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Abstract 

Weigh scaling is a method of estimating the total volume of timber harvested from a given region. 

The implementation of statistical sampling techniques in weigh scaling is described, along with 

related issues. A review of ratio estimators, along with variance estimators of the classical ratio 

estimator is conducted. The estimation of the variance of the estimated total volume is considered 

using jackknife- and bootstrap-based variance estimators. Weighted versions of the jackknife and 

bootstrap variance estimators are derived using influence functions and Fisher Information 

matrices. Empirical studies of analytic and resampling-based variance estimators are conducted, 

with particular emphasis on small sample properties and on robustness with respect to both the 

homoscedastic variance and zero-intercept population characteristics. With a squared error loss 

function, the resampling-based variance estimators are shown to perform very well at all sample 

sizes in finite populations with normally distributed errors. These estimators are found to have 

small negative biases for small sample sizes and to be robust with respect to heteroscedasticity. 
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Chapter 1 

Statistical Sampling i n the Forest Industry i n Brit ish Columbia 

1.1 The Forest Industry in British Columbia 

Forestry is the dominant industry in British Columbia, accounting for a major portion of the 

provincial economic output. The extensive forests which cover much of the province form the basis 

for this industry. Most of the forested lands are owned by the Government of British Columbia, 

the management and regulation of these lands being the responsibility of the provincial Ministry of 

Forests. While the Ministry takes an active interest in all aspects of forestry, it does not engage in 

the actual harvesting and processing of timber. Rather the Ministry (under several different 

programs) allows private companies to do this in exchange for payments called stumpage fees. 

The method of calculating stumpage fees changes from time to time and can be quite complex, 

incorporating such factors as silviculture costs, harvesting costs, the species of tree being harvested 

and the estimated value of the products produced from the harvested timber. However, the central 

idea behind all of these methods is that the stumpage fees that a private company pays should be 

proportional to the volume of timber which that company harvests. Consequently, it is extremely 

important to both the Ministry and the companies that the volume of timber harvested be 

determined accurately and efficiently. 

Because of the differences in timber species and harvesting methods, the forest industry in British 

Columbia is grouped into two geographic categories: Coast and Interior. In the coast region, the 

Government requires that the volume of each log be measured separately. The process of 

measuring the volume of a log is done manually and is known as hand or stick scaling. It is 
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expensive to hand scale each log; however, coastal timber has a high dollar value and so the costs 

of scaling are relatively small compared to the value of the logs. 

In the interior of the province, timber is of lower quality and dollar value. Consequently, the 

government does not require the scaling of each log. Rather, all logs are weighed, and the total 

volume harvested by a company is estimated via a sample of logs which are both weighed and 

hand scaled. This process is known as weigh scaling. Regardless of the method of scaling, 

however, the estimate of total volume must be accurate to a level set by provincial legislation. 

It is one aspect of weigh scaling which motivates this study, namely that of estimating the total 

volume of timber harvested by a logging company to within a prescribed level of precision, while 

using the minimum of resources (i.e. lowest cost). In particular, this study will concentrate on the 

estimation of the variance of that total volume estimate. This chapter will describe the physical 

process involved in the logging and scaling of timber and the current method of estimation of total 

volume used in weigh scaling. Both statistical and non-statistical problems which arise in the 

process will also be discussed. 

1.2 Weigh Scaling 

In this section, we will describe the physical process involved in the logging and weigh scaling of 

harvested timber. In particular, we will concentrate on the sampling aspects of this process. 

At a logging site, trees are cut and their branches are removed until just the trunks remain. 

These logs are then trimmed at the ends. Thereafter, the logs are transported to a central location 

within the logging area. This process, from the actual cutting to the transport to a central location 

is called falling, bucking and yarding. Once at this central location, the logs are sorted, tagged 
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and loaded onto trucks for transport to various locations. Typically, the majority of logs from a 

logging site are sent to one location. For example, this could be a pulp mill or a sawmill. 

When logging trucks arrive at a final destination, they are weighed both loaded and empty, so that 

the weight of the load may be obtained. Some statistically relevant decisions are made at the 

weigh scale and thus, the sequence of events occurring when a truck arrives to be weighed will be 

described. 

Before proceeding, it is important to mention that in order to reduce the amount of sampling 

required the Ministry of Forests allows companies to create strata. The creation of appropriate 

and homogeneous strata from the population of all truckloads which arrive at a specific location 

may significantly reduce the sample size requirement. Thus, by creating strata a company can 

reduce the amount of scaling it must conduct and pay for, without reducing the accuracy of the 

estimates. The quantity and type of strata are determined by the company, which submits its plan 

to the Ministry for approval. The strata are not actual physical locations, but rather, species and 

grade types. The Ministry determines the sampling rate for each stratum and it is the company's 

responsibility to ensure that it is carried out. 

When a logging truck arrives at a mill, it is directed to a weigh scale and weighed. The weigh 

scale operator, a company employee, classifies the truckload of logs as belonging to one of that 

company's strata. His decision is based on many factors, including the timbermark, the species 

makeup of the load, the amount of rot and the presence and extent of pest damage. Once the load 

is assigned to a stratum (or its appropriate stratum identified depending on one's point of view), 

the relevant details of the load are entered on a computer attached to the weigh scaling machine. 

The computer keeps a record of the accumulated number of truckloads belonging to each stratum. 

Each stratum has a different sampling rate, and the computer signals the weigh scale operator 
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when a truckload belonging to a particular stratum has to be sampled. If it is to be sampled, the 

truck is sent to a special site on the location where the logs are unloaded and are subsequently 

scaled, i.e. the volume of each of the logs is determined by hand scaling. Otherwise the truck is 

sent to the yard where it unloads its logs together with others belonging to the same stratum. 

The overall sampling process is as follows. At the beginning of the year, each logging company 

identifies the strata it has chosen and the anticipated number of truckloads to be harvested from 

each of these strata. Companies are free to choose the number and type of strata. Since a 

company pays for the scaling of its wood, it is in the best interest of the company to choose that 

combination of number and type of strata which minimizes the amount of sampling required. The 

Ministry of Forests then determines the number of truckloads that must be sampled from a 

stratum in order for a prescribed level of precision to be met. Once a sampling rate has been 

decided by the Ministry, it is the responsibility of the company and its employees to ensure that 

this rate is achieved. This prescribed level of precision is set by provincial legislation. 

Under provincial legislation, the estimate of total volume of wood harvested by a company must be 

within 1% of the true value, with a confidence level of 95%. In other words, the estimate of total 

volume must be within 1% of the true value, in 19 out of 20 estimates of total volume of different 

populations. The Ministry of Forests estimates the total sample size required from each stratum of 

a company in order that the overall 1% requirement be met. Since a company may have chosen to 

categorize their harvest into several strata, the Ministry of Forests allocates to each stratum the 

number of samples which are required from it. The samples are selected via a sampling scheme 

called block sampling: the random selection of one truck from every block of consecutive Nm 

trucks from stratum m, where Nm is determined by the Ministry of Forests. 
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For example, a company may choose to establish three strata and anticipate harvesting 1000, 500 

and 200 truckloads per respective stratum. Using variance estimates from similar strata from the 

previous year, the Ministry of Forests may initially estimate that 100 truckloads should be 

sampled from the first stratum, 50 from the second, and 20 from the third. (These numbers are 

just examples to illustrate the sampling scheme.) However, since the variance estimate formula 

used by the Ministry is based on the assumption that the sample sizes will be large, the Ministry 

has imposed a minimum sample size constraint of 30 truckloads. In addition, the Ministry may at 

its discretion, increase the sample size if it feels the initial estimates are too small. Suppose in 

this example that the Ministry chose to increase each sample size by five, so that the final sample 

sizes per stratum would be: 105, 55 and 35. This means that for stratum one, one truck will be 

randomly selected from every successive set of nine trucks (1,000 divided by 105 is approximately 

nine) and similarly for the other strata. In other words, a block size is determined within which 

one truck will be chosen using simple random sampling. To maintain the integrity of the sampling 

process, the company is not to know which truckload will be sampled. To achieve this, the 

sampling scheme for each stratum is entered onto the computer at the weigh scale, and the 

computer generates the necessary random numbers to accomplish the random selection of one 

truck within each block for each stratum. 

The hand scaling of logs in the sample loads is carried out by specially trained employees of the 

company called scalers. The volume measurements obtained from hand scaling are themselves 

inexact as logs are often curved and bent, and may contain knots and other irregularities. 

Consequently, if two different scalers measure the same load, they might arrive at two different 

volume estimates. However, if both scalers are experienced, their estimates should not differ by a 

large amount. The entire process relies on trust and honesty, but there are occasional spot checks 

by the Ministry to ensure the scalers do not cheat on their estimates. 
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At the end of a calendar year, the Ministry uses the weights and volumes of the sampled loads to 

develop a set of conversion factors relating volume to weight. The estimates of total volume 

harvested are then made by multiplying the total weight of all truckloads by the appropriate 

conversion factors. 

1.3 Statistical Estimation of Total Volume 

The previous section provided a brief introduction to the actual physical process whereby a 

standing tree in the forest is felled, yarded, weighed and possibly scaled. In this section we will 

describe the currently used analytic formulae to estimate the ratio of conversion from total weight 

to total volume, the total volume, the variances of the ratios and totals, and other related 

quantities. All the formulae are derived and discussed in the standard sampling text, 

Cochran (1977). 

For each stratum, the Ministry first estimates the total volume of harvested timber, and then 

estimates the variability of this estimate. To properly discuss the above statistical estimates, we 

will first need to establish the notation. 

Without loss of generality, we will consider the population of interest to be a particular stratum, 

the basic unit of which is a truckload. Let N be the total number of truckloads of timber harvested 

from a particular stratum during a calendar year, and let n be the number of truckloads sampled 

during the year from that stratum. Let Y be the total volume of timber in a population, 

Y = jryi = NY, 
i=l 

and let X be the total weight of timber in that population, 

N _ 
X="£Xi=NX . 
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Let R be the population ratio of volume to weight (inverse of the population density), 

R - - I - Z , 
x X 

and let f be the sampling fraction, 

N 

The mean volume of the scaled (sampled) truckloads is 

y = - i > i > 

where yt is the volume of the ith sampled truckload. Similarly, the mean weight of the sampled 

truckloads is 

x=—£ *« • 

where xt is the weight of the i'h sampled truckload. The estimate of the population ratio of 

volume to weight is 

X 

and the corresponding estimate of the population total volume is Y = AX= 2.X where X is the total 
x 

weight of all truckloads. 

A large-sample approximation to the variance of the ratio estimate is 

Var(R~) = 1-f 

ynX2

 J 

( 1 \SL 
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and, since the population quantity X is known, the natural sample analogue of this is 

va, ritt) 
r \ 

1-f 

KnX2, 

f i \ " 
1 ' E^ - a* , ) 2 

n - l 

Since Y = llX = ANX, the corresponding large-sample approximation to the variance of the 

estimate of the population total is 

VariY) * 
v n J 

N2 

N-l 

for which the sample analogue is 

va 
n-l £i 

To determine the total sample size required for a company, the Ministry of Forests uses 

"estimates" of the required population parameters. These "estimates" are really anticipatory 

figures, possibly being based on previous year's data or from a few samples at the beginning of the 

year. After determining the total sample size required for all strata, sample sizes are determined 

for each individual stratum by Neyman allocation (Cochran, 1977, p. 99). If the estimated volumes 

and standard deviations required to implement Neyman allocation are not available, then the total 

sample size is distributed to the individual strata based on the anticipated number of loads to be 

harvested from each stratum (proportional allocation). However, because the variance estimates 

are based on large sample approximations, all sample sizes which are less than 30 are increased to 

at least 30, and often, to 35. Thus, there is an incentive for companies to select large strata; 

otherwise they will be required to sample more truckloads (and incur the additional costs 

associated with scaling these truckloads) so that the variance estimates are accurate. 
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The total volume harvested by a company is estimated by summing the estimates of the total 

volume for the m strata, 

m 

Ul 

and the variance estimates from all strata are added to obtain the variance estimate of the total 

volume: 

vari?) = jtvartfi) ui 

The above are the analytic formulae used by the Ministry of Forests. In the next section we will 

discuss both statistical and non-statistical problems associated with the presently used scaling 

system. 

1.4 Implementation Problems 

Several practical, implementation type problems arise as a result of difficulties in properly 

applying the required methods, whereas other problems arise simply because the underlying 

statistical theory is not correct for the problem at hand. Though this research deals with the 

statistical theory upon which the scaling system is based, it is nevertheless important to 

understand some of the implementation issues, simply because the presence of inconsistencies 

between theory and practice reduces the effectiveness of the scaling system. 

The implementation problems can be categorized into two types: system errors and intentional 

errors. Intentional errors are those errors in sampling, weighing or data collection which are 

either committed on purpose or allowed to go uncorrected. The Ministry of Forests collects over 

$500 million in stumpage fees annually. The sheer magnitude of this figure implies that there 

may be some groups who will try to reduce the amount they are required to pay. However, these 
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are legal rather than statistical problems. Consequently, for the purposes of this research, we will 

not consider these problems. 

System errors are those errors arising from the actual implementation of the scaling system. 

These errors can be classified into three general categories: misclassification errors, measurement 

errors and random sampling errors. An alternate way of viewing these errors is: errors due to 

measuring what should not be measured, errors due to mistakes in measuring what should be 

measured and the errors arising from having a sample which does not adequately represent the 

true population. 

Misclassification errors are those errors due to misclassifying a truckload of timber into the wrong 

stratum. Recall that when a truck arrives at a mill, it is assigned to a stratum depending the 

geographic source of the logs, the species and age mix, amount of rot, amount of pest damage and 

other criteria. However, this decision is subject to human error. For example, a truckload of 

mostly hemlock and a bit of fir may be misclassified as belonging to a stratum containing fir only. 

Outliers in sample data could be due to measurement errors, to misclassification errors, to other 

errors or they might be a feature of the population. Therefore, it is difficult to ascertain whether 

misclassification errors constitute a major source of variability. One method of determining the 

rate of misclassification errors is to search for outliers in the sample data, although this would 

involve an implicit assumption that outliers within a stratum are due to misclassification errors 

and are not simply a feature of the population. 

Measurement errors are those errors arising primarily from inaccuracies due to the measuring 

procedure used by scalers in measuring the volume of a truckload and from the errors due to 

weighing a truckload. As mentioned earlier, two scalers measuring a load of timber will 

occasionally produce volume estimates with substantial differences. However, the Ministry staff 
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feel that scaler to scaler differences do not constitute a major source of variability. Consequently, 

we will disregard scaler to scaler error. The errors due to weigh scales are not likely to be 

substantial when considered in relation to other sources of error. The weigh scales are electronic 

and are (presumably) regularly calibrated. Thus, it is quite likely that scaler to scaler variability 

exceeds weigh scale error, and if we are disregarding the former, we may also disregard the latter. 

It should be noted that these sources of error are not ignored; we will simply make no attempt to 

isolate them. All these sources of error are aggregated and considered as the sample to sample 

variability in the ratio. 

Random selection errors are those errors which cause an improper sample selection - aside from 

intentional "errors". A primary source of errors here are the anticipatory figures used at the 

beginning of the year to determine the sample size breakdown between the strata. For example, a 

company may anticipate harvesting a certain number of truckloads from a stratum, and at 

midyear may realize they have overestimated - that in fact they will harvest fewer truckloads from 

this stratum. Then, during mid-year updates, the Ministry may reduce the sampling rate for that 

stratum for the rest of that year. Consequently, the wood harvested during the latter half of the 

year would be under-represented in the sample from that stratum. And since there often exists a 

difference between the type of wood harvested during the summer and winter seasons, this may 

turn out to be a major source of error. Another problem is that truckloads may not arrive at a 

weigh scale in random order. In other words, the semi-systematic method of sampling used may 

not be as good as a true simple random sample. As Kish and Frankel (1974) note, "'well-mixed' 

urns are seldom provided by nature or created by man". 

1.5 Problem of Interest 

In this thesis, we will concentrate on the estimation of the variance of the estimate of total volume. 

Recall that in the current method of estimating the variance of an estimate of total volume for a 
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stratum, the Ministry requires that the sample size exceed a minimum of 30 (see Cochran, 1977, 

page 153). One question we will address is whether the variance estimator we described earlier is 

accurate when the sample size is less than 30. We will also investigate alternate estimators of the 

variance, particularly those estimators which perform well at sample sizes less than 30. We 

believe that identification of an effective small sample estimator of the variance would benefit both 

the forest companies of British Columbia and the B.C. Ministry of Forests. The benefit would arise 

because the minimum sample size requirement could be reduced thereby allowing companies to 

select smaller and possibly more homogenous strata. Such strata would require fewer samples 

than larger, more heterogeneous strata and the overall result would be greater efficiency in the 

weigh scaling process. 

The primary motivation for our thesis is the possibility that recently developed resampling 

techniques might provide accurate and effective variance estimators for small samples. These 

techniques (technically known as the Bootstrap and the Jackknife) have not been studied in detail 

in similar problems, but previous empirical studies suggest that these methods might be effective 

in our situation. Consequently, we will derive estimators based on these new techniques and we 

will study their small sample behaviour via an empirical study. 

In the next chapter, we will review various methods of both estimating the population total volume 

and of estimating the variance of these estimates. This will be done in a general statistical 

context. Thereafter, in Chapter 3, we will derive weighted jackknife-based variance estimators. 

As one author has pointed out, "the weighted jackknife...would seem to be particularly appropriate 

for sample survey applications" (Smith, 1981). In Chapter 4 we will continue with our derivation 

of resampling-based estimators, particularly in the context of ratio estimation. It has been 

suggested that bootstrap techniques are more accurate than jackknife techniques (Efron, 1979), 

and thus this chapter will attempt to derive bootstrap analogues to the estimators obtained in 
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Chapter 3. In Chapter 5, we will conduct empirical studies on the performance of the various 

variance estimators in the context of the types of populations faced by the Ministry of Forests. In 

addition, we will also study the robustness of the various estimators, particularly with respect to 

common model assumptions. Finally, in Chapter 6, we will summarize the results of this study 

and provide specific recommendations concerning the statistical aspects of the weigh scaling 

process currently used by the Ministry of Forests. 
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Chapter 2 

Estimating a Population Total via Ratio Estimators 

In Chapter 1, we described and discussed the implementation of the weigh scaling program by the 

B.C. Ministry of Forests. In this chapter, we will discuss weigh scaling from a statistical point of 

view, concentrating both on the estimation of total volume via ratio estimators and on the 

estimation of the variability of these estimators. 

The weigh scaling program may be statistically represented as the following estimation problem: 

A finite population consists of N units of two associated variables of interest: =(Xi,Y'i), i=l,2,...̂ V 

iV N 
with corresponding population totals Y = ]jT Y, and X = Xt. In our context, the units of the 

i=l i=l 

population are the truckloads and the variables Xt, Y, are, respectively, the weight and volume of 

the i'h truckload. Having observed a simple random sample of n pairs of Xit Yi we wish to 

estimate both the total volume Y and the variance of our estimate of total volume, Var(Y), given 

that we know X. 

In this thesis we will focus on the variance estimation problem given that a particular approach 

will be taken for the estimation of the population total. That particular approach is to estimate 

the population total volume, Y, by the classical ratio estimator YR =ficX= Z -X. 
x 

However, there are other possible estimators of Y, and we will briefly discuss some of these before 

proceeding to our main topic of interest: the various proposed estimators of Var(YR). Our reason 
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for discussing alternate estimators of Y besides YR, is mainly to place the variance estimation 

problem in context. The problem we will attempt to address is a small part of a much larger 

problem: the problem of drawing inference on Y given a sample of pairs of Xit Yt and given fairly 

complete information on the covariates XU...JCN. 

2.1 Estimating a Population Total 

There are two common approaches for estimating Y: One approach ignores covariate information, 

while the other takes advantage of this information. The simplest estimator of the former 

approach, known as the mean-per-unit method, first estimates the population average of Yt, and 

then multiplies it by N. In our context, this amounts to first estimating the average volume per 

truckload, and then multiplying this by the total number of truckloads. We will denote this 
estimator by YM = 7Vy, where y is the average of the observed y1,...Jyn. 

The alternate approach is to make use of covariate information. There are many ways of making 

use of covariate information, the simplest of which is as follows: YR = 2Lx. For obvious reasons, 
x 

this is known as the ratio method. In our context, this amounts to first estimating the inverse of 

the average density and then multiplying this by the total weight, X, to estimate total volume. 

Quite often, a model-based approach is used for estimating a population total. Under this 

approach, the expectation of Yt is assumed to be a function of Xt. Consequently, it is natural to 

estimate Y using our knowledge of Xt's. The model typically used is a linear model with specific 

variance assumptions: 

15 



Yt-Xtt+et, (2.1) 

where the e( are the stochastic components. The e, are assumed to have expectation zero, and a 

common assumption is that their variance given xi is a 2*,. If we assume that the ei are normally 

distributed, then the maximum likelihood estimator of P is the classical ratio estimator Rc = L. 
x 

Even without the normality assumption, weighted least squares results in p1
 =fic. 

An appropriate question to ask here is: under what circumstances is YM a better estimator of Y 

than is YH? It can be shown using the design-based approach (Cochran, 1977, p. 157) that for 

simple random sampling with large samples, the ratio estimate YR has a smaller variance than 

if 

1 
r \ 

Y 
2 K 

v y J 

where Sx, Sy are the standard deviations in the X and Y populations respectively, and pXJ, is the 

correlation between Xt and Yt in the population. 

For the total volume estimation problem of the B.C. Ministry of Forests, the ratio estimator would 

be expected to be the better of the two estimators because, in general, the correlation .between Xt 

and Yi is large, while the two coefficients of variation are similar. Hence, we will concentrate on 
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ratio type estimators of the population total: Yt = R,X, where the . indicates a particular method 

Y y 
of estimating R = = 

X x 

2.2 Some Ratio Estimators 

Ratio estimators have been studied for several decades. As early as 1932, a non-symmetric 

confidence interval for R =E(Yi)/E(Xi) was being studied under an infinite population and 

bivariate normal assumption (Fieller, 1932). During the 1950's, numerous researchers approached 

the ratio estimation problem through the design-based framework. In this section, we will briefly 

discuss several ratio estimators. 

The most commonly used method of estimating R is by the classical ratio estimator, #c which is 

given by the ratio of the average of the observed Yt's divided by the average of the observed X/s: 

— 1 " 1 " 
&c = = , where y = _ £ yt and x = _ £ xt . 

x n ; = i n i = i 

It has been shown that the ratio of the averages is a better estimator of R than the average of the 

ratios. If we assume that Var(Yi)'xXi and that the relationship of Y( and Xt is a straight line 

through the origin, then it can easily be shown (by using Lagrange Multipliers) that the estimate 

of the population total obtained via the classical ratio estimator is the best linear unbiased 

estimator of the population total under the design-based approach (Cochran, 1977, p. 158); 

Brewer (1963) and Royall (1970) show this for finite populations. Under the model-based 

approach, the result is of course, well-known from regression theory. 
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However, the classical ratio estimator is biased. Using an alternate approach, a design-unbiased 

estimator of R was obtained by Hartley and Ross (1954). Their estimator is obtained by correcting 

- 1 " 
for the bias in the average of the ratios: r = _ JTJ rit where r^yjx^ Note that: 

N 
J _ £ ri(xi-X) = Y-XE(ri)=X[R-E(ri)] 
N ui 

Thus, the bias in 7 can be expressed as 

E(r)-R=E(ri)-R = --l=T ^M-X) 
NXt-i 

(2.2) 

By Theorem 2.3 of Cochran (1977), it can easily be seen that an unbiased estimate of the above 

bias is 

( \ 

yNX; ra-1 ui 

( \ 

yNX; n-1 
(2.3) 

Then by substituting (2.3) into (2.2), 

E{?)-R=E' -1 (7V-l)n r- — v 
NX n-1 

Therefore &HR = r + -^L (y - r x ) is an unbiased estimator of R. 
NX (n-1) 

In a similar attempt, Mickey (1959) also derived a design-unbiased estimator of the ratio. His 

estimator was obtained in an effort to find a class of unbiased ratio and regression estimators and 
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is derived using a "leave-one-out" approach. By estimating and correcting for the bias in 

average of the "leave-one-out" estimates of R, 

n ui nx -xt n i,\ 

Mickey obtains the following design-unbiased estimator of R: 

RM = R . - { N - n t 1 ) n [ y - ^ . x ) . 

Tin (1965) took a different approach to correcting for the bias in Rc. Note that 

Rc = l = l-R-i.R=b!Zl-R 

•R 
Y X 

= R 1 + 1^X1 
Y 

-_x) ̂  - x ) \ 
x x2 

= R w ( y -Y) _(x-X) _ <y -Y)(x-X) x g - X ) \ 
Y X YX X2 

Taking expectations leads to 

E<$e)iR ,_E(y-Y)(x-X) ^Eft-XY 
YX X2 

= RV 
n XY 

£ 1 
x2 
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which yields an approximation to the bias in #c. Replacing all population quantities in the 

approximation by their natural estimates and subtracting, leads to the estimator suggested by Tin: 

-

1 + (1-f) 

{ n j xy x2l 

1 
where sxy = -—— £ (x,-x )(yt-y ) , 

s? 1 

(TI -1) ti N 

It is interesting to note that Tin's estimator can also be obtained through a one-term taylor 

expansion of the denominator of an estimator suggested earlier by Beale (1962): 

1 + f L 1 n ) xy. 

i+ 
[ n

 > 
x2\ 

Using a general bias-reducing technique known as the jackknife (which is discussed in more detail 

in Chapter 3), Durbin (1959) obtained the following estimator of R: 

' n - i Rj = nRc- R.. 

Durbin was able to show that under some distributional assumptions, the jackknife method leads 

to estimators which are less biased and more efficient than the classical estimator Rc. Rao and 

Webster (1966) showed that the above "leave-one-out" method is the optimal version of the 

jackknife for ratio estimation. 
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Whereas Mickey's method estimates the overall bias with explicit use of covariate information, the 

jackknife method estimates and attempts to eliminate first order bias without the direct use of 

covariates. Although both Mickey's estimator and the jackknife estimator use the two methods 

arise from different approaches. Mickey's estimator arises out of a design-based, general 

methodology to produce unbiased ratio and regression estimators. On the other hand, the 

jackknife is a general, all-purpose technique designed to eliminate or reduce the bias of an 

estimator. 

2.3 Review of Empirical Studies of Ratio Estimators 

Numerous empirical studies have been conducted on the preceding estimators of R. An empirical 

study by Hutchison (1971) showed that if X;'s are simulated as log normal, and if the errors are 

simulated as normal with zero mean and variance proportional to o2xx, where X = (0, 0.5,1,1.5, 2), 

then the Hartley-Ross estimator is as efficient as any of the other estimators. If the XSs are 

simulated to have a gamma distribution, Rao and Rao (1971) conclude that Mickey's unbiased 

estimator is more efficient than the Hartley-Ross estimator; this is especially so when X = 0. 

Hutchison (1971) and Rao and Rao (1971) show that though Mickey's estimator is preferable to the 

Hartley-Ross estimator, it is not as good as some other estimators; in particular, the Beale, Tin 

and jackknife estimators. The jackknife estimator has been studied on numerous occasions and 

the general conclusion is that it is a very good estimator (Durbin, 1959; Rao and Webster, 1966; 

P.S.R.S. Rao, 1969; Rao and Rao, 1971; Hutchison, 1971; and, Rao, 1979). Another pair of 

estimators which have been shown in the above studies to be accurate and efficient are Tin's and 

Beale's estimators. Both have bias of order n 2 and have estimated variances comparable to the 

estimated variance of the jackknife estimator. 
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It is clear from the above discussion that there are numerous estimators of the ratio. But our 

objective in this thesis is to consider estimation of the variance in estimating a population total 

using some form of the ratio estimator. To keep the problem to a manageable scale, we shall 

restrict our attention to the classical estimate of the ratio, fic. Henceforth, all references to R and Y 

will imply estimation via the classical ratio estimator method. 

The techniques we shall use in this thesis to develop new variance estimators for the estimate of 

population total using the classical ratio method could also be applied to develop new variance 

estimators for other methods of ratio estimation. 

2.4 Estimation of the Variance of the Classical Ratio Estimator of a 

Population Total 

The problem to be addressed in this thesis is the estimation of the variance of the estimator of 

total volume given by: 

t=RX=lX. 
x 

This estimate is simply an estimate of R scaled by X, and thus, Var(Y) = X2Var(R) = (NX )2Var(R). 

It can easily be shown that the approximate variance of # under simple random sampling is: 

Var(R)± 
( \ 

KnX% 

^(Y.-RX^ 

N - l 

This approximation has a bias of order n_1. The exact variance of i£ cannot be evaluated under 

the design-based approach because both X{ and Yt are random; the difficulty arises because R 

contains random variables in both the numerator and the denominator. 
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Therefore the approximate variance of Y (with a bias of order n 1 ) is: 

Var(Y)±(NX)2 

( \ 
1-f 

y n X \ 

£ (Yt-RXy 

N-l 

rN*a-f) 
n 

5: ( y , - / ? ^ 

N-l 

By estimating the sum of the squared residuals, the natural sample analogue of Var(R) is 

var. 1-f 

KnX\ 

and therefore, 

vn = far , I n 
v J 

In some ratio estimation contexts, X is not known and therefore not available for the evaluation of 

var0(li). Estimation of X by x leads to the alternate estimator of Var(R): 

varAR) = 
n-l 

which in turn leads to 
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i>, = var. 
fN2a-f) 

n X 2 

f \ 

Ul 

n-1 

Results from empirical studies on the performance of u0 and v2 as estimators of MSE$) are 

mixed. In terms of squared error, some studies suggest that v0 is a better estimator (e.g., Krewski 

and Chakrabarty, 1981), whereas other studies suggest that v2 is a better estimator (e.g., Wu and 

Deng, 1983). It is difficult to ascertain which estimator performs better. However, it is thought 

that both methods seriously underestimate the MSE(R) for smaller sample sizes, with relative 

bias on the order of -15% (Cochran, 1977; Rao, 1968). 

Recall that under the assumption of a linear model where the variance of Yt given xt is a2xt, /3 is 

the weighted least squares estimator of P . Assuming the linear model of (2.1) and assuming that 

the population values ylt...yN are realized values of random variables Ylt...,YN, one obtains as the 

variance of the usual estimate of population total (Royall, 1970; Royall and Eberhardt, 1975): 

VarmJY) = a2 
fN2(l-f) NX-nx 

N-n 
(2.4) 

An unbiased estimator of varmJY) is 

var^CY) = d 2 fN2(l-f)) 

v n J 

r \ 
x 

( ^ 
NX-nx 

N-n 
(2.5) 

where 

&2 = J-±(yi-Rxi)2xi-1. 
n-1 ui 
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(This linear model approach towards finite population sampling is known as the prediction theory 

approach. For more details, see Royall, 1970, 1971). This estimate is biased under violations of 

the variance assumption (Royall and Eberhardt, 1975). The empirical study of Royall and 

Cumberland (1981) suggests that this estimate of variance consistently and significantly 

underestimates the variance of the total volume estimate. 

Under the prediction theory approach (where Yt's are random and xt's are not), Royall (1971) has 

shown that 

E(vQ) = o2 OV 2( l-/)^ 
V n J 

l-Iv,2 

n 
x , (2.6) 

where 

v2 = J-Y,(xi-x )2x-2 

n-l ui 

and the expectation is with respect to the underlying distribution of the random Yt's, and not the 

distribution imposed by the sampling design. 

Note that whereas (2.4) is a decreasing function of the sample mean x, (2.6) is an increasing 

function of x. This may explain the poor performance of (2.5) in Royall and Cumberland's (1981) 

empirical study. Under the prediction theory approach, v0 is biased and the following estimator 

removes its bias (Royal and Eberhardt, 1975): 

varH(Y) = var0(Y) 

( \ 
X 

KX J 

( 
NX-nx 

N-n 

f i V i i-lvx 
n 
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However, varH(Y) is biased (under the prediction theory approach) under violations of the variance 

assumption. In an attempt to robustify varH{Y) to these violations, Royall and Cumberland (1978) 

suggest a new estimator which is approximately unbiased for different assumptions of variance: 

varD(Y)- N2(l-f) 

v n j 

V * , V _ V 
A (y^Rx,)2 

L> 1 

v n x J 

NX-nx 
N-n 

The empirical study of Royall and Cumberland suggests that varD(Y) has a lower bias than 

varH(Y), at least for the populations contained in their study. Wu and Deng's (1983) study 

suggests that varH(Y) has a lower root mean squared error than varD(Y). Both these studies 

present results for the same sample sizes (n=32) and for the same populations. Thus, it appears 

that the bias robustness of varD(Y) is achieved at the expense of increased instability. 

Wu (1982) suggested a new estimator which is the geometric mean of var0(Y) and var2(Y); that is: 

{ n J 

( _ \ 
X 

V 5 J 

E (Vi-Rx^ 

V n-1 

Note that the only difference between v0, vl and v2 is in the value of the exponent of (X / x ). 

Extending this, Wu (1982) suggested using the data to estimate the optimal value of this exponent; 

optimal in the sense of minimizing the leading terms in the asymptotic expansion of the mean 
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squared error of v. = 
( V 
X •var0. The sample analogue is g as described below. For more detail, 

see Wu (1982) and Wu and Deng (1983). This new estimator is 

f 

var. 
2 Q ^ 

n ) 

( V 

n - l 

where g = sample regression coefficient of -1 on -J. , 
z x 

E ^ - ^ O 2 

i i = ( y i - « x j ) 2 - 2 ( y i - ^ i ) - ± i , and 

n i = i 

A similar estimator suggested by Wu and Deng (1983) is obtained by removing the second term in 

the above zt; then zt is simply the squared residual (y^fiX^2. This leads to: 

var.{Y) < 
J 

( _ V 
X 

V * J n - l 

where g = sample regression coefficient of ( y i - * * < ) 2 on _ 
2 a: 

n i , i 

The empirical study by Wu and Deng (1983) suggests that var AY) is not as good an estimator as 

var, 
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Fuller (1981) suggested a new estimator which was motivated by the following observation: If the 

variance of et is a function of xt, then ef is correlated with (x, -X). Thus, Fuller suggests that 

because the population mean of the x's, X, is known, the parameter to estimate should be the 

variance of e, conditional on X. A linear approximation of the conditional variance leads to the 

following estimator of the variance of Y: 

Wu and Deng's (1983) empirical study suggests that this is a very good estimator. 

The jackknife method, which was briefly mentioned in Section 2.2, also provides an estimate of 

variance of the "leave-one-out" estimates of the ratio. (This will be discussed in more detail in 

Chapter 3.) The jackknife estimate of variance is: 

Both the empirical studies by Royall and Cumberland (1981) and by Wu and Deng (1983) show 

that the jackknife variance estimate performs very well. 

= var0(Y)+N6{X -x) , 

where 8 = sample regression coefficient of (y^ttx^2 

on x, . 

variance. The idea here is to estimate the variance of 1? by the appropriately scaled sample 
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2.5 Summary 

There are numerous estimators of both the ratio and of the variance of the classical ratio 

estimator. These estimators are derived from certain assumptions about the type of situations in 

which the estimators will be applied. For example, Wu's variance estimators assume that the 

variance of et is a2xt and that the sample sizes are large enough to ensure approximate validity of 

the asymptotic expansions. The success of these estimators in any given situation depends upon 

the particulars of that problem. Because we are interested in applying these estimators in 

situations with a variety of population characteristics, it may be that resampling-based estimators 

will perform best over all the populations. Consequently, in the next two chapters we will 

concentrate upon deriving resampling-based estimators of the variance of the classical ratio 

estimator. 
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Chapter 3 

Jackknif ing i n Ratio Estimation 

In this chapter, we will concentrate on jackknife variance estimators for the classical ratio 

estimator. Empirical studies suggest that the jackknife variance estimator presented in Chapter 2 

performs reasonably well in estimating the true variance of a ratio estimate. Recently, variations 

on the jackknife method have been proposed; the new versions are commonly known as weighted 

jackknife methods. We conjecture that these methods will lead to better variance estimators in 

ratio estimation. 

In Section 1, we will briefly discuss the (unweighted) jackknife. In Section 2, using linear models 

at first, we will show how and why the unweighted jackknife estimator does not perform well in 

the presence of imbalance; especially when the linear model, which is already unbalanced, is 

further perturbed by heteroscedasticity. Linear models will be used because they include a wide 

range of models, including the commonly used model for ratio estimation (already discussed in 

Chapter 2), and because they exhibit imbalance of a type which is probably similar to the 

imbalance in ratio estimation. The imbalance referred to is the absence of identical distributions. 

That is, the observations have different means and sometimes, different variances. 

After discussing the problems arising from the use of the jackknife in unbalanced problems, we 

will, in Section 3, discuss the weighted jackknife which attempts to reduce some of the difficulties 

which arise due to imbalance. We will review and expand upon the weighted jackknife variance 

estimators for linear models suggested in Hinkley (1977) and Wu (1986). Thereafter, in Section 4, 

we will derive the weighted jackknife estimators for the special case of the linear model discussed 

in Chapter 2. Finally, in Section 5, we will derive weighted jackknife variance estimators for the 
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ratio estimator based on the approaches of Hinkley (1977) and Wu (1986). We will derive three 

weighted jackknife variance estimators, two of which will be shown to be equivalent to common 

design-based variance estimators. 

3.1 Introduction to Jackknife 

The jackknife estimator of the ratio, fij, was described in Chapter 2 along with the jackknife 

estimator of the variance of the classical ratio estimator. In this section, we will present a more 

thorough and formal description of jackknife estimators. 

Let G be the parameter of interest where 0 = 9 (F) and F is the distribution of the random variable 

Z. Suppose we have an estimator of 9 based on a random sample zv...,zN denoted by 0(z1,...,zn) = 6 . 

Let be the estimate of 9 based on the sample with the i"1 observation removed: 

= &(zv...jzi_1jzitV...j!n). Then the pseudovalue for this "leave-one-out" case is defined as 

(Quenouille, 1956) 

^ = 710-01-1)9^ . 

The jackknife estimator is obtained by averaging these pseudovalues: 

&J = P. = lJ2Pi = n§-(n-D±'E ^ = n8-(n-l)8. . 

In general, hj removes the order n'1 term bias (Miller, 1974a) from biased estimators having 

expectation of the form 

£(S) = 0 + _L + O 
n 
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This form of the jackknife is often called the balanced jackknife because there is an implicit 

assumption that each observation has an equal effect on the parameter estimate. Thus, the 

parameter estimate is the unweighted average of the pseudovalues. This form of the jackknife 

usually works very well in situations with some natural balance. 

The above pseudovalues and the corresponding jackknife estimates were proposed in a more 

general form in Quenouille (1949, 1956). The original version dealt with breaking up n 

observations into g groups of size h, so that gh-n, and deleting the i'h group of observations to 

obtain 0 ,. The more general pseudovalues and corresponding estimator are 

Quenouille's original motivation for introducing the jackknife estimate was to eliminate bias of 

order n 1 . He also suggested similar estimates to remove higher order bias; however we will only 

deal with the above "leave-one-out" version. 

Tukey (1958) proposed treating the pseudovalues, Pit as independent and identically distributed 

random variables, thereby obtaining the jackknife estimate of the variance of Ŝ : 

ge-Oj-De., 

where 8. 

n 

uaK§ J) = {n(n-l)}-1E (P,-P.)(P (-P.)' , 
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The variance estimator uar,(Y) which was discussed in Chapter 2, was simply an application of 

the above to the classical ratio estimator, with the finite population correction term appended. 

In both this and the following chapters, whenever variance estimators are used in finite 

populations, the finite population correction term, (1-f), will be appended to those variance 

estimators which were originally intended for use in infinite populations. 

3.2 Jackknife in Linear Models 

The jackknife is effectively designed for balanced problems; problems which are in a sense 

symmetric. The jackknife estimates are simple averages. Thus, there is an implicit assumption of 

balance, or symmetry. However, the model-based ratio estimation problem is not symmetric, 

because the observed yt's are not assumed to be identically distributed; their means, and 

sometimes variances, are functions of the xt's. Thus, from the model-based approach, one might 

not expect the jackknife to perform well in estimating the variance of the ratio estimator. 

In this section, we will attempt to show the inadequacy of the jackknife in the linear model setting. 

The linear model will be used because it has an obvious and known imbalance: the y/s are not 

identically distributed. An additional advantage of using the linear model is that, in a special 

case, the weighted least squares estimator of 3 is the ratio estimator. For applications of the 

weighted jackknife in non-linear regression, see Fox, Hinkley and Larntz (1980) and Simonoff and 

Tsai (1986). 

33 



In the following discussion we will use a linear model with equal variance for the observations; 

that is, Var(Y;) = a 2 for all i. This will be referred to as the homoscedastic case. The 

heteroscedastic case occurs when VariY^ = a). Unless explicitly mentioned otherwise, we will 

assume the following model: 

Y=xp+<?, 
where Y' = (Y1,...,Y„) , 

X' = (xu...jcn) where x' = (xilt...^ip) 
corresponds to covariate 
information on the i'h observations , 

e' = (e1,...,0 . 

The rank of X is assumed to be p when any row is deleted. We will further assume 

E(e) = 0, VaKe() = a 2 and et is uncorrelated with c7 if i*j. 

Let 

D0=X'X, w^xlD^x,, 

0 =DQ1X'Y, the least squares estimate of P, and 

(rv...,rny = Y - Y = (I-XD?X')Y, the vector of residuals under P . 

The following lemma will be very useful in the derivations of this chapter. It expresses the 3 _,, 

delete-one-pair estimate of P , as a function of the parameter estimate from the full data set, P, 

minus a function involving xt and Yt. 
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Lemma Let 3 be the following function: 3=3 (X,Y) = (JC'^X'Y. Then, 

3.j = (xXi)-1X-'r.i 

= 0 
1-w, 

1-u;, 

where is the matrix obtained by removing x/ from the rows of X. 

Proof: See Miller (1974b). 

Using the above lemma, we can rewrite the pseudovalues as 

P,. = /i3-(n-l) 0 1-w, 

i f t + ^ V L . ( l l _ 1 ) 

1-W: 

We can therefore rewrite the jackknife estimate of P as 

3J = 34^k1ET^-
\ n ) Li 1-Wi 

n-l | n - l v ( 

n 
D-'X^Y-Y) , where X^ 

For the homoscedastic case it is well known that the least squares estimator, 3, is unbiased. 

Thus, the bias-reducing property of the jackknife is redundant. Furthermore, since Var(3) is the 

minimum among all linear unbiased estimators (by the Gauss-Markov theorem), it is evident that 

Var(3 j) must be greater than or equal to Var(3). In fact, the above representation of the 
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pseudovalues and the fact that the least squares estimate 0 is uncorrelated with the residuals, 

leads immediately to 

71-1 Var$J) = Var$) + 111 D^XlVarV-Y)X,D0

l 

V n J 

= G2D0\ n-1 
v n j 

= a27J„1 

-CD? 

D0 + 

D0 + 

n-1 
n 

(XX-XlXDo'X'X,) 

n-1 
v n J 

where Dk = ^ (1-wJ kxixi' 
ui 

(3.1) 

If we assume that u>; is of order n 1 , it can be shown that is of order n'2 

(Hinkley, 1977). 

The jackknife estimate of the variance of the jackknife estimate 3 j is the appropriately scaled 

sample variance of the pseudovalues; namely, 

var,® J) = {n(n -1)}"1 £ (P, -3.,)CP, - 3 jY • 

ui 

Miller (1974b) and Hinkley (1978) argue that the jackknife variance estimate can be used to 

estimate the variance of the least squares estimator 3. We will denote uar,(3 j) by war,. Using 

simple algebra, it can easily be shown that the expectation of this jackknife variance estimate is 

(Hinkley, 1977) 
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E(varj) = <x 21 n -1 ^ 
n Do1 D^liD^D.Do'D,) Do1 

Comparing this expectation to the true variance of the jackknife estimate 3 j , it can be shown that 

the jackknife variance estimator varj is biased for both Var(0) = a 2 Do"1 , and for Var(p* ; see 

(3.1). This bias occurs because the jackknife variance estimator is designed for balanced problems, 

while the linear model is unbalanced. For general results concerning the bias of the jackknife 

estimator, see Efron and Stein (1981). 

Because the jackknife variance estimator is biased and because it may not have the optimal 

variance, it is not advisable to use it in linear models to estimate the variance of the parameter 

estimate, 3 • Weighted jackknife variance estimators attempt to account for this imbalance; they 

will be discussed in the next section. 

3.3 Weighted Jackknife in Linear Models 

In this section we will introduce two weighted versions of the jackknife estimators of Var(3). 

These estimators were first suggested by Hinkley (1977) and by Wu (1986); therein may be found 

proofs of results and conclusions mentioned in this section. 

3.3.1 Approach Using Influence Functions 

The influence function of a functional 0 at the point xt indicates the extent to which the value of 0 

would change when an infinitesimal fraction of the population is moved to xt. Alternately, the 

influence function gives "the suitably scaled differential influence of one additional observation at 

x, as the sample size approaches infinity" (paraphrased from Huber, 1977). Several authors have 
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pointed out the relation between pseudovalues and the influence function, in particular Jaeckel 

(1972) and Mallows (1975). 

The influence function of a functional T at a distribution F and a point x is defined (Hampel, 1968, 

1974) as: 

TT, , m limit T[(l-e)F+e8 J-T[F] IFF(x;T) = * E ^ J J _ * , 

where b"x is a point mass at x . 

Hinkley (1977) argues that the linear model is generally unbalanced; the imbalance being evident 

in the different squared "distances" of xt from the origin, scaled by D 0

_ 1 : X / D Q 1xi. Because the 

linear model is unbalanced, Hinkley argues the pseudovalues should be modified; for example, by 

weighting. He goes on to argue from an intuitive point of view what the weights should be. 

However, Hinkley's strongest argument is the suggestion that Quenouille (1956) essentially defined 

a pseudovalue as the estimate of a parameter plus the estimated influence function at the 

observation under consideration; that is, 

Thus, Hinkley suggests that for unbalanced problems, particularly linear models, one should use 

as the i'h pseudovalue the parameter estimate plus the estimated influence function at the i'h 

observation. We shall denote this modified pseudovalue by Qt, 

Q - G + Z F M ) . 
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The estimated influence function, /F(JC,;O), is simply an estimate of the influence function IFix^Q). 

Mallows (1975) discusses six consistent estimators of the influence function and their usefulness in 

the theory of robustification. Jaeckel (1972) proposes a modification of the jackknife, known as the 

infinitesimal jackknife, based on one particular approach toward estimation of the influence 

function. (Also see Efron 1979, 1982). 

Hinkley has shown that for linear models, the influence function of P is 

where F is the joint distribution of xt and Y„ 

Z = EF(xix') , and 

P =Z-lEF(xiYi) . 

One estimate of the influence function of P is (Hinkley, 1977) 

lFf(pcl,yt;^)"nDi\rl, 

corresponding to which the pseudovalue is 

= P +nD?xiri , 

and by the Lemma in Section 2.2 , 

= P+n(l-u;i)(P-P.j) . 

(3.2) 

Hinkley goes on to show that the weighted jackknife estimate is simply the least squares estimate, 

3« = -EQ f = 3, (3.3) 
n u\ 
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since the sum of xiri is zero in ordinary least squares. The Q, are referred to as weighted 

pseudovalues. 

Similarly, Hinkley suggests the use of these weighted pseudovalues to estimate the variance of $ . 

varH$) = [nin-p)}-^ (Q(-Q.)(Q,-Q.)' , (3.4) 

which for linear models is (by (3.2) and (3.3)), 

EU-"I) J (PVP , ><PVP*) ' . 
' 1 ' 

1-P 
n 

The denominator Hinkley proposes differs from the usual denominator [n(n-1)}. However, he 

suggests that [n(n -p)}'1 is preferable because it appropriately reflects the degrees of freedom, and 

makes varH($) unbiased in the case w^pn'1, usually referred to as the balanced case. 

The expectation of varH($) under the distribution function of the errors is (Miller, 1974b; 

Hinkley, 1977) 

E(varHQ)) = J-JL.JDo1 {DO-D;)D?-a2 , 

n 
where Dl = wfxjxf 

In the balanced case, D[ = £.£)„ and therefore varH($) is unbiased for Var((5). More generally, in 
n 

linear models with homoscedastic errors, Wu (1986) shows that varH($) has bias of order n'1 

irrespective of balance or lack thereof. Because Hinkley's proposed variance estimator varH($) is 
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unbiased in the homoscedastic case, unlike the Quenouille-Tukey variance estimator wzr,(3), one 

would presumably prefer Hinkley's variance estimator over the Quenouille-Tukey estimator. 

3.3.2 Approach Using the Fisher Information Matrix 

We will now proceed to the jackknife variance estimator proposed by Wu (1986). Whereas 

Hinkley's version of the jackknife variance estimator is motivated by a particular definition of the 

pseudovalue, Wu does not propose a new version of the pseudovalues since, he says, "It's extension 

to non-iid situations lacks firm theoretical foundation." His version of the jackknife variance 

estimator was motivated by the representation of 3 as a weighted average of the 3-i's> the LSE's 

based on the "delete-one" samples. For the general p-dimensional case, Wu (1986) shows that 

Ul 

\x'x I 
where «, = . (|-| denotes the determinant) 

An alternate way of viewing this representation comes from the recognition that in this 

representation the weights are the determinants of the Fisher Information matrices of the 

particular data subsets under consideration. Of course, the Fisher Information matrix depends 

upon distributional and model assumptions; the above weights are obtained under a homoscedastic 

linear model, with normally distributed errors, but this idea can be generalized under other 

distributional and model assumptions. Interpreting the weights ut as the relative information 

content of the sample with the i'h observation removed, led Wu (1986) to propose the following 

weighted jackknife estimate of the variance of 3 : 
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i ;or w (p )« (n - l )u i fa_ t - l ) $_ i -b ) ' . (3.5) 
ui 

In fact, Wu's proposal is more general than the above method which we have described. He 

considers the more general version of the jackknife which removes an arbitrary number of points, 

not just one as in the "delete-one" version. However, we will only deal with the delete-one version 

of Wu's variance estimator. We do this for three reasons: (i) in order to compare varw($) with 

varH($). Otherwise, the weights are difficult to compare because both ut and (3_;-3)(3-i-3)' 

change; (ii) because the robustness of the delete-one version of varw($) can be established (Shao 

and Wu, 1987); and, (iii) because it has been established that the delete-one version of the 

jackknife is optimal for estimation of the variance of the classical ratio estimator (Chakrabarty and 

Rao, 1968). Wu (1986) shows that varw is unbiased in the homoscedastic linear model, unlike 

varH which was biased. 

To summarize, the weighted versions of the jackknife variance estimators proposed by Hinkley 

(1977) and Wu (1986) eliminate or reduce the bias of the unweighted versions. Though our 

attention has been restricted to linear models, we may still conclude that by taking into account 

model imbalance, the standard jackknife can be improved in some situations. Though both these 

approaches have been presented only for linear models, the same approaches may be useful in 

more general unbalanced situations. 

3.4 Jackknife Variance Estimates in a Heteroscedastic Linear Model 

In this section, we will explicitly derive weighted versions of the jackknife variance estimator for 

the linear model for regression through the origin with variance structure specified by 
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Var(c£) = a2xx. We have chosen this version of the linear model because in many practical 

applications of the ratio estimator, this form of variance does indeed occur; and furthermore, for 

the particular value of X = 1, the weighted least squares estimate of P is the classical ratio 

estimator. From this section onwards, we will set p=l; that is, x, and P will be one-dimensional 

and not vectors. 

The linear model with heteroscedasticity of the form Varie^ = a2x* can be converted to a 

homoscedastic case. Thus, the model 

Model 1: E(et) = 0 , Var(et) = o2x? and 

et independent of for i±j , 

may be transformed to the model 

y;=x*p+ e*, 

Model 2: E(e*) = 0 , Var(e*) = a 2 and 

e' independent of ef for i*j , 

where the transformation * simply denotes division by x'. When X = 1, the least squares 

estimator P of p in model 2, which corresponds to MLE in model 1 had we assumed normal 

errors, is easily seen to be the ratio estimate, & = . This suggests one way of obtaining 
x 

unbalanced jackknife estimates of the variance of ft: Using model 2 and X = 1, Hinkley's and Wu's 
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weighted jackknife variance estimators will be obtained. These will then correspond to 

model-based estimators of the variance of ft. 

3.4.1 Influence Function-Based Jackknife 

From Section 3.3.1, Hinkley's estimate of the variance of 3 is (3.4): 

l;arH = _J_E(Q i-Q.)2 

n{n-l) ui 

and since the linear model weighted pseudovalues for model 2 are given by Q, = 3 + nD^x*r*, we 

have 

n-l ui 

But for our transformed problem 

Do1 = (X"X')-1^ E*. 2-X 
\ " J 

Therefore, 

( \ 

n-l i . 

2-X. 

V>1 j 

n-l ui 

( Y 2 

E*/ 

For the case of A. = 1, this expression becomes 

varH(ft) = ^-±(yi-xiftf-^ 
n-l i (w)' 
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Therefore, 

varH(Y) = varH(NXll) , 

N2 

ra(ra-l) i = i 
uar2(Y)/(!-/) . 

( V 

Thus when the finite population correction factor is included, the variance expression resulting 

from Hinkley's version of the unbalanced jackknife is the same as Cochran's second estimate of the 

variance, varJY). 

If we re-express varH as the sum of squared delete-one estimates of the parameter, as in (3.4), we 

obtain 

f n ^ E 
ui 

2-X \2 

2-X 

For the case X = 1, this becomes 

( *, ^ " 
varH(R)= " E 

{n-l)i,i 

( ^ 

713t 

n-1 
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In Hinkley's version of the weighted jackknife, the weights are 
f V 
x : 

K x J 
, where x_t is the mean of the 

sub-sample obtained by deleting ith observation on x's. Thus the weights are a function of the 

sub-sample balance on the first moment. If the sub-sample mean is less than the sample mean, 

then the weights are less than one, implying that (R_t -R)2 gets down-weighted relative to the 

same terms corresponding to a sub-sample with high first moment. At first glance, it is surprising 

that subsamples with a high first order moment receive more weight. Of course under the 

super-population model, the larger the £;'s, the smaller is the variability of R, and perhaps this 

explains why subsamples with high xt's are weighted more. 

3.4.2 Information Matrix-Based Jackknife 

We will now consider Wu's version of the weighted jackknife. From (3.5) in Section 3.3.2, Wu's 

weighted jackknife estimator of the variance of 3 (for p=l) is defined as 

varw$) = (n-l)J2 «((3-i-3)2 , 
i 

and the weights for model 2 are: 

V X
2 X 

U; - • 

El*:;*;I EE* 2~ X 

y=l >1 l*j 

(n - l)x • 
When X = 1, this becomes u, = = which leads to 

n(n-l)x 
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( \ 
uarw(0) = E 

[ n J , X J 
f \2 

Thus, it is seen that whereas the weights are 
KX J 

in Hinkley* s version, they are in Wu's 

version. In both instances, the weights are increasing functions of the "information content" and 

hence are appealing and reasonable. Even when the Fisher Information of a "leave-one-out" 

sample is not 5c_f, these weights appear to be reasonable because many studies have indicated the 

importance of the first moment balance (Royall and Cumberland, 1981; Wu and Deng, 1983; Royall 

and Cumberland, 1985; Robinson, 1987). 

Wu's weighted variance estimator can also be represented (using the Lemma in Chapter 2) as 

var, 
nx2 n-l u 

( \ 
x 

V k J 
(3.6) 

In the similar representation of varH(R) in Section 3.4.1, it was found that varH(ft) was equal to 

var2(&). For Wu's variance estimator, we see that varw(R) is not equivalent to any variance 

estimator which we have considered. 

In this heteroscedastic linear model, we have obtained two weighted jackknife variance estimators. 

Wu (1986) and Shao and Wu (1987) derive asymptotic results for the heteroscedastic-robustness of 

the weighted jackknife methods presented here. Their results deal with the more general 

heteroscedastic models, where the variances of the errors are not a known function of the xt's. 

They show that both varw($) and varH($) have order n'1 bias in the general heteroscedastic case. 
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They further show that varw($) is unbiased in the specific heteroscedastic case where X/DQ 1 xy- is 

equal to zero for any /,/ with a, not equal to ay. 

In this section, weighted versions of the jackknife variance estimator were derived for a 

heteroscedastic linear model. These estimators were obtained from a model-based approach to 

ratio estimation. In the following section, a design-based approach will be taken in deriving 

weighted jackknife variance estimators. 

3.5 Weighted Jackknife Variance Estimates in Ratio Estimation 

In this section, we will explicitly derive weighted versions of the jackknife variance estimator of 

the classical ratio estimator. Following the approach of Hinkley (1977) and Wu (1986), we will 

show how Hinkley's version of the weighted jackknife variance estimator leads to the two variance 

estimators var0 and var2. Thereafter we will show that Wu's approach leads to the variance 

estimator which was discussed in Section 3.4.2. 

3.5.1 Influence Function-Based Approach 

Recall that Hinkley's approach in deriving weighted pseudovalues employed estimated influence 

functions. Therefore, we will first derive the estimated influence function of R, and thereafter 

derive the corresponding pseudovalues and estimators. 

Let us define the functional R of the joint distribution G of X and Y as follows: 

where Fy and Fx are the respective marginal densities of Y and X. 
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If 82 represents a point mass at (Xz, Yz) then the influence function of R is defined as follows: 

-e)G+e8z]-fl(G) 

Straightforward calculation yields 

limit . 
:e-> 0 

(1-e)^+ey2 u, 
(1 -e)\ix+eXz u, 

y 2u x-u Xz 

(1 -e) p.,+e*znx 

JL Y-hx, 

UYz-nxy 

There are two sample analogues of this influence function, depending on whether we use the 

sample estimate of \ix or the actual value: 

iF^Y,,tt) = I (Y,-RX,) or 

lF2(Xx,Yz;R) = ±(Y,-RX,) 
X 

The modified pseudovalues based on lFx are 

Q i =R+lFl (x^y^.R) 

= i? + 1 ( y , i = l , . . . , n , 

with the corresponding estimator 
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the usual estimator. The corresponding weighted variance estimator is 

var re (n-l) ui 

n(n-l) i=i lac 

nx2 

-ww 2(#)/(l-/) . 

Thus, when the finite population correction factor is incorporated, the weighted estimator of the 

variance corresponding to lFx is var2, the second estimator suggested in Cochran (1977). 

Similarly, the use of lF2 results in modified pseudovalues which lead to the variance estimator 

var0. Thus, explicit derivation of Hinkley's version of the weighted jackknife results in two known 

estimators, in contrast to the results obtained in Section 3.4.1 where Hinkley's version results in 

just one known estimator, var2. We will now proceed on to Wu's version of the weighted jackknife. 

3.5.2 Information Matrix-Based Approach 

Recall that Wu's approach can be motivated by the use of weights proportional to the determinant 

of the Fisher Information Matrix of subsamples obtained by systematically removing individual 

observations. The use of these weights results in the weighted jackknife estimate being equal to 

the original estimate. 

If the pairs (xit Yt) satisfy the following model, 

Y^Rx^e^ where the et are independent with distribution N{Q,<s2x) , 
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then the Fisher Information number of R given an observation (xt, Y",) is O^/a2). Thus, the 

weights ut in (3.5) are (x^/nx ) , i=l,...,n. It is interesting to note that these weights satisfy the 

following: 

which is the same as varw(R) derived in Section 3.4.2. 

3.6 Summary 

In this chapter, we concentrated on deriving jackknife based estimators of the variance. Using 

linear models at first, we attempted to show the shortcomings of the jackknife in unbalanced 

problems. We then derived weighted jackknife variance estimators and showed they are preferable 

to the jackknife variance estimator because they have lower bias. Finally, in the preceding section, 

we derived weighted jackknife variance estimators for the classical ratio estimator. Of the three 

newly-derived estimators, two were shown to be equivalent to already well-known variance 

estimators, while the third is a new estimator. 

i = i i = i nx x_t 

From (3.5), Wu's jackknife variance estimator becomes 

n 

i-l 
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Chapter 4 

Bootstrapping i n Ratio Estimation 

We will now proceed to a sophisticated resampling technique known as the bootstrap. In 

Section 1, we introduce bootstrap estimates of standard error in a general statistical setting. In 

Section 2, we introduce and discuss a bootstrap estimate of the standard error of the ratio 

estimator. This bootstrap may be described as arising from a design-based view. In Section 3, 

using the approach of a bootstrap for linear models, we derive a second bootstrap estimate of 

standard error. In Section 4, we introduce and discuss a weighted bootstrap estimate of standard 

error. Finally in Section 5, we discuss some of the potential drawbacks and weaknesses of the 

three proposed estimators. 

4.1 Introduction 

The bootstrap was first discussed in Efron (1979). The theory was further expanded and refined in 

Bickel and Freedman (1981), Rubin (1981), Singh (1981) and Efron (1982). An excellent recent 

summary of the bootstrap is provided in Hinkley (1988) and DiCiccio and Romano (1988). The 

variance estimators which we will derive are based upon approaches first suggested in 

Efron (1979), Efron and Gong (1983) and Wu (1986) along with the accompanying discussion. 

The bootstrap is a resampling technique which is primarily used to estimate the statistical error of 

estimates, providing non-parametric estimates of the bias, standard deviation and confidence 

intervals. In most problems, the bootstrap is simple to apply, requiring very little theoretical work 

before its application. It does, however, require a large amount of computing power and is not 

applicable in all problems. Schenker (1985) provides examples of situations where the bootstrap 

does not work. 
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The basic idea behind the bootstrap is as follows. Consider n independent and identically 

distributed observations xu jcn from a distribution F. Further consider that a statistic, which 

depends on F, is calculated from these observations. Then to estimate the sampling distribution of 

the statistic, substitute the unknown underlying distribution F with its empirical estimate Fn 

which simply places mass — at each of n observations. Recall that the jackknife estimates 
n 

standard error by scaling the sample standard deviation of the jackknife estimates which are 

obtained by systematically "leaving-out" observations. Similarly, the bootstrap estimate of 

standard error is the sample standard deviation of the bootstrap estimates of the parameter. 

However, the bootstrap parameter estimates are obtained by via simple random sampling with 

replacement from the original, observed data. Thus, we are replacing the true distribution F by 

the observed empirical distribution Fn. In the delete-one version of the jackknife, a total of n 

estimates of the parameter are obtained, whereas in the bootstrap, n " estimates of the parameter 

are obtained. 

More formally, the bootstrap estimate of standard error for the context of simple random sampling 

is as follows: Let 0 = 0(F) be the parameter of interest and let 6 = § (X1,...,X')I) be its corresponding 

estimator. We wish to estimate the standard error of 8. Let the true standard error of 8 be 

a = a(n,$,F). The bootstrap estimate of a is 6B = u(n,Q,Fn). Since we know Fn, and we know 

how to calculate 6 for any given sample of size n drawn from Pn, we could, if we wished, proceed 

by calculating 8 from each of the n " possible bootstrap samples (i.e. the possible "re-samples"). 

This is the essence of the bootstrap. The estimate of the standard error of 8 is calculated as the 
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standard deviation of the n " estimates of 6; that is, of the estimates obtained from the bootstrap 

samples. However, n " grows extremely quickly and the number of bootstrap estimates becomes 

unmanageable for even relatively small values of n. The solution is to approximate the standard 

deviation of the n " §'s. Thus, a large number of simple random samples of size n are drawn with 

replacement from Pn. This is repeated until a sufficiently accurate estimate d B is obtained. 

To illustrate the above, suppose we wish to estimate the variability of a sample correlation 

coefficient. We have observed n pairs of (s,-,̂ ) = ut, i=l,...,ra. We draw a simple random sample of 

size n, with replacement from [u1,u2,...,un] and calculate the correlation coefficient in this 

"bootstrap sample". We repeat this a large number of times, say B= 1,000. The sample standard 

deviation of these 1,000 correlation coefficients is the bootstrap estimate of the standard error of 

the correlation coefficient from the original data. 

In some instances, it is possible to calculate the standard error of the n " possible bootstrap 

estimates of 0 exactly via direct, theoretical calculations. For example, let Xlr..Xn be n 

independent and identically distributed observations, with distribution function F. Let 

S (XV...XJ =x- T h e n t h e t r u e standard error of X is -^=, where a = ^EF(X2)-EF(X)2 is the 

standard deviation of the underlying distribution F. The bootstrap estimate of the standard error 

of X is is -1 where d B = JEP(X2)-EF(X)2 = 
1 " 

\2 

i t ' , -E(*,-*)2 is the 
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standard deviation of the empirical distribution F„. Thus EF (X2) and EF (X) were found 

theoretically, without need for Monte Carlo. Note that, 6B corresponds to the usual estimate of a 

(except for the term replacement of n-1 by n). 

The bootstrap procedure employing Monte Carlo simulation is as follows: 

(i) Construct the empirical distribution function, F„, by placing mass — at each observation. 
n 

(ii) a. Draw a simple random sample of size n, with replacement, from F„, and compute 0 from 

this bootstrap sample: Q*. 

b. Repeat (a) B times. Denote the B bootstrap realizations of 0 by 0*, i=l,...,/J. 

(iii) Approximate the exact value of &B = a(n,$,Pn) by 

Had we used the direct theoretical approach, we would skip step (ii) and instead evaluate 

(sB = a(n,hjFn) theoretically. Step (ii) replaces theoretical derivations by sheer computing power. 

The method of Monte Carlo simulation is by far the easiest and most commonly used approach. If 

sufficient computing power were available, one could calculate a(n,§,F„) exactly by using all n " 

possible bootstrap samples. However, in practice one approximates a(n,w,Fn) by randomly 

selecting B samples and calculating the standard error of these. The value of B is often set 

between 100 and 1,000. One way to obtain more information for a given level of computing power 

is to select samples which are balanced in the sense that the samples selected cover the hyper-
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dimensional lattice cube {1,2 n]n as evenly as possible (Graham, et al, 1990). The balanced 

design approach probably produces "a four-fold or five-fold reduction in B for any given level of 

simulation error" (Hinkley, 1988). Other general numerical techniques are discussed in 

Therneau (1983), Hesterberg (1988) and Efron (1990). (For a more theoretical approach, using 

saddlepoint approximation methods, see Davison and Hinkley (1988)). 

The advantages and appeal of the bootstrap are immediately obvious: No distributional 

assumptions have been made, and the method may be applied (depending on the available 

computing power) to all statistics, regardless of their complexity. This leads to a pitfall of the 

bootstrap. Because it is so easy to apply, many users assume that the bootstrap works in all 

situations. This is obviously wrong. The bootstrap depends on certain assumptions; a fact many 

users forget. The primary assumption of the bootstrap (as described above) is that the 

observations are exchangeable. That is, all the Xt have the same distribution but need not be 

independent. We will discuss this in later sections. 

We conjecture that the bootstrap may provide a statistically efficient and accurate estimate of 

variance of the classical ratio estimator in the context of forest weigh scaling. However, there are 

several ways of applying the bootstrap idea to our problem and we discuss these in the following 

sections. 

4.2 Bootstrap Variance Estimates - A Design-Based Approach 

Our population consists of N pairs of (x(,y;) of which we have observed a random sample of n 

pairs. Thus, the pairs are exchangeable. This immediately suggests one method of applying the 

bootstrap to estimate Var(R). We shall call this method Bootstrap I: 
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(i) Randomly select, with replacement, n pairs of (x, y) from the original sample and calculate 

the ratio estimate for this bootstrap sample. 

(ii) Repeat this B times and denote the B resulting ratio estimates by 6=1,2,...,B. 

(iii) Calculate the sample variance of b=l,2,...JJ and let this be the estimate of Var(ft): 

varB1(R) = - i - E (£;-£:)2 , where R'. = - i f R'b . 
D - l W D (,=1 

This version of the bootstrap is based upon two assumptions: one, Fn adequately approximates F 

and two, the pairs (x^y^ are exchangeable. The first assumption is the basis of the bootstrap. It 

is an appropriate assumption, provided that the sample pairs were selected randomly (though 

various schemes of selective sampling would also suffice) and enough observations were made. The 

second assumption is also valid, because each pair of the population has an equal chance of 

selection. This version of the bootstrap may particularly appeal to proponents of the design-based 

school, because no model assumptions such as model (2.1) were made. 

Exact theoretical calculation of the bootstrap estimate of standard error is difficult since both 

covariates, x and y, are random. Hence, in the empirical studies of Chapter 5, we will evaluate 

Bootstrap I via Monte Carlo simulation. 

4.3 Bootstrap Variance Estimates - A Model-Based Approach 

In Chapter 3, we used the linear model approach to derive jackknife variance estimators. The 

justification for this approach to deriving estimators was that the data upon which ratio estimation 

was being applied often satisfied the model assumptions. Another reason for deriving both model-

based and design based variance estimators is because estimators derived from the two approaches 

perform differently in many common problems. 
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The bootstrap has been applied to linear models and has been shown to perform reasonably well in 

empirical tests (Freedman and Peters, 1984; Carroll, Ruppert and Wu, 1986; and Wu, 1986). 

Under the homoscedastic linear model, the exchangeable components are the errors. Consequently, 

in the linear model, bootstrap methods resample the residuals and not the observations (x^y^, 

though the latter can also be done. 

The linear model bootstrap algorithm for the general case of p dimensions is as follows: 

(i) Estimate 3 using the n observations and evaluate the residuals: 

{(y,-$x1),-.,(y1,-Px1,)J = {eiIi=l,...,ra}. 

In this instance the empirical distribution of interest is that of [ej. 

(ii) a. Randomly select, with replacement, n elements from {e,, i=l,...,n). Using these resampled 

errors e*, i=l,...,n, create the bootstrap realization of Yby Y* =£ ($ +e*, i=l,...,n. From 

these *̂'s, obtain the bootstrap realization of 3 :$*. 

b. Repeat (a) B times. Denote the B realizations of 3 by 3\, b=l,...Ji. 

(iii) The bootstrap estimate of the variance-covariance matrix of 3 is 

tB2= i E(3;-3:)(3;-r)r 

D -1 6=1 

where 3N-LE3*-

The reasons this version of the bootstrap is particularly appealing to proponents of the 

model-based school is because it obtains conditional estimates of the variance of 3 :var($ \X = x), 
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and because for linear estimators 0 , VarF($') can be derived theoretically. This is appealing 

because the variance estimates take into account the covariates which are important as mentioned 

earlier in Section 3.4.2 and because there is no need to perform Monte Carlo. For 

p" =PCTX)-lXTY, then 

VarF:($) = VarF[(X'X)-iX,<X$+S'J\ , 

^VarpUX'XY^X'e') , 

= {XtX)lXt -VarF(e') -XiX'X)1 , 

= (X'X) xXl -X(X'X) 1 • a | , 

where a\ = 1 £ («, - e.)2 = IJ2 $ • 
n i re 

Efron and Gong (1983) suggest a modification to the bootstrap algorithm Bootstrap II, which 

consists of resampling from f n V* 
n-1 

. This minor modification makes the bootstrap variance 

estimates unbiased in the case of p = 1. This version of the bootstrap can be calculated directly, 

without the use of Monte Carlo methods. 

We will now derive the analogue of this version of the bootstrap variance estimator for the ratio 

estimator. Using the linear model for ratio estimation, 

Y{ =RXi+eif EF(et) = 0 and VarF(ei) = a 2 , 
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we obtain a model-based version of the bootstrap variance estimator, which we shall name 

Bootstrap II: 

(i) Estimate ft using the n observations. Let 

(yi-ftxj " ,...,(yn-ftxn) 
n-l \ n - l = {e~i, i=l n} be the bootstrap residuals. 

(ii) a. Randomly select, with replacement, a simple random sample of size n from {ej. Using 

these resampled errors e', i=l,...,n create the bootstrap realization of Y by Y* = xift+e?, 

i=l,...,n. From these Y*'s, obtain the bootstrap realization of ft:ft'. 

b. Repeat (a) B times. Denote the B realizations of ft by ftl, 6=1,...,S. 

(iii) Estimate the variance of ft by the sample variance of ft^, b=l,...J3. 

As shown earlier, because the ratio estimator is linear in Y, there is no need to perform Monte 

Carlo simulation to estimate VarF (ft'). It can be derived directly. 

VarF(ft') = VarF 
7=1 

Var*. E (Ax, +«;) 
V " 1 (nx)2 
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Therefore, 

= VarF 

(nx)2 

, " • VarF (ef), for any j , 
(nx ) 

i " 

re re i f A A\2 

(re*) 2 n-1 re i 

1 " 
varB2(R) = varF (R~) = • ^ e,2 , 

(re3c)2 re-1 i 

rex2 re-1 i 

= var2(R) /(!-/) 

Once the finite population correction is taken into account, the model-based approach to 

bootstrapping leads to Cochran's second version of the variance estimator, var2. 

4.4 Weighted Bootstrap Variance Estimates 

In the previous two sections, we derived two estimators of the variance of the classical ratio 

estimator using the bootstrap. The two estimators, varB1 and varB2, were motivated by two 

different approaches towards estimation of the variance of the ratio estimator: varB1 was derived 

from a design-based approach, whereas varB2 was derived using a model-based approach. In this 

section, we will derive an estimator based on a combination of both approaches. 

Recall that the idea behind Wu's weighted jackknife was to weight a residual by the determinant 

of the expected Fisher Information matrix. Recall that in (3.5) of Chapter 3, similarly weighted 

jackknife residuals were used to obtain an estimate of variance. This idea can be extended to the 
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case of weighting bootstrap residuals. Thus, the squared deviation (ftb -ft')2 will be weighted by 

the information content of the b01 resample. Assuming the linear model discussed in Section 2.1, 

the Fisher Information matrix of a bootstrap resample is simply the sum of the x's in that 

resample. 

We refer to this approach as a hybrid of the design and model-based approaches because the 

bootstrap samples of Bootstrap I, which was design-based, are averaged using weights derived 

from a particular model and distributional assumption. The model and distributional assumptions 

upon which the weights will be based, will be similar to the assumptions made in Section 3.4 

where Wu's weighted jackknife variance estimator was discussed. The weighted bootstrap 

algorithm replaces steps (iii) of Bootstrap I with: 

(iii) Calculate the bootstrap estimate of the variance of ft by a weighted average of the squared 

deviations (ft^-ft* )2. The variance estimator is 

varBW<fi).'txb'&; -VF/Ex; 
6=1 ft=l 

where xb* is the average value of x in the &** resample. 

For certain heteroscedastic models, both Hinkley's and Wu's weighted jackknife variance 

estimators correspond, to the first order, with varBW (Beran, 1986). In an unpublished article, 

Mason and Newton (1990) discuss and prove the consistency of a weighted bootstrap using rank 

statistics. Thus, it seems plausible that our proposed weighted bootstrap variance estimator 

(which is due to Wu (1986) for regression models) may indeed be consistent for the homoscedastic 
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model. The varBW is very difficult to approximate theoretically and consequently, Monte Carlo 

methods must be used. 

4.5 Some Comments on Proposed Estimators 

For the heteroscedastic linear model, with varied = a 2 , all three bootstrap variance estimators are 

inconsistent. In fact, in this case consistent estimates of the variance do not exist (Wu, 1986; 

Beran, 1986). In heteroscedastic linear models, the residuals are not exchangeable and Wu (1986) 

suggests using Hadamard matrices to resample the residuals. The basic idea is to add k •ei to 

.X/p , where k=+l or -1. This method assumes symmetric distributions for the errors. 

Because we are estimating the variance of the ratio estimator when the data are obtained by 

simple random sampling from a finite population, we propose to downscale the variance estimates 

using the finite population correction factor: (1 -f) •• 1-JL\. Both Chao and Lo (1985) and 
N 

McCarthy and Snowden (1985) argue that the bootstrap needs to be modified in this way in order 

to apply it to estimators which use samples drawn without replacement from finite populations. 

Chao and Lo (1985) argue that for a finite population sampled without replacement with n=N, the 

bootstrap distribution which is used to obtain a (n,$,Fn) should be degenerate but is not. Thus, 

they argue, the (Fisher) consistency requirement of the bootstrap is not satisfied. They further 

argue that the bootstrap distribution which is used to obtain a(/i,o,FB) estimates the true 

distribution of 6 over many realizations of the data. But when n = N, Fn equals F and therefore, 

to maintain Fisher consistency, d B = a (N,&,FN) should equal a(N,$,F). However, a(iV,8,Fn) does 
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not equal o(N,§,F) because d B is obtained by sampling with replacement whereas CT involves 

sampling without replacement, and is thus, degenerate. Therefore, Chao and Lo argue that the 

bootstrap should be modified to take into account this (Fisher) inconsistency. 

On the other hand, McCarthy and Snowden (1985) argue that if sampling with replacement occurs 

from F, then all bootstrap samples drawn from Pn might have been obtained as regular samples 

from F. However, if sampling without replacement occurs from F, then the only bootstrap sample 

from Fn which might have been obtained from F is the original sample. Thus, McCarthy and 

Snowden argue that the bootstrap needs to be modified when used in a finite population situation. 

Both Chao and Lo (1985), and McCarthy and Snowden (1985) suggest a similar alternative 

bootstrap resampling method to account for their respective discrepancies. The methods they use 

were first suggested in Gross (1980) and Bickel and Freedman (1984). (Chao and Lo claim 

precedence over Bickel and Freedman.) 

We propose that for finite populations, when the sampling rate is small (f=— is small) 

CT(n,$,Fn) -(I-f) should be used as the bootstrap estimator of CT (n,b,F). By standard design-

based arguments, the (1 -f) factor is appropriate because isB estimates the variance of an infinite 

population. 
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4.6 Summary 

In this chapter, bootstrap variance estimators were introduced and applied in estimating the 

variance of a classical ratio estimator. Three variations of the bootstrap were derived, one of 

which was shown to be equivalent to a variance estimator which was considered in Chapter 2. 

These three estimators were obtained from model-based, design-based and combined approaches. 
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Chapter 5 

Sensitivity of Variance Estimates: A n Empirical Study 

In this chapter, we will present the results of empirical studies on the performance of various 

estimators of the classical ratio estimator. In Sections 1 and 2, we will discuss the underlying 

motivation of the empirical study, and we will present an overview of the empirical study. In 

Section 3, we will describe the populations which will be used in the simulation study. Following 

these, in Sections 4 and 5 we will discuss the results of the empirical analysis. Finally, in 

Section 6, we will present a summary of the empirical results. 

5.1 Purpose of Empirical Study 

The primary purpose of this empirical study is to evaluate, under a variety of population 

characteristics, the performance of various estimators of the variance of the classical ratio 

estimator; thus, it is the robustness with respect to these characteristics which will be studied. In 

particular, we are interested in evaluating the performance of the variance estimators in the 

context of small sample sizes and finite populations. Recall from Chapter 1 that one of the goals of 

this study is to identify an efficient and accurate, small sample estimator. (This is in order to 

allow the Ministry of Forests to reduce the minimum sample size requirement from the present 

requirement of thirty). 

The performance of the estimators will be evaluated via their sensitivity to various population 

characteristics. In particular, this study will investigate the effects of non-zero intercepts and 

heteroscedasticity. Recall that some of the estimators which were discussed in earlier chapters 

were derived from a model-based approach, whereas others were non-parametric. Consequently, it 

is of interest to ascertain the difference in performance between model-based and design-based 
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estimators. Furthermore, since these methods would presumably be applied to many data sets, 

with a variety of population characteristics, it is of interest to determine the robustness of the 

estimators under a variety of populations; i.e. populations which do and do not satisfy assumptions 

of the model-based approach. Thus, the "best performing" estimator will, in a sense, be the most 

robust with respect both to the presence of a non-zero intercept and to the variance structure. 

Another important purpose is to study the performance of resampling-based estimators of the 

variance. Recall our earlier conjecture that because of their unique non-parametric approach, such 

estimators might perform better overall. In addition, we also proposed methods to accommodate 

the inherent imbalance of the ratio estimation problem. Thus, it is of interest to gauge the success 

of the weighted jackknife and the weighted bootstrap variance estimators in handling this 

imbalance. 

5.2 Overview of Empirical Study 

In this section, we will describe the variance estimators to be studied, along with the range of 

conditions under which their performance will be investigated. We will also discuss the 

assessment criteria which will be used to measure the performance or effectiveness of the 

estimators. 

The estimators to be studied may be classified into three categories. First, we will use the two 

basic estimators var0 and var2. We are not aware of empirical studies which considered the 

squared error of both var0 and var2 and the two estimators may perform quite differently in 

similar situations, so both are of interest. Furthermore, var2 can also be motivated using 

Hinkley's weighted jackknife approach. Another estimator which will be studied is that suggested 

by Fuller, varREG. Recall that this estimator is derived using a very different approach that 
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attempts to correct for the deviation in the first sample moment (i.e. (3c - X)). Thus, we will study 

three estimators which are not based on resampling ideas. 

The second category of estimators which we will study are the jackknife based estimators. One of 

these, varH, is essentially due to Hinkley and coincides with either var2 or var0 depending on how 

one chooses to estimate the influence function of ft. Thus, we will study the remaining two 

jackknife-based estimators: varJt the classical Quenouille-Tukey variance estimator and varw, the 

weighted jackknife variance estimator with weights proportional to the (approximate) information 

content of the subsamples. Recall that the latter estimator is obtained using the approach of Wu 

(1986). 

The third category of estimators which we will study are bootstrap based estimators. Recall that 

in Chapter 4, we discussed three bootstrap estimators of the variance of the classical ratio 

estimator. The Bootstrap II variance estimator, based on a linear model approach can be 

calculated exactly, without recourse to Monte Carlo simulation, and is equivalent to var2. 

However, the remaining two bootstrap estimators need to be calculated via Monte Carlo 

simulation, and these will be studied. The two estimators, which were derived and discussed in 

Sections 4.2 and 4.4, are varBI and varBW. 

Of the seven estimators to be studied, three are model-based and four are design-based. The 

model-based estimators are varREG, varw and varBW. All seven estimators will be studied under a 

variety of conditions which reflect the concerns and issues which were discussed in Section 5.1. 

The two primary factors which will be studied are the sample sizes and the population 

characteristics. 
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The general format of the empirical study will be as follows. Random samples will be repeatedly 

drawn from a finite population consisting of N pairs (x^y^. This finite population will exhibit 

some of the selected characteristics of a real population. In other words, we will try to simulate a 

real population with selected features, and each simple random sample selected (without 

replacement) will represent a sample which might have been drawn from a real population. For 

each sample, the seven estimates of variance will be calculated and compared to an empirical 

estimate of the true variance; as mentioned earlier, the exact, theoretical variance of R is difficult 

to calculate. The above simulations will be repeated for several different sample sizes. 

The data which will form the populations will be either provided by the Ministry of Forests or will 

be simulated. The data from the Ministry of Forests will be large samples which have already 

been collected and were used by the Ministry during the calendar year 1989 to estimate actual 

volumes. Because these samples were drawn randomly (using block sampling) from much larger 

populations, they adequately approximate the population of annual truckloads from which they 

were drawn. And since the primary objective of this thesis is to identify effective small sample 

variance estimators for the types of populations faced by the Ministry, the data provided by the 

Ministry will be ideal for the purpose of empirical study. 

The simulated data will be created using random number generators and will have characteristics 

resembling those of real populations. That is, the simulated data will consist of pairs (x^yj 

where the distribution of the simulated xt's will be very similar to the distribution of the real xt's 

from the Ministry's data; details will be discussed in the next section. The important point to note 

is that the artificial populations will have marginal and joint distributions similar to the marginal 

and joint distributions exhibited by the Ministry data. 
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The assessment criteria which we will use to determine the performance of the seven variance 

estimators must reflect, in some sense, the underlying problem. Thus, it seems appropriate to use 

the average squared error of the variance estimates as the primary performance yardstick. As a 

secondary criteria, the percentage bias of the variance estimators will also be calculated. We will 

present the details of the above criteria in the following sections. At this point it is sufficient to 

note that the performance criteria will be the mean squared error and the bias. 

5.3 Description of Populations 

In this section we will describe in detail the populations upon which the simulations will be based. 

We will first describe the actual populations and later, the artificial populations. 

The Ministry of Forests provided a total of 18 large samples which were collected during the 

calendar year 1989. These samples were drawn from populations of truckloads consisting of an 

average of 5,000 truckloads. The sample sizes range from 150 to 250 truckloads. For our purposes 

here, we will consider these 18 large samples as populations. 

The data for these 18 populations are graphed in Figures la and lb, where to facilitate visual 

comparison all populations are plotted on the same scales. A point to note is that the correlation 

appears high because the data are plotted on scales which are larger than the range of the data. 

Of the 18 populations, only populations 4 and 9 have significant outliers; outliers in the sense that 

the observations are grossly unlike other observations in that population. However, further study 

of the plots reveal that some of the populations are quite similar in structure; although maybe not 

in the scale or the range of the data. The data for some populations seem ideal for the linear 

model assumptions used in earlier chapters: examples are populations 5, 12, 15, 17 and 18. On 

the other hand, the data for some populations such as 2, 3 and 6, appear to exhibit non-zero 

intercepts, though it is not obvious what relationship exists between weight and volume in these 
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populations. Finally, some populations such as 15, 16 and 17 appear odd in that the distribution 

of weights seems to be multi-modal. 

We have selected three populations from these 18 for the simulation study. The three particular 

populations were chosen because they represented, broadly speaking, three groups around which 

the other populations could be classified. In other words, using the intercept, distribution of x's 

and variance structure, we identified three major population types and selected a population of 

each type. One type, with zero intercept and homoscedastic variance, is the most prevalent among 

the 18 populations. Population 5 was selected to represent this group and will be referred to as 

population B. Another group is comprised of those populations with zero intercept and either 

heteroscedastic variance or multi-modal distribution of weights. This group appears to be the least 

prevalent among the 18 populations. Population 16 was selected to represent this population and 

it will be referred to as population C. Population 3, referred to as population A, will represent the 

group of populations which exhibit both non-zero intercept and slight heteroscedasticity. 

Population A, graphed in Figure 2, has truckload weights which range from 27 tonnes to 41 

tonnes. These weights appear to be normally distributed with few, if any, outliers. The volumes of 

the truckloads range from just under 30 cubic meters to just over 50 cubic meters. This data set 

does not appear to satisfy the assumption of a zero intercept. A linear regression suggests that the 

intercept is about 30 cubic metres. However, the variance structure of the data appears to be 

roughly homoscedastic; that is, the variance of the volumes appears constant, regardless of the 

weights. There are 191 members in this population and the correlation between weight and 

volume is 0.29. 

Population B, graphed in Figure 3, has the largest range of both weight and volume among all 18 

populations. The weights of the truckloads range from 25 tonnes to almost 100 tonnes, whereas 
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the volumes range from just under 40 cubic meters to 100 cubic meters per truckload. This data 

set satisfies the assumption of approximately zero intercept and the variance structure appears to 

be homoscedastic. There were 213 members in this population and the correlation between 

weights and volumes was 0.87. 

Population C, graphed in Figure 4, has weights which range from 26 tonnes to 40 tonnes. The 

volumes of the truckloads range from 35 cubic meters to 55 cubic meters. This data set satisfies 

the assumption of approximately zero intercept, however the distribution of weights is multi

modal. The variance appears to be constant, regardless of weights. There were 206 members in 

this population and the correlation between weight and volume is 0.78. 

The distribution and parameters of the artificial data were selected based on the distributions of 

the weights and estimated errors from the Ministry data. In the majority of Ministry populations, 

the weights were normally distributed, with the mean approximately 35 tonnes and the standard 

deviation approximately 5 tonnes. The estimated errors, obtained from linear regressions, were 

also normally distributed, with the mean (obviously) 0 and the standard deviation approximately 2 

cubic meters. The ratio was selected to be 4/3 because the ratio of the 18 Ministry populations 

ranged from 1 to 3/2. Furthermore, because the Ministry draws samples from population which 

range in size from 100 to 5,000, the artificial populations were selected to have 1,000 members. 

The artificial data consisted of six populations. The ideal population was created in the following 

manner: A vector of 1,000 normally distributed, independent random variables was created, with 

mean 35 and standard deviation 5. Another vector of 1,000 normally distributed, independent 

random variables with mean 0 and standard deviation 2 was also generated. The first vector 

simulated the x's (i.e. weights) and the second simulated the errors. Using a slope of (4/3), the 

"random" y,'s for the first population were generated by multiplying the vector of x^s by (4/3) and 
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adding the vector of errors. Thus, the first population was "ideal" in the sense that the intercept 

was 0 and the errors were normally distributed with constant variance. We shall denote this 

population by Y00 - the first digit indicates the error structure and the second digit indicates the 

zero intercept. More specifically, the first digit indicates X in the variance assumption: 

var(e) = a2x\. The second digit is a categorical indicator. A zero means no intercept (i.e. zero 

intercept) and a one means a non-zero intercept. 

The other five populations were generated as variations of the first population using the same 

vectors of weights and errors. Two additional populations were created with zero intercept. 

However, the variance structure of the populations differed from Y00. One of the populations 

satisfied the error structure o2xi and the other satisfied the error structure a2xf. These two 

populations were created by appropriate addition of the errors to the x^s. Let xt represent the 

elements of the vector of weights and let et represent the elements of the vector of errors. Then 

the three populations Y00, Y10 and Y20 were generated by: 

Y00: Yi = (4/3)xi+ei, i=l,...,1000; 

Y10: Yi = (4/3)xi+eiJx~, i=l,...,1000; and, 

Y20: Yi = (4/3)xi+eixi, i=l,...,1000. 

The other three artificial populations, Y01, Y l l and Y21, were constructed by the addition of a 

constant to the volumes from the three populations Y00, Y10 and Y20. It seemed appropriate to 

select a value of the intercept that in some way reflected the magnitude of the covariates xt, yt and 

the slope. The following relationship 
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Y=cx+ i x + e 
3 

suggested that the intercept be set at some proportion of (4/3)X. The value of the intercept which 

we chose was set at 50% of (4/3)X because it seemed that for a higher value, one would not 

normally use a ratio estimator; for a smaller value, the effect of the non-zero intercept would not 

be significant. The constant a was calculated as follows: 

a = (0.50) XR = (0.50) (4 / 3) X - (0.50) (4 / 3) (35) - 23.3 m 3 . 

To summarize, six artificial populations were created. They were created with parameter values 

and distributions similar to real populations. However, selected features of these artificial 

populations were controlled to allow the study of their effects on the performance of the variance 

estimators. The populations are denoted by Yij where i e {0,1,2} indicates the exponent of x in 

the following variance structure: Var(ef) = G2xf. The presence of a non-zero intercept (= 23.3m3 

in each case) is indicated by j =1; otherwise, for a zero intercept, j = 0. The six populations are 

Y00, Y10, Y20, Y01, Y l l , Y21. 

As was mentioned in earlier chapters, the estimate of interest is the estimate of total volume 

obtained using the classical ratio estimate. However, for any given population, the difference 

between these two estimates (ft and Y) is the constant (NX). Thus, to avoid incorporation of this 

constant, the empirical study will concentrate upon ft and not Y. The results and conclusions of 

the study will not differ in any way because of this change. 

A brief description of the simulations will now be given. For each sample size to be investigated, 

5,000 simple random samples will be drawn without replacement. All seven variance estimators 
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will be evaluated for each simulated sample; for the bootstrap variance estimators, 2,500 bootstrap 

samples will be drawn from each simulated sample. All seven estimators will be simulated at 

sample sizes of 5, 10, 20, 30, 50 and 100 for the real populations, and at sample sizes of 10, 20 and 

50 for the artificial populations. Since all three real populations are approximately of size 200, the 

simulations with sample size 100 will be of particular interest in light of the arguments for a finite 

population modification to the bootstrap. 

The assessment of the performance of the variance estimators will be in terms of the relative mean 

squared error and the percentage bias of these estimators as estimates of the standard error of R; 

the evaluation of these performance criteria will now be described. For each sample size, the mean 

squared error is approximated from the 5,000 estimates of i2 as follows: 

6000 
MSE&) = E (^-«)2 > 

where fit is the estimate of R from the i'A sample, and R is the true population ratio. 

The percentage bias of method t is calculated as 

where vti is the variance estimate based on method t and calculated from the ith simulated 

sample. 

75 



Similarly, the mean squared error of method t as an estimator of the standard error of ft is 

calculated as: 

MSE. = 1 V; (jvT-^MSE(ft) ) 
' 5000 ti " " ' 

Finally, the relative mean squared error of method t is obtained by calculating the percentage 

difference between its mean squared error and the minimum mean squared error among all 

methods for a given sample size; that is, 

RMSE,= 
MSE,-m™[MSEJ 

min [MSEJ 
•100 

The results obtained for all seven methods of variance estimation and all sample sizes for a given 

real or artificial population, will be presented in a single table. From these results, we will 

attempt to draw general conclusions regarding the relative performance of these methods of 

estimating the variance of ft in the context of populations similar to those faced by the Ministry of 

Forests. 

5.4 Results from Real Populations 

We will first discuss the results from each population and will thereafter summarize the overall 

results from the three Ministry data sets. 

The results for population A, which was approximately heteroscedastic with zero intercept, 

summarized in Table 1, indicate that Cochran I and Fuller's method are the best estimators 

regardless of the sample size. For the smaller sample sizes (n=5, 10, 20) these two methods out

perform the other methods by approximately 5%. For the larger sample sizes, (n=30, 50, 100) 
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Cochran I and Fuller's method significantly out-perform the remaining methods, with a mean 

squared error approximately 10% lower than for the other methods. The bias of the bootstrap 

methods is significantly higher than that of the other methods; but all methods underestimate the 

true standard error for the smaller sample sizes. However, at the larger sample sizes, all methods 

are approximately unbiased. As the sample size increases, the bias of all methods is steadily 

reduced from -5% at n=5 to -0.5% at n=50. Peculiarly, for n=100 the bias increases to -1.3%. As 

for the weighted versions of the resampling methods, both the weighted jackknife and the weighted 

bootstrap have mean squared errors similar to mean squared errors of their unweighted 

counterparts. The bootstrap methods, though approximately unbiased, have much larger mean 

squared errors than the other methods, and their relative mean squared error rises with increasing 

sample sizes. This may be due to the need for a finite population modification to the bootstrap. 

The results for population B, which was close to ideal, tabulated in Table 2, can be summarized as 

follows: All methods, except the two bootstrap-based methods at larger sample sizes, perform 

similarly. Once again, Cochran I and Fuller's method have the lowest mean squared error. 

However, the remaining methods do not show significantly larger mean squared errors. The 

average difference in the squared errors between the methods is approximately 2%. Once again, 

the bootstraps do not perform very well at the largest sample size, though they do perform well at 

sample sizes less than 50. In both this and the previous population, the bias of the bootstrap 

methods does not differ greatly from the other methods, however the relative mean squared error 

does differ significantly. The weighted resampling methods perform similar to their unweighed 

counterparts. Once again, the bias of all methods is steadily reduced as the sample size increases. 

However at n=50, the bias increases and becomes positive, before dropping to almost zero at 

n=100. 
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The results for population C, which exhibited a non-zero intercept and multi-modal distribution of 

weights, summarized in Table 3, are very similar to the results from population B. Once again, all 

methods perform similarly, both in terms of mean squared error and in terms of bias. However, 

for this population, the bootstraps do not show as high a relative squared error at the largest 

sample size as for population B. Once again, the bias has peculiar behaviour as the sample size 

increases. 

The combined results from all three populations are as follows. For the larger sample sizes, all 

methods except for the bootstrap perform similarly. All methods have approximately the same 

mean squared error and are approximately unbiased, except for the bootstrap which has longer 

relative mean squared errors. For the smaller sample sizes the methods differ and, there is 

sometimes, significant underestimation of the standard error of R. The weighted jackknife has a 

mean squared error which is slightly smaller than the mean squared error of the unweighed 

jackknife. The Cochran II method, which is also Hinkley's weighted jackknife, has a mean squared 

error and bias which is quite similar to that of the two jackknife-based methods. However, the 

Cochran II method has a consistently lower mean squared error than the unweighted bootstrap. 

In summary, it is the particular characteristics of the population that determine the quality of 

performance of a particular method for that population. 

Based on the above, the following conclusions may be drawn. For populations with zero intercept 

and slight heteroscedasticity, Cochran I and Fuller's method perform best, regardless of sample 

size. For populations with non-zero intercept and weights distributed with multiple modes, all 

seven methods perform similarly. Thus, one may conclude that Cochran I and Fuller's method are 

the most robust with respect to these three populations. However, it is difficult to generalize these 

conclusions; it is still not known which estimates are robust with respect to the intercept, which 

are robust with respect to the variance structure and which are robust with respect to both. This 
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is because we have not isolated these population characteristics and studied their effects in a more 

controlled setting. Therefore, to study the sensitivity of the seven estimators, a similar simulation 

was performed on artificial data. However, these simulations will not involve sample sizes with 

large sampling fractions because we have already established that at these large sampling 

fractions the bootstrap methods have higher mean squared error. 

5.5 Results from Artificial Populations 

The purpose of conducting empirical studies on artificial populations is to study the effects of non

zero intercept and heteroscedasticity on the relative performance of the various estimators. The 

six artificial populations described in Section 5.3 were created with this in mind. The six 

populations can, in a very general sense, be described as the results of a 3 by 2 factorial design; 

the factors being, respectively, heteroscedasticity and non-zero intercept. 

The results of the empirical study on these artificial populations are summarized in Tables 4-9. 

For each of the six artificial populations, all seven methods were tested at sample sizes 10, 20 and 

50. Because of the consistency of results across sample sizes, sample sizes 5, 30 and 100 were not 

used. Rather than present the results on a population by population basis, the results will be 

presented with respect to the two factors. The sensitivity of the estimators with respect to the 

intercept will be discussed first, followed by sensitivity with respect to the variance structure and 

finally, with respect to both factors. 

All results are consistent across the sample sizes. Thus, if one method performs well at the 

smallest sample size, it will also perform well at larger sample sizes. Consequently, except for the 

following two observations, no further mention of change over sample sizes will be made. As 

sample sizes get larger, the discrepancies between the different methods get smaller, as one would 

expect. The second observation is that for the smaller sample sizes, the bias is consistently 
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negative; however, the bias reduces at the larger sample sizes resulting in approximately unbiased 

estimators. 

For the ideal population Y00 (homoscedastic and zero intercept), Cochran I and Fuller's method 

are slightly better than the other methods in terms of mean squared error, the difference being 

approximately 2%. However, as we move towards homoscedastic population with a non-zero 

intercept (from Y00, Table 4 to Y01, Table 7), it is clear that Cochran I and Fuller's method have a 

substantially smaller mean squared error than the other methods, though all methods are 

approximately unbiased. Similarly, for populations with heteroscedastic variance structure, the 

presence of a non-zero intercept (from Y10, Table 5 to Yl l , Table 8 and from Y20, Table 6 to Y21, 

Table 7) causes Cochran I and Fuller's method to either have smaller mean squared errors than 

the other methods or to reduce the difference in the mean squared errors between these two 

groups. Thus, it may be concluded that Cochran I and Fuller's method are more robust with 

respect to non-zero intercept than the other methods. In terms of bias, there are minor differences 

between the two groups in the presence of a non-zero intercept. 

In the presence of heteroscedasticity, Cochran II and the resampling-based estimators have smaller 

mean squared errors than Cochran I and Fuller's method. For populations with zero intercept, the 

presence of heteroscedasticity causes an increase in the relative mean squared error of Cochran I 

and Fuller's estimator, though the bias remains unaffected. For populations with non-zero 

intercept, the presence of heteroscedasticity once again causes the relative mean squared errors of 

Cochran I and Fuller's method to increase. However, because these two methods were 

substantially better than the other methods for homoscedastic and non-zero intercept populations 

(Y01), it is not until substantial heteroscedasticity is present (Y21) that Cochran I and Fuller's 

method exhibit larger mean squared error. Based on the preceding results, we conclude that 

Cochran II and the resampling methods are more robust with respect to heteroscedasticity than 
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the other two methods. It is interesting to note that as we increase heteroscedasticity in the 

presence of non-zero intercept (from Y01, Table 7 to Y l l , Table 8 to Y21, Table 9), resampling-

based methods along with Cochran I, improve relative to the analytic methods. The relative 

improvement is possibly due to the analytic methods performing worse than the resampling-based 

methods in the presence of both heteroscedasticity and non-zero intercept. 

In terms of both a non-zero intercept and non-constant variance, no estimator performs 

consistently well; that is, no estimator is robust with respect to both non-zero intercept and non-

constant variance. In the factorial design analogy, there are no interaction effects. That is, some 

estimators are robust with respect to heteroscedasticity whereas others are robust with respect to 

non-zero intercept. However, no estimators are robust with respect to the presence of both factors. 

The performance of the resampling estimators was very similar in terms of the mean squared 

errors; for all population sizes, the mean squared errors of the four estimators rarely differed by 

more than 2%. However, the bootstrap-based estimators were more biased than the jackknife-

based estimators at the smaller sample sizes i.e. n = 10, 20. On average, the underestimation of 

the standard error of ft by the bootstrap-based estimators was approximately 5% less than the 

underestimation by the jackknife-based estimators. In terms of the weighted and unweighted 

versions, the weighted jackknife always outperformed the unweighted jackknife, though the 

average difference in mean squared errors was approximately 0.5%. For non-ideal populations, the 

bias of the weighted jackknife slightly exceeded the bias of the unweighted jackknife. The 

weighted and unweighted bootstraps showed different robustness; the weighted bootstrap was 

more robust with respect to heteroscedasticity, whereas the unweighted bootstrap was more robust 

with respect to non-zero intercept. For both the jackknife and the bootstrap, the differences 

between the weighted and unweighted versions were minimal. The mean squared errors rarely 

differed by more than 1%. 
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It is clear from the table that for a homoscedastic population, regardless of the intercept, Cochran I 

and Fuller's method perform better than the remaining five methods. In fact, when the intercept 

is non-zero and the error structure is homoscedastic, Cochran I and Fuller's method produce mean 

squared errors approximately 10% lower than those of the other methods. Of the five remaining 

methods, the performance is very similar. 

On the other hand, for very heteroscedastic populations, that is Y20 and Y21, Cochran II and the 

resampling methods out-perform Cochran I and Fuller's method. However, in these instances the 

discrepancy between the two groups is half of what it was for the homoscedastic case; that is 5%. 

For the populations Y10 and Yl l , the results are quite interesting: The resampling methods, 

along with the Cochran II method, out-perform (by approximately 2%) the remaining two methods 

for small sample sizes when the intercept is zero. However when the intercept is non-zero, the two 

methods (Cochran I and Fuller's) out-perform the remaining methods by approximately 9%. 

5.6 Summary 

The overall conclusions of the study on artificial and real populations are that for a homoscedastic 

population, with zero intercept, one should use either Cochran I or Fuller's method; since 

Cochran I is much simpler, it should be used instead of Fuller's method. If the population is 

highly heteroscedastic, then the resampling-based methods or the Cochran II method should be 

used. The presence of a non-zero intercept should be considered together with the variance 

structure. If the violation of the homoscedastic variance assumption exceeds, in a qualitative 

sense, the violation of the zero intercept assumption, then the resampling based methods should be 

preferred over the remaining two methods. Otherwise, Cochran I or Fuller's method should be 

used. 
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In terms of sensitivity to population characteristics, Cochran I and Fuller's method are robust with 

respect to a non-zero intercept, whereas the other five estimators are more robust with respect to 

heteroscedasticity. As to the robustness with respect to both characteristics, no estimators 

performed consistently well. However, due to the higher spread between the two groups for 

homoscedastic and non-zero intercept populations than for heteroscedastic and zero intercept 

populations, Cochran I and Fuller's method could be said to be more robust. 

As for the smaller sample sizes, all estimators underestimate the true mean squared error, with 

average underestimation of approximately 4% at sample size 10 and approximately 2% at sample 

size 20. The jackknife-based methods had a consistently lower bias than the other methods, 

whereas the bootstrap-based methods had a consistently higher bias. 

The resampling-based estimators performed very similarly - especially if we consider the 

Cochran II method as a weighted jackknife method. This seems reasonable not only because the 

Cochran II estimator can be derived from the influence function-based approach to weighting the 

jackknife estimator, but also because its performance in the empirical study was very similar to 

the resampling-based methods. Thus, it is apparent that the weighted versions of the jackknife 

and bootstrap do not perform significantly better than their unweighted counterparts within the 

context of estimation of the variance of the classical ratio estimator, and within the context of the 

Ministry of Forests' data. 
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Chapter 6 

Conclusions and Recommendations 

In this chapter, specific conclusions concerning weigh scaling at the Ministry of Forests will be 

made. In particular, the issues of variance estimation and modification of resampling-based 

estimators will be addressed. Recommendations for the choice of robust variance estimators will 

also be made. 

The first, and possibly most significant, conclusion is that the current variance estimator, 

Cochran II, is effective at sample sizes well below the present minimum requirement of 30. 

Furthermore, empirical studies show that the seven methods studied all performed consistently 

well in terms of squared error at sample sizes as low as 10. However at smaller sample sizes, the 

estimators also underestimated the true standard error of Y, the average percentage bias being 

approximately -4%. This implies that confidence intervals constructed at these small sample sizes 

are 5% shorter on average than they would be if the estimators were unbiased. Therefore, a 1% 

confidence interval estimated using 10 samples will likely have a lower than 1% probability of 

including the population total. The bias reduces to -2% at sample size 20, and the estimators are 

effectively unbiased at larger sample sizes. Thus, the issue of bias only arises at smaller sample 

sizes. 

The second conclusion is that all seven methods have approximately similar mean squared errors. 

At the smaller sample sizes, the difference between the estimators range from 5-10%, the exact 

differences being dependent upon population characteristics. Cochran I and Fuller's method were 

found to be bias-robust, whereas Cochran II and the resampling-based estimators were found to be 

heteroscedastic-robust. No estimators were robust with respect to both bias and heteroscedasticity. 
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To determine the best estimators for use in weigh scaling, the Ministry would have to decide 

whether non-zero intercepts or heteroscedasticity is the major "violation" in their data, and then 

select an appropriately robust estimator. 

The third and final conclusion is that in terms of squared error and bias, the unweighted 

resampling-based variance estimators performed almost as well as their weighted counterparts. 

Perhaps in different estimation problems, the weighted resampling-based methods would perform 

differently from their unweighted counterparts. However, for the variance of the classical ratio 

estimator, the two versions have approximately similar mean squared errors. 

There are three major areas that require further research. The first is the empirical performance 

of the estimators at small sample sizes for non-normally distributed and finite populations. Recall 

that in the empirical study discussed in Chapter 5, the errors and the weights were simulated 

using the normal distribution. It is not clear whether our conclusions, particularly about the small 

sample effectiveness of the estimators, can be extended to non-normal populations. Furthermore, 

the finite population adjustment needs to be studied, particularly for samples with large sampling 

fractions. These issues were not dealt with in this thesis because the Ministry populations are 

approximately normal and because their samples are drawn with small sampling fractions. A 

second area which requires further study is the combination of variance and ratio estimators. 

Recall that in Chapter 2 we choose to restrict our attention to the classical ratio estimator, and 

thus these conclusions only apply to estimation of population total by the classical ratio estimator. 

Perhaps there exists a combination of ratio and variance estimators which is in some sense optimal 

for the estimation of confidence intervals in the context of the Ministry of Forests' applications. 

Finally, a third area which requires further research is resampling-based confidence intervals, 

particularly bootstrap-based confidence intervals. These appear to be particularly promising 

because of their non-parametric and non-symmetric approaches. 
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The specific recommendations arising from this research are as follows: The Ministry of Forests 

should select either Cochran I or Cochran II as the variance estimator of their estimates of 

population total volume. The particular choice of estimator should be based on the types of 

populations encountered by the Ministry. The minimum sample size restriction may be reduced 

from 30 samples to 10 samples. 
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Table 1 

Population A 
Empirical Results of Variance Estimators 

RMSE=Relative MSE 
PB=Percentage Bias 

Sample Size RMSE=Relative MSE 
PB=Percentage Bias 5 10 20 30 50 100 

Method RMSE PB RMSE PB RMSE PB RMSE PB RMSE PB RMSE PB 
Cochran I 0.0 -4.7 0.0 -2.8 0.2 -2.7 0.2 -0.5 0.6 -0.2 1.8 -1.3 
Cochran II 5.1 -4.2 5.7 -2.6 7.0 -2.6 8.0 -0.5 7.8 -0.2 9.0 -1.3 

Fuller 0.1 -4.6 0.0 -2.7 0.0 -2.6 0.0 -0.5 0.0 -0.2 0.0 -1.3 
Jackknife 5.4 -4.3 6.1 -2.7 7.3 -2.7 8.2 -0.5 8.0 -0.2 9.3 -1.3 

Wtd. Jackknife 5.3 -4.3 5.9 -2.6 7.2 -2.7 8.1 -0.5 7.9 -0.2 9.2 -1.3 
Bootstrap I 3.7 -13.8 7.6 -7.3 12.2 -4.9 10.1 -2.0 11.6 -1.1 26.0 -1.8 

Wtd. Bootstrap 3.7 -14.1 7.8 -7.4 12.6 -5.0 10.2 -2.1 11.7 -1.2 26.3 -1.8 

Results are summarized from 5,000 simple random samples. Bootstrap estimates involved 2,500 resamples. 
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Table 2 

Population B 
Empirical Results of Variance Estimators 

RMSE=Relative MSE Sample Size 
PB=Percentage Bias 5 10 20 30 50 100 

Method RMSE PB RMSE PB RMSE PB RMSE PB RMSE PB RMSE PB 
Cochran 1 0.0 -7.4 0.0 -3.7 0.0 -1.6 0.4 -0.3 0.7 1.2 0.6 -0.5 
Cochran II 0.9 -7.0 1.9 -3.4 1.6 -1.4 0.5 -0.2 1.3 1.2 1.4 -0.5 

Fuller 0.0 -7.3 0.0 -3.7 0.0 -1.5 0.0 -0.3 0.0 1.2 0.0 -0.5 
Jackknife 2.9 -6.2 2.6 -2.9 1.8 -1.2 0.7 -0.1 1.7 1.3 1.3 -0.5 

Wtd. Jackknife 1.8 -6.6 2.2 -3.2 1.7 -1.3 0.6 -0.2 1.5 1.2 1.4 -0.5 
Bootstrap 1 0.8 -16.0 3.6 -8.1 3.2 -3.8 1.1 -1.8 0.5 0.2 11.1 -1.0 

Wtd. Bootstrap 1.2 -16.5 3.7 -8.3 3.3 -3.9 1.1 -1.9 0.3 0.2 11.2 -1.0 

Results are summarized from 5,000 simple random samples. Bootstrap estimates involved 2,500 resamples. 
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T a b l e 3 

Population C 
Empirical Results of Variance Estimators 

RMSE=Relative MSE Sample Size 
PB=Percentage Bias 5 10 20 30 50 100 

Method RMSE PB RMSE PB RMSE PB RMSE PB RMSE PB RMSE PB 
Cochran 1 4.2 -3.4 0.1 -2.5 0.0 -2.1 0.0 -1.6 0.0 0.2 0.0 1.3 
Cochran II 6.1 -3.2 1.1 -2.5 1.9 -2.1 1.4 -1.5 1.0 0.2 1.5 1.3 

Fuller 4.1 -3.4 0.0 -2.5 0.2 -2.1 0.1 -1.6 0.3 0.2 1.5 1.3 
Jackknife 6.9 -3.1 1.5 -2.4 2.2 -2.1 1.6 -1.5 1.1 0.2 1.6 1.3 

Wtd. Jackknife 6.5 -3.1 1.2 -2.5 2.0 -2.1 1.5 -1.5 1.1 0.2 1.5 1.3 
Bootstrap 1 0.0 -13.1 1.4 -7.3 4.9 -4.5 5.0 -3.2 1.9 -0.7 3.1 0.8 

Wtd. Bootstrap 0.1 -13.3 1.6 -7.4 5.1 -4.5 5.2 -3.2 1.9 -0.8 3.1 0.8 

Results are summarized from 5,000 simple random samples. Bootstrap estimates involved 2,500 resamples. 
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Population Y00 
Empirical Results of Variance Estimators 

RMSE=Relative MSE 
PB=Percentage Bias 

Sample Size RMSE=Relative MSE 
PB=Percentage Bias 10 20 50 

Method RMSE PB RMSE PB RMSE PB 
Cochran 1 0.0 -3.7 0.0 -2.2 0.0 0.0 
Cochran II 1.1 -3.5 2.2 -2.1 2.9 0.0 

Fuller 0.0 -3.7 0.0 -2.2 0.0 0.0 
Jackknife 1.6 -3.4 2.5 -2.1 3.1 0.0 

Wtd. Jackknife 1.3 -3.5 2.3 -2.1 3.0 0.0 
Bootstrap 1 1.9 -8.2 4.0 -4.5 4.0 -0.8 

Wtd. Bootstrap 2.3 -8.4 4.3 -4.6 4.0 -0.9 

Results are summarized from 5,000 simple random samples. 
Bootstrap estimates involved 2,500 resamples. 
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Table 5 

Population Y10 
Empirical Results of Variance Estimators 

RMSE=Relative MSE 
PB=Percenlage Bias 

Sample Size RMSE=Relative MSE 
PB=Percenlage Bias 10 20 50 

Method RMSE PB RMSE PB RMSE PB 
Cochran I 2.2 -4.0 1.2 -2.2 0.5 0.0 
Cochran II 0.0 -3.8 0.0 -2.1 0.0 0.0 

Fuller 2.2 -4.0 1.1 -2.2 0.4 0.0 
Jackknife 1.0 -3.6 0.5 -2.0 0.3 0.1 

Wtd. Jackknife 0.5 -3.7 0.2 -2.1 0.1 0.0 
Bootstrap I 1.0 -8.7 1.5 -4.6 0.6 -0.9 

Wtd. Bootstrap 1.5 -8.8 1.8 -4.6 0.8 -0.9 

Results are summarized from 5,000 simple random samples. 
Bootstrap estimates involved 2,500 resamples. 
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Population Y20 
Empirical Results of Variance Estimators 

RMSE=Relative MSE 
PB=Percentage Bias 

Sample Size RMSE=Relative MSE 
PB=Percentage Bias 10 20 50 

Method RMSE PB RMSE PB RMSE PB 
Cochran 1 5.2 -4.3 4.2 -2.2 3.6 0.0 
Cochran II 0.0 -4.3 0.0 -2.2 0.0 0.0 

Fuller 5.1 -4.3 4.1 -2.2 3.2 0.0 
Jackknife 1.4 -3.9 0.8 -2.0 0.5 0.1 

Wtd. Jackknife 0.7 -4.1 0.4 -2.1 0.2 0.0 
Bootstrap 1 1.1 -9.2 1.1 -4.7 0.3 -1.0 

Wtd. Bootstrap 1.6 -9.2 1.4 -4.7 0.4 -0.9 

Results are summarized from 5,000 simple random samples. 
Bootstrap estimates involved 2,500 resamples. 
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Population Y01 
Empirical Results of Variance Estimators 

RMSE=Relative MSE Sample Size 
PB=Percentage Bias 10 20 50 

Method RMSE PB RMSE PB RMSE PB 
Cochran I 0.0 -2.1 0.0 -0.8 0.0 1.7 
Cochran II 11.6 -1.7 11.2 -0.6 11.5 1.8 

Fuller 0.0 -2.1 0.0 -0.8 0.1 1.7 
Jackknife 12.9 -1.5 11.5 -0.5 11.6 1.8 

Wtd. Jackknife 12.2 -1.6 11.3 -0.6 11.5 1.8 
Bootstrap I 11.4 -6.0 11.3 -2.8 9.7 0.9 

Wtd. Bootstrap 10.2 -6.4 10.7 -2.9 9.0 0.8 

Results are summarized from 5,000 simple random samples. 
Bootstrap estimates involved 2,500 resamples. 
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Population Y11 
Empirical Results of Variance Estimators 

RMSE=Relative MSE 
PB=Percentage Bias 

Sample Size RMSE=Relative MSE 
PB=Percentage Bias 10 20 50 

Method RMSE PB RMSE PB RMSE PB 
Cochran I 0.0 -2.3 0.0 -1.4 0.0 1.7 
Cochran II 9.1 -1.9 8.9 -1.2 9.2 1.8 

Fuller 0.0 -2.2 0.0 -1.3 0.1 1.7 
Jackknife 10.9 -1.7 9.6 -1.1 9.6 1.8 

Wtd. Jackknife 10.0 -1.8 9.2 -1.2 9.4 1.8 
Bootstrap I 9.2 -6.3 9.7 -3.4 6.9 0.9 

Wtd. Bootstrap 8.6 -6.6 9.4 -3.6 6.5 0.8 

Results are summarized from 5,000 simple random samples. 
Bootstrap estimates involved 2,500 resamples. 
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Population Y21 
Empirical Results of Variance Estimators 

RMSE=Relative MSE 
PB=Percentage Bias 

Sample Size RMSE=Relative MSE 
PB=Percentage Bias 10 20 50 

Method RMSE PB RMSE PB RMSE PB 
Cochran I 3.9 -4.0 3.0 -2.4 3.0 0.4 
Cochran II 0.0 -3.9 0.0 -2.4 0.4 0.5 

Fuller 3.8 -4.0 2.9 -2.4 2.7 0.4 
Jackknife 1.7 -3.5 0.9 -2.2 1.0 0.6 

Wtd. Jackknife 0.8 -3.7 0.4 -2.3 0.7 0.5 
Bootstrap I 0.9 -8.8 1.5 -4.9 0.0 -0.5 

Wtd. Bootstrap 1.4 -8.8 1.8 -4.9 0.1 -0.5 

Results are summarized from 5,000 simple random samples. 
Bootstrap estimates involved 2,500 resamples. 
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TOT 

Volume (Cubic Metres) Volume (Cubic Metres) Volume (Cubic Metres) 

20 40 60 80 120 20 40 60 80 120 20 40 60 80 120 



Population A 



Population B 

Weight of Truckloads (Tonnes) 
The Above Line is ( Population Ratio * Weight) 



Population C 


