
A S T U D Y OF NUTATION D A M P E R S WITH APPLICATION 

TO WIND INDUCED OSCILLATIONS 

b y 

F R A N C O I S W E L T 

B . S c , E c o l e P o l y t e c h n i q u e d e M o n t r e a l , 1 9 7 9 
M . A . S c , T h e U n i v e r s i t y o f B r i t i s h C o l u m b i a , 1 9 8 3 

A T H E S I S I N P A R T I A L F U L F I L M E N T O F 

T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F 

D O C T O R O F P H I L O S O P H Y 

i n 

T H E F A C U L T Y O F G R A D U A T E S T U D Y 

D e p a r t m e n t o f M e c h a n i c a l E n g i n e e r i n g 

W e a c c e p t t h i s t h e s i s a s c o n f o r m i n g 

t o t h e r e q u i r e d s t a n d a r d 

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A 

J a n u a r y 1 9 8 8 

@ F r a n c o i s W e l t , 1 9 8 8 



In presenting this thesis in partial fulfilment of the requirements for an advanced 

degree at the University of British Columbia, I agree that the Library shall make it 

freely available for reference and study. I further agree that permission for extensive 

copying of this thesis for scholarly purposes may be granted by the head of my 

department or by his or her representatives. It is understood that copying or 

publication of this thesis for financial gain shall not be allowed without my written 

permission. 

Department of NlECviAuicftL £kJCiMEE-RitJ Q 

The University of British Columbia 
1956 Main Mall 
Vancouver, Canada 
V6T 1Y3 

Date Jfrv] .28 m% 



A B S T R A C T 

ii 

Energy dissipation due to sloshing liquid in torus shaped nutation dampers is 

studied using the potential flow model with nonlinear free surface conditions in 

conjunction with the boundary layer correction. Special consideration is given to 

the case of resonant interactions which were found to yield interesting damping 

characteristics. An extensive test program with the dampers undergoing steady-

state oscillatory translation is then undertaken to establish the optimal damper 

parameters. Low liquid heights and large diameter ratios with the system operating 

at the liquid sloshing resonance are shown to result in increased damping, while 

low Reynolds numbers and presence of baffles tend to reduce the peak efficiency by 

restricting the action of the free surface. Tests with two-dimensional as well as three-

dimensional models in laminar flow and boundary layer wind tunnels suggest that 

the dampers can successfully control both the vortex resonance and galloping types 

of instabilities. Applicability of the concept to vertically oscillating structures such 

as transmission lines is also demonstrated with dampers undergoing a rotational 

motion about their horizontal axis. 
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1. I N T R O D U C T I O N 

l 

1.1 Preliminary Considerations 
A number of large structures such as smokestacks, tall buildings, bridges and 

other bluff bodies are known to oscillate under the action of the natural wind. A l ­

though there are many possible mechanisms for such behavior, it is the relatively 

low frequency cross-flow response generated by vortex resonance or galloping that 

has been often identified as the cause for structural damage. Vortex resonance 

takes place when the frequency of the alternate vortices i n the wake of a struc­

ture, being governed by the Strouhal number, coincides with one of the natural 

frequencies of the structure itself (Fig. l a ) . Large amplitudes can generally be 

reached under conditions of low inherent damping and favorable wind velocities. 

More recent occurrences involving tall smokestacks have been reported by Hirsch 

and Ruscheweyh 1, and C h a u l i a 2 . Conditions creating the presence of an asymme­

try i n the wake of a bluff body with the wind having a certain angle of attack may 

cause galloping. It is a type of self-induced oscillation which takes place when the 

body is aerodynamically unstable while the excitation is generated by the motion 

itself, as illustrated i n F i g . 1(b). A classical example is the galloping of sleeted 

transmission lines under severe icing conditions. 

Due to their widespread occurrences and the extent of damage, prediction and 

suppression of wind-induced oscillations have been the object of many studies. A 
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v o r t i c e s 

p l a n v i e w 

Fig. 1 W i n d induced instabilities of bluff bodies undergoing: (a) vortex res­
onance; (b) galloping 
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common approach to reduce vortex resonance has dealt with the modification of 

the fluid mechanics responsible for the time dependent excitation and has led to 

the design of helical strakes, perforated shrouds, slats and other such devices (Fig. 

2a). This is also referred to as an addition of external or aerodynamic damping. 

The concept of strakes has often been used around steel smokestacks and in ocean 

engineering applications, although the resulting increase in aero or hydrodynamic 

drag associated with most of these devices is a serious limitation. 

As the response to wind excitations was also found to be quite sensitive to 

internal damping, another approach has been the installation of various types of 

passive devices such as tuned mass or impact dampers, hydraulic dashpots, etc. 

(Fig. 2b). A tuned mass damper essentially consists of an auxiliary mass attached 

to the main structure by a simple configuration which provides stiffness and damp­

ing. It is optimized to acheive minimum response of the primary system to a known 

excitation. The Stockbridge damper used on transmission lines is another example 

of such arrangements, where two heavy weights linked by a cable provide counter­

acting motion while energy is dissipated within the cable strands. Tower or bridge 

trusses can similarly be equipped with secondary masses supported by a rubber 

stem 3. More sophisticated arrangements of counteracting masses have resulted in 

the development of active systems. The choice of material, size, and performance 

independent of the wind direction are of course important considerations in their 

designs. 
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Fig. 2 Several typical devices providing: (a) external damping; (b) internal 
damping 
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In the same category of devices belongs a relatively simple concept involving the 

motion of a liquid within a closed container with dissipation of energy through the 

action of viscous and turbulent stresses. The presence of a free surface permits sig­

nificant displacement of the sloshing fluid. This thesis proposes axisymmetric torus 

shaped containers, also called nutation dampers, as a means to suppress wind-

induced oscillations. Motivation for the present investigation came from spacecraft 

technology where partially filled containers are frequently used to control very long 

period (90 minutes to around 24 hours) librational motion. As the frequency en­

countered in wind-induced instabilities of large structures is relatively low, typically 

less than 1 Hz, it seemed appropriate to explore applicability of nutation dampers 

to this class of problems. 

1.2 Literature Survey 

Scruton and Walshe4 made a significant contribution to the suppression of 

the vortex resonance type of wind-induced oscillations with the concept of helical 

strakes for structures of circular cross-sections in the 1950's, while Price5 intro­

duced the perforated shrouds. A number of other aerodynamic devices, such as the 

slat configuration6, were subsequently proposed. A comprehensive classification of 

the devices and comparative assessments were later undertaken by Zdravkovich7, 

as well as Every, King and Weaver8 who discussed the instabilities of immersed 

marine cables. Wong and Cox9 drew a less extensive comparison scheme based on 

systematic wind tunnel tests. However, only a few studies such as the exploratory 
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work by Naudascher et al . 1 0 have attacked the problem of galloping instabilities 

using this approach. 

Meanwhile, ways of increasing energy dissipation within structures have received 

an equal amount of attention. In the 1960's, Reed1 1 investigated the applicability of 

impact dampers to lightmasts and antennas. The installation of hydraulic dashpots 

on guyed structures was well illustrated by Den Hartog12, and more recently the ad­

dition of viscoelastic material into the walls was modelled analytically by Gasparini 

et al . 1 3 , with Ogendo et al . 1 4 presenting results on a full-scale steel smokestack 

foundation. 

However, it is the tuned mass damper, also called dynamic vibration absorber, 

that has been most popular with a wide range of practical applications to bridges 

and towers, as indicated by Wardlaw and Cooper15 as well as Hunt 1 6 . Performance 

of the device on steel smokestacks was evaluated and compared against that of heli­

cal strakes during wind tunnel tests in smooth flow by Ruscheweyh17, and results in 

turbulent flow were given by Tanaka and Mah 1 8 . Stockbridge dampers, bearing the 

name of the inventor19, are used extensively for controlling transmission line oscil­

lations. Their application to this class of problems is still under investigation2 0 - 2 1. 

Several analytical schemes have also been developed by Schafer and others 2 2 - 2 4 to 

predict the damped response of conductors. An extension of the concept of tuned 

mass dampers has been the introduction of active or semi-active systems including 
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a feedback mechanism to control inertia forces25. They also have been considered 

for earthquake applications as indicated by Chowdhury et al . 2 6 and Yang 2 7. Hirsch 

et a l . 2 8 - 3 0 have reviewed this literature at some length. 

Another interesting development has been to exploit the liquid motion within 

a closed container to design suitable dampers. Brunner31 studied a full-scale tank 

containing viscous oil flowing through stacks of perforated plates on a smokestack, 

and Berlamont32 considered the water tank of a tower fitted with baffles. However, 

it is Modi et al . 3 3 who first carried out wind tunnel tests to validate the idea. Very 

recently, Bauer34 proposed utilizing the sloshing motion of two immiscible liquids 

within a rectangular container, while Kwek3 5 used a tank of water to provide the 

auxiliary mass with energy dissipation taking place in the shock absorbers support­

ing the system. 

Liquid sloshing has had limited success with ship stability16, however, it has 

been used extensively to control nutation motion of satellites. Although many stud­

ies have dealt with its effect on satellite dynamics 3 6 - 4 1 , relatively little is known 

about the damper behavior. A few experimental investigations have been reported 

by several authors 4 2 - 4 3 . Alfriend44 tried to theoretically analyse the flow as a rigid 

slug moving inside the ring and Tossman45 predicted damping characteristics for a 

tube fitted with a solid rolling ball. However, one has to turn to the early research 

efforts at agencies such as NASA or ABMA (which were concerned with fuel-rocket 
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interactions), to find important information about liquid sloshing theory. These 

contributions are reviewed by Cooper46 and Abramson47. Interests of civil engi­

neers such as Jacobsen48 and Housner 4 9 - 5 0 , to predict water tank response under 

earthquake excitation, have also contributed to the field. 

Earlier studies were aimed at analytical solutions of a potential function for 

linearized free surface conditions, with typical work by Graham and Rodriguez51, 

and Chu 5 2 for rectangular and elliptical containers under harmonic excitation, re­

spectively. Bauer53 derived a theory for the straight wall torus. More complicated 

problems started to be examined, such as the compartimented cylindrical tank54 

or the flexible wall interaction based on a variational approach55, sometimes re­

quiring numerical procedures 5 6 - 5 8. Equivalent mechanical models also emerged to 

simplify analysis 5 9 - 6 0 and reached a high degree of sophistication with models by 

Bauer61 and the pendulum analogy by Sayar62. Meanwhile, nonlinear free surface 

conditions were included with Hutton's theory63 for circular cylinders in particular, 

to be followed by Woodward and Bauer's approach64 for the torus case. These 

formulations were then applied by Abramson65 and Chen 6 6 to derive sloshing gen­

erated pressure forces on container walls, and were substantiated by experiments. 

Recently, Miles 6 7 derived a fairly general theory based on the variational principle 

proposed by Whitham68 and others 6 9 - 7 0 , and verified Hutton's results for circular 

cylinders71. He also included a solution procedure for the case of resonant interac­

tions encountered in liquid sloshing72. This typically nonlinear behavior has been 



9 

found in many ocean wave problems77-78, as summarized by Philips76, as well as 

in other areas of research 

Consideration for the damping terms came from Ocean Engineering in the 

1950's, with Hunt79 and Ursell80 linearizing the momentum equations account­

ing for viscosity. Case and Parkinson81 applied the theory to cylindrical containers 

undergoing small oscillations, while Miles82 modified it to include surface tension ef­

fects. The method is frequently used nowadays83-84, with additional consideration 

often given to nonlinear terms 8 5 - 8 6. Experimental results were obtained by Silviera 

et al. 8 7 and Stephens et al. 8 8 for circular tanks with and without baffles, respec­

tively, while Summer and Stophan89 found damping characteristics for a spherical 

container based on a dimensional analysis. More recently, torus shaped nutation 

dampers were investigated during free vibration tests in a preliminary study90 at 

the University of British Columbia. 

1.3 Scope of the Investigation 

Optimal efficiency of nutation dampers is first sought through a combination of 

theoretical and experimental procedures aimed at providing a better understanding 

of the energy dissipation mechanisms during liquid sloshing. Relatively low vis­

cosity fluids are investigated using a nonlinear potential flow model in conjunction 

with the thin boundary layer correction. The associated theory derived by earlier 

investigators • ' f o r straight wall containers is extended to include a solution 
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f o r t h e r e s o n a n c e o f t h e h i g h e r o r d e r t e r m s f o u n d t o b e p r e s e n t f o r a c e r t a i n c l a s s 

o f d a m p e r s . T h e m e t h o d t h u s p r e d i c t s t h e p r e s s u r e a n d b o u n d a r y l a y e r d a m p i n g 

f o r c e s a n d p r o v i d e s i m p o r t a n t i n f o r m a t i o n a b o u t t h e c o n t r o l l i n g p a r a m e t e r s , r e s o ­

n a n t c o n d i t i o n s , k i n e t i c e n e r g y , e t c . 

T h i s i s f o l l o w e d b y a n e x t e n s i v e t e s t p r o g r a m t o a s s e s s v a l i d i t y o f t h e t h e o r y 

a s w e l l a s t o s u p p l y m o r e a c c u r a t e d a t a n e e d e d f o r p r a c t i c a l a p p l i c a t i o n s . E m ­

p h a s i s i s p l a c e d o n t h e c o n d i t i o n s f o r m a x i m u m d a m p i n g b y g e n e r a l l y o p e r a t i n g 

a t t h e n a t u r a l f r e q u e n c y o f t h e f i r s t a n t i s y m m e t r i c s l o s h i n g m o d e d u r i n g f r e e a n d 

f o r c e d o s c i l l a t i o n t e s t s , a s s u g g e s t e d b y p r e v i o u s i n v e s t i g a t i o n s 9 0 . P e r f o r m a n c e o f 

d a m p e r s f i t t e d w i t h a d d i t i o n a l d e v i c e s s u c h a s b a f f l e s i s r e a s s e s s e d i n t h i s p r o c e s s . 

T h e m a i n o b j e c t i v e i s t o a r r i v e a t a n o p t i m u m c o m b i n a t i o n o f s y s t e m p a r a m e t e r s 

s u c h a s d a m p e r g e o m e t r y (D, d, h), l i q u i d p r o p e r t i e s (p, Vf), a n d e x t e r n a l v a r i a b l e s 

o f e x c i t a t i o n a m p l i t u d e (eo) a n d f r e q u e n c y (ue) l e a d i n g t o m a x i m u m d i s s i p a t i o n o f 

e n e r g y t h r o u g h l i q u i d s l o s h i n g . S o m e o f t h e v a r i a b l e s a r e i n d i c a t e d i n t h e s k e t c h 

b e l o w . 
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Application of the concept to control vortex resonance and galloping types of 

wind-induced oscillations is subsequently investigated during wind tunnel tests. Al­

though a successful model to approximate response of circular cross-section geome­

tries is not yet available, considerable experimental data have led to well estab­

lished empirical procedures 9 1 - 9 2. Furthermore, the galloping theory has shown to 

accurately predict oscillations of a square prism with viscous damping 9 3 - 9 4 . Ex­

periments were therefore designed to permit analysis of the response based on this 

information. Elastically mounted circular and square cylinders fitted with various 

types of nutation dampers were tested in simulated conditions of smooth and tur­

bulent winds rising the closed circuit laminar flow and the boundary layer wind 

tunnels of the Department. The models underwent either two-dimensional plung­

ing or three-dimensional rotational motion. Quantitative assessment of the damper 

performance under these highly nonlinear excitation conditions was carried out, and 

effect of the controlling parameters such as damper geometry, liquid height, internal 

configuration, etc., compared with the results obtained during the liquid sloshing 

study to arrive at final recommendations. 



2. A N A P P R O X I M A T E A N A L Y T I C A L A P P R O A C H 

T O P R E D I C T E N E R G Y D I S S I P A T I O N 

12 

2.1 P r e l i m i n a r y R e m a r k s 

T h e v e l o c i t y field w i t h i n a simple r i g i d torus d a m p e r o s c i l l a t i n g h a r m o n i c a l l y i n 

t r a n s l a t i o n c a n be a p p r o x i m a t e d b y a p o t e n t i a l flow s o l u t i o n w i t h the assumptions 

t h a t viscous effects are restricted to a s m a l l b o u n d a r y layer region a n d the flow 

is l a m i n a r . A n a d d i t i o n a l t e r m a c c o u n t i n g for the v e l o c i t y profile at the walls is 

i n t r o d u c e d to assess energy d i s s i p a t i o n t h r o u g h the a c t i o n of the viscous forces. 

T h e procedure is s i m i l a r t o the one adopted by Case a n d P a r k i n s o n 8 1 . A l t h o u g h 

the v a r i a t i o n a l f o r m u l a t i o n has lately been quite p o p u l a r to solve for the p o t e n t i a l 

f u n c t i o n , a conventional E u l e r i a n a p p r o a c h is used here to exploit some of the results 

f o u n d b y previous investigators. It s h o u l d be noted t h a t the s t u d y is restricted to 

s t r a i g h t w a l l d a m p e r s t o f a c i l i t a t e u n d e r s t a n d i n g of the p r o b l e m , a n d the pressure 

forces are c a l c u l a t e d a p p l y i n g B e r n o u i l l i ' s equation at the boundaries. 

2.2 P o t e n t i a l F l o w S o l u t i o n 

2.2.1 B a s i c E q u a t i o n s 

T h e p o t e n t i a l f u n c t i o n $ ( r , 0, z,t) represents a s o l u t i o n of the differential equa­

t i o n , 

V 2 $ = 0, (1) 



w i t h t h e b o u n d a r y c o n d i t i o n s : 

dn 
= Vn a t t h e w a l l ; 

d 2 $ a $ a $ a 2 $ 2 a $ a 2 $ 
+ ff^- + 2 — — — + — — - — — + ... = 0; 
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( 2 a ) 

(26) 
dt2 * dz dr drdt r 2 dO d6dt 

r e p r e s e n t i n g c o m b i n e d k i n e t i c a n d k i n e m a t i c c o n d i t i o n s a t t h e f r e e s u r f a c e . H e r e 

$ = $ + $/; 

$ = p o t e n t i a l f u n c t i o n r e l a t i v e t o m o v i n g c o o r d i n a t e s r , 0,z\ 

$ / = p o t e n t i a l f u n c t i o n f o r t h e d a m p e r s o l i d b o d y m o t i o n . 

O t h e r g e o m e t r i c v a r i a b l e s a r e i l l u s t r a t e d i n F i g . 3 . 

0 x 

1 n e r t i a I 
R e f e r e n c e 

€ 0 s i n c u e t 

F i g . 3 G e o m e t r y o f t h e s q u a r e s e c t i o n d a m p e r s e l e c t e d f o r a n a l y t i c a l s t u d y 

A t t h i s s t a g e , i t i s c o n v e n i e n t t o d e f i n e t h e d i m e n s i o n l e s s p a r a m e t e r s : 
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• potential function : $ = 
Rfan' 

• moving coordinates : f = z = 
Ro Ro 

• excitation amplitude and frequency : co = 4°-, CJ = 

• time : r = u>n t. 

2.2.2 Linear Solution 

As the free surface occupies different orientations during the damper motion, 

a standard Taylor series expansion of equation (2b) around z = 0 is used and a 

linear solution obtained by neglecting second and higher order terms (Appendix 

I). Applying the procedure of separation of variables, the linearized system yields 

a solution in terms of the Fourier-Bessel expansion, as found by Bauer53, and is 

presented here in a dimensionless form: 

5 » V ^ r r< i \ McoshAit(2 + fc) 
<P = e 2_j yitW (Ai,r) — s — - cos 0 cos UT; (3a) 

. coshAi,7i 
where: 

e = dimensionless amplitude of the disturbance, c0w; 

fu = amplitude coefficient of mode (l,i), i.e. 1st circumferential, 

ith transverse mode, ^}^U\ ^y.^1^.1*^ ', (36) 
[ ( w i i / w ) - I j A i , -

with: 

a = g , and Alt- = j[C1
2(Ali)(A?1. - 1) - C2(AM«)(A?f.«a - 1)]; 

(jju = liquid natural angular frequency in mode (l,i), i.e., -^-ctu] 

Ro 
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Ait = e i g e n v a l u e f o r m o d e ( l , i ) , r e p r e s e n t i n g s o l u t i o n o f : 

C ( ( A l t ) = 0 , w i t h C1(Xlif) = J^Xuf)-^ n ( A i . T ) ; 

a n d a i , - = t a n h ( A i , 7 i ) , h = ——. 
RQ 

N o t e J i a n d Y\ a r e B e s s e l f u n c t i o n s o f t h e f i r s t a n d s e c o n d k i n d , o r d e r o n e , r e s p e c ­

t i v e l y , a n d p r i m e d e n o t e s d i f f e r e n t i a t i o n w i t h r e s p e c t t o f . O f c o u r s e , t h e l i n e a r 

s o l u t i o n c a n n o t b e e x p e c t e d t o b e a c c u r a t e f o r h i g h e r d i s t u r b i n g a m p l i t u d e s e, a n d 

i s n o t v a l i d n e a r r e s o n a n c e a s t h e e x p r e s s i o n f o r $ b e c o m e s v e r y l a r g e a n d g o e s t o 

i n f i n i t y f o r u>e = uu. T w o c a s e s a r e t h e r e f o r e c o n s i d e r e d t o e x t e n d t h e a n a l y s i s t o 

t h e n o n l i n e a r r a n g e . 

2 . 2 . 3 N o n l i n e a r , N o n r e s o n a n t S o l u t i o n ( w e 96 w i i ) 

A p e r t u r b a t i o n m e t h o d i s a p p l i e d u s i n g t h e p r o c e s s o f i t e r a t i o n v a l i d f o r s m a l l 

p a r a m e t e r s c w h e r e a t h i r d o r d e r e x p a n s i o n i s a s s u m e d , i . e . , 

$ = 6$(D + ? 2 $ ( 2 ) + g » $ ( S ) + _ (4) 

H e r e i s t h e l i n e a r t e r m o f s e c t i o n 2 . 2 . 2 , a n d c a n b e d e r i v e d b y s u b s t i t u t i n g 

f o r i n t h e s e c o n d o r d e r f r e e s u r f a c e c o n d i t i o n ( A p p e n d i x 1 .2 ) . I t i s f o u n d 

( A p p e n d i x I I . 1) t h a t , 

+ / 2 n C 2 ( A 2 n f ) c o s h A 2 n ( z + h) 

c o s h A 2 n / i 
c o s 26 s i n 2 d r , 

w h e r e : 
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font fin — amplitude coefficients of (0,n), (2,n) mode, respectively; 

Aon>A2n = eigenvalues of (0,n), (2,n) mode, respectively, i.e., 

solution of: C 0(Ao na) = 0 and C'2(\2nO) — °. 

$^ ' can similarly be obtained although it was not considered here. The stability 

condition is presented in Appendix II.2. The solution is not always valid due to 

the resonance of the nonlinear higher modes at certain values of CJ, as discussed 

in section 2.2.5 later. The occurrence of such singularities is, however, localized 

to a small range of excitation frequencies and is generally not dealt with in this 

study. One case of interest involves the first transverse, second circumferential 

mode responsible for the resonant interactions around CJ = 1 , and is treated in the 

next section. 

2.2.4 Nonlinear, Resonant Solution (we « w l t) 

A different expansion is required for the solution around the first axisymmetric 

circumferential mode (CJ « 1) by taking the excitation to be of the order of the 

nonlinear terms in equation (2b), i.e., 

where q < 1, determined through the iterative process. A detuning equality required 

to eliminate secular terms is defined as 

(5) 

(6) 
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The first order equation reduces to the free vibration linear case, i.e., 

d*$W i 

for the first transverse mode shapes oscillating at the natural frequencies u>u, and 

by neglecting the higher modes leads to the solution of the form 

$V > = Cx(Anr) — - fn cos[0 + (pii) coswr 
coshAn/i L 

+ fn sin(0 + £n) sinwr , (8) 

where fu, fn are the amplitude coefficients for the solution, and <pu, £u are 

the phase angles in 6. However, for the case where higher circumferential natural 

frequencies are multiple of the first mode (o;nl « nwn), additional significant terms 

appear in equation (8). This is the condition for resonant interactions treated 

separately in the subsequent analysis. 

2.2.4.1 No Interactions (wnl 96 n«„i) 

The analysis is similar to Hutton's theory for circular cylinders63 with a major 

difference in the type of Bessel functions describing the transverse modes. Only 

a short outline of the procedure and results, useful to introduce the next case, is 

therefore pesented. Second and third order expressions are found in terms of 

by substituting relation (8) into (2b). The exponent of the perturbation parameter 

is required to be q = 1/3, and the detuning parameters U\ and i / 2 of (6) as well 

as the coefficients fu, f l x and phase angles c p n , £ n of (8) are found by setting 

the secular terms containing cos(0 + <pu) cos CJT or sin(0 + £ 1 1 ) sin CJT to zero in the 



18 

2nd and 3rd order free surface conditions while using a multiple time-scale analysis. 

T h e expansion 

T = T0 + Ti + T2 + (9) 

where ro = T, T\ = e ^ r , and r 2 = e 2 / 3 r , yields two limit cycles: 

planar solution: f n = <Pu = tu = 0; and / u satisfying 

nonplanar solution: 

hi{K1f^1 + u2) + F1 = 0; (10a) 

stable for : - ^ - ( ^ - - 2^/^) < 0, (106) 
fii In 

(10c) 
hi hi 

V i i = £ u = 0; with fn satisfying 

fu[-{KKx - 2KJ& + v2\ + JZ±-FX = 0, (11a) 

and ch = fii + 
Fi 1 

(116) 

stable f o r : ^ ^ ^ < 0,real. (11c) 

Here i / 2 is a function of the excitation. Fi, K\ and KK\ are damper geometry 

dependent parameters while B and C vary with fu, Kx, KKX (Appendix III.l). 

T h e second order terms are 

$( 2 ) = V 2 n s i n 2 0 c o s 2 w r + (V>on + V » 2 n c o s 2 0 ) sin2wr, (12a) 

where: 

V>0n = f W / u - f l l ) C o ( A o n ^ ) 

V'2n = n 2 n ( / 1
2

1 + c 1
2

1 ) c 2 ( A 2 n f ) 

c o s h A 0 n ( « + h) 

cosh Aon^ 

c o s h A 2 n ( £ + h) 

cosh A 2 n / i 

(126) 

(12c) 
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2 . 2 . 4 . 2 Resonant Interactions (oJni n w n ) 

It is found that, for dampers with a going to 1 and relatively small h, higher 

natural frequencies of the first transverse mode tend to be near multiples of w u , 

A 

For instance, w 2 i = 1 . 9 9 w n , u>31 = 2 . 9 6 u ; i i , etc., for a = 0 . 9 and h = 0 . 1 0 . 

This particular situation leads to relatively large terms in the nonlinear solution 

described in the previous section which would make the expansion invalid. T h e 

following development recognizes that the super harmonic modes multiple of w u 

are now solution of the 1 s t order free surface condition. T h e generating solution is 

then 

* ( D r> t\ ^ c o s h A n ( z + h) r 
= C i ( A u r ) v / n c o s ( g + ¥ ? i i ) c o s b ; r 

c o s h A n / i L 

+ f i i s i n ( 0 + ( fn)sinwrj 

_ c o s h A 2 i ( z + h) r , , „ 
+ C M A 2 i f ) — L / 2 1 c o s ( 2 0 + v ? 2 i ) c o s 2 w r 

c o s h A 2 i / i «• 

+ f 2 i s in (20 + £2i) sin 2 w r J 

„ . , ^. cosh A 3 i ( z + h) r . . „ 
+ C 3 ( A 3 i f ) u « ' / 3 i c o s ( 3 0 + v ? 3 i ) c o s 3 w r 

c o s h A 3 i / i >• 

+ c r 3 1 s in (30 + £ 3 1 ) sin 3 w r ] 

+ etc., ( 1 3 ) 

where the number of interactions strictly depend on the damper geometry parame­

ters a and h. T h e problem, however, becomes quite complex with additional terms 

i n and it is assumed that / 3 1 , f 3 1 , / 4 1 , etc., are small compared to the coeffi­

cients of the first two modes and can be neglected. This was found to be always true 

for a particular class of dampers (typically 0 . 5 < a < 0 . 6 ) where only two interac-
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tions occurred. This study is also restricted to the planar mode, and contributions 

from nonplanar f u and / 2 i coefficients to stability requirements are ignored. $ ^ 

thus reduces to 

jk(D t ra, f \ *x cosh A n (z + h) 
$l > = fu c o s ( d + v ? i i ) C i ( A n r ) - — s — - c o s w r 

cosh A n ^ 
^ . , . . . cosh A 2 i ( z + h) . . . 

+ f 2 i C 2 ( A 2 i f ) sin(20 + 6 1 ) - ;sin2£>r. (14) 
cosh A 2 i / i 

A second detuning equality as in (6) is now introduced, 

= 4 - foe* - 02e2* - (15) 
r.2 11 

2 
" 2 1 

u> 

and a procedure similar to that of the previous case is used to solve for ux, i / 2 , 

Pi, P2, / i i i f 2 i , ¥>n and £n, with secular terms in cos(0 + <p\\) coswr as well as 

sin(20 + £21) sin2<2>r set to zero in both 2nd and 3rd order free surface conditions. 

This approach is similar to the one employed by Bajkowski et a l . 9 5 . The coefficients 

fiii f 2i> and phase angles <pu and £ n are now function of the slow time scales T\ 

and r 2 as defined in (9). Details of the analysis are given in Appendix III.2. The 

exponent of the perturbation is taken to be q = 1/3 as it is desirable to obtain a 

limiting solution that tends towards the previous case when the interactions become 

small. The results are as follows: 

<Pu = 0, £ 2 1 = - j ; 

with fu and f 2 i solution of the 3rd order nonlinear system of equations: 

/ i i ( # i / i 2 i + # i f 2
2 i + V2) + Fx = 0; 

(16) 
f 2 l ( i f 2 f | i + ^ 2 / n + ) 9 2 ) =0. 
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H e r e u2 = v — 0 ^ 2 1 , a n d / ? 2 = P — b\ -^-> w i t h v a n d /? f u n c t i o n s o f t h e e x c i t a t i o n 
£ 2 1 

a n d d a m p e r g e o m e t r y . T h e s t a b i l i t y c o n d i t i o n i s r e p r e s e n t e d b y 

( / » ) • > Z ^ A , ( 1 7 ) 

a s s h o w n i n A p p e n d i x I I I . 2 . 3 . T h e s e c o n d o r d e r t e r m s a r e o f t h e f o r m ( A p p e n d i x 

I I I . 2 . 1 ) 

$ ( 2 ) = ( ^ l n c o s 0 + A i n c o s 3 0 ) c o s w r + (fan c o s 2 0 + A 2 n ) s i n 2 u > T 

+ (03n c o s 3 0 + A 3 n c o s 0) c o s 3 w t + (V>4n c o s 4 0 + A 4 n ) s i n ACJT, ( 1 8 a ) 

w h e r e : 

c o s h A m „ ft. 

A m n = Y. ^nCP(Xpnr)
 COShX[f + ( 1 8 c ) 

n c o s h A p n / i 

w i t h p = 4 — m , f o r m = 1 , 3 , 4 ; a n d p = 0 , f o r m = 2 . 

2 . 2 . 5 P r o p e r t i e s o f t h e P o t e n t i a l F u n c t i o n 

2 . 2 . 5 . 1 V a r i a t i o n w i t h D a m p e r G e o m e t r y 

T h e a m p l i t u d e c o e f f i c i e n t s / m n a n d f m n o f t h e v a r i o u s m o d e s d e p e n d o n t h e 

A 

e x c i t a t i o n a n d t h e d a m p e r f l o w b o u n d a r y c h a r a c t e r i z e d b y t h e v a r i a b l e s a a n d h. 

T h e e f f e c t o f g e o m e t r y o n t h e f i r s t m o d e i s c o n t a i n e d i n t h e t e r m s F\,K\, KK\, e t c . , 

a s g i v e n b y r e l a t i o n s 3 ( b ) , 1 0 ( a ) o r 1 6 . F i i s t h e c o e f f i c i e n t o f t h e l i n e a r s o l u t i o n . 
A ^ 

I t i s n o t a f u n c t i o n o f h, a n d i t s v a r i a t i o n w i t h a i s n o t p r o n o u n c e d , r a n g i n g f r o m 
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1 . 4 4 a t a = 0 ( l i m i t i n g c a s e o f t h e c i r c u l a r c y l i n d e r ) t o 1 . 1 7 a t a = 0 . 5 , a s s h o w n 

i n F i g . 4 . A l l d a m p e r s s h o u l d t h e r e f o r e e x h i b i t s i m i l a r p r o p e r t i e s i n t h e l i n e a r 

r a n g e , i . e . , a w a y f r o m r e s o n a n c e . T h e n o n l i n e a r t e r m s a r e i n c l u d e d i n K\ f o r t h e 

p l a n a r m o d e , o r a c o m b i n a t i o n o f K\, K2, Ex, a n d E2 f o r t h e c a s e o f r e s o n a n t 

i n t e r a c t i o n s , w i t h KK\ c o n t r i b u t i n g t o t h e s t a b i l i t y o f t h e m o t i o n ( r e l a t i o n 1 0 c ) . 

A 

U n l i k e Fx, t h e s e t e r m s a r e s t r o n g l y d e p e n d e n t o n a a n d h. T h i s i s m a i n l y d u e t o 

t h e r e s o n a n c e o f t h e n o n l i n e a r m o d e s i n t h e p r o x i m i t y o f CJ = 1 . I n g e n e r a l , Kx 

i n c r e a s e s a s i t a p p r o a c h e s t h e n a t u r a l f r e q u e n c y o f o n e o f t h e h i g h e r o r d e r t e r m s . 

F o r t h e p a r t i c u l a r c a s e o f i n t e r a c t i o n s w i t h m o d e ( 2 , 1 ) d e a l t w i t h i n t h i s s t u d y , t h e 

a n a l y s i s y i e l d s a f a i r l y l o w v a l u e f o r Kx, w i t h l a r g e Ex, E2 a n d K2. C o n t r i b u t i o n o f 

t h e l a t t e r p a r a m e t e r s t o t h e o v e r a l l n o n l i n e a r b e h a v i o r m a y h o w e v e r b e m o d e s t a s 

t h e a m p l i t u d e o f t h e i n t e r a c t i n g m o d e p r o v e d t o b e u s u a l l y m u c h s m a l l e r t h a n 

fu-

F, 

3.0-

2.0-

1.0-

0 
0 0.2 0.4 0.6 0.8 1.0 a 

F i g . 4 V a r i a t i o n o f t h e l i n e a r c o e f f i c i e n t Fx w i t h a 

/ 
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Plots of the various coefficients versus a show these large fluctuations quite 

clearly, as illustrated by Fig. 5(a) and (b), for h = 0.1 and 1.0, respectively. At 

low h, resonance of the mode (2,1) is alrealdy felt at a = 0.4, with very large, neg­

ative Ki beyond this point (Fig. 5a). The interactions, however, keep K\ to the 

order of 0.5 or less, while E\, Ei and Ki start to grow with increasing a. At high 

h, resonance of both modes (2,2) and (0,2) result in very large, positive K\ near 

a = 0.20 and 0.37, respectively (Fig. 5b). The latter becomes quite small beyond 

resonance, thus suggesting that the response in the first planar mode is very close to 

that given by the linear solution for a > 0.6. The motion is, however, quite unstable 

as KKi decreases as well. It should be noted that the potential flow solution was 

not derived for these resonant modes as they are confined to a narrow range, e.g., 

from o = 0.35 to 0.45 for h = 1.0 with mode (0,2). 

For a damper with a given a, the nonlinear terms can be quite dependent on 

the liquid height, as shown in Fig. 5(d). No interactions are present throughout the 

A 

range of h considered, but K\ varies significantly from negative to positive values 

crossing the x-axis at several points. Negative K\ implies "hardening" character­

istics, i.e., the resonant frequency increases with the amplitude of the excitation, 

whereas "softening" results from a positive value, and of course the solution is linear 

for K\ — 0. This general behavior was noticed during earlier work on nonlinear 

sloshing66 and can have interesting implications for maximizing energy dissipation, 

as the absence of nonlinearities theoretically yields infinite response amplitudes and 
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A 

damping at CJ = 1.0. This condition is met here for h = 0.32, 0.62 and 0.79, al­

though the motion is unstable for the last two points due to small KK\. A t higher 

a, resonant interactions with the mode (2,1) are present at low h and the trends 

are similar to those mentioned earlier, i.e., small K\ and growing E\, E2, and K2 

in the interacting region in contrast to a decreasing K\ away from resonance (Fig. 
A 

5c for a = 0.608). However, fluctuations across the range of h are smaller here, and 

this damper is expected to be less sensitive to liquid height. 

A brief examination of the terms controlling the nonplanar coefficient f n , i.e. 

K\jKK\ and [KK\ — 2K\), suggests that this mode is equally sensitive to liquid 

height at a = 0.308 (Fig. 6a), and to the resonance of the higher modes as shown 

in F i g . 6(b) for a = 0.608. 

2.2.5.2 Variation with the Excitation 

T h e nonresonant solution is a function of the frequency CJ while the displacement 

velocity of the damper walls 6 affects the resonant response in two ways. Firstly, 

it generates higher nonlinear terms as it grows larger, usually resulting in lower 

amplitude coefficients / i i or f u as well as important shifts in the resonant frequency 

(softening or hardening characteristics), as governed by relations (10a), (11a) or 

(16). Secondly, the resonant region expands as it is required that 

\CJ - 1| < — c 1 / 3 + higher order, (19) 
2 
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(KK,-2K, ) 
K, /KK, 

a=0.308 

6-

2-
a = 0.608 

0 1 1— I—— r 
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h 

F i g . 6 N o n p l a n a r c o e f f i c i e n t s —{KK\ — 2K{) a n d K\jKK\ a s f u n c t i o n s o f 

h f o r : ( a ) a = 0 . 3 0 8 ; ( b ) a = 0 . 6 0 8 

f r o m t h e d e t u n i n g e q u a l i t y ( 6 ) . T h i s p h y s i c a l l y m a k e s s e n s e a s a l i q u i d o r i g i n a l l y 

s l o s h i n g i n t h e n o n r e s o n a n t r e g i o n u n d e r a s m a l l e x c i t a t i o n m a y l i t e r a l l y r e s o n a t e 

a t h i g h e r a m p l i t u d e s , w i t h t h e o c c u r r e n c e o f t h e n o n p l a n a r m o t i o n . I t i s i n t e r e s t i n g 

t o n o t e t h a t t h e s a m e p r i n c i p l e h o l d s f o r t h e h i g h e r n o n l i n e a r m o d e s . F o r i n s t a n c e , 

t h e 2 n d o r d e r t e r m s o f t h e n o n r e s o n a n t s o l u t i o n s h o u l d r e s o n a t e w h e n 
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| ^ - 2 | < ^ , (20) 
u 4 

where: / = 0,2; n = 1,2,...; and UQ is of order 1 (Appendix II.l) ; a condition gen­

erally easier to meet with larger c. Experiments, however, suggest that UQ does not 

need to be as high as 1, as discussed in Chapter 3. Thus more resonant interactions 

are expected at higher excitations. 

T o illustrate how the various regions overlap, F ig . 7(a) and (b) show / n , nor­

malized by c 2 / 3 for the resonant solution to account for different expansions, versus 

CJ. T w o amplitudes e0 and damper geometries are considered. T h e coefficient / o i 

(now normalized by e 4 / / 3 at resonance) for the first configuration is presented in F i g . 

7(c). Noteworthy are the hardening characteristics with increasing e 0 displayed in 

F i g . 7(a), and the corresponding reduction in fu, as opposed to more linear be­

havior of the damper with resonant interactions (Fig. 7b). A region with two 

equilibrium positions is usually present with fu exhibiting the jump phenomenon 

as one branch ceases to exist or becomes unstable. In the case of a = 0.608, and 

h = 0.196, both branches collapse near resonance (CJ = 0.98) while another loop de­

velops at a higher frequency. T h e interacting coefficient is shown as a fraction of 

fu in F i g . 7(d) and stays small due to the stability requirements ( | f 2 i / / n | < 0-32 

here, from relation 17). 



Variation of f u , / o i and jfei versus CJ for different damper geometries 
and amplitudes 
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2.3 Pressure Forces 

The liquid sloshing motion generates a nonuniform pressure on the container 

wall. The resulting force is 

F = J j p cos OdA, (21) 

where: 

A = vertical wall area in contact with the fluid; 

p = pressure exerted by the fluid. 

p can be found using Bernouilli's equation for unsteady flow, 

^ ( V $ ) 2 + * * + ^ = 0. (22) 

F can be nondimensionalized and expressed in terms of an added mass ratio as 

Mi M/ŵ co 

thus indicating the departure of the liquid from the behavior of a corresponding 

solid mass Mi. Results for the nonlinear potential flow solution, expanded to the 

2nd order, are listed below with details of the derivations given in Appendix IV.1.1: 

( i ) t = ^ ) { ? / , ' ^ I C l ( A " ) - o C , ( A " < , ) 1 

— €QCJ{AI — Bi)\ ainuT — -x c0w(Ai + B\) sinwr; (24a) 
> h{\ — a2) 

— > sin UIT — — sin3wr; (24o) 
h{l - a2) Cf K 1 
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1 , >Ul . . 1 fr 1 
(eo^)1/3

 W J fc(l-o2) 1 (cow)1/3 

C4 . . \ sin wr >. sin 3£>r (24c) 

Here cases (i), (ii) and (iii) represent solutions for the nonresonant, resonant with­

out and with interactions, respectively, and the A's and B's as well as C4 terms 

contain the second order cross-products given in Appendix IV. 1.2. 

These expressions were evaluated and used for comparison against experiments. 

Most of the results are therefore presented in the next chapter, however, a typical 

curve useful to discuss the solution characteristics and showing the magnitude of the 

response at CJ is presented in Fig. 8. As the flow is dominated by the mode shape of 

Ma 

the first order term for low amplitudes, | ——| essentially follows the variations set 
Mi 

by fu in the planar motion, with a maximum for the lower branch accompanied 

by a sudden reversal of signs at a resonant point different from CJ = 1.0 due to 

nonlinear effects. Calculations show that the nonlinear contribution, in expression 

(24b) for this particular case, is less than 10%, although it may be larger according 

to the damper geometry, and was substantial for higher e. The ratio of 3rd over 

1st harmonic was also found to be of the order of 10%. Meanwhile, the nonplanar 

response shows a positive added mass beyond resonance that continues to grow 

Ma 

until the motion no longer exists. The nonlinear component of \-rj-\ and the 3rd 
Mi 

harmonic are also larger and amount to 20% of the first order term. The picture 

is, of course, quite different at higher amplitudes, as the contribution of the higher 
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m o d e s i s o f t h e s a m e o r d e r a s t h a t o f t h e f i r s t . N o w fu i s g r e a t l y a f f e c t e d b y t h e 

n o n l i n e a r i t i e s a n d n o l o n g e r d i s p l a y s a w e l l d e f i n e d r e s o n a n t r e g i o n f o r £Q a s l o w a s 

0 . 3 a n d CJ a s h i g h a s 2 . 0 i n t h e c a s e c o n s i d e r e d h e r e . 

Ma/M, 

-4 

a=0.40 
hr0.30 
€o= 0.036 

Planar 
Nonplanar 

F i g . 8 T y p i c a l a d d e d m a s s c h a r a c t e r i s t i c s a t l o w a m p l i t u d e 

2 . 4 D a m p i n g F o r c e s 

2 . 4 . 1 E f f e c t o f V i s c o s i t y 

F o r i n c o m p r e s s i b l e f l o w , t h e N a v i e r - S t o k e s e q u a t i o n r e d u c e s t o 8 1 

— * 

( u . V ) u + | ? = -V(gz + I) + ^ + vfV*u, ( 2 5 ) 

dV 
w h e r e u i s t h e fluid v e l o c i t y v e c t o r i n t h e m o v i n g f r a m e o f r e f e r e n c e a n d — — i s t h e 

dt 
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acceleration of the same frame. S u b s t i t u t i n g u = V $ + u 2 , where u 2 is a correction 

—• 
v e l o c i t y due to viscosity , a n d recognizing t h a t V — V $ / , 

[ ( V $ + u 2 ) • V ] ( V $ + u 2 ) + | - ( V $ + u 2 ) 
at 

= -V(gz + V- + ^f) + t / , V 2 ( V $ + u 2 ) , 

i . e . , 

dU2 ( V $ • V ) V $ + ( u 2 • V ) V $ + ( V $ • V ) u 2 + ( u 2 • V ) u 2 + 

= -V{gz + + —) + i / , V ( V 2 $ ) + ^ / V 2 u 2 . (26) 

U s i n g B e r n o u i l l i ' s e q u a t i o n , i . e . , - ( V $ ) 2 + gz H 1- —— = 0, as w e l l as V 2 $ = 0, 
2 p at 

reduce the above equation t o 

( u 2 • V ) V * + ( V $ • V ) u 2 + ( u 2 • V ) u 2 + ^ = i / j V 2 ^ . (27) 

T h e corresponding c o n t i n u i t y equation is 

V • ( V $ + u 2 ) = 0, 

i . e . , V • u 2 = 0. (28) 

A s u 2 = — V $ at the w a l l , the c o r r e c t i o n is of the order of the p o t e n t i a l flow 

s o l u t i o n , a n d a n expansion of the following f o r m is assumed 

tT2 = e*u2

l) + c 2'4 2 ) + e 3 ? « 2 3 ) + •••> (29) 

where g — 1/3 a n d 1, at a n d away f r o m resonance, respectively. S u b s t i t u t i n g into 

(27) y i e l d s , u p t o the 2 n d order: 

^ - v^u™ = 0; (30a) 
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a - ( 2 ) 

- vfV2u[2) + • VJtZ^ + ( V ^ 1 ) • V)4X) + (4X) • V)V$<x> = 0. (306) 

The linear differential equation (30a) leads to a relatively simple solution for 

under simplifying assumptions80, i s then derived by substituting for in 

(30b). Details of the analysis and expressions for the correction velocities are pre­

sented in Appendix IV.2.1. 

2.4.2 Energy Dissipation and Reduced Damping Ratio 

On integration of the work done by the viscous stresses, the expression for 

energy dissipation rate in a viscous liquid can be shown to be 9 6 , 

dEd 
dt 

/x / |V x u\2dv + f (n- V)\u\2dS-2 f n • u x (V x u)dS. (31) 

Setting u = V $ + u2, considering V x V $ = 0 (irrotational flow), and u — 0 at the 

boundaries gives 

d f(V x u2)2dv + f (n-V)|V$|2dsl. (32) dEd 
dt -j v j z = n 

Here rjf represents the instantaneous free surface elevation, i.e., deviation from the 

undisturbed horizontal height. It must be noted that the first term expresses the 

contribution from the shear forces at the damper walls, and the second term is the 

effect of the free surface, often neglected in this type of analysis. The integral over 

a cycle permits calculation of an equivalent reduced damping ratio defined as, 
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Ed where : Ce = equivalent absolute damping coefficient, ~; 

7 T W e C 5 

Ed = total energy dissipated per cycle. 

rirti is therefore the damping ratio 77 of a single degree of freedom system of rigid 

mass M, damping coefficient C e , and natural frequency we, divided by the mass ratio 

Mi 
——. Recognizing that the total energy of a solid mass M oscillating harmonically 
M 

with a displacement x = tosmuet is -Me^oj2, it is also the ratio of dissipated to 
2 

total energy of a corresponding rigid mass Mi during a cycle, divided by Air. A n 

expression more representative of the dissipation as a fraction of the actual energy 

in the flow is defined in the next section. Contribution from the boundary layer at 

the damper walls, complete to the second order without including the effect of the 

streaming layer (Appendix IV.2.1.2), is given below. Here relations (i),(ii) and (iii) 

correspond to the cases of nonresonant and resonant cases, as explained before: 

+ I2n(m,n) + J2 n (m,n) ] + e 0 £ 2 A A i } ; (34a) 

-i&hjimMw^[fh+A)I**u(1'1} 

+ Z/n(l , 1) + 7 2 n ( l , 1) + J2U(1,1)] + }; (346) 

( m ) ( i 3 v a | 4 * " ( i - " + " » ( m ) 

+ J 2 n ( l , 1) + J 2 u ( l , 1)] + v/S&Ifcfc^l, 1) + 4 / / 2 2 ( l , 1) 

+ J 2 2 1 ( l , 1) + 4J22 1(1,1)] + + (34c) 

kk's ,//'s, J2's and J2's are combinations of Bessel and hyperbolic function cross-

products (Appendix V.2.3), while AA's and BB3 contain the higher order solutions 
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as shown in Appendix IV.2.2.1. 

The smaller contribution from the boundary layer at the free surface is obtained 

to the 1st order only with the following results for the 3 cases: 

0) "r,l = y * a2)J^{j2 IC /WlnAinO=ln[/Aii (m, n) 
v / m n 

+ JAii(m,n) + Am]}; (35a) 

+ J i 4 1 1 ( l , l ) + An]; (356) 

( i U ) h ( ^ l h ( i ^ 

+ A n ] + $ 2
2 i A 2 1 a 2 1 [ M 2 2 ( l , 1) + 4 J A 2 2 ( l , 1) + A2 2]}. (35c) 

It should be noted that the corresponding damping force has to be 90° out of phase 

with the excitation in order to dissipate energy. Fig. 9 shows the reduced damping 

ratio versus CJ for the same damper and excitation used during the added mass 

discussion (Fig. 8). rjrti clearly reaches a maximum at resonance, with magnitude 

one or two orders higher than that at CJ < 0.9, or > 1.2 for the lower branch of the 

planar motion, as it is a function of the square of the amplitude coefficient fu. As 

expected, the free surface boundary layer contribution is small and is of the order 

of 1% throughout the range of CJ considered. Although the wetted area along the 

walls is the same as that of the damper bottom in this case (the ratio of the two 

2h 

areas is — y for a torus), the analysis suggests that there is more dissipation at 
the walls, by a factor of 1.2 — 1.5 for the planar, and around a factor of 2.0 for the 
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Fig. 9 Typical variation of theoretical rjr>i versus CJ 

nonplanar mode. The higher velocities near the free surface are in fact responsible 

for such behavior. Very low contribution from bottom surface is usually found at 

larger h as the velocity gradients become weak near z = —h, suggesting that high 

liquid heights be avoided for optimizing energy dissipation. Nonlinear terms are 

small for the planar motion at low amplitudes, but are significant in the nonplanar 

mode (of the order of 20%). Their magnitude is comparable to that of the first 

order term at higher ZQ (> 0.30) as was the case for the added mass. Of interest is 

the fairly constant value of rjr>i with CJ beyond resonance for the nonplanar motion. 
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2.4.3 Energy Ratio Er,i 

A quantity reflecting energy dissipation efficiency is defined here as 

Er,i = ^ , (36) 

where Ed refers to the dissipated energy of relation (31), and Et is the average total 

energy stored in the liquid relative motion during a cycle, 

Et = T + U, (37) 

where: T = average kinetic energy, — / -p / (V$)2dv dt; 
2n J0 L2 Jv J 

U = average potential energy, — / \p I gzdv dt. 
2TT J0 L JV J 

Using the expression of n/ as a function of $ (Appendix 1.3), substituting for $, 

and integrating using a procedure similar to the one applied to the calculation of 

the added mass (Appendix IV. 1.1) yields 

Er>l = 4h(l - a2)^-, (38) 

where Et is as follows for the various cases of nonresonant, resonant without and 

with interactions corresponding to (i), (ii) and (iii): 

(i) Et = ^ { a „ A 1 1 w V i 2 i ^ + / i i^ / iy /? i i (» , i ) [ / i4 1 1 ( t , j ) 

+ JAuihJ) + altlLu]}+(eoCj)2AAAi; (39a) 

(") Et= 7 r ^ ( / ? 1 + f f 1 ) { | l l « & a A 1 1 + /? 1 1[7A 1 1(l,l) 

+ J A i i ( l , l ) + a^An]} + * /aAAA2; (396) 
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+ JAXX{1, 1) + a^Au] + ? 2
2

1^ 2 2(l, 1)[/AM(1,1) + 4 J A 2 2 ( l , 1) 

+ aliAai]} + JXTBBBS + * , AAAa; (39c) 

where the BBB's coefficients represent the effect of 1st and 2nd order term cross 

products, and the AAA's coefficients include nonlinear terms only (see Appendix 

IV.2.3). 

It can be shown that the first order term in the expression for Erj is inde­

pendent of the amplitude of excitation for a given ijr>i. However, it is a function of 

frequency as the potential energy contains acceleration terms. For a given damper 

liquid and geometry, the Reynolds number increases with CJ, which further con­

tributes to the general downward trend shown in Fig. 10. The higher orders seem 

to present similar energy dissipation efficiencies as no significant changes in the 

curves occur at larger eb. 

To assess the effect of the geometry only, a parameter accounting for the varia­

tion of the Reynolds number is defined as 

E;A = ErAVRe~, (40) 

since the reduced damping ratio was shown to be essentially proportional to 1/y/Re. 

It is plotted versus h and a in Fig. 11(a) and (b), respectively. Results indicate 

that low liquid heights and larger a's are most effective at dissipating energy. How-
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Fig. 10 Typical curves showing variation of Er>i with frequency and amplitude 

ever, the potential flow approach is less reliable at smaller h as the boundary layer 

occupies a more significant part of the liquid volume. The rapid growth of E* t 

for h < 0.26 in Fig. 11(a) may therefore not occur in practice. It may also be 

noted (Fig. l ib ) that the downward trend with decreasing a is somewhat stalled 

below 0.40. The velocity gradients, however, become unrealisticly large near the 

damper inner wall as a tends to 0 since the curvature effects were neglected in the 

analysis. The results obtained for small values of this parameter cannot therefore 

be fully trusted. Overall, the curves present useful trends with relatively short, 

slender dampers (small h, and a closer to 1) particularly effective in optimizing 

energy dissipation. Finally, the nonplanar motion consistently exhibited higher Erj 

compared to the planar mode, as illustrated in Fig. 10. 
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Fig. 11 E*i versus CJ as affected by: (a) h; (b) a 

All the calculations for the theoretical solution were carried out on the main 

frame computer (Michigan Terminal System) using a Fortran program. 
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3. E X P E R I M E N T A L DETERMINATION OF 

D A M P E R CHARACTERISTICS 

3.1 Preliminary Remarks 

Experiments in steady-state forced excitation with the damper undergoing a 

translational motion were designed to assess the theoretical predictions and fur­

ther evaluate performance. The controlling dimensionless variables discussed in the 

previous chapter were varied and the effect of internal devices such as baffles investi­

gated. Initially, a flow visualization study was undertaken to confirm the qualitative 

nature of the mode shapes. This was followed by an extensive set of measurements 

of the sloshing horizontal force transmitted from the fluid to the damper walls. 

3.2 Test Arrangement and Models 

A Scotch-Yoke mechanism connected to a horizontal frame free to slide over 

supporting bearings, available in the Department, was upgraded to provide a smooth 

sinusoidal excitation (Fig. 12). A high inertia fly wheel driven by a D . C . motor 

generates a steady harmonic motion at frequencies as low as 0.7 Hz and damper 

amplitudes as high as 4 cm. The system can be operated safely up to 5 Hz for 

average amplitudes of oscillation, or higher for very short strokes (< 1 cm). A 

V A R I A C rheostat along with adjustable eccentricity of the Scotch-Yoke provided 

the means to vary the frequency and amplitude of excitation. 
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Two strain gauge arrangements were mounted on the apparatus: the first one 

was installed at the base of the damper supporting beam to measure the response of 

the sloshing liquid, while the second arrangement, a part of the ring shaped bracket, 

was attached to the main frame by a short spring to record the displacement. 

Careful design of the damper support was necessary to obtain proper sensi­

tivity for minimal beam deflection, required to be small here compared to the main 

frame amplitude of excitation. A n aluminum plate, (0.318 cm thick, 20.3 cm long 

and 3.81 cm wide), clamped to the moving base and fitted with a horizontal plat­

form to hold the container, was used to provide a linear range of strain versus 

horizontal sloshing forces with minimal impact due to pitching moments. The nat­

ural frequency was much greater than that of the excitation, from approximately 40 

Hz without damper to 12 Hz under larger loads. The output signal was amplified 

through a Bridge Amplifier Meter ( B A M , Ellis Associates) before being directed 

to a Spectrum Analyser (Model SD335, Spectral Dynamics Corporation). A filter 

(Model 335, Krohn-Hite) and a dual channel storage oscilloscope (Tektronics 564, 

Vertical Amplifier Type 3A3, Time Base 2B67) were connected in parallel to record 

the excitation from the other source simultaneously. The analysis in the frequency 

domain showed the magnitude of the response at different harmonics while the time 

domain measurements yielded the phase angle between the response and the exci­

tation needed to calculate pressure and damping forces. 
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Small scale transparent plexiglas torus shaped dampers with square or rectangu­

lar cross-section, such as shown in Fig. 13(a), were constructed in the Department's 

machine shop. Various sizes were required to investigate important dimensionless 

parameters, and two models were fitted with baffles and inner tube (Fig. 13b,c) 

found to be effective under certain conditions of excitation9 0 (Table I). Limited 

experiments were also carried out with circular cross-section dampers. 

Table I Details of the damper models used in the test program 

Damper d D Capacity Internal Cross-

# (cm) (cm) (ml) Configuration Section 

1 2.86 5.40 140 plain square 

2 2.86 5.40 140 baffles square 

3 2.86 5.40 126 inner tube square 

4 3.50 7.31 147 plain square 

5 3.79 6.99 315 plain square 

6 3.15 7.55 235 plain square 

7 2.84 11.7 297 plain square 

8 1.42 3.93 39 plain square 

9 4.70 4.70 326 plain square 

10 2.20 2.20 38 plain square 

11 3.50 15.9 640 plain square 

12 2.98 8.08 177 plain circular 

13 1.55 23.6 140 plain circular 

3.3 Flow Visualization 

A n inspection of the various mode shapes was first conducted with the dampers 
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No of baf f les : z8 No of holes = 34 
h V d - 0 . 5 0 d | /d = 0.39 
b/d = 0.50 q; / d = 0.11 

(b) (c) 

Fig. 13 Sketch showing several damper model internal configurations: 
(a) plain; (b) baffles; (c) inner tube 

oscillating near their natural sloshing frequencies. The conventional dye injection 

procedure and photographic equipment were used to visualize the free surface el­

evation and its qualitative agreement with the theoretical predictions as given by 

relation (1.10). 

A large amplitude antisymmetrical motion with a stationary node at 90° to 

the direction of the excitation, and zero node across the radius, characterized the 

first mode shape studied using dampers 5 and 11, as predicted from the harmonic 
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(cos0) and Bessel function Ci(Aiir ) dependence of the 1st order potential flow so­

lution (relation 8) along 0 and r coordinates, respectively (Fig. 14a). The small 

variation of the surface elevation in the radial direction at a given angle 0 (Fig. 

14b), and the general pattern along the outer wall (Fig. 14c) suggests reasonable 

qualitative agreement. At times, a discontinuous wave front, however, appeared 

to be present. The nonplanar mode was observed at slightly higher amplitudes or 

frequencies, with a large swirling action about the damper circumference, seemingly 

90° out of phase in time and angular position with the excitation. The similarity 

between the free surface shape in the radial direction for this mode and that of 

the planar motion, for a given 0 (Fig. 15), is again consistent with relation (8). It 

should be noted that the occurrence of the nonplanar response more readily took 

place for higher liquid heights in the torus. 

Although less useful for the purpose of this study, higher transverse modes 

were excited at their corresponding natural frequencies. They all exhibited a single 

circumferencial node at 0 = 90° , with minimum and maximum free surface elevation 

at 0° and 180° angles, and a number of transverse nodes at times more difficult to 

identify (1 for the 2nd mode, 2 for the 3rd, etc.). They are in agreement with the 

Bessel function C i ( A i n f ) dependence of relation (3a), and are shown in Fig. 16, 

17, and 18. Of course, such modes distort the free surface plane considerably, with 

nonlinear effects becoming more pronounced at higher frequencies. Furthermore, 

theoretical calculations show that the spacing between two eigenvalues becomes 



(a) 

F r e e s u r f a c e 
d i s c o n t i n u i t y 

T h e o r e t i c a l 
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Fig. 14 1st planar mode exhibiting: (a) antisymmetric motion about circum­
ference; (b) variation across f; (c) variation along 6 
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(b) 
Fig. 17 Mode (1,3) shown as: (a) in the plane of the excitation; (b) perpen­

dicular to the same plane 

Fig. 18 Close-up view of mode (1,4) 
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increasingly narrower, thus making the identification of the modes less obvious. 

Noteworthy is the apparent absence of turbulence throughout most of the flow field 

for at least the first two resonant states, a condition that was assumed for the the­

oretical development. No attempt was made to visualize the modes corresponding 

to 2nd and higher order nonlinear terms. 

3.4 Added Mass and Reduced Damping Ratio 

3.4.1 General Procedure 

A force Fa transmitted from the sloshing fluid to the rigid damper walls in the 

direction of excitation causes the supporting beam to deflect proportionally to its 

magnitude provided the system is elastic and operates far away from its resonant 

state. A n additional force Fo generated by the system's own inertia is proportional 

to the amplitude and frequency square of the excitation, 

Fo = Mow 2 Co cos wt, (41) 

where Mo is the equivalent mass of the support (general "moving base" problem in 

vibrations). It contributes to the overall strain recorded by the sensor. A dynamic 

calibration procedure, consisting of measuring the output voltage after loading the 

support with dead weights under various conditions of amplitudes and frequencies, 

was therefore adopted to estimate Mo as well as the slope of the response curve 

(Fig. 19a). A n initial static calibration, with the system at rest undergoing bend­

ing under a known stress, was used to verify the results. This is shown in Fig. 19(b), 
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where the y-axis represents the response as recorded by the spectrum analyser at 

the exciting frequency we, for the case of dynamic testing, while the oscilloscope 

provided the results for the static procedure. The other channel recorded the dis­

placement of the moving frame and a simple calibration curve was produced by 

direct measurements of the stroke versus output voltage (Fig. 19c). Furthermore, 

phase angles between the excitation and response of the beam at the driving fre­

quency were derived from real time measurements on the dual channel oscilloscope. 

As the system damping is due to the aerodynamic drag along the damper support 

as well as the hysteresis damping within the beam, and is very low compared with 

the effect of liquid sloshing, the frequency dependent phase shift introduced by 

the instrumentation (mainly the filter) was found by simply running the experiment 

without the damping fluid (Fig. 19d). 

The experimental determination of the four variables: sloshing force Fa, am­

plitude eo and frequency we of the excitation, and the corresponding phase angle tb, 

supplied the necessary information for calculation of the added mass and damping 

ratios 

1 " <S -11 cos*: and = 5 & ^ (42) 

where and \FB\ refer to the magnitude of the component oscillating at the 
Mi 

exciting frequency. The higher harmonics of the added mass can similarly be found 

as 

, A f a . \F.\n 

Mi n M/cow?' 
(43) 



2^,, cm 
Fig. 19 Calibration curves to determine: (a) M 0 ; (b) slope for the response 

using both static and dynamic procedures; (c) slope for the excitation; 
(d) phase angle between response and excitation 
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where n denotes the rank of the harmonic considered. No provision was made for 

the estimation of the total energy contained in the liquid motion. 

3.4.2 Results and Discussion 

From the theoretical development, the added mass and reduced damping ratios 

are expected to be a function of the set of dimensionless parameters (CJ, €Q, a, h, Re), 

representative of the excitation and damper characteristics. For convenience, the 

equivalent variables eo/d, D/d and h/d defined as: 

t o C o D 1 + a h h 
~j = i — ; ~~T = i — ; a n d 7 = ; — ; (44) 
a 1 — a a 1 — a a 1 — a 

were adopted, and tests conducted through their systematic variation. Additional 

information concerning the effect of internal configuration and corresponding pa­

rameters was also included in the study. Results mainly describe the damper behav­

ior under excitations near the first sloshing frequency uu, as it is the condition of 

maximum damping, with the accuracy of the phase angle measurements diminish­

ing away from resonance. Tests in free vibrations using an apparatus similar to that 

of reference 90 were carried out to extend the data in the low damping region. The 

significant findings of the test program are summarized in the following subsections. 

(i) General Shape of the Output Signals 

The excitation was first established to be purely sinusoidal (Fig. 20a), and the 

response was, in general, dominated by the driving frequency (Fig. 20b). A number 
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of superharmonics, odd multiples of the fundamental frequency (i.e., 3uet, 5uet, 

etc.), were also present as indicated by the spectrum analyser record (Fig. 20c). 

This is in good agreement with the assumed expansion for the potential function 

and the form of the derived added mass, as nonlinear even harmonics were found 

to be symmetrical in 0 and therefore cancel out when integrated over the damper 

wall. The higher resonant frequency of the damper support was often visible (at 

around 12 Hz here), but its effect on the first harmonics of the sloshing response 

was assumed to be negligible. 

(ii) Effect of Frequency 

As predicted by the theoretical model, the response is very sensitive to the fre­

quency CJ. At relatively low amplitudes of excitation, a dramatic rise in the reduced 

damping ratio accompanied by a reversal in sign for the added mass characteriz­

ing resonance was generally observed. The maximum r)rj usually coincided with 

M 

— 0 at a frequency slightly different from 1, as shown in Fig. 21 for a half-full 

damper with D/d = 4.1. The nonplanar mode generally took place for dampers 

with higher h/d or lower D/d ratios, extending the high damping region until the 

motion ceased to exist. For the case of h/d = 0.5, D/d = 1.89, this corresponded 

to CJ « 1.15 (Fig. 22). The theory generally anticipated these trends, although 

the damping curves are often too narrow with peaks higher than those measured 

(Fig. 21). In other cases, no solution near resonance can be found, thus preventing 

the occurrence of a large peak in r}r<i (Fig. 22). The stability boundaries for the 
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Fig. 20 Output signals showing: (a) moving frame displacement; (b) damper 
support beam deflection; (c) frequency spectrum of the response 



Fig. 21 Variation of damping and added mass ratios with frequency for half-
full damper#7 



Fig. 22 Variation of damping and added mass ratios with frequency for half-
full damper#l 



58 

planar mode are realistic, but the nonplanar region extends beyond what is experi­

mentally observed with underestimated nr>i. Predictions for the added mass are, in 

general, quite reasonable with, at times, very good agreement in the linear range 

(e.g., 1.1 > CJ > 1.4 in Fig. 22). However, experimental values for the nonplanar 

motion were usually much smaller than expected. 

The potential flow solution for the case of resonant interactions was used for the 

damper of Fig. 21 resulting in two stable positions beyond resonance. The upper 

branch yields a damping ratio that remains high past CJ = 1 and seems to follow the 

experimental damping curve until rjTii suddenly drops at CJ = 1.14. The accurate 

prediction of the resonant point quite close to CJ = 1.0, indicative of weak non-

linearities, is also very encouraging. At higher amplitudes, the effect of frequency 

was less pronounced with usually smaller peaks recorded. This is not surprising as 

nonlinear terms are now expected to be quite large. 

(iii) Effect of Amplitude 

In the nonlinear range, e r j / d has similar effects on the damper behavior as 

CJ: the occurrence of a resonant peak often followed by a nonplanar motion for 

certain conditions of excitation and geometries. When CJ > 1.0, the liquid motion 

is originally planar and small at low amplitude (linear range). However, it becomes 

M 
unstable with a large jump in both nr / and |—— | as the nonplanar mode takes over 

' Mi 

(Fig. 23). A gradual reduction in damping then accompanies a further increase in 
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eo/d whereas very large rjTii can be obtained with decreasing amplitudes. 

For CJ < 1.0, an optimal damping is reached as the liquid goes through resonance 

with |-777-1 = 0 (Fig. 24a), followed by a rather unsettled motion which fails to at-

tain the fully nonplanar mode. However, such trends for CJ > 1.0 or CJ < 1.0 can be 

reversed through the damper geometry and liquid height, as shown in Fig. 24(b). 

This particular behavior is related to the "softening" or "hardening" characteristics 

of the damper (i.e., reduction or increase in the resonant frequency with ampli­

tude) as discussed in Chapter 2, and is generally predicted by the potential flow 

model. Here again, the calculations for the nonplanar mode yield a lower damping 

and higher added mass than those of the experiments (Fig. 23), thus suggesting 

significant dissipative mechanisms in the main flow field. The theory properly in­

dicates a large region of unstable flow for the case of Fig. 24(a), but fails to find a 

solution at resonance, a situation already encountered while studying the variation 

with CJ. The results for the unstable nonplanar mode are indicated in this case for 

comparison against experiments, and show reasonable trends for the added mass 

and damping ratios. Finally, the hardening characteristics of the low liquid height 

damper of Fig. 24(b) yield a predicted resonant point at eo/d « 0.06, as opposed 

to a measured value higher than 0.14, that was never reached as the planar mode 

then became unstable. A possible cause for such dicrepancies may rest with the 

relative size of the boundary layer thickness, not accounted for in this analysis, that 

changes the effective h/d, or makes the potential flow approach questionable when 



Fig. 24 Resonant behavior of damper#5 with: (a) h/d = 0.5 and C J < 1 



Fig. 24 Resonant behavior of damper#5 with: (b) h/d = 0.19 and CJ > 1 
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h/d is small. This is further discussed in the following paragraph. In all the cases, 

the predicted resonant peaks are narrower than those measured (Fig. 25). The 

right trends are however discernable at lower eo/d. Of course, the theory cannot 

be expected to be realistic for higher amplitudes as the assumed expansion for the 

perturbation method becomes invalid and turbulence dominates the flow. 

7.0 

4.0 

3.0-

2.0 

1.0 

0.0 

€ 0 / d = 0.046 

* o / d = 0.091 

€0/d =0.475 —' ' 

D/dr4.10 
\ . h/d r 0.500 

R e / c u r 3.35 x104 

0.5 0.7 0.9 1.1 

Fig. 25 Peak damping ratios as affected by amplitude 

i / > . • i i 

1.4 1.6 
A 

CU 

(iv) Effect of Liquid Height 

This geometric parameter significantly affects the position of the resonant re­

gion, as discussed during the theoretical development. For the damper of Fig. 26, 

a value of h/d = 0.48 is expected to result in a purely linear response (i.e., K\ = 0 
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in relation 10a of Chapter 2) with resonance at CJ = 1.0, and infinite damping and 

added mass ratios. This is supported by the experiments, as h/d = 0.5 generates a 

pronounced peak near CJ — 1.0. However, the peak value of rjrj is around 3.0 and is 

essentially somewhat insensitive to liquid height in the range h/d < 0.625. In gen­

eral, a shift in the resonant frequency with liquid height was not as severe as that 

predicted by the theory. The potential flow solution still continues to provide the 

right softening or hardening trends for the damper with various h/d as illustrated 

in Fig. 27 (higher amplitudes). Resonance for h/d > 0.75 is no longer possible 

as the planar mode becomes unstable thus suggesting, once more, that high liquid 

heights be avoided in designing a damper. At higher D/d ratios, both theory and 

experiments indicate a more linear behavior as it is the case of resonant interactions 

discussed earlier, with smaller shifts in the resonant frequency and well defined peak 

responses (Fig. 28). 

The experimental results proved to be quite useful in assessing the theoretical 

model. For instance, the energy dissipation in the potential flow regime is obviously 

not negligible as the sloshing action is well contained at resonance in spite of the 

relatively small nonlinear effects at certain liquid heights, as discussed earlier. This 

may be responsible for the weaker than predicted nonlinear effects at other h/d. 

Moreover, the theory is again shown to be less reliable at low liquid heights, possibly 

due to a relatively large boundary layer thickness. 
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(v) Effect of Diameter Ratio 

Maximum damping ratios have been shown to be higher for D/d = 4.10 due 

to the smaller nonlinear effects (Fig. 21), a result supported by the theoretical 

development of the resonant interactions. In fact, experiments indicate a contin­

uous improvement in the performance with increasing diameter ratio. The fre­

quency spectrum curves of Fig. 29 exhibit smaller superharmonic response as D/d 

is changed from 1.84 to 2.40 (ratio of 3rd/lst harmonic from 0.57 to 0.37 despite 

a slightly higher eo/d), while the maximum rjrj in the frequency domain remains 
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higher with amplitude as the diameter ratio varies from 1.0 to 4.1 (Fig. 30). It 

should be mentioned that the curves for the response without damping liquids are 

also presented in Fig. 29 as their peak amplitudes have to be substracted from the 

total response to obtain the net sloshing force. Results for very slender dampers 

(D/d > 10.0) suggest that the trends persist 9 0, promising a very efficient design. 

Theoretical predictions are not always straightforward as the transition point from 

the no interaction to interacting solution has to be arbitrarily chosen. Both formu­

lations should converge, however, the latter becomes unstable as the interactions 

weaken (increasing & i coefficient) while the other is not yet representative of the 

situation. Unaccounted viscous effects may again be responsible for generating 

the experimentally observed stable transition range. Furthermore, the estimated 

boundary given by relation (20), where c is substituted by e 1 / 3 at resonance, also 

suggests that VQ should be smaller than 1.0 for better agreement with experiments. 

(vi) Reynolds Number Effect 

The equations of Chapter 2 along with previous investigations dealing with the 

sloshing motion linear r a n g e 8 7 - 9 0 established the reduced damping to be propor­

tional to i E e - 1 / 2 . The present tests however indicate this may not be the case near 

resonance, as shown for two different geometries in Fig. 31. Several liquids such as 

water, alcohol, kerosene, and oil of different viscosities, as well as two damper sizes 

with otherwise identical geometric parameters h/d and D/d, were used to vary the 
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Reynolds number. Results show that r)rj and Iĵ rl remain generally unaffected by 

a change in Re in the nonplanar mode (for Re as low as 1.73 x 104 in Fig. 31a), 

with a slight downward trend in the planar mode (Fig. 31b). At very low Reynolds 

number (580 or 700 in Fig. 31), the curves drop significantly with the planar mo­

tion becoming stable over the entire range of excitation amplitude. Hence, it can be 

speculated that the higher dissipative effects at lower Re are offset by a reduction 

in the sloshing motion through the combined action of dissipation in the main flow 

field and the larger boundary layer thickness. Although dominant, the nonlineari-

ties alone are not the only mechanisms restricting the response at resonance. The 

importance of small damping terms at CJ = 1 can be well illustrated by the analogy 
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of a simple mass-spring-dashpot linear system (Appendix VI), for which inertia and 

stiffness are otherwise the controlling parameters in the nonresonant region. The 

liquid sloshing response also exibits a gradual sign reversal in the added mass near 

resonance, as pointed out earlier. This is in contrast to a sudden jump characteristic 

of an undamped model. As the energy dissipation is quite motion-dependent here, 

the addition of even small viscous effects in the flow might be sufficient to improve 

the present formulation. A further point of interest is the absence of variation in 

the resonant frequency with changing Reynolds number, for all the dampers con­

sidered in this study. The smaller free stream (potential region) at lower Re due to 

an increased boundary layer thickness is also accompanied by a larger D/d ratio, 

eventually resulting in a cancellation effect and the observed trend. 

(vii) Effect of Configuration 

Baffles or inner tube positioned inside the damper have shown some success 

at promoting energy dissipation for a certain range of frequencies, as reported by 

previous investigations90. The study is extended here into the optimal region of 

resonance by using 3 dampers with D/d = 1.89. Typical results are presented 

in Fig. 32 which suggests that the baffle configuration generally suppresses the 

nonplanar mode (Fig. 32a, Co > 0.03). Furthermore, the added mass was found 

to be lower than that for the plain damper, thus indicating a reduction in the 

amount of sloshing motion. The effects are somewhat different with the inner tube 

where the interference with the free surface now generates a negative added mass 
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at low amplitude. Although more dissipative mechanisms are present, such as the 

formation of a wake behind the baffles, or increased friction against the tube, the 

additional restrictions imposed on the flow result in a net loss in rjr,h A similar 

picture is obtained by varying the frequency (Fig. 32b), with lower maximums for 

the added mass and damping ratios. The peak response for ijr>i appears to be wider 

prior to resonance, as expected for such systems, however, the absence of nonplanar 

motion for the baffle arrangement and the interference with the inner tube yield 

an overall lower efficiency for CJ > 1.0. As in the case for low Reynolds number 

flows, any configuration preventing the large motion of the free surface appear to 

affect the damper performance. Note the change in the resonant frequency with the 

introduction of the baffles (|-r^-| = 0 at CJ = 0.92). The inner tube-liquid contact 
\ 

was also found to make the planar mode more stable well into the region where\the 

rotating motion would have otherwise started with a plain configuration. 

(viii) Note on Damper Cross- Section 

The cross-sectional shape allowing for larger sloshing motion is likely to max­

imize the damper efficiency. Straight wall containers (i.e., square or rectangular 

cross-section) were studied here as they are easier to construct and simpler to anal­

yse theoretically. Some tests on circular cross-section models were also conducted 

with the performance comparable or lower than that of an otherwise similar straight 

wall damper. For instance, a geometry with D/d = 3.00 and h/d = 0.5 yielded a 

peak rirti = 2.2 at resonance, for an amplitude eo/d = 0.06. The same trends were 
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observed during free oscillation experiments, although here resonance was more dif­

ficult to establish and no quantitative results could be obtained in this region. A n 

interesting concept consisting of a sloping cross-section (Fig. 33), allowing for the 

breaking of the liquid sloshing waves, was similarly tried. The logarithmic decre­

ment method showed some improvements are possible for particular geometric ratios 

of d i / d , 0 * 2 / 0 * and 0 * 3 / 0 * over the square geometry. More systematic tests in forced 

oscillations would have to be conducted to validate the idea. The introduction of 

flexible walls is another area to be examined. 

d -I 

I * — d i — H 

Fig. 33 Proposed sloping cross-section 

3.4.3 Comparison with Free Oscillation Tests 

The distinct character of the free oscillation tests and associated apparatus9 0 

(Fig. 34) provided a means to verify the steady-state excitation results. The ad­

ditional parameters representing the amplitude decay deo/dt, the small rotational 

motion induced by the pivoting arm, and the variation in the natural frequency due 

to fluid-structure interactions, are variables likely to influence the response. Fig. 35 
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Fig. 34 Apparatus used for free oscillation tests 

compares some results as given by the two methods. The amplitude decay approach 

clearly tends to smooth the curves due to the transient effects (Fig. 35a) . In most 

cases, nr>i is lower than its corresponding value for the forced vibration tests (Fig. 

35b). This is not surprising as the flow is likely to need some time to respond to 

the increase in rjTii with dimishing amplitude. Furthermore, the boundary for the 

transition from planar to nonplanar motion is delayed. The trends are, however, 

the same and the shift in magnitude could be attributed to the system rotation, as 

discussed in the next chapter. It should be pointed out that deo/dt was minimized 

by using a large dead weight (i.e., small fluid to total mass ratio). The reduced 

damping ratio was taken as 
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Fig. 35 Damping characteristics versus eo/d as obtained by steady-state and 
free oscillation experiments for: (a) damper with baffles; (b) plain 
damper 
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^ - - 2 ^ r i ( 4 5 ) 

according to the logarithmic decrement method normalized for the relative inertia 

of the fluid. Here: 

xm = system amplitude for the mth cycle; 

y = fluid to total inertia ratio for the pivoting system (equivalent 

to Mi jM for translation). 

The relation is valid for discrete values of amplitude corresponding to m=l , 2, etc., 

and can be made continuous by taking the limit as m tends to 0, i.e., 

i \ v l n x i / x m J j 
* ' I ( X ) = ^ o - 2 ^ 7 ' ( 4 6 ) 

or * M — - - L — j , (47) 

where x is the amplitude function, 

x{m) = xm. (48) 

A polynomial fit for the envelope of amplitude decay was then applied to facilitate 

the analysis, 

x(m) = A0 + Aim + A2m2 + (49) 

as shown in Fig. 36, which yields 

1 A x + 2mA2 + ... + pm^-^A^Ii 
^ 1 ( X ) = ~2^[ A0 + Aim + ... + ApmP ]T ( 5 0 ) 
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x =2.50 - 0.075m + 0.0019m2 

0 40 80 
m , c y c l e s 

Fig. 36 Amplitude decay for the half-full damper#l oscillating at CJ = 0.924 
with an initial displacement of eo/d = 1.28 (chart recorder Type 
TR322, Gulton Industries) 

3.5 Concluding Comments 

This experimental program combined with the theoretical development have 

resulted in an in-depth understanding of the nutation damper behavior. The major 

findings are summarized below: 

• The damping characteristics are entirely governed by the liquid motion. The 

condition of resonance with the damper operating at its first sloshing natural 

frequency results in a substantial gain in rjr>i. Any configuration restricting the 

action of the free surface, such as baffle arrangements, inner tubes, or even high 

viscosity fluids, further contributes to a drop in efficiency. 
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Nonlinearities play a major role at resonance. They should be minimized as 

they generally limit the liquid motion, reflected by a reduction in damping and 

added mass ratios. They are also responsible for the softening or hardening 

characteristics governing the response versus the amplitude of excitation. The 

appearance of the nonplanar mode has often beneficial effects as it extends the 

high efficiency region beyond resonance. 

Whenever possible, long and slender dampers with relatively low liquid heights 

(high D/d and h/d < 0.5) should be used as they exhibit weaker nonlinear 

effects. When resonance can only be met at smaller diameter ratios, particular 

h/d can also be found to provide similar characteristics. 

The theory serves as a useful tool in understanding the damper behavior. The 

resonant frequency at low amplitudes, as well as the hardening or softening 

trends, are often properly predicted. The peak response and the nonlinear effects 

are, however, too pronounced and suggest that significant dissipation takes place 

in the main flow field. The analysis is quite demanding, in terms of time and 

efforts, since many cases of resonant interactions need to be considered, at times 

leading to unstable solutions. However, the procedure provides considerable 

insight into the effect of the various controlling parameters. 

Damping forces outside the boundary layer are likely to restrict the motion of 

M 
the main stream at resonance (lower peaks for r/r>j and |-r-p|) while promoting 
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dissipation elsewhere (wider region). A numerical approach for solving the full 

Navier-Stokes equation would therefore be more accurate. However, the three 

dimensionality of the flow and its time dependence, combined with the highly 

nonlinear free surface boundary condition, would make this process fairly costly. 

Furthermore, the presence of such phenomena as discontinuous, turbulent wave 

fronts mentioned in section 3.3 would still be unaccounted for. Improvements to 

the potential flow solution could also be implemented to correct for the boundary 

layer thickness. The variational method, allowing for the introduction of an 

empirical dissipative term in the equation of the main flow field67 is another 

possible avenue of research. 

• Finally, turbulence was never found to be beneficial as rjr>i did not change its 

trends at higher amplitudes or frequencies of excitation (with the transition 

from laminar to turbulent flow). 
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4.1 General Description 

Effectiveness of the dampers in controlling vortex resonance and galloping insta­

bilities was assessed in both laminar (u'/V < 0.1%) and turbulent flows for two and 

three-dimensional bluff bodies undergoing translation and rotation, respectively. 

The closed circuit laminar flow wind tunnel with a test section of 0.69 x 0.91 x 2.44 

m, and the large boundary layer tunnel (24.4 m long, with an initial cross-section of 

1.58 x 2.44 m) fitted with 20.74 m of roughness board upstream of the model to pro­

duce desired boundary layer thickness and turbulence intensity, were used to simu­

late the external environment. Dampers were mounted on a variety of aerodynamic 

models with square or circular cross-sections. The two-dimensional arrangement, 

useful for predicting the response of tall structures such as smokestacks, buildings, 

etc., spanned the height of the laminar flow wind tunnel, while a horizontal set­

up simulated a transmission line configuration. The rotational motion was studied 

with three-dimensional models of finite aspect ratio. 

4.2 Two-Dimensional Tests in Laminar Flow 

4.2.1 Preliminary Remarks 

Although the natural wind is essentially turbulent, the vortex resonance and 

galloping response of two-dimensional, square and circular cylinders in laminar flow 
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has been well documented. Consistent empirical results91 combined with the de­

velopment of a successful galloping theory 9 3 permit an approximation of the cross-

flow oscillations, provided the aerodynamic reduced damping 77,. > a , also called mass-

damping 6 or stability parameter8, is known. These tests are therefore well suited for 

the evaluation of the nutation damper characteristics under conditions of nonlinear, 

wind-induced forcing excitations. As the amplitude growth of the model response is 

usually assumed to be slow until a limit cycle is reached, due to relatively high rjTta 

in wind engineering problems, the steady-state results of Chapter 3 should apply. 

4.2.2 Test Arrangement and Model Description 

A rigid frame located outside the wind tunnel and supporting four air bearings, 

in turn carrying a sliding shaft at top and bottom on which aerodynamic models 

were mounted in a vertical position, was used to conduct the two-dimensional tests 

(Fig. 37). Four springs provided the structural stiffness and an inductance coil type 

displacement transducer recorded the amplitude response. This already available 

set-up, specifically designed for the study of aeroelastic problems, was also equipped 

with eddy current magnetic dampers. More information on the test facility is given 

in reference 97. Relatively large (10.2 cm « 4") yet light models were constructed 

in the Department's machine shop to produce the desired instability region, with 

rjr>a as low as 2.0 to 3.0 to allow for some flexibilty in the choice of nutation damper 

size. A smaller 5.1 cm (2") square cross-section cylinder was also used to evaluate 

the performance for a different value of aerodynamic reduced damping ratio. 0.64 



86 

Displacement Damper 
Transducer 

\ i V v 

End Plate 

Air Bearing Shaft Air Bearing 
Block 

•V\A- I 
Function Conditioner 

i—r t i i—i 
Dead Weight Generator 

Conditioner 
i—r t i i—i 

Dead Weight Generator 
Amplifier 

Spectrum 
Analyzer 

Chart Recorder 
or Oscilloscope 

Fig. 37 Wind tunnel set-up for two-dimensional tests 

cm (0.25") thick balsa wood provided reasonable bending and torsional stiffness 

while two thin aluminum plates bonded to the balsa wood defined sharp edges of 

the square configuration. The 10.2 cm diameter circular cylinder was made of 0.64 

cm thick P V C pipe section. The models were provided with medium size end plates, 

following a careful design procedure, as explained in section 4.2.4. The details are 

given in Table II. Although the model weight ranged from 349 to 786 g, the moving 

shafts, clamping mechanisms, and damper supports contributed more to the inertia 

of the oscillating system (1094g ± 3 7 g, according to springs used). It could also 
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be changed with the addition of metallic plates inside the model, or dead weight 

outside the tunnel for finer adjustments. 

Table II Physical description of the two-dimensional aerodynamic models 

MODEL# 1 2 3 

CROSS-
SECTION 

* 
102 m m 
• 

1 IX51 mm C"~̂ 10|2mm CROSS-
SECTION 1 IX51 mm 

LENGTH(mm) 673 673 673 

MATERIAL BALSA & 
ALUMINUM 

BALSA & 
ALUMINUM PCV 

MASS (g) 786 349 745 

END 
PLATES 

102 m m 

END 
PLATES 2 0 4 

m m 

! 
3 0 5 
1 m m 

m " 1 
t 

2 5 1 m m 

1 

• 

2 0 4 
m m 

t 
3 0 5 
| m m 

END 
PLATES 

i 

m " 1 
t 

2 5 1 m m 

1 

t 
3 0 5 
| m m 

END 
PLATES 

Static force measurements on the square cross-section models were carried out 

with the six-component pyramidal strain gauge balance (Aerolab). Drag Dr and 

forces perpendicular to the flow Sp were recorded over a range of angle of attack a 

giving the side force, 

Fy = Sp cos a — Dr sin a, (51) 

useful in prediction of the galloping response. 
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4.2.3 Calibration Procedure 

The displacement transducer was connected to a chart recorder and a spectrum 

analyser (same instruments as in Chapter 3). A static calibration procedure with 

the chart recorder responding to a given displacement of the model resulted in the 

curve of Fig. 38(a). The peak amplitude y of a purely sinusoidal signal such as that 

obtained during the vortex resonance or galloping excitation was measured by the 

spectrum analyser, and in turn calibrated against the recorder. It gave a constant 

value of 31.78 m V / c m (Fig 38b). 

4.2.4 Model Characteristics 

Although large end plates, or the more recent double plate configuration97, 

are desirable to reproduce conditions of two-dimensionality98, the drag and weight 

penalties can weaken the excitation and response during the dynamic tests. This 

was assessed during a preliminary determination of the static side force coefficient 

on the 5.1 cm square cross-section (Fig. 39a). Results clearly indicate a relatively 

lower initial slope of C / y versus a, for both the no end plate and the large end plate 

configurations, known to delay the galloping instability. Less pronounced trends 

were observed for the 10.2 cm size square model (Fig. 39b). Medium size end 

plates, sufficient to minimize the effect of suction caused by slots in the tunnel walls 

were therefore adopted. Of course, the slots were necessary to permit vibrational 

motion of the system. More results dealing with this particular aspect are discussed 

in the next section. The position of the plates also played a significant role in earlier 
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Fig. 38 Calibration constants used during the tests for: (a) chart recorder; 
(b) spectrum analyser 
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Fig. 39 Effect of end plate dimension on C / y for: (a) model#2; (b) model#l 
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tests on an aluminum, 7.6 cm (3 in) diameter circular cylinder. Presence of a 1.27 

cm plate-wall gap resulted in a vortex resonance response much lower than expected. 

A smaller gap of 0.63 cm, necessary to install the models, was used in all subsequent 

experiments. 

The high blockage ratio (11%) of the 10.2 cm section model (model #3) was 

responsible for larger peak displacements, compared to the standard vortex res­

onance response for a circular cylinder 9 1, as shown in Fig. 40. With a shift in 

dimensionless amplitude Y but otherwise similar shape, this curve can be used as 

the reference for the nutation damper performance. The response at different levels 

of Vr,a was obtained by activating the electromagnetic dampers at different voltage 

settings. As expected, the damping ratios were found to be essentially constant 

with amplitude, over the range considered (Fig. 41). The logarithmic decrement 

method in conjunction with the amplitude decay polynomial fit approximation, used 

in the analysis of data, was described earlier towards the end of Chapter 3. The 

inherent system damping ne (i.e., no damper, 0 mA) was also found to be constant 

at low Y but quickly increased beyond a certain threshold. This is in agreement 

with earlier studies using such test facilities9 9, and is beleived to be caused by the 

higher bending stresses at larger amplitudes. The deformation during the initial 

displacement may however be different from that applied by the distributed load­

ing of the air flow pressure field and such a rise in r}8 may not occur during the 

dynamic tests. The galloping response can be predicted by the quasi-steady theory 



Fig. 40 Maximum displacements of model#3 undergoing vortex resonance 

0.3 0.5 0.6 y 

Fig. 41 System damping for different electromagnetic damper settings 
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using the measured side force coefficients of model#l and 2 shown in Fig. 42. The 

results for model#2 (5.1 cm side) compared quite well with those by Brooks 1 0 0 . 

The higher blockage ratio in Fig. 42(b) causes the Cfy values to be larger at small 

angles of attack. The dC/y/da slopes at a = 0° are approximately 2.6 and 4.6 for 

the two models, respectively. The galloping response prediction, obtained using a 

13th order polynomial approximation for C / y , agreed with the experimental results 

for the electromagnetic damper set at higher nria (i.e., galloping onset velocity L70 

far from vortex resonance Ur), as illustrated in Fig. 43(a) and (b). For a lower 

value of the aerodynamic damping, both vortex resonance and galloping regions 

overlap, and the response is rather insensitive to rjr>a until the latter is large enough 

for a distinct peak near Ur (Fig. 43c). The data were taken for a model natural 

frequency of 2.00 Hz, and agree with the low turbulence data of reference 97. The 

validity of the curve at several other frequencies was also established by changing 

the stiffness of the test arrangement, as shown in Fig. 44. 

A well defined response to the vortex shedding excitation was often visible on 

the frequency spectrum outside resonance, particularly for the 10.2 cm models (Fig. 

45a). With the record of the correponding wind velocity, a Strouhal number of 0.196 

was found for the circular cross-section (Fig. 45b), whereas the square configuration 

yielded St = 0.127 and 0.139, for the 5.1 and 10.2 cm side, respectively (Fig. 

45c). The accuracy of the data was lower for the smaller model due to the reduced 

aerodynamic forces. 
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Fig. 44 Response of a two-dimensional square cylinder without damper for: 
(a) model#l; (b) model#2 
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Fig. 45 Vortex shedding excitation on two-dimensional models showing: (a) 
frequency spectrum of the response; (b) Strouhal number for the cir­
cular cylinder; (c) Strouhal number for square cross-sections 
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4.2.5 Results and Discussion 

4.2.5.1 Vortex Resonance Response of a Circular Cylinder 

The tests were conducted at a frequency of 2.50 Hz with the response of the 

model without dampers exceeding the physical limits imposed by the slot size in the 

wind tunnel walls allowing for the motion. The addition of damper#l with various 

liquid heights resulted in a significant reduction in amplitude even for h/d = 0.125, 

as shown in Fig. 46(a). The oscillations were almost completely eliminated at 

h/d > 0.5 with the damper operating near its first natural sloshing frequency, 

established to generate high damping ratios at low amplitude with the occurrence 

of the nonplanar mode. Quantitative information can be obtained by recognizing 

that the aerodynamic reduced ratio r)r>a is related to t)r,i (liquid reduced damping 

ratio) through 

, 1 1 , 1 
V 4 7 T M/paLmdm Mi/M 

where Lm and dm are the model length and diameter, respectively; pa is the air 

density; M is the total system mass; and rj8 is the inherent damping determined to 

be 0.105% for small oscillations during the experiments. Using the model character­

istic curve of Fig. 40, the peak amplitudes Y = 0.094, 0.05, and near 0, associated 

with h/d = 1/8, 1/4 and 1/2, correspond to rjT>a « 12.5, 20.0, and > 40.0, re­

spectively. This in turn requires rjrji to be of the order of 0.36, 0.31 and > 0.35, 

respectively. This is indeed the case with h/d = 1/2 as observed in Chapter 3 (p. 

59) where r}r>i was found to be greater than 2.0 in the nonplanar mode at low exci-
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tation amplitude. Similarly, the half-full baffle and tube configurations suppressed 

the oscillations (Fig. 46b), while for the more slender damper#13 operating far 

from its resonant frequency a large response persisted (Fig. 46c). 

Although no data for damper#l with h/d = 1/8 and 1/4 were obtained for these 

conditions during the steady-state experiments, a record of the amplitude decay was 

taken prior to switching on the wind to assess the damping (Fig. 47). Despite CJ 

being much smaller than 1.0, the nonlinear effects at higher amplitudes produce a 

resonant peak at e0/d = 0.25 and 0.45, for h/d = 1/4 and 1/8, respectively, due 

to the hardening characteristics at low liquid height. Larger values of r)rj = 0.50 

and 0.59 are also obtained for the two h/d ratios at an amplitude of eo/d = 0.18 

(i.e., Y = 0.05) and 0.334 (Y = 0.094), respectively, as compared to T)rj « 0.31 

and 0.36 estimated from the response during the wind tunnel tests. Possible innac-

curacies may enter due to the fairly flat slope of Fig. 40 in the range considered 

here, with small errors in Y leading to a large variation in r / r ) a . Furthermore, it was 

shown that the logarithmic decrement method does not follow the fluctuations in 

damping with eo/d precisely (section 3.4.3), therefore rjrj is likely to be lower prior 

to attaining the resonant peak . The order of magnitude and the relative amount 

of damping for the two liquid heights are, however, quite comparable in both cases. 

Several approaches are available to verify the value of T]rj. One way would 

be to use available data on the excitation due to vortex shedding. A fairly compre-



100 

Damper Parameters 
h/d = 0.500 M| /M= 0.038 

0.8 1.0 

— no damper 
• plain (#1) 
• baffles (#2) 
A tube (#3) 

D/d - 1.89 
CJ =1.15 
Re=2.66x104 

U 

Fig. 46 Vortex resonance response on model#3 showing: (a) effect of liquid 
height and w; (b) effect of internal configuration 
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hensive study by Diana and Falco 1 0 1 permits the prediction of the response over 

a wider range of U. With the knowledge of the work done on the model by the 

wind, at various amplitudes and frequencies , an iterative procedure based on the 

input to dissipated energy balance results in the comparison of Fig. 48. Notice­

able discrepancies are apparent although the general trends are well reproduced. 

A n alternate approach is the partly successful Hartlen-Currie oscillator model 1 0 2 

requiring the empirical determination of the variables and 6 ,̂ using the lightly 

damped response here (Figs. 49a, b), and applying it to the model fitted with nu­

tation dampers (Figs. 49c, d). The static lift coefficient CJO when taken to be the 

same as that determined by Feng 1 0 3 underestimated the response for h/d = 1/8 and 

1/4 (with no solution generated beyond the resonant peak), as shown in Fig. 49(c). 

The input damping ratios were based on rjr>i = 0.36 and 0.31 for h/d = 1/8 and 

1/4, respectively, as found earlier from Fig. 40. Furthermore, the half-full damper 

corresponding to rjrii > 0.35 was found to suppress the oscillations (not shown). A 

higher C j 0 of 0.5 to account for the larger blockage ratio was then considered and 

peak amplitudes closer to the experimental results obtained (Fig. 49d). A minimum 

t]rti of 0.62 was then needed for h/d = 1/2 to bring Y down to near 0. Overall, 

the method further verifies the level of the input damping ratios, as the predicted 

left-hand side of the response curve matches the data. 

In general, vortex resonance can be controlled using nutation dampers with a 

mass less than 1% of the total weight of the system (model#l with h/d= 1/8). Even 
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Y 

Fig. 48 Comparison between experiments and predictions based on the energy 
balance method 

smaller sizes with CJ closer to 1 are expected to perform equally well. The higher 

blockage ratio of the 10.2 cm diameter model, responsible for a larger excitation 

than that in free air, makes this estimate conservative. 

4.2.5.2 Vortex Resonance and Galloping Response of a Square Cylinder 

The dampers were first mounted under the more unstable conditions of model#l 

with a low initial aerodynamic damping ratio of 2.92. Qualitatively, they perform 

according to the characteristics determined in Chapter 3, with the frequency param­

eter CJ closer to 1.0 more successful at delaying the onset of galloping and virtually 

suppressing the vortex resonance peak (Fig. 50a). The tube and baffle configura-
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tions were found to be relatively less efficient with the galloping onset velocity UQ of 

3.9 and 2.65, respectively, as compared to 4.0 for the plain damper (Fig. 50b). Of 

course, the problem is made more complicated by the highly amplitude dependent 

damping ratio. For instance, it has been established that rjrj exhibits a jump at 

CJ = 1.15 and 1.39, with low amplitude excitation, followed by a rapid decrease 

in efficiency with CQ (section 3.4.2). This does not appear to prevent the build-up 

of oscillations under vortex resonance, however, Y subsequently stays close to zero 

until UQ is reached. On the other hand, a gradual increase in response began around 

Uo = 2.0 for CJ = 0.92, with rjTti reaching a maximum at higher amplitude (Chapter 

3, p. 61) and hence further delaying the onset of instability (Fig. 50a). 

Experiments with the smaller model#2 continue to show CJ to be the govern­

ing parameter. The half-full damper essentially suppressed the galloping instability 

over the entire range of U, while h/d = 7/8 allowed for a high response at U « 14 

in spite of the larger mass (Fig. 51a). It may be pointed out that the wind speed 

was limited to U < 18 to prevent possible damage to the model and the loss of air 

bearing low friction characteristics under a large static load. Oscillations quickly 

appear for h/d — 1/8 with an initial low damping ratio but the hardening charac­

teristics, leading to sloshing resonance at higher amplitudes, resulted in the stalling 

of the response until the excitation becomes strong enough at U « 4.8. Meanwhile, 

the damper with D/d= 15.2 (CJ much larger than 1.0) is quite uneffective with Y 

still following the low damping, combined vortex resonance-galloping curve (Fig. 
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51b). This corresponds to rfr>a < 21.5, according to Fig. 43(c) showing the data for 

the electromagnetic damper tests, a condition certainly met here. 

The nutation damper performance can be further assessed using the gallop­

ing theory. The latter proved to be reasonably accurate at predicting the system 

response with viscous damping (section 4.2.4). In principle, it should be applicable 

to any energy dissipation function through the definition of an equivalent viscous 

damping ratio, provided the time derivatives are small, and the vortex resonance 

velocity Ur is much lower than U0" (galloping onset velocity). With the knowledge 

of r)rj versus Y and the necessary modification to the stability analysis (Appendix 

VII.l), an attempt was made to compute the response of the half-full damper#l 

mounted on the 10.2 cm square-section model. Analytical results are compared with 

the experimental data in Fig. 52(a). The theory predicts that the onset of galloping 

should be considerably delayed as T]rj is high at low amplitudes. Moreover, there 

exists an upper stable branch, fairly constant with increasing wind speed, due to 

the diminishing damping ratio with Y. However, experiments conducted at several 

values of CJ showed that the system starts to gallop before Uo is reached, without 

stabilizing at the higher limit cycle. This behavior suggests that the transient effects 

are important. The energy dissipation is of course generated by the liquid motion, 

and some lapse of time for the system initially at rest is likely to be needed before 

the damping level reaches the steady-state conditions of Chapter 3. Meanwhile, the 

structure may gain momentum with r/r>/ further dropping at higher amplitude, thus 
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leading to an even larger response. 

Results for the 5.1 cm diameter model show better agreement with the the­

ory (Fig. 52b). The half-full damper successfully postponed galloping to U > 18, 

although no upper branch for Y in the range 0.2 to 0.5 was found. Oscillations 

beyond the physical limits of the test facility (Y > 1.2) could however be excited 

by imparting a large disturbance at U « 0.9. The configuration with h/d = 1/4 

essentially followed the lower branch of the predicted response. The general trend 

for h/d = 1/8 is also fairly representative of the experimental data with a shift along 

the x-axis characteristic of an overestimated damper efficiency at low amplitude. 

This is probably due to inaccurracies in the input damping coefficient based on the 

free vibration tests of Fig. 47. From the part of the curve where Y slowly increases 

from 0.1 to 0.15 with U changing from 1.5 to 4.3, it can be inferred that rjTii varies 

from a very low value (< 0.1 at Y = 0.1) to about 0.21 at e 0 /d = 0.26 (Y = 0.15) 

before the system starts to gallop. This is compatible with the upward trend for r/r>/ 

until e 0 /d = 0.5 (Fig. 47) combined with its value of 0.36 for eo/d = 0.35 estimated 

in section 4.2.5.1. 

Evaluation of the performance during vortex resonance is more difficult as there 

is no well established universal response curve characterizing the effect of the system 

parameters. A comparison between Fig. 50(a) and the data obtained with the elec­

tromagnetic dampers (Fig. 43) however shows the half-full configuration oscillating 
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dampers for: (a) model#l; (b) model#2 

at CJ — 1.15 should contribute to an overall ij >1.70% at Y = 0.13, since a maximum 

response of 0.16 was recorded at U = 1.58 on model#l with the eddy current damp­

ing. Similar conclusions can be drawn at frequencies of CJ = 0.92 and 1.39. The 

upper return loop also indicates that TJ is less than 1% at higher amplitudes. This 

generally agrees with the results of Chapter 3, although the response for CJ = 1.15 

and 1.39 should have stabilized at a lower Y where T)rj is much larger. This again 
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suggests that the acceleration of the structure, initially at rest, is an important 

factor because of the time needed for the damper to grow to its full potential at low 

eo/d. The predictions of the Hartlen-Currie lift oscillator model, originally based 

on the empirical parameters of reference 104 (i.e., = 0.13, = 2.50), but sub­

sequently modified to fit the data for the electromagnetic damper tests, are shown 

in Fig. 53. Assuming they give some indication about the system parameters, the 

damping ratio for CJ = 1.15 and 1.39 is of the order of 1.85% (i.e., rjr<i = 0.46), and 

6.94% (r)rti = 1.8) for CJ = 0.92, which are close to the values of the steady-state ex­

periments, for the maximum amplitudes obtained here. Thus at a lower frequency, 

the structure appears to capitalize on the initial high damper efficiency. 

A comment concerning the aerodynamic model design would be appropriate. 

Without end plates, damper#l with h/d = 1/2 and CJ = 0.92 successfully delays 

galloping (Fig. 54a), while allowing for large vibrations starting at U = 4.0 in the 

presence of end plates (10.2 cm square cylinder). It should be mentioned that the 

response was identical for both cases in absence of nutation dampers. The effect of 

model size is illustrated in Fig. 54(b) with damper#l now postponing the onset of 

instability beyond U = 16 on the 5.1 cm square section. 

4.2.6 Concluding Comments 

A comparison between the two-dimensional wind-induced oscillation tests and 

the steady-state forced excitation experiments of Chapter 3, along with the free 
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Fig. 53 Hartlen-Currie model predictions for model#l with: (a) electromag­
netic damping; (b) nutation damping 

vibrations data using the wind tunnel set-up, has led to the important conclusions 

summarized as follows: 

• The optimal damper parameters obtained through the steady-state analysis 

help minimize the response during wind-induced oscillations. For instance, liq­

uid sloshing resonance with CJ close to 1 resulted in maximum efficiency, while 

baffle and inner tube arrangements were less effective at reducing vortex res­

onance and galloping instabilities. Low liquid heights with CJ > 1 are better 

suited for restricting the response at high amplitudes, due to their hardening 
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characteristics, whereas the opposite is true for larger h/d ratios. 

• The semi-empirical galloping theory proved to be useful in studying the energy 

dissipation characteristics. The Hartlen-Currie model of vortex resonance is 

promising as it helped establish a good correlation between the left hand side of 

the response curve and the damping ratios af Chapter 3, for both circular and 

square cylinders. 

• Time dependent parameters involving the acceleration of the model appear to 

affect the damper performance. Transient effects during liquid sloshing are then 

significant and a steady-state approximation is no longer sufficient to predict 

performance on the larger square cross-section. For the weaker excitation of the 

5.1 cm square cylinder or the circular model, better agreement with the results of 

Chapter 3 was observed. In general, dampers whose rjrti versus amplitude curves 

do not drop too quickly are preferred to avoid premature onset of instability. 

• Only a small amount of liquid is needed to control the vibrations. The vortex 

resonance of circular cylinders is limited to Y < 0.1 with a liquid to total 

mass ratio less than 1% (damper#l, h/d — 1/8). The same arrangement also 

postponed the onset of galloping by a factor of 4 for the 5.1 cm square model 

(U~o = 4.8). In the presence of larger excitation of the 10.2 cm square cylinder, 

a mass ratio of about 4% proved to be more effective (UQ = 4.0 for model#l 

at h/d = 1/2, CJ = 0.92). It can be reduced significantly at lower frequencies 
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where resonant sloshing conditions can be met with larger, more efficient D/d 

ratios. 

4.3 Three-Dimensional Tests 

4.3.1 Preliminary Remarks 

The effectiveness of nutation dampers was next assessed for finite aspect ratio 

models free to oscillate about a fixed axis. Both the wind-structure interactions as 

well as the liquid sloshing motion are now more difficult to analyse than those of 

the two-dimensional case. The experiments conducted in the boundary layer wind 

tunnel provided valuable information about the energy dissipation under this type 

of dynamic excitation. A series of tests in both laminar and turbulent flows was 

conducted to permit a comparison between the different wind environments. 

4.3.2 Test Arrangement and Model Description 

A 67.6 cm long aluminum rod fastened to a freely rotating shaft, supported by 

two air bearings, held the aerodynamic model at the upper end and the damper 

at the bottom (Fig. 55). The arrangement, originally designed by Sullivan 9 4 , was 

modified to position the damper outside the wind tunnel thus avoiding interfer­

ence with the flow, as explained in the next section. Furthermore, the original, 

longitudinally pressure compensated air bearings were found to permit significant 

oscillations in the in-flow direction at higher wind speeds. Therefore, the arrange-



116 

D a m p e r 

R e c o r d e r o r 
O s c i l l o s c o p e 

Fig. 55 Wind tunnel set-up for the three-dimensional tests 

ment was modified to include two adjustable, hardened steel pins acting on the 

shaft center of rotation. They fully secured the model without adding any signif­

icant inherent damping. Light, 50.8 cm (20") long, square and circular cylinders, 

similar in design to their two-dimensional counterparts described in section 4.2.2, 

were used in the test program. Particular attention was directed towards the upper 

connecting end where an aluminum rod extended half way inside the model. Rein-
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forcements were used to maximize structural rigidity. A physical description of the 

models is presented in Table III. Two springs provided the desired stiffness to the 

system, while a strain gauge mounted in series with a Bridge Amplifier Meter and 

a spectrum analyser (same as the instrumentation used in Chapter 3) recorded the 

displacement. 

Table III Physical description of the three-dimensional aerodynamic models 

M O D E L * 1 2 3 4 

C R O S S -
SECTION 

^ ^ 102 m m 
C R O S S -
SECTION 

I • 
102 m m 

1 * 
| | J_5I m m ^ ^ 102 m m | 11 5I m m 

C R O S S -
SECTION | | J_5I m m 

LENGTH(mm) 508 508 508 483 

MATERIAL BALSA & 
ALUMINUM 

BALSA & 
ALUMINUM PCV BALSA 

MASS (g) 644 244 515 253 

4.3.3 Model Characteristics 

The static side forces were first measured on the square cylinders in laminar 

flow. The resulting aerodynamic coefficient was found to be much lower than that 

of the two-dimensional models. The slope at zero degree angle of attack is small 

(dCfy/da « 0.60 for model#2), probably due to suction across the opening in the 

bottom wall (Fig. 56a). The end effect at the top is also likely to contribute to 

generally lower Cfy. The higher blockage continues to show a larger excitation with 
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a slope of 1.4 at a = 0° and an improved curve for Cfy until a = 10° (model#l, Fig. 

56b). Combined with a nonuniform horizontal displacement along the length of the 

model due to rotation, this should generate weaker galloping instabilities than those 

of the two-dimensional case (for the same tip displacement). The integration of the 

side force is presented in terms of a moment coefficient in Fig. 56(c). A small gap of 

0.48 cm between the wind tunnel bottom wall and the models was used throughout 

the tests. 

Measurements of the natural frequency in free oscillations and the spring stiff­

ness were used to arrive at a system inertia of 0.2021 Kg-m 2 for a total mass of 

1.044 Kg. More significant contributions came from the aerodynamic model and 

the damper rod support, due to their relative height extending away from the pivot 

point. With an inherent damping of 0.1%, or less, derived from the amplitude decay 

curve of the system without damper (Fig. 57), the aerodynamic reduced damping 

r}r>a based on the cylinder tip deflection was found to be in the range 0.85-1.13. 

It was again noticed that r]B generally increased with amplitude in free vibration. 

Earlier work by Sullivan 9 4 used a constant viscous damping and the agreement with 

theory was found to be reasonable. The value at low amplitude was thus assumed 

to be valid throughout the range as explained earlier in section 4.2.4 (different load­

ing). The Strouhal number for the 10.2 cm square model was found to be 0.12 (Fig. 

58). Its lower value than that of the two-dimensional cylinder is compatible with 

the results of other investigations1 0 5. The vortex shedding excitation away from 
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resonance was too difficult to monitor for the other models. The calibration proce­

dure was repeated for each set of springs affecting the force per unit displacement 

transmitted to the strain gauge. It was similar to that described in section 4.2.3. 

A last point addresses the position of the damper with respect to the struc­

ture. Dampers were first installed at the top of the cylinder, as would be the case 

in a real life situation. However, a significant weakening of the galloping instabilities 

was usually observed, with, at times, complete suppression of oscillations even be­

fore the liquid was inserted. This can be expected as the axisymmetric shape of the 

damper contributes to the drag without generating any static side force. Its signif-
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Fig. 58 Strouhal number for the large square cylinder 

icant size thus resulted in a drop in C / y . Fig. 59 illustrates the effect in laminar 

flow. Without damper, the aerodynamic model#4 exhibits a well defined vortex 

resonance peak followed by the onset of galloping at U = 6.0. With the empty 
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damper, the interference is such that galloping never occurs. Hence the damper 

was supported outside the wind tunnel such that its displacement was equal to the 

cylinder tip deflection. 

Fig. 59 Effect of damper position on the response of a square prism 

4.3.4 Results and Discussion 

4.3.4.1 Vortex Resonance Response of a Circular Cylinder 

The tests conducted at a frequency of 2.50 Hz showed that relatively low liquid 

heights can suppress the oscillations. The damper with h/d = 0.046 limited the 

response to Y « 0.15 in both laminar and turbulent flows, while Y remained lower 

than 0.05 for h/d = 1/8 (Fig. 60). No response was noticeable with the half-full 
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Fig. 60 Vortex resonance response of model#3 as affected by h/d and CJ in: 
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damper, even with the baffle or inner tube configurations, as illustrated in Fig. 

61. This is consistent with the weaker excitation of the three-dimensional models 

reported in the literature 1 0 6. It is interesting to note that the response is slightly 

higher in turbulent flow. This is somewhat unexpected as the vortex formation is 

thought to be less organized here as compared to the laminar condition. Perhaps the 

characteristic velocity profiles (Fig. 62), together with a different blockage ratio, 

are responsible for such behavior. The large scale turbulence induced resonant 

interactions reported in reference 106 is another possibility. 

Damper Parameters 

1,0 = 1.13 D/d =1.89 h/d = 0.500 
CUr1.15 Re=2.66*10 4 

M./M z 0.067 
Y 

0 . 4 -
— No Damper 

0 .2 -

0.0 
0.7 0.9 1 . 1 1.3 1 .5 U 

Fig. 61 Effect of internal configuration on the 3-D model response 
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In general, the damper performance was found to be quite comparable in both 

laminar and turbulent flows, with the vortex resonance shifting from U « 1.0 (lam­

inar) to 1.6 (turbulent case). However, amplitude decay plots for h/d = 1/8 and 

1/2 indicate the damping to be generally lower for the three-dimensional models 

compared to their two-dimensional counterpart (Fig. 63a and b), and gradually de­

creases with the amount of rotation as defined in Fig. 63(d). rjrj is fairly constant 



€D/d 

Fig. 63 Damping characteristics as affected by liquid height for nutation dam­
pers undergoing rotation 
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at high eo/d (Fig. 63c). The dependence on CJ is quite pronounced: the same type 

of damper but of different diameter ratios shows reversed performance according to 

the exciting frequency. At f=1.00 Hz, damper#13 (D/d= 15.2) has a larger liquid 

motion which suppresses the oscillations, while for D/d = 1.89 (damper#l) the 

model response reaches an amplitude Y = 0.37 (Fig. 64a). However, at f=2.50 Hz, 

damper#13 allows Y to grow to 0.1 while no response is observed for the smaller 

diameter ratio (Fig 64b). It should be mentioned that the results for the system 

without dampers do not collapse onto the same curves for all frequencies (Fig. 65). 

This is likely due to the variation in inherent damping as affected by the use of 

different springs. 

4.3.4.2 Vortex Resonance and Galloping Response of a Square Cylinder 

With a low value of reduced aerodynamic damping ratio, the model in lami­

nar flow exhibited vortex resonance merging with the onset of galloping instability 

(similar to the two-dimensional case). The forces are, of course, weaker on the 

5.1 cm cross-section (system frequency of 2.5 Hz) and damper#l with h/d = 1/8 

essentially suppressed the vibrations over the entire range of U (Fig. 66a), while 

allowing for an amplitude build-up of Y = 0.10 during vortex resonance on the 

10.2cm model (Fig. 67a). The same arrangement remained effective in turbulent 

flow with Y slowly increasing towards 0.1 until the galloping onset velocity was 

reached at U = 5.0 (model#l, Fig. 67b). No resonant peak was visible here, thus 

suggesting that the vortex shedding excitation is small in this type of flow. Similar 
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Y 

Fig. 65 Vortex resonance response for model#3 without dampers at various 
frequencies 

trends can be observed at smaller liquid heights, with a large response at resonance 

for the laminar case for h/d = 0.064 (Fig. 67a), as opposed to the significant gal­

loping oscillations with the boundary layer pofile (Fig.67b). This agrees with other 

studies 1 0 7 indicating turbulence increases the static side force coefficient. With the 

addition of liquid &th/d= 1/4, the amplitude is further reduced to Y « 0.04 in lam­

inar flow (vortex resonance) and 0.05 with turbulence (U = 5.0), while being totally 

eliminated for h/d > 3/8. Similar trends were observed on the 5.1 cm model with 

smaller liquid heights, as shown in Fig. 68. CJ remains the controlling parameter, 

as demonstrated in Fig. 69(a) with the half-full damper#l excited at the various 

frequencies, or in Fig. 69(b) with two different diameter ratios. Damper#8 with 
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Fig. 66 Galloping response in 3-D for model#2 with nutation dampers in: (a) 
laminar flow; (b) turbulent flow 
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Fig. 67 Galloping response in 3-D for model#l with nutation dampers in: (a) 
laminar flow; (b) turbulent flow 
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Vr n - 3 . 1 7 D a m p e r P a r a m e t e r s 

Fig. 68 Effect of low liquid heights on the 3-D galloping response of model#2 

h/d = 1/2 and CJ very close to 1.0 is more effective than damper#l at h/d = 1/8 

and CJ = 2.21 at low amplitudes in turbulent flow (Fig. 66b), as expected from 

the sloshing resonance characteristics. However, an upper branch was found with 

damper#8 in the presence of an initial disturbance suggesting a region of lower 

damping at higher amplitudes. This was not observed with damper#l as expected 

from the hardening characteristics at low liquid height resulting in an increase in 

rjr<i with displacement. 

The galloping theory can be used here to predict some of the results obtained in 

laminar flow. Although a local force coefficient is preferable to the average values 
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Fig. 69 Effect of D/d and CJ on the 3-D galloping response of model#2 
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of Fig. 56 9 4 , the first term A \ of the polynomial fit, found to be 0.316 and 0.251 for 

model#l and 2 , respectively, suggests the onset velocity to exceed the investigated 

range of U (up to 4.5 and 18 for the two models, respectively) provided the damping 

ratio for the system is more than 0.45%. This condition is met for damper#l with 

h/d = 1/8 and e0/d > 0.080 (Fig. 63a) or a corresponding Y > 0.02 for the 

larger square prism. The configuration with h/d = 0.064, found to exhibit a more 

uniform damping versus amplitude characteristic and a maximum r)rj « 0.031 in 

free oscilllations, is also expected to delay galloping beyond the imposed boundaries 

for U. This, of course, is also true for larger amounts of liquid (h/d > 1/4). 

The absence of oscillations observed at higher velocities for all cases in laminar 

flow thus conforms with the predictions. No static forces were measured for the 

turbulent case and therefore no such analysis can be carried out here. It is, however, 

interesting to notice that small liquid heights, i.e., h/d — 0.064 or 0.043, postponed 

the instabilities in a way similar to the two-dimensional flow case with h/d = 1/8 

(Fig. 51), where a stalled progression for Y (Figs. 67b, 68) corresponds to the 

region where r}r>i improves with amplitude (Fig. 63c). 

4.3.5 Concluding Comments 

With the weaker excitation on a three-dimensional bluff body and the higher 

inertia ratio achieved by positioning the damper at a distance from the center of 

rotation equivalent to the tip of the structure, relatively smaller amounts of liquid 

were needed to control the oscillations. The important findings are listed below: 
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The governing damping parameters in rotation are the same as those determined 

for translation. The response is quite sensitive to CJ and low liquid heights show 

improved performance at higher amplitudes. 

A relatively low liquid to system mass ratio of 1.5% (damper#l with h/d= 1/8) 

was sufficient to keep Y < 0.1 in all cases. rjrji was, however, estimated to be 

lower than its two-dimensional counterpart in otherwise similar conditions of 

amplitude and frequency. 

Vortex resonance dominated the response of the lightly damped 10.2 cm square 

section cylinder in laminar flow while galloping was the governing mechanism 

in turbulent conditions. The oscillations on the circular model were also found 

to be higher in the boundary layer tunnel. Overall, the results justify the need 

to conduct tests in the simulated natural wind, the smooth air stream results 

being not conservative. 

Both experiments and the galloping theory predict the speed for onset of insta­

bility to be beyond the investigated range (for the dampers considered here). 

The transient effects are expected to be small with the weaker aerodynamic 

forces generating slow accelerations on the models. A steady-state approxima­

tion of the damping characteristics should therefore apply reasonably well. 
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4.4 Application to Transmission Lines 

4.4.1 Preliminary Remarks 

This series of tests was designed to demonstrate the applicability of the concept 

to wind-induced oscillations of transmission line. A two-dimensional cylinder with 

an arbitrarily chosen square section, mounted horizontally in the laminar flow wind 

tunnel, was used to generate both vortex resonance and galloping instabilities. A l ­

though this particular shape is not likely to be representative of a cable under icing 

conditions, it has a well documented response and permits a comparison with the 

results of the two-dimensional tests (section 4.2.5.2). The main objective is to assess 

performance of the nutation damper when a bluff body executes oscillations in the 

vertical direction as is the case with the transmission lines. The torus container 

is now part of a more complicated device, similar to the commonly used Stock-

bridge damper, so that the vertical motion of the aerodynamic model can generate 

a significant liquid sloshing to dissipate energy. 

4.4.2 Test Arrangement and Model Description 

A simple support consisting of 8 springs, two of which held by sensitive beam­

like strain gauges to record the displacement, was positioned inside the wind tunnel 

(Figs. 70, 71a). A 86.4 cm (34") long, 10.2 cm (4") side square cross-section cylin­

der, with a mass of 1.279 K g and otherwise similar in design to the two-dimensional 

models of section 4.2, was used in the test program.The 2.5 cm ( « 1") gap between 
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each end of the model and the wind tunnel walls allowed for possible rolling motion 

and prevented the tunnel corners from interfering with large translational displace­

ments. End plates (same dimensions as in section 4.2) were installed to promote 

flow two-dimensionality. Relatively thick aluminum reinforcements were used inside 

the structure for increased rigidity as well as to provide a firm base for mounting 

the springs and damper support. The nutation damper was fixed to a horizontal 

platform, connected by a torsional spring to a light metallic arm, in turn attached 

to the aerodynamic model (Fig. 71b). The arrangement allowed for the rotational 

degree of freedom needed to impart significant sloshing motion. The device was 

designed to minimize drag . Its width was facing the flow and spring arrangement 

located in the wake of the container. The center of gravity of the rotating part 

(damper and supporting platform) was kept under the axis of the cylinder to avoid 

inducing pitch motion of the model due to response of the damper. The previously 

described instrumentation of the three-dimensional tests was again used here. 

Damping Device 

Fig. 70 Sketch of the horizontally mounted wind tunnel set-up 
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Fig. 71 Horizontally mounted wind tunnel set-up showing: (a) front view of 
the oscillating system; (b) close-up view of the damping device 



139 
4.4.3 Model Characteristics 

The spring lengths were adjusted to ensure that the model at rest was centered 

at mid-height across the wind tunnel while providing a natural frequency u>\ « 2 Hz 

without damper (spring constant/unit length « 3.60 N / m 2 ) . With the installation 

of the rotating damping device, two distinct natural frequencies, characteristic of 

any two-degree-of-freedom system, were observed. They depend on the torsional 

spring stiffness and damper mass (Appendix VI.2). Although a number of pa­

rameters can be optimized to minimize the response of the model at resonance, the 

frequency ratio W 2 / W 1 (wi=natural frequency of the model without damping device, 

o»2=natural frequency of the damping device alone) was kept relatively close to 1.0 

with aerodynamic model to damping device mass ratio 1712/mi « 0.10 (Appendix 

VI, eqs. VI.4, VI.7). A hard torsional spring with a stiffness constant of 0.557 N-m 

was used to test heavier nutation dampers while smaller amounts of liquid required 

the installation of a soft spring with k2 — 0.285 N-m. The inherent damping ratio 

of the system (i.e., no damper) was estimated to be 0.04% corresponding to a very 

low rjr>a = 0.75, making the structure aerodynamically quite unstable. The energy 

dissipation in the rotating mechanism of the damper was investigated separately 

using the strain gauge arrangement of Chapter 3. A simple calibration procedure, 

with the beam positioned horizontally to support the damper (Fig. 72a), led to a 

free-oscillation damping ratio r}82 (rjB2 = , where C<j2 is the damping coeffi-
2 r a 2 U > 2 

cient of the sytem) of approximately 3.0 to 4.0% (Fig. 72b). The experiment was 

repeated for the partially filled containers to express performance in terms of ijrj. 
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x / d 

Fig. 72 Evaluation of the secondary system damping ratio showing: (a) cali­
bration procedure; (b) r/ a 2 and r)rj versus amplitude 
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4.4.4 Results and Discussion 

In absence of the damping mechanism, a combined vortex shedding-galloping 

response, similar to that of the two-dimensional tests (section 4.2.4) was obtained for 

the square cylinder (Fig. 73a). The damping device was mounted but not activated, 

with the torsional spring replaced by a rigid bracket to account for the additional 

aerodynamic forces. Although the model was free to move in any direction, a 

well behaved one-degree-of-freedom vertical translation was observed throughout 

the test. This was however not the case with the action of the secondary system. 

Without liquid, the damper platform oscillated vigorously, and the inherent energy 

dissipation was sufficient to restrict the first vortex resonance amplitude Y to 0.265. 

The wind velocity is nondimensionalized with respect to u>i (natural frequency of 

the main system, « 2.00 Hz) to show the shift in the response. Behind the resonance 

peak, the lock-in phenomenon was suddenly interrupted with a change in frequency, 

from 1.68 Hz (wni) to 2.40 Hz ( 0 ^ 2 ) . A beat motion during the transition (Fig. 

73b) was often observed and a significant build-up in amplitude did not occur. 

With increase in wind speed, the response settled at 2.40 Hz and galloping finally 

occurred near U = 7.0 coupled with a rolling motion. The latter is probably due to 

a lack of uniformity along the cylinder length. With a natural frequency of 2.12 Hz, 

it was relatively easy to excite roll given the proper conditions, as discussed later. 

The introduction of liquid reduced Y to 0.1 at resonance, for both h/d = 1/4 

and 1/2 (Fig. 74). The arrangement proved to be effective at controlling both 
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Fig. 73 Response of the system without damping liquid showing: (a) effect of 
auxiliary device; (b) beating motion 



143 

0.4-

0.2-

" n l \ Trans. 
C U n 2 

data points 
only 

rolling 

h/d 
• 0 
* 0.25 
o 0.50 

Damper #1 
D / d = 1.89 

m 2 /m 1 =:0.12 
c u 2 / ^ i = 0.96 

0.5 

Fig. 74 Effect of liquid height on the system response 

vortex resonance peaks, with the half-full damper performing better at un2, where 

CJ = 1.11. It should be mentioned here that the damping characteristics were found 

to be qualitatively quite similar to those of Chapter 3, with CJ close to 1.0 generating 

optimal rjrj, as illustrated in Fig. 72(b). The reduced damping ratios were generally 

lower, a result consistent with the earlier discussion (section 4.3.4.2) which showed 

that rotation reduces efficiency. This, however, is not a problem here as the liquid 

to secondary system mass ratio was quite large, with peak 772 > 10%. 

With the response of the damper, a strong rolling action often accompanied 

the plunging vortex resonance motion, as illustrated by the frequency spectrum of 

Fig. 75(a). It persisted at higher U (Fig. 75b). Under slightly different conditions, 
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a galloping type of instability even occurred in roll (Fig. 76a). The damping mech­

anism was designed to respond to a translational motion only and therefore could 

not react to any rolling as it was positioned half-way along the model length. A 

different arrangement, with a damper fixed at each end of the cylinder and facing 

the axis perpendicular to the flow, would probably be more effective at controlling 

both modes and could be a subject of further studies (Fig. 77). 

y, mV 

1 ' ro t 

In , 

i i i 

rot 

' A 
I I I I I ' 

1 2 3 4 5 f, Hz 

Fig. 75 Frequency spectrum of the response for: (a) fv w frot', (b) / „ >• frot 
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Fig. 76 also shows the effect of other parameters such as ui/ui and mi/mi. 

The empty damper configuration now allows the response to exceed Y = 0.35 

with U2/U1 = 1.32 (Fig. 76a), which represents a significant change compared 

with y = 0.265 for w 2 /wi = 0.96 shown earlier (Fig. 73a). The quarter-full 

damper is quite ineffective, but more liquid and ct; closer to 1.0 reduces Y to 0.2 at 

h/d = 1/2. Somewhat different results were obtained with a reduction in m^/mi. 

The first resonant region is now confined to 0.15 and 0.075, for the empty and 

half-full damper#8, respectively. A typical low damping vortex-galloping curve 

dictates the response at the other natural frequency (w n2, Fig. 76b). This overall 

behavior seems to agree qualitatively with the vibration absorber relation (VI.6) 

that predicts the resonant amplitude under a constant excitation F: the larger wind-

induced oscillations correspond to higher calculated Y\ (Figs. 73, 76). Although 

beyond the scope of this study, minimizing Y\ is likely to result in a design quite 

effective in controlling the vibrations. Of course, a more rigorous analysis should 

include interactions between the system parameters and the aerodynamic forces. 

4.4.5 Result Summary 

The experiments showed that the partially filled torus containers are suitable 

for transmission line application as significant reduction in vibrations is possible. 

The following observations can be made: 

• The presence of two resonant frequencies appears to be beneficial as their mutual 
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Fig. 77 Sketch of the two damper arrangement useful to control roll 

interaction can disrupt the first vortex shedding lock-in region. On the other 

hand, the nutation dampers are then required to be effective for both excitations. 

This condition can be met by certain damper configurations. Alternatively, two 

separate containers designed for the individual frequency may be used. 

• A combined vortex resonance-galloping curve can develop at either natural fre­

quency for the lightly damped system, depending on the parameters u>2/u>i and 

mi/mi. With an increase in damping, the onset of galloping is delayed and the 

model oscillates at un2-

• The condition of liquid resonance still maximizes the energy dissipation. The 

reduced damping ratio continues to be lower in rotation compared to that in 

translation. A light support with the liquid positioned far away from the center 

of rotation can, however, give the desired energy dissipation. 

• More systematic tests to optimize the system parameters (i.e., u^/wi, mi/mi, 
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etc.), as well as a configuration that reduces rolling motion interfering with the 

main mode of vibration, would be necessary to properly assess and finalize the 

damper design. 



5. C O N C L U S I O N S 

149 

This investigation has provided information useful in the design of nutation 

dampers for controlling wind-induced instabilities. With the objective of optimiz­

ing the energy dissipation parameters, it has also contributed to the understanding 

of nonlinear liquid sloshing problems using both theoretical and experimental pro­

cedures. Extensive tests with two and three dimensional models in laminar and 

turbulent flow wind tunnels suggest that the concept of nutation damping can ef­

fectively suppress both vortex resonance and galloping instabilities. Based on the 

study, the following general conclusions can be made: 

(i) The damping characteristics have been established through a comprehensive 

test program evaluating influence of the damper's dimensionless parameters. 

The theoretical development proved useful in understanding the liquid motion 

and the corresponding role of nonlinearities leading to a consistent variation of 

the damping ratio with frequency, amplitude, liquid height, etc. 

(ii) Reliance on the experimental results is still necessary as the potential flow ap­

proach in conjunction with the boundary layer correction, although predicting 

the correct trends, does not account for several mechanisms for energy dissi­

pation. Discrepancies between calculations and measurements, in both viscous 

stresses and pressure fields, indicate that additional damping terms should be 

included in the equations governing the flow. 
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(iii) Whenever possible, dampers should be designed to operate at their liquid slosh­

ing resonance, as shown by the theory, sloshing table experiments, and further 

verified by the wind tunnel tests. Conditions of low liquid heights and large 

diameter ratios are more efficient, resulting in higher peaks in damping ratios 

and a smaller variation with amplitude of excitation. Low Reynolds numbers 

and internal devices such as baffles or inner tubes should be avoided as they 

restrict the action of the free surface. 

(iv) The damper behavior in rotation is similar to that in pure translation with 

optimal efficiency at the condition of sloshing resonance. However, free oscilla­

tion tests show the damping ratio to reduce with an increase in angular motion 

about the horizontal plane. 

(v) The wind tunnel tests were useful in assessing the effect of external forces. 

In general, the better damping characteristics obtained during a steady-state 

excitation resulted in improved control of wind-induced oscillations. Time de­

pendent parameters related to the acceleration of the structure proved to be 

significant for the case where the aerodynamic model is unstable and the damp­

ing ratio is strongly dependent on amplitude. 

(vi) Relatively small nutation dampers were usually adequate to suppress the vibra­

tions. The two-dimensional circular cylinder, with a low r}rta of 2.9, required a 

damping liquid to structure mass ratio lower than 1% under vortex resonance. 
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Somewhat larger ratios from 1% to 5% (depending on T7r,o) were necessary to 

significantly delay galloping of the square cross-section. 

(vii) The weaker aerodynamic excitation associated with the three-dimensional mod­

els required even smaller dampers to be used, less than 1% in all cases. For 

square cylinders, vortex resonance is the main mechanism of instability in lam­

inar flow whereas galloping governs the response in the turbulent wind, with 

maximum displacements approximately the same in either case for the range 

of wind speed investigated . The motion of the circular cylinder under vortex 

shedding was found to be of similar magnitude for both flow conditions, with a 

larger response for the model without dampers under turbulent excitation. 

(viii) The nutation dampers can easily be applied to transmission lines with the design 

of a support allowing for rotational motion. They provided significant energy 

dissipation with an effective control of the instabilities. Results are promising 

and optimization of the system parameters can lead to further improvements. 

(ix) Nutation dampers are particularly suited for structures with low natural fre­

quencies. For example, at 0.3 Hz or less, it is estimated that a liquid to total 

mass ratio of 0.75% (Mi/M = 3%) is capable of restricting the response of steel 

chimneys, with initial aerodynamic reduced damping of 1.9, to Y < 0.1 accord­

ing to the available data (Appendix VII). Thus, in addition to being simpler in 

design, nutation dampers promise to be lighter compared to the conventional 
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tuned mass devices. 

Some Thoughts on Future Work 

• The thesis has provided some insight into a class of nutation dampers' behavior. 

However, an accurate analytical prediction of the damping ratio still remains a 

challenging task. The proposed formulation, resulting in a 3rd order character­

istic equation for the liquid's amplitude response, was found to be incomplete 

in spite of the special consideration given to the the important phenomenon 

of resonant interactions. A more sophisticated analytical or numerical scheme 

accounting for additional sources of dissipation would therefore be worth inves­

tigating. This can be combined with a more elaborate experimental procedure 

to detect and study the nonlinear component of the response through the use 

of large-scale models, surface sensors, etc. 

• The time-dependent sloshing response was shown to be significant during the 

wind tunnel tests, as the liquid is initially at rest and damping is generated 

by the motion (as for any type of tuned mass damper). A systematic study 

providing the damping characteristics versus rate of amplitude change (i.e., 

de/dt, d2ejdt2, etc.) would therefore be quite useful in practical applications. 

This could be included into a broader evaluation of the performance under 

different types of excitation encountered in other fields (e.g., earthquake and 

ocean engineering problems) where such dampers could be used. 
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A P P E N D I X I: N O N L I N E A R F R E E S U R F A C E C O N D I T I O N 

1. Basic Equation 
In polar coordinates, the kinematic boundary condition: 

drjf_ d^drjj_ 1 dr\j_ _ d§_ 

dt dr dr r 2 dO dQ dz' { ' 

and the Bernouilli's equation applied to the free surface (i.e., z = nj) 

, 2 + _ + _ ( V $ ) 2 = - — rcos*; (7.2) 

can be combined by eliminating rj/ explicitly. This yields the following expression 
at z = nf 

dt2 + 9 d z + dr drdt + r 2 dQ dOdt + dz dldi + (1fr> "cV2" 

+ ( — ) 2 1 ( — ) 2 [ — ) 2 J 
ydz) dz* r*yd9' dQ2 rzdrKdO} r 2 dr dQ dQdr 

a * a$ t92$ 2 t9$ d$ a 2 $ 
+ 2 — — — — + dr dzdr r 2 50 dz dfldz 

d3x n d2x.\d§ . n dh t r . _ r c o s , + _ _ [ _ _ s m , _ _ c o s , ] . ( J.3) 

2. Perturbation Series Expansion 
Introducing: 

„ , = + £ 2 * r , ( 2 ) + e 3^} 3 ) + (7.5) 

and substituting into (1.2) gives a n d in terms of and $ ( 3 \ 
By using a Taylor series expansion around z = rjf as 

* * t9$. 1 ,d 2$. , r . 

and replacing for rjf (section 1.3) gives an expression for $z=rif in terms of $*=o, 
needed to get the full nonlinear free surface conditions. Relation (1.3) then reduces 

t 0 e«AW + e2*AW + e3*A<3) = 0 +... 
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at z = 0, or expressed in dimensionless form: 

* (,.7) 

m a 2$< 2) i a$<2) a & ^ a 2 ^ 1 ) 2 a $ ( 1 ' 3 2 $ ( 1 ' 
A w = 1 f- 2 1 

dr2 <*iiAn dz df dfdr f 2 50 d6dr 
1 2 5 $ ( i)a 2 $ ( i ) A a ^ 1 ) a ^ c 1 ) | i a 2 ^ 1 ) 

az 55C9T dr dzdr2 o n A n dz2 

M a 2$< 3) i a$( 3) r a $ ( x ) a 2 $ ( 2 ) a * ( 2 ) a a * w , 
' = 1 ; 1- 2 1 + 

dr2 Q!iiAn dz df dfdr df dfdr 
2.d&1>da$W d&2'd2$W d$Wd2$W d&2>d2$W 
f2 ^~dl d$dr + ~dl dddr * + ^ dz dzdr + ~dl dldT 

r d * w a 3$( 2) i a 2$( 2> a$<2) a 3$(*) 
a i l A l l t dr 1 dzdr2 +

 a i l A „ dz2 J + dr [ dzdr2 

"""onAn a s 2 J/ + l af ' a f 2 + f 4 ^ a* J ae 2  

a ^ 1 ) aa 2^^) i a i w a a $ ( I ) a $ ( 1 ) a 2 $ ( 1 ) 
+ ( as ' a s 2 f 3 af * de ' + 2 af as afas 
2 a $ ( 1 ) a $ ( 1 ) a 2 $ ( 1 ) 2 a s ^ a s ^ a 2 ^ 1 ) _ ttllA„ a 3$(*) 

+ f 2 df de dfde + f 2 as a* asa# 2 * a s a r 2 

1 a 2 ** 1 ) .add) i , a * ( 1 \ 2 / ^ ( 1 \ 2 i 
+ — 1 — ^ 2 - H r H + 2̂ ( - 3 5 - ) + H r H 

a i i A n az 2 ar r 2 dQ dz 
r a$( x) a 2 $ ( 1 ) a 2 $ ( 1 > a & w a 3*^) 1 a 2 * ( 1 ) a 2 $ ( J ) 

1 1 1 1 1 dr dfdz dfdr df dzdfdr f2 dzdd dBdr 
i # ) a 3 $ w a 2 $ ( 1 ) a 2 $ ( 1 > a & ^ a 3 ^ 1 ) ̂  

+ f2 de dzdedr*~dz~2 a l a T + as a s 2 a r U 
r 1 x 2 / r ^ ( 1 ) 1 a 2 $ ( l ) 1 a $ ( 1 > a 2 $ ( 1 ) . a 4 ^ 1 ) 

+ ( a i l A l l J \ l a I 5 5 : 5 " + o „ A 1 1 a s 2 J ar asar + l a l 2 a 7 2 " 
H r T T O — — \ + ru* cos 0 cos ur. (1.9) 

ttuAn dzA dr i ' 

3 Free Surface Equation 
Using expressions (1.2), (1.4), (1.5) and (1.6), and using nondimensional param­

eter r)f = results in 

a$( 2) 
fit =&a.\\\\i\siCjfcos0cosu/r —] — e ? a n A n [ — - — 

ar ar 

+ anAnK-Wcosflcoswr - _ ^ _ ) - ^ - + ^ V * * 1 * ) 2 ] + (1.10) 

where st- = 1 for q = 1 , and zero otherwise, and 2 = 0. 
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1. Second Order Terms 
Substituting for 

- E / i ^ i ( A H r ) C ° S h A l t ( " t h ) cosflcosfrr 
• coshAi,7i 

into the second order free surface boundary condition (relation 1.8) and rearranging 
yields, 

a 2 $( 2 ) 1 a$( 2) 
+ = E E ^ r i { ^ ( A i * f ) c i ( A l i f ) 

dr2 o:iiAn dz ^ ^ 2 
* i 

+ [Ci (A l t f )Ci (A i y f ) - ^ C 1 ( A l t f ) C 1 ( A i y f ) 

+ AX,yCi(A l tf)C1(A i yf)]cos2f;}sin2u;r. (II.l) 

Assuming $(2) = E E fnmCn{Xnmf) cos^^nm(* + )̂ c o s n# sinpc2;7-, and inte­
rn n coshA n m/i 

grating (77.1) as 

/ {II.l)Cn{Xnmf)rdf 
J a 

to use Bessel function orthogonality condition (Appendix V.l) , it is found that 

^ ( 2 ) = E { / 0 ^ 0 ( A 0 n f ) C ° S h A ° f t K ) 

n
 K coshAon/i 

» ~ /, «coshA 2 n (z + )̂ , 
+ / 2 n C 2 ( A 2 n f ) 2 n K T ; cos 29 \ sin 2wr, (77.2) 

coshA 2 n/i •> 
where: 

/ 2 n = ^ ^ / l i / i y ^ O n i 

f n [LLuo(t,j ,n) + JJiio(»,j ' t n) + AKjjKK\ 10 (i, j , n) ] 
° n 2u;[ (a ;on/^ 2 -4]Ao„ 5 

and / 2 n = ^2 E / i * / i j ' n 2 n , 

* n = i L L n 2 ( ^ ^ n ) ~ ^ i i 2 ( » ' » i » w ) + AKjjKKii2{i,j,n)]  
2 n 2Cj[(Cj2n/Cj)2-4}A2n/X2

n 
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Here LVs, JJ's and KK's are Bessel function triple product integrals, A's are 

coefficients related to J C2(Xnrnf)fdf as defined in Appendix V.1.2, and 

AKij = auaijXuXij + ^ - -Afy. (JI.3) 

It can be shown quite readily that the solution is singular for (&/„/£;) 2 — 4 = 0 
(/ = 0,2), as fon and f2n become unbounded. Furthermore, it is of order e - 1 for 
(uin/Cj)2 — 4 = UQE, where i/o is of order 1, a condition that makes the original 
perturbation series expansion invalid as some of the terms are now of the 1st order. 
Expression (II.2) thus only applies for: 

( ^ ) 2 - 4 > u0v, (IIA) 

or, \-F--2\>—. (JJ.5) 

2. Stability and 3rd Order Equation 
A standard stability analysis assumes a general 1st order solution of the form 1 0 8 , 

= E [ ( e i * c o s ^ + c3t sin0) coswr + (e2t cos 0 
i 

cosh A u(z + h) 
+ en sin0) sinwr]Ci(Aitf)-

cosh \\ih 

where en, e2{, e3,- and e4t- are function of the slow time scale T2 = er, thus fol­
lowing a procedure similar to Hutton's theory of resonant oscillations in circular 
cylinders63. Subsequent substitutions into (1.8) and (1.9) lead to the 3rd order 
system of equations: 

{-̂ •jr1 + P2n + Di^2 e 2 « E ^2(«ijeik + e2je2k + e3je3k + e4je4k)] 
2 i j k 

+ DDX e3i[^2 ^2(e2je3k - txitAk]} cosflsinwr = 0; 
t y k 

2 i j k 

+ DDi ^ e4i(T] yZ(e2jesk - eiye4fc)]} cosflcoswr = 0; 
t y k 

{-^- + Pin ~ e 4 , ( E E ( e i J e i f c + e2j'c2Jfc + e3ye3jfc + e4ye4fc] 
2 i j k 

+ DDi eu(y] ̂ T{e2je3k - eiye4*)]} sintfcoswr = 0; 



166 

de^x 
+ P3n + Vl Z ^ e 3 » l i 

' 3 * 
72 i j k 

+ n D i ^ e 2 , [ ^ ^ ( e 2 j e 3 t - eiyc4fc)]} sin 0 sin CJT = 0. 
3 k 

Here D\ and DD\ are complicated, frequency dependent expressions otherwise 
similar to K\ and KK\ of Appendix III. 1, while p i n , . . . , P4n are the third order 
terms: 

pin = Di E E E e i » e i y f i i * ; 
» j * (77.4) 

P2n = PZn = P4n = 0. 

The stability of the solution previously derived is studied by considering a distur­
bance in the ith mode such as: 

eu = hi + AieXr2; e2i = A 2 e A r 2 ; e3i = A 3 e A r 2 ; and e4t-+ A i e A r 2 . 

Substituting into (II.4) leads to the following conditions: 

A 2 = - 3 ( D i / 2
t ) 2 ; (77.5) 

A 2 = - ( / i 2
t ) 2 [ ^ i ( i ? i - i ? i i ) ] . (77.6) 

The solution is stable for nonpositive real part of A and requires 7?i(£>i — £>u) > 0 
in (II.6). 
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1. No Interactions 
Using Hutton's theory for a circular cylinder 6 3 and substituting for the Bessel 

function solution of the torus problem, it is found that: 

• Detuning parameter: 
"1 = 0; 

CJ2 - 1 UJJ.1) 
= " = a 5 P 7 r 

• Coefficients of the 3rd order equation for fu'. 

„ C i ( A n ) - q C i ( A „ a ) 
* i = 7 ; 

A n 

Kx = -1L[SUM1 + GI); {111.2) 
An 

KKy = -±[SUM2 + G2], 
An 

where: 

SUM1 = ^ { - 1 8 / i ( l , 1,1,1) + A 2!(3 - 7a 2
1 ) I 2 ( l , 1,1,1) + S A ^ a 2 ^ 

- a 2
t ) J 3 ( l , 1,1,1) + 6J4(1,1,1,1) + 3A 2

X(3 - 7a 2
1 ) I 5 ( l , 1,1,1) 

-12/ 6(1,1,1,1) +6 / 7 ( l , 1,1,1)}; 

SUM2 = - L { - 6 J i ( l , 1,1,1) + A ^ l + 19A2
X) J 2 ( l , 1,1,1) + A ^ a 2 ^ 

- a 2
x ) J 3 ( l , 1,1,1) + 2J4(1,1,1,1) + A 2 !(3 - 70^)75(1,1,1,1) 

- 4 / 6 ( l , l , l , l ) + 2 / 7 ( l , 1,1,1)}; 

GI =Y,{[CK1KKl0i{l,n,l) - / / i 0 i ( l , n , l ) ] f l 0 n + \-^KKl2l{l,n,l) 
n 

- i / J i 2 i ( l , n , l ) - J J i 2 i ( l , n , l ) ] n 2 n } ; 

G2 = Y^{[CKiKK10i{l,n, 1) - 27/ioi(l ,n, l ) ] 2 n 0 „ 
n 

+ [-CK2KK121 (1, n, 1) + 7/1,2,1 (1, n, 1) + 2 J J121 (1, n, l ) ] n 2 n }; 

Here I\, I2,...,Ij are Bessel function multiple product integrals defined in Appendix 
V.1.2 with: 

o - f°n. o - * 2 n -
**0n — f2 ' **2n — » 2 j / l l Hi 
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and 
CKi = a 0 n a i i A 0 n A i i - - A ^ n + A n ( l - a u ) ; 

CK2 = a 2 „ a i i A 2 n A i i - ^ A 2 n + A n ( l - a n ) . 

• Coefficients for stability relations: 

5 = AKKlMflx + ^ r 2

 F l ] ] 

(7/7.3) 

(777.4) 

2. Resonant Interactions 

2.1 Second Order Terms and Detuning Parameters 
Substituting equalities (6) and (15) into (1.7), and (14) into (1.8) yield, after 

neglecting the amplitude time derivatives and phase angles, the following second 
order relation : 

—V\f\\C\{X\\r) cos0cos&r — /?if 2iC 2(A 2if) cos20sin2wr 

+AK0C1
2(X11f)} + [C[2(Xnf) - C l ( A l l f ) + AK0Cl

2(Xlxf)) cos 20} sin2£r 

+ / n f 2 1 { ^ K A i i ^ C U A a i f ) + C 1 (A 1 1 f)C 2 (A 2 1 f) 

, ^ g i ( A n f ) C 2 ( A 2 1 f ) ] c Q s 6 + ^ K A n f j C ^ A ^ f ) _ C 1 (A 1 1 f )C 2 (A 2 1 f ) 

, A V Ci(Auf)C 2 (A 2 1 f ) 1 l A , r f3Cj(Aiif)C 2(A 2 1f) 
+AKi — ——^ -J cos 39j cos WT + [—— ' -

, 3C 1 (A 1 1 f)C 2 (A 2 1 f) , A t r C 1 (A 1 1 f )C 2 (A 2 1 f ) 1 a , f 3C; (A„f)C^(A a i f ) 
+ ^ + AK2 - J cos0+ [ -

_ 3 C l ( A n r ) C , ( A 2 1 f ) + A K ^ M X 2 l r ) , , 
r* 2 J J 

+ f e a i { [C 2

a (A a i f ) + 4 ^ ^ 1 + AK3C2{X2lf)] + [C^2(A2 1f) - 4 C * ( A » f ) 

+A7f3C|(A2 1f)] cos40} sin4u>r = 0. (777.5) 

Here: 

0 " 2" ' 
AK"i = ( a n - 1)A*̂  - anQ:2iA n A 2 i + ^ A ^ ; 
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AK2 - (alx - 1)A^ + 5a i ia 2 iAi iA 2 i -

AKZ = ( ~ 2 q : 2 1 + 1 ) A 2 i + 2 a 2 1 a 1 1 A 2 1 A 1 1 . 

Assuming = ( ) C n ( A r e m f ) C ° s h t k ) cosnO 
- » \emnj COShAnm/l 

and integrating (III.5) as 

l 
(III.5)Cn(Xnmf)fdf 

to use the Bessel function orthonogality condition as before, it is found that, 

$(2) = $(2) + $(2), (7/7.6) 

where: 

$ i = no interaction solution, i.e. relation 12, with n > 2 in fan', 

*(2) V ^ / r j n (\ ^coshA l n(z + A) 
$2 = 2_.\ [dinCi(\lnr) v cosfl 

n
 1 coshA l n/i 

, ^ / \ M coshA 3 n (z -I- h) . 
+ ein ^ 3 ( A 3 n r ) 1—s—-cos30j coswr 

cosh A 3 n / i 
r . ^, /» «\ coshA3n(z + /i) 

+ [<*3nC3(A3nf) * n l ' C O S 30 
cosh A 3 n / i 

„ . cosh Ai„(5 + )̂ „, 
+ e 3 n w ( A i n r j s cos0j cos3u>r 

cosh\\nh 
, rj f\ ^coshA 4 n(z + &) . + [d4nC,

4(A4nr) i — x — - cos 40 
cosh A 4 n / i 

, /<w\ ^coshA 0 N (2 + ^ ) , . 
cosh Aon^ 

with: 
din = ftinfutii', 

[7/ 1 2i(l,l ,n) + J J m ( l , l , n ) + ^KK12l(l,l,n)}  
1 H ~ ~ 1)A../Af „ 5 n ^ 2 ; 

C l n = 7 l n / l l f 2 i ; 

[|77i2 3(l,l,n) - J J 1 2 3 ( l , l , n ) + ^LRK123{1, l > n )] 
7 l R (*!» " l)A3n/AL 

d3n — 0 3 r e / n f 2 i ; 
f t J J W l . l . n ) - 3 J j W l . l . n ) + ^ K i i W l . l . n l l 

file:///emnj
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C3n = 7 3 n / l l f t i ; 

[ | / / i 2 i ( l , l , n ) + 3 J J m ( l , l , n ) + ^KK121{l,l,n)} 
1 S T l

 2 ("in ~ 9)Aln/A 2
n

 5 

^4n = n 4 n f 2 i ; 
_ [ / / 2 2 4 ( 1 , 1 , n ) - 4 J J 2 2 4 ( l , 1 , n ) + AK3KK224{1,1, n ) ] 

(*42n " 16)A 4 »/Aj n 

[ / / 2 2 0 ( l , l , n ) + 4 J J 2 2 0 ( l , l , n ) + A X 3 ^ K 2 2 4 ( l , l , n ) ]  
l 4 n Hn ~ 16)A 0 „/A 2

n 

Here d\\ = d2i = 0 for the resonant interaction with mode ( 2 , 1 ) , and ^31 = <f4i = 
... = 0 with the higher modes, to eliminate secular terms. 

Regrouping cos 0 cos d>r terms in (111.5), it follows that 

Integrating as 

leads to 

f (JJ / . 8 ) C i ( A i i f)fdf, 
J a 

ui — a i f 2 i , 
1 TT fl 1 l \ 1 T T ft 1 l \ 1 -Afl _ [|JJ m ( i , 1 , 1 ) + J J i 2 i ( i , 1 , 1 ) + *qiKK131{i, 1 , 1 ) ] 

Using (6), this results in 

W H E R E ' 0 1 A777*T7 

= & 2 - 1 aifti 

or i / 2 = v — ajfcij with oj = 
gl/S* 

Similarly, 

/?iftiC 2(A 2if) - f-f\C'*{\ur) - £i!^llQ. + AX 0 Ci 2 (Aiif ) ] = 0, (7/7.9) 

which, after integrating as 

f\lII.9)C2{X21f)fdf 
J a 

f2 

gives: /?i = &i— ?21 
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where, bx - 1 V1"^1' *' *) ~ JJ^(h 1, 1) + AK0KK112{1,1,1)] 
2 A 2 i / A 2 

21 

Furthermore, from (15): 

02 = P-bl&, with, fi=%*L; and 61= 6 1 

f a i ' ' & 2 e 2 / 3 ' W 1 gi/3' 

2.2 Third Order Equation 
It should be recognized that equality (6) is equivalent to 

» . X - g ^ - ( * + • * / « > , . / . _ . . . . (//7.10) 
u) 2 2 y 

Applying (6) to relation (1.5), (111.10) to (1.8), and substituting for $ W and $(2> 
into (1.9) yields 

{ - , 2 / u C l ( A u f ) + ^ / l l f t l [ C " A » f f ^ f ) + 

+ ( A g 1 + 2 a j 1 A ; i - 4 « » « a i A ^ 

+ { - / ? 2 i T 2 i C 2 ( A 2 1 f ) + ^ - A M c i ^ A n f ) - + (AlTo 

cos wr 

2 - . ~ 3 2 $ ( 3 ) 1 a m -r-a^Af 1 ) C 1
2 ( A n f ) ] cos 20 sin2wr + + 

d r 2 a i i A n d £ 
—Pn cos 0 cos wr — Q 2 2 cos 20 sin2<2>r — P 3 1 cos 30 cos CJT 
—... — Pnm cos n0 cos mur — Qnm cos n0 sin mwr = 0. (777.11) 

Here P n m ' s and Q R m ' s are complicated expressions representative of the various 
mode shapes of $ ^ and $^ 2 \ and 

Pn = -Pii + T H -

Note: 

Pi\ = term of the no interaction case, 

= - E { / » ^ n [ C 7 f 0 C 1 ( A n f ) C o ( A 0 r e f ) - CKAnfJCofAon*)] 

+ ^ [ C 7 i T 1 C 1 ( A 1 1 f ) C 2 ( A 2 n f ) - 2 C l ( A l i r ] f 2 ( A 2 - f ) 

- C { (A n f )C 2 (A 2 n f ) ] } + ^ { - W l C ^ C A n f j C ^ A n f ) ] 

+ A2!(3 - 7a 2 + 3 A f ^ ( 3 - afxJCfCAnf) 

+ 6 C ? ( A l l f ) + SAJ^S - 7 a 2

1 )C 1 (A 1 1 f )C i 2 (A 1 1 f ) 

_ 1 2 W ^ ^ ( / / j i 2 ) 



CKi a n d CK2 are defined by (III.3); a n d 

P n = expression due to the interaction w i t h second mode, 

n 

- | c 2 ( A 2 i f ) C 3 ( A 3 „ f ) ] + f 2 i e 3 n [ C 2 ( A 2 1 f ) C i ( A l n f ) C / f 4 

- 5 C 2 ( A 2 l f l f l ( A l w f ) - ^ ( A ^ f j C x C A ^ f ) ] 

+ ^ [ 0 ^ ) 0 ^ ) 0 K 5 - C l ( A u ^ l ( A l - f ) 

- ^ C { ( A n f ) C l ( A l r i f ) ] + c21d3n[C2{\21f)C3{\3nf)CK6 

- 3 C 2 ( A 2 1 ^ f 3 ( A 3 - f ) - i c 2 ( A 2 1 f ) C 3 ( A 3 n f ) ] } 

_,_ , > 2 / C i ( A i i f ) C 2 ( A 2 1 f ) C j ( A n f ) C 2 ( A 2 1 f ) C 2 ' ( A 2 1 f ) 
+ 1 ~2  

C i ( A u f ) C 2
2 ( A 2 1 f ) C ( ( A n f ) C 2

2 ( A 2 1 f ) 
+ f4 + f 3 

+ M i d C A x x f j C K A ^ f ) + ^ 2

C 2 ( A 2 i f ) C i ( A n f ) 

+ ^ ^ ( A n ^ C K A a i f ) + M 3 C 2 ( A 2 1 f ) C 2 ( A 2 1 f ) C 1 ( A 1 1 f ) 

o C 2 ( A 2 1 f ) C 2 ( A 2 1 f ) C U A 1 1 f ) 1 

" 2 *2 
where: 

CA- 3 = 1A 2 - iA2 -
2 A 3 n 

1 3 
« n « 2 i A n A 2 i + - a n a 3 n A n A 3 n — - a 2 i a 3 n A 2 i A 3 n ; 

CK4 = ?-A2 -- 1 A 2 -

2 l n 

9 5 
3 a n a 2 1 A n A 2 i + - a i i a i n A i i A i n - - a 2 i a i n A 2 i A l n ; 

CK5 = 1A 2 - 1A 2 -

2
A l n 

a n a 2 i A n A 2 i + ^ a i i a i n A i i A i r e - ^ a 2 i a l n A 2 i A x n ; 

CK6 = £ \ 2 _ 1A 2 -

2
A 3 n 

9 1 
3 a n a 2 i A n A 2 i + - a i i a 3 n A i i A 3 n - - a 2 i o ; 3 n A 2 i A 3 n ; 

DKi = 1 2 
" g « 2 1 A 2 A 2 -

A 2 1 A 1 1 
- T a n ^ i A u A f ! + (1 + a i i ) o ; 2 i Q : i i A f i A 2 1 

4 

+ « i i ( 2 - ^ « L ) A 2 i A i i ; 

DK2 = - a\x) - 2 a n a 2 i A n A 2 i ; 

DK3 = ^ ( 1 - 2a2,!) + 2a\x\\x + i a u a 2 1 A n A 2 1 . 
4 I 
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Q22 = -^{hie^diX^CsiXs^CK, - 3 C l ( A l l ^ f 3 ( A 3 " f ) 

n 
- C K A u f j C ^ A a n f ) ] + fuesniCiiXiiVCiiXm^CKe 

+ C l ( A l l^f l ( A l n f ) - CKAnfjCftAmf)] 
CxCAnfJdCAmf) 

where: 

?2 
+ / i i d i n [ C i ( A i i f ) C 1 ( A l n f ) C t f 9 + 

- C i ( A „ f ) C i ( A l f t f ) ] + / n d 3 n [ C 1 ( A 1 1 f ) C 3 ( A 3 n f ) C K 1 o 

- 3 C l ( A l i r ] f 3 ( A 3 - f ) - C i ( A n f ) C 3 ( A 3 r i f ) ] 

+ f2ie 4 n[C 2 (A 2 1 f)Co(Aonf)Cii ' 1 1 - 2C 2 (A 2 1 f )C 0 (Ao n r ) ] 

+ f 2 1rf4n [ C 2 ( A 2 1 f ) C 4 ( A 4 n f ) C J r T 1 2 - S ^ 2 1 ^ 4 ^ 

- C 2 ( A 2 1 f ) C 4 ( A 4 n f ) ] } + / 2 ^ 2 1 { - C 2 ( A 2 l f ) f 2 ( A l l f ) 

C ; ( A n f ) C [ ' ( A l x f ) C 2 ( A 2 1 f ) d ^ A n Q C a C A a i f ) 
2 f4 

^ l C ^ C A n ^ C ^ A a i f ) , _ „ C i 2 ( A n f ) C 2 ( A 2 i f ) 
+ 4 ^ + DKA  

+ D K C ^ u ^ ^ Q _ + +DKBc'1*{x11,)Ca{Xait) 

+ ^ 6 C 1 ( A 1 1 f ) C i ( A 1 1 f ) C 2 ( A 2 1 f ) - | g i ( A i ^ ) g i ( A i i ^ 2 ( ^ ) } 

4- , 2 / V ' U « r ' * f i 1 ?
C 3 ( A 2 i r ) 3 C 2 ( A 2 1 f ) C 2 ( A 2 1 f ) 

+ £ > X 7 C 3 ( A 2 1 f ) + DK%~2V;*1'' + M 9 C ^ ( A 2 1 f ) C 2 ( A 2 1 f ) 
r 

3 C 2
2 ( A 2 i f ) C 2 ( A 2 1 f ) 

f 2 / ' 2 

L 2 / ! ~ 2 \ , 1 \ 2 ^ C K " 7 = - A j ^ l - aj x ) + - A f ^ - - a i i a : 3 n A i i A 3 n ; 
4 4 4 

^ \2 _2 \ 1\2 - 5 Ci^s = - T A I J I - a n ) - - A l n + - a i i a i n A n A i n ; 
4 4 4 

1 1 5 
CK9 = - A n ( l - a 2 i ) + -X\n - -ctuctlnXnXln; 

3 1 5 
CK10 = - - A i ^ l - a 2

x ) - - A | n + - a i i a 3 n A i i A 3 n ; 
4 4 4 

C K u = 16anaonAnAon — 2A2 1Aona2iaon — 8 o : 2 i a : i i A 2 i A u — A 0 n + 2A^; 

CKX2 — 8 a n a 4 n A n A 4 n - a 2 iQ:4nA 2 iA 4 n - 4 a 2 1 a n A 2 i A n - - A 2
n + A 2

X ; 
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DK4 = z-aiiAnAju + Tttiia2iAf 1A 2i - -ai iaaiAiiAfj + - a f i ^ i A f x A 2 i ; 
o 4 o 4 

DK5 = -A 2 - ! - a n a 2 1 A n A 2 i ; 

M 6 = i A 2
1 ( l + a 2

1); 

DK7 = ^ i A ^ A ^ l + 4a2
x) + ^ a i i o ^ A n A 3 ^ - 3a2!) - ^cc2

21X4
21; 

3 5 
DK8 = gA^Cl - 4a|J + - a 1 i a 2 1 A 1 i A 2 1 ; 

9 15 
DK9 = r ; 2 -A 2 1 (l - 4a2 1) + —aua2iAi iA 2 i . 

Setting the terms with cosflcoswr and cos20sin2u>r in (111.11) to zero, integrating 
as ' 

/ ( /J/ .llJdCAiifJfdf and I {III.ll)C2{\21f)rdf; 
J a J a 

and replacing vx by aif 2 i leads to: 

/ i i ( tf i / i 2 i + ^ i f l i + v2) + 7i = 0; 

M#2<r2
2i + £ 2 / u + /?2) =o, 

(777.13) 

where JFfi and F i are defined by (III.2), and 

A 2 

£?i = -^-[SUMZ -G3- 773]; 
A n 
A 2 

E2 = -™-[SUMA -GA- HA}; {111.14) 
A 2 i 
A 2 

K2 = -^-[SUM5 - GS]. 
A 2 i 

Note: 

SUM3 = \h (1,2,2,1) - i / i (2,1,2,1) + M 2 7 2 (2,2,1,1) + DKJs(2,2,1,1,) 

7? 7̂  

+ 74(2,2,1,1) + -^/ 5 (2 ,2 ,1 ,1) + £>7r3/5(2,1,2,1) - 276(2,1,2,1) 

+ 77(1,2,2,1); 
ST/M4 = ~\h{2,1,1,2) - ^(1,1,2,2) + 7?7T572(1,1,2,2) + Z?7C,73(1,1,2,2) 

4 2 

+ 74(1,1,2,2)+7J>7C575(1,1,2,2)+ £>i f 6 7 5 ( l , 2 ,1 ,2 ) - ^76(1,2,1,2) 

+ I/7(2,1,1,2); 
4 

5(7 Af 5 = -^ -7 ! (2,2,2,2) + DK*I2 (2,2,2,2) + DK7I3{2,2,2,2) 
16 

+ 374(2,2,2,2) + M 97 5(2,2,2,2) - ^76(2,2,2,2) 
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+ § J 7 ( 2 , 2 , 2 , 2 ) ; 4 

G3 = J2{[CK3KK231{l,n,l) - 9JJ231{l,n,l) - ^II23i{l,n,l)]lln 

n 

+ [CK4KK211{l,n,l) - 5 J J 2 1 1 ( l , n , l ) - ^II211{l,n,l)]l3n 

+ [CK5KK211{l,n,l) - J J 2 1 1 ( l , n , l ) - ^ / J 2 1 1 ( l , n , l ) ] u l n 

+ [CK6KK231{l,n,l) - 3 J J 2 3i ( l , n , l ) - i / / 2 3 1 ( l , n , l ) ] n 3 r i } ; 

GA = J2{[CK7KK132(l,n,l) - 3 J J 1 3 2 ( l , n , l ) - J / 1 3 2 ( l , n , l ) ] * y l B 

n 
+ [ C K 8 X K 1 1 2 ( l , n , l ) + J J u 2 ( l , n , l ) - / J 1 1 2 ( l , n , l ) ] 7 3 n 
+ [CK9KK112{1, n, 1) + JJ112 - I J n 2 ( l , n, l ) ]n l n 

+ [CK10KKl32{l,n,l) - 3 J J 1 3 2 ( l , n , l ) - II132{l,n, l)]n 3 n}; 

G 5 = ̂ { [ ^ 1 ^ 2 0 2 ( 1 ^ , 1 ) - 2 7 7 2 0 2 ( l , n , l)] 74n 
n 

+ [ C X 1 2 7 r X 24 2 ( l , n , 1) - 8 J J 2 4 2 (1 ,n , 1) - JJ 2 4 2(1,n, l)]n 4 n }; with, 

and 

lin = 7 — — , " i n = 7— - — J n = 1,2,3; 
/11?21 / l l f t l 

l4n 
£4n_. f) — ^ 4 r a . 

2 ' l'4n — o 5 
f 2 l ?21 

<*1 r A n , 2 2 

# 3 = T r k i T r " + ( a i i A u - 2 a i i a a i A n A 2 1 ) i i r / r 2 1 2 ( l , l , l ) ] ; 

H4 = ±[bx ^ - + «2
n\\XKK112{1,1,1)]. 

L A 2 1 

2.3 Solution Stability 
A general solution with nonzero time derivatives and phase angles, combined 

with a slow time scale TJ = c 1/ 3 , leads to a set of equations similar to (III.8) and 
(III.9) previously developed. On integration using the orthonogality conditions, as 
before, and introducing definition of the variables: 

fix = fu cosv?u; eJi = - / i i s i n y ? u ; f 2 1 = & i cos £ 2 1 ; e21 = f 2 i sin £ 2 1 , 

to simplify cross product expressions of the form, 

cos(&r + £>u) sin(wr + ipu) = ŝin2(<2>r + <pu); 
it 

cos(wr + ¥ ? u)cos (2u ; r - ( - c ; 2 i ) = \ cos(wr + £ 2 i - <pu) + ^ cos(3wr + £ 2 i + <£>n); 
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etc., gives: 

-"1/1*1 + oi(/uf2i- € i i e 2 i ) 

-"1«11 - a l ( / l l e 2 1 + ell£*l) 

-Pitii + biiffi-ell) 

= -2 

= 2 

= 4 
<*e2i. 

Ml 

(II1.15) 

-/3 1e* 1-6 1(2/r ie n) = - 4 - ^ - . 

Stability is studied in the neighbourhood of the steady-state solution derived earlier 
by introducing a disturbance such as: 

/ i i = / n + A 1 e A r i ; e n = A 2 e A r i ; & = C 2 i + A 3 e A r i ; and = A 4 e A r i ; 

and recognizing that V\ — aif 2 1 , /?i = Now (111.15) reduces to 
ftl 

/ o 2A aif: i i 0 A M i A 

o —2A — 2aif2i 

26i/n 0 

V 0 - 2 & X / U 4A 

This then yields (determinant=0) 

?21 

- « l / l l 

-4A 

L / l l / 

S21 

A 2 

V A 4 ; 

= 0. (7/7.16) 

f 4 

16A2 + b\J-4±- + Soifc!/2! = 0, 

or (4A)a = - ( 6 j ^ + 8o 16 1/f 1). 

i21 
The solution is stable for negative (4A)2, i.e., 

* i $ - + 8ai*i/ii >0, 
m 

or ( ^ ) 2 > - 8 ^ . 
f21 Ol 

(7/7.17) 

(777.18) 
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A P P E N D I X TV: A D D E D MASS A N D D A M P I N G RATIOS: 
DETADLS OF T H E ANALYSIS 

1. Added Mass 

1.1 General Procedure 
The domain of integration in relation (21) is subdivided into two regions as 

/

0 r2ir rrij r2w 

/ pcos9rd9dz + / / pcosOrdQdz. {IV.l) 
-h Jo Jo Jo 

The total force is the expression evaluated at r = RQ minus F at r = R{. The 
procedure is similar to the one described in reference 65. It is based on a Taylor 
series expansion of p around z = 0 to eliminate the dependence of the second term 
on rjf, 

i „ \ / „ dp(r,9,z). 1 2d2p(r,9,z). ,rTT~\ 
p(r,9,z)=p(r,9,0) + z V K ^ l\z=o+-z2 U=o + - • {TV.2) 

Setting z = rjf in the above relation, integrating over z from 0 to rjf, and solving 
dp 

for rjf in terms of p, ——, etc., gives, after simplifications, 
dz 

/

0 ,2* ,2* 2 

/ pcos9rd9dz+ / -^-cos9rd9, (IV.Z) 
-h Jo Jo *P9 

where po = p(r,9,0). Pressures are found from Bernouilli's equation (22) using 
$ derived earlier. (IV.3) can then be integrated analytically, with only the third 
or lower order being retained in the final expression for simplicity. It should be 
mentioned that the following equalities were used for integration over dz: 

J. 

L 

0 cosh A n (z + h) coshXm(z + h) Xnan - Xmam 

_ dz = - r - r tor M f m ; 

-fi coshA n/i coshA m/i A n — A m 
= I( ^ + ^ i ) 

2 cosh2 Xnh A n 

for n = m; 
0 sinhA n (z + h) s inhA m (z + h) Xnam - Xman 

dz= r-5 r-= for n^m; 

(IVA) 

-h coshA^/i coshAmh A 2 — A 2 , 

U — + ? ) * cosh Xnh A n 
for n = m. 

Well known trigonometric relations such as: 
•2»r 

cos n9 cos mflcW = 0 for n ^ m; 

= TT for n = m, 
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were employed when integrating over 0. 

1.2 Added Mass Higher Order Terms 
The A's, 2?'s and C4 expressions of relation (24) are presented below: 

» p 

E E E W i * [ 3 ( a i ^ i i ) 2 ' " i i ( » , i ) ' : ) + U i i ( i , i , ' : ) ] i 
« J k 

Bi = a n A u ^ ^ ^ / x . f / o p i i o ^ p ) + ^t12{i,p)}; 
»' j 

(») A > = / n E { ( / n " A ) n o p [ ^ ^ - A n a n ^ i o l L p ) ] + ^ [ ( / n + 3 £ ) 
p 

^ y 1 ^ + ( / " + 4 f » ) ' » ( l , P ) " (A 2 i + ? I 2 I ) " H A I I * 2 * I 2 ( 1 , P ) ] + 

^ 3 Y ^ [ ( / i 2 i + l l f x 2 i ) « n ( l , l , l ) + ( a n A n ^ S / ? ! + 

B 2 = / u X : { ( / i 2 i - f ? i ) n o p [ ^ f i l ^ + a n A n ^ M l , * ) ] + ^ [ ( / I ' I 
p 

" f n ) ^ ^ + " 2 f » ) M l . P ) + ( / « + f i a i ) «nA i i f i » a * i a ( l , p ) ]+ 

£ i i

3

A J ^ [ ( / i 2 i " 7 f i 2 i ) « n ( l , l , l ) + ( a i i A u ) 2 ( 3 / u + 5 f l

a > 1 1 ( l , l , l ) ] } ; 

(Hi) A 3 = / i i f t i f E n i p X ^ l C i ^ i p ) - a C x ( A l p a ) ] - + / 2 1 ( i , 1) 
p l p 

- «nAn f i»*2 i ( i | i ) ] } ; 

Bz = / i i f c i { £ 3 7 l p ^ [ C . ( A 8 p ) - a C . ( A 8 | , a ) ] - + J 2 1 ( l , l ) 
1 p A 3 p 2 2 

+ « u A n w t 2 1 ( l , l ) ] } ; 

P 

+ 3/ 2 3( l ,p)] + « . . A 1 i 6 ' [ ( " " ' ' ; 3 7 " ) « » . ( l , r t + ( ' " " " / " ' " I M l . r i ] 

B 2 + / „ & £ { ^ [ ^ + M M ! + 
P 

= 
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+ 3/ 2 3(l,p)] + ^ £ f c i o ( l , p ) + a n A n w 2 [ ^ 2 1 ( l ) P ) + ^t23(l,p) 

+ 2 7 4 p r 1 0 ( l , p)) + £ i l l ^ [ t t 2 1 ( i , l , l) + ( d l 3 l 

4 4 
+ a2 iA2ia i iAi i ) iy 2 i ( l , l , l ) ] } ; 

P 

+ ^ * i o ( l , p ) + « n A n ^ [ ^ 2 i ( l , p ) + ^ 2 3 ( 1 , P ) +2 7 4 p*io(l ,p)] 

_ ^ [ u 2 i ( 1 ) M ) + _ ^ A ^ a n A u ) ^ ! , ! , ! ) ] } , 

where A;'s and /'s are combinations of the Bessel and hyperbolic function, and Vs, 
u's and tv's are the Bessel function products, as defined in Appendices V.2.3 and 
V.1.3. f*i is taken to be zero when using A2 and B2 in the expressions for A4 and 
B4. 

2. Damping Ratio 

2.1 Correction Velocity ui 

2.1.1 First Order 
Taking u 2 to be harmonic, i.e., u 2 = U2etnWet, equation (30a) becomes 

1 d dU^ d2U^ 
Neglecting curvature effects, i.e., ——(r—-2-—) « ——|—, and assuming the gradi-

r dr dr dr2 

ents perpendicular to the boundaries to be large compared to the change in other 
directions, i.e., 

near the vertical and bottom walls, reduces (IV.5) to: 

ijW =
 vs  d*u2

}
 near r = Ro or r = R.. frV(5) 

tnu)e dz£ 

rjW^JOJ^L near z =-h. (77.7) 
tnwe dzl 

Setting = Ae*r near r = RQ and r = i?,-, and substituting into (IV.6) gives 
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or 172
(1) = oTe A i r + a^e x* r, where Ai = lmuje and A 2 = — \ \ . 

Introducing the boundary conditions: u\ = — at r = Ro, u 2 = 0 
far away from the solid walls, taking the real part and defining the dimensionless 
velocity, 

4*=sib <™> 
yields a nonzero solution near the rigid wall for the various cases considered here, 

(i) Nonresonant case 
= —c n ai cos(u>r + fl), (TV. 10) 

where 

ai = 

/ 0 

Ci(XuR) 
R 

gu sin 9 

V Y f u C l ( x u R ) g u cose 

, near f = R, R = 1 or a, 

J 

as expressed in the (r,9,z) cylindrical coordinates, and fl = ^ / - ^ » f ° r -R = 1, and 
V 2 

(f — a), „ „ , / — A 1 coshAi t(S + h) ,k 

I, for R = a, with / = vite . Also $71, = —J— ?—- (Appendix \/2 coshAi,7i 
V) , and yi,- = dg/dz. The velocity near 2 = — h is similarly derived from (IV.7), 
and has the same form as (IV. 10) where 

C{(A l t f) 

cosh A i,-

Ci(A l f-f) 
cosh Ai t-

0 

COS0 \ 

s i n 0 , a n d n = - i i ± i l / . 
\/2 

(ii)Resonant, No Interaction Case (Planar and Nonplanar) 

u2
x) = -e n [oTcos(a>T + fl) + M i n ( w r + 0)], (7V.11) 

where fl and a\ are the same as for case (i), with t = 1 only, and 61 accounts for 
the nonplanar terms as 

\ / c n
C ' l i X n f l sing ^ 
cosh A11 h 

h = fi 

0 

Ci (A n J? ) 

R 
gn cos 9 

criiCifAuJE^usinfl J 

. C i ( A n f ) r n . 
f n cos 0 

f coshAn/i 
0 



near f = R, and z = —h, respectively, 

(iii) Resonant, Interacting Case 

fiW = -[enaTcos(wr + fl) + e^fi^sin^wr + fl\/2)], 

where a~[ and fl are identical to those of case (ii), and 62 is given by, 

/ 0 \ 

C2{\nR) 
bo = -021 cos 20 

feig8(A21f) s . n 2 g ^ 

V f2iC2(A2ii2)02isin20 J 

near f = R, and z = —h, respectively. 

2<r2: 

cosh A21/1 
C 2 (A 2 1 f) 

V 

f coshA2i/i 

0 

~cos 20 

J 
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(TV. 12) 

2.1.2 Second Order u£} 
Equation (30b) becomes 

^2JT(2) 

near r = R0, Ri, or near z = — h by replacing 

+ ( u 2
1 ) - V ) V * ] (7 .̂13) 

2 r7(2) d2u. 2r7(2) 
with d

2 u. Considering the 
dr2 dz2 

simpler nonresonant case where $ ^ = ^^/iiCi(A l tf)c7i,cos0cosit;r and 

d 1 d d 
-e ai cos(ur + fl), and using V = (^-,--^r, ^—), it is found that near r = R 

or r ad oz 
(72 = 1 or a) 

• V ) 4 X ) + ( V $ ( 1 ) • VJfiW + ( u ^ • V)V*] = 7E0u;2
1{e1T^2-[l+ 

cos2(u;r + fl)] + ej—[cos fl + COS(2U>T + fl)] f, (7F.14) 

where: 

/ 0 \ 

e l l = - ^ E hihiCx{\xiR)Cx{\xiR) 
sin 20,01,-ffiy , , . 
- g " ^ - \—J2 SU9W 

sin29 , 2», , 
\ -jjj-gugij + cos Ogxigxj J 
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62 = €21 + C22; 

eir= - ^^ / i .7 iyC , i (Ai , - f )Ci(Aiyi2) 

» 3 

\ 

sm2dfngugij , , h R„ 
~2~R~^2~f2 susui1 + y)\ 

sin2fl , f 
-75—I0it<7i/ + JJitfiy^] 

V +2cos20t7lt(j1y J 

* 3 

sin20 
-^ltAly + cos Ogugij 

sin 20 / 
- 0 i t 0 i y 

V 

2iE * " " 1 J v ^ 
2/1 / ^ 

cos Ogugij-^ J 

Upon substitution of (IV.14) into (IV.13), an analytical solution for ?72 ^ can be 
found by introducing the simplifications of the Taylor series expansion near the 
boundary, i.e., 

Ci(Ai.-f) = CxiXuR) + (f - R)C[(XUR) + Uf - i?)2C('(AltiE) + 
1 (^-15) 

Ci (A l t f ) = Ci(A l tiE) + (f - J2)c;'(Alt-J2) + -(f - i2)2C{"(Ai<i2) + ... 

for i2 = 1 or a. Furthermore, the correction velocity is significant only fo fl of 
order 1, which implies that the boundary layer thickness is of order since 

y/2 
-I from previous development. Recognizing that C'^XuR) = 0 and / 

is a large number leads to: 

C I ( A I . T ) «Ci(Ai,-J2); 
C i ( A i , r ) « ( f - i E ) C l ' ( A l t i 2 ) . {iv.ie) 

Taking f « J? and substituting (IV.16) into expressions for en and e2 yields a 
closed form solution for u 2 . Neglecting terms of order / , applying the boundary 
condition u 2

2^ = — V$^2^ at f = R, and nondimensionalizing acccording to (IV.9) 
gives 

fi(2) = I{ flL (1 - e 2 n) - S i Sin fl + '-f [l + [(1 - 0) sin fl - cos fl]] 

- sin2(u;r + f l ) ^ 2 " + sin(2u;r + fi)[% + % f l + 
2 _ 2_ 

-cos(2wr + n ) - 2 ^ e n + sin(2a;7- + nv / 2)[-| 

- l a l e " ^ + cos(2u;r + fiv^^-e0^2}, 
2 ^ 

21 e22 

(iv.n) 
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where e n , e21 and e 2 2 are equivalent to en , t2\ and e22 when Ci(Xuf) is replaced 
by Ci(AiiJ*), C{(Altf)//v^ by C['{\UR), and f by Rt with 

- 2 / : 2p" 

0 

C2(A2p.R) sin 26g2p 

\fopCo{XoPR)9op + hPC2{X2pR)92p cos 20 J 

u2 thus includes exponentially decaying, 2u>r terms, and asymptotically growing 
time independent terms across the boundary layer. The steady component must, 
however, decay in a region extending further into the flow, and is responsible for 
the presence of the so-called "streaming layer" 1 0 9 . Solving for the corresponding 
velocity profile however adds another degree of complexity and is not considered in 
this analysis. 

A similar development can be carried out near z = —h. Although an exact 
solution for (IV.13) can be found, it is easier to make simplifications similar to 
(IV.15): 

cosh Ai,(z + h) « 1; 
' , ( / K 1 8 ) sinhA l t (z + h) « (z + h); 

near z = —h. This leads to an expression for identical to (IV.17), with now 
different vectors e n , e2l, e22, and E3. Applying the procedure to the resonant 
cases also gives results of the same form, where additional steady and harmonic, 
2GJT terms now account for the nonplanar mode, and expressions in CJT, 3CJT and 
4CJT originate from the resonant interactions. 

2.2 Reduced Damping Ratio 

2.2.1 Contribution from Rigid Boundary 
By neglecting terms of order 1, small compared to /, the dissipated energy per 

cycle from the first term of relation (32) becomes: 

Ed^^I0
u{h{^)2+{^)2]dv}dti near r=iE°' *; (/y-i9) 

Ed*»J0^Uj{^)2+{^2]dv}dt> near (/y-2o) 

where u 2
2 ^ = («2r»«2c7> « 2 « ) in the (r,0, z) coordinates. By nondimensionalizing 

the above relations, taking the derivatives with respect to f and z, squaring and 
integrating over v, the reduced damping ratio nrj is obtained as per relation (34), 
where the nonlinear terms are listed below for the various cases of resonant and 
nonresonant conditions: 
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, (382y/2-567) T , (18y/2-40) r 

H — Li\\L>\2 H Lll&Z 

+ 9 

1 f 9 \ ^ w 2 H \ ^ , / 2 1 3 w 3 V ^ w 2 

( U ) = 4 7 ! i " l O ~ M l 1 + ~ T ~ 2 2 ~ 2 5 M l l M 2 2 + — M 3 1 

17^2 (155 - 43V2) ( 1 7 5 - 1 1 2 ^ ) 
8 3 2 30 1 2 6 1 6 

(51U/2-657) 
18 4 2 18 6 2 

(382\/2 - 450) , , , , ,272 2782>/2. „ , 
+ '-M12M42 + {— - — ) M 1 3 M 5 2 

+ ( 1 8 ^ - 4 0 ) M i 2 E 3 + ( 7 6 - 3 2 V 2 ) M i 3 ^ 

+ G L ^ ^ * + ( 2 5 2 - f 4 ^ M 5 2 ^ + 8 « + *4
2)}; 

frnl AA, - AA* + 1 f(872-225y/2) 2 (1647 + 66y/2) 2 (m) AAS-AA1 + ^ 2 4 g JVn + 2 g g JV22 

(178>/2- 105) 9 w » r (199- 1 3 5 v ^ ) w „ + - ^ '-MnNn - —M22Nn + * - — ^ M u ^ 

, (400-253v/2) , (5608 + 425y/2) A T 

+ — '-M22N22 + - z^rz -NUN22 
54 l o U U 

+ < S ^ S . N u E r + + « + 

b 9 I zo o 
103 , 1071 1231 597 

+ 1 2 5 ^ " H o " " " " ~ l 2 5 N l l N 8 2 + T o " 7 2 " 8 2 

+ 2 \ / 2 £ ? + 4v /2^f + 4 V 6 " £ | } ; 

BB3 = 2oi£ l5, 

where A A J = A A i when considering the first mode only, and L 2 , , L 2 2 , L11L22,—, 
aiEs are complicated expressions involving Bessel and hyperbolic function cross-
products as defined in Appendix V , such as, 

I 2 ! = D ! ( t , j,Jk,0i[G1

1

1(.-,i>fc f 0 + G 1 1 ( , , i , f c , 0 ( l + 3 A 2
y A 2 , + 2A2,) 

+ G»(i,j,k,l)} + D2(iJ,kJ)j[Clll{l'J
6'k'l) + G?(i,jtk,l)(± 

*% a CL 

+ SA^-A 2 , + ^-) + C " ( ' ' ' + ^ y H ^ / ^ " ( t , j,fc,0 
J a a 4 

+ 2 J £ > n ( t , y , A : , / ) + / ^ ( t . i , * , / ) + 2 J D 1 1 ( » - , y , f c , / ) 

- 2W\l (t, y, * , /) + 2iD\l (.-, y, * , /) + I D } 1 (t, j, K 01; 

£ l 2 = Bs(»\ J , *> 0 j lG} 1 (•*. i . f c . 0 + s ^ 1 (», J. M R ^4(», 3, k, I) 
4 



1 G J ^ M + sG^f.-.j,*,/)] + F m ^ [ 3 I D ? { i J , k , t ) 
4 a' 4 

+ /i?JS(«,i, *,/)]; 

£ n £ 2 2 = Ds{iJ,k,t)±[G\%j,k,t) - (3X2
xj + 2)G\1(i,j,k,l)) 

+ D 6 ( t , y , f c , / ) i [ ^ M M _ ( 3 A ? y + ^ ) G5 1 ( . - , i ,* ,0] 

+ J i i w ^ l s / u J 1 ^ , i,*,0 - «>ii(«\i,M - iD\\{i,j,k,i) 

+ 2IDH(i,j,k,l)}; 

L X X E 3 = £>7(t,i,2)[GGl2(t,i,n) - GG5 2 (t,j,n) - £ - L ^ G G j a ( . \ j , n ) ] 

+ I>8(t ,J,2)[ ^ 

- ( 1/ a 2 + A 0 ) G G i 2 ( t < J > ) ] _ U 7(,-,y,0)[GGl°(i, j,n)(l + Ajy)] 

- D8(i,j,0)[GG\°(iJtn){\ + A2,)] - Fi3o[IDD\0(i,j,n) 

+ IDDl°(i,j,n)} - ^[WD\2(i,j,n) - IDD\\i,j,n) 

- 2IDD\2{i,j,n) - 2IDD\2{i,j,n) + 2IDD12{i,j\n)]; 

L L 2 2 E 3 = D9{iJ,2)[GG\2{i,j,n) + \GG\2 (», j, n)] + £ > 1 0 ( t , j, 2) [ ° C " J ' n ) 

+ iGGi 2(t , j ,n) ] + [D9(.-,j,0) + Z?10(t,y,0)]GG10(t,y,n) 

- FijoLLioi{i,n,j) - Fij2\^LLX2X{i,n,j) + JJi2i{i,n,j)}; 

M2
X = {G\U\ + G 2 M(2, 2 - * 2 ) ( 1 + 2X2

XX) + Xtx(2s2 + s2)} + G | * s 

+ a C l 4 (
4

A l i a ){ g
a^ i + G i M M - *2)(^r + ̂  + A n ( 2 5 l + *2)1 

+ G"4} + , ^ £ t o I ( 2 ^ 1 + •?) + 2IDl\2s2 - s2) 
<*• } 4 cosh Xxxh K 

+ 2 s 2 J P * 1 + s2{IDll - 2ID\X + 2ID\l + ID]1)). 

Here: 
«i = fii ~ & a n d *2 = fh + fiiJ 

_ C 2 ( A 1 1 ) G j / 2 ( A n ) [ r l l , 2 , r i i f o , 2 , j 8 » | agi^AuttjCy'CAna) M 2 2 = - [Gx s 2 + G 2 ( 2 s 2 + sx)\ + -

[G»4 + g . 1 ^ ! + 4)) + A
 X\\ Ai^l + A)™? + s2IDll}; 

a 4cosh Xxxh 

MxxM22 = ig i ' (A u )g i 3 (Ai i ) {GJ^ 2 - G\l\2s2{\ + X2
XX) + s2X2

xx}} 
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4 cosh An/i 

= 4fn&{c«(A„)(G» + 2G» + G*1) + + ^ 

+ Gi 1)}; 

M | 2 = 2 / ? l f ? 1 { G i ' [ C ? ( A I l ) c f (A,,) + C } ( * . . « ) C f ( * » « ) ) 
a 

f J i y 1 0 f) 
+ At: 

cosh4 Ax 

M2
13 = / l A { c f ( A n ) [ G » + G^CA 4 , - 2A h - 1) + G 3

X ] + aCf ( A „ « ) [ ^ 

+ G ^ A f , - - 1 ) + % + \ AID? - 2ID? 
a o a cosh An/i 

+ J D l 1 - 2ID\l + 2ID\l + ID}1]}; 

Mh = fhtii{lCl{Xii)CZa(\n) + Cf (AnajC^CAnoJajGj 1 

cosh An/i } 

M 1 3 M 5 2 = / ? 1 f ? i { c J ( A „ ) C l
w ( A 1 1 ) G | 1 ( l - A 2

X) + aCf (AnajCflAna) 

- Ah) + - ^ T T T ^ 1 " / £ > " " 7 D ^} ; a cosh Au/i > 

M 2
2 , M%2 and M12M42 are identical to M 2

X , M 2 2 and M11M22, respectively, after 
permuting 52 and si; 

M12E3 = X ; { /2nS2[C2 (A 2 n )C 2 (A n ) [GGl 2 ( l , l ,n) - GG* 2 ( l , l ,n ) 
n 

+ g g P ( M . " ) ( 1 - A?,)] + a t 7 , ( A a . « ) C ? ( A l l 0 ) [ ° S ^ l i l = ) 

a 2 2 V 

G G j ° ( l , l , n ) ( l + A 2 J + aCo(A 0 n a)C 2 (A 1 1 a)GGi 0 ( l , l ,n ) (4 

2 cosh An/i L2coshA2n'i 
- 2IDD\2(\, l,n) - 2mE>4-2(l, l,n) + 2JZ>£>|2(1, l,n)] 

+ [ 2f°"Sl
t[IDD\0(l,l,n) + IDDl°(l,l,n)}} }; 

coshAon'i J 
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+ 6 ? G i a ( l , l , n ) ( l - X2
n)\ + aC 2 (A 2 n a)C 1

2 (A 1 1 a)[ 2 C g " ( 1 » 1 . w ) 

+ 2 G G i ' ( l , l , . ) + G G , 2 ( l l n ) ( l _ A h ) 1 

T [ J ^ 1 2 ( 1 , 1,n) - mD$ 2 (l ,1 ,n) 9 i 

cosh An/icosh A 2 r i / i 

+ 2IDDl2{l, 1,n) - 27Z?£>] 2 (1 ,1 , n) - 2 / £ > £ > i 2 ( l , 1,n)}}; 
M 4 2 ^ 3 = ^ { ^ [ ^ ' ( A u j C ^ A x O d C A ^ t G G l 2 ^ , ! ^ ) + G G 4 2 ( M , " ) j 

n 

+ a C r i A x x ^ C ^ A n a j d C A ^ a ) ! ^ 2 ^ 1 ' ^ + 

+ [Ci'CAujC^AujCoCAon) + aCKAuaJdCAnajCoCAona)] 
G G 4

0 ( l , l , n ) / 0 r t 3 x - * " J / a » * 2 [ | L L 1 2 1 ( l , n , l ) 
cosh A n / i Lcosh A 2 i / i * 

+ J J m (1, n, 1)] + / ° w S l L L 1 0 i (1, n, 1)1; 
COSliAon" 

M 5 2 ^ 4 = / l l ? l l X ) f 2 l { [ C l ( A l l ) C ' i , ( A l l ) C 2 ( A 2 n ) 
n 

+ a C 1 ( A 1 1 a ) C i ' ( A n o ) C 2 ( A 2 n a ) ] G G l 2 ( l , l , n ) 

^2 , A t" J £ W l , n , l ) + 2 J J 1 2 1 ( l ,n , l ) ] } ; 
cosh A n n cosh A 2 n a ' 

^11 = ?2 4i{c 2
4(A 2 1)[76G 2 2 + G22(h4

21 + 2A 2
X - 32) + 4G 2 2 ] + aC 4 (A 2 1 a) 

/~<22 q \2 on /~<22 i o 
[ 7 6 % + G 2 2 ^ 4 , + 2 - ™) + 4%) + l—^\llD22 

a 6 4 a 2 a4' a 2 c o s h 4 A 2 1 / i 4 

+ 2 / P | 2 + IDf + SID22 - 21D\2 + 8IDl2 + 16JZ)2.2]}; 

^22
2 = f 2 i { c 2

2 ( A 2 1 ) c f (A 2 1 ) [4G 2 2 + G 2 2 ]+aC|(A 2 ia)C2 2 (A 2 ia)[4^| 2 -
+ G 2 2 l + X ^ [ 3 I D 2 2

 + 4ID22}}] 

A 2 i / i * ' 2 cosh 

M u i V u = 2 / 2
1 f 2

2
1 { c 1

2 ( A 1 1 ) G 2 ( A 2 1 ) G l 2 ( A | l + 1)(A2
X + 1) 

+ a C 2 ( A „ a ) C 2 ( A 2 1 a ) G l 2 ( *f + ^ ( A 2 , + ^ ) 

+ ^ID21 + IDf + 4ID\2 + ID\2 j j 

4cosh 2 Aiincosh 2 A 2 i « ' 



M„Nlt = -2/ ucr 2
2

1 { c 1 (A 1 1 )Ci ' (A 1 1 )C 2
2 (A 2 1 )G^( A i l + 1) 

+ a C 1 ( A 1 1 a ) C { ' ( A „ a ) C 2 ( A 2 1 a ) G ^ ( A | i + 1 ) 

2 [78(2,1,2,1)] 1. 
4 cosh2 A11 h cosh2 A 21 

M„AT 2 2 = -/ n f2 1 { c 2 ( A 1 1 ) C 2 ' ( A 2 1 ) C 2 ( A 2 1 ) G ^ 2 i A i ^ t i i 

+ aC 2 (Aiia)C 2 (A 2 io)C 2 (A 2 ia)G2 2^ 1 1 ^—-

+ A 

r V 2 

2 

2 [7 8 ( l ,2 , l ,2 )+ / 6 ( l ,2 , l ,2)]y 
cosh2 \\\h cosh2 X2\h > 

M22N22 = ^ - { [ C 1 ( A 1 1 ) C i ' ( A 1 1 ) C 2 ( A 2 1 ) C 2 ' ( A 2 1 ) 

+ aC 1(A 1 1a)C{'(A 1 1a)C 2(A 2 1a)C 2'(A 2 1a)]Gl 
A 2 A 2 

^ 2 1 7^ 2}; 

5 
cosh An/icosh A 2 i / i 

NnN22 = <T2
4

1{C2
3(A21)C2'(A21)[16G22 + G 2 2 ( ^ - 1)] 

+ a C f ( A 2 1 a ) C 2 ' ( A 2 1 a ) [ i ^ + G 2 2 ( ^ A 2
1 - 1)] 

_ A 2 [77?22/2 + 876(2,2,2,2) - 2ID\\ - 8//?22] |, 

cosh4 X2ih > 

i V 1 1 £ 7 = - < r 2

2

1 X;{ c'2 2(A2i)[d4n [ 8 G G 2 4 ( l , l , n ) - 8 G G 2 4 ( l , l , n ) 

n 

+ GG2 4 (l , l ,n)(2 - A| i)]C 4(A 4 1) + C 4 n G G 2 0 ( l , l , n ) ( 2 

+ ^ - ) G 0 ( A 0 n ) ] +aC 2(A 2 1a) [d 4 n [8GG 2 4 (l , l ,n) - * G G ? £ > *» 

+ G G 2 4 ( l , l , n ) ( l - Mi)]C 4(A 4 na) + e 4 n G G 2 0 ( l , l , » ) ( J ^ 

+ ^ ^ ( A o n a ) ] | 1 , [ d 4 n . [ ^ ^ ( M . n ) 

2 J cosh2 X2ih '•coshA4nn 2 
+ 47DP^4(1,1, n) - 47£>7?|4(1, l,n) - 167P7?24(1, l,n)] 

- J f r W l l , 1, n) + 4 / £ £ > 2 0 ( l , 1 , n)]j }; 
cosh Xonh J •* 

N22E7 = cr 2

xX ; {c 2 (A 2 1 )C 2 ' (A 2 1 )[-rf4nG 4 (A 4 r i )[8GG 2 4 (l ,l ,n) 
n 

, G G ^ 4 ( l , l , n ) 1 _ ,_ r 8GG 2 4 ( l , l ,n) , G G 2 4 ( l , l , n 
+ 2 J ~ d4nG 4(A 4 no)a[ 1- -

+ 
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2 
+ 1 2 1 

A d. An + e4nGGl°[C0{Xon) + aC0{X0na)] ^ 
J cosh A21/1 L c o s h A 4 n / i 

[ L L 2 4 2
9

1 , n , 1 ) - 8 J J 2 « ( l , » , 1)] + — ^ - L W l , n , 1)]] }. 
* coshAonn J ' 

Now, recognizing gx g2 « 4t7x <72 due to the resonant interaction gives: 

G\2 

Nh = / i a i ? a
2 i {c 2 (A a i ) C a (A n ) [ 2 G » + ^ - + (50 + 32A n)G I2} 

+ a C 2 ( A 2 1 a ) C 2 ( A n a ) [ 2 ^ + ^ + ( j £ + 32A 4
1 )^ 2 ] 

+ 1 ^(1,2,1,2) | /8(2,1,2,1) 
cosh2 Xnh cosh2 X2ih 8 2 

+ /8(1,1,2,2) + |/9(2,2,1,1) + 1079(1,1,2,2) - 4/ 9(l,2,l,2) 

+ ^ID? - 8ID12 - ID21 + AID21 + + MD7
2}}; 

( o C12 -I- C12 « C12 

N?2 = fl^{cf{X2,)C2{Xu)\^^ 

+ ^ ] + A4j^5(l , l ,2,2)+/ 2 (1,2,1,2)]|, 
2 2 cosh2 X2%h cosh2 Xnh ' 

Ni2 = / 1
2 if 2

2 i{G 2 (A 2 1 )Cl' 2 (A 2 1 )(8Gl 2 + 2G*2) + a C a ( A a i a ) C ; ' 2 ( A n a ) ( ? | £ 

+ 2G*2) + A ^ [^(2,2, l , l ) + 2/ 2(l,2,l,2)]| ; 

2cosh2 A 2incosh2 Xnh > 

N 7 1 N 7 2 = / 1
2

1 f 2
2

1 { c 2 (A 2 1 )C 2 ' (A 2 1 )C 2 (A 1 1 )Gl 2 ( i + 4A2
1) 

+ aC 2 (A 2 1 a)C 2 ' (A 2 1 a)C 1
2 (A 1 1 a)Gl 2 (^ 2 + 4A 2 J 

_,_ , 2 [/6(1,2,1,2) - 2/7(2,1,2,1) - 4/ 8(l, 2,1,2)] ^ 
T A

2 1 n s 5 31 I ) 

2 cosh Ana cosh A 2 i / i -1 

N 7 1 N 8 2 = / 1
2

1<r 2
2

1{c 2(A 2 1)Ci'(A 1 1)C 1(A 1 1)(4Gl 2 + 40G^2) 
+ aG 2 (A 2 1 a)Ci ' (A 1 1 a)C 1 (A 1 1 a) (^_ + ^ - ) 

2 [/6(2,2,1,1) + 5/ 6(l, 2,1,2) - 8/ 7(l, 2,1,2) - 4/ 4(l, 2,1,2)] ^ 
' 1 1 o s o * I' 

2 cosh A2i/icosh Ana ' 
N 7 2 N 8 2 = / 1

2
1 f 2

2
1 {[C 2 ' (A 2 1 )C; , (A 1 1 )C 2 (A 2 1 )G 1 (A 1 1 ) 

+ aC 2
,(A 2 1a)Ci'(A 1 1a)C 2(A 2 1a)C 1(A 1 1a)]8G} 2 

+ \lL\2
Ll h{W,2) | ; 

2 cosh2 A 2 i h cosh2 A11 h > 

El = EEfW^^P) + 2/on/oP/,*(0,n,p)}; 
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where F* is a function defined as: 
\n,p) = Ci{\in)Ci{\iP)[i20ii{n,p) + #t-(n,p)] + aCi{Xina)Ci{Xipa) 

[ t 2 / ? " (
2

n , P ) + /%(n,p)] + i2„(n,p) + i2J2ii(n,p); 
Of 

El 
n p 

El = Y, Y , l d i n d i P F * C1' N> P) + ei« eip^* (3> N> P)1; 
n » 

El = Y^2[d3nd3pF*{3,n,p) + e3ne3pF*(l,n,p)}; 
n p 

E2 = ^2^2[d4nd4pF*(4,n,p) + e4ne4pF*(0,n,p)}; 
n p 

axE5 = / i i X ) d i „ J ? , * ( l , l , n ) . 

n 
/? and f3* functions are defined in Appendix V . 

2.2.2 Free Surface Contibution 

The vector n = (———, —f, l) is normal to the free surface. Expressing 
or r do 

r)f in terms of $ and d2x/dt2 using relation (1.2), and substituting into the second 
term of equation (32) yields 

Ed = H J™* { J rdOdr}dt + higher order terms. (IV.21) 

Integration of the above equation gives the leading order terms presented in (35). 

2.3 Energy Ratio 
The procedure outlined in section 4.3 of Chapter 2 leads to the following equal­

ities: 

CJ flT ( f , d m 

dr dr 

o d m « d 2 m 

+ / V m • VmrdOdrdzldr; {IV.22) 
J V 

6 A A A n = 27 /o \J8

 a i l A l l K - 3 r ~ ) + ( a i l A l 1 ^ dzdr 

- j ( ^ ( 1 ) ) 4 - 2 ^ - ^ w + « l l A l l ( _ ) W > 

]r<Wdf + f {Vm)2rd6drdz\dT, {IV.2Z) 
d { v m ) 

dz 



For the particular cases (n = 1,2,3): 

(i) BBBx = 0; 
AAA\ = 2VS(f0n,fom) + VS(f2nJ2m) - (a i iA n ) 2 a ; 3 

E E E ai . -Ai .7 i .7 iy[2 /o»^no( l , 1, n) + f2nKK112{l, 1, n)] 
t j n 

a i i A n 
E E E E fuMikfu {won (t, j, k, i) 

64 
t J K I 

+ ID\l(i,j,kJ)}+6ID\l(i,j,kJ)+ID\l(i,^ 
aifcauAi,AiyAijfcAii) - 6w2(ai tAi,A2y + anAiyAiJanAu 
- ^{anXuyiauaijXHXij)} + 6ID\l{i,j,k,l)[3alkXlkctuXu 

- w 2 a 1 1 A 1 1 ( a l t A l i + axiXxj\ + 2ID10{i,j,k,l)[3ctlkXlkauXu 

- w 2 anAu(ai t A l t - + axyAxy)]}, 

(ii) BBB2 = 0; 
AAA2 = 2VS{fon,fom) + VS(f2n,f2m) + VS{$2n,t2m) - ( a n A n w ) 3 

[Von{fu - cn)KKno(l,l,n) + f2n(f^ + f? 1)Jirjr l i a(l,l,n)] 

" ^^{Mfti + iii) + + ID\\) + 2[3(/1
4
1 + 

2 / i 2 i f i 2 i ] / ^ + (aiiA 1 1) 4/P 1^[3(/ 1
4

1 + ^ ( 3 - ^ - 12a;4) + 2 f t f? 
" i i 

Q/\2 
(3 - - 5 - - 12a;4)] + ( a u A n ) 2 / ! ? } * ^ + f l\)(3 - 2a;2) 
+ 4/iVi 2i(3 - 4a;2)] + (a 1 1 A 1 1 ) 2 /D 1 ^[2(/ 4

1 + C4
a)(3 - 2a;2) 

+ 8/2
1Cu62(l + 2a;2)], 

(iii) BBB3 = 2[fnWS(dln,dlm) + f 2 i( / 2 n , / 2 m)](l + a n A „ w 2 ) 
- 6(a11A11u;)3/i2i<r2iii'ii'i2i(l, 1,1); 

AAA3 = AAA\ + VS{dln, dlm) + VS{eln, elm) + VS(e3n,e3m) 
+ VS(d3n, d3m) + 2VS{e4n, e4 m) + VS{d4n, d4m) 

- (anA11w)3^{32c:|1[2e4nii'ii'22o(l,l,n) + d 4 n i t t r 2 2 4 ( l , 1, n)]+ 
n 

\hi$2i[{dln-Ze3n)KKl2l{\,l,n) + (e l n - 3d3n) 

KK123(1, l,n)]} - £ ^ { c ^ [ 9 ( J £ > 2 2 + 16/Z?22) + 2 4 J £ > 2 2 + 

( a 2 1 A 2 1 ) 4 / £ > 2 2 ( 1 8 - 12a;2) + ( a 2 1 A 2 1 ) 2 / £ > 2 2 ( 2 4 - 16a;2)] 

+ fxx&W&xl + 4ID\1) + SID\2
7 + 2ID\\ + K>(anXn)4ID\l(2 

- 34a;2 - ^a; 4) + 4 ( a 1 1 A 1 1 ) 2 / £ > 1
1 2 ( 8 - 2a;2) + 4 ( a 1 1 A 1 1 ) 2 J ^ ( i 

4 I 

- 32a;2) + 40(a 1 1 A 1 1 ) 2 /D 1
1 2 ( l - tf) + lS{ct^ii?ID\l\, 
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where: 

AAA\ = AAA\ for the case where i = j = k — I = 1; 

VS(rin,rim) = (auAu^ 2 ) £ [ ' " 2 r ? n ^ f ] + WS{rinirim); 

WS(rin,rim) = ^^rinrirnpij{n,m)[IAjj{n,m) + j2J A}j{n,m) + a 2
n Ay n ] ; 

n m 

with j = i when rin = fon, f2n, dln, d3n, d4n, 
and j = 0,1,3 for r,„ = e 4 n, e3rv, and ei n , respectively. 



A P P E N D I X V : U S E F U L B E S S E L A N D H Y P E R B O L I C 
F U N C T I O N R E L A T I O N S A N D D E F I N I T I O N S 

1. Bessel Functions 

1.1 Orthonogality Condition 

C „ ( A n p f ) C m ( A m g f ) f c i f = 0, if A n p ̂  A m , ; 

A 
^2 ' ^ A np A m g , 

where A n p = i { ( A 2
p - n 2 ) C 2 ( A n p ) - ( A 2

p a 2 - n 2 ) C 2 ( A 

1.2 Cross-Product Integrals 

,j,k,l) = / ' c n A a r j C ^ A y i f j C U A f c x f j C ^ A n f J f c i f ; 
J a 

np 

,j,k,l) 

,J,k,l) 

h(i ,j,k,l) 

h(i ,j,k,l) 

h(i j,k,l) 

j,k,l) 

Hi j,k,l) 

h(i j,k,l) 

h(i j,k,l) 

In the following, (i,j,k,l) is omitted when i = j = k = I = 1. 

IDr(i,3\k,l) = / 1 C ; ' ( A m f ) C ; ( A n y f ) C ^ ( A m f c f ) C ^ ( A m / f ) f c i f ; 
J a 



ID\ 

ID? 

I D n m , 

ID?™' 

IDnm' 

ID%m> 

ID%m' 

TTjnmt 

ID™> 

TDnmt 

ID™> 

TTjnmi 

jr\nmi 
J A /16 

ID i™' 

i , j , k , l ) 

i,j,k,l) 

i,j,k,l) 

i,j,k,l) 

i j , k , l ) 

i,3,k,l) 

i,j,k,l) 

i,j,k,l) 

i,j,k,l) 

i,j,k,l) 

i,j,k,l) 

i,j,k,l) 

i,j,k,l) 

i j , k , l ) 

i j , k , l ) 

C"(\nir)Cn(\n]r)C'm(\mkr)Cr 

^ n m p ( ' i J> kt 

•I Jnmp{})3, kt 

KKnmp{i,j\ kt 

-f 

J a 

J a 

-i: 

-C 

• i 

= / C'n{Xnif)Cn{Xnjf)C'm{Xmkf)C„, 
J a 

= / 1 c ; ( A « < f ) c : ( A , , y f ) C ^ ( A m * f ) c ; 
J a 

-i: 

= / C^Xnif)Cn{Xnjf)Cm{Xmkf)Cr 

J a 

-i: 
•i. 
-i: 

C'n (\nif) Cn ( A n y f ) C'm (Xmk f ) C„ 

Cn(Xnif)Cn(Xnjf)C'm(Xmkf)C„ 

C'n ( A n i f ) Cn ( A n j r r ) Cm (Xmk f ) C„ 

Cn{Xnir)Cn(Xnjf)Cm(Xmkf)Cn 

C n ( A n ^ ) C ; ( A n y f ) C r n ( A m f c f ) C r 

C'n{*ni?)Cn{Xnir)C'm{Xmkr)Cn 

Cn{Xnir)Cn{Xnjf)Cm{Xmkf)Cr 

C'n(Xnif)Cn{Xnjf)Cm(Xmkf)Cr 

Cn{Xnif)Cn{Xnjf)Cm{Xmkr)Cn 

Cn(Xnif)Cn{Xnjf)Cm(Xmkf)Cr 

Cn{Xnif)Cn{Xnjf)Cm{Xmkf)Cr 

\ ^ d r 

Xmir)—; 
r 

, ~dr Am/rj—; 
r 

A ,f)--

A m / r ) ^ ; 

A m f j — ; 

Xmif)fdf; 

Xmif)fdr] 

Xmlf)^-; 
r 

A m / r ) ^ ; 

X m i r ) — ; 
r 

Xmlr)rdf; 

Xmlr)rdr; 

Xmlr)rdr; 

\ *\df 

Amir)—', 
r 

C'n{Xnif)C'm{Xmjf)Cp{Xpkf)fdf; 

1 jj. 
Cn[Xnif)Cm{Xmjf)Cp(Xpkf)—; 

Cn(Xnif)Cm(Xmjf)Cp(Xpkr)fdf; 
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IDD\p{i,j,n) 

IDDlP(i,j,n) 

IDDq/{iJ,n) 

IDDq/{i,j,n) 

IDDqp{i,j,n) 

IDDq
6
p(i,j,n) 

IAnm{i,j) = 

JAnm(i,j) = 

1.3 Simple Cross-Products 

D i { i J , k , l 

f C;'(A g tf)c;(A wf)C p(A p nf)fdf; 
J a 

/ ' ^ ( A ^ C ^ A ^ f j C ^ A ^ f ) ^ ; 
J a ' 

/ ' c j C A ^ C ^ A ^ f j C . l A ^ f ) ^ ; 

/ ' c j A ^ C ^ A ^ f j C p C A ^ f ) ^ ; 

/ ' ^ ( A^C^A^fjC^Apnf)^; 
J a -I ' ^ ( A ^ C ^ A ^ f j C p C A ^ f ) ^ ; 
f Cn{Xnif)Cm(Xmjf)fdf; 

J a 

I C n (A m f )C m (A m yr )—. 
J a r 

D 2 { i , j , k , l 

D 3 { i , j , k , l 

D 4 ( i , j , k , l 

D 5 ( i , j , k , l 

D 6 { i , j , k , l 

D p ( i , j , n 

Dl(i,j,n 

D p
0 { i , j , n 

= E E E E /i./iy/iJk/uC^AxOC^A.yJdCA.OCiCAw); 
i j k I 

= E E E E /i.7ij/i*/î i(Ai»a)Ci(A»ya)C'i(Atfca)C1(A,,a)a; 
» y * j 

= E E E E /w/iy/iJk/ii^AiOCiCAyjC^A.-OCtCA,-,); 

= E E E E hihjhkhiC'l{\ua)Cx (Xi^C'^Xi^C^Xua)^ 
i j k l 

» y fc t 
= E E E E /i.7iy/i*/iiC'i(Alia)C1(A1ya)C;/(Alfca)C1(A1,a)a; 

i y fc J 

= E E E /i»7iy/pî 'i(Ai»)gi(Aiy)̂ 'p(Api)! 
» y i 

= E E E /i«7iy/pnc'i(Aita)Ci(Aiya)Cp(Apria)a; 
* y n 

= E E E /i.7iy/pnCi(Alt)Ci'(A1y)Cp(Apn); 
i y n 

= E E E /i.7iy/pnCi(A1,a)Ci'(A1ya)Cp(Apna)a; 
* y n 



tnm{i,p) — Cn(Xni)Cm(Xmp) - aCn(Xnia)Cm(Xmpa); 

i; „\ — n (\ \r> (\ \ C w ( A n t a ) C m ( A m p a ) 
CL 

ttnm[i,p) = C ' „ ( A r i t ) C m ( A m p ) + aCn(Xnia)Cm(Xmpa); 

c \ n t\ \r> (\ \ r C n ( A n t a ) C m ( A m p a ) 
wnrn[i,p) = Cn[Xni)Cm(Xmp) + 

Unm{i>J,P) = C ,
n ( A m ) C n ( A „ y ) C m ( A m p ) -

CL 
Wnm{hj,p) — Cn(Xni)Cn(Xnj)Cm(Xmp) - aCn(Xnia)Cn(Xnja)Cm(Xmpa). 

a 
C n ( A m a ) C n ( A n y a ) C m ( A m p a ) 

2. Hyperbolic Functions 

2.1 Definitions and Cross-Product Integrals 

9nm 

Fijki 

F 

G l m ( i , J , k , l 

G ^ m ( i , j , k , l 

G l m { i , j , k , t 

GGl*(i,j,n 

GGlP(i,j\n 

GGlP(i,j,n 

GGlP(i,j,n 

_ cosh A n m ( z + h] 

cosh Xnmh 

= E E E E fufijfikfii 
i j k i c o s n A\%h cosh Xijh cosh Xi^h cosh Xnh 

= E E E 
*' j P 

flifljflp 
cosh Xnh cosh Aiyft. cosh Xiph 

f ° 

J ̂ 9ni9nj9mk9mldz', 
k9midz; / 9ni9nj& 

J-k 
f ° 
/ §ni9nj9mk9mldz\ 

J-h 
f ° / 9qi9qj9pndz\ 

J — h 

/
9qi§q]9pndz; 

-h 

f° 

/ 9qi9qj9pndz; 
J — h 
/ 9qi9qj9pndz. 
J-K 
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2.2 Simple Cross-Products 

Xni&ni XmpCtmp 
Pnm{hP) = ^2 _ ^2 ' A m ^ A m P ' 

+ "t—]j for A m - — A m p 5 

2 cosh2 A m / i A 
a* t: ~\ A n i A m p ( A m a m p — A m p a m ) f ^ , ̂  
Pnm\l>P) - 72 \2 ' I O r A™ ^ A m p , 

Ant A m p 
- 4- ̂ 211 for A - A 

^ cosh A„i/l Ant 

2.3 Combinations of Hyperbolic and Bessel Function Cross-Products 

knm(i,p) = Pnm(i,P)tnm(i,P)', 

lnm{i,P) = Pnm[i,P)vnm{i,p); 

kknm(i,p) = Pnm{i,p)ttnm(i,p); 

UnmihP) = 0nm(i,p)wnm(i,p); 

12 y) = ^nm(')j) 
cosh Xn{h cosh A m j/i 

1 

«72 n m (t ,j) 
JAnrn(i,j) 

cosh Ant'/i cosh Amy/i 
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APPENDIX VI: M E C H A N I C A L A N A L O G Y 
OF A LINEAR S Y S T E M 

1. One-D egree-of-Freedom 
It is assumed that the action of the sloshing liquid within the nutation damper 

is modelled by a mass-spring-dashpot system as shown in Fig. VI-1. 

d a m p e r 

x - € 0sincj Pt 

d a m p e r 

I k 
H A A H 

i 
m 

Fig. VI-1 Mechanical representation of a nutation damper 

This common approach, incomplete as nonlinear effects are not included, can be 
a useful tool for understanding the more complex fluid mechanics problem. The 
motion of the liquid, represented by y here, imposes inertia and damping forces on 
the moving base (Fig. VI-2). They can be nondimensionalized in terms of an added 
mass and reduced damping ratio \Ma/Mi\ and r/rjj, respectively. 

k(x-y) 
•C d(x-y) 

1 

Fig. VI-2 Forces acting on the moving base 

Standard vibration theory gives (x — y), and in turn yields: 

. Ma CJ2 — 1 T]CJ 
^,1 = 773 -,\2 , fo,.M2' ( V L 1 ) Mi ( w 2 - l ) 2 + (2r 7 u; 2 ) 2 ' / r > ' (o>2 - l ) 2 + (2r?u;)2' 

where: 
— ; wn = y/k/m, and rj = ~ — 

(VI-1) is plotted below against CJ for various n. The added mass is always zero 
at resonance (CJ = 1.0), with diminishing maxima at larger damping (Fig. VT-3a), 
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while rjr,i shows higher and narrower peaks for decreasing n (Fig. VI-3b). The 
energy ratio is also derived as 

8TT 
Er>l = r'KTTl (1 + l/w 2)w' 

showing an increase with CJ for a given 77 (Fig. VI-3c). 

(VI.2) 

2. Two-Degree-of-Freedom System 
The aerodynamic model of section 4.4 fitted with the rotating damping device 

can be represented by the vibration absorber configuration shown below: 

F 0 e i w e ' 

]1 

m. 

aero, model 

w_t 
, - Y , e ' w e 

/ T 
V 2 =Y 2 e i V 

Fig. VI-4 
damping device 

Mechanical representation of the transmission line test arrangement 

{VI.3) 

The standard formulation for such problems leads to the following eigenvalue equa-
tion 1 1 0 , 

- U?{UJI + 1 + s) + w* = 0, 

, m2 <*>1 2 *1 2 k2 , W N 

where s = ; Uo = — ; with UJX = , u 2 = ; and u>n = —. 
mi u)2 mi m.2 u2 

With the experimental determination of uj\, u>2, and wn, the inertia ratio 5 can 
subsequently be determined from (VI.3) as, 

, = - A - l ) ( £ f - 1 ) . 

Assuming C\ to be small, the response of the model is, 

_Fg , r ( i-P a) + 3 a y / a 

(VIA) 

(VI.5) 

Ijj, 
where u> = — ; A is the left hand side of relation (VI.3) when substituting ojn by 

U2 

Cd2 
U; r\2 = and s 0 = wo ~~ **%(! + s). At resonance, (VI.5) reduces to m2W2 

Y _ ^ 0 [ ^ + ( l - ^ ) 2 ] 1 / 2
L J 2 

*i — 1 T=—i w o> 
ki \ns0\ 

(VI.6) 



Fig. VI-3 One-degree-of-freedom system characteristics at resonance showing: 
(a) | M a / M , | ; (b) i , P | , ; (c) Er>l 

to o o 
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as A = 0 and w = Un. With the parameters of (VI.3), Y\ is found to be a function 
of 57 2 5 w o a n d s, for a model with given m i , k\, and exciting force Fo. Thus the 
damper design can be optimized. 

Note: For the experiment, 

m i = l.GQQKg. 

m 2 = Md + m P ^ ' 

where: 
Md = damper mass; 

m p , lp = damper plate mass and length, respectively; 
L = distance from damper center of gravity to 

system center of rotation. 

According to the inertia forces in the vertical direction (Fig. VI-6), 

F = m 2 y 2 = MdLO + m p ^ 0 . (VI. 7) 

F m p lp0/2 

Fig. VI-5 Force diagram for the damping device 
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APPENDIX VII: WIND-INDUCED OSCILLATION 

A M P L I T U D E C A L C U L A T I O N 

1. Galloping Theory with Equivalent Damping 
According to Parkinson's theory111, the amplitude Y is given by 

where: 

^ = n ^ 1 ( 1 _ £ ) y 2 + |y< + ... + ^ , ( , m ) 

N = 1,3,5,..; n = ^ ^ - ; U0 ^ 
2M ' nAi 

A i = 1st coefficient of the polynomial fit for Cfy; 
I?3, . . . , B N = integration constants times higher coefficients of C / y . 

A limit cycle is reached for 

dY2
 t l e d[dY2ldT) 

—r- = 0, stable for 1 '—s- < 0, i.e., 
dr dY* 

(1 - |-) + 2BZ(^)2 + ... + ^ f ^ ) " " 1 < 0. (F//.2) 

Based on the dissipated energy per cycle, the equivalent damping ratio is a function 
of Y (average amplitude for the cycle). A polynomial fit to follow its variation is 
used , 

rj = D0 + DXY + D2Y2 + ... + DMYM. {VII.Z) 

Relation (VII.l) is still valid as it also represents an average quantity for the cycle. 
UQ is however no longer independent of Y and the stability equation becomes, 

[Left hand side of (VII.2)] 

- —^[DiY1 + 2D2Y2 + ... + MDMYM\ < 0. (VIIA) 

2. Vortex Resonance of a Full Scale Chimney Fitted with Nutation Dampers 
Recently, mathematical models for circular cross-section structures have been 

developed to predict full- scale response 1 1 2 - 1 1 3 . The case of a uniform 5m diameter 
steel chimney with a height of 80 m, mass density of 1500 Kg/m, and structural 
damping of 0.3%, was considered by Vickery et a l . 1 1 4 They determined that a damp­
ing ratio n8 = 2.2% is required to keep Y < 0.1, with the response approximately 
proportional to nj1/2 in the range of interest here. With a natural frequency of 0.3 
Hz, such structure can be fitted with a nutation damper at the tip so that, 

Mi 
^lWe = 

where the modal mass 

M e = i m ^ ^ r - ^ d z (F/J-6) 

(VI1.5) 
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is found to be 30 000 Kg. Here: 

m(z) = chimney mass per unit length; 
z = vertical axis with origin at the ground level; 

H = height of the chimney; 
Yp(z) = horizontal deflection at height z; 

Y = tip deflection. 

Considering a nutation damper similar to model#7 used in this study with h/d = 
1/2 and D/d = 4.10, the conditions of sloshing resonance requires: 

ue « w n . (VII.7) 

Now, we = [ ^ t a n h A u f t ] 1 7 2 , (V//.8) 

thus, R0= A l i y t a n h^f. (VII.9) 
(2TT/II) 2 5.1 

JRo = 0.836 m as A n = 1.255 for this damper, which yields 
d = 0.327 m with a container liquid mass mj given by, 

m / = p n r ( j ) ( ^ ) d 8 . (7/7.10) 

for oil, mi = 180.2Kg. 

From Chapter 3, rjrii > 1.0 for to/d < 1.0 and CJ « 1.0. At Y = 0.1 corresponding 
to rjg = 0.022, eo/d = 1.53 and therefore it is assumed that rjr>i < 1.0 (the variation 
with amplitude is not too pronounced here and the steady-state results should apply 
reasonably well). Taking nrti « 0.7 leads to 

Mi = 943 Kg, 

thus requiring the use of 5 to 6 damper units (Fig. VII-1). If a lower response is 
needed, e.g. peak Y = 0.06, a damping of na = 0.04 is expected (from Y propor­
tional to relationship), eo/d is then 0.92 and nrti is of order 1, which yields 
Mi = 1200 Kg, or about 7 units. This compares advantageously with the 1500 Kg 
pendulum tuned mass damper proposed in reference 114. 

For higher frequencies such as /=0.8 Hz considered in the same article, more 
damper units are needed as a lower D/d ratio is required to meet the condition 
CJ = 1.0. This further reduces efficiency and it is found that for D/d = 1.89 and 
h/d = 0.5, 

R0 = 0.302 m, d = 0.209 m, 
mi = 21.7 Kg (oil), and Mi = 2200 Kg. 

Thus installation of 102 damper units is required. A ring could easily be designed 
to fit all the containers, as illustrated in Fig. VII-2. 



damper arrangement 

Fig. VII-1 Steel chimney with 6 nutation dampers 

damper ring 

•frnrrtT 

Fig. VII-2 Steel chimney with nutation damper ring 
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