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ABSTRACT 

Transient s t a b i l i t y analysis i s an Important part of power system 

planning and operation. For large power systems, such analysis i s very 

demanding i n computation time. On-line transient s t a b i l i t y assessment w i l l 

be necessary for secure and r e l i a b l e operation of power systems i n the near 

future because systems are operated close to t h e i r maximum l i m i t s . 

In the l a s t two decades, a vast amount of research work has been done 

i n the area of fast transient s t a b i l i t y assessment by d i r e c t methods. The 

major d i f f i c u l t i e s associated with d i r e c t methods are the l i m i t a t i o n s i n the 

power system model, determination of transient s t a b i l i t y regions and 

adaptation to changes i n operating conditions. In t h i s thesis catastrophe 

theory i s used to determine the transient s t a b i l i t y regions. Taylor series 

expansion i s used to f i n d the energy balance equation i n terms of c l e a r i n g 

time and system transient parameters. The energy function i s then put i n 

the form of a catastrophe manifold from which the b i f u r c a t i o n set i s 

extracted. The b i f u r c a t i o n set represents the transient s t a b i l i t y region i n 

terms of the power system transient parameters bounded by the transient 

s t a b i l i t y l i m i t s . The transient s t a b i l i t y regions determined are v a l i d for 

any changes i n loading conditions and f a u l t l o c a t i o n . The transient 

s t a b i l i t y problem i s dealt with i n the two dimensions of transient s t a b i l i t y 

l i m i t s and c r i t i c a l c l e a r i n g times. Transient s t a b i l i t y l i m i t s are given by 

the b i f u r c a t i o n set and the c r i t i c a l c l e a r i n g times are calculated from the 

catastrophe manifold equation. The method achieves a breakthrough i n the 

modelling problem because the e f f e c t s of ex c i t e r response, f l u x decay and 
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systems damping can a l l be included i n the transient s t a b i l i t y analysis. 

Numerical examples of one-machine i n f i n i t e - b u s and multi-machine power 

systems show very good agreement with the time solution i n the p r a c t i c a l 

range of f i r s t swing s t a b i l i t y a n a l y sis. The method presented f u l f i l l s a l l 

requirements for on-line assessment of transient s t a b i l i t y of power 

systems. 
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CHAPTER 1 

INTRODUCTION 

The s t a b i l i t y of a power system implies that a l l i t s generators 

remain i n synchronism through normal and abnormal operating conditions. 

Transient s t a b i l i t y a r i s e s when a large disturbance such as a loss of 

generation, load or transmission l i n e s takes place i n the power system. The 

question of whether the power system w i l l s e t t l e to a new stable operating 

state or not i s known as the transient s t a b i l i t y problem. 

The ever increasing demand for e l e c t r i c a l energy requires ever larger 

interconnected power systems and a maximum generation. This raises great 

concern about the security of power systems when subjected to large d i s t u r 

bances. Transient s t a b i l i t y , therefore, becomes an increasingly important 

consideration i n system planning and operation. Extensive s t a b i l i t y studies 

are needed i n order to ensure system security before a planning or operating 

d e c i s i o n i s made. Each contingency for each disturbance considered requires 

a large number of s t a b i l i t y studies to determine the c r i t i c a l c l e a r i n g time 

or system s t a b i l i t y l i m i t s . 

A t y p i c a l transient s t a b i l i t y study consists of obtaining the time 

s o l u t i o n to the power system d i f f e r e n t i a l and algebraic equations s t a r t i n g 

with the system conditions p r i o r to the transient. The power system equa

tions should include a l l s i g n i f i c a n t parameters that influence s t a b i l i t y 

such as generator controls, s t a b i l i t y controls and protective devices. The 

desired objectives of a transient s t a b i l i t y analysis are: 
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i . The s t a b i l i t y of the power system. Is i t stable or not, to what degree 

i s i t stable, and how far i s i t from the s t a b i l i t y l i m i t s ? 

i i . Time responses of generator v a r i a b l e s , bus voltages, currents, and 

active and reactive power. 

i i i . System quantities that a f f e c t the performance of protective devices. 

The above objectives are key issues i n power system design, planning and 

operation to ensure system s t a b i l i t y for d i f f e r e n t prescribed disturbances. 

The time s o l u t i o n method of s t a b i l i t y analysis, although i t i s very 

r e l i a b l e , accurate, and suitable for d i f f e r e n t modelling orders, has the 

following disadvantages; 

1. The method involves numerical i n t e g r a t i o n of a large number of d i f f e r 

e n t i a l equations for each disturbance considered. A large number of 

r e p e t i t i v e simulations i s required for each case to determine either 

the s t a b i l i t y l i m i t s or the c r i t i c a l c l e a r i n g time. This procedure Is 

very time consuming i n the system planning stage where a large number 

of cases need to be considered. 

2. In system operations, there are si t u a t i o n s where f a s t s o l u t i o n i s need

ed to make operational decisions. These si t u a t i o n s could be d i f f e r e n t 

from those previously considered during planning. Since the time s o l u 

t i o n method i s slow, the system operator has either to overreact to 

ensure system security or to make decisions that may put s t a b i l i t y of 

the system at r i s k . 

3. The power system operating conditions change during the' course of the 

day and year, while s t a b i l i t y studies are done o f f - l i n e for ce r t a i n 
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severe cases. This leads to improper decisions i n some cases and, 

therefore, may increase operational expenditures. 

From the above, i t i s clear that the power industry greatly needs an 

a l t e r n a t i v e method to solve the transient s t a b i l i t y problem. The alt e r n a 

t i v e method cannot e n t i r e l y replace the time sol u t i o n , but i t should reduce 

the number of simulations for each case and hence save a great deal of 

computation time. A new method i s also needed for system operations where 

the system operator has only minutes or hours to make an important opera

t i o n a l decision. The best s o l u t i o n , of course, i s to have an on-line method 

that deals with system operations on a real-time b a s i s . 

The desired method for fast analysis of transient s t a b i l i t y should 

s a t i s f y the following important requirements. 

1. Provide fast and r e l i a b l e answers to the transient s t a b i l i t y problem 

when a s p e c i f i e d disturbance i s given. The answer must p a r t i c u l a r l y 

indicate whether the system i s stable or not. 

2. Include s u f f i c i e n t modelling options so that the answer provided i s i n 

the range of the actual system response. 

3. Provide the necessary information about the degree of s t a b i l i t y and 

system se c u r i t y so that the operator can make proper decisions to 

ensure system s e c u r i t y . 

4. If th i s fast method i s to be used for real-time system operations, i t 

should be adaptable to changes i n operating conditions, d i f f e r e n t 

disturbances, and s t a b i l i t y c o n t r o l s . 

Although extensive research has been conducted i n t h i s area, l i t t l e 

of the previous requirements have been achieved so f a r . A great deal of 
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research i s s t i l l needed to ei t h e r improve the e x i s t i n g methods or propose 

new methods i n order to f u l f i l l a l l these requirements. 

This research i s motivated by the challenging problem of developing a 

s a t i s f a c t o r y fast d i r e c t method for the assessment of transient s t a b i l i t y . 

The main objectives of this thesis are: 

1. To develop a f a s t , r e l i a b l e d i r e c t method for the assessment of trans

ient s t a b i l i t y of power systems. 

2. To improve the power system model used by including a l l necessary 

options to get as accurate a system response as possible. 

3. To predict the comprehensive transient s t a b i l i t y region with security 

boundaries for possible on-line assessment of transient s t a b i l i t y . 

A review of the l i t e r a t u r e on the transient s t a b i l i t y problem and 

presently a v a i l a b l e solutions are given i n Chapter 2. In Chapter 3 a new 

d i r e c t method for s t a b i l i t y assessment i s introduced with preliminary a p p l i 

cations on a simple one-machine i n f i n i t e - b u s power system. In Chapter 4, 

the technique i s applied to multi-machine power systems using dynamic 

equivalents and Taylor series expansions. Transient s t a b i l i t y regions are 

al s o given by using the catastrophe theory. Chapter 5 presents the cap

a b i l i t y of the new method to include e x c i t a t i o n , f l u x decay and system 

damping i n the power system model. Chapter 6 summarizes the conclusions and 

achievements of t h i s project. 
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CHAPTER 2 

REVIEW OF STABILITY PROBLEM AND ITS SOLUTION 

2*1 Introduction 

The s t a b i l i t y problem of power systems has been given new importance 

since the famous blackout i n Northeast U.S.A. i n 1965. Considerable 

research e f f o r t has gone into the s t a b i l i t y i n v e s t i g a t i o n both for o f f - l i n e 

and on-line purposes. I t started a chain reaction a f f e c t i n g planning, 

operation and control procedures of e l e c t r i c power systems. Since then 

several studies have been conducted and new concepts and di r e c t i o n s have 

been suggested to prevent i n s t a b i l i t y and ensure security and r e l i a b i l i t y of 

power systems. 

In t h i s chapter, a b r i e f review of the s t a b i l i t y problem i s 

presented, followed by a l i t e r a t u r e review of the d i f f e r e n t methods used and 

suggested to analyze i t . 

2.2 The S t a b i l i t y Problem 

A stable power system implies that a l l i t s interconnected generators 

are operating i n synchronism with the network and with each other. Problems 

a r i s e when the generators o s c i l l a t e because of disturbances that occur from 

transmission f a u l t s on switching operations. 

There are two types of s t a b i l i t y problem i n power systems. F i r s t l y , 

the steady state s t a b i l i t y problem which refers to the s t a b i l i t y of power 

systems when a small disturbance occurs i n the power systems such as a 

gradual change i n loads, manual or automatic changes i n e x c i t a t i o n , 
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i r r e g u l a r i t i e s i n prime-mover input. Obviously these small disturbances 

cannot cause loss of synchronism unless the system i s operating at, or very 

near, i t s steady state s t a b i l i t y l i m i t . This l i m i t i s the greatest power 

that can be transmitted on a s p e c i f i e d c i r c u i t , under c e r t a i n operating 

conditions i n the steady state, without loss of synchronism. The analysis 

of steady state s t a b i l i t y requires the so l u t i o n of power flow equations and 

swing equations over a period of a few miniutes. Governor and exciters 

should also be included i n the steady state s t a b i l i t y a n a l y s i s . 

Secondly, there i s the transient s t a b i l i t y problem which arises from 

a large disturbance i n the power system such as a sudden loss of generators 

or loads, switching operations, or f a u l t s with subsequent c i r c u i t i s o l a t i o n . 

Such large disturbances create a power unbalance between supply and demand 

i n the system. This unbalance takes place at the generator shafts and 

causes the rotors to o s c i l l a t e u n t i l a new steady state operating point i s 

reached; or u n t i l the rotors continue to o s c i l l a t e and deviate from each 

other and f i n a l l y some generators w i l l lose synchronism. 

Loss of synchronism must be prevented or c o n t r o l l e d because i t has a 

d i s t u r b i n g e f f e c t on voltages, frequency and power, and i t may cause serious 

damage to generators, which are the most expensive elements i n power systems 

[1 ] . The generators which tend to lose synchronism should be tripped, i . e . 

disconnected from the system before any serious damage occurs, and subse

quently brought back to synchronism. While t h i s can be done r e a d i l y with 

gas and water turbine generators, steam turbine generators require many 

hours to r e b u i l d steam and the operator has to shed load to compensate for 

the loss of generators. Loss of synchronism may also cause some protective 
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relays to operate f a l s e l y and t r i p the c i r c u i t breakers of unfaulted l i n e s . 

In such cases the problem becomes very complicated and may r e s u l t i n more 

generators l o s i n g synchronism. 

2.3 Basic Power System S t a b i l i t y Model 

The equation of motion of n generator rotors i n a power system of 

n-machines i s given by 

, i = 1,2, . M.6. + D. 6 = p - P = P i i ' i i i e i a i n 

where 
e i = 2 ( G E E . cos 6 + B, . E. E. s i n 6 ) 

j=l i j i J i j i j i j i j ' 

(2.1) 

(2.2) 

M. 

10 

e i 

a i 
G ,B 

i j * i j 
6 
i j 

V E j 

i n t e r n a l rotor angle of machine 2. 

to 1^ = i n e r t i a constant, 

moment of i n e r t i a , 

angular speed, 

damping c o e f f i c i e n t , 

mechanical power input, 

e l e c t r i c a l power output, 

ac c e l e r a t i n g power. 

r e a l and imaginary parts of reduced nodal admittance matrix. 

6 - 6 . 
i j 

i n t e r n a l voltages of machine i , j . 

Under steady s t a t e c o n d i t i o n s , P .=0, and 6. i s constant. When a 
a i i 

{• 

d i s t u r b a n c e o c c u r s , P . becomes d i f f e r e n t from zero and equation (2.1) 
a i 

d e s c r i b e s the behaviour of 6 w i t h time. For machine i to be stable, 6 
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must s e t t l e to a constant value again and P . must return to zero. For a 

power system of n machines, n swing equations have to be solved i n order to 

decide whether the power system i s stable or not when a s p e c i f i c disturbance 

occurs.. The s o l u t i o n of the swing equations obtained depends upon the model 

of the power system elements such as generators (machine, exciter and 

governor), transmission l i n e s and loads. Furthermore, the choice of the 

power system model w i l l depend upon the s t a b i l i t y study to be c a r r i e d out 

and the period of analysis [2]. 

2.3.1 Synchronous Generator 

The most s i m p l i f i e d model of the sychronous generator i s the so-

c a l l e d c l a s s i c a l model. In t h i s model the generator i s described by a 

constant voltage behind transient impedance. This model i s acceptable for 

the f i r s t swing transient s t a b i l i t y analysis which has a period of one 

second or less [2]. The i n t e r n a l voltage i s constant i n magnitude only. 

This representation neglects the e f f e c t of saliency and assumes constant 

f l u x linkages and a small change i n speed. The voltage equation i s given 

by 

|E| / 6 - Vfc + r a I t + j x- l t (2.3) 

where | E | : magnitude of voltage behind transient impedance. 

6: angle of |E| ( v a r i a b l e ) . 

V t terminal voltage. 

r armature resistance. 
a 

transient reactance. 

I terminal current. t 
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When saliency and changes i n f i e l d f l u x linkages are taken into account, i t 

i s no longer possible to represent the generator completely by an equivalent 

c i r c u i t . The r e s u l t i n g equations have time-dependent c o e f f i c i e n t s unless 

they are transformed by the use of Park's transformation into the so-called 

d i r e c t - and quadrature-axis variables [2]. The model then involves both 

d i f f e r e n t i a l and phasor-algebraic equations [3]. The d i f f e r e n t i a l equation 

i s : 
i 

dE , - 1 = J - ( K - . - O (2.4) 
dt ' f d 1  

Ado 
i » 

where E^ i s the v o l t a g e p r o p o r t i o n a l to f i e l d f l u x l i n k a g e , T^ o i s the 

d i r e c t - a x i s transient open-circuit time constant, E ^ i s the quadrature-axis 

f i e l d v o l t a g e and Ê . i s the v o l t a g e p r o p o r t i o n a l to f i e l d current. The 

phasor equations of the above quantities are: 
E* = E - j ( x - x ' ) l , (2.5) q q q d d 

I t a t d d <}q 

E = V + r I + jx I (2.7) q t a t q t 

where E^ i s the voltage behind quadrature-axis reactance x^, 1̂ , 1̂  are the 

components of I f c along the d i r e c t - and quadrature-axes, r e s p e c t i v e l y . Here 

the machine angle 6 i s the angle of E^. 

The above model i s desirable i n the transient s t a b i l i t y analysis for 

the cases when a longer period of analysis i s needed when a high-speed 

voltage-regulator i s considered [2]. 
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2.3.2 E x c i t e r and Governor Control Systems 

The e x c i t e r i s a device that supplies f l u x to the synchronous 

generator and d i r e c t l y controls the output voltage of the generator. The 

e x c i t e r control system provides the proper f i e l d voltage to maintain a 

desired system voltage during transient and steady state operations. There 

are many types of e x c i t e r control systems i n use i n power systems [2]. The 

basic components of an e x c i t e r control system are the regulator, amplifier 

and e x c i t e r . The regulator measures the actual regulated voltage and 

determines the voltage deviation. The deviation s i g n a l i s then amplified to 

provide the s i g n a l required to c o n t r o l the e x c i t e r f i e l d current that 

changes the exciter output voltage and hence r e s u l t s i n a new e x c i t a t i o n 

l e v e l for the generator. Reference [3] gives the d e t a i l e d d i f f e r e n t i a l 

equations of the e x c i t e r control system. 

The e x c i t e r c o n t r o l system must be Included i n the transient 

s t a b i l i t y studies i f the period of analysis i s longer than one second. 

Modern fast h i g h - c e i l i n g e x c i t e r s operate even within a period of one second 

and i f such an e x c i t e r i s considered then the e x c i t e r c o n t r o l system must be 

included i n the generator model. 

The rotor speed of the synchronous generator i s c o n t r o l l e d by the 

governor control system by varying the mechanical power input. The governor 

c o n t r o l system can be taken into account i n the s t a b i l i t y studies by solving 

i t s d i f f e r e n t i a l equations simultaneously with the r e s t of the system 

equations. I t i s necessary to include the governor e f f e c t i f the period of 

analysis Is longer than one second [3]. 
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2.3.3 Transmission System and Loads 

Transmission l i n e s are usually represented by nodal type equations. 

Current equations are written f or each node i n the following manner: 
n 

1. = E Y E (2.8) 
j-1 J J 

where E. are nodal voltages, Y. . are the c o e f f i c i e n t s of the i ' * 1 row of the 
J i j 

network admittance matrix and 1^ i s the input current into node i due to a 

generator or load. The power input into the network at node i i s given by 

P e i - V E i O (2-9) 

Loads are usually represented as constant complex power, constant impedance 

or constant current at constant power fa c t o r . The equation for constant 

complex power i s 

S± = P i + j Q ± = E± li = constant (2.10) 

for constant impedance i s 
E i 

Z. = y~ = constant (2-11) 
i 

and for constant current at constant power factor i s 

Transmission l i n e s and loads a f f e c t d i r e c t l y the s t a b i l i t y l i m i t s [4]. The 

types of load models mentioned above are not adequate models i f the load i s 

of a dynamic type. I t i s very important to use more advanced load models 
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for dynamic loads e s p e c i a l l y when high voltage v a r i a t i o n s are expected 

[5,6]. 

2.4 Solution of the Transient S t a b i l i t y Problem 

Transient s t a b i l i t y refers to the amount of power that can be stably 

transmitted when the power system i s subjected to a large disturbance such 

as, f a u l t s , loss of l i n e s , loss of generators or loads and sudden changes i n 

the t i e - l i n e flow. The main objective of a transient s t a b i l i t y study i s to 

assess the possible loss of synchronism due to such large disturbances. 

Transient s t a b i l i t y studies enable power engineers to set up protective 

devices and to design proper s t a b i l i t y controls that ensure no loss of 

synchronism. 

The growth of large interconnected power systems demands c a r e f u l 

transient s t a b i l i t y studies because some large disturbances could have 

catastrophic r e s u l t s . On the other hand, rapid growth makes i t extremely 

d i f f i c u l t to carry out such c a r e f u l and d e t a i l e d s t a b i l i t y studies. An 

e a s i l y reached conclusion i s that an exact answer i s d i f f i c u l t to obtain 

[7]. 

There are three main approaches to solving the transient s t a b i l i t y 

problem. These approaches w i l l be discussed i n the following sections. 

2.4.1. Numerical Integration Methods 

These methods solve the power system d i f f e r e n t i a l equations (swing 

equations) during and a f t e r the transient period. From the response of 
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the swing curves of the generators i n the power system an experienced power 

engineer can assess the s t a b i l i t y of the power system. 

The numerical i n t e g r a t i o n methods can be divided into two basic 

types: 

1. One-step methods: these methods require only information concerning the 

previous time point to ca l c u l a t e the values at the next time point. 

Consider a set of non-linear d i f f e r e n t i a l equations 

^ • = f ( y , t ) (2.13) 

where y represents a set of n variables and f a vector of n functions. The 

one-step method calculates at point 1 s t a r t i n g from point 0 using a s t r a i g h t 

l i n e defined by the d e r i v a t i v e at point 0 

yi = yo + d r l o h ( 2 a 4 ) 

where h i s the time i n t e r v a l , t ^ - t ^ . The new point can be used to c a l c u l a t e 

the next one, and the i t e r a t i o n continues u n t i l the sol u t i o n i s obtained. 

These methods have high accuracy when the time i n t e r v a l Is small, but the 

accuracy decreases r a p i d l y as the time i n t e r v a l increases. Euler's method 

and the step by step method given i n [1] are t y p i c a l one-step methods. 

2. Multi-step methods: these methods require for each new point, 

information about two or more preceding points. The predictor-corrector 

method [8] calculate a point y as follows 
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*n+l * }n \ V k + bk f ^ tn-k ) ( 2 ' 1 5 ) 

k=0 k=-l 

where appropriate values for the a and b constants are chosen for the 

pre d i c t o r and corrector formulas. f ( y , t ) indicates the derivative with 

respect to time. Equation (2.15) i s the same as equation (2.14) for the 

one-step method with a =b =1, and a l l other constants equal to zero. r n n ' n 

The number series approach [3] Is another type of multi-step method 

where the generator angles versus time are obtained using the following 

i t e r a t i v e equation 

6 + - 6 + i ^ L + i ^ P _ (2.16) n+2 n w a n+1 

Equation (2.16) i s derived from the swing equation by evaluating 6(t) 

i n t e g r a t i o n by the trapezoidal r u l e . 

Other methods have been applied to t h i s problem such as Runge-Kutta 

method [10], an improved Gauss-Seidel approach [11], and the phase-plane 

techniques [12]. The main advantage of multistep methods i s that long time 

i n t e r v a l s can be used with high accuracy and s t a b i l i t y . 

In general, the numerical i n t e g r a t i o n methods are widely accepted and 

used because of the fact that these methods provide det a i l e d r e s u l t s and are 

capable of including d e t a i l e d models of power system elements. 

The main disadvantage of the numerical int e g r a t i o n methods for 

transient s t a b i l i t y studies are the formidable computation time required, 

the need for human i n t e r p r e t a t i o n of the swing curves f o r assessing the 

transient s t a b i l i t y and the fact that the method cannot be used for on-line 

assessments of s t a b i l i t y . 
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In spite of the high speed computation of modern computers and 

several refinements and developments of the technique [13-15] the d i g i t a l 

a n a lysis of even a moderate sized power system i s s t i l l too time consuming. 

Analog and hybrid simulation [16] have been suggested. In these schemes, 

a l l the d i f f e r e n t i a l and a l g e b r i c equations are solved i n analog form and 

the rest of the work ( i n i t i a l i z a t i o n , switching and l o g i c operations) i s 

taken care of by the d i g i t a l computer. But t h i s approach i s s t i l l too slow 

for on-line a p p l i c a t i o n s . 

2.4.2 Lyapunov's Direct Method 

To improve on the slow computational speed of numerical int e g r a t i o n 

methods, Lyapunov's s t a b i l i t y theory has been applied to the transient 

s t a b i l i t y problem. 

Let the system be represented by a set of d i f f e r e n t i a l equations 

dX. 
^JL = f ± ( X 1 § X 2, ... X n, t ) , i = l , . . . n . (2.17) 

The o r i g i n of the s t a t e v e c t o r X i s c o n s i d e r e d to be s t a b l e , i . e . 

f i ( 0 , 0 ... 0,t) =0, i = l , . . . n . 

When the set of i n i t i a l conditions at the s t a r t of the disturbance 

are a l l known, Lyapunov's d i r e c t method w i l l determine, without f i n d i n g the 

actual t r a j e c t o r y of the state v a r i a b l e s , i f the systm w i l l asymptotically 

reach a stable point. Therefore, much integration time can be saved as 

s t a b i l i t y can be determined d i r e c t l y from i n i t i a l conditions.;. 

The method assumes a s c a l a r , continuous Lyapunov function V(X,t) 

exi s t s i n the neighborhood of the o r i g i n such that, 
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1. V(0,t) - 0 

2. V(X,t) > 0 X e R, X * 0 

3. f f f i d l <0 X e R 
dt 

where R i s a region around the stable point X=0 and i s c a l l e d the region of 

s t a b i l i t y . I f the above conditions are v a l i d for V(X,t), i t can be shown 

that for a disturbance X e R (X * 0) then X e R as t -*• fl0. The main 

d i f f i c u l t y here i s that the determination of the boundary of the s t a b i l i t y 

region i s very time consuming. 

The a p p l i c a t i o n of t h i s method to the transient s t a b i l i t y problem of 

power systems can be summarized i n the following steps [17-19]. 

1. I n i t i a l conditions are determined by a load flow study. 

2. The admittance matrix of the power system i s reduced to the number of 

g e n e r a t i n g buses f o r d u r i n g - d i s t u r b a n c e and p o s t - d i s t u r b a n c e 

conditions. 

3. The steady state equilibrium point of the post-disturbance system i s 

found by solving the equation 

P., - P = 0 , i = 1, ... n 
i e i 

where P^ and P g^ are the mechanical input power and the e l e c t r i c a l 

output power, re s p e c t i v e l y . The same equation has also to be solved to 

f i n d the closest unstable equilibrium point. Such a point helps to 

define the region of s t a b i l i t y around the stable state point. 

4. The Lypanov's function V(X,t) i s found and c a l c u l a t e d . Thus the 

s t a b i l i t y regions for V=constant can be found. 
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5. Integration of the d i f f e r e n t i a l equations for the during-disturbance 

period. At each new point, the function V i s calculated with post-

disturbance conditions to determine whether the system i s stable when 

the disturbance i s cleared. The f i r s t instance of i n s t a b i l i t y defines 

the c r i t i c a l c l e a r i n g time for the disturbance. 

Numerous methods have been suggested to derive a Lyapunov function with the 

desired properties [20,21]. I t should be noted here that d i f f e r e n t V 

functions may y i e l d d i f f e r e n t answers i n the sense that they comprise 

d i f f e r e n t subregions of the s t a b i l i t y region around the stable point [15]. 

The transient energy function method [22] i s the most promising 

approach among the d i r e c t methods. Remarkable progess has been made i n 

recent years [23,24]. However, the method i s s t i l l not suitable for on-line 

a p p l i c a t i o n because of some p r a c t i c a l and computational d i f f i c u l t i e s [25]. 

The advantages which Lyapunov's d i r e c t method has over numerical 

i n t e g r a t i o n methods are the following: 

1. This method i s computationally f a s t e r . Here the c r i t i c a l c l e a r i n g time 

can be obtained i n a single i n t e g r a t i o n while the simulation technique 

requires r e p e t i t i v e Integration for d i f f e r e n t assumed c l e a r i n g times. 

2. For a given c l e a r i n g time, t h i s method w i l l indicate whether the system 

i s stable or not. This s o l u t i o n i s d i r e c t and i t does not require the 

i n t e g r a t i o n of the system d i f f e r e n t i a l equations beyond the c l e a r i n g 

time. 

3. I t i s shown that the value of the Lyapunov function and the c r i t i c a l 

c l e a r i n g time are related [26]. Hence, this method can y i e l d s t a b i l i t y 

margins or s t a b i l i t y indices without making actual c a l c u l a t i o n s . Looked 
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at from another angle, t h i s method can indicate whether a c l e a r i n g time 

i s adequate or not. 

Despite the above a t t r a c t i v e features, Lyapunov's d i r e c t method has 

not received general acceptance from the u t i l i t i e s . The main reasons for 

t h i s are the following p r a c t i c a l d i f f i c u l t i e s associated with t h i s method: 

1. Approximate mathematical model of the system; many s i m p l i f y i n g 

assumptions have been made i n a r r i v i n g at a mathematical model of the 

power system to make i t suitable for i t s analysis by Lyapunov's d i r e c t 

method. The c r i t i c s of t h i s method question the v a l i d i t y of the 

s i m p l i f i c a t i o n s which are necessary f o r construction of a proper 

Lyapunov function. Moreoever, the Lyapunov functions are not unique and 

several such functions can be constructed by using d i f f e r e n t dynamic 

models of the power system. 

2. The method i s conservative and, although some stable point are r e a d i l y 

i d e n t i f i e d , others are inconclusive. Also, the method cannot predict 

i n s t a b i l i t y , therefore, i t may produce too many f a l s e alarms. 

3. Determination of the region of s t a b i l i t y ; from a p r a c t i c a l a p p l i c a t i o n 

point of view, t h i s has been the most consuming part of th i s method. In 

power systems, t h i s requires determination of the unstable equilibrium 

points closest to the post f a u l t stable equilibrium points, and involves 

the s o l u t i o n of n-nonlinear algebraic equations. 

2.4.3 Pattern Recognition Method * 

The object of th i s method i s to determine a function S(X) [27] such 

that: 
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> 0 for stable X 
S(X) - { 

< 0 for unstable X 

S(X) i s c a l l e d the decision function and X i s the state variable , where 

(X — , X£ ••• X^). 

The c l a s s i f i c a t i o n procedure i n the pattern recognition method i s 

shown i n F i g . (2.1) and summarized i n the following steps: 

Data_* 
Tra ining 

set 

Feature 

extraction 

Training 

procedure 
Decision 

Figure (2.1) 

1. Training Set: 

In order to obtain S(X), a t r a i n i n g set of various operating condi

tions must be a v a i l a b l e . Each operating condition or state i s s p e c i f i e d 

by variables such as i n j e c t i o n powers, loads, generation powers, load 

flows, voltage magnitudes and rotor angles. Each v a r i a b l e describing a 

p a r t i c u l a r X condition constitutes a component of the pattern vector 

X = ( X ^ Xj ••• x
n ) * I d e a l l y , every c o n c e i v a b l e p a t t e r n should be 

included i n the t r a i n i n g set so that i t covers the whole spectrum of the 

system operating conditions. Each pattern of the t r a i n i n g set must be 

c l a s s i f i e d whether i t i s stable or unstable. 
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2. Feature extraction: 

The number of variables obtainable from the t r a i n i n g set can be very 

large. In pattern recognition, i t i s not desirable nor i s i t necessary 

to use a l l the av a i l a b l e variables to obtain the c l a s s i f i e r function. 

Therefore, we have to choose the most Important variables that contain 

the necessary information about s t a b i l i t y . This can be done by p r a c t i 

c a l experience with the power system or by using s t a t i s t i c a l measures. 

The following function F [28] provides an easy and straightforward 

measure of the information i n each v a r i a b l e . 

s 

where 

m 
s 

= mean of the v a r i a b l e i n the stable c l a s s . 

m 
u 

= mean of the v a r i a b l e i n the unstable c l a s s . 

cr s = variance of the v a r i a b l e i n the stable c l a s s . 

a u = variance of the v a r i a b l e i n the unstable c l a s s . 

Feature extraction begins with the computations of the F values for 

a l l the components of the pattern vectors In the t r a i n i n g set. The 

vari a b l e with the largest F i s selected as the f i r s t feature. Then the 

redundant information i s removed by c a l c u l a t i n g the c o r r e l a t i o n factor 

between the f i r s t feature and the rest of the var i a b l e s , excluding 

variables with high c o r r e l a t i o n factor with the f i r s t feature. The 

procedure of c a l c u l a t i n g F with the rest of the features Is repeated and 

se l e c t i o n continues [27]. 
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3. Training Procedure: 

Having selected the s i g n i f i c a n t features, the next step i s to obtain 

the decision function S(X). This function can be f i r s t order such as 

S(X) = W + W. X, + ... + W X 

o 1 1 m m 

The weighting c o e f f i c i e n t s (WQ, ... Wffi) are determined such that 

S(X) > 0 i f X i s stable 

and S(X) < 0 i f X i s unstable 

There are many t r a i n i n g procedures a v a i l a b l e such as the least squares 

method [29,30], l i n e a r programming [30,31] and an optimal search 

algorithm [32]. 

Another possible c l a s s i f i e r function i s of second order or quadratic 

form [27] given below 
m m m 

S(X) = W + Z W, Z. + Z Z W,. Z, Z, 
° 1-1 1 1 1=1 j-1 i j 1 i 

A f t e r the weights are determined, t h e i r performance are checked by 

using them to c l a s s i f y the patterns i n the t r a i n i n g set. 

This method has been improved [33-34], and i t i s found that non-para

metric approaches are more r e l i a b l e than the parametric approaches mentioned 

above. 

The non-parametric approaches r e l y on experience to select the proper 

variables to be used i n s t a b i l i t y c l a s s i f i c a t i o n [35]. 

The main advantages of pattern recognition are: 

1. I t i s suitable for on-line assessment of transient s t a b i l i t y i f a r e l i 

able decision function i s determined. 



22 

2. The method i s independent of the model of the power system that i s 

used. 

The main disadvantages of pattern recognition are: 

1. O f f - l i n e computations to obtain the decision function are excessive. 

2. The decision function S(X) may very well be s e n s i t i v e to system 

configuration so that a d i f f e r e n t S(X) i s needed for any change i n the 

system configuration. 

3. Correct c l a s s i f i c a t i o n of 100% cannot be achieved with large power 

systems because i t involves unlimited o f f - l i n e computations. 

2.5 Discussion of E x i s t i n g Methods 

The growth of large interconnected power systems dic t a t e s the 

necessity for on-line transient s t a b i l i t y assessment to ensure the security 

of the power system and maintain r e l i a b l e service. The^ main problem of 

large power systems i s that i t i s impossible to simulate exactly for on-line 

purposes. Most d i r e c t methods provide global s o l u t i o n to the s t a b i l i t y 

problem with high approximation, except the method using the energy-type 

Lyapunov function [24] which y i e l d s s o l u t i o n for the i n d i v i d u a l machine. 

But with t h i s method the problem Is how to define the s t a b i l i t y region for 

an i n d i v i d u a l machine and that only a s i m p l i f i e d power system model i s 

used. 

One may expect better r e s u l t s from the pattern recognition method 

because of the fact that i t i s independent of the model used t o simulate the 

power system. This method can be used for an on-line assessment of 

s t a b i l i t y even for i n d i v i d u a l machines, but i t cannot be generalized because 
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each decision function i s good only for the system trained f o r . 

The motivation for t h i s work i s to search for a method which i s 

su i t a b l e for an on-line assessment of transient s t a b i l i t y that can be used 

for every i n d i v i d u a l generator i n the power system. I f such a method can be 

found then the problem of transient s t a b i l i t y can be dealt with on-line. 

The most suitable method (from among the e x i s t i n g methods) for such an 

a p p l i c a t i o n i s pattern recognition because of the fac t that i t i s 

independent of the systems equations which couple the generators together. 

2.4.1 Ap p l i c a t i o n of Pattern Recognition to a Simple Power System 

A recent technique of pattern recognition [35] i s applied to a single 

machine-Infinite bus system shown In F i g . 2.2. Two indices are used as 

state v a r i a b l e s , the k i n e t i c energy (K.E) and transmission margin (TM), 

where 

K.E = - MW2 

2 
and 

TM = P - P max c 

M = i n e r t i a constant of the machine 

W = speed 

p = maximum power for pos t - f a u l t condition max 
P = l i n e power at the instant a f a u l t i s cleared c 

K.E and TM have opposite c h a r a c t e r i s t i c s with loading conditions as 

shown i n F i g . 2.3. 

The decision function S(X) i n terms of K.E. and TM can be written i n 

the form 
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Fig. 2.4 The decision function for three different fault locations 



25 

S(.X) = W z + <t> x o 

S(X) > 0 : stable 

S(X) < 0 : unstable 

where X = (K.E, TM), W i s c o e f f i c i e n t vector 

<t> = constant o 

The technique i s applied to the system shown i n F i g . 2.2 for three 

d i f f e r e n t f a u l t locations indicated. Three d i f f e r e n t decision functions 

were determined for the three f a u l t locations as shown i n F i g . 2.4. 

For f a u l t l o c a t i o n (1), S i ( X ) = -TM + 20.71 K.E + 2.44. 

For f a u l t l o c a t i o n (2), S 2 ( X ) = -TM + 31.51 K.E 4 3.09 

For f a u l t l o c a t i o n (3), S 3 ( X ) = -TM - 681.8 K.E + 56.1. 

In conclusion, to represent a l l possible f a u l t locations we have to 

b u i l d up a surface that consists of a l l possible f a u l t l o c a t i o n s . This 

surface should contain a large number of l i n e s i n order to cover the whole 

region of s t a b i l i t y . Therefore, the decision function S (X) should represent 

the equilibrium surface of the s t a b i l i t y region. This conclusion brought up 

the idea of using catastrophe theory to define the s t a b i l i t y region. 
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CHAPTER 3 

APPLICATION OF CATASTROPHE THEORY TO POWER SYSTEM STABILITY 

A preliminary a p p l i c a t i o n of the catastrophe theory, a mathematical 

method, to the s t a b i l i t y assessment of power systems i s introduced i n t h i s 

chapter. The theory i s reviewed i n Section 3.2 followed by applications to 

both steady state and transient s t a b i l i t y of a simple one-machine 

i n f i n i t e - b u s power system. This method provides a very good t o o l to 

v i s u a l i z e steady state and transient s t a b i l i t y regions. 

3.1 Introduction 

The sustained increasing demand for e l e c t r i c a l power requires larger 

interconnected power systems and operation at or near to f u l l capacity. 

Therefore, transient s t a b i l i t y of power systems becomes a major factor i n 

planning and day-to-day operations and there i s a need for f a s t on-line 

s o l u t i o n of transient s t a b i l i t y to predict any possible loss of synchronism 

and to take the necessary measures to restore s t a b i l i t y . 

Lyapunov's d i r e c t method and pattern recognition have been introduced 

f o r f a s t assessment of transient s t a b i l i t y and eventually to implement these 

methods for on-line a p p l i c a t i o n s . 

Catastrophe theory has been applied to the study of s t a b i l i t y of 

various dynamic systems [36] and i n recent years to the steady state 

s t a b i l i t y problem of power systems by Sallam and Dineley [37]. An 

a t t r a c t i v e feature of catastrophe theory i s that the s t a b i l i t y regions are 
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defined i n terms of the system parameters bounded by the l i n e s of s t a b i l i t y 

l i m i t s . 

The a p p l i c a t i o n of catastrophe theory i s extended to the transient 

s t a b i l i t y problem. A well defined transient s t a b i l i t y region i n terms of 

system parameters i s obtained; these regions are suitable for fast on-line 

a p p l i c a t i o n s . 

3.2 Catastrophe Theory 

I t i s a natural phenomenon that sudden changes can occur as a r e s u l t 

of smooth or gradual changes. Examples might include the breakdown of an 

i n s u l a t o r when voltage i s b u i l t up gradually, the collapse of a bridge by 

gradual load increases and the loss of synchronism of generators i n a power 

system when subject to smooth changes i n operating conditions. The term 

"catastrophe" i s used for such sudden changes that are caused by smooth 

a l t e r a t i o n s . 

C atastrophe theory was o r i g i n a l l y p resented by the French 

mathematician Rene Thorn and published i n h i s book "Str u c t u r a l S t a b i l i t y and 

Morphogenesis" [38]. Thorn used d i f f e r e n t i a l topology to explain sudden 

changes i n morphogenesis. The idea then attracted the attention of many 

s c i e n t i s t s and has been applied to a v a r i e t y of sciences [36]. 

Catastrophe theory i s a theory that explores the region of sudden 

changes i n dynamic systems and deals with the properties of d i s c o n t i n u i t i e s 

d i r e c t l y . I t has been defined as the study from a q u a l i t a t i v e point of view 

of the ways the solutions to d i f f e r e n t i a l equations may change [39]. 
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Consider a system whose behaviour i s usually smooth but which 

sometimes (or i n some places) exhibits d i s c o n t i n u i t i e s . Suppose the system 

has n state variables and c o n t r o l l e d by m independent variab l e s , and suppose 

a smooth p o t e n t i a l function to describe the system dynamics e x i s t s . Given 

such a system, what catastrophe theory t e l l s us Is the following: The 

number of q u a l i t a t i v e d i f f e r e n t configurations of d i s c o n t i n u i t i e s that can 

occur depends not on the number of state v a r i a b l e s , which may be very large, 

but on the number of control v a r i a b l e s , which i s generally small. 

P a r t i c u l a r l y , i f the number of control variables i s not greater than four, 

then there are only seven d i s t i n c t types of catastrophes known as the seven 

elementary catastrophes, and i n none of these are more than two state 

variables involved [40]. 

3.2.1. Catastrophe Theory and B i f u r c a t i o n Analysis 

Consider a continuous p o t e n t i a l function V(X,C) which represents the 

system behaviour, where X are the state variables and C are the control 

v a r i a b l e s . The p o t e n t i a l function V(V,C) can be mapped i n terms of i t s 

c o n t r o l variables C to define the continuous region. Let the p o t e n t i a l 

function be represented as 

V(X,C) : M X C * R (3.1) 

where M, C are m a n i f o l d s In the s t a t e space R° and the control space R T 

r e s p e c t i v e l y . 

Now we define the catastrophe manifold M as the equilibrium surface 

t h a t r e p r e s e n t s a l l c r i t i c a l p o i n t s of V(X,C). I t i s the subset R Q X R C 

defined by 

v x V C ( X ) = o < 3 - 2 > 
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where V C ( X ) = V(X,C) and V x i s p a r t i a l d e r i v a t i v e w i t h r e s p e c t to X. 

Equation (3.2) i s the set of a l l c r i t i c a l points of the function V(X,C). 

Next we fi n d the s i n g u l a r i t y set, S, which i s the subset of M that 

consists of a l l degenerate c r i t i c a l points of V. These are the points at 

which 

v x v c(x) = 0 

and V x V C(X) = 0 (3.3) 

The s i n g u l a r i t y set, S, i s then projected down onto the control space 

R r by eliminating the state variables X using (3.3) and (3.2), to obtain the 

b i f u r c a t i o n set, B. The b i f u r c a t i o n set provides a proj e c t i o n of the 

s t a b i l i t y region of the function V(X,C), i . e . i t contains a l l non-degenerate 

c r i t i c a l points of the function V bounded by the degenerate c r i t i c a l point 

at which the system e x h i b i t s sudden changes when i t i s subject to small 

changes. 

The seven elementary catastrophes of r<4 are l i s t e d i n Table (3.1). 

The geometric analysis of the catastrophes that are used i n t h i s thesis are 

presented i n d e t a i l i n Appendix ( A l ) . A s i m p l i f i e d analysis of the seven 

elementary catastrophes Is given i n Reference [40]. 

3.3 Applications to the Steady State S t a b i l i t y Problem 

The a p p l i c a t i o n of catastrophe theory to the steady state s t a b i l i t y 

of power systems was f i r s t introduced i n Reference [37]. However, that 

a p p l i c a t i o n was l i m i t e d only to s a l i e n t - p o l e type synchronous generators. 

When the same procedure was applied to c y l i n d r i c a l - r o t o r generators, 



Catastrophe Control Space 
Dimension 

State Space 
Dimension 

Function Catastrophe Manifold 

Fold 1 1 1/3 x 3-ax 2 
x -a 

Cusp 2 1 x^-ax-1/2 bx 2 3 . x -a-bx 

Swallowtail 3 1 1/5 x 5-ax-l/2 b x 2 - l / 3 c x 3 4 , 2 x -a-bx-cx 

B u t t e r f l y 4 1 1/6 x 6-ax-l/2 bx 2-l/3 cx 3-dx 4 
5 2 3 x -a-bx-cx -dx 

Hyberbolit 3 2 3 3 x +y +ax+by+cxy 

2 

3x +a+cy 

3y2+b+cx 

E l i p t i c 3 2 3 2 2 2 x -xy +ax+by+cx +cy 

2 2 3x -y +a+2cx 

-2xy+b+2cy 

Parabolic 4 2 2 4 2 2 x y+y +ax+by+cx +dy 

2xy+a+2cx 

x2+4y3+b+2dy 

Table 3.1 The Seven-Elementary Catastrophes 
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u n j u s t i f i e d answers were obtained [ 3 7 ] . In t h i s section, a new procedure 

for applying catastrophe theory to the steady state s t a b i l i t y of c y l i n d r i c a l 

rotor generators i s presented using Taylor series expansion around the 

i n i t i a l steady state operating point. This section i s a complement to the 

work done by Sallam and Dineley and i t introduces a general procedure which 

i s applicable to a l l types of generators. Furthermore, the damping and 

governor e f f e c t s can also be included using t h i s method. 

3 . 3 . 1 C y l i n d r i c a l - r o t o r I n f i n i t e - b u s Power System 

Consider the one-machine i n f i n i t e - b u s power system of F i g . 3 . 1 . The 

steady state output power P g i s given by 

P = P s i n 6 ( 3 . 4 ) e m 

where P = m X , d 

S -is--the machine i n t e r n a l voltage, V i s the i n f i n i t e - b u s voltage, i s the 

mchine reactance and 6 i s the rotor angle (angle of i n t e r n a l voltage E). 

The power angle curve i s given i n F i g . 3 . 2 . 

Suppose the input power to the machine i s increased smoothly from P Q 

to P^. The machine w i l l o s c i l l a t e between 6Q and 6 2
 a s shown In F i g . 3 . 2 . 

I f the new operating angle i s higher than the maximum power l i m i t , the 

machine w i l l lose synchronism. 

The energy of o s c i l l a t i o n s between 6 and 6^ i s given by 

62 
f P d6 * ( 3 . 5 ) 
6 a 

o 
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jo.72 

g i n f i n t 
P bus 

E = 1.71 V = 1. / o . o 

6 = 36.5 
o jo.72 

Fig. 3.1 

60 6 1 62 
Angle 

Fig. 3.2 The power-angle curve 
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P = P - P s i n 6 a i m (3.6) 

P i s the acc e l e r a t i n g power. 

We now expand e q u a t i o n (3.6) by Taylor series around 6̂  at t=0, P a 

becomes 

P ( 2 ) t 2 

P (t) = P ( 0 ) + P ( 1 > t + J—- + ... a a a 2 j 
(3.7) 

where 

(m) _ a 
, m d t o 

(3.8) 

Therefore 

P ( 0 ) - P - P s i n 6 a i m i 

(1) _ 
d P 

d t 

P cos 6 6 = 0 m o 

(2) d P (1) 

d t 
P s i n 6 6 m o P cos 6 6 m o 

(3.9) 

= -P cos 6 6 m 0 
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/ Q \ D P 

(3) _ a 
(2) 

d t 
= P cos 6 6 J + p s i n 6 ( 2 6 ) 6 m o m o 

,(4) _ a  
a " dt 

+ P s i n 6 6 6 - p cos 6 6 = 0 m o m o 

- - P cos 6 N

, 6 ' * + 3P s i n 6. 6' 
m 0 m 0 

0 

where 6 = 0 at t = 0 

Since the change i n the power input of the machine i s smooth and 

small, the Taylor seri e s expansion determines the exact region of 

o s c i l l a t i o n , from 6 ^ to 6 ^ . The ac c e l e r a t i n g power i s then given by 

p ( 2 ) t 2 p ( 2 ) t 4 p ( 6 ) t 6 
P (t) = P ( 0 ) + a + - 5 + ± 
a v ' a 

(3.10) 
2! 4! 6! 

Let 6 = 6 Q + \ Y t 2 , ( 6 - 6 Q ) ^ y t 2 , 6 ' - \ Y t 2 

where Y 
,(0) 

M 

Put 6 - 6 Q = 6 ' = ̂  y t and substitute i n equation (3.10) to obtain 

P<°>6. P ( 4 ) ,(6) 
P ( 6 ' ) - p ( 0 ) + ± : + 'J- bl + ± 6 

,3 (3.11) 
6Y 18 Y 

6 ' represents the change i n rotor angle corresponding to changes i n 

power i . e . a t t = 0 , 6 ' = 0 

E v a l u a t i n g e q u a t i o n (3.5) to obtain the energy function form 6 ^ to 
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6^, we obtain the energy function, 

p ( l ) 6 , 2 p ( 2 ) 6 , 3 p ( 3 ) 6 , 4 
V = P ( } 6' + .1 + _? + — (3.12) 

a 2 3! 4! 

Equation (3.12) represents a catastrophe cusp equation, see Table 

(3.1). The f i r s t d e rivative of the energy function (3.12) that represents 

the catastrophe manifold (equilibrium surface) of a l l operating points of 

the power system i s given by 

V „ v = P ( ° > + P ( 1 ) 6' + P <2>iZ + ! f (3.13) 
6' a a a 2! 3! 

To put equation (3.12) i n the cusp catastrophe manifold, the second order 

term must be eliminated. 

Let 6' = X - a 

P <2> 
and a = a (3.14) 

p (3) 
a 

Substitute equation (3.14) i n (3.13) to obtain 
2 

p (2) p O) 
V V = (P ( 0 ) + K ) + (P ( 1 ) - — ) X + JL X 3 - 0 
X v a a' a , 2P ( 3 ) 6 

a 

p ( 2 ) 2 

= X 3 + (P ( 1 ) - X + -J— ( P ^ 0 ) + K a) - 0 
p (3) a

 2 p (3) p (3) 
a a a 
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X 3 + a X + b = 0 (3.15) 

where 

p ( 2 ) 2 

a = _ i _ ( P CD -If ) 
p O) 3

 2 p (3) 
a a 

b - _1_ (p a<°> + K „ ) 
p (3) 8 

a 

P (2) P O) a3 

" * 2! 3! 

Equation (3.15) i s exactly the cusp catastrophe manifold (see Appendix B). 

The steady state s t a b i l i t y region i s calculated from equation (3.15) by 

projecting i t down onto the cont r o l space (a,b), where: 

V 2 V = 3 X 2 + a = 0 (3.16) 
A. 

From equation (3.16) and equation (3.15) the state variable X can now 

be eliminated to get the b i f u r c a t i o n set B, 

4 a 3 + 27 b 2 = 0 (3.17) 

Equation (3.17) represents the steady state s t a b i l i t y l i m i t s of the power 

system i n terms of the control parameters a and b as shown i n F i g . 3.3. 
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F i g . 3.3 The b i f u r c a t i o n set of the cusp catastrophe which represents 
the steady state s t a b i l i t y region. 
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3.3.2 Numerical Results 

Consider the one-machine i n f i n i t e - b u s system of F i g . 3.1, given the 

following data 

H = 3 s , V r o = 1. /0.0 pu 

E = 1.71 pu , 6 q = 36.5 pu 

X, = 1.05 pu , X_ = 0.36 pu d t 

Following the procedure i n the previous section, the sol u t i o n of equation 

(3.15) w i l l give the new operating angle f o r any change i n the input power. 

The steady state s t a b i l i t y region i s shown In F i g . 3.3. For any loading 

condition, the lo c a t i o n of the control parameters (a,b) on the b i f u r c a t i o n 

set of F i g . 3.3 w i l l determine the steady state s t a b i l i t y of the system. 

The r e s u l t s obtained i n F i g . 3.3 agree with the power equation (3.4). 

I t should be clear that the change i n the loading condition must be small 

and within the determining region of the Taylor series order used. However, 

a h i g h e r order T a y l o r s e r i e s can be used with a s u i t a b l e h i g h e r 

catastrophe. 

This method can be extended further to Include the speed governor 

e f f e c t . 

3.4 A p p l i c a t i o n to the Transient S t a b i l i t y Problem 

The a p p l i c a t i o n of the catastrophe theory to the steady state 

s t a b i l i t y problem i s f a i r l y straightforward, as shown i n the previous 

section. In the case of transient s t a b i l i t y , the s i t u a t i o n i s d i f f e r e n t 

because there are two switchings ( d i s c o n t i n u i t i e s ) during the transient 
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> 

> 

. 3.4 The energy function stability c r i t e r i a 
a. stable 
b. c r i t i c a l l y stable 
c« unstable 
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period, one at f a u l t occurrence and the other at f a u l t clearance. Before we 

attempt to apply the catastrophe theory we need to f i n d a continuous 

function that represents the system behaviour during the transient period. 

We need also to define the degenerate and non-degenerate c r i t i c a l points i n 

terms of transient s t a b i l i t y . 

Consider again the one-machine i n f i n i t e - b u s system of F i g . 3.1. If a 

f a u l t occurs on one of the l i n e s near the machine bus, the rotor w i l l 

accelerate and gain k i n e t i c energy. I f the f a u l t i s cleared at the c r i t i c a l 

c l e a r i n g time, the k i n e t i c energy generated by the f a u l t w i l l be absorbed by 

the system and the gained energy at the end of the transient period w i l l be 

exactly zero; the system i s considered to be c r i t i c a l l y stable. A t y p i c a l 

energy curve for a f a u l t cleared at d i f f e r e n t c l e a r i n g times i s shown i n 

F i g . 3.4. In terms of catastrophe theory, curve (b) of F i g . 3.4 can be 

considered as the energy equilibrium surface or catastrophe manifold at 

which the k i n e t i c energy equals the p o t e n t i a l energy of the system. A l l 

non-degenerate c r i t i c a l points l i e on the energy equilibrium surface which 

corresponds to c r i t i c a l c l e a r i n g times. The degenerate c r i t i c a l points 

which are defined by the b i f u r c a t i o n set, are the points which correspond to 

the transient s t a b i l i t y l i m i t s of the power system at which any small 

disturbance of the power system w i l l drive the system unstable regardless of 

the c l e a r i n g time. 

In summary, since the energy function during the transient period i s 

continuous and represents the power system behaviour, the 'energy balance 

equation w i l l represent the equilibrium surface that decides the c r i t i c a l 
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c l e a r i n g time and the transient s t a b i l i t y l i m i t s define the degenerate 

c r i t i c a l points. 

3»4.i. Single-Machine Infinite-bus Power System [42] 

Consider the power system of F i g . 3.5 which consists of one machine, 

an i n f i n i t e bus and two transmission l i n e s ab and dc. Representing the 

synchronous machine by a constant voltage source behind a reactance (the 

c l a s s i c a l model [2]), the swing equation representing the system behaviour 

i s given by 

.2, 
M — — = P. - P - P (3.18) , i e a 

d t z 

where P = P s i n 6' Is the e l e c t r i c a l power output, e max 

M = i n e r t i a constant of the machine. 

. > P^ = mechanical input power (constant during t r a n s i e n t ) . 

P^ = acc e l e r a t i n g power. 

6 = rotor angle. 

Consider a three-phase f a u l t on l i n e ab cleared at the c r i t i c a l 

c l e a r i n g t i m e t . The a c c e l e r a t i n g power P w i l l e x h i b i t two ° c a 

d i s c o n t i n u i t i e s , one when the f a u l t occurs and the other when the f a u l t i s 

c l e a r e d . M u l t i p l y equation (3.18) by 6 and integrate with respect to time 

using the po s t - f a u l t network conditions to obtain 

1 M 6 2 = P cos 6 + P, 6 - P cos 6 - P 6 (3.19) 
2 c m c l e m m i m ? 

where 
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6^ = c r i t i c a l c l e a r i n g angle. 

6^ = w£ = speed at c r i t i c a l c l e a r i n g . 

= maximum power of po s t - f a u l t network. 

6^ = unstable equilibrium angle (maximum angle). 

The L.H.S. of equation (3.19) represents the k i n e t i c energy (K.E) 

generated during the fault-on period and the R.H.S. represents the po t e n t i a l 

energy (P.E) of the post - f a u l t network. I f the f a u l t i s cleared at the 

c r i t i c a l c l e a r i n g time, then 

K.E = P.E 

or K.E - P.E = 0 (3.20) 

and f o r s t a b i l i t y 

K.E < P.E (3.21) 

Thus equation (3.19) represents the equilibrium surface for the transient 

s t a b i l i t y or i n terms of catastrophe theory i t represents the catastrophe 

manifold, N, which i s the gradient of the energy i n t e g r a l function V (6^) . 

N = V. V(6 ) = 1 M 6 2 - P cos 6 - P, 6 + P cos 6 + P, 6 = 0 
o c ' _ c m c i c m m i m c 2 

(3.22) 

We define also the s i n g u l a r i t y set, S, as the set of transient s t a b i l i t y 

l i m i t s of the power system as 

V 2 V(6 ) = 0 (3.23) 
o c c 

Using Taylor series expansion to approximate 6 and 6 as a function of time 
c c 

(which has been reported to be a very good approximation for the f i r s t swing 

transient s t a b i l i t y analysis [43]) we get 
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6 = W = Yt and 6 = 6 +1 yt 1 (3.24) 
c c c c < > 2 c 

where Y = acceleration at the instant of f a u l t occurrence 

Y = I [P. - P (t ) ] (3.25) 
M 

Let X = I Y t 2 (3.26) 
2 C 

and K = p 6 + p cos 6 m m m m 

S u b s t i t u t i n g f o r 6^ and 6^ by equations (3.24) and (3.26), replacing the 

cosine term (cos 6^) by i t s expansion, then equation (3.22) becomes 

(6 + X ) 2 (6 + X ) 4 

N = V R V(6 ) = MYX - P [ l - — - + — ° ] - P f 6 + X ) + K = 0 
6 c c m a . 21 4! 1 ° 

(3.27) 
Truncating the cosine expansion to the fourth order we get 

(6 + X ) 2 (6 + X ) 4 

N = MYX - P +—2 P - — P - P , ( 6 + X ) + K = 0 (3.28) 
' ma 2 ! ma ^, m a i o ' 

Since equation (3.28) Is a function of c l e a r i n g time which i s usually small, 

thus the fourth-order truncation would be enough to represent the 

equilibrium surface N. 
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N = - J l i x 4 - J ^ 6 x 3 + [—2-) P X 2 + (MY + 6 P - J± 6 3 - P J X 24 6 ° 4 o ma 6 o i ' 

+ ( J 5 i 6 2 - 6 4 - P - P fi + K) = 0 
2 0 24 0 1 1 1 3 

P P 
Let A = , B = _S. 6 

24 6 ° 

2-6 2 

C = ( °_) P , D = (MY + 6 P - 6 J - P ) 
v y m a oma t o i 4 6 

and E = J U i 6 2 - 6 4 - P - P 6 + K) 
2 o 24 ° 1 1 1 3 

N = -AX4 - BX3 + CX2 + DX + E = 0 (3.29) 

Equation (3.29) is structurally stable and in the form of the 

swallowtail catastrophe (Appendix A) except we need to eliminate the cubic 

term. 

Let X = y - a 

N = -A(y-a) 4 - B(y-a) 3 + C(y-a) 2 + D(y-a) + E = 0 

= -Ay4 + (4A<x - B)y 3 + (C-6Aa2 + 3Ba)y2 

+ (D - 2ca - 3Ba2 + 4Aa3)y - Aa 4 + Bot3 + Cot2 - Dot + E = 0 
I B 

then a = 
4 A 

Substitute for ot and get 
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8 A 2 B 8 .2 
A 

4 A 16 A2 256 A 3 

divide by -A 

4 rC 3 B 2 i 2 rD 1 CB 1 B^ \ 
N = y - I- . Jy - I- Jy 

A 8 .2 A 2 .2 8.3 

Let 

u = 

v = 

2 2 4 
_ E + D * _ - £ _ _ - _1_ 5_ = 0 

1 4 A 2 1 6 A 3 2 5 6 A 4 

- £ + !•-) 
A 8 A 2 

- ( E - I c ! - - ! ^ ) (3.30) 
A 2 . 2 8.3 A A 

2 4 E . D B C B 3 B and w = - — + — 
4 A 2 1 6 A 3 2 5 6 A 4 

then N becomes 

N = y 4 + uy 4 + vy + w = 0 (3.31) 

Equation (3.31) i s the manifold of the swallowtail catastrophe 
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1 5 1 3 1 2 V(y) = ± y + - uy J + ± vy^ + wy (3.32) 

5 3 2 

We need to f i n d the s i n g u l a r i t y set, S, which i s the subset of N that 

consists of a l l the degenerate c r i t i c a l points of V. These are the points 

at which 
V V(y) = M = 0 
y 

and V y
2 V(y) = 0 (3.33) 

V y
2 V(y) = 4y 3 + 2uy + u = 0 (3.34) 

I t i s i n t e r e s t i n g to note that the control variable (U) i n t h i s case i s 

constant and negative. 

3 B 2 

We have u = - (— + ) 
A 8.2 A 

P P i. » 1 1 1 3 T> ma c where A = , B = o 
24 6 ° 

and C = P (-ma 

2 - 6 2 

thus, 

u = - (12 - 66 2 + 66 2 ) = - 12 o o 

This r e s u l t reduces the b i f u r c a t i o n manifold from three dimensions to 

only two dimensions i n u and W. We can plot the b i f u r c a t i o n set of the 



F i g . 3.6 The transient s t a b i l i t y l i m i t s given by the swallowtail 
catastrophe for the power system of F i g . 3 .5 
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power system using equations (3.31) and (3.34) (see Appendix A for d e t a i l s ) . 

The boundaries of the b i f u r c a t i o n set of F i g . 3.6 represent the degenerate 

transient s t a b i l i t y l i m i t s of the power system. 

I t should be noted that for a generator the control variables u and W 

are p o s i t i v e and for a motor they are negative. 

The region of transient s t a b i l i t y of the power system has to be 

i n s i d e the p o s i t i v e side of F i g . 3.6 and the following conditions have to be 

met: 

1 2 
Since X = _ Yt > 0 

2 c 

where t i s the c r i t i c a l c l e a r i n g time 

and X = y - a 

then y - a > 0 (3.35) 

or y > a (3.36) 

I B c 
we have a = = o 

4 A 

hence, y > 6̂  (3.37) 

For the s t a b i l i t y region bounded by equation (3.31), (3.34) and the 

c o n s t r a i n t s y > 6 Q equation (3.31) has four c r i t i c a l points, two maxima and 

two minima. The c r i t i c a l c l e a r i n g time i s represented by the f i r s t p o s i t i v e 

c r i t i c a l point of y > 6 q. 
3.4.2 Results 

The transient s t a b i l i t y region of the system shown i n F i g . 3.5 i s 

defined by equations (3.31), (3.34) and (3.37). Changing the f a u l t 
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F i g . 3.8 The transient s t a b i l i t y region i n terms of s t a b i l i t y l i m i t s 
and c r i t i c a l c l e a r i n g times. 



51 

l o c a t i o n , and f o r each f a u l t the loading condition (P^) i s changed from .1 

to 1.2 pu. The shaded areas of Figure 3.7 represent the region of transient 

s t a b i l i t y for a l l possible f a u l t locations and loading conditions. A more 

comprehensive view of the s t a b i l i t y region can be v i s u a l i z e d by p l o t t i n g the 

region i n three dimensions where y i s the s i n g u l a r i t y (y > a > 0) 

representing the c r i t i c a l c l e a r i n g time 

T c - /
 2 ( y " C ) (3.38) 

Y 

Figure 3.8 shows the transient s t a b i l i t y region i n three dimensions 

v. W and t . The t h i r d dimension t i s c a l c u l a t e d from the catastrophe ' c c r 

manifold and p l o t t e d over the shaded arc of Figure 3.7. This q u a l i t a t i v e 

view of the s t a b i l i t y region cannot be achieved by other d i r e c t methods of 

transient s t a b i l i t y , because these other methods use state variables to 

define the region of s t a b i l i t y which depends on operating conditions, f a u l t 

locations and time. But by using the catastrophe theory, the s t a b i l i t y 

region i s defined by two c o n t r o l v a r i a b l e s , u and W, only and includes a l l 

possible f a u l t locations and loading conditions. The control variables u 

and W can be written as a function of operating conditions and f a u l t 

l o c a t i o n s by using equations (3.30) and s u b s t i t u t i n g for A, B, C, D and E to 

get 

u = 2L (My + P j + 8(6 3 - 6 ) (3-39) 
p 
rma 

w = 24(6 2 + til 6 + * L 6 - JL + 1) o p o p o p 

ma ma ma 

In f a c t the r e g i o n of s t a b i l i t y defined by u, W and T £ i s fixed and 
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the machine i s stable when i t i s operating Inside the region. These r e s u l t s 

are I d e n t i c a l to that of the time s o l u t i o n . 

3.4.3 Equivalent Two Machine Power System [44] 

Consider the power system of F i g . 3.9 which consists of three power 

plants A, B and C. A three-phase f a u l t i s applied on l i n e 5-6 near bus 6. 

I t i s found that machines B and C are swinging coherently against machine A. 

In t h i s case B and C can be combined together to form a large machine B+C, 

and the system can be reduced to a two-machine power system. The swing 

equation of machine A against the equivalent machine (B+C) can be written i n 

the form 

,2c 
M - — = P - (P + P s i n (6 - a)) (3.40) 

7 I c m 

d t Z 

The same procedure of the previous section can be applied to 

c a l c u l a t e the equilibrium surface from the energy balance equation [44]. 

S i m i l a r transient s t a b i l i t y regions of F i g s . 3.7 and 3.8 are also obtained 

i n t h i s case. 

The c r i t i c a l c l e a r i n g time calculated from the catastrophe manifold 

equation for t h i s case i s .348 seconds and that calculated by time solution 

i s .35 seconds. The method shows very close agreement with the numerical 

i n t e g r a t i o n method. When either the f a u l t l o c a t i o n or the loading condi

tions are changed, the machines may respond to the disturbance i n d i f f e r e n t 

coherency. This dictates d i f f e r e n t equivalence c a l c u l a t i o n s for d i f f e r e n t 

f a u l t locations and loading conditions. Therefore, a faster method 
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i s needed to assess the response of the system to d i f f e r e n t contingencies. 

This problem w i l l be addressed i n the next chapter. 

3 . 5 Summary 

The preliminary applications of catastrophe theory to the transient 

s t a b i l i t y problems of simple power systems have shown three a t t r a c t i v e 

advantages: 

1. The transient s t a b i l i t y region i s well defined i n terms of the control 

v a r i a b l e s (system parameters) regardless of the state v a r i a b l e s . The 

s t a b i l i t y regions are bounded by the s t a b i l i t y l i m i t s which provide very 

good insi g h t to the security boundaries. Adequate s t a b i l i t y controls 

can be also designed and applied according to the transient s t a b i l i t y 

l i m i t s . 

2. Extremely few computations are needed to define the s t a b i l i t y region, 

each transient case can be e a s i l y calculated i n terms of the system 

parameters without r e p e t i t i v e i t e r a t i o n s . 

3 . The method i s a serious candidate to be used for on-line assessment of 

transient s t a b i l i t y , s e c u r i t y analysis and for the a p p l i c a t i o n of 

transient s t a b i l i t y controls such as dynamic breaking, fast valving, 

etc. 
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CHAPTER 4 

TRANSIENT STABILITY REGIONS OF MULTIMACHINE POWER SYSTEMS 

4.1 Introduction 

The transient s t a b i l i t y problem of multi-machine power systems i s 

much more complicated than the simple power systems analyzed i n Chapter 3. 

The analysis i n t h i s case involves every machine i n the power system 

without equivalencing any machine. The swing equation of each machine 

depends upon the movements of the other machines coupled to i t . 

There have been some major d i f f i c u l t i e s associated with the 

a p p l i c a t i o n of d i r e c t methods to the transient s t a b i l i t y problem of 

multi-machine power systems. Although noticeable progress has been reported 

i n dealing with these d i f f i c u l t i e s [45-48], the challenge of fast on-line 

transient s t a b i l i t y assessment i s s t i l l not overcome. These challenging 

problems are [49]: 

i . Power system model: applications of d i r e c t methods are l i m i t e d to the 

c l a s s i c a l model of power systems. In t h i s model, generators are 

represented by constant voltage magnitude behind transient reactance, 

loads are represented by constant impedances, transfer conductances 

are usually neglected or approximated, although they are s i g n i f i c a n t 

network elements [50]. 

i i . Although f a s t e xciters respond within the f i r s t swing period (.1 

second), none of the e x i s t i n g d i r e c t methods consider e x c i t a t i o n 

e f f e c t s . 
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i i i . In p r a c t i c e , power engineers are usually not interested i n the 

c r i t i c a l c l e a r i n g time (which i s the main goal of d i r e c t methods) but 

rather i n the amount of power that can be delivered without r i s k i n g 

system security for s p e c i f i e d c l e a r i n g times. 

i v . Network reduction and c a l c u l a t i o n s of stable and unstable equilibrium 

points for large power systems are time consuming. For unstable 

equilibrium points, e x i s t i n g algorithms cannot always be r e l i e d upon 

to converge to the r i g h t s o l u t i o n . 

Two methods w i l l be introduced i n t h i s chapter to provide an energy 

function suitable for the a p p l i c a t i o n of catastrophe theory, namely the 

c r i t i c a l machines dynamic equivalent method and a method using Taylor series 

expansion of the accelerating power during the transient period. Both 

methods need the i d e n t i f i c a t i o n of the c r i t i c a l machines for each 

disturbance considerd. 

The transient s t a b i l i t y regions are then defined i n terms of the 

system parameters which enable power engineers to define the security 

regions and apply preventative c o n t r o l methods. 

The d i f f i c u l t i e s mentioned above w i l l be dealt with i n the proposed 

methods. Transfer conductance w i l l be f u l l y Included; damping and 

e x c i t a t i o n response w i l l be also included and discussed i n Chapter 5. 

4.2 Dynamic Equivalent of the C r i t i c a l Machines 

The equation of motion of machine i i n a multi-machinfe power system, 

using c l a s s i c a l model representation i s given by 
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mi - P e i (4.1) 

n 
where P e i (4.2) 

= e l e c t r i c a l power output of machines 

Pmi = mechanical power input 

= i n t e r t i a constant 

6 = rotor angle 

= speed deviation 

= i n t e r n a l voltage 

g^j = transfer conductance 

b . = transfer susceptance 

When a f a u l t occurs i n a large power system only a few machines 

ttct.iv?.i-.y reBpon.se to the f a u l t and tend to lose synchronism. These machines 

are known as the c r i t i c a l machines [45,47]. Therefore, i t i s enough to 

study the behaviour of the c r i t i c a l machines with respect to the rest of the 

power system i n order to evaluate the transient s t a b i l i t y of the system for 

a s p e c i f i c f a u l t . 

Consider that machine k i s the c r i t i c a l machine(s) for a s p e c i f i c 

disturbance. This machine i s considered to be o s c i l l a t i n g against the rest 

of the power system which i s not s i g n i f i c a n t l y affected by the disturbance 

and w i l l be considered moving as one machine 

n 
Let M, 0 (4-3) 

http://reBpon.se
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1 n  

U M Q i * k 1 1 

Mg and 6 Q a r e , r e s p e c t i v e l y , the i n e r t i a constant and the angle of the 

center of angle of the power system excluding the c r i t i c a l machine. 

Let e k = 6 k - 6 0 

- 6, - i _ I ( M l ) 
K M Q i * k 1 1 

also 

k * M Q i*k 1 

9 . - 6 . - 1 - S (M 6 ) (4.5) 
k * M Q i * k 1 1 

We substitute equation (4.1) into (4.5) to obtain the swing equation of 

machine k with respect to the center of angle (COA). 

Pmk " Pek 1 n \~ JV^-r- * ( P m i - P e i ) <4'6> 
\ M o i , t k 

V k " Pmk ' Pek " ^ X <Pmi " P e i > <4'7> 
M Q i* k 

S u b s t i t u t i n g f o r P ^ and P g^ from equation (4.2) and separating 9^ 

from the rest of the system we get the swing equation of the c r i t i c a l 

machine k against the rest of the power system. This i s explained i n the 

following steps: > 
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F i r s t we l e t <= E± g ±^ 

and C^-^y^ 
Equation (4.7) becomes 

"kV Pmk " Dkk - X < D i j C O S °kj + Scj S i n V 

M, n n 
- JL Z (P - Z (D. cos 0 + C, , s i n 9 ) j 
M Q i * k m i J - l l j i j l j l j 

Separate the term B^ k from the l a s t term and obtain 

Vk - Pmk " Dkk " ^ X ^ Pmi " j k < D i j C O S 0 i j + C i j S i n G i j
) ) 

K n 
+ — ^ (D cos 9 + C s i n 9 ) 

M Q i*k ± k i k l k l k 

- z^ ( D k j cos e k j + s i n e k j ) 

Let P = P - D,, - ^ Z (P . - S (D cos 9 + C s i n 9 )) (4.8) k mk kk M i # k mi i j I j l j i j 

then 

W = P k ~ ^ b S l n °k " 3 C O S \ ] ( 4 * 9 ) 

where 

KL n n 
a = _ S (D„ cos 9 + C., s i n 9 ) - Z (C s i n 9 - D cos 9 ) 

M n i*k l k 1 ± k 1 j*k J J 
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n M, n 
b = £ (D • s i n 9 + C cos 0 ) - _J± Z (D., s i n 9 - C,. cos 9 ) 

j*k k 3 2 M Q i * k l f c i i k i 

Equation ( 4 . 9 ) can be written i n a more convenient form 

\ \ - pk - T k s i n <\ - V ( 4 a o ) 

where 

- 1 a 

a = tan _ 
k b 

. 2 _,_ v 2 x l / 2 and T, = (a + b ) k 

Equation (4 .10) i s a simple form representing the motion of the 

c r i t i c a l machine for a c e r t a i n disturbance. Since we assumed that the rest 

of the system i s not responding to the disturbance, i t i s reasonable to use 

the pre-disturbance angles © q to ca l c u l a t e the parameters P^, and c t ^ . 

The stable and unstable equilibrium points of equation (4 .10) can be 

e a s i l y computed by solving equation (4 .11) for 9^ 

P k " T k S i n ( Q k " V = ° ( 4 - 1 D 

and the unstable equilibrium point (UEP) Is 

9 U = n - ef (4 .12) 
k k 

We note here that we have two sets of the parameters P^, T r and a^; one set 

for the fault-on network and another for the post-fault network. 
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4.2.1 The Transient S t a b i l i t y Region 

During the transient period, an exchange of energy takes place 

between the rotor of the c r i t i c a l machine and the p o s t - f a u l t network. The 

k i n e t i c energy generated by the accelerating power during the fault-on 

period must be f u l l y absorbed by the p o s t - f a u l t network i n order to maintain 

s t a b i l i t y . 
• C O 

M u l t i p l y i n g e q u a t i o n (4.10) by and integra t i n g between 0^ and 

with respect to time for the fault-on network parameters we obtain the 

k i n e t i c energy generated by the f a u l t 

• 2 

k - e = \ \Ql = p k ( e k • e k ) - T k [ c o s ( e k - 4) - c o s ( e k • ° k ) ] 

(4.13) 
f f f C where P^, T^ and oĉ  are the system parameters for fault-on network and 0^ i s 

the c l e a r i n g angle. 

The p o t e n t i a l energy of the p o s t - f a u l t network i s derived i n the same 

manner by integra t i n g equation (4.10) between and 0^ using the p o s t - f a u l t 

network parameters, we obtain 

• 2 

- I M ^ = ?l (9j - e£) - TP[cos(e^ - o^P) - cos(Q^ - of)] (4.14) 

Note that the speed deviation at the unstable equilibrium point i s zero 
(e£ = o ) . 
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Equation ( 4 . 1 4 ) represents the energy function of the c r i t i c a l machine 

during the transient period. The L.H.S. represents the f a u l t k i n e t i c energy 

and the R.H.S. represents the p o t e n t i a l energy for the post - f a u l t network. 

The energy balance equation for c r i t i c a l c l e a r i n g becomes: 

• 2 

I M - pP e£ - T£ cos (Qp - o£) + k U = 0 . . ( 4 . 1 5 ) 

where k U = P £ 9̂  + T£ cos (GJJ - c£) 
r 

again we represent 9̂  by Taylor ser i e s expansion 

and 

ek = V c 

where Y, = — [ P , - P^Ct-. ] k w
 1 k ek v OH 

" 1 . 2 

L e t X = ~ V c 
By r e p l a c i n g cos (9^ - ot^) i n equation (4.15) with the cosine ser i e s 

expansion up to the fourth order, we obtain 

M Y,x - pP(9° + X) - T J[1 - 1 L_+ 1 L_ + k U = 0 

2 ! 4! 

Let P - 9° - aP 

then we get the catastrophe manifold equation 
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k + i p x 3 + i ( i - 5l) x
2 + (MY, - pP) 2 + Tl B - i f33 

24 6 2 2 k k k 6 
)x 

+ ( k u - T P - p P e ° + ! k p 2 - ^ p 4 ) = 0 (4.16) 
2 24 

24 
M u l t i p l y equation (4.16) by - to give: 

T P 
f 

2 T 
X 4 - 4BX 3 - 12(1 - *L)X2 - I 4 (MY, - pP + B - A p 3 )X 

2 T p k k k 6 
k 

~ ( k U " T k - P k 9 k + ~ P2 " ~ - 0 

T p 2 24 
Ak 

(4.17) 

We need to eliminate the t h i r d order term i n order to have equation (4.17) 

i n the swallowtail catastrophe manifold form 

Let A 3 = - 4 B 

A 2 = - 12(1 
2 

A x = - 2± (MYk - P j + TP B - ± B 3 ) 

4 
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A Q - - 1* ( k U - - 0P +
 Tl B 2 -

 Tl B 4) 
T P 2 24 
Xk 

and x = y - u (4.18) 

A
3 

u = _ (4.19) 
4 

We obtain the swallowtail catastrophe manifold 

4 2 

y +uy + u y + w = 0 (4.20) 

3 2 
where u = (A„ - — A ) 

8 
» . (A, - ^ I t f L ) 

1 2 8 
2 

/ A A 1 A 3 . A 2 A 3 3 . 4. w = (A - + - A- ) 
U 4 16 256 

The b i f u r c a t i o n set B can then be defined by 

4y 3 + 2uy + u = 0 ... (4.21) 

The transient s t a b i l i t y region i s formed i n the shape of the 

swallowtail b i f u r c a t i o n set (see Appendix A) bounded by the transient 

s t a b i l i t y l i m i t s . The region i s defined i n terms of the system parameters 

which can be e a s i l y c a l c u l a t e d . 

In summary, the procedure of c a l c u l a t i n g the transient s t a b i l i t y 

regions for multi-machine power systems using the critical-machines 

dynamic-equivalent method i s outlined i n the following steps: 
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1. Define the c r i t i c a l machine(s) for the f a u l t considered. 

2. Calculate the parameters Pfc, T f c and to form the dynamic equivalent of 

the c r i t i c a l machine(s). 

3. Calculate the catastrophe manifold parameters u, u and w from which the 

c r i t i c a l c l e a r i n g time and the degree of s t a b i l i t y are determined. 

I t i s important to note that the transient s t a b i l i t y region using 

t h i s method is the same shape regardless of f a u l t l o c a t i o n and loading 

condition. This makes the method a good candidate for on-line assessment of 

the transient s t a b i l i t y and the degree of security of power systems. 

4.3 Taylor Expansion of the Accelerating Power 

The chaotic nature of the swing equations of multi-machine power 

systems i s a major d i f f i c u l t y i n solving the transient problem and i n t r y i n g 

to include more de t a i l e d system models In d i r e c t methods. 

Rec a l l i n g the swing equation of machine i i n an n-machine power 

system from section (4.2): 

V i - Pmi < D i j C O S 6 i j + C i j S l n 6 i j > 

= P f l i ( i = 1, ... n) (4.22) 

where P ^ i s the accelerating power of machine i . 

In the conventional time s o l u t i o n , equations (4.22) are solved by 

n u m e r i c a l i n t e g r a t i o n for the transient period ( t n -*• t ), from the instant 
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of f a u l t occurrence to the unstable equilibrium point. I t i s already known 

that each po s t - f a u l t network has a fi x e d energy-absorbing capacity, c a l l e d 

the c r i t i c a l energy [51]. The c r i t i c a l energy can be calculated o f f - l i n e 

for any post-fault condition. This energy i s the numerical i n t e g r a t i o n of 

the p o s t - f a u l t accelerating power from the stable equilibrium point to the 

unstable equilibrium point. 

We suggest using Taylor series expansion to f i n d the energy function 

as a function of time by expanding the accelerating power equation around 

the instant of f a u l t occurrence at t=0. This provides the advantage of 

elimin a t i n g the cal c u l a t i o n s of the stabel and unstable equilibrium points 

on-line and s i m p l i f i e s the procedure of defining the c r i t i c a l machines. 

The energy function of machine i i n a multi-mchine power system 

during the transient period i s given by: 

t t t 
c f c u 

V i = f P a l ( t ) d t + f P a i ( t ) d t + ' P a i ( t ) d t ( 4 ' 2 3 ) 

where P ^ i s fault-on a c c e l e r a t i n g power. 

P f ( t ) i s po s t - f a u l t accelerating power, a i 

t i s the c l e a r i n g time. 

t ,t i s the times at SEP and UEP. 
s u 

The f i r s t two terms of the R.H.S. of equation (4.23) are the k i n e t i c 

energy generated during fault-on, and the t h i r d term i s the c r i t i c a l energy 

of the post - f a u l t network. The portion of the k i n e t i c energy needed to move 
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the rotor from 6r t to 6 of the po s t - f a u l t network does not contribute to the 0 s r 

i n s t a b i l i t y [51]. Therefore, i t should be subtracted from the energy 

f u n c t i o n i n order to write the energy balance equation; t h i s portion i s 

t 
s 

/ P n J ( t ) dt (4.24) 

0 a l 

Subtracting (4.24) from (4.23), and assuming that machine i Is the c r i t i c a l 

machine and the f a u l t i s cleared at c r i t i c a l c l e a r i n g , we obtain the energy 

balance equation, 
t c t u 

V. = / (pf ( t ) - p j ( t ) ) d t + / PJJ(t) dt = 0 
1 Q a a t a 

8 (4.25) 

Eq u a t i o n (4.25) i s evaluated by replacing P (t) and P P ( t ) with t h e i r 
3. 3. 

Taylor series expressions, i n the form: 

P (t) = P ( 0 )
 + i - P ( 1 ) t + i - P ( 2 > t 2

 + (4.26) a a u a 2 , a 

where P ( m ) = 1 
a d t m 

(4.27) 
t=0 

and the accelerating power of machine i 

n 
P - P - E (D . cos 6 + C.. s i n 6 ) a i mi i j i j i j i j 

We note that at t=0 

= 0 
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and 

Therefore 

6^ = 6^ ( I n i t i a l operating condition) 

P , ( 0 ) = P - P . (t = 0) a i mi e i 

= P mi 
n 

j = \ < D i j c ° s 6 i j + c i j s i n (4.28) 

(1) _ d 
a i dt 3 1 

= Z (D.. s i n 5 ° - C.. cos 6.1)6.. 
t - 0 J-l i j i j i J i J i j 

Since i j 
= 0 

t-0 

Therefore P f 1 * = 0 a i 
(4.29) 

*£2i - -
a l d t a i 

n 

t=0 
^ ( D ± j cos 6 ± ° + C ± j s i n 6 ^ ) 6 ^ 

+ £ ( D i j s i n 6±i 

Since 6 = 0 

n 
P ! 2 ) = S (D s i n 6 ±° a i J-l j 

C i j C O S 6 i j ) 6 i j 

n c 0 c 0 
C i j C ° S 6 i j 6 i j (4.30) 

where 6 . ^ = p ( i n i t i a l a cceleration) I j a l I 

The derivations of the rest of the Taylor s e r i e s c o e f f i c i e n t s are 

given i n Appendix C. I t i s found that a l l odd order c o e f f i c i e n t s are zeros; 
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t h i s reduces the number of Taylor series c o e f f i c i e n t s to one h a l f . 

Therefore, 

Pal = P a 0 ) + L p i 2 > < 2 + M 4 ) ' 4 + - M - 'D d i <* 2! 4! 

The accelerating power c o e f f i c i e n t s have to be calculated for the 

system during the f a u l t and for the post f a u l t condition. 

Usually i n large power systems the c r i t i c a l c l e a r i n g time i s very 

small ( t y p i c a l l y < .5 second). For t h i s period we w i l l use up to the s i x t h 

order of the acc e l e r a t i n g power expansion for both fault-on and post-fault 

conditions. Thus equation (4.25) becomes; 

C c £ D P ( 2 ) f - P ( 2 ) P P ( 4 ) f - P ( 4 ) P 

V . - J ( < P l 0 ) - P < 0 ) ) + 0 ^ _ ) t 2 • £ t 4 

1 0 •
 a 2! 4! 

p ( 6 ) f _ p ( 6 ) P 

+ (_f 1 ) t 6 ) d t + / P P ( t ) dt - 0 (4.32) 
6! t a 

s 

The l a s t term i s the c r i t i c a l energy of each s p e c i f i c post-fault condition. 

The c r i t i c a l energy i s evaluated o f f - l i n e for each post-fault condition by 
the trapezoidal rule as follows 

t 
v c r - J U P j ( t ) dt 

s 

V (1+1) = V (k) +1 (P (t)(k+l) - P A ( t ) ( k ) ) - (t(k+l) - t ( k ) ) 
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4.3.1 Transient Stability Regions Using Taylor Expansion 

The Taylor series expansion of the accelerating power provides 

flexible choice over the seven elementary catastrophes of Table (3.1). The 

choice of a specific catastrophe type depends on the highest order of the 

Taylor series that w i l l give the best required results. It is needless to 

add that the lower order catastrophes are easier to visualize. 

We start with the resultant Taylor series expansion of equation 

(4.32). 

P
( 2 > p ( 4> . 

p (t) = p (o) + — t z + - i _ t* + ... 
a a 2! 4! 

The rotor angle can also be represented by the form 
6 = 6 + I Y t 2 

I Oi 2
 T i 

which provides good agreement with the time solution for t < .5 second 

[52]. 
* c 1 2 

We let x = i " °0i = - Y i fc 

2 
substitute for t in the accelerating power series 

p(2) p(4) 
P (x) = P ( 0 ) + _!_ X + _ ! _ X 2 + ... (4.33) 

a a Y 2 
Y i 6y±

z 

The energy balance equation can be evaluated with respect to the 

angle advances x 

x << c 
V = J P (x)dx + V =0 i Q a 
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P ( 3 ) p ( 4 ) 3 

= P ( 0 ) x + — x 2 + _ i _ J L + . . . + V = 0 ( 4 . 3 4 ) 
3 2Y 2 C r 

18 

The choice of the determinant order decides the catastrophe manifold 

type as follows 

X 2 = f o l d 
V 3 

X = cusp 
4 = swallowtail 

X 

5 = b u t t e r f l y 

A 

Here we consider the cusp catastrophe manifold given i n Appendix B. 

The cusp catastrophe manifold from equation ( 4 . 2 4 ) i s given by 
p<4> P < 2 > 

v = a x3 + a x2 + p ( 0 ) x + V = 0 

1 8 Y 2 " i 
3 » T T P « ' 2 1 8 Y 2 P < 0 ) 1 8 r 2 

= xJ + — _ — x z + a X + IV = 0 ( 4 . 3 5 ) 

P ( 4 > p ( A ) P ( 4 ) ^ 
a a a 

= X 3 + ^ X 2 + A^X + AQ = 0 ( 4 . 3 6 ) 

In order to put equation ( 4 . 3 6 ) i n the standard cusp manifold we need to 
2 

eliminate the second order term (X ). 

We l e t X = y - B 

A 
P = — 

We get 
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3 A2 2 2 A 1 A 2 y J + (A - — — ) y + (A + — — - -i_£) = 0 
1 3 27 3 

(4.37) 

or 

y + u y + u = 0 (4.38) 

where 

u 

u 

Equation (4.38) i s i n the standard form of the cusp catastrophe. 

The b i f u r c a t i o n set i s defined by equation (4.38) and the set of 

degenerate c r i t i c a l points. 

The b i f u r c a t i o n set given i n Appendix B consists of a l l stable points 

i n terms of the system parameters u and u. 

4.4 I d e n t i f i c a t i o n of the C r i t i c a l Machines 

Both methods presented i n Sections (4.2) and (4.3) r e l y on the 

a c c u r a t e i d e n t i f i c a t i o n of the c r i t i c a l machines f o r a s p e c i f i e d 

disturbance. 

Correct i d e n t i f i c a t i o n has been achieved by c a l c u l a t i n g the unstable 

e q u i l i b r i u m points for a l l machines i n the power systems; the machine which 

3y 2 + u - 0 (4.29) 
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has the highest unstable equilibrium point i s i d e n t i f i e d as the c r i t i c a l 

machine [47], Although this method provides correct i d e n t i f i c a t i o n , i t s 

main drawback i s the c a l c u l a t i o n of the UEP's, which i s time consuming, and 

i n some cases, wrong answers may be obtained [48]. 

Another method i s to use the ac c e l e r a t i o n at the instant of f a u l t 

occurrence as a f i r s t i d e n t i f i c a t i o n and then c a l c u l a t e the c r i t i c a l 

c l e a r i n g time for each machine. The machine with the lowest c r i t i c a l 

c l e a r i n g time i s the c r i t i c a l machine [45]. 

For small and medium s i z e power systems, the c a l c u l a t i o n of UEP's i s 

not d i f f i c u l t and usually the correct answer i s achieved i n a reasonable 

time, but for large power systems the r i g h t answer i s not guaranteed. 

In t h i s t h e s i s , the c r i t i c a l machines are i d e n t i f i e d as follows: 

I. Calculate the i n i t i a l a c c e l e r a t i o n for each machine as follows 

\ " ^ t Pmi " P e i ( t > 
M i 

where Pg^Ctg^ *"s t ^ i e e ^ e c t r i c a i power output d u r i n g f a u l t at the 

i n s t a n t of f a u l t occurrence. 

i i . The machines which have high and p o s i t i v e i n i t i a l accelerations are 

i n j e c t i n g k i n e t i c energy to the system; therefore, they a l l contribute 

to the system I n s t a b i l i t y . These machines are combined to form a 

c r i t i c a l group. 

i i i . The c r i t i c a l energies of the c r i t i c a l machines are also added together 

to form the global energy-absorbing capacity of the c r i t i c a l group. 
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In most cases c r i t i c a l machines can be I d e n t i f i e d e a s i l y by the f i r s t 

a c c e l e r a t i o n , e s p e c i a l l y when the f a u l t i s close to one of the generator 

terminals. The procedure of combining a group of c r i t i c a l machines has to 

be c a r r i e d out only when a f a u l t occurs at non-generator buses or far from 

generator buses. 

4.5 Numerical Examples 

In t h i s section two examples are presented to demonstrate the 

v a l i d i t y and advantages of the a p p l i c a t i o n of catastrophe theory to 

transient s t a b i l i t y assessment of power B y s t e m s . Transient s t a b i l i t y 

regions i n terms of the system parameters are given for each example. Three 

and seven machine power systems are used, three-phase short c i r c u i t s are 

considered at d i f f e r e n t locations and a comparison between the presented 

methods and the step-by-step time s o l u t i o n i s given for each example. 

Each s h o r t - c i r c u i t case considered i s evaluated by the following 

steps. 

i . I d e n tify the c r i t i c a l machine or machines as explained i n Section 4.4. 

i i . Dynamic equivalent method; c a l c u l a t e the dynamic equivalent parameters 

of equation (4.10) for the c r i t i c a l machine(s) (as given i n Section 

4.2). The b i f u r c a t i o n set parameters and c r i t i c a l c l e a r i n g time are 

then calc u l a t e d . 

i i i . Taylor series method; c a l c u l a t e the Taylor series c o e f f i c i e n t s of the 

accel e r a t i n g power for the c r i t i c a l machine (as given i n Section 4.3). 

The b i f u r c a t i o n set parameters and the c r i t i c a l c l e a r i n g time are then 

calculated and the case i s located on the transient s t a b i l i t y region. 
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4.5.1 The Three-Machine System 

This system with nine buses, three machines and three loads, i s 

widely referred to i n the l i t e r a t u r e as the Western Systems Coordinating 

C o u n c i l (WSCC) test system. 

A s i n g l e - l i n e diagram of the system i s shown i n F i g . 4.1. 

Transmission l i n e parameters and loads are given i n per unit on a 100-MVA 

base i n Table 4.1. Generator data and i n i t i a l operating conditions are 

given i n Table 4.2. 

Bus No. 
Admittance 
G 

(pu) 
B 

Generators 
1 1-4 0 - 8.446 
2 2-7 0 - 5.485 
3 3-9 0 - 4.168 

Transmission 4-5 1.365 -11.604 
... • Lines 4-6 1.942 -10.511 

5-7 1.188 - 5.975 
6-9 1.282 - 5.588 
7-8 1.617 -13.698 
8-9 1.155 - 9.784 

Shunt Admittances 
Load A 5-0 1.261 - 0.263 
Load B 6-0 0.878 - 0.035 
Loda C 8-0 0.969 - 0.160 

4-0 0.167 
7-0 0.227 
9-0 0.283 

Table 4.1 Network parameters of the three-machine system 
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Generator data I n i t i a l Conditions 

Gen. No. H P E 
d mo 

(MW/MVA) (pu) (pu) (pu) (degree) 

1 23.64 .0608 2.269 1.096 6.95 
2 6.40 .1198 1.6 1.102 13.49 
3 3.01 .1813 1.0 1.024 8.21 

Table 4.2 Generator data and i n i t i a l conditions of the three-machine system 

Three-phase short c i r c u i t s are considered at d i f f e r e n t l o c a t i o n s . The 

transient s t a b i l i t y i s evaluated for each f a u l t by the step-by-step time 

s o l u t i o n , dynamic equivalent and Taylor series methods. A comparison 

between the three methods i s given i n Table 4.3 i n terms of the c r i t i c a l 

c l e a r i n g time. Both methods show very good agreement with the time 

s o l u t i o n . 

F i g . 4.2 shows the accuracy of the Taylor series method using terms up 

to the second order term for the angle during the fault-on period. F i g . 

4.3 shows a comparison between the Taylor series approximation of the 

a c c e l e r a t i n g power and the time s o l u t i o n for d i f f e r e n t f a u l t locations 

during the transient period. 

The transient s t a b i l i t y region using the dynamic equivalent method i s 

shown i n F i g . 4.4. A l l stable cases are shown inside the region i n terms of 

the system parameters. F i g . 4.5 show the transient s t a b i l i t y region using 

the Taylor series method. Stable points are marked inside the region. 
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F i g . 4.2 Accuracy of Taylor s e r i e s during the fault-on period 
using only the second order term. 

time s o l u t i o n 
Taylor s e r i e s method 

C.C.T. c r i t i c a l c l e a r i n g time 
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time i n seconds 
- A f f e r e n t f a u l t locations F i e . 4 .3 The ac c e l e r a t i n g power for d i f f e r e n t ra 

time s o l u t i o n 
Taylor se r i e s 



Fault at C r i t i c a l Clearing Time [second) 

Bus # Time Solution 

(step-by-step) 

Dynamic 

equivalent method 

Taylor Series 

method 

4 .29-.30 .27 .29 

5 .22-.23 .20 .22 

6 .51-.|2 .46 .49 

7 .11-.12 .1 .11 

8 .28-.29 .26 .28 

9 .40-.41 .38 .41 

Table 4.3 C r i t i c a l c l e a r i n g time by the time so l u t i o n and the 
proposed methods for the 3-machine power system. 
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F i g . 4.4 The transient s t a b i l i t y region of the 3-machine power 
system using the dynamic equivalent method. Stable cases 
are marked (x) ins i d e the region. 



F i g . 4.5 The transient s t a b i l i t y region of the 3-machine 
system using Taylor s e r i e s method with stable cases 
marked (x) inside the region. 
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4.5.2 CIGRE 7-machine Test System 

The CIGRE 225 KV test system i s shown i n F i g . 4.6. I t has 10 buses 

and 13 l i n e s . Buses 1 through 7 are generating buses while loads are 

located at buses 2, 4, 6, 7, 8, 9 and 10. Generator, load and transmission 

l i n e data are given i n Table 4.4. The base values used are 225 KV and 100 

MVA. 

Three-phase f a u l t s are applied and the transient s t a b i l i t y i s 

evaluated for each f a u l t . The c r i t i c a l c l e a r i n g time i s calculated for each 

case using the three methods. Table 4.5 gives a comparison between the time 

s o l u t i o n and the two methods presented i n t h i s chapter i n terms of the 

c r i t i c a l c l e a r i n g time. 

The transient s t a b l i t y regions are shown i n Figures 4.7 and 4.8. 

Both methods show very good agreement with the time s o l u t i o n plus well 

defined transient s t a b i l i t y regions i n terms of the system parameters v a l i d 

for a l l loading conditions and f a u l t l o c a t i o n s . 

4.6 Discussion of Results 

The r e s u l t s of the two examples presented i n the previous section 

have shown the f e a s i b i l i t y of c a t a s t r o p h e theory a p p l i c a t i o n to 

multi-machine power systems. The accuracy of the methods i s very good when 

compared with the step-by-step time s o l u t i o n which i s used as the benchmark 

for accuracy. The methods proposed are fast and give the c r i t i c a l c l e a r i n g 

time through a single computation instead of using the time so l u t i o n 

method r e p e t i t i v e l y and human i n t e r p r e t a t i o n to evaluate a s i m i l a r case. 
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GENERATORS 

Bus p 
base X M pm E 6° 

(MVA) (%)( ) (MW s /rad) (MW) (p.u) (°) 

1 100 7.4 6.02 217 1.106 7.9 
2 100 11.8 4.11 120 1.156 -0.2 
3 100 6.2 7.59 256 1.098 6.5 
4 100 4.9 9.54 300 1.110 3.9 
5 100 7.4 6.02 230 1.118 7.0 
6 100 7.1 6.77 160 1.039 3.6 
7 100 8.7 5.68 174 1.054 7.9 

LOADS 

Bus p Q Bus P Q 
(MW) (MVar) (MW) (MVar) 

2 200 120 8 100 50 
4 650 405 9 230 140 
6 80 30 10 90 45 
7 90 40 

LINES 

Bus R X uC/2 
(ohm) (ohm) (MS) 

1 - 3 5 24.5 200 
1 - 4 5 24.5 100 
2 - 3 22.8 62.6 200 
2 - 10 8.3 32.3 300 
3 - 4 6 39.5 300 
3 - 9 5.8 28 200 
4 - 5 2 10 200 
4 - 6 3.8 10 1200 
4 ~ 9 24.7 97 200 
4 - 10 8.3 33 300 
6 - 8 9-5 31.8 200 
7 - 8 6 39.5 300 
8 - 9 24.7 97 200 

( ) These values include the transformer's reactances 
and are expressed on a 100 MVA base. 

Table 4.4 Data for the CIGRE 7-machine system (taken from Ref. [20]) 



Fault at C r i t i c a l Clearing Time [second) 

Rus # Time Solution 

(step-by-step) 

Dynamic 

equivalent method 

Taylor Series 

method 

1 .35-.36 .34 .36 

2 .41-.42 .40 .37 

3 .39-.40 .38 .39 

4 .50-.51 .52 .48 

5 .35-.36 .34 .35 

6 .52-.53 .51 .51 

7 .33-.34 .33 .33 

8 .44-.45 .42 .45 

Table 4.5 C r i t i c a l c l e a r i n g time by the time so l u t i o n and the 
proposed methods for the 7-machine power system. 
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The Importance of the transient s t a b i l i t y regions provided by the 

b i f u r c a t i o n set of the catastrophe manifold i s not only i n terms of speed 

and accuracy. I t provides another important dimension to the transient 

s t a b i l i t y problem-the s t a b i l i t y l i m i t s . The method checks f o r the 

v i o l a t i o n s of the transient s t a b i l i t y l i m i t s of the post-fault network i n 

terms of the system parameters. Of course, i f the l i m i t s are exceeded the 

system i s unstable. This important feature i s not possible with e x i s t i n g 

d i r e c t methods, i . e . , the e x i s t i n g d i r e c t methods cannot give any solu t i o n 

when the s t a b i l i t y l i m i t s of the post-fault network are v i o l a t e d . 

The accuracy of the Taylor series method becomes a problem when t i s 

higher than .5 second [52]. To obtain good accuracy beyond t h i s l i m i t 

higher order terms have to be included i n the computations. This w i l l 

complicate the s t a b i l i t y region and slow down the c a l c u l a t i o n procedure. In 

pr a c t i c e , however, t h i s problem i s very rare. Faults i n large power systems 

are usually tripped i n a few cycles, t y p i c a l l y .1 second. Interest i s i n 

the delivery of maximum power at low c l e a r i n g time without r i s k i n g the power 

system s e c u r i t y . This p r a c t i c a l consideration can e a s i l y be handled by the 

proposed methods without loss of accuracy. 

The o f f - l i n e c a l c u l a t i o n s of the c r i t i c a l energy for each case 

considered can be improved by c a l c u l a t i n g the closest unstable equilibrium 

point for the c r i t i c a l machine. This reduces the computation time and 

s i m p l i f i e s the procedure of f i n d i n g the c r i t i c a l energy [45]. 
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CHAPTER 5 

INCLUSION OF DAMPING, FLUX DECAY AND EXCITATION RESPONSE 

The most challenging problem in the application of direct methods to 

transient stability of power systems is the validity of the simplified model 

used to represent power systems. 

In this Chapter a significant improvement in the modelling problem is 

presented. The new model proposed includes damping, f i e l d flux decay and 

excitation response. 

5.1 Limitation of the Classical Model 

Power u t i l i t i e s are hesitant to accept the direct methods of 

transient stability assessment mainly because they raise doubts about the 

validity of the classical model. In this model i t is assumed that the flux 

linking the main f i e l d winding remains constant during the transient. This 

may be true only i f the exciter does not respond during the f i r s t swing 

period (1 second or less). Modern excitation systems can reach f u l l 

response within .1 second, so that the classical model assumption is not 

valid for such exciters. In fact, during the last decade trends in the 

design of power system components have resulted in more reliance on fast-

response and high ceiling voltage exciters [53]. 

Although fast-response exciters are more desirable and widely used in 

modern power systems, none of the existing direct methods of transient 

s t a b i l i t y assessment have considered the excitation effect. The reason is 
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that Lyapunov's function becomes so complicated that the d i r e c t methods lose 

the merit of being fast methods. 

In c l a s s i c a l model assumptions, damping e f f e c t s are usually neglected 

although i t a f f e c t s d i r e c t l y the accelerating power. In some cases the 

damping power has appreciable value and so a f f e c t s the f i r s t swing s t a b i l i t y 

[54]. 

5.2 Damping 

In power systems there are sources of p o s i t i v e damping which tend to 

damp out o s c i l l a t i o n s r e s u l t i n g from disturbances. This damping i s due to 

the c h a r a c t e r i s t i c s of the mechanical system, generator and loads. The 

mechanical system damping r e s u l t s from the increase i n shaft torque with the 

decrease i n speed. The per unit damping torque c o e f f i c i e n t i s defined as 

the negative of the per unit change i n torque for each per unit change i n 

speed [54]. 

The generator e l e c t r i c a l damping i s associated with the currents 

that are induced i n the rotor windings due to a disturbance or o s c i l l a t i o n s . 

The damping torque due to the f i e l d winding i s usually small because of the 

r e l a t i v e l y long time constant. The damper winding component of the damping 

torque i s quite appreciable and i t usually a f f e c t s accelerating power during 

disturbances. 

C y l i n d r i c a l rotor generators may develop appreciable torque due to 

the eddy currents which are induced by asynchronous o p e r l t i o n , such as 

s l i p p i n g poles or o s c i l l a t i o n s . 
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Loads are also a source of damping i n power systems. Induction and 

synchronous motors with t h e i r mechanical shaft loads develop damping torque 

during disturbances. 

The damping power (D6) i s usually added to the i n e r t i a l power i n the 

swing equation. The damping c o e f f i c i e n t D includes the various damping 

power components, both mechanical and e l e c t r i c a l . The damping c o e f f i c i e n t s 

are usually i n the range of 1-3 pu. This represents mechanical damping, 

generator and load damping. Larger values are also reported i n the 

l i t e r a t u r e [2]. 

The swing equation of machine i In an n-machine power system i s given 

by 

M. 6 + D 6 = P - P . . .. i i i mi e i i = l , . . . n (5.1) 

where D i s the damping c o e f f i c i e n t . 

The accelerating power becomes 

P a i - Pmi " P e i " D * i ( 5 ' 2 ) 

The same procedure of S e c t i o n 4.3, i s used to expand P &^ i n t o a Taylor 

seri e s to get the energy function during the fault-on period. R e c a l l i n g 

e q u a t i o n s (4.26) and (4.27) 

P 4 ( t ) = P ( 0 )
+ ! - p ( 1 ) t + ! - p ( 2 > t 2

+ . . . 

p(m) = a i 
a , m dt t=0 

we have 
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P = P , - Z (D, . cos 6 + C. . sin 6 ) - D& ai mi j = 1 i j i j i j i j i ( 5 . 3 ) 

We note that at t = 0 , 6^ = 0 . 

Therefore 

ai 
( 0 ) = P_, " E (D*4 cos 6 ° + c4 . sin 6 ° ) - D(0) 

" m i j=l i J ' i j " i j ' i j ' ( 5 . 4 ) 

(1) _ d P a i 
ai dt t=0 

1 1 0 - - E (-D4, sin 6,, + C,, cos 6 v 6 i j i j - i j i j i j D)6f> 

= - D 6|°) ( 5 . 5 ) 

(0) 

where 6 (0 ) _ ai 
M. 

( 5 . 6 ) 

(2 ) _ ^ a i 
ai 

dt' t=0 

n 0. ,? 0 ,2 

- = ( " D i J C ° S ^ J ' C i J S ± n ' i ? ( 6 i > 

^ ( - D ± j sin 6 ± ° + cos 6 ± ° ) 6^ - 0*6^ 

- E (D sin 6 ° - C cos 6 ° ) 6 ° - D*6^0 » ( 5 . 7 ) 
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P ( 1 ) 

where 6 0 = — (5.8) 
M i 

D e r i v a t i o n of p
a ^ ^ a n& p

a i ^ a r e 8 i v e n i n Appendix D. We note here 

that a l l Taylor series c o e f f i c i e n t s e x i s t when damping i s taken into 

account. 

P, = P $ 0 > + P < 1 > t + ! ? l ^ t 2
+ ... (5.8) 

a i a i a i 2J 

The energy equilibrium surface i s then formed using equation (4.23) 

V i = ' Q
 ( P a i " P a i > d t + I P a ? d t + V c r = 0 <5'9> 

This becomes 

= A 4 t 4 + ^ t 3 + A ^ 2 + A^t + A Q + k g + V £ r - 0 (5.10) 

whe re A • - i - (P f ( n ) - P P ( n ) ) n . a n 

t 
c 

K = / P P dt - constant s J
Q a i 

Here i s t r u n c a t e d a f t e r the 4th order term. We eliminate the 3rd order 

term to obtain the standard swallowtail catastrophe manifold (Appendix A) as 

given i n Section 3.4.1 to get 

X 4 + uX 2 + vX + w - 0 (5.11) 

The transient s t a b i l i t y region i s defined through of the b i f u r c a t i o n set i n 
'y 

terms of the system parameters u, v and w which includes the damping term. 
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The e f f e c t of damping on the accelerating power during the transient 

period i s shown i n F i g . 5.1 for a short c i r c u i t on the power system of F i g . 

3.5. Another example i s given i n F i g . 5.2 for a short c i r c u i t at bus 7 of 

the three-machine power system given i n F i g . 4.1. I t i s clear that the 

damping tends to reduce the f a u l t k i n e t i c energy and r e s u l t s i n more stable 

systems. 

5.3 E x c i t a t i o n Response and Flux Decay 

When a f a u l t occurs near a generator bus, transient currents i n the 

armature c i r c u i t induce other currents i n the rotor c i r c u i t which c a r r i e s 

the f i e l d current. The f l u x l i n k i n g the armature c i r c u i t w i l l decay 

according to the e f f e c t i v e time constant of the f i e l d c i r c u i t . This time 

constant i s i n order of several seconds at no load, and one second or higher 

under load. The f l u x decay decreases the generator i n t e r n a l voltage and 

hence reduces the s t a b i l i t y l i m i t s . 

Both steady-state and transient s t a b i l i t y can be improved by 

e x c i t a t i o n control systems [55]. Fast speed of response and high c e i l i n g 

voltage exciters can p a r t i c u l a r l y improve transient s t a b i l i t y . With the 

help of f a s t transient f o r c i n g of e x c i t a t i o n and the boost of i n t e r n a l 

machine f l u x , the output power of the generator can be increased during the 

transient period. This reduces the accelerating power and r e s u l t s i n 

improved transient performance. Fast exciters also ensure that subsequent 

swings are smaller than the f i r s t swing. This i s important it or modern low 

i n e r t i a generators and weakly damped power systems where transient 

i n s t a b i l i t y a f t e r the f i r s t swing may occur. 
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Fig. 5.1 
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Fig. 5.2 Effect of damping inclusion on the accelerating power during 
the fault-on period for two test cases. 
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The vector diagram for the transient state of a c y l i n d r i c a l rotor 

generator i s given i n F i g . 5.3. We assume that the i n t e r n a l voltage lags 

behind the q-axis by a constant angle <t>̂  a l l the time. 

The equations of motion of generator i i n an n-machine power system 

with f i e l d f l u x decay and e x c i t a t i o n response are expressed as follows 

n 
M i 6 i = Pmi " j = \ < D i j C 0 S 6 i j + C i j 6 l n 6 i J > 

and 
dE' 

T'j < — — " EfA< ~ E % - ~ x ^ ) 1*4 (5.12) doi ^ f d i q i d i d l ' d i 

where 

T^ Q^ : d-axis transient open c i r c u i t time constant 

E q i : v o ^ - t a 8 e a l ° n 8 the q-axis related to E^ by angle 4>̂ . 

E f d i : e x c i t a t * - o n voltage applied to f i e l d winding. 

X,.,X' : d-axis synchronous and transient reactance, d i d i 

I,. : d-axis current, d i 

The terms of the swing equation were previously defined. From the vector 

diagram of F i g . 5.3, and since <t>̂  i s constant 

E . = E cos <t> q i i i 

Equation (5.12) becomes 

• d E i Efdi 
Tdoi — - — r " \ - c xdi - V d i . ( 5 a 3 ) 

dt cos 4> 

Equation (5.13) can be modified i n terms of the power equation and assuming 

that 4>̂  i s small we obtain [56]: 
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F i g . 5.3 The vector diagram of the generator i n t e r n a l quantities 
for the transient state. 
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T d o i — - — - - v ( x d i - x d i > , V g i J
E

J
c o s 6 i J

+ b i J
E

J
s i n 6 i J

) ( 5 - 1 4 ) 

dt c o s ^ j=l J J J J J 

The f i r s t term of the R.H.S. of equation (5.14) represents the exciter 

response while the second and t h i r d terms represent the drop i n the i n t e r n a l 

v o l t a g e due to the f l u x decay. I t i s clear that i f E ^ ^ i s fa s t and high 

t h e n the drop of i n t e r n a l v o l t a g e (E^) due to the f l u x decay can be 

eliminated. 

A t y p i c a l e x c i t a t i o n voltage-time response curve i s shown i n F i g . 

5.4. OA i s the generator rated load f i e l d voltage before disturbance 

occurs. The s t r a i g h t l i n e AC i s drawn such that the area ACD i s equal to 

the area ABD enclosed by the actual response. The exc i t e r response i s given 

by the rate of Increase or decrease of the ex c i t e r voltage, i . e . , the slope 
CE *"* AO 

determined by i n F i g . 5.4. The time, i n seconds, for the ex c i t e r 
OE 

voltage to reach 95 percent of c e i l i n g voltage i s known as exc i t e r voltage 

response time [57]. An e x c i t e r with a voltage response time of 0.1 second 

or less i s taken to be a fa s t high i n i t i a l response e x c i t e r . 

The e x c i t e r voltage response i s given by 
- t / T 

E... = E + (E„ - E )(1 - e e ) (5.15) r d i o c o 

where E i s the i n i t i a l e x c i t e r voltage o 

E maximum c e i l i n g voltage c 

T e x c i t a t i o n system time constant 

Substituting by E... i n equation (5.14) we get r d i 



E x c i t e r 
Voltage 

A 

time i n seconds 

5.* The t J P i d - c i t a t i o n , o l t a g e - t i * e response 
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, d E, E - (E -E )e 

dt cos <t>. 

n 
" E i " ( X d i " X d i ) \ i s i l E l C O S 6 i j + b i j E j S l n 6 i j } ( 5 * 1 6 ) 

j 

The function F ( t ) w i l l now be expanded i n a Taylor series to evaluate 

equation (5.16) for the transient period (t < .5s). F ( t ) i s expanded 

around t=0 as follows 

F ( t ) - F ( 0 ) + F a > + ^ 2 )
t 2 + _ 

t=0 2! 
(5.17) 

where 

,(n) _ d u F ( t ) 

dt t=0 

iTherefore 

E n 
F ( 0 ) . _o_ _ £ i ( 0 ) _ ( x ^ _ + b ^ E j B l n f i ^ ) 

cos <t>, 

(5.18) 

F ( D . d F(t) 
dt t=0 
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-tli 
1 <V Eo ) e ° d E i n 

T cos 4^ dt M j=l J J J 

+ b i j E j cos 6 ^ ) 6 ^ 

at t = 0 

i j dt T 1 

doi 

Thus 

. (E -E ) (0) 
F ( 1 ) = l (5.19) 

\ C ° S * 1 T d o i 

p ( 2 ) ^ F ( 3 ) ^ f ( n ) ^ e v a l u a t e d i n the same way. Equation (5.16) i s 

evaluated using (5.17), and we get 

E. = E(o) + F ( 0 ) t + I — + I — (5.20) 
1 2 6 

where E(o) i s the i n i t i a l generator i n t e r n a l voltage at t=to-. 

Equation (5.20) represents the generator i n t e r n a l voltage during the 

transient period including e x c i t e r response and f l u x decay. Truncation of 

E^ depends on the l e n g t h of the transient period. As we explained i n the 

previous chapter the Taylor series method can give good r e s u l t s up to a 

period of .5 seconds. In p r a c t i c e , f a u l t s are usually cleared f a s t e r than 

the .5 s period (a t y p i c a l c l e a r i n g time i n large power ̂  systems i s .1 

second). 
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Equation ( 5 . 2 0 ) can be used with the method presented i n Section 4 . 3 

to include e x c i t a t i o n response and f l u x decay i n the assessment of transient 

s t a b i l i t y . The swing equation of the c r i t i c a l machine i i n an n-machine 

system i s given by 

n 

V i = Pmi~ f x
 E i E j < S i j c o s 6 i j + b i j s i n 6±j> ( 5 > 2 1 )  

= P a i 
From equation ( 5 . 2 0 ) l e t the i n t e r n a l voltage of the c r i t i c a l machine be 

( 0 ) F ( 1 > t 2 F ( 2 ) t 3 

E = E(o) + F t U ; t + _ — + £ _ ( 5 . 2 2 ) 

1 2 6 

S u b s t i t u t e ( 5 . 2 2 ) i n ( 5 . 2 1 ) and expand P i n a Taylor series as i n Section 

4 . 3 to obtain 

P ( 2 ) t 2 

P 4 • P ( ° > + P < 1 > t +
 a ... 

a i a a 21 

where P ( n ) = *A 

d t n t = ° 

The accelerating power c o e f f i c i e n t s are evaluated and given as follows 

P a
0 ) - P m i ~ ^ E I ( 0 ) E j ( g ± j cos 6t° + b ± j s i n 6±°) ( 5 . 2 3 ) 

p ( D = - I F < ° > E . (g., cos 6 ° + b., s i n 6 ° ) ( 5 . 2 4 ) 
a j = 1 3 i j i j i j IJ 
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P a
2> - - ^ F U > E j (8lJ cos 6^ + b ± J s i n 6^) 

+ ^ E ± ( 0 ) E j ( g ± j s i n 6±° - b ± j cos 6 ^ ) ^ ° (5-25) 

The d e r i v a t i o n of these c o e f f i c i e n t s and P ^ 3 \ P^4^ are given i n Appendix 
3 3 

E. 

The energy equilibrium surface (catastrophe manifold) can now be 

written down i n terms of the accelerating power c o e f f i c i e n t s as i n equation x 

(5.9) 

V i = 0' ( P a i " P a ? ) d t + ' Q
 P a ? d t + V c r = 0 < 5" 2 6> 

Equation (5.26) i s evaluated and truncated a f t e r the 4th order term to get 

the swallowtail catastrophe manifold. This truncation i s v a l i d for t < .5 

second., Thus equation (5.26) becomes 

V. = A . t 4 + a 0 t 2 + A.t + A_ + K + V = 0 (5.27) I H I 1 0 s cr 

where 

A = — (P f ( n ) - P P ( n ) ) n i a i a i n! 

t 
c 

K = / P P dt = constant s J
Q ao 

V = c r i t i c a l energy cr 
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Again we eliminate the t h i r d order term of equation (5.27) to get the 

standard swallowtail catastrophe (Appendix A) i n the form 

X 4 + uX 2 + vX + w = 0 (5.28) 

The e f f e c t of f l u x decay and e x c i t e r response on the accelerating 

power during the transient period i s shown i n F i g . 5.4 and F i g . 5.5 using 

examples shown i n F i g . 3.5 and F i g . 4.1. I t i s apparent that the area under 

the accelerating power i s reduced. This area represents the k i n e t i c energy 

generated by the f a u l t . Therefore, the degree of s t a b i l i t y i s increased and 

the c r i t i c a l c l e a r i n g time i s also increased. This means that when fast 

e x c i t e r s are used the system can generate more power for the same cl e a r i n g 

time. 
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CHAPTER 6 

CONCLUSIONS 

In t h i s t h e s i s , the transient energy function was e f f i c i e n t l y used 

with catastrophe theory to define comprehensive transient s t a b i l i t y regions 

for power systems. E x p l i c i t boundaries of the transient s t a b i l i t y regions 

were i d e n t i f i e d by the b i f u r c a t i o n set of the catastrophe manifolds. The 

method i s made p r a c t i c a l by using the concept of c r i t i c a l machines since for 

a s p e c i f i e d f a u l t , only a few machines show s i g n i f i c a n t o s c i l l a t i o n s during 

the transient period. 

The thesis suggests two methods to solve the transient s t a b i l i t y 

problem of multi-machine power systems. In the f i r s t method, the c r i t i c a l 

machine(s) i s i d e n t i f i e d and a two-machine dynamic equivalent for the power 

system i s formed. The c r i t i c a l machine i s singled out and a center of angle 

group i s formed for the rest of the system. The energy balance equation i s 

derived from the equation of motion of the c r i t i c a l machine against the 

center of angle. At c r i t i c a l c l e a r i n g , the energy balance equation forms 

the equilibirum surface of the catastrophe manifold from which the transient 

s t a b i l i t y region i s derived by the b i f u r c a t i o n technique. This s t a b i l i t y 

region i s v a l i d for d i f f e r e n t loading conditions and f a u l t l o c a t i o n s . This 

method has the advantage that the c r i t i c a l energy i s calculated d i r e c t l y by 

using the closest unstable equilibrium point. However, this method can only 

be used with the c l a s s i c a l model. * 

In the second method, the c r i t i c a l machine i s i d e n t i f i e d and a Taylor 

s e r i e s expansion for i t s a c c e l e r a t i n g power for a s p e c i f i e d f a u l t i s 
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constructed. The energy balance equation i s then derived by integrating the 

ac c e l e r a t i n g power. The c r i t i c a l energy i s calculated o f f - l i n e by numerical 

i n t e g r a t i o n for the f a u l t considered. Again the energy balance equation at 

c r i t i c a l c l e a r i n g represents the catastrophe manifold from which the trans

ient s t a b i l i t y region i s determined. This region i s bounded by the s t a b i l i 

ty l i m i t s and i s v a l i d for d i f f e r e n t loading conditions and f a u l t locations. 

This method i s l i m i t e d to a period of .5 second for best accuracy. However, 

t h i s i s adequate for most large power systems since t y p i c a l c l e a r i n g times 

are i n the range of a few cycles or .1 second. Model Improvements were made 

possible using t h i s method. E x c i t a t i o n response, f l u x decay, and damping, 

were included i n the s t a b i l i t y analysis by the Taylor series expansion 

method. 

The r e s u l t s obtained by the proposed methods are i n good agreement 

with those obtained by the time s o l u t i o n method. A large number of simula

tions are presently needed i n system planning i n order to determine the 

c r i t i c a l c l e a r i n g time or s t a b i l i t y l i m i t s . The proposed methods give 

d i r e c t l y the c r i t i c a l c l e a r i n g time and s t a b i l i t y l i m i t s with good accuracy 

and less computation. Therefore, they can be used to greatly reduce the 

large number of time simulations i n the system planning stage. In system 

operations, the proposed methods provide f a s t solutions to the transient 

s t a b i l i t y problem with d e f i n i t e s t a b i l i t y boundaries so that corrective 

a c t i o n can be taken to prevent i n s t a b i l i t y . 

The major contributions of t h i s research are the following: 

1. For the f i r s t time, the catastrophe theory i s applied to the transient 

s t a b i l i t y problem. Comprehensive transient s t a b i l i t y regions are 
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calculated i n terms of the power system parameters. These regions are 

v a l i d for any loading condition and f a u l t l o c a t i o n . A l l e x i s t i n g 

d i r e c t methods, on the other hand, require new computation for any 

chf.nge i n operating conditions. This i s an important consideration i n 

implementing d i r e c t methods for real-time assessment of transient 

s t a b i l i t y and system s e c u r i t y . 

Another unique advantage of the methods presented i s the i n c l u s i o n of 

the e x c i t a t i o n response during the transient period i n the s t a b i l i t y 

a n a l y s i s . A l l e x i s t i n g d i r e c t methods are l i m i t e d to the c l a s s i c a l 

model [47] which neglects the e x c i t e r response. With the i n c l u s i o n of 

damping, fl u x decay and e x c i t a t i o n response i n the presented methods, 

a l l factors that d i r e c t l y e f f e c t transient s t a b i l i t y are taken into 

account. This r e s u l t makes the d i r e c t methods more r e a l i s t i c . 

The methods presented predict any v i o l a t i o n of s t a b i l i t y l i m i t s and, 

therefore transient i n s t a b i l i t y . This r e s u l t i s very important; i t 

helps to ensure the security of power systems for any disturbance 

considered. I t also enables power system planners to design proper 

s t a b i l i t y controls to prevent system i n s t a b i l i t y . 

E x i s t i n g d i r e c t methods either neglect or approximate the e f f e c t of the 

transfe r conductances. However, i n some cases transfer conductances 

can have an appreciable e f f e c t on system performance [50] . In this 

research, the transfer conductances are f u l l y represented. 

The a p p l i c a t i o n of catastrophe theory i s extended to the steady state 

s t a b i l i t y problem of c y l i n d r i c a l - r o t o r generators. The method 
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presented (Chapter 3) i s also adaptable to include the e f f e c t of 

governors on steady state s t a b i l i t y . 

6. The achievements of t h i s research have made the on-line security 

assessment more f e a s i b l e than ever before. The important requirements 

for real-time applications are speed, accuracy and information. The 

methods presented need minimal c a l c u l a t i o n s to locate the system para

meters with respect to the s t a b i l i t y region. Good agreement with the 

time so l u t i o n method were obtained (Chapter 4). The l o c a t i o n of the 

system parameters, for each case, on the transient s t a b i l i t y region 

gives enough information on the degree of s t a b i l i t y of the power 

system. 

The outcome of t h i s thesis gives new motivation to the a p p l i c a t i o n of 

f a s t d i r e c t methods to the transient s t a b i l i t y problem of power systems. 

New areas of research need to be explored i n order to reach the ultimate 

goal of the d i r e c t methods which i s on-line assessment of transient s t a b i l i 

ty. The future research should include the following: 

1. The c a l c u l a t i o n of the c r i t i c a l energy of the p o s t - f a u l t network i s 

s t i l l time consuming and needs to be done o f f - l i n e . With some approxi

mations, the dynamic equivalent method can give fast answers by calcu

l a t i n g the closest unstable equilibrium points. However, a fast and 

exact method i s s t i l l needed i n order to complete the o v e r a l l on-line 

approach. 

2. S t a b i l i t y controls such as f a s t valving, braking r e s i s t o r s , single pole 

switchings, series capacitors and generator trippings are usually 

applied i n p r a c t i c e to restore transient s t a b i l i t y of power systems. 
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The i n c l u s i o n of these controls i n the proposed d i r e c t methods i s of 

great in t e r e s t to power u t i l i t i e s . 

This research considered only single disturbances. M u l t i p l e d i s t u r 

bances should also be considered i n future research. 

More can also be done i n the area of steady state s t a b i l i t y . The 

presented method (Chapter 3) i s adaptable to include speed governor 

co n t r o l systems. This Is an i n t e r e s t i n g area to investigate and an 

on-line steady state s t a b i l i t y assessment approach can be developed 

using the catastrophe theory. 
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APPENDIX A 

The swallowtail catastrophe: 

The p o t e n t i a l function i s 

V(X) = X + uX + vx + wX 

The equilibrium surface M i s the hyper surface 

5X + 3uX + 2uX + w = 0 (A.l) 

and the s i n g u l a r i t y set i the subset of M for which the equation 

20X + 6ux + 2v = 0 (A.2) 

The b i f u r c a t i o n set, B, i s a three-dimensional surface i n the control 

space u, u and w. 

Since we are concerned only with the q u a l i t a t i v e behaviour of the 

system, and therefore want p r i m a r i l y to be able to plot the b i f u r c a t i o n set 

B. Let C be a plane u = constant i n C (the control space), B w i l l be a u u 

surve i n C, and i f we can sketch t h i s curve for a l l values of u we can b u i l d 

up the complete surface B. 

Equation (A.2) implies that u i s an odd function of X, and that i s 

together with ( A . l ) , implies that w i s an even function X. Hence w i s an 

even f u n c t i o n of u, and so f o r any u the curve B u i s symmetric about the 

w-axis. 

Nest we d i f f e r e n t i a t e (A.l) and (A.2) obtaining 

dX 
dw (A.3) 
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and — = - (30X 2 + 3u) (A.4) 
dX 

the rest of the term i n (A.3) having vanished i n account of (A.2). We now 

have to consider the cases u > 0 and u < 0 separately. 

I f U i s p o s i t i v e , then — cannot v a n i s h . Hence u i s a s t r i c t l y 
dX 

monotone function of X and the equation 

^ = - 2 (A.5) 
d u 

i s v a l i d everywhere. Moreover, equation (A.2) implies that X u < 0 with 

e q u a l i t y only when X = u = 0, at which point w also vanishes. 

I t f o l l o w s that B y i s smooth, that w i s large when |x| i s large, and 
dw 

t h a t the s i g n a l of — i s the same as that of u, v a n i s h i n g only at the 
d u 

o r i g i n . This enables us to draw F i g . ( A . l ) . 

I f u i s n e g a t i v e , then — vanishes for two r e a l values of X, ±/ ——• 
dX 10 

dw 
Consequently, — vanishes f o r three values of X, these two together with 

dX 

X = 0 as b e f o r e , and i t f o l l o w s that B u has a c r i t i c a l point at X = 0 and 

cusps at the other two points. 

To determine the type of the c r i t i c a l point, we notice that Equation 

(A.2) implies that for |x| < / the product Xu cannot be negative. Since 
10 

X and u also vanish together, i t follows that i f u i s small and pos i t i v e so 

i s X, and — i s then n e g a t i v e . T h i s together w i t h the f a c t that B u i s 
d u 
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symmetric about the w-axis, establishes that the c r i t i c a l point i s a 

r e l a t i v e maximum. 

F i n a l l y , we note that i f u = 0 then either X = 0 or X = ±/ -1̂ .. We 
10 

have just seen that X = 0 corresponds to a maximum at the o r i g i n , and 

su b s t i t u t i n g into equation (A.l) we f i n d that both the other roots give 

9 u 2 

w = . Hence B has a point of s e l f - i n t e r s e c t i o n on the p o s i t i v e w-axis. 
20 u 

We then check that |x| large implies that both | u| and w are also large and 

then, using the values of the parameter X to t e l l us that the order of the 

p o i n t s we have found i s : s e l f - i n t e r s e c i t o n , cusp, maximum, cusp 

s e l f - i n t e r s e c t i o n , we can draw F i g . (A.2). And since the equation of the 

l i n e of points of s e l f - I n t e r s e c t i o n i s the parabola 

2 
I 

20 

v - * L . u « 0 

We can put the curves B u together to form the surface B shown i n F i g . 

(A.3). The o r i g i n of the name "swallowtail" i s now apparent. 

To f i n d the form of the p o t e n t i a l i n each of the three regions into 

which B divides C, i t i s s u f f i c i e n t to consider points for which u = 0 and 

u < 0 then the so l u t i o n of Equation (A.l) i s 

X 2 = — (- 3u ± /(9u 2 - 20w)) 
10 

There are three cases: 
2 9u 

(a) w > E q u a t i o n ( A . l ) has no r e a l r o o t s and V has no c r i t i c a l 20 
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Fig.(A.2 ) 
Fig.(A.1 ) 

Cross section of the b i f u r c a t i o n set for 

u > 0 and u < 0 

r>f the swallowtail The b i f u r c a t i o n set of tne * 
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points. 

9 u 2 2 
0 < w < Because /(9u - 20w) i s r e a l and less than the r e a l and 

20 
2 

p o s i t i v e - 3 u , both solutions for X are r e a l and p o s i t i v e and V has 
four c r i t i c a l points, two maxima and two minima. 

2 

w < 0 B o t h s o l u t i o n s f o r X a r e r e a l but one i s n e g a t i v e . 

Consequently V has only two c r i t i c a l points, one minimum and one 

maximum. 
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APPENDIX B 

The cusp catastrophe: 

The p o t e n t i a l function i s 

V(X) = X 4 + uX 2 + uX (B.l) 

so the equilibrium surface i s a three-dimensional space i n x, u and u given 

by 

4X 3 + 2uX + u = 0 (B.2) 

and the s i n g u l a r i t y set i s the subset of the equilibrium surface such that 

the de r i v a t i v e of (B.2) i s also equal to zero. I t i s given by 

12X 2 + 2u = 0 (B.3) 

We f i n d the b i f u r c a t i o n set by eliminating the state variable X from (B.2) 

and (B.3), we obtain 

8U"3 + 27u 2 - 0 (B.4) 

Equation (B.4) i s the pr o j e c t i o n of the three-dimensional manifold of 

equation (B.2) onto the control space (u-u). The cusp manifold and the 

b i f u r c a t i o n set i s shown i n F i g . ( B . l ) . 

Equation (B.2) has three r e a l roots within the b i f u r c a t i o n set 

region, or when 

8u 3 + 27 u 2 < 0 

But when 

8u 3 + 27u 2 > 0 
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F i g . B . l The cusp manifold and i t s b i f u r c a t i o n set. 



124 

there i s only one r e a l root. 

Figure (B.2) shows the b i f u r c a t i o n set of u-u plane i n which the 

fuctions V(X) i s sketched for d i f f e r e n t values of the parameters u and u. 



„ , . ».* Tne cusp p o t e n t i a l f - c t i o n VCX) at d i f f e r e n t 
values of the c o n t r o l v a r i a b l e s . 
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APPENDIX C 

Taylor series expansion of the accelerating power: 

The accelerating power of machine I i n an n-machine power system i s 

given by (Equation 4.22) 

P = P , - Z (D. . cos 6 + c. . s i n 6 ) a i mi ± - 1 i j i j i j i j ' ( C I ) 

We expand P ^ i n the neighborhood of t=0 to obtain, 

P , t ) - P<°> + 1- P ^ t + 1- P< 3>t 2 + ... + l- p ( n ) t 
3.x 3 - . 3 T 3 . 3 1! 2! m! 

m ( C 2 ) 

where 

,(m) _ a 

dt m t-0 

We note that at t=0, w (speed deviation) = 0 

and 6. = 6 ( i n i t i a l angle) 

therefore 
n 

P a 0 ) - V - £ <»1] " s 6 i J + «1J 6 l n 6i3> (C.3) 

3 dt ^ 

0 0, - Z (D s i n 6 - c . cos 6 ) 
t-0 J - l 3 J J J 

Since 

therefore P 

t=0 

(1) _ 

u. . = 0 

= 0 ( C 4 ) 

To s i m p l i f y the der i v a t i v e equations we l e t 
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n 0 0 A = Z ( D ^ cos 6 j L j + c ± j s i n 6^) (C.5) 

and 

n 

B = 2 ( D l j s i n 6 ±° - c ± j cos 6^) (C.6) 

the derivatives of A and B with respect to time are 

dt 1 J dt J 

(1) * (2) for convenience l e t 6^ y = 6^ , 6^ = 6 ... and so on 

therefore 

P<°> = P , - A a mi 

dt a ± j 

P<3) . d_ (1) = d_ (1) 
dt 3 dt « 

« A 6.!^ + B 6.(.2) = B c (2) "IJ I j " ° 6 ± ^ ' (C.7) 

P ( 3 ) . i . P ( 2 ) . 2 A 6 ( D 6 (2) _ B 6 ( D 3

 + A 6 CD 6 (2) + B 6 (3) 
a . a i j i j i j i j I j IJ dt 

(C8) 

= 0 
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p CD P (1) 
where 6< 3> - - = 0 

M i M j 

P<4> = 1_ P<3> = B 6< 4> + A 6 < 1 > 6 < 3 > a d t a i j i j i j 

+ 2A 6±<2> - B 6 1J 1> 6±<2> + 2 A S ^ 1 ^ , ^ - 2B 6 ^ ) 6±<2> 

" 3 - \ f \ ? - A \ ^ 

P ( 4> - B 6 /*> + 3 A 6 <2) 2 ( C 9 ) a i j i j 

P<5> - *_ P<4> - B 6/5)+ 5A 6//>6//> +
 1 0 A ^ "> B 6//> 26//> 

a d a i j i j i j i j i j i j i j 

- 15 B 61<j
2>26i<j

1> - 10 A 6 1< 1>\< 2> + B 6 ^ - 0 
(C.10) 

P<«> = 1- P<5> = B 6 < 6 > + 6 A 6//>6//>+ 15 A 6< 2>6 <*>- 15 B 6 / ^ V / * a d a i j i j i j i j i j i j i j 

+ 10 A 6±<3> - 60 B * ± ™ * £ h ™ - 20 A 6 ^ 6 ±< 3>- 15 B 64<2>" 

45 A 61<l>6152>2
 + 15 B 6 ™ " * ™ + A 6 ™ ' 

B 6 ^ + 15 A ̂ 2 )6 ±5 4> - 15 B 6 ±< 2> 3 ( C l l ) 
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Note that 6 ^ ) = 6^3> - 6 ± \ 5 ) = 6±<7> ... = 0 
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APPENDIX D 

Derivation of p
a ^ ^ an<* p

a ^ ^ including damping: 

P < 3) - ±_ P <2> a i d t a i 

From equation (C.8) of Appendix C 

(3) 
P } ' (without damping) = 0 

a l 

Therefore 

, ™ - - » » « > C D 

Also 

p {«> - i - P »> 

a l d t a i 

From equation (C.4) we obtain 
P <4> - B 6 <*> + 3 A 6 C2>2 - D 6 (5) a i i j i j i j 

Since 6 1 J 5 ) = 0 

then 

P <4> - B 6 <*> + 3 A a/2)' a i i j i j 

- ^ ( D ^ - m 6 ±° - c i j C o s * ± ] ) * £ K 3 

, A 0. <• (2)' + c l j S i n 6 ± j) 6 ± J 

(D.2) 
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APPENDIX E 

Taylor series c o e f f i c i e n t s of the accelerating power including e x c i t a t i o n 

response. 

The accelerating power of machine i i s 

P a i - Pmi " ̂  V j <«lj C O S 5 i j + b i j S i n 6ij> ( E a ) 

and 

E = E(0) + F ( 0 ) t + l i - i t 2 + ... (E.2) 
1 2 

R e c a l l i n g equation (5.16) 

d E i E c ~ ( E c " V " t / T e 

T
d 0 ; — - - F ^ - - — e - Er< v- xdi> 

i dt cos 4> 

S E j ( g ± J cos 6 ± J + b t j s i n 6 ± j) (E.3) 

the c o e f f i c i e n t s F ( 0 ) , F ( 1 ) are g i v e n i n S e c t i o n (5.3), F ( 2 \ F ( 3 ) are 

derived from (E.3) and given as follows. 

(E - E ) (1) n 0 
F ( 2 ) = J±__c 0 J _ + _ s s i n 5 0 

x 2 " S * i W ' J = 1 j j j 

e 

b c s 6 ° , CE.4) 
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,(3) _ 1 ( E c " V ,(2) 

•z 3 cos • 
e "doi 

(E.5) 

The der i v a t i o n of the accelerating power c o e f f i c i e n t s are as follows 

Let A ± i = Ej ( g ^ cos 6^ + b ± j s i n 6 ±°) 

Bij • Ej ( 8U 8 i n 6ij " bij C°S \ ^ (B.6) 

then 

Let 

d A 

dt 

d B 

M - - B 6 ° 
ij ij 

0 
dt 

I 0 = 6 (1) g (1) = 6 (2) 
6ij \i ' 6ij 6ij ' *• etc. 

Substituting equations (E.6), and (E.2) to ( E . l ) to obtain the Taylor series 

c o e f f i c i e n t s of P ^ we get 

P<°> - , , - I E<°> A , , a mi i i j (E.7) 

,(D _ d Pai 
dt 

= - S ( F ^ A . , " E(0) B 6 
t=0 j=l J 2 1 J 

i F ( 0 > A 

j=l ij 
(E.8) 



4 
t i \ d p < 

dt t=0 
^ I 6 f ( 1 > B i j 6 i f } + 3 E<°> A i j 6 i f > 2 
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>(2) _ d P a i 
dt 

n 
E (E(0) B 4 4 6 ^ 2 ) - F ( 1 ) A,,) 

t=0 j=l i j i j i j ' (B.9) 

,(3) . ^ a i 
dt" t=0 

n 
(E.10) 

+ E(O) B ± j 6 ±< 4 ) - F ( 3 ) A ± j ] ( E . l l ) 


