
Resource Management
Application Level Message Transfer Systems

By

B A R R Y J E F F R E Y B R A C H M A N

B.Sc. Honours, The University of Regina, 1981
M.Sc, The University of British Columbia, 1983

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

THE FACULTY OF GRADUATE STUDIES
(Department of Computer Science)

We accept this thesis as conforming
to the required standard.

THE UNIVERSITY OF BRITISH COLUMBIA

June 1989
© Barry Jeffrey Brachman, 1989.

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

Department

The University of British Columbia
1956 Main Mall
Vancouver, Canada
V6T 1Y3

Date fort ̂ n flf

Abstract

This thesis is concerned with the design of the resource management com­
ponents of application level, store-and-forward message transfer systems. Al­
though these systems have for some time been used to transport electronic mail,
there has been little investigation into designs that emphasize performance and
correctness aspects. Current message transfer systems are loosely structured in
that there is little, if any, end-to-end resource management.

The thesis begins by characterizing the message handling environment and
comparing the message transfer approach to that of connection-based file trans­
fer. Current message transfer systems have a fundamental limitation in that the
largest message that can be transferred is determined by the amount of storage
available at any of the intermediate hosts along the message's route. Major
components of a message transfer system and design alternatives are discussed.
Existing schemes that deal with solutions designed for lower networking levels
are reviewed and shown to be inadequate in addressing the problems in the
message handling environment.

A framework for designing message transfer systems is presented. Systems
adhering to the design methodology address performance issues in a structured
way. Two new techniques are central to this framework: message fragmentation
and the message stream. Message fragmentation is introduced as a means of
delivering arbitrary size messages. The message stream abstraction is the basis
of flow control and congestion control. A hierarchical technique for deadlock
prevention in the message handling environment is introduced. In this method,
the structured buffer pool approach is used as a top level and is integrated
with a second method at the bottom level to produce a practical, deadlock-free
message transfer system. Methods for providing transit buffer management and
recipient buffer space allocation are discussed. A simulation study of some of the
performance aspects of message streams and recipient buffer space allocation is
presented.

ii

Contents

Abstract ii

List of Tables vii

List of Figures viii

Acknowledgements ix

1 Introduction 1
1.1 The Thesis 4
1.2 Overview of the Rest of the Thesis 6

2 Store-and-Forward Message Transfer 8
2.1 The Message Handling Environment 9

2.1.1 The X.400 Model 11
2.2 Characteristics of Message Transfer Systems 14
2.3 Current Message Transfer Systems 17

2.3.1 The EAN Message Handling System 18
2.3.2 Limitations of Current Message Transfer Systems 19

2.4 Connection-Based File Transfer Systems 20
2.4.1 Message Transfer vs. Connection-Based Transfer 21

2.5 Summary 26

3 Issues in the Design of Message Transfer Systems 28
3.1 Message Fragmentation 29
3.2 Buffer Management 31

iii

3.2.1 Fragment Sizes 32
3.2.1.1 Fixed Size Fragments 32
3.2.1.2 Variable Size Fragments 33
3.2.1.3 Hybrid 33

3.2.2 Buffering Strategies 34
3.2.2.1 Static Buffer Management 35
3.2.2.2 Adaptive Buffer Management 36
3.2.2.3 Buffer Management in the Message Handling Environment 37

3.2.3 Layering Concerns 40
3.2.4 Reassembly and Gateways 42

3.3 Deadlock 43
3.4 Flow Control 44
3.5 Congestion Control 45

3.5.1 Network and Transport Level Congestion Control 49
3.5.1.1 Buffer Class-Based Congestion Control 52

3.5.2 Application Level Flow and Congestion Control 53
3.6 Fairness 56
3.7 Network Traffic Patterns 62
3.8 Summary 64

4 Store-and-Forward Deadlock Prevention 65

4.1 Existing Techniques 66
4.2 A Hierarchical Solution 71

4.2.1 Intracluster Message Transport 75
4.2.2 Basic Intracluster Message Transport 76

4.2.2.1 The Connection-Based Method 77
4.2.2.2 The Store-and-Forward Oriented Method 78

4.2.3 Enhancements to Basic Intracluster Message Transport 81
4.2.4 Variable Length Messages 82

4.2.5 Application to Packet Switched and Datagram Networks 84
4.3 Summary 85

iv

c

5 A Structure for Message Transfer Systems 86
5.1 Message Fragmentation 87
5.2 The Message Stream 90

5.2.1 Envelope Fragmentation 96
5.2.2 Message Stream Multiplexing 97

5.3 Congestion Control 99
5.4 Buffer Management 100
5.5 Recipient Buffer Space Allocation ' 105

5.5.1 Preallocation 106
5.5.2 Optimistic Transfer 109
5.5.3 Multirecipient Messages Having a Common Recipient MTA 110
5.5.4 A Recipient Buffer Management System Ill

5.6 Fairness Issues 114
5.7 Tuning, Maintenance, and Disaster Recovery 115
5.8 Summary 116

6 Simulation Experiments 117
6.1 The Xsim Discrete-Event Simulator 118
6.2 Methodology 120

6.2.1 Common Simulation Elements 121
6.2.2 The Fragmenting Approach 125
6.2.3 The Non-Fragmenting Approach 128
6.2.4 Network Topologies 128
6.2.5 Simulation Parameters 129

6.3 Results 131
6.3.1 Unidirectional Ring 132
6.3.2 Bidirectional Ring 137
6.3.3 Linear Array 137
6.3.4 CDNnet Subset 137

6.3.5 Sensitivity to Workload 145
6.4 Summary 145

v

7 Conclusions 149
7.1 Summary and Evaluation 149
7.2 Future Work and Research Directions 150

8 References 154

9 Glossary 167

vi

List of Tables

3.1 Message Traffic Summary 64

6.1 Distribution of Message Sizes 123
6.2 Major Simulation Parameters 129

vii

List of Figures

2.1 The Message Handling Environment 12

2.2 An Example Network Organization 15

2.3 A Six Host Network 23

3.1 Network Throughput vs. Offered Load 46
3.2 Unfairness Through Maximized Global Throughput 59
3.3 FIFO Message Multiplexing 61

4.1 Two Interconnected Clusters 73
4.2 A Two-Level Structured Buffer Pool 74
4.3 A Simple S/F Intracluster Buffer System 80
4.4 An Enhanced S/F Intracluster Buffer System 82

6.1 A Single Server Model 120
6.2 CDNnet Subset Topology 130
6.3 Unidirectional Ring: Throughput vs. RBSAD 133
6.4 Bidirectional Ring: Throughput vs. RBSAD 138
6.5 Linear Array: Throughput vs. RBSAD 139
6.6 CDNnet Subset: Throughput vs. RBSAD 141
6.7 CDNnet Subset: Throughput vs. Transmission Time 142
6.8 CDNnet Subset: Delay vs. Message Size 144
6.9 CDNnet Subset: Throughput vs. Fragment Size 146
6.10 Bidirectional Ring: Throughput vs. Interarrival Time 147

viii

Acknowledgement

My sincere thanks go to Dr. Sam Chanson for his supervision and financial assistance.
I am grateful for his patience and gentle but persistent pressure to apply myself to my
thesis work when other projects seemed much more interesting. The writing style and
organization of this thesis have benefited greatly from his many comments and suggestions
over many readings.

I would like to thank my committee members, Dr. Gerry Neufeld, Dr. Son Vuong, and
Dr. Erik Skovgaard, for their time and valuable feedback. Many of the basic problems
addressed by this thesis arose out of discussions with Gerry. Thanks also to Dr. Paul
Gilmore and Dr. Harvey Abramson for serving on my committee early on. I would like to
thank Gregor Bochmann of the Universite de Montreal for serving as the external examiner
and providing constructive criticism.

I would also like to gratefully acknowledge receipt of the MacMillan Graduate Scholar­
ship and the financial support of the Natural Sciences and Engineering Research Council
of Canada.

The comradery and friendship of my fellow graduate students in the department have
made my tenure as a grad student a pleasant experience. Many people have helped me,
some in little ways, some in big ways, for which I am appreciative. Unfortunately, I can
only mention a few here.

Extra special thanks go to a few people who made a big difference: Rick Morrison for
his companionship, good humour, honest feedback, and support, and to Steve and Shelly
Wismath for their friendship, wit (you're so damn cheerful!), and many shared meals.

Thanks to my many office mates over the years for putting up with the occasional bouts
of mania and depression that tracked the highs and lows of my thesis work and for just
being fun to be around: Marc Majka, Jamie Andrews, Don Acton, Ian Cavers, Murray
Goldberg, and Rick Morrison. Thanks guys.

I am grateful to my parents for always encouraging and supporting my academic ac­
tivities and giving me the freedom to pursue my own goals and interests. I would like to
dedicate this work to them.

ix

Chapte r 1

Introduction

Not long after computer systems became widely available it was discovered that it would

be useful for them to communicate with each other. The study of computer networking fol­

lowed. Over time, protocols were developed and standards adopted to make communication

easier. Concepts such as peer process abstraction and hierarchical network architectures

have recently been promoted as means of structuring and simplifying models of networks

and networking software. Even so, the study of computer networks has not reached ma­

turity. Most research to date has been concerned with lower networking levels; i.e., levels

closer to the hardware. In particular, packet-switching networks have been extensively

studied. Higher networking layers and alternatives to packet switching have not received

as much attention as they deserve.

When the computer systems constituting a network are not fully interconnected, one

means of providing communication between any two computer systems is through store-

and-forward transfer. Store-and-forward transfer allows data to be sent between systems

that cannot communicate directly with each other. A succession of intermediate systems

receive a copy of the data and forward it until the data reaches its destination. This model of

data transfer has long been used at the network level as a means of transporting packets and

1

CHAPTER 1. INTRODUCTION 2

datagrams. Here, the user (the application level) is presented with the illusion that there

is a direct connection to the other communicating entity (i.e., end-to-end communication).

The intent is usually to provide a means of communication having low delay so that it

appears to the user that there is a direct connection between the two end points. It is not

always the case, however, that hosts that wish to communicate share a network level that

supports end-to-end communication. Higher networking levels must provide the capability.

Store-and-forward transfer is widely used at the application level to send "electronic

mail". In general, the electronic mail system comprises hosts that do not share a sin­

gle network level and therefore end-to-end communication between all pairs of hosts is

not supported at the network level. Electronic mail must therefore be relayed from one

computer to the next, by application level entities, until it is delivered to each recipient.

The term application level, store-and-forward message transfer is used for the technique of

store-and-forward transfer of a message in an environment where network level end-to-end

communication may not always be possible. The message transfer system is responsible

for transporting electronic mail from one end point to the other.

The basic task of a message transfer system is to distribute a sequence of bytes provided

by a user from one location to one or more locations. The message transfer system is not

concerned, or at least should not be concerned, with exactly what the user is transferring. It

is, therefore, application-independent. It may be called on to transfer a small interpersonal

message or to distribute a very large file.

In contrast to the large body of research aimed at the lower networking levels, there

has been little work focussed on the fundamental problems of application level store-and-

forward transfer. In particular, flow and congestion control aspects of these systems have

not been studied. As both the number of users and applications of messaging increases, so

CHAPTER 1. INTRODUCTION 3

does the need to address performance issues. This thesis presents a framework for designing

message transfer systems that addresses some of these issues.

From a higher level vantage, a network can be viewed as an administrative or commu­

nication domain rather than simply as a collection of computers that communicate using

some common low-level protocol. It is typically this latter, myopic image that comes to

mind, however, when the word "network" is used. Interconnection of disparate networks

is becoming widespread. Message transfer systems provide a relatively simple means of

interconnecting individual administrative domains.

The advent of international standards for message handling systems is a first step in

moving from an environment consisting of largely autonomous computer systems providing

electronic mail service to a more homogeneous and cooperative environment [Redell83].

The design methodology introduced in this thesis advocates certain forms of organization

and techniques that create a coherent communication system out of what are currently

loosely coupled collections of computers (sometimes called a federation). The resulting

systems are well suited to the task of internetwork message transfer.

This thesis emphasizes practical solutions to some of the problems posed by message

transfer, primarily those related to resource management. For example, parts of this thesis

discuss various buffer management schemes designed for packet-switching or datagram

networks and evaluate their use in the message handling environment. While some of

these schemes might function in the message handling environment, it is argued that they

are impractical.

The main alternative to store-and-forward message transfer is connection-based trans­

fer. It is not the position of this thesis that store-and-forward message transfer should

replace connection-based systems. They can be seen as complimentary approaches. In

CHAPTER 1. INTRODUCTION 4

many circumstances, however, connection-based transfer is not possible or is inferior in

some respect.

In the last few years much effort has been put forth to create standards for message

handling systems. In particular, the CCITT's X.400 series of recommendations1 define

message formats, protocols, and a model for message transfer. This thesis deals with

many areas not addressed in the standardization efforts.

1.1 The Thesis

The major goal of this research is to investigate message transfer systems and aid the

design of systems that:

• are able to transport arbitrary length messages via fragmentation,

• are largely independent of network connectivity and transmission media so that they

can adapt to network reconfiguration and the introduction of new technologies,

• are deadlock-free,

• are fairly efficient in terms of operational costs (resources, communication, labour),

• offer reasonable delivery times,

• perform well under load, and

• are "fair" in that no users receive undue preferential treatment due to their location

in the network, traffic patterns, or network control parameters and algorithms.

Four major contributions of this research can be identified:

1 The ISO variant of the X.400 recommendations is known as ISO 100021-1 (Information Processing
Systems - Text Communication - Message Oriented Text Interchange Systems [MOTIS]).

CHAPTER 1. INTRODUCTION 5

1. A characterization of store-and-forward message transfer, its advantages, disadvan­

tages, and special problems is given. Such a characterization does not appear in the

literature and seems long overdue.

2. A new deadlock prevention scheme, especially suited to the message handling envi­

ronment is presented. Existing schemes, intended for lower networking levels, suffer

many drawbacks that make them impractical for the message handling environment.

3. A structure for the design of message transfer systems is developed. Existing systems

have been implemented, typically not through a careful analysis of the basic problems,

but rather using simple, unorganized, and ad hoc techniques.

4. A simulation study was undertaken to compare the performance of message transfer

systems comprised of major elements of the proposed framework to that of current

systems.

This thesis is not concerned with the details of a particular design but with the more

general task of how to design message transfer systems. A particular design must take into

consideration a large number of details, many of which are dependent on the environment

in which the system must operate.

Much of this thesis deals with efficient resource management, in particular, buffer space

and communication link usage. It might be argued that cheaper memory and faster com­

munication devices will eventually eliminate the need to be concerned with resource usage.

This will probably not be the case as ever increasing capacities and performance will simply

lead to growing use. Increasing numbers of users and applications will impose more and

larger demands on computer systems. It seems likely that the classic time-space tradeoff

will continue to be brought into play as technology improves. Further, the possibility al-

CHAPTER 1. INTRODUCTION 6

ways exists for accidental or malicious misuse of resources. Since the supply of resources

is finite, some form of management is required. From a theoretical perspective, increased

capacities merely postpone problems such as congestion instead of eliminating them.

It might also be argued that universal connection-based communication will some day

be possible, eliminating the need to use store-and-forward transfer techniques. While this

may come to pass, as long as there are independent networks and only partial connectivity,

store-and-forward transfer will be necessary. There are many technical, economic, and

political barriers to be removed before full interconnection can occur. Some aspects of this

thesis concerned with resource management are applicable even to fully interconnected

networks.

1.2 Overview of the Rest of the Thesis

Chapter 2 reviews the standard model of message transfer and characterizes store-and-

forward message transfer. Limitations and difficulties presented by this model are dis­

cussed. The application level store-and-forward message transfer paradigm is compared to

that of connection-based file transfer.

Chapter 3 focusses on the major problems that must be addressed in store-and-forward

message transfer. These include message fragmentation, buffer management, deadlock

control, flow control, congestion control, and fairness. The relevant literature is surveyed.

A new, hierarchical scheme for deadlock prevention is presented in Chapter 4. This

scheme is well suited to the message handling environment but is also applicable to lower

networking levels. The suitability of existing deadlock prevention schemes to the message

handling environment is analyzed.

A structure for the design of message transfer systems is detailed in Chapter 5. The

CHAPTER 1. INTRODUCTION 7

framework deals with basic concepts, general purpose approaches, and tradeoffs that must

be weighed in any design. The chapter is mainly concerned with problems related to

resource management, such as flow control and congestion control. Some aspects of the

design of message transfer systems are not included (e.g., message routing and security

considerations).

Discrete-event simulations were performed to study performance aspects of several of

the most important mechanisms proposed in Chapter 5. The mechanisms were investigated

under a range of traffic conditions and in various network configurations. Details of the

experiments, results, and conclusions are the subject of Chapter 6.

Chapter 7 is concerned with problems that remain open and interesting research di­

rections prompted by this research. A summary and evaluation of the significance of the

thesis is presented.

Although an attempt has been made to make the thesis reasonably self-contained, a

familiarity with basic elements of computer networking and operating systems is assumed

throughout. In particular, an understanding of the OSI Reference Model and the concept of

networking layers is important [Day83]. Although much of the X.400 model's terminology

and many of its concepts are used in this thesis, comments are not restricted to the X.411

Message Transfer Layer Service, but rather refer to message transfer systems in general.

Abbreviations and acronyms have been collected in a glossary.

Chapter 2

Store-and
Transfer

Forward Message

This chapter introduces the message handling environment and describes the basic oper­

ation and characteristics of application level [Bartoli83, Day83] store-and-forward (S/F)

message transfer systems.1 For the sake of brevity, application level S/F message transfer

systems will be referred to simply as message transfer systems or messaging systems and

the technique as message transfer or messaging. Terminology and functionality are bor­

rowed from the X.400 model of messaging.2 The structure of the EAN Message Handling

System [Neufeld86], a system which reflects the state of the art, is outlined. Some of the

limitations of current message transfer systems are listed. The primary alternative to S/F

message transfer is connection-based file transfer. These two approaches are compared and

contrasted.
1 A n e a r l i e r v e r s i o n o f t h i s m a t e r i a l a p p e a r s i n [B r a c h m a n 8 8 a] .

2 T h e C C I T T r e c o m m e n d a t i o n s o n m e s s a g e h a n d l i n g s y s t e m s c o n s i s t o f s e v e r a l s e p a r a t e p r o p o s a l s , e a c h

d e a l i n g w i t h a s p e c i f i c a s p e c t o f m e s s a g e h a n d l i n g . U n l e s s o t h e r w i s e s p e c i f i e d , t h e y w i l l b e r e f e r r e d t o

c o l l e c t i v e l y b y t h e n a m e o f t h e first r e c o m m e n d a t i o n , X . 4 0 0 . D i f f e r e n c e s b e t w e e n t h e v a r i o u s v e r s i o n s

a n d d r a f t s o f t h e X . 4 0 0 r e c o m m e n d a t i o n s h a v e l i t t l e i n f l u e n c e o n t h i s t h e s i s . W h e n i t i s n e c e s s a r y t o

m a k e a d i s t i n c t i o n , t h e e a r l i e r v e r s i o n w i l l b e r e f e r r e d t o a s X . 4 0 0 / 1 9 8 4 a n d t h e m o r e r e c e n t v e r s i o n a s

X . 4 0 0 / 1 9 8 8 .

CHAPTER 2. STORE-AND-FORWARD MESSAGE TRANSFER 9

2.1 The Message Handling Environment

The transfer of an application level message from an originator to a recipient by transfer­

ring the entire message from one host to the next until the message arrives at the final

destination is called S/F message-based transfer. A message may be addressed to any num­

ber of recipients (i.e., it may be a multirecipient message). The entity that is responsible

for storing and forwarding messages is the message transfer agent (MTA). The subnet in­

terconnects the hosts that constitute the network and carries messages from host to host.

The subnet and the MTAs collectively make up the message transfer system (MTS). The

MTS provides the general, application-independent, store-and-forward message transfer

service.

Two MTAs are said to have a message connection if there is some S/F path between

them. An important characteristic of S/F transfer is that there need not be a continuously

available connection between any two MTAs. A pair of MTAs that can establish an end-

to-end connection is said to be adjacent, with one M T A being the sender and the other the

receiver. There may, of course, be hosts that do not act as MTAs but rather participate in

network level data transfer between MTAs.

A reliable transfer server (RTS) is the part of an M T A that establishes a session with

an adjacent M T A and provides an error-free communication channel called an RTS connec­

tion. Such features as checkpointing (synchronization) and recovery, bidirectional transfer,

quality of service specifications, multiplexed transport connections, and error detection and

recovery may be provided by underlying protocol levels. The connection may physically

pass through other nodes, hosts, or even networks. Multiple physical connections between

adjacent MTAs may be supported. This permits a tradeoff between cost and delay. For

example, an M T A may delay forwarding a message over a telephone line until a lower toll

CHAPTER 2. STORE-AND-FORWARD MESSAGE TRANSFER 10

rate takes effect instead of using a more expensive X.25 circuit immediately.

In the simplest case, end-to-end communication in the message handling environment

is observed at two levels. The higher level communication is between the originator of a

message and a recipient. The lower level communication is between two adjacent MTAs

over an RTS connection. The following terms are used to identify the end points of the

two levels of end-to-end communication:

Originating MTA - the first MTA to receive the message and become respon­
sible for forwarding the message to one or more adjacent
MTAs

Recipient MTA - an MTA that services one or more of the recipients spec­
ified by the message

Sending MTA - an MTA that has stored a message and is in the process
of forwarding it

Receiving MTA - an MTA that receives a message that it will store and
subsequently forward, deliver to a local recipient, or both.

Communication between a pair of MTAs involves four phases: session establishment,

negotiation, data transfer, and release. One MTA establishes an RTS connection to the

other, either because it has one or more messages to send or because it is polling to see

if the other MTA has messages to send. Once a connection is established, negotiation

may take place to determine which message or messages, if any, to transfer. In the usual

case, after a message has been successfully forwarded the receiver becomes responsible

for the message and the sender may delete its copy. In some cases negotiation simply

consists of taking turns transmitting messages. More sophisticated MTAs might support

repeated negotiation and transmission phases. The RTS connection is released when no

more messages can be sent. An MTA may allow several simultaneous RTS connections to

another MTA. There may also be simultaneous RTS connections to different MTAs.

CHAPTER 2. STORE-AND-FORWARD MESSAGE TRANSFER 11

2.1.1 The X.400 Model

This section provides an overview of the terminology and model of message handling speci­

fied in the X.400 recommendations on message handling systems [CCITT88a, Cunningham83]

Both Sadowski [Sadowski84] and Koorland [Koorland85a] provide more complete descrip­

tions of the X.400/1984 recommendations and their application to tasks other than inter­

personal mail.

In the X.400/1988 model, a user is either a person or a computer process. The user

agent (UA) is an application program that assists the originator in preparing messages to

be submitted to the MTS. The message handling system (MHS) may be indirectly used

through an access unit (AU) that links another communication system to the MTS. The

message store (MS) acts as a storage facility for messages and is an intermediary between

a UA and an MTA. The collection of UAs, MSs, AUs, and MTAs makes up the MHS. The

MTS relays and delivers messages to the intended recipient UAs, which then make the

messages available to the intended recipients. The MHS and all of its users are collectively

referred to as the message handling environment (MHE) (Figure 2.1).

The primary purpose of the MTS is to transport information objects called messages.

A message consists of an arbitrary length envelope and an arbitrary amount of content.3

The envelope carries information to be used by the MTS when transferring the message;

e.g., the list of recipients to whom the message is to be sent. The message content is used

by UAs and AUs4 and is the information that the originating UA wishes delivered to one

or more recipient UAs. Within the X.400 recommendations, the term protocol denotes

those rules that govern the transmittal of messages, and the syntax and semantics of their

3 This is not exactly true for X.400/1988. There is a limit of 32767 recipients and 2 3 1 - 1 bytes of content.
4 An M T A may convert the content from one format to another, however.

CHAPTER 2. STORE-AND-FORWARD MESSAGE TRANSFER 12

Other Telematic Services User

MHS 1
AU

MTS

User

User

UA

•> UA

/

MTA v

MTA MTA MTA MTA

\ r
MTA MTA MTA MTA MS UA User

Figure 2.1: The Message Handling Environment

CHAPTER 2. STORE-AND-FORWARD MESSAGE TRANSFER 13

contents. Both the envelope and its contents are formatted according to a given protocol.

The envelope is structured according to the protocol specified in Recommendation X.411

[CCITT88b]; the content may be structured according to whichever protocol best suits a

particular application. UAs that cooperate with each other by using the same message

protocol form a class of UAs.

A second type of information object, a probe, is sent to a recipient's MTA to determine

the deliverability of a described message. A probe has no content but its envelope is similar

to that of a message. The probe's envelope indicates the length of the content of the

described message.

In addition to conveying messages generated by a UA, MTAs may themselves generate

a third type of information object, a report message, for delivery by the MTS. Report

messages are generated upon request of the originating MTA or in response to an exception.

Two examples are the non-delivery report message and the confirmation of delivery report

message. A non-delivery report message is delivered to the originating MTA of a message

that could not be delivered to an intended recipient. When submitting a message, the

originating MTA may request that a report message be returned when the message is

delivered.

Every user of the MHS is assigned at least one identifier, called an originator/recipient

name (0/R name), that unambiguously identifies the user in the MHS. An originator/recipient

address (0/R address) is an attribute list that helps the MTS locate the user's point of

access to the MHS.

Message handling functions can be considered to be divided into two layers: the user

agent layer (UAL) and the message transfer layer (MTL). The two corresponding functional

entities are the user agent entity (UAE) and the message transfer agent entity (MTAE).

CHAPTER 2. STORE-AND-FORWARD MESSAGE TRANSFER 14

The UAE deals with the representation of the message's contents and other cooperating UA

layer functionality. An originator or recipient above the UAL is able to use the capabilities

provided by the cooperation of the UAEs and MTL below. The MTAE supports the layer

services of the MTL in cooperation with other MTAEs.

2.2 Characteristics of Message Transfer Systems

Messaging systems have several characteristics that differentiate them from other forms of

data transport. Major characteristics of message transfer systems include the following:

1. It is not necessary to establish an end-to-end connection (originator to recipient) to

transfer a message. Only a message connection is required.

2. There are few restrictions on the network topology5 and the network may be het­

erogeneous. Many different types of transmission media (e.g., telephone, Ethernet,

common carrier, leased line) may make up the subnet. It may be the case that only

one MTA of a receiver/sender pair is capable of initiating a connection.

3. A possibly indeterminate (but finite) delay may be incurred before a message can be

forwarded. This delay may range from less than a second to several days.

4. Adjacent MTAs may use any reliable protocol (e.g., ISO Transport, TCP/IP) to

transfer messages.

5. In X.400/1988, recipients of a message may be indirectly specified in a "distribution

list" or "mailing list" containing O/R names. A message sent to the distribution list

5 The term network topology refers to the way the hosts forming a network are interconnected, including
adjacency information, types and availability of transport connections, and transfer rates. A heteroge­
neous network consists of hosts of varying type and capacity, not necessarily running the same operating
system.

CHAPTER 2. STORE-AND-FORWARD MESSAGE TRANSFER 15

is forwarded to each 0/R name in the list. Distribution lists can be nested; i.e., they

can contain the 0/R names of other distribution lists.

Figure 2.2 depicts a simple network consisting of nine MTAs interconnected in various

ways. A message sent from MTAo (the originating MTA) to MTA 4 (the recipient MTA)

might be forwarded through MTAi, MTA2, and MTA3 before arriving at MTA4.

Figure 2.2: An Example Network Organization

Electronic mail systems are the most common application of message transfer but the

technique is also used by file transfer applications [Sadowski84, Brachman86] and to access

remote databases [Koorland85a, Koorland85b]. Other applications that can take advantage

of the offline nature of message transfer, including interlibrary loan systems, are under

development.

CHAPTER 2. STORE-AND-FORWARD MESSAGE TRANSFER 16

An important difference between application level and network level transfer is that the

former must store messages on secondary storage to be able to support reliable transfers

in the presence of failures. Therefore, references to buffer space in the context of message

transfer implies the use of disk storage space.

Application level messages, as implemented in current messaging systems, can be viewed

as arbitrary length, multirecipient datagrams. Like the datagram environment, there is a

single submission event and a single delivery event. Once accepted by the message transfer

system, a message will be delivered unless either of two events occur: the message expires

or is destroyed by some action outside the control of the system (such as the failure of

an MTA). Not all of the intended recipients of a multirecipient message may receive the

message.

The more likely event is that the message could not be delivered within the message

lifetime. The message lifetime is the sum of the maximum length of time a message is

given to traverse the network and the maximum length of time a recipient is given to

accept the message after it arrives (the acceptance period). In many current systems the

message lifetime is often simply chosen to be a "big enough" value. The acceptance period

may vary among different MTAs. Sometime after a message arrives at its destination it is

"secured" and is considered to be outside the. message handling system and not subject to

destruction by the system. Typically, this involves an application accepting a copy of the

message and subsequent removal of the message from a spooling area (i.e., some secondary

storage partition reserved for message storage). If a message is discarded because it is too

old, the originator may optionally be notified that the message could not be delivered.

The other event is a catastrophe that destroys the only copy of the message in the

message handling system. It is assumed that through the use of synchronization methods

CHAPTER 2. STORE-AND-FORWARD MESSAGE TRANSFER 17

and disk storage with routine backups only a rare event can cause the destruction of a

message within the message handling system. Magneto-optical memory, WORM (write-

once, read-many) memory, or stable storage can be used to provide higher reliability than

traditional magnetic disk memory. In certain circumstances a message may be discarded

if a copy exists.

Of primary interest are network topologies that have a hierarchical organization. This is

typical of wide-area networks. The hosts constituting a university campus, an organization,

or a city may be grouped together to form a cluster.6 Each host normally belongs to a

single cluster. Communication within a cluster of hosts is typically fast (e.g., over a

local area network) or cheap (e.g., using telephone lines), while communication between

clusters is typically slower and more expensive (e.g., public carrier, leased Une, long distance

telephone). The number of clusters in a network will tend to be much smaller than the

total number of hosts. A common example of such topologies are message handling systems

where, typically, a small number of cluster gateway MTAs within each cluster serve as

connections between the cluster and the rest of the subnet. An MTA that does not act as

a cluster gateway is called an internal MTA. Few assumptions can be made regarding the

topology of the subnet: message handling systems are often implemented on top of existing

hardware rather than being designed from scratch.

2.3 Current Message Transfer Systems

Many electronic mail systems use the S/F technique to transfer electronic mail. Ex­

amples of widely-used systems are UUCP-based systems [Nowitz78, Nowitz86], MMDF

[Crocker79, Kingston86], Sendmail [Allman86], SMTP-based systems [Postel82], and EAN

6 A similar notion of clusters is used by the Diamond message system [Thomas85].

CHAPTER 2. STORE-AND-FORWARD MESSAGE TRANSFER 18

[Neufeld86].

The EAN messaging system is representative of a state of the art message handling

system. An overview is presented in the next section.

2.3.1 The E A N Message Handling System

EAN [Neufeld86] is a store-and-forward message handling system developed at the Uni­

versity of British Columbia based on the X.400/1984 recommendations. EAN forms the

basis for CDNnet, a Canadian academic network, as well as many European networks

[Quarterman86]. It has been ported to a number of different machine architectures and

operating systems. EAN includes both MTA and UA functionality. Gateways exist to

EAN-based networks and other message handling systems.

In the current implementation, an EAN MTA does not determine the entire route

a message should take. Instead, MTAs use static routing tables to determine only the

next adjacent MTA to which the message should be forwarded. EAN forwards the entire

message at each hop along the route and there is no predetermined maximum message

size. Messages stored at an intermediate MTA share a common buffer area on a first-come,

first-served basis. Under certain circumstances a message can expire and be discarded by

an intermediate MTA. 7 Some of the consequences of these design decisions are discussed

in subsequent chapters.

EAN can use several types of network connections and supports several protocols for

network level connections, including X.25, TTXP, 8 TCP/IP, and DECnet. The system

7 A surprising side effect of this has been observed. If a message from a non-X.400 MHS passes through
an X.400 gateway it is possible for it to be expired immediately. In some major message handling
protocols, the envelope does not contain the creation date of the message, and although user-specified
date information in the header is not always trustworthy, E A N uses it anyway [Demco88].

8 T T X P is a half-duplex protocol based on the M M D F [Crocker79] protocol. It is used by MTAs that
have terminal access (PAD) to an X.25 network, a connection to the telephone network, or a direct

CHAPTER 2. STORE-AND-FORWARD MESSAGE TRANSFER 19

has no global flow control, congestion control, or deadlock prevention components.

When a message arrives at its recipient MTA it is stored in a shared spooling area.

The MTA searches for the recipient's name in a table to determine which program should

be notified of the arrival of the new message. This scheme makes it easy to interface

the message transfer system with arbitrary applications. An application is expected to

eventually accept the message so that it can be deleted from the spooling area. In principle,

a message can sit in the spooling area forever.

2.3.2 Limitations of Current Message Transfer Systems

Current message transfer facilities have a fundamental limitation: if any intermediate MTA

cannot store a message in its entirety due to insufficient buffer space the transfer fails.

Session checkpointing, while a useful mechanism for efficiently continuing a transfer after

a failure, does not address the problem of insufficient space to store the entire message.

Even if there is enough capacity at an intermediate MTA to store a large message, it could

take an indeterminate period of time before enough of this space could be allocated to the

message. During the period of time the MTA stores the large message it could be left with

insufficient space to handle any other message traffic.

A user's only alternatives are to manually fragment the large message into small pieces

or to bypass the message handling system entirely (e.g., by mailing a magnetic tape).

Besides being clumsy, the former may result in inefficiencies since a user is not in a good

position to choose an appropriate fragment size. It also puts the onus on the recipient to

reassemble the message. Worse, it can result in deadlock. The latter alternative is also

unattractive because of the inconvenience, media compatibility problems, and so on.9 A

asynchronous connection to another M T A .
9 Using the postal service to mail magnetic tapes does make sense in some situations. The aphorism "Never

CHAPTER 2. STORE-AND-FORWARD MESSAGE TRANSFER 20

new mechanism, message fragmentation, is needed to automatically and efficiently transfer

messages too large to be completely stored on an intermediate MTA.

No widely used message transfer system offers reliable message delivery. A reliable

messaging system either delivers a message or notifies the originator that the transfer has

failed. As in datagram transport, current messaging systems do not guarantee message

ordering (i.e., messages sent by an originator may be delivered to a recipient in a different

order). This can have important implications for users of the message transfer system.

None of the popular message transfer systems deal with end-to-end issues such as buffer

management, deadlock, flow control, congestion control, and fairness. These issues may

be addressed on a local basis (i.e., at a particular host or between adjacent hosts) but

not on an originator to recipient basis. The message internetwork is, in fact, a mixture of

many different types of message transfer systems that cooperate only on a pair-wise basis

to forward messages.

2.4 Connection-Based File Transfer Systems

In an environment where connections can be established between all hosts, connection-

based file transfer systems offer an alternative to message transfer. Connection-based

file transfer has traditionally been performed using a remote login ("virtual terminal")

approach. The user (or a process acting on behalf of the user) signs on to a remote system

and interacts with it as if the terminal were directly attached to the remote system instead

of being attached to a local computer that is able to establish a connection to the remote

computer. A file is transferred by issuing a command to the local side of the program which

in turn communicates with a remote program. The ISO FTAM standard [IS086] defines a

underestimate the bandwidth of a station wagon filled with magtapes" comes to mind.

CHAPTER 2. STORE-AND-FORWARD MESSAGE TRANSFER 21

connection-oriented system providing file transfer, access, and management services. The

ARPANET FTP [Clopper80], BBN's AUTODIN II [Forsdick80], the Berkeley Unix TIP

[Joy83], and Kermit [Da Cruz84a, Da Cruz84b] are examples of virtual terminal based

(connection-oriented) file transfer systems.

Teng et al. [Teng83] and Aggarwal et al. [Aggarwal85, Aggarwal86] have designed

a connection-oriented file transfer protocol, adopted as an AT&T standard, that allows

offline transfer.

2.4.1 Message Transfer vs. Connection-Based Transfer

Message transfer has a number of advantages over typical virtual-terminal based and

connection-based file transfer:

1. MTAs incapable of establishing an end-to-end connection can send and receive mes­

sages if they have a message connection.

2. There is increased network independence than when end-to-end connections are nec­

essary. Although a message connection may span MTAs that communicate via het­

erogeneous underlying subnets, no special action needs to be taken as the message is

forwarded. If a message is forwarded over an X.25 virtual circuit and then a TCP/IP

connection, for example, the message does not need to be converted to a new format.

In contrast to this, there are many problems associated with datagram level and

virtual circuit internetworking [Sunshine77, Shoch79].

3. Because of its offline nature, it is easier to handle synchronization and error recovery.

Connection-based file transfer methods may need to establish, manage, and maintain

several connections simultaneously for the duration of a transfer. This may be more

CHAPTER 2. STORE-AND-FORWARD MESSAGE TRANSFER 22

difficult to accomplish when there are many intermediate packet-switching nodes

involved since the probability of a failure increases with the number of nodes involved.

The next two advantages are direct consequences of this.

4. Third party transfers are simplified. An example of a third party transfer is trans­

ferring a file from Host B to Host C by sending a request to B from Host A. EANft

[Brachman86], a prototype file transfer system built on top of the Unix version of

EAN, performs a third party transfer simply by generating a message based on the

user's request and sending the request message from the user's host to the EANft

server residing on the host possessing the files. This second host then packages the

files and sends the resulting message to the EANft server at a specified recipient host.

5. Distribution of files to multiple recipients, through a multirecipient message or a

distribution list, is much simpler. From the user's point of view, it is as easy to send

a message to multiple recipients as it is to a single recipient. Transferring files to

more than one recipient typically requires multiple sessions with a connection-based

file transfer system.

6. It is not necessary for the user to login to the destination computer, as is required

in many virtual terminal based approaches. This eliminates the need for system

administrators to maintain individual accounts for users only wishing to transfer

files, and users do not have to learn various login procedures.10 Since the file

transfer system limits the operations a user can perform, it is easy to restrict a user's

access to system resources. The same access control mechanism can be used by all

hosts on the network to limit access to files [Brachman87].

1 0 One popular solution to this problem is to create an "anonymous login" that anyone may use. It has
been noted, however, that this idea is inherently dangerous [Joy83].

CHAPTER 2. STORE-AND-FORWARD MESSAGE TRANSFER 23

7. Since the entire connection is offline, "think time" overhead is eliminated and the

user does not tie up a terminal waiting for the transfer to complete.11

8. Since there is no real-time constraint on delivery of a message, connections between

adjacent MTAs may be conveniently made during favourable rate periods or when

the MTA is able to perform the transfer more efficiently.

9. It is possible to provide the capability of involving files that are not instantaneously

available; e.g., files that are to be read from tape.

Message transfer systems offer certain efficiency advantages over connection-based trans­

fer systems when there are multiple recipients. Figure 2.3 depicts a simple interconnection

of six hosts.

D

A B c B r

Figure 2.3: A Six Host Network
1 1 The transfer need not be offline but given the flexibility of the underlying subnet this is normally the

case.

CHAPTER 2. STORE-AND-FORWARD MESSAGE TRANSFER 24

Suppose a user on Host A wants to transfer an N byte message from A to each of D,

E, and F. In a message handling environment where only adjacent pairs can establish

connections, message transfer will perform five transfers of N bytes each (A —• B,B —>•

C,C —• D,C —• jB,andC —» F) when a multirecipient message is sent. Each MTA on the

route only needs to know the next MTAs to which the message must be forwarded. Five

connections, which need not be concurrent, must be established. In a connection-based

environment where any pair of hosts can establish a connection, the simplest solution is to

establish individual connections to each of D, E, and F.

There are several implementation techniques for storing and forwarding a multirecipient

message at a "splitting point" (i.e., an MTA, such as the one at Host C in this example,

that sends copies of a message to different MTAs adjacent to it). Multiple versions of the

message can be created with the same content but with each envelope specifying a different

recipient list. Duplication of the message content can be avoided by creating new envelopes

that point to the same content. Creation of multiple envelopes can be deferred until the

time a message is forwarded, eliminating additional secondary storage requirements.

The connection-based approach could be improved in terms of the total number of

bytes transferred through each host, thereby reducing the volume of network traffic, by

transferring the message once from A to C and then from C to each of D, E, and F. A

minimum of four connections would be needed and N bytes would flow through each of

B and C as in the message transfer case. The originator must generally know or have

access to the complete network topology, however, to find the optimal strategy in terms of

minimizing the number of connections required and the total number of bytes transferred.

With increasingly complex network topology, the task of efficient connection-based distri­

bution of a message addressed to a large number of recipients would become unmanageable.

CHAPTER 2. STORE-AND-FORWARD MESSAGE TRANSFER 25

Furthermore, if originator to recipient connections are not available, all of the problems as­

sociated with current message transfer systems would be present. For example, if C is used

as an intermediate site it must be able to store the entire message. Without a significantly

more elaborate routing system and equivalent buffer management, the connection-based

approach does no better than message transfer.

Message transfer has several disadvantages over connection-based transfer. Some of

these demonstrate the need for online access in some situations. Conversational access

is not precluded in the MHE but is dependent on network topology. A query/response

model can be used in the message handling environment to approximate connection-based

interactions (e.g., file management tasks). Disadvantages' of message transfer include the

following.

1. In current systems, the maximum size of a transfer is limited by the smallest amount

of available space on any machine involved in the transfer.

2. The originator may not know when the transfer will actually occur after the request

is submitted, although it may be possible to associate a priority with a request.

A message transfer system can, of course, notify the originator when the transfer

completes and the originator may be able to inquire about the status of a particular

transfer.

3. Because of its offline nature, there may be some delay between when an exception

occurs and when the originator is notified.

4. Several different transactions may be required for a user to perform a particular task

that could be done much more quickly by a connection-based system; e.g., obtain a

directory listing and then transfer a file appearing in the listing. The query/response

CHAPTER 2. STORE-AND-FORWARD MESSAGE TRANSFER 26

approach may be more wasteful of resources since the result of a management request

may return information that the user only wants to read once and not have stored. In

a connection-based system, a user is usually able to interrupt a remote application.

5. It is more difficult to abort a request once it has been submitted. Again, a connection-

based system usually supports interrupts.

2.5 Summary

An overview of message handling and the message handling environment has been pre­

sented. Allowing arbitrary network topology implies that end-to-end network level con­

nections may not be possible and S/F message transfer is required. Therefore, techniques

making heavy use of end-to-end acknowledgements are impractical.

Unique aspects of messaging include:

• End-to-end network level connections between originator and recipient are unneces­

sary.

• Multirecipient messages are supported.

• Variable length and very large messages may be transferred.

• Multiple physical connections between adjacent MTAs are possible. This allows a

tradeoff between cost and delay.

• Distribution lists are easily supported.

• Secondary storage is used to buffer messages.

• The message handling system may span many heterogeneous networks.

CHAPTER 2. STORE-AND-FORWARD MESSAGE TRANSFER 27

Although message transfer offers a number of advantages over connection-based trans­

fer, current systems have a fundamental limitation and may suffer from performance and

fairness related problems. These problems are more closely examined in the next chapter.

C h a p t e r 3

Issues in the Design of Message
Transfer Systems

The design of message transfer systems that offer improved performance and fairness char­

acteristics over current systems necessitates a study of the major components of these sys­

tems. It is argued that message fragmentation, buffer management, deadlock management,

flow control, and congestion control are required to increase the reliability, flexibility, ro­

bustness, and performance characteristics of message transfer systems. This chapter looks

at these components, surveying related research at lower networking levels and identify­

ing problems that currently have no satisfactory solution. Subsequent chapters expand on

these ideas and introduce solutions. Other issues, such as reliability, routing, and security,

are beyond the scope of this thesis and are not addressed.

After a discussion of application level message fragmentation in Section 3.1, the man­

agement of store-and-forward buffers is addressed in Section 3.2. Deadlock, flow control,

and congestion control are examined in the three subsequent sections. Section 3.6 looks

at the fair management of network resources and the tradeoffs involved. A study of mes­

sage traffic is presented in Section 3.7 and the chapter concludes with a summary. Before

discussing the design issues, two important concepts are introduced.

28

CHAPTER 3. ISSUES IN THE DESIGN OF MESSAGE TRANSFER SYSTEMS 29

There is a need in a distributed system, such as a message handling system, to distribute

routing or tuning information, perform control functions (e.g., acquire or release buffer

space), or to query remote systems for performance, statistical, or state information. To a

great extent, a message handling system can use itself to accomplish this. A message sent

by one MTA to another to perform some function internal to the message handling system

is called a control message.

It is convenient for a message handling system to consider messages that are related to

each other in some way to belong to a class of messages. Messages sharing some charac­

teristic, such as originating user, originating cluster, or priority level are said to belong to

the same traffic group. A message can belong to more than one traffic group.

3.1 Message Fragmentation

Fragmenting a message involves breaking it into two or more pieces, each of which is

also a message (i.e., a fragment consists of an envelope and some portion of the original

message's content).1 No widely used message handling system currently performs message

fragmentation.

When buffer space is at a premium, fragmentation allows it to be shared more equitably

since large messages need not be stored in their entirety at intermediate MTAs.

Message fragmentation can provide other benefits. First, fragmentation allows for re­

duced transfer time by increasing parallelism in the transfer of a message through "pipelin­

ing": while an MTA is receiving fragment number N it may be able to forward fragment

N — 1 to the next MTA. Pipelining may also result in much lower buffer occupancy (storage-

time product) at intermediate MTAs. For example, suppose a large message arrives at an

1 An alternate approach is discussed in Section 5.2.1.

CHAPTER 3. ISSUES IN THE DESIGN OF MESSAGE TRANSFER SYSTEMS 30

intermediate MTA but the only link to the next MTA on the route goes down before

the message can be forwarded. The large message takes up buffer space that could be

used for other purposes at the intermediate MTA. In such a case, fragmentation, in con­

junction with an appropriate buffer sharing policy, might result in at least some of the

fragments being routed around the intermediate MTA. Second, it may be possible for frag­

ments of a message to follow different routes in parallel, thereby reducing the transfer time

for the original message. Also, MTAs that cannot establish multiple physical or virtual

connections to adjacent MTAs may use fragmentation to reduce mean queuing delay by

effectively time-sharing communication channels. For these reasons it may be desirable to

fragment messages even if sufficient space is always available. These ideas are also relevant

to packet-switching networks.

Fragmenting messages introduces additional complexity to the MTA. As well as keep­

ing track of individual fragments, an MTA must deal with confirmation of delivery and

exception reports; e.g., the originator should receive a single confirmation of delivery report

when the last fragment is delivered to a particular recipient. The handling of the expiry

date of a message must be modified to prevent the first arriving fragments from expiring

before the remaining fragments arrive. Also, an MTA must be able to detect the loss of a

fragment.

Some results obtained for transferring packets and datagrams through a subnet, such

as algorithms developed to prevent S/F buffer deadlock, perform flow control, and manage

buffer allocation, may be adapted for use at the application layer. Packet fragmentation,

both intranet and internet, has been extensively studied [Sunshine77, Shoch79, Bennett82].

Although fragmentation at the application level has some aspects in common with network

and data link level fragmentation, there are also a number of important differences:

CHAPTER 3. ISSUES IN THE DESIGN OF MESSAGE TRANSFER SYSTEMS 31

1. Message connections are used rather than network connections.

2. There is a wide variance in message size. A message may be of arbitrary length

whereas the maximum packet or datagram size is usually fixed.

3. At lower protocol levels the network can safely and economically discard a packet

knowing it will be retransmitted. At higher levels, however, the unit of information

hopping from MTA to MTA is a message that is typically 10 to 1000 times larger

than the lower level packet (see Table 3.1, page 64) and is therefore too expensive

to discard. Furthermore, once an MTA accepts a message it becomes responsible for

delivery of the message. This implies that the message must be saved on secondary

storage until it can be forwarded or delivered. Current message transfer systems are

reluctant to discard a message since there is often no mechanism to retransmit the

message.

3.2 Buffer Management

Buffer management, flow control, congestion control, S/F deadlock control, and message

fragmentation are closely related issues [Gerla80]. For example, a buffer management

policy can be designed so as to provide both flow control and deadlock prevention. Also,

the choice of fragment sizes may depend on the buffer management policy.

When choosing or designing a buffer management policy several aspects must be con­

sidered:

• fragment size

• flow control and congestion control

• S/F buffer deadlock

CHAPTER 3. ISSUES IN THE DESIGN OF MESSAGE TRANSFER SYSTEMS 32

• reassembly and gateways

• layering concerns

3.2.1 Fragment Sizes

Messages may be fragmented into fixed size pieces, variable size pieces, or a hybrid scheme

may be used. The fragment size may be determined a priori for the entire network or

negotiated by adjacent MTAs at session establishment time. The implications are discussed

below.

3.2.1.1 Fixed Size Fragments

Fixed size fragments offer the advantages of easier buffer management and possibly avoiding

inefficiencies caused by repeated fragmentation and reassembly.2

Two alternatives are:

1. Globally fixed - the network management decides on a maximum fragment size, pre­

sumably the largest size that the most limited MTA can deal with. All messages,

except possibly the last, will be of the maximum size. This type of fragmentation is

referred to as source fragmentation since only the originating MTA is responsible for

performing fragmentation.

A fixed size may be inefficient when a transfer involves MTAs with available capacity

much larger than the fixed fragment size. Also, if there is insufficient room on an

intermediate MTA to store an entire fragment, then none of it is transferred.3

2 This is also applicable to datagram fragmentation.
3 If both MTAs support session checkpointing some of the fragment might be transferred and the session

reestablished later. The partial fragment could not be forwarded, however.

CHAPTER 3. ISSUES IN THE DESIGN OF MESSAGE TRANSFER SYSTEMS 33

2. Globally fixed range - the network management decides on several fragment sizes

(say, N bytes, 2N bytes, and 4N bytes). A receiving MTA informs the transmitter

of the size it is willing to accept. If the current available buffer space is less than

the smallest size it doesn't accept any of the message. A fragment of size AN may

subsequently be fragmented into 2 fragments of size 2N or 4 of size 7Y.

3.2.1.2 Variable Size Fragments

1. Entire message - no fragmentation. This is, of course, the simplest strategy but is

unsatisfactory for the reasons given earlier.

2. As large as possible - the receiving MTA accepts as much of the message as it can.

The advantage of this approach is that the mean number of messages that need to be

transferred between adjacent MTAs is minimized. This requires negotiation of the

fragment size between the sending and receiving MTAs.

3.2.1.3 Hybrid

These strategies require negotiation of the fragment size.

1. Locally fixed - a maximum message size is assigned to individual MTAs. When a

connection is established, the receiving MTA informs the sender of the maximum

size it will accept. The result is that adjacent large capacity MTAs can exchange

large messages but that these large messages may subsequently be split into many

fragments if a smaller capacity MTA is on the route.

2. Locally variable - the size is determined at each connection establishment and may

change from connection to connection. When a sending MTA establishes a connec-

CHAPTER 3. ISSUES IN THE DESIGN OF MESSAGE TRANSFER SYSTEMS 34

tion to the receiving MTA in order to transfer a message, the receiving MTA may

determine the size it will accept (from nothing to the entire message) based on its

current state. The receiving MTA may be provided with information on the size and

priority of the message as well as the route the message has taken so far (including

the identity of the originator). In determining the message size it will receive, the

receiving MTA might take into account any of:

• how much buffer space is already being used by messages sent by the sending

MTA

• how much buffer space is already being used by messages sent by the originating

MTA

• how much buffer space is already awaiting transmission to the same adjacent

MTA as the new message (if the receiving MTA can easily determine the route

the new message will take)

• distinctions between "levels of service". The level of service indicated by the

originator of the message (e.g., "low", "normal", "high") and the message type

(e.g., report message or control message) may be taken into account.

The message size may be dependent on the transmission rate. With lower transmis­

sion rates smaller message sizes may be favoured to lower delay for other messages.

3.2.2 Buffering Strategies

There are a number of ways an intermediate host could manage the transit buffers used

to store messages that must be forwarded. These buffer sharing schemes may be static or

adaptive. Adaptive schemes take into account the changing state of the network whereas

static schemes do not.

CHAPTER 3. ISSUES IN THE DESIGN OF MESSAGE TRANSFER SYSTEMS 35

The following two sections discuss buffer management schemes for packet-switched net­

works. Some of the goals and requirements of buffer management in the message handling

environment are outlined in Section 3.2.2.3.

3.2.2.1 Static Buffer Management

Buffer management in Cigale, the datagram packet-switching subnet of the Cyclades net­

work [Pouzin73], is based on two mechanisms. An output queue length limit imposes the

same maximum queue length on all output lines, discarding packets arriving at a full queue.

Packets that arrive when there is no buffer space are acknowledged and then discarded,

leaving retransmission to the end-to-end protocol.

Irland [Irland78] presents a model for allocating buffer space from a buffer pool and de­

rives the computationally simple square-root sharing policy. This policy sets the maximum

number of buffers for each communication link to the total number of buffers divided by

the square root of the number of links.

Kamoun and Kleinrock [Kamoun80a] model five methods, called channel queue limit

(CQL) flow control schemes [Gerla80], for sharing a pool of buffers among a set of commu­

nication channels and discuss their relative merits:

1. complete sharing (CS) shares buffers among all adjacent MTAs on a first-come, first-

served basis

2. complete partitioning (CP) permanently divides the available buffers among the chan­

nels

3. sharing with maximum queue lengths (SMXQ) imposes a limit on the number of

buffers that may be allocated at any time to any channel

CHAPTER 3. ISSUES IN THE DESIGN OF MESSAGE TRANSFER SYSTEMS 36

4. sharing with a minimum allocation (SMA) allocates a minimum number of buffers to

each channel and allows the remaining buffers to be shared without further constraint

5. sharing with a maximum queue and minimum allocation (SMQMA) is SMA with the

additional constraint of a maximum buffer allocation

Kamoun [Kamoun81] proposes a mechanism called drop and throttle flow control (DTFC)

that gives higher priority to transit traffic (i.e., traffic in transit) over new traffic. If the

number of buffers in use at a particular host exceeds a limit value, then new traffic is

rejected in favour of transit traffic. When all buffers are in use, transit traffic may be

discarded.

Given the blocking requirement for each channel, Yum and Dou [Yum84] determine the

minimum buffer size and the best strategy among CS, CP, SMXQ, and SMA that achieves

this minimum under various conditions.

3.2.2.2 Adaptive Buffer Management

For his model of a packet switch, Irland [Irland78] derives the optimal restricted buffer

sharing policy. The optimal choice for the maximum queue length for each of N links

(optimal in that it minimizes the overall probability of losing any packet) is obtained from

closed-form algebraic formulae given the load of each link.

The problem of updating buffer allocations in a CP policy as the traffic load changes

is addressed by Thareja et al. [Thareja82]. A heuristic is described that determines when

a change in partitioning is needed based on the current traffic load of each partition and

changes in system throughput since the last update. Tipper and Sundareshan [Tipper88]

4 The same mechanism is called sharing with discrimination and maximum queue length (SDMXQ) in
[Kamoun80b].

CHAPTER 3. ISSUES IN THE DESIGN OF MESSAGE TRANSFER SYSTEMS 37

formulate the optimal buffer allocation problem in a mathematical optimization framework

and outline several procedures for solving the problem. A simple analytical approximation

to the optimal buffer management policy, valid under moderate to heavy loads and offering

superior performance, is given.

Thareja et al. [Thareja83a, Thareja83b, Thareja84a, Thareja84b] describe a class of

buffer allocation policies called delayed resolution policies (DR) and compare the buffer

occupancy delay incurred by DR policies with that of non-DR policies. In DR policies,

messages are accepted whenever the buffers are not full. When a message arrives and the

buffers are full, a decision is made whether to accept the arriving message and discard

another. The decision is based on the state of the system and upon its past history. DR

policies can adapt to a changing load environment by changing the number of buffers

assigned to each link.

3.2.2.3 Buffer Management in the Message Handling Environment

The following goals are set out for a buffer management policy in the message handling

environment:

1. The policy should be independent of the routing algorithm being used, but should

be able to offer improved performance if information, such as network connectivity,

is available. Changes in the routing algorithm should not require significant changes

to the buffer management policy.

2. The advantages of message fragmentation should be preserved.

3. It should operate well under various traffic conditions - continuous or bursty arrivals

and submissions, a wide range of data transfer rates, and high percentage of short

CHAPTER 3. ISSUES IN THE DESIGN OF MESSAGE TRANSFER SYSTEMS 38

messages and low percentage of very long messages. Network traffic patterns are

discussed in Section 3.7.

4. It should have relatively low overhead.

5. It should be reasonably simple to understand, model, and evaluate.

While it is possible to use a static buffer management policy in the message handling

environment, because of the nature of the traffic, it is expected to behave poorly. Since

it is too expensive to discard a message once it has been accepted,5 DR policies are unac­

ceptable. Using some other type of adaptive policy is attractive, however.

Since in the message handling environment the unit of data transferred between MTAs

is the message, it is possible for an adaptive policy to use information concerning the state

of a particular transfer in addition to the state of adjacent MTAs. Because messages are

submitted like datagrams, in a single submission event, the size of a message is known at the

time of submission and, as far as the message handling system is concerned, the message is

not related to any previous or future submission unless message ordering is enforced. This

is in contrast to stream-based transport level fragmentation [Chapin82, Chapin83]. The

path a message has taken is available since each MTA inserts its name and a time stamp

into the envelope when it obtains the message.

A scheme for adaptively sharing transit buffers might be based on any of the following

techniques:

• Adaptive partitions

An obvious scheme is to extend SMQMA so that the maximum and minimum alloca-

5 Although an M T A may discard a fragment if it already holds a copy of the fragment.

CHAPTER 3. ISSUES IN THE DESIGN OF MESSAGE TRANSFER SYSTEMS 39

tions are dynamically adjusted. Current and estimated near-future conditions would

be considered when periodically readjusting allocations.

• Credit-based

In a credit-based scheme, the sender obtains buffer space credit from the receiver.

When the credit is consumed, the connection must be reestablished at a later time

to transfer more of the message. The receiver may provide a time and date for the

next session. Credits must have a limited lifetime so that space that turns out to

be unused is not reserved indefinitely. A benefit of credits is that polling between

sending and receiving MTAs can be reduced.

• Message stream

The message handling system can treat fragments of the original message as being

related. One can view the sequence of fragments going from the originating MTA to

the recipient MTA as a stream. If all fragments follow the same path, then MTAs

along the route can use this information to prepare in advance for the buffer space

requirements of the transfer. If this scheme is viewed as a type of credit-based scheme

where the reservation of space is implicit, then the lifetime of the stream, as seen by

an intermediate MTA, can be limited so that resources are not reserved indefinitely.

As in some virtual circuit flow control schemes, an upper limit could be imposed on

the amount of space used at an MTA by a particular message stream. This can be

used to throttle submissions of new messages to the network due to "backpressure"

propagating through intermediate MTAs. This flow control scheme is deadlock-free if

buffers are dedicated to a message stream when it is set up. It eliminates the ability

to route messages independently, however.

A system might allow refragmenting; i.e., fragments may themselves be fragmented.

CHAPTER 3. ISSUES IN THE DESIGN OF MESSAGE TRANSFER SYSTEMS 40

The buffer management strategy may take into account, for each adjacent MTA, such

characteristics as the number of simultaneous connections that can be established, the

transfer rate on each connection, the period between transfer sessions, and the expected

traffic volume.

It may on occasion be necessary for the originator to specify that a message should not

be fragmented. It may also be necessary to indicate that a recipient MTA is not capable

of reassembling messages.

Messages entering a non-fragmenting network from a fragmenting network must be

stored in their entirety at the gateway node. This implies that such gateways must have

extra storage capacity.

A system might be designed to handle several classes of message sizes. A combination

of schemes might prove useful; e.g., one technique for "small" messages and a separate

technique for "large" messages. This is possible since the size of a message is known

before it is sent. Note that the introduction of the capability to efficiently transfer large

messages (e.g., by the implementation of a file transfer utility) may itself affect network

traffic characteristics.

3.2.3 Layering Concerns

There is some question as to the right networking level to perform fragmentation and

reassembly. The application program, UA, or MTA could perform the function.

If the maximum message size is predetermined, then fragmentation and reassembly

could be performed by an application program or UA since no size negotiation needs to be

performed. A message could be broken at the source into as many fragments as necessary.

Fragments would never themselves be fragmented. This network-wide fixed size approach

CHAPTER 3. ISSUES IN THE DESIGN OF MESSAGE TRANSFER SYSTEMS 41

is simple but has the disadvantages described earlier.

If the fragment size is not predetermined, then the application program or UA must

be able to communicate with its peer on each MTA to negotiate message size and reserve

space. This has the undesirable implication that the application must know the routing

algorithm used by the underlying message transport layer. It also introduces extra over­

head, expense, and complication since arrangements must be made between each pair of

adjacent MTAs along the route, using the message system or separate interprocess commu­

nication, to negotiate message size. Complications can arise when buffer space is reserved

but the transfer is delayed or cancelled. Fragments must also be passed "up" and "down"

through an extra protocol layer on each intermediate MTA since communication is between

applications.

There are several advantages to having the MTA perform fragmentation and reassembly

rather than the application program or UA:

1. A sending MTA may negotiate the message size with a receiving MTA much more

efficiently at session establishment time.

2. Providing this service within the MTA provides transparent fragmentation and re­

assembly to all service users. The term generalized fragmentation is used for frag­

mentation performed at the MTA layer.

3. Arguing on design grounds, the service user should not be concerned with this prob­

lem. It should submit the message in a single transaction. Higher layer protocols

should leave buffering concerns, etc. to lower layers which probably already have

these capabilities. Concentrating the solutions to these problems in a single layer is

more efficient in terms of the amount of code that must be written and execution

CHAPTER 3. ISSUES IN THE DESIGN OF MESSAGE TRANSFER SYSTEMS 42

efficiency. It allows a more understandable centralized message handling policy to be

used. Also, applications should be isolated whenever possible from routing concerns.

A potential disadvantage of performing fragmentation and reassembly at the MTA layer

is that X.400-based systems would be forced to deviate from the X.400 recommendations;

X.400 does not explicitly provide for negotiation or fragmentation capabilities within the

MTA. It would be possible, however, to interconnect an X.400 system that fragments with

one that does not by having a gateway perform reassembly before forwarding the message to

the non-fragmenting network or by simply suppressing fragmentation on messages destined

for a non-fragmenting network (necessitating a maximum message size and separate transit

buffer system).

It is possible to support fragmentation at both levels by allowing an application to

specify that no fragmentation may occur. The application would receive a non-delivery

report message should a message be undeliverable.

3.2.4 Reassembly and Gateways

It may be desirable to combine or reassemble two or more fragments being sent between

adjacent MTAs. MTAs could reassemble fragments into a larger fragment only taking into

consideration the receiving MTA's space situation. Alternatively, they could reassemble

taking into account whether the message will pass through low capacity MTAs to avoid

having another MTA refragment the message later. The latter scheme would require a

distributed data base of "MTA capacities". Moreover, the route a fragment will take may

be unpredictable.

Just as a lower level fragmentation strategy must be concerned with the interconnection

of networks, so must an application level fragmentation strategy. Depending on the nature

CHAPTER 3. ISSUES IN THE DESIGN OF MESSAGE TRANSFER SYSTEMS 43

of the adjacent network, a gateway MTA may have to wait for the entire message to

arrive before forwarding it to the next MTA. Such characteristics as the maximum message

length and whether the adjacent network can reassemble the message must be taken into

consideration.

The designers of the ARPA internet protocol chose not to have gateways perform re­

assembly since in their environment it can lead to buffering problems, deadlock, increased

transmission delay, and the necessity for all fragments to pass through the same gateway

[Cerf74, Postel81a]. Also, subsequent gateways may need to refragment the packet.

3.3 Deadlock

Designers of S/F networks must take into account the possibility of S/F deadlock. Two

types of deadlock are of primary concern [Giinther81]. Direct S/F deadlock occurs when

two adjacent hosts are both filled up with messages waiting to be transmitted to each other.

Messages cannot be transmitted since there are no empty buffers available at either host

and none of the buffers can be emptied. Indirect S/F deadlock occurs when there are more

than two hosts involved, each waiting upon an adjacent host to accept a message but none

with free buffers. This second type of deadlock is possible even when direct S/F deadlock

is not [Giinther81]. A third type of deadlock, reassembly deadlock, occurs when portions

of two or more messages have arrived at a host leaving no free buffer space. None of the

messages can be forwarded or delivered since they are incomplete but the missing portion

of any message can't be received since there is no place to put it.

Deadlock can be handled in several ways [Isloor80]. Deadlock prevention makes dead­

lock impossible by preallocation and careful management of resources. Deadlock detection

[e.g., Chandy83, Cidon86a, Cidon86b, Chan87] involves the use of a distributed algorithm

CHAPTER 3. ISSUES IN THE DESIGN OF MESSAGE TRANSFER SYSTEMS 44

that detects the presence of a deadlock situation among a knot [Holt72] of nodes. A dead­

lock resolution scheme [e.g., Mitchell84] is invoked or manual intervention is required when

a deadlock situation is detected. The deadlock detection approach offers higher buffer

utilization than the deadlock prevention approach at the expense of extra complexity and

communication costs. Deadlock avoidance makes deadlock impossible by insuring, at the

time a resource is requested, that granting the request will not lead to deadlock. Of course

deadlock can be ignored by the system, relying on operator detection and correction in­

stead. Deadlock detection by an operator may be difficult in a distributed environment,

however.

A S/F deadlock detection or prevention algorithm is needed to keep MTAs from waiting

indefinitely due to running out of buffer space. Because of the goals set out and the nature

of the message handling environment, several complicating factors arise. For example, the

route a message will take may not be known in advance, the topology of the network or

even the number of MTAs in the network may not be known by all MTAs, and a message

may be addressed to multiple recipients.

It is still desirable to prevent deadlock even if old messages are discarded, thereby pre­

empting potential deadlock. Since messages may take a long time to traverse the network a

"pre-deadlock" lockup state could last a considerable time and a sequence of lockup states

may result.

Chapter 4 deals with the problem of deadlock in greater detail and explores techniques

apropos to the message handling environment.

3.4 Flow Control

Flow control is an end-to-end mechanism by which a receiver throttles a sender to prevent

CHAPTER 3. ISSUES IN THE DESIGN OF MESSAGE TRANSFER SYSTEMS 45

data from arriving at a faster rate than the receiver can handle [Tanenbaum81]. Congestion

control deals with the global problem of data arriving at nodes faster than it can be

forwarded [Gerla80, Pouzin81]. Both types of control are necessary for a network to perform

well when it is under heavy load.

There are two basic techniques for achieving transport level flow control. Some trans­

port level protocols use a variable-sized window scheme to prevent a transmitter from

overrunning a slower receiver. In these schemes the receiver sends a negative acknowl­

edgement to the transmitter or simply does not send an acknowledgement, causing the

transmitter to wait. Credit schemes [Pouzin81, Tanenbaum81], on the other hand, prevent

the transmitter from sending until it has obtained an indication from the receiver of the

amount of traffic it is willing to accept.

End-to-end flow control serves two main purposes. First, it can limit the amount

of buffer space concurrently in use at intermediate nodes by an originator-recipient pair,

thereby restricting the buffer space used by any connection. Second, flow control can

prevent the originator from continuing to transmit when the recipient or any intermediate

node is not accepting packets.

3.5 Congestion Control

Figure 3.1 compares the throughput of a theoretical or idealized network to that obtained

by both controlled and uncontrolled network load in a real network. Each node in the

idealized network always has complete knowledge of the network state and there is no

control mechanism overhead. Throughput remains constant while delay increases after

the idealized network reaches the saturation point. If a network imposes no control over

message traffic, throughput will typically follow the curve for the idealized system but begin

CHAPTER 3. ISSUES IN THE DESIGN OF MESSAGE TRANSFER SYSTEMS 46

to drop after a certain point and decline to zero if the system becomes deadlocked. Using

a suitable control mechanism, throughput can increase monotonically until the saturation

point is reached, after which throughput remains stable. The network does not achieve the

maximum theoretical throughput because of the overhead of the mechanism and reduced

resource sharing. Naturally, different control mechanisms will offer different degrees of

performance. If maximal throughput performance is desired, it is the network designer's

goal to develop a mechanism having a throughput curve that closely tracks the theoretical

throughput performance.

Figure 3.1: Network Throughput vs. Offered Load

Because the ideal throughput curve is a result of complete global knowledge of the

network state, it seems obvious that by distributing network state information to each

host higher network throughput could be realized. For example, information about failures,

buffer space utilization, or RTS connection usage could be distributed. Distribution of this

CHAPTER 3. ISSUES IN THE DESIGN OF MESSAGE TRANSFER SYSTEMS 47

information, however, requires use of resources (e.g., processing overhead, buffer space

overhead, network bandwidth requirements) and adds another element of complexity to

the congestion control mechanism. Furthermore, unless some types of information can be

distributed in a timely manner it may be of limited use or even invalid by the time it

is delivered to the recipients. There are also potential problems associated with different

hosts seeing different versions of the information at the same point in time.

A compromise can be reached by distributing certain types of long-lived information

that can be used to improve general performance. It does seem undesirable to globally dis­

tribute large amounts of network topology, short term statistics, and details about commu­

nication between adjacent clusters because of the expense and volatility of the information.6

Network subsystems such as message routing and deadlock prevention may require dis­

tribution of their own types of information and so distribution of information useful to a

congestion control subsystem may involve little additional performance degradation.

Congestion results when the demand for certain network resources is higher than the

supply. The resources of primary concern are buffer space and RTS connections, although

gateways in particular may experience high CPU demands. Traffic begins to back up when

the arrival rate of new messages exceeds the message throughput rate. The problem can be

exacerbated by network heterogeneity and statistical variation. Some parts of a network

can be congested while others are not. Also, the message arrival rate is typically not con­

stant, but varies considerably over the course of a day, week, month, and year. Likewise,

the theoretical (optimal) throughput can vary over time due to failures or changes in net­

work topology. Application level congestion can be increased by congestion in underlying

network layers and delays in acceptance of messages by recipients (e.g., because of lack of

6 Although the U U C P internetwork, a widely used, unreliable message transport facility that uses source
routing, has been doing just this for years.

CHAPTER 3. ISSUES IN THE DESIGN OF MESSAGE TRANSFER SYSTEMS 48

buffer space or unreceived message fragments).

The principle problem addressed by a practical congestion control scheme is the dis­

tributed management of resources with limited knowledge of global state information and

even less information of the future state. A congestion control scheme can be placed

somewhere on a "liberal" - "conservative" continuum, where a liberal scheme is quick to

allocate resources to try to optimize throughput over the short term and a conservative

scheme tries to maintain a high continuous throughput.7 A liberal scheme may perform

badly when it encounters unexpected changes while the conservative scheme will, under

normal conditions, perform less well than a liberal scheme but much better under adverse

conditions. Again, this is because the conservative approach makes less efficient use of

network resources when the network is not heavily loaded. The performance of a scheme is

dependent on the current and future state of the network and this information is in general

unobtainable.

How can a liberal scheme continue to provide acceptable throughput when its assump­

tions no longer hold? One alternative, used in packet-switching networks, is simply to

discard messages. Apart from the significant expense of doing this for application level

messages, the problem is shifted to a decision about which messages should be discarded

to guarantee reduced congestion while being fair to network users. If messages cannot be

discarded, rerouting to archival hosts (i.e., specially designated hosts equipped with large

amounts of secondary storage to temporarily store messages) could be useful, although this

would tend to increase congestion around archival hosts.

An adaptive scheme that provides adequate performance over the entire range of traf­

fic load seems to be indicated. The design should not restrict traffic unnecessarily under

7 There is a similarity here with deadlock prevention versus deadlock detection and resolution techniques.
Deadlock prevention is more conservative than deadlock detection and resolution.

CHAPTER 3. ISSUES IN THE DESIGN OF MESSAGE TRANSFER SYSTEMS 49

light congestion and should provide reasonable performance under heavy load and various

failures. In the design of such a scheme there will necessarily be tradeoffs between complex­

ity, resource requirements, and performance. Given a large degree of freedom in network

topology and the possibility of failures, any design for handling flow and congestion control

is not likely to be always "optimaP'but may provide adequate performance over all (or at

least many) topologies under various conditions.

3.5.1 Network and Transport Level Congestion Control

Many techniques have been proposed for congestion control in the packet-switching en­

vironment, but few have found their way into "real" networks, perhaps in part due to

assumptions made to simplify analysis. Much research has addressed flow and congestion

control in virtual circuit oriented networks. In this section several approaches to conges­

tion control are described for the network and transport levels. The suitability of these

approaches to the message handling environment is discussed in the next section.

Congestion control could, in theory, be achieved by directly adjusting the rate of input

to the network (e.g., a particular node can submit up to N bytes per second) [Cerf81]. The

NETBLT transport protocol [Clark87] uses rate flow control to match the data transmission

and consumption rates in packet switched networks. This is difficult to realize for a network

of arbitrary topology, however. It is hard to determine what this rate should be for each

node and the rate will be affected by changes in the topology.

In the packet-switching environment, congestion can be prevented by placing a limit

on the total number of packets in the network. In an isarithmic network [Davies72], this

is achieved by holding the number of packets in the network constant. This approach has

several difficulties, including prevention of localized congestion.

CHAPTER 3. ISSUES IN THE DESIGN OF MESSAGE TRANSFER SYSTEMS 50

Kleinrock and Tseng [Kleinrock80] studied a class of flow control techniques based on

limiting the permit generation rates of logical channels. An interesting element of the

research is that the throughput performance curve can be brought as close to the ideal

curve as desired simply by increasing the buffer size allocated to each physical channel.

A common way for a node to deal with the arrival of too many packets or datagrams

is simply to drop them. Another method involves having congested intermediate nodes

set a bit in the header of a packet, allowing all nodes along the packet's route to take

appropriate steps. A third alternative is to send a choke packet [Tanenbaum8l] to the

source which includes the destination of the packet involved in the congestion. When the

source receives a choke packet it reduces its transmission rate to the destination. The

Internet Control Message Protocol [Postel81b] defines a source quench message which may

be sent by a gateway or destination host to the source host to reduce the rate at which

datagrams are being sent to an internet destination. The source quench message includes

part of the datagram involved in the congestion so that the source host can associate the

source quench message with the appropriate process. In both of these schemes regulation

of the flow is not likely to be smooth [Mills87]. Also, the message sent back to the source

may itself be dropped and there is nothing to prevent the source from ignoring a source

quench message [Nagle84].

Datagrams have been traditionally defined as single submission event entities, unrelated

to any subsequent submission. The notion of a flow has been proposed [Zhang87] where

sequences of datagrams from a particular originator to a particular recipient share a flow

identifier that uniquely identifies the sequence at the datagram level, allowing end-to-end

flow control. Zhang [Zhang87] proposes a packet-switching network architecture where the

user provides a service specification that expresses resource demands such as the user's

CHAPTER 3. ISSUES IN THE DESIGN OF MESSAGE TRANSFER SYSTEMS 51

expected average transmission rate.

Congestion control based on input buffer limits [Lam79, Lam80, Lam81] controls the

network input rate by discriminating against input traffic in favour of transit traffic and

imposing a limit on the number of buffers input traffic can occupy. These techniques do

not directly change the rate of input to the network. When the network is congested the

input buffers do not help with the transport of messages; they tend to hold submitted

messages for a long time since they can not be forwarded. These buffers would be used

more effectively as transit buffers.

A dynamic input buffer limit technique can adjust to the congestion by decreasing the

number of poorly utilized buffers by shifting them to other uses. On the other hand, reduc­

ing the number of input buffers too much may cause a decrease in the network throughput

since some outgoing links may not be fully utilized. The difficulty is attaining balanced

buffer utilization to maintain a sustained high throughput rate.

Lam and Reiser [Lam79] discovered a capacity law that can be used to determine the

input buffer limit of a node, assuming a fixed network input pattern and fixed routing.

This capacity law states that the input buffer limit BJ/BJ must be less than the ratio

of input message throughput to total message throughput CTT, where Bj is the maximum

number of buffers that may be used by input messages and By is the total number of

buffers in the node. Schwartz and Saad [Schwartz79] discuss this further and propose a

slightly different mechanism. Lam and Lien [Lam81] extend the determination of input

buffer limits to heterogeneous networks by multiplying aj by a constant, a < 1. Smaller

values of a allow the network to withstand larger fluctuations in traffic load over longer

intervals.

Routing mechanisms can be designed to keep track of delays along various paths in an

CHAPTER 3. ISSUES IN THE DESIGN OF MESSAGE TRANSFER SYSTEMS 52

attempt to provide minimum delays. This is an area where the study of congestion control

and routing overlap. Rerouting of packets around areas of congestion has been considered,

although it is possible for this action to actually spread the congestion. Unless a node has

enough global information it is difficult for it to decide whether rerouting will help.

3.5.1.1 Buffer Class-Based Congestion Control

Raubold and Hanle [Raubold76] introduced the deadlock-free structured buffer pool which

separates the buffers within each node into an ordered set of buffer classes. At each hop

along its route a message uses buffers belonging to strictly increasing buffer classes. A two

level (node-to-node and end-to-end) dynamic window mechanism is used to provide flow

control. Each virtual channel is assigned to a certain buffer class at each node along its

path at connection setup time. Several different approaches have been taken concerning

the problem of how to organize the structured buffer pool and move messages through the

buffer system.

Flow and congestion control for structured buffer pool based transport systems were

first studied by Giessler et al. [Giessler78, Giessler81] for the virtual circuit based GMD

network. The input buffer limit technique is generalized by dynamically adjusting the

number of buffers belonging to each buffer class based on traffic conditions. They define

the goals of global flow control ("G-control") to be the prevention of global congestion that

causes subnet throughput degradation, the economical utilization of network resources, and

the fair treatment of different traffic groups (input, transit, and output groups). Congestion

control is performed in a fully distributed and adaptive manner. In simulation studies,

the combination of individual (per virtual circuit) flow control ("I-control") and global

congestion control provided satisfactory network behaviour when the network's saturation

CHAPTER 3. ISSUES IN THE DESIGN OF MESSAGE TRANSFER SYSTEMS 53

point was reached. An analysis of the structured buffer pool when the communication

channel is not the bottleneck has also been performed [Wunderlich80].

Any scheme that adjusts buffer class limits dynamically cannot actually achieve a re­

duced buffer class limit until the buffer class usage falls to the new limit. If the message

transmission rate of a buffer class marked for reduction is high then this is not likely to be

problematic, since buffers would be freed frequently and subsequently reassigned to a new

buffer class. If the transmission rate is low there may be a considerable delay before the

new buffer class limits are met.

A problem with G-control is that it is not a fair policy: traffic is held back based

solely on how far it has travelled rather than individual sources of the congestion being

controlled. For example, a decrease in buffer space available to messages that have travelled

N hops to get to a particular node may be made. This will affect all messages that have

travelled N — 1 hops that need to be forwarded to this node (and, recursively, to those

messages that have travelled N — 2 hops that need to be forwarded to those nodes, etc.),

not taking into account such factors as where messages are coming from (both in a local

and a global sense) or whether the originator of a message is using "too much" of the

network's resources. Fairness is increased through the combined use of I-control since the

end-to-end window size can be adjusted to the actual acceptance rate.

3.5.2 Application Level Flow and Congestion Control

While the goals of flow control and congestion control for the message handling environment

are similar to those at other networking levels, realization of these goals can be more

difficult. This is a result of the high degree of freedom allowed in the network topology

and the corresponding model of S/F transfer. In general, the high degree of network

CHAPTER 3. ISSUES IN THE DESIGN OF MESSAGE TRANSFER SYSTEMS 54

heterogeneity makes real time distribution of network performance data impossible. On the

other hand, the offline nature of the data transfer as well as the more detailed information

contained in the message envelope open some avenues of investigation not possible in other

environments. In packet-switching networks the emphasis tends to be on low delay and the

subnet supports rapid distribution of network performance data. In contrast, the emphasis

in the message handling environment tends to be on high message throughput while the

subnet may not lend itself to rapid dissemination of performance data.

The notion of flow control at the application level in the message handling environment

most closely resembles datagram level flow control as both submit data for transmission

in a single operation. There have been proposals for datagram level flow control [Elie79,

Zhang87] but they have yet to become widely accepted, perhaps because independent rout­

ing is considered to be an important characteristic of datagrams. Also, because there may

not be an originator-to-recipient connection, end-to-end flow control can not be performed

in the same manner at the application level as for topologies where links are normally

continuously available. Thus, in contrast to a virtual circuit, there is no end-to-end feed­

back (e.g., in the form of acknowledgements) to use for flow control. Given no means of

performing end-to-end flow control, flow control at this level is largely limited to restricting

the rate of network input so that resources are shared in a more equitable manner; i.e., the

flow of individual messages from a particular user, system, or cluster may be regulated.

There are several problems unique to, or more severe in, the message handling environ­

ment. These include:

• As the normal mode of operation, RTS connections may not be available continuously.

This is likely to contribute to problems with availability and sharing of buffer space.

• Heterogeneity causes problems because there are likely to be many bottlenecks through-

CHAPTER 3. ISSUES IN THE DESIGN OF MESSAGE TRANSFER SYSTEMS 55

out the network. The amount of resources (buffer space, link capacity, etc.) available

will vary from cluster to cluster and from host to host. Bottlenecks and failures

contribute to traffic backing up, leading to congestion.

• A significant component of congestion is due to the long lifetime of messages within

the message handling system and the need to avoid discarding messages. When

unaccepted messages consume all of the buffer space at a recipient MTA messages

begin to "back up" and occupy transit buffers in upstream MTAs. Messages may

not be accepted because an MTA is down or simply because a user does not accept

delivery of incoming messages.

• Unlike most other environments, messages may arrive "offline" and may come from

any source. Furthermore, the recipient need not have solicited the message nor be ac­

tive when the message arrives. This has important consequences regarding managing

received messages.

Due to the offline nature of message transfer (i.e., there is no real-time requirement),

there can be more network control over admitting new transfers to the network. Often it

does not matter to the originator of the message whether it is delivered within one hour or

overnight. A flow control scheme could use this characteristic to distribute message traffic

more evenly over time, perhaps by coordinating transfers between interior MTAs.

The potentially long lifetime of messages within the network, coupled with a prohi­

bition on discarding messages, implies that the number of messages in each traffic gToup

using transit buffers must be limited over the entire network. This strongly suggests an

end-to-end mechanism to insure that messages can be accepted by a recipient before the

message is sent and that buffer space is allocated fairly by the recipient to arriving traffic

CHAPTER 3. ISSUES IN THE DESIGN OF MESSAGE TRANSFER SYSTEMS 56

groups. In addition to this end-to-end mechanism, a second mechanism is required to pre­

vent congestion within the S/F component of the network and to insure fair allocation of

resources.

If the most important uses of the network are seen to involve the transfer of smaller

messages (e.g., interpersonal messaging, queries, etc.), then steps must be taken in the

design of the network to see that large transfers do not unfairly impede smaller ones.

Large transfers have much higher demands for buffer space and RTS connection time.

Of primary importance is that the network should avoid allocating significant quantities

of transit buffer space to a large transfer. Apart from fairness considerations, a stalled

transfer uses transit buffer space that could be better used by more "successful" transfers.

One solution to buffer space contention problems between large and small transfers is

to provide separate buffer pools for the two classes of traffic. To avoid the situation where

one pool has free space while the other is full, each buffer pool could be given a minimum

allocation and a third, shared buffer pool could be established. The number of buffers

available to each pool could be dynamically adjusted based on traffic conditions.

Congestion in underlying layers may occur when an RTS connection uses a shared

medium. While there may be some value in higher level congestion control mechanisms

cooperating with lower level mechanisms [Herrmann76, Gerla80], this possibility will not

be explored here.

3.6 Fairness

It is difficult to precisely define the concept of fairness in a computer network, particularly

for heterogeneous networks. It is much easier to identify unfair treatment of a particular

message or class of messages. For example, the network topology can be such that a greater

CHAPTER 3. ISSUES IN THE DESIGN OF MESSAGE TRANSFER SYSTEMS 57

than normal share of some resources are made available to transfers between certain pairs

of hosts or some hosts may have a lower probability of establishing a virtual circuit with a

particular set of hosts when the network is heavily loaded. The ultimate form of unfairness

is livelock,8 where certain messages can never be forwarded because of routing, scheduling,

buffer management, or deadlock prevention policies, for example.

Components of network resource management, such as flow control, congestion control,

buffer management, and scheduling are largely concerned with managing shared resources

and therefore must take fairness issues into account. Rudin defines flow control in a global,

fairness-oriented way as "that collection of algorithms which are used in a network to

prevent a single user or single user group from hoarding the resources of the network to

the detriment of others" [Rudin76]. In the end, it is up to the network designers and

administrators to arrive at an operational definition of fairness and to decide how much

they are willing to pay for it. At the very least all hosts and clusters should receive some

minimum level of service.

There is an intuitive, cause and effect component to fairness. A particular user, host,

or cluster should not be able to capture an excessive share of network resources. For an

individual connection this is partially accomplished by selective flow control performed

by a virtual circuit's end-to-end flow control mechanism. Filling up the circuit's window

causes the network to refuse further input from the originator until some of the data in the

circuit has been accepted by the recipient. It is the user of the circuit that is held back

by the flow control mechanism, not other network users. Selective flow control does not

in itself make the network fair. For example, there may not be any direct network control

over the duration of a connection or the number of connections simultaneously in use by a

8 Giinther [Gunther81] differentiates between two forms of livelock, starvation in poverty and starvation in
wealth.

CHAPTER 3. ISSUES IN THE DESIGN OF MESSAGE TRANSFER SYSTEMS 58

particular user, host, or cluster. There is usually less of this cause and effect relationship

in datagram networks because datagrams are transported independently: end-to-end flow
o

control must be performed at a higher networking level if it is present at all. Fair use of

buffers is harder to achieve and poor performance results when the user or users responsible

are not regulated [Nagle87].

Proportional access to network resources can be specified by providing a definition of

fairness that specifies the ratios of resources to be allocated to traffic groups. Messages

within traffic groups are treated equally but some traffic groups are given preferential

treatment. Such a specification could preclude livelock by insuring that traffic groups

having a higher service priority are prevented from locking out lower priority traffic groups

for too long. An example of this arises in the treatment of message priorities. If high

priority messages are always transferred ahead of lower priority messages it is possible for

a continuous flow of high priority messages to lock out all other messages. If there are

three priority classes, "high", "normal", and "low", "high" could be assigned a numeric

priority twice that of "normal", and "normal" twice that of "low". Messages might then

be multiplexed such that for every low priority message two normal priority messages and

four high priority messages would be forwarded.

There is comparatively little literature primarily concerned with fairness issues in S/F

networks. Jaffe [Jaffe80] discusses fairness properties of a policy that achieves an ideal

delay-throughput tradeoff in a fixed route, virtual circuit environment. Bharath-Kumar

and Jaffe [Bharath-Kumar81] note that schemes that optimize a global performance mea­

sure must be careful not to force some controlling parameters to zero, thereby creating

unfairness. An example of this is given in Figure 3.2 where messages are to be sent from

Host 0 to Host 0', Host 1 to Host 1', . . . , Host N to Host N'. The global throughput is

CHAPTER 3. ISSUES IN THE DESIGN OF MESSAGE TRANSFER SYSTEMS 59

maximized by suppressing all traffic between Host 0 and Host 0' since any traffic between

these two reduces the global throughput.

N

r r N'

Figure 3.2: Unfairness Through Maximized Global Throughput

Traffic is commonly divided into two types when designing congestion control mech­

anisms: input traffic (traffic waiting for admittance to the network) and transit traffic.

Fairness in admittance involves the control of access to input buffers on a per user basis

as well as control of the number of buffers used for input buffering. Fairness in transit

involves equitable use of network resources, such as buffer space and RTS connections, for

messages waiting to be forwarded. Unfairness can result when transit traffic monopolizes

buffer space, shutting out input traffic.

Round-robin (circular-scan) link multiplexing with window-based flow control has been

shown to provide a simple means of fair flow control in a fixed path, virtual circuit envi­

ronment under heavy demand and with sufficiently large window sizes [Hahne86]. It can

also assist in insuring individual users or traffic groups get equal, or at least proportionate,

access to resources [Katevenis87). Scheduling algorithms that attempt to provide equal

mean end-to-end delays to each user have been studied [Wong82, Rahnema88].

CHAPTER 3. ISSUES IN THE DESIGN OF MESSAGE TRANSFER SYSTEMS 60

Simplistic multiplexing without appropriate concomitant buffer management does not

insure fair treatment. For example, using a first-in, first-out (FIFO) ordering of messages

to determine the order in which messages are allocated buffers and forwarded may not

result in fair treatment. Figure 3.3 shows a portion of a network that uses FIFO message

multiplexing. Messages are denoted by boxes labelled with their originating host's name.

As depicted, a message is being forwarded from Host B to Host D and from Host A to

Host E. Assuming network homogeneity (i.e., equal transmission rates, number of buffers,

round-robin scheduling, etc.), messages transferred from Host A to Host E can acquire a

disproportionate quantity of buffer space at the expense of messages from both Host B

and Host C transferred to Host E through Host D. This is because Host B and Host C

alternate sending messages to Host D, and Host A and Host D alternate sending messages

to Host E. For every two messages from Host A that are allocated buffers at Host E, one

message from each of Host B and Host C obtain a buffer.

An example serves to illustrate another unfair congestion control policy. A policy could

always accept a forwarded message that is addressed to its host (a "preferred" message)

before any message that will have to be forwarded. This might appear to be a good strategy

since, once transferred, the preferred message is removed from the network, thereby freeing

buffer space. It is conceivable that under heavy load, however, some messages will become

livelocked since there could always be a preferred message to transfer.

Allocation of RTS connections can also be managed unfairly. Letting large transfers

retain sole use of an RTS connection for the duration of the transfer is unfair to small

transfers which must wait. Possible partial solutions include multiplexing several RTS

connections onto a single transport connection or fragmenting messages into equal size

pieces and multiplexing the fragments (e.g., by round-robin scheduling) onto the RTS

CHAPTER 3. ISSUES IN THE DESIGN OF MESSAGE TRANSFER SYSTEMS 61

HostC

Figure 3.3: FIFO Message Multiplexing

connection.

There is a strong temptation to use available resources rather than to let them remain

idle. Because of the bursty nature of network traffic, "overallocation" to one traffic group

can lead to subsequent unfair treatment of other traffic groups. The duration of this unfair

treatment is related to the rate at which buffers can be released from the overallocated

traffic group.

Dynamic resource sharing policies tend to provide increased fairness in proportion to

a host's message throughput. At T\ a host may be treating all traffic groups "fairly" but

when a new traffic group is created at T2 there may be a time lag (due to existing queues

and buffer allocations) before the new traffic group can acquire a "fair" share at T 3 . In

some cases there may be a tradeoff between response time (delay) and fairness in that a

"fair" resource allocation is not necessary. Perhaps the new traffic group can be serviced

CHAPTER 3. ISSUES IN THE DESIGN OF MESSAGE TRANSFER SYSTEMS 62

between Ti and T3, albeit with an "unfair" resource allocation. In such cases the overhead

in adjusting resource allocations may not be justified. Knowing the resource demands of a

particular transfer a priori can assist in determining a fair resource allocation.

There are costs associated with fairness, including resource usage and increased com­

plexity of the system. Guaranteeing that certain traffic groups do not monopolize network

resources implies that limits be imposed on resource usage. In particular, minimum buffer

resources must be dedicated to each traffic group (or at least there must be some reason­

able upper bound placed on the delay for buffer availability) so that no traffic group is

discriminated against. In this case the cost may be in the form of poorly utilized buffers.

In summary, because fairness is a subjective characteristic, it is difficult to define.

Various traffic groups can be identified and may demand different levels of service. An

approximation of fairness can be achieved by trying to meet service requirements denned

for the network. Some type of end-to-end flow control is required to throttle back mes­

sages from originators that are already using their share of resources. There is often a

tradeoff between fairness and underutilization of resources. Fairness issues are discussed

in Section 5.6 with respect to the framework presented in Chapter 5.

3.7 Network Traffic Patterns

To help with the design of a better message transport system, observations of operational

systems should prove useful. These observations center on a categorization of hosts that

may make up the system and message traffic.

A leaf MTA does not have messages passing through it: all traffic is due to submissions

from users and deliveries to them. An MTA may be an interior MTA or gateway MTA in

addition to being a cluster gateway. An interior MTA is an MTA that performs S/F duties

CHAPTER 3. ISSUES IN THE DESIGN OF MESSAGE TRANSFER SYSTEMS 63 '

and also services a local user population. A gateway MTA handles much more traffic than

the other two classes since, in addition to performing the functions of an interior MTA, it

serves as a gateway to one or more networks.

A significant proportion of network traffic has regularity associated with it. For exam­

ple, distribution lists tend to be static over long periods of time and submissions are often

collected into digests and redistributed to a list's members with a predictable periodicity,

gateways tend to regularly receive notices, digests, and bundled news for redistribution. It

might be possible to take advantage of these regularities, for example in buffer management.

An exception to the normal traffic pattern occurs when messages cannot be transferred

between two adjacent MTAs (e.g., because a host is down) and there is no alternate route for

messages to take. When the two MTAs once again communicate, a backlog of accumulated

message traffic begins to flow, causing a large "wave" of traffic to pass through the network.

This sudden increase in the volume of messages tends to create congestion.

Measurements of the EAN messaging system at the University of British Columbia are

summarized in Table 3.1. Message size statistics are summarized for host ubc-ean, which

acts both as a network gateway and a cluster gateway, and host ubc-cs, a leaf MTA.

Exported messages are those transmitted by an MTA and imported messages are those

received by an MTA. These messages belong primarily to the CDN, UUCP, CSNET, ARPA,

and BITNET domains. Message traffic at the ubc-ean gateway is distributed equally over

the entire day. In a "well connected" leaf MTA such as ubc-cs, traffic is distributed evenly

over working hours while those with less frequently available RTS connections tend to

experience burstier traffic. Most messages are under 3000 bytes long but there are many

much larger messages, some more than one megabyte in length. Recent measurements

show that traffic through the CDNnet gateway has increased to about 5500 messages per

CHAPTER 3. ISSUES IN THE DESIGN OF MESSAGE TRANSFER SYSTEMS 64

day, totalling approximately 15 megabytes [CDNnet88].

Host Interval Messages
Message Sizes (bytes)

Host Interval Messages
Max. Mean Median % < 3000

Imports

ubc-ean 30/9/86 - 9/10/86 4,904 1,586,437 7,872 779 84.9
ubc-ean 30/9/87 - 9/10/87 8,733 154,139 3,962 954 83.7
ubc-cs 7/10/86 - 12/10/86 484 542,597 16,065 1,117 78.5
ubc-cs 28/11/87 - 3/12/87 647 201,912 2,263 907 89.8

Exports

ubc-ean 30/9/86 - 9/10/86 7,916 1,586,437 4,688 935 83.2

ubc-ean 30/9/87 - 9/10/87 17,414 154,139 3,224 1,219 84.1
ubc-cs 7/10/86 - 12/10/86 207 35,469 1,562 640 93.7
ubc-cs 28/11/87 - 3/12/87 274 2,783,412 22,761 500 94.2

Table 3.1: Message Traffic Summary

The study of message traffic clearly indicates two classes of traffic: relatively small

messages and much larger messages. The EAN messaging system provides no file transfer

facility. The introduction of such a capability is likely to increase both the volume and the

mean size of larger messages: These observations will be taken into consideration in the

design of the message transport system in Section 5.

3.8 Summary

Message fragmentation has been proposed to permit large messages to pass through the

network as well as allowing for improved performance in a S/F message-based system.

Schemes developed for flow control, deadlock prevention, and buffer management in packet-

switching networks have been described and their suitability for use in the message handling

environment has been discussed. Alternative schemes for buffer management in the message

handling environment have been outlined. Issues associated with fair treatment of messages

have been considered.

C h a p t e r 4

Store-and-Forward Deadlock
Prevention

Most research into methods of preventing store-and-forward deadlock in computer net­

works has been focused on the network level. However, many of the techniques for han­

dling deadlock at the network level are unsuitable for use at the application level. This

chapter addresses the problem of application level deadlock prevention and introduces a

hierarchical scheme for the message handling environment that combines the structured

buffer pool method as a top level with appropriate deadlock-free bottom level transport

mechanisms.1 The natural composition of a network from interconnected groups of hosts

makes it well-suited to combining several deadlock prevention techniques. The advantages

of the selected schemes are retained while reducing the cost of their disadvantages, creating

a more practical system.

The rest of this chapter is organized as follows. Section 4.1 outlines the problems

with existing deadlock prevention schemes in this environment. The hierarchical solution

together with a proof of correctness is presented in Section 4.2, and Section 4.3 concludes

the chapter.

1 This material also appears in [Brachman89c].

65

CHAPTER 4. STORE-AND-FORWARD DEADLOCK PREVENTION 66

4.1 Existing Techniques

Raubold and Hanle [Raubold76] introduced the deadlock-free structured buffer pool that

partitions the buffers within each host of a store-and-forward network into an ordered set

of buffer classes. Merlin and Schweitzer [Merlin80] showed that S/F deadlock implies the

existence of a cycle of buffer requests in the buffer graph representing the network; a loop-

free buffer graph implies that deadlock cannot occur. The structured buffer pool prevents

deadlock by allowing a message to use only buffers belonging to strictly increasing buffer

classes at each transfer. An advantage of the buffer class approach to deadlock prevention

is that it can be integrated with flow control and congestion control mechanisms. Such

integration allows the network designer to address the flow control and congestion control

tasks without concern of introducing direct or indirect deadlock, subject to obeying the

rules governing the structured buffer pool. Apart from placing an upper bound on the

number of hops a message can take to reach its recipient, the buffer class approach imposes

no constraints on the routing of messages.

Several different approaches have been taken concerning the problem of how to organize

the structured buffer pool and move messages through the buffer system. Toueg and Ullman

[Toueg79] and Toeug [Toueg80] have developed schemes based on the structured buffer pool

technique. Merlin and Schweitzer [Merlin80] and Giinther [Gunther81] have developed

efficient methods of preventing S/F deadlock based on preventing cycles of buffer requests.

Their respective "valley counting" and "counting peaks and valleys" schemes, both based

on buffer classes, can be adapted to the MHE by using the unique MTA identifiers to

represent the node numbers and choosing a "sufficiently large" estimate of the maximum

hop count in the network. This is unsatisfactory, however, since the maximum hop count

is unlikely to be static and an excessively high choice results in low buffer utilization.

CHAPTER 4. STORE-AND-FORWARD DEADLOCK PREVENTION 67

Wimmer [Wimmer84] has developed a scheme, based on Giinther's work, that allows a

tradeoff between routing constraints and the number of buffer classes required.

Gopal [Gopal85] has derived a structuring scheme that often requires significantly fewer

buffer classes than other methods. Another scheme [Bongiovanni87] minimizes the number

of buffers for certain specific network topologies.

A significant problem with the use of the structured buffer pool technique is that the

number of buffer classes tends to be large. At least one buffer for each buffer class must

be permanently allocated at every MTA on the network. In the worst case, the number of

buffer classes required is the maximum number of MTAs a message can pass through as it

travels from the originator to the recipient MTA. Much of the time this is wasteful, since a

message following such a path is probably rare. Using the structured buffer pool technique

at the application level (such as in the message handling environment) is unattractive if a

large number of buffer classes are required since buffers at this level are much larger than

at the data link or network layers.

Several methods based on the structured buffer pool have been described for combining

deadlock-free subnets into a deadlock-free interconnection of the subnets, although they do

not address the problem of reducing the number of buffer classes [Merlin80, Giinther81].

None addresses the issue that a change in the topology may require changes at distant

locations in the network. While reducing the number of buffer classes required, Gopal's

method [Gopal85] still has the drawback that a change in the topology may require changes

at distant locations in the network. It also involves either the network administration or

a distributed algorithm to form a partitioning of hosts to determine the number of buffer

classes required.

Gelernter [Gelernter81] proposes a scheme that reroutes packets around areas of poten-

CHAPTER 4. STORE-AND-FORWARD DEADLOCK PREVENTION 68

tial deadlock and requires one arbitrarily chosen node to accept any packet within a finite

time, even if this requires dropping a packet. The topology of the network is required by

the algorithm but it imposes no routing restrictions, does not require that the buffer pool

on each node grow with the network size, and does not require buffer pool partitioning.

Buffer management schemes that require preallocation of space are deadlock free. For

example, a virtual circuit setup operation may reserve transit buffers for the lifetime of

the circuit at each hop along the route. This approach has the advantage over buffer class

schemes that no special action needs to be taken when the network configuration changes.

It has the disadvantages that there is extra overhead in preallocating space and a special

mechanism may be needed to free resources that are no longer required.

Gambosi et al. [Gambosi84] have developed a distributed deadlock detection and re­

covery algorithm. The scheme incurs no overhead for sites not involved in the deadlock so

that normal network traffic is not affected by the deadlock detection traffic.

A scheme using circulating tokens has been proposed by Konorski [Konorski86]. Nodes

cooperate via an inquiry-response procedure to determine whether an incoming packet

should be accepted or rejected.

Another solution to deadlock, the time-stamp technique [Blazewicz87a, Blazewicz87b]

orders messages by assigning a unique time stamp to each one.2 Upon creation, a message

is given a time stamp that identifies where and when the message was created. A com­

parison of the time stamps of any two messages in the network will identify one message

as the "younger" and the other as the "older". Forwarding of messages proceeds without

restriction until a sending host is unable to forward a message to a receiving host because

2 This method can be viewed as a generalization and refinement of the overflow handling technique de­
scribed in [Kahn72].

CHAPTER 4. STORE-AND-FORWARD DEADLOCK PREVENTION 69

the receiver has no free buffer space. If the sender's message is older than some message

at the receiver, then the two messages are exchanged using a special exchange buffer, oth­

erwise no transfer takes place. The algorithm guarantees that even if no other message

can be transmitted, the oldest message in the network will eventually be delivered. The

method has several desirable properties, including network size and topology independence,

freedom from livelock, and not imposing any restriction on message routing.

Simulation of the NPL network [Giessler78] shows that that network may experience

deadlock immediately after the traffic load exceeds a value called the critical applied load.

On the other hand, there are reports of networks running for an extended period of

time without experiencing deadlock [Gerla81]. The likelihood of deadlock depends on

the network topology, network traffic, buffer management, and the routing algorithm used

[Kahn72]. It is expected that in a heterogeneous network, where hosts may have various

numbers of links of varying capacity and availability, deadlock is more probable.

Measurements of the EAN messaging system (presented in Section 3.7) show that most

messages are under 3000 bytes long but there are many much larger messages, some more

than one megabyte in length. The proportion of large messages is expected to increase as

more applications are based on message transfer systems. Because of the relatively high

cost of moving messages, techniques requiring the deletion of messages are not attractive.

Deadlock detection and resolution techniques are not likely to be effective since the MTS

model makes no assumptions about the topology of the network, including availability of

communication links. In general, deadlock prevention is the best way to deal with the

deadlock problem in the messaging environment.

The use of a "pure" (i.e., network wide) structured buffer pool technique is impractical

in the message handling environment since the topology is subject to frequent change and

CHAPTER 4. STORE-AND-FORWARD DEADLOCK PREVENTION 70

individual hosts typically have limited storage. The number of buffer classes needed by each

MTA on the network may be increased by the addition of a new MTA at some "distant"

location on the network. Besides being wasteful of buffer space, this increases the amount

of administrative work that needs to be performed. In cases where there is no centralized

management (e.g., Usenet), this is difficult or impossible.

It is desirable for a deadlock prevention algorithm to depend as much as possible only

on the configuration of a cluster (i.e., readily available information). Adding a new MTA

to the network or changing the connectivity of the network should not require changes to

the number of reserved buffers at MTAs distant from the change. Potentially confidential

information, such as the number of hosts within each cluster, should not be required by

the algorithm. Of course, any scheme should also be easy to understand and for network

administrators to maintain. Current buffer class techniques lack these properties.

Using the structured buffer pool technique only between clusters reduces the number of

buffer classes required since now a hop means a transfer between clusters and is independent

of the number of transfers that occur within clusters as a message is forwarded to its

recipient MTA. Changes to the number of clusters in the network are usually far less

frequent than changes to the number of hosts in the network. Therefore, restricting use

of the structured buffer pool to intercluster traffic means that the frequency of changes

to the number of buffer classes will be greatly reduced over a pure structured buffer pool

approach.

With respect to the time-stamp technique, a drawback is that younger messages may be

displaced from their preferred route in favour of older messages. This may imply increased

communication costs and significant delays when some network configurations are under

heavy load. In particular, a younger message may be displaced across a slow speed link or

CHAPTER 4. STORE-AND-FORWARD DEADLOCK PREVENTION 71

a link that is expensive to use. The severity of this problem would be expected to increase

as the connectivity of the network decreases.

Howard [Howard73] describes how an operating system hierarchically organized into

layers can use a mixture of several deadlock control policies, one policy per layer. The

proposed solution, described in the next section, applies this approach to the S/F network

by creating a two-level hierarchy.

4.2 A Hierarchical Solution

The natural composition of a network from interconnected clusters of hosts offers a clear

two-level hierarchical structure for message flow: intracluster and intercluster flow. The

proposed method uses the structured buffer pool technique for the top layer to prevent

deadlock among clusters and another technique or combination of techniques as the bottom

layer to provide deadlock-free message transport within individual clusters. A particular

cluster is free to choose the technique to be used for its cluster layer. This scheme allows

changes in network topology within a cluster to be isolated from all other clusters and is

important for cluster autonomy.

The use of a structured buffer pool technique to join clusters of MTAs is a natural choice

since, in addition to having the property that messages always flow down their preferred

route (i.e., the algorithm does not require the rerouting of messages to prevent deadlock),

it can be used as a means of flow control and congestion control between clusters. The

time-stamp approach does not have these desirable properties. Any suitable technique

may be chosen for organizing the structured buffer pool, including methods that reduce

the number of buffer classes required over the simple hop-count method. The particular

technique chosen, together with the number of clusters and, for some techniques, the net-

CHAPTER 4. STORE-AND-FORWARD DEADLOCK PREVENTION 72

work topology, determines the number of buffer classes required. An appropriate choice

for the deadlock prevention technique used within a cluster of hosts depends on the net­

work topology of the cluster. The hierarchical technique can significantly reduce both the

total number of reserved buffers and the number of buffer classes over the entire network

compared to pure buffer class methods.

It might seem that an "obvious" approach would be to construct a two-level structured

buffer pool system by interconnecting individual systems, each managing a cluster, to

a global system that ties the clusters together. Messages could be moved among the

intracluster and intercluster structured buffer pool systems by reentering either system at

buffer class zero. Because this straightforward approach introduces a cycle of dependencies

in the graph representing the buffer system, it fails to solve the problem since deadlock is

still possible. This is illustrated by the following example.

Consider the two-level system shown in Figure 4.1 where there are two clusters, each

containing three MTAs.3 A corresponding two-level structured buffer pool is shown in

Figure 4.2.

The structured buffer pools depicted in Figure 4.2 consist of three buffer classes (BCO,

BCl, and BC2) for each member of both intracluster buffer pools, each buffer class having

a single buffer. MTAs C and D, which are cluster gateways (i.e., they contain either end

of the link connecting the two clusters), also contain the two buffer class intercluster buffer

pool. Messages in buffer classes BCO, BCl, and BC2 of MTA C's intracluster buffer pool

may be moved to BCO of MTA C's intercluster buffer pool and messages in BCl of MTA

C's intercluster buffer pool may be moved to BCO of MTA C's intracluster buffer pool.

MTA D is configured analogously. Buffer classes in Figure 4.2 containing a message are

3 Refer to [Gunther81] for a more detailed description of the structured buffer pool method.

CHAPTER 4. STORE-AND-FORWARD DEADLOCK PREVENTION 73

Cluster 1 Cluster 2

c D c D

Figure 4.1: Two Interconnected Clusters

labelled with the recipient MTA of the message (e.g., BCO of MTA A contains a message

addressed to MTA F) and the arrow indicates where the message is to be forwarded. The

buffer pool system in Figure 4.2 is currently deadlocked with the messages in the shaded

buffer classes unable to be forwarded.

An appropriate choice for the technique used within a cluster of hosts to deal with

deadlock depends on the network topology of the cluster, primarily the characteristics of

the network level. A cluster whose hosts are interconnected by a local area network would

probably choose a different technique than one whose hosts are interconnected by a slower

communication subnet. In a cluster using S/F communication at the network level, a

deadlock detection and resolution technique (see [Chan87], for example) might be chosen

rather than a deadlock prevention technique. The extra communication overhead incurred

by deadlock detection and resolution techniques will be less significant in an appropriate

CHAPTER 4. STORE-AND-FORWARD DEADLOCK PREVENTION 74

Figure 4.2: A Two-Level Structured Buffer Pool

CHAPTER 4. STORE-AND-FORWARD DEADLOCK PREVENTION 75

local area environment.

In the next section the four types of intracluster message transfer are outlined. The

proof that the schemes described in Section 4.2.2 are deadlock free is based on the fact

that the schemes handle each of the possible message transfer types without deadlock.

4.2.1 Intracluster Message Transport

There are four types of message transport that must be handled by an intracluster message

transport mechanism. This mechanism is responsible for transporting messages between

any two MTAs within the same cluster. A message passing through only a cluster gateway

MTA of a cluster does not use intracluster transport. The intracluster transport mechanism

transfers messages where:

1. Both originator and recipient are in the same cluster.

2. Only the originator is in the cluster.

3. Only the recipient is in the cluster. A message must eventually be delivered to its

recipient MTA once it has arrived at the cluster containing its recipient. If the cluster

gateway is not the recipient MTA then the message must be forwarded to the recipient

MTA.

4. The message is passing through a cluster; i.e., neither the originator nor the recipient

belong to the cluster. A message that has arrived at buffer class TV at a cluster

gateway and that has to be forwarded to a second cluster gateway within the same

cluster for transfer to an adjacent cluster must eventually be delivered to buffer class

N at the second cluster gateway. At that point the message reenters the top level

system. This requirement allows the number of buffer classes to be independent of

CHAPTER 4. STORE-AND-FORWARD DEADLOCK PREVENTION 76

the internal topology of clusters.

To show that a particular deadlock-free intracluster message transport mechanism,

when combined with the deadlock-free top level structured buffer pool mechanism, results in

a deadlock-free interconnection of systems, these cases must be handled by the intracluster

mechanism while not introducing deadlock in the top level structured buffer pool system.

A feature of the hierarchical method is that a message will never be required to be routed

out of a cluster to prevent deadlock; e.g., messages having the originator and recipients

within a single cluster will not be transferred out of the cluster to prevent deadlock. For

example, if the time-stamp technique is used within a cluster, a message exchange operation

will not require the message to be transferred to a different cluster to prevent deadlock.

Also, messages that only need to pass through the cluster gateway do not have to be forced

into any other MTAs in the cluster.

The hierarchical scheme may also be applied at lower networking levels as long as these

requirements are met. For example, a packet-switched or datagram-based network may

also use the hierarchical technique (see Section 4.2.5).

4.2.2 Basic Intracluster Message Transport

Two basic methods for providing intracluster message transport are discussed in this sec­

tion. First, a connection-based method and then a S/F oriented method are described

and both are shown to be deadlock free. These methods employ the time-stamp technique

as well as a top level structured buffer pool scheme. To simplify the descriptions of the

methods, the use of both fixed-length messages and buffers will be assumed. Variations of

the store-and-forward oriented method that require fewer buffers are outlined in Section

4.2.3 and methods for dealing with variable-length messages are discussed in Section 4.2.4.

CHAPTER 4. STORE-AND-FORWARD DEADLOCK PREVENTION 77

4.2.2.1 The Connection-Based Method

A connection-based protocol can be used in a cluster providing end-to-end communication

between all pairs of MTAs within the cluster. Cluster gateways place a submitted mes­

sage going to another cluster in buffer class zero of the intercluster buffer pool. When a

receiving MTA within the cluster does not have any available buffer space, the time-stamp

technique determines whether an exchange of messages must be performed or if the send­

ing MTA must retry the transfer later. Each MTA has some buffers reserved for accepting

messages on behalf of recipients and a message cannot occupy these buffers indefinitely.

The connection-based protocol may handle the four types of message transfer as follows:

1. If both the originator and recipient are within the cluster, the originator establishes

a connection to the recipient and an attempt is made to transfer the message.

2. If only the originator is within the cluster, an internal MTA establishes a connection

to the appropriate cluster gateway and attempts to transfer the message to buffer

class zero.

3. If only the recipient is within the cluster, the final cluster gateway attempts to transfer

the message to the recipient MTA.

4. When a message arrives at a cluster gateway and must be transferred to a second

cluster gateway within the same cluster, the sender establishes a connection to the

receiver and attempts to transfer the message. The message retains its current buffer

class at the receiving cluster gateway.

Theorem 1:

CHAPTER 4. STORE-AND-FORWARD DEADLOCK PREVENTION 78

The combined top level structured buffer pool and bottom level connection-based pro­

tocol are deadlock free.

Proof:

At any instant there exists an "oldest" message M in the network. It is shown that M

will be delivered to its recipient MTA within the cluster or to the appropriate buffer class

of a cluster gateway where it will be transferred to the next cluster gateway.

Either M is at a cluster gateway or an internal MTA. Since M is the oldest message

in the network, it can be exchanged with any other message. If M is at a cluster gateway

awaiting transfer to an internal recipient MTA, it can eventually be transferred since space

must become available at the recipient MTA. If M is in buffer class N at a cluster gateway

awaiting transfer to buffer class N at a second cluster gateway within the cluster it can

be transferred, performing an exchange with another message if necessary. If M is in

buffer class N at a cluster gateway awaiting transfer out of the cluster it will eventually be

transferred to buffer class N + 1 of the next cluster gateway since it can not be exchanged

with another message and because the structured buffer pool is deadlock free (i.e., a buffer

of buffer class N + 1 must eventually become available at the next cluster gateway). If

M is at an internal MTA, it can be transferred to a recipient internal MTA (since space

must become available) or to buffer class zero of a cluster gateway, using an exchange if

necessary. •

4.2.2.2 The Store-and-Forward Oriented Method

An environment providing virtual circuits (e.g., X.25) within a cluster can use the connection-

based protocol. Virtual circuits that preallocate packet buffer space at each host along the

route chosen at connection establishment time are deadlock free.4 In a cluster supporting

CHAPTER 4. STORE-AND-FORWARD DEADLOCK PREVENTION 79

datagrams (e.g., IP datagrams), the connection-based protocol can also be used, em­

ploying a transport layer that breaks a message into datagrams, reassembles the message,

and guards against transmission errors (e.g., TCP/IP or a protocol specific to local area

networks [Zwaenepoel85]). Datagram deadlock can be prevented by using the time-stamp

technique or simply by detecting deadlock, performing a reset, and having the higher level

protocol recover.

A general method of transporting messages within a cluster uses the S/F technique.

The penalty paid for not being able to establish end-to-end connections is an increase in

the complexity of the mechanism and increased buffer space requirements. The simplest

mechanism allocates buffer space at each MTA (excepting the cluster gateways which

already have this space as part of the intercluster structured buffer pool) for each buffer

class (See Figure 4.3). The general S/F protocol may handle the four types of intracluster

transfer as follows:

1. If both the originator and recipient are within the cluster, the message is submitted to

buffer class zero and continues to use buffer class zero until it arrives at its recipient.

2. If only the originator is within the cluster, the message is submitted to buffer class

zero and continues to use buffer class zero until it arrives at a cluster gateway for

transmission through the intercluster mechanism.

3. If only the recipient is within the cluster, the message retains its current buffer class

until it arrives at the recipient MTA.

4. A message at a cluster gateway destined for a cluster gateway within the cluster uses

only buffers belonging to the buffer class it currently uses.

4 Because the process of setting up a virtual circuit is aborted if it cannot be completed within some period
of time, virtual circuit resources cannot themselves be responsible for deadlock.

CHAPTER 4. STORE-AND-FORWARD DEADLOCK PREVENTION 80

BCO

BCl

BC2

Cluster Gateway MTA

*—H

4 — •

4 — •

MTA MTA

< •

Cluster Gateway

•4 •

•4 •

Figure 4.3: A Simple S/F Intracluster Buffer System

In a network having N MTAs and M clusters (typically M <CN), the entire network

would need a minimum of N * M buffers instead of the N * N buffers required by the pure

structured buffer pool technique.

Theorem 2:

The combined top level structured buffer pool and bottom level general S/F protocol

are deadlock free.

Proof:

This is only a slight variation of Proof 1, reflecting the need to store and forward a

message through the cluster.

Suppose M is the oldest message in the network. If M is at a cluster gateway awaiting

transfer to an internal MTA, it can be transferred in turn to each MTA on the route,

retaining its current buffer class. Exchanges based on time stamps may occur. If M is

in buffer class N at a cluster gateway awaiting transfer to buffer class iV at a second

cluster gateway within the cluster it can be transferred in turn to each MTA on the route,

CHAPTER 4. STORE-AND-FORWARD DEADLOCK PREVENTION 81

performing exchanges when necessary and remaining in buffer class N at each MTA. If M

is at an internal MTA, it can be transferred to a recipient internal MTA or to a cluster

gateway, in either case retaining its current buffer class and using exchanges when necessary.

The remaining cases are handled as in the previous proof. •

4.2.3 Enhancements to Basic Intracluster Message Transport

Several schemes can be used to reduce the number of buffers required by the general S/F

protocol. In the common case of a cluster having a single cluster gateway, deadlock-

free transport can be obtained by creating two mechanisms. The two mechanisms are

needed to keep messages from being placed in an inappropriate buffer class. A delivery

transport mechanism can be created to guarantee the eventual transfer of a message from

its final cluster gateway to its recipient MTA and for transferring messages having both the

originator and recipient inside the cluster. It reserves at least one buffer within each MTA

of the cluster for the sole purpose of providing a "channel" for message delivery. A separate

submission transport mechanism, requiring at least one buffer at each MTA (except the

cluster gateways), transports messages to buffer class zero of a cluster gateway. The time-

stamp technique can be used by either mechanism to transfer messages in a deadlock-free

manner. Figure 4.4 illustrates this scheme where there is a linearly connected cluster of

three MTAs and a single cluster gateway. As in the connection-based protocol, the buffer

classes in the cluster gateways can be partitioned. The reduction in buffers is a result of

the elimination of the requirement that the number of reserved buffers be dependent on

the number of buffer classes. This is possible because messages cannot pass through the

cluster.

In a cluster having multiple cluster gateways, a compromise between the two previously

described S/F protocols can be reached. At least one route must be created through

CHAPTER 4. STORE-AND-FORWARD DEADLOCK PREVENTION 82

Submission
Transport
Buffers

Delivery and
Intracluster
Transport Buffers

Figure 4.4: An Enhanced S/F Intracluster Buffer System

the cluster that provides a message connection for each cluster gateway to each of the

other cluster gateways. Each MTA on these routes allocates buffer space for each of the

buffer classes. Any MTAs not on these routes may use delivery and submission transport

mechanisms (which may use less space and are independent of the number of buffer classes)

to transfer to and from MTAs that have the full buffer class allocation. The amount

of buffer space required may be reduced by decreasing the number of different routes

connecting the cluster gateways.

4.2.4 Variable Length Messages

Although variable-length messages do not present a problem to the structured buffer pool

technique [Merlin80], they are a problem for exchange-based techniques. In the time-stamp

technique, buffers of equal size are required since an exchange operation may occur (i.e.,

the two messages being exchanged must fit into each other's buffer). As an example of the

problem, suppose Host X wants to send the oldest message to Host Y and Host Y does not

CHAPTER 4. STORE-AND-FORWARD DEADLOCK PREVENTION 83

have enough buffer space to receive the message. According to the algorithm, an exchange

operation must be performed. If the size of the oldest message plus the amount of free

space at Host X is less than the size of the smallest message at Host Y then no exchange

can take place. A simple but unattractive solution is to impose a network wide limit on

the maximum message size and make all buffers in the message handling system this size.

If large messages are to be supported this would require large amounts of buffer space that

would be used inefficiently because of internal fragmentation.

Message fragmentation solves this problem since messages can be broken into equal-size

fragments.

Deadlock caused by the reassembly of message fragments (i.e., at the end-to-end level)

must also be prevented. In cases where the time-stamp technique is impractical for this

purpose, preallocation of buffer space may be used. In one scheme, the system does not

allocate buffer space at the recipient MTA to any of the message until there is enough

space to contain the entire reassembled message. Another scheme, appropriate for larger

messages, involves reservation of space on an end-to-end basis, with the transfer being

delayed until the reservation is confirmed.

Several ways to fragment messages for transport through the message handling system

were discussed in Section 3.2.1. One alternative is to choose a network-wide maximum

message size and fragment a message at the originator into several smaller messages. Buffers

belonging to both the structured buffer pool and any exchange-based mechanisms would be

of the maximum message size. This scheme can be made more elaborate by having several

different message sizes, perhaps one based on the average interpersonal message size and

another based on applications transferring much larger messages (e.g., file transfer). Buffer

space for each buffer class and exchange-based mechanisms would be partitioned into the

CHAPTER 4. STORE-AND-FORWARD DEADLOCK PREVENTION 84

appropriate number of pools each consisting of buffers of the chosen size. This fits in well

with a congestion control technique where preference is given to one group of traffic (e.g.,

small messages) over another (e.g., big messages) simply by controlling the allocation of

buffer space.

4.2.5 Application to Packet Switched and Datagram Networks

The hierarchical method can be applied to packet-switched or datagram networks. In

either environment the time-stamp technique would be used within clusters. This would,

of course, incur the added expense of a time stamp header field to each packet or datagram.

As in the message handling environment, the total number of buffers required would be

reduced over a pure structured buffer pool method. Also, the number of exchanges and

their cost would be reduced over a pure time stamp-technique.

If it is acceptable to discard packets (or datagrams), then a scheme using fewer buffer

classes might be used. If desired, a higher-level protocol could be used to retransmit a

discarded packet. If a packet is placed in a buffer belonging to the highest buffer class but

is not at its destination, it may be put into any lower buffer class (preferably the lowest one

available) provided it does not wait indefinitely for a buffer. If, after waiting the maximum

allowed period, a buffer has not become available, the packet must be discarded. The

resulting structured buffer pool system remains deadlock free.

The motivation for this procedure is that messages following very long paths may be

fairly rare in some topologies and it is not desirable to permanently allocate buffers over the

entire structured buffer pool system to handle exceptional cases (e.g., rerouted or forwarded

packets). Packets following a route of length less than the maximum (as determined by the

number of buffer classes provided) are guaranteed to be delivered. A packet following an

CHAPTER 4. STORE-AND-FORWARD DEADLOCK PREVENTION 85

unusually long route is delivered with a probability dependent on its current location and

destination, and the network topology and current state. The designer must be careful

that packets that follow a long route are not uniformly discarded under heavy network

load.

4.3 Summary

A hierarchical approach to solving S/F deadlock has been described. By combining the

advantages of the structured buffer pool approach with those of an appropriately chosen

second deadlock prevention technique, a better deadlock-free transport scheme can be

devised. A structured buffer pool approach is used as a top layer to transport messages

between clusters of hosts while a topology-dependent technique is chosen as a bottom

layer to transport messages within a cluster of hosts. The advantages of the structured

buffer pool are retained while the impact of many of its negative characteristics is reduced.

Although the time-stamp approach is also inappropriate as the sole means of deadlock

prevention at the application level, it is well-suited as the basis of a secondary, intracluster

means of deadlock prevention. The use of a structured buffer pool approach as the top layer

has the additional advantage of being easily integrated with flow control and congestion

control mechanisms. The hierarchical approach is useful in the messaging environment as

well as in packet-switched and datagram networks.

Chapter 5

A Structure for Message Transfer
Systems

A structure for the design of message transfer systems is presented in this chapter.1 The

design methodology handles arbitrary length, multirecipient messages and deals systemat­

ically with the flow and congestion control problems outlined in Section 3.5.2.

The structure takes advantage of the typical cluster topology of networks and uses

a structured buffer pool organization to prevent intercluster S/F deadlock. Flow and

congestion control are effected by two mechanisms:

1. The Message Stream Model, which might be described as an application level virtual

circuit.

2. A buffer space allocation system used to reduce congestion and manage buffer space

for incoming messages.

The task of message routing is left open and is outside the scope of this thesis. There

are reasons to establish only a loose association between congestion control and message

1 Portions of this material appear in [Brachman89a] and [Brachman89b].

86

CHAPTER 5. A STRUCTURE FOR MESSAGE TRANSFER SYSTEMS 87

routing [McQuillan79]. By placing only minor restrictions on routing, the framework allows

the routing mechanism to be independently developed and tuned. One such restriction is

that of the structured buffer pool on the maximum number of hops taken by a message.

In general, a message stream establishes a fixed route for messages, although the means by

which the route is chosen is not prescribed.

It is important to note that details of individual implementations may very well dif­

fer. Where fundamental differences in network topology must be taken into account, more

than one design approach is given. Various parameters, such as fragment sizes, flow con­

trol window sizes, and the number and types of traffic groups must be tuned or optimized

for individual implementations. Implementation specific aspects are left unspecified. The

degree of fairness to be provided, message lifetimes, and the amount of buffer space re­

quired will vary among implementations. In many cases guidelines are given to be used in

determining these constants.

The remainder of the chapter is organized as follows. Message fragmentation, message

streams, congestion control, transit buffer management, and recipient buffer space allo­

cation components of framework are discussed in Sections 5.1 through 5.5. Some of the

fairness issues addressed by the framework are the subject of Section 5.6. Comments on

network management appear in Section 5.7, and Section 5.8 concludes the chapter.

5.1 Message Fragmentation

Messages exceeding the maximum fragment size are broken up into fixed length fragments

by the originating MTA. Each fragment is a complete message, consisting of an envelope

and some portion of the original message content. No limit is imposed on the size of a

submitted message by the message transfer system.

CHAPTER 5. A STRUCTURE FOR MESSAGE TRANSFER SYSTEMS 88

A message identifier is a unique, MHS-wide transaction identifier assigned to the mes­

sage by the originating MTA. A common format for the identifier is the concatenation of

the MTA name with the time and date the message was created. Message identification

can be extended to uniquely identify fragments by adding a structure indicating the byte

range with respect to the content of the original message; e.g., (StartingByteNumber, Orig-

inalMessageSize). The OriginalMessageSize is used by a recipient MTA to tell when it has

received the last fragment of the original message as well as allowing the recipient to plan

for subsequent fragments after the first arrives.

The fragment size is largely dependent on a particular network's traffic and would

therefore likely vary in different implementations. A number of guidelines, however, can

be observed:

• The median message size should be taken into consideration. The fragment size

should be made large enough to avoid fragmentation of most messages.

• The fragment size should reflect transmission rates, particularly cluster to cluster

transmission rates. Fragments that are too large relative to transmission rates will

increase mean queueing delay.

• As the maximum fragment size decreases, the proportion of processing overhead per

fragment increases. Increased processing demands could lead to CPU bottlenecks.

• Multiple fragment sizes (and consequently buffer sizes) may be indicated (e.g., if

the message size frequency distribution graph is bimodal two fragment sizes are sug­

gested).

• As has been discussed, a maximum fragment size places a limit on the envelope size.

Given a maximum envelope size, a minimum content to envelope size ratio should be

CHAPTER 5. A STRUCTURE FOR MESSAGE TRANSFER SYSTEMS 89

determined.

A variable length envelope size presents a problem if the system cannot fragment it and

a fixed maximum fragment size is used. The number of recipients is the primary contributor

to the problem. The simplest solution is to impose a limit on the length of the envelope.

Some limit must be set in any case since otherwise the aims of message fragmentation will

be defeated; i.e., a message could be too large to be stored at an intermediate MTA. Since

the originator will normally respond to this limitation by submitting a message as many

times as necessary using subsets of the original recipient list, the message handling system

should provide this functionality. Partitioning the recipient list may result in reduced,

efficiency since the same message may have to be sent out several times along the same

route. The overhead can be reduced in some cases by partitioning recipient lists according

to clusters and, if possible, using topological information. The message handling system

should be in a better position to do this than the user. If the MTS appends information

(such as time stamps) to the envelope, the fragment size should take this into consideration.

Another approach to this problem is given in Section 5.2.1.

When all of the fragments arrive at the recipient MTA, they are reassembled to form

the original message. An MTA that acts as a gateway to a message handling system that

does not support message fragmentation must also perform reassembly before forwarding

the entire message to the next message handling system. There is no danger of reassembly

deadlock since the buffer space reservation system, discussed below, eliminates this possi­

bility. Upon arrival of the last fragment at a recipient MTA, the recipient can be notified

of the message's arrival.

Since there may be a considerable delay between the arrivals of the first and last frag­

ments of a message, the message lifetime must be adjusted so that it is unlikely for the first

CHAPTER 5. A STRUCTURE FOR MESSAGE TRANSFER SYSTEMS 90

arriving fragment to expire before the arrival of the last fragment. This can be achieved

by starting a timer when the first fragment arrives at the recipient MTA and resetting

the timer whenever another fragment of the message arrives. If another fragment is not

received before the timer exceeds some threshold (perhaps as long as the network transit

time) then the transfer may be aborted. The acceptance period begins after the message

has been reassembled. The choice of a timer threshold depends on factors such as the

amount of available buffer space and message transfer costs.

Interconnection between a non-fragmenting MTS and a fragmenting system requires

fragmentation of a message at a gateway to the fragmenting MTS. Before a fragmented

message can be forwarded to a non-fragmenting system the fragments must be reassembled

at a gateway MTA. Some of the implications of this with respect to buffering at the gateway

are discussed later in this chapter.

Interconnection between two fragmenting systems having a different maximum fragment

size also requires special attention. Fragments entering an MTS that uses a fragment size

larger than the previous MTS may lead to inefficiencies and congestion resulting from

internal fragmentation. If the disparity between the two fragment sizes is large, then the

smaller fragments should be combined to form larger fragments. Fragments entering an

MTS that uses a fragment size smaller than the previous MTS must be refragmented so

that they can be transported through the MTS.

5.2 The Message Stream

A message stream is a mechanism for unidirectional, flow-controlled message transfer. The

purpose of the message stream is to limit the number of transit buffers in concurrent use by

a traffic group and to perform flow control on a per-traffic group basis. Once established,

CHAPTER 5. A STRUCTURE FOR MESSAGE TRANSFER SYSTEMS 91

a message stream uses a fixed route, allowing backpressure [Gerla88] to be used instead of

end-to-end acknowledgements to effect flow control. Backpressure permits smooth regula­

tion of traffic flow from originator to recipient because intermediate MTAs can gradually

increase or decrease the number of buffers allocated to a message stream. The individ­

ual messages belonging to a message stream need not be delivered in sequence, although

sequenced delivery could be supported; i.e., message ordering could be preserved. The in­

dividual MTAs constituting a message stream need not be simultaneously operational. As

in current message transfer systems, an MTA will make repeated attempts at establishing

an RTS connection. Congestion control is achieved by limiting the amount of resources

each message stream may hold as well as the number of active message streams.

The creation of a new traffic group in turn creates a new message stream. A mes­

sage stream is known by a unique identifier that associates each message with the message

stream to which it belongs. Each message stream has a set of attributes; e.g., a priority

attribute used in the scheduling of message transfers. A message stream may have a frag­

ment size associated with it. Individual messages may also have associated priorities, used

in scheduling transfers within a message stream. A message stream can be used for a par­

ticular transfer after the originating MTA interacts with the recipient buffer management

system (described in Section 5.5).

The traffic group concept allows successive message submissions from a particular orig­

inator belonging to the same traffic group to use the same message stream. All fragments

of a message normally belong to the same message stream. There can be different types of

traffic groups. One type of traffic group is an individual user's submission of a message to

a particular recipient. Another is an individual user's submission of a message to recipients

belonging to the same cluster. In this case flow control is performed on the originator's

CHAPTER 5. A STRUCTURE FOR MESSAGE TRANSFER SYSTEMS 92

sequence of submissions. A third type consists of messages having the same originating

cluster and going to the same recipient cluster. Consequently, flow control is performed on

an originating to recipient cluster basis. An additional flow control mechanism would be

required in this case to provide fair allocation of buffers belonging to the message stream.

When the submission of a message creates a new message stream, a route must be

determined (several routes, in some cases) to transport the fragments of the message to

each recipient. There are many alternative algorithms for selecting a route. In the case

of an incrementally determined route (see [Elie79], for example), the first step is for the

originating MTA to choose an outgoing cluster gateway MTA. In clusters where there

is more than one cluster gateway this routing information could be distributed to the

individual MTAs within the cluster or a dynamic (query-based) mechanism could be used.

Each cluster gateway in turn selects the next cluster gateway until the recipient's cluster is

reached. Finally, the route leads to the recipient MTA within the last cluster. Messages that

must flow through a cluster (i.e., entering via one cluster gateway and exiting via another)

may continue to extend the same message stream through the cluster, create a new message

stream handling a larger traffic group (i.e., use a generic stream for carrying all "through

traffic"), or use some other mechanism depending on the topology of the cluster. Each

MTA along the route records the message stream identifier of the new message stream and

maintains information on the state of the message stream. The algorithm used to select

successive MTAs forming the route is left open. Factors such as load, buffer availability,

and the number of message streams passing through an MTA could be taken into account.

An intercluster message stream uses the underlying structured buffer pool system. At

each successive cluster gateway along the route the required buffer class number increases

monotonically.2In this way the message stream is guaranteed to be deadlock free, even if

CHAPTER 5. A STRUCTURE FOR MESSAGE TRANSFER SYSTEMS 93

the message stream's route is incrementally generated. Furthermore, it is not necessary to

dedicate any buffers to the message stream. Without an underlying structured buffer pool,

determining a route in this way is more complicated and less efficient if deadlock is to be

avoided.

There are several topology-dependent options available for intracluster message trans­

port. Like the intercluster message stream, an intracluster message stream can be estab­

lished if there is an underlying structured buffer pool. A structured buffer pool may be

appropriate if the maximum number of hops to traverse the cluster is small. In general, for

a network consisting of C clusters and a cluster having N MTAs, the cluster will require

C * N2 buffer classes for a complete structured buffer pool system. Each MTA's structured

buffer pool is hierarchically structured, with one "top"level buffer class for each of the C

clusters and N "bottom" level buffer classes within each of the top level buffer classes. The

top level buffer class used by a particular message depends on the number of clusters the

message has traversed and the bottom level buffer class depends on the number of MTAs

the message has traversed within the current cluster.

In some clusters the number of buffer classes required might be too large and so another

method is required. Unfortunately, when the time-stamp exchange technique is used within

a cluster there does not appear to be a simple way to construct a message stream that

maintains proper backpressure. This is because a time-stamp exchange may move messages

off the message stream's route to prevent deadlock, destroying the flow control aspect of

the message stream. While it is possible to limit the use of the time-stamp exchange to

route selection, hop-by-hop allocation of buffers is not deadlock free. An alternative is

to establish the message stream by simulating a virtual circuit "call setup" operation to

2 The simple hop count technique is assumed here to select buffer classes: a new message is placed in buffer
class zero and a message currently using buffer class N requires buffer class N + 1 at the next M T A .

CHAPTER 5. A STRUCTURE FOR MESSAGE TRANSFER SYSTEMS 94

select a route and reserve buffers at each MTA on the route. If space cannot be obtained

at an MTA on the route, another route can be considered. If a message stream cannot be

established then all allocated buffers must be released and the call setup aborted.

With this scheme, a large cluster using S/F message transfer will have difficulty es­

tablishing a message stream (especially a multirecipient message stream involving many

MTAs) under heavy load. Small clusters, clusters not under heavy load, and clusters having

connection-based facilities should function well, however.

Another alternative is to use a simple acknowledgement scheme where the sender pauses

after N messages have been sent, where N is cluster dependent. The sender continues after

receiving an acknowledgement. There can be a substantial amount of bookkeeping associ­

ated with multirecipient messages directed to many MTAs since the sender must manage

the flow control of each receiving MTA. There can also be tradeoffs between transport

efficiency and delay.

The lifetime of a message stream can be relative to the number of messages transferred,

relative to the time and date the message stream was established at each MTA along the

route, or relative to the time and date of the last forwarded message belonging to the

message stream (e.g., the length of time the message stream has been idle). Once the

lifetime of a message stream has elapsed, no more messages can be sent via the message

stream. A message stream may be shut down in an incremental fashion by sending a

control message. Any reserved resources are deallocated when the message stream is shut

down. Message streams are given a limited lifetime so that any reserved resources can be

put to other uses and to allow later instances of the traffic group to use a message stream

following a different, and possibly better route. When message streams are allocated transit

buffers for their exclusive use, it may be wise to choose shorter lifetimes. The lifetimes

CHAPTER 5. A STRUCTURE FOR MESSAGE TRANSFER SYSTEMS 95

may be assigned on a per message stream basis and the method of determining lifetimes

for intracluster message streams need not use the same criteria as intercluster message

streams.

The message stream for a multirecipient message is formed by splitting the stream at

various points along the route, creating one or more branches that may in turn be split.3

An MTA that splits a message stream keeps track of the continuation of the message stream

(i.e., the set of adjacent MTAs to which the message must be forwarded). A consequence

of managing transit buffer space strictly on a per message stream basis is that if the flow

of any branch of the message stream is stopped all upstream traffic will also eventually be

stopped, even if flow down other branches is possible. This can be ameliorated, for example,

by allocating additional transit buffers to the message stream at these MTAs so that copies

of the fragments that could be forwarded down unblocked branches can be retained until

the flow is resumed down the other branches. Obviously the amount of this allocation

must be carefully considered so that transit buffers are not held for too long. Also, if the

obstruction lasts beyond the lifetime of the branch of the message stream responsible for

the congestion, the branch will be shut down.

A disadvantage of restricting transmission of all fragments of a message to the same

route is the inability to increase parallelism by routing each fragment independently, as

is done in datagram networks. Increased parallelism in message stream transfers can be

achieved, however, by establishing multiple message streams. Individual streams need not

follow the same route.4The message stream identifier can indicate a particular multiple

message stream transfer as well as the total number of multiple message streams involved.

3 As a special case, a branch of a message stream may be of length zero; i.e., messages may be "dropped
off" at a recipient M T A along the route of the message stream.

4 Multiple message streams may, however, be constrained to terminate at the same gateway M T A (Sec­
tion 5.5).

CHAPTER 5. A STRUCTURE FOR MESSAGE TRANSFER SYSTEMS 96

In the event a message stream's flow is halted because of a failure, it may be possible to

create an additional message stream to bypass the failure. A more complicated alternative

is to allow a message stream to be rerouted around failures. Rerouting can be accomplished

by splicing in a new path to bypass the inaccessible part of the route. Any messages an

offline MTA might be holding would be forwarded when the MTA becomes available. The

same mechanisms used in the case of failures may be used to bypass areas of congestion.

A switching technique similar to virtual cut-through [Kermani79] can be used to reduce

total transfer delay and transit buffer requirements. In some cases it may be possible to

begin forwarding a message to the next MTA on the route after only the envelope of

the message has been received. To provide reliability or increased efficiency, a copy of

each message fragment must still be retained at the sending MTA until the fragment is

successfully forwarded. Also, it may be the case that not all of the set of receiving MTAs

on a multirecipient message's route are able to receive at the same time and so the message

must be buffered. An MTA can transparently choose to use this technique on any outgoing

link identified as being suitable. For topologies supporting rapid connection establishment,

the technique could prove useful for real-time transfers.

5.2.1 Envelope Fragmentation

It was previously noted that a variable length envelope may defeat the goals of message

fragmentation. It was argued that since there must be a limit on the envelope size, a

reasonable solution is simply to set the fragment size to reflect this. It has been assumed

that each fragment consists of an envelope virtually identical to that of the submitted

message and some portion of the submitted message's content. If the constraint on the

format of a message fragment is relaxed, an arbitrarily large envelope can be supported

by a fragmenting message transfer system. Following X.400, a fourth type of information

CHAPTER 5. A STRUCTURE FOR MESSAGE TRANSFER SYSTEMS 97

object can be introduced to formally describe the message fragment.5

Envelope fragmentation can be achieved by associating the submitted message's enve­

lope with the message stream's state information. The submitted message's envelope is

fragmented and sent down the message stream, preceding the message's content. While

the ordering of the fragments of the message content may be permuted, the envelope must

continue to precede the content. A fragment containing content from the submitted mes­

sage has a short, fixed length envelope, identifying the message stream to which it belongs.

This approach is more efficient since the envelope is sent once instead of as part of every

fragment.

To avoid deadlock, before a receiving MTA can accept any portion of the fragmented

envelope during the message stream construction phase it must be able to store the entire

reassembled envelope. This is also necessary for message routing purposes. This is the

only constraint on the length of the envelope. An implementation would likely establish a

MHS-wide maximum envelope size for reasons of fairness.

5.2.2 Message Stream Multiplexing

An MTA may establish many simultaneously active RTS connections6if topology permits.

Because there is usually a limit on the number of active RTS connections and some network

interfaces are shared (e.g., modems), message streams may have to take turns establishing

RTS connections. Message streams containing messages to be forwarded to the same

adjacent MTA can be multiplexed onto the same RTS connection. Message priorities are

used to determine the scheduling of message transfers. It is possible, but not necessary, to

assign priorities to message streams so that message scheduling is within message stream

5 The other types, described in Section 2.1.1, are the message, probe, and report.
6 RTS connections were described in Section 2.1.

CHAPTER 5. A STRUCTURE FOR MESSAGE TRANSFER SYSTEMS 98

scheduling.

The scheduling of message transfers can become complicated and difficult to implement

given a network using many types of communication devices providing different degrees of

sharing. Message transfers can be queued taking into account such things as message

priority, message stream type, receiving MTA, and RTS connection characteristics.

The tasks of determining the next RTS connection to establish and the next message

to forward on an RTS connection are performed by the message scheduler. Message trans­

fers are multiplexed using a prioritized round-robin scheduling algorithm. Multiplexing is

performed first on message streams and then on messages within streams. The task of

the scheduling algorithm is to provide fair (as determined by priorities) and livelock-free

message forwarding. Message scheduling can be preemptive but would seem unnecessary

if the maximum fragment size is not large relative to the transmission speed.

Each message stream and individual message is assigned a priority P, 1 < P < N.

A message with priority P is placed in the corresponding queue in an N level queueing

system. Ready transfers are multiplexed so that a transfer with priority P will be scheduled

approximately P times more frequently than ready transfers with priority 1. Round-robin

scheduling is used within a queue level. A transfer that loses its turn to an arriving higher

priority transfer has its priority increased so that eventually all transfers will be scheduled.

Transfers assigned a high priority can, of course, result in long waiting times for transfers

assigned a low priority.

Another factor to be considered involves a tradeoff between cost and delay. If there is

a charge associated with establishing an RTS connection (e.g., there is often a minimum

charge for a long distance telephone call) then in some cases it can be economical to wait

until the queue length grows before the RTS connection is established [King86]. On the

CHAPTER 5. A STRUCTURE FOR MESSAGE TRANSFER SYSTEMS 99

other hand, delaying transfers to take advantage of lower toll costs may require additional

input and transit buffers.

5.3 Congestion Control

Congestion control is effected by limiting the number of message streams in existence at

the originating MTA. This limit can be based on periodic determination of the input buffer

limit. Further restrictions can be placed on the number of message streams belonging to a

particular originator, leaving a cluster, or going to a particular recipient MTA or cluster;

e.g., the amount of input buffer space made available to a particular traffic group can be

proportional to the traffic group's throughput. Again, the particular restrictions imposed

determine the tradeoff between fairness and sharing.

Requests for new message streams fail if the network is deemed to be congested, if one

of the limits on the number of message streams of that type has been reached, or simply

if there is no input buffer space. The number of transit buffers available to input traffic is

adjusted according to traffic conditions, effectively limiting the number of message streams.

The structured buffer pool system, with the dynamic allocation of transit buffers to

buffer classes, and recipient buffer space management (Section 5.5) play a significant role in

reducing congestion. This is demonstrated in the results of the simulation study discussed

in the next chapter. The message stream mechanism also tends to reduce congestion

because the transit buffer usage of a message stream is limited at each intermediate MTA.

Increased global knowledge can be used to provide better congestion control. This

might include, for example, information concerning details of the interconnection of cluster

gateways. Periodic distribution of message stream statistics and buffer usage can assist in

determining bottlenecks in the network.

CHAPTER 5. A STRUCTURE FOR MESSAGE TRANSFER SYSTEMS 100

5.4 Buffer Management

If the most important uses of the MHS are seen to involve the transfer of smaller messages

(e.g., interpersonal messaging, queries, etc.) then steps must be taken in the design of the

MHS to see that large transfers do not unfairly impede smaller ones. Large transfers have

much higher demands for buffer space and connection time. Of primary importance is that

the network should avoid allocating significant quantities of transit buffer space to a large

transfer. Apart from fairness considerations, a stalled transfer may tie up transit buffer

space that could better be used by more "successful" transfers.

One solution to buffer space contention problems between large and small transfers is

to provide separate buffer pools for the two classes of traffic. To avoid the situation where

one pool has free space while the other is full, each buffer pool could be given a minimum

allocation and a third, shared buffer pool could be established. The number of buffers

available to each pool could be dynamically adjusted based on traffic conditions.

Buffer space must be allocated to each MTA for buffering input, transit, and received

messages. The management of buffer space for received messages is discussed in Section 5.5.

Management of submitted messages plays an important role in offline transfer since a

message may need to be stored for some time before it can be forwarded. The usual method

is to place a copy of a message submitted to the message transfer system in a shared buffer

pool. Once the input buffer pool is filled, the system cannot accept additional submissions

until some of the messages are forwarded. In some environments a quota system may be

required to insure equitable sharing of the input buffer area.

As a UA prepares a message for submission to an MTA, it often copies one or more

files into the body of the message. For applications such as file transfer, making a copy of

CHAPTER 5. A STRUCTURE FOR MESSAGE TRANSFER SYSTEMS 101

parts of the message content is wasteful of input buffer space. For example, the EANft UA

builds a file transfer message by copying each file into the body of the message. Duplication

can be avoided by allowing an MTA to access a file at the time of transmission (i.e., when

an RTS connection is established). Some assurance is required, however, that the files will

not be modified between when the message is submitted and when the MTA is no longer

responsible for its delivery. Operating systems that do not support file locking may not

be able to prevent modification of these "included" files, necessitating copying by the UA.

One solution on these systems is to let the user specify whether a copy should be made.

Given that it is safe to avoid copying a file, a UA can submit both the message and

information on how to insert files into the message. At transmission time, the MTA switches

input streams as necessary from the submitted message to any referenced files. This scheme

is application independent since the MTA does not need to know the message format. The

UA could also specify a process to be invoked to do format conversions at transmission

time (e.g., compression or encryption).

The message transfer system is assumed to be "reliable enough" that the destruction of

a message or message fragment through a catastrophe is unlikely. A message may therefore

be deleted by the originating MTA immediately after it has been forwarded. Retaining

a copy of a message at the originating MTA until delivery has been confirmed allows

the system to retransmit a message that is destroyed by a catastrophe. This additional

reliability increases input buffer requirements. If the increased degree of reliability is not

deemed necessary for all messages, it could be requested when the message is submitted.

In the event a catastrophe occurs when the originating MTA does not hold a copy of the

message, the message transfer system could notify the originator (suppressing multiple

notifications) and discard any remaining fragments. Any remaining fragments can be

CHAPTER 5. A STRUCTURE FOR MESSAGE TRANSFER SYSTEMS 102

discarded by the expiry mechanism and no special action need be taken unless quicker

purging is desired. Duplicate messages that arrive during the lifetime of a message stream

can easily be detected. Duplicates that arrive after a message stream has been shut down

can be detected if a recent history of message stream identifiers is retained.

The amount of space given to transit buffers depends on both global and local con­

siderations. Global considerations include the maximum number of hops allowed for any

message (for the structured buffer pool), the number of different fragment sizes, and the

degree of fairness to be provided. A particular MTA must also be configured taking into

account the amount of message traffic anticipated and the function of the MTA (a cluster

gateway and a gateway MTA will need more space than a leaf MTA).

The intercluster buffer pool is broken up into partitions. At least one buffer of each

fragment size must be allocated to each buffer class. Some minimum amount of each buffer

class might also be dedicated to high priority message streams and control messages. The

remaining space makes up a free pool that may be dynamically assigned to incoming

messages.

The number of transit buffers assigned to each buffer class and individual message

stream is adjusted (within MTA specific minimum and maximum limits) according to the

message flow through the buffer class or message stream. As has been discussed, a non­

zero minimum allocation to each message stream increases fairness while simultaneously

reducing transit delay. Dedication of buffers to a message stream may reduce the degree

of sharing, however.

One approach to determining the allocation of transit buffers to buffer classes is to

assign a limit to the size of a buffer class based on the ratio of the throughput of the buffer

class to the total throughput of the MTA. The goal of this approach is to maintain high

CHAPTER 5. A STRUCTURE FOR MESSAGE TRANSFER SYSTEMS 103

throughput under changing traffic conditions by periodically recomputing this ratio. Many

of the details of this approach, described below, differ from those proposed previously

(e.g., [Giessler81]). In particular, the goal of this approach is to improve throughput.

Buffer class limits are determined based on the relative throughputs of the buffer classes

and are adjusted differently.

If the number of buffers in buffer class X is denoted as Bx, the total number of buffers

as BT, the throughput of messages in buffer class X as ax, the total throughput as cry,

and the number of buffer classes as N (labelled 0,...,N — 1), the fraction of the total

number of buffers available to buffer class X is bounded by:

< ^ (5-1)

By keeping track of the throughput of each buffer class and the total message throughput

over an appropriate interval, an MTA could use expression 5.1 to adjust the size of each

buffer class over the next interval.

Each buffer class has variables associated with it indicating the buffer class limit, current

usage, and a delta value. After some number of buffers have been released, expression (5.1)

is used to compute a delta value for each buffer class indicating how much the limit should

be increased or decreased. Buffer classes are initially assigned a limit such that the limits

sum to the total number of buffers available. A buffer class limit can only be increased if

another is decreased and a limit cannot be decreased to less than either the current usage

or a non-zero minimum value.

After the delta values are updated and also after each buffer release, the vector of delta

values is scanned to determine if there is both a limit that can be decreased and a limit

that can be increased. A limit is eligible for being increased if its delta value is positive,

its usage has reached its limit, and messages could not be accepted from an adjacent MTA

CHAPTER 5. A STRUCTURE FOR MESSAGE TRANSFER SYSTEMS 104

during the last interval because the limit had been reached. This scan is from the highest

buffer class to the lowest since in most topologies the highest buffer classes are used less

frequently and should therefore be reduced first. Also, increasing the limits of higher buffer

classes first will tend to remove messages from the network faster since messages through

them are closer to their recipient MTAs. The scanning is repeated until no limit can be

changed.

Since neither the message arrival rate nor the throughput rate is typically a constant,

this technique is likely to be sensitive to the length of the measurement interval between

updates. An interval that is too short may cause too much overhead in the mechanism

while an interval that is too long may not adjust to changing conditions fast enough to be of

benefit. Therefore, a variable length interval that is a function of the message throughput

is used rather than a fixed time interval. Giessler et al. [Giessler81] used a mechanism

based on counters that determines the number of buffer release events required before the

size of a buffer class can be adjusted. Some memory of throughput during recent intervals

may be retained to smooth out changes in the limits.

After determining the adjustments that must be made to the individual buffer classes,

message streams within each buffer class are examined to determine how the buffer allo­

cation to individual message streams must be changed to reflect these adjustments. For

each buffer class, expression 5.1 may be applied to the buffer class throughput and message

streams using that buffer class (a message stream can only be using a single buffer class

at any MTA). In this way the proportion of the buffer class that should be allocated to

individual message streams can be determined. Minimum and maximum message stream

allocations must be imposed.

CHAPTER 5. A STRUCTURE FOR MESSAGE TRANSFER SYSTEMS 105

5.5 Recipient Buffer Space Allocation

The potentially long lifetime of messages within the network, coupled with the prohibition

on discarding messages, implies that the commitment of transit buffers to a transfer must

be carefully controlled. The scenario to be avoided is that of a transfer unable to proceed

because there is not enough buffer space (recipient buffer space) for the entire message at a

recipient's MTA. When message traffic is heavy or when large transfers are involved such

stalled transfers could tie up many transit buffers for a considerable time.

In the simplest case, the arrival of a message causes an MTA to invoke a recipient-

dependent UA process for each local recipient, passing a copy of the message to each UA.

After all UAs have accepted a copy of the message, the MTA deletes its copy. If the

message is not claimed within the acceptance period (e.g., because a UA is not available

or the UA has no space to store the message) it is discarded.

This simplistic approach has two important drawbacks. The first is that a message ties

up recipient buffer space while it waits to be accepted. In the worst case, the buffer space

is held for the duration of the acceptance period. Without some means of prevention, it

is possible for some users to monopolize recipient buffer space if their messages are not

accepted in a timely manner. The second problem with this simple approach, at least in

some environments, is the generation of multiple copies of a multirecipient message. A

more efficient scheme would pass only a pointer or capability to the message to the UA

and have the MTA act as a message store.

Given a need to manage recipient buffer space for efficiency and fairness reasons, major

aspects to be considered in the design of a recipient buffer space reservation system include:

1. the delay in acquiring recipient buffer space,

CHAPTER 5. A STRUCTURE FOR MESSAGE TRANSFER SYSTEMS 106

2. fairness,

3. utilization of recipient buffer space, and

4. overhead of the system.

An ideal system would inexpensively grant recipients a "fair" proportion of the available

space (e.g., by imposing quotas) while minimizing the delay incurred by transfers and

maximizing buffer space utilization. Unfortunately, given wide variations in end-to-end

transit times and a nonstatic population of network users, this ideal is difficult to achieve.

As might be expected, there is a tradeoff between fairness and utilization: increased fairness

in sharing recipient buffer space among each of an MTA's users implies lower utilization of

the buffer space. Likewise, there is a tradeoff between fairness and delay. Only a recipient's

MTA can know the buffer usage of the recipient at any instant, implying that fair usage of

recipient buffer space requires interaction with a recipient's MTA before a message can be

submitted for transfer.

Alternative solutions to the problem of recipient buffer space allocation are discussed

in the next three sections. A recipient buffer space management system is described in

Section 5.5.4.

5.5.1 Preallocation

One approach is for the originating MTA to send a control message indicating the size

of the transfer to each recipient's MTA. The originating MTA waits for a response from

each recipient's MTA indicating that the transfer can proceed. A recipient MTA responds

immediately if the message is rejected or if space is available, otherwise the request is

queued and a response is sent after the MTA has allocated space to hold the message. Note

CHAPTER 5. A STRUCTURE FOR MESSAGE TRANSFER SYSTEMS 107

that this is not the same as a probe, the result of which indicates whether the described

message could at some point in time be transferred and delivered to a recipient if it were

to be submitted but does not guarantee subsequent delivery.

Potential consequences of preallocating recipient buffer space include:

1. reduced congestion since transfers do not stall because a recipient cannot accept a

message due to insufficient buffer space, fairness constraints, or prevention of re­

assembly deadlock.

2. reduced congestion and expense since a transfer can be "refused" before it begins by

the intended recipient.

3. recipient buffer space can be allocated to users according to fairness criteria.

4. more complicated, less efficient, and slower transfers than the case of no preallocation

because control messages must be exchanged between the originating MTA and the

recipient MTAs.

5. poorer utilization of recipient buffer space since buffers remain idle while they are

reserved.

Preallocation of recipient buffer space for large transfers is desirable in that it can

decrease the time to deliver the message, thus reducing the likelihood of large amounts

of transit buffer space being tied up until the recipient can accept the entire message.

Preallocation also solves the problem of reassembly deadlock.

Another advantage of preallocation occurs in its relationship with flow control in mul­

tirecipient message transfer. Multirecipient messages can create a conflict between flow

control and efficiency considerations, as illustrated by the following example. Consider the

CHAPTER 5. A STRUCTURE FOR MESSAGE TRANSFER SYSTEMS 108

case of a large message addressed to two recipients within the same cluster. It is most

time and cost efficient to send a single copy of the message to the destination cluster. It is

also space efficient since there need only be a single copy of the message. These efficiency

considerations can, however, defeat flow control of an individual's messages since recipient

buffer space may not be available for one of the recipients. After being delivered to one re­

cipient the message must be retained in transit buffers until the other recipient can accept

the message.

The preallocation system can easily be extended to support a weak form of "atomic

message transfer" where a transfer to multiple recipients can be aborted if any of the

potential recipients are unable to receive the message; i.e., if any potential recipient can

not or will not receive the message then the message is not sent to any recipient. Here, the

request message also serves as a probe and if any request is undeliverable (e.g., an unknown

0 /R name was specified) or if a reply to a request is negative, the entire transfer can be

aborted at the originator's option. Although "stronger" than a system based on probes,

there is no guarantee that all recipients will subsequently receive the message unless the

MTS is reliable.

Unfortunately, a preallocation system can lead to inefficiencies when there is more than

one recipient. The transfer may not proceed optimally (i.e., with the fewest possible con­

nections and bytes transferred) unless the originator waits for buffer space for each of the

recipients. There are also delays experienced by the transfer while the message request­

ing buffer space is delivered to each recipient MTA and the reply is returned. Another

inefficiency is that this scheme may tie up large amounts of buffer space at the recipient

host while it waits for the message to arrive. If the transfer is aborted the reservation of

space must be released, by use of an expiry date on the reservation or an explicit control

CHAPTER 5. A STRUCTURE FOR MESSAGE TRANSFER SYSTEMS 109

message, for example.

Preallocation makes it easy for a user to refuse certain messages before they are ever

sent. A user can specify that a request for recipient buffer space should be denied if it comes

from a particular originator, if it arrives during some time period (e.g., when the user is on

holidays), or based on the size of the request, for example. This saves resources that would

otherwise be used in sending an unwanted message and reduces message transfer system

overhead.

When a recipient MTA lies outside of the message transfer system, buffer space must be

reserved at a gateway MTA for message reassembly rather than at the recipient MTA. The

originating MTA may explicitly select a gateway MTA or a gateway MTA may intercept

the control message.

5.5.2 Optimistic Transfer

In contrast to preallocation of recipient buffer space, an optimistic approach assumes that

most of the time recipient buffer space will be available when the message arrives at a

recipient MTA. A message is submitted for transfer and a copy is retained at the originating

MTA, A recipient MTA replies to the originator, indicating that the transfer was successful

or that the message should be sent again since there was no recipient buffer space available

the first time and the message had to be discarded. If a recipient MTA lies outside of the

message transfer system, the gateway MTA that received the message is responsible for

this buffer management.

This optimistic approach tends to reduce transfer delay but increase both cost and

traffic volume. It also has increased input buffer requirements over other approaches since

a copy of a message must be retained at the originator in case it must be retransmitted.

CHAPTER 5. A STRUCTURE FOR MESSAGE TRANSFER SYSTEMS 110

For these reasons the technique is probably not well suited to large transfers. In particular,

optimistic transfer may be inappropriate for fragmented messages because if fragments are

not discarded transit buffers may remain occupied for an extended period.

A hybrid, adaptive scheme may offer better overall performance than either of the

preallocation or optimistic approaches. Optimistic transfer is selected initially for non-

fragmented messages up to a certain size. By keeping a record of the outcome of an

optimistic transfer between originator/recipient pairs over a recent time interval, the prob­

ability of success can be estimated. A probabilistic algorithm can then be used to decide

whether the optimistic or preallocation technique should be used. Transfers that tend to

enjoy success with optimistic approach will continue to use it or else tend to the preallo­

cation technique.

5.5.3 Multirecipient Messages Having a Common Recipient M T A

When there is only one recipient at a particular MTA, quota management is simple since

the message only has one "owner" responsible for the recipient buffer space used by the

message. Assessing responsibility is more difficult in the case of a multirecipient message.

How is this multirecipient buffer space accounted for and to what degree can fairness be

exchanged for efficiency?

Tighter adherence to fairness is achieved through the use of "hard" quotas rather than

"soft" quotas. Whereas a hard quota system never allows a user to exceed resource limits,

a soft quota system allows limits to be temporarily exceeded.

At one extreme, each of N recipients of a particular M byte message might require

enough of an allocation to store the message, giving each recipient a copy when the message

arrives. The transfer is refused if any of the N local recipients does not have enough of

CHAPTER 5. A STRUCTURE FOR MESSAGE TRANSFER SYSTEMS 111

a quota reserve. This results in wasted recipient buffer space (in a global sense) and may

increase delays (discussed in Section 5.5.1), but only requires a simple hard quota system.

At the other extreme, a message might be accepted if there is enough space in a common

buffer pool. With no quota system, some groups of recipients could monopolize the common

buffer pool. Buffer space is more effectively utilized, however, and delays are reduced over

the previous method.

A scheme falling between these two extremes involves accepting a message if there is

a total of M bytes available among the N recipients. This is space efficient and has good

delay characteristics but results in a relaxed definition of fairness; e.g., what is done if

some of the recipients have already reached their quota when the message arrives and how

are the individual recipient's usages recalculated when one recipient logically deletes the

message? Either soft or hard quotas may be used in this scheme. If hard quotas are used,

a degree of fairness is given up since space usage cannot be recalculated until all recipients

are finished with the message (i.e., logical message deletion may not decrease a recipient's

usage).

5.5.4 A Recipient Buffer Management System

This section describes a recipient buffer management system based on the ideas presented

in the previous sections. The functionality of this mechanism is a superset of that provided

by the X.400/1988 message store. The primary function of the message store is to accept

delivery of messages on behalf of a single recipient and to retain them for subsequent

retrieval by the recipient's UA [CCITT88c].

Each user known to the message transfer system is allocated buffer space to hold in­

coming messages. Some local convention must be adopted to manage the use of this space

CHAPTER 5. A STRUCTURE FOR MESSAGE TRANSFER SYSTEMS 112

among the message transfer system and various UAs that accept and delete messages. De­

pending on the implementation, a user's personal allocation may be owned (with respect

to the host's operating system and quota system) by the user or may be part of a common

area (the shared recipient buffer pool) with a hard limit imposed by the message transfer

system itself. This per-user buffer space is used solely by messages having no other recipi­

ents at the MTA. The respective allocations may meet any local fairness criteria, but must

take into account the volume of messages expected, the largest message that can be re­

ceived by a user, and the acceptance period. Messages that would raise a recipient's usage

above quota are refused; i.e., requests are queued and messages not using the preallocation

system are treated as undeliverable.

Multirecipient messages are stored in the shared recipient buffer pool managed by the

message transfer system. Users are assigned soft limits by the local system administrator.

If there is enough space available in the pool and the sum of the space available to each

recipient equals or exceeds the message size, the message may be accepted. An equal

proportion of the size of the message is added to each recipient's usage. When a recipient

is no longer considered to be responsible for a message, the portion of the total message size

previously deducted from the recipient's usage is restored. When only a single recipient

is responsible for the message, the space could be debited from the recipient's personal

allocation, if possible.-If there are no remaining responsible recipients, the message may be

deleted; otherwise each recipient's usage is recalculated, taking into account the increased

responsibility for the message. When usage exceeds the soft limit, action may be taken as

warranted.

The hybrid technique discussed in Section 5.5.2 is used for messages considered to be

"small" (a network administration decision), while preallocation is used for larger messages.

CHAPTER 5. A STRUCTURE FOR MESSAGE TRANSFER SYSTEMS 113

The choice of an appropriate "small" message size would likely mesh with the message

transfer system's choice of transit buffer sizes. Control messages use optimistic transfer.

In the case of intercluster transfers, the delay incurred by preallocation can be reduced

in exchange for allowing some transfers to stall. For example, a transfer might be allowed

to proceed without a preallocation until it reaches its outgoing cluster gateway MTA. The

cluster gateway then arranges the preallocation before the transfer may continue. For this

approach to be useful the number of stalled transfers must be controlled and the number

of transit buffers allocated to the message streams involved must be limited. Delay can

be reduced in some cases by having MTAs notify their cluster gateway when recipients

have reached their quota or are refusing messages. An MTA that will be unavailable for

an extended period may notify its cluster gateway.

Another method of reducing delay involves making the shared recipient pool (or some

portion of it) available for general use. Credits for recipient buffer space are distributed to

reduce the average delay incurred in acquiring recipient buffer space and to lower overhead.

Possession of credit for recipient buffer space at a particular recipient MTA insures that

there is enough space at the recipient MTA before a transfer begins. A credit system may

use soft quotas to manage the shared recipient pool. This approach will be most effective

when there is a significant amount of message traffic between the two MTAs involved; e.g.,

in servicing distribution lists (mailing lists). Credits are not earmarked for any special use

and can be used by any message stream.

Credits are obtained in response to sending a credit request message (a type of control

message) to the recipient MTA. The request includes the amount of space required and a

reply confirms the allocation. To avoid reassembly deadlock, a transfer cannot be started

until there is enough credit at the recipient MTA to hold the entire message. Credits are

CHAPTER 5. A STRUCTURE FOR MESSAGE TRANSFER SYSTEMS 114

cached to reduce the amount of credit-related message traffic. The amount of recipient

buffer space requested or granted may be larger than is necessary at the time the request

is made. A lifetime can be imposed on credits to increase buffer utilization.

5.6 Fairness Issues

Several important fairness issues are explicitly addressed by the resource management

components described in this chapter. These elements of fairness are not present in current

message transfer systems.

Foremost among these is the use of fragmentation and round-robin scheduling to signif­

icantly reduce the mean queueing delay experienced by smaller messages. Queueing delay

becomes dependent on the fragment size instead of the original message size. Two severe

forms of unfairness are handled; deadlock is prevented by the hierarchical deadlock pre­

vention method and livelock is eliminated by the message stream multiplexing algorithm.

Wong et al. [Wong82] have developed measures of fairness in terms of relative end-to-

end delays experienced by different classes of traffic in packet-switching networks. These

results can be applied to the message scheduling algorithm should this form of fairness be

important in the MTS.

Another significant element of fairness comes as a result of message stream based flow

and congestion control. The number of transit buffers in use by a traffic group at an

intermediate MTA is strictly regulated by a message stream, preventing monopolization

(e.g., as illustrated by Figure 3.3). Flow control is performed on a per message stream

basis so that individual traffic groups are throttled back. Control can also be exercised by

an originating MTA over the number of active message streams belonging to a particular

originator (and also the amount of input buffer space being used if it must be shared) and

CHAPTER 5. A STRUCTURE FOR MESSAGE TRANSFER SYSTEMS 115

by a cluster gateway MTA over the number of message streams belonging to a particular

originator that leave the cluster.

The recipient buffer management system helps to reduce unfairness resulting from ex­

cessive buffer occupancy. Recipient buffer space is managed more fairly, controlling the

hogging of buffers used to store received messages.

As has been mentioned in Chapter 3 and earlier in this chapter, there are often tradeoffs

between fairness, sharing, and delay. A message transfer system could allow some user

control over the level of performance given to a transfer in exchange for an adjustment

in the cost of the service. For example, a high priority transfer might be allowed to use

more transit buffers and receive a higher scheduling priority than other transfers at some

additional expense.

5.7 Tuning, Maintenance, and Disaster Recovery

The need to perform day-to-day network management, as well as changing network topol­

ogy and message traffic characteristics require that provisions be made to collect perfor­

mance statistics, monitor the state of the network, adjust parameters controlling MTAs,

access accounting data, and so on. These management functions are needed both by per­

sonnel managing clusters and those managing the entire message handling system. Control

messages can be used to perform many functions remotely, including requests for data to

be sent by a return message. There is growing interest in network management systems

and protocols [Feridun88, Partridge88, Case88] and standardization efforts are underway

[Klerer88].

While subsystems of a message transfer system may be designed to take care of crucial

problems such as deadlock prevention, there is no guarantee that a particular implemen-

CHAPTER 5. A STRUCTURE FOR MESSAGE TRANSFER SYSTEMS 116

tation follows the design correctly, that there are no bugs in any of the tools used in the

implementation, or that hardware problems won't arise. An implementation must allow for

manual intervention to correct any unusual situations. Control messages play an important

role here too, allowing a central authority to diagnose and solve some types of problems

remotely.

5.8 Summary

Performance aspects of message transfer systems have received little attention even though

these systems have existed for some time and are coming into widespread use. In particular,

flow control and congestion control present many problems. Current systems tend to ignore

many of the difficult aspects of message transfer discussed here. A framework for designing

message transfer systems based on message streams has been presented that addresses

these problems in a structured way.

Chapter 6

Simulation Experiments

This chapter examines performance aspects of the message stream mechanism together with

recipient buffer space reservations in comparison to a method of message transfer that uses

neither technique. A simulation study was undertaken to evaluate some of the proposals

of Chapter 5 in several network topologies while varying configuration parameters. The

sensitivity of the performance to workload parameters was also studied.

One objective of the performance study was to determine end-to-end throughput char­

acteristics of message streams in comparison to a simple, non-fragmenting scheme that

does not use buffer reservations. Other objectives included gaining a better understanding

of buffer class management, message stream operation, and implementation issues.

Because of the complexity resulting from the many parameters and distribution-driven

components of the model, discrete-event simulation was chosen over an analytic modeling

approach. A discrete-event model is flexible, easy to modify, and can capture much of the

detail of a complicated system. An equivalent analytic model would likely be intractable.

The ability to inspect the state of a simulation in progress proved valuable in locating

bottlenecks and erroneous assumptions that might otherwise have been overlooked.

117

CHAPTER 6. SIMULATION EXPERIMENTS 118

The simulation system is described in the next section. Section 6.2 discusses the

methodology used in the experiments and the results are presented in Section 6.3. Con­

clusions of the study are summarized in Section 6.4.

6.1 The Xsim Discrete-Event Simulator

Xsim [Brachman88b] is a general purpose discrete-event simulator based on elements of the

Xinu operating system [Comer84] and on the extended programming language approach to

simulation, GASP II [Pritsker69] in particular. Xsim runs under Unix 4.2 BSD, 4.3 BSD,

and their derivatives on the Digital Equipment Corporation VAX or Sun Microsystems

Sun 3 architectures. It consists of a library of functions to create and manage lightweight

processes and queues, record statistics, and generate variates from several different distri­

butions. The simulation functions were initially tested by running several problems with

known analytical solutions. Before its use in this study, the simulator had been used for

several smaller projects, including another network simulation.

Xinu (version 6) [Comer84] is a process-oriented operating system that runs on PDP-

11 and LSI-11 minicomputers. It provides process management and coordination, message

passing, memory management, a disk driver and file system, and a store-and-forward ring

network of Xinu machines. While Xsim borrows elements of Xinu that deal with process

management, its processes use Unix I/O and memory allocation functions rather than their

Xinu counterparts.

Xsim consists of about 50 lines of assembler code, 2000 lines of C code that perform

simulation functions, and another 2100 lines of modified Xinu C code. Xsim processes run

within a single Unix address space.

A combination of approaches to discrete-event simulation are used in Xsim [Fishman73,

CHAPTER 6. SIMULATION EXPERIMENTS 119

Gordon78, Ferrari78]. In the event-scheduling approach, the next event technique is used to

advance the simulation clock by a variable number of steps, skipping intervals containing

no events. In the activity-scanning approach, events may be scheduled to take place when

specified conditions are satisfied. Xsim supports both techniques (resulting in a variable-

step, activity-scanning approach) by allowing events to be scheduled implicitly using queues

or explicitly by waiting for the simulation clock to be incremented by a given amount or

until an arbitrary condition is satisfied.

Queues are an interprocess communication mechanism similar to Xinu's ports [Comer84].

They provide a way for processes to pass arbitrary data and synchronize. A queue is cre­

ated dynamically and is identified by an arbitrary (but unique) name that is global to all

processes. Xsim provides functions for creating and destroying queues, enqueueing items,

dequeueing items, scanning enqueued items, and controlling the operation of a queue (e.g.,

setting a maximum queue length). Statistics on queues are maintained automatically.

A simulation program consists of one or more Xsim processes. These processes normally,

but need not, represent servers. A server usually has one or more queues associated with

it. For example, a single server simulation might have a producer process that simply puts

items on a queue while a consumer process removes items from the queue (see Figure 6.1).

The consumer blocks if it tries to dequeue an item when the queue is empty. The producer

waits for some period of time to elapse and then enqueues an item on the consumer's

queue, causing the consumer to resume execution if it had been blocked. Arbitrary data

items are put on the queue; the queue management routines simply copy the data. In this

example, items placed on the queue might include the value of the simulation clock at the

time the item was enqueued and the amount of service time the item requires (i.e., how

long the consumer process should wait once the item has been dequeued). A simulation

CHAPTER 6. SIMULATION EXPERIMENTS 120

continues until either the simulation clock exceeds some specified value, a specified real time

period elapses, the program is interrupted, or a function is explicitly called to terminate

the simulation.

Producer Process Consumer Process Producer Process Consumer Process Producer Process

Named Queue

Consumer Process

Figure 6.1: A Single Server Model

A more complete description of Xsim can be found in its user's manual [Brachman88b].

6.2 Methodology

This section discusses the simulation model and parameters used in the experiments. Fol­

lowing a description of elements common to all simulation runs, unique characteristics of

the two basic configurations simulated are discussed. Next, the network topologies and

simulation parameters are described.

In the first series of simulations, the objective was to compare end-to-end message

throughput of the message stream based method using recipient buffer space reservations

(the fragmenting approach) with a scheme performing neither fragmentation nor buffer

reservations (the non-fragmenting approach). The effect of increasing recipient MTA con­

gestion on the throughput of large messages was measured. Results for the throughput

of single fragment messages are not presented because the recipient buffer space alloca­

tion scheme introduces many more single fragment messages and its throughput of single

fragment messages is consistently higher, distorting the performance of the larger mes­

sages. The increased throughput of single fragment messages in the fragmenting system is

CHAPTER 6. SIMULATION EXPERIMENTS 121

also a consequence of the system's greater degree of fairness. The hypothesis is that the

non-fragmenting approach should not perform as well since congestion at a recipient MTA

should spread and adversely affect other transfers. Many singleton simulations were run

to observe the effect of changes to message stream parameters.

In the second series of simulations, the objective was to estimate the sensitivity of the

results of the first series to workload. Toward this end, a configuration was rerun while

varying the interarrival time of messages.

The simulation model uses the Xsim library and consists of about 5000 lines of C code.

The simulations were performed on Sun 3 computers running SunOS version 3.2, 3.5, or

4.0.

6.2.1 Common Simulation Elements

In every simulation, an MTA comprises several processes, a fixed total number of buffers,

input parameters, a routing strategy, and a buffer management scheme. The internal

representation of the network is constructed from a specification of network topology read

from a file. A simulation run creates a record of its initial state, input parameters, and,

upon completion, a detailed summary. Statistics and state information are also generated

every 4000 simulation seconds. Each run uses a different sequence of random numbers since

the generator1 is initialized using the system clock. Simulation begins with the queues of

each MTA empty and continues until a steady state is achieved.

At the beginning of a simulation, a "parent" MTA process is created for each MTA

in the network. Each parent MTA process generates one sender and one receiver process

for each link to an adjacent MTA and then simulates the arrival of new messages into the

1 The Berkeley Unix random0 function, a non-linear additive feedback random number generator, was
used. It has a period greater than 2 6 9 .

CHAPTER 6. SIMULATION EXPERIMENTS 122

system. A sender process waits for a message to arrive on the queue for the outgoing link

it manages, negotiates with the receiver process on the other end of the link, and transfers

the message if buffer space has been allocated by the receiver. Except for input messages

that are rejected due to lack of input buffer space, messages are never discarded. Once

accepted by the network, every message will eventually be delivered. Round-robin message

scheduling is used.

A receiver process waits for the sender on the other end of its link to request buffer

space. If space is available, the receiver accepts the message and places it in the queue

of one of its MTA's sender processes according to the routing algorithm. If no space is

available, the sender must retry later. Data can be transferred only in one direction at a

time on a link. Multiple sender and receiver processes may be simultaneously active at a

particular MTA; i.e., an MTA can be either receiving or transmitting on each of its links

simultaneously.

Since messages are submitted in their entirety in the message handling environment,

buffer class zero must be large enough so that a reasonable number of messages, including

some very large ones, can be held. Because adjusting the input buffer limit would discrim­

inate against bigger messages more than smaller ones, the buffer class limit of class zero

buffers is not adjusted. To prevent smaller messages from monopolizing input buffers, they

are not permitted to use more than half of the input buffers.

For the first series of simulation experiments, the interarrival time of new messages at

each MTA is normally distributed with a mean of 50 simulation seconds. Message sizes

are drawn from a distribution based on the measurements presented in Section 3.7, with a

minimum message size of one fragment and a maximum size of 100 fragments (Table 6.1).

It was necessary to reduce the upper limit on the message size from the measured value to

CHAPTER 6. SIMULATION EXPERIMENTS 123

make the simulations tractable. Messages within a particular range of sizes are chosen with

equal probability. The recipient MTA for a newly created message is randomly chosen, with

each MTA equally likely. An MTA may not send a message to itself. In each configuration,

an MTA allocates 1000 buffers for input traffic, with each buffer consisting of 1000 bytes.

Other buffer classes are initially allocated 100 buffers each so that the non-fragmenting

configuration can transfer the largest possible message. A new message is rejected if there

is no input buffer space for it in buffer class zero.

Message Sizes (fragments) Probability
1 .70
2-30 .20

31-100 .10

Table 6.1: Distribution of Message Sizes

The simple hop-count scheme is used for determining the buffer class in which a frag­

ment should be placed; i.e., a fragment having made N hops must be placed in buffer class

N. Each MTA has as many buffer classes as there are MTAs in the network less one.

Of the 500 buffers allocated to the recipient buffer space pool at each MTA, 25% are

dedicated to single fragment messages and 75% to multifragment messages. This prevents

either class of messages from monopolizing the buffers. An MTA process creates a process

to simulate the removal of messages from the recipient buffer pool. The time between suc­

cessive removal events is selected from a normal distribution with a mean of 50 simulation

seconds. The amount restored to the pool at each event is taken from the message size

distribution.

To better evaluate the benefits of recipient buffer space preallocation, congestion at

recipient MTAs is augmented by adding extra delay before some requests for recipient

CHAPTER 6. SIMULATION EXPERIMENTS 124

buffer space are granted. This models an interval during which a message requiring recipient

buffer space is blocked because there is insufficient space in the recipient buffer pool to store

the entire message. Because there are no statistics available on how long messages remain

in the recipient buffer pool in a real messaging system, a range of delays is used.

In the fragmenting system, only a control message requesting recipient buffer space (a

request message) is subject to this recipient buffer space allocation delay (RBSAD). The

control message granting recipient buffer space (the grant message), sent in response to a

request message, and message stream transfers have their space preailocated and do not

experience this delay. In the non-fragmenting system, no preallocation is performed and

all messages are subject to the delay. The forwarding of a message from its next-to-last

MTA to its recipient MTA triggers this delay with probability 0.1 in the simulation studies.

Should the delay occur, the message remains at its next-to-last MTA for the duration of

the delay. Since requests for recipient buffer space are handled first-come, first-served,

no transfer requiring recipient buffer space will be accepted until the delay expires; other

transfers passing through the MTA are processed normally. The RBSAD is randomly

selected from a normal distribution with mean 50, 100, 200, 400, 800, or 1600 simulation

seconds for a particular simulation. Simulations were also performed with the augmented

delay turned off (denoted as RBSAD 0). Some topologies were not simulated at the higher

RBSAD values because of the long simulation time required.

Throughput is based on end-to-end delivery of complete messages rather than on raw

fragment throughput. In the message handling environment, this is the throughput with

which the user is concerned. Transport of a message from originator to recipient only con­

tributes to the total system throughput when the last fragment of the message is delivered.

The model makes several simplifications to reduce the complexity or execution time

CHAPTER 6. SIMULATION EXPERIMENTS 125

of a simulation. Multiple recipient messages are not simulated, communication links are

assumed to be reliable, and processing time is assumed to be negligible. The simple hop-

count technique is used for accessing buffer classes instead of one of the more elaborate

techniques mentioned in Section 4.1. Message transfer is half-duplex on a link and input

buffer limits are not adjusted. Static routing is used. Many potentially interesting simu­

lation parameters are not varied, primarily because the networks would take considerably

more time to simulate. For example, the number of MTAs in a particular topology could

have been varied or the number of transit buffers per MTA could have been increased.

There are an endless number of performance statistics that could be gathered (e.g., buffer

utilization) but which would place additional demands on the memory requirements of the

simulations.

Like most studies of this nature, confidence in the correct operation of the model is based

on an analysis of tracing output produced by the simulation, placing many consistency

checks in the simulation code, running auxiliary simulations with different parameters to

verify trends, and finding consistent explanations for the results.

6.2.2 The Fragmenting Approach

The fragmenting approach uses message streams and recipient buffer space reservations.

The storage requirement of a single fragment is one buffer. A message stream is always

used for messages consisting of three or more fragments and is established incrementally as

each successive MTA receives the first fragment of a message. When a new multifragment

message is generated, it requires an extra buffer that is preallocated for the grant message

that will be sent in response to the reservation request message. Request messages are

not given special treatment and also require recipient buffer space. As each fragment is

forwarded, its space in the input buffer pool is released by the originating MTA. Transfers

CHAPTER 6. SIMULATION EXPERIMENTS 126

that do not use a message stream do not use reservations; they are not accepted at the

recipient MTA until there is enough space in the recipient buffer pool.

Senders fragment a message according to simulation parameters and negotiation with

the receiver process. For most simulation runs a message stream was allocated a single

buffer for its lifetime at an MTA. In several auxiliary runs, multiple buffers were allocated

to message streams. In this case, the actual number of transit buffers allocated to a

message stream is the minimum of the total message size and the maximum message

stream allocation. The allocation is retained until the message stream is completed at the

MTA. The link scheduling algorithm allows a message stream to transfer at most one half

of the allocation at a time. This enables an MTA to simultaneously forward and receive

fragments belonging to a particular message stream and also provides fairer sharing of

the link. As a consequence, a message not larger than one half of the maximum message

stream allocation would not be fragmented. A message stream cannot be established at

an intermediate MTA until all of the message stream allocation can be granted. This

restriction was made to simplify the simulation and probably would not be present in an

implementation of the system. Lifting the restriction would likely increase throughput

and decrease delay since buffer utilization would be higher. For example, the message

stream could be established and proceed normally using a smaller allocation initially. The

allocation could be increased should transit buffers of the appropriate buffer class become

available.

Simulation of recipient buffer space reservations involves sending a request to the recip­

ient MTA for allocation of space to contain the entire message. The request is piggybacked

onto the first fragment of the message. If there is space for the entire transfer, it is set aside

and a grant message is returned to the originator. In this case the first fragment is not

CHAPTER 6. SIMULATION EXPERIMENTS 127

resent and, if the original message was two fragments in length, the remaining fragment

does not use a message stream.2 If there is insufficient space, the recipient MTA queues

the request and sends a grant to the recipient once space becomes available. Requests are

serviced first-come, first-serve so that all requests will eventually be processed.

An originator begins a multifragment transfer when it receives a grant message from the

recipient. If there is insufficient space at the time the recipient MTA receives a request, the

first fragment of the message must be resent. Owing to their smaller size, the transfer time

of a control message is normally much smaller than that of other single fragment messages

and is set at 20% of the normal transfer time in the simulation experiments. For simplicity,

however, control messages are assigned the buffer space of an entire fragment. This will

tend to reduce the performance of message streams over a more accurate simulation.

The dynamic buffer class adjustment scheme proposed in Chapter 5 was implemented

and used with message streams. Buffer class limits are recalculated and reassigned after

every 50 buffer release events. A buffer may also be reassigned after a release event. The

parameters controlling buffer class adjustment were selected based on observations made

during development of the simulation and were not optimized.

Buffer classes do not prevent traffic flow imbalances that lead to traffic flowing in

one direction monopolizing all the buffers of a certain buffer class. This can result in

reduced throughput and unfairness unless precautions are taken. This problem of buffer

monopolization was partially addressed by a mechanism tying in with the buffer class

adjustment strategy. Once outgoing link usage within a buffer class exceeds a limit, the

buffer class is marked for expansion. Each outgoing link is given a minimum allocation

out of the buffer class limit and, if a link uses more than 80% of the remaining buffer class

2 This design decision was made early on to simplify the implementation of the simulation. A message
stream could be used to transfer single fragment messages.

CHAPTER 6. SIMULATION EXPERIMENTS 128

limit, the buffer class is marked for expansion. A buffer class is also marked for expansion

when there are insufficient buffers in the buffer class to grant a request.

6.2.3 The Non-Fragmenting Approach

Although the non-fragmenting approach is meant to model current systems, which typically

use neither buffer classes nor recipient buffer space preallocation, preliminary simulations

experienced S/F deadlock. The simplest means of overcoming the deadlock was to intro­

duce buffer classes and to use fixed buffer class limits that would allow the largest message

to be transferred.

The non-fragmenting approach does not use message streams, dynamic buffer class ad­

justment, or recipient buffer space preallocation. Messages are transmitted in their entirety

at each hop. Enough transit buffer space to hold the entire message must be available at

each intermediate MTA and recipient buffer space to hold the entire message must be

available before a message can be forwarded from its next-to-last hop to its recipient MTA.

Requests for transit buffers and recipient buffer space are handled first-come, first-served.

6.2.4 Network Topologies

Four network topologies were studied in the simulations:

1. The unidirectional ring topology limits traffic flow to a clockwise direction with each

MTA having a single incoming fink and a single outgoing link. In this topology, traffic

load is distributed evenly among 20 MTAs.

2. The bidirectional ring topology also comprises 20 MTAs. The routing algorithm

chooses the shortest route or, if the recipient MTA is the same distance in either

direction, a route is chosen at random.

CHAPTER 6. SIMULATION EXPERIMENTS 129

3. The linear array topology consists of a string of 20 MTAs. In addition to its simplicity,

this topology imposes heavier loads on MTAs closer to the middle of the string as

well as offering some very long paths. While probably not a realistic configuration,

it might be seen in a sequence of bridges or gateways.

4. The simplified CDNnet topology (Figure 6.2) models a more realistic topology for a

message handling system than do the others. The mean number of hops per transfer

is smaller than in the other topologies and the distribution of traffic load is less

uniform. Arbitrary but minimal or near minimal length routes were selected for each

originator and recipient pair. Because the complete CDNnet topology consists of too

many MTAs and links to be simulated in a reasonable amount of time, a subset of

15 MTAs was chosen.

6.2.5 Simulation Parameters

The major simulation parameters are summarized in Table 6.2.

Parameter Value
Simulation Duration
Fragment Size
Input Buffer Size
Data Fragment Transmission Time (t)
Control Message Transmission Time
Message Stream Allocation
Buffer Readjustment Counter
Minimum Buffer Class Allocation
Recipient Buffer Pool Size
Recipient Buffer Removal Rate

1 buffer
50
4
500 Fragments
0.02 events/sec.

64000 simulated seconds
1000 bytes (1 buffer)
1000 Fragments
1 sec. and 2 sees, per fragment
t/5 sees, per message

Table 6.2: Major Simulation Parameters

The duration of the simulation was made long enough that the variation in mean

Figure 6.2: CDNnet Subset Topology

CHAPTER 6. SIMULATION EXPERIMENTS 131

throughput over successive measurements was approximately 1%. Several simulations were

rerun at random using a different stream of random numbers. The difference in mean

throughput was typically about 2%, and none exceeded 5%.

The simulation runs with the data fragment transmission time (t) equal to 2.0 seconds

were run first. The unexpected results obtained for the unidirectional topology prompted

a repetition of these experiments at double the transmission speed (i.e., t = 1.0 second).

All other parameters were held constant. Given that a fragment represents 1000 bytes,

t = 2.0 seconds is approximately equivalent to a transmission rate of 4800 bits per second.

It is assumed that the propagation delay is negligible compared to the transmission speed

and that the time to transmit a message (or message fragment) is linearly proportional to

the size of the message.

In the second series of simulation experiments, the bidirectional ring was studied, vary­

ing only the mean message interarrival time. The RBSAD was set at 100. The choice

of topology and RBSAD for the second series was based solely on the ability to do the

simulations in a reasonable amount of time.

The real time to perform a simulation varied from 3 hours to over 4 days.

6.3 Results

The results of the simulation experiments are presented and discussed in this section. Sim­

ulations of the four topologies were performed for the fragmenting and non-fragmenting

systems. In the first set of experiments, both the RBSAD and the transmission speed were

varied. Measurements of the mean throughput of large transfers (i.e., transfers involving

messages two or. more fragments in length) versus the mean RBSAD are plotted for both

transmission speeds. For the CDNnet topology, the effects of the message stream alio-

CHAPTER 6. SIMULATION EXPERIMENTS 132

cation on delay and throughput were measured, as was the effect of transmission speed

on throughput. In the second set of experiments, a bidirectional ring configuration was

simulated while varying the interarrival time of messages. An RBSAD of 100, representing

a relatively heavy workload, was used for each of these runs. Measurements of the mean

throughput of large transfers versus the mean interarrival time of messages are plotted.

An initial observation is that the large number of transit buffers necessitated by a fair

comparison with the non-fragmenting approach limited the influence of dynamic adjust­

ment to those runs of the linear and CDNnet topologies with higher congestion. The other

topologies distributed the network load more evenly and since buffer class limits were not

reached they were not eligible for adjustment.

6.3.1 Unidirectional Ring

Results for the unidirectional ring topology are plotted in Figure 6.3. This is the only

topology where reservations did not outperform non-reservations through the majority of

simulation runs at t = 2.0. Review of the simulation results led to three observations and

hypotheses to account for the relatively poor performance of the reservation scheme. The

hypotheses are similar in that they assert that the poorer performance is emphasized by

the more limited connectivity of the network.

The first observation is that a transfer suffers a larger delay before starting than in other

topologies since a reservation request and the corresponding grant message must traverse

a total distance equal to the number of MTAs in the network, much longer than is the case

for any of the other topologies. Since performance of message stream transfers is related to

the delay incurred in the delivery of control messages, decreasing this delay might increase

the throughput of the system. To evaluate the influence of the control message transfer

CHAPTER 6. SIMULATION EXPERIMENTS 133

1750
• Fragmenting, t=2.0 0 Fragmenting, t=1.0

I Npn-Fragmentingj^t^O • Non-Fragmenting,^ t=l_.0

0
Q)
CO

\
CO

Q>

•u

I
0

S

1250 H

1000H

750 H

500 I 1 1 1 1

0 50 100 150 200 250
Mean RBSAD (sees)

300 350 400

Figure 6.3: Unidirectional Ring: Throughput vs. RBSAD

CHAPTER 6. SIMULATION EXPERIMENTS 134

speed, two runs were performed with t = 2.0 and an RBSAD of 0. In the first run, the

control message transmission speed was doubled to 2/10.0 and in the second run it was

increased to 2/50.0. In the former run, throughput did not change. In the latter run, it

increased a modest 5%. It may be inferred from this that the time to transmit a control

message is not a significant throughput bottleneck (over the entire length of a simulation).

The second observation is that the mean number of reservation requests waiting to

be serviced at an MTA is much lower than in the other topologies. This suggests that

request messages are taking longer to be delivered to the recipient MTA. As increasing the

transmission speed of control messages was ineffectual (and did not increase the length of

the queue of reservation requests), reduction of the queueing delay of a control message

by scheduling it more favourably was evaluated. Three extra simulation runs were made

(described below) to look at the effect of giving control messages a higher scheduling

priority than data messages. These runs also did not result in significant changes in system

throughput. The conclusion to be reached from these additional experiments is that giving

preferential treatment to control messages does not help throughput in this system.

The last and most significant observation is that the lengths of transit queues at inter­

mediate MTAs are observed to be much longer than what is found when fragmentation is

used in other topologies. For example, the length of the single queue at an MTA in the uni­

directional ring at RBSAD 0 is approximately 2.5 times longer than either of the queues

in the corresponding bidirectional ring configuration. Also, the total number of transit

buffers in use at the former is about 2.5 times the number at the latter. The reason for

these differences is that there is only one outgoing link at each MTA in the unidirectional

topology. Because of this queueing delay, very large transfers took considerably longer to

complete than in the non-fragmenting system, often much more than one measurement

CHAPTER 6. SIMULATION EXPERIMENTS 135

interval (4000 simulation seconds). The other topologies have multiple, simultaneously

active outgoing links that results in shorter queue lengths at each link. Queue lengths in

the non-fragmenting, unidirectional case are much shorter because some transfers use more

than one transit buffer.

The preceding observations prompted auxiliary simulation runs to evaluate two methods

of reducing queue lengths. The first method was to decrease the mean number of active

message streams at each intermediate MTA (thereby decreasing the mean queue length)

by increasing the maximum message stream allocation. When a message stream has an

allocation of more than one buffer, fragments may be delivered with lower delay because of

the increased parallelism. If a message stream is assigned only a single buffer at each hop

along its route for the duration of the transfer, as was the case for the standard runs in

the first series of simulation experiments, an MTA cannot simultaneously receive fragment

N + 1 and send fragment N belonging to the same message stream. A larger maximum

allocation has a detrimental effect, however, in that the queueing delay experienced by

smaller transfers will increase.

Simulations were run with an RBSAD of 0 using maximum message stream allocations

of 4, 8, 16, 32, 64, and 80 buffers. There was no significant change in throughput in any

of the runs. Transit queue lengths decreased significantly only when 16 or more buffers

were allocated. As mentioned earlier, increased message stream allocations should result

in increased queueing delays for smaller transfers. Because the simulations did not keep

track of the delivery delay for different traffic groups in these simulations, this queueing

delay must be inferred from two observations. The first is that the throughput of single

fragment messages decreased as the message stream allocation increased. The second is

that the percentage of new single fragment messages rejected* owing to insufficient input

CHAPTER 6. SIMULATION EXPERIMENTS 136

buffer space increased as the message stream allocation increased.

Some of these simulations were rerun with an RBSAD of 100 using maximum message

stream allocations of 4, 8, and 16 buffers. One set of these runs was performed giving a

high priority to all control messages; control messages were serviced first-come, first-served,

before data messages. There was no significant change in throughput in any of these runs,

again indicating that increasing the message stream allocation or giving control messages

preferential treatment does not improve system throughput appreciably.

The second method used to decrease queue lengths was to increase the message trans­

mission speed. Consequently, a complete set of simulation runs was performed with t = 1.0

(Figure 6.3) and simulation runs of the other topologies were performed for both t = 2.0

and t = 1.0. The results show that increasing the transmission speed increases the relative

throughput performance of fragmentation over non-fragmentation compared to runs with

t = 2.0. This is because increasing transmission speed is more beneficial to fragmented

transfers since their recipient buffer space is preallocated. Congestion caused by lack of

recipient buffer space prevents non-fragmented transfers from taking full advantage of the

increased speed. Additional runs were performed at RBSAD 100 with buffer allocations of

4 and 8 and with one run limiting the number of active message streams at an originating

MTA to 10 (1/3 to 1/4 of the usual number for this configuration). There was no signif­

icant change in throughput in any of these additional runs. The conclusions to be drawn

from these observations is that the relative throughput performance of fragmentation over

non-fragmentation increases as transmission speed increases and that the performance of

fragmentation is more sensitive to transmission speed than to message stream buffer allo­

cations.

CHAPTER 6. SIMULATION EXPERIMENTS 137

6.3.2 Bidirectional Ring

Results for the bidirectional ring topology are plotted in Figure 6.4.

Fragmentation outperforms non-fragmentation up to the heaviest RBSAD at both

transmission speeds. While the throughput of the fragmenting system is nearly constant

up until moderate congestion, throughput of the non-fragmenting system declines rapidly.

For both transmission speeds at RBSAD 400 the throughput of the fragmenting system is

about double that of the non-fragmenting system.

In the non-fragmenting system, throughput of the bidirectional ring at t = 2.0 dete­

riorates more quickly than in the unidirectional ring topology. This is likely due to the

increased demand for transit buffers in the bidirectional ring. In a unidirectional ring, a

transfer from a particular originating MTA shares the buffer class at each hop only with

other transfers originating at the same MTA.

6.3.3 Linear Array

Results for the linear array topology are plotted in Figure 6.5.3 At t = 2.0, fragmentation

performs as much as 45% better and at t = 1.0 almost twice as well at RBSAD 400.

The improvement of fragmentation over non-fragmentation when the transmission speed

is doubled is observed to be more than double.

6.3.4 CDNnet Subset

Results for the CDNnet subset topology are plotted in Figure 6.6. Several interesting

trends appear in the data.

3 The measurement of the fragmenting system at (800, 583) for t = 1.0 is the mean of 12 observations
instead of the usual 16.

CHAPTER 6. SIMULATION EXPERIMENTS 138

0 Fragmenting, t=2.0 Q Fragmenting, t=1.0

• Non-Fragmenting Q Won-Fra^menti/jg<-_ t=i_. 0

Mean RBSAD (sees)

Figure 6.4: Bidirectional Ring: Throughput vs. RBSAD

CHAPTER 6. SIMULATION EXPERIMENTS 139

'9 Fragmenting, t=2.0 Q Fragmenting, t=1.0

I Non-Fragmenting^tf^.0 0 N?.n~Fj.a3mSP.tiP.9,<..P.7.l,\9.

0 100 200 300 400 500 600 700 800
Mean RBSAD (sees)

Figure 6.5: Linear Array: Throughput vs. RBSAD

CHAPTER 6. SIMULATION EXPERIMENTS 140

Fragmentation outperforms non-fragmentation by a large margin at both transmission

speeds through the entire range of congestion.

Perhaps unexpectedly, doubling the transmission speed does not make a significant

difference in the performance of either system. This phenomenon can be attributed to the

relatively low mean number of hops a message makes as a result of the highly interconnected

topology. Thus, the bottleneck in the system becomes the size of the recipient buffer pool

and increasing transmission speed has little effect.

Another unusual result is that the throughput of the non-fragmenting system at t = 1.0

declines relative to the same system with t = 2.0 for the first three data points and increases

for the others. This behaviour can probably also be attributed to the highly interconnected

topology as well as the uneven distribution of congestion. One possible explanation is that

at lower RBSAD values the increased transmission speed increases demand for recipient

buffer space and the resulting congestion in the transit buffer system decreases system

throughput. As the RBSAD increases, demand for recipient buffer space decreases and

system throughput increases. Therefore, the observed throughput may be a result of the

interaction of the two types of congestion. Also, the third data point for t = 1.0 is somewhat

lower than expected; there was an unusually low measurement recorded in the results for

that simulation run.

Figure 6.7 shows how transmission speed affects system throughput in the fragmenting

and non-fragmenting systems. The RBSAD was fixed at 100.0 seconds for these runs.

Fragmentation outperforms non-fragmentation through the range of transmission speeds.

Because demand for recipient buffer space becomes the bottleneck in this configuration,

throughput does not increase as much as might be expected when the transmission speed

is increased.

CHAPTER 6. SIMULATION EXPERIMENTS 141

9 Fragmenting, t=2.0 0 Fragmenting, t=l.0
I Non-Fragmenting^,t=2,.,,0 D Non-Fragmenting,,£=1.0

q 1 0 0 0 -
CD

i i i i i I i i I
0 50 100 150 200 250 300 350 400

Mean RBSAD (sees)

Figure 6.6: CDNnet Subset: Throughput vs. RBSAD

CHAPTER 6. SIMULATION EXPERIMENTS 142

1600n
• Fragmenting • Non-Fragmenting

0
CD
co

\
co
<u

-Q

1400-\

1200A

1000-\

.a.

"G...

4J
3

a,
3
0

q

800-\

600 A
400A

200A

•0

0 1 1 1 1 1 1 r—
0 0.5 1 1.5 2 2.5 3 3.5

Transmission Time (sees/fragment}

Figure 6.7: CDNnet Subset: Throughput vs. Transmission Time

CHAPTER 6. SIMULATION EXPERIMENTS 143

Simulations were performed to examine the influence of the message stream allocation

on the total time required to deliver a message to its recipient MTA (Figure 6.8). All runs

were performed with t = 2.0 and the RBSAD at 100.0 seconds, which represents a heavy

load on the network. Results are shown for the fragmenting system with message stream

allocations of 1, 16, 32, and 64 transit buffers.4 Results for the non-fragmenting system are

also plotted. Delay was measured for messages one fragment in length, messages between

2 and 10 fragments in length, 11 to 20 fragments in length, and so on.

Figure 6.8 illustrates how fragmentation greatly reduces the mean delay experienced

by smaller transfers at the expense of larger transfers. At the same time, the throughput

rate for the fragmenting system is uniformly higher. Fragmentation is shown to be fairer in

that smaller messages incur less delay than larger messages. As message stream allocation

increases, delay for larger transfers approaches that of the non-fragmenting system.

In the non-fragmenting system, messages smaller than about 40 fragments in size take

much longer to be delivered than in the fragmenting system. This is because small messages

may have to wait for many larger messages to be forwarded before they are serviced. In

the fragmenting system, small messages do not wait nearly as long to get forwarded. On

the other hand, large messages do not do as well in the fragmenting system. Because

round-robin scheduling is used, they must wait for all other ready message streams and

single fragment messages to be serviced before they obtain their "quantum" of service.

It should be noted that because the message size distribution is heavily slanted towards

smaller messages, the delay results for the higher ranges of message sizes (messages of size

40 fragments and greater) are less accurate as there are fewer such messages.

4 Message stream allocations of 2, 4, and 8 were simulated but are not plotted in the interest of clarity.
The results follow the trend established by the data plotted in Figure 6.8. Note that for message
stream allocations greater than 1, the effective maximum fragment size is one half of the message stream
allocation.

CHAPTER 6. SIMULATION EXPERIMENTS 144

11000 - j

10000-

^ 9000-
(D
J 8000H

CD

CO
u
CO

Q

q

A No/i-FraoTrientin^ • Fragmenting, MS alloc=32

• Fragmenting, MS alloc=l 0 Fragmenting, MS alloc=64

• Fragmenting^ MS aiioc^ ! 6

/

/

•A..

A"

A

0 0 0 i ^ > *

0
* 9 ^ x ^ ^ ^ ^ ^ ^ , ^ ^o(,

Total Message Size (fragments)

Figure 6.8: CDNnet Subset: Delay vs. Message Size

CHAPTER 6. SIMULATION EXPERIMENTS 145

The results of simulations that varied the fragment size from lk to 64k bytes while

keeping the transmission time at t — 2.0 and RBSAD at 100.0 seconds are plotted in

Figure 6.9. The mean throughput rate of large messages decreases slightly as the fragment

size increases, indicating that overall system throughput is relatively insensitive to the

fragment size up to some limit and, therefore, also relatively insensitive to the message

stream allocation.

6.3.5 Sensitivity to Workload

To estimate the degree to which the results depend on the network load, a second set of

simulation experiments were undertaken. Simulations of the bidirectional ring were run

using an RBSAD of 100 and with mean interarrival times of 10, 25, 50, 75, 100, 150, 200,

400, and 800 seconds while all other parameters were held constant. The results are plotted

in Figure 6.10.

At the shortest interarrival time, about 38% and 69% of messages were rejected in the

fragmenting and non-fragmenting systems, respectively. At the longest interarrival time

no messages were rejected in either system.

The results show that fragmentation continues to offer better throughput through a

wide range of interarrival times. As expected, at extremely low loads throughput perfor­

mance of the two techniques is equal.

6.4 Summary

The simulation study revealed several interesting characteristics of fragmenting and non-

fragmenting message transfer systems:

CHAPTER 6. SIMULATION EXPERIMENTS 146

1800

1600-\

§ 1400-\
\
CQ

1000-\
4J
3

I soon
3
£ 600

r3 400-\

200-\

0
0 8 16 24 .32 40 48

Maximum Fragment Size (Kbytes)

56 64

Figure 6.9: CDNnet Subset: Throughput vs. Fragment Size

CHAPTER 6. SIMULATION EXPERIMENTS 147

• Fragmenting • Non-Fragment in
1700 - i

Mean Interarrival Time (sees)

Figure 6.10: Bidirectional Ring: Throughput vs. Interarrival Time

CHAPTER 6. SIMULATION EXPERIMENTS 148

• Fragmenting systems can avoid deadlock while non-fragmenting systems with the

same resources will experience deadlock.

• Fragmenting systems offer significantly higher throughput than non-fragmenting sys­

tems over a wide range of network congestion. This superiority increases as transmis­

sion speeds increase and appears to be largely independent of the message interarrival

rate. At some point demand for recipient buffer space becomes the system bottleneck

and increasing transmission speed is of little benefit to system throughput. The point

at which this occurs is dependent on network topology.

• The network throughput performance of message streams is not sensitive to the

maximum message stream allocation over a wide range. Increasing the maximum

allocation, at least up to the maximum value simulated (64k bytes), results in no

significant change in the throughput of message stream transfers yet the throughput

of single fragment messages decreases as a result of the decreased fairness. End-to-

end delivery delay is much lower for smaller messages in a fragmenting system while

delay for larger messages tends to be greater relative to the non-fragmenting system.

The delivery delay for the largest messages can be reduced by increasing the message

stream allocation. Giving preferential treatment to control messages does not always

improve overall message stream throughput appreciably.

• Two important bottlenecks can be identified in message transport systems: trans­

mission speed and the size of the recipient buffer pool.

Chapter 7

Conclusions

Starting from a characterization and investigation of message transfer systems, this thesis

has developed a framework for integrating the resource management aspects of message

transfer systems in a structured way. It is often true, however, that in the process of

acquiring knowledge as many questions are raised as answered. This chapter looks at areas

that deserve further study and concludes with a summary and evaluation of the thesis.

7.1 Summary and Evaluation

The major goal of this thesis has been to study application level, S/F message transfer

systems, identify shortcomings of existing systems, and suggest improvements. There are

four major contributions as a result.

A characterization of these systems has been given and deficiencies of popular existing

systems have been identified. Although message transfer systems are proliferating and

coming under increasingly heavy use, an investigation of message transfer systems has yet

to appear in the literature. This study is long overdue and forms the basis of the following

contributions.

149

CHAPTER 7. CONCLUSIONS 150

A hierarchical deadlock prevention scheme was designed and shown to be correct. It

is appropriate both for the message handling environment and for a reliable datagram

environment. Existing systems, intended for lower networking levels, suffer many draw­

backs that make them impractical for the message handling environment. The hierarchical

approach offers several advantages over approaches appearing in the literature.

The third contribution is a study of design considerations for resource management

components of message transfer systems. A framework whereby techniques to provide

system components such as message fragmentation, message streams, congestion control,

transit buffer management, and recipient buffer space allocation can be integrated were

presented. Message transfer systems designed using this framework should offer superior

performance and reliability over current systems.

Lastly, a simulation study of message streams and buffer management offered evidence

as to the practicality of the proposals of Chapter 5.

As discussed in the next section, there are several interesting related research topics

that could be pursued. The extensive literature review provides a good starting point for

such research.

7.2 Future Work and Research Directions

The fact that there is no prototype implementation of a message transfer system based on

the framework of Chapter 5 as part of the thesis requires some explanation. Many aspects

of the framework presented in this thesis address performance related issues and evalua­

tion of their efficacy is highly dependent upon the workload used. The manner in which

tradeoffs between features, cost, performance parameters, and qualitative characteristics

are resolved also influence the nature of the resulting system. Because the performance of

CHAPTER 7. CONCLUSIONS 151

any single implementation is heavily dependent on the environment in which it is evaluated

and the criteria that are used, many implementations in different environments would be

required to make it possible to gather enough evidence to support more substantial claims

regarding the framework. Also, it was deemed that a complete implementation was infea-

sible for the thesis and a partial implementation would cover only a very small subset of

the concepts presented here. Instead, the simulation study presented in Chapter 6 provides

many insights into performance aspects of message streams and the recipient buffer space

preallocation strategy.

This thesis has addressed the task of designing some of the components of message

transfer systems. The success of an implementation is often gauged relative to the existing,

mostly ad hoc internetwork message handling systems. This thesis has pointed out the

many deficiencies in current systems and has argued that the framework presented here

overcomes many of these deficiencies. Nevertheless, valuable insights are often obtained

while implementing systems and an implementation would surely aid in the refinement of

some of the ideas presented in this thesis.

Some important aspects of message transfer systems have not been addressed in this

thesis and would be required in a comprehensive framework. One such aspect is the im­

portant and difficult task of message routing. Security aspects of message transfer systems

have not been addressed in this thesis and have received little attention in the literature,

although some security issues are addressed in the X.400/1988 recommendations and the

CCITT X.500 series of recommendations.1

An area of further investigation involves a study of the types of information that could

be distributed to improve congestion control, determine message lifetimes, and so on. This

1 The ISO variant of the X.500 recommendations is known as ISO 9594 (Information Processing Systems
- Open Systems Interconnection - The Directory).

CHAPTER 7. CONCLUSIONS 152

would require further simulation work or an implementation of a design. A more detailed

analysis of existing message transfer systems could be a first step in such an investigation.

Other areas worthy of study are the reliability and fault tolerance of message transfer

systems. The use of replication and mechanisms to recover from failures and insure data

consistency are interesting issues that have not been adequately researched.

The simulation study could easily be extended to incorporate new algorithms and pa­

rameters. For example, other techniques for dynamically updating buffer allocations (e.g.,

[Tipper88]) could be examined.

Scheduling message transfers subject to fairness, performance, and economic constraints

is a difficult problem. There does not appear to be much literature on the type of prioritized

message scheduling discussed in Section 5.2.2.

A study might be made of how congestion control mechanisms at different networking

levels might cooperate to improve their effectiveness. At present, these mechanisms are

largely autonomous and may very well interfere with each other.

Improved performance could be realized if a message transfer system could decide

when it was appropriate to change the route of a message stream. Research into the

relationship between message stream routing and congestion control would be a first step

in this direction.

With an appropriate network level, message transfer systems could be used by real-time

applications such as conferencing. Study of the special requirements of these applications

with respect to the framework of Chapter 5 would be an interesting project.

There is a great deal of interest in message handling systems and store-and-forward

message transfer, as is evidenced by the considerable standardization efforts put forth

CHAPTER 7. CONCLUSIONS 153

recently and the growing number of academic and commercial implementations. The many

favourable characteristics of message transfer systems and their increasing use should insure

their continued development. Hopefully this thesis will contribute to a better understanding

of store-and-forward message transfer and improved message handling systems.

References

[Aggarwal85]

[Aggarwal86]

[Allman86]

[Blazewicz87a]

[Blazewicz87b]

[Bartoli83]

Aggarwal, S., Sabnani, K., and Gopinath, B. "A New File Transfer
Protocol", AT&T TechnicalJournal, vol. 64, no. 10, (December 1985),
pp. 2387-2411.

Aggarwal, S., and Sabnani, K. "Formal Specification of a File Transfer
Protocol", Proc. IEEE INFOCOM '86, 1986, pp. 47-57.

Airman, Eric. "SENDMAIL - An Internetwork Mail Router", Unix

System Manager's Manual, SMM:16, Computer Systems Research
Group, EECS, University of California at Berkeley, 1986.

Blazewicz, Jacek, Brzeziriski, Jerzy, and Gambosi, Giorgio. "Time-
Stamp Approach to Store-and-Forward Deadlock Prevention", IEEE

Trans, on Communications, vol. COM-35, no. 5, (May 1987), pp. 490-
495.

Blazewicz, Jacek, Brzezihski, Jerzy, and Gambosi, Giorgio. "Time-
Stamp Approach to Prevention of Different Deadlock Types in
Store-and-Forward Networks", IEEE Trans, on Communications, vol.
COM-35, no. 5, (May 1987), pp. 564-566.

Bartoli, Paul D. "The Application Layer of the Reference Model of
Open Systems Interconnection", Proc. of the IEEE, vol. 71, no. 12,
(December 1983), pp. 1404-1407.

[Bennett82]

[Bharath-Kumar81] Bharath-Kumar, K., and Jaffe, J. M. "A New Approach to

Bennett, C. J. "The Overheads of Transnetwork Fragmentation",
Computer Networks, vol. 6, 1982, pp. 21-36.

154

REFERENCES 155

[Bongiovanni87]

[Brachman86]

[Brachman87]

[Brachman88a]

[Brachman88b]

[Brachman89a]

[Brachman89b]

[Brachman89c]

Performance-Oriented Flow Control", IEEE Trans, on Communica­

tions, vol. COM-29, no. 4, (April 1981), pp. 427-435.

Bongiovanni, G., and Bovet, D. P. "Minimal Deadlock-Free Store-
and-Forward Communication Networks", Networks, vol. 17, 1987, pp.
187-200.

Brachman, Barry J. "EANft User's Guide", unpublished memoran­
dum, University of British Columbia, Dept. of Computer Science,
September 1986.

Brachman, Barry J., and Chanson, Samuel T. "An Access Control
Mechanism Based on the ISO FTAM Recommendation", Proc. CIPS

Congress '87, May 1987, pp. 161-166.

Brachman, Barry J., and Chanson, Samuel T. "Fragmentation in
Store-and-Forward Message Transfer", IEEE Communications Maga­

zine, vol. 26, no. 7, (July 1988), pp. 18-27.

Brachman, Barry J. "Xsim - A Process-Based Discrete-Event Sim­
ulator", unpublished memorandum, University of British Columbia,
Dept. of Computer Science, November 1988.

Brachman, Barry J., and Chanson, Samuel T. "Flow and Congestion
Control in the Message Handling Environment", Proc. IEEE INFO-

COM '89, 1989, pp. 721-730.

Brachman, Barry J., and Chanson, Samuel T. "A Simulation Study
of Application Level Message Transfer Using Message Streams", in
preparation.

Brachman, Barry J., and Chanson, Samuel T. "A Hierarchical Solu­
tion for Application Level Store-and-Forward Deadlock Prevention",
submitted for publication.

[Case88] Case, Jeffrey D., Davin, James R., Fedor, Mark S., and Schoffstall,
Martin L. "Introduction to the Simple Gateway Monitoring Protocol",
IEEE Network, vol. 2, no. 2, (March 1988), pp. 43-49.

REFERENCES 156

[CCITT88a]

[CCITT88b]

[CCITT88c]

[CDNnet88]

[Cerf74]

[CerfSl]

[Chan87]

[Chandy83]

[Chapin82]

[Chapin83]

[Cidon86a]

CCITT. "Draft Recommendation X.400: Message Handling Systems:
System and Service Overview", Version 5.5, April 1988.

CCITT. "Draft Recommendation X.411: Message Handling Systems:
Message Transfer System: Abstract Service Definition and Proce­
dures", Version 6, March 1988.

CCITT. "Draft Recommendation X.413: Message Handling Systems:
Message Store: Abstract Service Definition", Version 6, March 1988.

CDNnet Reports, no. 3, Fall 1988, CDNnet Headquarters, University
of British Columbia.

Cerf, Vinton G., and Kahn, Robert E. "A Protocol for Packet Network
Interconnection", IEEE Trans, on Communications, vol. COM-22, no.
5, (May 1974), pp. 637-648.

Cerf, Vinton G. "Packet Communication Technology", in Protocols

and Techniques for Data Communication Networks, Franklin F. Kuo
(ed.), Prentice-Hall, 1981.

Chan, Cheung-Wing, and Yum, Tak-Shing. "An Algorithm for Detect­
ing and Resolving Store-and-Forward Deadlocks in Packet Switched
Networks", IEEE Trans, on Communications, vol. COM-35, no. 8,
(August 1987), pp. 801-807.

Chandy, K. Mani, Misra, Jayadev, and Haas, Laura M. "Distributed
Deadlock Detection", ACM Trans, on Computer Systems, vol. 1, no.
2, (May 19.83), pp. 144-156.

Chapin, A. Lyman. "Connectionless Data Transmission", Computer

Communication Review, vol. 12, no. 2, (April 1982), pp. 21-61.

Chapin, A. Lyman. "Connections and Connectionless Data Transmis­
sion", Proc. of the IEEE, vol. 71, no. 12, (December 1983), pp. 1365-
1371.

Cidon, Israel, Jaffe, Jeffrey M., and Sidi, Moshe. "Local Distributed
Deadlock Detection with Finite Buffers", Proc. IEEE INFOCOM '86,

1986, pp. 478-487.

REFERENCES 157

[Cidon86b]

[Clark87]

[Clopper80]

[Comer84]

[Crocker79]

[Cunningham83]

[Da Cruz84a]

[Da Cruz84b]

[Davies72]

[Day83]

[Demco88]

Cidon, Israel, Jaffe, Jeffrey M., and Sidi, Moshe. "Local Distributed
Deadlock Detection by Knot Detection", Proc. ACM SIGCOMM,

(Computer Communication Review, vol. 16, no. 3), 1986, pp. 377-384.

Clark, David D., Lambert, Mark L., and Zhang, Lixia. "NETBLT:
A High Throughput Transport Protocol", Proc. ACM SIGCOMM,

(Computer Communication Review, vol. 17, no. 5), 1987, pp. 353-359.

Clopper, Samuel E. "Features of the File Transfer Protocol and the
Data Presentation Protocol", Report 4257, Bolt, Beranek and New­
man, September 1980.

Comer, Douglas. Operating System Design, the Xinu Approach,
Prentice-Hall, 1984.

Crocker, David, Szurkowski, Edward S., and Farber, David J. "An
Internetwork Memo Distribution Capability - MMDF", Dept. of Elec­
trical Engineering, University of Delaware, September 1979.

Cunningham, Ian. "Message-Handling Systems and Protocols", Proc.

of the IEEE, vol. 71, no. 12, (December 1983), pp. 1425-1430.

Da Cruz, Frank, and Catchings, Bill. "Kermit: A File-Transfer Pro­
tocol for Universities (Part 1)", Byte, vol. 9, no. 6, (June 1984), p.
255.

Da Cruz, Frank, and Catchings, Bill. "Kermit: A File-Transfer Pro­
tocol for Universities (Part 2)", Byte, vol. 9, no. 7, (July 1984), p.
143.

Davies, Donald W. "The Control of Congestion in Packet-Switching
Networks", IEEE Trans, on Communications, vol. COM-20, no. 3,
(June 1972), pp. 546-550.

Day, John D. and Zimmermann, Hubert. "The OSI Reference Model",
Proc. of the IEEE, vol. 71, no. 12, (December 1983), pp. 1334-1340.

Demco, John C. Personal communication, June 1988.

REFERENCES 158

[Elie79] Elie, M. "Traffic Control by Latency in a Packet Switching", in Flow

Control in Computer Networks, J.-L. Grange and M. Gien, eds.,
North-Holland Publishing Co., Amsterdam, 1979, pp. 201-210.

[Feridun88] Feridun, M., Leib, M., Nodine, M., and Ong, J. "ANM: Automated
Network Management System", IEEE Network, vol. 2, no. 2, (March
1988), pp. 13-19.

[Ferrari78] Ferrari, Domenico. Computer Systems Performance Evaluation,

Prentice-Hall, 1978.

[Fishman73] Fishman, G. S. Concepts and Methods in Discrete Event Digital Sim­

ulation, Wiley, 1973.

[Forsdick80] Forsdick, Harry C. "AUTODIN II FTP", Report 4246, Bolt, Beranek
and Newman, February 1980.

[Gambosi84] Gambosi, Giorgio, Bovet, Daniel P., and Menasce, Daniel A. "A De­
tection and Removal of Deadlock in Store and Forward Communica­
tion Networks", Performance of Computer-Communication Systems,

H. Rudin and W. Bux (eds.), North-Holland, 1984, pp. 219-229.

[Gelernter81] Gelernter, David. "A DAG-Based Algorithm for Prevention of Store-
and-Forward Deadlock in Packet Networks", IEEE Trans, on Com­
puters, vol. C-30, no. 10, (October 1981), pp. 709-715.

[Gerla80] Gerla, Mario, and Kleinrock, Leonard. "Flow Control: A Comparative
Survey", IEEE Trans, on Communications, vol. COM-28, no. 4, (April
1980), pp. 553-574.

[Gerla81] Gerla, Mario. "Routing and Flow Control", in Protocols and Tech­

niques for Data Communication Networks, Franklin F. Kuo (ed.),
Prentice-Hall, 1981.

[Gerla88] Gerla, Mario, and Kleinrock, Leonard. "Congestion Control in Inter­
connected LANs", IEEE Network, vol. 2, no. 1, (January 1988), pp.
72-76.

REFERENCES 159

[Giessler78]

[Giessler81]

[Gopal85]

[Gordon78]

[Giinther81]

[Hahne86]

[Herrmann76]

[Holt72]

[Howard73]

[Irland78]

[Isloor80]

Giessler, A., Hanle, J., Kbnig, A., and Pade, E. "Free Buffer Allocation
- An Investigation by Simulation", Computer Networks, vol. 2, 1978,
pp. 191-208.

Giessler, Alfred, Jagemann, Annemarie, Maser, Ellen, and Hanle,
Jiirgen. "Flow Control Based on Buffer Classes", IEEE Trans, on

Communications, vol. COM-29, no. 4, (April 1981), pp. 436-443.

Gopal, Inder S. "Prevention of Store-and-Forward Deadlock in Com­
puter Networks", IEEE Trans, on Communications, vol. COM-33, no.
12, (December 1985), pp. 1258-1264.

Gordon, Geoffrey. System Simulation, Prentice-Hall, 1978.

Giinther, Klaus D. "Prevention of Deadlocks in Packet-Switched Data
Transport Systems", IEEE Trans, on Communications, vol. COM-29,
no. 4, (April 1981), pp. 512-524.

Hahne, Ellen L., and Gallager, Robert G. "Round Robin Scheduling
for Fair Flow Control in Data Communication Networks", Proc. 6th
Inter. Conf. on Comp. Comm., June 1986, pp. 103-107.

Herrmann, Jeff. "Flow Control in the ARPA Network", Computer
Networks, vol. 1, 1976, pp. 65-76.

Holt, Richard C. "Some Deadlock Properties of Computer Systems",
Computing Surveys, vol. 4, no. 3, (September 1972), pp. 179-196.

Howard, J. H., Jr. "Mixed Solutions for the Deadlock Problem", Com-
mun. ACM, vol. 16, no. 7, (July 1973), pp. 427-430.

Irland, Marek I. "Buffer Management in a Packet Switch", IEEE
Trans, on Communications, vol. COM-26, no. 3, (March 1978), pp.
328-337.

Isloor, Sreekaanth S., and Marsland, T. Anthony. "The Deadlock
Problem: An Overview", IEEE Computer, vol. 13, no. 9, (Septem­
ber 1980), pp. 58-78.

REFERENCES 160

[IS086] ISO. "Information Processing Systems - OSI - File Transfer, Access
and Management", ISO/TC97/SC21/WG5, DIS 8571, July 7, 1986.

[Jaffe80] Jaffe, J. M. "A Decentralized, 'Optimal' Multiple-User, Flow Control
Algorithm", Proc. 5th International Conf. on Comp. Comm., October
1980, pp. 839-844.

[Joy83] Joy, W. N., Cooper, E., and Fabry, R. S. "Unix Programmer's Manual
4.2BSD", Computer Systems Research Group, EECS, University of
California at Berkeley, 1983.

[Kahn72] Kahn, Robert E., and Crowther, William R. "Flow Control in a
Resource-Sharing Computer Network", IEEE Trans, on Communi­

cations, vol. COM-20, no. 3, (June 1972), pp. 539-546.

[Kamoun80a] Kamoun, Farouk, and Kleinrock, Leonard. "Analysis of Shared Finite
Storage in a Computer Network Node Environment Under General
Traffic Conditions", IEEE Trans, on Communications, vol. COM-28,
no. 7, (July 1980), pp. 992-1003.

[Kamoun80b] Kamoun, Farouk, Belguith, A., and Grange, J.L. "Congestion Control
with a Buffer Management Strategy Based on Traffic Priorities", Proc.

5th International Conference on Computer Communication, 1980, pp.
845-850.

[Kamoun81] Kamoun, Farouk. "A Drop and Throttle Flow Control Policy for Com­
puter Networks", IEEE Trans, on Communications, vol. COM-29, no.
4, (April 1981), pp. 444-452.

[Katevenis87] Katevenis, Manolis G. H. "Fast Switching and Fair Control of Con­
gested Flow in Broadband Networks", IEEE J. Select. Areas in

Comm., vol. SAC-5, no. 8, (October 1987), pp. 1315-1326.

[Kermani79] Kermani, Parviz, and Kleinrock, Leonard. "Virtual Cut-Through:
A New Computer Communication Switching Technique", Computer

Networks, vol. 3, 1979, pp. 267-286.

[King86] King, Peter J. B., and Shacham, Nachum. "Queueing Models for
Buffers with Dial-Up Servers", Proc. IEEE INFOCOM '86, 1986, pp.
616-625.

REFERENCES 161

[Kingston86]

[Kleinrock80]

[Klerer88]

[Konorski86]

[Koorland85a]

[Koorland85b]

[Lam79]

[Lam80]

[Lam81]

Kingston, Douglas P., III. "MMDF II: A Technical Review", 4.3BSD
contributed software, Computer Systems Research Group, EECS, Uni­
versity of California at Berkeley, 1986.

Kleinrock, L., and Tseng, C. W. "Flow Control Based on Limiting
Permit Generation Rates", Proc. 5th Inter. Conf. on Comp. Comm.,

1980, pp. 785-790.

Klerer, S. Mark. "The OSI Management Architecture: an Overview",
IEEE Network, vol. 2, no. 2, (March 1988), pp. 20-29.

Konorski, Jerzy. "Store-and-Forward Deadlock Prevention in Packet
Networks: A Circulating Token Approach and Performance Consid­
erations", IEEE International Conf. on Communications '86, vol. 1,
June 1986, pp. 119-123.

Koorland, Neil. "A Message-Based Remote Database Access Facility",
M.Sc. Thesis, University of British Columbia, Dept. of Computer Sci­
ence, August 1985.

Koorland, Neil, Gilmore, P. C , Vuong, S. T. "Providing a Remote
Database Access Facility for the EAN Messaging System", Computer
and Information Science Association Conference, June 1985, pp. 201-
205.

Lam, Simon S., and Reiser, Martin. "Congestion Control of Store-
and-Forward Networks by Input Buffer Limits - An Analysis", IEEE

Trans, on Communications, vol. COM-27, no. 1, (January 1979), pp.
127-133.

Lam, Simon S., and Lien, Y. C. Luke. "An Experimental Study of the
Congestion Control of Packet Communication Networks", Proc. 5th

International Conf. on Comp. Comm., 1980, pp. 791-796.

Lam, Simon S., and Lien, Y. C. Luke. "Congestion Control of Packet
Communication Networks by Input Buffer Limits - A Simulation
Study", IEEE Trans, on Computers, vol. C-30, no. 10, (October 1981),
pp. 733- 742.

REFERENCES 162

[McQuiUan79]

[Merlin80]

[Mills87]

[Mitchell84]

[Nagle84]

[Nagle87]

[Neufeld86]

[Nowitz78]

[Nowitz86]

McQuillan, J. M. "Interactions Between Routing and Congestion Con­
trol in Computer Networks", in Flow Control in Computer Networks,

J.-L. Grange and M. Gien, eds., North-Holland Publishing Co., Ams­
terdam, 1979, pp. 63-75.

Merlin, Philip M., and Schweitzer, Paul J. "Deadlock Avoidance in
Store-and-Forward Networks, Parts I and II",IEEE Trans, on Com­

munications, vol. COM-28, no. 3, (March 1980), pp. 345-360.

Mills, David L., and Braun, Hans-Werner."The NSFNET Backbone
Network", Computer Communications Review, Special Issue - Fron­

tiers in Computer Communication Technology, vol. 17, no. 5, 1987,
pp. 191-196.

Mitchell, Don P., and Merritt, Michael J. "A Distributed Algorithm
for Deadlock Detection and Resolution", Proc. 3rd ACM Symp. on

Principles of Distributed Computing, 1984, pp. 282-284.

Nagle, John B. "Congestion Control in IP/TCP Internetworks", Com­

puter Communications Review, vol. 14, no. 4, (October 1984), pp 11-
17.

Nagle, John B. "On Packet Switches with Infinite Storage", IEEE

Trans, on Communications, vol. COM-35, no. 4, (April 1987), pp
435-438.

Neufeld, G., Demco, J., Hilpert, B., and Sample, R. "EAN: An X.400
Message System", Computer Message Systems - 85, R. Uhlig (ed.),
North-Holland, 1986, pp. 3-15.

Nowitz, D. A., and Lesk, M. E. "A Dial-Up Network of UNIX Sys­
tems", Unix Programmer's Manual, Seventh Edition, Volume 2B, Bell
Laboratories, January 1979.

Nowitz, D. A., and Green, Ross. "Installation and Operation of UUCP
- 4.3BSD Edition", Unix System Manager's Manual, SMM:9, Com­
puter Systems Research Group, EECS, University of California at
Berkeley, May 1986.

REFERENCES 163

[Partridge88]

[Postel81a]

[Postel81b]

[Postel82]

[Pouzin73]

[Pouzin81]

[Pritsker69]

[Quarterman86]

[Rahnema88]

[Raubold76]

Partridge, Craig, and Trewitt, Glenn "The High-Level Entity Manage­
ment System (HEMS)", IEEE Network, vol. 2, no. 2, (March 1988),
pp. 37-42.

Postel, Jonathan B., Sunshine, Carl A., and Cohen, Danny. "The
ARPA Internet Protocol", Computer Networks, vol. 5, 1981, pp. 261-
271.

Postel, Jonathan B. "RFC 792: Internet Control Message Protocol -
DARPA Internet Program Protocol Specification", USC/Information
Sciences Institute, September 1981.

Postel, Jonathan B. "Simple Mail Transfer Protocol", RFC 821,
TJSC/Information Sciences Institute, August 1982.

Pouzin, Louis. "Presentation and Major Design Aspects of the CY-
CLADES Network", Proc. 3rd Data Communication Symposium,

1973, pp. 80-87.

Pouzin, Louis. "Methods, Tools, and Observations on Flow Control in
Packet-Switched Data Networks", IEEE Trans, on Communications,

vol. COM-29, no. 4, (April 1981), pp. 413-426.

Pritsker, A. Alan B. and Kiviat, Philip J. Simulation with GASP II -

A Fortran Based Simulation Language, Prentice-Hall, 1969.

Quarterman, John S., and Hoskins, Josiah C. "Notable Computer
Networks", Commun. ACM, vol. 29, no. 10, (October 1986), pp. 932-
971.

Rahnema, Moe. "Smart Trunk Scheduling Strategies for Future Inte­
grated Services Packet-Switched Networks", IEEE Communications

Magazine, vol. 26, no. 2, (February 1988), pp. 43-50.

Raubold, E., and Hanle, J. "A Method of Deadlock-free Resource Allo­
cation and Flow Control in Packet Networks", Proc. 3rd International

Conference on Computer Communication, 1976, pp. 483-487.

REFERENCES 164

[Redell83] Redell, David D., and White, James E. "Interconnecting Electronic
Mail Systems", IEEE Computer, vol. 16, no. 9, (September 1983), pp.
55-63.

[Rudin76] Rudin H. "An Introduction to Flow Control", ICCC, 1976.

[Sadowski84] Sadowski, Edward R. "The Efficacy of a Store-and-Forward File
Transfer System", M.Sc. Thesis, University of British Columbia, Dept.
of Computer Science, April 1984.

[Schwartz79] Schwartz, M., and Saad, S. "Analysis of Congestion Control Tech­
niques in Computer Communication Networks", in Flow Control in

Computer Networks, J.-L. Grange and M. Gien, eds., North-Holland
Publishing Co., Amsterdam, 1979, pp. 113-130.

Shoch, John F. "Packet Fragmentation in Inter-Network Protocols",
Computer Networks, vol. 3, 1979, pp. 3-8.

Sunshine, Carl A. "Interconnection of Computer Networks", Com­

puter Networks, vol. 1, 1977, pp. 177-195.

Tanenbaum, Andrew S. "Computer Networks", Prentice-Hall, 1981.

Teng, A.Y., Yao, J., Gopinath, B., and Sabnani, K. "A File Transfer
System for Scheduling File Transfers in the Bell Labs Network", Proc.

IEEE INFOCOM '83, 1983, pp. 279-287.

Thareja, Ashok K., Tripathi, Satish K., and Upton, Richard A. "On
Updating Buffer Allocation", ACM Computer Network Performance

Symposium, Performance Evaluation Review, vol. 11, no. 1, (Spring
1982), pp. 101-110.

[Thareja83a] Thareja, A. K., and Agrawala, A. K. "Impact of Buffer Allocation
Policies on Delays in Message Switching Networks", Proc. IEEE IN­

FOCOM '83, pp. 436-442.

[Thareja83b] Thareja, A. K., and Agrawala, A. K. "Characterization of an Op­
timal Delayed Resolution Policy", Proc. ACM Sigmetrics Conf. on

Measurement and Modeling of Computer Systems, Performance Eval­

uation Review, August 1983, pp. 257-265.

[Shoch79]

[Sunshine77]

[Tanenbaum81]

[Teng83]

[Thareja82]

REFERENCES 165

[Thareja84a]

[Thareja84b]

[Thomas85]

[Tipper88]

[Toueg79]

[Toueg80]

[Wimmer84]

[Wong82]

[Wunderlich80]

Thareja, Ashok K., and Agrawala, Ashok K. "On the Design of Opti­
mal Policy for Sharing Finite Buffers", IEEE Trans, on Communica­

tions, vol. COM-32, no. 6, (June 1984), pp. 737-740.

Thareja, Ashok K., and Tripathi, Satish K. "Buffer Sharing in Dy­
namic Load Environment", Proc. IEEE INFOCOM, '84, pp. 369-379.

Thomas, Robert H., Forsdick, Harry C , Crowley, Terrence R., Schaaf,
Richard W., Tomlinson, Raymond S., and Travers, Virginia M. "Di­
amond: A Multimedia Message System Built on a Distributed Ar­
chitecture", IEEE Computer, vol. 18, no. 12, (December 1985), pp.
65-78.

Tipper, D., and Sundareshan, M. K. "Adaptive Policies for Optimal
Buffer Management in Dynamic Load Environments", Proc. IEEE

INFOCOM '88, pp. 535-544.

Toueg, Sam, and Ullman, Jeffrey D. "Deadlock-Free Packet Switching
Networks", Proc. 11th ACM Symposium on the Theory of Computing,

1979, pp. 89-98.

Toueg, Sam. "Deadlock- and Livelock-Free Packet Switching Net­
works", Proc. 12th ACM Symposium on the Theory of Computing,

1980, pp. 94-99.

Wimmer, Wolfgang. "Using Barrier Graphs for Deadlock Prevention
in Communication Networks", IEEE Trans, on Communications, vol.
COM-32, no. 8, (August 1984), pp. 897-901.

Wong, J. W., Sauve, Jacques P., and Field, James A. "A Study of
Fairness in Packet-Switching Networks", IEEE Trans, on Communi­

cations, vol. COM-30, no. 2, (February 1982), pp. 346-353. Also ap­
pears as Technical Report E-Report E-90, Computer Communications
Networks Group, University of Waterloo, June 1980.

Wunderlich, E. F., Kaufman, L., and Gopinath, B. "The Control of
Store and Forward Congestion in Packet Switched Networks", Proc.

5th Inter. Conf. on Comp. Comm., 1980, pp. 851-856.

REFERENCES 166

[Yum84] Yum, T. P., and Dou, C. "Buffer Allocation Strategies with Blocking
Requirements", Performance Evaluation, vol. 4, 1984, pp. 285-295.

[Zhang87] Zhang, L. "Designing a New Architecture for Packet Switching Com­
munication Networks", IEEE Communications Magazine, vol. 25, no.
9, (September 1987), pp. 5-12.

[Zwaenepoel85] Zwaenepoel, Willy. "Protocols for Large Data Transfers Over Lo­
cal Networks", Proc. of the Ninth Data Communications Symposium,

September 1985, pp. 22-32.

Glossary

A U Access unit

C C I T T Comite Consultatif Internationale de Telegraphique et

Telephonique

C P Complete partitioning

C Q L Channel queue limit

CS Complete sharing

D R Delayed resolution

D T F C Drop and throttle flow control

E A N An X.400-based message handling system developed at the Uni­
versity of British Columbia

FIFO First-in, first-out

F T A M File transfer, access, and management

F T P File transfer protocol

ISO International standards organization

M H E Message handling environment

M H S Message handling system

M M D F Multi-channel memo distribution facility

M S Message store

167

GLOSSARY 168

M T A Message transfer agent

M T A E Message transfer agent entity

M T L Message transfer layer

MTS Message transfer system

O/R Address Originator/recipient address

O / R Name Originator/recipient name

OSI Open systems interconnection

RBSAD Recipient buffer space allocation delay

RTS Reliable transfer server

S/F Store and forward

SDMXQ Sharing with discrimination and maximum queue length

SMA Sharing with a minimum allocation

S M Q M A Sharing with a maximum queue and minimum allocation

SMTP Simple mail transfer protocol

SMXQ Sharing with maximum queue lengths

U A User agent

U A E User agent entity

U A L User agent layer

U U C P Unix-to-unix copy

W O R M Write-once, read-many memory

