MUSICAL COMPOSITION, THE SILENT DRAGONS, WITH DOCUMENT

By

HOWARD EUGENE BASHAW

B.Mus., The University of British Columbia, 1981
M.Mus., The University of British Columbia, 1984

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF MUSICAL ARTS
(Composition)
in
THE FACULTY OF GRADUATE STUDIES
(School of Music)

We accept this thesis as conforming
to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA
March 1989
© Howard Eugene Bashaw, 1989
In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of Music

The University of British Columbia
1956 Main Mall
Vancouver, Canada
V6T 1Y3

Date April 11 1989
The Silent Dragons is an 18-minute work for chamber ensemble and male chorus. The voice part has no literary or linguistic content, but uses phonemes for their sonic and expressive character. Compositional activity is organized into two essential layers; texture and drone. In its many forms, the textural layer persists throughout the entire composition and is perceived as the concurrence of two distinct continuums; the continuum of cumulative rhythmic effect in which the listener registers and interprets change in the total attack rhythm, and the continuum of textural transformation in which one perceives transitions from one overall textural condition to another. Both continuums arise from the consistent change in the structure of successive textural sonorities.

Unlike texture, the drone lasts just one half the composition's overall length and is positioned temporally in the textural layer as a central segment. Both texture and drone are structured similarly in ternary form; the ternary form of the drone is contained within the ternary form of the textural layer. In this sense, and in the impression they make, texture and drone, respectively, provide the composition with primary and secondary forms of continuity. Each continuity has a strategic interim destination, an event, that activity 'must' proceed to and recede from; these destinations are, therefore, climatic in nature and are perceived as the two most significant events in the composition.
Apart from sonority, texture and drone are distinguished primarily with reference to tonality; the textural layer is essentially non-tonal and is perceived, by and large, in terms of color and rhythm. The drone, however, is designed to induce a sense of tonality by means of heterophonic and linear relationships that conduce to perceptions of pitch emphasis and, ultimately, pitch centricity.

Supervisor
TABLE OF CONTENTS

I. INTRODUCTION

1

II. TEXTURE

3

1. The two continuums 3
2. Textural spectrum 3
3. The rhythmic continuum 7
4. Progression 11
5. Continuity 14

III. DRONE

16

1. Description 16
2. The ascent 16
3. The descent 17
4. Structure 19
5. Tonal disjunction and linear continuity 19

IV. STRUCTURE AND COGNITION

24

1. Three movements 24
2. Relative rhythmic activity 24
3. Interim destinations 26
4. Structural complex 27

V. SCORE: THE SILENT DRAGONS

29
I. INTRODUCTION

At a most fundamental level, The Silent Dragons has only two basic components: texture and drone. Texture is specifically identified as all sonorities other than drone. Contributing member(s) to textural sonorities range from one instrument (rare) to full ensemble. The drone is identifiable in equally precise terms; it is the monodic chant-like sonority produced by the male chorus (solo or unison). The voice in all other settings functions as a contributing member to textural sonority.

Although texture and drone remain clearly distinct in sonority, they function similarly in the capacity of providing long-range continuity. The textural layer provides the greatest degree of continuity, for, in one form or another, texture is always present. Textural continuity is achieved through the process of continuous textural transformation (explained later). The drone represents a secondary form of continuity, for it lasts just one half the composition's over-all length and is clearly perceived as temporally embedded in the textural continuum.

The continuities of both texture and drone are sectionalized in similar ways. In both cases large-scale contrast in the musical setting clearly defines three major sections; the resulting structure is ternary in that the first and third sections contain perceptible similarities while the central one offers a distinct contrast. The drone's ternary structure is contained within the ternary structure of the texture: the drone's first section begins approximately two-thirds
of the way through the first section of texture. The drone's third section ends approximately one-sixth of the way through the third section of the texture. The points of division between the first and second, and second and third sections are the same for both texture and drone; therefore, the central sections of both texture and drone coincide, remaining distinct in sonority.
II. TEXTURE

The two continuums

The textural layer is a concurrence of two distinct, yet interdependent continuums; the continuum of cumulative rhythmic effect (rhythmic continuum), and the continuum of textural transformation. These continuums are of equal importance even though their respective contributions are clearly distinct: the rhythmic continuum provides the composition with an overall sense of progression, while that of textural transformation provides the composition with its basic continuity. The essential difference between the two continuums lies in their relative rates of change: the rate of change in the rhythmic continuum is significantly slower than the rate of change in the continuum of textural transformation; change in the former is perceived as underlying change in the latter.

Textural spectrum

Due to the fact that texture is everpresent (as a dimension of the piece), the continuous process of change resulting in a succession of distinguishable textural sonorities is referred to as the continuum of textural transformation. The term textural spectrum indicates the ordered set of textural sonorities distinguished as the consequence of this process of change. This term refers to texture only as a succession of sonorities distinct as acoustic phenomena; it is a term with no implication of function or hierarchy. In summary, textural
transformation is the means for articulating texture as the textural spectrum.

Example 1 is an approximate representation of the textural spectrum (sections E, E1, E2, and G5 [excepting percussion] are deleted from the example; these sections are unique in the spectrum and are fully discussed later). The colors representing the six different families of instruments are specifically analogous to the relative degrees of timbral prominence particular to each of these families. Put another way, relative intensities of projection are distinguished by analogous color coding: The two brightest families of instruments are high percussion and brass; these are represented as orange and red, respectively. Similarly, low percussion and piano, being the darkest, are represented as blue and purple respectively. The strings and chorus exhibit an intensity best described as mediate, and are represented as green and turquoise respectively. This color coding is not intended to reflect acoustic properties of instruments per se, but rather to indicate distinctions among textural constituents particular to this composition.
TEXTURAL SPECTRUM

MVT I | MVT II | MVT III
A | B | A'

Time Frames:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>85''</td>
<td>77''</td>
<td>95''</td>
<td>160''</td>
<td>140''</td>
<td>160''</td>
<td>96''</td>
<td>65''</td>
<td>200''</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example 1

- **Percussion - high (indefinite pitch)**
- **Percussion - low (indefinite pitch)**
- **Pianos**
- **Strings**
- **Brass**
- **Chorus**
Consider the following observations made in reference to example 1:

1. A - C4 and E3 - F5' are similar in their instrumentation, registration and subdued character. D - D5 and G2 - I4' are similar in their instrumentation, registration, diversity, activity, and assertive character.

2. In context of A - F5' only, D - D5' can be regarded as an interpolation of diversity and activity. In context of D - I4' only, E - F5' can be regarded as an interpolation of uniformity and inactivity.

3. A - D5' demonstrates the motion from subdued/inactive to diverse/active. E - F5' is essentially subdued and inactive. G - I4' is essentially assertive and active (activity and inactivity refer to the rate of change in both horizontal and vertical dimensions).

In light of these observations, the textural spectrum encourages two possibilities of structural interpretation:

1. In the broadest of perspectives, texture is perceived as an overall evolution from reticence (subdued, inactive, uniform) to exuberance (assertive, active, diverse). A regressive interruption in this evolution results in a three-part sectionalization that, in turn, constitutes the composition's three-movement structure: the first point of division (E) occurs after the initial development of textural diversity and activity; the subsequent abandonment of this development combined with a return to the initiating textural environment ("initial" in a non-literal sense) clearly articulates the first major division. The section preceding this first division is designated as
movement I. The second point of division (G) occurs with the resumption of textural diversity and activity, and a third section is thus as clearly articulated as the first. The section falling between E and G is designated as movement II, and the last section as movement III. Were they immediately adjacent, movements I and III would join, forming a single movement exhibiting continuous textural evolution. Movement II, therefore, functions as an interruption in this continuity, and it is this interruption that forms the basis of the composition's three-movement structure.

(2) The textural spectrum can also be viewed as two analogously structured sections: A - D5 and E to I4. The first section of these is movement I, and the second includes both movements II and III. The parallel aspect of these two sections is as follows: the first movement's characteristic motion from subdued/inactive to diverse/active is replicated on a larger level in the conjunction of movements II and III. In other words, movements II and III combine as an extended repetition, in general textural outline, of movement I.

The rhythmic continuum

The persistence of the textural layer results in continuous rhythmic activity, an activity structured into two levels of function: in an immediate perspective, adjacent textural sonorities are distinguished primarily by change in rhythmic detail; while in a broader perspective, one perceives, as cumulative rhythm, activity within spans composed of a succession of textural sonorities perceived as similar in
respect of such activity. Rhythmic change from one textural sonority to the next occurs within the continuum of textural transformation. Change in the cumulative rhythm within an ordered set of textures determines the continuum of rhythmic effect proper.

The continuum of rhythmic effect has three gradations of relative rhythmic activity; minimal, medial and maximal. Each of these characterizes the cumulative rhythmic effect of a succession of textural sonorities that demonstrate clear similarity in their individual net rhythmic effects. A textural sonority is a composite of individual rhythmic structures. Its net rhythmic effect (ensemble rhythm, macro-rhythm) is the overall level of activity, in relative terms, produced by the ensemble of these individual structures. Put another way, the net rhythmic effect indicates the rhythm of a texture per se, and not the rhythm of its structural components; it is an effect the basis of which is in perception and not in construction. The cumulative rhythmic effect refers to the level of activity that distinguishes each gradation in the rhythmic continuum; it represents the composite rhythmic effect of a set of successive textural sonorities demonstrating similar net rhythmic effect. The cumulative rhythmic effect is, in principle, the hierarchical extension of the net rhythmic effect, for it represents the rhythm of each gradation per se and not the rhythm of its individual members, which are successive textures. Gradation change occurs only where there exists sufficient contrast in the net rhythmic effect of adjacent sonorities.

Each of the three gradations in the rhythmic continuum can be further described in terms of representative textural sonorities:
(1) Textural sonorities exhibiting minimal cumulative rhythmic activity can be referred to as sustained textures. These sonorities are perceived as regions of comparative inactivity. The structural components of sustained textures are, for the most part, independent rhythmic structures particular to each of the contributing instruments. The composite effect of these independent structures is one of reserve, but with an internal activity that provides color and vibrancy; an activity designed to enhance rather than challenge the intent of comparative stasis.

(2) Textural sonorities belonging to the gradation of maximal rhythmic activity can be referred to as anxious textures. These sonorities exhibit considerable activity and excitement; they are the perceptual antipodes to sustained texture. As was the case in sustained texture, the structural components of anxious texture are independent rhythmic structures particular to each of the contributing instruments. In this latter case, however, activity is pronounced to the extent such that the composite effect is one best described as hyper-rhythmic.

Hyper-rhythm indicates one specific textural condition wherein the simultaneous rhythmic components produce a composite rhythmic complexity that precludes any perception of an organizing pulse or metric structure; in effect, activity has pushed the texture beyond conventional means of rhythmic reference. It should be noted, however, that the condition of being ametric is not sufficient to determine hyper-rhythm, or by extension, an anxious texture. In this work, in fact, a sustained effect is one that necessarily negates inference of pulse
or meter, and since in the case of sustained textures, the internal rhythmic activity is eclipsed by the *sostenuto* effect. In short, sustained textures are also ametrical, but *ipso facto*, and without inducing and then defeating any desire to hear meter in the listener. By contrast, anxious textures, in addition to presenting activity and excitement, create regions of relative tension: when confronted with hyper-rhythm, the listener strives to establish contextual hierarchical organization; the consistent denial of such organization results in prolonged expectation, and hence, tension. Sustained textures are, in comparison, relaxed, as they carry no implication of rhythmic hierarchy.

(3) Textural sonorities belonging to the gradation of medial rhythmic activity can be referred to as sustained-anxious textures. These sonorities occur only as transitional regions between sustained and rhythmic textures. They present a level of activity that represents the fusion of sustained and rhythmic textures. Two forms of textural sonority earn the designation sustained anxious: (a) sustained textures that demonstrate degrees of rhythmic articulation sufficient to challenge their own net sustained effect (the texture is subjected to the threat of an insistent rhythmic profile, perhaps with hierarchical implications); and (b) anxious textures whose perceptual effect is transformed by temporal prolongation (the initial effect of activity and excitement in rhythmic textures is diminished when subjected to prolongation; the initial effect assumes an underlying *sostenuto* profile by virtue of its very persistence). Whether sustained-anxious texture has origin either in sustained or in anxious texture, its phenomenological effect is largely one and the same.
Progression

As mentioned, sustained and anxious textures are opposed gradations in the rhythmic continuum, while the sustained-anxious textures are always transitional between the two. Anticipated motion between these counteractive textures (sustained to anxious, or anxious to sustained) is the basis from which progression is derived: regions of sustained texture are expected to move to regions of anxious texture, and, conversely, regions of anxious texture are expected to move to regions of sustained texture. This motion is expected because it represents the motion from relaxation to tension, and tension to relaxation. Progression is achieved with the realization of this expected motion.

The succession of gradations in the rhythmic continuum is strategically organized to (1) facilitate consistent motion between counteractive textures, and (2) to formalize this motion in a structure both interesting and perceptible. Example 2c\(^1\) demonstrates this organization: regions of sustained texture are represented in green, sustained-anxious in orange, and anxious in red (colors are used here with the hope of providing a visual representation analogous to the relative effect of each rhythmic gradation; green = inactive/relaxed, red = active/tense, orange = transitional). As is immediately obvious in the example, the rhythmic continuum is organized simply as a five-part alternation between counteractive textures, and each of these

\(^1\) Examples 2 and 4 present the textural spectrum in registral compression. This compacted version, included for guide reference, is to be understood as an abbreviated form of Example 1.
textures is separated by a transitional texture. The perceptual effect of this structure is the large scale progression of relaxed-tense-relaxed-tense-relaxed. In a less obvious perspective, the organization of the rhythmic continuum produces a symmetrical double-arch structure. Example 2e clearly indicates this underlying structure where sustained, sustained-anxious and anxious textures are represented as A, B and C respectively. The significance of the double-arch is further explained in the later discussion of structural complex.
RELATIVE RHYTHMIC ACTIVITY

1) Rhythmic Continuum (c)
 A = inactive
 B = fusion
 C = active

2) Drone (d)
 A = inactive
 B = fusion
 C = active

example 2

Time Frames
Textural Spectrum
Rhythmic Continuum
Drone
Double-Arch
Continuity

As mentioned above, basic continuity for the composition inheres in the textural dimension. This continuity can be explicitly defined as the continuum of textural transformation, and is perceived as the continuous succession of changing textural sonorities. Textural transformation is especially important when viewed in relation to the length of a textural layer: texture can be prolonged only when subjected to the process of transformation. In other words, texture "must" undergo continuous change where it is allowed to persist. The reason for this is ultimately one of aesthetic judgement, since in order for perceptual interest to remain constant, transformation must occur at a rate roughly proportional to temporal persistence. Texture appearing for relatively brief periods need not exhibit significant change (or, indeed, any at all). Texture appearing for relatively long periods of time, however, must exhibit some form of variation. A textural layer that is always present must exhibit greatest change of all. In short, the relative duration of texture determines the degree to which change "must" occur.

Since texture extends throughout the 18 or so minutes of *Silent Dragons*, it must be transformed in sonority with considerable frequency. The work's rapidity of textural transformation is not only calculated to compensate for this duration, but to also induce an overall effect of continuous change: although texture is constructed, and immediately perceived, as compact regions of distinct sonority, it assumes as a complete entity the cumulative effect of constant
metamorphosis and is to be appreciated as a sonic depiction of insistent momentum.
III. DRONE

Description

The secondary form of continuity in _The Silent Dragons_ is the bass line drone, expressed exclusively in the chorus. The overall shape of the drone is a three-part melodic arch whose ascent and descent is primarily by semitone. The ascent is prolonged and takes approximately one-half the composition's overall length. In comparison, its descent is extremely abrupt, occupying approximately one thirty-fifth of the overall length (25 seconds). The compositional strategy behind these seemingly disproportionate durations of ascent and descent is explained in the following discussion.

The ascent

The drone's ascent is divided into two sections; the first occurs in time frames D - D5 and consists of the initial ascent F - G#. The second occurs in time frames E - F5 and presents the continued ascent A - D. In the first section, textural transformation is triggered by each chromatic rise in the drone's monodic setting. The textual setting here is essentially syllabic. The second section (E - F5') is immediately distinguished by the octave transposition of the drone into the solo tenor where it is then embellished in the form of an extended melisma. The original octave of the drone (that of the first section) is used occasionally in the remaining voices to discreetly provide a measure of registral continuity without detracting from the tenor solo.
The apex of the drone's arch (F5) is the terminating point of the extended melisma, and it is treated as a climactic event.

The descent

The third part of the drone is its descent (G2) from D to F#. This region is most significant in the large-scale plan of the composition, for it is here that the predominant continuity established by the drone in E - F5 is rapidly absorbed by the textural dimension. The setting of the drone's descent is, therefore, transitional in function: its abrupt descent is combined with a simultaneous increase in surrounding textural diversity and intensity (G - G2'). Upon completion of descent, the drone is abruptly abandoned and new textures are immediately introduced (G3).

The transitional setting of the drone's descent is specifically designed to simultaneously realize four compositional objectives:

(1) To shift the perception of texture from the role of accompaniment (mvt II in particular) to the role of predominance: the textures accompanying the drone's ascent are perceived as dependent to the extent that transformation occurs, by and large, with each rise in the drone. The descent and subsequent elimination of the drone functions specifically to enable the textural dimension to (a) assume complete independence, and (b) to subsequently assert itself as the primary thrust of the overall composition.

(2) To provide a sense of completion to the drone in that its descent will be perceived as representing a return to its originating
context: a line that simply ascends and terminates does not provide the same sense of completion as one that both ascends and descends prior to termination. The latter instance exemplifies the basic compositional principle of departure and return. The abandonment of the drone immediately after its climactic apex would, therefore, most likely result in the expectation of a later return thereby providing some conclusive form of descent. A return of this nature in *The Silent Dragons* would explicitly contradict the basic intrigue of drone ultimately surrendering its existence to the ever-increasing predominance of the textural environment.

(3) To abruptly subordinate the significance acquired in the drone's ascent. The process of prolongation attributes distinctive importance to both sections of the drone's ascent. This importance is immediately retracted by (a) the sudden abandonment of prolongation, and (b) the extreme contrast manifested in the rapidity of descent.

(4) To reinforce the perception of the drone's apex as the significant interim destination. In the course of its descent, the drone becomes eclipsed by environmental texture. The resulting retreat in exposure and the aforementioned rapidity of descent contribute to the process of de-emphasis, and the drone's apex is thereby enhanced as the point of maximum emphasis. This enhancement is by way of two factors: (a) The compressed setting of the descent and termination precludes any challenge to the prevailing significance of the apex, and (b) the abruptness in contrast between the regions of growth and decline provides immediate subordination of the latter to the former.
Structure

In its entirety, the drone manifests in simple ternary structure. The first (D - D5') and third (G2) sections demonstrate two basic similarities: (1) The text in either case is set in a syllabic manner; a similarity that remains perceptible even though the respective rates of activity are in obvious contrast. (2) The textural environment in either case is predominant and therefore remains the primary focus of attention. The contrasting central section is distinguished in four ways: (1) the obvious reduction in textural intensity and diversity, (2) the sudden emergence of the drone functioning as the dominant form of continuity, (3) the melismatic setting of the text, and (4) the emergence, unique in the work, of tonal functions and relationships. Of these four distinctions, the last is most important and requires elaboration.

Tonal disjunction and linear continuity

The linear continuity (G-sharp - A) bridging the first and second sections (D5 to E3) of the drone's ascent is interrupted by the region E - E2; a region of striking contrast that functions contextually as a tonal departure from the non-tonal nature of the first movement: although the chromatic rise (F - G#) in the drone's initial ascent is perceived as a registral/linear continuity, it can scarcely be argued that this rise, in itself, carries an implication of tonality. Furthermore, tonal involvement is not even remotely suggested in the accompanying textural environment. The unexpected insertion and
treatment of B-natural at E places an unprecedented emphasis on pitch and invokes tonality as a larger perspective. Three distinct conditions combine to produce this emphasis and are detailed as follows:

(1) The sudden six-octave replication of B-natural at E is a compelling form of emphasis, for (a) contrast is maximized because no octave replication exists prior to E and (b) by sheer weight alone, a six-octave replication is a forceful construct in any context.

(2) The sudden and unprecedented absence of rhythmic activity at E minimizes textural diversity to the extent such that attention is confined largely to the treatment of pitch.

(3) The arrival of B-natural at E interrupts the continuity of the drone's chromatic ascent, and, in an immediate sense, is understood as an unannounced substitution for the expected A-natural. In a larger sense, the B-natural thereby functions as an upper neighbour to A-natural; the eventual motion to A-natural in E2 is delayed both by the sustaining of B-natural through E - E2, and the linear embellishment of B-natural at the onset of E2.

In addition to its tonal perspective, the region E - E2 is further distinguished in its suspension of rhythmic intensity and diversity. The expected resumption of rhythmic texture occurs in conjunction with the continuation of the drone's chromatic ascent (E3). A characteristic of E - E2' is retained in E3 and perseveres as the compositional substructure for the remainder of the drone's ascent:

Octave replication within Piano I and between Piano I and the solo tenor is maintained with several interesting and expressive consequences. First, the octaves generate a tonal underpinning that, in an
immediate context provides an anchoring tonality, lending perceptible centricity to the melodic/harmonic variance exhibited in solo tenor and Piano II, and it forms the basis of the large scale harmonic progression in D (VI - V - natural VII - I) that tonicizes D at the climactic apex of the drone's ascent. Second, the octave replication in Piano I at E3 - F5 functions heterophonically with respect to the tenor: the two parts are in a sort of counterpoint which, if the tenor's line is reduced to its basic elements, simplifies to parallel octaves. Finally, Piano I relates primarily, at times, to texture. For example, at E3, it is absorbed into the textural environment and is perceived largely as a bass-register presence.

The harmonic wash in Piano II (E3 - E5) can only be described as superficial changes in harmonic color -- changes whose centricity remains firmly rooted in the tonal underpinning of piano I. The rate of change in piano II is coincidental with the change of successive phrases in the melisma. In a broad sense, the harmonic wash might be thought of as an intensified counteractivity to the melismatic embellishment of the tenor; the tonal underpinning of piano I is embellished in the harmonic/rhythmic mobility of piano II.

Example 3 summarizes the following aspects of the drone's structure:

(1) The drone's ternary structure as contained within the ternary structure identified as movements in the earlier discussion of texture.

(2) The tonal underpinning of, and subsequent tonicization within, the central B section.
(3) All pitches of the B section in hierarchical representation in relation to the anchoring tonality; bracketed pitches indicate the collections of pitches used in the melismatic embellishment of the solo tenor (Ex. 3a), and in the harmonic wash generated by piano II (Ex. 3c).
IV. STRUCTURE AND COGNITION

Three movements

The three movement sectionalization established in the earlier discussion of texture is, as was the case for drone, simple ternary structure. The first and third movements bear the following similarities: (1) the predominance of texture, (2) non-tonal harmonic environment, (3) similar treatment of drone, and (4) similar contrast between the relative rhythmic activity of texture and drone (as discussed later). The central contrasting movement is distinguished by the following: (1) the predominance of drone, (2) obvious contrast in the treatment of drone, (3) implication of tonality, and (4) a reversal in the contrast between the relative rhythmic activity of texture and drone. In short, the first and third movements are perceived in relation to texture, and the second in relation to drone.

Relative rhythm and activity

Each of the composition's movements presents obvious contrast in the relative rhythmic activity of texture and drone. In the first movement, where texture and drone are simultaneous, texture is active and drone is inactive. The second movement reverses these roles with the drone active and the accompanying textural layer, although more active than the drone in a strictly literal sense, inactive (the inactivity of texture here is a perception induced by the contrast in setting that immediately subordinates texture to (1) the acoustic
presence of the drone, and (2) the prominence of the texture as established in the first movement). The third movement returns the drone to the role of inactivity and texture to the role of activity.

With respect to opposing roles of relative activity and inactivity, the drone's brief appearance in the third movement is crucial in realizing two compositional objectives:

(1) to contribute to the sense of completion manifest in the descent of the drone: the rapidity of the drone's descent represents a level of activity suggesting a concluding fusion of the relative inactivity and activity established, respectively, in the first two movements (Ex. 2d).

(2) To ensure the perception of return to relative inactivity despite the comparative abruptness of the drone's descent -- a perception achieved simply through direct contrast. In comparison to the sustained setting of the first movement, the drone's direct and unadorned descent in the third can only be described as demonstrating perceptible increase in activity. This increase, however, is not explicitly perceived as such, but rather as (conversely) representing the return to relative inactivity: The high level of activity particular to the melismatic embellishment in the second movement blatantly contrasts with the straightforward and comparatively inactive descent in the third; it is, specifically, the strength of this contrast that induces the perception of return.

The drone's entrance and departure are, as mentioned, events treated as inactive relative to surrounding texture. More precisely described, these events strategically occur in context of rhythmically
intense textures (regions of maximal rhythmic activity), and are, therefore, partially hidden in the compositional fabric [Example 2e demonstrates the drone's entrance (A) and departure (B) in relation to the double arch structure particular to the rhythmic continuum]. Consequently, in the course of the three movements the drone assumes (respectively) the conditions hidden-exposed-hidden. This formula realizes two compositional objectives:

(1) Overall, the drone is perceived as a subordinate entity in context of the textural dimension; the drone's emergence, flourishing and subsequent submersion occur in an opportunity granted by a lull in the harbouring forces of the textural layer.

(2) In a broad perspective, the drone's hidden regions function as transitions in the transfer of predominant continuity; in the first instance, drone absorbs continuity of texture, and in the second (as mentioned earlier), texture absorbs continuity of drone. Examples 2c and 2d clearly demonstrate the relative rhythmic activity of texture and drone.

Interim destinations

The continuity of texture and drone is, in either case, oriented to a specific interim destination. These destinations are climactic in setting, and are intended perceptually as instances to which motion "must" proceed, and from which it "must" recede (motion here includes all aspects contributing to the overall sense of momentum or propulsion).
The sense of climax is clearly achieved at each destination; there can be no doubt when factors of increase particular to each continuity have reached maxima. The interim destination of drone is its climactic apex occurring at F5. The interim destination of texture is the textural climax (and, indeed, the obvious climax of the entire composition) occurring in H3-1.

Structural complex

The form of *The Silent Dragons* is best described as a structural complex including four disparate substructures (Example 4): (1) the positioning of the two interim destinations, (2) the three movement division of the textural dimension, (3) the embedded ternary form of the drone, and (4) the textural spectrum per se. The complex is shown in Example 4, in which the rising and falling lines indicate fluctuations in the relative predominance of texture (red) and drone (blue), and interim destinations (instances of maximal predominance) are indicated as the high point of each line. This complex constitutes the basic objective of the work: that interest is to be generated and sustained by the recognition of the four disparate substructures in their unfolding as unified macro structure; and while the title, *The Silent Dragons*, unavoidably suggests programmatic or extra-musical associations, it is not intended to generate specific expectations, but to encourage any such associations as may arise in the individual listener.
STRUCTURAL COMPLEX

a) Interim Destinations

b) Time Frames
c) Textural Spectrum

Drone

Textural

MVT.I

(c.7:00)

TEXTURE

Embedded
Ternary

MVT.II

(c.5:00)

DRONE

(melismatic)

MVT.III

(c.6:00)

TEXTURE

A'

A'

Drone;
Climactic
Apex

Textural
Climax

[7:00] [12:00] [18:00]

85" 77" 95" 160"

Pianos
Perc-low
Chorus
Strings
Perc-high
Brass

example 4
THE SILENT DRAGONS

Music and text composed by HOWARD BASHAW

I) INSTRUMENTATION

4 PERCUSSION
1) Finger Cymbals
 Gongs (2)
 Tam Tam
 Timbales
 Wind Chime

2) Bongos
 Inverted Cymbal
 on Timpani
 Wind Chime

3) Suspended Cymbal
 Temple Blocks
 Wind Chime
 Wood Block

4) Bass Drum
 Congas
 Suspended Cymbal
 Wind Chime

2 PIANOS

8 VOICE MALE CHORUS (amplified)
4 Tenors (1 solo)
4 Basses (1 solo)

10 STRINGS
4 Violas, 6 Violins

6 BRASS
2 Tenor Trombones, 2 Bass Trombones, 2 Tubas

CONDUCTOR

II) STAGING

- Piano 1
- Violas
- Violins
- (solo) Tenors
- X

- Percussion
- Piano 2
- Tubas
- Trombones
- Basses (solo)
- X
III) **NOTATION**

1) no tempo or cancel previous tempo

2) independent tempo: performer ad lib

3) dependent tempo: conducted

4) repeat composed unit

5) improvise on composed unit

6) PIANO: black and white key cluster

7) extreme upper (or lower) register - approx. 1 octave

8) taper - out (rit/dim) performer ad lib

9) accel./cresc. poco a performer ad lib

10) Time Frame System

- a) rehearsal numbers
- b) designated succession of cues
- c) approx. time in seconds between frames
IV) TEXT

The text for The Silent Dragons was composed for acoustic effect alone. No meaning is otherwise intended. Any resemblance to existing language(s) is purely coincidental.

<table>
<thead>
<tr>
<th>PRONUNCIATION</th>
<th>Text</th>
<th>Sounds</th>
<th>Text</th>
<th>Sounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>ai</td>
<td>aye</td>
<td></td>
<td>lin</td>
<td>Lynn</td>
</tr>
<tr>
<td>ba</td>
<td>-</td>
<td></td>
<td>lum</td>
<td>loom</td>
</tr>
<tr>
<td>ban</td>
<td>-</td>
<td></td>
<td>mwe</td>
<td>now</td>
</tr>
<tr>
<td>bin</td>
<td>been</td>
<td></td>
<td>mon</td>
<td>-</td>
</tr>
<tr>
<td>boh</td>
<td>bow</td>
<td></td>
<td>mud</td>
<td>mood</td>
</tr>
<tr>
<td>da</td>
<td>-</td>
<td></td>
<td>na</td>
<td>nah</td>
</tr>
<tr>
<td>dae</td>
<td>day</td>
<td></td>
<td>ni</td>
<td>knee</td>
</tr>
<tr>
<td>din</td>
<td>-</td>
<td></td>
<td>noe</td>
<td>know</td>
</tr>
<tr>
<td>do</td>
<td>doe</td>
<td></td>
<td>pen</td>
<td>-</td>
</tr>
<tr>
<td>doi</td>
<td>-</td>
<td></td>
<td>poh</td>
<td>poe</td>
</tr>
<tr>
<td>han</td>
<td>-</td>
<td></td>
<td>rae</td>
<td>ray</td>
</tr>
<tr>
<td>hin</td>
<td>heen</td>
<td></td>
<td>so</td>
<td>-</td>
</tr>
<tr>
<td>hoh</td>
<td>hoe</td>
<td></td>
<td>say</td>
<td>-</td>
</tr>
<tr>
<td>hye</td>
<td>high</td>
<td></td>
<td>tae</td>
<td>tay</td>
</tr>
<tr>
<td>kran</td>
<td>-</td>
<td></td>
<td>tai</td>
<td>tie</td>
</tr>
<tr>
<td>kin</td>
<td>keen</td>
<td></td>
<td>tin</td>
<td>-</td>
</tr>
<tr>
<td>hon</td>
<td>-</td>
<td></td>
<td>tney</td>
<td>tray</td>
</tr>
<tr>
<td>lan</td>
<td>-</td>
<td></td>
<td>yey</td>
<td>yea</td>
</tr>
</tbody>
</table>

V) NOTES TO THE CONDUCTOR

The Silent Dragons is scored in a flexible time-frame system. This system is specifically designed to (1) provide the conductor maximal opportunity to exercise personal interpretation, and (2) coordinate simultaneous tempi in a logical system permitting easy and direct interaction between conductor and performer.

The score provides immediate access for manipulation (in performance) of the following: (1) the rate of successive entries, (2) the duration between successive time frames, (3) dynamic control on both micro and macro levels, and (4) phrase shaping relative to variance in tempi and cumulative dynamics.

The conductor's primary concerns are to cue entries and shape phrases. Individual performers are responsible for establishing independent tempi and for terminating passages in the prescribed manner.
* BEC TAKEN OUT WITH TAM TAM OBLAAT

** WOKE ENTER BASSES AFTER PARK REACH P.

** ** STOP IMMEDIATELY AFTER BASS AND DRUM ENTER (AS 1b)

* BEC TAKEN OUT WITH TAM TAM OBLAAT

** WOKE ENTER BASSES AFTER PARK REACH P.

** ** STOP IMMEDIATELY AFTER BASS AND DRUM ENTER (AS 1b)
SUS CVM
SUS CVM
CVM Tmp
SUS CVM
SUS CVM

SNAP CUE AFTER ALL ORCHESTAS HAVE DROPPED OUT

** SNARES CUE CAVAL AND BREAK AFTER PERCUSSION EST.

TRBS
(TROM)
TUBAS

mp
pp
Begin each phrase with 'tie'.

Ad lib. vowel changes be-ah freely.
* Chorus enter briefly after spoken phrase (F). Join bass at pitch.

** Chorus: Begin conducting only after:

* Tuba III has joined solo bass on DmE. Move away (and) after bass complete passage.
Timb.
Wood
Bassos
Contras

PNO I

PNO II out are as chorus entries (ad 1:15)

Solo Tenor

Basses

Chords: Enter Strings I-II IV VI as chorus entries (ad 1:15)
When brass reach H (see office), Boss I chorus fade out symmetrically after ad 1:15

Vlas

Tuba I-II

Tuba I-II

PPP

P
END OF BOLD SECTION
2 1/2" AFTER PNO I
FINISHES (EQ 26)
NOTE: EACH REPEATED UNIT IS APPROX 15"
WIND

MUSES

*\(X \) \(X \) \(X \)

\(4 \)

\(4 \)

\(\text{NOC} \)
END ENTER CHORUS 25"
AFTER PERC 1-5) FINISH.