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Abstract 

The present study was conducted to investigate the 

hypothesis that membrane phosphoinositide breakdown may 

pa r t i c i p a t e i n the actions of l u t e i n i z i n g hormone-releasing 

hormone (LHRH) on hormone production i n the r a t ovary. 
3 . . . In granulosa c e l l s prelabeled with [ H]-arachidonic acid 

3 
or [ H ] - i n o s i t o l , treatment with LHRH increased the 

accumulation of radiolabeled i n o s i t o l l i p i d s , d i a c y l g l y c e r o l 

and free arachidonic acid, but l u t e i n i z i n g hormone (LH) or 

cholera toxin did not exert the same e f f e c t . A c t i v a t i o n of 

protein kinase C by the phorbol ester, 12-0-tetradecanoyl 

phorbol-13-acetate (TPA) had a stimulatory action on membrane 

phosphoinositide breakdown. In addition, TPA did not a l t e r 

arachidonic acid release but potentiated the A23187 stimulated 

l i b e r a t i o n of arachidonic acid. 

Changes in the c y t o s o l i c free calcium ion concentrations, 
2+ 

[Ca ] i , induced by LHRH were studied i n in d i v i d u a l c e l l s using 
2+ . 

fura-2 microspectrofluorimetry. The rest i n g [Ca ] i was 96.7 ± 
2+ . 

2.9 nM (n= 115). The alt e r a t i o n s i n [Ca ] i induced by LHRH 

were transient and returned to rest i n g l e v e l s within 84±3 

second (n=64). A potent LHRH antagonist completely blocked the 
2 + 

e f f e c t of LHRH on [Ca ] i . Some c e l l s responded to LHRH alone, 

whereas others responded to angiotensin I I , suggesting that 

there are d i f f e r e n t subpopulations of granulosa c e l l s . 

Sustained perifusion of LHRH resulted i n a desensitization of 

the [ C a 2 + ] i response to LHRH but not to the calcium ionophore 
2+ 

A23187. LHRH treatment accelerated [Ca ] i depletion i n 



i i i 
2+ granulosa c e l l s perifused with Ca free medium, i n d i c a t i n g 

2+ 2+ the involvement of i n t r a c e l l u l a r Ca pool(s) i n [Ca ] i 

changes induced by LHRH. 

The complex interactions between the s i g n a l transduction 

pathways involved i n the regulation of progesterone and 

prostaglandin E 2 were also examined. LHRH increased basal 

progesterone l e v e l (5 and 24h culture) and attenuated 

progesterone production induced by f o l l i c l e - s t i m u l a t i n g hormone 

(FSH) or cholera toxin (24h) . On the other hand, both basal 

and FSH or cholera toxin stimulated prostaglandin E 2 formation 

were increased by LHRH (5 and 24h) . A23187, TPA and m e l i t t i n 

(an a c t i v a t o r of phospholipase A 2) were used to examine the 
2+ 

roles of Ca , protein kinase C and free arachidonic acid, 

respectively, i n LHRH action. M e l i t t i n stimulated basal 

progesterone and prostaglandin E 2 production, and enhanced the 

stimulation of prostaglandin E 2 by LHRH, A23187 and TPA, 

in d i c a t i n g that LHRH a l t e r s cyclooxygenase a c t i v i t y . A23187 or 

TPA attenuated the formation of progesterone induced by FSH or 

cholera toxin (5 and 24h). In contrast, A23187 and TPA 

augmented cholera toxin or FSH induced prostaglandin E 2 

formation. The stimulatory e f f e c t s of A23187 and TPA on 

prostaglandin E 2 were syn e r g i s t i c , whether or not FSH or 

cholera toxin was present during the incubation. 

The r o l e of arachidonic acid i n the action of LHRH was 

further investigated. Arachidonic acid enhanced progesterone 

production i n a dose dependent manner and potentiated TPA 

induced progesterone production. The stimulatory e f f e c t of 

arachidonic acid was blocked by nordihydroguaiaretic acid, 
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whereas monohydroxyeicosatetraenoic acids and 

hydroperoxyeicosatetraenoic acid mimicked the e f f e c t of 

arachidonic acid, suggesting the involvement of lipoxygenase 

metabolites i n LHRH action. In addition, arachidonic acid 

p a r t i a l l y reversed the i n h i b i t o r y action of LHRH and TPA on 

FSH induced progesterone production. Although arachidonic 

acid, TPA and LHRH stimulated progesterone production, 

arachidonic acid only s l i g h t l y elevated 20-alpha-hydroxy-

progesterone production as compared to that induced by LHRH and 

TPA. These results suggest that arachidonic acid or i t s 

metabolites have a stimulatory r o l e i n the action of LHRH on 

the de novo synthesis of ovarian s t e r o i d hormones. 

C o l l e c t i v e l y , these findings support the hypothesis that 

the actions of LHRH or LHRH l i k e peptides on ovarian hormone 

production are mediated by multiple second messengers involving 
2+ 

Ca , protein kinase C and arachidonic acid metabolites. 
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Chapter 1. General Introduction 
1 

I. Ovary 

A. Introduction 

The function of the ovary i s to produce mature eggs and 

secrete ovarian hormones. The l a t t e r exert a range of effects 

including regulation of the reproductive system, secondary sex 

characters, the mating behavior of some species, p i t u i t a r y 

gonadotropin release and metabolic e f f e c t s . The gametogenic 

and endocrine functions of the ovary i n the female are c y c l i c 

processes e x h i b i t i n g regular peaks of a c t i v i t y during the l i f e 

of the i n d i v i d u a l , and may be regarded as peri o d i c preparations 

fo r f e r t i l i z a t i o n and pregnancy. The p e r i o d i c i t y i s c a l l e d the 

estrous cycle i n subprimate species and the menstrual cycle i n 

primates. The c y c l i c a l changes occur as a r e s u l t of complex 

integrated a c t i v i t y of the hypothalamus, p i t u i t a r y and ovaries. 

The most important hormone signals of t h i s system are 

l u t e i n i z i n g hormone-releasing hormone (LHRH) from the 

hypothalamus, f o l l i c l e stimulating hormone (FSH) and 

l u t e i n i z i n g hormone (LH) from the anterior p i t u i t a r y gland and 

the ovarian s t e r o i d hormones such as androgens, estrogens and 

progesterone ( P 4 ) . The gonadotroph c e l l s of p i t u i t a r y 

synthesize and secrete LH and FSH i n response to LHRH. LH and 

FSH arrive at the ovary v i a the c i r c u l a t o r y system. FSH causes 

ovarian f o l l i c u l a r growth, while the LH surge induces ovulation 

and regulates corpus luteum formation and function. Both FSH 
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and LH are necessary to stimulate ovarian steroidogenesis. 

Ovarian s t e r o i d hormones, e s p e c i a l l y e s t r a d i o l and P 4, i n turn, 

regulate FSH, LH and LHRH release by either a p o s i t i v e or 

negative feedback mechanism depending on the stage of the 

estrous or menstrual cycle. Recently, i t has been shown that a 

family of peptides known as i n h i b i n regulates FSH release 

s e l e c t i v e l y , and that the production of these peptides i s 

con t r o l l e d by FSH. The inhibins thus represent an additional 

closed feedback loop between the p i t u i t a r y and ovary to 

regulate reproductive functions (Rivier et a l . , 1986). Other 

l o c a l regulatory factors such as prostaglandins and LHRH-like 

peptides may also be involved i n the regulation of reproductive 

functions. 

B . Histology 

The ovaries are paired organs situated on eithe r side of 

the uterus. Each ovary i s covered by a continuous mesothelium 

composed of a single layer of cuboidal epithelium. The ovary 

i s roughly divided into a peripheral cortex and a medulla. The 

cortex contains numerous ovarian f o l l i c l e s that consist of a 

primary oocyte enveloped by a si n g l e layer of spindle-shaped 

granulosa c e l l s i n various stages of development and a dense 

connective t i s s u e stroma. The medulla i s small compared to the 

cortex, and i t s connective t i s s u e i s loosely arranged. 

Embedded within the loose connective t i s s u e of the medulla are 

nerves, lymph vessels and many large blood vessels. Small 

blood vessels extend from the medulla into the cortex. 
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C o r t i c a l stroma consists of at l e a s t three types of c e l l s : 

connective tissue c e l l s performing the customary support 

functions, c o n t r a c t i l e c e l l s scattered i n the c o r t i c a l stroma 

and i n the walls of preovulatory f o l l i c l e s , and c l o s e l y packed 

spindle-shaped i n t e r s t i t i a l c e l l s . 

Four major classes of i n t e r s t i t i a l c e l l s have been 

i d e n t i f i e d : 1) primary i n t e r s t i t i a l ; 2) theca i n t e r s t i t i a l ; 3) 

secondary i n t e r s t i t i a l ; and 4) h i l u s i n t e r s t i t i a l c e l l s . 

Although these c e l l s are located i n the loose connective tissue 

of both the cortex and medulla, a l l a r i s e from a population of 

unspecialized mesenchymal c e l l s i n the stroma compartment. The 

p r i n c i p a l function of the i n t e r s t i t i a l c e l l s i s to synthesize 

and secrete steroids, most notably androstenedione and 

testosterone. 

I t appears that granulosa c e l l s are derived mainly from 

c e r t a i n c e l l s within the intraovarian rete o v a r i i which 

resemble granulosa c e l l s i n terms of t h e i r organelles and 

microfilaments (Byskov, 1978; Byskov and Rasmussen, 1973). The 

d i f f e r e n t i a t i o n of granulosa c e l l s i s not uniform i n a given 

f o l l i c l e . As the a n t r a l f o l l i c l e develops, these c e l l s become 

organized into morphologically distinguishable regions with 

speci a l i z e d functions. At least three d i f f e r e n t populations of 

granulosa c e l l s can be distinguished. The antral granulosa 

c e l l s are closer to the antral cavity, while the cumulus c e l l s 

surround the oocyte. Cumulus c e l l s p h y s i c a l l y support the 

oocyte within the f o l l i c l e and provide nutrients for oocyte 

growth. They also probably exchange signals with the oocyte 
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for the coordinated maturation of the f o l l i c l e and the oocyte. 

The majority of granulosa c e l l s are mural or p a r i e t a l granulosa 

c e l l s l i n i n g the f o l l i c u l a r c a v i t y . 

C. L i f e cycle of the ovarian f o l l i c l e 

The primordial f o l l i c l e s are present before b i r t h . The 

oocyte and associated spindle-shaped c e l l s are separated from 

the surrounding stroma by the basal membrane. One of the basic 

events within the ovary i s f o l l i c u l a r growth, an i r r e v e r s i b l e 

process, which r e s u l t s i n ovulation or a t r e s i a . At the onset 

of puberty, primordial f o l l i c l e s mature into primary f o l l i c l e s , 

which are subject to intra-ovarian controls (Peters et a l . , 

1975). F o l l i c u l a r maturation i s i n i t i a t e d when the spindle-

shaped granulosa c e l l precursors d i f f e r e n t i a t e into a single 

layer of cuboidal c e l l s that then begin to divide (Van Wagenen 

and Simpson, 1965) . The oocyte increases i n s i z e and the 

granulosa c e l l s p r o l i f e r a t e m i t o t i c a l l y . Granulosa c e l l s 

synthesize and secrete mucopolysaccharides, which give r i s e to 

the zona p e l l u c i d a that surrounds the oocyte. Afte r the 

granulosa c e l l s begin to p r o l i f e r a t e i n the primary f o l l i c l e s , 

the f o l l i c l e becomes encapsulated by d i s t i n c t layers of theca 

c e l l s , the theca interna and the theca externa. The theca 

interna i s separated from the granulosa layer by the basement 

membrane. Blood vessels and lymphatics penetrate the theca 

externa but do not penetrate the basement membrane thus 

granulosa c e l l s are without d i r e c t blood supply u n t i l a f t e r 

ovulation. As the f o l l i c l e grows, the granulosa c e l l s increase 
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i n number and si z e . F o l l i c u l a r f l u i d accumulates within the 

f o l l i c l e and coalesces to form a single cavity, the antrum. 

Antral formation transforms the primary f o l l i c l e into a 

Graafian f o l l i c l e . Within t h i s i s the cumulus oophorus, an 

accumulation of granulosa c e l l s containing the oocyte. This 

oocyte i s li b e r a t e d when the mature f o l l i c l e ruptures following 

the LH surge i n a process c a l l e d ovulation. 

Following ovulation, the corpus luteum i s formed from 

both the granulosa and theca interna c e l l s . The basement 

membrane breaks down, and c a p i l l a r i e s and f i b r o b l a s t s from the 

theca interna invade the cavi t y of the ruptured f o l l i c l e . The 

granulosa c e l l s do not divide a f t e r ovulation, but they 

increase i n volume and undergo morphologic changes with an 

increase i n masses of l i p i d droplets, smooth endoplasmic 

reticulum, and mitochondria. These changes are referred to as 

l u t e i n i z a t i o n . Since the c e l l s of the corpus luteum are 

derived from both granulosa and theca c e l l s , the corpus luteum 

consists of two types of steroidogenic l u t e a l c e l l s , which are 

morphologically d i s t i n c t , the large l u t e a l c e l l s and the small 

l u t e a l c e l l s . These c e l l s , together with the surrounding theca 

c e l l s , c a p i l l a r i e s and blood vessels form the corpus luteum, a 

temporary endocrine gland that secretes large amounts of 

st e r o i d hormones. 



I I . Synthesis of sex s t e r o i d hormones and prostaglandins 
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A. Synthesis of sex steroids 

Ovaries have the capacity to synthesize a l l three classes 

of sex ster o i d hormones from t h e i r common precursor, 

cholesterol (Fig. 1). Cholesterol from both low-density 

lipoproteins (LDL) and high-density l i p o p r o t e i n s (HDL) has been 

demonstrated to serve as precursor f o r steroidogenesis i n the 

ovarian f o l l i c l e (Gwynne and Strauss, 1982). While HDL appears 

to be the major precursor i n rodents, c h o l e s t e r o l from LDL i s 

the major precursor i n other species. C e l l u l a r cholesterol may 

be derived from plasma lip o p r o t e i n , from cytoplasmic l i p i d 

droplets or synthesized de novo i n ovarian c e l l s (Strauss et 

a l . , 1981). Uptake of l i p o p r o t e i n from plasma i s regulated by 

the a v a i l a b i l i t y of serum lipoproteins and the lipoprotein 

receptor-dependent uptake system. Cholesterol can be stored i n 

the c e l l s as esters of long-chain f a t t y a c i d and t h i s process 

i s regulated by the r e l a t i v e a c t i v i t i e s of cholesterol 

synthetase and cholesterol esterase. A d d i t i o n a l l y , de novo 

synthesis of cholesterol i s dependent on the a c t i v i t i e s of the 

r a t e - l i m i t i n g 3-hydroxy-methylglutaryl coenzyme A reductase 

(Brown et a l . , 1981). 

Granulosa c e l l s are the c e l l u l a r source of the two most 

important ovarian steroids, e s t r a d i o l and P^. The f i r s t step 

i n the conversion of cholesterol to steroids i s believed to be 

rate l i m i t i n g i n steroidogenesis, and involves the cleavage of 

the cholesterol side-chain by the side-chain cleavage P-450 



17alpha-hydroxypregnenolone • 17alpha-hydroxyprogesterone 

Dehydroepiandrosterone • Androstenedione—• Estrone 

Testosterone • Estradiol-17beta 

Fi g . 1. The p r i n c i p a l b i o s y t h e t i c pathway i n the ovary for 
production of the progestins, androgens and estrogens. 
1: cholesterol side-chain cleavage P 4 5 0 

2: 17-alpha-hydroxylase 

3 : C17, 2 < T 1 Y a S e 

4: 17-beta-hydroxysteroid dehydrogenase 
5 MA 

5: 3-beta-hydroxysteroid dehydrogenase/d '^1 isomerase. 

6: Aromatase 
7: 20-alpha-hydroxysteroid dehydrogenase 
2Oalpha-OH-P: 2Oalpha-hydroxypregn-4-en-3-one 
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enzyme (SCC) r e s u l t i n g i n the C 2 1 compound, pregnenolone. SCC, 

including cholesterol 22-hydroxylase, cholesterol 20-alpha-

hydroxylase and C 2 Q 2 2 - l y a s e , are located i n the inner 

mitochondrial membrane. 

Pregnenolone i s the key steroidogenic intermediate common 

to a l l classes of s t e r o i d hormones produced by the f o l l i c l e s . 

Both granulosa and theca c e l l s convert pregnenolone to 

P 4, but granulosa c e l l s are more active i n t h i s regard 

(Bjersing, 1967). Pregnenolone i s converted to P 4 by a complex 

of two enzymes 3-beta-hydroxysteroid dehydrogenase (3-beta-HSD) 

and an isomerase (Samuels et a l . , 1951; Cheatum et a l . , 1966). 

Both enzymes requiring nicotinamide adenine dinucleotide (NAD) 

as a cofactor are located i n the microsomal f r a c t i o n , although 

3-beta-HSD may also be present i n the mitochondria of the ovary 

(Sulimovici and Boyd 1969; Haksar and Romanoff, 1971; Dimino 

and Campbell, 1976). Since isomerase a c t i v i t y appears to be i n 

excess (Philpott and Peron, 1971), the production of P 4 from 

pregnenolone i s mainly regulated by 3-beta-HSD. 

The r a t e - l i m i t i n g step i n the biosynthesis of androgens 

i n the f o l l i c l e i s that catalyzed by the 17-alpha-hydroxylase/ 

C._ ..-lyase enzyme complex which i s located i n the microsomal 

f r a c t i o n of the c e l l s and which requires nicotinamide adenine 

dinucleotide phosphate (NADPH) and molecular oxygen for i t s 

action. Hydroxylation at the C 1 7 position i s e s s e n t i a l before 

the side chain i s cleaved from the C 2 1 steroids (progestins) to 

form C i g steroids (androgens). The reaction can u t i l i z e both 

pregnenolone and P. as substrates r e s u l t i n g i n 
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dehydroepiandrosterone or androstenedione, respectively. This 

enzymatic step which i s under the control of hormones and 

feedback regulation by the end products of steroidogenesis, i s 

one of the key points for the physiologic control of f o l l i c u l a r 

s t e r o i d secretion. 

In contrast to the neighboring theca c e l l s , the granulosa 

c e l l s contain very low l e v e l s of the enzymes, 17-alpha-

hydroxylase and C 1 7 2 Q - l y a s e , which mediate the conversion of 

progestins to androgens (Short, 1962; Bjersing and Carstensen, 

1967). The deficiency of these enzymes i n granulosa c e l l s 

indicates that both granulosa c e l l s and theca c e l l s p a r t i c i p a t e 

i n androgen and estrogen biosynthesis. 

The conversion of androstenedione and testosterone to 

estrone and estradiol-17-beta i s catalyzed by an enzyme 

complex, re f e r r e d to as aromatase, located i n the membranes of 

the agranular endoplasmic reticulum of several ovarian c e l l 

types. The reaction requires NADPH, and three moles of 

oxygens. Two of these are involved i n two consequent 

hydroxylation at C-19, and the o v e r a l l reaction involves a 

t h i r d hydroxylation, but the exact s i t e of t h i s i s not yet 

clear (Kantsky and Hagerman, 1980; Brodie et a l . , 1976). 

The secretion of P 4 by ovarian c e l l s i s modulated by 

changes i n the conversion of P 4 to i t s metabolites. The main 

route of P 4 breakdown i s mediated by 20-alpha-hydroxysteroid 

dehydrogenase (20-alpha-HSD), located i n the cytosol portion of 

ovarian c e l l s u t i l i z i n g NADPH as a hydrogen donor, which 

re v e r s i b l y converts P. to i t s inactive metabolite, 20alpha-
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hydroxy-pregn-4-en-3-one (20-alpha-OH-P). 20-alpha-OH-P i s 

considerably l e s s active as a progestational agent than i t s 

precursor P 4. I t has been suggested that the a c t i v i t y of 

20alpha-OH-P may play a s i g n i f i c a n t r o l e i n determining the 

amount of C 2 ̂ s u b s t r a t e a v a i l a b l e f o r conversion to androgens 

i n f o l l i c u l a r c e l l s , since 20alpha-reduced steroids are poor 

substrates for C 1 7 2 Q - l y a s e (Goldring and Orly, 1985). 

B. Synthesis of Prostaglandins and Leukotrienes 

Prostaglandins (PGs), which were f i r s t discovered by Von 

Euler i n the 1930s as a b i o l o g i c a l l y active component of human 

seminal f l u i d , are also important secretory products of the 

ovarian c e l l s and the secretion of prostaglandins may be under 

hormonal control (Triebwasser et a l . , 1978; Clark et a l . , 

1978) . The precursor for PGs synthesis i s arachidonic acid 

(AA) , which i s a C 20:4 polyunsaturated f a t t y a c i d . AA i n 

mammalian c e l l s i s normally e s t e r i f i e d almost excl u s i v e l y i n 

the 2-acyl p o s i t i o n to g l y c e r o l i n the phospholipids of the 

c e l l membrane and i s released through a phospholipase-catalyzed 

reaction. The concentration of free AA i n c e l l s i s les s than 

10~6M, and the free acid l e v e l i n a tissue represents a balance 

between the l i b e r a t i o n of the aci d by hydrolysis and i t s re-

e s t e r i f i c a t i o n . Free AA can undergo two oxidative pathways of 

metabolism as outlined i n Figure 2. The cyclooxygenase pathway 

leads to the formation of the endoperoxide intermediate 

prostaglandin H 2, which i s then converted by the action of 

isomerases to a number of b i o l o g i c a l l y active molecules, 



11 
II 
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CH 3(CH ?) 4(CH = CHCH 2) 4(CH 2) 2-CO-C 0 
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C-O-P-O-Base 

PHOSPHOLIPIDS 'A 

ARACHIDONIC ACID 

i 
5-lipoxygenase 15-lipoxygenase 12-lipoxygenase cyclooxygenase 

F i g . 2. Key pathways i n arachidonic acid metabolites. 
PG: prostaglandin 
LT: leukotriene 
LX: l i p o x i n 
HETE: hydroxyeicosatetraenoic acid 
HPETE: hydroperoxyeicosatetraenoic acid 
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prostaglandin E 2 (PGE 2), prostaglandin D 2 (PGD 2), prostaglandin 
F2alpha ^ P G F 2 a l p h a ^ ' P r o s t a g l a n d i n I 2 (PGI 2) and thromboxane A 2 

(TXA 2). The l e t t e r s following the abbreviation PG indicate the 

nature and p o s i t i o n of the oxygen-containing substituents 

present i n the cyclopentane r i n g . The 2-series PGs are formed 

from AA, and the 1-series and 3-series PGs are synthesized from 

8,11,14-eicosatrienoic and 5,8,11,14,17-eicosapentaenoic acid, 

respectively. An al t e r n a t i v e pathway f o r the oxygenation of AA 

i s provided by lipoxygenase enzymes. The products of the 

lipoxygenase enzymes are hydroperoxyeicosatetraenoic acids 

(HPETEs) which can then be converted into 

hydroxyeicosatetraenoic acids (HETEs), leukotrienes (LTs), and 

lipo x i n s (Fig. 2). 

Rat ovarian and f o l l i c u l a r homogenates possess 

lipoxygenase a c t i v i t y that increases a f t e r i n vivo 

administration of human chorionic gonadotropin (hCG) (Reich, 

1985) . The induction by hCG of PGs i s demonstrated to occur 

both i n granulosa c e l l and theca c e l l s of preovulatory 

f o l l i c l e s (Hedin et a l . , 1987). The a c t i v i t y of cyclooxygenase 

can be i n h i b i t e d by nonsteroidal anti-inflammatory drugs such 

as a s p i r i n and indomethacin (Flower and Vane, 1974). 

In h i b i t i o n of PG cyclooxygenase e f f e c t i v e l y blocks the 

synthesis of a l l cyclooxygenase s e r i e s . Lipoxygenase a c t i v i t y 

can be i n h i b i t e d by compounds such as nordihydroguaiaretic acid 

(NDGA) (S a l a r i et a l . , 1984). 
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A. Role of gonadotropins 

Ovarian f o l l i c l e growth and st e r o i d hormone production 

are mainly under the control of two gonadotropin hormones LH 

and FSH. LH and FSH are synthesized and stored i n the anterior 

p i t u i t a r y and are released i n response to l u t e i n i z i n g hormone-

releasing hormone (LHRH). LHRH i s a decapeptide (pyro-Glu-His-

Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH2) found i n the hypothalamus 

of a l l mammalian species so f a r studied. LHRH i s secreted into 

the hypophyseal p o r t a l system i n a p u l s a t i l e fashion and i s 

transported along the p i t u i t a r y s t a l k to the p i t u i t a r y . In the 

p i t u i t a r y , LHRH controls the synthesis and secretion of 

gonadotropins by a receptor dependent mechanism. Gonadotropins 

are likewise released i n a p u l s a t i l e pattern. The p u l s a t i l e 

release and c y c l i c v a r i a t i o n i n the c i r c u l a t i n g concentrations 

of gonadotropins control ovarian functions by a l t e r i n g the 

s e n s i t i v i t y of ovarian c e l l s through increasing and decreasing 

receptor formation and a c t i v i t i e s of c e l l u l a r enzymes. 

Although the i n i t i a t i o n of primordial f o l l i c l e growth 

occurs independently of p i t u i t a r y gonadotropins, once reaching 

the primary f o l l i c l e stage further growth and maturation of the 

f o l l i c l e becomes completely dependent on LH and FSH. 

FSH induces ovarian f o l l i c l e maturation and i s 

responsible for the development of granulosa c e l l 

responsiveness to several other hormones. FSH i n t e r a c t s with 

ovarian c e l l s through s p e c i f i c plasma membrane receptors. In 
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the female, FSH binds only to the granulosa c e l l s of the 

ovarian f o l l i c l e s . FSH regulates granulosa c e l l progestin 

biosynthesis by modulating the a c t i v i t i e s of various 

steroidogenic enzymes, SCC, 3-beta-HSD and 20-alpha-HSD (Toaff 

et a l . , 1983). FSH also induces aromatase. LH stimulates 

preovulatory f o l l i c l e growth, induces ovulation, and regulates 

corpus luteum function. The major s i t e of action of LH on P 4 

biosynthesis i s the conversion of cholesterol to pregnenolone, 

although 3-beta-HSD i s also stimulated (Armstrong et a l . , 1970; 

Madej, 1980). A f t e r the FSH induction of LH receptors i n 

granulosa c e l l s , these c e l l s are capable of responding to LH i n 

the maintenance of aromatase a c t i v i t y (Wang et a l . , 1981; 

Dorrington and Armstrong, 1979). The steroidogenic action of 

LH on theca c e l l s apparently increases the a c t i v i t i e s of 17-

alpha-hydroxylase and C 1 7 2 Q - l y a s e i n ovaries (Fukuda et a l . , 

1979; Bogovich and Richards, 1982). 

Previous studies have demonstrated a "two c e l l - t y p e , two 

gonadotropin theory" (Fig. 3) . There are p r i n c i p a l c e l l types 

involved i n f o l l i c u l a r steroidogenesis: (1) LH-responsive 

secretory c e l l s : comprising the theca interna c e l l s of the 

f o l l i c u l a r envelope and the i n t e r s t i t i a l c e l l s of ovarian 

stroma, and (2) FSH-responsive c e l l s which are granulosa c e l l s . 

According to t h i s model, theca interna c e l l s are stimulated by 

LH to produce androgen from cholesterol, which d i f f u s e s across 

the basement membrane to be used f o r estrogen synthesis i n an 

FSH-stimulated reaction i n granulosa c e l l s ( Makris and Ryan, 

1975; Fortune and Armstrong, 1977; Tsang and Armstrong 1980; 
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Fi g . 3 . Diagram of the "two-cell, two gonadotropin theory" of 
f o l l i c l e steroidogenesis. 
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Erickson, 1978). Since granulosa c e l l s secrete P 4 i n response 

to gonadotropins, i t i s also possible that granulosa c e l l P 4 

may d i f f u s e into theca c e l l s to serve as a substrate for 

androgen biosynthesis. Theca interna c e l l s convert P 4 to 

androstenedione by 17-alpha-hydroxylase and C 1 7 2 Q - l y a s e . In 

contrast, granulosa c e l l s do not have s i g n i f i c a n t a c t i v i t i e s of 

C 2 1 side-chain cleavage enzymes and synthesize l i t t l e or no 

androgens from eit h e r P 4 or pregnenolone (Lacroix et a l . , 1974; 

Hamberger et a l . , 1978; Short, 1962; Fowler et a l . , 1978). On 

the other hand, granulosa c e l l s do possess considerable 17-

beta-HSD a c t i v i t y (Makris and Ryan, 1980; Nimrod et a l . , 1980; 

Moon and Duleba 1982), which acts on androstenedione and 

estrone to form testosterone and e s t r a d i o l , respectively. 

Although androstenedione i s the major ovarian androgen i n most 

species, the 17-beta-HSD reaction favors the production of 

es t r a d i o l as the major estrogen. These i n t e r a c t i o n s between LH 

and FSH together with the c y c l i c a l changes i n plasma 

concentration of LH and FSH provide a mechanism to account for 

the regulation of ovarian steroidogenesis and f o l l i c u l a r 

growth. 

While the foregoing account has focussed on the roles of 

LH and FSH i n regulating a c t i v i t y of ovarian functions, there 

i s also evidence that a t h i r d p i t u i t a r y gonadotropin, p r o l a c t i n 

(PRL), may also regulate ovarian a c t i v i t y at the ovarian l e v e l . 

PRL receptors have been demonstrated i n the human ovary (Saito 

and Saxena 1975), and i n r a t and porcine granulosa c e l l s and 

l u t e a l c e l l s (Richards and Williams, 1976; Rolland and Hammond, 
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1975; Rolland et a l . , 1976). PRL may i n t e r a c t with granulosa 

c e l l s to promote t h e i r maturation since PRL i s e s s e n t i a l f o r 

maximum production of P 4 by human l u t e i n i z e d granulosa c e l l s i n 

i n v i t r o studies (McNatty et a l . , 1974). PRL acts as a 

luteotrophic agent by stimulating P 4 production (Rothchild, 

1981; Smith, 1980) as well as by maintaining the l e v e l of LH 

receptor i n r a t ovary (Holt et a l . , 1976), and may influence 

the pool of s t e r o i d precursors a v a i l a b l e for P 4 synthesis 

(Armstrong et a l . , 1970; Behrman et a l . , 1970). Receptors for 

PRL, l i k e those f o r LH and FSH, appear to be located on the 

c e l l membrane but i n contrast to LH and FSH, i n t e r a c t i o n of PRL 

with i t s receptor does not stimulate adenylate cyclase (Mason 

et a l . , 1973) and no second messenger for PRL has been 

convincingly documented. 

In addition to steroids, granulosa c e l l s also secrete 

PGs. PG synthesis i s stimulated by LH and FSH r e s u l t i n g i n 

increased production of PGE 2 and P G F 2 a i p h a ( c l a r k e t a l » / 1978; 

Marsh et a l . , 1974; Knazek et a l . , 1981; Zor et a l . , 1983). An 

ovulatory dose of hCG d i r e c t l y increases the f o l l i c u l a r content 

of PGs (Richards et a l . , 1982). The rate of production of PGs 

i n granulosa c e l l s i s d i r e c t l y proportional to the 

concentration of hCG used to stimulate the c e l l s (Hedin., et 

a l . , 1987). Doses of hCG capable of stimulating ovulation 

increase PG synthesis, whereas sub-threshold doses of hCG only 

s l i g h t l y increase PG synthesis and do not induce ovulation. 

The increase of PGs induced by hCG i s transient i n r a t ovary 

(Hedin et a l . , 1987). The concentrations of PGs reach a 
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maximum p r i o r to ovulation and return to low l e v e l s within 24-

48 h following the LH/hCG surge. 

B. Intraovarian regulation by f o l l i c u l a r steroids  

Role of progestins 

Granulosa c e l l s synthesize and secrete large quantities 

of P 4, which may exert some e f f e c t s on f o l l i c u l a r growth and 

granulosa c e l l function. In prepubertal r a t s , exogenous 

administration of P 4 f a c i l i t a t e s the hCG-stimulated growth of 

small a n t r a l f o l l i c l e s and hCG-induced estrogen biosynthesis 

(Richards and Bogovich, 1982). P 4 also enhances ovarian P 4 

secretion by the preovulatory f o l l i c l e without a f f e c t i n g the 

l e v e l of LH secretion (Uchida et a l . , 1972). In contrast, i n 

monkeys, u n i l a t e r a l ovarian implants of P 4 d i r e c t l y i n h i b i t 

f o l l i c u l a r growth without a f f e c t i n g the function of the 

co n t r a l a t e r a l ovary, suggesting that a l o c a l l y high 

concentration of P 4 may i n h i b i t f o l l i c u l o g e n e s i s (Goodman and 

Hodgen, 1979). Administration of P 4 to hamsters r e s u l t s i n a 

f a l l i n blood e s t r a d i o l concentration without a change i n serum 

l e v e l s of gonadotropins. This decline i s not reversed by 

concomitant administration of testosterone, i n d i c a t i n g that P 4 

acts at the l e v e l of the aromatase (Greenwald, 1974) . The P 4 

receptors have been i d e n t i f i e d i n the cytoplasm of rat 

granulosa c e l l s (Schreiber and Erickson, 1979; Naess, 1981). 

Similar P 4 receptors have been i d e n t i f i e d i n the ovaries of 

rabbit, cow and human ( P h i l i b e r t et a l . , 1977; Jacobs and 
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Smith, 1980; Jacobs et a l . , 1980). The presence of ovarian P 4 

receptors suggests an important i n t r a c e l l u l a r regulatory role 

fo r P.. Other studies have demonstrated a r o l e of P„ i n the 
* 4 

autonomy of l u t e a l c e l l P 4 biosynthesis and i n an autocrine 

control mechanism i n which the P 4 production of the c e l l s 

exerts u l t r a - s h o r t loop feedback regulation of i t s own 

production (Goff et a l . , 1979; Fanjul et a l . , 1983). 

Role of androgens 

In addition to serving as substrates f o r aromatase 

enzymes to form estrogens, androgens exert a v a r i e t y of actions 

i n granulosa c e l l s through i n t e r a c t i o n with i n t r a c e l l u l a r 

androgen receptors. Pretreatment of i n t a c t rats with 

dihydrotestosterone prevents the FSH induction of LH receptors 

i n granulosa c e l l s and t h i s e f f e c t can be antagonized by 

estrogen treatment (Farookhi, 1980). Although androgen 

treatment induces a t r e s i a i n the absence of FSH, androgens 

augment gonadotropin-stimulated steroidogenesis. Both i n vivo 

and i n v i t r o experiments have shown that androgens stimulate 

ovarian aromatase a c t i v i t y (Katz and Armstrong, 1976; Daniel 

and Armstrong, 1980). Androgens also act s y n e r g i s t i c a l l y with 

FSH to stimulate progestin production i n cultured r a t granulosa 

c e l l s . The stimulatory e f f e c t of androgens on progestin 

biosynthesis appears to be the r e s u l t of the stimulation of SCC 

and 3-beta-HSD (Nimrod, 1977; Welsh et a l . , 1982). 
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Role of estrogens 

Estrogens maintain secondary sexual c h a r a c t e r i s t i c s and 

exert feedback action on the hypothalamic-pituitary unit. 

Moreover, estrogens play a modulating role at the s i t e of i t s 

formation. Estrogens have been known to exert a d i r e c t a n t i -

a t r e t i c e f f e c t . The induction of a t r e s i a may be associated 

with a loss of e s t r a d i o l receptors i n granulosa c e l l s 

(Richards, 1975; Harman et a l . , 1975; Ingraham, 1959). 

Estrogens also regulate estrogen production of granulosa c e l l s 

by augmenting the FSH-induced aromatase a c t i v i t y , and the 

minimal e f f e c t i v e dose (3.7xl0~ 1 0M) of estradiol-17-beta on 

aromatase a c t i v i t y i s within the range of estradiol-17-beta 

measured i n the f o l l i c u l a r f l u i d of r a t preovulatory f o l l i c l e s . 

This suggests that of estrogen plays a physiological r o l e as an 

end product amplifier of aromatase a c t i v i t y to enhance the 

syn e r g i s t i c e f f e c t of androgens (Goff and Henderson, 1979; 

Adashi and Hsueh, 1982). Estrogen enhancement of FSH-

stimulated granulosa c e l l aromatase a c t i v i t y may explain the 

maintenance of dominant f o l l i c l e s i n the ovary. On the other 

hand, es t r a d i o l may i n h i b i t production of i t s precursor 

androgen through negative feedback on the theca c e l l s (Leung et 

a l . , 1978; Leung and Armstrong, 1979). Such an intraovarian 

negative feedback mechanism may be s i g n i f i c a n t i n l i m i t i n g the 

estrogen production and provide adequate time f o r oocyte 

maturation before ovulation. Local i n t r a f o l l i c u l a r 

concentrations of estrogen or the r a t i o of estrogen and 

androgen may determine which f o l l i c l e ( s ) i n one cycle w i l l 
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escape a t r e s i a and go on to ovulation (Harmon et a l . , 1975; 

H i l l i e r et a l . , 1980). 

C. Role of neurotransmitters on ovarian steroidogenesis 

The innervation of the mammalian ovary has been well 

documented. The dense adrenergic innervation of the mammalian 

ovary suggests a r o l e f o r the adrenergic system i n the 

regulation of ovarian functions (Moshin and Pennefather, 1979; 

Lawrence and Burden, 1980). The possible r o l e of 

catecholamines i n the d i r e c t regulation of st e r o i d biosynthesis 

by f o l l i c l e c e l l s has been studied both i n vivo and i n v i t r o . 

Catecholamines stimulate P 4 production i n cultured l u t e a l and 

granulosa c e l l s , and the stimulation could be blocked by the 

beta 2-adrenergic antagonist (IPS339), but not p r a c t o l o l (beta 1~ 

adrenergic antagonist) or phentolamine (alpha-adrenergic 

antagonist) (Bahr et a l . , 1974; Condon and Black, 1976). In 

vivo studies have shown that beta-adrenergic, but not alpha-

adrenergic agonists r e s u l t i n increased P 4 production by the 

ovary (Bahr et a l . , 1974). Another neurotransmitter that has 

been extensively examined i n the ovary i s gamma-aminobutyric 

acid (GABA) (Erdo and Lapis, 1982). In whole ovary, GABA 

concentration i s comparable to brain l e v e l s and i s 5 to 6 f o l d 

higher than any other non-neuronal tissues studied. GABA 

binding s i t e s are elucidated by measuring the s p e c i f i c binding 
3 

of a GABA agonist, [ H]-muscimol (Schaeffer and Hsueh, 1982). 

Although the phys i o l o g i c a l r o l e of GABA i n the ovarian tissues 

remains to be elucidated, production of cAMP i n s l i c e s of rat 



ovary i s increased by GABA and t h i s e f f e c t i s antagonized by 

GABA receptor blockers (picrotoxin and bi c u c u l l i n e ) (Erdo and 

Lapis, 1982). 

D. Regulation of ovarian steroidogenesis and ovarian function  

by prostaglandins 

PGE 2 stimulates cAMP, estrogen and P 4 production, and 

induces resumption of meiotic d i v i s i o n of the oocyte and 

ovulation. Although PGE 2 can mimic some e f f e c t s of LH, the 

action of LH and PGE 2 are independent and p a r a l l e l . In the 

presence of cyclooxygenase i n h i b i t o r s , LH stimulates cAMP 

accumulation and P 4 production (Linder et a l . , 1974; Linder et 

a l 1980). Although LH induces the process of ovulation, the 

f i n a l phase of ovulation, f o l l i c u l a r rupture, does not occur i n 

the absence of PGE 2 < This indicates that the presence of PGs 

i s required for ovulation. I n h i b i t i o n of PG synthesis by 

administration of indomethacin blocks ovulation (Armstrong and 

Grinwich, 1972; Armstrong et a l . , 1974). The concentration of 

PGs i n the ovaries, f o l l i c l e s and f o l l i c u l a r f l u i d r i s e as time 

of ovulation approaches (Linder et a l . , 1980; Murdoch et a l . , 

1981; Ratwardhan and Lanthier, 1981). The stimulation of 

plasminogen acti v a t o r and proteoglycan production i n granulosa 

c e l l s further supports the involvement of PG i n the process of 

ovulation. Plasminogen i s a glycoprotein contained i n the 

plasma and i s converted to the active serine protease by two 

d i f f e r e n t plasminogen ac t i v a t o r s which can be stimulated by 

PGF_ , . and PGE_. Plasmin, which i s produced by the action 
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of plasminogen a c t i v a t o r on plasminogen, t r i g g e r s the various 

steps i n the postulated cascade. The net e f f e c t i s to decrease 

the strength of the f o l l i c l e wall to the point at which rupture 

occurs (Ossowski et a l . , 1979; Beers et a l . , 1975; Espey, 

1980). Because the gonadotropins and the prostaglandins 

stimulate adenylate cyclase, cAMP i s probably involved i n the 

a c t i v i t i e s of p r o t e i n synthesis, leading to increased 

production of plasminogen a c t i v a t o r (Strickland and Beers, 

1976). I t has been demonstrated that PGE 2 i s involved i n 

reversal of ovum maturation and that P G F 2 a l p h a m a ^ overcome 

blockade of ovulation by indomethacin (Downs and Longo, 1982;, 

1983). However, i t should be noted that PGE 2 a f f e c t s ovulation 

i n indomethacin-blocked animals ( T s a f r i r i et a l . , 1972), and 

thus plays a major r o l e i n ovulation. pGE 2 i s the predominant 

PG i n the f o l l i c l e s and i s responsible for most of the e f f e c t s 

of PG on ovulation, but P G F 2 a l p h a m a ^ exert a n e f f e c t on the 

smooth-muscle elements of the f o l l i c l e wall (Diaz-Infante et 

a l . , 1974). 

E. Role of l o c a l nonsteroidal regulators on ovarian function 

Endocrine glands, such as the p i t u i t a r y , ovary and 

thyroid glands, release hormones which reach t h e i r target v i a 

the blood stream and thereby a f f e c t other tissues, organs or 

body functions. Paracrine control mechanisms involve l o c a l 

d i f f u s i o n of hormones to t h e i r neighboring c e l l s without 

entering the c i r c u l a t o r y system (Roth et a l . , 1983). F i n a l l y , 

the regulatory function of some hormones i s autocrine since 
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e f f e c t s are exerted on the c e l l s which produce the hormones. 

There i s increasing evidence to suggest that l o c a l 

nonsteroidal regulators play important roles i n the ovary by 

paracrine or autocrine control mechanisms. These nonsteroidal 

regulators include LHRH (Hsueh and Jones, 1981), growth factors 

(Gospodarowicz et a l . , 1977a; 1977b; 1979), i n s u l i n and 

i n s u l i n - l i k e growth factors (Veldhuis et a l . , 1983; Adashi et 

a l , 1985), ovarian angiogenic factors (Koos and LeMaire, 1983), 

angiotensin (Culler et a l . , 1986; Husain et a l . , 1987), 

bradykinin (Smith and Perks, 1983), neurotransmitters (Hsueh et 

a l . , 1984), oocyte maturation i n h i b i t o r ( T s a f r i r i and Braw, 

1984) and neurohypophyseal hormones (Sheldrick and F l i n t , 

1984). These l o c a l nonsteroidal regulators may i n t e r a c t with 

gonadotropins, ster o i d hormone and PGs to regulate 

steroidogenesis, oocyte maturation and ovulation by paracrine 

or autocrine mechanisms. 

The e f f e c t s of LHRH on ovarian function have been 

extensively studied. A d i r e c t function of LHRH i n the ovary 

was reported by Rippel and Johnson who observed a decrease i n 

hCG augmented ovarian weight i n immature hypophysectomized rats 

treated with LHRH (Rippel and Johnson 1976) . This finding was 

confirmed i n hypophysectomized rats stimulated with pregnant 

mare's serum gonadotropin (PMSG) or FSH (Ying and Guillemin, 

1979; Hsueh and Erickson, 1979). In v i t r o studies have shown a 

d i r e c t e f f e c t of LHRH on primary cultures of granulosa c e l l s as 

we l l . Treatment with LHRH or i t s agonists i n h i b i t s FSH-

stimulated progestin and estrogen production (Hsueh and 
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Erickson, 1979; Arimura et a l . , 1979). The action of LHRH on 

granulosa c e l l steroidogenesis i s exerted at multiple s i t e s 

including i n h i b i t i o n of FSH-stimulated cAMP production, 

i n h i b i t i o n of aromatase, SCC and 3-beta-HSD and stimulation of 

20-alpha-HSD. LHRH also suppresses LH and FSH receptors (Hsueh 

and Jones, 1981; Hsueh et a l . , 1981; Gore-Langton 1981). The 

i n h i b i t o r y action of LHRH on the ovary i s exerted on other 

ovarian compartments i n addition to the granulosa c e l l s . LHRH 

i n h i b i t s basal and LH-stimulated androgen synthesis by rat 

ovarian i n t e r s t i t i a l c e l l s (Magoffin et a l . , 1981; Magoffin and 

Erickson, 1982). A d d i t i o n a l l y , LHRH i n h i b i t s LH/hCG-stimulated 

P 4 secretion by r a t l u t e a l c e l l s i n vivo and i n v i t r o (Clayton 

et a l . , 1979; Jones and Hsueh, 1980). In contrast to the 

in h i b i t o r y e f f e c t s of LHRH, stimulatory e f f e c t s following acute 

administration of LHRH alone have also been observed. These 

ef f e c t s include the stimulation of estrogen, P 4, 20-alpha-OH-P 

and PGs production (Dorrington et a l . , 1982; Gore-Langton et 

a l . , 1981; Clark et a l . , 1980; Clark, 1982). Stimulatory and 

in h i b i t o r y e f f e c t s of LHRH could be blocked by treatment with 

LHRH antagonists (Jones and Hsueh 1981; Hsueh and Ling, 1979; 

Navickis et a l . , 1982). The most consistent stimulatory action 

of LHRH on ovarian function i s exerted on mature preovulatory 

f o l l i c l e s . LHRH induces ovulation and t h i s action of LHRH i s 

blocked by LHRH antagonists (Ekholm et a l . , 1982; Dekel et a l . , 

1983). The action of LHRH on f o l l i c u l a r rupture at ovulation 

appears to be r e l a t e d to i t s a b i l i t y to stimulate PGs and 

plasminogen a c t i v i t o r , both of them have been shown previously 
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to be involved i n f o l l i c u l a r rupture (Hillensjtt et a l . , 1982 

Wang 1983; Reich et a l , 1985). A d d i t i o n a l l y , LHRH i s involved 

i n the resumption of ovum maturation and cumulus c e l l 

dispersion (Dekel et a l . , 1981; Hillensjtt and LeMaire, 1980; 

Magnusson and LeMaire, 1981). Unlike i t s e f f e c t on f o l l i c u l a r 

rupture, the action of LHRH on the ovum i s not blocked by 

indomethacin and hence does not seem to be mediated by 

f o l l i c u l a r PG production (Ekholm et a l . , 1982). Recent studies 

have proposed that the action of LHRH on ovum maturation 

involves protein kinase C (PKC). Furthermore, i n h i b i t o r s of 

the lipoxygenase pathway of AA i n h i b i t s the resumption of 

meiosis induced by LHRH, but not by LH, i n d i c a t i n g the 

involvement of t h i s pathway i n mediating LHRH action on ovum 

maturation ( T s a f r i r i et a l . , 1986; Aberdam and Dekel, 1985; 

Ekholm et a l . , 1982). The fi n d i n g of s p e c i f i c receptors for 

LHRH i n the rat oocyte strongly suggests a d i r e c t e f f e c t of 

LHRH on oocyte maturation (Dekel et a l . , 1988). 

The d i r e c t e f f c t s of LHRH on ovarian steroidogenesis are 

mediated by i t s s p e c i f i c receptors. These receptors are found 

i n l u t e a l , theca and granulosa c e l l s at a l l stages of c e l l u l a r 

d i f f e r e n t i a t i o n ( P e l l e t i e r et a l . , 1982). Photoaffinity 

l a b e l i n g of ovarian LHRH receptors has i d e n t i f i e d two s p e c i f i c 

components with apparent MW of 60,000 and 54,000 daltons (Hazum 

and Nimrod, 1982; Hazum, 1984). LHRH increases the amount of 

i t s own receptor, whereas gonadotropins cause LHRH receptor 

depletion (Clayton and Catt, 1981). Apart from the hormonal 

regulation, the ovarian LHRH receptor might also be under a 
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d i r e c t neural control (Marchetti and Cio n i , 1988). Since only 

one type of LHRH receptor i s i d e n t i f i e d i n the p i t u i t a r y , the 

extra component of the ovarian receptors may be re l a t e d to the 

d i f f e r e n t and s p e c i f i c functions of LHRH-like peptide i n the 

ovary. Although the r a t model has been extensively used to 

study the d i r e c t e f f e c t s of LHRH on gonadal function, other 

studies have demonstrated d i r e c t e f f e c t s of LHRH on the ovary 

of rabbit (Koos and LeMaire, 1985), p i g (Massicotte et a l . , 

1980), cow (Milvae et a l . , 1984), chicken (Takats and 

Hertelendy, 1982), monkey (Knecht et a l . , 1983), and human 

(Tureck et a l . , 1982). The high a f f i n i t y ovarian LHRH 

receptors have been demonstrated i n r a t , but not i n sheep, pig, 

and cow (Brown and Reeves, 1983), monkey (Asch et a l . , 1981), 

and human (Clayton and Huhtaniemi, 1982). On the other hand, 

low a f f i n i t y LHRH receptors were documented i n human corpus 

luteum (Popkin et a l . , 1983). The f a i l u r e to demonstrate high 

a f f i n i t y LHRH binding s i t e s i n other species might be due to 

the poor a b i l i t y of the labeled LHRH analogs used to intera c t 

with the ovarian LHRH receptors i n these species. 

However, the low l e v e l of LHRH i n systemic blood 

indicates that LHRH may not be the endogenous ligand that binds 

to the LHRH receptors i n the rat ovary (Aten et a l . , 1986). To 

demonstrate the phy s i o l o g i c a l s i g n i f i c a n c e of the d i r e c t 

ovarian actions of LHRH, i t i s necessary to e s t a b l i s h the 

presence of an ovarian LHRH-like substance. Recently, i t was 

shown that rat, bovine and ovine ovaries contain a LHRH-like 

peptide that competes with LHRH for binding to ovarian membrane 
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receptors but with immunoreactive a c t i v i t y d i s t i n c t l y d i f f e r e n t 

from those of LHRH (Aten et a l . , 1986; Aten et a l . , 1987). 

Inter e s t i n g l y , a separate gonadotropin-releasing peptide has 

been i s o l a t e d from human f o l l i c u l a r f l u i d ( L i et a l . , 1987). 

The amino ac i d composition and sequence of t h i s l a t t e r peptide 

d i f f e r from those of hypothalamic LHRH (with the primary 

structure of H-Thr-Asp-Thr-Ser-His-His-Asp-Gln-Asp-His-Pro-Thr-

Phe-Asn-OH) and t h i s peptide i s considerably l e s s potent i n 

stimulating the release of gonadotropins from the mouse 

p i t u i t a r y i n v i t r o . The LHRH receptors i n the r a t ovary may 

represent receptors for one or more of these LHRH-like peptides 

found endogenously i n the rat ovary. The presence of 

equivalent l e v e l s of LHRH-like peptide i n the ovine, bovine and 

human ovary suggests that LHRH-like peptide might serve a 

paracrine or autocrine r o l e i n these tissues v i a the receptors 

s p e c i f i c f o r LHRH-like peptide. A d d i t i o n a l l y , a recent report 

has suggested that porcine i n h i b i n alpha-subunit of 134 amino 

acid suppresses FSH-induced production of cAMP, P 4 and 

e s t r a d i o l v i a a LHRH receptor i n r a t granulosa c e l l s , r a i s i n g 

further i n t e r e s t i n the nature of LHRH receptors i n the ovary 

( H i l l i e r et a l . , 1987). 

IV. Signal transduction systems i n ovary 

A. Introduction 

Ovarian c e l l u l a r functions are regulated by peptide 

hormones, neurotransmitters and nonsteroidal factors and these 
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hormones regulate ovarian c e l l s v i a second messengers. 

Generally, the capacity of a given c e l l to respond to a given 

hormone depends on the presence or absence of the receptor i n 

the c e l l . I t i s well recognized that there are several classes 

of hormone receptors, which when occupied by t h e i r s p e c i f i c 

hormones, stimulate d i f f e r e n t second messengers, whose 

d i f f u s i o n enables the hormonal signal to spread r a p i d l y 

throughout the c e l l . Two major signal pathways are now known. 

One employs the second-messenger c y c l i c adenosine monophosphate 

(cAMP). The other employs a combination of second messengers 
2+ 

that includes calcium ions (Ca ), i n o s i t o l 1,4,5-trisphosphate 

(IP 3) and s n - d i a c y l g l y c e r o l (DG). 

B. C y c l i c AMP 

A large number of hormones exert t h e i r e f f e c t s by 

increasing the concentration of cAMP. cAMP i s formed from ATP 

by the membrane bound enzyme adenylate cyclase. Each hormone 

molecule r e s u l t s i n increased formation of many molecules of 

cAMP. Therefore, the i n i t i a l hormone signal i s greatly 

amplified following i t s i n t e r a c t i o n with plasma membrane-bound 

receptors. cAMP in t e r a c t s with a s p e c i f i c i n t r a c e l l u l a r 

a l l o s t e r i c receptor, the regulatory subunit of cAMP-dependent 

protein kinase, and upon d i s s o c i a t i o n of the free c a t a l y t i c 

subunit induces the phosphorylation of substrate proteins to 

give further a m p l i f i c a t i o n . The agonist-induced increase i n 

cAMP and subsequent c e l l u l a r response i s terminated by 

degradation of cAMP to 5'-AMP by the action of 
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phosphodiesterase, hydrolysis of GTP to GDP by GTPase and 

removal of phosphate groups from substrate proteins by 

phosphatase enzymes. I t i s believed that cAMP i s the second 

messenger fo r the action of both gonadotropins, LH and FSH, i n 

ovarian c e l l s , and multiple functions of ovarian c e l l s can be 

e l i c i t e d by cAMP analogs and cAMP-inducing agents (Kolena and 

Channing, 1972; Goff and Armstrong, 1979; Marsh and Savard, 

1966; Tsang et a l . , 1979; Dennefors et a l . , 1980). Since PGE 2 

also induces the increase i n cAMP l e v e l s i n cultured granulosa 

c e l l s , endogenous PGs may also a f f e c t granulosa c e l l 

d i f f e r e n t i a t i o n (Kolena and Channing, 1972; Goff and Armstrong, 

1977; Behrman, 1979). 

Studies performed during the past decade have revealed 

that the regulation of hormone-sensitive adenylate cyclase i s 

f a r more complicated than o r i g i n a l l y suspected. F i g . 4 

presents i n a scheme many of the s t r u c t u r a l and functional 

aspects of adenylate cyclase a c t i v i t y by nucleotides and 

hormones. Adenylate cyclase i s only part of a complex 

regulatory system that mediates the action of hormones on t h e i r 

target c e l l s . The enzyme system i s composed of at l e a s t three 

classes of components. Located at the outer membrane surface 

i s the receptor (R) component containing a s p e c i f i c s i t e f o r 

binding of hormones. At the inner face of the membrane are the 

c a t a l y t i c u n i t (C) and the guanine nucleotide regulatory 

protein (G) (Rodbell, 1980). Receptors communicate with a p a i r 

of homologous guanine proteins. One of which (Gs) mediates 

stimulation of adenylate cyclase a c t i v i t y , while the other (Gi) 



signal signal 
31 

• 51-AMP 

inactive + ® active 
cAMP-dependent • cAMP-dependent 
protein kinase protein kinase 

b i o l o g i c e f f e c t 

F i g . 4. General model of cAMP mediated hormone response. R, 
receptor; Gs, stimulatory guanine-binding protein; Gi, 
i n h i b i t o r y guanine-binding protein; GTP, guanosine 
triphosphate; GDP, guanosine diphosphate; ATP, adenosine 
triphosphate; cAMP, c y c l i c adenosine monophosphate; 5'-AMP, 
adenosine 5'-phosphate. 

i s responsible for i n h i b i t i o n (Rodbell, 1980; Gilman, 1984). 

They are both formed of alpha, beta and gamma subunits, both 

alpha-subunits bind guanosine triphosphate (GTP) and i t s 

analogs. When hormone binds to receptor (H*R), there i s a 

rapid i n t e r a c t i o n of H*R with G to form H^'G. Formation of 

H»R»G complex affects G a c t i v i t y , allowing the binding of GTP 

to i t s s p e c i f i c binding s i t e to form H»R»G»GTP. G i s active 
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only when GTP i s bound; i t i s inactive when GDP i s bound. 

HaR*G complex increases removal of i n h i b i t o r y guanosine 

diphosphate (GDP) and f a c i l i t a t e s GTP binding. GTP-dependent 

ac t i v a t i o n i s represented by concomitant subunit d i s s o c i a t i o n 

to give a GTP»alpha complex, which interacts with C to enhance 

or decrease c a t a l y t i c a c t i v i t y depending on the type of G 

protein, and a beta8gamma complex, which does not i t s e l f appear 

to dis s o c i a t e . Reversal of adenylate cyclase stimulation 

r e s u l t s from GTP hydrolysis by GTPase, which terminates G-

protein a c t i v i t i o n . GTPase-dependent deactivation i s assumed 

to be completed upon reassociation of alpha subunits with 

beta4gamma complexes (Rodbell, 1980; Jakobs et a l , 1984; 

Gilman, 1984; 1987). 

C. Calcium and protein kinase C pathway 

In addition to the cAMP pathway, there i s another major 

s i g n a l l i n g pathway that u t i l i z e s the membrane phosphoinositides 

(Fig. 5). So f a r , the c o l l e c t i v e term phosphoinositides has 

been used to describe the three anionic phosphoinositides that 

contain myo-inositol i n t h e i r head groups (Berridge, 1981). 

The most abundant form i s phosphatidylinositol (PI) that 

contains myo-inositol attached to phosphate through the 

hydroxyl on the 1-position of i t s i n o s i t o l head group. The 

other two members are formed by sequential phosphorylation of 

hydroxyl groups on the 4- and 5-posit ions to form 

phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 

4,5-bisphosphates (PIP,) that i s the immediate precursor 
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PI • PIP 

[ C a 2 + ] i 

C e l l u l a r response 

Fig. 5. I n o s i t o l phospholipid turnover and sign a l transduction. 
Abbreviations: G, guanine nucleotide-binding protein; PI, 
phosphatidylinositol; PIP, phosphatidylinositol-4-phosphate; 
PIP 2, phosphatidylinositol-4,5-bisphosphate; PLC, phospholipase 
C; DG, 1,2-diacylglycerol; PA, phosphatidic acid; AA, 
arachidonic acid; PGs, prostaglandins; LTs, leukotrienes. 

located within the plasma membrane used by the receptor 

mechanism to release i n o s i t o l 1,4,5-trisphosphate (IP 3) to the 

cytosol, leaving DG within the plane of the membrane. The 

i n o s i t o l phosphates are rapidl y degraded to i n o s i t o l , which i s 

u t i l i z e d f or resynthesis of phosphoinositides, by a complex of 
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phosphatases, whereas d i a c y l g l y c e r o l i s converted to eithe r 

phosphatidic acid or monoacylglycerol plus arachidonic acid 

(AA) . Resynthesis of PI occurs i n the membranes of the 

endoplasmic reticulum where phosphatadic acid interacts with 

cyt i d i n e triphosphate to give c y t i d i n e diphosphate-

d i a c y l g l y c e r o l and t h i s combines with i n o s i t o l to give PI. PI 

i s then c a r r i e d back to the plasma membrane by a tra n s f e r 

protein to complete the cycle of breakdown and resynthesis. AA 

can be derived from membrane phosphoinositides as well as from 

the sn-2 p o s i t i o n of other membrane phospholipids. Since AA 

a v a i l a b i l i t y l i m i t s the rate of synthesis of AA metabolites i n 

most ti s s u e s , the reactions that produce AA can stimulate 

lipoxygenase and cyclooxygenase pathways thereby generating 

other signals, for example, PGs, TXs and LTs. The hydrolysis of 
. . . . . 2+ i n o s i t o l l i p i d i s mainly confined to the action of Ca 

mobilizing agonists, which bind to s p e c i f i c c e l l - s u r f a c e 

receptors and gain access to both i n t r a c e l l u l a r and external 
2+ 2+ sources of Ca . Evidence f o r the IP 3/Ca -mobilizing 

hypothesis has been obtained by studying the e f f e c t of t h i s 

putative second messenger on various permeabilized c e l l s where 
2+ 

IP 3 could gain access to the i n t r a c e l l u l a r Ca stores, such as 
endoplasmic reticulum (ER) (Streb et a l , 1983; Burgess et a l , 

2+ 
1984). Another possible source of Ca i s from mitochondria. 

I t has been demonstrated that i s o l a t e d mitochondria 

p a r t i c i p a t e s i n the release and uptake of large amounts of 
2 + 

i n t r a c e l l u l a r Ca (Lehninger, 1970; C a r a f o l i and Crompton, 
2+ 

1978). IP, acts through a s p e c i f i c receptor to release Ca by 
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opening a channel across the ER membrane (Smith et a l , 1985; 

Irvine et a l , 1984). The i n i t i a l response to agonists that 
2+ 2+ cause Ca -mobilization i s a release of i n t e r n a l Ca (phase 

2+ 
1) , which i s soon followed by entry of Ca across the plasma 

membrane (phase II) (Kojima et a l , 1985; Reynolds and Dubyak, 

1985). Most attention has focused on i t s r o l e i n stimulating 
2+ 

the release of Ca during c e l l activation, but IP 3 may serve 
2+ 

to regulate the r e s t i n g or basal l e v e l Ca as well (Prentki et 

a l , 1985). DG that remains within the plane of the plasma 

membrane functions as a second messenger by a c t i v a t i n g protein 
2 + 

kinase C (PKC) . PKC has been shown to be Ca - and 

phospholipid-dependent f o r i t s a c t i v i t y (Nishizuka 1984). One 

of the important aspects of the act i v a t i o n process appears to 

be a translocation of PKC from the cytosol into the membrane, 
2+ 

and t h i s process might be the r o l e of Ca (Wolf et a l , 1985). 
Although the a c t i v a t i o n of PKC i s thought to be biochemically 

2+ 
dependent upon Ca , i t can be p h y s i o l o g i c a l l y activated 2+ . . . independence of Ca under some conditions. I t i s now clear 
that there i s more than one species of PKC molecule, and seven 

subspecies of PKC have been i d e n t i f i e d (Nishizuka, 1988). The 

various subspecies of PKC have d i f f e r e n t enzymatic properties. 

The gamma and alpha-subspecies of PKC are much l e s s activated 

by DG i n the presence of phosphatidylserine than i s the mixture 

of beta-1 and beta-2 subspecies, which shows substantial 
2+ 

a c t i v i t y i n the absence of Ca (Nishizuka, 1988). I t has also 

been proposed that d i f f e r e n t subspecies of PKC are also 

activated by the serie s of phospholipid metabolites, such as 
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DG, AA and l i p o x i n A (Hansson et a l , 1986, Nishizuka, 1988) . 

Once PKC has been activated through the concerted action of DG 
2+ 

and Ca , i t begins to phosphorylate s p e c i f i c proteins that are 

thought to contribute to the control or modulation of many 

metabolic and other processes (Nishizuka, 1986). 

I P 3 and DG are released from membrane phosphoinositides 

by a phosphoinositide-specific phospholipase C (PLC). There i s 

convincing experimental evidence at present which suggests a 

role f o r GTP-binding protein serving to couple receptors to 

PLC. An example of the evidence i n d i c a t i n g a role for G-
protein i n the coupling various receptors to PIP 2 hydrolysis 

2+ 
and Ca mobilization i s the fi n d i n g that nonhydrolyzable 

analogues of GTP stimulate breakdown of PIP 2 and PLC a c t i v i t y 

(MaJerus et a l , 1986). The i d e n t i t y of t h i s G-protein and i t s 

r e l a t i o n s h i p to other G-proteins i s unknown. 

LHRH i s a peptide hormone and i t s e f f e c t s are mediated 

by s p e c i f i c receptors. The mechanism of LHRH action on the 

ovary has been investigated i n the past few years. There i s no 

convincing evidence suggesting that cAMP i s the second 

messenger f o r LHRH action i n the ovary. On the other hand, 

LHRH and i t s agonists have been shown to stimulate the 

breakdown of polyphosphoinositides into i n o s i t o l phosphates and 

DG i n the ovary (Leung et a l , 1983; Naor and Yavin, 1982; Ma 
2+ 

and Leung, 1985; Minegishi and Leung, 1985). Ca i s required 

i n the action of LHRH i n the granulosa c e l l s (Ranta et a l , 

1983) and protein kinase C has been characterized i n the ovary 

(Noland and Dimino, 1986; Davis and Clark, 1983). Recently, 



the e f f e c t of LHRH on [ H]AA release i n rat ovarian c e l l has 

also been examined (Minegishi and Leung, 1985) . Thus, at the 

l e v e l of the ovarian c e l l , the hydrolysis of i n o s i t o l l i p i d s 

may immediately follow LHRH receptor occupancy and lead to the 

rapid generation of IP 3 and DG, and the release of AA. The 
2+ 

resultant changes i n Ca mobilization and/or PKC a c t i v i t y and 

AA metabolism may well be correlated with the modulatory 

e f f e c t s of LHRH on ovarian steroidogenesis. 

V. The aim of the present study 

Although many reports have indicated that LHRH or LHRH-

l i k e substance d i r e c t l y a f f e c t r a t ovarian function, the 

mechanism of action of LHRH i s not completely understood. 

Since LHRH has been shown to induce membrane phosphoinositide 

breakdown, the o v e r a l l aim of the present study i s to further 

t e s t the ef f e c t s of LHRH on hormone production i n rat granulosa 

c e l l s and investigate the possible s i g n a l transduction r o l e s of 
2+ . . . PKC, Ca , AA and i t s metabolites i n the action of LHRH. 

S p e c i f i c a l l y , the action of LHRH was compared with that of 

gonadotropins and cAMP-stimulating agents on the membrane 

phosphoinositide turnover. Other experiments was examined 
2+ 

LHRH-induced [Ca ] i a l t e r a t i o n i n ind i v i d u a l granulosa c e l l s , 

as well as the interactions among the putative signal 

transduction pathways on the regulation of P 4 and PGE2 

production. The objective of the present study was therefore 

to understand, more completely, the role of LHRH as a 

paracrine or autocrine regulator of ovarian functions. 
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Chapter 2. Induction of Polyphosphoinositide Turnover and  
Arachidonic Acid Release by LHRH 

I. Introduction 

Numerous studies have shown that LHRH and i t s synthetic 

agonists could directly affect steroid hormone production in 
the ovary (Hsueh and Jones, 1981; Leung, 1985). The direct 

effects of LHRH on the ovary are mediated by specific receptors 
(Pelletier et a l . , 1982). These extrapituitary intraovarian 

actions are either stimulatory or inhibitory, depending on the 

duration of LHRH treatment as well as the simultaneous presence 

of other ovarian c e l l regulators (such as gonadotropins) during 
the culture period. While the influence of LHRH on ovarian 
hormone production i s well documented, i t s mechanism of action 
at the postreceptor level i s s t i l l largely unresolved. In the 
past few years, LHRH and i t s agonists have been shown to 
stimulate the breakdown of polyphosphoinositides into i n o s i t o l 
phosphates and DG in the ovary (Leung et a l . , 1983; Naor and 
Yavin, 1982; Davis et a l . , 1986; Ma and Leung, 1985; Minegishi 
and Leung, 1985; Leung et a l . , 1986). Inositol phosphates, 
especially IP 3 are known to induce mobilization of calcium ions 
from i n t r a c e l l u l a r stores (Burgess et a l . , 1984). On the other 
hand, DG i s now widely accepted to be a potent activator of PKC 

2 + 
(Nishizuka et a l . , 1984). Calcium ion (Ca ) i s required in 
the action of LHRH in ovarian c e l l s (Ranta et a l . , 1983; 
Dorflinger et a l . , 1984), and PKC has recently been 
characterized in the ovary (Noland and Dimino, 1986; Davis and 
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Clark, 1983). Recently, a LHRH-like peptide has been 
demonstrated in rat, bovine, ovine and human ovaries, further 
strengthening the concept that LHRH or LHRH-like peptide plays 
a role in mediating ovarian functions. Thus, within the 
ovarian c e l l s , the hydrolysis of i n o s i t o l l i p i d s may 
immediately follow LHRH receptor occupancy and lead to the 
rapid generation of IP 3 and DG. The resultant changes in 
calcium mobilization and/or the a c t i v i t y of PKC may be 
correlated with the modulatory effects of LHRH on ovarian 
hormone production. A similar mechanism involving i n o s i t o l 
l i p i d breakdown has been proposed for LHRH stimulation of 
gonadotropin release i n the anterior pituitary gland (Raymond 
et a l . , 1984; Huckle and Conn, 1987; Harris et a l . , 1985; Conn 
et a l . , 1985). 

In the present study, the actions of LHRH on i n o s i t o l 
phosphates, diacylglycerol and arachidonic acid formation were 
further investigated. S p e c i f i c a l l y , the action of LHRH was 
compared with that of gonadotropins and cAMP-stimulating agents 
on the membrane phosphoinositide turnover. The role of PKC 
activation in regulating production of in o s i t o l phosphates, DG 
and AA was emphasized in this study. 
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Animals 

Immature Sprague-Dawley female rats purchased from 

Charles River Canada, Inc. (Montreal, Canada,) or Animal Care 

(University of B r i t i s h Columbia) were injected subcutaneously 

on the 23th day a f t e r b i r t h with 12 IU pregnant mare's serum 

gonadotropins (PMSG) between 09:00 and 10:00 i n the morning to 

stimulate the formation of multiple preantral f o l l i c l e s and 

provide large numbers of r e l a t i v e l y homogenenous granulosa 

c e l l s at the same stage of development. The rats were k i l l e d 

by c e r v i c a l d i s l o c a t i o n a f t e r 48h and the ovaries were removed 

by surgery. 

Preparation of granulosa c e l l s 

Granulosa c e l l s were harvested under the dissecting 

microscope, by puncturing the ovarian f o l l i c l e s with a 27Gi 

gauge hypodermic needle as previously described (Leung and 

Armstrong, 1978). The ovaries were squeezed gently and the 

granulosa c e l l s released into Minimum E s s e n t i a l Medium with 

Eagle's s a l t s and supplemented with 2 mM of L-glutamine, 100 

units/ml of p e n i c i l l i n , 100 ug/ml of streptomycin sulfate, and 

5 ml of nonessential amino acids (MEM; Gibco, Grand Island, 

NY) . A f t e r removal from the ovaries, the c e l l s were expressed 

through a fine s t e r i l i z e d mesh. The c e l l s were recovered by 

centrifugation (5 min at 200xg), washed once, and suspended i n 

MEM. 
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Radiolabeled d i a c y l q l y c e r o l and arachidonic a c i d l i b e r a t i o n 

5 
In some experiments, granulosa c e l l s (5x10 cells/ml) 

were added to 24 well culture plates (Falcon) and were labeled 

by incubation for 24h i n medium containing with 0.2 juCi/ml or 

0.5 uci/ml [5,6,8,9,11,12,14,14,15,- 3H]Arachidonic acid (60 

Ci/mmol; New England Nuclear, Boston, MA) i n MEM containing 5% 

f e t a l bovine serum (FBS). The c e l l s were then washed 

thoroughly and incubated for a further 30 to 60 min i n MEM 

without FBS. At t h i s time, d i f f e r e n t hormones were added. The 

various preparations were incubated for d i f f e r e n t time 

i n t e r v a l s . At the end of the incubation, the medium was 

removed and the c e l l s were scraped d i r e c t l y into 1 ml of i c e -

cold methanol. The l i p i d s i n the c e l l s were extracted by the 

method of Folch et a l . (1957) . B r i e f l y , 1 ml of methanol was 

mixed with 2 ml of chloroform and 0.6 ml of water, and mixed on 

a vortex vigorously. The lower chloroform phase was removed 

and 1 ml of chloroform was added f o r the second extraction. 

The pooled chloroform layer of the two extractions was 

evaporated to dryness under nitrogen and the residue 

redissolved i n chloroform and methanol (2:1) f o r t h i n layer 

chromatography (TLC). The f a t t y acids i n the culture medium 

were extracted by the method of Borgeat and Samuelsson (1979). 

A f t e r addition of 1.5 ml of methanol to the medium, the bulk of 

the p r e c i p i t a t e d material was centrifuged. The supernatant was 

c o l l e c t e d , and the p e l l e t s were washed once with 0.5 ml of 

methanol. The pooled methanol supernatants were a c i d i f i e d to 

pH 3 and mixed with 6 ml of d i e t h y l ether. Then 4 ml of 
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d i s t i l l e d water were added and mixed. A f t e r separation of the 

phases, the water-methanol mixture was removed. The ether 

phase was evaporated to dryness under nitrogen and the residue 

dissolved i n a 2:1 mixture of chloroform-methanol. The [ H]-

labeled AA was i s o l a t e d by TLC on s i l i c a gel 60F-254 plates 

(Merck, Rahway, NJ) with solvent containing iso-octane-ethyl 

acetate-water-acetic acid (5:11:10:2) v o l / v o l , as described 

previously by Minegishi and Leung (1985) . The R^ value of AA 

was 0.85 with pure standards as reference. Radiolabeled 

d i a c y l g l y c e r o l was separated by TLC with a solvent system 

containing benzene-diethylether-ethanol-ammonia-water 

(50:40:2:0.1) v o l / v o l , as described by Kaibuchi et a l . (1983). 

The areas of the p l a t e corresponding to DG (R f =0.72) were cut 

out and t h e i r r a d i o a c t i v i t y determined by l i q u i d s c i n t i l l a t i o n 

spectrometry. 

Analysis of i n o s i t o l phosphates 
5 

Granulosa c e l l s (5x10 cells/ml) were prelabeled by 
3 

incubation f o r 24h i n MEM containing myo-[2- H ] i n o s i t o l (5 

jiCi/ml) (New England Nuclear; 16.5 Ci/mmol) and 5% FBS for 24h. 

The c e l l s were then washed and incubated f o r an i n i t i a l 10 

min i n radiotracer-free MEM. At t h i s time, hormones were added 

(in a 10 u l volume), and the c e l l s were incubated for d i f f e r e n t 

times. Lithium c h l o r i d e ( L i + ; 10 mM), which i n h i b i t s i n o s i t o l -

1-phosphatase, was added to the medium p r i o r to hormonal 

treatment, enhancing i n o s i t o l phosphate accumulation. 

Incubation was terminated by scraping c e l l s d i r e c t l y into 1 ml 
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of i c e - c o l d methanol. For extraction, another 2 ml of 

chloroform and 5 jal of concentrated HC1 were added. The f i n a l 

r a t i o of chloroform/methanol/water was 2:1:0.6. Af t e r vortex 

and removal of the top layer (aqueous), another 0.6 ml of water 

was added and the extraction was repeated. The two extractions 

were combined, and the radiolabeled i n o s i t o l phosphates i n the 

aqueous phase were analyzed by anion exchange chromatography 

using disposable columns containing 0.5 ml of Dowex AG1-X8 

r e s i n (BioRad, 200-400 mesh, formate form). The r e s i n was 

washed with 0.1 M formic acid/5 mM i n o s i t o l before use. 

Aliquots (2ml) of the c e l l lysates were loaded at 4°C. Free 

i n o s i t o l was washed out with water (10 bed volume of resin) 

whereas sequential washes with 0.1 M formic acid containing 

0.2, 0.4, and 1.0 M ammonium formate progressively eluted IP, 

I P 2 and I P 3 / respectively, as described by Downes and Michell 

(1981). Fractions (2.5 ml) were c o l l e c t e d and r a d i o a c t i v i t y of 

each f r a c t i o n was counted following the addition of 15 ml of 

s c i n t i l l a t i o n f l u i d (Fisher S c i e n t i f i c , USA). 

Hormone and drug preparation 

Granulosa c e l l s were treated with various hormones and 

drugs. LHRH and CT were dissolved i n s a l i n e . AA, 4-alpha-

12,13-didecanoate and 12-O-tetradecanoylphorbol-13-acetate 

(TPA) were dissolved i n ethanol. A l l drugs were d i l u t e d to 

t h e i r respective working concentrations with MEM before use and 

added i n 5 ;al aliquots to a t o t a l incubation volume of 1 ml. 

Control incubations received the same volume of ethanol. The 
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f i n a l concentration of ethanol i n the incubations d i d not 

exceed 0.5%, and ethanol d i d not influence membrane 

phospholipid metabolism. 

Reagents 

The following were purchased from Sigma: lithium 

chloride, myo-inositol, formic acid, phospholipase C, AA, TPA, 

4-alpha-phorbol 12, 13-didecanoate, LHRH and CT. Ammonium 

formate was from Fisher S c i e n t i f i c Inc. Ovine LH (NIDDK oLH-

25) , LHRH and PMSG were g i f t s from the National Hormone and 

P i t u i t a r y Program NIDDKD, NIH. Iso-octane, ethyl acetate, 

benzene, diethylether, methanol and chloroform were purchased 

from BDH Inc. (Canada) . Acetic acid and ammonia water were 

purchased from Canlab (Travenol Canada Inc.). 

S t a t i s t i c a l analysis 

S t a t i s t i c a l s i g n i f i c a n c e of the data was determined by 

Student's T-test or analysis of variance followed by Scheffe's 

multiple range t e s t . In a l l cases, i d e n t i c a l or s i m i l a r 

r e s u l t s were observed i n at le a s t three or more independent 

experiments. A l l r e s u l t s were presented as the mean ± SE of 

determinations from t r i p l i c a t e cultures of c e l l s within each 

treatment group. A P value of less than 0.05 was considered 

s i g n i f i c a n t . 
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I I I . Results 

E f f e c t s of LHRH on I n o s i t o l l i p i d breakdown and arachidonic  

a c i d release 
3 

In granulosa c e l l s prelabeled with [ H]-AA, treatment 

with LHRH caused a s i g n i f i c a n t increase (P<0.01), i n the levels 

of radiolabeled DG and AA i n the c e l l u l a r extracts. As 

i l l u s t r a t e d i n Fig . 6, addition of LHRH (10~"6M) for 5 min 
3 3 stimulated the l i b e r a t i o n of [ H]-DG and u n e s t e r i f i e d [ H] -AA 

from prelabeled phospholipids, by about 4 and 2.7 fol d , 

respectively, compared with control incubations. Furthermore, 
3 

i n c e l l s prelabeled with [ H ] - i n o s i t o l , treatment with LHRH for 

5 min caused a s i g n i f i c a n t increase i n accumulation of i n o s i t o l 

phosphates (P<0.01). 

3 
E f f e c t of LHRH on \ H]-labeled d i a c y l q l y c e r o l formation 

3 
The e f f e c t of LHRH on [ H] -DG formation was further 

3 
examined i n cultured granulosa c e l l s prelabeled with [ H]-AA 
and l a t e r exposed to LHRH. As shown i n F i g . 7, LHRH enhanced 

the i n t r a c e l l u l a r DG formation by 1.79 f o l d . The basal l e v e l 
3 

of [ H]-DG i n the medium was much lower than that i n the c e l l s 
3 

and [ H] -DG l e v e l did not increase i n the medium a f t e r the 

treatment of granulosa c e l l s with LHRH for 3 min. 
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I 1 Control Effig LHRH (K)"8M) 

F i g . 6. Stimulatory effects of LHRH on the formation of 
i n o s i t o l phosphates (IP_), d i a c y l g l y c e r o l (DG), and the release 
of u n e s t e r i f i e d arachidonic acid (AA) i n rat granulosa c e l l s . 
The c e l l s were prelabeled with e i t h e r [ H ] - i n o s i t o l or 
[H]-arachidonic acid, as described i n Materials and Methods, 
and treated with LHRH for 5 min. 
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Fig. 7. E f f e c t of LHRH on [ H]-diacylglycerol (DG) formation. 
The c e l l s were treated with LHRH f o r 3 min and d i a c y l g l y c e r o l 
(DG) formation was detected from the c e l l s and the medium. In 
t h i s and subsequent figures, the absence of standard error bars 
i n some of the data points indicates values too small to be 
shown. 



Time response of [ H]-labeled d i a c y l g l y c e r o l to LHRH 

Fig. 8 shows the time course of [ H]-DG formation i n 

granulosa c e l l s i n response to LHRH. LHRH (10~6M) caused a 

s i g n i f i c a n t increase i n [ H]-DG formation, which could be 

observed as early as 15 sec af t e r LHRH addition (P<0.05). In 

the LHRH treated c e l l s , DG l e v e l s continued to increase to 

about 197% above the control l e v e l at 5 min. This declined to 

about 40% of the 5 min l e v e l at 10 min. However, the l e v e l of 

t H]-DG was s t i l l considerably higher (190%) than the control 

l e v e l (P<0.01) at 10 min after the treatment. The control 

l e v e l s of DG did not change during the 10 min experiment 

period. 

3 

E f f e c t s of LH and LHRH on [ H]-labeled i n o s i t o l phosphates and 

d i a c y l g l y c e r o l formation and arachidonic acid release 

Fig. 9 i l l u s t r a t e s that the presence of 10~6M LHRH for 3 

minutes markedly stimulated the accumulation of radiolabeled 

IP, IP 2, and IP 3 to 155%, 545% and 100%, respectively, when 

compared with untreated control l e v e l s . In contrast, LH (1 jig) 
d i d not stimulate the formation of i n o s i t o l phosphate from 
3 
[ H ] - i n o s i t o l prelabeled granulosa c e l l s i n the same 
experiment. A s i m i l a r r e s u l t was also observed f o r the 

3 , formation of [ H]-DG (Fig. 10, panel A) . In addition, LHRH 

(10~6M) s i g n i f i c a n t l y stimulated AA release, whereas LH (1 jug) 

did not a f f e c t AA release (Fig. 10, panel B). 
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F i g . 8. Time response of stimulation of [ H]-diacylglycerol 
(DG) formation by LHRH. A s i g n i f i c a n t increase i n 
DG formation was observed as early as 15 second a f t e r LHRH 
addition. 
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F i g . 9. Comparison of LH and LHRH on [ H]-labeled 
i n o s i t o l phosphates. The c e l l s were treated with LH and LHRH 
for 3 min. LHRH markedly stimulated the formation of i n o s i t o l 
phosphates, whereas LH was i n e f f e c t i v e . 
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Control LH (1 ug) LHRH <10'6M) 

F i g . 10. Comparison of LH and LHRH on d i a c y l g l y c e r o l (DG) 
formation and arachidonic acid (AA) release. The c e l l s were 
treated with LH and LHRH for 3 min. The addition of LHRH 
caused s i g n i f i c a n t d i a c y l g l y c e r o l (DG) formation and AA 
release, whereas LH did not a l t e r the formation of these 
compounds. 



E f f e c t s of cholera t o x i n and TJTRH on \ HI -labeled i n o s i t o l  

phosphates formation 

As shown i n F i g . 11, i n prelabeled granulosa c e l l s with 
3 

[ H ] i n o s i t o l , the addition of LHRH produced increases i n 

c e l l u l a r IP, IP 2 and IP 3 (about 380%, 660% and 191%, 

res p e c t i v e l y ) , during a 5 min period, while addition of CT (100 

ng) f a i l e d to a f f e c t the formation of i n o s i t o l phosphates. 

3 
E f f e c t of phospholipase C on r H]-diacylglycerol formation 

3 

The e f f e c t of exogenous phospholipase C on [ H]-labeled 

DG accumulation was investigated i n a separate experiment. 

Like LHRH, addition of 100 mU PLC resulted i n a marked increase 

i n i n t r a c e l l u l a r DG (5.6 f o l d as compared to control l e v e l ) , 

whereas a maximal dose of LHRH (10 - 6M) caused a 1.8 f o l d 

increase i n the formation of DG (Fig. 12). 

E f f e c t s of phorbol ester TPA on i n o s i t o l phosphate and DG  

formation 

To determine whether the a c t i v a t i o n of PKC by LHRH exerts 

a possible feedback e f f e c t on the hydrolysis of membrane 

phosphatidylinositides, the granulosa c e l l s were pretreated 

with a s p e c i f i c PKC activator, TPA, f o r 5 min and then 

challenged with 10~6M LHRH for a further 3 min. S i g n i f i c a n t 

increases of IP, I P 2 and IP 3 formation were observed when the 

c e l l s were stimulated with TPA. As demonstrated i n Fig. 13, 

LHRH (10"6M) stimulated formation of IP, I P 2 and IP 3 and t h i s 

response was unaffected by pretreatment of c e l l s with TPA. 
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F i g . 11. E f f e c t of cholera toxin (CT) and LHRH on [ 3H]-labeled 
i n o s i t o l phosphate formation. The c e l l s were treated with CT 
and LHRH f o r 5 min. The formation of i n o s i t o l phosphates was 
stimulated by LHRH but not CT. 
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Control LHRH 
(10-6 M) 

PLC 
(IQOmU) 

F i g . 12. E f f e c t of phospholipase C (PLC) on [ H]-
di a c y l g l y c e r o l (DG) formation. The c e l l s were treated with PLC 
and LHRH f o r 3 min. Both PLC and LHRH s i g n i f i c a n t l y increased 
the formation of DG. 
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F i g . 13. Action of the phorbol ester TPA on i n o s i t o l phosphate 
formation. The c e l l s were f i r s t treated with TPA f o r 5 min, 
and then treated with LHRH for further 3 min. TPA alone 
stimulated i n o s i t o l phosphate formation, but the pretreatment 
of TPA did not a l t e r the response of the c e l l s to LHRH. 
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The e f f e c t of TPA on DG formation was determined i n 

another experiment i n which granulosa c e l l s were prelabeled 
3 

with [ H] -AA. TPA increased the formation of DG and t h i s 

action of TPA was s p e c i f i c , since another phobol congener, 4-

alpha-phorbol 12, 13-didecanoate, did not stimulate the 

formation of DG (Fig. 14). 

Interaction of the calcium ionophor A23187 and the phorbol 

ester TPA on arachidonic a c i d release 

To determine the possible i n t e r a c t i o n between the calcium 

ionophore A23187 and the phorbol ester TPA on AA release, [ H]-

AA prelabeled granulosa c e l l s were treated with TPA and A23187, 

following a 5 min incubation, A23187 at 10 M caused a 
3 

s i g n i f i c a n t stimulation of [ H]-AA release (80% of control, 

P<0.05). However, TPA used alone i n s i m i l a r concentration 

showed no such e f f e c t on AA release. Interestingly, when both 

A23187 and TPA were present, the e f f e c t of A23187 was 
3 

potentiated (P<0.05), with the l e v e l of [ H]AA release reaching 

130% of control l e v e l s (Fig. 15). 
IV. Discussion 

The present r e s u l t s (Fig. 6) further strengthen the 

previous findings that LHRH causes a rapid breakdown of 

i n o s i t o l l i p i d s i n rat ovarian c e l l s . This mechanism was f i r s t 

proposed when LHRH was shown to cause a rapid and selec t i v e 
3 2 

incorporation of P into phosphatidylinositol and phosphatidic 

acid i n r a t granulosa c e l l s (Naor and Yavin 1982; Minegishi and 
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F i g . 14. S p e c i f i c i t y of the phorbol ester TPA action on 
d i a c y l g l y c e r o l (DG) formation. The action of TPA on DG 
formation was s p e c i f i c , since another phorbol congener, 4alpha-
phorbol 12, 13-didecanoate (4alpha-PDD), did not change the 
formation of DG. 
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Control A23187 
(10"7M) 

TPA 
(10 "7M) 

A23187 
TPA 

F i g . 15. Interaction of the calcium ionophore A23187 and the 
phorbol ester TPA on arachidonic a c i d (AA) release. TPA alone 
did not a l t e r the release of AA, but potentiated the action of 
A23187. 
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Leung, 1985; Leung et a l . , 1983). Subsequently, i t has been 

demonstrated that the accumulation of the i n o s i t o l l i p i d 

breakdown products, IP, I P 2 and IP 3 i s markedly increased 

following the addition of LHRH to granulosa c e l l s (Ma and 

Leung, 1985; Davis et a l . , 1986). The i n o s i t o l phosphates 

produced i n response to LHRH were from polyphosphoinositol 

hydrolysis, since LHRH caused a decrease i n the l e v e l of 

radiolabeled polyphosphoinositides, while increasing 
32 

P l a b e l i n g to phosphatidylinositol and phosphatidic acid 

(Leung et a l . , 1986). The action of LHRH on ovarian i n o s i t o l 

phosphate formation i s s i m i l a r to the action of LHRH on 

p i t u i t a r y gonadotropes. In p i t u i t a r y c e l l cultures prelabeled 

with [ H] i n o s i t o l f or 5h, addition of LHRH resu l t e d i n an 

increase i n the rate of I P 3 turnover (Huckle and Conn, 1987). 

Thus, products of polyphosphoinositide breakdown may serve as 

primary mediators of the early i n t r a c e l l u l a r signal 

transduction f o r LHRH both i n ovarian and p i t u i t a r y c e l l s . The 

formation of IP 3 may be responsible f o r some of LHRH-induced 
c e l l u l a r b i o l o g i c a l responses. In fa c t , IP 3 has been shown to 

2+ 
induce Ca mobilization from i n t r a c e l l u l a r pools (Nishizuka, 

1984; Burgess et a l . , 1984). There apparently i s no d i r e c t 

r o l e for IP 3 i n regulating calcium entry across the plasma 

membrane. However, preliminary studies have provided i n d i r e c t 

evidence that i n o s i t o l 1,3,4,5-tetrakisphosphate (IP 4) has a 
2+ 

r o l e i n the stimulation of Ca i n f l u x (Berridge, 1987) . IP 4 

i s formed from IP 3 by a IP 3~kinase that transfers a phosphate 

from ATP to the 3-position of IP.. In the ovary, both the 
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i n h i b i t o r y and the stimulatory actions of LHRH on P 4 production 

2+ 
have been shown to be Ca dependent (Erickson et a l . , 1986; 

Leung and Wang, i n press). 

Since phosphodiesterase cleavage of PIP 2 ^ s t n e only 

known mechanism fo r IP 3 formation i n mammalian c e l l s , LHRH 

induced PIP 2 breakdown must occur through the action of a 

polyphosphoinositide-specific phospholipase C (PLC). I t has 

been proposed that thyrotropin-releasing hormone action on 

phosphatidylinositide breakdown i n cultured GH c e l l s occurs v i a 

PLC a c t i v a t i o n (Conn et a l . , 1987). In rat l u t e a l c e l l s , the 

addition of exogenous PLC mimicked the action of LHRH and 
P G F 2 a l p h a on the formation of i n o s i t o l phosphates (Leung et 

a l . , 1986). Similar r e s u l t s were also observed i n the present 

study (Fig. 12). 

The action of LHRH on i n o s i t o l phosphate formation i n 

granulosa c e l l s i s s p e c i f i c . The e a r l i e r studies have shown 

that LHRH-induced formation of i n o s i t o l phosphate can be 

completely blocked by LHRH antagonists, suggesting a receptor 

mediated mechanism. Furthermore, gonadotropin hormones, which 

act through increasing cAMP i n the ovary, did not r e s u l t i n the 

breakdown of membrane polyphosphatidylinositides i n the present 

studies (Fig. 8-10). cAMP-inducing agents, CT, also did not 

have any e f f e c t on the hydrolysis of membrane 

phosphatidylinositide. Since t h i s toxin enters c e l l s v i a a 

ganglioside mediated mechanism, i t s onset of action i s 

notoriously slow. A longer time may need for further study. On 

the other hand, gonadotropin hormones which are the major 
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hormones regulating ovarian functions, and LHRH which probably 

plays a l o c a l paracrine regulatory r o l e , may inte r a c t with each 

other v i a t h e i r d i f f e r e n t i n t r a c e l l u l a r signal pathways. 

Interactions between the adenylate cyclase pathway and 

phosphoinositide breakdown have been reported i n various c e l l 

types. For instance, cAMP analogs have been shown to enhance 

the formation of polyphosphoinositides i n sarcoplasmic 

reticulum preparations of rabbit heart and p i g granulocytes 

(Enyedi et a l . , 1984; Farkas et a l . , 1984), but s i g n i f i c a n t l y 

i n h i b i t norepinephrine induced i n o s i t o l phosphate accumulation 

i n FRTL-5 c e l l s (Bone et a l . , 1986). Prostacyclin, which 

stimulates cAMP accumulation, has been shown to block thrombin 

stimulated PI turnover (Watson et a l . , 1984). More recently, 

FSH has been shown to i n h i b i t the serum stimulated accumulation 

of i n o s i t o l phosphate, but FSH i t s e l f has no s i g n i f i c a n t effect 

on the formation of i n o s i t o l phosphate i n S e r t o l i c e l l s (Monaco 

et a l . , 1988). The present results (Fig. 9-11), however, are 

i n contrast with a previous report which showed that LH 

stimulated i n o s i t o l phosphate formation i n r a t granulosa c e l l s 

(Davis et a l . , 1986). The discrepancy between the previous and 

present studies cannot be e a s i l y explained. A possible reason 

could be the d i f f e r e n t research approaches undertaken. For 

example the long exposure of the c e l l s i n Davis's study to LH 

may f a c i l i t a t e the synthesis of membrane phosphoinositides. 

In response to LHRH, other products of membrane i n o s i t o l 

l i p i d hydrolysis such as DG were also detected i n the present 

study (Fig. 6-8 and 10). Geison et a l . (1976) found that the 



62 
sn-2 p o s i t i o n of phosphatidylinositides was r i c h i n AA. This 

knowledge was used i n the present study to determine the e f f e c t 

of LHRH on DG production by l a b e l l i n g granulosa c e l l s with 
3 . 3 
[ H]AA. The production of [ H]DG was then measured. According 

to the time response study, LHRH-induced DG formation was 

observed as early as 15 sec. This time was very s i m i l a r to 

that found for LHRH-induced increase i n IP 3 (Ma and Leung, 

1985; Davis 1986). Since the previous studies have 
32 

demonstrated that LHRH only increases P incorporation into 

phosphatidylinositol and phosphatidic acid, t h i s s i m i l a r i t y i n 

time suggests that the increased l e v e l of [ H]DG must most 

l i k e l y have resulted from phospholipase C hydrolysis of 

phosphoinositides (Naor and Yavin, 1982; Davis et a l . , 1983; 

Minegishi and Leung, 1985). 

It i s interesting to note that most of the [ H] DG was 

recovered from the i n t r a c e l l u l a r space (Fig. 7). Although LHRH 
3 

d i d a l t e r the amount of i n t r a c e l l u l a r [ H]DG, LHRH d i d not 

s i g n i f i c a n t l y change the l e v e l of DG i n the medium. This 

finding was consistent with the character of DG as a membrane 

hydrophobic metabolite. Interestingly, a s i m i l a r r e s u l t has 
3 

been observed with [ H]IP 3 as well (Naor et a l . , 1986). These 

r e s u l t s may suggest that the DG and IP 3 formed by LHRH 

induction may have b i o l o g i c a l r o l e s within the c e l l s where they 

are produced rather than having an influence on other c e l l s . 

DG may play a potent r o l e i n the action of LHRH by 
2+ 

ac t i v a t i n g PKC, which i s a Ca activated and phospholipid 

dependent protein kinase. The a c t i v i t y of t h i s enzyme has been 
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demonstrated i n the ovary (Noland and Dimino, 1986; Davis and 

Clark, 1983). DG and DG-like phorbol esters, i . e . TPA, 
2+ 

stimulate PKC by reducing the amounts of Ca and phospholipid 

required for a c t i v a t i o n (Nishizuka, 1984; Takai et a l 1984). 

The dependence of PKC on phospholipid indicates that the enzyme 

ac t i v a t i o n may involve association of the enzyme with 

phospholipid-rich c e l l membranes. Similar to the e f f e c t s of 

LHRH, both i n h i b i t o r y and stimulatory e f f e c t s of DG and TPA on 

ovarian steroidogenesis have been demonstrated, i n d i c a t i n g that 

a c t i v a t i o n of PKC by endogenous d i a c y l g l y c e r o l s may serve as an 

amplifier of the LHRH-stimulated sig n a l . (Welsh et a l . , 1984; 

Shinohara et a l . , 1985; Kawai and Clark, 1985). DG and TPA 

have also been shown to mimic the action of LHRH on LH release 

i n the p i t u i t a r y (Naor and Catt, 1981; Conn et a l . , 1985). 
In addition to IPs and DG, the t h i r d compound that was 

3 
measured i n the present study was [ H]AA (Fig. 6, 10 and 15) . 
A previous study has demonstrated that LHRH causes an increase 

3 
i n the l e v e l of [ H]AA release i n the culture medium as early 

as 15 min a f t e r LHRH addition (Minegishi and Leung, 1986). The 

stimulatory e f f e c t of LHRH can be blocked by the concomitant 

presence of a potent LHRH antagonist. To evaluated the r o l e of 

AA i n the actione of hormones, i t has also been observed that 

LHRH-stimulated LH release i s c l o s e l y coupled with the 

production of oxidized AA metabolites i n the anterior p i t u i t a r y 

(Naor and Catt, 1981; Snyder et a l . , 1983; Abou-Samra et a l . , 

1986) . On the other hand, i t has also been suggested that AA 

i t s e l f rather than i t s metabolites may be a c e l l u l a r regulator 
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of PRL secretion from GH3 c e l l s (Kolesnick et a l . , 1984). 

Since the i n t r a c e l l u l a r concentration of free AA l i m i t s the 

synthesis of PGs and LTs, the demonstration of the increase i n 

i n t r a c e l l u l a r free AA i s c l e a r l y important. In the present 

study with r a t granulosa c e l l s , LHRH stimulated [ 3H]AA to 

increase by about 170% 5 min a f t e r the addition of LHRH (Fig. 

6) . The data thus indicate that LHRH action may be mediated by 

i t s induction of AA release. The mechanism of t h i s LHRH-

induced AA release i n granulosa c e l l s i s , however, not clear, 

AA has indeed been made from i n o s i t o l phospholipids through two 

consecutive reactions catalyzed by phospholipiase C followed by 

d i a c y l g l y c e r o l lipase, which has been shown i n p l a t e l e t s (Bell 

et a l . , 1979; Dixon and Hokin, 1984). LHRH has been found to 

cause an apparently s e l e c t i v e depletion i n the l e v e l of 

radiolabeled PI, suggesting that AA may be derived from 

i n o s i t o l phospholipids (Minegishi and Leung, 1985). Thus the 

transient formation of DG as a r e s u l t of agonist stimulated 

breakdown of membrane phosphoinositides represents a major 

pathway leading to l i b e r a t i o n of AA for PGs and LTs synthesis. 

On the other hand, the release of i n t r a c e l l u l a r free AA may 

also be due to the ac t i v a t i o n of PLA 2 which hydrolyzes AA from 

the sn-2 p o s i t i o n of one or several phospholipids. The 
2+ 

ac t i v a t i o n of PLA 2 i s Ca dependent. Verapamil, a calcium-

channel blocker prevents both the enhancement of AA release and 

the depletion i n the l e v e l of radiolabeled PI i n r a t granulosa 
2+ 

c e l l s . In addition, the omission of Ca from the incubation 

medium could also diminish LHRH-induced [ H]AA release i n these 
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c e l l s (Minegishi and Leung, 1985). These findings strengthen 

2+ 
the concept that Ca i s required at a step before AA release, 
as suggested previously by other studies (Folkert et a l . , 1984; 

Forder et a l . , 1985; Naor and Catt, 1981). Additionally, 
2 + 

[Ca ] i mobilization induced by IP 3 could l i b e r a t e AA from 

phosphoinositide v i a PLA 2 a c t i v a t i o n . However, neither the 

r e l a t i o n s h i p between the two pathways, nor the r e l a t i v e amounts 

that each contributed to AA l i b e r a t i o n was c l e a r l y understood 

i n granulosa c e l l s . Recently, another possible mechanism has 
been proposed suggesting that PLA 2 i s i t s e l f regulated by both 

2+ 
Ca and DG. According to t h i s mechanism, PLA 2 a c t i v i t y i s 

suppressed by a l i p o c o r t i n . Receptor a c t i v a t i o n by agonists 

leads to an increase i n i n t r a c e l l u l a r calcium and the 

concomitant production of DG, from the breakdown of membrane 

phosphatidylinositide. The a c t i v a t i o n of PKC by DG induces the 

phosphorylation of the l i p o c o r t i n , suppressing i t s anti-PLA_ 
2 + 

a c t i v i t y , and i n the presence of increased [Ca ] i , optimal 

a c t i v i t y of PLA 2 i s evoked (Touqui et a l . , 1986). In the 

present study, the release of AA induced by the calcium 

ionophore A23187 was enhanced by concomitant treatment of 

granulosa c e l l s with TPA (10 M) (Fig. 15), presumably related 

to a PKC activated mechanism of AA release i n granulosa c e l l s . 

A s i m i l a r TPA mediated potentiation of the calcium ionophore 

induced AA release i n human p l a t e l e t has been reported (Volpi 

et a l . , 1985). However, the nature of t h i s proposed mechanism 

has not been elucidated i n granulosa c e l l s , although i t seems 
2+ 

that Ca plays a major r o l e . The three possible pathways 
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involved i n AA release are summarized i n F i g . 16. 

As mentioned e a r l i e r , phorbol esters mimicked the LHRH 

action on hormone production i n ovary and t h i s probably 

involves a c t i v a t i o n of the c e l l u l a r PKC. In addition to i t s 

ro l e i n control of c e l l u l a r secretion, PKC, at least i n some 

c e l l s , controls the s e n s i t i v i t y of the phosphoinositide-

sig n a l i n g pathway by regulating receptor function or the PIP 2 

content of the c e l l membrane (Taylor et a l . , 1984; Cooper et 

a l . , 1985). S p e c i f i c a l l y , the a c t i v a t i o n of PKC by DG i s 

capable of stimulating PIP 2 synthesis and could t h e o r e t i c a l l y 

increase the amounts of IP 3 and the formation of DG i n response 

to receptor occupation (De Caffoy de Courcells et a l . , 1984). 

In contrast to the stimulatory e f f e c t of PKC on PIP 2 synthesis, 

the same kinase may also exert a negative control on the 

synthesis of PIP 2 (Aloy et a l . , 1983). In addition, receptors 

and t h e i r a b i l i t y to f u n c t i o n a l l y couple to PLC can also be 

regulated by PKC ac t i v a t i o n . I t has been observed that the 

ac t i v a t i o n of PKC may completely block the agonist induced IP 3 

production by decreasing the number of receptors and regulating 

the coupling of receptors to PLC through a G protein (Cooper et 

a l . , 1985; Lynch et a l . , 1985). In the present study, 

treatment of granulosa c e l l s with TPA (10 M) stimulated the 

basal i n o s i t o l phosphate formation, but the combined treatment 

of granulosa c e l l s with LHRH and TPA d i d not potentiate or 

attenuate i n o s i t o l phosphate formation induced by LHRH alone 

(Fig. 13). The stimulatory action of TPA on i n o s i t o l phosphate 

formation was s p e c i f i c , since an i n a c t i v e form of the phorbol 
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Fi g . 16. Scheme showing proposed mechanism involved i n 
arachidonic acid release. 

ester, 4-alpha-phorbol 12, 13-didecanoate, did not a l t e r the 

formation of i n o s i t o l phosphate (Fig. 14). So fa r , the s i t e of 

t h i s action i n granulosa c e l l s was not c l e a r . I t has been 

demonstrated that TPA causes translocation of PKC from the 

cytosol to the c e l l membrane (Kraft et a l . , 1982). Rapid 
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r e d i s t r i b u t i o n of PKC a c t i v i t y during the onset of LH release 

i n p i t u i t a r y c e l l s i n response to LHRH (Nirota et a l . , 1985) 

suggests that the membrane l o c a l i z a t i o n of the active PKC may 

lead to the a c t i v a t i o n of phospholipase C and A 2 d i r e c t l y . 

Since PLC i s the enzyme that catalyzes the hydrolysis of 

membrane phosphatidylinositide, i t might be concluded that PKC 

act i v a t i o n i s a f f e c t i n g , i n some manner, the PLC hydrolysis of 

the phosphoinositides. However, i t cannot be ruled out that 

PKC a c t i v a t i o n may decrease the hydrolysis of i n o s i t o l 

phosphate to i n o s i t o l , or increase the synthesis of PIP 2« As 

the source of membrane phospholipid i s the same and the 

quantity of phosphatidylinositides i s limited, the TPA induced 

i n o s i t o l phosphate formation was overridden by the concomitant 

presence of LHRH (Fig. 13). Taken together, these data suggest 

that the a c t i v a t i o n of PKC plays a role i n the formation of 

IP 3, DG and AA. 

In summary, the i n t e r a c t i o n of LHRH with i t s plasma 

membrane s p e c i f i c receptors r e s u l t s i n the rapid breakdown of 

membrane phosphoinositides, leading the production of IP 3, DG 
2+ 

and AA. The subsequent changes of Ca mobilization, PKC 
act i v a t i o n and the metabolism of AA may control the c e l l u l a r 

secretion of granulosa c e l l s . In addition, the a c t i v a t i o n of 
2 + 

PKC and Ca mobilization may also control the formation of 

IP 3, DG and AA by regulating receptors, PLC a c t i v i t y , and PIP 2 

synthesis. 
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Chapter 3. E f f e c t of LHRH on Cy t o s o l i c Free Calcium Ion  

Concentrations i n Individual Granulosa C e l l s 

I. Introduction 

I t has been documented that LHRH exerts d i r e c t actions on 

rat ovarian c e l l s (Hsueh and Erickson, 1979; Hsueh and Jones, 

1981; Clark, 1982; H i l l e n s j o et a l . , 1982; Leung, 1985). The 

mechanism of actions of LHRH on the ovary i s due to the 

stimulation of polyphosphoinositide breakdown i n the c e l l 

membrane (Ma and Leung, 1985; Davis et a l . , 1986). I n o s i t o l 

1,4,5-trisphosphate ( I p
3 ) / a product of hydrolysis of 

phosphatidylinositol 4,5 biphosphate (PIP 2), has been proposed 
2+ 

to induce i n t r a c e l l u l a r Ca mobilization (Berridge, 1984). In 
addition, products of phosphoinositide turnover may also be 

2+ 
involved i n regulating Ca entry from the e x t r a c e l l u l a r f l u i d 

(Berridge, 1987). 

Many c e l l u l a r functions such as c e l l movement, d i v i s i o n , 

secretion and a c t i v a t i o n depend on changes i n the free 

c y t o s o l i c calcium ion concentrations (Cheung, 1987). Calcium 

has also been demonstrated to be an important signal 

transduction agent i n numerous tissues and c e l l s (Rasmussen and 

Barrett, 1984). 

To evaluate the ro l e of calcium as an i n t r a c e l l u l a r 

second messenger, quantitative measurement of c y t o s o l i c free 
2+ . 2+ . 

Ca concentration ([Ca ]i) i s required. The most popular 
2+ 

method f o r measuring [Ca ] i i s to monitor the s h i f t s i n 
2+ 2+ 

wavelength of fluorescent Ca indicators when they bind Ca . 
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These indicators are tetracarboxylic acid derivatives of the 

calcium chelator EGTA [ethylene g l y c o l bis(6-aminoethylether)-

N,N'-tetraacetic]. A recent study on suspensions of granulosa 

c e l l s using the calcium i n d i c a t o r dye, quin-2, measured only 
2+ 

average free Ca changes (Davis et a l . , 1986). This dye 
method was not designed to examine responses of individual 

2+ 
c e l l s and i t i s uncertain whether the increase of [Ca ] i was 

2+ 
due to an increased entry of Ca across the c e l l membrane or 

2+ 
to Ca release from an i n t r a c e l l u l a r s i t e . 

2+ 
The recently developed fluorescent Ca indicator, fura-

2-acetoxy-methyl ester (fura-2AM) possesses fluorescent 

properties more appropriate f o r i n t r a c e l l u l a r studies. This 
2+ 

has increased the precision of the measurement of Ca by 
reducing the e f f e c t s of instrument d r i f t , and more importantly 

2+ 
has permitted the measurement of Ca without determining the 

i n t r a c e l l u l a r concentration of the dye. Moreover, because of 

the greater fluorescence i n t e n s i t y , the i n t r a c e l l u l a r 

concentration of the dye can be reduced thus avoiding a calcium 
2+ 

buffering e f f e c t . The s e l e c t i v i t y of fura-2 for Ca has also 

been s l i g h t l y improved (Grynkiewicz et a l . , 1985). 
2+ . 

Using fura-2, the present study examined: (1) the [Ca ] i 
l e v e l i n individual c e l l s i n primary cultures of dispersed 

2+ 
granulosa c e l l s ; (2) the actions of LHRH on [Ca ] i and (3) the 

contributions of i n t r a c e l l u l a r and e x t r a c e l l u l a r source(s) of 
2+ 2+ . Ca i n the LHRH-mduced [Ca ] i changes. 
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Preparation of animals and granulosa c e l l s 

Animals and granulosa c e l l s were prepared as described 

i n the Chapter 2. 
5 

Granulosa c e l l s (10 cells/ml) were plated onto 18 mm 

diameter uncoated glass coverslips i n 6-well culture dish and 

incubated i n MEM containing 5% FBS. A f t e r 2 to 3 days of 

incubation at 37 °C i n an atmosphere of 5% C0 2 i n a i r , c e l l s 

were loaded with fura-2AM (Molecular Probes Inc., Eugene, OR), 

as described previously (Grynkiewicz et a l . , 1985). 

Preparation and loading of the fura-2AM i n d i c a t o r 

Fura-2AM was obtained i n 1 mg quantities. The t o t a l 

amount was dissolved i n 1 ml of chloroform and 50 jal aliquots 

were pipetted into 20 small p l a s t i c ampules. These ampoules 

were placed i n a dessicator, and vacuum-dried for 3h. The 

dried aliquots were stored at -70°C. 

For each culture used, 1 to 3 ml aliquots of Earl's 

Balanced S a l t Solution (EBSS) for fura-2AM loading were 

pipetted i n t o a p l a s t i c tube. The components of the EBSS were 

as follows: 117 mM NaCl, 1 mM NaH 2P0 4.H 20, 5.6 mM glucose, 10 

mM HEPES, 2 6 mM NaHC03, 5mM KC1, 0.8 mM MgCl 2.6H 20 and 1.8 mM 

CaC1.2H20. Fura-2AM (50 ;ag) was dissolved i n 50 jal of DMSO, to 

produce a stock solution (ImM). EBSS medium was pre-incubated 

at 37 °C i n a 5% C0 2 environment fo r at l e a s t 15 min to 

s t a b i l i z e the pH at 7.4. Fura-2AM was added to EBSS while 
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vigorously a g i t a t i n g the medium on a mixer, producing a 

concentration of 10 juM fura-2AM (10 jul fura-2AM/ml of EBSS) . 

EBSS (1 ml) containing fura-2AM was immediately added into a 6 

well culture dish with another 1 ml of EBSS, and the granulosa 

c e l l culture was placed face-up i n the wel l . Fura-2AM i s 

hydrophobic and therefore penetrates the plasma membrane 

without d i f f i c u l t y . The cultured c e l l s were then incubated 

with fura-2AM for 1 hour to allow the uptake to reach an 

equilibrium. Once inside the c e l l , c y t o s o l i c esterases cleave 

the acetoxymethyl groups from the indicator to release free 

fura-2 which i s impermeable and therefore trapped inside the 

c e l l s . At the end of the fura-2 "loading" incubation, c e l l s 

were rinsed by placing i n a dis h of fresh EBSS (2 ml) f o r a 

further half-hour to wash out excess fura-2AM. 

Fluorescence Measurement 

Individual coverslips were mounted face-down onto a 

laminar flow-through chamber (volume 350 . S i l i c o n e grease 

was used to complete a water-tight seal and the chamber 

inserted into a s t a i n l e s s s t e e l holder and the ent i r e assembly 

mounted onto the stage of a Zeiss Jenalumar microscope equipped 

with epifluorescence detector. The l i g h t souce was a 200 Watt 

mercury arc lamp powered by a DC power supply. The l i g h t was 

f i r s t passed through one of three d i f f e r e n t i a l interference 

f i l t e r s (350, 365 or 380 nm, bandwidths = 10 nm) mounted i n a 

t u r r e t which could be rotated by a computer-controlled stepping 

motor. The l i g h t was then passed through a 410 nm di c h r o i c 
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mirror and a lOOx apochromatic o i l immersion lens with a 

numerical aperture of 1.4 and an adjustable diaphragm to reduce 

the l i g h t i n t e n s i t y . A f i e l d diaphragm i n the l i g h t path p r i o r 

to the d i c h r o i c mirror was used to reduce the area of 

il l u m i n a t i o n to the s i z e of a sing l e granulosa c e l l . A l l 

fluorescent l i g h t passed back through the d i c h r o i c mirror and a 

450 nm band pass f i l t e r to reduce background fluorescence. The 

emitted fluorescence taken at 350 nm (indicator fluorescence 
2+ 

increased maximally with Ca binding) and 380 nm (decreased 
2+ 

with Ca binding) was deflected e i t h e r to the eyepieces or to 

a camera port. Onto the camera port was mounted a 

photomultiplier tube which was used to convert the fluorescence 

into DC voltage. This voltage was then converted to d i g i t a l 

form by an Analogue-II D i g i t a l Converter i n the computer. 

Measurements of fluorescence r a t i o s were corrected for 

background and obtained on a 1.8 or 5 sec time base. The 

measurements were made at room temperature with low chloride 

EBSS (0.8 mM MgS04.2H20, 2.7 mM K 2S0 4, 117 mM Isethionate, 26 

mM NaHC03, 1 mM NaH 2P0 4.H 20, 5.6 mM glucose, 10 mM HEPES and 

1.8 mM CaCL 2.2H 20) constantly flowing at a rate of 4 ml/min 

throughout the experiment. 

C e l l u l a r l o c a t i o n of entrapped fura-2 

Fura-2 was found to be uniformly d i s t r i b u t e d throughout 

the cytosol and nucleus of granulosa c e l l s . The responsiveness 
2+ 

of the fura-2 to changes i n c y t o s o l i c [Ca ] i was confirmed by 

d i r e c t i n j e c t i o n into the laminar flow chamber of 50 ;ul of 5 pM. 
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Br-A23187, a non-fluorescent calcium ionophore (HSC Reseach 

Development Corporation, Toronto, Canada). The c e l l s could be 

used for up to 4 to 5h a f t e r loading with only minimal signs of 

leakage of fura-2. 

Calcu l a t i o n of c y t o s o l i c calcium concentration 

The c y t o s o l i c calcium concentration was calculated using 

the following formula (Grynkiewicz et a l . , 1985) 

[ C a 2 + ] i = kd x fl x R - P W ^ - R 

Where: kd = the equilibrium d i s s o c i a t i o n constant f o r the 

association of f u r a - 2 with c y t o s o l i c free calcium: 

2 2 4 J J M . 

B = r a t i o of the values: the fluorescence i n t e n s i t y at 

380nm with zero [Ca 2 +]/380nm with i n f i n i t e [ C a 2 + ] . 

R = experimentally determined r a t i o of the fluorescence 

in t e n s i t y at 350nm/380nm 

R ^ ^ r a t i o of the values: the fluorescence of in t e n s i t y 
2 + 

at 350nm/380nm with zero [Ca ]. 

R m a x= r a t i o of the values: the fluorescence of in t e n s i t y 

at 350nm/380nm with i n f i n i t e [ C a 2 + ] . 

For the present study, B =10.07; = 0.51; R m a x = 4 . 8 3 

were determined using the same granulosa c e l l cultures. At 
2+ 

lea s t 50 nM [Ca ] i change was considered s i g n i f i c a n t . 

C a l i b r a t i o n of the system 

Each of the two cultures was f i r s t placed i n a measuring 
2+ 2+ chamber with standard EBSS (1.8 mM Ca , 0.8 mM Mg ) and 



[Ca ] i was determined i n 20 to 40 c e l l s i n each culture. This 

was done to assess the health of the culture and to provide a 

control f o r further c a l i b r a t i o n . A f t e r measuring control 

values, one culture was rinsed with EBSS containing 5 mM EGTA 
2+ 

and no Ca . I t was then placed onto a chamber which was 
2+ 

f i l l e d with Ca -free EBSS containing 5 mM EGTA and Br-A23187 
2+ 

(10 uM). [Ca ] i measurements were taken immediately and a f t e r 

15 min. Af t e r the second culture c o v e r s l i p was measured f o r 

control values, the c e l l s were immediately transferred to a 
2 + 

chamber with standard EBSS containing Br-A23187. [Ca ] i 
values were measured immediately (within seconds), as 

2+ 
e x t r a c e l l u l a r Ca quickly entered the c e l l . B, RJn^n and R m a x 

constants were then calculated from the averages of the values 

obtained from these experiments. Reagents 

LHRH was purchased from Sigma. A potent LHRH antagonist, 

Ac-D-Nal ( 2 ) 1 , 4 Cl-D-Phe 2, D-Trp 3, D-Ala 1 0-LHRH, was obtained 

as a g i f t from Dr. M.V. Nekola of Tulane University. Ovine LH 

(oLH-25), ovine FSH (oFSH-16) and pregnant mare's serum 

gonadotropin were obtained from the NIDDK and National Hormone 

and P i t u i t a r y Program (University of Maryland School of 

Medicine). Other chemicals were obtained from Sigma. 
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Rapid and transient e f f e c t s of Br-A23187 on c y t o s o l i c calcium 

A f t e r loading with fura-2, granulosa c e l l s were 

challenged by i n j e c t i o n into the flow through-chamber of the 

calcium ionophore Br-A23187. F i g . 17 shows a representative 

example of the e f f e c t of a 50 ;ul of i n j e c t i o n of Br-A23187. 
2+ 

There was a rapid and transient increase i n [Ca ] i 18 sec 
a f t e r the i n j e c t i o n of Br-A23187 with a peak value of cy t o s o l i c 

2+ 
[Ca ] i approximately 8-10 f o l d above the r e s t i n g l e v e l . This 

time delay was due to the time required f o r the i n j e c t i o n 

volume to flow to the observed c e l l and the r e l a t i v e l y slow 

incorporation of the ionophore into the membrane of the c e l l s . 

LHRH-induced transient increase i n c y t o s o l i c calcium 

Each of the 115 rat granulosa c e l l s from 27 di f f e r e n t 

preparations were treated with LHRH. The average resting 
2+ 

l e v e l of [Ca ] i of these c e l l s was 96.7 ± 2.9 nM. Eighty-six 
c e l l s of the t o t a l 115 responded to LHRH. Table I i l l u s t r a t e s 

2 + 
that the hormone concentration required to increase [Ca ] i was 
i n the range of 10 _ 9M to 10~5M. LHRH at 10 _ 5M increased 

2+ 
[Ca ] i i n a l l of the c e l l s which were s e n s i t i v e to t h i s 

hormone. The c e l l s which did not respond to LHRH were 

se n s i t i v e to the calcium ionophore A23187 or Angiotensin I I . 

F i g . 18 shows a representative example of LHRH-induced 
2+ 

rapid and transient [Ca ] i a l t e r a t i o n i n a single rat 
2+ 

granulosa c e l l . The determinations of [Ca ] i were made at 1.8 
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Fig. 17. Br-A23187 induced rapid and transient increase i n 
c y t o s o l i c calcium. Coverslips with fura-2 loaded granulosa 
c e l l s were mounted on a s p e c i a l l y designed laminar flow-through 
chamber at room temperature. At the time (0 time) indicated by 
the symbol (A) , 50 jul of A23187 (5x10 M) was injected. The 
r e s u l t i n g images were measured by fluoroscence microscope 
microcomputer system at a 5 sec base (12 recording per min). 
Similar r e s u l t s were obtained from 9 i n d i v i d u a l c e l l s i n 6 
separate experiments. 
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F i g . 18. LHRH induced rapid and transient increase i n 
c y t o s o l i c calcium. At the time (0 time) indicated by the 
symbol (A) , 25 j i l of LHRH was injected. The r e s u l t i n g images 
were measured at a 1.8 sec base (33 recording per min). The 
other experimental conditions were the same as those described 
i n the legend of Fig . 17. Similar r e s u l t s were obtained from 
21 i n d i v i d u a l c e l l s of 8 experiments. 
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sec i n t e r v a l s . The average latency of the i n t r a c e l l u l a r 

calcium response a f t e r the i n j e c t i o n of LHRH was 21 ± 0.09 sec 

(n=70) and the average peak value induced by d i f f e r e n t doses of 

LHRH i s shown i n Table I I . The amplitudes of the [ C a 2 + ] i 

increase induced by the d i f f e r e n t doses of LHRH were not 

s i g n i f i c a n t l y d i f f e r e n t from each other. Within 84 ± 3 sec 
2+ 

(n=64) af t e r LHRH stimulation, [Ca ] i returned to the resting 

l e v e l . 

The blockade of LHRH-induced c y t o s o l i c calcium a l t e r a t i o n by  

LHRH antagonist 

To determine whether or not a receptor-mediated mechanism 
2 + 

was involved i n the action of LHRH on [Ca ] i , the e f f e c t of a 

potent LHRH antagonist was examined (Fig. 19) . In each of 10 

c e l l s , an i n i t i a l i n j e c t i o n of 25 j i l of 10~6M LHRH resulted i n 
2+ . 

a rapid and transient increase of [Ca ] i . LHRH antagonist (25 
—5 

;al of a 10 M solution) was then injected into the c e l l 
chamber. The LHRH antagonist by i t s e l f had no d i r e c t e f f e c t on 

2+ 
the resting [Ca ] i . On the other hand, two subsequent 
injec t i o n s of LHRH, at 2 and 4.5 min following the 
administration of the LHRH antagonist, f a i l e d to increase 

2+ 
[Ca ] i . These c e l l s nonetheless s t i l l responded to Br-A23187 

following the treatments with LHRH and LHRH antagonist. 
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Table I. lowest hormone concentrations required to i n i t i a t e a 
change i n c y t o s o l i c calcium i n granulosa c e l l s . 

LHRH C e l l number 

10"9M. 3 

10~8M 3 

10 _ 7M 21 

10 - 6M 37 

10~5M 22 

No response 29 

Total 115 

Table I I . Average peak value of [Ca ] i induced by d i f f e r e n t 
doses of LHRH. 

LHRH fCa.2+M Change (fold) 

10 _ 7M 4.97 ± 0.69 (n=21) 

10~6M 4.54 ± 0.32 (n=37) 

10"5M 4.51 ± 0.55 (n=22) 



Existence of a subpopulation of granulosa c e l l s : rca |1 

changes induced by d i f f e r e n t hormones 

As i l l u s t r a t e d i n F i g . 20 (panel A), i n j e c t i o n of 10~6M 
2 + 

LHRH caused a rapid and transient increase i n [Ca ] i , whereas 

two i n j e c t i o n s of Ang II at 10~5M and 10"4M, respectively, did 
2 + 

not a f f e c t the r e s t i n g l e v e l of [Ca ] i i n the same c e l l . 
2+ 

However, LHRH-induced [Ca ] i a l t e r a t i o n was not influenced by 
2+ 

Ang II and an increase i n [Ca ] i induced by LHRH was observed 

a f t e r Ang I I . In contract, the d i f f e r e n t r e s u l t was observed 

from d i f f e r e n t i n d i v i d u a l granulosa c e l l s . F i g . 20 (panel B) 

shows a representative example of Ang II (10~5M) induced 
2+ 

increase i n [Ca ] i . However, the same c e l l d i d not respond 

to LHRH (10~ 5M). 
2+ 

Desensitization of fCa ] i response induced bv continuous 

exposure to LHRH 

The upper panel of F i g . 21 shows a representative example 

of the c y t o s o l i c calcium increase stimulated by 3 separate 

injections of 25 jul of 10~6M LHRH. The i n t e r v a l between the 
2+ 

inject i o n s was 5 min. The increase i n [Ca ] i induced by these 
consecutive i n j e c t i o n s of LHRH reached s i m i l a r maximum 
amplitudes. This pattern was seen i n each of 14 c e l l s , a l b e i t 

2+ 
the peak [Ca ] i responses of the c e l l s to the same dose of 
LHRH varied between 250 to 600 nM. The lower panel of Fig. 21 

2+ 
i l l u s t r a t e s another representative example of [Ca ] i 

alt e r a t i o n s induced by repeated doses of 25 )il of 10~6M LHRH 

given at i n t e r v a l s of les s than 2 min. A gradual decrease i n 
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F i g . 19. The blockade of LHRH-induced c y t o s o l i c calcium 
a l t e r a t i o n by LHRH antagonist. The experimental conditions 
were the same as those described under the legend of Fig . 17, 
but with 25 jul i n j e c t i o n s of LHRH, LHRH antagonist (LHRH anta), 
or Br-A23187 at the times indicated by (•) . Similar results 
were obtained from 10 i n d i v i d u a l c e l l s of 10 experiments. 
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F i g . 2 0 • 2 + Existence of subpopulations of granulosa 
c e l l s : [Ca ] i changes induced by LHRH and Ang I I . Upper panel 
and lower panel show the representative examples of the c e l l s 
responded to either LHRH or Ang I I , respectively. ( A ) 
indicates the i n j e c t i o n of LHRH or Ang I I . Similar results 
were obtained from 11 in d i v i d u a l c e l l s i n 4 d i f f e r e n t 
experiments. 
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Fig. 21. Increase i n [Ca ] i induced by separate i n j e c t i o n s of 
LHRH to two in d i v i d u a l granulosa c e l l s . The upper panel shows 
the c y t o s o l i c calcium increase stimulated by 3 separate 
i n j e c t i o n s of LHRH. The. lower panel shows a gradual decrease 
i n the amplitude of [Ca ] i induced by LHRH at in t e r v a l s of 
less than 2 min. Similar r e s u l t s were obtained from 14 
i n d i v i d u a l c e l l s i n 5 separate expriments. 



the amplitude of [Ca ] i could be seen. A s t r i k i n g example of 

desen s i t i z a t i o n induced by LHRH i s shown i n Fi g . 22. In t h i s 

experiment a granulosa c e l l was perifused continuously with 

10 _ 7M LHRH f o r 10 min. The pe r i f u s i o n of LHRH caused a 
2+ 2+ transient increase i n [Ca ] i which was not unlike the [Ca ] i 

change induced by a pulse i n j e c t i o n of LHRH. However, the 
2+ 

increase i n [Ca ] i returned to the resting l e v e l despite the 
continued presence of LHRH. Furthermore, a pulse i n j e c t i o n of 

25 ; i l of 10"5M LHRH 5 min a f t e r the i n i t i a t i o n of the LHRH 
2+ 

infusion period f a i l e d to increase [Ca ] i . In contrast, 

following the cessation of the infusion and a f t e r a wash period 

of 8 min, the same i n j e c t i o n of 10 M LHRH resulted i n a 
2+ 

transient increase i n [Ca ] i , a l b e i t to a lesser amplitude 

than the i n i t i a l e f f e c t of 10"7M LHRH. 
2+ 

E f f e c t of d i f f e r e n t doses of LHRH on \Ca. J_i 
2+ 

Fig. 23 shows the change of [Ca ] i induced by d i f f e r e n t 

doses of LHRH i n a single granulosa c e l l . The c e l l was treated 

with sequential inj e c t i o n s of LHRH from 10~8M to 10""4M. The 

in t e r v a l between the in j e c t i o n s was at least 10 min to avoid 

any possible d e s e n s i t i z a t i o n . No s i g n i f i c a n t difference i n 
2 + 

peak le v e l s of [Ca ] i was observed following the i n j e c t i o n of 

d i f f e r e n t doses of LHRH i n single c e l l s , or when the response 

of d i f f e r e n t c e l l s was analyzed together (Table I I ) . 



86 

Fi g . 22. Desensitization of [Ca ] i response induced _by 
continuous exposure to LHRH. F i r s t ( A ) : LHRH (10~7M) 
pe r i f u s i o n for 10 min; second and t h i r d (A): 25 jal LHRH (10 M) 
in j e c t i o n s . Similar r e s u l t s were obtained from 6 in d i v i d u a l 
c e l l s of 4 experiments. 
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F i g . 23. Al t e r a t i o n s i n [Ca ] i induced by d i f f e r e n t doses of 
LHRH. The c e l l w a s treated with sequential i n j e c t i o n s of LHRH 
from 10~ to 10~ M and no s i g n i f i c a n t difference i n peak l e v e l 
was observed. Similar r e s u l t s were obtained from 11 individual 
c e l l s i n 4 separate experiments. (A) indicates the i n j e c t i o n 
Of LHRH. 
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Influence of Ca free medium on \Ca ] i a l t e r a t i o n 
2+ 2+ To determine the influence of Ca free medium on [Ca ] i 

2 + 
a l t e r a t i o n , granulosa c e l l s were perifused with Ca free EBSS 

2+ 
following the rapid and transient increase i n [Ca ] i induced 

—6 2 + 
by LHRH (10 M) i n normal Ca EBSS. F i f t e e n minutes a f t e r the 

2+ 
Ca free EBSS pe r i f u s i o n , two sequential i n j e c t i o n s of LHRH —6 2+ 2+ (10 M dissolved i n Ca free EBSS) were made and [Ca ] i did 
not increase i n response to LHRH. Interestingly, granulosa 

c e l l s responded to LHRH (10~6M) normally again a f t e r 7 min of 

washing with normal EBSS. F i g 24. shows a representative 

example of 14 c e l l s tested i n the s i m i l a r condition. The 

washing time required to e s t a b l i s h a completely non-responsive 
2+ 

condition i n Ca free EBSS varied from 8 min to 20 min i n the 

d i f f e r e n t granulosa c e l l s studied. 
2+ 2+ Role of i n t r a c e l l u l a r Ca i n LHRH-induced fCa ] i alt e r n a t i o n 

The source(s) of calcium which contributed to the 
2+ 

increase of [Ca ] i induced by LHRH was further examined. As 
i l l u s t r a t e d i n upper panel of F i g . 25, a f t e r the i n i t i a l 

2+ —6 
increase of [Ca ] i induced by 10 M LHRH i n normal EBSS, 

2+ 
granulosa c e l l s were perifused with Ca free EBSS medium. 

2+ 
Aft e r washing with Ca free EBSS for 8 min, the i n j e c t i o n of 

LHRH (10~6M) resulted i n a rapid and transient increase of 
2 + 

[Ca ] i but with a s i g n i f i c a n t l y decreased amplitude (about 35% 
2+ 

of the amplitude of [Ca ] i increase i n normal EBSS medium). 
2+ 

In addition, a notable decrease of basal [Ca ] i was also 
2+ 

observed a f t e r the f i r s t i n j e c t i o n of LHRH i n Ca free EBSS, 
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Fi g . 24. Depletion of i n t r a c e l l u l a r Ca_ + i n calcium free 
medium. Af t e r the i n i t i a l increase of [Ca ] i induced Jay LHRH 
i n normal medium, the c e l l s were per i f used with Ca free 
medium. F i f t e e n minutes a f t e r the Ca free medium perifusion, 
[Ca ] i d i d not increase i n response to LHRH. The c e l l 
responded to LHRH again a f t e r washing with normal medium. 
Similar r e s u l t s were obtained from 9 i n d i v i d u a l c e l l s i n 5 
experiments. 0 time indicates the entry of calcium free 
medium. 
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F i g . 25. LHRH accelerated [Ca ] i depletion i n Ca 
free medium. The f i r s t (•) indicates the i n j e c t i o n of LHRH i n 
normal medium;_^the second and t h i r d (A) indicate the i n j e c t i o n s 
of LHRH i n Ca free medium (upper and lower panel). Similar 
r e s u l t s were obtained from 6 i n d i v i d u a l c e l l s i n 4 experiments. 
0 time indicates the entry of calcium free medium. 



2+ 9 1 

and [Ca ] i d i d not subsequently respond to the i n j e c t i o n of 

LHRH at 13 min. 

When LHRH (10~6M) was injected at 13 min instead of 8 min 
2+ 

a f t e r washing with Ca -free EBSS, a transient increase of 
2 + 

[Ca ] i was observed, a l b e i t with a smaller amplitude than that 
2+ 

induced by LHRH at 8 min i n Ca free EBSS medium (Fig. 25). 

2+ 

Role of e x t r a c e l l u l a r Ca i n LHRH-induced a l t e r a t i o n of 

X C a 2 + U 
2+ 

Fi g . 26 shows the increases i n [Ca ] i i n a single 

granulosa c e l l following the i n j e c t i o n of LHRH at 0 time, 
2+ 

followed by continuous washing the c e l l with Ca free EBSS. 

Af t e r entry of C a 2 + free EBSS medium, LHRH-induced [ C a 2 + ] i 

change was f i r s t decreased and eventually completely abolished. 

Subsequently, four separate i n j e c t i o n s of LHRH, which were 

dissolved i n EBSS medium with 2 mM, 5 mM, 10 mM and 20 mM 
2+ 

calcium, d i d not r e s u l t i n the change of [Ca ] i . LHRH caused 
2+ 

the increase of [Ca ] i again i n the same c e l l following the 
p e r i f u s i o n of normal EBSS. 
Comparison of gonadotropins with LHRH on TCa ] i a l t e r a t i o n 

F i g . 27 i l l u s t r a t e s that when a single granulosa c e l l was 

stimulated by two separate 25 pi i n j e c t i o n s of 50 pg FSH, the 

[ C a 2 + ] i was not altered. The i n j e c t i o n 25 pi of LHRH (10~6M) 
2+ 

following FSH resulted i n the expected increase i n [Ca ] i . 

Similar r e s u l t s were obtained with 8 i n d i v i d u a l c e l l s . In 

addition, as shown i n F i g . 28, a granulosa c e l l which responded 
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Fig. 26, Role of e x t r a c e l l u l a r Ca i n LHRH-induced a l t e r a t i o n 
of [Ca ] i . LHRH was 10 M for a l l the treatments. F i r s t (A): 
LHRH i n j e c t i o n i n normal medium; second and t h i r d ( A ) : LHRH 
inject i o n s i n calcium free medium; fourth to seventh (A) : LHRH 
plus d i f f e r e n t concentrations of Ca injec t i o n s i n calcium 
free medium; eighth ( A ) : LHRH i n j e c t i o n i n normal medium. 
Similar r e s u l t s were obtained from 4 c e l l s of 4 experiments. 
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F i g . 27. Comparison of FSH with LHRH on [ C a ^ j i 
a l t e r a t i o n . LHRH resulted i n rapid and transient [Ca ] i 
a l t e r a t i o n , whereas FSH had no e f f e c t . F i r s t and t h i r d ( ): 25 
u l of i n j e c t i o n of FSH; second and fourth ( ) : LHRH. Similar 
r e s u l t s were obtained from 8 i n d i v i d u a l c e l l s i n 5 experiments. 
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Fig . 28. Comparison of LH with LHRH on [Ca ] i 
a l t e r a t i o n . The c e l l which responded to LHRH d i d not respond 
to LH. Sim i l a r r e s u l t s were obtained from 8 i n d i v i d u a l c e l l s 
i n 4 experiments. 



to LHRH (10 M) did not respond to 10 ug of LH, nor d i d the two 

separate i n j e c t i o n s of LH have any influence on the subsequent 
2+ 

LHRH-induced increase i n [Ca ] i . Identical r e s u l t s were seen 

i n 7 other c e l l s . 

IV. Discussion 

The calcium-sensitive fluorescent indicator, fura-2 has 
2 + 

been used to study the e f f e c t of LHRH on the [Ca ] i of 
in d i v i d u a l r a t granulosa c e l l s . LHRH caused a rapid and 

2+ 
transient increase i n [Ca ] i i n the majority of c e l l s tested 

(Fig. 17). Since an LHRH antagonist completely blocked the 

[ C a 2 + ] i response of the c e l l s to LHRH (Fig. 19), i t could be 
2+ 

concluded that the e f f e c t s of LHRH on [Ca ] i are mediated by 

i t s s p e c i f i c receptors. 

However, the concentrations of LHRH required to produce a 
2+ . -9 -5 [Ca ] i response varied considerably (10 M to 10 M) from c e l l 

to c e l l (Table I) . This i s not l i k e l y to have resulted from 

the design of the laminar flow-through chamber. I t has been 

estimated that each dose of LHRH would only be d i l u t e d by no 

more than a factor of 2-5, depending upon the flow rate used 

and the p o s i t i o n of the c e l l r e l a t i v e to the input of the 

chamber. Therefore, the varied concentrations of LHRH required 

by the in d i v i d u a l granulosa c e l l s may be due to the d i f f e r e n t 

threshold of the c e l l s (see following discussion). 

Most c e l l s responded to LHRH i n the range of 10 M to 

10~5M, but for any single c e l l there was no c l e a r dose-related 

response to LHRH (Fig. 22; Table I I ) . The lowest dose of LHRH 



which resulted i n an increase i n [Ca ] i appeared to y i e l d a 

maximum response since higher LHRH concentrations given to the 
2+ 

same c e l l d i d not r e s u l t i n additional increases i n [Ca ] i . 

Thus, singl e granulosa c e l l s seem to respond i n an " a l l or 

none" fashion. Previous studies have, however, shown that LHRH 

and i t s agonists do produce dose-dependent stimulatory and 

i n h i b i t o r y e f f e c t on progesterone production ( H i l l e n s j o et a l . , 

1982; Knecht et a l . , 1985;). LHRH-induced arachidonic acid 

l i b e r a t i o n from the c e l l membranes (Minegishi and Leung, 1985) 

and LHRH-stimulated i n o s i t o l phosphate formation i n rat 

granulosa c e l l s are also dose-dependent (Ma and Leung, 1985; 

Davis et a l . , 1987). In addition, LH-induced [ C a 2 + ] i 

a l t e r a t i o n i n bovine l u t e a l c e l l s has been shown to be dose-

dependent as well (Davis et a l . , 1987). I t i s important to 

note, however, that i n a l l these e a r l i e r studies populations of 

c e l l s were used rather than the i n d i v i d u a l c e l l s which were 

used i n the present study. In t h i s regard, i t can be 

speculated that i n d i v i d u a l granulosa c e l l s respond i n an a l l or 

none fashion to LHRH, but that the threshold concentrations of 

LHRH required to stimulate d i f f e r e n t c e l l s may d i f f e r . Hence 

when a mixed population of such c e l l s i s stimulated with LHRH, 

a dose response r e l a t i o n w i l l be observed as progressively 

more c e l l s "turn on". These data support the hypothesis of a 

quantal ( i . e . all-or-none) response of hormonal control 

mechanism, since i t has been suggested that a l l c e l l s of a 

given type may not be equal i n terms of hormonal responsiveness 

(Moyle et a l . , 1985). 
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The differences i n c e l l - t o - c e l l responsiveness were found 

to be randomly d i s t r i b u t e d i n t h i s study. The d i f f e r e n t 

minimum concentrations of LHRH required f o r i n i t i a t i n g the 
2+ 

c y t o s o l i c [Ca ] i change may i n part be re l a t e d to the 

d i f f e r e n t functional states of the LHRH receptor i n these 

c e l l s . 

While some i n d i v i d u a l granulosa c e l l s responded to LHRH, 

others responded to d i f f e r e n t hormones such as Ang II (Fig. 

20) . Previous studies have shown that subpopulations of 

granulosa c e l l s may e x i s t with respect to d i f f e r e n t i a l 

s e n s i t i v i t y to FSH and vasoactive i n t e s t i n a l peptide (Kasson et 

a l . , 1985). In addition, PRL receptors have been shown to be 

more abundant i n antral granulosa c e l l s than i n mural granulosa 

c e l l s (Dunaif et at., 1982). The use of fura-2 

microspectrofluorimetry techniques f a c i l i t a t e d the 

inve s t i g a t i o n on the subpopulations of granulosa c e l l s by 

allowing the study of i n d i v i d u a l granulosa c e l l s . The present 

finding that d i f f e r e n t granulosa c e l l s responded to d i f f e r e n t 

hormones may indicate that there are d i f f e r e n t subpopulations 

of granulosa c e l l s which play d i f f e r e n t r o l e s i n response to 

d i f f e r e n t regulator-mediated ovarian functions. 

One i n t e r e s t i n g observation made i n t h i s study was that 

with the decreasing time i n t e r v a l s between i n d i v i d u a l LHRH 

in j e c t i o n s , the magnitude of the LHRH-stimulated increase in 
2+ 

[Ca ] i declined (Fig. 21). Furthermore, continuous exposure 
to a r e l a t i v e l y low concentration of LHRH (10 M) resulted in 

—5 
desens i t i z a t i o n of granulosa c e l l s to higher (10 M) doses of 
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LHRH (Fig. 22). This may r e f l e c t the well-known down-

regulation phenomenon of LHRH surface receptors, which may be 

due to massive i n t e r n a l i z a t i o n of the LHRH-receptor complex 

into endocytic v e s i c l e s (Hazum and Nimrod, 1982) and subsequent 

degradation of t h i s complex. Peptide hormones, i . e i n s u l i n , 

LHRH (on gonadotrophes) , and hCG, have been shown to induce 

m o t i l i t y , aggregation, and i n t e r n a l i z a t i o n of t h e i r receptors 

(Terris et a l . , 1979; Amsterdam et a l . , 1979; Hopkins and 

Gregory, 1977). In the present study, the decrease i n receptor 

numbers may protect against intense stimulation by 

inappropriately high LHRH l e v e l s . On the other hand, t h i s 

desensitization may be due to a receptor-mediated mechanism 

that i s not r e l a t e d to the i n t e r n a l i z a t i o n of receptors. As i t 

has been shown that only a f t e r 2 h of exposure, a s i g n i f i c a n t 

proportion (10%) of the labeled hCG can be found i n lysosome-

l i k e structures of r a t granulosa c e l l s , i t i s i n f e r r e d that 

i n t e r n a l i z a t i o n i s i n i t i a t e d within t h i s time (Amsterdam et 

a l . , 1979). Moreover, i n the present study, i t was observed 

that after washing with fresh medium, the c e l l s regained t h e i r 
2+ 

responsiveness to LHRH i n terms of [Ca ] i (Fig. 22). The 

transient and r e v e r s i b l e nature of t h i s d e s e n s i t i z a t i o n process 

may be more compatible with alt e r n a t i v e mechanisms of 

desensitization, possibly at the l e v e l of s i g n a l transduction. 

I t i s i n t e r e s t i n g to note that, whatever the mechanism of t h i s 

desensitization, fluctuations i n LHRH l e v e l s may be more 
2+ 

e f f e c t i v e i n stimulating a [Ca ] i response i n granulosa c e l l s 

than a sustained elevation i n LHRH concentration. 
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Recent studies have c l e a r l y shown that LHRH stimulates 

the formation of IP 3 i n ovarian granulosa c e l l s (Ma and Leung, 

1985; Davis et a l . , 1986). I P 3 has been proposed as a mediator 
2+ 

fo r i n t r a c e l l u l a r Ca mob i l i z a t i o n (Nishizuka et a l . , 1984). 
Phosphoinositide turnover i s also believed to be involved i n 

2+ 
the regulation of Ca entry from the external environment 
(Berridge, 1987) . M i c r o i n j e c t i o n of IP 3 into some c e l l s 

2+ 
r e s u l t s i n the [Ca ] i mob i l i z a t i o n and mimics calcium-

dependent processes (Oron et a l . , 1985). Based on above 
2+ 

observations, i t appears that the [Ca ] i changes stimulated by 

LHRH might be d i r e c t l y c o r r e l a t e d to IP 3 formation. This 

hypothesis i s supported by evidence obtained from the present 

and previous studies. LHRH antagonist can block LHRH-induced 
2+ 

c e l l u l a r responses including both I P 3 formation and [Ca ] i 
mobilization (Ma and Leung, 1985; F i g . 19). Similar temporal 

2+ 
relat i o n s h i p s between LHRH-induced I P 3 formation and [Ca ] i 

mobilization has been found by Davis et a l . (1986). 

Although LHRH resulted i n the rapid and transient 
2+ 2+ increase of [Ca ] i , the precise source (s) of Ca which 

contributed to the c y t o s o l i c calcium a l t e r a t i o n has to be 
resolved. In the present studies, the LHRH-induced changes i n 

2+ 
[Ca ] i were completely abolished by washing with calcium free 
medium between 8 min to 20 min i n 14 c e l l s tested. Following 

2+ 
re-perifusion with medium containing normal Ca , the LHRH-

induced increase i n [ C a 2 + ] i was again observed (Fig. 24). When 

the i n j e c t i o n of LHRH was performed several minutes a f t e r the 

entry of C a 2 + free medium int o the chamber, a s i g n i f i c a n t 
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decrease i n [Ca ] i amplitude was observed as compared to the 
2+ 

peak l e v e l of [Ca ] i i n the normal medium (Fig. 25). This 
decrease can be due to eithe r the depletion of i n t r a c e l l u l a r 
2+ 2+ Ca or the lack of Ca i n the e x t r a c e l l u l a r f l u i d . Based on 

the above r e s u l t s , i t can be estimated that the i n t r a c e l l u l a r 
2+ 

Ca pool i s depleted by passive d i f f u s i o n when the external 
2+ 

medium reaches a "Ca free" condition (approx. 8 min) . 
2+ 

However, the complete depletion of [Ca ] i was a gradual 
2+ 

process, and a smaller increase of [Ca ] i could s t i l l be 
2+ 

observed i n e x t r a c e l l u l a r Ca free condition, suggesting that 
2+ . . . 

LHRH does induce [Ca ] l mobilization from an i n t r a c e l l u l a r 
2+ 

pool (Fig. 25). Ca which i s mobilized may e a s i l y d i f f u s e 
into the e x t r a c e l l u l a r solution. Therefore, with time the 

2+ 
i n t r a c e l l u l a r pool of Ca would be exhausted, the c e l l would 
eventually lose responsiveness to LHRH. The LHRH-induced 

2+ 2+ 
depletion of i n t r a c e l l u l a r Ca i n Ca free medium (Fig. 25) 

2 + 
supports the concept that LHRH-induced increase of [Ca ] i i s , 
at l e a s t p a r t i a l l y , from i n t r a c e l l u l a r stores. The marked 

2+ 
decline of the basal [Ca ] i a f t e r the i n j e c t i o n of LHRH i n 
2+ 

Ca free medium further strengthens t h i s notion (Fig. 25). 
Since agonist-induced I P 3 i s believed to be responsible 

2+ 
for i n t r a c e l l u l a r Ca release, many studies have been made to 
elucidate which i n t r a c e l l u l a r pool i s responsible for the 

2+ 
[Ca ] i mobilization. The s i t e at which I P 3 acts has been 

2+ 
shown to be a ATP-dependent non-mitochondrial Ca pool, 

probably ER. The experimental data obtained from previous 

studies have indicated that normal responses to IP 3 are 
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observed at free Ca concentrations below the threshold for 

mitochondrial uptake or i n the presence of mitochondrial 

i n h i b i t o r s (Burgess et a l . , 1984). Whereas IP 3 releases C a 2 + 

when added d i r e c t l y to microsomes obtained from a va r i e t y of 
2+ 

tiss u e s , i t f a i l s to a l t e r Ca release from mitochondrial 

f r a c t i o n s (Streb et a l . , 1983; Prentki et a l . , 1984). Although 

s u b c e l l u l a r f r a c t i o n a t i o n studies have attributed a large 
2+ 

portion of i n t r a c e l l u l a r Ca pool to mitochondria (Claret-
Berthon et a l . , 1977), recent studies have demonstrated far 

2+ 
less Ca i n mitochondria than i n ER (Reinhart et a l . , 1984; 
Shears and Kirk, 1984). Electron probe X-ray microanalysis 
study of r a p i d l y frozen l i v e r also indicates that only 5% of 

2+ 
c e l l Ca i s present i n mitochondria, whereas 14-23% i s within 
rough ER (Somlyo et a l . , 1985). The present r e s u l t s indicate 

2+ 
that the i n t r a c e l l u l a r Ca pools are probably responsible for 

2+ 
LHRH-induced increase of. [Ca ] i . The r e l a t i v e importance of 

mitochondria and ER i n granulosa c e l l c y t o s o l i c calcium 

regulation remains uncertain. 
2 + 

The possible contribution of e x t r a c e l l u l a r Ca to LHRH-
2+ 

induced increase of [Ca ] i was next examined. LHRH dissolved 
2+ 

i n high concentration of Ca (2 mM to 20 mM) was given to 
2+ 

granulosa c e l l s being perifused with Ca free medium and i n 2+ 2+ which the i n t r a c e l l u l a r Ca had been depleted. LHRH plus Ca 
2+ 

f a i l e d to evoke the increase of [Ca ] i i n the granulosa c e l l , 
2+ 

suggesting that LHRH-induced [Ca ] i a l t e r a t i o n may not be due 
2+ 

to the immediate Ca i n f l u x across the c e l l membrane (Fig. 

26). A l t e r n a t i v e l y , these r e s u l t s could suggest that even when 



2+ l f& the i n t r a c e l l u l a r Ca pools are empty, the e x t r a c e l l u l a r Ca 

cannot quickly enter the cytosol. This i s despite the 

existence of a gradient p o t e n t i a l and the presence of LHRH to 
2+ 

ensure the opening of the Ca channels on the c e l l membrane. 
2+ 

An early suggestion was that the Ca content of i n t r a c e l l u l a r 
2+ 

pools regulated the entry of Ca from the e x t r a c e l l u l a r f l u i d ; 
2+ 

when the pools were empty, i t was open to e x t r a c e l l u l a r Ca 
entry, and when the pools were f i l l e d , i t was closed to the 

2+ 
e x t r a c e l l u l a r Ca (Aub et a l . , 1982; Putney, 1986). Two 

2+ 
phases of Ca mobilization have been demonstrated i n the 
previous studies. In the f i r s t phase, a release of 

2+ 
i n t r a c e l l u l a r Ca i n response to agonists, and i n the second 

2+ 
phase, entry of Ca across the plasma membrane following the 
f i r s t phase (Kojima et a l . , 1985 Reynolds and Dubyak., 1985). 

2 + 
In p i t u i t a r y c e l l s , LHRH elevates [Ca ] i p a r t l y by releasing 

2+ 
Ca from i n t r a c e l l u l a r pools and par t l y by t r i g g e r i n g i n f l u x 
across the c e l l membrane. I t has been shown that the elevation 

2+ 
i n [Ca ] i induced by LHRH i s composed of a rapid f i r s t phase 

2+ 
followed by a prolonged increase i n [Ca ] i i n the second 

phase (Clapper and Conn, 1985; Limor et a l . , 1987). 

Furthermore, Naor et a l . (1988) have recently demonstrated that 
2 + 

LHRH induces a rapid mobilization of i n t r a c e l l u l a r Ca pool, 
2+ 

and a second component of Ca i n f l u x v i a voltage s e n s i t i v e and 
2+ 

in s e n s i t i v e changes contributes to further elevation of [Ca ] i 
2+ 

i n p i t u i t a r y c e l l s . Although the increase i n [Ca ] i induced 
by LHRH i n individual granulosa c e l l s did not obviously show 

2+ 
two phases, that e x t r a c e l l u l a r Ca might also be involved i n 
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LHRH-induced [Ca ] i changes, with an i n i t i a l i n t r a c e l l u l a r 
2+ 2+ Ca mobilization t r i g g e r i n g the i n f l u x of Ca , cannot be 

excluded. 

In addition, a f t e r washing the c e l l s with medium 
2+ 

containing normal Ca , granulosa c e l l s regained t h e i r response 
to LHRH (Fig. 24) , which implied that a continued p o s i t i v e 

2+ 
d i f f u s i o n of Ca from e x t r a c e l l u l a r f l u i d was necessary to 
r e f i l l i n t r a c e l l u l a r pools without a rapid change i n c y t o s o l i c 
2+ 

Ca . Although i t has been suggested that phosphoinositide 
2+ 

turnover may be involved i n the regulation of Ca entry from 
e x t r a c e l l u l a r f l u i d (Berridge 1984), experimental evidence 

2+ 
indicates that eit h e r I P 3 or PKC regulates Ca i n f l u x by a 

d i r e c t action at the plasma membrane (Streb et a l . , 1984; 

Cooper et a l . , 1985; Garrison et a l . , 1984). I t appears that a 

decrease i n the PIP 2 content of the c e l l membrane may i n h i b i t 
2+ 2 + the Ca -ATPase and therefore cause an increase i n [Ca ] i 

(Berridge, 1982). This, however, i s not a s u f f i c i e n t 
2+ . 

explanation f o r the rapid changes of [Ca ] i induced by LHRH. 
. 2 + The e f f e c t s of gonadotropins on granulosa c e l l [Ca ] i 

were also investigated i n the present study. Unlike LHRH, 

neither FSH nor LH, even at very high doses (10 ug of LH or 

50 ug of FSH), had any e f f e c t on [ C a 2 + ] i (Fig. 27; 28). In 

is o l a t e d bovine l u t e a l c e l l s , i t has been reported that LH 

provokes a rapid increase i n the accumulation of IP 3 and 
2+ 

increase i n [Ca ] i (Davis et a l . , 1987). Treatment with LH, 

f o r s k o l i n and cAMP may also cause Ca e f f l u x i n avian 

granulosa c e l l s (Asem et a l . , 1987). In addition, exogenous 
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cAMP and f o r s k o l i n have been shown to increase [Ca ] i i n 
Leydig c e l l s (Sallivan and Cooke, 1986). I t i s possible that 

2+ 
the action of gonadotropins on [Ca ] i may be both species and 

c e l l s p e c i f i c . The present and previous studies demonstrate 

that, i n r a t granulosa c e l l s , administration of LHRH leads to a 

rapid breakdown of i n o s i t o l l i p i d s and an increase i n [ C a 2 + ] i , 

whereas gonadotropins consistently have no e f f e c t on either 

parameter (Ma and Leung, 1985). 
2+ 

A study of LHRH e f f e c t on [Ca ] i i n p i t u i t a r y c e l l s has 
2+ 

shown that the increase i n [Ca ] i a f t e r LHRH was added to 

suspensions of gonadotroph-enriched p i t u i t a r y c e l l s could be 

correlated to the LH release (Naor et a l . , 1988). This 
2+ 

suggests that [Ca ] i plays an intermediary r o l e when LHRH 
stimulates LH release from the p i t u i t a r y . In the ovary, . . . . 2+ . si m i l a r increases i n [Ca ] i may serve to modulate the 
stimulatory or i n h i b i t o r y e f f e c t s of LHRH on P 4 and PGE 2 

accumulation (see Chapter 4). 

In summary, the present study strongly indicates that 
2 + 

LHRH causes a rapid and transient increase i n c y t o s o l i c [Ca ] i 
i n i n d i v i d u a l r a t granulosa c e l l s . The action of LHRH on the 

2+ 
cy t o s o l i c [Ca ] i change i s mediated by i t s s p e c i f i c receptors. 

By investigating i n d i v i d u a l granulosa c e l l s , i t i s possible to 

demonstrate that d i f f e r e n t granulosa c e l l s require d i f f e r e n t 

concentrations of LHRH to i n i t i a t e what appears to be an " a l l 

or none" response and that d i f f e r e n t subpopulations of 

granulosa c e l l s may also e x i s t . Another i n t e r e s t i n g 
2+ 

observation i s the down-regulation of the [Ca ] i response 
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induced by LHRH which has not been studied previously i n 

2+ 
in d i v i d u a l ovarian c e l l s . F i n a l l y , the i n t r a c e l l u l a r Ca 

. 2+ sources are c l e a r l y involved i n LHRH-induced [Ca ] i changes, 
2+ 

whereas the r o l e of e x t r a c e l l u l a r Ca needs to be further 

investigated. These r e s u l t s indicate that LHRH may function as 

a paracrine or autocrine mediator i n the r a t ovary with calcium 

functioning as a second messenger f o r LHRH. 



106 
Chapter 4 . LHRH Action on Ovarian Hormone Production; 

A l t e r a t i o n s of Progesterone and Prostaglandins  

Accumulation by Calcium Ionophore and Protein  

Kinase C Activa t o r 

I. Introduction 

Several laboratories have already reported that 

a c t i v a t i o n of protein kinase C stimulates basal P 4 production 

i n r a t granulosa c e l l s , but i n h i b i t s the P 4 response to 

stimulation by gonadotropins or cAMP derivatives (Shinohara et 

a l . , 1986; Kawai and Clark, 1985; Welsh et a l . , 1984; Leung et 

a l . , 1988). The steroidogenic e f f e c t of LHRH i s p a r t i a l l y 

blocked by a potent i n h i b i t o r of PKC (Wang and Leung, 1987). 

Recently, PKC a c t i v i t y has been characterized i n ovarian 

t i s s u e s (Noland and Dimino, 1986; Davis and Clark, 1983; 

Veldhuis and Demers, 1986). The highest s p e c i f i c enzyme 

a c t i v i t i e s are found i n the cytosol, followed by microsomes and 

mitochondria, respectively. In addition, i t has been observed 
2+ 

that LHRH and i t s agonists rapi d l y increase c y t o s o l i c free Ca 

l e v e l i n populations of granulosa c e l l s as measured by quin 2 

(Davis et a l . , 1986), and i n in d i v i d u a l granulosa c e l l s by 

fura-2 fluorescence (chapter 2). Although the addition of the 

calcium ionophore A23187 by i t s e l f s l i g h t l y enhances basal P 4 

production i n granulosa c e l l s , the calcium ionophore markedly 

antagonizes the stimulation of P 4 by gonadotropins or CT or 

cAMP derivatives (Leung et a l . , 1988). Further, calcium i s 

required i n the i n h i b i t o r y and stimulatory actions of LHRH on 
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cAMP and s t e r o i d production during long-term incubation of 

ovarian c e l l s (Ranta et a l . , 1983; Dorflinger et a l . , 1984; 

Eckstein et a l . , 1986). Thus, at the l e v e l of the ovarian 

c e l l , the hydrolysis of i n o s i t o l l i p i d s may immediately follow 

LHRH receptor occupancy and lead to the rapid generation of IP 3 

and DG. The resultant changes i n calcium mobilization and/or 

PKC a c t i v i t y may well be involved i n the modulatory effects of 

LHRH on ovarian hormone synthesis. 

The present study was performed to elucidate the 

mechanism of LHRH action on P 4 and PGs synthesis during the 

d i f f e r e n t c u l t u r e periods, the r o l e of calcium and PKC i n the 
2+ 

LHRH action, and the inte r a c t i o n between IP 3/Ca , DG/PKC and 

cAMP pathways on ovarian hormone production i n r a t granulosa 

c e l l s . 

I I . Materials and Methods 

Preparation of animals and granulosa c e l l s 

Animals and granulosa c e l l s were prepared as those 

described i n the Chapter 2. 

Hormone and drug preparation 

Granulosa c e l l s were treated with various hormones and 

drugs. M e l i t t i n , CT, LHRH and FSH were dissolved i n saline. 

AA was dissolved i n ethanol. 12-0-tetradecanoylphorbol-13-

acetate (TPA) was dissolved i n dimethylsulfoxide (DMSO). A l l 

drugs were d i l u t e d to t h e i r respective working concentrations 
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with MEM before use and added i n 5 jal aliquots to a t o t a l 

incubation volume of 1 ml. Control incubations received the 

same volume of ethanol and DMSO. The f i n a l concentration of 

ethanol or DMSO i n the incubations did not exceed 0.5%. At the 

end of a 5h incubation period, the culture medium was co l l e c t e d 

and stored at -20°C u n t i l assay. C e l l v i a b i l i t y , as determined 

by trypan blue exclusion, was not affected by the various 

treatments. 

Progesterone assay 

The P. concentration i n the culture medium was determined 4 
by a s p e c i f i c RIA with an antiserum kindly provided by Dr. 

D.T. Armstrong of the Un i v e r s i t y of Western Ontario (Leung and 

Armstrong, 1978). The intra-assay c o e f f i c i e n t of v a r i a t i o n was 

5.0%, and c o e f f i c i e n t of inter-assay v a r i a t i o n was 5.9% (n=25). 

Prostaglandin assay 

The PGE 2 and P G F 2 a l p h a c o n c e n t r a - t i ° n s i n t n e culture 

medium were determined by RIA with an antiserum kindly provided 

by Dr. T.G. Kennedy of the University of Western Ontario. The 

RIA procedure was s i m i l a r to that described previously 

(Kennedy, 1979), except that aliquots of the culture medium 

were assayed without extraction (Hirst et a l . , 1988). The 

intra-assay c o e f f i c i e n t of v a r i a t i o n of PGE 2 was 6.7% and 

c o e f f i c i e n t of inter-assay v a r i a t i o n was 9.6% (n=20). The 

c o e f f i c i e n t of intra-assay and inter-assay v a r i a t i o n for the 

PGF, , . assay were 6.8% and 5.7% (n=5), respectively. 
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Reagents 

The following drugs and hormones were from Sigma: AA, 

A23187, m e l i t t i n , TPA, and LHRH. Ovine FSH (NIH-oFSH-16) and 

pregnant mare's serum gonadotropin were g i f t s from the NIDDK 

and the National Hormone and P i t u i t a r y Program (University of 

Maryland School of Medicine). Penicillin-streptomycin, L-

glutamine, nonessential amino acids, trypan blue were obtained 
3 

from Gibco. [1/2- H(N)]Progesterone ( s p e c i f i c a c t i v i t y 115.0 

Ci/mmol), [5,6,8,11,12,14,15,- 3H(N)]Prostaglandin-F 2 a l p h a 

( s p e c i f i c a c t i v i t y 100-200 Ci/mmol) and [5,6,8,11,14,15-3H(N)] 

Prostaglandin-E 2 ( s p e c i f i c a c t i v i t y 100-200 Ci/mmol) were 

purchased from New England Nuclear Inc. 

S t a t i s t i c a l analysis 

S t a t i s t i c a l s i g n i f i c a n c e among groups was calculated by 

analysis of variance followed by Scheffe's multiple range t e s t . 

A l l r e s u l t s were represented as the mean ± SE of determinations 

of quadruplicate c e l l cultures of i n d i v i d u a l treatments i n each 

experiment. In a l l cases, i d e n t i c a l or s i m i l a r r e s u l t s were 

observed i n at l e a s t two or more independent experiments. 

P<0.05 was considered s i g n i f i c a n t . 
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E f f e c t s of m e l i t t i n . LHRH and TPA on progesterone and PGE-

production 

To determine how LHRH and TPA stimulate ovarian hormone 

production, especially PGE 2 formation, a phospholipase A 2 

stimulator, m e l i t t i n , was added to the medium of granulosa c e l l 

c ulture to increase i n t r a c e l l u l a r free AA. 

As shown i n the upper panel of F i g . 29, m e l i t t i n 

(3xl0~ 7M), LHRH (10~6M) and TPA (10~7M) alone stimulated P 4 

accumulation 2 fo l d , 4 f o l d and 4.1 f o l d , respectively, during 

a 5h granulosa c e l l culture (P<0.01). Concomitant treatment of 

granulosa c e l l s with m e l i t t i n with LHRH did not further increase 

P 4 production. To examine i f endogenous AA could synergize 

with protein kinase C, m e l i t t i n was added with TPA to granulosa 

c e l l . Again, m e l i t t i n and TPA f a i l e d to further enhance the 

accumulation of P 4 when compared with TPA alone. 

As shown i n the lower panel of F i g . 29, the PGE 2 

concentrations i n the culture medium was also determined i n the 

same experiments. M e l i t t i n induced a 2.6 f o l d increase i n PGE 2 

compared with control (51.9 pg/ml). LHRH caused a 3.2 f o l d 

increase i n PGE2 production and TPA also increased PGE 2 

production 1.9 f o l d when compared with control. Interestingly, 

concomitant presence of m e l i t t i n with LHRH or with TPA further 

enhanced the production of PGE 2 (P<0.01), which was d i f f e r e n t 

from the e f f e c t s of m e l i t t i n with LHRH or TPA on P. production. 
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F i g . 29 g Interaction of m e l i t t i n (Mel, M;_3xlo" M), with LHRH 
(L; 10~ M) or the phorbol ester TPA (T; 10~ M) on progesterone 
(PROG) production (upper panel) and PGE, formation (lower 
panel) during a 5h culture. Concomitant presence of m e l i t t i n 
with LHRH or with TPA further enhanced the production of PGE_, 
while m e l i t t i n plus LHRH or TPA had no s y n e r g i s t i c e f f e c t on 
progesterone production. 



112 
E f f e c t s of m e l i t t i n and the calcium ionophore A23187 on  

progesterone and PGE^ production 

To further investigate the i n t r a c e l l u l a r mechanisms 

regulating P 4 and PGE 2 formation, granulosa c e l l s were treated 

with m e l i t t i n , A23187 and m e l i t t i n plus A23187 f o r 5h. As 

i l l u s t r a t e d i n the lower panel of F i g . 30, treatment of the 

c e l l s with m e l i t t i n (3xl0~ 7M) or A23187 (10"7M) alone 

stimulated PGE 2 formation by 1.9 f o l d and 3 f o l d , respectively. 

When both m e l i t t i n and A23187 were present together, PGE2 

formation was stimulated by 5.2 f o l d . Interestingly, m e l i t t i n 

or A23187 alone also increased P 4 production (upper panel of 

Fi g . 30). However, when both m e l i t t i n and A23187 were present 

i n the same incubations, P 4 production was not s i g n i f i c a n t l y 

affected when compared with the response to either treatment 

alone. 

Interaction of the nalrHim ionophore A23187 and TPA; dose  

response 

The possible i n t e r a c t i o n between calcium and protein 

kinase C pathways was further examined. The lower panel of 

Fi g . 31 i l l u s t r a t e s the synergistic e f f e c t s of a single dose of 
—7 -9 TPA (10 M) and increasing concentrations of A23187 (10 M 

-7 —7 
to 10 M). At 10 M, the phorbol ester TPA alone stimulated P 4 

and PGE 2 production. There was no further enhancement of P 4 

accumulation when both TPA and A23187 were present together as 

compared with the e f f e c t of TPA by i t s e l f . In contrast, the 

presence of TPA s i g n i f i c a n t l y augmented the stimulation of PGE-
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F i g . 30. E f f e c t s of m e l i t t i n and/or A23187 on progesterone and 
PGE_ production during a 5h culture period. "A+M" denotes 
c e l l s treated with both A23187 and m e l i t t i n . Treatment of the 
c e l l s with m e l i t t i n or A23187 alone stimulated both 
progesterone and PGE,. When both m e l i t t i n and A23187 were 
present, PGE 2 formation was further increased. 
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Fig. 31. E f f e c t s of the phorbol ester TPA and/or increasing 
concentrations of the calcium ionophore A23187 on progesterone 
and PGE, production during a 5h culture period. A dose 
dependent increase i n both progesterone and PGE 0 was observed 
with A23187 treatment. The presence of TPA markedly 
potentiated the stimulatory action of A23187 on PGE_ production 
(lower panel) but not on progesterone (upper p a n e l ) 2 



115 
production by A23187. 

Fi g . 32 shows the e f f e c t s of A23187 (10~8M) and 
—10 —8 

increasing concentrations of TPA (10 M to 10 M) on P 4 and 
—8 

PGE 2 production. A23187 at 10 M d i d not a f f e c t P 4 production 

(upper panel of F i g . 32) but s i g n i f i c a n t l y increased PGE2 

accumulation. A dose dependent increase i n both P 4 and PGE 2 

was observed with TPA treatment. When A23187 and TPA were 

present together i n the culture medium, there was no 

s i g n i f i c a n t a l t e r a t i o n i n P 4 l e v e l s when compared with TPA or 

A23187 treatment alone. In contrast, the presence of A23187 

markedly potentiated the stimulatory action of the d i f f e r e n t 

doses of TPA on PGE 2 production (lower panel of F i g . 32). 

Interaction of the calcium ionophore A23187. TPA and m e l i t t i n 

on_PGE2 production 

Based on the above observations, the i n t e r a c t i o n between 

m e l i t t i n , TPA and/or A23187 on PGE 2 production was further 

examined. As expected, treatment of granulosa c e l l s with TPA 
—8 —7 

(10 M) or A23187 (10 M) alone resulted i n a s i g n i f i c a n t 

increase of PGE2 formation (Fig. 33) . M e l i t t i n at 3x10 M 

increased PGE 2 formation on i t s own, and further enhanced PGE 2 

formation induced by TPA or A23187. Interestingly, while the 

combined treatment of the c e l l s with TPA plus A23187 exerted 

s y n e r g i s t i c stimulation of PGE 2 formation, the addition of 

m e l i t t i n to these c e l l s did not further increase the high 

l e v e l s of PGE- accumulation. 
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Fig. 32. E f f e c t s of the calcium ionophore A23187 and/or 
increasing concentrations of the phorbol ester TPA on 
progesterone and PGE_ production. A23187 alone did not affect 
progesteron production (upper panel) but increased PGE_ 
production (lower panel). The presence of A23187 markedly 
potentiated the dose-dependent stimulatory action of TPA on 
PGE, (lower panel). 
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F i g . 33. E f f e c t s of the calcium ionophore A23187 and/or the 
phorbol ester TPA on PGE. production, e i t h e r i n the absence 
(open bars) or presence (hatched bars) of m e l i t t i n during a 5h 
culture. The addition of m e l i t t i n to the c e l l s did not further 
increase the PGE, production induced by A23187 plus TPA. 
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E f f e c t s of cholera t o x i n and LHRH on progesterone and PGE^ 

production during a 5h cultur e period 

Granulosa c e l l s were incubated i n the presence of CT (100 

ng/ml), LHRH (10 _ 6M) or with CT plus LHRH f o r 5h. As 

expected, CT induced a marked increase (14 fold) i n P 4 

formation, while LHRH caused a r e l a t i v e l y smaller (3.5 fold) 

elevation i n P 4 production when compared with control lev e l s 

(Fig. 34, upper panel). There was no s i g n i f i c a n t difference 

between the P 4 l e v e l s induced by CT alone or by CT plus LHRH. 

In addition to P 4, the accumulation of PGE 2 was also 

determined i n the same experiments (Fig. 34, lower panel). 

Addition of ei t h e r CT or LHRH stimulated PGE 2 formation, by 3.8 

f o l d and 5.5 f o l d , respectively. An additive e f f e c t on PGE 2 

production was observed when both CT and LHRH were present 

during the incubation. 

E f f e c t s of the calcium ionophore A23187 and/or cholera toxin on 

P_4 and PGE 2 production during a 5h incubation period 

A calcium ionophore, A23187 (10 M) , was used to mimic 

the action of LHRH on hormone production. As i l l u s t r a t e d i n 

Fi g . 35 (upper panel), CT caused a 11 f o l d increase of P 4 

accumulation, whereas only a 94% increase (P<0.05) of P 4 l e v e l 

was observed with the A23187 treatment. Combined treatment of 

granulosa c e l l s with CT plus A23187 s i g n i f i c a n t l y attenuated P 4 

accumulation compared with the e f f e c t of CT alone. 

The lower panel of F i g . 35 shows the e f f e c t of CT and/or 

A23187 on PGE_ formation. In the same incubations, treatment 
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with e i t h e r CT or A23187 alone s i g n i f i c a n t l y stimulated PGE 2 

formation, by 6.5 f o l d and 3.1 f o l d , respectively. Combined 

treatment of the c e l l s with CT plus A23187 induced a further 

increase i n PGE2 l e v e l s , to 10.9 f o l d when compared with 

control l e v e l s at the end of 5h culture period. 

Interaction of the calcium ionophore A23187. TPA and FSH on 

progesterone and PGE 2 production during a 5h culture period 

To further investigate the in t e r a c t i o n of calcium, 

protein kinase C and cAMP pathways on P 4 and PGE 2 synthesis, 

granulosa c e l l s were treated with A23187 (10 _ 7M), TPA (10 - 7M) 

and FSH (lOOng) alone or with d i f f e r e n t combinations. FSH 

treatment of the c e l l s caused a 17 f o l d increase of P. 
4 

production (Fig. 36, upper panel). Concomitant presence of FSH 

with A23187 or TPA resulted i n the decrease of P 4 production, 

36% and 20% (P<0.05), resp e c t i v e l y . There was no sy n e r g i s t i c 

i n h i b i t o r y actions on P 4 production with the combined FSH plus 

A23187 and TPA treatment of the c e l l s . Moreover, the synthesis 

of PGE 2 i n the same experiment was measured (lower panel of 

Fi g . 36) , A23187 or TPA could s i g n i f i c a n t l y enhance FSH-

induced PGE 2 formation. Most i n t e r e s t i n g l y , the presence of 

A23187, TPA and FSH together could even further stimulate PGE 2 

accumulation (P<0.01). 
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F i g . 34. E f f e c t s of cholera toxin (CT) and/or LHRH on 
progesterone and PGE, production during a 5h culture period. 
Progesterone and PGE_ production were stimulated by CT or LHRH 
and an additive e f f e c t on PGE_ production was observed when 
both CT and LHRH were present. 
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F i g . 35. E f f e c t of the calcium ionophore A23187 and/or cholera 
toxin (CT) on progesterone and PGE_ production during a 5h 
incubation period. Combined treatment of granulosa c e l l s with 
CT plus A23187 induced a further increase i n PGE, production 
compared with each treatment alone. 2 
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F i g . 36. E f f e c t s of the calcium ionophore A23187 and/or the 
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PGE, production (lower panel), while s l i g h t l y i n h i b i t i n g FSH 
induced P 4 production (upper panel). 
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Interaction of the calcium ionophore A23187. TPA and cholera  

to x i n on PGE 2 production 

The c e l l s were treated with A23187 and/or TPA for 5h, and 

with or without the concomitant presence of CT (Fig. 37) . In 

the absence of CT, A23187 or TPA by i t s e l f stimulated PGE2 

production. Combined treatment of A23187 plus TPA showed 

syn e r g i s t i c stimulation of PGE2- CT alone induced a 6.4 f o l d 

increase i n PGE 2 production. In the presence of CT, TPA or 

A23187 further augmented PGE 2 formation, by 70% and 25%, 

respectively, when compared with CT treatment alone. Addition 

of A23187 plus TPA to the CT-treated c e l l s resulted i n the 

highest increase i n PGE 2 formation. 

Interaction of FSH and LHRH on the formation of progesterone. 

PGE_2 and PG F
2alpha ^ u r^- n cF a 24h culture period 

As shown i n the panel A of F i g . 38, FSH s i g n i f i c a n t l y 

stimulated P 4 production during a 24h culture. The production 

of P 4 induced by FSH was decreased 50% (P<0.01) by the 

concomitant treatment of LHRH (10~ 6M). LHRH treatment alone 

s l i g h t l y stimulated P 4 production but was much less potent than 

FSH-induced P 4 production. Panel B shows the accumulation of 

PGE 2 during a 24h culture i n the same experiments. Both FSH 

and LHRH could stimulate PGE 2 production, at l e a s t 10 fo l d , 

when compared with control; the e f f e c t of LHRH was as potent as 

FSH. Interestingly, addition of LHRH to FSH-treated c e l l s 

further stimulated PGE 2 formation (P<0.01), which was contrary 

to the e f f e c t of LHRH on FSH-induced P. production. Panel C of 
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Fi g . 38. shows the e f f e c t s of LHRH and FSH on the production of 
P G F 2 a l p h a * The basal l e v e l of PG F

2alpha i n c o n t r o 1 cultures 

was below the s e n s i t i v i t y of the assay. Treatment with FSH 

(lOOng) or LHRH (10~6M) caused a s i g n i f i c a n t increase of 

PGF 2 a^p n a i n the culture medium. Moreover, l i k e t h e i r e f f e c t s 

on PGE 2, FSH and LHRH s y n e r g i s t i c a l l y stimulated the production 

2alpha* 

J2 
of PGF 

Interaction of FSH and TPA on progesterone and PGE 2 formation 

during a 24h culture period. 

As the e f f e c t s of LHRH can be mimicked by the phorbol 

ester TPA, the action of TPA on FSH-induced P. and PGE_ 
4 2 

production was examined. Treatment of r a t granulosa c e l l s with 

TPA, l i k e LHRH, was shown to i n h i b i t FSH-induced P 4 

production. The i n h i b i t o r y e f f e c t of TPA was dose dependent, 

and 10~ 1 0M TPA caused a 50% i n h i b i t i o n of P 4 production during 

a 24h c e l l culture as shown i n the upper panel of F i g . 39. 

Unlike the i n h i b i t o r y e f f e c t of TPA on FSH-induced progesterone 

accumulation, TPA resulted i n a dose dependent enhancement of 

PGE 2 production by FSH (Fig. 39, lower panel). The lowest 

e f f e c t i v e dose of TPA was at 10 - 1 0M (P<0.01). 
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Fi g . 37. E f f e c t s of the calcium ionophore A23187 and/or the 
phorbol ester TPA on basal (open bars) or CT stimulated 
(hatched bars) PGE_ production during a 5h culture period. CT, 
A23187 and TPA by T.tself stimulated PGE, production. Addition 
of A23187 plus TPA to the CT treated c e l l s resulted i n the 
highest increase i n PGE 5 formation. 
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F i g . 38. Interaction of FSH and LHRH on the formation of 
progesterone (PROG) (panel, A), PGE_ (panel, B) , and PGF alpha 
(panel, C) during a 24h culture period. While LHRH decreased 
the production of progesterone induced by FSH, LHRH had 
additive e f f e c t s on FSH induced PGE 2 and PGF2 1 n production. 
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n 8 ) TPA (log M) 

F i g . 39. Interaction of FSH and the phorbol ester TPA on 
progesterone and PGE_ formation during a 24h culture period. 
Treatment of r a t granulosa c e l l s with TPA, l i k e LHRH, was shown 
to i n h i b i t FSH induced progesterone production (upper panel) 
and enhance PGE 5 production induced by FSH (lower panel). 
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Interaction of FSH. TPA and the calcium Ionophore A23187 on 

progesterone and PGE 2 formation during a 24h culture period 

FSH treatment of granulosa c e l l s caused 18.3 f o l d 

increase i n P 4 production during a 24h c e l l culture period 

(Fig. 40, upper panel). Concomitant presence of A23187 with 

FSH resulted i n a s i g n i f i c a n t decrease i n P 4 production, by 

40%, when compared with FSH treatment alone. Granulosa c e l l s 

were also treated with TPA (10 - 1 1M to 10 - 9M) . TPA alone at 
-9 

10 M s l i g h t l y decreased the basal l e v e l of P 4« With the 

presence of FSH, TPA induced a concentration dependent 

decreases i n P 4 production but the addition of A23187 (10 M) 

did not further potentiate the i n h i b i t o r y e f f e c t of TPA on FSH-

induced P 4 production. 

In contrast, FSH-stimulated PGE 2 production was further 

enhanced by the concomitant presence of A23187, from 3.6 f o l d 

to 6.4 f o l d , when compared with the control l e v e l of PGE 2. 

Additionaly, TPA alone caused the concentration dependent 

increases of basal l e v e l of PGE 2. The s i g n i f i c a n t e f f e c t i v e 

dose was at 10"10M. Furthermore, FSH-induced PGE 2 production 

was enhanced by the concomitant presence TPA and was further 
—7 

augmented by the addition of 10 M A23187 i n the same 

experiment. 



F i g . 40. Interaction of FSH, the phorbol ester TPA and A23187 
on progesterone and PGE, formation during a 24h culture 
period. FSH induced progesterone production was i n h i b i t e d by 
TPA and/or A23187 (upper panel), while FSH induced PGE 2 

production was enhanced by TPA and/or A23187 (lower panel). 
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IV. Discussion 

In addition to i t s well known stimulatory action on 

p i t u i t a r y gonadotropics, LHRH can exert d i f f e r e n t i a l e f f e c t s on 

hormonogenesis i n the ovary (Hsueh and Jones 1981; Clark, 

1984) . While the mechanism of action of LHRH at the l e v e l of 

the ovarian c e l l i s not completely understood, there i s 

increasing evidence that i n o s i t o l l i p i d may play a role i n i t s 
2+ . 

e f f e c t on PKC and [Ca ] i . Therefore, the hydrolysis of 

phosphoinositides may immediately follow LHRH receptor 

occupancy and lead to the rapid generation of d i a c y l g l y c e r o l 

and i n o s i t o l phosphates (Ma and Leung, 1985; Davis et a l . , 

1986; Leung et a l . , 1986). The resultant changes i n PKC 
. . 2+ a c t i v i t y , and [Ca ] i l e v e l may well be correlated with the 

modulatory e f f e c t s of LHRH on P 4 production. The ac t i v a t i o n of 

PKC by TPA has been shown to i n h i b i t FSH-stimulated estrogen, 

P 4 and 20-alpha-OH-P production. This i n h i b i t o r y action 

induced by TPA appears to be s p e c i f i c , as the phorbol congener 

4-alpha-phorbol-12,13-didecanoate i s i n e f f e c t i v e on st e r o i d 

hormone production (Welsh et a l . , 1984). TPA and two synthetic 

d i a c y l g l y c e r o l s , sn-1,2-dioctanoyl g l y c e r o l and l-ole o y l - 2 -

acetoyl-sn-3-glycerol have been shown to i n h i b i t cAMP dependent 

granulosa c e l l d i f f e r e n t i a t i o n (Shinohara et a l . , 1985). 

Structural s i m i l a r i t i e s between DG and TPA suggest that these 

compounds may stimulate the a c t i v a t i o n of PKC i n the same 

manner (Hsueh, 1979), and endogenous DG formation induced by 

LHRH may have s i m i l a r action as exogenous DG or TPA. In 

contrast to t h e i r i n h i b i t o r y e f f e c t , TPA and DG stimulate the 
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production of P 4 and PGs without the presence of gonadotropins 

(Shinohara et a l . , 1985; Kawai and Clark, 1985; Wang and Leung, 

1987) . The stimulatory e f f e c t s of LHRH on P 4 and PGE2 

production i n the present study confirmed those of e a r l i e r 

studies (Fig. 29, 31 and 32). In addition, the proposed 

involvement of PKC a c t i v a t i o n i n mediating the production of P 4 

as well as the proposed s p e c i f i c i t y of the phorbol ester for 

ac t i v a t i o n of PKC have been further supported by the 

i n h i b i t o r y e f f e c t of the PKC i n h i b i t o r H-7 on LHRH- or TPA-

induced P 4 production (Wang and Leung, 1987). S i m i l a r l y , the 

stimulatory e f f e c t of TPA on the plasminogen a c t i v a t o r a c t i v i t y 

of hen granulosa c e l l i s also blocked by H-7 ( T i l l y and 

Johnson, 1988). Although H-7 may i n h i b i t adenylate cyclase as 

well as PKC, the stimulatory e f f e c t of exogenous cAMP on H-7 

treated granulosa c e l l s indicate the inta c t responsiveness of 

the c e l l s at a post-cAMP step (Wang and Leung, 1987). 

Concerning the ro l e of AA i n LHRH action, i t has been 

shown that LHRH could induce AA l i b e r a t i o n from membrane 

phospholipids i n [ H] AA prelabeled granulosa c e l l s (Minegishi 

and Leung, 1985; Kawai and clark, 1986). Thus, LHRH stimulated 

PGE 2 increase could be related to the accumulation of 

i n t r a c e l l u l a r free AA which serves as the substrate for PGs and 

leukotrienes (LTs) formation. The e f f e c t of AA may be due to 

one or more of i t s metabolites (Hirst et a l . , 1988). Although 

AA i s extensively present i n the body, p r a c t i c a l l y a l l of i t i s 

e s t e r i f i e d on phospho or neutral l i p i d (Irvine, 1982). 

Therefore the hydrolysis of e s t e r i f i e d AA provides the f i r s t 
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r a t e - c o n t r o l l i n g step i n PGs and LTs formation by l i m i t i n g the 

amount of substrate a v a i l a b l e to cyclooxygenase and 

lipoxygenase. 

M e l i t t i n , a polypeptide from the venom of honey bee which 

can activate PLA 2, has been used to enhance i n t r a c e l l u l a r free 

arachidonic acid concentrations (Haberman, 1972). In the 

present study, the e f f e c t of m e l i t t i n on P 4 production was 

measured a f t e r 5h incubation, and m e l i t t i n induced a 2 f o l d 

increase i n P 4 (Fig. 29). This r e s u l t suggests that endogenous 

AA release may also be involved i n the regulation of P 4 

production. To further examine i f the endogenous AA release 

i n t e r a c t s with PKC pathway on ovarian hormone production, 

m e l i t t i n and LHRH were added concomitantly to the c e l l culture, 

and they d i d not further increase P 4 production (Fig. 29, upper 

panel) . I t appears that the e f f e c t of LHRH on P 4 production 

already includes the action of endogenous AA. AA induced by 

LHRH could be lib e r a t e d from membrane phospholipids by two 

d i f f e r e n t mechanisms to form i t s metabolites. AA can be 
+2 

hydrolyzed from phospholipids by a Ca dependent process 

involving phospholipase A 2, or a l t e r n a t i v e l y from i n o s i t o l 

l i p i d s through two consecutive reactions catalyzed by 

phospholipase C and DG li p a s e (Lapetina et a l . , 1981; B e l l and 

Majerus, 1980). I f LHRH stimulated PLA 2 and PKC separately, 

the combined treatment of m e l i t t i n and TPA should enhance the 

accumulation of progesterone to a greater extent than each 

agent alone (Fig. 29, upper panel). However the formation of 

P. remained at the same l e v e l i n the presence of LHRH plus TPA 
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as that caused by TPA alone. This suggests that the l i b e r a t i o n 

of AA by LHRH could be d i s t a l to the a c t i v a t i o n of PKC. In 

addition, the previous observations of the stimulatory e f f e c t s 

of m e l i t t i n on LH and ACTH release further support the concept 

that the a c t i v a t i o n of PLA 2 could p a r t i c i p a t e i n the action of 

hormones (Chang et a l . , 1986; Aboutsamra et a l . , 1986). 

LHRH not only stimulated basal P 4 production, but also 

enhanced the formation of PGE 2 (Fig. 29, lower panel). In the 

present study, LHRH and TPA were found to act s y n e r g i s t i c a l l y 

with m e l i t t i n on the accumulation of PGE 2. Since the e f f e c t of 

m e l i t t i n on the formation of PGE 2 i s probably due to i t s 

a b i l i t y to increase i n t r a c e l l u l a r u n e s t e r i f i e d AA, the present 

r e s u l t s indicate that LHRH could further regulate the a c t i v i t y 

of cyclooxygenase to e l i c i t the formation of PGE 2 when the 

u n e s t e r i f i e d AA substrate i s increased by m e l i t t i n . TPA could 

mimic the e f f e c t of LHRH, in d i c a t i n g involvement of a PKC 

dependent mechanism. On the other hand, i t has been observed 

that TPA potentiates A23187 induced AA release (chapter 2) . 

These r e s u l t s indicate that LHRH-induced a c t i v a t i o n of PKC 

i s involved i n a two-step process of PGE 2 production: f i r s t AA 

i s released from membrane phospholipids and second 

cyclooxygenase i s activated. 

In the present study, the granulosa c e l l s were cultured 

with d i f f e r e n t treatments for hours to detect the hormone 

production, which was much longer than that taken up (seconds 

or minutes) for the measurements of the i n o s i t o l phosphate 
2 + 

formation and the [Ca ] i change. E a r l i e r time points have not 
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been explored because the production of P 4 and PGE 2 were below 

the s e n s i t i v i t y of RIA. On the other hand, i t has become 

apparent that i n many c e l l s i n which the calcium messenger 

system controls sustained c e l l u l a r response there i s no simple 
2+ 

c o r r e l a t i o n between the increase i n the [Ca ] i and the 

c e l l u l a r response (Rink et a l . , 1982; O'Doberty et a l . , 1980; 

Charest et a l . , 1983). In some systems, t h i s phenomenon i s 

c a l l e d "hysteresis" (Rasmussen, 1983). One explanation i s that 
2+ 2 + 

a larger increase i n [Ca ] i i s required to activate Ca 
dependent processes, such as PKC a c t i v i t y , than to control 
sustained c e l l u l a r response. I t has been suggested that PKC 

2+ 
and Ca pathway may have d i s t i n c t functional r o l e s . For 

2+ 
example, i n pancreatic i s l e t s , Ca i s l a r g e l y responsible for 

i n i t i a t i n g the c e l l u l a r response, whereas PKC i s largely 

responsible f o r maintaining c e l l u l a r response (Rasmussen et 
2 + 

a l . , 1984). I t has also been observed that addition of Ca to 
2+ 

the cultured p i t u i t a r y c e l l s i n Ca free medium causes an 

increase i n PRL production. Increase i n PRL synthesis i s not 

observed for several hours, but once synthesized, t h i s increase 

i n PRL may be sustained for days (Gick and Bancroft, 1985). In 
a s i m i l a r manner, LHRH induces rapid and transient increase i n 

2 + 
[Ca ] i which may then go on to control the sustained ovarian 

hormone production. 

In an attempt to modify i n t r a c e l l u l a r l e v e l s of calcium 

more d i r e c t l y , A23187, a divalent cation ionophore which 

f a c i l i t a t e s the transmembrane transport of calcium, was used i n 

the present study. A23187 alone stimulated both P 4 and PGE, 
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production during a 5h culture period (Fig. 30). The 

stimulatory e f f e c t of A23187 on the production of P 4 was 

probably due to the conversion of pregnenolone to progesterone 

but not the synthesis of t h i s intermediate from cholesterol as 

previously proposed (Carnegie and Tsang, 1987). Interestingly, 

treatment of granulosa c e l l s with m e l i t t i n plus A23187 further 

enhanced PGE 2 production (Fig. 30, lower panel). A23187 could 

also stimulate AA release from r a t granulosa c e l l s (Minegishi 

et a l . , 1987). These data imply that calcium plays modulatory 

r o l e s i n both the release of AA by the a c t i v i t y of 

phospholipase A 2 and the conversion of AA to PGE 2 by 

cyclooxygenase. 

In many systems, a dual signal transduction mechanism 
+2 

ex i s t s that involves the Ca and PKC pathways acting either 

cooperatively or s y n e r g i s t i c a l l y to give the maximal response 

to a given hormonal sign a l (Nishizuka et a l . , 1984; Berridge, 

1987). Huckle and Conn have observed that both calcium and PKC 

are involved i n the action of LHRH on gonadotropins release 

from the anterior p i t u i t a r y (Huckle and Conn, 1987). The 

sy n e r g i s t i c e f f e c t s on LH release are noted with the calcium 

ionophore A23187 and PKC act i v a t o r s such as the phorbol ester 

TPA, possibly through enhanced a c t i v a t i o n of PKC (Harris et 

a l . , 1985). Combination of TPA and A23187 causes larger 

amounts of sustained release of PRL compared to each compound 

alone (Delbeke et a l . , 1984). The present study c l e a r l y 

demonstrated that TPA f a i l e d to act s y n e r g i s t i c a l l y with A23187 

on P. production, whereas TPA and A23187 were syn e r g i s t i c on 
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PGE 2 production (Fig. 31-33). While A23187 has been shown to 

enhance acute TPA-induced production of P G F 2 a l p h a * n s w * n e 

granulosa c e l l s (Veldhuis and Demers, 1987), a report on the 

i n h i b i t o r y e f f e c t s of TPA and A23187 on LH induced P 4 

production i n rat l u t e a l c e l l s has not described t h i s potential 

synergism (Baum and Rosberg, 1987). 

I t has been shown that i n parotid gland, where PKC and 
2+ 2 + 

Ca s y n e r g i s t i c a l l y induce enzyme secretion, Ca alone i s 

responsible for control of plasma membrane K + channels (Putney 

et a l . , 1984). In the present study, TPA did not act 

s y n e r g i s t i c a l l y with A23187 on P 4 production but d i d act 

s y n e r g i s t i c a l l y with A23187 on PGE2 formation (Fig. 31 and 32). 

Taken together, these r e s u l t s suggest the po t e n t i a l for a 

degree of independent control of the c e l l responses that are 
2 + 

unaffected by the synergism of PKC and Ca . 

As proposed previously, addition of EDTA to the granulosa 

c e l l s p a r t i a l l y reversed the i n h i b i t o r y e f f e c t of LHRH and TPA 

upon FSH-induced P 4 production, while the reversal e f f e c t of 
EDTA could be completely abolished by the simultaneous addition 

2+ 
of Ca (Leung and Wang, 1988). These r e s u l t s indicate that 
the action of LHRH on ovarian P 4 steroidogegesis i s mediated at 

2+ 
leas t i n part by a Ca dependent PKC. 

The present studies also showed that the formation of P 4 

was not coupled t i g h t l y to the production of PGE 2« The 

treatments of granulosa c e l l s with m e l i t t i n plus A23187, TPA 

plus m e l i t t i n and TPA plus A23187 only increased PGE 2 formation 

but not P 4 production to higher amounts (Fig. 31 and 32) . 
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Furthermore, i n the presence of both TPA and A23187, the 

formation of PGE 2 was not further augmented by m e l i t t i n . This 

perhaps r e f l e c t s the already maximal conversion of AA to PGE2 

under the influence of TPA plus A23187 (Fig. 33). 
2+ 

The interactions between Ca -PKC and cAMP pathways were 

also investigated i n the present study. Treatment of rat 

granulosa c e l l s with LHRH further enhanced CT-stimulated PGE2 

production but f a i l e d to a f f e c t the production of P 4 induced by 

CT during a 5h incubation period (Fig. 34) . This r e s u l t 

supports the previous observation that the mechanism of LHRH on 

PGs production i s distinguishable from that of gonadotropins 
(Clark, 1982). While LH increases PG production, i t does not 

3 
increase [ H]AA release (see Chapter 2). Therefore, the e f f e c t 

of LH on PG production i n granulosa c e l l s i s presumably at a 

step i n the PG synthesis a f t e r hydrolysis of AA, and may 

involve an increase i n PG synthetase a c t i v i t y (Clark et a l . , 

1980; Koos and Clark, 1982). A23187 and TPA were used to mimic 

the action of LHRH on PGE 2 formation with the presence of FSH 

and CT i n the present study. Interestingly, TPA suppressed 

FSH-induced P 4 production but enhanced PGE 2 formation induced 

by FSH or CT during a 5h culture (Fig. 36 and 37) . Likewise, 

the r o l e of calcium i n ovarian hormone production appears to be 

complex and may be affected by the presence of gonadotropins or 

cAMP induced agents. While basal P 4 formation was increased 

only marginally by 10 M A23187, PGE 2 production was stimulated 

by 4.5 f o l d i n the same incubations (Fig. 35 and 36). 

Moreover, i n the presence of FSH or CT, the production of P. 



138 
was attenuated by the concomitant presence of A23187, whereas 

PGE 2 formation was further augmented (Fig. 35 and 36). 

In long term culture (24 h to 48 h), LHRH has been reported 

to reduce FSH-induced P 4 production (Hsueh and Jones, 1981). 

In contrast, LHRH acted s y n e r g i s t i c a l l y with FSH on the 

formation of PGE 2 and p G F 2 a l p n a i n the present study (Fig. 38). 

Since the increase i n PGE 2 concentration (panel B of Fig . 38) 

was about four times greater than that of P G F 2 a l p h a ( P a n e ^ c °^ 

Fi g . 38), only the formation of PGE2 was determined i n the 

subsequent experiments. Very s i m i l a r e f f e c t s were observed 

with the PKC activ a t o r TPA on FSH-induced P. and PGE„ formation 
4 2 

(Fig. 39). A23187 potentiated FSH-induced PGE 2 production, and 

further enhanced PGE 2 formation induced by TPA plus FSH (Fig. 

40, lower panel), whereas A23187 i n h i b i t e d FSH-induced P 4 

production (Fig. 40, upper panel). The present short and long 

term studies c l e a r l y strengthen the multiple r o l e s of protein 
2+ 

kinase C and Ca on hormone production, e i t h e r stimulatory or 

in h i b i t o r y , depending on the time of culture and the nature of 

the hormones. 
2+ 

The i n t e r a c t i o n between cAMP and Ca -PKC pathways can 

occur at d i f f e r e n t l e v e l s . The f i r s t i s at the l e v e l of 

receptors; signals produced by acti v a t i o n of one pathway may 

a f f e c t the a b i l i t y of a receptor functioning v i a the other 

pathway to generate an i n t r a c e l l u l a r s i g n a l i n response to an 

agonist. Secondly, these i n t r a c e l l u l a r messengers may interact 

i n producing the c e l l response. F i n a l l y , these interactions 

may extend to neighboring c e l l s ; thus AA produced a f t e r 



139 
a c t i v a t i o n of PLA 2 or PLC followed by DG lipase i s the 

substrate for synthesis of PGs and/or LTs. These metabolites 

might be released from the c e l l where they are produced and 

function as l o c a l hormones to mediate the functions of t h e i r 

target c e l l s . Although the i n h i b i t o r y e f f e c t of LHRH and i t s 

agonists on P 4 production have been studied extensively, t h i s 

i s the f i r s t demonstration of a s y n e r g i s t i c e f f e c t between LHRH 

with FSH on ovarian PGE2 formation, while at the same time 

i n h i b i t i n g P 4 accumulation during a 24h culture period (Fig. 

38). The i n h i b i t o r y e f f e c t of LHRH, A23187 and TPA on FSH-

induced P 4 accumulation may be p a r t i a l y due to a reduction i n 

cAMP formation (Shinohara et a l . , 1985; Knecht et a l . , 1981; 

Jones and Hsueh, 1981). Previous studies have shown that i n 

cultured theca and granulosa c e l l s , FSH-stimulated PGE 

production could be mimicked by cAMP i n both c e l l types (Zor et 

a l . , 1983; Clark et a l . , 1978). However, the present 

observation that LHRH, TPA and A23187 d i d not antagonize the 

FSH-induced PGE 2 production, but rather augmented the 

production of PGs raises the p o s s i b i l i t y that the stimulatory 

action of LHRH on PGE 2 production v i a the ac t i v a t i o n of PKC and 
2+ 

the change of [Ca ] i i s at a post-cAMP step (Fig. 38-40). 

These data also support the concept that TPA and A23187 i n h i b i t 

FSH-induced P 4 production, i n part at a step or steps beyond 

cAMP generation and degradation (Leung et a l . , 1988). Taken 

together, i t can be concluded that cAMP, calcium and protein 

kinase C pathways are a l l involved i n PGs synthesis, and each 

pathway i s distinguishable from the others i n the way that PG 
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i s produced. 

Nishizuka (1984) has proposed that two classes of 
2+ 

receptors are coupled with cAMP and Ca -PKC induced 

i n t r a c e l l u l a r cascades. In some tissue s , the two classes of 

receptors function i n s i m i l a r d i r e c t i o n to cause a f u l l 

p h y s iological c e l l u l a r response. In other t i s s u e s , the two 

types of receptor-linked cascades counteract each other, e.g., 
an e x t r a c e l l u l a r signal that increases cAMP blocks PKC 

2+ 
acti v a t i o n , Ca mobilization and AA release (Nishizuka, 1984). 

The present study supports t h i s notion and further indicates 

that the i n t r a c e l l u l a r process i n ovarian c e l l s induced by two 

major second messenger pathways can eithe r cooperate with or 

antagonize each other. 

The ph y s i o l o g i c a l r o l e of LHRH and i t s i n t e r a c t i o n with 

FSH on P 4 and PGE 2 formation i s not yet c l e a r at present. A 

rol e of PGE 2 to increase plasminogen a c t i v a t i o n has been 

proposed (Strickland and Beers, 1976). Furthermore, 

prostaglandins may be important i n f o l l i c l e growth, oocyte 

maturation and ovulation (Clark et a l . , 1978; Naor et a l . , 

1984) . On the other hand, i t i s known that the maturation of 

rat oocytes could be blocked by cAMP (Dekel and Beers, 1978). 

LHRH could decrease the formation of cAMP induced by 

gonadotropins and r e s u l t i n the maturation of oocytes 

(Hi l l e n s j o and Lemaire, 1980; Dekel et a l . , 1983; Dekel and 

Aberdam, 1985). The present studies further strengthen the 

concept that LHRH does not exert an o v e r a l l i n h i b i t o r y action 

on ovary but rather causes s p e c i f i c stimulation of P. and PG 
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synthesis, suggesting that LHRH may exert multiple e f f e c t s on 

the ovarian hormone production and the multiple pathways are 

intimately involved i n the actions of LHRH. 
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Chapter 5. Role of Arachidonic Acid i n L u t e i n i z i n g Hormone- 

Releasing Hormone Action. 

I. Introduction 

While the influence of LHRH on ovarian hormone production 

has been well documented, i t s mechanism of action at the post-

receptor l e v e l i s s t i l l l a r g e l y unresolved. In the past few 

years, LHRH and i t s agonists have been shown to stimulate the 

breakdown of polyphosphoinositides into i n o s i t o l phosphates and 

1,2 d i a c y l g l y c e r o l i n the ovary. Phospholipid turnover was 
2+ 

usually accompanied by the mobilization of [Ca ] i , and may 
2+ 

cause the a c t i v a t i o n of Ca dependent PLA 2, leading to the 

l i b e r a t i o n of AA. 

The above hypothesis notwithstanding, i t has been proposed 

that the action of LHRH i n the stimulation of LH release from 

gonadotrophs also involves the release of AA from membrane 

phospholipids. One or more of the lipoxygenated metabolites or 

epoxygenated products of AA might be a component of the cascade 

of reactions i n i t i a t e d by LHRH that ultimately r e s u l t i n the 

secretion of LH (Naor and Catt, 1981; Snyder et a l . , 1983). To 

ascertain whether s i m i l a r signal transduction mechanisms are 

evoked a f t e r the binding of LHRH to i t s ovarian receptors, the 

e f f e c t of LHRH on AA release i n rat ovarian c e l l s has been 

recently examined (Minegishi and Leung, 1985). In cultured 

granulosa c e l l s prelabeled with [ H]AA, LHRH caused a rapid 

increase i n the l e v e l of AA release from phospholipids. This 

increase i n AA release was also induced by an agonistic LHRH 
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analog, but completely blocked by the concomitant presence of a 

potent LHRH antagonist, suggesting a s p e c i f i c receptor mediated 

mechanism (Minegishi and Leung, 1985). While these data 

support the notion that AA l i b e r a t i o n from phospholipids i s 

enhanced by LHRH, i t s re l a t i o n s h i p to s t e r o i d hormone 

production i n the ovary i s not understood. Treatment of 

granulosa c e l l s with m e l i t t i n resulted i n the elevation of 

basal l e v e l of P 4 and PGs (chapter 4), suggesting endogenous AA 

not only serves as the precursor for PGs synthesis but also 

exerts i t s e f f e c t on steroidogenesis. The present study was 

designed to determine i f AA could be a mediator of LHRH action 

during the d i f f e r e n t culture periods. The involvement of 

various pathways of AA metabolism i n the control of P 4 

production was also investigated. 

I I . Materials and Methods 

Animals and granulosa c e l l s preparation 

The preparation of animals and granulosa c e l l s were the 

same as those described i n Chapter 2. 

Hormone and drug preparation 

Granulosa c e l l s were treated with various hormones and 

drugs. LHRH, FSH, CT and m e l i t t i n were dissolved i n saline. 

25-Hydroxycholesterol (25-OH-cholesterol), AA and a l l 

hydroperoxy acids were prepared freshly i n ethanol. After 

opening the ampules of AA and hydroperoxy acid, they were 
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stored under nitrogen at -70°C. TPA, indomethacin, and 

nordihydroguaiaretic acid (NDGA) were dissolved i n DMSO. A l l 

drugs were d i l u t e d to t h e i r respective working concentrations 

with MEM before use and added i n 5 jul aliquots to a t o t a l 

incubation volume of 1 ml. Control incubations received the 

same volume of ethanol and DMSO. The f i n a l concentration of 

ethanol or DMSO i n the incubations d i d not exceed 0.5%. At the 

end of d i f f e r e n t incubation periods, the culture medium was 

co l l e c t e d and stored at -20°C u n t i l assay. For i n t r a c e l l u l a r 

P 4 production, 0.5 ml of 100% ethanol was added into the 

culture dishes, and the c e l l s were scraped out with a rubber 

policeman. The c e l l suspension was transfered into 10 x 75 mm 

te s t tube and mixed vigorously on a vortex. Then the 

suspension was centrifuged at 3000xg for 10 min at 4°C. 

Ethanol was poured out into another t e s t tube, dried under 

nitrogen and redissolved with 200 u l of MEM for RIA. 

Progestin assay 

The P 4 and 20alpha-hydroxy-4-pregnen-3-one (20alpha-OH-P) 

concentrations i n the culture medium were determined by a 

s p e c i f i c RIAs with antisera kindly provided by Dr. D.T. 

Armstrong of the University of Western Ontario. The lowest 

detectable concentration was 0.08 ng/ml f o r both P 4 and 

20alpha-OH-P. The intra-assay c o e f f i c i e n t of v a r i a t i o n was 

5.0%, and c o e f f i c i e n t of inter-assay v a r i a t i o n was 5.9% for P 4 

assay (n=25). The intra-assay c o e f f i c i e n t of v a r i a t i o n of 

20alpha-OH-P was 7.2% and c o e f f i c i e n t of inter-assay v a r i a t i o n 
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Prostaglandin E 2 assay 

The PGE 2 concentrations i n the culture medium were 

determined by RIA with an antiserum kindly provided by Dr. T.G. 

Kennedy of the u n i v e r s i t y of Western Ontario. The RIA 

procedure was s i m i l a r to that described previously (Kennedy, 

1979), except that aliquots of the culture medium were assayed 

without extraction (Hirst et a l . , 1988). The intra-assay 

c o e f f i c i e n t of v a r i a t i o n was 6.7% and c o e f f i c i e n t of i n t e r -

assay v a r i a t i o n was 9.6% (n=20). 

Materials 

The following were purchased from Sigma (St. Louis, USA): 

o l e i c acid (C18:l), 11,14 eicosadenoic acid (C18:2), l i n o l e i c 

a cid (C18:2), homo-gamma-linolenic acid (C18:3) (8,11,14 

eic o s a t r i e n o i c a c i d ) , gamma-linolenic acid (C18:3), arachidonic 

acid (C20:4), TPA, LHRH, CT, 25-OH-cholesterol indomethacin, 

and NDGA. Ovine FSH (NIDDK oFSH-16) and PMSG were g i f t s from 

the National Hormone and P i t u i t a r y Program NIDDKD, NIH. The 

LHRH agonist [d-Trp 6,Des-Gly 1 0,Pro 9-NHEt]LHRH was kindly 

supplied by Dr. Nicholas Ling of the Salk I n s t i t u t e (La J o l l a , 

CA) . A l l hydroperoxy f a t t y acids were purchased from BIOMOL 
3 

Laboratories (Philadelphia, PA). [1,2- H(N)]Progesterone 

( s p e c i f i c a c t i v i t y 115.0 Ci/mmol), 20alpha-[l,2- 3H(N)]-

hydroxypregn-4-ene-3-one ( s p e c i f i c a c t i v i t y 40-60 Ci/mmol) and 

[5,6,8,11,14,15- 3H(N)]Prostaglandin E 2 ( s p e c i f i c a c t i v i t y 100-
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200 Ci/mmol) were purchased from the New England Nuclear 

Corporation (Ontario, Canada). S c i n t i l l a t i o n f l u i d was 

obtained from the Fisher S c i e n t i f i c Company. 

S t a t i s t i c a l analysis 

S t a t i s t i c a l s i g n i f i c a n c e of the data was determined by 

analysis of variance and followed by Scheffe's multiple range 

t e s t . In a l l cases, i d e n t i c a l or s i m i l a r r e s u l t s were observed 

i n at le a s t three or more independent experiments. A l l res u l t s 

were presented as the mean ± SE of determinations of c e l l s from 

quadruplicate cultures within each treatment group. A P value 

of l e s s than 0.05 was considered s i g n i f i c a n t . 

I I I . Results 

E f f e c t s of m e l i t t i n . LHRH and arachidonic a c i d on progesterone  

production 

To compare the e f f e c t s of endogenous AA, exogenous AA-and 

LHRH on P 4 production, granulosa c e l l s were treated with 

m e l i t t i n , AA and LHRH for 5h (Fig. 41). Treatment of the c e l l s 
-7 

with a maximal e f f e c t i v e dose of m e l i t t i n (3x10 M) caused a 
more than 2 f o l d increase i n P. i n the culture medium. In the 

4 
same experiment, the degree of stimulation of P 4 production 

achieved with the maximal dose of exogenous AA and LHRH was 

s i g n i f i c a n t l y larger than that induced by m e l i t t i n , 5.1 f o l d 

and 4 f o l d , respctively, as compared with the untreated 

control c e l l s . 
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S e n s i t i v i t y of progesterone response to arachidonic a c i d 

The e f f e c t s of increasing concentration of AA on P 4 

production were determined 5h a f t e r the addition of AA to the 

granulosa c e l l s (Fig. 42). A maximal enhancement of P 4 

production was observed at AA concentrations above 10~5M. The 
-7 

minimal e f f e c t i v e dose of AA was 3x10 M (P<0.05). In addition 
-5 

to enhancing P 4 accumulation i n the culture medium, 10 M AA 
caused a s i g n i f i c a n t increase i n the i n t r a c e l l u l a r P 4 

5 
concentration (0.53 ± 0.02 vs. 0.12 ± 0.01 ng/2xl0 c e l l s i n 

control incubations; P<0.01). 

E f f e c t of unsaturated f a t t y acids on progesterone production 

In t h i s experiment, the s p e c i f i c i t y of other unsaturated 

f a t t y acids as well as AA action on P 4 production was 

investigated. A l l f a t t y acids were added to the culture medium 
-5 . . . . at the concentration of 10 M. 11,14 eicosadienoic acid, homo-

gamma-linolenic acid (C18:3), gamma-linolenic acid (C18:3), 

l i n o l e i c acid (C18:2) and AA increased P 4 production during a 

5h incubation period. Interestingly, these f a t t y acids showed 

d i f f e r e n t potencies i n stimulating P 4 production i n the 

following order: AA> homo-gamma-linolenio gamma-linolenio 

l i n o l e i o 11,14 eicosadienoic acid. Another unsaturated f a t t y 

acid, o l e i c acid, f a i l e d to stimulate P. production (Fig. 43). 
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F i g . 41. Stimulatory e f f e c t s of m e l i t t i n , LHRH and 
arachidonic acid (AA) on progesterone (PROG) accumulation 
during a 5h culture period. C, control; Mel, m e l i t t i n . 
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Fi g . 42. E f f e c t of increasing concentration of arachidonic 
acid (AA) on progesterone production during a 5h culture 
period. AA caused a dose dependent increase i n progesterone 
production. 
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F i g . 43. Ef f e c t s of unsaturated f a t t y acids on progesterone 
production. Arachidonic, homo-gamma-linolenic, gamma-
l i n o l e n i c , l i n o l e i c , and 11, 14 eicosadienoic acids stimulated 
progesterone production during a 5h culture period, whereas 
o l e i c a c i d f a i l e d to stimulate progesterone production. 
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E f f e c t s of LHRH and arachidonic a c i d on progesterone production 

As expected, addition of LHRH (lo" 6M) to rat granulosa 

c e l l s enhanced P 4 production during a 5h incubation (P<0.01) 

(Fig. 44A) . Addition of AA (10 - 5M) also s i g n i f i c a n t l y enhanced 

the P 4 production to about 2.9 f o l d of the control l e v e l 

(P<0.01). The concomitant presence of LHRH and AA further 

stimulated P. l e v e l s to about 4.5 f o l d of the control P, values 

(P<0.01). As i l l u s t r a t e d i n F i g . 44 panel B, addition of AA to 

an agonistic analog of LHRH further enhanced P 4 production over 

that induced by the LHRH agonist alone (P<0.01). 

Time course of e f f e c t s of LHRH and arachidonic acid on  

progesterone production 

As shown i n F i g . 45, P 4 production was stimulated, 82% 

above the control (P<0.05), as ear l y as l h af t e r the addition 

of 10~6M LHRH. The e f f e c t of 10~5M AA was somewhat slower i n 

onset; by 3h a f t e r AA addition, P 4 production was increased 

s i g n i f i c a n t l y (1.9 fold) compared with that i n control 

incubations (P<0.05). At 5h, the l e v e l of P 4 stimulated by AA 

was not d i f f e r e n t from that induced by LHRH. Interestingly, 

the concomitant presence of AA and LHRH at l h d i d not further 

enhance P 4 production induced by LHRH alone (P<0.05), but 

markedly potentiated P 4 production at 3h and 5h (P<0.01) 

compared with that a f t e r treatment with AA or LHRH alone. 
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F i g . 44. E f f e c t s of treatment of granulosa c e l l s with 
arachidonic acid (AA) and LHRH or a LHRH agonist (LHRHa) on 
progesterone production. LHRH (panel A) or LHRHa (panel B) 
stimulated progesterone production was further enhanced by AA 
during a 5h culture period. 
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F i g . 45. Time course of stimulation of progesterone 
production by arachidonic acid (AA) , LHRH or LHRH plus AA. 
Progesterone production was stimulated as early as l h a f t e r the 
addition of LHRH, whereas the e f f e c t of AA was s i g n i f i c a n t at 
3h. Progesterone production was potentiated by the presence of 
both AA and LHRH at 3h and 5h compared with that a f t e r 
treatment with AA or LHRH alone. 
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Interaction between arachidonic a c i d and TPA on progesterone  

production 

Addition of the phorbol ester, TPA (10 M) , to granulosa 

c e l l s resulted i n a 93% increase i n P 4 production (Fig. 46) as 

compared with untreated control c e l l s . A d d i t i o n a l l y , the 

concomitant presence of TPA (10 M) and AA s i g n i f i c a n t l y 

enhanced (P<0.01) the stimulatory e f f e c t of AA (at 10~6M or 
—5 . . . . 10 M) on P 4 production. Likewise, as shown i n F i g . 47, the 

-5 
addition of AA (10 M) to TPA-treated c e l l s markedly 

-9 
potentiated the stimulation of P 4 production by TPA (at 10 , 

l O - 8 , or 10 _ 7M) alone. 

Role of arachidonic acid metabolism 

To investigate the possible involvement of AA metabolites 

i n P 4 production, granulosa c e l l s were treated with 

indomethacin and NDGA with the presence of ei t h e r LHRH or AA. 

As shown i n F i g . 48, addition of the AA metabolism in h i b i t o r s 
-5 . . . . 

alone (10 M) had a s l i g h t but s i g n i f i c a n t (P<0.05) stimulatory 

e f f e c t on P 4 production. More importantly, addition of the 

same dose of NDGA p a r t i a l l y suppressed (by about 50%) P 4 

production induced by 10~6M LHRH (Fig. 48, upper panel); the 

same molar concentration of indomethacin was i n e f f e c t i v e . On 

the other hand, the concomitant presence of NDGA, but not 

indomethacin, i n h i b i t e d AA-induced P 4 production to the same 

l e v e l as that caused by NDGA alone (P<0.01) (Fig. 48, lower 

panel). 



155 

F i g . 46. E f f e c t s of the phorbol ester TPA and increasing 
concentrations of arachidonic acid (AA) on progesterone 
production. The presence of TPA enhanced the stimulatory 
e f f e c t of AA on progesterone production during a 5h culture 
period. 
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Fi g . 47. E f f e c t s of arachidonic a c i d (AA) and increasing 
concentrations of the phorbol ester TPA on progesterone 
production. The addition of AA to TPA treated c e l l s 
potentiated the stimulation of progesterone production by TPA 
alone during a 5h culture period. 
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F i g . 48. Role of arachidonic acid (AA) metabolism. 
Addition of nordihydroguaiaretic acid (NDGA) p a r t i a l l y 
suppressed progesterone production induced by LHRH (upper 
panel) and i n h i b i t e d AA induced progesterone production to the 
same l e v e l as that caused by NDGA alone (lower panel), whereas 
indomethacin (INDO) was i n e f f e c t i v e . 
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The e f f e c t s of NDGA or indomethacin on the production of 

P 4 induced by LHRH plus AA were further examined i n another 

experiment (Fig. 4 9 ) . While indomethacin f a i l e d to a f f e c t the 

marked increase i n P 4 production due to the concomitant 

presence of LHRH (10 _ 6M) , AA (10"5M) and NDGA (10"5M) 

suppressed the P 4 response dramatically (P<0.01). 

Dose response of HETEs and HPETEs on progesterone production 

Since the lipoxygenase metabolites of AA may be involved 

i n the act i o n of LHRH on steroidogenesis, the e f f e c t s of these 

lipoxygenase metabolites including hydroxyeicosatetraenoic 

acids (HETEs) and hydroperoxyeicosatetraenoic acids (HPETEs), 

on ovarian s t e r o i d hormone were further examined. 

Rat granulosa c e l l s were incubated f o r 5h i n the absence 

or presence of increasing concentration of 5-HETE, 5-HPETE, 

12-HETE, 15-HETE or 15-HPETE (10~7M to 10 _ 5M). P 4 production 

was increased by these acids i n a dose dependent manner. At 
10~6M, a l l treatments resulted i n a s l i g h t but s i g n i f i c a n t 

—5 
increase i n P 4 formation. At 10 M, a l l compounds (except 15-

HPETE) further stimulated P 4 production. The following order 

of potency was observed: 12-HETE > 5-HETE > 5-HPETE = 15-HETE > 

15-HPETE (Fig. 50). 
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1 2 

F i g . 49. E f f e c t s of nordihydroguaiaretic a c i d (NDGA) or 
indomethacin (INDO) on progesterone production induced by LHRH 
and/or arachidonic a c i d (AA). Whereas indomethacin d i d a f f e c t 
the increase i n progesterone production due to the presence of 
both LHRH and AA, NDGA dramatically suppressed progesterone 
production. 
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Fig. 50. E f f e c t s of HETEs and HPETEs on progesterone 
production. Progesterone production was increased by these 
f a t t y acids i n a dose dependent manner during a 5h culture 
period. 
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E f f e c t s of H E T E S on progesterone and PGE^ production 

Granulosa c e l l s were treated with 5-, 12- or 15-HETE and 

the e f f e c t s on P 4 as well as PGE 2 production were examined. As 

seen i n Fi g . 51 (upper panel) , at 5xlO * " 6 M , 12-HETE was most 

potent and caused a 4.1 f o l d increase i n P 4 formation. 5-HETE 

and 15-HETE resulted i n 3.5 and 2.4 f o l d increase of P„ 

accumulation, respectively, when compared with control 

incubations. 

Interestingly, these AA metabolites also stimulated PGE2 

production i n the same experiment (Fig. 51. lower panel). 

Unlike t h e i r actions on P 4 production, the e f f e c t of 15-HETE 

was as potent as 12-HETE on PGE 2 formation. 15-HETE or 12-HETE 

caused an approximate 15 f o l d increase i n PGE 2 accumulation i n 

the culture medium. In contrast, 5-HETE was considerably less 

potent when compared with 12- or 15-HETE, but s t i l l resulted i n 

s i g n i f i c a n t increase i n PGE 2 formation, about 6 f o l d , when 

compared with the control incubations. 

Interaction of HETEs or HPETEs with LHRH on progesterone and  

PGE 2 production 

Since lipoxygenase metabolites of AA were believed to be 

involved i n the action of AA, the e f f e c t s of HETEs and HPETEs 

on the stimulation of P 4 production by LHRH were further 

investigated (Fig. 52, upper panel). At the minimum e f f e c t i v e 

dose ( i . e 1 0 ~ 6 M ) , the AA metabolites stimulated basal P 4 

production s l i g h t l y . A more e f f e c t i v e stimulation of P 4 was 

observed with 1 0 - 6 M LHRH. Concomitant treatment with LHRH and 
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the various AA metabolites caused further increase i n P. 

4 

accumulation, by 20% to 93%, when compared with the e f f e c t of 

LHRH alone. 

PGE 2 production i n the same experiments was also 

determined (Fig. 52, lower panel). 5-HETE and 5-HPETE, at the 

minimum e f f e c t i v e dose which stimulated P, d i d not a l t e r either 

basal or LHRH induced PGE2 formation. In contrast, 12-HETE, 

15-HETE or 15-HPETE s i g n i f i c a n t l y increased PGE 2 l e v e l s when 

compared with the control incubation. Furthermore, 12-HETE, 

15-HETE and 15-HPETE augmented the stimulatory e f f e c t of LHRH 

on PGE 2 production by 2 f o l d , 2.9 f o l d and 2.5 f o l d , 

r espectively, when compared with the LHRH treatment alone. 

Interactions of HETEs or HPETEs with TPA on progesterone and  

PGE 2 production 

The addition of the protein kinase C activ a t o r (TPA), at 

10 M, to granulosa c e l l s caused a marked increase i n P 4 

production (Fig. 53, upper panel). A l l HETEs and HPETEs tested 

s i g n i f i c a n t l y augmented the stimulatory e f f e c t of TPA, by 55 to 

83%, when compared with P 4 l e v e l s induced by TPA alone. 

In the same experiment, TPA alone caused a 4.9 f o l d 

increase i n PGE 2 production(Fig. 53, lower panel). While 5-

HETE or 5-HPETE did not s i g n i f i c a n t l y a f f e c t PGE 2 production 

induced by TPA, concomitant treatment with 12-HETE, 15HETE or 

15-HPETE further enhanced TPA-stimulated PGE. accumulation. 
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F i g . 51. E f f e c t s of HETEs on progesterone (upper panel) and 
PGE_ (lower panel) production. Both progesterone and PGE_ were 
stimulated by HETEs during a 5h culture period. 5HE, 5-HETE; 
12HE, 12-HETE; 15HE, 15-HETE. 
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F i g . 52. Interactions of HETEs or HPETEs with LHRH on 
progesterone (upper panel) and PGE^ (lower panel) production. 
At the minimum e f f e c t i v e dose (10~T1), the various arachidonic 
ac i d metabolites enhanced LHRH induced progesterone production 
and 12-HETE, 15-HETE and 15-HPETE augmented the stimulatory 
e f f e c t of LHRH on PGE, production during a 5h culture period. 
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Fig. 53. Interactions of HETEs or HPETEs with the phorbol 
ester TPA on progesterone (upper panel) and PGE, (lower panel) 
production. TPA induced progesterone production was enhanced 
by a l l HETEs and HPETEs tested, while TPA induced PGE, 
production was augmented by 12-HETE, 15-HETE and 15-HPETE 
during a 5h culture period. 
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E f f e c t of LHRH on FSH-induced progesterone production; time  

response 

To examine the action of gonadotrophin and LHRH on 

granulosa c e l l s , FSH- or LHRH- or FSH plus LHRH-treated 

granulosa c e l l s were cultured for 8h, 16h and 24h (Fig. 54) . 

FSH (100 ng) alone resulted i n a s i g n i f i c a n t time dependent 

increase i n P 4 accumulation, 20 f o l d , 21.5 f o l d and 30 f o l d , at 

8h, 16h and 24h, respectively. LHRH alone also markedly 

stimulated P 4 production as compared with untreated culture 

c e l l s , but LHRH-induced P 4 production was much les s than that 

induced by FSH. The concomitant presence of FSH with LHRH i n 

the culture medium did not a l t e r P 4 production at 8h. However, 

a s i g n i f i c a n t decrease i n P 4 production was observed at 16h, 

and P 4 production was further reduced at 24h i n combined 

treatment of granulosa c e l l s with FSH plus LHRH. 

Eff e c t s of arachidonic acid and/or FSH on progesterone 

production during a 24h culture 

To examine the ro l e of AA on P 4 production, rat granulosa 
—5 

c e l l s were treated with 10 M AA, i n the absence or presence of 

FSH (lOOng), f o r 24h (Fig. 55). As expected, FSH markedly 

stimulated P 4 production (23 fold) compared with the untreated 

control (P<0.01). AA alone caused a s l i g h t but s i g n i f i c a n t 

stimulation of P 4 production, 4.1 f o l d (P<0.05) when compared 

with the untreated control c e l l s . The concomitant presence of 

AA with FSH d i d not a f f e c t FSH-induced increase i n P 4 

accumulation. 
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F i g . 54. Ef f e c t of LHRH on FSH induced progesterone 
production: time response. LHRH alone stimulated progesterone 
production as early as 4h, but production was much les s than 
that induced by FSH. FSH stimulated progesterone production 
was reduced by LHRH af t e r 16h. 
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F i g . 55. E f f e c t s of arachidonic acid (AA) and/or FSH on 
progesterone production. AA alone caused a s l i g h t increase i n 
progesterone production. Concomitant presence of AA with FSH 
did not a f f e c t the FSH induced increase i n progesterone 
production a f t e r 24h culture. Control (C) and FSH treated 
c e l l s received the appropriate amount of solvent for AA. 
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E f f e c t of arachidonic a c i d on LHRH induced i n h i b i t i o n of  

progesterone production 

Granulosa c e l l s were treated for 18h with FSH (100 

ng/ml), with or without the presence of LHRH (10~ 6M). At the 

end of 18h, the combined treatment of LHRH plus FSH 

s i g n i f i c a n t l y decreased P 4 production when compared with the 

c e l l s given FSH alone. At t h i s time, AA was added to two of 

the groups and the culture was continued for a further 6h. As 

shown i n Fig . 56, LHRH decreased FSH-induced P 4 production, by 

47%, at the end of the 24h incubation period. When AA was 

present during the l a s t 6h, the i n h i b i t o r y e f f e c t of LHRH on 

FSH-induced P 4 was p a r t i a l l y reversed, by about 42%, when 

compared with the cultured c e l l s treated with LHRH plus FSH. 

AA by i t s e l f d id not a f f e c t P 4 accumulation induced by FSH 

during the l a s t 6h. 

E f f e c t of arachidonic a c i d on TPA-induced i n h i b i t i o n of  

progesterone production 

F i g . 57 i l l u s t r a t e s AA reversal of the i n h i b i t o r y action 

of TPA on P 4 production. Granulosa c e l l s were treated with FSH 

(100 ng/ml) with or without 10"9M TPA for 18h. After that, AA 

was given to one of the groups. A l l incubations were continued 

f o r another 6h. As expected, TPA caused a marked i n h i b i t i o n on 

FSH-induced P 4 production, 69% (P<0.01) as compared with the 

untreated group. Addition of AA to the group given TPA plus 

FSH resulted i n a p a r t i a l r e v ersal of P 4 production by 71%, 

when compared with the TPA plus FSH treatment alone (P<0.01). 
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F i g . 56. Response to arachidonic acid (AA) a f t e r pretreatment 
with FSH and LHRH. Granulosa c e l l s pretreated with s a l i n e (C) 
or with FSH ± LHRH for 18h, at which time AA (or solvent) was 
added. A l l groups were incubated for a further 6h. The 
in h i b i t o r y e f f e c t of LHRH on FSH induced progesterone 
production was p a r t i a l l y reversed by the presence of AA. 
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Fig. 57. Response to arachidonic acid (AA) a f t e r 
pretreatment with FSH and the phorbol ester TPA. Granulosa 
c e l l s were pretreated with DMSO (C) or with FSH ± TPA for 18h 
p r i o r to the addition of AA (or solvent). Then, the c e l l s were 
incubated f o r 6h. TPA caused i n h i b i t o r y e f f e c t on progesterone 
production by FSH was p a r t i a l l y reversed by the addition of AA. 
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Response to arachidonic a c i d a f t e r pretreatment with cholera  

t o x i n and TPA 

Addition of CT resulted i n a 29 f o l d increase i n P, 
4 

production and TPA s i g n i f i c a n t l y attenuated the production of 

P 4 induced by CT. AA was added to two groups that had been 

precultured with CT or CT plus TPA for 18h. A l l incubations 

were continued for a further 6h. As shown i n Fig. 58, the 

presence of AA caused a p a r t i a l reversal, i . e . 39% (P<0.01) 

increase i n P 4 production, when compared with the treatment 

with TPA plus CT alone. CT-induced P 4 production was not 

s i g n i f i c a n t l y affected by the addition of AA alone during the 

l a s t 6h culture period. 

E f f e c t of arachidonic acid on P 4 production a f t e r pretreatment 

with TPA and LHRH 
-9 -6 10 M TPA and 10 M LHRH were added to granulosa c e l l s at 

the beginning of the culture i n the absence of exogenous 

gonadotropins or CT. Af t e r 18h, AA was added to some of the 

groups for a further 6h to determine the P 4 response of the 

c e l l s . At the end of the 24h culture, TPA d i d not stimulate P 4 

production (Fig. 59). In contrast, LHRH caused a 55% (P<0.01) 

increase i n P 4 accumulation when compared with untreated 

controls. Addition of AA alone during the l a s t 6h resulted in 

a 160% increase i n P. formation. When AA was added to the TPA-
4 

pretreated c e l l s , P 4 production was same as that caused by AA 

alone. In contrast, when AA was given to the LHRH-pretreated 

c e l l s , there was an additive e f f e c t on P. production. 
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Fi g . 58. Response to arachidonic acid (AA) a f t e r 
pretreatment with cholera toxin (CT) and the phorbol ester TPA. 
Granulosa c e l l s were pretreated with DMSO (C) or with CT ± TPA. 
At 18h, AA (or solvent) was added. A l l incubations were 
stopped 6h l a t e r . The presence of AA p a r t i a l l y reversed the 
i n h i b i t o r y e f f e c t of TPA on CT induced progesterone production. 
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Fig. 59. Response to arachidonic acid (AA) a f t e r pretreatment 
with the phorbol ester TPA and LHRH alone. Granulosa c e l l s 
were pretreated with dimethyl sulfoxide (C), TPA or LHRH for 
18h. At t h i s time, AA (or solvent) was added. A l l groups were 
incubated for a further 6h. Treatment of the c e l l s with TPA 
did not a f f e c t the response to AA. 
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E f f e c t s of LHRH. TPA and/or arachidonic a c i d on progestin 

production during a 5h Incubation 

Granulosa c e l l s were treated f o r 5h with TPA (10 M) or 

LHRH (10~6M) , with or without the concomitant presence of AA 
—5 

(10 M) . As shown i n A panel of F i g . 60, the presence of AA, 

TPA or LHRH alone caused s i g n i f i c a n t increases i n P 4 

production, by 4.8 f o l d , 7.8 f o l d and 7.1 f o l d , respectively, 

when compared with control l e v e l s . AA exerted an additive 

e f f e c t with TPA and LHRH on P. formation. 
4 

The production of 20alpha-OH-P i s shown also i n Fig. 60 

(B panel). AA, TPA and LHRH stimulated 20alpha-OH-P production 

by 1.5 f o l d , 4.9 f o l d and 4.7 f o l d , respectively. The 

magnitude of AA-induced 20alpha-OH-P accumulation was much 

lower than that induced by either TPA or LHRH. In contrast to 

the additive e f f e c t s observed for P 4 formation, AA did not 

a l t e r the e f f e c t of TPA or LHRH on the accumulation of 20alpha-

OH-P. On the other hand, t o t a l progestin accumulation ( i . e . P 4 

plus 20alpha-OH-P) was increased by treatment with AA, TPA or 

LHRH alone and further increased by combined treatment with TPA 

plus AA, or with LHRH plus AA (Fig. 60, C panel). 

E f f e c t s of arachidonic acid. TPA and LHRH on 25-

hydroxycholesterol enhanced steroidogenesis during a 5h  

incubation 

To determine i f AA aff e c t s the a c t i v i t y of the side-chain 

cleavage enzyme, a water soluble cholesterol derivative, 25-OH-

cholest e r o l , was used. Inclusion of 25-OH-cholesterol i n the 
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culture medium s i g n i f i c a n t l y enhanced the accumulation of P 4 i n 

the control c e l l s by 4.1 f o l d during a 5h incubation (Fig. 61). 

The concomitant presence of TPA or LHRH with 25-OH-cholesterol 

markedly increased P 4 production by about 56% and 84% (P<0.01) 

respectively, when compared with P 4 formation by 25-OH-

cholesterol alone. The presence of AA with 25-OH-cholesterol 

also s i g n i f i c a n t l y increased P 4 production, about 34%, when 

compared to the e f f e c t of 25-OH-cholesterol alone. 

Nevertheless, AA f a i l e d to further enhance TPA- and LHRH-

stimulated P 4 production i n the presence of 25-OH-cholesterol, 

which was d i f f e r e n t from the e f f e c t of AA on P 4 production 

without the added c h o l e s t e r o l . 



F i g . 60. Ef f e c t s of LHRH, the phorbol ester TPA and/or 
arachidonic acid (AA) on progestin production during a 5h 
incubation. AA, TPA or LHRH alone caused s i g n i f i c a n t increase 
i n progesterone production, and AA exerted an additive e f f e c t 
with TPA and LHRH, whereas the magnitude of AA induced 20-
alpha-OH-P accumulation was much lower than that induced by 
either TPA or LHRH, and AA did not a l t e r the e f f e c t of TPA or 
LHRH on the accumulation of 20-alpha-OH-P. 
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F i g . 61. E f f e c t of arachidonic a c i d (AA) , the phorbol ester 
TPA and LHRH on 25-hydroxycholesterol enhanced 
steroidogenesis during a 5h incubation. Although the presence 
of AA increased 25-OH-cholesterol induced progesterone 
production, AA f a i l e d to further enhance TPA and/or LHRH 
stimulated progesterone production i n the presence of 25-OH-
cho l e s t e r o l . Incubations containing 25-hydroxycholesterol were 
denoted by the hatched bars. 
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IV. Discussion 

The i n t r a c e l l u l a r pathway by which LHRH stimulated AA 

release i n granulosa c e l l s was not c l e a r . Three possible 

mechanisms f o r the l i b e r a t i o n of AA from plasma membrane have 

been proposed (chapter 2) . The increase of c e l l u l a r l e v e l of 

free or un e s t e r i f i e d radiolabeled AA was observed by treatment 

of granulosa c e l l s with LHRH within 5 min (chapter 2). This 

observation strengthens the previous proposal that LHRH 

stimulated AA l i b e r a t i o n from phospholipids might also be 

involved as an early step i n LHRH si g n a l transduction i n the 

ovarian c e l l s (Minegishi and Leung, 1985; chapter 2 ). I t has 

also been shown that AA release i n granulosa c e l l s i s enhanced 

by the calcium ionophore A23187 (Kawai and Clark, 1986; 

Minegishi et a l . , 1987), and potentiated by TPA (chapter 2), 

suggesting that LHRH-induced AA release i s calcium dependent, 

and i s regulated by the a c t i v a t i o n of PKC. Nevertheless, i t 

appears that i n many tissues a si n g l e e x t r a c e l l u l a r signal 

could induce a c t i v a t i o n of both phospholipase C and 

phospholipase A 2 reactions and as a r e s u l t , cause AA release 

from various phospholipids (Lapetina, 1982). 

In the present study the e f f e c t s of m e l i t t i n , AA and LHRH 

on P 4 production were further examined. M e l i t t i n could induce 

P 4 production, but m e l i t t i n stimulated P 4 production was lower 

than exogenous AA and LHRH stimulated P 4 formation i n the same 

experiment (Fig. 41) . This may r e f l e c t the fact that the 

quantity of endogenous AA was l i m i t e d . Additionally, the 

r e s u l t s suggested that the e f f e c t of LHRH cannot be only due to 



endogenous AA and i t s metabolites, and that Ca and PKC 

pathways were also involved. The previous experiment has shown 

that concomitant treatment of granulosa c e l l s with m e l i t t i n 

plus LHRH does not further increase P 4 production induced by 

LHRH alone, presumably implying that the e f f e c t of LHRH on P 4 

production already included the action of endogenous AA 

(chapter 4). Taken together, P 4 production induced by m e l i t t i n 

suggested that the a c t i v a t i o n of PLA 2, an enzyme that cleaves 

AA from the 2-acyl p o s i t i o n of phospholipids, p a r t i c i p a t e d i n 

c o n t r o l l i n g P 4 production as well as PGE 2 i n granulosa c e l l s . 

More importantly, the present data c l e a r l y demonstrated that 

treatment of granulosa c e l l s with AA f o r 5h enhanced P 4 

production (Fig. 41) . This stimulation was dose dependent, 
—7 —5 

within a rather narrow range ( i . e . between 3x10 M to 10 M) 

(Fig. 42). The use of the exogenous AA was c l o s e l y r e l a t e d to 

the physiologic s i t u a t i o n since i t was converted to ovarian 

cyclooxygenase or lipoxygenase metabolites at the s i t e where 

the appropriate biosynthetic process was present. Both 

i n t r a c e l l u l a r P. concentration and the accumulation of P. i n 
4 4 

the culture medium were increased i n the presence of AA. C e l l 

v i a b i l i t y was not affected by these dosages of AA, as judged by 

trypan blue exclusion. In t h i s regard, s i m i l a r doses of AA 

have recently been reported to stimulate hormone production i n 

other endocrine tissues. For example, i n anterior p i t u i t a r y 
—5 —4 

c e l l s , AA at 5x10 M or 10 M was a potent secretagogue for LH 

release (Chang et a l . , 1986); at 10"5M and 10~4M, AA stimulated 

ACTH release (Abou-Samra et a l . , 1986). PRL secretion from GH3 



c e l l s was stimulated by AA at 3x10 M (Kolesnick et a l . , 1984). 

Likewise, AA at 10 to 10 M resulted i n the increase of 

oxytocin i n corpus luteam (Hirst et a l . , 1988), and AA at 10 M 
—5 

to 10 M enhanced testosterone production by Leydig c e l l s (Lin, 

1985). 

In the present study, the e f f e c t of AA on P 4 production 

was found to be s i m i l a r to that of LHRH, although the 

stimulation of P. due to AA was somewhat slower i n onset 
4 

compared with that due to LHRH. P 4 l e v e l s i n the culture 

medium were i d e n t i c a l 5h a f t e r the addition of LHRH or AA (Fig. 

45). When present together, the eff e c t s of AA and LHRH or LHRH 

agonist became additive; t h i s could be seen as early as 3h 

af t e r treatment. Since AA also greatly potentiated the 

stimulation of P 4 production by TPA, the s y n e r g i s t i c e f f e c t of 

AA on LHRH-induced P 4 production perhaps r e f l e c t e d a 

potentiation by AA on LHRH-induced PKC a c t i v i t y (Fig. 44-47). 

The r e l a t i v e l y higher dose and longer time required for the 

action of AA on P 4 production may be due to the rate of 

penetration of AA into the c e l l membrane and the conversion of 

AA to i t s metabolites. Recently, PKC a c t i v i t y has been 

characterized i n ovarian tissues (Noland and Dimlno, 1986; 

Davis and Clark, 1983). The highest s p e c i f i c a c t i v i t i e s were 

found i n cytosol, followed by microsomes and mitochondria 

(Noland and Dimino, 1986). Several laboratories have reported 

that a c t i v a t i o n of PKC by phorbol esters, such as TPA, 

stimulates basal P 4 production i n rat granulosa c e l l s (Wang and 

Leung, 1987; Kawai and Clark, 1985; Shinohara et a l . , 1986). 
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Thus, the present r e s u l t s could be taken to suggest that the 

stimulatory action of LHRH on ovarian steroidogenesis i s 

mediated, i n part at le a s t , by PKC and potentiated by LHRH-

induced AA release. Phosphorylation of cytochrome P-450, which 

i s responsible for choleste r o l side-chain cleavage, may also 

r e s u l t from a c t i v a t i o n of PKC i n steroidogenic tissues 

( V i l g r a i n et a l . , 1984). I t seems pl a u s i b l e that LHRH-induced 

AA could play a second messenger r o l e by amplification of PKC 

a c t i v i t y , as has been proposed recently for other s i g n a l l i n g 

systems (McPhail et a l . , 1984; Murakami and Routtenberg, 1985). 

In support of t h i s theory, i t has recently been documented that 

AA and PKC s y n e r g i s t i c a l l y mediate the stimulation of 

gonadotrophin secretion by LHRH i n anterior p i t u i t a r y c e l l s 

(Chang et a l . , 1986). 

In the same experiment, the e f f e c t s of other unsaturated 

f a t t y acids on P 4 production were also examined (Fig. 43). A l l 
-5 

the treatments were at the dose of 10 M which was the maximal 

e f f e c t i v e concentration f o r AA on stimulating the production of 

P 4« 11,14 eicosadenoic a c i d (C18:2), l i n o l e i c acid (C18:2), 

gamma-linolenic acid (C18:3), homo-gamma-linolenic acid 

(C18:3) l i k e AA, could increase P 4 production i n 5h c e l l 

incubation. Fatty acids stimulated P 4 production i n a order of 

AA> homo-gamma-linolenio gamma-linolenio 11,14 eicosadienoic 

aci d . Another unsaturated f a t t y acid, o l e i c acid (C18:l), 

f a i l e d to stimulate P 4 production. These data were s i m i l a r to 

the e f f e c t s of AA and other unsaturated f a t t y acids on PRL 

secretion i n human decidual t i s s u e (Handwerger et a l 1981). 
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The mechanism of these unsaturated f a t t y acids on P 4 production 

was not c l e a r . However, these unsaturated f a t t y acids are used 

for c e l l structures and can convert to AA cascade which could 

n a t u r a l l y e x i s t i n the c e l l membrane, or produce other series 

of PGs and LTs (Crawford, 1983). Therefore, a large membrane 

source of PGs and LTs precursor was provided. 

The mechanism by which AA stimulates P 4 production was 

not known. Previously, LHRH and i t s agonists have been shown 

to stimulate PG production i n rat granulosa c e l l s (Clark, 

1982). The stimulatory e f f e c t of LHRH on PG synthesis was 

additive but apparently d i s t i n c t from that induced by LH. LH 

or hCG, as well, has been reported to stimulate ovarian 

lipoxygenase a c t i v i t y i n vivo and i n v i t r o . The a c t i v a t i o n of 

lipoxygenase might be correlated with f o l l i c u l a r rupture at 

ovulation (Reich et a l . , 1983; Reich et a l . , 1985). In' the 

present study, the possible involvement of PGs was examined 

using indomethacin that i n h i b i t s the cyclooxgenase pathway of 

AA metabolism. The addition of indomethacin to granulosa 

c e l l s d i d not a l t e r LHRH- or AA-induced P 4 production during a 

5h culture period (Fig. 48 and 49) . Although the blockade of 

prostaglandin did not a f f e c t P 4 production, the i n h i b i t i o n of 

cyclooxygenase with indomethacin did block ovulation i n rat 

(Amrstrong and Grinwich, 1972), rabbit (Armstrong et a l , 1974) 

and marmoset monkeys (Mai et a l . , 1975). In addition, i n 

indomethacin-blocked rats, administration of PGE 2 can induce 

ovulation ( T s a f r i r i et a l . , 1972). Further, i n the absence of 

prostaglandins, the rupture of ovarian f o l l i c l e d i d not occur 
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(LeMaire and Marsh, 1975) . AA can be also converted by the 

lipoxygenase enzymes to a va r i e t y of HPETEs that would be 

rapidly reduced to t h e i r respective HETEs, and 5-HPETE gives 

r i s e to another series of products known as the leukotrienes. 

The contribution of the lipoxygenase pathways to the 

stimulation of P 4 synthesis was further investigated u t i l i z i n g 

NDGA, an e f f e c t i v e i n h i b i t o r of lipoxygenase pathway of AA in 

f o l l i c u l a r t i s s u e (Reich et a l . , 1983). AA-induced P 4 

production was reduced to the l e v e l as that caused by NDGA, and 

LHRH-induced P 4 formation was only p a r t i a l l y suppressed (Fig. 

48 and 49). Although NDGA reduced AA- and LHRH-stimulated P 4 

production, the basal l e v e l of P 4 was increased by NDGA, which 

might r e s u l t from the increase i n the precursor f o r PGs 

synthesis. These r e s u l t s indicated that there may be a 

stimulatory r o l e for PGs i n steroidogenesis. Indeed, exogenous 

PGE 2 has been shown to stimulate cAMP, estrogen and P 4 

production (Richards et a l . , 1976). Furthermore, the p a r t i a l l y 

i n h i b i t o r y e f f e c t of NDGA on LHRH-induced P 4 production 

supports the notion that multiple second messengers were 

involved i n the action of LHRH. Besides the release of AA from 

plasma membrane, LHRH also induced the formation of DG which 
2+ 

leads the act i v a t i o n of PKC, and IP 3 which causes Ca 

mobilization. These d i f f e r e n t pathways cooperated each other 

and thus contributed to the action of LHRH. The finding that 

LHRH- or AA-stimulated P 4 production was not influenced by the 

presence of indomethacin supported the previous observations 

that LH induced P. production was not affected by the 
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indomethacin-blocked PG formation (Clark, 1982), and that the 

enhancement of FSH or CT-induced PGE2 production by LHRH or TPA 

di d not t i g h t l y couple to the production of progesterone 

(Chapter 4) . Taken together, LHRH-stimulated P 4 production, 

p a r t i a l l y by increasing free AA and by converting AA to i t s 

metabolites, d i d not r e s u l t from PG formation. Recently, AA 

has been implicated i n the secretion of oxytocin i n ovine 

corpus luteum. The r e s u l t s showed that PGE 2 and P G F 2 a ] _ p n a do 

not stimulate oxytocin secretion, and AA may have i t s e f f e c t 

v i a the lipoxygenase pathway (Hirst et a l . , 1988), further 

implicating the involvement of lipoxygenase metabolites i n 

regulating ovarian functions. 

The i n h i b i t o r y e f f e c t of NDGA on LHRH- or AA-induced P 4 

formation indicated that lipoxygenase metabolites of AA had a 

ro l e i n the P 4 production induced by LHRH. This hypothesis was 

further investigated i n the present study using several HETEs 

and HPETEs from the 5-, 12-, and 15-lipoxygenase metabolism of 

AA. The r e s u l t s indicated that at least some lipoxygenase 

metabolites of AA were capable of enhancing the formation of P 4 

by r a t granulosa c e l l s i n a dose dependent manner (Fig. 50) . 

The stimulatory e f f e c t s of 12-HETE on P 4 production appeared to 

be more potent than that of 5-HETE, 5-HPETE or 15-HPETE. In 

addition to P 4, the formation of PGE2 was also stimulated by 

several of the AA metabolites (Fig. 51) . This e f f e c t of AA 

metabolitws i s not due to cross-reaction of the metabolites i n 

the PGE2 assay, since at the concentrations used the 

metabolites do not cross-react. At 5xl0~ 6M, 12-HETE and 15-
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HETE were more potent than 5-HETE i n t h i s regard. Like AA, 5-

HETE, 5-HPETE, 12-HETE, 15-HETE and 15-HPETE increased basal P 4 

production and further augmented the LHRH-induced P 4 

production. Also, at 10~6M, 12-HETE and 15-HETE stimulated 

basal PGE 2 formation and potentiated the stimulation of PGE 2 

formation induced by LHRH (Fig. 52). Since very s i m i l a r 

r e s u l t s were observed with TPA (Fig. 53), the f a c i l i t a t o r y 

e f f e c t s of HETEs and HPETEs on LHRH-induced P 4 and PGE 2 

production may be due to the in t e r a c t i o n of these AA 

metabolites with LHRH-activated PKC. Since the present data 

showed the metabolites of lipoxygenase pathway of AA-stimulated 

PGE 2 production, one might speculate that HETEs or HPETEs act 

as i n t e r n a l regulators between the metabolites of lipoxygenase 

and cyclooxygenase pathway. Previous studies have shown that 

both LH and hCG regulate lipoxygenase a c t i v i t y , but the action 

of LHRH on these enzymes needs further in v e s t i g a t i o n . I t has 

been reported that both 5- and 15-lipoxygenase require calcium 

for a c t i v i t y i n p l a t e l e t (Pace-Asciak and Smith, 1986), thus, 
2+ 

LHRH-induced rapid increase i n [Ca ] i might be related to the 

a c t i v i t y of these enzymes i n the ovarian c e l l s as well. 

There was increasing evidence to support the notion that 

lipoxygenase metabolites of AA were potent mediators of hormone 

production i n d i f f e r e n t endocrine ti s s u e s . One or more of the 

cyclooxygenated and/or lipoxygenated metabolites of AA might be 

a component of the cascade of reactions i n i t i a t e d by LHRH and 

ultimately r e s u l t i n LH secretion i n p i t u i t a r y (Kiesel et a l . , 

1986; K i e s e l et a l . , 1987). I t has also been reported that 
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leukotrienes are e f f e c t i v e stimulators of LH release from 

dispersed r a t anterior p i t u i t a r y c e l l s (Kiesel et a l . , 1987; 

Ki e s e l et a l . , 1986; Hurling et a l . , 1985). Lipoxygenase 

products of AA metabolism have already been shown to stimulate 

PRL release (Kiesel et a l . , 1987). Yamamoto et a l . have 

reported that 5-HETE stimulates i n s u l i n release i n pancreatic 

i s l e t s (Yamamoto et a l . , 1983). In bovine corpus luteum, 5-

HETE reduced the biosynthesis of P^ and 6 - k e t o - p G F i a j _ p n a f while 

the synthesis of P G F
2 a i p h a w a s u n a f f e c t e d (Milvae et a l . , 

1986). I n h i b i t i o n of lipoxygenase a c t i v i t y with NDGA, BW 755C 

and FPL-55712 resulted i n p a r t i a l blockade of ovulation (Reich 

et a l , 1983; Reich et a l . , 1985). Although high concentration 

of 5-HETE had been found i n bovine l u t e a l t i s s u e , i n d i c a t i n g a 

p h y s i o l o g i c a l importance of those compounds as regulator of 

ovarian functions (Milvae et a l . , 1986), thus f a r , there was no 

evidence to show that the receptors of these hydroperoxy acids 

e x i s t on r a t granulosa c e l l . Whether HETEs and HPETEs prove to 

be i n t r a c e l l u l a r rather than e x t r a c e l l u l a r signals remains to 

be determined. The 5-lipoxygenase pathway i s of special 

i n t e r e s t because 5-HPETE can be r a p i d l y converted to 

leukotrienes that are presumably the most active of the 

lipoxygenase metabolites of AA (Samuelsson, 1983; Morris et 

a l . , 1982). In view of the present demonstration of 

stimulatory e f f e c t s of 5-HPETE on P 4 and PGE 2 production, the 

r o l e of leukotrienes on ovarian c e l l function warrants further 

inve s t i g a t i o n . 

In addition, the stimulatory r o l e of AA was further 
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examined i n the present study. The i n h i b i t o r y or stimulatory 

e f f e c t s of LHRH on P 4 accumulation with or without the presence 

of FSH during the d i f f e r e n t culture period (Fig. 54) further 

confirmed the previous studies that the i n h i b i t o r y action of 

LHRH on granulosa c e l l steroidogenesis was only observed a f t e r 

24h i n the presence of exogenous gonadotropins, or other cAMP 

stimulating agents, whereas LHRH did not influence 

steroidogenesis induced by gonadotrophins i n short term 

incubations (Knecht et a l . , 1982; Hsueh and Schaeffer, 1985; 

H i l l e n s j o et a l . , 1982). The reason for the apparent delay i n 

the onset of t h i s i n h i b i t o r y e f f e c t was not known, although i t 

was believed that LHRH-induced membrane polyphosphoinositide 

breakdown l e d to the formation of IPs and DG, and the release 

of AA, might p a r t i c i p a t e i n the action of LHRH (Ma and Leung, 

1985; Davis et a l . , 1986; Davis et a l . , 1987; Minegishi and 

Leung, 1985; Wang and Leung, 1987). Unlike the markedly 

i n h i b i t o r y e f f e c t of LHRH and TPA, AA d i d not a f f e c t the 

magnitude of P 4 production induced by FSH during a 24h 

incubation period (Fig. 55) . Since the e f f e c t of TPA was 

e s s e n t i a l l y s i m i l a r to that of LHRH during long term granulosa 

c e l l culture, a c t i v a t i o n of protein kinase C may p a r t i c i p a t e i n 

the i n h i b i t o r y action of LHRH at two d i s t i n c t s i t e s , the 

gonadotrophin receptor/adenylate cyclase complex and a s i t e 

d i s t a l to the generation of cAMP (Welsh et a l . , 1984; Barry et 

a l . , 1985). Likewise, calcium mobilization may also be 

involved i n the action of LHRH to i n h i b i t gonadotrophin induced 

cAMP and s t e r o i d formation i n granulosa c e l l s (Ranta et a l . , 
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1983; Leung et a l . , 1988). On the other hand, the findings 

with exogenous AA suggested that AA mediated a stimulatory, 

rather than i n h i b i t o r y r o l e i n the action of LHRH (Wang and 

Leung, 1988) . To further examine t h i s hypothesis, granulosa 

c e l l s were treated with FSH (with or without LHRH or TPA) for 

18h, at which time the i n h i b i t o r y e f f e c t of LHRH or TPA was 

already evident. Addition of AA during a further 6h incubation 

p a r t i a l l y reversed the i n h i b i t o r y e f f e c t of LHRH or TPA on FSH-

or CT-induced P 4 production (Fig. 56-58). AA was also added to 

some c e l l s which had been pretreated with LHRH or TPA alone 

( i . e . i n the absence of FSH) f o r 18h, and the response of the 

c e l l s to AA was quite s i m i l a r to that of untreated granulosa 

c e l l s given AA during a 5h incubation (Fig. 59). The previous 

studies have reported that LHRH and TPA share a similar 

i n h i b i t o r y mechanism of action on FSH induced P 4 production, 

and the i n h i b i t o r y e f f e c t s of LHRH or TPA could not be reversed 

by the addition of FSH (Knecht et a l . , 1982; Shinohara et a l . , 

1985). The present data suggested that P 4 production elevated 

by AA was mediated by a mechanism which was not suppressed by 

LHRH and TPA, and granulosa c e l l s s t i l l retained the a b i l i t y to 

respond to AA following LHRH or TPA pretreatment. 

The e f f e c t of AA on the enzymes involved i n progesterone 

synthesis and metabolism was further examined. Activation of 
. 5 .4 

the side chain cleavage enzymes (SCC), and 3-beta-HSD/4 -A -

isomerase convert cholesterol to P 4 v i a pregnenolone. On the 

other hand, P 4 i s converted by 20-alpha-HSD to i t s inactive 

form, 20-alpha-hydroxy-pregn-4-en-3-one (20-alpha-OH-P). 
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Previous studies have indicated that LHRH alone increases 3-

beta-HSD a c t i v i t y by an increase i n the apparent V and i s 
max 

accompanied by increased accumulation of pregnenolone, P 4 and 

20-alpha-OH-P production (Jones and Hsueh, 1981a; 1982b). 

Moreover, the i n h i b i t o r y e f f e c t of LHRH on FSH induced 3-beta-

HSD a c t i v i t y , FSH induced pregnenolone and P 4 production have 

also been observed during 24h granulosa c e l l culture, and t h i s 

i n h i b i t o r y action of LHRH i s characterized by a decrease i n the 

apparent V m a x without an a l t e r a t i o n of the 1^ of the enzyme 

(Jones and Hsueh, 1981b; 1982a; 1982b). TPA exerted a s i m i l a r 

e f f e c t on enzyme a c t i v i t i e s and FSH induced hormone production 

to LHRH (Jones and Hsueh, 1982a; 1982b; Welsh et a l . , 1984). 

TPA alone stimulated P 4 production and the a c t i v i t i e s of 3-

beta-HSD and 20-alpha-HSD, leading to increased production of 

progestin. In contrast, TPA i n h i b i t i o n of P 4 biosynthesis 

induced by gonadotrophin was accompanied by reduction of 3-

beta-HSD a c t i v i t y . The increase i n 20-alpha-HSD a c t i v i t y 

resulted i n the conversion of b i o l o g i c a l active P 4 to 20-alpha-

OH-P, a b i o l o g i c a l i nactive metabolites. The e f f e c t s of AA, 

LHRH and/or TPA on P 4 and 20-alpha-OH-P accumulation were 

compared i n the present study (Fig. 60). AA, LHRH, or TPA each 

stimulated the production of P 4 and AA enhanced the P 4 

production induced by LHRH and TPA (Fig. 60; A panel). LHRH or 

TPA markedly increased 20-alpha-OH-P production, however AA was 

only marginally e f f e c t i v e i n increasing 20-alpha-OH-P (Fig. 60; 

panel B). In addition, AA d i d not show any sy n e r g i s t i c e f f e c t 

with LHRH or TPA on 20-alpha-OH-P production. These r e s u l t s 
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indicate that AA increases P 4 production by stimulating 

biosynthesis rather than s i g n i f i c a n t l y a l t e r i n g 20-alpha-HSD 

a c t i v i t y . 

To further examine the action of AA on SCC a c t i v i t y , a 

substrate for the SCC enzymes, 25-OH-cholesterol, has been used 

to increase P. formation. 25-OH-cholesterol i s a water soluble 4 
s t e r o i d which r e a d i l y enters c e l l s and i s metabolized to 

s t e r o i d hormones i n mitochondria (Toaff et a l . , 1982; Lino et 

a l . , 1985). Several steps i n the cholesterol SCC reaction such 

as uptake of cholesterol by mitochondria, the 

intramitochondrial access of cholesterol to the SCC enzyme 

complexes, and the modulation of the mitochondrial cytochrome 

P-450 l e v e l s , have been suggested to be under hormone control 

(Leaven and Boyd, 1981; Sulimovici and Boyd, 1968). In the 

present study, i t was observed that both LHRH and TPA enhanced 

P 4 production i n the presence of 25-OH-cholesterol (Fig. 61) . 
5 * 4 

Since 3-beta-HSD/ - -isomerase a c t i v i t y was not rate-

l i m i t i n g i n granulosa c e l l s , the increase i n progesterone 

production i n the presence of 25-OH-cholesterol most l i k e l y 

r e f l e c t e d the increased a v a i l a b i l i t y of substrate to SCC, and 

the stimulation of P 4 production by 25-OH-cholesterol indicated 

that the SCC enzymes were substrate l i m i t e d as previously 

reported (Bagavandoss and Midgley, 1987; Toaff et a l . , 1982). 

Furthermore, AA increased P 4 production, i n the presence of 25-

OH-cholesterol, but to a lesser extent than that induced by 

LHRH or TPA (Fig. 61), suggesting that the AA stimulation of P 4 

also takes place at the l e v e l of SCC which enhanced substrate 
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uptake by mitochondria. Interestingly, AA f a i l e d to further 

enhance P 4 production i n the presence of cholesterol substrate. 

The combined treatment of granulosa c e l l s with AA plus LHRH or 

with AA plus TPA apparently caused maximal a c t i v i t y of the SCC 

enzymes; therefore addition of 25-OH-cholesterol f a i l e d to 

further enhance P 4 production. 

In addition, the i n vivo synthesis of ovarian 

pregnenolone i s from cholesterol that i s taken up from the 

plasma, l i b e r a t e d from cholesterol ester stored within 

cytoplasmic l i p i d droplets and synthesized i n the ovarian c e l l 

from 2 carbon components. As demonstrated i n granulosa c e l l s 

cultured i n serum free medium, choleste r o l could come from de 

novo biosynthesis, which i s dependent on the a c t i v i t i e s of the 

rate l i m i t i n g 3-hydroxy-3-methylglutaryl coenzyme A reductase 

(Dorrington and Armstrong, 1979; Wang and Hsueh, 1979). AA may 

also increase enzyme a c t i v i t y i n some steps p r i o r to 

pregnenolone synthesis. I t i s possible that AA-induced P 4 

production i s due to either the increased endogenous synthesis 

of c h o l e s t e r o l , or the l i b e r a t i o n of cholesterol from 

cholesterol esters. There would also be a combination of the 

above reactions i n response to AA. However, any of these 

mechanisms could account for the observed increase i n AA-

induced P 4 production. 

I t i s of interest that the i n h i b i t o r y e f f e c t of LHRH on 

FSH induced ovarian ster o i d hormone production was only 

observed a f t e r a r e l a t i v e l y long time i n culture (Fig. 54). 

One of the proposed mechanisms was that LHRH further enhanced 
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gonadotrophin induced 20-alpha-HSD a c t i v i t y by which LHRH 

diminished the gonadotrophin stimulation of production. The 

LHRH stimulation of 20-alpha-HSD i n gonadotrophin treated c e l l s 

was the r e s u l t of changes i n enzyme a c t i v i t y , rather than 

enzyme a f f i n i t y f o r the substrate ( P h i l l i p et a l . , 1980). 

Assuming that the calcium and PKC pathways can p a r t i a l l y 

mediate the i n h i b i t o r y action of LHRH on granulosa c e l l s , i t 

can be postulated that LHRH-induced l i b e r a t i o n of AA may 

somehow antagonize the i n h i b i t o r y component of LHRH action. 

This was suggested by the present findings that AA d i d not 

decrease FSH induced P 4 accumulation even a f t e r 24h (Fig. 53) 

and that acute addition of AA to the FSH and CT-pretreated 

c e l l s caused a p a r t i a l reversal of the i n h i b i t o r y e f f e c t of TPA 

or LHRH on P 4 production (Fig. 56-58). Moreover, AA mainly 

stimulated P 4 production, but TPA stimulated both P 4 and 20a-

OH-P e f f e c t i v e l y (Fig. 60). These data suggest that a c t i v a t i o n 

of PKC may well mediate the long term i n h i b i t o r y action of LHRH 

on P 4 accumulation, by converting P 4 to 20-alpha-OH-P. In 

contrast, AA (or i t s active metabolites) most l i k e l y played a 

r o l e i n the short term stimulatory e f f e c t of LHRH on P 4 

production by enhancing the a c t i v i t y of SCC. Taken together, 

the p o t e n t i a l i n h i b i t o r y e f f e c t s of LHRH (via a c t i v a t i o n of 

PKC) might have been prevented by AA during the 5h incubations. 

A f t e r that, the LHRH-induced- free AA may convert to some 

inac t i v e metabolites and the inh i b i t o r y component of LHRH 

action became dominant. 

In addition, study of the functions of TPA, A23187 and AA 



has provided evidence for a p a r t i c i p a t i o n of PKC, C a 2 + and 

metabolites of AA i n the mediation of LHRH action (chapter 4). 

However, i t was u n l i k e l y that c e l l u l a r responses involving PKC, 

calcium and metabolites of AA were j u s t l i m i t e d to the c e l l 

membrane and cytoplasm. There was accumulating evidence that 

extranuclear events were coordinated by nuclear components, 

including changes i n s p e c i f i c gene expression, i . e . the 

regulation of P450 g c c mRNA by FSH (Richards and Hedin, 1988). 

Therefore, the action of LHRH on FSH induced ovarian 

steroidogenesis i n long term culture may be due to the 

int e r a c t i o n of these hormones on gene expression. I t has 

already been shown that FSH administration to hypophysectomized 

rats causes the increase i n cytochrome P450o__ mRNA i n 

granulosa c e l l s and FSH induced gene expression which i s only 

c l e a r l y demonstrable a f t e r 7 to lOh. Thus far, no discussion 

of LHRH regulation of gene expression has been made i n 

granulosa c e l l s . 

In conclusion, the present r e s u l t s strongly support the 

hypothesis that AA and i t s lipoxygenase metabolites p a r t i a l l y 

mediate the action of LHRH by playing a stimulatory r o l e i n the 

d i r e c t e f f e c t s of LHRH on ovarian hormone production. 

Furthermore, i t indicates that the actions of LHRH or LHRH-like 

peptide on granulosa c e l l s are mediated by the d i f f e r e n t 

i n t r a c e l l u l a r signal pathways, and that the complex interplay 

between these pathways ultimately d i c t a t e s the time-dependent 

steroidogenic response of the ovary to LHRH or LHRH-like 

peptide. 
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Although gonadotropins are the major trop h i c hormones 

that regulate ovarian functions, increasing evidence suggests 

that l o c a l regulators p a r t i c i p a t e i n paracrine or autocrine 

control of ovarian functions. 

The d i r e c t actions of LHRH on rat ovarian c e l l s have been 

documented. Unlike gonadotropins, LHRH does not use cAMP as 

i t s second messenger. Increasing evidence shows that the 

i n i t i a l action of LHRH involves a rapid a l t e r a t i o n i n the 

metabolism of membrane i n o s i t o l l i p i d s i n the ovary. In the 

present study, the actions of LHRH on the breakdown of membrane 
2 + 

phosphoinositides, changes of i n t r a c e l l u l a r Ca , production 

of s t e r o i d hormones and prostaglandins i n r a t granulosa c e l l s 

were extensively studied. In radiolabeled rat granulosa c e l l s , 

the rapid and s p e c i f i c formation of i n o s i t o l 1,4,5-

trisphosphate and d i a c y l g l y c e r o l , and the release of 

arachidonic acid were observed shortly a f t e r addition of LHRH. 
2 + 

LHRH also caused a rapid and transient increase i n [Ca ] i i n 

the majority of granulosa c e l l s as assessed by fura-2 

microspectrofluorimetry. I n o s i t o l 1,4,5-trisphosphate, which 

i s produced simultaneously with d i a c y l g l y c e r o l by PLC 

hydrolysis of PIP 2/ m a v D e responsible f o r the LHRH induced 
2+ 

rapid and transient a l t e r a t i o n s of [Ca ] i i n granulosa c e l l s . 

I t i s known that LHRH exerts e i t h e r stimulatory or i n h i b i t o r y 

actions on ovarian c e l l s depending on the culture period, the 

presence of other hormones such as gonadotropins, and the 
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nature of the hormone examined. To t e s t the hypothesis that 

the e f f e c t s of LHRH on granulosa c e l l s were mediated, at least 

i n part, by calcium and PKC, the e f f e c t s of the calcium 

ionophore A23187 and the phorbol ester TPA on the production of 

progesterone and PGE 2 have been examined. The present study 

demonstrated that LHRH i n h i b i t e d the production of progesterone 

stimulated by FSH, while simultaneously enhancing PGE2 

production stimulated by FSH. These data suggest that the 

action of LHRH i s mainly at a step(s) following gonadotropin 

induced cAMP formation. TPA and A23187 can mimic the actions 

of LHRH. Interestingly, TPA acted s y n e r g i s t i c l y with A23187 on 

PGE 2 production but not on the production of progesterone, 
2+ 

suggesting multiple aspects of PKC and Ca action on granulosa 
c e l l s . I t appears that a c t i v a t i o n of PKC and a l t e r a t i o n of 

2+ 
[Ca ] i not only mediates c e l l u l a r processes, but also a l t e r s 

membrane phosphoinositide metabolism, thus providing a 

potent i a l feedback control mechanism. Increased free 

arachidonic a c i d l e v e l induced by LHRH serves as the precursor 

for the synthesis of cyclooxygenase and lipoxygenase 

metabolites of arachidonic acid. Prostaglandins are the 

cyclooxygenase metabolites of arachidonic a c i d which play a 

very important r o l e i n reproductive functions of the ovary. 

Although the production of prostaglandin may not be t i g h t l y 

coupled to progesterone production, i t i s c e r t a i n l y involved i n 

the ovulation process. In the present study, lipoxygenase 

pathway metabolites apparently p a r t i c i p a t e d i n the stimulatory 

action of LHRH probably by enhancing the action of protein 
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F i g . 62. I l l u s t r a t i o n of the interactions between l u t e i n i z i n g 
hormone-releasing hormone (LHRH) and gonadotrophin second 
messenger pathways. Abbreviations: LH, l u t e i n i z i n g hormone; 
FSH, f o l l i c l e stimulating hormone; R, receptor; DG, 1,2-
d i a c y l g l y c e r o l ; cAMP, 3'5'-cyclic adenosine monophosphate; PKC, 
protein kinase C; ER, endoplasmic reticulum; AA, arachidonic 
acid; HPETE, hydroperoxyeicosatetraenoic acid; HETE, 
hydroxyeicosatetraenoic 2£cid; LT, leukotriene; PG, 
prostaglandin; [Ca ] i , i n t r a c e l l u l a r calcium ion 
concentration; IP 3, i n o s i t o l 1,4,5,-trisphosphate; P 4, 
progesterone. 
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kinase C on the enzymes involved i n steroidogenesis. The 

in t e r a c t i o n between the gonadotropins and LHRH are summarized 

schematically i n F i g . 62. 

The evidence f o r the possible paracrine or autocrine 

ro l e s of LHRH i n ovarian c e l l s i s strengthened by the 

demonstration of the presence of LHRH-like peptides i n human, 

rat , bovine and ovine ovaries i n other sdudies. The 

involvement of these d i f f e r e n t hormonal systems and multiple 

second messenger mechanisms i n the regulation of granulosa c e l l 

function ensures the optimal ovarian hormone synthesis and the 

growth of the ovarian f o l l i c l e s . In addition, r a t granulosa 

c e l l s serve as an id e a l model for studies on the mechanism of 

hormone action because of the presence of both cAMP and 
2 + 

Ca -protein kinase C pathways. The present i n v i t r o findings 

should help future elucidation of the processes of ovarian 

hormone production and ovulation. 
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