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Abstract 

The objective of this study is to develop an application of the Kalman filter for filtering 

and forecasting iceberg positions and velocities in order to calculate the risk of impact 

against a fixed structure or stationary vessel. 

Existing physical and probabilistic models are reviewed. Physical models are essen­

tially based on the response of the iceberg to the forces acting on it. 

Statistical models forecast the motion of the iceberg based on past observations of the 

trajectory. A probabilistic iceberg trajectory model is used in this study so that uncer­

tainties in the trajectory forecast can be explicitly included. The technique of Kalman 

filtering is described and applied to forecast future positions and velocities of an ice fea­

ture, including uncertainties.The trajectory forecast combined with a risk calculation, 

yields the probability of impact and the probability distribution of the time until impact. 

Numerical simulations are provided to demonstrate and validate the procedure. 
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Nomenclature 

[18] = reference to item 18 in Bibliography 

a = constant in the autocorrelation function 

Ak = matrix relating two steps of the state vector in absence of the 

forcing function at time tk 

d — distance between center of iceberg and center of platform 

Ck = observation matrix connecting measurement and state vectors 

at time tk 

E[] = expected value operator 

ER = mean-square error 

ejt = error vector between forecasted and actual observations at time tk 

FD = fluid drag force 

K~k = gain of the Kalman filter at time tk 

ko = frictional drag coefficient 

ki = real coefficients in kinematic model 

n(T) = number of impacts between time=0 and time=T 

p[z = Z) = probability that the random variable z has value of Z 

p(z = Z\y = Y) = probability that the random variable z has value of Z 

given that the random variable y has value Y 

Pk = error covariance matrix at time tk 

P£ = error covariance matrix at time tk for one step forecasting 

Qk = covariance matrix of to* 

i?() = autocorrelation function of iceberg velocities 

vi 



Rk = covariance matrix of Vk 

i(t) = vector position of the iceberg at time t 

Rot() — a rotation matrix function 

Sj = influence area of an iceberg 

Sc = cross-sectional area of an iceberg 

s,t = time constants 

tk = discrete time 

u(t) = velocity of the iceberg at time t 

u(t) = best estimate of the velocity at time t 

U{ = discrete values of the velocity 

Vk = observation white noise vector 

Wk = process white noise vector 

x(t) — signal at time t 

x(t) = filtered value of the signal at time t 

Xk = process vector at time tk 

xk = best estimate of the process vector at time tk 

xl~ = best estimate of the process vector knowing the process prior to time tk 

Z(k) = observation vector 

Z(k) = estimate of the observation vector 

a, 9 = angles 

7 = time constant of the autocorrelation function 

St = small time increment 

if - angle 

p = density of fluid 

(i — coefficients 

vii 



Acknowledgements 

I wish to thank Dr. A. B. Dunwoody, my supervisor, for his guidance and support 

throughout the course of this research. 

I also must thank Mona El-Tahan of C-CORE who supplied the iceberg trajectory 

data, and the Natural Sciences and Engineering Research Council who sponsored the 

work through an operating grant. 

Finally, I wish to thank Susanne for her help in editing this thesis. 

viii 



Chapter 1 

Introduction 

Icebergs are a major threat for offshore structures and boats in eastern Canada, and 

especially in the Northwest Atlantic Ocean and in the Labrador Sea. They have been a 

subject of interest as a danger for navigation since the last century. One can think about 

the Titanic disaster in 1912. 

To prevent offshore accidents the International Ice Patrol collects information con­

cerning drifting ice from boats, aircraft, satellites and other sources. Iceberg trajectories 

are then set up to provide the consequent warnings. 

Even though iceberg mapping provides a good measure of the risk encountered in 

terms of ice density and short term motion forecasting, it appears not to be sufficient if 

applied to fixed offshore structures. 

The renewed interest in the detailed movements and forecasting of icebergs began with 

the oil and gas exploration in the continental shelf off eastern Canada. The exploration 

activity on the Grand Banks and in the Labrador Sea has required more detailed tracking 

and forecasting of iceberg movement in the vicinity of drilling activities. The predominant 

type of vessel for oil exploration in the area is the semi-submersible drill rig. This type 

of platform cannot withstand an impact from an iceberg. Even fixed oil-production 

structures are not able to withstand impact from the largest icebergs. 

To minimize the threat posed to stationary floating and fixed facilities, it is necessary 

to forecast the trajectories of all icebergs in the vicinity of a facility over periods from 10 

to 24 hours into the future. Appropriate actions have to be taken if it appears that an 

1 



Chapter 1. Introduction 2 

iceberg might hit. 

The emergency procedures vary depending on the type of operation and mooring. It 

can take several hours before the platform can be released and the well secured. In some 

circumstances, it might be preferable to tow the iceberg away. In the worst case, it would 

be necessary to evacuate personnel by boats and helicopters. 

It is obvious that the operators of the platform do not wish to initiate any of these 

safeguards if they are not necessary. Therefore, it is important to be able to evaluate 

the risk that an offshore facility will be hit by an iceberg which is in the vicinity before 

the appropriate safeguards are implemented. It should also be easy to update the level 

of risk with any new development of the iceberg's motion. 

Currently, any oil exploration activity must include an iceberg monitoring program. 

Iceberg motions are tracked by radar from the rig. The experience and judgement of 

the iceberg monitoring personnel are then used to determine the risk of an impact. In 

order to help the iceberg monitoring personnel, numerous efforts have been made in the 

last 20 years to predict the trajectories of icebergs based on the physical or statistical 

modelling of iceberg trajectories. Two of these models also explicitly evaluate the risk 

of an impact by incorporating the growing uncertainty in position and velocity of the 

iceberg with forecasting time. 

The existing trajectory models will be reviewed before focussing on one model for 

detailed development. The trajectory model to be described uses past positions of an 

iceberg to predict the future trajectory, and hence its risk of impact against the facility 

being protected. 

Kalman filtering is an established technique for predicting future behaviour of a 

stochastic system from a history of observation, including noise in the measurement 

of the process as well as the "process noise" driving the system. The Kalman filter will 

be applied to trajectory forecasting of icebergs. 
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Of course, the ultimate goal of any iceberg monitoring program must be the evaluation 

of the risk of impact. The risk equation derived by B. Dunwoody [11] uses the forecasted 

trajectory and the uncertainties on positions and velocities given by the Kalman filter to 

evaluate the risk of impact. 

Finally the results of a numerical simulation will be described which illustrates and 

validates the method. 



Chapter 2 

Existing iceberg trajectory forecasting models 

Since the early seventies, several types of prediction procedures have been developed. 

They can be classified into two main categories: 

1. evaluating the influence of the physical environment on the iceberg, and deducing 

its trajectory step by step as a function of current and wind fields, 

2. auto-regressive models using the known trajectory as the main source of input. 

The first type of method has been the only one used until the beginning of the eighties. 

Auto-regressive models are more recent. They have been introduced to handle the 

large uncertainties existing in the wind and flow fields, as well as in the physical charac­

teristics of icebergs. 

2.1 Physical models 

A physical model uses winds and currents to calculate iceberg motions either with a 

dynamic or a kinematic approach. It requires certain informations about the iceberg and 

its surroundings. 

Environmental data can be obtained from different sources. 

The wind is measured on the platform or ship. Forecasted data are provided by the 

Canadian Atmospheric Environment Service or other sources. 

Current meters are deployed from the platform. They provide information concerning 

the flow field in the vicinity of the structure, sometimes at different depths. 

4 



Chapter 2. Existing iceberg trajectory forecasting models 5 

Shape and mass of icebergs can be reasonably estimated from visual observation. 

Extensive data have been collected for this purpose in the Labrador Sea [18]. They 

relate aircraft observations to total mass, dry and wet areas. 

Physical parameters such as bottom topography and water depth are collected during 

site oceanographic surveys. 

2.1.1 Dynamic model 

The earlier studies have mainly used the dynamic equation to describe iceberg trajecto­

ries. Since then, several procedures have been developed [10,14,18,23]. 

The iceberg is subjected to several forces. Those forces vary in amplitude and direction 

depending on the current and wind. 

The dynamic equation expresses that: 

Mass of Iceberg x acceleration = Sum of external forces. 

A model based on this equation has to take into account the horizontal components 

of the forces due to water drag, wind drag, Coriolis acceleration and sea surface slope or 

pressure gradient. 

The fluid drag force on the iceberg can have two different forms : 

where p is the density of fluid, kr> is the frictional drag coefficient, u is the velocity and 

Sj is the influence area. This equation applies when the frictional drag due to the viscous 

stress acting at the surface of the iceberg, is predominant. 

However, when the form drag is predominant, the equation that applies best is 

FD - pkDSju (2.1) 

FD =^pCDScu2 (2.2) 
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where CD is the form drag coefficient and Sc is the cross-sectional area. 

The main components of the water movement are the geostrophic current, the wind-

driven current, the inertia current and the tidal current. Their magnitudes and directions 

vary with time and location. 

The water column usually has to be divided into several layers to take into account 

the variability of water current with depth [18,23]. The water drag on an iceberg seems 

to be often the most important forcing term, but the wind drag has sometimes to be 

considered, depending on the shape of the iceberg and on atmospheric conditions. A 

wind greater than 30 knots and blowing from a constant direction can be a major factor. 

However, in general, the ratio of iceberg velocity relative to wind speed is only 0.03 [20]. 

The Coriolis force acts on the iceberg and on the water in which the iceberg floats. 

Therefore, the Coriolis force created by the movement of the iceberg is balanced by the 

pressure gradient in a geostrophic current. The pressure-gradient force for each layer can 

be calculated as the Coriolis force of the current, while the velocity of the iceberg relative 

to the water gives the other part of the overall Coriolis force. One has also to consider 

the inertia drag due to the acceleration of the object in terms of a hydrodynamic mass 

to be added to the actual mass of the iceberg. 

2.1.2 Kinematic model 

As opposed to the dynamic point of view, the kinematic model expresses that the iceberg 

velocity is a function of the velocities of the different influences [7]. 

This type of model has some success for two reasons: 

1. it appears from observations in the east cost of Canada that icebergs generally 

respond quickly to external forces (time scale of about one hour or less), provided 

that the considered influence is significant [7], 
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2. and there is a good correlation between the motion of water and the drift of an 

iceberg, which has 7/8 of its volume below water. 

The vector velocity of the iceberg u(t) is empirically calculated as a function of wind 

and current velocities: 

u(t) = ki Rot((pi) (2-3) 

where u^) represents the vector velocity of the ith influence, Rot is a rotation matrix, 

is the phase angle and fc, is the empirically determined coefficient [7]. 

The water influence is divided into wind generated current, tidal current and so forth. 

The values of the empirical coefficient k and the phase angle (p are related both to 

the size of the iceberg and to the rate of change in the external influence. The smaller 

the iceberg or the rate of change, the closer is k to 1 and if to zero. 

2.2 S h o r t c o m i n g s o f present a p p r o a c h e s 

None of the existing physical models has been extensively used in the field, because of 

practical difficulties. 

2.2.1 P h y s i c a l i n p u t u n c e r t a i n t i e s 

The accuracy of the dynamic model is dependant on the accuracy of the physical in­

put. Equations of motion remain sensitive to errors in drag coefficient and other shape 

parameters, as well as towards errors in the current and wind values. 

The external shape of an iceberg can tell about its characteristics, but would only 

give a rough approximation of the reality. 
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Current and wind values measured in the vicinity of the platform are biased by its 

presence. 

The same type of accuracy problem applies with the prediction of wind and current. 

Even if long term current, mean flow and tides are predictable, one cannot forecast with 

sufficient accuracy local perturbations and low frequency water motion. Atmospheric 

parameters may also be highly spacially and temporally uncorrelated. Furthermore, the 

low pressure generated currents can be more significant in affecting iceberg drift than 

wind or wind-generated currents [7]. 

Different approaches have been proposed to compensate for inexact values. Dempster 

[8] suggested adjusting the drag coefficient of the iceberg in order to obtain the best fit 

between the calculated and the observed trajectories. He used a mix of dynamic and 

kinematic considerations. 

Smith and Banke [22] used an hincast model of motion, and adjusted the air and water 

drag coefficients to compensate for imprecise knowledge in the physical characteristics of 

the iceberg. 

2.2.2 Collection of field data 

For practical applications, dynamic and kinematic models are of no use unless the input 

parameters are available. The collection of field data presents several complications: 

1. equipment mounted on the platform are subjected to failure or environmental re­

strictions such as storms or pack ice, 

2. information collected on the platform is valid only in the vicinity of the structure. 

Remotely based strings of current meters are a possible but very expensive solution 

for this problem [2]. 
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If wind and current are not avalable, the only possible source of information is the 

past trajectory of the iceberg. One can try to deduce wind and current from known radar 

positions, and then apply the obtained values to forecast the future motion [14,15]. Here 

again, existing models suffer from uncertainties and variability in data input. 

Dynamic and kinematic procedures tend to use exact and difficult procedures with 

inexact data. This level of accuracy seems inappropriate to the forecasting problem, 

because of uncertainties in wind and flow fields, poor knowledge of icebergs shapes, 

unreliability of current and wind forecasting. Exact models are certainly more related to 

scientific interest than to field application. 

Furthermore, the physical models previously described don't allow for the uncertain­

ties for position and speed necessary for risk calculation. 

There lies an alternative to dynamic and kinematic methods in the following approach. 

2.3 A probabilistic approach 

As mentioned previously, another and more recent field of interest is to compute iceberg 

trajectories in a probabilistic manner. The idea is that if we can't really know where the 

iceberg will go, we should be able to measure our error, or the area where the iceberg 

has the most chances to go. 

Using the same approach, C.Garret [12] writes the "best estimate" of the future 

velocity u(t) in terms of the known past values 

the coefficient £„ being deduced from a set of equations expressing the minimization of 

the mean-square error: 

V,(t) = E„Cn«, n (2.4) 

ER = (u{t) - u{t)Y (2.5) 
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giving the set of equations: 

£ m "n um (m = u(t)un (2.6) 

The solution can be found given the covariance matrix un um and the covariance 

vector u(t) un. 

In order to solve the equation of the mean-square error, one has to know in what 

ways the velocities are related to each other. The autocorrelation of u is defined as: 

R{T) = u(t)u(t + T)/u2 (2.7) 

Therefore, 

rt+tn 

(2.6) « S m R(tm - tn) (M = / R(r)dr 

Garrett takes an exponential autocorrelation function expressing a stationary Gauss-

Markov process: 

R(T) = e - 7 T (2-8) 

The exponential form indicates that the velocities become less and less correlated as 

the time separation between samples increases. 

Because of noise in the velocity data, the autocorrelation behaves more like 

(2.9) 
R(r) = ae-<T if r > 0 

R(0) = 1 

The constant a expresses the presence of noise in the velocity data. Because a < 1, 

the value of the autocorrelation function is reduced. 
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a and 7 are calculated using known trajectories and field data (wind and current) 

processed through lagrangian and eulerian analysis. Data had been collected during an 

oceanographic survey of the area. 

Solving equation (2.6) gives the set of coefficient £„. The mean square position error 

normalized with mean square velocity is: 

ER(t) = (x(t) - x(t)Y/u* (2.10) 

and is calculated using a and the coefficients („. 

Error calculation is an important step towards risk prediction. Garrett supposes 

that the probability of the iceberg to be at a distance d from the forecasted position is 

gaussian, ie can be calculated using the mean square position error. 

The probability of impact is then deduced using a simple procedure based on: 

• the probability of presence in a circle around the platform, 

• the expected transit time and the average passage time through the circle. 

The probability of speed is taken independent of initial velocity perturbation. 

B. Dunwoody [11] takes into his forecasting scheme a Wiener process to express the 

rate of increase of uncertainty in velocity with time. This simple model has a variance 

increasing linearly with time. The expected velocities and positions are deduced from the 

last known position. Risk calculation is based on the expression of the joint probability 

distribution of position and speed. Positions and speeds are then integrated around the 

wellsite, giving risk of impact and distribution of speed upon impact. 

Once again, the error relative to the expected position is at the base of risk calculation. 

After having reviewed the existing prediction models, one can already conclude that 
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an exact calculation of the movement of an iceberg cannot be carried out in the field 

with accuracy. 

Wind and current are usually not available from remote sites in real time. Except for 

mean values, they are spacially and temporally uncorrelated, and therefore unpredictable. 

It is possible to get a probabilistic image of the perturbations in flow and wind fields for a 

given area. Other sources of information concern the close vicinity of the platform (local 

current and wind), as well as radar tracks of icebergs. 

Until recently, the main field of research has been the physical description of the ice­

berg's trajectories. A more realistic approach of the iceberg motion forecasting problem 

would be to develop a probabilistic model. This model could use the past trajectory as 

the only input, in order to give a forecasting as accurate as possible in some sense. It 

would also give the corresponding uncertainties over positions and velocities. 



Chapter 3 

Iceberg motion filtering and forecasting 

The auto-regressive models do not give significantly poorer forecasts in practice than 

dynamic or kinematic models. They have two main advantages: 

1. they require less data to implement, which is of a major importance for practical 

use, 

2. they can incorporate uncertainty in the forecast. 

It is therefore reasonable to develop an auto-regressive model to generate trajectory 

forecasts, and to couple it with Dunwoody's risk calculation. This implies that the 

forecasting would also generate the first and second moments of position and velocity. 

Both forecasting and uncertainties calculations can be done by "filtering" a sequence 

of measured positions of an iceberg. 

3.1 A brief introduction to the filtering problem 

In signal theory, the traditional purpose of a filter is to separate the signal from the noise. 

In communication, a filter gives a certain frequency response.' 

In the forties, Norbert Wiener considered a different type of problem, where signal 

and noise are both noiselike in character, with possible overlap in their spectra [25]. In 

this case, perfect separation is not possible. One can only expect a "best" estimated 

signal, according to the chosen performance criterion. Wiener's assumptions were the 

following: 

13 
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1. The filter is linear and stationary with time, 

2. the filter input is an addition of signal and noise, whose covariances are stationary 

with time, and with known auto- and cross-correlation functions, 

3. the output's covariance is stationary with time, 

4. if t is the present time, x(t) is the signal and x(t) the filtered value, the performance 

criterion is the minimization of the mean square error: 

ER((x(t) - x(t + s))2) 

If s — 0, this is the filtering problem; s > 0 is the prediction problem, and s < 0 is 

the smoothing problem. 

Garret's prediction scheme is indeed a direct application of the so-called Wiener filter. 

This is the weighting function approach. The auto-correlation of the iceberg's velocity 

has been calculated using extensive field measurement . 

3.2 Interest for iceberg motion forecasting 

The iceberg trajectory forecasting problem can be treated as a form of filtering problem. 

The "signal" to be filtered is the trajectory of the iceberg. The "noise" from which the 

signal must be extracted is 

1. one cannot measure iceberg speed directly, 

2. errors exist in position determination. 

The dynamic system of the iceberg motion can be expressed as a difference equation 

with "noise" input being fluctuations in the environmental loads imposed on the iceberg. 
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Known wind and current mean values produce a deterministic "noiseless" motion. All 

other unknown or non-measurable influences such as turbulence, high frequency wind 

and water motion cause "noisy" behaviour of the iceberg. Of course, the Hmit between 

mean and noisy influences is not obvious, but deterministic and noisy parts can either 

be treated separately or mixed together to produce a different auto-correlation function. 

The Kalman filter is an efficient tool for the filtering of a noisy signal. 

3.3 A recursive approach of data filtering: the Kalman filter 

Following Wiener's work, a major contribution in the filtering problem was made by R.E 

Kalman in 1960 [16]. 

The Wiener filter gives the "best" of present and future process values using the 

weighting of all known past measurements, assuming that the auto-correlation of the 

process is known. 

Kalman kept the same performance criterion, ie the minimum mean square error, but 

introduced a recursive technique for data processing. In other words, the Kalman filter 

is self-adaptive to new input. All past values are step-by-step included in the filter's 

arithmetic. This is the main difference between the Kalman filter and the weighting 

function approach. 

The recursive technique needs both process and measurement procedures to be mod­

eled in vector forms. The following description of the Kalman filter refers to a discrete 

time formulation, which is our concern as we will see later. 

We assume that the random process can be modelled as: 

and the measurement process as: 

= Akxk + wk (3.11) 
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zk = Ckxk + vk (3.12) 

where 

• xk = (nxl) process state vector at time tk 

• Ak = (nxn) matrix relating two steps of the state vector in absence of the forcing 

function 

• wk = (nxl) white noise vector with known covariance structure 

• zk = (pxl) observation vector at time tk 

• Ck = (pxn) observation matrix connecting measurement and state vector 

• vk = (p x 1) measurement vector error, white noise with known covariance structure, 

and uncorrelated with wk 

• Qk and Rk are the covariance matrices of wk and vk: 

Qk = E(wkwl) 

Rk = E(vkvl) 

where T denotes the transpose. 

We assume that: 

1. E(wkwJ) = 0 for k ^ / 

2. E{vkvJ) = 0 for k ^ I 

3. E{wkvJ) = 0 for all k and /. 
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Let Xk be the "best" estimate of the state vector at time tk, and x]^ the "best" 

estimate of the state vector knowing the process prior to time tk-

The idea is to express Xk with the following form: 

Xk = xl + Kk(zk - CkXk ) (3.13) 

Let 

ejt = zk - CkXk (3-14) 

be the error between the forecast of the present output CkX^ and the present measure­

ment Zk- ek is weighted with the gain matrix K~k-

In the Kalman filter theory, the gain of the filter is calculated in order to minimize 

the variances of the estimation error for the state vector, the terms in the major diagonal 

of: 

Pk = E[(xk - Xk)(xk - xk)T] (3.15) 

Another important matrix is: 

Pk~ =E[(xk-Xk)(xk-Xk)T] (3.16) 

whose elements are the variances of the forecasting error at time r̂ . A complete descrip­

tion of the Kalman filter theory can be found in [1,5,16,17]. 

The detailed algorithm of the filter is given in figure (3.1). 
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Previous estimate 

Error covariance 

A 
Prediction 

c 

Estimate of 
present output 

ik = Ckxk 

Predicted covariance 

Error 

Present output 

Error covariance for 
updated estimate 

Pk = (I- KkCk)Pk-

Current, estimate 
xk = x\~ + Kkek 

Correction 
A'jtejfe 

Kk = 

Filter gain 
ircI(ckFTCl + Rky 

Figure 3.1: Algorithm of the Kalman filter 
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Application of the Kalman filter to iceberg motion 

4.1 Formulation of the Kalman filter 

For iceberg motions, we are concerned with a discrete time model, since position mea­

surements (radar plot) are taken on a discrete time basis. 

The state vector xk includes position, speed and possibly acceleration of the iceberg. 

Therefore, it can be either a (4 x 1) or a (6 x 1) vector. 

The horizontal plane is (x, y): 

xk -
, . dx dy 

where x = — and y = — 
dt y dt 

xk 

Vk 

\ y*) 

For a discrete time model, the new position is the old position plus old velocity times 

time increment. The new velocity is the old velocity plus the integral of acceleration. 

The process equation is therefore 

Xk+i = Xk + Txk 

ik+i = ik + w-i 

J/fc+i = Vk + Tyk 

yk+i = yk + W2 

(4.17) 

19 
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where T is the time interval between two observations, or in vectorial form: 

(the subscript h of Ak is omitted if A is constant) 

(4.18) 

with A = and Wk 

( 1 T 0 0 ^ 

0 1 0 0 

0 0 1 T 

0 0 0 1 

The process noise covariance matrix is therefore 

V 

' 0 ^ 

0 

Qk = E[wwT) = 

0 0 0 0 

0 E[w\] 0 0 

0 0 0 0 

^ 0 0 0 E[wl) ) 

The observation equation is 

and 

V y J Vk 

V J 

+ 
\ v* } 

(4.19) 

(4.20) 

Rk = E[vvT] = 
E[v\) 0 

0 E[vj] 
(4.21) 
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If acceleration is included, the state vector becomes: 

I r ^ Xk 

Xk 

Xk 

Vk 

yk 

\ y« i 

i dx . ,. dy 
where x = — and y = — 

dt * dt 

The process equation is therefore 

Xk+i — Xk + Tik + ^-xk 

i fc+ i = xk + Txk 

Xk+l = Xk + W! 

Vk+i = yk + Tyk + %yk 

Vk+i = yk + Tyk 

Vk+i = yk + w2 

(4.22) 

or in vectorial form: 

* f c + i = Axk + Wk (4.23) 
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with A — 

( 1 T f 0 0 0 \ 

0 1 T 0 0 0 

0 0 1 0 0 0 

0 0 0 1 T ^ 

0 0 0 0 1 T 

y 0 0 0 0 0 1 

The process noise covariance matrix is now: 

and Wk = 

Qk = E[wwT] = 

I 0 ^ 

0 

0 

0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 E[W\) 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 E[w 

(4.24) 

The observation equation is 

y J 

1 0 0 0 0 o N 

0 0 0 1 0 0 , 

/ \ 
xk 

Xk 

Xk 

Vk 

Vk 

+ 
\v2 J 

(4.25) 

and v and R remain unchanged. 
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The proposed discrete time physical model is the simplest available. More sophisti­

cated models (eg including known currents, etc) could be substituted if warranted. 

4.2 Choice of the process vector dimension 

In the process equation, the noise can be applied either on the velocity or the acceleration 

of the iceberg. The better model is the one giving results as close as possible to reality. 

Random iceberg trajectories have been created to compare with real trajectories. The 

artificial trajectories are calculated step-by-step from a given initial position Xo, using 

the process equation: 

xk+T. = Axk + w 

The noise w is taken randomly in a normal distribution with zero mean and given 

(22[iWi], -Efu^]) variance. The time interval between two steps is one hour, as this is the 

most common value for actual radar tracking data. 

Two sets of random trajectories have been created. In the first set, the noise has 

been applied on velocity. In the second set, trajectories have been calculated with noisy 

acceleration. In both sets, noise variances have been chosen in such a way that the 

distance between two positions remains realistic. 

A typical output is presented for each set in figure (4.2). Comparison with real 

trajectories shows that a noisy velocity is the more realistic of the two. For a time 

scale of one hour, the rate of change of position is too slow with a noise applied on 

acceleration. In this case, a realistic behaviour would mean a very large value for the 

noise. The velocity model is therefore kept to proceed to the numerical integration of the 

risk in chapter 5. 
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Figure 4.2: Computed trajectories 
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4.3 Trajectory filtering 

Filtering iceberg trajectories means extracting the "best" estimate of the real trajectory 

from the measurement values. 

To implement the filter, estimation of the state vector JC,nit and covariance matrix 

Pinit are needed. 

In case of dimension 2, let (x(l), y(l)) and (x(2), y(2)) be the measured positions 

at time t\ and t2. An estimation of the state vector at time t2 can be deducted: 

y(2) 

\ l( y(2)-y(l)) ; 

The initial error covariance matrix is 

x(2) 

i(x(2)-x(l)) 
(4.26) 

P 2 = E[(x2 - x2){x2 - x2)T] (4.27) 

Because x2 — x2 = 

-«i(2) 

Wl(l) - ±(Vl(2) - Vl(l)) 

-v2(2) 

\ w2(l) - ±(v2(2) - v2(l)) j 

(4.28) 

Let = < 

E\w\) = a 

E[w\] = b 

E[v\] = c 

E\vl) = d 
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a 0 0 \ 
a T 

0 
then P2 = (4.29) 

0 0 b T 

\ 0 0 b 26 , J 
/ 

x2 and P2 are the "best" estimates we can provide to the filter at time t2. At each 

successive time step, the filter uses only the measured position to calculate process values 

and errors, as shown in figure (3.1). 

As more and more measurement values are given to the Kalman filter, its errors and 

gain converge towards stationary values. Figure (4.3) compares the convergence of errors 

and gain related to x , either with the matrix P2 calculated above, or with P2 — (0). We 

obtain the same values after a few steps. 

In dimension 3, three measurements are required in order to calculate a first estimate 

of the process vector, including position, speed and acceleration of the iceberg. 

The convergence of errors and gain is obtained after 3 to 5 steps. 

4.4 Noise calculation 

The Kalman algorithm requires the values of both process and measurement noise. 

Measurement noise depends on the accuracy of the radar. Typical values are 1 % of 

the range, and ±1 deg over the bearing angle [4]. 

The evaluation of the process noise is a more complicated problem. It covers all non-

deterministic parameters influencing the motion of the iceberg. One method of obtaining 

this information would be to measure a set of iceberg trajectories,as well as wind and 

current values for the certain area and at a given period of time. This data can then be 

used to deduce the corresponding value of the noise. This is a laborious operation which 
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Figure 4.3: Convergence of errors during filtering 
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requires a detailed survey of the area. 

Different icebergs can have different behaviours when driven by the same winds and 

currents. Therefore, it is desirable to use the motion of the observed icebergs as much as 

possible as the only source of information. 

In dimension 2, the process noise is appHed on velocity: 

ik+i = ik + wi 

Vk+i = yk + u>2 

(4.30) 

Wi = T x ( acceleration on x) 
Therefore, 1 

i y 2 = T x ( acceleration on y) 

and E[ww2] is the variance of T times acceleration. 

To calculate the noise, the known trajectory can be used without treatment, by 

calculating velocity and acceleration versus time. 

The filter can also be used a first time with an arbitrary value for the noise. Then 

the noise over the filtered is calculated. The procedure is repeated until the value of the 

noise converges towards a final value. 

In dimension 2, a first estimation of the process noise using the observed trajectory 

gives better results. This appHes in the common case when the measurement noise is 

smaller than the process noise. 

Figure (4.4) shows three different iceberg trajectories observed off the east coast of 

Canada [24]. Locations were recorded at hourly intervals. The foUowing table gives for 

each of the trajectories: 
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• the noise calculated with respect to x i£[u>i], 

• the noise with respect to y JSfifj], 

• the overall noise \jE\w\)2 + E[u>l]2. 

Units are km2 h~4. 

noise on x noise on y overall noise 

Traj.l 0.07 0.07 0.10 

Traj.2 0.20 0.08 0.21 

Traj.3 0.06 0.11 0.13 

The process noise is a good image of the "noisy" behaviour of the iceberg, and there­

fore of the predictability of its motion. The first trajectory presents sudden changes in 

both x and y directions, but on a small scale. The motion of the second iceberg is obvi­

ously more unpredictable on the x direction. The third trajectory presents more changes 

in acceleration in the y direction. 

The same methods of process noise calculation can be applied in dimension 3, where 

< 

Vk+i = Vk + w2 

4.5 Trajectory forecasting 

The most important feature of the Kalman filter in developing the risk of impact calcu­

lation, is trajectory forecasting. 

At the end of the known trajectory, we obtain the "best" estimate of the real motion 

of the iceberg with the associated error matrixs. During the forecasting, the filter runs 

without inputs, ie without measured positions. 

file:///jE/w/)2
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Figure 4.4: Real iceberg trajectories 
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Let xp be the last filtered position. Without measured position at time tp+i. xp+i = 

xp+1 = Axp. 

More generally, Xp+n = A" xp. 

The process equation gives: 

xp+i = Axp + wp 

At the following step, 

xp+2 = A(Axp + wp) + wp+i and so forth. 

n 
Therefore, xp+n = Anxp + ^ A^Wp^ (4.32) 

«=i 

= An is the process matrix associated with the n-step forecasting, and 

u , (n) = ^ A n - , W p + . _ i ( 4 3 3 ) 

i=l 

is the associated noise matrix. 

The error matrix associated with the n-step focasting is 

Pp-+n = E[{xp+n - x;+n)(xp+n - x-+n)T] (4.34) 

Having forecasted positions and errors, it is now possible to evaluate the risk of 

impact. 
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Risk of impact calculation 

5.1 A numerical algorithm 

The following risk calculation procedure has been developed by A . B . Dunwoody [11]. It 

is not the purpose of this papre to explain the complete scheme, but the general steps 

should be presented. 

Let n(T) be the number of impacts between time=0 and T. Supposing that p(n(T) > 

0) <C 1, n(T) can be integrated over the probability of impact between small intervals 

(t,t -f St) as follows: 

p(n(tf,t + 8t) = 1) is integrated over all possible velocities upon impact. Let u(t) be 

the velocity of the iceberg at the time of impact. Then: 

(5.35) 

p(n(t, t + 6t) = l)= / p(u(t) = Ukn(t, t + St) = l)dU (5.36) 
o 

The joint probability of impact and speed is: 

32 
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p(u(t) = Ukn(t, t + 6t) = l) = 

rV* ra+-

Jo Ja+% 

±U2cos(d-a)6tx 
( 

u(t) = U 

cos 0 

sin0 

cos a 

sin a I 

> d9da (5.37) 

with d being the distance between iceberg and platform upon impact and r(t) = 

(x(t), y(t)) being the position of the ice feature at time t. 

The joint probabil ity distribution of the position and velocity is a multivariate normal 

density function, because the physical system is linear and excited by gaussian white 

n o i s e . 

p(r(t) = Rku(t) = U) = 
(27r) 2 |D|5 6 X P ^ 2 

X - E[x] " ( , 
X 

- E[x] ^ 

X -E[x] 
z r 1 

X -E[x] -E[x] 
z r 1 

-E[x] 
)(5.38) 

y -E[y] y ~E[y] 

\y - m , { V - E[y] j 

with D = 
Di (0) 

\(0) D2 

E[(x - E[x])2] E[(x - E[x])(x - E[x])] 

\ E[(i - E[x]){x - E[x]) E[(x - E[x])2) 

( = / E[(y - E[y})2} E[(y - E[y])(y - E[y))} 

{ E[(y - E[y})(y - E[y\) E[(y - E[y})2} 
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where (t) has been omitted to save writing. 

is indeed the forecasting of the process vector at time t, 

1 E[x) ^ 

E[x] 

E[y] 

\ E[y] j 

and D is the mean square error matrix previously noted as P~. 

Risk calculation is straightforward using the forecasted data provided by the Kalman 

filter. In risk integration, the time increment is the time separating two forecasted po­

sitions. At each step into the future, the joint probability distribution of position and 

velocity is the normal function of process vector and error matrix at the corresponding 

time. 

During the forecasting, the Kalman filter gives positions and error matrices. The risk 

calculation procedure can be implemented. The risk calculation includes three levels of 

integration: 

Level 1 Integration over time of the risk of impact (equation 5.36). 

Level 2 At each time step, integration over all possible drift speeds of the joint proba­

bility of a particular speed and impact (equation 5.37). 

Level 3 Calculation of the joint probabihty of speed and impact as an integral of the 

joint distribution of position and velocity over an area surrounding the platform 

(equation 5.38). 

The three levels are calculated using Simpson's rule. Because of the possible accu­

mulation of errors, it is necessary to be careful with integration domains. Uncertainties 

at level 3 are highly amplified through the second and first levels. 
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5.2 Application of the filter to a real trajectory 

The following example will describe step by step the application of the Kalman filter to 

the motion of an iceberg. 

Figure (5.5) shows an iceberg trajectory observed on the east coast of Canada. Po­

sitions were plotted relative to the platform at hourly intervals. The first study of this 

trajectory consists of an estimation of the process noise applied on velocity. Velocities 

and accelerations are deduced from positions. The process noise is estimated as the stan­

dard deviation of acceleration. In this case, = 0.15 and -Efû ] = 0.31 (units are 

km2h~4). The measurement uncertainty is taken as 400 meters, ie E[v2] = E[v2] — 0.16 

(units are km2). 

The treatment of the trajectory starts at time = 2 hours, where the process vector 

is taken as the vector of observed position and velocity. During the treatment of the 

trajectory, the procedure is repeated as follows: for instance, let J C 4 be the last filtered 

position at time 4. The forecast of the process vector at time 5 is x$ = Ax A- This is 

the one step predicted position found in figure (5.6). The observed position at time 5 

is then obtained from the radar z 5 (figure (5.7)) and the last filtered position is i 5 = 

xl + K5(z5 — C5xj) (figure (5.8)). It requires 5 steps for gain and errors to converge 

towards stationary values. 

Figure (5.9) shows the curves of observed, step by step predicted, and filtered trajec­

tories. The filter tends to smoothen the sudden changes in the iceberg's velocity. If the 

noises are taken smaller, the gain of the filter is higher, and therefore the weight given 

to observation when calculating the filtered value is higher, too. 

Following the last observed position, the filter is running without input. The filter 

forecasts the future trajectory (figure (5.10)). 

The Root Mean Square (r.m.s) errors on position can be used as a measure of the 
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Figure 5.5: Actual iceberg trajectory used in example 
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• Observed trajectory • Filtered trajectory £ One step forecasting 
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Figure 5.6: One-step-ahead forecasted position 
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Figure 5.7: The newly observed position 
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Figure 5.8: Filtered position 
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Figure 5.9: Filtered trajectory 
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Figure 5.10: Forecasted trajectory 
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uncertainty over position in the forecasting. It is the square root of the variance of the 

error: 

/ E((x(t) - x(t))2) \ 

{ E((y(t) ~ Vi*))3) I 

Ellipses can be drawn, with the two r.m.s position errors as radii. Supposing that 

the errors are gaussian, there is approximatively a 42% chance that the iceberg will be 

within the ellipse at the corresponding time. 

Errors on positions start to grow after the last known position (figure (5.11)), and 

become rather important after 20 hours of prediction (figure (5.12)). 

5.3 An example of risk calculation 

The idea is to compare the results of the risk calculation, and those given by a simulation. 

A n iceberg trajectory has been created to serve as the starting point of the test. The noise 

variances -E[tuJ] and .Efu ]̂ a r e g i v e n and are both equal to 0.1 km2h~4. The trajectory 

is developed from a given initial position and velocity, using the process equation, 

xk+1 - Axk + w 

w is randomly chosen at each time step within a gaussian distribution with zero mean 

and £[ to 2 ] variance. Because the trajectory only has 26 points, the variances are not 

strictly equal to 0.1 km2h,-4, but E[w2) = 0.096 km2h-4 and E[wl) = 0.081 km2h~4. This 

is the real trajectory shown in figure (5.13). 

In order to create conditions as close as possible to reality, the trajectory should be 

corrupted with measurement noise. The measurement noise is taken as 250 meters. The 

"observed" trajectory is created by randomly taking each of its points within a gaussian 
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Figure 5.11: Increase of uncertainty perimeters (r.m.s errors) 
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Figure 5.12: Increase of position uncertainty with time 



Chapter 5. Risk of impact calculation 45 

Figure 5.13: A computed trajectory 
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distribution (figure (5.14)). The variance of the distribution is the given measurement 

noise. 

In order to implement the Kalman filter, an estimate of the process noise is required 

from the observed trajectory. Velocities and acceleration of the ice feature are deduced 

from the positions. The variances of acceleration are then calculated and given i^[^i] = 

0.11km2h~4 and E[wl\ = 0.09 km2h~4. This is the value of the noise given to the 

filter, the only information available to the forecaster. In this case, and because the 

measurement noise is smaller than the process noise, the measurement of the process 

noise over the observed trajectory gives a good level of accuracy. 

If the filter is run several times, using at each loop a new noise calculated with the 

last filtered trajectory, we obtain after convergence 0.024 and 0.019km2h~A. The filter 

tends to make the trajectory "smoother" and reduces the noise to a value close to the 

measurement noise. Therefore, when the process noise is higher than the measurement 

noise, which is true in most of the cases, the first estimation of the process noise is better 

than a value calculated with the filter. 

The final filtered trajectory, as well as 25 hours of forecasted positions and the r.m.s 

error circles are shown in figure (5.15). The platform is situated at the point (0,0) of the 

figure. The impact perimeter is taken as 1 km, ie there would be impact if the center of 

the iceberg would come closer than 500 meters to the center of the platform. According 

to the forecasted path of the iceberg, the platform is most vulnerable to impact from the 

iceberg 14 hours after the last observation (figure (5.16)). 

The risk calculations involve certain precautions which merit discussion, if realistic 

results are to be obtained. 

The time steps at level 1 are given by the time lag between two forecasted positions. 

In order to obtain a good numerical integration, the r.m.s error circles must overlap, 

or in other words, the time lag between positions should be small enough to observe a 
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Figure 5.14: Corresponding "observed" trajectory 



F i g u r e 5.15: T r a j e c t o r y fo recas t ing a n d p o s i t i o n er ro r pe r ime te rs 
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Figure 5.16: Forecasted positions and corresponding times 
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progressive change in the risk of impact with time. If it is not, a solution could be to 

interpolate some values of risk, or reduce the time step in the forecasting algorithm. 

At level 2, the velocity range has to be defined for integration. A possible solution is 

to calculate the average velocity of the iceberg during filtering. The hmit of the velocity 

domain is then taken as n times this velocity. A longer but more accurate solution is to 

numerically "visualize" the joint probability of velocity and impact, and then to define 

at each time step a velocity maximum for integration. 

The angles a and 9 appearing in equation 5.36 have to be chosen small enough. Tests 

have shown a convergence of the risk integration in most of the cases at a — 0 — 10 deg. 

In the presented case, the complete numerical integration gives a risk of 7% . 

Figure (5.17) shows the distribution of risk of impact versus time. The highest risk is 

obtained at time = 10 hours, 4 hours before the expected time of impact. This difference 

is due to the increase of uncertainties in positions and velocities with time. At the 

expected time of impact, the r.m.s position error radius is equal to 10 km. If the errors 

are supposed to be gaussian, the iceberg has about a 42 percent chance of being in this 

circle. At time = 1 1 hours, the radius of the circle is 7 km. A complete discussion 

concerning risk calculation can be found in [11]. 

5.4 C o m p a r i s o n of r i s k c a l c u l a t i o n a n d s i m u l a t i o n 

The principle of the simulation is to run random trajectories from the last real position. 

The risk is the number of recorded impacts divided by the number of trajectories. 

The random trajectories are created using the process equation and the real process 

noise, both components being equal to 0.1 km2h~4. 

In this case, 416 impacts have been recorded for 5000 trajectories, giving a risk of 

8.4%. The distribution of time of impact is given in figure (5.18). Although the shape of 
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Figure 5.17: Calculated risk distribution 
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the curve is similar to the one calculated in the previous section, the risk is 20% higher. 

A risk difference of 10-30% has been recorded between calculations and simulations, 

for different initial "real" trajectories. The reason for this difference is that the sim­

ulation doesn't take into account the uncertainties over the last known position. This 

position is the starting point of the random trajectories. The simulation only considers 

the dispersion of the trajectories due to the process noise. 

There are already uncertainties concerning position and velocity of the last filtered 

value. The situation at this particular point of the trajectory requires careful analysis. 

In the developed example, real and filtered process values are very close to each 

other. While the position difference lies at about 5%, the velocity difference equals 

approximately 15%. The r.m.s position error is 0.184 km, the r.m.s error for velocity is 

0.37 km . Practically, this means that the direction of the velocity vector could vary 

by ±35deg relative to the filtered value, within a 90% confidence limit. Figure (5.19) 

shows the corresponding dispersion of straight trajectories starting from this point. 

In order to compare results of risk calculation and simulation, equivalent conditions 

should be considered in the simulation. The importance of position uncertainty is small. 

The velocity uncertainty can be considered by running several sets of random trajectories 

with different initial velocities. 

The initial range of velocity has been divided into 13 values on both x and y axes. 

The risk is recorded for each of the 169 tests. The final risk is the integral over velocities 

on x and y of the corresponding risks. This operation is highly time consuming. If every 

experimental set contains 200 random trajectories, 33,800 trajectories have been created 

in the end. 

The resulting distribution of time of impact is given in figure (5.20). The overall 

impact risk is 6.8%, which should be compared with the 7% result of the risk calculation 

algorithm. Figures (5.17) and (5.20) are also very similar. 
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Figure 5.18: Risk distribution obtained with a simple simulation! 
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Figure 5.19: Uncertainty over the direction of the future trajectory 
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Figure 5.20: Risk distribution obtained with a complete simulation! 
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C o n c l u s i o n 

The Kalman filter is a powerful tool for treating noiselike signals. Iceberg motions are 

particularly noisy: measured trajectories show high unpredictability. Furthermore, this 

application of the Kalman filter can easily be used with the risk calculation algorithm 

developed by B.Dunwoody [11]. 

The practical advantages are multiple: 

1. The most important feature is certainly the hmited amount of information required 

to run the prediction algorithm, and therefore the risk calculation. The user needs only 

the measurement uncertainty of the radar and the observed trajectory of the iceberg in 

order to estimate the risk of impact to the platform. 

2. The Kalman filter is recursive. Its parameters are self-adaptive to new inputs. 

The filter keeps track of the past. A new value of the risk can be easily calculated as 

soon as a new measurement of the position of the iceberg is available. Only the process 

noise has to be recalculated after a certain period of time in order to reach a good level 

of accuracy. Several trajectories can be treated with Hmited computations. 

3. The filter does not have to be modified to accept deterministic input. Its param­

eters, such as gain or errors, are not changed by deterministic input. They can be the 

influence of a mean current or wind. A deterministic equation according to the known 

influence can simply be added to the filter. It could improve the predicted trajectory 

without changing errors over expected position and velocities. This might be of major 

56 
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interest in the vicinity of the platform, or in areas with known steady flow or wind fields. 

4. The time step between observations can be modified. Observations are usually 

made more frequently as the iceberg approaches the platform. 

The Kalman filter is a flexible and adaptive method serving as a new tool in the field 

of iceberg motion forecasting. 

Some improvements of the actual version have to be considered: 

1. Time scale of observations: the closer in time the observations are, the better the 

process noise can be calculated, and the more errors due to measurement uncer­

tainties can be reduced. For instance, two opposite sided errors on the last two 

positions can create a highly biased direction for the forecasted trajectory. More 

frequent observations will reduce this risk. 

2. The filter gives the "best" estimate of the process vector according to the given 

parameters. The system transition matrix, which links two steps of the process, 

should be numerically improved, in order to give a better image of the reality. This 

could involve discrete time modeling of the iceberg motions mechanism, as well as 

the study of recorded trajectories for a given site. 
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Appendix A : Flowchart of the filtering software 
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Appendix B : Flowchart of the forecasting software 
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Appendix C : Flowchart of the risk calculation software 

Joint probability distribution of position and velocity 
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