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ABSTRACT 

The relational database system has achieved widespread popularity; however, it is 

still very difficult for users, even those trained in the relational model, to 

formulate relational queries. The major cause of the difficulties is the fact that 

the user and the database system communicate using constructs that are not 

closely related to the user's world. 

This dissertation develops a new level of user-database interaction — the 

knowledge level (KL) interface — where the user and the database system 

exchange only knowledge of the domain. The data structure used in the database 

is fully hidden from the user. In this way, the query is very closely related to 

the user's world. 

Under the new KL approach, the database system is no longer seen as a store 

of data. It is set up as an agent to know the domain knowledge told to it by 

the user. The system will then provide the knowledge required by the user 

during retrievals. It will use elements of the entity-relationship model for 

communicating knowledge about the real world with the user. 

It is shown that the KL interface is in many ways better than the relational 

interface. Users of the KL interface need to know less and perform fewer data 

manipulation operations than users of the relational interface. The KL interface 

also achieves both physical and logical data independence, unlike the relational 

system which does not truly achieve logical data independence. 
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This dissertation also proposes a new approach to understanding the meaning of 

completeness of a query language, breaking away from the traditional 

calculus-based measure of completeness. This new approach is then applied to the 

development of the knowledge level interface. 

The main contributions of this dissertation are the proposal and development of a 

knowledge level interface, the anaylsis to show that this interface is better than 

the relational interface, and the demonstration that such an interface is feasible 

even for large databases. 
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I. INTRODUCTION 

A. T H E U S E R - D A T A B A S E I N T E R F A C E 

The user interface to a database system is an important research area, since a 

better interface allows the user easier interaction with the database and allows 

the programmer/user to formulate queries faster and more accurately 

(Chamberlain 1980). 

There have been numerous research efforts in this area. The more recent 

examples include Albano et al. 1985, Atzeni and Chen 1981, Brady and 

Dampney 1987, Campbell et al. 1985 and more than twenty others in the 

references. Some works on the user interface are more technical, such as testing 

for completeness and increasing the computational efficiency in processing queries 

(for example, Merrett 1978, Atzeni and Chen 1981, Klug 1982, Campbell et al. 

1985, Sellis 1988). Some works are more behavioral, such as measuring the time 

taken by the users to learn a query language and the accuracy of the user 

formulated queries (for example, Welty 1985, Jarke and Vassiliou 1985, Reisner 

1981, Welty and Stemple 1981, Chamberlain 1980, Greenbalt and Waxman 

1978). Other works develop new query languages and query displays (for 

example, Codd 1978, Harris 1980, Burgess 1984, Flory and March 1984, Fogg 

1984, Kaplan 1984,' Vossen and Brosda 1985, White 1985, Templeton and 

Burger 1986). 

Despite the considerable amount of research, the problem remains that user 

interfaces are complicated for users, even those who are trained (Tsur and 

1 



2 

Zaniolo 1984, Welty 1985, Motro 1986). 

B. THE LOGICAL DATA LEVEL INTERFACE 

The major difficulties in the user-database interface arise because the user has to 

deal with unfamiliar data objects, such as relations and fields, in the database 

(Poonen 1979, Templeton and Burger 1986, Junet 1987), and because the user 

has to carefully manipulate many pieces of these data elements in order to 

specify simple real world concepts. 

The query system for a relational data model (RDM) is the standard example of 

such an interface. The user has to know the relations in the database, and he 

has to perform operations on the relations and their columns. 

We will use the term logical data level interface to refer to this level of 

interaction where the user needs to know and manipulate the data elements in 

the database. 

C. OBJECTIVES OF THE DISSERTATION 

This dissertation aims to develop a new level of interface — the knowledge level 

interface — that will eliminate the difficulties of the logical data level interface. 

The main thrust of the dissertation will be the conceptual development of a new 

knowledge level approach to interacting with a database system. To provide 

support for the new approach, a comparative analysis will be done to show the 

advantages of the new approach over the logical data level approach. Additional 
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supportive work will be done to demonstrate the feasibility of the new approach. 

In general, a user-database interface allows for the three main functions of 

insertion, deletion and retrieval of information. It also has many management 

functions such as locking, unlocking, triggers, security settings, backup, and 

recovery. The design and development of these management functions at the 

knowledge level will not be part of the dissertation. 

D. CONTRIBUTIONS OF T H E DISSERTATION 

The theoretical contributions of this dissertation include: 

1. The development of a clear knowledge level approach for the user to 

interact with the database system. This approach is distinctively new, and 

it solves many difficulties of the existing logical data level interface. 

Furthermore, this approach is not tied to any specific data model or 

conceptual model. 

2. The development of a new approach to defining the completeness of a 

query language. 

3. The development of a knowledge level interface using the elements of the 

entity relationship (ER) model. Quite a few languages have been proposed 

for the ER model. The one developed here is explicitly designed for the 

knowledge level and makes no reference to logical data constructs, unlike 

many of the existing ER languages. The interface is also more 

comprehensive, for example, in its treatment of IS A relationships and 

inheritances. A more detailed comparison of this KL interface and the 

existing ER languages is given in Appendix F. 
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4. A clear analysis of problems associated with the logical data level, in terms 

of the knowledge and the data manipulation operation requirements, and 

how these difficulties are avoided. 

5. A demonstration that the knowledge level approach is practically possible, 

even for large database systems. 

On the practical side, the knowledge level interface can lead to: 

1. Higher productivity in query writing. This will apply to both programmers 

and other users. Since they need to know less and do less, higher 

productivity can be expected. 

2. Easier interfacing with the database for all users, through reduction of the 

knowledge and operations required of the user. 

3. The possible elimination of the manual task involved in the logical design of 

a database, thus leading to higher designer productivity. 

E . O U T L I N E O F T H E T H E S I S 

The difficulties of the logical data level interface will be presented in detail in 

Chapter II. Chapter III discusses the research methodology, describing the 

hypotheses and the methods used to verify the hypotheses. Chapter IV gives a 

description of the abstraction levels commonly used in studies of information 

systems. Chapter V introduces the knowledge level and proposes a new way of 

viewing a database management system (DBMS). The new approach views a 

DBMS as a knowledge agent rather than a store of data. 

Chapter VI develops a knowledge level interface using elements of the 
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entity-relationship model. The development is based on a new approach to the 

issue of language completeness. A specific language — KQL — is defined for the 

interface. 

Chapter VII shows how the users of the knowledge level interface need to know 

less and perform fewer data manipulation operations than the users of the 

relational interface. It also shows how the difficulties of the logical data level 

interface shown in Chapter II are avoided. 

The implementation of the knowledge level language using Prolog is described in 

Chapter VIII. Chapter IX shows a method for building the knowledge level 

system on top of a relational DBMS. Lastly, Chapter X concludes with the 

major contributions of the research and discusses the interesting future work. 



II. QUERY DIFFICULTIES OF THE RELATIONAL D A T A MODEL 

During the development of the three classical data models — the relational 

model, the network model and the hierarchical model — there were many 

debates and much research on which was the best model. It has since been 

generally agreed that the relational model is the best of the three when it 

comes to the user interface (Lochovsky and Tsichritzis 1977, Date 1982, 

Goldstein 1985). Date (1982, p485) writes, "It is generally accepted that 

nonprogramming users, at least, will require a relational view of the database." 

The dominance of the relational model is also evident in the large number of 

commercial relational database management systems t. Hence we will limit the 

discussion of the logical data level query difficulties to the best data model. Since 

SQL is the ANSI standard for relational database query, we will use SQL to 

illustrate relational queries and as a benchmark against which to evaluate the 

new knowledge level interface. 

The relational model has been widely criticized for many weaknesses in 

representing real world semantics (Codd 1979). The weaknesses include semantic 

overloading of the relation structure (that is, a relation represents anything and 

everything), atomic domains, orientation toward computer processing in requiring 

non-redundancy, and lack of good representations for special relationships such as 

specialization, generalization and aggregation (Xie 1986, Smith and Smith 1977). 

A poor database design can make queries difficult or even impossible. However, 

tThese include relational database machines such as A D A B A S Database Machine, 
Teradata machines and IDM 500, mainframe DBMSs such as DB2, INGRES and 
Oracle, and many microcomputer DBMSs such as the 31 DBMSs reviewed in 
PC Magazine, Vol. 7, No. 9, May 17, 1988. 
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a good design does not guarantee easy queries since the criteria for good designs 

and easy queries are very different. Design criteria emphasize the ability to 

represent the real world. Physical design and, sometimes, higher level designs 

emphasize computational efficiency. Query criteria emphasize the ease and ability 

to extract knowledge of the real world from the database, and these are more 

human-oriented. 

There are many topics that will not concern a database designer but are very 

important to the user making the query. For example, a difficult topic in query 

writing is the use of aggregate functions. Queries often involve the use of 

functions such as A L L , COUNT, SUM, and AVERAGE. However, these are not 

considered during design. 

We will focus on the major difficulties in querying a relational database. 

1. Integrity and Consistency Maintenance 

It is tedious for the user to maintain the integrity and consistency of a 

relational database. Consider, for example, the constraint that when an entity is 

deleted, all its relationships have to be deleted as well. When the user deletes a 

tuple (in a relation) that represents an entity, he must go through the other 

relations that represent relationships involving this entity. In addition, the entity 

may be represented by more than one relation. The user has to perform 

different actions, depending on how the entity and its relationships are being 

represented by the relations. The user may have to delete tuples in another 

relation, he may have to set a column of some tuples in another relation to 
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null, he may have to set multiple columns to null, or he may have to do all of 

these operations. 

Consider the following hypothetical set of relations: 

SUPPLIER(SNO, NAME, CITY) 

PART(PNO, NAME, DESCRIPTION) 

SUPPLY(SNO, PNO, PRICE, QTY) 

DEPT(DNO, NAME, LOCATION, SNO) 

CAR(CNO, TYPE, SNO, PRICE, QTY) 

The relation SUPPLY represents the attributes PRICE and QTY of the 

relationship between a supplier and a part. A supplier can supply many parts, 

and a part can be supplied by many suppliers. The relation DEPT shows the 

attributes of a department as well as the SNO of the supplier that a 

department is in charge of. A department is only in charge of one supplier. The 

relation CAR shows the attributes CNO and TYPE of a car as well as the 

SNO of the supplier supplying the car and the attributes PRICE and QTY of 

this relationship. A car is supplied by only one supplier, and one supplier can 

only supply one car. 

In this case, deleting a tuple in SUPPLIER with SNO value of, say, 'SI' will 

require deleting each tuple in SUPPLY that has SNO value of 'Si', finding each 

tuple in DEPT with SNO value of 'Si' and setting its SNO value to null, and 

also finding each tuple in CAR with SNO value of 'Si' and setting its SNO, 

PRICE and QTY values to null. 
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These actions are not only tedious, they also require the user to know the 

database structure thoroughly. 

To alleviate the user's tasks, some relational DBMSs such as INGRES provide 

for integrity rules and triggers to be defined by the user/designer. These triggers 

will automatically perform the actions resulting from deleting a tuple in the 

relation SUPPLIER. However, rule and trigger definition is tedious as every 

integrity constraint has to be defined for each and every application and for 

every part of the database. The definition of triggers cannot be automated, at 

least not without considerable constraint on the naming of columns and the 

design of relations. This is because the relational model does not provide the 

database system with sufficient information on how the tables and columns are 

related. For example, there is no information for the system to decide if the 

columns PRICE and QTY in relation CAR are affected by the deletion of a tuple 

in SUPPLIER. 

2. Inheritance of Attributes and Relationships 

A group of entities is sometimes considered to be a subentity of another group 

of entities. For example, the group of engineers in a company is a subentity of 

the group of employees, and so is the group of managers. The subentity groups 

are often referred to as specializations, while the superentity is referred to as 

the generalization. There are general attributes such as name, address and 

employee number that all employees will have. There are also special attributes 

that not all subentities will have; for example, engineers have engineering 

professions such as electronics or mechanical, while managers have ranks such as 
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senior or junior. 

Attribute inheritance refers to the ability of the system to retreive general 

attributes when the user specifies the special entities. For example, the user may 

ask for the names, addresses and employee numbers of engineers. 

The relational model does not provide any standard mechanism for representing 

the specialization of entities. A possible representation following the example given 

by Alagic (1986) is this set of relations: 

Real Relation 

ENGINEER(NUMBER, NAME, ADDRESS, PROFESSION) 

MANAGER(NUMBER, NAME, ADDRESS, RANK) 

Virtual Relation 

EMPLOYEE(NUMBER, NAME, ADDRESS) 

A second possible representation is the following set of real relations: 

EMPLOYEE(NUMBER, NAME, ADDRESS) 

ENGINEER(NUMBER, PROFESSION) 

MANAGER(NUMBER, RANK) 

Both representations do not allow many convenient queries. In the first 

representation, the attribute inheritance is already designed into the real relations. 

The problem is that the virtual relation cannot be updated. The user cannot add 

a new employee tuple to the employee relation. One reason is that a relational 

D B M S does not have the information to decide which real relation to update. 
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Another reason is that updating of views has not been thoroughly researched and 

is little supported by existing relational DBMSs (Date 1987a). The second 

representation leaves the attribute inheritance to the user who will have to 

perform join operations based on the employee number. 

Further difficulties will arise if an engineer can also be a manager; for example, 

the first representation will not show that an engineer can have a rank. Manual 

inheritance by join operations is again required. While this case may be rare in 

the real world, there are many cases where an instance of one subentity is also 

an instance of another subentity. 

The same problems applj' for inheritance of relationships where the relationships 

formed by the superentity are inherited by the subentities. 

3. Data Oriented Retrievals 

Before the user can retrieve information about the real world, he first has to 

understand the meanings represented by the data elements and by the 

arrangement of the data elements (for example, two columns placed in a relation 

may represent a relationship or may be attributes of an entity). He then has to 

manipulate the data elements and retrieve them. For example, a user may have 

to know that a particular relation represents a relationship, that the details of 

the participating entities are to be found in two other relations, and that the 

correct way to reshape the data is by performing joins based on the key 

columns. 
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For retrievals involving only one relation, the queries are usually very simple. 

But more difficult queries can be very complicated. Consider the SQL command 

to get suppliers who supply at least all the parts supplied by supplier 'S2'. This 

query can be found in many of Date's books, (for example, Date 1987a and 

Date 1987b). where it is used to illustrate the power of SQL. In this example, 

relation SP contains SNO, PNO and other columns; SPX, SPY and SPZ are 

variables standing for SP. 

SQL: SELECT DISTINCT SPX.SNO 

FROM SP SPX 

WHERE NOT EXISTS 

(SELECT * 

FROM SP SPY 

WHERE SPY.SNO='S2' 

AND NOT EXISTS 

(SELECT * 

FROM SP SPZ 

WHERE SPZ.SNO=SPX.SNO 

AND SPZ.PNO=SPY.PNO)). 

Another example is the following query to retrieve the names of those suppliers 

who supply all parts. In this example, relation SP is as before, relation S 

contains SNO, S N A M E and other details of the supplier, and relation P contains 

PNO and other details of the part. 
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SQL: SELECT S.SNAME 

FROM S 

WHERE NOT EXISTS 

(SELECT * 

FROM P 

WHERE NOT EXISTS 

(SELECT * 

FROM SP 

WHERE SP.SNO=S.SNO 

AND SP.PNO=P.PNO)) 

If the relations representing the suppliers and parts are S'(SNO,SNAME) and 

P' (PNO,SNO,PNAME,PRICE,QTY) instead of S, P and SP above, then the SQL 

query to do the same real world query may be substantially different. A suitable 

version is the following: 

SQL: SELECT S'.SNAME 

FROM S' 

WHERE NOT EXISTS 

(SELECT * 

FROM P' 

WHERE P'.SNO * S'.SNO). 

It further shows that the SQL formulation of a real world query has to be 

done differently depending on the specific structure of the relations. In other 

words, the retrieval is data-oriented. 
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The primitive relational operations such as join, project and select are operations 

purely on the data. Many of these data manipulation operations are difficult for 

users to handle (Welty 1985, Welty and Stemple 1981, Greenbalt and Waxman 

1978). For example, Junet (1987) builds a system that allows casual users to 

query only one relation: "Indeed we think that operations on several relations are 

too complex for casual end-users, because it needs a good knowledge of the join 

operator." It must be emphasized that joining of relations is an essential 

operation in the relational model. If this is difficult, it can be expected that the 

interface will be difficult. 

Greenbatt and Waxman (1978) compared user performance in using three 

relational query languages — SQL, Query-By-Example (QBE), and a relational 

algebra. After being trained on 25 examples for one to two hours, subjects were 

asked to write queries. The time taken to write the queries and the correctness 

of the queries were measured. The results showed no statistical difference among 

the three languages. For SQL, the percentage of correct queries was 72.8%. 

Welty and Stemple (1981) conducted a study where students attended 14 

one-hour sessions to learn a relational query language (either S Q L or T A B L E ) 

before they took two query writing tests, the second some time after the first. 

The result clearly shows the difficulty of writing queries that involve data 

manipulation. Even for the easy SQL queries, the subjects after the thorough 

14-hour training could only write correctly 88% of these. Of the hard queries, 

only 41% were correct. The joining of relations was difficult, with only 43% 

correct at the first test and 29% at the subsequent test. Chaining, also known 
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as nesting or composition, gets 71% and 68%; the "group by" clause gets 39% 

and 14%; and combinations of these conditions get 42% and 37%. 

Clearly, elimination of the data manipulation operations will be a big advantage 

for the users. 

Existing systems resort to the provision of customized interfaces, such as menu 

interface with predefined sequences of prompts and inputs (for example, as 

allowed, with extra programming, in INGRES and dBASE III), or graphical 

displays to handle simple queries (Elmasri and Larsen 1985, Flogg 1984, Burgess 

1984). Some relational systems have natural language interfaces, which require 

some customization to suit the set of relations and the actual data in the 

relations. Customized interfaces are good, except that they require skilled 

manpower and extra work, and they also suffer from limited functionality. 

4. Data Oriented Updates 

The updates to the relational database focus on columns and tables. A real 

world change may necessitate changes to many data elements. If an entity is 

represented by two or more relations, possibly as a result of normalization, 

deleting an entity instance will require changes to the tuples of all these 

relations. The user is expected to know the relevant relations. 

In the case where there is a one-to-one relationship between two entities, the 

standard relational representation is one relation showing an entity and the 

relationship. When one relationship instance is to be deleted, the user has to be 
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careful to set certain columns, those representing the relationship, of one tuple to 

null values while keeping the other columns, those representing the entity, 

unchanged. The user has the responsibility of knowing exactly which are the 

appropriate columns. 

5. Extra Mental Processing 

It seems most probable that users do not think of the real world in terms of 

relations with tuples and columns. A strong piece of evidence is the process for 

designing the relational database. The relations are derived from other things 

such as entity-relationship models or functional dependencies. Nobody looks at the 

world and says, "Yes, these are the relations in this world." The relational user 

has to make a mental transformation between the real world and the relational 

elements. There is therefore extra mental processing demanded of the user. 

Poonen (1979) states that "one of the reasons that data base systems appear to 

be so complex is the mismatch between the way a user conceptualizes his data 

and the way the data bases choose to represent it, physically or logically". 

Similarly, Templeton and Burger (1986) write, " A large conceptual gap exists 

between the way data are seen by the programmers and database administrators 

who organize and maintain the database and by the end users of the data." 

This emphasizes the need for data base languages to operate at a very high 

level using terms that are familiar to the user. This move towards the user's 

world is also reflected in Gaines' (1981) rules of dialogue programming, one of 

which is to use the user's model. In fact, in the area of computer programming, 

this movement towards the user's world has culminated with the idea of 



17 

knowledge programming (Abbott 1987). Knowledge programming produces programs 

that contain the domain knowledge explicitly. 

Also, Meersman (1987) states, "It is firmly believed by the author that our 

current way of handling relations as a 'natural' representation of information will 

be superseded by more conceptual and more elementary paradigms - once the 

requirement to group data elements artificially for purposes of rapid access only 

will have disappeared." 

The relational model has achieved physical data independence, but not logical 

data independence (Staley and Anderson 1985, Vossen and Brosda 1985, Date 

1982 pl39). This imposes the need for users to logically navigate among 

relations. This navigation seems to be a very troublesome requirement for users, 

so there are many efforts to eliminate this, such as by having universal 

relations (Maier et al. 1984, Pahwa and Arora 1985). The universal relation will 

relieve users of the need to know the tables. However users still need to know 

the columns. There are also many other problems plaguing the universal relation 

method (Atzeni and Parker 82), such as difficulty in dealing with multiple 

relationships (direct or indirect) among the same attributes, requirement for 

unique column names, and likely user misunderstanding of the very big relation, 

such as a hundred column relation. Also, it does not solve the problems of 

semantic overloading; even worse, a single relation represents everything. 

An interesting and highly-researched solution to avoid the logical navigation is the 

provision of natural language (NL) interfaces for relational databases (McCord 
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1987, Templeton and Burger 1986, Jarke et al. 1986, White 1985, Kaplan 1984, 

Wallace 1984, Harris 1980, Codd 1978). In fact, the user need not know the 

relations in the database. The N L interfaces (to relational databases) are excellent 

at handling flexible syntax; but they are usually limited in quite severe ways. 

They need skilled manual customization to suit the actual relations and data, 

often involving the end-users, for example, when eliciting a representative set of 

sample queries (Templeton and Burger 1986). N L interfaces are usually limited 

to retrievals. Updates, especially changes to the relations, are usually not 

allowed. The retrieval power is often not described. There is often some 

uncertainty as to the extent of the naturalness. A user cannot be certain 

without trying if his natural query will be understood. While this is acceptable 

for interactive query where the system can ask for clarification, and the user is 

there to answer, it is quite unacceptable for non-interactive query, for example, 

for queries embedded in some general programming language. Lastly, natural 

language can be quite messy in specifying the list of things to be printed. For 

example, it will be quite demanding for a user to express the following SQL 

query in clear natural language acceptable to the N L interface: 

SELECT Sl.SNAME, SP1.PRICE, SP1.QTY, P.PNAME, 

SP2.PRICE, SP2.QTY, S2.SNAME 

FROM S SI, SP SP1, P, SP SP2, S S2 

WHERE Sl.SNO=SPl.SNO 

AND SPl.PNO=P.PNO 

AND P.PN0=SP2.PN0 

AND SP2.SN0=S2. SNO 

AND SI.SNO > S2.SNO. 



19 

This query, in real world terms, is to find the part that is supplied by two or 

more different suppliers, print the first supplier's name, the. price and quantity 

that this supplier is supplying the part for, print the part name, print the price 

and quantity that the second supplier is suppling this part for, and lastly to 

print the name of the second supplier. If there are more than two suppliers 

supplying this part, then print a few lines, each line with two suppliers. 



III. THE RESEARCH METHODOLOGY 

There are three central hypotheses in this dissertation. The first is: 

Hypothesis 1: 

It is possible to design a database system that will interact with the user 

using domain knowledge only and that, unlike the relational system, will 

not require the user to know the data structures used in the database. 

The interaction here is not limited to retrieval queries. It includes insertions, 

deletions and changes. It also includes the definition of the real world by the 

user to the system; this definition corresponds to the data definitions of the 

relational system. The term user is not limited to the end-user. It means any 

person who needs to interact with the database system. It can include the 

end-user who wants to retrieve information, the designer who wants to define his 

world to the system, and also the programmer who writes programs to interact 

with the database system. 

Hypothesis 1 will be verified by the following methods: 

1. Conceptual development of a new approach — the knowledge level approach 

— to design the user-database interaction. This will incorporate ideas from 

the fields of artificial intelligence, computer programming, and database. 

2. Systematic design of a knowledge level query language to accompany this 

new approach. 

3. Implementation of the new approach by developing a computer program. 

The efficiency of the computation will be considered, but is not of 

importance to this dissertation. The aim is to provide additional support 
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that this approach is feasible. 

The second and third hypotheses are: 

Hypothesis 2: 

The user interacting with the new system needs to know less than the 

user interacting with the relational system. 

Hypothesis 3: 

The user interacting with the new system needs to perform fewer data 

manipulation operations than the user interacting with the relational system. 

The practical significance of these two hypotheses is clear when we consider the 

fact that individuals have limited information processing capacities (Simon 1957). 

The less the user needs to know, and the fewer data manipulation operations he 

needs to do, the better will be his information processing capability. This is even 

more so when the data manipulation operations are difficult, as shown in 

Chapter II. 

These hypotheses do not quantify the advantages of the new interface over the 

relational interface. There are other comparison factors that are not formally 

measured; they include human factors like intuitiveness and complexity of the 

various operations. 

Hypotheses 2 and 3 will be verified by the following method: 

1. Comparative analysis of user interaction with the new system (the 

knowledge level interaction) and with the relational system (the data level 
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interaction). The analysis will cover the various types of interaction: 

definition of the data/world to the system, updates and retrievals. 

The analysis will show that the user of the new system escapes having to 

know things that the user of the relational system must know. In contrast 

to some other query-comparison studies, we do not pre-select a set of 

questions and compare based on this set of questions, since the result (for 

example, that query language A has 20% fewer data manipulation 

operations than query language B) will be highly dependent on the choice 

of questions. Rather, the analysis will show the specific situations where 

data manipulation operations are avoided or reduced. 

One might even claim that the definition of the new system logically implies 

hypotheses 2 and 3. The comparative analysis will, however, provide a better 

understanding of how the knowledge level interaction differs from the data level 

interaction. 

The conceptual development, design and implementation are directed at verifying 

the possibility of the knowledge approach. The analysis is directed at verifying 

that the knowledge approach, as compared to the data level approach, requires 

the user to know less and do less. 



IV. GENERAL ABSTRACTION LEVELS 

A general description of the abstractions commonly used in information system 

and database research is given here. It will be related to recent attempts at 

separating knowledge from its representations. The knowledge abstraction level to 

be described later is another step in our continual effort at creating better 

abstractions. 

Abstraction is the process of generalizing and discarding details that are not 

needed. After analysing a number of information systems design methodologies, 

Olive (1983) arrives at a list of five levels of abstraction which are likely to be 

the "most clear and important levels." These are the external, conceptual, logical, 

architectural and physical levels. His paper provides the following definitions: 

1. external level of abstraction — this describes the function of the real world 

system and the information flow among the units; for example, this level 

can be described with the data flow diagrams of structured analysis. 

2. conceptual level — this is a description of the possible states of the real 

world systems, and the events and derivation rules; that is, it includes the 

statics and the dynamics. 

3. logical level — this is an operational description of the information system, 

separated from the technology that could be used to implement it. 

4. architectural levels — this and the next level incorporate the technology 

aspects into the description of an information system. An architectural 

model describes the logical structure and the processes. It will specify the 

mode of the processes, such as manual or computerized, and interative or 

batch modes. 
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5. physical level — this describes the physical structure of the database and 

detailed structure of each process. According to Olive, the physical model is 

the basis of the programming activities. 

In information systems and databases, it is usual to separate details of different 

levels. For example, Structured Analysis produces separate physical and logical 

data flow diagrams. And Structured Design produces the logical design before the 

physical design. In database technology, one of the principal goals is to provide 

data independence (Brodie 84). Physical data independence means a separation of 

data between the physical abstraction level and the other levels; logical data 

independence means a separation of data between the logical level and the higher 

levels. In effect, this means that changes at a lower level should not effect the 

higher levels. 

There is an almost universal move towards higher levels of abstraction (Abbott 

1987), not only in the analysis and design of information systems but also in 

the usage of such systems. McGee (1976) writes, "The higher the language level, 

the faster and more accurate the programming." This move is also shown by 

the continual emergence of new generations of programming languages. 

It should be noted that there is not much global consensus on the definitions of 

the various abstraction levels. For instance, there are different interpretations for 

ANSI/SPARC's three schema levels, which are the external, conceptual and 

internal schema. Gray (1984) considers the conceptual schema as a description of 
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the logical relationship between data items, together with integrity constraints; the 

internal schema as details of allocation of records to storage area, indexes, 

pointers, etc.; and the external schema as subschemas with enhanced facilities. 

But Yang (1986) considers ANSI/SPARC's conceptual level as either the 

conceptual or the logical level; the internal level as the physical level; and the 

external level as concerned with the views created from the logical databases by 

users. The major difference in interpretation is about the conceptual schema. 

The relational model is commonly classified at the logical level, though it is 

occasionally classified at the physical level or even the conceptual level. In any 

case, queries made of the relational model are queries that are formulated in 

terms of the information system's data elements, that is, the relations, records 

and columns. The queries are not formulated in terms of the real world 

concepts. Since the queries are based on the logical data, the relational model 

can never really provide logical data independence. Staley and Anderson (1985) 

state "there has been no model introduced to provide a logical data independence 

analogous to the physical data independence of the relational model. It is not 

that a need for logical data independence has not been recognized; just that 

research in this area has not yet resolved this issue." The new knowledge level 

approach to be proposed will provide for logical data independence. 



V . T H E K N O W L E D G E A G E N T 

A . S E P A R A T I O N O F K N O W L E D G E A N D R E P R E S E N T A T I O N 

In the artificial intelligence field, there is a growing literature on making a clear 

distinction between knowledge and its representation. Newell (1982) introduces the 

concept of a knowledge level, defining knowledge as whatever can be ascribed to 

an agent such that its behavior can be considered rational. The agent has goals 

and can act rationally to satisfy its goals. This is purely a functional definition 

of knowledge, with no implication of any structure, nor of inference or search 

strategies. The main point is that knowledge has no structure, whereas knowledge 

representations have structures. There are many papers that have adopted this 

abstraction of knowledge from its representation (Levesque 1984, Clancy 1984, 

Sloman 1985, Brachman and Levesque 19861). 

A complementary idea appears in the area of computer programming, where 

Abbott (1987) calls for a new way of programming — knowledge programming — 

which he defines as producing programs where the domain level knowledge is 

explicitly visible. With knowledge programming, the programmer should care very 

little, if at all, about the computer-level representation of the knowledge. In 

particular, the order that the data appear (that is, the data structure) should not 

have to be considered. 

This separation of knowledge from its representation can be viewed as a further 

tBrachman and Levesque (1986, p77) state, "WTe might even consider that the 
single most important contribution that AI can make to databases is the notion 
of the Knowledge Level itself." 
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split at the conceptual level. At the conceptual level, we are concerned about the 

real world and usually produce a specific model of the real world. The model is 

a representation of the real world (Brodie 1984); it embodies knowledge of the 

real world. There can be many possible representations of the same knowledge. 

For example, the same knowledge can be represented using logic, networks or 

frames. Even within the logic system, there are many ways of representing the 

same facts. Therefore we can distinguish between the conceptual knowledge level 

and the conceptual representation level. 

A conceptual knowledge level may be viewed as the content of the ANSI/SPARC 

conceptual schema independent of the representation. An example will help 

illustrate the difference between the conceptual knowledge level and the conceptual 

representation level. Let us consider this small schema using the conceptual 

language Galileo (Albano et al. 1985). 

Organization := ( 

REC Departments CLASS 

Department .<-> 

(Name : string 

AND Employees : VAR SEQ employees) 

AND Employees CLASS 

Employee <-> 

(Name : string 

AND Nameofdept := DERIVED Name of 

get Departments with 

this i s i n (at Employees))). 
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In Galileo, a derived attribute cannot be updated. This is an artificial constraint 

imposed by the definition. If an employee moves to another department, the user 

must update Department .employees and cannot update Employee.nameof dept. 

This is thus an update to a knowledge representation. A pure knowledge update 

should be free of the representational restrictions. 

B. T H E K N O W L E D G E A G E N T 

The two ideas of knowledge separation and knowledge programming can be 

incorporated into the database environment. The new database system is seen as 

an agent whose goals are to keep track of knowledge and to accept and answer 

queries, including both retrievals and updates, that are formulated as knowledge 

programs. Internally the database has to rely on data structures to represent the 

knowledge. The system will perform its own integrity maintenance on the data; 

and it will automatically derive knowledge from its store of data. 

The user no longer performs operations on the data in the database. Rather, the 

user will now communicate with the database system through exchange of 

domain knowledge. For example, the user will tell the database system a piece 

of knowledge such as that the supplier with number 'S2' is providing the part 

with number 'P3', instead of telling the database to insert a record '"S2',T3"' in 

the table SUPPLY. This can be seen as programming using only domain 

knowledge, t 

t At this point, the interaction may appear similar to that provided by a 
natural language interface. The differences between the knowledge level interface 
and a natural language interface are discussed in the later section on future 
research. 
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One way to visualize this new system is to think of it as a human assistant. 

You tell him what you know of the real world and allow him to choose the 

method for representing this knowledge. When you need to refresh your memory, 

you ask your assistant for the required knowledge rather than asking to see the 

files and pieces of paper that he uses to record the knowledge. You have to tell 

a relational DBMS how to join relations. But you do not have to tell your 

assistant how to operate on his files. 

A substantially new way of looking at a DBMS is advocated. Traditional^, a 

DBMS helps the user to organize his data. The user knows what data are 

inside the database and has the responsibility for ensuring that the data remain 

consistent. In the new way, the user does not know what data are inside the 

database. An immediate benefit is that the user is relieved of the responsibility 

of keeping the data consistent. 

The database is now a store of domain knowledge rather than a store of logical 

data elements. 

This idea of a knowledge agent also has support from the emerging 

object-oriented programming systems. Nierstrasz (1987) concludes, "The most 

important concept in object-oriented approach is data abstraction. . . . We are 

interested in the behavior of an object rather than in its representation." And 

here we are interested in the behavior (the user-database interaction) of the 

database rather than in the representations used inside the database. The 

database system proposed here will not provide any method to manipulate the 
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variables inside the database. The internal variables do not concern the user. The 

system will separate knowledge from the data within the database. 

Another advantage of not dealing with the representational details is the 

provision of entity identity. Entity identity is provided if the entity can be 

referenced directly as a unit, and the entity can appear in multiple places (that 

is, represented by many pieces of data) in the database without any pointer or 

indirect mechanism visible to the user. A data model that provides entity identity 

can avoid many inconveniences and avoid proliferation of constraints (Copeland 

and Maier 1984). An example of the inconveniences has been discussed in the 

section on preserving consistency in the relational database. Upon deletion of an 

entity, the user has to go through related relations and do appropriate updates. 

The alternative is to define many constraints/triggers to perform these follow-up 

actions. 

The proposed knowledge exchange interface will fully provide for entity identity. 

Not only are there no pointers visible to the user, there is no need for the user 

to know that the entity appears at multiple places in the database. 

C. THE KNOWLEDGE INTERFACE 

The communication of knowledge between the user and the system must be 

based on some shared conceptual schema (Jardine 1985). The relational model 

having only a single construct, the relation, does not seem suitable for 

communication of domain knowledge between the system and the user. It will 

require too much transformation between the user's real world schema and the 
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relations. 

The entity-relationship modelt will be used as a basis for domain knowledge 

communication. The ER model has very few structural constraints, and its 

concepts are widely believed to be natural. Brodie (1984, p32) writes of "the 

popularity of the ER model [and] the widespread belief in entities and 

relationships as natural modelling concepts." Parent and Spaccapietra (1985) write, 

"Within this group [of semantic models], the Entity-Relationship — ER — model 

(Chen 1976) may actually be considered as the most popular one, mostly because 

of its widespread use as a design tool." Teorey et al. (1986) state that "The 

ER model has been most successful as a tool for communication between, the 

designer and the end-user during the requirements analysis and conceptual design 

phases because of its ease and its convenience in representation." Brady and 

Dampney (1987, p287) also state, "The author has used the technique [the ER 

approach] in a number of large commercial, manufacturing and government 

organizations. The diagrams are readily understood, and users can easily verify 

their accuracy." Schuldt (1987) recorded many opinions from practitioners who 

found the ER model to be much better than the relational model. His record 

includes the following quotations: "The ER approach models the real world better 

than the other models"; "The ER approach has two major advantages over the 

relational approach"; and "The relational (tabular) representation . . . occupied a 

15-foot wall, and the structure of the subject matter was not at all clear. When 

tThere are many versions of the entity-relationship model, as classified by Chen 
(1981). The ER model used in this interface includes entity types, entity 
attributes, relationship types, relationship attributes, roles, cardinalities, and IS A 
relationships. More details are given in the various sections on the actual 
language and the implementation. 
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they created an ER model from the tables, it suddenly became obvious what was 

going on." Finally, Chen (1976, p9) proposed the ER model because "the ER 

model adopts the more natural view that the real world consists of entities and 

relationships". 

In addition, the knowledge level ER model has many of the desirable features 

for knowledge level communication. It inherently contains simple integrity 

constraints such as the requirement that relationship instances can exist only if 

the participating entity instances exist. It allows for automatic inheritance of 

attributes and even relationships from parent entities. It provides entity identity. 

For the knowledge interface, the ER model must be used at a correct level — 

the knowledge level. However, the ER model is currently used predominantly at 

the representation level. The best example of this is seen in the declaration of 

relationships. Most of the papers in the literature (Dogac et al. 1987, Chen 

1977, Teorey et al. 1986, Staley and Anderson 1985, Nakano 1983) insist that 

a relationship specification includes the key attributes of the participating entities. 

This specification decides how the participating entities are to be linked to the 

relationship. It decides on the use of keys as logical pointers, as in the 

relational model. It therefore belongs to the logical level. It also unnecessarily 

tells the user that the entities' key attributes exist in multiple places in the 

system. 

At the knowledge level, the user simply specifies that a relationship is between 

certain participating entities. For example, the specification may be: "New 
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relationship supply between entity supplier and entity part". The 

system decides whether to include the key attributes of the entities, to use 

pointers, or to use some other identification methods such as system surrogates. 

Whatever the method used, it is internal to the system. The user need not have 

to know anything about it. 

The ER model also allows easy two-way descriptions. For an ER model with a 

relationship SUPPLY between entities SUPPLIER and PART whose roles are 

SUPPLIES and SUPPLIED_BY respectively, the user can say "supplier 

supplies part", "part supplied-by supplier",t "supplier supply part" 

or "part supply supplier". The model does not require any entity to be the 

first in the description. In contrast, the previous Galileo example is more 

restrictive. Also, in some of the ER research (Hwang and Dayal 1981, Nakano 

1983, Markowitz and Ray 1983, Tsur and Zaniolo 1984), some ordering is 

imposed so that, for instance, "supply(supplier,part)" may be allowed while 

"supply(part, supplier)" is not. These imposed orders are not necessitated by 

the domain, and they therefore unnecessarily restrict the communication between 

the user and the system. Besides, the user now has to remember some arbitrary 

ordering. At the knowledge level, we will not impose such orderings in the ER 

model. 

Database designers commonly use the ER model to design the conceptual schema, 

which is then used to design the logical schema (usually the relational schema). 

This can be seen in the many papers on converting an ER model to a relational 

tit is assumed that the role names between any two entities are unique; 
otherwise, these expressions may be ambiguous. 
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model, for example, in Teorey et al. (1986), Braind et al. (1985) and Staley and 

Anderson (1985). The conceptual schema is then discarded or at least shelved 

away; and the users query the logical schema. Adopting the ER model for the 

knowledge level interface will not require any changes to the conceptual design 

process. Thus the new knowledge level system can be easily merged into existing 

design practices. 

The basic conceptual schema shared between the user and the system are the 

elements of the ER model; these are the concepts of entity type, relationship 

type, role and attribute. With this shared schema, the user can then proceed to 

tell the system of the existence of specific entity types such as supplier, part 

and department; and specific relationship types. After the types have been 

defined (that is, the shared conceptual schema has been expanded), the user can 

proceed to tell the system of specific entity instances and relationship instances. 

From the above discussions, we will propose these basic principles for the design 

of a knowledge level interface: 

1. Principle 1:- The user-database communication should use only domain 

knowledge, with some appropriate syntax. 

2. Principle 2:- The communication should not be restricted by any peculiarity 

of the data structure (or knowledge representation) used in the database. In 

particular, knowledge of the order of the data in the data structure should 

not be required in the communication. 

3. Principle 3:- The interface should avoid all operations that are not required 

by the domain. An example of such an operation is the joining of relations. 
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Another important example is the manipulation or definition of physical or 

logical pointers. 

The following chapter will describe the development of an interface and a specific 

language for knowledge communication with the system. The system will require 

full explicit specification of all knowledge elements. 



VI. THE KNOWLEDGE INTERFACE LANGUAGE 

A. A FUNCTIONAL DEFINITION OF KNOWLEDGE LEVEL 

COMPLETENESS 

1. The Existing Definition of Completeness 

The retrieval power of a query language or system is commonly measured by its 

completeness. In the relational model, completeness is based on the power of 

relational calculus. A language is relationally complete if it can retrieve any 

relation derivable from the database of relations by means of an expression of 

relational calculus (Date 1982). Usually, a stricter definition is applied: that the 

retrieval can be done in a single self-contained request. To meet this stricter 

definition, the single request will usually be a multi-level query; that is, the 

query will include subqueries. 

Completeness for a query language based on the ER model has not been well 

defined. Many designers of ER query languages totally adopt relational 

completeness. Dogac et al. (1987) reflect this group's view when they state that 

when relations are used in representing entities and relationships, there is no 

need for a definition of ER completeness since relational completeness is 

sufficient. This group therefore prove that their ER languages are relationally 

complete (Campbell et al. 1985, Dogac et al. 1987, Markowitz and Raz 1983). 

The proof, for example that by Dogac et al. (1987), is usually done by 

expressing the basic relational algebra operators (for example, union, difference, 

projection, selection and cartesian-product) in terms of the ER language. However, 
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relational completeness is not ER completeness. 

Other ER language designers define ER completeness using an approach similar 

to the definition of relational completeness. They first define an ER calculus; then 

they define ER completeness as the ability to do what the calculus can do. For 

example, Atzeni and Chen (1981) propose an ER calculus and define completeness 

based on this calculus. They define completeness as the ability to extract data 

from any number of different entity sets and/or relationship sets; and simplified 

ER completeness as the ability to select instances in a single entity set or 

relationship set, with conditions that may involve any object in the schema. Their 

calculus only allows three types of conditions — the attribute-constant comparison, 

the attribute-attribute comparison within an object instance, and the 

relationship-existence condition. Atzeni and Chen (1981) state that "all the 

high-level languages presented until now for the ER model satisfy neither of the 

definitions of completeness". They then propose a language and prove it satisfies 

the definition of simplified completeness. However, this "complete" language has 

very little power; for example, it cannot retrieve details of suppliers and the 

parts supplied by them. 

The above types of completeness definition are calculus-based. The calculus-based 

approach to a definition of ER completeness, while aiming for a good 

mathematical grounding, is not very satisfactor3'. Firstly, it depends on the 

specific ER calculus. Atzeni and Chen (1981) proposed two versions of the 

calculus, the simplified and the non-simplified versions. There are many other ER 

algebras and calculi being proposed in the literature, for example, by Parent and 
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Spaccapietra (1984 and 1985), Chen (1984), and Campbell et al. (1985). The 

completeness defined on a calculus is limited by the power of that calculus. 

Secondly, there are many different versions of the ER model, as analyzed by 

Chen (1981). Some versions have no attributes for the relationships, some have 

very limited form of relationships, some have no concept of roles, some have no 

TS A ' relationships, and some do not allow an entity type to have relationships 

with itself. Every slight variation in the model will require a different calculus 

and consequently a different definition of completeness. 

We shall reexamine the concept of completeness, and propose an alternative 

approach to defining completeness. 

2. What Exactly is Completeness? 

What exactly is meant by completeness? It appears to include at least three 

criteria which are more fundamental for a query language: coverage, ease and 

conciseness. Coverage is how much the language can do, such as count, average 

and arithmetic operations. Ease is how easy it is for users to formulate queries 

with that language. Conciseness refers to the number of operations needed to 

make the query. There is probably a close relationship between ease and 

conciseness. Something that is concise is probably easy to do. However, a 

distinction can be made. Ease refers to the user's behavior; conciseness refers to 

the actual query statement. Let us consider relational completeness. It includes 

coverage: a relationally complete language must be able to do what relational 

calculus can do. But relational completeness includes more than coverage, 

otherwise any general programming language would be relationally complete since 
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the user can use it to program a relational system. Relational completeness also 

includes ease .and conciseness in that the retrieval should be done in a single 

self-contained query, possibly including subqueries, that is relatively easy for the 

user to formulate. 

On the criterion of coverage,' relational completeness is not good enough for 

practical usage (Tsur and Zaniola 1984, Subieta and Missala 1987). Probably the 

most convincing evidence is that no practical query language has been designed 

that meets only the requirement of relational completeness. All practical query 

languages provide more coverage than that of relational completeness. They have 

extra features, such as simple statistical functions and even some report 

formatting capabilities. Recognizing this inadequacy, Merrett (1978) and Klug 

(1982) propose extensions to relational algebra to include some aggregate 

functions. In addition, some rules in relational calculus are not even desirable. 

For example, the user may want to retrieve duplicate tuples, which is strictly 

not allowed in relational calculus. 

The coverage of relational completeness is actually very limited. Subieta and 

Missala (1987) have harsh words for the concept of relational completeness: 

"Relational completeness is a consequence of improper understanding of semantic 

domains for database quer3'. . . . It is an arbitrary, unmotivated point on the 

scale of universality of query languages." In rejecting relational completeness, they 

propose that "the only proper measure of a query language's universality is the 

power of algorithmic programming languages." Their concept of universality 

appears to be the same as what we call coverage. This universality can be 
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easily achieved by embedding any relational query language in a general 

programming language. However universality (or coverage) by itself is not a good 

measure of a query language. The ease and conciseness of a query language 

have to be considered. 

Relational completeness insists on ease and conciseness for queries within its 

coverage only. It does not extend to extra-relational features, such as statistical 

functions. 

Designers of practical query languages usually build extra-relational features into 

their languages to allow easy formulation of a wider range of queries; that is, 

they extend coverage while maintaining ease and conciseness. For instance, SQL 

includes many built-in functions to reduce the amount of programming needed of 

the user. For example, SQL provides the A V G function which allows a user to 

get the average salary of all employees with a short S Q L query: SELECT 

AVG (SALARY) FROM EMPLOYEE. Without the A V G function, the user would have 

to write an SQL query to extract the list of salaries, and he would have to use 

another programming language (such as COBOL) to calculate the average of the 

salaries. Thus, Chamberlain (1980, pl83) points out that an important advantage 

of SQL is that "having the power and flexibility of a high level query language 

available at an application programming interface made a significant improvement 

in productivity of application developers, compared to lower level 'navigational' 

languages." 

For a query language that manipulates relations, relational completeness seems to 
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be a good property to have. It shows some basic coverage with a certain 

amount of ease and conciseness for queries within this core coverage. Of course, 

the ease and conciseness vary from one relational language to another. 

It would appear that the same ideas are behind the calculus-based approach to 

defining ER completeness: the language has to be easy and concise for a certain 

coverage defined by the ER calculus. 

3. Knowledge Level Completeness 

Relational completeness belongs to the logical data level since it is concerned with 

manipulating logical data elements. This logical level completeness is defined 

without any reference to the physical level "completeness". There are many 

things that can be done at the physical level that cannot be done by relational 

algebra. For example, relational algebra cannot transpose or sort a table. 

Relational completeness is also defined without any reference to implementation 

details, which is as it should be. 

Some researchers believe that ER completeness must be defined based on the 

data structures used. Dogac et al. (1987) write, "The definition of ER 

completeness depends on the data structure chosen to represent the entities and 

relationships". Subieta and Missala (1987) also write that it is impossible to 

formally define manipulation languages without the formalization of data 

structures which are to be manipulated. These views undesirably mix the logical 

data level with the knowledge level. 
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At the knowledge level, it will not be meaningful to define ER completeness 

based on any data structures, such as relations. The simple reason is that the 

data structures are hidden from the interface. When the user does not know 

anything about the relations, relational completeness will not mean anything to 

him. Another reason is to allow a clear separation between the knowledge level 

and the logical data level. The knowledge level does not prescribe the use of any 

particular data structure in the database. Different systems of the same 

knowledge level can use different data structures depending on the choice of the 

systems designers. To define completeness based on data structures will 

unnecessarily lead to a proliferation of definitions, and consequent confusion. 

Therefore, to define knowledge level completeness based on data structures will be 

to confuse two distinct levels of abstraction. The query language at the 

knowledge level is not a manipulation language to manipulate data structures. In 

fact, the term Data Manipulation Language (DML) does not apply at the 

knowledge level. 

We will therefore propose a functional approach to defining ER completeness. The 

definition is based on what can be done at the knowledge level. 

Completeness of an ER query (retrieval) system is the ability of 

the system to derive all the domain knowledge that a human 

being not using additional knowledge about the entities, 

relationships or their attributes can derive from the same ER 

model. 



43 

This definition of completeness is an ideal: it makes ultimate use of all the 

knowledge that has been put inside the ER model. The system is compared with 

a human being using the same amount of knowledge about the world. Specifically 

the human being cannot use "commonsense" knowledge about the entities and 

relationships that is not contained in the ER model. The definition is also 

universal in the sense that it is not limited to any specific version of the ER 

model. No real system, with its limited memory space, will be able to reach this 

ideal level of ER completeness, t 

With this definition in mind, we now proceed to describe the various operations 

and conditions that the retrieval system must provide. 

4. Knowledge Level Operations 

A retrieval is an operation for the system to perform. $ This operation may be 

composed of other operations and/or conditions. An operation is a process that 

accepts some input and produces some output. A condition can be considered as 

an operation that returns a Boolean value of T R U E or F A L S E . For practical 

purposes, these operations may be grouped into a few categories based on the 

operands. 

Before we describe the categories, a short note on the notation is necessary. 

O stands for an operation as well as the result of the operation. For 

t A restricted version of ER completeness — fundamental ER completeness — is 
offered later. 
t in fact, any command to the system is an operation for the system to 
perform. A retrieval usually results in some visible output. Other commands may 
change the system's knowledge of the domain. 
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example, +(1,2) stands for the addition operation as well as the 

result, which is the number 3. 

C stands for a condition as well as the result of the condition. C is 

either true or false. 

Sj stands for type i. If we want to restrict consideration to an entity 

type, " E " will be used in place of "S". Similarly, to specify a 

relationship type, we will use "R" in place of "S" . 

s^ ^ stands for instance j of type i. If we want to specify an entity 

instance, we will use "e" in place of "s". Similarly, we will use "r" 

in place of "s" if we want to specify a relationship instance. 

V^XSj) stands for the set of values of attribute k of the type i. 

vk^s(ijV s t a n c * s ^ o r ^ e v a m e ° f ^ e attribute k of the instance j of 

type i. 

c stands for a value. This may be a value that is not from any 

instance or type. 

The operations can be divided into the following categories based on the kind of 

operands. 

1. Logical combination of conditions 

2. Nesting of operations 

3. Operation on values 

4. Operation on instances 

5. Operation on attribute values of instances 

6. Operation on entity/relationship types 

7. Operation on the sets of attribute values of the instances in the types 
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8. Operation on one or more instances and one or more types. 

In addition, sub-categories can be derived based on the output of the operations. 

The main categories will now be described in detail. The description shows what 

kind of operations the interface can have. It is not the purpose at this point to 

show how these operations can be expressed. Examples of the operations will be 

given, but these do not necessarily show the preferred syntax. Many different 

query languages can be designed to express these operations. 

a. Logical Combination of Conditions 

If " C 1 " and " C 2 " are conditions, then "NOT(C 1 ) " , "NOT(C 2 ) " f " C 1 OR C 2 " and 

"C^ AND C 2 " are conditions. 

b. Nesting of Operations 

We first define the various kinds of "things" that the system can accept or 

produce. At the knowledge level, a "thing" can be a list of values, a list of 

instances, or a list of types. A list can have a single member. A value may be 

of a certain datatype, such as date, integer or character. A value can be a list 

of single values, or a list of lists of single values. The instances are of various 

entity/relationship types; and the types are entity or relationship types. For 

example, a set of supplier instances can be a thing; a supplier instance can also 

be a thing. 

An operation always operates on certain things and produces other things. In 

general, an operation may be written as: 
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0 ( X L F X 2 , . . X N ) , where X. is a thing of kind " i " . 

The output of the operation is itself a thing of some kind. 

The nesting of operations is defined as follows: 

given 0 ( X ^ , X^, . . X N > , where X. is a thing of kind " i " , 

and given 0 ' ( . . . ) which is a thing of kind " j " , 

then 0 ( X N , X _ , . . . , X . , , 0 ' ( . . . ) , X . - . . X ) is also a valid 

operation. 

For example, if + ( X , Y ) operates on two numbers X and Y , and if * ( A , B ) is a 

number, then + ( X , * ( A R B ) ) is a valid operation. 

c. Operation on Values 

0 ( c l f c 2 , . . . , c n ) . 

When we consider values, there is not much difference whether we consider 

these at the knowledge level or the logical data level. A "1" remains a "1" at 

either level. Therefore these operations are the usual ones applicable to values. 

The common operations are arithmetic operations, string operations and other 

mathematical operations such as logarithms, exponentials, set operations on set(s) 

of values, (for example, membership, subset and set equality conditions), statistical 

operations on lists of values (for example, minimum, maximum, average, sum 

and count operations), and the common magnitude comparisons: " = ", "<", ">", 

"<" and ">". These operations are well known and need no further description. 

In addition, since values can be of certain abstract datatypes, operations 

specialized to these datatypes can be included. For example, if and are 

dates, then c. - c_ can produce the number of days between the two dates. 
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d. Operation About One or More Instances 

° ( S < V i l > ' S ( i 2 ' 3 2 > S ( i n ' V } ' 
Some examples are: 

1. The relationship amongst a few instances: 

a. A condition that a list of entity instances are related through a 

relationship instance. This condition may be written as: 

re la ted( r , . , ) f (e,. i e ( i • ,, . . . )). 

b. A condition that a list of entity instances are related through a 

relationship type. It does not care about the particular instance of 

that relationship. This condition may be written as: 

related(R. , (e,. . v e,. . . . . ) ) . 
x l ^ 1 2 ' 3 2 ; ^ 1 3 ' 3 3 ; 

c. Another condition is that two entity instances are related through 

some relationship instance of any relationship type. This condition may 

be written as: 

r e l a t e d ( e ( i i f j i ) , e ^ ^ ^ ) . 

d. A further possible relationship condition is that two entity instances 

are related possibly remotely through any number of other relationship 

instances and entity instances. This condition may be written as: 

remote-related(e,, ^ w e,. . . 

2. The equality of two instances. This may be written as 

• < S <i i ' J i> r S <i 2 '32 ) > ' 
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e. Operation About the Attribute Values of the Instances 

The term v, (s,. • 0 stands for the value of attribute k, of instance j, of type i , . 
1 1"1 

We can substitute these symbols with terms from a real ER model. For 

example, we can substitute "v, " with "name", and " s r • w i t h "employee,"; 

thus, name(employee ̂ ) may stand for the value "John" of the attribute "name" 

of the instance 1 of the employee type. The notation above simply says that the 

operation can involve any number of attribute values from any number of 

instances. 

We can consider a sub-category where the result is a Boolean value. The 

operations in the category compare the attribute values with other values. Some 

examples are: 

2 < price (supply^ , 

price( supply^ = price(supply 2), 

price(supply 1) IN (10,12,14), or 

substring('Ltd',name(supplier 1)) 

where IN is the membership test, and the last example is a string condition 

that the name contains the string Ltd. Examples of common conditions that fall 

under this category are " = ", "<", ">", "<", ">", and membership condition of 

an attribute value in a list of values. 

Another sub-category is where the result is a list of values. Some examples are: 

1. Arithmetic and string operations, for example, 

2 * price( supply^), or 

substring(l, 3, address(employee 1)), 
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which can be an operation to get the first three characters of the address. 

2. An operation, essential for retrievals, to display these attribute values; the 

operation may be written as: 

display(name(supplier i), address(supplier^)). 

f. Operation on One or More Types 

0(S. , S. , . . ., S. ). 

We can consider a sub-category where the result is a Boolean value. Some 

examples are: 

1. the subset condition that one type is a subset of another type. This 

condition may be written as: 

subset(S, , S, ). 
11 12 

2. the proper subset condition, which may be written as: 

proper-subset(S- , S. ). 

Another sub-category is where the result is a value. An example of such an 

operation is counting the number of instances in a type. 

Another sub-category is where the result is an instance. An example is the 

extraction of an instance from a type. 

The last sub-category is where the result is another type. Some examples are: 

union and intersection operations, and the extraction of a subset of instances 

from a type. 

For some complex operations, the output may be a list of values, a list of 

instances or another list of types. 
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g. Operation on the Set(s) of Attribute Values of the Instances in the Type(s) 

o (v k (S. ), v k (S. ) , . . . , v k ( s i ) ) . 
1 1 2 2 n n 

The term V, (S-) stands for the set of values of attribute k, of all the 
K l ll 1 

instances of the type ij. We can substitute these symbols with terms from a 

real ER model. For example, we can substitute " V , " with "Salary", and "S- " 
k l h 

with "Employee". Thus, Salary(Employee) is a set of the salary values of all the 

employees. 

The output of the operation may be a single value or a list of values. Some 

examples are: getting the average, total, minimum, maximum or standard 

deviation of the attribute values. One can think of other statistical analyses such 

as regression analysis between multiple sets of attribute values within the same 

set of instances, or other operations on attribute values of different sets of 

instances. 

h. Operation on One or More Instances and One or More Types 

( - 1 l ' - > l ; (12'32> ^m'V K l K2 K n 
Examples are: 

1. A condition that an instance of one entity type is related through a 

relationship type to N (or more than N, or less than N) number of 

instances of another entity type. This may be written as: 

r e l a t e c K R . , e r i . v E . , =, N ) . 

2. Another condition is that an entity instance is IS A-linked to some 

instance of an entity type. This condition may be written as: 

I S _ A ( e ( i • y E . ) . 
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It is not claimed that the above categories of conditions and operations cover all 

the possibilities. However it can be claimed that these categories cover the 

common conditions and operations that are found in popular database query 

languages. For example, SQL provides these conditions/operations: arithmetic 

operations +,-,*,/; simple statistical functions C O U N T , S U M , A V G , M A X , MIN; 

and comparison operations =, <, >, <, > and the special operations SORT 

BY, GROUP BY, IN, EXISTS, DISTINCT and UNION. All these belong to one 

category: the operations on values. Note that a value may be a list of values, 

and therefore a relation is a value. This is perhaps to be expected, since the 

relational model has no concept of entity/relationship instances or types. 

We can now offer an alternative, more concrete, definition of ER completeness: it 

is the ability of the system to perform all the possible operations in each of the 

categories. This is an ideal level of completeness, since no real system will have 

all the possible operations. In contrast, relational completeness which requires only 

a few operations is less complete than many actual query languages. 

Closure of the Operations 

We will conclude this section on ER completeness with a discussion on the 

closure of the operations. The closure of a query language refers to the ability 

of one query to accept as input the result from another query. In relational 

languages, the output of a query is a relation (however big or small) which can 

be used in subsequent queries. But note that not all relational operations will 

accept any relations: the union operator requires relations to be union compatible. 

SQL also treats some results as simply a list of values for use in the " I N " 
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function. Having the property of closure will allow for nesting; that is, a query 

can be composed of subqueries. It will also allow a query to be broken into two 

or more queries. The user can choose whichever approach is easier. 

In a more mathematical sense, closure implies that all operations produce 

"things" of the kinds already in existence. As long as the operations allowable in 

the ER language are restricted to those that produce "things" of the kinds 

already described, closure is maintained. The language to be described later 

allows only operations that produce values, sets of values, instances, set of 

instances and types. There are no other possible outputs. 

We can distinguish two kinds of ER retrieval queries. The first kind includes the 

entity-subset/relationship-subset query where the user selects only one or more 

entity/relationship types without selecting any attributes. The conditions can 

involve any number of other types and instances. Some examples of subset 

queries, using the K Q L syntax to be described later, are: 

i . se lec t s u p p l i e r 

where s u p p l i e r suppl ies part 

and 

ii. se lec t b igsupply = supply 

where supply q u a n t i t y > 1000 . 

For this kind of query, the system will not produce any visible output to the 

user since the "output" is meant to be used in subsequent queries. Thus, the 

first example should be used only as the inner query in a nested query; the 

second example may be used as a query before another query. 
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The property of closure applies to this kind of output since the output is merely 

another entity/relationship type. The new types can be used in subsequent queries 

wherever the original types can be used. The subset queries resemble the defined 

views of SQL. 

The second kind of retrieval query is the value query where the user can 

combine any attributes from any entity/relationship types into a value. This 

arbitrary combination of. attributes has no meaning in the ER model; it is 

neither an entity nor a relationship. It is just a value, which may be a list of 

values, to be presented to the user in the manner chosen by the user. An 

example query that will give this type of output is: 

se lec t department name, s u p p l i e r name, s u p p l i e r c i t y 

where department c i t y = s u p p l i e r c i t y . 

The outputs from the value queries can be subdivided into three collectively 

exhaustive classes: a single value output, a one-column output, and a 

multi-column output. These outputs can also be treated as values that can be 

used for subsequent operations or comparisons. To be fully flexible, a query that 

produces a single value output should be able to appear anywhere that a single 

value (of the same datatype) is expected, for example, 

se lec t s u p p l i e r name 

where s u p p l i e r supply p a r t , 

supply quant i ty > 2 * (sp i s an instance of supply 

se lec t min(sp q u a n t i t y ) ) . 

(The comma in the where-clause denotes the A N D operation.) 

Similarly, a query that produces a list of single values such as (12,43,4) should 
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be able to appear anywhere that a list of values is expected. Thus the query 

may appear during a set operation such as membership testing, for example, 

select supplier name 

where supplier city IN (select department city). 

Even a multi-column table output may be used in subsequent queries if there 

are operations that accept such a table. 

The treatment of a query output as a value is similar to SQL. Although a 

relational query language produces relations, the user has the choice to use some 

outputs as variables, such as in the following SQL query: 

SELECT * 

FROM S 

WHERE S CITY IN 

(SELECT CITY 

FROM D) . 

Since the output of an ER query can be used as input for another ER query, 

closure is maintained for the ER language. 

B. THE KQL LANGUAGE 

The previous section describes the knowledge level interface in a way that is 

independent of any specific language. One can now proceed to design different 

languages, including graphical languages, to enable the user to describe the 

various operations and conditions. 
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We will describe the syntax of a specific language for knowledge level query — 

K Q L . t 

1. The General Format 

The general format of a query is described here. The use of specific conditions 

and operations will be described in the later sections. The syntax for the 

numerous conditions/operations has to be carefully designed so as to provide 

natural, unambiguous, easy, and concise expressions. 

Many guidelines for query language design are considered in the design of K Q L . 

For example, K Q L has a clear separation of outputs and conditions. This clear 

separation has worked very well in relational query languages such as SQL and 

Q U E L . Also considered are guidelines such as minimum syntax, consistency and 

flexibility as proposed by Zloof (1978). The syntax must be simple and 

straightforward. Admittedly this is quite a subjective criterion. The K Q L syntax 

synthesizes from those of SQL and Q U E L , the two major relational query 

languages. Many of the kej'words from these two languages are considered 

redundant and not used in K Q L ; for example, keywords like F R O M , GROUP BY, 

H A V I N G , and R A N G E OF are excluded. Consistency means that the operations 

must have the same meanings in all situations. Flexibility means that a query 

can be formulated in different ways depending on the user's choice. K Q L 

provides the primitive conditions as well as certain common combination conditions 

so that the user need not decompose a common condition into many primitive 

tEven though relational completeness is not acceptable as a definition of ER 
completeness, it is nevertheless a common, and thus useful, yardstick for 
comparing the power of retrieval languages. It is shown in Appendix A that 
K Q L is relationally complete. 
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conditions. To maximize the flexibility, all operations with suitable outputs can be 

nested. 

The general structure of a query is given by the following B N F grammar:! 

<query> ::= [<instance-clause>] 

< action-clause > 

[ < report-formatting-clause > ] 

[ < where-clause > ]. 

The general interpretation of a query is as follows: the system will find all 

possible instances defined in the < instance-clause > and meeting all the conditions 

specified in the < where-clause >; the system then performs the actions specified 

in the < action-clause > in accordance with any additional instructions specified in 

the < report-formatting-clause >. 

The instance-clause declares the instances. The user must provide a name for the 

instance and declare the type that the instance belongs to. 

<instance-clause> :: = 

< instance-identifier > < instance-type-connection > <type> 

{,< instance-identifier > < instance-type-connection > <type>} 

<instance-identifier> :: = 

< entity-instance-identifier > 

| < relationship-instance-identifier > 

t A pair of square brackets in the grammar means that the content inside the 
brackets is optional. Curly brackets mean that the content can be listed zero or 
more times. 
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| < role-instance-identifier > 

These instance-identifiers are terminal. They are names given by the user at the 

time the query is made. 

<instance-type-connection> :: = 

IS | IS A | IS A N 

| IS A N I N S T A N C E OF 

<type> ::= <entity-type-name> 

| < relationship-type-name > 

| < role-name > 

All names are terminal. 

<action-clause> :: = 

< select-clause > [ <delete-clause> ] [ < change-clause > ] 

| <delete-clause> [ < change-clause > ] 

| < change-clause > 

The action-clause can be all of the three clauses allowing the user to perform all 

three functions in a single query. For now, we will only discuss the select-clause. 

<select-clause> :: = 

< entity-relationship-subset-select-clause > 

| < value-select-clause > 

< entity-relationship-subset-select-clause > :: = 

S E L E C T [< type-name > =] < instance-identifier > 

{, [< type-name > =] < instance-identifier >} 

The type-name is a user-given name, and is terminal. 

< value-select-clause> :: = 
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SELECT < select-item > {,< select-item >} 

< select-item> :: = 

< instance-identifier > < attribute-name > 

| < instance-identifier > * 

| < operation > 

The "*" means to select all attributes of the instance. An <operation> is an 

operation on values. It includes the arithmetic and statistical operations to be 

described later. 

The report-formatting-clause contains instructions for organizing the output of the 

query. The instructions may include the common sorting commands and more 

advanced commands such as sub-totals, totals, titles and even graphics. In 

general, any command that works on a single table can be included here. The 

exact syntax depends on the specific instructions. Though these commands will be 

very useful to the users, they are not directly related to the ER model and will 

not be discussed much in this paper. 

<report-formatting-clause> :: = 

REPORT < formatting-instructions > 

The where-clause contains the conditions that the instances specified in the query 

must meet. 

< where-clause > :: = 

WHERE <condition-list> 
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<condition-list> :: = 

<condition-andlist> [OR < condition-list>] 

< condition-andlist > :: = 

< condition > [, < condition-andlist >] 

<condition> ::=NOT ( <condition-list>) 

A < condition > can also be one of the many conditions in the various categories 

described previously. It can include any appropriate operations and values; for 

example, "60 < max(employee age)" can be a condition. The exact syntax can 

only be given for specific conditions and operations. Since a retrieval is an 

operation, a suitable condition can include a sub-query. 

2. Fundamental Specific Operations 

Obviously the number of possible operations for the knowledge level interface will 

be very large, if not infinite. Each query can be considered as an operation. 

Some restrictions have to be applied. We will first discuss the fundamental 

conditions in an ER model. In addition, we will consider the operations that are 

provided in our benchmark language SQL. 

The fundamental operations in the ER model are defined as those operations that 

we can express in the ER model. These are the facts that the ER model can 

contain. These include only the following: t 

1. That an instance belongs to a certain entity type 

2. That an instance belongs to a certain relationship type 

3. That two (or more) entity instances are related through a certain 

t/The inheritance for is-a relationships is generally considered as an extension to 
the ER model, and it will be treated in a later section. 
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relationship instance. In addition, the instances may have certain roles in 

the relationship. 

4. That the value of a certain attribute of a certain instance equals a certain 

value. 

It is debatable whether the cardinalities (that is, the lower and upper degrees) of 

a relationship can be counted as being contained in the ER model. If this is 

considered as contained in the ER model, then the fundamental operations should 

include an operation to count the number of entity instances (of a certain type) 

that are related (through a certain relationship) to an entity instance. The 

cardinalities seem to be contraints on the behavior of the entity instances. Also, 

many discussions of the ER model omit the cardinalities, or simply uses "one" or 

"many" without specific numbers. It seems reasonable to exclude this operation 

from the list of fundamental operations. 

All the operations in the above list are conditions. 

We may define a fundamental level of E R completeness as the ability to 

specify all the conditions that we can express in the ER model. Thus any ER 

language that allows the conditions in the above list will meet the fundamental 

level of ER completeness. 

We will now define the syntax and semantics of each of the fundamental 

conditions. 
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a. Entity/Relationship Type Conditions 

This is the condition that declares an instance to be of a certain 

entity/relationship type. The condition is stated in the < instance-clause > of the 

query. The syntax has been described in the previous section on the general 

format of a query. Some examples are: 

1. s is a supplier 

2. sp is a supply 

3. sp is a supplies 

To reduce the number of instance-of declarations, the user may omit the instance 

declaration and use the actual entity type names, relationship type names or role 

names in the < select-clause > and < where-clause > wherever there are no 

ambiguities. The actual type name will be understood as the name for an 

instance of that type." However, the "redundant" instance-of statements may 

enhanced the clarity of the query. For example, both of the following queries are 

acceptable: 

s i s a supplier 

select s name. 

and 

select supplier name. 

b. Relationship Existence Condition 

This is a condition relating two entity instances and either a relationship instance 

or a role instance. The syntax is: 

< relationship-existence-condition > :: = 
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< entity-instance-identifier > 

[( < role-name > )] 

< related-to-instance > 

[ ( < role-name > )] 

< enti ty-instance-identifier > 

< related-to-instance > :: = 

< relationship-instance-identifier > 

| < role-instance-identifier > 

The first < role-name > refers to the role of the first entity instance in the 

relationship, the second < role-name> refers to the role of the second entity 

instance in the relationship. In most cases, these role-names can be omitted 

without any ambiguities. In rare cases, these are needed. One such case is when 

two entity types each has two roles in the same relationship. 

This condition is true if the two entity instances are related through the 

relationship instance, with the stated roles. It is false if the two entity instances 

are not related through this relationship instance with the stated roles; the two 

entity instances may be related through this relationship instance but with 

different roles, they may be related through another relationship instance, or one 

of them may be related through this relationship instance to some other entity 

instance. 

A < role-instance-identifier > is a one-sided synonym for a 

< relationship-instance-identifier >. It can be used only in a certain sequence. 
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Consider the ER model where there is a SUPPLY relationship between entities 

SUPPLIER and PART, and the role of SUPPLIER is SUPPLIES while the role 

of PART is SUPPLIED_BY, then "supplier supplies part" is a valid 

condition, but "supplier supplied_by part" is not. In the condition "supplier 

supplies part", the identifier "supplies" represents the relationship instance that 

involves the instances "supplier" and "part". 

Example queries with relationship existence conditions are: 

i . s is an instance of supplier, 

p i s an instance of part, 

sp i s an instance of supply 

select s name, p name, sp price 

where s sp p. 

i i . s i s an instance of supplier, 

p i s an instance of part, 

sp is an instance of supplies 

select s name, p name, sp price 

where s sp p. 

c. Equality Comparison of Attribute Values 

The comparison operator to be described is ' = '. The syntax is: 

< equality-attribute-value-condition > :: = 

< attribute-value > = < attribute-value > 

| < attribute-value > = < user-given-value > 

| < user-given-value > = < attribute-value > 
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< attribute-value > :: = 

< instance-identifier > < attribute-name > 

Both < attribute-name > and < user-given-value > are terminal. A 

< user-given-value > is any value such as an integer or a character string that 

is accepted by the system. 

This concludes the description of the fundamental conditions. 

3. Additional Specific Operations 

When we consider the additional operations, we are faced with a large number 

of possibilities. Many of these have been described under the various categories 

of operations. It does not serve much purpose here to describe the syntax of 

every possible operation. Since we envisage that the new system will be built on 

top of a relational system and will interface with the relational system through 

SQL, and since we are using SQL as a benchmark language, we will consider 

the additional operations that are available in SQL. The syntax for the "missing" 

operations, especially the well-known operations such as string operations and set 

operations, can be easily added when necessary. 

The following additional operations will be considered: 

1. Arithmetic operations on attribute values. These include multiplication, 

addition, subtraction and division. 

2. More comparison conditions: ">" and "<". The equality " = " comparison 

described under the fundamental conditions will be extended. The usual 

combinations "<" and ">" will also be included. 
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3. Simple statistical operations: COUNT, SUM, AVG, MAX and MIN. 

4. Miscellaneous other functions that, are available in SQL, such as IN, 

EXISTS and UNION. SQL does not provide explicit intersection and 

difference functions, which can be built by using the EXISTS function. 

However for ease of use, a fully implemented KQL should provide explicit 

intersection and difference functions so that users ' can use these if they 

choose not to use the EXISTS function. The syntax for these should be 

similar to that for the UNION function. 

a. Arithmetic Operations 

The arithmetic operations of addition, subtraction, multiplication and division will 

be described here. These operations are applied to attribute values and/or other 

values provided by the user. The syntax is as follows: 

<arithmetic-operation> :: = 

[<sign>] < arithmetic-term > 

{<add-minus> < arithmetic-term >} 

<arithmetic-term> :: = 

< arithmetic-subterm > 

{< time-divide > < arithmetic-subterm >} 

< arithmetic-subterm> :: = 

< simple-value > | (< arithmetic-operation >) 

<sign> ::= + | — 

<add-minus> ::= + | — 

<time-divide> ::= * | / 

< simple-value> :: = 
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< attribute-value > 

| < user-given-value > 

| < statistical-operation > 

The term < statistical-operation > will be described later. 

An example of query with arithmetic is: 

e 1 is an instance of employee, 

e 2 is an instance of employee 

select e 1 name 

where e^ salary = 0.5 * e 2 salary, 

e 2 name = 'MARY' 

b. Additional Comparisons 

This section describes the syntax for the comparison conditions. The arithmetic 

operations are incorporated. 

< comparison-condition > :: = 

< value > < comparison-condition-name > < value > 

< comparison-condition-name > :: = 

= I < I > I <= I => 

<value> ::= < arithmetic-operation> | < simple-value> 

c. Statistical Operations 

The syntax for statistical operations is: 

<statistical-operation> :: = 

< instance-statistical-operation > 
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| < attribute-statistical-operation > 

< instance-statistical-operation > :: = 

C O U N T 

[UNIQUE] 

(< entity-instance-identifier > 

[FOR E A C H < grouping-values >]) 

< attribute-statistical-operation > :: = 

< attribute-statistical-operator > 

[UNIQUE] 

(< instance-identifier > < attribute-name > 

[FOR E A C H < grouping-values >]) 

< attribute-statistical-operator > :: = 

C O U N T | M A X | MIN | A V G | S U M 

<grouping-values> :: = 

< grouping-value > {, < grouping-values >} 

< grouping-value > :: = 

< entity-instance-identifier > 

| < instance-identifier > < attribute-name > 

The interpretation of a statistical operation is: for each combination of the 

< grouping-values >, perform the operation on the instances (or the attribute 

values of the instances), provided the <grouping-values> and the instances must 
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satisfy the where-conditions. 

An example of a query with statistical operation is: 

select part number, part name, avg(supply price for each part) 

where supplier supply part. 

This query gets the part's name and number, and the average price that it is 

supplied by its suppliers. 

d. Some other operations 

Here we will consider the equivalent of some miscellaneous functions that are 

available in SQL. Specifically, we will consider the IN, EXISTS and U N I O N 

functions. 

The IN function is a simple test of membership of one value against a list of 

values. The K Q L syntax is similar to SQL's. 

< membership-condition > :: = 

< value > 

IN 

( <list-of-values> ) 

< list-of-values > :: = 

< value > {, < value >} 
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<list-of-values> ::= . 

[ < instance-clause > ] 

S E L E C T < value > 

[ < where-clause > ] 

The EXISTS function simply checks for the presence or absence of output in a 

retrieval. The K Q L syntax is similar to SQL's. 

<exists-condition> :: = 

EXISTS 

(< retrieval-query >) 

<retrieval-query> :: = 

[ < instance-clause > ] 

< select-clause > 

[ < report-formatting-clause > ] 

[ < where-clause > ] 

The U N I O N function in K Q L can be divided into two kinds. One is the union of 

sets of entity instances, where the instances must all be of the same entity 

type. The second is the union of tables of attribute values. This is similar to 

the union of two relations. The syntax is: 

<union-retrieval-query> :: = 

< retrieval-query > 

[ UNION < union-retrieval-query > ] 
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C. EXTENSIONS TO THE K Q L L A N G U A G E 

This section will discuss some useful extensions to the K Q L language described 

previously. One extension is the incorporation of inclusion (IS A) relationships 

into the E R model and how this is handled by K Q L . The second extension 

describes some useful conditions that are combinations of the specific conditions 

described previously. The addition of these combination conditions may make 

certain queries easier to write. 

1. Special Relationships 

Some entity types may be considered to be subtypes of other entity types. For 

example, E N G I N E E R entity type can be a subtype of E M P L O Y E E entity type. 

It is usual to say that E N G I N E E R is I S _ A related to E M P L O Y E E , or more 

simply that E N G I N E E R I S _ A E M P L O Y E E . 

The IS A relationship means that an instance of the subentity can exist only if 

it also exists at the superentity. We do not consider many variations of IS A 

discussed in the literature, such as an IS A where a superentity instance must 

exist as one of the subentities, or an IS A where the subentities are mutually 

exclusive. A common property applies to all these variations: attributes are 

inherited. Following the common version discussed in the literature, the IS A 

relationship used in this research has no attributes of its own. 

The attributes of the superentity type ( E M P L O Y E E in this case) can be inherited 

by the subentity type (ENGINEER). This is the usual attribute inheritance 

discussed in the literature (Buneman 1986). When formulating queries, the user 



can treat the attributes of the superentity as if they already belong to the 

subentity. Suppose E M P L O Y E E has attributes N A M E , N U M B E R and ADDRESS, 

and E N G I N E E R has attribute PROFESSION. The user can ask the following 

queries: 

i. select engineer name 

where engineer number = 12354 

and ii. select engineer name 

where engineer profession = electronics 

When it comes to database usage at the knowledge level, we would like 

"inheritance" in every direction. We will propose a knowledge level principle of 

attribute and relationship inheritance: 

By refering to an entity E, it should be possible to refer directly to 

attributes and relationships that are not directly of E but are of 

entities that are IS A-linked to E, however remote the linkage. If E ^ 

and Eg are subentities of E , then E ^ is IS A-linked to E, to Eg, 

and to any other entity that is IS A-linked to E or Eg. 

This principle may be viewed as a further application of the concept of entity 

identity. All the instances which are IS A-linked are actually different 

manifestations of a single entity instance. 

Consider the IS A relationships shown in the ER model in Figure 1. The user 

should be able to make the following queries: 

1. select engineer name 
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Figure 1: IS_A Relationships in an ER Model 



73 

2. s e l e c t engineer rank 

3. se lec t employee rank, employee p r o f e s s i o n 

4. se lec t employee name where employee heads p r o j e c t 

5. se lec t manager name where manager owns v e h i c l e 

6 . se lec t manager name where manager owns car 

Note that inheritance can occur at both ends of the relationship, as shown in 

the last example. 

With the introduction of IS A relationships, we want to allow new conditions 

about these. The first condition is about an entity instance and an entity type. 

The syntax for. the condition is: 

< isa-relationship-condition > :: = 

< entity-instance-identifier > IS A < entity-type-name > 

This condition is true if the entity instance is a member of the entity type. 

That is, there is an instance in the entity type that has the same key values 

as the entity instance in the condition, and the entity type is IS A-linked to 

the entity type of the entity instance in the condition. A n example query with 

this condition is: 

e i s an instance of engineer 

s e l e c t e name 

where e IS_A manager 

This query will select the engineers who are also managers. 

The second condition is the equality of two entity instances. This is true if the 

two entity instances are of entity types that are IS A-linked and their key 
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values are the same. The syntax for this condition is: 

<entity-equality-condition> :: = 

< entity-instance-identifier > = < entity-instance-identifier > 

An example query retrieving the same information as the previous query is: 

e i s an instance of engineer, 

m i s an instance of manager 

select e name 

where e = m 

2. Combination Conditions 

In real life, we are often interested in knowing whether two entity instances are 

related but we may not be interested in the particular relationship instance. This 

condition and its negation can be expressed using a combination of the 

relationship-existence condition and the EXIST condition.! However it will be 

harder for the user. The syntax for this condition is: 

< combination-relationship-condition-1> :: = 

< entity-instance-identifier > 

< relationship-related > 

< entity-instance-identifier > 

< relationship-related > :: = 

< relationshi'p-type-name > - R E L A T E D 

I < role-name > - R E L A T E D 

tHow this combination condition and others can be decomposed into more 
primitive conditions is shown in the later chapter on Prolog implementation. 
However these combination conditions can be understood without knowing the 
decompositions. 
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This condition is true if the two entity instances are related through some 

instance of the relationship type. It is false if there are no instances of the 

relationship type that relates the two entity instances. A n example is: 

s i s an instance of supplier, 

p i s an instance of part 

select s name, p name 

where s supply-related p 

This condition is extended further to allow easier writing of more complex 

conditions which we believe are used frequently, for example, in the query "Find 

students who take more than 4 courses." It also allows the counting of instances 

to be done without explicitly using the C O U N T operation. The syntax of the new 

condition is: 

< combination-relationship-condition- 2 > :: = 

< entity-instance-identifier > 

< relationship-related > 

< number-specification > 

< entity-type-name > 

<number-specification> :: = 

A L L | N O 

| [<comparsion-condition-name>] < integer > 

The condition is true if the entity instance is related through the relationship 

type to the specified number of instances of the specified entity type. Some 

examples of queries with this combination condition are: 
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i. select supplier name 

where supplier supply-related > 5 part 

(This gets the supplier who supplies more than 5 part 

instances.) 

and ii. select supplier name 

where supplier supply-related no part 

(This gets the supplier who does not supply any parts.) 

D. K Q L UPDATES AND DEFINITIONS 

K Q L allows the user to define his world of entities and relationships to the 

system. This corresponds to the data definition process for relational DBMSs. The 

language must also allow modifications to the entity/relationship types. The syntax 

for these is given in Appendix B. 

The creation of an entity instance is very simple, requiring only the values of 

the attributes. The creation of a relationship instance involves specifying 

(retrieving) the participating entity instances. 

Deletion of an instance or changes to its attributes can only be done if the 

instance is first retrieved. Thus a good retrieval language is half the solution for 

deletions and changes. The syntax for creation and modification of instances are 

shown in Appendix C. 

Appendix B and C also include details on the creation and use of IS A-linked 

entities. 



V I I . C O M P A R A T I V E A N A L Y S I S O F K N O W L E D G E L E V E L 

V E R S U S L O G I C A L D A T A L E V E L I N T E R F A C E S 

This part will show that the knowledge level interface requires less knowledge of 

the user and reduces the number of data manipulation operations that the user 

has to perform, as compared to the SQL interface, which is an example of the 

logical data level interface. In the process, it will also be shown how the major 

relational difficulties described in Chapter II will be avoided when using K Q L . A 

further comparison of K Q L and SQL based on the query language comparison 

frameworks in the literature is done in Appendix D. 

A . K N O W L E D G E R E Q U I R E M E N T 

To allow simple reference, we will use the term K-users to denote users using a 

knowledge level interface and the term D-users to denote users using a data 

level interface. 

Both D-users and K-users need to know the domain. They both need to know 

the syntax of some interface language. In addition D-users need to know the 

data elements in the database and the correspondence between these data 

elements and the domain. Pahwa and Arora (1985) write, "Relational database 

systems impose on the user the responsibility of specifying logical level access 

paths in order to retrieve information. As a result, the user must be aware of 

the relevant relations and all possible interconnections among these relations . . . 

this assumed level of user sophistication is a constant source of difficulties." 

It is acknowledged that not everybody sees the world in the same way. While 
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some may see the world in terms of entities and relationships, others may see 

it in some radically different terms. We can divide the users into two groups: 

the ER group who sees the world in ER terms, and the non-ER group who sees 

the world in other terms. But nobody sees the world as a set of relations. 

The ER group is of considerable size, as evident by the widespread use of the 

ER model. Let us consider this group when they use the ER—> Relational t 

approach to design the database (Chen 1976, Poonen 1979, Braind et al. 1985, 

Ling 1985, Parent and Spaccapietra 1985, Storey 1986, Teorey, Yang and Fry 

1986, Azar and Pichat 1987, Reiner et al. 1987, Schuldt 1987, Brady and 

Dampney 1987). K-users in this group will know everything they need to know 

about the database by the time the conceptual ER model is designed. D-users 

also know as much as the K-users. However, D-users need to know more. They 

must know the relations, how to map from the relations to their ER world, and 

how to map from their ER world to the relations. 

Thus for this group of ER users who use the ER— >Relational approach, what 

K-users need to know is strictly a subset of what D-users need to know. The 

additional amount of knowledge required of D-users is not trivial. The logical 

conclusion, assuming that users have limited information processing capability, is 

that these users will find the knowledge level system less taxing than the data 

level system. 

Let us consider those in the ER group who do not use the ER—> Relational 

tThis is used to refer to the database design approach where a conceptual ER 
model is first designed, and it is then used to design the relations. 
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approach. K-users by definition of the ER group will be designing the database 

using the ER model. D-users who have to use the relations may design these 

using some other approach, such as the functional dependency approach. In this 

case, it would appear that D-users need to map the relations to their world, 

which they see as consisting of entities and relationships. K-users, on the other 

hand, have no need to make any transformation; the database interaction uses 

the same terms as they think about the world. Again, K-users need to know 

only a subset of what D-users need to know. 

Now we consider the non-ER group. Suppose this group thinks of the world in 

terms of an arbitrary X model. D-users in this group need to map relations into 

the terms of the X model. K-users also need to map the ER terms into the X 

model terms. Given that the X model is not specified, it is not clear whether 

K-users or D-users have the advantage. 

For the non-ER group, future research may try to design a knowledge level 

interface based on the X model. If this is successful then again K-users in this 

group will need to know only a subset of what D-users need to know. 

Nevertheless, even K-users in the non-ER group may have an advantage in 

using the ER model over D-users using the relational model. It would appear 

that K-users need to know less, since knowledge is not duplicated but logical 

data elements are. For example, the relations have to duplicate key fields to use 

as logical pointers. Furthermore, the ER model contains more relevant knowledge 

which will reduce ambiguities. In contrast, a relation, suffering from semantic 
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overloading, is an oversimplified representation that omits relevant details. The 

result is that a relation is open to multiple interpretations (Borkin 1980). For 

example, the user will not know whose age is represented in the relation 

R( SUPERVISOR, AGE, EMPLOYEE). A more complex example is the relation 

R(PERSON, WINE, MEAT) which may represent that certain persons like certain 

wines and certain meats, pr that only certain combinations of wine and meat 

are liked by certain persons. 

In concluding this section, we see that there are three distinct types of 

knowledge distributed among the users and the database systems. These are 

domain knowledge, data knowledge and knowledge of the transformation between 

the first two types. A knowledge level system knows all three types, so that 

K-users only need to know the domain knowledge. The data level system only 

knows the data knowledge; as a result, D-users have to know all three types of 

knowledge. This is illustrated in Figure 2. 

B. DATA MANIPULATION OPERATION REQUIREMENT 

The previous section shows that K-users do not need to know the data elements. 

It follows from logic that K-users will do fewer data manipulation operations 

than D-users. Data manipulation operations include the actual operation performed 

on the given data as well as the process of finding and deciding the relevant 

data. This section examines the specific situations that K-users can avoid the 

data manipulation operations. It also shows how the difficulties of the relational 

queries are avoided. 



81 

KNOWLEDGE LEVEL SYSTEM 

DATA SYSTEM 

Domain Knowledge Transformation Knowledge Data Knowledge 

-K-USER-

-D-USER-

Figure 2 : Knowledge Known by Systems and Users 
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As stated with the hypotheses, we are interested not only in the end-users 

making retrieval queries but also in designers and programmers interacting with 

the database system. Hence we will examine the three main types of interaction: 

definition of the world, updates and retrievals. 

1. Data Definition 

In defining the real world to the database system, K-users need to define the 

entities, the relationships, and their attributes. They do not have to decide how 

to link the entity instances in the relationships. 

D-users, however, need to do the linkages by defining foreign keys. They also 

have to decide whether or not to put the relationship attributes together with 

the entity attributes in a single relation. These are logical data manipulation 

operations that simply do not concern K-users. 

With the IS A relationships, D-users need to decide how to represent these 

IS A-linked entities with some relations. As seen in Chapter II there are a few 

possible relational representations, each with some disadvantages. D-users have to 

evaluate and choose one representation. Again, K-users need not perform this 

data manipulation operation. 
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2. Updates 

a. Deletions 

K-users do not delete records. They delete instances, with commands such as 

" d e l e t e s u p p l i e r where s u p p l i e r name='IBM'." Since the database system 

understands the entity supplier and the relationships that involve supplier, it can 

automatically delete the appropriate relationship instances so as to maintain the 

integrity of the database. 

D-users, on the other hand, have to do the follow-up deletes of records. They 

have to decide on the appropriate relations and either delete some tuples or set 

some columns of some tuples to null. Alternatively, D-users have to define and 

maintain triggers to do the follow-up deletions. These data manipulation operations 

are avoided by K-users. 

In deleting a relationship instance, D-users need to find out where the data are 

stored, and then either delete a tuple or set certain columns to null. A real 

world deletion is translated into one of two data manipulation operations. 

Where IS A-linked entities are involved, deleting a superentity instance will 

mean the deletion of the subentity instances of the same key values. Again, the 

K L interface can take care of these follow-up deletion of instances. 

D-users have even more data manipulation operations to perform. They need to 

know where to "post" the deletion of a superentity instance. Some representations 
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of IS A-linked entities do not have a relation for superentities; some do. D-users 

need to examine the relations to decide what to do. 

b. Changes and Insertions 

D-users have to Find out where to post the changes or insert the data. This 

search for the relevant relations and columns is similar to those required for 

deletions, as discussed above. 

In addition, when inserting a relationship D-users need to check that entity keys 

are not non-existent. They either retrieve the entity keys from some relation or 

define some constraints in terms of the columns of some relations. These data 

manipulation operations are avoided by K-users. 

3. Retrievals 

S Q L retrievals are usually classified based on the type of data manipulation 

operations. This is a consequence of the fact that SQL is meant for 

manipulating data elements. These are the common classes: 

1. simple one table retrieval 

2. join operations, where two or more relations are joined 

3. chaining, also known as nesting, composition, combination, or queries with 

sub-queries (the terminology varies among researchers) 

4. grouping of items 

5. specification of variables to range over the same relation 

6. set operations 

7. univeral quantification 
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8. combination, where a few of the above operations are done. 

a. Join Operations 

There are two real world purposes for performing joins on relations. One is to 

re-create the relationship between entities. This involves joins based on the keys 

and foreign keys. The other is to compare two attribute values, and it may 

involve the non-key columns of the relations. 

For the second purpose, K-users simply compare attribute values of the instances 

without bothering about which columns of which relations. For the first purpose, 

K-users simply specify the existence of the relationship, for example, 

K-users: se lec t s u p p l i e r name, par t name 

where s u p p l i e r suppl ies part 

D-users: SELECT S.SNAME, P.PNAME 

FROM S, SP, P 

WHERE S.SNO = SP.SNO 

AND P.PNO = SP.PNO 

D-users have to know that these two conditions performing 

joins are needed to form the relationship. More 

fundamentally, D-users must be aware that there is a need 

for the join operation. 

In cases where the key consists of multiple columns, D-users have to specify a 

few equality conditions just to perform a single join operation. For example, they 

may have to specify that T A B L E 1. C O L U M N 1 equals T A B L E 2. C O L U M N 1 and 
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T A B L E 1 .C0LUMN2 equals T A B L E 2. C O L U M N 2. Recognizing this difficulty, 

Chamberlain (1978) suggested an additional function in S Q L to reduce these 

multiple conditions. The function allows D-users to simply say "TABLE1 MATCH 

TABLE2". However, this function has its limitations. Every column to be matched 

must have the same name in both tables. Furthermore, any columns with the 

same name in both tables will be matched; thus, the user may unintentionally 

specify more equality conditions than he wants. 

We see that K-users need not explicity perform any join operations. 

b. Grouping by Instances 

The number and order of keywords needed for some operations can be confusing. 

For example, Welty (1985) found that subjects who had gone through 14 

sessions learning SQL had a lot of difficulty writing queries that involved the 

" W H E R E . . . GROUP B Y . . . H A V I N G . . . " statement. These keywords 

are unavoidable in SQL; the improvement suggested by Welty (1985) is only to 

permit flexible sequencing of these three keywords. The knowledge level interface 

can help to reduce the number of keywords. For example: 

D-users: SELECT S.SNAME 

FROM S , SP 

WHERE S.SNO = SP.SNO 

GROUP BY S.SNO 

HAVING COUNT(*) > 1 
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K-users: se lec t s u p p l i e r name 

where s u p p l i e r s u p p l i e s - r e l a t e d >1 par t 

Alternatively, 

s e l e c t s u p p l i e r name 

where s u p p l i e r supply p a r t , 

count(part f o r each s u p p l i e r ) > 1 

The improvement is in the reduction of key phrases, which will reduce possible 

confusion of the key phrase sequence. 

c. Universal Quantification 

The knowledge level also allows more direct specifications for queries involving 

universal quantification of instances. Comparatively, the SQL query uses very 

roundabout ways. Consider the query to retrieve the suppliers who supply all 

parts. K-users give a very direct specification: 

K-users: se lec t s u p p l i e r name 

where s u p p l i e r s u p p l i e s - r e l a t e d a l l p a r t s . 

D-users, on the other hand, have to specify the selection of a supplier such that 

there are no parts that are not supplied by the supplier. They use the double 

negative. In addition, the need to carefully manipulate three relations complicates 

the process: 
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D-users: SELECT S.SNAME 

FROM S 

WHERE NOT EXISTS 

(SELECT * 

FROM P 

WHERE NOT EXISTS 

(SELECT * 

FROM SP 

WHERE SP.PNO=P.PNO 

AND SP.SNO=S.SNO)) 

Another similar example is the query to retrieve the suppliers who do not 

supply any parts. K-users simply state that condition directly. D-users have to 

be more procedural. They have to specify finding a tuple in relation S such that 

there is no tuple in relation SP with the same SNO value. Thus the knowledge 

level query is less procedural than the SQL query. 

D-users: SELECT S.SNAME 

FROM S 

WHERE NOT EXISTS 

(SELECT * 

FROM SP 

WHERE S.SNO=SP.SNO) 

K-users: select supplier name 

where supplier supplies-related no part. 
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We see that in these cases K-users need fewer subqueries, nestings and EXISTS 

conditions. 

d. Specification of Multiple Instances of the Same Type 

Greenbatt and Waxman (1978) found that subjects had considerable difficulty in 

cross-linking in one table. Cross-linking involves using the same relation more 

than once in the query. Subjects had to perform this operation for queries such 

as "Who is younger than John's manager?" Consider the following relation: 

EMP(NAME, SALARY, AGE, MANAGER). 

Some possible SQL formulations of the above query are given below: 

Version 1: 

SELECT NAME 

FROM EMP 

WHERE AGE < 

(SELECT EMP2.AGE 

FROM EMP EMP1, EMP EMP2 

WHERE EMP1.NAME='JOHN' 

AND EMP1.MANAGER=EMP2.NAME). 

Version 2: 

SELECT NAME 

FROM EMP 

WHERE AGE < 

(SELECT AGE 

FROM EMP 
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WHERE NAME= 

(SELECT MANAGER 

FROM EMP 

WHERE NAME='JOHN1)) . 

Version 3: 

SELECT EMP3.NAME 

FROM EMP EMP1, EMP EMP2, EMP EMP3 

WHERE EMP1.NAME=1 JOHN' 

AND EMP1,MANAGER=EMP2.NAME 

AND EMP3.AGE < EMP2.AGE 

Assume that the real world has an entity type E M P L O Y E E that has a 

relationship M A N A G E R with itself, and the roles of E M P L O Y E E in this 

relationship are M A N A G E S and M A N A G E D BY. The knowledge level query for 

the same question is: 

e l i s an employee, 

e2 i s an employee, 

e3 i s an employee 

select e3 name 

where e3 age < e l age, 

el manages e2, 

e2 name = 'John'. 

At the knowledge level, defining multiple instances of the same type is similar to 

defining multiple instances of different types. No extra difficult}' is expected. 
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Further simplification can be expected for K-users in that they avoid the join 

operations that almost invariably accompany the multiple use of one relation. 

e. Nesting 

As seen in the previous examples, many K Q L queries do not use nesting while 

the corresponding SQL queries do use nesting. Nesting of queries have been 

found to be difficult (Welty and Stemple 1981). 

There are a few different occasions that require nesting SQL queries. One is for 

queries involving the logical quantifiers. These SQL queries are formulated 

roughly along this structure: find A such that A (and/or B) cannot be found 

under some other conditions. This is nesting. The K Q L queries provide more 

direct expressions which avoid the nesting operation. 

Sometimes, the nesting operation is used in place of the join operation, for 

example, writing 

SELECT SNAME 

FROM S 

WHERE S.SNO IN 

(SELECT SNO 

FROM SP) 



92 

instead of writing 

SELECT SNAME 

FROM S, SP 

WHERE S.SNO = SPS.SNO. 

K-users, being able to avoid join operations, are also able to avoid this type of 

nesting operations. Also, the nesting required in quantified S Q L queries are 

avoided by K-users, as seen previously. 

f. Retrievals Involving Inheritance 

Inheritance by IS A-linked entities is done by the system for K-users. D-users, 

however, need to choose and perform joins on the appropriate relations and 

columns to create the inheritance. For example, consider this set of relations to 

represent the IS A-linked entities employee, engineer and manager: 

EMPLOYEE(NUMBER, NAME, ADDRESS) 

ENGINEER(NUMBER, PROFESSION) 

MANAGER(NUMBER, RANK) 

To get the names of the engineers, K-users simply say select engineer name 

while D-users have to choose the two relations EMPLOYEE and ENGINEER and 

perform a join: 

SELECT NAME 

FROM EMPLOYEE, ENGINEER 

WHERE EMPLOYEE.NUMBER = ENGINEER.NUMBER 
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Conclusion on Data Manipulation Operations 

To conclude this section on data manipulation operation requirement, we will 

review the list of manipulation operations that are avoided or reduced. It is a 

long list: 

1. Definition of foreign keys as logical pointers. 

2. Deciding whether to put the relationship attributes and the entity attributes 

in a single relation or to put these in two relations. 

3. Deciding on the relations to represent the IS A-linked entities. 

4. Doing follow-up deletion of relationship relation, or setting to 'null' the 

relationship attributes in a mixed entity/relationship relation, after an entity 

instance has been deleted. 

5. Deciding which relations to change when a relationship instance is to be 

deleted. This involves further decision as to whether to delete a whole tuple 

or just to set some columns to 'null'. 

6. Doing follow-up deletions of IS A-linked entity " instances when a higher 

entity instance is deleted. 

7. Finding out which relation to delete when a top entity is deleted. There 

may be no real relation representing the top entity. 

8. Checking that the entity keys exist in the relevant relations when inserting 

a relationship instance. 

9. Deciding which relations and columns to update when attribute values 

change or when new instances have to be added. 

10. Performing join operations, and deciding which are the relevant relations 

and columns to join. 

11. Grouping occurrences by the key values. 
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12. Doing nesting and subqueries. 

13. Manipulating multiple cases of the same relation. 

14. Manipulating relations to create attribute and relationship inheritances. 

In general, we can classify the first three manipulations as the designer's job 

and the remainder as the programmer's job. The last five can also be classified 

as the end-user's job. Hence K Q L will benefit all three types of user. 



VIII. P R O L O G I M P L E M E N T A T I O N 

A . C H O I C E O F I M P L E M E N T A T I O N L A N G U A G E 

Prolog has been chosen to implement the knowledge level system. Prolog 

programming is very similar to logic, and the final program can therefore serve 

as a formal logic specification of the system. 

There are also other favourable considerations. There is considerable research 

linking Prolog with some database system; for example, the European research 

project ESPRIT has ongoing research on the translation and optimization of a 

Prolog program to a series of data base queries expressed as a formal database 

language (Haass 1987), and an integration of Prolog and SQL for DB2 is 

described by Chang and Walker (1986). Some simple integration of Prolog and 

the relational database langauge SQL are also commercially available, for 

example, ARITY Prolog/SQL, as described in Rettig (1987), and IF/Prolog by 

Interface Computer GmbH has an SQL interface to Oracle. 

Besides this approach of linking a Prolog program with a database system, there 

is also the alternative approach of designing computationally more efficient 

database systems within Prolog; for example, Li (1984) describes a relational 

DBMS with query optimization written totally in Prolog, with future direct 

linkage with some other relational DBMS. 

It seems a real possibility that writing the knowledge level system in Prolog will 

allow for easy extensions which will be able to make use of the existing 
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research effort on making Prolog a practical database system. 

B. T H E S Y S T E M A R C H I T E C T U R E 

The main components of the knowledge level system are the parser, the 

compiler, the executor and the knowledge bases. A general description of their 

main functions are given below. 

The parser accepts the query from the user and verifies that the syntax is 

correct. It makes use of the knowledge bases to check for meaningful queries. 

Thus, queries on non-existent entities or relationships will be rejected. 

The compiler accepts the verified query, performs certain processes, and produces 

an executable version of the query. 

The executor accepts the query from the compiler, executes the query by 

assessing the knowledge bases, and returns the result to the user. 

The domain knowledge is stored in two knowledge bases. One contains knowledge 

of entity types and relationship types together with their attributes. The other 

contains knowledge of all the entity instances and relationship instances. 

C . T H E K N O W L E D G E B A S E S 

The knowledge bases are composed of Prolog predicates which are used to 

represent the domain knowledge. The domain knowledge stated by the user is 

transformed into these predicates. During retrievals, these predicates are 
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manipulated by the system — not by the user — to produce the answers 

matching the K Q L queries. 

1. Entity/Relationship Types Knowledge Base 

This knowledge base contains knowledge of the entity types and relationship 

types. Each entity type and each relationship type has its own attributes. Each 

attribute is associated with a datatype. For entity types, the attributes are 

classified as key or non-key attributes. A relationship type has a set of 

participating entity types and the roles these entities play in the relationship. In 

addition, knowledge of mappings are also included. 

The knowledge of entity types is represented by the following kind of Prolog 

predicates: 

ent ity(ent i ty-type-name, 

[[attribute-name^, datatype^, key/non-key], 

• • • i 

[attribute-name n, datatype n, key/non-key]]). 

The knowledge of relationship types is represented by the kind of Prolog 

predicates shown below. The lower degree and upper degree show the minimum 

and maximum number of instances of this relationship that the entity instance 

can have. The lower degree can be either 0 or 1. The upper degree is either 1 

or '* ' , which denotes more than one instances. A question mark can be used to 

denote an unknown degree, for example, [?,?]. 
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rel(relationship-tvpe-name, 

[[attribute-name^ datatype 1], 

• • • i 

[attribute-name m, datatype^], 

[[entity-name^ role.^, [lowerdegree^ upperdegree^], 

• • • i 

[entity-namen, r o l e n , [lowerdegreen, upperdegree n]]]). 

A relationship type can have any number of participating entity types, and each 

entity type can have multiple roles in the relationship. If there is only one 

participating entity type, then this entity type must have multiple roles in the 

relationship. 

An example of the representation for a simple world with only suppliers and 

parts that are related by a relationship "supply" is given below: 

entity(supplier, [[name,char,n],[city,char,n],[number,char,y]]). 

entity(part, [[number,char,y],[name,char,n]]). 

rel(supply, [[price,numeric],[quantity,numeric]], 

[[supplier, supplies, [ 0 , * ] ] , 

[part, supplied_by, [ 1 , * ] ] ] ) . 

The IS A relationship and the entities are represented as follows: 

1. each entity type has the usual entity representation showing the key and 

the attributes special to it. The top entity type representation shows the 

key and the general attributes. 
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2. the IS A relationship is represented by the following kind of Prolog 

predicates: 

isa(superentity, 

[subentity^ subentity 2, . . ., subentity n]). 

2. Entity/Relationship Instances Knowledge Base 

This knowledge base contains knowledge of the entity and relationship instances. 

Each instance has values for its attributes. A relationship instance also has 

references to the involved entity instances. 

The representation used for entity instances is the following kind of Prolog 

predicates: 

inst(entity-type-name, 

[ [attribute-name^ value^, 

• • • i 

[attribute-name n, value n]]). 

The representation used for relationship instances is the following type of Prolog 

predicates: 

inst(relationship-type-name, 

[ [ [attribute-name 1, value^^ 3, 

• • ., 

[attribute-namera, value m]], 

[ [entity-type-name., r o l e 1 , [ [key-attribute-name.., value. ], 
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[key-a t t r ibute -name n , v a l u e n ] ] ] , 

. • • • i 

[entity-type-namep, r o l e ^ , [ [ k e y - a t t r i b u t e - n a m e ^ v a l u e . j j , 

• • • i 

[key-attribute-name , value ] ] ] ] ] ) . 

Below is a partial list of predicates to represent the instances of the simple 

world of suppliers and parts: 

i n s t ( s u p p l i e r , [[name, i b m ] , [ c i t y , p a r i s ] , [ n u m b e r , 1 S I * ] ] ) . 

i n s t ( p a r t , [ [ n u m b e r , ' P l ' ] , [ n a m e , b o l t ] ] ) . 

i n s t ( s u p p l y , [ [ [ p r i c e , 7 0 ] , [ q u a n t i t y , 2 0 0 ] ] , 

[ [ s u p p l i e r , s u p p l i e s , [[number, 1 S I ' ] ] ] , 

[part , supplied_by, [ [ n u m b e r , ' P l ' ] ] ] ] ] ) . 

D. THE PARSER, THE COMPILER AND THE EXECUTOR 

The parser takes the input from the user, checking that the syntax is correct. 

It also fills in the missing instance declarations, since users are allowed to use 

the actual type names without declaring these as instance variables if there is 

no ambiguity. This step simply declares the type name as an instance of itself, 

such as " s u p p l i e r i s an instance of s u p p l i e r . " 

The compiler has two distinct components: compiler-1 and compiler-2. Compiler-1 

takes the query from the parser and perform certain things to it. It will 

1. process inheritance conditions. This makes the inheritance explicit. 

2. process combination conditions. This breaks combination conditions into 
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specific conditions. 

3. process subset conditions. This replaces the subsets with the original set 

and the subset query. 

The processes are described in detail in Appendix G. The output of compiler-1 is 

a query with only "primitive" conditions. 

Compiler-2 accepts the output of compiler-1 and produces a set of prolog 

predicates which are data representations of the operations in the K Q L query. 

These predicates necessarily depends on the other Prolog predicates used to 

manipulate the ER representations. 

The executor takes the output of compiler-2 and executes it. It finds every set 

of instances that matches the conditions and perform the necessary operations 

with them, such as displaying the attribute values. 

E. THE ACTUAL IMPLEMENTATION 

The parser and compiler-1 have been nearly fully implemented. These will accept 

any of the conditions/operations specified for K Q L in Chapter VI, except for 

entity/relationship subset retrievals. The implementation is not nearly as flexible 

as desired in terms of the nesting of operations; for example, " s s a l a r y IN 

(2*1000, 300+3000)" will not be accepted as a valid condition. 

Compiler-2 and the executor can accept simple queries with relationship existence 

conditions and simple comparison of attribute values. Work on these was 
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suspended as we explore the more interesting alternative of running the K Q L 

queries on relational DBMSs. This is the topic described in the next chapter. 



IX. SQL IMPLEMENTATION 

This chapter shows how K Q L may be constructed on top of an SQL interface. 

This will allow K Q L to be used widely, making full use of the many existing 

relational DBMSs. 

A. SYSTEM CONFIGURATION 

This system uses many of the components in the Prolog implementation. The 

parser, the types knowledge base and compiler-1 carry over unchanged. The 

knowledge base of instances is transferred to the relational system; that is, the 

instances are stored as tuples in the relations. The output of compiler-1 is fed 

to a K Q L — > SQL translator that produces SQL queries to be executed by the 

relational system. 

The K Q L — > S Q L translator translates one K Q L retrieval directly into exactly one 

SQL retrieval. This allows very simple implementation, with no need to further 

process the results returned by SQL. This preserves the speed of the relational 

DBMSs. On the other hand, the acceptable K Q L queries become limited by the 

SQL capabilities. The flexibility of K Q L in nesting operations is also severely 

limited by the flexibiltiy of SQL. 

The translator basically translates the instance-clause in the K Q L query to the 

F R O M statement in SQL, the select-clause in K Q L to the S E L E C T statement in 

SQL, and the where-clause in K Q L to the W H E R E statement in SQL. In order 

to perform the translation, the translator needs to know the ER model and the 

relations representing the entities and relationships. The full algorithm for the 
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translation is shown in Appendix H . 

B. THE ACTUAL IMPLEMENTATION 

The translation algorithm shown in the appendix translates from the K Q L query 

as entered by the user. In the actual implementation, the user's K Q L query is 

first transformed into some internal representation by the parser and compiler-1. 

This internal form is then translated into the SQL query. The algorithm is 

essentially the same. 

The translator has been nearly fully implemented. It will accept anything from 

compiler-1 and produce the SQL query, subject to the restrictions noted in the 

algorithm. It is written in Arity Prolog. Appendix I shows some examples of 

K Q L queries and the S Q L queries generated by the translator. 



X. CONCLUSION AND FURTHER RESEARCH 

A. CONCLUSION 

It has been shown that it is possible for the user to communicate with a 

database system by using only domain knowledge. This has been done through 

the conceptual development of a knowledge level query language and additionally 

through the partial implementation of a computer system to handle this language. 

It has also been shown that users of the knowledge level interface need to know 

less and perform fewer data manipulation operations than users of the logical 

data level interface. This has been done through a comparative analysis of the 

knowledge and operations required of the users at the two levels. In addition, 

specific logical data level difficulties are shown to have disappeared at the 

knowledge level. 

Thus the hypotheses of this dissertation have been verified. 

The main contribution of the dissertation is the proposal and demonstration of a 

knowledge level approach to designing the user-database interface. This approach 

emphasizes that the user-database exchange should be in terms of the domain 

knowledge rather than knowledge of the data elements in the database. In this 

way the user is totally cushioned from the logical and physical data. 

The dissertation also makes the following contributions: 

1. An analysis and definition of the meaning of completeness for a knowledge 
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level query language. 

2. A demonstration that the entity-relationship model can be used at the. 

knowledge level. 

3. The development of a knowledge level interface for the entity-relationship 

model. This is followed with the design of a concrete language for the 

interface. 

4. A clear analysis of how the knowledge level interface avoids the many 

difficulties of the logical data level interface. 

5. Proof that relational completeness is easily achieved with a small subset of 

the possible K Q L conditions and operations. 

6. A demonstration that K Q L can be implemented on top of a relational 

DBMS, thus making K Q L practical for large systems. 

There are potential practical benefits, such as higher programmer productivity and 

better database access that can result from the better approach. Also, the 

database designer can now skip the design of relations, thus saving time. In 

fact, new designers need not be trained in the relational model. 

B. FUTURE EXTENSIONS TO THIS RESEARCH TOPIC 

The following topics are suggested: 

1. Experimental comparison of user's performance at the knowledge level and 

at the logical data level. The results can be used to confirm or modify the 

syntax of K Q L . The experiment can also provide quantification of the 

improvement of K Q L over SQL, for example, in terms of increase in 

accuracy of queries and time saved by users. 
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2. Further development of the SQL linkage between the knowledge level 

module and the relational DBMS. This will make K Q L practical for large 

databases by using the computational power of relational systems such as 

relational database machines. 

3. Examine the best way to apply K Q L to existing relational databases, 

assuming that the SQL linkage is completed. An ER model has to be 

derived from the relations, and possibly new virtual and actual relations 

have to be defined while existing relations are deleted. This can have big 

impacts on the other existing programs that are accessing the database. 

The derivation of the E R model should be relatively easy if the relations 

had been designed using the ER—>Relational approach, since the ER model 

is already there and probably only minor updates are needed. 

A simple method with no impact on existing programs is to define a set of 

virtual relations on top of the existing relations. These virtual relations will 

correspond to the entities and relationships of the ER model. However, since 

most relational DBMSs support very limited updates for virtual relations 

(Date 1987), this method will give a K Q L interface mainly for retrievals 

only. More research is necessary, especially on the updating of virtual 

relations. 

4. Design of an interactive graphical interface. Although there are some 

graphical query languages for the ER model, these are rather limited in 

the retrieval power. 

5. Application of the knowledge level approach to conceptual models other than 

the entity-relationship model. 

6. Application of the knowledge level system to systems development. Systems 
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development usually involves three stages of transformation: the real world 

is analyzed to get the model/requirement, the requirement is used to design 

a logical system, and the logical system is coded to produce the physical 

system. When the knowledge level system is available, systems development 

may only need to concentrate on the first stage of understanding the world. 

Coding in some sense will always be necessary, but it will be knowledge 

programming rather than data programming. 

For a long time, it is considered that the ER model does not capture the 

behaviour of the real world. With a practical quen' language for the ER 

model, it may be possible to model events as well as statics. It appears 

that any event that causes changes in the database or uses information 

from the database can be modelled as one or more queries. Triggers and 

constraints can be added to model chain-reactions and other retrictions. 

7. Development of add-on modules to handle poorly specified, incomplete or 

ambiguous queries. For example, instead of writing " s e l e c t s u p p l i e r name 

where s u p p l i e r supplies p a r t , par t number='P2'" , the user may be 

able to write " s e l e c t s u p p l i e r name where s u p p l i e r suppl ies ' P 2 " \ 

or " s e l e c t s u p p l i e r name where par t = ' P 2 ' " , or even "g ive name of 

s u p p l i e r of P2" , which is getting close to the natural language interface. 

8. Use E R / K Q L as the foundation for a portable N L interface. As for human 

users, an N L processor interacting with K Q L will need to know less and 

perform fewer data manipulation operations than if it has to interact 

directly with SQL. 

The research on N L interfaces to databases share an important objective 

with the K L approach. Both try to buffer the user from the data 
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structures in the database. A big difference is that the N L interface 

emphasizes the goal of allowing flexible natural syntax, while K L interface 

emphasizes the power of the interface in terms of knowledge definition, 

updates and retrieval completeness. K Q L may in some cases appear 

natural; however, the naturalness does not come from the syntax, it comes 

from using the real world concepts. 

Another big difference, at least for the ER version of the knowledge level 

approach, is that the K L interface assumes that the world consists of 

certain basic concepts, while the N L interface does not formalize clearly its 

view of the world. The N L interface usually focuses on the nouns and the 

verbs linking these nouns. These nouns and verbs resemble the elements of 

the ER model (Chen 1983). 

The N L designer does reverse engineering on the relations. He takes the 

relations, which are data structures designed from some real world model, 

and tries to re-create the real world concepts from the relations. 

This reverse engineering process is a major obstacle to the domain 

portability of N L interfaces. Besides, it seems a waste of effort that some 

database designer designs the relations from a real world model, and then 

some other designer tries to re-create the real world model from the 

relations. It therefore appears that if the N L interface is based on a K L 

model rather than the relational model, it's portability across domains will 

improve dramatically. It will also be easier to extend N L interfaces to 

include updates and knowledge definitions, since the gap between the domain 

knowledge and the relations has been bridged by the K Q L module. 

There are important ideas in K Q L that will benefit an N L interface. An 
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example is the inheritance of attributes and relationships. 

It is interesting to observe that the SQL interface expects database 

designers and end-users to think the same way: the designer's way of data 

structures; the N L interface expects the designers to continue thinking the 

data structure way and the end-users to revert to thinking the real world 

way, with the N L expert bridging the gap; and the K L interface expects 

designers and users to think the same way using knowledge of the real 

world. 
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APPENDIX A - RELATIONAL COMPLETENESS OF K Q L 

While it is not meaningful to define completeness of the knowledge level based 

on relational completeness, it is nevertheless worthwhile to ask: if the ER model 

is represented by relations, can KQL produce results that can be produced by 

relational operations on the relations? The practical version of this question is: 

can the user with direct access (through a relational algebra) to the set of 

relations retrieve more results than the user who is using KQL on the ER 

model? The answers to these questions are "yes" and "no" respectively. It will 

be shown that KQL is relationally complete. 

In order to prove the relational completeness of KQL, we first have to describe 

the relational representation of an ER model. An entity E with key attribute k 

and other attributes a ,̂ ag, . . ., afi is represented by the relation: 

E(k, ^2' * " *' ^n^ * 

The entity name is the same as the name of its relation. Whether something is 

an entity or a relation depends on the context. This also applies to relationships 

and their relations. 

For example, the entity SUPPLIER with attributes NUMBER, NAME and CITY 

will be represented by the relation: 

SUPPLIER(NUMBER, NAME, CITY), 

A relationship R with attributes a ,̂ ag, • . ., an, and involving entities E^, 

Eg, • • ., E ^ with roles role ,̂ roleg, . . ., r ° i e
m respectively and keys k ,̂ 

k 9, . . ., k respectively, is represented by the relation: 
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RCE-role-.k., E_ role__k o f . . ., E role k , 
l 1 1 2 2 2 m m m 

«*1' * * *' * 

For example, the relationship SUPPLY with attributes PRICE and QUANTITY 

involving the entity SUPPLIER with role SUPPLIES and the entity PART with 

role SUPPLIED BY will be represented by the relation: 

SUPPLY(SUPPLIER_SUPPLIES_NUMBER, 

PART_SUPPLIED_BY_NUMBER, 

PRICE, QUANTITY). 

These relations representing the entities and the relationships are called the base 

relations. 

The proof of relational completeness is done as follows: 

1. Step 1 shows that the base relations can be retrieved by KQL. 

2. Step 2 shows that KQL can produce relations derived by a single relational 

operation on the base relations. 

3. Step 3 and 4 show that if KQL can produce relations R^ and Rg, then 

KQL can produce relations that are derived by a relational operation on R^ 

and/or Rg. 

4. Step 5 shows that by induction, KQL can produce any relation that can be 

derived by an arbitrary number of relational operations on the base 

relations. 
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a. Step 1 

1.1. Consider an entity E with key attribute k and attributes a^, a^, . . ., a R . 

KQL(E)t = 

e is an instance of E 

S E L E C T e k, e a n , e a„ , . . ., e a 1 2 n 

This query will be repeated many times in the proof. To make it more concise, 

we will write it as 

e is an instance of E 

S E L E C T list for E 

1.2 Consider a relationship R involving entities E ^ to E n with roles role^ to 

rolen and where the key of E . is k. with i ranging from 1 to n. The attributes 

of the relationship are a^, . . ., a m -

KQL(R) 

e^ is an instance of E ^ , 

is an instance of Eg, 

e is an instance of E , n n 

r is an instance of R 

S E L E C T e, k 1 7 e 0 k 0 , . . ., e k , 1 1 2 2 n n 

r a . , r a^, . . ., r a 1 2 m 

tKQL(X) denotes the K Q L query equivalent in result to the relational expression 
X. 
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W H E R E e1 (role^ r e 2 , 

e 2 (role2) r e g , 

e (role ) r e , . n n 1 

The roles are needed only if the relationship has the same entity 

type in multiple roles. 

This query will be repeated many times in the proof. To make it more concise, 

we will write this query as 

instance clause for R 

S E L E C T l i s t_for_R 

W H E R E conditions for R 

b. Step 2 

In this step, we need to show the K Q L queries to derive the relations that will 

result from a projection of a base relation, a selection on a single base relation, 

the cartesian product of two base relations, the union of two base relations and 

the difference of two base relations. We show these in steps 2.1 to 2.5. 

2.1 Projection (denoted by []) 

2.1.1 KQL(E[x]) = 

e is an instance of E 

S E L E C T e x 

2.1.2 Making the same assumptions for the relationship R as made in step 1.2, 
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KQL(R[x]) = 

instance clause for R 

S E L E C T EE(x) 

W H E R E conditions_for_R 

EE(x) denotes the equivalent expression of x. If x is an attribute of 

the relationship R then EE(x) is "r x" where "r" has been declared 

as an instance of R. If x refers to the key attribute of entity E 

(that is, x is of the form E role k) then EE(x) is "e k" where e 

has been declared as an instance of E . 

2.2 Selection (denoted by a gp where sp is the selection predicate) 

2.2.1 K Q L ( a g p E ) = 

e is an instance of E 

S E L E C T l i s t _ f o r _ E 

W H E R E sp 

2.2.2 KQL(CT R) = 
sp 

instance clause for R 

S E L E C T l is t_for_R 

W H E R E conditions_for_R, 

EE(sp). 

EE(sp) refers to the equivalent expression of sp. Let sp be 

"y^ 0 y^'- If y is a n attribute of the relationship then y is 

replaced by "r y" in the equivalent expression. If y refers to the key 

attribute of an entity, (that is, y is of the form E role k) then y is 

replaced by "e k" where e has been declared as an instance of E . If 
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y is a constant, it is not replaced. 

2.3 Cartesian Product (denoted by X) 

2.3.1 KQL(E. X Ej) = 

e. is an instance of E., 
I I 

e. is an instance of E. 
J J 

S E L E C T l i s t_ for_E . , l i s t _ f o r _ E . 

2.3.2 KQL(R. X R.) = 

instance clause for R., 

instance clause for R. 

S E L E C T list_for_R. , l ist_for_R. 

W H E R E conditions for R., conditions for R. 

The instances declared for R. must not have the same name as the 
I 

instances declared for R.. For example, if "e^" is already declared as 

an instance in the instance clause of R ,̂ then "e^" should not be 

used for the declarations of R.. 
J 

2.3.3 K Q L ( E X R) = 

e is an instance of E , 

instance clause for R 

S E L E C T l i s t _ f o r _ E , l i s t_for_R 

W H E R E conditions_for_R 
2.3.4 KQL(R X E) 

This is the same as for 2.3.3, with the two lists in the S E L E C T 



clause reversed. 

2.4 Union (for compatible relations/entities/relationships) 

2.4.1 KQL(E. U E.) = 

e. is an instance of E. 
1 I 

SELECT list_for_E. 

UNION 

e. is an instance of E. 
J J 

SELECT list_for_E. 

2.4.2 KQL(R. U R.) = 

instance clause for R. 

SELECT list_for_R. 

WHERE conditions_for_R. 

UNION 

instance clause for R. 

SELECT list_for_R. 

WHERE conditions_for_R. 

2.4.3 KQL(E U R) = 

e is an instance of E 

SELECT list_for_E 

UNION 

instance clause for R 

SELECT list_for_R 

WHERE conditions for R 
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2.4.4 KQL(R U E) 

This is the same as 2.4.3 above. 

2.5 Set Difference (denoted by '-') 

2.5.1 KQL(E. - E ^ = 

e. is an instance of E. 
I I 

S E L E C T l i s t _ f o r _ E . 

W H E R E not exists 

(e. is an instance of E. 
J J 

S E L E C T l i s t _ f o r _ E . 

W H E R E l i s t _ f o r _ E . = l i s t _ f o r _ E . ) 

The condition "list for E. = list for E . " means that each member of 

the first list equals the corresponding member in the second list. 

2.5.2 KQL(R. - R )̂ = 

instance clause for R. 

S E L E C T list_for_R. 

W H E R E conditions_for_R., 

not exists 

(instance clause for Rj 

S E L E C T l ist_for_R. 

W H E R E conditions_for_R., 

l is t_for_R. = l ist_for_R. ) 

Again, the equality of two lists means the equality of corresponding 

members. 

2.5.3 K Q L ( E - R) = 

e is an instance of E 



129 

S E L E C T l i s t _ f o r _ E 

W H E R E not exists 

(instance clause for R 

S E L E C T l is t_for_R 

W H E R E conditions_for_R, 

l ist_for_E) = l i s t_for_R ) 

2.5.4 KQL(R - E) = 

instance clause for R 

S E L E C T l is t_for_R 

W H E R E conditions_for_R, 

not exists 

(e is an instance of E 

S E L E C T l i s t _ f o r _ E 

W H E R E l is t_for_R = l i s t _ f o r _ E ) 

c. Step 3 

In this step, we assume that two arbitrary relations R ^ and R g are derivable 

by K Q L queries. We then show that any relation resulting from a single 

relational operation on R ^ and/or Rg is also derivable by a K Q L query. 

We assume that the K Q L query for R ^ is of the following form: 

instance clause(A) 

S E L E C T list(A) 

W H E R E condition(A). 
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The K Q L query for R g is assumed to be of the same form: 

instance clause (B) 

S E L E C T list(B) 

W H E R E condition(B). 

3.1 Projection: KQL(RA[x]) = 

instance clause (A) 

S E L E C T EE(x) 

W H E R E condition(A). 

(EE(x) is as defined in 2.1; it is a sublist of list(A)) 

The K Q L query for a projection of Rg is similar. 

3.2 Selection: KQL(o R A ) = 
Sp A 

instance clause (A) 

S E L E C T list(A) 

W H E R E condition(A), EE(sp). 

(EE(sp) is as defined in 2.2) 

The K Q L query for a selection on Rg is similar. 

3.3 Cartesian Product: K Q L ( R A X Rg) = 

instance clause(A), 

instance clause(B) 

S E L E C T list(A), list(B) 

W H E R E condition(A), condition(B). 
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3.4 Union: K Q L ( R A U Rg) = 

instance clause (A) 

S E L E C T list(A) 

W H E R E condition(A) 

U N I O N 

instance clause (B) 

S E L E C T list(B) 

W H E R E condition(B) 

3.5 Set Difference: K Q L ( R ^ - Rg) = 

instance clause(A) 

S E L E C T list(A) 

W H E R E condition(A), 

not exist 

(instance clause(B) 

S E L E C T list(B) 

W H E R E condition(B), 

list(A) = list(B) •) 

Again, the equality of two list means the equality of all the 

corresponding members in the two list. 
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d. Step 4 

In step 3, it is assumed that a relation R can be produced by a K Q L query Q 

of the form 

instance clause 

S E L E C T list 

W H E R E condition. 

However, as seen in step 2 and 3, some relations can be produced only by a 

query of the form: 

Q x U Q 2 U . . . U Q n 

where each Q., l < i s n , has the form assumed for Q. 

It will be shown that this violation of the assumption in step 3 does not alter 

the result in step 3. Assume that R ^ and Rg are produced by the following 

K Q L queries: 

<*A1 U Q A 2 U • • U QAn> 

and 

Q B 1 U Q B 2 U . . . U Q B m 

Each query Q ^ . or Qg.. will produce a relation R^. or Rg.. In other 

words, R ^ equals ( R ^ U R ^ 2 U . . . U R^n)> and similarly for 
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4.1 Projection: R^[x] 

R A M = R A 1 [x ] U R A 2 [x ] U . . . U R A n f x ] 

Each of the sub-relations can be expressed by a K Q L query, as 

shown in step 3.1, and by 3.4 the unions of the sub-relations can be 

done by a K Q L expression. 

4.2 Selection: o R A 

o R A = o R A 1 U a R A 2 U . . . U a R A n 

An argument similar to 4.1 applies here, showing that o R A can be 

done by a K Q L query. 

4.3 Cartesian Product: R A X Rg 

This is equal to 

R A 1 X *B1 U R A 1 X ^ 2 U • • U R A 1 X ^ m 

U 

R A 2 X ^ 1 U R A 2 X ^ 2 U ' • U R A 2 X ^ m 

U 

U 

R A n X ^ 1 U R A n X ^ 2 U • • ; U R A m X ^ m 

An argument similar to 4.1 applies here, showing that R A X Rg can 

be produced by a K Q L query. 

4.4 Union R A U R g 

This is equal to 

R A 1 U R A 2 U • • • U R A n U *B1 U ^ 2 U • • U 

An argument similar to 4.1 applies here, showing that the long chain 

of unions can be produced by a K Q L query. 
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4.5 Set Difference: R A - Rg 

This is equal to 

(((RA 1 - Rgj) - Rg 2 ) - . . . - R g J 

U (((RA 2 - R g ^ - R B 2 ) - . . . - R g m ) 

U . . . 

U ( ( ( R A n " RBl) " V ~ • • • ~ *Bm> 

An argument similar to 4.1 applies here, showing that the long chain " 

of unions and set differences can be produced by a K Q L query. 

e. Step 5 

It has been shown that it is possible to use a single K Q L query to produce 

any of the base relations, and that a single K Q L query can produce any 

relation that can be derived by a single relational operation on the base 

relations. It has also been shown that if two relations R A and Rg can be 

produced by queries Q A and Q g , then any relation resulting from a single 

relational operation on R A and/or R g can be produced by a K Q L query. 

It therefore follows by induction that the K Q L query can derive relations 

involving any number of relational operations on the base relations. Hence, K Q L 

is relationally complete. 

Relational completeness is achieved with only a small subset of the possible K Q L 

operations. Specifically, only these operations are needed: instance-clause, 

select-clause, relationship existence condition, equality conditions (<, = ,>), union 

and exists. 



APPENDIX B - CREATION A N D U P D A T E OF ENTITY A N D 

RELATIONSHIP TYPES 

This appendix describes how the user can provide knowledge about his world to 

the system (Of course, the system will onfy accept knowledge about entities and 

relationships). Before the user can talk of instances, he first has to tell the 

system about the entity types and the relationship types. 

To describe an entity type, the user has to tell the system the name of the 

entity, the key attributes, the non-key attributes, and the datatype of the 

attributes. The syntax is: 

<new-type> :: = 

N E W E N T I T Y < entity-type-name >, 

K E Y A T T R I B U T E < attribute-name > 

WITH D A T A T Y P E < datatype-name > 

{, K E Y A T T R I B U T E < attribute-name > 

WITH D A T A T Y P E < datatype-name >} 

{, A T T R I B U T E < attribute-name > 

WITH D A T A T Y P E < datatype-name >}. 

The datatype-name is terminal. The choices depend on the particular 

implementation. Also depending on the implementation, the user may have to 

specify the "length" of the datatype; for example, CHAR(IO) may mean a 

datatype with up to ten characters. 
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For example, the following describes a new entity supplier: 

new entity supplier, 

key attribute number with datatype character, 

attribute name with datatype character, 

attribute city with datatype character. 

To describe a relationship type, the user has to include the name of the 

relationship, the attributes and their datatypes, and the entity types involved, 

with their roles and mapping degrees. The syntax is: 

<new-type> :: = 

N E W RELATIONSHIP < relationship-type-name > 

{, A T T R I B U T E < attribute-name > 

WITH D A T A T Y P E < datatype-name >}, 

E N T I T Y < entity-type-name > WITH R O L E < role-name > 

A N D M A P P I N G < mapping-degrees >, 

E N T I T Y < entity-type-name > WITH R O L E < role-name > 

A N D M A P P I N G < mapping-degrees > 

{, ENTITY < entity-type-name > WITH R O L E < role-name > 

A N D M A P P I N G < mapping-degrees >}. 

<mapping-degrees> ::= (<degree >, < degree> ) 

< d e g r e e > ° ::= integer | * | ? 

The mapping degrees consists of two 'numbers' to represent the lower and upper 

degrees. The lower degree denotes the minimum number of instances of the 

specified relationship type that any instance of the entity type must have. The 
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upper degree denotes the maximum number of the relationship instances that the 

entity instance can have. 

An example to describe a relationship between supplier and part is as follows: 

new relationship supply, 

attribute price with datatype numerics, 

attribute quantity with datatype numerics, 

entity supplier with role supplies and mapping (0,*), 

entity part with role supplied_by and mapping (0,*). 

The user can create IS A relationships by using these steps: 

Step 1 

Create the superentity as for normal entities, with key and non-key 

attributes. 

Step 2 

Create subentities listing the special attributes that belong there as well as 

the key attributes. 

Step 3 

Create an IS A relationship between the superentity and the subentities. 

The syntax of the command needed is: 

<new-isa> :: = 

NEW IS_A SUPERENTITY = < entity-type-name >, 

SUBENTITY = < entity-type-name > 

{, < entity-type-name > }. 
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An example of the creation of IS A-linked entities is: 

1. new entity employee, 

key attribute number with datatype character, 

attribute name with datatype character. 

2a. new entity engineer, 

key attribute number with datatype character, 

attribute profession with datatype character. 

2b. new entity manager, 

key attribute number with datatype character, 

attribute rank with datatype character. 

3. new IS_A superentity = employee, 

subentity= engineer, manager. 

Now we describe updates to the types. An entity or a relationship type may be 

deleted; a type's attribute may be deleted; or more attributes may be added to 

a type. 

The syntax for < type-update > is one of the following: 

1. D E L E T E ENTITY < entity-type-name >. 

This will result in the deletion of this- entity type and all relationship types 

involving this entity type. Naturally, all the instances of the deleted types 

will also be deleted. 

2. D E L E T E RELATIONSHIP < relationship-type-name >. 

This will result in deletion of this relationship type and all its instances. 
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3. D E L E T E A T T R I B U T E < attribute-name > 

OF E N T I T Y < entity-type-name >. 

This entity type will lose the specified attribute, and all its instances will 

lose the values of this attribute. 

4. D E L E T E A T T R I B U T E < attribute-name> 

O F RELATIONSHIP < relationship-type-name >. 

This relationship type will lose the specified attribute, and all its instances 

will lose the values of this attribute. 

5. A D D A T T R I B U T E < attribute-name > 

WITH D A T A T Y P E < datatype-name > 

TO E N T I T Y < entity-type-name >. 

This entity type will gain the attribute. All its instances will have null 

values for this new attribute. 

6. A D D A T T R I B U T E < attribute-name> 

WITH D A T A T Y P E < datatype-name > 

TO RELATIONSHIP < relationship-type-name >. 

This relationship type will gain the attribute. All its instances will have 

null values for this new attribute. 

Some potential ambiguities may arise during the descriptions. The rules that the 

system should follow are: 

1. names for entity/relationship types are unique. No two types can have the 

same name. 

2. names for attributes are unique within a type. 

3. role names are unique between any two entities. 



APPENDIX C - C R E A T I O N A N D U P D A T E O F INSTANCES 

This section describes how instances can be created and updated. To specify 

entity instances, the syntax is: 

<new-instance> :: = 

N E W < entity-type-name >, 

< attribute-name > = < value > 

{, < attribute-name > = < value >}. 

The values for all the key attributes must be given. 

An example to describe a supplier instance is: 

new supplier, 

number = ' SI', 

name='Wiley', 

city='London1. 

An example to describe a part instance is: 

new part, 

number = ' P l ' , 

name='tire'. 

To describe a relationship instance, the user has to provide values for the 

attributes of the relationship, and specify the entity instances involved in the 

relationship instance. The syntax is: 

< new-instance > :: = 

N E W < relationship-type-name > 

{, < attribute-name > = < value >}, 
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E N T I T Y < entity-type-name > WITH R O L E < role-name >, 

< attribute-name > = < value > 

{, < attribute-name > = < value >}, 

E N T I T Y < entity-type-name > WITH R O L E < role-name >, 

< attribute-name > = < value > 

{, < attribute-name > = < value >} 

{, E N T I T Y < entity-type-name > WITH R O L E < role-name >, 

< attribute-name > = < value > 

{, < attribute-name > = < value >} }. 

An example to describe the relationship between a supplier instance and a part 

instance is: 

new supply, 

price=100, quantity=1000, 

entity supplier with role supplies, 

number='Sl', 

entity part with role supplied_by, 

number='PI'. 

Now we describe updates: either deleting an instance, or changing certain 

attribute values of the instance. The format is similar to retrieval commands. In 

place of the select clause, the user puts in the change/delete clause. The syntax 

is: 
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< change-clause > :: = 

C H A N G E < attribute-value > T O < value > 

{, < attribute-value > TO < value >} 

<delete-clause > :: = 

D E L E T E < instance-identifier > 

{, < instance-identifier > } 

Multiple instances of different entity/relationship types may be deleted or changed 

in one command. 

K Q L allows the user to combine the select, delete and change clauses in a 

single command. With this flexibility, a user can change some attribute values, 

delete some instances, and print some attribute values, all in a single command. 

Some potential ambiguities may arise during the descriptions. The rules that the 

system should follow are: 

1. Non-specified attributes during a creation of an instance will be given null 

values, but values for key attributes must be given. 

2. In the specification of a relationship instance, an entity instance can be 

specified by any attributes (that is, not necessarily the key attribute) as 

long as the system can find a unique instance with the given attribute 

values. Future work may extend the language such that in place of the 

attribute values, the user may put in a retrieval query which will select a 

unique instance of that entity. 

If the system finds two or more instances matching the given attribute 

values, then there is a question of whether the user has not given a tight 
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enough "selection" of one instance, or that the user deliberately means to 

include multiple instances. Probably, the system should confirm with the 

user that multiple instances of the entity type are to be selected, and 

consequently multiple instances of the relationship are to be created. 

Creation and Update of IS_A Linked Instances 

The following shows how the user can create entity instances that are involved 

in some IS A relationship. The basic philosophy is to treat instances that are 

IS A-linked as one big instance. This imposes the requirement that the system 

must be able to perform — by itself, without further instruction from the user 

— all kinds of inheritance. It must do downward inheritance, upward inheritance, 

and even sideway inheritance. These inheritances apply to relationships as well 

as attributes. 

We assume that no conflict or ambiguity arises in the inheritance of attributes 

and relationships. Further work may add a module to detect possible ambiguities 

and obtain clarifications from the user. 

To create instances, the user can input the following command, using syntax as 

for non-IS A-linked entities: 

new superentity-name, 

attributel=valuel, . . ., attributeN=valueN. 

The attributes may belong to lower entities; in which case, it is assumed that 

this instance of the top entity is also an instance of the lower entity whose 



144 

attributes have been listed. 

The user can also input the following 

new subentity-name, 

a t t r i b u t e l = v a l u e l , . . . , 

a t t r i b u t e d valueN. 

The attributes may belong to the superentity type or to other subentity types. If 

so, then instances will be created in these other types if the same instance is 

not yet existent. If the same instance already exists in the other types, then 

the attribute values will be changed. 

As implied by the IS A relationship, a subentity instance cannot exist without 

the same instance existing at the superentity types. However, the user is not 

required to create the superinstances before creating the subinstances. The system 

will create the superinstances if they are not already there. 

The same flexibility is allowed for changes during updates, whereby the user 

may say change employee p r o f e s s i o n = chemical even though the attribute 

profession belongs to a subentity type instead of belonging to employee. 

Retrievals using IS A inheritance have been described in the main text. 



APPENDIX D - FRAMEWORK COMPARISON OF KQL AND SQL 

A language must be evaluated together with its (data) model. Users cannot 

understand SQL without understanding the relational model, and they cannot 

understand K Q L without understanding the ER model. Hence, criteria about 

models and languages are important for our comparison. 

This section reviews three comparison frameworks by McGee (1976), by 

Shneiderman (1977) and by Jarke and Vassiliou (1985). In general these 

frameworks contain many factors that are considered to be relevant or important 

in choosing a query language. The factors include the model, the language, the 

user and the computer system. 

Out of the massive number of criteria contained in these frameworks, a smaller 

number will be selected to compare K Q L and SQL. 

1. Framework by McGee 

The criteria proposed by McGee (1976) for evaluating data models include use 

criteria and implementation criteria. The implementation criteria are related to the 

physical implementation issues such as efficiency and availability of machines. 

The use criteria include the following factors: 

1. learning the data model 

a. simplicity - a small number of structure types, and minimum number 

of attributes for the user to know. 

b. elegance - direct modelling capability with the smallest number of 

structure types. 
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c. picturability - for easier comprehension 

2. using the model to model real world situations. McGee suggests that the 

real world can be described using these concepts: attribute, attribute value, 

property, entity, entity type, entity aggregation, entity association, and 

composite entity. 

3. writing data definitions and programs to manipulate the structures of the 

model. The effort to write these will depend on 

a. data definition facility 

b. level of programming language, the higher the better. 

c. implementation independence 

d. data independence 

e. directness of modelling. 

f. partitionability 

2. Framework by Shneiderman 

Shneiderman (1978) proposes a framework for discussing database usage. The 

framework has the following factors: 

1. functions — these include deletion, insertion, retrieval, and ancillary functions 

such as locking/unlocking, data definition, data security, and other utility 

functions. 

2. Tasks — these are components in the user performance of the functions. 

a. learning the syntax and semantics of function specification. 

b. composition of the syntax required to perform a function. 

c. comprehension of function syntax composed by someone else. 

d. debugging of syntax or semantics. 
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e. modification of a function for a new query. 

Interaction Modes — these include host language embedding of a query 

sublanguage, self-contained language, computer-directed language, natural 

language interface, and human intermediary. 

retrieval response types — these include simple verification ('yes' or 'no' 

answer), single record retrieval, record collection retrieval, and total report 

listing of all information in a file. 

Query features — these are further decompositions of the retrieval function. 

The following types of retrievals are identified: 

a. simple mapping which returns data values when a known data value 

for another field is supplied. 

b. selection of all data values associated with a specified key value. 

c. projection of columns 

d. Boolean queries which allow and/or/not connectives 

e. set operations 

f. built-in functions such as max, min, average, count and sum. 

The above query features are considered easy. The following types are 

difficult. 

g. combination queries (also known as composition) where the output of a 

query is the input of another 

h. grouping of items with a common domain value 

i. universal quantification. 

user types — these include untrained intermittent users, skilled frequent 

users, and professional database users. 
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3. Framework by Jarke and Vassiliou 

The framework proposed by Jarke and Vassiliou (1985) for comparing query 

languages include the following factors: 

1. usability (query formulation effort) 

a. initial training effort to learn the query language. The effort, they 

suggest, will depend on the user type. The effort can be divided into 

two components: 

1) composition (learning to formulate) 

2) comprehension of other's queries 

b. repeat effort to query. This will be composed of 

1) thinking effort - remembering syntactic construct and using some 

query formulation model 

2) input - clerical effort 

3) error correction 

2. functional capabilities of the query language. 

a. power — this criterion is a combination of many factors, including 

1) application dependence 

2) database dependence 

3) amount of functionality (queries, browsing, report generation, 

updates, deletions) 

4) degree of selectivity (relational completeness) - availability of 

operators that allow the user to specify as precisely as possible 

what data he or she wants to retrieve. 

b. output presentation - the amount of user control over the output. 

3. interaction methods provided by the query language. These can be classified 
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into two types: 

a. ergonomically oriented 

1) function key 

2) menu selection 

3) line by line prompting 

b. programming language oriented 

1) record at a time 

2) restricted natural language 

3) linear keyword 

4) mathematical 

4. user types - the users are classified based on four factors 

a. familiarity with programming concepts 

b. frequency of system usage 

The above two factors produce three classifications: novice, skilled and 

professional users 

c. range of operations 

d. application knowledge 

The last two factors produce four classifications: casual, clerical, managerial 

and application specialist users. 

4. Selection of Criteria 

We will proceed on the assumption that most of the criteria in the frameworks 

are in general relevant for comparison of query languages. Even with the 

frameworks, comparing two query languages is not easy. There is no standard 

for measuring most of the factors. It is also not clear how factors, if 
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measurable, can be aggregated. The aggregation may depend heavily on the user. 

Furthermore, some factors are contradictory. For example, a language with more 

functionality (which make the language more powerful) may be harder to learn. 

Since we are comparing two specific query languages — K Q L and SQL — we 

can eliminate many of the criteria so as to make the comparison easier. The 

criteria are eliminated either because they are irrelevant or because they have 

the same values for both languages. 

The criteria proposed by McGee appear to be relevant except for the factor of 

implementation independence. Both K Q L and SQL are implementation independent, 

at least theoretically. In practice, different implementations of SQL have slighlty 

different versions. 

Of the criteria in the framework proposed by Shneiderman, only two are 

relevant: tasks and query features. On the other criteria there are no differences 

between K Q L and SQL. On the criterion of functions, K Q L is intended to have 

as many functions as SQL. The K Q L functions will include deletion, insertion, 

retrieval, and 'data definition'. The other functions like data security and 

concurrency control are not investigated in this dissertation. On the criterion of 

interaction modes, we will compare K Q L and SQL both as self-contained 

languages. Theoretically, K Q L can be embedded in other host languages, as in 

the case of SQL. On the criterion of retrieval response type, both K Q L and 

SQL retrieve collections of instances/tuples meeting the query conditions. 
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Of the criteria in the framework proposed by Jarke and Vassiliou, only the 

usability criteria and selectivity are relevant. The others are the same for both 

K Q L and SQL. On the functional capability, both K Q L and SQL are application 

independent and they are both database dependent. The amount of functionality is 

the same, as discussed above. On the interaction method, both K Q L and SQL 

belong to the linear keyword type of language. 

In conclusion, only the following factors extracted from the frameworks are 

relevant in the comparison of K Q L and SQL. 

1. effort required for learning the model 

2. effort required to model the real world 

3. facility for data definition/ knowledge declaration 

4. data independence 

5. retrieval and update 

a. learning the syntax 

b. thinking effort 

c. composition of the query 

d. completeness 

e. typing effort in entering the query. 

6. comprehension of others' queries 

The comparison will not focus on any specific type of user. Both novice and 

specialist users can use SQL, though the specialist is probably better at using 

the more complicated features of the language. Similarly, K Q L is designed so 

that both novice and specialist users can use it. There are simple features for 
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the novice, and there are advanced features to suit more complex queries. 

5. Comparison Based on the Framework Criteria 

This section will further compare K Q L and SQL based on the six criteria 

distilled in the previous section. 

The first two criteria are actually very closely related. There is not much point 

in having a model that is easy to learn but very difficult to use. We therefore 

consider these two criteria together, and compare the actual usage of the models. 

The model used in SQL is the relational model and that used in K Q L is the 

ER model. The literature favours the ER model. The many advantages of using 

the ER model have been stated in Chapter V. Those arguments are not repeated 

here. 

In addition, a common database design approach uses the ER model as the 

conceptual model and the relational model as the underlying logical model (Chen 

1976, Poonen 1979, Braind et al. 1985, Ling 1985, Parent and Spaccapietra 

1985, Storey 1986, Teorey, Yang and Fry 1986, Azar and Pichat 1987, Reiner 

et al. 1987, Schuldt 1987, Brady and Dampney 1987). This approach uses the 

ER model rather than the relational model for validation with the user. This 

strongly suggests that users are believed to understand the E R model better than 

the relational model. The relational model, despite its apparent simplicity, has 

many technical details, such as normalization (there are more than six levels of 

this) and the use of keys as logical pointers. 
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On the third criterion, SQL provides for data definition and K Q L provides for 

declaration of the ER model at the knowledge level. Thus both have 'data 

definition' facility. However the knowledge declaration will be easier than the data 

definition in that the user need not worry about foreign keys, logical pointers 

and other representational problems. 

On the fourth criterion of data independence, it has been shown that the 

relational model provides physical data independence but not logical data 

independence (Staley and Anderson 1985, Vossen and Brosda 1985, Date 1982 

pl39). K Q L being on the knowledge level provides both physical and logical data 

independence. By definition of the knowledge level system, a user using K Q L will 

make absolutely no references to any physical or logical data. 

So far, K Q L has been shown to be better than SQL on the first four criteria. 

A very detailed comparison has been done on the fifth criterion of retrievals and 

updates, where the sub-criteria are very closely related; for example, the syntax 

will depend on the type of query, and so is the thinking effort. Thus, it is 

impossible to consider many of these sub-criteria separately. Instead, we compare 

based on the knowledge needed by the user to compose the query, and also 

based on the data manipulation operations that the user has to perform. 

It has been shown that K Q L requires less knowledge of the user and reduces 

the number of data manipulation operations, which are often difficult, that the 

user has to perform when using SQL. 



154 

In Appendix E , we propose an additional measure of retrieval complexity and use 

it to evaluate equivalent K Q L and SQL queries. 

On the sub-criterion of retrieval completeness, it has been shown that K Q L is 

relationally complete. S Q L is also relationally complete. Which is more complete? 

All the SQL conditions are available in K Q L . In addition, K Q L as defined in 

general allows much more functions than SQL. A clear example is the 

inheritance of attributes and relationships. K Q L can perform the inheritance — 

by itself. SQL allows the user to perform inheritance by specifying joins on 

relations. Since completeness includes coverage, ease and conciseness, we can say 

that K Q L is more complete than SQL. It is easier and more concise to specify 

the inheritances in K Q L than in SQL. 

Also, from general considerations, we will not expect SQL to be able to do 

anything that K Q L cannot. The reasoning is as follows. SQL operates on the 

data which is a representation of the concepts of the real world. K Q L operates 

directly on these concepts. A representation cannot contain more details than the 

concept itself. Hence, if SQL can produce something that K Q L cannot, that 

something must be faulty and contrary to the real world. Hence K Q L is more 

complete than SQL. 

Now we come to the sixth and last criterion of comprehensibility. It is only 

logical that in order to comprehend a query, one will need to understand the 

model used in the query. So in order to comprehend an SQL query, one needs 

to understand the relations and columns used in the query. Similarly, to 
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comprehend K Q L queries, one needs to understand the ER elements used in the 

queries. It has been shown, in the section The Knowledge Interface, that the ER 

model is much easier to understand than the relational model. This is one factor 

that will contribute to easier comprehension of K Q L queries compared to SQL 

queries. 

There are other favourable qualities. As seen in the previous sections, K Q L 

queries explicitly express the relevant domain knowledge; they are more direct; 

they are uncluttered with data level details and operations. These qualities 

contribute to easier comprehension. An example showing these differences is given 

below: 

K-users: s e l e c t s u p p l i e r name 

where s u p p l i e r s u p p l i e s - r e l a t e d a l l p a r t s . 

D-users: SELECT S.SNAME 

FROM S 

WHERE NOT EXISTS 

(SELECT * 

FROM P 

WHERE NOT EXISTS 

(SELECT * 

FROM SP 

WHERE SP.PNO=P.PNO 

AND SP.SNO=S.SNO)) 

In this example, the K Q L query expresses domain knowledge; the SQL query 

describes relations and columns. The K Q L query specifies the condition in a 
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direct way; the SQL query uses the "not exists" twice and, in addition, requires 

two joins to specify the condition. The data details in SQL make the, query 

considerable more complex. 

Incidentally, the easy comprehensibility allows for a better foundation to build 

intelligent interfaces such as interfaces that accept incomplete queries from the 

user. Motro (1986) describes a system that accepts tokens which are any pieces 

of data or fields or relations from the user. The system constructs the relational 

queries and asks the user for confirmation or clarification. The system is meant 

for naive users. However, we have to ask if the naive users can understand the 

relational queries provided to them. If not, then usage of the system is likely to 

lead to erroneous results. The knowledge level query, being easier to comprehend, 

will be better suited to be the base for such a system. 

In summary, K Q L is better than SQL on all the six criteria distilled from the 

frameworks. 



APPENDIX E - MEASURING COMPLEXITIES OF KQL AND SQL 

RETRIEVALS 

Program complexity is often measured by the number of lines of code or the 

number of function points (Albrecht and Gaffney 1983). A similar measure for 

query complexity is proposed here. We will count the number of operations and 

conditions in the query. Admittedly, there are serious drawbacks: one condition 

may be less complex than another, one combination may be more complex than 

another combination, and the query complexity may be in the selection and 

organization of the conditions. With these shortcomings, this measure is proposed 

only as a further indication of the difference between K Q L and SQL retrievals. 

In K Q L , each of the following counts as one operation/condition: 

1. one select clause 

2. one instance declaration, whether explicit or implicit 

3. one specific condition 

4. one combination condition 

5. one " N O T " condition 

6. one statistical operation 

In SQL, each of the following counts as one operation/condition: 

1. one select clause 

2. each relation in the F R O M clause 

3. one statistical operation 

4. one " N O T " condition 

5. one of these: <, >, =, EXISTS, IN, GROUP BY, H A V I N G . 
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A subquery in K Q L or SQL counts as one operation/condition in addition to the 

number of operations/conditions within the subquery. 

The following examples illustrate this measure of complexity in equivalent SQL 

and K Q L queries. The curly brackets count the conditions/operations. 

Example 1: 

K-users: select{l} supplier{2} name 

where supplier supplies-related all part{3}. 

D-users: SELECT {l} S.SNAME 

FROM S{2} 

WHERE NOT{3} EXISTS{4} 

(SELECT{5} * 

FROM P{6} 

WHERE NOT{7} EXISTS{8> 

(SELECT{9> * 

FROM SP{10} 

WHERE SP.PNO=P.PNO{ll} 

AND SP.SN0=S.SN0{12}){13}){14} 

Example 2: 

K-users: p is a part{l} 

s is a supplier{2} 

select{3} s name, p name 

where s supplies{4} p{5} 
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D-users: SELECT {l} SNAME, PNAME 

FROM S{2}, SP{3}, P{4} 

WHERE S.SNO=SP.SNO{5} AND P.PNO=SP.PNO{6>. 



APPENDIX F - BRIEF COMPARISON WITH OTHER ER LANGUAGES 

When we compare K Q L with the logical data level interfaces, there is a clear 

standard model, the relational data model, and a clear standard relational 

language, SQL, to compare with. There is therefore no need to compare with the 

many other data models and many other relational languages. 

However, when we compare K Q L with other ER languages, we are faced with 

many ER languages without one that is clearly better than the rest. There is 

therefore a massive task of comparing with about twenty other ER languages 

(Shoshani 1978 (Sho78), Poonen 1979 (Poo79), Atzeni and Chen 1981 (AC81), 

Atzeni et al. 1981 (ABLV81), Elmasri and Wiederhold 1981 (EW81), Hwang and 

Dayal 1981 (HD81), Markowitz and Raz 1983 (MR83), Nakano 1983 (Nak83), 

Zhang and Mendelzon 1983 (ZM83), Chen 1984 (Che84), Parent and Spaccapietra 

1984 (PS84), Campbell et al. 1985 (CEC85), Cardenas and Wang 1985 (CW85), 

Elmasri and Larson 1985 (EL85), Roesner 1985 (Roe85), Velez 1985 (Vel85), 

Parent and Spaccapietra 1985 (PS85), Dogac et al. 1987 (DEA87), Flory and 

March 1987 (FM87), Junet 1987, (Jun87) Subieta and Missala 1987 (SM87)). 

The comparison is made more difficult by the often incomplete description of the 

languages. 

To simplify and shorten the comparison, we will point out the advantages of 

K Q L , and we will use examples from the other ER languages to illustrate the 

differences. Some of the comparison criteria such as completeness and number of 

functions will be objective. Some, such as naturalness and preferred syntax, will 

be subjective. 
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Probably the most important advantage for K Q L is that it is defined at the 

knowledge level with the user in mind. There is a clear separation of the 

knowledge level and the data level. While many of the other languages claim to 

be of high level, it is not clear what the level is. There are no data structures 

in K Q L ; and there are no conditions or operations that are not in the real 

world. At the same time there are no unnecessary restrictions on the conditions 

that can be specified. 

Illustration of conditions/operations not in the real world: 

DEA87: The user defines a relationship by specifying the keys of the 

participating entities, rather than the names of the entities. This involves 

decisions on the logical pointers. 

DEA87: In order to specify a relationship between two entity instances, the user 

has to link up the types, with conditions such as link supplier, link 

supply, link part. 

EL85: From the ER diagram, the system creates and presents the user with a 

hierarchical diagram that is substantially different from the ER diagram. As 

a result, the user has to deal with another representation of his real 

world. 

MR83: This has data structures where the order of the entities listed in a 

relationship is important; for example, "[e^,. . .,e^\ represents a relationship 

. . . their ordering is significant." - (p330). Although it seems that in the 

actual queries, the orders do not appear anywhere. 

HD81: This has data structure where the order of the entities listed in the 

relationship is important. This order appears in the actual queries. 
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Nak83: This has data structure where the order of the fields is important. 

CEC85: The manipulation is difficult to understand. For example, the definition of 

add relationship union(Dl, D2, Z) is 

If D l and D2 are disjoint diagrams of the current ER model 

and Z is a bijection between equality-comparable attributes of D l 

and D2, then add relationship union creates a new relationship 

R among the entities of D l and D2 and causes the tuples 

associated with R to be the union of the tuples associated with 

D l and D2. All attributes of both entities and relationships in 

D l and D2 are removed, and a new set of attributes, one for 

each pair in Z, is created and placed in R. - (CEC85, p92) 

This manipulation is so complex that it will be very hard to relate it to 

the real world. 

CEC85: After transforming/manipulating the ER model, the user needs to write a 

relational algebra expression to display the result. This means that users 

need to know the relational representations for the ER model and also the 

relational algebra very well. 

SM87: The user has to understand the data structure and the implementation 

details before he can understand the ER language. "The result produced by 

a query may depend on internal data structures" - (p203). The semantics 

of an operation is described in data/implementation terms. Two examples 

are: 

Semantics: The construct 'm is the number of j ' augments the 

table returned by j by a new column containing pairs (m,i) 

where i is a consecutive number of a tuple within the table. -

(212). 
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Semantics for the construct "j where p" follows: For each tuple 

t retrieved by j the following actions are performed: 

- sub (con) (t) is put on the top of fovst. 

- Predicate p is evaluated for this new state. 

- The top of fovst is removed, that is, we return to the 

previous state. 

Thus, each tuple retrieved by j is associated with a Boolean 

value produced by p. The result table contains tuples for which 

p returns 'true'. - (207) 

Illustration of unnecessary restrictions: 

DEA87: This does not have the concept of entity identity. To compare two 

instances if they are the same, the user has to compare their key 

values. 

AC81: The user cannot compare attributes of entities that are not related. 

AC81: The user can retrieve information of only one entity or relationship 

type in one query. 

MR83: The relationships do not have any names. The relationship attributes 

has to be specified after the keyword A T immediately after a 

relationship condition. 

SM87: This has rolenames, but no names for the relationships. 

Che84: This is for a binary ER model with no relationship names or 

relationship attributes. 

HD81: This has no attributes for relationships. Although some ER model 

has this restriction, this is probably an unnecessary restriction. 
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CEC85: The user has to manipulate whole sets instead of individual 

instances. To get two instances of the same type, the user has to 

duplicate the whole ER model and delete the unwanted duplications. 

Similarly, it is felt that Vel85 relies on too many set operations. 

In general: Some of the languages, such as FM87 and Jun87, cannot 

specify multiple instances of the same entity/relationship type. This is 

a serious limitation on the query completeness. 

FM87: This has very limited retrieval conditions. The user is presented 

with a list of all the attributes, and he can only specify printing or 

equalities (including > and <). 

Jun87: The user can retrieve only one relation, and the conditions are also 

limited to one relation. 

Rolenames are important in ER models. Besides conveying knowledge of the 

real world, these are absolutely essential when defining relationships with 

one entity having multiple roles. K Q L has rolenames. Many of the other 

languages do not have rolenames (HD81, ABLV81 , AC81, EW81, CEC85, 

PS84/85, ZM83). Some use rolenames differently. In EL85, if E l and E2 

are related with roles Roi and Ro2 respectively, the set of e2's that a e l 

is related to is referred to as "Ro2 of e l " (the e l and e2's are the 

instances). In MR83, non-existent rolenames can be used in the same way 

as defined rolenames. In Vel85, rolenames are used in place of the entity 

names. 

K Q L has functions for knowledge definition, insertions, deletions, changes 
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and retrievals. The descriptions for many of the other languages are limited 

to retrievals (AC81, Poo79, Shos78, CEC85, MR83, SM87, Vel85,. EL85, 

ZM83). Some descriptions include "data defintion" but do not include updates 

(DEA87, FM87). 

Even on the retrievals, K Q L is more complete than the others. K Q L 

handles IS A inheritances. None of the other languages do this. Roe85 and 

ABLV81 allow the representation of IS A relationships, but they do not 

perform inheritance for queries. K Q L allows easier and more powerful 

combination conditions. None of the other languages provide this. K Q L can 

be viewed as a query structure that allows more and more conditions to be 

attached. 

Now we come to syntactical preferences. K Q L adopts a clear separation of 

output and conditions. This has worked very well for SQL. The number of 

keywords are kept to the minimum. Too many keywords tend to confuse 

the user, as found in the case of SQL's " W H E R E . . . GROUP B Y . . . 

H A V I N G " (Welty 1985). 

Illustration of keywords: 

K Q L : There are only two keywords: S E L E C T and W H E R E ; there is 

another keyphrase FOR E A C H for statistical operations. S E L E C T and 

W H E R E are used only once in a query, except in subqueries where 

they are repeated. 
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AC81: There are these keywords: FIND, WITH, T H R O U G H H A V I N G , 

H A V I N G , H A V I N G F O U N D . A query can use WITH, T H R O U G H and 

H A V I N G many times. 

Roes85: There are these keywords: FIND, WITH, T H A T , WHICH. A query 

can use WITH, T H A T and W H I C H many times. 

MR83: This uses G E T and TIS. TIS is used in place of the more common 

W H E R E . TIS is used many times in a query, such as G E T I T E M 

TIS ' H A V I N G C O L O R TIS = 'RED' OR = ' B L U E ' . - (p338). Notice 

that TIS is used to qualify instances as well as attributes. 

Vel85: This has S E L E C T , F R O M and W H E R E . Relationship conditions are 

specified with F R O M while other conditions appear with W H E R E . 

Some of the other languages are influenced by graph theory terminology. 

For example, HD81 and CW85 want users to connect and disconnect 

entities in order to specify relationship instances. DEA87 also wants users 

to link the types. 

Some of the other languages use S E L E C T in place of the more common 

W H E R E (Shos78, DEA87). This may be a bit confusing. Some languages 

totally omit S E L E C T or its equivalent such as G E T or FIND (SM87, 

Poo79). This omission tends to confuse what is exactly being retrieved, for 

example, SM87: "(supplier with (supplies.part))" will print all details of 

supplier, supplies and part. Also, SM87 uses the dot " . " with two 

meanings: it can join entity/relationship types as well as specify attributes 

to be printed. 
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Because of the unique referencing of instances used in MR83, some of its 

queries may be a bit confusing as to the specific meanings. For example, 

G E T I T E M TIS' R E Q U E S T E D "BY, A N D 'SUPPLIED " T O , 

D E P A R T M E N T H A V I N G F L O O R =2 

is equivalent to 

G E T I T E M TIS ' R E Q U E S T E D "BY D E P A R T M E N T ' H A V I N G F L O O R 

= 2 A N D 'SUPPLIED " T O D E P A R T M E N T ' H A V I N G F L O O R = 2 . -

(p343) 

The meaning of these two queries is to get the items requested and 

supplied to departments located on the second floor. It will be quite logical 

to wrongly assume that the first query is asking for items supplied to and 

requested by the same department. The difficulty in determining the 

instances is also shown in this example: 

G E T E M P L O Y E E TIS ' E M P L O Y E D "BY D E P A R T M E N T ' M A N A G E D 

" B Y E M P L O Y E E H A V I N G S A L A R Y < S A L A R Y 'OF E M P L O Y E E ! -

(p336). 

Though commonsense probably dictates that the last E M P L O Y E E is the 

same as the first E M P L O Y E E , it is risky to rely on commonsense. 

Many of them have immediate qualifications, for example, " D E P T T H A T 

H A S N A M E = ' F I N A N C E ' " . It becomes difficult or impossible to specify 

operations or conditions on attribute values of many instances, since the 

conditions may have to appear very far from the instances. 
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MR83 allows rolenames that are not defined in the model. Any undefined 

"rolename" can be used between the instance and the attributes. Also, 

comments are allowed within the query; for example, "employee 'earning 

salary", "employee 'with "double salary" and "employee 'spending 

salary" will all refer to the same thing: the salary of that employee. 

These extra comments are meant to make the query more comprehensible. 

But depending on the usage, these can create more confusion. 

Some languages use special punctuation marks to denote instances of a 

type, such as using a space or a " !" . 

MR83: The instance declaration is by using a special punctuation mark: 

supplier!s2. 

Vel85: The instance declaration is by leaving a space: "supplies s". 

DEA87: This uses pointers instead of declaring instances, for example, 

S E L E C T E M P POINTED B Y PTR1 

S E L E C T E M P (MGR=PTR 1.ENO A N D SAL>PTR1.SAL) 

O U T P U T E M P - (p329) 

K Q L avoids complicated concepts like: a list of entities becoming an 

attribute of another entity, which may in turn be the attribute of another 

entity (PS85), relationships between relationships (Jun85), and the complex 

operations of CEC85. 

Lastly, we try to answer some queries with the various ER languages. 
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There are five questions; they demand the use of quite a number of 

conditions, but they in no way exhaust the query possibilities. These queries 

are meant more to give a feel of the languages rather than as definitive 

evaluations. These are formulated by the author after much serious effort 

in understanding the languages; nevertheless, it might be that some 

misunderstanding has occurred, and that the original designers would have 

produced better queries. 

Consider a simple ER model with entities SUPPLIER and PART. The 

attributes of SUPPLIER are N A M E and N U M B E R . The attributes of PART 

are N A M E and N U M B E R . The relationship between the entities is 

SUPPLY. The roles are respectively SUPPLIES and S U P P L I E D _ B Y . The 

attributes of the relationship are PRICE and Q U A N T I T Y . 

Question 1: find the name of suppliers who supply some parts. 

K Q L : s e l e c t s u p p l i e r name 

where s u p p l i e r suppl ies p a r t . 

SM87: ( s u p p l i e r with ( s u p p l i e s . p a r t ) ) .sname 

note: some renaming is required. 

Jun87 : The query cannot be formulated. 

FM87: The user puts "?" against the attribute supplier name presented on 

the screen by the system. The relationship is assumed by the system. 



DEA87: s e l e c t s u p p l i e r 

l i n k supply 

l i n k par t 

output supplier .name 

Roe85: F i n d s u p p l i e r that ' s u p p l i e s ' p a r t . 

(It seems that attributes to be printed cannot be specified) 

Vel85: s e l e c t s.name 

from suppl ies s of par t p . 

CEC85: The user has to delete all the other unwanted types. Then he has 

to write a relational agebra to join supplier, supplies, part, and to 

project the supplier name. 

EL85: The procedure is as follows: 

The system presents the E R diagram. 

The user selects s u p p l i e r , supply, part as of interest. 

The system erases all other types. 

The user identifies s u p p l i e r as of main interest. 

The system transforms ER diagram to a hierarchical diagram. 

The user specifies the attributes to be printed. 

CW85: G E T ( s u p p l i e r , name) WHERE (supply) 

PS84/85: Strangely, it seems that this query and the next four queries 

cannot be formulated. A n attribute produced by the operation 

"relationship join" is unnamed, and therefore cannot be compared with 

other values. 
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Assuming we call this new attribute X, then the query is: 

[supplier .name]a { (_ ,_) } s u b s e t x ( s u p p l i e r s u p * l y p a r t ) ) . 

where [...] represents a projection, a represents a selection, and the 

" " inside means any value. 

The result is an entity that needs another command to display. 

MR83: Get name 'g iven "of s u p p l i e r ; TIS ' s u p p l i e s p a r t . 

Nak83: This is not possible unless the predicates (which are Prolog-like) are 

known. Assume that the predicates are s(sname, sno), p(pname, pno) 

and sp(price,qty,sno,pno), then the query is: 

get(s) where ( s ( x , _ ) , p ( y , _ ) , s p ( _ , _ , x , y ) ) 

ZM83: The user marks s u p p l i e r , supply and part in this order on the 

graph shown by the system, then he marks the attribute s u p p l i e r 

name to be printed. 

EW81 - This is similar to EL85. The query is based on the hierarchical 

diagram. 

AC81: F i n d suppl ier through having supply 

HD81: (There are no relationship name and no relationship attributes) 

range of s i s s u p p l i e r 

range of p i s part 

r e t r i e v e i n t o result(name(s)) 

where [s ,p] i n s u p p l i e s . 

ABLV81 : f i n d s u p p l i e r display(name) through supply having found 

par t 
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Poo79 : The retrieval specifies the datatypes of the attributes rather than 

their names. If we assume that attributes have datatypes of the same 

name as the attributes prefixed with D, then the query is: 

Dname of s u p p l i e r i n supply . 

Sho78: s e l e c t s u p p l i e r . s u p p l y 

output supplier .name 

Question 2: This question is the same as the previous question except that 

attributes are needed from three entity/relationship types instead of one. 

The question is: Find the suppliers and parts that are related through 

supply. Print the attributes in this order: supplier name and number, 

supply price and quantity, part name and number. 

KQL: s e l e c t s u p p l i e r name, s u p p l i e r number, supply p r i c e , 

supply q u a n t i t y , part name, part number 

where s u p p l i e r supply p a r t . 

SM87: ( s u p p l i e r with ( s u p p l i e s . p a r t ) ) . ( n a m e , number, p r i c e , 

q u a n t i t y , pname, pnumber) 

note: some renaming is required. 

Jun87 : The query cannot be formulated. 

FM87: The user puts "?" against the list of all the attributes presented on 

the screen by the system. 



DEA87: select supplier 

link supply 

link part 

output supplier.name, supplier.number, price, quantity, 

par t.name, part.number 

Roe85: The query cannot be formulated. It appears that retrievals are 

limited to a single entity/relationship type. 

Vel85:. select s.name, s.number, sp.price, sp.quantity, p.name 

p.number 

from (supplies s, supplied_by p) of supply sp. 

CEC85: The user has to delete all the other unwanted types, and then he 

has to write a relational agebra to join supplier, supplies, part and 

project the attributes. 

EL85: The procedure is as follows: 

The system presents the ER diagram; 

the user selects supplier, supply, part as of interest; 

the system erases all other types; 

the user identifies supplier as of main interest; 

the system transforms the ER diagram to a hierarchical diagram; 

the user specifies the attributes to be printed. 

CW85: GET(supplier. name, supplier. number, supply. price, 

supply, quantity, part, name, part, number) 

WHERE (supply) 
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PS84/85: Making the same assumptions as for query 1, the query is: 

[supplier.name, supplier.number, 

X.supply.price, X.supply.quantity, X.part.name, 

X.part.number](*{(_,_)} s u b s e t x(supplier s u p * l y part)). 

where [...] represents a projection, a represents a selection, and the 

" " inside means any value. This query produces a new entity that 

needs a further command to display it. 

MR83: Get name 'given "of supplier; number 'of supplier, price; 

quantity; name 'of part; number 'belonging "to part; TIS 
1supplied_by supplier! at price and quantity. 

(A relationship has no name) 

Nak83: Assume the same predicates as in the first question, then the 

query is: 

get(a,b,c,d,e,f) where (s(a,b), sp(c,d,a,e), p(e,f)) 

ZM83: The user marks supplier, supply and part in this order on the 

graph shown by the system. Then he marks all the attributes to be 

printed. 

EW81 - This is similar to EL85; the user gets the same graphical display 

as in E185. The input in non-graphical but still based on the 

hierarchical diagram. 

AC81: The query cannot be formulated. 
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HD81: There are no relationship name and no relationship attributes, 

range of s i s s u p p l i e r 

range of p i s par t 

r e t r i e v e i n t o resul t (name(s ) , number(s), name(p), number(p)) 

where [s ,p] i n s u p p l i e s . 

ABLV81 : It appears that retrievals are limited to a single entity or 

relationship types 

Poo 7 9 : The retrieval specifies the datatypes of the attributes rather than 

their names. Omitting the attributes specification, the query is: 

s u p p l i e r , supply ,par t i n supply . 

Sho78: se lec t s u p p l i e r . s u p p l y . p a r t 

output supplier .name, number, s u p p l y . p r i c e , q u a n t i t y , 

par t.name, number 

Question 3: find suppliers who do not supply part 'P2'. 

K Q L : se lec t s u p p l i e r name 

where s u p p l i e r not s u p p l y - r e l a t e d p a r t , 

part number= 1P2'. 

SM87: ( s u p p l i e r where not f o r any ( s u p p l i e s . p a r t ) holds 

pnumber=* P2').name 

note: some renaming is required. 

Jun87 : The query cannot be formulated. 

FM87: The query cannot be formulated. 



DEA87: (select supplier output sname) 

difference 

(select supply (pnumber='P21) output sname) 

Roe85: Find supplier that not 'supplies' part with number='P2' 

(maybe?) 

Vel85: select s.name 

from supplies s of part p, part p2 

where p2.number='P2' 

and {p} by s inter set {p2} ={} 

CEC85: This is probably possible since the language claims to be 

relationally complete, but it is too difficult to write. 

EL85: The procedure is as follows: 

The system presents the ER diagram. 

The user selects supplier, supply, part as of interest. 

The system erases all other types. 

The user identifies supplier as of main interest. 

The system transforms the ER diagram to a hierarchical diagram. 

The user points to part number and specify NOT INCLUDE ' P2'. 

The user specifies the attributes to be printed. 

CW85: This is probably impossible. 

PS84/85: Making the same assumptions as for query 1, the query is: 

[supplier.name]a { =, p 2, } n o t s u b s e t x. p a r t.number (supplier 

supply Part>>-
The result is an entity that needs another command to display. 
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MR83: Get name 'given "of supplier TIS not 'supplies part 

'having number='P2' 

(maybe?) 

Nak83: Assume the same predicates as before, then the query is: 

get(x) where not (s(x,_), sp(_,_,x,'P2')) 

ZM83: The query cannot be formulated. 

EW81: This is similar to EL85 where the query is based on the 

hierarchical diagram. 

AC81: find supplier not (through supply having part with 

(number='P2•)) 

HD81: The query cannot be formulated. 

ABLV81: This is the same as AC81. 

Poo79: The query cannot be formulated. 

Sho78: The query cannot be formulated. 

Question 4: find suppliers who supply more than 3 parts. 

K Q L : select supplier name 

where supplier supply-related >3 part. 

SM87: (supplier where count(supplies) >3).name 

Jun87 : The query cannot be formulated. 

FM87: The query cannot be formulated. 

DEA87: (select supply group by sname 

count(pnumber) >3 ) output sname 
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Roe85: This may be possible, but it is not described. 

Vel85: s e l e c t s.name 

from supplies s of par t p 

where count{p} by s > 3. 

CEC85: The query cannot be formulated. 

EL85: The query cannot be formulated. 

CW85: The query cannot be formulated. 

PS84/85: It appears that this is not possible. 

MR83: Get name 'g iven "of s u p p l i e r TIS ' s u p p l i e s count par t >3 

Nak83: Assume the same predicates as before, then the query is: 

get(x) where ( s ( x , _ ) , G T ( c o u n t ( y / s p ( _ , _ , x , y ) ) , 3 ) ) 

ZM83: The query cannot be formulated. 

EW81: This is similar to EL85 where the query is based on the 

hierarchical diagram. 

AC81: The query cannot be formulated. 

HD81: The query cannot be formulated. 

ABLV81 : This is the same as AG81. 

Poo79: This may be possible, but the count function is not described. 

Sho78: The query cannot be formulated. 

Question 5: find suppliers who supply every part. 

K Q L : s e l e c t s u p p l i e r name 

where suppl ier s u p p l y - r e l a t e d a l l p a r t . 

SM87: ( s u p p l i e r where ( s u p p l i e s . p a r t ) superset part) .name 

Jun87 : The query cannot be formulated. 
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FM87: The query cannot be formulated. 

DEA87: (select supply group by sname keep pnumber) 

contains 

(select part keep pnumber) 

output sname 

Roe85: This may be possible since it has a count function, but it is not 

described. 

Vel85: select s.name 

from supplies s of part p, part p2 

where {p} by s = {p2} 

CEC85: This is probably possible since the language claims to be 

relationally complete, but it is too difficult to write. 

EL85: This is probably possible but not described. 

CW85: The query cannot be formulated. 

PS84/85: It appears that this is not possible. 

MR83: Get name 'given "of supplier TIS 'supplies set part eq set 

part. 

Nak83: Assume the same predicates as before, then the query is: 

get(x) where (s(x,_), f o r a l l y(p(y,_)->sp(_,_,x,y)) 

ZM83: The query cannot be formulated. 

EW81: This is similar to EL85. 

AC81: find s:supplier with (find part through supply having s) 

superset (find part) 

HD81: The query cannot be formulated. 

ABLV81: This is the same as AC81. 

Poo79: This is probably not possible. 



180 
Sho78: The query cannot be formulated. 



APPENDIX G - PROCESSES OF COMPILER-1 

This appendix shows the processes done by compiler-1. As described in the main 

text, compiler-1 accepts the query from the parser and performs the following 

processes. 

a. Processing of Inheritance Conditions 

The queries involving the "inheritance" expressions are "filled-out" before further 

processing by compiler-2. In this way, no further algorithm is needed for 

compiler-2 or the executor. 

The "filling-out" procedure is as follows: 

1. Replace each case of "e. b . " where b. is not an attribute of e. by 

"IS A(e. E.) b . " where b. is an attribute of E. and E. is IS A-linked 
i D . D J J J — 

to the entity type of e.. 

2. For each relationship existence condition involving e. and Rj where Rj is 

not a relationship involving the entity type of e., replace "e/' by 

"IS_A(e^ Ej)" where Rj is a relationship involving Ej and Ej is 

IS A-linked to E. . 
— I 

3. Note all "IS.ACe^ E..)", and do the following: 

a. add an instance declaration next to the declaration of e.: 
I 

ej i s an instance of E.. 

(ej must not have been used in the query already, and thus it should 

be a unique system-generated name.) 

b. add one condition to the where-clause immediately following the 

instance-clause containing e.: 
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e. k. = e. k. 
1 1 3 ] 

where k. is the key attribute of e., and k. is the key attribute of e.. 

c. replace each "IS A(e. E.) b." in the outermost select-clause and 
i 3 1 

which is not part of any arithmetic operation by "e/b.. = ^ j " " 

d. replace all other "IS_A(e^ E^)" in the query by "e/'. 

Repeat the previous step till there are no more "IS_A(e E)" in the query. 

The other IS A conditions are replaced as follow: 

1. e IS A E. = 
— I 

EXISTS 

(e. is a E. 
I I 

S E L E C T e. 
I 

W H E R E e k = e. k.) 
I I 

where k is the key attribute of e, and k. is the key attribute of e.. 

The parser will have checked that E . and the entity type of e are 

IS A-linked, else the condition is invalid. 

2. e. = e. is replaced by 

e. k. = e. k. 
i 1 J J 

where k. and k. are the key attributes of e. and ej respectively. The 

parser will have checked that the entity types of e. and ej are 

IS A-linked, else the condition is false. 
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b. Processing of Combination Conditions 

This section shows how the combination conditions are replaced by the more 

primitive conditions. 

1. e. R - R E L A T E D e. = 
1 J 

EXISTS 

(r is a R 

S E L E C T r * 

W H E R E e. r e. ) 
i J 

2. e. R - R E L A T E D A L L E. = 
i J 

N O T EXISTS 

(e. is a E. 
J J 

S E L E C T e. * 
J 

W H E R E N O T EXISTS 

(r is a R 

S E L E C T r * 

W H E R E e. r e. )) 
i J 

e. R - R E L A T E D NO E. = 
i J 

N O T EXISTS 

(r is a R 

e. is a E . 
J J 

S E L E C T r * 

W H E R E e. r e. ) 
i J 

e. R - R E L A T E D 0 N E. 
i J 

EXISTS (r is a R, 

e. is a E . 
J J 
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S E L E C T r * 

W H E R E e. r e., count(e.) B N ) 
1 J J 

5. Similar expansions can be made to the Role-RELATED conditions. 

c. Processing of Defined Subset Entities 

Recall that a subset entity can be defined as follows: 

e is an E 

[, <instance-clause>s ] 

select E' = e 

<where-clause> 
s 

E ' is the name for the subset of E that fits the conditions in the where-clause. 

In subsequent queries, wherever E ' appears with, say, e' as its instance, it can 

be replaced by E and the instance e' checked to see that it is included in E' . 

Thus a general query, 

[ <instance-clause>, ] 

e' is an E' 

[, <instance-clause> ] 

<select-clause> 

[ <where-clause> ] 

will be converted to 

[. <instance-clause>, ] 

e' is an E 

[, <instance-clause> ] 

<select-clause> 
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[ <where-clause> ] [ WHERE ] EXISTS 

( e is an E 

t, <instance-clause>s ] 

select e 

<where-clause>s, e = e'). 

d. Processing of Defined Subset Relationships 

Recall that a subset relationship can be defined as follows: 

r is an R 

t, <instance-clause>s ] 

select R1 = r 

<where-clause> 
s 

R' is the name for the subset of R that fits the conditions in the where-clause. 

In subsequent queries, wherever R' appears with, say, r' as its instance, it can 

be replaced by R and the instance r' checked to see that it is included in R'. 

Thus a general query, 

[ <instance-clause>, ] 

r 1 is an R1 

t, <instance-clause> ] 

<select-clause> 

[ <where-clause> ] 

will be converted to 

[ <instance-clause>, ] 

r 1 is an R 
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[, <instance-clause> ] 

<select-clause> 

[ <where-clause> ] [ WHERE ] EXISTS 

( f(( r is an R 

[, <instance-clause>s ] 

select r 

<where-clause>s ), r , r 1)). 

f(Query, x, y) produces a query where all the "x"s in Query 

are replaced by "y"s. 

An example of pre-processings is the expansion of this condition: 

e. R-RELATED ALL E. ' , where E ' denotes a subset of E . 
1 ] 

The first step is to expand the combination condition, we get the following: 

NOT EXISTS 

(e..1 is a Ej 1 

SELECT e .' * D 

WHERE NOT EXISTS 

(r is a R 

SELECT r * 

WHERE e. r e.' )) 

The next step is to replace the subset entity. We get the following condition: 

NOT EXISTS 
(e. 1 is a E . ] D 
SELECT e . ' * D 
WHERE NOT EXISTS 
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(r i s a R 

SELECT r * 

WHERE e i r e..' ), 

EXISTS 

( e. is an E. 
3 3 

[, <instance-clause>s ] 

select e.. 

<where-clause> , e. = e.')). 
S 3 3 



APPENDIX H - KQL->SQL TRANSLATION ALGORITHM 

In order to derive the algorithms for the translation of K Q L queries to SQL 

queries, we first have to describe the relational representation of an ER model. 

An entity E with key attribute k and other attributes a^, a.^, . . ., a n is 

represented by the relation: 

E(k, a j _ ' ^2' " * "' ^n^ * 

For example, the entity SUPPLIER with attributes N U M B E R , N A M E and CITY 

will be represented by the relation: 

SUPPLIER(NUMBER, NAME, CITY). 

A relationship R with attributes a^, a^, • • &n, and involving entities E ^ , 

Eg, • • ., E ^ with roles role^, roleg, • • •, r ° l e
m respectively and keys k^, 

kg, . . ., k m respectively, is represented by the relation: 

R ( E 1 _ r o l e 1 J S l # E ^ r o l e ^ , . . ., E ^ r o l e ^ , 

^2' * * *' ^n^ * 

For example, the relationship S U P P L Y with attributes PRICE and Q U A N T I T Y 

involving the entity SUPPLIER with role SUPPLIES and the entity PART with 

role S U P P L I E D _ B Y will be represented by the relation: 

SUPPLY(SUPPLIER_SUPPLIES_NUMBER, 

PART_SUPPLIED_BY_NUMBER, 

PRICE, QUANTITY). 

We have to describe the K Q L query that is being translated. Since K Q L has 

been defined with B N F grammar, we will use the B N F description here. 
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The translator basically goes through each B N F term of the query, translating 

the terms, sometimes recursively, and reorganizing the translations into an SQL 

query. The translator will have to know the relations and the ER model. 

To simplify the algorithm, we will assume that the user's K Q L query has 

already been processed to remove all ambiguities. Also, the more complex 

conditions, such as those involving inheritance, subset and combination conditions, 

have been replaced by more "primitive" conditions. This replacement reduces the 

number of algorithms needed. 

A general K Q L query has the following form: 

Q 1 U Q 2 U . . . U Q n 

where each Q. has the following form: 

instance clause (i) 

S E L E C T list(i) 

W H E R E condition(i) 

The following notation is used: 

1. e. refers to an instance of an entity. It is used in place of 

< entity-instance-identifier >. 

2. r. refers to an instance ' of a relationship. It is used in place of 

< relationship-instance-identifier >. 

3. ro. refers to an instance of a role. It is used in place of 

< role-instance-identifier >. 

4. x. refers to an instance that can be of an entity, a relationship or a role. 
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It is used in place of < instance-identifier >. 

5. a. refers to the name of an attribute. It is used in place of 
1 

< attribute-name >. 

6. the subscripts are dropped if there is no ambiguity. 

The translation algorithms are as follow: 

Rule 1: The SQL equivalent of Q is denoted by SQL(Q). 

SQL(Q1 U Q 2 U . . . U Qn) = 

SQL(Q1) U SQL(Q2) U . . . U SQL(Qn). 

Rule 2: Translation of a single query. 

SQL(instance_clause, SELECT list, WHERE conditions) = 

SELECT SS(list) 

FROM SF(instance_clause) 

WHERE SW(conditions) SSW(list) 

SSW(list) produces conditions only if "list" contains statistical 

operations. 

Rule 3: Translation of the instance clauses. An instance clause may have many 

instance-of clauses. 

SF(instance of̂ , instance ofg, . . ., instance ofR) = 

SF(instance of,), SF(instance ofj, . . ., SF(instance of ) 
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Each instance-of clause is translated by these sub-rules. 

Rule 3.1: 

SF(e is an instance of E) = E e 

Rule 3.2: 

SF(r is an instance of R) = R r 

Rule 3.3: 

SF(ro. is an instance of Role) = R ro 

Since the role names need not be unique, the translator has to check 

the rest of the query to deduce R. The deduction is as follows: check 

query for "e. ro e, ", check the query for E . and E, that e. and e, 
J k J K j K 

are instances of, and then check the ER model for R that connects 

E. and E, and that the role of E. is Role. 
J k j 

Rule 4: Translation of the select-clause list. 

SS(list) = 

SAOdj) , SAO(l 2 ) , . . ., SAO(l n) 

where list=[L, 10, . . . . 1 ] and each 1. is an 1 2 n l 

< arithmetic-operation >, with or without renaming, as defined in the 

K Q L syntax. Note that a simple "e a" is included as an 

< arithmetic-operation >. 

Rule 4.1: Translation of arithmetic operation with renaming. 

SAO(XYZ = < arithmetic-operation >) = 

X Y Z = SAO(< arithmetic-operation >) 



Rule 4.2: Translation of arithmetic operation. 

SAO(< arithmetic-operation >) = 

SAO( < arithmetic-term > 

[<add-minus> < arithmetic-term >)] ) = 

S AT( < arithmetic-term >) 

[ < add-minus > SAT( < arithmetic-term >)] 

Rule 4.3: Translation of an < arithmetic-term>. 

SAT(< arithmetic-term >) = 

SAT( < arithmetic-subterm > [ < time-divide > < arithmetic-subterm > ]) 

S AT2 (< arithmetic-subterm >) 

[< time-divide > SAT2(< arithmetic-subterm >) ] 

Rule 4.4: Translation of an < arithmetic-subterm>. 

SAT2(< arithmetic-subterm >) = 

SAO(< arithmetic-operation>) | SV(< simple-value>) 

Rule 4.5 Translation of <simple-value> 

SV(< simple-value >) = 

S V1 (< attribute-value >) 

| SV2(<user-given-value >) 

| SSO(< statistical-operation>) 

Rule 4.6 Translation of < attribute-value > 

SV1(<attribute-value>) = SVl(x a) = x.a 

Rule 4.7 Translation of < user-given-value> 

SV2(< user-given-value > = < user-given-value > 
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Rule 4.8 Translation of statistical operations. 

Rule 4.8.1 Counting of entity instances. 

SSO( < instance-statistical-operation >) = 

SSCKCOUNT U N I Q U E e [FOR E A C H < grouping-values >]) = 

C O U N T (DISTINCT e.k) 

k is the key of E that e is an instance of. 

Rule 4.8.2 Counting of entity instances. 

SSO( < instance-statistical-operation >) = 

SSO(COUNT e [FOR E A C H < grouping-values > ]) = 

C O U N T (*) 

Note: SQL requires "DISTINCT" for all counts except count(*). This 

restriction applies to rule 4.8.3 as well. If the key consists of two or 

more attributes, rule 4.8.1 needs to be modified. 

Rule 4.8.3 Translation of <attribute-statisticalroperation> 

SSO( < attribute-statistical-operation >) = 

SSO( < attrribute-statistical-operator > 

[UNIQUE] 

(x a [FOR E A C H < grouping-values >])) = 

< attribute-statistical-operator > ([DISTINCT] x.a) 

Rule 5 Translation of statistical "FOR E A C H " conditions. 

Rule 5a: SSW(list) = nothing (that is, SSW(list) is ignored) 

if "list" does not contain any statistical operation. 
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Rule 5b: SSW(list) = 

SSW(S0 1 ) A N D SSW(S0 2 ) A N D . . . A N D SSW(SO n )t 

where the SO.s are all the statistical operations which are contained 

in "list" and which contains the "FOR E A C H " condition. 

Rule 5.1 

SSW(< instance-statistical-operation >) = 

SSW(COUNT e [FOR E A C H < grouping-values>]) = 

GROUP B Y SSW(< grouping-values >) 

Rule 5.2 

SSW( < attribute-statistical-operation >) = 

SSW(< attribute-statistical-operator> [UNIQUE] x a 

[FOR E A C H < grouping-values >]) = 

GROUP B Y SSW(< grouping-values >) 

Rule 5.3 Translation of <grouping-values> 

SSW(< grouping-value > [, < grouping-values >]) = 

SSW( < grouping-value >) [,SSW( < grouping-values >)] 

Rule 5.3b 

SSW(< grouping-value >) = SSW(e) = e.k 

where k is the key of e. 

Rule 5.3c 

SSW(<grouping-value>) = SSW(x a) = x.a 

Rule 6.1: 

SW(< condition-list >) = 

SW(<condition-andlist> [OR <condition-list>]) = 

t A limitation is discussed together with rule 7.2. 



SW(<condition-andlist>) [OR SW(<condition-list>)] 

Rule 6.2: 

SW(<condition-andlist>) = 

SW(<condition> [, <condition-andlist>]) = 

SC(< condition>) [AND SW(<condition-andlist>)] 

Rule 6.3: 

SC(< condition >) = 

SC(not(<condition-list>)) = 

N O T ( SW(< condition-list >) ). 

A <condition> is either "not(<condition-list>)" or some actual condition such as 

"EXISTS (Q)". Rule 6.3 deals with the first case. The actual conditions are dealt 

with under rule 7. 

Rule 7.1: Translation of "EXISTS" 

SC(exists (QJ) = exists (SQL(Q)) 

where Q is a subquery. 

Rule 7.2: Translation of 9 conditions where 9 is one of the following 

comparisons: =, <, >, <= or >=. 

SC(< value > 9 < value >) = 

SSW(< value>), SSW(< value >) 

H A V I N G SAO(< value >) 9 SAO(< value >) 

If the SSW()s return nothing (when there are no statistical operations 

with "FOR E A C H " conditions in the values), then omit the word 

" H A V I N G " and the result of SSW()s. 

If the SSW()s return some "group by" clause, then some restrictions 

apply. One restriction for the K Q L query is that the whole query Q. 
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should contain only statistical operations with the same "FOR E A C H 

< grouping-values >". SQL cannot handle two independent GROUP 

B Y . . . H A V I N G clauses. Another restriction, by the translator, is that 

this condition be given at the end of the query even though K Q L 

allows it to be given anywhere in the where-clause. Some tidying up 

of the result is necessary to suit SQL: the usual A N D between 

conditions must be removed if it is followed by "group by"; if there 

are no other conditions, then the " W H E R E " before the "group by" 

must be removed; and if there is a " N O T " in front of the "group 

by", it must be shifted to after the following "having". 

Rule 7.3: Translation of IN condition 

Rule 7.3a 

SC(x a IN value_list) = x.a IN value_list 

where value list is a list of values such as (2,3,8). 

Rule 7.3b: 

SC(x a IN (Q)) = x.a IN (SQL(Q)) 

where Q is a subquery. 

Note: Rule 7.3a and 7.3b deals with a restricted version of the IN 

condition. The flexibility described for K Q L is not directly translatable 

to SQL; for example, "3 * x. â  IN (2 + x. aj, 5 * x^ a^)" cannot 

be directly translated. 
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Rule 7.4: Translation of relationship existence condition 

Rule 7.4a 

SC(e. r e.) = 
i J 
' e..k. = r .E. Role. k. i i l — I— I 

A N D 

e..k. = r .E. Role. k. J J J — J — J 
where e., e. are instances of E. and E. which have keys k. and k.. 

1 J i J 1 J 
E. and E. can be found in the query, but Role., Role., k. and k. i J I j I j 

have to be found in the ER model. 

Rule 7.4b: (This is similar to rule 7.4a) 

SC(e. ro ê ) = 

e..k. = ro.E. Role. k. 
I I i — I— I 

A N D 

e..k. = ro.E. Role. k. 
J J J — J— J 

where e., e. are instances of E. and E. which have keys k. and k.. 
1 J 1 J 1 J 

E., E. and Role, can be found in the query, but Role., k. and k. i J i J i J 
have to be found in the ER model. 



APPENDIX I - EXAMPLES OF KQL QUERIES AND T H E SQL 

TRANSLATIONS 

In this appendix, we will show quite a number of KQL queries and the 

equivalent SQL queries produced by the KQL — > SQL translator. These queries 

will also serve as further illustrations of the KQL language. 

The KQL queries are based on the domain knowledge shown by the ER model 

in Figure 3. In this figure, attribute names are italicized . All the key attributes 

are "number"s. The SQL translations are based on a set of relations that 

represents the knowledge in the ER model. The relations are: 

EMPLOYEE(NUMBER, NAME, BIRTHDATE, SALARY) 

ENGINEER(NUMBER, PROFESSION) 

MANAGER(NUMBER,' RANK) 

DE PARTMENT(NUMBER, NAME, CITY) 

PROJECT(NUMBER, NAME) 

WORK(EMPLOYEE_EMPLOYED_IN_NUMBER, 

DEPARTMENT_EMPLOYS_NUMBER, DATE) 

MANAGEMENT(MANAGER_MANAGES_NUMBER, 

DEPARTMENT_MANAGED_BY_NUMBER, DATE ) 

HEAD(ENGINEER_HEADS_NUMBER, 

PROJECT_HEADED_BY_NUMBER, DATE). 
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employee 

number 
name 
birthdate 
salary 

engineer 

number 
profession 

heads 

employed-in 

IS_A 

manager 

number 
rank 

date 

number 
name 
city 

date 

employs 

department 

managed-by 

manages 

date 

number 
name 

Figure 3: Example of an ER Model 
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In the examples below, each K Q L query is followed by its SQL translation. The 

SQL queries are shown in block letters. In the belief that the K Q L query is 

easily comprehensible, no natural language description of the query is provided. 

For some queries, the SQL version is executed and the results are displayed. 

Unfortunately, because of some bugs in the SQL software used for this research, 

not every SQL query can be executed properly. In the SQL queries, there is 

often something like FROM X X , X Y. The first X is the relation name; the 

second X is a variable to refer to this relation; the third X is again the relation 

name, and the Y is another variable to refer to this relation. In this example, 

relation X has been used twice. 

The queries are: 

This example shows a simple query on the attributes of one entity, 

select employee name, number, salary , birthdate. 

SELECT EMPLOYEE.NAME, EMPLOYEE.NUMBER, 

EMPLOYEE.SALARY, EMPLOYEE.BIRTHDATE 

FROM EMPLOYEE EMPLOYEE ; 

This example shows a simple condition on an attribute value. 

select employee number 

where employee salary < 1500. 

SELECT EMPLOYEE.NUMBER 

FROM EMPLOYEE EMPLOYEE 



WHERE EMPLOYEE.SALARY<1500; 

This example shows the use of two instances of the same type. 

The instances have to be explicitly declared. 

The previous examples show implicit declaration of instances by 

using the type names. 

e l i s employee, e2 i s employee 

select e l name, e2 name 

where el salary > 2 * e2 salary. 

SELECT El.NAME, E2.NAME 

FROM EMPLOYEE E l , EMPLOYEE E2 

WHERE El.SALARY>(2*E2.SALARY); 

This example shows a simple relationship condition. 

select employee number, department number, work date 

where employee work department. 

SELECT EMPLOYEE.NUMBER, DEPARTMENT.NUMBER, WORK.DATE 

FROM WORK WORK, DEPARTMENT DEPARTMENT, EMPLOYEE EMPLOYEE 

WHERE EMPLOYEE.NUMBER=WORK.EMPLOYEE_EMPLOYED_IN_NUMBER 

AND DEPARTMENT.NUMBER=WORK.DEPARTMENT_EMPLOYS_NUMBER; 
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This example shows a relationship condition specified with the role name, 

select employee number, department number, employed_in date 

where employee employed_in department. 

SELECT EMPLOYEE.NUMBER, DEPARTMENT.NUMBER, EMPLOYED_IN.DATE 

FROM WORK EMPLOYED_IN, DEPARTMENT DEPARTMENT, EMPLOYEE EMPLOYEE 

WHERE EMPLOYEE.NUMBER=EMPLOYED_IN.EMPLOYEE_EMPLOYED_IN_NUMBER 

AND DEPARTMENT.NUMBER=EMPLOYED_IN.DEPARTMENT_EMPLOYS_NUMBER; 

In the SQL queries, a X_Y = KQLn.B in the SELECT clause represents a 

renaming of KQLN.B TO X_Y. This happens only when an attribute is 

"inherited". The symbol KQLn is a variable name generated by the KQL—>SQL 

translator. This is shown in the next example. 

This example shows inheritance of an attribute, 

e i s employee 

select e number, name, profession. 

SELECT E.NUMBER, E.NAME, E_PROFESSION = KQLO.PROFESSION 

FROM ENGINEER KQLO, EMPLOYEE E 

WHERE E.NUMBER=KQL0.NUMBER; 

This example shows multiple inheritances of attributes, 

select employee number, profession, rank. 



SELECT EMPLOYEE.NUMBER, EMPLOYEE_PROFESSION = KQL1.PROFESSION, 

EMPLOYEE_RANK = KQL2.RANK 

FROM MANAGER KQL2, ENGINEER KQL1, EMPLOYEE EMPLOYEE 

WHERE EMPLOYEE.NUMBER=KQL2.NUMBER 

AND EMPLOYEE.NUMBER=KQL1.NUMBER; 

This example shows inheritance of a relationship, 

select employee name 

where employee manages department. 

SELECT EMPLOYEE.NAME 

FROM MANAGER KQL6, MANAGEMENT MANAGES, 

DEPARTMENT DEPARTMENT, EMPLOYEE EMPLOYEE 

WHERE EMPLOYEE.NUMBER=KQL6.NUMBER 

AND KQL6.NUMBER=MANAGES.MANAGER_MANAGES_NUMBER 

AND DEPARTMENT.NUMBER=MANAGES.DEPARTMENT_MANAGED_BY_NUMBER; 

This example shows multiple inheritances of relationships, 

select employee name 

where employee heads project , employee manages department. 

SELECT EMPLOYEE.NAME 

FROM MANAGER KQL8, ENGINEER KQL7, MANAGEMENT MANAGES, 

DEPARTMENT DEPARTMENT, 

HEAD HEADS, PROJECT PROJECT, EMPLOYEE EMPLOYEE 



WHERE EMPLOYEE.NUMBER=KQL 8.NUMBER 

AND EMPLOYEE.NUMBER=KQL7.NUMBER 

AND KQL7.NUMBER=HEADS.ENGINEER_HEADS_NUMBER 

AND PROJECT.NUMBER=HEADS.PROJECT_HEADED_BY_NUMBER 

AND KQL 8.NUMBER=MANAGES.MANAGER_MANAGES_NUMBER 

AND DEPARTMENT.NUMBER=MANAGES.DEPARTMENT_MANAGED_BY_NUMBER; 

This example shows relationship inheritance from a different direction, 

select engineer name 

where engineer work department, department name = 'finance'. 

SELECT ENGINEER_NAME = KQL9.NAME 

FROM EMPLOYEE KQL9, WORK WORK, DEPARTMENT DEPARTMENT, 

ENGINEER ENGINEER 

WHERE ENGINEER.NUMBER=KQL9.NUMBER 

AND KQL9.NUMBER=WORK.EMPLOYEE_EMPLOYED_IN_NUMBER 

AND DEPARTMENT.NUMBER=WORK.DEPARTMENT_EMPLOYS_NUMBER 

AND DEPARTMENT.NAME='FINANCE'; 

This example shows the use of " N O T " condition, 

select engineer name 

where engineer work department, not ( department name = 'research' 

SELECT ENGINEER_NAME = KQL10.NAME 

FROM EMPLOYEE KQL10, WORK WORK, DEPARTMENT DEPARTMENT, 
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ENGINEER ENGINEER 

WHERE ENGINEER.NUMBER=KQL10.NUMBER 

AND KQL10.NUMBER=WORK.EMPLOYEE_EMPLOYED_IN_NUMBER 

AND DEPARTMENT.NUMBER=WORK.DEPARTMENT_EMPLOYS_NUMBER 

AND NOT (DEPARTMENT.NAME='RESEARCH'); 

This example shows the use of the combination relationship condition. 

This condition also includes a relationship inheritance, 

select employee name 

where employee head-related a l l project. 

SELECT EMPLOYEE.NAME 

FROM ENGINEER KQL11, EMPLOYEE EMPLOYEE 

WHERE EMPLOYEE.NUMBER=KQL11.NUMBER 

AND NOT ( 

EXISTS ( 

SELECT KQL12.NUMBER 

FROM PROJECT KQL12 

WHERE NOT ( 

EXISTS ( 

SELECT KQL13.ENGINEER_HEADS_NUMBER 

FROM HEAD KQL 13 

WHERE KQL11.NUMBER=HEAD.ENGINEER_HEADS_NUMBER 

AND KQL12.NUMBER=HEAD.PROJECT_HEADED_BY_NUMBER)))); 



This example shows another use of the combination relationship condition, 

select engineer name 

where engineer heads-related no project. 

SELECT ENGINEER_NAME = KQL17.NAME 

FROM EMPLOYEE KQL17, ENGINEER ENGINEER 

WHERE ENGINEER.NUMBER=KQL17.NUMBER 

AND NOT ( 

EXISTS ( 

SELECT KQL19.ENGINEER_HEADS_NUMBER 

FROM HEAD KQL 19, PROJECT KQL 18 

WHERE ENGINEER.NUMBER=HEAD.ENGINEER_HEADS_NUMBER 

AND KQL18.NUMBER=HEAD.PROJECT_HEADED_BY_NUMBER)); 

This example shows the third use of the combination relationship condition. 

It also shows an attribute inheritance, 

m i s manager 

select m name 

where m manages-related >1 department. 

SELECT M_NAME = KQL5.NAME 

FROM EMPLOYEE KQL5, MANAGER M 

WHERE M.NUMBER=KQL 5.NUMBER 

AND EXISTS ( 

SELECT KQL6.NUMBER 

FROM MANAGEMENT KQL7, DEPARTMENT KQL6 

WHERE M.NUMBER=KQL7.MANAGER_MANAGES_NUMBER 



AND KQL6:NUMBER=KQL7.DEPARTMENT_MANAGED_BY_NUMBER 

GROUP BY KQL7.MANAGER_MANAGES_NUMBER 

HAVING COUNT( DISTINCT KQL6.NUMBER)>1); 

This example shows a simple counting operation, 

s e l e c t count(employee number). 

SELECT COUNT( DISTINCT EMPLOYEE.NUMBER) 

FROM EMPLOYEE EMPLOYEE ; 

This example shows a simple " M A X " operation, 

s e l e c t max(employee s a l a r y ) . 

SELECT MAX( EMPLOYEE.SALARY) 

FROM EMPLOYEE EMPLOYEE ; 

This example shows a simple " M I N " operation, 

s e l e c t min(employee s a l a r y ) . 

SELECT MIN( EMPLOYEE.SALARY) 

FROM EMPLOYEE EMPLOYEE '; 
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This example shows a simple " S U M " operation, 

select sum(employee salary). 

SELECT SUM( EMPLOYEE.SALARY) 

FROM EMPLOYEE EMPLOYEE ; 

This example shows an " A V G " operation that needs the "FOR E A C H " condition, 

select avg(employee salary for each department number) 

where employee work department. 

SELECT AVG( EMPLOYEE.SALARY) 

FROM WORK WORK, DEPARTMENT DEPARTMENT, EMPLOYEE EMPLOYEE 

WHERE EMPLOYEE.NUMBER=WORK.EMPLOYEE_EMPLOYED_IN_NUMBER 

AND DEPARTMENT.NUMBER=WORK.DEPARTMENT_EMPLOYS_NUMBER 

GROUP BY DEPARTMENT.NUMBER; 

The next few examples show some K Q L queries, their SQL translations, and the 

results returned after execution of the SQL queries. 

select employee name, number, salary, birthdate. 

SELECT EMPLOYEE.NAME, EMPLOYEE.NUMBER, 

EMPLOYEE.SALARY, EMPLOYEE.BIRTHDATE 

FROM EMPLOYEE EMPLOYEE ; 

result(bill,el,1000,010151) 



result(harry,e2,2000,020252) 

result(jack,e3,3000,030353) 

result(john,e4,4000,040454) 

result(tom,e5,5000,050555) 

select department number, name, city. 

SELECT DEPARTMENT.NUMBER, DEPARTMENT.NAME, DEPARTMENT.CITY 

FROM DEPARTMENT DEPARTMENT ; 

result(dl,finance,london) 

result(d2,accounting,paris) 

result(d3,research,Vancouver) 

select manager number, rank. 

SELECT MANAGER.NUMBER, MANAGER.RANK 

FROM MANAGER MANAGER ; 

result(e 1, senior) 

result(e 2 junior) 

result(e3 junior) 

select project number, name. 

SELECT PROJECT.NUMBER, PROJECT.NAME 

FROM PROJECT PROJECT ; 



result(p 1 ,granville) 

result(p2,fraser) 

select work date , employee number, department number 

where employee work department. 

SELECT WORK.DATE, EMPLOYEE.NUMBER, DEPARTMENT.NUMBER 

FROM DEPARTMENT DEPARTMENT, EMPLOYEE EMPLOYEE, WORK WORK 

WHERE EMPLOYEE.NUMBER=WORK.EMPLOYEE_EMPLOYED_IN_NUMBER 

AND DEPARTMENT.NUMBER=WORK.DEPARTMENT_EMPLOYS_NUMBER; 

result(010188,el,dl) 

result(020288,e2,d2) 

result(030388,e3,d3) 

result(040488,e4,d3) 

result(050588,e5,d3) 

select department number 

where department employs employee. 

SELECT DEPARTMENT.NUMBER 

FROM WORK EMPLOYS, EMPLOYEE EMPLOYEE, DEPARTMENT DEPARTMENT 

WHERE DEPARTMENT.NUMBER=EMPLOYS.DEPARTMENT_EMPLOYS_NUMBER 

AND EMPLOYEE.NUMBER=EMPLOYS.EMPLOYEE_EMPLOYED_IN_NUMBER; 

resulted 1) 

result(d2) 
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result(d3) 

result(d3) 

result(d3) 

select employee name, rank. 

SELECT EMPLOYEE.NAME, KQL0.RANK 

FROM MANAGER KQLO, EMPLOYEE EMPLOYEE 

WHERE EMPLOYEE.NUMBER=KQL 0.NUMBER;) 

result(bill,senior) 

result(harry junior) 

resultljack junior) 

select manager name, number , rank 

where manager work department. 

SELECT KQL1.NAME, MANAGER.NUMBER, MANAGER.RANK 

FROM EMPLOYEE KQL1, WORK WORK, DEPARTMENT DEPARTMENT, MANAGER MANAGER 

WHERE MANAGER.NUMBER=KQL1.NUMBER 

AND KQL1.NUMBER=WORK.EMPLOYEE_EMPLOYED_IN_NUMBER 

AND DEPARTMENT.NUMBER=WORK.DEPARTMENT_EMPLOYS_NUMBER;) 

result(bill,e 1,senior) 

result(harry,e2 junior) 

result(jack,e3 junior) 



212 

select manager name, department name 

where manager work department. 

SELECT KQL2.NAME, DEPARTMENT.NAME 

FROM EMPLOYEE KQL2, WORK WORK, DEPARTMENT DEPARTMENT, MANAGER MANAGER 

WHERE MANAGER.NUMBER=KQL2.NUMBER 

AND KQL2.NUMBER=WORK.EMPLOYEE_EMPLOYED_IN_NUMBER 

AND DEPARTMENT.NUMBER=WORK.DEPARTMENT_EMPLOYS_NUMBER; 

result(bill,finance) 

result(harry, accounting) 

result(jack,research) 



A P P E N D I X J - S Y N T A X O F K Q L 

This appendix provides a summary of the syntax of K Q L . The B N F descriptions 

in the previous chapters and appendices are reorganized here. 

The input to the K Q L system is a < command >. 

<command> :: = 

< query > 

| < union-retrieval-query > 

| < new-type > 

| < new-isa > 

| < type-update > 

| < new-instance > 

<query> :: = 

[ < instance-clause > ] 

< action-clause > 

[ < report-formatting-clause > ] 

[ < where-clause > ]. 

<instance-clause> :: = 

< instance-identifier > < instance-type-connection > <type> 

{,< instance-identifier > < instance-type-connection > <type>} 

<instance-identifier> :: = 

< entity-instance-identifier > 

| < relationship-instance-identifier > 

| < role-instance-identifier > 
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These identifiers are terminal. 

<instance-type-connection> :: = 

IS | IS A | IS A N 

| IS A N I N S T A N C E O F 

<type> :: = 

< entity-type-name > 

| < relationship-type-name > 

| < role-name > 

These names are terminal. 

<action-clause> :: = 

< select-clause > [ <delete-clause> ] [ < change-clause > ] 

| <delete-clause> [ < change-clause > ] 

| < change-clause > 

< select-clause> :: = 

< entity-relationship-subset-select-clause > 

| < value-select-clause > 

< entity-relationship-subset-select-clause > :: = 

S E L E C T [< type-name > =] < instance-identifier > 

{, [< type-name > =] < instance-identifier >} 

Type-name is user-given, and it is terminal. 

< value-select-clause > :: = 

S E L E C T < select-item > {,< select-item >} 



<select-item> :: = 

< instance-identifier > < attribute-name > 

| < instance-identifier > * 

| < arithematic-operation > 

Attribute-name is terminal. 

< delete-clause > :: = 

D E L E T E < instance-identifier > 

{, < instance-identifier > } 

< change-clause > :: = 

C H A N G E < attribute-value > T O < value > 

{, < attribute-value > TO < value >} 

< report-formatting-clause > :: = 

REPORT <formatting-instructions> 

<where-clause> :: = 

W H E R E < condition-list > 

< condition-list > :: = 

<condition-andlist> [OR <condition-list>] 

< condition-andlist > :: = 

< condition > [, < condition-andlist>] 

< conditions :: = 

N O T ( < condition-list >) 

| < relationship-existence-condition > 

| < equality-attribute-value-condition > 

| < comparison-condition > 

| < membership-condition > 
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| < exists-condition > 

I <isa-relationship-condition> 

| < entity-equality-condition > 

| < combination-relationship-condition-1 > 

| < combination-relationship-condition-2 > 

< relationship-existence-condition > :: = 

< entity-instance-identifier > 

[( < role-name > )] 

< related-to-instance > 

[ ( < role-name > )] 

< entity-instance-identifier > 

<related-to-instance> :: = 

< relationship-instance-identifier > 

| < role-instance-identifier > 

< equality-attribute-value-condition > :: = 

< attribute-value > = < attribute-value > 

| < attribute-value > = < user-given-value > 

| < user-given-value > = < attribute-value > 

User-given-value is terminal. 

< attribute-value > :: = 

< instance-identifier > < attribute-name > 

< comparison-condition > :: = 

< value > < comparison-condition-name > < value > 



< comparison-condition-name > :: = 

= | < | > | < = | => 

<value> ::= <arithmetic-operation> | <simple-value> 

< arithmetic-operation > :: = 

[<sign>] < arithmetic-term > 

{ < add-minus > < arithmetic-term > } 

< arithmetic-term > :: = 

< arithmetic-subterm > 

{< time-divide > < arithmetic-subterm >} 

< arithmetic-subterm > :: = 

< simple-value > | (< arithmetic-operation >) 

<sign> ::= + | — 

< add-minus> ::= + | — 

<time-divide> ::= * | / 

< simple-value> :: = 

< attribute-value > 

| < user-given-value > 

| < statistical-operation > 

< statistical-operation > :: = 

< instance-statistical-operation > 

| < attribute-statistical-operation > 

< instance-statistical-operation > :: = 

C O U N T 

[UNIQUE] 

(< entity-instance-identifier > 



[FOR E A C H < grouping-values >]) 

< attribute-statistical-operation > :: = 

< attribute-statistical-operator > 

[UNIQUE] 

(< instance-identifier > < attribute-name > 

[FOR E A C H < grouping-values >]) 

< attribute-statistical-operator > :: = 

C O U N T | M A X | MIN | A V G | S U M 

< grouping-values > :: = 

< grouping-value > {, < grouping-values >} 

< grouping-value > :: = 

< entity-instance-identifier > 

| < instance-identifier > < attribute-name > 

< membership-condition > :: = 

< value > 

IN 

( <list-of-values> ) 

< list-of-values > :: = 

< value > {, < value >} 

< list-of-values > :: = 

[ < instance-clause > ] 

S E L E C T < value > 

[ < where-clause > ] 

< exists-condition > :: = 

EXISTS 



(< retrieval-query >) 

<retrieval-query> :: = 

[ < instance-clause > ] 

< select-clause > 

[ < report-formatting-clause > ] 

[ < where-clause > ] 

< union-retrieval-query > :: = 

< retrieval-query > 

[ U N I O N < union-retrieval-query > ] 

< isa-relationship-condition > :: = 

< entity-instance-identifier > IS A < entity-type-name > 

< entity-equality-condition > :: = 

<entity-instance-identifier> = < entity-instance-identifier > 

<combination-relationship-condition-1> :: = 

< entity-instance-identifier > 

< relationship-related > 

< entity-instance-identifier > 

< relationship-related > :: = 

< relationship-type-name > - R E L A T E D 

| < role-name > - R E L A T E D 

< combination-relationship-condition- 2 > :: = 

< entity-instance-identifier > 

< relationship-related > 

< number-specification > 

< entity-type-name > 
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< number-specification > :: = 

A L L | N O 

| [<comparsion-condition-name>] < integer > 

<new-type> :: = 

N E W E N T I T Y < entity-type-name >, 

K E Y A T T R I B U T E < attribute-name > 

WITH D A T A T Y P E < datatype-name > 

{, K E Y A T T R I B U T E < attribute-name > 

WITH D A T A T Y P E < datatype-name >} 

{, A T T R I B U T E < attribute-name > 

WITH D A T A T Y P E < datatype-name>}. 

<new-type> :: = 

N E W RELATIONSHIP < relationship-type-name > 

{, A T T R I B U T E < attribute-name > 

WITH D A T A T Y P E < datatype-name >}, 

E N T I T Y < entity-type-name > WITH R O L E < role-name > 

A N D MAPPING < mapping-degrees >, 

E N T I T Y < entity-type-name > WITH R O L E < role-name > 

A N D M A P P I N G < mapping-degrees > 

{, E N T I T Y < entity-type-name > WITH R O L E < role-name > 

A N D M A P P I N G < mapping-degrees >}. 

<mapping-degrees> ::= (<degree>, <degree> ) 

<degree> ::= integer | * 
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<new-isa> :: = 

N E W I S _ A S U P E R E N T I T Y = < entity-type-name >, 

S U B E N T I T Y = < entity-type-name > 

{, < entity-type-name > }. 

< new-instance > :: = 

N E W < entity-type-name >, 

< attribute-name > = < value > 

{, < attribute-name > = < value >}. 

<type-update> :: = 

D E L E T E E N T I T Y < entity-type-name > 

| D E L E T E RELATIONSHIP < relationship-type-name > 

| D E L E T E A T T R I B U T E < attribute-name > 

O F E N T I T Y < entity-type-name > 

| D E L E T E A T T R I B U T E < attribute-name > 

OF RELATIONSHIP < relationship-type-name > 

| A D D A T T R I B U T E < attribute-name > WITH D A T A T Y P E 

< datatype-name > TO E N T I T Y < entity-type-name > 

| A D D A T T R I B U T E < attribute-name > WITH D A T A T Y P E 

< datatype-name > TO RELATIONSHIP 

< relationship-type-name > 

<new-instance> :: = 

N E W < relationship-type-name > 

{, < attribute-name > = < value >}, 

E N T I T Y < entity-type-name > WITH R O L E < role-name >, 

< attribute-name > = < value > 
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{, < attribute-name > = < value >}, 

E N T I T Y < entity-type-name > WITH R O L E < role-name >, 

< attribute-name > = < value > 

{, < attribute-name > = < value >} 

{, E N T I T Y < entity-type-name > WITH R O L E < role-name >, 

< attribute-name > = < value > 

{, < attribute-name > = < value >} }. 


