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A B S T R A C T 

The thesis develops methods to solve discrete-time finite-state partially observable 

Markov decision processes. For the infinite horizon problem, only discounted reward 

case is considered. Several new algorithms for the finite horizon and the infinite horizon 

problems are developed. 

For the finite horizon problem, two new algorithms are developed. The first algo

rithm is called the relaxed region algorithm. For each support in the value function, 

this algorithm determines a region not smaller than its support region and modifies it 

implicitly in later steps until the exact support region is found. The second algorithm, 

called linear support algorithm, systematically approximates the value function until all 

supports in the value function are found. The most important feature of this algorithm 

is that it can be modified to find an approximate value function. The number of regions 

determined explicitly by both algorithms is the same as the number of supports in the 

value function, which is much less than the number of regions generated by the one-pass 

algorithm. Since the vertices of each region have to be found, these two algorithms are 

more efficient than the one-pass algorithm. The limited numerical examples also show 

that both methods are more efficient than the existing algorithms. 

For the infinite horizon problem, it is first shown that the approximation version 

of linear support algorithm can be used to substitute the policy improvement step in a 

standard successive approximation method to obtain an e-optimal value function. Next, 

an iterative discretization procedure is developed which uses a small number of states 
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to find new supports and improve the value function between two policy improvement 

steps. Since only a finite number of states are chosen in this process, some techniques 

developed for finite MDP can be applied here. Finally, we prove that the policy improve

ment step in iterative discretization procedure can be replaced by the approximation 

version of linear support algorithm. 

The last part of the thesis deals with problems with continuous signals. We first 

show that if the signal processes are uniformly distributed, then the problem can be 

reformulated as a problem with finite number of signals. Then the result is extended 

to where the signal processes are step functions. Since step functions can be easily 

used to approximate most of the probability distributions, this method can be used to 

approximate most of the problems with continuous signals. Finally, we present some 

conditions which guarantee that the linear support can be computed for any given state, 

then the methods developed for finite signal cases can be easily modified and applied 

to problems for which the conditions hold. 
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C H A P T E R 1 

I N T R O D U C T I O N 

After Bellman (1957) and Howard (1960) introduced the dynamic programming 

and Markov decision process models, the Markov Decision Process (MDP) has received 

much attention in operations research. It has been applied to a wide range of problems. 

A common situation is that a problem can be formulated as a the Markov decision 

process in all respects except that the states of the system are not fully observable and 

significant costs may be incurred to get this information. The following maintenance 

and repair problem, similar to the one discussed in Smallwood and Sondik (1973), is 

illustration of this fact. 

A machine is used to produce a particular product. Only one product is produced 

at each time period. This machine has two identical components, each of which must 

operate once upon the product before it is finished. The life of each component has an 

exponential distribution. The lifetime of one component is independent of the other. 

There is a positive probability that an operational component will break down in the 

process of manufacturing a product. If both components function well, then there is 

only a small chance that this machine produces a defective product. However, if either 

component fails, there is a higher probability that the machine will produce a defective 

product. 

Since both components are identical, we can model the dynamics of the machine 

with a three-state discrete time Markov process. The three states correspond to zero, 
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one, or two components having failed. Generally, we do not know whether a component 

is in a good or compromised condition. 

In order to know the state of the machine, we may stop its operation for inspection. 

However, most of the time, we can expect the machine to be functioning well, and 

hence such an action will increase the costs unnecessarily. Alternatively, the decision 

maker may choose to continue production or to examine the final products. Continuing 

production will not give us any information about the state of the system. Examining 

the final product, though, will give us the probability distribution of the state of the 

system by Bayes' rule. These two options will not tell us the exact state of the system 

under study. Therefore, even if we indeed have a Markov decision process, we may not 

know the system state when we choose an action. 

A problem that can be formulated using the MDP but which suffers from an imper

fect state observation is usually referred to as a Partially Observable Markov Decision 

Process (POMDP). More precisely, a partially observable Markov decision process is a 

generalized Markov decision process which allows an imperfect observation of the system 

states. 

As a descriptive model, the POMDP offers many advantages over MDP. For exam

ple, the POMDP allows an imperfect state observation, which happens often in the real 

world. The observation process may be non-Markovian. The POMDP model also forces 

the model builder to make a clear distinction between real systems and observations. 

Moreover, similar to what seems to occur in practice, an action or decision taken in 
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POMDP may affect the quality of future observations. Hence, the POMDP has been 

used to model a wide range of problems which will be presented later. 

As a prescriptive tool, however, the POMDP is awkward. The decision maker 

may be forced to make decisions based upon the entire history of the system, a string 

of past decisions and observations. The POMDP is usually converted into an equiva

lent completely observable MDP, where the state space is the conditional probability 

distribution of the system state given the history of the system (Astorm 1965). This 

conversion facilitates analysis of the problem, but does not overcome computational 

difficulties introduced by the state space being continuous and not finite. 

The aim of this thesis is to develop some efficient solution methods for POMDP's. 

The development of the POMDP will be reviewed in Section I of this chapter, while the 

plan and major results of this thesis will be summarized in Section II. 
* 

I. Development of P O M D P 

The Partially Observable Markov Decision Process (POMDP) is a natural extension 

of the MDP. Research on the POMDP began in the early sixties, just a few years after 

Howard's work (1960). Drake (1962) was the first person who developed the explicit 

POMDP model. About the same time, Astorm (1965, 1969) formulated the finite 

horizon POMDP. 

Several researchers have studied the theory of POMDP. Sawaragi and Yoshikawa 
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(1970) studied the POMDP with an uncountable action space and a countable system 

states. Rhenius (1974) considered POMDP problems with both action and system 

state spaces being Borel spaces. White and Harrington (1980) studied the relationship 

between the value functions, observation quality, and suboptimal decisions. Platzman 

(1980) developed the conditions under which the undiscounted infinite horizon POMDP 

is well defined. 

Some researchers studied conditions that ensure the optimal policies have certain 

structural characteristics. Albright (1979) presented conditions under which the optimal 

policy of a two system state POMDP is monotone on the probability distribution of the 

system states. White (1980) gave conditions which yield monotone optimal policies for 

finite horizon POMDP that is either completely observable or nonobservable. Recently, 

Lovejoy (1987) provided sufficient conditions for the optimal value in a discrete time, 

finite POMDP to be monotone on the space of state probability vectors ordered by 

likelihood ratios. 

The computational difficulties associated with POMDP's have been under study 

since the mid-sixties. Kakalik (1965) divided the space of state probability vectors into 

equal area grids and considered each grid as a state. The problem was then trans

formed into a finite MDP problem. Satia and Lave (1973) developed an implicit enu

meration algorithm for computing an e-optimal value function for the finite horizon 

POMDP. Smallwood and Sondik (1973) and Sondik (1971) developed a so-called one-

pass algorithm for the finite horizon POMDP, and discovered that POMDP's are not as 

computationally intractable as general nondenumberable state MDP's. Sondik (1971, 
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1978) developed a policy iteration type algorithm for the infinite horizon POMDP. 

Brumelle and Sawaki (1978) presented a partition method for finite horizon POMDP 

and a modified policy iteration algorithm for the infinite horizon POMDP. Platzman 

(1981) discussed a finite memory algorithm to find a e-optimal policy for infinite horizon 

POMDP. Recently, White and Scherer (1986) developed a reward revision algorithm to 

solve infinite horizon problems. 

There are some algorithms developed only for special cases of the POMDP. Wang 

(1976, 1977) considered a two action replacement problems. Buckman and Miller (1979) 

reformulated an investigation problem as a regenerative stopping problem. Hughes 

(1980) reformulated a two-action, two-state sequential quality control model as a re

newal problem. We will discuss some of the algorithms in more detail later in this 

thesis. 

POMDP have been used to model a wide range of problems (Monahan 1982). One 

of the major applications is the machine replacement and quality control problems. Eck-

les (1968), Ohnishi et al. (1984, 1986), Ross (1971), Wang (1976, 1977), White (1977, 

1978, 1979a, 1979b) applied POMDP to different settings of machine replacement and 

quality control problems. Kaplan (1969) applied the results of the machine inspection 

and replacement problem to a cost control problem in accounting. Hughes (1977) mod

eled the internal control of a corporate control system as a POMDP. Smallwood (1971) 

developed a two state POMDP model of optimal teaching strategies. Smallwood et al. 

(1971) used POMDP concepts in the development of methodology for the analysis of 

health care system. White (1976) applied the theory of POMDP to design question-
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naires in situations where responses may not be truthful. Hsu and Marcus (1980) used 

the POMDP as a tool to solve the decentralized control of finite Markov processes. 

Eagle (1984) used the POMDP to study searching for the moving target. Recently, 

Lovejoy (1983) and Lane (1986a, 1986b) have applied the POMDP to fishery problems. 

II. Summary of Results and Plan of the Thesis 

The major results of this thesis can be divided into three parts: algorithms for the 

finite horizon POMDP, algorithms for the infinite horizon POMDP, and methods for 

solving the POMDP with continuous signals. Each of these sets of results is discussed 

below: 

1. Algorithms for Finite Horizon P O M D P : 

Two new algorithms are developed for solving finite horizon POMDP problems. 

The first algorithm, called the relaxed region algorithm, is a modification of Sondik's 

one-pass algorithm. Instead of finding an exact support region in the state space which 

corresponds to a linear support for the value function, a larger relaxed region which 

contains this exact region is found. In later steps, this relaxed region is modified. At 

the end of the procedures, the regions corresponding to each of the linear supports in 

the value function are found exactly. Unlike Sondik's one-pass algorithm, the number 

of regions produced by this method is exactly the same as the number of linear supports 

in the value function. In other words, the number of regions produced by this method 

is much smaller than that of Sondik's one-pass algorithm. Since fewer regions are 
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produced, this method is much more efficient than the Sondik method. 

The second new algorithm is a linear support algorithm. This algorithm can be 

viewed as a special type of relaxed region algorithm, although it is different from the re

laxed region algorithm discussed above. This algorithm uses only the convexity and 

piecewise-linearity of POMDP. This method systematically approximates the value 

function until all linear supports in the value function are found. One of the most 

important features of this algorithm is that it can be used to find an e-optimal value 

function. Although this algorithm may not be the only algorithm which can find an ap

proximate value function, it might be the only algorithm which can be used for finding 

both exact and approximate value functions. The numerical examples show that this is 

a very efficient algorithm for finding an exact value function. More importantly, when 

there are a large number of linear supports to form a value function, this algorithm 

requires only a fraction of CPU time to find an approximate value function which is 

very close to the optimal one. Because of its ability to find an approximate value func

tion efficiently, this algorithm also is used in the development of several methods in the 

infinite horizon POMDP. 

2. Algorithms for Infinite Horizon P O M D P : 

Several new algorithms are developed in this part. 

In regular successive approximation method, the exact value function is found in 

each iteration. As we know, when a large number of linear supports are required to 

form a value function, it is difficult to find an exact value function, no matter which 
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algorithm is used. A natural resolution to this difficulty is to apply an approximate 

value function for each policy improvement and hope an e-optimal value function for 

infinite horizon POMDP can be obtained. We will prove that this approach is workable 

in Chapter 4; i.e., an e-optimal value function can be obtained by repeatedly applying 

the approximate policy improvement step. This is the first result in this part. 

Another possible method for overcoming the difficulty of the standard successive 

approximation approach is to reduce the number of iterations of policy improvement. 

The method developed under this category introduces a discrete phase between two 

policy improvement steps. In each of the discrete phases, only a small set of states are 

considered. In each iteration in a discrete phase, linear supports corresponding to these 

selected states are computed. The maximal value of newly computed linear supports 

and the linear supports in the previous value function form a new value function. By 

performing iterations in a discrete phase, the value function can be improved without 

complicating computations. We called this method the iterative discretization procedure. 

Since only a finite number of states are considered in a discrete phase, some tech

niques developed for the finite MDP can be applied, at lease in concept, to iterative 

discretization procedures to accelerate the convergence. Three methods are considered. 

They are the Gauss-Seidel method, the action elimination method, and the modified 

policy iteration method. 

In the iterative discretization procedure introduced here, the exact value function 

is required for each iteration of policy improvement. A natural extension is to replace 
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this exact value function by an approximate value function since an approximate value 

function is easier to compute and numerically more stable. It is shown that the iterative 

discretization procedure can work with an approximate policy improvement. 

3. Algorithms for P O M D P with Continuous Signal Space: 

In this part, the assumption of only a finite number of signals is relaxed. It is 

assumed that there is a probability distribution of signals for each system state and 

action. 

There is little research in this area, especially with respect to a general purpose 

algorithm. The major difficulty for developing such an algorithm is that the property 

of piecewise linearity of the value function which is available in the finite signal setting 

is not preserved in the setting. This feature raises computational difficulties. 

It is first proven that, if all signal processes are uniformly distributed, the problem 

can be reformulated as a finite signal problem. As a result, all the algorithms for the 

finite signal problems can then be applied. 

This result is then extended to step functions; that is, if the signal processes are 

step functions, the problem can be reformulated as a finite signals problem. Although 

there may not be many problems in which signal processes are step functions, step 

functions can be easily applied to approximate any distribution. Therefore, we can use 

this approach to solve most problems. 

The assumption of finite signals is only used to guarantee that it is possible to find 
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the linear support for any given state in the algorithms discussed in Part 1 and Part 2. 

If there is a method which guarantees that linear supports can be obtained for the given 

states, then the algorithms can be applied to problems with continuous signals without 

major changes. Some conditions are developed that guarantee the existence of a linear 

support for any given state. If these conditions are met, then the methods developed 

i n previous two parts can be used in here too. 

T h e plan for the remainder of the thesis follows. 

Chapter 2: Problem Formulation and Preliminary Results 

The formal problem setting for a P O M D P is introduced. Next the problem is refor

mulated as a completely observable M D P with continuous state space. The properties 

of this newly formulated MDP, which will be used in later chapters, are then discussed. 

Chapter 3: Algorithms for Finite Horizon P O M D P 

T h i s chapter discusses the algorithms for finite horizon P OMDP. Major existing al

gorithms, the partition method, Sondik's one-pass algorithm, and the Monahan method, 

are presented and reviewed. Then two new algorithms, the relaxed region algorithm and 

the linear support algorithm, are developed. Some computational results are used to 

compare the efficiency of these algorithms. 

Chapter 4: Algorithms for Infinite Horizon P O M D P 

T h i s chapter discusses the computational methods for infinite horizon P O M D P 

problems and is organized as follows. First, the major existing algorithms are reviewed. 
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Next a successive approximation method with approximate policy improvement to ob

tain an c-optimal value function and an iterative discretization procedure are devel

oped. Then various methods to accelerate convergence are considered. Then some of 

the previous ideas are combined to apply approximate policy improvement with iterative 

successive approximation. Finally, a numerical comparison of algorithms is presented. 

Chapter 5: P O M D P with Continuous Signal Distribution; 

This chapter first considers the refomulation of a problem with uniformly dis

tributed signal processes to a problem with a finite number of signals. Then this proce

dure is extended to signal processes with distributions which are step functions. Some 

conditions which guarantee that a linear support to the value function at any given 

state can be constructed are stated. Finally, the algorithms developed in the previous 

two chapters are adapted to this setting. 
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C H A P T E R 2 

P R O B L E M F O R M U L A T I O N A N D P R E L I M I N A R Y R E S U L T S 

In this chapter, the formal problem setting for a POMDP will be introduced. Then 

the problem is transformed to a completely observable MDP. Lastly, the properties to 

be used in later chapters are discussed. 

I. The Partially Observable Markov Decision Processes 

Underlying a POMDP is assumed to be a discrete-time finite-state Markov chain. 

This process has N stage-invariant states labelled 1,2, ...,N. In order to distinguish 

states for the underlying process from the states in the decision problem discussed 

later, the states in the underlying process are called system states. Time is divided into 

discrete periods labelled by nonnegative integers t. At any time epoch t the system 

state is denoted by Xt. 

At each decision time epoch on a stage, the decision maker has to choose an action 

from an action space D. The action chosen at time t is denoted by Yt. In this thesis, 

the action space is assumed finite, t It is also assumed that the action space D is stage-

invariant for an infinite horizon stage problem. 

f The assumption of a finite action space is not necessary for the model de
velopment. Sawaragi and Yoshikawa (1970) developed the theory of POMDP's 
with an uncountable action space and a countable system state space. However, 
in order to develop efficient computational algorithms, we limit our attention 
to a finite action space. 
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At decision epoch t, if the process is in system state i and the decision maker chooses 

action d, then a set of transition probabilities {pdj(t)\ j = 1,2,..., N) ( 53 • pdj(t) = 1 

for any system state i) is established to describe the probability of moving to system 

state j at the next time epoch; that is, pdj(t) = Prp^+i = j | Xt = i, Yt = d]. If the 

transition probability is independent of time t or it is clear from content, the index 

t is omitted. For an infinite horizon problem, stationary transition probabilities are 

assumed. It is also assumed that the decision maker knows the transition probability 

function. 

A finite reward rd(i) is obtained whenever the system is in system state i and action 

d is chosen. The reward is stage-invariant. The notation rd is a iV-dimensional column 

vector with rd(i) as its t-th element. 

System moves 
to a new state 

according to P\Yt 

System moves 
to a new state 

according to P\Yt 

t I t + l 

Choose Action 
Yt based on 
system state 

Incur Reward 

Fig. 2.1: Decision diagram for completely observable Markov decision processes 

If the decision maker knows the current system state before choosing an action, 
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the decision problem is a regular completely observable M D P . The decision maker can, 

then, choose an action based on the current system state to maximize the total expected 

(discounted) reward. To make the decision procedure clear, consider the block diagram 

of F ig . 2.1. 

P O M D P ' s have the characteristic that the state of the system cannot be observed 

directly. Instead, the decision maker receives a random signal from the system. In 

Chapter 2 to 4, the signal space 0 is assumed finite. This assumption will be relaxed 

in Chapter 5. ; 

Let the signal received at time t be denoted by Zt. Although the signal is random, 

the decision maker knows the conditional probability of getting signal 8 when the sys

tem state and action are known. Assuming that this conditional probability is stage 

invariant, it can be denoted by a matrix Qd = where 

gfe = Pv[zt = e\ xt ='i,yi_1 = d\ v*. 

Assume that the objective of the decision model is to maximize the total expected 

(discounted) reward. Since the decision maker does not know the exact system state of 

the process when choosing an actian,rhe/shemay-choose an action based on the entire 

history of the process. (This will be discussed in next section.) To contrast Fig. 2.1, 

consider the block diagram for POMDP i n F ig . 2.2. , 
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System moves 
to a new state 

according to P\Yt 

System moves 
to a new state 

according to P\Yt 

t + l 

Choose Action 
Yt based on 

system information 

T 

Incur Reward 

Transform system 
history to useful 

information 
*(0 It 

T 

Update 
system 
history 

It — {It-i,Yt-i,Zt} 

Receive a signal Zt 

according to Q\Yt 

F i g . 2.2: Decision diagram for partially observable Markov decision processes. 

II. Problem Formulation 

For a P O M D P problem, the system state is usually unknown to the decision maker 

at the time of choosing an action. Moreover, since the signal process itself need not be 

a Markov process, it may be necessary to base decisions on more than just the signal 

received i n epoch t. In this section, new formulations will be considered to resolve this 

difficulty. 
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Let 7r(0) = [7Ti(0),7T2(0), ...,7r#(0)] be the probability distribution of the initial 

system states where TT,(0) = TI{XQ = i) for 1 = 1,2,... , N . Assume 7r(0) is known by 

the decision maker. T h e history of the process up to time t is denoted as It where 

Io = [7r(0),Z 0] 

It = [n(0),Z0,Yo,Zi,Yi,... ,Zt-i,Yt-i,Zt] 

and It+i = [It,Yt,Zt+i). 

We remark that {It, t = 0,1,2,...} is a Markov decision process. Let vt(-) denote 

the optimal total expected reward from time t to the end of the decision horizon. The 

dynamic programming recursive equation can now be written as 

vt(lt) = max E{rY<(XT) + fi • »«+,(/,+,) | IuYt) it fc/j 
= m a x { E ( r y ' ( X t ) | IuYt) + fi • E(vt+1(It+1) \ IuYt)} 

N 
= m a x { ^ P r ( ^ = i | 7 t ) T y ' ( 0 

i=l 
+ fi • P r ( ^ + i = 6 I lu Yt) • vt+1({It,Yt,Zt+i = *])} (2 - 1) 

*ee 

where fi is a discount factor. We assume that 0 < fi < 1 for infinite horizon problems 

and 0 < fi for finite horizon problems. Note that the state variables are known exactly 

in equation (2-1). B y Bayes' rule and induction, it is also possible to find the value of 

P r ( Z t + i = 6 | ItyYt) for any given 6, It and action. Therefore, we have a completely 

observable Markov decision process. 

In order to solve the recursive equation (2-1), the value functions in period t must be 

evaluated for each possible history It. When there are a large number of possible actions 
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and/or signals or the decision horizon is long, then the number of possible histories It 

is large (or infinite) and grows linearly i n t. The computational requirements of this 

dynamic programming algorithm can be truly prohibitive. (The details of this problem 

are discussed i n Section 4.1 of Bertsekas (1976).) Therefore, we should consider other 

possible state variables. 

Let *i(t) = Pi(Xt = i | It) and ir(t) = M<), 7 r 2 ( < ) , . . w h e r e £i=i *.•(<) = 
1 and 0 < 7Ti(<) < 1 for i = 1,2,..., N. It is easy to show 

Tr(Xt+1 = i | It,Yt,Zi+1) = Pr(Xt+1 = i | * (<) ,Y u Z t + 1 ) 

and P r ( Z t + a = 6 \ It,Yt) = P r ( Z t + 1 = 6 \ ir(t),Yt). 

Therefore, given It, Yt = d, and Z<+i = 6, by Bayes' rule, 

Pr(Xt+1=j \It,Yt = d,Zt+1=e) 

PT(Xt+1=j\*(i),Yt = d,Zt+1=6) 

?T(Xt+l=j,Zt+1=6\n(t),Yt = d) 

( 2 - 2 ) 

Or, in matrix form, 

T ( * (0 ,4«)sPr ( X l + 1 |Z„ y 1 = s < i , Z w = 6) 

= P r ( X t + 1 | TT(0, KI = <f, Z,+i = $) 

*(0 •PiQe (2 - 3) ir(t) • P ' • Q{ • 1 

where is a diagonal matrix with q°- as its diagonal elements and 1 is an N-

dimensional column vector with all elements being 1. 
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It is well known that 7r(t) is a sufficient statistic for It when choosing an action 

at time epoch f. More precisely, 7r(r) summarizes all of the necessary information of 

the history of the process for choosing an action at time t (Bertsekas 1976, Monahan 

1982, Sondik 1971, Striebel 1965). Let II = {ir € RN : Y*=\ *i = 1 ^ *i ^ 

0 for i = 1,2, ...,N). The following result is also readily established (Astrom 1965, 

Monahan 1982, Rhenius 1974, Sawaragi and Yoshikawa 1970, and Sondik 1971): for 

any fixed sequence of actions Yi,Y2,... ,Yt € D, the sequence of probabilities {n(k)} 

where k = 0 , 1 , . . . , t is a Markov process; that is, if T C II, then 

Pr(7r(t + 1) € T | TT(0), TT(I), . . . , nit), Yt) = Pr(n(t + 1) € T \ *(t\Yt). 

Therefore, consider using the probability distribution of the system states as the state 

variables; that is, using II as the new state space. Then, for 7r 6 II, 

«,(*) = max E{rd(Xt ) + vt+1 (T(v, d, 9)) \ TT, d) 

N 
= maxjy ; it, • rd(i) + 0 • Y Pr (Z f + 1 = 6 \ TT, d) • vt+1(T(*, d, 9))}. 

i=i eee 
( 2 - 4 ) 

Note that, in this representation, the state variable is known exactly; and hence (2-4) 

is the recursive equation of a completely observable Markov decision process. Thus, the 

POMDP can be converted into an equivalent (completely observable) Markov decision 

process. 

When using It as the state variables, the state space is different in each stage. 

In contrast, using {pi(t),t = 0,1,.. .} as the state variables, the state space is always 
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the same, II. The stage invariant state space aids the problem analysis; however, to 

find an optimal policy is still not an easy task because the state space II is continuous 

and not finite. In general, it is not easy to solve a Markov decision process with a 

continuous state space. Fortunately, POMDP's possess some special properties which 

will be discussed later in this chapter. These properties will help us to develop some 

useful computational algorithms to find an optimal policy. 

III. Notations and Operators 

In this section, some notation and operators useful for later chapters are introduced. 

As mentioned in previous sections, II is the state space and D the action space. A 

policy is a function which maps the state space into the action space; i.e., if 6 is a policy, 

then 6 : H —* D where S(TT) is the action taken in state TT £ II. Let the policy space A be 

the set of all stationary policies. Let B be the set of all bounded real-valued functions 

on II. In this thesis, unless otherwise stated, the norm || • || is the supreme norm; for 

example, if v 6 B, then = sup{|u(7r)| : 7r 6 II}. 

For convenience, define the local income function h which assigns a real number to 

each triple (n,d, v) with n 6 II, d 6 D, and v 6 B. In Chapter 2 to 4, h is defined as 

h(n, d, v) = TT • rd + p • ^ P r ( * I *>d) • "(ZX*. d, 6)). 
eee 

Note that with this notation Equation (2-4) can be rewritten as 

vt(n) — rnax /i(7r, d, vt+i). 
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The local income function can, then, generate a return operator Hs on B for each 6 G A; 

i.e., [Hs(v)](7r) = ^(ff, 6(n), v). If 6(7?) = <f for all 7r 6 II, then if,f instead of i7{ is used. 

Finally an optimal operator H : B —» Bu is defined as J?t> = maxjGA[i?«v]. 

IV. Major Properties 

In the previous sections, the POMDP was converted into an equivalent completely 

observable Markov decision process. In this section, the more important properties of 

this new Markov decision process are considered. 

The first three properties, boundedness, monotonicity, and contraction, are com

monly assumed in dynamic prograrnming. It is shown that these properties are also 

present in a POMDP. Then, two further properties of the POMDP, i.e., piecewise lin

earity and convexity of the value functions, are discussed. Finally, the existence of an 

optimal value function and policy is also discussed. 

1. Boundedness: 

The usual assumption of boundedness is as follows: There exist numbers K\ and 

K2 such that \\H6v\\ <K!+K2- \\v\\ for all v € B and 6 € A (Whitt 1978). 

Let r = maxdgrj){|r''(i)| : t = 1,2,... ,N), then for arbitrary 7r G II, 8 G A, and 

v e B 

\[Hsv\{*)\ = \vrd + p.Y, Pr(* I *,*00) • v(T(n,6(^), $))\ 
eee 
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< k • rd\ + fi • ]T I *, *00)' *))l 
*€© 

< r + / 9 . £ P r ( * | * ,*(*)) 'HI 
*€© 

= r + /?'NI 

Therefore, \\H6v\\ <r + fi\\v\\ for all v € B and A; that is, both for all 6 G A 

and H satisfy the boundedness assumption. 

2. Monotonicity: 

The monotonicity assumption is as follows: If v > u in B, i.e., if v(ir) > U(TT) for 

all 7r G II, then Hsv > Hsu in B for all 6 G A (Whitt 1978). Now assume v > u in 

B, then for arbitrary 6 G A and n G II, 

(#»(TT) - (H6u)(ir) = fi-Y, P r ( * I • w(T(7r, *(TT), 5)) 

- 0 • £ P r ( * | M O O ) • u(T(ir, 
«€© 

= /? • £ Pr(0 | TT, 6(*)) • {V(T(TT, 6)) - u(T(*, «(*), 0))} 

> 0 

Therefore, (HSV){TT) > (Hsu)(n) or Hsv > Hsu for all -n G II and 6 G A ; that is, both 

Hs for all 6 G A and H satisfy the monotonicity assumption. 

3. Contraction: 

The contraction property is one of the most important properties in a problem with 

an infinite horizon. This property can be stated thus: For some fixed fi, 0 < fi < 1, 

then \\Hsv - H6u\\ < fi • \\v - u\\ for all u,v G B and 6 G A (Whitt 1978). 
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For arbitrary u,v € B and 7r € II, 

\(H6v)(*) - (H6u)(n)\ <P-Y,
 P r(* I *. *(*)) * l«(r(jr, *(*), $)) - U(T(TT, 6(n), 9))\ 

< 0 . £ P r ( 0 | -u||. 

Hence \\Hsv — Heu\\ < /? • ||t> — u|| for all u,v 6 B and 6 € A ; that is, both for all 

S G A and if satisfy the contraction mapping assumption. 

4. Piecewise Linearity of the Value Function: 

The piecewise linearity and convexity of the value function are the two of the most 

important properties of a POMDP. Piecewise linearity was first discovered by Astrom 

(1965), but was formally introduced by Sondik (1971). Let us briefly describe the 

piecewise linearity of a POMDP. 

The following is Lemma 2.1 of Sondik (1971): 

Lemma 2.1: 

T(ir,d,0) preserves straight lines. That is, if 0 < p < 1, and Tr1,^2 G II, then 

p-ir1 +(1 — p)-ir2 is a straight line in II with end points n*,ir2. If the transformation of 

this line for a fixed signal 8 and action d is considered, then T(p • 7T1 -f (1 — p) • n2, a, 0) = 

fi-Tin1 ,d,0) + (l-p)-T(n2,d,8), where, as p ranges between 0 and 1, p. ranges between 

0 and 1. Hence the image of a straight line under T(-,d,8) is a straight line, specifically, 

_ P-PT(8 \ -K\d)  

^ " p • Pr(0 | n\d) + (1 - p) • Pr(0 ( n2,d)' 
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A function v is called piecewise linear and convex if there is a finite set of N-

dimensional column vectors, A, such that v(n) = maxt=ii2>...,fc{7r • a' : where a' € A). 

For n € fl , d G D, and 6 € 0, define Anid>e = {a e A : T(TT, d, 9) • a > T(ir, d, 6) • 

a V-a € A}. Then v(T(ir,d,0)) = T{ir,d,B) • a for all a € A„<dt0. If a*tdj is a vector 

in An<d,6i then, by (2-3) and (2-4), Hv(it) can be written as: 

Hdv(ir) = ir-rd + l3-J2 Pr(0 | TT, d) • w(r(?r, rf, tf)) 
*ee 

= TT • [rd + fi • ^ P r f • Qd
e • a.,,,,]; (2-5) 

flee 

Since rd + fi • ^26^Q Pd • Qe • oc„tdt$ is an iV-dimensional vector, (2-5) can be simplified 

as Hdv(ir) = TT • a T ) d where a„td = rd + fi • J2eee p d ' Qe ' Q*,d,e- Moreover, Hv(n) = 

maxrfgo Hdv(ir), then 

Hv(ir) = m&x{Hdv(ir)} 

= TT • a , (2-6) 

where an = rd + fi • E$ee p d ' Qi ' a* «j $ if d is an optimal action for state 7r. 

As described in Lemma 2.1, T(-,d, 6) preserves straight lines. As a result of this 

property and the assumption of the piecewise linearity of v with a finite number of 

linear segments, for any given action d in D and signal 8 in 0, the state space II can 

be partitioned into a finite number of regions such that AK<dt$ is constant for all states 

n in the interior of each region. Moreover, if there are only finite numbers of actions 
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in D and signals in 0, a finer partition with a finite number of cells can be found such 

that >lir,<{,# = -<4ir',<i,0 for all d € D, and 8 G 0, given 7r and 7r' are in the same region. 

Therefore, if Hv(ir) = it • a*, then Hv(ir) = n • a* for all IT in the same region as ft in 

the finer partition. That is, Hv is a piecewise linear function. 

Note that, if the number of signals is not finite, the state space II might be parti

tioned into an infinite number of regions. In this case, Hv might not be a piecewise linear 

function with a finite number of linear segments. However, the convexity is preserved 

even in this case. We will discuss this type of problem in Chapter 5. 

5. Convexity of the Value Function: 

The convexity of the value function for a system with a finite number of system 

states, actions, and signals was first presented and proven formally by Astrom (1969). 

His theorem can be simply described as: Given a convex function v, Hv is also convex. 

Note that this theorem can only be applied directly to the optimal operator. For an 

arbitrarily given policy 6 £ A , H&v is not necessarily convex even though t; is a convex 

function. However, in the proof of this theorem, the fact that H4V is convex for all 

d € D is proven. This is conceptually important for developing an algorithm for a finite 

horizon problem. 

White and Harrington (1980) extended Astrom's results to a more general setting 

where the signal space is not necessarily finite. In Lemma 3.1 of their paper, they 

showed that H^v is convex whenever v is, even if the signal space is not finite. Since 

the maximal value of a set of convex functions is convex function, Hv is also a convex 
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function. 

Therefore, if v is piecewise linear and convex, so is Hv. Moreover, from piecewise 

linearity, HV(TT) = ir • a* for TT in region i. Suppose there are k' regions and let AH = 

{a1 ,a2,... ,ak }. Since Hv is piecewise linear and convex, the function value of Hv can 

be written as 

Hv(n) = max {7r • a' : a* G AH} W G II. (2 - 7) 

T h a t is, if the vectors in AH are known, then, by piecewise linearity and convexity of 

Hv, the function value of Hv can be easily obtained by (2-7). It is not necessary to 

know the area of each region explicitly. 

6. Optimal Value Function and Policy: 

Since the operators Hg and H are contraction mappings, for each operator, there 

exists an unique fixed point in B, denoted by vs and v*, respectively, such that Hgvs = vs 

and Hv* = v* (El'gol'c 1964). This implies that, if the initial state is TT G II and policy 

6 G A is used over the infinite horizon, the total expected discount reward will be v&(n). 

Then, by definition of H, v*(n) = max^ A ^ ^ 7 1 " ) } for all 7r in II. Hence, v* is the 

optimal value function. 

A policy 6 G A which attains Htv* = Hv* is called an optimal policy. Sawaragi 

and Yoshikawa (1970) have shown that if the action space D is finite, there exists an 

optimal stationary policy. A policy 6 is said to be e-optimal if vs < v* and — vs \\ < t. 

For any given e > 0, there exists an e-optimal stationary policy even when the action 

space D is not finite (Sawaragi and Yoshikawa 1970). 
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Since a POMDP has a continuous state space, it is usually very difficult to find 

the vg for 6 € A or v*. Therefore, bounds for these values have been sought by several 

researchers. 

Astrom (1965) studied the finite horizon problem in an optimal control setting. He 

found that the value function for a partially observable control system is always better 

than that of an unobservable control system (or open-looped system). In contrast, the 

value function of a partially observable system is no better than that of a completely 

observable system. 

White and Harrington (1980) extended Astrom's theorem to compare the results of 

different qualities of measurement. They concluded that if the quality of the observation 

is improved, then the value function will also be improved. This result is true even when 

the optimal policy for the lower quality system is applied to the better measurement 

system. 
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C H A P T E R 3 

A L G O R I T H M S F O R F I N I T E H O R I Z O N P O M D P 

Finite horizon algorithms are important not only to solve finite horizon problems 

but also for use as the policy improvement step for an infinite horizon problem. Hence 

an efficient algorithm is desired. 

If a one-stage POMDP problem can be solved, then by induction, a finite horizon 

problem can be solved. Therefore, in this chapter, the main focus will be on how to 

compute Hv for a given piecewise linear and convex function v- We will start with a 

characterization of v in term of its supports, and then compute a set of supports for 

Hv. 

Let v be a piecewise linear and convex function and A a given support set containing 

a finite number of iV-dimensional column vectors such that 

V(TT) > 7r • a Va 6 A and 7r 6 n 
and v(ir) = max{7r • a : a E A} W € II. 

Therefore, every vector in A is a support of v. The support sets discussed in this 

dissertation usually satisfy the following condition: for every a in a support set A, there 

exist a state 7r in n such that v(7r) = ir - a. The supports in a support set A which do 

not satisfy this condition can be deleted from A without changing the value function. In 

this dissertation, this condition is not a necessary one in the development of algorithms. 

However, delete the unnecessary supports will improve the efficiency of the algorithms. 
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A region, R(a, A), is called a support region for a support a € A if 

R(a,A) = {TT € II : TT • a > TT • a Vd G 4}. 

The support regions have the following two properties: (1) U o g ^ i ^ a , A) = II; and (2) 

intil(o;, A) ninti2(d, A) = 0 when a ^ a, where intR(a, A) is the the interior of R(a, A). 

Hence, V (TT) = TT • a if TT G A). 

As discussed in Chapter 2, /fu is also piecewise linear and convex. To represent 

Hv easily, a support set, AH, is required such that 

HV(TT) > 7r • a Va G AH and TT G n 

and HV(TT) = max{7r • a : a G A//} V7r G n. 

There are an infinite number of support sets which satisfy these two conditions. Among 

them, the smallest set, denoted as AH, is the one for which the interior of the support 

region for each support in A*H is not empty. By definition of piecewise linearity, A*H is 

a finite set. The smallest set is desired since it will simplify the calculation of Hv(n) 

for any given TT G II. 

Although the smallest set is desired, it might be difficult to find since identifying an 

empty interior of a region is a time-consuming task. Each of the algorithms discussed 

below will generate an alternative set of supports. Recall that, for given TT G II, d G D 

a n d f l e e , AN<D>E= {a : T(iT,d,6) • a > T(TT,d,0) • a Va G A}. Define AH\ as 

AH — {a : 3TT G II, d G D and a selection of QWld,e € Antd,e for each 8 G 0 

f AH depends on v and A. For simplification, the dependence will not be 
shown on the notation of AH-
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such that a = rd + 0 Pd • Qd
0 • o^.i.j and ifu(7r) = TT • a}. 

Note that A H is a finite set and A * H is a subset of A H . A H is equal to A * H most of the 

time; however, occasionally some unnecessary supports will be included in A H - These 

unnecessary supports affect the operations of the algorithms by imposing additional 

computations that are time-consuming to detect. However, it may be inefficient to 

delete these vectors from A H -

The main purpose of this chapter is to discuss two methods, the relaxed region 

algorithm and the linear support algorithm, for computing Hv and A H from given v 

and A . These two algorithms are closely related to existing algorithms which will also be 

discussed. A partition method will be presented in Section I. Then the two well known 

algorithms, the one-pass algorithm and the Monahan algorithm, will be reviewed in 

Sections II and III. The relaxed region algorithm will be discussed in Section IV, and, 

in Section V, the linear support algorithm is developed. Some numerical examples will 

be presented in Section VI for comparing the efficiency of these algorithms. 

I. Partition Method 

The partition method was introduced by Brumelle and Sawaki (1978) for general 

piecewise linear dynamic programming and by Sawaki (1983) for the POMDP. When 

being used for the POMDP, this method is similar to Sondik's one-pass algorithm 

(Sondik 1971, Smallwood and Sondik 1973). 

A collection B = {2?i, B 2 , • • •, Bn) of subsets of n is a partition of state space n 
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if Bi is a convex polyhedron, \J"=1Bi = II and int(Bj) D 'mt(Bj) = 0 where i ^ j and 

int(Bt) is the interior of B,-. The product of two partitions Ci and C2 is C\ ® C2 = 

{BiDDj : Bi 6 Ci and Dj € C2}. The product of C i , C2, • • •, Cm is defined inductively 

by ®ZiCi = Cm®®?rl
lCi. 

If d is an action in D, $ is a signal in 0, and d is a support in A, define Sd,eta as 

Sd,*,* = {Tr e II: T(7r,d,0)-d > r (7r ,d , 0 ) -a VaGA} . 

Note that Sd,e,a is a convex polyhedron and might be empty. Then Sd,e = {Sd,e,a '• 

Va € A} is a partition of the state space II. A product partition can be formed from 

these partitions Sd,e for all 6 G 0; i.e., Sd — 0 e g 0 Sd,e- Denote the cells in Sd by 

cd / cd cd cd\ 
J — \J} , 02 5 • • • » Jl J • 

Recall that HdV is the value of using action d for one period for any 7r G II and 

terminating with reward v. Now we will construct a set of supports, A j , such that there 

is a support £ d l for each cell Sf in Sd. By (2-5), 

Hdv(n) = 7r-rd + /3j2 Pr(# I M ) • v(T(n, d, 0)) 
eee 

= *.[rd + fiY,Pd Qe •«.,*,#] (3-1) 

where antd,e € An>d,e- If w is in the interior of Sd,e,a, then A * , ^ = d. Since for 

any given signal 6 the mapping A.td,e '• * —* A„td,e is constant on the interior of Sd, 

rd+(3 See© Pd'Qi'a*,d,o will be the same for the states in the interior of Sd. Therefore, 

(3-1) can be rewritten as 

Hdv(*) = n • £di for TT G int(S?), 

30 



where £dl = rd + /3 X ^ e e Pd'Qi' Q*,d,e and is an N-dimensional column vector. Define 

Ad = {£dt : t = l ,2,.. . ,/}. It is possible that a 7r € II is on the boundaries of several 

regions. For example, let ir E Sf f) Sd. Since n is a state in Sf, a^td,e E A„td,e where 

7f E int(Sf) and atajj is tbe constant vector for the states in the interior of Sf. Then, 

by the continuity of HdV, Hdv(ir) = IT - £ D * . Similarly, Hdv(ir) = TT • . Hence, no more 

new vectors are generated from these states on the boundaries. If Ad is known, then 

the region Sf can be simply represented as Sf = {TT € n : TT • £dt > n • £ Vf € Ad) 

and Hdv(Tr) = max{7r • a : Va 6 Ad}-

It is possible to find the partition Sd for each d in D. A product partition can 

be formed from these partitions Sd; i.e., S = ^deD^d- Since there are only a finite 

number of cells in Sd for every d E D and a finite number of actions in £), 5 contains 

a finite number of cells. Denote the cells in 5 as 5 = {Bi, ..., Bn). For each action 

d, S is finer than Sd. Let adi = £*' if Bi is a subset of Sd, then Hdv(ir) = TT • adi for all 

TT E Bi where i = 1,2, . . . , n . Note that if both B , and Bj are subsets of SjJ,, then adl 

equals a r f j . 

To find Hv = maxdeDHdV, define the convex polyhedrons Gdi for t = 1,2, . . . , n 

and d E D by 

Gdi = {TT G Bi: TT • adi > TT • a 0 1 V a 6 D}. 

Note that Gd,- might be empty. If Gdi is not empty, then for n E Gdi the action d is 

optimal and 

Hv(ir) = ix • adi. 
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Therefore, ad* is a support of Hv and should be included in A H if Gdi is not empty. Let 

Ui = {Gdi '• d 6 D}. Then Z7; is a partition of Bi and U = \J?=1(Ui \ 0) is a partition 

of II. The sets in U can be rearranged as U = {R\, R2, • • •, Rm}- Define A H = {adl : 

d € A>''• — 1>2,...,n, and ^ 0}. Then, Hv{ix) = max{7r • a : a 6 AH } and we 

have finished the construction of the supports of Hv. 

It is worth mentioning that the number of supports in A H is usually less than the 

number of cells in U. This can be easily seen from the following example. Assume 

Ra = Gdi Q Bi and Ri, = Gdi Q Bi; moreover, assume both Bi and Bi are subsets of 

Sd. Then adt = adl = that is, the same vector corresponds to states in Ra and Rb-

Let R(ad,,AH) be the support region for the vector ad\ i.e., R(adt,An) = {n e II : 

TX • adl > 7r • a Va € AH], then Ra U Rb C R(adi,AH). 

II. One-Pass Algorithm 

In this section, we will study Sondik's one-pass algorithm. The one-pass algorithm 

will produce the same partition U and support set A H as the partition method discussed 

in Section I; however, the approaches of these two methods are different. 

In the previous section, U is a partition of the state space II. Now let us focus on 

a cell Gjt- in U. Recall that 

Gdi = { 7 r € B t : TT • adl > TT • adi VdtD}. 

That is, a state 7r is in f- if and only if the following two conditions are satisfied: 
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(i) TT • adi > TT • adi for all d E D; 

(ii) E 

The first condition implies that d is the optimal action for the states in G^ • and a d ' is 

a vector in An. Since 

Bi = f | {TT e n : V£ € 
<*er> 

the second condition is similar to finding TT E II satisfying the following set of constraints 

TT-adi>Tx-id V ^ e Ai and dE D. 

Sondik (1971) and Smallwood and Sondik (1973) discussed a simple method to 

represent these two conditions. Let 

An<d = {a : a - rd + /3 • ^ Pd • Qd
e • an,d,e where am,d,8 E An<d,e}• 

Then Hdv(ir) = TT • a for all a € Anj. Let TT be an arbitrary state in G j , , then 

ad* E Airj- Since TT • a is a scalar and the values TT • a are the same for all a E A*d, the 

optimal action(s) for the state TT are 

= {d : d = argmax{7r • a**'}}. 
dED 

Note that .D* might contain more than one action; however, d is in D*. Moreover, it 

is possible that A^ j contains more than one vector, but adt is in A^ j. First, assume 

that there is only one action, d, in and one vector, a , in A^ j . This assumption 

will be relaxed later. 
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Now consider the second condition. T h e constraint set to represent the second 

condition might not seem easy to set up since all the vectors in A& for all d G D 

have to be known even though only the region i is considered. Fortunately, a simple 

representation can be developed. For simplification, assume that there is only one vector 

in Ajc,d for each d G D. Th is assumption will be relaxed later. 

Let adi = rd + fi- £ , € e Pd Qj • a M i , . Since {aM,*} = A M i , for all TT G int(B;), 

then by definition of A„td,e, for all TT G Bi, 

T ( 7 r , d, 6) • a * ) d > * > r(7r, d, 0) • a V a G A , 

or *-Pd-Qi-an,d,e>K-Pd-Qde-<x V a G A. ( 3 - 2 ) 

Therefore, if IT is in then (3-2) holds for all 6 G 0 and de D. 

Conversely, if (3-2) holds for all 6 G 0 and d G D, then, for ft G 

*-Pd-Qi- a M j , >n-Pd-Qd- a M ) * V0 G 0 

where ft is an arbitrary state in II but not in Summing over all 6 G 0 , we obtain 

£ TT • P d • Qd • a * , , , , > ] [ > • P r f • • a * , , , , 

*€© «€© 
or TT . [rd + fi • 53 Pd . • o M f # ] > TT . [r<* + fi • ] T P r f • Qd • a M,,]. 

06© «6© 

Since rd + fi • See© Pd ' Q$ ' a*,d,e is a vector in A d , hence 

TT • adi > IT • £D V ^ G A j . 
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Therefore, TT 6 II is in £ , if and only if (3-2) holds for for all tf € 0 and d 6 D;\ 

that is, Bi = 0D£D{K € II : IT • Pd - Qd
6 • ( a M i * - a) > 0 V tf € 0 and a € A). The 

region Gj i can now be represented as 

Gdi = {TT € II: 7r • a d ' > 7r • a*** and TT - Pd • Qg • (a^^e - a) > 0 

V deD, 9 € 0, and a € A}. (3-3) 

If there is more than one vector in A^^^ for some d € D and tf G 0, then consider 

all possible selections of one vector, say atir,d,6, from each Antd,e. If there is only one 

optimal action for TT, then, by using (3-3), each selection : d G D, 9 e 0} can 

be used to determine a region. Note that Gj f is one of the generated regions, and all 

of these regions contain it. Moreover, the intersection of the interior of any two of these 

generated regions is empty. 

If Djt has i actions, i.e. there are i optimal actions corresponding to the state TT, 

then, for each selection of {<Xjt,d,6 '• d € D,9 £ 0}, by changing the optimal action, 

i regions can be determined. Therefore, if there are j ways of selecting {a^td,e}i then 

there are t • j regions and Gdi is one of the regions. 

Although this method may be inefficient for determining a particular region f , 

all these regions generated are also cells in U. Having discovered this property, Sondik 

f In fact, as discussed in Smallwood and Sondik (1973), since T(-,d, tf) 
preserves straight lines, only those a's whose support regions have common 
boundaries with the support region for a^d,8 have to be considered. 

35 



(1971) and Smallwood and Sondik (1973) developed a systematic method, the one-pass 

algorithm, to find all vectors in A H -

The one-pass algorithm uses an arbitrary state as an initial point. With this initial 

point, an optimal action (or actions) and an optimal vector (or vectors) for this point are 

found. Using (3-3), a region (or regions) can be obtained. All vertices of these generated 

region(s) are then determined. Similar to the procedure discussed above, each generated 

vertex is used to determine new regions and their corresponding vertices. Each vertex is 

used to determine regions once and the regions which generate this vertex need not be 

determined again. There are only a finite number of regions in U and each region only 

has a finite number of vertices. Hence, the algorithm will terminate in a finite number 

of iterations. Since the states in the interior of any region belong to exactly one region, 

the algorithm is called one-pass algorithm. 

As with the partition method, the one-pass algorithm has the major disadvantage 

of dividing the support regions into several subregions. As mentioned in Smallwood 

and Sondik (1973), most of the computational time in the one-pass algorithm is spent 

in solving linear programs to determine the vertices of the regions. The computational 

efficiency can be improved by not partitioning the support regions. This is the moti

vation for the development of the relaxed region algorithm which will be discussed in 

Section IV. 
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III. The Monahan Algorithm 

Monahan (1982) proposed an algorithm which he called Sondik's one-pass algo

rithm. Since the basic idea of this algorithm is different from the one-pass algorithm 

discussed above, we will consider his algorithm separately. 

As described in Section I, if TT € Sf, then Hdv(n) = TT • £di where £di = rd + f3 • 

YJeee Pd -Qg- an,d,e- Therefore, in order to find £ d t , we need to know a„td,e for each 6 

in 0 and a state TT in Sf. As discussed in Section II, to find the region Sf is not an easy 

task. Let us consider an alternative approach. Instead of finding aWjd,e for some TT, an 

arbitrary ag from A is chosen for each 6 G 0 and the vector a = rd + /3-J2eeQ Pd-Qg-ckg. 

is calculated. If the vectors {ag,6 G 0} are chosen so that ag = av<d,e, then a equals 

£ d t . Let Ad be the set of all possible <5's; i.e., 

Ad = {a: a = rd + /3-^2Pd -Qi-ae where ae G A}. 
ee© 

Therefore, £d% € Ad and Ad Q Ad. This implies that Ad might contain some unnecessary 

supports of HdV, and for all TT G II 

Hdv(n) = max{7r • a : a G Ad} 

= max{7r • a : a G Ad}. 

Note that, if there are K actions in D, L signals in 0, and M supports in A, then at 

most there are ML vectors in Ad and K • ML vectors in ( J i e D ^ -

Since AH Q UdeD̂ <*> then AH Q {JdeD-^d- A support a in UdeD^d *s * n ̂ H ̂  

and only if the support region of a is not empty. Therefore, to find whether if a vector 
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Oi in \Jdei)Ad is also in AH, the support region R(a,[jdGDAd) = {n € II : 7r • a > 

it • a foreach d € \JdeD-A-d) is determined. Note that R(a,\JdeDAd) is the same 

as R(a, AH) if a is a support in and empty otherwise. Hence, if R(a,[JdeDAd) 

is not empty, then a is a support m AH- A slight modification by Eagle(1984) which 

eliminate some unnecessary vectors by dominance arguments can determine the vectors 

in AH more efficiently. 

The Monahan algorithm is simple to use. However, when the number of actions, 

signals, or supports in A.is Jaige, the jmmber of^vectors in UdeD^rf * s a ^ s o l a r g e - m 

this case, it is time-consuming *to determine the supports in AH-

IV. Relaxed Region Algorithm 

As discussed in Sections I and II, the major disadvantage of the partition method 

and the one-pass algorithm is "that a support region for a support in AH is usually 

divided into several subregions. The aim of this section is to develop a relaxed region 

algorithm which can reduce the number of generated regions. In fact, the number of 

regions found by this relaxed region algorithm is exactly the same as the number of 

supports in AH-

Let i be an arbitrary state in 3L As discussed in Section II, A^j for each d £ D 

and Djr can be easily found."Now choose an arbitrary d € D*, and d E A . j . Then, by 

definition, the support region for d, J2(d, AH), is . 

.R(d, AH) = { T € TJ : 7r • d > 7r • a for each a G AH) 
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= {it G II : it • d > Tt • a for each a G Ad and d G D}. 

Therefore, a state it G II is in R(a, AH) if and only if it satisfies the following three sets 

of constraints: 

(i) Tt • d > it • ad for all ad G A ^ . d and d G D; 

(ii) Tt • d > Tt • Z* for all ^ G Ad; 

(iii) Tt • a > it • £d for all £d G Ad and d G D, but d ^ d. 

Since j4jr)(j for each d E D has already been found, the first set of constraints is easy to 

set up. B y the construction of A^j, a selection of a f r rf- g for all 0 in 0 is known such 

that d = r d + fi • J2eee Pd'Qe' an,d,e ^ o r s o m e special j e G A^ j g C A. As discussed 

in Section II, the second set of constraints can be rewritten as 

Tt-Pd •QJ-aitd-0>7t-Pd-QJ-a Va G A and 9 G 0. 

Therefore, the second set of constraints can also be set up.f 

In order to find the region i?(d, AH ) , the third set of constraints has to be set up 

too. However, this set of constraints is difficult to set up since it requires the methods 

discussed in the previous sections to find all vectors in Ad for each d G D. Since this set 

of constraints is difficult to set up, Sondik's method uses an ad G A*td for each d G D 

to substitute for d ; i.e., the third set of constraints is replaced by 

it - ad > it • £d for each £d G Ad, <xd G A * ^ , and d G D. 

t Similar to the footnote in Section II, only those a's G A whose correspond
ing support regions and the support region corresponding to a^. j e which have 
common boundaries should be considered. 
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Consequently, his method has to divide R(a, AH) into several smaller regions. 

Since the third set of constraints is so difficult to set up, an alternative method 

is proposed here. Consider a relaxed region which is defined by the first two sets of 

constraints but not the third set of constraints. By definition of R(a, AH), TT • a > TT • Q 

for all a G AH and TT € R{6L,AH)- Suppose that we have identified a particular set 

of AH and denoted it as AH- In order to fully utilize the available information, these 

supports in AH are used to determine a relaxed region for d; that is, the constraints 

TT • d > TT • a for each a E AH determine this relaxed region. A relaxed region for the 

support d, Ra, is defined as: 

Ra = {TT G II : TT • a > TT • ad V ad € AK<D and d G D; 

TT • PD • QJ • a^Q,e >TT-PDQd

ea Va G A; 

7 r - d > 7 T - a ' V a' € AH] (3-4). 

Since RQ does not include the third set of constraints which is used to define 

R(a, AH), it is clear that R(a, AH) Q RQ- Moreover, all states TT G Ra must satisfy the 

constraints TT • a > TT • a for each a G AH- Since TT • a > TT • a for all TT G int(R(a, A H ) ) 

where a ,d G AH, it can be shown that Ra f]'mt(R(a, AH)) = 0 where a G AH and 

int(i?(a, AH)) is the interior of the support region for support a. 

Using the relaxed regions discussed above, a relaxed region algorithm can be de

veloped to determine all supports in AH- This algorithm starts with an arbitrary state 

it G II and an empty set AH- The sets A^j for each d G D and D* are determined. The 
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supports in (Jdeo* a i e * ^ e n P u t * n t o H ' According to (3-4), a relaxed region for 

each support in [ J r f e D * *̂.<* * s obtained, and its vertices are found. As will be discussed 

later, these vertices are used to find the supports in A H and generate new relaxed re

gions. This procedure is repeated until no more new supports and relaxed regions are 

generated. 

The relaxed region algorithm relies on the vertices of the generated relaxed regions 

to find supports in AH - This process works as follows: Consider all vertices of a relaxed 

region RQ. Let TT' be an arbitrary vertex of RA. Similar to the procedure discussed 

before, an An>td for each d 6 D can be found. Since R(a,An) Q RA, can either be 

on the boundary of R(a,An) or not. If TT' is not on the boundary of R(a, AH), then d 

is not in A„>td for any d € D„>. Suppose d' € DT> and a' € An'td', then a' is a support 

in A H and a' ^ d. 

If TT' is on the boundary of R(a,An) and TT' is not a vertex of the state space II, 

then there is a support region other than R(6C,AH) such that TT' is on the common 

boundary of this region and of R(a,An)- This implies that d € U<feD > ^',d a n d there 

is at least one vector a' € U</GD / ^',d where a' ^ d and TT' G R(6L, AH) fl^(O'I4H)-

Whether TT' is on the boundary of R(a, AH) or not, a support a' 6 A H and a' ^ d 

can be found. If a relaxed region for the support, RA>, for a', is not found previously, 

then a relaxed region RA> can be found using (3-4). Similarly, the vertices of RQ> can 

be used to find supports in AH- If RA' has been found previously, then TT' has reached 

the boundary of R(a', AH) since RQ P)int(i?(a', AH)) = 0. A relaxed region for support 
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a' need not be found again. 

There is only a finite number of supports in A H , and each support in AH is used to 

generate one relaxed region only. Moreover, there are only a finite number of vertices 

for each relaxed region. The relaxed region algorithm will terminate in a finite number 

of iterations. 

As will be shown in Theorem 3.2, the vertices of the support regions will be included 

in the vertices of the generated support regions. Although these vertices might not be 

useful in a finite horizon algorithm, they can play an important role in computing the 

error bound for an infinite horizon problem. This problem will be discussed in the next 

chapter. 

The procedure for this algorithm is outlined below. 

Step 0: Initialize A H , A H , W, E, and a point search table to empty sets. Put an 

arbitrary state TX € II into the point search table with an unmarked attribute. 

Step 1: Proceed to Step 7 if there is no unmarked state in the point search table. 

Step 2: Choose an unmarked state from the point search table. Denote this state as 

it. Mark it. 

Step 3: Find A*,* for each d € D and D*. Let W = U<*eD* --^M' ^ ^ n e s u m °f ^ n e 

number of vectors in W and the number of zero elements in it is greater than 

or equal to JV, then put it into E. Put all vectors in W into AH • 

42 



Step 4: Return to Step 1 if W is empty. Otherwise, go to Step 5. 

Step 5: Choose a vector from W and denote it as d. Delete d from W. If d is not in 

A H , then put it in AH and go to Step 6. Else, go to Step 4. 

Step 6: Use (3-4) to define a relaxed region RQ. Determine all the vertices of RA. Put 

all vertices which do not exist in the point search table into the point search 

table with an unmarked attribute. Go to Step 4. 

Step 7: Stop. Hv(ix) = max{7r • a : a € AH) for all TX £ II, and E contains all the 

vertices of the support regions. 

The following two system states, three actions and two signals example illustrates 

the use of this algorithm. 

Example: 

P 1 = 
.8 .2' 
.5 .5 QL = 

'.8 
.6 

.2' 

.4 r 1 = 
' -4 ' 

5 

P 2 = 
.5 .5' 
.4 .6 Q2 = 

.9 

.4 
.1' 
.6 r 2 = 

-2 ' 
3 

P 3 = 
.6 A' 
.3 .7 Q3 = 

.9 

.2 
.1" 
.8 r 3 = 

- 1 ' 
1 

A = {a\a2: where a 1 = 
4' 
5 ' 

and a2 = 
3" 
9 

The discount factor /? is 1; that is, there is no discounting in reward. Choose 

7r = [0,1] as the initial state and put it into the point search table with an unmarked 

attribute. 
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Iteration 1: 

Pick [0,1] from the point search table. Mark it. Denote it as ft. Then, 

0.2 
11.0 } ; ^ , 2 = { £ 2 1 } = { 

4.0 
9.6 

}; A * , , = { { « } = { 
4.4 
8.2 

Since it • £ n = 11.0 > it • (21 > it • f 3 1 , d = 1 is the optimal action for ft, and f 1 1 = 

[0.2,11.0]T is a support in AH- Put £ n into A H and AH- Since ft has a zero element, 

put ft in E. 

The relaxed region, R\, for £ n can then be determined by the following set of 

constraints: 

(i) T T - e 1 1 > 7 T - e 2 1 

(ii) Since 0^,1,1 = a 2 , and 0:^1,2 = °2'•> then, 

T T - P 1 Q\ -[a2-a1} >0 

(iii) 7r G II. 

Now substitute the data into the constraints and rewrite these constraints as: 

(i) TT 0.2 
11.0 

TT 
0.2 
11.0 

> TT 

4.0 
9.6 
4.4 
8.2 

(ii) TT ' 
.8 .2' .8 0' 

•( 
3" '4' 

)>o (ii) TT ' 
.5 .5 0 .6 •( 9 5 )>o 

.8 .2 .2 0' 
•( 

3' •4' 
)>o TT • 

.5 .5 0 .4 •( 9 5 )>o 

(iii) TT\ + 7T2 = 1 and H i , 7 T 2 > 0 
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The vertices of Ri are [0,1] and [0.27,0.73]. Since [0,1] is already in the point search 

table, according to the procedure, only [0.27,0.73] has to be put into the point search 

table with an unmarked attribute. 

Iteration 2: 

There is only one unmarked state in the point search table, hence ft = [0.27,0.73]. 

Mark ft. Then, 

0.2 
11.0 }; ^ , 2 = U22} = { 

4.0 
9.6 }; ^ , 3 = {e32} = { 

4.4 
8.2 

Since ft • f 1 2 = ft • i22 = 8.09 > ft • £ 3 2 , both £ 1 2 and £ 2 2 are in W and ft should be in E. 

Since £ 1 2 is already in A H , only £ 2 2 is put into AH and AH- The relaxed region, R2, 

for £ 2 2 can be defined by the following constraints: 

(i) TT 

TT 

4.0 
9.6 
4.0 
9.6 

> TT 

> TT 

0.2 
11.0 
4.4 
8.2 

(ii) TT • 
.5 .5' .9 0' 

•( 
'3' 4" (ii) TT • .4 .6 0 .4 •( 9 5 

7T • 
.5 .5' .1 0' 

•( 
3' "4" 

7T • 
.4 .6 0 .6 •( 9 5 

) >o 

) > o 

(iii) 7Ti + 1T2 = 1 and TT\ , TT2 > 0 

The vertices of R2 are [0.27,0.73] and [0.78,0.22]. Since ]0.27,0.73] is already in the 

point search table, only [0.78,0.22] is put into the point search table with an unmarked 

attribute. 

Iteration 3: 

Now [0.78,0.22] is the only unmarked state in the point search table, denote it as 
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it. Mark it. Then, 

= it") = { 
0.2 
11.0 

4.0 
9.6 

}; A M = { £ 3 3 } = { 4.62 
7.91 

Since TT • £ 3 3 = 5.35 > it • (23 > it • £ 1 3 , only £ 3 3 is included in A H - Put £ 3 3 into A H 

and A H - There is only one support corresponding to it and none of the elements of 7r 

is zero, so it should not be put into E. 

Similar to .Ri and R2, the relaxed region, R3, for vector £ 3 3 can be determined. 

The vertices of .R3 are [0.73,0.27] and [1,0]. Since both vertices are not in the point 

search table, both are put into the point search table with unmarked attribute. 

Iteration 4: 

Pick [0.73,0.27] from the point search table. Denote it as it. Mark it. Then, 

0.2 
11.0 

}; A , , 2 = { £ 2 4 } = { 4.0 
9.6 }; A M = { £ 3 4 } = { 4.62 

7.91 

Since 7 r - £ 2 4 = 7 r - £ 3 4 = 5.50 > 7 r - £ 1 4 , then £ 2 4 and £ 3 4 are both supports in AH- However, 

since both supports are already in A H , no relaxed region has to be determined and no 

new vertex is generated. There are two optimal vectors for it, so it should be put into 

E. 

Iteration 5: 

Now, there is only one unmarked state, [1,0], in the point search table, denote it 

as it. Mark it. Then, 

A* , i = { £ 1 5 } = { 
0.36 
10.2 

}; A* , 2 = { £ 2 5 } = { 4.0 
9.6 }; A * , 3 = { £ 3 5 } = { 

4.62 
7.91 
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Since ft • f 3 5 = 4.62 > ft • £ 2 5 > it • £ 1 5 , then only £ 3 5 is a support in A H - However, £ 3 5 is 

equal to f 3 3 and is in A H already, no relaxed region or new vertex is generated. There 

is a zero element in ft, so ft should be in E. 

Iteration 6: 

Finally, since there is no unmarked state in the point search table, the process is 

now completed. There are three supports, [0.2,11.0]r, [4.0,9.6]T, and [4.62,7.91]T, in 

A H , and four vertices, [0,1], [0.27,0.73], [0.73,0.27], and [1,0], in E. • 

The number of relaxed regions generated from this example is three which is equal to 

the number of supports in A H - For comparison, Sondik's one-pass algorithm generated 

five regions as shown below: 

State Used Corresponding Vector Vertices Generated 

[0,1] [0.2,11.0]T [0,1], [0.27,0.73] 

[0.27,0.73] [4.0,9.6]T [0.27,0.73], [0.57,0.43] 

[0.57,0.43] [4.0,9.6]T [0.57,0.43], [0.73,0.27] 

[0.73,0.27] [4.62,7.91]T [0.73,0.27], [0.83,0.17] 

[0.83,0.17] [4.62,7.91]T [0.83,0.17], [1.0,0] 

As in the relaxed region algorithm, the vertices of each region in Sondik's algorithm 

have to be identified. Since finding all vertices of a region is the most time-consuming 

step in both algorithms, the relaxed region algorithm requires less computational time 

than the one-pass algorithm because fewer regions are generated. 
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Some of the more salient properties of the relaxed region algorithm are discussed 

below. 

T H E O R E M 3 . 1 : 

All supports in A*H are also in the support set An which is generated by the relaxed 

region algorithm. 

Proof: 

Let a be the support which is in A*H but not in the generated AH-

First assume that the supports whose support regions have common boundaries 

with the support region R(a, A*H) are found and put in AH- Without loss of generality, 

assume these supports be a 1 , a 2,..., ak where the superscripts stand for the order 

of generated sequence. Since RQk C R(ak,An) and .Ra* D int(R(a', A H ) ) = 0 for 

i = 1,2,..., k — 1, then at least one of the extreme points of RQk is in R(a, A*H). Let 

this point be it, then a € UdeD* {Ajrj}- Contradiction. 

If not all supports whose support regions have common boundaries with R(a, A*H) 

are found, then assume that J? be a set which contains R(a, A*H) and the support regions 

which can form a connected set with R(a,A*H) and its support is not found. Similar 

to the previous proof, let a1 ,a 2,... ,ak be a sequence of supports in AH and whose 

support regions have common boundaries with R. T h e n at least one of the extreme 

points of Rak is i n R, then this state can be used to find at least one of the supports 

which have not be found. Therefore, the procedure cannot terminate. Contradiction. II 
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T H E O R E M 3.2: 

The states in E are the vertices of the support regions for supports in AH- Con

versely, all vertices of the support regions for the supports in AH o.re in E. 

Proof: 

Let 7r be an arbitrary state in E. There is at least one support, d, in AH, such that 

Hv(it) = it - a. Without loss of generality, assume there are m supports in AH- Then 

consider the following linear programming problem: 

max 7r • d 

Subject to: 

(1) 7r • d > 7r • a for each a €: AH and d a 

(2) 7rfc > 0 = 1,2,:..,JV 

N 

(3) X> = 1 

Note that there are m+N constraints which define the support region for d. Since it £ E, 

if 7rjt > 0 for all k = 1,2,..., N, then there are at least N supports in AH corresponding 

to it including d. Set the slack variables of the N — 1 constraints corresponding to these 

supports other than d to zero, then, it can be seen that it is a basic feasible solution 

of the LP. Similarly, if some ft* = 0, then set the slack variables of these constraints 

irk > 0 to zero. Then it is also a basic feasible solution of the LP. Therefore, it is a 

vertex of the support region for d. This proves the first part of the theorem. 

Now assume it is a vertex of a support region R(a, AH) where d is an arbitrary 

support in AH- Then it is one of the basic feasible solutions of the LP shown above. If n 

elements of it are zero where n can be 0,1,... or N — 1, then at least N — n — 1 constraints 
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in (1) should be tight when 7r is substituted by ft. Denote the a's in the tight constraints, 

including d, as a 1 , a 2 , . . . ,aN~n where the superscripts indicate the order of vectors in 

the set A H - The vertex ft will be placed in this point search table no later than the 

vertices of the relaxed region for aN~n. Since ft • a 1 = ft • a 2 = • • • = ft • aN~n, when ft 

is chosen for finding new supports in AH, then {a 1 ,a 2 , . . . ,aN~n) C \ J D E D T A * , , * ; that 

is, ft is in E. I 

Before closing this section, let us compare the relaxed region algorithm and Sondik's 

one-pass algorithm. 

The biggest difference between the relaxed region algorithm and Sondik's algorithm 

is in their methods of defining the regions for a support in A H - AS mentioned before, 

Sondik's algorithm needs to unite several subregions in order to define a support region 

for a support in A H - The relaxed region algorithm will always find a region not smaller 

than its support region. This can be seen in the example presented in this section. There 

are three supports in AH- For the first support, [0.2,11.0]T, the relaxed region algorithm 

and one-pass algorithm define the same region as its support region. However, for the 

second support, [4.0,9.6]T, the relaxed region algorithm finds a larger region initially, 

but the one-pass algorithm requires unification of two regions to form the support 

region. For the third support, [4.62,7.91]R, the relaxed region is exactly the same as its 

support region; but, the one-pass algorithm again requires unification of two regions to 

form its support region. The total number of regions generated from one-pass algorithm 
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is usually more than the number of supports in AH', however, the number of regions 

produced in the relaxed region algorithm is always the same as the number of supports 

in A H . 

From a computational point of view, there is a difference in the number of con

straints used to define a region between these two algorithms. In Sondik's algorithm, the 

constraint set includes all constraints shown in (3-3); however, in the relaxed region al

gorithm only those constraints in (3-3) which concern the optimal action are considered. 

As a result, the one-pass algorithm usually has a much larger number of constraints 

than the relaxed region algorithm for defining a region. It was mentioned in Smallwood 

and Sondik(1973) that most of the computational time in Sondik's algorithm was spent 

in linear programming in order to determine the boundaries and vertices of the regions. 

Since there are fewer constraints in each constraint set and fewer regions to be solved, 

the relaxed region algorithm requires less computer memory and computational time 

than Sondik's algorithm does. 

It is not clear whether the relaxed region algorithm requires less computational time 

and computer memory than the Monahan algorithm. However, use of the vertices of the 

support regions for computing the error bound might be an important consideration for 

using the relaxed region algorithm as a policy improvement step in an infinite horizon 

problem. 
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V . Linear Support Algorithm 

In the previous section, a relaxed region algorithm was discussed. Although the 

constraint sets for determining a region in this algorithm are much simpler than those 

of the one-pass algorithm, they are still very complicated. The original motivation for 

the linear support algorithm discussed in this section is to develop an algorithm which 

does not require complicated constraint sets. 

Besides having simpler constraint sets, the linear support algorithm also has a 

special property which makes it more attractive. If a large number of supports in 

A H are required to characterize Hv, then computing Hv and A H is usually very time 

consuming regardless of which algorithm is used. In this case, an approximate solution 

for Hv might be tolerable if the maximal difference between the exact solution and 

the approximate solution is less than a given error. However, none of the algorithms 

discussed so far can be modified to find this kind of solution. The linear support 

algorithm described in this section can provide this kind of approximation; this is the 

most important feature of this algorithm. 

Let An = UdEDw{Antd} for IT £ U. Then An is a set of supports for Hv at TX. In 

order to have a finite set of supports which characterize Hv, only those supports in A N 

for all 7r € II are considered. Recall that, if it is an arbitrary state in n and a £ A * , 

then HV(TX) > TX • a for all TX £ II and Hv(it) = it • a. 

The basic idea of the linear support algorithm can be described as follow. Let A H 
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be a finite set of supports for Hv and define HV(TT) = max{7r • a : a £ AH) for all 

TT £ II. If 5t> is used to approximate the value function Hv, then the maximal error for 

this approximation is max,r€n{#i>(7r)_#t,(7r)}- If this error is not zero, then a "proper" 

support can be chosen and included in AH to arrive at a better approximation. This 

procedure is repeated until the approximation is within a tolerable range. If the exact 

solution is needed, then the procedure can be repeated until the exact function is found. 

The major problem is how to choose a "proper" support. 

The algorithm starts with finding the linear supports corresponding to each of the 

extreme points of the state space II. The generated supports are put into AH- In order 

to know how good this approximation is, a relaxed region for a support a in AH is 

defined as 

RQ = {TT £ II : TT • a > TT • a V a £ AH}-

Note that the support region R(a, AH) is a subset of Ra- If there are k supports 

currently in AH, then there will be k relaxed regions. All vertices of these relaxed 

regions are found.f If max a e ^^{7r • a} is used to approximate HV(TT) for all TT £ II, 

then the error of this approximation can be defined as a function g where g(Tr) = 

HV(TT) — maxQg^H {TT ' a} for all TT £ II. As shown in the following lemma and theorem, 

the maximal error of this approximation, i.e., the maximal value of g in II, will be at 

f In fact, only the vertices of k — 1 regions have to be found. The vertices of the fc-th 
region can be found in the vertices of other regions with the exception of the vertex 
which generates the support corresponding to this relaxed region. 
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one of the vertices of these relaxed regions. 

L E M M A 3.1: 

Let RA be the relaxed region for a support a G AH- The maximal value of g in RA 

will occur at one of the vertices of RA. 

Proof: 

For TT G RA, TT • a > 7r • a for all a G AH- Therefore, the function g in RA can 

be rewritten as </(7r) = HV{TC) — 7r • d for all TT G RA- Since Hv is a convex function 

and 7r • d is a linear function, g is a convex function in RA. Moreover, RQ is a convex 

polytope. The maximal value of a convex function in a convex polytope will be at one 

of the extreme points of the convex polytope. Therefore, the maximal value of g in RQ 

will be at one of the vertices of RA. I 

T H E O R E M 3.3: 

The maximal value of g in U will be at one of the vertices of these relaxed regions 

whose corresponding supports are in AH-

Proof: 

As shown in Lemma 3.1, the maximal value of g in RA is in one of the vertices of 

RQ. By definition of the relaxed region, the union of all relaxed regions is II. There

fore, the maximal value of g will be in one of these relaxed regions; then, by Lemma 

3.1, the maximal value of g in n will be at one of the vertices of these relaxed regions. H 

Assume that all vertices for the generated relaxed regions are in a set E. By 
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Theorem 3.3, the maximal error of this approximation will be at one of the vertices 

in E. Denote this vertex as ft. If g(it) is equal to zero, then there is no error for 

this approximation; i.e., this is an exact solution. If g(it) is greater than zero, the linear 

support(s) oi Hv at ft, A*, can be found. Note that the supports in A* are not currently 

in AH since Hv(it) = ft • a > max{ft • a : a G AH} where a G A*. Therefore, if one or 

more supports in A* axe included in AH, a better approximation of Hv can be found. 

If the supports in A* are included in AH, a new approximation for Hv and new 

relaxed regions for every support in AH can be determined. B y Theorem 3.3, the max

imal error of the new approximation is at one of the vertices of the newly generated 

relaxed regions for the supports currently in AH- However, some of these newly gen

erated relaxed regions are not the same as the relaxed regions before the supports in 

A^ are included in AH- In order to find the maximal error of the new approximation 

function, the vertices of all newly generated relaxed regions have to be determined again 

and this is time-consuming. Fortunately, as will be shown in the next lemma, all of the 

vertices of these relaxed regions are in the set E [j C where C is the set of all vertices 

for the relaxed region(s) for the support(s) in A*. This implies only those vertices in 

the relaxed region(s) for the support(s) in A* have to be identified. 

L E M M A 3.2: 

Let AH be a set of supports as described above and let the relaxed regions defined 

by the supports in AH be Ra = {?r G II : IT • a > IT • a where a G AH}- Let E be the 

set of all vertices for the relaxed regions corresponding to supports in AH- Assume it 

is a state in E and A * is the set of supports for Hv at it. Let the relaxed region for a 
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support a G A H U A N be R'a = {it G I I : it • a > it • a V a € i n U A*}. Let C be the 

set of all vertices for the relaxed regions R'a for a G A * and E' be the set of vertices for 

the relaxed regions R'a for a G A H U A * . Then E' C E U C. 

P r o o f : 

Let 7f be an arbitrary vertex of E'. li it is in R'Q for an a in A * , then it G C. 

If ft is not in R'a for any a E A N , then, since it G II C 9£N, TV equations are required 

to define it. If fr is not on the boundary of II, then there exists a set of supports 

{ a 1 , a2,..., aN} such that these JV equations can be represented as 

7r • aN = it • a' where i = 1,2,..., N — 1; 
N 

and ^ T f * = 1. 
Jt=i 

Note that a' G AH and a' ̂  A „ for i = 1,2,..., N. Therefore, it is a vertex of Ran; 

that is, it is in E. 

Similarly, if it is on the boundary of II, some of the constraints needed to define if 

are the boundary conditions. Following the same argument, it should be a vertex in E. 

Therefore E' CEUC. • 

In fact E U C might contain some states which are no longer a vertex of any 

relaxed region. These vertices can be determined by computing the error. Define 

g'(n) = Hv(ir) — m a x a e ^ H U i 4 # { 7 r • a} for all n G E.] If g{Tx) > g'(7r) and IT is not a 

t A vertex it G E which has been used to find new supports will have 
g^it) = 0. Therefore, it is not necessary to compute g(-) for this kind of vertex. 
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vertex of C, then TT is not a vertex of any relaxed region and can be deleted from the 

set E'. 

If C is included in E and the supports in A * are included in AH , then the maximal 

error for the new approximation function, by Lemma 3.2, will be at one of the states in 

E. Determine g(Tr) for all TT G E and find the maximal value. This maximal error will 

not be greater than that of the previous approximation. The support of Hv is found at 

the state which has the maximal error in the approximation. The procedure discussed 

above is repeated until no more new vertices and supports are .generated. Then the set 

of supports can be used to form Hv without any error. 

If a small error is tolerable, this procedure can be modified slightly to find an 

approximate solution. When the errors corresponding to the vertices of the region are 

less than the tolerable error, a more accurate approximation is not necessary for the 

states in this region. This can be restated more constructively: when the error of a 

vertex is less than the tolerable error, this vertex does not have to be considered. This 

modification can guarantee that the maximal error from the resulting approximation 

will not be more than the tolerable error. 

This algorithm can be summarized as follows: 

Step 0. Initialize AH, E^Esnd C to empty sets. Put all vertices of II, TT1,TT2, ...,TTN , 

into E and E. Find the supports and the value of Hv at TT for each TT € E, 

then put the newly generated supports into the set An.. Determine the relaxed 

regions for each support in AH and find all vertices of these relaxed regions. 
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Put these generated vertices into C If a vertex is in C but not in E, put it in 

E. 

Step 1. Find HV(TT) for each TT G C. Empty C. 

Step 2. Compute g(ir) = HV(TT) — maxa6/jH{rr-a} for 7r G E\E. Ug(ir) is less than the 

given tolerable error, then put IT into E. If all g^tr) are less than the tolerable 

error, go to Step 6; otherwise, pick a vertex with the largest value of g from E 

and denote this vertex as TT. 

Step 3. Empty the set A * . Find the linear support(s) for Hv at it and put these 

generated supports in A * . Put the supports in A* which are not already in 

A H into AH- Find the relaxed region for each support in AFind all vertices 

of these newly generated relaxed regions and put into C. If it is not a vertex 

in C, delete it from E; otherwise, put it into E. 

Step 4. Compute g'{ir) = HV(TT) — max o € / i , IT • a for all TT G E\E. If g'iir) < g(n) and 

TT £ C, then delete TT from E. 

Step 5. Put the vertices in C which are not in E into E. Go to Step 1. 

Step 6. Stop. The value o{maxae^H {ir-a} is an approximation of HV(TT) with maximal 

error less than the given tolerable error. The set E contains all the vertices of 

the support regions for the supports in AH-

Note that if the tolerable error in the above algorithm is zero, then an exact solution of 

Hv can be found, and A H is equal to AH-
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Unlike the one-pass algorithm and the relaxed region algorithm, only the support 

itself is important in the linear support algorithm. The information concerning which 

particular selection of an>d>e G A„,d,e forms a support in An is not used in this algorithm. 

Therefore, all supports in UdeD-A-d as defined in Monahan's algorithm can be generated. 

Hence, 

HV(TT) = max _ {TT • a} 

An = {d G UdeDAd • * • d > TT • a Va G Ud£DAd) 

and AH Q AH Q UdeDAd-

Example: (continued) 

The linear support algorithm is used to solve the same problem as shown in Section 

I V . 

The extreme points of n, [0,1] and [1,0], are put into E and E. The solution 

procedure starts with finding the linear supports for the extreme points of n. The 

linear support for state [0,1] is [0.2,11.0]r, and the linear support for state [1,0] is 

[4.62,7.91]T. Therefore, AH = {[0.2,11.0]r, [4.62,7.91]r}. Since there are only two 

supports in A H , there is only one relaxed region whose vertices have to be found. Let 

Ri be the relaxed region for the support [0.2,11.0]T; that is, R\ = {it G n : m +^2 = 

1 and O^-TTJ + II-TTJJ > 4.62-7^+7.91 -7r2}. The vertices of Rx are [0,1] and [0.41,0.59]. 

Since the vertex [0,1] is already in E, put [0.41,0.59] in E. The vertex [0.41,0.59] is 

the only one in E\E. Since <?([0.41,0.59]) = 0.74 > 0, [0.41,0.59] is used to find a new 

support. 
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T h e linear support for state [0.41,0.59] is [4.0,9.6]T. Since [4.0,9.6]T is a new 

support, it is put into A#. The vertices of the relaxed region for the support [4.0,9.6]T 

are [0.27,0.73] and [0.73,0.27]. Put these two vertices into C. Since [0.41,0.59] is not a 

vertex i n C, delete it from E. 

There are no vertices i n E\E. Put the vertices in C into E. Since these two vertices 

are not i n E, </([0.27,0.73]) and g([0.73,0.27]) must be computed. Both values are zero; 

therefore, they should be in E. Now, no vertex in E has function value g greater than 

0, and the process is completed. A l l supports in AH have been found. 

There are three supports, [0.2,11.0]T, [4.0,9.6]T, and [4.62, 7.91] T, in AH, and four 

states, [0,1], [0.27,0.73], [0.73,0.27], and [1,0], in E. 

Now assume that the tolerable error is 0.75. Since <z([0.41,0.59]) is 0.74, which is 

smaller than the tolerable error, [0.41.0.59] is a vertex in E and not used to find new 

support. There is no vertex in E\E. The process is completed. The result is two sup

ports, [0.2,11.0]r, and [4.62,7.91]T, in A H , and three vertices, [0,1], [0.41,0.59], and 

[1,0], in E with a maximal approximation error of less than 0.75. H 

Before we conclude this section, the following questions are raised: (1) Can this 

algorithm be terminated within a finite number of iterations? (2) Gan this algorithm 

find all supports i n A//? (3) Does E contain all vertices of the support regions, or, for an 

approximate solution, does E contain all vertices of the relaxed regions corresponding 

to the supports in A//? The second half of question 3 has been answered by Lemma 

3.2. The remaining questions are answered by the following theorem. 
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T H E O R E M 3.4: 

(1) The linear support algorithm will terminate in a finite number of iterations. 

If the tolerable error is set to be zero, then 

(2) All supports in AH can be found by the linear support algorithm. 

(S) E contains all vertices of the support regions. 

Proof: 

(1) When a vertex is chosen for finding a linear support, the linear support cannot 

be the same as any of the supports currently in AH- Since there is only a finite 

number of supports in AH , there is no more approximation error after all supports 

in AH are found. Therefore, no more relaxed regions and vertices are generated; 

that is, the algorithm will terminate after a finite number of iterations. 

(2) Assume that AH is not the same as AH and the process is terminated. Since AH 

is not the same as AH, this implies that there is at least one TT G II such that 

maxa£AH {TT •«} — m a x
a e A H in ' a) > 0- Then, by Theorem 3.3, the maximal error 

should occur at one of the vertices of the relaxed region. Therefore, the process 

should be continued and the algorithm cannot be terminated. Contradiction. 

(3) When all supports in AH are found, the relaxed region corresponding to the sup

ports in AH are the support regions. Then, by Lemma 3.2, the result follows. H 

Let us now compare the linear support algorithm with the relaxed region algorithm. 

The linear support algorithm can be viewed as a relaxed region algorithm, but it is not 

the same as the one discussed in Section IV. The linear support algorithm uses a simpler 
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constraint set to define a relaxed region than the relaxed region algorithm. The number 

of relaxed regions whose vertices have to be found is the same as the number of supports 

in AH for the relaxed region algorithm; in contrast, there is one relaxed region for which 

the vertices do not have to be found for the linear support algorithm. Both algorithms 

can generate all vertices for the support regions. However, the computational time 

for both algorithms should be very close; although we might expect the computational 

time for the linear support algorithm to be slightly less. As mentioned before, the most 

important difference between these two algorithms is that, unlike the relaxed region 

algorithm, the linear support algorithm can-serve as an approximation algorithm. 

Although the basic idea and motivation of the linear support algorithm is to make 

the relaxed region algorithm more efficient, it is similar to an algorithm discussed in 

Sondik (1971) provided that there are only two system states. Sondik claimed that his 

algorithm might not be as efficient as the one-pass algorithm if the number of system 

states or supports in A J J is large. However, the computational requirement for the 

linear support algorithm is about the same as or less than that for the relaxed region 

algorithm which has been shown to be more efficient than the one-pass algorithm. 

VI. Numerical Examples 

In this section, several «ets of/test data are used to compare the efficiency of the 

algorithms discussed in this chapter. The basis of comparison is CPU time. All algo

rithms were implemented as Fortran T7 programs which were run on the Amdahl 5860 
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with FPU at the University of British Columbia. 

The code for the one-pass algorithm is based on the original code provided by 

Dr. Sondik. The Monahan algorithm is coded with Eagle's modification; that is, if 

all elements of a generated support are less than or equal to another support, then 

this support is deleted before linear programming is used to determine the unnecessary 

supports. Since there are usually more generated supports than system states, the dual 

formulations are used for linear programming. The IMSL routines are used to solve these 

linear programming problems to determine the unnecessary supports. In the relaxed 

region algorithm and the linear support algorithm, all vertices of a relaxed region have 

to be found. The Mattheiss algorithm is used here for finding all vertices of the convex 

polytopes. This algorithm is discussed in Mattheiss (1973) and Mattheiss and Rubin 

(1980). 

The test data can be divided into two groups. The first group contains the data 

for the machine maintenance problem discussed in Smallwood and Sondik (1973). The 

second group contains several sets of randomly generated data for problems with three, 

four, and five system states. In order to minimize the effect of the terminal reward, all 

problems are solved for twenty stages and the terminal reward is set to be zero. For all 

problems, the discount factor fi is 1; i.e., there is no discounting in reward. 

1. Machine Maintenance Problem: 

The data for this test problem is in Smallwood and Sondik (1973). The CPU times 
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Relaxed Linear 
Number of Number of Sondik's Monahan's Region Support 

Periods Left supports Algorithm Algorithm Algorithm Algorithm 
1 1 28 0 2 0 
2 1 28 0 2 0 
3 1 28 0 2 0 
4 1 28 1 3 1 
5 1 28 0 2 1 
6 2 28 2 8 3 
7 3 45 6 14 6 
8 4 101 11 22 11 
9 4 103 15 22 12 

10 5 110 17 28 15 
11 6 104 27 39 20 
12 8 168 37 54 31 
13 10 232 57 73 49 
14 15 340 74 115 103 
15 13 270 146 113 111 
16 14 336 156 105 106 
17 9 333 123 59 74 
18 12 201 74 73 65 
19 10 203 99 69 67 
20 13 233 92 89 76 

Total 2947 937 894 751 
(unit : .001 CPU second) 

Table 3.1: CPU times of the machine maintenance problem 

and the number of supports at each period are recorded in Table 3.1. 

From Table 3.1, the CPU time required for every period using Sondik's one-pass 

algorithm is always longer than that for other algorithms. It is clear that Sondik's 

algorithm is the least efficient algorithm among these four algorithms. This result is 

expected as discussed before. 

As discussed in Section III, The Monahan algorithm generates K • ML supports 
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in each iteration where K is the number of actions, L is the number of signals, and 

M is the number of supports in the previous iteration. Although a large number of 

generated supports can be eliminated by simply comparing their elements, there might 

still be a large number of supports which require linear programming to determine 

whether or not it is a required support. Therefore, the CPU time required for an 

iteration of the Monahan algorithm is directly related to the number of supports in 

the previous iteration. In contrast, the relaxed region algorithm and the linear support 

algorithm need to identify the same number of relaxed regions as the number of required 

supports for an iteration. Therefore, the CPU time required for an iteration of the 

latter algorithms is directly related to the number of necessary supports in the current 

iteration. The results of this example confirm this phenomenon. For instance, there are 

only nine supports for the seventeenth iteration, but fourteen supports for the previous 

iteration. As a result, the Monahan algorithm spent about twice the CPU time to 

perform this iteration as compared with the relaxed region algorithm and the linear 

support algorithm. Similar results are also observed for the fifteenth and nineteenth 

iteration. On the other hand, ten supports are needed at the thirteenth iteration and 

fifteen supports at the fourteenth iteration. The Monahan algorithm only requires 

approximately | of CPU time used in the relaxed region algorithm and the linear 

support algorithm. 

The total CPU time requirement for the Monahan algorithm is 5% more than 

that for the relaxed region algorithm and 20% more than that for the linear support 

algorithm. It is clear that the relaxed region algorithm and the linear support algorithm 
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axe more efficient than the Monahan algorithm for this set of data. 

As discussed in Section V, the linear support algorithm can be used to find an 

approximate solution if a small error is tolerable in each iteration. For comparison 

purposes, the tolerable error is set to 0.1, 0.01, 0.005, and 0.001, respectively, in 4 case 

runs. The number of supports and CPU times required for different tolerable errors are 

shown in Table 3.2. It is easy to see that the CPU times required for these approximate 

solutions must be less than or equal to that for the linear support algorithm for finding an 

exact solution. However, the CPU time required to obtain these approximate solutions 

is surprisingly short. If the tolerable error is set to 0.1 for each iteration, it takes 19% of 

the CPU time required to find the exact solution by the Monahan method. It requires 

57%, 64%, and 77% of the CPU times for the Monahan algorithm if the tolerable errors 

for each iteration are 0.01, 0.005, and 0.001, respectively. The large reduction of CPU 

time required is due to fewer supports being generated from each iteration. 

At the end of the 20th Iteration 

CPU Times # of supports Maximal Error 

Tolerable Error = 0.1 0.179 4 0.12508 

Tolerable Error = 0.01 0.536 9 0.00863 

Tolerable Error = 0.005 0.604 10 0.00283 

Tolerable Error = 0.001 0.695 13 0 

Table 3.2: CPU times of the machine maintenance problem for the approximation method 

The error bound for these approximate solutions can also be calculated using the 
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following formula: 

1 -pn 

1-/3 
•T.E. if 0 < $ < 1; 

and n • T.E. if (3= 1 

where n is the number of iterations, T.E. is the tolerable error for each iteration, and 

/? is the discount factor. Therefore, the error bounds are 2.0, 0.2, 0.1, and 0.02 for the 

tolerable errors of 0.1, 0.01, 0.005, and 0.001, respectively. These error bounds might be 

too large when compared with the maximal value of 10.59079 at the end of the twentieth 

iteration or when compared with the difference of 3.4025 between one-period maximal 

and minimal reward. Since the exact solution is known, the maximal error at the end 

of the twentieth iteration can be computed. The maximal errors are 0.12508, 0.00863, 

0.00283, and 0 for the tolerable errors of 0.1, 0.01, 0.005, and 0.001, respectively. Except 

for the tolerable error of 0.1, the maximal errors are less than the tolerable error in one 

iteration. Even for a tolerable error of 0.1, the maximal error is just slightly more 

than the tolerable error in one iteration. The actual error is significantly smaller when 

compared with the maximal value at the end of the twentieth iteration or with the 

difference of one-period maximal and minimal reward. 

This example shows that if two or more supports have very similar slopes, then the 

approximation method does not recognize these as distinct supports and treats them as 

one support. In this way, the number of supports can be reduced at each iteration and, 

as a result, the CPU times required can also be reduced. Since supports with similar 

slopes are considered as one and the number of supports are reduced, numerical stability 
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improves. A problem which cannot be solved by other algorithms might be able to be 

solved by using this method to get an approximate solution. 

2. Randomly Generated Data: 

Several sets of data with 3, 4, and 5 system states are generated to compare the 

efficiency of the algorithms discussed in this chapter. A l l these data are listed in the 

Appendix 1. From the discussions in Sections II, IV, and V, and the previous numerical 

example, it is clear that Sondik's one-pass algorithm is not as efficient as the other 

algorithms. Therefore, the one-pass algorithm will not be considered further in this 

thesis. 

T h e first group of randomly generated data consists of five data sets with three 

states, three actions, and three signals. These data are listed in D3.1 to D3.5 in Ap

pendix 1. T h e number of supports and the maximal error at the end of the twentieth 

iteration, and the C P U times are shown in Tables 3.3 to 3.7. 
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CPU Times 

At the end of the 20th Iteration 

CPU Times # of supports Maximal Error 

Monahan's Algorithm 0.646 5 0 

Relaxed Region Algorithm 0.812 5 0 

Linear Support Algorithm T.E.= 0 0.473 5 0 

Linear Support Algorithm T.E.= 0.1 0.230 4 0.00279 

Linear Support Algorithm T.E.= 0.01 0.231 4 0.00279 

Linear Support Algorithm T.E.= 0.005 0.226 4 0.00279 

Linear Support Algorithm T.E.= 0.001 0.323 4 0.00015 

Table 3.3: Results of the data set D3.1 

CPU Times 

At the end of the 20th Iteration 

CPU Times # of supports Maximal Error 

Monahan's Algorithm 0.882 7 0 

Relaxed Region Algorithm 0.663 4 0 

Linear Support Algorithm T.E.= 0 0.496 7 0 

Linear Support Algorithm T.E.= 0.1 0.225 4 0.07402 

Linear Support Algorithm T.E.= 0.01 0.321 5 0.00475 

Linear Support Algorithm T.E.= 0.005 0.324 5 0.00475 

Linear Support Algorithm T.E.= 0.001 0.417 6 0.00018 

Table 3.4: Results of the data set D3.2 

69 



CPU Times 

A.t the end of the 20th Iteration 

CPU Times # of supports Maximal Error 

Monahan's Algorithm 1.528 7 0 

Relaxed Region Algorithm 0.926 5 0 

Linear Support Algorithm T.E.= 0 0.818 7 0 

Linear Support Algorithm T.E.= 0.1 0.260 4 0.13268 

Linear Support Algorithm T.E.= 0.01 0.497 6 0.01228 

Linear Support Algorithm T.E.= 0.005 0.481 6 0.01228 

Linear Support Algorithm T.E.= 0.001 0.662 7 0.00041 

Table 3.5: Results of the data set D3.3 

CPU Times 

At the end of the 20th Iteration 

CPU Times # of supports Maximal Error 

Monahan's Algorithm 4.626 10 0 

Relaxed Region Algorithm 1.012 11 0 

Linear Support Algorithm T.E.= 0 1.631 10 0 

Linear Support Algorithm T.E.= 0.1 0.158 3 0.13672 

Linear Support Algorithm T.E.= 0.01 0.478 5 0.02663 

Linear Support Algorithm T.E.= 0.005 0.535 5 0.00928 

Linear Support Algorithm T.E.= 0.001 1.068 7 0.00140 

Table 3.6: Results of the data set D3.4 
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CPU Times 

At the end of the 20th Iteration 

CPU Times # of supports Maximal Error 

Monahan's Algorithm 5.171 16 0 

Relaxed Region Algorithm 2.230 8 0 

Linear Support Algorithm T.E.= 0 2.348 15 0 

Linear Support Algorithm T.E.= 0.1 0.389 5 0.06367 

Linear Support Algorithm T.E.= 0.01 0.692 7 0.01219 

Linear Support Algorithm T.E.= 0.005 0.727 7 0.01051 

Linear Support Algorithm T.E.= 0.001 1.267 9 0.00093 

Table 3.7: Results of the data set D3.5 

From these five tables, it can be seen that in the case where only a small number 

of supports are needed to construct a value function, there is no significant difference 

in CPU times among these methods. However, when a larger number of supports 

are needed to form a value function, then the relaxed region algorithm and the linear 

support algorithm are much more efficient than the Monahan algorithm. The CPU 

times required for the relaxed region algorithm and the linear support algorithm are 

most often considerably less than a half of the CPU time required by the Monahan 

algorithm. 

The performance of the approximation method is still very impressive. The CPU 

times required for the approximation method are much less than those for the other 

methods to find the exact solution. The actual maximal error is about the same or less 

than the tolerable error in one iteration. Considering that the difference between one 

period maximal and minimal reward ranges from 6.1 to 9.7, or the maximal value at 
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the end of the twentieth iteration ranges from 119 to 175, the actual error is remarkably 

small. 

Now consider the second group of randomly generated data. This group of data 

includes five data sets with four states, four actions, and four signals. The data are 

listed in D4.1 to D4.5 in Appendix 1. The number of supports and maximal error at 

the end of the twentieth iteration, and the CPU times are shown in Table 3.8 to 3.12. 

CPU Times 

At the end of the 20th Iteration 

CPU Times # of supports Maximal Error 

Monahan's Algorithm 58.820 26 0 

Relaxed Region Algorithm 11.549 22 0 

Linear Support Algorithm T.E.= 0 19.861 25 0 

Linear Support Algorithm T.E.= 0.1 0.991 5 0.18222 

Linear Support Algorithm T.E.= 0.01 3.609 11 0.00922 

Linear Support Algorithm T.E.= 0.005 8.348 13 0.00394 

Linear Support Algorithm T.E.= 0.001 11.787 16 0.00156 

Table 3.8: Results of the data set D4.1 

These five sets of data require more than 20 supports to form their value functions 

at the end of the twentieth iteration. Since there are more supports in each iteration, 

the CPU times required to solve these problems are much longer than the data in the 

previous group. 

This group of data can be divided into.three subgroups. The first subgroup contains 
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CPU Times 

At the end of the 20th Iteration 

CPU Times # of supports Maximal Error 

Monahan's Algorithm 61.479 26 0 

Relaxed Region Algorithm 13.365 19 0 

Linear Support Algorithm T.E.= 0 23.493 25 0 

Linear Support Algorithm T.E.= 0.1 2.293 8 0.16191 

Linear Support Algorithm T.E.= 0.01 7.830 13 0.00905 

Linear Support Algorithm T.E.= 0.005 10.301 14 0.00308 

Linear Support Algorithm T.E.= 0.001 16.890 20 0.00038 

Table 3.9: Results of the data set D4.2 

data sets D4.1 to D4.3. The results for this subgroup are obtained by all methods. The 

Monahan algorithm requires more than twice the CPU time to solve these problems as 

the other two algorithms. The performance of the approximation method is excellent. 

For example, the approximate solutions with a tolerable error of 0.1 for every iteration 

only require 1.2% to 3.8% of the CPU times required for the Monahan algorithm to 

solve these problems. The maximal errors for these approximations are very small 

when compared with the maximal value at the end of the twentieth iteration or the 

difference between one period maximal and minimal reward. 

The second subgroup contains data set D4.4. Due to numerical problems, no result 

is generated by the relaxed region algorithm. For this set of data, the Monahan algo

rithm needs 762 CPU seconds to solve; however, the linear support algorithm requires 

only 172 CPU seconds to reach solution, which is only about 22.6% of the CPU time 
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CPU Times 

At the end of the 20th Iteration 

CPU Times # of supports Maximal Error 

Monahan's Algorithm 79.154 30 0 

Relaxed Region Algorithm 28.633 32 0 

Linear Support Algorithm T.E.= 0 36.327 30 0 

Linear Support Algorithm T.E.= 0.1 0.891 5 0.21916 

Linear Support Algorithm T.E.= 0.01 4.301 9 0.02196 

Linear Support Algorithm T.E.= 0.005 7.522 13 0.00813 

Linear Support Algorithm T.E.= 0.001 21.877 20 0.00049 

Table 3.10: Results of the data set D4.3 

required by the Monahan algorithm. The performance of the approximation method is 

even more impressive. With a tolerable error of 0.1 for each iteration, it only takes 2.152 

CPU seconds to reach solution and this is less than 0.3% of the CPU time required by 

the Monahan algorithm or 1.25% of the CPU time required by the linear support algo

rithm for finding the exact solution. The maximal error is only 0.01826. Consider the 

maximal value at the end of the twentieth iteration, 154.62, or the difference between 

one-period maximal and minimal reward, 6.8. This maximal error is so small that it 

can be ignored in this case. 

The third subgroup contains data set D4.5. In this set of data, all three algo

rithms for finding the exact solution generate more than the pre-set maximal number 

of supports, 50, at the sixth iteration. Therefore, none of the results are generated. 

Even though the exact solution is impossible or difficult to obtain, the approximation 
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At the end of the 20th Iteration 

CPU Times # of supports Maximal Error 

Monahan's Algorithm 762.173 32 0 

Relaxed Region Algorithm Result is not obtained 

Linear Support Algorithm T.E.= 0 172.282 33 0 

Linear Support Algorithm T.E.= 0.1 2.152 6 0.01826 

Linear Support Algorithm T.E.= 0.01 2.604 7 0.01297 

Linear Support Algorithm T.E.= 0.005 9.140 10 0.00546 

Linear Support Algorithm T.E.= 0.001 57.226 19 0.00214 

Table 3.11: Results of the data set D4.4 

method still works very well. It takes only 3.113 CPU seconds to solve this problem if 

the tolerable error for each iteration is set to 0.1 or 45.688 CPU seconds if the tolerable 

error is set to a relatively small number, 0.001. 

Since the exact solution is unknown, the exact maximal error cannot be computed. 

As discussed before, the error bound can be calculated as n • T.E.. However, from the 

previous examples, the error bound computed by this method is too big. A narrower 

error bound is desired. By the triangle inequality, 

IK -w||<IK-«|| + ||«-v|| 

where v* is the exact solution, t; is the approximate solution whose error bound is 

desired, and v is another approximate solution whose error bound is known. Since the 

approximate solution with a tolerable error of 0.001 at every iteration is the best solution 

obtained, this solution can be chosen as the reference solution, v, where \\v* —v\\ < 0.02. 
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Therefore, only ||t; — u|| has to be computed in order to know the error bound for the 

approximate solution v. The error bounds shown in Table 3.12 are computed by this 

method. These error bounds are still very small. It appears from this example that very 

good approximate solutions are obtained by the approximation method, particularly 

since these error bounds are probably considerably overestimated. 

C P U Times 

it the end of the 20th Iteration 

C P U Times # of supports Error bound 

Monahan's Algorithm over 50 supports at the 6th iteration 

Relaxed Region Algorithm over 50 supports at the 6th iteration 

Linear Support Algorithm T.E.= 0 over 50 supports at the 6th iteration 

Linear Support Algorithm T.E.= 0.1 3.113 8 0.11084 

Linear Support Algorithm T.E.= 0.01 9.892 14 0.03778 

Linear Support Algorithm T.E.= 0.005 32.259 20 0.02998 

Linear Support Algorithm T.E.= 0.001 45.688 24 0.02000 

Table 3.12: Results of the data set D4.5 

Since the generated supports are added one at a time into the support set at every 

iteration of the linear support algorithm, it is easy to develop an approximation method 

by limiting the maximal number of supports at each iteration. Table 3.13 shows the 

results of limiting the maximal number supports at each iteration to be 10, 15, and 20, 

respectively, for the data set D4.5. When approximate error for each iteration is known, 

the error bound can be computed as 

*=i 
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where e* is the maximal approximate error in the k-th iteration. By this method, the 

error bounds are 0.85161, 0.14986, and 0.07117, for maximal number of supports of 10, 

15, and 20, respectively. However, since a more accurate result is known, a narrower 

error bound can be obtained by the triangle inequality discussed above. These narrower 

error bounds are shown in Table 3.13. 

CPU Times 

At the end of the 20th Iteration 

CPU Times # of supports Error bound 

Maximal # of supports = 10 4.219 10 0.08210 

Maximal # of supports =15 14.479 15 0.03587 

Maximal # of supports = 20 35.283 20 0.02655 

Table 3.13: Results of data set D4.5 by using the approximation method which limits 
the maximal number of supports in every iteration 

When it is difficult to choose a priori tolerable error for every iteration, it can 

be very useful to limit the maximal number of supports at every iteration in the ap

proximation method. The selection of the maximal number of supports only depends 

on the number of actions and number of signals in the problem under consideration. 

When a reasonable number is chosen as the maximal number of supports, an approxi

mate solution can usually be obtained although the error bound cannot be determined 

beforehand. 

The last group of randomly generated data contains only one set of data, D5.1 in 

Appendix 1. This is a set of five states, "three actions and three signals. The results of 
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CPU Times 

it the end of the 20th Iteration 

CPU Times # of supports Error bound 

Monahan's Algorithm 73.139 41 0 

Relaxed Region Algorithm Result is not obtained 

Linear Support Algorithm T.E.= 0 Result is not obtained 

Linear Support Algorithm T.E.= 0.1 0.725 4 0.03799 

Linear Support Algorithm T.E.= 0.01 2.364 6 0.02653 

Linear Support Algorithm T.E.= 0.005 2.668 7 0.02343 

Linear Support Algorithm T.E.= 0.001 10.622 12 0.02000 

Table 3.14: Results of the data set D5.1 

this set of data are shown in Table 3.14. 

In this set of data, the relaxed region algorithm and the linear support algorithm 

cannot complete the calculations. This difficulty is caused by too many supports being 

generated and the procedure of finding all vertices of relaxed regions being not suffi

ciently stable under this situation. As shown in the previous examples as well as this 

example, the approximation method can reduce the number of supports generated. As 

a result, the instability of the procedure for finding all vertices of a relaxed region is 

resolved. All four levels of approximation can obtain the results within a relatively short 

time. 

By the triangle inequality, the error bounds are 0.03799, 0.02653, 0.02343, and 

0.02000 for tolerable errors of 0.1, 0.01, 0.005, and 0.001, respectively. This fact also 

shows that a large number of generated supports can be represented by a very small 
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number of supports and only a very small error occurs. For example, the 41 supports 

generated by the Monahan algorithm can be represented by only 4 supports and the 

maximal error occurred is less than 0.03799. This example shows that the approximation 

method can quickly find a stable and accurate approximation. 

VII. Conclusion 

In this chapter, four algorithms for solving finite horizon POMDP problems are 

discussed. 

Sondik's one-pass algorithm was the first systematic solution procedure for solving 

finite horizon POMDP problems. Since the unification of several regions is usually 

required to form a support region and all vertices of these region have to be found, it 

is clear that Sondik's method needs more CPU time to solve a problem than does the 

relaxed region algorithm or the linear support algorithm where the number of relaxed 

regions generated is the same as the number of supports. 

The Monahan algorithm is simple to code. When there is only a small number 

of generated supports at each iteration, the Monahan algorithm can be more efficient 

than the relaxed region algorithm or the linear support algorithm. However, when 

the number of generated supports increases, it is clear, as evidenced by the numerical 

examples shown in Section VI, that the relaxed region algorithm and the linear support 

algorithm need less CPU time to solve a problem than does the Monahan algorithm. 
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It is difficult to compare the efficiency of the relaxed region algorithm and the linear 

support algorithm. However, the linear support algorithm has two advantages over the 

relaxed region algorithm. The first advantage is that the constraint set which defines a 

relaxed region is easy to set up for the linear support algorithm. This constraint set also 

gives more stable results for finding all vertices of a relaxed region. More importantly, 

the linear support algorithm can be used as an approximation method. Both the relaxed 

region algorithm and the linear support algorithm can provide the vertices of all support 

regions. These vertices can be used to compute the maximal and minimal difference of 

two piecewise linear functions. 

The approximation method is the only method capable of solving a problem with a 

large number of supports. The approximation method reduces the number of generated 

supports with a small error. Reducing the number of supports not only significantly 

decreases the CPU time required for an iteration, but also decreases the possibility of 

numerical error caused by two or more very similar supports. As a result, a stable 

and relatively accurate solution can be obtained for more complex problems within 

reasonable CPU time. The approximation method can be performed by either setting 

the tolerable error for each iteration or limiting the number of supports generated for 

each iteration. 
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C H A P T E R 4 

A L G O R I T H M S F O R INFINITE HOR IZON P O M D P 

In the previous chapter, the algorithms for finite horizon POMDP problems were 

discussed. In this chapter, the algorithms for infinite horizon discounted POMDP prob

lems will be presented. 

The discount factor fi, in this chapter, is assumed to be 0 < fi < 1. The assumption 

about the discount factor is important since it guaranties that H and Hf, are contrac

tions. Moreover, under this assumption Sawaragi and Yoshikawa (1970) have shown 

that there is a stationary optimal policy for a POMDP. Hence, only stationary policies 

have to be considered. 

Although only stationary policies have to be considered in an infinite horizon dis

counted POMDP, there are uncountably many stationary policies available because the 

state space n is continuous. Therefore, the convergence of the algorithm within finite 

time is not guaranteed. Moreover, the limit of a piecewise linear function is not nec

essarily piecewise linear. Papadimitriou and Tsitsiklis (1987) pointed out that infinite 

horizon POMDP problems are not combinatorial problems and do not appear to be 

exactly solvable by finite algorithms. However, if only an e-optimal solution is required, 

these difficulties may be resolved. The theme of the chapter is to find an e-optimal 

policy. 

The main aim of this chapter is to develop a special class of algorithms for infinite 

horizon discounted POMDP, called iterative discretization procedures (IDP), which can 

81 



find an e-optimal solution efficiently. This chapter is organized in the following way. 

The existing algorithms will be discussed in Section I. Section II introduces some of 

the basic results used in this chapter. Applying the approximation method discussed 

in Chapter 3 to the successive approximation method to get an e-optimal solution is 

the topic of Section III. Section IV discusses the methods to find some useful values 

for termination criteria. The iterative discretization procedure is developed in Section 

V. Methods for accelerating convergence for the iterative discretization procedure are 

discussed in Section VI. The iterative discretization procedure with the approximation 

policy improvement is presented in Section VII. Section VIII provides the numerical 

comparisons of algorithms discussed in this chapter. 

I. Existing Algorithms for Infinite Horizon P O M D P 

The most straightforward approach for solving an infinite horizon POMDP problem 

is the standard successive approximation method. As discussed in Chapter 2, a POMDP 

problem has the contraction property. Following Theorem 1 of Denardo (1967), it is 

easy to show that an e-optimal solution can be obtained in a finite number of iterations. 

However, an iteration in the successive approximation method is similar to solving one 

stage of a finite horizon POMDP. As discussed in Chapter 3, to solve one stage of a 

finite horizon POMDP is not an easy task. Moreover, Papadimitriou and Tsitsiklis 

(1987) have shown that a finite horizon POMDP is a PSPACE-complete problem, so 

this approach is not efficient. 
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Sondik (1971,1978) introduced a policy iteration algorithm. This algorithm is based 

on the assumption of a finitely transient policy property. If a policy is finitely transient, 

then the state space II can be partitioned into a finite number of convex regions such 

that, for any given signal, all states in one region will map onto the same region under 

this policy. However, it is difficult to verify that a given policy is finitely transient. 

Hence, a transient policy is used to approximate the given policy. Since partitioning 

the state space is not easy, it is difficult to perform this algorithm. 

Recently, White and Scherer (1986) proposed a reward revision algorithm for an 

infinite horizon POMDP. Their algorithm is an accelerated successive approximation 

algorithm. In their algorithm, the problem is approximated by a completely observable, 

finite state MDP and the reward is revised between two standard policy improvement 

steps. They presented several examples with two states for which the speed of conver

gence is reduced by ten times compared with the standard successive approximation 

algorithm. 

Although not necessarily the most efficient method, discretizing the state space 

is widely used for solving continuous state space MDP. Bertsekas (1975) showed that 

as the discretization grids become finer and finer, the performance of the resulting 

suboptimal policies comes arbitrarily close to that of the optimal. Kakalik (1965) used 

this method to solve a POMDP. He divided the state space n into equal area grids and 

each grid was considered as a state. In this way, a finite number of states is obtained. 

The usual finite state MDP techniques can, then, be used to solve this problem. The 

resulting solutions for each state are used to represent the whole grid; that is, a piecewise 
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constant function is used to represent the value function. This method is easy to use and 

techniques developed for finite MDP can be applied. The disadvantage of this method 

is that a large number of grids might be required to get a reasonable approximation to 

an optimal solution. Indeed, this finite state MDP might become more difficult to solve 

than the original problem. 

There are some other methods that have received less attention. Satia and Lave 

(1973) developed an implicit enumeration algorithm for computing e-optimal solution 

to an finite horizon POMDP. Brumelle and Sawaki (1978) and Sawaki (1980) developed 

a modified policy iteration algorithm to solve an infinite horizon POMDP. 

There are some special algorithms suitable only for some special cases. Wang (1976, 

1977) considered a two action algorithm. Buckman and Miller (1979) reformulated the 

problem as a regenerative stopping problem. Algorithms of this nature are very efficient 

although they are not suitable for general infinite horizon POMDP problems. 

II. Preliminaries 

In this section, some results which will be used in later sections are developed. 

Let fi be a nonempty set in RN. Let B be the collection of real-valued bounded 

functions with domain fi. Define a metric || • || on B by ||u — u|| = s u p I g n \u(x) — v(x)\ 

where u,v G B, and let V be a subset of B which is complete in this metric. Let 

u,v G B, we say u = v if u(i) = v(x) for all x G fi and u < v if u(x) < v(x) for all 
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x £ SI. 

Recall that a mapping G : V —• V is called a contraction if for some fi strictly 

between 0 and 1, ||Gu — Gv\\ < fi\\u — v\\ Vu,t> £ V. Then by the principle of contraction 

mapping, there exists a unique fixed point, v*, in V such that Gv* = u* (El'sgol'c 1964). 

The following theorem is an extension of Theorem 12.2.1 in Ortega and Rheinboldt 

(1970) and can be proved by a simple modification of the their proof. 

T H E O R E M 4.1: 

Let G : V —• V be a contraction mapping, and assume Vo C V is a closed set such 

ihatGVo C V0. Let {uk} be any sequence of functions in VQ and set /z* = \\Guk — 1|, 

k = 0,1, Also let v° £ V0 and define vk+1 = Gvk for k = 0,1,.... Let v* be the 

unique fixed point of G in V (of course, v* £ Vo). Then, for k = 0,1,.. 

\\nk+1 -v*\\< [1/(1 - 0)] • [fi • \\uk+1 - uk\\ •+ /^]; (4 - 1) 
it 

- v*\\ < \\vk+i - + • fij + fik+1 • \\v° - u°\\, (4 - 2) 

and limfc—oo w* = v* if and only if l imt_ 0 0 fik = 0. 

The following definition is due to Van Nunen (1976). 

Definition: 

A mapping G from V to V is said to be fi-contracting (/i > 0) with contraction 

radius fi (0 < fi < 1) if for each u, v £ V, we have 

\\Gu-Gv\\<fi-\\u-v\\+fi. 
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L E M M A 4 . 1 : 

Let G : V —* V be a fi-contraction mapping. If u E V is such that VQ = {v £ V : 

\\v - Gu\\ < 7 } C V where 7 = [1/(1 - fi)] • [fi • \\Gu - u|| + fi], then GV0 C VQ. 

Proof: 

Let v € Vo, then 

\\Gv - Gu|| < fi • \\v - u\\ + fi 

<0.[||v-Gu|| + ||Gu-u||] + /z 

<fi"Y + fi-\\Gu-u\\ + fi 

= 7. II 

Now let us consider using a mapping G to approximate a contraction mapping G. 

The following theorem gives us a basic result for this approximation. 

T H E O R E M 4.2: 

Let G : V —* V be a contraction mapping on V with constant fi and G : V —* V be 

another mapping for which 

\\Gv - Gv\\ <fi Vu € V. 

Suppose for some v° € V, V0 = {v € V : ||t; - Gu°|| < 7} where 7 = [1/(1 - fi)] • 

[fi • ||Gt5° - t5°|| + 2fi]. Then the sequence {vk} defined by vk+1 = Gt;* for k = 0,1,... 

remains in Vo and 

\\vk+1 - v*\\ < 1)9/(1 - fi)] • ||6* + 1 - 0*11 + iikliX - fi) 

^ [ ^ / ( l - ^ l - H S ^ - ^ l l + M l - / ? ) ( 4 - 3 ) 
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where /x/t = \\Gvk — Gvk\\. Moreover, if {vk} is the sequence defined by = Gvk for 

k = 0 , 1 , . . . with v° = v°, then 

k 

\\vk+1 -«* || < \\vk-»-v*\\ + X>*"V> 
i=o 

k 
<\\vk+i-v*\\ + Y,Fii (4-4) 

i=o 

where v* is the unique fixed point of G in Vo-

Proof: 

The proof is divided into four parts. 

(i) G is a 2/x-contraction mapping. 

Let u , v € V , then 

||Gu - Gv\\ < ||Gu - + ||Gv - Gu|| + ||Gu - Gu|| 

<H + H + 0-\\u-v\\ 

= P-\\u-v\\+2p. 

Therefore, by Lemma 4.1, GV0 C Vo. 

(ii) Now we show GVb C Vo-

Let v 6 Vo, then Gv € V and 

||Gi> - Gu°|| < \\Gv - Gv°\\ + \\Gv° - Gv°\\ 

<0.\\v-iP\\+r 

<0-(\\v-dv°\\ + \\Gvo-vo\\) + p 

< p . 7 + 0.\\Gvo-v°\\ + n 
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<fi.7 + fi.\\Gv0-v°\\ + 2fi 

</?. 7 + ( l - / ? ) - 7 

= 7 

Therefore, Gv € Vo for all v E V0. 

(iii) Now we will show that if v° — u°, then Gv° € V0. 

\\Gv° - Gv°\\ = \\Gv° - Gv°\\ < n < 7. Therefore, Gv° € V0. 

(iv) Then by Theorem 4.1 and fij < fi for j = 0,1,..., fc, the inequalities (4-3) and 

(4-4) are established. I 

As k approaches infinity, ||u*+1 — v*\\ approaches 0, and 53jLo 0 J * P approaches 

fi/(l — fi). Then, by Theorem 4.2, the maximal distance between the approximation 

function vk and the fixed point v* will be less than or equal to/x/(l — fl + e for all k 

sufficiently large. 

When k equals 0, the inequalities (4 — 3) and (4 — 4) can be rewritten as 

II*1 - t>*|| < [0/(1 - fl] • «°||+ [*>/(!-0)] 

< 10/(1-fl]- ||* «°|| +1^/(1-fl] (4-5) 

and HC 1 — w*H < Hw1 — v* || + / i o 

Since v° = v° and by the contraction mapping assumption, 

II*1 - v*\\ <[0/(l- fl] • h 1 -v°\\+fio 

^ ^ / ( l - f l l - l ^ - i J l + A * (4-6) 
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where/xo = \\Gv° - Gv°\\. 

In practice, the current approximation to the solution can be viewed as v1 and the 

previous approximation to the solution can be viewed as v°. In this case, (4 — 5) and 

(4 — 6) are more useful than (4 — 3) and (4 — 4) since the error bound for the current 

approximation to the solution can be computed. This error bound can be computed 

and used to determine whether or not the e-optimality has been achieved. 

Note that /x0 < /x. Therefore, if /x0 is readily available, which is the case in later 

sections, then the first inequalities in (4-5) and (4-6) should be used. Moreover, if 

Wv1 — v°\\ = Wv1 — i;01| + /x, then (4-5) and (4-6) give the same error bound. However, 

if ||v1 — v°|| < Wv1 — v°\\ + /x, then (4-6) gives a tighter bound than (4-5). Therefore, 

if Uu1 — £>°|| can be computed easily and Wv1 — v°\\ < Wv1 — v°\\ + /x, then (4-6) is 

recommended. 

III. Approximate Value Iteration 

In the previous section, some very general results were discussed. In the next few 

sections, we will apply these results to the setting discussed in Chapter 2; that is, we will 

focus on the domain II, the set of bounded real-valued functions V, and the contraction 

operator H. 

In Chapter 2, the operator H was introduced. The computation of Hv for a given v 

was the major topic of Chapter 3. In the successive approximation method for an infinite 
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horizon problem, the operator H is repeatedly applied to find the optimal solution, i.e., 

l im Hnv = v*. 

As discussed and shown in the numerical examples in Chapter 3, when a large 

number of supports are needed to form Hv, it is usually time-consuming to compute 

Hv. The linear support algorithm discussed in the last chapter can be used to find an 

approximation solution. In contrast to the operator H, we will refer to this approxima

tion operator as H in this chapter.f The approximate value Hv might require much less 

time to obtain. We might expect that it may be easier to repeatedly apply operator H 

to find an e-optimal solution for an infinite horizon P O M D P problem. We will discuss 

this issue in this section. 

Theorem 4.2 gives a theoretical background for the use of an approximate evaluation 

for each step of policy improvement. Formula (4-4) shows that \\vk+1 —v*\\ < \\vk+1 — 

v*\\ + £*=o/?*"•' • H where vi = Hv'-1 and v{ = Hv'-1 for t = 1 , 2 , . . . , * + 1 and 

v° = v°. When k approaches infinity, vk+1 approaches v*. Therefore, for any given e > 0, 

— < jfqj + e k for k large enough. This implies that the maximal distance 

between v* and the result from repeatedly applying approximate policy improvement 

steps wil l not be more than e if fi is chosen to be less than (1— /?)-(e — e. Of course, in 

practice, fi is chosen to be much less than (1 — /?) • e in order to ensure faster convergence. 

In practice, inequalities similar to (4-5) and (4-6) are usually used to determine the 

f Although H is dependent on a selected error e, the dependency was suppressed 

from the notation for simplification. 
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error bound for the current solution. Let vk be the current solution. If \\Hvk — vk\\ < 

(i - g V c-,u o r | | ^ 5 f c _ t , * j | < ( l - ^ ) j e - ^ O w h e r e /x* = \\Hvk -Hvk\\, then, following from 

the inequalities (4-5) and (4-6), \\Hvk — v*\\ < e. That is, Hvk is an e-optimal value 

function. 

Successive approximations with extrapolation usually give a better bound for the 

optimal value function and also reduce the number of iterations required to get an e-

optimal value function. T he following proposition is a generalization of Proposition 4 

on page 237, in Bertsekas (1976). The proof of the following proposition is also a direct 

generalization of the proof in Bertsekas. 

PROPOS IT ION 4.1: 

Let v € V. Then for all n € U and k = 1,2,..., 

(Hkv)(x) + y^J < ( . f f l + 1 t > ) ( 7 r ) + ^Y^J-

<(Hk^v)(ir) + 

< ( H k
v ) ( « ) + ^ 

where Lk = in f {(Hkv)(ir) - (H*-lv)(ir)} 
iren 

and Uk = sup { ( t f*u ) ( 7 r ) - (H^v)^)}. 
jrgn 

Therefore, if (((3 - (Uk - Lk))/(1 

e-optimal value function. 

- 0)) < e, then Hkv + ((/? • Lk)/(1 - 0)) is an 

91 



The above proposition and proof are restricted to the operations with an exact 

evaluation of H in the policy improvement step. The following proposition extends this 

result to the approximate policy improvement operator, H. 

P R O P O S I T I O N 4.2: 

Assume Hv > Hv and \\Hv — Hv\\ < \i for all v € V. Then, for all n £ TI and 

1 - / 9 

< Hkv(n) + 1 - / 9 

where 

Uk = sup{(Hkv)(n) - (H^v)^)} 
Tren 

Uk = sup{(Hkv)(n) - (Hkv)(7r)}. 
wen 

Proof: 
Since Lk = infw e n{(B r kv)(v) - (JJ*"1 « ) (* ) } , then 

Hk~l v{*) + Lk < Hkv(Tr) VTT e n ( 4 - 7 ) 

Apply H to both sides, using the monotonicity of H, 

HHk-lv{x) + P-Lk< HHkv{ir), 
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and, by assumption, Hkv(ir) < HHk 1V(TT), and (4-7), 

Hk~lv{Tx) + Lk + j3 • Lk < HHkv{ix). 

T h i s process can be repeated. First apply H and then apply (4-7) to obtain 

Hk~lv{*) + Lk + r3-Lk + 0 2 - L k < Hkv(rr) + 0-Lk + P2 • Lk < H2Hkv{ix). 

After m steps this results in the inequality 

m 

Hkv(ir) + ^0i-Lk< HmHkv(n). 

Taking the limit as m - t oo we obtain 

Hkv(n)+^<v*(ir), 

which is the first inequality of this proposition. 

Now consider the second inequality. The proof is similar to the first one. Since 

Uk = s u P i r € n { ( £ * z , ) ( 7 r ) - (Hk-*v)(*)}, 

Hk-1v(ir) + Uk>Hkv. ( 4 - 8 ) 

A p p l y H to both sides, using the monotonicity of H, 

HHk~lv{ij) + P-Uk> HHkv(ir). 

B y assumption, HHk~1v(ir) < Hkv(ir) + fik, and ( 4 - 8 ) , 

Hkv + fik + p-Uk >HHk. 
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T h i s process can be repeated. First apply H and then apply (4-8) to obtain 

Hkv + nk + fi • fik + fi • Uk + fi2 • UK > H2Hk. 

After m steps this results in the inequality 
m m —1 

Hkv(n) + ] T fi{ • Uk + Y, fi' • t*k > HmHkv(*). 
1=1 t=0 

Taking the limit as m —• co we obtain 

which is the second inequality. I 

C o r o l l a r y : 

If P(Uk~L*)+fi* < t } then, Hkv + is an e-optimal value function. 

P r o o f : 

The difference between Hkv(ir) + and Hkv(ir) + ^'U
1

k^k is less than or equal 

to M'-Wi" for all TT € II. Therefore, if ̂ < u - - ^ ) + ^ < c, then Hkv + fjf* is an 

c-optimal value function. I 

Unlike Proposition 4.1, the bound need not decrease monotonically in Proposition 

4.2; that is, Hkv(s) + (fi • Lk)/(1 - fi) < Hk+1v(s) + (fi-Lk+i)/(l - fi) and Hk+1v(s) + 

(fi • Uk+i + - fi)< Hkv(s) + (fi-Uk + / * * ) / ( ! ~ fi) m i g h t not be true because 

the operator H is not monotone. 

Since \\Hkv — Hk~1\\ = max{|Ljt|, \Uk\}, if both Lk and Uk are same sign, the 

slightly modified bound provided by Proposition 4.2 will always be smaller or equal to 
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the bound provided by Theorem 4.2. The quantities Lk and UK for the examples will 

be shown in Section VIII to be both positive, thus the bound provided by Proposition 

4.2 is better than that of Theorem 4.2. 

IV. Methods for Calculating Lk, UKI and //* 

In order to obtain an e-optimal solution, Lk, UK, and fik have to be calculated. 

Since these values are also required in later sections for computing the error bound, 

method for calculating these values will be reviewed and discussed. 

For ease of discussion, let us consider a more general setting. Assume u and v are 

two paces linear continuous convex functions with a polytope domain II. Assume the 

supports of u are in the set A = {a^,a2,..., ak) and the supports of v are in the set 

H = £2, • • • 1 £1} where k and / are finite integers. Then, for all TT G II, 

U(TT) = max{7r • a : a G A} 

and V(TT) = max{7r • £ : £ € E}. 

Let 

L = inf {U(TT) 
*-en 

V(IT)} 

U = sup{u(7r) 
iren 

and fj. = \\u — v 

It is easy to show that \i — max{|L|, |17|}. 
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Now consider the function u — v. Since both u and v are paces linear functions, 

« — v is a paces linear and continuous function; however, u — v need not be a convex 

function. For aj E A and f j 6 E, define Rij as 

Ri,j = {* € II : (it - U ) ( T T ) = TT • O i — 7r • £ , } • 

Let the set R = {Rij : where a,- 6 A and £, G E}. As in Chapter 3, let the support 

regions for u and v be 

Ri = {TT £ II : TT • a, > 7r • a where .a,, a G A} 

and i?j; = { T T G TI : IT • fj > TT • £ where ^,-,£ G E}. 

Therefore, the region of i2t)j is the intersection of the support regions Ri and Rj. Since 

both Ri and .Ry are convex, Rij is a convex set. Note that Rij can be an empty set. 

Since u — v is a linear function on the polytope Rij, the maximal and the minimal 

values of u — v in Rij axe on the extreme points of Rij. Moreover, since both u and v 

have only a finite number of supports, there is a finite number of regions in R. Then L, 

U, and fi are on the extreme points of some regions in R. 

White and Scherer (1986) developed a linear programming method to implement 

the idea discussed above calculating L, U, and fi. Let Lij and Uij be the minimum 

and maximum values of u — v in Rij, respectively. To compute Lij, the following linear 

programming problem can be solved 

min TT • oti — TT • £j 

subject to 
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TT • a, > TT • a for all a 6 A 

* • ij > * • f for all £ € E 

IT € n 

The objective function value is the value of Lij. Analogously, Uij is the objective value 

of the maximization of the above linear programming. Having calculated Lij and Uij 

for each region in i2, let L = rmn{Lij} and U = max{Uij}. 

Using such a procedure to determine L and U requires solving 2 • k • I linear pro

gramming problems. This procedure can represent a significant computational effort, 

particularly if k and / are large numbers. White and Scherer (1986) suggested an ap

proximation method to find L and U. Let E = {e\, e2,..., e m } be a preselected set 

such that if et- € E then ej € II. Consequently, 

L = min{u(e) — v(e) : e £ E} 

U = max{tx(e) — v(e) : e € E} 

and fi = max{|L|,\U\}. 

Clearly, L < L, U > U, and fi > fi; White and Scherer did not discuss how to choose 

the set E to obtain a good approximation. 

A s discussed earlier, L and U will occur at some of the extreme points of some 

regions in R. If all of the extreme points of the regions in R are contained in the set 

E, then L = L and U = U. However, it is as difficult to find the extreme points of the 

regions in R as it is to solve all linear programming problems to find L and U. 
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Let R = {Ri : a, € A) and R = {£> : € E}. Also let ER, E R , and ER be the 

extreme points of the regions in R, R and R, respectively. Clearly, ER\JER C ER. More 

importantly, in our application, if u and v are found by the relaxed region algorithm or 

the linear support algorithm, then ER and ER are readily available for use. Since no 

extra effort is required to find ER and E R , it is recommended that E = ER U ER be 

used to find L, U and p. to approximate L, U, and fi. In particular for the two system 

states problem, it can be shown that ER U ER = ER and the approximation is exact. 

Once the approximate termination criterion based on L, U, and fi is satisfied, the exact 

values of L, U, and n can be computed to verify c-optimality. 

V . A n I t e r a t i v e D i s c r e t i z a t i o n P r o c e d u r e f o r P O M D P 

In Chapter 3 an approximation H was defined which could be used to apply approx

imate value iteration to compute an e-optimal value function as discussed in Section III. 

Although the time required for each iteration of approximate value iteration is much 

less than under regular successive approximation, for each iteration all vertices of the 

relaxed regions still have to be found. T h e procedure of finding all vertices is not an 

easy task. It is desirable to have a method which can approximate Hv for a given v 

which does not involve finding all vertices and which reduces the number of iterations 

of applying operator H. In this section, we present a method which accomplishes these 

purposes. 

Let vn be a piecewise linear and convex value function with An = {a1,.. • ,<»*} as 
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its support set. For any given n and An, Hvn(n) and the corresponding support can be 

calculated by the formula (2 - 5) and (2-6); that is 

= max n-{rd + P-Y,pd'Qdea*>w} (4 " 9) 

where ar,d<e G {a € An : TT • Pd • Qd
e • a > TT • Pd • Q\ • d for all d € A„}. For the 

example shown in Chapter 3, let us choose IT as [0.5,0.5] and fi to be 1, then Hvn(ir) 

can be obtained as 

ffv„([0.5,0.5]) = max [0.5,0.5] • { 

' - 4 ' 
5 + 0.8 0.2' 

0.5 0.5 
-2 ' 
3 + 0.5 0.5' 

0.4 0.6 
- 1 ' 
1 + 0.6 0.4' 

0.3 0.7 

0.8 
0 

0.9 
0 

0.9 
0 

0 

0.6 

0 

0.4 

0 
0.2 

• 

'3' 
9 + 0.2 

0 
0 ' 

0.4 • 

'3" 
9 

• 

'3' 
9 + 0.1 

0 
0 ' 

0.6 
3' 
9 

3' 
9 + 0.1 

0 
0 ' 

0.8 • 

'3' 
9 

= max [0.5,0.5] 

= [0.5,0.5] 

= 6.8 

{ 
0.2 4.0 4.4 
11 9.6 8.2 } 

4.0 
9.6 

The support of Hvn at this state is [4.0,9.6]T, and the second action is the best for this 

state. Similarly, if the chosen state is [0,1], the support of Hvn at this state is [0.2, l l ] r . 

If the chosen state is [1,0], then the support of Hvn at this state is [4.62,7.91]T. Notice 

that these three supports form the supports of Hvn on II. This implies that if some 

particular states are chosen and formula (4 — 9) is applied, then it is not necessary to 

perform the complicated procedures discussed in Chapter 3 in order to calculate the 

supports and values of Hvn. However, the major difficulty with this method is how to 

select the chosen states such that all necessary supports for Hvn can be found. 
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Although it is difficult to select a set of states such that all necessary supports can 

be found by only using these states in the set, a good selection of states can generate 

a good approximation of Hvn. A means of selecting states for this purpose will be 

discussed later in this section. For now, assume that there is a method for choosing a 

finite number of states such that a good approximation of Hvn can be generated. Since 

the computational time spent in finding supports by using a finite number of states 

is much less than that for an iteration of if as discussed in Chapter 3 provided not 

too many states are chosen, it might be worthwhile to approximate Hvn using a finite 

number of states to generate supports. A method to solve POMDP can be developed 

using such an approximation for Hvn. 

For a given value function vn < v* and the corresponding set of supports A n , first 

select a set of k states. Then compute the value of Hv and the corresponding linear 

supports for these states. The convex piecewise linear function generated by these sup

ports is used to approximate Hvn. Note that this approximated value might be less 

than vn for some TT £ II. In order to obtain Hvn > u n , we should also include the sup

ports in An when generating the approximation. Although the approximated solution 

might not be exactly the same as the result from an iteration of policy improvement 

(i.e., the H operator), the approximated value function might be reasonably good and 

the CPU time required for computing this approximation will be much less than that 

for an iteration of the H operation. 

Improvements for these chosen states due to this approximation can be obtained 
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through computing the difference between the current values and the original values 

of these states. If the maximal improvement among these chosen states is "large," 

then the same set of states and their approximate values can be used to find a new 

approximate value function, since a relatively "large" improvement can be expected for 

the new approximation. This procedure can be repeated. However, as expected, the 

improvements for these chosen states become smaller and smaller. It is not a good idea 

to continue the process using the same set of states if the maximal improvement is very 

small. Instead, an iteration of policy improvement should be performed. Since only a 

finite number of states are considered between two iterations of policy improvement, 

we refer to this period as a discrete phase. This is the basic concept for an iterative 

discretization procedure. 

Now let us discuss the iterative discretization procedure more precisely. 

Set Anto — An, and Vn,o{*) = maxi{n • a' : a' 6 An,o}- Denote the set of discrete 

states generated at period n as 3 I n = {TT1 ,TT2,• - • ,nk^}. Also let 6 be an arbitrary 

policy used in the discrete phase. Define tfn.m+i^') ^ 

see 

and Wn.m+iCTr*) as 

Vn)m+l(^) = mBx { ^ ^ . 1 ( 7 r , ) } 
•(**) 

= maxK - [rd + fi • £ Pd • Q% • a / ( i r , t , f M . , „ , ] } 

= V - d , ' ( 7 l , m + l) ( 4 - 1 1 ) 
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where G I I n , and a / ( l r t ) < , i M n m ) G {a G An,m : TT«1 • Pd • Qj • a > TT' • Pd • Qd
e • 

a for all or € A n > m } . Setting 

i n , m + a = An,m U { U ^ d ' ^ m + 1)}, 

vn,m+i can be defined as 

v„ > m + i(7r) = max{7r • a' : a'' € i „ , m + i } VTT € n . (4 - 12) 

Note that, since An,m Q -A n ,m+i> it follows that we have vn,m+i > w „ j m . Moreover, if 

a*,aJ G A n ) m + i where i ^ j i , and all the elements of a' are greater than or equal to 

those of a J , then a J can be deleted from A „ i m + 1 without changing the results of the 

whole process. 

T h e iterative discretization procedure can be summarized as follows: 

Step 0. Choose v'0 such that Hv'0 > v'0. Set n = 0. 

Step 1. Compute vn+i = Hv'n. 

Step 2. Calculate 17„ +i = s u p w € n { u n + 1 ( 7 r ) -vn(ir)} and L„+i = inf„ €n{u n+i ( 7 r ) -

vn(n)} using the techniques described in Section IV. If Un+i — Ln+i < j ^ e , 

go to Step 8; otherwise, go to Step 3. 

Step 3. Set n = n + 1, m = 0, vnt0 = v n , An<0 = A „ , and select fc(n) disjoint states 

from II, put them into the set n n . Also select a small number ei(n) as a 

reference for stopping this discrete phase, and an integer number I(n) as the 

largest number of iterations to be performed in this discrete phase. 
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Step 4. Compute v„ ) T O+i(7r) for IT € II„. Then find An,m+i-

Step 5. Proceed to Step 7 if max f f 6 n n (u n i m + i(7r) — u „ , m ( 7 r ) ) < ex(n) or m > I(n); 

otherwise, go to Step 6. 

Step 6. Set m = m + 1, then go to 4. 

Step 7. Set v'n = u„ , m +i , A'n = A n ) f n + i . Go to 1. 

Step 8. Set t>n+i(7r) = t>n+i(7r) + j^j ' ^n+i- Then \\v* — vn+i\\ < e and an e-optimal 

value function has been found by Proposition 1. 

Note that the steps 3 to 7 are the procedures in a discrete phase. If steps 4 to 7 

are omitted and step 3 is changed to "Set n = n + 1, v'n = vn, and A'n = An, go to 1", 

then this becomes an ordinary successive approximation procedure. 

Example: 

One iteration of the discrete phase of iterative discretization procedure is illustrated 

using the problem posed in Sondik (1978) with the following data: 

P 1 = 

P 2 = 

0.8 0.2 
0.5 0.5 

0.5 0.5 
0.4 0.6 Q2 = 

0.8 0.2 
0.6 0.4 

0.9 0.1 
0.4 0.6 

r = 

r 2 = 

-4 
4 

0 
3 

Assume that is 0.9 and A i ) 0 = A\ = {a1, a2} where a1 = [-4,4]^ and a2 = [0,3]r. 

For ease of calculation, two states, TT1 = [0,1] and TT2 = [1,0] are selected. Then 

*i,o("'1) = 4 and UI,O(TT2) = 0. Let us also choose ei(l) = 1.25 as the stopping criterion 
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for the discrete phase. By (4-10) and (4-11), 

« 1 , 1 ( [0 , l ] ) = max{[0,l] 

= [0,1] 

= 5.35 

-3.46 
5.35 ; [o, i] 

-3.46 
5.35 

1.44 
4.80 

and 

t;lil([l,0]) = max{[l,0] 

= [1,0] 

= 1.44. 

-3.46 
5.35 ;[i,o] 

1.44 
4.80 

1.44 
4.80 

Therefore, a 1 ( l , 1) = -3.46 
5.35 

and d 2 ( l , l ) = 1.44 
4.80 

. The set Altl is Alt0\J{a1(l, 1)}U 

{a2(l,l)}. However, since Q1(1,1) > a1 and a 2 ( l , l ) > a 2 , a 1 and a2 can be deleted 

from A\t\ to reduce unnecessary calculations and the solution will still be the same. 

Hence, A\y\ can be set as { 

lated by t ; l j l (7r) = max{7r • 

-3.46 
5.35 

-3.46 
5.35 

,7T • 

1.44 
4.80 

1.44 
4.80 

}. The value of t>i,i(7r) can then be calcu-

Since both v\t\(i:1) — f i . o ^ 1 ) and U i , i ( 7 r 2 ) — VJ,O(TI"2) are greater than ei(l), 7T1 and 

7r2 are used to perform the second iteration. Similarly, by (4-10) and (4-11), 

» 1 | 2 ( [0 , l ] ) = max{[0,l] 

= [0,1] 

= 6.81 

-2.10 
6.81 ; [0,1] 

2.74 
6.11 

-2.10 
6.81 

and 

t;1>2([l,0]) = max{[l,0] -2.10 
6.80 

;[i,o] 
2.81 
6.11 

104 



= [i,o] 

= 2.81. 

2.81 
6.11 

Therefore, d*(l,2) = -2.10 
6.81 

2.81 
6.11 

Since d ^ l ^ ) > d ^ l , ! ) and and d 2(l,2) = 

a 2(l,2) > d 2 ( l , l ) , Aif2 can be set as d 1(l,2) Ud 2 (l ,2) . Moreover, since Vi^i*1) — 

vijin1) and vi,2(n2) — vi,\{n2) are greater than ci(l), the discrete phase should not 

be terminated. The states 7T 1 and TT2 are used to do the third iteration. Similarly, by 

(4-10) and (4-11), 

uIi3([0, l]) = max{[0,l] 

= [0,1] 

= 8.01 

-0.88 
8.01 ; [o, i] 

-0.88 
8.01 

3.98 
7.36 } 

and 

vli3([l,0]) = max{[l,0] 

= [1,0] 

= 4.01. 

-0.88 
8.01 ;[i,o] 

4.01 
7.31 

Therefore, a 1 (1,3) = -0.88 
8.01 

4.01 
7.31 

4.01 
7.31 

. Since a 1 (1,3) > a1 {1,2) and and d 2(l,3) = 

d 2(l,3) > d 2(l,2), A i ( 3 can be set as d : ( l , 3) U Q2(1, 3). Since both VI^TT1) - VI^TT1) 

and th,3(7r2) — ui,2(7 1'2) A R E equal to 1.20 which is smaller than the preselected stopping 

Then do one iteration of the H operator to check whether or not an e-optimal solution 

has been obtained. D 
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Observe that, i n this example, £1,1 = Hv\ and v\Y2 = Hv~iti — H2v\. Therefore, 

only is an approximation of H3V\. Compared with the methods discussed in Chapter 

3, the computation shown in this example to obtain v\t\ and viT2 is much simpler than 

the computation of any method discussed in Chapter 3 for obtaining the values of Hv\ 

and H2V2. This is the major benefit of using the iterative discretization procedure. 

Let us now develop some properties of the iterative discretization procedure. 

L E M M A 4.2: 

Ifvn - Hv'n_x > v'n_x, then 

Vn < Vn,m < Vn,m+1 < v'„ < Hv'n < V* 

whereO < m < J(n) — 1, and I(n) is the number of iterations in the n-th discrete phase. 

Proof: 

vn < Vn,m < Vn,m+i < v'n follows immediately from the definitions of vn,m and v'n. 

Let 7r be an arbitrary state in II and m' = min{m > 1 : t>n>m(7r) = ̂ nC71")}- Then 

Hv'n(x) = max { 7 r . rd + fi £ Pr(0|7r , d) • v'H{T(*\d, 6))} 

> max{7 r • rd + fi V Pr(0|,7r, d) (T(*\d,e))} 

> u„,m'(7r) 

where the first inequality follows from the monotonicity property, and the second in

equality follows from the definition of vn,m'(?r) and the convexity of un,m'-
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We still have to prove Hv'n < v*. Since Hv'n_x > t > ( , _ i , we have v'n_1 < v*. By the 

monotonicity property, Hv^^ < v*. Then by the monotonicity property and induction, 

Hvn,m < u*. The result follows. | 

T H E O R E M 4.3: 

Ifvb ^ HV'Q and the sequence of {vn} is defined as in the above algorithm, then the 

sequence {vn} converges to v* monotonically. 

Proof: 

The monotonicity follows directly from Lemma 4.2. We only have to prove the 

convergence. 

Let Hn = H o i f " - 1 . Then by induction, the monotone property and Lemma 4.2 

Hnv0 <vn<v'n< v*. 

Since if is a contraction mapping, Hnvo converges to v* when n —• oo. Therefore, the 

sequence {vn} converges to v*. | 

The initial choice of the v'0 < Hv'Q is the key to getting the monotonic conver

gence for this algorithm. There are several methods which can be used to satisfy 

this requirement. One possible method involves starting the algorithm by choosing 

v'0(n) = j3^{max,feD[mini<i<jv rrf(i)]} W € II. This implies that the set AQ contains 

only one vector and each element of this vector is y^{max<igD[mini<,</v rd(i)]}. 

P R O P O S I T I O N 4.3: 
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If vo(n) = j 3 ^ { m a x d e D [ m i n i < t < N r < i(0]} ^ € n> ̂ e n -^ uo > v0. 

Proof: 

Let d = argmaxd € D{niini<i<7v[r''(i)]} and r 0 = Yz^ { m a X(i e D[mini<i<Ar r d ( i ) ) } . 

T h e n r r f ( t ) > (1 — 8) • r 0 for 1 < i < N. Let TT be an arbitrary state in II, then 

HV0(TT) = max{7r T ^ + ^ V . P r ( % , d) • v0(T(Tr\d, 0))} 
eee 

= max{7r • r r f + 8 • rn) d e c 1 J 

> TT • + 0 • r 0 

> TT • (1 - /?)r 0 • 1 + 0 r o 

= r0 

= VO(TT) m 

Note that during the process, the conditions Hv'n > v'n and u n > m + i > are 

always satisfied. If accurate results are desired, the previous results v'n and u n > m can be 

used as the new initial values. 

Before closing this section, let us discuss the selection of states for a discrete phase. 

The ideal situation is to choose states that can generate supports which cannot be 

generated by other chosen states. In this case, supports of Hvn at these chosen states 

completely determine Hvn. However, it may be impossible to find such ideal states. 

The question then becomes how best to use the currently available information. The 

best estimation of Hvn will be the current value u„, especially when vn is very close to 

the optimal solution v*. If the operation H is performed by the relaxed region algorithm 

or the linear support algorithm discussed in Chapter 3, then all the extreme points of 
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the support regions are readily available. These extreme points may be a good start 

for quickly finding the supports. However, when a large number of such states are 

generated, a large amount of time may be required to perform an iteration in a discrete 

phase. The simple average of the vertices of each support region, which will be inside 

this region, may be an ideal alternative since it can reflect the information we now have, 

and thereby significantly reduce the number of chosen states. 

Unlike the methods discussed in the previous chapter, the information generated 

in the current iteration in a discrete phase is not used in the current iteration. More 

precisely, the computation to generate tin,™^*) is independent of the computation to 

generate vnim{iT3) for all the selected discrete states TT' and it3. These computations de

pend only on the information generated from the previous iteration, i.e., Anim-i. The 

advantages of this independence of information can be exploited by developing programs 

for parallel processing computers, thereby reducing the computational time required. 

The standard successive approximation algorithm and policy iteration algorithm devel

oped by Sondik (1978) are not suitable for parallel processing. The feasibility of using 

parallel processing computers is an advantage peculiar to the iterative discretization 

procedure. 

VI. Accelerating the Convergence 

As mentioned in the previous section, only a few discrete states are used in an itera

tion in a discrete phase. Since discrete MDP is well developed, some of the techniques for 
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discrete MDP might, at least in some sense, be applied to POMDP to accelerate the con

vergence. In this section, three such methods are discussed. They are the Gauss-Seidel 

method, the action elimination procedure, and the modified policy iteration algorithm. 

1. Gauss-Seidel Method: 

Denardo (1982) discussed three methods for accelerating successive approximation 

for a discrete MDP. The second method, the Gauss-Seidel method, used the latest 

information in successive approximations. This method may be described as: 

vn(i) = max{rd(t) + 0 £ P * • w-O) + fi £ K ' «n-i(j)}-

That is, all the values available before computing the vn(i) can be used for computing 

vn(i). A similar approach, easily applied to the POMDP setting, is discussed below. 

Define Anm = An<m and Ax
nm = Antm U(Uj<,-tV(n, m + 1)) for i > 1; that is, all of 

the supports including those just generated in the current iteration are in Ax
nm. When 

the value of the state 7r* is computed, all supports in A%
nm are used as candidates for 

«/(*•• ,rf,Mj,,m)- T h e n w e h a v e 

= 7r*'-d ,'(n,m + l) (4-13) 

where o/(«« A M i m ) = {a € Anm : *•Pd • Qj • a > ** • Pd • Qd
e • a Vd € A^}. 
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The algorithm is similar to the one discussed in Section V, with the exception that 

in step 4, the new un,m+i(' r) discussed in this section is used. 

Example: 

Let us illustrate the Gauss-Seidel method for the problem in the previous section. 

First compute t>i,i([0,1]) using equation (4-13): 

wlfi([0, l]) = max{[0,l] 

= [0,1] 

= 5.35. 

-3.46 
5.35 ; [o, i] 

1.44 
4.80 } 

-3.46 
5.35 

The result of i>i,i([0,1]) is the same as the example shown in the previous section. 

Now the generated support -3.46 
5.35 

is put into the support set -AX(1,0). Therefore, 

the support set A1(1,0) contains three supports: "-4" 0" , and -3.46" 
4 3 

, and 
5.35 Since, 

-3.46" -4 ' 
5.35 > 4 _ , the support -4 

4 
can be deleted from A 1 (1,0). Now by using 

.A1 (1,0) and equation (4-13), Uj^QljO]) can be computed as 

v1,1([l,0]) = max{[l,0] 

= [1,0] 

= 1.83 

-3.46 
5.35 

;[i,o] 1.83 
5.26 

1.83 
5.26 

Note that the value «i ) i([l ,0]) generated here is larger than the one generated in the 

example of the previous section. 

Since both t>i,i([0,1]) — u"i,o([0,1]) and i>i,i([l,0]) — Uiio([l,0]) are greater than el5 

the second iteration is performed. The support set A\,\ is { 
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by equation (4-13), 

tJ1|2([0,l]) = max{[0,l] 

= [0,1] 

= 7.19 

-1.74 
7.19 ; [0,1] 

3.19 
6.50 

-1.74 
7.19 

Include the support -1.74 
7.19 

with the support set Ai , i and then compute i>ii2([l, 0]): 

»1,2([l,0]) = max{[l,0] 

= [1,0] 

= 3.55. 

-1.74 
7.19 ;[i,o] 

3.55 
7.00 

3.55 
7.00 

Since both u1)2([0,1]) — ui,i([0,1]) and Si)2([l,0]) — ̂ ^([1,0]) are greater than ej, 

the procedure should not be terminated. Follow the same procedure to perform the 

third and fourth iterations. The support set after the fourth iteration is A 1 > 4 = 

{ 
' 1.16 ' '6.35' 
10.09 9.78 

}. Now perform the fifth iteration: 

vll5([0,l]) = max{[0,l] 

= [0,1]' 

= 11.26 

2.33 
11.26 ; [0,1] 

2.33 
11.26 

Add 2.33 
11.26 

into Ai,4 and then compute viis([l,0]): 

t>1>5([l,0]) = max{[l,0] 

= [1,0] 

= 7.48 

2.33 
11.26 ;[i,o] 

7.48 
10.90 

7.26 
10.57 

7.48 
10.90 
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Now both fi)5([0,l]) — ri(4([0,l]) and u1(5([l,0]) — ui)4([l,0]) are less than ei, the pro

cedure should be terminated. H 

Comparing the results of this example and the one in the previous section, we 

observe that the values of the selected states grow much faster in the Gauss-Seidel 

method, implying that this method may reduce the computational time. 

T H E O R E M 4.4 

If Hv'0 > V'Q and vn,m is computed from the Gauss-Seidel method, then 

Vn < Vn,l < Vn,m < v'„ < Hv'n. 

The sequence {vn} converges to v* monotonically. 

Proof: 

The proof is similar to the proof of Lemma 4.2 and Theorem 4.3 and it follows by 

induction and the monotone property. H 

Although we cannot prove Gauss-Seidel method will accelerate the convergence 

rate, numerical examples have shown that this method can reduce computation time. 

2. Action Elimination: 

To obtain results from (4-11), all available actions have to be used in the com

putations. If a large number of actions are available, this procedure may take a long 
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time to compute. However, if one or more actions can be identified as suboptimal for a 

chosen state, these actions need not be considered for this particular state. This idea is 

difficult to apply to a continuous state space since there are uncountably many states; 

however, the action elimination procedure can be applied in the iterative discretization 

procedure since only finitely many states are considered. 

Let Un = sup i r €n (^ u n-i ( 7 r ) ~ v ' n - i ( * ) ) and L n = i n f ^ n - < - i W ) -

As shown in Theorem 1, Hvn-\ > vn-\. Therefore, Un and Ln are both nonnegative 

real numbers. The following proposition is similar to the one used by Puterman and 

Shin (1982). 

P R O P O S I T I O N 4.4: 

Let vUii be the value calculated from (4-11) and (4~12). Then 

<V*(TT) 

T H E O R E M 4.5 

Suppose in the n-th iteration that 

TT • r* + 8 £ Pr(0|7r, o)t>»(T0r|o, 6)) + ^ • Un • 1 < + ^ZJ ' L n l 

where vn<i is calculated from (4~11) and (4~12), then the action a is non optimal in 

state TT. 
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Proof: 

The proof directly follows from the Proposition 4.4 and MacQueen's lemma (1967). 

n 
The action elimination procedure discussed above is only useful in the standard 

procedure presented in Section III. To apply the action elimination procedure directly 

to the Gauss-Seidel method, a result similar to Theorem 4.5 is needed. However, this 

task is difficult to achieve since computing the improvement on vnt\ is not easy. To 

overcome this difficulty, the procedure may be appropriately modified. 

Formulas (4-11) and (4-12) can be used to compute vn,\. Following Theorem 4.5, 

the suboptimal actions for n € n n can be identified. The Gauss-Seidel method is 

then applied to compute i>n,m+i, taking into account only those actions which are not 

suboptimal. 

As discussed in Section IV, to compute Un and Ln is not an easy task. Therefore, 

the action elimination method is useful only when there are a large number of actions. 

When the problem involves only very few actions, the action elimination method may 

not be able to reduce the computational time because the exact computation has to be 

performed. 
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3. Modified Policy Iteration: 

The modified policy iteration algorithm for discrete MDP has been discussed in 

Puterman and Shin(197B). The same idea can be directly applied to this setting. 

The procedure for computing Hvn can be viewed as the policy improvement proce

dure in the modified policy iteration algorithm. The (discrete phase can then be viewed 

as the value iteration in the modified policy iteration.. That is, when we derive the set 

of discrete states in IIn, we also choose an action corresponding to each state in n„. 

Then tJ^^+iC71-) instead of un)Tn_(.i(x) is computed each iteration in this discrete phase. 

Since only one action is chosen for each selected state, it can save computational effort 

when a large number of actions are available. Ifor «ach selected state, the action chosen 

can be the one used in Hv. Therefore, no extra effort is needed far selecting the actions. 

Example: 

Consider the example discussed in Section V and under the the section on the 

Gauss-Seidel method. If action 1 is taken for the state {0,1], and action 2 for the 

state [1,0], all the results are the same in both examples; however, when vn<m([0,1]) is 

computed only the first action has to be calculated, and when i;.n ) m([l, 0]) is computed 

only the second action has to be calculated. ]No maximization has to be performed. Since 

only one action is considered for each state, the computational time can be drastically 

reduced- II 

T H E O R E M 4.6 
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Let vn,m be computed from the modified policy iteration algorithm, then 

V n < U n , l < Vn,m < v'n < Hv'n 

and the sequence vn converges to v* monotonically. 

Proof: 

The proof follows from induction and the monotone property. I 

We remark that in modified policy iteration algorithm, only one action in each state 

7r 6 n„ is considered. There is a trade-off between finding a potentially better solution 

and reducing computational time. When the policy for those states in f l n is close to 

the policy chosen by the standard iterative discretization procedure discussed in the 

previous section, the value function derived from the modified policy iteration might 

be close to or equal to the one obtained from the standard method which performs 

optimization at every iteration. In this case, the modified policy iteration algorithm 

can reduce the time in finding values for different actions. On the other hand, if the 

actions used for states in n n are suboptimal, then the result obtained from a modified 

iteration might be far away from the solution obtained from the standard method, and 

might need more iterations for convergence. 

The Gauss-Seidel method is unsuitable for parallel processing, whereas the action 

elimination method and modified policy iteration are suitable, making it advantageous 

to use the latter two methods. 
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V I I . T h e I t e r a t i v e D i s c r e t i z a t i o n P r o c e d u r e w i t h 

A p p r o x i m a t e P o l i c y I m p r o v e m e n t 

T h e iterative discretization procedure described in Sections V and V I used an 

exact policy improvement step (i.e., the operator H). As discussed in Chapter 3, the 

evaluation of H might be difficult when there are a large number of supports forming 

the value function. A natural question arises: can the approximation of the operator 

i f , H i n Section III, be used in the iterative discretization procedure? In this section, 

this problem and a solution will be presented. 

In Sections V and VI, the convergence of the iterative discretization procedures was 

demonstrated using the monotonicity property of the operator H. Unfortunately, the 

monotonicity property does not hold for the operator H. In fact, when H is substituted 

for H i n the algorithm, vn will not necessarily converge to v*. However, we will show 

that vn is e-optimal when n is sufficiently large. We will also determine error bounds 

of vn which provide a termination criterion. 

Now let us discuss the convergence of vn to an e-optimal neighbourhood. For 

simplicity, introduce the following notation which will be used in next theorem and 

proof. Let v'Q € V and v'0 < v*. Define an operator H with the property that H m + 1 V k > 

HmVk > Vk for all m > 1. We remark that the operations in the discrete phase discussed 

i n the two previous section satisfy the assumption of H. Define Hv'k = Vk+i and 

Hm+1Vk = H oHmVk. Moreover, let n(k) be the number of operations of H in the fc-th 

discrete phase and Hn^Vk = v'k. Note that, unlike the previous two sections, the only 
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limitation for choosing the initial value function is that it should not be larger than v*, 

i.e. v'0 < v*. Since v'0 < t>*, it is also true that vk < v* and v'k < v*. 

T H E O R E M 4.7: 

If v'Q is the chosen starting value function such that v'0 < v*, then an e-optimal 

value function can be obtained by applying the iterative discretization procedure with 

approximation policy improvement. 

Proof: 

Let v* be the optimal value function. 

\\Hv'k-v^<\\Hv'k-Hv'k\\ + \\Hv'k-v*\\ 

= li + fi-\\Hn^vk-v*\\ 

<VL + f3-\\vk-v'\\ 

= H + fi-\\Hv'k_1-v*\\. 

where the third inequality arises since v* > Hn^vk > vk. Therefore, by recursion, 

i=0 

When k approaches infinity, then the right hand side approaches fi/(l — fi). If n is 

chosen to be less than (1 — fi) • t, then an e-optimal solution is obtained for sufficiently 

large k. I 

Theorem 4.7 shows that the iterative discretization procedure with approximate 

policy improvement obtains an e-optimal value function. However, this theorem does 
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not provide any information as to when an e-optimal solution is obtained. An easy 

way to determine a stopping criterion is to use the values of v'k and Hv'k. We can view 

v'k as the current result and Hv'k as the updated value. These two values can be used 

to decide whether or not an e-optimal value function has been obtained. In this case, 

the result shown in Section III can be used. Therefore, if \\Hv'k — v'k\\ < ^ " ^ H - ^ * 

where fik = \\Hv'k — v'k\\, then \\Hv'k — v*\\ < e. Similarly, Proposition 4.2 can also 

be used; that is, if ^'^UkfJ^+ftk < c, then Hv'k + is an e-optimal value function 

where Lk = inf„ en{(Hv' k)(Tr) - v'k(Tr)}, Uk = sup„en{(Hv'k)(Tr) - v'k(Tr)}, and fik = 

sup„en{(Hvk)(*)-(Hvk)(*)}. 

Similarly, we can apply approximate policy improvement to the accelerated con

vergence methods discussed in Section VI. As might be expected, when a large number 

of supports are needed to form a value function, these methods might converge faster 

than the methods discussed in Section VI. The method discussed in this section together 

with the accelerated convergence techniques discussed in Section VI are especially well 

suited to complicated problems which require large numbers of supports to form a value 

function. Numerical comparisons for these methods will be provided in the next section. 

VIII. Numerical Examples 

In this section, several sets of test data are used to compare the efficiency of the 

algorithms discussed in this chapter. The basis of comparison is CPU time. All algo

rithms were implemented as Fortran 77 programs which were run on the Amdahl 5860 
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with FPU at the University of British Columbia. 

The algorithm for computing Hv or its approximate value, Hv, is the linear support 

algorithm which was developed in Chapter 3. Unless otherwise specified, ft,(t/*~_^)+/i* 

is used as the termination criterion. The "vertices of relaxed regions are used to compute 

the approximate termination criterion as discussed in Section IV. If the approximate 

termination criterion is satisfied, the linear programming method is used to compute 

the exact termination criterion. The IMSL routines are used as the linear programming 

solver. 

The test data can be divided into two groups. The first group contains the well 

known testing data discussed in Sondik (1978). The second group contains several sets 

of randomly generated data for the problems with three, four, and five system states. 

Unless otherwise specified, the discount factor 3 is 0.9. 

1. Sondik's Testing Problem: 

This test problem is the only testing data shown in the literature (Platzman 1981, 

White 1980, White and Scherer 1986). We will study this set of data first. 

Since this is a two system states problem, the values of Uk, and Lk can be found 

exactly by the vertices of the relaxed regions. Linear programming is not required to 

find these values for this problem. The CPU times, the number of iterations, and error 

bounds for algorithms using the exact policy improvement discussed in this chapter are 

recorded and shown in Table 4.1. 
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Method 
C P U Time 
(Seconds) 

Number of 
Iterations 

Number of 
Supports 

Error 
Bound 

Action Elimination 0.035 4 3 0.000275 
Gauss-Seidel Method 0.040 4 3 0.000137 
Modified Policy Iteration 0.035 4 3 0.000275 
Standard IDP 0.041 4 3 0.000283 
Successive Approximation 0.027 7 3 0.000730 

e for Stopping Criterion: 0.01 
ci(n) for Stopping Discrete Phase: 0.001 
Tolerable E r r or for Policy Improvement: 0.0 

T a b l e 4.1: R e s u l t s o f Sondik's E x a m p l e 
( w i t h E x a c t P o l i c y I m p r o v e m e n t ) 

From Table 4.1, all of these algorithms converge really quickly. Among these al

gorithms, the standard successive approximation method requires the least C P U time 

although the error bound is slightly higher than other methods. This is because it only 

takes seven iterations to get a convergence result for the standard successive approxi

mation. Although other algorithms only take four iterations to converge, they perform 

several iterations i n a discrete phase. As a result, for this simple problem, the standard 

successive approximation method performs better than other methods. 

T h e result for this problem by using the algorithms with tolerable error for the 

policy improvement is shown in Table 4.2. This result is similar to the result in Table 

4.1 because this testing problem has a finitely transient optimal policy. 

If \\Hv — v\\ is used to calculate the error bound, the result is shown in Table 

4.3. T h i s result is similar to the results shown in two previous tables except for the 
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Method 
CPU Time 
(Seconds) 

Number of 
Iterations 

Number of 
Supports 

Error 
Bound 

Action Elimination 0.035 4 3 0.000275 

Gauss-Seidel Method 0.040 4 3 0.000137 

Modified Policy Iteration 0.035 4 3 0.000275 
Standard IDP 0.041 4 3 0.000283 

Successive Approximation 0.024 7 3 0.000944 

c for Stopping Criterion: 0.01 
ci(n) for Stopping Discrete Phase: 0.001 
Tolerable Error for Policy Improvement: 0.0005 

Table 4.2: Results of Sondik's Example 
(with Approximate Policy Improvement) 

Method 
CPU Time 
(Seconds) 

Number of 
Iterations 

Number of 
Supports 

Error 
Bound 

Action Elimination 0.036 4 3 0.005768 

Gauss-Seidel Method 0.041 4 3 0.004944 

Modified Policy Iteration 0.036 4 3 0.005356 
Standard IDP 0.052 5 3 0.006729 

Successive Approximation 0.307 71 3 0.009476 

e for Stopping Criterion: 0.01 
Ci(n) for Stopping Discrete Phase: 0.001 
Tolerable Error for Policy Improvement: 0.0 

Table 4.3: Results of Sondik's Example 
(Use \\Hv — v\\ to Compute Error Bound) 

standard successive approximation method. The standard successive approximation 

method requires seventy-one iterations to get a convergence result. It also requires 6 

to 8 times more CPU time to complete the computation. This is due to the fact that 
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there are many iterations in a discrete phase of any IDP method and each iteration in a 

discrete phase does a similar job as an iteration in the standard successive approximation 

method. Therefore, unlike the standard successive approximation, the IDP methods are 

not sensitive to the methods of computing error bound. 

Since this problem has a finitely transient optimal policy and only three linear 

supports are needed to form the optimal value function, the algorithms with tolerable 

error for the policy improvement obtain the exactly same results as presented in Table 

4.3 if \\Hv — v\\ is used to compute the error bound. 

2. Randomly Generated Data: 

This group consists five sets of data range from three to six system states. These 

data are listed in the Appendix 2. We did not use the data in Appendix 1 because 

the calculations either converged too fast or did not converge within a reasonable time 

limit. 

The first set of randomly generated data is a three system states, three actions, and 

three signal problem. If the algorithms with the exact policy improvement are used, 

there are too many linear supports generated (more than fifty supports), which is more 

than the design of the code can handle. However, if the algorithms with approximate 

policy improvement are used, the problem of space can be resolved. This is one of the 

advantages of using the algorithms with approximate policy improvement. The CPU 

time, number of iterations, number of supports and error bound for each method are 
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shown in Table 4.4. In order to compare the methods in more detail, we also show the 

CPU time less the time spent in using linear programming to calculate Un and Ln. 

CPU Time Number of Number of Error 

Method Total No LP Iterations Supports Bound 

Action Elimination 4.045 3.676 8 13 0.059359 

Gauss-Seidel Method 4.093 3.718 10 13 0.058961 

Modified Policy Iteration 3.922 3.561 10 13 0.058961 
Standard IDP 3.303 2.940 8 13 0.062985 

Successive Approximation 11.555 11.271 18 12 0.083387 

e for Stopping Criterion: 0.1 
ci(rc) for Stopping Discrete Phase: 0.01 

Tolerable Error for Policy Improvement: 0.005 

Table 4.4: Results of Data Set 1 
(with Approximate Policy Improvement) 

From this example, we can see that all IDP methods require much less CPU time 

and have better error bounds than the standard successive approximation method. The 

IDP methods just need about one third of the CPU time of the standard successive 

approximation method. Among the IDP methods, standard IDP requires slightly less 

CPU time but has slightly larger error bound. Although both the action elimination 

method and standard IDP require eight iterations to get the solution and the action 

elimination method has fewer iterations in the discrete phases (not shown in Table 4.4), 

the action elimination method requires more time than standard IDP. This might be 

due to the fact that not many actions are eliminated and special effort is required to 

check which actions can be eliminated. 
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In order to find the effect of the action elimination method, let us consider the 

second data set. This is a three system states, six actions, and three signals problem. 

The results of algorithms with exact policy improvement are shown in Table 4.5. 

CPU Time Number of Number of Error 
Method Total No LP Iterations Supports Bound 

Action Elimination 0.669 0.484 5 11 0.030075 

Gauss-Seidel Method 1.090 0.905 5 11 0.020606 

Modified Policy Iteration 0.816 0.631 5 11 0.042023 
Standard IDP 0.647 0.537 4 9 0.028022 

Successive Approximation 3.356 3.132 8 11 0.034083 

e for Stopping Criterion: 0.1 
ei(n) for Stopping Discrete Phase: 0.01 

Table 4.5: Results of Data Set 2 
(with Exact Policy Improvement) 

From Table 4.5, we can see that the action elimination method requires less CPU 

time than the Gauss-Seidel method and the modified policy iteration although all three 

methods require five iterations to obtain the solutions. This result is as we expected 

since there are relatively large number of actions available and the action elimination 

method can omit the suboptimal actions. The modified policy iteration method only 

uses one action for each selected state in a discrete phase; however, in this case, the 

suboptimal actions might be chosen for some selected states. As a result, the modified 

policy iteration method requires more iterations in one discrete phase (not shown in 

Table 4.5). The standard IDP method requires slightly less CPU time to obtain a 
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solution than the action elimination method because it only takes four iterations to 

obtain its solution although it has more iterations in the discrete phases. As expected, 

the standard successive approximation takes the longest time to obtain its solution. 

The effect on the number of actions can be detected more easily by the algorithms 

with approximate policy improvement since there are fewer supports in the solutions. 

The time spent in computing policy improvement will be less if there are fewer supports 

in the support set. The results of using data set 2 are shown in Table 4.6. 

CPU Time Number of Number of Error 
Method Total No LP Iterations Supports Bound 

Action Elimination 0.466 0.391 5 7 0.045400 

Gauss-Seidel Method 0.692 0.618 4 7 0.080924 

Modified Policy Iteration 0.448 0.374 5 7 0.050268 
Standard IDP 0.591 0.519 4 7 0.017349 

Successive Approximation 0.971 0.903 8 7 0.057928 

e for Stopping Criterion: 0.1 
Cj(n) for Stopping Discrete Phase: 0.01 

Tolerable Error for Policy Improvement: 0.005 

Table 4.6: Results of Data Set 2 
(with Approximate Policy Improvement) 

From Table 4.6, we can see that although requiring more iterations than the Gauss-

Seidel Method and the standard IDP method, the modified policy iteration method and 

the action elimination method require less CPU time to obtain their solutions. This 

result is to be expected since the time required for the action elimination method or 
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the modified policy method does not relate directly to the number of available actions. 

The modified policy iteration method needs slightly less CPU time than the action 

elimination method because only one action is chosen for each state and no extra effort 

is required for the selection of actions. 

The next set of randomly generated data, data set 3, is a four system states, four 

actions, and four signals problem. Table 4.7 contains the results of algorithms with 

exact policy improvement steps. 

Method 
CPU Time Number of 

Iterations 
Number of 
Supports 

Error 
Bound Method Total No LP 

Number of 
Iterations 

Number of 
Supports 

Error 
Bound 

Action Elimination 16.537 16.044 4 14 0.022665 

Gauss-Seidel Method 16.647 16.206 4 13 0.022324 

Modified Policy Iteration 16.501 16.060 4 13 0.022324 
Standard IDP 16.683 16.201 4 14 0.006259 

Successive Approximation > 100 Seconds 

t for Stopping Criterion: 0.1 
C i ( n ) for Stopping Discrete Phase: 0.01 

Table 4.7: Results of Data Set 3 
(with Exact Policy Improvement) 

From Table 4.7, we find that the CPU time required for all IDP methods are about 

the same. However, the standard successive approximation method is unable to yield a 

solution within 100 seconds. 

In contrast to the results shown in Table 4.7, the standard successive approxima-
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tion method with approximate policy improvement steps can obtain its solution within 

twelve seconds. (See Table 4.8.) Among the IDP methods shown in Table 4.8, the 

CPU time required varies significantly. The action elimination method can obtain its 

solution in two seconds. However, the Gauss-Seidel method needs 6.492 seconds to 

obtain its solution. This is because the action elimination method eliminates most of 

the suboptimal actions in every iteration and only a few actions are considered. 

CPU Time Number of Number of Error 
Method Total No LP Iterations Supports Bound 

Action Elimination 1.926 1.756 4 9 0.064620 

Gauss-Seidel Method 6.492 6.153 6 9 0.057871 

Modified Policy Iteration 6.323 5.988 6 9 0.057871 
Standard IDP 3.425 3.256 4 9 0.051241 

Successive Approximation 11.547 11.222 8 9 0.091206 

c for Stopping Criterion: 0.1 
ei(n) for Stopping Discrete Phase: 0.01 

Tolerable Error for Policy Improvement: 0.005 

Table 4.8: Results of Data Set 3 
(with Approximate Policy Improvement) 

For the last two data sets, data set 4 and data set 5, the algorithms with the 

exact policy improvement steps generate more supports than the fifty supports that the 

design of the codes can accommodate. Therefore, no results are generated. Moreover, if 

an error bound of 0.1 is used in the previous three data sets, then the algorithms with 

approximate policy improvement will also generate more than fifty supports. Therefore, 

in these two data sets, only the algorithms with approximate policy improvement are 
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considered, and the error bound is set to be 0.5. 

Now let us consider the fourth data set which is a five system states, five actions, 

and five signals problem. The results can be obtained in relatively short time. From 

Table 4.9, we find that all IDP methods require much less CPU times than the stan

dard successive approximation method. Among the IDP methods, the modified policy 

iteration method requires less CPU time than other methods in this data set. 

CPU Time Number of Number of Error 
Method Total No LP Iterations Supports Bound 

Action Elimination 2.296 2.142 5 8 0.396919 

Gauss-Seidel Method 1.991 1.807 4 9 0.452781 

Modified Policy Iteration 1.882 1.732 4 8 0.362355 
Standard IDP 2.322 2.171 4 8 0.373904 

Successive Approximation 9.187 8.850 10 8 0.469870 

€ for Stopping Criterion: 0.5 
ci(n) for Stopping Discrete Phase: 0.05 

Tolerable Error for Policy Improvement: 0.025 

Table 4.9: Results of Data Set 4 
(with Approximate Policy Improvement) 

The last set of randomly generated data is a six system states, four actions, and six 

signals problem. The results for the algorithms with approximate policy improvement 

steps are shown in Table 4.10. From this table, we find that the CPU time requirements 

for all of the algorithms are about the same. The modified policy iteration requires the 

least CPU time among all methods. As we discussed before, there are several iterations 

130 



of computations in each discrete phase of IDP methods. In this example, the standard 

successive approximation method, which does not involve any discrete phase, only takes 

one or two more iterations of policy improvement than the IDP methods. However, the 

standard successive approximation method requires more CPU time than any of the 

IDP methods, which implies that each iteration of policy improvement might require 

more CPU time to perform than the computation of several iterations in a discrete 

phase. 

CPU Time Number of Number of Error 
Method Total No LP Iterations Supports Bound 

Action Elimination 26.919 26.205 4 13 0.347050 

Gauss-Seidel Method 27.250 26.532 4 13 0.346822 

Modified Policy Iteration 24.497 23.792 5 13 0.319670 
Standard IDP 26.892 26.189 5 13 0.279474 

Successive Approximation 27.910 27.387 6 12 0.330867 

e for Stopping Criterion: 0.5 
ei(n) for Stopping Discrete Phase: 0.05 

Tolerable Error for Policy Improvement: 0.025 

Table 4.10: Results of Data Set 5 
(with Approximate Policy Improvement) 

The above examples clearly demonstrate that there are benefits to be reaped in 

using the algorithms with the approximate policy improvement steps. For the same 

accuracy, the algorithms with the approximate policy improvement steps generate fewer 

linear supports than their counterparts with the exact policy improvement. As a result, 

less computer memory and CPU time are needed for the algorithms with approximate 
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policy improvement. The algorithms with approximate policy improvement steps might 

also produce a more stable solution since there are fewer chances that two linear supports 

are similar. From the above examples, we have also found that the IDP methods 

require less CPU time to obtain the solution than the standard successive approximation 

method. These examples also suggest that the fewer iterations of policy improvement 

required is one of the major reasons that IDP methods are more efficient. Of course, 

we cannot conclude that IDP methods are more efficient than the standard successive 

approximation just from these limited examples. However, these limited examples have 

shown that a large portion of CPU time might be saved by using IDP methods. 

What is the best method among IDP algorithms? This is difficult to answer from 

these limited examples. We have found from these examples that no single method 

always performs better than other methods. This is because all performance results are 

data dependent. Only a rule of thumb might be formulated: when there are a large 

number of available actions, the action elimination method and the modified policy 

iteration method are recommended since these two methods only consider a subset of 

available actions. 
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C H A P T E R 5 

P A R T I A L L Y O B S E R V A B L E M A R K O V D E C I S I O N P R O C E S S E S 

W I T H C O N T I N U O U S S I G N A L D I S T R I B U T I O N S 

In the last few chapters, partially observable Markov processes with finite discrete 

signal space were studied. The assumption of finite discrete signal space is restrictive 

since in many contexts it is more natural to model the signal space as continuous 

instead of finite. For example, in a machine replacement problem, the signal might be 

the temperature of this machine. This temperature could be any value within a certain 

range. As another example, consider blood pressure, which is a good indicator of certain 

diseases and which is frequently modeled with a continuous distribution. Moreover, if 

there are a large number of discrete signals, it is sometimes easier to model the problem 

as a continuous signal space. Therefore, it is desirable to extend the algorithms discussed 

in the last two chapters to a more general signal space. 

There has been some research on P O M D P with a general signal space. Whittle 

(1982) discussed some of the applications of P O M D P to statistical inference and sequen

tial design. Nir (1986) discussed control problems with two system states. However, 

these researchers relied on the particular structure of the problems studied. In this 

chapter, a more general approach to the problem will be discussed. 

The plan of this chapter is as follows: assumptions, notation, and formulation of 

P O M D P with a continuous signal space are presented in Section I; a method to convert 

a P O M D P problem with uniformly distributed signal processes to a P O M D P with 
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finite signals is presented in Section II; and applications of the algorithms developed in 

Chapter 3 and 4 to solve the POMDP problems with continuous signals (under certain 

assumptions hold) are discussed in Section III. 

I. Assumptions, Notation, and Formulation 

The basic assumptions of this chapter are the same as in Chapter 2. The only 

difference is the nature of the signal processes. In this chapter, we assume that the 

signal distributions have density functions, whereas in Chapter 2 we assume that they 

are discrete. The parameters of these probability density functions depend on the 

system state as well as the action taken in the previous decision epoch. More precisely, 

for each system state i € 5, each action d 6 D, and each time t = 0,1,2,..., there is a 

probability density function fft(-) on the set of signals. For the infinite horizon problem, 

we assume that the probability density function is time invariant and the dependency 

on t is suppressed from the notation. 

Let TT € II be defined as in Chapter 2. Given that the current distribution on the 

state space is TT and action d is used, the conditional density function on the set of signal 

is f(-\n,d). Then this conditional density function can then be computed as 

k=l j=l 

Or, in matrix form, 

f(0\TT,d) = TT-Pd.Qd
e.l, (5-1) 
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where Qf, is a diagonal matrix with ff(8) as its diagonal elements and 1 is an N -

dimensional column vector with all elements being 1. Analogous to the definition of 

T(ir,d,8), define T(w,d,8) as the probability distribution of the system state at the 

next time epoch, given that the probability distribution of the current system state is 

7T, the action applied is d, and the signal obtained in the next time epoch is 8; i.e., 

fi(TT,d,8) = Pr(Xt+1 = i\n,Yt = d,Zt+1 = 8), 

and 

f(*,d,8) = [fI(T:,d,8)). 

Then, by Bayes' rule, 

fi(n,d,8) = Pv(Xt+1 = i\n,Yt = d,Zt+1 = 9) 

Or, in matrix form, 

(5-2) 

rude) - *-pd-Qi *-pd-Qi , x 

If f{8J7r, d) = 0, then T(ir, d, 8) can be arbitrary and will not affect the following analysis. 

As in Chapter 2, let vt and vt+i be bounded convex continuous value functions at 

time t and t + 1, respectively. Then, for 7r € II, 

rd 

N 

vt(*) = maxE{rd{Xt) + fi • « t + 1 ( f ( M , 0 ) ) b r , « * } 

= max dec {I>.r'(i) + /9. / />Kd)-^ +i(T(7r,d ,tf))^}. (5-4) 
,=i ^ee 
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If vt+i is piecewise linear function on the domain II, then the formula (5-3) can be 

rewritten as 

where a**'4'9) is support of vt+1 and f(?r,dt6) • a«l*>d>°) > f{ix,d,6) • ak for all ak 

which are supports of vt+i. Notice that the formula (5-5) is similar to the corresponding 

formula for the discrete signal case. The only difference is that the summation is replaced 

by an integral. 

White and Harrington (1980) showed that if vt+i is a convex function, so is vt. 

However, unlike the finite signal case, vt need not be piecewise linear even though vt+\ 

is piecewise linear. This property makes continuous signal problems more difficult than 

discrete signal problems. 

A uniform distribution is commonly used to model a process without much available 

information. Nir (1986) studied a two-state POMDP with uniformly distributed costs 

as its signals. We discuss tHs distribution separately from others because this problem 

can be reformulated as a discrete signal space problem. The algorithms developed for 

the discrete signal space can then be applied to solve this type of problem and are more 

efficient than the method "which will discussed in later sections. 

(5-5) 

II. Uniformly Distributed Signal Processes 
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Let 0 be the signal space. Also, at decision epoch t, let Qd
t be the signal space 

for the process given that the system state is i and that the decision taken at previous 

decision epoch is d. The probability density function for the signal in this signal space 

is uniformly distributed. 

A trivial case occurs if the state can be deduced for sure from the observed signal; 

i.e., 0fj D 0 f j = 0 for all pairs of states i and j. This can clearly be formulated as a 

completely observable MDP. For example, suppose in a two state control problem that 

a machine in the good state has an operating cost in the range of 100 to 250 dollars per 

day; however, if the machine is in the bad state, the operating cost is in the range of 

300 to 450 dollars per day. So if the current operating cost is 350 dollars, it is obvious 

that the system is in the bad state. 

Of course, the above technique fails if the supports of the signal distributions over

lap. However, if the signal distributions are uniform, then the problem can be reformu

lated as a POMDP with finite signal space. Let ©£, = 0\0 t
d

) t and ©?• = { © ? , , © ? , } . 

Then ©£,- is a partition of the signal space 0. Let ©< = { © < , i , ©t,2, • • • > ©«,*} be the 

product partition of Of,- for all system states i and actions d. Since there are only a 

finite number, N, of system states, there are only a finite number of elements in 0 t . The 

key to converting a uniformly distributed signal problem to a discrete signal problem is 

that the only information provided by the signal is the cell of the partition in which it 

occurs. 

Each element in 0< can be viewed as a signal in a finite signal space problem. 
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For example, consider a machine with an operating cost that depends on its condition. 

When the machine is in excellent condition, the operating cost is uniformly distributed 

between $100 and $250 per day. If the machine is in fair condition, the operating cost 

is uniformly distributed between $200 and $350 per day. And if the machine is in bad 

condition, the operating cost is uniformly distributed between $300 and $450 per day. 

Thus the cost can be divided into five regions - that is, $100 to $200, $200 to $250, $250 

to $300, $300 to $350, and $350 to $450. Each region can be viewed as a distinct signal. 

Since the observations are uniformly distributed in their signal space, the probabilities of 

each of the newly defined signals can be calculated by the integral of the density function 

on each of the regions in ©<. For example, there is 66.67% chance that the operating 

cost is between $100 and $200, and 33.33% of chance the operating cost is between $200 

and $250 if the machine is in excellent condition. Similarly, the probability for each 

cost range can be computed for the fair and the bad machine conditions. Therefore, 

this problem is converted to a discrete signal space problem. 

The key reason that a POMDP with uniformly distributed signal processes can be 

modeled as a POMDP with a finite number of signals is because T(7T,d, •) is constant 

over each element of © ( . Let us show this result in the following lemmas. 

L E M M A 5.1: 

For every system state i G S, ff(-) is constant on every element of Qt. 

Proof: 

Let 8i and 62 be any two arbitrary signals in any 0 t ) J 6 ©t- By the method 

discussed above for generating the elements in 0 ( , either Qtj D Qd
{ = 0 or Qt,j Q ©t, t 
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for all system states i. If ©,,_, n 0 j , = 0, then ff(0i) = ff(02) = 0. If 6 t ) i C Gd
ti, then, 

by the uniform assumption, ff{9\) = ff(02)• H 

Although this lemma is trivial, it is the primary reason why POMDP with uniformly 

distributed signal processes can be reformulated as POMDP with a finite number of 

signals. Moreover, in the proof of this lemma, we only require that Qtj is a subset of 

0f ,• or ©tj D Qdj = 0 for all system states i and that the signal processes are uniformly 

distributed on Ot,j- Hence, we can extend this result to more general cases where the 

signal processes are step functions. We will discuss this issue later in this section. 

Since ff(-) is constant on any element of 0 t , then Qf is the same for all 6 in any 

element of O t . Moreover, f(8\n,d) = n • Pd • Qf, • 1, therefore, /(-|7r,<i) is constant on 

every element in 0 t . Now we can show that T(7r, d, •) is constant on each element of 0,. 

L E M M A 5.2: 

T(TT,d, •) is constant on each element of 0<. 

Proof: 

Let Qt,j be an arbitrary element of 0« and B\, 82 be any two arbitrary signals in 

€>,,,-. Since Qd
0i = Qd

3 and M M = / > 2 | M ) , by (5-3), T ( M , * i ) = ?{*,d,62). 

The result follows. H 

Now let us show that if the signal processes are uniformly distributed, then Equation 

(5-4) can be rewritten as Equation (2-4). Let us consider the integration part of 
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Equation (5-4) first. Let 0, be an arbitrary signal in O t i l . By Lemma 5.2, 

/ f(8\*,d)-vt+l(t(v,d,8))d0 
Jeee,,i 

=vt+l{f{rr,d,8i))' I hO\*,d) d8 
Jeeetii 

=vt+1(f(ir,d,8i)) • Pr(0 6 6tl,-|M) 

= Pr(0 e © * > , < * ) • vt+1(f{7T,d,8i)). 

By Lemma 5.2, each element in 0< can be viewed as a signal. Define T ( 7 r , d , © < t ) = 

T(TT, d, 8i) for 8{ 6 0t,i- Since there are only a finite number of elements in 0(, Equation 

(5-4) can be rewritten as 

N r 
vt(ir) = m a x {V>, • rd(i) + 8- f(0\*,d) • vt+1(f(7r,d,8))d8} 

d e D ~[ Joee, 
N r 

= max{^i-rd(i) + 8- / f(e\rr,d)-vt+1(f(iT,d,9))d8} 

N 

= max{Y,*i-rd(i) + 8- £ Pr(0M|7r,d) • v t + a (T(7r ,<f , 0M))}, 
« = 1 e.,,ee« 

where P r ^ ^ j l T r , d) = / f l e e ( . f(8\ir, d)d8. The last equality is the same as Equation 

(2-4). Therefore, Equation (5-4) can be rewritten as (2-4); that is, P O M D P with 

uniformly distributed signal processes can be reformulated as P O M D P with a finite 

number of signals. 

As discussed above, the key reason that P O M D P with uniformly distributed signal 

processes can be formulated as P O M D P with finite number of signals is that the density 

function ff(-) is constant on every element of 0 t for every system state i € S and action 

d € D. Therefore, if other P O M D P problems have this property, by following the same 
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procedures we can show that they can be formulated as finite signal P O M D P problems. 

One example is P O M D P problems where signal processes are step functions. 

Let us consider a P O M D P problem which signal processes are step function. As

sume that 0* • is a partition of signal space 0t, and the density function is constant on 

O f i for every system state t 6 5 and action d € D. A product partition of © £ , for all 

system state i and action d can be performed and denoted as Qt = {©t,i, Qt,2, • • •, 

Therefore, the density function //(•) is constant in each element in Qt for each system 

state i and action d. B y following the same procedures as discussed above, it can be 

shown that T(ir,d, •) is also constant on each element in 0*. Therefore, P O M D P whose 

signal processes are step functions can also be formulated as P O M D P with finite signals. 

In practice, there might not be many applications whose signal processes are step 

functions. However, step functions can naturally be used to approximate any probability 

distribution. After the signal processes have been approximated by step functions, the 

problem can then be solved by the methods discussed in Chapters 3 and 4. Using this 

approach, the general problem with continuous signal space can be solved. 

Now let us discuss how to use step functions to approximate the distributions of the 

signal processes. For simplification, we assume that the signal space is time-invariant, 

and the time subscript, i, is suppressed. For each action d € D, and system state i G S, 

the signal space 0 is divided into a finite number of connected subsets, Qf = {Qd
k}, 

such that LI*©,,* = 0 and Qfk D Qft = 0 for all pair of k and /. In order to have a good 

approximation, we usually require the density function to be continuous in each of the 
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subsets. 

The product partition of O f for all system states i G S and actions d £ D can 

be performed and denoted as 0 = { 0 i , 02,..., 0/}. If the conditional density function 

f(6\ir,d) is defined as in the first section, then 

Pr(0 € 0*|7r,d) = / f(8\ir,d)dd VTT G II, d 6 D, and 0* G 0. 

Since is continuous in each subset in 0 for all i and d, f(6\n,d) is also continuous 

in each set i n 0. 

Since each set i n 0 can be viewed as a signal and the conditional density functions 

for these signals are defined, we now have a finite signal P O M D P problem. The accuracy 

of the approximation depends on how the signal space is partitioned. Let us now develop 

an error bound for this approximation. 

Let 7r be an arbitrary state i n II, v a given value function, Hv the exact value 

function, and Hv the value function obtained from the approximation. If d G D is the 

action used for Hv at 7r and HV(TT) > HV(TT), then 

HV(TT) - HV(TT) <7T-rd + /3' I f(6|TT, d) • v(f (TT, d, 9))d6 
Jeee 

- ( 7 r . r d + /3- £ P r C O t K ^ . u C T C T r , ^ ^ ) ) ) 
e»€© 

= /?• / f(8\n,d).v(f(n,d,8))d6-P- T Pr(0 t|7r,cf) • v(T(n,d,ek)) 
J°*« ekee 

= / ? • £ / f(8\*,d).v(f(ir,d,8))d8 

-P- Pr ( e f c | M ) - t;(T ( M , e A ) ) ©t€© 
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f̂t- E ( f f(0\7T,d)-Mkde-Pr(Qk\7T,d)-Lk) 

= B-Y, Pr(Qk\rr,d)-(Mk-Lk) 

e*€e 
<8-{Mk-lk) 

where Mk = m a x , ^ v(f (TT,d,0)), Lk = min^Q^ v(f (7r,d,0)), M f c = max f r e n V(TX), 

and Lfc = min^n v(ir). A similar approach can be used if HV(TT) is less than HV(TT). 

Note that Mk — Lk can be made arbitrarily small by dividing the signal space into very 

small regions, and in this case, the value function obtained will be very close to the 

exact solution. 

III. Methods for Solving P O M D P with Continuous Signal Space 

In the previous section, we discussed how to solve POMDP problems with continu

ous signal spaces by using step functions to approximate the signal processes. However, 

in order to obtain a value function which is close to the optimal value function, we 

might need to construct a step function with a large number of steps; that is, we might 

need to solve a finite signal POMDP problem with a large number of signals. To solve 

a problem with a large number of signals is not easy. In this section, we will introduce 

a method which can solve this problem without using step functions to approximate its 

signal processes if certain assumptions hold. 

As discussed in the first section, even if v is a piecewise linear function, Hv need 

not be piecewise linear. Moreover, integral signs have replaced summation signs in the 

143 



formulas (5-4) and (5-5). Therefore, unlike P O M D P with a finite number of signals, 

the construction of linear supports for any given state IT and action d is not trivial or a 

by-product of the procedure for finding the value of Hv(ir). The algorithms discussed in 

Chapters 3 and 4 are based on the linear supports for the given states. As a result, they 

cannot be directly applied to problems with continuous signal space. However, if certain 

assumptions which wil l be discussed later are satisfied, we can find linear supports for 

given states and actions. Then methods similar to those discussed in the previous two 

chapters can be applied to problems with a continuous signal space. 

We now focus on how to calculate the value and the support of Hv(ir) for arbitrary 

7r € n if t; is a piecewise linear function (i.e., the evaluation of (5-5)). Let A be the set 

of all linear supports of v. If d is a support in A and cf is an action in the action space, 

define Q„td,a as 

Q*,d,& = {0 € 0 : IT • Pd Qja > * • Pd • Qd
ea V a € A}. (5-6) 

Apply (5-6), then (5-5) can be rewritten as 

Hv(ir) = maxjV Tr; • rd(i) + fi- TT • Pd • Qd
e • a ' M 9 ) d 6 } 

d e D ~{ Jeze 
N r 

= max{][> • r'(i) + fi • £ / TT • Pd • Qd • ad9) 
t=l ogA j6^Q'.d,c, 

N r 

= max{5> • rd(i) + fi • £ TT • Pd • / Qd • add). (5 - 7) 

In order to simplify the calculation of J ^ € @ _ w • Pd • Q<j • <*d9, let us assume that for 

any given 7r € n , d € D, and a € A, there are only a finite number of connected sets in 

Qn,d,a- Moreover, we also assume that the boundary of ©n,d,& has measure zero. 
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Since Qg is a diagonal matrix with ff(8) as its i-th diagonal element and a is an 

JV-dimensional vector with a, as the i-th element, we define 

f IeeewdJd(e)-&id8\ 

Therefore, (5-7) can be rewritten as 

N 

( 5 - 8 ) 

HV(TT) = m a x { £ ^ • rd(i) + 0 • £ TT • P< • / Qj • d<f0} 

= max{» • [rd + 0 • £ Pd • C<fi]}. (5-9) 
©w,4,a 

We remark that rd + 8- Y2ew d & Pd' C*,a * s a N-dimensional column vector and a linear 

support oi Hv at TT. 

Although the assumptions about Q*,d,a are strong, these assumptions are true for 

many commonly used distributions. More importantly, 7r, Pd, and a are known before 

®*,d,a is computed. Therefore, in many situations, it is possible to verify whether 

the given signal processes will have a finite number of connected sets in ©«-,<*,a before 

the actual calculation is started. For example, if the signal processes are exponential 

distributions and there are only two system states, we can show that the assumptions 

hold. Now let us use the exponential distribution as a example. 

Example 

Let us illustrate the method for computing linear supports for POMDP with the 
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0.8 0.2' i - 4 ' 
0.5 0.5 r = 4 

0.5 0.5' 2 0' 
0.4 0.6 r = 3 

following example: 

P 1 = 

P 2 = 

The signal processes have the following density functions: for 8 > 0, 

/2
1(tf) = 10-e- l o e , 

f?(8) = 3 • e-3'*, 

/2
2(0) = 2-e-2-<, 

and f{(8) = .^(tf) = /2(tf) = /2(tf) = 0 for 8 < 0. Let us also assume that 0 is 0.9, 

Tt = [0,1], and A = {a1,a2} where a 1 = [-4,4]r and a 2 = [0,3]r. 

We first compute 0^,1,a»; i.e., we have to find 8 € 0 such that 

[0 1]. 0.8 0.2 
0.5 0.5 

„-6 

0 
0 

10 -e-106 

-4 
4 > [0 !]• 

'0.8 0.2' 'e-e 0 "o" 
0.5 0.5 0 10 -e-loe 3 

After solving this inequality, we have 0 w , i , Q i = {0 < tf < 0.1}. Hence 0^,1,o* is 

0.1 < tf < 0 0 . 

Similarly, we can find 0 f f >2 , o i - However, 0̂ ,2,0* = {tf < -1.77} which is outside 

the domain of density functions, so 0 T ) 2 ) O r i = 0. and Qn<2,a* = {tf > 0}. Now apply 

0 T,i, Q>, 0 w , i , a» , 0ir,2,a», and 0^,2,a» in (5-9), to obtain 

Hv([0 l]) = max{ 

[0 !]•{[• + 0.9 0.8 0.2 
0.5 0.5 ( / 0

0 1 0 -4 • e-° dB 
. / 0

0 1 0 4-10-e- 1 0 ( ? d6. 
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[0 1] {[' 
= max{[0 1] 

5.46 

+ 0.9 

-3.62 
5.46 

)) 
0.5 0.5 
0.4 0.6 

; [o i ] 

J ~ 3 - 2 . e - " d » 
1.35 
4.62 

Therefore, Hv at [0,1] is 5.46 and the linear support corresponding to this state is 

[-3.62,5.46]T. • 

Now let us look at the algorithms discussed in Chapter 3. Signals are intrinsic to 

the partition method and Sondik's one-pass algorithm. In Monahan's method, signals 

are only used to generate candidate linear supports. However, the signals do not for

mally appear in the relaxed region algorithm and linear support algorithm. These two 

algorithms only assume that, for any given state, it is possible to find a linear support 

corresponding to this state. The assumption of a finite number of signals guarantees 

an easy method to compute linear supports. If there is a method to generate the linear 

support for any given state, then the assumption of a finite number of signals is not 

required for the relaxed region algorithm or linear support algorithm. 

Provided that a support of a value function can be constructed at any given state, 

either the relaxed region algorithm or the linear support algorithm can be used to solve 

a POMDP which has continuous signals. However, in practice, only the linear support 

algorithm can be used because, for POMDP with a continuous signal space, Hv need 

not be a piecewise linear function even v is. If the relaxed region algorithm is used, 

the termination criterion might never be satisfied. As was discussed in Chapter 3, the 
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linear support algorithm can be used to approximate Hv, and can be used to find an 

approximate solution Hv which is a piecewise linear function. 

Similarly, the algorithms discussed in Chapter 4 only use signals in the computa

tion of the linear supports. However, since it might not be possible to calculate the 

exact value of Hv for POMDP with continuous signals as discussed above, only those 

algorithms which permit approximations of Hv can be applied; that is, the methods 

presented in Sections III and VII in Chapter 4. 

The assumptions made in this section are only to guarantee that a linear support 

can be found for any given state. If there is any other method which can produce 

the linear support for any given state in II, then the linear support algorithm and the 

methods shown in Sections III and VII in Chapter 4 can still be applied. We can 

expect that many POMDP problems having a continuous signal space either satisfy 

the assumptions in this section or a method exists for computing the linear support for 

any given state and therefore can be solved using linear support methods. Problems 

for which linear supports cannot be calculated for all states in II can still be solved by 

using step functions to approximate the signal processes as discussed in the previous 

section, although this method might not be efficient. 
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A P P E N D I X 1 
R A N D O M G E N E R A T E D T E S T I N G D A T A 

F O R F I N I T E H O R I Z O N A L G O R I T H M S 

Number of States = 3 
Number of Actions = 3 
Number of Signals = 3 

Action 1: 

D A T A S E T D3.1 

P 1 = 
0.573 
0.416 
0.103 

0.346 
0.441 
0.390 

0.081 
0.143 
0.507 

0.646 
0.106 
0.120 

0.199 
0.643 
0.220 

0.155 
0.251 
0.660 

Action 2: 

0.357 
0.370 
0.169 

0.345 
0.460 
0.192 

0.298 
0.170 
0.639 

Q2 = 
0.704 
0.0 

0.188 

0.116 
0.840 
0.135 

0.179 
0.160 
0.677 

Action 3: 

P 3 = 
0.305 
0.388 
0.139 

0.239 
0.356 
0.271 

0.456 
0.256 
0.590 

Q 3 = 
0.702 0.211 0.087 
0.304 0.581 0.115 
0.145 0.238 0.617 
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D A T A S E T D3.2 

Number of States = 3 
Number of Actions = 3 
Number of Signals = 3 

Action 1: 

P 1 

0.256 
0.002 
0.578 0.063 

0.693 0.051 
0.273 0.725 

0.359 

0.712 
0.089 
0.014 

0.066 
0.790 
0.126 

0.222 
0.121 
0.860 r = 

7.100 
9.300 
5.300 

Action 2: 

P 2 = 
0.350 
0.244 
0.227 

0.239 
0.237 
0.323 

0.411 
0.519 
0.450 

Q2 = 
0.763 
0.081 
0.092 

0.041 
0.566 
0.031 

0.196" 
0.353 
0.877 r = 

8.300 
8.600 
7.800 

Action 3: 

P 3 = 
0.482 
0.108 
0.445 

0.045 
0.485 
0.158 

0.473 
0.407 
0.397 

Q3 = 
0.504 
0.080 
0.194 

0.061 
0.705 
0.015 

0.435 
0.215 
0.791 r = 

0.900 
3.900 
8.800 
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D A T A S E T D3.3 

Number of States = 3 
Number of Actions = 3 
Number of Signals = 3 

Action 1: 

P 1 = 
0.349 
0.860 
0.070 0.472 

0.180 0.471 
0.093 0.047 

0.458 

0.677 
0.166 
0.143 

0.193 
0.572 
0.247 

0.130 
0.262 
0.611 

r = 
9.900 
0.200 
2.400 

Action 2: 

P 2 = 
0.295 
0.272 
0.443 

0.144 
0.104 
0.314 

0.561 
0.624 
0.243 

Q 2 = 
0.660 
0.130 
0.205 

0.165 
0.792 
0.083 

0.175 
0.078 
0.712 

r = 
5.900 
7.400 
5.500 

Action 3: 

P 3 = 
0.284 0.672 0.044 
0.635 0.300 0.065 
0.042 0.545 0.413 

Q 3 = 
0.745 
0.133 
0.115 

0.143 
0.712 
0.260 

0.112' 
0.155 
0.625 

r 3 = 
3.700 
4.900 
9.800 
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D A T A S E T D3 .4 

Number of States = 3 
Number of Actions = 3 
Number of Signals = 3 

Action 1: 

P1 = 
0.336 0.436 0.228 
0.304 0.272 0.424 
0.167 0.578 0.255 

0.574 
0.135 
0.062 

0.227 
0.745 
0.294 

0.199 
0.120 
0.644 r = 

3.700 
3.000 
6.200 

Action 2: 

P2 = 
0.339 0.525 0.136 
0.435 0.525 0.040 
0.374 0.243 0.383 

Q2 = 
0.640 
0.252 
0.236 

0.180 
0.584 
0.024 

0.180 
0.164 
0.740 r = 

5.700 
0.100 
1.700 

Action 3: 

P3 = 
0.143 0.173 0.684 
0.020 0.826 0.154 
0.601 0.079 0.320 

Q3 = 
0.916 
0.101 
0.095 

0.054 
0.843 
0.215 

0.030 
0.056 
0.690 r = 

7.400 
0.400 
7.000 

157 



D A T A S E T D3.5 

Number of States = 3 
Number of Actions = 3 
Number of Signals = 3 

Action 1: 

P 1 = 
0.445 0.222 0.333 
0.500 0.173 0.327 
0.204 0.553 0.243 

0.686 
0.138 
0.279 

0.182 
0.786 
0.083 

0.132 
0.076 
0.638 r = 

5.200 
4.600 
4.100 

Action 2: 

P 2 = 
0.234 
0.549 
0.061 

0.064 
0.218 
0.466 

0.702 
0.233 
0.473 

Q2 = 
0.698 
0.283 
0.005 

0.131 
0.624 
0.202 

0.171 
0.093 
0.793 

r 2 = 

Action 3: 

P 3 = 
0.535 
0.114 
0.325 

0.313 
0.870 
0.360 

0.152 
0.016 
0.315 

Q3 = 
0.567 
0.243 
0.186 

0.234 
0.641 
0.044 

0.199 
0.116 
0.770 

r 3 = 
9.000 
9.300 
0.800 
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D A T A S E T D4.1 

Number of States = 4 

Number of Actions = 

Number of Signals = 

Action 1: 

P1 = 

•0.355 0.321 0.100 
0.433 0.181 0.342 
0.254 0.155 0.065 

.0.066 0.420 0.172 
-0.519 0.192 0.154 
0.161 0.551 0.093 
0.112 0.158 0.662 

.0.157 0.126 0.055 

0.224-
0.044 
0.526 
0.342. 
0.1351 rO.2" 
0.195 i _ 8.2 
0.068 r ~ 6.8 
0.662J L8.1. 

Action 2: 

P 2 = 

Q2 = 

0.094 
0.241 
0.351 
0.064 
0.571 
0.158 
0.089 
0.109 

0.311 
0.173 
0.259 
0.174 
0.013 
0.547 
0.180 
0.198 

0.262 
0.233 
0.273 
0.454 
0.162 
0.105 
0.629 
0.149 

0.333-
0.353 
0.117 
0.308. 
0.254-
0.190 
0.102 
0.544. 

ro.8-
1.0 
5.4 

L3.9. 

Action 3: 

P 3 = 

Q3 = 

-0.455 0.182 0.135 0-228-
0.370 0.280 0.005 0.345 
0.220 0.276 0.270 0.234 

.0.403 0.499 0.071 0.027. 
-0.650 0.121 .,0.126 0.103" 
0.175 0.538 0.134 0.153 
0.064 0.086 0.676 0.174 

.0.204 0.232 0.010 0.554. 

r 3 = 

2.2" 
6.7 
2.6 

Ll.7. 
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Action 4: 

P4 = 

Q 4 = 

-0.255 
0.294 
0.025 
.0.267 
"0.672 
0.004 
0.159 
.0.070 

0.255 
0.108 
0.143 
0.298 
0.103 
0.694 
0.166 
0.172 

0.230 
0.417 
0.352 
0.194 
0.134 
0.109 
0.621 
0.123 

0.260-
0.181 
0.480 
0.241. 
0.091-
0.193 
0.054 
0.635. 
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D A T A S E T D4.2 

Number of States = 4 
Number of Actions = 4 
Number of Signals = 4 

Action 1: 

Action 2: 

Action 3: 

P J = 

0.252 
0.291 
0.171 
0.294 
0.700 
0.075 
0.222 
0.088 

0.210 
0.123 
0.075 
0.010 
0.088 
0.699 
0.016 
0.252 

0.240 
0.149 
0.475 
0.396 
0.131 
0.149 
0.710 
0.149 

0.298 
0.437 
0.279 
0.300 
0.081 
0.077 
0.052 
0.511 

r 1 = 
1.1 
9.2 
4.2 
.9.9 

P 2 = 

Q2 = 

0.375 
0.462 
0.120 
0.222 
0.644 
0.040 
0.050 
0.020 

0.192 
0.121 
0.640 
0.283 
0.156 
0.750 
0.204 
0.038 

0.150 
0.077 
0.092 
0.129 
0.163 
0.088 
0.655 
0.154 

0.283 
0.340 
0.148 
0.366 
0.037 
0.122 
0.091 
0.788 

r 2 = 
T0.8 
8.1 
9.5 

L7.1 

P 3 = 

Q3 

0.255 
0.180 
0.286 
0.157 
0.713 
0.116 
0.076 
0.176 

0.140 
0.395 
0.229 
0.012 
0.002 
0.667 
0.159 
0.083 

0.309 
0.032 
0.273 
0.517 
0.139 
0.020 
0.678 
0.096 

0.296 
0.393 
0.212 
0.314 
0.146 
0.197 
0.087 
0.645 

r 3 = 
T5.5 
7.3 
9.3 

L1.3 
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Action 4: 

P 4 = 

<?4 = 

•0.316 
0.333 
0.280 
.0.149 
•0.728 
0.102 
0.198 
.0.037 

0.188 
0.320 
0.346 
0.185 
0.080 
0.612 
0.123 
0.170 

0.378 
0.228 
0.069 
0.392 
0.072 
0.208 
0.540 
0.260 

0.118 
0.119 
0.305 
0.274 
0.120 
0.078 
0.139 
0.533 

162 



D A T A S E T D4.3 

Number of States = 4 
Number of Actions = 4 
Number of Signals = 4 

Action 1: 

Action 2: 

Action 3: 

PJ = 

Q1 = 

0.016 
0.184 
0.126 
0.344 
0.677 
0.030 
0.172 
0.152 

0.086 
0.237 
0.396 
0.342 
0.239 
0.634 
0.002 
0.079 

0.634 
0.280 
0.298 
0.110 
0.066 
0.185 
0.671 
0.173 

0.264 
0.299 
0.180 
0.204 
0.018 
0.151 
0.155 
0.596 

r 1 = 
'5.7 
8.8 
8.3 
.3.7 

P2 = 

<?2 = 

0.092 
0.133 
0.162 
0.342 
0.559 
0.071 
0.008 
0.210 

0.313 
0.161 
0.355 
0.178 
0.138 
0.638 
0.138 
0.081 

0.151 
0.457 
0.165 
0.304 
0.108 
0.136 
0.687 
0.062 

0.444 
0.249 
0.318 
0.176 
0.195 
0.155 
0.167 
0.647 

r 2 = 
4.3 
3.2 
0.7 
.5.3 

P3 = 

e3 = 

0.244 
0.319 
0.216 
0.131 
0.503 
0.123 
0.243 
0.135 

0.335 
0.137 
0.278 
0.490 
0.085 
0.685 
0.042 
0.129 

0.255 
0.204 
0.140 
0.340 
0.177 
0.136 
0.626 
0.116 

0.166 
0.340 
0.366 
0.039 
0.235 
0.056 
0.089 
0.620 

r 3 = 
T5.8 
8.5 
7.4 
8.3 
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Action 4: 

P 4 = 

Q 4 = 

•0.174 
0.297 
0.140 
.0.222 
0.637 
0.121 
0.185 
.0.137 

0.230 
0.283 
0.260 
0.341 
0.052 
0.675 
0.032 
0.142 

0.372 
0.164 
0.316 
0.055 
0.227 
0.059 
0.675 
0.120 

0.224" 
0.256 
0.284 
0.382. 
0.084" 
0.145 
0.108 
0.601. 
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D A T A S E T D 4 . 4 

Number of States = 4 
Number of Actions = 4 
Number of Signals = 4 

Action 1: 

Action 2: 

Action 3: 

P 1 = 

0.093 
0.269 
0.255 
0.096 
0.634 
0.156 
0.073 
0.124 

0.337 
0.306 
0.352 
0.171 
0.154 
0.612 
0.167 
0.106 

0.226 
0.178 
0.264 
0.354 
0.124 
0.115 
0.670 
0.156 

0.344 
0.247 
0.129 
0.379 
0.088 
0.117 
0.090 
0.614 

r 1 = 
4.2 
4.5 
3.8 

L2.7 

P 2 = 

Q2 = 

0.280 
0.205 
0.284 
0.418 
0.675 
0.302 
0.202 
0.231 

0.162 
0.251 
0.295 
0.379 
0.058 
0.549 
0.157 
0.065 

0.029 
0.322 
0.153 
0.181 
0.153 
0.112 
0.567 
0.110 

0.529 
0.222 
0.268 
0.022 
0.114 
0.037 
0.074 
0.594 

•7.1 
8.9 
5.4 
.6.9 

P 3 = 

Q 3 = 

0.408 
0.307 
0.072 
0.244 
0.563 
0.167 
0.155 
0.091 

0.0 
0.245 
0.346 
0.303 
0.119 
0.584 
0.112 
0.146 

0.355 
0.213 
0.419 
0.208 
0.236 
0.211 
0.601 
0.091 

0.237 
0.235 
0.163 
0.245 
0.082 
0.038 
0.132 
0.672 

r 3 = 
6.2 
2.1 
4.6 

L8.9 
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Action 4 : 

P 4 = 

QA = 

"0.485 
0.280 
0.047 
.0.234 
•0.531 
0.097 
0.089 
.0.080 

0.374 
0.030 
0.147 
0.420 
0.320 
0.603 
0.136 
0.190 

0.086 
0.649 
0.313 
0.046 
0.002 
0.253 
0.590 
0.166 

0.055 
0.041 
0.493 
0.300 
0.147 
0.047 
0.185 
0.564 
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D A T A S E T D4.5 

Number of States = 4 
Number of Actions = 4 
Number of Signals = 4 

Action 1: 

Action 2: 

Action 3: 

P x = 

0.191 
0.230 
0.105 
0.502 
0.536 
0.193 
0.148 
0.146 

0.159 
0.210 
0.370 
0.231 
0.140 
0.541 
0.140 
0.023 

0.325 
0.317 
0.101 
0.088 
0.173 
0.155 
0.608 
0.147 

0.325 
0.243 
0.424 
0.179 
0.151 
0.111 
0.104 
0.684 

r 1 = 
9.4 
2.9 
7.1 
.7.2 

P2 = 

Q2 = 

0.161 
0.280 
0.024 
0.069 
0.681 
0.180 
0.017 
0.200 

0.148 
0.334 
0.422 
0.151 
0.011 
0.680 
0.262 
0.030 

0.318 
0.336 
0.422 
0.303 
0.134 
0.090 
0.504 
0.190 

0.373 
0.050 
0.132 
0.477 
0.174 
0.050 
0.217 
0.580 

r 2 = 
0.1 
5.1 
0.8 

L8.5 

P 3 = 

Q3 = 

0.330 
0.423 
0.412 
0.243 
0.510 
0.122 
0.207 
0.034 

0.200 
0.001 
0.113 
0.034 
0.169 
0.624 
0.046 
0.176 

0.174 
0.168 
0.019 
0.309 
0.255 
0.125 
0.732 
0.236 

0.296 
0.408 
0.456 
0.414 
0.066 
0.129 
0.015 
0.554 

r 3 = 
T6.1 
7.1 
5.1 

L8.9 
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Action 4: 

P 4 = 

"0.194 
0.208 
0.193 
.0.436 
"0.576 
0.120 
0.070 
.0.040 

0.305 
0.212 
0.415 
0.492 
0.287 
0.590 
0.180 
0.254 

0.491 
0.029 
0.181 
0.023 
0.041 
0.143 
0.510 
0.200 

0.010 
0.551 
0.211 
0.049 
0.096 
0.147 
0.240 
0.506 
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D A T A S E T D5.1 

Number of States = 5 
Number of Actions = 3 
Number of Signals = 3 

Action 1: 

P 1 = 

Action 2: 

Action 3: 

"0.064 0.343 0.303 0.106 0.184" 
0.340 0.087 0.214 0.069 0.290 
0.189 0.200 0.402 0.097 0.112 
0.322 0.003 0.053 0.322 0.300 
.0.137 0.292 0.108 0.100 0.363. 
•0.092 0.403 0.505- -10.0-
0.310 0.099 0.591 6.0 
0.431 0.289 0.280 r 1 — 4.9 
0.287 0.304 0.409 3.2 
.0.382 0.213 0.405. . 7.4 . 

Q 3 = 

P 2 = 

Q2 = 

0.425 
0.108 
0.470 
0.173 
0.154 
0.081 
0.736 
0.521 
0.360 
0.040 

0.117 
0.298 
0.033 
0.184 
0.136 
0.495 
0.024 
0.467 
0.199 
0.447 

0.261 
0.092 
0.155 
0.284 
0.236 
0.4241 
0.240 
0.012 
0.441 
0.513 

0.077 
0.320 
0.194 
0.215 
0.128 

r = 

0.120 
0.182 
0.148 
0.144 
0.346 J 

T4.5 
0.2 
2.5 
6.5 

L5.5 

P 3 = 

0.005 0.226 0.292 0.264 0.213" 
0.239 0.126 0.266 0.220 0.149 

= 0.228 0.016 0.259 0.040 0.457 
0.092 0.019 0.518 0.034 0.337 
.0.324 0.272 0.024 0.047 0.333. 
•0.226 0.403 0.371" -2.3" 
0.416 0.144 0.440 7.9 
0.462 0.319 0.219 r 3 = 6.2 
0.260 0.103 0.637 6.5 
.0.508 0.078 0.414. .3.3. 
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A P P E N D I X 2 
R A N D O M G E N E R A T E D T E S T I N G D A T A 
F O R I N F I N I T E H O R I Z O N A L G O R I T H M S 

D A T A S E T 1 

Number of States = 3 
Number of Actions = 3 
Number of Signals = 3 

A c t i o n 1: 
'.483 .268 .249 " '.557 .220 .223' "5.10" 

P 1 = .000 .000 1.000 Qy = .031 .665 .304 r 1 = 5.20 
.000 .698 .302 .223 .111 .667 9.50 

A c t i o n 2: 

A c t i o n 

'.665 .335 .000" .624 .337 .039' "5.80" 
P 2 = .407 .223 .369 Q2 = .215 .706 .080 r2 = 4.60 

_.695 .000 .305 _ .149 .088 .762 1.40_ 

3: 
' .363 .361 .275' '.643 .171 .186" '7.90 

P 3 = .430 .000 .570 Q3 = .121 .727 .152 6.80 
1.000 .000 .000 .256 .102 .643 7.30 
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D A T A S E T 2 

Number of States = 3 
Number of Actions = 6 
Number of Signals = 3 

Action 1: 
.000 .388 .612 .213 .451 .336' '1.90' 

P 1 = .580 .420 .000 Ql = .383 .617 .000 r 1 = 6.20 
.379 .180 .441 .359 .641 .000 9.60 

Action 2: 
'.000 1.000 .000" " 1.000 .000 .000' '2.70" 

P2 = .479 .000 .521 Q2 = .691 .000 .309 r 2 = 8.70 
.529 .000 .471 .000 .527 .473 5.60 

Action 3: 

.324 .291 .385" '.000 .643 .357" "1.80" 
P 3 = .506 .000 .494 Q 3 = .321 .000 .679 r 3 = 6.20 

.000 1.000 .000 .486 .000 .514 8.10 

Action 4: 

'.716 .002 .282" '.844 .043 .112' "7.20' 
P4 = .171 .612 .216 Q4 = .339 .534 .127 r 4 = 4.10 

.124 .214 .661 .273 .026 .701 .40 

Action 5: 

.822 .058 .120 .742 .196 .062" "2.00" 
P 5 = .175 .726 .099 Q 5 = .103 .641 .256 r 5 = 2.40 

.215 .065 .721 .147 .208 .645 9.80 

Action 6: 

".666 .033 .301" '.681 .205 .114" "6.20" 
P 6 = .114 .652 .233 Q* = .101 .734 .166 r 6 = 9.60 

.217 .116 .667 .102 .132 .766 4.30 
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D A T A S E T 3 

Number of States = 4 
Number of Actions = 4 
Number of Signals = 4 

Action 1: 

P 1 = 

-.379 .271 .000 .350" 
.000 .341 .407 .252 
.000 .434 .000 .566 
..000 .414 .000 .586. 
".589 .282 .018 .110" 
.057 .721 .144 .077 
.123 .160 .561 .156 

..219 .011 .115 .654. 
r 1 = 

• .20 
5.40 
2.50 
.8.00 

Action 2: 

P 2 = 

Q2 = 

-.000 .631 .000 .369" 
.632 .000 .000 .368 
.000 .000 .523 .477 
..000 .521 .000 .479. 
-.542 .200 .126 .133" 
.180 .658 .157 .005 
.181 .103 .550 .166 
..094 .110 .146 .649. 

r 2 = 
•5.80 
8.40 
7.50 
.1.70 

Action 3: 

Q3 = 

.319 .339 .342 .000" 

.190 .332 .188 .290 

.517 .000 .000 .483 
..000 .378 .000 .622. 
-.522 .021 .169 .287" 
.131 .593 .113 .163 
.017 .233 .612 .138 

..145 .036 .149 .670. 
r 3 = 

9.30 
5.60 
9.70 
.8.80 
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Action 4: 

P 4 = 

Q4 = 

".000 1.000 .000 .000 • 
.416 .000 .584 .000 
.000 .199 .292 .509 
..402 .000 .272 .326 
-.624 .162 .155 .059-
.141 .654 .140 .065 
.129 .232 .600 .038 
..027 .270 .124 .579. 

r 4 = 

•4.20" 
9.40 
4.40 
.2.60. 
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D A T A S E T 4 

Number of States = 5 
Number of Actions = 5 
Number of Signals = 5 

Action 1: 

P 1 

Action 2: 

p 2 

Q2 

.000 .234 .000 .292 .474" 

.266 .397 .000 .000 .337 

.000 .000 .344 .339 .318 

.000 .362 .638 .000 .000 
..274 .248 .000 .303 .175. 
-.705 .011 .041 .030 .214" "2.40-
.058 .655 .164 .052 .071 5.80 
.056 .032 .603 .148 .161 r 1 = 4.20 
.025 .177 .157 .512 .129 2.70 
..150 .112 .082 .100 .555. .2.60. 

.000 .233 .315 .000 .452" 

.347 .360 .000 .000 .293 
= .192 .192 .246 .105 .265 

.000 .000 .279 .721 .000 
..314 .000 .304 .226 .157. 
.531 .210 .014 .099 .146" -3.70-

5.10 
7.60 
5.60 
9.00 

. cr . 

.175 .623 .072 .040 .090 
-3.70-
5.10 
7.60 
5.60 
9.00 

. cr . 

= .197 .064 .542 .190 .006 r 2 = 

-3.70-
5.10 
7.60 
5.60 
9.00 

. cr . 

.006 .082 .226 .634 .052 

-3.70-
5.10 
7.60 
5.60 
9.00 

. cr . ..111 .139 .060 .064 
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-3.70-
5.10 
7.60 
5.60 
9.00 

. cr . 



Action 3: 

<?3 = 

-.275 .257 
.000 .381 
.294 .000 
.343 .264 
..595 .000 
.525 .020 
.036 .636 
.038 .079 
.009 .022 
..035 .024 

Action 4: 

P 4 = 

Q 4 = 

.167 .301 

.343 .000 

.288 .000 
.416 .251 
..264 .433 
".591 .107 
.036 .735 
.002 .131 
.122 .018 
..143 .079 

Action 5: 

P 5 = 

<?5 = 

-.177 .000 
.274 .286 
.284 .145 
.386 .403 
..239 .000 
.571 .224 
.090 .625 
.096 .185 
.024 .042 
..085 .119 

.284 .184 .ooo-

.000 .358 .261 

.000 .335 .371 

.000 .265 .128 

.405 .000 .000. 

.202 .074 .179" '5.50 

.149 .105 .073 1.60 

.600 .072 .210 r 3 = 1.00 

.219 .522 .229 3.70 

.059 .200 .683. .1.70 

.250 .282 .000" 

.207 .450 .000 

.170 .228 .314 

.000 .333 .000 

.000 .304 .000. 

.044 .132 .126" "3.90 

.035 .149 .045 5.90 

.627 .129 .111 r 4 = 3.70 

.181 .617 .062 3.90 

.177 .035 .566. .4.30 

.390 .289 .144" 

.141 .183 .116 

.261 .310 .000 

.000 .211 .000 

.253 .000 .508. 

.120 .078 .0081 "3.20 

.122 .099 .064 1.80 

.556 .154 .010 r 5 = 4.30 

.011 .726 .198 1.50 

.000 .168 .627. .9.10 
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D A T A S E T 5 

Number of States = 6 
Number of Actions = 4 
Number of Signals = 6 

A c t i o n 1: 

P> = 

A c t i o n 2: 

P 2 = 

Q2 = 

-.106 .167 .207 .196 .223 .101" 
.000 .357 .000 .303 .341 .000 
.000 .000 .196 .207 .396 .201 
.000 .254 .164 .153 .187 .242 
.125 .234 .000 .239 .138 .265 
..200 .229 .159 .000 .197 .216. 
".549 .051 .091 .148 .062 .098-
.029 .620 .112 .097 .062 .080 
.003 .007 .559 .203 .044 .183 
.086 .007 .136 .660 .001 .110 
.086 .090 .029 .126 .561 .108 
..084 .099 .019 .042 .144 .612. 

.275 .278 .000 .166 .000 .281" 

.000 .462 .000 .000 .538 .000 

.000 .000 .231 .000 .228 .541 

.173 .298 .177 .182 .169 .000 

.114 .180 .116 .119 .304 .167 
..000 .236 .126 .213 .270 .155. 
-.501 .143 .148 .011 .049 .147" 
.028 .508 .134 .123 .097 .110 
.106 .133 .621 .079 .023 .038 
.092 .017 .150 .527 .066 .148 
.110 .061 .052 .111 .607 .059 
..097 .089 .104 .093 .105 .513. 
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Action 3: 

P 3 = 

Q3 = 

Action 4: 

P 4 = 

Q4 = 

.209 .304 .204 .000 .282 .000" 

.299 .000 .197 .000 .000 .505 

.239 .242 .000 .275 .243 .000 

.000 .000 .325 .000 .343 .332 

.213 .000 .390 .000 .397 .000 

.151 .127 .212 .228 .000 .282. 

.633 .111 .069 .017 .136 .035" 

.030 .618 .148 .154 .018 .032 

.080 .074 .628 .114 .035 .069 

.043 .008 .060 .531 .207 .151 

.112 .080 .097 .101 .572 .038 

.102 .115 .031 .027 .123 .603. 

.179 .345 .000 .000 .269 .207" 

.404 .196 .401 .000 .000 .000 

.186 .221 .210 .000 .383 .000 

.186 .201 .218 .169 .000 .228 

.179 .188 .182 .000 .207 .244 

.268 .000 .000 .402 .000 .330. 

.538 .035 .096 .023 .175 .133" 

.097 .599 .109 .092 .090 .013 

.038 .141 .599 .016 .103 .103 

.074 .075 .120 .547 .134 .050 

.123 .048 .166 .097 .516 .049 

.103 .101 .128 .038 .064 .565. 

r 3 = 

' .30 
9.40 
5.80 
2.60 
2.70 

L1.70 

r 4 = 

6.40 
7.10 
7.60 
6.70 
6.20 
.1.10 
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