used to describe a subsystem at the nth level
of some decomposition. If x is not used to describe any subsystem at any mth

level where m < n, then x is an EMERGENT STATE VARIABLE at level n.

The concept of an emergent state variable is analogous to the notion of
a holistic property. That is, holistic properties are "those characteristics
of a particular system that go beyond the qualities of the individual system
components" (Mattessich, 1978, p. 31). Holistic properties are a manifestation

of the fact that a system is more than the sum of its parts.

74



For example, consider a payroll system. "Total pay" might be determined
by the values of "regular pay" and "overtime". The values of'"regular pay" and
"overtime” might be determined by the values of "hours worked" and "pay rate".

Such a system could be decomposed as shown:

2: {regular pay,overtime,total pay)
1: {hours worked,pay rate,regular pay)

{hours worked,pay rate,overtime)

In this case "total pay" is an emergent state variable at level 2.

Emergent state variables allow the analyst to focus his or her attention
on higher-level abstractions of the system under study. The "total pay" emergent
state variable could be considered an abstraction of the "hours worked" and "pay
rate" state variables. 1If the analyst were not interested in the degree of
detail provided by these state variables, "total pay" may be a perfectly adequate
substitute. Decompositions which show the emergence of state variables whenever
possible are assumed to be superior to those that do not. Thé following

heuristic is based on this assumption.

Heuristic 4a: All subsystems used to update an nth intermediate state space
must by described by at least one state variable which is

emergent at level n.

However, this heuristic alone is not enough to avoid redundant alternative

decompositions as discussed above. In the decomposition

2: {a,b,d}
1: {a,b,c}

state variable "d" is emergent at level 2. Unfortunately, state variable "d"
is not a useful abstraction of any state variables found at lower levels. While
state variables "a" and "b" are found at level 1, they are also found at level
2. They are not abstracted out of the view of the system presented to the
analyst at any level of the decomposition; Only if the values of emergent state

variables are determined by output state variables at a lower level, do they
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become useful abstractions for the analyst. The following heuristic embodies

this notion.

Heuristic 4b: Any deterministic subsystem used to update the nth intermediate
state space must be described by at least one state variable
which is an output state variable with respect to the n-1lth

intermediate state space.

In other words, subsystems used to update an ISS must be described by at
least one state variable which was an output state variable with respect to the
previous ISS. This ensures that outputs from deterministic subsystems at a lower
level will be used as inputs at a higher level whenever possible.

Consider the following decomposition of the example subsystem described

by state variable (a,b,c,d}.

2: {c,d)
1: {a,b,c}

State variable "c" is an output state variable at level 1, and it is an input
state variable at 1level 2. State variable "d" 1is emergent at level 2.
Therefore, this decomposition satisfies Heuristics 4a and 4b. Now consider the

following decomposition.

2: {a,b,d)
1: {a,b,c)

While state variable "d" is emergent at level 2, no output state variable from
level 1 appears at level 2. Therefore, Heuristic 4b would lead to rejection of
this decomposition.

When emergent state variables are used to form abstractions of other state
variables, some state variables may be "hidden". The concept of a hidden state
variable is analogous to "information hiding" as defined by Parnas (1972, p.
1056). Subsystems at higher levels in the decomposition do not have to be
"aware" of all state variables considered by lower-level subsystems. For

example, consider the payroll system.
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2: {regular pay,overtime,total pay)
1: {hours worked,pay rate,regular pay)

{hours WOrked,pay rate,overtime)

Here, the state variables "hours worked" and "pay rate" are hidden with respect
to "total pay". This means that an analyst, interested only in the final value
of “"total pay", would be concerned with the view of the.system shown at the top
of Figure 10. The arrows between "regular pay"” and "total pay" and between
"overtime" and "total pay" indicate value dependencies (e.g. the final value of
"total pay" depends on the value of "regular pay"). On the other hand, if the
analyst were interested in both "total pay" and "overtime", he or she would
require the view shown at the bottom of Figure 10. No state variables are hidden
in this view of the system. The formal definition of a hidden state variable

is somewhat obscure, but is equivalent to the above "intuitive" description.

Variable(s) of interest: TOTAL PAY

v T
0 —~———
/// regular pay\\\\\\.k \]
/// £, I
P ,
i total pay |
L - J
S overtime -

Varilable(s) of Interest: TOTAL PAY, OVERTINME

i total pay ]
| pay rate % |
| | | |
| overtime ;
L J

Figure 10: Two possible views of a hypothetical payroll system.
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Definition: Hidden State Variable

Let x be an emergent state variable at level n of a decomposition satisfying
Heuristics 4a and 4b. If, at level n, the state variable y is not used to

describe any subsystem also described by x, then y is HIDDEN with respect to x.
3.4.2.4. Subsystems should not show redundant dependencies

The final value of an output state variable may be functionally determined
by more than one subsystem that is deterministic with respect to some ISS.
Consider the example system described by binary state variables ({a,b,c,d}. The
second ISS, formed by updating the first ISS using the subsystem {a,b,c}, is

shown below.

First Second Corresponding

ISsS ISS Final Stable States
abececd --> abed --> abecd

0000 0010 0011

0100 0100 0100

1000 1000 1000

1100 1110 1111

The final value of output state variable "d" may be functionally determined by

either (a,b,d) or {(c,d}. However, a decomposition of the form

2: {a,b,d} (c,d}
1: (a,b,c}

would not be considered desirable in that it indicates redundant updating at
level 2. There is no need to have "d" set by two subsystems. This observation

leads to the following heuristic.
Heuristic 5: The set of deterministic subsystems used to update an
intermediate state space may not contain more than one

subsystem described by a given output state variable.

This is not meant to imply that an analyst should not be made aware of

alternative methods for calculating the final values of output state variables.
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The heuristic only forces such alternatives to be shown in different candidate

decompositions of the same system. That is,

1: {a,b,ec}) (a,b,d} and 2: {c,d)
1: {a,b,c)

are possible decompositions of the example system. Both would be suggested by

the specifications analysis tools.
3.4.2.5. Bad Subsystems

Theorem 2 specifies a condition under which it is not necessary to scan
the ISS in order to see if a subsystem behaves deterministically. The next
theorem serves a similar function. Both are used by the specifications analysis
tools to speed the search for deterministic subsystems.

Consider the first ISS of the example system.

First Intermediate Corresponding

State Space Final Stable States
a b c d --> a b c d
0 0 0 0 0 0 1 1
0 1 0 0 0 1 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 1 1

The subsystem {b,c.d} is not deterministic with respect to this state space.
Neither is the subsystem formed by dropping a constant state variable. That is,
the subsystem (c.d) is not deterministic either. This result may be generalized

with the following theorem:

Theorem 5: Let a subsystem X, which is not deterministic with respect to some
intermediate state space R, be described by the set of output state
variables O and constant state variables C. If X’ 1is another
subsystem described entirely by O and a subset of C, then X* will

not be a deterministic subsystem with respect to R.

This means that a subsystem which is not deterministic cannot be made

deterministic by dropping some of its constant state variables.
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3.4.3. Relationship to the Heuristics of Simon and Ando

The concept of a deterministic subsystem together with the above heuristics
are related to the intuitive notions of Simon and Ando (1961) as presented in
Chapter 1. Consider their office building example first discussed in Chapter
1. Simon and Ando consider each room to be a subsystem of the building and each
office to be a subsystem of a room. They were concerned with describing the
thermal equilibrium of the building. Using the decomposition syntax of this

chapter, the building system might be characterized by the following

decomposition:

3: {tr11 “ .y trn, _t;b}

2: (toll’ « . ouy tOlj’ Erl} “ e {tONl’ v ey tONk’ ErN}

1: (oovy Bo11d --- bovny Eory) o0 Loy Eomad - Loy Eom)
where:

ty = equilibrium temperature of the office building

toy = equilibrium temperature of the ith room

toiy = equilibrium temperature of the jth office of the ith room

The "t," is an emergent state variable at level 3 and each "t " is emergent at
level 2. Recall that Simon and Ando’s necessary criteria for a decomposable

system were

a. in a short-term period, as a result of stronger internal bonds, subsystems
tend to reach an internal equilibrium "approximately” independently of one
another, and

b. in a long-term period, when a whole structure evolves toward a global
equilibrium state wunder the influence of weak interactions among
subsystems, the internal equilibriums reached at the end of the short-term

period are approximately maintained in relative value.
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Suppose a bond is interpreted as a dependency between state variables. Also
suppose that bonds are directed.’® If the subsystems are deterministic, there
cannot be bonds between subsystems at the same level®!, but there may be bonds
to lower-level subsystems. However, the number of bonds between a subsystem and
subsystems at other levels will never be greater than the number of bonds within

the subsystem. This can be shown as follows:

1. Heuristic 1 ensures that each subsystem must be described by at least one
output state variable.

2, Heuristic 2 ensures that the values of the output state variables are
dependent on the values of all input state variables.

3. 1 and 2 imply that if there are n state variables describing the state of
a subsystem, there must be at least n-1 bonds between them.

4. There can never be more bonds to other subsystems than there are input
state variables (i.e. at most n-1).

5. Therefore, the ratio of the number of internal to external bonds must

always be greater than or equal to 1.

If there are stronger links within a subsystem, than between that subsystem
and the rest of the system, Simon and Ando argue it is likely to reach
equilibrium faster than the whole system. If the number of bonds is assumed to
be proportional to the strength of the 1link, subsystems can never be more
strongly linked together that they are internally. This satisfies Simon and
Ando's interaction strength requirement. Now suppose that a subsystem is in
equilibrium when no descriptive state variable is an output state variable. That
is, all state variables have attained their final values. A subsystem will be

in equilibrium after it is used to perform an update. By definition, lower-

level subsystems will always reach equilibrium before the system as a whole.

0 For example, consider a system where the value of some state variable

"b" depends on the value of some state variable "a" and not vice versa. A bond
is assumed to exist between the subsystem which determines the value of "a" and
the subsystem described by "b"™, but not the reverse.

51 A bond between subsystems X and Y at the same level would imply that the
value of some state variable in Y is dependent on the value of some other state
variable in X. Therefore, Y could not be a good subsystem, since the behaviour
of a good subsystem is predictable knowing only the values of its own .state
variables.
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This behaviour is the same as that predicted by Simon and Ando for a decomposable

system.

3.5. Automation of Decomposition

3.5.1. An Algorithm for Decomposition

An algorithm®? employing the notions formally defined in the previous
sections has been developed. An implementation of this algorithm comprises a
large part of the computerized specifications analysis tools. Operation of the
algorithm will be illustrated using a simple system.

The algorithm requires as input an explication of the system law in the
form of initial unstable and final stable state pairs. The Decompose() procedure
is then called recursively until a set of alternative decompositions has been
generated. Each alternative will be a deterministic decomposition, and it will

satisfy each of the heuristics described earlier in this chapter.

Required functions:

Outputs(R)
- returns a list of the output state variables with respect to the
intermediate state space R.

Subsystems (R,Outputs, PreviousOutputs)
- returns a list of deterministic subsystems with respect to some
intermediate state space R. Outputs is a list of output state
variables with respect to R. PreviousOutputs is a list of the
output state variables describing the subsystems used in the
update which produced R. Each deterministic subsystem will be
described by a set of state variables such that:
1) As required by Heuristic 1, the set of state variables will

contain an element of the list of state variables assigned

to Outputs.

52 There is no intention to suggest that the algorithm described here

represents the "best" way to operationalize the theory of decomposition. It is
possible that more efficient algorithms exist. This particular algorithm is
described to show that operationalization is possible. The most important
contributions of this research are to be found in the construction and analysis
of system models.
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2) As required by Heuristics 2 and 3, the set of state
variables will be as small as possible.

3) As required by Heuristic 4b, the set of state variables will
contain an element of the list of state variables assigned
to PreviousOutputs (unless there are no previous outputs, as
will be the case with the first ISS).

Theorem 5 is used to further reduce the number of subsystems which

must be tested by scanning the ISS.

Subsets (Subsystems,Outputs)

- returns a list of all subsets of the set of subsystems assigned

to Subsystems. Qutputs is a list of the output state variables

used to describe the subsystems assigned to Subsystems. As the
subsets will be used to perform updates on some ISS, care must be
taken to ensure Heuristic 5 is not violated. That is, no subset
may contain two subsystems which are described'by the same output
state variable.

Update(R,U)
- returns the ISS formed by updating R with respect to the

subsystems U.

The body of the algorithm:

Begin

End.

{Set R; equal to the set of initial unstable states. R; is the ISS
formed by applying each defined external event to each stable state of
the system. The symbol [] refers to a list with no members. The first
time the Decompose() procedure is called there are no outputs with
respect to a previous level and no deterministic subsystems have been
found.}

Decompose (Ry, [1,[1);
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The decomposition procedure:

Procedure: Decompose(R,PreviousOutputs,DecompSoFar)
Arguments:
R - an intermediate state space.

Begin

PreviousOutputs - the output state variables of the subsystems used for

the update which produced R.

DecompSoFar - a list of the sets of subsystems used to obtain R from

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

first ISS via a series of updates.

{Find the output state variables with respect to the ISS.)
Outputs := Outputs(R);
{If Outputs is empty all the states in the ISS are stable,.
This means that the sets of subsystems used to perform updates
defines a deterministic decomposition.)
If Outputs is empty
Begin

Output DecompSoFar as a possible decomposition;

Exit;
End;
{Find the deterministic subsystems with respect to the ISS
subject to certain conditions described for the DetSubsystems()
function.)
DetSubsystems := Subsystems(R,Outputs,PreviousOutputs);
{Find all the subsets of the set of deterministic subsystems
suitable for updating the ISS. These subsets must meet certain
criteria as described for the Subsets() function.}
PossibleUpdates := Subsets(DetSubsystems,Outputs);
{Perform a depth-first search for deterministic
decompositions. Call the Decompose() procedure recursively
for each new ISS formed by updating the current ISS using the
subsets identified in step 4.}
If PossibleUpdates is not empty then
For each element U of PossibleUpdates do
Begin

R’ := Update(R,U);
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NewDecompSoFar := DecompSoFar U U;
Decompose (R’ ,Outputs,NewDecompSoFar) ;
End;
End.

As illustrated by the following example, the algorithm will find all
deterministic decompositions subject only to the rather elementary heuristics®
described earlier. The order of discovery of the decompositions does not imply
any form of ranking. Even moderately complex systems are likely to have a very
large number of possible decompositions. Further heuristics are needed to

present the decompositions in some meaningful order.

3.5.2. A Simple Example

Recall the hypothetical system consisting of four interconnected lights.
Light "a" is connected in series with "b" so that if "a" is on then "b" will be
on and if "a" is off, "b" will be off. If light "a" is off then light "c¢" will
be on, and if "a" in on, light "d" will be on. Only the state of light "a" may
be set manually. The "on" state of a light will be represented by the integer
1 and the "off" state by O.

Sublaws describing the stable states of the system and the actions to be

taken should the system find itself in an unstable state, are given below.

Sublaws

1. Stability Conditions:
a b
0 0
1 1

Corrective Actions:
Conditions Actions

a --> b
1 1
0 0
2. Stability Conditions:
a c
0 1
1 0
1 1

53 The heuristics are embedded in the functions Subsystems() and Subsets().
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Corrective Action:
Conditions Actions

a -=> c
0 1
3. Stability Conditions:
a d
1 1
0 1
0 0

Corrective Action:
Conditions Actions
a --> d

1 1

There are two external events.

External Events
1. Set a =1
2. Set a =0

The stable state space of this system is shown below.

Stable States

HHROOW®
—=~oodo
HOFHFAO
e oA

The first system relation may be obtained by applying the events "set a=1"
and "set a=0" to each of the four stable states. This yields the first ISS or
R;. The final ‘stable states corresponding to each of the states in the first ISS
are obtained by examining the response paths of the system (these paths follow

directly from the sublaws and are listed in Chapter 2).

First Intermediate Corresponding final
State Space stable state

a b c d ---> a b c d
0 0 1 0 0 0 1 0
0 0 1 1 0 0 1 1
0 1 0 1 0 0 1 1
0 1 1 1 0 0 1 1
1 0 1 0 1 1 1 1
1 0 1 1 1 1 1 1
1 1 0 1 1 1 0 1
1 1 1 1 1 1 1 1
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Four deterministic decompositions will be suggested when the algorithm is
applied to this system. The steps leading to the first deterministic
decomposition are shown below. The full solution, showing the generation of all
four decompositions, is included as Appendix H. Each step is labelled using the

following convention:

x(Ay|Lz)

where

X = Step number starting with 1 and increasing by 1 until the algorithm
finishes.

y = Algorithm step number.

z = The current level of recursion with respect to the Decompose() procedure.

START

1(A1]L1) Find the output state variables with respect to the current

ISS.

The only state variables which change their values between the first ISS and the

corresponding final stable states are (b,c,d}.

2(a2|L1) The set of output state variables is not empty.
3(A3|L1) Find the deterministic subsystems.

The first system relation was as follows:

First Intermediate Corresponding final
State Space stable state
b -->

HEREROOOOM
HEHEOOMHMEOO

HORFRMHORKDO®
PRROMPERO.A
HMHEHEHE,OOOOD
HRRrH,OOOOGU
R OPRHERRERFDO
HFRHRERMRRPRRPROA

87



The smallest deterministic subsystems, with respect the the first ISS, which are
described by at least one output state variable are {a,b}, (a,c,c}, and (a,d,d).
Notice that state variables "c¢" and "d" are both inputs and outputs in their’
respective subsystems. That is, the final values of "c¢" and "d" are dependent

on their initial values.
4(A4|LL) Find subsets of the deterministic subsystems for ISS update.

The subsets of this set of deterministic subsystems are
{{a,b)} ((a,c,c}) ({a,d,d}}

{ta,b},la,c,e})} {{a,b},{a,d,d}} {{a,c,c},la,d,d)}
{{a,b},la,c,c},{a,d,d}}

5(A5|L1) Update the current ISS using one subset of the set of

deterministic subsystems, and call the Decompose() procedure.

The first ISS will be eventually updated using all the sets found in step 5.
The first set selected is {{a,b})}. The second ISS created by this update is as

shown below.

First Second Corresponding final
ISS ISS stable states
abed --> abecd --> abecd

0010 0010 0010

0011 0011 0011

0101 0001 0011

0111 60011 0011

1010 1110 1111

1101 1111 1111

1101 1101 1101

1111 1111 1111

6(A1|L2) Find the output state variables with respect to the current
ISS.

The only state variables with values which change between the second ISS and the

corresponding final stable states are {c,d}.

7(A2|L2) The set of output state variables is not empty.
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8(A3|L2) Find the deterministic subsystems with respect to the second
ISS.

The only deterministic subsystems described by at least one output state variable
and one output state variable from the subsystems used in the last update, are
{b,c,¢} and (b,d,d}. Notice that while {a,c,¢} and {a,d,d} are still
deterministic subsystems, they are not described by an output state variable from
the subsystems used to create the second ISS (i.e. they are not described by

state variable b).

9(A4|L2) Find subsets of the deterministic subsystems for ISS update.

The subsets of this set of deterministic subsystems are

{{b,c,c},(b,d,d}} {{b,c,c}} ((b,d,d}}

10(A5|L2) Update the current ISS using one subset of the set of

deterministic subsystems, and call the Decompose() procedure.

The second ISS will be eventually updated using all the sets found in step 9.
The first set selected is {{b,c,c},{b,d,d}}. 'The third ISS created by this

update is as shown below.

Second Third Corresponding final
ISss 1SS stable states
abcd --=> abecd --> abecd
0010 0010 0010
0011 0011 0011
0001 0011 0011
0011 0011 00011
1110 1111 1111
1111 1111 1111
1101 1101 1101
1111 1111 1111

11(A1|L3) Find the outputs with respect to the current ISS.

There are no output state variables.
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12(A2|L3) Since

deterministic decomposition.

there variables,

a

The sets of subsystems used to transform the first ISS into a stable states

defines a decomposition.

formed using {b,c,c} and {b,d,d).

is therefore

2: {b,c,c} ({b,d,d}
1: {a,b)

This invocation of the Decompose() procedure is now complete.

The second ISS was formed using {a,b}.

The third was

Therefore, the first discovered decomposition

Execution will

continue by updating the second ISS using the next subset of the set of

deterministic subsystems identified at Step 9.

{The example is completed in Appendix H.)

A full list of the decompositions produced by the decomposition algorithm is

shown below.

Decomposition #1
2: {b,c,c} {b,d,d}
1: {a,b}

Decomposition #2
2: {b,d,d}
1: {a,b} {a,c,c}

Decomposition #3
2. {b,c,c)
1: {a’h) {a,d,g}

Decomposition #4

1: {a,b} {a,c,c)

{a,d,d}
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Each of these decompositions represents a different view of the same
system. The suitability of a particular decomposition will depend upon such

considerations as:

1) Which state variables is the analyst interested in? (i.e. What is the goal
of the system?), and
2) What maintenance changes are anticipated? (Maintenance considerations will

be discussed in the next chapter.)

Decomposition . #1 allows state

variable "a" to be hidden with respect to a) Decomposition #1:
T <
outputs "c" and “d". An analyst P = |
=
interested in state variables "c¢" and "d" S S

need only be concerned with the view of

the system illustrated in first part of b) Decomposition #2:

1
!
Figure 10. The arrows indicate wvalue 7y d i
—— i
ed t
dependencies. For example, the arrow I/ /ﬁ A
] e
between "a" and "c" means that the final L\? —>°C 7

value of "c" depends on the value of "a". A
¢y Decomposition #4:

Decompositions #2 and #3 cannot hide A T
any information from an analyst interested r
[}
[Ny £
in "c¢" and "d". In neither decomposition S~ " d_ B

is "a" hidden with respect to both "c¢" and Figure 11 Three possible views of
"d". For example, decomposition #2 yields the four lights system.
the view shown in the centre of Figure 10

with respect to "c" and "4".

Decomposition #4 shows that the final values of state variables "b", "c",
and "d" can be calculated concurrently if the initial values of {a}, (a,c}, and
{a,d) are known. It is also the decompsition inherent in the sublaws. This
decomposition yields the view shown in the bottom of Figure 10 with respect to

"¢" and "d". 1In this case, state variable "b" is hidden with respect to "c" and

"d". It is not immediately clear whether decomposition #l or #4 is superior.
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3.5.3. Importance of the External Event Space

Proper explication of the events which may act upon the system from the
environment is crucial. For example, consider the following simple example.
The system is intended to model the addition of two continuous quantities "a"
and "b". State variable "c¢" contains the result of the addition. All three

state variables are modelled as having only two values: zero and positive.

Stability Conditions:

a b c

pos - pos

- pos pos

0 0 0

Corrective Actions:
Conditions Actions
a b --> c

pos - pos

- pos pos

0 0 0

The only intuitively reasonable decomposition for this system is as

follows:

1: (a,b,c)

However, if only one external event is defined as

Set a = pos

the specifications analysis tools will yield the following decomposition:

1: {a,c,c)

The defined external event is not sufficient to force the system to exhibit
all of its dynamic properties. As a result, knowledge of the initial wvalues
of "a" and "c", as well as the value of "a" after the application of the

external event, is sufficient to predict the final value of "c¢". Therefore,

{a,c,c) is a deterministic subsystem. Defining external events
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1. Set a = pos
2. Set a =0
will yield the intuitively expected decomposition’*.
The four light example exhibits similar behaviour. If the only defined

external event is
Set a=1
the specifications analysis tools will identify two possible decompositions.

Decomposition 1:

1: (a,b) {a,d,d)

Decomposition 2:
2: {b,d,d)
1: {a,b}

The rules whose responsibility it is to set the value of state variable "c" are
never activated. The value of "c¢" is never changed, therefore "c" cannot be
identified as an output state variable.

To help ensure that the defined external events are sufficient to force
the system to exhibit all behaviour implied by the defined state variable values,
they should cause the affected state variables to assume all of their defined
values. The specifications analysis tools perform a test to ensure that this
is so. 1If the test fails, a warning message 1is issued to the analyst. This
heuristic is based on the assumption that if an analyst defines several values
for a state variable affected by an external event, he or she is interested in
seeing that state variable assume each of these values as a result of external

event555 .

5 Dpefining further external events to alter the value of state variable

"b"* has no effect on the generated decomposition. No additional decomposition
information is provided by such an event.

55 State variables are not allowed to change their values twice during any
response to an external event. Therefore, the values of state variables affected
by external events can only be set by external events. The reason for this rule
is described in this chapter under the heading "Intermediate State Variables".
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3.4.4. Decomposition of the Payroll System

The simple "interactive" payroll system described in the previous chapter

decomposes as shown below. To save space, variable names have been abbreviated

as indicated. There are seven possible decompositions®®.

State Variable Abbreviations

hours worked pay_r

hours = = pay rate
emp_p = employee position emp_t = employee type
sales = sales base = base pay
com = commissions over = over time pay

total_pay = total pay

Payroll System Decompositions

Decomposition'#l

1: {emp_t,emp_p,hours,over) (emp_t,emp_p,pay_r,hours,sales,total pay}

{pay_r,hours,base} (emp_t,emp_p,sales,com)

Decomposition #2

2: {emp_t,emp_p,pay_r,hours,com,total pay)
1: {emp_t,emp_p,hours,over} (pay_r,hours,base} {(emp_t,emp_p,sales,com)

Decomposition #3

2: {emp_t,emp_p,hours,sales,base,total pay}
1: {emp_t,emp_p,hours,over) {pay_r,hours,base} {emp_t,emp_p,sales,com)

Decomposition #4

2: {emp_t,emp_p,hours,base,com, total_pay)
1: {emp_t,emp_p,hours,over) {pay_r,hours,base} ({emp_t,emp_p,sales,com}

36 Careful examination of these decompositions will reveal that #1 through

#6 may be deduced from #7 by simple substitutions of state variables. This issue
will be addressed in Chapter 4.
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Decomposition #5

2: {emp_t,emp_p,sales,base,over,total_pay)
1: {emp_t,emp_p,hours,over}) ({pay_r,hours,base} {emp_t,emp_p,sales,com)

Decomposition #6

2: {pay_r,hours,over,com,total pay) ‘
1: {emp_t,emp_p,hours,over) (pay_r,hours,base} {emp_t,emp_p,sales,com}

Decomposition #7

"interactive" payroll system.

2: {base,over,com,total pay)
1: {emp_t,emp_p,hours,over} (pay_r,hours,base} {emp_t,emp_p,sales,com)
total _pay
con
OVEeY
base
over com
base
over base Com
hours hours sales
emp _p pay_ I enp p
enp t emp_t
Figure 12: A diagrammatic representation of Decomposition #7 for

This is the decomposition reflected

in the sublaws.

Although it is used in the system model, the "benefits" state variable
does not appear in any of the decompositions of this system. Since it has only
one possible value, its value cannot change. Therefore, "benefits" is not an
output state variable. Also, it is not included in the calculation of any other

state variable included in the model. Therefore, it does not appear as an input
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state variable in any deterministic subsystem. However, suppose that for some
reason "total pay" were to include "benefits"”. The value of the state variable
"total_pay" would be dependent on the value of "benefits", and the model would
have to be modified to reflect this dependency. For example, if the "benefits"
state variable could have wvalues "0" and "nz", the rules describing the
calculation of "total pay" would have to be modified as shown below. Italicized

text indicates the changes to the model described in Appendix 6.

/* calculate total pay */
dynamic("calculate total pay",
[v(base,nz)]},

[v(total_pay,nz)]).
dynamic("calculate total pay",
[v(over,nz)],

[v(total_pay,nz)]).
dynamic("calculate total pay",
[v(com,nz)],
[v(total_pay,nz)]).
dynamic("calculate total pay",
[v(ben,nz)],
[v(total _pay,nz)]).
dynamic("calculate total pay",
[v(base,"0"),v(over,"0"),v(com,"0"),v(ben,"0")],

[v(total pay,"0")]).

The specifications analysis tools would now suggest decompositions which
included "benefits" as an input to the "total pay" subsystem.

The "batch" payroll system, described in the previous chapter, decomposes
as above. However, the "batch" model gives rise to many decompositions which
are not generated using the "interactive" model®’. The specifications analysis
tools produce a total of 168 decompositions. All suggested decompositions of
the "batch" payroll system have been included as Appendix I. Most are a direct

result of the batch orientation. The state variable "end" is not the only state

57 A "benefits" subsystem is included in the "batch" model. As shown in

the appendix, this subsystem is independent of all other subsystems and is not
responsible for the increase in the number of alternative decompositions.
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variable which may be used to indicate the end of the period. Any output state
variable which has had its value calculated may be used to trigger the
calculation of another output state wvariable. For example, consider the

following decomposition:

Decomposition {2

2: {pay_rate,hours,benefits,base}

1: {end,benefits} (end,emp_t,emp_p,sales,com)
{end,emp_t,emp_p,hours,over)

{end,emp_t,emp_p,pay_rate,hours,sales,total pay)

The calculation of all output state variables at level 1 is triggered by the
value of the state variable "end". This fact is indicated by the inclusion of
"end" in each subsystem at that level. The subsystem at level 2 indicates, as
expected, that "base pay" may be calculated from "pay rate" and "hours worked".
However, the calculation of "base pay" is triggered by the calculation of
"benefits". As soon as the value of "benefits" becomes non-zero, "base pay" is
calculated. Generation of decompositions of this form is not considered to be

an error.
3.5.5. Intermediate State Variables

Consider a modification of the "interactive" payroll system. Assume the

company makes some changes in its payroll policy (Wand and Weber, 1989).

1. Both office staff and sales employees are entitled to both overtime pay
and sales commissions.
2. An office employee cannot receive more in commissions than in overtime.

3. A sales employee cannot receive more in overtime than in commissions.

An analyst might be tempted to define a system which, after calculating both
commissions and overtime, modifies these amounts to reflect the restrictions
resulting from changes 2 and 3. The sublaws could still pass the tests for local
completeness and consistency. ‘Response paths could be determined and the first
ISS could be created. The decomposition algorithm could be applied, but none

of the resulting decompositions would 1indicate the calculation of the
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intermediate values for "overtime" and "commissions". That is, no decompositions
of the following form would be found. (Notice that "overtime" and "commissions"

are output state variables at two different levels of the decomposition.)

n+2: {...,commissions,overtime,total pay)
n+l: {employee_type,commissions,overtime,commissions,overtime}
n: - {...,hours,overtime} (...,sales,commissions)

Instead, subsystems at levels n and n+l would be combined together as shown:

m+l: (...,commissions,overtime,total pay)
m: {...,hours,sales,employee_type,commissions,overtime)

This will happen for the following reason. When an update is performed on an
ISS, the state variables in each of the updating subsystems are set to their
final values. There is no way to identify the intermediate values of "overtime"
and "commissions" which would have been calculated at level n. Only by updating
"commissions" and "overtime" to their intermediate values could the two-step
nature of the calculation be discovered. Unfortunately, knowledge of these
intermediate values 1is not contained in the information input to the
decomposition algorithm. The only information available to the algorithm is the
first system relation (i.e. the 1list of initial unstable states and their
corresponding final stable states).

This observation may be stated more generally.

The specifications analysis tools will never suggest a
decomposition where a state variable is an output state

variable at more than one level of a system.

If an analyst wishes to show the "multiple-step" nature of a calculation,

he or she must identify INTERMEDIATE STATE VARIABLES. 1In the above example,

such a state variable might be called "additional_payments". Suppose "employee
type", T"commissions" and ‘"overtime" are wused to calculate "additional
payments". Also 'suppose "additional payments" is 1input to the subsystem

calculating "total pay". The algorithm would identify a decomposition with the

following form.
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n+2: {...,additional payments,total pay)
n+l: {employee_type,commissions,overtime,additional payments)

n: (...,hours,overtime} {...,sales,commissions}

The required wuse of
intermediate state variables is total_pay
it s : base
not a restriction on the
add_pay
generality of SELMA. 1In fact,
base add_pay
it could be argued that the
commissions and overtime amounts base add_pay
pay_r over
before and after the hours emp_t
restrictions are applied are con
not the same properties of the over [ ] com
system. That is, "commissions | 47
over com
before restrictions" is not the hours sales
same state variable as enp_p enp_p
"commissions after
. . " Perh Figure 13: A diagrammatic representation
restrictions”. erhaps an ' of Decomposition #27 for the
analyst wishing to model them as modified payroll system. This

is the decomposition reflected

the same state wvariable 1is in the sublaws.

actually making amistake. This

mistake might be caused by thinking about the system in procedural rather than
sublaw oriented terms. Thus the required use of intermediate state variables
can be seen as a kind of semantic integrity check. That is, if none of the
decompositions suggested by the tools exhibit the structure intuitively expected
by the analyst, some state variables may be serving dual roles and additional
state variables may be required.

A listing of the formal model for the modified payroll system has been
included as Appendix J. A total of 48 decompositions are suggested by the
specifications analysis tools. These are also included as Appendix K. The
decomposition matching the structure of the sublaws is shown in diagrammatic form
in Figure 13. The fact that so many decompositions are generated highlights the
need for additional heuristics to reduce the selection task faced by a designer.

Some additional heuristics will be discussed in the next chapter.
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3.6. Conclusions

System decomposition can be performed by considering the manner in which
the values of the state variables describing the system change under the
influence of external events. A theory of decomposition embodying the concepts
of emergent and hidden system state variables has been developed. An algorithm
for decomposing systems utilizing Wand and Weber’'s requirement for deterministic
decompositions has been described.

The goal of this theory of decomposition is quite different from the
formalisms of HOS (Hamilton and Zeldin, 1976) and Mili et al, (1986). These
formalisms focus on ensuring that given subsystems are combined in a consistent
manner. They are mnot concerned with the identification of subsystems.
Computerized tools implementing their ideas would be "passive" in nature. That
is, the tools would merely test the consistency of given decompositions. Myers
(1978) and Yourdon and Constantine (1979) were concerned with developing a
methodology for actively finding deterministic subsystems. Similarly, the
specifications analysis tools are "active" in the sense that they can suggest
decompositions for a system. However, while the techniques of Myers and Yourdon
and Constantine are informal and depend to a great extent on human judgement, the
algorithm used by the specifications analysis tools is derived from a theory of
decomposition and may be completely automated.

Two of the three basic forms of decomposition identified in Chapter 1 are
supported by the theory. Wand and Weber’'s requirement is used in conjunction
with several heuristics to identify subsystems which are candidates for parallel

decomposition. The processes?®

associated with the subsystems at any level of
a decomposition may be executed in parallel. No subsystem will have an
associated process which depends on the output of another subsystem at the same
level. The update is the essence of sequential decomposition. The ISS formed
by an update using certain subsystems, represents the states of the system after
the processes associated with those subsystems have been completed. Parallel
decomposition may be performed following the construction of the first ISS or

after any update. A possible interpretation of the third generic form of

decomposition, namely conditional decomposition, is discussed in the Chapter 5.

58 The relational form (ie. initial/final state pairs) of these processes

could be obtained directly from the system relation with which the subsystem is
associated.
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The decompositions generated by the specifications analysis tools could
provide a basis for either analysis of the system or design of some artifact
intended to represent the system (as in the case of a computerized information
system). For analysis, the subsystems identified by the specifications analysis
tools will be guaranteed to behave in a deterministic way. This will reduce
the cognitive load required to comprehend the operation of the entire system.
For design, the decomposition can provide the basis of a hierarchy of program
modules as required by structured programming. As well, a deterministic
subsystem identified by the specifications analysis tools could be easily
implemented as an object in an object-oriented programming system. The state
variables describing the subsystem would comprise the state vector of an object
type. The processes or methods encapsulated with this state vector could be
described by a sublaw specifying the relationships between state variables,

The example systems considered in this section were quite small. It is
likely that 1larger systems will give rise to even greater numbers of
deterministic decompositions. The next chapter suggests a "ranking" heuristic
which could be used to present the analyst with the "best" decompositions first.
Another heuristic for reducing the size of the decomposition search space is also

suggested.
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Chapter 4: Svystem Complexity, Maintenance, and Goals

4.1. General

The last chapter showed how the internal structure of a system may be
discovered given only the states resulting from the action of external events.
This internal structure is found through the use of a decomposition algorithm
based on a number of heuristics. The heuristics serve to limit the number of
"possible" decompositions which must be considered by the analyst. However, as
illustrated by the simple payroll system examples, these heuristics still allow
a large number of decompositions. Some method of ranking these decompositions
is required so that only the best need be presented to the analyst.

To this point, all subsystems produced by the specifications analysis tools
have been considered to be equally suitable as bases for the construction or

understanding of a system. For example, the subsystems
{emp_p,emp_t,hours,pay_r,sales,total pay)

and

{base,add pay,total pay)

where hours = hours worked pay_r = pay rate
emp_p = employee position emp_t = employee type
sales = amount of sales base = base pay
total_pay = total pay add_pay = additional payments

suggested for the modified payroll system, are considered to describe equally
suitable modules for the calculation of total pay. The first subsystem suggests
calculation of total pay given only the initial inputs (or the state variables
affected by external events), whereas the second suggests making use of the
intermediate values: base pay and additional payments. Most analysts would agree
that implementation (or understanding) of the first subsystem would be more
difficult than the second. The subsystem calculating total pay from initial
inputs would be more complicated than the subsystem utilizing the intermediate

values. Therefore, the second subsystem likely describes a superior subsystem
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in that its complexity is less than the first. Unfortunately, the intermediate
values of base pay and additional payments must be calculated before the second
subsystem may begin calculation of total pay. These lower-level subsystems might
increase the complexity of the system beyond the complexity of a calculation from
initial inputs. A quantitative measure of decomposition complexity is required
so that different candidate decompositions may be compared and ranked.

This chapter is primarily concerned with the selection of such a complexity
measure. As there is no general consensus on the meaning of the term
"complexity", the chapter will begin with a discussion of some necessary
characteristics for a measure of complexity suitable for use with systems
modelled using SEIMA. The final selection will be rationalized by tracing the
logical development of the measure beginning with Ashby'’s (1956) definition of
system "variety". Variety will be modified to provide some additional desirable
properties. After a logarithmic transformation, the modified variety measure
is identical to "entropy" as defined by Shannon (1948). While entropy will be
shown to be unsuitable as a measure of complexity, its problems can be overcome
with a simple modification. This modification was first made by Hellerman
(1972). He called the resulting measure "computational work">®. Computational
work has been adopted as the measure of complexity for this research. In

summary, rationalization of the complexity measure shall consist of four major

stages:

1. Ashby'’s Variety

2. Modified Variety

3. Shannon’s Entropy

4, Hellerman’s Computational Work

3¢  Hellerman's choice of the label "computational work" is in many ways

unfortunate. His measure does not reflect the number of machine operations
required to perform a calculation. This sort of machine work would be highly
implementation dependent. Hellerman uses a multiplication subroutine as an
example. The subroutine could calculate 38 * 73 by adding 73 to itself 38 times.
However, there are easier ways to perform multiplication which require far less
machine work. Hellerman was interested in finding a measure of the difficulty
of a calculation which would be implementation independent. He also notes that,
in the Computer Science literature, complexity is a quantity which wvaries
directly with work, "and so may be identified, loosely, with it" (Hellerman,
1972, p. 439).
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Application of the complexity measure will be demonstrated using the
modified payroll system example of the previous chapter. The complexity of
anticipated future changes to a system (or system maintenance) are expected to
influence design. These influences will be illustrated using the modification
of the payroll system described in the previous chapter. The chapter will close
with the definition of another heuristic for pruning the decomposition search
tree. This heuristic uses the measure of complexity and depends upon knowledge

of the system’s purpose or goal.

4.2. Complexity

The Oxford Dictionary defines something as complex if it "consists of
parts". Most people would agree that something is complex if it is made up of
many parts. A block of ice is usually not considered to be a complex object,
whereas a space shuttle is very complex. Thus "many-partedness" does seem to
be an essential ingredient for complex things. However, a mountain need not be
considered to be a complex object even though it consists of a very large number
of individual pieces of rock, and the block of ice would be a complex object if
the motions of individual electrons and nuclei were considered. Clearly,
although many-partedness is important, it must be many-partedness at the level
of abstraction where the behaviour of interest is manifested. That is, if we
are only concerned with the static behaviour of mountains, they are indeed simple
things. However, if we are interested in patterns of erosion, such as
landslides, or even geological uplift, then mountains become fairly complex
systems of interacting strata and faults. Similarly, if we are interested in
the gross (or emergent) properties of a block of ice, the block may be treated
as a simple thing. But if we are concerned with "lower-level" properties of ice,
such molecular bonding via electron sharing, the same block must be regarded as
a complex system. Therefore, the following necessary criterion for a definition

of complexity is proposed.

Complexity must be related to the behaviour of a system.
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Any acceptable definition must recognize that complexity is related to the

dynamics of the system®.
4.2.1. Variety

The first step in the rationalization of a measure of complexity will be
variety. Ashby (1956) notes that most systems of interest have outputs. He
defined variety to be the number of different output states exhibited by a
system. For example, consider the following two subsystems from the modified

payroll system. A table of input and output states for each subsystem is

provided,.
Subsystem #1: {hours,pay_r,base)
Base pay will only be non-zero (abbreviated "nz") if the pay rate is non-

zero and the hours worked is non-zero (i.e. Hours worked is either less

than the limit for regular hours "reg", or sufficient for overtime pay

"otll) .

Inputs Output
hours pay_r base

0 0 0

0 nz 0

reg 0 0

reg nz nz

ot 0 ' 0

ot nz , ) nz

60 Notice that this requirement is somewhat at odds with the common usage

of the term "complex". Many people would consider an assembly consisting of two
parts to be more complex than an assembly consisting of only one part. Further,
they might continue to support this ranking even if the assemblies exhibited no
behaviour other than simple "existence". The notion of complexity, as presented
in this research, is more restrictive in that it does not address this sort of
"static complexity". It will be argued that only "dynamic complexity" is
important in assessing the quality of a decomposition.
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Subsystem #2: {emp_p,sales,com}

Commissions will only be non-zero if the employee has a regular position
(abbreviated "r") as opposed to a management position (abbreviated "m"

and some sales have been made.

Inputs OQutput
emp_p sales com

T 0 0

r nz nz

m 0 0

m nz 0

The variety of both subsystems is 2 since both base pay and commissions may
exhibit two distinct values.

Variety 1is at 1least similar to complexity. It seems intuitively
reasonable to expect a system exhibiting a large number of output states to be
more complex than one which shows only a small number of output states.
However, complexity appears to be a function of more than just output states.
Consider the following possible partial implementations of the base pay and

commissions subsystems:

procedure base_pay(hours,pay_r,base);
begin

case pay_r of

0: base := 0;

nz: case hours of
0: base := 0;
reg: base := nz;
ot: base := nz;
endcase;

endcase;

end;

procedure commissions(emp_p,sales,com);
begin '

case sales of
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0: com := 0;

nz: case emp_p of
m: com := 0;
r: com := nz;
endcase;

endcase;

end;

The base pay calculation procedure is slightly longer than the one for
commissions because there are more input states to consider. Because there are
three possible values for hours worked and two for pay rate, the base pay
subsystem has six input states. The commissions subsystem has only four input
states. This suggests that a measure of complexity which is not only a function
of output states, but of input states as well, is required. Such a measure will

form the next step in the development of a measure of system complexity.
4.2.2. Modified Variety

Each of a deterministic system’s input states will lead to one and only
one output state. The probability of observing a particular output state is
equal to the probability of observing any of the input states leading to that
output state. Variety can be modified to be a function of the probabilities of
observing each output state. Thus the modified measure would be a function of
both input and output states. For systems modelled using SELMA, the probability
of observing a particular output state is determined by the frequencies of the
external events. The analyst could be asked to estimate these frequencies.
They are, after all, 1likely required to facilitate implementation-level
decisions relating to such things as data storage location or file access
method. However, for purposes of analysis and design, an analyst is not
concerned with the probability of an external event, only with understanding or
designing the system’s response to that event. For example, a computer program
must contain routines to handle all anticipated inputs. The fact that a
particular inpﬁt may occur more often than another does not influence the
difficulty of the code written to handle that input. Therefore, for purposes
of analysis, it shall be assumed that the probability of observing each external

event 1s the same. For subsystems, this 1s the same as assuming the
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probabilities of observing all input states are equal. Therefore, for this
research, the probability p, of observing a given output state 0; will be defined
as I,/I where I, is the number of input states leading to 0; and I is the total

number of input states.

ps=1, /1

There are many possible ways of incorporating output state probabilities

into a modified measure of variety.

However, for consistency, the modified

, Input States Output States
measure should yield the same value as P

: 11
Ashby's variety when probabilities do \‘b 01

not matter (i.e. when they are all ' /
equal). It should also satisfy a
somewhat less intuitive requirement.
By definition, 1if the probability of \
observing output state 0, is less than

that of observing output state O0,, IS

there are fewer input states leading
If P(Ii)=P(j) for all i and j

to 01 than to 02. As illustrated Then P(01)=2/5 and P(02)=3/5

below, this means that fewer decisions — -
Figure 14: Probabilities of observing

must be made before moving the system output states given equal

to state 0, than to 0,. Therefore, input state prObabllltlesf

when two systems exhibit the same input

and output states, the system in which the output probabilities are most unequal
will be the least complicated. That is, modified variety should be a maximum
when the probabilities of observing each output are the same. Consider two

simple systems with four input and two output states.

System 1: {a,b,c}) Probabilities of observing each output state are NOT equal.

Inputs Output
a b c
0 0 0
0 1 0
1 0 0
1 1 1
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System 2: (d,e,f} Probabilities of observing each output state are equal.

Inputs Output

d £

o

P OO
POFO
O O M

Possible implementations for these systems are as follows:

procedure c(a,b,c);

begin
case a of
0: c = 0;
1: case b of
0: c := 0;
1: c :=1;
endcase;
endcase;
end;
procedure f(d,e,f);
begin
case d of
0: case e of
0: f :=1;
1: f :=0:
1: case e of
0: f := 0;
1: f :=1;
endcase;
endcase;

end;
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In the first system the probabilities of observing outputs of 0 and 1 are 0.75
and 0.25 respectively. In the second system the probabilities are both 0.50.
The implementation for the second system is slightly longer (or more complex)
than the one for the first.

One measure exhibiting both of the above properties is as follows:

n
Modified Variety = o (1/p)F
i=1

where
n is the number of output states
pi is the probability of observing output 1
and
p; = Li/1
where
I, is the number of input states leading to output i

I is the total number of input states

If all the I,'s are the same, all the p;'s will be equal to 1/n and

I
=
=}

-
~
=)

Modified Variety

Variety

as desired.

In the base pay subsystem there are 6 different input states. Two of these
states lead to a non-zero output state and 4 lead to output states of zero.
Therefore the probabilities of observing output states of non-zero and zero are
0.33 and 0.66 respectively. Therefore, the modified variety of the base pay
subsystem is 1.89 (= (1/0.33)%3 4+ (1/0.66)°%®). The modified variety of the

commissions subéystem may be similarly calculated to be 1.76. This implies that
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the commissions subsystem is in some sense less complex than the base pay
subsystem, but both are less complex than a subsystem which would produce the
values "nz" and "O" with equal probability. Because there are two output states,
the modified variety of such a system would be 2.00.

At this point a digression is in order. In the above implementations, the
only language primitives assumed were a selection structure in the form of "case"
.and an assignment operator in the form of ":=", Different languages are likely
to have different primitives. For example, most languages have a multiplication
operator. Such an operator would greatly simplify calculation of base pay since
it is merely the product of hours and pay rate. The case structures could be
eliminated. However, a multiplication operator would not much simplify the
calculation of commissions as a selection depending on employee position is
required. That is, no commissions are calculated for management employees. As
the complexity measure is to be used to help select a decomposition for use as
a basis for system implementation, the primitives of the implementation language
are obviously important. It is possible to imagine a fourth-generation language
which provides a primitive for the calculation of total pay given the initial
inputs of employee position, employee type, hours, pay rate and sales. If this
language was to be used for implementation of the payroll system, software
written using any of the more detailed decompositions would likely be more
complex than software written for the monolithic subsystem.

Also consider a system with the following inputs and output.

Inputs Output
a b . c
1 1 2
1 2 3

This system has a modified variety of 2. Now consider another system.

Inputs Output

d £

o

NN =
N = N =
~PwWWN
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This system has a modified variety of 2.83. Yet both systems could be
implemented identically using a simple addition primitive. But is addition
really simple? Decimal addition requires the use of a 100 entry look-up table
(0+0=0,0+1=1...949=18) and a set of rules for "carrying" (or "borrowing" in the
case of negative addition or subtraction). Of course, addition in binary is
simpler than addition in decimal but is still a non-trivial exercise. In the
case of the base pay subsystem, multiplication was suggested to be a simple
operation. In fact, not too many years ago some publishers were able to make
a profit selling large look-up tables of logarithms which could be used in
conjunction with the addition look-up table and rules (hopefully contained within
the user’s brain) to simplify multiplication. Modified wvariety provides a

measure of the basic difficulty of a procedure. It is independent of whatever

language primitives will be available during implementation. It is often argued
that implementation issues, such as language selection, should not be considered
during the early stages of systems analysis. It is these early stages that SELMA
is designed to support. In fact, mathematical operations such as addition and
multiplication are not likely to appear in the early stages of systems analysis
but are more likely to be found in later stages where the procedures are
developed to calculate emergent state variables. The payroll systems used as
examples here are quite "low-level" in their focus. That 1is, the actual
procedures used to calculate total pay are likely to be of interest only in the
later stages of the analysis of an entire personnel and accounting system. This
is not to say that SELMA is not applicable to such a low-level system. Rather,
it is the complexity heuristic which is of questionable use at levels of analysis
close to implementation because of the variety of different implementation
primitives available.

Back to the discussion of variety. It would also be nice if the modified
variety of a system formed by merging two independent subsystems could be found
by combining the modified varieties of the subsystems in some simple way. In
fact, as shown in Appendix M, the modified variety of such a system is simply
the product of the modified varieties of the subsystems. Consider the system

formed by merging the.total pay and commissions subsystems:

{emp_p,hours,pay_r,sales,base, com)

The input and corresponding output states for this system are as follows:
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Inputs Outputs

emp_p hours pay_r sales base com
be 0 0 0 0 0
T 0 0 nz 0 nz
r 0 nz 0 0 0
r 0 nz nz 0 nz
r reg 0 0 0 0
r reg 0 nz 0 nz
r reg nz 0 nz 0
r reg nz nz nz nz
r ot 0 0 0 0
r ot 0 nz 0 nz
r ot nz 0 nz 0
r ot nz nz nz nz
m 0 0 0 0 0
m 0 0 nz 0 0
m 0 nz 0 0 0
m 0 nz nz 0 0
m reg 0 0 0 0
m reg 0 nz 0 0
m reg nz 0 nz 0
m reg nz nz nz 0
m ot 0 0 0 0
m ot 0 nz 0 0
m ot nz 0 nz 0
m ot nz nz nz 0

The variety of this combined system is
(24/12)12/24 * (24/4)‘0/24 * (24/6)6/21& * (24/2)2/24 = 3.32

which is also equal to the product of the varieties of the original subsystems
(1.89 % 1.76 = 3.33) ignoring some round-off error. This result can be easily
generalized to systems formed by merging more than two independent subsystems.

It was proven that the modified variety of a system formed by merging
independent subsystems could be found by multiplying the modified varieties of

the components. However, since multiplication is not as easily visualized as
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addition®!, a logarithmic transformation of the modified variety measure is

commonly used. This transformed measure is called entropy.

4.2.3. Entropy

Shannon (1948) was the first to propose a definition of information
entropy®® although Ashby did not suggest the notion of variety until several
years later. Shannon was looking for a measure H of the "degree of choice or
uncertainty" in the selection or occurrence of an output state which would be
a function of the probabilities of observing each output state p;,p,,...,p,. He
also wanted the measure to have a number of desirable properties (Shannon, 1948,

pp. 392-393).

1. H should be continuous in the p;.

2. If all the p;'s are equal, p; = 1/n, then H should be a monotonically
increasing function of n. With equally likely events there is more choice,
or uncertainty, when there are more possible events.

3. If a choice can be broken down into two successive choices, the original

H should be the weighted sum of the individual values of H.
He concluded that the only H satisfying all of these conditions is of the form®®.
n
H = Z py ¥ log(l/py)
i=1

where again

81 It is relatively easy to visualize the result of adding two things to

a collection of four. It is much harder to visualize two things multiplied by
three. Many people will visualize the multiplication as a series of additions.
Addition is seen to be more intuitive than multiplication. Entropy is an
additive measure while modified variety is multiplicative. Therefore, entropy
is considered superior.

82 For the remainder of this research, "information entropy" will be
referred to as simply "entropy".

8 The formula for H may be multiplied by, or added to, a constant and
still possess the required properties.
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n is the number of output states

p; is the probability of observing output i

The base of the logarithm determines the units of entropy. The usual base is
2, and the units are bits. Logarithms in this document are always to base 2,
although the actual units of entropy are irrelevant to this research.

Entropy is equal to the logarithm of the modified variety introduced in

the previous section.
H = log(Modified Variety)

Since modified variety was introduced as a possible measure of system complexity,
Shannon's “"degree of choice", or entropy, of a system is also a possible measure
of complexity.

In Shannon’s work the p;’'s were given. Here it is assumed that the
probabilities of observing any input state is the same and that each p; may be

calculated as follows:

py = I;/1

where
I, is the number of input states leading to output i

I is the total number of input states

Shannon also noted that H has other properties which make it a reasonable measure

of choice (pp. 394-395):

1. H = 0 if and only if all the p;’'s but one are zero, this one having the

value 1. That is, a system with only one output state has zero entropy.

2. Suppose there are two subsystems A and B with m and n output states
respectively. Let p;; be the probability of the joint occurrence of i as
the output of the first subsystem and j as the output of the second. The

system C formed by merging the two subsystems is
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&
0

% pyy * log(1l/pyy)

i,j

while

Hy = Z pyy; * log(l / 2 pyy)
i,j i

Hg = Z pyy * log(l / Z pyy)
i,] j

and it is easily shown that

H. < H, + Hg

Note: The previous examples of merged subsystems were for independent

subsystems where p;; = p;*p; so that Hc = Hy + Hy.

Unfortunately, as a measure of complexity in the sense of coding or
understanding difficulty, entropy is flawed. The second property seems to run
counter to the heuristic in Chapter 3 which suggested that subsystems be kept
as small as possible. The entropy of a merged process can be smaller than the
sum of the entropies of the' component processes. This is one undesirable
property of entropy as a measure of system complexity. There 1is another.

Consider the following systems and possible implementations:

{a,b)

Input Output
a b

1 1

2 2

procedure b(a,b);
begin
case a of
1: b :=1;
2: b := 2;
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endcase;

end;

and

{c,d)

Input Output
c d

1 1

2 2

3 1

4 2

procedure d(c,d);

begin

end;

The entropy of {a,b) is 1, but the entropy of (c,d}) is also 1 despite the fact
that its implementation is twice as long. This is a result of the fact that
entropy is based on the probability of observing a given output. It is not
dependent on the absolute number of input states which give rise to those
outputs, but only on their ratios.

Solutions to both of these undesirable properties of entropy were suggested
by Hellerman (1972). His measure has been selected as the estimate of system

complexity for this research.
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4.2.4, Computational Work

Hellerman (1972) was interested in estimating the amount of work done by
a process independent of its implementation. His measure is equal to the amount
of information stored in the look-up table implementation of a process. Look-
up tables are a list of input and corresponding output states, and have been used
to describe the dynamics of the systems discussed in this chapter. To determine
the amount of information in a look-up table, Hellerman suggests performing an
experiment. First the table is implemented in a computer memory by utilizing
the concept of a DOMAIN CLASS. A domain class is the set of input states which
map into a single output state. If there are N output states, there are N domain
classes. If there are I input states, the look-up table may be implemented in
a computer memory consisting of I locations by placing the output value
corresponding to the jth input state in the jth location. An arbitrary memory
location may then be selected and its contents examined. If I, is the number of
input states leading to the ith output state, the particular contents found in
the selected memory location occur in I, locations. Therefore, its probabiliﬂy
of selection was I;/I. According to information theory, the selection provided
log(1/I1,) bits of information. The total information which may be extracted from

the memory is then

N
% I, * log(I/I,)

i=1

This is the total amount of information stored in the memory or the total
information required by the process. Hellerman called this quantity the
computational work (W) and it is equal to the number of input states multiplied

by the entropy of the process.

N
W = T I, * log(I/I,) = I*H

i=1

He also notes that, in the computer science literature, complexity is a

quantity that varies directly with work and "so may be identified, loosely, with
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it" (p. 439). In this research, an absolute value for the complexity of a
process is not required. The measure need only provide relative levels of
complexity, and be additive®. As noted earlier, the selection of “computational
work" as the name for this quantity is perhaps unfortunate as its value is
independent of any particular computer implementation. For the purposes of this

research, "computational work (W)" shall be renamed "complexity (C)".

N
i=1

This formulation of complexity avoids the two problems noted for entropy.
The complexity of a system formed by merging several subsystems will always be
greater than or equal to the sum of the complexities of the component subsystems.
That is, if A and B are subsystems with complexities C4 and Cy respectively, and
D is the system, with complexity Cp;, formed by merging A and B, the following

will be true.

In fact, Hellerman notes that if A and B have no inputs state in common, the

complexity of C is given by
where I, and Iy are the numbers of input states of subsystems A and B

respectively (p. 442). Therefore, the heuristic calling for small subsystems

can be justified from the standpoint of reducing overall complexity. The second

84 Therefore, if A, B and D are processes with complexities C,, Cy, and Cp

respectively, and
Cy > Cp

then

Cy + Cp > Cg + Gp.

This property is possessed by both entropy and computational work.
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problem, relatiﬁg to entropy’s reliance on only the proportions of input states
leading to each final state, is also solved. Recall the two systems (a,b} and
{c,d) described above. The complexity of {a,b} is equal tov2~(I =2, H=1).
1). This

difference in complexity 1is intuitively reasonable when the possible

The complexity of (c,d} is twice this amount or 4 (I = 4, H

implementations (given earlier) are considered.

4.2.5. States or State Variables?

In software cost estimation, a common input to module complexity
calculations is the number of input variables (Halstead, 1977; Albrecht, 1979;
Bailey and Basili, 1981; Rubin, 1983). If the sort of complexity being estimated
in these calculations is the same as that described in this chapter, such a
practice can only be justified if the number of variables is monotonically
related to the number of input states. Perhaps, on average, this will be close
to the truth, but it is only correct when all input variables have the same
degree of interdependence and the same number of possible values. For example,
if there are three input variables with 2 possible values each, and if there is
no relationship relating the variables to each other, the number of input state
is 2® = 8. If another similar variable is added, the number of states would
become 16, and so on. However, if a fourth variable with three possible values
is added, the number of input states would become 24. Therefore, the number of
input states to a module need not be monotonically related to the number of input
variables, and a basic assumption of software cost estimation techniques is shown

to be questionable.

4.3, Heuristic Guided Search

A measure of system complexity was required so that the decompositions
generated by the algorithm of Chapter 3 might be presented to the analyst in a
meaningful order®. Alternative decompositions will be presented in order of

increasing complexity. The complexity of a decomposition is defined as being

85 As indicated by a footnote in Chapter 3, there is no suggestion that the
algorithm and ranking heuristic (ie. complexity) described here are the "best".
It is possible that more efficient algorithms and more appropriate heuristics
exist. This section is intended to show that automated decomposition and some
sort of meaningful ranking of alternatives is possible.
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equal to the sum of the complexities of its constituent subsystems at all levels
of the decomposition®®.

The algorithm performs updates on an intermediate state space (ISS) using
every possible subset of the subsystems which were deterministic with respect
to that ISS. The complexity measure can provide the basis for a heuristic to
select the subset most likely to lead to a "high quality" decomposition, where
"high quality" is defined as low complexity. For example, suppose the modified

payroll system has been updated once producing the partial decomposition shown

below. Complexities of individual subsystems are shown following a "|".

State variable abbreviations:

hours = hours worked
pay_r = rate of pay
emp_p = employee position
sales = amount of sales
com = commission pay
over = overtime pay
1: {hours,pay_r,base}|5.51 {emp_p,sales,com}|3.25 {emp_p,hours,over)|3.90

This is not a full decomposition in that the second ISS, formed by the update
at level 1, still contains unstable states. In particular, the state variables
representing additional payments and total pay have not been updated to reflect
their final values. The subsystems which are deterministic with respect to the

second ISS (and which satisfy the other heuristics presented in Chapter 3) are

{base,com,emp_t,over,total_pay}|12.98
{base,emp_p,emp_t,over,sales,total pay}|22.04
{base,com,emp_p,emp_t,hours, total pay)|29.61
{com,emp_t,over,add pay)|8.00
{emp_p,emp_t,over,sales,add pay)}|9.71

6 Notice that the sum of the subsystem complexities is only the lower

limit to Hellerman'’s complexity of the system. However, one of the important
reasons for decomposing a system is to avoid having to visualize the entire
system at once. An analyst deals with individual subsystems at each level of
the decomposition. Therefore, the sum of the subsystem complexities 1is a
reasonable estimate of the overall effort required to understand the system.
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{com,emp_p,emp_t,hours,add pay}|15.34

where emp_t = employee type
total_pay = total pay
add_pay = additional payments

A good search heuristic should indicate the subset of this set of
subsystems which is most likely to lead to the lowest-complexity decomposition®’.
There are 15 subsets®®. For each subset, the specifications analysis tools
determine the minimum and maximum possible decomposition complexities, where that
subset comprises level 2. That is, each possible update has, associated with
it, a minimum and a maximum possible decomposition complexity. These minimum
and maximum complexities are based on information already obtained during the
search. The minimum possible decomposition complexity is equal to the sum of
the subsystem complexities at all lower levels plus the total complexity of the
subsystems used for update at the current level. In other words, the minimum
possible complexity is determined by assuming that all potential higher-level
subsystems have zero complexity. The maximum possible decomposition complexity
is equal to the minimum possible complexity plus the complexities of the least
complex subsystems known so far which can determine the final values of any
remaining output state variables. The next update will be performed using the
subset with the lowest associated minimum complexity. Minimum and maximum
complexities can be used together to "prune" the search tree. For example,

consider an update using the subset
{{base,com,emp_t,over,total pay)|12.98, {com,emp _t,over,add_pay}|8.00}.

The total complexity of level 1 is 12.66 (= 5.51 + 3.25 + 3.90). Therefore, the
minimum possible complexity of any decomposition arising from this update is
33.64 (= 12.66 + 8.00 + 12.66). After this update there will be no remaining

output state variables. That is, in the third intermediate state space created

87 This sort of heuristic search is sometimes called the "best bud" method

(Sandewall, 1971).

88 Recall that no two deterministic subsystems chosen for use in an update
operation may contain the same output state variable. Therefore, there are only
3% 3 + 6 =15 possible update subsets.
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by this wupdate, all state variables will have reached their final values.
Therefore, for this update subset, the minimum and maximum possible complexities

are equal. As another example, consider an update using the subset
{{com,emp_t,over,add_pay)|8.00}

The minimum possible complexity of any decomposition arising from this update
is 20.66 (= 8.00 + 12.66). The state variable "total pay" will still be an
output with respect to the third intermediate state space.created.by this update.
The lowest-complexity deterministic subsystem discovered thus far which can

calculate the final value of "total_pay" is
(base,com,emp_t,over,total pay}|12.98

Therefore, the maximum possible complexity arising from this update is 33.64 (=
12.98 + 20.66). Minimum and maximum complexities for all possible update subsets

are listed below. To reduce the size of the table, subsystems are coded as

follows:

Subsystem Complexity Code

{base,com,emp_t,over,total pay) 12.98 A

{base,emp_p,emp_t,over,sales,total pay) 22.04 B

{base,com,emp_p,emp_t,hours,total pay) 29.61 C

{com,emp_t,over,add pay) 8.00 D

{emp_p,emp_t,over,sales,add pay) 9.71 E

{com,emp_p,emp_t,hours,add pay) 15.34 F

Update Subset Minimum Possible Maximum Possible
Complexity Complexity®®

{A) 25.63 33.63

{B} 34.70 42.70

{C} ‘ 42.27 50.27

8¢ Minimum and maximum possible decomposition complexities will be the same
whenever the update subset contains all of the remaining output state variables.
For example, the subset (A,D} contains both "total pay" and "add_pay".
Therefore, the minimum and maximum possible decomposition complexities following
an update operation using {A,D)} are equal (33.64).
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{D} 20.66 33.64

(E) . 22.37 35.35
(F) 28.00 40.98
(A,D) 33.64 33.64
(A,E) 35.35 35.35
(A,F) 40.98 40.98
(B,D) 42.70 42.70
(B,E) 44.41 4441
(B,F) 50.04 50.04
(C,D) 50.27 50.27
(C,E) 51.98 51.98
(C,F) 57.61 57.61

The update leading to the smallest minimum possible complexity uses the subsystem
{over,emp_t,sales,add_pay) (i.e. wupdate subset (D}). If this wupdate is

performed, the partial decomposition becomes

2: {com,emp_t,over,add pay}[8.00
1: (hours,pay_r,base}|5.51 {emp_p,sales,com}|3.25 {emp_p,hours,over}|3.90

The only subsystems which are deterministic with respect to the third ISS

(and satisfies the other heuristics of Chapter 3} are

(base,add_pay,total_pay}|3.25
and

{add_pay,hours,pay r,total pay}|11.02.

The minimum and maximum possible complexities associated with an update using
the first subsystem are both 23.91. If the second subsystem is used, they are
both 31.68. The first subsystem is selected for the next update. Thus the first

decomposition reached, starting from the given level 1, is as follows:

3: {base,add_pay,total_pay}|3.25
2: {com,emp_t,over,add_pay}|8.00

1: {hours,pay_r,base)|5.51 {emp_p,sales,com}|3.25 (emp_p,hours,over}|3.90
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The complexity of this decomposition is equal to the sum of the
complexities of the individual subsystems or 23.91 (= 5.51 + 3.25 + 3.90 + 8.00
+ 3.25). This is, in fact, the lowest-complexity decomposition of the modified
payroll system. Alternative decompositions; with the same subsystems at level
1, can be found by performing updates using the other subsets of subsystems which
were deterministic with respect to the second and third intermediate state
spaces. These alternative subsets will be selected in order of increasing
minimum possible complexity.

Using subsystem complexity to guide the search for decompositions with low
complexity is not quite as straightforward as it appears. The above example
started from a given set of subsystems at level 1, or a given second ISS. In
fact, the specifications analysis tools, when applied to the modified payroll
system suggest a large number of different possible level 1's. The following
subsystems are all minimal (i.e. described by as small a number of state

variables as possible) and deterministic with respect to the first ISS:

{hours,pay_r,base)
{emp_p,sales,com)
{emp_p,hours,over)

{hours,emp_p,emp_t,sales,add pay)

¥ B S VUR RS

{hours,emp_p,emp_t,pay_r,sales,total pay)

With these five subsystems there are 31 subsets which might be used to form
the second ISS. That is, there are 31 possible sets of level 1 subsystems, or
31 possible partial decompositions resulting from an analysis of the first ISS.
The subset of subsystems, selected for the first update in the above illustration

was

{ {hours,pay_r,base}, {emp_p,sales,com), {emp_p,hours,over}}.

Such an update eventually leads to the decomposition with the lowest-complexity,
but this subset does not have the lowest minimum possible complexity at level
1. While decompositions with lower complexities are generally suggested first,

there will often be exceptions.
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It was mentioned earlier that maximum and minimum complexity information
could be used together to "prune" the search tree’. If the analyst is able to
specify an upper bound to the complexity of a decomposition he or she is
interested in, some possible updates need never be performed. The specifications
analysis tools allow the analyst to input the maximum percentage difference
between the minimum complexity decomposition and any other suggested
decompositions. If the percentage difference between the minimum complexity
associated with a possible update and the maximum complexity associated with
the lowest minimum complexity found so far is greater than the specified maximum

percentage difference, that update will never be performed’!. For example,

recall from the above illustration, the possible update using the subsystem
(add_pay,hours,pay_r,total pay}|11.02

The minimum possible complexity associated with the above subsystem is 31.68.
The smallest minimum, and associated maximum, possible complexity found thus far
were both 23.91. The percentage difference is 32% (= [31.68 - 23.91] / 23.91).
If the analyst had specified 20% as the maximum percentage difference, this
possible update would never be performed. Of course, should an analyst wish to
see all possible decompositions irrespective of complexity, he or she can simply

enter a very large number as the maximum allowed percentage difference.

4.4. Maintenance

In this research, SYSTEM MAINTENANCE refers to any changes to a system

after implementation’?, It will be shown that when system maintenance is

70 Such pruning cannot result in the loss of the lowest complexity

decomposition. The algorithm will still find the "optimal" decomposition of the
system.

1 This is a modified form of $SS" minimax search (Charniak and McDermott,
1985, pp. 286-290). The concept of "maximum allowable percentage difference"
is added because the complexity measure is imperfect and, as will be shown in
Chapter 6, other decompositions can help to identify shortcomings of the system
model. In other words, higher-complexity decompositions can sometimes serve a
useful purpose.

72 In common usage, the term "maintenance" does not include enhancements
to a system. The Oxford Dictionary defines "maintenance" as "being maintained”,
and "maintain" as "cause to continue". However, in keeping with the terminology
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considered, the optimal (or lowest-complexity) decomposition for a system may
change. It will be assumed that all future changes to a system may be defined
to the degree of detail present in the system model’®. This is a fairly strong
assumption. In many cases, changes cannot be anticipated. 1In such cases, the
best the analyst can do is select a low complexity decomposition for the original
system ignoring possible changes.

Parnas (1972) and Myers (1977) suggest that the quality of a decomposition
may be assessed by observing its behaviour in the face of maintenance changes.
They assume the best decompositions will 1limit the effects of a change to a small
number of subsystems. In this section, a framework for classifying maintenance
changes will be developed. A technique for assessing the impact of maintenance
on a given decomposition will also be proposed. It will be shown that in some
cases it is best to construct parts of the original system with maintenance in
mind, while in others it 1is best to ignore maintenance during initial
construction, and to create entirely new subsystems when the maintenance must
be done.

Because it is based on a limited number of basic constructs, SELMA provides
a unique framework for classifying possible changes to an existing system. All

possible changes to a system model can be categorized as follows’*:

1. Changes to sublaws
- add a sublaw
- delete a sublaw

2. Changes to the set of external events
- add an event

- delete an event

As shall be shown, a change may cause a subsystem in a given decomposition

to be no longer deterministic or no longer minimal (i.e. the subsystem is now

in the field of information systems, system maintenance shall include any change
to a system including possible enhancements.

73 That 1is, changes to the functional relationships between state
variables, defined in the original system model, must be known before the
original system is implemented.

7% Modification of a sublaw or an event can be accomplished by deleting the
old version and adding the new.
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described by more state variables than are required to predict its behaviour).
The above are SIMPLE CHANGES. A real MAINTENANCE OPERATION is likely to consist
‘of several simple changes.
4.4.1. Changes to Sublaws

Consider the sublaw for calculation of base pay in the payroll system.

~Stability Conditions:

base hours pay_r
0 - 0

0 0 -

nz regular nz

nz overtime nz

Corrective Actions:

Conditions Actions
hours pay_r --> base
0 - 0
- 0 0
regular nz nz
overtime nz nz
where
0 = zZero
nz = not zero
regular = less than that required for overtime pay
overtime = sufficient for overtime pay

- = any value, or "don't care"

The analyst must specify each 1line of the above sublaw. During
maintenance, any change to the sublaw can be represented as a sequence of
additions and/or deletions of individual lines or rules. Therefore, at the
lowest level, an analyst does not add and delete sublaws. Rather, he or she adds
and deletes rules.

A change to a rule may or may not introduce new state variables to the
system. Changes which do not introduce new state variables will be considered
first. With respect to a given decomposition, the state variables affected by

such a change will be

1. contained within a single subsystem, or
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2. not contained within a single subsystem.

If the system after the change is still locally complete and consistent,
the addition of a rule where all the state variables covered by the rule are
included in a single subsystem will not affect the decomposition. For example,

consider the effect, on the subsystem {hours,pay_r,base}, of adding the following

rule to the base pay sublaw.

Corrective Actions:

Conditions Actions
hours pay r -->  base
nz unknown unknown

The addition of such a rule merely results in altering the functional
relationship between the input and output state variables of the subsysten.

On the other hand, if the rule is added which covers state wvariables not
found in any single subsystem, the subsystem may no longer be deterministic.

For example, consider the addition the following rule to the base pay sublaw.

Corrective Actions: .
Conditions Actions

hours emp_p pay_r -->  base
overtime management - unknown

Hours and pay rate are no longer sufficient to determine the value of base pay.
Knowledge of the employee’s position is also required. Therefore, the subsystem
{hours,pay_r,base} would be no longer deterministic.

Rules may also be deleted from a sublaw. When a rule is deleted, one or
more of the subsystems in a decomposition may no longer be required. For
example, consider the commissions sublaw from the original payroll system as

shown below.

Stability Conditions:

emp_p emp_t com sales
regular sales nz nz

- - 0 0

- office 0 -
management - 0 -
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Corrective Actions

Conditions Actions
emp_p emp_t sales --> com
regular sales nz nz

- - 0 0

If the first corrective action rule were deleted, employee position and
employee type would no longer be required to determine the final value of
commissions. Therefore, the subsystem {emp_p,emp_t,sales,com} would no longer
be minimal’®,

When a rule in a system model is deleted, the state variables used in the
rule may or may not be contained in a single subsystem of the given
decomposition. That is, there is no reason to suppose that the sublaws specified
in the system model will match exactly the sublaws describing the subsystems
produced by the specifications analysis tools. The input to the tools is simply
the first ISS (Intermediate State Space) of the system and the corresponding
final stable states (i.e. the first system relation). The algorithm has no
direct "knowledge" of the rules specified by the analyst. However, the effects
of deleting a rule spanning more than one subsystem in the given decomposition
will be the same as described above. One or more subsystems may be no longer
required because some state variable is no longer an output, or some subsystem
may no longer be minimal.

There is one more way in which a sublaw may be altered. A rule may be
added which contains a state variable not previously used to describe the system.
This was the case when the additional payments state variable was added to form
the modified payroll system. The new state variable will be either an input
state variable (i.e. its value does not change between the first ISS and the
final stable states) or an output state variable. If it is an input state
variable, it will simply be added‘to some subsystem or subsystems in the
decomposition. For example, decomposition #27 of Appendix K shows "add_pay"
added as an input state variable to the subsystem responsible for calculating
the value of "total pay". 1If it is an output state variable, it may be added

as an output to an existing subsystem or a new subsystem may be formed to

75 In fact, if the first corrective action rule is deleted, the subsystem

will not only no.longer be minimal, it will no longer be required. After such
a maintenance operation, the value of commissions will never change. That is
commissions is no longer an output state variable, and the subsystem whose
responsibility it was to calculate commissions will no longer be required.
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determine its final value. For example, decomposition #1 of Appendix K shows
the creation of the subsystem {com,emp_t,over,add pay)} to determine the value
of "add pay". 1In either case the basic structure of the decomposition will not

be altered.
4.4.,2. Changes to External Events

The effects of changes to external events are similar to those of sublaws.
After all, external events are functionally quite similar to sublaws. In fact
external events can be thought of as sublaws with activation conditions located
in the system’s ‘environment (and, therefore, not included in the system
specification) and actions affecting state variables within the system.

If an external event affecting an existing state variable is added to a
system, some new states may be added to the first ISS (since the first ISS is
essentially the cross product of the stable state space of the system and the
set of external events). As was shown in Chapter 3 under "Importance of the
External Event Space", these new states may represent system behaviours which
were not evident under the smaller set of external events. New subsystems may
appear (because state variables which were previously constant may become
outputs) and other subsystems may no longer be deterministic (because new
behaviours may be exhibited.

If an external event is deleted from the system, some system behaviours
may no longer be exhibited. This means that some subsystems of the given
decomposition may disappear (because some state variables are no longer outputs),
or some systems may no longer be minimal (because fewer input state variables
are required to determine the final values of the output state variables).

Prediction of the effect of adding an external event which affects a state
variable not previously used to describe the system, is trivial. No changes to
the decomposition are expected. The system can only respond to events through
the activation of rules. Since no rules mentioning the affected state variable
exist, adding such an event can not affect system behaviour. Changes in
behaviour will only occur if rules are added to respond to the new state

variable. The effects of such changes were described earlier.
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4.4.3, Implications for Design

When a system designer has knowledge of planned maintenance operations,
he or she must decide whether to construct a system which can support these
changes, or modify the initial system at a later date. This decision can be
simplified by considering the possible effects a maintenance operation. The

possible effects of changes to a system model are summarized in Table II.

Table II: Possible effects of simple changes to a system model.
L. __________________________________________________ ]
Change Effect
Sublaws:
1. add rule covering change form of sublaw associated with
one subsystem some subsystem
2, add rule covering more some subsystems may no longer be
than one subsystem deterministic
3. add rule with new expand existing subsystems or create
state variables new omnes
4. delete rule covering some subsystems may no longer be minimal
one subsystem
5. delete rule covering some subsystems may no longer be minimal
more than one subsystem
Events:
6. add event affecting some subsystems may no longer be deterministic
existing state variable new subsystem may be added
7. add event affecting none, unless new rules are added
new state variable
8. delete event some subsystems may no longer be minimal

A maintenance operation which results only in the removal of some
subsystems will require very little maintenance effort. However, if the
maintenance requires the addition of new subsystems, the inclusion of new state
variables in old subsystems, or a change in the relationship between inputs and
outputs of a subsystem, a great deal of effort may be required. Notice that the
serious effects all occur when a rule or event is added to a subsystem. The
problem of maintenance becomes one of identifying these serious effects when the
initial system is designed. Merely identifying the simple changes involved in
a maintenance operation, and looking up their effects in the above table, is not
sufficient to predict specific effects. No change is certain to have an effect

and the extent of effects which do occur cannot be easily determined. There is,
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however, a way to identify all specific effects. The analyst must construct

models for three systems’S:

A model of the initial system.

2, A model of the modified system.

3. A single model describing the behaviours of both the initial and modified
systems. This model will include a state variable to distinguish between
the two versions of the system for use in subsystems where calculations
are performed differently after the modification. Use of such a state

variable is illustrated in Appendix N.

Decompositions produced for the combined system will contain only
subsystems which behave deterministically with respect to the behaviours
exhibited by both the initial and modified systems. The analyst must then
compare decompositions for all three models and decide how the initial system
should be implemented. Subsystems which are deterministic with respect to the
behaviours of both systems could be implemented initially, or subsystems which
are only deterministic for the first system could be implemented and then
reconstructed when the maintenance operation is actually performed. For example,
consider the initial and modified payroll systems. The original payroll system
described in Chapter 2 was modified in Chapter 3 to reflect the following changes

in company policy:

1. Both office staff and sales employees are entitled to both overtime pay
and sales commissions.
2. An office employee cannot receive more in commissions than in overtime.

3. A sales employee cannot receive more in overtime than in commissions.

Appendix N contains a model for a system which will exhibit the behaviours

of both payroll systems. The following is the lowest-complexity decomposition’’

for the combined system. Complexities are noted beside each subsystem. The

’® The actual effort required to construct the three models is not likely

to be prohibitive. Except when major maintenance changes are expected, the
models will probably be quite similar.

77 The complexity of a decomposition is equal to the sum of the
complexities of the individual subsystems.
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add_pay total pay
over over
enp_t enp_t
com com
add_pay base
con
over base
gver
caonm
ovVer con base
SYSs SYS pay_r
hours sales hours
enp_t enp t
enp_p emp_p
Figure 15: Lowest-complexity decomposition for the combined payroll system.

decomposition is shown using the diagrammatic format in Figure 14.

Lowest-Complexity Decomposition for the Combined Payroll System:

2: {add_pay,com,emp_t,over,add pay}|19.02

{base,com,emp_t,over,total pay}|12.98

1: {hours,pay_r,base}|5.51

{emp_p,emp_t,sales,sys,com}|11.14

(emp_p,emp_t,hours,sys,over}|13.05

where
emp_t
emp_p
hours
sales
over

com

add_pay

employee type (sales or office)

employee position (management or regular)
hours worked

sales

overtime pay

commissions

additional payments
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total_pay = total pay

and "sys" 1s a state variable representing the version of the system. This
state variable is used to avoid problems which might arise if rules for the two
versions of the system conflict with each other. For example, in the commissions
subsysteﬁ {emp_p,emp_t,sales,sys,com} there are two different ways to calculate
commissions. The value of the "sys" state variable is used to determine which
set of rules is to be activated. Notice that this decomposition is structurally

similar to the lowest-complexity decomposition for the initial payroll system.

Lowest-Complexity Decomposition for the Initial Payroll System:

2: {base,com,over,total pay}|3.90 "
1: {hours,pay_r,base}|5.51 (emp_p,emp_t,sales,com}|4.35

{emp_p,emp_t,hours,over}|4.97

~total pay
com
over
base
over con
base
Qver base con
hours hours sales
emp_p pay_r emp_p
emp_t enp_t

Figure 16: Lowest-complexity decomposition for the initial payroll system.

This decomposition is shown using the diagrammatic format in Figure 16. A

subsystem for additional payments has been added and the "sys" state variable
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is included in two subsystems to show that the behaviour of these subsystems
depends on the version of the system. The lowest-complexity decomposition for
the modified payroll system 1is shown below. Figure 17 displays this

decomposition using the diagrammatic format.

" Lowest-Complexity Decomposition for the Modified Payroll System:

3: {base,add_pay,total pay}|3.25
2: {com,over,emp_t,add pay)}|8.00
1: {hours,pay_r,base}|5.51 (emp_p,sales,com}|3.25 {emp_p,hours,over}|3.90
total pay
base
add pay
base add_pay
base add _pay
pay_r over
hours enp_t
 con
OVer con
over ' Com
hours sales
enp_p enp_p

Figure 17: Lowest-complexity decomposition for the modified payroll system.

The decomposition of the combined system reveals three surprising aspects

of the modification:
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1. The 1lowest-complexity decomposition for the combined system places
calculations of additional payments and total pay at the same levels. That
is, additional payments does not become an input to the total pay
calculation as in the modified system.

2. The calculation of total pay in the modified system does not require
information as to the version of the system.

3. The calculation of additional payments in the combined system is more

complex than in the modified system.

The first observation shows that the structure of the initial system is
in some sense "dominant". The modification does not require major changes to
the composition of any subsystem. Indeed, system version information is not even
required in order to calculate total pay. This fact results from a relationship
between the initial system's method of calculating commissions and overtime pay,
and the modified system’s method of calculating additional payments and total
pay. This relationship was unlikely to be foreseen intuitively, and is described
in detail in Appendix 07, The calculation of additional payments is more
complex in the combined system, because the model specifically insisted that the
calculation NOT be performed if the "sys" state variable indicated the initial
system. This additional decision increased the complexity. Also notice that
the "sys" state variable is not explicitly required by the subsystem. If the
incoming value of additional payments is "not calculated" then the initial system
is being simulated and the final value should also be "not calculated". The
additional payments state variable is both an input and an output with respect
to this subsystem.

Design decisions must be made subsystem by subsystem. The analyst needs
to decide whether it is more complicated to construct a subsystem which will not
require changes during maintenance, than it is to construct initial and modified

subsystems. That is, if C;, C, and C, are the complexities of a subsystem in the

’8  Briefly, the input states which would lead to an error in the initial

system’s calculation of "total pay", if the modified system’s method were used,
simply cannot occur. This allows the combined system to use the same method of
calculating "total pay" for both versions of the system.
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initial system and the corresponding subsystems in the modified and combined
systems, the following decision rule applies’®:
IF C, > C; + G, THEN

construct a new subsystem during maintenance
ELSE

construct the combined subsystem initially

After examining the decompositions of the three systems the following

design decisions might be made:

1. The complexities of the commissions and overtime pay subsystems in the
combined system are greater than the sums of their complexities in the
initial and modified systems (11.14 > 3.25 + 4.35 and 13.05 > 3.90 + 4.97).
Therefore, it will be simpler to reconstruct these subsystems when the
maintenance is performed than to initially construct subsystems which will

not require changes.

2. Assuming the analyst is interested in knowing the value of additional
payments:
a. Additional Payments: The subsystem is simpler in the modified system

than in the combined system (8.00 < 19.02). It is also not required
in the initial system. Therefore, this subsystem should be
constructed during maintenance.

b. Total Pay: The sum of the complexities of the initial subsystem and
the complexity of the subsystem in the second decomposition of the
modified system is less than the complexity of the subsystem in the
combined system (12.98 > 3.90 + 3.25). Therefore, this subsystem
should be reconstructed during maintenance to take advantage of the

new additional payments state variable.

7% Other factors are likely to be important in determining the optimal

maintenance strategy. For example, since the available implementation language
primitives can affect subsystem implementation difficulty, they may also
influence the selection of a maintenance strategy. Identification of other such
factors is a possible subject for future research. The fact that other important
factors undoubtedly exist means that the simple decision rule should not be
automated. Intervention by the system designer must be allowed.
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3. Assuming the analyst is NOT interested in knowing the value of additional

payments:
a. Additional Payments: This subsystem should never be constructed.
b. Total Pay: The subsystem in the combined system is less complex than

the sum of the initial subsystem’s complexity and the complexity of
the total pay and additional payments subsystems in the modified
system (12.98 < 3.25 + 8.00 + 3.90). Therefore, the combined

subsystem should be constructed initially.

It should be noted that the above discussion applies to single maintenance
operations only. 1In reality, a system is likely to undergo a series of such
operations before it is finally discarded. This scenario might be diagrammed

as follows:

my my M3 M-

o, ---> 0, ---> 03 ---> ... ---> 0

where o, is the mth version of the system resulting from the m-1th maintenance
operation. It is possible that o; might be more easily constructed by modifying
o, than by modifying o0,. In this case, the design chosen for o¢; would be
affected by m; and m,, but the design for o, would not be influenced by m,. In
general, the problem of finding an optimal set of system designs and changes~

could be quite complex.

4.5. The System Goal

As shown in Chapter 3, the same system model can have several alternative
decompositions. However, not all of them may be equally acceptable to the
analyst in that state variable emergence and hiding varies between alternatives.
In this section, this notion is formalized through the concept of a SYSTEM GOAL.

The existence of a goal is one of the distinguishing features of an
artificial system (Simon, 1981, p. 8)%. A system designer creates a system to

fulfil some goal. This is the raison d’étre for artificial systems. Definition

8 According to Simon, artificial systems are deliberately created by man.

They are qualitatively different from systems resulting from "natural" forces
(eg. biological systems formed through natural selection).
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of the system goal is a very important part of systems analysis and design. The
system’s goal, as perceived by the analyst or envisioned by the designer,
influences level of abstraction and selection of boundaries for the system
mode1®. The notion of a system goal is readily supported by SEIMA. When an
analyst creates a system model, he or she is likely to define two different kinds
of state wvariables. Some variables will be indispensable, others will be
dispensable. Indispensable state variables represent the essential properties
of the system (e.g. in the modified payroll system "total pay" is likely to be
indispensable). Such state variables will be examined by the user or by other
systems which refer to the system being modelled. Dispensable state variables
are defined by the analyst to simplify credtion of the system model (e.g. in the
modified payroll system, "additional payments" may have been added merely to
facilitate definition of the sublaw describing the computation of "total pay").

182

The indispensable state variables define the purpose or goa of the system as

perceived by the analyst.
Definition: Goal State Variable

Any state variable which the analyst requires to be included in a

decomposition is called a GOAL STATE VARIABLE.

81 A system model consists of state variables and values, external events,

and sublaws. The state variables selected for inclusion in a model will be
determined by the system goal. For example, a model created to analyze or
describe the financial efficiency of a point-of-sales terminal system is unlikely
to include state variables representing the work schedule of the terminal
operator. These state variables are probably irrelevant with respect to the
stated goal. Similarly, state variables describing the operation of the
individual electronic and mechanical components of the terminal will not be
included. Thus the system goal influences both the system boundaries and level
of abstraction found in the system model.

82 An analyst may find it more convenient to visualize a system as having
a set of subgoals. However, definition of subgoals would imply that some form
of decomposition has already been performed by the analyst. To avoid prejudicing
the operation of the specification analysis tools, the analyst is asked to
provide only the highest-level goal of the system. If the system has more than
one high-level goal, the sets of state variables describing these goals must be
merged.

140



Definition: System Goal

The set of all the goal state variables of a system is called the SYSTEM
GOAL.

Notice that, as defined here, a goal is not an inherent property of a system.
Rather, a goal is a function of both a system and the analyst’s expectations for
that system®.

The definition of goal state variables can influence system decomposition
and hence system design. Sometimes, if a state variable is not part of the
system goal, subsystems which determine its value may be dropped from a
decomposition. If a subsystem is dropped, the complexity of the decomposition
will be reduced.

For example, consider the suggested decompositions of the modified payroll
system listed in Appendix K. There are forty-eight decompositions, all
satisfying the heuristics defined in Chapter 3. The intuitive decomposition is
#27. All other decompositions are seemingly trivial transformations of
decomposition #27. The transformations being simple substitutions. For example,
consider decompositions #27 and #1 (both are shown in diagrammatic form in

Figure 18).

Decomposition #27:

3: {add_pay,base,total pay)
2: {com,emp_t,over,add pay)
1: {hours,pay_r,base} {emp_p,sales,com} {(emp_p,hours,over)

Decomposition #1

2: {com,emp_t,over,add pay) ({(base,com,emp_t,over,total pay)
1: ' {hours,pay_r,base} {emp_p,sales,com} {emp_p,hours,over}
where

8  The specifications analysis tools allow the analyst to include a

predicate of the form: system_goal(SVList) where SVList is a list of state
variables which must be included in all suggested decompositions. If no goal
state variables are defined, it is assumed that all state variables are
indispensable.
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emp_t = employee type (sales or office)

emp_p = employee position (management or regular)
hours = hours worked

sales = sales

over = overtime pay

com = commissions

add_pay = additional payments

total_pay = total pay

There are two basic differences between these decompositions:

1. the subsystems responsible for calculating the final value of total pay
utilize different input and constant state variables, and

2. the output state variables at the top level are different,

In the total pay subsystem of decomposition #1, the additional payments state
variable "add_pay", has been replaced by the state variables representing the
values of commissions, employee type and overtime. Since it is already known
from decomposition #27 that ({com,emp_t,over,add pay} is a deterministic
subsystem, this woﬁld seem to be a trivial substitution. Moreover, since
increasing the number of state variables in a subsystem can never decrease that
subsystem’s coﬁplexity, it would seem to be a useless substitution. However,
such a substitﬁtion does reduce the system’s dependence on the emergent state
variable "add_pay". In decomposition #1, the total pay subsystem no longer
requires knowledge of the additional payments state variable. If the subsystem
responsible for the calculation of the final value of "add pay" is dropped from
the decomposition, total complexity will be reduced from 33.64 to 25.64. This
is still greater than the 23.91 complexity of decomposition #27. Thus, in this
case, the substitution may not be useful.

In generzl, the total complexity of a decomposition may be reduced if the
subsystems regﬁonsible for the calculation of state variables removed by

substitution are dropped. Such a course of action may only be justified if the

analyst is not interested in knowing the final values of the removed state
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total pay
base
add_pay
base | add_pay
base. add _pay
pay_r #27/ over
hours emnp_t
con
over con
OVer com
hours sales
emp_p ENp_p
add_pay total_pay
over over
emp_t ﬁ:i emp_t
com com
base
OVer ‘_
over
base
com conm
over com base
hours sales pay_r
emp_p emp_p hours
Figure 18: Two decompositions of the modified payroll system.
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variables®". No reduction of complexity is possible in the payroll systems.
However, the four-lights system does present such an opportunity. Two of the
suggested decompositions for this system were as follows: Subsystem complexities

are as indicated.

2: {b,c,c}|2.75 {b,d,d}|2.75

1: {a,b}]2.00

and

1: {a,b}|2.00 {a,c,c}|2.75 {a,d,d)]|2.75

The complexity of both of these decompositions is 7.51 (There is some round-off
error in the complexities of the individual subsystems). Therefore, there is
no clear advantage in making substitutions for "b" in the subsystems which
determine the values of "c" and "d". However, if "b" is not part of the system

goal, the decomposition

1: {a,c,c}|2.75 (a,d,d}|2.75

with complexity 5.51 becomes a viable alternative decomposition. If complexity
had not been reduced, as was the case for the overtime pay substitution in the
modified payroll system, there would have been no need to suggest this
alternative to the analyst. This suggests the following heuristic:

Heuristic 6: Avoid useless substitutions

Do not suggest decompositions formed by state variable substitutions unless

1. the substitution allows the removal of a subsystem where a non-goal

state variable is an output, and

84 That the analyst may not be interested in knowing the final values of

all state variables was suggested earlier. In the previous section, different
system designs were recommended depending on whether he or she was interested
in knowing the final value of additional payments. Also, in Chapter 3, system
views were found which "hid" different state variables depending on which state
variables were of interest to the analyst.
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2. after removal of the subsystem, the complexity of the decomposition

has been reduced.

This means that in the case of the four light system, if "b", "c", and "d" are
all specified as goal state variables, only one decomposition will be suggested

to the analyst.
Decomposition #1:
2: {b,c} (b,d)

1: {a,b)

If "b" is not specified as a goal state variable an additional decomposition will

be suggested.

Decomposition #2:

1: {a,c} (a,d)

4.6. Conclusions

This chapter has presented an intuitively justifiable measure of
complexity. Rationalization of the measure was combined with the examination

of four possible measures of complexity:

Ashby’s Variety
Modified Variety

Shannon’s Entropy

PRV I

Hellerman’s Computational Work

Hellerman’s measure of computational work was finally selected for use in this
research. This measure is particularly well suited for use with SEIMA. Through
the use of this measure, the decompositions suggested by the specifications
analysis tools may be presented to the analyst in a meaningful order. It should

be noted that the complexity measure can be used only to guide the search so that

low-complexity decompositions are found relatively early in the search. That

is, the full set of possible decompositions can be found by specifying a very
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large maximum allowable percentage difference between the least and most complex
decompositions.

While the measure was first suggested as a means to guide the search for
decompositions so that they might be presented to the analyst is some meaningful
order, it has proved itself useful in other ways as well. Its quantitative
nature has supported the detailed analysis of maintenance operations. Use of
the complexity measure in conjunction with the decomposition algorithm allows
a system designer to select a decomposition which will reduce the total effort
required for initial implementation and maintenance®’.

It was noted that the same system model can have several alternative
decompositions, but not all of them may be equally acceptable to the analyst.
Alternative decompositions will hide different state variables. Definition of
the system goal was recognized as an important part of systems analysis and
~design. The goal, as perceived by an analyst, influences both the system
boundaries and the level of abstraction of the system model. SELMA allows the
analyst to explicitly define the system goal, so as to distinguish between
indispensable state variables, which are used to define the goal, and those state
variables created merely to facilitate creation of the model by simplifying the
specification of sublaws. The complexity measure, coupled with system goal
information, can be used to reject many alternative decompositions which would
otherwise have been presented to the analyst by the specifications analysis

tools.

8  Future maintenance must be predictable, but need only be known to the

degree of detail represented in the system model.
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Chapter 5: Conditional Decomposition

5.1. Introduction

Three basic forms of decomposition were identified in Chapter 1: parallel,
sequential, and conditional. Chapter 3 showed how parallel and sequential
decomposition can be automated provided that the system to be decomposed has been
specified using SEIMA. Automation of conditional decomposition will be described
in this chapter.

Recall that parallel decomposition involves identifying subsystems which
behave deterministically with respect to some intermediate state space.
Subsystems which are deterministic with respect to a given system relation (i.e.
initial system states with their corresponding final stable states) may perform
their functions at the same time (or in parallelas), so long as the system is in
one of the states of the relevant intermediate state space. Sequential
decomposition, on the other hand, was not so much a matter of identifying
deterministic subsystems, but of arranging the subsystems found by parallel
decomposition into a meaningful sequence of levels. This sequence had to satisfy
a number of heuristics and showed how each system relation associated with a
deterministic subsystem might be created. For example, consider the following

decomposition of the modified payroll system.

3: {add_pay,base,total pay)
2: {com,emp_t,over,add pay)
1: {hours,pay_r,base} ({emp_p,sales,com) ({emp_p,hours,over)

where hours = hours worked pay_r = pay rate
emp p = employee position emp_t = employee type
sales = amount of sales base = base pay
com = commissions over = over time pay
total_pay = total pay add_pay = additional payments

This means that the subsystems {hours,pay_r,base}, {emp_p,sales,com}, and

{emp_p,hours,over) at level 1 behave deterministically with respect to the first

8 Actually, such deterministic subsystems may perform their functions in

any order. Simultaneity is not required.
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system relation. The first system relation results from the action of all
external events on every stable state of the system. Therefore, these subsystems
are deterministic with respect to all anticipated responses of the system caused
by interaction with its environment. The subsystem {com,emp_t,over,add pay} at
level 2 also exhibits deterministic behaviour, but only with respect to the
system relation created when the subsystems at level 1 have performed their
functions. In the model these functions cause changes in the values of the
output state variables of each subsystem (in this case, state variables "base",
"com", and "over") in each initial state of the system relation. The end result
of the actions of the subsystems at level 1 is the second system relation. The
second system relation differs from the first system relation only in the values

of the output state variables of the subsystems at level 1. Similar observations

can be made for level 3. Parallel decomposition identifies deterministic
subsystems at each level. Sequential decomposition identifies the levels
themselves.

Before it may be automated, conditional decomposition must be clearly
defined. The definition adopted for this research is essentially that of the
"alternation statement rule" from Mili, et al. (1986). This rule is described
in detail in Appendix C. Briefly, it depends on finding two relations R; and R,

such that

a) R =R, UR,, and
b) domain(R;) N domain(R,) = {)

where R is the system relation®” describing the behaviour of the system. The
alternation statement rule is used to decompose a program specification into two
conditionally executed specifications. The programmer is required to find some
predicate t(s), where t(s) is true when s € domain(R;) and false when s ¢
domain(R,), which can be used to split the original relation into two non-

intersecting parts. Conditional decomposition, therefore, involves partitioning

8 Mili et. al.’'s system relations are similar to the system relations
defined in Chapter 3. The domains of their relations consist of initial states
of the system. However, the domains of the relations used in this research need
not contain only initial states. They may contain system states where the values
of some state variables have been changed by the actions of some subsystems.
That is, the domains of the system relations used in this research may contain
intermediate states.
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a system relation into two (or more) parts. The major problem lies in deciding

where to place the partitions®,

5.2. Conditional Decomposition Basics

Before entering into an invoelved
discussion of the partitioning problem,
it may be best to consider a simple
example. The system relation for a system
described by four state variables ("a",
"b", "sw", and "c¢") is shown below. The

state variable sw is intended to represent

the position of an SPDT (single

le/double th itch which k
pole/double row) switch which makes a Figure 19: The SPDT switch used to

connection between "a" and "c¢" or between ‘ illustrate conditional
"b" and "c" as illustrated in Figure 19. decomposition.
Intermediate Corresponding Final

State Space Stable States

a b sw c ---->a b sw c

1 - 0 - 1 - 0 1

0 - 0 - 0 - 0 0

- 1 1 - 1 1 1

- 0 1 - - 0 1 0

where "-" means "don't care" or "any value". There 1is only one

parallel/sequential decomposition of this system.

1: {a,b,sw,c)

That is, the system may not be decomposed into smaller subsystems using only

parallel and sequential techniques. However, the system may be conditionally

8 1t is always possible to produce a trivial partitioning of the system

relation by creating a dummy state variable with value "1" for some states and
"0" for the rest. However, an analyst is unlikely to create such an arbitrary
state wvariable, and the specifications analysis tools use only the state
variables included in the system model in the search for possible conditional
decompositions.
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decomposed. If the above relation is partitioned using the conditions sw = 0

and sw = 1, the following two smaller relations result.

sw = 0:

Intermediate
State Space

a b sw
1 - 0
0 - 0
sw =1
Intermediate

State Space

a b sw
- 1 1
- 0 1

Corresponding Final
Stable States

--=->a b sSW c
1 - 0 1
0 - 0 0

Corresponding Final
Stable States

--=--> a b sw c
- 1 1 1
- 0 1 0

When the value of "sw" is 0, one deterministic subsystem satisfying all

the heuristics of the previous chapter is {a,c). State variable "b" can be any

value for each value of "c" and state variable "sw" is a constant providing no

information, therefore,

neither is required to determine the wvalue of "c¢".

Similarly, when the value of "sw" is 1, {(b,c)} is a deterministic subsystem.

Conditional decompositions will be expressed using the following syntax:

[CondSVs = CondVals,])Subsystems,; ... [CondSVs = CondVals, ]Subsystems,

where

CondSVs

CondVals;

Subsystems;

89

the CONDITIONAL STATE VARTABLES, or the set of state
variables which are tested to partition the system
relation.
a set of sets of values of the conditional state
variables.

9

a set of subsystems®® which are deterministic with

This is a set of subsystems because partitioning of the system relation

may allow further parallel decomposition of the system being decomposed. For
example, the subsystem (i,j,k.l)} might conditionally decompose to
1: [{i) = (O} ]{(i, k), (5, 1)) [(i} = ({11 ]{{j,k.1)}
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respect to the part of the partition identified by the
condition CondSVs = CondVals;. Such subsystems will be

referred to as CONDITIONAL SUBSYSTEMS.

For example, the conditional decomposition for the SPDT switch system may

be expressed as follows:
[{sw) = ((0}})]({a,c)})|2.00 [(sw) = {{1}}]((b,c}}|2.00

The complexity of {a,b,sw,c) is 8.00. As indicated following the |, the
complexities of {a,c} and (b,c} are both 2.00. Therefore, the complexity of the
original system has been reduced (by a factor of 2) through conditional

decomposition.

The above syntax requires several layers of bracketing. In order to improve the
readability of conditional decompositions, brackets will be dropped whenever
possible so long as the meaning is preserved. The conditional decomposition of

the SPDT switch system can be simplified to the fdllowing:
[sw = 0]{a,c} [sw = 1](b,c)

Conditional decompositions may also be presented diagrammatically as shown

in Figure 20.

5.3. Heuristics

Conditional decomposition of the SPDT switch system was trivial. A glance
at the system relation sufficed to identify "sw" as a suitable conditional state
variable, and discovery of the conditional subsystems quickly followed. In most
cases things will not be so simple. In fact, had the rows of the system relation
been randomly rearranged, conditional decomposition of even this system would
have required some effort. While simple, the example did illustrate the general

procedure to be followed when conditionally decomposing a system.

indicating that the final values of .the output state variables need not
necessarily be determined together.
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Conditional Decomposition Procedure:
1. Perform parallel/sequential c
decomposition.
2. Select a subsystem®® for further c
conditional decomposition. sWw=10 sw=1
Select a state variable.
4. Partition the system relation on
the basis of the values of this C C
state variable. a b
5. Find the subsystems which behave
deterministically with respect Flgure 20: An alternative
representation for

to each part of the partition. conditional decomposition.

As was the case for parallel/sequential decomposition, given only the
deterministic subsystem requirement, this procedure could lead to an extremely
large number of conditional decompositions. After all, in the above example,
when the value of "sw" is 1, {(a}, {(sw), {a,sw,c) as well as {a,c) are all
deterministic subsystems. Clearly, some heuristics to limit the search for
conditional decompositions are required. The heuristics of Chapter 3 which dealt
with individual subsystems are applicable here. The others were concerned with

arranging subsystems in a level structure and are not useful for conditional

decomposition.

Conditional Heuristic #1: Outputs Required

Each conditional subsystem must be described by at least one output state

variable.

%  There is no fundamental distinction between a system and a subsystem.

A subsystem of a system o, is a system o, where the remainder of o; is in the
environment of o,. Conditional decomposition may be applied to both systems and
subsystems in exactly the same fashion. If parallel/sequential decomposition
is applied to a system which may not be decomposed either in parallel or
sequentially, only one deterministic subsystem will be found (as happened in the
case of the SPDT switch system). This subsystem will be equal to the system.
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The rationale for this heuristic is the same as for parallel/sequential

decomposition. Basically, subsystems without outputs are not very interesting.
Conditional Heuristic #2: Must be Small

Each conditional subsystem must not be described by any state variable

which is not required to ensure deterministic behaviour.

Again, the rationale for this heuristic is the same as for parallel/sequential
decomposition. An analyst is interested in knowing the minimal amount of
information (in the form of state variable values) necessary to perform some

task.
Conditional Heuristic #3: Must be Different

The set of state variables describing conditional subsystems must differ

by at least one state variable,

Consider the following conditional decomposition. Some redundant brackets have

been removed for clarity.
(h = 0](j.k} [h=1]{j.k)

Such a structure does not provide any information beyond the fact that (j,k} is
deterministic with respect to the entire first system relation®. This could be

more succinctly represented using the simpler parallel/sequential syntax.
1: {j,k}

While it is important to know what conditional decomposition is, it is
equally important to know what it is not. This heuristic implies that some
conditional decompositions, which would be considered by Mili et al. using their

alternation statement rule, will not be considered here. Conditional

% The Mili et. al. requirement that R = R; U R, implies that "h" has no

values other than "0" and "1".
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decomposition will not find alternative functional forms for the same subsystem.
For example, suppose that total pay (total pay) is a function of hours worked
(hours) and the pay rate (pay_r). Also suppose that the employee receives 1.5
times his or her regular pay for each hour in excess of 40. Such a situation

is easily coded using an IF/THEN/ELSE structure.

IF hours=<40 THEN total_pay :

hours*pay r

ELSE total_pay := pay_r¥*(1l.5%hours-20);

This wuse of an IF/THEN/ELSE structure 1is mnot the sort of conditional
decomposition being described here. The subsystem describing both the THEN and
ELSE parts of the structure is {hours,pay_r,total pay}. Therefore, a partition
of the system relation using hours worked as the conditional state variable would
be rejected because of Conditional Heuristic #3. This is an important difference
between the sort of decomposition embodied by Mili’s alternation statement rule
and conditional decomposition. Mili et al. do not explicitly consider state
variables in their decompositions. They look only at the system relation
resulting from a partition. They would see a partition using the rule hours =
40 as useful because it allows different program implementations for the THEN
and ELSE portions of the structure. Whether a partition allows different program
implementations is determined by the primitives available in a given language.
If a language primitive to calculate total pay directly from any values of hours
worked and pay rate existed, partitioning on the basis of hours worked would not
lead to different implementations, and Mili et al. would not consider such a
partition useful. As argued in the previous chapter, this research is not
concerned with available language primitives, and as such is primarily useful

at a fairly high level of analysis.
Conditional Heuristic #4: Same Conditional State Variables

The conditional state variables associated with each conditional subsystem

must be the same.
This heuristic helps to ensure that there is no overlap between the parts of the

system relation associated with each conditional subsystemn. Consider the

following:
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(h = 0](j.,k} [i = 0](i,k)

There is no reason why such a decomposition should be rejected. As long as "i"
cannot be 0 when "h" is 0 and vice versa, this decomposition will not violate
the Mili et al. condition of non-intersecting domains. However, in this case

the decomposition could be replaced by
[h = 0]{j,k) [h = O]J{i,k}.

The non-intersecting nature of such a decomposition is far more apparent, and

is preferred.
Conditional Heuristic #6: Complexity may not Increase

The total complexity of the conditional subsystems may not exceed the

complexity of the subsystem being decomposed.

There is mo point in suggesting a conditional decomposition which is more
difficult to understand or build than the original system. An example of a
conditional decomposition which increases the complexity of the system is given
near the end of this chapter.

The next heuristic cannot be intuitively justified. It is introduced
solely to keep the problem of conditional decomposition computationally

tractable.
Conditional Heuristic #7: Single Conditional State Variables

The set of conditional state variables used to partition a system relation

may have no more than one member.
This means that conditional decompositions such as

[(x,y) = {{0,0},{1,1)})](j,k} [{x,y} = {{0,1),{1,0}})]}{i, k)
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Partitions of a Set

NnNth Bell # = # of Partitions

20

15 i
m e

Log(Belt Number) (base 10}

Figure 21: Number of partitions of a set of N things.

will not be considered, The major computational problem with conditional
decomposition lies in testing all possible partitions of the system relation with
respect to the values of the conditional state variables. The number of
partitions of a set® increases dramatically as the number of elements in the set
increases (see Figure 21). Experience gained during this research has shown that

most systems may be described using state variables with between two and five

92  The number of partitions of a set containing N elements where all N

elements occur in one and only one part (also called a "class" or "block") is
called the "Nth Bell number"”. Bell numbers are given by the following recurrence
relation (Krishnamurthy, 1986, pp. 16 and 22).

B(0) = 1

N

= Cyg * B(K)
K=0 '

B(N+1)

where Cyy is the number of combinations of N things taken K at a time.
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values®. A state variable with five values leads to only 52 partitions of the

system relation. This number of partitions can be easily examined for subsystems
meeting the other heuristics. On the other hand, if more than one conditional
state variable is allowed, the number of partitions quickly becomes unmanageable.
As shown below, conditional decomposition of a trivial system described by only

three state variables with two values each would require testing of 4184

partitions.
State Variable Values
a 0,1
0,1
c 0,1
Conditional Partitioning Values Partitions
State Variables to Test®
a 0,1 1
0,1 1
c 0,1 1
ab {0,0},{0,1},{1,0),(1,1) 14
ac {0,0},{0,1},(1,0},{1,1) 14
be {0,0),{0,1},(1,0},(1,1) 14
abe {0,0,0},¢0,0,1},(0,1,0},(0,1,1},
{1,0,0),(1,0,1),(1,1,0},{1,1,1) 4139
total partitions to test: 4184

note: If certain combinations of state variable values can never occur

together, the total number of partitions to test can be reduced. For

9 Recall that continuous real-world variables are modelled using ranges.

The system responds to all values in a given range in similar ways.

%  The number of partitions which must be tested is one less than the
number of possible partitions. The partition which consists of only one part,
where that part is the set to be partitioned need not be tested. Since the
system relation would not be split in this case, examining such a partition would
be equivalent to testing whether the original system is deterministic. It is
assumed that all systems to which conditional decomposition is to be applied are
already known to be deterministic,
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example, if the system relation contains no state where a=0 and b=0, the
total number of partitions to test drops to 1+1+1+4+14+14+4202 = 237.
Thus, the number of partitions shown in the above table is an upper

limit only.

The effect of restricting partitions to those involving only one
conditional state variable is not as serious as might be first imagined. The
analyst can always decide to further conditionally decompose a conditional
subsystem. The effect of this is essentially the same as partitioning with more
than one conditional state variable. For example, suppose the following was
suggested as a conditional decomposition of a system described by state variables

h, i, j, and k:
[h = 01(i,j,k) [h = 1]¢i,k)

Now suppose the analyst suspects that the first conditional subsystem can
be further decomposed. The conditional decomposition procedure can be applied
again to the subsystem {i,j,k}). This might result in the decomposition
(i = 0](i,j.k} [1=1](]j,k}.

The two levels of conditional decomposition can be combined as follows:

((h,1} = (0,0}]{i,j,k} [{h,i} = (0,1}]}(j,k} [h = 1](i,k}

In this case, full search of all possible partitions has been replaced by

selective search guided by the judgement of the analyst.

5.4. Using Conditional Decomposition to Test a Model

None of the three major examples developed so far (namely the four light,
the payroll and the modified payroll systems) offer any subsystems which are
obvious candidates for conditional decomposition. However, the conditional
decomposition procedure can help to uncover some modelling errors. This will
be demonstrated using the modified payroll system. The error discovered in the

modified payroll system is symptomatic of one potential problem  with using
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qualitative modelling techniques (i.e. state variable ranges) for state variables
which represent continuous quantities in the real world.

Recall the description of the modified payroll system presented in Chapter

2:

1. both office staff and sales employees are entitled to both overtime pay
and sales commissions,

2. an office employee cannot receive more in commissions than in overtime,
and

3. a sales employee cannot receive more in overtime than in commissions.

The specification analysis tools identified the following subsystem capable
of determining the value of the additional payments state variable. This state
variable was introduced to represent the total overtime and commission pay to

which an employee is entitled after these rules have been applied.

2: {com,emp_t,over,add pay)|8.00

where com = commissions
over = overtime pay
emp_t = employee type (o = office worker, s = sales employee)
add_pay = additional payments

When conditional decomposition is applied to this subsystem an unreasonable

suggestion is made by the specifications analysis tools:
[emp_t = o]{over,add pay}|2.00 [emp_t = s]{com,add_pay)|2.00

In order t6 calculate additional payments, the amount of commissions,
overtime pay and the type of the employee must be available. There is no way
that additional payments can be calculated giﬁen only the employee type and the
amount of overtime pay. Why then, is the above conditional decomposition
suggested? The functional form of this subsystem may be represented by the

following table:
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com emp_t over ---> add_pay

nz o nz nz
0 o ne nz
nz s nz nz
nz s 0 nz
nz o 0 0
0 ) 0 0
0 s nz 0
0 s 0 0
where 0O = a value of zero
nz = some non-zero value
Notice that the additional payments state variable is modelled with only
two values: 0 and non-zero. It is possible to predict whether additional

payments is going to be zero or non-zero given only the employee type and either
the amount of commissions or overtime pay. That is, if the employee is an office
worker and his or her overtime pay is non-zero, then additional payments will
be non-zero. On the other hand, if his or her overtime pay is zero, then
additional payments will also be zero, since he or she may not make more in
commissions than in overtime. A similar argument applies for members of the

sales staff. The above table may be rewritten to make this relationship obvious.

com emp_t over ---> add pay
- o nz nz

- o 0 0

nz s - nz

0 s - 0

where "-" = any value or "don't care"

The problem lies in the choice of values for the additional payments state
variable. The rules specified in the system model for the calculation of

additional payments may be represented in tabular form as shown:
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com emp_t over ---> add_pay

nz - nz nz
0 - 0 0
- o nz nz
- o 0 0
nz s - nz
0 s - 0

These rules are not concerned merely with determining whether the value of
additional payments is zero or non-zero. The rules specify the conditions under
which the total of commissions and overtime pay is to be reduced because of the
employee'’'s position. For example, if the employee is part of the sales staff
and he or she potentially makes more in overtime pay than in commissions, not
all of the overtime should actually be paid. This concept of "pay reduction"
should be made explicit in the values of the additional payments state variable.

The rules could be rewritten as follows:

com emp_t over ---> add_pay
nz - nz nr

0 - 0 0

0 o nz nr

nz o] 0 T

nz s 0 nr

0 s nz r

where r = pay has been reduced

nr no reduction in pay

When parallel/sequential decomposition is applied after such a change, the
decompositions are structurally the same as for the original system. The only
difference is that the complexity of the additional payments subsystems has been
increased to 12.00. However, when conditional decomposition is applied to the
additional payments subsystem, the offending conditional decomposition is no
longer suggested.

The changed subsystem can also be used to illustrate the need for the
conditional decomposition heuristic, which required that total complexity not
be increased by conditional decomposition. If total complexity is allowed to
increase, the following is suggested by the specifications analysis tools for

the changed system:
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[add_pay = {0,nr}]{com,emp_t,over,add _pay}|12.00
[add_pay = {r)]{com,over,add pay)}|6.00

That is, if the system relation is split using the initial values of the
additional payments state variable, in all cases where the additional pay was
previously®® reduced, only knowledge of commissions and overtime is required to
determine the new value of additional payments. The complexities of these two
conditionally-activated subsystems are 12.00 and 6.00 respectively. The
complexity of the original additional payments subsystem was 12.00. Conditional
decomposition increased the overall complexity of the subsystem. Complexity is
increased because the additional payments state variable is now an input to the
conditionally-decomposed system as well as an output. Since the number of input
state variables has increased, so has the number of input states and, therefore,
so has the complexity.

Although the above decomposition increases complexity and can, therefore,
be rejected, it is worth examining how it could even be a possibility. How can
the value of additional payments be calculated without knowing the position of
the employee? This decomposition results from the fact that each external event
defined in the model changes the value of only one state variable. There are
external events which alter the value of the hours worked state wvariables, and
external events which alter the value of the sales state variable, but there are
no external events which alter both together. This means that whenever the
additional payments subsystem is activated, either the values of commissions or
overtime pay is equal to its previous value. This, along with the old dollar
value of additional payments and knowledge that pay was previously reduced, is
sufficient information to calculate the new value of additional payments. For
example, suppose the old values of commissions, overtime pay, and additional

payments were as follows:

0ld commissions = $400

old overtime pay = $500

old additional payments = $800 and pay reduced
95

That is, before the external event which led to a new value for either
"com" or "over".
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The employee was obviously a member of the sales staff since additional payments
is less than the sum of sales commissions and overtime pay, and overtime pay
exceeds sales commissions. Now suppose, an external event alters the value of
sales® such that commissions are increased to $600. The additional payments

subsystem now has access to the following information:

new commissions

$600
$500
$800 and pay reduced

old overtime pay

old additional payments

Since the old value of additional payments is less than twice the old value of
overtime pay and pay was reduced, the employee is a salesperson. Therefore, the
new value of additional payments should be $1,100 with no pay reduction. If the
system model is changed so that both hours worked and amount of sales can change
at the same time (as would likely be the case in a batch processing system, where
transaction records contained information about both hours and sales), this
conditional decomposition will not be suggested. Once again, the sensitivity

of decomposition to the defined external events is demonstrated.

5.5. Conclusions

Three basic forms of decomposition were identified in Chapter 1: parallel,
sequential, and conditional. Parallel and sequential decomposition were
discussed in Chapter 3. This chapter has investigated the remaining basic form
of decomposition: conditional decomposition. While the basics of conditional
decomposition are adapted from the alternation statement rule of Mili et al.
(1986), procedures for actually decomposing a system are original to this
research., Two types of conditional decomposition were identified. One type led
to different functional forms for a calculation using the same state variables.
The other found subsystems described by different sets of state variables. The
first type was seen to be'primarily useful during the implementation phase of

the system development life cycle. While Mili et al. were concerned with both

types, the specifications analysis tools deal only with the second.

% This might happen, for example, if a correction to the amount of sales

were entered within the same pay period.
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A number of heuristics to limit the search for suitable conditional
decompositions have been suggested. Two of these heuristics are derived from
those suggested for parallel decomposition, one is justified on the basis of
complexity, and another is suggested for reasons of computational efficiency.
The remainder follow directly from the meaning of conditional decomposition.

The modified payroll system of Chapter 3 was reexamined, and conditional
decomposition was shown to be a useful tool for finding inadequacies in a system
model. While the small systems used as examples cannot illustrate useful

conditional decomposition, the IFIP system, analyzed in the next chapter, can.
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Chapter 6: SELMA Applied

6.1. General

This chapter is intended to show the feasibility of applying the SELMA
formalism and specifications analysis tools to a "real" system. The validity
of the modelling approach will be assessed by comparing the results to those
obtained by using more established systems analysis and design methodologies.
In order to do this, each technique must be applied to the same system.
Fortunately, there exists a system which has been analyzed by a large number of
methodologies. This is the IFIP Working Conference system,

In 1982, the International Federation for Information Processing (IFIP)
held a conference intended to provide a comparative review of a number of
information system design methodologies. In order to facilitate comparison, a
single test case was provided. The proponents of each methodology then produced
a specification for an information system designed to solve the  problem
presented in the case. The problem was to design an information system to
support an IFIP Working Group Conference. The information system was to support
several activities of the Program Committee and the Organizing Committee (Olle,

1982, pp. 8-9). The case is described with greater detail in Appendix P.

Activities of the Program Committee to be supported:

1. Preparing a list to whom the call for papers is to be sent.

2 Registering the letters of intent received in response to the call.

3 Registering the contributed papers on receipt.

4, Distributing the papers among those undertaking the refereeing.

5 Collecting the referees’ reports and selecting the papers for inclusion

in the program.

6. Grouping selected papers into sessions for presentation and selecting a

chairman for each session.

Activities of the Organizing Committee to be supported:

1. Preparing a list of people to invite to the Conference.

2. Issuing priority invitations to National Representatives, Working Group
members and members of associated working groups.

3. Ensuring all authors of each selected paper receive an invitation.
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Ensuring authors of rejected papers receive an invitation.
Avoiding sending duplicate invitations to any individual.

Registering acceptance of invitations.

~N o o &

Generating a final list of attendees.

SEIMA has been applied to the IFIP Working Conference system. The

application technique is comprised of five major steps:

Step 1: State variable identification

Step 2: External event identification

Step 3: Sublaw identification

Step 4 Consistency and completeness testing
Step 5: Decomposition

Full application of these steps to the IFIP Working Conference system is
far too lengthy to be demonstrated in this chapter. The reader would be overcome
by details. The identification of three state variables, one external event,
and one sublaw will be described here. These examples were selected to show some
interesting aspects of SEILMA and to suggest the flavour of its application to
a real system. Construction of the entire model is described in Appendices Q,
R, and S.

The specifications analysis tools were used to verify the consistency and
completeness of the resulting system model. Many errors were made during the
construction of the model; however, only one consistency and one completeness
error will be described in detail. The intent is to illustrate to the reader
the process by which a complete and consistent model may be constructed, but not
to overwhelm him or her with details. The errors also illustrate the usefulness
of the specifications analysis tools for ensuring model integrity.

The specifications analysis tools suggest three decompositions for the
IFIP Working Conference system. As will be discussed later, the differences
result from the limited amount of system information incorporated in the model.
One decomposition will be selected for comparison to the decompositions produced
by Jackson System Development (JSD) (McNeile, 1982, pp. 225-246) and Active and
Passive Component Modelling (ACM/PCM) (Brodie and Silva, 1982, pp. 41-91). JSD

and ACM/PCM were selected for comparison with SEIMA for a number of reasons:
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1. Both JSD and ACM/PCM have been used to solve the Working Conference
problem.

2. JSD is mnotable for its explicit focus on real-world modelling and
simulation. In particular it provides some guidelines for the selection
of suitable "communicating sequential processes" or entities. These
entities are similar to the objects of Object-Oriented Programming. As
will be described later in this chapter, SELMA decompositions may be used
to identify objects. It will be interesting to see how closely the objects
automatically identified by the specifications analysis tools match those
identified by JSD.

3. ACM/PCM carefully distinguishes between static and dynamic system
modelling. This separation of static and dynamic behaviour, or of data
and programs, is common to many methodologies. SEIMA makes no such
distinction. It will be argued that the separation of system statics and

dynamics is not only unnecessary, but may even lead to specification

errors.

4. ACM/PCM is typical of many of the system development techniques which
depend on object hierarchies representing "is-a" and ‘T"part-of"
relationships.

5. ACM/PCM uses condition and action statements to describe dynamic behaviour.

These statements are similar to sublaws.

It should be clarified from the outset that SEIMA is not intended as a
replacement for either JSD or ACM/PCM. Both JSD and ACM/PCM support detailed
system design down to the implementation level. The SELMA methodology does not
do this. SEIMA is intended for use at a relatively high level of abstraction
during the real-world modelling phase of the systems analysis and design process.
When used with the specifications analysis tools, SELMA can provide automated
system verification and decomposition. 1In ACM/PCM the system’s decomposition
is a function of the objects selected for inclusion in the specification. No
advice is given on how to make the selections. JSD provides a number of rules
to aid in object (or entity) identification, but they would be very difficult
to automate. These rules will be examined later in this chapter. It will be
shown that the subsystems suggested by the specifications analysis tools can be

used to form objects which will satisfy all of the JSD rules. Thus SEIMA is
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seen as a possible addition to existing systems analysis and design

methodologies, rather than as a methodology in itself.

6.2. Applying SEIMA

The five major steps for applying SELMA may be diagrammed as in Figure 22.

bWState Variable_@
———= ldentification
External Eventﬁ@
= Tdentification
sSublaw L
= ldentlflcation
Completeness and Consistency

Testing

Decomposition

Figure 22: Block diagram of the States, Events, and Laws Modelling Approach
(SELMA) .

Note that tﬁese steps need not be performed seqﬁentially. That is, it is quite

likely that while an analyst is identifying sublaws, he or she may decide that

another state variable is required or that an external event has been missed.

Also, should the model fail the tests for local consistency and completeness, -

changes to state variables, external events, and/or sublaws will be required.
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Finally, as was illustrated in the last chapter®, if the decompositions
suggested by the tools are not considered reasonable by the analyst, changes to
the model may be required. A brief description of each step is provided below.
Detailed examples of the activities performed during each step will follow.
Construction of the IFIP Working Conference model®® is described in full in

Appendices Q, R, and S,

Step 1: State variable identification
State wvariable identification 1is accomplished through a
detailed examination of the system functions (these correspond to
the activities listed above and in Appendix P for the IFIP Working
Conference Problem). The system functions (or requirements) are
combined with the analyst’s knowledge of system behaviour to identify
those properties which should be represented in the information
system®®.
Step 2: External event identification
External events are found by examining each state variable
identified in Step 1, and deciding whether its value is determined
by the system itself or the environment. External events are defined

for each state variable directly affected by the environment.

97 The specifications analysis tools suggested a conditional decomposition

of the additional payments subsystem of the modified payroll system which
conflicted with reality. Changes to the sublaw describing the calculation of
additional payments were required. :

% In order to illustrate the utility of tests for completeness and
consistency, the model constructed in Appendices Q, R, and S contains several
errors.

%  Strictly speaking, SELMA state variables represent properties of the
system. They do not have to be tied to any particular things (ie. objects or
entities) in the real world. However, it is likely to be difficult for most
analysts to visualize a property of the system, as opposed to a property of some
thing. There is no harm in visualizing a system as consisting of some set of
things before deciding on relevant properties. For example, when analyzing the
IFIP Working Conference problem, an analyst may wish to visualize people and
papers before deciding on specific properties such as Group membership or paper
quality. But it must be remembered that these things are merely a first
approximation to a decomposition of the system. The specifications analysis
tools will identify deterministic groups of state variables (ie. subsystems)
which can provide the basis for identifying a system's things. There is no
reason to expect that an analyst’s initial list of things will always be the same
as that derived from use of the tools.
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Step 3:

Step 4:

Step 5:

Sublaw identification

Every state variable not directly affected by the environment
will be included in at least one sublaw. The analyst consults his
or her knowledge of system dynamics to construct rules describing
the relationships between state variables.
Consistency and completeness testing

The specifications analysis tools are used to automatically
test the model for local completeness and consistency. Operation
of the system is simulated to ensure that each stable state, when
acted on by an external event, can be transformed to one and only
one stable state by the defined sublaws. Local completeness and
consistency were formally defined in Chapter 2.
Decomposition

All three forms of decomposition are automatically performed
by the specifications analysis tools, Parallel sequential
decomposition is used to find sets of deterministic subsystems and
the time ordering of their activation. For example, parallel

sequential decomposition of the modified payroll system yielded the

following:
3: {base,add_pay,total pay)
2: {com,emp_t,over,add pay)

1: {hours,pay_r,base} {emp_p,sales,com} {emp_p,hours,over)

This decomposition indicated, among other things, that calculations
for base pay ("base"), sales commission ("com") and overtime pay
("over") may be performed in parallel, and that they must be
performed before total pay may be determined. Conditional
decomposition provides additional flexibility in the time ordering
of subsystem activations. For example, suppose that additional
payments ("add_pay") were only calculated for office employees
("emp_t" = "office"). The tools would suggest the following

conditional decomposition of the additional payments subsystem.

[emp_t = office]{com,over,add pay) [emp_t = sales]{add_pay)
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This indicates that, in the case of sales employees, additional
payments may be calculated immediately (it will be zero). There is
no need to wait for sales commission and overtime pay to be
determined. All forms of decomposition will help the analyst to
identify modelling errors should suggestions conflict with his or

her understanding of the system.

The five steps of the SELMA methodology will now be applied to the IFIP

Working Conference Problem.
6.2.1. State Variable Identification

The first stage in the process of information systems analysis and design
involves building a model of the real world (see Figure 6). Naturally, no
analyst would attempt to model everything in the real world. He or she will
only model those parts which are to be reflected in the implemented information
system. To identify these parts, the analyst must determine the functionality
of the system. That is: what is the information system supposed to provide?
In SEIMA, the portion of the real world to be modelled is delineated by the state
variables chosen to represent those properties of the real system required to
support the functions to be provided by the information system. The IFIP Working
Conference information system is required to support a number of activities.
These were listed earlier in this chapter and are repeated in Appendix P.

Consider the first activity of the Programme Committee.
Activity: Preparing a list to whom the call for papers is to be sent.

This activity suggests that one property of the real world, with which the
information system will be concerned, should indicate whether a particular person
is to be invited to submit a paper to the Conference. This property, or state
variable, will be called "pap_inv" (for "invited paper"). Invitations to submit
papers are always sent to National Representatives, Working Group members, and
members of associated working groups. A state variable indicating whether a
person is in any of these categories will be called "grp_mem" (for "group
member"). Individuals in each category are treated the same with respect to all

of the activities which the information system is to support. Therefore, to
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avoid unnecessary complexity only one state variable is used. Individuals not
in any of the above categories could also be invited to submit a paper. The
state variable "ext_inv" (for "external invitation") will be used to indicate
whether this is the case. Each of these state variables will have two values
"y" and "n" (for "yes" and "no") to indicate whether a person has been invited
to submit a paper, is a group member, or will be invited to submit a paper
regardless of group membership. Notice that state variables describing the list
itself are not properly a part of the system being modelled!®®, The list is an
artifact of the implemented information system and need not be included in model
of the real world.

Many more state variables were identified by examining the other required
system functions. These are described in Appendix Q. A list of the IFIP Working
Conference state variables will be provided after the identification of an

external event is illustrated.
6.2.2. External Event Identification

In SEIMA, external events affect a system by altering the values of state
variables. The values of other state variables may be changed by the system
itself in response to an external event. Such secondary changes are called
internal events. During this step, the analyst is primarily concerned with
external events. Internal events are considered when system sublaws are defined.
Each of the above state variables must be examined to decide whether its value
is set by an external event. One will be examined here. The others are
considered in Appendix R.

The state variable "del_acc", as identified in Appendix Q, is used to
represent whether a delegate has accepted an invitation to attend the Conference.
Whether a person accepts an invitation is beyond the influence of the system.
Therefore, acceptance of an invitation must be modelled using external events,
However, the state variable "del _acc" was to be used to generate a list of
conference attendees. This implies that attendance at the Conference is entirely
decided by factors external to the system. This is not the case. Mere

acceptance of an invitation is not a sufficient condition for registration at

100 For example, state variables describing the list itself might include

list currency or length. If some activities of the Committees required these
properties, they would have to be included in the model.
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the Conference. The delegate must also have been invited!®!, A state variable,
in addition to those identified in Appendix Q, is required to indicate whether
the delegate has actually been registered. This state variable will be called
"del_reg" (for "registered delegate" and will have the values "y" and "n" (for
"yes", the delegate is registered and "no", he or she is not). The value of
"del_reg" is not directly affected by external events, but is determined solely
by the values of "inv" and "del_acc". Also note, the activity "generating a
final list of attendees" will require the examination of the state variable
"del_reg"”, instead of "del_acc" as suggested in Appendix Q.

The state variables identified through examination of required system
functions and determination of external events are listed below. The defined

values have the following meanings.

y = yes

n = no

acc = accept

rej = reject

n/a = not applicable

State Values Description

Variable Name

grp_mem y,n Whether a person is a member of the Working Group.

ext_inv y,n Whether an invitation to submit a paper should have
been issued to a person by the Programme Committee
regardless of Group membership.

pap_prom _ y,n Whether a person has promised to submit a paper
to the Working Conference.

pap_sub y,n Whether a person has submitted a paper for review
to the Working Conference.

ret_ref y,n Whether a paper has been returned to the Programme

Committee by the referees.

01 1t is conceivable that some person might return an invitation which was

not sent to him. Perhaps it was obtained from a colleague. Details like this
one were not included in the "first draft" model of the IFIP Working Conference
system. They were added in order to make the model complete and consistent.
For clarity, not all errors made in the "first draft" are described here.
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suit

chair

del_acc

pap_inv

sent_ref

ref dec

pap_dec

sess_ass

inv

del_reg

6.2.3.

y,n

acc,rej,n/a

acc,rej,n/a

Sublaw Identification

Whether a paper is suitable for inclusion in the
Conference

Whether a chairman has been assigned to a session
by the Programme Committee.

Whether a person has accepted an invitation from
the Organizing Committee to attend the Conference.
Whether a person has been invited to submit a
paper to the Programme Committee for consideration.
Whether a paper has been sent to the referees by
the Programme Committee.

The referee’'s decision as to the suitability of
a paper for inclusion in the conference.

The Programme Committee’s decision as to the
suitability of a paper for inclusion in the
conference.

Whether a paper has been assigned to a session by
the Programme Committee.

Whether a person has been invited to attend the
Conference by the Organizing Committee.

Whether the person has been registered to attend

the conference.

The easiest way to define sublaws is to consider each state variable

individually.
developed in Appendix S.

person to attend the conference will be considered here.

The sublaws involving all of the state variables listed above are

Only the sublaw governing the decision to invite a

A person will be

invited if one of the following conditions is met:

1. He or she is a Working Group member.
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2. He or she has submitted a paper that has been accepted, rejected, or not

yet returned by the referees!??,

Furthermore, no person should be invited twice and no invitation should be
cancelled once issued. This last requirement implies that the stability
conditions relevant to the state variable "inv" are not very restrictive. A
person will not be invited if his or her paper is not considered by the Programme
Committee (i.e. "sent_ref" is "n") and he or she is not a Group member. However,
an invitation may be (or may have been) sent in any other situation. This sublaw

may be expressed in tabular form as shown below. State variables and values are

as defined earlier, and "-" means "any value" or don't care".
Sublaw: "Authors of processed papers and group members are invited"
Stability Conditions:
sent_ref grp_mem inv
- - y
n n n
Corrective Actions:
Conditions Actions
pap_dec sent_ref grp_mem inv --> inv
- - - y y
acc - - n y
rej - - n y
- y - n y
- - . y n y

6.2.4, Consistency and completeness testing

Appendix T contains a listing of the IFIP Working Conference system model
in the format required by the specifications analysis tools. There are some
differences between this model and the one developed above. The differences
reflect changes to the system required to correct errors found during this step.
The tools also note that some of the rules included in the model are not required
to respond to the defined external events. Each of these rules must be examined
to determine whether they are redundant or whether there is a deficiency in the

model.

102 Notice that mere submission of a paper does not guarantee a person an

invitation to attend the Conference. This is an invited paper conference. No
paper will be sent to the referees by the Programme Committee unless it was
previously invited.
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The time required for testing can be considerably reduced by noticing that
two state variables appear to be unrelated to the rest of the system. The state
variables "pap_prom" and "chair" are not mentioned together, or with any other
state variables, in any sublaw. Therefore, they cannot affect the behaviour of
any other state variable. While the values of these state variables are of
interest to the Programme Committee, they can be handled by subsystems which are
independent of the rest of the system. The system as described above has 352
stable states. If "chair" is removed from the system, there will be 176 stable
state, and if "pap_prom" is also removed, there will be only 88 stable states.
The number of stable states is halved in each case because both state variables
have two wvalues, and they may assume either of these values regardless of the
state of the rest of the system. In order to save time testing and decomposing
the system, these two state variables will be dropped from the model. Subsystems
to handle promised papers and the assignment of chairmen can be constructed
independently of the other subsystems which will be suggested by the
specifications analysis tools.

When the model is entered, the specifications analysis tools will find it

to be inconsistent. If a person who was not a Working Group member and did not

submit a paper to the Programme Committee becomes a member, the system can change
to two different stable states. The relevant state variables and values are

shown below.

State Initial Stable State After Event Final Stable States
Variable

grp_mem n y y y
pap_sub n n n n
ref_dec n/a . n/a n/a n/a
sent_ref n n n n
pap_dec n/a n/a rej n/a

There is an error in the sublaw which determines the final wvalue of
"pap_dec". In Appendix S, it was assumed that the decision to include a paper
in the Conference is based solely on the validity of the referees’ decision.
The referees' decision will not be valid if the paper they judged was not sent
to them by the Programme Committee or no paper was submitted. The original

tabular form of this sublaw is as follows (as developed in Appendix S):
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Original incorrect sublaw!®:

Sublaw: "Papers are accepted nor rejected"
Stability Conditions:
ref_dec sent_ref pap_sub pap_dec

acc y - acc

rej y - rej

n/a - - rej

- - n n/a

Corrective Actions:

Conditions Actions
ref dec sent_ref pap_sub --> pap_dec
acc y - acc
rej y - rej
n/a - - rej
- - n n/a

. The third rule in both the stability conditions and corrective actions
sections of the sublaw must be changed as shown below. The corrected sublaw
reflects that fact that 1if the referees’ decision is not applicable, the

Programme Committee’s decision will be neither accept nor reject.

Stability Conditions:

ref_dec sent_ref pap_sub pap_dec
n/a - - n/a
Corrective Actions:
Conditions Actions
ref dec sent_ref pap_sub -->  pap_dec
n/a - - n/a

The model is incomplete with respect to an external event which sets the
value of "grp _mem" to "y" (i.e. the person becomes a Working Group member).
There is an error in the sublaw responsible for setting the value of "sess_ass™.

A paper may be submitted and neither accepted nor rejected by the Programme

103 Notice that the stability conditions and the corrective actions parts

of this sublaw are nearly identical. A "pap_dec" conditions column containing
initial values of "pap_dec" could have been added to the corrective actions, but
since the final wvalue of "pap_dec" is independent of its initial value, it is
easier to simply leave it out.

As is evident in Appendix S, the structures of the stability conditions
and the corrective actions are often very similar. This is to be expected since
the stability conditions specify the stable combinations of values for the state
variables and the corrective actions specify how to attain those values. While
this means the analyst must provide seemingly redundant information, the two
parts of a sublaw are not always the same and neither may be left out. For
example, the stability conditions and corrective actions of the sublaw for
determining the value of "inv" (as described in the previous section) are quite
different. '
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Committee, either because it was never sent to the referees or was never

returned. The original tabular form of this sublaw is as follows (as developed

in Appendix S):

Original incorrect sublaw:

Sublaw: "Accepted papers are assigned to a session"
Stability Conditions:
pap_dec pap_sub sess_ass
acc - y
rej - n
- n n
Corrective Actions:

Conditions Actions
pap_dec pap_sub --> sess_ass
acc - y
rej - n
- n n

Rules specifying the behaviour of the system, when the Programme
Committee’s decision on a paper is neither accept nor reject, must be added as
shown below. These new rules show that papers which are neither accepted nor

rejected are not assigned to a session.

Stability Conditions:
pap_dec pap_sub sess_ass
n/a - n

Corrective Actions:

Conditions Actions
pap_dec pap_sudb --> sess_ass
n/a - n

The model is also incomplete with respect to an external event which sets
the value of "pap_sub" to "n" (i.e. no paper is submitted to the Programme
Committee). The sublaw responsible for setting the value of "ref dec" does not
specify the action to be taken when a paper is not submitted (and the value of
"suit" is therefore "n/a") but is somehow returned by the referees!®®. This
sublaw, and the sublaw specifying the relationship between paper submission and

suitability, are as follows:

104 perhaps a referee accidentally returned a paper destined for another

conference.
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Sublaw: "Referees
Stability Conditions:

either accept or reject”

ret_ref suit ref_dec
y y acc
y n rej
n - n/a
‘Corrective Actions:

Conditions Actions
ret_ref suit --> ref_dec
y y acc
y n rej
n - n/a

Sublaw: "Papers may be suitable of unsuitable"

Stability Conditions:
pap_sub suit

y

3~
=]

n/a

Rather than alter the referee decision sublaw, it was decided to drop the
value of "n/a" for the state variable "suit". In reality, a paper will be either
suitable or unsuitable regardless of whether it is actually submitted to the
Programme Committee. The sublaw specifying the relationship between paper
submission and suitability was also dropped from the model.

If the above corrections are made, the model will be both locally complete
and locally consistent. Appendix T contains a listing of the locally complete
and consistent model expressed in the syntax required by the specifications
analysis tools. Although this model is complete and consistent, the tools note
that two rules are not needed to return the system to a stable state after the
action of any external event. One of these rules deals with invitation to the

Conference, the other with registration.

'

Unnecessary invitation rule:
Conditions Actions
grp_mem sent_ref inv --> inv
- - y y

Unnecessary registration rule:

Conditions Actions

inv --> del_reg

n n

The analyst should confirm that these rules are indeed redundant, and that no

semantic error has been made. The reason the rule which sets the value of "inv"
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is never activated is trivial. It is not capable of changing the state of the
system. That is, the action state variable "inv" must have the same value before
and after rule activation. This does not indicate an error in the system model.
There is no theoretical reason why such a rule should not be allowed to fire.
The specifications analysis tools simply avoid such rules to save time when
determining system response paths to external events. The rule which sets the
value of "del_reg" is never activated because state variable "inv" will never
be assigned a value of "n" during a system response to an external event.
Invitations are mnever withdrawn. Because states are stable before the
application of the external events, if "inv" has the value "n" then "del_reg"
will also have the value "n". Therefore, this rule is never required to regain

stability and is redundant.
6.2.5. Decomposition
6.2.5.1. Parallel/Sequential Decomposition

Parallel/sequential decompositioh as performed by the specifications
analysis tools leads to three different decompositions for the IFIP Working
Conference system. None of these decompositions is exactly the same as the
decomposition inherent in the sublaws. The differences between the suggested
decompositions will be discussed first. As shall be shown, these differences
can be attributed to a deficient system model. One decomposition will be
selected for further analysis and the differences between it and the
decomposition inherent in the sublaws will be explained. These differences
point to "inefficient" sublaw definitions.

The three decompositions suggested by the tools are listed below and shown
in diagrammatic form in Figure 23. They differ only in the subsystems
responsible for calculating the values of "pap_dec" and “sess_ass" (i.e. the
subsystems which decide whether a paper is accepted by the Programme Committee

for inclusion in the Conference, and whether a paper is assigned to a session).
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Decomposition #1 Complexity = 30.84

4 {del_acc,inv,del reg} {ret_ref,sent_ref,sess_ass,pap_dec)
3 {grp_mem, inv,sent_ref,inv) {ref_dec,sent_ref,sess_ass)

2: {pap_inv,pap_sub,sent_ref)

1 {ext_inv,grp_mem,pap_inv} ({ret_ref,suit,ref dec}

Decomposition.#Z Complexity = 31.49
4 {del_acc,inv,del_reg)
3: {grp_mem, inv,sent_ref,inv} {ref_dec,sent_ref,pap_dec}

{ref_dec,sent_ref,sess_ass)

2: {pap_inv,pap_sub,sent_ref}

1: {ext_inv,grp_mem,pap_inv} (ret_ref,suit,ref dec}
Decomposition #3 Complexity = 30.35

4 {del_acc,inv,del_reg} {pap_dec,sess_ass)

3 {grp_mem, inv,sent_ref,inv) {ref dec,sent_ref,pap_dec)
2; {pap_inv,pap_sub,sent_ref)

1 {ext_inv,grp_mem,pap_inv} (ret_ref,suit,ref dec)

The complexities of all three decompositions are roughly the same. The
first suggestion is somewhat surprising in that it shows that "pap_dec" can be
determined as a function of “"sess_ass". (The functional forms associated with
this subsystem, and the other subsystems discussed below, are listed in Appendix
U). While it would be possible to construct a system which functioned this way
and still fulfilled all the requirements, an analyst would probably reject any
suggestion that papers be assigned to sessions before they are accepted by the
Programme Committee. The decomposition would be rejected because there are
probably other factors which affect the Programme Committee’s acceptance and
session assignment decision