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. Abstract

Thié thesis describeé a novel appfoach'to adaptive control systems design using or-
~ thonormal series representation. The class of adaptive aigorithms considered is'that
commonly referred to as self-tuning controllers developed for discrete-time systems. A
common charactenstlc of the self-tuning schemes so far studled for industrial appli- -
cations is that they are usually based on ARMAX models. These emstlngvadaptlve
control algorithms have been shown to be globally asymptotically stable urider certain
theoretical a.ssumptlons and they have performed well in various applications. These
theoretlcal ‘assumptions are somehow too restrictive from an engineering and practlcal
point of view. Real industrial plants always contain considerable time delays, have
unmodeled dynamics, exhibit time varying dynamics and are subject to various distur-
bances. |

The purpose of this thesis ié to explore a new way of representing and controlling
dynamic systems in an effort to find another way, probably better and more robust, to
:ha;ndle a certain class of industrial applications. The behaviour of adaptive controllers
in the presence of unmodelled dynamics and in the presence of time-varying plant de-
lays along with the need for reduced a-priori information as dictated by the conditions
encountered usually.in pré.ctice have led us to abandon the usual ARMA transfer func-
tion representation for a new representation by orthonormal series. Our new approach
is advantageous because it eliminates the need for assumptions about the plant order
and the time-delay, i.e. accurate assumptions about their true values are not necessary.
A physical dynamical plant, including its time delay, is modelled by an orthonormal set

of functions. The sets considered here are mainly the Laguerre set, a modified version
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of it, and a set based oﬁ complex. poles. Other orthonormal functions may also be |
used. A simple predictfve control law is propdsed frér‘xllwh;ich an adaptive-controllerv
is then designed.  The schemés'deveioped are explicit and implicit, deterministic and
. stochastic.. Some multivariable schemes é,re also presented. Sir‘nlt‘llations,of these .new
cont.r'ollersv show they are eésy to uée, ablé to handle non—minimumphasé vpla,nts, and
more robust than the conventional model-based approaches. Results from industrial

~ trials confirm the applicability of these new schemes.
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. Chapter 1

" Introduction

1.1 General Intrbduction

~ Over the last two decades, there has been an extensive interest >in feedback coﬁtrol
systems which automatically adjust their éont?ol_ler settings to cofnpensa.te_for cha;ngés
- in the process or the environment. Numerous adaptive control schemes have been dei
veloped and tested with various-degree.s of success. The number of applicationé,'thoﬁgh
small in relation to the 'activity in the field, is now sufﬁcient to give credibility to adap-
tive control te’chniqﬁes. Adaptive contrbllers have become popular despite the facig of
“their non-linear structure because of their inherent practical desigh phﬂosophy th_at
-renders them as a solution to the proble‘rn' of tuning"inddstr.ia.l controllers. They have
considerable pbtential for proéess control probléms since they provide a éystematic, ‘
flexible a.ppr'oa.ch for controlling proces{ses Wiﬁch aife not well understood or which have -
significant non-linearities or time-varying pa.ra,meters.. .A' class of these adaptive control
systems,,ini_:roduced as an approximation of the general non-linear stochastic problem,
has the capability to provide good controi. They are generally known as self-tuning reg-
ulators (Kalman, 1958 ; Astrdm and Wittenmark, 1973; Clarke and Gawthrop, 1975).
Research on adaptive control has emphasized two general aéproaches: Self-Tuning con-
trollers , and Model Reference adaptive controllers (MRAC), (Landau,1974). Despite
their apparently different formulation, objectives, and origins, the t';vo approaches are

closely related (Egardt, 1980 ; Landau, 1978).
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-I'n the :‘MRAC appro.aéh,- the desién addresses the-p'roblem.ofi self-adjusting - the -
' paramcters of a controller in order to stabilize the dyhaﬁﬁc characteristics of a negative .
* feedback control system Whﬂe the closed-loop system follows a pre-determined reference |
~ model. | MRAC can be traced back té the well-known “MIT rule” (Whitakér et al, 1958).
Parks iﬁ 1966 introduced the sta;bility‘ theory concepts into the design procedures. The
multivariable case was thén treated by Landéu in 1973. Other model reference adé.p_tifre
algorithms were proposed for non-minimum phase systems by Ionescu and Monopoli -
(1977) and Narendra et al (1980) with some results 'on convergence and stability analysis
-un(v:ler stringent conditions. - -
The self-tuning control approach has bge'n proposed inainl'y as a meaxis for tuning
‘ digité.l controllers for industrial processes.' In this case an adaptive algorithm can first
be used for tuning the controller parameters, and then be removed after the param-
eters have converged to proper values. The method of designing these regulators is
. generally by first performing an idéntiﬁcation experiment to get a model of the process
and its disturbances and then determining an optimal controller to satisfy a certain
performance criterion. At each sampling iﬁétant, a dynamic model of the process is
updated by estimating the model parameters from input-output data and then the A
controller parameters are updated based on the newly-obtained model pa,rameteré and
on a predefined optimization objective. The scheme is either called Indirect if the iden-
tification gives a model of the process itself or, Direct if the controller’s parameters a.rev
directly identified. Two basic assumptions are usually made to simplify the regulator
design : (a) the Certainty Equivalence principle where the unknown true parameter
values are replaced by the estimated ones and (b) the Separation principle i.e. the sep-
aration of the estimation of the process parameters and the computation of the control
signal (Wittenmark, 1975). A common characteristic for the schemes so far is that

they are model-based. In particular, for the input-output case, the discrete polynomial
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ARMAX (Autoregressive-Moving Average-Exogenousv) model representation for the dy-

narmics plns noise transfer functions has been widely used as the main mathematical

tool in designing, studying, and analysing these regulators (Ast,ro_m, 1983).

. Various identification methods (e.g. Least Squares, Maximum Likelihood,; Instru-

~mental Variables, Stochastic approximation, etc.) have been developed for'building»

'ma.therna.tlcal models of dynarmc systems based on observed data (Astrom and Eykhoff

- 1971) A vast vanety of control laws (e g M1n1mum Variance, Pole/ Zero Placement o

» Lmear Quadratic Gaussmn, Model Reference, Predictive Control, etc. ) has been pro-

~ posed for 1mp_lementmg the necessary feedback to control succesfully a dynamic system

and realize a self-tuning scheme. A thorough review of various self-tuning schemes is

given by Goodwin and Sin (1984). A common thread to this work is the use of transfer

function models. If the actual plant can be described by the structure of the moclel,
' these schemes_behave well. Howelrer, wllen this'_is‘not the case, pefformance' degra-
dation with potential destabilization occurs (Rohrs et al., 1985). Current adaptive
control schemes deal well with structured uncertainty, but cannot adequately handle
nnstructured uncertainty. This explains why the bellaviour of adaptive controllers in
the presence: of unmodelled dynamics has been a top1c of concern in the a.daptlve con-
trol commumty in recent years. In summary, typical problems arising in the des1gn
of a self-tuning scheme are: (a) the robust behaviour of the algorithm in presence of
unmodelled dynamics, (b) the rate of convergence, (c) the stability of the closed- loop
system,“ (d) the i'eduetion of the need for exact a-priori information about the plant
e.g. the order, the time delay, the phase characteristics, the number of poles and ze-
roes, and (e) the numerical properties of the algorithm as they appear in the actual
lmplementation and its capability to deal with a variety of linear or non-linear plants.

The problem of controlling an unknown, non-linear, slowly-time-varying process

subject to stochastic disturbances is a common situation in the process industry. The
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11rmtat1ons often 1mposed by the Iack of knowledge about the plant and its stochastlc
.environment present another major difficulty in the problern formulation. . A robust
ad_aptlve control scheme requiring minimal a-priori information and capable of produc-
; ‘i'ng é;atisfactolfy_ confr_ol is a very deSiraBle and attractive solution to the problen'x.' Since
the self-.t.uning control idea is based on a proéedure for on-line estimation of a model for
.the plant dynanﬁcs before any control is ‘applie.d it is imperative that this identification
prolcedure is really robust. |

Our search for a robusf adaptive control requiring minimal a priori information has
led us to the development of unstructured adaptive control. We abandoned the usual
ARMAX model for an orthonormal series representation of the plant dynanncs ‘The
- major advantage of this approach is that any stable plant canvbevmodelled without
structural knowledge, i.e.- without assumption aboﬁt. the true plant order and time
delay. The approa.ch;o‘f using orthonormal functions to build models vfo_f systems ana .
plants is not new. However, the approach of using these functions to simultaneoﬁsly,
‘modél_ and control plants in a self-tuning scheme is completely new and has never been

reported elsewhere.

-~ 1.2 Brief summary of previous work

Adaptive control has been a great challenge to control engineers for a long time and
it has raised an abundant interest in the recent years equally among mathematicians
-~ and engineers. Many schemes have been proposed, some of which have found their way
succesfully into industrial practice (Astrém, 1980b, 1983 ; Goodwin and Sin, 1984).
There are also products on the market such as Electromax V from Leeds and Northrup
(Hoopes et al, 1983), the Novatune from ASEA (Bengtsson and Egardt, 1984), the

Autotuner from NAF Controls, the Exact from Foxboro, and few others.
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- Adaptive control has certain'advantages (Goodwin and Sin b,‘1984) when compared

‘with other classical control techniques and methods:

Adaptive control diminishes system sensitivity.
f . 4 v

Systems with unknoWn parameters can be controlled.

“The effects of_chdnges in the dynamiés can be‘correc_ted in real time.

Simplicity in structure and design.

Numerical requirements are not that demanding.

Attractive solution for automatic tuning of process control loops.

" The present interest in self-tuning controllers was initiated by the work of Astrom,
‘and Wittenmark, (197.3), who applied recursive least squares and a rninir_nuin variance
strategy to obtain a self-tuning minimum variance regulator. Similar approaches had

~ previously been proposed by Kalman (1958) and Peterka (1970). A more general ap-
proach was presented by Clarke and Gawthrop (1975) to include control of stable non-
- minimum phase systelﬁs by using a generalized output function and employing a cost
function which included a penalty on the control input. Similar self-tuning algorithms
were developed for p'c.>le-zéro placement control schemes (Wellstead, Edmunds, Prager,
Zanker, 1979 ; Astrém and Wittenmark, 1980; Astrém, 1980a; Elliot, 1982). The use
of a long i'a.nge preaictor in adaptive control was first considered by Ydstie (1982) for
SISO systems know'n as Extended Horizon Predictive Control, (Ydstie 1984). A sim-
ilar predictive adaptive control scheme known as APCS (Adaptive Predictive Control
System) had also been studied by Martin-Sanchez (1976). The Generalized Predictive
Control (GPC) strategy introduced by Clarke, Mohtadi and Tuffs (1987) is based on
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the nﬁni.miza,tion'lof a ﬁnite-f‘ime ‘horiz\onv quadratic éost functiqn of the_fﬁtﬁre efrors
: ahd control increments. . | | |

To overcome the problem that a precisé knowledge of the rnodel structure ;was re-
‘quired a-prioﬁ in the implemeh‘fv;avtiohv'of‘fhe’cc.)ntrol systemv many authors (Akaike, -
1974; Rissa.ner.l, 1:979_) derived criteria which take model complexity into accoﬁxit_in
order to obtain a parsix.nonious-‘ﬁ'lodel‘. ‘The Mo&el. Predictive ’Heuris‘tiéContArol ad;a.p-
tive strategy propo#ed.by Richaleé, Rault, Testud, and .Pépon_ (1978) relied on the -
impulse response rep‘resentation' of the process, which constituted the internal model.
A predictive control scheme was used for control. Because of the noh-étructural, model
approach of that scheme it gained considerable success in many industrial applications.
Although the scheme was ihitié,lly non-adaptive the concepts afe_ easily carried over
to the self-tuning approach.. An innovative approach of a self-tuﬁing 'controllef_ut.iliz-
ing unity feedback and an interna,l model of the ekogenous signals ensuriné stability,
'a.syrnptotic traéking and regulation in the presence of finite parameter perturba.tions,
has been repdrted by Song, Shah'and Fisher (1986); The controller has an e¥r0r4drivén |
robust ‘st‘ructure (Francis and Woﬁham‘,"1975;l Davison,1976). Recently," sélf—tuning '
controllers based on a gene;ra.lizedv H, ‘control.v law to guarantee asymptotic stability

for stable, unstable, minimum and non-minimum-phase plants have been reported by

Grimble (1987).

As the theory underlying the single-input, single-output (SISO) self-tuning control
has been_wgll studied during the last decade, attention has vtumed‘ toward extension
of these ideas to more complex situations where effects of disturbances, nonlinearities
and unmodeled dynamics are considered. The a;lready.published literature on the
implicit and explicit algorithms of stochastic adaptive control is vast. Many algorithms
have been described in the literature (Astrém, 1981) for the adaptive control of linear

systems (for a survey see, Seborg et al, 1986). Algorithms that combine various on-line
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videntiﬁcati‘on Vtechniques and different controller deeign schemes. Of these algorithms,
-those'ba_,sedv on minimum variance control have receive_d particular attention. This
has probably 'been a result of two main factors : the relative ease of implementing
these algorithms and the availability of substantial s_upporting theory. MRAC and self
:vtuning s'chemes have been found te work well When‘ parameters of the medel structureb
-.are known but fail to glve stable control performance when high frequency modelhng a
© errors or perturbatlons are present (Rohrs, 1982 ; Rohrs et al, 1982).

Most adaptive controllers are based on a separation between the estinlatidn of 'the.
'nnknown'para_meters and state variables, and the determination of the co‘ntrbr signal;
- This rneans that the control laws have not Been designe'd te fa’cilita_te the identification.
'As a solution to this problem dual adaptive controﬂers emerged,- In a dual controller
there is an interaction between identification and control in the sense that the eontroiier_ '
must compremjse between a control action and a probing action (Feldbaum 1960,1961).
Altheugh this approach is rery attractive and necessary to assure that the controller
will not give “turn off” of the control signal, the solution leads to a functional equation
Whjeh in most cases is difficult to selve. |

As a continuation of tne SISO stochastic adapfive control s'yétem design, significant
progress has been made to extend the SISO design to the multi-input, muiti-output
(MIMO) case. The extension of the algorithms to the MIMO case rests upon the
: determination of an appropriate generalisation of the notion of the delay and the non-
* commutativity of the various polynomial matrices involved (Goodwin and Sin, 1984).
Along these lines a number of different schemes have been developed. MIMO control
schemes have been investigated for a long time. The first ones were based on frequency
response analysis and classical control theory. Early workers on the field were more
 interested of achieving decoupling among the inputs and the outputs of the system

by applying decoupling pre- and.post- compensators, and then having to deal only
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With':separa.te SISO contr.ol loops (Dahlin et al, 1968 ; Owens, 1978 ; R.osehbrock,_1979;
g _V MacFarlane 1979). -The development of self-tuning controlle_r.s’ based on state-space the-
ery included SISO and MIMO systems under one generai main fra_mewo;k. Adaptive.
schemes based on LQG control ha.ve'been reported in the literature as schemes combin—

~..ing extended Kalman ﬁltenng (J azw1nsk1 1970) and LQG (hnear—quadratlc gaussian)

. control theory (Atha.ns, 1971). Peterka a.nd Astrom (1973) proposed a- multlvanable’ .

self-tumng regulator ba.sed on hnear quadratlc optlma.l control of processes with un-
certain parameters, LJung (1977) has developed a general procedure for analyzmg
Tecursive stqehastic algorithms, which is useful in the study of the a.daptive_ controllers. .
Borisoh-(1979) extended the basic minimum variance self-tuning controller to the mul-
tivariable case. Koivo (1980) and Keviczky and Kumar (1981) extended Clarke and
Gawthrop’s: method to a MIMO self—tuﬁing controller. These first ,algorit‘hﬁls.vdealt
only with square systems only Where the number of inputs is the same as the num-
ber of outputs. Prage_f and Wellstead (1980) used a pole placement design procedure.
- Goodwin, Ramadge and Caines (1981) applied martingale theory to study a.d algorithm

'bas.ed on a modified stochastic approximation identification procedure and a minimum
- variance design. It was shown that, subject to a positive realness condition, the inputs
- and outputs are mean Sqﬁe.fe bounded, and that the algorithm gives convergence to
the optimal minimum variance controller. Some implicit and explicit LQG self-tuning
schemes were studied by Astrom (1980), and Grimble (1984). Some of them depend
upon the solution of either a steady state Riccati equation or involved a minimum
variance control law and a spectral factorization stage. .Lam (1980) developed a state-
space based self-tuner in which the numerical problems involved in iterating the Riccati
equation were avoided. Problems arise when the number of inputs is not the same as
the ndmber of outputs and if different time delays exist between each input and output.

Lam’s results drew some attention in the recent research work on the adaptive control
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of MIMO adaptive stochastic'systt‘ems, and algorithrhs of non-square systems have been
-derived (Goodwin et al, 1982.‘; Grimble and Moir,. 1983). Elliot and Wolovich (1982)
put the above work into a more general framework by showing. that the notion of the
delay in thé_ MIMO case was intimatély related to the inféractof matrix as introduced
'v bjWojlovich and Falb (1976). Goodwin and.Dugard (1983) finally treatea a simple -
derivation of the rmmmum vaﬁante é.ontroller in tile’ case of a genera_l interac’for rha-
trix an_d'»a, globally convergent algorithm was developed. | Thé SISO extended-horizon
| predictive control Scheme introduced by Ydstie (1982) was e‘xtgnded‘ to MIMO systems
by Dugéfd,_Goodwin and Xianya (1984). Makila (1984) suggested aﬁ explicit adaptive
e ﬁlethod:-of solving an LQG control problem of stochastic éyste‘ms with ﬁxéd stfuctu;e
_ :egulafors. -The optimization of fhe regulator’s parameters was achieved from the so-.
lution of a chattiv-type equation (Anderson and‘Moore,' 1971). D.espite the number of |
proposed MIMO adaptivé control schemes very few pilot-plant applications have been
reported however (Toivonen, 1984; Martin-Sanchez and Shah, 1984). |
"In the past years, parameter identiﬁcation of linear systems via orthogona.i functions
~ - and polynomials has received some attention. Generally speaking, a'.ny. signal can be
cons‘idere_d as a signal Qector in ‘an inﬁnite-dimenéiona.l signal space. The projection
of the signal vector in a certain ﬁnite-dimensional subspace is then the least-square .
approximation of the signal by the basis functions sp'annjvng this subspace. And the
' error of this approximation is orthogonal to the subspace. One of the basic problems
in signal representation is then to find a minimum-dimensional subspace in such a way
that the information-bearing attributes of a specific class of signals are retained.
Histqrically, the use of orthogonal functions for obtaining approximations is well
established. The approximating properties of Fourier series, the sine and cosine terms
“of which satisfy the orthonormality condition, are well known. The first application of

other orthogonal sets to the transient problem was provided in 1932 by Y.W. Lee. For
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a causal system, such as the process loops under ‘study, the irnpﬁlse response may exiét '
" over the whole positive'_time axis. On this interval an appr'opriate,v simple, convenient
aﬁd:. well known orthogonal basis set ié the Laguerre set (Lee, 1960). The Laguerre
functions, a complete orthonormal set in L,[0, o0), have been used often both for their
‘ convenient‘netWork realiz;ition-a.nd_ .for their similarity to transient signals ,(:.Yovungz and
' Huggins, 1961; King and sziraskevopoulos,v1977;vNur'ges and Jaaksoo, .198.1\; Durﬁont,
. Zefvos and Bélanger, 1985). Wiener (1956) also proposed Laguerre functions for pre-
diction and for non-linear systems. Other polynomial approximations of time functions
“have been used by many researchers to solve either éontiﬁous or discrete,_contro‘l prob-
] vlems in reqént yéars. In_pé,rticular, the a.pplica.tion of conﬁnubus Walsh polynomials .
to system identification was_intro’dﬁced by Corrington (1973) by constructin‘gAWalsh
~ tables a.n‘d.. by,. Chcn'and'j Hsiao (1'975) who developéd the Walsh integration‘ opera- -
tional matrix. Thé computational algorithm to calculate the expansion coeflicients was
simplified by using the derived integration operational matrix. '

The Walsh operatioﬁa.l method was applied td various prbbiems such as the analy-
sis, synthesis and optimization of time-invariant and time-varying systems,-to bilinear
systems, -delay ss:stems,_ distributed systems, multi- input-multi-output systems and
also integral equations (for details see Horng aﬁd Ho, 1986). A parameter identiﬁca.-
tioﬁ met.hod of continuoﬁs-time systéms, developed by expressing integral functions in
terms of periodic input-output data guita.ble for implementation on a microprocessor
by use of Walshv functions has been proposed by Bohn (1982). In order to facilitate
digital image processing, the discrete Walsh series were developed by Kak (1974) to
manipulate the integral transform characterization of patterns of a finite binary se-
quence. Other typical series applied to signal estimation, model-reduction problems,

linear control problems and functional ordinary differential equations, are the Legendre

(Chang and Wang, 1985), the Chebychev polynomials (Liu and Shih, 1984) and Jacobi
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polynonﬁols (Lee, Tsay and Horng; 1986). Although oﬁ'ective recursive formulae were
: proposed, the 'computation was still tedious. The inversion of a high-dimensional ma- _‘
trix is often encountered in solving these problems. Kirrg and Paraskevopoulos (1979)
a.pplied the discrete Laguerre polynomja,ls'to solve the parametric ’iderltiﬁca’t;ion prob-
lem Hwang and Shlh (1983) used the discrete Laguerre orthogonal polynormals and
the dlscrete Chebyshev orthogonal polynomials, to solve the model reduction problem
Simila,rly,, Horng and Ho (1985) applied the discrete Laguerre orthogonal polynomi- |
als and the discrete Chebyshev orthogonal polynomials to solve the discrete optimal
control problem. » '

- Most of the proposed”methot‘is in estimation arld control that used orthogorlal poly- -
nomials wore essentially data.compreSSion works. The time domain ddta sequences -
. (input ana/or output) were transformed irlto discrete ‘orthogonal polynomié.l spectra'
- which are much shorter than the data sequences. ‘Handling these shorter spectra, mem-

. ory savmg and computational advantage are obvious.

1.3 Contribution of this thesis

In this thesis the behaviour of _sererél discrete self-tuning schemes based on the series
represexrtation of some orthonormal sets of functions is analyzed and implemented. The
analysis, and the results obtained employing this new transfer function representation,
are particularly favourable and they are considered to be well-suited to the adaptive
control problems. It is our belief __th@t this topic will inspire conﬁdér_lce in the adaptive
control cornrnunjty in the potential use of orthonormal functions as a tool in estimatio‘n
and control, and will also spur more research activity in the subject. Although the use
of orthonormal functions is a very popular topic in estimation theory and signal pro-

cessing, especially for the description of electrical signals, their use in adaptive control
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has rio't ,‘been much investigated. In this thesis .wé actually propose a method to develbp ‘
a_,'self-funing adaptive control scheme based on orthonormal series representation. The
~use of ‘three sets is invesfigated':» (a) the set of Laguerre functions, (b) a modified set .
i)a;sed on the Lagueneé and (c) a s.et'.-vlvi_th complex p-oles. ‘The results are encdu;agihg. :
a.nd estéblish ‘the succesful applicability of this new method. The reasons for using :
Léguerre fun‘ction-s‘are described later.

" The contributions of this work to the theory of adaptive ,céntrol'are as fdllows;

e To introduce the orthonormal functions as a valuable tool in modelling planf
dynamics and in the developmenf of adaptive control algorithrns. In particulai‘
the major features of the Laguerre set and two more others are investigatet‘i and

“their applicability is analysed.

‘o The demonstration of an analysis methad for iinplementing adaptive control al-
gorithms based on orthonormal sets of. functions. The major advantages of the
self-tuning schemes studied being: (a) the need of less a.-priori,knowlebdge about
the order, the delay, the number of poles and zeroes and the phé,se'chara,cteristics
of the piant, (b) the Finiteness property of the orthonormal sets as an advanta-
geous way to increase on-line the number of filters for proper identiﬁcation, (c)
superior handling of time delays and non-minimum phase characteristics and (d)
the flexibility and simple structure of the proposed algorithms that make them

very attractive for industrial applications.

e The robustness properties of the new algorithms and their potential use in control-
ling plant dynamics efficiently are verified first by various computer simulations

and second by an industrial application.

e To demonstrate the efficiency and applicability of the proposed schémes, the
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first industrial application of an -adaptive self-tuning scher;ie using orthonormal

functions is presented in detail.

Although‘Laguerre functions were chosen initially, be{:ause“‘of theif simplicity and -
fhéir similarity to traqsient_signals, other orthonormal fuhctiOns such as Legendre func-
tions may be 'use_d._ The Laguerre functions exhibit vstrong-.a.dv’ant'ag'es in idéntifyi.ng

time—deléys (a situation common in process control) becaﬁse of their:si'milarity to Padé
- approximants. As the model is expressed in a staté-space form, state-space control
design techniques may be used. A predictive éontr_ol law is pbreferred because of its
-simpli:city and ease of use. The common thread and novel aspect'- for all those schemes

is the use of unstructured models based on orthonormal functions.

1.4 - Qutline of the Thesis

: The idea of modelling and idenfifying linear systems using orthonormal functions, and
especially using the Laguerre set is introduced in Chapter 2. Two deterministic self-
tuning control schemes, one explicit and one implicit, based on th.is”a.pproach and
} éccompanied by some theoretical fesults, robustness issues, simulations results and
a discussion on the practical aspécts of .the ?.lgorithm, are presented in Chapter 3.
The stochastic self-tuning control approach including some closed-loop stability and
simulation results are considered in Chapter 4. A multivariable control scheme is
developed in Chapterb5 and two simulation exa.mf;les* are given,‘including a paper-
machine headbox example. An industrial application baséd on the_lLaguerre-series
self-tuning approach and performed on a pH-control loop in a bleach plant at a pulp
mill site is documented in Chapter 6. Chapter 7 deals with self-tuning control based .
on a modified Laguerre set of fﬁnctions and also on a set of functions having complex

exponential poles.



Chapter 2

Laguerre Functions in Modeling and Identiﬁcat‘ion.

2.1 Signal Description by Orthondr_mal Functions

. In'the past vyears many dlﬂ'erent identification a.nd parameter estlmatlon methods for =
. lmea,r dynarmc systems ha.ve been described in the literature (LJung, 1987). In an effort '
to improve the operation and control of existing industrial processes and the design of
new efficient control algorithms, an increasing interest was shown in the measurement
of systern dynarmcs Any method which can give good measurement of the dynamics in
the presence of plant disturbances w1thm a rea.sonably short time with a small amount of
data , and without significantly aﬁ'e_ctxng the normal operation of the process, would be
more attractive. The basis of estimation and identification consists of the mathematical
description of the relation between the iﬁput and the output functions of the process.
‘under study. These functions are generally contaminated by noise, and the process

| dynamics may be subject to change from 1nterna.l or external dlsturbances

In dealing with the problem of identifying an unknown process in discrete time, two
‘major decisions have to be taken ‘in advance: (a) what mathematical model is to be
used for the plaﬁt representation and (b) what estimation method is to be applied in or-
der to find the unknown parameters. A common answer to (a.) above is the well-known
ARMAX mathematical model. Any of the proposed identification techniques in the
litérature deal with this mathematical model, and many of the self-tuning schemes are

based on ARMAX series representation (Seborg et al, 1986). Other ways which have

14
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~ been proposed for mddelling system dynamics include t_hevimpulse respbnée desc.ription
and the Qrthonormal‘funct»ions‘ repfesentation. For the impulsé response description: a
number bf confrol schemes have been developed and some practical épplications have
, been.‘rgported (Riéhalét et al, 1975 ; Rouhani and Mehra, 1982). 'Their philosophy
~ can easily be exfended to adaptive self-turﬁng schemes. As for the choice of estimation
rﬁe.thoas be ,app.liéd there is a variety éf choices. Corfelatior_x techniques; Least sqﬁareé,
- Instrumental Variables, Maximum Likelihobd, Stochéstic_ *Ap.plfoxiination, Gradient es-’
' ti’ma’tic)nv 'techniques, Extended Least Squares, Weighted Least Sqﬁares, are“some'of )
the choices (Ljung , 1987) Each one has specific advantages, the sxmplest and most
.frequently used being the Least Squares scheme. |
" Considered in this study are the use of _orthoﬁormal fuﬁctions' to represent sys-

- - tem dynamics and thé estimation method of Least Squares (Extended Least .Squarés)
for pararnéter identification in the deterministic (stochastic) césé. Thivs combina:tion |
' provides s.trorig féatures and, as it will be shown later, it resembles the Instrumental
- Variable identification method, well known for its robust properties (Trulsson, 1983).

This combination has also been used before with success in an off-line method for
the thimal tuning of industrial PID controllers in process control, (Zervos, Bélanger
and Dumont, 1985). Extended results from industrial trials have been reported in
Dumont, Zervos and Bélanger (1984). The optimal PID tuning scheme aiso performed
relatively well when if was compared to an adaptive predictive control scheme on the
same pH-loop of a bleach plant in a pulp and paper mill, (Dumont, Martin-Sanchez
and Zervos, 1988). |

If the approximation of the plant’s impulse response g(t) is carried out by developing

the given function into an infinite expansion, (Kautz, 1954),

= i‘r’,’f,’(t) (21)
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 in terms of certain functions, f,-(t),'then'by selecting as the approximation the first N
terms of this expansion, ‘ | | |

N - :

i. Z’I‘if,' t o ‘ (22)

-The consta.nts r; are the coefficients of the expanswn The functions fi (which can be

- sums of damped exponentlals and [or. exponentla.lly damped 51nu501ds or polynorma,ls,

‘must be chosen so tha.t,

° Convergence is rapid and uniform, thereby producmg an accurate approxnna.tlon

for any ﬁxed number of terms.
-0 The coeflicients r; do not depend upon the number N.
e The calculation of the N coefficients, r;, is simple.

¢ The mean-squared error between g(t)k and §(t) is minimum for a given value of

N.

Most of these properties are achieved by selecting the functions fi(t) to form an or-
thonormal set. |

Some of the advantages of signal representation by orthonormal functions are,

@ The coefficients of expansion can be determined by invoking orthonormality. A
set of orthonormal functions can be generated from a set of linearly independent
functlons by using the Schmitt orthogona.hza.tlon procedure (Stewart, 1973) and

the normallty condltlon

e Good sensitivity behaviour in terms of changes of the function being approxi- |

mated.

e Minimization of the mean squared error for a function to be approximated by a

truncated linear combination of functions.



Chapter 2. Laguerre Functions in Mode]ing and Identification ' 17

o Wide application area in predicting or extrapolating signals.

A set of real and continuous functions { fi(t), f2(¢),... } is said to be orthonormal
in the range [a,b] if, | o
o '/b fi(t) f;(t)dt = 0.z R o (23)
v _ 1 ife=j I
Cwhere, i,j = 1,2,3,.... .
: Complétene‘ss -is another des-ira.ble fact ‘apart_ frpm linear ’indepéndence of the or-

thogonal functions. The orthonormal set { fi(t)} with,
b
/ﬁ@ﬁ<m,i=L%m'

is called complete or closed in Lj[a,b] if for any continuous and real _funcfion g(t) in

L.[a,b] and for any given real number € > 0, there'existsian integer N such that, -

E = [ lg(t) — S(¢)°dt <e o (2.4)
where, : - , :
S5(t) = ;T'ifi(t) =cff o (25)

Where, ¢ = [ TPy ... TN ], and _ET ={f f ... fv |- The constants ;s
are called the spectrum ga’.iris and for deterministic signals can be computed from (Lee,
1960): ' .
ri= [ o)At (2.6)
-For ergodic stochastic signals the integral in equation (2.6) is replaced by the expec-
tation operator giving the cross-correlation at zero lag between the two signals, i.e.
r=Elg®)fi(t). |

An orthonormal set is said to be finite if when increasing the number of orthonormal

filters in the signal representation of a specific. square-integrable function from a low
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‘Qrdef to-a high order,‘. the loW-ordef spectrum gains remain unéhanged; The high-
ordef approxirﬁation thus adds more terms for achieving a better approximation of the
function‘ and minimizing the errfor in the equation (2.4). | o

: ‘The appro'ximaiibn of a signal by a sum of a finite number Qf orthogonal functions in
the éjnjmum-integral—squaregi:errof sense 1edds to the same coefficients as given ébove
_by equation (2.6), (E_ykhoff, 1964). For an uﬁknown funct‘ibn to be approximat'ed, con-'
sider the Figure 2.1. The output y(t) of a process is coil_lpared with a linear combination
of {l,(t)}, the 6ﬁtputs of the filters F1(s), Fy(s),..., Fn(s). w(t) represents any .intérnal_ '
or external noise disturbances. If the input, u(t), is a white sto'cha.stic svta;tib'r:la,-i'y éignal |
then the ga.ixis of the filters are givén by ‘the equation,

. Ry,li(o) |

=i (2.7)

where the symbol .in,yi(O) stands for the cox;relation function between the twoisignals
" z4(t) and w(t) at-zero time-lag. The nﬁmerator is the cfoés-cbrrelation,a.t_ zero lag
between thi_e output y(t) and each filter’s output and the'denom.ir_xé.‘tor is the auto-
corfelation of the input (Zervos, Bélanger and Dumont, 1988). The ofthogonality
condition and the equation (2.7) are fullfilled only if the transfer functions of the filters

are ’ortho‘gonal to each other.

2.2 The Laguerrevfunctions

2.2.1 Introducing the Laguerre orthonormal set

The Laguerre functions, a complete orthonormal set in L;[0, 00), have been used often
because of their convenient network realization (Lee, 1960) and their similarity to
transient signals. Their similarity to Padé approximants for time delay representations

makes them particularly attractive for our purpose. All these remarkable features make
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Figure 2.1: Approximation of a transfer function by a linear combination of orthonormal
filters. ‘ ' ' '
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-~ the La‘gixerre functions a candidateef choice for use in identifying piant ~dynamics.
' Because of»"_their good properties we plan also to incorporate them in the structure of
an edaﬁtive self-tuning control scheme. |

In particular,theif advaﬁtages as a.complete orthonormal set are surhm’arized in .

short .in.‘the fonoyving :
. Advantageoue and simple representaf.iOn and flexible strecture.
e Easy to model and construct.'
. Simil'arity to transient signa.l.s”that are common in process conteol.

e Similarity to Padé approximants providing superior representatioh and handling :
of time delays to the extent that it is possible to recover an estimate of the time

~ delay during identification.

'} They have been used before with success for transnent signal representa.tlon (e-g-
Lee, Young and Huggins, King and Paraskevopoulos, Nurges and Ja.ksoo, Du-

mont, Zervos and Bélanger).

e They have also been used for ﬁon-liﬁear systeins by Wiener who also recomended

them for signal extrapolation and prediction.
. In continuous time the Laguerre functions are described by (Lee,1960):
[oexp(pt) &7 )
(t) = — |1 —2pt
f() = Vo et exe(~2p)
= V/2p(=1)"" exp(~pt)Li-1(2pt)

where i is the order of the function (i = 1,..N), p > 0 is the time-scale, and L;(z) are

the Laguerre polynomials, well-known in mathematical literature. These functions form
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Figure 2.2: Laguerre Ladder Network.

an orthonormal set in the time-domain [0, oo] and the correspondi’ngv 'Laplace.transform
for this set ié, :
(s—p)" - |

The orthonormality property from the time domain is preserved in the s-domain.
This set is generated by the simple and convenient ladder network of Figure 2.2. The
simplicity of the phase-shift chain in the Laguerre Network is a significant advantage

for implementation.

Besides Laguerre, other useful real-pole sets may be derived from and related to
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other orthogonal polynonnals, such as those of Tchebycheff Legendre, and Ja,cobl'
However, only the Laguerre set lends. itself to a 51mp11ﬁed determmatlon of the coef-
ficients r;, (Kautz, 1954) La,pla.ce transformmg equatlon (2.1) and substltutmg the’

expression for the Laguerre functions from equatlon (2 8) we get, R
Now, letting (s — p)/(s +p) =w, or § = p(l + w)/(l — w) and rearranging the factors

somewhat, gives:

-This expression may be regarded as the first N terms of the power series expansion of
the quantity on the left. That is, the first N terms of the power series expansion,
——=2G(s) = Zr w' - (2.11)
| [ v e i o
may be computed numerically to determine the r; when the function g(t) is analytically .

known.

2.2.2 Least Squares Estimation of the Laguerre gains

For identiﬁcation purposes of a given Ly epen-loop process it was shown in Section 2..1
that the Laguerre spectrum gains may be computed using simple correlation techniques.
If the input is stationary white noise then the cross-correlations at zero lag between the
individual filter outputs are all theoretically zero because of the orthogonalitfy' property
in the orthonormal set. In that case the following proposition relates the spectrum
gains of a transfer function with the spectrum gains of its output when the input is

white noise.

Proposition 1 Consider the system in Figure2.1, where {fi(t)} is an orthonormal set

- of functions and u(t) is a stochastic input signal. Assume the process’s impulse response
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18 g(t) and its output is y(t) and let their orthonormal expansions be,

el =LA )
ri=/:y(t)f;(t)dt | ‘ . -' »(2.13) |
. aﬁd, | | 7 o N - |
y(t) = 2 ali(t) S 21y
.with% - o

i = Bly(OL(0)] @)

- If u(t) is stationary white noise with variance o2 , then ¢; = o’r;.

- Proof: Interchanging between the expectation and integral operators

we have,

@ = By =Bl f(t-m)un)dn [ gt -n)u(n)dn)
- I / TRt - m)e(t — mu(r)u(n)dndn)
= [T - et - mElu(ru(r)ldndn
= [T [7 £t = m)a(t = r)?8( = )drdry
= & [The—m) [ olt ~ 72)6(r — m)drydr
= o /0°°_ filt = m)g(t = m)dmy = o2 /O ” F(t)g(t)dt

= 0'21‘,'.

. where § stands for 'ﬁhe Kronecker delta. O

The Laguerre filter gains may be computed using simple correlation functions as

shown above but because in practice the computation of the correlation functions is
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done digitally and based on limited length of data, the use of least-squares parameter
estimation is more efficient, (Zervos, 1984). Con51der the Flgure 2.1. At every time -

instant the output of the time-invariant plant y(t) can be written as,

N . _ L
o y(t):_zf‘i/o fi_(t—r)u('r)dr + w((‘,)gv - ', (2;16) '

letting, - - : - L S
t) _/ fi(t =) u(T)dT B (2.17)
then equation (2 16) becomes for the k time-instant, |
Zc, (k) +w(k) = e+ w(k) . (2.18)
i=1 ’

where IF = [li(k) Ly(k)...In(k)] ,and T = [e; ¢;... cN] Now, collecting dataup to

~ the k sampling instant we get the vector-matrix form,

vy | [u@) 6@ - w e ] [wm
v2) || @ EE) @) e @)
v®) | {6 b®) o ow) || | | |

which can be put by inspection into the géner—a.lised linear form,
Yy=Mc +w (2.20)

For statistical and probabilistic considerations the number of observations k, needs

to be much larger than the number N of parameters to be estimated. Then the least-

: squares estimate of the vector gain ¢ is given by the Normal equation (Eykhdﬂ',1967 ;
Strejc,1980), |

€5 = (MTM)‘IMT_X (2.21)

If we form explicitly the matrix (MT M) each entry will be of the form : (MTM);; =

an:l l,-(m)lj(m),b for 2,7 = 1,...,N. This matrix is diagonally dominant for large set
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~of datarbecajuse of the orthonormality. of the Laguerre filters. As the number of data

k — oo the above matrix tends to be diagonal (a multiple of the unity matrix). If
- u(t) iswhité noise with variance o and §é;; is the Kronecker delta then we get for the_.
. elgmeﬁts.of that matrjx; ' |
: , o 1 k. C » o
BIOL(O] = o' = Jim £ S hmll(m)  (222)
In the same W‘afy if we form éxplicitly the vector (M T‘x) each entry will be of fhe form
(MTy) = Sk _, k(m)y(m), for i = 1,..., N. |
Computer simulations have indicated.thaf When using. least 5q’ﬁaf"es the géheral
fit, to the transfer function to be approximated is mu;:h better than use df the simple
- correlation approach described earlier and that fewer data points are_‘rvequired. Another
' intefesting fé,ct is the relation between the actual length of the parameter vector to be
estimated and the number of available data points. The matrix (M7 M) becomes nearly
singular to working precision as the number of Laguerfe filters increases and the number
of data points decreases. An even more.interesting fact is that the. inverse of the above
matrix can be pre-computed separately for a pre-determined input noise sequence and .
- a fixed set bf Laguerre filters, e.g. if the time-scale coefficient p has alWays a ﬁxed. v
value and a time-spaling technique is used for the sampling time of an input of PRBS,
(Zeﬁos et al, 1985).
~An obvious fact here is that by examining the matrix (M TM), the kind of least-
:squa.res identification described above resembles vefy much the Instrumental Variable

: identiﬂcation method which has proved to be quite robust (Ljung and Soderstrém,
1983). |
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2.2.3 - Statistics of the‘ estimates

Ar_xy method for fhe identification of the parameters of aﬁ unknown plant rcqﬁires
experimental data. Due to obsef&at_ion noise or distu;jbances, the data may be provided
‘_Witl;l a specified tolerance_.‘ For the simp1‘e1 Correlétion method, in the estimation of t‘he :
Légu’erre gains, a crude. check as to ‘whether certain values of ’the‘c_ross'-c’orrelati.on
- functions could be eﬁeétively zero may be made by c'o_r'nparing the correSpbndjﬁg c_fc)ss- ‘
| correla.,.tion estimates with their approximate staﬁdard €rTors obta.iried from a fofn;ula
~ (Bartlett, 1955; Bendat and Piersol, 1966; Box and Jénki_ris, 19.76).. | |

For normal zero-mea,nbsigna.ls,_ the “crude check” may bé_ obtained ‘(Zer‘v‘os, 1984)
ﬁsing,the formula, | o . “ o

k » k i : _ - .
Varlc] =1/k* ) > Ry (n - rri)Rli'y(n l—"rn) —f—»Ry'}.,v(n - m)R‘li'li(n —m)]

n=1m=1

wﬁere the correlation functions estimates can be computed digitally using the uéual
. approximative summation expression.

Since limited lengths of measurement data ﬁill be used over a ﬁnife time rather
than over an infinite time, an expression for the standard énor of the cross-correlation
-estimates would be useful in order to check how far from the true va.lué the estimate
‘may be. For normal stochastic input signals with zéro mean value and variance of o2,

the estimate of a Laguerre filter gain is given in discrete form by,

.1, 1 ¢
=G = E‘;‘;;y(")h(n) ‘ o (2.23)

where k is the number of data that was used, and + = 1,2,...,N. In matrix-vector |

form for the whole parameter vector:

~ 1 T . |
= - 2.
Er =tzM'y o (2.24)
where M was defined from équations (2.19),(2.20). Now using equation (2.24) and

the assumption that the plant noise is uncorrelated with the Laguerre filter outputs
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(Figure 2.1), the expected value of the ﬁaramé_ter vector given the input 'givés,

Bl /M] = —{B{(M"M)x] + BMw))

= B(MTM)]

# r

" This means that the simple correlation estimates of the Laguerre gdins, given‘the input_; _
are biased. Clearly for large number‘ of data (k — oo) the matrix (MTM) — .(cer),

whére I is the identity matrix. However over all possible inputé the expected vé.lue of

 the simple correlatiéﬁ estimate of a Laguerre gain is unbiased as 5hown belolw; o

E[f] = k— Z y(n)li(n)]

1

n=1
Rather than calculating the variance of every. single estimate'of the Laguerre gains,
' may as well just show what the typical standard error (e) of the gain vector looks like

for various k and possibly N. Better still,
o= Bl /M-r= MM -one @)
In general, given, |
e=Mr : (2.26)
where M ' is the matrix inside the curly brackets in equa.tibn (2.25), we have,
Amin( MTMOYIE < 5 < Mmae( MTI)EF e

~where A stands for the eigenvalue of a matrix. . If the matrix is symmetric then,

(MTM') = M"? and M\ M7 M') = A*(M'), and we finally get,

Amin M) < 5 S e (2.28)
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This resuit showe that the error in the estimates is always bounded dependihg on the
; ‘number of data (k) and the number of filters (V). Te apply this, one has to calculate -
© -the minimum-and the rnaa'drhurri eigenvalue for the matrix M’ and use equatidn (2.28).
Both should of course 8o to zero for large k. For finite k, they give a good indication -
of the error in the expected va.lue

For the Least Squa.res parameter estimation case, the estimates of the Lagherre
\ gﬁms appear a.ctually to be unbiased. Using equations (2.20) and (2.21) one can easily

- get the following result for the'expected value of the parameter vector given the input,
. Elggs/M] = E(MTM)'MT(Me + w)]

= ¢+ E[(M™M)"' M w]

= c |

o Ttis worthwhile to mention here that the above is true even if the noise w(t) corruptlng

~ the output of the plant is coloured, as long as it is uncorrelated with the filter outputs. -

Suppose that a system at the k*h sampling instant is described by,
N . :
y(k) = cili(k) + w(k) = lfe, + w(k) - (2.29)

~where I = [li(k) L(k)...ly(k)] , and cT = [c1 cz...cn]. Collectmg data up to the

k** sampling instant we get the vector-matrix equatlon (2.20), i.e.,
y=Mc, +w (2.30)
Now multiplying both sides of the above equation by (+ M T) we get,

IMTM)e, +(+

| (%MT)X=(,¢ P

MTw (2.31)
And finally for the parameter vector we get,

co = (TMTM) (ZMT)y + (MTM) (2 M) (232)
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If we define the fo'llbwing,

R(k) = 2(MTM),  h(k) = Z(MTy) (2.33)
then: eéuation‘ (2.31) can also be written as, . o
mk) =Rk +ek) . (2.34)

Now the following pfopositi'oh as in Trulsson (19.83) on the open-loop identification of

a system is presented using the least-squares technique.
- ‘Proposition 2 Suppose that z(t) is an instrumental variable vector of the forrﬁ o

@) = [L() L) ... ()] | (2.35)
and 1s such tﬁat, |

(a)

o -
€k =7C—ng)w(m)—+_Q, as k— oo wp.l! (2.36)

(b) Wzth proba.bzhty 1 the smallest singular value of R(k) does not tend to zero,
Suppose also that either of the following ezists and is known

(a) A lower boﬁnd bo of | . .
| lim sup[cmin[R(k)]] ' (2.38)-

k— o0

or

(b) A function y(k) such that

e(k)/y(k) -0 as k—oo0 wpl,and ~(k)—>0 as Kk — oco.
| (2.39)
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Then it is possible to construct a sequence {&(k)} with dim¢ = djrhgo, such that
é(k) —col =0 as. k— oo . w.p;I. o - (2.40)

Prbof: Define &(k) as, -

k)= ROCR) AGH)  (edn)

where t(k) is the largest integer ¢ < k such that,

Omin(R(t)) > 60/2  in case (2.38) | (2;42)

amin(R(t)) > 4(t) - in case (2.39) ' (2.43) v

" From equation (2.34) and equations (2.42), (2.43), we can write,

GO = (k) — ol = |B-H(t(k)e(t()]
S FmaBEO)RN
. { %|§(t(k))| _ in case (2.38)

(2.44)
(7(¢(k)) " le(é(k))| in case (2.39)

From equations (2.36), (2.37) and equation (2.44) it can be seen that equa-
tion. (2.40) is true if ¢(k) — oo as k — oco. In case of equation (2.38) this

follows from equation (2.42), and in case of equation (2.39) this follows from

equation (2.43). O

The conditions described by equations. (2.36) and (2.37) define the desired properties
of the instrument vector {z(¢)}. The instruments satisfy these properties because they
are uncorrelatéd with the noise {w(t)}, by the way they were defined in equation (2.35),
and because z(t) = [(t) , they guarantee the validity of the condition in eciuation (2.37).

The analysis so far was made under the assumption that no feedback input is used. If
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howgvér a feedback input is used then an external white noise process v(t) independent -
of w(t) must be injected also in the system as it ‘was suggeéted in Trulsson (1983). A
_'_price is paid here for the additional noise .diStufbance, input but this can be made so

_small that it has only a small influence on the closed-loop behaviour.

‘ :2.'2.4‘ Thé Di‘screte-time_ Laguerlfe set -

So far the continous-time Orthonormal Laguerre set has been discussed. The discrete
form of the orthonormal Laguerre set is particularly imppftant for use.‘vw}ith_digital '
computers when it.comes to implementation. Thi_s requi_fes: the tl;arl‘sfdrma,tidn.of thé
orthonormal functions from the contiﬁuous form into thé _samplevd—da,_ta form. One ap-
parent solution would be to apply direct Z-transform, however the IZ-transform of con-
tinuous orthonormal exponentials are not themselves o;‘thogonal in Z-domain (Young N
aﬂd'Huggins, 1962). This is due to the fundamehtal p_roﬁérty of é;mpling thai; a signal v
- with a frequency speétrum higher than the sampling frequency is not exactly ‘repro-. ‘
“ducible  from its sampled data. The Z-tfajnsforms of a signal involves the values of :
‘the signal at equ_al-spaced instants separated by the sampling interval, T = 2r/w,
~where w is the sampling. angular freqﬁency.. According to the sampling theorem bnly
a signal h‘a.-vingba frequency spectrﬁm lower than w.is exactly reproducible from the .
sé.mpled data. However the exponential functions, which vanish identically over half
of the time-axis, have a non-zero spectrum extending éver almost all frequencies. As
a résult orthogonality in the s-domain does not yield orthogonality in-the z-domain |
.repfesenta.tives of thesé funétions. Also the iteraﬁve procedure used in continﬁous time -
to define the Nt Laguerre filter is not guaranteed to hold in discrete time é,fter the
Z-transformation.
In the present study the discretization of the Laguerre Ladder Network is accom-

plished by the continuous network compensation method (Jury,1958) for each of the
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blocks in Figure 2.2. In thls way the propertles of the contmuous time orthonormal set’
are preserved while expressing them ef'ﬁmently in discrete time. The simple, ﬂemble
and convenient forms the functions have in continuous time while working in discrete
_time are also kept. This method involves the use of linear networks in either the ‘for-
‘ward or the. feedback path of a sampled—data system Cons1der for example Flgure 2 3.
- The input to the block Gh( ) consists of a set of impulse samples of u(t) and its out-
put is continuous and fed continuously to the plant G(s). The network c.or'npensator
" can be determined from the 'desired time-res‘ponse qualities,‘forinstance to de'scrlbe. '
a contmuous output. whose sampled values coincide with the sampled response o{ the -
'sampled-da.ta control system (Nease, 1957). The ﬁctltlous 1nterpol_a.tor Gh( ) in this
. case is employed to produce a piece-wise straight-line a,p.prox_lmation'of the contlnuous :
signal between successive samplmg instants. This method is based on the fact that G(s)
has an impulse response which is well represented by stra.lght lmes between samplmg
instants, a fact Wthh is usually true for most of the process control loops encountered
’ in"industry.A Thus the tra.nsformed sampled-data control system‘ output .c'oincides with
the sampled values of the continuous system output at the sampling instants. Another
p_ossibility for improving the approximation is to use second or h.igher-degree intrerpo-
lators which give better smoothing properties. The goal is to obtain s, highly accurnte |
representation without increasing mathematical complexity. By using the above pro-
posed discretization method the signal representations are kept accurate while naving
simple.mathematica.l expressions. ) |

" The function of the fictitious hold Ghr(s) is to reconstruct as much as possible the
continuous function being sampled. If G,(s) is chosen so that its output is a straight-

line approximation between successive sampling points then the transfer function of
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N Figure 2.3: The Continuous Network Compensation of G*(s) -

such a hold is, -
’ eTJ _ 2 + e—Tl
Ts?

Gh(s) = (2.45)

The impulse response of such a filter which has a triangular shva.p‘ev is .shoWn in Figure 2.4.

By inspection, this kind of linea.rA triangle-hold interpola.tor provides é polygonal
a.pprox.lmatlon of the output function.. The function in equation (2. 45) is not physxca.lly
: rea.hzable since the shape of its impulse response from Flgure 2 4 reveals a non-causal
function. However, when it is cascaded with a continuous-time plant G(s) then it is
possible to evaluate the Z-transform of the ovcrall system, which is physicaﬂy realizable.
- Looking at the Laguerre ladder network in Figure 2.2 for process signal synthesis the
discretization is done in the following.way. If T is the sampling period then the first

input box,

oy V2P
Fl(s)—(3+p)

is preceded by a zero-order hold and then it is Z-transformed to give the discrete-time

(2.46)
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b

9}1(15)

0 Time T

- Figure 2.4: Impulse response of a triangle-hold G (s)

. transfer function,

Fll(z)-__ p (2—e?T)

yo¥ZpO-e) (2.47)

Each of the remaining similar section boxes in Figure 2.2 is a phase-shjft all-pass 1°%-
order filter which is discretized with the use of the triangle-hold linear interpolator
filter given by equation (2.45), giving the discrete-time transfer function,

AT +2(e —1)/p) ~ Te ™ — 2" —1)/p
T(z - e~*T)

Fl(z) = for i > 1 (2.48)

If we define,



. C’hépter 2. . Laguerre Functions in Modeling and Identification . L 35

nzﬁ‘pM

then the difference. mput output equa.tlon for each of the outputs li(t) of the Laguerre

ladder network i is glven by,

W) = (- 1)=-1 “2riry 4 1) /T L(E—1)
(=172 (mams + 1) [T Lt —1)

+
4ot (SD)(mm )T la(t—1)
%~ﬁAU—1)'

N

(1T /T w(t-1) L (249)
2.3 Modelli'ng of dyhamic sys’temé ‘

Descnbed so far has been the Laguerre orthonormal set of functlons and thelr nnpor-
tant role in systems 1dent1ﬁca.t10n has been stated. The convement representation of
t_h_e ALaguerre» ladder network as shown in Figure 2.2 can be expressed in several math-
ematical ways. For our purpose it is convenient to represent it in a state-space form.
This will enable us to derive predictive expressions of plant outputs in a straightforward -
manner. The outputs l;(t),. (i=1,---,N) from each block' in Figure 2.2 are taken to

be the states of the Laguerre ladder network. Defining the state vector as

lT

FOR [zl(t) bt) . )] O (250)

then by discretizing each block as it was described by equatlons (2 47),(2.48) and using
equation ((2.49) a discrete-time state space representation of the Laguerre network can

be readily available in the form,

[t +1) = Al(t) + bu(t) B (2.51)
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where [(t) is the deimensional'state vector, and u(t) is the system input. A4 is a lower
triangular. N x N matrix where the same elements are found respectively across the
diagonal or every subdiagonal. If T is the sampling period then,

- ) o A

o0 0
| znmem o el 0 L
a=|  TTO T 0 ey
_ N_1TN—2 § . —r —r T,
i (=1 ;ﬁ_l(ﬂnwa) nmen g |
aﬂd. | v
B =[r (=m/T)7s -+ (=ma/T)¥1my ). . (253)

The above state-space system is stable (p > 0), observable, and controllable. The
»»uouvtput of the process to be modelled is then approximated by the weighted sum of the -
_outputs of the Lag‘uerre.ﬁ_lters having the form, ‘ ' '

=S sy

- The above weighted suﬁl in equation (2.54) can be taken as the projéttion bf the plant
Qﬁtp’ut- onto-the linea.r space whose basis is the orthonormal set of Laguerre functions.

The standard calculation of the Laguerre spec;trum gains empléys eqﬁation (2.6)
using well-known correlation techniques. A more efficient way is to use the least-sqﬁares
parémeter estimation method described in Section 2.2.2. In the open-loop case, the
identification can be performed by exciting the system with a white noise sequence,
i.e. both the system shown in Figure 2.2 and the system whose impulse response is
g(t) are excited by a white noise sequence (or PRBS), and & outpuﬁ sample-points are
colle’cfed. Then in the least-squares sense the normal equations can be used in vector-
matrix form as given by equation (2.21).. The parameters obtained in that way were.

proved in Section 2.2.3 to be unbiased even if the output of the plant was corrupted
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by coloured noise. If the identiﬁcation is perforrned under'closed-loop, operation, as it
is the cuse vtfhen a self-tuning scheme is employed, then the output of the controller is
not a white. noise sequence. . However ’input output data can still be colleoted'for on-
~line plant 1dent1ﬁcatlon Simulations. have shown that thls least- -squares 1dent1ﬁca.t10n.
_ technique produces very good results.

An advantage using an orthonormal series representatlon to 1dent1fy a plant is that.
when the identification order is 1ncreased then the low-order coeflicients stay pra.ctlcally
constant Thus, the model order can be changed on-line with minimal transient. On
the other hand, for an ARMAX model, increasing the model order means change in all
paro.meters and thus the identification ,procedu're goes through a significant transrent h
period. Another advantage is that time-delays can be easily modeled since thisapproach
does' not require distinction from the.actual plant dy_namicé. As a eonsequenee an
estimate of the delay can also be derived. L_aguerre functions show very strong features
in this situation because of their similarity to Padé approximants. Results from the
‘. following simulation example outline both the above advantages. - _

Example 2.1 : Consider the following underdamped ({ = 0.45) second-order :
continuous-time plant that contains also a significant time-delay (kq = 10) within its
dynamics, |

Y (s) 0.25¢~10

C) = F(5) =~ 7 + 0455 £ 0.25) | (2.55)

~ Assume that all time units are in seconds. The natural angular frequency of the second-

order plant is wy = 0.5rad/s and its settling time is ~ 25 secs.

The above plant, including its long time-delay, was simulated in_continuous time,
using ACS‘L., and its input was excited with 5 identical periods of DIBN (Discrete
Interval Binary Noise; Chow and Davies, 1964) sequences, each one of 64 samples

periods , for a total of 320 points. The sampling time of the DIBN sequence was
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2 séc, its absolute a.mplitﬁde was 1 (l.e. of standard error ¢ = 1.0) and the data
points from theb plant’s' output were ‘colle;‘cted évery 2 sec, for a total of 320 points. No
n6i5¢ divstur’bance was added to £he oufput of-the plant. Upon colléction_of the data:
‘an videntiﬁciati.ioh expériment w‘as berformea using'the already described Lea.s_t-sqﬁafes
Laguerre functions me_thod.I The >number' of Laguerre functions used was. N =12and -~
their time-scale was p = 0.5. The 12 ideﬂtiﬁed Laguerre spééffum gains é.fe given in
the first colun.m,of Table 2.1. The step responses of the true i)lant'and the identiﬁed
oné are given in Fi_gure 2.5. The two responses are almost identical. The't.i.me'dbela'y of .
L Ed = 10 a.'ndtljive underdamping se.cond?.érdef dynamics have been ver'y‘ ‘Well_.repr‘esented' -
with the_ﬁse of ‘justvthe 12 Weighl;e'd Lagﬁerrge functions. Ifoxie'use_d the_ correlation
method to find the Laguérre gains (which neve:theless would give biased-estimafes)v
then 3000' points would not ﬁave been enough even to get a p;dper idenfiﬁ_cation (seé :
Zervos; 1984, ‘Experimént 1). » |

© Asa _s’ecoﬁd experimenf the output of lt_he-'plant was corrup_ted_ with ‘correla;tved noise
before performing the identification. White noise was passed thr‘ough a first-order
, linear transfer function of the form Gn(s) = (0.2s 4 1)/(3 + 1), and then was added
to the plant’s output. Everything else remained the same as in the first experiment
above. Two identification experiments were performed: (a) One with Standard Er_rér :
of 0.5, and (b) one with Standard Error of 0.8. The 12 identified _Lag_uerre-spectrum
gains for éa.ch_ca.se are given respectively in Table 2.1. The second and third columns
conta.in‘thAe gains for the case with outpﬁt noise, ¢ = 0.5 and ¢ = 0.8, respectively.
The step responses of the'trﬁe plant and the identified ones are shown in Figure 2.6.
Thc responses of the identified plants match the response of the true plant very well

despite the corruption of the plant’s output by correlated noise.
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oy ~ Identified Laguerre Gains = |

No output |- Noise Noise . -
 noise c=05 | =038

¢; || 0.000795 | 0.003251 | 0.004725
¢y || -0.014922 | -0.015017 | -0.015074
c3 || 0.101046 | 0.088314 | 0.080674
cq || -0.317984 | -0.323456 | -0.326739
cs || 0.362282 | 0.376566 | 0.385135-
cs || 0.197190 | 0.202946 | 0.206398
cr || -0.388695 | -0.386242 | -0.384770
| cs || -0.381893 | -0.385412 | -0.387523
{ e || -0.011724 | -0.018451 | -0.0224867
o || - 0.156156 | 0.151452 | 0.148630
cip || 0.093519 | 0.088498 | 0.085485 -
c;2 || 0.019635 | 0.019029 | 0.018666

Table 2.1: The values of the 12 identified Laguerre gains for each case. .-

1.4 ] { { I {

Output omplitude in units
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i . - 1
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Time (2 sec/sampling—point)

(®)

Figure 2.5: Example 2.1 : Unit step responses of the true plant and the identified one
for the case without output noise (The 2 curves are identical).
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© O 4 4 -
O 0 O N
1 1 | 1

Ou{put amplitude in units
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0 S 10 .15 20 25 30
Time (2 sec/sampling—point) .

Figure 2.6: Example 2.1 : Unit step' responses of the true plant (3), the identified one
~when ¢ = 0.5 (2), and when ¢ = 0.8 (1). , '



- Chapter 3

:Determinis,t'ic Adaptive Control

3.1 The Predictive Control Law

As wé.s‘ﬁrst suggestéd by Dumont and Zervos (1986) the derived state-space represen-
‘tation of the orthonormal set of Laguerre functions presented in Section 2.3 can be
used as the basis to formulate a predictive expressior_l'.for _'th’e plant, output. Simple
. Predictive Control concépts-can then be employed to construct an ‘adaptive. seif-tuning :
control scheme. Recalling from beforé, the state-spé,ce representation of the Laguerre

Ladder Network is of the form,

(t+1)= Allt) +bu(t) -~ (3.56)

y(t) = c"l(t) o -~ (3.57)

The cohveniericé of the above étate-space representation is that any standard state-
space design techniques can be used for state-feedback control. However, simplicity
and implementation considerations suggests the development of a predictive control
law. In the past decade, several predictive control laws have been proposed, e.g.” by
Martin;Sanchez (1976), Richalet et al. (1978), Ydstie (1984), Clarke et al. (1987).
Their major advantages are, simplicity of use, intliiti\;e appeal, and easy haﬁdling of

varying time-delay and non-minimum phase behaviour. From equation (2.54) we can

write for the d-steps ahead output,

y(t + d) = y(t) + Ut +d) — 1(1) (3.58)

41
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The recursive use of equation (2.51.‘) gives for d future sample pdints:

(t+1) = Al(t) + bu(t)

(t+2) = Al(t+1)+bu(t+1)

: l(t}d) =" Al(i»+d—x1)+bu(t+d) . - '(3.59)]

Using the equations (3.59) in a continuing recursive subs_tituti'on. and assuming,

--u(t):u(t:+1)$....;u(t+d¥1) E .'_(3.60j

we get the d-steps a.head- predictive 'éxpression:
It +d) = A%(t) + (A% + - + Dbu(t) ~(3.61)

Substituting equation (3.61) in équation (3.58) we finally get,

y(t+d) = y(t) + ETL(t) + Bu(t) | B - (3.62)
w’her‘e, » '
E=Fud-1 . (3.63)
B =cT(4% 4+ It | (3.64) .

If d > k4, where ky is the plant time-delay, the right-hand side of the above equation can
be eqﬁa.ted to the desired reference trajectory for the plant output. As in Richalet et
al. .(1978) we define a first order set-point reference trajectory based on the equations:

Yt +1) = ay(t) + (1 - a)y,, (3.65)

v(t+i)=ay(t+1—-1)+ (1 — a)y, i=2,...,d (3.66)
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. ‘where 0<a<l and y,p is the desired setpomt By recursive substitution y,.(¢ + d)
can be wrltten as: . v
yr(t + d) = ady(t) +(1 — o)y - (3.67)

Settmg y(t + d) = y,.(t + d) and equating the nght hand parts of the equatlons (3.62) .

and (3.67) we can solve for the required control 1nput u(t) to get,
u(t) = (3 — y(t) — K*U(t))/8 o (3.68)

Remark 1: Let ky be the plant time-delay. . For a minimum-phase plant with .
deléy kq, it is ‘.e.asy to show that d > k; and G # 0 are equivalent. However, fo‘r' non-
minimum phase systems, if one does not look sufﬁciently beyond the non-minimum
- phase behavmur, it 'is possible that @ = 0.- In practice, one has to choose d such that -
_ ﬂ is of the same sign as the process static gain, and of sufficiently large amphtude By

deﬁmtxon, _
B=cl(A* "+ + D
This shows that  is the sum of the first d sampling points of the impulse respdnse of
the plant..
Remark 2: The control law (3.68) can be expressed in velocity form. Equation

(3.68) can be written as
u(t) = (v — y(t))/8 - <" S(AUE) = Al(t = 1) = bu(t = 1)/8 - (3.69)
Using the definition of § and rearranging, one gets
Au(t) = (g, — y(tj ¥¢'TAL(t))ﬁ-l . (3.70)

where § = (4%~ +- - +1),d7 = TSA, Au(t) = u(t)—u(t-1), and Al(t) = l(t) i(t-1).
Remark 3: An alternate, receding control law as in Ydstie (1984) can also be

derived. "Then, at each step a control sequence u(t),...,u(t + d — 1) that satisfies
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‘y(t + d) = y,(t + d) ‘and that minimizes
Ja= Y u’(t—1) , (3.1
' 1=0
is deterin.ined, but only u(?) is iniplemented. Such a control sequence is ’_g‘iven by,
_ %l (t+ d) —y(t) — ETI(H)]
1+ + v

u(t+4) (3.72)
where, 7; = T 49173, for i = 0,...,d —1.
- The following proposition shows clearly the value of the derived predictive control

law given by equation (3.68) with respect to cost indexing the control input.

Pfoposition 3 Let the system be described by (2.51) and (2.54). AThe-n the control

' law, under the assumption (9.60), that adtiaﬁéa y(t+d) =y.(t +d) iav.tht;.savme-one d_s
the control law that both satisfies y(t + d) = y,(t + d) and-at each atgp. minimizes the

| cost index: B : ,

| Jo = u(t)? ' 33y
* Proof : Consider (y(t + d) — y.(t + d) = 0) as the constraint equation

for thé nﬁninﬁzatibn of the cost function (3.73) then, the gradient of the

- Lagrangian function with respect to the input u(t) is given by,
2u(t) ~ p(yo + -+ +74-1) = 0 (3.74)
where u is the La;gra.i'lgia.n multiplier and the assumption (3.60) Wa,s used.

Solving the above equafion for u(t) and substituting in (3.62) we get,

_ 2g(t+d) - y(t) - K°U(E))
(Yo + "+ 7d-1)?

Now substituting (3.75) in (3.74) we derive for the control law u(¢) the same

(3.75)

equation as (3.68). This is the reason why the equations (3.68) and (3.72)

give similar simulation results.O
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‘The following Theorem proves, for the case of known fi;cedv plant parameters, the

convergence of the derived predictive control law.

- Theorem 1 Let the sy.stemv described by (2.51} and (2.54) be controlled by (368} where

B is nonzero, and assume y,, constant. Then tﬁere is some finite predi‘ctién horizon
d > kg, such .~th¢‘1,.t, | ‘ |
' o lim y(t) = ypp -

lim u(t) =u

t— oo

where u is a constant.Od

- Proof: The first part of the proof consists in proving the stability of the
- clbééd-_lodp system. For that the closéd-loop system equatiqns are derived
~ and examined for the conditions of stability. The closed-loop system can

be expressed by,
L(t+1) = (4 - b(1 . a?)f™! - MTﬁ."l)l(t)f b1 - a¥)"'y,, (3.76)
Using equation (3.63), one can write

BT =AY - T1) (3.77)

Substituting above in equation (3.76) and after some simple manipula-

tions one obtains: 7

Wt+1)=(A+bTa®B™ —bTA™ A%) U(t) + b(1 — @)1y,  (3.78)
For stability we examine the matrix,

(4+bTatf™ — hTG" A%) - (3.79)
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As lp'ng as the eigenvalues of the above matrix, for some value' of d, are

inside the unit disk in the z-plane then the closed-loop system is stable. A

_ is a stable matrix and its e'ivgen.va.luels are always inside the stable region and
not p'eﬁeés.arily on the boﬁndary zone. Therefore a proper choice of d can
bé found that will relocate the eigenvalues of the ex'pl_'éssio.ﬁ (3.79) inside
K t.he stable region. Tiie choice of d has to be suchés to keep the eigenvalues

" of the above matrix expression inside the unit disk. This conditio'n:must be

met for stability. .

 However, for sufficiently large d, and while 3 # 0 the second term in

‘expression (3.79) approaches zero because by deﬁnition 0 < @ < bl. ‘The -

third term in expression (3.79) also approaches zero, for sufﬁci.e.ntly large

d, because the square matri_x‘ A is a lower triangular and the eigenvalues of

A appear along its main diagonal. It is straightforward then to show thaf :

the powers A? approach zero (Strang, 1976) because all the eigenvalues of
A are less than one in modulus (J\;(4)| < 1). Finally, the first term in the
expression (3.79) is always, by construction, a stable matrix and thus the

closed-loop system is stable.

Determining the steady-state of the system is then trivial. From equa-

tion (3.77) and using (A9 + ...+ I)(I — A) = (I — A%), one can write,

kT = cTS(A-1)

Premultiplying (3.76) by ¢S and using the above expression for k7, after

some manipulations one obtains,
JISt+1) =TS - -a)Dt) + (1 - aYy,, - (3.80)

From the above equdtion it is obvious that the steady-state is such that

Y = Yup, (because limy o [t + 1) = [(t)]] = 0). O

46
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: Rerﬁark_ 4: It is ;WOrthwhile to mention here that iq practice, dufing the éimula-
tions,:to increase d to ve;yvlarge va,lu_es.was hardly ever neéded for stability, because
as long as d > kg then the number N of the Laguerre filters can be alWays accordiﬁgly
adjusted for a proper identiﬁca.tion - And this is true for most of the process coﬁtrol .
' ‘loops encountered in practice. Of course if everythmg else faxls then in the above case,

by increasing d to some large value, stablhty can always be. a.ch_leved

. Remark 5: Using (A% +---+ I)(I -4A) = (I — A%), one can write," -
| B=c(I-A)I-A)"b
When d is Suff.icienﬂy' large then, in tvh_e limit, _wé get,
e=au — A
which is the static gain of t;hg transfer function G(z) of the state-space system (4, 5, <),
G(z) =cF(2f - A)7 b
lm (=) = (1~ )%

" In practice the static gain'.of the transfer function G(s) can be computed roughly

from,

lim,_oG(s) -lzm,_,o \/—X;c‘ —P) \/_z )yl g,

where ¢; ’s are the identified Laguerre gains.
Remark 6: It is easy- to show that the closed-loop characteristic equation is
- d oo
ST AT 4 (T4 — ofT) S A1 = 0 (3.81)
i=1 i=1
When (d = ky and @ = 0, the L.h.s. of the above equation is the impulse response of
the plant. If it happens to be non-minimum phase, then the regulator is unstable. The‘

best way to shift the regulator poles back inside the unit circle is to increase d.
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3.2 The Self-tuning Controller
3.2.1 A Determiniétic~- Explicit Self-Tuner

= As was sugg’esfed in Zervos and Dumont (1988a), it is straightforward to design an ex-
_ pHcit deterministic adaptive control scheme baééd on the fofmulafion desqribed above.
In éﬁhcipie-, other orthonormal functions could be used, alfhough Laguerré'fuﬁ.cthhs'
pfdve,to be a godd choice. The problem of identifying on-line the Laguerre spectrum
gains. (i.e. - the parameter véctor ¢) is addressed by using the recursivg least-s,qua;es
(RLS) Identification method. Given {P(0) > &I >0, §(0), 1(0), A(0)} then starting
-f»rom t = l_w.)vev compute the para.metér vector at any given s#mpling inst'a.nt'byb ﬁsing "
the followiﬁg eqﬁations: |

P(t - )I(t)
N + F@P(E — DID)

y(t) - &t - DiU)]  (3.82)

) =at-1)+

P(t — DT ()Pt — 1)
, () + IF()P(t = 1)i(t) |
where A(?) is the forgetting factor (0‘< A(t) < 1) and is used to discount away .past data

P(t) = P(t-1) - S (3.83) -

using exponentially decaying weights when tracking slowly time-varying parameters. It
is also important in the computations above for the covariance matrix to factor P(t)
énd update either the \/-P(_t) or the UD factors separately (Bierman, 1977; Ljung and
- Soderstrom, 1983). To include immﬁnity against bias in the parameter identiﬁéation
3 such as those induced by offsets, the least-squares identification scheme uses increments
of [(t), u(t) and y(t) instead of full values. The control law (3.68) is then computed at
every’sa,rnpling instant. |
Remark 1: Suppose,

NS LA
tl_l»rg inf n Y UG () > el (3.84)

i=1
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“and A(t) = 1, then,

limsup [|&(t)]| < K ' 0 (3.85)

t— o0

" for some small € > 0 and some finite positive constant K.
Proof: ASsuming that.iu(t) is a uniformly bounded sequence then by sbﬁié_ algebraic’

A .mani‘pul‘ations (Ydstie, Kemna, Liu,_ 1987) we have,

N R O o
YOV e -y T G

where e(t) is the prcdiction'errof defined by,

)=y -F@ae -1 ()

and V(t) is a scalar Lyapunov function given by,

V(0 = (e - €0)7 P (0)(e — 1) (s
By sumnﬁng up we get, t : _ . o .
| %V(t) < %sz(i) +0(1/1) - (3.89)

where the second term in the r.h.s. is due to the effect of non-zero initial conditions

and decays as 1/¢. Now using the matrix inversion lemma we can write,

P7U(t) = PMt-1)+LI(t)

t ,
= Y UHOITE) + P7H0) (3.90)
i=1 : . ‘ -
and from equations (3.90), (3.89) and from the assumptibn (3.84) we can get,

, 1< :
limsup ||c — &(¢)]? Slimsup?sz(i)/e ‘ (3.91)
t—o0 t—o0 i=1

and the result of equation (3.85) follows since w(i) was assumed to be a uniformly

bounded sequence. The condition on the vector [ is referred to as the persistency
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- excitation condition. Tlufs_ is rarely satisfied in practice so in order to avoid parameter
_ drift problem that may occur When‘n‘bt enough information is fed to the éstimato_r'one
can turn off the estimation whén there is not enough process excitation. This can be

achieved by using a dead zone A with the property,

t)=¢é(t-1 | o o
) ( ) i le(t)] <4, A>0 0 (3.92)
- P(t)=P(t 1) s :
In that case the estimation algorithm'ié turned off when the prediction error is small.
The propex_' size for A is defgrrt_ﬁned by the measurement noise in the system. The

estimation should also be turned off if either the input or output .signals hit constraints.

- Remark 2: Assume A(t) =1 and define,

2(t) = 1 +LT(tjP('t_—_ iy o O (3.93)
If ¢ satisfies, | “ o
¢ = min g 36) - L) B
Then, | |
| H?lilp%;i((;) <gq -_ | o (3.99)

Remark 3: If the forgetting factor is less than unity then a similar result as above

holds. Suppose 0 < A(t) < A < 1, then if

, |
ST UOF(E)>el >0 , forall t>m (3.96)

i=t—m

where m is a finite positive intéger, then,

limsup [§(t)| < K < o0 (3.97)
t— o0 .
and,
1 & e(e)
i = < 9
BRI e < e
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The Re_marké 2,3, show the boundness of the normalized parafneter estimation error

~for 0 < A < 1 and their proof techniques follow along the same lines as those presented
in Ydstie, et al. (1987).

The adaptivé control scheme as describéd so far is globally convergent, as‘s.how'n by
~ the following theorem. -
Theorem 2 Assume that the vpla.nt is described by y(t) = cXl(t), then provided that the
projéétion or Iea.st-squa‘re.; algorithm (3.82), (3.83) is used to find &(t), that dim¢ =
dimg,, and that § # O,' then the indirect adaptive control scheme described above 1s -
g‘lovba_lly convergent in the sense that

i) ‘{u(t)}, {y(t)} are bounded for all time t.

1) lime.oo[y(t) — yap(t)] = 0 O

Proof: Using standard arguments (Samson and Fuchs, 1981; Goodwin
and Sin, 1984), the parameter é‘daptatioh scheme can be shown to be such -

that:
1. {&(%)} is bounded,
2. lime_o [|E() — &t — 1)]| =0,

3. There exist non-negative sequences {£(t)}, {¥(t)} that converge to

zero and such that: |
90 - 9(0)] < €0) WO +9(0) (3.99)

Assuming, for simplicity purposes that the parameter « in equation (3.67)

is zero, one can write the closed-loop system as:

[(t+1) = (A~ bTAF () + b (g +3(8) —9(8)  (3.100)
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or

I(t+1) ='F(t)1(t)+y(t')v o (3.101)

From Theorem 1, it is easy to show there for a proper choice of d the free
system

It +1) = F(t)i(t)

s exponentially sta’ble; With
() < 18l 1817 (vl + 5(2) = y(2)])

if for simplicity y,, = ‘O, then using the properti.es of the adaptation scheme

- (equation (3.99)), we can write

(Il < ¥(2) IO + 8(2)
with
(¢) = llBJl £(¢) 18]
5() = llll %(¢) 1817
Because both {y(¢)} and {6(t)} converge to zero, then from Theorem 2.1 in
Payne (1987), {{(t)} and {u(t)} are bounded and converge to zero. When

Yop 7 0, {{(t)} and {u(t)} are bounded and it is trivial to show that they

converge such that:

lim v(t) = b,é—l Ysp

tli!g QT(t)l(t) = Yap
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1 3.2.2 . A Det_erministic Implicit Self-tuner

A deterministic implicit self-tuner can also be derived using the Laguerre orthonormal
“set. - The controller. parameters are then estimated instead of the model ones. The
identification would involve the model,

y(8) ~y(t — d) = K'l(t — d) + Bt = d) + ..+ Bru(t ~ 1) @102)

where the vector parameter gain k and the input coeffients §;’s are identified on line.

The control law then is,

0 =S (3.103)

) = - v(t) -k
. where ,[;t‘,? = -+ ot B4 An example follows showing the applicability of the derived

implicit scheme.

3.3 Simulation results

The described adaptive self-tuning schemes based on the Laguerre series representation
have béen tested extensively in simulations. Some examples showing their potential ap-‘
plicability and illustrating their practicality follow. The simulations were perfoﬁned on
a MicroVAX-II/ VMS supermicro computer using Fortran-77 and/or ACSL (Advanced
Continuous Simulation Language).

Example 3.1: Consider the closed-loop system H(g~!) of Figure 3.7
_ Gc -1 G -1
H(gt) = Sl ) Gl

= 3.104
T G G(e ) (3.104)
with,
: _ 14+ 0.6048q_1

1y _ — = U. .

Ga™) = Ky gy where K.= 03307 (3.105)
.01 1 ; 2g~!

Gty — QOB 006720, (3.106)

= 1+1.0048¢-! — 0.90484-2"7
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R Laguerre STR [+----------------- 4

Figure 3.7: System to be controlled in Example 3.1.
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Figure 3.8 shows the step resbpnses of H(q'_l) (i.e from u,td y) with ky = 41',
'with_ and without inois'e. Note the .oscillétbry nature of thé response as well as the
load disturbance of ‘amplitude 0.2 f1;0m time t=240. For the noisy responsé, an FIR
* noise ﬁl'_ter with uni_ty. C polynomial h:a§ béen added to corrupt the plant output. The -
Lagﬁerfe adaptive; "con£roﬂér is used to ‘control the systerﬁ H (q;l) as iﬁ ‘Fi;gurgﬁ,‘?,
Wi_fh N = 10 Laguerre filters and p = 0.1. initial parameter estimates are zerb. _Thé;
initial covariance h:mﬁrix is 100 x I, and the forgetting fa,ctor‘ is 1. Figure 3.9 »sh’ows
the behaviour of the adaptive controller with a prediction horizon d = 2 and the drivér
bioék Aﬁlter time constant a = 0.5, both with and without noise. The start-up t.rax_.lsije‘nt
has a verly. small amplitude. Both,the:respénse to the setpoint change and the  lbad :
disturbance rejection are excellent. As expected from Theorem 1 there is no st_ea,dy-
state offset. Figure 3.10 shows runs when the dead time kq in G(g™!) is increased from
1 to 3 sampling intervals, both with and without noise. The scheme is exactly the
same as 1n Figure 3.9 except for d = 4 and @ = 0.7. Again, a load disturbance of
amplitude 0.2 was applied from time t=240. Further simulations have shown the good

performance of that scheme for the regulator problem as well.

Example 3.2: This time, we consider the non-minimum phase plant described by
y(t) = 0.7y(t — 1) = u(t — 1) + 2.u(t — 2) (3.107)

This plant was used by Clarke (1984) to demonstrate a pole placement self-tuning
controller. Here, we shall use the same sequence of setpoint changes and the same
»comrhissioning ﬁeriod as in Clarke »(1984). Figure 3.11 shows the outpﬁt of the above
plant tracking a square-wave setpoint when it is under Laguerre self-tuning control,
started with zero initial parameter.estima.tes, and set with d = 2 and a = 0.7, i.e. the
same conditions as in Figure 3.9. The performance is very good, and corhpa.res well

with that obtained by Clarke with a pole-placement self-tuner based on a model of
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Figure 3.9: Example 3.1: Output responses, (a) with and (b) without noise, when

H(q"

'} is under Laguerre self-tuning control, kg = 1, d = 2.
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Figure 3.8: E‘cample 3.1: Output responses of H(g™'), (a) with and (b) without noise,
kg =1.. '
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Output Y
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. Figure 3.10: Example 3.1: Output respoﬁses, (a) with and (b) without noise, when
H(g™') is under Laguerre self-tuning control, kg = 3, d = 4. '

exéctly the same structure as the plant. Howevevr, as noted by Clarke, his scheme does
not behave well in the presence of unmodelled dyna.nﬁcs. Indeed when applied to the
plant,

y(t) — 17y(t — 1) + 0.72y(¢ — 2) = 0.1u(t — 1) + 0.2u(t — 2) (3.108)

the Clarke pole-placement self-tuner based on a first-order model eventually destabilizes
the plant. The Laguerre self-tuner was used on this 2nd-order plant with exactly the
same design parameters as with the ist-order plant. Results presented on Figure 3.12
show the excellent behaviour of this scheme. Note that Figures 3.9, 3.11 and 3.12
have all been obtained with the same Laguerre self-tuning.scheme and the same initial
set-up parameters, although the three plants are all different. This is an indication of

the robustness of the Laguerre self-tuner.

Example 3.3: The present method is limited to stable plants. It is thus interesting

to see what happens when applied to a plant containing an integrator,. a common
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Figure 3.11: Example 3.2: ‘Systém response under Laguerre self-tuning' control, 10t

order plant.
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Figure 3.12: Example 3.2: System response under Laguerre self-tuning control, 2nd

order plant.
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occurrence in process control. A logical way to represent a plant with integrator is,

1t +1) = Al(t) + bu(?) | | (3.109)

Av(t) = 100 o)

We now assume, o S
- u(t);é(),. u(t+1)=v.--=u(t+d—1')'='o. |

The d—step ahead predictor is then,
y(t+d) =y(t) + Ay(t + 1) + - + Ay(t + d) S (311

y(tb+ d)f: y(t) +Ai'TL(_t)+,3u(t) - , (3.112)

The control law is then (see equation 3.70 for definition of &' ), |
CAu(t) = (gt + d) —y(t) - dTU)BTT - (3.113)

Compare with (3.68) and (3.70). Now, consider the plant described by,

y(k) = —1.9048y(k — 1) + 0.9048y(k — 2) +0.5(u(k — 1) + 0.0672u(k — 2)) (3.1’14)
This plant contains an integrator. Figure 3.13 shows a simulation run when the plant
is under Laguerre self-tuning control and the output is tracking a square-wave setpoint.
The Laguerre parameters used were, N = 8, p = 0.25 and d = 3. Good simulation
results were also obtained in the range 0.05 < p < 0.5. Note that a load disturbance
was introduced from ¢ = 240 to ¢ = 260.

Example 3.4: The dynamics of an existing two-link manipulator were simulated
using Paul’s equations (Paul, 1981) and ACSL (Advanced Continuous Simulation Lan-

guage) on a DEC VAX-11/750 computer. The manipulator has two degrees of freedom
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Figure 3.13: Example 3.3: Laguerre self-tuning Control of a sysfeml with integrator.

on the horizontal plane. Each link has a mass of 1Kg and length' of 0.5m. _All.for‘cés
- dueto g.ravvity, coupling inertia, ce_ntripetal.' acceleration and Coriblis acceler;tion were
included in the dynamics of the arm. Two single-input/output Laguer.re self-tuning
controllers were implemented, one for each link. Each self-tuner controls the joint
angle by the manipulation of the motor armature drive voltage. Several reference tra- -
jectories were implemented to test the reliabl_ity of the proposed self-tuning algorithm.
including desired angles of 90° and 270°, and circular and linear trajectories. Othex_'
tests involved increasing the mass at the end point of the se.co'nd link (equivalent of
picking up a payload) part way into the trajectory, and adding armature inductance
to test the ability of the controllers to deal with an unexpected pole in the system.
The controllers generally performed quite satisfactorily. The initial values and the
parameter settings used for both controllers, were : N = 8, p = 2, sampling time
T = 0.02s, d = 4, a = 0.2 for the first 100 points and 0.7 subsequently. The pa-

rameter estimates were initialized to zero and the controllers outputs were limited to



- Chapter 3. Deterministic Adaptive Control o | | 61

i?O Volt.‘s, the rhaximum voltage the motors vcan.sustéin. The incremental version o_._f -
the controllers was used. All the initial manipulator angles Wére set to 0°. For the
pa.rti.cularv experiment regarding fhe on-line increase of the payload, at ¢ = 4.0s during
a élockwilse girculax trajectory céntgréd at (0.5,0.0) of radius 015, the mass é,f'the‘ end .
of thé second link~h.as been.increas_ed ffom 0to 10Kg to Simﬁlate the éickup of a load. - |
The arm was still capable of _tracking Ithe.reférence-circll,e (as seeﬁ frc;mAFigulx'e.'3‘.14A).
In another experiment we increased the armature inductance in both motors from
- 100pH up to'lOOrﬁH to éee if the unexpected poles could be _h_a.nvcl]led without having.to
inérease N or change p. For values of the inductance‘ Lm lessthan 10mH the céntrbllers' o
continued to track well (Fi igure 3. 15) while at 100mH the 2- hnk mampulator system
became eventually unsta.ble However by increasing the prediction horizon d to 12 the
system was capable again of giving acceptable results (Figure 3.16) with a penalty on
the rise time. A side benefit is the reduced overall overshoot. _ '
lehe results showed tha,t tracking circles , lines and square waves proved to be: no
problem for the controllers. The only proble_rhs were the observed overshoot and some
slight torque and controller chatter. Torql.xe‘”chatter was not eliminatedhlthough the
- armature inductor acted like a low pass filter and reduced the amplitude and frequency
Of the chatter. As far as the overshoot is concerned thé increase of the prédiction
horizon d contributed toward reducing it. |
Example 3.5: Consider the same plant é,s in the Example 3.1, whose block diagram
appears in Figure 3.7. The delay of the plant was set to ky = 3. Everything else remains
the sa.rne.: An.implicit self-tuning scheme was now applied in the place of the Laguerre-
self-tuner block.- The parameters used were, N =10, p = 0.3, d = 4, « = 0.7. The
response of the plant’s output following a square-wave sefpoint sequence is shown in

Figure 3.17, and the controller’s output is shown in Figure 3.18.
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Figure 3.15: Example 3.4: Manipulator Arm tracking a step trajectory Response of
27 joint angle. Inductance increase. d = 4.
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Fibgure 3.17: Example 3.5: Plant output following a square-wave sétpoint when an
implicit self-tuner was employed.
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Figure 3.18: Exam_plé 3.5: Controller’s output for the inipliéit self-tuning scheme.

3.4 Robustness issues

- Because this method does not rely on a predefined model structure with a ﬁxed number
of poles and zeros, and because it does not separate the delay from the dynamics, we
expect it to be more robust than the schemes based on transfer function models. The
simple analysis and the exa.lhples that follow seem to indicate that this is the case.

Let the true deterministic plant be represented by the state-space equations:

Teq1 = Aoz, + boue : (3.115)
Y =Gz, | . (3.116)

And let the Laguerre ladder network model of the above plant be represented by the
equations:' : |

by = AL + by, . (3.117)

Cge=é (3.118)
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Wher.e.v z and [ are ‘t_he' state vectors respectively, not necessarily of the sarne order.
- Let the system be under self-tuning control using the (non-linear w.r.t. the identified

parameter vector) predictive control law derived in section 3.1, equation (3.‘68‘)', i.e.
w=(y-w)f -k L S (3119)
Whéré y,. is ,jthg (Ii.fsteps-ahead (d> 'kd) p‘re-deﬁned‘reference‘ t‘rajecto,ry as giv.evnv-b):", -
| T a)yup . i E (3120
Where, 0 < a < 1. Using the above control law (equation (3.119) and substitutking for
it in eqﬁai?ions (3.115), (3.1‘17), we get the following s,ét of-equationé respectively:

- v }
Tepr = Aoz + bo((yr —w)7 - K LB - (3.121)

: .A' AT R . . : .
Lt+1 = Al, + é((yr - yt)ﬂ"l -k Ltﬂ—’l) E (3.122)'
- Substituting y, from equation.(-3.116) and y, from equation (3.120), the above set of .

equations can be written in a form to describe the closed-loop system as:

. ) ~ ~T ~
e || Ao—(1—a®)87 heey  —bok || = by Ay A1
= n . ' + (1=a%)8 " yup
e —(1-a*)B~'be] A-bk 87! [ I

(3.123)
For stability, the A-matrix of the above closed-loop state-space description must have
all of its eigenvalues inside the unit disk. If not, the closed-loop system will be unstable.
Let us further assume that the output model mismatch between the true plant and the
identified (modelled) one can be described by some arbitrary function, say ¢(¢), which
has the property that it stays always well bounded for all ¢, i.e. |¢(t)] £ Z < oo where Z
is a positive real number (Z € R*). The signal {(t) can be any bounded deterministic
or stochastic signal, e.g. measurement noise, sensor drifts, modelling residual, .ztc.

Then we can write,

Ye =Te + G » OT, lye = Gl = |G| < Z (3.124)
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Expressmg yt in terms of Je by using equatlons (3 124) and (3.118) then the closed loop

state- space description gwen in (3.123) can be further written as,

8

. Ao —bo((1 — )& +E)8 | - | b | 4 i
. E.H-l o \_o(( a -)Q 1.1 T)ﬁh | t» " 0 5_1(1 _‘ ad)(y,p - Ct)
by | @ - A-b(( A b o

pu—y
|
Q
N
(eH)
.|
+
o>
%

(3 125)
Where @ is an all-ier% matrix of the appropria.te dimensions. Now let us deﬁne the -

A-matrix in equation (3.125) as,

. _ '_ .d T .”T 3—-1 . o .
Ag= A" bo((1 =a)e" + & )B | - (3.126)
0 A-B( - +EDET | |

We can now present -the following theorem concerning the stability of the closed-loop

system.

Theorem 3 Let a stable discrete-time system ‘be»r.epresented‘by the set of atate;space
equations (3.115),(3.116) and let it be aampled every Tv secs and be under predictive

control law with d > kg as described in Section .3.1 (i.e. equation .(3.119)). Assume.
that the output model mismatch between the true plaﬁt and the identified (modelled) one
can be ezpressed by Aany bounded arbitrary deterministic or stochastic signal ((t) such
that |((t)] < Z < oco. Then there is some prediction horizon d such that the closed-loop

adaptive system remains always stable. O

Proof: Is is easy to show the validity of the above statement when
condition (3.124) is true by evaluating the A expression given by equation
(3.126). Under the condition of equation (3.124) the closed-loop system can
be put in state-space description as shown before by the set of expressions
in equation (3.125). The stability of the overall system is then determined

by the upper block-triangula.r matrix A as given by equation (3.126).
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" Because of its special structure the eigenvalues of the matrix A are j'ust. -

the eigenvalues of the matrix 4, plus the eigenvalues of the matrix :
' N N . =
Ag®) =4 -b((1-a®) +k )G - (3121)
Now since the true plant under study was assumed to be stable fhen the
eigém}alucs of the matrix Ap are always inside the unit disk. Besidés, stan-
dard arguments from the proofs of Theorem 1 and Theorem 2 indicate that
the rna.tfix A is also to be stable, for a proper choice of d, and have all

. its eigenvalues less than unity in modulus (compare equation (3.76) with

(3.127)). As a result the cldsed;loop system remains always stable. O '

- An illustrative example follows that makes. use of the stability study described -
~above. .
Example 3.6: Let the continuous-time stable plant (Rbhrs et al., 1985) of the

form:

2 229
G =
()= G571 (s? + 305 + 229)

(3.128)

be sampled very T secs. The ihpuf—output data is recursively used at every sampling
step (RLS) to deﬁve a discrete model of the plant in terms of a Laguerre orthonormal
series as described in Section 2.3, and a predictive control law is then computed,as
described in Section 3.1, which is applied to the plant‘ on-line thus forming a closed-
loop self-tuning system.

~ First let the sampling time be 0.1sec and the reference input be sin(wt) with w =
1rad/s. Underestimating the plant order and assuming that it is of a first order, only
one Laguerre gain is estimated during the identiﬁcation (N=1,T=01,p= 0.5,d =
2,a = 0.3). Figure 3.19 shows the plant output y(t) tracking the sine-wave reference

input y,. Figure 3.20 shows the Bode plots of the true and identified plant respectively.
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- T,

Figure - 3.19: - Example> 3.6; Output tracking the reference inp‘ut' -wﬁe’n
N=1T=01,d=2. : : -
- The identiﬁed. Laguerre gain came out to be 1.45. If we evaluate the eigenvalues of
E the A-matrix from equa.f,iun (3.123) we find .out that for the above sampling frequency
'-the system is stable. Increasing the sampling frequéhcy to T = 0.01, while keeping
everything else the same, the system becomes eventually unstable.

Let us investigate more the instability mechanisrn when the sampling time is T =
0.01lsec . According to Theorem 3.4 if the output médel mismatch is bounded ( i.e. |
equation (3.124) is true), then there Ais always a prediction horizon d such that for
every sampling time T the closed loop self-tuning system remains stable. In this case .
if we increase d we should expect system stability. Actually when the reference input
is 1rad/s we do get stability by increasing d. vFor»va.lues d > 8 the closed-loop system
appears to bé stable. Figure 3.21 shows the system output tracking the reference input

when d = 10.

Actually in the single parameter case (N = 1) the Laguerre state-space model
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Figure 3.21: Example 3.6: System output tracking the reference input when
N =1,T =0.01,d = 10. (The 2 curves are almost identical) '
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given by the set of equations (3.117),(3.118) transforms to simple scalar expt_eésioné._

The eigenvalues of the Acl matrix then can be evaluated from,
M(Ad) = X(4o) U M(A=b((1 - o™ +ENFTY) - (3.129)

Since the plant under study was assumed to be.stable then the eigenvalues of the first
term in the r.hs. of equation (3.129) are always inside the unit disk. The second _tei'm
in the r.h.s. of the above equation is a scalar expression and its value is always less .

than one as shown below (note that the terms, 4 =_éxp(pr) > 0 and b,é,j:: are now

~all scalars # 0, and |a| < 1),

—a‘i C1C i_
IA —b((1 - a?)e + k)| = |4 - Wit graon

— Ad—ot — |4 4. +Atal
. T (Adhel41)) At +Ah

~ Thus all the beigenvalues of the A matrix are inside the vunit circle and the closed'-loopv
system is stable.

When the reference input w was 1lrad/s stability was achieved by increasing d,
beéauéé the output model mismatch was bounded. But the syster# appears to be
unstable for any value of d if the reference input is ir.lcreva,sed to w = 16.1rad/s. When
'condition (3.124) is not true then the stability of the closed loop system depends on
the stability of the A-matrix in equation (3.123). It can be proved that for T =.0.01
sampling time and for the particular plant of equation (3.128) the estimated Laguerre
gain goes to zero (Dumont, 1988) and then the A-matrix in equation (3.123) has 2
eigenvé.lues outside of the unit disk, i.e the closed-loop system is unstable. The reason
why the closed loop is unstable is that, for fixed N. = 1 the order of identification
is inadequate either to represent sufficiently the dynamics of the given plant or make
the model mismatch bounded at the specified sampling frequency and at the specified

reference input.
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Figure 3.22: E'xample 3.6: (a) System output tracking the reference input when

- N = 2,T = 0.01,d = 2. (b) An enlargment portion from T = 20 to 23. (The 2.

curves are almost identical.)

In tlﬁs case this leads to 2 possible solutions, either keep the identification error
always bounded in case an a priori knowledge of the plant is available, or increase
the order of the identification. By increasing the order of the estimation from 1 to 2

the system is always stable for values of sampling times 0.1 and 0.01 and for sinusoid

* reference inputs from 1 to 20rad/s. Figure 3.22 shows the output tracking the refer-

ence input and Figure 3.23 shows the bode plots of the true and the identified plant
respectively (N = 2,T = 0.01,p = 0.5,d = 2,w = 16.1). By increasing the order of
the identified model, stability has been achieved. Because the low-order Laguerre gains
stay practically constant during an order increase, this can be done on-line without the
system going through a transient phase. Flexibility in varying the dimensions of thev

problem on-line without system-upset is an advantage of this new controller.
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Figure 3.23: Example 3.6: Bode plots for true (solid hnes) and identified (dash lmes)
systems,when N = 2,T = 0.01,d = 2. . A

Example 3.7: Let a plant be described by the input-output equation.: ‘

y(k) = 0.9979y(k — 1) — 0.077Tu(k — 2) + e(k) — 0.618e(k — 1) — 0.378e(k — 2) (3.130) -
At the 80(>)‘>"‘ ;sampling iﬁterval, we suddenly swit;:h to the following plant,.

y(k) = 0.934y(k — 1) —‘0.1102u(k Qg) + e(k) — 0.559¢(k — 1) — 0.350e(k — 2) (3.131)

where e(t) is a white noise sequence N(0,0.1). Figure 3.24 shows the outpuf of the plant
tracking a square wave set-point using the self-tuning scheme menfioned in Example 3.3.
The parameters used were, N = 16, p = 0.8,d = 10. Despite the sudden transiti.on
from one transfer function to another and despite the presence of noise the output is

capable of following successfully the setpoint.
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Figure 3.24: Example 3.7: System output tracking the reference input (above) and
controller output (below). (N = 16,p = 0.8,d = 10,7 = 1.0. At the 800* point we
switch to a different plant):

3.5 Practical Aspects and Implementation

3.5.1 Choice of Laguerre filter time constant

Although, as found from simulations, the choice of the pa.rametef p used in the Lagﬁerre
ladder network is not crucial, it does influence the accuracy of the approximation of a
given plant as a truncated Laguerre series. In the simulations, an extensive range of
values for the parameter p was found to give acceptable adaptation performance results
for a given plant. A method to optimize the parameter p that was tried in practice
and found to pérform very well was to store an array of plant input-output data for a
period of time and then try a modified constrained Hooke-Jeeves optimization technique
(Hooke and Jeeves, 1961) on them to obtain an optimum value for the parameter p
by minimizing the residual error obtained from the least squares identification. The

method performed very well in practice with the only drawback being the additional -
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memory requifement and the computational expense involved in allowing the djfect
search optimization routine to.converge. Since at this time no analytiéal method is
available for the choice of the parameter p, its choice is empirical, as explained below.

The ability to control the bandwidth of adaptive control schemes in order to avoid
exciting'ﬁﬁmodelled high frequencies dynamics is desirable for robustneés. An inter-
esting feature of the Laguerre ladder network is that the first block is a first-order
low-pass filter with -cut-oﬁ' fréquency 1/p and the rest of the blocks are all-pass ﬁl.t.ers.
This provides some filtering qualities to the Laguerre self-tuner and allows some control
over its bandwidth. Thus the choice of the parameter p ca.n‘ be made as to have 1/p
_ roughly around the cross-over angular velocity w of the plant.

Moréover if a plant with a long time delay k4 is to be controlled then Because of an
apparent similarity of the Laguerre'functions to Padé approximants a suitable choice
for p can be made. The Padé approximation (in Laplace transform) of a continuous

time delay &y is given by,

1— kae\7
kg = nh_{g (1 T EZL) (3.132)
The above representation resembles the all-pass phase-shift block chain encountered

in the Laguerre Ladder Network (figure 2.2). A good choice for p would then be,
p =2n/ky.

3.5.2 Number of filters

The number of filters required in the representation relates primarily to the presence of
underdamped modes and the time delay in the plant. The reason is that the orthonor-
mal filters are used to model all dynamics including the delay. For low-order plants
with significant delay relative to the dominant time constant, simulations show that

5-10 filters give satisfactory results in many cases. For high-order underdamped plants
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- with substantial delays the number has to increase from 10-15 filters. Of course, when
the delay is not substantial, fewer filters are required. By monitoﬁng_ the Laguerre
spectrum or the residual error on-line, it is easy to vary the dimension of the problem

by increasing or decreasing the order of the identification.

- 3.5.3  Choice of d and o

The driver block pole relates to the desired performance and is easy to choose. The
prediction horizon can be automatically altered to make sure that 3 is nonzero and that
non-minimum phase zeros are not cancelled. The latter can be achieved by checking

~ the roots of equation (3.81).. A simpler method is to choose d such that B is of the same

' sign as the estimated process gain, and of significant amplitude. A simple criterion can

be A |
BedI-A)" (3.133)
where € = 0.5 and (I — 4)"!'h can be precomputed, as it does not depend on the

estimates.



'Chaptér 4

- Stochastic Adaptive Control

4.1 Introduction

The development presented in Chapter 3 concerning the formulation - and test of a
deterministic self-tuning scheme based on Laguerre functions will now.be used to build
an explicit stochastic self-tuning scheme. All real processes are corrﬁpted with external
disturbances and there is always a measurement noise involved when measuring output
signals. Thus it would be good tovext‘end the ideas presented in the previoﬁs chapter and
cdnétruct a.: self-tuning scheme suita;blé for a stochastic environment. A stochastic self-
tuning controller is presented here that makes use of easily.underst_ood conceptsb showing
.sirnplicity'an'd flexibility while capable of achieving good and robust control. Althpugh
Laguerre functions were ﬁhosen, other orthonorma.l functions may be used. Some other
potential sets with success were tested, as it will be shown in a subseq_ﬁent chapter. The
scheme presented here retains all the nice properties mentioned for the deterministic
case-in Chapter 3. In addition, the identified model of the external disturbances is
taken in account in the implementation of the control law. Simulation results are also
presented to support and demonstrate the excellent behaviour, capabilities and ease of -

use of the proposed algorithm.

76
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4.2 ~“An explicit stochastic control law

- Models of ‘the physical plant and of the stochastic noise environment are constructed
respectively based on the représeﬁtation outlined in the previous section 2.3. This is

done by modelling the deterministic part (see Figure 4.25) with time-scale p, as: .|
Ut 1) = ALt Fbu(t) C T (4.134)
u(t) = c"i(t) . (4.135)

~ and the stochastic part, with time scale p’, by a second network:

n(t+1) = A’n(t) + b'e(t) . (4.136)

()= Tal) +e(t) - (4137)

Where [(t) and n(t) are the N and N’ -dimensional piant. and noise state-vectors
respectively, and e(t) = N(0,1) white noise. The parametér vectors are defined as,

I'=ler ca...cn) and, T =[¢} ¢...cl]respectively.

Combining equations (4.135,4.137) the plant process output can be‘represented as,
- y(t) = w(t) + ya(t) = TUL) + £Tn(t) + () » (4.138)

Note that, 4,5, A’,b’, above are a-priori known while only the ¢, ¢’ have to be estimated
online, e.g. by using a Recursive Extended Least Squares (RELS) identification method
(Ljung and Soderstrom, 1983). |

A predictive exression will now be derived for the plant output based on the abéve
orthondrmal representation. From equation (4.138) while using equations (4.135),

(4.137) we can write a d-steps ahead predictive formula for y(t) as,

y(t+d) = Ut +d)+Tn(t+d) +e(t +d)
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Figure 4.25: Orthonormal Modelling of a stochastic system
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ot y(t) = TUt) — ¢Tn(t) — e()
= it +d) - U(t)] + Tin(t + d) — n(t)]

+e(t+d) —e(t) +y(t) _ S (4139)
~ Now if we derive predictive expressions, based on information up to time t, for (t+d)
and n(t 4 d) using the same recursive method described in Secbtion 3.1 for {(t+d), while
. assuming u(t) = u(t +1) = --- = u(t + d — 1) , equation (4.139) gives,
y(t+d) = (4% = Di(t) + (A% + -« + Ibu(t)]
+ (4™ = Dn(t) + A he(t) + A% 2be(t + 1)+ --- 4 be(t +d —1)]
+e(t + d) — e(t) + y(t) | o (4.140)
By ignoring future noise terms and using‘the_ Certainty Equivalence principle the
best d—steps ahead (d > kd) predictive expression for the éystem output y(t) can be
derived as; - v
gt +dlt) = (A~ DU + (A" + - + Dbu(t)]
+ T4~ Dn(t) + (TARY — e() +y(t)  (4141)
If we déﬁné a prescribed reference trajectory y.(¢ + d) (as we did in Section 3;1) and

equate it to the right-hand side of equation (4.141), we can solve for the required control

input signal u(t),
u) = [l + &)~ u() - B —BTn() —ve(0] /5 (4142)
where, | |
B=cT(A* "+ ...+
v =cTA% 1 -1

£T=£T(Ad_1-)
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_.E,T:__C_’T(Ald—.[)

The output prediction error can be computed from equations (4.140),(4.141) as,

gtrd) = ytrd)—g(t+d)

= (T[4 et +1)+- + ble(t+d—1)) +'e(t +d)  (4.143)

‘Equation (4.143) feveéls that the prediction efror is z; Moving Av"era.g'e n;ise;séquencé
of order (d — 1). |
The new stochastic self-tuning algorithm makes use 6f equation (4.138) for recur-
- sively identifying the parameter vectors ¢ and ¢’ using an extended least-squares (RELS)
identification, and equation (4.142) for.the ca.lcul?.tion of the required control input.
The RELS algorithm folléws the ,stanti.'afd- aigoriﬁhm that has been repofted'bvefore in
the literature, (Ljung and Soderstrom, 1983). The control law requires also an esti-
mate of the noise é(t) which can be computed as a residual from the identification.
To include immunity against bias terms during the identiﬁcation a solution similar to
the ome presented in Clarke, Hodgson and Tuffs (1983) was adopted to solve the offset
problem. An advantage of this technique is that an estimate of the prediction error can
be computed at the same time. In particular, for the evaluation of the required noise
estimate we can write,

y(t) = 71(8) + <Talt) + é(t) | (4.144)

where é(t) is an estimate of the prediction error §(t | t —d). The above equation (4.144)

can also be written as,
yit-—d) =Tt —d)+Tn(t—d)+é(t—d) (4.145)

By subtracting equation (4.145) from (4.144) we get,

y(t) = y(t — d) — &(t — d) + cTAL(t) + T Aun(t) + &(t) (4.146)



Chapter 4. Stochastic Adaptive antrof R - o v 81

~ where Aé stands for the’ d‘-ordei‘ difference operator (1 — ¢~¢). In the unknown pa-
rameter casé the prediction error will not be ava,ilable so its value must be proxied.
This is usually done by computing the residuals of a previous estimation i.e.. sblving
equation (4.146) 'While using the parameter éStimates_from, the prex'fiouls step. For the

RELS algorithm we define the new obsgrvatibh’z(t) to be,
2(8) = y(t) — y(t — d) + d-d) - | (4.147)
and the following equation is employed for the RELS, | | |
z(t) = gTAdl(t) + Q’TAAdﬂ(t) + e'(t'.) L | (41148) |

where ¢/(t) is computed from the residuals of the identification. For the required noise

estimate we use, : v
&(t) = €'(t) — &(¢) S (4.149)

where a filtered proxying of e(t) has been employed by using the equation,. -
ét)=T1e(t - 1)+ (1 —T1)e(¢) (4.150)

The choice of the constant 7 above in the high pass filter is by no meané crucial and
good results can be obtained for values in the range (0, 0.999]. The value é(t) derived

above is then used as the required noise estimate in the computation of the control law.

4.2.1 Stability analysis

The Laguerre orthonormal network (Figure 4.25) which was used as the basic model of
a stochastic dynamic system was expressed in state-space form by equations (4.135) and
(4.137). Note that the control law given by equation (4.142) is also in state-feedback

form. Actually the whole closed loop system can be put in a state-space form.



Chapter 4. ‘Stochastic Adaptive’ Control o o 82
Assume that the true stochastic dynamic system-is represented by the fellowing

state-space equations where its deterministic part is L,[0, oo)
2t +1) = doz(t )+b0u( ) + Tw(t) S (4.151)

oY) =g o) - (4152)

where w(t) and v(t) are bounded stochastic signals and have finite covariances. And
let the stochastlc Laguerre- ladder network model of the above plant be represented by

4 the pair of state space descriptions, as in Sectlon 4.2, i.e. the deterministic part as,

Lt +1) = Al(t) + bu(?) ‘ o (4.153)
a(t) = &) | N (4158)
and the stochastic part as, o |
n(t+1) = An) +¥e(t) - (4155)
Ja(t) = é’Tzz( t) + e(t) | |  (4.156)

where the state vectors, z, [, n, are not necessarily of the same order.

Assume that, the system is under self-tuning control using the stoehastic predictive
eontrol approach described earlier in Section 4.2. For simplicity, let a recursive extended
least squares (RELS) identification technique be employed for the estimation of the
parameter vectors, ¢ and ¢’. Using the certainty equivalence principle the estimates, &
and ¢, are taken as the true ones and substituted back in the controller equation. Then
all the equations that follow hold for any given discrete time ¢ during the operation of
the closed-loop self-tuning system.

The controller output is given by equation (4.142),

u(t) = [y-(t + d) — y(t) — BTU(t) — BTn(t) ~ vé(t)] /8 (4.157)
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where,

A=A+ 4+ Db

. y = g,TA‘Id—lbl._ 1

Assume the constant 3 to be bounded from below. Substituting equation (4.157) in
equations (4.151) and (4.153) we get,

2(t+1) = (do— b /B)alt) - bETUA)/B - BRTR()/B - bori()/B

—bg(0)/B+Tw(t) + by /B ()
(t+1) = .;b..ch(t)/ﬂ +(A-bRT/B)Ut) — bPTn(t)/8 - b&é(t)/ﬂ_ ,
—bo(8)/B + by /B o (4.159)
* And for the noise network we can write from equation (4.155),
n(t + 1) = A'n(t) +‘§’é(t) | (4.160)
where é(t) using equatigns (4.149),(4.150), cal; be written as,
&(t) = r(y(t) - y(t —d)) + 7é(t — d) — 7T (I(t) — Lt - d))
»—j"ga‘(ﬂ(t) —n(t — d)) — r&(t — 1) ' (4.161)
Introducing a new state variable §(t),
§(t) = &(t) — T z(t) + T<TU(t) + T<n(t) (4.162)

we can rewrite for the noise estimate,

é(t) =4q(t) + 7 T_(t) - ‘rg_T_l_(t) - Tg_'T_T_y(t) (4.163)
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Substituting _etiuation (4.163) into equations (4.158),(4.159), (4.160), we get,

iy = (4 o = bk 0.~ Bovr<F/B)a(t) + (~5oB /9 + bryre” /O
+(=0oBT /B + +hgvrc” B)n(t) ~ byvd(£)/6

b0/ T b8 (e

11(t1+ 1) = (-4 /ﬂ byreg /B)(t) + (4 ,—’_JET//@ + iyt /B
- -+(—_£”/ﬁ + byrdT/B)n(e) - vi(t)/B o
()8 + by /B . (4165)
. And for the noise state-vector we get, | |
a(t+1) = Frelals) - Brdl()
(A — BT )n(t) + B() (4.166)
We can also write the following expression for the noise sequence using equation (4.163),
&t) = &(t—1)+(1-7)et)/r
= &(t—1)+ (L= IO/ + (1 - T)fa()
— (1= 7L - (1 - ) n(t) (4.167)
Introducing a new state variable r(t) and using .equa,tion (4.167) we can write,
) = &) - (1= Di(t)/7 - (1 - 7)Fa(t)
+ (1 - T)sTi(t) +(1 - 7)c"n(t)
= &t—-1) (4.168)
Solving equation (4.168) w.r.t. &(t) and back substituting we can get,
r{t+1) = r(t)+ (1 —7)g(t)/T + (1 - m)eg(t)

— (1= 7)TUt) ~ (1 — 7)eTn(t) (4.169)
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And finally equations (4.150),(4.162) and (4.169) give,

Ca(t+1) = (r=1)3() + (7 = Dregz(t) + (1 - )Tt i(t) |
| +(1 —T)T_C_’Tﬂ(t)—TT(t)v—F(T; Drcle(t —d+1) N
| +(1 = 7)ret it —d+1)+(1 ,.—__‘T)T_"Tn(t —d+1)+rq(t—d +1)

—rb(t+1)+rv(t—d+1) o | (4.170)

- Now if we ignore any future noise terms , equations (4.164), (4.165), (4.166), and
- equations (4.169), (4.170) represent the whole closed-loop éystem in state-space form.

The state x}ector of this representation is defined as,
Xa'(t) =
() D n() @) =(t-1) Ut-1) n(t-1) ¢(t-1)

cz(t—d+1) t-d+1) n(t-d+1) qt+d-1) r(t)] (4.171)

The A-matrix (Acy) of this clbéed-loop state-space repfesentatioﬂ can be studied
for stability purposes. The closed-loop system is stable if all its eigenvalues are inside

the unit disk. The order of this matrix is,
deg(AcL) = (d — 1) x (deg(z) + deg(l) + deg(n) + 1) +1

An implicit stochastic control scheme has also been derived and tested with success
using the new Laguerre series representation. Its derivation follows along the same

lines as described in Section 3.2.2.

. 4.2.2 Practical Aspects and Simulation

The previously described self-tuning approach has been succesfully implemented in

plant simulations using efficient and fast code algorithms. For a thorough discussion



Chapter 4. Stochastic Adaptive Control ' ' - - 86

of the choice of the Laguerre time-scale, p, the number of filters, the horizon d and the
refef_ence trajectbry yr(t), plus ofher discussions related to the pra.ctica,l aspects of the
new self-tuner, the reader is referred to section 3.5.1 and to Dumont and Zervos (1986)
or Zervos and .Dumont (1988a). A modiﬁed Hooke-Jeqves (Hooke and Jee{res, 1961)
search optimization method has been implemented to search for an optimal.value of the
- pqsitive real time-scale p. Planté whose impulse responses were not L3{0, o) fﬁnctidns '
‘have also been tested in simulations and the self-tuner worked satisfa.ctoﬁly, Th_e
simulation results that follow show the good behaviour and flexibility of the stochastic
s&xeme. | _ | | | | |
Example 4.1: This example demonstrates the behaviour and applicability of the
newly proposed scheme. It also demonstrates a good example on the ﬂexibilify of the .

choice of the Laguerre parameters. Consider the following non-minimum phase plant,

y(t) - 41.5y(t —1) = 0.7y(t — 2) + u(t — kq)
+15u(t — ka— 1)+ e(t) — 0.Te(t — 1)
+0de(t —2) +0.25e(t — 3) + 0.8Te(t —4) ~ (4.172)

where, k, is the plant time-delay. Table 4.2 shows analytically the simulation runs with
different choices of, the time-delay k4, the number of filters NV and N', and the Laguérre
time-scales p,p} respectively. The set-point was a square wave of amplitude 1 and the
1**-order filter constant of the reference trajectory y, was set to a = 0.7 in all runs.
In all the simulations, the initial parameter estimates were zero, the initial covari-
ance matrix 100 x I, the forgetting factor 1.0, a step load-disturbance of 30% -of t_hé
step change was applied at ¢t =240 and ¢t =280, and the noise e(t) was zero-mean white
with ¢ = 0.1. For every simulation run, 2000 sampling points are shown, recorded after
the parameter identification has convergedv. Because of the irregular initial transient

period, one can either, (a) perform an open-loop identification first and then apply the
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[ “Table 4.2 ]

K,|d[N]|p N7
Fig. 426 | 1 |2] 4 |03] 4 |01
Fig. 427 1 |2] 4]60] 4 |05
Fig. 428 || 1 |2| 8 |01 3 |02
Fig. 429 1 |3] 8 | 03| 4 | 0.8

{Fig. 430 1 6] 8|04 2 |05
Fig. 431 || 3 |5] 8 |04 2 | 0.5
Fig. 432 || 3 | 5] 8 |4.0] 2 |05
Fig. 433 | 6 |8]12]03| 2 |05

" Table 4.2: Example 4.1: The choice of-the‘vérious parameters during the'.simulation »
runs. .
control #ction by closing tl.leAloop, or (b) start with the loop closed but with some sat'i
ﬁration limits on the inﬁﬁt to limit the output deviations, or (c) apply a control input .
with a commissioning period. The graphs were produced using the method (b) above

starting at time —400 and with input limits £50. The purposé of the expeﬁment was
to test the steady-state performance of‘the stochastic self-tuner using a different and
mixed choice of parameters. (see Figures, 4.26, 4.27, 4.28, for system response compar- -
isons). Figures, 4.29, 4.30 show the flexibility on the choice of the prediction horizon d.
Figurés, 4.31, 4.32 show two typical runs of a plant with a moderate time-delay when.
only the Laguerre time-scale p of the determirﬁstic ladder network has been changed
by a magnitude of order 10. Figuré 4.33 shows the performance for a plant with larger
time delay. Figure.4.34 shows the output performance when fhe implicit scheme was
applied to the same plant as in Case 8 in Table‘4.2, (Ki=6,d=8,N =12 ,p=0.3).
The results indicate that the self-tuner performed well even with different, time-scales,
number of filters, and prediction horizqns. It was also capable of handling relatively

large delays (Figures : 4.33, 4.34).
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Figure 4.26: Example 4.1: Explicit stochastic self-tuner. Syétem output tracking a
square wave set-point. Case 1 of Table 4.2. : -
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Figure 4.27: Example 4.1: Explicit stochastic self-tuner. System output tracking a

square wave set-point. Case 2 of Table 4.2.
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Figure 4. 28: Example 4.1: Explicit stochastic self-tuner System output tracking a
square wave set- ‘point. Case 3 of Table 4.2. :
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. - Figure 4.29: Example 4.1: Explicit stochastic self-tuner. System output tracking a
square wave set-point. Case 4 of Table 4.2. '
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Figure 4.30: Example 4.1: Explicit stochastic self-tuner. System output tracking a
~ square wave set-point. Case 5 of Table 4.2.
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Figure 4.31: Example 4.1: Explicit stochastic self-tuner. System output tracking a

square wave set-point. Case 6 of Table 4.2.
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Figure 4.32: Example 4.1: Explicit stochastic self-tuner. .System output tracking a
square wave set-point. Case 7 of Table 4.2. . o
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Figure 4.33: Example 4.1: Explicit stochastic self-tuner. Systém output tracking a
square wave set-point. Case 8 of Table 4.2.
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Figure 4.34: Example 4.1: Implicit stochastic self-tuner. System output tracking a
square wave set-point. : : ' .



Chapter 5

Multivariable Self-Tuning Control

5.1 Introduction

“The basic thrust of the work presented so far in this thesis has been the development of
' adaptive control schemes based on orthonormal series representation, with the advan-
~ tage of reduced a-priori knowledge; easy handling of unknown and varying timé delays .
.and npnéminimum phase. plants, and .increased robustness in presence of unmodeled .
dynamics. Up to now, only single-input, single-output plants (SISO) have been consivd--
ered. However it is_stré.ightforward to extend the adaptive co'ntrollérs based on Laguerre. -
functions previously developed (Dumont and Zervos, 1986; Zervos and Dumont, 1988a;
Zervos and Dumont, 1988b) to the multivariable case. ‘

The most challenging problem in this area has been the representation of tiﬁue-delays-
of MIMO systems via a dela.jr matrix (Mohtadi, Shah, Clarke and 1987). The delay
matrix of a MIMO system is the direct generalization of the time-delay term associated
with a SISO system. This matrix characterizes the infinite zeros of the MIMO process
but does not have a unique structure ( Elliott and Wolovich, 1984). One particular lower
triangular form of the delay matrix .as defined by Wolovich and Falb (1976) is known as
the interactor matriz. Many early results in MIMO adaptive control éonsidered special
classes of this delay matrix : a diagonal matrix and others required prior knowledge of
_ the triangular interactor matrix. However, the use of orthonormal functions in adaptive

control can be extended to the MIMO case so that the requirement for knowing the

93
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u1(t) ' . ’ - yl(t)

W) | | A0

Figure 5.35: Multivariable 2 X 2 input-output linear system.

system delay matrix is compietely avoided. As a result, all the problems associated with
. the definition of the interactor matriz are conipletely eliminated. This is considered to
be a definite advantage in the formulation of a multivariable adaptive scheme because -

it adds simplicity to the design axid representation of the algorithm..

5.2 Deterministic Multivariable Self-Tuning Control

-The de\./elo'pment of the deterministic multivariable self-tuning controller is a direct
extensioﬁ of the SISO equivalent controller described in details in Section 3.1. What
follows is an ﬂlustrative mathematical derivation and two- simulatién examples that
show how the principles outlined so far in this thesis can be used in modeling a mul-
tivariable linear system. Let us consider, for simp‘licity, the 2-input, 2-output linear
plant” G(s) shown in Figure 5.35, typical of a paper machine headbox, where, u;(t),
uy(t) are the planf inputs and y;(t), y2(t) are the plant outputs. This system can be
modeled by the Laguerre 1adder network shown in Figure 5.36. The same principles

would however apply for any (N x N) configuration.

The following equations can describe the model equations in state-space form. Two
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Network for a Multivariable 2 x 2 input-output linear
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different sets of Laguerre orthonormal functions have been employed, one with time-

"scale p; and the other one with time-scale p,. For the sake of simplicity let also assume

that both sets have the same number N of functions. The first set can be described by

the staté-spa.ce description,

N .Ll(t‘+1)=A1.L_1(t')+g1u1(t)

and the second set by, _ 4
L,(t +1) = A,L,(¢t) + byua(t)

where, -
L, = [IIZV lyp - 'luv]T
Ly ={lay lpz-- 'lzN]T

If we define the combined state vector to be,

L' =[L] L3

and the output vector to be,
Y=[n |
then we can write,

Y(t) = CL(¢)

Where the parameter gain matrix C is of the form,

T AT 1 1 1 1 1
_ Cin Ci, | G2 - G €21 Ca2
T T 2 2 2 2 2.
Cn 22 €1 ¢2 .-+ CGON Ca1 Ca2
where we used the notation,
T

Ci=0¢y cy ... ciy]

’(5.1"/3) |

(5.174)
(5.175)
1
C
il (5.176)
2
N
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. aﬁd 1,7 are both indices.

~ For the structure of the loﬁver-tﬁangular matrices 4, and 4,, aﬁd the input vectors .
b, Aand.QZ see Section 2.3. The parameter gain matrix C can be estimated on-line by
" a multivariable leéstrsquares method. In an aﬁalogou_s way as outlined-in Séction 3.1
we can derive the predictive expressions for the state vectors and for the model plant

outputs. Aséur_ning, ’

‘U,]_(t) = ‘U.l(t + 1) = = ul(t + d1 - 1)

ua(t) = ua(t + 1}) = = uz(t +d, — 1)
we can write, | v . , : «
Lyt di) = ARLy (1) + (AR 4+ 4 Dbyua(t) - (sa1m)
L(t + d3) = AP L,(t) + (A8 + ... + I)I_;zﬂz(t) (5.178) .

where d; and d, are the prediction horizons. Then the required predictive output

~ expression for y;(t) is,
vilt+d) = C5(AR ~ DLi(1) + CH(4D — DLo(t)
+ CT (A% 4 o 4 Dbyuy(t) |
+ CH(AF ™ + -+ + I)byus(t) + w1 (t)) (5.179)
If we define,
| Pl =Ch(4f"-1I)
P:fz =Qf1rz Adl —1I)
By, —QT(Ad‘ e+ Dby

BIZ—‘QT(Adl 1+ .+I)-b—2
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Then equation (5179) becomes,
ol d) = BRL() + PRL() + Bun() + Buwal) + () (5180
In t»he same ‘Way we can derive the predictive expressbion for the output yz(t) to be, -
U+%)—£w&ﬁ%hﬂ1Mﬂ+3nmU%H&ﬂAO+WGD (5181)
where, ‘ , | . o
P =Ch(4f - 1)
',v£§==Q§@f=—I)
Bay = ChL(AP 4.+ 1)by »-‘
Bry = CL (A% 4+ Db,
Now if we deﬁhe tv§o reference tlr.ajectories-; Yr1 and y,,, in the same way as we did in -

Section 3.1. and equate them to the 1.h.s of equations (5.180),(5. 181) respectlvely, we

get a system of 2 equations with 2 unknowns, u,(%), 2(t)
{ Buuy(t) + Biaua(t) = yr1 — 3(t) — Ly (2) —
) -

- Buuy(t) + Bagua(t) = yea — va(t) — PLLy(t
Deﬁnjng, '

Biala(t) } (5.182)
P, Ly(t) ' _

D, = yrl - yl(t) - .Bu—l(t) E z(t)
D, = yrz —y2(t) — .-En.-L.l(t) - Eg'z-_['_z(t)

then the above system (equation (5.182)) can be solved for the unknowns u;(t), ua(t) -

to give in determinant form,

D, Blz By D,
Dz Bzz le. DZ
u(t) = —mmm—  ,  uy(t) = ———— (5.183)
By, By, B, B, ’
By, Bi By, By
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uy(t)

N N 0 st

- Figure 5.37: Stochastic multivariable 2 x 2 linear system.

And these are the required control inputs to form the deterministic multivariable self- .-

tuning scheme.

5.3 Stochastic Multivariable Self-Tuning Control S

The same principles outlined in Section 4.2 for the single-input, single-output case
can also be vapplied to derive a stochastic multivariable scheme based ‘oﬁ the Laguerre
orthonormal functions. Let us consider again for simplicity a 2 x 2 linear stochastic
multivariable system as shown in Figure 5.37. Where w,(t) and w,(t) are stochastic

bounded noise sequences.

Following the ideas outlined in sections 4.2 and 5.2 we can write for the deterministic
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- part of the plant,

Lt+1) = AL() +bu()  (5184)
L(t+1) = AL(t) +bust) (5.185)
T2 Ch Ch L, | o -

where the notatién of Section 5.2 and of the Figure 5.37 was‘_follo-wed..

The stochastic part of the plant can be expresécd in an analogous way by the"

~ equations,
Ny(t+1) = A1 N,(t) +g’l'¢1(t) o | | (5.187)  |
wi(t) = CTN,(t) + ei(t) | o | (5.188)
and, | |
Ny(t+1) = AN, (1) +baea(t) - o (5.189) "
wy(t) = CTN,(t) + eal?) © (5.190)

where the hotatiqn_-of Section 42 was. followed and N; = [n;; ng, .'..n‘-Nz] with ¢ =
1,2, is respectively the noise ‘s't‘ate-vector for each network representation. The noise
sequences e;(t) and e,(t) are normal white noises N(0,1). P're(i_iv‘ctiv'e expressions can
also be derived for the outputs y1(t) and y,(¢) a‘.s.wé.s described in Sections 4.2 and 5.2,
that is, using equations, (5.187), (5.189), y1(t) can be written as, |

wn(t+d)) = CI(AT — ILy(t) + Ch(AF — I)Ly(t)
F O (A ot Dbyus(8) + C5(AS + -+ Digun(t)
+ OT(AS — DN(8) + CT(AS B (Eea(t) + - + B(t)er(t + dy + 1)
+e(t+dy) = ei(t) + wa(t) | | | (5.191)
If we define,
| P = CT(4f - 1)
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Aﬂfz = sz(Agl - I)
. BH—QT(Adl 1++I)b1
B —QT APV 4+ Dby
T = OT (AR - 1)
Then the best predictiqn of y1(t + d; | t) is given by, :
n(t+di|t) = PLL(t) + PHLy(t) + Bryus(t) + Buua(t) |
LM+ QTaW+n®) (519
where él(tv) 1s the proxying of the estimated noise e;(t) and can be calculated in the

same way as it was described in Section 4.2. In a similar way the best predictive

expression for y;(t) can be obtained.

va(t +dz2 [ t) = P3Li(t) + P3La(t) + Barwa(t) + Bagua(t) |
TN, () + QT éx(t) + ua(t) | | - (5.193)
where,
Pl =Ch(A7 - )
P, =Ch Ad’ - I)
By = CL(AP7" + -+ Dby
By = Ch(A77 ' + -« + 1)k,
@ =Ci (48 -1)

QT = CT (A 1By (1) — 1)
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If two reference trajectories are deﬁned, Yr1 and y,;, and equate them to the r.h.s.

parts of equations (5.192) and (5.193) respectively, a system of 2 equations with 2

‘unknowns, u,(¢) and u,(t), is formed. To solve for the required control inputs, the

method described in Section 5.2 can be adopted.
5.4 Simulation examples

For illustrative purposes two examples follow that use the deterministic multivariable

- self-tuning scheme, described earlier, in a stochastic environment. The first one con- .

. trols a simple second-order multivariable 2 x 2 linear plant. The second discusses how
the gamé self-tuning schefne can be used to control the headbox of a paper machine.
So many researchers have simulated this process in.the past using various self-tuning
regulators £hat it has become a benchmark for testing multivariable adaptive c_ontrol:

schemes.

Example 5.1: Consider the 2 x 2 second-order linear stochastic multivariable plant,

n(t) = 02(t— 1) +0.1ya(t — 2) +us(t — 1)
+ 0.8uy(t — 2) + uy(t — 2) + w,(2)
ya(t) = 0.2y;(t — 1)+ 0.1y(t — 2) + us(t — 1)

+0.1uy(t — 2) + up(t — 1) + wa(t)

(5.194)
where the covariance matrix W of the disturbances is given by,
0.2 0.35
W = v ' (5.195)
0.35 0.6 v

The deterministic multivariable Laguerre self-tuner that was applied to the above plant

used, N; = N, = 8, the Laguerre time-scales p; = 0.1, p, = 0.7, with prediction horizons
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Figure 5.38: Example 5.1:- Ekplicitmxﬂtivariable self-tuning control of a 2 x 2 plant.
System outputs tracking two respective reference trajectories.

dy=2,dy =2, a.hd the driver block filter time constanfs a; = ag = 0.01. All the initial
"~ parameter estimates were zero. Thé initial covariance matrices for the multivariable
RLS algorithm were 1000 x [, and all the forgetting factors were 1. The simulation
run was performed over 1400 points starting from zero reference level for both outputs.
The set-point for the first output wé.é an upwafd staircase-like -trajectory with step
jump of +3 every 200 points. The set-point of the second output was a downwa.rd
staircase-like trajectory with step jump of —2 every 350 points. Figure 5.38 shows the
two plant outputs following their respective reference trajectories. Figuré 5.39 shows
. the behaviouf of the multivariable adaptive controller outputs for the same simuiation
' run. |

Example 5.2: The headbox is a vital an(i very important vsectiorll of a paper-

machine. TFigure 5.40 gives a schematic description of a headbox. Its purpose is to

change the turbulent flow in the tube going into the headbox to a sheet flow out of the
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Figure 5.39: Example 5.1: Explicit multivariable _éel'f-tuning control of a 2 x 2 plant.
Controller outputs. ' ' .

headbox. . The operation of the headbox has a significant effect on the characteristics
of the produced paper. The headbox and its associated flow 's‘y‘stem is a complicated
hydro-dynami.cal device. - The most,impoftant control problerﬁ for a headbox ‘is to
maintain constant jet velocity and to have a good dynamic behaviour when changing
the headbox level. The variations are changes in stockflow and airflow into the headbox.
In the present study it is assumed that the air cushion of the headbox is pressurized
using a compressor and that the airflow is manipulated either through the massflow

7

into the headbox or through a valve at the outlet (g(t) in the Figure 5.40).

The control of a paper-machine headbox is 5 good example of an interactive mul-
tivariable control system. The mathematical modei equations derived from. physical
principles show the system to be nonlinear of second order and the obtained differen-
tial equations fall into the category of stiff systems. However, for small perturbations

around a steady state operating point the process can be considered linear (Astrom,
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uz(t)

Loug(2)

Figure 5.40: Example 5.2: Headbox of a paper-machine.
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- 1972)‘, Following the principles and the headbox prototype model specifications out- ‘

lined in Astrom (1972) and Natarajan (1988) the continuous state-space linearized

model can be derived in the form,

[ -oo1s —0aann] [ 01 00
z(t) = SR _ z(t) + o ju(t) (5.196)
- | —0.0373 -0.5270 1 0.324 0.2 S
1o oo SR
y(t) = : | z(t) . (5.197)
T 10 122412 | .
wher'e,. B
y1(t) ~isthe stock level
y2(t).  is the total head pressure
z1(t)  is the stock level
z,(t)  is the air pad denéity
‘, u;(t)  is the stock volume flow rate
uy(t)  is the air mass flow rate
(5.198)

- and the operating point was chosen to be,

yl(t)'; 0.5m

¥,(t) = 4.3339 m H,0
z(t) = 0.5m |
z2(t) = 1.62kg/m?®
u(t) = 1.Orﬁ3/sec
uy(t) = 0.245kg/sec

(5.199)
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- This model was transformed to discrete form using a éampling interval of 1 ‘sec. The

following result was obtajﬁed,

ult

0.9908 —0.1091 | [ 0.0803 —0.0119
z(t+1) = z(t) +

| —0.0288 0.5922 0.2505 0.1556
[0 00
y(t) = | - | 2(t).

10 122412 |

Eliminating g:_(t) and adding stochastic disturbances the following model is obtained,

~ wm(t) = 1.583y,(t — 1) — 0.5836y,(t —'2)

© +0.0802u (¢ — 1) = 0.0749u, (¢ — 2)

= 0.0119u(t — 1) — 0.0099u,(t — 2) + wy(t) (5.200)
v2(t) = 1.583yy(t — 1) — 0.5836y,(t — 2)
+3.1465uy (¢ — 1) — 3.1411uy (¢ — 2)
+ 1.8927uy(t — 1) — 1.81uy(t — 2) + wy(2)  (5.201)

where the inputs, state variables and outputs represent now changes on the operating
point conditions. To get a value of the covariance matrix of the noise w(t) t‘l‘z.e following
assumﬁtions were made in the simulations: (a) A white noise perturbation on either
input of the headbox system was taken to have standard error of 10% of their respective
values, and (b) Measurement white noises with standard errors of 10% on the level and
10% on the total head pressure value were respectively aésumed. Usingv the‘above
assumptions on the noise disturbances we can solve the linear stochastic &ifference
headbox state-space equations for the steady-state output noise covariance matrix by

means of a discrete Lyapunov equation (Astrém, 1970). The solution gives,

W = Elw(t)w’ (t)] = (5.202)

0.011 0.043
10.043 0.3127
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The deterministic multivariable Laguérre séif-tuning scheme was applied to the
derived stochastic linearized headbox model as to form a closed-loop system. The
following parameters. were used : Number of Laguerre fu>nctions' for each Laguerre
_network N; = N, = '8,' Laguerre ti‘rne-sca,le.s p1 = 0.06 and p, = 0.6 re_sPectively,
prediction horizons d;: d; = 2. The time constapts of the output referénce trajectories _
were a; = o.zzAz 0.7. All the initial paramgeters‘wer‘e_zero. For thé first 200" secs _thé :
- system. run on its normal operatiﬁg point (see Figure:5.41) in order to allow for the
esti_ﬁ;ation to obtain a model of the system. To test th¢ system, at-the 200‘5' sec the
stock‘le\.fel set-poinf asked for a positive change of 0.3m. for the next 200 secs while the
total head pressure set-point was kept constant at its no@d operating value. At the
.4.00"'1 sec the stock ‘leve‘l set>-point returned back to its normal initial operating value.
At the 600" sec the total head vpressure set;poiﬁt asked. for a positive chénge.bf?O%‘f -
of its Operatiné value for the néxt 200 secs while.the stock level set-point was kept to
its normal operating» value. Finally at the 800% sec the total head pressure set-poiﬁt
fetufn_gd back té its normal operating value. The output responses in F _iguré 5.41 are

indicative of the good regulation obtained on both outputs.
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Flgure 5.41: Example 5.2: Headbox rnultlvarxa.ble self—tumng control. Stock level (up-
per curve), and Total head pressure (lower) changes.



Chapter 6

An Industrial Application

6.1 Introductioh “

This chapter.presgnts an industrial appllica.t'io_n of one of the novel self-tuning c'b.ntrol, .
.. strategies tha,f has been presented in this thesis. The purpose of the trial was to test

a newly developed, adaptive schemes on an industrial process rather than to design a_.

controller for a particular loop. The process is typical of many in the chemicai .p'rocess
industries in that it exhibits a long and varying timé 'delay. The results demonstrate:
the applicability- of this methodology in an industrial environment where inéreasing'
productivity while mirlimizing Qpefational cost is an important factor. The determin-
istic explicit self-tuning scheme based 6n_the complete in L,[0, 00) orthonormal set of
Laguerrevfunctions (described in detail in Chapter 3) has been applied-to the control of
the exit pH of the first caustic extraction stagein a blea._ch plant of wobd pulp at a kraft
mill site. The plant is modelled by an orthonormal Laguerre network put in state-space
form. A simple predictive control law is proposed. Accurate assumptions about the
true values of the plant order and time-ciela.y are not needed. The new approach proved
‘to be well suited to an industrial application bécause it is easy to use, it can handle
time-delayed and noﬁ-mjnimum-pha.se plants, it is robust and it has been shown to
be superior to any PID control that was previously used by the.m.ill’s personnel, (see,

Zervos and Dumont, 1988c).

110
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6.2 Laguerre-based adaptlve control of pH in an industrial bleach plant

extractlon stage

The main objectives of bleaching are, to remove the coloring materials etill present
in the fibers, to increase the brightnees ef the pulp, and to produce a white pulp of
~ satisfactory physmal and chermcal propertles to make it suitable for- the manufacture .
“of tissue gra.de papers. ‘Modern kraft pulp bleachmg is achieved in a multi- stage plant,
using expensive chemicals such as chlorine, chlorine dioxide, caustic soda and oxygen.
A typical North American bleach plant consists of chlprination (C), alkaline exfractien
(E), chlorine dioxide bleaching (D), alk_a.lihe extraction (E) and chlorine dioxide bleach-
. ing (D) in that sequence (CEDED) for the production of high quality pulp at low cost.
Other sequences less often used include, CEHDED or OCEDED, (H stands for Hypo
and O for Oxygen) ' | | -

The sequence CEDED is capable of producmg pulps of very high bnghtness at
eigmﬁcantly lower capital costs and is the most preferable sequence practiced in North
American mills (Singh, 1979). The first alkaline extraction stage (E) of a Chlorinated :
(C bleached) kraft pulp is of great chemical and ecofmfnica.l impert'ance (Axegard,
1979) and'is normally the 2nd stage in the commercial multi-stage pulp bleaching.
process. It substantially completesvthe process of the pulp purification which begins in
the chlorination (C) stage. Together with other techniques, it has made possible the
manufacture of stronger sulﬁte and sulfate pulp and paper of higher brightness. It has
played a signjﬁeant role in .improvin’g the pulp cleanliness and it has paid for itself by
reducing the bleach demand and by producing a stable brightness in the finished pulp.
It is not a bleaching stage in itself but is a continuation of the delignigication in the
' preeeding stage. It accounts for one half or more of the CE lignification.

When unbleached woodpulp arrives at the bleach plant, it still contains enough
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'-amoﬁnts of ﬁgoin and other chromophores and encrustants. In order to remove as
much of the residual lignin as feasible without damaging the pulp, the pulp is normally
first .chlorina.t'ed To irn’prove the pulp quality, a caustic extraction stage follows to

minimize expendjtures for more costly ox1d1z1ng chemicals by removmg the alkahne '

, ,soluble portlon of the hgmn from the woodpulp The caustic soda reacts w1th chlorl-

| nated llgmn as well as w1th the hypochlonc acid formed dunng chlorination. Fmally,
' 'sma_ll amount binds to the cellulose itself. Three steps are ge_nerally required followmg
the washing of the chlorinated pulp: (a) ﬁﬁxing of caustic solution '(eodium hydroﬁcide) ,
~with the pulp (b) heating to the desu'ed temperature, and (c) retentlon to complete v
. the reaction. The -reaction time is usua.lly from 50 to 100 xmnutes dependlng on the
grade of the pulp to be bleached.” One of the most 1mportant variables that affects
the pulp quality is the pH at the end of that stage, i.e. at the exit of the first ce:ustic
extraction tower. The pH of the feed stream is arouﬁd 2, while the target pH after-the
- tower is usually between 10 and 10.5. It is of great _importa.nce both chemical and eco-.
" nomical to keep its value as more constant as possible and close to specifications. (in' the
range' 10-12). Low: pH values degrade the pulp quality where large values prove to be
of no substa.ntla.l benefit since the cost of the additional consumed caustic is very hxgh
Thus one must operate this plant at m1mma.1 caustic consumptlon wh.lle maintaining
pulp quality. A good control scheme will allow keeping the pulp pH in acceptable good

levels while minimizing the consumption of sodium hydroxide. Lab tests indicate that

the titration curve of the reaction displays the characteristics of a strong acid, strong

base rea.ctlon (see Figure 6.42). Afound the 10.2 - 10.3 pH set poi.nt significant gain
changes make the control of the pH rather challenging. This difficulty is compounded
by the fact that the buffering effect provided by the aqueous system may vary and by

the time-varying nature of the dynamics. In particular, because of the propensity of
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Figure 6.42: Titration curve of the caustic extraction.

the flowdown tower for channelling, the dead time in the process can be highly vari-
. able. Because, the Lagﬁerre self—@uner is robust and efficient in presence of unknown
'ar.ld' varyingb dead-times, ‘we.s'ee th.is lobp as a good industrial benchmark. Our main
purﬁoée is to test the Laguerre self-tuner, and compare it to the existing scheme in
similar circumstaﬁces. Ideally, for this particular problefn, one may want to combine
this scheme with the adaptive chemical invariant technique éf Waller and Gustafsson

(1982), although our current knowledge of the reaction chemistry may prevent this.

Figure 6.43 shows the process and instrumentation diagrarh of the first alkaline
extraction stage of a mill’s bleaching process. The industrial control scheme uses 2
- PID controllers in cascade loop mo'dé, as shown on Figure 6.44.. Only the Proportional
and Integral part of the PID .controller are used by the mill’s personnel v;rhile the
Derivative term is zero. This cé.sca.de conﬁgura.tién is justified by the long retention
time in the tower. The tuning of thé internal pneumatic PI controller is relatively easy

since it does not involve any long dead time. The tuning of the outer digital PI presents
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Figure 6.43: Bleach Plant. 1** Alkaline Extraction stage.

serimisl proAblems-due to-the long retentioﬁ time involved in the first caustic tower (40
~ to 70 minutes) and the inherent strong non-linearity of the loop. Figure 6.45 shows an
open-loop step response of the outer loop (i.e. when the outer PI is removed and the
loop is opened). The dead time is in the range of 40 to 50 minutes and the settling
time 50 to 70 minutes. The dead time is thus dominant and varies as va. function of the
production rate and because of the propencity fér channelling in the tower. Because
of this, this outer loop is in manual mode more often than not. Figuré 6.46 shows the
tower exit pH under PI coﬁputer control, when the latter is performing at its best.

Note the existence of an offset, as the setpoint is 10.2.

The choice of an adaptive controller over a fixed controller for this loop is"justified
by the poor knowledge of the time-varying nature of the dynamics and especially of the
dead time. This latter however, seriously complicétes the design of an adaptive control
scheme, using standard techniques. With respect to the model order, if an ARMAX

model was to be used then increasing its order means change in all parameters and as a



Chapter 6. An Industrial Application . ‘ ' .. 115

" Pulp Stock .
: Spent scrubber caustic
(BEINF) | | Steo_am
- Caustic e Retention . B
Target BEIPHS Flow | | Tube Ezit
pH + : + "1 ‘Mizing | - [~ Eztraction _pH
—P— PI —D— PI - J = Tube |— -
oy L - N Stagea : : ‘ Towerv 1
.. . Computer Pneumatic -
" Driven Valve Controller -
. Controller
BE1PH
BEIPHZ | -
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result a sxgmﬁcant transient. Thls is why we choose an kadaptlve controller based on'a -
Laguerre series representation of the plant dynamics. The time delay is then 1mphc1tly‘
" identified as part of the Laguerre model and is not gue.s.sed as an extra parameter. Any
required increase on the model order on-the-fly will not fheoretically affect the low
érder Laguerre gains during the identification. | » |

The algorithm was implemented in the Canadian Forest Products Ltd. Howe Sound
pulp division kraft mill that produces about 670 tpd of market puip. For the imple-:
mentation of the adaptive controller, tlre outer PI was removed and the new self-tuner
was applied in its place. The inner PI loop was left intact since the inner PI was
an integral part of the contrr:l valve that manipulates the caustic ﬁow and it never
presented any problems. The algorithm was implemented in Fortran IV on the mill
process control computer, a PDP-11/44 running under RSX-11M. The following pa- -

rameters were chosen: sampling time T = 8 min , number of filters N = 15, Laguerre
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- pole p = 2.0, predlctlon horizon d- = 9, drlver block pole @ = 0. 5 To. initialize the

.parameter estimate vector c, we simulated a process Wlth a response smnla.r to that of

- Figure 6.45 and used the corresponding Laguerre gains. Figure 6.47 compares, on the
. same graph, the performance of the new self-tuning scheme to the previously used one. |

- The target exit pH (BElPHZ) was 10. 3. The graph shows a total of 2000 vpoints each

o .‘pomt representmg 3 min, from September 2,04:18 a. m, to September 6, 08:15 a.m. The .

new self-tuner in its final form was applied on September 4, 11.32.e.m. (1106"‘ pomt

on the graph)' The initial transient period of the Lagﬁerre self—tuner, clea.rly shown on
" the graph indicates the adaptatlon penod to the dynarmcs of the plant. The period

'. tha.t follows is indicative of the good regulation performance of the self—tuner The time
period between the 684 and 792** point on the graph (i.e. September 3, 14:30 - 16:18)
was a short experimental test of the new self-tuning algorithm based on zero initial pa-
rameter estimates. Figure 6.48 shows a step response of the identified model using the
: 1dent1ﬁed La.guerre gains as recorded at September 4, 20:45 p. m. The 15 gains are given
in Table 6.3. Figure 6.49 shows the output u of the self-tuning controller (BE1PHS),

: Laguerre Gains -

-3.822E-04 || 6 | -0.181398 || 11 | -0.14379590
1.4819E-03 |} 7 | -1.167197 | 12 | -9.2454E-02
7.8450E-04 || 8 [ -2.271191 || 13 | -2.1657E-02
1.1495E-02 || 9 | -0.939344 {| 14 | -2.1010E-02
2.1095E-02 || 10 | -0.640596 || 15 | 5.83940E-03

(S, 4 Y- K] 0

Table 6.3: The 15 Laguerre gains as recorded at September 4, 20:45.

i.e. the setpoint for the inner loop. Some of the flat leveled portions of this variable
in the first half of this plot represent manual control by the bleach plant operators in
their effort to control efficiently the exit pH by combining both computer and manual
control. Figure 6.50 shows the caustic (NaOH) flow (BEINF) as it was manipulated



Chvapter 6. An IndustriaI‘Application - o _ 118

vby_the inner PI controller. Fibgure 6.51 shows the pIH obfained from a pH-probe inside
'andvhear‘ the entrance of the J-Tube (BE1PH). The results clearly shé\;v the superior
- performance of f;h'e new self—tﬁ.hing scheme and its excellent reéulation capabilities
- despite disturbances caused by the first chlorination stage, by pulp stock flow, and b;y.
the additive spent scrubber caustic (mainly sodiuni hypochlorite (NaOCl) and NaOH)
’ and ‘(‘)xygen flows. The long-term performance of the new self-t,uning scheme was also
tested by leavin.g the loop under ada.ptive. control _foi' a period of over 6 months. Fig-
uré 6.52 presents a typical 2-day run (960 points) for the period 28-30‘Novem_befr, 28
, 1987.. Figure 6.53 éompares the autocorrelations obtained_‘for the pH outbu’t between
the loop 'ﬁnder manual/PID control (0-1105 points on Figure 6.47) and the loop"'undevr
. self-tuning control (Figure 6.52). A disandvantage of the PID controller is that in order -
| to stay at a good level of performance, it has to be rétuned ‘periodica.lly.v In addition, the
pH probes have to periodicélly cleaned or replaced, thus resulting in changes in process :
gains requiring retuning of t.he PID controller. A significant benefit of the 'adaptive
.' coptroller for the mill, is that vprobes cén be replaced and cleaned with no féquifement
for retuning, as the adaptive controller wiﬁ autom#tica.lly adjust its paramefers to the
new conditions. |
A major advantage of the Laguerre self-tuner is thét it is easy to use and .rgqtiires
very little a-priori knowledge. Indeed, once the software was ported to the mill process
“ computer, the scheme was commisioned .in less than two working days. The purpose of
this work was to demonstrate the potential of the Laguerre self-tuner in an industrial
setting,_not to deliver a new pH control loop to the mill. Howéver, due to these
successful tests the algorithm has bet;,n left in operation. As the current software
was not written for continuous indﬁstria.l operation, it has to be modified slightly. In
" particular, the usual jacketting for long-term operation has to be included. Also, the

operators need training with the new system. Indeed, some of them not used to see
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Figure 6.47: ﬁH loop. Comparison of regulation performances. 3 nﬁn/sample-point.

an active controller switch to manual control when the feel the controller is taking too
much control action. A generic version of the algorithm would be very useful for use

~ as a general-purpose controller for difficult loops in other parts of the mill.
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Figure 6.49: Self-tuner output in pH values. 3 min/sample-point.
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Figure 6.50: Alkaline extraction stage. Caustic flow. 3 min/sample-point.
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Autocorrelation comparisons:
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Figure 6.53: Autocorrelation comparisons between the PvID/Ma.nual and Self-tuner
performance on the pH loop. -



Chapter 7

"Using other orthonormal sets"

7.1° A modified Laguerre set

So far the app-roach to solving the adaptive self-tuning control p;'oblem using orthonor-
mal fvunctionsb has dealt mainljr with Laguerre functions. Laguerre functions proved to
be quite suita;ble for the identification of linear dynamical systerﬁs and for tlﬁe (ievélops
ment of self-timing control strategies. However, the rﬁethod is not é‘t all réstriétive énd

other orthonormal functiéns caﬁ be used. Laguerre proved to be a good cahdidate, for
implementing self-tuning control strategies because of their efficient way of handling
time delays and transient signals. As an extension to this well-proven orthonormal set
ibt is important to study the location of the poles of those funétions in the ffequency E
domain. By iﬁspection,' the poles of the Laguerre functions in the s-domajri afe all real
and lie at the point —p. An immediate modification Would be to have the poles lie af

different real locations, —p1, —Da, —pn - For simplicity, these poles could be

vaey

located in equally-spaced points on the negative real axis between 2 boundary points.

Then the Laplace transform of the n*h such function would be, (Kautz, 1954),

'Fn(s.) = \/2; Lop) (mp) 0 Gope) ’ (7.203)

(s+p1) (s+p2) -+ (s+pn1) (s+pn)

Such a set of orthonormal functions could be représented by the Ladder Network of
Figure 7.54. Note that in contrast with the Laguerre Ladder Network (Figure 2.2 the

all-pass phase- shift chain is now a lead- lag chain.

124
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u(t) | ut) NG ] wy
v/2p; : (s=p1) : i 8—Dy . ;
6+5:~ _ \/Ef(H'P;) r”--.- - V;%ET (a+pn;'

T1 T2 TN
y(t) : —
-— Summing Circuit

Figure 7.54: Modified Laguerre Ladder Netwbrk.
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- It will be noted that the zeros of each of these functions is located at the negatives
of the poles except.for the new pole not present.in the previous function. Expanding.
each function into partial fractions and performing an inverse Laplace transform we
. get, ,

: v L _
i=1 S )

whére Yin is the (real) residue in the pole at —p; of the F,(s). -

.A‘pplying‘thteﬁsa.me‘ technique as in Sections 2.2.4 and 2.3 we can represent the
. orthonormal Ladder Network of Figure 7.54 in state-space form. In particular, defining

‘the N-dimensional s#ate vector {(t) as, -
_LT(t)—“:[ll’(t) L(t) ... In(t)] o o (r.208)

this state-space formula.tioﬁ h@s now the férm, o
Ut +1) = AL(2) + bu(t) | | (7.206)

A is again a lower triangular NV x N matrix where the same elements are found respec-

tively across the diagonal or every subdiagonal. If T is the sampling period then,

B " | : 0 0]
4 pzn&zf'fﬂ - o 0
| (BB O e ) (BRI ML) -+ ppB3R2 7 |
(7.207)
and ‘
8 =1¢ (¢/Thpapa - (§/TV)ppi Mo ] (7:208)
where, |

7= e BT
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. Pi-1
Pi = —

Pi .
=T+ (pi-1 + pi)(7  — 1)/(pi-1pi)

v = =T7i —(pi-1 + Pi_)("'i - 1)/(1’-’,—117:')

¢ = /2001 - )/

The advantage of using such an _‘ orthonormal set ‘of functiohs is tha;t--orte could
specify a range on the negative real axis for the location of the real poles p,- instead of.
just a single point. This will in effect provide wider covere.ge on the assumption of the

. dominant time-constant ef ah unknown plant when starting the identihcation, '
The developrhent of output predictive expressions and self-tuﬁing s'chernes,. either

i

deternnmstlc or stochastic, based on the above set follow exactly the same procedures

' : outhned for the Laguerre set in Chapters 3, 4, respectlvely Multivariable schemes o

follow exactly the procedures outlined in Chapter 5.

7.2 A set with discrete complex exponentials

In dealing with the problem of signal analysis, one set of very useful eompbonent func-
tions is the orthonormal exponential functions. Previous studies have concentrated
mostly, on continuous exponentials with reel exponents. The werk so far in this thesis
emphasized mostly exponential fuhctions' with real exponents because of their simplic-
ity. The motivation to develop a new set with complex polee is twofold. The first is
to reduce the number of filters required for the identification of hnderdamped systems.
This is particularly important for parsimonious identification of multivariable systems
that exhibit underdamped oscillations in their response. Second, according to studies
on signal representation (Young and Huggins, 1962), for nearly all classes of signals the

exponents of an optimum least;squa.res representation have turned out to be complex.
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As a result, we shall devote our. effort in this section toward éhe derivation of iden-
~ tification and control schemes based on discrete expénen‘tial functions with complex
_exponents. | |

| The Z-traﬁsforms of continuous orthonormal exponentials ai'e not thenisglves 'or—.
‘t,hogonal in Z-domain. To avoid this difficulty, we 'chqose'at the outset, discrete basis. -
'funqtions whiéh are orthogonal in the z-domain and have poles in the z-domain cor-
respondihg to the s-domain poles of the continuous orthonon-nal exponentials. ‘The
ZETos are diﬁ'erent; however, a.lt.hough they are chbsen in such @ way that as the sam-
pling interval,approa.ches zero, the chosen basis functions will approach the ls’-domain
orthonormal exponentials (Young and Huggins, 1962). Given a set of exponential func- ‘
tions wifh poles at —pi £ jqx, (pr > 0), a set of orthonormal exponential functions may

be constructed in the frequency domain as follows,

) (P —astB) o
FZk 1(3)—b2k 1(.9 +ak3+,3k H(s +a,S+ﬂ,) o (7209)

k.—l
: - ~ a5 + )
pia) m () (o s
2k(5) 2k( ¥ ans + Br) 11 (57 + s +,3 )

,".:1

(7.210)
wheré,
k = —Pk + Jqk, = —Pk ~ jdk
aj = 2py, Be=ri+ai’
i.e. the zeros of thevpolynomia.l (32 + ars + (i) are: —pi £ jqr. And the constants b
" are the normalization constants. The zeros 4] can be chosen rather arbitrarly under

the restriction of orthogonality,

1 i -
55 Fk (For(s)ds =0 (7.211)

which in our case is equivalent to: 7}, ;75 = Ok- (Note that: “*” stands for complex
2k—-172k

conjugate). As we mentioned before orthogonality in' the s-domain does not yield
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‘ orthogonality in the z-domain repfesgntativés of these continuous fﬁnctionsf Therefore;
.' we would be more intel;ested in defiving a discrete orthonormal set of exponential
functions with poles in the z-domain related fo the poles in the s-domain iﬂ such a way
~ that, v | |
. T _ 'ev(—p.vu+jqk)T,

2 = e’*

* M —DE—1
4o = eHiT = gmmi)T

Generally spea,kinlg,’ picking N pairs of s-plane complex poles (sg,s;) then we can

construct a d'isc.rete set of orthonormal functions as follows,

: S 1- 'sz_1q‘l) = M (Zi — q-l)(z:' — q_l)
Fyy_ 1) = byp ( : i2; : (7.212
ok 1(g7") 2k 1(1 21— z2q-1) il;]l:zz, (= 2 )1 = 274D (7.212)

o B CE o s NI ~ S T o) | et o) I
Fola) = b ( , 2" i 7.213
| _Zk(q' )= b (1 2 zq™) 131 Flh-m)i-zey )
where the 7; satisfy the orthogonality condition,
' 1
2m3T

FE@E/z=0, i#tj (7.214)

and the b; satisfy the normality condition,

1 1
_— (g~ (q)d = . .
3o f Fr@ T E(e)dz/z = 1 (7.215)
The contour of integration was taken along the unit circle. In that way as the sam-
pling interval T approaches zero, the discrete orthonormal exponentials approach the

ordinary continuous exponential functions. From equation (7.214) we can derive the

following expression for the «;,

_ Yae-1(Z2k-1 + 25%-1) = (1 + zok-123_,)

= 7.216
T (T ¥ 22e123n) — (7ot + Z3k_1) ( A )

and from equation (7.215) we can derive the following expression for the b;,
p == 2%)( - 51— 27 (7.217)

P (A z27) - 2z + 2)
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" where J = integer quotient ‘of[(i +1)/2]. One advantaée of orthonormal exponentials is
tile. relative simplicity in constructing an orthonormal ﬁlte.r by E_as_cading a number of
filter sections as shown in Figure 7.55. Each filter U;(¢™") in F'igure 7.55 is a unitary
operafor and z;(t) is 1ts output. The .U, are of thé- form, o |

(zi—q )z —q7")

| 4'(%'.2'18)-

SRAUI e s ey N
and the functions L; are giveh by the formula, |
' S ' . g L T
Li(g™) = b3 | (7.219)

| (1= zq)(1 - zq7")
where j = integer quotient 6f[(i +1)/2). |

The discrete zeros (v;) and poles (z;) are computed from their s-plane counterparts.
To simplify the choice of the (s-plane) zeros and poles a r_ather- simple 'procedure is .
suggested where a sérrxi—circular array of poles with eqﬁidista';lt real-pért spacing is
constructed. This requires only the radius of the LHP semi-circle. The real zeros of
the o’dd-numbéred filters have the same real part as the correspoﬁdent poles of the
associated set and the zeros of the even-numbered f@ctions are simply f:alcula.t‘ed frorh
‘equation (7.216). If the number N of filters is odd then the last zero is the negative
real part (i.e mirror image) of the real part of corresponding complex pole. It will be
recalled that a semi-circular array of poles has proved useful for the reproduction of

signal irregularities and discontinuities (Kautz, 1954). |
The ;)utputs z) from the unitary operators in Figure 7.55 can be expressed using
the formula, | | |
r(t) = Yop—1,1%k(t — 1) + Yor-12Tk(t — 2)
+ ’i:("-1')k_i{¢2i+3..21/’2i+5,2 aE ¢2k71,2[(¢2i+1,2¢2£—1,1 + Paig11)zi(t — 1)
C (1~ frigur )t — 2)]}

+ (= 1) ehoprz - - Yazlthr 2u(t) + Py yult — 1) — u(t — 2)] (7.220)
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Figure 7.55: Ladder Network for the orthonormal set of functions with complex poles.
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where,

v >. Yip = zj+ 2] ¢zj,2 = —zzj ‘ - (7.221)
where j = intéger quotient of[(i‘--{- 1)/2]. Predictive expressions can now be derived for
.the outputs [; (see'Figui‘e 7.55) based on predictive _expressionsfor :c, We can derive
(in t.he_ vsame.wa._y as it was described in Chapter 3) the general formula fot ,tr_heA d-step |
ahead predictive expression of the outputs ;. As aﬁ example the pf‘edictiﬁ_ exf)'x.'ession‘sA :

for the first two functions (i=1,2) are, -

e d) = [ws‘l%(dl'!”xbz‘;%nﬁt@“—%ﬂwd v
8 s
+(d—42(d—51€d—6)(d—7) 54 L)
SN CEL PN LS ICED P

d-aE=5)(d=5)

]l(t—l)

3' i1 :2
shlipgt + 2Dy, o (228 sy
+(d"4)(d;!5)(d_6) CTYS - u(t) —u(t— 1) (1.222)

A predictive expression for the output y(¢) can then be derived based on the pre-
~ dictive expressions of the functions [, (i =1,...,N). In general terms this could be

expressed as,

gt +d) =Y (L), o In(t), h(t = 1),...,In(t = 1), u(t),u(t — 1)) (7.223)

Defining a reference trajectory in the same way as we did in Chapter 3 and equating it
to the function in the r.h.s. of the above equation then the required control input can

be computed in order to complete the self-tuning closed-loop scheme,

w(t) = U (gt + d), y(t), u(t),ult — 1), 4(2), .., In(t), it = 1), ..., In(t — 1)) (7.224)



‘Chapter 7. USing other orthonormal sets =~ - _ S o 133

The'example that follows shows simulation results that illustrate the use of this or-
thonorrnal set w1th cornplex poles for identification purposes.
Example 7. 1 Con51der the 27 order underdamped non- minimum phase plant of

‘the form, : S
- (1+1.5¢71Y) .
(1- q‘1 +0. 72q72)

' .'Measurement Toise of c=20. 1 was added to the output and then an open loop lden-

Gla) =

| ('7.5225")

txﬁcatlon expenrnent was performed by 1nJect1ng 3 PRBS of 64 pomts to the 1nput
The purpose‘of the 1dent1ﬁcat1on was to evaluate the set with complex e:;ponentlal_s :
: and vcomp'a.re,it with_the regular Laguerre set. Both sets pel'formed Well, and as ex-
pected the corhple’x set used less filters (6 instead of 12) to achieve the saxne identifica-
tion accuracy This is advantageous espec1ally When the plant ] response is. osc1llatory '
: ‘or when 1mplement1ng multivariable schemes of underdamped systems Flgure 7.56
(N =12,p = 0.7, = 0.7) and Figure 7.57 (N =. 6,Radius = 0.9,a = 0.7) show

the step responses in both cases and compare them with the plant’s true one. Fig-

ure. 7. 58 shows the companson between the obtained Bode ‘plots of the true plant and -

the 1dent1ﬁed one when using the set of complex exponentials.

It is worth-while to mention here that the complex set performed also well on -~

identifying plants with overdamped responses and on plants exhibiting rather long

time delays.
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a. - v v v . —

AMPLITUDE

0 . . . . ,
0. S 10, 18, 20. 28, 30. 35. 0.
TIME (SECS)

- Figure 7.56: Example 7.1: Step-response comparison of the true plant (solid) and the
identified one (dash line) using the Laguerre set (N =12). '

a. v v v r v ~ —

AMPLITUDE

o s —_— —_ N - " "
0. 5. 10. 18. 20. 25. 30. 35. 40. -

TIME (SECS)

Figure 7.57: Example 7.1: Step-response comparison of the true plant (solid) and the
identified one (dash line) using the Complex set (N =6).
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Figure 7.58: Examplé 7.1: Bode-plot comparison of the true plant (solid) and the
identified one (dash line) using the Complex set (N = 6).
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Conclusions

In this thesis a new approach was-taken to the self-tuning -probiem. The usual AR-
MAX representation of a dynamical éyste_rn was abandoned for a representation by
an"ovrthonorma,l series. The simple orthonormal Laguefre Ladder vNev:twotk was first
used for the derivation of these new éelf-tunibng schemes. . vThey} préved to be robust,
simple to use, not critical in initial -paraineter sett_iﬁgs a,n'd capable of producing good -
- control. Stability results have been obtajned for the deterministic explicit self- tuning.
modéls and for some stochastic schemes. Deterministic, stochastic, single-input-single-
.out'put and multivariable schemes have been derived and were extensively tested on-
simulations. The proposed control schemes were designed using easily understood con-
cepts,.required‘rninjma.l a-priori informatioﬁ, and proved capable of coping with some
of the pfoblems usually found in an industrial environment. They showed advantag.es
of simplicity and flexibility while capable of achieving good control performance. In-
vestigation has shown that the case is not at all restrictive and other orthonormal
functions can also be used, although Laguerre functions proved to be a good choice for
systems exhibiting time-delays and transient-signal responses. Some further examples .
» were. given based on a modified Laguerre set of functions and on a set of functions with
compl'ex exponential poles. Both these latter sets performed well and showed good
identification capabilities.

An industrial application was presented. One of these nevﬂy developed self-tuning

schemes was tested on a real industrial bleach plant. The new self-tuner behaved well

136
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| and 1t prov1ded good control to a non-linear pH loop that exhlblted a variable lengthy '
dead time. The results were Well received by the mill’s personnel because they- meant a’
better loop performance to the bleach plant operators and process engineers -a.long,w1th
substantial savings on the operational costs to the management., The new self-tuner
~proved to be Arobust, simi)le to‘ use, capable of handling time delays and non-rxﬁnimum
phase plants, abie to rejé;t dis_turba.nées, and required minimal a prio;i infdrmation. |

The developed schemes in this thesis are only good for stable plants. The numerical
properties of the algorithms (irﬁplemented in single-precision), proved‘to' be sound for
a proper choice Qf pand T afxd for N <16. The orthonormal sets that were reported in
‘this dissertation provided good control for a certain class of systems but some other sets
| may be used or derived depending on the type of applications. Other control laws (e.g.
state space methods) may,\be also tried out. An advantage of the.teéhniques px}esented
is that by 'a.dding an éxternal white noise to the contrél input then'the.identiﬁcation
gives unbiased estimates even if the output diéturbance is correlated noise. A problem
that was found common with the ARMAX-based éelf-tuners re'la,ted to the sometimes
irregular initial transient period, i.e. before the identification converged. It was found
that the value of the constant a of the reference trajectory could be adjusted accordmgly
to correct some of these problems. -

Further research could be undertaken towards in-depth investigation of the theo-
retical properties of the algorithms and to present analytical results on their behaviour
when compared with other existing schemes. From the application point of view a more
rugged version of these control schemes can be developed as part of an expert-based
system with main objectives being to simplify the applicafion to a wide variety of pro-
cesses, minimize processor load and'men:_lory requirements, handle bumpless transfer

from manual to auto, and handle large process disturbances smoothly.
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