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Abstract 

i i 

A new approach to the identification problem of linear continuous-time time-
invariant systems from input-output measurements is presented. Both parametric 
and nonparametric system models are considered. The new approach is based on 
the use of continuous-time functions, the modal functions, defined in terms of the 
system output, the output derivatives and the state variables under the assumption 
that the order n of the observable system is known a priori. The modal functions 
are obtained by linear filtering operations of the system output, the output deriva­
tives and the state variables so that the modal functions are independent of the 
system instantaneous state. In this case, the modal functions are linear functions 
of the input exponential modes, and they contain none of the system exponential 
modes unlike the system general response which contains modes from both the sys­
tem and the input. The filters parameters, the modal parameters are estimated 
using linear regression techniques. 

The modal functions and the modal parameters of the output and its deriva­
tives are used to identify parametric input-output and state models of the system. 
The coefficients of the system characteristic polynomial are obtained by solving 
n algebraic equations formed from the estimates of the modal parameters. Esti­
mates of the parameters associated with the system zeros are obtained by solving 
another set of linear algebraic equation. The system frequency response and step 
response are estimated using the output modal function. The impulse response is 
obtained by filtering the estimated step response using the output first derivative 
modal parameters. 

A new method is presented to obtain the system poles as the eigenvalues of a 
data matrix formed from the system free response. The coefficients of the system 
characteristic polynomial are obtained from the data matrix through a simple re­
cursive equation. This method has some important advantages over the well known 
Prony's method. 

The state modal functions are used to obtain a minimum-time observer that 
gives the continuous-time system state as a direct function of input-output samples 
in n sampling intervals. 
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Chapter 1 

Introduction 

1.1 Introduction 

The analysis of a physical system starts with the formulation of a mathematical 
model of that system. Determining the system model may be possible in some 
cases by detailed analysis using the basic laws of system dynamics. Usually, this 
is not possible in practice because of the lack of sufficient knowledge of the system 
and it is therefore necessary to determine the model from observations made on the 
system. However, the available a priori knowledge of the system is often sufficient 
to determine the class of models to which a suitable model of the physical system 
belongs. In other words, to assume that whether a good model of the system 
is linear or nonlinear, finite dimensional or infinite dimensional, time-invariant 
or time varying, continuous-time or discrete-time, stochastic or deterministic, is 
often possible from the available a priori knowledge of the system. A good model 
should give a close approximation to the physical system according to certain chosen 
criterian besides being identifiable from the available measurements taken from the 
system input and output. 

The problem of identifying a linear lumped parameter time-invariant system is 
the simplest and most tractable. This is the main reason why linear time-invariant 
models have always received considerable interest in the control literature despite 
the fact that most systems in practical life do not fa l l in this category. Nonetheless, 
a linear time-invariant model can be made to serve as a useful approximation to 
a physically nonlinear system about a nominal operating point. Moreover, the 
parameters of a time-invariant model can be updated on-line to track possible 

1 
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variations in the system dynamics under the assumption that these variations occur 
relatively slowly compared to the parameter updating algorithm. 

Since the sixties, with the ready availability of digital computers, most of the 
research work in system identification was drawn towards discrete-time modeling 
by difference equations so that the system model matches the serial processing 
nature of a digital computer. However, most physical systems obey physical laws 
and have continuous-time outputs so that it is natural to model the system in con­
tinuous time by means of differential equations. The identification of a differential 
equation model of the system is consequently an important problem. This problem 
is inherently harder than the identification of a difference equation model because 
of the need to obtain derivatives which are usually unmeasurable. 

Modeling a single input-single output linear system by a differential equation 
of order n can in general take two forms: 
1. Input-output model; 

Dny(t) + Za^y(t) = 5>,-P''u(*) (1-1) 

where u and y are the input and the output signals respectively and where the 
operator V is the time differentiation operator defined by 

dP 

2. State model; 
(a) State equation; 

Dx[t) = Ax[t) + bu{t) (1.2) 

(b) Output equation; 
y{t) = cTx{t) (1.3) 

where x is the state vector, A is an nxn matrix 1 and 6 and c are vectors of dimension 
n each. The superscript T means the transpose. Note that the elements of vector b 
in (1.2) are different from b0,..., 6„_i in (1.1). The parametric system identification 
problem is to obtain estimates of the parameters a0,... ,an-i and 6„_i of 
the system input-output model (1.1), or estimates of the arrays A, b and c of the 

1 Sometimes called the system dynamic matrix 
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state model (1.2) and (1.3) from the available measurements made on the system. 
However, it is not possible to obtain all the elements of A, b and c from the input-
output measurements only; some assumptions on the elements of these arrays have 
to be made which lead to the canonical forms which w i l l be discussed in some detail 
later. 

Complementary to the identification problem of a finite dimensional parametric 
model is the identification of an infinite dimensional nonparametric model, e.g. the 
frequency response or the impulse response. In this case it is usually required to 
obtain samples of the frequency response or the impulse response. 

The following two sections review the important achievements in parametric 
and nonparametric system identification respectively. The last section in this in­
troductory chapter gives a overview of the thesis. 

1.2 Parametric Identification 

A relatively recent survey of the methods of parametric identification of continuous-
time systems can be found in [Young 81]. The survey classifies the parameter esti­
mation algorithms to output error algorithms and equation error algorithms accord­
ing to the cost function that is minimized. The methods reviewed in the following 
sections are basically of the equation error type which is adopted throughout the 
thesis. The term continuous systems w i l l be used throughout the thesis to refer to 
continuous-time systems. 

1.2.1 Continuous Models from Discrete Equivalents 

In order to make use of the advanced techniques of discrete model identification, 
the problem of identifying a continuous transfer function model 2. 

V " - 1 h V 

2Equivalent to the input-output model (1.1) 
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is divided into two parts. The first part consists of identifying a discrete model of 
the system 

E A * ' l ) = i f f e ^ ( 1 - 5 ) 

from discrete measurements. The second part is the determination of H(s) from 
Hd{z~l) which is the inverse problem of digital filter design from the equivalent 
continuous filter [Oppenheim 75, Sec.5.1]. 

The discrete transfer function Hd{z~l) represents the ^-transform of H(s) only 
if the input is a sequence of impulses. Otherwise, and under the assumption that 
the measurements are discrete, the input has to be approximated between the 
sampling instants. Different approximations of the input signal, e.g. by steps or 
ramps, lead to different transformations, step invariant or ramp invariant, from 
H{s) to Hd{z~l) [Sinha,IM.K. 72]. One difficulty with this method lies in the need 
to factorize the denominator polynomial of H^z'1) in order to obtain the poles of 
of H(s) through a logarithmic operation 

Sk = -j,\nzk. (1.6) 

Other transformations which do not require polynomial factorization or logarithmic 
operations are given by 

z-x = \-sT (1.7) 

and 
_ 1 - s{T/2) 

z - i + *(r/2)- ( L 8 ) 

The latter is known as the bilinear transformation. The above transformations are 
based on the approximate prediction equations given respectively by 

r(nT) = r((n - 1)T) + Dr({n - 1)T)T (1.9) 

and 
/ ^ // ^ Dr([n-1)T) +Dr(nT) 

r{nT) = r{{n - 1)T) + —^ K- -T. (1.10) 

where r is either the input signal u or the output signal y. As expected, the bilinear 
transformation usually yields better approximations than the first transformation 
which is based on approximating the derivative by a finite difference. Therefore, it 
can be concluded that all the methods of determining a continuous model from the 
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discrete equivalent model involve approximations either in the input signal or in 
the transformation from the continuous frequency domain to the discrete frequency 
domain. 

Another method, which assumes a zero input and consequently involves no 
approximation of the input signal between sampling instants, is known as Prony's 
method [Marple 87, C h . l l ] . Prony's method is a technique for modeling signals as 
a linear combination of exponentials 

'W = E ^ ' (1.11) 

from equally spaced samples. There are three basic steps in Prony's method. 
Step one determines the linear prediction model that fits the available data, i.e. 
determines the denominator polynomial of H<i{z~l). In step two, the obtained 
polynomial is factorized to obtain n roots and then obtain as in (1.6). Step 
three involves the solution of a set of linear equations to yield the estimates of 
the coefficients G\,. ..,C„. The method does not consider estimating the numer­
ator polynomial of H<i{z—l) and therefore it is suitable only for identification of 
systems with impulsive type inputs [Noharski 85]. Application of Prony's method 
in identification of electromagnetic systems can be found in [Schaubert 79] and 
[Poggio 78], and in biological systems can be found in [Crittenden 83]. 

A state space version of Prony's method is discussed in [Crittenden 83]. The 
system dynamic matrix A is obtained through a logarithmic operation similar to 
(1.6) under the assumption that the full state vector is measurable. The method 
does not give the vector 6. The given reference discusses the choice of the sampling 
period in conjunction with the finite precision arithmetic, used to represent data 
samples, and the fastest and the slowest exponentials in the analyzed signal. 

A l l the above discrete models for characterizing continuous systems and signals 
from discrete measurements are based on the assumption that the sampling time 
T is fixed, and that the signal is band limited. The choice of T for a wideband 
signal is critical because a too small T could result in numerical instability in the 
estimation equations of the linear prediction model parameters and in the inverse 
z-Transform, while a too large T gives rise to the problem of aliasing [Astrom 83, 

Sec.2.5]. 
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1.2.2 M o d u l a t i n g Functions 

A classical technique, [Shinbort 57], similar to the Fourier transform and the Laplace 
transform, is used to transform a differential equation to a set of linear algebraic 
equations in the unknown parameters. Shinbort used the name method functions 
but the name modulating functions was used later [Loeb 65]. The differential equa­
tion (1.1) is multiplied by a vector f_M{t) of modulating functions and integrated 
over the period of observation t0 —• tf 

ff Pny(t)lM(t)dt + $ > , . f Djy(t)lM(t)dt = X > ; P Dju(t)lJt)dt. (1.12) 

Performing the integration by parts and choosing such that 

^LM^o) = V'htkf) = 0 ,J = 0,..., n - 1 (1.13) 

yields an equation in the measured variables only and not in their derivatives 

(-1)" f y{t)V»^dt + Zi-lYaj P y ^ ^ d t 
J t„ j_Q Jt„ 

= E ( - l ) ^ P u(t)D>lM(t)dt. (1.14) 

Unless (1.13) is satisfied, the terminal values of u, y and their derivatives would 
appear in (1.14). 

It is seen from (1.14) that obtaining the estimation equations for the unknown 
parameters requires only the computation of the scalar products of the recorded 
signals with the vector of modulating functions and its derivatives. The use of 
orthogonal functions, e.g. Fourier functions, is preferred to achieve linear indepen­
dence of the estimation equations, a requirement which may violate the terminal 
condition (1.13). 

The elements of / can be derived from the impulse response of a set of analog 
filters such that the output of these filters provide the input data to an estimation 
algorithm which estimates the unknown parameters from (1.14). Such analog filters 
are known as state variable filters [Young 70]. 

The Poisson moment functional approach to continuous system identification 
[Saha 83] is a special case of the state variable method. A Poisson filter chain 
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is composed of cascaded identical filters with a first order transfer function j^, 
X >0. Beside not being orthogonal, the impulse responses of the cascaded filters 
obviously do not satisfy the terminal condition (1.14) so that the unknown initial 
conditions are introduced to the estimation problem. Also, passing the measured 
signals through many filter stages results in smoothing the signals and consequently 
reducing the information content of the filtered signals. 

Pearson [Pearson 85] used a projection of a vector of Fourier functions in order to 
satisfy the terminal condition, and applied the method to identification of bilinear 
systems using sinusoidal probing signals over sequential time intervals. 

1.2.3 Mul t ip le Integrations and Orthogonal Functions 

In recent years, a new technique has been established for the solution of continuous 
system identification problem using orthogonal functions. The main feature of this 
technique is that, like the modulating function technique, it reduces the problem to 
that of solving a system of linear algebraic equations, thus simplifying the solution. 
The transformation of the differential equation to an algebraic equation takes place 
in two steps. First, the differential equation is transformed into an integral equation 
by means of n integrations 3. Second, the input-output signals are correlated with a 
vector f^{t) of orthogonal functions so that multiple integrals of the input-output 
signals can be obtained in terms of f0{t)- The key idea of this technique is based 
on the following property of a basis vector fo{t) under multiple integration 

f ••• r u ° ) d < j • • • d t « - i *
 pkLw u - 1 5 ) 

JtQ J to 
k 

where P is a constant square matrix, called the operational matrix. The elements 
of f_o(t) 'are orthogonal on the observation interval t0 —> tf. Clearly, P depends on 
the particular choice of the basis vector fo{t). 

Since the method was used for optimal control synthesis using Walsh functions 
[Chen, C. 75], several such basis functions have been in use in solving the continuous 
system identification problem. Walsh functions [Rao 75] and [Bohn 82], block pulse 

3 Similar to a Poisson filter chain with A=0. 
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functions [Sannuti 77] and [Chen, W. 87], Laguerre polynomials [Hwang 82], Legen-
dre polynomials [Paraskev. 85], generalized orthogonal polynomials [Wang 87a] and 
Fourier functions [Chung 87] are examples of orthogonal functions used for linear 
time-invariant system identification. Because of their properties under multiplica­
tion, some orthogonal functions have been used in identification of time-varying 
systems [Tzafestas 77] and [Rangana. 87], and in identification of bilinear systems 
[Karanam 78] and [Wang 87b]. For example, a set of N = 2 m Walsh functions of 
sequencies 0 , . . . , N — 1 form a closed set under multiplication. The product of 
any two functions in the set results in a third function in the same set. This prop­
erty allows simple representation of the products input-output signals and also the 
products of input-output signals with time functions that correspond to the time 
varying parameters. 

Among these sets of orthogonal functions, Walsh functions have received much 
of the attention, which is apparent from the relatively large number of publica­
tions on the use of Walsh functions [Rao 83]. The reason for this seems to be the 
simplicity of the Walsh transform and of integration using the Walsh operational 
matrix. It has been shown, [Bohn 82], that integration using the Walsh operational 
matrix can be reduced to binary shifts and addition of data samples. However, nu­
merical errors accumulate because of multiple integrations while truncating the 
operational matrix. To reduce these errors, one-shot operational matrices for in­
tegration were introduced [Rao 81]. Another drawback of the method is that the 
unknown ini t i a l conditions are introduced into the estimation problem as a result 
of multiple integrations. These additional unknowns have to be estimated together 
with the system parameters which may significantly increase the dimension of the 
estimation problem. 

1.3 Nonparametric Identification 

Although nonparametric system identification has lost popularity because of the 
current emphasis on control synthesis and design tools which hinge upon parametric 
system models, it has gained some ground in recent years because of the growing 
interest in long-range predictive control, [Richalet 78], [Rouhani 82], [De Keyser 85], 



Introduction 9 

[Bars 85] and [Clarke 87], which mostly utilizes estimates of the system impulse or 
step response. 

1.3.1 Frequency Response 

Obtaining the frequency response of the system through sinusoidal input testing is 
the most robust of all system identification methods. However, the long test time, 
usually multiples of the response settling time, required to obtain each relevant 
point on the frequency response curve is the reason why digital spectral analysis 
using the discrete Fourier transform now replaces the conventional sinusoidal input 
testing. 

To obtain the frequency response of the system, the input signal u(t) and the 
output signal y{t) are uniformly sampled to obtain u3(k) and y3(k). Then, the 
sampled signals are Fourier transformed to obtain the spectral components U(ku) 

and Y{kw) where OJ is the fundamental frequency over the data window. Samples 
of the frequency response are obtained as the ratio of the corresponding input and 
output spectral components 

or alternatively as the ratio of the input-output cross-correlation and the input 
auto-correlation 

where the astrisk denotes the complex conjugate. 

Unless y is the periodic response to u, the frequency response estimates obtained 
from (1.16) and (1.17) are subject to systematic errors, namely windowing errors 
and variance errors [Wellstead 81]. One way to reduce these errors is to average the 
input-output Fourier coefficients over a large number of independent data windows. 
However, sampling of the input-output signals could give rise to aliasing problems 
especially if the signals are wideband. 

Recently, [Douce 86], a method was suggested to apply a periodic waveform 
to the system for a time of a few periods and then remove it . It is known that 
if the system starts from rest, then the transient component of the response due 
to the input turn-on is equal and opposite to the transient component due to the 
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input turn-off. The Fourier analysis of the two transient components yields results 
which sum to zero, and therefore gives correct estimates of the periodic response. 
However, this method requires response measurements over a relatively long time 
interval, one equal to the input waveform period plus the response settling time. 
Advantageous use of this method seems possible only in the case of highly resonant 
systems where applying a periodic waveform to the system for a long time results 
in wild system response. 

Different methods have been devised since the late fifties [Levy 59] to obtain a 
parametric model of the system from its frequency response estimates by fitting 
those estimates to a complex transfer function. A comparison of five related linear 
least squares methods for transfer function synthesis from frequency response data 
is given in a recent publication [Whitfield 86]. 

1.3.2 Impulse Response 

The possible damage inflicted by direct use of an impulsive test signal on the system 
hardware and the presence of output noise have led to the decline in its use. The 
currently accepted approach is to obtain the impulse response of the system by a 
process of deconvolution. Deconvolution is the inverse of the convolution of the 
system output, or the input-output cross-correlation, with the system input, or the 
input auto-correlation, respectively 

where h is the system impulse response and where Ruy and Ruu are, respectively, 
the input-output cross-correlation and the input auto-correlation. 

Theoretically, white noise is an optimum test input for estimating the system 
impulse response because its auto-correlation is an impulse. Thus, Ruy is itself an 
estimate of the impulse response. Unfortunately, white noise is difficult to realize in 
real life. The simplicity of generating a Pseudo Random Binary Sequence (PRBS), 
beside having an auto-correlation that approximates an impulse over one period 
of the sequence, gave a boost to its use in nonparametric system identification. 

y{t) = h{t) * u{t) (1.18) 

Ruy{r) = h{r) * ^{T) (1.19) 
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However, the auto-correlation of a P R B S is periodic, with finite width triangular 
pulses and nonzero value between pulses which make it just an approximation of an 
impulse. These three differences from the ideal impulse lead to aliasing problems, 
smearing and bias in the estimated impulse response [Wellstead 81]. 

1.4 Scope of the Thesis 

The thesis considers the problem of identifying a linear continuous-time time-
invariant model of a single-input single-output dynamical system from the available 
measurement taken from the system input and output signals. A deterministic 
model is used to describe the dynamics of the system. No doubt a stochastic 
system model that includes a noise model to account for the effect of unknown dis­
turbances on the system could be useful, especially if a priori knowledge of the noise 
model is available. However, considering a stochastic model makes the identifica­
tion problem more difficult especially in the continuous-time case. To account for 
the effect of unknown system disturbances, the method of instrumental variables, 
which utilizes minimum a priori knowledge of the noise model, is used. 

A new approach to the identification problem is considered based on the def­
inition of continuous-time functions, given the name modal functions, defined in 
terms of the system output, the system output derivatives and the system state. 
The modal functions are defined in chapter 2 and their properties are studied. 
Associated with the definitions of the modal functions are the modal parameters. 
Estimating the modal parameters from the available input-output measurements 
is considered in chapter 3 with numerical examples. The method of instrumental 
variables is used in simple cases. The relations between the modal functions and 
the modal parameters with the desired system model parameters are given in chap­
ter 4 in theorem form and then used to identify the model parameters. Use of the 
modal functions and the modal parameters in nonparametric system identification, 
namely frequency response, step response and impulse response, is considered in 
chapter 5. Chapter 6 describes a design procedure to obtain a minimum-time ob­
server for the continuous system state based on the use of the state modal functions 
and parameters. Finally chapter 7 concludes by summarizing the research results 
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as well as suggesting some points that are not covered by the thesis and that could 
be suitable for future research. 

The thesis deals mainly with developing and proving theoretical algebraic re­
lations between modal functions, modal parameters, input-output data, and the 
desired unknowns of the system models. These relations are in the standard linear-
in-the-parameters estimation equations form. Consequently, even though some il­
lustrative numerical examples are given, the thesis does not deal extensively with 
the use of well established numerical techniques for solving linear estimation equa­
tions and the known methods for reducing parameter bias due to noise. The thesis 
places emphasis on showing how the modal functions approach offers new options 
in parameter estimations and in state observer design. 



Chapter 2 

Definitions and Properties of Modal Functions 

2.1 Introduction 

The goal is to identify parametric and nonparametric models of the system; the 
tool is the modal functions and the modal parameters which w i l l be defined in this 
chapter. Section 2.2 provides the mathematical background needed in subsequent 
sections. The modal functions and the modal parameters are defined in section 2.3 
and the properties of the modal functions are studied in section 2.4. 

2.2 Mathematical Background 

It is well known that the general solution of the state equation (1.2) is given by 
[O'Reilly 83, page 3] 

(2.1) 

where <f> is the transition matrix of (1.2) given by 

4>{t) = e At (2.2) 

The following properties of <j> w i l l be used in subsequent analysis: 

<j>{h + t2) 4>{ti)<t>{h) 

D<f>(t) 

= J 

M{t) (2.3) 

13 
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The vector x(0) in (2.1) is the system state vector at time t = 0. Similar to the 
ini t i a l conditions y(0), Dy(0),..., D n~ 1y(Q) required to obtain the solution of the 
differential equation (1.1), the elements of x(0) are necessary to obtain the solution 
of the equivalent state equation (1.2). The terms state and state variables are used 
to refer to x and the elements of x respectively. 

The fact that the input-output relation is invariant under a linear transforma­
tion of the state variables given by 

x(t) 

A 

b = 

T- Xx{t) 

T - i A T 

T~ lb 

c TT (2.4) 

implies that the parameters of A, b and c T cannot all be determined from the 
input-output measurements . To be able to obtain unique solutions to state model 
identification problems, it is necessary to find models which contain the smallest 
number of parameters, i.e. canonical forms. Two canonical forms that wi l l be used 
in the thesis are the Jordan canonical form and the observable canonical form. 

(l) Jordan canonical form: 

The matrix A can be transformed to Jordan canonical form A* by the transforma­
tion 

A* = M~ lAM (2.5) 

where M is the modal matrix [Sinha.P.K. 84]. The matrix A* is block diagonal, or 
diagonal for short, with diagonal blocks of the form 

sk 1 O 

,k = 1, (2.6) 
•• 1 

O sk 

where n* is the number of distinct eigenvalues of A and the dimension of Ak is 
equal to the multiplicity of sk. The vector x* = M~ lx w i l l be refered to by the 

vector of system modes. Usually, the term modes is used to refer to the eigenvectors 
of a matrix. For the purpose of convenience only, the term modes w i l l be used to 
refer to the state variables of x*. 
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(2) Observable canonical form: 

If the pair [A,c) satisfies the observability condition [O'Reilly 83, page 9], a non-
singular matrix M can be found that transforms the matrix A into phase variable 
form 1 given as 

A = M~ x AM = 

0 
0 

O 

1 
(2.7) 

such that 
c TM 1 0 °] (2.8) 

The elements of the bottom row of A are the coefficients of the characteristic 
equation of A given by 

(2.9) A n+J2  ai A J =  0  

3=0 

where O is the zero matrix. The corresponding arrays A, x, i and ~<f> are defined by 
relations similar to (2.4) using the substitution T = M. 

The state model in the phase variable form has a very close relation to the 
input-output model (1.1). The elements of the bottom row of A are the parameters 
a0,... ,a„_i of (1.1). The phase variables, i.e. the elements of x, are defined in terms 
of the output y and its derivatives. It can be shown by differentiating (2.1) j times 
that 

D'y(t) = c TV jx(t) = c TA'x{t) + j^^A^bD^'uit) J > 0. (2.10) 
«=i 

Equation (2.10) is invariant under a transformation of the state variables. Then it 
follows that substituting for A, b, c and x by A, b, c and x, respectively, and using 
(2.7) and (2.8) gives 

y{t) = hit) 

t=i 

V ny{t) = a Tx{t) + T,hD n' iu{t). 

, 0 < j < n 

(2.11) 
t=i 

1 Also known as companion form. 
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Finally, the relation between the elements of vector b and b0,..., 6 n _ i of the input-
output model follows by substituting into (1.1) from (2.10) and using (2.9) as 

n 

bi = Y,  akh-j 3 = 0, • ,n - l,an = 1. (2.12) 
k=j+l 

2.3 Definitions of Modal Functions and Modal Parameters 

Let fa be a scalar function defined as a weighted sum of the state x at the distinct 
time instants t, t — Ti,..., t — Tn 

fa{t) = a Tx(t) +J2P°i c Tx{t - Ti) (2.13) 
t=i 

where a is a vector of dimension n, and pal,... ,pan are constants chosen such that 
fa is independent of the instantaneous value of the state x. From (2.1) it can be 
shown that 

x{t - Ti) = 4>{-Ti)x{t) + j*  T' <f>{t -Ti- T)bu(r)dr. (2.14) 

Substituting for x at different time instants from (2.14) into (2.13) gives, after 
arranging terms 

/«(<) = [« T + !>«.• cTH-Ti)]x{t) +J2pai f~ T' cT<f>{t - T - T)bu{r)dT (2.15) 
i=i .=1 J t 

The condition that makes fa independent of x(t) for all time t is 

or 

where o T is a vector of zeros. For this condition fa is given by 
rt-Ti 

/«(*) = E P « / -Ti- T)bu{r)d7 
t=i J t 

Let 

Pa 

(2.16) 

(2.17) 

(2.18) 

such that (2.16) becomes 

a T + p T  

c T ^ ( - r o 

CTH~Tn) 

T 
= O . 

(2.19) 
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A necessary condition for the existence of a vector pa of dimension n that satisfies 
(2.19) is given by the following theorem [El-Shafey 87]. 

Theorem 2.1 : 

A vector pa, of dimension n, that satisfies (2.19) exists only for observable systems. 

Proof: 
The existence of pa depends on the invertibility of matrix xjj given by 

cTH-Ti) 
4,= 

cTH-Tn) _ 
(2.20) 

In order to study the invertability of ip, the diagonal form of (j> is used. Substituting 
for <f> by M<f>*M~x and for cT by c * T M _ 1 gives 

c^Pi-T^M-1 

(2.21) 
c*T<j>*{-Tn)M-x 

From matrix multiplication rules, if) can be put as the product of three matrices 

0 = V D(c*)M~1 (2.22) 

where D(c*) is a block diagonal matrix with n* diagonal blocks; each diagonal block 
corresponds to a distinct eigenvalue of A and is given by 

(2.23) 
O ckl 

where nk is the multiplicity of the corresponding eigenvalue. The matrix V is 
composed of arrays Vk of dimension nkxn, k=l,... ,n* given by 

(eSkTl • • -eSkT") 

V, 
J-{e3kTl • • • e a * T ") 

d"k-\ i 3 t r , . .,pskTn\ 
L K ^ 7 ^ 6 I 

(2.24) 

stacked vertically on top of each other. 

It is clear from (2.22) that a necessary condition for the invertibility of 0 is that 
D(c*) is invertible which means that Ck, k=l,... ,n* are invertible. This condition is 
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exactly the necessary and sufficient condition for the observability of the system in 
Jordan canonical form [Sinha.P.K. 84, page 173]. The matrix V is of Vandermonde 
type with known determinant expansion with uniform 2 i , . . . ,Tn. This completes 
the proof. 

It follows from theorem 2.1 that if the system is observable and 0 is invertible 
then there exists a vector pa of dimension n given by 

£ = -QLT^X = -aTMD~1(c*)V~1 (2.25) 

whose elements satisfy (2.16). Different choices of a lead to different fa and pa. 

Particular choices of a are of interest as for example aT = c T = c*TM"1 which 
leads to the following definition. 

D e f i n i t i o n 2.1 : 

For an observable system of order n, the output modal function y0 is defined as: 
n 

Vo{t) = y[t) + X > w - y ( t - (2.26) 
»=i 

where p o l,... ,pon are the output modal parameters given according to (2.25) by 

£ = - c T 0 - x = -c*TD-l{c*)V~\ (2.27) 

The name modal time shifts w i l l be given to Ty,..., Tn. In later chapters it w i l l be 
shown how the output modal function can be used in parametric and nonparametric 
system identification. 

Another choice of aT is c T A J , 0 < j < n. It is known that c T y l J x is invariant 
under a linear transformation of the state x. For example, A*x — c*TA*3 x* = 

cTAx. It can easily be verified that 

cTAj = i j + 1 ,0<j<n (2.28) 

where is the [j + l ) t h row in the unity matrix. As a consequence of (2.28), 
the (j + l ) t h state variable in x. This leads to the following 

definition 

D e f i n i t i o n 2.2 : 
For an observable system of order n the state modal function xjj, 0 < j < n is 
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defined as 

y;-(t) = ~xj+1{t) + X ) PiiV{t ~Ti) , 0 < j < n (2.29) 

where pji,... ,pjn are the state modal parameters given according to (2.25) by 

f. = - c T ^ ' V _ 1 = -c?TA*jD-\c*)V-1 ,0 < j < n (2.30) 

It is seen that the state modal function y0 is the same as the output modal func­
tion given by definition 2.1. The state modal parameters wi l l play a key role in 
parametric system identification and in the design of state observers as w i l l be seen 
in later chapters. Other modal functions of use in system analysis are given in the 
following definition 

Definition 2.3 : 

For an observable system of order n, the output derivative modal function is 

defined as 
n 

Vj{t) = Pjy{t) + YIpM* ~ T«) »0 < 3 (2-31) 
i=l 

where pji,... ,pjn are the same state modal parameters given by (2.30). 

The name output derivative modal parameters wi l l be used as well to refer to the 
state modal parameters pji,... ,pjn. 

There is a direct relation between a state modal function y, and the correspond­
ing output derivative modal function y ; for 0 < j < n. Subtracting (2.29) from 
(2.31) gives 

yj{t)-yj{t) = t>jy{t)-xj+i{t) ,0<j<n. (2.32) 

From (2.11), relating output derivatives to state variable in x, and (2.32) it follows 
that 

j 

Vii*) -Vi(t) = Y^biD'^uit) ,0<j<n. (2.33) 

Equation (2.33) w i l l prove useful in estimating the vector 6. 

2.4 Properties of Modal Functions 

After defining different modal functions it is suitable to investigate some of their 
properties. Equation (2.17) is a general formula for defining different modal func-
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tions given by definitions 2.1 or 2.2. The output modal function or the state modal 
function is obtained by substituting for pai,... ,pan by the corresponding modal 
parameters given by (2.30). Using the substitution of variables o = t — T — T in 
the integration in (2.17) and interchanging the limits of integration yields 

Comparing (2.1) with (2.34), it is seen that the system general response is 
composed of two parts; one which depends on the system in i t i a l state, and the other 
which is the convolution integral of the input and the system impulse response. 
Conversely, a modal function is defined to be independent of the state, also it 
is clear that the integrals in (2.34) are different from the standard convolution 
integral. These are the reasons that make a modal function possesses properties 
which are different from the general system response. 

Four properties of modal functions in connection with input superposition, scal­
ing, time shifting and time differentiation are given below. 

Let the pair (fa,u) satisfy (2.34). The following properties are obvious from 

1. Superposition: If the pair (Af a, Au) satisfies (2.34), then (fa + Af a, u + Aw) 
also satisfies (2.34). 

2. Scaling: The pair (afa,au) satisfies (2.34) where a is a scaling factor. 

3. Time shifting: The pair (fa(t + At),u(t + At)) satisfies (2.34) where At is a 
time shift. 

4. Time differentiation: The pair [Vfa,Du) satisfies (2.34). 

It is important to note that the state vector, and consequently any linear function 
of the state variables, e.g. the output, do not possess any of the above properties. 
The following analysis shows the relation between the modal functions and both 
the system modes and the input modes. 

Let u be the free response of a continuous controller of order nc given by 

«=i 
(2.34) 

(2.34). 

Dxc{t) = Acxc{t) (2.35) 
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fa{t) = £ > a , <? f T' <t>i°)!> £M-Ti - o)doxc{t). (2.37) 

£ = X > - <? H°)!> c^d-Ti - o)do (2.38) 
1 JO 

Ue(<) = <LT
cxc{t). (2.36) 

Substituting for u in (2.34) from (2.36), noticing that ^.{t — Tt) = <j>c{—Tj)xc(i) 
where <j)c is the transition matrix of the controller, yields 

Pat C1 I 
1 ' 

Let vector q be 

—r,-
Pat CJ / 

.=1 J L 

Note that is of dimension nc as the number of modes in the input. Substituting 
from (2.38) into (2.37) yields 

fait) = qT
axcit) (2.39) 

The important conclusion that is drawn from the last equation is that a modal 
function is just a linear function of the modes of the input, and it contains none of 
the modes of the system. 

Equation (2.39) gives a general modal function for arbitrary a in terms of the 
input modes. It follows from (2.39) and the definitions of the output modal function 
and the state modal functions (2.29) that 

yj{t) = xj+1it)+J2pjiy{t-Ti) = q.xc{t) ,0 < j < n (2.40) 
t=i 

where q is given according to (2.38) by 

?< = zZ'PH / ' cT<t>i°)!> gtd-Ti -o)do ,0<j<n (2.41) 
i=l 

Similarly, an equation like (2.40) can be obtained for the output derivative modal 
functions. From (2.35) and (2.36), by differentiating j times, it follows that 

Viu{t)=gAixc{t). (2.42) 

Substituting from (2.42) into (2.11) yields 

i 
Djy{t) = x;-+i(0 +52bigA'-%it) ,0<j<n. (2.43) 

t=i 
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Then from (2.40) and (2.43) it follows that 
n 

Vj{t) = Djy{t) + J2pM* - T<) = ,0 < i < n (2.44) 
«=i 

where q is given by 

T \ g + ELx<>i£xr ,0<j<n 

q-=\i , y = o ( 2 - 4 5 ) 

Equations (2.40) and (2.44) have a continuous time auto-regressive moving average 
( A R M A ) structure. Unlike the well known discrete-time A R M A modal, which 
describes the system behavior only at the sampling instants, (2.40) and (2.44) 
are true for continuous time t. Uniform intersample spacing is a characteristic 
of the discrete-time A R M A model, while as seen from (2.40) and (2.44) T i , T 2 — 
2\,..., Tn — Tn_i are not necessarily equal. The intermix between the state variables 
and the output in (2.40) gives it the form of a state observer which gives the system 
state as a function of input-output measurements. The following numerical example 
gives the modal parameter vectors from a known system dynamic matrix. 

E x a m p l e 2.1 : 

Consider a thir d order system for which the dynamic matrix in diagonal form and 
the vector x*T are given by 

-1+J5 0 0 
0 -1-J5 0 
0 0 - 2 

c*T = I 1 1 1 
and 

Obviously, the system is observable. The poles of the system are the diagonal 
elements of A*. It is desired to obtain the modal parameters of the output and of 
its first, second and third derivatives for the modal time shifts 

2i = 4or s 

T2 = 80TS 

T3 = 120T 3 

where Ts = 7r/420. The results of computing p., j=0,... ,3, according to (2.30) are 
listed in table 2.1. 
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j 0 1 2 3 

-0.6605E+00 +0.2999E+01 +0.5715E+01 -0.7848E+02 
+0.6106E+00 -0.2564E+00 -0.1476E+02 +0.3497E+02 
-0.3022E+00 -0.4330E+00 +0.5721E+01 +0.5819E+01 

Table 2.1: Modal parameter vectors 

2.5 Summary 

The main results for this chapter are the continuous-time A R M A models (2.40) and 
(2.44) relating the state and the output derivatives to input-output data. From a 
practical stand point it is seen that a choice must be made for the system order n 
and the modal time shifts. 

The choice of model order is a problem common to all parametric methods 
whether discrete or continuous. One approach, commonly used when estimating 
the model parameters, is to increase the model order until there is no significant 
decrease in the discrepancy between the real system and the estimated model data. 
A second approach is to over-parametrize and then eliminate relatively small pa­
rameters. 

The obtained continuous-time A R M A models are valid for nonuniform time 
shifts, and this allows greater flexibility in choosing 7̂ . Such flexibility is not 
possible in the methods that are based on the standard discrete A R M A models 
such as Prony's method. The flexibility in choosing the time shifts allows for 
determining both the fast and the slow modes in the system response. 



Chapter 3 

Estimation of The Modal Parameters 

3.1 Introduction 

In chapter 2 the modal functions of the system output, the output derivatives and 
the state variables were defined and their properties were studied. Associated with 
each modal function is a modal parameter vector whose dimension is equal to the 
order of the assumed observable model of the system. So far the modal parameters 
were obtained through equations (2.27) and (2.30) which assume the knowledge of 
the system modes. This chapter deals with the problem of estimating the modal 
parameters assuming a linear time-invariant observable system of order n and the 
availability of input-output measurements only. 

The estimation problem is formulated in section 3.2. Section 3.3 presents with 
numerical examples the estimation of the output modal parameters. Estimating the 
output derivative modal parameters introduces the problem of unavailable output 
derivatives so it is presented separately in section 3.4. The problem of increased 
dimension of the unknown parameter vector when multi-mode inputs are used is 
discussed in section 3.5 with a suggestion of a solution using a measurement prefilter 
to partially annihilate the input modes. 

3.2 Problem Formulation 

From the definition of modal functions in chapter 2 we arrived at equation (2.44) 
which has a continuous-time A R M A structure. It is desired to obtain estimates 
of the parameter vectors p. and q. for j > 0 from the available input-output 

24 
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measurements. The approach to the problem is to minimize some scalar function 
of the equation error which is given according to (2.44) by 

e,-(t) = Djy{t) + Y,Pjiy{t - Tt) -J2gjixci{t). (3.1) 
«=i 

where qji and the elements of q . and x^. respectively. Let Oj be the vector of 

unknown parameters and r(t) be the vector of measurements given respectively by 

and 

rT{t) = [y{t - TO • • • y{t - T„) - xcl{t) xcn,:{t)}. 

Hence, the equation error in (3.1) is given in terms of Oj and r by 

ej{t)=Viy{t) + rT[t)0_]. 

(3.2) 

(3.3) 

(3.4) 

A n estimate 0_j of the unknown vector Oj is sought such that a scalar loss function J , 
defined as some norm of the equation error e ; over the observation interval t0 —> tf 

is minimized. The loss function Jj reflects the discrepancy between the continuous 
A R M A model (2.44) and the real system so that the estimate Oj that minimizes Jj 

can be used to obtain estimates of the output derivatives Vjy as 

Vjy{t) = -rT(t) Oj. (3.5) 

The most common cost function of the continuous-time error e; is based on the 
integral of a weighted norm in tj. However, a cost function that is formulated as the 
sum of squares of samples of tj at discrete time instants is possible. In the following 
two sections estimates of the unknown parameters are obtained by minimizing 
cost functions which are formulated in terms of discrete-time and continuous-time 
measurements, respectively. 

3.2.1 Est imation from Discrete Measurements 

In the case of discrete measurements , let N > n + nc be the number of samples 
obtained over the observation interval at the discrete time instants tk, k — 1,..., N. 
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The least squares estimates of the unknown parameters are obtained by minimizing 
the sum of squares of samples of the equation error at tk, k = 1,..., TV, that is, it 
is required to minimize 

Jj<i = Y,e2
j(h) = eJdejd. (3.6) 

k=i 

In terms of the measurements , Jjd is given by 

Jjd = (zjd + Rd ej)T{z^d + Rd 6j) (3.7) 

where 
Zjd= [ vjy{h) ••• Djy{tN) }T (3.8) 

and Rd has rows i%Rd, k = 1,..., TV, given by 

llRd = rT{tk). (3.9) 

It is known that the estimate 6_jd of the unknown parameter vector 9j that minimizes 
Jjd is given by 

ejd=-{RT
dRd)-1RT

d zjd. (3.10) 

Obtaining estimates of the unknown parameter vector from (3.10) seems possible 
only for the case of j = 0. This is because although Rd is available by direct 
measurements , samples of the output derivatives in Zjd, j > 0, are not available. 

3.2.2 Est imation from Continuous Measurements 

Because the system is continuous and can be sampled, at least theoretically, at 
any frequency, a large amount of data could result from the sampling process. 
Therefore, some form of data compression is needed. Correlating the measured 
signal with a function fk over the observation interval results in a single number. 
Correlating the measured signal with a vector / of N functions results in the con­
centration of the information contained in the collected data into N components, 
where each component represents a best fit to the measured signal in a least squares 
sense. Fourier functions and Walsh functions are two suitable candidates for this 
purpose because each of them forms a set of orthogonal functions. 

From the available continuous measurements the loss function is formulated as 
N 

J>f = Y,ehk=4f^f (3-H) 
k=l 
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where t^f i s * n e correlation between the equation error tj and the vector of functions 
/ over the observation interval 

1,7 = P l{t)ej{t)dt. (3.12) 
J to 

In terms of the available measurements Jjf is given by 

Jjf = (zjf + RdjfUjf + Rflj) (3.13) 

where 

[tf l{t)P jy{t)dt (3.H) 

and 

Rf= [*'f{t)rT{t)dt. (3.15) 

The estimate 0Jf- of the unknown parameter vector 03 that minimizes Jjf is given 

by 

4,7 = -(RfRf)-lRfZs/- (3-16) 

Equation (3.16) seems suitable for obtaining estimates of the unknown parameter 
vectors for j > 0 as well as for j' = 0 unlike (3.10) in the discrete case which is 
suitable only for j = 0. This is because of the integration in (3.14) that gives z^. 

Later in this chapter it w i l l be shown that an estimate of z_jf can be obtained either 
from an available estimate of zy_^f, or from an estimate of D 3~ ly obtained from 
(3.5) using an available estimate of 

3.3 Estimating The Output Modal Parameters 

The output modal parameter vector po is estimated as a part of 0O. A n estimate 
of d0 can be obtained either from discrete data, 0_od in (3.10), or from continuous 
data, O^f in (3.16). By putting j — 0 in (3.8) and (3.14) it becomes clear that 
zod and z0f required in (3.10) and in (3.16) respectively are obtained from the 
measured output. The matrices Rd and Rf are obtained from the input-output 
measurements. 
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3.3.1 Estimates from Discrete Measurements 

This is the simplest case because Rd and Zgd are formed from input-output samples. 
Input-output samples should be collected at a rate which is at least equal to twice 
the highest frequency in the output or in the input whichever is greater. 

Example 3.1 : 

Consider a thir d order system with a transfer function 

U [ S ) ~ s* + 4s2 + 305 + 52 
The system has three poles at 

S i = -2 
s2 = -1 + j 5 
5 3 = -1 - j 5 

and a zero at 
5 4 = —4. 

The system has the same poles as the system considered in example 2.1. It is desired 
to obtain the output modal parameters for a third order model of the system using 
discrete input-output measurements . To start with a simple case let the input u 
contain a single mode, a constant for example. In this case the continuous A R M A 
model is given according to (2.44) by 

3 

J/(0 + Y^Poi y[t - Ti) = q00u0{t) 
i=i 

where uQ is the constant input and where q00 is the single parameter which cor­
responds to the input single mode and which wi l l be estimated together with the 
output modal parameters. 

Assuming a zero initial state of the system the response of the system to a 
step input of magnitude +1 followed by another step input of magnitude —1 is 
computed each sampling time Ts = 7r/420. The system poles are not far apart so it 
is reasonable to assume uniform modal time shifts ; T i = T 2 — Ti = T3 — T2 = 40T„. 

The continuous A R M A model in this example is valid only for data windows 
wi : Tz < t < tt, where tt = 444T S is the transition instant when the input switches 
from +1 to — 1 , and w 2 : tt + T3 < t < tf. Therefore, the sampling instants tk, k = 

1,..., N should belong to either w i or w2. Twenty estimation equations are formed 
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for 20 different tk\ 10 in w i and 10 in w2. In each window the spacing tk — tk_i 

is uniform and equals 20T 3. Estimates of the unknown parameters given by (3.10) 
are listed in table 3.1. The estimated values of the three output modal parameters 
can be compared with the true values computed for the same modal time shifts 
listed in table 2.1. 

-0.6605E+00 
Id +0.6106E+00 

-0.3022E+00 
+0.6480E+00 

Table 3.1: Estimate of 90 using discrete data. 

3.3.2 Estimates from Continuous Measurements 

Estimates of the unknown parameters are obtained from continuous data through 
(3.16) with j = 0. As seen from (3.14) and (3.15), the estimation equations are 
formed by correlating the available input-output measurements with a vector of 
functions / over the observation interval. As mentioned earlier, Fourier functions 
and the Walsh functions are suitable for this purpose because each forms a set of 
orthogonal functions. 

Let T0 be the length of the observation interval t0 —> tf and let t0 = 0 such 
that tj = tf — t0 = T0. Fourier functions defined over a time period 0 —> T0 occur 
in pairs, sinw^t and cosw^t where uk = ku>0 and ui0 = 27r/T is the fundamental 
frequency. A vector of N = 2m Fourier functions defined over the time period 
0 —+ T0 is given by 

fF(t) = [ s'mu>0(t) ••• s'mmu!0t cosw 0(t) ••• c o s m w 0 i j . (3-17) 

On the other hand, the vector of Walsh functions defined over the time period 
0 —> T0 is given by 

£w(t) = [ wal(0,t/r o) • • • wal(iV - l,t/T0) ] (3.18) 
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where wa\(k, o) is a Walsh function of sequency k defined over the interval 0 < o < 1 
[Tadokoro 78]. 

The correlation of a signal with a Walsh function requires no multiplication 
as opposed to the correlation of a signal with a Fourier function. Only addi­
tion and subtraction of samples are needed. A Fast Walsh Transform (FWT) 
[Shanks 69]reduces the computational burden even further. In this case a number 
N = 2 m functions, where m is integer, should be used. The time interval of length 
T0 is divided into N equal subintervals and the samples in each subinterval are 
averaged to obtain a vector of N elements. This vector of averaged samples is 
transformed into a vector of N Walsh components using the FWT. 

Example 3.2 : 

Consider the same system as in example 3.1 with the same input-output measure­
ments. The first step of data compression is to concatenate the data windows w x 

and W2 where the continuous A R M A model in example 3.1 is valid. The second 
step is to correlate the concatenated input-output measurements with a vector of 
N orthogonal functions over the period of orthogonality in order to form matrix Rf 

and vector z0f. Estimates obtained by employing a vector of six Fourier functions, 
and estimates obtained by employing a vector of eight Walsh functions are listed 
in table 3.2. 

(using Fourier functions) 
A 
6-oW 

(using Walsh functions) 

-0.6605E+00 
+0.6106E+00 
-0.3022E+00 
+0.6480E+00 

-0.6605E+00 
+0.6106E+00 
-0.3022E+00 
+0.6480E+00 

Table 3.2: Estimates of 0O using continuous data. 

Both examples 3.1 and 3.2 use a single input with a single mode in order to keep 
the dimension of the estimation problem low. A constant input does not provide 
persistent excitation of the system, a characteristic desired to avoid ill-conditioned 
parameter estimation equations. To provide persistent excitation of the system, 
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two different levels of constant input were used in the previous examples. Input 
transition from one level to the other provides excitation to the system modes such 
that the response of the system after the transition carries the required information 
about these modes. 

Parameter estimation using discrete or continuous input-output measurements, 
described in examples 3.1 and 3.2 respectively, can be used with a Pseudo Random 
Binary Sequence (PRBS); a commonly used test input which provides persistent 
system excitation, such that the resulting parameter estimation equations are likely 
to be linearly independent. However, the input does not necessarily have to be of 
binary type; a piece-wise constant input that remains constant at least for time 
Tn before a new transition can be used in the same way as in examples 3.1 or 3.2. 
This restriction on the frequency of the input transitions results from the fact that 
the continuous A R M A model is valid for t > Tn with a constant input. Later in 
this chapter examples with multi-mode inputs are considered and a solution to the 
problem of increased number of unknowns is suggested. 

Both examples 3.1 and 3.2 assume a deterministic environment where measure­
ments are perfect and there is no unknown disturbances affecting the system. In 
practice, measurements are often contaminated with noise and the system is subject 
to uncertainty caused by external unknown disturbances. Therefore it is important 
to investigate the effect of noise on the estimates of the unknown parameters. It is 
known that the estimates of the parameters of a regression like (2.44) obtained by 
least squares using noisy measurements w i l l be biased to a degree dependent on the 
ratio of the covariance of the noise and the covariance of the noise free signal. The 
following example shows the problem of biased estimates obtained from discrete 
and from continuous measurements as described in examples 3.1 and 3.2. 

Example 3.3 : 

A normally distributed noise signal with zero mean and standard deviation 0.1 is 
added to the output samples used in both examples 3.1 and 3.2. The noisy samples 
are used in the estimation equations as has been done in the above examples. The 
results of least squares estimation using the noisy samples are listed in tables 3.3 
and 3.4. 
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-0.5832E+00 
iod +0.5881E+00 

-0.2825E+00 
+0.7105E+00 

Table 3.3: Estimate of 0o using discrete noisy data. 

ioF 
(using Fourier functions) 

ioW 
(using Walsh functions) 

-0.6370E+00 
+0.6151E+00 
-0.3052E+00 
+0.6730E+00 

-0.6317E+00 
+0.6326E+00 
-0.3017E+00 
+0.7003E+00 

Table 3.4: Estimates of 0O using continuous noisy data. 

By comparing table 3.4 with table 3.2 it can be seen that acceptable estimates 
resulted when continuous measurements were used. This is because correlating the 
noisy signal with a Fourier or Walsh function works to average out the noise which 
has zero mean. Good estimates with low bias are likely to occur if the Fourier or 
the Walsh functions used have high correlation with the noise free output while 
they have no correlation with noise. 

Conversely, the problem of biased estimate is noticeable in the case of discrete 
measurements as is clear from comparing table 3.3 with table 3.1. Fortunately, 
the noise induced bias can be removed by incorporating an instrumental variable 
which is highly correlated with the true value of the signal, but not with errors in 
observation caused by various types of additive noise. 

One possibility of an instrumental variable is a shifted output [Soderstrom 81]. 
The amount of shift is chosen small enough so that the shifted output s t i l l has high 
correlation with the unshifted output, while this amount of shift is large enough 
so that the noise in the shifted output has no correlation with the noise in the 
unshifted output. The instrumental variable estimate of the unknown parameter 
vector is given by 

L = -{VTRd)-lVTzod (3.19) 
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where V has rows ikV, k = 1,..., N, given by 

llV = \y{h - 2 i + r) • • -y{tk -Tn + r) - xcl{tk) xme{tk)] (3.20) 

and T is the instrumental variable shift. The only difference between i£V and t[Rd, 

in (3.9) that gives the least squares estimate, is in the shift r of the samples of y. 

Example 3.4 : 

It is desired to obtain an instrumental variable estimate of 0o using the same noisy 
input-output data as in example 3.3. Equation (3.19) is used to obtain the desired 
estimate with the instrumental variable shift r = 257V. Theoretically, any small 
amount of shift is enough in the case of white noise. The results are listed in table 
3.5. It is clear that the instrumental variable method has worked successfully in 
reducing the estimate bias. 

3.4 Estimating The Output Derivative Modal Parameters 

In this section the problem of estimating the unknown parameter vectors for j > 0 is 
considered. Obtaining least squares estimates of 6j for j > 0 from (3.16) would have 
been straightforward if Zjf for j > 0 were available by direct measurements . In 
most practical situations the number of measured variables is less than the number 
of state variables and therefore it is necessary to have some means of obtaining 
all state variables from the available measurements . Output derivatives, regarded 
as state variables, can be obtained by employing so called modulating functions. 
The use of modulating functions, as w i l l be shown, allows the expressing of high 
order derivatives of the output in terms of lower order derivatives and ultimately in 

-0.6650E+00 
+0.6346E+00 
-0.3075E+00 
+0.6537E+00 

Table 3.5: Estimate of 0O using an instrumental variable. 
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terms of the measured output. The following two sections show the use of Fourier 
functions and Walsh functions as modulating functions. 

3.4.1 Estimates Using Fourier Functions 

Consider equation (3.14). Let the vector of modulating functions / be the vector 
of N = 2m Fourier functions / given by (3.17), and let the integration in (3.14) 
be from 0 to T0. Performing the integration by parts yields 

rT„ 

The vector f_p satisfies the following relations 

liF = - / ^ P / j W P ' - y O * ^ (3.21) 

/ F ( 0 ) = / F ( T o ) = [0...0 l - . - l ] 3 

P/ F(*) = n/ F.(t) 

where 
o n 
-ft o 

and J7 is a diagonal matrix given by 

n = 
o 

O mu0 

Substituting from (3.22) and (3.23) into (3.21) gives 

where 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

(3.26) 

c y_! = D^yiT,) - P'^yiO). (3.27) 

Equation (3.26) is recursive in the index j so that it can be used to obtain the 
spectral components of the j t h derivative of the output in terms of the spectral 
components of the (j — l) t h derivative and c ; _ i . Except for c 0, cy_i is not available 
from the measurements . Even in the case of c0 = y(T0) — y(0) it is not wise to 
let the result of (3.26) depend heavily on the difference of two measured samples 
especially in a stochastic environment. However, cv,_i can be estimated with other 
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unknowns in Oj. Hence, only an estimate c ;_ x can be used in (3.26) which means 
that ZjF obtained this way is just an estimate of the spectral components of the 
jth derivative of the output and not the true values. 

Substituting with the estimate of z_jF obtained from (3.26) into (3.13) gives 

JjF = ( —fi Z (j-l)F + RF 
—i 

c i - i 
) T ( - 0 Z.(J-\)F + RF -3 

c i - i 
) 

where 
RF = \RF , £F(o)}. 

(3.28) 

(3.29) 

Note that a hat is put on top of the variable to indicate that it is an estimate of 
the variable and not the true value. It is obvious that the estimate of (#J , c_ , - i ) r 

that minimizes J j F is given by 

o IjF [RFRF) XRF 0 (3.30) 

In order to obtain estimates for Oj and Cj_y for j > 0, equations (3.30) and (3.26) 
are used sequentially. Firstly, 0_x and c 0 are obtained from (3.30) using zoF which is 
available from the measurements, then an estimate of z1F is obtained from (3.26) 
using Zgp and the estimate of c0. This estimate of z1F is substituted in (3.30) to 
obtain estimates for 02 and c i , and so forth. 

Example 3.5 : 

Consider the same system as in example 3.1. Let the system this time be excited 
by a sine wave input u(t) = sin4£. A sine wave has two imaginary modes thus the 
dimension of q., j = 0,..., n, is two and the continuous A R M A model is given by 

M̂*) + Y^Pi'Vi* ~  T>) = J2aiixci{t) = 9jisin4f + qj2cos4t. 

i=l i=l 
This model is valid for all time t > Ts unlike the case of a piece-wise constant 
input. The vector q. is dependent on the choice of the controller state variables xci —3 and xc2. A phase variable form is assumed such that 

r . i T 
xc = sui4t cos4i 

0 4 
-4 0 

T [ 1 0 ] 

The system output is sampled each Ts — n/420. It is desired to obtain estimates 
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j 0 1 2 3 

-0.6617E+00 +0.2974E+01 +0.5757E+01 -0.7815E+02 
IjF 

+0.6111E+00 -0.2529E+00 -0.1481E+02 +0.3491E+02 
A 
ijF 

IjF 

-0.3029E+00 -0.4526E+00 +0.5737E+01 +0.6237E+01 

—JF 
+0.9608E+00 +0.5126E+01 +0.5580E+01 -0.1107E+03 —JF 

+0.1448E+01 +0.5592E+01 -0.8856E+01 -0.1557E+03 

Table 3.6: Estimates of 0j using Fourier functions. 

of 0j for j = 0,1,2 and 3 for the same modal time shifts as in example 3.1 using 
(3.26) and (3.30) sequentially. A vector of six Fourier functions is used with the 
fundamental frequency OJ0 = 2n/384Ts. The results are listed in table 3.6. 

3.4.2 E s t i m a t i o n U s i n g W a l s h F u n c t i o n s 

As mentioned earlier, one advantage of using Walsh functions is the simplicity of 
computing the Walsh Transform which requires only sample addition or subtrac­
tion. A Walsh function is a piece-wise constant function that takes only binary 
values; +1 or — 1 . A transition from one value to the other may occur only at 
the distinct time instants kA, k = 1,...,7V — 1, where A = T0/N where N is 
the dimension of f_w and T0 is the time period over which the elements of / are 
defined. 

Consider equation (3.14). Let the vector of modulating functions be the vector 
of Walsh functions / given by (3.18) and let the integration in (3.14) be from 
0 to T0. The integration over the time interval 0 —* T can be divided into inte­
grations over subintervals of length A such that / is constant over each of these 
subintervals 

ZjW = T,U(k*~) L , ̂ 0 * = EZHr(*A-)[P'- 1y(*A)-P'- 1y((fc-l)A)] 
k=l J(k-1)A k = 1 

(3.31) 
where / ^ ( / c A - ) is the limit of £w{t) as t approaches kA from the left. Define z^_l 
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and z.j-i a s 

4-i 

(3.32) P ^ y f O ) ••• D^yUN-ljA) 

Then substituting from (3.32) into (3.31) gives 

ZJW = *U/-i -Sj-i) (3-33) 

where the mth row of \T/ is composed of samples of Walsh function of sequency 
(m — 1) sampled at the discrete time instants kA~, 1 < k < N. The matrix \P 
is the Walsh matrix used to compute the discrete Walsh transform of a sampled 
signal [Tadokoro 78]. 

Samples of the output derivative of order j — 1 required in (3.32) are not available 
by measurements , so it is required to obtain estimates of these samples by some 
means. The required samples can be obtained from (3.5) provided that there is an 
estimate of 0j_1 already available 

(3.34) 

where 

R +d = 

and 

Rd = 

' LT(A) 

rT{NA) 

'(0) 

r r ( ( J V - 1)A) 
(3.35) 

and r(t) is given by (3.3). Substituting for z-_x and zj_1 in (3.33) by their estimates 
from (3.34) gives 

zjW = *{R; - i t f ^ - i - (3.36) 

Finally, substituting for zjF in (3.16) by its estimate ZjW from (3.36) gives 

hw = -{RwRw)~1Rw^{Rd ~ Rd)ft{j-i)w- (3.37) 

Equation (3.37) shows that it is possible to obtain estimates for Oj, j > 0, sequen­
tially from the available measurements since Rw, Rd and R% are formed from the 
input-output measurements . 
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3 0 1 2 3 

(Ljw 

Ejw 

-0.6605E+00 
+0.6113E+00 
-0.3022E+00 

+0.3002E+01 
-0.2543E+00 
-0.4325E+00 

+0.5715E+01 
-0.1477E+02 
+0.5718E+01 

-0.7850E+02 
+0.3490E+02 
+0.5870E+01 

+0.8717E+00 
+0.1370E+01 

+0.4750E+01 
+0.5265E+01 

+0.6102E+01 
-0.8434E+01 

-0.1009E+03 
-0.1470E+03 

Table 3.7: Estimates of 6j using Walsh functions. 

Example 3.6 : 

Consider the same system as in example 3.5 with the same input-output measure­
ments . It is desired to obtain estimates of £ 3 for j = 0, 1, 2, and 3 for the same 
modal time shifts considered in the mentioned example using equation (3.37). A 
vector of eight Walsh functions defined on a period of length T0 = 384T,, is used. 
The results are listed in table 3.7. In the case of noisy measurements, the instru­
mental variable method can be used. A continuous-time instrumental variable is 
needed. A sophisticated method of generating this instrumental variable using the 
estimated model of the system is given in [Young 70] and [Young 79]. 

3.5 Estimation Using Multi-mode Inputs 

A good test input signal should contain enough modes to excite all the modes of 
the system in order to obtain well conditioned parameter estimation equations. 
Such an input is referred to as a persistently exciting input. Examples of persis­
tently exciting inputs are periodic inputs with many frequency components, e.g. 
square waves and pseudo-random binary sequences. On the other hand, from the 
computational point of view, it is desirable to keep the number of unknowns to 
be estimated from a single equation as low as possible. It is seen from (2.44) that 
there is one unknown to be estimated for each input mode. This could cause a 
serious problem if the input contains a large number of modes as for example the 
case of a square wave input which contains an infinite number of modes. 
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To solve this problem, a prefilter that partially, or totally, annihilates the input 
modes w i l l be used to filter the input-output measurements before being used in 
forming the estimation equations [Trivett 81]. The filtered input and output signals 
have a smaller number of modes than the original signals. 

Let u be the response of a continuous controller as given by (2.35) and (2.36). 
Let the matrix Ac be diagonal so that it can be partitioned into square blocks along 
the main diagonal. Let Ac be partitioned into two diagonal submatrices Aci and 
AC2, and let x c, c c and <f>c be partitioned accordingly 

(3.38) 

(3.39) 

(3.40) 

Acl 0 
-Lei 0 Ac2 ZLc2 

u{t) = [ c j x c T ±c2 
2£ci{t) 
Xc2{t) 

xc2(t + T) 
MT) o 
o <M0 

* c l ( * ) 

The controller is divided into two subsystems Cy and C2 defined by the pairs 
(-A ci,c c l) and {Ac2,cc2) respectively such that the controller output is the sum of 
two components Uy and u2 generated respectively by Cy and C2\ 

u(t) = Uy{t) + u2(t) = c J i ̂ (t) + c j 2 x^it). (3.41) 

The input component uy contains modes of Cy only and the input component 
u2 contains modes of C2 only. Let n c l and nc2 be the dimension of C x and C2 

respectively such that n c l-j-n c 2 = nc. Both pairs ( J 4 c I , C c 1 ) and (Ac2, Cj.^ are assumed 
to be observable hence, we can obtain two vectors 1^ and l_2 of dimension ncy and 
nc2 respectively whose elements are the output modal parameters of subsystems 
Cy and C2 respectively such that 

+ Yllki £ck{t ~ Tki) = o ,fc = l,2 (3.42) 

where Tki, • • •, 1 ^ , k = 1,2 , are suitable modal time shifts. The vectors of filter 
parameters ly and /2 are given according to (2.27) by 

Ik — ~£ck4 ,ck » ̂  — 1> 2 (3.43) 

where ipck is given by (2.20) with the substitution cclc for c and <f>Ck for <f>. The right-
hand side of (3.43) is zero because Uy and u2 are assumed to be the free responses 
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of Ci and C2. Equation (3.42) represents a linear filtering operation, hence the 
linear filters t\ and £ 2 can be defined as as 

= 2 ,fc = l,2. (3.44) 

The filter Zi annihilates all the modes in while t2 annihilates all modes in Xj,2 , 

so if the input u is filtered through Ci, the resulting filtered input wi l l contain none 
of the modes of xcl. Conversly, if u is filtered through £,2, the resulting filtered 
input w i l l contain none of the modes of X&. Filtering u through Zi and £ 2 results 
in annihilating all the modes of the input 

Liu{t) = cj1£lxcl{t) +cf 2£ 1x C2(i) =cJ2Jl1xc2 

MM*) = giMiZdit) + £2£2£i3U2{t) = Q. (3.45) 
Example 3.7 : 

Consider the input 

u(t) = e 2t + e 'sin5< + e 'cos5£. 

This input can be regarded as the free response of a third order continuous con­
troller with one real pole at —2 and two complex conjugate poles at — 1 ± j 5 . The 
partitioned controller is given by 

xcl(t) = [e _ 2 t] x^it) = [e~ fsin5* e _ t c o s 5 i ] T 

c c i = [l] ^ = [1 l ] r 

Ael = [-2] Ac2 = [-1 - 1] 

Mr) = [ < T 2 T ] </>C2{T) = e~T 
cos 5r sin 5r 
sin 5r cos 5r 

Let t\ and £ 2 be two filters which filter out the real mode and the complex modes 
respectively. Let the modal time shifts for £ 1 and for £ 2 be given by 

Tn = T T/10 

r 2 1 = TT/10 

T22 = 7r/5 
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For these modal time shifts the corresponding ip matrices are given according to 
(2.20) by 

I'd = e~T/5 

A2 = 
g-ir/5 

Hence the vectors of output modal parameters l\ and I2 are given according to 

(2.27) by 
-71-/5 

U= 0 e2*/5 

To filter out the real mode, Ci is used 

£iu(t) = u{t) - e*/5u(t - TT/10) = (1 + e 3 7 r/ 1 0)e- f sin 5t + (1 - e 3 ^ 1 0 ) ^ cos 5t. 

To filter out the complex modes, Z2 is used 

C2u{t) = u(*) + e 2 , r/ 5u(i + TT/5) = (1 + t-2«l*)z 2t 

Obviously if £ 1 and £ 2
 a r e applied the resulting filtered output is zero. 

Example 3.8 : 

Consider a periodic input with period T0 such that u(t) = u(t — T0). The fun­
damental frequency is u0 = 2ir/T0. In general a periodic u could have an infinite 
number of imaginary modes ±jkw0, k > 0, and consequently the controller that 
generates u could then have order infinity. 

Consider filtering out a single frequency ku0. The controller can be partitioned 
into two parts; one part that generates the frequency ku0 

0 kojn Ad 
-ku)0 0 

Cd = [1 11 

<I>C\{T) 
cos ku/0T sin / c w p f 
- sin ku)0T cos ku0T 
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and the other part that generates all other frequencies. To perform the filtering 
operation, a filter Zk with the modal time shifts 

Tx = T 0/4 
T2 = T0/2 

is used. For these modal time shifts the corresponding ifik is given by 

cos kir/2 — sin fc7r/2 sin /CTT/2 + cos /c7r/2 
cos kir cos kn 

For any odd integer k0, x^k„ is given by 

where 

—m m 

-1 -1 

m 
+ 1 if (k0 — 1) is divisible by 4 
— 1 if (k0 — 1) is not divisible by 4. 

It follows from (2.27) that for odd integers k0 the vector of output modal param­
eters for filters Zko that filters out frequency k0u0 is given by 

[0 1] 

regardless of the value of k0. This means that a filter Zko with the given modal 
time shifts and modal parameters, annihilates all the odd frequency components 
in u. If u0 is a periodic signal with odd symmetry, e.g. a square wave, then £ k o 

completely annihilates the modes of u 

Ckou0{t) = u0{t) + u0{t - T/2) = 0. 

It is clear from the above example that although the input may have an infinite 
number of modes, it was possible by a simple filtering operation to annihilate all 
the modes of the input. 

Consider the continuous A R M A model (2.44). Let vector q. be partitioned 
according to the partitioning of x,. in (3.38) such that 

—J 

V jy{t) - T.) = qfxcl(t) +q* Txc2(t). 

i=l 

Applying Ci and C2 , given by (3.44), to (3.46) respectively yields 

V j£iy(t) + JZpJiHiy{t - Ti) = qf clSe2{t) 

(3.46) 
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1=1 

In (3.47) the filtered input-output measurements pairs (£iy , Liu) and (£ 2y , £2^) 
are used instead of the direct measurements pair (y , u) such that the number 
of unknowns in the two cases of filtered measurements is n + nc\ and n + nc2 

respectively, while the number of unknowns if the direct measurements were used 
is n + nci + nc2. 

Example 3.9 : 

It is desired to obtain estimates of Oj for j = 0,1,2 and 3 of the system considered 
before in examples 3.5 and 3.6 from the system response to the input 

u(t) — cos6i — s i n 3 i . 

The response of the system to this input starting from zero ini t i a l state is sampled 
each time interval Ts = T 0/384 where T0 is the period of the input component 
of frequency w 3 = 3. The modal time shifts TX,T2 and T3 are taken such that 
T x = T2 - Tx = T3 - T2 = 40T S. 

The input has four imaginary modes at ±j6 and ±j3 which means that the 
dimension of each of q , j > 0 , is four. To reduce this number the technique of 
the measurements prefilter £ is used. Two filters Ci and £ 2 are used to eliminate 
modes of frequencies 6 and 3, respectively as in (3.47) such that in each case the 
number of modes in the filtered input is reduced from four to two. The choice 
of the modal time shifts for each filter completely defines the corresponding filter 
parameters. The following values for the modal time shifts are assumed; 

Tn = T0/8 

Tl2 = T0/4 

T21 = T0/4 

T22 = T0/2 

The prefilter parameters which result from the above choice of the modal time 
shifts are the same for both filters 

(1 = [0 I f 

L2 = [0 I f . 
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Hence, the filtered inputs £ i u and £ 2 u . are given by 

£iu(t) = (cos6*-sin3£) + (cos6(i - T 0/4) - sin 3(t - T 0/4)) 

= (cos 6* - sin3t) + (cos(6t - TT) - s'm(3t - TT/2)) 

= — sin 3t + cos 3t 

and 

£2u(t) = (cos6i - s i n 3 t ) + (cos6(£ - T0/2) - s i n 3 ( i - T0/2)) 

= (cos 6* - sin3t) + (cos(6t - 2TT) - sin(3* - 7r)) 

= 2cos6i. 

As expected, £i« has a single frequency w 3 = 3 and £ 2u has a single frequency 
u>6 = 6. The corresponding filtered outputs are 

£iy(0 = y(0 + y(< - T0/4) 

t2y{t) = y{t) + y{t~T0/2). 

Estimates of the unknown parameters are obtained as before by minimizing some 
function of the equation error defined in this case according to (3.47) by 

ci(t) - D jLiy{t) + J2PjitMt - Ti) - g f £ixc2(f) 
i=i 
n 

e2{t) = D''L2y{t) +J2PjiC2y{t - Tt) - q) T C2xcl{t). 
i=i 

The state vectors xcl and xc2 are chosen such that 

£i£c2{t) = [sint cos£]r 

and 

£2Xci{t) = [sin4£ cos4£]r. 

Either Fourier functions or Walsh functions can be used as described in subsections 
3.3.1 and 3.3.2 with the exception that the filtered measurements pairs (£iy, Z\u) 

and (£2y, C2u) are used instead of the direct measurements pair (y, u). Two vectors 
of estimated parameters 0^ = [p* T <?*T]T and = [p 2^ 3**\ T•> f° r e a c n j, result 
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3 0 1 2 3 

-0.1390E+01 
+0.1188E+01 
-0.4190E+00 

+0.7137E+00 
+0.2994E+01 

-0.1701E+01 

+0.2271E+02 
-0.2640E+02 
+0.6527E+01 

-0.3997E+02 
-0.4291E+02 
+0.4671E+02 

-0.3362E+00 
+0.4154E+00 

-0.1629E+01 
+0.2898E+01 

+0.4215E+01 
+0.6785E+01 

+0.7236E+02 
-0.4658E+02 

Table 3.8: Estimates of 0j using Fourier functions. 

3 0 1 2 3 

-2 
EjF 

-0.1387E+01 
+0.1124E+01 
-0.4168E+00 

+0.7382E+00 
+0.2968E+01 
-0.1684E+01 

+0.2252E+02 
-0.2622E+02 
+0.6424E+01 

-0.4038E+02 
-0.4224E+02 
+0.4634E+02 

~2 -0.9154E+00 
-0.8869E-01 

-0.5276E+01 
+0.1354E+01 

+0.3682E+01 
+0.2380E+02 

+0.2279E+03 
+0.5318E+02 

Table 3.9: Estimates of 9j using Fourier functions. 

from the filtered measurements pairs (Ciy, Liu) and (£22/, £2^) respectively. The 
results of estimating 0* and 0? using Fourier functions are listed in tables 3.8 and 
3.9. Notice that the results obtained in this example for the modal parameters 
are different from those obtained in the previous examples because the modal time 
shifts considered in this example are different from those considered in the previous 
examples. The true values of the modal parameters are listed in table 3.10. Those 
values are obtained from equation (2.30). The results of estimating the same vectors 
using Walsh functions are listed in tables 3.11 and 3.12. 

Example 3.10 : 

Consider a fourth order system with the transfer function 

H ( \ 400s + 400  
^ ; s4 + 6s 3 + 115.25s* + 2215 + 338 
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3 0 1 2 3 

-0.1389E+01 +0.7304E+00 +0.2263E+02 -0.4022E+02 
Pj +0.1126E+01 +0.2975E+01 -0.2631E+02 -0.4258E+02 

-0.4178E+00 -0.1688E+01 +0.6471E+01 +0.4649E+02 

Table 3.10: True values of pj. 

3 0 1 2 3 

-0.1388E+01 
+0.1126E+01 
-0.4179E+00 

+0.7306E+00 
+0.2975E+01 
-0.1688E+01 

+0.2263E+02 
-0.2632E+02 
+0.6474E+01 

-0.4024E+02 
-0.4256E+02 
+0.4649E+02 

-0.3434E+00 
+0.4151E+00 

-0.1683E+01 
+0.2893E+01 

+0.4137E+01 
+0.6802E+01 

+0.7320E+02 
-0.4654E+02 

Table 3.11: Estimates of 0* using Walsh functions. 

3 0 1 2 3 

t 
S-jW 

EJW 

-0.1388E+01 
+0.1126E+01 
+0.4179E+01 

+0.7314E+00 
+0.2973E+01 
-0.1687E+01 

+0.2262E+02 
-0.2630E+02 
+0.6467E+01 

-0.4023E+02 
-0.4254E+02 
+0.4647E+02 

-0.9128E+00 
-0.8730E-01 

-0.5325E+01 
+0.1364E+01 

+0.2981E+01 
+0.2371E+02 

+0.2261E+03 
+0.5283E+02 

Table 3.12: Estimates of 6? using Walsh functions. 
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The system has two pairs of complex conjugate poles at —l±jl.5 and — 2±jl0, 
and a zero at — 1 . A fourth order model is assumed for the system and it is desired 
to obtain the vectors of modal parameters p. for j =0, 1, 2, 3, and 4 from the 
input-output measurements for suitable modal time shifts. 

The system is excited by a square wave of period TQ = TT such that the funda­
mental frequency OJ0 = 2. Starting from the following in i t i a l state 

y(0) = 0.2 
Py(0) = 0.0 
P 2 y(0) = 0.0 
D3y(0) = 0.0 

the response of the system to the square wave input is sampled such that 420 sam­
ples are taken every time period T0, so that the sampling time Tg equals 7r/420. 
The values assigned to the modal time shifts are 

Ti = 20T S 

T2 = 40T S 

Ts = n o r 3 

T 4 = 160T 3 

The differences between the modal time shifts are not uniform in this example. 

The square wave input has odd symmetry similar to the case considered in 
example 3.8. Hence, a filter £ with modal time shifts T i = T0/4 and T 2 = T 0/2, 
and modal parameters l\ = 0 and l2 = 1 annihilates all the input modes 

£u(t) = u(t) + u{t - T/2) = 0. 

The filtered output 
£y{t) = y{t)+y{t-T/2) 

represents a free response of the system. In this case the dimension of vector q. in 
the continuous A R M A model is zero so that for each j it is required to estimate 
only a vector p. of dimension four. 

Similar to the examples considered before estimates of the unknown parameters 
can be obtained using Fourier functions or Walsh functions. Estimates p.F obtained 
using Fourier functions, are listed in table 3.13 and estimates p.w using Walsh 
functions are listed in table 3.14. 
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LF hw ElF EZF hp 

-0.1042E+01 +0.2992E+01 +0.2658E+02 -0.4063E+03 -0.9384E+03 
-0.2220E-01 -0.2784E+01 -0.1545E+02 +0.4268E+03 -0.1537E+03 
+0.2179E+00 +0.1236E+01 -0.8259E+01 -0.7817E+02 +0.1074E+04 
-0.5770E-01 -0.9301E-01 +0.5245E+01 +0.7556E+01 -0.6100E+03 

Table 3.13: Estimates of the modal parameters using Fourier functions. 

EnW hw hw hw EAW 

-0.1042E+01 +0.2990E+01 +0.2760E+02 -0.4126E+03 -0.1016E+04 
-0.2200E-01 -0.2808E+01 -0.1635E+02 +0.4350E+03 -0.9821E+02 
+0.2179E+00 +0.1262E+01 -0.8266E+01 -0.8111E+02 +0.1088E+04 
-0.5769E-01 -0.1059E+00 +0.5330E+01 +0.8519E+01 -0.6231E+03 

Table 3.14: Estimates of the modal parameters using Walsh functions. 

p £, Ei E, £ 4 

-0.1048E+01 +0.2988E+01 +0.2759E+02 -0.4118E+03 -0.1017E+04 
-0.2200E-01 -0.2806E+01 -0.1635E+02 +0.4343E+03 -0.9438E+02 
+0.2179E+00 +0.1262E+01 -0.8255E+01 -0.8105E+02 +0.1085E+04 
-0.5768E-01 -0.1059E+00 +0.5326E+01 +0.8543E+01 -0.6219E+03 

Table 3.15: True values of the modal parameters. 
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The number of Fourier functions used is eight functions with the fundamental 
frequency UJ0 = 2, and the number of Walsh functions used is eight functions 
defined over the time period 0 —> n. The true values of the modal parameters, 
computed using (2.30), are included in table 3.15 for the purpose of comparison 
with the estimated values. 

3.6 Summary 

Chapter 3 is devoted to the problem of modal parameter estimation. Estimation 
equations, which are linear in the parameters, are formed from discrete data as 
well as from continuous data. Modulating functions, e.g. Fourier and Walsh, are 
used in the estimation process. One advantage of estimating the parameters of 
the continuous-time A R M A model (2.44) over directly attempting to estimate the 
parameters of the input-output model (1.1) is that only one stage of integration 
is required. This results in avoiding the introducing of the unknown ini t i a l condi­
tions to the estimation problem. Recursive estimation equations, (3.26),(3.30) and 
(3.37), are used to obtain the vectors of the unknown parameters. 

A n instrumental variable is used in a simple case to reduce the bias that results 
from noisy measurements. Signal averaging is another simple way of reducing the 
effect of noise. In example 3.1, for example, the input could be considered as a 
segment of a P R B S so that data could be averaged over different segments of the 
sequence. In general, multi-mode inputs are required to realize persistent excitation 
and it is shown how modal filters can be used to reduce the order of the parameter 
estimation equations. 



Chapter 4 

Parametric Identification 

4.1 Introduction 

The motive behind the definition of the modal functions and the modal parameters 
in chapter 3 is to use them in system identification. Obtaining the modal parame­
ters of the output and the output derivatives from input-output measurements was 
presented in chapter 3 with numerical examples. This chapter w i l l concentrate on 
obtaining parametric models of the system through the modal functions and the 
modal parameters. Identification of an input-output model is considered first. 

A method to obtain estimates of vectors a and 6 of the input-output model 
through the output modal function is presented in section 4.2. A n important rela­
tion between the vectors of modal parameters and the model characteristic equation 
is established in section 4.3 and then used to estimate the coefficients of the char­
acteristic equation. Also in the same section the modal functions of the output and 
the output derivatives are used to obtain an estimate of vector b. In section 4.4 a 
simple method for estimating the system dynamic matrix from the available mea­
surements is described. The coefficients of the system characteristic equation are 
obtained from the estimated dynamic matrix through a simple recursive relation, 
and the system poles are obtained as the eigenvalues of that matrix. 

4.2 Identification Using the Output Modal Function 

The Output modal function y0 is obtained from the system output by a linear 
filtering operation by adding weighted samples separated by the modal time shifts 

50 
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T i , . . . , Tn. Similarly, a filtered input u„ can be denned as 
n 

u0{t) =u{t) + J> 0,u(t - T{). (4.1) 
t=i 

It follows from the assumption that the model is linear and time-invariant that 
the filtered input-output pair (u0,y0) satisfies the same differential equation as the 
original input-output pair (u, y) : 

Pny0(t) + T,a>Pjyo(t) = Ebjpiu^t). (4.2) 
j'=0 j=0 

Equation (4.2) means that the output modal function y0 represents a particular 
solution to the differential equation model when the input is the filtered input u0 

given by (4.1). The particular solution y0 contains modes from the input only and 
contains none of the system modes while the general solution contains modes from 
both the system and the input. This distinct characteristic of y0 makes the output 
modal function very useful for system identification. 

Once y0 is obtained from the general system response it becomes straight for­
ward to obtain its derivatives analytically since it is composed of modes of the 
input which are known. It follows from (2.44) for j = 0, and from (2.35) that the 
jth derivative of y0 is given by 

Djy0(t)=£Aixc(t). (4.3) 

Similarly, u0 and its derivatives can be obtained in terms of the input modes as 
n 

u0{t) = c j ( / + J2Po*H-Ti))xc(t) (4.4) 
«=i 

where <f)c is the state transition matrix of the controller. Let 

» T = cT{I + itp°iM-Ti)) (4.5) 
t=i 

so that (4.4) becomes 

u0{t) = v?2u{t)- (4.6) 
Then from (2.35) it follows that the jth derivative of u0 is given by 

Dju0{t)=krAixe{t). (4.7) 
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Substituting for y0, u0 and their derivatives from (4.3) and (4.7) respectively into 
(4.2) yields 

£{K + E *iM)2U(t) = »T E MkW- (4-8) 
;'=0 j=0 

Since (4.8) is valid for all t it follows that 

£K + E *i£M = E biUTA{. (4.9) 
J=0 j'=0 

Estimates of the unknown model parameters can be obtained by minimizing the 
norm of the equation error vector defined as 

& =  A f i 0 + R*Q- (4-10) 

where 
a 
b 

(4.11) 

and Rg is an ncx2n matrix given by 

Ro = koAh0---A"~lTlo -AT
cv...-ArlT»\. (4.12) 

The dimension of 6 is in general 2n, hence in order to be able to obtain an estimate 
of 0, the number of rows of R$ should be at least 2n, i.e. the order of the controller 
that generates u should be at least 2n : 

nc > 2n. (4.13) 

The estimate of 0 that minimizes the norm of ee when nc > 2n is given by 

0 = -(RjRe)-lRjAfqg. (4.14) 

Example 4.1 : 

Consider the thi r d order system of example 3.1. It is desired to obtain an estimate 
of the unknown model parameter vector 9 from (4.14). The dimension of 0 in this 
case is six, therefore according to inequality (4.13) the input should contain at least 
six modes. A n input u given by 

u{t) = cos 6t — sin 4t — sin 2t 
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contains three frequency components and therefore it suits the purpose of esti­
mating 0 from (4.14). The output of the system starting from zero in i t i a l state is 
computed every sampling time Ts — 7r/420. 

The number of the output modal parameters that must be estimated in order 
to obtain the output modal function from the system output is three which cor­
responds to the order of the system. The dimension of qg is equal to the number 
of input modes which is six in this example. The elements of qg are unknown and 
must be estimated with the three output modal parameters, hence, the total num­
ber of unknown parameters is nine. In order to reduce this number of unknowns 
the measurements prefilter described is section 3.5 w i l l be employed. 

Three different prefilters £ 1 ? £ 2 and £3 are used, each one of them annihilates 
two frequency components. Let £ l 5 £ 2 and £ 3 annihilate frequency pairs (6,2), 
(6,4) and (4,2) respectively, and let the modal time shifts of the three filters be 
given respectively by 

1057; 2107; 
357; 70TS 1207; 1707; 
5or a 1007; i5or 3 2007;. 

The corresponding filter parameters are given respectively by 
[1 0] 
[-0.4146/5 + 00 0.1413/5 + 00 0.3972/5 + 00 0.7438/5 + 00] 
[-0.1616/5 + 01 0.221915 + 01 -0.1656/5 + 01 0.100075 + 01] 

These parameters are computed using (2.27). The reason why tx is a second 
order filter and not a fourth order can be understood from the result of example 3.8. 
It has been shown in that example that a filter of modal time shifts (T/4,T/2), 
where T is the period of the fundamental frequency, and modal parameters [0 
1], annihilates all the odd multiples of the fundamental frequency. Hence, £,x 

annihilates both the fundamental frequency w 2 = 2 and w 6 = 6 = 3w2. 

Let the filtered input-output pairs ( u ^ y 1 ) , (u 2,y 2) and (u 3,y 3) be the result of 
filtering the input-output measurements pair (u,y) through £,x, £ 2 and £ 3 respec­
tively. Each filtered input-output pair (uk,yk), k = 1,..., 3 is used to obtain an 
estimate of of a vector 0* of dimension five composed of the output modal param-
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eter vector p of dimension three and a vector qk of dimension two. Discrete data 
i-0 — o 

samples are used to obtain the required estimate of 0k as in example 3.1. The time 
difference tk+x — tk

l is taken equal to lOTl,. Fifteen estimation equations are formed 
from each of the three filtered input-output pairs and least squares estimation is 

A k 

use to obtain an estimate 0O in each case. Three sets of results, each corresponds 
to one filtered input-output pair are listed in table 4.1. 

A; 1 2 3 

-0.6586E+00 -0.6597E+00 -0.6572E+00 

L +0.6087E+00 +0.6120E+00 +0.6092E+00 
-0.3016E+00 -0.3034E+00 -0.3030E+00 

hk 
-0.6326E+00 -0.5275E+00 -0.1374E+01 
+0.1374E+00 +0.1229E+01 -0.2457E+01 

Table 4.1: Estimates of p0 and qk, k = 1,2,3 from discrete data. 

The listed estimates of the output modal parameters are obtained for the following 
modal time shifts : 

2i = 40T3 

Ti = 80TS 

^ = 120T 3 

Note that the estimates of the output modal parameter vector in each case are 
the same, which is expected, while the estimates of vectors g*,fc=l,2 and 3, are 
dependent on A:. Each vector qk, A;=l,2 and 3, gives an output modal function y* 
that corresponds to a filtered input uk as 

yk
0{t) =qfxck{t) , k = 1,2,3 

where ^ is the state vector of the subcontroller that generates the frequency 
component uk given by 

x<.k{i) = [sinwjfei cosw f ci] T , k = 1,2,3. 

ŝee example 3.1 
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The filtered input uk obtained as in (4.6) is 

«k
0{t)=ZkT2Uk{t) 

where u k is given according to (4.5) as 

*f = &(I + T,P«M-TJ) 
i=l 

where <f>ck is the state transition matrix of the corresponding subcontroller. 

Since the filtered input-output pairs satisfy the system input-output model, it 
follows from (4.9) that 

+ E * M = E ^ k T A { k , k = 1,2,3. 
j=o j=0 

For each k, k=l,2 and 3, the last vector equation has dimension two. Therefore, 
six equations are available in the six unknown model parameters. Solving these 
equations gives the required estimates of the unknown parameters. The result is 
listed in table 4.2. 

+0.5205E+02 
a +0.3000E+02 

+0.4001E+01 
0 

+0.5204E+02 
b +0.1280E+02 

-0.4759E-01 

Table 4.2: Estimate of the model parameters. 

Example 4.2 : 

Consider the same estimation problem as in example 4.1. The conditions of the 
estimation problem are the same as in example 4.1 with the exception that noisy 
output samples are used instead of the noise free samples used in that example. 
The noise added to the output samples is normally distributed with zero mean and 
has standard deviation 0.01. The bias resulting from using noisy data is evident in 
the parameter estimates listed in table 4.3. 
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+0.5671E+02 
A 
a +0.3945E+02 

+0.4170E+01 
9 

+0.5596E+02 
b +0.1266E+02 

+0.5583E-02 

Table 4.3: Estimates of the model parameters from noisy samples. 

The noise added to the output samples affects the estimates of the output modal 
parameters and the elements of vector qg which are used to obtain the required 
estimates of the unknown model parameters. 

In example 3.4 an instrumental variable was used to reduce the bias in the 
parameter estimates. A shifted output was used as the instrumental variable. 
Similarly, the same instrumental variable can be used to obtain unbiased estimates 
of v and qk which can be used to obtain better estimates of the unknown model 

— O — 0 

parameters. The results listed in table 4.4 shows that the instrumental variable 
method has worked successfully in reducing the bias in the parameter estimates. 

+0.5253E+02 
a +0.3005E+02 

+0.4015E+01 
9 

+0.5211E+02 
b +0.1282E+02 

-0.4365E-01 

Table 4.4: Estimates of the model parameters using instrumental variables. 
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4.3 Identification Using Modal Functions and Parameters 

In this section the modal functions and the modal parameters of the output and 
the output derivatives are used to obtain estimates of the parameters of an input-
output model of the system, i.e vectors a and 6. 

4.3.1 E s t i m a t i o n o f a 

T h e o r e m 4.1 : 
The modal parameter vectors of the output and the output derivatives pg,... ,pn 

satisfy the system characteristic equation : 

£ + Ea^ = oT. (4.15) 
3=0 

P r o o f : 
It follows from (2.30) that 

£ + £ ^£ = -cT{An + E 
j=0 j=0 

(4.16) 

Since the matrix A satisfies its characteristic equation then the sum in brackets on 
the right-hand side of (4.16) is zero which proves the theorem. 

Theorem 4.1 is an important result for parametric system identification. The 
coefficients of the characteristic equation can be obtained by solving n algebraic 
equations formed from the modal parameter vectors p ,... ,p as 

a = -P2 

P 
1 M 

where 
T 

p 
!-o 
T 

£.i 

(4.17) 

(4.18) 

E x a m p l e 4.3 : 
Consider the third order system in example 3.1. It is desired to obtain an estimate 

of a using equation (4.17). The modal parameter vectors required in (4.17) has 
been obtained in examples 3.5 and 3.6 from continuous data using Fourier functions 
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and Walsh functions respectively. The estimates of the modal parameter vectors 
resulting from each example are used to obtain an estimate of a. The results are 
listed in table 4.5. It is of interest to obtain the poles of the system from the 
estimate of a by finding the roots of the characteristic equation. The roots of 
the characteristic equation resulting from the estimates of a obtained by Fourier 
functions and by Walsh functions are listed in the same table. 

Using Fourier functions Using Walsh functions 

+0.5027E+02 +0.5229E+02 
a +0.2986E+02 +0.3003E+02 

+0.3923E+01 +0.4010E+01 

-0.1932E+01 -0.2011E+01 
-0.9953E+00 +J0.5003E+01 -0.9995E+00 +J0.5001E+01 

53 -0.9953E+00 -J0.5003E+01 -0.9995E+00 -J0.5001E+01 

Table 4.5: Estimates of a and the system poles using Fourier functions and Walsh 
functions. 

Example 4.4 : 

Consider the fourth order system of example 3.10. It is desired to obtain estimates 
of a and the system poles from the estimates of the modal parameter vectors 
obtained in that example. Two sets of estimates of the modal parameter vectors 
were obtained using Fourier functions and using Walsh functions. The results of 
estimating a from (4.17) using the results of example 3.10 are listed in table 4.6. 
The roots of the resulting characteristic equation in both cases are listed in the 
same table. 

4.3.2 Est imation of b 

Theorem 4.2 : 

The modal functions of the output and the output derivatives j / i , . . . , j / n satisfy 
n—1 n—1 

Vn{t) + £ ajyj{t) = ]T biVju{t). (4.19) 
j=0 j=0 
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Using Fourier functions Using Walsh functions 

+0.3379E+03 +0.3383E+03 
A 
a +0.2211E+03 +0.2212E+03 

+0.1153E+03 +0.1154E+03 
+0.5995E+01 +0.6006E+01 

-0.1000E+01 +J0.1499E+01 -0.1000E+01 +j0.1500E+01 
s2 

-0.1000E+01 -J0.1499E+01 -0.1000E+01 +J0.1500E+01 
Ss -0.1997E+01 +.7O.IOOOE+02 -0.2003E+01 +J0.1000E+02 
s 4 -0.1997E+01 -j0.1000E+02 -0.2003E+01 -jO.lOOOE+02 

Table 4.6: Estimates of a and the system poles using Fourier and Walsh functions 

P r o o f : 

Equation (4.19) looks quite similar to the input-output model (1.1). Both equations 
have the same right-hand side. The only difference between both equations is that 
the output and the output derivatives in (1.1) are replaced by the corresponding 
modal functions. Let 

y{t) = \y{t-Tl)...y{t-Tn))T (4.20) 

then it follows from the definition of the modal functions of the output and the 
output derivatives that 

y,-(<) = t>jy{t)+P?v{t) ,o<j<n. (4.21) 

Hence, 

fcW + E w W = 0n»(*) + £»(') + l>y(0'"y(') +#»(*))• 

i=o jzzo 

Rearranging terms yields 

yn(t) + J:ajyj(t) = Dny{t) + £ «yP''y(0 + \£ + 
3=0 j=0 j=0 

(4.22) 

(4.23) 

According to theorem 4.1 the term between rectangular brackets in (4.23) is zero, 
thus 

n - 1 n - 1 

yn{t) + E <w(*) = t>nv{t) + + X ay^'yW- (4-24) 
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Equation (4.19) follows directly from (4.24) and the system input-output model 
(1.1) hence concluding the proof of the theorem. 

Equation (4.19) can be used to obtain an estimate of b from the modal functions 
2/i,..., j / n and an estimate of a. Substituting for y l 5 . . . , yn and for Dn~1u 

in (4.19) by the equivalent in terms of the input modes from (2.44) and (2.42), 
respectively, yields 

i£ + E « > S , - = E^Aisu{t). (4.25) 
3=0 3=0 

Equation (4.25) is true for all t, hence it follows that 

3=0 3=0 

A n estimate of b can be obtained by minimizing the norm of the equation error 
vector which is defined as 

§i=gl- Rbb (4.27) 

where 

Rb = \ccAT

ecc...A^~1)Tcc\ (4.28) 

and 
n - 1 

2t=2» + T,liai- (4-29) 
y=o 

Unless the number of zeros of the system is known a priori, the dimension of b 
is usually assumed to be n. Therefore, the dimenssion of Rb should be at least n 
by n. The number of rows of Rb is nc as clear from (2.34) thus the order of the 
controller generating u should at least be n : 

nc>n (4.30) 

The estimate of 6 that minimizes the norm of the equation error vector when 
the strict inequality holds, i.e. nc > n, is given by 

b=(Rb
TRb)-1Rb

Tqt . (4.31) 

Example 4.5 : 

Consider the third order system of example 3.1. It is desired to obtain an estimate 
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of b using (4.31). The system has one zero so that there is only two nonzero 
elements in b. However, the dimension of b w i l l be taken equal to three to illustrate 
a case where the number of zeros is not known a priori. Estimation of vectors q , 
j=0,... ,3, were obtained in example 3.9 using Fourier functions and using Walsh 
functions. In each case two sets of results were obtained q1. and q\, j=l,... ,3, each 
corresponds to a prefiltered input-output measurements . Each of the vectors q\ 
and q2., j—0,... ,3, has dimension two which is not adequate to estimate b which 
has dimension three. However, each pair of vectors q1. and q2 can be augmented to 
obtain a larger vector q. of dimension four which is adequate to obtain the required 
estimate of b. Estimates of q\ and q\, j=l,... ,3, obtained in example 3.9 and the 
estimate of a obtained in example 4.3 are used to form qt which is needed in (4.31) 
in order to obtain the required estimate of 6. The results are listed in table 4.7. 
Two sets of results are listed, each corresponds to using either Fourier functions or 
Walsh functions in obtaining the estimates of p. and q., j—0,... ,3. 

Using Fourier functions Using Walsh functions 

+0.5191E+02 +0.5181E+02 
6 +0.1291E+02 +0.1266E+02 

-0.3879E-01 -0.6689E-01 

Table 4.7: Estimates of 6 using Fourier functions and Walsh functions. 

4.4 Estimate of a from the Free Response 

If the input to the system is zero, the vector of unknown parameters 03 in (3.2) 
reduces to the modal parameter vector p^. In this case, equation (3.37) that gives 
the estimates of 0_3 using Walsh functions reduces to 

where 

W = -{RlRwylRl-*{R-d-R+
d). (4.33) 
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From (4.32) it is obvious that a modal parameter vector p. can be given in terms 
of the output modal parameter vector po as 

hw = WJlw (4-34) 
Substituting from (4.34) into (4.15) gives 

(Wn + E^Wj)poW. (4.35) 
i=o 

It can easily be shown by multiplying (4.35) by Wk, fc=0,..., n — 1 and using (4.34) 
that 

[Wn + £ ajW')PT = O (4.36) 
j'=o 

where P is the estimate of P in (4.18). Since P is invertible, it follows from (4.36) 
that W satisfies the system characteristic equation. This means that W, which 
is obtained from the system free response, can be used to estimate the system 
characteristic equation. The following analysis aims at establishing the relation 
between data matrices, similar to W obtained using Walsh functions, in a more 
general case. 

Let u in (1.2) be zero such that Xj and j / / are the free system state and output 
respectively given as 

Dxf{t) = Axf(t) (4.37) 

yj{t)=cTxf{t). (4.38) 

It follows from (2.1) that for any time shift r, the shifted output is given by 

Vfif + T) = cT(f){T)xf. (4.39) 

Integrating (4.37) from a time instant t0 to another time instant tf yields 

xf(tf) -xf{t0) = A / xf(t)dt. (4.40) 

It is obvious that many data equations (4.40) can be obtained for different pairs 
of time instants ( t 0 i , t / i ) , (^2,^/2), •••• Writing n data equations (4.40) gives the 
following 

[xf{tfl)-xf{tol)...xf{tfn)-xf{ton)\ = A[fn xf{t)dt... ft/n xf{t)dt}. (4.41) 
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Let 

and 

E» = [xf(tfl) - xf{tol).. .xf{tfn) - x,(*„„)] 

T„ = [/ xf{t)dt... xf{t)dt]. 
*tol •'ton 

Then A can be obtained as 
A — *- n 

(4.42) 

(4.43) 

(4.44) 

It would be straightforward to obtain A from (4.44) if all the state variables were 
measurable. The output is seldom the full state so that (4.44) has no practical use. 
However, the columns of H„ and T n can be transformed from the state space to 
the output space through an invertible matrix tp as follows : 

[ Xf(tfl) - Xf{t0i) . . .Xf{tfn) - Xf(ton) ] 

y / ( t / 1 - r 1 ) - y / ( f o l - T 1 ) . . . y / ^ / n - r o - y / ^ - r o 

_ yf{tfl - Tn) - yf{tol - Tn) . . . yf{tfn - Tn) - yf{ton - Tn) _ 
(4.45) 

Zn = ipTn = 

cTH-Tn) 
[ xf(t)dt... & xf(t)dt} 

f&yAt-Tjdt . .. ///; yf(t - Tjdt 

J& y,{t - Tn)dt ... ///; yf(t - Tn)dt J 

(4.46) 

A transformation of A can be obtained from the measured output through (4.45) 
and (4.46) based on the following theorem: 

Theorem 4.3 : 

For an observable system, the matrix A given by 

A = YnZ-x (4.47) 

where Yn and Zn are given by (4-45) and (4-46) respectively, has the same eigen­

values as A. 
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Proof : 

Substituting for Yjy and Zn from (4.45) and (4.46) respectively into (4.47) yields 

A = V S n T _ V _ 1 - (4-48) 

It follows from (4.48) and (4.44) that 

A = 0 A ^ _ 1 . (4.49) 

Equation (4.49) shows that A is a transformation of A which maintains the eigen­
values of A unchanged if is invertible which completes the proof. 

Although theorem 4.3 does not give the matrix A directly in terms of the 
available measurements, it is possible to obtain a transformation of A, matrix 
A, from which it is possible to obtain the eigenvalues of A and its characteristic 
equation. The eigenvalues of A are obtained by solving for the eigenvalues of A, 
and the coefficients of the characteristic equation of A are obtained from the simple 
recursive relation [Sinha.P.K. 84, page 33] 

= I ~ T k ,k = l (A tin) 
a n - k \ - i ( a n _ J k _ 1 r 1 + a n _ t r 2 + --- + o„_ 1r f c_ 1 + r fc) ,k = 2,...,n

 1  J  

where Tk is the trace of A*. As seen from (4.50), only n matrix multiplications are 
needed to obtain the coefficients of the characteristic equation of the matrices A 
and A which makes it attractive from the computational point of view especially 
because A is obtained from the available measurements through simple averaging 
and difference operations plus a single matrix inversion of an nxn matrix. The 
number of columns in 5 n and T n is not restricted to the order of the system n. 
It is possible to form matrices 5JV and Tjv with a number of columns N > n as 
follows : 

S A T = [3„ xf{tf{n+1)) - xf(to{n+1)). ..xf(tfN) - x f [ t o N ) \ (4.51) 

and 
xf{t)dt... xf{t)dt] (4.52) 

-o(n+l) JtoN 

It follows from (4.41) that a least squares estimate of A obtained from Sjv and T A T 

is given by 
A = ENTT

N{TNTT

N)-1. (4.53) 
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Consequently an estimate of A is given by 

A = 0A^ _ 1 . (4.54) 

It can easily be shown that A is given in terms of the available measurements by 

l = YNZT
N{ZNZT

N)~l (4.55) 

where YN and Z^ are obtained from equations similar to (4.45) and (4.46) respec­

tively with N replacing n. 

Example 4.6 : 

Consider the fourth order system in example 3.10. It is required to obtain the 
coefficients of the characteristic equation of the system and the system poles from 
the free response. The free response of the system is computed for the following 
ini t i a l state : 

y(0) = 0.2 
Dy{0) = 10. 

P2y(°) = 0. 
P3y(o) = o. 

Samples of the system response are computed each time interval Ts = 7r/420. First, 
the matrices Yjv and Zjy, N = 15 > n = 4, are formed from the free response. The 
values of the time shifts T i , . . . , T4 are taken as follows : 

Tx = 40T, 
T 2 = 80T a 

T 3 = 100T 3 

T 4 = 120T a 

The time instant pairs (t0k,tfk), k=l,... ,15, are taken such that tfk — tok = 20T 3 

and i0(fc+i) — t0k = 20TS for the specified range of A;. A n estimate of A is obtained 
as in (4.55). The coefficients of the characteristic equation are obtained recursively 
from (4.50), and the poles of the system are obtained as the eigenvalues of the 
estimate of A. The results are listed in table 4.8. 

Estimation of of the system characteristic equation using theorem 4.3 is based 

on the assumption that y/ is the unforced response of the system. However, theorem 
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a System poles 

+0.3388E+03 
+0.2216E+03 
+0.1156E+03 
+0.6014E+01 

-0.2007E+01 +J0.1001E+02 
-0.2007E+01 -JO.IOOIE+02 
-0.1000E+01 +J0.1500E+01 
-0.1000E+01 -J0.1500E+01 

Table 4.8: Estimates of a and the system poles. 

4.3 can be extended to include systems driven by the free response of continuous 
controllers give by (2.35) and (2.36). The system and the controller are augmented 
to obtain a higher order system given by 

V 
' x(t) ' ' A bg' 

0 Ac . suit) . 

and 

y(t) = [cT <?} 
x(t) 

au[t) 

(4.56) 

(4.57) 

The order of the augmented system is n + nc, and the output y is considered as the 
free response of the augmented system as clear from (4.56) which does not include 
a forcing term. The augmented system dynamic matrix is given by 

A bg 
O Ac 

(4.58) 

The n + nc eigen values of Aa are those of A and Ac as can be seen from the diagonal 
form of A and Ac. If matrix Ma is formed from the modal matrices M and Mc of 
A and Ac respectively as 

M O 
O M, (4.59) 

Since M and Mc are invertible it follows that Ma also is invertible and Ma
 1 is given 

by 
M ; 1 = 

M- O 
O M. - i 

A matrix A 0 given by 
A a = MaAaM~l 

has the same eigenvalues as Aa. From (4.58) to (4.61) it follows that 

A* MbgM;1 

O Al 

(4.60) 

(4.61) 

(4.62) 
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where A* and A*c are the diagonal matrices of A and Ac respectively obtained as 
A* = MAM-1 and A*c = McAcM~l. It is obvious that A a is upper diagonal, and 
since the eigenvalues of a triangular matrix are its diagonal elements [Strang 80, 
page 187], it follows from (4.62) that the eigenvalues of A a are the eigenvalues of 
A* and A*. 

The characteristic equation of the augmented system and its eigenvalues are 
obtained as in example 4.6 assuming a system of order n + nc and a free system 
response. The eigenvalues of A which correspond to the poles of the actual system 
can be distinguished from the eigenvalues of Ac which are known. The charac­
teristic polynomial of the augmented system is the product of the characteristic 
polynomials of the actual system and the characteristic polynomial of the con­
troller. So if P(s), Pc{s) and Pa{s) are the characteristic polynomials of the actual 
system, the controller and the augmented system respectively then 

The characteristic polynomial of the actual system can be obtained from (4.63) 
either by equating the coefficients of the like powers of 5 on both sides of the equa­
tion or by long division, under the assumption that the characteristic polynomial 
of the controller Pc(s) is known. 

Example 4.7 : 

The third order system of example 3.1 is excited by a sinusoidal input of fre­
quency 4 

The order of the controller is nc = 2 and has two imaginary poles at ±j4. The 
output of the system is computed for zero ini t i a l state with the sampling time 
TS — 7r/420. A n augmented system of order n + nc = 3 + 2 = 5 is assumed. The 
matrices YN and ZN, N = 20 > 5, are formed from the system response for the 
following time shifts : 

Pa(s) = P(s)Pc(s) (4.63) 

u(t) = sin 4t . 

Xi = 
T2 = 

TS = 110TS 

4or3 

8ors 
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T 4 = HOT/, 
T 5 = 170T a 

The time instant pairs (t0k,tfk), k=l,... ,20, are taken such that tfk — t0k = 20T3 

and t0(k+i) — t0k — 20T S for the specified range of k. A n estimate of A 0 is obtained as 
in (4.55). The coefficients of the characteristic equation of the augmented system 
are obtained from (4.50) using the estimate of A a. The estimated characteristic 
polynomial is 

Pa(s) = s 5 + 3.992s4 + 45.93s 3 + 115.5s2 + 478.4s + 827.1. 

The characteristic polynomial of the controller is 

Pc(s) = s 2 + 16 . 

Substituting in (4.63) and equating the like powers of s on both sides gives the 
following equations in the unknowns a0, a x, and a 2 

16a 0 = 827.1 
16a! = 474.4 

16a 2 + a0 = 115.5 
a 2 = 3.992 

These five equations can in general be solved by least squares to obtain the three 
unknowns. However a more direct solution can be obtained from the first, the 
second and the last equations. The results are listed in table 4.9. 

A 
a K  

Eigenvalues of A 0 

+0.5169E+02 
+0.2965E+02 
+0.3992E+01 

+0.3146E-02 +J0.3995E+01 
+0.3146E-02 -J0.3995E+01 
-0.1003E+01 +j0.5000E+01 
-0.1003E+01 -J0.5000E+01 
-0.1993E+01 +J0.0000E+00 

Table 4.9: Eigen values of A a. 

The poles of the augmented system are obtained by solving for the eigenvalues of 
the estimate of A a. The results are listed in table 4.9. It is obvious that the first 
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two eigenvalues correspond to the controller two imaginary poles while the other 
three correspond to the actual system poles. 

The new method for obtaining the poles of the system as the eigenvalues of an 
output data matrix, as described above, has important advantages over the known 
methods based on discrete prediction models of the system like Prony's method. 
The new method uses continuous measurements so that possible aliasing, associated 
with sampling continuous signals, is not a problem. The flexibility of choosing the 
modal time shift allows for modeling the signal low frequency components as well 
as the high frequency components without aliasing. The poles of the continuous 
system are obtained as the eigenvalues of a data matrix, while if a discrete model is 
used, the continuous system poles are obtained from the roots of the characteristic 
equation of the estimated discrete model by a logarithmic operation. 

The following example illustrates a case of a wideband signal where Prony's 
method fails to determine the exponential modes of the signal accurately, while 
the new method yields accurate results. 

Example 4.8 : 

Consider a signal 

y(t) = e~f sin3f + cos 100*. 

Let u>i and w/, be 3 and 100 respectively, so that the period of the low frequency 
component and the high frequency component are TJ = 27r/3 and Th = 27r/100 
respectively. Samples of y are available every sampling interval Ts = Ti/666 « 
T/i/20. It is required to determine the complex numbers sk, k — 1,... ,4, so that y 
can be modeled by 

y(t) = tc»eSkt-

It is clear that the complex exponents are 

S l = -1 + j3 

s2 = - 1 - j 3 
5 3 = +.7100 
s4 = - j l O O . 

First, estimating the complex exponents is done indirectly through the discrete 



Parametric Identification 70 

prediction model 

y(mT) + ^ M ( ( m - f c ) T ) - 0 . 
jfe=i 

The parameters of the discrete model are estimated from samples of y using least 
squares 

p= -{RTRy1RTy 

where R is an nxN matrix whose mth row is given by 

ilR= [ y ( m + 2) ... y(m - 1) ] 

and 

y = [ y(4) ... y{N + 3)]T . 

The poles of the discrete model zk, k — 1,..., 4, are obtained as the roots of 
4 

Finally each sk is obtained from zk by the logarithmic operation (1.6). 

The choice of T in the discrete model is a problem because y has two widely 
separated frequency components. Choosing T comparable with TJ results in aliasing 
as seen from the results listed in table 4.10, which are obtained for T = 33TS 

and TV = 10. On the other hand, choosing a small T according to the sampling 
theory, T < Th/2, results in losing the accuracy of modeling the low frequency 
component as seen from the results listed in the same table , which are obtained 
for T = 4TS « 2ft/5 and the same N. It is seen from the results in the table that 
the accuracy of the estimate of w( is deteriorated by the small T. 

The condition of the estimation equations for the discrete model parameters 
can be measured by testing the condition number, [Strang 80, page 282], of the 
matrix (RTR). The higher the condition number is, the more ill-conditioned the 
matrix is. The condition numbers of the two cases of T = 33TS and T = 4TS are 
0.6768E+01 and 0.6816E+04, respectively. The condition number in the case of 
small T is three orders of magnitude larger than the condition number in the case 
of large T. This can be interpreted as due to the high correlation between the 
columns of R in the case of small T. 
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Using T = 33T S Using T = 4TS 

-0.1000E+01 +J0.3000E+01 
-0.1000E+01 -J0.3000E+01 
-0.5744E-06 +j0.2109E+02 
-0.5744E-06 -j0.2109E+02 

-0.1187E+01 +J0.2261E+01 
-0.1187E+01 -J0.2261E+01 
-0.5260E-03 +J0.1000E+03 
-0.5260E-03 -JO.IOOOE+03 

Table 4.10: Estimates of sk from the discrete model. 

Applying the new method and using the modal time shifts T = %T where 
T = 33T a, and using time instant pairs [tok,tfk), k=l,... ,10, such that tfk — tok = 

to(k+i) — tok = 33T a, give the results listed in table 4.11. It is obvious that there is 
no probem of aliasing despite the large modal time shifts. 

Using T = 33T S 

-0.1000E+01 +J0.3000E+01 
-0.1000E+01 -J0.3000E+01 
+0.3586E-03 +j0.1008E+03 
+0.3586E-03 -j0.1008E+03 

Table 4.11: Estimates of sk using the new method. 

4.5 Summary 

Chapter 4 deals with the use of modal functions and parameters for determining 
model parameter estimation equations that do not depend on the system initial 
conditions or the use of repeated integrations to eliminate derivatives. The use 
of the output modal function, which is composed of known exponential modes, in 
place of the general system output gives an algebraic vector equation (4.9) that 
relates the exponential modes of the output modal function to those of the filtered 
input through the unknown model parameters and which can be solved for these 
parameters. 

Theorem 4.1 shows that the modal parameter vectors satisfy the system charac­
teristic equation. Using this result yields (4.17) which proves that the a-parameters 
can be identified independently of the 6-parameters. When the a-parameters are 
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known, theorem 4.2 can be used to identify the 6-parameters as in (4.26). 

Theorem 4.3 proves that the system eigen values can be identified from an 
output data matrix. By use of an augmented state vector this approach can be 
extended to the case of nonzero inputs. The output data matrix allows the identi­
fication of the coefficients of the system characteristic polynomial recursively from 
(4.50). It is shown that the new approach yields accurate results with wideband 
signals whereas Prony's method fails. 



Chapter 5 

Nonparametric Identification 

5.1 Introduction 

The identification of nonparametric system models is considered in this chapter. 
Samples of infinite dimensional models, namely the frequency response, the step 
response and the impulse response, are obtained. 

Obtaining the system frequency response by sinusoidal input testing usually 
requires long experimental time to let the system response reach the periodic steady 
state, and therefore it is not suitable for real-time applications. On the other hand, 
obtaining the frequency response from finite data records has its own drawbacks. 
Data windowing results in a smearing of the signal spectrum in a manner dependent 
upon the precise shape of the window, e.g. rectangular, Hanning or Hamming 
[Marple 87, Sec. 5.3]. It is necessary to average the spectrum estimates over a 
large number of data windows in order to reduce the variance induced in these 
estimates by the response transient component. Finite data frames also induce 
bias in the spectrum estimates which is not decreased by increasing the number of 
frames. The bias is reduced by increasing the duration of the data frame, i.e. longer 
test time. Estimating the impulse response by deconvolution using the input auto­
correlation and the input-output cross-correlation functions involves windowing, 
bias and variance errors similar to the case of estimating the frequency response 
[Wellstead 81]. A n advantage of direct nonparametric modeling over parametric 
modeling of systems is that no a priori knowledge of the system order is required. 
However, the indirect nonparametric methods described in this chapter do not have 
this advantage because they are based on the definitions of the modal functions 

73 
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and the modal parameters which require the knowledge of the system order. 

Section 5.2 presents a method of estimating the frequency response of the sys­
tem from the output modal function for a periodic waveform input. The output 
modal function is utilized again in section 5.3 to estimate the step response from 
the system response to a general piecewise constant input. The system impulse 
response is obtained as the derivative of the estimated step response using the 
output first derivative modal parameters in section 5.4. 

5.2 Estimation of the Frequency Response 

The output modal function y0 played a key role in estimating the unknown model 
parameters in section 4.2. As mentioned earlier the output modal function repre­
sents a particular solution to the model differential equation when the input is the 
filtered input u0 given by (4.1). This particular solution has the property that it 
contains modes of the input only and the transient component of the system output 
due to system modes is not present in y0. Consequently, if the input is periodic, i.e. 
a summation of complex conjugate imaginary modes, the output modal function 
is periodic with the same spectral components as the input. The periodic filtered 
input-output pair (u0,y0) can be used to estimate samples of the system frequency 
response. 

Let u be a sinusoidal input with frequency u>0 such that the controller matrix 
Ac in phase variable form is given by 

and the controller state vector is given by 

x,.(t) = [s'mu>0t costj0t]T (5.2) 

The filtered input u0 and the filtered output y0 are given by (4.6) and (2.26), 
respectively. Choosing the controller state equation in phase variable form makes 
it possible to obtain vectors v_ and go, in (4.6) and (2.44), by correlating u0 and y0, 

respectively with the vector [sino; 0i c o sw 0] r over the period of the input. 

(5.1) 
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It follows from equation (4.9), by multiplying both sides by the the inverse of 

U? + £-=o 1MD,that 
n—1 n—1 

3=0 3=0 
(5.3) 

The diagonal form of AC in (5.1) is given by 

A: = JU0 0 
0 - j w 0 

(5.4) 

The matrix Ac is related to its diagonal form A* through the modal matrix M as 

Ar = MAIM 

where 

and 

M 

M'1 = -

Substituting from (5.5) into (5.3) gives 

—J J 
1 1 

J 1 
-J 1 

J'=0 

(5.5) 

(5.6) 

(5.7) 

(5.8) 
J=0 

The frequency response of a system is given as a complex function of the frequency 
u> by 

# ( j c u ) 

Hence, it follows from (5.9) and (5.8) that 

qT = vTM 
H{ju0) 0 

0 H{-ju0) 
M - l 

(5.9) 

(5.10) 

Substituting for M and M 1 in (5.10) gives 

T T 
J ̂  — 

# (jw 0) + F ( - j u ; 0 ) - j ( f f ( j w 0 ) - H(-JOJ0)) 
J(H{JUJ0) - H{-ju0)) H{JUJ0) + H(-ju0) (5.11) 

Let Re(H{](jj)) and Im{H{ju>)) be the real part and the imaginary part of H(JOJ), 

respectively. It follows from (5.11) that 

£ = » T  
Re(H(jcj0)) Im{H{ju0)) 

-Im(H{juj0)) Re(H(ju0)) (5.12) 
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From matrix and vector multiplication rules, it can easily be verified that (5.12) 
can be written as 

— 0 

where V\ and u2 are the elements of vector u_. A sample of the system frequency 
response evaluated at frequency UJ0 is obtained from (5.13) as 

' Re{H{3u0)) Im(H(ju0)) } = £ 

Equation (5.14) gives one sample of the required frequency response. In order to 
obtain samples at different frequencies, a periodic input with multiple frequencies 
should be used. For each harmonic frequency uk = koj0, two vectors uk and qk, 

each of dimension two, can be obtained by correlating u0 and y 0, respectively with 
a vector [sinwji coswkt]T over a time period of the fundamental T0 = 27r/w0. Each 
resulting vector pair i / * and q^ can be used in (5.14) to obtain one sample of the 
frequency response at frequency u>k. 

Example 5.1 : 

From the same input-output measurements of the system considered in exam­
ple 3.1 it is required to obtain samples of the frequency response of the system. 
Starting from rest, the system is excited by a square wave with a fundamental fre­
quency u0=l. Only odd harmonics of u>0 are present in the spectrum of the input, 
so it is possible to estimate only the frequency response samples of the system at 
UJ0 and odd multiples of u0. 

The output modal parameters were obtained in example 3.1. these parameters 
are used to filter the input-output measurements (u,y) to obtain {u0,y0). Pairs of 
vectors uk and qk, for odd k, are obtained by correlating u0 and y0, respectively, 
with a vector [sin/cf cos kt\T over the time period of the fundamental which is 
equal to 2TT in this case. Vector pairs obtained for odd A; from fc = l t o A ; = l l are 
listed in table 5.1. These vectors are used in (5.14) to obtain the required estimates 
of the system frequency response samples at the corresponding frequencies. The 
results are listed in table 5.2 with the true values of the corresponding samples as 
computed from (5.9). 

Re(H{juj0)) Im{H(ju0)) -u2 vx 

(5.13) 

Uy U2 

-u2 ux 

(5.14) 
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k uk ak 

%i 9*2 

1 +0.1436E+01 +0.2359E+01 +0.1974E+01 +0.1751E+01 
3 -0.9008E+00 +0.3559E+00 -0.4778E+00 +0.8423E+00 
5 +0.1395E+00 -0.3717E+00 -0.6021E+00 -0.1003E+00 
7 +0.4124E+00 +0.6293E+00 -0.1089E+00 -0.3875E+00 
9 -0.6618E+00 +0.7798E+00 +0.1795E+00 -0.1675E+00 
11 -0.8865E+00 -0.2632E+00 +0.1213E+00 +0.4375E-01 

Table 5.1: Spectral components of u0 and y0. 

k Re{H{juk)) Im(H(juk)) Re{H{juk)) Im(H(juk)) 

1 +0.9135E+00 -0.2811E+00 +0.9135E+00 -0.2811E+00 
3 +0.7784E+00 -0.6276E+00 +0.7785E+00 -0.6277E+00 
5 -0.2964E+00 -0.1509E+01 -0.2974E+00 -0.1509E+01 
7 -0.5101E+00 -0.1612E+00 -0.5099E+00 -0.1610E+00 
9 -0.2384E+00 -0.2782E-01 -0.2383E+00 -0.2795E-01 
11 -0.1392E+00 -0.8015E-02 -0.1393E+00 -0.8181E-02 

Table 5.2: Estimated and true values of samples of the frequency response. 

One advantage of the method described above to obtain the frequency response 
of the system is that it uses input-output measurements over a relatively short time 
interval which makes the method suitable for unstable systems as well as for stable 
systems. The periodic response of the system is obtained by filtering u and y to 
get u0 and y0 through the modal filter which annihilates the modes contributed 
by system which represents the transient response of the system. Practically, to 
obtain a periodic response the experiment time should be long enough to let the 
transient component of the response settle down which is not possible for an un­
stable system. If on the other hand digital spectral estimates of the auto and cross 
correlation functions of u and y from finite data records are used to obtain the 
required estimates of the system frequency response, the obtained estimates w i l l 
suffer from the inherent errors to the digital spectral estimation method, namely 
windowing errors and aliasing [Wellstead 81]. 
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5.3 Estimation of the Step Response 

A simple input that can be applied to a system for the purpose of identification is 
a step input. If the system is initially at rest when a step input is applied, then the 
output of the system is the step response. If this is not the case and the system 
starts from a nonzero state, which is common in practice, the output of the system 
is the sum of the step response and the response due to the nonzero ini t i a l state. 
A more general input is a piece-wise constant input given by 

k 

M O = J2 v{m)A(t - mT) ,kT<t<(k + l)T (5.15) 
tn=0 

where 
, , f u(mT) - u((m - 1)T) ,m>0 ,r . 

v m ) = \ ) ' u > > ' 5.16) 
v ' I u\m) , m = 0 K ' 

and A(t) is the unit step function. The impulse response h of the system is given 

by 

M O = ̂ H^h- (5.17) 

Substituting from (5.17) into (2.1) using the piece-wise constant input given by 
(5.15) yields 

2/(0 = cT<j>{t)x(0) + h(t-T)Y^, v(m)A(T - mT)dT. (5.18) 
J ° m=0 

The upper limit of the summation in (5.18) is A; although r does not necessarily 
satisfy kT < T < (k + 1)T as required in (5.15). However, it is possible to use A: 
as the upper limit since the step function A(t) is zero for t < 0. Interchanging the 
order of integration and summation in (5.18) and using the property that A(t) is 
zero for t < 0 yields 

2/(0 = c T<f>{t)x{0) + E / ' ~ T)dTV(m)- (5-19) 
m=0  J m T  

The step response g is the integration of the impulse response h: 

g{t) = j h(r)dT (5.20) 

consequently (5.19) can be written in terms of g as 
k 

y{t) = cT(j){t)x{0) + Es ( * - mT)v(m). (5.21) 
m=0 
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The fact that g(0) is zero 1 is used to obtain (5.21) from (5.19). It is clear from 
(5.21) that y is composed of the response due to the nonzero initial state and the 
convolution summation of the input steps and the system step response. 

The determination of the step response from (5.21) by deconvolution is com­
plicated by the existence of the ini t i a l state response term. The effect of this term 
is usually accounted for by considering N terms in the convolution summation 
with iV large enough so that the effect of the nonzero initial state is negligible for 
t > NT. Therefore, for a stable system with an impulse response that vanishes for 
t > NT, the output is given approximately by 

k 

y(t) « g(t - {k - N)T)u(k - N) + E g{t-mT)v{m). (5.22) 
m=k-N+\ 

A n alternative exact approach to the deconvolution problem is considered below 

using the output modal function. 
The output modal function as defined by equation (2.26) is the sum of weighted 

output samples. Substituting for the output samples in (2.26) from (5.21) and 
taking the modal time shifts T,=tT, i—,... ,n, yields 

k n k—i 

Vo{t) = £ <7(* ~ mT)v{m) + £p 0,- £ d{t - mT - iT)v{m). (5.23) 
m=0 t=l m=0 

The response component due to the nonzero in i t i a l state is annihilated as a result 
the output filtering operation, so that it is possible to obtain the step response by 
deconvolution using y0 as given below. 

Each of the summation from m=0 to m=k-i, i=0,... ,n, can be divided into two 
summations; one from m=0 to m=k-n and the other from m=k-n+l to m=k-i 
such that (5.23) becomes, after arranging terms, 

k—n n 

Vo{t) = E \g{t - mT) + £p0,<7(* -mT- iT)]v{m) 
m=0 j=l 

k n—1 k—i 

+ E 9{t-mT)v{m) + J2Poi E g{t - mT - iT)v{m\h.2A) 
m—k—n+l t=l m—k—n+l 

The term in rectangular brackets in (5.24) is the output modal function of the 
system which corresponds to a step input. It has been shown before that the 

follows from equation (5.20) 
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modal function which corresponds to a constant input is a constant, hence for 
t > nT the term in the rectangular brackets in (5.24) is constant and can be taken 
outside the summation 

n k—n 
y0{t) = \g{t-{k-n)T) + Y,Poi9{t-{k-n)T-iT)]J2vn 

t'=l m=0 
k n—l k—i 

+ £ g{t-mT)v{m) + Y,Poi £ g{t-mT -iT)v{m). 

m=k—n-f-1 «=1 m=k—n+1 Substituting 
t = kT + s ,0<s<T (5.25) 

and augmenting the last two summations over i and changing the summation ar­
gument m to l=k-rn-i, i=0,... ,n-l, gives 

y0{kT + s) = [g{s + nT) + Y,Poig{s + {n-i)T)\u{k-n) 
x=i 

+ J^Poi^gis + l T ^ i k - i - l ) . 

In (5.26) p00 = 1. Equation (5.26) can be put in vector form as 

y0{kT + s) = [v{k) v(k - 1) ... v(k - n + 1) u(k - n) ] 

1 O 

Pol 1 

L Pon ••• Pol 1 

g(s + T) 

g{s + nT) . 

Let the row vector uT be 

(5.26) 

(5.27) 

uT(k) = [ u(k) u{k-l) ... u ( f c - n ) ] (5.28) 

such that 

v(k) v(k-l) ... u ( f c - n + l ) u(A; - n) ] = u T(/e)A (5.29) 

where 

A = 

1 
-1 1 
0 -1 

O 

o 

1 0 
-1 1 

(5.30) 



Nonparametric Identification 81 

Let g(s) be a vector of dimension n+1 given by 

g(s)= g{s) g{s + T) ... g{s + nT) 
lT 

(5.31) 

A least squares estimate of g(s) can be obtained from N > n + 1 equations like 
(5.27) for different k as 

where 

g(s) = {U U)~ U y_g{s) 

yo(s) = [y0{s) y0{S + T) ... y0{s + {N - 1)T) \ 

1 O 

L = 

and the kth row of U is given by 

Poi 1 

Pon ••• Pol 1 

lT
kU = u(k) . 

(5.32) 

(5.33) 

(5.34) 

(5.35) 

Equation (5.32) gives estimates of samples of g(t) over the time interval 0 —> 
(n + l)T only. Estimates of samples of g(t) beyond this time interval can be 
obtained by extrapolation as given below. 

For t > nT > 0 the step function is constant and consequently the output 
modal function of the step response is a constant given by 

g{t) + T,Poig{t-iT) =q00 ,t>nT>0. (5.36) 
t=i 

The extrapolation relation of g(t) for t > s + (n + k)T, k > 1 follows from (5.36) as 
n 

g(s + {n + k)T) = q00-J2Poig{s + {n + k-i)T) 
i=i 

n 
= g{s + {n + k - l)T) + J2Poi9{s + {n + k - i - 1)T) 

t=i 
n 

- X>oi0(s + (̂  + ™ ~ 0R) ,fc>l- (5.37) i=l 

E x a m p l e 5.2 : 
It is required to obtain estimates of samples of the step response of the third 
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order system in example 3.1 using (5.32) and (5.37). The system is excited by a 
piece-wise constant input +1, +2, -1 and -2 such that each constant input level 
lasts for 80rs where Ts = 7r/320. Starting from rest, the output of the system is 
computed every sampling time T„. The time interval T is taken equal to 20TS. The 
output modal parameters are obtained as in example 3.1 from discrete data, and 
(5.32) is used to obtain estimates of g(t) over the time interval 0 —> 80TS. Finally, 
(5.37) is used to obtain estimates of samples of g(t) for t > 80TS. Estimates of 
samples of g(t) obtained every 10TS are listed in table 5.3. The true values of 
the corresponding samples are listed beside the estimated values. From the listed 
results it is seen that the estimated values are exactly the true values represented 
by four decimal digits. 

5.4 Estimation of the Impulse Response 

Theoretically, the impulse response is the system response to a unit impulse input. 
W i t h some exceptions, such as biological and biomedical experiments where impul­
sive test signals are often the most practical forms, using an impulsive test signal 
to estimate the system impulse response is not practical. The impulse response 
of a system is usually estimated by a process of deconvolution knowing the input 
auto-correlation and the input-output cross-correlation functions. In this section, 
a method is considered for obtaining the impulse response as the derivative of the 
step response using the output derivative modal function. 

The system impulse response is related to the step response by 

The output derivative modal function that corresponds to a step input is obtained 
from (2.44) by setting the input single mode to unity as 

h{t) = Vg{t). (5.38) 

n 

Dg{t) + T,Pu9{t-iT)=ql0. (5.39) 
«'=i 

From (5.38) and (5.39) it follows that 
n 

h{t) + J2Pug{t-iT) = ql0. (5.40) 
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k Estimated values True values 

0 +0.6047E-06 +0.8327E-16 
1 +0.2291E+00 +0.2291E+00 
2 +0 .2291E+00 +0 .2291E+00 
3 +0.1086E+01 +0.1086E+01 
4 +0.1154E+01 +0.1154E+01 
5 +0.1004E+01 +0.1004E+01 
6 +0.8457E+00 +0.8457E+00 
7 +0.8207E+00 +0.8207E+00 
8 +0.9160E+00 +0.9160E+00 
9 +0.1028E+01 +0.1028E+01 
10 +0.1071E+01 +0.1071E+01 
11 +0.1039E+01 +0.1039E+01 
12 +0.9821E+00 +0.9821E+00 
13 +0.9542E+00 +0.9542E+00 
14 +0.9680E+00 +0.9680E+00 
15 +0.1000E+01 +0.1000E+01 
16 +0.1021E+01 +0.1021E+01 
17 +0.1018E+01 +0.1018E+01 
18 +0.1002E+01 +0.1002E+01 
19 +0.9804E+00 +0.9894E+00 
20 +0.9887E+00 +0.9887E+00 
21 +0.9967E+00 +0.9967E+00 
22 +0.1005E+01 +0.1005E+01 
23 +0.1006E+01 +0.1006E+01 
24 +0.1003E+01 +0.1003E+01 
25 +0.9981E+00 +0.9981E+00 
26 +0.9965E+00 +0.9965E+00 
27 +0.9980E+00 +0.9980E+00 
28 +0.1001E+01 +0.1001E+01 
29 +0.1002E+01 +0.1002E+01 
30 +0.1001E+01 +0.1001E+01 
31 +0.9999E+00 +0.9999E+00 

Table 5.3: Samples of g(t); estimated and true val 
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Once the samples of g are estimated they can be used in estimating samples of h 
using (5.40) provided that there are available estimates of the output derivative 
modal parameter vector pt and the scalar qlo. It is seen that (5.40) can be used 
for estimating samples of h only where t > nT. It is possible, however, to obtain 
samples of h for t > 0 if negative modal time shifts are used. First, the estimates 
of p1 and ql0 are obtained for negative modal time shifts and then these estimates 
are used in (5.40) to obtain h(t) for t > 0 in terms of g(t) for t > —T. 

Estimation of the output derivative modal parameters has been considered in 
chapter 3. The estimation process can be made easier by making use of the step 
response, already estimated in example 5.2, instead of the general system response. 
Mu l t i p l y i n g (5.40) by a vector of modulating functions f(t), e.g. Fourier or Walsh 
functions, then integrating over the period of orthogonality T0, making use of the 
fact that g(0) = 0, gives 

- / " g{t)Df{t)dt + g{T0)f{T0) + Y.Pii / 9{t-iT)f{t)dt = qlo / ° f{t)dt. (5.41) Jo — — i = l Jo ~ Jo ~ 

Least squares estimates of p , qlo and g{T0) can be obtained from (5.41) using a 
vector / of dimension N > n + 2. It should be noted that employing a vector of 
N Fourier functions as given by (3.17) is not suitable for estimating the unknown 
parameter q\0 because the integral of / over the period of orthogonality is the zero 
vector. However, it is possible to estimate all other unknowns in (4.44) so that it 
becomes possible to estimate qio by correlating (5.39) with a unit function f0(t) = 1 
over the time interval t —> T0 as follows: 

qio = ^ r ( f f ( T 0 ) + X > « / ° g{t - iT)dt). (5.42) 

E x a m p l e 5.3 : 
It is required to obtain estimates of the impulse response samples of the system 

considered in example 5.2 from the estimates of the step response samples obtained 
in that example. Assuming the following modal time shifts 

Tx = -20T S 

r 2 = -4ors 

T3 = -60T S 

and using a vector of six Fourier functions with a fundamental time period T = 
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192T a in (5.41) result in the following estimates of the output derivative modal 
parameters: 

p u=-0.1678E+01 
p i 2 = 0.8164E+01 
p i 3 = 0.1126E+02 

The estimate of qi0, as obtained from (5.42) is 
qlo= 0.1774E+02. 

Samples of the impulse response are estimated from (5.40) using these obtained 
estimates. The results are listed in table 5.4. The true values of the corresponding 
samples are also listed beside the estimated values. The listed samples are obtained 
every 10T3. 

5.5 Summary 

Methods of identifying nonparametric models are described in chapter 5. Equation 
(5.14) gives the system frequency response at frequency u0 in terms of vectors qo and 
v obtained from the input-output measurements. Such a simple direct relationship 
cannot be obtained when conventional frequency response methods, such as digital 
spectral analysis with the Discrete Fourier Transform, are used in the general case 
with output transients due to the system poles. The output transient component 
is not present when the output modal function is used. 

The step response is obtained from the output modal function in the case of 
a piece-wise constant input through (5.32) and (5.36). The impulse response is 
obtained by a simple filtering operation of the estimated step response, (5.40). 
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k Estimated values True values 

0 +0.3080E-03 -0.9992E-15 
1 +0.2135E+01 +0.2132E+01 
2 +0.2464E+01 +0.2461E+01 
3 +0.1156E+01 +0.1155E+01 
4 -0.3732E+00 -0.3724E+00 
5 -0.9625E+00 -0.9616E+00 
6 -0.5194E+00 -0.5195E+00 
7 +0.2483E+00 +0.2472E+00 
8 +0.6266E+00 +0.6253E+00 
9 +0.4378E+00 +0.4369E+00 
10 -0.6800E-03 -0.1019E-02 
11 -0.2808E+00 -0.2809E+00 
12 -0.2454E+00 -0.2457E+00 
13 -0.2713E-01 -0.2778E-01 
14 +0.1460E+00 +0.1452E+00 
15 +0.1551E+00 +0.1544E+00 
16 +0.4564E-01 +0.4508E-01 
17 -0.6123E-01 -0.6168E-01 
18 -0.8530E-01 -0.8580E-01 
19 -0.3548E-01 -0.3604E-01 
20 +0.2612E-01 +0.2547E-01 
21 +0.4851E-01 +0.4788E-01 
22 +0.2734E-01 +0.2672E-01 
23 -0.7232E-02 -0.7797E-02 
24 -0.2450E-01 -0.2507E-01 
25 -0.1698E-01 -0.1757E-01 

Table 5.4: Samples of h(t); estimated and true values. 



Chapter 6 

Observer Design 

6.1 Introduction 

The design of a state observer that gives the internal state of the system in terms of 
the input-output measurements in case of piece-wise constant inputs is considered 
in this chapter. It is assumed that there is no available a priori knowledge of the 
internal structure of the system so that the choice of the state variables is free. 
The most natural choice of the state variables in this case is the phase variables, 
which have a close relation with the system output and its derivatives. The state 
modal functions defined in chapter 2 wi l l form the basis for the design procedure. 

In section 6.2, a design procedure for a continuous-time and a discrete-time 
observers based on the definition of the state modal functions is given. The material 
given in section 6.3 completes the identification of a state model of the system by 
introducing a method for estimating the vector 6. 

6.2 State Modal Functions as a State Observer 

Each of the state modal functions yj(t), j = 0,... ,n — 1 as given by definition 
2.2 is a weighted sum of the state variable Xj+i at time t and n earlier samples of 
the output y. On the other hand, the same state modal function can be derived 
from equation (2.17), which gives a modal function fa for arbitrary vector a, by 
stting a = cTAj such that aTx(t) = cTAjx(t) = cTAjx(t) — ij+lx(t) is the state 
variable These specific choices of a have led to the definition of the state 
modal parameter vectors p.,j = l,...,n — l, given by (2.30). The state modal 

87 
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parameter vectors are identical to their respective output and output derivative 
modal parameter vectors which can be estimated using the methods described in 
chapter 3. In the following analysis wherever the index j appears, it is assumed 
that j can take the values from 0 to n-1. 

Let u be a piece-wise constant input as given by (5.15). Let the modal time 
shifts be integral multiples of the input sampling interval T such that Ti — iT, 

i = 1,..., n. It follows from (2.17) by substituting pai,... ,pan for the state modal 
parameters pji,... ,pjn that the state modal function y ; is given at the time instant 
t = kT + s by 

n r(k-i)T+s 

y3{kT + s) = Y^Pji / cT(/>({k - i)T + s - r)6u(r)aY. (6.1) 

Let 
r(k-i)T+a 

Zi(kT + s)= cT<j>((k - i)T + s - r)bu(r)dT (6.2) 
JkT+a 

such that 

y,-(fcr + s) = ̂ p^T + s). (6.3) 
»=i 

The analysis given below aims at expressing 2, in terms of the input steps in order 
to obtain a relation between the state modal function y 3 and the piece-wise constant 
input u. 

Substituting for u in (6.2) as a sum of steps yields 

f(k-i)T+3 

Zi(kT + s) = / cT<f){{k - i)T + s - T)bdru(k-i) 
JkT+s 

* r(k-i+m)T 

+ £/ cT<j){{k-i)T + s-T)bdTv(k-i + m). (6.4) 

m=l JkT+<> 

Using the substitution o — (k — i)T + 5 — r in the integrals gives 

r° 
Zi{kT + s) = / cT<j>(o-)bdo-u(k -1) 

* rs-mT 
+ £ / cT4>(o-)bdo-v{k-i + m). (6.5) 

m=l J - i T 

Each integral over the time intervals t = —iT —> s — mT in (6.5) can be expressed 
as sum of two integrals over the time intervals t = — iT —> 0 and t = 0 —> s — mT 
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such that (6.5) becomes 

Zi(kT + s) = / cT(j)(a)bdou(k - i) + V / J <f>{o)bdov{k - i + m) 
J ~ i T m=lJ~iT 

* rs-mT 

+ Yl cT^{a)bdov{k-i + m). (6.6) 
m=l^° 

Since from the definition of v 
i 
£ v(k - i + m) = u(/c) - u(fc - i) (6.7) 
m=l 

it follows from (6.6) by adding the first two terms on the right-hand side of the 
equation that 

/

0 * rs-mT 

cT(j){a)bdau{k) + V] / cJ'4>{o)bdov{k -i+m). (6.8) 
-iT

 m = i J o 

Substituting back for z, in (6.3) yields 
« rO n i rs-mT 

Vj{kT + s) = YlPji / cT<t>{o-)bd(Ju(k) + J^Pi* / cT<j)(a)bdav(k -i + m). 
i=l ~ i T t'=l m=l 0 

(6.9) 
Introducing 

rm{s) = / cT<j>{c)bdo- (6.10) 
Js-mT 

gives 
n n i 

yj(kT + s) = Ep,-,-rt-(0)u(fc) - J^Pji £ rm{s)v{k - i + m). (6.11) 
t=l m=l 

Let yj0 be the state modal function that corresponds to a constant input u(fc), then 
Vjo{kT + s), k > n, can be obtained from (6.11) by setting all the terms v(k — i + m) 
to zero as follows: 

Vj{kT + s) = X>;.r,(0)u(fc)- (6-12) 
t=i 

On the other hand, y J 0 is given by (2.40) as 

Vjo = §,•<,«(*;) (6.13) 

where qJ0 is obtained from (2.41) by setting = <pc(t) = 1 as 

Qjo = J2Pji cT(f>(a)bd(T. (6-14) 
.=i y-' T 



Observer Design 

Then it follows from (6.12) and (6.13) that 

n 

i=l 

Substituting from (6.15) into (6.11) yields 
n i 

y,(kT + s) = qjou{k) - £p>,- £ rm(s)v(k - i + m). 
t=l m=l 

Equation (6.16) can be written in vector form as 

Vj{kT + s) = [u(k) -v{k) -v{k-l) ...-v{k-n + l)]Tj 

where 

and 

90 

(6.15) 

r(s) 

»•„(«)] 

' 1 0 ... 0 
0 pji ••• Pjn 

. 0 Pjn o 
be shown that 

\u{k) -v(k). . — v(k — n + l)] = 

(6.16) 

(6.17) 

(6.18) 

(6.19) 

{k)AT (6.20) 

where u T(/c) and A are given by (5.28) and (5.30) respectively. Therefore, it follows 
from (6.17) and (6.20) that 

yj(kT + s) — uT(k)A Tj Qjo 
r(s) 

(6.21) 

Finally, the required relation between the state modal function ]jj and the piece-
wise constant input u follows from (6.21) as 

MkT + s) = uT{k)q.{s) 

where 
q.(s) = ATr;- Qjo 

r{s) 

(6.22) 

(6.23) 

Substituting definition 2.2 for y3- in (6.22), and moving all terms with the exception 
of X j + 1 to the right-hand side of the equation yields 

~Xj+1{kT + s) = -J2Pjiy{{k - i)T + a) + g . T ( * ) £ ( * ) (6.24) 
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As seen from equation (6.24) it is necessary to obtain estimates of the vectors 
p. and q. in order to use the equation as an observer of the state variable Xj+i. 
Estimating the modal parameters from the system response to a piecewise-constant 
input has been considered in chapter 3 1. It has been shown that a time interval 
greater than or equal to nT should be allowed between any two successive input 
transitions. This restriction resulted from the fact that the continuous A R M A 
model used to estimate the modal parameters is valid only over the time interval 
of a constant input. A n alternative method based on the estimated step response 
can remove this restriction on the frequency of input transitions. The continuous 
A R M A model in case of a step input is given by 

D*g{t) + itPjig{t - iT) = qjo ,j > 0. (6.25) 
t=i 

The methods of obtaining the output derivative modal parameters p}\,... ,pjn for 
j > 0 using Fourier functions or Walsh functions which are described in section 3.4 
are applicable to the case of the A R M A model (6.25). The only difference is that 
the estimated step response samples w i l l replace the measured system response 
samples. 

The estimates of q^.{s) can be obtained from (6.23). It is seen from (6.23) 
that under the assumption that there is an available Tj, i.e. there is an available 
estimate of p*, it is possible to obtain q^(s) from the scalar q]0 and the vector r(s) 
which is independent of the index j. Actually, it is sufficient to obtain an estimate 
of r(s) in order to obtain ̂ .(-s) from (6.23) because the scalar qj0 can be obtained 
from (6.15) as 

9,-o = pTr(0). (6.26) 

The required estimate of r(s) can be obtained from (6.22) by setting j=0 as 

<loo 
r{s) 

(ATT0)-\(s) (6.27) 

A least squares estimate of the vector qo(s) required in (6.27) can be obtained from 
N > n + 1 equations like (6.22) formed from the input-output measurements for 
different k as 

Us) = {UTU)-Wy(s) (6.28) 
isee examples 3.1 and 3.2 
2 
see (6.19) 
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where Vo(s) and U are given by (5.33) and (5.35) respectively. Comparing (6.28) 
with (5.32) gives the relation between the estimate of Q00{s) and the vector of step 
response samples g(s) as 

io{s) = ALg{s) (6.29) 

where L is the lower triangular matrix given by (5.34). Equation (6.29) gives the 
estimate of qo{s) as a linear transformation of the estimates of the step response 
samples. The estimate of q^s) is then obtained from the estimates of r(s) and g J 0 

using (6.23) where q\j0 is obtained from (6.26). 

By estimating q^s) equation (6.24) can be used to obtain the state variable x ; + 1 

in terms of the available input-output measurements . Equation (6.24) represent a 
single row in the vector equation 

x{kT + s) == Py{{k - 1)T + s) + Q{s)u{k) (6.30) 

where y((k — 1)T + s) is given by (4.20), the matrix P is given by (4.18) and the 
matrix Q{s) is given by 

2 » 
Q(s) (6.31) 

The dimension of P and Q(s) are nxn and nx(n + 1) respectively. The state 
observer (6.30) gives the system state x at time t = kT + s as a direct function 
of n output samples y((k — l)T + s),... ,y((k — n)T + s) and n + l input samples 
u(k),..., u(k — n + l ) . To obtain a state observer of the system state at the discrete 
sampling instants only, the time variable 5 is set to zero such that (6.30) becomes 

x{kT) = Py{{k - l)T) + Q{0)u{k). (6.32) 

The system state at the beginning of the kth sampling interval x(kT) is independent 
of the input u{k) applied to the system during that sampling interval, which means 
that the first column of Q(0) in (6.32) is zero. This can be verified by testing the 
first element of the rows of Q(0). According to (6.31), the (j + l ) t h row of Q(0) is 
j^.(0). The first element in q}(0) is given by (6.23) as 

if2,(o)=i?A ' r , - Qjo 

1(0) 
= qj0 - pjY(o) = 0. (6.33) 
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The last equation follows from (6.26). 

Let the n dimensional vector u(k — 1) be formed from the elements of the n + 1 
dimensional vector u(k) by deleting the first element, u(k), as follows: 

u{k-l) = {oI}u{k). (6.34) 

Similarly, let the nxn matrix Q be formed from the elements of the nx(n + 1) 
matrix 0(0) by deleting the first zero column such that 

(6.35) 

Thus the discrete-time observer follows from (6.32) as 

x[k) = Py{k - 1) + Qu{k - 1). (6.36) 

The time interval T has been ommited from the discrete-time observer since it is 
implicitly understood. It is seen from (6.36) that it takes only n sampling intervals 
to form the vectors y(k — 1) and u(k — 1) in order to be able to reconstruct the 
state vector x(k). This kind of observer is called a dead beat observer [Astrom 83], 
or a minimum time observer [O'Reilly 83]. It should be noted that although the 
observer (6.36) is discrete, it gives the state x of a continuous-time model of the 
system since x is defined in terms of the output and its derivatives which are 
meaningless in a discrete model case. 

To summarize, the design of the state observer in case of a piece-wise constant 
input takes the following steps: 

• Estimation of the output modal parameter vector pg. 

• Estimation of the vector of step response samples g(s). 

• Estimation of the state modal parameter vectors p , ... ,Pnl from the esti­
mated step response. 

• Obtaining ? 0(s),. • •, 5n_x("S) from the estimated step response and the modal 
parameter vectors using equations (6.29), (6.27), (6.26) and (6.23). 

• Forming the matrix P from rows P Q , • • • > P ^ _ j -

Q = 0(o) 
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• If a continuous observer is sought, the matrix Q(s) is formed from rows 
qg(s),... ,qnl(s), while if a discrete observer is sought, the matrix Q is 
formed as in (6.35). 

Example 6.1 : 

Consider a third order system with transfer function 
rr(^ - 6.5s + 52  

U [ ' ~ s* + 4s2 + 30s + 52 
The system is identical to the system considered in example 3.1 with the exception 
that the system in example 3.1 has a zero at s = —4 while the system in this 
example has a zero at s = —2. Starting from rest, the system is excited with the 
piece-wise constant input +1, +2, -1, and -2. Each constant level lasts for a du­
ration 80rs where Ts = 0.01. It is desired to obtain a minimum time observer for 
this system to give the system state at the sampling instants x(kT), and midway 
between successive sampling instants x(kT + T/2) where T is the input sampling 
time taken equal to 20T S. Following the design steps listed above results in ob­
taining three matrices P, 0(0) and Q(T/2) listed in table 6.1. It is seen from the 
results that the first column of Q(0) is zero as expected. 

6.3 Estimation of 6 

The identification of the parameters of a system model has been considered in 
chapter 4. Estimates of the coefficients of the characteristic polynomial have been 
obtained in sections 4.3 and 4.4. By estimating these coefficients it is possible to 
obtain an estimate of the system dynamic matrix in phase variable form A. Hence, 
it remains to estimate the vector 6 in order to complete the identification of the 
state model of the system. 

The nonzero elements in h result in a difference between the state variables x ; + i , 
j = 1,..., n — 1, and the corresponding output derivative P3y. The same difference 
results between the state modal functions and the corresponding output deriva­
tive modal functions. The output derivative modal functions and the state modal 
functions that result from a step input are constants g J 0 and qj0, j = 1,... ,n — 1 
respectively. Estimates of these constants are obtained in section 6.2. The relation 
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Mat r i x P 

-0.1555E+01 +0.1264E+01 -0.4494E+00 
-0.3142E+00 +0.4343E+01 -0.2163E+01 
+0.2621E+02 -0.2842E+02 +0.6032E+01 

Matrix Q(0) 

+0.4985E-05 
-0.9472E-06 
+0.2734E-06 

+0.1455E+00 +0.1475E+00 
+0.1444E+01 +0.5780E+00 
-0.2339E+00 -0.2850E+01 

-0.3413E-01 
-0.1643E+00 
+0.4581E+00 

M a t r i x Q{T/2) 

+0.3561E-01 
+0.7309E+00 
+0.1156E+01 

+0.2257E+00 +0.9755E-02 
+0.1185E+01 +0.1017E-03 
-0.3505E+01 -0.4398E+00 

-0.1211E-01 
-0.5830E-01 
+0.1626E+00 

Table 6.1: Minimum time observer parameters 

between g J 0 and q\j0 follows from (2.33) by setting the input u to unity and all its 
derivatives to zero ; 

<ljo-qjo = bj J = l , . . . , n - 1. (6.37) 

Hence the estimates of bj, j = 1,... ,n — 1, can be obtained from (6.37) as the 
difference between the corresponding output derivative and state modal functions 
which are obtained from the estimate of the step response. The n t h element in 
6 cannot be obtained from (6.37) because, although the output derivative modal 
functions are defined for j > 0, the state modal functions are defined for j up to 
n — 1 only. The output derivative modal function of order n is given by definition 
as 

n 
qno = Dng{t) + J2Pm 9{t ~ i T ) . (6.38) 

«=i 
The relation between the output derivative of orders 1,... ,n and the system state 
variables is given by (2.11). Substituting in (2.11) for y by g, for u by unity and 
for all the derivatives of u by zero, it follows that the n t h derivative of g is 

P ng{t) = a Tx{t)+ ~bj. (6.39) 
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From definition 2.2 of the state modal function it followos that the state modal 
function that results from a step input is given by 

n 

£j+i(0 + YlPaSi1 - iT) = ~Qi° (6-40) 
t'=l 

Substituting for the state variables in (6.39) from (6.40) it follows that 

n—1 n 

Dn9{t) = - E afao -Y,Pji9{* ~ &)) + k- (6.41) 
j=o «=i 

Substituting back for Vng in (6.38) and rearranging terms yields 

n—1 n n—1 

Qno = ~ £ a,Qjo + £ [ P n i + £ o.jPji]g{t - iT) + bn. (6.42) 
j'=0 i=l j-0 

However, from theorem 4.1, it follows that the term in rectangular brackets in 
(6.42) is zero, and therefore bn can be obtained as 

n - 1 

k = qno + £ ajqjo- (6.43) 
3=0 

The constant output derivative modal function qno can be obtained exactly the 
same way as other output derivatives modal functions qj0, j < n. The parameters 
a,j, j = 0,..., n — 1 are obtained from the modal parameters as in section 4.3. 

Example 6.2 : 

It is required to obtain the vector b for the system in example 6.1 using (6.37) and 
(6.43) . The estimates of p., qj0 and g J 0, ,7=0,..., n—1, already obtained in example 
6.1 w i l l be used. The estimates of pn and qno are obtained from the estimated step 
response. Using these estimates in (6.37) and (6.43) gives the estimate of b listed 
in table 6.2. The true values of the elements of b are listed with the estimated 
values for comparison purposes. 

6.4 Summary 

The main result of chapter 6 is the minimum-time state observer in continuous-
time, (6.30), and in discrete-time, (6.36). Although (6.36) is discrete in nature, it 
gives the continuous-time system state x which is defined in terms of the derivatives 
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^ I b 

+0.7399E-02 0.0 
+0.6453E+01 +0.6500E+01 
+0.2624E+02 +0.2600E+02 

Table 6.2: Estimated and true values of 6 

of the continuous output. The minimum-time observer gives the system state in 
terms of the input-output samples in n sampling intervals. 

A method is given to determine the vector 6, of the state model, from the 
modal functions that correspond to the step response, and the estimates of the 
a-parameters obtained before in chapter 4. 



Chapter 7 

Conclusion 

7.1 Achievements 

A new method for continuous system identification is presented. The new method 
uses modal functions which are defined in terms of the system output, the system 
output derivatives and the system state. A necessary condition for the existence 
of the modal parameters, associated with the modal functions, is established in 
theorem 2.1. The properties of the modal functions are studied in section 2.4. It 
is shown that these functions are independent of the system poles and the system 
instantaneous state and that they are linear functions of the input modes. 

Methods of estimating the modal parameters from the available input-output 
measurements are presented in chapter 3. Orthogonal functions, Fourier functions 
and Walsh functions, are used to estimate modal parameter vectors. It is shown 
that only one stage of integration is required to determine one modal parameter 
vector at a time resulting in only one unknown added to the estimation problem 
in the case of Fourier functions 1, and none in the case of Walsh functions 2. This 
is an advantage over the known methods utilizing modulating functions which 
usually result in n additional unknowns [Saha 83], or trade the orthogonality of 
the modulating functions for a lower number of unknowns [Pearson 85]. It is also 
an advantage over the methods which utilize orthogonal functions and operational 
matrices for integration. These methods require the estimation of unknown ini t i a l 
conditions, and they suffer from accumulated errors due to multiple integrations 

1see equation (3.30) 
2see equation (3.37) 
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with truncated operational matrices. 

The output modal function is obtained from the system output by a simple 
filtering operation 3. After showing that the output modal function is a particu­
lar response of the system which is composed of modes from the corresponding 
filtered input, the filtered input-output pair is used to identify parametric and 
nonparametric models of the system. 

A parametric model is identified in section 4.2 through a method that utilizes 
the output modal function. It is shown that the unavailable derivatives which 
used to be a problem in continuous system identification can be obtained from the 
output modal function analytically 4. 

W i t h a periodic waveform input, the output modal function, which in this 
case is periodic, is used in section 5.2 to obtain samples of the frequency response 
of the system. The transient component of the system response, which causes 
the systematic errors in the frequency response estimation methods using digital 
spectral analysis, [Wellstead 81], is annihilated by the use of the output modal filter. 

Estimates of samples of the step response of the system are obtained using 
the output modal function in section 5.3. Samples of the impulse response of the 
system are obtained in section 5.4 as the derivatives of the step response by a 
simple filtering operation that uses the output first derivative modal parameters 5. 

Modal functions and modal parameters of the system output and the system 
output derivatives are used in chapter 4 to identify a parametric input-output 
model of the system. A nice property of using the modal parameters in parametric 
system identification is decoupling of the estimation equations with a smaller num­
ber of unknowns to be estimated from each equation. By estimating n+1 modal 
parameter vectors, each of dimension n, the vector a of the coefficients of the char­
acteristic polynomial of the system is obtained according to theorem 4.1 as the 
solution of a set of n algebraic equations formed from the estimates of the modal 
vectors. The vector b is obtained according to theorem 4.2 by solving another set 
of linear algebraic equations formed from the modal functions of the output and 

3see Definition 2.1 
4see equation (4.3) 
5see equation (5.40) 
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the output derivatives and the estimate of a. W i t h the existing methods utilizing 
modulating functions or multiple integrations, there w i l l be n parameters associ­
ated with the system poles, there can be n parameters associated with the system 
zeros plus n unknown ini t i a l conditions all contained in one equation. It can be 
difficult to realize well-conditioned estimation equations even for low n. 

Theorem 4.3 gives a proof that a data matrix formed from the free response 
of the system possesses the same eigenvalues as the system dynamic matrix A. 
From this data matrix the coefficients of the system characteristic polynomial are 
obtained recursively through a simple relation 6 which is well known in matrix 
algebra but seems not to have been used before in system identification. The system 
poles are obtained by solving for the eigenvalues of a data matrix. Theorem 4.3 
has been extended to include systems driven by continuous controllers. 

In section 6.3, a method is presented to estimate the vector b thus completing 
the identification of a continuous state model of the system in phase variable form. 

Based on the definition of the state modal functions, a procedure to design a 
minimum-time observer in case of a piece-wise constant input is given in section 6.2. 
The observer gives the continuous system state as a direct function of input-output 
samples in a number of sampling intervals equal to the order of the system. 

7.2 Remarks on Future Research 

The choice of the modal time shifts affects the linear independence of the columns 
of xjj. This affects the accuracy of the estimates of the modal parameter vectors 
and consequently the accuracy of the estimates of the model unknown parameters 
derived from these vectors. Therefore, by understanding the exact impact of the 
modal time shifts on the estimation equations, they can be chosen to optimize the 
conditioning of the estimation problem. 

The effect of noise on the performance of the minimum-time state observer when 
used in a feedback control loop should be investigated. A Kalman filter could be 
used to obtain best estimates of the output samples that are used to obtain the 
system state. 

6see equation (4.50) 
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Since the modal time shifts T,, i=l,... ,n in the case of a piece-wise constant 
input is not restricted to Ti=iT, it is possible to obtain a parametric discrete 
model of the system with T^/c.T, k, > i. Such a model can be useful in designing 
predictive controllers yielding better responses. 

This thesis has dealt with single-input single-output systems. Extensions of 
the thesis results to multi-input multi-output systems does not seem to pose any 
theoretical difficulty. Modal functions can be determined for each output, as is 
the case for single-input single-output systems. The problem appears to be one 
of ordering output modes and accounting for free subsystem modes and coupling 
modes between subsystems. 
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