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ABSTRACT 

The concept of moving surface boundary-layer control, as applied to the Jou-
kowsky and N A C A airfoils, is investigated through a planned experimental program 
complemented by theoretical and flow visualization studies. The moving surface was 
provided by one or two rotating cylinders located at the leading edge, the trailing 
edge, or the top surface of the airfoil. Three carefully designed two-dimensional 
models, which provided a wide range of single and twin cylinder configurations, 
were tested at a subcritical Reynolds number (Re = 4.62 x 10 4 or Re — 2.31 x 105) 
in a laminar-flow tunnel over a range of angles of attack and cylinder rotational 
speeds. The test results suggest that the concept is indeed quite promising and can 
provide a substantial increase in lift and a delay in stall. 

The leading-edge rotating cylinder effectively extends the lift curve without sub­
stantially affecting its slope. When used in conjunction with a second cylinder on 
the upper surface, further improvements in the maximum lift and stall angle are 
possible. The maximum coefficient of lift realized was around 2.22, approximately 
2.6 times that of the base airfoil. The maximum delay in stall was to around 45°. In 
general, the performance improves with an increase in the ratio of cylinder surface 
speed (Uc) to the free stream speed (U). However, the additional benefit derived 
progressively diminishes with an increase in Uc/U and becomes virtually negligible 
for Uc/U > 5. 

There appears to be an optimum location for the leading-edge-cylinder. Tests 
with the cylinder at the upper side of the leading edge gave quite promising results. 
Although the C x j m a i obtained was a little lower than the two-cylinder configuration 
(1.95 against 2.22), it offers a major advantage in terms of mechanical simplicity. 
Performance of the leading-edge-cylinder also depends on its geometry. A scooped 
configuration appears to improve performance at lower values of Uc/U (Uc/U < 1). 
However, at higher rates of rotation the free stream is insensitive to the cylinder 
geometry and there is no particular advantage in using the scooped geometry. 

A rotating trailing-edge-cylinder affects the airfoil characteristics in a fundamen­
tally different manner. In contrast to the leading-edge-cylinder, it acts as a flap by 
shifting the CL vs. a plots to the left thus increasing the lift coefficient at smaller 
angles of attack before stall. For example, at a = 4°, it changed the lift coefficient 
from 0.35 to 1.5, an increase of 330%. Thus in conjunction with the leading-edge-
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cylinder, it can provide significant improvements in lift over the entire range of 
small to moderately high angles of incidence (a < 18°). 

On the theoretical side, to start with, the simple conformal transformation ap­
proach is used to obtain a closed form potential-flow solution for the leading-
edge-cylinder configuration. Though highly approximate, the solution does predict 
correct trends and can be used at a relatively small angle of attack. This is followed 
by an extensive numerical study of the problem using: 

• the surface singularity approach including wall confinement and separated flow 
effects; 

• a finite-difference boundary-layer scheme to account for viscous corrections; and 

• an iteration procedure to construct an equivalent airfoil, in accordance with the 
local displacement thickness of the boundary layer, and to arrive at an estimate 
for the pressure distribution. 

Effect of the cylinder is considered either through the concept of slip velocity 
or a pair of counter-rotating vortices located below the leading edge. This sig­
nificantly improves the correlation. However, discrepancies between experimental 
and numerical results do remain. Although the numerical model generally predicts 
C^.max with a reasonable accuracy, the stall estimate is often off because of an 
error in the slope of the lift curve. This is partly attributed to the spanwise flow at 
the model during the wind tunnel tests due to gaps in the tunnel floor and ceiling 
required for the connections to the externally located model support and cylinder 
drive motor. However, the main reason is the complex character of the unsteady 
flow with separation and reattachment, resulting in a bubble, which the present nu­
merical procedure does not model adequately. It is expected that better modelling 
of the cylinder rotation with the slip velocity depending on a dissipation function, 
rotation, and angle of attack should considerably improve the situation. 

Finally, a flow visualization study substantiates, rather spectacularly, effective­
ness of the moving surface boundary-layer control and qualitatively confirms com­
plex character of the flow as predicted by the experimental data. 
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1. INTRODUCTION 

1.1 Preliminary Remarks 

Ever since the introduction of the boundary-layer concept by Prandtl, there 

has been a constant challenge faced by scientists and engineers to minimize its 

adverse effects and control it to advantage. Methods such as suction, blowing, vor­

tex generators, turbulence promoters, etc., have been investigated at length and 

employed in practice with a varying degree of success. A vast body of literature 

accumulated over years has been reviewed rather effectively by several authors in­

cluding Goldstein [l], Lachmann [2], Rosenhead [3], Schlichting [4], Chang [5] and 

others. However the use of moving wall for boundary layer control has received 

relatively less attention. 

Irrespective of the method used, the main objective of a control procedure 

is to prevent or at least delay the separation of boundary layer from the wall. A 

moving surface attempts to accomplish this in two ways: 

• it retards the initial growth of the boundary layer by minimizing relative 

motion between the surface and the free stream; 

• it injects momentum into the existing boundary layer. 

Newton was probably the first one to observe the effect of moving wall 

boundary-layer control on the trajectory of a spinning ball [6], without any ap­

preciation as to the basis of the effect. Almost 200 years later Magnus [7] studied 

lift generated by circulation and utilized the effect to construct a ship with a vertical 

rotating cylinder replacing the sail. Swanson [8] and Iverson [9] have presented ex­

cellent reviews of literature on the Magnus effect. As early as in 1910, Prandtl [10] 

himself demonstrated his "ship of zero resistance" through flow around two counter-

rotating cylinders, while Flettner [11] applied the principle to ship propulsion in 
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1924 when he fitted large vertical rotating cylinders on the deck of the "Buchau". 

Later, in 1934, Goldstein [l] illustrated the principle of boundary layer control using 

a rotating cylinder at the leading edge of a flat plate. However, the most practical 

application of moving wall for boundary layer control was demonstrated by Favre 

[12]. Using an airfoil with upper surface formed by a belt moving over two rollers, 

he was able to delay separation until the angle of attack reached 55° where the 

maximum lift coefficient of 3.5 was realized. 

After a lull of more than twenty years (1938-1960), during which the tempo 

of research activity as indicated by important contributions in the field remained 

dormant, there appeared some signs of renewed interest in this form of boundary 

layer control. Alvarez-Calderon and Arnold [13] carried out tests on a rotating 

cylinder flap to evolve a high lift airfoil for S T O L type aircraft. The system was 

flight tested on a single engine high wing research aircraft designed by Aeronautics 

Division of the Universidad Nacional de Ingenieria in Lima, Peru [14]. Around the 

same time Brooks [15] presented his preliminary results of tests on a hydrofoil with 

a rotating cylinder at the leading or trailing edge. For the leading-edge configura­

tion only a small increase in lift was observed. However, for the trailing-edge case 

a substantial gain in lift resulted. Motivation for the test program was to assess 

improvement in fin performance for torpedo control. Along the same line, Steele 

and Harding [16] studied the application of rotating cylinders to improve ship ma-

noeuverability. Extensive force measurements and flow visualization experiments 

were conducted using a water tunnel and a large circulating water channel. Three 

different configurations of rudder were used with the rotating cylinder: 

a) in isolation; 

b) at the leading edge of a rudder; and 

c) combined with a flap-rudder, the cylinder being at the leading edge of the 

flap. 
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From the overall consideration of hydrodynamic performance, mechanical complex­

ity, and power consumption the configuration in (b) was preferred. A n application 

to a 250,000 ton tanker showed the power requirement for a i m diameter cylinder 

rotating at 350 rpm to be around 400 kW. 

Of some interest is the North American Rockwell designed OV-10A aircraft 

which was flight tested by N A S A ' s Ames Research Center [17- 19]. Cylinders, lo­

cated at the leading edges of the flaps, are made to rotate at high speed with the 

flaps in lowered position. The main objective of the test program was to assess 

handling qualities of the propeller-powered STOL type aircraft at higher lift coef-

ficents. The aircraft was flown at speeds of 29-31 m/sec, along approaches up to 

—8°, which corresponded to a lift coefficient of about 4.3. In the pilot's opinion any 

further reductions in approach speed were limited by the lateral-directional sta­

bility and control characteristics. Excellent photographs of the airplane on ground 

(showing the cylinders in position) and in flight have been published in the Aviation 

Week and Space Technology [20]. 

Efforts so far, though useful to an extent, were generally aimed at specific 

configurations and lacked approach to the problem at a fundamental level in an or­

ganized fashion. From this point of view, Tennant's contribution to the field is sig­

nificant. In 1971 Tennant presented an interesting analysis for the two-dimensional 

moving wall diffuser with a step change in area [21, 22]. The diffuser incorporated 

rotating cylinders to form a part of its wall at the station of the area change. Pre­

liminary experiments were also conducted for an area ratio up to 1 : 2.5, which 

showed no separation for appropriate moving surface to diffuser inlet velocity ratio. 

Tennant et al. [23] have also conducted tests with a wedge shaped flap having a 

rotating cylinder as the leading edge. Flap deflection was limited to 15° and the 

critical cylinder velocity necessary to suppress separation was determined. Effects 

of increase in gap size (between the cylinder and the flap surface) were also assessed. 

No effort was made to observe the influence of an increase in cylinder surface veloc-
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ity beyond Uc/U = 1.2. More recently Tennant et al. [24] have reported circulation 

control for a symmetrical airfoil with a rotating cylinder forming its trailing edge. 

For zero angle of attack, the lift coefficient of 1.2 was attained with Uc/U = 3. Also 

of interest is their study concerning the boundary-layer growth on moving surfaces 

accounting for gap effects [25, 26]. 

Wi th reference to V / S T O L application the preliminary experimental study 

by Modi et al. [27] with N A C A 63-218 (modified) airfoil used in the Canadair 

CL-84 must be mentioned. The test program was divided into three stages: 

a) the airfoil with its leading edge formed by a circular cylinder; 

b) the airfoil with its leading edge formed by a rotating cylinder and provided 

with a plain unslotted flap; and 

c) the airfoil with a slotted flap, leading edges of both formed by circular cylin­

ders. 

The results suggested that the moving surface can provide quite effective boundary-

layer control. It can lead to a significant increase in the maximum lift coefficient 

and stall angle. A rotating cylinder at the leading edge of an airfoil seems to provide 

the maximum benefit. In general, the rear cylinder did not contribute substantially 

to the improvement in performance, at least in the configuration tested. In fact, in 

certain situations, due to presence of an additional gap, it affected the performance 

adversely. 

1.2 Scope of the Present Investigation 

The investigation reported here builds upon this body of literature. It studies 

fluid dynamics of an airfoil with the moving surface boundary-layer control using 

experimental, analytical, and numerical procedures. 

To begin with, an extensive wind tunnel test program is undertaken to assess 

effectiveness of the moving surface boundary-layer control. The information also 
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serves as reference to evaluate validity of the theoretical results. The experimental 

study uses three distinct models as follows: 

i) a symmetrical Joukowsky model with its nose replaced by three different 

configurations of rotating cylinders: 

a) solid circular cylinder, 

b) a scooped cylinder, 

c) reversed scooped cylinder; 

ii) a multi-section design, based also on the same symmetrical Joukowsky shape, 

which allows the use of one or more rotating cylinders at various possible 

locations around the airfoil such as: 

a) the leading edge, 

b) the trailing edge, 

c) the upper surface, 

d) any combination of the above; 

iii) a N A C A 63-218 modified airfoil model, with a rotating cylinder replacing 

its nose. As mentioned earlier, the airfoil was used by Canadair in its CL-84 

tilt wing V / S T O L design study. 

Next, the simple conformal transformation approach is used to obtain pre­

liminary qualitative information on the character of the flow. The attractive feature 

here is a closed form potential flow solution which permits ready parametric anal­

ysis. Of course, the solution is expected to be highly approximate as it does not 

account for viscosity and boundary-layer separation. However, at small angles of 

attack, the procedure may provide useful information. 

This is followed by a more elaborate numerical procedure which approaches 

the problem in several stages representing increasing order of complexity. It consists 
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of: 

i) a surface singularity approach incorporating wall confinement and separated 

flow effects. This involves replacement of the airfoil and wind tunnel wall sur­

faces with vorticity distribution in conjunction with appropriate constraint 

relations, and inclusion of a source within the contour of the airfoil to model 

the wake; 

it) a finite-difference boundary-layer scheme to account for viscous corrections. 

The scheme uses potential flow pressure distribution results to calculate the 

boundary-layer growth on the airfoil top and bottom surfaces until the point 

of separation; 

i i i ) a procedure which uses the results of (ii) to construct an equivalent airfoil, 

by displacing the airfoil surface in accordance with the local displacement 

thickness of the boundary layer. Iteration between the potential flow method 

and the boundary layer scheme leads to a final pressure distribution. 

A n extensive flow visualization study complements the experimental and 

numerical results. The thesis ends with some concluding comments and thoughts 

on extension of the work. 



2. WIND TUNNEL TEST PROGRAM 

Before embarking upon an extensive wind tunnel test program it was thought 

appropriate to undertake a preliminary flow visualization study to obtain some ap­

preciation as to the character of the flow and to help establish, qualitatively, relative 

merit of the system parameters involved (such as gap size, velocity ratio, cylinder 

surface roughness, etc.). This in turn helped design the models and plan the aerody­

namic tests. The flow visualization experiments were carried out in a glycerol-water 

solution tunnel having a test-section of 20.32 cm x 20.32 cm x 2.44 m and capable 

of producing Reynolds number in the range 60 - 10,000 (Figure 2-1). Deflection 

annular vanes together with several sections of honeycombs, brass screens and nylon 

wool gave exceptionally flat velocity profiles. The tunnel is powered by a centrifugal 

pump (Aurora type G A P B , 200 gal/min, 7.6 m head, 1750 rpm) driven by a three 

horsepower variable speed d.c. motor. A heat exchanger in the return circuit main­

tained temperature variation of the working fluid within 0.1 ° C . The dyed solution, 

of the same density as the working fluid, was injected upstream of the specially 

constructed model with rotating cylinders powered by an externally located drive 

system. The dye injection probe consisted of seven #23 syringe needles (0.38 mm 

diameter) placed 0.5 - 1 cm apart on a streamlined support. The rate of injection 

was controlled with brass needle valves. 

The results suggested that the cylinder rotation had a substantial effect on 

the character of the flow field. In general, with an increase in speed, the streaklines 

on the top surface tended to move closer to the airfoil surface resulting in a smaller 

wake. The same tendency persisted even at a higher angle of attack when the airfoil 

would normally stall. 

The tests pointed to the size of the gap and the ratio of the cylinder surface 

velocity to the free-stream velocity as the two significant parameters governing the 
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Figure 2-1 A sketch of the glycerol-water solution tunnel used in the flow visualization study 

to establish important system parameters. 
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beneficial effect of the rotation. With the gap size > 5 mm the effect of cylinder 

rotation reduced to almost negligible. Furthermore beyond Uc/U > 5, again the 

improvement in the flow pattern seemed only marginal. The information proved 

usefull in planning the design of aerodynamic models for wind tunnel tests. 

The wind tunnel models, approximately 0.38 m along chord and 0.68 m 

long, spanned the tunnel test-section, 0.91x0.68x2.6 m, to create essentially two-

dimensional condition. The models were provided with pressure taps, suitably dis­

tributed over the circumference, to yield detailed information concerning the surface 

loading (Figure 2-2). A given model was supported by an Aerolab six component 

strain gauge balance and tested in a low speed, low turbulence, return type wind 

tunnel where the air speed can be varied from 1-50 m/sec with a turbulence level 

of less than 0.1%. A Betz micromanometer with an accuracy of 0.2 mm of water 

was used to measure pressure differential across the contraction section of 7:1 ratio. 

The rectangular test section (0.91x0.68 m) is provided with 45° corner fillets which 

vary from 15.25 x 15.25 cm to 12 x 12 cm to partly compensate for the boundary 

layer growth. The spatial variation of velocity in the test section is less than 0.25%. 
A schematic diagram of the tunnel is shown in Figure 2-3 with the test arrangement 

and associated instrumentation schematically indicated in Figure 2-4. 

The tests were carried out with a systematic variation of the angle of attack 

and the cylinder rotational speed. The pressure plots were integrated in each case to 

obtain the lift coefficient. The lift was also measured independently using a strain 

gauge balance to assess two-dimensional character of the test arrangement. 

2.1 Joukowsky Airfoil Models I and II 

For the first set of wind tunnel tests a symmetrical Joukowsky airfoil model, 

of 15% maximum thickness to chord ratio, modified with a leading-edge cylinder was 

constructed. Radius of the cylinder was so selected as to match average curvature 
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Figure 2-2 Pressure taps, distributed over the circumference, to provide de­

tailed information on the surface loading. Also shown is the pressure ring 

assembly used for the wooden models. 



Turning vanes 

Figure 2-3 Schematic diagram of the wind tunnel used for the experimental study. 
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of the leading edge. Details of the leading edge geometry and the cylinder drive 

mechanism are shown in Figure 2-5. Primarily made of wood, the model carried a 

central aluminum pressure ring provided with 37 pressure taps distributed over the 

circumference with the exception of the leading edge. The rotating nose section was 

not provided with pressure taps in this set of experiments due to practical difficulty 

in locating the taps over the surface of a rotating cylinder. However, it was possible 

to replace the rotating cylinder with a nose fil l-in section, provided with 5 pressure 

taps, to obtain local pressure information at the nose in absence of the cylinder 

rotation. 

The three distinct configurations used in the experiments, including: 

(a) a solid smooth cylinder; 

(b) a scooped cylinder; and 

(c) a reversed scooped cylinder; 

are shown in Figure 2-6. The cylinders were designed for clockwise rotation to inject 

momentum into the upper-surface boundary layer. Configuration (b) was designed 

as a "air scoop" to enhance cylinder's effect in displacing the air. It would slow 

down the flow over the lower surface and redirect more flow over the upper surface. 

Configuration (c), on the other hand, was designed as a vortex generator. 

The rotating cylinder was mounted between two high speed bearings, housed 

in the brackets at either end of the model. It was driven by a 1/4 h.p., 3.8 A Variac 

controlled motor, located outside the tunnel, through a standard Fenner Coupling 

(Figure 2-5). During a typical experiment, depending on the air speed in the tunnel 

and the ratio Uc/U , the cylinder rotation rate could reach as high as 17,000 rpm 

(with the solid cylinder). 

A photograph of the model is presented in Figure 2-7. The leading-edge-

cylinder drive assembly can be clearly seen here with the scooped cylinder in place. 

Also shown on the side of the model is the nose fil l-in section mentioned above. 
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Figure 2-5 Detailed schematic of the leading edge rotating cylinder and cylin­

der drive mechanism. 
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Figure 2-6 Various geometries of the leading-edge-cylinder used in the ex­

periments. 
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F i g u r e 2-7 Photograph of the Joukowsky model I showing the scooped 

leading-edge-cylinder in place. Also shown, on the side, is the nose fill-in 

section. 
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The tests were carried out over a range of cylinder rotational speeds 

(Uc/U = 0, 1, 2, 3, 4 for the solid cylinder and Uc/U = 1/8, 1/4, 1/2, 1 for the 

scooped cylinders) and angles of attack at a Reynolds number of 2.3 x 10 5 . 

To provide greater flexibility in locating the cylinder on the airfoil and per­

mit testing of multicylinder configurations, a new sectional model of the same ba­

sic Joukowsky shape was constructed. The model consists of an aluminum skin 

wrapped around an aluminum and steel frame with various sections of the surface 

removable, as required, to accommodate cylinders. Photographs of the model in 

Figure 2-8 show details of the construction including the removable sections and 

possible locations of the rotating cylinders. The nose fill-in section (A) replaced 

the leading-edge-cylinder when it was not used as a rotating element. The trailing-

edge section (B) of the model was removed while using the trailing-edge-cylinder at 

location E . Note, the effective chord of the airfoil is reduced in this case. Also, the 

side panel (C) was removed to house the upper-surface-cylinders at locations F . 

The possible locations of the cylinders used in the experimental program are 

shown in Figure 2-9. The actual configurations tested were: 

a) the leading-edge-cylinder; 

b) the trailing-edge-cylinder; 

c) leading and trailing-edge-cylinders; 

d) the upper-surface rear or forward cylinder; 

e) the upper-surface rear or forward cylinder in conjunction with the leading-

edge-cylinder; and 

/ ) the upper leading-edge-cylinder. 

For the upper leading-edge-cylinder configuration a different nose section (also 

shown in Figure 2-9) was constructed. 

The model was provided with a total of 44 pressure taps, distributed over the 



F i g u r e 2-8 Photographs of the Joukowsky model II showing: 

(a) various removable sections of the airfoil: A , nose fill-in section; B , trailing 

edge; C , side panel; 
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F i g u r e 2-8 Photographs of the Joukowsky model II showing: 

(b) locations of the cylinders: D , location of the L . E . cylinder; E , location of 

the T . E . cylinder; F , locations of the upper-surface front and rear cylinders. 
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circumference, to yield detailed information about the surface loading. However, 

once a section of the model was removed to accommodate a cylinder, the pressure 

taps in that section were lost. Although the pressure information over the small 

region represented by the upper cylinder is not of particular significance, the corre­

sponding data at the leading edge of the airfoil is crucial since it represents a high 

suction region. Its measurement presented a challenging task. Locating pressure 

taps on the surface of the cylinder, typically rotating in the range of 2000 to 7000 

rpm offers enormous practical difficulty. The problem was resolved by measuring 

the pressure in the immediate vicinity of the cylinder rather than on the surface 

itself. 

This was achieved by keeping the pressure taps stationary while the cylinder 

rotated. By locating the tap in a narrow ring, the width of which represented only 

a very small fraction of that of the cylinder, it was possible to ensure the continuity 

of flow over the entire surface and obtain an estimate of the surrounding pressure. 

The leading-edge-cylinder was provided with a groove to house the "pressure rings" 

while maintaining the cylinder surface uniform. Figure 2-10 shows details of the 

leading edge geometry and position of the pressure taps. 

Tests with the Joukowsky model II were conducted over an extended range 

of angles of attack and cylinder rotational speeds, corresponding to Uc/U — 

0, 1, 2, 3, 4, 5, at a Reynolds number of 4.62 x 10 4 . The choice of the lower Reynolds 

number in this case was dictated by vibration problems with multicylinder config­

urations operating at high rotational speeds. 

2.2 NACA 63-218 Modified Airfoil Model 

The Joukowsky cross-section, though convenient for analysis, is not suit­

able for practical application because of the cusp and relatively poor aerodynamic 

characteristics. It was, therefore, thought appropriate to apply the moving surface 

boundary layer control concept to a more practical configuration. To that end, 
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Figure 2-10 Schematic diagram of the leading edge construction of the Jou­

kowsky model II showing the details of the pressure taps. 
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the N A C A 63-218 (modified) section, which was used in the Canadair CL-84 (a 

twin propeller V / S T O L design), was selected. Availability of some preliminary lift 

information for the section in presence of a leading-edge cylinder [27] was also a 

factor in its choice. 

A model was constructed with a leading-edge-cylinder (Figure 2-11), as that 

had shown to be a relatively more effective element. The trailing-edge and upper-

surface cylinder tests were not deemed necessary here as the earlier results had 

already established trends as to their relative contributions. The objective was not 

to compile an extensive set of results but to confirm effectiveness of the concept 

with reference to a more practical airfoil section. 

As before, the tests were carried out with a systematic variation of the an­

gle of attack and the cylinder rotational speed (Uc/U = 0, 1, 2, 3) at a Reynolds 

number of 2.3 x 10 5 . 

2.3 Presentation of Results 

The relatively large angles of attack used in the experiments result in a 

considerable blockage of the wind tunnel test-section, from 21% at a = 30° to 30% 

at a = 45°. The wall confinement leads to an increase in local wind speed, at the 

location of the model, thus resulting in an increase in aerodynamic forces. Several 

approximate correction procedures have been reported in literature to account for 

this effect. However, these procedures are mostly applicable to streamlined bodies 

with attached flow. A satisfactory procedure applicable to bluff bodies with large 

blockage is still not available. 

Wi th rotation of the cylinder(s), the problem is further complicated. As 

shown by the pressure data and confirmed by the flow visualization, the unsteady 

flow can be separating and reattaching over a large portion of the top surface. In 

absence of any reliable procedure to account for wall confinement effects in the 

present situation, the results are purposely presented in the uncorrected form. 
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F i g u r e 2-11 Photograph of the N A C A 63-218 airfoil showing the leading-

edge-cylinder in place. 



3. EXPERIMENTAL RESULTS AND DISCUSSION 

3.1 Joukowsky Model I 

The symmetrical Joukowsky airfoil model I was tested systematically at a 

Reynolds number of 2.31 x 10 5 over a range of angles of attack and cylinder speeds. 

The pressure plots were integrated for each case to obtain the corresponding lift 

coefficient. The amount of information obtained is rather extensive and only a few 

of the typical results useful in establishing trends are recorded here. 

Figure 3-1, which serves as a reference, shows pressure distribution on the 

surface of a conventional Joukowsky airfoil, i.e., without rotating cylinder replacing 

its nose. Due to practical difficulty in locating pressure taps in the cusp region there 

is an apparent discontinuity in the pressure plots near the trailing edge. However, 

the region has little importance in the present discussion. It is apparent that the 

airfoil, in absence of any modification to its nose geometry, stalls at an angle of 

attack somewhere between 16°-18°. 

3.1.1 Leading-edge-cylinder 

Figure 3-2, which also serves as a reference, shows the adverse effect of re­

placing the nose by a nonrotating cylinder (Uc/U = 0). Again the discontinuity in 

the pressure plots near the leading edge is due to practical difficulty in measurement 

of pressure at the surface of the cylinder (this problem was subsequently resolved 

for the Joukowsky model II tests). However, since in the subcritical flow regime, 

the peak negative pressure on the surface of a circular cylinder occurs at around 

70°, location of the first pressure tap (top and bottom surfaces) would come quite 

close to it. Note, although the nose geometry is altered only slightly, now we have 

a two-element airfoil with a gap between the cylinder surface and the rest of the 
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Figure 3-1 Typical experimentally obtained pressure distribution plots for a 

conventional Joukowsky airfoil. These results serve as reference to assess the 

effects of airfoil modifications and cylinder rotation. 
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edge-cylinder on the pressure distribution. Note, the presence of a gap signifi­

cantly reduces the stall angle. 
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airfoil. This discontinuity in the wall with a sharp corner protruding into the thin 

boundary layer causes it to grow faster and separate earlier thus reducing the stall 

angle which is now between 10°-12°. 

The pressure distribution plots before stall, however, did not show any sig­

nificant deviation from the no-gap case except very close to the gap where presence 

of the sharp corner produced a slightly higher suction (Figure 3-3). There seems 

to be little indication of any appreciable flow leakage from the bottom to the top 

surface through the cylinder-airfoil interface. The effect of the gap is, therefore, 

confined to causing stall at a lower angle of attack in this case. 

Figure 3-4 shows the effect of cylinder rotation on the pressure distribution 

and the onset of stall. Four cases of Uc/U = 1, 2, 3, 4 are considered for which 

Figure 3-2 serves as a reference. The plots bring to light several interesting points 

of information: 

o In general, effect of the leading edge rotating cylinder is to increase the peak 

negative pressure. However, the relative increase is less at higher Uc/U. 

c Wi th an increase in cylinder surface velocity to free stream velocity ratio, 

the stall angle corresponding to complete separation (i.e., no reattachment) 

is delayed. Note, without rotation the separation (on the top surface) occurs 

at around 12°; however, with rotation a part of the surface always has an 

attached flow up t o i / c « 0.25. 

• Wi th higher rates of rotation the onset of flow separation occurs at a higher 

angle of attack and there is a tendency for the boundary-layer to reattach 

towards the trailing edge as best evident in Figure 3-4(d). 

• One would expect the cylinder rotation to increase C ^ j m a i due to the delayed 

stall and give a higher CL/CD at any given angle of attack. 

Figure 3-5 clearly shows the delay in stall brought about by the cylinder ro­

tation. For a = 12° the airfoil is stalled in absence of the cylinder rotation, however, 
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Figure 3 - 4 Effects of cylinder rotation on the pressure distribution around 

the Joukowsky airfoil: (c) Uc/U = 3 ; 
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Figure 3-5 Experimentally obtained pressure plots showing the delay in stall 

brought about by the cylinder rotation. 
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with Uc/U = 2 the flow reattaches thus avoiding stall and the associated pressure 

collapse. Note, however, that at a sufficiently high angle of attack (say a — 32°, 

Figure 3-6), irrespective of the level of cylinder rotation, it is not possible to achieve 

completely attached flow over the top surface. Hence the pressure distribution over 

the bottom surface remains essentially the same. Further increase in the angle of 

attack only leads to an increase in the peak negative pressure at the leading edge. 

The corresponding lift data for different rates of rotation of the cylinder are 

summarized in Figure 3-7. The basic (i.e., unmodified) Joukowsky airfoil has a 

maximum lift coefficient of around 1.1. However, with modification, bluffness of 

the cylinder and the associated gap cause the C r , j m a z to diminish. Note, the slope 

of the lift curve remains virtually unaffected. In absence of the cylinder rotation the 

modified airfoil stalls at around 12° giving uniform pressure distribution on the top 

surface as seen before (Figure 3-5). The stall sets in rather abruptly as shown by 

a sudden drop in lift. However, with the cylinder rotation, a large well developed 

suction peak at the leading edge of the wing suggests a delay in the stall. In fact 

the data show the stall to occur around 32° (Uc/U = 4) with an increase in the lift 

coefficient by about 68%. Note that an increase in cylinder speed beyond Uc/U = 3 

improves the situation only marginally suggesting the existence of a critical speed 

ratio beyond which momentum injection through a moving surface appears to have 

little effect. Note also that the effect of rotation is to extend the lift curve without 

affecting its slope, and flatten the stall peak. 

3.1.2 Leading-edge-scooped-cylinder 

Typical pressure distribution plots for the Joukowsky model with the leading-

edge scooped cylinder rotating at Uc/U = 1 are shown in Figure 3-8. The plots, 

compared to those of Figure 3-4(a), show an improvement (in terms of larger suc­

tion and delayed separation) suggesting higher effectiveness of the scooped cylinder. 
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The flow is now completely attached at a = 16° with a much higher suction peak 

at the leading edge than that with the solid cylinder. 

The rotating air-scoop appears to, in effect, slow down the flow over the 

lower surface and redirect more air over the upper surface. Reversing the scoop 

should therefore have the opposite effect. This is precisely the case as shown in 

Figure 3-9. The partially separated flow with the solid cylinder is reattached when 

the normal scoop configuration is used but completely detaches with the reversed 

scoop. 

A t higher rates of rotation the scooped cylinder appears to the flow as effec­

tively solid and there is no particular advantage in having the scoop. On the other 

hand, slower speeds of rotation appear to enhance the effect of the scoop (Figure 3-

10). For example, even at the cylinder rotation speed as low as Uc/U = 0.125 (the 

lowest speed used in the test program) the flow remains completely attached at 

a = 24° (Figure 3-10c). This is in contrast to the separated flow at a = 16° with 

the normal cylinder rotating at Uc/U = 1 (Figure 3-4). 

The corresponding lift data are summarized in Figure 3-11. Typical results 

for normal solid cylinder at Uc/U = 1 are also included to facilitate comparison. A 

slight shift of the lift plots to the left suggests a small increase in circulation due 

to the scooped geometry. The main advantage of the scooped geometry is that it 

can provide the same beneficial effect of the normal rotating cylinder but at a much 

lower speed. The concept appears promising and needs to be explored further. 

It may be of interest to point out that the experiments with the scooped 

cylinder were extremely difficult to conduct primarily due to the demanding bal­

ancing requirement. Even a small unbalance caused during machining of the 68 cm 

long cylinder was sufficient to cause vibration, particularly at higher speeds, which 

had to be controlled as the gap-size is only 1 mm. Thus the tolerance on machining 

and balancing was rather exacting. 
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3 . 2 J o u k o w s k y M o d e l I I 

As mentioned before, the second model provided a flexibility in terms of loca­

tion of the cylinder. The Reynolds number used here was slightly lower (4.62 x 104) 

than that employed in the previous set of tests. Its choice was primarily governed by 

the mechanical consideration of the cylinder vibration at higher rotational speeds, 

which in turn affects the ratio Uc/U. Besides homogenity of the cylinder mass dis­

tribution and bearing condition, nature of the model affected the level of vibration. 

In terms of construction, the second model was quite complex as it provided four 

different positions for the cylinder. Furthermore, now it was possible to rotate two 

cylinders simultaneously which further raised the possibility of vibration. 

The effect of Reynolds number on the lift and stall characteristics of this 

Joukowsky airfoil model is shown in Figure 3-12. A t the lower Reynolds number, 

the airfoil has a slightly lower maximum lift and stalls at around 10°. 

The pressure distribution data for this "base airfoil" (in absence of the mod­

ifications imposed by the leading edge, trailing edge, and upper-surface-cylinders) 

are presented in Figure 3-13. The leading edge was now formed by a snugly fitting 

plug (the nose fil l-in section, Figure 2-8a). As before, this set of results serve as 

reference to assess the effect of rotating cylinders in different locations. The lower 

stall angle and consequent decrease in the maximum lift coefficient of this airfoil, 

as compared to the Joukowsky model I (Figure 3-1), are mainly due to the multi­

section design of the model, resulting in surface discontinuities, as well as the lower 

Reynolds number used in this set of experiments. 

3 . 2 . 1 L e a d i n g - e d g e - c y l i n d e r 

Figure 3-14 summarizes the effects of modification of the airfoil with the 

leading-edge-cylinder and the cylinder rotation. The base airfoil has a maximum lift 

coefficient of about 0.82 at an angle of attack of 10°. There is a penalty associated 
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with the modified nose geometry as discussed earlier, as well as due to the gap, 

but even at the lowest rate of rotation of the cylinder (Uc/U = 1) the lift and stall 

characteristics are significantly improved. The airfoil exhibits a desirable flattening 

of the lift curve at stall. The maximum lift coefficient measured with Uc/U = 4 

was around 1.8 at a = 28° which is almost 2.2 times the lift coefficient of the base 

airfoil. 

Selected pressure plots at relatively larger angles are presented in Figure 3-15 

to assist in more careful examination of the local flow field. As the angle of attack of 

the airfoil is increased, the flow starts to separate from the upper surface closer to the 

leading edge. A t a = 16°, for example, the cylinder rotating at Uc/U = 1 only keeps 

the flow attached at the leading edge. As the rate of rotation is increased, however, 

the size of the separation region is reduced and at the higher rates of rotation, the 

flow is again completely attached. Similar trends are present at a = 20° (Figure 

3-15b). Note, the point of separation on the upper surface clearly moving back 

with increasing rotation. The flow separates at around X/C = 15% with Uc/U = 2, 

around X/C = 50% when Uc/U is increased to 3, and at the trailing edge with the 

highest Uc/U used. The flow visualization study discussed later substantiated this 

general behavior rather dramatically. 

Effect of the modified nose geometry and the gap associated with the leading-

edge-cylinder was discussed earlier (section 3.1.1). Essentially, it leads to an earlier 

stall. The pressure distribution plots before stall show little indication of any appre­

ciable flow leakage from the bottom to the top surface through the cylinder-airfoil 

interface. This is specially true at higher angles of attack where the stagnation 

point, located off the lower surface, moves downstream of the gap thereby isolating 

it from the high pressure region. Associated with the gap, nevertheless, is a sharp 

corner which protrudes into the upper surface boundary-layer causing it to grow 

and separate much faster. A large gap would appear to the flow as a step from the 

cylinder to the airfoil surface and result in a large separation bubble thus causing 
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a decrease in lift of the airfoil as well as the effectiveness of cylinder rotation. 

The Joukowsky model II was tested with a larger gap (5 mm) between the 

leading-edge cylinder and the airfoil. The results, summarized in Figure 3-16, 

show little difference due to the size of the gap without cylinder rotation (compare 

results for Uc/U = 0 in Figure 3-14). However, effectiveness of the cylinder rotation 

is drastically reduced. 

3 . 2 . 2 T r a i l i n g - e d g e - c y U n d e r 

The Joukowsky model II was next tested with the trailing-edge cylinder. 

Unlike the leading edge configuration, the cylinder at the trailing edge changes the 

basic geometry substantially (Figure 2-9). The trailing edge of the airfoil beyond 

« 72% chord is removed to accommodate the cylinder. The resulting chord is 

approximately 28% shorter than that of the base airfoil, and the model has a blunt 

trailing edge in the form of a cylinder. 

Only a representative set of pressure plots for this model are presented in 

Figure 3-17. In absence of the cylinder rotation, the pressure distribution over the 

airfoil is not changed substantially compared to that for the model with the trailing 

edge (Figure 3-17b). Wi th rotation of the trailing edge cylinder, the suction over 

the upper surface as well as compression on the lower surface increase. The effect 

is particularly noticeable with the higher rate of cylinder rotation and at the lower 

angles of attack (Figure 3-17 a, b). The relative improvement decreases at the larger 

angles but is still quite evident at and beyond the stall (Figure 3-17 c, d). 

This, in turn, results in a large improvement in the lift coefficient as shown in 

Figure 3-18. For example, rotating the trailing-edge-cylinder at Uc/U = 4 results 

in an increase in lift by about 330% at a = 4° (about 130% at a = 8°). In contrast 

to the leading-edge-cylinder, however, this configuration does not extend the stall 

beyond that of the base configuration. As can be expected, the trailing-edge-

cylinder essentially behaves as a flap shifting the plots to the left. 
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3 . 2 . 3 L e a d i n g a n d t r a i l i n g - e d g e c y l i n d e r s 

The use of a leading-edge-cylinder was shown to extend the lift curve, thus 

substantially increasing the maximum lift coefficient and delaying stall (Figure 3-

14). On the other hand, the trailing-edge-cylinder rotation resulted in an improve­

ment in the lift coefficient, at a given angle of attack, before stall (Figure 3-19). 

In order to combine these effects, therefore, the base configuration was modified 

to include both the leading and trailing-edge cylinders (Figure 2-9, configuration 

iii). This phase of the test program examines the effect of individual and combined 

cylinder rotations. 

The effect of rotating the leading-edge-cylinder, with the trailing-edge-

cylinder stationary, is summarized in Figure 3.19(a). Although the leading edge 

cylinder rotation still appears to be quite effective in improving the lift and stall 

characteristics of the base configuration, there is a substantial penalty associated 

with the removal of the sharp trailing edge and replacing it with a cylinder (com­

pare results with those of Figure 3-7). Moreover, due to the modified nose geom­

etry and the presence of a gap associated with the use of a leading-edge-cylinder, 

performance of the trailing-edge-cylinder itself is also affected. Although Figure 3-

19(b) shows a significant increase in C i j m o x as a result of the trailing-edge-cylinder 

rotation, the improvement is considerably less than that obtained previously (Fig­

ure 3-18). 

It is, however, the combined effects of both the cylinders that is of interest 

here. The results, shown in Figure 3-19(c), suggest some benefit due to rotation 

of the two cylinders together. Although the increase in Ci,,ma.x is rather modest 

(from 1.75 to 2.22, around 27%) and it fails to delay the stall further, compared to 

the leading-edge-cylinder case (sharp trailing edge, Figure 3-14), the lift coefficient 

at a given a is indeed increased significantly, as expected, due to the leftward shift 

of the plots (compare Figures 3-19a and 3-19c). As pointed out before, this is due 
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Figure 3-19 Variation of CL VS . a for a modified Joukowsky airfoil with 

leading and trailing edge cylinders: (c) combined rotation of both the cylinders. 
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to the added circulation contributed by the trailing edge cylinder. For example 

CL = 0.7 at a = 8° and [Uc/U)i.e. = 3 (Figure 3-14) while for the same angle of 

attack and (Uc/U)t.e. = (^c/^)t.e. = 3 the corresponding CL « 1.38, an increase 

of around 97%. Similarly, CL » 1.43 for a = 16° and {Uc/U)Le. = 4. On the other 

hand, with both the cylinders rotating at Uc/U = 4 the lift coefficient is around 

2.15, a further gain of about 50%. Note, this value of the maximum lift coefficient 

represents an increase of 160% with respect to the reference configuration (Ci,trnax 

of about 2.22 vs. 0.85, Figure 3-19). 

A typical set of corresponding pressure plots are given in Figure 3-20. At 

a — 8° a substantial increase in lift with cylinder rotation is quite evident. The 

suction peak over the leading edge associated with the rotation of the leading-edge-

cylinder, as well as an increase in suction over the upper surface and in compression 

on the lower surface due to rotation of the trailing-edge-cylinder, can be observed 

quite clearly. 

The pressure data are also compared with those for the leading-edge-cylinder 

configuration, with and without the sharp trailing edge, in Figure 3-21. At a = 12° 

(Figure 3-21a) the adverse effect of replacing the sharp trailing edge with a cylinder 

is still quite small and rotation of the trailing-edge-cylinder results in an increased 

lift. The penalty becomes more evident, however, as the angle of attack is further 

increased. The rotation of the cylinder becomes less effective at a = 20° (Figure 3-

21b), and at a = 24°, the flow separates earlier than that in the leading-edge-

cylinder case (Figure 3-21c). Thus the higher lift coefficients obtained, at low to 

moderately high angles of attack, are at the cost of lower maximum lift coefficient 

and stall angle. 

To better appreciate the overall effect of this twin cylinder configuration, the 

results are summarized in Figure 3-22. The base data correspond to the Joukowsky 

model II with the leading edge fill-in section (no gap) and the sharp trailing edge. 

Modifying the configuration with the leading and trailing edge cylinders adversely 
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Figure 3-21 Comparison of pressure plots for the Joukowsky model II 
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the lift and stall characteristics of the Joukowsky airfoil model II. 
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affects the Ci,,max which now reduces from around 0.85 to w 0.7. The trailing-

edge-cylinder rotating at (Uc/U)t . e . = 4 not only makes up for the loss but actually 

increases Cx , particularly at a < 8°. However, the stall angle is reduced from 

around 10° to 7° due to leftward movement of the curve caused by an increase 

in circulation. The leading-edge-cylinder rotating at (Uc/U)i.e. = 4, with the 

trailing-edge-cylinder stationary, significantly increases the Cr,)max to around 1.85 

with the stall delayed to 23°, an increase of about 120% with respect to the base 

configuration ( « 180% with reference to the modified configuration). Wi th both 

the cylinders rotating at Uc/U = 4 there is a further increase in C x ) m o i and a 

substantial increase in lift for a < 18°, the new stall angle. 

Note, the Cx, values for this leading and trailing edge twin cylinder case are 

much higher than those given by the leading-edge-cylinder at lower angles of attack 

(Figure 3-14). The aBtaii for this configuration, which is now around 18°, is still 

lower than the corresponding stall angle of the leading-edge-cylinder alone with 

the sharp trailing edge. 

3 . 2 . 4 L e a d i n g a n d u p p e r - s u r f a c e c y l i n d e r s 

The forward and rear upper-surface-cylinders, located at 38% and 58% chord 

respectively, were considered independently and with either of them operating in 

conjunction with the leading-edge-cylinder. In absence of rotation, their protrusion 

into the upper-surface flow had an adverse effect on the aerodynamic characteristics 

of the model. The flow separated at the location of the cylinder resulting in a lower 

lift and increased drag. Even at the highest rate of rotation the improvement in the 

lift performance was below that achieved by the trailing-edge-cylinder (Figure 3-

23, a < 10°). However, at each of the locations, the upper-surface-cylinder was 

successful in attaining a higher Cr,jmax and delaying the stall. In this respect, the 

forward upper-surface-cylinder was particularly effective. 
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Typical pressure distribution data for the rear upper-surface-cylinder in a 

combined configuration with the leading-edge-cylinder are shown in Figure 3-24 at 

medium to moderately high angles of attack. Contribution of the individual cylinder 

rotation is particularly noticeable at the lower rates of rotation. For example, 

Uc/U = 1 at a. = 16° (Figure 3-24a) results in attached flow at the leading edge 

primarily due to rotation of the leading-edge-cylinder. The flow separates, however, 

further downstream (near X/C & 0.1) due to a large adverse pressure gradient. The 

rear upper-surface-cylinder rotation causes the flow to reattach, but it separates 

again at the trailing edge. Increasing the cylinder rotation rate to Uc/U = 2 

prevents the initial separation of the flow behind the leading edge and the flow 

remains attached over a substantial portion of the top surface. Finally, with the 

highest rate of rotation, there is a further recovery of the pressure with a significantly 

higher base value. 

At a = 24° (Figure 3-24b), the flow is separated over most of the airfoil 

with cylinders rotating at Uc/U = 2. The size of the separated region decreases 

significantly with a further increase in the speed, particularly at Uc/U = 4. As 

the angle of attack is increased to a = 28° (Figure 3-24c), even the highest rate of 

rotation leaves a large separated region. 

Similar general trends were observed for the forward upper-surface-cylinder 

at a — 28° as shown in Figure 3-25. The two cylinders in this configuration are closer 

together. Although their combined contributions show a larger pressure recovery 

near the trailing edge compared to the rear cylinder case (Figure 3-24c), the size of 

the separated region is also increased. 

Figure 3-26 attempts to summarize salient effects of the leading-edge and 

upper-surface cylinder rotations at a relatively high angle of attack of a = 32°. 

The rotation of the leading-edge-cylinder alone gives attached flow at the leading 

edge only, leaving the flow separated over most of the airfoil. Adding rotation of 

the rear upper-surface-cylinder does not change the situation substantially. Only 
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the combined effects of both the leading-edge and forward upper-surface cylinders 

decrease the adverse pressure gradient enough for the flow to remain attached up 

to around X/C ta 0.5. The flow then separates in the form of a bubble with 

reattachment close to the trailing edge. 

Influence of the leading-edge-cylinder operating in conjunction with the for­

ward or rear upper-surface-cylinder can be better appreciated through the lift plots 

presented in Figure 3-27. Performance of the original base airfoil (with sharp trail­

ing edge and nose insert) as well as effect of its modifications through introduction of 

the cylinders are indicated to assess beneficial contribution of the cylinder rotation. 

A t the outset it is apparent that the change in geometry of the base air­

foil and the presence of a gap affects both the C x , , m a i as well as the stall angle. 

However, as can be expected in light of the leading-edge-cylinder data presented 

earlier in Figure 3-14, {Uc/U)Le. = 1 with {Uc/U)r — 1 or (Uc/U)f = 1 more than 

compensated for this initial loss giving C x , , m o z of around 1.2 and 1.3, respectively 

(not shown to avoid overcrowding of data). Note, the upper-surface-cylinders, rear 

or forward, while operating individually are also able to make up for the loss (in­

troduced by the airfoil modification), but they must rotate at a much higher speed. 

Wi th both the leading edge and upper-surface-cylinder rotating at Uc/U = 4, the 

stall is delayed to around 28° with a Ci,trnax of around 1.95, an increase of 130% 

over the base airfoil data (Figure 3-27a). Rotation of the forward upper-surface-

cylinder appears to be relatively more effective. Wi th (Uc/U)i.e. = (Uc/U)f = 4, 

additional improvement in performance is apparent with the stall angle now around 

36° and a corresponding C L t m a x of 2.22, an increase of around 160% (Figure 3-27b). 

The pressure recovery results observed earlier in Figure 3-26 also suggest favorable 

drag characteristics. 

To summarize, a rotating leading-edge-cylinder results in a large suction 

peak at the nose. However, depending on the angle of attack, the adverse pressure 

gradient still causes the flow to separate downstream. The use of a second cylinder 
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on the upper surface helps to reduce the separated region. As far as the location of 

the upper cylinder is concerned, it is likely to be more effective in the front where 

the adverse pressure gradient is quite significant. 

3 . 2 . 5 U p p e r l e a d i n g - e d g e - c y l i n d e r 

Effectiveness of the combination of leading-edge and forward upper-surface 

cylinders suggested a possibility of replacing the two by a single cylinder as shown 

in Figure 2-9 (configuration vi). This avoids the practical complications associated 

with construction, installation, and operation of two rotating cylinders. 

The configuration, with a cylinder located at approximately 5% of the chord, 

was tested at cylinder speeds in the range of Uc/U upto 4. The results showed 

attached flow for angles of attack of as high as 48°. Several typical pressure plots as 

affected by the angle of attack and cylinder rotation are presented in Figure 3-28. 

A t a = 16° all but the lowest speed of the cylinder rotation keep the flow 

attached over the top surface. As the rate of rotation is increased, the suction over 

the upper surface is generally increased except immediately behind the cylinder 

where a dip in the pressure profile becomes apparent at Uc/U > 3. This is due to 

the fact that the surface of the cylinder is higher than that of the airfoil and the 

rotating cylinder is transferring momentum to the airfoil surface in this region. The 

discontinuity in the pressure plots near the leading edge is again due to difficulty 

in locating pressure taps close to and on the surface of the cylinder. Although the 

missing data are important for accurate calculation of the lift coefficient, this does 

not obscure the the effects of cylinder rotation discussed presently. 

A t a = 32°, the airfoil has stalled even with Uc/U — 2. Only the higher 

speeds of the cylinder (Uc/U > 3) are capable of keeping the upper-surface flow 

attached. 

Finally, even at a very high incidence of a = 48°, it is remarkable that the 
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kowsky model II with the upper leading-edge-cylinder: (c) a = 48° . 
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cylinder rotation at U c / U — 4 is able to maintain partially attached flow over the 

upper surface. There is, as can be expected, however, an associated drag penalty 

as evident by the lack of any significant pressure recovery near the trailing edge. 

The pressure profiles were integrated to yield the coefficients of lift plotted in 

Figure 3-29. These values, however, are likely to be underestimated due to a lack of 

high suction data over the rotating cylinder. In absence of measured information, 

the pressure was conservatively approximated to remain locally constant, over the 

region with missing pressure taps, at the minimum observed value. 

Compared to the leading-edge-cylinder study reported earlier (section 3.2.1, 

Figure 3-14), where for U c / U = 4, C x , > m a a ; 1.75 and a 8 t a i i « 28°, now we have 

,max ^ 1.95 with ctstaii & 48°. This clearly suggests that location of the cylinder 

near the leading edge can significantly affect the airfoil performance. Thus there is 

room for a systematic study to arrive at an optimum location. 

Even compared to the results obtained using the leading-edge-cylinder to­

gether with the forward upper-surface-cylinder (Figure 3-27b), performance of the 

present single cylinder configuration appears attractive. Although the C L > m a x is 

slightly lower (down from 2.22 to 1.95) the stall is delayed from around 36° to 48°. 

However, the main advantage would be the mechanical simplicity of working with 

one cylinder. 

3 . 2 . 6 C o m p a r a t i v e p e r f o r m a n c e a n d c h o i c e o f c o n f i g u r a t i o n 

With a vast amount of data obtained through a planned experimental pro­

gram using the configurations presented in Figure 2-9, it would now be useful to 

compare their distinctive features to help establish relative merits. Figure 3-30 

attempts to achieve this objective. Results of the standard Joukowsky airfoil (sym­

metrical, 15% thickness, model II), with its C i , j r n a x = 0.85 and astaii = 10°, serve 

as reference for all the cases presented. 
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The leading-edge-cylinder is quite effective in extending the lift curve, with­

out changing its slope, thus substantially increasing the maximum lift coefficient 

(1.75) and delaying the stall angle (28°). Further improvements in the maximum 

lift coefficient and stall angle are possible when the leading-edge-cylinder is used 

in conjunction with an upper-surface-cylinder. This configuration also results in 

a lower drag due to a large recovery of pressure near the trailing edge, at moder­

ately high angles of attack. The C i i m a x realized with the leading-edge and forward 

upper-surface cylinders, was about 2.22 (a = 36°), approximately 2.6 times that of 

the base configuration. 

A rotating cylinder on the upper side of the leading edge also proves very 

effective. Although the maximum coefficient of lift realized with its rotation is 

slightly lower («s 1.95), it does have a major advantage in terms of mechanical 

simplicity. Note, now the lift curve has a lower slope and is not an extension of the 

base airfoil lift curve. Hence the lift at a given a is relatively lower, however, the 

stall is delayed to around 48°. 

On the other hand, to improve lift over the range of low to medium angles 

of attack (a < 20°), the trailing-edge-cylinder proves much more effective, partic­

ularly in conjunction with the leading-edge-cylinder. The suction over the airfoil 

upper surface as well as the compression on the lower surface are increased dramat­

ically with the higher rates of rotation of this cylinder, resulting in a substantial 

increase in lift (« 160%). 

Thus, depending on the intended objective in terms of desired Ci.maa; and 

stall angle, one can select an appropriate configuration to initiate a preliminary 

design. 

3 . 3 N A C A 6 3 - 2 1 8 m o d i f i e d a i r f o i l 

Wind tunnel experiments with the N A C A 63-218 modified airfoil showed 
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aerodynamic coefficients to be essentially independent of the Reynolds number in 

the range Re — 10 5 to 2.5 X 10 5 . In general the results were obtained for five values 

of the speed ratio (Uc/U = 0,1,2,3,4) and over a range of the angle of attack 

extending beyond the stall value. However, in presenting the data certain runs are 

purposely omitted for clarity. 

The first logical step would be to record aerodynamic characteristics of the 

basic airfoil to assess deterioration in performance caused by a bluff cylinder, with a 

gap, replacing its nose. One can then evaluate the influence of the rotating cylinder 

as reflected on the boundary-layer control. This is shown in Figure 3-31. 

The basic airfoil (without cylinder) has a maximum lift coefficient of around 

1.3. However, bluffness of the cylinder and the associated gap cause the slope of the 

lift curve as well as Ci,,max to diminish. In absence of the cylinder rotation the airfoil 

stalls at around 12° giving uniform pressure distribution on the top surface. The 

stall sets in rather abruptly as shown by a sudden drop in the lift. However, with the 

cylinder rotation, a large well developed suction peak was observed at the leading 

edge of the wing suggesting a delay in the stall. In fact, the balance data show the 

stall to occur around 45° (Uc/U — 3) with an increase in the lift coefficient of around 

200%. A n increase in cylinder speed beyond Uc/U = 3 improved the situation 

only marginally suggesting the existence of a critical speed ratio beyond which 

momentum injection into the boundary layer through a moving surface appears to 

have little effect. Note also that the effect of cylinder rotation is to extend the lift 

curve without substantially affecting its slope, as before (Figures 3-7, 3-14), and it 

also flattens the stall peak. 

Typical pressure distribution plots showing the effectiveness of the cylinder 

rotation are plotted in Figure 3-32. At a = 24°, even the lowest cylinder speed 

is sufficient to prevent separation and only minor improvements in lift and drag 

can be realized with increasing speeds. Note a slight increase in suction behind the 

leading edge and the effect on the pressure recovery at the trailing edge. There is 



Figure 3-31 Typical plots showing variation in the lift coefficient with angle 

of attack for NACA 63-218 modified airfoil as affected by the leading-edge-

cylinder rotation. 
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also a small increase in lift with rotation because of the increasing suction over the 

cylinder. This, however, is not reflected in the plots due to the lack of pressure taps 

on the surface of the cylinder but is recorded by the balance (Figure 3-31). 

A t a = 28°, Figure 3-32(b), rotation of the cylinder at Uc/U = 1 is no longer 

effective and the pressure profile shows partial separation (followed by reattachment 

as indicated by the pressure recovery) even at Uc/U = 2. The flow, however, 

reattaches towards the trailing edge and the lift continues to increase (Figure 3-31). 

At a higher rate of rotation (Uc/U = 3) the pressure peak is reinstated near the 

leading edge. 

From design considerations and for better indication as to the overall effec­

tiveness of this concept one should also look at the associated drag penalty, i.e., 

the ratio of lift to drag. This is shown in Figure 3-33. Substantial improvement at 

all angles of attack is quite evident. However, for Uc/U > 2 any additional gain 

appears to be only marginal in this particular case. The corresponding CL VS. CD 

plot is perhaps more useful (Figure 3-34). Note, for a given C L , the drag coefficient 

diminishes with an increase in the cylinder rotation rate. 
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F i g u r e 3-33 Effect of rotation rate on the lift to drag ratio of N A C A 63-218 

airfoil modified with a leading-edge rotating cylinder. 
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F i g u r e 3-34 Variation of CL vs. CD for N A C A 63-218 airfoil (modified) with 

a leading-edge rotating cylinder. 



4 . T H E O R E T I C A L P O T E N T I A L F L O W A P P R O A C H E S 

Complex character of the flow suggests a need for an elaborate modelling 

procedure that can account for viscous effects. The complications introduced by 

separation and reattachment of the flow would, ideally, require an approach to the 

the problem through the full Navier-Stokes equations and their numerical solution 

consistent with the boundary conditions. 

The prohibitive cost and the possible loss of appreciation for the physical 

process, usually associated with the use of such elaborate modelling packages, led 

to the search for simpler approaches. The main objective of the project was to 

explore effectiveness of the moving-surface boundary-layer control experimentally 

and develop mathematical tools that may help predict trends. Wi th this as back­

ground, the attention was turned to relatively simple but promising analytical and 

numerical procedures that can meet this objective. 

The mathematical models used in this theoretical stage of the investigation 

are shown in Figure 4-1. 

4 . 1 A n a l y t i c a l M o d e l 

In a potential flow analysis, due to the absence of viscosity, rotating cylinders 

can not be treated as boundary-layer control devices but rather should be viewed 

as a means of circulation control for airfoils. Since their effect in increasing the 

circulation around an airfoil is similar to that of a vortex, the simple analytical 

model of flow about an airfoil in the presence of an arbitrarily fixed vortex is used 

as a first approximation to the actual case. 

The recent work of Huang and Chow [28] investigates the possibility of trap­

ping a free vortex in the vicinity of a Joukowsky airfoil for lift augmentation. It is 

found that very high lift forces can be generated by a stationary vortex captured 

9 5 
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POTENTIAL FLOW MODELS 

F i g u r e 4-1 Analytical and numerical models. 
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above the leading edge, but the vortex is always unstable in the sense that it will 

move away after being displaced from its equilibrium position. Through the use of 

special devices, such as a leading edge flap, a vortex can be trapped below or above 

the leading edge of the airfoil resulting in the desired effect. 

The authors also investigated the effect of relative motion of the vortex with 

respect to the airfoil [29]. Their results suggest that by moving the vortex towards 

or away from the wing in a proper manner, additional lift may be generated. A l ­

ternatively, by increasing the strength of a vortex when it is appropriately located 

with respect to the airfoil, the lift so produced can be several times higher than 

that generated by a constant-strength vortex of comparable circulation. 

For an airfoil moving at a speed U through an incompressible fluid of density 

p, a circulation T is created in order to satisfy the Kut ta condition at the sharp 

trailing edge. When a vortex of circulation k is placed above the airfoil, it produces a 

reversed fluid motion on the upper surface, so that a stagnation point would appear 

there if the same circulation were maintained around the airfoil. However, to remove 

the infinite velocity situation at the sharp trailing edge, additional circulation AT 

is required to shift the stagnation point back to the trailing edge so that the Kut ta 

condition is fulfilled again. A vortex of circulation —AT is shed in the wake. The 

wing has thus gained a circulation of Ar + k. 

The basis of the Joukowsky airfoil analysis through a conformal transforma­

tion is well established. Here the major difference would arise due to introduction 

of a vortex and its location in the physical plane Z. Due to the classical character 

of the analysis, only more important aspects are touched upon here. 

A circle of radius R centered at the origin of the f'-plane is transformed 

into a Joukowsky airfoil in the Z-plane by a translation in the f-plane and the 

transformation 
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The shape of the airfoil is controlled by varying the parameters of the intermediate 

transformation defined by 

f = f' + ae^-V . 

Under these transformations (Figure 4-2), free stream velocity U at an angle a with 

the horizontal axis maps into a uniform flow of the same speed without changing 

its orientation. Similarly a vortex of circulation k at £Q maps into a vortex of the 

same strength at ZQ. 

Let F = $ + ity be the complex potential of the flow where <& is the velocity 

potential and \I>, the stream function. The complex potential in the f'-plane consists 

of the contributions from the uniform flow, the vortex and its image in the circle, 

and the circulation about the center of the circle, 

F( f ' ) = Ue 
R7 

„ i 2 a ik 
+ 2i So + — (r + AOhK', 

where the bar denotes the complex conjugate. 

The complex velocity of the flow can now be written as 

W(f') = Ue~ic i R 2 t'2a ik 
+ 2= 7*2 + 

j (r + fc) 
2TT f 

The Kut ta condition requires the velocity to be finite at the trailing edge. This is 

achieved by setting W(f') = 0 at f = 1 or f' = Re~lP. Introducing this relation 

into the above equation and using $'0 = roeieo for the location of the vortex yields, 

after some manipulation, 

^-(r + k)= 2iRU sin(a+/?) - RB— , 
2 7 T 2TT 

where 

B 
R [2Rr0 cos(0o + 0) - R* - r

2] 



F i g u r e 4-2 The Joukowsky transformation. 
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The complex velocity now takes the form 

W{$') = Ue t°2a ik 
^ 2 

2iRU sin(a+/?) RB ik 

In order to gain some appreciation as to the magnitude of circulation, k, an analogy 

is made with a rotating cylinder as follows. The amount of circulation around a 

circular cylinder of diameter DC rotating with a surface velocity UC is given by 

k — TTDCUC , 

therefore, from now on the circulation will be specified in terms of the ratio of 

cylinder surface velocity to the uniform free stream velocity, Uc/U. 

The fluid velocity on the circle is obtained by setting f' = Re%e and the 

corresponding velocity on the airfoil can finally be derived using the relation 

dF 
dF _ dFaYd^ _d?_ W{$') 

dZ dZ dt' dt dZ 

where ^ = 1 — 1 / f 2 . The pressure coefficient, defined by 

\w(s>)X 
u2 dZ 

•dj 

2 ' 

is obtained for this case as 

Cp = l 
2sin(a+/?)-2sin(a-0)+ \Defy [ • r 2 - R 2 1 _ Inn Uc. 

2r>uc v 2sin(a+/?)-2sin(a-0)+ \Defy R 2Rr0cos(e0-6)-R2-r% 
_ Inn Uc. 

2r>uc v 

1 - - T 

2 

Note that if the vortex is chosen infinitely close to the circle in the f'-plane 

so that £o — Ret0°, the vortex and its image in the circle form a doublet at that 

location and the complex potential becomes, 

Ftf) = Ue~ia 

f1 + j/2<X 
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where C , the strength of the doublet, can be related to the circulation k. For this 

case, the Kut ta condition at the trailing edge results in the relation, 

Ue 1 2 e 
i2a iC 

+ 
i T + k 

0. 

After some manipulation, the above condition can be rewritten as 

*(r + *) nrr • i , a \ , i C c o s 0 o - » s i n 0 o 

— = 2iU smlct+0) -\ 

2-KR V H ) 

which can only be satisfied if: 

T + k 

R2 2 [cos(0o + P)-1]' 

2ITR 2iUsm(a+0) + 
iC COS Or, 

2R2 [cos{0o + /?)-!] ' 

and 

sin0o = 0 ; i.e., 0o = 0 or n . 

(0 

(ii) 

Condition (i) sets the amount of circulation around the airfoil and condition (a) 

fixes the location of the vortex doublet which satisfies the Kut ta condition at the 

trailing edge. Wi th the simplification of sinflo = 0, condition (i) reduces to 

T + k 
2nR 

2Usm{a.+(3) + 
C 

2#2(cos/? +1) " 

Since, in the absence of the vortex doublet, the circulation around a Jou­

kowsky airfoil is given by 

T = 4irRUsm(a+p) , 

the additional circulation, k, due to the vortex doublet is 

k C 
2-KR 2 i 2 2 ( l + cos£) ' 

Setting k = TTDCUC as before gives the strength of the doublet in terms of the 

cylinder surface velocity as 

C = R(l + cos 0)DcUc , 
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and the total amount of circulation becomes 

r + fc T T . , DCUC 

2TTR K H ) 2R 

The complex velocity for this case has the form 

R2 

W(c') = Ue-tc 1 y e i2a 
iR{l + cos 0)DcUc i 

2RUsin(a+p) + 
DCUC 

with the pressure distribution, obtained in the same way as before, 

c [2sin(a+/?) - 2Bin (« -J ) + ±DCft ( l - \ ^ £ ) \ 

1 Y 

Although the above analysis is applied to a Joukowsky airfoil in this case, 

any arbitrary airfoil can be treated using similar approaches as described by 

Theodorsen [30] and Halsey [31]. 

The analytically predicted pressure distribution plots, obtained through ap­

plication of the conformal transformation approach to a symmetrical Joukowsky 

section, in the presence of an external vortex are shown in Figure 4-3. The strength 

of the vortex is reflected in the parameter Uc/U (cylinder surface speed to free 

stream speed ratio) using the analogy discussed earlier. The "No Vortex" case, 

included as reference, shows the pressure distribution over the upper and lower 

surfaces (at a = 0°) to be identical since the airfoil is symmetrical. The vortex is 

located on the x-axis in front of the leading edge of the airfoil and is progressively 

moved closer. The results show a large increase in suction on the upper surface close 

to the leading edge accompanied by an increase in compression on the lower surface. 

As the vortex gets closer to the leading edge, the suction peak value becomes higher 

and tends to infinity in the limit. This is due to the infinite velocity at the core of 

the potential vortex doublet in the flow model. 
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Figure 4-3 Analytically obtained pressure plots around a symmetrical Jou 

kowsky airfoil in presence of an external vortex, located on the x-axis. 
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The effect of locating the vortex off the x-axis is shown in Figure 4-4. 

Through the use of a leading edge flap, a vortex can be trapped below the nose 

leading to an increase in the lift of the airfoil. The vortex is first considered on 

the x-axis in front of the leading edge at X/C = —0.125. The resulting pressure 

distribution at an angle of attack of 4°, compared to that in the absence of the vor­

tex, shows a sharp increase in the negative pressure peak over the leading edge as 

already discussed. The vortex is then located below the nose at the same distance 

from the leading edge. The increase in suction over the nose due to this configura­

tion is relatively small but is accompanied by a larger increase in compression on the 

lower surface. The stagnation point moves a little downstream on the compression 

surface suggesting reorientation of the streamlines and an increase in the effective 

angle of attack. 

The vertical offset of the vortex, located below the nose, also affects the 

pressure distribution as demonstrated in Figure 4-5. Although the pressure peak 

over the leading edge is hardly changed, the location of the stagnation point on the 

lower surface moves downstream as the vortex approaches the airfoil surface. 

The effect of an increase in the vortex strength (equivalent to an increase 

in speed of rotation of the nose cylinder) is to raise the suction on the top surface 

and compression on the bottom surface with their effects propagating downstream, 

along with the position of the stagnation point (Figure 4-6). 

Though severely handicaped by the potential flow assumption, the closed 

form conformal transformation based analysis seems to suggest, at least qualita­

tively, a significant increase in lift due to a rotating cylinder forming the nose of 

a Joukowsky airfoil. The trends predicted by such a simple analysis, however, are 

substantiated by the experimental data. 
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= 4 ° , Uc/U = 0.5 
No Vortex 

Y/C = -0.125, X / C = 0.0 

Figure 4-4 Analytically predicted pressure variation around a symmetrical 

Joukowsky airfoil showing the effect of locating a vortex off the x-axis. 
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Figure 4-5 Analytical pressure distributions around a symmetrical Joukowsky 

airfoil showing the effects of trapping a vortex below the nose at varying vertical 

distance from the surface. 
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Joukowsky Airfoil 
Analytical results 
Vortex below the LE. 
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Figure 4-6 Analytically obtained pressure plots around a symmetrical Jou­

kowsky airfoil showing the effects of trapping a vortex below the nose and 

increasing vortex strength. 
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4 . 2 N u m e r i c a l S u r f a c e S i n g u l a r i t y M e t h o d 

In the numerical approach to the problem, a surface singularity, potential 

flow model involving distribution of vorticity on the airfoil surface and boundary 

conditions specified in terms of the stream function was used. The method, de­

scribed in detail by Kennedy [32] in his Ph.D. dissertation is thought to be the 

simplest available. Although the viscosity effects are ignored, it provides a fairly 

accurate estimate of the flow around the section. 

For flow over an airfoil section there can be no normal velocity at the solid 

surface, hence it represents a streamline of the flow. The stream function is a 

constant on the surface of the airfoil section. It consists of contributions from the 

uniform stream at an angle of attack a and distributed point vortices on the airfoil 

surface, 

where * is the stream function for the airfoil, and an arbitrary point on the surface 

S is designated S'. The distances are nondimensionalized with respect to the chord 

length C, the velocities by U and the stream functions using the product VC. The 

airfoil surface is divided into N small elements. On each of these there is a control 

point, c,-, located at (X,-, Y,) , where the above boundary condition is required to be 

satisfied. Each element j has a vorticity of density 7(<Sy) distributed on its surface 

(Figure 4-7). The integral over the whole surface is then replaced by a summation 

of N integrals over the N surface elements, 

A t this point it is necessary to make some assumptions about the section geometry, 

the location of the control points, and the form of 7(<Sy) over each element j. The 

* = Ys cos a - Xs sin a - — / 7 ( 5 ' ) In r(S, S') dS' = Constant , 

N 1 f 
^ 2W l { S j ) l n r ( e » 5 ' ) d S * = Y i cos a — X{ sin a . 
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simplest approximation is to assume that the elements are straight lines, with the 

control point at the midpoint of the element, and that i(Sj) is a constant (7y) over 

each element. This yields the system of equations, 

N 

+ Kij 7y = Y{ cos ct — Xi sin a , i = 1,. . . , N , 

y = i 

where Kij is a coefficient representing the influence of element j on control point 

i, and is purely a function of the coordinates of the surface elements and the angle 

of attack. It can be determined by evaluating the integral in the stream function 

equation (using the notation of Figure 4-7) as 

Kij = ^[(b + A ) ln(r 2 ) — (b — A) ln(r2

2) + 2a t an" 1 ( q 2 +

2 ° A _ A 2 ) " 4A 

In cases where a2 + b2 — A 2 < 0, the relation 

i / 2aA \ , fb + A \ , ( b - A \ 

tan u+p - A O = T A N { — ) -tan (—J 
helps determine which value of the arctangent should be used. 

To satisfy the condition that the flow leaves the trailing edge smoothly (the 

Kut ta condition), an extra control point is introduced a short distance downstream 

of the trailing edge. This provides an additional equation 

N 

* + Kx+i,j lj = YN+I COS a - X N + 1 sin a , 
y = i 

thus reducing the problem of potential flow over an airfoil section to the solution 

of N + 1 simultaneous equations. The velocity in the interior of the closed airfoil 

section is zero and discontinuity in the tangential velocity across a vortex sheet is 

equal to the density of the vortex sheet. Thus by solving the above equations, one 

directly obtains the surface velocities, 7y, on the airfoil elements. 

The procedure can easily account for one or more vortices at any location in 



v o r t i c i t y d i s t r i b u t i o n j t h e l e m e n t 

F i g u r e 4-7 Singularity representation of the airfoil and the notation for the calculation of influence coefficients. 
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the field. The stream function for a point vortex of known strength, k (positive in 

the clockwise sense), located at (X0,Y0) is simply added to the right hand side of 

the above equation, 

N 

K;.- 'v.- = Y: cos ft — X; sin ft 4-
2TT 

E k 
Kij ij = Y{ cos a — X{ sin a + — In rt- , % = 1,. . . , N , 

where 

U = y/{Xi-X0)* + {Yi-Y0)* . 

This method is extended to permit the analysis of an airfoil with finite thick­

ness trailing edge. The vortex sheet defining the airfoil surface is open at the trailing 

edge in this case. A source singularity of unknown strength is now required within 

the contour of the body to model the flow in the wake which theoretically extends 

to infinity. Including the stream function for the source in the previous equation 

gives 

* + Kij Ij + JT- t a n - 1 * * ° " r c e [ = y;. c o s a _ xt sin a + ̂ - lnr,- , 
' 27T \Xi-XBOUrceJ 2TT 

i = l,...,N , 

where m is the unknown source strength. The use of a second Kut ta condition 

similar to the first one is now required to generate the extra equation needed to 

solve for the strength of the source. Since the velocity in the interior of the wing is 

not zero in this case, the local vortex sheet densities, ŷy, are no longer the surface 

velocities at the airfoil components. The tangential velocities are governed by the 

combined contributions from the surface vorticity distribution, the uniform flow, 

the point source inside the contour, and the external vortex, and can easily be 

calculated [33]. 

The above system of equations can be written in matrix form as 

Ri I , i,j = l,...,N , 

V 
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where Ri denotes the right-hand side of the stream function equation: 

and 

Ri = Yi cos a — X i sin a H In r,- ; 
2 7 T 

Si = — tan" 1 ( Y i Y s o u r c e ) . 

Wi th the inclusion of the Kut ta conditions, the system becomes 

KN,I 

KN+I,I 

K 1,N 

K N,N 

KN+I,N 1 •S'JV+I 

KN+2,N 1 

f Ri \ 

IN — RN 

RN+I 

J V m J \RN+2 J 

Extension of this method to the case of multicomponent configurations gives 

rise to a different stream function for each component thus requiring corresponding 

Kut ta conditions. It can also be applied to a configuration of an airfoil section 

between two walls but the stream functions for the wall components have to be 

treated as known quantities since the flow rate between the walls is given. These 

known stream functions can be moved to the right hand side of the equations and the 

unnecessary Kut ta conditions removed. Also, the angle of attack modifications to 

the airfoil surface must be applied before the coefficient matrices can be calculated, 

i.e., the airfoil must be rotated to the appropriate angle of incidence within the 



1 1 3 

tunnel walls. In this case the system of equations can be written as: 

Here (if 11) is the coefficient matrix calculated for the airfoil section, (K22) and 

(If 33) are the coefficient matrices calculated for the wall components, and (K12), 

(K13), etc., represent the relations between the corresponding components. 

The system of equations is then solved by Gaussian elimination procedure. 

4 . 2 . 1 F l o w a r o u n d a J o u k o w s k y a i r f o i l i n p r e s e n c e o f v o r t i c e s 

The numerical surface singularity approach was applied to the same symmet­

rical Joukowsky airfoil as used in the case of the analytical conformal transforma­

tion procedure, thus facilitating comparison of results. The leading edge rotating 

cylinder was simulated with an internal vortex located at the center of the leading 

edge. Figure 4-8 presents typical pressure distribution plots at a = 4° showing 

the effect of the leading edge vortex strength corresponding to an increase in the 

cylinder velocity. The results suggest a significant rise in suction over the leading 

edge accompanied by a slight increase in compression on the lower surface due to 

the stagnation point moving downstream. 

Numerical analysis of a two-component Joukowsky airfoil, with the rotating 

cylinder also modelled by the surface singularity approach, resulted in the informa-
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Figure 4-8 Pressure distributions around a symmetrical Joukowsky airfoil us­
ing the surface singularity method to simulate the leading-edge rotating cylin­
der with an internal vortex. 
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tion presented in Figure 4-9. The pressure plots show essentially the same trend as 

the leading-edge vortex case. However, the peak suction value is slightly lower and 

confined to the area just over the cylinder. 

Modelling the effect of the rotating cylinder with an internal nose vortex pre­

dicts a qualitatively correct increase in the negative pressure peak over the leading 

edge (refer to the experimental data obtained with the Joukowsky airfoil model II). 

The exaggerated magnitude of this rise in pressure is, of course, expected due to 

the potential flow nature of the model. The model also correctly predicts a change 

in the location of the stagnation point on the lower surface due to cylinder rotation. 

A typical comparison between numerically obtained results of the leading-

edge-cylinder using an internal nose vortex and the corresponding analytical result 

of the vortex doublet are presented in Figure 4-10. It is interesting to note, though 

not surprising, that the correlation between the analytical and numerical predictions 

(both suffering from the potential flow assumption) is rather good. Although this 

does not help in correctly predicting the flow field, it is indeed reassuring that 

reliable trends can be obtained. 

4 . 2 . 2 C o u n t e r - r o t a t i n g v o r t e x - p a i r m o d e l 

A t higher angles of attack (a > 16°), the large unfavorable pressure gradient 

behind the leading edge causes the immediate separation of the boundary layer 

from the upper surface. If the effect of the leading-edge-cylinder is to control the 

boundary layer, i.e., to suppress or at least delay separation, the corresponding flow 

model should reflect this as a favorable change in the pressure gradient. 

To that end, a model of counter-rotating vortex-pair, located below the 

leading edge, is considered. Wi th vortices of equal strength, in magnitude, no 

additional circulation is introduced in the flow. However, the location of the leading 

edge suction peak (and the associated pressure gradient) is directly affected by the 

relative position of the vortices, with respect to each other and the airfoil, as well 
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F i g u r e 4-9 Numerically obtained pressure distributions around a Joukowsky 

airfoil with a rotating cylinder forming its nose. 
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Figure 4-10 A comparison between the analytical and numerical (potential 

flow) methods used in modelling the leading-edge cylinder. 
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as their strength. 

Figure 4-11 examines the effect of the vertical position of the vortices below 

the leading edge. The downstream location of the vortices is measured from the 

leading edge with the first vortex located below the center of the leading-edge-

cylinder. The second vortex is placed at the quarter-chord position, an average 

position based on a study of the stagnation point location as affected by the circu­

lation. 

As the vortex pair moves closer to the airfoil surface, the negative pressure 

peak over the leading edge is reduced (Figure 4-1 la) . However, the suction over the 

rest of the upper surface increases. The overall effect is, therefore, a decrease in the 

adverse pressure gradient over the suction surface behind the nose. The individual 

contribution of the vortices can be clearly seen in Figure 4-11 (b) and (c). The front 

vortex, or the vortex right below the leading edge, is responsible for decreasing the 

magnitude of the pressure peak at the leading edge while the rear vortex increases 

the suction behind the leading edge keeping the overall circulation of the airfoil the 

same. 

Figure 4-12 shows the effect of changing the relative streamwise position of 

the two vortices. Wi th the front vortex located directly below the center of the lead­

ing edge cylinder (X/ C = 0.05), several positions of the rear vortex corresponding 

to increasing distance between the cores of the two vortices, are considered. Obvi­

ously, when the vortices are at the same location, their effect cancel and the pressure 

distribution remains unchanged. As the vortices are moved apart, however, the in­

terference between the two decreases and their individual effects reappear. 

Effect of the strength of the vortices, corresponding to increasing the cylinder 

speed, is considered in Figure 4-13. The pressure plots with the counter-rotating 

vortices of equal strengths are presented in Figure 4-13(a). In absence of the vor­

tices, a large adverse pressure gradient is present behind the leading edge at, in this 
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Figure 4-11 Effect of a vortex pair, located below the leading edge, on the 

pressure distribution of a Joukowsky airfoil: (a) effect of the location of the 

pair below the nose; 
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Figure 4-11 Effect of a vortex pair, located below the leading edge, on the 

pressure distribution of a Joukowsky airfoil: (b) individual effect of the front 

vortex; 
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F i g u r e 4-11 Effect of a vortex pair, located below the leading edge, on the 

pressure distribution of a Joukowsky airfoil: (c) individual effect of the rear 

vortex. 
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F i g u r e 4-12 Effect of the relative streamwise position of the vortices on the 

pressure distribution around a Joukowsky airfoil. 
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Figure 4-13 Effect of increasing the strength of the vortex pair, located 

below the leading edge, on the pressure distribution of the Joukowsky airfoil: 

(a) vortices with the same strength; 
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F i g u r e 4-13 Effect of increasing the strength of the vortex pair, located below 

the leading edge, on the pressure distribution of the Joukowsky airfoil: (b) front 

vortex of higher strength; 
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Figure 4-13 Effect of increasing the strength of the vortex pair, located below 

the leading edge, on the pressure distribution of the Joukowsky airfoil: (c) rear 

vortex of higher strength. 
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case, a — 16°. Increasing the strength of the vortex pair decreases the negative 

pressure peak at the leading edge, at the same time increasing the suction over the 

rest of the upper surface. Large values of Uc/U, therefore, greatly decrease the 

unfavorable pressure gradient and beyond a certain point, make it favorable. The 

vortex below the leading edge is clearly responsible for decreasing the pressure peak 

over the nose as shown in Figure 4-13 (b). Higher strength of this vortex tends to 

reduce the pressure gradient over the upper surface as well as decrease the overall 

circulation around the airfoil. Note, the rear vortex strength is kept constant while 

the circulation of the front vortex, counterclockwise in sense, is increased. Similarly 

the rear vortex is shown to cause an increase in suction behind the nose (Figure 

4-13c). Higher strengths of this vortex increase the circulation around the airfoil. 

In all the cases, effect of the vortex pair on the pressure at the bottom surface is 

minimal. 

Thus, modelling the effects of the leading-edge rotating cylinder on the flow 

field, rather than the cylinder itself, using a vortex pair below the nose seems rather 

promising. It decreases the adverse pressure gradient on the upper surface of the 

airfoil. This is consistent with the desired effect of a boundary layer control device 

in avoiding or at least delaying the separation from the upper surface. 

The vortex pair model has some similarity with the flow pattern near the 

stagnation point, S, detached from the surface of a rotating cylinder at high circu­

lation. Typical streamline pattern for Uc/U = 3 is shown in Figure 4-14. The flow 

pattern suggests the presence of four local circulating regions. The regions labelled 

(1) and (3) are closer to the cylinder and more stable. On the other hand, vortices 

(2) and (4) are located farther away and relatively unstable. A part of the vorticity 

associated with regions (2) and (4) is convected downstream with the main flow at 

a rate so as to maintain balance between the vorticity generation and its dissipa­

tion. Thus vortices (1) and (3) seem to play a dominant role. The counter-rotating 

vortex-pair model attempts to simulate their effect. 
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F i g u r e 4-14 Streamline patterns for flow around a circular cylinder with circulation, 

corresponding to Uc/U = 3, showing the detached stagnation point and the associated 

recirculation regions. 



5 . V I S C O U S C O R R E C T I O N S C H E M E 

5 . 1 B o u n d a r y L a y e r C a l c u l a t i o n s 

Although the potential flow approximation proved useful qualitatively, it 

suffers from a major restriction. It is not satisfactory for flow conditions where 

viscous effects are significant. 

In order to model the flow over an airfoil section with boundary-layer control, 

effects of viscosity must be accounted for. These are confined to the boundary 

layer and its separated region. One approach is to shift the surface by a distance 

conventionally referred to as the "displacement thickness" of the boundary layer. 

Thus variation of the static pressure along the surface within the shear layer depends 

on the shape of the surface as well as the displacement effect of the boundary layer. 

The flow over the displaced surface is again taken to be potential. 

A practical method of solving this problem, therefore, matches the outer 

potential flow solution with the inner boundary layer solution. The thin shear 

layer approximations of the Navier-Stokes equations for steady two-dimensional, 

incompressible flow are used. The thin shear layer equations with negligible dP/dy 

are: 
du dv Q 

dx dy ' 
du du 1 dP , . d2u 

Ud^ + Vdy- = --pdx- + { l / + e)d^; 

along with the boundary conditions: 

y = 0, u = 0, v = vw(x) ; 

y —>- oo, u = Ue(x) ; 

vw being the transpiration velocity, zero on a solid surface. The pressure, P , is a 

known function of x, assumed independent of y, given by Bernoulli's equation along 
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a streamline, 
d P

 = p U

 dUe 

dx dx ' 

and is obtained from the local potential flow. 

The finite difference method used to solve the boundary-layer problem is due 

to Keller and Cebeci [34, 35], and is often referred to as the "box" method. The 

governing equations are written in terms of a first order system of PDEs , using the 

Falkner-Skan transformation, 

and the dimensionless stream function f(x,n) defined as 

y{x,y) = (Uevx)ll2f{x,r,) . 

By the definition of the stream function: 

dy ' dx ' 

the transformed momentum equation becomes 

where a prime denotes differentiation with respect to n , and the quantity m is a 

dimensionless pressure gradient parameter defined by 

x dUe 

Ue dx 

The boundary conditions in terms of the transformed variables, including mass 

transfer at the wall, that is v = vw when y = 0, become: 

X 

V = f = 0, f{x, 0) = fw = - ^ 1 / 2 j vwdx; 
o 

V = Voo, f = 1 • 
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Here, rjoo corresponds to the transformed boundary layer thickness. In physical 

coordinates, the boundary layer thickness 6(x) usually increases in the downstream 

direction for both laminar and turbulent flows. In transformed coordinates, 77,30 

is nearly constant for most laminar flows and increases with increasing streamwise 

Reynolds number for turbulent flows. 

The boundary layer parameters of interest, written in terms of transformed 

coordinates, include: 

boundary-layer displacement thickness 

r = x 

(Rex) 

boundary-layer momentum thickness 

/

Voo 

x 

8 = 
V O (Rex)] 

and the local skin-friction coefficient 

2 / " 
Cf = 

l/2pU* (Jfc,) 1/ 2 ' 

where 

Rex = 
v 

is the streamwise Reynolds number. 

Before the above equations can be solved, however, it is necessary to express 

the eddy viscosity term, e + = e/u. The formulation by Cebeci and Smith [36] treats 

the turbulent boundary layer as a composite layer consisting of inner and outer 

regions with separate expressions for eddy viscosity in each region. The analytic 

functions, given below, are based on experimental results. 

In the inner region, the eddy-viscosity is defined by 

= L —Itran , 
dy 
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where L, for two-dimensional flows, is the mixing length taken as 

L = Ky 1 — exp ( —^ K = 0.4 

Here A is a damping constant defined in terms of the shear stress at the wall: 

1/2 

For flows with no mass transfer, N can be written as 

N=(l- 11.8p+) 1 / 2 , where p + = m dx 

In the inner region, 7 t r a n represents an intermittency factor accounting for the 

transition region that exists between laminar and turbulent regimes. It is defined 

by 

Itran = 1 - exp •G(x r dx 

Here, xtr locates the start of transition and the empirical factor G , which has the 

dimensions of velocity/(length)2, is given by 

G = 8.35 x 10" 

In the outer region, the eddy-viscosity is defined by 

I f00 

( e + ) o = a / (Ue-u)dy 
\Jo 

Itran > ( e m ) 0 ^ ( e m ) i > 

where a is a universal constant equal to 0.0168 when Reg > 5000. 

The condition used to define the inner and outer regions is the continuity 

of the eddy viscosity — from the wall outward the expression for the inner eddy 

viscosity is applied until ( e + ) t = ( e + )o-

The details of the formulation and the finite difference procedure followed 

are those given by Cebeci and Bradshaw [37]. 
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5 . 2 E q u i v a l e n t - A i r f o i l T e c h n i q u e 

The method is based on obtaining a viscous solution for a given high lift 

airfoil through the analysis of an equivalent system in potential flow [38]. The 

iterative cycle is depicted schematically in Figure 5-1. The first step in the procedure 

is to calculate the potential-flow pressure distribution. The computed pressure 

distribution is then used to determine laminar and turbulent displacement thickness, 

transition location, and separation points through the use of the boundary layer 

calculation scheme of the previous section. Wi th the boundary-layer characteristics 

known, an equivalent-airfoil configuration is arrived at by superposing the boundary 

layer displacement thicknesses on the original airfoil contour. The equivalent system 

is now analyzed in the potential flow. 

Obviously, the definition of the equivalent-airfoil geometry that simulates 

the viscous contribution constitutes a critical step in the iterative solution cycle. 

Two distinct cases occur, depending on the attached or separated boundary layer. 

5 . 2 . 1 A t t a c h e d - f l o w c a s e 

In most practical boundary-layer calculations, it is necessary to solve for the 

complete flow. That is, for a given external (potential flow) velocity distribution 

and for a specified (natural) transition point it is necessary to calculate laminar, 

transitional, and turbulent boundary layers by starting the calculations at the lead­

ing edge or at the forward stagnation point of the body. However, most boundary 

layer prediction methods avoid the calculation of transitional boundary layers by 

assuming the transition region to be a switching point between laminar and tur­

bulent regions. Wi th the intermittency factor, defined in the previous section, the 

transitional region can be accounted for more satisfactorily. For incompressible 

two-dimensional flows the start of transition can be calculated using, for example, 

an empirical relation between the transition location and the momentum-thickness 
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F i g u r e 5-1 Numerical analysis procedure. 



1 3 4 

Reynolds number [4]. Sometimes, however, the laminar flow calculations indicate 

flow separation before the transition point can be calculated (laminar separation 

bubble). In those cases the wall shear becomes negative and prevents the solutions 

from converging. The transition is then assumed to occur at the laminar separation 

point and the boundary-layer calculations continued. The point of final turbulent 

separation is simply the point of vanishing shear stress at the wall. 

For the case where no boundary layer separation occurs, the equivalent-

airfoil surface is defined by superimposing the computed boundary layer displace­

ment thickness normal to the airfoil contour (Figure 5-2a). Since the displacement 

thickness is not zero at the trailing edge, the resulting equivalent body is analogous 

to an airfoil with a finite-thickness trailing edge. Thus the extensions to the basic 

formulation, described in section 4.2, are directly applicable. 

5.2 .2 S e p a r a t e d - f l o w case 

The boundary-layer calculations described above predict the separation 

point but do not carry out calculations beyond the point of separation. Therefore, 

an equivalent displaced surface past the separation point is not readily available. 

One way to solve this problem is to allow the separation streamline to re­

main a free boundary and fix its position by specifying a constant pressure condition 

along the streamline, from the separation point to the trailing edge. Experimental 

data tend to support a nearly constant pressure, separated wake condition. The ap­

proach, however, requires the solution of a nonlinear system of equations within the 

framework of the distributed singularity theory. The undesirability of an iterative 

approach to the solution led to the search for a simpler method. 

The streamline emanating from the separation point can also be approx­

imated by an analytical function [38]. A linear streamline assumption aligns it 

with the freestream direction while a parabolic streamline assumption orients it so 
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F i g u r e 5-2 Equivalent-airfoil models: (a) attached flow; 
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F i g u r e 5-2 Equivalent-airfoil models: (b) separated flow. 
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that it is tangential to the local surface at the separation point and parallel to the 

freestream direction at the trailing edge. Alternatively, a satisfactory analytical 

definition for the separation streamline can be obtained by trial and error for the 

configuration under investigation. However, it should remain valid for a variety of 

airfoil configurations and locations of the separation point. 

To avoid empiricism, it was decided to adopt a free separation-streamline 

approach. The model is shown schematically in Figure 5-2(b). The free separation-

streamline model is denned by satisfying the boundary conditions of tangential flow 

on only that part of the airfoil having attached flow. The tangential flow condition 

is also satisfied at the separation point and the trailing edge. Since no flow control 

is exercised at points downstream of the separation point, the streamline develops 

freely from the separation point. The resulting model is mathematically identical 

to that used to analyze airfoils with finite-thickness trailing edges. In this case, 

the total separated region of the airfoil is considered as a finite-thickness base. 

The Kut ta point just downstream of the trailing edge on the upper surface in the 

finite trailing edge airfoil analysis is moved to just downstream of the separation 

point. The pressure distribution downstream of the separation is assumed to remain 

constant at a value corresponding to that at the point of separation. 

A detailed listing of the computer program used in the numerical computa­

tions is given in the Appendix. 

5 . 3 R e s u l t s a n d D i s c u s s i o n 

The symmetrical Joukowsky airfoil model was also analyzed using the nu­

merical surface singularity approach accounting for the viscous correction. The 

actual measured coordinates of the experimental model, rather than the analytical 

shape, served as input to the program to facilitate comparison with experimental 

results and avoid unreal cusp character of the theoretical Joukowsky section. Note, 

the results corrected for boundary layer effects also account for blockage. 
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Typical pressure plots as obtained using the numerical models are compared 

with the experimental data in Figure 5-3. The numerical potential flow model pre­

dicts considerably higher suction over most of the upper surface. However, the effect 

due to wall confinement is relatively small. The correction scheme uses these po­

tential flow data (with wall confinement effects) to calculate the displacement effect 

of the boundary layer, as well as the point of separation, to obtain the "corrected" 

pressure data. 

Considering the relatively simple character of the numerical scheme, the 

correlation may be considered quite good. The discrepancy between the predicted 

and experimental results near the trailing edge is believed to be mainly due to the 

nature of the boundary layer scheme and its simplifying assumptions. Obviously, 

assuming the pressure to remain constant across the shear layer is no longer valid 

after the shear layer has separated. More accurate prediction of the pressure in a 

separated boundary layer with flow reversal would require the use of a sophisticated 

numerical scheme in conjunction with the full Navier-Stokes equations. 

These results, along with the corresponding data at other angles of attack, 

are summarized in the form of CL vs. a plots in Figure 5-4. Improvement in 

correlation with the experimental results due to inclusion of the boundary layer 

effects is strikingly apparent. 

Next, the Joukowsky airfoil with a rotating cylinder forming its nose is con­

sidered. A typical pressure distribution for this two-component airfoil, as predicted 

by the potential flow surface singularity method, is compared with the experimental 

results in Figure 5-5. Since the result of the cylinder rotation, in effect, is to mini­

mize the adverse effects of the boundary layer, the correlation between the inviscid 

results and experiment remains reasonable, even at an angle of attack as high as 

a = 16°. 

However, with a further increase in the angle of attack, at some point it is 
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no longer possible to keep the flow attached over the entire upper surface. As the 

size of the separation region grows, the suction over the airfoil decreases and the 

consideration of the viscous character of the flow becomes essential. The pressure 

peak at the leading edge, predicted by the potential flow solution, and a large 

adverse pressure gradient immediately downstream of it cause the boundary layer 

to separate quite readily. This suggested that to incorporate the boundary-layer 

corrections effectively, it is essential to model also the cylinder rotation. 

The effect of the cylinder rotation is considered in two ways: 

(i) through the boundary layer scheme by setting the appropriate wall velocity 

conditions at the location of the leading-edge-cylinder; or 

(ii) through initial modification of the external flow using a pair of counter-

rotating vortices below the leading edge. 

The models used are shown in Figure 5-6. 

5 . 3 . 1 M o d e l l i n g t h e e f f e c t o f c y l i n d e r r o t a t i o n t h r o u g h 

b o u n d a r y - l a y e r m o d i f i c a t i o n 

The boundary layer which starts at the location of the stagnation point below 

the nose of an airfoil at a relatively high angle of attack grows considerably around 

the leading edge, due to the large adverse pressure gradient present in this region, 

and separates shortly downstream. Rotation of the leading-edge-cylinder, however, 

can delay separation of the boundary layer by: 

• reducing the growth of the boundary layer, particularly near the leading 

edge; and by 

• injecting momentum into the growing boundary layer. 

These effects are illustrated in Figure 5-7 and modelled by imposing appropriate 

boundary conditions on the surface of the airfoil at the location of the cylinder as 



C O R R E C T E D N U M E R I C A L A P P R O A C H 

F i g u r e 5-6 Models for the effect of cylinder rotation. 

CO 



F i g u r e 5-7 Schematic diagram of the velocity profiles around the leading edge of an airfoil 

illustrating the momentum injection effect due to the rotation of the cylinder. 
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described below. 

Beginning at the location of the "lower gap", the existing boundary condition 

on the surface is changed. The new condition sets the fluid velocity at the wall equal 

to the surface speed of the cylinder, and remains in effect until the "upper gap" is 

reached. Beyond this point, a "slip velocity" is introduced to model the momentum 

injection. The initial magnitude of this velocity is equal to the cylinder surface 

speed but exponentially decreases to zero at the point of maximum thickness of the 

airfoil. The normal "no-slip" boundary condition takes effect at this point. 

The slowly decreasing slip velocity attempts to represent effect of the cylin­

der rotation. It progressively diminishes and virtually disappears a short distance 

downstream. The region over which the momentum injection effect persists was 

qualitatively arrived at through flow visualization using tufts. This compares with 

the experimentally observed separation, at very large angles of attack (a > 36°), 

near the quarter-chord point (Figure 3-4d). 

It is important to emphasize that the above procedure does not specify a 

point of separation for the upper-surface flow. In fact, depending on the pressure 

gradient, the flow may remain attached over the entire surface or separate even 

before the "slip velocity" condition is terminated. 

A few representative numerical results accounting for cylinder rotation and 

the airfoil angle of attack are compared with the experimental data in Figure 5.8 

(a) and (b) at a = 12°. Considering the highly complex character of the flow due to 

moving surface momentum injection, the correlation is indeed satisfactory. The lack 

of pressure taps at the leading edge (on the rotating cylinder) prevents comparison 

in this region. However, increasing the cylinder speed does predict higher suction 

over the leading edge as suggested by the experiments (the first pressure tap on 

the upper surface). Although not quite evident from the experimental data, the 

theory also shows the point of separation on the upper surface (clearly it moves 
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downstream with an increase in cylinder speed). 

Similar results at a = 24° are also shown (Figure 5-8 c, d). Note the existence 

of a rather large separation bubble on the upper surface with Uc/U = 2. This 

region is identified by an essentially constant pressure from X/C « 0.3 to 0.5 

and its recovery towards the trailing edge. Obviously, the present model does not 

account for reattachment and treats the region downstream of separation as having 

a constant pressure, leading to the discrepancy. The model "sees" any separation 

as the final one (here at X/C « 0.35) and does not calculate the flow beyond this 

point. A t a higher rate of rotation (Figure 5-8d), however, the early separation 

and reattachment (separation bubble) is avoided and the theory is in much better 

agreement with the experiment in this case. 

A t a very large angle of attack of a = 36° , the flow separates rather early 

(at X/C « 0.2) even in the presence of a high rate of cylinder rotation (Uc/U = 4, 

Figure 5-8e). The pressure recovery fluctuates as the separated boundary layer 

moves closer to the airfoil surface and intermittently attaches to it (as shown by 

the video movie taken during the flow visualization). Obviously, the theoretical 

model is not sophisticated enough to account for such transient behavior and a 

large discrepancy in this region is apparent. 

The experimental lift data are plotted (Figure 5-9a) along with the numerical 

predictions obtained through integration of the pressure. The experimental results 

in absence of cylinder rotation are also shown for comparison. Although the theory 

successfully predicts correct trends and is reasonably close in estimating the Cr,,max 

values (1.85 vs. 1.65 at Uc/U = 2 , 1.93 vs. 1.8 at Uc/U = 3) it seems to grossly 

underestimate the stall angle. The analysis, therefore, overpredicts the slope of 

the lift curve (6.28/rad against 5/rad) and hence gives high Cr, values for a given 

a. This is partly due to the presence of gaps, between the test model and the 

wind tunnel walls, necessary to provide connections to the balance at one end 

and cylinder drive mechanism, located outside the tunnel, at the other. Thus the 
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boundary-layer modification to model the cylinder rotation - a comparison 

with experimental data: (b) integrated pressure data with theoretical results 

modified at the leading edge. 
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test arrangement does not represent an ideal two-dimensional condition. However, 

inadequacy of the theory to model such a complex separated flow with possible 

transient reattachment of the boundary layer (in the presence of cylinder rotation) 

is the major cause of discrepancy. On the other hand, relatively simple numerical 

procedure based on potential flow analysis with viscous correction has sufficient 

accuracy for preliminary engineering analyses. 

Due to the lack of pressure taps in the nose section of the experimental 

model, the integrated pressure distribution results do not include the contribution 

due to the high suction peak over the leading edge. This partly explains the sig­

nificantly higher numerical predictions of lift at the larger angles of attack. It is, 

however, possible to make a better comparison between the results if the theoretical 

values are modified to exclude the information that is missing from the experimental 

observations. 

Figure 5-9(b) shows the results of integrating the numerical pressure plots 

with the leading-edge suction peak "flattened" to correspond to the same approxi­

mation as used in integration of the experimental results. The maximum lift coef­

ficients predicted by the theory now match the experimental values more closely. 

5 . 3 . 2 C y l i n d e r r o t a t i o n m o d e l l e d t h r o u g h a p a i r o f 

c o u n t e r - r o t a t i n g v o r t i c e s 

The potential flow model, represented by a pair of counter-rotating vortices 

below the leading edge was described in section 4.2.2. It was shown to effectively 

decrease the adverse pressure gradient, behind the suction peak, which is respon­

sible for separation at large angles of attack. Combined with the boundary-layer 

correction scheme, it should provide a way of modelling the momentum injection 

into the boundary layer. It also takes into account the effect of the gap to some 

degree because of the inherent discontinuity in the boundary condition from the 
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rotating cylinder to the airfoil surface. 

Results obtained using this approach are compared with the corresponding 

experimental data in Figure 5-10. The predicted pressure plots are similar to those 

discussed in the previous section up to the point of stall. There is some improvement 

in correlation due to a reduction in suction peak, as predicted by the present model, 

and the corresponding change in compression on the lower surface (compare to 

Figure 5-8b). The coefficients of lift, therefore, also show better agreement with the 

experimental values at lower angles of attack (a < 16° , Figure 5-11). Note, unlike 

the previous model, the present method predicts complete separation of the upper-

surface flow at the point of stall resulting in a large drop in lift. The experiments 

show relatively gradual onset of stall. 



1 5 6 

-3 

2 -

0-

. cx=12°, Uc/U=2 . 
Predicted Results 

o Experimental Data 

. cx=12°, Uc/U=2 . 
Predicted Results 

o Experimental Data 

. cx=12°, Uc/U=2 . 
Predicted Results 

o Experimental Data 

Vol 
Re = 
t̂ex 

2.«J 
Paii 

11 X 
" Mo 

105 

dell] ing 
o 

( 

Vol 
Re = 
t̂ex 

2.«J 
Paii 

11 X 
" Mo 

105 

dell] ing 

\ ° O 

( 
22-OO- OO 

C J 0 

( 
22-OO- OO o--< >• o "Onnr ) EL-

( 
22-

) EL-

; 
0 0.2 0.4 0.6 

X/C 
0.8 

F i g u r e 5-10 Predicted pressure distribution using the vortex-pair modelling 

of the cylinder rotation and its comparison with the experimental data. 



2.4 
157 

c L 
1.6 A 

1.2-

0.8-

0.4-

0 

Re = 2.31 x lCT 
Vortex P a i r Model l ing 

• • 

LE. Cylinder 
Exper iment , Uc/U=0. 

T h e o r y , Uc/U=l. 

o Exper iment , Uc/U=l. 

T h e o r y , Uc/U=2. 

A Exper iment , Uc/U=2. 

T h e o r y _ _ ^Uc/U^B. 

• Exper iment , Uc/U=3. 

32 40 48 
a o 

Figure 5-11 Variation of the lift coefficient with angle of attack as predicted 

using the vortex-pair modelling of cylinder rotation and its comparison with 

the experimental data. 



6 . F L O W V I S U A L I Z A T I O N S T U D Y 

A preliminary flow visualization study, undertaken at the beginning of the 

research program to help appreciate important parameters affecting this form of 

moving surface boundary layer control, was described earlier (Chapter 2). Con­

ducted in a glycerol-water solution tunnel with dye injection, the study proved 

useful in planning the design of aerodynamic models. 

After conducting an extensive wind tunnel test program, extending over three 

years, and complimenting it with analytical and numerical studies, it was thought 

appropriate to undertake a flow visualization study again. The wind tunnel test 

results indicated rather impressive lift and stall characteristics suggesting remark­

able effectiveness for this form of boundary layer control. Furthermore, detailed 

pressure distribution data implied rather complex character of the flow, on the top 

surface, with separation and reattachment regions. Of course, their transient char­

acter would add to the complexity making even elaborate numerical models of the 

flow merely approximate. 

Wi th experimental and numerical results in hand, and some appreciation as 

to the challenging character of the associated fluid dynamics, a flow visualization 

study at this stage should prove more meaningful. In spite of its qualitative char­

acter, the study would at least tend to attest the effectiveness of the concept as 

the experiments have suggested. Furthermore, it would give visual confirmation of 

the complex flow implied by the pressure data. Thus the main objective of the flow 

visualization study was to corroborate, at least in a preliminary fashion, potential 

of the moving surface boundary layer control and have some visual appreciation as 

to the associated flow field. 

The flow visualization study was carried out in the excellent closed circuit 

water channel facility in the laboratory of Professor T. Yokomizo at the Kanto 
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Gakuin University, Yokohama, Japan. A two dimensional model of the N A C A 63-

218 (modified) airfoil was constructed from plexiglas and fitted with a leading edge 

cylinder, driven by a compressed-air motor. A suspension of fine aluminum powder 

was used in conjunction with slit lighting to visualize streaklines. Both angle of 

attack and cylinder speeds were systematically changed and still photographs as 

well as a video movie taken. 

The study showed, rather dramatically, effectiveness of this form of boundary 

layer control (Figure 6-1). Presented in Figure 6-2 are a few of the steady state 

pictures, taken at several angles of attack, with and without the cylinder rotation. In 

absence of the cylinder rotation, a well defined separation bubble is quite apparent, 

particularly at higher angles of attack, with large scale vortices sweeping away 

downstream. However, with the cylinder rotating at Uc/U > 8, an essentially 

attached flow is established over most of the upper surface of the airfoil. 

A t relatively lower rates of cylinder rotation (say Uc/U = 2, 3, 4) the flow 

character was found to be similar to that observed at Uc/U = 0 with the separation 

and reattachment regions progressively shifting downstream as the rotation rate 

increased. This is apparent through the transient flow patterns depicted in Figure 6-

3 where the cylinder rotation quickly increases form Uc/U = 0 to 6. 

In fact, the flow pattern was found to be quite unsteady with the vortex 

layer separating and forming a bubble on reattachment, the whole structure drift­

ing downstream, diffusing and regrouping as different scales of vortices. The video 

movie shows this transient behavior quite vividly. Ultimately the flow sheds large 

as well as small scales of vorticity. Thus the flow character suggested by the ex­

perimentally obtained time average pressure plots appears to be quite accurate. 

Furthermore, this also explains why the numerical procedure adopted can predict 

such highly complex and transient flow only in an approximate fashion. In fact, 

considering the formidable character of the flow, it represents a good approxima­

tion. 



Re - 4 x 1 0 4 a = 2 5 ° , Ue/U = 0 

F i g u r e 6-1 Typical photogrphs taken during the flow visualization study showing remarkable 

effectiveness of the moving surface boundary-layer control procedure: (a) highly separated flow, 

at a high angle of attack, in absence of the boundary-layer control; 
O 



Re = 4 x 1 0 4 a = 2 5 ° , Uc/U = 1 0 

F i g u r e 6-1 Typical photogrphs taken during the flow visualization study showing remarkable 

effectiveness of the moving surface boundary-layer control procedure: (b) essentially attached 

flow established through cylinder rotation. 
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Figure 6-2 Flow visualization photographs showing the steady flow over the airfoil 

at various angles of attack with and without the rotation of the leading edge. 



F i g u r e 6-3 Flow visualization photographs showing the transition from the 

highly separated flow in the absence of cylinder rotation to the essentially 

reattached flow at Uc/U = 6. 



7 . C L O S I N G C O M M E N T S 

7 . 1 C o n c l u d i n g R e m a r k s 

The well organized comprehensive experimental program, complemented by an­

alytical, numerical, and flow visualization studies, has provided a considerable 

amount of useful information of fundamental importance. Only more important 

conclusions based on results obtained with different configurations are summarized 

here. 

L e a d i n g - e d g e - c y l i n d e r 

The experimental results with a symmetrical Joukowsky and N A C A 63-218 

(modified) airfoils using a leading edge rotating cylinder bring to light several in­

teresting points of information: 

• In general, rotation of the cylinder results in increased suction over the leading 

edge. It is the propagation of this lower pressure downstream, however, that 

determines the effectiveness of the rotation. This depends mainly on the geom­

etry of the nose and smoothness of transition from the cylinder to the airfoil 

surface. A gap size greater than 3 mm substantially decreases beneficial effect 

of the cylinder rotation. 

• The increased momentum injection into the boundary layer, with an increase in 
0 

speed of rotation, delays the separation of flow from the upper surface (stall) 

resulting in a higher Cr,tmax. The existence of a critical speed is also evident 

beyond which momentum injection through a moving surface appears to have 

relatively less effect. 
• Wi th the rotation of the cylinder the onset of flow separation occurs at rela­

tively higher angles of attack. The upper surface flow remains attached up to 

1 6 4 



1 6 5 

a distance downstream of the leading edge at which point it separates, leading 

to a large separation bubble, with reattachment towards the trailing edge. The 

flow, therefore, is not completely separated from the airfoil, thus resulting in a 

flatter stall peak. 

• The use of a leading-edge-cylinder extends the lift curve without substantially 

changing its slope thus considerably increasing the maximum lift coefficient and 

stall angle. For example, in the case of Joukowsky model I, the C x , j m a z increased 

by around 68% with the stall delayed from 16° to 32° (based on the unmodified 

reference configuration). For model II and the N A C A airfoil the improvement 

in performance was even better. The Joukowsky model II showed an increase 

in Cr,tmax by around 110% with the stall delayed from 10° to 28°. The corre­

sponding results for N A C A 63-218 (modified) airfoil indicated a Cr,,max increase 

of 108% with a delay in stall from 12° to 45°. 

• The configuration with a rotating cylinder on the upper side of the leading 

edge appears to be quite promising. Although the peak Ci,,max realized with 

the cylinder rotation was slightly less (1.95 against 2.22) compared to the two-

cylinder configuration, it does have a major advantage in being mechanically 

simple in terms of design and application. The increase in CL,max at Uc/U — 4 

by around 130% and the delay in stall from 10° to 48° is quite impressive. 

• The tests using the N A C A 63-218 model showed substantial improvement in lift 

to drag ratio at all angles of attack. 

S c o o p e d c y l i n d e r a t t h e l e a d i n g e d g e 

Effectiveness of the leading-edge-cylinder can be improved at lower speeds of 

rotation by using a scooped configuration. The rotating air scoop appears to, in 

effect, slow down the flow over the lower surface and redirect more air over the upper 

surface. However, at high rates of rotation it appears to the flow effectively as a 

solid cylinder and there is no particular advantage in using the scoop configuration. 
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Trailing-edge-cylinder 

In contrast to the leading-edge-cylinder, the use of a trailing-edge-cylinder 

substantially increases the lift before stall. The rotating trailing-edge-cylinder acts 

like a flap shifting the Cx, vs. a plots to the left. A high rate of rotation of this 

cylinder results in a dramatic increase in suction, over the airfoil upper surface, thus 

giving a larger lift. Furthermore, it can be used in conjunction with the leading-

edge-cylinder resulting in impressive values of lift over the whole range of low to 

moderately high angles of incidence (a < 18°). 

Upper-surface-cylinders 

• Presence of a steep positive pressure gradient near the leading edge of the airfoil 

at large angles of attack requires the rotation of the nose to avoid separation at 

that point. But depending on the angle of attack, the adverse pressure gradient 

may still cause flow separation further downstream. Since the flow remains 

attached at the leading edge, the lift continues to increase with the angle of 

attack, while the flow remains separated over most of the upper surface, resulting 

in an increase in pressure drag (as evident from a reduced pressure recovery at 

the trailing edge). The use of a second cylinder is now required to further 

improve the lift and stall characteristics. 

• Protrusion of the upper-surface-cylinders in the flow has an adverse effect on 

the aerodynamic characteristics of the airfoil at low angles of attack (Joukowsky 

model II). In absence of the cylinder rotation, the flow separates at the location 

of the cylinder resulting in a decrease in lift and an increase in drag. However, 

their rotation increases the CT,<max and delays stall. The forward upper-surface-

cylinder is particularly effective in this respect. This is, in fact, expected since 

the adverse pressure gradient is highest close to the leading edge. Further im­

provements in the C x i m a i and stall angle are possible when the forward upper-
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surface-cylinder is used in conjunction with the leading-edge-cylinder. This 

configuration is expected to result in lower drag due to almost complete recov­

ery of pressure at the trailing edge at even moderately high angles of attack. 

The increase in CL max was observed to be around 160% with the stall delayed 

to 36° {UC/U = 4 for both cylinders). 

A n a l y t i c a l a n d n u m e r i c a l m o d e l s 

• As expected, the analytical potential flow model, based on the Joukowsky trans­

formation, is limited in scope. It does predict trends quite accurately, particu­

larly when the leading-edge-cylinder configuration operates at a relatively small 

angle of attack. 

• The numerical surface singularity approach with viscous correction and ac­

counting for wind tunnel wall confinement significantly improves correlation. 

However, discrepancies between experimental and numerical results do remain. 

Partly this is contributed by the experimental results themselves as the flow is 

not entirely two-dimensional due to presence of gaps in the tunnel walls (nec­

essary to support the model on an externally located balance and drive the 

cylinder(s) through the motor(s) mounted outside the tunnel). The communi­

cation thus created between the internal flow field and the outside atmosphere 

will tend to lower the slope of the lift curve. 

• The numerical model generally predicts CL,max value with reasonable accuracy. 

Discrepancy in the stall angle is primarily due to an error in the slope of the 

lift curve as explained above. The assumption of constant pressure across the 

shear layer is no longer valid after it has separated and will lead to inaccuracies. 

Obviously, more accurate prediction of the pressure in a separated boundary 

layer with flow reversal would require the solution of the full Navier-Stokes 

equations at an enormous effort and cost. 
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• Considering the highly complex character of the flow, with large separated re­

gions and reattachment, the numerical model has performed remarkably well. 

Besides other parameters, its effectiveness substantially depends on the success­

ful modelling of the cylinder rotation. The two procedures used here, the concept 

of slip-velocity and counter-rotating vortex pair, are, at best, approximate and 

amenable to further sophistication. 

F l o w v i s u a l i z a t i o n 

The flow visualization study confirmed effectiveness of the concept in a spec­

tacular fashion. It gave better appreciation of the complex flow with a separation 

bubble and large turbulent wake. The unsteady flow field is not stable but oscil­

lates in the streamwise direction. Furthermore, it substantiated the flow features 

revealed by the measured pressure profiles in a qualitative fashion. 

7 . 2 R e c o m m e n d a t i o n s f o r F u t u r e R e s e a r c h 

The investigation reported here has provided considerable insight into the oper­

ation and effectiveness of the moving surface boundary-layer control. Perhaps its 

most important contribution lies in laying a sound foundation for further study of 

this challenging problem. Only a small step has been taken, however, and there is 

considerable scope for further exploration and innovation. A few of the promising 

avenues are indicated below: 

(i) Results suggest existence of an optimum location for the upper leading-edge 

cylinder. Efforts aimed at identifying that location are particularly necessary, 

because of the mechanical simplicity of the single-cylinder configuration, and 

are likely to be rewarding. 

(ii) The leading-edge-scooped-cylinder study should be pursued further particu­

larly with different scoop geometries and a systematic variation of the cylinder 
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rotation at lower spectrum of the speed. Wi th the optimum scoop configuration 

and speed range established, its effectiveness at the optimum location as arrived 

in ( t ) should be assessed. The scoop geometry appears particularly attractive 

due to its favorable performance at relatively lower speeds of rotation and partial 

flap effect. However, it also requires more precise balancing procedure. 

(iii) Effectiveness of the scooped-cylinder geometry at the trailing edge of the airfoil 

should be explored. It may lead to a more efficient flap. 

(iv) Effect of roughness of the rotating cylinder needs to be studied in a systematic 

fashion. 

(v) It appears that further improvement in CL,max can be achieved through the use 

of twin-cylinder configurations involving combinations of schemes suggested in 

( i ) - ( * t ; ) . 

(vi) The effect of gaps in the wind tunnel walls must be established precisely through 

a systematic study to assess contribution of the spanwise flow on the slope of 

the lift curve. 

( t m ) In practical application, the rotating cylinder may be located on a tapered aero­

dynamic surface of a finite aspect ratio. Hence, it would be useful to study 

performance of the cylinder in yawed as well as three-dimensional conditions. 

(viii) Considerable scope exists to improve the mathematical model used in the nu­

merical analysis. However, application of the complete Navier-Stokes equations 

at an enormous effort and cost may not be necessary. The focus should be on 

further refinement of the approaches developed in the thesis, with emphasis on 

improvement in the boundary-layer and momentum-injection models. Several 

procedures are available here: 

(a) solve for the shape of the separated streamline and use it to arrive at a 

modified airfoil profile for use with the equivalent airfoil scheme. 

(b) application of sources and sinks to model separation bubbles. 



1 7 0 

(c) incorporation of the experimentally measured information to model the sep­

arated boundary layer geometry. 

(d) modelling of the cylinder rotation through slip velocity accounting for its 

functional dependence on dissipation, rotation, and angle of attack. 

A l l of these promise to improve correlation between the measured and predicted 

pressure plots and hence the lift characteristics. 
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A P P E N D I X : T H E C O M P U T E R P R O G R A M 

Fortran program to calculate the complete flow field over an airfoil. Given the external 
potential flow solution, the program uses the Thin Shear Layer approximations to calculate 
the boundary-layer displacement thicknesse distribution for two-dimensional laminar and 
turbulent boundary layers and construct an equivalent airfoil shape which is then used to 
recalculate the the outer velocity distribution. 

COMMON/BLC0/NP ) NX,NXT,NTR,NSEP,NFLOW,ETAE,VGP,VISC,UINF, 
1 DETA(111),A(111),ETA(111),NGAP(2),UC 

COMMON/BLCC/X(99)1UE(99),Pl(99) )P2(99),ALFA(99) )RX(99) ) 

1 CF,ALFA1,ALFA2,RTHETA(99),USURF(99) 
COMMON/BLCP/DELV(l l l ) ,F( l l l ,2) ,U(l l l ) 2) ,V(l l l ,2) ,B(l l l ,2) 
COMMON/BLCT/DELSX(2,99),CFX(99) 
COMMON/IDEN/NUMX(2,99) 
COMMON/SCTN/AOA,NUM,NE,XORIG(99),YSCTN(99),XOLD(50) 
DIMENSION XSCTN(99),YORIG(99),GAMMA(99) 

PI=4.*ATAN(1.) 
VISC=1.6E-04 
RCHORD=2.31E+05 
UINF=RCHORD*VISC 

Input the potential flow velocity distribution 

NUM=65 
READ(50,1000) (XSCTN(I),YSCTN(I),GAMMA(I),I=1 INUM) 

00010 NFLAG=0 
DO 15 I=1,NUM 
XORIG(I)=XSCTN(I) 
YORIG(I)=YSCTN(I) 

00015 CONTINUE 

Input Angle of Attack 

WRITE(6,1100) 
READ (5,1200)AOA 

Point of Effectiveness of Cylinder 

XSEP=0.30 
XS1 =XSEP-.03 
XS2 =XSEP+.03 

Locate the leading edge stagnation point 

DO 20 I=1,NUM 
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IF(GAMMA(I)*GAMMA(I+1) .GT. 0.) GOTO 20 
ISTAG=I+1 
GOTO 25 

00020 CONTINUE 
WRITE(6,3000) 
STOP 

Transform the coordinates for use in B.L. calculations. 
For the upper surface; 

00025 NXT=ISTAG 

X0=XSCTN(ISTAG) 
IF(YSCTN(ISTAG) .GT. 0.) X0=-X0 
J=ISTAG 
NGAP(1)=0 
NGAP(2)=0 
NSEP = 99 

DO 30 I=1,NXT 
X(I)=XSCTN(J)+X0 
NUMX(1,I)=J 
IF(YSCTN(J) .GT. 0.) GOTO 26 
X(I)=-X(I)+2.*X0 
IF(X(I) .LT. 0.) X(I)=-X(I)+2.*X0 
IF(NGAP(1) .NE. 0) GOTO 29 
IF(INT(100.*XSCTN(J)) .EQ. 5) NGAP(1)=I 
GOTO 29 

00026 IF(INT(100.*XSCTN(J)) .EQ. 5) NGAP(2)=I 
IF(XSCTN(J) .GE. XS1 .AND. XSCTN(J) .LE. XS2) NSEP 

00029 UE(I)=ABS(GAMMA(J))*UINF 
USURF(I)=0.0 
J=J-1 

00030 CONTINUE 
NFLOW=l 
IF(NGAP(1) .LE. 2) NGAP(l)=3 
NTR =99 
GOTO 45 

For the lower surface: 

00035 ISTAG=ISTAG-1 
NXT=NUM+1-(ISTAG) 
X0=XSCTN(ISTAG) 
IF(YSCTN(ISTAG) .LT. 0.) X0=-X0 
J=ISTAG 

DO 40 I=1,NXT 
X(I)=XSCTN(J)+X0 
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NUMX(2,I)=J 
IF(YSCTN(J) .LT. 0.) GOTO 36 
X(I)=-X(I)+2.*X0 
IF(X(I) .LT. 0.) X(I)=-X(I)+2.*X0 

00036 UE(I)=ABS(GAMMA(J))*UINF 
USURF(I)=0.0 
J=J+1 

00040 CONTINUE 
NFLOW=2 
NGAP(1)=0 
NGAP(2)=0 
NTR =99 
NSEP=99 

00045 UE(1)=0. 

The program consists of a MAIN routine, which contains the logic of the computations and 
construction of the Equivalent Airfoil shape, and ten subroutines: INPUT, GRID, IVPL, 
GROWTH, EDDY, GAP, CMOM, SOLVE, OUTPUT, and UEDIST. The function of each 
subroutine is as follows: 

INPUT: Reads v and r\aa at x = 0 and Ue, and m as functions of x. 
GRID: Generates the initial-velocity profile for a laminar flow. 

GROWTH: Controls the growth of the boundary layer. 
EDDY: Contains the eddy-viscosity formulas. 

GAP: Accounts for the boundary conditions on the moving surface. 
CMOM: Contains the coefficients of the differenced momentum equation. 
SOLVE: Contains the recursion formulas that arise in the block elimination method. 

OUTPUT: Prints out the desired boundary-layer parameters and profiles. This subroutine 
also contains the checks for transition to turbulence and final separation. 

UEDIST: Calculates the potential flow over the displacement surface, accounting for sepa­
rated flow and wall confinement effects. A slightly different version of this same 
routine is used to obtain the starting potential flow pressure distribution. Ref­
erence [37] contains the detail derivation and finite-difference formulation of the 
TSL equations as well as the logic of most of the subroutines used in the program. 

Iteration count 

ITMAX=6 

ALFA(1)=0.0 
NX=1 

CALL INPUT 
C A L L GRID 
CALL IVPL 

00050 IF(NFLOW .EQ. 1) WRITE(7,9100) 
IF(NFLOW .EQ. 2) WRITE(7,9200) 



WRITE(7,9500) NX,X(NX) 
RX(NX)=UE(NX)*X(NX)/VISC 
IF(NX .GT. 1) ALFA(NX)=0.5*(X(NX)+X(NX-1))/(X(NX)-X(NX-1)) 
ALFA1=P1(NX)+ALFA(NX) 
ALFA2=P2(NX)+ALFA(NX) 
IT=0 
IF(NX .EQ. NGAP(l)) CALL GAP 
IF(NX .GE. NTR ) CALL EDDY 

00060 IT=IT+1 
IF(IT .LE. ITMAX) GOTO 70 
WRITE(7,8100) 
WRITE(8,8100) 
GOTO 80 

00070 CALL C M O M 
CALL SOLVE 

Check for convergence 

00061 IF(NX .GE. NTR) GOTO 62 

Laminar flow 

IF(ABS(DELV(1)) .GT. 1.0E-05) GOTO 60 
GOTO 75 

Turbulent flow 

00062 IF(V(1,2) .EQ. 0.) GOTO 75 

IF(ABS(DELV(1)/(V(1,2)+0.5*DELV(1))) .GT. 0.02) GOTO 60 

Check for GROWTH 

00075 IF(NX .EQ. 1) GOTO 90 

IF(NP .EQ. Ill) GOTO 90 
IF(ABS(V(NP,2)) .LE. 1.0E-03) GOTO 90 
CALL GROWTH 
IT=0 
GOTO 60 

00080 IF(NX .LE. NGAP(2)) GOTO 90 
NX=NX-1 
NSEP=NX 

00090 CALL OUTPUT 
IF(NX .LE. NXT) GOTO 50 

Modify the airfoil surfaces using the calculated displacement thicknesses 
at each station. 

IF(NSEP .GT. NXT) NSEP=NXT 
DO 150 I=2,NSEP 
J=NUMX(NFLOW,I) 
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IF(I .EQ. NSEP) GOTO 110 
Y2=0.5*(YORIG(J+1)+YORIG(J)) 
X2=0.5*(XORIG(J+l)+XORIG(J)j 
GOTO 120 

00110 Y2=YORIG(J) 
X2=XORIG(J) 

00120 Y1=0.5*(YORIG(J)+YORIG(J-1)) 
X1=0.5*(XORIG(J)+XORIG(J-1)) 
TETA=ATAN2(Y2-Y1,X2-X1) 
DELTA=DELSX(NFLOW,I) 
DELY=-COS(TETA) *DELTA 
DELX= SIN(TETA)*DELTA 
IF(NFLOW .EQ. 1 .AND. DELY .LT. 0.) DELY=-DELY 
IF(NFLOW .EQ. 2 .AND. DELY .GT. 0.) DELY=-DELY 
YSCTN(J)=YORIG(J)+DELY 
XSCTN(J)=XORIG(J)+DELX 

00150 CONTINUE 

IF(NFLOW .NE. 1) GOTO 200 
IF(NSEP .EQ. NXT) NFLAG=1 
NDIFF=NUMX(1,NSEP)-1 
GOTO 35 

00200 NE=NUM-NDIFF 

DO 225 I=1,NDIFF 
XOLD(I)=XORIG(I) 

00225 CONTINUE 

DO 250 I=1,NE 
IE=I+NDIFF 
XORIG(I)=XORIG(IE) 
XSCTN(I)=XSCTN(IE) 
YSCTN(I)=YSCTN(IE) 

00250 CONTINUE 

WRITE(9,2000) (XSCTN(I),YSCTN(I),I=1,NE) 

Smooth the airfoil surfaces; 

CALL INTRPL(0,NE,XSCTN,YSCTN,XORIG,YSCTN) 

IF(NFLAG .EQ. 1) WRITE(6,9900) 

Compute the external velocity distribution on the new equivalent airfoil; 

C A L L UEDIST 
STOP 
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OlOOO FORMAT(3(2X,F9.6)) 
01100 FORMAT('INPUT A N G L E OF ATTACK') 
01200 FORMAT(F6.2) 
02000 F0RMAT(1X,F9.6,2X,F9.6) 
03000 FORMAT(37H ERROR : NO STAGNATION POINT FOUND !!) 
08100 FORMAT(lH ,16X,25HITERATIONS EXCEEDED ITMAX) 
09100 FORMAT(16H UPPER SURFACE :) 
09200 FORMAT(16H LOWER SURFACE :) 
09500 FORMAT(lH ,4HNX =,I3,5X,3HX =,F10.5) 
09900 FORMAT(40H NO SEPARATION F R O M T H E AIRFOIL SURFACE!) 

END 

This subroutine defines v and specifies initial *7oo at x = 0. If the boundary layer wants 
to grow (see GROWTH), the program computes its own rjc at the subsequent stations. 
Here we read Ue a function of x. Parameter m (Fortran name P2) is computed from the 
given external-velocity distribution, Ue(x), and from the definition of m. The derivative 
of dUe/dx (Fortran name DUDX) is obtained by using three-point Lagrange interpolation 
formulas. 

S U B R O U T I N E I N P U T 
COMMON/BLC0/NP,NX,NXT,NTR,NSEP,NFLOW,ETAE,VGP,VISC,UINF, 

1 DETA(111))A(111),ETA(111),NGAP(2),UC 
COMMON/BLCC/X(99),UE(99),Pl(99),P2(99),ALFA(99),RX(99), 

1 CF,ALFA1,ALFA2,RTHETA(99),USURF(99) 

E T A E =8.0 
DETA(1)=0.01 
VGP =1.05 

WRITE(7,9000) NXT,NTR,NSEP,VISC,UINF,ETAE,DETA(1),VGP 

Calculations based on Stagnation Flow conditions at X=0. 

P2(l)=1.0 
Pl(l)=1.0 

Calculation of Pressure-Gradient Parameter P2 (=m) 

00050 DO 80 I=2,NXT 
IF(I .EQ. NXT) GOTO 60 
A1=(X(I)-X(I-1))*(X(I+1)-X(I-1)) 
A2=(X(I)-X(I-l))*(X(I+l)-X(I)) 
A3=(X(I+1)-X(I))*(X(I+1)-X(I-1)) 
DUDX=-(X(I+1)-X(I))/A1*UE(I-1)+(X(I+1)-2.0*X(I)+X(I-1))/ 

1 A2*UE(I)+(X(I)-X(I-l))/A3*UE(I+l) 
GOTO 70 

00060 Al=(X(I-l)-X(I-2))*(X(I)-X(I-2)) 
A2=(X(I-1)-X(I-2))*(X(I)-X(I-1)) 
A3=(X(I)-X(I-l))*(X(I)-X(I-2)) 
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DUDX=(X(I)-X(I-l))/Al*UE(I-2)-(X(I)-X(I-2))/A2*UE(I-l)+ 
1 (2.0*X(I)-X(I-2)-X(I-l))/A3*UE(I) 

00070 P2(I)=X(I)/UE(I)*DUDX 
P1(I)=0.5*(P2(I)+1.0) 

00080 CONTINUE 
RETURN 

08000 FORMAT(3I3,2F10.6) 
08100 FORMAT(3F10.6) 
09000 FORMAT(lH ,6HNXT =,I3,11X,6HNTR =)I3,11X,6HNSEP =,13/ 

1 1H ,6HVISC =)E11.6,3X,6HUINF =,F8.3/ 
2 1H ,6HETAE = )E11.6 )3X )6HDETA1=,E11.6,3X,6HVGP =, 
3 E11.6/) 
END 

This subroutine generates the grid normal to the flow. It requires the first initial Arj-spacing 
and the variable grid parameter (VGP). 

S U B R O U T I N E G R I D 
COMMON/BLCO/NP.NXNXT.NTR.NSEP.NFLOW.ETAE.VGP.VISC.UINF, 

1 DETA(111),A(111),ETA(111),NGAP(2))UC 

IF((VGP-1.0) .LE. 0.001) GOTO 5 

Total number of grid points (normal to the flow) 
NP=ALOG((ETAE/DETA(1))*(VGP-1.0)+1.0)/ALOG(VGP)+1.0001 

GOTO 10 
00005 NP=ETAE/DETA(1)+1.0001 
00010 IF(NP .LE. Ill) GOTO 15 

WRITE(6,9000) 
STOP 

00015 ETA(1)=0.0 
DO 20 J=2,NP 
DETA(J)=VGP*DETA(J-1) 
A(J)=0.5*DETA(J-1) 

00020 ETA(J)=ETA(J-l)+DETA(J-l) 
RETURN 

09000 FORMAT(lH ,37HNP E X C E E D E D 111 - PROGRAM TERMINATED) 

This subroutine generates initial-velocity profiles for laminar boundary layers at x = 0. The 
initial profiles for / (F), / ' (U), and / " (V) are given by: 

END 
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f 2 ( 7 7 0 0 ) 2 ( 7 7 0 0 ) 

^ 2rjoo [* (»7oo) J 
SUBROUTINE IVPL 
COMMON/BLC0/NP,NX,NXT,NTR,NSEP ) NFLOW,ETAE,VGP ) VISC,UINF ) 

1 DETA(111),A(111),ETA(111),NGAP(2),UC 
COMMON/BLCP/DELV(l l l ) ) F(l l l ) 2) ,U(l l l ,2) ) V(l l l ,2) ,B( l l l ,2) 

ETANPQ=0.25*ETA(NP) 
ETAU15=1.5/ETA(NP) 
DO 30 J=1,NP 
ETAB=ETA( J) /ETA(NP) 
ETAB2=ETAB**2 
F(J,2)=ETANPQ*ETAB2*(3.0-0.5*ETAB2) 
U(J,2)=0.5*ETAB*(3.0-ETAB2) 
V(J,2)=ETAU15*(1.0-ETAB2) 
B(J,2)=1.0 

00030 CONTINUE 
RETURN 
END 

For most laminar-boundary-layer flows the transformed boundary-layer thickness *7OO(E) 
is almost constant. A value of »7oo = 8 is sufficient. However, for turbulent boundary 
layers, »joo generally increases with x. The MAIN routine checks for growth and calls this 
subroutine to add to the number of cross-stream stations (NP) when necessary. 

SUBROUTINE GROWTH 
COMMON/BLC0/NP,NX,NXT,NTR,NSEP,NFLOW ) ETAE,VGP,VISC,UINF ) 

1 DETA(111))A(111))ETA(111),NGAP(2),UC 
COMMON/BLCP/DELV(l l l ) ) F(l l l ,2) ,U(l l l ) 2) ,V(l l l ,2) ,B( l l l ,2) 

NP0=NP 
NP1=NP+1 
NP=NP+1 
IF(NX .EQ. NTR ) NP=NP+3 
IF(NP .LE. Il l) GOTO 10 
WRITE(6,9000) 
STOP 

Definition of profiles for new NP 

00010 DO 25 J=NP1,NP 
DETA(J)=VGP*DETA(J-1) 
A(J) =0.5*DETA(J-1) 

00025 ETA(J) =ETA(J-1)+DETA(J-1) 
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DO 35 J=NP1,NP 
F(J,1)=U(NP0,1)*(ETA(J)-ETA(NP0))+F(NP0,1) 
U(J,1)=U(NP0,1) 
V(J,1)=0.0 
B(J,1)=B(NP0,1) 
F(J,2)=U(NP0,2)*(ETA(J)-ETA(NP0))+F(NP0,2) 
U(J,2)=U(NP0,2) 
V(J,2)=V(J,1) 
B(J,2)=B(NP0,2) 

00035 CONTINUE 
NNP=NP-(NP1-1) 
WRITE(7,6000) NNP 
RETURN 

06000 F0RMAT(1H ,5X,13HETAE GROWTH -,I3,13H-POINTS ADDED) 
09000 FORMAT(lH ,37HNP E X C E E D E D 111 - PROGRAM TERMINATED) 

END 

For simplicity, an eddy-viscosity formulation that does not include the low Reynolds number 
effect and the mass transfer effect is used. These capabilities, if desired, can easily be 
incorporated into the formulas defined in the subroutine. The formulas for inner and outer 
eddy-viscosity expressions are given in section 5.1. 

S U B R O U T I N E E D D Y 
COMMON/BLC0/NP,NX,NXT,NTR,NSEP,NFLOW,ETAE,VGP,VISC,UINF, 

1 DETA(111),A(111),ETA(111),NGAP(2),UC 
COMMON/BLCP/DELV(ll l ) ,F(l l l ,2) ,U(l l l ,2) ,V(l l l ,2) ,B(l l l ,2) 
COMMON/BLCC/X(99) ,UE(99) ,P 1(99) ,P2 (99), ALFA(99) ,RX(99), 

1 CF,ALFA1,ALFA2,RTHETA(99),USURF(99) 
DIMENSION EDVIS(lll) 

GAMTR=1.0 
UEINTG=0.0 
U1=1.0/UE(NTR-1) 
DO 10 I=NTR,NX 
U2=1.0/UE(I) 
UEINTG=UEINTG+(U1+U2)*(X(I)-X(I-1))*0.5 

00010 U1=U2 
GG=8.35E-04*UE(NX)**3/(RX(NTR-1)**1.34*VISC**2) 
EXPTM=GG* (X(NX)-X(NTR-l)) *UEINTG 
IF(EXPTM .LE. 10.0) GOTO 15 

C WRITE(7,9100) GG.UEINTG.EXPTM 
GOTO 20 

00015 GAMTR=1.0-EXP(-EXPTM) 
00020 CONTINUE 

IFLGD=0 
RX2=SQRT(RX(NX)) 
RX4=SQRT(RX2) 
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PPLUS=0. 
IF(V(1,2) .GE. 0.) PPLUS=P2(NX)/(RX4*(ABS(V(1,2)))**1.5) 
RX216=RX2*0.16 
EN=SQRT(1.0-11.8*PPLUS) 
CRSQV=EN*RX4*SQRT(ABS(V(l,2)))/26. 
J=l 
EDVISO=0.0168*RX2*(ETA(NP)-F(NP,2)+F(1,2))*GAMTR 

00050 IF(IFLGD .EQ. 1) GOTO 100 
YOA=CRSQV*ETA(J) 
EDVISI=RX216*ETA(J)**2*V(J,2)*(1.0-EXP(-YOA))**2*GAMTR 
IF(EDVISI .LT. EDVISO) GOTO 200 

IFLGD=1 
00100 EDVIS(J)=EDVISO 

GOTO 300 
00200 EDVIS(J)=EDVISI 

IF(J .LE. 2) GOTO 300 
IF(EDVIS(J) .GT. EDVIS(J-l)) GOTO 300 
EDVIS(J)=EDVIS(J-1)+(EDVIS(J-1)-EDVIS(J-2))*VGP 

00300 B(J,2)=1.0+EDVIS(J) 
IF(B(J,2) .LT. 1.0) B(J,2)=1.0 
J=J+1 
IF(J .LE. NP) GOTO 50 
RETURN 

09100 FORMAT(lH ,2X I3HGG= )E14.6 )3X,7HUEINTG=,E14.6,3X,6HEXPTM=, 
1 E14.6) 

END 

Once the location of the "lower gap" (start of the moving surface) is reached in the calcu­
lations, this subroutine is called to assign new boundary conditions. Velocities at the wall 
are also calculated for the airfoil surface after the location of the "upper gap" (end of the 
moving surface) in cases where slip-velocity is considered. 

SUBROUTINE GAP 
COMMON/BLCO/NP.NX.NXT.NTR.NSEP.NFLOW.ETAE.VGP.VISC.UINF, 

1 DETA(111),A(111))ETA(111),NGAP(2),UC 
COMMON/BLCP/DELV(l l l ) 1 F(l l l ) 2) ,U(l l l ,2) ,V(l l l ,2) ,B(l l l ,2) 
COMMON/BLCC/X(99) ,UE(99) ,Pl(99),P2(99),ALFA(99) ,RX(99), 

1 CF,ALFA1,ALFA2,RTHETA(99),USURF(99) 

Physical size of the gap in terms of the dimensionless variables; 

ETAGAP=ETAE/4 . 
JGAP=ALOG((ETAGAP/DETA(1))*(VGP-1.)+1.)/ALOG(VGP)+1.0001 

Couette Flow profile of form U=a+b(ETA) assumed for the flow in the gap 
and added to the B.L. profile at the edge of the gap. 
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WRITE(6,5000) 
READ (5,5500) UC 

IF=NX 
IF(UE(IF) .EQ. 0.0) IF=IF+1 
USURF(NX)=UINF/UE(IF)*UC 
DO 100 J=1,JGAP 
UGAP=USURF(NX)*(1.-ETA(J)/ETAGAP) 
IF(U(J,2) .LT. UGAP) U(J,2)=UGAP 

00100 CONTINUE 

A description and variable definition for the following cubic spline fitting 
routine can be found in the subroutine INTERPL at the end of the program. 

REAL*8 W(1015) 
DIMENSION YSPLN(91),DY(91) 
DIMENSION YY1(91),YY2(91) 

The amount of smoothing : 

DYMIN=0.01 
DO 200 J=1,JGAP 
DY(J)=DYMIN+ETA(J) 

00200 CONTINUE 
DYMAX=DYMIN+2.*ETAGAP 
JGAPP=JGAP+1 
DO 225 J=JGAPP,NP 
D Y( J)=DYM AX-ETA (J) 
IF(DY(J) .LT. DYMIN) DY(J)=DYMIN 

00225 CONTINUE 
S=0.1 

Set up the fit parameters : 

DO 250 J=1,NP 
YSPLN(J)=U(J,2) 

00250 CONTINUE 

CALL SPLNFT(ETA,YSPLN,DY 1S,NP )W )&991) 

Find the fitted values : 

CALL SPLN (ETA,YSPLN,YY1,YY2,NP )&992) 

DO 275 J=1,NP 
U(J,2)=YSPLN(J) 
V(J,2)=YY1(J) 

00275 CONTINUE 

WRITE(6,4400) 
WRITE(6,4500)(J,ETA(J),F(J)2),U(J,2),V(J,2),B(J,2),J=1,NP) 
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WRITE(7,1000) 

Assign Boundary Conditions in the gap region ; 

IS=NX+1 
IE=NGAP(2) 
DO 325 I=IS,IE 
USURF(I)=UINF/UE(I)*UC 

00325 CONTINUE 

And Slip Velocity after the gap: 

ESEP=EXP(-X(NSEP)) 
UO=USURF(IE)/(EXP(-X(IE))-ESEP) 
IS=IE+1 

DO 350 I=IS,NSEP 
USURF(I)=UO*(EXP(-X(I))-ESEP) 

00350 CONTINUE 

NSEP=99 
NTR =NGAP(2) 

RETURN 

00991 WRITE(7,9001) 
STOP 

00992 WRITE(7,9002) 
STOP 

01000 FORMAT('START GAP CALCULATIONS') 
04400 FORMAT(lH ,2X,1HJ,3X,4H ETA,6X )1HF )12X )1HU,12X )1HV )10X,1HB) 
04500 FORMAT(lH ,I3,F8.3,4E12.4) 
05000 FORMAT('INPUT CYLINDER SURFACE VELOCITY') 
05500 FORMAT(F5.2) 
09001 FORMAT('ERROR : N<2 OR X-VALUES OUT OF ORDER.') 
09002 FORMAT('ERROR : VARIABLE OUT OF FITTED RANGE. ') 

END 

This is one of the most important subroutines of the computer program. It defines the 
coefficients of the linearized momentum equations [37]. 

SUBROUTINE CMOM 
COMMON/BLC0/NP,NX ) NXT,NTR ) NSEP,NFLOW,ETAE ) VGP,VISC,UINF, 

1 DETA(111),A(111),ETA(111),NGAP(2),UC 
COMMON/BLCC/X(99),UE(99),Pl(99) )P2(99),ALFA(99),RX(99) ) 

1 CF,ALFA1,ALFA2 )RTHETA(99),USURF(99) 
COMMON/BLCP/DELV(ll l ) ,F(l l l ,2) ,U(l l l ,2) ,V(l l l ,2) ,B(l l l ,2) 
COMMON/BLC6/Sl(lll) ) S2(lll) ,S3(lll) ,S4(lll) ,S5(lll) ,S6(lll) , 
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1 R1(111),R2(111),R3(111) 

DO 100 J=2,NP 

Present station 

U2B =0.5*(U(J,2)**2+U(J-1,2)**2) 

FVB =0.5*(F(J)2)*V(J,2)+F(J-1,2)*V(J-1,2)) 
FB =0.5*(F(J,2)+F(J-1,2)) 
UB =0.5*(U(J,2)+U(J-1,2)) 
VB =0.5*(V(J,2)+V(J-1,2)) 
DERBV=(B(J,2)*V(J)2)-B(J-1,2)*V(J-1,2))/DETA(J-1) 
IF(NX .GT. 1) GOTO 10 

Previous station 

CFB =0.0 
CVB =0.0 
C F V B =0.0 
CU2B =0.0 
CDERBV=0.0 
GOTO 20 

00010 CFB =0.5*(F(J,1)+F(J-1,1)) 
CVB =0.5*(V(J,1)+V(J-1,1)) 
C F V B =0.5*(F(J,1)*V(J,1)+F(J-1,1)*V(J-1,1)) 
CU2B =0.5*(U(J,1)**2+U(J-1,1)**2) 
CDERBV=(B(J,1)*V(J,1)-B(J-1,1)*V(J-1,1))/DETA(J-1) 

Coefficients of the Differenced Momentum Equation 

00020 Sl(J)=B(J,2)/DETA(J-l)+(ALFAl*F(J,2)-ALFA(NX)*CFB)*0.5 
S2(J)=-B(J-1,2)/DETA(J-1)+(ALFA1*F(J-1,2)-ALFA(NX)*CFB)*0.5 
S3(J)=0.5*(ALFA1*V(J,2)+ALFA(NX)*CVB) 
S4(J)=0.5*(ALFA1*V(J-1,2)+ALFA(NX)*CVB) 
S5(J)=-ALFA2*U(J,2) 
S6(J)=-ALFA2*U(J-1,2) 

Definitions of Rj 

IF(NX .EQ. 1) GOTO 30 
CLB=CDERBV+P1(NX-1)*CFVB+P2(NX-1)*(1.0-CU2B) 
CRB=-P2(NX)+ALFA(NX)*(CFVB-CU2B)-CLB 
GOTO 35 

00030 CRB=-P2(NX) 
00035 R2(J)=CRB-(DERBV+ALFA1*FVB-ALFA2*U2B-ALFA(NX)*(CFB*VB-CVB*FB)) 

R1(J) =F(J-1,2)-F(J,2)+DETA(J-1)*UB 
R3(J-1)=U(J-1,2)-U(J,2)+DETA(J-1)*VB 

00100 CONTINUE 
Rl(l) =0.0 
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R2(l) =0.0 
R3(NP)=0.0 
RETURN 
END 

This is the key subroutine that contains the recursion formulas that arise in the block 
elimination method [37]. 

SUBROUTINE SOLVE 
COMMON/BLCO/NP.NX.NXT.NTR.NSEP.NFLOW.ETAE.VGP.VISCUINF, 

1 DETA(111),A(111),ETA(111),NGAP(2),UC 
COMMON/BLCC/X(99) ,UE(99) ,P1(99),P2(99),ALFA(99) ,RX(99), 

1 CF,ALFA1,ALFA2,RTHETA(99),USURF(99) 
COMMON/BLCP/DELV(l l l ) ) F(l l l ) 2) ) U(l l l ,2) ,V( l l l 1 2) ,B( l l l ,2) 
COMMON/BLC6/Sl(lll) ,S2(lll),S3(lll),S4(lll),S5(lll),S6(lll), 

1 R1(111),R2(111),R3(111) 
DIMENSION W1(111),W2(111))W3(111), 

1 A11(111))A12(111),A13(111),A21(111))A22(111),A23(111), 
2 G11(111),G12(111),G13(111),G21(111),G22(111),G23(111), 
3 DELU(111),DELF(111) 

W-elements for J= 1 

W1(1)=R1(1) 
W2(1)=R2(1) 
W3(1)=R3(1) 

Alfa elements for J=l 

All(l)=1.0 
A12(l)=0.0 
A13(l)=0.0 
A21(l)=0.0 
A22(l)=1.0 
A23(l)=0.0 

Gamma elements for J=2 

Gll(2)=-1.0 
G12(2)=-0.5*DETA(1) 
G13(2)= 0.0 
G21(2)= S4(2) 
G23(2)=-2.0*S2(2)/DETA(1) 
G22(2)= G23(2)+S6(2) 

Forward Sweep 

DO 500 J=2,NP 
IF(J .EQ. 2) GOTO 100 
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DEN=(A13(J-1)*A21(J-1)-A23(J-1)*A11(J-1)-A(J)* 
1 (A12(J-1)*A21(J-1)-A22(J-1)*A11(J-1))) 

DEN1=A22(J-1)*A(J)-A23(J-1) 
G11(J)=(A23(J-1)+A(J)*(A(J)*A21(J-1)-A22(J-1)))/DEN 
G12(J)=-(A(J)*A(J)+G11(J)*(A12(J-1)*A(J)-A13(J-1)))/DEN1 
G13(J)=(G11(J)*A13(J-1)+G12(J)*A23(J-1))/A(J) 
G21(J)=(S2(J)*A21(J-1)-S4(J)*A23(J-1)+A(J)* 

1 (S4(J)*A22(J-1)-S6(J)*A21(J-1)))/DEN 
G22(J)=(-S2(J)+S6(J)*A(J)-G21(J)*(A(J)*A12(J-1)-A13(J-1))) 

1 /DEN1 
G23(J)=G21(J)*A12(J-1)+G22(J)*A22(J-1)-S6(J) 

00100 A11(J)= 1.0 
A12(J)=-A(J)-G13(J) 
A13(J)= A(J)*G13(J) 
A21(J)= S3(J) 
A22(J)= S5(J)-G23(J) 
A23(J)= S1(J)+A(J)*G23(J) 

W1(J)=R1(J)-G11(J)*W1(J-1)-G12(J)*W2(J-1)-G13(J)*W3(J-1) 
W2(J)=R2(J)-G21(J)*W1(J-1)-G22(J)*W2(J-1)-G23(J)*W3(J-^ 
W3(J)=R3(J) 

00500 CONTINUE 

Backward sweep 

DELU(NP)=W3(NP) 
E1=W1(NP)-A12(NP)*DELU(NP) 
E2=W2(NP)-A22(NP)*DELU(NP) 
DELV(NP)=(E2*A11(NP)-E1*A21(NP))/(A23(NP)*A11(NP)-

1 A13(NP)*A21(NP)) 
DELF(NP)=(E1-A13(NP)*DELV(NP))/A11(NP) 
J=NP 

00600 J=J-1 
E3=W3(J)-DELU(J+1)+A(J+1)*DELV(J+1) 
DEN2=A21(J)*A12(J)*A(J+1)-A21(J)*A13(J)-A(J+1)*A22(J)*A11(J)+ 

1 A23(J)*A11(J) 
DELV(J)=(A11(J)*(W2(J)+E3*A22(J))-A21(J)*W1(J)-

1 E3*A21(J)*A12(J))/DEN2 
DELU(J)=-A(J+1)*DELV(J)-E3 
DELF(J)=(W1(J)-A12(J)*DELU(J)-A13(J)*DELV(J))/A11(J) 
IF(J .GT. 1) GOTO 600 

WRITE(7,9100) V(1,2),DELV(1) 
DO 700 J=1,NP 
F(J,2)=F(J,2)+DELF(J) 
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U(J,2)=U(J,2)+DELU(J) 
00700 V(J,2)=V(J,2)+DELV(J) 

U(1,2)=USURF(NX) 
RETURN 

09100 F0RMAT(1H ,5X,8HV(WALL)=,E14 6,5X,6HDELVW=,E14.6) 
END 

This subroutine prints out the desired profiles such as / , / ' , and / " as functions of n 
and computes the boundary-layer parameters of interest. Integration is done using the 
trapezoidal rule. The prediction of transition to turbulence and final separation are also 
made in this subroutine. 

SUBROUTINE OUTPUT 
COMMON/BLC0/NP ) NX,NXT ) NTR,NSEP,NFLOW,ETAE,VGP,VISC,UINF, 

1 DETA(111),A(111))ETA(111),NGAP(2),UC 
COMMON/BLCC/X(99) ,UE(99) ,P1(99) ,P2(99) ,ALFA(99),RX(99), 

1 CF,ALFA1,ALFA2,RTHETA(99),USURF(99) 
COMMON/BLCP/DELV(l l l ) ,F( l l l ) 2) ,U(l l l I 2) ,V(l l l ,2) ,B(Hl,2) 
COMMON/BLCT/DELSX(2,99),CFX(99) 
COMMON/IDEN/NUMX(2,99) 

WRITE(7,4400) 
WRITE(7,4500) (J,ETA(J)1F(J,2),U(J )2) )V(J )2) )B(J,2) )J=1 )NP,8) 
WRITE(7,4500) NP,ETA(NP),F(NP,2),U(NP,2))V(NP,2),B(NP,2) 
IF(NX .EQ. 1) GOTO 210 
F1=0.0 
THETA1=0.0 
DO 100 J=2,NP 
F2=U(J,2)*(1 0-U(J,2)) 
THETA1=THETA1+(F1+F2)*0.5*DETA(J-1) 

00100 F1=F2 
THETA=THETA1*X(NX)/SQRT(RX(NX)) 
IF(THETA .LT. 0.0) THETA=0.0 
DELS=(ETA(NP)-F(NP,2))*X(NX)/SQRT(RX(NX)) 
IF(DELS .LT. 0.0) DELS=0.0 
H=0.0 
IF(THETA .NE. 0.) H=DELS/THETA 
CF=2.0*V(1,2)/SQRT(RX(NX)) 
IF(CF .LT. 0.0) CF=0.0 
RTHETA(NX)=UE(NX)*THETA/VISC 
RDELS=UE(NX)*DELS/VISC 
WRITE(7,9000) X(NX),THETA,DELS ) H,CF,RX(NX) ) RTHETA(NX), 

1 RDELS,UE(NX),P2(NX) 

Check for separation; 

IF(NX .EQ. NSEP) GOTO 165 



IF(NTR .LT. 99) GOTO 195 
IF(NX .GE. NTR) GOTO 195 
IF(P2(NX).GT. 0.) GOTO 195 

Laminar separation is taken as point of transition to turbulent flow 

WRITE(8,5000) NX,X(NX) 
NTR=NX 
IF(CF .LT. 0.0) CF=0.0 
GOTO 195 

Final turbulent separation; 

00165 WRITE(8,6000) NSEP,X(NSEP) 
DO 175 I=NX,NXT 
CFX(I)=0.0 

00175 CONTINUE 
NX=NXT 
GOTO 210 

00195 CFX(NX)=CF 
DELSX(NFLOW,NX)=DELS 
WRITE(8,9100) X(NX),DELS,CFX(NX) 
IF(NX .EQ. NSEP) NX=NXT 

00210 NX=NX+1 
IF(NX .LE. NXT) GOTO 400 

RETURN 

00400 CONTINUE 

Shift profiles 

DO 425 J=1,NP 
F(J,1)=F(J,2) 
U(J,1)=U(J,2) 
V(J,1)=V(J,2) 

00425 B(J,1)=B(J,2) 
RETURN 

01000 FORMAT(2(2X,F14 6)) 
04400 FORMAT(lH ,2X,lHJ )3X )3HETA,6X4HF,12X,lHUa2X,lHV,10X 1lHB) 
04500 FORMAT(lH ,I3,F8 3.4E12 4) 
05000 FORMAT(lH .18HTRANSITION AT NX =,I3,5H X =,E14 6) 
06000 FORMAT(lH ,18HSEPARATION AT NX =,I3,5H X =,E14 6) 
09000 FORMAT(lH ,4X,1HX,11X,5HTHETA,9X,4HDELS,9X,1HH )12X,2HCF/ 

1 IH ,4X,2HRX )10X,6HRTHETA,7X,5HRDELS,9X,2HUE,11X,2HP2/ 
2 IH ,5E12 4/1H .5E12.4) 
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09100 F0RMAT(1H ,E14 e.eX.EH.e^X.EH.G) 
END 

A numerical surface singularity method for the calculation of the pressure distribution on an 
open airfoil (finite- thickness trailing edge) shape for a given test section wall configuration. 

• The airfoil shape is supplied by an odd number of section coordinates 
(XSCTN.YSCTN), the last XSCTN coordinate being the same as the first, from 
which the surface elements are determined. 

• The test section wall coordinates are supplied in the same "sense" (clockwise or 
anti-clockwise) as the airfoil. 

• The Kutta points(two) are calculated from the trailing edge coordinates. The 
first one assigns a value to the stream function whereas the second one determines 
the strength of the source. 

• The vorticity distributions and tangential velocities are calculated at the centre 
of each element, denoted by (XCNTRL, YCNTRL). 

SUBROUTINE UEDIST 
COMMON/SCTN/AOA.NUM.NE.XORIGfgQj.YSCTN^Qj.XOLD^O) 
DIMENSION XTRNS(110),YTRNS(110), 

1 XCNTRL(110),YCNTRL(110), 
2 COST(110))SINT(110), 

. 3 RRATIO(110,110),EPSILN(110,110), 
4 THETAS(110),RADS(110), 
5 RK(110,110),RHS(110), 
6 GAMMA(110),TVEL(110),VEL(110) 

INTEGER NPTS(3) 

PI=4 *ATAN(1) 
TWOPI =2 *PI 
FOURPI=4 *PI 

The number of components considered (one airfoil section plus two walls) is: 

NC=3 

The number of the airfoil control points is: 

NPTS(1)=NE-1 

NEM=NE-1 
NEP=NE+1 

The angle of attack of the airfoil; 

ALFA=AOA*PI/180. 
COSA=COS(ALFA) 
SINA=SIN(ALFA) 

Transform the coordinates (the transformation consists of a translation and a 
rotation about the pivot point of the section according to the angle of attack. 



XPIVOT=0.368421 

DO 20 I=1,NE 

XTRNS(I)= COSA*(XORIG(I)-XPIVOT)+SINA*YSCTN(I) 
YTRNS(I)=-SINA*(XORIG(I)-XPIVOT)+COSA*YSCTN(I) 

00020 CONTINUE 

Calculation of the control points for the airfoil section 

DO 30 I=1,NEM 
XCNTRL(I)=(XTRNS (I)+XTRNS (1+1)) /2. 
YCNTRL(I)=(YTRNS (I)+YTRNS (1+1)) /2. 

00030 CONTINUE 

Construct the Kutta Points; 

XCNTRL(NE)=1.01*XTRNS(NE) 
SLOPE=(YTRNS(NE)-YTRNS(NEM))/(XTRNS(NE)-XTRNS(NEM)) 
YCNTRL(NE)=YTRNS(NE)+SLOPE*(XCNTRL(NE)-XTRNS(NE)) 
XCNTRL(NEP)=1.01*XTRNS(1) 
SLOPE=(YTRNS(l)-YTRNS(2))/(XTRNS(l)-XTRNS(2)) 
YCNTRL (NEP)=YTRNS (1)+SLOPE* (XCNTRL (NEP)-XTRNS (1)) 

NTOTAL=NEP 
IF(NC .EQ. 1) GOTO 85 

Read the test section wall coordinates; 

NPTS(2)=22 
NPTS(3)=22 
NWPTS=NPTS(2)+NPTS(3) 

DO 50 I=1,NWPTS 
NW=NE+I 
READ(51,1000) XTRNS(NW),YTRNS(NW) 

00050 CONTINUE 

Calculation of the control points for the walls; 

NWl=NE+2 
NWN=NE 
DO 80 JC=2,3 
N WN=NWN+NPTS (JC) 
DO 70 I=NW1,NWN 
XCNTRL(I)=(XTRNS(I-l)+XTRNS(I))/2. 
YCNTRL(I)=(YTRNS(I-l)+YTRNS(I))/2. 

00070 CONTINUE 
NWl=NWN+2 

00080 CONTINUE 



NTOTAL=NPTS(l)+2+NPTS(2)-l+NPTS(3)-l 
00085 CONTINUE 

Calculation of the influence coefficients, RK(I,J) 

NN1=1 
NNN=0 
DO 150 JC=1,NC 
NNN=NNN+NPTS(JC) 
JJ=NN1-1 
IF(JC .EQ. 3) JJ=JJ-1 
DO 140 J=NN1,NNN 
JJ=JJ+1 
JE=J 
XMID=XCNTRL(J) 
YMID=YCNTRL(J) 
IF(JC .NE. 1) JE=J-1 
X1=XTRNS(JE) 
Y1=YTRNS(JE) 
X2=XTRNS(JE+1) 

Y2=YTRNS(JE+1) 

Calculate the half lenght of each element 

DELTA=SQRT((XMID-X1)**2+(YMID-Y1)**2) 
The local angle between an element and the X-axis is denoted by T E T A 
and is obtained from the local slope of the element. 

TETA=ATAN2((Y2-Y1),(X2-X1)) 
COST(J)=COS(TETA) 
SINT(J)=SIN(TETA) 

for each element, consider all control points 

NP1=1 
NPN=2 
DO 120 IC=1,NC 
NPN=NPN+NPTS(IC) 
II=NP1-1 
IF(IC .EQ. 3) 11=11-1 
DO 110 I=NP1,NPN 
11=11+1 
BB= COST(J)*(XCNTRL(I)-XMID)+SINT(J)*(YCNTRL(I)-YMID) 
AA=-SINT(J)*(XCNTRL(I)-XMID)+COST(J)*(YCNTRL(I)-YMID) 
R1=AA**2+(BB+DELTA)**2 
R2=AA**2+(BB-DELTA)**2 
RRATIO(I,J)=SQRT(Rl/R2) 
CC=AA**2+BB**2-DELTA**2 
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IF(CC .LE. 0.) GOTO 90 
EPSILN(I,J)=ATAN2(2 *AA*DELTA,CC) 
GOTO 95 

00090 EPSILN(I,J)=ATAN2((BB+DELTA),AA)-ATAN2((BB-DELTA),AA) 
00095 RK(II,JJ)=(BB+DELTA)*ALOG(Rl)-(BB-DELTA)*ALOG(R2)-4.*DELTA 

RK(IIIJJ)=RK(II,JJ)+2.*AA*EPSILN(I,J) 
00100 RK(II,JJ)=RK(II,JJ)/FOURPI 
00110 CONTINUE 

NP1=NPN+1 
IF(IC .EQ. 1) NPN=NPN-1 
IF(IC .EQ. 2) NP1=NP1+1 

00120 CONTINUE 
00140 CONTINUE 

IF(JC .EQ. 1) NNN=NNN+1 
NNl=NNN+2 

00150 CONTINUE 

The (N+l)st column of the RK(I,J) matrix is ONE for the airfoil section 
and ZERO for the wall components. 
The (N+2)nd column is the influence coefficients of the internal source 
on the control points. 

NP1=1 
NPN=2 
ZERONE=l 
DO 200 IC=1,NC 
NPN=NPN+NPTS(IC) 
II=NP1-1 
IF(IC .EQ. 3) 11=11-1 
DO 175 I=NP1,NPN 
11=11+1 
RK(II,NE)=ZERONE 
THETAS (I)=ATAN2 (YCNTRL (I) .XCNTRL (I)) 
RADS(I)=SQRT(YCNTRL(I)**2+XCNTRL(I)**2) 
TETAS=THETAS(I)+ALFA 
IF(TETAS .LT. 0.0) TETAS=TWOPI+TETAS 
RK(II,NEP)=-(TETAS-PI)/TWOPI 

00175 CONTINUE 
NP1=NPN+1 
IF(IC .EQ. 1) NPN=NPN-1 
IF(IC .EQ. 2) NP1=NP1+1 
ZERONE=0. 

00200 CONTINUE 

Calculation of the RHS(I) column vector 

for the airfoil section; 

DO 225 I=1,NEP 
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RHS(I)=YCNTRL(I) 
00225 CONTINUE 

IF(NC .EQ. 1) GOTO 275 

for the tunnel walls; 

NPl=NE+2 
NPN=NEP+NPTS(2)-1 
DO 240 I=NP1,NPN 
RHS(I)=0. 

00240 CONTINUE 
NPl=NPN+2 
NPN=NPN+NPTS(3) 
DO 260 I=NP1,NPN 
RHS(I-1)=0. 

00260 CONTINUE 

00275 CONTINUE 

To solve the system of linear equations of the form AX=B, the matrix subroutine MATRIX 
is used. The form of the matrices is 

RK(NTOTAL,NTOTAL) x GAMMA(NTOTAL) = RHS(NTOTAL) 
A real two-dimensional array, T, provides temporary storage. 
A real one-dimensional array, RZ, will, on exit, contain the vector of residuals. 
An integer one-dimensional array, IPERM, dimensioned at least 2x(NTOTAL) is used by 
the routine to keep track of row permutations during the computations. 
A real variable, EPS, is used in the convergence criterion for iterative improvement. 
A real and an integer variable, DET and JEXP, are used to represent the determinant of 
the matrix of coefficients in the form D E T x l 0 . J E X P . 
If the solution of the linear equations has failed, DET=0. 

DIMENSION T(110,110),RZ(110),IPERM(220) 
C O M M O N / Z D / D E T , J E X P 
EPS=5.E-7 
NITER=0 

CALL MATRIX(RK,T,RHS,GAMMA,RZ,IPERM,NTOTAL,110,EPS,1,NITER) 
IF (DET .NE. 0.) GOTO 299 

00295 WRITE(6,9000) 
STOP 

00299 CONTINUE 

The solution matrix, GAMMA, contains the vorticity distribution at the 
control points plus the values of the stream function and the source strength. 

NSUM=NTOTAL+l 
DO 300 I=1,NSUM 
WRITE(6,2000) XCNTRL (I), YCNTRL (I),GAMMA (I) 
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00300 CONTINUE 

Calculate the tangential velocity distribution around the airfoil using 
the above vorticity distribution and the effects of the source and the 
uniform stream. 

For each control point 

DO 375 I=1,NEM 

Find the effect of vorticity distribution of all elements; 

VORTEX=0. 
NP1=1 
NPN=0 
DO 350 JC=1,NC 
NPN=NPN+NPTS(JC) 
JJ=NP1-1 
IF(JC .EQ. 3) JJ=JJ-1 
DO 325 J=NP1,NPN 
JJ=JJ+1 
IF(I .EQ. J) EPSILN(I,J)=-PI 
VT=-GAMMA(JJ)*EPSILN(I,J)/TWOPI 
VN=-GAMMA(JJ)*ALOG(RRATIO(I,J))/TWOPI 
VTAN=( VT*COST(J)+VN*SINT(J))*COST(I) 

1 -(-VT*SINT(J)+VN*COST(J))*SINT(I) 
VORTEX=VORTEX+VTAN 

00325 CONTINUE 
IF(JC .EQ. 1) NPN=NPN+1 
NPl=NPN+2 

00350 CONTINUE 

to this add the effect due to the source; 

UR=GAMMA(NEP)/(TWOPI*RADS(I)) 

SOURCE=UR*(COS(THETAS(I))*COST(I)+SIN(THETAS(I))*SINT(I)) 

and the effect of the free stream; 

STREAM=COST(I) 

TVEL(I)=VORTEX+SOURCE+STREAM 

00375 CONTINUE 

WRITE(6,1500)(XCNTRL(I),YCNTRL(I),GAMMA(I),TVEL(I),I=1,NEP) 

Transform the coordinates back according to the original airfoil configuration; 

DO 400 I=1,NEP 

XRT=COSA*XCNTRL(I)-SINA*YCNTRL(I)+XPIVOT 
YRT=SINA*XCNTRL(I)+COSA*YCNTRL(I) 
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XCNTRL(I)=XRT 
YCNTRL(I)=YRT 

00400 CONTINUE 

From the values of the tangential velocities calculated at the control points, 
interpolate the corresponding values at the ORIGINAL section points; 

CALL INTRPL(l ,NE,XCNTRL,TVEL,XORIG,VEL) 
WRITE(6,2000)(XORIG(I),YSCTN(I),VEL(I),I=1,NE) 

NDIFF=NUM-NE 
IE=1+NDIFF 
XTRNS(IE)=XORIG(l) 
YTRNS(IE)=YSCTN(1) 
TVEL(IE) =VEL(1) 
DO 500 I=2,NE 
IE=I+NDIFF 
XTRNS(IE)=XORIG(I) 
YTRNS(IE)=YSCTN(I) 
TVEL(IE) =VEL(I) 

00500 CONTINUE 
DO 525 I=1,NDIFF 
XTRNS(I)=XOLD(I) 
YTRNS(I)=YSCTN(1) 
TVEL(I) =VEL(1) 

00525 CONTINUE 

WRITE(10,2000)(XTRNS(I),YTRNS(I),TVEL(I),I=1,NUM) 

RETURN 

01000 FORMAT(lX,F9 6,2X,F9.6) 
01500 FORMAT(4(2X,F9 6)) 
02000 FORMAT(3(2X,F9 6)) 
09000 FORMAT(lH ,36H SOLUTION OF T H E EQUATIONS FAILED !!) 

END 

SUBROUTINE INTRPL(IFLAG,N1,XSARG,YSARG,XIARG,Y1ARG) 

The value of IFLAG determines whether the input coordinates are section 
points (IFLAG=0) or control points (IFLAG=1). 

DIMENSION XSARG(N1),YSARG(N1),XIARG(N1),YIARG(N1) 
DIMENSION XSPLN(110),YSPLN(110) 

N=N1-1 
DO 100 I=1,N 
IF(XIARG(I+1) .GE. XIARG(I)) GOTO 110 

00100 CONTINUE 
00110 NDIV=I 
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For interpolation of the upper surface 

NT=(NDIV-IFLAG)+4 
NTM=NT-1 
COUNT=NT 
INCR=1 
11=1 
I2=NDIV 
M=I2-I1+1 
GOTO 150 

For interpolation of the lower surface 

00120 NT=(Nl-NDIV-IFLAG)+5 
NTM=NT-1 
COUNT=NDIV-4 
INCR=-1 
11=12+1 
I2=N1 
M=I2-I1+1 

00150 J=COUNT-INCR 
XSPLN(1)=-XSARG(J) 
YSPLN(1)= YSARG(J) 
J=J-INCR 
XSPLN(2)=-XSARG(J) 
YSPLN(2)= YSARG(J) 
J=J-INCR 
XSPLN(3)=-XSARG(J) 
YSPLN(3)= YSARG(J) 
DO 200 I=4,NTM 
J=J-INCR 
XSPLN(I)=XSARG(J) 
YSPLN(I)=YSARG(J) 

00200 CONTINUE 
XSPLN(NT)=XSPLN(NTM)+0 1 
IF(INCR .EQ. -1) XSPLN(NT)=1 01 
YSPLN(NT)=YSARG(J) 

To fit a cubic spline function to the set of data points, the spline fitting subroutine SPLNFT 
is used. The routine will try to achieve 

^[(ffte) ~~ yi)l dyi\ 2  =  S >  i = 1> •••> n > 
where dyi > 0 and S > 0 are given numbers, and g(x) is a cubic spline 

g(x) = Oj + bi(x - Xi) + Ci(x - x^ 2 + di(x - Xi) 3  

There are two entry points to the subroutine : To calculate the parameters for the cubic 
spline: 



2 0 0 

CALL SPLNFT(X,Y,DY,S,N,W,&nn) 

X: real one-dimensional array, dimensioned at least N, containing the abscissae of 
the given data points, the restriction X(l)<X(2)< <X(N). 

Y: real one-dimensional array, dimensioned at least N, containing the ordinates of 
the data points. 

DY: real one-dimensional array, dimensioned at least N. On entry each DY(I) must 
be set to a value indicating the amount of smoothing to be done at each abscissa 
X(I). The smaller DY(I) is, the more closely Y(I) will be fitted. If available, an 
estimate of the standard deviation of Y(I) should be used for DY(I). 

S: real variable or constant used to control the implicit rescaling of the DY's. 
If DY contains the standard deviations of Y, values of S in the range N-
(2N) 5 <S<N+(2N)5 give the most natural looking results. If S=0, the result 
will be an INTERPOLATING CUBIC SPLINE. As S decreases, the amount of 
smoothing decreases and the data points are fit more exactly. 

N: number of data points. N>2 
W: REAL*8 one dimensional array, dimensioned at least llxN+14 used internally 

for working storage. 
nn: line number to which control will be returned if a restriction on the parameters 

has been violated. 

To calculate ordinates and first and second derivatives for a set of abscissae: 

CALL SPLN(XX,YY,YYl,YY2,M,&nn) 

XX: real one-dimensional array, dimensioned at least M, containing the abscissae at 
which the fitted curve is to be evaluated. Note the restriction: 
X(l) < XX(I) < X(N) for 1=1 ,M 

YY: real one-dimensional array, dimensioned at least M. On exit Y Y contains the 
estimated ordinate of the function at XX(I). 

YY1: real one-dimensional array, dimensioned at least M. On exit Y Y l contains the 
first derivative of the function at XX(I). 

YY2: real one-dimensional array, dimensioned at least M. On exit YY2 contains the 
second derivative of the function at XX(I). 

M: number of abscissae, XX(I). 

REAL*8 W(1224) 
DIMENSION XX(110),YY(110),YY1(110),YY2(110),DY(110) 

The amount of smoothing : 

STDEV=1.0 
DO 300 I=1,NT 
DY(I)=STDEV 

00300 CONTINUE 
S=0 

Do the fit : 

CALL SPLNFT(XSPLN,YSPLN,DY,S,NT,W,&991) 



Interpolate; 

J=0 
DO 325 1=11,12 
J=J+1 
XX(J)=XIARG(I) 

00325 CONTINUE 

C A L L SPLN(XX,YY,YYl,YY2,M,&992) 

J=0 
DO 350 1=11,12 
J=J+1 
YIARG(I)=YY(J) 

00350 CONTINUE 

IF(I2 .NE. NI) GOTO 120 
RETURN 

00991 WRITE(6,9001) 
STOP 

00992 WRITE(6,9002) 
STOP 

09001 FORMAT('ERROR : N<2 OR X VALUES OUT OF ORDER.') 
09002 FORMAT('ERROR : VARIABLE OUTSIDE FITTED RANGE.') 

END 

SUBROUTINE SPLNFT(X,Y,DY,S,N,W,*) 
IMPLICIT REAL*8 (A-H.O-Z) 
REAL*4 X,Y,DY,S,XX,YY,YY1,YY2 
COMMON /SPLN$/ NCOUNT 
DIMENSION X(N),Y(N),DY(N),W(1) 
DIMENSION XX(1),YY(1),YY1(1),YY2(1) 
INTEGER A,B,C > D ) R ) R1 ) R2 ) T,T1 ) U,V 
IF (N.LT.3) RETURN 1 
NCOUNT=l 
SS=S 
DS=SS 
IF(S.LE.O.O) SS=1.0D-8 
EE=DS*0.5D-6 
IF (S.LE.0.0) EE=0.5D-6 
NM=N-1 
N2=N+2 
NB=N 
NC=NB+N 
ND=NC+N 
NR=ND+N 
NR1=NR+N2 
NR2=NR1+N2 



NT=NR2+N2 
NT1=NT+N2 
NU=NT1+N2 
NV=NU+N2 

W(NR+1)=0.0D0 
W(NR+2)=0.0D0 
W(NR2-1)=0.0D0 
W(NR2)=0.0D0 
W(NT-1)=0.0D0 
W(NT)=O.ODO 
W(NU+1)=0.0D0 
W(NU+2)=0.0D0 
W(NV-1)=0.0D0 
W(NV)=0.0D0 

P=O.ODO 

Set A to Q T * Y 
Set R.R1.R2 to D*Q 

H=X(2)-X(1) 
IF (H .LE. 0.D0) RETURN 1 
F=(Y(2)-Y(1))/H 
DO 1 I=2,NM 
A=I 
G=H 
H=X(I+1)-X(I) 
IF(H .LE. 0.D0) RETURN 1 
E=F 
F=(Y(I+1)-Y(I))/H 
W(I)=F-E 
T=NT+I 
W(T+1)=.6666667D0* (G+H) 
T1=NT1+I 
W(T1+1)=.3333333D0*H 
R2=NR2+I 
W(R2+1)=DY(I-1)/G 
R=NR+I 
W(R+1)=DY(I+1)/H 
R1=NR1+I 

00001 W(R1+1)=-DY(I)/G-DY(I)/H 

Set B,C, and D to QT*D*D*Q 

DO 2 I=2,NM 
B=NB+I 
R=NR+I 
R1=NR1+I 



R2=NR2+I 
W(B)=W(R+1)*W(R+1)+W(R1+1)*W(R1+1)+W(R2+1)*W(R2+1) 
C=NC+I 
W(C)=W(R+l)*W(Rl+2)+W(Rl+l)*W(R2+2) 
D=ND+I 

00002 W(D)=W(R+l)*W(R2+3) 

00003 CONTINUE 

Do a LDU decomposition of QT*D*D*Q+P*T 

DO 4 I=2,NM 
A=I 
R1=NR1+I 
R=NR+I 
R2=NR2+I 
U=NU+I 
T1=NT1+I 
B=NB+I 
C=NC+I 
D=ND+I 
T=NT+I 
W(R1)=F*W(R) 
W(R2-1)=G*W(R-1) 
W(R+1)=1 0D0/(W(B)+P*W(T+1)-F*W(R1)-G*W(R2-1)) 
W(U+1)=W(A)-W(R1)*W(U)-W(R2-1)*W(U-1) 
F=W(C)+P*W(T1+1)-H*W(R1) 
G=H 

00004 H=W(D) 

Do back substitution 

DO 5 I=2,NM 
II=N2-I 
U=NU+II 
R=NR+II 
R1=NR1+II 
R2=NR2+II 

00005 W(U)=W(R)*W(U)-W(Rl)*W(U+l)-W(R2)*W(U+2) 
E=0 0D0 
H=0 0D0 

The V is really D*D*Q*U 

DO 6 I=1,NM 
U=NU+I 
V=NV+I 
G=H 
H=(W(U+2)-W(U+l))/(X(I+l)-X(I)) 
W(V+1)=(H-G)*DY(I)*DY(I) 

00006 E=E+W(V+1)*(H-G) 
G=-H*DY(N)*DY(N) 



V=NV+N 
W(V+1)=G 
E=E-G*H 
IF (E .LE. DS .OR. DABS(E-DS) .LE. EE) GO TO 8 

Calculate F and G 
For G consider ... A*X=I ; A*(X*Y)=I*Y=Y 

F=0.0D0 
G=0.0D0 
DO 7 I=2,NM 
R=NR+I 
R1=NR1+I 
R2=NR2+I 
U=NU+I 
T=NT+I 
T1=NT1+I 
H=W(U)*W(T1)+W(U+1)*W(T+1)+W(U+2)*W(T1+1) 
F=F+W(U+1)*H 
H=H-W(R1)*W(R)-W(R2-1)*W(R-1) 
G=G+H*W(R+1)*H 

00007 W(R+1)=H 
H=F-P*G 
IF (H.LE.0.0D0) GO TO 8 
NCOUNT=NCOUNT+l 
IF (NCOUNT .GT. 100) RETURN 1 

P=P+DSQRT(E/SS)*(E-DSQRT(DS*E))/H 

GO TO 3 
00008 CONTINUE 

DO 9 I=1,N 
C=NC+I 
V=NV+I 
U=NU+I 
A=I 
W(A)=Y(I)-W(V+1) 

00009 W(C)=P*W(U+1) 
DO 10 1=1,NM 
D=ND+I 
A=I 
C=NC+I 
B=NB+I 
H=X(I+1)-X(I) 
W(D)=(W(C+1)-W(C))/(3.0D0*H) 

00010 W(B)=(W(A+1)-W(A))/H-(H*W(D)+W(C))*H 
RETURN 

ENTRY SPLN(XX,YY,YY1,YY2,M,*) 



IF (M .LE. 0) RETURN 
J=l 
A = l 
B=A+N 
C=B+N 
D=C+N 
DO 15 I=1,M 

00011 IF (XX(I) .LT. X(J)) GO TO 14 
IF (XX(I) .LT. X(J+1)) GO TO 13 
IF (J .LT. NM) GO TO 12 
IF (XX(I) .EQ. X(J+1)) GO TO 13 
RETURN 1 

00012 J=J+1 
A=J 
B=A+N 
C=B+N 
D=C+N 
GO TO 11 

00013 DIFF=XX(I)-X(J) 
YY(I)=W(A)+DIFF*(W(B)+DIFF*(W(C)+DIFF*W(D))) 
YY1(I)=W(B)+DIFF*(2.0D0*W(C)+3.0D0*DIFF*W(D)) 
YY2(I)=2.0D0*W(C)+6.0D0*W(D)*DIFF 
GO TO 15 

00014 IF(J .EQ. 1) RETURN 1 
J=l 
A=J 
B=A+N 
C=B+N 
D=C+N 
GO TO 11 

00015 CONTINUE 

RETURN 
END 

SUBROUTINE MATRIX(A,T ) B,X ) RZ,IPS ) N,L,EPS,LT,ITMAX) 
COMMON / Z D / DET.JEXP /SLIMP$/ NITER 
DIMENSION A(L,L),T(L,L))B(1)JX(1),RZ(1)1IPS(1) 
DOUBLE PRECISION DSUMM.DA.DX 
IF(LT .NE. 1) GO TO 10 

CALL FLRD(N,N,L,A,IPS,L,T) 
CALL FDETM(N,IPS,L ) T ) DET,JEXP) 

00010 CALL FDBS(N,1,L,B,X 1IPS )L,T) 

IF(ITMAX .EQ. 0) GO TO 60 
XNORM=0.0 
DO 1 I=1,N 

00001 XNORM=AMAXl(XNORM,ABS(X(I))) 
IF(XNORM .LE. 0.0) RETURN 



2 0 6 

EPS=EPS*XNORM 
ZX=l.E+60 
LD=0 
DO 2 LL=1,ITMAX 
DO 3 I=1,N 
DSUMM=0.0 
DO 4 K=1,N 
DA=A(I,K) 
DX=X(K) 

00004 DSUMM=DSUMM+DA*DX 
DSUMM=B(I)-DSUMM 

00003 RZ(I)=DSUMM 

C A L L FDBS(N )1 )L )RZ,RZ,IPS,L,T) 

ZNORM=0.0 
DO 5 I=1,N 
ZNORM=AMAXl(ZNORM,ABS(RZ(I))) 

00005 X(I)=X(I)+RZ(I) 
IF(ZNORM .GT. ZX) GO TO 50 
IF((ZNORM-EPS) .LT. 0.0) GO TO 60 
ZX=ZNORM 
GO TO 2 

00050 IF(ZNORM .GT. 10.0*ZX) GO TO 70 
LD=LD+1 
IF(LD .GE. 3) GO TO 70 

00002 CONTINUE 
LL=LL-1 
WRITE(6,250) 
GO TO 71 

00070 WRITE(6,247) 
00071 EPS=-ZNORM 

NITER=LL 
RETURN 

00060 EPS=ZNORM 
NITER=LL 
RETURN 

00250 FORMAT(/'0***ITERATIVE IMPROVEMENT DID NOT CONVERGE'/ ) 
00247 FORMAT(/'0***ITERATIVE IMPROVEMENT IS DIVERGING'/) 

END 

SUBROUTINE FLRD(N,N1,NDIMA,A,IP,NDIMT,T) 
DIMENSION A(NDIMA,1),T(NDIMT,1),IP(1) 

Matrix triangularization by Gausian elimination 
Input: 

N: order of matrix 



NDIMA: 1st dimension of A 
A: array containing matrix to be triangularized 

Nl: dummy argument 

Output: 

A(I,J) (I < J): upper triangular factor, U 
A(I,J) (I > J): lower triangular factor, I-L 

IP(K) (K < N): index of Kth pivot 
IP(N): (— i)(n0-0finterchanae>) or 0 

If IP(N)=0 matrix is singular 
Interchanges finished in U, only partly in L 

DO 7 J=1,N 
DO 7 I=1,N 

00007 T(I,J)=A(I,J) 
IP(N)=1 
DO 6 K=1,N 
IF(K .EQ. N) GO TO 5 
KP1=K+1 
M=K 
DO 1 I=KP1,N 
IF(ABS(T(I,K)) .GT. ABS(T(M,K))) M=I 

00001 CONTINUE 
IP(K)=M 
IF(M .NE. K) IP(N)=-IP(N) 
TEMP=T(M,K) 
T(M,K)=T(K,K) 
T(K,K)=TEMP 
IF(TEMP .EQ. 0 ) GO TO 5 
DO 2 I=KP1,N 

00002 T(I,K)=-T(I,K)/TEMP 
DO 4 J=KP1,N 
TEMP=T(M,J) 
T(M,J)=T(K,J) 
T(K,J)=TEMP 
IF(TEMP .EQ. 0 ) GO TO 4 
DO 3 I=KP1,N 

00003 T(I,J)=T(I,J)+T(I,K)*TEMP 
00004 CONTINUE 
00005 IF(T(K,K) .EQ. 0 )IP(N)=0 
00006 CONTINUE 

RETURN 
END 

SUBROUTINE FDETM(N,IP,NDIMT,T,DET,JEXP) 



DETERMINANT.OF TRIANGULAR MATRIX 

Input: 

N: order of matrix 
IP: vector of interchanges; IP(N)=(-l)(n o- o f

 i n t e « h a n B e s ) 

If matrix produced by FLRD 

NDIMT: 1st dimension of T 

T: 2 X 2 array containing matrix 
DETERMINANT: D E T x l O J E X P 

DIMENSION T(NDIMT,1),IP(1) 
DET=IP(N) 
JEXP=0 
DO 1 I=1,N 
TEMP=T(I,I) 
IF(ABS(DET) .LE. 1.E15) GO TO 2 
DET=DET*1.E-15 
JEXP=JEXP+15 
GO TO 3 

00002 IF(ABS(DET) .GE. l.E-15) GO TO 3 
DET=DET*1.E+15 
JEXP=JEXP-15 

00003 DET=DET*TEMP 
00001 CONTINUE 

RETURN 
END 

SUBROUTINE FDBS(N,NSOL,NDIMBX,B,X,IP,NDIMT,T) 

B A C K AND FORWARD SUBSTITUTION 

Input: 

N: order of system 
NSOL: no. of R.H.S. 

NDIMBX: 1st dimension of B and X 
T: 2 X 2 array containing triangularized matrix produced by FLRD 
B: 2 x 2 array containing R.H.S. 

NDIMT: 1st dimension of T 

Output: 

X: 2 X 2 array contains the solution vectors 

DIMENSION T(NDIMT,1),X(NDIMBX,1))B(NDIMBX,1),IP(1) 



NM1=N-1 
DO 1 L=l,NSOL 
DO 2 I=1,N 

00002 X(I,L)=B(I,L) 
IF(N .EQ. 1) GO TO 9 
DO 7 K=1,NM1 
KP1=K+1 
M=IP(K) 
TEMP=X(M,L) 
X(M,L)=X(K,L) 
X(K,L)=TEMP 
DO 7 I=KP1,N 

00007 X(I,L)=X(I,L)+T(I,K)*TEMP 
DO 8 KB=1,NM1 
KM1=N-KB 
K=KM1+1 
X(K,L)=X(K,L)/T(K >K) 
TEMP=-X(K,L) 
DO 8 I=1,KM1 

00008 X(I,L)=X(I,L)+T(I,K)*TEMP 
00009 X(1,L)=X(1,L)/T(1,1) 
00001 CONTINUE 

RETURN 
END 
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